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ABSTRACT

The purpose of the paper is to introduce the notion of § -Lorentzian para trans-Sasakian manifolds of type
(a, B) and study some of its basic results. Also,weakly symmetries of 6 -Lorentzian para trans-Sasakian
manifolds have been introduced. An example has been given to show the existence of § -Lorentzian para
trans-Sasakian manifolds.
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1. INTRODUCTION
Many authors such as U. C. De and Krishnendu De [25] and Abdul Haseeb, Mobin Ahmad and Mohd.
Danish Siddiqi [29],S. M. Bhati [27] have studied Lorentzian a - Sasakian manifolds and Lorentzian -
Kenmotsu manifolds [9]. In 2011, S. S. Pujar and V. ]. Khairnar [6] have initiated the study of Lorentzian
Trans-Sasakian manifolds and studied the basic results with some of its properties. Earlier to this, ([23],
[22],[27]) has initiated the study of 6 -Lorentzian a- Sasakian manifolds and Lorentzian 3 -Kenmotsu
manifolds ([7],[9])-
In 2010, S. S. Shukla and D. D. Singh [10] have introduced the notion of e- trans-Sasakian manifolds and
studied its basic results. Earlierin 1969 [13] had introduced the notion of almost contact metric manifold
equipped with Pseudo Riemannian metric. In particular, he studied the Sasakian manifolds equipped with
semi-Riemannian metric g. These indefinite almost contact metric manifolds and indefinite Sasakian
manifolds are also known ase-almost contact metric manifolds and e- Sasakian manifolds respectively.
M. M.Tripathi [14] has observed that there does not exist a light-like surface in the e- Sasakian manifolds.
On the other hand in almost para contact manifold defined by [3], the semi-Riemannian manifold has the
index 1 and the structure vector field € is always a time-like.This motivated others [14] to introduce e-
almost para contact structure where the vector field § is space-like or time-like according as € =1 or
e=-—1
In this paper, in Section 2, we have introduced the notion of 8- Lorentzian para trans- Sasakian manifolds
and studied its basic results. In fact, we have made an attempt to combine both §-Lorentzian a-Sasakian
manifolds and § Lorentzian  Kenmotsu manifolds and called the §-Lorentzian trans-Sasakian manifold of
odd dimension and of type (a, ), where a and 8 are some smooth functions on M.A concrete example to
ensure the existence of weakly symmetries of §- Lorentzian para trans-Sasakian manifold are studied.
In Section 3, we extended the work of ([11],[12]) for weakly symmetric 6- Lorentzian para trans-Sasakian
manifolds has been discussed. In this Section, series of Theorems and corresponding Corollaries to
indicate the special cases of the Theorems are given. As a special case, in one of the Corollaries, it is
proved that there is no weakly symmetries of 8- Lorentzian para Sasakian manifold M (n >1) unless the
sum of the associated 1-forms is everywhere zero, thatis, A+ B+ D = 0. Also, it is proved that there is no
weakly symmetries of 6- Lorentzian Kenmotsu manifold M (n >1) unless the sum of the associated 1-
forms is everywhere zero, thatis, A+ B+ D =0.
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2. § -Lorentzian Para Trans-Sasakian Manifolds

S. Tanno. [20] classified the connected almost contact metric manifolds whose automorphism groups
possesses the maximum dimension. For such a manifold the sectional curvature of the plane section
containing & is constant, say c. He showed that they can be divided into three classes. First class is
homogeneous normal contact Riemannian manifolds with ¢ >0. It is known that the manifolds of class (1)
and are characterized by admitting a Sasakian structure. Other two classes can be seen in [20].

In Grey and Harvella [18], the classification of almost Hermitian manifolds, there appears a class, Wa, of
Hermitian manifolds which are closely related to the conformal Kaehler manifolds. The class Cs @ C5[19]
coincides with the class of the Trans Sasakian structure of type (a, ). In fact, the local nature of the two
subclasses, namely Cs and Cs of trans-Sasakian structures are characterized completely. An almost contact
metric structure on M is called a trans-Sasakian (please see details in ([17], [18]) if (MXR, ], G) belongs to
the class W4, where ] is the almost complex structure on MXR defined by

