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A note on non-instantaneous impulsive fractional neutral

integro-differential systems with state-dependent delay in

Banach spaces

Selvaraj Suganya,∗ Dumitru Baleanu†, Palaniyappan Kalamani‡ and Mani Mallika Arjunan§

Abstract

In this research, we establish the existence results for non-instantaneous impulsive fractional

neutral integro-differential systems with state-dependent delay in Banach space. By utilizing the

Banach contraction principle and condensing fixed point theorem coupled with semigroup theory,

we build up the desired results. To acquire the main results, our working concepts are that the

functions deciding the equation fulfill certain Lipschitz conditions of local type which is similar to

the hypotheses [5]. In the end, an example is given to show the abstract theory.

Keywords: Fractional order differential systems, Caputo fractional integral operator, non-

instantaneous impulses , state-dependent delay, fixed point theorem, semigroup theory.

MSC 2010: Primary 34K30, 26A33; Secondary 35R10, 47D06.

1 Introduction

Fractional calculus may be considered an old and yet novel topic. In fact, the concepts are almost as

old as their more familiar integer-order counterparts. In 1965 Leibniz and L’Hopital had correspondence

where they discussed the meaning of the derivative of order one half. Since then, many famous

mathematicians have worked on this and related questions, creating the field which is known today

as fractional calculus.

The fractional calculus is also considered a novel topic, since it is only during the last three decades

that it has been the subject of specialised conferences and treatises. This was stimulated by the fact that

many important applications of fractional calculus have been found in numerous diverse and widespread
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fields in science, engineering and finance. Many authors have pointed out that fractional derivatives

and integrals are very suitable for modelling the memory and hereditary properties of various materials

and processes that are governed by anomalous diffusion. This represents the main advantage of using

the fractional derivatives in comparison with classical integer-order models, in which such effects are

not taken into account. For more details, we suggest the reader to refer the monographs [6, 24, 47], and

the papers [1, 3, 10, 23, 28, 34, 44], and the references cited therein.

Due to the diverse applications in science and technology, functional differential equations turn out

to be the most essential branch of research in mathematical sciences. The work on non-integer order

functional differential equations with state-dependent delay (abbreviate, SDD), is going on last few

years. Furthermore, the study for such kind of the differential equations with SDD, we refer the papers

[2, 4, 9, 11–13, 15, 16, 21, 41, 42, 45, 46].

An important feature of real-world dynamic processes that has attracted considerable interest by

scientists is the effect of abrupt changes. Hereby, “abrupt” is meant in the sense of a multi-scale problem,

i.e. the state of a system changes only slowly for a long time interval, and then undergoes a drastic

change within a very short time interval. For example, a football may be flying through the air for

several seconds before it changes its flight direction within milliseconds during a collision with a goal

post. For the mathematical description of this system, the specification of two sets of equations is

appropriate: one for the flight phase, and one for the collision phase.

Several mathematical models can be developed for the football example. In a simplified setting, the

motion of the football could be described by the position and velocity of its center of mass, and the

encounter with the goal post could be treated as an inelastic collision (i.e. by an immediate change of

the football’s velocity).

For the description of the collision of the ball with the goal post leads to differential equations in which

the velocity experiences, at the time of the collision, a so-called impulse. For additional information

on this concept and pertinent advancements of impulsive differential equations (abbreviated, IDEs), for

instance [7, 8, 26, 39].

However, in [22, 32], the authors suggested a new class of abstract IDEs for which the impulses are

not instantaneous. In particular, in [22], the authors investigate the new type of IDEs with NII of the

form

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , N, (1.1)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N, (1.2)

u(0) = x0, (1.3)

and set up the existence and uniqueness solutions of mild and classical solutions by applying well-known

fixed point theorems. From the above system (1.1)-(1.3), we observe that the impulses start instantly

at the points ti and their action continue on a finite time interval [ti, si]. As indicated in [22], there

are actually several distinct aspirations for the research of this kind of model. For more details on this

theory and on its applications, we suggest the reader to refer [14, 22, 30, 32].

Moreover, Pierri et al. [32] have generalized the results of [22], by employing the theory of analytic

2
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semigroup and fractional power of closed operators and proven the existence results of solutions for a

class of semilinear IDEs with NII in Banach space. Furthermore, in [17, 19, 20, 25], the authors analyzed

the different types of IFDEs with NII in Banach spaces under appropriate fixed point theorem. Recently,

Suganya et al.[40] researched the existence results for fractional neutral integro-differential system with

SDD and NII in Banach space through the utilization of the Hausdorff’s measures of non-compactness

and Darbo-Sadovskii fixed point theorem.

On the other hand, the existence results for impulsive fractional neutral integro-differential

systems(abbreviated, IFNIDS) with SDD and NII in Bh phase space axioms have not yet been

completely examined. This persuade us to explore the existence results of these types of structures

with NII in Banach spaces.

Motivated by the effort of the aforementioned papers [5, 17, 21, 22], the principle motivation behind

this manuscript is to research the existence of mild solutions for an IFNIDS with SDD of the model

CDα
t

[
z(t)− Q1

(
t, zζ(t,zt), Czζ(t,zt)

) ]
= A z(t) + Q2

(
t, zζ(t,zt), Czζ(t,zt)

)

+ Q3

(
t, zζ(t,zt), Czζ(t,zt)

)
, t ∈ (si, ti+1], i = 0, 1, 2, . . . , N, (1.4)

z(t) = gi(t, zζ(t,zt)), t ∈ (ti, si], i = 1, 2, . . . , N, (1.5)

z0 = ϕ(t) ∈ Bh, t ∈ (−∞, 0], (1.6)

where A denotes the infinitesimal generator of an analytic semigroup {T(t)}t≥0 in a Banach space X;
CDα

t is the Caputo fractional derivative operator of order α with 0 < α ≤ 1; I = [0, T ] is an operational

interval; Q1,Q2,Q3 : I ×Bh×Bh → X, ζ : I ×Bh → R are appropriate functions, and Bh is a phase

space outlined in next section. The term Czζ(t,zt) is given by Czζ(t,zt) =
∫ t

0
K(t, s)(zζ(s,zs))ds, where K ∈

C(D ,R+) is the set of all positive functions which are continuous on D = {(t, s) ∈ I×I : 0 ≤ s ≤ t ≤ T}
and C∗ = sup

t∈[0,T ]

∫ t

0
K(t, s)ds. Here 0 = t0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · < tN ≤ sN < tN+1 = T, are

prefixed numbers, and gi ∈ C((ti, si]× Bh,X) for all i = 1, 2, . . . , N, is stand for impulsive conditions.

For almost any continuous function z characterized on (−∞, T ] and for almost any t ≥ 0, we

designate by zt the part of Bh characterized by zt(θ) = z(t + θ) for θ ≤ 0. Now zt(·) speaks to the

historical backdrop of the state from every θ ∈ (−∞, 0] likely the current time t.

Contrary to the recent results, this paper has some useful features including the integral term in

the involved functions Q1,Q2,Q3 and define a suitable mild solution of the model (1.4)-(1.6) with

the help of probability density function. Then, based on local Lipschitz conditions of the involved

functions, we establish the existence results for IFNIDS with SDD and NII of the problem (1.4)-(1.6)

under appropriate fixed point theorem, and the outcomes in [17, 21] might be viewed as the particular

situations.

We organize the paper as follows. We provide some basis definitions, lemmas and theorems in Section

2 as these are useful for establish our results. Section 3 focuses on the existence of mild solutions for the

model (1.4)-(1.6) with the help of the fixed point theorem. Section 4 provides an example to illustrate

the acquired abstract concept.

3
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2 Preliminaries

From now on, X represents Banach space with norm ‖ · ‖, C(I ,X) denotes the space of all X-valued

continuous functions on I and L (X) is the Banach space of all linear and bounded operators on X.

Furthermore, the notation Br(z,X) stands for the closed ball with center at z and the radius r > 0 in

X.

Let A : D(A ) ⊂ X → X is the infinitesimal generator of an analytic semigroup of uniformly bounded

linear operator on X. Let 0 ∈ ̺(A ), then it is possible to describe the fractional power A µ, 0 < µ ≤ 1,

as a closed linear operator on its domain D(A µ). Moreover, the subspace D(A µ) is dense in X and the

expression ‖z‖µ = ‖A µz‖, z ∈ D(A µ), defines a norm on D(A µ). For 0 < ν ≤ µ ≤ 1, Xµ → Xν and

the imbedding is compact whenever the resolvent operator of A is compact. Also for every 0 < µ ≤ 1,

there exists a positive constant Mµ such that

‖A µ
T(t)‖ ≤ Mµ

tµ
, 0 < t ≤ T.

For additional information about the above preliminaries, we refer to [31, 35].

To portray properly our system, we claim that a function z : [σ, τ ] → X is a normalized piecewise

continuous function on [σ, τ ] if z is piecewise continuous and left continuous on (σ, τ ]. By the symbol

PC([σ, τ ];X), we mean the space of normalized piecewise continuous functions from [σ, τ ] into X.

