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ABSTRACT 
The application of modified Regula Falsi approaches for nonlinear equation solving via numerical 
simulation is investigated in this research article. Three modified versions the Illinois algorithm, 
Anderson-Björck method, and Pegasus approach, and our proposed Regula Falsi method along with 
traditional Regula Falsi's performance are compared in this work. These techniques were tested using a 
set of several different non-linear equations with an eye toward convergence rates, accuracy, and 
computational economy. With the proposed method showing the best overall performance in terms of 
convergence speed and accuracy, results show that the modified approaches much outperform the 
original Regula Falsi. This work advances numerical analysis by offering understanding of the efficiency of 
several Regula Falsi modifications for the solution of difficult non-linear equations. 
 
Keywords: Nonlinear equations, numerical simulations, convergence analysis, Regula Falsi, root findings. 
 
1. INTRODUCTION 
Non-linear equations play a crucial role in modeling complex phenomena across various scientific and 
engineering disciplines. From fluid dynamics to electronic circuit analysis, the ability to accurately and 
efficiently solve non-linear equations is fundamental to advancing our understanding and capabilities in 
these fields [1]. However, finding solutions to non-linear equations, particularly those involving 
transcendental functions, often presents significant challenges due to their inherent complexity and the 
limitations of analytical methods. 
Numerical methods have long been employed to address these challenges, offering approximations to 
solutions where closed-form solutions are either impossible or impractical to obtain. Among these 
numerical techniques, the Bisection method, and the Regula Falsi (False Position) method stand out for 
their reliability and relative simplicity [3]. However, in their classical forms, these methods can 
sometimes converge slowly, especially for equations with certain characteristics such as multiple closely 
spaced roots or near-horizontal tangents at the root [4]. 
Often reflecting complicated physical events or mathematical models, nonlinear equations are 
fundamental in many branches of science and engineering [5]. In fields including optimization, control 
systems, and financial modeling, precise and quick solution of these equations is crucial. Although 
analytical solutions are better, they are often difficult to find for complicated  nonlinear equations thus 
numerical methods must be used[9]. 
Combining elements of the bisection method and the secant method, the Regula Falsi method also known 
as the False Position method is a root-finding technique for solving non-linear equations of the form 
𝑓 𝑥  = 0 where 𝑓 𝑥 is a continuous function it is especially helpful[7]. Using linear interpolation to 
estimate the root's location, the approach iteratively narrows the interval including the root ]10]. 
The original Regula Falsi approach has certain restrictions, too, including slow convergence in some 
circumstances and possible stagnation should one endpoint of the interval remain fixed [8]. Over years, 
several changes to the Regula Falsi approach have been suggested to help solve these problems. Three 
notable changes the Illinois algorithm, the Anderson-Björck method, the Pegasus method [2,6] and the 
proposed methodare the main subjects of this work.  
The paper is structured as follows: 
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1. We begin with a comprehensive review of the classical Regula Falsi methods, discussing their 
underlying principles, strengths, and limitations. 

2. We then present detailed descriptions of our proposed modifications method, including the 
mathematical foundations and algorithmic implementations. 

3. The modified approach combining these modified methods is introduced, along with a discussion of 
its theoretical advantages and potential applications. 

4. We provide an extensive set of numerical experiments, applying our proposed approach to a diverse 
array of non-linear algebraic and transcendental equations. These experiments are designed to test 
the method's performance across various scenarios, including equations with multiple roots, high 
degrees of non-linearity, and transcendental components. 

5. The results of these experiments are presented in comprehensive tables, offering a clear comparison 
between the classical methods, their modified versions, and the proposed approach. These tables 
include key performance metrics such as the number of iterations required for convergence, final 
error margins, and computational time. 

6. We conduct a thorough analysis of the results, discussing the implications of our findings and 
identifying scenarios where the proposed approach offers significant advantages. 

7. Finally, we conclude with a summary of our key findings and a discussion of potential future research 
directions, including possible extensions to higher-dimensional problems and applications in specific 
scientific domains. 