d d
(%) = (000 - B0 3)
For all vector fields X on M and smooth function f onMXR and G is the product metric on MXR. This may
be expressed by the condition
(Vx@)(Y) = afg(X, Y)§ —n(VX} + B{g(e(X), E—n(Me(X)}  (2.1)
for any vector fields X and Y on M,V denotes the Levi-Civita connection with respect to g.c and 3 are
smooth functions on M.
A manifold M is said to admit an almost para contact structure [21] (¢, §, 1) if
$2X =X - n(XE(E) = 1
On the other hand M is said to admit a Lorentzian almost para contact structure [21] (, §, 1) if
$2X=X+n(X)§n(€) =-1
Here the & in this equation is a light-likeunit vector field [22].
K. Matsumoto K [15] has defined the manifold M with the structure (¢, &, , g) with usual notions as the
Lorentzian para contact([15],[16],[17]) if the following are satisfied.
$2X=X+n(X)E n(g) =-1
8(& €) =-1,n(X) = g(X, %)
g($(X), ¢(Y)) =g(X, Y) +n(X)n(Y),
Type equation here.for all vector fields X and Y on M. Further, he also termed a Lorentzian para contact
manifold as the Lorentzian a- Sasakian ([16],[17]) if
(Vx)(Y) = af{g(X, Y)§ + n(V)X},
for any vector fields X and Y on M. Similarly, a Lorentzian para contact manifold as the Lorentzian (-
Kenmotsu if
(Vx@)(Y) = B{g(e(X), )&+ n(V (X},
for any vector fields X and Y on M. Considering these, we introduce the following definitions.

Definition 2.1. A (2n+1) dimensional manifold M is said to be the §- almost para contact metric manifold
ifit admits a (1,1) tensor field ¢, a structure tensor field &, a 1-form n and an indefinite metric g such that
X=X +1(X)E n(8) = -1 (2.2)

8(5 §) =-8,n(X) = 8g(X, &) (2.3)

g(d(X), d(Y) = g(X, Y) + n(X)n(Y )(2.4)

for all vector fields X and Y on M, where § is such that 62 = 1 so that 6 = 1. If § = 1, thengis the usual
Lorentzian metric on M and the vector field § is the lightlike [2], that is, M contains a timelike vector field.
From the above equations, one can deduce that

$§=0,n((X)) = 0.

Definition 2.2. A § - almost contact metric manifold with para contact metric structure (¢, §, 1, g, 6) is
said to be 6- Lorentzian para trans -Sasakian manifold M of type (o, ) if

(Vx@)(¥) = afg(X, VIE + n(VX} + Blg(@(X), VE+n(Ve(X)},  (2.5)

for any vector fields X and Y on M, V denotes the Levi-Civita connection with respect to g, aandf are
smooth functions on M.

If § = -1, then the 8- Lorentzian trans-Sasakian manifold is the usual Lorentzian trans -Sasakian manifold
of type («, B) [3]. 6-Lorentzian trans-Sasakian manifold of type (0, 0),(0, f),(o, 0) are the Lorentzian
cosympletic,Lorentzian - Kenmotsu and Lorentzian a- Sasakian manifolds([16],[17]) respectively. In
particular if a = 1, § = 0, and a = 0, B = 1, then 6- Lorentzian trans -Sasakian manifold reduces to 6-
Lorentzian Sasakian and 8- Lorentzian Kenmotsu manifolds respectively.

Example 2.1: Suppose (¢, §, 1, g 9) is the 8- Lorentzian almost contact metric structure on M. Put
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p=¢, §t=-% n=-n g=-g &=-98
Then ((T), E, n.8 S)is also 8- Lorentzian almost contact metric structure on M.So, using definition 2.1,
X =X +1(X8,
8(58) = -5,
7(§) = -1,
7(X) = 8g(X,$),
g(@X), (1) = (X, )&+ 8qX)7(Y),
If (b, &, m, g, 6) is the 6- Lorentzian almost normal contact metric structure on M, then (gﬁ, E_, 7,9, 5—) is also
6- Lorentzian almost normal contact metric structure on M. For, the parallelism with respect to g andg ,
are the same so that we have
x@) (V) = (Txp) (V) = afg(X,Y)§ + on(V)X} + B{g(p(X), ¥Y)E + dn(V)p(X)}
= a{g(X,Y)§ + on(Y)X} + B{g(@(X), Y)¢ + 6n(Y)p(X)},
for any vector field X,Y on M.
In view of this Example, we may assume without loss of generality § = 1.

