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ABSTRACT 
Brain Metastasis present important diagnostic and therapeutic problems, occurring in from 10% to 30% 
of cancer patients, significantly affecting cognitive function. Manual interpretation of MRI is a routine but 
time-consuming task that may be imprecise in the case of tiny or diverse tumors. This paper presents a 
novel approach for automatic brain metastasis segmentation on MRI data using a U-Net model. This 
method fuses several imaging modalities to refine the identification of BM. These include T1-weighted, 
T2-weighted, T1 contrast enhanced, and FLAIR. The dataset used for this purpose is the University of 
California San Francisco Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) MRI dataset. The 
model was trained, tested, and verified using this dataset. The U-Net model with dropout performed quite 
well with an overall accuracy of 99.75%; Dice, 64.49%; and IOU, 96.81%. In this paper, the proposed 
method is compared to two baseline models: Convolutional Neural Networks and Fully Convolutional 
Networks. The U-Net outperformed the baselines on all the important measures and demonstrated great 
potential for being applied clinically in real life. This finding puts a finger on the capability of greatly 
improved detection accuracy with the U-Net model, and thus, timely treatment decisions. 
 
Keywords: Brain Metastasis, U-Net, Convolution Neural Networks, Fully Convolutional Networks, 
Segmentation, BM detection. 
 
1. INTRODUCTION 
Brain Metastasis is a very complicated process in which cancer cells migrate to the brain from a distant 
extracranial site and metastasize to various intracerebral areas leading to brain dysfunction [1], [2]. About 
10-30% of cancer patients experience such metastases, although the number of cytologically identifiable 
primary sources that metastases develop in the lungs, the breasts, the kidneys, the colons, and melanoma 
in the skin [3], [4]. BM from primary brain tumours can disseminate through either circular or lymphatic 
spreading systems[5]. This metastatic spread to the brain presents a unique set of challenges compared 
with primary brain tumors in terms of impact on prognosis and treatment strategies. The issue is of a 
significance high enough for research as it affects and influences so much in patients' health and mortality. 
In most cases, the BM may cause cognitive deficits in the patients that lead to distress and might worsen 
their quality of life [6], [7].  
Further, the common treatments of BM like radiation therapy and surgery may cause inflammation, 
damage to healthy brain tissues that might lead to overall cognitive impairment like problem in memory 
or attention [8], [9].  Thus, accurate and timely prediction of BM is very important to reduce 
neurocognitive effects. Therefore, early prediction of BM with maximal sensitivity is warranted, as a delay 
in such a prediction may add to the neurocognitive burden. The diagnosis of BM has never been easy due 
to the heterogeneity of the tumor shape or size, the limitation of imaging techniques, and the risk of 
biopsies; however, accurately detecting BM is essential for disease surveillance and response evaluation in 
health care practice. Traditional methods largely rely on well-documented manual interpretation, mainly 
by expert clinicians, of MRI data as means for diagnosing brain metastases. Radiologists seldom have this 
much detail quantified during MRI interpretation; hence the process is very time-consuming when it 
comes to the detection and segmentation of BMs [10], [11]. Moreover, MRI and CT scan interpretation face 
difficulty in detecting small lesions or differentiating primary tumor types [12]. However, with 
advancements in 3D imaging techniques and usage of imaging modalities such as T1 weighted, T2-
weighted, T1-contrast enhanced and FLAIR (Fluid-Attenuated Inversion Recovery) have improved the 
detection and characterization of BM [13], [14], [15].  
Over the past two decades, Artificial intelligence (AI) has played an increasingly important role in 
detecting and segmenting BM with machine learning (ML) and deep learning (DL) techniques [16], [17], 
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[18], [19]. In this regard, different modalities have been explored for the automatic detection and 
segmentation of intracranial metastases. Deep learning framework-based automated systems have shown 
great promise in detecting BMs with increased accuracy regarding treatment success. Deep learning 
techniques, especially CNN, have already proved to be very effective in most medical imaging applications 
for image segmentation and image classification tasks [20], [21], [22]. The current study is going to 
introduce a new approach for the segmentation of brain metastases in MRI using a U-Net model. 
The primary objective of the study is to develop a deep learning-based U-Net model that can automatically 
classify brain metastases from MRI scans. Also, the presented model rigorously evaluates the performance 
of the approach by considering diversity in the dataset and comparing it with prior works with two 
baseline models i.e., CNN (Convolutional Neural Networks) and FCN (Fully Convolutional Networks). This 
comparison seeks to assess the model's effectiveness in real-world clinical applications, ultimately 
contributing to the enhancement of diagnostic tools and improving patient outcomes through timely and 
accurate decision-making. 
The following section summarizes previous research and present methods in the field of automated brain 
metastasis classification using MRI data. The next section describes the methodology that includes the 
study of dataset, design, and implementation of the proposed U-Net model. Furthermore, the results 
section is presented which showcases the performance metrics and outcomes of the proposed approach. 
The discussion that includes a comparison of proposed model and baseline models has been presented. 
Finally, the conclusion summarizes the important findings, emphasizes the study's contributions, and 
proposes future research areas 
 
