
Riesz Basis in de Branges Spaces of Entire

Functions

Sa’ud Al-Sa’di1∗ and Hamed Obiedat2
1,2 Department of Mathematics, Faculty of Science, The Hashemite University,

P.O Box 330127, Zarqa 13133, Jordan

Abstract

In this paper we consider the problem of Riesz basis in de Branges
spaces of entire functions H(E) with the condition that ϕ′(x) ≥ α > 0,
where ϕ is the corresponding phase function. We are concerned with the
sets of real numbers {λn} such that the normalized reproducing kernels
k(λn, .)/‖k(λn, .)‖ satisfies the restricted isometry property, which in turn
constitute a Riesz basis in H(E). Then we give a criterion on stability
of reproducing kernels corresponding to real points which form a Riesz
basis in H(E) with respect to small perturbations, which generalize some
well-known Riesz basis perturbation results in the Paley-Wiener space.
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1 Introduction

Compressive sensing provides an alternative method for efficiently acquiring and
reconstructing a signal to the Shannon sampling theorem when the signal under
acquisition is known to be sparse or compressible. Recently, Candès and Tao [4]
introduced very intense activity related to compressed sensing, known as the
restricted isometry property, which is also known as the uniform uncertainty
principle. The restricted isometry property generalizes the notion of coherence,
and allow recovering and extending many known compressive sampling results.

In this paper we work in the context of a reproducing kernel Hilbert spaces.
In these spaces the restricted isometry property is a very convenient tool which
allows one to reconstruct a signal from its sampling values. It is known that
a frame which satisfies a restricted isometry property with isometry constant
δ < 1 act as an orthogonal basis. For this reason, one of the main interests
of the present paper is to understand what properties of a sequence {λn} of
real numbers guarantee that the corresponding normalized reproducing kernels
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satisfies a restricted isometry property in de Branges spaces H(E) of entire
functions as a special class of reproducing kernel Hilbert spaces. Theory of de
Branges spaces is an important branch of modern analysis having numerous
interesting applications in mathematical physics, harmonic analysis and even
number theory.

The problem of description of Riesz bases of normalized reproducing kernels
is one of intriguing open problems in the area, results in this direction would
be of interests for specialists in de Branges theory and its applications. In
spite of many deep and important results, there is still no explicit description
of bases in general de Branges spaces. The present paper studies stability of
Riesz bases of reproducing kernels in the class of de Branges spaces with the
condition that ϕ′(x) ≥ α > 0 on R, where ϕ is an important characteristic of
a de Branges space known as a phase function. Specifically, we are concerned
with the sets of real numbers Λ = {λn} such that the normalized reproducing
kernels k(λn, .)/‖k(λn, .)‖ constitute a Riesz basis. We also prove new results
on stability of reproducing kernels corresponding to real points which form a
Riesz basis in H(E) with respect to small perturbations, which generalize some
well-known Riesz basis perturbation results in the Paley-Wiener space.

In order to properly state our results, we need to review the main concepts
and terminology of the theory of de Branges spaces of entire functions intro-
duced by L. de Branges [13] in connection with inverse spectral problems for
differential operators. These spaces generalize the classical Paley-Wiener space
which consists of the entire functions of exponential type and square integrable
on the real line. More information about these spaces can be found in [8–11].

2 Theory of de Branges spaces

In this section, we present a brief review and some relevant results on de Branges
spaces theory. Assume f is an analytic function on the upper half-plane C+ =
{z ∈ C : =z > 0}, then f is said to be of bounded type in C+ if it can be written
as a quotient of two bounded analytic functions in C+. The mean type of f in
C+ is defined by

mt+(f) := lim sup
y→+∞

log |f(iy)|
y

.

For an entire function f , we define the function f∗ as f∗(z) := f(z̄). The
Hermite-Biehler class, denoted by HB, consists of all entire functions E(z) that
has no zeros in the upper half-plane and satisfies the condition

|E(z̄)| < |E(z)|, whenever =z > 0. (1)

Given a function E ∈ HB, the associated de Branges space H(E) consists of
all entire functions f(z) such that

||f ||2
E

:=

∫
R

∣∣∣∣ f(t)

E(t)

∣∣∣∣2dt <∞, (2)
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and f(z)/E(z) and f∗(z)/E(z) are of bounded type and nonpositive mean type
in the upper half-plane. This is a Hilbert space with respect to the inner product

〈f, g〉E =

∫
R

f(t)g(t)

|E(t)|2
dt.