Specifically, we signify the space PC established by all functions z : [0, T ] → X in ways that z is

continuous at t 6= ti, z(t
−
i ) = z(ti) and z(t

+
i ) exists, for all i = 1, 2, · · · , N . It is not difficult to find out

that PC is a Banach space having the norm ‖z‖PC = sup
s∈[0,T ]

‖z(s)‖.

Once the delay is infinite, then we should talk about the theoretical phase space Bh in a beneficial

way. Thus, in this manuscript, we deliberate phase spaces Bh which are same as it was described in

[21]. As a result, we bypass the details.

We assume that the phase space (Bh, ‖ · ‖Bh
) is a semi-normed linear space of functions mapping

(−∞, 0] into X, and fulfilling the subsequent elementary adages as a result of Fu et al. [18] and Ganga

Ram Gautam et al. [21].

If z : (−∞, T ] → X, T > 0, is continuous on I and z0 ∈ Bh, then for every t ∈ I the accompanying

conditions hold:

(P1) zt is in Bh;

(P2) ‖z(t)‖X ≤ H‖zt‖Bh
;

(P3) ‖zt‖Bh
≤ E1(t) sup{‖z(s)‖X : 0 ≤ s ≤ t} + E2(t)‖z0‖Bh

, where H > 0 is a constant and

E1(·) : [0,+∞) → [0,+∞) is continuous, E2(·) : [0,+∞) → [0,+∞) is locally bounded, and

E1,E2 are independent of z(·).
For our convenience, denote E ∗

1 = sup
s∈I

E1(s), E
∗
2 = sup

s∈I

E2(s).

Define the space

BT = {z : (−∞, T ] → X such that z0 ∈ Bh and the constraint z|I ∈ PC} ,

4
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where z|I is the constraint of z to the real compact interval on I . The function ‖ · ‖BT

to be a seminorm in BT , it is described by

‖z‖BT
= ‖ϕ‖Bh

+ sup{‖z(s)‖X : s ∈ [0, T ]}, z ∈ BT .

To stay away from the reiterations of a few definitions utilized as a part of this paper we

refer the readers: such as for the definition of the fractional integral, Riemann-Liouville fractional

integral operator, the generalized Mittag-Leffler special function, Wright-type function and the Caputo’s

derivative one can see the papers [17, 35, 40] and the monographs [24, 33, 47].

Currently, we are have the ability to define the mild solution for the problem (1.4)-(1.6). For this,

initially we treat the following model

CDα
t z(t) = A z(t) + Q2(t), (2.1)

z(0) = z0, (2.2)

where CDα
t and A are just like described in (1.4)-(1.6).

By thinking the proofs as in [35, Lemma 6 and Lemma 9], we directly define the mild solution for

the model (2.1)-(2.2).

Definition 2.1. A function z : I → X is considered to be a mild solution of problem (2.1)-(2.2) if

z ∈ C(I ,X) fulfills the accompanying integral equation:

z(t) = Tα(t)z0 +

∫ t

0
Sα(t− s)Q2(s)ds, t ∈ I .

For additional reference about this concept, we suggest the reader to refer[35, 38, 40].

Before we characterize the mild solution for the structure (1.4)-(1.6), finally, we treat the following

system

CDα
t

[
z(t)− Q1(t, z(t))

]
= A z(t) + Q2(t, z(t)) + Q3(t, z(t)), t ∈ (si, ti+1], i = 0, 1, . . . , N, (2.7)

z(t) = gi(t, z(t)), t ∈ (ti, si], i = 1, 2, · · · , N, (2.8)

z(0) = z0, (2.9)

where CDα
t , gi(t, z(t)) and A are same as defined in (1.4)-(1.6) and z0 ∈ X,Q1,Q2,Q3 are

appropriate functions.

We remark that, the impulses in problem (2.7)-(2.9) start abruptly at the points ti and their action

continues on the interval [ti, si]. In addition, the function z takes an abrupt impulse at ti and follows

different rules in the two subintervals (ti, si] and (si, ti+1] of the interval (ti, ti+1]. At the point si, the

function z is continuous.

On the results received in the papers [35–37, 43, 48], first we define the mild solution for the system

5
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(2.7)-(2.9) is given by

x(t) =





Tα(t)[z0 − Q1(0, z0)] + Q1(t, z(t)) +

∫ t

0
A Sα(t− s)Q1(s, z(s))ds

+

∫ t

0
Sα(t− s)

[
Q2(s, z(s)) + Q3(s, z(s))

]
ds, t ∈ [0, t1],

g1(t, z(t)), t ∈ (t1, s1],

Tα(t− s1)d1 + Q1(t, z(t)) +

∫ t

0
A Sα(t− s)Q1(s, z(s))ds

+

∫ t

0
Sα(t− s)

[
Q2(s, z(s)) + Q3(s, z(s))

]
ds, t ∈ (s1, t2],

· · · ,
gi(t, z(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

Tα(t− si)di + Q1(t, z(t)) +

∫ t

0
A Sα(t− s)Q1(s, z(s))ds

+

∫ t

0
Sα(t− s)

[
Q2(s, z(s)) + Q3(s, z(s))

]
ds, t ∈ (si, ti+1],

where

di = gi(s, z(si))− Q1(si, z(si))−
∫ si

0
A Sα(si − s)Q1(s, z(s))ds

−
∫ si

0
Sα(si − s)

[
Q2(s, z(s)) + Q3(s, z(s))

]
ds, i = 1, 2, · · · , N.

Remark 2.1. From the discussion in [40], we clearly see that our definition of mild solution fulfills the

given model (2.7)-(2.9).

In accordance with the above discussion, we determine the mild solution of the model (1.4)-(1.6).

Definition 2.2. [40, Definition 2.8] A function z : (−∞, T ] → X is called a mild solution of the

model (1.1)-(1.3) if z0 = ϕ ∈ Bh, z(·)|I ∈ PC and for each s ∈ [0, t) the function A Sα(t −
s)Q1(s, zζ(s,zs), Czζ(s,zs)) is integrable and

z(t) = Tα(t)[ϕ(0) − Q1(0, ϕ(0), 0)] + Q1(t, zζ(t,zt), Czζ(t,zt))

+

∫ t

0
A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, zζ(s,zs), Czζ(s,zs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, zζ(s,zs), Czζ(s,zs)

)
ds, t ∈ [0, t1],

gi(t, zζ(t,zt)), t ∈ (ti, si], i = 1, 2, · · · , N, (2.16)

Tα(t− si)di + Q1(t, zζ(t,zt), Czζ(t,zt))

+

∫ t

0
A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))ds

6
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+

∫ t

0
Sα(t− s)Q2

(
s, zζ(s,zs), Czζ(s,zs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, zζ(s,zs), Czζ(s,zs)

)
ds, t ∈ (si, ti+1],

where

di = gi(si, zζ(si,zsi))− Q1(si, zζ(si,zsi), Czζ(si,zsi))−
∫ si

0
A Sα(si − s)Q1(s, zζ(s,zs), Czζ(s,zs))ds

−
∫ si

0
Sα(si − s)Q2

(
s, zζ(s,zs), Czζ(s,zs)

)
ds−

∫ si

0
Sα(si − s)Q3

(
s, zζ(s,zs), Czζ(s,zs)

)
ds,

i = 1, 2, · · · , N. (2.17)

Now, we turn to the statement of Condensing fixed point theorem [21, Theorem 2.9].

Theorem 2.1. Let B be a convex, bounded and closed subset of Banach space X and let P : B → B be

a condensing map. Then P has a fixed point.

3 Existence results

In this section, we show and demonstrate the existence of solutions for the model (1.4)-(1.6) under

different fixed point theorems and we consider ϕ ∈ Bh a fixed function, I = [0, T ]. To simplify writing

of the text, in what follows, we assume that 0 ≤ ζ(t, ψ) ≤ t for all ψ ∈ Bh.

Presently, we itemizing the subsequent suppositions:

(H1) The function Q1 : I ×Bh×Bh → X is continuous and we can find constants β ∈ (0, 1), LQ1
> 0,

L̃Q1
> 0 and L∗

Q1
> 0 in ways that Q1 is Xβ -valued and fulfills the subsequent assumptions:

‖ (A )βQ1(t, ϕ1, ψ1)− (A )βQ1(t, ϕ2, ψ2) ‖X≤ LQ1
‖ϕ1 − ϕ2‖Bh

+ L̃Q1
‖ ψ1 − ψ2 ‖Bh

,

‖ (A )βQ1(t, ϕ, ψ) ‖X≤ LQ1
‖ ψ ‖Bh

+L∗
g,

where

L∗
Q1

= max
t∈I

‖Q1(t, 0, 0)‖X, for all t ∈ I and ψ,ϕ1, ϕ2, ψ1, ψ2 ∈ Bh.

(H2) The function Q2 : I ×Bh×Bh → X is continuous and we can find positive constants LQ2
, L̃Q2

> 0

and L∗
Q2

> 0 in ways that

‖Q2(t, ϕ1, ψ1)− Q2(t, ϕ2, ψ2)‖X ≤ LQ2
‖ϕ1 − ϕ2‖Bh

+ L̃Q2
‖ψ1 − ψ2‖Bh

,

and

L∗
Q2

= max
t∈I

‖Q2(t, 0, 0)‖X, for all t ∈ I and ϕ1, ϕ2, ψ1, ψ2 ∈ Bh.

