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FOURIER SERIES OF FUNCTIONS INVOLVING EULER

POLYNOMIALS

TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND JONGKYUM KWON

Abstract. Recently, T. Kim introduced Fourier series expansions of certain

special polynomials and investigated some interesting identities and properties

of these polynomials by using those Fourier series. In this paper, we consider
three types of functions involving Euler polynomials and derive their Fourier

series expansions. Moreover, we express each of them in terms of Benoulli

functions.

1. Introduction

Let Em(x) be the Euler polynomials given by the generating function

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
, (see [1,2,5,7-11,16]). (1.1)

From this equation, we can derive the following relation.

E0 = 1, (E + 1)n + En =

{
2, if n = 0,

0, if n 6= 0.

The Bernoulli polynomials Bm(x) are defined by the generating function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
, (see [1,2,5,9]). (1.2)

For any real number x, we let

< x >= x− [x] ∈ [0, 1) (1.3)

denote the fractional part of x.
Here we will consider the following three types of functions involving Euler poly-

nomials and derive their Fourier series expansions. Further, we will express each of
them in terms of Bernoulli functions Bm(< x >).

(1) αm(< x >) =
∑m
k=0Ek(x)xm−k, (m ≥ 1);

(2) βm(< x >) =
∑m
k=0

1
k!(m−k)!Ek(x)xm−k, (m ≥ 1);

(3) γm(< x >) =
∑m−1
k=1

1
k(m−k)Ek(x)xm−k, (m ≥ 2).

The reader may refer to any book (for example, see [13-15,17]), for elementary facts
about Fourier analysis.

2010 Mathematics Subject Classification. 11B68, 42A16.
Key words and phrases. Fourier series, Euler polynomials.
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2 TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND JONGKYUM KWON

As to γm(< x >), we note that the polynomial identity (1.4) follows immedi-
ately from Theorems 4.2 and 4.3, which is in turn derived from the Fourier series
expansion of γm(< x >).

m−1∑
k=1

1

k(m− k)
Ek(x)xm−k

= − 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=1

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
Bs(x),

(1.4)

where Hm =
∑m
j=1

1
j are the harmonic numbers. The obvious polynomial identities

can be derived also for αm(< x >) and βm(< x >) from Theorems 2.1 and 2.2, and
Theorems 3.1 and 3.2 , respectively.

2. The function αm(< x >)

Let αm(x) =
∑m
k=0Ek(x)xm−k, (m ≥ 1). Then we consider the function

αm(< x >) =
∑m
k=0Ek(< x >) < x >m−k,

defined on (−∞,∞), which is periodic with period 1.

The Fourier series of βm(< x >) is
∑∞
n=−∞A

(m)
n e2πinx,

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.1)

To proceed further, we note the following.

α′m(x) =
m∑
k=0

(
kEk−1(x)xm−k + (m− k)Ek(x)xm−k−1

)
=

m∑
k=1

kEk−1(x)xm−k +
m−1∑
k=0

(m− k)Ek(x)xm−k−1

=
m−1∑
k=0

(k + 1)Ek(x)xm−k−1 +
m−1∑
k=0

(m− k)Ek(x)xm−k−1

= (m+ 1)
m−1∑
k=0

Ek(x)xm−1−k

= (m+ 1)αm−1(x).

(2.2)
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So, α′m(x) = (m+ 1)αm−1(x). From this,
(
αm+1(x)
m+2

)′
= αm(x).

∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.3)

αm(1)− αm(0) =
m∑
k=0

(Ek(1)− Ekδm,k)

=
m∑
k=0

((−Ek + 2δk,0))−
m∑
k=0

Ekδm,k

= −
m∑
k=0

Ek + 2− Em

(2.4)

Thus

αm(1) = αm(0)⇐⇒
m∑
k=0

Ek = 2− Em. (2.5)

Also, ∫ 1

0

αm(x)dx =
1

m+ 2

(
−
m+1∑
k=0

Ek + 2− Em+1

)
. (2.6)

Now, we would like to determine the Fourier coefficients A
(m)
n .

Case1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n +

1

2πin

(
m∑
k=0

Ek − 2 + Em

)

=
m+ 1

2πin

(
m

2πin
A(m−2)
n +

1

2πin

(
m−1∑
k=0

Ek − 2 + Em−1

))
+

1

2πin

(
m∑
k=0

Ek − 2 + Em

)

=
(m+ 1)m

(2πin)2
A(m−2)
n +

m+ 1

(2πin)2

(
m−1∑
k=0

Ek − 2 + Em−1

)
+

1

2πin

(
m∑
k=0

Ek − 2 + Em

)
= · · ·
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=
(m+ 1)m−1
(2πin)m−1

A(1)
n +

m−1∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

)

= − (m+ 1)!

(2πin)m
+
m−1∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

)

=
m∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

)

=
1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

)
,

(2.7)

where A
(1)
n =

∫ 1

0
α1(x)e−2πinxdx =

∫ 1

0
(2x− 1

2 )e−2πinxdx = − 2
2πin .

Case2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2

(
−
m+1∑
k=0

Ek + 2− Em+1

)
. (2.8)

αm(< x >), (m ≥ 1) is piecewise C∞. Moreover, αm(< x >) is continuous for
those positive integers m with

∑m
k=0Ek = 2 − Em and discontinuous with jump

discontinuities at integers for those positive integers m with
∑m
k=0Ek 6= 2− Em.

We recall the following facts about Bernoulli functions Bn(< x >) :
(a) for m ≥ 2,

Bm(< x >) = −m!

∞∑
n=−∞,n6=0

e2πinx

(2πin)m
. (2.9)

(b) for m = 1,

−
∞∑

n=−∞,n6=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.10)

Assume first that m is a positive integer with
∑m
k=0Ek = 2−Em. Then αm(1) =

αm(0).
αm(< x >) is piecewise C∞, and continuous. So the Fourier series of αm(< x >)
converges uniformly to αm(< x >), and
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αm(< x >) = − 1

m+ 2

(
m+1∑
k=0

Ek − 2 + Em+1

)

+
1

m+ 2

∞∑
n=−∞,n6=0

 m∑
j=1

(m+ 2)j
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

) e2πinx

= − 1

m+ 2

(
m+1∑
k=0

Ek − 2 + Em+1

)

− 1

m+ 2

m∑
j=1

(
m+ 2

j

)(m−j+1∑
k=0

Ek − 2 + Em−j+1

)

×

−j! ∞∑
n=−∞,n6=0

e2πinx

(2πin)j


(2.11)

= − 1

m+ 2

(
m+1∑
k=0

Ek − 2 + Em+1

)

− 1

m+ 2

m∑
j=2

(
m+ 2

j

)(m−j+1∑
k=0

Ek − 2 + Em−j+1

)
Bj(< x >)

− 1

m+ 2

(
m+ 2

1

)( m∑
k=0

Ek − 2 + Em

)
·

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z

,

(2.12)

for all x ∈ (−∞,∞).
Hence we obtain the following theorem.

Theorem 2.1. Let m be a positive integer with
∑m
k=0Ek = 2−Em. Then we have

the following.
(a)

∑m
k=0Ek(< x >) < x >m−k has the Fourier series expansion

m∑
k=0

Ek(< x >) < x >m−k

=− 1

m+ 2

(
m+1∑
k=0

Ek − 2 + Em+1

)

+
1

m+ 2

∞∑
n=−∞,n6=0

 m∑
j=1

(m+ 2)j
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

) e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)
m∑
k=0

Ek(< x >) < x >m−k= − 1

m+ 2

m∑
j=0,j 6=1

(
m+ 2

j

)(m−j+1∑
k=0

Ek − 2 + Em−j+1

)
Bj(< x >),

for all x ∈ (−∞,∞), where Bk(< x >) is the Bernoulli function.
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Assume next that m is a positive integer with
∑m
k=0Ek 6= 2 − Em. Then

αm(1) 6= αm(0). Hence αm(< x >) is piecewise C∞ , and discontinuous with jump
discontinuities at integers. The Fourier series of αm(< x >) converges pointwise to
αm(< x >) , for x /∈ Z, and converges to

1

2
(αm(0) + αm(1)) = αm(0)− 1

2

m∑
k=0

Ek + 1− 1

2
Em,

= 1− 1

2

m−1∑
k=0

Ek,

for x ∈ Z.

Thus, we get the following theorem.

Theorem 2.2. Let m be a positive integer with
∑m
k=0Ek 6= 2−Em. Then we have

the following.

(a)− 1

m+ 2

(
m+1∑
k=0

Ek − 2 + Em+1

)

+
1

m+ 2

∞∑
n=−∞,n6=0

 m∑
j=1

(m+ 2)j
(2πin)j

(
m−j+1∑
k=0

Ek − 2 + Em−j+1

) e2πinx

=

{∑m
k=0Ek(< x >) < x >m−k, for x /∈ Z,

1− 1
2

∑m−1
k=0 Ek, for x ∈ Z.

(b)− 1

m+ 2

m∑
j=0

(
m+ 2

j

)(m−j+1∑
k=0

Ek − 2 + Em−j+1

)
Bj(< x >)

=

m∑
k=0

Ek(< x >) < x >m−k, for x /∈ Z,

− 1

m+ 2

m∑
j=0,j 6=1

(
m+ 2

j

)(m−j+1∑
k=0

Ek − 2 + Em−j+1

)
Bj(< x >)

= 1− 1

2

m−1∑
k=0

Ek, for x ∈ Z.

Question: For what values of m ≥ 1, does
∑m
k=0Ek = 2− Em hold ?

Remark 2.3. Another expression for A
(m)
0 =

∫ 1

0
αm(x)dx was obtained previously

(see [3,4,6,12]) and is

m−1∑
l=0

m−l∑
j=1

(−1)j
(
m−l+1

j

)
El+j

(m− l + 1)
(
l+j
l

) +
4(−1)m+1

m+ 2
Em+1. (2.13)
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So, we obtain the following identity.

1

m+ 2

(
−
m+1∑
k=0

Ek + 2− Em+1

)

=
m−1∑
l=0

m−l∑
j=1

(−1)j
(
m−l+1

j

)
El+j

(m− l + 1)
(
l+j
l

) +
4(−1)m+1

m+ 2
Em+1.

3. The fuction βm(< x >)

Let βm(x) =
∑m
k=0

1
k!(m−k)!Ek(x)xm−k, (m ≥ 1). Then we will consider the

function

βm(< x >) =
m∑
k=0

1

k!(m− k)!
Ek(< x >) < x >m−k,

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx.

Before proceeding further, we observe the following:

β′m(x) =
m∑
k=0

{
k

k!(m− k)!
Ek−1(x)xm−k

+
m− k

k!(m− k)!
Ek(x)xm−k−1

}
=

m∑
k=1

1

(k − 1)!(m− k)!
Ek−1(x)xm−k

+
m−1∑
k=0

1

k!(m− 1− k)!
Ek(x)xm−1−k

=
m−1∑
k=0

1

k!(m− 1− k)!
Ek(x)xm−1−k

+
m−1∑
k=0

1

k!(m− 1− k)!
Ek(x)xm−1−k

= 2βm−1(x).

(3.1)

So, β′m(x) = 2βm−1(x). This implies that
(
βm+1(x)

2

)′
= βm(x).∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
. (3.2)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.5, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

803 TAEKYUN KIM et al 797-816



8 TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND JONGKYUM KWON

βm(1)− βm(0)

=
m∑
k=0

1

k!(m− k)!

(
Ek(1)− Ek(0)δm,k

)
=

m∑
k=0

1

k!(m− k)!
{(−Ek + 2δk,0)} .

−
m∑
k=0

1

k!(m− k)!
Ekδm,k

= −
m∑
k=0

Ek
k!(m− k)!

+
2

m!
− Em
m!

.

(3.3)

So,
∫ 1

0
βm(x)dx = 1

2

(
−
∑m+1
k=0

Ek

k!(m+1−k)! + 2
(m+1)! −

Em+1

(m+1)!

)
.

Also, βm(1) = βm(0)⇔
∑m
k=0

Ek

k!(m−k)! = 2
m! −

Em

m! .

Now, we are going to determine the Fourier coefficients B
(m)
n .

Case 1:n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

1

πin

∫ 1

0

βm−1(x)e−2πinxdx

=
1

πin
B(m−1)
n − 1

2πin
(βm(1)− βm(0))

=
1

πin

( 1

πin
B(m−2)
n − 1

2πin
(βm−1(1)− βm−1(0))

)
− 1

2πin
(βm(1)− βm(0))

=
1

(πin)2
B(m−2)
n − 2

(2πin)2
(βm−1(1)− βm−1(0))− 1

2πin
(βm(1)− βm(0))

= · · ·

=
1

(πin)m−1
B(1)
n −

m−1∑
j=1

2j−1

(2πin)j
(βm−j+1(1)− βm−j+1(0))

= − 1

(πin)m
+
m−1∑
j=1

2j−1

(2πin)j

(
m−j+1∑
k=0

Ek
k!(m− j − k + 1)!

− 2

(m− j + 1)!
+

Em−j+1

(m− j + 1)!

)

=
m∑
j=1

2j−1

(2πin)j

(
m−j+1∑
k=0

Ek
k!(m− j − k + 1)!

− 2

(m− j + 1)!
+

Em−j+1

(m− j + 1)!

)
,

(3.4)

where B
(1)
n =

∫ 1

0
β1(x)e−2πinxdx =

∫ 1

0
(2x− 1

2 )e−2πinxdx = − 1
πin .
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Case 2: n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2

(
−
m+1∑
k=0

Ek
k!(m+ 1− k)!

+
2

(m+ 1)!
− Em+1

(m+ 1)!

)
. (3.5)

Let

Ωm = βm(1)− βm(0) = −
m∑
k=0

Ek
k!(m− k)!

+
2

m!
− Em
m!

,

for m ≥ 1.
βm(< x >), (m ≥ 1) is piecewise C∞. Moreover, βm(< x >) is continuous for

those positive integers m with Ωm = 0 and discontinuous with jump discontinuities
at integers for those positive integers m with Ωm 6= 0.

Assume first that m is a positive integer with Ωm = 0. Then βm(1) = βm(0).
βm(< x >) is piecewise C∞, and continuous. So the Fourier series of βm(< x >)
converges uniformly to βm(< x >), and

βm(< x >)

=

m∑
k=0

1

k!(m− k)!
Ek(< x >) < x >m−k

=
1

2
Ωm+1 −

∞∑
n=−∞,n6=0

( m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1 ×

(
−j!

∞∑
n=−∞,n6=0

e2πinx

(2πin)j

)
=

1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bk(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z,

for all x ∈ (−∞,∞).

(3.6)
Now, we obtain the following theorem.

Theorem 3.1. For each positive integer l, let

Ωl = −
l∑

k=0

Ek
k!(l − k)!

+
2

l!
− El

l!
.

Assume that Ωm = 0, for a positive integer m. Then we have the following.
(a)

∑m
k=0

1
k!(m−k)!Ek(< x >) < x >m−k has the Fourier series expansion

m∑
k=0

1

k!(m− k)!
Ek(< x >) < x >m−k =

1

2
Ωm+1−

∞∑
n=−∞,n6=0

( m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,
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for all x ∈ (−∞,∞). Here the convergence is uniform.

(b)
m∑
k=0

1

k!(m− k)!
Ek(< x >) < x >m−k=

m∑
j=0,j 6=1

2j−1

j!
Ωm−j+1Bk(< x >),

for all x ∈ (−∞,∞). Here Bk(< x >) is the Bernoulli function.

Assume next that m is a positive integer with Ωm 6= 0. Then, βm(1) 6= βm(0).
βm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at integers.
Thus the Fourier series of βm(< x >) converges pointwise to βm(< x >), for x /∈ Z,
and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm

=
Em
m!

+
1

2

(
−

m∑
k=0

Ek
k!(m− k)!

+
2

m!
− Em
m!

)

=
1

2

(
2

m!
−
m−1∑
k=0

Ek
k!(m− k)!

)
.

(3.7)

for x ∈ Z.
So, we obtain the following theorem.

Theorem 3.2. For each positive integer l, let

Ωl = −
l∑

k=0

Ek
k!(l − k)!

+
2

l!
− El

l!
.

Assume that Ωm 6= 0, for a positive integer m. Then we have the following.

(a)
1

2
Ωm+1 −

∞∑
n=−∞,n6=0

( m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m
k=0

1
k!(m−k)!Ek(< x >) < x >m−k, for x /∈ Z,

Em

m! + 1
2Ωm, for x ∈ Z.

Here the convergence is pointwise.
(b)

m∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >)

=
m∑
k=0

1

k!(m− k)!
Ek(< x >) < x >m−k, for x /∈ Z,

m∑
j=0,j 6=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
Em
m!

+
1

2
Ωm, for x ∈ Z.

Here Bk(< x >) is the Bernoulli function.
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Question: For what values of m ≥ 1, does
∑m
k=0

Ek

k!(m−k)! = 2
m! −

Em

m! hold ?

Remark 3.3. In a previous paper (see [3,4,6,12]), it was shown that

∫ 1

0

βm(x)dx =
m−1∑
l=0

m−l∑
j=1

(−1)j
(
m+1
l+j

)
El+j

(m+ 1)!
+

2(−1)m+1Em+1

(m+ 1)!
. (3.8)

Hence, we have the following identity.

1

2

(
−
m+1∑
k=0

Ek
k!(m+ 1− k)!

+
2

(m+ 1)!
− Em+1

(m+ 1)!

)

=
m−1∑
l=0

m−l∑
j=1

(−1)j
(
m+1
l+j

)
El+j

(m+ 1)!
+

2(−1)m+1Em+1

(m+ 1)!
.

4. The fuction γm(< x >)

Let γm(x) =
∑m−1
k=1

1
k(m−k)Ek(x)xm−k, (m ≥ 2). Then we will consider the

function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
Ek(< x >) < x >m−k, (4.1)

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.2)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.3)
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To proceed further, we observe the following.

γ′m(x) =
m−1∑
k=1

1

k(m− k)

(
kEk−1(x)xm−k + (m− k)Ek(x)xm−k−1

)
=
m−1∑
k=1

1

m− k
Ek−1(x)xm−k +

m−1∑
k=1

1

k
Ek(x)xm−k−1

=
m−2∑
k=0

1

m− k − 1
Ek(x)xm−k−1 +

m−1∑
k=0

1

k
Ek(x)xm−k−1

=
1

m− 1
xm−1 +

m−2∑
k=1

1

m− k − 1
Ek(x)xm−k−1 +

1

m− 1
Em−1(x)

+
m−2∑
k=1

1

k
Ek(x)xm−k−1

= (m− 1)
m−2∑
k=1

1

k(m− 1− k)
Ek(x)xm−1−k +

1

m− 1

(
xm−1 + Em−1(x)

)
= (m− 1)γm−1(x) +

1

m− 1

(
xm−1 + Em−1(x)

)
.

(4.4)

Thus,

γ′m(x) = (m− 1)γm−1(x) +
1

m− 1

(
xm−1 + Em−1(x)

)
.

From this, we have(
1

m

(
γm+1(x)− 1

m(m+ 1)
xm+1 − 1

m(m+ 1)
Em+1(x)

))′
= γm(x).

∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)− 1

m(m+ 1)
xm+1 − 1

m(m+ 1)
Em+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
− 1

m(m+ 1)

(
Em+1(1)− Em+1(0)

))
=

1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
+

2

m(m+ 1)
Em+1

)
.

(4.5)

γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)

(
Ek(1)− Ek(0)δm,k

)
=
m−1∑
k=1

1

k(m− k)

(
−Ek(0) + 2δk,0

)
−
m−1∑
k=1

1

k(m− k)
Ek(0)δm,k

= −
m−1∑
k=1

Ek
k(m− k)

.

(4.6)
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Thus,

γm(1) = γm(0) ⇔
m−1∑
k=1

Ek
k(m− k)

= 0. (4.7)

In addition,

∫ 1

0

γm(x)dx = − 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
. (4.8)

Now, we would like to determine the Fourier coefficients C
(m)
n .

Case 1:n 6= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin

[
γm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+
m− 1

2πin

∫ 1

0

γm−1(x)e−2πinxdx

+
1

2πin(m− 1)

∫ 1

0

xm−1e−2πinxdx+
1

2πin(m− 1)

∫ 1

0

Em−1(x)e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm,

(4.9)

where , for l ≥ 1,

∫ 1

0

El(x)e−2πinxdx =

{
2
∑l
k=1

(l)k−1

(2πin)k
El−k+1, for n 6= 0,

− 2
l+1El+1, for n = 0.

∫ 1

0

xle−2πinxdx =

{
−
∑l
k=1

(l)k−1

(2πin)k
, for n 6= 0,

1
l+1 , for n = 0.

Here, for m ≥ 2,

Λm = γm(1)− γm(0) = −
m−1∑
k=1

Ek
k(m− k)

,

Θm =
m−1∑
k=1

(m− 1)k−1
(2πin)k

,

Φm =
m−1∑
k=1

(m− 1)k−1
(2πin)k

Em−k.

(4.10)
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C(m)
n =

m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm

=
m− 1

2πin

(m− 2

2πin
C(m−2)
n − 1

2πin
Λm−1 −

1

2πin(m− 2)
Θm−1 +

2

2πin(m− 1)
Φm−1

)
− 1

2πin
Λm −

1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm

=
(m− 1)(m− 2)

(2πin)2
C(m−2)
n − m− 1

(2πin)2
Λm−1 −

1

2πin
Λm −

m− 1

(2πin)2(m− 2)
Θm−1

− 1

(2πin)(m− 1)
Θm +

2(m− 1)

(2πin)2(m− 2)
Φm−1 +

2

2πin(m− 1)
Φm

= · · ·

=
(m− 1)!

(2πin)m−2
C(2)
n −

m−2∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 −
m−2∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

+
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

= −1

2

(m− 1)!

(2πin)m−1
− 2(m− 1)!

(2πin)m
−
m−2∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1

−
m−2∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1 +

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

= −
m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 −
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

+
m−1∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1,

(4.11)
where

C(2)
n =

∫ 1

0

γ2(x)e−2πinxdx =

∫ 1

0

(x2 − 1

2
x)e−2πinxdx = −1

2

1

2πin
− 2

(2πin)2

Λ2 =
1

2
, Θ2 =

1

2πin
, Φ2 =

1

2πin
× (−1

2
).

(4.12)
Before proceeding further, we note the following.
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m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1

=−
m−1∑
j=1

(m− 1)j−1
(2πin)j

m−j∑
k=1

Ek
k(m− j − k + 1)

=− 1

m

m−1∑
j=1

m−j∑
k=1

(m)j
(2πin)jk(m− j − k + 1)

Ek

=− 1

m

m−1∑
s=1

m−s∑
k=1

(m)s
(2πin)sk(m− s− k + 1)

Ek

=− 1

m

m∑
s=1

m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)
.

(4.13)

m−1∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

=
m−1∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

m−j∑
k=1

(m− j)k−1
(2πin)k

Em−j−k+1

=
2

m

m−1∑
j=1

m−j∑
k=1

(m)j+k−1
(2πin)j+k(m− j)

Em−j−k+1

=
2

m

m−1∑
j=1

1

m− j

m∑
s=j+1

(m)s−1
(2πin)s

Em−s+1

=
2

m

m∑
s=2

(m)s−1
(2πin)s

Em−s+1

s−1∑
j=1

1

m− j

=
2

m

m∑
s=2

(m)s−1
(2πin)s

Em−s+1 (Hm−1 −Hm−s)

=
2

m

m∑
s=1

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s) .

(4.14)

m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

=
1

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
.

(4.15)
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Putting everything together, we have

C(m)
n =

1

m

m∑
s=1

m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)

− 1

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
+

2

m

m∑
s=1

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s)

= − 1

m

m∑
s=1

(
(m)s

(2πin)s
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)

)
.

(4.16)
Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx = − 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
.

(4.17)
Question: For what values of m ≥ 1, does

∑m
k=0Ek = 2− Em hold ?

Remark 4.1. In a previous paper (see [3,4,6,12]), it was shown that

∫ 1

0

γm(x)dx =
1

m(m2 − 1)

m−1∑
l=1

m−l∑
j=1

(−1)j
(
m+1
l+j

)
El+j(

m−2
l−1
) +

2(−1)m+1Em+1

m(m2 − 1)

m−1∑
l=1

(−1)l(
m−2
l−1
) .

(4.18)
So, we obtain the following identity.

− 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)

=
1

m(m2 − 1)

m−1∑
l=1

m−l∑
j=1

(−1)j
(
m+1
l+j

)
El+j(

m−2
l−1
) +

2(−1)m+1Em+1

m(m2 − 1)

m−1∑
l=1

(−1)l(
m−2
l−1
) , (4.19)

for m ≥ 2.

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for
those integers m ≥ 2 with and Λm = 0, and discontinuous with jump discontinuities
at integers for those integers ≥ 2 with Λm 6= 0.

Assume first that Λm = 0. Then γm(1) = γm(0). γm(< x >) is piecewise
C∞ and continuous. So the Fourier series of γm(< x >) converges uniformly to
γm(< x >), and
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γm(< x >)

= − 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)

−
∞∑

n=−∞,n6=0

( 1

m

m∑
s=1

( (m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)

−
m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)

))
e2πinx

= − 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)

+
1

m

m∑
s=1

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
×
(
−s!

∞∑
n=−∞,n6=0

e2πinx

(2πin)s

)

= − 1

m

(
m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)

+
1

m

m∑
s=2

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

+
(
−
m−1∑
l=1

El
l(m− l)

)
×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z,

(4.20)
where Hm =

∑m
k=1

1
k .

Now, we get the following theorem.

Theorem 4.2. Let m be an integer ≥ 2, with

Λm = −
m−1∑
k=1

Ek
k(m− k)

= 0.
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Then we have the following.
(a)

∑m−1
k=1

1
k(m−k)Ek(< x >) < x >m−k has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
Ek(< x >) < x >m−k

= − 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
−

∞∑
n=−∞,n6=0

( 1

m

m∑
s=1

( (m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)

−
m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)

))
e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)

m−1∑
k=1

1

k(m− k)
Ek(< x >) < x >m−k

= − 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
Bs(< x >),

for all x ∈ (−∞,∞). Here Bk(< x >) is the Bernoulli function.

Assume next that m is an integer ≥ 2 with Λm 6= 0. Then, γm(1) 6= γm(0).
Hence γm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
integers. Thus the Fourier series of γm(< x >) converges pointwise to γm(< x >),
for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm = −1

2

m−1∑
k=1

Ek
k(m− k)

,

for x ∈ Z.
Hence we obtain the following theorem.

Theorem 4.3. Let m be an integer ≥ 2, with

Λm = −
m−1∑
k=1

Ek
k(m− k)

6= 0.
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Then, we have the following.
(a)

− 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
−

∞∑
n=−∞,n6=0

( 1

m

m∑
s=1

( (m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)

−
m−1∑
l=s

(m)sEl−s+1

(2πin)s(l − s+ 1)(m− l)

))
e2πinx

=

{∑m−1
k=1

1
k(m−k)Ek(< x >) < x >m−k, for x /∈ Z,

− 1
2

∑m−1
k=1

Ek

k(m−k) , for x ∈ Z.

Here the convergence is pointwise.
(b)

− 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=1

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
Ek(< x >) < x >m−k, for x /∈ Z,

− 1

m

( m∑
k=1

Ek
k(m− k + 1)

+
1

m(m+ 1)
− 2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

((m
s

)
Hm−1 −Hm−s

m− s+ 1
(1− 2Em−s+1)−

(
m

s

)m−1∑
l=s

El−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

= −1

2

m−1∑
k=1

Ek
k(m− k)

, for x ∈ Z.

Question: For what values of m ≥ 2, does
∑m−1
k=1

Ek

k(m−k) = 0 hold ?
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In this paper, we introduce the higher order generalization of Bernstein type operators
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1. Introduction and preliminaries

In 1912, S.N Bernstein [4] introduced the following sequence of operators
Bn : C[0, 1]→ C[0, 1] defined for any n ∈ N and for any f ∈ C[0, 1] such as

Bn(f ;x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1]. (1.1)

In approximation theory, q-type generalization of Bernstein polynomials was in-
troduced by Lupaş [7].

For f ∈ C[0, 1], the generalized Bernstein polynomial based on the q-integers
is defined by Phillips [15] as follows

Bn,q(f ;x) =
n∑
k=0

[
n
k

]
q

xk
n−k−1∏
s=0

(1− qsx) f

(
[k]q
[n]q

)
, x ∈ [0, 1]. (1.2)

Recently, Mursaleen et al. [10] applied (p, q)-calculus in approximation the-
ory and introduced first (p, q)-analogue of Bernstein operators and defined as:

Bn,p,q(f ;x) =
1

p
n(n−1)

2

n∑
k=0

f

(
[k]

pk−n[n]

)
Pn,k(p, q;x), 0 < q < p ≤ 1, x ∈ [0, 1]

where

Pn,k(p, q;x) = p
k(k−1)

2

[
n
k

]
p,q

xk
n−k−1∏
s=0

(ps − qsx). (1.3)

1
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They have also introduced and studied approximation properties based on (p, q)-
integers given as: (p, q)-Bernstein-Stancu operators [11], (p, q)-Bernstein-Shurer
operators [14] and (p, q)-Bleimann-Butzer-Hahn operators [13]. In the sequel,
some more articles on (p, q)-approximation have also been appeared, e.g. [1], [2],
[3], [6], [9], [12] and [13].

We recall some basic properties of (p, q)-integers.

The (p, q)-integer [n]p,q is defined by

[n]p,q =
pn − qn

p− q
, n = 0, 1, 2, · · · , 0 < q < p ≤ 1.

The (p, q)-Binomial expansion is

(x+ y)np,q := (x+ y)(px+ qy)(p2x+ q2y) · · · (pn−1x+ qn−1y)

and the (p, q)-binomial coefficients are defined by[
n
k

]
p,q

:=
[n]p,q!

[k]p,q![n− k]p,q!
.

For p = 1, all the notions of (p, q)-calculus are reduced to q-calculus. For details
on (p, q)-calculus and q-calculus, one can refer [5, 7]. In this paper we use the
notation [n] in place of [n]p,q.

In [5], (p, q)-derivative of a function f(x) is defined by

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0, (1.4)

and the formulae for the (p, q)-derivative for the product of two functions is given
as

Dp,q(fg)(x) = f(px).Dp,qg(x) + {Dp,qf(x)}.g(qx), (1.5)

also

Dp,q(fg)(x) = f(qx).Dp,qg(x) + {Dp,qf(x)}.g(px). (1.6)

Let r ∈ N ∪ {0} be a fixed number. For f ∈ Cr[0, 1] and m ∈ N, we define
rth order (p, q)-Bernstein type operators as follows:

B[r]
n,p,q(f ;x) =

1

p
n(n−1)

2

n∑
k=0

Pn,k(p, q;x)
r∑
i=0

1

i!
f (i)

(
[k]

pk−n[n]

)(
x− [k]

pk−n[n]

)i
(1.7)

In this paper, using the moment estimates from [8], we give the estimates
of the central moments for these operators. We also study some approximation
properties of an rth order generalization of the operators defined by (1.7) us-
ing the techniques of the work on the higher order generalization of q-analogue
[16]. Further, we study approximation properties and prove Voronovskaja type
theorem for these operators.
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If we put p = 1, then we get the moments for q-Bernstein operators [8] and
the usual generalization higher order q-Bernstein operators [16], respectively.

2. Main results

We have the following elementary result.

Proposition 2.1. For n ≥ 1, 0 < q < p ≤ 1

Dp,q(1 + x)np,q = [n](1 + qx)n−1p,q . (2.1)

Proof. By applying simple calculation on (p, q)-analogue, we have

(1 + px)np,q = pn−1(1 + px)(1 + qx)n−1p,q , (1 + qx)np,q = (pn−1 + qnx)(1 + qx)n−1p,q .
(2.2)

Applying (p, q)-derivative and result (2.2) we get the desired result. �

Lemma 2.2. Let Bn,p,q(f ;x) be given by (1.7). Then for any m ∈ N, x ∈ [0, 1]
and 0 < q < p ≤ 1 we have

Bn,p,q

(
(t− x)m+1

p,q ;x
)

=
pm+nx(1− x)

[n]
Dp,q

{
Bn,p,q

(
(t− x

p
)mp,q;

x

p

)}
+

pm+n−1[m]x(1− x)

[n]
Bn,p,q

(
(t− qx

p
)m−1p,q ;

qx

p

)
+

[m](pn − qn)x

[n]
Bn,p,q

(
(t− x)mp,q;x

)
.

Proof. First of all by using (1.5) and Proposition 2.1, we have

Dp,q

(
1

p
n(n−1)

2

∑n
k=0

(
t− x

p

)m
p,q
Pn,k(p, q;

x
p
)

)

=
1

p
n(n−1)

2

(
n∑
k=0

(t− x)mp,qDp,q{Pn,k(p, q;
x

p
)} − [m]

p

n∑
k=0

(
t− qx

p

)m−1
p,q

Pn,k(p, q;
qx

p
)

)
.

(2.3)

Now in the same way by using (1.5) and Proposition 2.1, we have

Dp,q

{
Pn,k

(
p, q; x

p

)}
= Dp,q

{
p
k(k−1)

2 [k]

[
n
k

]
p,q

(
x
p

)k (
1− x

p

)k }

= p
k(k−1)

2

(
[k]

[
n
k

]
p,q

1

pk
xk−1

(
1− qx

p

)n−k
p,q

− [n− k]

[
n
k

]
p,q

1

p
xk
(

1− qx

p

)n−k−1
p,q

)
.

(2.4)

Now by a simple calculation, we have(
1− qx

p

)n−k
p,q

=
1

pn−k
(p− qx)n−k+1

p,q =
1

pn−k
1

(1− x)
(pn−k − qn−kx)(1− x)n−kp,q

(2.5)
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1− qx

p

)n−k−1
p,q

=
1

pn−k−1
1

(1− x)
(1− x)n−kp,q . (2.6)

From (2.4),(2.5) and (2.6), we get

Dp,q

{
Pn,k

(
p, q;

x

p

)}
=
Pn,k(p, q;x)

pnx(1− x)

(
[k](pn−k − qn−kx)− pk[n− k]x

)
,

which implies that

Dp,q

{
Pn,k

(
p, q;

x

p

)}
=
Pn,k(p, q;x)

pnx(1− x)

(
pn−k[k]− [n]x

)
. (2.7)

From (2.3), (2.7), we have

Dp,q

(∑n
k=0

(
t− x

p

)m
p,q
Pn,k(p, q;

x
p
)

)
= − 1

p
n(n−1)

2

[m]

p

n∑
k=0

(
t− qx

p

)m−1
p,q

Pn,k(p, q;
qx

p
)

+
1

p
n(n−1)

2

1

pnx(1− x)

n∑
k=0

(t− x)mp,q Pn,k(p, q;x)(pn−k[k]− [n]x)

= − 1

p
n(n−1)

2

[m]

p

n∑
k=0

(
t− qx

p

)m−1
p,q

Pn,k(p, q;
qx

p
)

+
1

p
n(n−1)

2

1

pnx(1− x)

n∑
k=0

(t− x)mp,q Pn,k(p, q;x)

×
(

[n]

pm
(pmt− qmx)− [n]

pm
(pm − qm)x

)
.

Hence we have
Dp,q

{
Bn,p,q

(
(t− x

p
)mp,q;

x
p

)}
= − [m]

p
Bn,p,q

(
(t− qx

p
)m−1p,q ;

qx

p

)
+

[n]

pm+nx(1− x)
Bn,p,q

(
(t− x)m+1

p,q ;x
)

− [m](pn − qn)

pm+n(1− x)
Bn,p,q

(
(t− x)mp,q;x

)
.

This complete the proof of Lemma 2.2. �

Lemma 2.3. Let Bn,p,q

(
(t− x)mp,q;x

)
be a polynomial in x of degree less than or

equal to m and the minimum degree of 1
[n]

is bm+1
2
c. Then for any fixed m ∈ N

and x ∈ [0, 1], 0 < q < p ≤ 1 we have

Bn,p,q

(
(t− x)mp,q;x

)
=
x(1− x)

[n]b
m+1

2
c

m−2∑
k=0

bk,m,n(p, q)xk, (2.8)

such that the coefficients bk,m,n(p, q) satisfy | bk,m,n(p, q) |≤ bm, k = 1, 2, · · · ,m−2
and bm does not depend on x, t, p, q; where bac is an integer part of a ≥ 0.
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Proof. Clearly by Lemma 2.2 it is true for m = 2. Assuming it is true for m, then
from the recurrence of Lemma 2.2 and equation (2.8) we easily get

Bn,p,q

(
(t− x)m+1

p,q ;x
)
=
x(1− x)

[n]b
m+2

2
c

m−1∑
k=0

bk,m+1,n(p, q)xk,

where

bk,m+1,n(p, q) =
1

[n]α
(
pm+n−k[k] + pm+n−k−1qk

)
bk,m,n(p, q)

− 1

[n]α
(
pm+n+1−k[k − 1] + [2]pm+n−k−1qk−1

)
bk−1,m,n(p, q)

+
1

[n]α
[m](pn − qn)bk−1,m,n(p, q) + [m]pm+n−k−1qkbk−1,m−1,n(p, q)

− [m]pm+n−k−1qkbk−2,m−1,n(p, q).

Clearly

α = 1 + bm+ 1

2
c − bm+ 2

2
c, 0 ≤ k ≤ m− 1,

which lead us that either α = 0 or α = 1.
Since | bk,m,n(p, q) |≤ bm, for k = m− 1, clearly we have

| bk,m+1,n(p, q) | ≤ 1

[n]α
(
pn+1[m− 1] + pnqm−1

)
bm +

1

[n]α
(
pn+2[m− 2] + [2]pnqm−2

)
bm

+
1

[n]α
[m](pn − qn)bm + [m]pnqm−1bm−1

+ [m]pnqm−1bm−1

=
1

[n]α
(
p[m− 1] + qm−1

)
bm +

1

[n]α
(
p2[m− 2] + [2]qm−2

)
bm

+
1

[n]α
[m]bm + [m]qm−1bm−1 + [m]qm−1bm−1

= bm+1, k = 1, 2, · · ·m− 1,

and bm does not depend on x, t, p, q. This complete the proof. �

Remark 2.4. From the Lemma 2.3 we have

Bn,p,q

(
(t− x)mp,q;x

)
= x(1− x)Qm−2, Bn,p,q

(
(t− x)mp,q;x

) ∣∣∣∣
x=0,1

= 0, (2.9)

where Qm−2 is a polynomial of highest degree m− 2.

From the Lemma 2.2 and Lemma 2.3 we have the following theorem.
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Theorem 2.5. Let m ∈ N and 0 < q < p ≤ 1. Then there exits a constant
Cm > 0 such that for any x ∈ [0, 1], we have

| Bn,p,q

(
(t− x)mp,q;x

)
|≤ Cm

x(1− x)

[n]b
m+1

2
c
.

Lemma 2.6. For any fixed m ∈ N and x ∈ [0, 1], 0 < q < p ≤ 1 we have

(t− x)m =
m∑
k=1

γm,k(p− q)m−kxm−k(t− x)kp,q =
m∑
k=1

γm,k

(
pn − qn

[n]

)m−k
xm−k(t− x)kp,q

(2.10)

where

γm,k =

{
γm−1,k−1

pk−1 − [k]γm−1,k

pk
, k = 1, · · · ,m− 1, γm,0 = 0

1, k = m,

the coefficients γm,k satisfy | γm,k |≤ γm, k = 1, · · · ,m and γm does not depend
on x, t, p, q.

Proof. Inductively, for m = 1, it is obvious. For m ≥ 1 the relation (2.10) holds.
For k = 1, · · · ,m, we have

(t− x)m+1 =
m∑
k=1

γm,k(p− q)m−kxm−k(t− x)kp,q(t− x)m, (2.11)

We can write

t− x =
1

pk
(
pkt− qkx− (p− q)[k]p,qx

)
(2.12)

(2.11),(2.12) imply that,

(t− x)m+1 =
m∑
k=1

γm,k(p− q)m−kxm−k(t− x)k+1
p,q

1

pk

−
m∑
k=1

γm,k(p− q)m−kxm−k(t− x)kp,q
1

pk
(p− q)[k]p,qx

=
γm,m(t− x)m+1

p,q

pm
+

m∑
k=2

1

pk−1
γm,k−1(p− q)m+1−kxm+1−k(t− x)kp,q

− γm,1(p− q)mxm(t− x)

p
−

m∑
k=2

1

pk
[k]γm,k(p− q)m+1−kxm+1−k(t− x)kp,q

=
γm,m(t− x)m+1

p,q

pm
− γm,1(p− q)mxm(t− x)

p

+
m∑
k=2

(
γm,k−1
pk−1

− [k]γm,k
pk

)
(p− q)m+1−kxm+1−k(t− x)kp,q

=
m+1∑
k=1

γm+1,k(p− q)m+1−kxm+1−k(t− x)kp,q,
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where

γm+1,k =

{
γm,k−1

pk−1 − [k]γm,k
pk

, k = 1, · · · ,m, γm,0 = 0

γm,m = 1, k = m+ 1.

�

Theorem 2.7. Let m ∈ N and 0 < q < p ≤ 1. Then there exits a constant
Em > 0 such that for any x ∈ [0, 1], we have

| Bn,p,q ((t− x)m;x) |≤ Em
x(1− x)

[n]b
m+1

2
c
.

Proof. From Lemma 2.6 we have

| Bn,p,q ((t− x)m, x) | ≤
m∑
k=1

| γm,k |
(
pn − qn

[n]

)m−k
| Bn,p,q

(
(t− x)kp,q, x

)
|

≤ γm

(
| Bn,p,q

(
(t− x)mp,q, x

)
| +

m−1∑
k=1

1

[n]m−k
| Bn,p,q

(
(t− x)kp,q, x

)
|

)

By using Theorem 2.5 we have

| Bn,p,q ((t− x)m, x) | ≤ γm

(
| Bn,p,q

(
(t− x)mp,q, x

)
| +

m−1∑
k=1

1

[n]m−k
Ck
x(1− x)

[n]b
k+1
2
c

)

≤ γm

(
| Bn,p,q

(
(t− x)mp,q, x

)
| +x(1− x)

[n]1+b
m
2
c

m−1∑
k=1

Ck

)

≤ γm

(
Cm

x(1− x)

[n]b
m+1

2
c

+
x(1− x)

[n]b
m+1

2
c

m−1∑
k=1

Ck

)

≤

(
γmCm +

m−1∑
k=1

Ck

)
x(1− x)

[n]b
m+1

2
c

= Em
x(1− x)

[n]b
m+1

2
c

�

Corollary 2.8. Let m ∈ N and 0 < q < p ≤ 1. Then there exits a constant
Km > 0 such that for any x ∈ [0, 1], we have

Bn,p,q ((| t− x |)m;x) ≤ Km
x(1− x)

[n]
m
2

. (2.13)
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Proof. For an even m, clearly we have

Bn,p,q ((| t− x |)m;x) = Bn,p,q ((t− x)m;x)

≤ Em
x(1− x)

[n]b
m+1

2
c

= Km
x(1− x)

[n]
m
2

In case if m is odd, say m = 2u+ 1, we have
Bn,p,q ((| t− x |)2u+1;x)

≤
√
Bn,p,q

(
(| t− x |)4up,q;x

)√
Bn,p,q ((| t− x |)2;x)

≤

√
E4u

x(1− x)

[n]b
4u+1

2
c

√
E2
x(1− x)

[n]b
3
2
c

=

√
E4u

x(1− x)

[n]
2u
2

√
E2
x(1− x)

[n]

= K2u+1
x(1− x)

[n]
2u+1

2

.

This complete the proof. �

Theorem 2.9. Let B
[r]
n,p,q(f ;x) be an operator from Cr[0, 1]→ Cr[0, 1]. Then for

0 < q < p ≤ 1 there exits a constant M(r) such that for every f ∈ Cr[0, 1], we
have

‖ B[r]
n,p,q(f ;x) ‖C[0,1]≤M(r)

r∑
i=0

‖ f (i) ‖= M(r) ‖ f ‖Cr[0,1] . (2.14)

Proof. Clearly B
[r]
n,p,q(f ;x) is continuous on [0, 1]. From (1.7) we have

B[r]
n,p,q(f ;x) =

r∑
i=0

(−1)i

i!
Bn,p,q

(
(t− x)if (i)(t);x

)
.

From the Corollary 2.8, we have

| Bn,p,q

(
(t− x)if (i)(t);x

)
| ≤ ‖ f (i) ‖ Bn,p,q

(
| (t− x) |i;x

)
≤ Ki ‖ f (i) ‖ [n]−

i
2 .

Therefore

‖ B[r]
n,p,q(f ;x) ‖ ≤

r∑
i=0

(−1)i

i!
‖ Bn,p,q

(
(t− x)if (i)(t);x

)
‖

≤ M(r)
r∑
i=0

‖ f (i) ‖ .

This complete the proof. �
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3. Convergence properties of B
[r]
n,p,q(f ;x)

The modulus of continuity of the derivative f (r) is given by

ω
(
f (r); t

)
= sup

{
| f (r)(x)− f (r)(y) |:| x− y |≤ t, x, y ∈ [0, 1]

}
. (3.1)

Theorem 3.1. Let 0 < q < p ≤ 1 and r ∈ N ∪ {0} be a fixed number. Then for
x ∈ [0, 1], n ∈ N there exits Dr > 0 such that for every f ∈ Cr[0, 1] the following
inequality holds

| B[r]
n,p,q(f ;x)− f(x) |≤ Dr

1

[n]
r
2

ω

(
f (r);

1√
[n]

)
. (3.2)

Proof. Let r ∈ N. Then for f ∈ Cr[0, 1] at a given point t ∈ [0, 1], we have from
the Taylor formula that

f(x) =
r∑
i=0

f (i)(t)

i!
(x− t)i +

(x− t)r

((r − 1)!)

×
∫ 1

0

(1− u)r−1
(
f (r)(t+ u(x− t))− f (r)(t)

)
du.

On applying B
[r]
n,p,q(f ;x), we get

f(x)−B[r]
n,p,q(f ;x) =

n∑
k=0

(x− [k]
pk−n[n]

)r

(r − 1)!

∫ 1

0

(1− u)r−1Pn,k(p, q;x)

×
[
f (r)

(
[k]

pk−n[n]
+ u

(
x− [k]

pk−n[n]

))
− f (r)

(
[k]

pk−n[n]

)]
du. (3.3)

Now from the definition and properties of modulus of continuity, we have

∣∣∣∣f (r)

(
[k]

pk−n[n]
+ u

(
x− [k]

pk−n[n]

))
−f (r)

(
[k]

pk−n[n]

) ∣∣∣∣ ≤ ω

(
f (r);u

∣∣∣∣x− [k]

pk−n[n]

∣∣∣∣)

ω

(
f (r);u

∣∣∣∣x− [k]

pk−n[n]

∣∣∣∣) ≤ (√[n]

∣∣∣∣x− [k]

pk−n[n]

∣∣∣∣+ 1

)
ω

(
f (r);

1√
[n]

)
. (3.4)

�

Now for every 0 ≤ x ≤ 1, 0 < q < p ≤ 1, k ∈ N∪{0}, n ∈ N and from (3.3)
and (3.4), we get

| B[r]
n,p,q(f ;x)− f(x) |

≤ 1

r!
ω

(
f (r);

1√
[n]

)
n∑
k=0

∣∣∣∣x− [k]

pk−n[n]

∣∣∣∣r (√[n]

∣∣∣∣x− [k]

pk−n[n]

∣∣∣∣+ 1

)
Pn,k(p, q;x)
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=
1

r!
ω

(
f (r);

1√
[n]

)(√
[n]Bn,p,q

(
| x− t |r+1;x

)
+Bn,p,q (| x− t |r;x)

)
. (3.5)

Using (3.9) and (3.5) for x ∈ [0, 1], we have

| B[r]
n,p,q(f ;x)− f(x) | ≤ 1

r!
(Kr+1 +Kr)

(
1√
[n]

)r

ω

(
f (r);

1√
[n]

)

= Dr

(
1√
[n]

)r

ω

(
f (r);

1√
[n]

)
.