2. LITERATURE 
Diagnoses and prognosis of brain metastases have rapidly changed due to improvements in medical 
imaging and machine learning or deep learning techniques. The current review has taken into 
consideration some of the major studies that led to the current understanding and application of various 
in tackling brain metastases. Recent studies could be categorized into three parts: classification of 
glioblastoma and brain metastases, detection and segmentation of brain metastases, and specific 
detection of brain metastases using black blood imaging. 
 

 
Fig 1. Literature Trio 

 
2.1 Classification of glioblastoma and brain metastases 
Accurate classification of glioblastoma (GB) and brain metastases (BM) poses a significant challenge due 
to their similar appearance on conventional MRI scans. Various machine learning approaches, including 
SVM and LASSO regression, deep neural networks, and CNNs, have been used to distinguish glioblastoma 
from brain metastases, with accuracy rates ranging from 69.2% to 90%. The table 1 below demonstrates 
key studies and their findings in this domain. 

 
Table 1. Classification of glioblastoma and brain metastases 

Objective Reference Methodology Key Findings 

Differentiate 
glioblastoma 
from brain 
metastases 

[23] 
SVM and LASSO regression on 
radiomic features 

Achieved 90% accuracy in 
distinguishing GB from BM. 

[24] 
SVC and MLP models on 
multimodal MRI 

Achieved a maximum accuracy of 
69.2% with the MLP model. 

Classification of 

glioblastoma and 

brain metastases 

Brain Metastases 

Detection using 

black blood 

imaging 

Segmentation & 

Detection of brain 

metastases 
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[25] 
Radiomics-based machine 
learning models, including DNN 

Assessed the use of radiomics-based 
machine learning models, including 
DNN, for distinguishing GB from BM. 

[26] 
Handcrafted radiomics (HCR) 
and deep learning-based 
radiomics (DLR) 

Identified effective classifiers using 
HCR and HCR + DLR features on 
different MRI modalities. 

[27] 

Metabolic Radiomics-based 
oxygen metabolism with deep 
convolutional neural networks 
(CNNs) 

Outperformed human readers in all 
classification parameters for GB vs. 
BM. 

[28] 
MRI analysis including FLAIR 
and ADC ratios 

Differentiated mGBM from 
metastases using specific MRI criteria 
and ADC values, highlighting 
significant diagnostic differences. 

[29] ResNet101 and VGG19 models 

ResNet101 achieved 83% accuracy 
for MPBT, and VGG19 achieved 81% 
accuracy for MBT, demonstrating 
their effectiveness in classification. 

[30] 
ML classifier and logistic 
regression with sphericity 3D 
radiomic index 

ML classifier achieved balanced 
accuracy of 80% on test set; 
neuroradiologists had higher 
accuracy than residents and the 
classifier. 

 
Research has shown high success rates in distinguishing glioblastoma from brain metastases, including 
subtypes like breast and lung metastases, using machine learning and deep learning algorithms. 
 
2.2 Detection of brain metastases using black-blood imaging  
In recent years, black blood imaging has emerged as a promising approach for detecting brain metastases, 
increasing the visibility of metastatic lesions by suppressing the signal from blood vessels and providing 
clearer delineation of abnormal features. Oh et al. [31] investigated brain metastasis identification using a 
You Only Look Once (YOLO) V2 network trained with 3D BB sampling perfection and application-
optimized contrasts on various flip angle evolution images.  
 

Table 2. BM Detection using black-blood imaging 

Objective Reference Methodology Key Findings 

Detection of 
brain metastases 
using black 
blood imaging  

[31] 

Deep learning-based 
detection algorithm with 
contrast-enhanced BB 
imaging data 

Showed high sensitivity in detecting 
BM, though with some false positives 
compared to other imaging methods. 