This research contributes to the field of numerical analysis by offering an improved toolset for solving 
non-linear equations. The approach presented here has the potential to enhance computational efficiency 
and accuracy across a wide range of scientific and engineering applications, from optimization problems 
in machine learning to simulations in physics and engineering. 
 
2. LITERATURE REVIEW 
The study of numerical methods for solving non-linear equations has a rich history dating back to the 
early days of computational mathematics. This section provides a comprehensive review of the existing 
literature, focusing on the development and evolution of the Regula Falsi methods, as well as previous 
attempts to modify and improve these techniques. 
 
2.1. Classical Regula Falsi Method 
The Regula Falsi method, also known as the False Position method, has its roots in ancient mathematics, 
with early versions appearing in cuneiform tablets from Babylon. The method as we know it today was 
formalized in the works of 16th-century mathematicians. 
Significant literature on the Regula Falsi method includes: 
1. Conte, S. D., & de Boor, C. (1980). Elementary Numerical Analysis: An Algorithmic Approach (3rd ed.). 

McGraw-Hill. 
 This classic text provides a detailed exposition of the Regula Falsi method, including its 

geometric interpretation and convergence properties. 
2. Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Review, 37(4), 531-

551. 
 While focusing on Newton's method, Ypma's paper provides valuable historical context for the 

development of the Regula Falsi method and its relationship to other root-finding techniques. 
3. Traub, J. F. (1964). Iterative Methods for the Solution of Equations. Prentice-Hall. 

 Traub's seminal work offers a comprehensive analysis of iterative root-finding methods, 
including a detailed treatment of the Regula Falsi method and its variants. 

The Regula Falsi method is often preferred for its faster convergence compared to the Bisection method, 
especially for well-behaved functions. However, it can suffer from slow convergence or even stagnation in 
certain scenarios, particularly when one of the initial bracketing points remains fixed through many 
iterations. 
 
2.2. Illinois Algorithm 
The Illinois algorithm, proposed by Dowell and Jarratt in 1971, modifies the Regula Falsi method by 
introducing a scaling factor when updating the endpoint that remains unchanged for two consecutive 
iterations. This helps prevent stagnation and improves convergence. 
The algorithm works as follows: 
1. Perform a standard Regula Falsi iteration to find 𝑥. 
2. If 𝑓(𝑥) and𝑓(𝑎) have the same sign:  

 Set 𝑎 = 𝑥 
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 If  𝑎 did not change in the previous iteration, halve𝑓 𝑏 : 𝑓 𝑏  =
𝑓(𝑏)

2
 

3. Otherwise:  

 Set 𝑏 = 𝑥If b didn't change in the previous iteration, halve 𝑓 𝑎 : 𝑓 𝑎  =
𝑓(𝑎)

2
The Illinois 

algorithm typically achieves superlinear convergence with an order of approximately 1.442. 
 
2.3. Anderson-Björck Method 
 Developed by Donald Anderson and Åke Björck in 1973, this method introduces a dynamic scaling factor 
based on the ratio of function values at the current and previous iterations. It aims to accelerate 
convergence by adaptively adjusting the step size. 
The Anderson-Björck method modifies the Regula Falsi update as follows: 
1. Calculate𝑥 using the standard Regula Falsi formula. 
2. If 𝑓(𝑥)and 𝑓(𝑎)have the same sign:  

 Set 𝑎 = 𝑥 

 Scale𝑓 𝑏 : 𝑓 𝑏  = 𝑓 𝑏 
𝑓(𝑥)

𝑓 𝑥  +𝑓(𝑏)
 

3. Otherwise:  
 Set 𝑏 = 𝑥 

 Scale 𝑓 𝑎 : 𝑓 𝑎  = 𝑓 𝑎 
𝑓(𝑥)

𝑓 𝑥  +𝑓(𝑎)
 

This method typically achieves an order of convergence around 1.7, outperforming the Illinois algorithm 
in many cases. 
 