The Hilbert space H(E) has the special property that, for every nonreal
number w, the linear functional defined on the space by f 7→ f(w) is continuous.
Therefore, for every nonreal w ∈ C there exists a function k(w, z) in H(E) such
that

f(w) = 〈f(t), k(w, t)〉E , (3)

for every f ∈ H(E). Property (3) is known as the reproducing kernel property.
The function k(w, z) is called the reproducing kernel of H(E), which is given by
(see [13, Theorem 19])

k(w, z) =
Ē(w)E(z)− E(w̄)E∗(z)

2πi(w̄ − z)
. (4)

An important feature of the de Branges space H(E) is the phase function
corresponding to the generating function E, that is, for any entire function
E ∈ HB, there exists a continuous and strictly increasing function ϕ : R → R
such that E(x)eiϕ(x) ∈ R for all x ∈ R, essentially, ϕ = −arg(E) on R, and
E(x) can be written as

E(x) = |E(x)|e−iϕ(x), x ∈ R. (5)

If a function ϕ has these properties then it is referred to as a phase function
of E. It follows that a phase function of E is defined uniquely up to an additive
constant, a multiple of 2π. If ϕ(x) is any such function, and E(x) 6= 0, then
using (4) and (5), an easy computation gives

‖k(x, .)‖2 = k(x, x) =
1

π
ϕ′(x)|E(x)|2. (6)

The leading example of de Branges spaces is the Paley-Wiener space

H(e−iπz) = PWπ,

consists of square-integrable functions on the real line whose Fourier trans-
forms are supported on [−π, π]. The reproducing kernel for PWπ is k(w, z) =
sinπ(z−w̄)
π(z−w̄) , w, z ∈ C, z 6= w̄, and the corresponding phase function ϕ(x) = πx.

A key feature of a de Branges space is that it always has a basis consisting
of reproducing kernels corresponding to real points, [2].

Theorem 2.1. Let H(E) be a de Branges space and ϕ(x) be a phase function
associated with E. If α ∈ R, and Λ = {λn}n∈Z is a sequence of real numbers,
such that ϕ(λn) = α + πn, n ∈ Z, then The functions {k(λn, z)}n∈Z form an
orthogonal set in H(E).
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If eiαE(z)−e−iαE∗(z) /∈ H(E), then
{ k(λn,z)
‖k(λn,.)‖

}
n∈Z is an orthonormal basis

for H(E). Moreover, for every f(z) ∈ H(E),

f(z) =
∑
n∈Z

f(λn)
k(λn, z)

‖k(λn, .)‖2
, (7)

and

‖f‖2 =
∑
n∈Z

∣∣∣∣ f(λn)

E(λn)

∣∣∣∣2 π

ϕ′(λn)
. (8)

A central tool in our proofs is the following Bernstein inequality in de
Branges spaces introduced by A. Baranov, whose proof can be found in [2]:

Lemma 2.2. Let E ∈ HB be such that E′/E ∈ H∞(C+), then

‖f ′/E‖2 ≤ CBer‖f‖E

for all f ∈ H(E), where C
Ber

= (4 +
√

6)‖E′/E‖∞.

3 Basis Theory

In this section we recall some basic concept of frames and Riesz bases for Hilbert
spaces (see for example, Daubechies [7]; Duffin and Schaeffer [14]).

A family of elements {fn}∞n=1 in a separable Hilbert space H forms a frame
if there exist 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2, for all f ∈ H. (9)

The constants A,B in (9) are called the frame bounds for {fn}∞n=1. If the
two frame bounds are equal we call a frame {fn}∞n=1 a tight frame. For each
f ∈ H we have the frame expansions

f =
∞∑
n=1

〈f, fn〉f̃n =
∞∑
n=1

〈f, f̃n〉fn, (10)

with unconditional convergence of these series, where {f̃n} is the dual frame of
{fn}. If, in addition to (9), {fn}∞n=1 is a linearly independent set, we call it
a Riesz basis for H. An equivalent characterization for a sequence {fn}∞n=1 to
be a Riesz basis is that {fn}∞n=1 be a complete sequence in H and there exist
positive constants A and B such that