In order to obtain the uniform convergence of B
[r]
n,pn,qn(f ;x) to a continuous

function f , we take q = qn, p = pn where qn ∈ (0, 1) and pn ∈ (qn, 1] satisfying,

lim
n
pn = 1, lim

n
qn = 1. (3.6)

Corollary 3.2. Let p = pn, q = qn, 0 < qn < pn ≤ 1 satisfy (3.6) and f ∈
Cr[0, 1] for a fixed number r ∈ N ∪ {0}. Then

lim
n→∞

[n]
r
2 ‖ B[r]

n,k(f)− f ‖= 0. (3.7)

We say that (cf. [16]) a function f ∈ C[0, 1] belongs to LipM(α), 0 < α ≤ 1,
provided

| f(x)− f(y) |≤M | x− y |α, (x, y ∈ [0, 1] and M > 0). (3.8)

Corollary 3.3. Let p = pn, q = qn, 0 < qn < pn ≤ 1 satisfy (3.6) and f ∈
Cr[0, 1] for a fixed number r ∈ N ∪ {0}. If f (r) ∈ LipM(α) then

‖ B[r]
n,p,q(f)− f ‖= O

(
[n]−

r+α
2

)
. (3.9)

Proof. From (3.2) and (3.8), we have

‖ B[r]
n,p,q(f)− f ‖≤ DrM

1

[n]
r
2

1

[n]
α
2

.

�

Theorem 3.4. Let 0 < q < p ≤ 1. Suppose that f ∈ Cr+2[0, 1], where r ∈ N∪{0}
is fixed then we have∣∣∣∣B[r]

n,p,q(f ;x)− f(x)− (−1)rf (r+1)(x)Bn,p,q ((t− x)r+1;x)

(r + 1)!

− (−1)rf (r+2)(x)Bn,p,q ((t− x)r+2;x)

(r + 2)!

∣∣∣∣
≤ (Kr+2 +Kr+4)

x(1− x)

[n]
r
2
+1

r∑
i=0

1

i!(r + 2− i)!
ω
(
f (r+2−i), [n]−

1
2

)
.
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Proof. Let f ∈ Cr+2[0, 1] and x ∈ [0, 1] for a fixed number r ∈ N ∪ {0} we have
f (i) ∈ Cr+2−i[0, 1], 0 ≤ i ≤ r. Then by Taylor formula we can write

f (i)(t) =
r+2−i∑
i=0

f (i+j)(x)

j!
(t− x)j +Rr+2−j(f ; t;x), (3.10)

where

Rr+2−i(f ; t;x) =
f (r+2−i)(ζpn−k−1t)− f (r+2−i)(x)

(r + 2− i)!
(t− x)r+2−i,

and
| ζt − x |<| t− x | .

Therefore from (1.7) and (3.10) we have

B[r]
n,p,q(f ;x) =

n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(
x− [k]

pk−n[n]

)i
i!

r+2−i∑
j=0

f (i+j)(x)

j!

(
[k]

pk−n[n]
− x
)j

+
n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(
x− [k]

pk−n[n]

)i
i!

Rr+2−i(f ; t;x)

= I1 + I2, {where t =
[k]

pk−n[n]
}

Which implies that

| B[r]
n,p,q(f ;x)− I1 |

= | I2 |

=

∣∣∣∣ n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(−1)i

i!

f (r+2−i)(ζt)− f (r+2−i)(x)

(r + 2− i)!
(t− x)r+2

∣∣∣∣
=

∣∣∣∣Bn,p,q

(
r∑
i=0

(−1)i

i!

f (r+2−i)(ζt)− f (r+2−i)(x)

(r + 2− i)!
(t− x)r+2;x

)∣∣∣∣.
We use the well-known inequality

ω(f, λδ) ≤ (1 + λ2)ω(f, δ),

| f (r+2−i)(ζt)− f (r+2−i)(x) | ≤ ω
(
f (r+2−i), | ζt − x |

)
≤ ω

(
f (r+2−i), | t− x |

)
≤ ω

(
f (r+2−i), [n]−

1
2

) (
1 + [n](t− x)2

)
.

Hence

| I2 |≤
∣∣∣∣Bn,p,q

(∑r
i=0

(−1)i
i!

f (r+2−i)(ζt)−f (r+2−i)(x)
(r+2−i)!

∣∣∣∣ | t− x |r+2;x

)
≤ Bn,p,q

(∑r
i=0

1
i!(r+2−i)!ω

(
f (r+2−i), [n]−

1
2

)
(1 + [n](t− x)2) | t− x |r+2;x

)
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=
∑r

i=0
1

i!(r+2−i)!ω
(
f (r+2−i), [n]−

1
2

)
× (Bn,p,q(| t− x |r+2;x) + [n]Bn,p,q(| t− x |r+4;x))

≤
∑r

i=0
1

i!(r+2−i)!ω
(
f (r+2−i), [n]−

1
2

)(
Kr+2

x(1−x)
[n]

r
2+1 +Kr+4

x(1−x)
[n]

r
2+1

)
= (Kr+2 +Kr+4)

x(1−x)
[n]

r
2+1

∑r
i=0

1
i!(r+2−i)!ω

(
f (r+2−i), [n]−

1
2

)
.

Therefore

| B[r]
n,p,q(f ;x)− I1 |≤ (Kr+2 +Kr+4)

x(1− x)

[n]
r
2
+1

r∑
i=0

1

i!(r + 2− i)!
ω
(
f (r+2−i), [n]−

1
2

)
.

Now we simplify for I1

I1 =
n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(x− [k]
pk−n[n]

)i

i!

r+2∑
l=i

f (l)(x)

(l − i)!

(
[k]

pk−n[n]
− x
)l−i

=
n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(−1)i

i!

r∑
l=i

f (l)(x)

(l − i)!

(
[k]

pk−n[n]
− x
)l

+
n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(−1)i

i!

f (r+1)(x)

(r + 1− i)!

(
[k]

pk−n[n]
− x
)r+1

+
n∑
k=0

Pn,k(p, q;x)
r∑
i=0

(−1)i

i!

f (r+2)(x)

(r + 2− i)!

(
[k]

pk−n[n]
− x
)r+2

=
n∑
k=0

Pn,k(p, q;x)
r∑
l=0

f (l)(x)

(l)!

(
[k]

pk−n[n]
− x
)l l∑

i=0

(
l

i

)
(−1)i

+
f (r+1)(x)

(r + 1)!

n∑
k=0

Pn,k(p, q;x)

(
[k]

pk−n[n]
− x
)r+1 r∑

i=0

(
r + 1

i

)
(−1)i

+
f (r+2)(x)

(r + 2)!

n∑
k=0

Pn,k(p, q;x)

(
[k]

pk−n[n]
− x
)r+2 r∑

i=0

(
r + 2

i

)
(−1)i.

For n ∈ N, r ∈ N ∪ {0} we have

r∑
i=0

(
r + 1

i

)
(−1)i = (−1)r,

r∑
i=0

(
r + 2

i

)
(−1)i = (r + 1)(−1)r

Therefore

I1 = f(x) +
(−1)rf (r+1)(x)Bn,p,q ((t− x)r+1;x)

(r + 1)!

+
(−1)rf (r+2)(x)Bn,p,q ((t− x)r+2;x)

(r + 2)!
.

This complete the proof. �
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Corollary 3.5. Let p = pn, q = qn, 0 < qn < pn ≤ 1 satisfy (3.6) and f ∈
C2[0, 1] for a fixed number r ∈ N ∪ {0}. Then for every x ∈ [0, 1] we have∣∣∣∣B[r]

n,pn,qn(f ;x)− f(x)− f ′′(x)

2

x(1− x)

[n]

∣∣∣∣ ≤ K
x(1− x)

[n]
ω
(
f ′′, [n]−

1
2

)
,

where K = K2+K4

2
. Moreover,

lim
n→∞

[n] (Bn,pn,qn(f ;x)− f(x)) =
x(1− x)

2
f ′′(x)

uniformly on [0, 1].
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FOURIER SERIES OF FUNCTIONS INVOLVING GENOCCHI POLYNOMIALS

TAEKYUN KIM, DAE SAN KIM, LEE CHAE JANG, AND DMITRY V. DOLGY

Abstract. We consider three types of functions involving Genocchi polynomials and derive their Fourier

series expansions. In addition, we express each of them in terms of Bernoulli functions.

1. Introduction

Let Gm(x) be the Genocchi polynomials given by the generating function

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
, (see [1, 2, 12− 17, 21]). (1.1)

The first few Genocchi polynomials are as follows:

G0(x) = 0, G1(x) = 1, G2(x) = 2x− 1,

G3(x) = 3x2 − 3x, G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x, G6(x) = 6x5 − 15x4 + 15x2 − 3,

G7(x) = 7x6 − 21x5 + 35x3 − 21x.

(1.2)

From the relation Gm(x) = mEm−1(x)(m ≥ 1), we have

degGm(x) = m− 1 (m ≥ 1), Gm = mEm−1 (m ≥ 1),

G0 = 0, G1 = 1, G2m+1 = 0 (m ≥ 1), and G2m 6= 0 (m ≥ 1).
(1.3)

Moreover, we have

d

dx
Gm(x) = mGm−1(x) (m ≥ 1),

Gm(x+ 1) +Gm(x) = 2mxm−1 (m ≥ 0).
(1.4)

From these, we have

Gm(1) +Gm(0) = 2δm,1, (m ≥ 0). (1.5)∫ 1

0

Gm(x)dx =
1

m+ 1
(Gm+1(1)−Gm+1(0))

=
2

m+ 1
(−Gm+1(0) + δm,0)

=

{
0, if m is even,
− 2
m+1Gm+1, if m is odd.

(1.6)

2010 Mathematics Subject Classification. 11B83, 42A16.
Key words and phrases. Fourier series, Genocchi polynomials, Genocchi functions.
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2 Fourier series of functions involving Genocchi polynomials

For any real number x, let < x >= x − [x] ∈ [0, 1) denote the fractional part of x. In this paper, we
will study the Fourier series of the following three types of functions involving Genocchi polynomials
Gm(< x >).

(1) αm(< x >) =
∑m
k=1Gk(< x >) < x >m−k, (m ≥ 2);

(2) βm(< x >) =
∑m
k=1

1
k!(m−k)!Gk(< x >) < x >m−k, (m ≥ 2);

(3) γm(< x >) =
∑m−1
k=1

1
k(m−k)Gk(< x >) < x >m−k, (m ≥ 2).

The reader may refer to any book (for example, see [6,18,22]) for elementary facts about Fourier analysis.
As to γm(< x >), we note that the polynomial identity (1.7) follows immediately from Theorems 4.1

and 4.2, which can be derived in turn from the Fourier series expansion of γm(< x >).

m−1∑
k=1

1

k(m− k)
Gk(x)xm−k

= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=1

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)
Bs(x).

(1.7)

The obvious polynomial identities can be derived also for αm(< x >) and βm(< x >) from Theorems
2.1 and 2.2, and Theorems 3.1 and 3.2 , respectively. It is noteworthy that from the Fourier series
expansion of the function

∑m−1
k=1

1
k(m−k)Bk(< x >)Bm−k(< x >) we can derive a slightly different

version of the well-known Miki’s identity (see [3,5,19,20])

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.8)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) .

In addition, we can derive the Faber-Pandharipande-Zagier identity (see [4])

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.9)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) ,

where Bm =
(

1−2m−1

2m−1

)
Bm =

(
21−m − 1

)
Bm = Bm

(
1
2

)
, Some related works can be found in [1,7-11].

2. Fourier series of the first type of functions

In this section, we will study the Fourier series of first type of functions involving Genocchi polynomials.
Let αm(x) =

∑m
k=1Gk(x)xm−k, (m ≥ 2). Note here that degαm(x) = m− 1. Then we will consider the
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function

αm(< x >) =
m∑
k=1

Gk(< x >) < x >m−k, (m ≥ 2). (2.1)

defined on (−∞,−∞) which is periodic of period 1. The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.2)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.3)

Before proceeding further, we first observe the following.

α′m(x) =
m∑
k=1

(kGk−1(x)xm−k + (m− k)Gk(x)xm−k−1)

=
m∑
k=2

(kGk−1(x)xm−k +
m−1∑
k=1

(m− k)Gk(x)xm−k−1

=
m−1∑
k=1

(k + 1)Gk(x)xm−k−1 +
m−1∑
k=1

(m− k)Gk(x)xm−k−1

= (m+ 1)
m−1∑
k=1

Gk(x)xm−1−k

= (m+ 1)αm−1(x).

(2.4)

From this, we have
(
αm+1(x)
m+2

)′
= αm(x). Then we have∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)), (2.5)

αm(1)− αm(0) =
m∑
k=1

(Gk(1)−Gk(0)δm,k)

=

m∑
k=1

(−Gk(0) + 2δk,1 −Gk(0)δm,k) = −
m∑
k=1

Gk + 2−Gm,
(2.6)

αm(0) = αm(1)⇐⇒
m∑
k=1

Gk = 2−Gm, (2.7)

∫ 1

0

αm(x)dx =
1

m+ 2

(
−
m+1∑
k=1

Gk + 2−Gm+1

)
. (2.8)
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We are now ready to determine the Fourier coefficients A
(m)
n .

Case 1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n +

1

2πin

(
m∑
k=1

Gk − 2 +Gm

)

=
m+ 1

2πin

(
m

2πin
A(m−2)
n +

1

2πin
(

m−1∑
k=1

Gk − 2 +Gm−1)

)

+
1

2πin

(
m∑
k=1

Gk − 2 +Gm

)

=
(m+ 1)m

(2πin)2
A(m−2)
n +

m+ 1

(2πin)2

(
m−1∑
k=1

Gk − 2 +Gm−1

)

+
1

2πin

(
m∑
k=1

Gk − 2 +Gm

)
= · · ·

=
(m+ 1)m−2
(2πin)m−2

A(2)
n +

m−2∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=1

Gk − 2 +Gm−j+1

)

= −3(m+ 1)m−2
(2πin)m−1

+
m−2∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=1

Gk − 2 +Gm−j+1

)

=

m−1∑
j=1

(m+ 1)j−1
(2πin)j

(
m−j+1∑
k=1

Gk − 2 +Gm−j+1

)

=
1

m+ 2

m−1∑
j=1

(m+ 1)j
(2πin)j

(
m−j+1∑
k=1

Gk − 2 +Gm−j+1

)
,

(2.9)

where

A(2)
n =

∫ 1

0

(3x− 1)e−2πinxdx = − 3

2πin
. (2.10)

Case 2: n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx = − 1

m+ 2
(
m+1∑
k=1

Gk − 2 +Gm+1). (2.11)

αm(< x >), (m ≥ 2) is piecewise C∞. Moreover, αm(< x >) is continuous for those integers m ≥ 2
with

∑m
k=1Gk = 2−Gm and discontinuous with jump discontinuities at integers for those integers m ≥ 2

with
∑m
k=1Gk 6= 2−Gm .

We need the following facts about Bernoulli functions Bm(< x >):
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(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n6=0

e2πinx

(2πin)m
. (2.12)

(b) for m = 1,

−
∞∑

n=−∞,n6=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z, (2.13)

where Zc = R−Z. Assume first that m ≥ 2 is an integer with
∑m
k=1Gk = 2−Gm. Then αm(1) = αm(0).

Thus αm(< x >) is piecewise C∞, and continuous. So the Fourier series of αm(< x >) converges
uniformly to αm(< x >), and

αm(< x >)

= − 1

m+ 2
(
m+1∑
k=1

Gk − 2 +Gm+1) +
1

m+ 2

∞∑
n=−∞,n6=0

m−1∑
j=1

(m+ 2)j
(2πin)j

(

m−j+1∑
k=1

Gk − 2 +Gm−j+1)

 e2πinx

= − 1

m+ 2
(
m+1∑
k=1

Gk − 2 +Gm+1)

− 1

m+ 2

m−1∑
j=1

(
m+ 2

j

)(m−j+1∑
k=1

Gk − 2 +Gm−j+1

)−j! ∞∑
n=−∞,n6=0

e2πin

(2πin)j


= − 1

m+ 2

(
m+1∑
k=1

Gk − 2 +Gm+1

)
− 1

m+ 2

m−1∑
j=2

(
m+ 2

j

)(m−j+1∑
k=1

Gk − 2 +Gm−j+1

)
Bj(< x >)

−

(
m∑
k=1

Gk − 2 +Gm)

)
×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z,

(2.14)

for all x ∈ (−∞,∞). Hence we obtain the following theorem.

Theorem 2.1. Let m ≥ 2 be an integer with
∑m
k=1Gk = 2−Gm. Then we have the following.

(a)
∑m
k=1Gk(< x >) < x >m−k has the Fourier series expansion

m∑
k=1

Gk(< x >) < x >m−k

= − 1

m+ 2

(
m+1∑
k=1

Gk − 2 +Gm+1

)

+
1

m+ 2

∞∑
n=−∞,n6=0

m−1∑
j=1

(m+ 2)j
(2πin)j

(

m−j+1∑
k=1

Gk − 2 +Gm−j+1)

 e2πinx,

(2.15)

for all x ∈ (−∞,∞). Here the convergence is uniform.
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6 Fourier series of functions involving Genocchi polynomials

(b)

m∑
k=1

Gk(< x >) < x >m−k

= − 1

m+ 2

m−1∑
j=0,j 6=1

(
m+ 2

j

)(m−j+1∑
k=1

Gk − 2 +Gm−j+1

)
Bj(< x >),

(2.16)

for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Next, we assume that m ≥ 2 is an integer with
∑m
k=1Gk 6= 2 − Gm. Then αm(1) 6= αm(0). Hence

αm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at integers. The Fourier series
of αm(< x >) converges pointwise to αm(< x >), for x ∈ Zc, and converges to

1

2
(αm(0) + αm(1)) = αm(0)− 1

2

m∑
k=1

Gk + 1− 1

2
Gm

= 1− 1

2

m−1∑
k=1

Gk.

(2.17)

Thus we get the following theorem.

Theorem 2.2. Let m ≥ 2 be an integer with
∑m
k=1Gk 6= 2−Gm. Then we have the following.

(a)

− 1

m+ 2

(
m+1∑
k=1

Gk − 2 +Gm+1

)
+

1

m+ 2

∞∑
n=−∞,n6=0

m−1∑
j=1

(m+ 2)j
(2πin)j

(
m−j+1∑
k=1

Gk − 2 +Gm−j+1

) e2πinx

=

{ ∑m
k=1Gk(< x >) < x >m−k, for x ∈ Zc,

1− 1
2

∑m−1
k=1 Gk, for x ∈ Z.

(2.18)

Here the convergence is pointwise.
(b)

− 1

m+ 2

m−1∑
j=0

(
m+ 2

j

)
(

m−j+1∑
k=1

Gk − 2 +Gm−j+1)Bj(< x >)

=
m∑
k=1

Gk(< x >) < x >m−k, for x ∈ Zc ;

− 1

m+ 2

m−1∑
j=0,j 6=1

(
m+ 2

j

)
(

m−j+1∑
k=1

Gk − 2 +Gm−j+1)Bj(< x >)

= 1− 1

2

m−1∑
k=1

Gk, x ∈ Z.

(2.19)

Question: For what values of m ≥ 2, does
∑m
k=1Gk = 2−Gm hold?
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3. Fourier series of the second type of functions

Let βm(x) =
∑m
k=1

1
k!(m−k)!Gk(x)xm−k, (m ≥ 2). Then, we consider the function

βm(< x >) =
m∑
k=1

1

k!(m− k)!
Gk(< x >) < x >m−k, (3.1)

defined on (−∞,−∞) which is periodic with period 1. The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx, (3.2)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx

=

∫ 1

0

βm(x)e−2πinxdx.

(3.3)

Before proceeding further, we need the following.

β′m(x) =
m∑
k=1

{
k

k!(m− k)!
Gk−1(x)xm−k +

m− k
k!(m− k)!

Gk(x)xm−k−1
}

=
m∑
k=2

1

(k − 1)!(m− k)!
Gk−1(x)xm−k +

m−1∑
k=1

1

k!(m− k − 1)!
Gk(x)xm−k−1

=
m−1∑
k=1

1

k!(m− 1− k)!
Gk(x)xm−1−k +

m−1∑
k=1

1

k!(m− 1− k)!
Gk(x)xm−1−k

= 2βm−1(x).

(3.4)

So, β′m(x) = 2βm−1(x). From this, we see that(
βm+1(x)

2

)′
= βm(x) (3.5)

and ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)). (3.6)

We also observe that

βm(1)− βm(0) =
m∑
k=1

1

k!(m− k)!
(Gk(1)−Gk(0)δm,k)

=
m∑
k=1

1

k!(m− k)!
(−Gk(0) + 2δk,1)−

m∑
k=1

Gk(0)δm,k
k!(m− k)!

= −
m∑
k=1

Gk
k!(m− k)!

+
2

(m− 1)!
− Gm

m!
.

(3.7)
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8 Fourier series of functions involving Genocchi polynomials

We put

Ωm = βm(1)− βm(0) = −
m∑
k=1

Gk
k!(m− k)!

+
2

(m− 1)!
− Gm

m!
, (3.8)

for m ≥ 2. Then

βm(0) = βm(1)⇐⇒ Ωm = 0. (3.9)

Moreover, ∫ 1

0

βm(x)dx =
1

2
Ωm+1

= −1

2

{
m+1∑
k=1

Gk
k!(m− k + 1)!

− 2

m!
+

Gm+1

(m+ 1)!

}
.

(3.10)

Now, we are going to determine the Fourier coefficients B
(m)
n .

Case 1: n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

= − 1

2πin
(βm(1)− βm(0)) +

1

πin

∫ 1

0

βm−1(x)e−2πinxdx

=
1

πin
B(m−1)
n − 1

2πin
Ωm

=
1

πin

(
1

πin
B(m−2)
n − 1

2πin
Ωm−1

)
− 1

2πin
Ωm

=
1

(πin)2
B(m−2)
n − 2

(2πin)2
Ωm−1 −

1

2πin
Ωm

= · · ·

=
1

(πin)m−2
B(2)
n −

m−2∑
j=1

2j−1

(2πin)j
Ωm−j+1,

(3.11)

where

B(2)
n =

∫ 1

0

(
2x− 1

2

)
e−2πinxdx = − 1

πin
. (3.12)

By (3.11) and (3.12), we get

B(m)
n = − 1

(πin)m−1
−
m−2∑
j=1

2j−1

(2πin)j
Ωm−j+1

= −
m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1.

(3.13)

Case 2: n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.14)
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Here βm(< x >), (m ≥ 2) is piecewise C∞. Moreover, βm(< x >) is continuous for those integers m ≥ 2
with Ωm = 0 and discontinuous with jump discontinuities at integers for those integers m ≥ 2 with
Ωm 6= 0.

Assume first that m ≥ 2 is an integer with Ωm = 0 . Then βm(0) = βm(1). So βm(< x >) is piecewise
C∞, and continuous. Hence the Fourier series of βm(< x >) converges uniformly to βm(< x >), and

βm(< x >) =
m∑
k=1

1

k!(m− k)!
Gk(< x >) < x >m−k

=
1

2
Ωm+1 −

∞∑
n=−∞,n6=0

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=
1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1

−j! ∞∑
n=−∞,n6=0

e2πinx

(2πin)j


=

1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z,

(3.15)

for all x ∈ (−∞,∞).
Thus we have the following theorem.

Theorem 3.1. For each integer l ≥ 2, let

Ωl = −
l∑

k=1

Gk
k!(l − k)!

+
2

(l − 1)!
− Gl

l!
. (3.16)

Assume that Ωm = 0, for an integer m ≥ 2. Then we have the following.
(a)

∑m
k=1

1
k!(m−k)!Gk(< x >) < x >m−k has the Fourier series expansion

m∑
k=1

1

k!(m− k)!
Gk(< x >) < x >m−k

=
1

2
Ωm+1 −

∞∑
n=−∞,n6=0

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx,

(3.17)

for all x ∈ (−∞,∞). Here the convergence is uniform.
(b)

m∑
k=1

1

k!(m− k)!
Gk(< x >) < x >m−k

=
m−1∑

j=0,j 6=1

2j−1

j!
Ωm−j+1Bj(< x >),

(3.18)

for all x ∈ (−∞,∞). Here Bk(< x >) is the Bernoulli function.

Assume next that m ≥ 2 is an integer with Ωm 6= 0. Then βm(1) 6= βm(0), and hence βm(< x >)
is piecewise C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier series of
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10 Fourier series of functions involving Genocchi polynomials

βm(< x >) converges pointwise to βm(< x >), for x ∈ Zc, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm

=
Gm
m!

+
1

2

(
−

m∑
k=1

Gk
k!(m− k)!

+
2

(m− 1)!
− Gm

m!

)

=
1

2

(
2

(m− 1)!
−
m−1∑
k=1

Gk
k!(m− k)!

)
,

(3.19)

for x ∈ Z. Hence we obtain the following theorem.

Theorem 3.2. For each integer l ≥ 2, let

Ωl = −
l∑

k=1

Gk
k!(l − k)!

+
2

(l − 1)!
− Gl

l!
. (3.20)

Assume that Ωm 6= 0, for an integer m ≥ 2. Then we have the following.
(a)

1

2
Ωm+1 −

∞∑
n=−∞,n6=0

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=

{ ∑m
k=1

1
k!(m−k)!Gk(< x >) < x >m−k, for x ∈ Zc,

Gm

m! + 1
2Ωm, for x ∈ Z.

(3.21)

Here the convergence is pointwise.
(b)

m−1∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >)

=
m∑
k=1

1

k!(m− k)!
Gk(< x >) < x >m−k,

(3.22)

for x ∈ Zc;
m−1∑

j=0,j 6=1

2j−1

j!
Ωm−j+1Bk(< x >)

=
Gm
m!

+
1

2
Ωm,

(3.23)

for x ∈ Z. Here Bj(< x >) is the Bernoulli function.

Remark: For what values of m ≥ 2, does
∑m
k=1

Gm

k!(m−k)! = 2
(m−1)! −

Gm

m! hold?

4. Fourier series of the third type of functions

Let γm(x) =
∑m−1
k=1

1
k(m−k)Gk(x)xm−k, (m ≥ 2). Then we will consider the function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
Gk(< x >) < x >m−k, (4.1)
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defined on (−∞,−∞) which is periodic of period 1. The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.2)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.3)

To proceed further, we need to observe the following.

γ′m(x) =
m−1∑
k=1

1

k(m− k)

{
kGk−1(x)xm−k + (m− k)Gk(x)xm−k−1

}
=
m−2∑
k=1

1

m− k − 1
Gk(x)xm−k−1 +

m−1∑
k=1

1

k
Gk(x)xm−k−1

= (m− 1)
m−2∑
k=1

1

k(m− 1− k)
Gk(x)xm−1−k +

1

m− 1
Gm−1(x)

= (m− 1)γm−1(x) +
1

m− 1
Gm−1(x).

(4.4)

Thus,

γ′m(x) = (m− 1)γm−1(x) +
1

m− 1
Gm−1(x). (4.5)

From this, we have (
1

m
(γm+1(x)− 1

m(m+ 1)
Gm+1(x))

)′
= γm(x) (4.6)

and ∫ 1

0

γm(x)dx

=

[
1

m
(γm+1(x)− 1

m(m+ 1)
Gm+1(x))

]1
0

=
1

m

(
(γm+1(1)− γm+1(0))− 1

m(m+ 1)
(Gm+1(1)−Gm+1(0))

)
=

1

m

(
γm+1(1)− γm+1(0) +

2

m(m+ 1)
Gm+1(0)

)
.

(4.7)

Observe that

γm(1)− γm(0) =
m−1∑
k=1

1

k(m− k)
(Gk(1)−Gk(0)δm,k)

=
m−1∑
k=1

1

k(m− k)
(−Gk(0) + 2δk,1)−

m−1∑
k=1

1

k(m− k)
Gk(0)δm,k

= −
m−1∑
k=1

Gk
k(m− k)

+
2

m− 1
.

(4.8)
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12 Fourier series of functions involving Genocchi polynomials

So, we have

γm(1) = γm(0)⇐⇒
m−1∑
k=1

Gk
k(m− k)

=
2

m− 1
. (4.9)

Also,

∫ 1

0

γm(x)dx =
1

m

(
−

m∑
k=1

Gk
k(m− k + 1)

+
2

m
+

2

m(m+ 1)
Gm+1

)
. (4.10)

Now, we will determine the Fourier coefficients C
(m)
n .

Case 1: n 6= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin
[γm(x)e−2πinx]10 +

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin
(γm(1)− γm(0)) +

1

2πin

∫ 1

0

(
(m− 1)γm−1(x) +

1

m− 1
Gm−1(x)

)
e−2πinxdx

= − 1

2πin
(γm(1)− γm(0)) +

m− 1

2πin

∫ 1

0

γm−1(x)e−2πinxdx

+
1

2πin(m− 1)

∫ 1

0

Gm−1(x)e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm +

2

2πin(m− 1)
Φm,

(4.11)

where

Φm =
m−2∑
k=1

(m− 1)k−1
(2πin)k

Gm−k, (4.12)

and one can show

∫ 1

0

Gm(x)e−2πinxdx =

{
2Ωm+1, for n 6= 0,

−2Gm+1

m+1 , for n = 0.
(4.13)
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C(m)
n =

m− 1

2πin
C(m−1)
n − 1

2πin
Λm +

2

2πin(m− 1)
Φm

=
m− 1

2πin

(
m− 2

2πin
C(m−2)
n − 1

2πin
Λm−1 +

2

2πin(m− 2)
Φm−1

)
− 1

2πin
Λm +

2

2πin(m− 1)
Φm

=
(m− 1)(m− 2)

(2πin)2
C(m−2)
n − m− 1

(2πin)2
Λm−1 −

1

2πin
Λm

+
2(m− 1)

(2πin)2(m− 2)
Φm−1 +

2

2πin(m− 1)
Φm

= · · ·

=
(m− 1)!

(2πin)m−2
C(2)
n −

m−2∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 +
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

= −
m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 +

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

= − 1

m

m−1∑
j=1

(m)j
(2πin)j

Λm−j+1 +
1

m

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1,

(4.14)

where

C(2)
n =

∫ 1

0

xe−2πinxdx = − 1

2πin
. (4.15)

In order to get a final expression for C
(m)
n , we need to observe the following.

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1

=
m−2∑
j=1

2(m)j
(2πin)j(m− j)

m−j−1∑
k=1

(m− j)k−1
(2πin)k

Gm−j−k+1

=
m−2∑
j=1

m−j−1∑
k=1

2(m)j+k−1
(2πin)j+k(m− j)

Gm−j−k+1

= 2
m−2∑
j=1

1

m− j

m−1∑
s=j+1

(m)s−1
(2πin)s

Gm−s+1

= 2
m−1∑
s=2

(m)s−1
(2πin)s

Gm−s+1

s−1∑
j=1

1

m− j

= 2

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s),

(4.16)
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and

m−1∑
j=1

(m)j
(2πin)j

Λm−j+1

=
m−1∑
j=1

(m)j
(2πin)j

{
−
m−j∑
k=1

Gk
k(m− j − k + 1)

+
2

m− j

}

= −
m−1∑
j=1

m−j∑
k=1

(m)jGk
(2πin)jk(m− j − k + 1)

+ 2
m−1∑
j=1

(m)j
(2πin)j(m− j)

= −
m−1∑
s=1

m−1∑
l=s

(m)sGl−s+1

(2πin)s(l − s+ 1)(m− l)
+ 2

m−1∑
s=1

(m)s
(2πin)s(m− s)

.

(4.17)

Putting everything altogether,

C(m)
n =

1

m

m−1∑
s=1

m−1∑
l=s

(m)sGl−s+1

(2πin)s(l − s+ 1)(m− l)

− 2

m

m−1∑
s=1

(m)s
(2πin)s(m− s)

+
2

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

= − 1

m

m−1∑
s=1

(m)s
(2πin)s

×

{
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

}
.

(4.18)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx

=
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
=

1

m

(
−

m∑
k=1

Gk
k(m− k + 1)

+
2

m
+

2

m(m+ 1)
Gm+1

)
.

(4.19)

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for those integers m ≥ 2
with Λm = 0 and discontinuous with jump discontinuities at integers for those integers Λm 6= 0.
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Assume first that Λm = 0 . Then γm(0) = γm(1). So γm(< x >) is piecewise C∞, and continuous. So
the Fourier series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >)

= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

− 1

m

∞∑
n=−∞,n6=0

{
m−1∑
s=1

(m)s
(2πin)s

(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)}
e2πinx

= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=1

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)

×

−s! ∞∑
n=−∞,n6=0

e2πinx

(2πin)s


= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=2

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

+

(
2

m− 1
−
m−1∑
l=1

Gl
l(m− l)

)
×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z,

(4.20)

for all x ∈ (−∞,∞). Now, we obtain the following theorem.

Theorem 4.1. Let m ≥ 2 be an integer with Λm = −
∑m−1
k=1

Gk

k(m−k) + 2
m−1 = 0. Then we have the

following.
(a)

∑m−1
k=1

1
k(m−k)Gk(< x >) < x >m−k has the Fourier expansion

m−1∑
k=1

1

k(m− k)
Gk(< x >) < x >m−k

= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

− 1

m

∞∑
n=−∞,n6=0

{
m−1∑
s=1

(m)s
(2πin)s

(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)}
e2πinx

,

(4.21)

for all x ∈ (−∞,∞). Here the convergence is uniform.
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(b)

m−1∑
k=1

1

k(m− k)
Gk(< x >) < x >m−k

= − 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=2

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

(4.22)

for all x ∈ (−∞,∞), where Bs(< x >) is the Bernoulli function.

Assume next that m ≥ 2 is an integer with Λm 6= 0.Then γm(0) 6= γm(1). γm(< x >) is piecewise C∞

and discontinuous with jump discontinuities at integers.Thus the Fourier series of γm(< x >) converges
pointwise to γm(< x >), for x ∈ Zc, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm

=
1

2

(
−
m−1∑
k=1

Gk
k(m− k)

+
2

m− 1

)
,

(4.23)

for x ∈ Z. Hence we have the following theorem.

Theorem 4.2. Let m ≥ 2 be an integer with Λm = −
∑m−1
k=1

Gk

k(m−k) + 2
m−1 6= 0. Then we have the

following.
(a)

− 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

− 1

m

∞∑
n=−∞,n6=0

{
m−1∑
s=1

(m)s
(2πin)s

(
2

m− s
− 2Gm−s+1

m− s+ 1

)
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− 1)

}
e2πinx

=

{ ∑m−1
k=1

1
k(m−k)Gk(< x >) < x >m−k, for x ∈ Zc,

1
2

(
−
∑m−1
k=1

Gk

k(m−k) + 2
m−1

)
, for x ∈ Z.

(4.24)

Here the convergence is uniform.
(b)

− 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=1

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
Gk(< x >) < x >m−k,

(4.25)
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for x ∈ Zc and

− 1

m

(
m∑
k=1

Gk
k(m− k + 1)

− 2

m
− 2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=2

(
m

s

)(
2

m− s
− 2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

m−1∑
l=s

Gl−s+1

(l − s+ 1)(m− l)

)
Bs(< x >)

=
1

2

(
−
m−1∑
k=1

Gk
k(m− k)

+
2

m− 1

)
,

(4.26)

for x ∈ Z.

Question For what values of m ≥ 2, does
∑m−1
k=1

Gk

k(m−k) = 2
m−1 hold?
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Lyapunov inequalities of quasi-Hamiltonian

systems on time scales

Taixiang Sun Fanping Zeng Guangwang Su Bin Qin∗

College of Information and Statistics, Guangxi Univresity of Finance and Economics

Nanning, Guangxi 530003, China

Abstract In this paper, we obtain several new Lyapunov-type inequalities for the
following quasi-Hamiltonian systems

x∆(t) = −W (t)x(σ(t))−U(t)|y(t)|p−2y(t), y∆(t) = V (t)|x(σ(t))|q−2x(σ(t))+W T (t)y(t)

on the time scale interval [a, b]T ≡ [a, b] ∩ T for some a, b ∈ T (σ(a) < b), where U

and V are real n × n symmetric matrix-valued functions on [a, b]T with U being
positive definite, W is real n × n matrix-valued function on [a, b]T with I + µ(t)W
being invertible, and x, y are real vector-valued functions on [a, b]T.
AMS Subject Classification: 34K11, 34N05, 39A10.

Keywords: Lyapunov inequality; Quasi-Hamiltonian system; Time scale

1. Introduction

In 1990, Hilger [1] initiated the theory of time scales as a theory capable of treating continuous

and discrete analysis in a consistent way, based on which some authors have studied some

Lyapunov inequalities for dynamic equations on time scales (see [2-4]) during the last few years.

A time scale T is an arbitrary nonempty closed subset of real axis R. On a time scale T, the

forward jump operator and the graininess function are defined

σ(t) = inf{s ∈ T : s > t} and µ(t) = σ(t)− t,

respectively. For the notions used below we refer to [5,6] that provide some basic facts on time

scales.

In this paper, we continue this line of investigation and study Lyapunov-type inequalities for

the following quasi-Hamiltonian systems

x∆(t) = −W (t)x(σ(t))−U(t)|y(t)|p−2y(t), y∆(t) = V (t)|x(σ(t))|q−2x(σ(t))+W T (t)y(t), (1.1)

? Project Supported by NNSF of China (11461003) and SF of Guangxi Univresity of Finance and Eco- nomics(

2016KY15; 2016ZDKT06; 2016TJYB06)

∗ Corresponding author: E-mail address: q3009b@163.com
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on the time scale interval [a, b]T ≡ [a, b] ∩ T for some a, b ∈ T (σ(a) < b), where p, q ∈ (0,+∞)

and 1/p + 1/q = 1, U and V are real n× n symmetric matrix-valued functions on [a, b]T with U

being positive definite, W is real n× n matrix-valued function on [a, b]T with I + µ(t)W being

invertible, and x, y are real vector-valued functions on [a, b]T.

When n = 1, (1.1) reduces to

x∆(t) = α(t)x(σ(t)) + β(t)|y(t)|p−2y(t), y∆(t) = −γ(t)|x(σ(t))|q−2x(σ(t))− α(t)y(t). (1.2)

In 2011, Zhang et al. [7] obtained the following theorem.

Theorem 1.1[7] Suppose that 1− µ(t)α(t) > 0 and β(t) ≥ 0 for any t ∈ T and a, b ∈ Tk with

σ(a) ≤ b. If (1.2) has a real solution (x(t), y(t)) satisfying

x(a) = 0 or x(a)x(σ(a)) < 0, x(b) = 0 or x(b)x(σ(b)) < 0, max
t∈[a,b]T

|x(t)| > 0,

then the following inequality holds:

∫ b

a
|α(t)| 4 (t) +

( ∫ σ(b)

a
β(t)4 (t)

) 1
p
( ∫ b

a
max{γ(t), 0} 4 (t)

) 1
q ≥ 2. (1.3)

When n = 1 and T = R, Tiryaki et al. [8] obtained the following theorem.

Theorem 1.2[8] Suppose that β(t) > 0 for any t ∈ R and a, b ∈ R with a < b. If (1.2) has a

real solution (x(t), y(t)) satisfying x(a) = x(b) = 0 and maxt∈[a,b] |x(t)| > 0, then the following

inequalities hold:

∫ b

a

max{γ(t), 0}
h1−q

a (t) + h1−q
b (t)

dt ≥ 1 (1.4)

and ∫ b

a
max{γ(t), 0}2q−2

( 1
ha(t)

+
1

hb(t)

)1−q
dt ≥ 1, (1.5)

where ha(t) =
∫ t
a β(s)e−p

R s
t α(τ)dτds and hb(t) =

∫ b
t β(s)e−p

R s
t α(τ)dτds.

For some other related results on Lyapunov-type inequalities, see, e.g. [9-16] and the related

references therein.

2. Preliminaries and some lemmas

For any u ∈ Rn and any U ∈ Rn×n (the space of real n× n matrices), write

|u| =
√

uT u and |U | = max
y∈Rn−{O}

|Uy|
|y| ,

which are called the Euclidean norm of u and the matrix norm of U respectively, where QT is

the transpose of a n×m matrix Q. It follows from the definition that for any y ∈ Rn and any

U, V ∈ Rn×n,

|Uy| ≤ |U ||y|, |UV | ≤ |U ||V |.
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Write Rn×n
s = {U ∈ Rn×n : UT = U}. It is easy to show that for any U ∈ Rn×n

s ,

|U | = max
det|λI−U |=0

|λ| and |U2| = |U |2,

where det|λI − U | denotes determinant of the matrix λI − U . An U ∈ Rn×n
s is said to be

positive definite (resp. semi-positive definite), written as U > 0 (resp. U ≥ 0), if yT Uy > 0

(resp. yT Uy ≥ 0) for all y ∈ Rn with y 6= 0. If U is positive definite (resp. semi-positive definite),

then there exists a unique positive definite matrix (resp. semi-positive definite matrix), written

as
√

U , such that [
√

U ]2 = U .

In this paper, we study Lyapunov-type inequalities of (1.1) which has some solution (x(t), y(t))

satisfying

x(a) = x(b) = 0 and max
t∈[a,b]T

|x(t)| > 0. (2.1)

We first introduce the following notions and lemmas.

The point t ∈ T is said to be left-dense (resp. left-scattered) if ρ(t) = t (resp. ρ(t) < t). The

point t ∈ T is said to be right-dense (resp. right-scattered) if σ(t) = t (resp. σ(t) > t). If T has

a left-scattered maximum M , then we define Tk = T− {M}, otherwise Tk = T.

A function f : T −→ R is said to be rd-continuous provided that f is continuous at right-

dense points and has finite left-sided limits at left-dense points in T. The set of all rd-continuous

functions from T to R is denoted by Crd(T,R).

For a function f : T −→ R, the (delta) derivative f∆(t) at t ∈ T is defined to be the number

( if it exists), such that for given any ε > 0, there is a neighborhood U of t with

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . If the (delta) derivative f∆(t) exists for every t ∈ Tk, then we say that f is ∆−
differentiable on T.

Definition 2.1[5] Let F, f ∈ Crd(T,R). If F4(t) = f(t) for all t ∈ Tk, then we definite the

Cauchy integral of f by
∫ b

a
f(t)4 t = F (b)− F (a) for any a, b ∈ T.

Lemma 2.2[5] (Holder’s inequality) Let a, b ∈ T with a ≤ b and f1, f2 ∈ Crd(T,R). Then
∫ b

a
|f1(t)f2(t)| 4 t ≤

( ∫ b

a
|f1(t)|p 4 t

) 1
p
( ∫ b

a
|f2(t)|q 4 t

) 1
q
,

where p > 1 and q = p/(p− 1).

Lemma 2.3[5] Suppose that W ∈ Crd(T,Rn×n) with I + µ(t)W (t) being invertible and g ∈
Crd(T,Rn). Let t0 ∈ T and x0 ∈ Rn. Then the initial value problem

x∆(t) = −W (t)x(σ(t)) + g(t), x(t0) = x0

has a unique solution

x(t) = eΘW (t, t0)x0 +
∫ t

t0

eΘW (t, τ)g(τ)∆τ,
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where (ΘA)(t) = −[I +µ(t)A(t)]−1A(t) for any t ∈ Tk and eΘA(t, t0) is the unique matrix-valued

solution of the initial value problem
{

Y ∆(t) = (ΘA)(t)Y (t),
Y (t0) = I.

Lemma 2.4[5] Suppose that A(t) and B(t) are differentiable n × n matrix-valued functions.

Then

(A(t)B(t))4 = A4(t)B(σ(t)) + A(t)B4(t) = A(σ(t))B4(t) + A4(t)B(t).

Lemma 2.5[12] Let a, b ∈ T with a ≥ b and x1(t), x2(t), · · · , xn(t) be ∆-integrable on [a, b]T.

Write x(t) = (x1(t), x2(t), · · · , xn(t)). Then

∣∣∣
∫ b

a
x(t)∆t

∣∣∣ =

√√√√
n∑

i=1

( ∫ b

a
xi(t)∆t

)2
≤

∫ b

a

√√√√
n∑

i=1

x2
i (t)∆t =

∫ b

a
|x(t)|∆t.

Lemma 2.6[12] Let V, V1 ∈ Rn×n
s with V1 ≥ V (i.e., V1 − V ≥ 0) and x ∈ Rn. Then xT V x ≤

|V1||x|2.

3. Main results and proofs

Write

ξ(t) =

{
(
∫ t
a |eΘW (t, s)|p|U(s)| p(p−2)

2
+1|[

√
U(s)]−1|p(p−2)∆s)

q
p , if 1 < q < 2,

(
∫ t
a |eΘW (t, s)|p|U(s)|∆s)

q
p , if q ≥ 2,

(3.1)

and

η(t) =

{
(
∫ b
t |eΘW (t, s)|p|U(s)| p(p−2)

2
+1|[

√
U(s)]−1|p(p−2)∆s)

q
p , if 1 < q < 2,

(
∫ b
t |eΘW (t, s)|p|U(s)|∆s)

q
p , if q ≥ 2.

(3.2)

Theorem 3.1 Let a, b ∈ T with σ(a) < b and V1 ∈ Rn×n
s with V1(t) ≥ V (t). If (1.1) has a

solution (x(t), y(t)) satisfying (2.1) on the interval [a, b]T, then the following inequality holds:
∫ b

a

ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

|V1(t)| 4 t ≥ 1. (3.3)

Proof We claim that y(t) 6≡ 0 (t ∈ [a, b]T). Indeed, if y(t) ≡ 0 (t ∈ [a, b]T), then the first

equation of (1.1) reduces to

x∆(t) = −W (t)x(σ(t)), x(a) = 0.

By Lemma 2.3, it follows x(t) = eΘW (t, a) · x(a) = 0, which is a contradiction with (2.1).

Moreover, we have yT (t)U(t)y(t) ≥ 0 (6≡ 0) for t ∈ [a, b]T since U(t) > 0.

Since (x(t), y(t)) satisfies the following equality

(yT (t)x(t))∆ = (xσ(t))T V (t)|xσ(t)|q−2xσ(t)− yT (t)U(t)|y(t)|p−2y(t), (3.4)
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where xσ(t) = x(σ(t)). By integrating (3.4) from a to b and taking into account that x(a) =

x(b) = 0, we see

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t =

∫ b

a
|y(t)|p−2yT (t)U(t)y(t)4 t > 0. (3.5)

For t ∈ [a, b]T, let t0 = a and t0 = b respectively, we obtain from Lemma 2.3 that

x(t) = −
∫ t

a
eΘW (t, τ)U(τ)|y(τ)|p−2y(τ)∆τ = −

∫ t

b
eΘW (t, τ)U(τ)|y(τ)|p−2y(τ)∆τ.

Which follows that for t ∈ [a, b)T,

xσ(t) = −
∫ σ(t)

a
eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)∆τ =

∫ b

σ(t)
eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)∆τ.