Lemma 2.3: For a §- Lorentzian para trans-Sasakian manifold, we have
Vx§ = 8{apX) + (X + (X))}, (2.6)
for any vector field X on M.
Proof: From(2.5), we have

k(1) — @(VxY) = a{g(X,Y)E + 8n(V)X} + Blg(p(X), Y)E + Sn(V)e(X)},
for any vector fields X and Y on M. Now taking Y = & in the above equation and using (2.2), we get

—p(Vx§) = a{g(X,§)§ — 6X} — Bép(X)

Applying pon both sides of the above equation and using the fact that (Vxg)(§, §) = 0 which implies g(Vx§,
€) = 0 so that n(Vx§) = g(V'x§, &) = 0, further simplifying, we get (2.6).

Example 2.2: Let us consider the 3-dimensional manifold M = {(x, y, z)eR3}, where %, y, z are the co-

ordinates of a point in R3.Let {e1, e, e3} be the global frames on M given by
d 0 d 5]

e = e’ <a+y£),ez = 62@,63 = 625
Let g be the 8- Lorentzian metric on M defined by
gle1, e2) = g(ez, e3) = g(es, e3) = 0
and
gle, e1) = g(ez e2) = 1, g(es, e3) = -6
where 8§ = +1. Then §-Lorentzian indefinite metric g on M is in the following form:
g ={e"22- §yZ}(dx)? + e-2z(dy)? - de-22(dz)% + 20ye-zdxdy
Let e3=&. Letm be the 1-form defined by
n(U) = 8g(U, es),
for any vector field U on Letd be (1,1) tensor field defined by
d(e1) = ez, Pp(e2) = e1, p(e3) =0
Then using the linearity of ¢ and g and taking ez = §, one obtains
n(es) =-1,¢2U =U+n(U)es
andg(¢(U), (W) = g(U, W) + &n(U)n(W), (2.7)
for any vector fields X and Y on M. Hence putting W =€ in (2.6), we have
n(U) = 6g(U, £).(2.8)
Putting W = U =§ in(2.7) and (2.8) respectively, we have g(§, &) = -6 andn(§) = -1
Clearly from(2.7), ¢ is symmetric. Thus (¢, §, 1, g, 6) defines a §- Lorentzian contact metric structure on
M.
Let Vbe the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor
of g of type (1,3). Then the following results hold.
[e1, e2] = 8(yeze, — e%e3),[e1, e3] = —6(ye?es — e1), [e2, €3] = —Oe%e;
Taking ez = § and using the Koszul’s formula, that is
2g(VxY, Z) = Xg(Y, Z) + Y g(Z,X) - Zg(X, Y ) - g(X, [Y, Z1) + (¥, [Z, X]) + g(Z, [X, Y1),
one can easily obtain
Veies= 6{-e%e; _%GZEZ},V5383 =0, Ve2es = 8{-eze; _%ezel}
Vezez=0{-e3z+ye?e1},Veie2= —gezeg, Vezer= 8{%eze3 - yeZzey}

5 5
Veie1 = —6e%es, Veser =Eeze1, Vee1=— Eezez.
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With these results, M(¢, &, 1, g, 6) defines a § -Lorentzian para trans-Sasakian manifold of type (—gez, -6e7)
and satisfies (2.6) of Lemma 2.3.

Example 2.3: Let us consider the 3-dimensional manifold M = {(x, y, z)eR3z #0}, where x,y,z are the co-
ordinates of a point in R3.Let {e1, e, e3} be the global frames on M given by
d d d d

e
Let g be the 8- Lorentzian metric on M defined by
g(e1, e2) = g(ez, e3) = g(e1, e3) = Oand g(ey, e1) = g(ez, €2) = 1, g(es, e3) = -6
where § = +1. Let e3 = &. Let n be the 1-form defined by
TI(U) = Sg(U, 63),
for any vector field U on M. Let ¢ be (1,1) tensor field defined by
d(e1) = ez, Pp(e2) = e1, Pp(e3) =0
Then using the linearity of ¢ and g and taking ez =§, one obtains
n(es) = -1, $2U = U + n(U)es and g($p(U), $(W)) = g(U, W) + n(U)n(W),
for any vector fields X and Y on M. Hence putting W =€ in in the above equation, we have
n(U) = 8g(U, g).
Putting W = U =€ in the above equations, we have
g(58)=-8andn(§) =-1
Clearly,¢ is symmetric. Thus (¢, §, 1, g, §) defines a 8- Lorentzian contact metric structure on M.
Let Vbe the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor
of g of type (1,3) Then the following results hold.

