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Abstract

In this study, we have proposed second, fourth and sixth order convergent numerical techniques
for approximating linear and non-linear boundary value problems of second order with the help
of fractal non-polynomial spline function. We have discussed the convergence analysis and
error bound for sixth order method to prove the theoretical aspects of the presented method.
Numerical problems are experimented to validate the theoretical results. Comparison with
fractal polynomial and few other existing methods leads us to the conclusion that the proposed
technique is more efficient.
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1. Introduction

With the help of fractal non-polynomial spline, we have developed numerical techniques to
find the approximate solution of boundary value problems(BVPs) of the type:

wa(t) +p(O)w(r) = £(2), 1€ (0, 1),
W(O):G(), W(l)zdl,

(1.1)

and

wyu(t) +F(t,w(r)) =0, t€(0, 1),

W(O) = Oy, W(l) = 01,

(1.2)

where op and o) are constants. In (1.1), p(¢) and £(¢) are continuous functions in closed in-

terval / = [0, 1]. For random choices of p and £, exact solution of these BVPs cannot be find.
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Therefore we approach numerical methods to get approximate solution of (1.1). In (1.2), pre-
sume that for (£,w(7)) eD={0<r<1, —oo <w(f) < oo}, Fand g—fv are continuous. We know
that (1.2) admits unique solution, if  sup g—fv < m2,[22]]. Here we assume that 3—& <0 on
(t,w(t))eD
D and 3—5 <0onD*={0<r<1, —eo<w(t)<eo}. The notation w; symbolizes second
derivative of w with respect to z.
Various authors have used different techniques to find numerical solution of linear as well as
non-linear BVPs. Authors in [[11]] used cubic spline functions to find the approximate solution
of nonlinear BVPs. Few numerical techniques derived by various authors for solving non-linear
BVPs are given in [} 2, 18, [14, 23, 27, 28, 32] and fractional differential equations are given in
(13,150 1164117, 118, 19} 129, 130].
With the help of quasilinearisation technique[6, 21}, 26]], the non-linear BVP (1.2) is converted
into a system of linear BVPs, which in turn are solved by derived numerical scheme using
fractal non-polynomial quintic spline function. A parameter A called scaling factor is used in
fractal spline which is suitably restricted to obtain the approximate solution of the linearized
BVPs. Fractal interpolation function was introduced by Barnsley[4] using Iterated function
system. Although fractals are difficult to constrain but they are best suitable for generation
of various irregular shapes found in nature. It provides the possibility of simulating and de-
scribing landscapes precisely with the help of mathematical models. To find the numerical
solution of (1.2), Balasubramani et. al.[3] have worked upon fractal quintic polynomial spline
functions. In this paper we have worked upon finding the approximate solution using fractal
non-polynomial spline functions and observed that the proposed scheme provides better results.
The description of paper is as follows:
At the beginning ,we have given a brief description of the presented method which uses fractal
non-polynomial quintic spline to get a relation between w(f) and M(¢) using continuity con-
ditions. In section 3, we have discussed the truncation error. Thereafter, possible classes of
method are discussed in section 4. Then we have discussed the convergence analysis of sixth
order method in section 5. Error bounds are carried out. Thereafter, we have given a briefing
about finite-difference method and Numerov’s method, and experimented four numerical prob-
lems to testify the efficacy of proposed method in section 6. Concluding remarks are provided

in section 7.

2. Fractal Nonpolynomial spline

Let0=1) <t <t <...<t, =1 be the partition of the interval / = [0, 1] given in (1.1)
and (1.2). Let w(z) and W; denote the analytical and approximate solutions respectively. For
t;=jh, h=1/n, 3=0,1,...,n. Let Mj; and S; denote the approximation corresponding to
wi(t5) and wi () respectively.

Concept of Iterated functions system (IFS) is used to develop fractal interpolation functions(FIF).

Basic details related to fractal interpolation are provided in [S} 9, [10].
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Define Hj : I — I3, where I3 = [tj_1,1;] such that
Hj(t) =ht+t5_1, t€l
Clearly, H;(to) = t;—1 and H;(t,) = 15,
and define [Fj:1x R — R such that
Fy(t,w) =Aw+r;(1), (t,w) € IxR,
where A is scaling factor such that |A| < A* and

ri(t) = Ajcos& (t —to) +Bysin& (t — t9) + C; (¢ — t9)> +Dj (t — t9)* +E; (t — 19) +F;.
Constructing the IFS as follows
I xR;X5(t,w) = (Hj(1),(F5(t,w))) : j =1,2,...,n,

which satisfies the following conditions:

]FJ (t()aWO) = Wj*lu ]FJ (trlen) = WJ?
F5.1(th, Wn1) = Fy41,1(t0, Wo 1),
Fj,Z(t()?MO) = Mj*la Fj,Z(tI’l?Mn) = MJ?
F33(th, Wy 3) = F3113(t0, Wo 3),

\Fj,4(t0,SO> = Sj—17 IFj,4(t}’l7S}’l) = SJ7

k
where j = 1,2,.....n— 1, and Fy o (r,w) = 2030 k=123 4 and
(1) _ () (1) _ )

Woi === Wai == Wo3 =353 Wa3 =525 -
Clearly, IFS is satisfying C*-differentiability conditions on FIFs[3} [0, 10].