7
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(H3) The function Q3 : I ×Bh×Bh → X is continuous and we can find positive constants LQ3
, L̃Q3

> 0

and L∗
Q3

> 0 in ways that

‖Q3(t, ϕ1, ψ1)− Q3(t, ϕ2, ψ2)‖X ≤ LQ3
‖ϕ1 − ϕ2‖Bh

+ L̃Q3
‖ψ1 − ψ2‖Bh

,

and

L∗
Q3

= max
t∈I

‖Q3(t, 0, 0)‖X, for all t ∈ I and ϕ1, ϕ2, ψ1, ψ2 ∈ Bh.

(H4) The function gi : (ti, si]×Bh → X, i = 1, 2, · · · , N are continuous and there exist positive constants

Lgi > 0, L∗
gi
> 0 such that

‖gi(t, ϕ1)− gi(t, ϕ2)‖X ≤ Lgi‖ϕ1 − ϕ2‖Bh
,

‖gi(t, ϕ)‖X ≤ Lgi‖ϕ‖Bh
+ L∗

gi
,

where

L∗
gi
= max

t∈(ti,si]
‖gi(t, 0)‖X, for all t ∈ (ti, si] and ϕ,ϕ1, ϕ2 ∈ Bh.

(H5) For every r > 0, there exist constants LQ1
(r) > 0, LQ2

(r) > 0, LQ3
(r) > 0 and Lgi(r) > 0 such

that

‖ (A )βQ1(t, ϕt2 , Cψt2)− (A )βQ1(t, ϕt1 , Cψt1) ‖ ≤ LQ1
(r)(1 + C∗)|t2 − t1|,

‖ Q2(t, ϕt2 , Cψt2)− Q2(t, ϕt1 , Cψt1) ‖ ≤ LQ2
(r)(1 + C∗)|t2 − t1|,

‖ Q3(t, ϕt2 , Cψt2)− Q3(t, ϕt1 , Cψt1) ‖ ≤ LQ3
(r)(1 + C∗)|t2 − t1|,

and ‖gi(t, ϕt2)− gi(t, ϕt1)‖ ≤ Lgi(r)|t2 − t1|, t, t1, t2 ∈ I ,

for all function z : (−∞, T ] → X such that z0 = ψ ∈ Bh, z : I → X is continuous and

max
0≤s≤T

‖z(s)‖ ≤ r.

(H6) The function ζ : I × Bh → [0,∞) satisfies:

(i) For every ψ ∈ Bh, the function t 7→ ζ(t, ψ) is continuous.

(ii) There exists a constant Lζ > 0 such that

|ζ(t, ϕ2)− ζ(t, ϕ1)| ≤ Lζ‖ϕ2 − ϕ1‖Bh
, ϕ1, ϕ2 ∈ Bh for all t ∈ I .

(H7) The following inequalities holds:

(i) Let

max
1≤i≤N

{
MM0LQ1

‖ϕ‖Bh
+ML∗

gi
+ (M+ 1)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· T

αβ

β

)
L∗

Q1

+
M(M+ 1)Tα

Γ(α+ 1)
{L∗

Q2
+ L∗

Q3
}+ (E ∗

1 r + cn)

[
MLgi

+ (M+ 1)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· T

αβ

β

)
(LQ1

+ C∗L̃Q1
)

+
M(M+ 1)Tα

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
)}
]}

≤ r, for some r > 0.

8
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(ii) Let

Λ = E
∗
1 max

1≤i≤N

[
M(Lgi + 2Lgi(r)Lζ) + (M+ 1)

(
M0 +

M1−βΓ(β + 1)Tαβ

βΓ(αβ + 1)

)
(LQ1

+ C∗L̃Q1

+ LQ1
(r)L∗) +

M(M+ 1)Tα

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
) + (LQ2

(r) + LQ3
(r))L∗}

]
< 1

be such that 0 ≤ Λ < 1, where 2Lζ(1 + C∗) = L∗.

(H8) The functions Q1,Q2,Q3 and gi, i = 1, 2, · · · , N are continuous and there exist

µQ1
(t), µ̃Q1

(t), µQ2
(t), µ̃Q2

(t), µQ3
(t), µ̃Q3

(t), µgi ∈ C(I , [0,∞)) in a way that

‖(A )βQ1(t, ϕ1, ϕ2)‖X ≤ µQ1
(t)‖ϕ1‖Bh

+ µ̃Q1
(t)‖ϕ2‖Bh

,

‖Q2(t, ϕ1, ϕ2)‖X ≤ µQ2
(t)‖ϕ1‖Bh

+ µ̃Q2
(t)‖ϕ2‖Bh

,

‖Q3(t, ϕ1, ϕ2)‖X ≤ µQ3
(t)‖ϕ1‖Bh

+ µ̃Q3
(t)‖ϕ2‖Bh

,

‖gi(t, ϕ)‖X ≤ µgi(t)‖ϕ‖Bh
, i = 1, 2, · · · , N,

for all t ∈ I and ϕ,ϕj ∈ Bh, j = 1, 2.

Theorem 3.1. Assume that the conditions (H1)-(H7) hold. Then the structure (1.4)-(1.6) has a unique

mild solution on (−∞, T ].

Proof. We will transform the model (1.4)-(1.6) into a fixed-point problem. Recognize the operator

Υ : BT → BT specified by

(Υx)(t) =





Tα(t)[ϕ(0) − Q1(0, ϕ(0), 0)] + Q1(t, zζ(t,zt), Czζ(t,zt))

+

∫ t

0
A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, zζ(s,zs), Czζ(s,zs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, zζ(s,zs), Czζ(s,zs)

)
ds, t ∈ [0, t1],

gi(t, zζ(t,zt)), t ∈ (ti, si], i = 1, 2, · · · , N,
Tα(t− si)di + Q1(t, zζ(t,zt), Czζ(t,zt))

+

∫ t

0
A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, zζ(s,zs), Czζ(s,zs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, zζ(s,zs), Czζ(s,zs)

)
ds, t ∈ (si, ti+1],

(3.1)

with di, i = 1, 2, 3, · · · , N , defined by (2.17).

In perspective of [40, Theorem 2.1] and for any z ∈ X and β ∈ (0, 1), we obtain

‖A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))‖X
= ‖A 1−β

Sα(t− s)A β
Q1(s, zζ(s,zs), Czζ(s,zs))‖X

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

611 Selvaraj Suganya et al 603-633



≤
∥∥∥∥
[
α

∫ ∞

0
rφα(r)(t− s)α−1

A
1−β

T((t− s)αr)dr
]
A

β
Q1(s, zζ(s,zs), Czζ(s,zs))

∥∥∥∥
X

≤ αM1−β(t− s)αβ−1

[∫ ∞

0
rβφα(r)dr

]
‖A β

Q1(s, zζ(s,zs), Czζ(s,zs))‖X. (3.2)

On the other hand, from

∫ ∞

0
r−qψα(r)dr =

Γ(1 + q
α
)

Γ(1 + q)
, for all q ∈ [0, 1] (see [48, Lemma 3.2]), we have

∫ ∞

0
rβφα(r)dr =

∫ ∞

0

1

rβα
ψα(r)dr =

Γ(1 + β)

Γ(1 + αβ)
. (3.3)

From (3.2) and (3.3), we conclude that

‖A Sα(t− s)Q1(s, zζ(s,zs), Czζ(s,zs))‖X

≤ αM1−βΓ(1 + β)

Γ(1 + αβ)(t− s)1−αβ
‖A β

Q1(s, zζ(s,zs), Czζ(s,zs))‖X. (3.4)

It is obvious that the function s → A Tα(t − s)Q1(s, zζ(s,zs), Czζ(s,zs)) is integrable on [0, t) for every

t > 0.

It is clear that the fixed points of the operator Υ are mild solutions of the model (1.4)-(1.6). We

express the function ỹ(·) : (−∞, T ] → X as

ỹ(t) =




ϕ(t), t ≤ 0;

Tα(t)ϕ(0), t ∈ I ,

then ỹ0 = ϕ. For every function x ∈ C(I ,R) with x(0) = 0, we allocate as x̃ is characterized by

x̃(t) =




0, t ≤ 0;

x(t), t ∈ I .