Case I: Assume that q ≥ 2. Then we have that for a ≤ τ ≤ σ(t) ≤ b ,

|eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)|
≤ |eΘW (σ(t), τ)||y(τ)|p−2|U(τ)y(τ)|
= |eΘW (σ(t), τ)||y(τ)|p−2{yT (τ)UT (τ)U(τ)y(τ)} 1

2

≤ |eΘW (σ(t), τ)||y(τ)|p−2{|
√

U(τ)y(τ)||U(τ)||
√

U(τ)y(τ)|} 1
2

= |eΘW (σ(t), τ)||y(τ)|p−2|U(τ)| 12 (yT (τ)U(τ)y(τ))
1
2

= |eΘW (σ(t), τ)||y(τ)|p−2|U(τ)| 12 (yT (τ)U(τ)y(τ))
1
q (yT (τ)U(τ)y(τ))

1
2
− 1

q

= |eΘW (σ(t), τ)||y(τ)|p−2|U(τ)| 12 (yT (τ)U(τ)y(τ))
1
q |

√
U(τ)y(τ)|2( 1

2
− 1

q
)

≤ |eΘW (σ(t), τ)||U(τ)| 12 (yT (τ)U(τ)y(τ))
1
q |

√
U(τ)|1− 2

q |y(τ)|p−1− 2
q

≤ |eΘW (σ(t), τ)||U(τ)|1− 1
q (yT (τ)U(τ)y(τ))

1
q |y(τ)|p−1− 2

q .

Combining Lemma 2.2 and Lemma 2.5 we obtain

|xσ(t)|q =
∣∣∣
∫ σ(t)

a
eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)∆τ

∣∣∣
q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)|∆τ

)q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)||U(τ)|1− 1

q (yT (τ)U(τ)y(τ))
1
q |y(τ)|p−1− 2

q ∆τ
)q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)|p|U(τ)|4τ

) q
p
( ∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

)
,

that is

|xσ(t)|q ≤ ξ(σ(t))
∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.6)

Similarly, by letting η(t) be as in (3.2), for a ≤ σ(t) ≤ τ ≤ b, we have

|xσ(t)|q ≤ η(σ(t))
∫ b

σ(t)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.7)
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It follows from (3.6) and (3.7) that

η(σ(t))ξ(σ(t))
∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ ≥ |xσ(t)|qη(σ(t))

and

η(σ(t))ξ(σ(t))
∫ b

σ(t)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ ≥ |xσ(t)|qξ(σ(t)).

Thus

|xσ(t)|q ≤ ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

∫ b

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

By Lemma 2.6 and (3.5) we see

∫ b

a
|V1(t)||xσ(t)|q∆t ≤

∫ b

a
(|V1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))

∫ b

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ)∆t

=
∫ b

a
|V1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

=
∫ b

a
|V1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t

≤
∫ b

a
|V1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
|V1(t)||xσ(t)|q∆t.

Since
∫ b

a
|V1(t)||xσ(t)|q∆t ≥

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t =

∫ b

a
|y(t)|p−2yT (t)U(t)y(t)∆t > 0,

we get ∫ b

a

ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

|V1(t)| 4 t ≥ 1.

This completes the proof of Case I.

Case II: Assume that 1 < q < 2. Then p > 2. Note that for a ≤ τ ≤ σ(t) ≤ b ,

|eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)|
≤ |eΘW (σ(t), τ)||y(τ)|p−2|U(τ)y(τ)|
= |eΘW (σ(t), τ)||y(τ)|p−2{yT (τ)UT (τ)U(τ)y(τ)} 1

2

= |eΘW (σ(t), τ)||y(τ)|p−2{(
√

U(τ)y(τ))T U(τ)
√

U(τ)y(τ)} 1
2

≤ |eΘW (σ(t), τ)||(
√

U(τ))−1
√

U(τ)y(τ)|p−2{|
√

U(τ)y(τ)||U(τ)||
√

U(τ)y(τ)|} 1
2

≤ |eΘW (σ(t), τ)||(
√

U(τ))−1|p−2|
√

U(τ)y(τ)|p−2|U(τ)| 12 |
√

U(τ)y(τ)|
= |eΘW (σ(t), τ)||(

√
U(τ))−1|p−2|U(τ)| 12 |

√
U(τ)y(τ)|p−1

= |eΘW (σ(t), τ)||(
√

U(τ))−1|p−2|U(τ)| 12 |
√

U(τ)y(τ)| 2q |
√

U(τ)y(τ)|p−1− 2
q

≤ |eΘW (σ(t), τ)||(
√

U(τ))−1|p−2|U(τ)| 12 |
√

U(τ)y(τ)| 2q |
√

U(τ)|
(p−1)(p−2)

p |y(τ)|p−1− 2
q

= |eΘW (σ(t), τ)||(
√

U(τ))−1|p−2|U(τ)| 12 (yT (τ)U(τ)y(τ))
1
q |

√
U(τ)|

(p−1)(p−2)
p |y(τ)|p−1− 2

q .
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Then we obtain

|xσ(t)|q =
∣∣∣
∫ σ(t)

a
eΘW (σ(t), τ)U(τ)|y(τ)|p−2y(τ)∆τ

∣∣∣
q

≤
( ∫ σ(t)

a
|eΘA(σ(t), τ)U(τ)|y(τ)|p−2y(τ)|∆τ

)q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)||(

√
U(τ))−1|p−2|U(τ)| 12

×(yT (τ)U(τ)y(τ))
1
q |

√
U(τ)|

(p−1)(p−2)
p |y(τ)|p−1− 2

q ∆τ
)q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)||(

√
U(τ))−1|p−2|

√
U(τ)|

(p−1)(p−2)
p

+1

×(yT (τ)U(τ)y(τ))
1
q |y(τ)|p−1− 2

q ∆τ
)q

≤
( ∫ σ(t)

a
|eΘW (σ(t), τ)|p|(

√
U(τ))−1|p(p−2)|U(τ)| p(p−2)

2
+14τ

) q
p

×
( ∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

)
.

That is

|xσ(t)|q ≤ ξ(σ(t))
∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.8)

Similarly, by letting η(t) be as in (3.2), for a ≤ σ(t) ≤ τ ≤ b, we have

|xσ(t)|q ≤ η(σ(t))
∫ b

σ(t)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.9)

The rest of the proof is similar to the Case I, we have
∫ b

a

ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

|V1(t)| 4 t ≥ 1.

This completes the proof of Theorem 3.1

Corollary 3.2 Let a, b ∈ T with σ(a) < b and V1 ∈ Rn×n
s with V1(t) ≥ V (t). If (1.1) has a

solution (x(t), y(t)) satisfying (2.1) on the interval [a, b]T, then the following inequality holds:
∫ b

a
(ξ(σ(t)) + η(σ(t)))|V1(t)| 4 t ≥ 4. (3.10)

Proof Note
ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
≤ ξ(σ(t)) + η(σ(t))

4
.

It follows from (3.3) that ∫ b

a

ξ(σ(t)) + η(σ(t))
4

|V1(t)| 4 t ≥ 1.

That is ∫ b

a
(ξ(σ(t)) + η(σ(t)))|V1(t)| 4 t ≥ 4.

This completes the proof of Corollary 3.2.
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Corollary 3.3 Let a, b ∈ T with σ(a) < b and V1 ∈ Rn×n
s with V1(t) ≥ V (t). If (1.1) has a

solution (x(t), y(t)) satisfying (2.1) on the interval [a, b]T, then the following inequality holds:

∫ b

a
(ξ(σ(t))η(σ(t)))

1
2 |V1(t)| 4 t ≥ 2. (3.11)

Proof Note

ξ(σ(t)) + η(σ(t)) ≥ 2(ξ(σ(t))η(σ(t)))
1
2 .

It follows from (3.3) that

∫ b

a

(ξ(σ(t))η(σ(t)))
1
2

2
|V1(t)| 4 t ≥ 1.

That is ∫ b

a
(ξ(σ(t))η(σ(t)))

1
2 |V1(t)| 4 t ≥ 2.

This completes the proof of Corollary 3.3.

Theorem 3.4 Let a, b ∈ T with σ(a) < b and V1 ∈ Rn×n
s with V1(t) ≥ V (t). If (1.1) has a

solution (x(t), y(t)) satisfying (2.1) on the interval [a, b]T, then there exists an c ∈ (a, b) such

that ∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t ≥ 1 and

∫ b

c
η(σ(t))|V1(t)| 4 t ≥ 1. (3.12)

Proof Let

F (t) =
∫ t

a
ξ(σ(s))|V1(s)| 4 s−

∫ b

t
η(σ(s))|V1(s)| 4 s.

Then we have F (a) < 0 and F (b) > 0. Hence we can choose an c ∈ (a, b) such that F (c) ≤ 0

and F (σ(c)) ≥ 0, that is

∫ c

a
ξ(σ(s))|V1(s)| 4 s ≤

∫ b

c
η(σ(s))|V1(s)| 4 s (3.13)

and ∫ σ(c)

a
ξ(σ(s))|V1(s)| 4 s ≥

∫ b

σ(c)
η(σ(s))|V1(s)| 4 s. (3.14)

From (3.6) and (3.8), we have

|V1(t)||xσ(t)|q ≤ ξ(σ(t))|V1(t)|
∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.15)

Note that for a ≤ τ ≤ σ(t) ≤ σ(c) ≤ b . Integrating (3.15) from a to σ(c), we obtain

∫ σ(c)

a
|V1(t)||xσ(t)|q 4 t ≤

∫ σ(c)

a
ξ(σ(t))|V1(t)|

( ∫ σ(t)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

)
4 t

≤
∫ c

a
ξ(σ(t))|V1(t)| 4 t

∫ σ(c)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

+ξ(σ(c))|V1(c)|(σ(c)− c)
∫ σ(c)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.
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=
∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t

∫ σ(c)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

Similarly, for a ≤ σ(c) ≤ σ(t) ≤ τ ≤ b, we can obtain from (3.7),(3.9) and (3.14) that

∫ b

σ(c)
|V1(t)||xσ(t)|q 4 t ≤

∫ b

σ(c)
η(σ(t))|V1(t)| 4 t

∫ b

σ(c)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

≤
∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t

∫ b

σ(c)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

These yield

∫ b

a
|V1(t)||xσ(t)|q 4 t ≤

∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t

∫ b

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

=
∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t

≤
∫ σ(c)

a
ξ(σ(t))|V1(t)| 4 t

∫ b

a
|V1(t)||xσ(t)|q 4 t.

Since
∫ b

a
|V1(t)||xσ(t)|q∆t ≥

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t =

∫ b

a
|y(t)|p−2yT (t)U(t)y(t)∆t > 0,

we obtain
∫ σ(c)
a ξ(σ(t))|V1(t)| 4 t ≥ 1.

Next, we have from (3.7) and (3.9) that

|xσ(t)|q|V1(t)| ≤ η(σ(t))|V1(t)|
∫ b

σ(t)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ. (3.16)

Integrating (3.16) from c to b, we obtain that for a ≤ c ≤ t ≤ σ(t) ≤ τ ≤ b,

∫ b

c
|V1(t)||xσ(t)|q 4 t ≤

∫ b

c
η(σ(t))|V1(t)|

( ∫ b

σ(t)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

)
4 t

≤
∫ b

c
η(σ(t))|V1(t)| 4 t

∫ b

σ(c)
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

Similarly, for a ≤ τ ≤ σ(t) ≤ σ(c) ≤ b, we can obtain

∫ c

a
|V1(t)||xσ(t)|q 4 t ≤

∫ c

a
ξ(σ(t))|V1(t)| 4 t

∫ σ(c)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ

≤
∫ b

c
η(σ(t))|V1(t)| 4 t

∫ σ(c)

a
yT (τ)U(τ)y(τ)|y(τ)|p−2∆τ.

These yield
∫ b

a
|V1(t)||xσ(t)|q 4 t ≤

∫ b

c
η(σ(t))|V1(t)| 4 t

∫ b

a
yT (t)U(t)y(t)|y(t)|p−2∆t

=
∫ b

c
η(σ(t))|V1(t)| 4 t

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t
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≤
∫ b

c
η(σ(t))|V1(t)| 4 t

∫ b

a
|V1(t)||xσ(t)|q 4 t.

Thus, we also obtain
∫ b
c η(σ(t))|V1(t)| 4 t ≥ 1. This completes the proof of Theorem 3.4.

Theorem 3.5 Let a, b ∈ T with σ(a) < b and V1 ∈ Rn×n
s with V1(t) ≥ V (t). If (1.1) has a

solution (x(t), y(t)) satisfying (2.1) on the interval [a, b]T, then the following inequalities hold:

∫ b

a
|W (t)| 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
|V1(t)| 4 t

) 1
q ≥ 2, if q ≥ 2,

∫ b

a
|W (t)| 4 t +

( ∫ b

a
|U(t)| p(p−2)

2
+1|(

√
U(t))−1|p(p−2) 4 t

) 1
p
( ∫ b

a
|V1(t)| 4 t

) 1
q ≥ 2, if 1 < q < 2.

Proof From the proof of Theorem 3.1, we have
∫ b

a
|y(t)|p−2yT (t)U(t)y(t)4 t =

∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t.

It follows from the first equation of (1.1) that for all a ≤ t ≤ b,

x(t) =
∫ t

a
(−W (τ)xσ(τ)− U(τ)|y(τ)|p−2y(τ))4 τ,

x(t) =
∫ b

t
(W (τ)xσ(τ) + U(τ)|y(τ)|p−2y(τ))4 τ.

Case I: Assume that q ≥ 2. We have

|x(t)| =
∣∣∣
∫ t

a
(−W (τ)xσ(τ)− U(τ)|y(τ)|p−2y(τ))4 τ

∣∣∣

≤
∫ t

a
|W (τ)xσ(τ) + U(τ)|y(τ)|p−2y(τ)| 4 τ

≤
∫ t

a
|W (τ)xσ(τ)| 4 τ +

∫ t

a
|U(τ)|y(τ)|p−2y(τ)| 4 τ

≤
∫ t

a
|W (τ)||xσ(τ)| 4 τ +

∫ t

a
|U(τ)|1− 1

q (yT (τ)U(τ)y(τ))
1
q |y(τ)|p−1− 2

q 4 τ.

Similarly, we have

|x(t)| ≤
∫ b

t
|W (τ)||xσ(τ)| 4 τ +

∫ b

t
|U(τ)|1− 1

q (yT (τ)U(τ)y(τ))
1
q |y(τ)|p−1− 2

q 4 τ.

Then from Lemma 2.2 and Lemma 2.6, we obtain

|x(t)| ≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

∫ b

a
|U(t)|1− 1

q (yT (t)U(t)y(t))
1
q |y(t)|p−1− 2

q 4 t
]

≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
yT (t)U(t)y(t)|y(t)|p−2 4 t

) 1
q
]

=
1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t

) 1
q
]

≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
|V1(t)||xσ(t)|q 4 t

) 1
q
]
.
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Denote M = maxa≤t≤b |x(t)| > 0, then

M ≤ 1
2

[ ∫ b

a
|W (t)|M 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
|V1(t)|M q 4 t

) 1
q
]
.

Thus ∫ b

a
|W (t)| 4 t +

( ∫ b

a
|U(t)| 4 t

) 1
p
( ∫ b

a
|V1(t)| 4 t

) 1
q ≥ 2.

Case II: Assume that 1 < q < 2. Then p ≥ 2 and

|x(t)| ≤
∫ t

a
|W (τ)xσ(τ) + U(τ)|y(τ)|p−2y(τ)| 4 τ

≤
∫ t

a
|W (τ)xσ(τ)| 4 τ +

∫ t

a
|U(τ)|y(τ)|p−2y(τ)| 4 τ

≤
∫ t

a
|W (τ)||xσ(τ)| 4 τ +

∫ t

a
|(

√
U(τ))−1|p−2|U(τ)| 12

×(yT (τ)U(τ)y(τ))
1
q |

√
U(τ)|

(p−1)(p−2)
p |y(τ)|p−1− 2

q 4 τ.

and

|x(t)| ≤
∫ b

t
|W (τ)||xσ(τ)| 4 τ +

∫ b

t
|(

√
U(τ))−1|p−2|U(τ)| 12

×(yT (τ)U(τ)y(τ))
1
q |

√
U(τ)|

(p−1)(p−2)
p |y(τ)|p−1− 2

q 4 τ.

Thus we obtain

|x(t)| ≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

∫ b

a
|(

√
U(t))−1|p−2|U(t)| 12

×(yT (t)U(t)y(t))
1
q |

√
U(t)|

(p−1)(p−2)
p |y(t)|p−1− 2

q 4 t
]

≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
(|(

√
U(t))−1|p−2|

√
U(t)|

(p−1)(p−2)
p

+1)p 4 t
) 1

p

×
( ∫ b

a
((yT (t)U(t)y(t))

1
q |y(t)|p−1− 2

q )q 4 t
) 1

q
]

=
1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
|U(t)| p(p−2)

2
+1|(

√
U(t))−1|p(p−2) 4 t

) 1
p

×
( ∫ b

a
|xσ(t)|q−2(xσ(t))T V (t)xσ(t)4 t

) 1
q
]

≤ 1
2

[ ∫ b

a
|W (t)||xσ(t)| 4 t +

( ∫ b

a
|U(t)| p(p−2)

2
+1|(

√
U(t))−1|p(p−2) 4 t

) 1
p

×
( ∫ b

a
|V1(t)||xσ(t)|q 4 t

) 1
q
]
.

Similarly, we also have
∫ b

a
|W (t)| 4 t +

( ∫ b

a
|U(t)| p(p−2)

2
+1|(

√
U(t))−1|p(p−2) 4 t

) 1
p
( ∫ b

a
|V1(t)| 4 t

) 1
q ≥ 2.

This completes the proof of Theorem 3.5.
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Abstract: In this paper, we propose a new three-step iterative method for a count-

able family of pseudo-contractive mappings in a real Hilbert space. We also prove the

strong convergence of the proposed iterative algorithm under appropriate conditions.

Key words: pseudo-contractive mapping; iterative method; fixed point; strong

convergence
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1 Introduction

In this paper, we assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the

induced norm ‖ · ‖, C is a nonempty closed convex subset of H and T : C → C is a self-mapping

of C. F(T ) denotes the fixed point set of the mapping T . Recall that T is called a k-strictly

pseudo-contractive mapping if there exists a constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C, (1.1)

and T is called a pseudo-contractive mapping if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C. (1.2)

It is obvious that k = 0, then the mapping T is nonexpansive, that is

‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C. (1.3)

Finding the fixed points of nonexpansive mappings is an important topic in the theory of

nonexpansive mappings and has wide applications in a number of applied areas, such as the

convex feasibility problem [1, 2], the split feasibility problem [3], image recovery and signal

∗Corresponding author. Email: chenbg123@163.com.
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processing [4]. After that, as an important generalization of nonexpansive mappings, strictly

pseudo-contractive mappings become one of the most interesting studied class of nonexpansive

mappings. In fact, strictly pseudo-contractive mappings have more powerful application than

nonexpansive mappings do such as in solving inverse problem [5].

Iterative methods for nonexpansive mappings have been extensively investigated (see e.g.,

[6–16, 31–33] and the references contained therein). However, iterative methods for strictly

pseudo-contractive mappings are far less developed than those for nonexpansive mappings and

the reason is probably that the second term appearing on the right hand side of (1.1) impedes

the convergence analysis for iterative algorithms used to find a fixed point of the strictly pseudo-

contractive mapping T .

The most general iterative algorithm for nonexpansive mappings studied by many authors

is Mann’s iteration algorithm [18] which is as following:

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.4)

where x0 ∈ C is chosen arbitrarily and {αn} is a real sequence in (0, 1). Under the following

additional assumptions: (i) lim
n→∞

αn = 0 and (ii)
∑∞

n=0 αn = ∞, the sequence {xn} generated

by (1.4) is generally referred to as Mann’s iteration algorithm in the light of [18]. The Mann’s

iteration algorithm dose not generally converge to a fixed point of T even the fixed point exists.

For example, C is a nonempty closed convex and bounded subset of a real Hilbert space, T :

C → C is nonexpansive, one can only prove that the sequence generated by Mann’s iteration

algorithm (1.4) with the assumptions (i) and (ii) is an approximate fixed point sequence, that is,

‖xn− Txn‖ → 0 as n→∞. In [19], Reich proved that if X is a uniformly convex Banach space

with a Fréchet differentiable norm and if {αn} is chosen such that
∑∞

n=0 αn(1− αn) =∞, then

the sequence {xn} defined by (1.4) converges weakly to a fixed point of T . To get the sequence

{xn} to converge strongly to a fixed point of T (when such a fixed point exists), some type of

compactness condition must be additionally imposed either on C (e.g., C is compact) or on T

(e.g., T is demicompact or T is semicompact, see [20,21]).

The first convergence result for k-strictly pseudo-contractive mappings was proposed by

Browder and Petryshyn [22] in 1967. They proved that if the sequence {xn} is generated by the

following:

xn+1 = αxn + (1− α)Txn, n ≥ 0, (1.5)

for any starting point x0 ∈ C and α is a constant such that k < α < 1, then the sequence {xn}
converges weakly to a fixed point of k-strictly pseudo-contractive mapping T . In [23], Marino

and Xu extended the result of Browder and Petryshyn [22] to Mann’s iteration algorithm (1.4),

they proved that the sequence {xn} generated by (1.4) converges weakly to a fixed point of

k-strictly pseudo-contractive mapping T for the conditions that k < αn < 1 for all n and∑∞
n=0(αn − k)(1− αn) =∞.

2
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However, the well known strong convergence result for pseudo-contractive mappings is Ishikawa’s

iteration algorithm which was proved by Ishikawa [24] in 1974 and it is more general than that

of Mann’s iteration algorithm (1.4) in some sense. More precisely, he got the following theorem.

Theorem 1.1 ([24]) Let C be a convex compact subset of a Hilbert space H and let T : C → C

be a Lipschitz pseudo-contractive mapping. For any x1 ∈ C, suppose the sequence {xn} is defined

iteratively for each n ≥ 1 by {
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn,
(1.6)

where {αn}, {βn} are sequences of positive number that satisfy the following there conditions:

(i) 0 ≤ αn ≤ βn ≤ 1; (ii) lim
n→∞

βn = 0; (iii)
∑∞

n=1 αnβn =∞. Then the sequence {xn} converges

strongly to a fixed point of T.

In 2001, Chidume and Mutangadura [25] gave an example to show that the Mann’s iteration

algorithm (1.4) failed to be convergent to a fixed point of Lipschitz pseudo-contractive mappings.

In order to obtain a strong convergence result for pseudo-contractive mappings without the

compactness assumption, Zhou [26] established the hybrid Ishikawa algorithm for Lipschitz

pseudo-contractive mappings as following:

Theorem 1.2 ([26]) Let C be a closed convex subset of a real Hilbert space H and let T : C → C

be a Lipschitz pseudo-contraction such that F(T ) 6= φ. Suppose that {αn} and {βn} are two real

sequences in (0, 1) satisfying the conditions: (i) αn ≤ βn, ∀n ≥ 0; (ii) lim inf
n→∞

αn > 0; (iii)

lim sup
n→∞

αn ≤ α <
1√

1 + L2 + 1
, n ≥ 0, where L ≥ 1 is the Lipschitzian constant of T . Let a

sequence {xn} be generated by

x0 ∈ C,
yn = (1− αn)xn + αnTxn,

zn = (1− βn)xn + βnTyn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − αnβn(1− 2αn − L2α2
n)‖xn − Txn‖2},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0.

(1.7)

Then, {xn} converges strongly to a fixed point v of T , where v = PF(T )(x0).

We observe that the iterative algorithm (1.7) generates a sequence {xn} by projecting x0 on

to the intersection of the suitably constructed closed convex sets Cn and Qn. Recently, Yao et

al. [27] introduced the hybrid iterative algorithm which just involved one closed convex set for

pseudo-contractive mappings in Hilbert spaces as follows:

3
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Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a

pseudo-contractive mapping. Let {αn} be a sequence in (0, 1). Let x0 ∈ H. For C1 = C and

x1 = PC1x0, define a sequence {xn} of C as follows:
yn = (1− αn)xn + αnTxn,

Cn+1 = {z ∈ Cn : ‖αn(I − T )yn‖2 ≤ 2αn〈xn − z, (I − T )yn〉},
xn+1 = PCn+1x0, n ∈ N.

(1.8)

Theorem 1.3 ( [27]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T : C → C be a L-Lipschitz pseudo-contractive mapping such that F(T ) 6= φ. Assume the

sequence αn ∈ [a, b] for some a, b ∈ (0,
1

L+ 1
). Then the sequence {xn} generated by (1.8)

converges strongly PF(T )(x0).

In [28], Tang et al. proposed the hybrid algorithm (1.8) to the Ishikawa’s iteration algorithm

(1.6) and got the following result.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be

a pseudo-contractive mapping. Let {αn}, {βn} be two sequences in [0, 1]. Let x0 ∈ H. For

C1 = C and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = (1− αn)xn + αnTzn,

zn = (1− βn)xn + βnTxn,

Cn+1 = {z ∈ Cn : ‖αn(I − T )yn‖2 ≤ 2αn〈xn − z, (I − T )yn〉
+ 2αnβnL‖xn − Txn‖ · ‖yn − xn + αn(I − T )yn‖},

xn+1 = PCn+1x0, n ≥ 1.

(1.9)

Theorem 1.4 ( [28]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T : C → C be a L-Lipschitz pseudo-contractive mapping with L ≥ 1 such that F(T ) 6= φ. Assume

the sequences {αn} and {βn} in (0, 1) satisfying: (i) b ≤ αn < αn(L + 1)(1 + βnL) < a < 1,

for some a, b ∈ (0, 1); (ii) lim
n→∞

βn = 0. Then the sequence {xn} generated by (1.9) converges

strongly PF(T )(x0).

Recently, Zegeye et al. [29] generalized Ishikawa’s iteration algorithm (1.6) to a common fixed

point of a finite family of Lipschitz pseudo-contractive mappings and obtained the following

theorem.

Theorem 1.5 ( [29]) Let C be a nonempty, closed convex subset of a real Hilbert space H.

Let Ti : C → C, i = 1, 2, · · · , N, be a finite family of Lipschitz pseudo-contractive mappings

with Lipschitzian constants Li, for i = 1, 2, · · · , N, respectively. Assume that the interior of

F :=
⋂N

i=1F(Ti) is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by{
yn = (1− βn)xn + βnTnxn,

xn+1 = (1− αn)xn + αnTnyn,
(1.10)

4
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where Tn := Tn(mod N) and {αn}, {βn} ⊂ (0, 1) satisfying the following conditions: (i) αn ≤

βn,∀ n ≥ 0; (ii) lim inf
n→∞

αn = α > 0; (iii) supn≥1 βn ≤ β <
1√

1 + L2 + 1
for L := max{Li : i =

1, 2, · · · , N}. Then, {xn} converges strongly to a common fixed point of {T1, T2, · · · , TN}.

In [30], Cheng et al. extended the algorithm (1.10) to a countable family of pseudo-

contractive mappings and gave a three-step iterative method, which is as follows:

Theorem 1.6 ( [30]) Let C be a nonempty, closed convex subset of a real Hilbert space H, let

{Tn}∞n=1 : C → C be a countable family of uniformly closed and uniformly Lipschitz pseudo-

contractive mappings with Lipschitzian constants Ln, let L := supn≥1 Ln. Assume that the

interior of F :=
⋂∞

n=1F(Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary

x0 ∈ C by the following algorithm:
zn = (1− γn)xn + γnTnxn,

yn = (1− βn)xn + βnTnzn,

xn+1 = (1− αn)xn + αnTnyn,

(1.11)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions: (i) αn ≤ βn ≤ γn, ∀ n ≥ 0;

(ii) lim inf
n→∞

αn = α > 0; (iii) supn≥1 γn ≤ γ with γ3L4 + 2γ2L3 + γ2L2 + γL2 + 2γ < 1. Then,

{xn} converges strongly to x∗ ∈ F .

Remark 1.1 The condition (iii) of the Theorem 1.6 is not correct, it is replaced by supn≥1 γn ≤
γ with γ3L4 + 2γ2L3 + γ2L2 + 2γL2 + 2γ < 1.

Motivated and inspired by the above works, in this paper, we propose a new three-step

iterative method for a countable family of pseudo-contractive mappings in Hilbert spaces and

prove its strong convergence theorem under appropriate conditions.

2 Preliminaries

In this section, we recall some definitions and useful results which will be used in the next

section.

Definition 2.1 Let C be a subset of a real Hilbert space H.

(1) A mapping T : C → H is said to be L-Lipschitz if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀ x, y ∈ C.

When L = 1, T is nonexpansive. If L < 1, T is called a contraction. It is easy to see that every

contractive mapping is nonexpansive and every nonexpansive mapping is Lipschitz.

5
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(2) A countable family of mappings {Tn}∞n=1 : C → H is said to be uniformly Lipschitz with

Lipschitzian constants Ln > 0, n ≥ 1, if there exists 0 < L := supn≥1 Ln such that

‖Tnx− Tny‖ ≤ L‖x− y‖, ∀ x, y ∈ C, n ≥ 1.

(3) A countable family of mappings {Tn}∞n=1 : C → H is said to be uniformly closed if

xn → x∗ and ‖xn − Tnxx‖ → 0 imply x∗ ∈
⋂∞

n=1F(Tn).

Definition 2.2 A mapping T with domain D(T ) and range R(T ) in a real Hilbert space H is

said to be monotone if the inequality

‖x− y‖ ≤ ‖x− y + s(Tx− Ty)‖

holds for every x, y ∈ D(T ) and for all s > 0.

We observe that

T is monotone ⇔ 〈Tx− Ty, x− y〉 ≥ 0

⇔ ‖(I − T )x− (I − T )y‖2 ≤ ‖x− y‖2 + ‖Tx− Ty‖2

⇔ ‖Ax−Ay‖2 ≤ ‖x− y‖2 + ‖(I −A)x− (I −A)y‖2, A := I − T

⇔ A is pseudo-contractive.

Furthermore, a zero of T is a fixed point of A, that is,

x ∈ N (T ) := {x ∈ D(T ) : Tx = 0} ⇔ x ∈ F(A) := {x ∈ D(A) : Ax = x}.

Lemma 2.1 Let H be a real Hilbert space. Then for α ∈ [0, 1] the following equality

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2

holds for all x, y ∈ H.

Lemma 2.2 If the sequences {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn,∀ n ≥ 1,

(ii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn, γ ≥ supn≥1 γn, and L > 0 is a constant. Then, we have

α > 0, β > 0 and (1− αn)γn + αnβn(γ2nL
2 + 2γn − 1) < 0.

Proof. On one hand, it is obvious that α > 0, β > 0 and γ2L2 + 2γ − 1 < 0 because of

(1−α)γ+αβ(γ2L2+2γ−1) < 0. And we get that (1−αn)γ ≤ (1−α)γ and αnβn(γ2L2+2γ−1) ≤
αβ(γ2L2 + 2γ − 1). Then

(1− αn)γ + αnβn(γ2L2 + 2γ − 1) ≤ (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0.
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On the other hand, it is easy to know that (1−αn)γn ≤ (1−αn)γ and αnβn(γ2n + 2γn−1) ≤
αnβn(γ2L2 + 2γ − 1). We can obtain

(1− αn)γn + αnβn(γ2n + 2γn − 1) ≤ (1− αn)γ + αnβn(γ2L2 + 2γ − 1) < 0.

Hence (1− αn)γn + αnβn(γ2nL
2 + 2γn − 1) < 0. �

3 The main result

Theorem 3.1 Let C be a nonempty, closed convex subset of a real Hilbert space H, let {Tn}∞n=1 :

C → C be a countable family of uniformly closed and uniformly Lipschitz pseudo-contractive

mappings with Lipschitzian constants Ln, let L := supn≥1 Ln. Assume that the interior of

F :=
⋂∞

n=1F(Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary x1 ∈ C by
zn = (1− γn)xn + γnTnxn,

yn = (1− βn)xn + βnTnzn,

xn+1 = (1− αn)zn + αnyn,

(3.1)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn, ∀ n ≥ 1,

(ii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn. Then, {xn} converges strongly to

x∗ ∈ F .

Proof. Take p ∈ F arbitrarily. By (3.1) and Lemma 2.1, we have

‖xn+1 − p‖2 = ‖(1− αn)zn + αnyn − p‖2

= ‖(1− αn)(zn − p) + αn(yn − p)‖2

= (1− αn)‖zn − p‖2 + αn‖yn − p‖2 − αn(1− αn)‖zn − yn‖2

≤ (1− αn)‖zn − p‖2 + αn‖yn − p‖2, (3.2)

and

‖zn − p‖2 = ‖(1− γn)xn + γnTnxn − p‖2

= ‖(1− γn)(xn − p) + γn(Tnxn − p)‖2

= (1− γn)‖xn − p‖2 + γn‖Tnxn − p‖2 − γn(1− γn)‖xn − Tnxn‖2

≤ (1− γn)‖xn − p‖2 + γn(‖xn − p‖2 + ‖xn − Tnxn‖2)

− γn(1− γn)‖xn − Tnxn‖2

= ‖xn − p‖2 + γ2n‖xn − Tnxn‖2, (3.3)
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where the inequality is based on that {Tn}∞n=1 is a countable family of pseudo-contractive map-

pings. Similarly, we can get

‖yn − p‖2 = ‖(1− βn)xn + βnTnzn − p‖2

= ‖(1− βn)(xn − p) + βn(Tnzn − p)‖2

= (1− βn)‖xn − p‖2 + βn‖Tnzn − p‖2 − βn(1− βn)‖xn − Tnzn‖2

≤ (1− βn)‖xn − p‖2 + βn(‖zn − p‖2 + ‖zn − Tnzn‖2)

− βn(1− βn)‖xn − Tnzn‖2. (3.4)

In addition, using (3.1), we have that

‖zn − Tnzn‖2 = ‖(1− γn)xn + γnTnxn − Tnzn‖2

= ‖(1− γn)(xn − Tnzn) + γn(Tnxn − Tnzn)‖2

= (1− γn)‖xn − Tnzn‖2 + γn‖Tnxn − Tnzn‖2 − γn(1− γn)‖xn − Tnxn‖2

≤ (1− γn)‖xn − Tnzn‖2 + γnL
2‖xn − zn‖2 − γn(1− γn)‖xn − Tnxn‖2

= (1− γn)‖xn − Tnzn‖2 + γnL
2‖γn(xn − Tnxn)‖2 − γn(1− γn)‖xn − Tnxn‖2

= (1− γn)‖xn − Tnzn‖2 + γn(γ2nL
2 + γn − 1)‖xn − Tnxn‖2, (3.5)

where the inequality is based on that {Tn}∞n=1 is a countable family of uniformly Lipschitz

mappings. Substituting (3.3) and (3.5) into (3.4), we obtain that

‖yn − p‖2 ≤ (1− βn)‖xn − p‖2 + βn

(
‖xn − p‖2 + γ2n‖xn − Tnxn‖2

)
+ βn

(
(1− γn)‖xn − Tnzn‖2 + γn(γ2nL

2 + γn − 1)‖xn − Tnxn‖2
)

− βn(1− βn)‖xn − Tnzn‖2

= ‖xn − p‖2 + βnγn(γ2nL
2 + 2γn − 1)‖xn − Tnxn‖2 + βn(βn − γn)‖xn − Tnzn‖2

≤ ‖xn − p‖2 + βnγn(γ2nL
2 + 2γn − 1)‖xn − Tnxn‖2, (3.6)

where the last inequality is based on the condition (i). Therefore, substituting (3.3) and (3.6)

into (3.2), we get

‖xn+1 − p‖2 ≤ (1− αn)
(
‖xn − p‖2 + γ2n‖xn − Tnxn‖2

)
+ αn

(
‖xn − p‖2 + βnγn(γ2nL

2 + 2γn − 1)‖xn − Tnxn‖2
)

= ‖xn − p‖2 +
(

(1− αn)γ2n + αnβnγn(γ2nL
2 + 2γn − 1)

)
‖xn − Tnxn‖2.(3.7)

According to the conditions and Lemma 2.2, inequality (3.7) implies that

‖xn+1 − p‖2 ≤ ‖xn − p‖2. (3.8)
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It is obvious that lim
n→∞

‖xn − p‖ exists, then {‖xn − p‖} is bounded. This implies that {xn},
{Tnxn}, {zn}, {Tnzn} and {yn} are also bounded.

Furthermore, we have that

‖xn − p‖2 = ‖xn − xn+1‖2 + ‖xn+1 − p‖2 + 2〈xn+1 − p, xn − xn+1〉.

This implies

〈xn+1 − p, xn − xn+1〉+
1

2
‖xn − xn+1‖2 =

1

2
(‖xn − p‖2 − ‖xn+1 − p‖2). (3.9)

Moreover, since the interior of F is nonempty, then there exists p∗ ∈ F and r > 0 such that

p∗ + rh ∈ F whenever ‖h‖ ≤ 1. Thus, from (3.8), we have

0 ≤ 〈xn+1 − (p∗ + rh), xn − xn+1〉+
1

2
‖xn − xn+1‖2

=
1

2
(‖xn − (p∗ + rh)‖2 − ‖xn+1 − (p∗ + rh)‖2). (3.10)

From (3.9) and (3.10), we obtain that

r〈h, xn − xn+1〉 ≤ 〈xn+1 − p∗, xn − xn+1〉+
1

2
‖xn − xn+1‖2

=
1

2
(‖xn − p∗‖2 − ‖xn+1 − p∗‖2). (3.11)

Since h with ‖h‖ ≤ 1 is arbitrary, we can take h =
xn − xn+1

‖xn − xn+1‖
with ‖h‖ = 1, then

‖xn − xn+1‖ ≤
1

2r
(‖xn − p∗‖2 − ‖xn+1 − p∗‖2).

So, for n > m, we can get

‖xm − xn‖ = ‖(xm − xm+1) + (xm+1 − xm+2) + · · ·+ (xn−1 − xn)‖

≤
n−1∑
i=m

‖xi − xi+1‖

≤
n−1∑
i=m

1

2r
(‖xi − p∗‖2 − ‖xi+1 − p∗‖2)

=
1

2r
(‖xm − p∗‖2 − ‖xn − p∗‖2).

From (3.8), we know that {‖xn− p∗‖2} converges. Therefore, {xn} is a Cauchy sequence. Since

C is closed subset of Hilbert space H, then there exists x∗ ∈ C such that

xn → x∗ ∈ C. (3.12)

Furthermore, from the conditions and Lemma 2.2, we have

0 < β
(

(α− 1)γ + αβ(1− 2γ − γ2L2)
)
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≤ γn

(
(αn − 1)γn + αnβn(1− 2γn − γ2nL2)

)
= (αn − 1)γ2n + αnβnγn(1− 2γn − γ2nL2). (3.13)

Then, by (3.7) and (3.13), we conclude that(
(α− 1)γβ + αβ2(1− 2γ − γ2L2)

) ∞∑
n=1

‖xn − Tnxn‖2

≤
∞∑
n=1

(
(αn − 1)γ2n + αnβnγn(1− 2γn − γ2nL2)

)
‖xn − Tnxn‖2

≤
∞∑
n=1

(‖xn − p‖2 − ‖xn+1 − p‖2) <∞,

from which it follows that

lim
n→∞

‖xn − Tnxn‖ = 0. (3.14)

Since {Tn}∞n=1 are uniformly closed mappings, then from (3.12) and (3.14), we can obtain

x∗ ∈
∞⋂
n=1

F(Tn) = F .

The proof is complete. �

Remark 3.1 We now give an example of a countable family of uniformly closed and uniformly

Lipschitz pseudo-contractive mappings with the interior of the common fixed points nonempty.

This example comes from [30]. Suppose that H := R and C := [−1, 1] ∈ H. Let {Tn}∞n=1 : C →
C be defined by

Tnx :=

 x, x ∈ [−1, 0),

(
1

2n
+

1

2
)x, x ∈ [0, 1].

Then F :=
⋂∞

n=1F(Tn) = [−1, 0], and hence the interior of the common fixed points is nonempty.

Moreover, it is easy to show that {Tn}∞n=1 is a countable family of uniformly closed and uniformly

Lipschitz pseudo-contractive mappings with Lipschitz constant L := supn≥1 Ln = 2.

For this example, we can let αn =
3

4
+

1

n+ 4
, βn =

1

10
+

1

n+ 40
and γn =

3

20
− 1

n+ 40
for

n ≥ 1. Then {αn}, {βn}, {γn} ⊂ (0, 1) and βn ≤ γn,∀ n ≥ 1. Furthermore, α = lim inf
n→∞

αn =
3

4
,

β = lim inf
n→∞

βn =
1

10
, supn≥1 γn ≤

3

20
, and

(1−α)γ+αβ(γ2L2 +2γ−1) = (1− 3

4
)× 3

20
+

3

4
× 1

10
×
(

(
3

20
)2×22 +2× 3

20
−1
)

= − 33

4000
< 0.

It satisfies all conditions in Theorem 3.1. Hence, from Theorem 3.1, we can obtain the sequence

{xn} generated by (3.1) and staring with an arbitrary x1 ∈ C will converges strongly to a common

fixed point of {Tn}∞n=1.
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4 Applications

If in Theorem 3.1, we consider a finite family of Lipschitz pseudo-contractive mappings, then we

have the following result.

Theorem 4.1 Let C be a nonempty, closed convex subset of a real Hilbert space H, let {Ti}Ni=1 :

C → C be a finite family of uniformly closed and Lipschitz pseudo-contractive mappings with

Lipschitzian constants Li, for i = 1, 2, · · · , N , respectively. Assume that the interior of F :=⋂N
i=1F(Ti) is nonempty. Let {xn} be a sequence generated from an arbitrary x1 ∈ C by

zn = (1− γn)xn + γnTnxn,

yn = (1− βn)xn + βnTnzn,

xn+1 = (1− αn)zn + αnyn,

(4.1)

where Tn := Tn(mod N) and {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn, ∀ n ≥ 1,

(ii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn, for L := max{Li : i = 1, 2, · · · , N}.
Then, {xn} converges strongly to a common fixed point of {T1, T2, · · · , TN}.

If in Theorem 3.1, we consider a single Lipschitz pseudo-contractive mapping, then we may

add a condition that is
∑∞

n=1 γn =∞.

Theorem 4.2 Let C be a nonempty, closed convex subset of a real Hilbert space H, let T :

C → C be a Lipschitz pseudo-contractive mapping with Lipschitzian constant L. Assume that

the interior of F(T ) is nonempty. Let {xn} be a sequence generated from an arbitrary x1 ∈ C
by 

zn = (1− γn)xn + γnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1− αn)zn + αnyn,

(4.2)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn, ∀ n ≥ 1,

(ii)
∑∞

n=1 γn =∞,

(iii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn. Then, {xn} converges strongly to a

fixed point of T .

Proof. Following the method of the proof of Theorem 3.1, we also obtain that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
(

(1− αn)γ2n + αnβnγn(γ2nL
2 + 2γn − 1)

)
‖xn − Txn‖2,
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and xn → x∗ ∈ C. Now, from Lemma 2.2, we get

(
(α− 1)γ + αβ(1− 2γ − γ2L2)

) ∞∑
n=1

γn‖xn − Txn‖2

≤
∞∑
n=1

γn

(
(αn − 1)γn + αnβn(1− 2γn − γ2nL2)

)
‖xn − Txn‖2

=

∞∑
n=1

(
(αn − 1)γ2n + αnβnγn(1− 2γn − γ2nL2)

)
‖xn − Txn‖2

≤
∞∑
n=1

(‖xn − p‖2 − ‖xn+1 − p‖2) <∞,

from which it follows that

lim inf
n→∞

‖xn − Txn‖ = 0,

and hence there exists a subsequence {xnk
} of {xn} such that

lim
n→∞

‖xnk
− Txnk

‖ = 0.

Thus, xnk
→ x∗ and the continuity of T imply that x∗ = Tx∗ and hence x∗ ∈ F(T ). �

Now, we prove a convergence theorem for a countable family of monotone mappings.

Theorem 4.3 Let H be a real Hilbert space, let {Tn}∞n=1 : H → H be a countable family of

uniformly Lipschitz monotone mappings with Lipschitzian constants Ln, let L := supn≥1 Ln.

And if xn → x∗ and ‖Tnxn‖ → 0, then x∗ ∈
⋂∞

n=1N (Tn). Assume that the interior of N :=⋂∞
n=1N (Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary x1 ∈ C by

zn = xn − γnTnxn,
yn = xn − βn(xn − zn)− βnTnzn,
xn+1 = (1− αn)zn + αnyn,

(4.3)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn, ∀ n ≥ 1,

(ii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn. Then, {xn} converges strongly to

x∗ ∈ N .

Proof. Since Tn is monotone if and only if An := I−Tn is pseudo-contractive and
⋂∞

n=1F(An) =⋂∞
n=1N (Tn) 6= ∅, then the conclusion follows from Theorem 3.1. �

If in Theorem 4.3, we consider a finite family of monotone mappings and a single monotone

mapping, respectively, then we get the following corollaries.
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Corollary 4.1 Let H be a real Hilbert space, let {Ti}Ni=1 : H → H be a finite family of Lipschitz

monotone mappings with Lipschitzian constants Li, for i = 1, 2, · · · , N , respectively. And if

xn → x∗ and ‖Tnxn‖ → 0, then x∗ ∈
⋂N

i=1N (Ti). Assume that the interior of N :=
⋂N

i=1N (Ti)

is nonempty. Let {xn} be a sequence generated from an arbitrary x1 ∈ C by
zn = xn − γnTnxn,
yn = xn − βn(xn − zn)− βnTnzn,
xn+1 = (1− αn)zn + αnyn,

(4.4)

where Tn := Tn(mod N) and {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn, ∀ n ≥ 1,

(ii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn. for L := max{Li : i = 1, 2, · · · , N}.
Then, {xn} converges strongly to a common zero point of {T1, T2, · · · , TN}.

Corollary 4.2 Let H be a real Hilbert space, let T : H → H be a Lipschitz monotone mapping

with Lipschitzian constant L. Assume that the interior of N (T ) is nonempty. Let {xn} be a

sequence generated from an arbitrary x1 ∈ C by
zn = xn − γnTxn,
yn = xn − βn(xn − zn)− βnTzn,
xn+1 = (1− αn)zn + αnyn,

(4.5)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions:

(i) βn ≤ γn,∀ n ≥ 1,

(ii)
∑∞

n=1 γn =∞,

(iii) (1− α)γ + αβ(γ2L2 + 2γ − 1) < 0,

where α = lim inf
n→∞

αn, β = lim inf
n→∞

βn and γ ≥ supn≥1 γn. Then, {xn} converges strongly to a

zero point of T .
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Abstract 
The main aim of this paper is to give integral representations for strongly negative definite functions defined on the 
product hypercomplex systems. Harmonic properties for strongly negative definite functions are investigated. We 
construct a Lèvy measure on the product hypercomplex systems, then we study the conditions that guarantee the 
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1. Introduction. 