LetF = {® € C*(L,R) | D(ty) = Wo, P(tx) = Wy, D (1) = My,
D2 (1,) = My, DM (1) = So, @™ (1,) = S,,}.
Then (F,d) is a complete metric space and d is a metric induced on F by C*—norm. Let us

define the Read-Bajraktarevic operator T on (&,d) as

T(P(H; (1)) = AD(t) + Ajcosé (t — to) + Bysin& (t — t9) + C5 (¢ — 9)> +Dj (1 — 19)?
+E;j(t—10) +Fj, t € [to,tn], j=12,...,n.

As operator T is contraction map, it must have a unique fixed point ¢ (say) which will

satisfy the following conditions:

@(H;(1)) = A@() + Ajcos& (t — to) +Bysin& (t — tg) + C;(t — t9)> + D3 (t — 1)
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+Ej(t—19) +F;5, t€(tot), j=12,...,n. (2.1)
From [[10], it can be seen that

Fj(t0, Wo) = Wi_1, Fy(t,, W,) =Wy, Fj2(t0,Mo) =M;_1,
FJ,2(IV!7M ) M ]F_] 4(t07S0) Sj*la FJ,Z(tn,Sn) - SJ7
are equivalent to

¢(t5—1) = Wi_1, @(t;) = W;, <P(2)(fj—1) =M;_1,

2 4 4 (2.2)
(P( )(tj) :Mja (P( )(tj—l) ZSj_l, (P( )(lj) =Sj.

The conditions ]FjJ(l‘n, Wn,l) = Fj+171(t0, W()J), and Fj@(tn, Wn’3) = Fj+173(l‘0, W0,3), can be
reevaluated as @) (H;(t,)) = (p(l)(Hj+1(t0)) and @) (H;(1,)) = (p(3)(Hj+1(t0)) respectively.
The coefficients A, B, Cj, D;, E; and F; used in (2.1) are evaluated using (2.2). We get

h4

h4
; ﬁ(sﬂ ~ i)

h2
£y = (Wso1=AW0) + £ (854 %S‘))'
For continuity of @(!), we have used (p(l)(tj_) = (p(')(t}L) ie., (p(l)(Hj (ty)) = (p(l)(Hj+1(t0))
and eventually get the following condition:

Ao (1,) — A;Esin& +BjE cosE +3C;54+2D5 +E5 =A@ (10) + EBjyy +Ej11.  (23)

Similarly for continuity of ¢\ we have used ¢*)(r) = @1)(7) i, @ (H;(1)) =
@) (H;41(t)) and get

203 (1) + A;E3sin€ —B;jE3cos & +6C5 = Ao (1) + E3By 11 4+ 6C5 1. (2.4)

After substituting the values of A;, Bj, Cj, D3, Ej, Bj41, Cj+1 and Ejq in (2.3) and (2.4),
we obtain

(50+9) (552 gsiing ~ 25n€) + (514500 (g e+ 89)
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h* 2h* cos
+5; (65402 487%) - gﬁ)=7up<”(rn>—Mo<”(ro)—(Wj+1—2Wj+wj1)
A h?
=7 (Mo+My) + (M1 +4M; + M), (2.5)

(So+Sn)(&Cf’—sg_L> <§sli§ 2‘;)( 1+SJH)+S_<2_M_2_M@_S§>

=A%) (19) — 9 (1)) + KX (Mj_1 —2M;5 +M;j+1), (2.6)

respectively. From equation (2.5), we have

1 A
e Mi+1+4M; +Mj71>+h4k2<SO+S ) o (o (t)

A 1
oW1y 10)) + 5,5 (Mo+Mp) + 53 (Wit =2W5 + Wiph),  27)

<06sz71 —|—2ﬁ25j + 06sz+1> =—

and from equation (2.6), we have

(015142185 018y 1) = 1 (My 1 — 25+ My 1) — k(S0 +5)
(00— 00 w), (2.8)
where
o = é(écosec(g) - 1) ., Bi= é(l —écot(é)),
OCzZé(%—OCl), [32:&_12 %—ﬁ1>7

Solving (2.7) and (2.8), we get

(So+Sn) (oka+00k)  and (9 (1) —9W(10))  0pA (%) (1a) — 9 (10))
2t (upr—ofr) 20t (ufr—of) 2n* (0P — o)
ud  (Mo+My) o (Wi =2W5+Wi1)  on (My +4M5+M5-,)
4pt (Otlﬁz—(Xzﬁl) 2ht (061[32—062[31) 12h2 ((Xlﬁz—azﬁl)
(07} (Mj+1 —2Mj —i—Mj,l)

Sj =

2h2 (OC] [32 — 052[31) (2.9)
Using equation (2.9) in equation (2.8), we have
o (Wj+2 + Wj_z) +2(ﬁ1 — al)(Wj—i-l + Wj—l) (20{1 4[31)
= —2(a1 + 1) (9 (10) — 9V (1)) +2(02 + B2) A (0 (3)(to) — ¢ (1))
—(061 + B]))L(M() +Mn) +h2(pMj+2 —|—qu+1 + T'Mj +qMJ-_1 —|—pMJ-_2), (210)
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where

p =0+ %,

g =2[4(20+B1) — (0 —B2)]

r= 2[%(061 +4B1) + (0 — Zﬁz)} -

Remark 1: When (al,ﬁl,az,ﬁz> = (%, %, %, %) equation (2.10) reduces to (2.5) of Bal-
asubramani et al.[3]].