If z(·) obeys (2.16), we are able to split it as z(t) = ỹ(t) + x(t), t ∈ I , which suggests zt = ỹt + xt, for

each t ∈ I and also the function x(·) obeys

x(t) =





−Tα(t)Q1(0, ϕ(0), 0) + Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ [0, t1],

gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)), t ∈ (ti, si], i = 1, 2, · · · , N,
Tα(t− si)d̃i + Q1(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ (si, ti+1],
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where

d̃i = gi(si, xζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

)

− Q1(si, xζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

, Cxζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

)

−
∫ si

0
A Sα(si − s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

−
∫ si

0
Sα(si − s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

−
∫ si

0
Sα(si − s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, i = 1, 2, · · · , N. (3.5)

Let B0
T = {x ∈ BT : x0 = 0 ∈ Bh}. Let ‖ · ‖B0

T

be the seminorm in B0
T described by

‖x‖B0

T

= sup
t∈I

‖x(t)‖X + ‖x0‖Bh
= sup

t∈I

‖x(t)‖X, x ∈ B
0
T ,

as a result (B0
T , ‖ · ‖B0

T

) is a Banach space. Set Br = {x ∈ B0
T : ‖x‖X ≤ r} for some r ≥ 0; then for

each r,Br ⊂ B0
T is clearly a bounded closed convex set. For x ∈ Br(0,B

0
T ), from phase space axioms

(P1)− (P3) and along with the above discussion, we receive

‖xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)‖Bh

≤ ‖xζ(s,xs+ỹs)‖Bh
+ ‖ỹζ(s,xs+ỹs)‖Bh

≤ E
∗
1 sup

0≤τ≤ζ(s,xs+ỹs)
‖x(τ)‖X + E

∗
2 ‖x0‖Bh

+ E
∗
1 sup

0≤τ≤ζ(s,xs+ỹs)
‖ỹ(τ)‖+ E

∗
2 ‖ỹ0‖Bh

≤ E
∗
1 sup

0≤τ≤s

‖x(τ)‖X + E
∗
1 ‖Tα(t)‖L (X)‖ϕ(0)‖ + E

∗
2 ‖ϕ‖Bh

≤ E
∗
1 sup

0≤τ≤s

‖x(τ)‖X + (E ∗
1 MH + E

∗
2 )‖ϕ‖Bh

.

In the event that ‖x‖X < r, r > 0, then

‖xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)‖Bh
≤ E

∗
1 r + cn, s ∈ I , (3.6)

where cn = (E ∗
1 MH + E ∗

2 )‖ϕ‖Bh
. We delimit the operator Υ : B0

T → B0
T by

(Υz)(t) =





−Tα(t)Q1(0, ϕ(0), 0) + Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ [0, t1],

gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)), t ∈ (ti, si], i = 1, 2, · · · , N,
Tα(t− si)d̃i + Q1(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

+

∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ (si, ti+1],
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with d̃i, i = 1, 2, · · · , N , defined by (3.5).

It is vindicated that the operator Υ has a fixed point if and only if Υ admits a fixed point.

Remark 3.1. As a result, we have the following estimations:

I1 = ‖Tα(t)Q1(0, ϕ(0), 0)‖X

≤
∥∥∥∥
∫ ∞

0
φα(r)T(t

αr)drQ1(0, ϕ, 0)

∥∥∥∥
X

= M‖(A )−β‖‖(A )βQ1(0, ϕ, 0)‖X
≤ MM0

[
LQ1

‖ϕ‖Bh
+ L∗

Q1

]
, where M0 = ‖(A )−β‖.

I2 =
∥∥Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)∥∥
X

≤ ‖(A )−β‖
[
‖(A )βQ1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)
− (A )βQ1(t, 0, 0)‖X

+ ‖(A )βQ1(t, 0, 0)‖X
]

≤ M0

[
(LQ1

+ L̃Q1
C∗)(E ∗

1 r + cn) + L∗
Q1

]
.

I3 =

∥∥∥∥
∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β

[
(LQ1

+ L̃Q1
C∗)(E ∗

1 r + cn) + L∗
Q1

]
, t ∈ [0, t1].

I4 =

∥∥∥∥
∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤
∥∥∥∥
∫ t

0
α

∫ ∞

0
rφα(r)(t− s)α−1

T((t− s)αr)dr

× Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ α

[∫ ∞

0
rφα(r)dr

] ∫ t

0
(t− s)α−1‖T((t− s)αr)‖L (X)

×
∥∥∥∥Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)

[
(LQ2

+ L̃Q2
C∗)(E ∗

1 r + cn) + L∗
Q2

]
, t ∈ [0, t1].

I5 =

∥∥∥∥
∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)

[
(LQ3

+ L̃Q3
C∗)(E ∗

1 r + cn) + L∗
Q3

]
, t ∈ [0, t1].

I6 = ‖gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))‖X
≤ ‖gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))− gi(t, 0)‖X + ‖gi(t, 0)‖X
≤ Lgi(E

∗
1 r + cn) + L∗

gi
, t ∈ (ti, si].

I7 = ‖gi(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

)‖X
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≤ Lgi(E
∗
1 r + cn) + L∗

gi
, t ∈ (si, ti+1].

I8 = ‖Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

, Cxζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

)‖X

≤ M0

[
(LQ1

+ L̃Q1
C∗)(E ∗

1 r + cn) + L∗
Q1

]
, t ∈ (si, ti+1].

I9 =

∥∥∥∥
∫ si

0
A Sα(si − s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (si)

αβ

β

[
(LQ1

+ L̃Q1
C∗)(E ∗

1 r + cn) + L∗
Q1

]
, t ∈ (si, ti+1].

I10 =

∥∥∥∥
∫ si

0
Sα(si − s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(si)
α

Γ(α+ 1)

[
(LQ2

+ L̃Q2
C∗)(E ∗

1 r + cn) + L∗
Q2

]
, t ∈ (si, ti+1].

I11 =

∥∥∥∥
∫ si

0
Sα(si − s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(si)
α

Γ(α+ 1)

[
(LQ3

+ L̃Q3
C∗)(E ∗

1 r + cn) + L∗
Q3

]
, t ∈ (si, ti+1].

I12 =

∥∥∥∥
∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (ti+1)

αβ

β

[
(LQ1

+ L̃Q1
C∗)(E ∗

1 r + cn) + L∗
Q1

]
, t ∈ (si, ti+1].

I13 =

∥∥∥∥
∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)

[
(LQ2

+ L̃Q2
C∗)(E ∗

1 r + cn) + L∗
Q2

]
, t ∈ (si, ti+1].

I14 =

∥∥∥∥
∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)

[
(LQ3

+ L̃Q3
C∗)(E ∗

1 r + cn) + L∗
Q3

]
, t ∈ (si, ti+1].

I15 =

∥∥∥∥Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

− Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

) ∥∥∥∥
X

≤
∥∥∥∥Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

− Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

+ Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

− Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

) ∥∥∥∥
X

≤ M0E
∗
1 (LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗)‖x− x‖B0

T

,

I16 =

∥∥∥∥
∫ t

0
A Sα(t− s)

[
Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))

− Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))

]
ds

∥∥∥∥
X
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≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β
E

∗
1 (LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗)‖x− x‖B0

T

, t ∈ [0, t1].

I17 =

∥∥∥∥
∫ t

0
Sα(t− s)

[
Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)
E

∗
1 (LQ2

+ L̃Q2
C∗ + LQ2

(r)L∗)‖x− x‖B0

T

, t ∈ [0, t1].

I18 =

∥∥∥∥
∫ t

0
Sα(t− s)

[
Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)
E

∗
1 (LQ3

+ L̃Q3
C∗ + LQ3

(r)L∗)‖x− x‖B0

T

, t ∈ [0, t1].

I19 = ‖gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))− gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))‖X
≤ E

∗
1 [Lgi + 2Lgi(r)Lζ ]‖x− x‖B0

T

, t ∈ (ti, si].

I20 = ‖gi(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

)− gi(si, xζ(si,xsi+ỹsi)
+ ỹζ(si,xsi+ỹsi )

)‖X
≤ E

∗
1 [Lgi + 2Lgi(r)Lζ ]‖x− x‖B0

T

, t ∈ (si, ti+1].

I21 = ‖Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

, Cxζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

)

− Q1(si, xζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi+ỹsi)
, Cxζ(si,xsi

+ỹsi )
+ ỹζ(si,xsi+ỹsi)

)‖X
≤ M0E

∗
1 (LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I22 =

∥∥∥∥
∫ si

0
A Sα(si − s)

[
Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))

− Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))

]
ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (si)

αβ

β
E

∗
1 (LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I23 =

∥∥∥∥
∫ si

0
Sα(si − s)

[
Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(si)
α

Γ(α+ 1)
E

∗
1 (LQ2

+ L̃Q2
C∗ + LQ2

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I24 =

∥∥∥∥
∫ si

0
Sα(si − s)

[
Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(si)
α

Γ(α+ 1)
E

∗
1 (LQ3

+ L̃Q3
C∗ + LQ3

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I25 =

∥∥∥∥
∫ t

0
A Sα(t− s)

[
Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))
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− Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))

]
ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (ti+1)

αβ

β
E

∗
1 (LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I26 =

∥∥∥∥
∫ t

0
Sα(t− s)

[
Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)
E

∗
1 (LQ2

+ L̃Q2
C∗ + LQ2

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

I27 =

∥∥∥∥
∫ t

0
Sα(t− s)

[
Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

− Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

) ]
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)
E

∗
1 (LQ3

+ L̃Q3
C∗ + LQ3

(r)L∗)‖x− x‖B0

T

, t ∈ (si, ti+1].