A
∑
n

|cn|2 ≤
∥∥∥∥∑
n

cnfn

∥∥∥∥2

H
≤ B

∑
n

|cn|2 , (11)

for all finite sequences of scalars {cn}, see [20].
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If the Reisz basis is an orthogonal basis, then A = B = 1. Hence, a Riesz
basis is automatically a frame, moreover, inequality in (9) holds with the same
constants A and B as the inequality in (11). A Riesz basis {fn}∞n=1 is equivalent
to an orthonormal basis {en}∞n=1 for H, namely, if there is a bounded invertible
operator U : H → H such that Ufn = en. Consequently, any Riesz basis of H
is an unconditional basis of H but not conversely in general. Because of this
parallelism, the Riesz bases is the appropriate framework from which to obtain
nonorthogonal sampling formulas. It follows that every f ∈ H has a unique
expression

f =
∑
n

〈f, f̃n〉fn

where f̃n = U∗Ufn are the elements of the dual basis of {fn}.
If H is a reproducing kernel Hilbert space, a sequence Λ = {λn} is inter-

polating for H if there exists an f ∈ H satisfying f (λn) = an for any choice
of interpolation data {an/ ‖k(λn, .)‖} ∈ `2(C). It is complete interpolating if in
addition f is unique. From an equivalent point of view, it is well known that a
sequence Λ is an interpolating sequence in H if and only if {k(λn, .)/‖k(λn, .)‖}
is a Riesz sequence, and Λ is a complete interpolating sequence if and only if
{k(λn, .)/‖k(λn, .)‖} is a Riesz basis in H, see [17] for more details and discus-
sions.

Definition 3.1. A sequence {fn}∞n=1 is said to have the restricted isometry
property if there exists δ ∈ (0, 1) such that

(1− δ)
∞∑
n=1

|cn|2 ≤
∥∥∥∥ ∞∑
n=1

cnfn

∥∥∥∥2

≤ (1 + δ)

∞∑
n=1

|cn|2, (12)

for any sequence of scalars {cn}, where δ is known as the isometry constant.

Although the restricted isometry property is difficult to verify, small re-
stricted isometry constants are desired; the closed δ to zero, the closer to or-
thogonal basis. On the other hand, this definition in particular means that {fn}
is a Riesz basis for its linear span. Conversely, if {fn} is a Riesz basis satisfying

(11) then the scaled sequence {
√

2
B+Afn} satisfies (12) with δ = B−A

B+A . In this

work, we approach the problem of stability of Riesz basis of a Hilbert space H.
Specifically, given a family {gn}∞n=1 ⊆ H which is close, in some sense, to the
Riesz basis (or a frame) {fn}∞n=1 ⊆ H, we find conditions to ensure that {gn}∞n=1

is also a Riesz basis (or a frame). This problem is important in practice, and
has been studied widely by many authors in the context of bases of exponentials
in L2 on some interval. The first result due to Paley and N. Wiener [18] states
that if {λn}n∈Z ⊆ R and supn∈Z |λn − n| ≤ δ < 1

π2 , then the set {eiλnx}n∈Z
is a Riesz basis for the Paley-Wiener space PWπ (in this cae fn = einx and
gn = eiλnx). In [19] M. Kadec proved that the result is true for δ < 1

4 , whereas
the conclusion may fail if supn∈Z |λn − n| = 1

4 (see [5]). Recently, some results
obtained in [3] on the stability of bases and frames of reproducing kernels based
on the estimates of derivatives in terms of Carleson measure in model spaces
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K2
Θ = H2 	ΘH2 of the Hardy class H2 in the upper half plane C+, where Θ is

an inner function in C+.
In the present paper we are particularly interested in the reproducing kernel

Hilbert space H(E), we shall take for the fn’s the normalized reproducing kernel

functions k(λn,.)
‖k(λn,.)‖ , where Λ = {λn} is a sequence of real numbers. To be exact,

we are interested in stability of the basis k(λn,.)
‖k(λn,.)‖ : given a Riesz basis k(λn,.)