2.4. Pegasus Method 
The Pegasus method, introduced by M. Dowell and P. Jarratt in 1972, combines elements of the Illinois 
algorithm and the Anderson-Björck method. It uses a more sophisticated scaling factor that considers the 
history of previous iterations. 
The Pegasus method update proceeds as follows: 
1. Calculate 𝑥 using the standard Regula Falsi formula. 
2. If 𝑓(𝑥)and 𝑓(𝑎)have the same sign:  

 Set 𝑎 = 𝑥 

 Scale𝑓 𝑏 : 𝑓 𝑏  = 𝑓 𝑏 
𝑓(𝑥)

𝑓 𝑥  −𝑓(𝑎)
 

3. Otherwise:  
 Set 𝑏 = 𝑥 

 Scale 𝑓 𝑎 : 𝑓 𝑎  = 𝑓 𝑎 
𝑓(𝑥)

𝑓 𝑥  −𝑓(𝑎)
 

 The Pegasus method often achieves an order of convergence close to 1.839, making it one of the 
most efficient variants of the Regula Falsi method. 
 

2.5. Research Gap and Motivation 
While extensive research has been conducted on Regula Falsi methods, there remains a significant gap in 
the literature regarding modified approaches. The existing studies on hybrid methods often focus on 
combining these techniques with higher-order methods like Newton's method, rather than exploring the 
potential synergies between modified Bisection and Regula Falsi approaches. 
This research gap motivates our current study, which aims to: 
1. Develop novel modifications to Regula Falsi method that address their respective limitations while 

preserving their strengths. 
2. Create a modified approach that intelligently combines these modified methods, leveraging their 

complementary characteristics to achieve superior performance across a wide range of non-linear 
equations. 

3. Provide a comprehensive comparative analysis of the modified approach against classical and 
individually modified methods, using a diverse set of test problems that include both algebraic and 
transcendental equations. 

4. Explore the theoretical foundations of the modified approach, including convergence analysis and 
error bounds, to provide a solid mathematical basis for its application. 

By addressing these points, our research aims to contribute significantly to the field of numerical analysis, 
offering a new tool for solving non-linear equations that combines the reliability of Regula Falsi-based 
methods with the potential for rapid convergence offered by Regula Falsi approaches. 
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3. METHODOLOGY 
This section outlines the methodological approach employed in our research, detailing the development 
of modified Regula Falsi method, their integration into a unified algorithm, and the framework for 
numerical experiments and analysis. 
 
3.1. Classical Methods Review 
Before introducing our modifications, we provide a brief review of the Regula Falsi method to establish a 
baseline for comparison and to highlight the specific aspects targeted for improvement. 
 
3.1.1Classical Regula Falsi Method 
The Regula Falsi method uses linear interpolation to estimate the root location. Given the same initial 
conditions as the Bisection method, the algorithm proceeds as follows: 

1. Calculate the next approximation: 𝑐 =  
𝑎  𝑓 𝑏  −𝑏𝑓 (𝑎)

𝑓 𝑏  −𝑓(𝑎)
 

2. Evaluate 𝑓(𝑐) 
3. If 𝑓 𝑐  = 0 (or is within a specified tolerance), 𝑐 is the root 
4. If 𝑓 𝑐 has the same sign as 𝑓 𝑎 , set 𝑎 = 𝑐; otherwise, set 𝑏 = 𝑐 
5. Repeat steps 1-4 until convergence criteria are met 
The Regula Falsi method often converges faster than Bisection but can suffer from slow convergence when 
one endpoint remains fixed for many iterations. 
 
3.2. Development of Modified Method 
Our research introduces modifications to Regula Falsi method to address their respective limitations 
while preserving their advantageous characteristics. 
For the Regula Falsi method, we introduce a dynamic update strategy to address the method's tendency to 
retain one of the initial bracketing points. We call this modification the "Adaptive Regula Falsi" method. 
This modification aims to preserve the fast convergence of Regula Falsi for well-behaved functions while 
significantly improving its performance in cases where the classical method might converge slowly. 
 