 
The integral representation of negative definite functions is defined as Lèvy-Khinchin formula. 
This was established by Lèvy-Khinchin in1930’s for 𝐺 = ℝ. Many author’s paid attention to 
generalize this result in different spaces.  It had been extended by Hunt [4] to Lie groups, 
Parthasarathy et al [8] to locally compact commutative groups, Berg et al [3] to comutative 
semigroups with identical involution and by Lasser [6] for commutative hypergroups. The main 
aim of this paper is devoted to find the integral representations for strongly negative definite 
functions defined on the product dual hypercomplex system. Let 𝑄 be a commutative separable 
locally compact metric space of points 𝑝, 𝑞, 𝑟, … ; 𝐵(𝑄) is the 𝜎 –algebra of Borel subsets on 𝑄 
and 𝐵0(𝑄) is the subring of 𝐵(𝑄), which consists of sets with compact closure. We denote by 
𝐶(𝑄) the space of continuous functions on 𝑄;  𝐶𝑏(𝑄), 𝐶∞(𝑄) and 𝐶0(𝑄) consists of bounded, 
tending to zero at infinity and compactly supported functions from 𝐶(𝑄), respectivly. For a fixed 
𝑟 ∈ 𝑄, 𝐵 ∈ 𝐵(𝑄), we will denote by 𝑐(𝐴, 𝐵; 𝑟) a commutative Borel structure measure in 𝐴 ∈

𝐵(𝑄) . The hypercomplex system 𝐿1(𝑄, 𝑑𝑚)  is the Banach algebra of functions on 𝑄  with 
respect to the multiplicative measure 𝑚 and convolution " ∗ " defined for any 𝜙 ∗ 𝜓 ∈ 𝐿1(𝑄, 𝑑𝑚) 
by: 
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(𝜙 ∗ 𝜓)(𝑟) = ∫ 𝜙(𝑝)𝑑𝑝 ∫ 𝜓(𝑞)𝑑𝑞 𝑐(𝐸𝑝, 𝐸𝑞; 𝑟)

𝑄𝑄

                             = ∫ ∫ 𝜙(𝑝)𝜓(𝑞) 𝑐(𝑝, 𝑞; 𝑟)

𝑄𝑄

𝑑𝑚(𝑝)𝑑𝑚(𝑞)

     = ∫ ∫ 𝜙(𝑝)𝜓(𝑞) 

𝑄𝑄

𝑑𝑚𝑟(𝑝, 𝑞)

 

 
The space 𝐶∞(𝑄) is a Banach space with norm  
 

||. ||∞ = supr∈Q|(. )(𝑟)|  
 
We will denote by ℳ(𝑄), the space of Radon measure on 𝑄, i.e. the space of continuous linear 
functionals defined on 𝐶0(𝑄) . Let ℳ𝑏(𝑄) = ( 𝐶∞(𝑄))′denote the space of bounded Radon 
measures with norm 
 

||𝜇||∞ = sup {|𝜇(𝑓)|; f ∈ C∞ , |𝑓| ≤ 1}  
 
The topology of simple convergence on functions from  in the space of Radon measures, is 
called vague topology. 
 
 

2. Strongly Negative Definite Functions. 

 
A hypercomplex system 𝐿1(𝑄, 𝑑𝑚) may or may not have a unity. In this paper we will concern 
our efforts on hypercomplex system with unity. A normal hypercomplex system contain a basis 
unity if there exists 𝑒 ∈ 𝑄 such that 𝑒∗ = 𝑒 and  
 

𝑐(𝐴, 𝐵; 𝑒) = 𝑚(𝐴∗ ∩ 𝐵),     𝐴, 𝐵 ∈ 𝐵(𝑄). 
 
A nonzero measurable and bounded almost everywhere function 𝑄 ∋ 𝑟 → 𝜒(𝑟) ∈ ℂ is said to be 
a character of the hypercomplex system 𝐿1(𝑄, 𝑑𝑚)if for all 𝐴, 𝐵 ∈ 𝐵0(𝑄) we have 

∫ 𝑐(𝐴, 𝐵; 𝑟)

𝑄

𝜒(𝑟)𝑑𝑚(𝑟) = 𝜒(𝐴)𝜒(𝐵)  

and 

∫ 𝜒(𝑟)

𝐶

𝑑𝑚(𝑟) = 𝜒(𝐶),   𝐶 ∈ 𝐵0(𝑄). 
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We will denote by 𝑋ℎ the set of all bounded Hermitian characters, i.e. 

𝑋ℎ ≔ {𝜒 ∈ 𝐶𝑏(𝑄); ∫ 𝑐(𝐴, 𝐵; 𝑟)

𝑄

𝜒(𝑟)𝑑𝑚(𝑟) = 𝜒(𝐴)𝜒(𝐵),   𝜒(𝑟)̅̅ ̅̅ ̅̅ = 𝜒(𝑟∗) } 

 

A continuous bounded function  𝜓: 𝑄 → ℂ  is called negative definite if for any 
𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑄; 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ and 𝑛 ∈ ℕ we have: 

 
∑ [𝜓(𝑟𝑖) +  𝜓(𝑟𝑗)̅̅ ̅̅ ̅̅ ̅ − (𝑅𝑟∗

𝑗 𝜓)(𝑟𝑖)]𝑛
𝑖,𝑗=1 𝑐𝑖𝑐�̅� ≥ 0, 

 
and a continuous bounded function  𝜑: 𝑄 → ℂ is called positive definite if for any 𝑟1, 𝑟2, … , 𝑟𝑛 ∈
𝑄; 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ and 𝑛 ∈ ℕ we have: 
 

∑ (𝑅𝑟∗
𝑗 𝜑)(𝑟𝑖)

𝑛
𝑖,𝑗=1 𝑐𝑖𝑐�̅� ≥ 0, 

 
where 𝑅𝑟 ( 𝑟 ∈ 𝑄),  denote the generalized translation operators on𝐿1(𝑄, 𝑑𝑚). 
  

As pointed out of [1], every positive definite function 𝜑 ∈ 𝑃(𝑄) admits a unique 
representation in the integral form 

 
(2.1)                                               𝜑(𝑟) = �̂�(𝜒) = ∫ 𝜒(𝑟)𝑑

𝑋ℎ
𝜇(𝜒),   𝜒 ∈ 𝑋ℎ,             

 
where 𝜇 is a finite nonnegative regular measure on the space 𝑋ℎ. Conversely, each function have 
the integral form (1.1) belongs to the set of all positive definite function 𝑃(𝑄). 
 
 Let 𝑄1  and 𝑄2 be two commutative separable locally compact metric spaces, with 
identities 𝑒1 and 𝑒2 respectively, and suppose  𝐴 be a non empty subset of  𝐿1(𝑄1 ) × 𝐿1(𝑄2 ), 
then the strongly positive definite function will be defined as follows: 
 
Definition 2.1. A locally bounded continuous measurable function  𝛷 ∈ 𝐴 is called strongly 
positive definite, if there exists two positive definite functions 𝜑1 ∈ 𝑃(𝑄1) and 𝜑2 ∈ 𝑃(𝑄2) 
and a Radon measure 𝜇 ∈ ℳ+(𝑄1 × 𝑄2 ), such that 
 

(2.2)                                             �̂�(𝜒, 𝜏) = {
𝜑1(𝜒)+𝜑2(𝜏), (𝜒, 𝜏) ∈ 𝐴 

0,                                  (𝜒, 𝜏) ∉ 𝐴 .  
 

  
 A locally bounded continuous measurable function  𝛹 ∈ 𝐴 is called strongly negative 
definite, if 𝛹(𝑒1, 𝑒2) ≥ 0and exp (−𝑡𝛹) is strongly positive definite in 𝐴 for each 𝑡 > 0. 
  

Clearly each strongly positive (negative) definite function is positive (negative) definite 
but the converse implication does not hold. Negative definiteness is an analogue of one half of 
Schoenberg’s duality result, It is not known for which hypercomplex system, negative 
definiteness implies strong negative definiteness. The following Lemma is in fact, an adaption of 
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whatever done for hypergroups [7], we will not repeat the proof, wherever the proof for 
hypergroups can be applied to the hypercomplex with necessary modification. 
 
Lemma 2.2. The sum and the point-wise limit of strongly negative definite functions on 
hypercomplex are also strongly negative definite. 
 
Theorem 2.3. A function  𝛹: 𝑄 → ℂ is strongly negative definite if and only if the following 
conditions are satisfied: 
 

(i) 𝛹(𝑒1, 𝑒2) ≥ 0,   𝛹 is continuous bounded function ; 
(ii) 𝛹(𝒓)̅̅ ̅̅ ̅̅ ̅ = 𝛹(𝒓∗)   for each 𝒓 ∈ 𝑄1 × 𝑄2 ; 
(iii) if for any 𝒓1, 𝒓2, … , 𝒓𝑛 ∈ 𝑄1 × 𝑄2  𝑎𝑛𝑑 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ  with  ∑ 𝑐𝑖

𝑛
𝑖=1 = 0 and  

𝒓𝑖 = (𝑟1
𝑖, 𝑟1

𝑖) ∈ 𝑄1 × 𝑄2  , we have 
 

∑ (𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)

𝑛
𝑖,𝑗=1 𝑐𝑖𝑐�̅� ≤ 0. 

 

Proof.  Suppose that the function  𝛹 is strongly negative definite. From the above definition of 
strongly negative definite functions, it is clear that 𝛹 satisfies (i) and (ii). Let 𝒓1, 𝒓2, … , 𝒓𝑛 ∈
𝑄1 × 𝑄2  𝑎𝑛𝑑 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ  with  ∑ 𝑐𝑖

𝑛
𝑖=1 = 0 . Since, every strongly negative definite 

function is negative definite, so  
 
                                                      0 ≤ ∑ [𝛹(𝒓𝑖) +  𝛹(𝒓𝑗)̅̅ ̅̅ ̅̅ ̅̅ − (𝑅𝒓∗

𝑗 𝛹)(𝒓𝑖)]𝑛
𝑖,𝑗=1 𝑐𝑖𝑐�̅� 

                                              = (∑ 𝑐𝑗)  𝑛
𝑗=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∑ [𝛹(𝒓𝑖)]𝑛
𝑖=1 𝑐𝑖 + (∑ 𝑐𝑖)  𝑛

𝑖=1 ∑ [𝛹(𝒓𝑗)]𝑛
𝑗=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 − ∑ [(𝑅𝒓∗

𝑗 𝛹)(𝒓𝑖)]𝑛
𝑖,𝑗=1 𝑐𝑖𝑐�̅� 

     = − ∑ [(𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)]𝑛

𝑖,𝑗=1 𝑐𝑖𝑐�̅� 
 

Conversely, suppose that 𝛹 satisfies the above conditions. Let  𝑒, 𝒓1, 𝒓2, … , 𝒓𝑛 ∈ 𝑄1 ×
𝑄2  𝑎𝑛𝑑 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ with  ∑ 𝑐𝑖

𝑛
𝑖=1 = 0. From (iii) we have 

 

           0 ≥  ∑ [(𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)]

𝑛

𝑖,𝑗=0

𝑐𝑖𝑐�̅� 

               = ∑ [(𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)]

𝑛

𝑖,𝑗=1

𝑐𝑖𝑐�̅� + 𝑐0̅ ∑[𝛹(𝒓𝑖)]

𝑛

𝑖=1

𝑐𝑖 + 𝑐0 ∑[𝛹(𝒓𝑗)]

𝑛

𝑗=1

𝑐𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ 𝛹(𝒆)|𝑐0|2 

               = ∑ [𝛹(𝒓𝑖) +  𝛹(𝒓𝑗)̅̅ ̅̅ ̅̅ ̅̅ − (𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)]𝑛

𝑖,𝑗=1 𝑐𝑖𝑐�̅� + 𝛹(𝒆)|𝑐0|2 
 
This implies 

           ∑ [𝛹(𝒓𝑖) +  𝛹(𝒓𝑗)̅̅ ̅̅ ̅̅ ̅̅ − (𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)]

𝑛

𝑖,𝑗=1

𝑐𝑖𝑐�̅� ≥ 𝛹(𝒆)|𝑐0|2 ≥ 0 
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Corollary 2.4. For any functions 𝛷, 𝛹 on the product 𝑄1 × 𝑄2 we have: 
(i) If  𝛹 belongs to the set of strongly negative definite function on 𝑄1 × 𝑄2 , then 

the function 𝒓 → 𝛹(𝒓) − 𝛹(𝑒1, 𝑒2) is also strongly negative definite function. 
(ii) If  𝛷 belongs to the set of strongly positive definite function on 𝑄1 × 𝑄2 , then the 

function 𝒓 → 𝛷(𝒓) − 𝛷(𝑒1, 𝑒2) is also strongly positive definite function. 
 

Proof. Let  𝒓1, 𝒓2, … , 𝒓𝑛 ∈ 𝑄1 × 𝑄2  𝑎𝑛𝑑 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ with  ∑ 𝑐𝑖
𝑛
𝑖=1 = 0. Then we have 

 

           ∑ [𝑅𝒓∗
𝑗 (𝛹(𝒓𝑖) − 𝛹(𝑒1, 𝑒2))]

𝑛

𝑖,𝑗=0

𝑐𝑖𝑐�̅� = ∑ (𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)𝑐𝑖𝑐�̅� − 𝛹(𝑒1, 𝑒2)

𝑛

𝑖,𝑗=0

| ∑ 𝑐𝑖

𝑛

𝑖=1

|2  

 

                                            =    ∑ (𝑅𝒓∗
𝑗 𝛹)(𝒓𝑖)𝑐𝑖𝑐�̅�

𝑛

𝑖,𝑗=0

≤ 0 

 
This proves the strongly negative definiteness of 𝛹(𝒓) − 𝛹(𝑒1, 𝑒2). Similarly, let  
𝒓1, 𝒓2, … , 𝒓𝑛 ∈ 𝑄1 × 𝑄2  𝑎𝑛𝑑 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ with  ∑ 𝑐𝑖

𝑛
𝑖=1 = 0. Then we find 

 

           ∑ [𝑅𝒓∗
𝑗 (𝛷(𝑒1, 𝑒2) − 𝛷(𝒓𝑖))]

𝑛

𝑖,𝑗=0

𝑐𝑖𝑐�̅� = − ∑ (𝑅𝒓∗
𝑗 𝛷)(𝒓𝑖)𝑐𝑖𝑐�̅� − 𝛷(𝑒1, 𝑒2)

𝑛

𝑖,𝑗=0

| ∑ 𝑐𝑖

𝑛

𝑖=1

|2  

 

                                           =  − ∑ (𝑅𝒓∗
𝑗 𝛷)(𝒓𝑖)𝑐𝑖𝑐�̅�

𝑛

𝑖,𝑗=0

≤ 0 

 

Because 𝛷 belongs to the set of strongly positive definite functions, hence (ii). 
 

Theorem 2.5.  For every strongly negative definite function 𝛹 on the product 𝑄1 × 𝑄2 with 
𝛹(𝑒1 , 𝑒2) ≥ 0, the function 1

𝛹
 is strongly positive definite function on the product 𝑄1 × 𝑄2 . 

 

Proof. Suppose 𝛹 strongly negative definite function on the product 𝑄1 × 𝑄2 , so exp (−𝑡𝛹) is  
strongly positive definite on the product 𝑄1 × 𝑄2 . This implies 
 

|exp (−𝑡𝛹)| ≤ |exp (−𝑡𝛹(𝑒1 , 𝑒2))|     for all 𝑡 > 0. 
 
It follows, for all (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 

̂ we have  
 

1

𝛹(𝜒, 𝜏)
= ∫ exp(−𝑡𝛹(𝜒, 𝜏)) 𝑑𝑡 = ∫  𝜇�̂�(𝜒, 𝜏)𝑑𝑡

∞

0

∞

0

 

 
Where 𝜇𝑡  is the corresponding measure for exp (−𝑡𝛹) . Moreover, applying Lèvy continuity 
Theorem, there exists a measure 𝜐 ∈ ℳ+(𝑄1 × 𝑄2 )such that 
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υ(𝜒, 𝜏) ≔ υ̂(𝜒, 𝜏) = ∫  𝜇�̂�(𝜒, 𝜏)𝑑𝑡

∞

0

 

and 

υ(𝑒1 , 𝑒2) =
1

𝛹(𝑒1 , 𝑒2)
< ∞ 

Consequently, 𝜐 ∈ ℳ+
𝑏(𝑄1 × 𝑄2 ). This implies the required to prove. 

 

 

3. Construction of Lèvy measure. 
 

Let  𝐿1(𝑄1 × 𝑄2 ) denote a commutative normal hypercomplex system with the product basis 
𝑄1 × 𝑄2 and basis unity 𝒆 = (𝑒1 , 𝑒2). A family of bounded Radon measures (𝜇𝑡)𝑡>0  will be 
called a convolution semigroup on 𝑄1 × 𝑄2 if it satisfies the following items: 
 

(i) 𝜇𝑡(𝑄1 × 𝑄2 ) ≤ 1,  for each 𝑡 > 0; 
(ii) 𝜇𝑡1

∗ 𝜇𝑡2
= 𝜇𝑡1+𝑡2

  for each 𝑡1, 𝑡2 > 0; 

(iii) lim
𝑡→0

𝜇𝑡 = ∈𝒆, with respect to the vague topology on 𝜇 ∈ ℳ𝑏(𝑄1 × 𝑄2 ).  

 

 

Theorem 3.1. For any strongly negative definite function 𝛹 on 𝑄1 × 𝑄2 , there exists a unique 
convolution semigroup on 𝑄1 × 𝑄2 such that 𝛹 is associated to (𝜇𝑡)𝑡>0.  
 
 

Proof. Firstly, we will prove that, for (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 
̂ , the function 𝑡 → �̂�𝑡(𝜒, 𝜏)

 
is 

continuous. As pointed out of Ursohn’s lemma [9], there exists 𝑓 ∈ 𝐶𝑐(𝑄1 × 𝑄2) that satisfies 
𝑓(𝒆) = 1 𝑎𝑛𝑑 0 ≤ 𝑓 < 1 . Applying the above conditions for the convolution semigroup on 
𝑄1 × 𝑄2 , we have: 
 

1 = 𝑓(𝒆) =  lim
𝑡→0

< 𝜇𝑡, 𝑓 > ≤  lim
𝑡→0

𝑖𝑛𝑓 𝜇𝑡(𝑄1 × 𝑄2 ) ≤  lim
𝑡→0

𝑠𝑢𝑝 𝜇𝑡(𝑄1 × 𝑄2 ) ≤ 1
  

 

 

 

and this shows that 
   lim

𝑡→0
𝜇𝑡 = ∈𝒆            ( in the Bernolli topology). 

 
As pointed out of [2], for each 𝑡1, 𝑡2 > 0, we have 
 

|�̂�𝑡(𝜒, 𝜏) − �̂�𝑡0
(𝜒, 𝜏)| ≤ |�̂�|𝑡−𝑡0|(𝜒, 𝜏) − 1|

 
 

 
the right hand side tends to zero uniformally on compact subset of  𝑄1 × 𝑄2 

̂ , so 
 

lim
𝑡→0

𝜇𝑡 = 𝜇𝑡0
      ( in the Bernolli topology). 

 
Secondly, from the definition of strongly negative definite function, there exists a unique 
determined measures 𝜇𝑡 ∈ ℳ𝑏(𝑄1 × 𝑄2 ), 𝑡 > 0,  such that �̂�𝑡(𝜒) = exp (−𝑡𝛹)

 
It is clear that, 
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the family (𝜇𝑡)𝑡>0 
satisfies conditions (i) and (ii). The boundedness of the function 𝛹on compact 

subsets of 𝑄1 × 𝑄2 
̂ implies that 

 
lim
𝑡→0

�̂�𝑡(𝜒) = lim
𝑡→0

exp(−𝑡𝛹) = 1.
 
 

 
From [5], there exists a multiplicative measure �̂� on the dual 𝑄1 × 𝑄2 

̂ , such that for every 𝑓 ∈

𝐶0(𝑄1 × 𝑄2 ) and 𝜀 > 0, there exits 𝑔 ∈ 𝐶0(𝑄1 × 𝑄2 
̂ )such that 𝑄1 × 𝑄2 

̂ ||𝑓 − �̃�|| < 𝜀 and 

|𝜇𝑡(𝑓) − 𝜀𝒆(𝑓)| ≤ 2𝜀 + ∫ |𝑔(𝜒, 𝜏)|

𝑄1 ×𝑄2 ̂

|�̂�𝑡(𝜒, 𝜏) − 1|𝑑�̂�(𝜒, 𝜏) 

this implies (iii). 
  

Let 𝑆 denote the set of probability and symmetric measures on 𝑄1 × 𝑄2  with compact 
support, i.e. 

𝑆 = {𝜎;  𝜎 ∈ ℳ1(𝑄1 × 𝑄2 ) ∩ ℳ𝑐(𝑄1 × 𝑄2 ), 𝜎(𝜒, 𝜏) = 𝜎 ̃(𝜒, 𝜏)} 
 
Let (𝜇𝑡)𝑡>0  be a convolution semigroup on 𝑄1 × 𝑄2 and 𝛹: 𝑄1 × 𝑄2 

̂ → ℂ the strongly negative 
definite function associated to (𝜇𝑡)𝑡>0  . Applying the same technique of [2] for the 
hypercomplex system instead of semigroups, we can see that, the net (1

𝑡
𝜇𝑡|𝑄1 × 𝑄2 \̂ {𝒆})𝑡>0  of  

positive measures on 𝑄1 × 𝑄2 \̂ {𝒆}converges vaguely as 𝑡 → 0 to a measure 𝜇 on 𝑄1 × 𝑄2 \̂ {𝒆}, 
and for every 𝜎 ∈ 𝑆 , the function 𝛹 ∗ 𝜎 − 𝛹  is continuous strongly positive definite on 
𝑄1 × 𝑄2 

̂ and the positive bounded measure 𝜇𝜎 on 𝑄1 × 𝑄2 whose Fourier transform is 𝛹 ∗ 𝜎 −
𝛹 satisfies 
 
(3.1)                                                      (1 − 𝜎 ̃)𝜇 = 𝜇𝜎|𝑄1 × 𝑄2 \{𝒆}. 
 
 The positive measure 𝜇  on 𝑄1 × 𝑄2 \{𝒆}  defined by (3.1) is called the strong Lèvy 
measure for the convolution semigroup (𝜇𝑡)𝑡>0  on 𝑄1 × 𝑄2 . 
 
Theorem 3.2. Let 𝜇  denote the Lèvy measure for the convolution semigroup (𝜇𝑡)𝑡>0 

on 𝑄1 ×

𝑄2 . Then 
 
(3.2)                                          ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝑟))𝑑

𝑄1 ×𝑄2 \{𝒆}
𝜇(𝜒, 𝜏) < ∞,   (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 

̂ . 
 

Proof. For (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 
̂ , let 𝜎 =

1

2
(𝜖(𝜒,𝜏) + 𝜖(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅) ∈ 𝑆; then 𝜎 ̃ =  𝑅𝑒(𝜒, 𝜏)(𝑟), substituting 

in (3.2) we get 

∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝑟))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝜒, 𝜏) = ∫ (1 − 𝜎 ̃(𝑟))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝜒, 𝜏) = 𝜇𝜎|𝑄1 × 𝑄2 \{𝒆} < ∞. 
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4. Integral representation theorem. 
 

A continuous function ℎ: 𝑄1 × 𝑄2 → ℝ is called homomorphism if it satisfies ℎ(𝒓∗) = −ℎ(𝒓) 
and 𝑅𝒓ℎ(𝒔) = ℎ(𝒓) + ℎ(𝒔), 𝒓, 𝒔 ∈ 𝑄1 × 𝑄2 . Clearly, if ℎ: 𝑄1 × 𝑄2 → ℝ is a homomorphism, 
then the function 𝛹 = 𝑖ℎ is strongly negative definite. A continuous function 𝑞: 𝑄1 × 𝑄2 → ℝ 
is called a quadratic form, if it satisfies 
 
(4.1)                             𝑅𝒓𝑞(𝒔) + 𝑅𝒓∗𝑞(𝒔) = 2𝑞(𝒓) + 2𝑞(𝒔), 𝒓, 𝒔 ∈ 𝑄1 × 𝑄2 . 
 
Theorem 4.1. Let 𝛹  be a strongly negative definite function associated the convolution 
semigroup (𝜇𝑡)𝑡>0 

on 𝑄1 × 𝑄2 . If the Lèvy measure 𝜇 of (𝜇𝑡)𝑡>0 
is symmetric, then 𝐼𝑚𝛹 is a 

homomorphism. 
 

Proof. As remarked in [2], a continuous function  𝑓: 𝑄1 × 𝑄2 → ℝ̂  which satisfies 𝑓(𝑒1, 𝑒2) = 0 
is a homomorphism if and only if 𝑓 ∗ 𝜐 − 𝑓 = 0 for all 𝜐 ∈ 𝑆. Since, �̌� = 𝜇 is equivalent to �̌�𝜎 =
𝜇𝜎  for each 𝜎 ∈ 𝑆 . So, 𝐼𝑚𝛹 ∗ 𝜐 − 𝐼𝑚𝛹 = 0  for each 𝜎 ∈ 𝑆 , hence, then 𝐼𝑚𝛹  is a 
homomorphism. In particular, we have 𝑖 𝐼𝑚𝛹 is  strongly negative definite. 
 
 

Lemma 4.2. For every positive definite symmetric measure 𝜇 on the product 𝑄1 × 𝑄2 \{𝒆} such 
that 
(4.2)                                  ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝒓))𝑑

𝑄1 ×𝑄2 \{𝒆}
𝜇(𝒓) < ∞,   (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 

̂ . 
 
The function 𝛹𝜇: 𝑄1 × 𝑄2 

̂ → ℂ defined by  
 
(4.3)                                 𝛹𝜇 ≔ ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝒓))𝑑

𝑄1 ×𝑄2 \{𝒆}
𝜇(𝒓) < ∞,   (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 

̂ , 
 

is strongly negative definite function. 
 
Proof. To prove the function 𝛹𝜇 is strongly negative definite, we will sufficiently prove that the 
measure 𝜇   is strong Lèvy measure for 𝛹𝜇. For 𝑓 ∈ 𝐶𝐶

+(𝑄1 × 𝑄2 )̂  such that 𝑓(�̅�) = 𝑓(𝜒) and 
∫ 𝑓(𝜒) 𝑑𝑥 = 1, Applying Fubini’s Theorem we get 
 
(4.4)                                     (𝛹𝜇 ∗ 𝑓)(𝜒) = ∫ (𝑅𝜌𝑓)(𝜒)𝛹𝜇(𝜌)𝑑𝜌

𝑄1 ×𝑄2 ̂  

                                                              =∫ 𝑓(𝜌) ∫ [1 − 𝑅𝑒𝜒(𝑟)𝜌(𝑟)]𝑑
𝑄1 ×𝑄2\{(𝑒1,𝑒2)}𝑄1 ×𝑄2 ̂ 𝜇(𝑟) 

                                  =∫ [1 − 𝑅𝑒𝜒(𝑟)𝑓(𝑟)]𝑑
𝑄1 ×𝑄2\{𝒆}

𝜇(𝑟) 
Specially, for 𝜒 = 1, we have 
 

∫ [1 − 𝑓(𝑟)]𝑑
𝑄1 ×𝑄2\{𝒆}

𝜇(𝑟) = ∫ 𝑓(𝜌) 𝛹𝜇(𝜌)𝑑𝜌 
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Clearly, 𝑑𝜐(𝑟) = [1 − 𝑓(𝑟)]𝑑𝜇(𝑟) is positive definite measure on 𝑄1 × 𝑄2\{𝒆}, so can be 
considered as positive definite measure on 𝑄1 × 𝑄2. This implies 
 

�̂�(𝜒) = 𝑅𝑒�̂�(𝜒) = ∫ 𝑅𝑒𝜒(𝑟)[1 − 𝑓(𝑟)]𝑑
𝑄1 ×𝑄2\{𝒆}

𝜇(𝑟)   for  𝜒 ∈ 𝑄1 × 𝑄2 
̂ . 

 
Putting 𝑓 = 𝜎 in (4.4) implies that 

𝛹𝜇 ∗ 𝜎(𝜒) − 𝛹𝜇(𝜒) = ∫ 𝑅𝑒𝜒(𝑟)[1 − �̃�(𝑟)]𝑑
𝑄1 ×𝑄2\{𝒆}

𝜇(𝑟) 

 
So,  𝛹𝜇 ∗ 𝜎 − 𝛹𝜇is the Fourier transform of the measure [1 − �̃�(𝑟)]|𝜇, this implies 𝜇 is the Lèvy 
measure of 𝛹𝜇. 
 
 
Theorem 4.3.(Main Result) Let 𝛹: 𝑄1 × 𝑄2 → ℂ̂  be a strongly negative definite function 
associated the convolution semigroup (𝜇𝑡)𝑡>0 

 with a symmetric positive Lèvy measure 𝜇 such 
that 

∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝑟))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝑟) < ∞,   (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 
̂ , 

 
Then 𝛹 admits the integral representation 
 
                                           𝛹(𝜒, 𝜏) = 𝛹(𝑒) + 𝑖𝐼𝑚𝛹 + 𝑞(𝜒, 𝜏) 
 

                                                               + ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝑟))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝑟) < ∞,   (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 
̂ , 

 

where 

𝑞(𝜒, 𝜏) = lim
𝑛→∞

[
(𝑅(𝜒,𝜏)

𝑛 𝛹)(𝜒,𝜏)

4𝑛2 +
(𝑅

(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅
𝑛 𝛹)(𝜒,𝜏)

2𝑛
]. 

 

 

Proof. Regarding Theorem 4.1, the symmetries of the measure 𝜇  implies ℎ = 𝐼𝑚𝛹  is a 
homomorphism and 𝑖ℎ belongs to the space of strongly negative definite functions on 𝑄1 × 𝑄2 

̂ . 
Hence, the function 𝛹 − 𝐶𝐼  belongs to the space of strongly negative definite functions on 
𝑄1 × 𝑄2 

̂ associated Lèvy measure 𝜇 , where 𝐶 = 𝛹(𝒆). This implies the function 𝛹# = 𝛹 −
𝐶𝐼 − 𝑖ℎ belongs to the space of strongly negative definite functions on 𝑄1 × 𝑄2 

̂ associated Lèvy 
measure 𝜇. By virtue of the argument of Theorem 3.2, the integral  

𝛹𝜇 ≔ ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝒓))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓)    
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is finite for all (𝜒, 𝜏) ∈ 𝑄1 × 𝑄2 
̂ . Observing Lemma 4.2, we get that, the function 𝑞 = 𝛹# −

𝛹𝜇 is a real valued symmetric function with 𝑞(𝒆) = 0. As remarked in [3], for 𝜎 ∈ 𝑆 we have 
 

𝛹# ∗ 𝜎 − 𝛹# = 𝛹 ∗ 𝜎 − 𝛹 
and 
 
(4.5)                                     𝛹𝜇 ∗ 𝜎 − 𝛹𝜇 = ∫ 𝑅𝑒𝜒(𝑟)[1 − �̃�(𝑟)]𝑑

𝑄1 ×𝑄2\{𝒆}
𝜇(𝑟) 

 

Applying (3.1) and (4.5), we get 
 
(4.6)                               𝑞 ∗ 𝜎 − 𝑞 = (𝛹# − 𝛹𝜇) ∗ 𝜎 − (𝛹# − 𝛹𝜇) =  �̂�𝜎({𝒆}) ≥ 0 
 

As pointed in [2], (4.6) implies that the function q is a nonnegative quadratic form on 𝑄1 × 𝑄2 
̂ . 

Recalling the integral  

𝛹𝜇 ≔ ∫ (1 − 𝑅𝑒(𝜒, 𝜏)(𝒓))𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓)    

 
By Lemma 4.2 the function 𝛹𝜇 is strongly negative definite. Since every quadratic form satisfies 
the following relation[2] 
 

lim
𝑛→∞

[
(𝑅(𝜒,𝜏)

𝑛 𝑞)(𝜒, 𝜏)

4𝑛2
] = 𝑞(𝜒, 𝜏) −

1

2
(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅𝑞)(𝜒, 𝜏) 

So 
 
(4.7)                𝑞(𝜒, 𝜏) −

1

2
(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅𝑞)(𝜒, 𝜏) 

 

                           = lim
𝑛→∞

[
(𝑅(𝜒,𝜏)

𝑛 𝛹)(𝜒, 𝜏)

4𝑛2
] − lim

𝑛→∞
[
(𝑅(𝜒,𝜏)

𝑛 𝛹𝜇)(𝜒, 𝜏)

4𝑛2
] 

                                                                

= lim
𝑛→∞

[
(𝑅(𝜒,𝜏)

𝑛 𝛹)(𝜒, 𝜏)

4𝑛2
] − lim

𝑛→∞

1

4𝑛2
∫ (1 − 𝑅𝑒((𝜒, 𝜏)(𝒓))2𝑛)𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓)    

 
Since the product 𝑄1 × 𝑄2 is locally compact, then for every compact K of  𝑄1 × 𝑄2 

̂ , there 
exists a constant 𝑀𝐾 ≥ 0, a nieghbourhood 𝑁𝐾 of e and a finite subset 𝑆𝐾 of K such that for 
every element 𝑟 ∈ 𝑁𝐾 we have 
 

supr{1 − 𝑅𝑒(𝜒, 𝜏)(𝒓); (𝜒, 𝜏) ∈ 𝐾} ≤ 𝑀𝐾supr {1 − 𝑅𝑒(𝜒, 𝜏)(𝒓); (𝜒, 𝜏) ∈ 𝑆𝐾}. 
 
If (𝜒, 𝜏)(𝒓) ≠ 0, let (𝜒, 𝜏)(𝒓) = 𝜌exp (𝑖𝜗) for some 0 < 𝜌 ≤ 1 and −𝜋 ≤ 𝜗 ≤ 𝜋. Then for  
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𝑛 ∈ ℕ the ratio sin (𝑛𝜗)

𝑛𝜗
 is bounded a way from 𝑄1 × 𝑄2 on [𝜋

2
, 𝜋], this implies the existence of a 

positive constant 𝐶 ≥ 0 such that 
 

1

4𝑛2
(1 − cos(2𝑛𝜗))  =

1

2
[
sin(𝑛𝜗)

𝑛𝜗
]

2

[
𝜗

sin(𝑛𝜗)
]

2

[
1 − cos(2𝜗)

2
] 

 
≤ 𝐶(1 − cos(2𝜗)) 

 
Also, we have 

1 − 𝜌2𝑛

4𝑛2
≤

1 − 𝜌

2𝑛
≤

1 − 𝜌2

2
 

 
These gives 
 

1

4𝑛2
(1 − 𝑅𝑒((𝜒, 𝜏)(𝒓))

2𝑛
) =

1

4𝑛2
(1 − 𝜌2𝑛) +

𝜌2𝑛

4𝑛2
(1 − cos(2𝑛𝜗)) 

       
                               ≤ 1−𝜌2

2
+ 𝐶𝜌2𝑛(1 − cos(2𝜗)) 

 

                                   ≤
1 − 𝜌2

2
+ 𝐶𝜌2(1 − cos(2𝜗)) 

 

                                           ≤
1 − 𝜌2

2
+ 𝐶(1 − 𝑅𝑒((𝜒, 𝜏)(𝒓))2) 

 

Applying the dominated convergence theorem gives 
 

1

4𝑛2
∫ (1 − 𝑅𝑒((𝜒, 𝜏)(𝒓))2𝑛)𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓) = 0 

Substituting in (4.7) gives 
 

(4.8)                                     𝑞(𝜒, 𝜏) =
1

2
(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅𝑞)(𝜒, 𝜏) + lim

𝑛→∞
[

(𝑅(𝜒,𝜏)
𝑛 𝛹)(𝜒,𝜏)

4𝑛2 ] 
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Observing that 

                               (𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅𝑞)(𝜒, 𝜏) = lim
𝑛→∞

[
(𝑅

(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅
𝑛 𝑞)(𝜒,𝜏)

2𝑛
] 

 
                                                      

= lim
𝑛→∞

[
(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅

𝑛 𝛹)(𝜒, 𝜏)

2𝑛
] − lim

𝑛→∞

1

2𝑛
∫ (1 − |(𝜒, 𝜏)(𝒓)|2𝑛)𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓) 

 

But 
 

1

2𝑛
(1 − |(𝜒, 𝜏)(𝒓)|2𝑛) ≤ 1 − |(𝜒, 𝜏)(𝒓)|2 

 
Applying the dominated convergence theorem again gives 
 

lim
𝑛→∞

1

2𝑛
∫ (1 − |(𝜒, 𝜏)(𝒓)|2𝑛)𝑑

𝑄1 ×𝑄2 \{𝒆}

𝜇(𝒓) = 0 

 

and so 

(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅𝑞)(𝜒, 𝜏) = lim
𝑛→∞

[
(𝑅(𝜒,𝜏)̅̅ ̅̅ ̅̅ ̅

𝑛 𝛹)(𝜒, 𝜏)

2𝑛
] 

 
This complete the proof of the Theorem. 
 

5. Conclusion 
In this paper  integral representations for strongly negative definite functions defined on the product 
hypercomplex systems is given. Harmonic properties for strongly negative definite functions are 
investigated. We construct a Lèvy measure on the product hypercomplex systems, then we study the 
conditions that guarantee the existence of some integrations having an integrand parts as a function of the 
constructed kernel. Finally, we give a Lèvy - Khinchin type formula for strongly negative definite functions 
defined on the product hypercomplex systems. 
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Abstract. The existence and uniqueness of solutions for nonlinear delay fractional difference equations

are investigated in this paper. We prove the main results by employing the theorems of Krasnoselskii’s

Fixed Point and Arzela–Ascoli. As an application of the main theorem, we provide an existence result

on the discrete fractional Lotka–Volterra model.

Keywords. Existence and uniqueness; Fractional difference equations; Krasnoselskii Fixed Point The-

orem; Arzela-Ascoli’s Theorem; Discrete fractional Lotka–Volterra model.

AMS subject classification: 34A08, 34A12, 39A12.

1 Introduction

Fractional differential equations have received a special attention during the last
decades since it has been found that these type of equations provide an excellent in-
struments for the description of memory and hereditary properties of various materials
and processes [1, 2, 3]. The problem of the existence of solutions for fractional differ-
ential equations, in particular, has been considered in several recent papers; ( see Refs.
[4, 5, 6, 7, 8] and the references therein).

For the development of the theory of fractional difference equations, which is the
discrete counterpart of fractional differential equations, still there exists less interest
among researchers. In fact the progress of the theory of fractional difference equations
is still in its early stages. Indeed, some mathematicians have recently taken the lead
to develop the qualitative properties of fractional difference equations. We name here
for instance Atici et. al. [9, 10, 11, 12, 13] who developed the transform methods,
properties of initial value problems and studied applications of these equations on the
tumor growth, Abdeljawad et. al. [14, 15, 16, 17, 18] who investigated the properties of
Riemann and Caputo’s fractional sum and difference operators, Anastassiou [19, 20] who
defined a Caputo like discrete fractional difference and studied some discrete fractional
inequalities, Goodrich [21, 22, 23] who established sufficient conditions for the existence
of solutions for initial and boundary value problems of discrete fractional equations
and Chen et. al. [24, 25, 26] who studied the stability of certain fractional difference
equations. In [27, 28], Wu and Baleanu provided some applied results concerning with
certain real life problems described by discrete fractional equations. For further details
on these achievements, we recommend the reader to consult the new publications [29, 30].

1Corresponding Author E-Mail Address: dumitru@cankaya.edu.tr
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Obviously, the existence and uniqueness of solutions are essentially significant con-
cept for differential equations. To the best of authors’ knowledge, there are no results
concerning with the existence and uniqueness of solutions for nonlinear delay fractional
difference equations. The objective of this paper is to cover this gap and study the
existence and uniqueness problem for equations of the form

{
c∇α

0x(t) = f(t, x(t), x(t− τ)), t ∈ N0 = {0, 1, 2, . . .}, τ ≥ 0,
x(t) = φ(t), t ∈ [−τ,−τ + 1, . . . , 0],

(1)

where f : N0 × R × R → R and c∇α
0 denotes the Caputo’s fractional difference of order

α ∈ (0, 1). To prove our main results, we employ the Krasnoselskii Fixed Point Theorem
and the Arzela-Ascoli’s Theorem. As an application of the main theorem, we provide an
existence result on the discrete fractional Lotka–Volterra model.

2 Preliminaries

Throughout this paper, we will make use of the following notations, definitions and
known results of discrete fractional calculus [29]. For any α, t ∈ R, the α rising function
is defined by

tα =
Γ(t+ α)

Γ(t)
, t ∈ R\{. . . ,−2,−1, 0}, 0α = 0, (2)

where Γ is the well known Gamma function satisfying Γ(α+ 1) = αΓ(α).

Definition 1. Let x : N0 → R, ρ(s) = s− 1, α ∈ R
+ and µ > −1. Then

1. The nabla difference of x is defined by

∇x(t) = x(t)− x(t− 1), t ∈ N1 = {1, 2, . . .}.

2. The Riemann–Liouville’s sum operator of x of order α > 0 is defined by

∇−α
0 x(t) =

1

Γ(α)

t∑

s=1

(t− ρ(s))α−1x(s), t ∈ N1. (3)

3. The Riemann–Liouville’s difference operator of x of order 0 < α < 1 is defined by

c∇α
0x(t) = ∇−(1−α)

0 ∇x(t) =
1

Γ(1− α)

t∑

s=1

(
t− ρ(s)

)−α∇x(s), t ∈ N1. (4)

4. The power rule is defined by

∇−α
0 tµ =

Γ(µ+ 1)

Γ(µ+ α+ 1)
(t)α+µ, t ∈ N0. (5)

Lemma 1. [40] x(t) denotes a solution of equation (1) if and only if it admits the
following representation

x(t) = φ(0) +
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1f(s, x(s), x(s− τ)), t ∈ N0, (6)

and x(t) = φ(t), t ∈ [−τ,−τ + 1, . . . , 0].
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The space l∞ denotes the set of real bounded sequences with respect to the usual
supremum norm. We recall that l∞ is a Banach space.

Definition 2. A set D of sequences in l∞ is uniformly Cauchy if for every ε > 0, there
exists an integer N such that |x(t)− x(s)| < ε whenever t, s > N for any x = {x(n)} in
D.

The following discrete version of Arzela–Ascoli’s Theorem has a crucial role in the
proof of our main theorem.

Theorem 1. (Arzela–Ascoli’s Theorem) A bounded, uniformly Cauchy subset D of l∞
is relatively compact.

The proof of the main theorem is achieved by employing the following fixed point
theorem.

Theorem 2. [31] (Krasnoselskii Fixed Point Theorem) Let D be a nonempty, closed,
convex and bounded subset of a Banach space (X, ‖x‖). Suppose that A : X → X and
B : D → X are two operators such that

(i) A is a contraction.

(ii) B is continuous and B(D) resides in a compact subset of X,

(iii) for any x, y ∈ D, Ax+By ∈ D.

Then the operator equation Ax+Bx = x has a solution x ∈ D.

3 Main results

We prove our main results under the following assumptions:

(I) f(t, x(t), y(t)) = f1(t, x(t)) + f2(t, x(t), y(t)), where fi are Lipschitz functions with
Lipschitz constants Lfi , i = 1, 2.

(II) |f1(t, x(t))| ≤ M1|x(t)|, |f2(t, x(t), y(t))| ≤ M2|x(t)| × |y(t)| for any positive num-
bers M1 and M2.

Let B(N−τ ,R) denote the set of all bounded functions (sequences). Define the set

D = {x : x ∈ B(N−τ ,R), |x| ≤ r, t ∈ N0},
where r satisfies

|φ(0)| + M1r +M2r
2

Γ(α)
≤ r.

Define the operators F1 and F2 by

F1x(t) = φ(0) +
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1f1(s, x(s)),

and

F2x(t) =
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1f2(s, x(s), x(s − τ)).

It is clear that x(t) is a solution of (1) it it is a fixed point of the operator Fx = F1x+F2x.
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Theorem 3. Let conditions (I)–(II) hold. Then, equation (1) has a solution in the set

D provided that
Lf1

C(α)

Γ(α) < 1 and |φ(0)| +
(
M1r+M2r

2
)
C(α)

Γ(α) ≤ r.

Proof. From the assumptions on the set D, one can easily see that D is a nonempty,
closed, convex and bounded set.

Step.1: We prove that F1 is contractive. We can easily see that

∣∣F1x(t)− F1y(t)
∣∣ =

1

Γ(α)

t∑

s=1

(t− ρ(s))α−1
∣∣f1(s, x(s))− f1(s, y(s))

∣∣

≤ Lf1

Γ(α)

t∑

s=1

(t− ρ(s))α−1|x(s)− y(s)|

≤ Lf1

Γ(α)
‖x− y‖

t∑

s=1

(t− ρ(s))α−1. (7)

By virtue of (2), (3), (5) and since (t− 0)0 = 1, one can see that

t∑

s=1

(t− ρ(s))α−1(t− 0)0 = Γ(α)∇−α
0 (t− 0)0 =

Γ(t+ α)

αΓ(t)
.

Therefore, (7) becomes

∣∣F1x(t)− F1y(t)
∣∣ ≤ Lf1C(α)

Γ(α)
‖x− y‖, t < T1,

where C(α) = Γ(T1+α)
αΓ(T1)

is a positive constant depending on the order α. By the as-

sumption
Lf1

C(α)

Γ(α) < 1, we conclude that F1 is contractive. Furthermore, we obtain for
x ∈ D

∣∣F1x(t) + F2x(t)
∣∣ ≤ |φ(0)| + 1

Γ(α)

t∑

s=1

(t− ρ(s))α−1
∣∣f1(s, x(s)) + f2(s, x(s), x(s − τ))

∣∣

≤ |φ(0)| + M1‖x‖ +M2‖x‖2
Γ(α)

t∑

s=1

(t− ρ(s))α−1

≤ |φ(0)| +
(
M1r +M2r

2
)
C(α)

Γ(α)
,

which implies that F1x+ F2x ∈ D. For x ∈ D, we also get

|F2x(t)| ≤
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1
∣∣f2(s, x(s), x(s − τ))

∣∣ ≤
(
M2r

2
)
C(α)

Γ(α)
≤ r,

which implies that F2(D) ⊂ D.
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Step.2: We prove that F2 is continuous. Let a sequence xn converge to x. Taking
the norm of F2xn(t)− F2x(t), we have

∣∣F2xn(t)− F2x(t)
∣∣ ≤ 1

Γ(α)

t∑

s=1

(t− ρ(s))α−1
∣∣f2(s, xn(s), xn(s − τ))− f2(s, x(s), x(s − τ))

∣∣

≤ Lf2

Γ(α)

t∑

s=1

(t− ρ(s))α−1
(
|xn(s)− x(s)| −

∣∣xn(s− τ))− x(s− τ)
∣∣
)

≤ 2Lf2

Γ(α)
‖xn − x‖

t∑

s=1

(t− ρ(s))α−1 =

(
2Lf2

)
C(α)

Γ(α)
‖xn − x‖.

From the above discussion, we conclude that whenever xn → x, Fxn → Fx. This proves
the continuity of F2. To prove that F2(D) resides in a relatively compact subset of l∞,
we let t1 ≤ t2 ≤ H to get

∣∣F2x(t2)− F2x(t1)
∣∣ ≤ 1

Γ(α)

∣∣∣
t2∑

s=1

(t2 − ρ(s))α−1f2(s, x(s), x(s − τ))

−
t1∑

s=1

(t1 − ρ(s))α−1f2(s, x(s), x(s − τ))
∣∣∣

≤ 1

Γ(α)

t1∑

s=1

∣∣∣(t2 − ρ(s))α−1 − (t1 − ρ(s))α−1
∣∣∣|f2(s, x(s), x(s − τ))|

+
1

Γ(α)

t2∑

s=t1+1

∣∣(t2 − ρ(s))α−1
∣∣|f2(s, x(s), x(s − τ))|.

Upon employing condition (II), we obtain

∣∣F2x(t2)− F2x(t1)
∣∣ ≤ M2r

2
[ 1

Γ(α)

t1∑

s=1

(t2 − ρ(s))α−1 − 1

Γ(α)

t1∑

s=1

(t1 − ρ(s))α−1

+
1

Γ(α)

t2∑

s=t1+1

(t2 − ρ(s))α−1
]
.

By using (3), we get

∣∣F2x(t2)− F2x(t1)
∣∣ ≤ M2r

2
[
∇−α

0 (t2 − 0)0 −∇−α
0 (t1 − 0)0 +∇−α

t1
(t2 − t1)

0
]
.

