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Abstract

In this study, we have proposed second, fourth and sixth order convergent numerical techniques
for approximating linear and non-linear boundary value problems of second order with the help
of fractal non-polynomial spline function. We have discussed the convergence analysis and
error bound for sixth order method to prove the theoretical aspects of the presented method.
Numerical problems are experimented to validate the theoretical results. Comparison with
fractal polynomial and few other existing methods leads us to the conclusion that the proposed
technique is more efficient.
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1. Introduction

With the help of fractal non-polynomial spline, we have developed numerical techniques to
find the approximate solution of boundary value problems(BVPs) of the type:wtt(t)+p(t)w(t) = f(t), t ∈ (0, 1),

w(0) = σ0, w(1) = σ1,
(1.1)

andwtt(t)+F(t,w(t)) = 0, t ∈ (0, 1),

w(0) = σ0, w(1) = σ1,
(1.2)

where σ0 and σ1 are constants. In (1.1), p(t) and f(t) are continuous functions in closed in-
terval I = [0, 1]. For random choices of p and f, exact solution of these BVPs cannot be find.
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Therefore we approach numerical methods to get approximate solution of (1.1). In (1.2), pre-
sume that for (t,w(t)) ∈ D= {0≤ t≤ 1, −∞ < w(t)< ∞}, F and ∂F

∂w are continuous. We know
that (1.2) admits unique solution, if sup

(t,w(t))∈D

∂F
∂w < π2,[22]. Here we assume that ∂F

∂w ≤ 0 on

D and ∂F
∂w < 0 on D∗ = {0 < t < 1, −∞ < w(t) < ∞}. The notation wtt symbolizes second

derivative of w with respect to t.
Various authors have used different techniques to find numerical solution of linear as well as
non-linear BVPs. Authors in [11] used cubic spline functions to find the approximate solution
of nonlinear BVPs. Few numerical techniques derived by various authors for solving non-linear
BVPs are given in [1, 2, 8, 14, 23, 27, 28, 32] and fractional differential equations are given in
[13, 15, 16, 17, 18, 19, 29, 30].
With the help of quasilinearisation technique[6, 21, 26], the non-linear BVP (1.2) is converted
into a system of linear BVPs, which in turn are solved by derived numerical scheme using
fractal non-polynomial quintic spline function. A parameter λ called scaling factor is used in
fractal spline which is suitably restricted to obtain the approximate solution of the linearized
BVPs. Fractal interpolation function was introduced by Barnsley[4] using Iterated function
system. Although fractals are difficult to constrain but they are best suitable for generation
of various irregular shapes found in nature. It provides the possibility of simulating and de-
scribing landscapes precisely with the help of mathematical models. To find the numerical
solution of (1.2), Balasubramani et. al.[3] have worked upon fractal quintic polynomial spline
functions. In this paper we have worked upon finding the approximate solution using fractal
non-polynomial spline functions and observed that the proposed scheme provides better results.
The description of paper is as follows:
At the beginning ,we have given a brief description of the presented method which uses fractal
non-polynomial quintic spline to get a relation between w(t) and M(t) using continuity con-
ditions. In section 3, we have discussed the truncation error. Thereafter, possible classes of
method are discussed in section 4. Then we have discussed the convergence analysis of sixth
order method in section 5. Error bounds are carried out. Thereafter, we have given a briefing
about finite-difference method and Numerov’s method, and experimented four numerical prob-
lems to testify the efficacy of proposed method in section 6. Concluding remarks are provided
in section 7.

2. Fractal Nonpolynomial spline

Let 0 = t0 < t1 < t2 < .. . < tn = 1 be the partition of the interval I = [0,1] given in (1.1)
and (1.2). Let w(t) and Wj denote the analytical and approximate solutions respectively. For
tj = jh, h = 1/n, j = 0,1, . . . ,n. Let Mj and Sj denote the approximation corresponding to
wtt(tj) and wtttt(tj) respectively.
Concept of Iterated functions system (IFS) is used to develop fractal interpolation functions(FIF).
Basic details related to fractal interpolation are provided in [5, 9, 10].
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Define Hj : I→ Ij, where Ij = [tj−1, tj] such that
Hj(t) = ht+ tj−1, t ∈ I.

Clearly, Hj(t0) = tj−1 and Hj(tn) = tj,
and define Fj : I×R→ R such that

Fj(t,w) = λw+ rj(t), (t,w) ∈ I×R,
where λ is scaling factor such that |λ |< h4 and

rj(t) = Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2 +Ej(t− t0)+Fj.

Constructing the IFS as follows

I×R;Xj(t,w) = (Hj(t),(Fj(t,w))) : j= 1,2, . . . ,n,

which satisfies the following conditions:



Fj(t0,W0) = Wj−1, Fj(tn,Wn) = Wj,

Fj,1(tn,Wn,1) = Fj+1,1(t0,W0,1),

Fj,2(t0,M0) = Mj−1, Fj,2(tn,Mn) = Mj,

Fj,3(tn,Wn,3) = Fj+1,3(t0,W0,3),

Fj,4(t0,S0) = Sj−1, Fj,4(tn,Sn) = Sj,

where j= 1,2, ....,n−1, and Fj,k(t,w) =
λw+rkj(t)

hk , k= 1,2,3,4 and

W0,1 =
r(1)1 (t0)

h−λ
, Wn,1 =

r(1)n (tn)
h−λ

, W0,3 =
r(3)1 (t0)
h3−λ

, Wn,3 =
r(3)n (tn)
h3−λ

.

Clearly, IFS is satisfying C4-differentiability conditions on FIFs[5, 9, 10].

Let F =
{

Φ ∈ C4(I,R) | Φ(t0) = W0, Φ(tn) = Wn, Φ(2)(t0) = M0,

Φ(2)(tn) = Mn, Φ(4)(t0) = S0, Φ(4)(tn) = Sn
}
.

Then (F,d) is a complete metric space and d is a metric induced on F by C4−norm. Let us
define the Read-Bajraktarevic operator T on (F,d) as

T(Φ(Hj(t))) = λΦ(t)+Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2

+Ej(t− t0)+Fj , t ∈ [t0, tn], j= 1,2, ....,n.