[21] 
 FDA-approved Artificial 
Intelligence (AI) 
segmentation software 

Achieved significant efficiency gains 
(55.6% in PTVs, 75.8% in OARs) with 
need for human edits in certain 
structures. 

[32] 
 AI segmentation using 
Medical Mind software 

 Achieved an accuracy of 76.8% (86 
out of 112) and a modified accuracy 
of 81.3% (91 out of 112) when 
considering targeted agents. 

[33] 
Comparison of CNN 
performance using BB and 
CE T1 MRI sequences. 

BB CNN: 92.3% accuracy, AUC 0.869; 
CE T1 CNN: 85.5% accuracy, AUC 
0.534. 

 
2.3 Detection and segmentation of brain metastases using ML and DL techniques 
Recent research has revealed that applying machine learning (ML) and deep learning (DL) approaches to 
detect and segment brain metastases yields promising outcomes. Several ML and DL techniques, including 
SVM, Random Forest, CNN, U-Net architectures, have been assessed for their performance in segmenting 
brain tumours on MRI scans. 
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Table 3. BM Detection & Segmentation using ML/DL techniques 

Objective Reference Methodology Key Findings 

Detection and 
segmentation of 
brain 
metastases 
using ML and DL 
techniques 

[34] 
3D-FCN (Fully 
Convolutional Network) 

Emphasizes the importance of accurate 
and efficient segmentation for improving 
clinical outcomes and reducing manual 
effort. sensitivity was 0.96 ± 0.03, the 
specificity was 0.99 ± 0.0002, dice ratio 
was 0.85 ± 0.08 

[35] 3D-UNet CNN 

For metastasis segmentation, a median 
Dice score of 0.75 with high correlations 
between manually segmented and 
projected volumes was achieved. 

[36] SVM 
Improved mean AUC score from 0.53 to 
0.74. 

[20] DeepMedic 
Mean AUC score improvement from 0.53 
to 0.74 in internal cross-validation. 

[37] 
Multi-scale cascaded CNN 
using 3D-enhanced T1-
weighted MR images. 

Demonstrated robustness across internal 
and external datasets. 

[38] 
PCA, LR, SVM, RFC 
models 

RFC model with multi-class features 
illustrated high efficiency with average F1 
scores = 0.98.  

[39] 

InceptionResNetV2 
network, recurrent or 
transformer network, 
prediction difference 
analysis 

Insightful outcome prediction with 
attention to spatial dependencies between 
MRI slices 

[20] 
3D CNN based on 
DeepMedic. 

Automated segmentations showed good 
volumetric correlation with manual 
segmentations. 

[40] 
Deep Neural Network 
Ensemble learning model 

Models trained on pooled data offer 
balanced predictive performance with 
ROC AUC=0.88±0.04. 

 
3. METHODOLOGY 
The proposed methodology for implementing and evaluating the U-Net model for BM segmentation 
involves several key steps. Initially, input images, including T1W1 (T1-weighted), T2W2 (T2-weighted), 
T1ce (T1-contrast enhanced), and FLAIR (Fluid-Attenuated Inversion Recovery) modalities, are gathered 
[41]. These images undergo data preprocessing, which includes resizing and normalization to ensure 
consistency and improve model performance. Subsequently, the dataset is split into training- 67%, 
testing-13%, and validation- 20% sets to facilitate robust model training and evaluation. The core of the 
approach is the use of the U-Net model with drop out layer, a prominent convolutional neural network 
architecture built for segmentation. The model has been trained using the training dataset, and its 
performance is measured using measures like accuracy, loss, Dice coefficient, and Intersection over Union 
(IOU). Validation is conducted concurrently to tune model parameters and prevent overfitting, using the 
same performance metrics. Post-training, the model undergoes rigorous testing to evaluate its final 
performance on unseen data, ensuring the metrics of accuracy, loss, Dice coefficient, and IOU are 
satisfactory. Finally, a comparative analysis is performed against other established models, including 
(CNN) Convolutional Neural Networks and (FCN) Fully Convolutional Networks. 
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Fig 2. Proposed Research Methodology 