From (5), it follows that

∣∣F2x(t2)− F2x(t1)
∣∣ ≤ M2r

2

Γ(α+ 1)

[
t02 − t01 + (t2 − t1)

0
]
.

This implies that F2 is bounded and uniformly subset of l∞. Thus, by virtue of the
Discrete Arzela Ascoli’s Theorem 1, we conclude that F2 is relatively compact.
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Step.3: It remains to show that for any x, y ∈ D, we have F1x(t) + F2y(t) ∈ D. If
x = F1x(t) + F2y(t), then we have

|x(t)| ≤
∣∣F1x(t) + F2y(t)

∣∣ ≤ |φ(0)| + 1

Γ(α)

t∑

s=1

(t− ρ(s))α−1
∣∣f1(s, x(s)) + f2(s, y(s), y(s − τ))

∣∣

≤ |φ(0)| + M1‖x‖+M2‖x‖2
Γ(α)

t∑

s=1

(t− ρ(s))α−1

≤ |φ(0)| +
(
M1r +M2r

2
)
C(α)

Γ(α)
,

which implies that x(t) ∈ D.

By employing the Krasnoselskii Fixed Point Theorem, we conclude that there exists
x ∈ D such that x = Fx = F1x + F2x which is a fixed point of F . Hence, equation (1)
has at least one solution in D.

4 Applications

The Lotka–Volterra model has been extensively investigated through different approaches
[32, 33, 34, 35, 36, 37]. However, all the above mentioned papers studied the integer order
Lotka–Volterra model. In spite of the fact that the study of population and medical
models of fractional order has been initiated in [12, 38, 39], there is no literature achieved
in the direction of discrete fractional Lotka–Volterra model. Therefore, in this section,
we employ Theorem 3 to prove an existence and uniqueness result for the solutions of
this model.

For a bounded sequence g on N, we define g+ and g− as follows

g+ = sup
t∈N

g(t) and g− = inf
t∈N

g(t).

Let f(t, x(t), x(t − τ)) = x(t)
(
γ(t) − β(t)x(t − τ)

)
in equation (1), then we have the

following discrete fractional Lotka–Volterra model:

{
c∇α

0x(t) = x(t)
(
γ(t)− β(t)x(t− τ)

)
, t ∈ N0

x(t) = φ(t), t ∈ [−τ,−τ + 1, . . . , 0], 0 < α < 1,
(8)

where the coefficients γ and β satisfy the boundedness relations

γ− ≤ γ(t) ≤ γ+, β− ≤ β(t) ≤ β+,

which are medically and biologically feasible. Model (8) represents the interspecific
competition in single species with τ denotes the maturity time period.

Denote

f1(t, x(t)) = x(t)γ(t), f2(t, x(t), x(t − τ)) = −β(t)x(t)x(t− τ).

It follows that the functions f1 and f2 satisfy the conditions
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(III) |f1(t, x(t))| ≤ γ+|x(t)|, |f2(t, x(t), x(t − τ))| ≤ β+|x(t)| × |x(t− τ)|.

(IV) f i are Lipschitz functions with Lipschitz constants Lfi , i = 1, 2.

The solution of model (8) has the form

x(t) = φ(0) +
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1x(s)
(
γ(s)− β(s)x(s − τ)

)
, t ∈ N0, (9)

and x(t) = φ(t), t ∈ [−τ,−τ + 1, . . . , 0]. Define a function G by

Gx(t) = G1x(t) +G2x(t),

where

G1x(t) = φ(0) +
1

Γ(α)

t∑

s=1

(t− ρ(s))α−1x(s)γ(s),

and

G2x(t) = − 1

Γ(α)

t∑

s=1

(t− ρ(s))α−1x(s)β(s)x(s − τ).

One can easily employ the same arguments used in the proof of Theorem 3 to complete
the proof of the following theorem for equation (8).

Theorem 4. Let conditions (III)–(IV) hold. Then, the model (8) has a solution in the

set D provided that
Lf1

C(α)

Γ(α) < 1 and |φ(0)| +
(
γ+r+β+r2

)
C(α)

Γ(α) ≤ r.

Remark 1. The above result can be extended to n species competitive Lotka–Volterra
system of the form

{ ∇α
0xi(t) = xi(t)

(
γi(t)−

∑n
j=1 βij(t)xj(t− τij)

)
, t ∈ N0, i = 1, 2, . . . , n.

xi(t) = φi(t), t ∈ [−τi,−τi + 1, . . . , 0], 0 < α < 1, τi = max1≤j≤n τij ,
(10)

where γ− ≤ γi(t) ≤ γ+, β− ≤ βij(t) ≤ β+.

Remark 2. Results of this paper can be carried out for the equation

{
∇α

0x(t) = f(t, x(t), x(t− τ)), t ∈ N2 = {2, 3, . . .}, τ ≥ 0,
x(t) = φ(t), t ∈ [−τ,−τ + 1, . . . , 1],

(11)

where f : N0×R×R → R and ∇α
0 denotes the Riemann–Liouville’s fractional difference

of order α ∈ (0, 1). The solution of equation (11) has the form

x(t) =
tα−1

Γ(α)
φ(1) +

1

Γ(α)

t∑

s=2

(t− ρ(s))α−1f(s, x(s), x(s− τ)). (12)
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5 Conclusion

A comprehensive literature survey on the predator–prey type Lotka–Volterra model re-
veals that a considerable amount of work has already been done by many esteemed
researchers during the last century. However the concept of the model related to frac-
tional time derivatives is an original one.

The fractional Lotka–Volterra equation is obtained from the classical equations by
replacing the first order time derivative by fractional derivative of order α ∈ (0, 1). One
of the most significant outcomes of this evolution equation is the generation of fractional
Brownian motions.

It has been discernible that the discrete analogue of ordinary differential equations has
tremendous applications in computational analysis and computer simulations. Motivated
by this reality, the study of the discrete analogue of fractional differential equations has
become pressing and compulsory.

In this paper, we studied the existence and uniqueness of solutions for nonlinear
delay fractional difference equations. The main theorem is proved with the help the
Krasnoselskii fixed point theorem and the Arzela–Ascoli’s Theorem. Prior to the main
result, we set forth some notations and definitions which enriched the knowledge of
discrete fractional calculus. To demonstrate the applicability of the main theorem, we
provide an existence result for the discrete fractional Lotka–Volterra model.

It is to be noted that the analysis carried out in this paper is based on the use
of nabla rather than delta operators. Indeed, unlike the delta operator the range of
nabla fractional sum and difference operators depends only of the starting point and
independent of the order α. This provides exceptional ability to treat skilfully different
circumstances throughout the proofs. The delta approach can be obtained from nabla
operator through the implementation of the dual identities discussed in [41].
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Abstract: In this paper we generalize, complement and improve some recent
results on NLC-operators established in Gp-metric spaces. Several examples are
given to support our theoretical approach.
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fixed point

1 Introduction and preliminaries

Partial metric space and G-metric space are two different generalized metric spaces. In
1994 Matthews [13] introduced partial metric space as follows:
Definition 1.1. LetX be a nonempty set. A partial metric is a mapping p : X2 → [0,+∞)

which satisfies that
(p1) x = y ⇔ p (x, x) = p (x, y) = p (y, y) , for all x, y ∈ X;

(p2) p (x, x) ≤ p (x, y) , for all x, y ∈ X;
(p3) p (x, y) = p (y, x) , for all x, y ∈ X;
(p4) p (x, z) ≤ p (x, y) + p (y, z)− p (y, y) , for all x, y, z ∈ X.

Then the pair (X, p) is called a partial metric space.
It is clear that each (standard) metric space is a partial metric space, while on the

contrary it does not hold, in general. In recent years, many authors have obtained lots of
fixed point results in partial metric spaces, for example, see [12], [13], [15], [17], [21] and
the references therein.

On the other hand, in 2006 Mustafa and Sims [14] introduced another kind of general-
ized metric space, so-called G-metric space as follows:
Definition 1.2. Let X be a nonempty set. A mapping G : X3 → [0,+∞) is called
G-metric if it satisfies the following conditions:

∗Correspondence: denggt@bnu.edu.cn (G. Deng)
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(G1) x = y = z ⇔ G (x, y, z) = 0 for all x, y, z ∈ X;
(G2) 0 < G (x, x, y), for all x, y ∈ X with x 6= y;
(G3) G (x, x, y) ≤ G (x, y, z), for all x, y, z ∈ X with z 6= y;
(G4) G (x, y, z) = G (P {x, y, z}), where P is a permutation of x, y, z ∈ X (symmetry

in all three variables);
(G5) G (x, y, z) ≤ G (x, a, a) +G (a, y, z) , for all x, y, z, a ∈ X (rectangle inequality).

Then the pair (X,G) is called a G-metric space.
Based on this notion, many fixed point results under different contractive conditions

have been obtained (see [1], [7]-[10], [14], and the references therein).
In 2011 Zand and Nezhad [23] introduced a concept as a generalization of both partial

metric space and G-metric space as follows:
Definition 1.3. Let X be a nonempty set. A mapping Gp : X3 → [0,+∞) is called a
Gp-metric if the following conditions are satisfied:

(Gp1) x = y = z if Gp (x, y, z) = Gp (x, x, x) = Gp (y, y, y) = Gp (z, z, z) for all x, y, z ∈
X;

(Gp2) Gp (x, x, x) ≤ Gp (x, x, y) ≤ Gp (x, y, z) for all x, y, z ∈ X;
(Gp3)Gp (x, y, z) = Gp (P {x, y, z}) , where P is a permutation of x, y, z ∈ X (symmetry

in all three variables);
(Gp4)Gp (x, y, z) ≤ Gp (x, a, a)+Gp (a, y, z)−Gp (a, a, a), for all x, y, z, a ∈ X (rectangle

inequality).
Then the pair (X,Gp) is called a Gp-metric space.
Remark 1.4. It is worth mentioning that authors in [2], [3], [5], [19] and [23] used (Gp2)
while in [6], [18] and [20] authors used the following condition:

(Gp2
′) Gp (x, x, x) ≤ Gp (x, x, y) ≤ Gp (x, y, z) for all x, y, z ∈ X with z 6= y.

In the former case (X,Gp) is a symmetricGp-metric space, that is., Gp (x, x, y) = Gp (x, y, y)

for all x, y ∈ X. However, in the latter case this does not hold.
Otherwise, each symmetric G-metric space is symmetric Gp-metric space, but the con-

verse is not true (see Example 1 from [23]) as well as each G-metric space is Gp-metric space
in the sense of [18]. However, the claim from [23] (page 87, lines 6-,7-) that each G-metric
space is also Gp-metric space is false (see [18], page 79). In addition, It is noteworthy that
Example 3 in [23] is symmetric G-metric space, and hence it is Gp-metric space. It is also
clear that Definition 6 (because (Gp2)) in [23] is superfluous.

First our important result in this section is the following:
Proposition 1.5. Every Gp-metric space (X,Gp) in the sense of [18] defines a metric
space

(
X, dGp

)
as follows:

dGp (x, y) = Gp (x, y, y) +Gp (x, x, y)−Gp (x, x, x)−Gp (y, y, y) , for all x, y ∈ X.

Proof. Using (Gp2), we have dGp (x, y) ≥ 0 for all x, y ∈ X. Also, if x = y, then
dGp (x, y) = 0. Conversely, let dGp (x, y) = 0, then

Gp (x, y, y) +Gp (x, x, y)−Gp (x, x, x)−Gp (y, y, y) = 0,
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that is.,
[Gp (x, x, y)−Gp (x, x, x)] + [Gp (x, y, y)−Gp (y, y, y)] = 0,

or equivalently, Gp (x, x, y) = Gp (x, x, x) and Gp (x, y, y) = Gp (y, y, y) . Further, on ac-
count of (Gp4) it implies that Gp (x, y, y) ≤ 2Gp (x, x, y)−Gp (x, x, x) = Gp (x, x, y). Sim-
ilarly it follows that Gp (x, x, y) ≤ Gp (x, y, y) for all x, y ∈ X. Then

Gp (x, y, x) = Gp (x, x, x) = Gp (y, y, y) ,

thus by (Gp1) it gives x = y.

It is obvious that dGp (x, y) = dGp (y, x) for all x, y ∈ X.
Finally, we shall prove that

dGp (x, z) ≤ dGp (x, y) + dGp (y, z) ,

for all x, y, z ∈ X, or equivalently,

Gp (x, x, z) +Gp (x, z, z)−Gp (x, x, x)−Gp (z, z, z)

≤ Gp (x, x, y) +Gp (x, y, y)−Gp (x, x, x)−Gp (y, y, y)

+Gp (y, y, z) +Gp (y, z, z)−Gp (y, y, y)−Gp (z, z, z) ,

that is.,

Gp (x, x, z) +Gp (x, z, z)

≤ Gp (x, x, y) +Gp (x, y, y)−Gp (y, y, y) +Gp (y, y, z) +Gp (y, z, z)−Gp (y, y, y) .

Notice that

Gp (x, x, z) = Gp (z, x, x) ≤ Gp (z, y, y) +Gp (y, x, x)−Gp (y, y, y)

and
Gp (x, z, z) ≤ Gp (x, y, y) +Gp (y, z, z)−Gp (y, y, y) ,

so the proof is completed.
Remark 1.6. Our proof of this proposition is more detailed than one of [23].

Further, we announce the following definition with valid approaches which complements
Definition 1.9 from [18].
Definition 1.7. Let (X,Gp) be a Gp-metric space and {xn} a sequence in X. Then

(1) {xn}n∈N is calledGp-convergent to a point x ∈ X if lim
n,m→∞

Gp (x, xn, xm) = Gp (x, x, x).

In this case, we write xn → x as n→∞;
(2) {xn} is called a Gp-Cauchy sequence if lim

n,m→∞
Gp (xn, xm, xm) = r ∈ R. Particularly,

{xn} is called 0-Cauchy sequence if r = 0;
(3) (X,Gp) is called Gp-complete if for every Gp-Cauchy sequence {xn} in X is Gp-

convergent to x ∈ X.
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Now, we give the following conclusion which corrects Proposition 4 of [23]:
Proposition 1.8. Let (X,Gp) be a symmetric Gp-metric space. Then for a sequence
{xn} ⊆ X and a point x ∈ X the following are equivalent:

(1) {xn} is Gp-convergent to x;
(2) Gp (xn, xn,x)→ Gp (x, x, x) as n→∞;
(3) Gp (xn, x, x)→ Gp (x, x, x) as n→∞.

Proof. Since (X,Gp) is symmetric Gp-metric space, then (2) is equivalent to (3). Taking
m = n in (1), we speculate that (1) implies (2), thus, (1) implies (3). For the converse we
have that

Gp (x, xn, xm)−Gp (x, x, x)

= Gp (xn, xm, x)−Gp (x, x, x)

≤ Gp (xn, x, x) +Gp (x, xm, x)−Gp (x, x, x)−Gp (x, x, x)

= [Gp (xn, x, x)−Gp (x, x, x)] + [Gp (xm, x, x)−Gp (x, x, x)]

→ 0 + 0 = 0, as n,m→∞,

then (3) implies (1). We complete the proof.
Next we generalize Lemma 1.10 from [2] (see also [3], [5], [6], [18], [20]), that is., we

announce the following assertion:
Proposition 1.9. Let (X,Gp) be a Gp-metric space in the sense of [18]. Then

(A) if Gp (x, y, z) = 0, then x = y = z;
(B) if x 6= y, then Gp (x, y, y) > 0.

Proof. (A) If x 6= y 6= z 6= x, then (A) is an immediate consequence of (Gp2
′) and

(Gp1). If for instance, x 6= y = z, then Gp (x, y, z) = Gp (x, y, y) = 0. In this case, we get
Gp (x, x, x) = Gp (x, x, y) = Gp (y, y, y) = 0. Indeed, by (Gp4) it follows that

Gp (x, x, y) ≤ Gp (x, y, y) +Gp (y, x, y)−Gp (y, y, y) ≤ 2Gp (x, y, y) = 0.

Since Gp (x, x, x) ≤ Gp (x, x, y) and Gp (y, y, y) ≤ Gp (x, y, y) hold for all x, y ∈ X, then we
arrive at

Gp (x, y, y) = Gp (x, x, y) = Gp (x, x, x) = Gp (y, y, y) = 0,

so by (Gp1), we obtain the desired result.
(B) Let Gp (x, y, y) = 0. Now, based on the proof of (A) when x 6= y = z, we claim

that x = y. A contradiction.

2 Auxiliary results

In the sequel, let (X,Gp) be a Gp-metric space in the sense of [18]. First of all, we
introduce the following notion:
Definition 2.1. Let (X,Gp) be a Gp-metric space, α ∈ (0, 1) a constant and T : X → X

a mapping. We say that T is an NLC-operator on X if for each x ∈ X there is some
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n (x) ∈ N such that for each y ∈ X it holds

Gp

(
T n(x)x, T n(x)x, T n(x)y

)
≤ max {αGp (x, x, y) , Gp (x, x, x)} . (2.1)

For an NLC-operator T and x ∈ X we define supporting sequence at x as a sequence
{sk}k∈N∪{0} where s0 = 0 and sk+1 = sk + n (T skx) , k ∈ N∪{0}. Also set JT (X) =

{x ∈ X : Tmx = Tm+1x for some m ∈ N} .
Remark 2.2. (i) Condition (2.1) implies that for any i ≥ sk, it is valid that

Gp

(
T skx, T skx, T ix

)
≤ max

{
αGp

(
T sk−1x, T sk−1x, T jx

)
, Gp (T sk−1x, T sk−1x, T sk−1x)

}
,

(2.2)
where j = i− sk + sk−1 ≥ sk−1, and specially that

Gp (T skx, T skx, T skx) ≤ Gp (T sk−1x, T sk−1x, T sk−1x) . (2.3)

Now, fix x ∈ X\JT (X) . For k ∈ N and i ≥ sk use (2.2), repeatedly fix integers lj ≥ sj, 0 ≤
j < k and t1, t2, ..., tk ∈ {0, 1} such that lk := i, then

Gp

(
T sjx, T sjx, T ljx

)
≤ αtj ·Gp

(
T sj−1x, T sj−1x, T lj−1x

)
for all 0 ≤ j ≤ k, where

tj =

{
1, if sj−1 < lj−1,
0, if sj−1 = lj−1.

Let us recall (l0, l1, ..., lk−1) and (t1, t2, ..., tk) as the (k, l)-descent and (k, i)-signature at x,
respectively.

Further put rk,i =: k − hk,i, where hk,i is a number of zeroes in (k, i)-signature at x.
We shall say that x is Type 1 if there are sequences of positive integers {km}m∈N∪{0}

and {im}m∈N∪{0}, one of them is strictly increasing such that for all m ∈ N∪{0} we have
that im ≥ sm and rkm,im < rkm+1,im+1 .

We shall say that x is Type 2 if x is not Type 1, i.e., there are k0, B ∈ N such that for
all k ≥ k0 and i ≥ sk it holds rk,i < B.

(ii) In the framework of G-metric spaces, condition (2.1) becomes

Gp

(
T n(x)x, T n(x)x, T n(x)y

)
≤ αGp (x, x, y) , (2.3’)

hence, it is iterate contractive condition of Sehgal-Guseman type in this framework (see
[11], [16]).
Lemma 2.3. Let T be an NLC-operator on Gp-metric space (X,Gp) , x /∈ JT (X), and let
{sk}k∈N∪{0} be a supporting sequence at x. Then

(a) if (l0, l1, ..., lk−1) is (k, i0)-descent at x, then

Gp

(
T skx, T skx, T i0x

)
≤ αrk,i0 ·Gp

(
x, x, T l0x

)
,

Gp

(
T skx, T skx, T i0x

)
≤ Gp

(
T sjx, T sjx, T ljx

)
for all 0 ≤ j ≤ k, where lk := i0;
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(b) if P ⊆ {0, 1, ..., k − 1} and rk,i0 < cardP (cardP is the number of elements of P ),
then for some j0 ∈ P it holds

Gp

(
T skx, T skx, T i0x

)
≤ Gp (T sj0x, T sj0x, T sj0x) .

Proof. Using the definition of rk,i, (a) is obvious. To prove (b), under the hypothesis, the
set {j + 1 : j ∈ P} is subset of {1, 2, ..., k} with card(P ) > rk,i0 , so there is some j0 ∈ P
with tj0+1 = 0. Then

Gp

(
T sj0+1x, T

sj0+1

x, T i0x
)
≤ Gp

(
T lj0+1x, T

lj0+1

x, T i0+1x
)

≤ αtj0+1Gp

(
T sj0x, T sj0x, T lj0x

)
= Gp (T sj0x, T sj0x, T sj0x) ,

whereof (a) and sj0 = lj0 have been used.
Lemma 2.4. Let T be an NLC-operator on Gp-metric space (X,Gp) and x ∈ X, then
there is some Mx > 0 such that for all i ≥ 0 it satisfies that

Gp

(
x, x, T ix

)
≤Mx, (2.4)

and so Gp (T jx, T jx, T ix) ≤ 3Mx, for each i, j ∈ N∪{0}.
Proof. If x ∈ JT (X), then this is obvious. Thus, let x /∈ JT (X) and set

b (x) = Gp (x, x, x) +Gp (x, x, Tx) + · · ·+Gp

(
x, x, T n(x)x

)
.

Let us prove by induction that

Gp

(
x, x, T ix

)
≤ 1

1− α
b (x) , for all i ∈ N.

Obviously (2.4) is true for 0 ≤ k ≤ n (x). Now assume that the same is valid for some
k ≥ n (x). Then

Gp

(
x, x, T k+1x

)
≤ Gp

(
x, x, T n(x)x

)
+Gp

(
T n(x)x, T n(x)x, T k+1x

)
≤ Gp

(
x, x, T n(x)x

)
+ max

{
αGp

(
x, x, T k+1−n(x)x

)
, Gp (x, x, x)

}
≤ Gp

(
x, x, T n(x)x

)
+Gp (x, x, x) +

α

1− α
b (x)

≤ b (x) +
α

1− α
b (x)

=
1

1− α
b (x) ,

so (2.4) is proved with Mx = 1
1−αb (x) .

Further, we have

Gp

(
T ix, T jx, T jx

)
≤ Gp

(
T ix, x, x

)
+ 2Gp

(
T jx, x, x

)
≤ 3Mx,

for all i, j ∈ N∪{0} .
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Lemma 2.5. Let T be an NLC-operator on Gp-metric space (X,Gp) and x ∈ X\JT (X) .

If x is Type 1, then limi,j→∞Gp (T ix, T ix, T jx) = 0.
Proof. Fix m ∈ N∪{0}. If (l0, ..., lkm−1) is (skm , im)-descent, then by (a) of Lemma 2.3
we have

Gp

(
T skmx, T skmx, T imx

)
≤ αrkm ,im ·Gp

(
x, x, T l0x

)
≤ αrkm ,imMx.

In view of limm→∞ rkm,im =∞, it follows that

lim
m→∞

Gp

(
T skmx, T skmx, T imx

)
= lim

m→∞
Gp (T skmx, T skmx, T skmx) = 0.

For given ε > 0, choose m0 ∈ N such that αm0Mx < ε and Gp (T skmx, T skmx, T skmx) < ε

for all m ≥ m0. Let rk2m0 ,i
≥ m0. Then

Gp

(
T
sk2m0x, T

sk2m0x, T ix
)
≤ α

rk2m0
,i ·Mx ≤ αm0Mx < ε.

Now suppose that rk2m0 ,i
< m0. For Pi = {km0 , ..., k2m0−1} ⊆ {0, 1, ..., k2m0 − 1}, we have

card (P ) > rk2m0 ,i
, so by Lemma 2.3, there exists some m0 ≤ j ≤ 2m0 − 1 such that

Gp

(
T
sk2m0x, T

sk2m0x, T ix
)
≤ Gp (T skjx, T skjx, T skjx, ) < ε

for each i ≥ sk2m0
.

Accordingly, if i, j ≥ sk2m0
, then

Gp

(
T ix, T ix, T jx

)
≤ Gp

(
T
sk2m0x, T

sk2m0x, T jx
)

+Gp

(
T ix, T ix, T

sk2m0

)
≤ Gp

(
T
sk2m0x, T

sk2m0x, T jx
)

+ 2Gp

(
T ix, T

sk2m0x, T
sk2m0x

)
< 3ε.

Therefore, we prove that limi,j→∞Gp (T ix, T ix, T jx) = 0.
Lemma 2.6. Let T be an NLC-operator and x ∈ X\JT (X). If x is Type 2, then the
sequence {T ix}i∈N∪{0} is Gp-Cauchy.
Proof. By (2.3), it is easy to see that {Gp (T skx, T skx, T skx)}k∈N∪{0} is a nonincreasing
sequence, where {sk}k∈N∪{0} is a supporting sequence at x. Then there exists

rx := lim
k
Gp (T skx, T skx, T skx) = inf

k
{Gp (T skx, T skx, T skx)}

such that it is finite.
At first let us prove that for any ε > 0, there exists m0 ∈ N such that for all m ≥ m0

and i ≥ sm, one has
Gp

(
T smx, T smx, T ix

)
∈ (rx − ε, rx + ε) . (2.5)

Since x is Type 2 there are k0, B ∈ N such that for all k ≥ k0 and all i ≥ sk, there holds
rk,i < B. Let ε > 0, take m1 ≥ k0 such that for all m ≥ m1,

Gp (T smx, T smx, T smx) ∈ (rx − ε, rx + ε) . (2.6)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.5, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

905 Huaping Huang et al 899-914



Letm ≥ m1+B and i ≥ sm be arbitrary. For P = {m1, ...,m1 +B − 1} ⊆ {0, 1, ...,m− 1},
we have cardP ≥ B > rm,i, then there exists m1 ≤ j ≤ m1 +B − 1 such that

rx − ε < Gp (T smx, T smx, T smx) ≤ Gp

(
T smx, T smx, T ix

)
≤ Gp (T sjx, T sjx, T sjx) < rx + ε.

So we get (2.5).
Now let us prove that for any ε > 0, there is k∗ ∈ N such that for all i, j ≥ k∗,

Gp

(
T ix, T ix, T jx

)
< rx + ε. (2.7)

Indeed, for any ε > 0, consider m0 as in (2.5) and let i, j ≥ sm0 be arbitrary. Then

Gp

(
T ix, T ix, T jx

)
≤ Gp

(
T sm0x, T sm0x, T jx

)
+Gp

(
T ix, T ix, T sm0x

)
−Gp (T sm0x, T sm0x, T sm0x)

< rx + ε+ 2Gp

(
T sm0x, T sm0x, T ix

)
− 2Gp (T sm0x, T sm0x, T sm0x)

< rx + ε+ 2 (rx + ε)− 2 (rx − ε)

= rx + 5ε.

To prove limi,j→∞Gp (T ix, T ix, T jx) = rx, we only need to show that for any ε > 0, there
exists k̃ ∈ N such that for all i ≥ k̃, ones always have

rx − ε < Gp

(
T ix, T ix, T jx

)
. (2.8)

Suppose on the contrary, that for any k there is some i0 ≥ k satisfying

Gp

(
T i0x, T i0x, T i0x

)
≤ rx − ε.

Put z := T i0x. Obviously, x /∈ JT (X) implies that z /∈ JT (X). If z is Type 1, then by
Lemma 2.5 it follows that

0 = lim
i,j
Gp

(
T iz, T iz, T jz

)
= lim

i,j
Gp

(
T ix, T ix, T jx

)
= rx,

so {T ix}i∈N∪{0} is 0-Cauchy sequence.
Now suppose that z is Type 2, and let {qm}m∈N∪{0} be a supporting sequence at z.

Then, for each m ∈ N∪{0},

Gp (T qmz, T qmz, T qmz) ≤ Gp (z, z, z) ≤ rx − ε,

so
rz = lim

m
Gp (T qmz, T qmz, T qmz) ≤ rx − ε.

Note that rz < rx+rz
2

, then for j0 ∈ N, one obtain that

Gp

(
T jz, T jz, T jz

)
<
rx + rz

2
, for all j ≥ j0.
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As limm→∞Gp (T smx, T smx, T smx) = rx, then there is some m ≥ i0 + j0 such that

Gp

(
T jx, T jx, T jx

)
>
rx + rz

2
,

which is impossible, so (2.8) is satisfied. Now, for sm − i0 ≥ m− i0 ≥ j0, we claim that

rx + rz
2

< Gp (T smx, T smx, T smx) = Gp

(
T sm−i0x, T sm−i0x, T sm−i0x

)
<
rx + rz

2
.

In the end, from

rx − ε < Gp

(
T ix, T ix, T ix

)
≤ Gp

(
T ix, T ix, T jx

)
,

it follows that {T ix}i∈N∪{0} is a Gp-Cauchy sequence.
Lemma 2.7. Let T : X → X be an operator on Gp-metric space (X,Gp). Suppose that
x ∈ X is a point such that T kx = x holds for some positive integer k, and there is y ∈ X
such that

Gp (y, y, y) = lim
i
Gp

(
y, T ix, T ix

)
= lim

i,j
Gp

(
T ix, T ix, T jx

)
, (2.9)

then Tx = x.

Proof. Since T k·ix = x, then for any i ∈ N∪{0}, we have that

Gp (y, y, y) = lim
i
Gp

(
y, T kix, T kix

)
= Gp (y, x, x)

and
Gp (y, y, y) = lim

i
Gp

(
T kix, T kix, T kix

)
= Gp (x, x, x) ,

so y = x. Now (2.9) implies that

Gp (x, x, x) = lim
i
Gp

(
x, T ki+1x, T ki+1x

)
= Gp (x, Tx, Tx)

and
Gp (x, x, x) = lim

i
Gp

(
T ki+1x, T ki+1x, T ki+1x

)
= Gp (Tx, Tx, Tx) .

Thus, Tx = x.

3 Main results

Both results in this section generalize many existing results in the literature (see [12,
Theorem 3.1] and [4, Lemmas 3.-5, Theorems 1 and 2]). Firstly, we announce our first
result for NLC-operator in Gp-complete Gp-metric space as follows.
Proposition 3.1. Let T be an NLC-operator on Gp-complete Gp-metric space (X,Gp),
then

(1) for each x ∈ X, the sequence {T ix}i∈N∪{0} Gp-converges to some vx ∈ X;
(2) for all x, y ∈ X, one has

Gp (vy, vy, vx) = max {Gp (vx, vx, vx) , Gp (vy, vy, vy)} .
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Proof. Since (X,Gp) is Gp-complete, then for each x ∈ X, the existence of vx is assured
by Lemma 2.5 and Lemma 2.6. Let us prove (2). Let x, y ∈ X and Gp (vy, vy, vy) ≥
Gp (vx, vx, vx). If Gp (vy, vy, vy) = 0, then vx = vy and the claim is clear. Thus, assume
that Gp (vy, vy, vy) > 0.

For any 0 < ε < 1−α
2(1+α)

Gp (vy, vy, vy), there is some m0 ∈ N such that for all i, j ≥ m0,
we have

max{Gp(T
iy, vy, vy)−Gp(T

iy, T iy, T iy), |Gp(T
iy, T iy, T iy)−Gp(vy, vy, vy)|,

Gp(T
iy, T iy, vy)−Gp(vy, vy, vy)} < ε

and

max
{
Gp

(
vx, vx, T

jx
)
−Gp (vx, vx, vx) , Gp

(
vx, T

jx, T jx
)
−Gp

(
T jx, T jx, T jx

)}
< ε.

For i, j ≥ m0, we have

Gp

(
T iy, T iy, T ix

)
≤ Gp

(
T iy, T iy, vy

)
−Gp (vy, vy, vy)

+Gp (vy, vy, vx) +Gp

(
vx, vx, T

ix
)
−Gp (vx, vx, vx)

< 2ε+Gp (vy, vy, vx)

and

Gp (vy, vy, vx) ≤ Gp

(
vy, vy, T

iy
)
−Gp

(
T iy, T iy, T iy

)
+Gp

(
vx, T

jx, T jx
)

−Gp

(
T jy, T jy, T jy

)
+Gp

(
T iy, T iy, T jy

)
< 2ε+Gp

(
T iy, T iy, T jx

)
.

For any i0 ≥ m0 and i1 := n (T i0y), we get

Gp (vy, vy, vx)− 2ε ≤ Gp

(
T i0+i1y, T i0+i1y, T i0+i1x

)
≤ max

{
αGp

(
T i0y, T i0y, T i0x

)
, Gp

(
T i0y, T i0y, T i0y

)}
< max {α (2ε+Gp (vy, vy, vx) , ε+Gp (vy, vy, vy))} .

If
Gp (vy, vy, vx)− 2ε < 2αε+ αGp (vy, vy, vx) ,

then
Gp (vy, vy, vx) < 2ε (1 + α) < Gp (vy, vy, vx) .

This is a contradiction. As a consequence, we deduce that

Gp (vy, vy, vx) < 3ε+Gp (vy, vy, vy) ,

so
Gp (vy, vy, vx) ≤ Gp (vy, vy, vy) .
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Finally, by (Gp2), we speculate that

Gp (vy, vy, vx) = Gp (vy, vy, vx) = max {Gp (vx, vx, vx) , Gp (vy, vy, vy)} .

Now, we announce our second result in the framework of Gp-complete Gp-metric spaces.
Theorem 3.2. Let T be an NLC-opertor on Gp-complete Gp-metric space (X,Gp), then
there is a fixed point z ∈ X of T such that Gp (z, z, z) = inf {Gp (vx, vx, vx) : x ∈ X}.
Proof. For x ∈ X, put rx := Gp (vx, vx, vx) = limk→∞Gp (T skx, T skx, T skx) for {sk}k∈N∪{0}
which is the supporting sequence at x. Let I := inf {rx : x ∈ X}. For m ≥ 1, take xm ∈ X
such that for all i, j ∈ N∪{0}, it holds

Gp

(
Txim, Tx

i
m, Tx

j
m

)
∈
(
I − 1

m
, I +

1

m

)
. (3.1)

At first we shall prove that limm,k→∞Gp (xm, xm, xk) = I. For m, k ≥ 2, let Cm,k > 0 and

Gp

(
T jxm, T

jxm, T
ixk
)
< Cm,k, i, j ∈ N∪{0} .

Fix m, k ≥ 2 and let {sq}q∈N∪{0} be the supporting sequence at xm and let l ≥ 1 be an
integer such that αl · Cm,k < 1

k+m
. Then

Gp (xm, xm, xk)

≤ Gp (xm, xm, T
slxm)−Gp (T slxm, T

slxm, T
slxm) +Gp (T slxm, T

slxm, xk)

≤ Gp (xm, xm, T
slxm)−Gp (T slxm, T

slxm, T
slxm)

+Gp (xk, T
slxk, T

slxk)−Gp (T slxk, T
slxk, T

slxk) +Gp (T slxm, T
slxm, T

slxk) .

Denote

Am,k : = Gp (xm, xm, T
slxm)−Gp (T slxm, T

slxm, T
slxm) <

2

m
,

Dm,k : = Gp (xk, T
slxk, T

slxk)−Gp (T slxk, T
slxk, T

slxk) <
2

k
.

At first, assume that

Gp (T slxm, T
slxm, T

slxk) > Gp

(
T ixm, T

ixm, T
ixm
)
for all i ∈ {0, 1, ..., sl} .

Then by (1.2), it is clear that

Gp (T sj−1xm, T
sl−1xm, T

sl−1xk) ≤ αGp (T sl1xm, T
sl1xm, T

sl1xk)

≤ α2Gp (T sl−2xm, T
sl−2xm, T

sl−2xk) ≤ ...

≤ αlGp (xm, xm, xk) ≤ αl · Cm,k <
1

k + n
.

If Gp (T slxm, T
slxm, T

slxk) ≤ Gp (T ixm, T
ixm, T

ixk) for some i ∈ {0, ..., sl}, then by (3.1),
Gp (T slxm, T

slxm, T
slxk) < I + 1

m
, so

Gp (xm, xm, xk) ≤ Am,k +Dm,k +Gp (T slxm, T
slxm, T

slxk)

<
2

m
+

2

k
+ I +

1

m
.
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From the above consideration and

I − 1

m
< Gp (xm, xm, xm) ≤ Gp (xm, xm, xk) ,

it follows that
lim

m,k→∞
Gp (xm, xm, xm) = I.

Now that (X,Gp) is Gp-complete, there is some u ∈ X such that

I = lim
m,k→∞

Gp (xm, xm, xk) = lim
m→∞

Gp (xm, xm, u) = lim
m→∞

Gp (xm, u, u) = Gp (u, u, u) .

It is easy to see that

Gp

(
T n(u)u, T n(u)u, T n(u)u

)
= Gp (u, u, u) = I.

Now we shall prove that T n(u)u = u.
From

I = Gp (u, u, u) ≤ Gp

(
u, u, T jxm

)
≤ Gp (u, u, xm) +Gp

(
xm, xm, T

jxm
)
−Gp (xm, xm, xm)

≤ Gp (u, u, xm) + I +
1

m
−
(
I − 1

m

)
= Gp (u, u, xm) +

2

m
,

it means that
lim
m→∞

Gp

(
u, u, T jxm

)
= I, j ∈ N.

On the other hand,

I = Gp

(
T n(u)u, T n(u)u, T n(u)u

)
≤ Gp

(
T n(u)u, T n(u)u, T n(u)xm

)
≤ max {αGp (u, u, xm) , Gp (u, u, u)} ,

which implies that
lim
m→∞

Gp

(
T n(u)u, T n(u)u, T n(u)xm

)
= I.

Now that

I ≤ Gp

(
u, T n(u)u, T n(u)u

)
≤ Gp

(
u, T n(u)xm, T

n(u)xm
)

+Gp

(
T n(u)u, T n(u)u, T n(u)xm

)
−Gp

(
T n(u)xm, T

n(u)xm, T
n(u)xm

)
≤ 2Gp

(
u, u, T n(u), xm

)
−Gp (u, u, u) +Gp

(
T n(u)u, T n(u)u, T n(u)xm

)
− I +

1

m
→ I, as m→∞,

so
Gp

(
u, T n(u)u, T n(u)u

)
= I = Gp (u, u, u) = Gp

(
T n(u)u, T n(u)u, T n(u)u

)
,

and T n(u)u = u. Finally, by utilizing Lemma 2.7, the remaining proof is valid.
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4 Some examples

Now, we give four examples to support our theoretical approach.
Example 4.1. Let X = {0, 1, 2} be a set and Gp : X3 → [0,+∞) a mapping satisfying

Gp (x, x, x) =
1

2
for all x ∈ X,

Gp (0, 0, 1) = Gp (0, 1, 0) = Gp (1, 0, 0) = 1,

Gp (0, 1, 1) = Gp (1, 0, 1) = Gp (1, 1, 0) = 1,

Gp (1, 2, 2) = Gp (2, 1, 2) = Gp (2, 2, 1) = 3,

Gp (0, 0, 2) = Gp (0, 2, 0) = Gp (2, 0, 0) = 3,

Gp (0, 2, 2) = Gp (2, 0, 2) = Gp (2, 2, 0) = 3,

Gp (1, 1, 2) = Gp (1, 2, 1) = Gp (2, 1, 1) = 3.1,

Gp (0, 1, 2) = Gp (0, 2, 1) = Gp (1, 0, 2) = 3.2.

Then Gp is an asymmetric Gp-metric as Gp (1, 2, 2) 6= Gp (1, 1, 2). Further, (X,Gp) is a
Gp-metric space in the sense of [18]. Let T : X → X be defined by T0 = T1 = 0, T2 = 1.
We shall prove that T is an NLC-operator where α = 1

2
, while n (x) = 1 for all x ∈ X.

Indeed, we need to check

Gp (Tx, Tx, Ty) ≤ max

{
1

2
Gp (x, x, y) , Gp (x, x, x)

}
(4.1)

for all x, y ∈ X into nine cases as follows:

(1) x = 0, y = 0 =⇒ 1

2
= Gp(T0, T0, T0) ≤ max

{
1

2
Gp(0, 0, 0), Gp(0, 0, 0)

}
=

1

2
,

(2) x = 0, y = 1 =⇒ 1

2
= Gp(T0, T0, T1) ≤ max

{
1

2
Gp(0, 0, 1), Gp(0, 0, 0)

}
=

1

2
,

(3) x = 0, y = 2 =⇒ 1 = Gp(T0, T0, T2) ≤ max

{
1

2
Gp(0, 0, 2), Gp(0, 0, 0)

}
=

3

2
,

(4) x = 1, y = 0 =⇒ 1

2
= Gp(T1, T1, T0) ≤ max

{
1

2
Gp(1, 1, 0), Gp(1, 1, 1)

}
=

1

2
,

(5) x = 1, y = 1 =⇒ 1

2
= Gp(T1, T1, T1) ≤ max

{
1

2
Gp(1, 1, 1), Gp(1, 1, 1)

}
=

1

2
,

(6) x = 1, y = 2 =⇒ 1 = Gp(T1, T1, T2) ≤ max

{
1

2
Gp(1, 1, 2), Gp(1, 1, 1)

}
=

3.1

2
,

(7) x = 2, y = 0 =⇒ 1 = Gp(T2, T2, T0) ≤ max

{
1

2
Gp(2, 2, 0), Gp(2, 2, 2)

}
=

3

2
,

(8) x = 2, y = 1 =⇒ 1 = Gp(T2, T2, T1) ≤ max

{
1

2
Gp(2, 2, 1), Gp(2, 2, 2)

}
=

3

2
,

(9) x = 2, y = 2 =⇒ 1

2
= Gp(T2, T2, T2) ≤ max

{
1

2
Gp(2, 2, 2), Gp(2, 2, 2)

}
=

1

2
.

Hence all cases show that (4.1) is satisfied and then both Proposition 3.1 and Theorem 3.2
are true.
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Example 4.2. Let (X,Gp) be a Gp-metric space where X = [0,+∞) and Gp (x, y, z) =

max {x, y, x}. Define T : X → X by Tx = x2

3(1+x)
. We shall prove that T is an NLC-

operator, that is, for each x ∈ X, there is n (x) such that for each y ∈ X,

Gp

(
T n(x)x, T n(x)x, T n(x)y

)
≤ max {αGp (x, x, y) , Gp (x, x, x)} ,

where α ∈ (0, 1). Let α = 1
3
. It is easy to see that n (x) = 1. Indeed, we shall check that

max

{
x2

3 (1 + x)
,

x2

3 (1 + x)
,

y2

3 (1 + y)

}
≤ max

{
1

3
max {x, x, y} ,max {x, x, x}

}
, (4.2)

for all x, y ∈ [0,+∞).
Consider the following three possible cases.
(i) y ≤ x. In this case (4.2) becomes:

x2

3 (1 + x)
≤ max

{
1

3
x, x

}
= x, (4.3)

which is true for any x ∈ [0,+∞).

(ii) y
3
≤ x ≤ y. In this case (4.2) becomes:

y2

3 (1 + y)
≤ max

{
1

3
y, x

}
= x. (4.4)

By virtue of y2

3(1+y)
= y

1+y
· y
3
≤ y

3
≤ x, it follows that (4.4) holds.

(iii) 0 ≤ x ≤ y
3
. Because of x ≤ y, (4.2) becomes:

y2

3 (1 + y)
≤ max

{
1

3
y, x

}
=

1

3
y. (4.5)

Obviously, (4.5) holds for each y ∈ [0,+∞).

Hence, (4.2) holds for all x, y ∈ [0,+∞), that is., all the conditions of Proposition 3.1
and Theorem 3.2 are satisfied and T has a fixed point (which is x = 0).
Example 4.3. Let X = {a, b} be a set with Gp-metric defined by

Gp (a, a, a) = 0, Gp (a, a, b) = Gp (a, b, a) = Gp (b, a, a) = 1,

Gp (b, b, b) = Gp (a, b, b) = Gp (b, a, b) = Gp (b, b, a) = 2.

Since Gp (a, a, b) 6= Gp (a, b, b), we get that (X,Gp) is an asymmetric Gp-metric space.
Also, we have that for all x, y ∈ X,

dGp (x, y) = Gp (x, x, y) +Gp (x, y, y)−Gp (x, x, x)−Gp (y, y, y) =

{
1, x 6= y,
0, x = y,

is a (standard) metric on X.
Example 4.4. Let X = {a, b} be a set with Gp-metric defined by

Gp (a, a, a) = 0, Gp (a, a, b) = Gp (a, b, a) = Gp (b, a, a) = 1 = Gp (b, b, b) ,

Gp (a, b, b) = Gp (b, a, b) = Gp (b, b, a) = 2.
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It ensures us that the sequence {xn = a} converges to a. However, conditions (2) and (3)
of Proposition 1.8 are not equivalent. Indeed,

Gp (xn, xn, b) = Gp (a, a, b)→ Gp (b, b, b) (n→∞),

while
Gp (xn, b, b) = Gp (a, b, b) 9 Gp (b, b, b) (n→∞).

Thus, Gp (·, ·, ) may not be continuous in the sense that xn → x, yn → y and zn → z

implies Gp (xn, yn, zn) → Gp (x, y, z) . In fact, we take xn = yn = a and zn = b for all
n ∈ N. Further, it is easy to check that xn → b, yn → a and zn → b but Gp (xn, yn, zn) 9
Gp (b, a, b), this is because Gp (xn, yn, zn) = Gp (a, a, b) = 1 6= 2 = Gp (b, a, b).
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Abstract
We demonstrate here most general self adjoint operator Chebyshev-

Grüss type inequalities to all cases. We �nish with applications.

2010 AMS Subject Classi�cation: 26D10, 26D20, 47A60, 47A67.
KeyWords and Phrases: Self adjoint operator, Hilbert space, Chebyshev-

Grüss inequalities.

1 Motivation

Here we mention the following interesting and motivating results.