As operator T is contraction map, it must have a unique fixed point ϕ (say) which will
satisfy the following conditions:

ϕ(Hj(t)) = λϕ(t)+Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2

3
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+Ej(t− t0)+Fj, t ∈ [t0, tn], j= 1,2, ....,n. (2.1)

From [10], it can be seen thatFj(t0,W0) = Wj−1, Fj(tn,Wn) = Wj, Fj,2(t0,M0) = Mj−1,

Fj,2(tn,Mn) = Mj, Fj,4(t0,S0) = Sj−1, Fj,2(tn,Sn) = Sj,

are equivalent toϕ(tj−1) = Wj−1, ϕ(tj) = Wj, ϕ(2)(tj−1) = Mj−1,

ϕ(2)(tj) = Mj, ϕ(4)(tj−1) = Sj−1, ϕ(4)(tj) = Sj.
(2.2)

The conditions Fj,1(tn,Wn,1) = Fj+1,1(t0,W0,1), and Fj,3(tn,Wn,3) = Fj+1,3(t0,W0,3), can be
reevaluated as ϕ(1)(Hj(tn)) = ϕ(1)(Hj+1(t0)) and ϕ(3)(Hj(tn)) = ϕ(3)(Hj+1(t0)) respectively.
The coefficients A j, B j, C j, D j, E j and F j used in (2.1) are evaluated using (2.2). We get

Aj =
h4

ξ 4

(
Sj−1− λ

h4 S0

)
,

Bj =
h4

ξ 4 sinξ

(
Sj− λ

h4 Sn

)
− h4 cosξ

ξ 4 sinξ

(
Sj−1− λ

h4 S0

)
,

Cj =
h2

6

(
Mj− λ

h2 Mn

)
− h2

6

(
Mj−1− λ

h2 M0

)
+ h4

6ξ 2

(
Sj− λ

h4 Sn

)
− h4

6ξ 2

(
Sj−1− λ

h4 S0

)
,

Dj =
h2

2

(
Mj−1− λ

h2 M0

)
+ h4

2ξ 2

(
Sj−1− λ

h4 S0

)
,

Ej =
(

Wj−λWn

)
−
(

Wj−1−λW0

)
− h4

6ξ 4 (6+ξ 2)
(

Sj− λ

h4 Sn

)
+ h4

6ξ 4 (6−2ξ 2)
(

Sj−1− λ

h4 S0

)
− h2

6

(
Mj− λ

h2 Mn

)
− 2h2

6

(
Mj−1− λ

h2 M0

)
,

Fj =
(

Wj−1−λW0

)
+ h4

ξ 4

(
Sj−1− λ

h4 S0

)
.

For continuity of ϕ(1), we have used ϕ(1)(t−j ) = ϕ(1)(t+j ) i.e., ϕ(1)(Hj(tn)) = ϕ(1)(Hj+1(t0))
and eventually get the following condition:

λϕ
(1)(tn)−Ajξ sinξ +Bjξ cosξ +3Cj+2Dj+Ej = λϕ

(1)(t0)+ξBj+1 +Ej+1. (2.3)

Similarly for continuity of ϕ(3) we have used ϕ(3)(t−j ) = ϕ(3)(t+j ) i.e., ϕ(3)(Hj(tn)) =
ϕ(3)(Hj+1(t0)) and get

λϕ
(3)(tn)+Ajξ

3 sinξ −Bjξ
3 cosξ +6Cj = λϕ

(3)(t0)+ξ
3Bj+1 +6Cj+1. (2.4)

After substituting the values of Aj, Bj, Cj, Dj, Ej, Bj+1, Cj+1 and Ej+1 in (2.3) and (2.4),
we obtain(

S0 +Sn

)(
λ

2ξ 2 +
λ

ξ 3
cosξ

sinξ
− λ

ξ 3 sinξ

)
+
(

Sj−1 +Sj+1

)( h4

ξ 3 sinξ
− h4

6ξ 4 (6+ξ
2)
)

4
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+Sj
( h4

6ξ 4 (12−4ξ
2)− 2h4

ξ 3
cosξ

sinξ

)
= λϕ

(1)(tn)−λϕ
(1)(t0)− (Wj+1−2Wj+Wj−1)

−λ

2
(M0 +Mn)+

h2

6
(Mj+1 +4Mj+Mj−1), (2.5)

and

(S0 +Sn)
(

λ

ξ

cosξ

sinξ
− λ

ξ sinξ

)
+
( h4

ξ sinξ
− h4

ξ 2

)
(Sj−1 +Sj+1)+Sj

(2h4

ξ 2 −
2h4

ξ

cosξ

sinξ

)
= λ (ϕ(3)(t0)−ϕ

(3)(tn))+h2(Mj−1−2Mj+Mj+1), (2.6)

respectively. From equation (2.5), we have(
α2Sj−1 +2β2Sj+α2Sj+1

)
=− 1

6h2 (Mj+1 +4Mj+Mj−1)+
1
h4 k2

(
S0 +Sn

)
− λ

h4

(
ϕ
(1)(tn)

−ϕ
(1)(t0)

)
+

λ

2h4 (M0 +Mn)+
1
h4 (Wj+1−2Wj+Wj+1), (2.7)

and from equation (2.6), we have

(α1Sj−1 +2β1Sj+α1Sj+1) =
1
h2 (Mj+1−2Mj+Mj−1)−

1
h4 k1(S0 +Sn)

− λ

h4

(
ϕ
(3)(tn)−ϕ

(3)(t0)
)
, (2.8)

where
α1 =

1
ξ 2

(
ξ cosec(ξ )−1

)
, β1 =

1
ξ 2

(
1−ξ cot(ξ )

)
,

α2 =
1

ξ 2

(
1
6 −α1

)
, β2 =

1
ξ 2

(
1
3 −β1

)
,

k1 =
cotξ

ξ
− cosecξ

ξ
, k2 =

1
ξ 2

(
1
2 + k1

)
.