 
3.1 Dataset 
The model utilized an extensive neuroimaging dataset from the Brain Metastases Stereotactic 
Radiosurgery (UCSF-BMSR) MRI Dataset of the University of California, San Francisco[41]. It was collected 
from January 1, 2017, to February 29, 2020. Moreover, the code and data are publicly available and 
provide a platform that would encourage further research and development into the field of medical 
imaging and treatment related to brain metastasis. The dataset shall foster further development of the 
detection and segmentation of small brain metastases, since most of the public datasets available are 
focused on gliomas. This dataset contains 560 multimodal brain MR images from the records of 412 
patients before and after undergoing Gamma Knife radiosurgery, with expert annotations for 5136 brain 
metastases; there are two different sets of annotations in 99 cases. 
In proposed model, four essential imaging modalities for brain metastasis detection have been utilized i.e. 
T1-weighted (T1W1), T2-weighted (T2W1), Contrast-Enhanced T1-weighted (T1CE), and FLAIR (Fluid-
Attenuated Inversion Recovery). These modalities have been selected due to their apparent ability to offer 
thorough anatomical insights pertinent to brain metastasis. In addition, the mask image is generated to 
highlight specific areas of interest (ROIs) in MRI images, such as tumours. The sample images have been 
shown in Fig 3. 
 

 
Fig 3. Sample Images 

 
T1-weighted imaging shown as Image T1 Pre is essential in the assessment of metastatic brain lesions and 
blood-brain barrier breakdown, showing an MRI response to treatment by changes in size and 

Input Images

•T1w

•T2w

•T1ce

•FLAIR

Data Preprocessing

•Resize images

•Normalization

Data Split

•Training (67%)

•Testing (13%)

•Validation(20%)

U-Net Model 
Implementation

Model Training

•Accuracy

•Loss

•Dice Coefficient

• IOU
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•Accuracy

•Loss

•Dice Coefficient

• IOU

Testing

•Accuracy
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Stasitical Analysis
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enhancement patterns of metastases. Similarly, T2-weighted imaging illustrated as Image T2 is essential 
for detecting brain metastases and associated edema, offering high tissue contrast to assess lesion size, 
impact, and additional metastases. T1 contrast-enhanced (Image T1ce) image acquisition is very 
important in the diagnosis, characterization, and treatment planning of brain metastases, for it increased 
lesion conspicuity and allows assessment of the integrity of the blood–brain barrier. Likewise, FLAIR 
imaging typically enhances the detection of brain metastases by suppressing CSF signals and improving 
contrast for the identification of lesions with a vasogenic edema. Masks are necessary in brain metastasis 
imaging to train machine learning models such as U-Net, which learn to anticipate these regions in new 
pictures. They are also used for quantitative analysis, such as determining tumour size and volume, and 
play an important role in treatment planning by defining tumour boundaries to guarantee exact targeting 
during therapies such as radiation or surgery [42]. 
The primary cancer sites mentioned in the dataset are lung cancer, breast cancer, melanoma and the pie 
chart for this distribution is demonstrated in Fig 4. below. The pie chart illustrates the distribution of 
primary cancer types among a given population. The largest segment represents lung cancer, which 
accounts for 39.0% of the cases. Breast cancer follows with a significant portion of 24.5%. Melanoma 
constitutes 16.3% of the cases, indicating its notable presence in the population. Renal cancer is less 
prevalent, making up 4.3% of the total cases. The remaining 15.8% are categorized under 'Others,' 
encompassing various fewer common types of primary cancers such as Esophogeal, Thyroid, GU 
Urothelial, Neuroendocrine etc. 
 

 
Fig 4. Primary Cancer Types 

 
3.1.1 Data Preprocessing 
The data preprocessing pipeline ensure the homogeneity and suitability of the dataset for effective model 
training. It includes several subprocesses such as resizing, standardization, normalization, and scaling so 
that the images are consistent in dimensions and pixel values. Resizing standardizes the image 
dimensions, while normalization scales the pixel values to a range of [0, 1], stabilizing the training 
process. 
Resizing was done to 256x256 pixels, with all images normalized to avoid differences in scaling and 
minimize computational overhead. Intensities are normalized across modalities for better learning. Pre-
processed FLAIR MRI test images, as shown in Figure 5, include the three standard orthogonal views with 
crosshairs for localization and colorization to enable the identification of features more easily. 
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Fig 5. Pre-processed FLAIR MRI image 

 
3.1.2 Data Split 
Data splitting is a fundamental step in preparing datasets for deep learning, ensuring that models are 
trained, validated, and tested effectively. The dataset was rigorously separated into training (n=280), 
validation(n=83), and test (n=50) sets and demonstrated in Fig 6. to ensure a balanced distribution of 
samples across all classes while also preserving representative subsets for robust model training and 
evaluation. 
 