Theorem 1 (µCeby�ev, 1882, [2]). Let f; g : [a; b] ! R absolutely continuous
functions. If f 0; g0 2 L1 ([a; b]), then����� 1

b� a

Z b

a

f (x) g (x) dx�
 

1

b� a

Z b

a

f (x) dx

! 
1

b� a

Z b

a

g (x) dx

!����� (1)

� 1

12
(b� a)2 kf 0k1 kg

0k1 :

Also we mention

Theorem 2 (Grüss, 1935, [6]). Let f; g integrable functions from [a; b] into R,
such that m � f (x) �M , � � g (x) � �, for all x 2 [a; b], where m;M; �; � 2 R.
Then����� 1

b� a

Z b

a

f (x) g (x) dx�
 

1

b� a

Z b

a

f (x) dx

! 
1

b� a

Z b

a

g (x) dx

!����� (2)

� 1

4
(M �m) (� � �) :

1
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2 Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h�; �i).
The Gelfand map establishes a ��isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�nd on the spectrum of A, denoted
Sp (A), and the C�-algebra C� (A) generated by A and the identity operator
1H on H as follows (see e.g. [5, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) (the operation composition is on the right) and

�
�
f
�
= (� (f))

�
;

(iii) k� (f)k = kfk := sup
t2Sp(A)

jf (t)j ;

(iv) � (f0) = 1H and � (f1) = A, where f0 (t) = 1 and f1 (t) = t; for
t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) , for all f 2 C (Sp (A)) ;

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0, i.e. f (A) is a
positive operator on H. Moreover, if both f and g are real valued functions on
Sp (A) then the following important property holds:
(P) f (t) � g (t) for any t 2 Sp (A), implies that f (A) � g (A) in the operator

order of B (H) :
Equivalently, we use (see [4], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H; h�; �i) with

the spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and fE�g� be its spectral family.
Then for any continuous function f : [m;M ] ! C, it is well known that

we have the following spectral representation in terms of the Riemann-Stieljes
integral:

hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ; (3)

for any x; y 2 H. The function gx;y (�) := hE�x; yi is of bounded variation on
the interval [m;M ], and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi ;

for any x; y 2 H. Furthermore, it is known that gx (�) := hE�x; xi is increasing
and right continuous on [m;M ] :

2
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In this article we will be using a lot the formula

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; 8 x 2 H: (4)

As a symbol we can write

f (U) =

Z M

m�0
f (�) dE�: (5)

Above, m = min f�j� 2 Sp (U)g := minSp (U), M = max f�j� 2 Sp (U)g :=
maxSp (U). The projections fE�g�2R ; are called the spectral family of A, with
the properties:
(a) E� � E�0 for � � �0;
(b) Em�0 = 0H (zero operator), EM = 1H (identity operator) and E�+0 =

E� for all � 2 R.
Furthermore

E� := '� (U) , 8 � 2 R; (6)

is a projection which reduces U , with

'� (s) :=

�
1, for �1 < s � �;
0; for � < s < +1:

The spectral family fE�g�2R determines uniquely the self-adjoint operator U
and vice versa.
For more on the topic see [7], pp. 256-266, and for more detalis see there

pp. 157-266. See also [3].
Some more basics are given (we follow [4], pp. 1-5):
Let (H; h�; �i) be a Hilbert space over C. A bounded linear operator A de�ned

on H is selfjoint, i.e., A = A�, i¤ hAx; xi 2 R, 8 x 2 H, and if A is selfadjoint,
then

kAk = sup
x2H:kxk=1

jhAx; xij : (7)

Let A;B be selfadjoint operators on H. Then A � B i¤ hAx; xi � hBx; xi, 8
x 2 H.
In particular, A is called positive if A � 0:
Denote by

P :=
(
' (s) :=

nX
k=0

�ks
kjn � 0, �k 2 C, 0 � k � n

)
: (8)

If A 2 B (H) (the Banach algebra of all bounded linear operators de�ned on H,
i.e. from H into itself) is selfadjoint, and ' (s) 2 P has real coe¢ cients, then
' (A) is selfadjoint, and

k' (A)k = max fj' (�)j ; � 2 Sp (A)g : (9)

3
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If ' is any function de�ned on R we de�ne

k'kA := sup fj' (�)j ; � 2 Sp (A)g : (10)

If A is selfadjoint operator on Hilbert space H and ' is continuous and given
that ' (A) is selfadjoint, then k' (A)k = k'kA. And if ' is a continuous real
valued function so it is j'j, then ' (A) and j'j (A) = j' (A)j are selfadjoint
operators (by [4], p. 4, Theorem 7).
Hence it holds

kj' (A)jk = kj'jkA = sup fjj' (�)jj ; � 2 Sp (A)g

= sup fj' (�)j ; � 2 Sp (A)g = k'kA = k' (A)k ;

that is
kj' (A)jk = k' (A)k : (11)

For a selfadjoint operator A 2 B (H) which is positive, there exists a unique
positive selfadjoint operator B :=

p
A 2 B (H) such that B2 = A, that is�p

A
�2
= A: We call B the square root of A.

Let A 2 B (H), then A�A is selfadjoint and positive. De�ne the �operator
absolute value� jAj :=

p
A�A. If A = A�, then jAj =

p
A2:

For a continuous real valued function ' we observe the following:

j' (A)j (the functional absolute value) =
Z M

m�0
j' (�)j dE� =

Z M

m�0

q
(' (�))

2
dE� =

q
(' (A))

2
= j' (A)j (operator absolute value),

where A is a selfadjoint operator.
That is we have

j' (A)j (functional absolute value) = j' (A)j (operator absolute value). (12)

Let A;B 2 B (H), then

kABk � kAk kBk ; (13)

by Banach algebra property.

3 Main Results

Next we present most general Chebyshev-Grüss type operator inequalities based
on Theorem 26.9 of [1], p. 404.
Then we specialize them for n = 1:
We give

4
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Theorem 3 Let n 2 N and f1; f2 2 Cn ([a; b]) with [m;M ] � (a; b), m < M ;

g 2 C1 ([a; b]) and g�1 2 Cn ([a; b]). Here A is a selfadjoint linear operator on
the Hilbert space H with spectrum Sp (A) � [m;M ]. We consider any x 2 H :

kxk = 1.
Then

h(� (f1; f2; g)) (A)x; xi :=�����hf1 (A) f2 (A)x; xi � hf1 (A)x; xi � hf2 (A)x; xi � 1

2 (M �m)

(
n�1X
k=1

1

k!
�

("* 
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+
�

hf2 (A)x; xi
Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#
+

"* 
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+
�

hf1 (A)x; xi
Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#))�����
�
kgkn�11;[m;M ] kg0k1;[m;M ]

(n+ 1)! (M �m)

�
kf2 (A)k

�f1 � g�1�(n) � g
1;[m;M ]

+

kf1 (A)k
�f2 � g�1�(n) � g

1;[m;M ]

� h(M1H �A)n+1+ (A�m1H)n+1i :
(14)

Proof. Call li = fi � g�1, i = 1; 2. Then li; l0i; :::; l
(n)
i are continuous from

g ([a; b]) into fi ([a; b]), i = 1; 2. Hence
�
fi � g�1

�(n) � g 2 C ([a; b]), i = 1; 2.
Here fE�g� is the spectral family of A.
Next we use Theorem 26.9 of [1], p. 404. We have that (i = 1; 2)

fi (�) =
1

M �m

Z M

m

fi (t) dt+

1

(M �m)

(
n�1X
k=1

1

k!

Z M

m

�
fi � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

)
+

+
1

(n� 1)! (M �m)

Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt;

(15)
8 � 2 [m;M ] ;

5
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where

K (t; �) :=

�
t�m, m � t � � �M;
t�M; m � � < t �M: (16)

By applying the spectral representation theorem on (15), i.e. integrating against
E� over [m;M ], see (4), we obtain:

fi (A) =

 
1

M �m

Z M

m

fi (t) dt

!
1H+

1

(M �m)

(
n�1X
k=1

1

k!

Z M

m�0

 Z M

m

�
fi � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

)

+
1

(n� 1)! (M �m) �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�; (17)

i = 1; 2:

We notice that
f1 (A) f2 (A) = f2 (A) f1 (A) ; (18)

to be used next.
Hence it holds

f2 (A) f1 (A) =

 
1

M �m

Z M

m

f1 (t) dt

!
f2 (A)+ (19)

1

(M �m)

(
n�1X
k=1

1

k!
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

)

+
1

(n� 1)! (M �m)f2 (A) �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�;

and

f1 (A) f2 (A) =

 
1

M �m

Z M

m

f2 (t) dt

!
f1 (A)+

1

(M �m)

(
n�1X
k=1

1

k!
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

)

+
1

(n� 1)! (M �m)f1 (A) �

6
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Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�: (20)

Here from now on we consider x 2 H : kxk = 1; immediately we getZ M

m�0
d hE�x; xi = 1:

Then it holds (i = 1; 2)

hfi (A)x; xi =
 

1

M �m

Z M

m

fi (t) dt

!
+ (21)

1

(M �m)

(
n�1X
k=1

1

k!

Z M

m�0

 Z M

m

�
fi � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

)

+
1

(n� 1)! (M �m) �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi :

It follows that

hf2 (A)x; xi hf1 (A)x; xi =
 

1

M �m

Z M

m

f1 (t) dt

!
hf2 (A)x; xi+

1

(M �m) �(
n�1X
k=1

1

k!
hf2 (A)x; xi

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

)

+
1

(n� 1)! (M �m) hf2 (A)x; xi � (22)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi ;

and

hf1 (A)x; xi hf2 (A)x; xi =
 

1

M �m

Z M

m

f2 (t) dt

!
hf1 (A)x; xi+

1

(M �m) �(
n�1X
k=1

1

k!
hf1 (A)x; xi

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

)

+
1

(n� 1)! (M �m) hf1 (A)x; xi � (23)

7
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Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi :

Furthermore we obtain

hf1 (A) f2 (A)x; xi =
 

1

M �m

Z M

m

f1 (t) dt

!
hf2 (A)x; xi+

1

(M �m) �(
n�1X
k=1

1

k!

* 
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+)

+
1

(n� 1)! (M �m) � (24)* 
f2 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
;

and

hf1 (A) f2 (A)x; xi =
 

1

M �m

Z M

m

f2 (t) dt

!
hf1 (A)x; xi+

1

(M �m) �(
n�1X
k=1

1

k!

* 
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+)

+
1

(n� 1)! (M �m) � (25)* 
f1 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
:

By (24)-(22) we obtain

E := hf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xi =
1

(M �m) �(
n�1X
k=1

1

k!

"* 
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf2 (A)x; xi
Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#)

+
1

(n� 1)! (M �m) �"* 
f2 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
(26)

8
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�hf2 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#
;

and by (25)-(23) we have

E =
1

(M �m) �(
n�1X
k=1

1

k!

"* 
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf1 (A)x; xi
Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#)

+
1

(n� 1)! (M �m) �"* 
f1 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
�hf1 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#
:

(27)
Consequently, by adding (26) and (27), we get that

2E =
1

(M �m) � (28)

(
n�1X
k=1

1

k!

("* 
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf2 (A)x; xi
Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#
+

"* 
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf1 (A)x; xi
Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#))

+
1

(n� 1)! (M �m) �("* 
f2 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
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�hf2 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#
+

"* 
f1 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
�hf1 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#)
:

We �nd that

hf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xi �
1

2 (M �m) �(
n�1X
k=1

1

k!

("* 
f2 (A)

Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf2 (A)x; xi
Z M

m�0

 Z M

m

�
f1 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#
+

"* 
f1 (A)

Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
dE�

!
x; x

+

�hf1 (A)x; xi
Z M

m�0

 Z M

m

�
f2 � g�1

�(k)
(g (t)) (g (�)� g (t))k dt

!
d hE�x; xi

#))

=
1

2 (n� 1)! (M �m) �("* 
f2 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
�hf2 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#
+

"* 
f1 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+
�hf1 (A)x; xi �Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

#)
=: R:

(29)

10
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Hence we have
jRj � 1

2 (n� 1)! (M �m) �("�����
* 

f2 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+�����
+ jhf2 (A)x; xij�����

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

�����
#
+

"�����
* 

f1 (A)

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

!
x; x

+�����
+ jhf1 (A)x; xij ������

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

�����
#)

(30)
(here notice that�����

Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

����� �
Z M

m

jg (�)� g (t)jn�1
����f1 � g�1�(n) (g (t))��� jg0 (t)j jK (t; �)j dt � Z M

m

j�� tjn�1 jK (t; �)j dt
!
kgkn�11

�f1 � g�1�(n) � g
1
kg0k1 = (31)

kgkn�11 kg0k1
�f1 � g�1�(n) � g

1
n (n+ 1)

h
(M � �)n+1 + (��m)n+1

i
)

� 1

2 (n� 1)! (M �m) �("f2 (A)
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�


+

f1 (A)
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�


#

+

24kf2 (A)k kgkn�11 kg0k1
�f1 � g�1�(n) � g

1
n (n+ 1)

�

11
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hD
(M1H �A)n+1 x; x

E
+
D
(A�m1H)n+1 x; x

Ei
+

kf1 (A)k
kgkn�11 kg0k1

�f2 � g�1�(n) � g
1

n (n+ 1)
�hD

(M1H �A)n+1 x; x
E
+
D
(A�m1H)n+1 x; x

Eio
(32)

� 1

2 (n� 1)! (M �m) �(
kf2 (A)k


Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

+
kf1 (A)k


Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f2 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�


#

+

24kf2 (A)k kgkn�11 kg0k1
�f1 � g�1�(n) � g

1
n (n+ 1)

+

kf1 (A)k kgkn�11 kg0k1
�f2 � g�1�(n) � g

1
n (n+ 1)

35 �
hD
(M1H �A)n+1 x; x

E
+
D
(A�m1H)n+1 x; x

Eio
=: (�) : (33)

Notice here that
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

 =
sup
kxk=1

�����
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

�����
�
kgkn�11 kg0k1

�f1 � g�1�(n) � g
1

n (n+ 1)
�h(M1H �A)n+1+ (A�m1H)n+1i : (34)

A similar estimate to (34) holds for f2.
Hence we obtain by (33), (34) that

(�) � 1

(n� 1)! (M �m)

24kf2 (A)k kgkn�11 kg0k1
�f1 � g�1�(n) � g

1
n (n+ 1)

12
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+ kf1 (A)k
kgkn�11 kg0k1

�f2 � g�1�(n) � g
1

n (n+ 1)

35 �
h(M1H �A)n+1+ (A�m1H)n+1i = (35)

kgkn�11 kg0k1
(n+ 1)! (M �m) �h

kf2 (A)k
�f1 � g�1�(n) � g

1
+ kf1 (A)k

�f2 � g�1�(n) � g
1

i
�h(M1H �A)n+1+ (A�m1H)n+1i :

We have proved that

jRj � kgkn�11 kg0k1
(n+ 1)! (M �m) �h

kf2 (A)k
�f1 � g�1�(n) � g

1
+ kf1 (A)k

�f2 � g�1�(n) � g
1

i
� (36)h(M1H �A)n+1+ (A�m1H)n+1i ;

that is proving the claim.
Above it is k�k1 = k�k1;[m;M ] :

We give

Corollary 4 (n = 1 case of Theorem 3) For every x 2 H : kxk = 1, we obtain
that

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij �
kg0k1;[m;M ]

2 (M �m) ��
kf2 (A)k

�f1 � g�1�0 � g
1;[m;M ]

+ kf1 (A)k
�f2 � g�1�0 � g

1;[m;M ]

�
�h(M1H �A)2+ (A�m1H)2i : (37)

We present

Theorem 5 Here all as in Theorem 3. Let p; q > 1 : 1p +
1
q = 1. Then

h(� (f1; f2; g)) (A)x; xi �

kgkn�11;[m;M ] kg0k1;[m;M ]

(n� 1)! (M �m)

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p

��
kf2 (A)k

�f1 � g�1�(n) � g
q;[m;M ]

+ kf1 (A)k
�f2 � g�1�(n) � g

q;[m;M ]

�
�h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

i ; (38)

where � is the gamma function.
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Proof. We observe that�����
Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

����� �
Z M

m

jg (�)� g (t)jn�1
����f1 � g�1�(n) (g (t))��� jg0 (t)j jK (t; �)j dt �

kgkn�11;[m;M ] kg
0k1;[m;M ]

Z M

m

j�� tjn�1
����f1 � g�1�(n) (g (t))��� jK (t; �)j dt =

(39)

kgkn�11;[m;M ] kg
0k1;[m;M ]

"Z �

m

(�� t)n�1 (t�m)
����f1 � g�1�(n) (g (t))��� dt+

Z M

�

(M � t) (t� �)n�1
����f1 � g�1�(n) (g (t))��� dt# �

kgkn�11;[m;M ] kg
0k1;[m;M ]

24 Z �

m

(�� t)(p(n�1)+1)�1 (t�m)(p+1)�1 dt
! 1

p

+

 Z M

�

(M � t)(p+1)�1 (t� �)(p(n�1)+1)�1 dt
! 1

p

35�f1 � g�1�(n) � g
q;[m;M ]

=

kgkn�11;[m;M ] kg
0k1;[m;M ]

�f1 � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h
(��m)n+

1
p + (M � �)n+

1
p

i
; (40)

8 � 2 [m;M ] :
So we got so far�����

Z M

m

(g (�)� g (t))n�1
�
f1 � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

����� �
kgkn�11;[m;M ] kg

0k1;[m;M ]

�f1 � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h
(M � �)n+

1
p + (��m)n+

1
p

i
; (41)

8 � 2 [m;M ] :
Hence it holds�����

Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

����� �
14
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kgkn�11;[m;M ] kg
0k1;[m;M ]

�fi � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

i ;
(42)

for i = 1; 2:
Thus we derive
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

 �
kgkn�11;[m;M ] kg

0k1;[m;M ]

�fi � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

i ;
(43)

for i = 1; 2:
Next we use (42) and (43).
Acting as in the proof of Theorem 3 we �nd that

jRj
(30)
� 1

2 (n� 1)! (M �m) ��
2

�
kf2 (A)k kgkn�11;[m;M ] kg

0k1;[m;M ]

�f1 � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

i#+
(44)

2

�
kf1 (A)k kgkn�11;[m;M ] kg

0k1;[m;M ]

�f2 � g�1�(n) � g
q;[m;M ]

�

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

i#) =
1

(n� 1)! (M �m)

(
kgkn�11;[m;M ] kg

0k1;[m;M ]

�
� (p (n� 1) + 1) � (p+ 1)

� (pn+ 2)

� 1
p

�

�
kf2 (A)k

�f1 � g�1�(n) � g
q;[m;M ]

+ kf1 (A)k
�f2 � g�1�(n) � g

q;[m;M ]

�
�h(M1H �A)n+ 1

p

+ (A�m1H)n+ 1
p

io ; (45)

proving the claim.
We give for n = 1:

15
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Corollary 6 (to Theorem 5) It holds

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij �
kg0k1;[m;M ]

(M �m) (p+ 1)
1
p

�

�
kf2 (A)k

�f1 � g�1�0 � g
q;[m;M ]

+ kf1 (A)k
�f2 � g�1�0 � g

q;[m;M ]

�
�h(M1H �A)1+ 1

p

+ (A�m1H)1+ 1
p

i : (46)

We continue with

Theorem 7 All as in Theorem 3. Then

h(� (f1; f2;g)) (A)x; xi �
(M �m)n�1

(n� 1)! kgkn�11;[m;M ] kg
0k1;[m;M ] ��

kf1 (A)k
�f2 � g�1�(n) � g

1;[m;M ]
+ kf2 (A)k

�f1 � g�1�(n) � g
1;[m;M ]

�
:

(47)

Proof. We observe that�����
Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

����� �
Z M

m

jg (�)� g (t)jn�1 jg0 (t)j jK (t; �)j
����fi � g�1�(n) (g (t))��� dt �

kgkn�11;[m;M ] kg
0k1;[m;M ] (M �m)n

 Z M

m

����fi � g�1�(n) (g (t))��� dt! =
kgkn�11;[m;M ] kg

0k1;[m;M ] (M �m)n
�fi � g�1�(n) � g

1;[m;M ]
; i = 1; 2: (48)

Hence it holds (i = 1; 2)�����
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
d hE�x; xi

����� �
kgkn�11;[m;M ] kg

0k1;[m;M ] (M �m)n
�fi � g�1�(n) � g

1;[m;M ]
; (49)

the last is valid sinceZ M

m�0
d hE�x; xi = 1, for x 2 H : kxk = 1: (50)
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Therefore it holds
Z M

m�0

 Z M

m

(g (�)� g (t))n�1
�
fi � g�1

�(n)
(g (t)) g0 (t)K (t; �) dt

!
dE�

 �
kgkn�11;[m;M ] kg

0k1;[m;M ] (M �m)n
�fi � g�1�(n) � g

1;[m;M ]
; (51)

for i = 1; 2:
Acting as in the proof of Theorem 3 we �nd that

jRj
(by (30), (49), (51))

� 1

2 (n� 1)! (M �m) ��
2 kf2 (A)k kgkn�11;[m;M ] kg

0k1;[m;M ] (M �m)n
�f1 � g�1�(n) � g

1;[m;M ]
+

2 kf1 (A)k kgkn�11;[m;M ] kg
0k1;[m;M ] (M �m)n

�f2 � g�1�(n) � g
1;[m;M ]

�
=

(52)
(M �m)n�1

(n� 1)! kgkn�11;[m;M ] kg
0k1;[m;M ] ��

kf2 (A)k
�f1 � g�1�(n) � g

1;[m;M ]
+ kf1 (A)k

�f2 � g�1�(n) � g
1;[m;M ]

�
;

proving the claim.
We �nish this section with

Corollary 8 (to Theorem 7, n = 1) It holds

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij � kg0k1;[m;M ] ��
kf1 (A)k

�f2 � g�1�0 � g
1;[m;M ]

+ kf2 (A)k
�f1 � g�1�0 � g

1;[m;M ]

�
: (53)

4 Applications

We give

Theorem 9 Let f1; f2 2 C 0 ([a; b]) with [m;M ] � (a; b), m < M . Here A is
a selfadjoint linear operator on the Hilbert space H with spectrum Sp (A) �
[m;M ]. We consider any x 2 H : kxk = 1, and � > 0 :M < ln �:

Then

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij �
eM

2 (M �m) �

17
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"
kf2 (A)k

(f1 � ln �t)0 � et�

1;[m;M ]

+ kf1 (A)k
(f2 � ln �t)0 � et�


1;[m;M ]

#
h(M1H �A)2+ (A�m1H)2i : (54)

Proof. Apply Corollary 4 for g (t) = et

� :

We continue with

Theorem 10 All as in Theorem 9. Let p; q > 1 : 1p +
1
q = 1. Then

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij �
eM

(M �m) (p+ 1)
1
p �"

kf2 (A)k
(f1 � ln �t)0 � et�


q;[m;M ]

+ kf1 (A)k
(f2 � ln �t)0 � et�


q;[m;M ]

#
h(M1H �A)1+ 1

p

+ (A�m1H)1+ 1
p

i : (55)

Proof. Use of Corollary 6 and g (t) = et

� ; � > 0, M < ln �:

We �nish article with

Theorem 11 Here all as in Theorem 9. Then

jhf1 (A) f2 (A)x; xi � hf1 (A)x; xi hf2 (A)x; xij �
eM

�
(56)

"
kf1 (A)k

(f2 � ln �t)0 � et�

1;[m;M ]

+ kf2 (A)k
(f1 � ln �t)0 � et�


1;[m;M ]

#
:

Proof. Use of Corollary 8.
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FOURIER SERIES OF SUMS OF PRODUCTS OF POLY-BERNOULLI AND

GENOCCHI FUNCTIONS AND THEIR APPLICATIONS

TAEKYUN KIM, DAE SAN KIM, LEE CHAE JANG, AND GWAN-WOO JANG

Abstract. We derive Fourier series expansions of three types of sums of products of poly-Bernoulli and
Genocchi functions. In addition, we express each of them in terms of Bernoulli functions.

1. Introduction

For any integer r, the poly-Bernoulli polynomials B(r)
m (x) of index r are given by the generating function

Lir(1− e−t)

et − 1
ext =

∞∑
m=0

B(r)
m (x)

tm

m!
, (see [1− 4, 7− 10, 12, 13, 17, 18]), (1.1)

where Lir(x) =
∑∞

m=0
xm

mr is the r-th polylogarithmic function for r ≥ 1 and a rational function for r ≤ 0.
We observe here that

d

dx
(Lir+1(x)) =

1

x
Lir(x). (1.2)

As to poly-Bernoulli polynomials, we note the following:

d

dx

(
B(r)
m (x)

)
= mB(r)

m−1(x), (m ≥ 1).

B(1)
m (x) = Bm(x), B(r)

0 (x) = 1, B(0)
m (x) = xm,

B(0)
m = δm,0, B(r+1)

m (1)− B(r+1)
m (0) = B(r)

m−1, (m ≥ 1).

(1.3)

The Genocchi polynomials Gm(x) are given by the generating function

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
, (see [14− 16]). (1.4)

The first few Genocchi polynomials are as follows:

G0(x) = 0, G1(x) = 1, G2(x) = 2x− 1,

G3(x) = 3x2 − 3x, G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x, G6(x) = 6x5 − 15x4 + 15x2 − 3,

G7(x) = 7x6 − 21x5 + 35x3 − 21x.

(1.5)

From the relation Gm(x) = mEm−1(x)(m ≥ 1), we have

degGm(x) = m− 1 (m ≥ 1), Gm = mEm−1 (m ≥ 1),

G0 = 0, G1 = 1, G2m+1 = 0 (m ≥ 1), and G2m ̸= 0 (m ≥ 1).
(1.6)

2010 Mathematics Subject Classification. 11B83, 42A16.
Key words and phrases. Fourier series, poly-Bernoulli polynomials, poly-Bernoulli functions, Genocchi polynomials,

Genocchi functions.
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2 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

In addition,

d

dx
Gm(x) = mGm−1(x) (m ≥ 1),

Gm(x+ 1) +Gm(x) = 2mxm−1 (m ≥ 0).
(1.7)

From these, we also have

Gm(1) +Gm(0) = 2δm,1, (m ≥ 0). (1.8)

∫ 1

0

Gm(x)dx =
1

m+ 1
(Gm+1(1)−Gm+1(0))

=
2

m+ 1
(−Gm+1(0) + δm,0)

=

{
0, if m is even,
− 2

m+1Gm+1, if m is odd.

(1.9)

For any real number x, let < x >= x− [x] ∈ [0, 1) denote the fractional part of x. In this paper, we will
study the Fourier series of the following three types of sums of products of poly-Bernoulli and Genocchi
functions:

(1) αm(< x >) =
∑m−1

k=0 B(r+1)
k (< x >)Gm−k(< x >), (m ≥ 2);

(2) βm(< x >) =
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (< x >)Gm−k(< x >), (m ≥ 2);

(3) γm(< x >) =
∑m−1

k=1
1

k(m−k)B
(r+1)
k (< x >)Gm−k(< x >), (m ≥ 2).

For some elementary facts about Fourier analysis, the reader may refer to [20,22]. As to γm(< x >), we
note that the polynomial identity (1.10) follows immediately from (4.21) and (4.25), which is derived in
turn from the Fourier series expansion of γm(< x >).

m−1∑
k=1

1

k(m− k)
B(r+1)
k (x)Gm−k(x)

=
1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
+

1

m

m−1∑
s=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(x).

(1.10)

The obvious polynomial identities can be derived also for αm(< x >) and βm(< x >) from (2.19) and
(2.23), and (3.16) and (3.20), respectively. It is worth noting that from the Fourier series expansion of

the function
∑m−1

k=1
1

k(m−k)Bk(< x >)Bm−k(< x >) we can derive the following polynomial identity:

m−1∑
k=1

1

k (m− k)
Bk (x)Bm−k (x) (1.11)

=
2

m2

(
Bm +

1

2

)
+

2

m

m−2∑
k=1

1

m− k

(
m

k

)
Bm−kBk (x) +

2

m
Hm−1Bm (x) , (m ≥ 2).
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T. Kim, D. S. Kim, L. C. Jang, G.-W. Jang 3

From (1.11), we can derive the following slightly different version of the well-known Miki’s identity
(see [5,21])

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.12)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) .

Also, from (1.11) and with Bm =
(

1−2m−1

2m−1

)
Bm =

(
21−m − 1

)
Bm = Bm

(
1
2

)
, we have

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.13)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) ,

which is the Faber-Pandharipande-Zagier identity (see [6]). Some related works can be found in [11,19].

2. Fourier series of functions of the first type

In this section, we will study the Fourier series of first type of sums of products of poly-Bernoulli and
Genocchi functions.

αm(x) =

m−1∑
k=0

B(r+1)
k (x)Gm−k(x), (m ≥ 2). (2.1)

Note here that degαm(x) = m− 1. We now consider the function

αm(< x >) =
m−1∑
k=0

B(r+1)
k (< x >)Gm−k(< x >), (m ≥ 2), (2.2)

defined on (−∞,−∞), which is periodic of period 1. The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.3)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.4)
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4 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

Before proceeding further, we need to observe the following.

α′
m(x) =

m−1∑
k=0

(kB(r+1)
k−1 (x)Gm−k(x) + (m− k)B(r+1)

k (x)Gm−k−1(x))

=

m−1∑
k=1

kB(r+1)
k−1 (x)Gm−k(x) +

m−2∑
k=0

(m− k)B(r+1)
k (x)Gm−k−1(x)

=
m−2∑
k=0

(k + 1)B(r+1)
k (x)Gm−1−k(x) +

m−2∑
k=0

(m− k)B(r+1)
k (x)Gm−1−k(x)

= (m+ 1)
m−2∑
k=0

B(r+1)
k (x)Gm−1−k(x)

= (m+ 1)αm−1(x).

(2.5)

So, α′
m(x) = (m+ 1)αm−1(x), and hence(

αm+1(x)

m+ 2

)′

= αm(x), (2.6)

and ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)). (2.7)

For m ≥ 2,

∆m = αm(1)− αm(0)

=
m−1∑
k=0

(
B(r+1)
k (1)Gm−k(1)− B(r+1)

k Gm−k

)
= B(r+1)

0 (1)Gm(1)− B(r+1)
0 Gm +

m−1∑
k=1

(
B(r+1)
k (1)Gm−k(1)− B(r+1)

k Gm−k

)
= −2Gm + 2δm,1 +

m−1∑
k=1

((
B(r+1)
k + B(r)

k−1

)
(−Gm−k + 2δm−1,k)− B(r+1)

k Gm−k

)
= −2Gm +

m−1∑
k=1

(
−2B(r+1)

k Gm−k + 2B(r+1)
k δm−1,k − B(r)

k−1Gm−k + 2B(r)
k−1δm−1,k

)
= −2Gm − 2

m−1∑
k=1

B(r+1)
k Gm−k + 2B(r+1)

m−1 −
m−1∑
k=1

B(r)
k−1Gm−k + 2B(r)

m−2

= −2

m−2∑
k=0

B(r+1)
k Gm−k −

m−2∑
k=0

B(r)
k Gm−k−1 + 2B(r)

m−2.

(2.8)

αm(0) = αm(1) ⇐⇒ ∆m = 0. (2.9)∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.10)
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Now, we are going to determine the Fourier coefficients A
(m)
n .

Case 1 : n ̸= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

α′
m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e
−2πinxdx

=
m+ 1

2πin
A(m−1)

n − 1

2πin
∆m

=
m+ 1

2πin

(
m

2πin
A(m−2)

n − 1

2πin
∆m−1

)
− 1

2πin
∆m

=
(m+ 1)m

(2πin)2
A(m−2)

n − m+ 1

(2πin)2
∆m−1 −

1

2πin
∆m

= · · ·

=
(m+ 1)m−1

(2πin)m−1
A(1)

n −
m−1∑
j=1

(m+ 1)j−1

(2πin)j
∆m−j+1

= −
m−1∑
j=1

(m+ 1)j−1

(2πin)j
∆m−j+1

= − 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1,

(2.11)

where

A(1)
n =

∫ 1

0

α1(x)e
−2πinxdx =

∫ 1

0

e−2πinxdx = 0. (2.12)

Case 2: n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.13)

Here we recall the following facts about Bernoulli functions Bm(< x >):
(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)m
. (2.14)

(b) for m = 1,

−
∞∑

n=−∞,n ̸=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z, (2.15)

where Zc = R− Z. αm(< x >), (m ≥ 2) is piecewise C∞. Moreover, αm(< x >) is continuous for those
integers m ≥ 2 with ∆m = 0 and discontinuous with jump discontinuities at integers for those integers
m ≥ 2 with ∆m ̸= 0. Assume first that m is an integer ≥ 2 with ∆m = 0. Then αm(0) = αm(1).
αm(< x >) is piecewise C∞, and continuous. Thus, the Fourier series of αm(< x >) converges uniformly
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6 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

to αm(< x >), and

αm(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1

−j!
∞∑

n=−∞,n̸=0

e2πin

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+
1

m+ 2

(
m+ 2

1

)
∆m ×

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(2.16)

Now, we can state our first theorem.

Theorem 2.1. For each integer l ≥ 2, let

∆l = −2
l−2∑
k=0

B(r+1)
k Gl−k −

l−2∑
k=0

B(r)
k Gl−k−1 + 2B(r)

l−2. (2.17)

Assume that ∆m = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1

k=0 B(r+1)
k (< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=0

B(r+1)
k (< x >)Gm−k(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

(2.18)

for all x ∈ (−∞,∞), where the convergence is uniform.
(b)

m−1∑
k=0

B(r+1)
k (< x >)Gm−k(< x >)

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >),

(2.19)

for all x ∈ (−∞,∞). Here Bj(< x >) is the Bernoulli function.

Assume next that m ≥ 2 is an integer with ∆m ̸= 0. Then αm(0) ̸= αm(1). So αm(< x >) is piecewise
C∞ and discontinuous with jump discontinuities at integers. The Fourier series of αm(< x >) converges
pointwise to αm(< x >), for x ∈ Zc, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m, (2.20)

for x ∈ Z. Next, we can state our second theorem.
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Theorem 2.2. For each integer l ≥ 2, let

∆l = −2
l−2∑
k=0

B(r+1)
k Gl−k −

l−2∑
k=0

B(r)
k Gl−k−1 + 2B(r)

l−2. (2.21)

Assume that ∆m ̸= 0, for an integer ≥ 2. Then we have the following.
(a)

1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{ ∑m−1
k=0 B(r+1)

k (< x >)Gm−k(< x >), for x ∈ Zc,∑m−1
k=0 B(r+1)

k Gm−k + 1
2∆m, for x ∈ Z.

(2.22)

(b)

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=

m−1∑
k=0

B(r+1)
k (< x >)Gm−k(< x >), for x ∈ Zc;

(2.23)

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

m−1∑
k=0

B(r+1)
k Gm−k +

1

2
∆m, x ∈ Z.

(2.24)

3. Fourier series of functions of the second type

Let βm(x) =
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (x)Gm−k(x), (m ≥ 2). Observe that

β′
m(x) =

m−1∑
k=0

{
k

k!(m− k)!
B(r+1)
k−1 (x)Gm−k(x) +

m− k

k!(m− k)!
B(r+1)
k (x)Gm−k−1(x)

}

=

m−1∑
k=1

1

(k − 1)!(m− k)!
B(r+1)
k−1 (x)Gm−k(x) +

m−2∑
k=0

1

k!(m− k − 1)!
B(r+1)
k (x)Gm−k−1(x)

= 2

m−2∑
k=0

1

k!(m− 1− k)!
B(r+1)
k (x)Gm−1−k(x)

= 2βm−1(x).

(3.1)

From this, we have (
βm+1(x)

2

)′

= βm(x), (3.2)
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8 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

and ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)). (3.3)

For m ≥ 2, we have

Ωm = Ωm(r) = βm(1)− βm(0)

=
m−1∑
k=0

1

k!(m− k)!

(
B(r+1)
k (1)Gm−k(1)− B(r+1)

k Gm−k

)
=

1

m!

(
B(r+1)
0 (1)Gm(1)− B(r+1)

0 Gm

)
+

m−1∑
k=1

1

k!(m− k)!

(
B(r+1)
k (1)Gm−k(1)− B(r+1)

k Gm−k

)
=

1

m!
(−2Gm + 2δm,1) +

m−1∑
k=1

1

k!(m− k)!

((
B(r+1)
k + B(r)

k−1

)
(−Gm−k + 2δm−1,k)− B(r+1)

k Gm−k

)
= − 2

m!
Gm +

m−1∑
k=1

1

k!(m− k)!

(
−2B(r+1)

k Gm−k + 2B(r+1)
k δm−1,k − B(r)

k−1Gm−k + 2B(r)
k−1δm−1,k

)
= − 2

m!
Gm − 2

m−1∑
k=1

B(r+1)
k Gm−k

k!(m− k)!
+ 2

B(r+1)
m−1

(m− 1)!
−

m−1∑
k=1

B(r)
k−1Gm−k

k!(m− k)!
+ 2

B(r)
m−2

(m− 1)!

= −2

m−2∑
k=0

B(r+1)
k Gm−k

k!(m− k)!
−

m−1∑
k=1

B(r)
k−1Gm−k

k!(m− k)!
+ 2

B(r)
m−2

(m− 1)!
.

(3.4)

Then

βm(0) = βm(1) ⇐⇒ Ωm = 0. (3.5)

Also, ∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.6)

Now, we are going to consider the function

βm(< x >) =
m−1∑
k=0

1

k!(m− k)!
B(r+1)
k (< x >)Gm−k(< x >), (m ≥ 2), (3.7)

defined on (−∞,∞), which is periodic with period 1. The Fourier series of βm(< x >) is

∞∑
k=−∞

B(m)
n e2πinx, (3.8)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx

=

∫ 1

0

βm(x)e−2πinxdx.

(3.9)

We are now going to determine the Fourier coefficients B
(m)
n .
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Case 1: n ̸= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

β′
m(x)e−2πinxdx

= − 1

2πin
(βm(1)− βm(0)) +

2

2πin

∫ 1

0

βm−1(x)e
−2πinxdx

=
2

2πin
B(m−1)

n − 1

2πin
Ωm

=
2

2πin

(
2

2πin
B(m−2)

n − 1

2πin
Ωm−1

)
− 1

2πin
Ωm

=

(
2

2πin

)2

B(m−2)
n − 2

(2πin)2
Ωm−1 −

1

2πin
Ωm

= · · ·

=

(
2

2πin

)m−1

B(1)
n −

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

= −
m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1,

(3.10)

where

B(1)
n =

∫ 1

0

β1(x)e
−2πinxdx =

∫ 1

0

e−2πinxdx = 0. (3.11)

Case 2: n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.12)

βm(< x >), (m ≥ 2) is piecewise C∞. Moreover, βm(< x >) is continuous for those integers m ≥ 2 with
Ωm = 0 and discontinuous with jump discontinuities at integers for those integers m ≥ 2 with Ωm ̸= 0.

Assume first that Ωm = 0, for an integer m ≥ 2. Then βm(0) = βm(1). βm(< x >) is piecewise C∞,
and continuous. Thus the Fourier series of βm(< x >) converges uniformly to βm(< x >), and

βm(< x >) =
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

−
m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=
1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1

−j!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)j


=

1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >) + Ωm ×

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(3.13)

Now, we are ready to state our first theorem.
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10 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

Theorem 3.1. For each integer l ≥ 2, let

Ωl = −2
l−2∑
k=0

B(r+1)
k Gl−k

k!(l − k)!
−

l−1∑
k=1

B(r)
k−1Gl−k

k!(l − k)!
+ 2

B(r)
l−2

(l − 1)!
. (3.14)

Assume that Ωm = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=0

1

k!(m− k)!
B(r+1)
k (< x >)Gm−k(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

−
m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx,

(3.15)

for all x ∈ (−∞,∞), where the convergence is uniform.
(b)

m−1∑
k=0

1

k!(m− k)!
B(r+1)
k (< x >)Gm−k(< x >)

=
1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

(3.16)

for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Assume next that Ωm ̸= 0, for an integer m ≥ 2. Then βm(0) ̸= βm(1). Thus βm(< x >) is piecewise
C∞ and discontinuous with jump discontinuities at integers. The Fourier series of βm(< x >) converges
pointwise to βm(< x >), for x ∈ Zc, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm

m−1∑
k=0

1

k!(m− k)!
B(r+1)
k Gm−k +

1

2
Ωm,

(3.17)

for x ∈ Z. We can now state our second theorem.

Theorem 3.2. For each integer l ≥ 2, let

Ωl = −2
l−2∑
k=0

B(r+1)
k Gl−k

k!(l − k)!
−

l−1∑
k=1

B(r)
k−1Gl−k

k!(l − k)!
+ 2

B(r)
l−2

(l − 1)!
. (3.18)

Assume that Ωm ̸= 0, for an integer m ≥ 2. Then we have the following.
(a)

1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

−
m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=

{ ∑m−1
k=0

1
k!(m−k)!B

(r+1)
k (< x >)Gm−k(< x >), for x ∈ Zc,∑m−1

k=0
1

k!(m−k)!B
(r+1)
k Gm−k + 1

2Ωm, for x ∈ Z.

(3.19)

Here the convergence is pointwise.
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(b)

1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
B(r+1)
k (< x >)Gm−k(< x >),

(3.20)

for x ∈ Zc;

1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
B(r+1)
k Gm−k +

1

2
Ωm,

(3.21)

for x ∈ Z. Here Bj(< x >) is the Bernoulli function.

4. Fourier series of functions of the third type

Let γm(x) =
∑m−1

k=1
1

k(m−k)B
(r+1)
k (x)Gm−k(x), (m ≥ 2). We observe the following.

γ′m(x) =
m−1∑
k=1

1

k(m− k)

{
kB(r+1)

k−1 (x)Gm−k(x) + (m− k)B(r+1)
k (x)Gm−k−1(x)

}
=

m−2∑
k=0

1

m− k − 1
B(r+1)
k (x)Gm−k−1(x) +

m−1∑
k=1

1

k
B(r+1)
k (x)Gm−k−1(x)

=
1

m− 1
Gm−1(x) +

m−2∑
k=1

1

m− 1− k
B(r+1)
k (x)Gm−1−k(x) +

m−2∑
k=1

1

k
B(r+1)
k (x)Gm−1−k(x)

=
1

m− 1
Gm−1(x) + (m− 1)

m−2∑
k=1

1

k(m− 1− k)
B(r+1)
k (x)Gm−1−k(x)

=
1

m− 1
Gm−1(x) + (m− 1)γm−1(x).

(4.1)

From this, we see that

(
1

m
(γm+1(x)−

1

m(m+ 1)
Gm+1(x))

)′

= γm(x) (4.2)
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12 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

and ∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)−

1

m(m+ 1)
Gm+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
(Gm+1(1)−Gm+1(0))

)
=

1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
(−2Gm+1(0) + 2δm,0)

)
=

1

m

(
γm+1(1)− γm+1(0) +

2Gm+1

m(m+ 1)

)
.

(4.3)

For m ≥ 2, we let

Λm = Λm(r) = γm(1)− γm(0)

=

m−1∑
k=1

1

k(m− k)

(
B(r+1)
k (1)Gm−k(1)− B(r+1)

k Gm−k

)
=

m−1∑
k=1

1

k(m− k)

((
B(r+1)
k + B(r)

k−1

)
(−Gm−k + 2δm−1,k)− B(r+1)

k Gm−k

)
=

m−1∑
k=1

1

k(m− k)

(
−2B(r+1)

k Gm−k + 2B(r+1)
k δm−1,k − B(r)

k−1Gm−k + 2B(r)
k−1δm−1,k

)
= −2

m−1∑
k=1

1

k(m− k)
B(r+1)
k Gm−k +

2

m− 1
B(r+1)
m−1 −

m−1∑
k=1

1

k(m− k)
B(r)
k−1Gm−k +

2

m− 1
B(r)
m−2.

(4.4)

So,

γm(1) = γm(0) ⇐⇒ Λm = 0. (4.5)

Also, ∫ 1

0

γm(x)dx =
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
. (4.6)

We are now going to consider

γm(< x >) =
m−1∑
k=1

1

k(m− k)
B(r+1)
k (< x >)Gm−k(< x >), (4.7)

defined on (−∞,∞) , which is periodic with period 1. The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.8)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.9)

Now, we want to determine the Fourier coefficients C
(m)
n .
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Case 1: n ̸= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin
[γm(x)e−2πinx]10 +

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin
(γm(1)− γm(0)) +

1

2πin

∫ 1

0

(
1

m− 1
Gm−1(x) + (m− 1)γm−1(x)

)
e−2πinxdx

= − 1

2πin
Λm +

m− 1

2πin
C(m−1)

n +
1

2πin(m− 1)

∫ 1

0

Gm−1(x)e
−2πinxdx

= − 1

2πin
Λm +

m− 1

2πin
C(m−1)

n +
1

2πin(m− 1)
Φm,

(4.10)

where

Φm =

m−2∑
k=1

(m− 1)k−1

(2πin)k
Gm−k, (4.11)

and one can show ∫ 1

0

Gl(x)e
−2πinxdx =

{ ∑l−1
k=1

2(l)k−1

(2πin)k
Gl−k+1, for n ̸= 0,

− 2Gl+1

l+1 , for n = 0.
(4.12)

We observe that

C(m)
n =

m− 1

2πin
C(m−1)

n − 1

2πin
Λm +

2

2πin(m− 1)
Φm

=
m− 1

2πin

(
m− 2

2πin
C(m−2)

n − 1

2πin
Λm−1 +

2

2πin(m− 2)
Φm−1

)
− 1

2πin
Λm +

2

2πin(m− 1)
Φm

=
(m− 1)(m− 2)

(2πin)2
C(m−2)

n − m− 1

(2πin)2
Λm−1 −

1

2πin
Λm

+
2(m− 1)

(2πin)2(m− 2)
Φm−1 +

2

2πin(m− 1)
Φm

= · · ·

=
(m− 1)m−2

(2πin)m−2
C(2)

n −
m−2∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1 +

m−2∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1

= − (m− 1)!

(2πin)m−1
Λ2 −

m−2∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1 +

m−2∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1

= − 1

m

m−1∑
j=1

(m)j
(2πin)j

Λm−j+1 +
1

m

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1,

(4.13)
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14 Fourier series of sums of products of poly-Bernoulli and Genocchi functions

where

C(2)
n =

∫ 1

0

γ2(x)e
−2πinxdx

= − 1

2πin

[
γ2(x)e

−2πinx
]1
0
+

1

2πin

∫ 1

0

γ′2(x)e
−2πinxdx

= − 1

2πin
(γ2(1)− γ2(0)) = − 1

2πin
Λ2.

(4.14)

In order to get a final expression for C
(m)
n , we observe the following.

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1

=
m−2∑
j=1

2(m)j
(2πin)j(m− j)

m−j−1∑
k=1

(m− j)k−1

(2πin)k
Gm−j−k+1

=

m−2∑
j=1

m−j−1∑
k=1

2(m)j+k−1

(2πin)j+k(m− j)
Gm−j−k+1

= 2
m−2∑
j=1

1

m− j

m−1∑
s=j+1

(m)s−1

(2πin)s
Gm−s+1

= 2
m−1∑
s=2

(m)s−1

(2πin)s
Gm−s+1

s−1∑
j=1

1

m− j

= 2
m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s).

(4.15)

Putting everything altogether, we have

C(m)
n = − 1

m

m−1∑
s=1

(m)s
(2πin)s

Λm−s+1 +
2

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

= − 1

m

m−1∑
s=1

(m)s
(2πin)s

{
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

}
.

(4.16)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
. (4.17)

γm(< x >), (m ≥ 2) is piecewise C∞. In addition, γm(< x >) is continuous for those integers m ≥ 2
with Λm = 0, and discontinuous with jump discontinuities at integers for those integers Λm ̸= 0.
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Assume first that Λm = 0 . Then γm(0) = γm(1). γm(< x >) is piecewise C∞, and continuous. So
the Fourier series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
− 1

m

∞∑
n=−∞,n̸=0

{
m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)}
e2πinx

=
1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
+

1

m

m−1∑
s=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)

×

−s!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)s


=

1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
+

1

m

m−1∑
s=2

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

+ Λm ×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(4.18)

Now, we can state our first result.

Theorem 4.1. For each integer l ≥ 2, let

Λl = −2
l−1∑
k=1

1

k(l − k)
B(r+1)
k Gl−k +

2

l − 1
B(r+1)
l−1

−
l−1∑
k=1

1

k(l − k)
B(r)
k−1Gl−k +

2

l − 1
B(r)
l−2.

(4.19)

Assume that Λm = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1

k=1
1

k(m−k)B
(r+1)
k (< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
B(r+1)
k (< x >)Gm−k(< x >)

=
1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
− 1

m

∞∑
n=−∞,n̸=0

{
m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)}
e2πinx,

(4.20)

for all x ∈ (−∞,∞). Here the convergence is uniform.
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(b)

m−1∑
k=1

1

k(m− k)
B(r+1)
k (< x >)Gm−k(< x >)

=
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
+

1

m

m−1∑
s=2

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

(4.21)

for all x ∈ (−∞,∞). Here Bs(< x >) is the Bernoulli function.

Assume next that m ≥ 2 is an integer with Λm ̸= 0. Then γm(0) ̸= γm(1). γm(< x >) is piecewise C∞

and discontinuous with jump discontinuities at integers. Thus the Fourier series of γm(< x >) converges
pointwise to γm(< x >), for x ∈ Zc, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm

=
m−1∑
k=1

1

k(m− k)
B(r+1)
k Gm−k +

1

2
Λm,

(4.22)

for x ∈ Z. Next, we can state our second result.