Remark 2: When A = 0, equation (2.10) reduces to quintic non-polynomial spline method by
P. Srivastav et al.[31].

2.1. Spline Solution for Linear BVPs
Equation (1.1) is discretized at t =15, since M;+p;W; =£;, where p; =p(t;), £5 =£(¢5).
The boundary equations are discretized as Wy = 6y, W, = o7.

Substitute
Wo+3W,—3W,+ W —3W,_1+3W, =W, _
¢ () = MM, gy - Mo Mokt
(p(l)(t()) lh 0 (p( )([n):T”'7
M;=15—p;W;j,

in (2.10), and after some calculations we get,

(— :2(a1;ﬁ1)/1 + 6(062:3132)/1} Wi+ [aoa}l%} W, — [z(azhﬁ} W3 — [061 +Ph2pj72} Wi—2
~ |2(B1 — @)+ ahps-1| Wyt — | (200 — 4By) + rips | W3 — [2(B1 — o)

TP | Wit — [0+ phPpyia| Wyso — |2 fh | w, g [ty
Pk Stk = k(£ 2 £50) +q(E5 +E500) 4

A (01 +B1)[(F0+24) — (oG +pacy)] — | 21epPE 4 2eefall

- [Haght | A, i=23,...,(n—2).

2.11)

\

In (2.11) we have (n— 1) unknowns Wy, W,,...W,_; and (n — 3) equations. Therefore two
more equations are required to find unique solution. Hence we derive two boundary equations
as follows:

Boundary equations

Let the equationat j =1and j =n—1be

m "

| 2(+B)A W3 — 2(0624-3!32)1} W, 3+ [6 0624;132)/1] W, »— [ (0614};51)
h n—3 3 n—

+6(062+ﬁ2)/1] W, 1+ [2(051-};51)7L + (062+Bz) ]Wn = Ao+ B1)[(fo+ £5)
—(q000 + 4n0n)] +Z§§S (lkW(fk) +mih Wn(lk)),

2(a14}:ﬁ1)l+2(a2+ﬁ2)l Wo — 2(a1;ﬁ1)l_’_6(a2+[32) Wy + (052+l32) ]Wz
(

(2.12)
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and

( [2(051-}11-131)/1 + 2(0622—3[52)1} Wo — 2(0614-131)7L + 6(052+[52) ]W + [ (052+[32) ]Wz

B [2(052—1—[32)1} Ws— [2(%;3132) }an + [ (Ocz+ﬁ2) ]Wn—z _ [ (al—zﬁl)

_|_6(Ocz+ﬁ2)/l]Wn7 +[2(0614431) + (062;;[32) ]Wn:)b(al+ﬁl)[(f0_|_fn)

— (9000 + gn0n)] + Zk n—>5 (lkW(lk) —l-mkhzwzt(fk)),

(2.13)

respectively. The system (2.11), (2.12) and (2.13) provides the numerical solution Wy, j =
1,2,...,n—1 for linear BVPs.

2.2. Spline Solution for nonlinear BVPs
2.2.1. Quasilinearisation technique

We use quasilinearisation technique to convert the non-linear BVP given in (1.2) into a sys-
tem of linear BVPs. Here w(% (7) denotes the initial approximation and the function F(¢,w(r))
is expanded around the w(% (r) to obtain

JF
I w0y T

F(t,w) (1) = F(e,w % (1) + (W) = (V) (
In general,

oF

F(t, w(r—i-l)(t)) = F(l,w(r>(t)) + (w(r—H) — w(r)) (%)(hw(r)(l)) +...,

where r is the iteration index such thatr =0,1,2, ...

The nonlinear BVP (1.2) can be written as

wiE () +Fe,wEt (1) =0, 1 € (0,1),

(2.14)
wED(0) =0y, wrtD(1) = oy.
By substituting
F(t,w (1)) = F(t,w® (1)) + (wE+D — w<r>)(£)
’ ’ ow’ (tw)(0)
in (2.14), we get
w0+ gD w0 = SO, e 1), T=0.1.. 015

W(I_H)(O) = Oy, W(r+1)(l) = 01,

where

r r r 8F r
q' )(t> = (%)(,,W(r)(,))y £ )(t) = w )(t)(%)(hw(r)(,)) —F(t,w( )(t))-
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Hence the non-linear BVP (1.2) is converted into a system of linear BVPs. Now we will proceed

to solve this system numerically.