8 ) 8
[e1, e2] = 6zexey,[e1, €3]=— 561, [e2, e3]=— Z—zel - ;ez

Further proceeding as in Example 2.2, one can see that M(¢, §, n, g, 6) defines a 6 -Lorentzian para trans-
Sasakian manifold of type (— Zi—z, - g)and satisfies (2.6) of Lemma 2.3.

Lemma 2.4:For a § -Lorentzian para trans-Sasakian manifold,we have

(Vxn)(Y) = ag(d(X), Y) + B{g(X, Y) + dn(X)n(Y )}(2.9)

forall Xand Y on M.

Proof:Consider(Vxn)(Y ) = Vx(m(Y)) -n(VxY ) = &Vx(g(Y, &)) - 8g(VxY, &) = 5g(Y, VxE).
By virtue of (2.6) of LemmaZ2.3 and noting that 2= 1,we get (2.9).

Lemma 2.5: For a § -Lorentzian para trans-Sasakian manifold M, we have

R(X, Y )&= (a2 + B2){n(Y )X - n(X)Y } + 2aB{n(Y )p(X) - n(X)d(Y )} + ${(X)d(Y ) - (Y 0)d(X) + (XB)P?Y -
(Y B)$2x;,(2.10)

forall Xand Y on M.

Proof:From(2.2)and (2.6) of Lemma 2.3 and using the fact that

[X, Y] =PxY-TyX

we have

R(X, Y )§=VxVy§ - VyVx§ - Vixyi§ = Vx[8{adp(Y ) + Bp2Y }] - Vy [[6{adp(X) + B$2X}] - §[ad(VxY - VyX) +
B(VxY - VyX) + Bn(VxY - VyX)E] = 8[(Xa)d(Y ) - (Y a)$(X) + (XB)d2Y - (Y B)d2X] + ad[afg(X, Y )§ + dn(Y
)X} + B{g($(X), Y )&+ n(Y )d(X)] - ad[afg(X, Y )§ + Sn(X)Y } + B{g($p(Y ), X)§ + Sn(X)d(Y )]

+a8Pp(VxY ) - ad(VyX) + 6BVx(d2Y ) - 6BVy (d2X) - S[ad(VxY - VyX) + B(VxY - VyX) + Bn(VxY - VyX)E],
(2.11)

for all vector fields X, Y on M.

Consider,

Vx(92Y ) = Vx(Y + (Y )E) = VxY + (Vx((Y ))& + n(Y ) (VxE) = VxY + (Vxn)(Y )€ + n(VxY )& + n(Y )VxE = VxY +
ag(d(X), Y) + B{g(X, Y) + Sn(XIn(Y )}§ + n(VxY )&+ dn(Y ){ad(X) + B(X (X))}, (2.12)

Wherein we have used (2.2) and (2.9) of Lemma 2.4. Now substituting for§Vy ($p2X) — 6Vx(P2Y )

from (2.12) in (2.11), after further simplification, we get (2.10).

Lemma 2.6: For a § -Lorentzian para trans-Sasakian manifold M, we have

R(E Y )X = (a2 + B2){6g(X, Y )E - n(X)Y } + 8(Xa)d(Y ) - 88(d(X), Y )(grada) + 8(XB)(Y + n(Y )E) - 8g(d(Y),
¢(X))(grad(B) + 2aB{6g($(X), Y)§ -n(X)$p(Y )}, (2.13)

for any vector fields X,Y on M.

Proof:We have the identity, g(R(§, Y )X, Z) =g(R(X, Y)§, Y)

Now from (2.9) of Lemma 2.5, we have
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g(R(E Y)X, Z) = g(R(X, 2)§, Y) = (a* + B2){8g(Z, €)g(X, Y ) - n(X)g(Z, Y )}+ 2aB{5g(Z, &)g(d(X), Y)
—-NX)g(Z oY )} + §{-(Za)g(d(X), Y ) + (XJg(Z, &(Y )) - (ZB)g(¢d?X, Y ) + (XB))g(Z, ¢%Y )}. (2.14)
After simplification from (2.14), we get (2.13).