‖k(λn,.)‖
for H(E) and a set of points µn which, in some sense, close to λn, whether the

system k(µn,.)
‖k(µn,.)‖ is also a Riesz basis for H(E), which, as a result, leads to a

Riesz basis expansion.
We will need below the following lemma which will play the key role in our

proofs, see Corollary 15.1.5 in [6].

Lemma 3.1. Let {fn}∞n=1 be a frame for a Hilbert space H with bounds A,B,
and let {gn}∞n=1 be a sequence in H. If there exists a constant R < A such that

∞∑
n=1

|〈f, fn − gn〉H|2 6 R ‖f‖2H, ∀f ∈ H,

then {gn}∞n=1 is a frame for H with bounds

A(1−
√
R/A )2, B(1 +

√
R/B )2.

If {fn}∞n=1 is a Riesz basis, then {gn}∞n=1 is a Riesz basis.

4 Riesz Basis in de Branges Spaces

Given a de Branges space H(E) with reproducing kernel k(w, z), we can assume,
without loss of generality, that E has no real zeros (see [16]), hence k(x, x) > 0
for all x ∈ R by (6). Let Λ = {λn}∞n=1 be a sequence of real numbers, from now
on, we set

fn(z) :=
k(λn, z)

‖k(λn, .)‖
, n ∈ N, z ∈ C. (13)

Definition 4.1. Let Λ = {λn}∞n=1 be a sequence of distinct points. We say that
Λ is sequentially separated if |λn+1 − λn| ≥ σn, for all n ≥ 1, and σn ≤ σn+1

for all n ≥ 1.

Next we derive an estimate of the isometry constant δ. This estimate leads
to a sufficient condition for a sequence {fn} to have the Restricted Isometry
Property.

Lemma 4.1. Given a de Branges space H(E), and ϕ(x) a phase function as-
sociated with E such that ϕ′(x) ≥ α > 0 on R. Let {λn}∞n=1 be a sequentially

6
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separated sequence of real numbers such that σn ≥ 1. If
∞∑
n=1

1
σ2
n
< 3α2

π2 , then

δ :=

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

< 1 (14)

Proof. For any real number x, E(x) = e−iϕ(x)|E(x)|, which implies that E(x)

E(x)
=

e−2iϕ(x). Let a, b ∈ R, then using (4) and the fact that k(a, b) = 〈k(a, .), k(b, .)〉
we get,

k(a, b)

E(a)
=

1

E(a)

E(a)E(b)− E(a)E(b)

2πi(a− b)

=
E(b)− e−2iϕ(a)E(b)

2πi(a− b)
.

Simple calculations then shows that〈k(a, .)

E(a)
,
k(b, .)

E(b)

〉
=

1

E(b)

k(a, b)

E(a)

=
1− e2i(ϕ(b)−ϕ(a))

2πi(a− b)

and,
k2(a, b)

|E(a)|2|E(b)|2
=

sin2 (ϕ(a)− ϕ(b))

π2(a− b)2
.

Consequently, since k(x, x) = 1
πϕ
′(x)|E(x)|2 for all x ∈ R, we have

k2(a, b)

k(a, a)k(b, b)
= π2 k2(a, b)

ϕ′(a)ϕ′(b)|E(a)|2|E(b)|2

=
1

ϕ′(a)ϕ′(b)

sin2 (ϕ(a)− ϕ(b))

(a− b)2

In particular, for fn defined in (13) we have

|〈fn, fm〉|2 =
∣∣∣〈 k(λn, .)

‖k(λn, .)‖
,
k(λm, .)

‖k(λm, .)‖
〉
∣∣∣2

=
1

ϕ′(λm)ϕ′(λn)

sin2 (ϕ(λm)− ϕ(λn))

(λm − λn)2

≤ 1

α2

1

(λm − λn)2

because ϕ′(x) ≥ α on R by the hypothesis. Since {λn} is sequentially sepa-
rated and σn ≥ 1 then for m > n, m = n+ k, for some k ≥ 1, and

(λm − λn) ≥ (m− n)σn = kσn

7
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Therefore, for any n ≥ 1,

∞∑
m=n+1

|〈fn, fm〉|2 ≤ 1

α2

∞∑
m=n+1

1

(λm − λn)2

≤ 1

α2

∞∑
m=n+1

1

(m− n)2σ2
n

≤ 1

α2σ2
n

∞∑
k=1

1

k2
=
π2

6

1

α2σ2
n

.