2.2.2. Numerical scheme

Let WJ(I) is the approximate value of w(*) ;) and M §r) is the approximate value of wt(,r ) (#5)-

Now, at ¢ = ¢;, the differential equation (2.15) can be discretized as

(x+1) | (O) g (c+1) _ £(r)
My gy Wy =05

where

() _ (9F @ _ () 9F @
q; —(%)(G,Wgﬂ), I3 =w; (%)(G,Wgﬂ)—F(rJ,wj ).

Also, the boundary conditions can be discretised as W(()IH) = 0y, W,(ZIH) = 0.

Substitute " - N
o) (1) = —wir 3w h3—3W2 L
(p(3) (tn) _ W’(IrJrl)_3W(r+1);_;3W’5rq;1)_W’(lr:51),
(p(l)(to) — w, (0(1)(tn) _ W,§r+1);W}5r_Jq1>’
M:(jr+1) _ fJ(r) . qgr) W§r+1),

in equation (2.10) we have

(_ 2(0612131)/1+6(0€2};[32)/1}W1(r+1)_‘_ [6(062;3132) ]
| W~ (B ) |
208, - a1>+qh2q§ﬁl]w§i” [a +phzq§+)2 W§j§”—[%}wﬁi§”

+ -6(0‘22;[52)1] Wr(zr—jzl) _ [Z(al‘;ﬁl) + (O‘Z}‘:‘BZ) ]Wr(zr+ll) _ _h2 |:p(f3(j—)2 +f_](i)2)
Fal2h AT | Ao+ BT + A7)~ (a6 o0 + 47 00)
(

__2(alzﬁl>x+zazl;ﬁzn}60_[Z(alzﬁn + <azh+3ﬁz> }ol, i=2,3,...,(n=2).

+1) _ [2(0‘2}1;352)1] Wi - [al

' 2o —4py) + g | WY

(r
2
+
1 ]

(2.16)

\

In (2.16) we have (n— 1) unknowns W(IH) Wérﬂ), e W,(f[l) and (n — 3) equations.
Therefore two more equations are required to find unique solution. Hence we derive two bound-
ary equations as follows:
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Boundary equations

Let the equationat j=1and j =n—1be

r[2(0:14;:/31)7L_|_2(a2}—l|—3ﬁ2)/l]w(gr+l)_ 2(a14};[31) 4 (a2+ﬁ2) }W§r+1)+ 6(a2;r3ﬁ2)/1]W2(r+1)

) _[2(052;;3[32)/1 W3(r+1)_ [2(052:3[32)1 Wr+1 [6 a2+[32 Wr(zjl)— [2(051:/31)1 .
ook [y i) g [HERIA g 2ol }Wé”” = Alen+ B[ + 1)

\ —(f](()r)ffo + f]r(zr) on)]+ Y55 (lkW(rH) (t) +mkh2W§tr+1) (t)),

and

r[Z(al-;ﬁ]))t+2(oc2}-l|;[32)/l]w(()r+l)_ [2(051;/31) 4 (a2+ﬁ2) }W1(r+1)+ 6(052}-:—3[32)/1]W§r+1)
B [2(%};/}2),1 W3(r+1) _ [2(0:2;/32),1 W r+l + [6 a2+[32 Wr(tr—zl) _ [2(051;[3,)1 o18)

_}_6(062;!32)1}W(r+1)+ [2(0514431)14_ (0522332) }WISIJFI) _ (O£1+B])[(f(§r)+fn(r))

n—1

(a5 00+ a7 )] + EiT_s (b ™) (1) +midPwif ™ (1))

respectively. For non-linear BVPs, system (2.16), (2.17) and (2.18) gives the approximate
solution WJ(HI), j=12,...,n—1.

3. Truncation error

From (2.16), we have

j h3 ]’l3
+ 6(062}—:-3[32)1:| WEHD (1) — [2(062};[32)/1] WD (1) — [061

+ P2 (15-2) [ WED (152) = 2081 = o) + gl (151) | W (1)
— | (2on = 4B1) + gD (1) [ W 15) — |2(B1 — 1)

+qh2q(r)(fj+1)] WE (1541) - [061 + phq'®) (tj+2)} W (1549)

B :2(az};ﬁz)l}w(r+1)(tn_3)+ |:6((X2;;ﬁz)l:|w(r+l)(tn_2)

_ :2(0‘17}:[31)7L + 6(062;1r3ﬁ2)1] W(r+1)(tn_1) + [2(0614};51))b + 2(052;;[32)/1] W(r+1)(tn)
12U (15:12) + £ 15-2)) + g Dty 1) + £ 1)) + 1D 1y)|

— (0 + B)[(F) () + £ (1)) — (4 (10) W+ (10)

+gPWED ()], §=2,3,...,(n—2).

T(r) (h) = [2(0614}1'131)1 n 2(062+ﬁz)/1] W(r+1)(t0> _ [2(0614}1'131)1 + 6(062-0—[}2)/1] W(r+1)(t1>

3.