Lemma 2.7:For a § -Lorentzian para trans-Sasakian manifold M, we haveR(E, Y )€ = {a? + B2+ 8(§B)}p2Y +
(2aB + 6(8a))P(Y).(2.15)

for any vector fieldY on M.

Proof: SettingX = § in (2.13), we get

R(& Y)E= (a2 + B (n(YIE+Y) +8(8)p(Y) + 8(EB)(Y + (Y )E) - 2aBp(Y Jwhich proves (2.15).

Lemma 2.8:For a § -Lorentzian para trans-Sasakian manifold M, we have

N(R(X Y)Z) = 8(a2+ B M(X)g(Y, Z) - n(Y)g(Y, Z)] + 28aBM(X)g(d(Y ), Z) - n(Y )g(d(X), Z)]
+[(Y ) (8(d(X, Z) - (Xa)g(Y, $(Z)) + (Y B)g($X, Z) - (XB)g(d?Y, Z)], (2.16)
for any vector fields X,Y, Z on M.

Proof:From (2.2), we have n(R(X, Y )Z) = 6g(R(X, Y)Z, &) = -6g(R(X, Y )&, Z).

(2.16) of the above Lemma 2.8 follows from (2.10) of Lemma 2.5.

Lemma 2.9: For a § -Lorentzian para trans-Sasakian manifold M, we have

S(X, 8) = {2n(a?+ p?) + 8(5B)(X) - (2n - 1)§(XB) + {2apn(X) - 8(Xa)}+ §(p(X))a  (2.17)

S(§ §) = -2n(a? + B2+ 88B) - (2af + 88a)f (2.18)

where X is any vector field on M and fis given by f = g(d(ei), e)) (2.19)

repeated indices imply the summation, {ej}, for i= 1, 2, ..., 2n + 1 are the orthonormal basis at each point
of the tangent space of M.

Proof:From(2.2), we have

5g(R(X,Y)Z &) =n(R(X, Y)Z).

Now setting Y = Z = ejin the above equation, we get

5g(R(X, ei)e;, §) =n(R(X, eiei).

Further, using the right-hand side expression of (2.16) of Lemma 2.8, the proof follows after multiplying
by 6 on both sides. Put X =& in (2.17) and use (2.2) to get (2.18).

Note2.1: One can choose o and f arbitrarily such that 2af + §(§a) =0 (2.20)
so that the calculations are easier in the next Sections onwards. For instance, take § = 1 and
e—ZZ
= —-—, =1
a > B

Theorem 2.10: If o is constant and 2af3 + §(§a) = 0, then a §- Lorentzian trans-Sasakian manifold is
always a 8- Lorentzian a-Sasakian manifold.

3. Weakly Symmetries Of A-Lorentzian Para Trans-Sasakian Manifolds

In this Section, we define the &- sectional curvature of 6- Lorentzian para trans-Sasakian manifold and
also weakly symmetries of 8- Lorentzian para trans-Sasakian manifold and study their properties. Here
we highlighted the importance of € sectional curvature.

Definition 3.1: The §-sectional curvature of 6- Lorentzian manifold for a unit vector field X orthogonal to
¢ is defined by K(§, X) =R(§, X, §, X) (3.1)

From (2.15) of Lemma 2.7, we have R(§, X, §, X) = {(a2 + B2) + 8(§B)}g(d2X, X) + (2aB + 6(Eax))g(d(X), X).
Using (3.1) of Definition 3.1, choose a and (3 such that (2.20) of Note 2.1 holds, then the &-sectional
curvature is given by K(§, X) = a2+ 2+ §(§f3)(3.2)

Definition 3.2: A non-flat § -Lorentzian manifold M of dimension 2n+1(n >1) is said to be weakly
symmetric if its curvature tensor R of type (0,4) satisfies the condition

(VxR)(Y,Z, U, V) = A(X)R(Y, Z U, V) + B(Y)R(X, Z, U, V) + B(Z)R(Y, X, U, V)

+D(UWR(Y,Z, X, V) +D(V)R(Y, Z U, X), (3.3)

for any vector fields X, Y, U, V on M, where A, B and D are associated 1-forms on M (not simultaneously
Z€ro).