Now, we start proving the main proof of this Theorem. We demonstrate that Υ maps Br(0,B
0
T )

into Br(0,B
0
T ). For any x(·) ∈ B0

T , by employing Remark 3.1, we sustain

‖(Υx)(t)‖X =
5∑

i=1

Ii

≤ MM0LQ1
‖ϕ‖Bh

+

(
M0(M+ 1) +

M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β

)
L∗

Q1

+
M(t1)

α

Γ(α+ 1)
{L∗

Q2
+ L∗

Q3
}+ (E ∗

1 r + cn)

[(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β

)
(LQ1

+ C∗L̃Q1
)

+
M(t1)

α

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
)}
]

≤ r, t ∈ [0, t1].

‖(Υx)(t)‖X = I6 ≤ Lgi(E
∗
1 r + cn) + L∗

gi
, t ∈ (ti, si], i = 1, 2, · · · , N.

‖(Υx)(t)‖X =
14∑

i=7

Ii

≤ max
1≤i≤N

{
ML∗

gi
+

(
M0(M+ 1) +

M1−βΓ(β + 1)

βΓ(αβ + 1)
·
[
M(si)

αβ + (ti+1)
αβ
])

L∗
Q1

+
M

Γ(α+ 1)
{L∗

Q2
+ L∗

Q3
}
[
M(si)

α + (ti+1)
α
]
+ (E ∗

1 r + cn)

[
MLgi

+

(
M0(M+ 1) +

M1−βΓ(β + 1)

βΓ(αβ + 1)
· {M(si)

αβ + (ti+1)
αβ}
)
(LQ1

+ C∗L̃Q1
)

+
M

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
)}{M(si)

α + (ti+1)
α}
]}

≤ r, t ∈ (si, ti+1],
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Then, for all t ∈ I , we conclude that

‖(Υx)(t)‖X

≤ max
1≤i≤N

{
MM0LQ1

‖ϕ‖Bh
+ML∗

gi
+ (M+ 1)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· T

αβ

β

)
L∗

Q1

+
M(M+ 1)Tα

Γ(α+ 1)
{L∗

Q2
+ L∗

Q3
}+ (E ∗

1 r + cn)

[
MLgi

+ (M+ 1)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· T

αβ

β

)
(LQ1

+ C∗L̃Q1
)

+
M(M+ 1)Tα

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
)}
]}

≤ r.

Thus, Υ maps the ball Br(0,B
0
T ) into itself. Now, we prove that Υ is a contraction on Br(0,B

0
T ). Let

us consider x, x ∈ Br(0,B
0
T ), then from estimations Ij, j = 15, · · · , 27, we sustain

‖(Υx)(t)− (Υx)(t)‖X ≤ E
∗
1

[(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β

)
(LQ1

+ L̃Q1
C∗ + LQ1

(r)L∗) +
M(t1)

α

Γ(α+ 1)

{(LQ2
+ LQ3

) + C∗(L̃Q2
+ L̃Q3

) + L∗(LQ2
(r) + LQ3

(r))}
]
‖x− x‖B0

T

, t ∈ [0, t1].

‖(Υx)(t)− (Υx)(t)‖X ≤ E
∗
1 [Lgi + 2Lgi(r)Lζ ]‖x− x‖B0

T

, t ∈ (ti, si].

‖(Υx)(t)− (Υx)(t)‖X ≤ E
∗
1 max

1≤i≤N

[
MLgi +

(
M0(M+ 1) +

M1−βΓ(β + 1)

βΓ(αβ + 1)
· {M(si)

αβ + (ti+1)
αβ}
)

(LQ1
+ C∗L̃Q1

+ LQ1
(r)L∗) +

M
Γ(α+ 1)

{(LQ2
+ LQ3

) + C∗(L̃Q2
+ L̃Q3

)

+ L∗(LQ2
(r) + LQ3

(r))}{M(si)
α + (ti+1)

α}
]
‖x− x‖B0

T

, t ∈ (si, ti+1].

As a result, for all t ∈ I , we conclude that

‖(Υx)(t)− (Υx)(t)‖X

≤ E
∗
1 max

1≤i≤N

[
MLgi + (M+ 1)

(
M0 +

M1−βΓ(β + 1)Tαβ

βΓ(αβ + 1)

)
(LQ1

+ C∗L̃Q1
+ LQ1

(r)L∗)

+
M(M+ 1)Tα

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
) + L∗(LQ2

(r) + LQ3
(r))}

]
‖x− x‖B0

T

≤ Λ‖x− x‖B0

T

.

From the assumption (H7) and in the perspective of the contraction mapping principle, we

understand that Υ includes a unique fixed point x ∈ B0
T which is a mild solution of the model (1.4)-(1.6)

on (−∞, T ]. The proof is now completed.
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Theorem 3.2. Let the assumption (H8) hold and

Λ1 = E
∗
1 max

1≤i≤N

{
M‖µgi‖∞ + (M+ 1)

(
M0 +

M1−βΓ(β + 1)Tαβ

βΓ(αβ + 1)

)
(‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

}
< 1.

(3.7)

Then the system (1.4)-(1.6) has a mild solution on I .

Proof. Let Υ : B0
T → B0

T be the operator same as defined in Theorem 3.1. Now, we demonstrate that

Υ has a fixed point.

Remark 3.2. From the hypothesis (H8) along with the above discussion, we sustain

I28 = ‖Tα(t)Q1(0, ϕ(0), 0)‖X
≤ MM0‖µQ1

‖∞‖ϕ‖Bh
.

I29 =
∥∥Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)∥∥
X

≤ M0(E
∗
1 r + cn)

{
‖µQ1

‖∞ + ‖µ̃Q1
‖∞C∗

}
.

I30 =

∥∥∥∥
∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· t

αβ
1

β
(E ∗

1 r + cn)

{
‖µQ1

‖∞ + ‖µ̃Q1
‖∞C∗

}
, t ∈ [0, t1].

I31 =

∥∥∥∥
∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ2

‖∞ + ‖µ̃Q2
‖∞C∗

}
, t ∈ [0, t1].

I32 =

∥∥∥∥
∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(t1)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ3

‖∞ + ‖µ̃Q3
‖∞C∗

}
, t ∈ [0, t1].

I33 = ‖gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))‖X
≤ ‖µgi‖∞(E ∗

1 r + cn), t ∈ (ti, si].

I34 = ‖gi(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

)‖X
≤ ‖µgi‖∞(E ∗

1 r + cn), t ∈ (si, ti+1].

I35 = ‖Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

, Cxζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

)‖X

≤ M0(E
∗
1 r + cn)

{
‖µQ1

‖∞ + ‖µ̃Q1
‖∞C∗

}
, t ∈ (si, ti+1].

I36 =

∥∥∥∥
∫ si

0
A Sα(si − s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (si)

αβ

β
(E ∗

1 r + cn)

{
‖µQ1

‖∞ + ‖µ̃Q1
‖∞C∗

}
, t ∈ (si, ti+1].

I37 =

∥∥∥∥
∫ si

0
Sα(si − s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X
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≤ M(si)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ2

‖∞ + ‖µ̃Q2
‖∞C∗

}
, t ∈ (si, ti+1].

I38 =

∥∥∥∥
∫ si

0
Sα(si − s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(si)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ3

‖∞ + ‖µ̃Q3
‖∞C∗

}
, t ∈ (si, ti+1].

I39 =

∥∥∥∥
∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

∥∥∥∥
X

≤ M1−βΓ(β + 1)

Γ(αβ + 1)
· (ti+1)

αβ

β
(E ∗

1 r + cn)

{
‖µQ1

‖∞ + ‖µ̃Q1
‖∞C∗

}
, t ∈ (si, ti+1].

I40 =

∥∥∥∥
∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ2

‖∞ + ‖µ̃Q2
‖∞C∗

}
, t ∈ (si, ti+1].

I41 =

∥∥∥∥
∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

∥∥∥∥
X

≤ M(ti+1)
α

Γ(α+ 1)
(E ∗

1 r + cn)

{
‖µQ3

‖∞ + ‖µ̃Q3
‖∞C∗

}
, t ∈ (si, ti+1].

Now, we will give the main proof of this theorem. We remark that (Υx)(t) ⊂ B0
T . Let Br be the set

same as defined in Theorem 3.1, where

r ≥ max
1≤i≤N

{
MM0‖µQ1

‖∞‖ϕ‖Bh
+ (E ∗

1 r + cn)

[
M‖µgi‖∞

+ (M+ 1)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· T

αβ

β

)
(‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

+
M(M+ 1)Tα

Γ(α+ 1)
{(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)}

]}
.

It is obvious that Br is closed bounded and convex subset of B0
T . Let x ∈ Br(0,B

0
T ) then for t ∈ [0, t1],

we receive

‖(Υx)‖B0

T

≤ MM0‖µQ1
‖∞‖ϕ‖Bh

+ (E ∗
1 r + cn)

[(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· (t1)

αβ

β

)
(‖µQ1

‖∞

+ C∗‖µ̃Q1
‖∞) +

M(t1)
α

Γ(α+ 1)
{(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)}

]
.

In the similar manner for t ∈ (ti, si], we sustain

‖(Υx)‖B0

T

≤ ‖µQ1
‖∞‖ϕ‖Bh

(E ∗
1 r + cn), i = 1, 2, · · · , N.