Substituting f&) () = wt(,r+1)(tj) +q) (t;)wEHD (45) in (3.1), we get
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(

7(®) (h) = —2(0 + o)A WD (1) L 3W D (1) - 3WETY (1) + WD (13)

J +2(00+B2)A W“*”WW“”(’H-'}i;fv Dl ot BT
200+ ) [T 2+ ) [
— (o +BAW (10) = (o + B)AW, (1)
— o (WD (1342) + WD (152)) = 2081 — ) (WD (1500) + 0D 15-1))
— (200 = 4B)wE D (1) + phPwi ™ (1g40) + alPwiy ™ (t50) 4+ i (1)
\ +ahwiy Y (t541) + o2l (1542).
After further simplification we obtain,
(77 (h) = —2(00+B)A | Wiy ™ (10) + O(h)| + 200+ B)A | Wiy ™ (1) + O(h)
—2(a +B)A [ WiV (t0) + O(h)| + 2 + B [ Wi (1) + O(n)|
= (o BAWS Y (10) = (o + B2 (1) a3

r+1
+ 5 7a1+ﬁ1)—(4p+q)}h4w§,ﬂ+ )(tj)+ [Wlo(3la1+ﬁ1)
r+1
_%(16P+‘])]h6W£zm+t)(tj)+[ﬁ(l6lla1+3lﬁl)
r+1
- %(417—'—‘])} hSWEtthtrztz)OJ) + O(hg)-

\

We write

T (h) = T (h) + T (1),

where

17 () = ~2(0a+ B)A | Wiy (1) + 0(h) | +2(a2 + B)A | Wi ™ (1) +0()|
=20+ )2 | W (1) + 08| +2(0a + B)A W (1) + O(h)

— (0t + BO)AWY T (10) = (o + BAWST ™ (1),
and

[1 70‘1"‘[31 4P+Q)}h4W£tl;:_l)(tj)+[Wlo(?’lal‘Fm) 12(16p+‘1)]h6W§mzt )(tj)
+ | rrtom (16111 +31B1) — 5l (4p -+ )| Pl (15) + O(8°).

4. Class of methods

4.1. Second order method

Choose A such that [A| < h*. For getting method of second order, unknown coefficients

must satisfy Conditions:
(1 +Br) = 3.

[5(7061 +B1) — (4p+q)| #0.
One such set of values are:

10
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((Xl,ﬁl) = (%,%) and
p=1/4,q=0,r=1/2.

Also

atj:17 (10711712713;14715>:(07_1727_17070)7
(m07m17m27m37m47m5) = (07%7%7%7070),

and

atj =n-— L, (ln;ln—l7ln—27ln—3aln—4yln75) = (07_1727_170;0)7

(mnamn—l 7mn—27mn—37mn—47mn75> = (07 %7 %7 %7070) .
Since [A| < h*, we have T, (h) = O(h*) and T.7) (h) = 2w, (15) + O().
Therefore

T (h) = O(h*). 4.1)

4.2. Fourth order method

Choose A such that |A| < hS. For getting method of order four, values of unknown coeffi-

cients must satisfy conditions:
(on+p1) =14,
[%(7061 +pBi) - (4p+q)} =0,

[11@(31a1+131)—11—2<16p+q)} #0.

_ 1 __ 26 .. __ 66
P =109~ 12007 = 120
Also
at j =1, (10711712713714715): 0,_1727_17070)7
(m05m17m27m37m47m5) = (0567}_711_2705())’
and

atj =n— 1, (lnaln—laln—27ln—37ln—4aln—5) = (07_1727_17070)7

1 10 1
(mnamnfl7mn727mn737mn747mn—5) = (07E7E7ﬁ7070)'

Since || < 7, we have T, (h) = O(hS) and T.7) (h) = <l hwis ) (15) + O(7).
Therefore

T (h) = O(h°). (4.2)

4.3. Sixth order method

Choose A such that |A| < k. For getting method of order six, values of unknown coeffi-

cients must satisfy conditions:

11
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(o +B1) = 3,
(7o +B1)— (4p+q) =0,
55 (31an +B1) — 5 (16p+q) =0,

£0.

|

| st (16111 +31By) = 5k (4p + )

4.3)