 
Fig 6. Data Distribution 
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6.4 U-Net Architecture 
The deep learning model architecture for automated segmentation of brain metastases on MRI scans 
utilizes the U-Net architecture [35] with a dropout mechanism shown in Fig 7, a well-established 
framework for semantic segmentation tasks has been built using Python simulation environment.  
 

 
Fig 7. U-Net Model Architecture 

 
This simulation environment for the segmentation of brain metastases contains all robust Python 
libraries. It includes TensorFlow for model construction, OpenCV and Skimage for image processing, and 
nibabel and nilearn for handling neuroimaging data. Moreover, it uses Pandas, NumPy, Matplotlib, and 
Seaborn for data manipulation and visualization, nlplt for plotting neuroimaging data, and pydot for graph 
visualization. It hence makes a whole pipeline from data preprocessing to model testing and visualization. 
The U-Net is a convolutional neural network designed for biomedical image segmentation which consists 
of two parts: the contraction path (encoder) and the expansion path (decoder). 
An encoder which is also known as the contraction path in the U-Net, is a critical part that goes towards 
reducing spatial dimensions by increasing feature maps. This path is crucial for capturing and 
compressing the important features of the input image, which is useful in, say, accurate segmentation 
functions, such as brain metastases identification in MRI scans. The contraction path consists of the first-
level Conv2D, Batch Normalization, and Max Pooling 2D layers. The Conv2D layers are going to extract 
characteristics applying several filters to capture edge, textual, and form findings within the MRI images. 
After the Conv2D layers, Batch Normalization is applied to standardize and speed up the training process 
by normalizing the output of each convolutional layer. Finally, the Max Pooling 2D layers decrease the 
spatial dimensions of feature maps, keeping the most relevant features available with reduced 
computation. Together, these components ensure that the encoder effectively compresses the input data, 
enabling the model to focus on the most critical facets for segmentation. 
The other important component of U-Net architecture is a decoder, also known as the expansion path, 
which reconstructs the spatial dimensions of feature maps compressed during the contraction phase. 
Such a path up samples the reduced feature maps back to the size of the original input image and 
produces detailed accurate segmentation maps. These make up the decoder, which consists of Up-
Sampling 2D layers that increase the spatial dimensions of the feature maps, hence reversing the effects of 
the pooling operations in the encoder. After that, Conv2D layers are applied to refine the up-sampled 
feature maps so that the segmentation boundaries will be sharpened and the accuracy of the predictions 
increased. The decoder in the U-Net is also specialized by using Concatenate layers. It concatenates up-
sampled feature maps with corresponding high-resolution feature maps previously obtained from the 
encoder to help the model retain relevant contextual information but at improved accuracy and higher 
resolution of the segmentation output. It ensures the U-Net model can produce accurate and detailed 
segmentation maps. Clinically, these are necessary for applications like brain metastasis detection and 
treatment planning. 
Adam optimizer with a learning rate of 0.001 is used during training, and the callbacks used make sure 
efficient learning and adaptation to the intricacies of the task through learning rate adjustment, early 
stopping, and logging. 
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6.4.1 ALGORITHM: ALGORITHM TO DETECT SEGMENTED REGIONS INDICATING BRAIN METASTASES 
 Input: MRI images of the brain I ∈ R  ̂(H × W × C) 
 Output: Segmented regions indicating brain metastases 
1 Preprocess Data Normalize MRI images: 
  

𝐈𝐧𝐨𝐫𝐦 =
(𝐈 −  𝛍)

 𝛔
 

2 Split data into training and validation sets. 
3 Train the model on the training set and validate on the validation set. 
 Notation: 

I = input image 
𝐂𝐢= number of filters in the i-th layer  
W= weights of the convolutional filters 
b = biases 
ReLU= Rectified Linear Unit activation function 
𝛔 =sigmoid activation function 
BN = Batch Normalization 
Dropout(p) = Drop out with probability p 
MaxPool= Max Pooling Operation 
UpSample= Up sampling operation 
⨁ = Concatenation Operation 

4 Initialize U-Net Model  INPUT_LAYER (I) = 𝐈 ∈  ℝ𝐇∗𝐖∗𝐂 
H is the height, W is the width, and C is the number of channels. 