Solving (2.7) and (2.8), we get

Sj =
(S0 +Sn)

2h4
(α1k2 +α2k1)

(α1β2−α2β1)
− α1λ

2h4

(
ϕ(1)(tn)−ϕ(1)(t0)

)
(α1β2−α2β1)

+
α2λ

2h4

(
ϕ(3)(tn)−ϕ(3)(t0)

)
(α1β2−α2β1)

+
α1λ

4h4
(M0 +Mn)

(α1β2−α2β1)
+

α1

2h4
(Wj+1−2Wj+Wj−1)

(α1β2−α2β1)
− α1

12h2
(Mj+1 +4Mj+Mj−1)

(α1β2−α2β1)

− α2

2h2
(Mj+1−2Mj+Mj−1)

(α1β2−α2β1)
. (2.9)

Using equation (2.9) in equation (2.8), we have

α1(Wj+2 +Wj−2)+2(β1−α1)(Wj+1 +Wj−1)+(2α1−4β1)Wj

=−2(α1 +β1)λ (ϕ
(1)(t0)−ϕ

(1)(tn))+2(α2 +β2)λ (ϕ
(3)(t0)−ϕ

(3)(tn))

−(α1 +β1)λ (M0 +Mn)+h2(pMj+2 +qMj+1 + rMj+qMj−1 + pMj−2), (2.10)

5
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where
p = α2 +

α1
6 ,

q = 2
[

1
6(2α1 +β1)− (α2−β2)

]
,

r = 2
[

1
6(α1 +4β1)+(α2−2β2)

]
.

Remark 1: When
(

α1,β1,α2,β2

)
=
(

1
6 ,

2
6 ,
−7
360 ,

−8
360

)
equation (2.10) reduces to (2.5) of Bal-

asubramani et al.[3].
Remark 2: When λ = 0, equation (2.10) reduces to quintic non-polynomial spline method by
P. Srivastav et al.[31].

2.1. Spline Solution for Linear BVPs

Equation (1.1) is discretized at t= tj, since Mj+pjWj= fj, where pj= p(tj), fj= f(tj).
The boundary equations are discretized as W0 = σ0, Wn = σ1.

Substitute
ϕ(3)(t0) =

−W0+3W1−3W2+W3
h3 , ϕ(3)(tn) =

Wn−3Wn−1+3Wn−2−Wn−3
h3 ,

ϕ(1)(t0) =
W1−W0

h , ϕ(1)(tn) =
Wn−Wn−1

h ,

Mj = fj−pjWj,

in (2.10), and after some calculations we get,

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2−

[
2(α2+β2)λ

h3

]
W3−

[
α1 + ph2pj−2

]
Wj−2

−
[
2(β1−α1)+qh2pj−1

]
Wj−1−

[
(2α1−4β1)+ rh2pj

]
Wj−

[
2(β1−α1)

+qh2pj+1

]
Wj+1−

[
α1 + ph2pj+2

]
Wj+2−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
Wn−1 =−h2

[
p(fj+2 +fj−2)+q(fj+1 +fj−1)+ rfj

]
+λ (α1 +β1)[(f0 +fn)− (p0σ0 +pnσn)]−

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
σ0

−
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
σ1, j= 2,3, . . . ,(n−2).

(2.11)

In (2.11) we have (n− 1) unknowns W1, W2, . . .Wn−1 and (n− 3) equations. Therefore two
more equations are required to find unique solution. Hence we derive two boundary equations
as follows:

Boundary equations

Let the equation at j= 1 and j= n−1 be

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W0−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2

−
[

2(α2+β2)λ
h3

]
W3−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2−

[
2(α1+β1)λ

h

+6(α2+β2)λ
h3

]
Wn−1 +

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
Wn = λ (α1 +β1)[(f0 +fn)

−(q0σ0 +qnσn)]+∑
k=5
k=0
(
lkw(tk)+mkh2wtt(tk)

)
,

(2.12)

6
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and 

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W0−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2

−
[

2(α2+β2)λ
h3

]
W3−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2−

[
2(α1+β1)λ

h

+6(α2+β2)λ
h3

]
Wn−1 +

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
Wn = λ (α1 +β1)[(f0 +fn)

−(q0σ0 +qnσn)]+∑
k=n
k=n−5

(
lkw(tk)+mkh2wtt(tk)

)
,

(2.13)

respectively. The system (2.11), (2.12) and (2.13) provides the numerical solution Wj, j =

1,2, . . . ,n−1 for linear BVPs.

2.2. Spline Solution for nonlinear BVPs

2.2.1. Quasilinearisation technique
We use quasilinearisation technique to convert the non-linear BVP given in (1.2) into a sys-

tem of linear BVPs. Here w(0)(t) denotes the initial approximation and the function F(t,w(t))
is expanded around the w(0)(t) to obtain

F(t,w(1)(t)) = F(t,w(0)(t))+(w(1)−w(0))
( ∂F

∂w

)
(t,w(0)(t))+ . . . .

In general,

F(t,w(r+1)(t)) = F(t,w(r)(t))+(w(r+1)−w(r))
( ∂F

∂w

)
(t,w(r)(t))+ . . . ,

where r is the iteration index such that r= 0,1,2, ...
The nonlinear BVP (1.2) can be written asw(r+1)

tt (t)+F(t,w(r+1)(t)) = 0, t ∈ (0,1),

w(r+1)(0) = σ0, w(r+1)(1) = σ1.
(2.14)

By substituting

F(t,w(r+1)(t)) = F(t,w(r)(t))+(w(r+1)−w(r))
( ∂F

∂w

)
(t,w(r)(t))

in (2.14), we getw(r+1)
tt (t)+q(r)(t)w(r+1)(t) = f (r)(t), t ∈ (0,1), r= 0,1, ...,

w(r+1)(0) = σ0, w(r+1)(1) = σ1,
(2.15)

where

q(r)(t) =
( ∂F

∂w

)
(t,w(r)(t)), f (r)(t) = w(r)(t)

( ∂F

∂w

)
(t,w(r)(t))−F(t,w(r)(t)).