5.1

— (L 5 -1 ,_ 56 246
The only set of such values are (01, 1) = (15, 75) and p = 555,9 = 355, " = 3eq-
Also
atjzla (10711712713714715):(_47 _27_17070)7
71 43 7 1 =5 1
(m07mlam27m37m47m5) (2407ﬁ7§7§7ﬁ7@)
and
atj=n—1, (ln7ln—1aln—27ln—37 ln—4vln75) = ( -4,7,-2, _1,070)7
71 43 71 =5 1
(mnamn 1,Mp—2,My—3,My—4, My 5) (2407ﬁ7§7§7ﬁ7@)
. 8 )y — 8 (r) 8,,(r+1) 9
Since [A| < h°, we have T’ (h) = O(h°®) and T, (h) = 5000h Wi (t5) +O(07).
Therefore
() 7y _ 8
T; (h) = O(h®).
_ 1 _ 1
Remark 3: Since o, = 3(5 - al) and B, = ?(— —[31>
. 1 (1
ie.(aw+p)= ) <§ — (o +ﬁ1)>;
therefore (0 + 1) = 5 implies (@ + ) =
5. Convergence analysis
The system given in (2.16), (2.17) and (2.18) can be written as
MO WwE) — d(r)’
where
[a®) M M 0 0 0 0 0 0 0 0 0 0 M
S U U o o0 0 0 0 M
M oME oM ME M 0 o0 o 0 0 0 0 0 M
3.1 32 33 34 35 3.n-3
I R R VA A UV o o0 0 0 0 M) s
L A R R o0 0 0 0 ) s
M= : : : : : : ; :
Mr(ti)S.l Mr(xi)S.Z Mr(zrf)S‘B 0 0 0 0 0 0 M)(xi)inf7 Mr(ti)S.nf& Mr(lz)S.rHS Mrgr)Sn 4 MI(XJS.U73
MPy MY, MP, o 0 0 (U 0 0 My e MY MD M,
MPy oMY, mP o 0 0 (U 0 0 0 My s M, M
My MY, MP, o 0 0 (U 0 0 0 0 M7 M,
_Mr(li)l,l Mr(ti)].z Ml(z]i)lj 0 0 0 0 0 0 0 0 0 0 Mr(xl;)l‘nfff
12
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where WD) = (Wl(rJrl),WérH), s W(rﬁl))T, M®) is coefficient matrix of W(*t1and
d® =@, ... .d" )"
Let N (r) be the matrix when A = 0 . Note that,

n—1
M) =N = max . |15 =3

Thus we get

2(0n +Br)A 4 6(0n+ B)A
h h3

—6(a +fB2)A

IM®) —NO|,, =2 3

'+2' ’+2‘M‘.

h3

Theorem 5.1. [[7] : Let Q1and Q> be any two matrices having matrix norm as ||.||. If the eigen
values of Q1 are given as 01,60, ...,0, and eigenvalues of Q> be given as 1,2, ..., Un. Then

2N—1 1 N1 1
mjax\ej—uj]§2 N NN (2P) N ||Q1 — Q2||¥, (5.2)

where P = max(HQl H, HQZH)

In our case, we take the matrices M) = Q;, N*) = 0,, N =n—1. Using ||.||~ in theorem
5.1, we get

—‘m

max(; — 5] < 2051) (n— 1) (520) 2y (50) g — ey ), (5.3)
J

where P = max(|M™) ||, |[N®)||) and M) and N(*) have eigenvalues 0; and pj,j =

1,2,...,n— 1 respectively.

For sufficiently small values of z, N) (r) becomes irreducible, Nl-(f) >0, Nl.(g) <0, i#j
and the row sums give
R =a—§ntq” — gy’ —3ngs >0,

(r) 1
R; 12~ 360 360

56 36 p2g () 246h2qg) 36oh2‘1g)_mh2 (x) >0,

Rgr) = 360h2%( )2 360h2q1( )1 %gghqu( & 360h2qz(+)1 _%h2q1(+)2 >0,

where j =3,4,...n—3,

(r) _ 1 56 (r)  246,2 (r) 56 (r) 1 (r)
R, Hh=1— 360h2 n—1 36Oh2qn 2 360h2qn 3 360h2qn 4 >0,
Rflr—)l =4- 43h2q£, )1 7h2%(1 )2 %hzqgr—)s > 0.

Here N*) is a monotone matrix [20]. Therefore for adequately small values of , (N (r))’1

13
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exist and we get non-zero eigenvalues [, j = 1,2,...n— 1. Thus for these values of & (corre-
sponding to which N(*) is a monotone matrix), A lies in the region (—h®, h®). We select A in
such a manner that it must satisfy the following two conditions :

(i) M@ is invertible matrix, since |[M® — N®)||., = 2| 2% ZB'M + 6(062;3[32)1

—6(n+B)A
h3

+2 -

2 2(0422—3[32)1

ficiently small.

‘, and from (5.3) we find that eigenvalues of M (*) are non-zero, whenever A is suf-

(ii) Since NJ(r) >0, j=1,2,...,n—1,, the row sum corresponding to M*) is

4o +PA 4+ Br)A .
- h - h3 y ] 9Ly e

s\ =Ry L1, (5.4)

when A is sufficiently small.
When N®) is monotone (i.e. when A is adequately small ) and M%) invertible and row sum of
M) is positive (i.e. for sufficiently small A € (—h®,A%) ).We derive the error bound as follows:

5.1. Error Bound for Sixth order method
The system (2.16), (2.17), and (2.18) with analytic solutions can be written as

ME)pERD = g&) 4 76 (p), (5.5)

where

and

Since from (5.1) we have
MEWETD = g=), (5.6)
Using (5.5) and (5.6) we get
M) () WDy — 7@ (),

that is,

MEEED = () (p), (5.7)

14
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where E 1) = (Eﬁr“),Eér“),...,Effj]”)T, E§r+1) _ W(r—l—l)(tj) . WJ(HI)-

Consequently, using (5.7) we obtain

-1

ECH) = (M) TE (). (5.8)

Using the definition of product of inverse of matrix with the matrix itself, we get

n—1 1
Zﬂﬁ? s =1, i=1,2,..,n— 1.
j=1

Hence by (5.4) we get

r)! 1 1
)3 Mi(J) ST@ T A0 (5.9)
= S; c;n?