Let {ei}, for i=1,2,....,2n+1 be the orthonormal basis at each point of the tangent space of M. Setting Y = U =
eiin (3.3) of Definition 3.3, we get

(VxS)(Z, U) = AX)S(Z, U) + B(Z)S(X, )+ D(U)S(X, Z) + B((RX, Z)U) + D(R(X, U)Z)(3.4)
Next putting X =Z = U =§ in (3.4) and then using (2.17) of Lemma 2.9, one obtains
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2a(§a)+2p (L) +55EB)
A© +BE) + D) = O, (3.5)

Provideda? + 32+ 6(§B) 6= 0. Hence one can state the following Theorem.

Theorem 3.3: In a weakly symmetries of 8§ -Lorentzian para trans-Sasakian manifold M (n >1) of
nonvanishing & -sectional curvature if a and {3 satisfy (2.20), then the relation (3.5) holds.

Putting X = Z = § in (3.4) using (2.2), we get

(VxS)(&, U) = {A(8) + B()}S(&, U) + {(=2n + 1) (> + B>+ §(8B)}D(U)

+ (a2 + B2 +8(8B))n(U)D(S) (3.6)

On the other hand, using (2.17) of Lemma 2.9, we have

(VeS)(&, U) = (V£S)(&, U) = S(Veg, U) = S(§, VU) = VS(8, U) - S(&, VeU) = {2n(2a(8a) + 2B(EP)) + 55(EB) (V) +
8(p(U))Ex) - (2n - 1)SUER)+ {&(2apn(U) - SUEa)M + {2apn(U) - 8Uaj(f) (3.7)
In view of (3.6) and (3.7) equating the right-hand side expressions and further substituting forD(§) from
(3.5) in (3.6), after lengthy calculations, one obtains

D) = — [2n{2a(§a) + 2B(EB)} + 6§(EA)INU) + (apn(U) — sUa))E(f)
@2n-1)(a?+p2+8ER))
_(=2n+ DSUEA) + 8(p(1))Ga) + (§(2aB)n(U) — SUG))f
@2n—-1)(a?+p2+5(R))
_D(®) [(Zn —1D(a2 + B2)nU) — 6UB + 6p()a
§ @2n—-1D(a?+p2+8(EB))

D) L |+ SO (o )~ SR+ 20+ DB
8(d(U))a+ (2apn(U) - U] (3.8)

for any vector field U on M provided o2 + 32+ §(§B) # 0 and f is given by (2.19). Next puttingX= U = in
(3.4) and proceeding as above, one finds

[2n{2Za(§a) + 2B(B)} + 8§(EA)IN(Z) + (apn(Z) — 6Za))$(f)

By =~ 2n—1)(a? + B2 + 5(B))
_ (=2n+1)6Z($B) + 5(¢(2)(¢Ea) + (§QapIn(Z) — 6Z(E))f
@2n—1)(a?+p2+5(R))
B [(Zn - D(a? + pHn(Z) — sUB + 6¢(Z)a]
@2n—-1)(a?+p2+8ER))
3 B(E)[ (2apn(z) — 6Z(a)f
2a(a) + 2B(§P) + 65(§P) (2n = D@ o+ 066D
(2(2(_ (a2 + FZ 4 6@p)) [2n(a® + B*) = 8ERM(Z) + (=2n + 1)SZB + §(9(Z))a + (2apn(Z)
—8Za)f]
(3.9)

for any vector field Z on M provided a? + 32+ §(§B) # 0 and fis given by (2.19). Hence, one can state