Consequently,

∞∑
m,n=1
m6=n

|〈fn, fm〉|2 = 2
∞∑
n=1

∞∑
m=n+1

|〈fn, fm〉|2 ≤
π2

3α2

∞∑
n=1

1

σ2
n

.

From this the conclusion follows with δ < 1.

Next we apply the estimate obtained in Lemma 4.1 to give conditions for
the sequence {fn} to have the Restricted Isometry Property.

Theorem 4.2. Given a de Branges space H(E), and ϕ(x) a phase function
associated with E such that ϕ′(x) ≥ α > 0 on R. Let {λn}∞n=1 be a sequentially

separated sequence of real numbers such that σn ≥ 1, ∀n ≥ 1. If
∞∑
n=1

1
σ2
n
< 3α2

π2 ,

then the sequence {fn}∞n=1 satisfies the Restricted Isometry Property.

Proof. From the definition of fn, ‖fn‖ = 1, for n ≥ 1, then for any finite
sequence of complex numbers {cn}n≥1 we have

8
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∥∥∥∥ ∞∑
n=1

cnfn

∥∥∥∥2

=
∞∑

m,n=1

cnc̄m〈fn, fm〉

=
∞∑
n=1

|cn|2
∥∥fn∥∥2

+
∞∑

m,n=1
m6=n

cnc̄m〈fn, fm〉

≤
∞∑
n=1

|cn|2 +
∞∑

m,n=1
m6=n

|cnc̄m〈fn, fm〉|

≤
∞∑
n=1

|cn|2 +

( ∞∑
m,n=1
m6=n

|cn|2|cm|2
) 1

2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

≤
∞∑
n=1

|cn|2 +

( ∞∑
n=1

|cn|2
) 1

2
( ∞∑
m=1

|cm|2
) 1

2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

=

∞∑
n=1

|cn|2 +

∞∑
n=1

|cn|2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

=

(
1 +

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2
) ∞∑
n=1

|cn|2

= (1 + δ)
∞∑
n=1

|cn|2

where

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

= δ, by Lemma 4.1.

Similarly, we prove the first part of the inequality. We use the claim in
equation (14) above, we have∥∥∥∥ ∞∑

n=1

cnfn

∥∥∥∥2

≥
(

1−
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2
) ∞∑
n=1

|cn|2

= (1− δ)
∞∑
n=1

|cn|2.

Therefore, the sequence {fn} satisfies the Restricted Isometry Property for
some δ ∈ (0, 1), completing the proof.

If Λ = {λn}∞n=1 is a given sequence, then for ε > 0, we define a perturbation

9
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sequence

Mε :=

{
µn ∈ R : µn = λn + εn, 0 < εn ≤ ε

k(λn, λn)

τn
, n ≥ 1

}
, (15)

where τn = max
t∈[λn,λn+1]

k(t, t). In what follows, the constant Af is the lower frame

bound of the sequence {fn} in (9) and (11), and C
Ber

is the Berntein constant
from Lemma 2.2.

Theorem 4.3. Given a de Branges space H(E), such that E′/E ∈ H∞(C+),
and ϕ(x) a phase function associated with E such that ϕ′(x) ≥ α > 0 on R. If

{fn} is a Riesz basis in H(E), then the sequence { k(µn,z)
‖k(λn,.)‖ : µn ∈ Mε} is also

a Riesz basis in H(E) whenever ε <
αAf

πC2
Ber

.

Proof. Since the function k(t, t) is continuous for all t ∈ R, the Mean Value
Theorem implies that there exists tn ∈ (λn, µn) such that∫ µn

λn

k(t, t)

k(λn, λn)
dt = εn

k(tn, tn)

k(λn, λn)
, for alln ≥ 1.

Moreover, since µn ∈Mε, then

εn
k(tn, tn)

k(λn, λn)
≤ ε k(λn, λn)

τn

k(tn, tn)

k(λn, λn)
≤ ε, for alln ≥ 1.