1<j<n—1

such that C®) is constant. Using (5.8) and (5.9) we get

1

™m), i=1,2,....n—1. (5.10)

n—1
r+1 r)”
Ez( = ZMz‘(,j) J
j=1
Substituting (4.3) and (5.9) in (5.10), we get

(x+1) gh®
B l< o

where ¢ is a constant.
Hence we obtain

IE ]| = O(R®),

which proves that the proposed scheme is sixth-order convergent. Similar procedure can be

used to derive the convergence of second as well as fourth order methods.

6. Numerical experiments
We take adequate number of iterations till the maximum error between the two succeeding

iterations satisfy the following tolerance bound:

max| W™ —wi| < TOL,
J

where TOL is convergence tolerance. When the condition is met, we believe W& i the
approximate value W of the given problem. Here we have considered TOL = 10~13,

For each n, Ex denotes the maximum point-wise error which is determined by

mjax|w(tj) — Wsl,

15
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where w(t;) and Wj are the analytic and approximate solutions respectively at ¢ = ¢;. Order of

convergence of the proposed method is determined as

n

()

6.1. Numerical Schemes for comparison

As we compare the presented method with Numerov’s method and second order finite dif-
ference method, here we give a brief particulars about these two methods.

6.1.1. Finite-difference method
Consider BVP given in (1.1) and (1.2), let W=D be the approximate value of w(r+1)(t).
Putting

+ 1 +1 +1 41
Wi )”mﬁ[wf_l ) —awH pwiTY), 6.1)
in (1.2) and after simplifying, we get
(x+1) 2 (r+1) i (r+1) (x+1) _ 12.(r)
W +[=2+n%q W +W =m0 (6.2)

for j =1,2,...n. Here Wy = 0p and W| = o7.

6.1.2. Numerov’s method

For BVP given in (1.1) and (1.2), Numerov’s method can be written as

2

h
Wj_1 — ZWJ' + Wj+1 =

E[fj—l+10fj+fj+l]v (6.3)

where f; = £(t;,W;), j =0,1...n, Wy = op and W; = o7. To get more details about this
method, one can refer [[12]].
Problem 1: Consider the following linear BVP[25, 31]

we(t)+w(t)=—1, 0<r<l, 6.4)

1—cos(1)
sin(1)
1 along with results given by Srivastava et al.[31]] and Ramadan et al.[25]. A varies according

with exact solution w(t) = cos(t) + sin(t) — 1. Approximate results are shown in Table
to the order of method.

Problem 2: Consider the following nonlinear BVP[3]]

wy(t) +exp(—2w(t)) =0, 0<t<1,
w(0) =0, w(l) =1log(2),

(6.5)

16
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Table 1: M.A.E. for problem 1.

h

1/8

1/16

1/32

1/64

Second Order Method
p =0.04063483994113,
q = 0.25412730690212,
r=0.41047570631347

1.5516 x 1079

2.9263

2.0410 x 107%4

2.7296

3.0770 x 1079

2.5502

5.2534 x 1079

3.4324 x 10703

6.0707 x 10~%

1.2491 x 10~%

2.8070 x 10795

pN 2.4992 2.2809 2.1538

Fourth Order Method

(p,q.7) = (o5 22, 2&)  1.9214x 10795 58656 x 10777 1.7739x 107%  5.2095 x 101
pN 5.0337 5.0472 5.0896

_ 1 11 183
<p>Q7r) - (W7B’ﬁ)

1.9558 x 1079

6.0424 x 10797

1.8788 x 10708

5.8564 x 10710

jad 5.0164 5.0072 5.0036
Sixth Order Method
(P,q.7) = (505 10, 228)  2.6594x 10777 22124x 107 1.6972x 10711 1.2678 x 10713
Al 6.9093 7.0262 7.0646
Srivastava et al.[31] 7.1320x 107% 52213 x107%  3.6359x 10710 3.1275x 107!
pY 3.7720 3.8440 3.5392

Ramadan et al.[25]

pN

1.7538 x 10794

3.0213

2.1600 x 1079

3.0123

2.6770 x 10706

3.0065

3.3310 x 10797

17
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with exact solution w(t) = log(1 +t). Approximate results are shown in Table 2 along with

results given by Balasubramani et al.[3]], finite difference method and Mohanty et al.[24].