Similarly, for t ∈ (si, ti+1], we find that
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‖(Υx)‖B0

T

≤ max
1≤i≤N

(E ∗
1 r + cn)

{
M‖µgi‖∞

+

(
M0(M+ 1) +

M1−βΓ(β + 1)

βΓ(αβ + 1)
· {M(si)

αβ + (ti+1)
αβ}
)
(‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

+
M

Γ(α+ 1)
{(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)}{M(si)

α + (ti+1)
α}
}
.

From this, we notice that ‖Υx‖B0

T

≤ r for every t ∈ I . Therefore, Υ(Br) ⊆ Br. In order to utilizing

the Theorem 2.2, we have to prove that the operator Υ is a condensing operator. For this, we split Υ

by Υ = Υ1 +Υ2, where

(Υ1x)(t) =





−Tα(t)Q1(0, ϕ(0), 0) + Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds, t ∈ [0, t1],

gi(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)), t ∈ (ti, si], i = 1, 2, · · · , N,

Tα(t− si)

[
gi(si, xζ(si,xsi

+ỹsi)
+ ỹζ(si,xsi

+ỹsi)
)

−Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

, Cxζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

)

−
∫ si

0
A Sα(si − s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds

]

+Q1(t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt))

+

∫ t

0
A Sα(t− s)Q1(s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs))ds, t ∈ (si, ti+1],

and

(Υ2x)(t) =





∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, · · · , N,

−Tα(t− si)

[ ∫ si

0
Sα(si − s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

−
∫ si

0
Sα(si − s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

]

+

∫ t

0
Sα(t− s)Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds

+

∫ t

0
Sα(t− s)Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
ds, t ∈ (si, ti+1].

Firstly, we show that Υ1 is continuous, so we consider a sequence xn → x ∈ Br. In perspective of (3.1),

we notice that

‖xnζ(t,xn
t
+ỹt)

+ ỹζ(t,xn
t
+ỹt)‖Bh

≤ E
∗
1 r + cn.
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Remark 3.3. By utilizing the hypothesis (H8) and Definition 2.2, we receive:

(i) For every t ∈ [0, t1], we obtain

Q1

(
t, xnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt), Cxnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt)

)

→ Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

and since
∥∥∥∥Q1

(
t, xnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt), Cxnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt)

)

−Q1

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)∥∥∥∥
X

≤ 2I29.

(ii) For every t ∈ [0, t1], we obtain

A Sα(t− s)Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

→ A Sα(t− s)Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

and since
∥∥∥∥
∫ t

0
A Sα(t− s)

[
Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

−Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)]
ds

∥∥∥∥
X

≤ 2I30.

(iii) For each t ∈ (ti, si], we sustain

gi

(
t, xnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt), Cxnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt)

)

→ gi

(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)

and since
∥∥∥∥gi
(
t, xnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt), Cxnζ(t,xn

t
+ỹt)

+ ỹζ(t,xn
t
+ỹt)

)

−gi
(
t, xζ(t,xt+ỹt) + ỹζ(t,xt+ỹt), Cxζ(t,xt+ỹt) + ỹζ(t,xt+ỹt)

)∥∥∥∥
X

≤ 2I33.

(iv) For every t ∈ (si, ti+1], we receive

gi(si, x
n
ζ(si,xn

si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi)

) → gi(si, xζ(si,xsi
+ỹsi )

+ ỹζ(si,xsi
+ỹsi)

)

and since
∥∥∥∥gi(si, xnζ(si,xn

si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi )

)− gi(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

)

∥∥∥∥
X

≤ 2I34.
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(v) For all t ∈ (si, ti+1], we get

Q1(si, x
n
ζ(si,xn

si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi )

, Cxnζ(si,xn
si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi )

)

→ Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

, Cxζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi)

)

and since
∥∥∥∥Q1(si, x

n
ζ(si,xn

si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi)

, Cxnζ(si,xn
si
+ỹsi)

+ ỹζ(si,xn
si
+ỹsi)

)

−Q1(si, xζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

, Cxζ(si,xsi
+ỹsi)

+ ỹζ(si,xsi
+ỹsi )

)

∥∥∥∥
X

≤ 2I35.

(vi) For every t ∈ (si, ti+1], we obtain

A Sα(si − s)Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

→ A Sα(si − s)Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

and since
∥∥∥∥
∫ si

0
A Sα(si − s)

[
Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

−Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)]
ds

∥∥∥∥
X

≤ 2I36.

(vii) For every t ∈ (si, ti+1], we find that

A Sα(t− s)Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

→ A Sα(t− s)Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)

and since
∥∥∥∥
∫ t

0
A Sα(t− s)

[
Q1

(
s, xnζ(s,xn

s+ỹs)
+ ỹζ(s,xn

s+ỹs), Cxnζ(s,xn
s+ỹs)

+ ỹζ(s,xn
s+ỹs)

)

−Q1

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)]
ds

∥∥∥∥
X

≤ 2I39.

From the Remark 3.3, for all [0, t1], we have

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ 2(I29 + I30),

and for every t ∈ (si, ti+1], we receive

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ 2

[
M(I34 + I35 + I36) + I29 + I39

]
.

Since the functions Q1 and gi, i = 1, 2, · · · , N are continuous, so we conclude that

‖(Υ1x
n)− (Υ1x)‖B0

T

→ 0 as n→ ∞.
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Hence Υ1 is continuous.

Next, we prove that the operator Υ1 is contraction on Br(0,B
0
T ). Indeed, let x, x ∈ Br(0,B

0
T ), for

[0, t1], we sustain

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ E
∗
1 (‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

(
M0 +

M1−βΓ(β + 1)

Γ(αβ + 1)
· (t1)

αβ

β

)
‖x− x‖B0

T

,

and for t ∈ (ti, si], we get

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ E
∗
1 ‖µgi‖∞‖x− x‖B0

T

,

and for every t ∈ (si, ti+1], we sustain

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ E
∗
1 max

1≤i≤N

{
M‖µgi‖∞

+

(
M0(M+ 1) +

M1−βΓ(β + 1)

βΓ(αβ + 1)
· {M(si)

αβ + (ti+1)
αβ}
)
(‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

}
‖x− x‖B0

T

.

Then for all t ∈ I , we find that

‖(Υ1x
n)− (Υ1x)‖B0

T

≤ E
∗
1 max

1≤i≤N

{
M‖µgi‖∞ + (M+ 1)

(
M0 +

M1−βΓ(β + 1)Tαβ

βΓ(αβ + 1)

)
(‖µQ1

‖∞ + C∗‖µ̃Q1
‖∞)

}
‖x− x‖B0

T

≤ Λ1‖x− x‖B0

T

.

Since Λ1 < 1, which implies that Υ1 is a contraction.

Next, we prove that the operator Υ2 is completely continuous on Br(0,B
0
T ). First, we prove Υ2 is

continuous, so consider a sequence xn → x ∈ Br. By applying the condition (H8), I31, I32, I37, I38, I40, I41

and in perspective of Remark 3.3, for all t ∈ [0, t1], we get

‖(Υ2x
n)− (Υ2x)‖B0

T

≤ 2(I31 + I32),

and for all t ∈ (si, ti+1], we receive

‖(Υ2x
n)− (Υ2x)‖B0

T

≤ 2

[
M(I37 + I38) + I40 + I41

]
.

Since the functions Q2 and Q3 are continuous, so we conclude that

‖(Υ2x
n)− (Υ2x)‖B0

T

→ 0 as n→ ∞.

Hence Υ2 is continuous.

Next, we show that the operator Υ2 maps bounded sets into bounded set in Br. It is enough to

show that there exists a positive constant Λ2 such that for each x ∈ Br one has ‖Υ2x‖B0

T

≤ Λ2. For all

t ∈ I , we obtain

‖Υ2x‖B0

T

≤ M(M+ 1)Tα

Γ(α+ 1)
(E ∗

1 r + cn)

{
(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)

}
≤ Λ2.
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Finally, we show that Υ2 is a family of equi-continuous functions. Let τ1, τ2 ∈ [0, t1] be such that

0 ≤ τ1 < τ2 ≤ t1. Then

‖(Υ2x)(τ2)− (Υ2x)(τ1)‖X

≤
∫ τ1

0
‖Sα(τ2 − s)− Sα(τ1 − s)‖L (X)‖Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
‖Xds

+

∫ τ2

τ1

‖Sα(τ2 − s)‖L (X)‖Q2

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
‖Xds

+

∫ τ1

0
‖Sα(τ2 − s)− Sα(τ1 − s)‖L (X)‖Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
‖Xds

+

∫ τ2

τ1

‖Sα(τ2 − s)‖L (X)‖Q3

(
s, xζ(s,xs+ỹs) + ỹζ(s,xs+ỹs), Cxζ(s,xs+ỹs) + ỹζ(s,xs+ỹs)

)
‖Xds

≤ (E ∗
1 r + cn)

{
(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)

}(∫ τ1

0
‖Sα(τ2 − s)− Sα(τ1 − s)‖L (X)ds

+
M(τ2 − τ1)

α

Γ(α+ 1)

)
,

and for all τ1, τ2 ∈ (si, ti+1], we have

‖(Υ2x)(τ2)− (Υ2x)(τ1)‖X

≤ (E ∗
1 r + cn)

{
(‖µQ2

‖∞ + ‖µQ3
‖∞) + C∗(‖µ̃Q2

‖∞ + ‖µ̃Q3
‖∞)

}(∫ τ1

0
‖Sα(τ2 − s)− Sα(τ1 − s)‖L (X)ds

+
M(τ2 − τ1)

α

Γ(α+ 1)
+

M(si)
α

Γ(α+ 1)
‖Tα(τ2 − si)− Tα(τ1 − si)‖L (X)

)
.