Let f ∈ H(E), and hn(z) := k(µn,z)
‖k(λn,.)‖ , for µn ∈Mε. Then

|〈f, fn − hn〉|2 =
1

k(λn, λn)
|f(λn)− f(µn)|2

=
1

k(λn, λn)

∣∣∣∣∫ µn

λn

(f(t))′ dt

∣∣∣∣2
≤ 1

k(λn, λn)

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

|E(t)|2 dt

=

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

π
k(t, t)

k(λn, λn)

1

ϕ′(t)
dt

≤ π

α

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

k(t, t)

k(λn, λn)
dt

≤ π ε

α

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt.
Hence, we have

∞∑
n=1

|〈f, fn − hn〉|2 ≤
π ε

α

∫
R

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt
=
π ε

α
‖f ′/E‖2

≤ π ε

α
C2

Ber
‖f‖2,

10
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where the last inequality follows from Lemma 2.2. Consequently, {hn} is a Riesz
basis by Lemma 3.1 with R = π ε

α C
2
Ber

< Af by the hypothesis.

Theorem 4.4. Let H(E) be a de Branges space, with reproducing kernel func-
tion k(w, z). Let {λn}, {µn} be two sequences of real numbers, and {hn(z) :=
k(µn,z)
‖k(λn,.)‖} be a Riesz basis in H(E) with frame bounds Ah and Bh. If there exits

positive constants C1, C2 such that

C1k(λn, λn) ≤ k(µn, µn) ≤ C2 k(λn, λn), (16)

for all n ≥ 1, then the sequence { k(µn,z)
‖k(µn,.)‖} is also a Riesz basis in H(E),

whenever CBh < Ah, where C = (1 + 1
C1
− 2√

C2
).

Proof. Since the sequence {hn} is a Riesz basis, then for all f ∈ H(E),

Ah‖f‖2 ≤
∞∑
n=1

|〈f, hn〉|2 ≤ Bh‖f‖2.

Let f ∈ H(E), and gn(z) := k(µn,z)
‖k(µn,.)‖ . Then

|〈f, hn − gn〉|2 =

∣∣∣∣∣ f(µn)√
k(λn, λn)

− f(µn)√
k(µn, µn)

∣∣∣∣∣
2

= |f(µn)|2
∣∣∣∣∣ 1√

k(λn, λn)
− 1√

k(µn, µn)

∣∣∣∣∣
2

= |f(µn)|2
∣∣∣∣∣ 1

k(λn, λn)
+

1

k(µn, µn)
− 2√

k(λn, λn)k(µn, µn)

∣∣∣∣∣
≤ R |f(µn)|2

k(λn, λn)

where R = 1 + 1
C1
− 2√

C2
. Thus, we have

∞∑
n=1

|〈f, hn − gn〉|2 ≤ R
∞∑
n=1

|f(µn)|2

k(λn, λn)

= R
∞∑
n=1

|〈f, hn〉|2

≤ RBh‖f‖2.

Consequently, {gn} is a Riesz basis by Lemma 3.1 as RBh < Ah.

Now we state the main result on stability of Riesz basis in de Branges spaces,
the proof is an immediate consequence of Theorem 4.3 and Theorem 4.4.
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Theorem 4.5. Given a de Branges space H(E), such that E′/E ∈ H∞(C+),
and ϕ(x) a phase function associated with E such that ϕ′(x) ≥ α > 0 on R.
Let {fn} be a Riesz basis in H(E) with bounds Af , Bf . Let Mε be the sequence
defined in (15), and assume that there exits positive constants C1, C2 such that

C1k(λn, λn) ≤ k(µn, µn) ≤ C2 k(λn, λn), for all n ≥ 1. (17)

Then the sequence { k(µn,z)
‖k(µn,.)‖ : µn ∈ Mε} is also a Riesz basis in H(E)

whenever

ε <
αAf
πC2

Ber

and CBf (1 +
√
R/Bf )2 < Af (1−

√
R/Af )2

where R = π ε
α C

2
Ber

and C = (1 + 1
C1
− 2√

C2
).