Table 2: M.A.E for problem 2.

h 1/8 1/16 1/32 1/64
Second Order Method
(p.q,r) = (3,0,3) 1.9977x 1079 4.5767 x 107" 11324 x 107* 2.8198 x 10~ %
Y 2.1259 2.0148 2.0058

(p.q,r) = (3,1.0)

27119 x 10703

6.2781 x 107%

1.5566 x 10~%4

3.8770 x 10705

N 2.1109 2.0119 2.0053
Fourth Order Method
p.q,r) = (7=, 1L 18Y 95 637710795 9.0287 x 10797 3.0209 x 1079 1.0626 x 10~%
7207 45 360
oY 4.8686 4.9014 4.8292
Balasubramani et al.[3]
(P,a.7) = (55 B> 1a5) 37039 x107%  1.3093 x 10777 4.6024 x 107" 1.6823 x 107°
N 4.8222 4.8303 4.7739
Sixth Order Method
(P,q:7) = (555,55, 3a0)  2.4456x 10777 2.1358x 1077 1.6419x 10" 1.1984 x 10~13
Al 6.8392 7.0233 7.0980

Finite difference method

pN

2.2281 x 107%

1.9890

5.6130 x 1079

1.9972

1.4060 x 1079

1.9993

3.5166 x 107

Mohanty et al.[24]

1.6424 x 1079

1.0481 x 10790

6.5976 x 10798

3.8966 x 10~%

pN 3.9699 3.9896 4.0816
Problem 3: Consider the following nonlinear BVP[3]]
wi(£) — (Z*I)EXP(ZW(?H(1/(t+1)) =0, 0<t<I,
w(0)=0,  w(l)=log(1/2),

with exact solution w(t) = log(1/1 +1¢). Approximate results are shown in Table 3 along with

(6.6)

results given by Balasubramani et al.[3], finite difference method and Numerov’s method.
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Table 3: M.A.E for problem 3.

h 1/8 1/16 1/32 1/64
Second Order Method
(p.q,r) = (4,0,%) 1.3688 x 10795 4.1286 x 107 1.1600 x 10~ 3.0846 x 10~%
Y 1.7292 1.8314 1.9110

(p7q7r) = (%7%170)

2.3839 x 1079

6.2248 x 107%

1.6526 x 10~%

4.2528 x 1079

pY 1.9372 1.9132 1.9582

Fourth Order Method

(P,q,r) = (735, 15> 53)  2.7594x107%  9.4434% 1077 3.1573x107%  1.1062 x 10~
pY 4.8689 4.9025 4.8349

Balasubramani et al. [3]

1 26 66
(P,a:7) = (135, 5> 126)

3.8662 x 10700

1.3680 x 10797

4.8082 x 10799

1.7524 x 10710

pN 4.8207 4.8304 4.7781
Sixth Order Method
(P,q:7) = (505 15> 3e0)  1.3851x 10797 1.2157x107%  6.9262x 10712 1.2062x 10713
pY 6.8320 7.4555 5.8434

Finite difference method

pN

2.3261 x 107%

1.9890

5.8573 x 1079

1.9974

1.4670 x 10795

1.9989

3.6702 x 10700

Numerov’s Method

PN

2.1034 x 10700

3.9743

1.3382 x 10°%7

3.9935

8.4017 x 1079

3.9982

5.2577 x 10710
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Problem 4: Consider the following nonlinear BVP[3]]

wi (1)
w(0)

with exact solution w(r) = —

. 2588 exp(w(r))—208 -0,

441

= —log(4),

w(l) = —log(5),

0<t<1,

(6.7)

log(4+1°). Approximate results are shown in Table 4 along with

results given by Balasubramani et al.[3], finite difference method and Numerov’s method.

Table 4: M.A.E for problem 4.

h

1/8

1/16

1/32

1/64

Second Order Method
(p7Q7r) = (%707%)

5.5212x 1079

2.1118

1.2773 x 1079

1.9500

3.3060 x 10~%4

1.9738

8.4161 x 1079

9.5912 x 10793

2.0448 x 10793

5.2840 x 107%4

1.3576 x 10~%

N 2.2296 1.9523 1.9605

Fourth Order Method

(P,q.7) = (755 1%, 32) 6.2487 x107%  1.0123x107%  3.8928 x 107  2.7550 x 10~%°
PN 5.9477 4.7007 3.8206

Balasubramani el al. [3]

(P,q:7) = (55 o> 1) 3.9439x 1079 3392910777 1.4653x 1079 6.6424 x 1010
PN 3.5391 4.5332 4.4633

Sixth Order Method

(P,q:7) = (5050 555 3e0) 51118 x 10706 1.2322x107%  2.1551x 10710 3.1186 x 1012

PV 8.6963 5.8374 6.1107

Finite difference Method

pN

1.1795 x 1079

2.0080

2.9324 x 107%

2.0056

7.3024 x 10795

1.9992

1.8265 x 1079

Numerov’s Method

pN

3.0070 x 10~%

4.0242

1.8480 x 1079

3.9956

1.1585 x 10797

4.0014

7.2337 x 1079

7. Conclusion

This study deals with developing second, fourth and sixth order convergent numerical

schemes by using fractal non-polynomial spline function. With the help of quasilinearisation
technique, the non-linear BVPs is converted into a system of linear BVPs, which in turn are

solved by using the proposed schemes. These schemes are used to find approximate solution
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of second order linear as well as nonlinear BVPs. Comparison with polynomial fractal quintic

spline and few other methods leads us to the conclusion that the presented methods are more

efficient.
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