Theorem 3.4: In a weakly symmetric § -Lorentzian trans-Sasakian manifold M (n >1) of nonvanishing § -
sectional curvature if (2.20) holds, then the associated 1-forms D and B are given by (3.8) and (3.9)
respectively.
Setting Z = U = § in (3.4), one finds
(VxS) (& §) = AX)S(8, §) + {B(&) + D(§)}S(X, &)+ B(R(X, §)¢) + D(R(X, £)8) = -2n(a + B2+ §(EB))A(X) + (B(&) +
D(8))S(X, &) - (a2 + B2 + §(§B))[B(X) + D(X) + (B(§) + D(&)In(X)] = -2n(a> + B2 + 5(&B))A(X) + (B(§) +
D(E)[(2n - 1){(a? + B2 + S(EP)IN(X)- S(XB)} + 8(p(X))a+ {2afn(X) - §(Xe)f}] - (o + B2 + 8(8B)) (B(X) +
D(X)) (3.10)
On the other hand, we have
(VxS)(& 8) = VxS(§, &) — S(V'x§, &) - S(&, V'x§) = VxS(§, §) - 25(Vx&, &)
which yields by using (2.6), (2.16) of Lemma 2.8, (2.17) and (2.18) Lemma 2.9,
(VxS)(& &) = -2n[2a(Xa) + 2B(XP) + SX(8B)] - 2a[Xa + n(X))(Ea) + (-2n + 1)(¢(X)B) + (¢(X)a)f -
%f[(d;(x)a +(=2n+ 1){XB + (EFIn(X)} + (2apn(X) - Xa))f]

A1
Equating righthand side expressions of (3.10) and (3.11).one obtains
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- 2n(a?+ B2+ 8(EB)A(X)+ (B(8) + D(8))[(2n - 1){(a2 + Bn(X) - 8(XB)} + 8(p(X))a+ {2afn(X) - 8(Xa)f}] -
(a2 + B2+ 8(8B))(B(X) + D(X)) = -2n[2a(Xa) + 2B(XP) + 6X(EP)]Xa - Za[Xa + n(X)(§a) + (-2n + 1)(PXP) +
(dXa)f - 2B[(p(X)a + (=2n + 1){XP + (EPIN(X)} + (Zapn(X) - Xa)f] (3.12)

Adding (3.8) and (3.9) by taking U = Z = X, one obtains

{B(&) + D(E)}(2n - 1){(a? + BIn(X)) - 8(XB) +8(d(X))ax + {2aPn(X) - 6(Xa)}]

=-{Zn(2a(8a) + 2B(ER) + 85(§B)IN(X) + (2apn(X) - &(Xa))&(f)

2a(§a)+2B(EB)+65 EB)
- (2n - 1)(a?+ BER)B(X) + DIX)} + 2 XNy o (a2 )

+8(EB)M(X)+ (-2n + 1)8XB + §(Pp (X))o + (2afn(X) - Xa)f]
Next substituting for the following expression from the above equation in (3.12),
{B(§) + DE}En - (e + BIn(X)) - B8XB} +5(¢(XNa + {2aPn(X) - S(Xa)}f]
after simplification, finally, we get
_ 2a(Xa) + 2B(XB) + 8X(EB) a [Xa + n(X)(§a) + (=2n + 1) (¢(X)Bn(X))S(f)
AW+ B +CO0 = —— e 1 5@p) E[ a? + B+ 0(B) ]
+B oX)a+ (—2n+ 1)(XB) + apn(X) — 5Xa)]
a’+ B* + 6(¢P)
{271{206(506) + 28R} + 6S(ER)IN(X) — (2aPn(X) — 5Xa)S(f)
n(a® + p* + 6(¢p))
_ (=2n+ 1DEX(EP) + Sp(X) () + {§2ap)n(X) — 8X(§a)}f
n(a® + p* + 6(¢p))
206(506) + 2B(EP) + 8(EP) 2 2y _
T s L@ + 2B — 8GR0
+(=2n+ DSEXP) + 8(0X))a + (2apn(X) — 8(Xa) )] (3.13)
for any vector field X on M provided a? + 32+ §(§B) # 0. Hence, we state

Theorem 3.5:In a weakly symmetries of & -Lorentzian para trans-Sasakian manifold M (n >1) of non-
vanishing § -sectional curvature if (2.20) holds, then the sum of the associated 1-forms A, B and D are
given by (3.13).

Remark 3.6: If we choose 3 = 0, then from (3.13), one can find an expression for the sum of the
associated 1-forms A, B, and D for the weakly symmetries of 6-Lorentzian a -Sasakian manifold M (n >1).
Similar arguments follow for the weakly symmetries of §-Lorentzian 8 -Kenmotsu manifold M (n >1).
Ifa=1and =0, then from (3.13), it is easy to see that A + B + D = 0,Hence we state.