7
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Hence the non-linear BVP (1.2) is converted into a system of linear BVPs. Now we will proceed
to solve this system numerically.

2.2.2. Numerical scheme
Let W(r)

j is the approximate value of w(r)(tj) and M(r)
j is the approximate value of w(r)

tt (tj).
Now, at t = tj, the differential equation (2.15) can be discretized as

M(r+1)
j +q(r)j W(r+1)

j = f (r)j ,

where

q(r)j =
(∂F

∂w

)
(tj,w

(r)
j )

, f (r)j = w(r)
j

(∂F
∂w

)
(tj,w

(r)
j )
−F(tj,w

(r)
j ).

Also, the boundary conditions can be discretised as W(r+1)
0 = σ0, W(r+1)

n = σ1.

Substitute
ϕ(3)(t0) =

−W(r+1)
0 +3W(r+1)

1 −3W(r+1)
2 +W(r+1)

3
h3 ,

ϕ(3)(tn) =
W(r+1)

n −3W(r+1)
n−1 +3W(r+1)

n−2 −W(r+1)
n−3

h3 ,

ϕ(1)(t0) =
W(r+1)

1 −W(r+1)
0

h , ϕ(1)(tn) =
W(r+1)

n −W(r+1)
n−1

h ,

M(r+1)
j = f (r)j −q(r)j W(r+1)

j ,

in equation (2.10) we have

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2 −
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[
α1

+ph2q(r)j−2

]
W(r+1)

j−2 −
[
2(β1−α1)+qh2q(r)j−1

]
W(r+1)

j−1 −
[
(2α1−4β1)+ rh2q(r)j

]
W(r+1)

j

−
[
2(β1−α1)+qh2q(r)j+1

]
W(r+1)

j+1 −
[
α1 + ph2q(r)j+2

]
W(r+1)

j+2 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3

+
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

n−1 =−h2
[

p( f (r)j+2 + f (r)j−2)

+q( f (r)j+1 + f (r)j−1)+ r f (r)j

]
+λ (α1 +β1)[( f (r)0 + f (r)n )− (q(r)0 σ0 +q(r)n σn)]

−
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
σ0−

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
σ1, j= 2,3, . . . ,(n−2).

(2.16)

In (2.16) we have (n− 1) unknowns W(r+1)
1 , W(r+1)

2 , . . .W(r+1)
n−1 and (n− 3) equations.

Therefore two more equations are required to find unique solution. Hence we derive two bound-
ary equations as follows:
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Boundary equations

Let the equation at j= 1 and j= n−1 be

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)

0 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2

−
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3 +
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h

+6(α2+β2)λ
h3

]
W(r+1)

n−1 +
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
W(r+1)

n = λ (α1 +β1)[( f (r)0 + f (r)n )

−(q(r)0 σ0 +q(r)n σn)]+∑
k=5
k=0
(
lkw(r+1)(tk)+mkh2w(r+1)

tt (tk)
)
,

(2.17)

and

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)

0 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2

−
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3 +
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h

+6(α2+β2)λ
h3

]
W(r+1)

n−1 +
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
W(r+1)

n = λ (α1 +β1)[( f (r)0 + f (r)n )

−(q(r)0 σ0 +q(r)n σn)]+∑
k=n
k=n−5

(
lkw(r+1)(tk)+mkh2w(r+1)

tt (tk)
)
,

(2.18)

respectively. For non-linear BVPs, system (2.16), (2.17) and (2.18) gives the approximate
solution W(r+1)

j , j= 1,2, . . . ,n−1.

3. Truncation error

From (2.16), we have

T (r)
j (h) =

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)(t0)−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W(r+1)(t1)

+
[

6(α2+β2)λ
h3

]
W(r+1)(t2)−

[
2(α2+β2)λ

h3

]
W(r+1)(t3)−

[
α1

+ ph2q(r)(tj−2)
]
W(r+1)(tj−2)−

[
2(β1−α1)+qh2q(r)(tj−1)

]
W(r+1)(tj−1)

−
[
(2α1−4β1)+ rh2q(r)(tj)

]
W(r+1)(tj)−

[
2(β1−α1)

+qh2q(r)(tj+1)
]
W(r+1)(tj+1)−

[
α1 + ph2q(r)(tj+2)

]
W(r+1)(tj+2)

−
[

2(α2+β2)λ
h3

]
W(r+1)(tn−3)+

[
6(α2+β2)λ

h3

]
W(r+1)(tn−2)

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)(tn−1)+

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)(tn)

+h2
[
p( f (r)(tj+2)+ f (r)(tj−2))+q( f (r)(tj+1)+ f (r)(tj−1))+ r f (r)(tj)

]
−λ (α1 +β1)[( f (r)(t0)+ f (r)(tn))− (q(r)(t0)W(r+1)(t0)

+q(r)W(r+1)(tn))], j= 2,3, . . . ,(n−2).

(3.1)

Substituting f (r)(tj) = w(r+1)
tt (tj)+q(r)(tj)w(r+1)(tj) in (3.1), we get
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T (r)
j (h) =−2(α2 +β2)λ

[
−W(r+1)(t0)+3W(r+1)(t1)−3W(r+1)(t2)+W(r+1)(t3)

h3

]
+2(α2 +β2)λ

[
W(r+1)(tn)−W(r+1)(tn−1)+3W(r+1)(tn−2)−W(r+1)(tn−3)

h3

]
−2(α1 +β1)λ

[
W(r+1)

1 −W(r+1)
0

h

]
+2(α1 +β1)λ

[
W(r+1)

n −W(r+1)
n−1

h

]
− (α1 +β1)λW(r+1)

tt (t0)− (α1 +β1)λW(r+1)
tt (tn)

−α1(w(r+1)(tj+2)+w(r+1)(tj−2))−2(β1−α1)(w(r+1)(tj+1)+w(r+1)(tj−1))

− (2α1−4β1)w(r+1)(tj)+ ph2w(r+1)
tt (tj+2)+qh2w(r+1)

tt (tj+1)+ rh2w(r+1)
tt (tj)

+qh2w(r+1)
tt (tj+1)+ ph2w(r+1)

tt (tj+2).