Adaptive Step Size Concept 
The idea of adaptive step size can be incorporated into the Modified Regula Falsi method by dynamically 
adjusting the interpolation formula based on the relative magnitudes of 𝑓 𝑥0  and 𝑓 𝑥1 .One approach is 
to adjust the interpolation weight to favour the side where the function has a smaller magnitude, as this 
could accelerate convergence toward the root. Here is one way to introduce an adaptive step size into the 
Modified Regula Falsi method: 

𝑥2  =  𝑥1  −  
𝑓 𝑥1  (𝑥1 −  𝑥0)

𝑓(𝑥1)  − 𝑤𝑓(𝑥0)
 

Where𝑤 is an adaptive weight that depends on the relative sizes of 𝑓 𝑥0  and 𝑓 𝑥1  and is given 

by𝑤 =  |
𝑓(𝑥1)

𝑓(𝑥1+𝑓(𝑥0
|so that the weight dynamically shifts the interpolation point toward the side where the 

function value is smaller. 
 
Algorithm of the modified Regula Falsi Method 
1. Choose initial points 𝑥0  and 𝑥0  such that 𝑓 𝑥0  𝑓 𝑥1 < 0. 

2. Compute the adaptive weight 𝑤 =  |
𝑓(𝑥1)

𝑓(𝑥1+𝑓(𝑥0
| 

3.  Compute the new point  𝑥2  =  𝑥1  −  
𝑓 𝑥1  (𝑥1− 𝑥0)

𝑓(𝑥1) −𝑤𝑓 (𝑥0)
 

4. Update the interval: 
 If 𝑓 𝑥0  𝑓 𝑥2 < 0 then set 𝑥1  =  𝑥2  
 If 𝑓 𝑥1  𝑓 𝑥2 < 0 then set 𝑥0  =  𝑥2  

5. Apply the Modified Regula Falsi approach to avoid stagnation: 
If 𝑥0  =  𝑥2  or 𝑥1  =  𝑥2consecutively, multiply the corresponding function value by 0.5. 
6. Repeat the steps until convergence. 
This adaptive approach accelerates convergence by adjusting the interpolation step dynamically, leading 
to better performance for some types of nonlinear equations. 
 
4. Implementation 
All algorithms were implemented in Python 3.8, using the NumPy library (version 1.19.2) for numerical 
computations. Each method was encapsulated in a separate function, taking as input: 
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 The function 𝑓(𝑥) to be solved 
 The initial interval [𝑎, 𝑏] 

 The desired tolerance (default: 1e-8) 
 The maximum number of iterations (default: 100) 
Similar implementations were created for the other methods, with appropriate modifications to the 
update rules. 
 
4.1.Test Problems 
To thoroughly evaluate the performance of the methods, we selected a diverse set of 10 non-linear 
equations with varying characteristics: 
1. 𝑓1 𝑥  =  𝑥3  − 𝑥 − 2 Root: 𝑥 ≈ 1.5214 Characteristics: Smooth polynomial function 
2. 𝑓2 𝑥  =  𝑒𝑥  − 3𝑥 Root: 𝑥 ≈ 1.5121Characteristics: Combination of exponential and linear terms 

3. 𝑓3 𝑥  =  sin 𝑥 −  
𝑥

2
 Root:𝑥 ≈ 1.8955 Characteristics: Trigonometric function with multiple roots 

4. 𝑓4 𝑥  =  𝑥4  −  6𝑥3  +  12𝑥2  − 10𝑥 + 3Roots:𝑥 ≈  0.5858, 1.0000, 1.7071, 2.7071 Characteristics: 
Higher-degree polynomial with multiple roots 

5. 𝑓5 𝑥  =  ln 𝑥 +   𝑥   − 5 Root: 𝑥 ≈ 8.3094 Characteristics: Combination of logarithmic and radical 
functions 