Corollary3.7:Thereare no weakly symmetries of §-Lorentzian Sasakian manifold M (n >1) unless the sum
of associated 1-forms is zero everywhere.
Similarly, if a = 0 and 8 = 1, then from (3.13), it is easy to see that the sum is zero. Hence we state.

Corollary 3.8:There is no weakly symmetries of §-Lorentzian Kenmotsu manifold M (n >1) unless the
sum of associated 1-forms is zero everywhere.

Corollary 3.9: With the same hypothesis of the Theorem 3.3, if a and 8 are nonzero constants, then for a
6- Lorentzian para trans-Sasakian manifold of type (o, ), the relation A(§) + B(§) + D(§) = Oholds.
Proof: Follows from Theorem 3.3.

Theorem 3.10: If a weakly symmetries of 6 -Lorentzian para trans-Sasakian manifold M (n >1) of non-
vanishing § -sectional curvature with a and 3 are such that (2.20) holds, then

(2n = D{(@® + B INX) +8(XB)} + sp(X)x 4 XaBn@X) = 8X(c)f

(2n—1)(a2 + B* + 8((B)) (2n—1)(2 + B* + 8(EB))
(3.14)

D(X) —BX) = (B(§) —D(3)

Proof: Follows from (3.7) and (3.8) by forming D(X)—B(X).

Corollary 3.11: In a weakly symmetric § -Lorentzian -Kenmotsu manifold M (n >1) with 8 non-zero
constant, the relation

Do — Bogp = 0 (3.15) holds

Proof:Putting a = 0 in (3.14) of Theorem 3.10 by taking 8 constant, we have D(X) - B(X) = (B(§) -
D(EIN(X) (3.16)
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Now replacing X by ¢(X) in (3.16), we get (3.15).

Corollary 3.12: In a weakly symmetric 6§ -Lorentzian 3-Kenmotsu manifold M (n >1) if 8 is nonzero
constant and D(§) = B(§), then D and B are in the same directions.
Proof: Follows from Theorem 3.10 and (3.16).

4. Evaluation Of a&f

In this Section, a concrete way of finding a and 8 are given.

Lemma 4.1: For a § -Lorentzian para trans-Sasakian manifold, we have

(Vx®)(Y, Z) = 8[ofg(X, Z)n(Y ) + (X, Y In(Z)}+ B{g(X, d(Z))n(Y) + g(X, d(Y )In(Z)}] (4.1)

(Vx®@)(Y, Z) = (VxP)(Z,Y) (4.2)

DX, Y)=2(Y,X) (4.3)

where @ is the fundamental 2-form of the structure given by ®(X, Y ) = g(X, (Y )

Proof:Consider,

(Vx®)(Y, Z) = Vx@(Y, Z) - ®(VxY, Z) - D(Y, VxZ) = Vxg(Y, $(Z)) - g(VxY, d(Z)) - g(Y, $(VxZ))

= g(VxY, ¢(Z) + g(Y, Vxd(2)) - g((VxY, ¢(Z)) - g(Y, $(VxZ)) = g(VxY, $(Z)) + g(Y,(Vxp)Z) + g(Y, d(VxZ))-
g(VxY, &(2)) - g(Y, $(VxZ)) = g(Y,(Vxd)Z) = g(Y, 8*a{g(X, Z)§ + Sn(Z)XP+ B{8*g(d(X), Z)§ + 6n(Z)d(X)}
After simplification, we obtain (4.1).

(4.2) follows from (4.1) and the proof of (4.3) is obvious. This complete proof of Lemma 4.1

PuttingZ =§and Y =X in (4.1) of Lemma 4.1, we get

- (Vx®)(X, &) = 6a + 8Pw, (4.4)

where w = g(X, (X)), X is orthogonal to §, and g(X, X) = 1. Further putting Y = X in (2.9) of Lemma 2.4, we
get 6(Vxn)(X) = daw + 5B(4.5)

Now eliminating a and  from (4.4) and (4.5), finally we havea = Gw(Vxn;((Pg;r_(Z;@)(Xﬁ) (4.6)
BT +e(Tx D)X
B= S(@-1) (4.7)

Provided w?- 1 #0. Hence we state the following.

Theorem 4.2: In a §-Lorentzian para trans-Sasakian manifold M the smooth functions o and {3 are given
by (4.6) and (4.7) respectively provided w2-1 # 0.
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