Since Tα and Sα are strongly continuous, so lim
τ2→τ1

‖Sα(τ2 − s)− Sα(τ1 − s)‖L (X) = 0, lim
τ2→τ1

‖Tα(τ2 −
si) − Tα(τ1 − si)‖L (X) = 0. From this, we conclude that ‖(Υ2x)(τ2) − (Υ2x)(τ1)‖X → 0 as τ2 → τ1.

This proves that Υ2 is a family of equi-continuous functions. Hence, the operator Υ2 is completely

continuous. Therefore the operator Υ = Υ1 +Υ2 is a condensing operator from B0
T into B0

T , where Υ1

is contraction and Υ2 is completely continuous. Finally, from Theorem 2.2, we infer that there exists a

mild solution of the structure (1.4)-(1.6). This completes the proof.

4 Example

To prove our theoretical results, we treat the IFNIDS with SDD of the model

Dα
t

[
u(t, z) +

∫ t

−∞
e2(s−t)u(s− ζ1(s)ζ2(‖u(s)‖), z)

49
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ζ1(τ)ζ2(‖u(τ)‖), z)

36
dτds

]
=

∂2

∂z2
u(t, z)

+

∫ t

−∞
e2(s−t)u(s − ζ1(s)ζ2(‖u(s)‖), z)

9
ds
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+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ζ1(τ)ζ2(‖u(τ)‖), z)

25
dτds

+

∫ t

−∞
e2(s−t)u(s− ζ1(s)ζ2(‖u(s)‖), z)

64
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ζ1(τ)ζ2(‖u(τ)‖), z)

16
dτds, (t, z) ∈

N⋃

i=1

(si, ti+1]× [0, π], (4.1)

u(t, 0) = 0 = u(t, π), t ∈ [0, T ], (4.2)

u(t, z) = ϕ(t, z), t ≤ 0, z ∈ [0, π], (4.3)

u(t, z) =

∫ t

−∞
e2(s−t)u(s− ζ1(s)ζ2(‖u(s)‖), z)

81
ds, (t, z) ∈ (ti, si]× [0, π], i = 1, 2, . . . , N, (4.4)

where CD
q
t is Caputo’s fractional derivative of order 0 < q < 1, 0 = t0 = s0 < t1 < t2 < · · · <

tN−1 ≤ SN ≤ tN ≤ tN+1 = T are pre-fixed real numbers and ϕ ∈ Bh. We consider X = L2[0, π] having

the norm ‖ · ‖L2 and determine the operator A : D(A ) ⊂ X → X by A w = w′′ having the domain

D(A ) = {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}.

Then

A w =
∞∑

n=1

n2〈w,wn〉wn, w ∈ D(A ),

where wn(s) =
√

2
π
sin(ns), n = 1, 2, . . . , . denotes the orthogonal set of eigenvectors of A . It is long

familiar that A is the infinitesimal generator of an analytic semigroup {T(t)}t≥0 in X and is provided

by

T(t)w =
∞∑

n=1

e−n2t〈w,wn〉wn, for all w ∈ X, and every t > 0.

We can find a constant M > 0 in a way that ‖ T(t) ‖≤ M. If we fix β = 1
2 , then the operator (A )

1

2

is given by

(A )
1

2w =

∞∑

n=1

−n2〈w,wn〉wn, w ∈ (D(A )
1

2 ),

in which (D(A )
1

2 ) =

{
ω(·) ∈ X :

∞∑

n=1

n2〈ω,wn〉wn ∈ X

}
. Then

Sα(t)w = α

∫ ∞

0
rφα(r)t

α−1
T(tαr)dr,

=

∞∑

n=1

Eα,α(−n2tα)〈w,wn〉wn, w ∈ X.

For the phase space, we choose h = e2s, s < 0, then l =

∫ 0

−∞
h(s)ds =

1

2
< ∞, for t ≤ 0 and

determine

‖ϕ‖Bh
=

∫ 0

−∞
h(s) sup

θ∈[s,0]
‖ϕ(θ)‖L2ds.
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Hence, for (t, ϕ) ∈ [0, T ]× Bh, where ϕ(θ)(z) = ϕ(θ, z), (θ, z) ∈ (−∞, 0]× [0, π]. Set

u(t)(z) = u(t, z), ζ(t, ϕ) = ζ1(t)ζ2(‖ϕ(0)‖),

we have

Q1(t, ϕ,H ϕ)(z) =

∫ 0

−∞
e2(s)

ϕ

49
ds+ (H ϕ)(z),

Q2(t, ϕ, H̃ ϕ)(z) =

∫ 0

−∞
e2(s)

ϕ

9
ds+ (H̃ ϕ)(z),

Q3(t, ϕ, Ĥ ϕ)(z) =

∫ 0

−∞
e2(s)

ϕ

64
ds+ (Ĥ ϕ)(z),

gi(t, ϕ)(z) =

∫ 0

−∞
e2(s)

ϕ

81
ds, i = 1, 2, · · · , N,

where

(H ϕ)(z) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ϕ

36
dτds,

(H̃ ϕ)(z) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ϕ

25
dτds,

(Ĥ ϕ)(z) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ϕ

16
dτds,

then using these configurations, the system (4.1)-(4.4) is usually written in the theoretical form of design

(1.4)-(1.6).

To treat this system we assume that ζi : [0,∞) → [0,∞), i = 1, 2 are continuous. Now, we can see

that for t ∈ [0, 1], ϕ, ϕ ∈ Bh, we have

‖(A )
1

2Q1(t, ϕ,H ϕ)‖X ≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ϕ
49

∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥ ϕ
36

∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

49

∫ 0

−∞
e2(s) sup ‖ϕ‖ds + 1

36

∫ 0

−∞
e2(s) sup ‖ϕ‖ds

)2

dz

) 1

2

≤
√
π

49
‖ϕ‖Bh

+

√
π

36
‖ϕ‖Bh

≤ LQ1
‖ϕ‖Bh

+ L̃Q1
‖ϕ‖Bh

,

where LQ1
+ L̃Q1

= 85
√
π

1764 , and

‖(A )
1

2Q1(t, ϕ,H ϕ)− (A )
1

2Q1(t, ϕ,H ϕ)‖X

≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥
ϕ

49
− ϕ

49

∥∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥∥
ϕ

36
− ϕ

36

∥∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

49

∫ 0

−∞
e2(s) sup ‖ϕ− ϕ‖ds + 1

36

∫ 0

−∞
e2(s) sup ‖ϕ − ϕ‖ds

)2

dz

) 1

2
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≤
√
π

49
‖ϕ− ϕ‖Bh

+

√
π

36
‖ϕ− ϕ‖Bh

≤ LQ1
‖ϕ− ϕ‖Bh

+ L̃Q1
‖ϕ− ϕ‖Bh

.

Similarly, we conclude

‖Q2(t, ϕ, H̃ ϕ)‖L2 ≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ϕ
9

∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥ ϕ
25

∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

9

∫ 0

−∞
e2(s) sup ‖ϕ‖ds + 1

25

∫ 0

−∞
e2(s) sup ‖ϕ‖ds

)2

dz

) 1

2

≤
√
π

9
‖ϕ‖Bh

+

√
π

25
‖ϕ‖Bh

≤ LQ2
‖ϕ‖Bh

+ L̃Q2
‖ϕ‖Bh

,

where LQ2
+ L̃Q2

= 34
√
π

225 , and

‖Q2(t, ϕ, H̃ ϕ)− Q2(t, ϕ, H̃ ϕ)‖L2

≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥
ϕ

9
− ϕ

9

∥∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥∥
ϕ

25
− ϕ

25

∥∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

9

∫ 0

−∞
e2(s) sup ‖ϕ− ϕ‖ds + 1

25

∫ 0

−∞
e2(s) sup ‖ϕ − ϕ‖ds

)2

dz

) 1

2

≤
√
π

9
‖ϕ− ϕ‖Bh

+

√
π

25
‖ϕ− ϕ‖Bh

≤ LQ2
‖ϕ− ϕ‖Bh

+ L̃Q2
‖ϕ− ϕ‖Bh

.