Theorem 4.2. For each integer l ≥ 2, let

Λl = −2
l−1∑
k=1

1

k(l − k)
B(r+1)
k Gl−k +

2

l − 1
B(r+1)
l−1 −

l−1∑
k=1

1

k(l − k)
B(r)
k−1Gl−k +

2

l − 1
B(r)
l−2. (4.23)

Assume that Λm ̸= 0, for an integer m ≥ 2. Then we have the following.
(a)

1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
− 1

m

∞∑
n=−∞,n̸=0

(
m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

))
e2πinx

=

{ ∑m−1
k=1

1
k(m−k)B

(r+1)
k (< x >)Gm−k(< x >), for x ∈ Zc,∑m−1

k=1
1

k(m−k)B
(r+1)
k Gm−k + 1

2Λm, for x ∈ Z.

(4.24)

Here the convergence is pointwise.
(b)

1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
+

1

m

m−1∑
s=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
B(r+1)
k (< x >)Gm−k(< x >),

(4.25)
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for x ∈ Zc and

1

m

(
Λm+1 +

2Gm+1

m(m+ 1)

)
+

1

m

m−1∑
s=2

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

m−1∑
s=1

1

k(m− k)
B(r+1)
k Gm−k +

1

2
Λm,

(4.26)

for x ∈ Z.
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Convergence of the Newton-HSS Method under the Lipschitz
Condition with the L-average

Hong-Xiu Zhong1, Guo-Liang Chen2, Xue-Ping Guo3

Abstract: Under the hypothesis that the Jacobian matrix satisfies the center Lip-
schitz condition with the L-average, we prove the local convergence of the Newton-HSS
method, which is used to solve large sparse systems of nonlinear equations with positive
definite Jacobian matrices at the solution points. Numerical results are given to examine
its feasibility and effectiveness.

Keywords: Large sparse systems; Nonlinear equations; Newton-HSS method; Cen-
ter Lipschtiz condition with the L-average.

AMS classifications: 65F10, 65F50, 65W05,

1 Introduction

In this paper, we consider the following system of nonlinear equations

F (x) = 0, (1.1)

where F : D ⊂ Cn → Cn is nonlinear and continuously differentiable, D is an open convex
subset of the n-dimensional complex linear space Cn. The Jacobian matrix F

′
(x) ∈ Cn×n

is sparse, nonsymmetric and positive definite. This kind of nonlinear equations can be
derived in many areas of scientific computing and engineering applications [1, 2, 3].

The most classic and important iterative method for the system of nonlinear equa-
tions (1.1) is Newton’s method [14, 15], which can be formulated as

xk+1 = xk − F
′
(xk)

−1F (xk), k = 0, 1, · · · ,

where x0 ∈ D is a given initial vector. Obviously, at the k-th iteration step, it is necessary
to solve the so-called Newton equation

F
′
(xk)sk = −F (xk), (1.2)

which is the dominant task in implementations of the Newton method, then get the k+1-
th iterative vector xk+1 = xk + sk. Bai and Guo [5], Guo and Duff [10], first used the
HSS iteration [4] to solve approximately the Newton equation (1.2), and used inexact
Newton method [8] as the outer solver, presented the Newton-HSS method for solving

1School of Science, Jiangnan University, Wuxi 214122, P. R. China (zhonghongxiu@126.com).
2Corresponding author. Department of Mathematics, Shanghai Key Laboratory of PMMP, East

China Normal University, Shanghai 200241, P. R. China (glchen@math.ecnu.edu.cn).
3Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University,

Shanghai 200241, P. R. China (xpguo@math.ecnu.edu.cn).
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the system of nonlinear equations (1.1), and gave the convergence theorems under the
Lipschtiz continuous conditions. The following is HSS iterative method, which is used to
solve non-Hermitian positive-definite linear system Ax = b [4].

Algorithm 1.1. HSS
1. Given an initial guess x0 ∈ Cn, and positive constant α.
2. Split the linear matrix A into its Hermitian part H and skew-Hermitian part S

H =
1

2
(A+ A∗) and S =

1

2
(A− A∗).

3. For k = 0, 1, 2, · · · , compute xk+1 using the following iteration scheme until {xk}
satisfies the stopping criterion:{

(αI +H)xk+ 1
2
= (αI − S)xk + b,

(αI + S)xk+1 = (αI −H)xk+ 1
2
+ b,

(1.3)

where I denotes the identity matrix.

Recently, using HSS method as the inner solver for solving Newton equations (1.2),
and the modified Newton method as the outer solver, Chen et al. have proposed the
modified Newton-HSS method for the system of nonlinear equations (1.1). They have
proved the convergence theorems under Hölder continuous condition, which is weaker than
the usual Lipschtiz condition. When using Newton’s method to solve equations (1.1), Guo
[11] studied its semi-local convergence property, which is as brief as Newton-Kantorovich
theorem [9, 12], under the hypothese that the derivative satisfies center Lipschtiz condition
with the L-average, which is weaker than Hölder condition and Lipschtiz condition, and
has gotten a lot of attention and been extensively studied [13, 17, 18].

The following conditions were introduced by Wang in [13], named the center Lipschitz
condition with the L-average.

Definition 1.1. Let Y be a Banach space and let x∗ ∈ Cn. Let G be a mapping from
Cn to Y . Then G is said to satisfy the center Lipschitz condition with the L-average on
B(x∗, r) if

∥G(x)−G(x∗)∥ ≤
∫ ∥x−x∗∥

0

L(u)du for each x ∈ B(x∗, r);

In this paper, motivated by the idea of [11], the main work is to study the local
convergence theorem of the Newton-HSS method under the hypothese that the derivative
satisfies the center Lipschitz condition with the L-average. The organization of the paper
is as follows. In Section 2, we introduce the Newton-HSS iterative method. In Section
3, we first give some lemmas which are useful for our main result, then present the new
local convergence theorems under the hypothese that the derivative satisfies the center
Lipschitz condition with the L-average. An numerical example is given to illustrate the
applications of the results in our paper in Section 4. Finally, in Section 5, some conclusions
are given.

2
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2 Newton-HSS iteration

For Jacobian matrix F
′
(x), let

H(x) =
1

2
(F

′
(x) + F

′
(x)∗)

be its Hermitian part,

S(x) =
1

2
(F

′
(x)− F

′
(x)∗)

be the skew-Hermitian part, the following is the Newton-HSS method [5, 10].

Algorithm 2.1. Newton-HSS
1. Given an initial guess x0, positive constants α and tol, and positive integer sequence
{lk}∞k=0;
2. for k = 0, 1, · · · until ∥F (xk)∥ ≤ tol∥F (x0)∥ do:

2.1. Set dk,0 = 0;
2.2. for l = 0, 1, · · · , lk − 1, apply Algorithm HSS to the linear system (1.2):{

(αI +H(xk))dk,l+ 1
2
= (αI − S(xk))dk,l − F (xk),

(αI + S(xk))dk,l+1 = (αI −H(xk))dk,l+ 1
2
− F (xk),

and obtain dk,lk such that

∥F (xk) + F
′
(xk)dk,lk∥ ≤ ηk∥F (xk)∥ ηk ∈ [0, 1). (2.1)

2.3. Set xk+1 = xk + dk,lk .

Denote

B(α;x) =
1

2α
(αI +H(x))(αI + S(x)),

C(α;x) =
1

2α
(αI −H(x))(αI − S(x)),

T (α;x) = (αI + S(x))−1(αI −H(x))(αI +H(x))−1(αI − S(x)).

(2.2)

Thus we have the following formulas

T (α; x) = B(α;x)−1C(α; x),

F
′
(x) = B(α;x)− C(α;x),

F
′
(x)−1 = (I − T (α;x))−1B(α;x)−1.

(2.3)

From the Newton-HSS method we can get [10]

xk+1 = xk − (I − T lk
k )F

′
(xk)

−1F (xk), (2.4)

here Tk := T (α; xk).

3
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3 Local convergence theorem under the center Lips-

chitz condition with the L-average

In this section, we establish a new local convergence theorem for the Newton-HSS method
under the assumption that the derivative satisfies the center Lipschitz condition with the
L-average, which is weaker than Hölder condition and Lipschtiz condition. Firstly, we
give the assumption.

Assumption 3.1. Let F : D ⊂ Cn → Cn be G-differentiable on an open neighborhood
N0 ⊂ D of a point x∗ ∈ D at which F ′(x) is continuous, positive definite, and F (x∗) = 0.
Assume the following conditions hold for all x ∈ B(x∗, r) ⊂ N0, where B(x∗, r) denotes
an open ball centered at x∗ with radius r:
(A1) (The Bounded Condition) there exist positive constants β, γ and δ such that

max{∥H(x∗)∥, ∥S(x∗)∥} ≤ β, ∥F ′
(x∗)

−1∥ ≤ γ.

(A2) (The Center Lipschitz Condition with the L-average) there exist positive integrable
functions Lh(u) and Ls(u) such that,

∥H(x)−H(x∗)∥ ≤
∫ ρ(x)

0

Lh(u)du,

∥S(x)− S(x∗)∥ ≤
∫ ρ(x)

0

Ls(u)du,

here ρ(x) = ∥x− x∗∥.

Let L(u) = Lh(u) + Ls(u), thus L(u) is a positive valued integrable function on
[0,+∞). Before giving the main theorem, we list a series of useful lemmas as follows for
our purpose. Lemma 3.1 is taken from [8], and we will give a proof of Lemma 3.2.

Lemma 3.1. Define χ(t) = 1
t

∫ t

0
L(u)(t− u)du, t ≥ 0, Then χ is increasing on [0,+∞).

Lemma 3.2. Under Assumption 3.1, if γ
∫ r

0
L(u)du < 1, then for x ∈ B(x∗, r) ⊂ N0,

F ′(x)−1 exists, and

(1) ∥F ′(x)− F ′(x∗)∥ ≤
∫ ρ(x)

0

L(u)du,

(2) ∥F ′(x)−1∥ ≤ γ

1− γ
∫ ρ(x)

0
L(u)du

,

(3) ∥F (x)∥ ≤ (
1

ρ(x)

∫ ρ(x)

0

L(u)(ρ(x)− u)du+ 2β)∥x− x∗∥,

(4) ∥x− x∗ − F ′(x)−1F (x)∥

≤ γ

1− γ
∫ ρ(x)

0
L(u)du

(
1

ρ(x)

∫ ρ(x)

0

L(u)(ρ(x)− u)du+

∫ ρ(x)

0

L(u)du)∥x− x∗∥.

4
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Proof. By Assumption 3.1, F ′(x) = H(x)+S(x), perturbation lemma [14], and condition
γ
∫ r

0
L(u)du < 1, it is easy to get (1) and (2).
For (3), from integral mean-value theorem and Assumption 3.1, we first have

∥F (x)− F (x∗)− F ′(x∗)(x− x∗)∥

=∥
∫ 1

0

(F ′(x+ t(x− x∗))− F ′(x∗))dt(x− x∗)∥

≤
∫ 1

0

∫ tρ(x)

0

L(u)dudt∥x− x∗∥

=
1

ρ(x)

∫ ρ(x)

0

L(u)(ρ(x)− u)du∥x− x∗∥,

(3.5)

thus, together with ∥F ′(x∗)∥ = ∥H(x∗) + S(x∗)∥ ≤ 2β, we have

∥F (x)∥ ≤ ∥F (x)− F (x∗)− F ′(x∗)(x− x∗)∥+ ∥F ′(x∗)(x− x∗)∥

≤ (
1

ρ(x)

∫ ρ(x)

0

L(u)(ρ(x)− u)du+ 2β)∥x− x∗∥.

For (4), by integral mean-value theorem, Assumption 3.1, and (3.5), we can get

∥x− x∗ − F ′(x)−1F (x)∥
=∥ − F ′(x)−1(F (x)− F (x∗)− F ′(x∗)(x− x∗) + F ′(x∗)(x− x∗)− F ′(x)(x− x∗))∥
≤∥F ′(x)−1∥(∥F (x)− F (x∗)− F ′(x∗)(x− x∗)∥+ ∥F ′(x∗)− F ′(x)∥∥x− x∗∥)

≤ γ

1− γ
∫ ρ(x)

0
L(u)du

(
1

ρ(x)

∫ ρ(x)

0

L(u)(ρ(x)− u)du+

∫ ρ(x)

0

L(u)du)∥x− x∗∥.

Then we can give the following local convergence theorem of the Newton-HSS method
under the center Lipschtiz condition with the L-average .

Theorem 3.1. Assume that Assumption 3.1 holds with r ∈ (0, r∗), here r∗ is defined by
r∗ := min{r1, r2}, where r1 and r2 satisfy∫ r1

0

L(u)du = 2(α+ β)
(√ ατθ

(2 + τθ)γ(α + β)2
+ 1− 1

)
, (3.6)

1

r2

∫ r2

0

L(u)(2r2 − u)du =
1− 2βγ((τ + 1)θ)l∗

2γ
, (3.7)

and with l∗ = lim infk→∞ lk satisfying

l∗ > ⌊ ln 2βγ

ln((τ + 1)θ)
⌋, (3.8)

5
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where the symbol ⌊·⌋ is used to denote the smallest integer no less than the corresponding
real number, τ ∈ (0, (1− θ)/θ), and

θ ≡ θ(α;x∗) = ∥T (α;x∗)∥ ≤ max
λ∈σ(H(x∗))

|α− λ|
α + λ

≡ σ(α;x∗) < 1.

Then, for any x0 ∈ B(x∗, r), and any sequence {lk}∞k=0, the iteration sequence {xk}∞k=0

generated by Algorithm Newton-HSS is well defined and converges to x∗. Moreover, it
holds that

lim sup
k→∞

∥xk − x∗∥
1
k ≤ g(r∗; l∗),

here,

g(t, l) :=
γ

1− γ
∫ t

0
L(u)du

(
2

t

∫ t

0

L(u)(t− u)du+

∫ t

0

L(u)du+ 2βγ((τ + 1)θ)l).

Proof. First of all, we will show the following estimate about the iterative matrix T (α; x)
of the linear solver: if x ∈ B(x∗, r), then

∥T (α; x)∥ < (τ + 1)θ < 1.

In fact, from the definition of B(α; x) in (2.2) and Assumption 3.1, denote ρ(x) = ∥x−x∗∥,
we can get

∥B(α; x)−B(α; x∗)∥

≤1

2
∥H(x)−H(x∗) + S(x)− S(x∗)∥+

1

2α
∥H(x)S(x)−H(x∗)S(x∗)∥

≤1

2

∫ ρ(x)

0

L(u)du

+
1

2α
∥(H(x)−H(x∗) +H(x∗))(S(x)− S(x∗)) + (H(x)−H(x∗))S(x∗)∥

≤1

2

∫ ρ(x)

0

L(u)du+
1

2α
[(

∫ ρ(x)

0

Lh(u)du+ β)

∫ ρ(x)

0

Ls(u)du+ β

∫ ρ(x)

0

Lh(u)du]

≤1

2

∫ ρ(x)

0

L(u)du+
1

2α
(
(
∫ ρ(x)

0
L(u)du)2

4
+ β

∫ ρ(x)

0

L(u)du)

≤ 1

8α
(

∫ ρ(x)

0

L(u)du)2 +
α + β

2α

∫ ρ(x)

0

L(u)du.

(3.9)

Similarly, we have

∥C(α;x)− C(α;x∗)∥ ≤ 1

8α
(

∫ ρ(x)

0

L(u)du)2 +
α + β

2α

∫ ρ(x)

0

L(u)du. (3.10)

Then from (2.3), it follows that

∥B(α;x∗)
−1∥ = ∥(I − T (α;x∗))F

′(x∗)
−1∥ ≤ (1 + θ)γ < 2γ.

6
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Therefore from (3.6), we obtain

∥I −B(α; x∗)
−1B(α; x)∥

≤ ∥B(α;x∗)
−1∥ · ∥B(α;x)−B(α;x∗)∥

≤ γ
(
∫ ρ(x)

0
L(u)du)2 + 4(α+ β)

∫ ρ(x)

0
L(u)du

4α
< 1.

Hence using the perturbation lemma, we get B(α; x)−1 exists, and

∥B(α;x)−1∥

≤ ∥B(α; x∗)
−1∥

1− ∥I −B(α; x∗)−1B(α; x)∥

≤ 8αγ

4α− γ[(
∫ ρ(x)

0
L(u)du)2 + 4(α + β)

∫ ρ(x)

0
L(u)du]

.

(3.11)

Hence, together with (3.6), (3.9)-(3.11), the estimate about the gap between inner iterative
matrix T (α;x) and T (α;x0) is obtained as follows:

∥T (α; x)− T (α; x∗)∥
= ∥B(α;x)−1(C(α;x)− C(α; x∗))−B(α;x)−1(B(α;x)−B(α;x∗))B(α; x∗)

−1C(α;x∗)∥

≤
2γ[(

∫ ρ(x)

0
L(u)du)2 + 4(α + β)

∫ ρ(x)

0
L(u)du]

4α− γ[(
∫ ρ(x)

0
L(u)du)2 + 4(α + β)

∫ ρ(x)

0
L(u)du]

< τθ.

Consequently,

∥T (α;x)∥ ≤ ∥T (α;x)− T (α; x∗)∥+ ∥T (α;x∗)∥ < (τ + 1)θ < 1. (3.12)

Next, we turn to estimate the error about the Newton-HSS iteration sequence {xk}
defined by (2.4). Clearly, from

∫ ρ(x)

0
L(u)du < 1

ρ(x)

∫ ρ(x)

0
L(u)(2ρ(x) − u)du and Lemma

3.2, it holds that γ
∫ ρ(x)

0
L(u)du < 1, hence, using Lemma 3.1, Lemma 3.2, (3.7), (3.8)

7
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and (3.12), we obtain

∥xk+1 − x∗∥
=∥xk − x∗ − F ′(xk)

−1F (xk) + T lk
k F (xk)

−1F (xk)∥
≤∥xk − x∗ − F ′(xk)

−1F (xk)∥+ ∥T lk
k ∥∥F (xk)

−1∥∥F (xk)∥

≤ γ

1− γ
∫ ρ(xk)

0
L(u)du

(
1

ρ(xk)

∫ ρ(xk)

0

L(u)(ρ(xk)− u)du+

∫ ρ(xk)

0

L(u)du)∥xk − x∗∥

+
((τ + 1)θ)lkγ

1− γ
∫ ρ(xk)

0
L(u)du

(
1

ρ(xk)

∫ ρ(xk)

0

L(u)(ρ(xk)− u)du+ 2β)∥xk − x∗∥

≤ γ

1− γ
∫ ρ(xk)

0
L(u)du

(
2

ρ(xk)

∫ ρ(xk)

0

L(u)(ρ(xk)− u)du+

∫ ρ(xk)

0

L(u)du

+ 2βγ((τ + 1)θ)lk)∥xk − x∗∥
:=g(ρ(xk); lk)∥xk − x∗∥
≤g(r∗, l∗)∥xk − x∗∥
≤g(r2, l∗)∥xk − x∗∥
<∥xk − x∗∥,

when xk ∈ B(x∗, r∗), here, we have used the notation

g(t, l) :=
γ

1− γ
∫ t

0
L(u)du

(
2

t

∫ t

0

L(u)(t− u)du+

∫ t

0

L(u)du+ 2βγ((τ + 1)θ)l).

Thus, we can further prove that {xk} ⊂ B(x∗, r) with the estimates

∥xk+1 − x∗∥ ≤ g(r∗, l∗)∥xk − x∗∥, k = 0, 1, 2, · · · . (3.13)

In fact, for k = 0 we have ∥x0 − x∗∥ < r, as x0 ∈ B(x∗, r). Together with g(r∗, l∗) < 1, it
follows from (3.13) that

∥x1 − x∗∥ ≤ g(r∗, l∗)∥x0 − x∗∥ < r,

hence, x1 ∈ B(x∗, r). Suppose that xk ∈ B(x∗, r), then using (3.13) again, we have

∥xk+1 − x∗∥ ≤ g(r∗, l∗)∥xk − x∗∥ < r,

hence, xk+1 ∈ B(x∗, r). Moreover, we have

∥xk − x∗∥ ≤ g(r∗, l∗)∥xk − x∗∥ ≤ g(r∗, l∗)
k+1∥x0 − x∗∥.

Now the proof is complete.
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Remark 1. If we assume the integrable functions Lh(u) and Ls(u) in (A2) are positive
constants Lh and Ls, respectively, then the center Lipschtiz condition with the L-average
becomes usual Lipschtiz condition. If both integrable functions are L

p
up−1, where 0 < p <

1, L is a positive constant, then the center Lipschtiz condition with the L-average becomes
usual Hölder condition. Therefore, Theorem 3.1 is an extension of Theorem 3.2 in [10].
If the outer solver, Newton method, is changed to the modified Newton method, then 3.1
is an extension of Theorem 3.1 in [7].

4 Application

In this section, we apply the main result on a two-demensional nonlinear convection-
diffusion equation.
Example 1. Consider the following two-dimensional nonlinear convection-diffusion equa-
tion {

−(uxx + uyy) + q1ux + q2uy = uc, (x, y) ∈ Ω,

u(x, y) = 0, on (x, y) ∈ ∂Ω,
(4.14)

where c is a rational number, Ω = (0, 1) × (0, 1), ∂Ω is the boundary. q1 and q2 are
positive constants used to measure magnitudes of the convective terms. By applying the
centered finite difference scheme on the equidistant discretization grid with the stepsize
h = 1/(N + 1), the system of nonlinear equations (1.1) is obtained with the following
form

F (x) = Mx+ h2ϕ(x) = 0,

where N is a prescribed positive integer,

M = (Tx ⊗ I + I ⊗ Ty),

ϕ(x) = (xc
1, x

c
2, · · · , xc

n)
T ,

with Tx = tridiag(−1 − Re1, 2,−1 + Re1), Ty = tridiag(−1 − Re2, 2,−1 + Re2), here,
Rej = 1

2
qjh, j = 1, 2, Re = max{Re1, Re2} is the mesh Reynolds number, ⊗ is the

Kronecker product, and n = N ×N .
Obviously, x∗ = 0 is a solution of (4.14), and it is easy to get F

′
(x) = M +

ch2diag(xc−1
1 , xc−1

2 , · · · , xc−1
n ). Hence F ′(x∗) = M . Moreover, we have

∥F ′
(x)− F

′
(x∗)∥ ≤ ch2∥x− x∗∥c−1 =

∫ ρ(x)

0

L(u)du, x ∈ B(x∗, r) ⊂ Ω,

where ∥ · ∥ denotes the 2-norm, L(u) = c(c − 1)h2uc−2. Hence, the center Lipschtiz
condition with the L average is satisfied.

Thus we can obtain the convergence result of nonlinear equation (4.14).

Corollary 4.1. Consider (4.14), define r∗ := min{r1, r2}, where r1 and r2 satisfy

rc−1
1 =

2(α+ β)

ch2

(√ ατθ

(2 + τθ)γ(α + β)2
+ 1− 1

)
,

9
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rc−1
2 =

1− 2βγ((τ + 1)θ)l∗

2(c+ 1)γh2
,

and l∗ = lim infk→∞ lk satisfies

l∗ > ⌊ ln 2βγ

ln((τ + 1)θ)
⌋,

where the symbol ⌊·⌋ is used to denote the smallest integer no less than the corresponding
real number, τ ∈ (0, (1− θ)/θ), and

θ ≡ θ(α;x∗) = ∥T (α;x∗)∥ ≤ max
λ∈σ(H(x∗))

|α− λ|
α + λ

≡ σ(α;x∗) < 1.

Then, for any x0 ∈ B(x∗, r), and any sequence {lk}∞k=0, the iteration sequence {xk}∞k=0

generated by Algorithm Newton-HSS is well defined and converges to x∗. Moreover, it
holds that

lim sup
k→∞

∥xk − x∗∥
1
k ≤ g(r∗; l∗),

here,

g(t, l) :=
γ

1− cγh2tc−1
((c+ 2)h2tc−1 + 2βγ((τ + 1)θ)l).

Remark 2. For equation (4.14), if c = 4/3 or c = 3/2, then equation (4.14) becomes the
equation studied in [6] and [7], respectively, hence satisfies Hölder condition. If c = 2,
thus L(u) = 2h2 is a positive constant, hence equation (4.14) satisfies Lipschtiz condition.

Now we consider the numerical results of the corollary. We choose c = 2. In the
following computation, the stopping criterion for the outer Newton method is set to be

∥F (xk)∥2
∥F (x0)∥2

≤ 10−10,

and the prescribed tolerance for controlling the accuracy of the HSS iteration is set to
be ηk = η. Let the initial guess x0 = 1, then parameters β, γ, can be estimated from
Assumption 3.1. Take positive constants q1 = q, q2 = 1/h, and adopt experimentally
optimal parameter α, which yields the smallest value of ∥xk+1 − x∗∥, then θ and τ can be
estimated from the definition of ∥T (α;x0)∥ and the estimation of ∥T (α; x)∥, respectively,
and the Newton-HSS method is examined for different problem size n = N ×N , different
quantity q = q1 and different tolerance η, from the values of ∥xk+1 − x∗∥, ∥xk+1−x∗∥

∥xk−x∗∥ . We
list the numerical results in Tables 4.2 and 4.3.

Table 4.1. The optimal value α for the Newton-HSS method

N
q=600 q=800 q=1000

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4
30 0.9 3.1 1.8 1.3 3.3 1 0.6 0.6 1.1
40 1 3.3 2.1 1 0.7 1.5 1 3.9 0.6
50 3.7 2.1 4.9 0.7 3.1 3.4 0.7 0.5 2.9
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Table 4.2. Values of ∥xk+1 − x∗∥ for different N and q (η = 0.1)

k
N=30 N=40 N=50

q=600 q=800 q=1000 q=600 q=800 q=1000 q=600 q=800 q=1000
1 1.5115 1.8882 3.1749 2.1595 1.1569 3.1537 1.6414 2.1067 2.0363
2 0.1171 0.2152 0.2880 0.1665 0.1154 0.2779 0.0877 0.1133 0.1477
3 0.0087 0.0156 0.0268 0.0116 0.0085 0.0219 0.0075 0.0079 0.0121
4 6.49e-04 0.0011 0.0026 8.30e-04 8.90e-04 0.0021 5.03e-04 7.05e-04 9.03e-04
5 6.05e-05 9.33e-05 2.61e-04 5.97e-05 7.90e-05 1.83e-04 4.16e-05 5.63e-05 7.18e-05
6 5.80e-06 7.70e-06 2.21e-05 4.11e-06 5.98e-06 1.30e-05 3.55e-06 5.03e-06 6.28e-06
7 5.26e-07 5.21e-07 1.53e-06 3.12e-07 4.52e-07 7.06e-07 2.73e-07 3.32e-07 6.01e-07
8 3.23e-08 3.86e-08 1.58e-07 2.35e-08 3.14e-08 4.35e-08 1.96e-08 2.54e-08 5.40e-08
9 2.51e-09 3.36e-09 1.32e-08 1.80e-09 2.64e-09 3.81e-09 1.34e-09 2.10e-09 4.50e-09
10 1.46e-10 2.14e-10 9.05e-10 1.73e-10 2.51e-10 3.10e-10 8.91e-11 1.81e-10 3.59e-10

In Table 4.2, we present the values of ∥xk+1−x∗∥, corresponding to the problem size
N = 30, 40 and 50, and parameter q = 600, 800 and 1000, respectively, for the inner
tolerance η = 0.1. From the table, we can see that the sequence {xk} generated by the
Newton-HSS method converges to the solution x∗ in all these situations.

Table 4.3. Values of ∥xk+1−x∗∥
∥xk−x∗∥ for different N and q (η = 0.1)

k
N=30 N=40 N=50

q=600 q=800 q=1000 q=600 q=800 q=1000 q=600 q=800 q=1000
1 0.0504 0.0629 0.1058 0.0540 0.0392 0.0788 0.0328 0.0421 0.0407
2 0.0775 0.0114 0.0907 0.0771 0.0736 0.0881 0.0534 0.0538 0.0725
3 0.0741 0.0726 0.0931 0.0699 0.0736 0.0788 0.0858 0.0693 0.0819
4 0.0742 0.0729 0.0957 0.0713 0.1048 0.0966 0.0669 0.0898 0.0747
5 0.0933 0.0820 0.1017 0.0720 0.0888 0.0863 0.0827 0.0799 0.0795
6 0.0959 0.0825 0.0848 0.0688 0.0756 0.0712 0.0854 0.0893 0.0874
7 0.0906 0.0676 0.0689 0.0759 0.0757 0.0542 0.0768 0.0659 0.0958
8 0.0614 0.0742 0.1037 0.0752 0.0694 0.0616 0.0718 0.0767 0.0898
9 0.0778 0.0869 0.0835 0.0766 0.0840 0.0876 0.0686 0.0826 0.0833
10 0.0582 0.0636 0.0686 0.0961 0.0953 0.0815 0.0663 0.0860 0.0799

In Table 4.3, we present the values of ∥xk+1−x∗∥
∥xk−x∗∥ corresponding to the problem size

N = 30, 40 and 50, and parameter q = 600, 800 and 1000, respectively, for the inner
tolerance η = 0.1. From the table, we can observe that all the values of g(r∗, l∗) are
smaller than 0.11.

5 Conclusion

The Newton-HSS method is a considerable method for solving large sparse nonlinear
systems with non-Hermitian positive definite Jacobian matrices. In this paper, Under
the hypothesis that the Jacobian matrix satisfies the center Lipschtiz condition with the
L-average, which is weaker than Hölder condition and Lipschtiz condition, we establish
the local convergence theorem for the Newton-HSS method. Finally, a numerical example
is given to confirm the concrete applications of the results of our paper.
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Abstract

In this paper, we discuss the linear autonomous system of neutral delay differential equations
with Riemann–Liouville fractional derivative

Dα

[
x(t) +

l∑
j=1

Pjx(t− τj)

]
+

n∑
i=1

Qix(t− δi) = 0

where Dαx(t) = [Dα1x1(t), Dα2x2(t), ..., Dαmxm(t)]T is Riemann–Liouville fractional derivative,
the coefficients Pj(j = 1, 2, ..., l) and Qi(i = 1, 2, ..., n) are real m × m matrices and the delays
τj(j = 1, 2, ..., l) and δi(i − 1, 2, ..., n) are non-negative real numbers. Sufficient conditions for all
solutions of the given equation to be oscillatory are obtained by using fractional calculus and Laplace
transform.

Key words and phrases: Fractional neutral differential equations; Riemann–Liouville derivative;
Oscillation; Laplace transform.
AMS (MOS) Subject Classifications: 15A60; 26A33; 34A30; 34K11; 44A10.

1 Introduction

Fractional differential equations have gained considerable importance due to their application in various
disciplines, such as physics, mechanics, chemistry, engineering, etc. In the recent years, there has been
a significant development in ordinary and partial differential equations involving fractional derivatives,
see the monographs of Podlubny[1], Kilbas et al.[2], Diethelm[3], Zhou[4, 5], the recent papers[6, 7, 8, 9]
and the references therein.

On the other hand, the objective of oscillation theory is to acquire as much information as possible
about the qualitative properties of solutions of differential equations. Oscillation theory of functional
differential equations with integer derivative has been developed in the past thirty years. The several
monographs by Ladde et al.[10], Györi and Ladas[11], Gopalsamy[12], Erbe et al.[13], Agarwal et al.[14]
summarize a lot of important works in this area.

However, to the best of our knowledge, there are few results on oscillation for fractional differential
equations. Recently, Grace, Agarwal and Wong, et al.[15], Bolat[16], Duan, Wang and Fu[17], Harikr-
ishnan, Prakash and Nieto[18] investigated oscillation and forced oscillation of fractional-order delay
differential equations.

∗Project supported by National Natural Science Foundation of China (11671339).
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In this paper, we discuss the neutral functional differential equations with Riemann–Liouville frac-
tional derivative

Dα

[
x(t) +

l∑
j=1

Pjx(t− τj)
]

+
n∑
i=1

Qix(t− δi) = 0, (E)

where x(t) = [x1(t), x2(t), ..., xm(t)]T , Dαx(t) = [Dα1x1(t), Dα2x2(t), ..., Dαmxm(t)]T is Riemann–
Liouville fractional derivative of order 0 < α,αr < 1, αr = pr/qr, pr, qr are co-prime, for r = 1, 2, ...,m,
and Pj , Qi ∈ Rm×m, j = 1, 2, ..., l, i = 1, 2, ..., n, the delays τj(j = 1, 2, ..., l) and δi(i − 1, 2, ..., n) are
non-negative real numbers.

Our aim is to establish sufficient conditions for oscillation of the system (E). In the next section, we
introduce some useful preliminaries. In section 3, we obtain various sufficient conditions for oscillation
of all solutions to the system (E) by using fractional calculus and Laplace transform.

2 Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper.

Definition 2.1 [2] Let [a, b](−∞ < a < b < ∞) be a finite interval and let AC[a, b] be the space of
functions f which are absolutely continuous on [a, b]. It is known [see Kolmogorov and Fomin ([16],
p.338) that AC[a, b] coincides with the space of primitives of Lebesgue summable functions:

f(x) ∈ AC[a, b] ⇒ f(x) = c+

∫ x

a

ψ(t)dt (ψ(t) ∈ L(a, b)).

Definition 2.2 [2] The fractional integral of order α with the lower limit zero for a function f is defined
as

(Iαf)(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, t > 0, 0 < α < 1,

provided the right side is point-wise defined on [0, b], where Γ(·) is the gamma function.

Definition 2.3 [2] Riemann-Liouville derivative of order α with the lower limit zero for a function f
can be written as

(Dαf)(t) =
1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds, t > 0, 0 < α < 1.

Firstly, we consider the fractional delay differential systems

Dαx(t) +
n∑
i=1

Pix(t− τi) = 0, t ≥ 0, (1)

where x(t) = [x1(t), x2(t), ..., xm(t)]T , Dαx(t) = [Dα1x1(t), Dα2x2(t), ..., Dαmxm(t)]T is Riemann–
Liouville fractional derivative of order 0 < α,αi < 1, αj = pj/qj , pj , qj are odd numbers, for
i = 1, 2, ...,m, and Pi ∈ Rm×m, τi ∈ [0,∞) for i = 1, 2, ..., n.

Without loss of generality we will assume the coefficients of Pi of (1) are all nonzero and that
τ1 = max{τ1, ..., τn}.

Definition 2.4 By a solution of (1) in [0,∞) with initial function ϕ ∈ AC[−τ1, 0] we mean a function
x ∈ AC[−τ1,∞) such that x(t) = ϕ(t), t ∈ [−τ1, 0], (Dαx)(t) exists and x(t) satisfies (1) in [0,∞).
A solution x(t) = [x1(t), ..., xm(t)]T of system (1) is said to oscillate if every component xi(t) of the
solution has arbitrarily large zeros. Otherwise the solution is called non-oscillatory.

We recall some facts about Laplace transforms. If X(s) is the Laplace transform of x(t),

X(s) = (Lx)(s) =

∫ ∞
0

e−stx(t)dt,
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then the abscissa of convergence of X(s) is defined by

b = inf{δ ∈ R : X(δ) exists}.

Then X(s) is analytic for Re(s) > b.
We call a function x(t) to be eventually positive if there exists a c ≥ 0 such that xc(t) > 0 for all

t > 0, where xc(t) = x(t+ c).
For any m-dimensional vector x = (x1, x2, ..., xm)T ∈ Rm, ‖x‖ denotes its norm. For any m ×m

real matrix A, the associated matrix norm is then defined by ‖A‖ = max‖x‖=1 ‖Ax‖. Denote µ(Pi) is
the logarithmic norm with µ(Pi) = max‖u‖=1(Piu, u).

Lemma 2.5 [2] Let (LDαx)(s) is the Laplace transform of the Riemann–Liouville fractional derivative
of order α with the lower limit 0 for a function x, and X(s) is the Laplace transform of x(t) ∈ AC[0, b],
for any b > 0, and the following estimate

|x(t)| ≤ Aep0t (t > b > 0)

holds for constants A > 0 and p0 > 0. Then the relation

(LDαx)(s) = sαBX(s)− (I1−αx)(0), 0 < α < 1

is valid for Re(s) > p0, where

X(s) = [X1(s), X2(s), ..., Xm(s)]T , sα = [sα1 , sα2 , ..., sαm ]

(I1−αx)(0) =

(
(I1−α1x1)(0), (I1−α2x2)(0)], ..., (I1−αmxm)(0)

)T
,

B = [B1, B2, ..., Bm]T Bi = (bij)m×m

bij =

{
1, i = j,

0, i 6= j.

Lemma 2.6 [19] If X(s) is the Laplace transform of a non-negative function x(t) and has abscissa of
convergence b > −∞, then X(s) has a singularity at the point s = b.

Lemma 2.7 [20] Let v, w : [0,∞)→ [0,∞) be continuous functions. If w(·) is nondecreasing and there
are constants a > 0 and 0 < β < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)β
ds,

then there exists a constant k = k(β) such that

v(t) ≤ w(t) + ka

∫ t

0

w(s)

(t− s)β
ds

for every t ∈ [0,∞).

3 Main Results

In this section, we present our main results.

Lemma 3.1 For any c ∈ R, the Laplace transform Xc(s) of xc(t) exists and has the same abscissa of
convergence as X(s).
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Proof. Given that

Xc(s) =

∫ ∞
0

e−stxc(t)dt =

∫ ∞
0

e−stx(t+ c)dt = esc
∫ ∞
c

e−stx(t)dt

= esc[X(s)−
∫ c

0

e−stx(t)dt].

Since the last integral defines an entire function of the complex variable s, therefore X(s) and Xc(s)
converge or diverge for the same values of s, and have their singularities at the same points. This
completes the proof. �

Lemma 3.2 The solution of equation (1) has an exponent estimate

x(t) = o(eq0t) (t > b > 0)

for constant q0 > 0.

Proof. Taking Riemann-Liouville integral of equation (1), we get

x(t) =
tα−1

Γ(α)
Bx0 −

n∑
i=1

Pi

∫ t

0

1

Γ(α)
(t− s)α−1Bx(s− τi)ds

=
tα−1

Γ(α)
Bx0 −

n∑
i=1

PiFi(t), (2)

where
x0 = (I1−αx)(0),

Fi(t) =

∫ t

0

1

Γ(α)
(t− s)α−1Bx(s− τi)ds,

tα−1

Γ(α)
=

[
tα1−1

Γ(α1)
,
tα2−1

Γ(α2)
, ...,

tαm−1

Γ(αm)

]
.

As AC[−τ1, 0] is the Banach space with the norm ‖ϕ‖AC = [‖ϕ1‖AC , ‖ϕ2‖AC , ..., ‖ϕm‖AC ]T .
Then we have

‖Fi(t)‖ ≤
∫ t

0

1

Γ(α)
(t− s)α−1B‖x(s− τi)‖ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1B max
s−τi≤η≤s

‖x(η)‖ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1B max
s−τ1≤η≤s

‖x(η)‖ds,

or

‖Fi(t)‖ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1B

(
max

s−τ1≤η≤s
‖x(η)‖+ ‖ϕ‖AC

)
ds. (3)

From (3), it follows that

‖x(t)‖ ≤ bα−1

Γ(α)
B|x0|+

n∑
i=1

‖Pi‖
Γ(α)

[ ∫ t

0

(t− s)α−1B

(
max

s−τ1≤η≤s
‖x(η)‖+ ‖ϕ‖AC

)
ds

]
≤ bα−1

Γ(α)
B|x0|+

np

Γ(α)

tα

α
B‖ϕ‖AC +

np

Γ(α)

∫ t

0

(t− s)α−1B max
s−τ1≤η≤s

‖x(η)‖ds,

where p = max{‖Pi‖}, for i = 1, 2, ..., n.
Next we introduce a nondecreasing function m(t) as

m(t) =
bα−1

Γ(α)
B|x0|+

np

Γ(α)

tα

α
B‖‖ϕ‖AC‖.
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By Lemma 2.7, there exists a number α0 in {αi} such that

‖x(t)‖ ≤ max
t−τ1≤s≤t

‖x(s)‖ ≤ m(t) +
knp

Γ(α0)

∫ t

0

(t− s)α0−1m(s)ds ≤ m(t)

(
1 +

knp

α0Γ(α0)
tα0

)
. (4)

Obviously, from (4) we infer that x(t) has an exponent estimate. The proof is complete. �

Theorem 3.3 If the characteristic equation

det

(
λαB +

n∑
i=1

Pie
−λτi

)
= 0 (5)

has no real roots, then every solution of (1) is oscillatory, where λα = [λα1 , λα2 , ..., λαm ].

Proof. For the sake of contradiction, let us assume that (5) has no real roots and that (1) has a
non-oscillatory solution x(t) = [x1(t), ..., xm(t)]T . This means that one of the components of x(t) is
non-oscillatory. Without loss of generality we assume that the component x1(t) is eventually positive,
such that for some c ≥ 0, xc(t) > 0 for t ≥ 0. As (1) is autonomous, it follows by Lemma 3.1 that X1(s)
and Xc(s) have the same convergence. Then we assume that x1(t) > 0 for t ≥ −τ1. Taking Laplace
transform of both sides of (1), we obtain

sαBX(s)− (I1−αx)(0) +

n∑
i=1

Pi

∫ ∞
0

e−stx(t− τi)dt = 0,

i.e.

sαBX(s)− (I1−αx)(0) +
n∑
i=1

Pie
−sτiX(s) +

n∑
i=1

Pie
−sτi

∫ 0

−τi
e−stx(t)dt = 0.

Hence

(sαB +

n∑
i=1

Pie
−sτi)X(s) = (I1−αx)(0)−

n∑
i=1

Pie
−sτi

∫ 0

−τi
e−stx(t)dt. (6)

Let

F (s) = sαB +
n∑
i=1

Pie
−sτi , x0 = (I1−αx)(0),

Φ(s) = x0 −
n∑
i=1

Pie
−sτi

∫ 0

−τi
e−stx(t)dt.

Then, from (6) we get
F (s)X(s) = Φ(s), Re(s) > b. (7)

Since det[F (s)] = 0 has no real roots, det[F (s)] > 0, s ∈ R. By Cramer’s rule, we have

X1(s) =
det[D(s)]

det[F (s)]
, Re(s) > b, (8)

where

D(s) =

 Φ1(s) F12(s) · · · F1m(s)
...

...
...

Φm(s) Fm2(s) · · · Fmm(s)

 ,

Φi(s) is the ith component of the vector Φ(s) and Fij(s) is the (i, j)th component of the matrix F (s).
Clearly, for all i, j = 1, 2, ...,m the functions Φi(s) and Fij(s) are entire and hence det[D(s)] and
det[F (s)] are also entire functions.

Since det[F (s)] > 0 for s ∈ R, so det[D(s)]/det[F (s)] holds for s ∈ R and thus (8) becomes

X1(s) =
det[D(s)]

det[F (s)]
, s ∈ R. (9)
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As x1(t) > 0, it follows that X1(s) > 0 for all s ∈ R and, by det[F (s)] > 0 s ∈ R and (9), det[D(s)] >
0 s ∈ R. Now one can see from the definitions of D(s), F (s) and Φ(s) that there exist positive constants
M,β, and s0 such that

det[D(s)] ≤Me−βs for s ≤ −s0. (10)

Since det[F (s)] is a continuous function in the variables s, e−sτ1 , ..., e−sτn , and det[F (s)] > 0, s ∈ R, it
follows that there exists a positive number m0 such that

det[F (s)] ≥ m0 for s ∈ R. (11)

From (9), (10) and (11), it follows that

X1(s) =

∫ ∞
0

e−stx1(t)dt ≥
∫ ∞
T

e−stx1(t)dt ≥ e−sT
∫ ∞
T

x1(t)dt > 0

and so

0 <

∫ ∞
T

x1(t)dt ≤ M

m0
es(T−β) → 0 as s→ −∞.

This implies that x1(t) ≡ 0 for t ≥ T , which is a contradiction. The proof is complete. �
In Theorem 3.3, the characteristic equation (5) plays an important role in the investigation of the

oscillation of equation (1). However, to determine whether (5) has a real root, is quite an issue in itself.
In the following we derive some sufficient conditions for the oscillation of equation (1) which can easily
be applied.

Before proceeding for it, we need the following lemma which is interesting in its own right.

Lemma 3.4 Assume that
Pi ∈ Rm×m , τi ≥ 0 for i = 1, 2, ..., n, and ᾱ = min{αj}, for j = 1, 2, ...,m with

n∑
i=1

µ(−Pi)e−λτi < 0 for λ ∈ R (12)

and

inf
λ<0

[
1

λᾱ

n∑
i=1

µ(−Pi)e−λτi
]
> 1. (13)

Then every solution of (1) oscillates.

Proof. Assume, for the sake of contraction, that (1) has a non-oscillatory solution. Then, by Theorem
3.3, the characteristic equation (5) has a real root λ0. In consequence, there exists a vector u ∈ Rn
with ‖u‖ = 1 such that (

λα0B +
n∑
i=1

Pie
−λ0τi

)
u = 0,

i.e.

λα0Bu = −
n∑
i=1

Pie
−λ0τiu.

Hence

λᾱ0 = (λᾱ0u, u) ≤ (λα0Bu, u) = (−
n∑
i=1

Pie
−λ0τiu, u)

= (−
n∑
i=1

Piu, u)e−λ0τi ≤
n∑
i=1

µ(−Pi)e−λ0τi .

Then by (12), λ0 < 0 such that[
1

λᾱ0

n∑
i=1

µ(−Pi)e−λ0τi

]
≤ 1 or − λ0 ≥

[ n∑
i=1

−µ(−Pi)
] 1
ᾱ

. (14)

This contradicts (13) and completes the proof. �
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Theorem 3.5 Assume that for each i = 1, 2, ..., n,

Pi ∈ Rm×m, τi ≥ 0 and µ(−Pi) ≤ 0.

Then each of the following two conditions is sufficient for the oscillation of all solutions of (1):

(i)
n∑
i=1

−µ(−Pi)τi
[ n∑
i=1

−µ(−Pi)
] 1−ᾱ

ᾱ

>
1

e
;

(ii)

[ n∏
i=1

(−µ(−Pi))
] 1
n

n∑
i=1

τi

[ n∑
i=1

−µ(−Pi)
] 1−ᾱ

ᾱ

>
1

e
.

Proof. We employ Lemma 3.4. As µ(−Pi) ≤ 0, (12) is satisfied and so it suffices to establish (13).
First, assume that (i) holds. Then, by using the inequality ex ≥ ex, we see that for all λ < 0,

1

λᾱ

n∑
i=1

µ(−Pi)e−λτi ≥ 1

λᾱ

n∑
i=1

µ(−Pi)e(−λτi)

= −e 1

λᾱ

n∑
i=1

µ(−Pi)τiλᾱ(−λ)1−ᾱ

≥ e

n∑
i=1

−µ(−Pi)τi
[ n∑
i=1

−µ(−Pi)
] 1−ᾱ

ᾱ

,

which, together with (i), implies that (13) holds. Next, assume that (ii) holds. Then, by using the
arithmetic mean–geometric mean inequality we find that for all λ < 0,

1

λᾱ

n∑
i=1

µ(−Pi)e−λτi = − 1

λᾱ

n∑
i=1

−µ(−Pi)e−λτi

≥ − 1

λᾱ
n

[ n∏
i=1

−µ(−Pi)e−λτi
] 1
n

= − 1

λᾱ
n

[ n∏
i=1

−µ(−Pi)
] 1
n

exp

(
− 1

n
λ

n∑
i=1

τi

)

≥ − 1

λᾱ

[ n∏
i=1

−µ(−Pi)
] 1
n

e

(
− λ

n∑
i=1

τi

)

=

[ n∏
i=1

−µ(−Pi)
] 1
n

e(−λ)1−ᾱ
n∑
i=1

τi

≥ e

[ n∏
i=1

(−µ(−Pi))
] 1
n

n∑
i=1

τi

[ n∑
i=1

−µ(−Pi)
] 1−ᾱ

ᾱ

.