5 Contraction Path (Encoder)  for each level 𝐥 ∈{1, 2, 3, 4}: 
  Apply Conv2D: 𝐂𝟏𝐥 = 𝐑𝐞𝐋𝐔 𝐖𝟏𝐥 ∗ 𝐈 + 𝐛𝟏𝐥  
  Apply Batch Normalization: 𝐁𝐍𝟏𝐥 = 𝐁𝐍(𝐂𝟏𝐥) 
  Apply Second Conv2D: 𝐂𝟐𝐥 = 𝐑𝐞𝐋𝐔 𝐖  
  Apply Batch Normalization: 𝐁𝐍𝟐𝐥 = 𝐁𝐍 𝐂𝟐𝐥  
  Apply Max Pooling: 𝐏𝐥 = 𝐌𝐚𝐱𝐏𝐨𝐨𝐥 𝐁𝐍𝟐𝐥  
  Apply Dropout: 𝐃𝐥 = 𝐃𝐫𝐨𝐩𝐨𝐮𝐭 𝐩  𝐏𝐥  
6 Bottleneck At the deepest layer of the U-Net 
  Apply Conv2D:𝐂𝟓𝟏 = 𝐑𝐞𝐋𝐔(𝐖𝟓𝟏

∗ 𝐃𝟒 + 𝐛𝟓𝟏
) 

  Apply Batch Normalization: 𝐁𝐍𝟓𝟏 = 𝐁𝐍(𝐂𝟓𝟏) 
  Apply Second Conv2D:𝐂𝟓𝟐 = 𝐑𝐞𝐋𝐔(𝐖𝟓𝟐

∗ 𝐁𝐍𝟓𝟏 + 𝐛𝟓𝟐
) 

  Apply Batch Normalization:𝐁𝐍𝟓𝟐 = 𝐁𝐍(𝐂𝟓𝟐) 
7 Expansion Path (Decoder)   for each level l in {4, 3, 2, 1}: 
  Apply Up Sampling:𝐔𝐥 = 𝐔𝐩𝐒𝐚𝐦𝐩𝐥𝐞 𝐁𝐍𝟓𝟐  
  Concatenate with the corresponding contraction path layer: 𝐂𝐥 =  𝐔𝐥⨁ 𝐃𝐥−𝟏 
  Apply Conv 2D: 𝐄𝟏𝐥 = 𝐑𝐞𝐋𝐔(𝐖𝟏𝐥

∗  𝐂𝐥 +  𝐛𝟏𝐥
) 

  Apply Batch Normalization: 𝐄𝐁𝐍𝟏𝐥 = 𝐁𝐍(𝐄𝟏𝐥) 
  Apply Second Conv2D: 𝐄𝟐𝐥 = 𝐑𝐞𝐋𝐔(𝐖𝟐𝐥

∗ 𝐄𝐁𝐍𝟏𝐥 + 𝐛𝟐𝐥
) 

  Apply Batch Normalization: 𝐄𝐁𝐍𝟐𝐥 = 𝐁𝐍(𝐄𝟐𝐥) 
8 Output Layer 
  Apply Conv 2D: 𝐎 = 𝛔(𝐖𝐨𝐮𝐭 ∗  𝐄𝐁𝐍𝟐𝟏 + 𝐛𝐨𝐮𝐭) 
9 Compile Model 
  Loss Function: Binary Cross-Entropy 

𝐋𝐨𝐬𝐬 =  −
𝟏

𝐍
  𝐲𝐢 𝐥𝐨𝐠 𝐲 𝐢 +  𝟏 − 𝐲𝐢 𝐥𝐨 𝐠 𝟏 − 𝐲 𝐢  

𝐍

𝐢=𝟏

 

  Optimizer: Adam 
10 Evaluate Model: 
  

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐂𝐨𝐫𝐫𝐞𝐜𝐭 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬
 

𝐃𝐢𝐜𝐞 =
𝟐 ∗ |𝐗𝐩𝐫𝐞𝐝  ∩ 𝐗𝐭𝐫𝐮𝐞| 

 𝐗𝐩𝐫𝐞𝐝 + |𝐗𝐭𝐫𝐮𝐞|
 

  𝐋𝐨𝐬𝐬 = 𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐂𝐫𝐨𝐬𝐬 − 𝐄𝐧𝐭𝐫𝐨𝐩𝐲 
  

𝐈𝐨𝐔 =
|𝐗𝐩𝐫𝐞𝐝  ∩ 𝐗𝐭𝐫𝐮𝐞| 

|𝐗𝐩𝐫𝐞𝐝  ∪ 𝐗𝐭𝐫𝐮𝐞| 
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11 Predict segmentation masks for new MRI images using the trained model. 
12 End  
 