Remark 4.1. de Branges spaces H(E) that satisfy the conditions of the pre-
vious theorems in general do not have simple analytic characterizations. We
would like to emphasize that the best way to construct the corresponding gen-
erating functions E ∈ HB is via their Weierstrass factorization formula. A
special class of Hermite-Biehler functions is the Pólya class where any function
can be characterized by its Hadamard factorization formula. For the sake of
completeness, we include some examples of such functions, see [1] and [13]:

(1) Let E have the form

E(z) = γ ebze−iaz
∏
n∈Z

(
1− z

zn

)
ezRe(

1
zn

), (18)

and let the zeros zn satisfy the following conditions:

(a). zn = βn+wn, for all n ∈ Z, where β > 0, and the sequence {wn}n∈Z
is bounded,

(b). Im(wn) ≥ α > 0.

Then E′

E ∈ H∞(C+). If, in addition, wn = un + ivn where un ∈ [α1, α2]
and vn ∈ [a1, a2], a1 > 0 for all n ∈ Z, then E′/E ∈ H∞(C+). and ϕ′(x)
is bounded away from zero.

(2) Let

E(z) = γe−iazS(z)
∞∏
n=1

(
1− z

z̄n

)
ehnz,

for all z ∈ C, where the sequence {zn}∞n=1 ⊂ C+ has no condensation
points in C and satisfies the Blaschke condition

∞∑
n=1

yn/
(
x2
n + y2

n

)
< +∞,
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which guarantee the convergence of the previous product, and

hn = xn/
(
x2
n + y2

n

)
, n ∈ N,

a > 0, S is an entire function taking the real values on the real line and
having only real zeros, and γ is a complex number with modulus 1. If the
sequence {zn}∞n=1 is contained in the set Γτ = {z ∈ C+ : τ < arg z <

π − τ}, τ > 0, then E′

E ∈ H∞(C+) and ϕ′(x) is bounded away from zero.

Furthermore, a wide class of de Branges spaces for which the previous the-
orems may be applied is the homogeneous de Branges spaces. Such spaces are
related to the classical Bessel functions and more general confluent hypergeo-
metric functions, and were characterized by L. de Branges [12,13]. We present
a brief review of the construction of these spaces. Let ν > −1. A space H(E) is
said to be homogeneous of order ν if, for all 0 < a < 1 and all F ∈ H(E), the
function z 7→ aν+1F (az) belongs to H(E) and has the same norm as F . For
ν > −1 consider the real entire functions Aν(z) : C → C and Bν(z) : C → C
given by

Aν(z) =

∞∑
n=0

(−1)n
(

1
2z
)2n

n!(ν + 1)(ν + 2) . . . (ν + n)
= Γ(ν + 1)

(
1

2
z

)−ν
Jν(z)

and

Bν(z) =
∞∑
n=0

(−1)n
(

1
2z
)2n+1

n!(ν + 1)(ν + 2) . . . (ν + n+ 1)
= Γ(ν + 1)

(
1

2
z

)−ν+1

Jν(z)

where

Jν(z) =
∑
n≥0

(−1)n
(

1
2z
)2n+ν

n!Γ(ν + n+ 1)

is the classical Bessel function of the first kind. These special functions have
only real, simple zeros and have no common zeros. Furthermore, they satisfy
the following differential equations

A′ν(z) = −Bν(z) and B′ν(z) = Aν(z)− (2ν + 1)Bν(z)/z. (19)

If we define
Eν(z) := Aν(z)− iBν(z),

then the function Eν(z) is a Hermite-Biehler function with no real zeros, of
bounded type in the upper-half, and is of exponential type 1 in C. Also we have
that

cν |x|2ν+1 ≤ |Eν(x)|−2 ≤ Cν |x|2ν+1,

for all real |x| ≥ 1 and for some cν , Cν > 0, see [15]. Moreover, it is known
that Aν , Bν /∈ H(Eν). Note that if ν = −1/2 we have A−1/2(z) = cos z and
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B−1/2(z) = sin z, hence, E−1/2(z) = e−iz and the space H(E−1/2) coincides
with the Paley-Wiener space PW1. By (19) we have

i
E′ν(z)

Eν(z)
= 1− (2ν + 1)

Bν(z)

zEν(z)
,

for all z ∈ C+. Hence E′ν(z)/Eν(z) ∈ H∞(C+). This also implies that the
phase function ϕν(z) associated with Eν(z) satisfies

ϕ′ν(x) = 1− (2ν + 1)Aν(x)Bν(x)

x |Eν(x)|2
.

Hence, ϕ′ν(x) ' 1 for all real x.
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