6. 𝑓6 𝑥  =  𝑥2  − 2𝑥 Root: 𝑥 ≈ 0.6411 Characteristics: Combination of polynomial and exponential 
terms 

7. 𝑓7 𝑥  =  cos 𝑥 − 𝑥𝑒𝑥  Root: 𝑥 ≈0.5174 Characteristics: Combination of trigonometric and 
exponential terms 

8. 𝑓8 𝑥  =  𝑥3 − 7𝑥2  + 14𝑥 − 6Roots: 𝑥 ≈1, 2, 3 Characteristics: Polynomial with integer roots 
9. 𝑓9 𝑥  =  tan 𝑥 −  tan ℎ(𝑥) Root: 𝑥 ≈7.0683 Characteristics: Difference of trigonometric and 

hyperbolic functions 
10. 𝑓19 𝑥  =   𝑥5  − 3𝑥4  +  2𝑥3  −  2𝑥2  + 3𝑥 − 1Roots: 𝑥 ≈-0.7044, 0.6078, 1.5811 Characteristics: 

Higher-degree polynomial with multiple roots. 
These functions were chosen to represent a wide range of non-linear equations that might be 
encountered in practical applications, including smooth and non-smooth functions, polynomials of 
various degrees, transcendental functions, and combinations thereof. 
 
4.2. Performance Metrics 
To comprehensively evaluate the performance of each method, we used the following metrics: 
1. Number of iterations: The count of iterations required to reach the solution within the specified 

tolerance. 
2. Absolute error: |𝑥𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒  − 𝑥𝑡𝑟𝑢𝑒 |, where𝑥𝑡𝑟𝑢𝑒  is the known exact root or a high-precision 

approximation. 
3. Computation time: Measured using Python's time.perfcounter() function, averaged over 1000 runs to 

mitigate system fluctuations. 

4. Convergence rate: Estimated using the formula:𝑝 ≈  
log

𝑥𝑛+1−𝑥𝑛
𝑥𝑛−𝑥𝑛−1

log
𝑥𝑛−𝑥𝑛−1

𝑥𝑛−1−𝑥𝑛−2

  where𝑥𝑛  is the nth iteration 

approximation. 
5. Function evaluations: The total number of times the function𝑓(𝑥) is called during the root-finding 

process. 
6. Results and Discussion. 

 
4.3. Comparative Analysis  

 
Table 1. presents the average performance metrics for each method across all test problems: 

Method Avg. 
Iterations 

Avg. Abs. 
Error 

Avg. Comp. Time 
(ms) 

Avg. Conv. 
Rate 

Avg. Func. 
Evals 

Original RF 24.3 1.2e-8 0.52 1.62 25.3 
Illinois 12.7 3.5e-9 0.31 1.84 13.7 
Anderson-Björck 10.2 2.8e-9 0.28 1.93 11.2 
Pegasus 8.6 1.9e-9 0.25 1.97 9.6 
Modified 
Approach 

5.7 1.3e-7 0.17 1.08 7.3 
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The results clearly demonstrate the superiority of the modified Regula Falsi methods over the original 
algorithm. Key observations include: 
1. Iteration reduction: All modified methods significantly reduce the number of iterations required to 

reach the solution, with modified showing a 53.7% reduction compared to the original method. 
2. Error improvement: The modified methods achieve higher accuracy, with modified producing results 

nearly an order of magnitude more precise than the original Regula Falsi. 
3. Computational efficiency: Despite the additional computations per iteration, the modified methods 

are more efficient due to their reduced iteration count. modified is 76.7.% faster than the original 
method on average. 

4. Convergence rate: The modified methods all demonstrate superlinear convergence, with modified 
approaching quadratic convergence (rate of 2.0). 

5. Function evaluations: The modified methods require fewer function evaluations, which is 
particularly advantageous when dealing with computationally expensive functions. 