6.5 Results and Analysis 
The U-Net model established for brain metastases segmentation shows excellent performance in overall 
accurately tumor regions delineation, which is particularly important to early detection. Early diagnosis is 
paramount to mitigating the neurocognitive sequelae of brain metastasis and their treatments. The 
training procedure involves data handling through a custom-made data generator to efficiently deal with 
large datasets without memory overflow. It is trained for several epochs, aided by callbacks, until optimal 
learning rate adjustment, early stopping, and logging. This iterative process helps the model learn and 
adapt to the complexities of brain metastases segmentation. Through extensive training and validation, 
the model has not only achieved remarkable accuracy but also shown its ability to capture the nuanced 
boundaries of various tumor classes. The findings suggest that the proposed model is not only highly 
accurate in achieving good overall performance, but also performs well on segmenting certain key regions 
such as enhancing region and edema or core/nonenhancing necrotic areas which have a direct impact on 
clinical management of patient to help improve outcomes. The following sections provide a 
comprehensive evaluation of the model's capabilities, combining both qualitative and quantitative 
assessments. 
 
6.5.1 Visual Analysis of Segmentation Performance 
To evaluate the model’s segmentation capabilities, the visual output of the U-Net model has been analyzed 
by comparing the predicted segmentation maps with the ground truth annotations. The close alignment 
between the predicted segmentations and the ground truth highlights the model's robustness in capturing 
intricate details, offering a clear visual validation of its effectiveness. The segmentation images shown in 
Fig 8. illustrate the U-Net model's performance in identifying and segmenting different regions of brain 
metastases on FLAIR MRI scans. 
 

 

 

 
Fig 8. Predicted Segmentation Classes 
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The three panels in Figure 8. are the original FLAIR scan, the ground truth segmentation, and the 
predicted segmentation. The FLAIR scan shows a visualization of abnormality in the brain, and the 
enhancing component of the tumor appears as a bright region. The ground truth was manually annotated 
by experts to demarcate the regions of the tumor: enhancing tissue is green, edema yellow, and the 
necrotic core purple. It predicts the segmentation of these regions, showing great alignment with the 
ground truth, depicted in the third panel. This kind of model is very useful in the early detection of brain 
metastasis since it identifies and segments different parts of the tumor very well. Even segmentation 
would lead to an early prediction of BM, which would help in the timely treatment that may mitigate 
neurocognitive decline caused by the tumor progression.  
 
6.5.2 Evaluation Metrics 
To comprehensively assess the model's segmentation performance, a suite of metrics was employed, 
including accuracy, mean Intersection over Union (IoU), and class-specific Dice coefficients. These metrics 
provided a detailed understanding of the model's ability to accurately delineate various tumor regions. 
 Average Loss: A remarkably low average loss of 0.0052 indicates the model's effective learning 

during training. 
 Overall Accuracy: With an impressive accuracy of 99.75%, the model demonstrated its proficiency in 

distinguishing tumor and non-tumor regions. 
 Average Intersection over Union (IoU): An average IoU of 96.81% highlights the model's precise 

segmentation capabilities. 
 Average Dice Coefficient: A Dice coefficient of 64.49% underscores the model's ability to capture 

intricate tumor boundaries. 
 Average Precision: High precision of 99.75% indicates minimal false positives. 
 Average Sensitivity: A sensitivity of 99.70% demonstrates the model's effectiveness in capturing true 

positives. 
 Average Specificity: A high specificity of 99.90% highlights the model's ability to accurately identify 

true negatives. 
 

 
Fig 9. Evaluation Metric Curves using U-Net CNN 

 
This performance is apparent in the training and validation curves: although the accuracy and dice 
coefficient in both the training and validation sets increase as expected, the loss curves for both will show 
a downward trend, thus indicating the model is minimizing errors. Although the validation metrics look 
like they follow some small trends, especially in the very early epochs, they generalize quite well: there is 
barely any overfitting in this model. The consistent improvement of IoU explains the model's ability for 
correct tumor areas segmentation of brain metastases while false positives are kept minimum. 
 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 88                                                                  Deepinder Kaur et al 77-91 

6. Comparative Analysis 
The proposed methodology is compared against existing state-of-the-art segmentation models-namely, 
CNN, Convolutional Network, and FCN, Fully Convolutional Network-on the same dataset. Table 4. shows 
the superiority of the proposed U-Net CNN model compared to the results of both traditional CNNs and to 
a fully convolutional neural network, FCN. For correctness, the U-Net CNN is top of all other models scored 
on 0.9975 for the training dataset and 0.993 for the validation dataset. Furthermore, the loss values for 
the U-Net CNN are also the lowest among them: 0.0052 for training and 0.0025 for validation, meaning 
that the values it predicted are the closest to the real ones. Hence, the U-Net CNN model again performed 
significantly better than all the CNN models in Dice Coefficient, where the training score was 0.6449 and 
validation was even better, with 0.631. It means that it is an overlap measure between the predicted and 
true regions and is an improved way of learning to address imbalanced data. In a similar manner, the High 
IOU-Maintained U-Net CNN had the highest IOU values up to 0.9681 for the training and the same value 
for the validation, therefore proving its efficiency in the correct segmentation of data. 
 