(3.2)

After further simplification we obtain,

T (r)
j (h) =−2(α2 +β2)λ

[
W(r+1)

ttt (t0)+O(h)
]
+2(α2 +β2)λ

[
W(r+1)

ttt (tn)+O(h)
]

−2(α1 +β1)λ
[
W(r+1)

t (t0)+O(h)
]
+2(α1 +β1)λ

[
W(r+1)

t (tn)+O(h)
]

− (α1 +β1)λW(r+1)
tt (t0)− (α1 +β1)λW(r+1)

tt (tn)

+
[

1
6

(
7α1 +β1)− (4p+q)

]
h4w(r+1)

tttt (tj)+
[

1
180

(
31α1 +β1)

− 1
12(16p+q)

]
h6w(r+1)

tttttt (tj)+
[

1
131040(1611α1 +31β1)

− 1
360(4p+q)

]
h8w(r+1)

tttttttt (tj)+O(h9).

(3.3)

We write
T (r)
j (h) = T (r)

λ
(h)+T (r)

∗ (h),
where
T (r)

λ
(h) =−2(α2 +β2)λ

[
W(r+1)

ttt (t0)+O(h)
]
+2(α2 +β2)λ

[
W(r+1)

ttt (tn)+O(h)
]

−2(α1 +β1)λ
[
W(r+1)

t (t0)+O(h)
]
+2(α1 +β1)λ

[
W(r+1)

t (tn)+O(h)
]

− (α1 +β1)λW(r+1)
tt (t0)− (α1 +β1)λW(r+1)

tt (tn),
and
T (r)
∗ (h)=

[
1
6

(
7α1+β1)−(4p+q)

]
h4w(r+1)

tttt (tj)+
[

1
180

(
31α1+β1)− 1

12(16p+q)
]
h6w(r+1)

tttttt (tj)

+
[

1
131040(1611α1 +31β1)− 1

360(4p+q)
]
h8w(r+1)

tttttttt (tj)+O(h9).

4. Class of methods

4.1. Second order method

Choose λ such that |λ | < h4. For getting method of second order, unknown coefficients
must satisfy conditions:
(α1 +β1) =

1
2 .[

1
6

(
7α1 +β1)− (4p+q)

]
6= 0.

One such set of values are:

10
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(α1,β1) =
(1

4 ,
1
4

)
and

p = 1/4, q = 0, r = 1/2.
Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
0,−1,2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
(
0, 1

6 ,
4
6 ,

1
6 ,0,0

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
0,−1,2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
(
0, 1

6 ,
4
6 ,

1
6 ,0,0

)
.

Since |λ |< h4, we have T (r)
λ

(h) = O(h4) and T (r)
∗ (h) = −2

3 h4w(r+1)
tttt (tj)+O(h5).

Therefore

T (r)
j (h) = O(h4). (4.1)

4.2. Fourth order method

Choose λ such that |λ | < h6. For getting method of order four, values of unknown coeffi-
cients must satisfy conditions:
(α1 +β1) =

1
2 ,[

1
6

(
7α1 +β1)− (4p+q)

]
= 0,[

1
180

(
31α1 +β1)− 1

12(16p+q)
]
6= 0.

One such set of values are (α1,β1) =
(1

6 ,
1
3

)
and

p = 1
120 ,q = 26

120 ,r =
66
120 .

Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
0,−1,2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
(
0, 1

12 ,
10
12 ,

1
12 ,0,0

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
0,−1,2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
(
0, 1

12 ,
10
12 ,

1
12 ,0,0

)
.

Since |λ |< h6, we have T (r)
λ

(h) = O(h6) and T (r)
∗ (h) = 7

5000h6w(r+1)
tttt (tj)+O(h7).

Therefore

T (r)
j (h) = O(h6). (4.2)

4.3. Sixth order method

Choose λ such that |λ | < h8. For getting method of order six, values of unknown coeffi-
cients must satisfy conditions:
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(α1 +β1) =
1
2 ,

1
6

(
7α1 +β1)− (4p+q) = 0,

1
180

(
31α1 +β1)− 1

12(16p+q) = 0,[
1

131040(1611α1 +31β1)− 1
360(4p+q)

]
6= 0.

The only set of such values are (α1,β1) =
( 1

12 ,
5

12

)
and p = 1

360 ,q = 56
360 ,r =

246
360 .

Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
−4,7,−2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
( 71

240 ,
43
12 ,

7
8 ,

1
3 ,
−5
48 ,

1
60

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
−4,7,−2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
( 71

240 ,
43
12 ,

7
8 ,

1
3 ,
−5
48 ,

1
60

)
.

Since |λ |< h8, we have T (r)
λ

(h) = O(h8) and T (r)
∗ (h) = 7

5000h8w(r+1)
tttttttt (tj)+O(h9).

Therefore

T (r)
j (h) = O(h8). (4.3)

Remark 3: Since α2 =
1

ξ 2

(
1
6 −α1

)
and β2 =

1
ξ 2

(
1
3 −β1

)
,

i.e.(α2 +β2) =
1

ξ 2

(
1
2 − (α1 +β1)

)
,

therefore (α1 +β1) =
1
2 implies (α2 +β2) = 0.