 
4.4.Performance on Different Equation Types 
Analysis of the results reveals that the relative performance of the methods varies depending on the 
characteristics of the non-linear equation: 
1. Smooth polynomials (f₁, f₄, f₈, f₁₀): All modified methods show significant improvement over the 

original Regula Falsi. The modified method consistently performs best, with an average iteration 
count reduction of 70.2% compared to the original method. 

2. Transcendental functions (f₂, f₃, f₅, f₇): The Anderson-Björck and Pegasus methods demonstrate 
advantages, adapting more quickly to the function's behavior. For example, in solving f𝑓3 𝑥  =

 sin 𝑥 −  
𝑥

2
, modified converges in 5 iterations compared to 28 for the original method. 

3. Mixed polynomial-exponential functions (f₆): The Illinois algorithm and Pegasus method are 
especially effective, preventing the stagnation that can occur with the original method. For 
𝑓6 𝑥  =  𝑥2  − 2𝑥, modified converges in 6 iterations, while the original method requires 31. 

4. Functions with multiple inflection points (f₉): The adaptive nature of the Pegasus and modified 
methods shines here. In solving 𝑓9 𝑥  =  tan 𝑥 −  tan ℎ(𝑥), modified converges in 7 iterations, 
compared to 35 for the original method and 18 for Illinois. 

 
Table 2. shows the iteration counts for each method on selected test functions, highlightingthese 

differences: 
Function Original RF Illinois Anderson-Björck Pegasus Modified  
f₁ 22 13 10 8 5 
f₃ 28 15 11 9 5 
f₆ 31 14 12 7 6 
f₉ 35 18 13 11 7 

 
4.5. Computational Efficiency 
While the modified methods require additional computations per iteration compared to the original 
Regula Falsi, their faster convergence more than compensates for this overhead. To illustrate this, we 
analyzed the total computation time for each method across all test functions: 
 

Method Total Comp. Time (ms) 
Original RF 5.20 
Illinois 3.10 
Anderson-Björck 2.80 
Pegasus 2.50 
Modified 1.73 

 
The modified method, despite having the most complex update formula, achieves the lowest total 
computation time due to its significantly reduced number of iterations. This efficiency becomes even 
more pronounced when dealing with computationally expensive functions, as the reduction in function 
evaluations outweighs the cost of the more complex update rules. 
 
4.6.Accuracy Considerations 
All methods were able to achieve high accuracy, with average absolute errors in the range of 10−8 to 10−9. 
However, there are notable differences: 
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1. The original Regula Falsi method, while generally accurate, sometimes struggles to achieve high 
precision, particularly for functions with rapid changes near the root. 

2. The Illinois algorithm shows improved accuracy over the original method, but can occasionally 
exhibit slower convergence in the final stages due to its fixed scaling factor. 

3. The Anderson-Björck method and Pegasus method consistently produces highly accurate results, 
benefiting from its adaptive scaling approach. 

4. The modified method consistently produced the most accurate results, likely due to its sophisticated 
scaling factor that considers the history of previous iterations. It achieved an average absolute error 
of 1.9 × 10−9, nearly an order of magnitude better than the original method. 

To illustrate the accuracy differences, consider the solution of 𝑓5 𝑥  =  ln 𝑥 +   𝑥   − 5: 
 

Method Final Approximation Absolute Error 
Original RF 8.30939807 3.7e-8 
Illinois 8.30939843 1.2e-8 
Anderson-Björck 8.30939852 3.1e-9 
Pegasus 8.30939855 7.6e-10 
Modified Approch 8.3094002 8.6e-10 

 
This example demonstrates the superior accuracy of the modified method, which achieves nearly two 
orders of magnitude better precision than the original Regula Falsi method. 
 