Table 4. Comparative Performance Metrics of U-Net CNN, Traditional CNN, and FCN 

Model   Accuracy Loss Dice Coefficient IOU 

U-Net CNN 
Training 0.9975 0.0052 0.6449 0.9681 

Validation 0.993 0.0025 0.631 0.9681 

Traditional 
CNN 

Training 0.9676 0.038 0.388 0.707 

Validation 0.9778 0.036 0.372 0.705 

FCN 
Training 0.9699 0.035 0.44 0.6999 

Validation 0.97 0.32 0.423 0.703 
 
The Traditional CNN and FCN models show lower accuracy, higher loss, and substantially lower Dice 
Coefficient and IOU values, particularly highlighting the Traditional CNN's weaker performance in 
segmentation tasks compared to the more specialized U-Net architecture. 
 

 
Fig 10. Evaluation Metric Curves using traditional CNN 

 
The traditional CNN model shown in Fig 10. achieved an accuracy of 96.76% with a loss of 0.038, a Dice 
Coefficient of 38.8%, and an Intersection over Union (IOU) of 70.7%. During validation, the model 
maintained a high accuracy of 97.78%, with a slightly reduced loss of 0.036. The Dice Coefficient and IOU 
during validation were 37.2% and 70.5%, respectively. Similarly, Fig 11. demonstrated the performance 
metric curves for Fully Convolutional Network (FCN) that achieved an accuracy of 96.99%, with a loss of 
0.035, a Dice Coefficient of 44%, and an Intersection over Union (IOU) of 69.99%. In the validation phase, 
the model maintained a high accuracy of 97.00%, with a slightly higher loss of 0.32. The Dice Coefficient 
and IOU during validation were 42.3% and 70.3%, respectively. 
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Fig 11. Evaluation Metric Curves using FCN 

 
The performance metric curves, illustrates that the U-Net CNN model shown in Fig 9. demonstrates 
superior performance compared to both the Traditional CNN and the Fully Convolutional Network (FCN). 
The U-Net CNN consistently achieves higher accuracy and Dice Coefficient values, as well as lower loss 
values, indicating more precise and reliable predictions. Additionally, the Intersection over Union (IOU) 
scores for the U-Net CNN are notably higher, further highlighting its effectiveness in segmentation tasks. 
The performance curves visually reinforce these findings, showing a clear distinction in the performance 
trends of the U-Net CNN over the other models. 
 
7. CONCLUSION 
The results demonstrate a detailed methodology of the automated segmentation of brain metastases 
using the U-Net CNN model, which surpassed the Traditional CNN and FCN models. The best metrics 
achieved by the U-Net CNN model are impressive, sometimes achieving even the lowest loss value with 
the highest Dice Coefficient and IOU metrics, in comparisons conducted between the two datasets, for 
both the training and validation set. The performance curves further validate the results, which have 
illustrated consistency and reliability of the model for segmenting brain metastases. U-Net CNN could be 
capable of handling imbalanced datasets, and its higher degree of precision in evaluating the effectiveness 
of the treatment continues to outline this potential for real-world applications in a clinical environment. 
Moreover, the methodology embraced would determine the generalizability and suitability of the model 
for use on a wide range of datasets. The paper makes a rigorous comparative study between U-Net CNN 
and Traditional CNN and FCN models, which shines light on the superior capabilities of the former. The 
technique used here might be found useful in the arsenal for diagnosing brain metastases. 
In conclusion, the U-Net CNN model offers a significant advancement in the automated detection and 
segmentation of brain metastases, contributing to the enhancement of diagnostic tools and ultimately 
improving patient outcomes through timely and accurate decision-making. Future research should focus 
on further refining the model, exploring additional imaging modalities, and validating its performance in 
larger, more diverse patient cohorts to ensure its widespread clinical adoption. 
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