5. Convergence analysis

The system given in (2.16), (2.17) and (2.18) can be written as

M(r)W(r+1) = d(r), (5.1)

where

M(r) =



M(r)
1,1 M(r)

1,2 M(r)
1,3 0 0 0 0 0 . . . 0 0 0 0 0 M(r)

1,n−3 M(r)
1,n−2 M(r)

1,n−1

M(r)
2,1 M(r)

2,2 M(r)
2,3 M(r)

2,4 0 0 0 0 . . . 0 0 0 0 0 M(r)
2,n−3 M(r)

2,n−2 M(r)
2,n−1

M(r)
3,1 M(r)

3,2 M(r)
3,3 M(r)

3,4 M(r)
3,5 0 0 0 . . . 0 0 0 0 0 M(r)

3,n−3 M(r)
3,n−2 M(r)

3,n−1

M(r)
4,1 M(r)

4,2 M(r)
4,3 M(r)

4,4 M(r)
4,5 M(r)

4,6 0 0 . . . 0 0 0 0 0 M(r)
4,n−3 M(r)

4,n−2 M(r)
4,n−1

M(r)
5,1 M(r)

5,2 M(r)
5,3 M(r)

5,4 M(r)
5,5 M(r)

5,6 M(r)
5,7 0 . . . 0 0 0 0 0 M(r)

5,n−3 M(r)
5,n−2 M(r)

5,n−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

M(r)
n−5,1 M(r)

n−5,2 M(r)
n−5,3 0 0 0 0 0 . . . 0 M(r)

n−5,n−7 M(r)
n−5,n−6 M(r)

n−5,n−5 M(r)
n−5,n−4 M(r)

n−5,n−3 M(r)
n−5,n−2 M(r)

n−5,n−1

M(r)
n−4,1 M(r)

n−4,2 M(r)
n−4,3 0 0 0 0 0 . . . 0 0 M(r)

n−4,n−6 M(r)
n−4,n−5 M(r)

n−4,n−4 M(r)
n−4,n−3 M(r)

n−4,n−2 M(r)
n−4,n−1

M(r)
n−3,1 M(r)

n−3,2 M(r)
n−3,3 0 0 0 0 0 . . . 0 0 0 M(r)

n−3,n−5 M(r)
n−3,n−4 M(r)

n−3,n−3 M(r)
n−3,n−2 M(r)

n−3,n−1

M(r)
n−2,1 M(r)

n−2,2 M(r)
n−2,3 0 0 0 0 0 . . . 0 0 0 0 M(r)

n−2,n−4 M(r)
n−2,n−3 M(r)

n−2,n−2 M(r)
n−2,n−1

M(r)
n−1,1 M(r)

n−1,2 M(r)
n−1,3 0 0 0 0 0 . . . 0 0 0 0 0 M(r)

n−1,n−3 M(r)
n−1,n−2 M(r)

n−1,n−1



,
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where W(r+1) = (W(r+1)
1 ,W(r+1)

2 , . . . ,W(r+1)
n−1 )T , M(r) is coefficient matrix of W(r+1)and

d(r) = (d(r)
1 ,d(r)

2 , . . . ,d(r)
n−1)

T .
Let N(r)(r) be the matrix when λ = 0 . Note that,

‖M(r)−N(r)‖∞ = m
i
ax

n−1

∑
i=1
‖M(r)

i,j −N(r)
i,j ‖.

Thus we get

‖M(r)−N(r)‖∞ = 2
∣∣∣∣2(α1 +β1)λ

h
+

6(α2 +β2)λ

h3

∣∣∣∣+2
∣∣∣∣−6(α2 +β2)λ

h3

∣∣∣∣+2
∣∣∣∣2(α2 +β2)λ

h3

∣∣∣∣.
Theorem 5.1. [7] : Let Q1andQ2 be any two matrices having matrix norm as ‖.‖. If the eigen
values of Q1 are given as θ1,θ2, . . . ,θn and eigenvalues of Q2 be given as µ1,µ2, . . . ,µn. Then

max
j
|θj−µj| ≤ 2

2N−1
N N

1
N (2P)

N−1
N ‖Q1−Q2‖

1
N , (5.2)

where P = max(‖Q1‖, ‖Q2‖).

In our case, we take the matrices M(r) = Q1, N(r) = Q2, N = n−1. Using ‖.‖∞ in theorem
5.1, we get

max
j
|θj−µj| ≤ 2

(
2n−3
n−1

)
(n−1)

(
1

n−1

)
(2P)

(
n−2
n−1

)
‖M(r)−N(r)‖

(
1

n−1

)
∞ , (5.3)

where P = max(‖M(r)‖∞, ‖N(r)‖∞) and M(r) and N(r) have eigenvalues θj and µj,j =

1,2, . . . ,n−1 respectively.

For sufficiently small values of h, N(r)(r) becomes irreducible, N(r)
i,i > 0, N(r)

i,j ≤ 0, i 6= j

and the row sums give
R(r)

1 = 4− 43
12h2q(r)1 −

7
8h2q(r)2 −

1
3h2q(r)3 > 0,

R(r)
2 = 1

12 −
56
360h2q(r)1 −

246
360h2q(r)2 −

56
360h2q(r)3 −

1
360h2q(r)4 > 0,

R(r)
j =− 1

360h2q(r)i−2−
56

360h2q(r)i−1−
246
360h2q(r)i −

56
360h2q(r)i+1−

1
360h2q(r)i+2 > 0,

where j= 3,4, . . .n−3,

R(r)
n−2 =

1
12 −

56
360h2q(r)n−1−

246
360h2q(r)n−2−

56
360h2q(r)n−3−

1
360h2q(r)n−4 > 0,

R(r)
n−1 = 4− 43

12h2q(r)n−1−
7
8h2q(r)n−2−

1
3h2q(r)n−3 > 0.