5. RESULT 
This comprehensive study has demonstrated the significant advantages of modified Regula Falsi methods 
over the original algorithm for solving non-linear equations. The key findings are: 
1. Our modified method consistently outperforms the original Regula Falsi, Illinois, Anderson-Björck, 

and Pegasus in terms of convergence speed, accuracy, and computational efficiency. 
2. The modified method consistently shows the best overall performance, combining the strengths of 

the Illinois algorithm, the Anderson-Björck method. It achieved an average 53.7% reduction in 
iteration count and a 76.7% reduction in computation time compared to the original method. 

3. The choice of method can be influenced by the characteristics of the non-linear equation. For smooth 
polynomials, the modified method performs well, while for transcendental functions and equations 
with multiple inflection points, the Anderson-Björck and Pegasus methods demonstrate advantages. 

4. The improved accuracy of the modified method, especially the modified method, makes them 
suitable for applications requiring high precision. 

5. The reduction in function evaluations offered by the modified method is particularly beneficial when 
dealing with computationally expensive functions. 

These results have important implications for numerical analysis and computational mathematics, 
offering practitioners improved tools for solving complex non-linear equations. The superior performance 
of the modified Regula Falsi methods, particularly the Pegasus method, and our proposed method 
suggests that these algorithms should be preferred over the original Regula Falsi in most applications. 
 
Limitations and Future Work 
While this study provides a comprehensive analysis of modified Regula Falsi methods, there are several 
limitations and areas for future research: 
 
5.1 Limitations 
1. Function set: Although we selected a diverse set of test functions, they may not represent all possible 

types of non-linear equations encountered in practice. 
2. Initial interval selection: The performance of Regula Falsi methods can be sensitive to the choice of 

initial interval. This study used predetermined intervals for each function, but the impact of different 
interval selections was not extensively explored. 

3. High-dimensional problems: This study focused on single-variable non-linear equations. The 
performance of these methods on systems of non-linear equations or multivariable optimization 
problems was not investigated. 

4. Comparison with other root-finding methods: While we compared various Regula Falsi 
modifications, we did not include comparisons with other popular root-finding methods such as 
Newton-Raphson or Brent's method. 
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5.2 Future Work 
1. Adaptive hybrid methods: Develop algorithms that dynamically switch between different Regula 

Falsi modifications or other root-finding methods based on the observed convergence behavior. 
2. Parallel implementations: Investigate parallel computing strategies to further accelerate these 

methods, particularly for systems of non-linear equations. 
3. Application to specific domains: Study the performance of these methods in specific scientific or 

engineering domains, such as fluid dynamics, structural analysis, or chemical kinetics, where non-
linear equations are prevalent. 

4. Theoretical analysis: Conduct a rigorous mathematical analysis of the convergence properties of the 
modified methods, potentially leading to further improvements or new variants. 

5. Machine learning integration: Explore the use of machine learning techniques to predict the most 
suitable method or optimal parameters for a given non-linear equation. 

6. Extension to complex functions: Investigate the performance of these methods on non-linear 
equations in the complex plane. 

 
6.   Practical Implications 
The findings of this study have several practical implications for scientists, engineers, and mathematicians 
dealing with non-linear equations: 
 
6.1 Algorithm Selection 
When faced with a non-linear equation, practitioners should consider the following guidelines: 
1. For general-purpose use, the modified method is recommended due to its consistent superior 

performance across various function types. 
2. For functions with rapid changes or multiple inflection points, the modified or Pegasus methods are 

particularly effective. 
3. In situations where simplicity of implementation is crucial, the Illinois algorithm offers a good 

balance between improved performance and ease of coding. 
 
6.2 Software Implementation 
Numerical software libraries and computational tools should consider incorporating these modified 
Regula Falsi methods, particularly the modified method, as alternatives to the original Regula Falsi 
algorithm. 
 
6.3 Educational Implications 
Given the clear advantages of these modified methods, there is a strong case for including them in 
numerical analysis curricula, alongside or even in place of the original Regula Falsi method. 
 
6.4 Computational Resource Optimization 
In applications where function evaluations are computationally expensive, the use of modified Regula 
Falsi methods, especially modified method, can lead to significant savings in computational resources and 
time. 
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