From this and (ii) it follows that (13) holds. The proof is complete. �
As a special case of the delay differential system with one delay,

(Dαx)(t) + Px(t− τ) = 0, (15)

where
P ∈ Rm×m and τ ≥ 0,

the conditions (i) and (ii) coincide and each reduces to

[−µ(−P )]
1
ᾱ τ >

1

e
. (16)
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Note that (16) is sharp in the sense that the lower bound 1/e cannot be improved. Moreover, when P
is a scalar, (16) is a sufficient condition for the oscillation of all solutions to equation (15).

For the delay differential system (15), we also have the following explicit sufficient condition for the
oscillation of all solutions.

Theorem 3.6 Assume that
P ∈ Rm×m and τ ≥ 0.

If P has no real eigenvalues in the interval (−∞, 1/(eτ)ᾱ] (when τ = 0, replace 1/(eτ)ᾱ by +∞), then
every solution of (15) oscillates.

Proof. For τ = 0, this result follows immediately from Theorem 3.1. So assume τ > 0. Note that the
characteristic equation det(λαB + Pe−λτ ) = 0 has a real root λ0, that is, det(λα0 e

λ0τB + P ) = 0 if and
only if µα0 = −λα0 eλ0τ is a real eigenvalue of P . For convenience, we take one element λαi0 of λα0 :

µαi0 = −λαi0 eλ0τ . (17)

Observe that (17) holds if λαi0 + µαi0 e−λ0τ = 0, that is, the equation λαi + µαi0 e−λτ = 0 has a real
root. If µ0 ≤ 1/eτ , then the eigenvalue µα0 of P should lie in the interval (−∞, 1/(eτ)ᾱ]. The proof is
complete. �

Definition 3.7 ([13]) We say that (1) is oscillatory, globally in the delays, if for all τi ≥ 0 for i =
1, 2, ..., n, every solution of (1) oscillates.

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.8 Equation (15) is oscillatory globally in the delay τ if P has no real eigenvalues.

Next, we consider the linear autonomous system of neutral delay differential equations

Dα

[
x(t) +

l∑
j=1

Pjx(t− τj)
]

+
n∑
i=1

Qix(t− δi) = 0, (18)

where the coefficients Pj and Qi are real m×m matrices and the delays τj and δi are non-negative real
numbers. Associated with (18), the characteristic equation is

det

(
λαB + λα

l∑
j=1

Pje
−λτj +

n∑
i=1

Qie
−λδi

)
= 0. (19)

Lemma 3.9 If lp < 1, then the solution of equation (18) has an exponent estimate

‖x(t)‖ ≤ A0e
b0t (t > b > 0)

for constants A0 > 0 and b0 > 0.

Proof. Let δ = max{δi}, j = 1, 2, ..., l, δ̄ = max{τ1, δ}, q = max{‖Qi‖} i = 1, 2, ..., n, and take

x0 = (I1−αx)(0) +
∑l
j=1 Pj(I

1−αx)(−τj) with x(t) ∈ AC[0, b]. Then there exists a constant M such
that ‖x(t)‖ ≤M . Then, for t > b,

‖x(t)‖ ≤ c‖x0‖+ lp‖x(t− τj)‖+
nq

Γ(α0)

∫ t

0

(t− s)α0−1‖x(s− δi)‖ds

≤ c‖x0‖+ lp max
t−τi≤s≤t

‖x(s)‖+
nq

Γ(α0)

∫ t

0

(t− s)α0−1 max
s−δi≤η≤s

‖x(η)‖ds

≤ c‖x0‖+ lp(M + ‖ϕ‖AC + max
b≤s≤t

‖x(s)‖)

+
nq

Γ(α0)

∫ b

0

(t− s)α0−1 max
s−δ̄≤η≤b

‖x(η)‖ds+
nq

Γ(α0)

∫ t

b

(t− s)α0−1 max
b≤η≤s

‖x(η)‖ds
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≤ c‖x0‖+ (M + ‖ϕ‖AC)

(
lp+

nq

Γ(α0)

tα0

α0

)
+ lp max

b≤s≤t
‖x(s)‖

+
nq

Γ(α0)

∫ t

b

(t− s)α0−1 max
b≤η≤s

‖x(η)‖ds.

Set

a = c‖x0‖+ (M + ‖ϕ‖AC)

(
lp+

nq

Γ(α0)

tα0

α0

)
,

which yields

max
b≤s≤t

‖x(s)‖ ≤ 1

1− lp

(
a+

nq

Γ(α0)

∫ t

b

(t− s)α0−1 max
b≤η≤s

‖x(η)‖ds
)
,

Consequently, by Lemma 3.2, we obtain

‖x(t)‖ ≤ max
b≤s≤t

‖x(s)‖ ≤ a(t)

1− lp
+

1

(1− lp)2

knq

Γ(α0)

∫ t

0

(t− s)α0−1a(s)ds

≤ a(t)

1− lp

(
1 +

1

1− lp
knq

α0Γ(α0)
tα0

)
.

The proof is complete. �
A slight modification in the proof of Theorem 3.3 shows that the following result is also true.

Theorem 3.10 Assume that for j = 1, 2, ..., l and i = 1, 2, ..., n,

Pj , Qi ∈ Rm×m, τj ∈ (0,∞) and δi ∈ [0,∞).

If the characteristic equation (19) has no real roots, then every solution of (18) oscillates.

Proof. If we modify the functions F (s) and Φ(s), defined in Theorem 3.3, as

F (s) = sαB + sαB
l∑

j=1

Pje
−sτj +

n∑
i=1

Qie
−sδi ,

Φ(s) = x0 −
n∑
i=1

Qie
−sδi

∫ 0

−δi
e−stx(t)dt− sαB

l∑
j=1

Pje
−sτj

∫ 0

τj

e−stx(t)dt+
l∑

j=1

Pj(I
1−αx)(−τj).

Then, following the method of proof for Theorem 3.3, one can complete the proof. �
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FIXED POINT RESULTS FOR A PAIR OF MULTI DOMINATED MAPPINGS

ON A SMALLEST SUBSET IN K-SEQUENTIALLY DISLOCATED QUASI

METRIC SPACE WITH AN APPLICATION

TAHAIR RASHAM, ABDULLAH SHOAIB, CHOONKIL PARK∗, AND MUHAMMAD ARSHAD

Abstract. The aim of this paper is to establish fixed point results for semi α∗-dominated multi-
valued pair of mappings satisfying generalized locally α∗-ψ-type contractive conditions for a pair of
multivalued dominated mappings in complete dislocated quasi metric space. Applications have been
given and an example has been constructed to demonstrate the novelty of our results.

1. Introduction and preliminaries

Let H : Z → Z be a mapping. A point x ∈ Z is said to be a fixed point of Z if x = Zx. Fixed point
results are a tool to estimate the unique solution of nonlinear functional equations. Many results
appeared in literature related to the fixed point of mappings which are contractive on the whole
domain. It may happen that H : Z → Z is not a contraction but is a contraction on a subset of Z.
It is possible for one to get fixed point for such mappings if they satisfiy certain conditions. It has
been shown the existence of fixed point for such mappings that fulfill certain conditions on a closed
ball by Beg et al. [8] (see also [3, 4, 5, 14, 24, 25, 26, 27]).

Many authors established fixed point theorems in complete dislocated metric spaces. The idea
of dislocated topologies has useful applications in the context of logic programming semantics (see
[11]). Dislocated metric space (metric-like space) (see [17]) is a generalization of partial metric space
(see [16]). Furthermore, dislocated quasi metric space (quasi-metric-like space) (see [8, 21, 30, 31])
generalized the idea of dislocated metric space and quasi-partial metric space (see [18, 25]).

Nadler [20] initiated the study of fixed point theorems for the multivalued mappings (see also [7]).
Several results on multivalued mappings have been observed [1, 10, 19, 29]. Asl et al. [6] gave the
idea of α∗-ψ contractive multifunctions, α∗-admissible mapping and got some fixed point conclusions
for these multifunctions (see also [2, 12]).

In this paper, we evaluate some fixed point results forα∗-ψ-contractive type multivalued α∗-
dominated mappings in a closed ball in left(right) K-sequentially complete dislocated quasi met-
ric space. Moreover, we give examples of multivalued mappings which are α∗-dominated but not
α∗-admissible. We give the following definitions and results which will be needed in the sequel

Definition 1.1. [30] Let X be a nonempty set and let dq : X ×X → [0,∞) be a function, called a
dislocated quasi metric (or simply dq-metric) if the following conditions hold for any x, y, z ∈ X :

(i) If dq(x, y) = dq(y, x) = 0, then x = y;
(ii) dq(x, y) ≤ dq(x, z) + dq(z, y).
The pair (X, dq) is called a dislocated quasi metric space.

2010 Mathematics Subject Classification. Primary: 46S40, 47H10, 54H25.
Key words and phrases. fixed point; p left(right) K-sequentially complete dislocated quasi metric space; pair of

mappings; closed ball; semi α∗-dominated multivalued mapping; graphic contraction..
∗Corresponding author.
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It is clear that if dq(x, y) = dq(y, x) = 0, then from (i), x = y. But if x = y, dq(x, y) may not
be 0. It is observed that if dq(x, y) = dq(y, x) for all x, y ∈ X, then (X, dq) becomes a dislocated
metric space (metric-like space) (X, dl). For x ∈ X and ε > 0, Bdq(x, ε) = {y ∈ X : dq(x, y) < ε and

dq(y, x) < ε} and Bdq(x, ε) = {y ∈ X : dq(x, y) ≤ ε and dq(y, x) ≤ ε} are an open ball and a closed
ball in (X, dq), respectively. Also Bdl(x, ε) = {y ∈ X : dq(x, y) ≤ ε} is a closed ball in (X, dl).

Example 1.2. [8] Let X = R+ ∪ {0} and dq(x, y) = x+ max{x, y} for any x, y ∈ X.
(i) If dq(x, y) = dq(y, x) = 0, then x+max{x, y} = y+max{y, x} = 0, which implies that x = y = 0.
(ii) Case 1: If x ≥ y, then dq(x, y) = x+ max{x, y} = 2x. Let z ∈ X. If z ≤ x, then

dq(x, z) + dq(z, y) = x+ max{x, z}+ z + max{z, y}
= x+ x+ z + max{z, y} ≥ 2x = dq(x, y).

If z > x, then dq(x, z) + dq(z, y) = x+ z + z + z ≥ 2x = dq(x, y).
Case 2: If x < y, then dq(x, y) = x+ y. If z ≥ y, then dq(x, z) + dq(z, y) = x+ z+ z+ z ≥ x+ y =

dq(x, y). If z < y, then dq(x, z) + dq(z, y) = x+ max{x, z}+ z + y ≥ x+ y = dq(x, y).
Hence both the conditions of Definition 1.1 hold and so dq(x, y) = x+max{x, y} defines a dislocated

quasi metric on X.

Definition 1.3. [8] Let (X, dq) be a dislocated quasi metric space.
(a) A sequence {xn} in (X, dq) is called left (resp., right) K-Cauchy if for all ε > 0, there exists

n0 ∈ N such that for all n > m ≥ n0 (resp., for all m > n ≥ n0), dq(xm, xn) < ε.
(b) A sequence {xn} is called dislocated quasi-converges (for short, dq-converges) to x if lim

n→∞
dq(xn, x) =

lim
n→∞

dq(x, xn) = 0 or for any ε > 0, there exists n0 ∈ N such that for all n > n0, dq(x, xn) < ε

and dq(xn, x) < ε. In this case, x is called a dq-limit of {xn}.
(c) (X, dq) is called left (resp., right) K-sequentially complete if every left (resp., right) K-Cauchy

sequence in X converges to a point x ∈ X such that dq(x, x) = 0.

Definition 1.4. Let (X, dq) be a dislocated quasi metric space. Let K be a nonempty subset of X
and x ∈ X. An element y0 ∈ K is called a best approximation in K if

dq(x,K) = dq(x, y0), where dq(x,K) = inf
y∈K

dq(x, y),

dq(K,x) = dq(y0, x), where dq(K,x) = inf
y∈K

dq(y, x).

If each x ∈ X has at least one best approximation in K, then K is called a proximinal set.

We denote by P (X) the set of all proximinal subsets of X.

Definition 1.5. [22] Let (S, T ) : X → P (X) and β : X ×X → [0,+∞) be a function. We say that
the pair (S, T ) is β?-admissible if for all x, y ∈ X,

β(x, y) ≥ 1 implies β?(Tx, Sy) ≥ 1 and β?(Tx, Sy) ≥ 1.

Again the pair (S, T ) is said to be β-admissible if β(x, y) ≥ 1 implies β(a, b) ≥ 1 for all a ∈ Sx
and b ∈ Ty.

Let Ψ denote the family of all nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that
∑+∞

n=1 ψ
n(t) <

+∞ for all t > 0, where ψn is the nth iterate of ψ. If ψ ∈ Ψ, then ψ(t) < t for all t > 0.

Definition 1.6. [22] Let (X, d) be a complete metric space and β : X×X → [0,+∞) be a mapping.
Let (S, T ) : X → P (X) be a multifunction and ψ ∈ Ψ. We say that the pair (S, T ) is a β?-ψ
contractive multifunction whenever

β?(Tx, Sy)H(Tx, Sy) ≤ ψ(d(x, y)) ∀ x, y ∈ X,
β?(Sx, Ty)H(Sx, Ty) ≤ ψ(d(x, y)) ∀ x, y ∈ X,
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where β?(Tx, Sy) = inf{β(a, b) : a ∈ Tx, b ∈ Sy}.

Definition 1.7. [27] Let (X, dl) be a dislocated metric space, S : X → P (X) be a multivalued
mapping and α : X ×X → [0,+∞). Let A ⊆ X. Then we say that S is semi α∗-admissible on A,
whenever α(x, y) ≥ 1 implies α?(Sx, Sy) ≥ 1 for all x ∈ A, where α∗(Sx, Sy) = inf{α(a, b) : a ∈
Sx, b ∈ Sx}. If A = X, then we say that S is α∗-admissible on X.

Definition 1.8. Let (X, dl) be a dislocated metric space, S, T : X → P (X) be multivalued mappings
and α : X ×X → [0,+∞). Let A ⊆ X. Then we say that S is semi α∗-dominated on A, whenever
α∗(x, Sx) ≥ 1 for all x ∈ A, where α∗(x, Sx) = inf{α(x, b) : b ∈ Sx}. If A = X, then we say that S
is α∗-dominated on X.

Definition 1.9. [23] The function Hdq : P (X)× P (X)→ X, defined by

Hdq(A,B) = max{sup
a∈A

dq(a,B), sup
b∈B

dq(A, b)},

is called a dislocated quasi Hausdorff metric on P (X). Also (P (X), Hdq) is known as a dislocated
quasi Hausdorff metric space.

Lemma 1.10. [23] Let (X, dq) be a dislocated quasi metric space. Let (P (X), Hdq) be a dislocated
quasi Hausdorff metric space on P (X). Then, for all A,B ∈ P (X) and for each a ∈ A, there exists
ba ∈ B such that Hdq(A,B) ≥ dq(a, ba) and Hdq(B,A) ≥ dq(ba, a), where dq(a,B) = dq(a, ba) and
dq(B, a) = dq(ba, a).

Example 1.11. Let X = R. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x > y

1
2 otherwise.

Define the multivalued mappings S, T : X → P (X) by

Sx = {[x− 4, x− 3] if x ∈ X},

T y = {[y − 2, y − 1] if y ∈ X}.
Suppose x = 3 and y = 2. Since 3 > 2, α(3, 2) ≥ 1. Now α?(S3, T2) = inf{α(a, b) : a ∈ S3, b ∈
T2} = 1

2 � 1, which means that α?(S3, T2) < 1, that is, the pair (S, T ) is not α?-admissible. Also
α?(S3, S2) � 1 and α?(T3, T2) � 1. This implies that S and T are not α?-admissible individually.
Since α?(x, Sx) = inf{α(x, b) : b ∈ Sx} ≥ 1 for all x ∈ X, S is an α?-dominated mapping. Similarly,
α?(y, Ty) = inf{α(y, b) : b ∈ Ty} ≥ 1. Hence it is clear that S and T are α?-dominated but not
α?-admissible.

Lemma 1.12. [23] Every closed ball Y in a left (right) K-sequentially complete dislocated quasi
metric space X is left (right) K-sequentially complete.

2. Main results

Let (X, dq) be a dislocated quasi metric space, x0 ∈ X and S, T : X → P (X) be multifunctions
on X. Let x1 ∈ Sx0 be an element such that dq(x0, Sx0) = dq(x0, x1). Let x2 ∈ Tx1 be such that
dq(x1, Tx1) = dq(x1, x2). Let x3 ∈ Sx2 be such that dq(x2, Sx2) = dq(x2, x3).Continuing this process,
we construct a sequence {xn} of points in X such that x2n+1 ∈ Sx2n and x2n+2 ∈ Tx2n+1, where
n = 0, 1, 2, .... Also dq(x2n, Sx2n) = dq(x2n, x2n+1) and dq(x2n+1, Tx2n+1) = dq(x2n+1, x2n+2). We
denote this iterative sequence by {TS(xn)}. We say that {TS(xn)} is a sequence in X generated by
x0.
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Theorem 2.1. Let (X, dq) be a left (right) K-sequentially complete dislocated quasi metric space.

Suppose there exists a function α : X × X → [0,∞). Let r > 0, x0 ∈ Bdq(x0, r) and S, T : X →
P (X) be semi α∗-dominated mappings on Bdq(x0, r). Assume that, for some ψ ∈ Ψ and Dq(x, y) =
max{dq(x, y), dq(x, Sx), dq(y, Ty)}, the following hold:

max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} ≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))} (2.1)

for all x, y ∈ Bdq(x0, r) ∩ {TS(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1 whenever x ∈ Sy, and

n∑
i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r for all n ∈ N ∪ {0}. (2.2)

Then {TS(xn)} is a sequence in Bdq(x0, r) and {TS(xn)} → x∗ ∈ Bdq(x0, r). Also if the inequality
(2.1) holds for x∗ and either α(xn, x

∗) ≥ 1 or α(x∗, xn) ≥ 1 for all n ∈ N ∪ {0}, then S and T have

a common fixed point x∗ in Bdq(x0, r) and dq(x
∗, x∗) = 0.

Proof. Consider a sequence {TS(xn)} generated by x0. Then, we have x2n+1 ∈ Sx2n and x2n+2 ∈
Tx2n+1, where n = 0, 1, 2, .... Also dq(x2n, Sx2n) = dq(x2n, x2n+1), dq(x2n+1, Tx2n+1) = dq(x2n+1, x2n+2).
By Lemma 1.10, we have

dq(x2n, x2n+1) ≤ Hdq(Tx2n−1, Sx2n), (2.3)

dq(x2n+1, x2n+2) ≤ Hdq(Sx2n, Tx2n+1) (2.4)

for all n = 1, 2, .... From (2.2), we have

max{dq(x1, x0), dq(x0, x1)} ≤
j∑

i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r.

It follows that, dq(x1, x0) ≤ r and dq(x0, x1) ≤ r. Hence we have

x1 ∈ Bdq(x0, r).

Let x2, · · · , xj ∈ Bdq(x0, r) for some j ∈ N. Since S, T : X → P (X) are semi α∗-dominated mappings

on Bdq(x0, r), α∗(x2i, Sx2i) ≥ 1 and α∗(x2i+1, Tx2i+1) ≥ 1. Since α∗(x2i, Sx2i) ≥ 1, inf{α(x2i, b) : b ∈
Sx2i} ≥ 1. Also x2i+1 ∈ Sx2i and so α(x2i, x2i+1) ≥ 1. Now by (2.3), we obtain

dq(x2i+1, x2i+2) ≤ Hdq(Sx2i, Tx2i+1) ≤ max{α∗(x2i, Sx2i)Hdq(Sx2i, Tx2i+1),

α∗(x2i+1, Tx2i+1)Hdq(Tx2i+1, Sx2i)}
≤ min{ψ(Dq(x2i, x2i+1)), ψ(Dq(x2i+1, x2i))} ≤ ψ(Dq(x2i, x2i+1))

≤ ψ(max{dq(x2i, x2i+1), dq(x2i, Sx2i), dq(x2i+1, Tx2i+1)})
≤ ψ(max{dq(x2i, x2i+1), dq(x2i, x2i+1), dq(x2i+1, x2i+2)})
≤ ψ(max{dq(x2i, x2i+1), dq(x2i+1, x2i+2)}).

If max{dq(x2i, x2i+1), dq(x2i+1, x2i+2)} = dq(x2i+1, x2i+2), then dq(x2i+1, x2i+2) ≤ ψ(dq(x2i+1, x2i+2)),
which contradicts to the fact that ψ(t) < t for all t > 0. So max{dq(x2i, x2i+1), dq(x2i+1, x2i+2)} =
dq(x2i, x2i+1). Hence we obtain

dq(x2i+1, x2i+2) ≤ ψ(dq(x2i, x2i+1)). (2.5)
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Since α∗(x2i−1, Tx2i−1) ≥ 1 and x2i ∈ Tx2i−1, α(x2i−1, x2i) ≥ 1. Now by (2.4), we have

dq(x2i, x2i+1) ≤ Hdq(Tx2i−1, Sx2i) ≤ max{α∗(x2i, Sx2i)Hdq(Sx2i, Tx2i−1),

α∗(x2i−1, Tx2i−1)Hdq(Tx2i−1, Sx2i)}
≤ min{ψ(Dq(x2i, x2i−1)), ψ(Dq(x2i−1, x2i))} ≤ ψ(Dq(x2i, x2i−1))

≤ ψ(max{dq(x2i, x2i−1), dq(x2i, Sx2i), dq(x2i−1, Tx2i−1)})
≤ ψ(max{dq(x2i, x2i−1), dq(x2i, x2i+1), dq(x2i−1, x2i)})
≤ ψ(max{dq(x2i, x2i−1), dq(x2i, x2i+1), dq(x2i−1, x2i)}).

If max{dq(x2i, x2i−1), dq(x2i, x2i+1), dq(x2i−1, x2i)} = dq(x2i, x2i+1), then dq(x2i, x2i+1) ≤ ψ(dq(x2i, x2i+1)),
which contradicts to the fact that ψ(t) < t for all t > 0. Hence we obtain

dq(x2i, x2i+1) ≤ ψ(max{dq(x2i, x2i−1), dq(x2i−1, x2i)}).

If max{dq(x2i, x2i−1), dq(x2i−1, x2i)} = dq(x2i−1, x2i), then

dq(x2i, x2i+1)) ≤ ψ(dq(x2i−1, x2i)).

Since ψ is a nondecreasing function,

ψ(dq(x2i, x2i+1)) ≤ ψ2(dq(x2i−1, x2i)).

By (2.5), we obtain

dq(x2i+1, x2i+2) ≤ ψ2(dq(x2i−1, x2i)). (2.6)

If max{dq(x2i, x2i−1), dq(x2i−1, x2i)} = dq(x2i, x2i−1), then

dq(x2i+1, x2i+2) ≤ ψ2(dq(x2i, x2i−1)) (2.7)

By (2.6) and (2.7), we obtain

dq(x2i+1, x2i+2) ≤ max{ψ2(dq(x2i, x2i−1)), ψ
2(dq(x2i−1, x2i))}.

Continuing in this way, we obtain

dq(x2i+1, x2i+2) ≤ max{ψ2i+1(dq(x1, x0)), ψ
2i+1(dq(x0, x1))} (2.8)

Similarly, we have

dq(x2i, x2i+1) ≤ max{ψ2i(dq(x1, x0)), ψ
2i(dq(x0, x1))}. (2.9)

By (2.8) and (2.9), we obtain

dq(xj , xj+1) ≤ max{ψj(dq(x1, x0)), ψ
j(dq(x0, x1))} for some j ∈ N. (2.10)

By Lemma 1.10 and (2.1), we have

dq(x2i+2, x2i+1) ≤ Hdq(Tx2i+1, Sx2i) ≤ max{α∗(x2i, Sx2i)Hdq(Sx2i, Tx2i+1),

α∗(x2i+1, Tx2i+1)Hdq(Tx2i+1, Sx2i)}
≤ min{ψ(Dq(x2i, x2i+1)), ψ(Dq(x2i+1, x2i))}.

By the same reasoning as in the proof of (??), we have

dq(xj+1, xj) ≤ max{ψj(dq(x1, x0)), ψ
j(dq(x0, x1))} for some j ∈ N. (2.10)
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Now

dq(x0, xj+1) ≤ dq(x0, x1) + ...+ dq(xj , xj+1)

≤ dq(x0, x1) + ...+ max{ψj(dq(x1, x0)), ψ
j(dq(x0, x1))}

≤
j∑

i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r. (2.11)

Also

dq(xj+1, x0) ≤ dq(xj+1, xj) + ...+ dq(x1, x0)

≤ max{ψj(dq(x1, x0)), ψ
j(dq(x0, x1))}+ ...+ dq(x1, x0)

≤
j∑

i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r. (2.12)

By (2.11) and (2.12), we have xj+1 ∈ Bdq(x0, r). Hence by mathematical induction xn ∈ Bdq(x0, r)

for all n ∈ N. Therefore, {TS(xn)} is a sequence in Bdq(x0, r). Since S, T : X → P (X) are semi

α∗-dominated mappings on Bdq(x0, r), α∗(xn, Sxn) ≥ 1 and α∗(xn, Txn) ≥ 1 for all n ∈ N. Now
(2.8) and (2.9) can be written as

dq(xn, xn+1) ≤ max{ψn(dq(x1, x0)), ψ
n(dq(x0, x1))} for all n ∈ N. (2.13)

dq(xn+1, xn) ≤ max{ψn(dq(x1, x0)), ψ
n(dq(x0, x1))} for all n ∈ N. (2.14)

Fix ε > 0 and let k1(ε) ∈ N such that
∑

k≥k1(ε)
max{ψk(dq(x1, x0)), ψ

k(dq(x0, x1))} < ε. Let n,m ∈ N

with m > n > k1(ε). Then we obtain

dq(xn, xm) ≤
m−1∑
k=n

dq(xk, xk+1)

≤
m−1∑
k=n

max{ψk(dq(x1, x0)), ψ
k(dq(x0, x1))} by (2.13),

dq(xn, xm) ≤
∑

k≥k1(ε)

max{ψn(dq(x1, x0)), ψ
n(dq(x0, x1))} < ε.

Thus we obtain that {TS(xn)} is a left K-Cauchy sequence in (Bdq(x0, r), dq).
Similarly, by (2.14), we have

dq(xm, xn) ≤
m−1∑
k=n

dq(xk+1, xk) < ε.

Hence {TS(xn)} is a right K-Cauchy sequence in (Bdq(x0, r), dq). Since every closed ball in left(right)
K-sequentially complete dislocated quasi metric space is left(right) K-sequentially complete, there

exists x∗ ∈ Bdq(x0, r) such that {TS(xn)} → x∗, that is,

lim
n→∞

dq(xn, x
∗) = lim

n→∞
dq(x

∗, xn) = 0. (2.15)

Now

dq(x
∗, Tx∗) ≤ dq(x

∗, x2n+1) + dq(x2n+1, Tx
∗)

≤ dq(x
∗, x2n+1) +Hdq(Sx2n, Tx

∗) by Lemma 1.10. (2.16)
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Since α∗(x
∗, Tx∗) ≥ 1, α∗(x2n, Sx2n) ≥ 1 and α(x2n, x

∗) ≥ 1, we obtain

Hdq(Sx2n, Tx
∗) ≤ max{α∗(x2n, Sx2n)Hdq(Sx2n, Tx

∗), α∗(x
∗, Tx∗)Hdq(Tx

∗, Sx2n)}
≤ min{ψ(Dq(x2n, x

∗)), ψ(Dq(x
∗, x2n))}

≤ ψ(max{dq(x2n, x∗), dq(x2n, x2n+1), dq(x
∗, Tx∗)})

≤ ψ(max{dq(x2n, x∗), dq(x2n, x∗) + dq(x
∗, x2n+1), dq(x

∗, Tx∗)}). (2.17)

By (2.16) and (2.17), we have

dq(x
∗, Tx∗) ≤ dq(x∗, x2n+1) + ψ(max{dq(x2n, x∗), dq(x2n, x∗) + dq(x

∗, x2n+1), dq(x
∗, Tx∗)}).

Letting n → ∞, and by (2.15), we obtain dq(x
∗, Tx∗) ≤ ψ(dq(x

∗, Tx∗)) and hence dq(x
∗, Tx∗) = 0.

Now

dq(Tx
∗, x∗) ≤ dq(Tx

∗, x2n+1) + dq(x2n+1, x
∗)

≤ Hdq(Tx∗, Sx2n) + dq(x2n+1, x
∗), by Lemma 1.10.

By using a similar argument, we obtain dq(Tx
∗, x∗) = 0 or x∗ ∈ Tx∗.

Similarly, by Lemma 1.10, (2.15) and

dq(x
∗, Sx∗) ≤ dq(x∗, x2n+2) + dq(x2n+2, Sx

∗),

we can show that dq(x
∗, Sx∗) = 0 and x∗ ∈ Sx∗.

Similarly, dq(Sx
∗, x∗) = 0. Hence S and T have a common fixed point x∗ in Bdq(x0, r). Now

dq(x
∗, x∗) ≤ dq(x∗, Tx∗) + dq(Tx

∗, x∗) ≤ 0.

This implies that dq(x
∗, x∗) = 0. �

Corollary 2.2. Let (X, dq) be a left (right) K-sequentially complete dislocated quasi metric space.

Suppose that there exists a function α : X × X → [0,∞). Let r > 0, x0 ∈ Bdq(x0, r) and S :

X → P (X) be a semi α∗-dominated mapping on Bdq(x0, r). Assume that, for some ψ ∈ Ψ and
Dq(x, y) = max{dq(x, y), dq(x, Sx), dq(y, Sy)}, the following hold:

max{α∗(x, Sx)Hdq(Sx, Sy), α∗(y, Sy)Hdq(Sy, Sx)} ≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))} (2.18)

for all x, y ∈ Bdq(x0, r) ∩ {S(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1, and

n∑
i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r for all n ∈ N ∪ {0}.

Then {S(xn)} is a sequence in Bdq(x0, r) and {S(xn)} → x∗ ∈ Bdq(x0, r). Also, if (2.18) holds for
x∗ and either α(xn, x

∗) ≥ 1 or α(x∗, xn) ≥ 1 for all n ∈ N ∪ {0}, then S has a fixed point x∗ in

Bdq(x0, r) and dq(x
∗, x∗) = 0.

Corollary 2.3. Let (X, dl) be a complete dislocated metric space. Suppose that there exists a function

α : X×X → [0,∞). Let r > 0, x0 ∈ Bdl(x0, r) and S, T : X → P (X) be semi α∗-dominated mappings

on Bdl(x0, r). Assume that, for some ψ ∈ Ψ and Dl(x, y) = max{dl(x, y), dl(x, Sx), dl(y, Ty)}, the
following hold:

max{α∗(x, Sx)Hdl(Sx, Ty), α∗(y, Ty)Hdl(Sx, Ty)} ≤ ψ(Dl(x, y)) (2.19)

for all x, y ∈ Bdl(x0, r) ∩ {TS(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1, and
n∑

i=0

ψi(dl(x0, x1)) ≤ r for all n ∈ N ∪ {0}.
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Then {TS(xn)} is a sequence in Bdl(x0, r) and {TS(xn)} → x∗ ∈ Bdl(x0, r). Also if (2.19) holds for
x∗ and either α(xn, x

∗) ≥ 1 or α(x∗, xn) ≥ 1 for all n ∈ N∪ {0}, then S and T have a common fixed

point x∗ in Bdl(x0, r) and dq(x
∗, x∗) = 0.

Corollary 2.4. Let (X, dl) be a complete dislocated metric space. Suppose that there exists a function

α : X ×X → [0,∞). Let r > 0, x0 ∈ Bdl(x0, r) and S : X → P (X) be a semi α∗-dominated mapping

on Bdl(x0, r). Assume that, for some ψ ∈ Ψ and Dl(x, y) = max{dl(x, y), dl(x, Sx), dl(y, Sy)}, the
following hold:

max{α∗(x, Sx)Hdl(Sx, Sy), α∗(y, Sy)Hdl(Sx, Sy)} ≤ ψ(Dl(x, y)) (2.20)

for all x, y ∈ Bdl(x0, r) ∩ {S(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1, and

n∑
i=0

ψi(dl(x0, x1)) ≤ r for all n ∈ N ∪ {0}.

Then {S(xn)} is a sequence in Bdl(x0, r) and {S(xn)} → x∗ ∈ Bdl(x0, r). Also, if (2.20) holds for
x∗ and either α(xn, x

∗) ≥ 1 or α(x∗, xn) ≥ 1 for all n ∈ N ∪ {0}, then S has a fixed point x∗ in

Bdl(x0, r) and dq(x
∗, x∗) = 0.

Let X be a nonempty set , � a partial order on X and A ⊆ X. We say that a � B whenever for
all b ∈ B, we have a � b. A mapping S : X → P (X) is said to be semi dominated on A if a � Sa for
each a ∈ A ⊆ X. If A = X, then S : X → P (X) is said to be dominated.

Corollary 2.5. Let (X,�, dq) be a left (right) K-sequentially ordered complete dislocated quasi metric

space. Let r > 0, x0 ∈ Bdq(x0, r) and S, T : X → P (X) be semi dominated mappings on Bdq(x0, r).
Assume that, for some ψ ∈ Ψ and Dq(x, y) = max{dq(x, y), dq(x, Sx), dq(y, Ty)}, the following hold:

max{Hdq(Sx, Ty), Hdq(Ty, Sx)} ≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))} (2.21)

for all x, y ∈ Bdq(x0, r) ∩ {TS(xn)} with either x � y or y � x, and

n∑
i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r for all n ∈ N ∪ {0}. (2.22)

Then {TS(xn)} is a sequence in Bdq(x0, r) and {TS(xn)} → x∗ ∈ Bdq(x0, r). Also if (2.21) holds for
x∗ and either xn � x∗ or x∗ � xn for all n ∈ N ∪ {0}, then S and T have a common fixed point x∗

in Bdq(x0, r) and dq(x
∗, x∗) = 0.

Proof. Let α : X × X → [0,+∞) be a function defined by α(x, y) = 1 for all x ∈ Bdq(x0, r) with
either x � y or y � x, and α(x, y) = 0 for all other elements x, y ∈ X. Since S and T are the semi

dominated mappings on Bdq(x0, r), x � Sx and x � Tx for all x ∈ Bdq(x0, r). This implies that x � b
for all b ∈ Sx and x � c for all c ∈ Tx. So α(x, b) = 1 for all b ∈ Sx and α(x, c) = 1 for all c ∈ Tx.
This implies that inf{α(x, y) : y ∈ Sx} = 1 and inf{α(x, y) : y ∈ Tx} = 1. Hence α∗(x, Sx) = 1

and α∗(x, Tx) = 1 for all x ∈ Bdq(x0, r). So S, T : X → P (X) are semi α∗-dominated mappings on

Bdq(x0, r). Moreover, (2.21) can be written as

max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} ≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))}

for all x, y in Bdq(x0, r) ∩ {TS(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1. Also, (2.22) holds.

Then by Theorem 2.1, {TS(xn)} is a sequence in Bdq(x0, r) and {TS(xn)} → x∗ ∈ Bdq(x0, r). Now,

xn, x
∗ ∈ Bdq(x0, r) and either xn � x∗ or x∗ � xn implies that either α(xn, x

∗) ≥ 1 or α(x∗, xn) ≥ 1.
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So all the conditions of Theorem 2.1 are satisfied. Hence by Theorem 2.1, S and T have a common
fixed point x∗ in Bdq(x0, r) and dq(x

∗, x∗) = 0. �

Example 2.6. Let X = Q+ ∪{0} and let dl : X ×X → X be a complete dislocated quasi metric on
X defined by

dq(x, y) = x+ y for all x, y ∈ X.
Define multivalued mappings S, T : X ×X → P (X) by,

Sx =

{
[
x

3
,
2

3
x] if x ∈ [0, 1] ∩X

[x, x+ 1] if x ∈ (1,∞) ∩X
and

Tx =

{
[
x

4
,
3

4
x] if x ∈ [0, 1] ∩X

[x+ 1, x+ 3] if x ∈ (1,∞) ∩X.
Considering x0 = 1, r = 8, we get Bdq(x0, r) = [0, 7]∩X. Now dq(x0, Sx0) = dq(1, S1) = dq(1,

1
3) = 4

3 .

So we obtain a sequence {TS(xn)} = {1, 1
12 ,

1
144 ,

1
1728 , ....} in X generated by x0. Also Bdq(x0, r) ∩

{TS(xn)} = {1, 1
12 ,

1
144 , ...}. Let ψ(t) = 4t

5 and

α(x, y) =

{
1 if x, y ∈ [0, 1]
3
2 otherwise.

Now if x, y /∈ Bdq(x0, r) ∩ {TS(xn)}, then we have the following cases.
Case 1. If max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} = α∗(x, Sx)Hdq(Sx, Ty), then for

x = 2 and y = 3, we have

α∗(2, S2)Hdq(S2, T3) =
3

2
(8) > ψ(Dq(x, y)) =

28

5
.

Case 2. If max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} = α∗(y, Ty)Hdq(Ty, Sx), then for
x = 2and y = 3, we have

α∗(3, T3)Hdq(T3, S2) =
3

2
(8) > ψ(Dq(y, x)) =

28

5
.

So the contractive condition does not hold on thewhole space X.
Now, for all x, y ∈ Bdq(x0, r) ∩ {TS(xn)}, we have the following.
Case 3. If max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} = α∗(x, Sx)Hdq(Sx, Ty), then we

have

α∗(x, Sx)Hdq(Sx, Ty) = 1[max{ sup
a∈Sx

dq(a, Ty), sup
b∈Ty

dq(Sx, b)}]

= max{ sup
a∈Sx

dq(a, [
y

4
,
3y

4
]), sup

b∈Ty
dq([

x

3
,
2x

3
], b)}

= max{dq(
2x

3
, [
y

4
,
3y

4
]), dq([

x

3
,
2x

3
],

3y

4
)}

= max{dq(
2x

3
,
y

4
), dq(

x

3
,
3y

4
)}

= max{2x

3
+
y

4
,
x

3
+

3y

4
}

≤ ψ(max{x+ y,
4x

3
,
5y

4
}) = ψ(Dq(x, y)).
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Case 4. If max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} = α∗(y, Ty)Hdq(Ty, Sx), then we have

α∗(y, Ty)Hdq(Ty, Sx) = 1[max{ sup
b∈Ty

dq(Sx, b), sup
a∈Sx

dq(a, Ty)}]

= max{ sup
b∈Ty

dq([
x

3
,
2x

3
], b), sup

a∈Sx
dq(a, [

y

4
,
3y

4
])}

= max{dq([
x

3
,
2x

3
],

3y

4
), dq(

2x

3
, [
y

4
,
3y

4
])}

= max{dq(
x

3
,
3y

4
), dq(

2x

3
,
y

4
)}

= max{x
3

+
3y

4
,
2x

3
+
y

4
}

≤ ψ(max{y + x,
5y

4
,
4x

3
}) = ψ(Dq(y, x)).

So the contractive condition holds on Bdq(x0, r) ∩ {TS(xn)}. Also

n∑
i=0

max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} =

4

3

n∑
i=0

(
4

5
)i < 8 = r.

Hence all the conditions of Theorem 2.1 are satisfied. Now we have {TS(xn)} is a sequence in

Bdq(x0, r) and {TS(xn)} → 0 ∈ Bdq(x0, r). Also α(xn, 0) ≥ 1 or α(0, xn) ≥ 1 for all n ∈ N ∪ {0}.
Moreover, 0 is a common fixed point of S and T.

3. Fixed point results for graphic contractions

In this section, we present an application of Theorem 2.1 in graph theory. Jachymski [15] proved
the contraction principle for mappings on a metric space with a graph. Let (X, d) be a metric space
and 4 represent the diagonal of the cartesian product X × X. Assume that G is a directed graph
and V (G) is the set of vertices along with X and the set E(G) denotes the edges of X included
all loops, i.e., E(G) ⊇ 4. If G has no parallel edges, then we can unify G with pair (V (G), E(G)).
Furthermore, we consider G as a weighted graph (see [15]) which showing to each edge the distance
between its vertices. If l and m are the vertices in a graph G, then a path in G from l to m of length
N (N ∈ N) is a sequence {xi}Ni=o of N + 1 vertices such that lo = l, lN = m and (ln−1, ln) ∈ E(G)
where i = 1, 2, · · ·N. Hussain et al. [13] established fixed points for ψ-graphic contraction with an
application to integral equations. A graph G is connected if there is a path between any two vertices
(for more details, see [9, 14, 28]).

Definition 3.1. Let X be a nonempty set and G = (V (G), E(G)) be a graph such that V (G) = X.
Then S : X → CB(X) is said to be semi graph dominated on A ⊆ X if, for each x ∈ A, (x, y) ∈ E(G)
for all y ∈ Sx. If A = X, then we say that S is graph dominated on X.

Theorem 3.2. Let (X, dq) be a complete dislocated quasi metric space endowed with a graph G. Let

r > 0, x0 ∈ Bdq(x0, r), S, T : X → P (X) mappings and {TS(xn)} be a sequence in X generated by
x0. Assume that the following hold:

(i) S and T are semi graph dominated on Bdq(x0, r);
(ii) there exists ψ ∈ Ψ and Dq(x, y) = max{dq(x, y), dq(x, Sx), dq(y, Ty)} such that

max
{
Hdq(Sx, Ty), Hdq(Ty, Sx)

}
≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))} (3.1)

for all x, y ∈ Bdq(x0, r) ∩ {TS(xn)} with (x,y) ∈ E(G) or (y,x) ∈ E(G);

(iii)
∑n

i=0 max{ψi(dq(x1, x0), ψ
i(dq(x0, x1))} ≤ r for all n ∈ N ∪ {0}.
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Then {TS(xn)} is a sequence in Bdq(x0, r) and {TS(xn)} → x∗. Also if (xn, x
∗) ∈ E(G) or

(x∗, xn) ∈ E(G) for all n ∈ N∪ {0} and (3.1) holds for x∗, then S and T have a common fixed point

x∗ in Bdq(x0, r).

Proof. Define α : X ×X → [0,∞) by

α(x, y) =

{
1, if x ∈ Bdq(x0, r), (x, y) ∈ E(G) or (y,x) ∈ E(G)
0, otherwise.

Since S and T are semi graph dominated on Bdq(x0, r), for x ∈ Bdq(x0, r), (x, y) ∈ E(G) for all
y ∈ Sx and (x, y) ∈ E(G) for all y ∈ Tx. So α(x, y) = 1 for all y ∈ Sx and α(x, y) = 1 for all y ∈ Tx.
This implies that inf{α(x, y) : y ∈ Sx} = 1 and inf{α(x, y) : y ∈ Tx} = 1. Hence α∗(x, Sx) = 1,

α∗(x, Tx) = 1 for all x ∈ Bdq(x0, r). So S, T : X → P (X) are semi α∗-dominated mappings on

Bdq(x0, r). Moreover, (3.1) can be written as

max{α∗(x, Sx)Hdq(Sx, Ty), α∗(y, Ty)Hdq(Ty, Sx)} ≤ min{ψ(Dq(x, y)), ψ(Dq(y, x))}

for all x, y in Bdq(x0, r)∩ {TS(xn)} with either α(x, y) ≥ 1 or α(y, x) ≥ 1. Also (iii) holds. Then, by

Theorem 2.1, we have {TS(xn)} is a sequence in Bdq(x0, r) and {TS(xn)} → x∗ ∈ Bdq(x0, r). Now

xn, x
∗ ∈ Bdq(x0, r) and either (xn, x

∗) ∈ E(G) or (x∗, xn) ∈ E(G) implies that either α(xn, x
∗) ≥ 1

or α(x∗, xn) ≥ 1. So all the conditions of Theorem 2.1 are satisfied. Hence by Theorem 2.1, S and T

have a common fixed point x∗ in Bdq(x0, r) and dq(x
∗, x∗) = 0. �
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[31] L. Zhu, C. Zhu, C. Chen, Z. Stojanović, Multidimensional fixed points for generalized Ψ-quasi-contractions in

quasi-metric-like spaces, J. Inequal. Appl. 2014, 2014:27.

Tahair Rasham
Department of Mathematics, International Islamic University, H-10, Islamabad-44000, Pakistan

E-mail address: tahir.resham@yahoo.com

Abdullah Shoaib
Department of Mathematics and Statistics, Riphah International University, Islamabad-44000, Pakistan

E-mail address: abdullahshoaib15@yahoo.com

Choonkil Park
Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea

E-mail address: baak@hanyang.ac.kr

Muhammad Arshad
Department of Mathematics, International Islamic University, H-10, Islamabad-44000, Pakistan

E-mail address: marshad.zia@yahoo.com

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.5, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

986 TAHAIR RASHAM et al 975-986



 

987



TABLE OF CONTENTS, JOURNAL OF COMPUTATIONAL 
ANALYSIS AND APPLICATIONS, VOL. 25, NO. 5, 2018 

 

Fourier series of functions involving Euler polynomials, Taekyun Kim, Dae San Kim, Gwan-
Woo Jang, and Jongkyum Kwon,……………………………………………………………797 

Higher order generalization of Bernstein type operators defined by (p,q)-integers, M. Mursaleen, 
Md. Nasiruzzaman, Nurgali Ashirbayev, and Azimkhan Abzhapbarov,…………………817 

Fourier series of functions involving Genocchi polynomials, Taekyun Kim, Dae San Kim, Lee 
Chae Jang, and Dmitry V. Dolgy,……………………………………………………………830 

Lyapunov inequalities of quasi-Hamiltonian systems on time scales, Taixiang Sun, Fanping 
Zeng, Guangwang Su, and Bin Qin,…………………………………………………………848 

A new three-step iterative method for a countable family of pseudo-contractive mappings in 
Hilbert spaces, Qin Chen, Li Li, Nan Lin, and Baoguo Chen,………………………………860 

Harmonic analysis in the product of commutative hypercomplex systems, Hossam A. Ghany,876 

Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–
Volterra competition model, J. Alzabut, T. Abdeljawad, and D. Baleanu,……………………889 

Some sharp results on NLC-operators in 𝐺𝑝-metric spaces, Huaping Huang, Ljiljana Gajic, 
Stojan Radenovic, and Guantie Deng,…………………………………………………………899 

Most general Self Adjoint Operator Chebyshev-Grüss Inequalities, George A. Anastassiou,915 

Fourier series of sums of products of poly-Bernoulli and Genocchi functions and their 
applications, Taekyun Kim, Dae San Kim, Lee Chae Jang, and Gwan-Woo Jang,…………934 

Convergence of the Newton-HSS Method under the Lipschitz Condition with the L-average, 
Hong-Xiu Zhong, Guo-Liang Chen, and Xue-Ping Guo,…………………………………….952 

Oscillation for Fractional Neutral Functional Differential Systems, Yong Zhou, Ahmed Alsaedi, 
and Bashir Ahmad,……………………………………………………………………………965 

Fixed point results for a pair of multi dominated mappings on a smallest subset in K-sequentially 
dislocated quasi metric space with an application, Tahair Rasham, Abdullah Shoaib, Choonkil 
Park, and Muhammad Arshad,……………………………………………………………….975 

 