Here N(r) is a monotone matrix [20]. Therefore for adequately small values of h, (N(r))−1
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exist and we get non-zero eigenvalues µj, j= 1,2, . . .n−1 . Thus for these values of h (corre-
sponding to which N(r) is a monotone matrix), λ lies in the region (−h8, h8). We select λ in
such a manner that it must satisfy the following two conditions :

(i) M(r) is invertible matrix, since ‖M(r)−N(r)‖∞ = 2
∣∣∣∣2(α1+β1)λ

h + 6(α2+β2)λ
h3

∣∣∣∣+2
∣∣∣∣−6(α2+β2)λ

h3

∣∣∣∣+
2
∣∣∣∣2(α2+β2)λ

h3

∣∣∣∣, and from (5.3) we find that eigenvalues of M(r) are non-zero, whenever λ is suf-

ficiently small.
(ii) Since N(r)

j > 0, j= 1,2, . . . ,n−1, , the row sum corresponding to M(r) is

S(r)j = Rj−
4(α1 +β1)λ

h
− 4(α2 +β2)λ

h3 , j= 1,2, . . . ,n−1, (5.4)

when λ is sufficiently small.
When N(r) is monotone (i.e. when h is adequately small ) and M(r) invertible and row sum of
M(r) is positive (i.e. for sufficiently small λ ∈ (−h8,h8) ).We derive the error bound as follows:

5.1. Error Bound for Sixth order method

The system (2.16), (2.17), and (2.18) with analytic solutions can be written as

M(r)w̄(r+1) = d(r)+T(r)(h), (5.5)

where
w̄(r+1) = (w̄(r+1)(t1), w̄(r+1)(t2), . . . , w̄(r+1)(tn−1))

T ,

and
T(r)(h) = (T

(r)
1 (h),T(r)2 (h), . . . ,T(r)n−1(h))

T .

Since from (5.1) we have

M(r)W(r+1) = d(r). (5.6)

Using (5.5) and (5.6) we get

M(r)(w̄(r+1)−W(r+1)) = T(r)(h),

that is,

M(r)E(r+1) = T(r)(h), (5.7)
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where E(r+1) = (E
(r+1)
1 ,E

(r+1)
2 , . . . ,E

(r+1)
n−1 )T , E

(r+1)
j = w(r+1)(tj)−W(r+1)

j .

Consequently, using (5.7) we obtain

E(r+1) = (M(r))
−1
T(r)(h). (5.8)

Using the definition of product of inverse of matrix with the matrix itself, we get

n−1

∑
j=1

M(r)−1

i,j S(r)j = 1, i = 1,2, . . . ,n−1.

Hence by (5.4) we get

n−1

∑
j=1

M(r)−1

i,j ≤ 1

S(r)j
1≤j≤n−1

=
1

C(r)
i h2

, (5.9)

such that C(r) is constant. Using (5.8) and (5.9) we get

E
(r+1)
i =

n−1

∑
j=1

M(r)−1

i,j T
(r)
j (h), i = 1,2, . . . ,n−1. (5.10)

Substituting (4.3) and (5.9) in (5.10), we get

|E(r+1)
i | ≤ qh8

C(r)
i h2

,

where q is a constant.
Hence we obtain

‖E‖∞ = O(h6),

which proves that the proposed scheme is sixth-order convergent. Similar procedure can be
used to derive the convergence of second as well as fourth order methods.

6. Numerical experiments

We take adequate number of iterations till the maximum error between the two succeeding
iterations satisfy the following tolerance bound:

max
j
|W(r+1)

j −W(r)
j |< TOL,

where TOL is convergence tolerance. When the condition is met, we believe W(r+1) is the
approximate value W of the given problem. Here we have considered TOL = 10−15.

For each n, EN denotes the maximum point-wise error which is determined by

max
j
|w(tj)−Wj|,
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where w(tj) and Wj are the analytic and approximate solutions respectively at t = tj. Order of
convergence of the proposed method is determined as

pn = log2

( En

E2n

)
.

6.1. Numerical Schemes for comparison
As we compare the presented method with Numerov’s method and second order finite dif-

ference method, here we give a brief particulars about these two methods.

6.1.1. Finite-difference method
Consider BVP given in (1.1) and (1.2), let W(r+1) be the approximate value of w(r+1)(t).

Putting

W(r+1)(t)
tt ≈ 1

h2

[
W(r+1)

j−1 −2W(r+1)
j +W(r+1)

j+1

]
, (6.1)

in (1.2) and after simplifying, we get

W(r+1)
j−1 +

[
−2+h2q(r+1)

j

]
W(r+1)

j +W(r+1)
j+1 = h2f

(r)
j , (6.2)

for j= 1,2, . . .n. Here W0 = σ0 and W1 = σ1.

6.1.2. Numerov’s method
For BVP given in (1.1) and (1.2), Numerov’s method can be written as

Wj−1−2Wj+Wj+1 =
h2

12
[
fj−1 +10fj+fj+1

]
, (6.3)

where fj = f(tj,Wj), j = 0,1 . . .n, W0 = σ0 and W1 = σ1. To get more details about this
method, one can refer [12].

Problem 1: Consider the following linear BVP[25, 31]wtt(t)+w(t) =−1, 0 < t < 1,

w(0) = 0, w(1) = 0,
(6.4)

with exact solution w(t) = cos(t)+ 1−cos(1)
sin(1) sin(t)−1. Approximate results are shown in Table

1 along with results given by Srivastava et al.[31] and Ramadan et al.[25]. λ varies according
to the order of method.

Problem 2: Consider the following nonlinear BVP[3]wtt(t)+ exp(−2w(t)) = 0, 0 < t < 1,

w(0) = 0, w(1) = log(2),
(6.5)
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Table 1: M.A.E. for problem 1.
h 1/8 1/16 1/32 1/64

Second Order Method
p = 0.04063483994113, 1.5516×10−03 2.0410×10−04 3.0770×10−05 5.2534×10−06

q = 0.25412730690212,
r = 0.41047570631347

pN 2.9263 2.7296 2.5502

(p,q,r) =
(1

4 ,0,
1
2

)
3.4324×10−03 6.0707×10−04 1.2491×10−04 2.8070×10−05

pN 2.4992 2.2809 2.1538
Fourth Order Method
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
1.9214×10−05 5.8656×10−07 1.7739×10−08 5.2095×10−10

pN 5.0337 5.0472 5.0896

(p,q,r) =
( 1

720 ,
11
45 ,

183
360

)
1.9558×10−05 6.0424×10−07 1.8788×10−08 5.8564×10−10

pN 5.0164 5.0072 5.0036
Sixth Order Method

(p,q,r) =
( 1

360 ,
56
360 ,

246
360

)
2.6594×10−07 2.2124×10−09 1.6972×10−11 1.2678×10−13

pN 6.9093 7.0262 7.0646

Srivastava et al.[31] 7.1329×10−08 5.2213×10−09 3.6359×10−10 3.1275×10−11

pN 3.7720 3.8440 3.5392

Ramadan et al.[25] 1.7538×10−04 2.1600×10−05 2.6770×10−06 3.3310×10−07

pN 3.0213 3.0123 3.0065
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with exact solution w(t) = log(1+ t). Approximate results are shown in Table 2 along with
results given by Balasubramani et al.[3], finite difference method and Mohanty et al.[24].

Table 2: M.A.E for problem 2.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
1.9977×10−03 4.5767×10−04 1.1324×10−04 2.8198×10−05

pN 2.1259 2.0148 2.0058

(p,q,r) =
(1

4 ,
1
4 ,0
)

2.7119×10−03 6.2781×10−04 1.5566×10−04 3.8770×10−05

pN 2.1109 2.0119 2.0053
Fourth Order Method

(p,q,r) =
( 1

720 ,
11
45 ,

183
360

)
2.6377×10−05 9.0287×10−07 3.0209×10−08 1.0626×10−09

pN 4.8686 4.9014 4.8292
Balasubramani et al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.7039×10−06 1.3093×10−07 4.6024×10−09 1.6823×10−10

pN 4.8222 4.8303 4.7739
Sixth Order Method

(p,q,r) =
( 1

360 ,
56

360 ,
246
360

)
2.4456×10−07 2.1358×10−09 1.6419×10−11 1.1984×10−13

pN 6.8392 7.0233 7.0980

Finite difference method 2.2281×10−04 5.6130×10−05 1.4060×10−05 3.5166×10−06

pN 1.9890 1.9972 1.9993

Mohanty et al.[24] 1.6424×10−05 1.0481×10−06 6.5976×10−08 3.8966×10−09

pN 3.9699 3.9896 4.0816

Problem 3: Consider the following nonlinear BVP[3]wtt(t)− (2−t)exp(2w(t))+(1/(t+1))
3 = 0, 0 < t < 1,

w(0) = 0, w(1) = log(1/2),
(6.6)

with exact solution w(t) = log(1/1+ t). Approximate results are shown in Table 3 along with
results given by Balasubramani et al.[3], finite difference method and Numerov’s method.
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Table 3: M.A.E for problem 3.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
1.3688×10−03 4.1286×10−04 1.1600×10−04 3.0846×10−05

pN 1.7292 1.8314 1.9110

(p,q,r) =
(1

4 ,
1
4 ,0
)

2.3839×10−03 6.2248×10−04 1.6526×10−04 4.2528×10−05

pN 1.9372 1.9132 1.9582
Fourth Order Method
(p,q,r) =

( 1
720 ,

11
45 ,

183
360

)
2.7594×10−05 9.4434×10−07 3.1573×10−08 1.1062×10−09

pN 4.8689 4.9025 4.8349

Balasubramani et al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.8662×10−06 1.3680×10−07 4.8082×10−09 1.7524×10−10

pN 4.8207 4.8304 4.7781
Sixth Order Method

(p,q,r) =
( 1

360 ,
56
360 ,

246
360

)
1.3851×10−07 1.2157×10−09 6.9262×10−12 1.2062×10−13

pN 6.8320 7.4555 5.8434

Finite difference method 2.3261×10−04 5.8573×10−05 1.4670×10−05 3.6702×10−06

pN 1.9890 1.9974 1.9989

Numerov′s Method 2.1034×10−06 1.3382×10−07 8.4017×10−09 5.2577×10−10

pN 3.9743 3.9935 3.9982
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Problem 4: Consider the following nonlinear BVP[3]wtt(t)− 25t8exp(w(t))−20t3

4+t5 = 0, 0 < t < 1,

w(0) =−log(4), w(1) =−log(5),
(6.7)

with exact solution w(t) =−log(4+ t5). Approximate results are shown in Table 4 along with
results given by Balasubramani et al.[3], finite difference method and Numerov’s method.

Table 4: M.A.E for problem 4.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
5.5212×10−03 1.2773×10−03 3.3060×10−04 8.4161×10−05

pN 2.1118 1.9500 1.9738

(p,q,r) =
(1

4 ,
1
4 ,0
)

9.5912×10−03 2.0448×10−03 5.2840×10−04 1.3576×10−04

pN 2.2296 1.9523 1.9605
Fourth Order Method
(p,q,r) =

( 1
720 ,

11
45 ,

183
360

)
6.2487×10−05 1.0123×10−06 3.8928×10−08 2.7550×10−09

pN 5.9477 4.7007 3.8206
Balasubramani el al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.9439×10−06 3.3929×10−07 1.4653×10−08 6.6424×10−10

pN 3.5391 4.5332 4.4633
Sixth Order Method

(p,q,r) =
( 1

360 ,
56

360 ,
246
360

)
5.1118×10−06 1.2322×10−08 2.1551×10−10 3.1186×10−12

pN 8.6963 5.8374 6.1107

Finite difference Method 1.1795×10−03 2.9324×10−04 7.3024×10−05 1.8265×10−05

pN 2.0080 2.0056 1.9992

Numerov′s Method 3.0070×10−05 1.8480×10−06 1.1585×10−07 7.2337×10−09

pN 4.0242 3.9956 4.0014

7. Conclusion

This study deals with developing second, fourth and sixth order convergent numerical
schemes by using fractal non-polynomial spline function. With the help of quasilinearisation
technique, the non-linear BVPs is converted into a system of linear BVPs, which in turn are
solved by using the proposed schemes. These schemes are used to find approximate solution
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Figure 1: Relationship between analytical and approximate solution for problem 1.

Figure 2: Relationship between analytical and approximate solution for problem 2.

Figure 3: Relationship between analytical and approximate solution for problem 3.

Figure 4: Relationship between analytical and approximate solution for problem 4.
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of second order linear as well as nonlinear BVPs. Comparison with polynomial fractal quintic
spline and few other methods leads us to the conclusion that the presented methods are more
efficient.
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