Correspondingly, we have

‖Q3(t, ϕ, Ĥ ϕ)‖L2 ≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ϕ
64

∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥ ϕ
16

∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

64

∫ 0

−∞
e2(s) sup ‖ϕ‖ds + 1

16

∫ 0

−∞
e2(s) sup ‖ϕ‖ds

)2

dz

) 1

2

≤
√
π

64
‖ϕ‖Bh

+

√
π

16
‖ϕ‖Bh

≤ LQ3
‖ϕ‖Bh

+ L̃Q3
‖ϕ‖Bh

,

where LQ3
+ L̃Q3

= 80
√
π

1024 , and

‖Q3(t, ϕ, Ĥ ϕ)− Q3(t, ϕ, Ĥ ϕ)‖L2

≤
(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥
ϕ

64
− ϕ

64

∥∥∥∥ ds+
∫ t

0
‖ sin(t− s)‖

∫ 0

−∞
e2(τ)

∥∥∥∥
ϕ

16
− ϕ

16

∥∥∥∥ dτds
)2

dz

) 1

2

≤
(∫ π

0

(
1

64

∫ 0

−∞
e2(s) sup ‖ϕ− ϕ‖ds + 1

16

∫ 0

−∞
e2(s) sup ‖ϕ − ϕ‖ds

)2

dz

) 1

2

26
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≤
√
π

64
‖ϕ− ϕ‖Bh

+

√
π

16
‖ϕ− ϕ‖Bh

≤ LQ3
‖ϕ− ϕ‖Bh

+ L̃Q3
‖ϕ− ϕ‖Bh

.

Finally,

‖gi(t, ϕ)‖X =

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ϕ
81

∥∥∥ ds
)2

dz

) 1

2

≤
(∫ π

0

(
1

81

∫ 0

−∞
e2(s) sup ‖ϕ‖ds

)2

dz

) 1

2

≤ Lgi‖ϕ‖Bh
, i = 1, 2, · · · , N,

where Lgi =
√
π

81 , and

‖gi(t, ϕ) − gi(t, ϕ)‖X

=

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥
ϕ

81
− ϕ

81

∥∥∥∥ ds
)2

dz

) 1

2

≤
(∫ π

0

(
1

81

∫ 0

−∞
e2(s) sup ‖ϕ− ϕ‖ds

)2

dz

) 1

2

≤ Lgi‖ϕ− ϕ‖Bh
.

Therefore the conditions (H1)-(H6) are all fulfilled. Furthermore, we assume that E1∗ = 1,M =

1,M0 = 1,M 1

2

= 1, α = 1
2 , T = 1, C∗ = 1 and Lζ = 1. Moreover, the appropriate values of the constants

Lgi(r), LQ1
(r), LQ2

(r) and LQ3
(r), obtain

Λ = E
∗
1 max

1≤i≤N

[
M(Lgi + 2Lgi(r)Lζ) + (M+ 1)

(
M0 +

M1−βΓ(β + 1)Tαβ

βΓ(αβ + 1)

)
(LQ1

+ C∗L̃Q1

+ LQ1
(r)L∗) +

M(M+ 1)Tα

Γ(α+ 1)
{(LQ2

+ LQ3
) + C∗(L̃Q2

+ L̃Q3
) + (LQ2

(r) + LQ3
(r))L∗}

]
< 1

be such that 0 ≤ Λ < 1, where 2Lζ(1 + C∗) = L∗. Thus the condition (H7) holds. Hence by Theorem

3.1, we realize that the system (4.1)-(4.4) has a unique mild solution on [0,1].
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Characterizations of positive implicative superior ideals induced
by superior mappings
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Abstract. The notion of positive implicative superior ideals of BCK-algebras is introduced, and their

properties are investigated. Relations between a superior ideal and a positive implicative superior ideal in

BCK-algebras are studied, and conditions for a superior ideal to be a positive implicative superior ideal

are provided. Characterizations of positive implicative superior ideals induced by superior mappings are

discussed.

1. Introduction

Algebras have played an important role in pure and applied mathematics and have its comprehensive

applications in many aspects including dynamical systems and genetic code of biology (see [1], [2], [7],

and [12]). Starting from the four DNA bases order in the Boolean lattice, Sáanchez et al. [11] proposed

a novel Lie Algebra of the genetic code which shows strong connections among algebraic relationship,

codon assignments and physicochemical properties of amino acids. A BCK/BCI-algebra (see [3, 4, 10])

is an important class of logical algebras introduced by Iséki and was extensively investigated by several

researchers. Jun and Song [5] introduced the notion of BCK-valued functions and investigated several

properties. They established block-codes by using the notion of BCK-valued functions, and shown that

every finite BCK-algebra determines a block-code. In [6], Jun and Song introduced the notion of superior

mapping by using partially ordered sets. Using the superior mapping, they introduced the concept of

superior subalgebras and (commutative) superior ideals in BCK/BCI-algebras, and investigated related

properties. They also discussed relations among a superior subalgebra, a superior ideal and a commutative

superior ideal.

In this paper, we introduce the notion of positive implicative superior ideals of BCK-algebras, and in-

vestigate properties. We investigate relations between a superior ideal and a positive implicative superior

ideal in BCK-algebras. We provide conditions for a superior ideal to be a positive implicative superior

ideal, and discuss characterizations of positive implicative superior ideals.

0 2010 Mathematics Subject Classification: 06F35, 03G25, 06A11.
0 Keywords: superior mapping, superior subalgebra, superior ideal, positive implicative superior

ideal.
∗ Correspondence: +82 2 2220 0897 (Phone)
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2. Preliminaries

We display basic definitions and properties of BCK/BCI-algebras that will be used in this paper. For

more details of BCK/BCI-algebras, we refer the reader to [3], [8], [9] and [10].

An algebra L := (L; ∗, 0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀x, y, z ∈ L) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ L) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ L) (x ∗ x = 0),

(IV) (∀x, y ∈ L) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra L satisfies the following identity:

(V) (∀x ∈ L) (0 ∗ x = 0),

then L is called a BCK-algebra.

A BCK-algebra L is said to be positive implicative if it satisfies:

(∀x, y, z ∈ L) ((x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)) . (2.1)

Any BCK/BCI-algebra L satisfies the following conditions:

(∀x ∈ L) (x ∗ 0 = x) , (2.2)

(∀x, y, z ∈ L) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.3)

(∀x, y, z ∈ L) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.4)

(∀x, y, z ∈ L) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.5)

where x ≤ y if and only if x ∗ y = 0.

A subset A of a BCK/BCI-algebra L is called an ideal of L if it satisfies:

0 ∈ A, (2.6)

(∀x, y ∈ L) (x ∗ y ∈ A, y ∈ A ⇒ x ∈ A) . (2.7)

A subset A of a BCK-algebra L is called a positive implicative ideal of L if it satisfies (2.6) and

(∀x, y, z ∈ L) ((x ∗ y) ∗ z ∈ A, y ∗ z ∈ A ⇒ x ∗ z ∈ A) . (2.8)

Let L be a set of parameters and let U be a partially ordered set with the partial ordering � and the

first element e. For a mapping f̃ : L→ P(U), we consider the mapping

||f̃ || : L→ U, x 7→

{
sup f̃(x) if ∃ sup f̃(x),

e otherwise,
(2.9)

which is called the superior mapping of L with respect to
(
f̃ , L

)
. In this case, we say that

(
f̃ , L

)
is a

pair on (U,�) (see [6]).
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Characterizations of positive implicative superior ideals

Definition 2.1 ([6]). Let L := (L, ∗, 0) be a BCK/BCI-algebra. By a superior ideal on (L, f̃), we mean

the superior mapping ||f̃ || of L with respect to
(
f̃ , L

)
which satisfies the following conditions:

(∀x ∈ L)
(
||f̃ ||(0) � ||f̃ ||(x)

)
, (2.10)

(∀x, y ∈ L)
(
||f̃ ||(x) � sup{||f̃ ||(x ∗ y), ||f̃ ||(y)}

)
. (2.11)

Proposition 2.2 ([6]). If ||f̃ || is a superior ideal on (L, f̃), then ||f̃ ||(x) � ||f̃ ||(y) for all x, y ∈ L with

x ≤ y.

3. Positive implicative superior ideals

In what follows, let L := (L, ∗, 0) be a BCK-algebra unless otherwise specified, where L is a set of

parameters.

Definition 3.1. By a positive implicative superior ideal on (L, f̃), we mean the superior mapping ||f̃ ||
of L with respect to

(
f̃ , L

)
which satisfies the condition (2.10) and

(∀x, y, z ∈ L)
(
||f̃ ||(x ∗ z) � sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(y ∗ z)}

)
. (3.1)

Example 3.2. Let L = {0, 1, 2, 3} be a set with a binary operation ‘∗’ shown in Table 1.

Table 1. Cayley table for the binary operation ‘∗’

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 2 0 2

3 3 3 3 0

Then L := (L, ∗, 0) is a BCK-algebra (see [10]). Let U = {a, b, c, d, e, f} be ordered as pictured in Figure

A3.

rr
rr rr

a

b
c

e

d

f

�
�

@
@
�
��
�

H
HH

H

Figure A3
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(1) Let
(
f̃ , L

)
be a pair on (U,�) where f̃ is given as follows:

f̃ : L→ P(U), x 7→


{a, b} if x = 0,

{a, d, f} if x = 1,

{b, c, d, f} if x = 2,

{a, b, c} if x = 3.

Then the superior mapping ||f̃ || of L with respect to
(
f̃ , L

)
is described as follows: ||f̃ ||(0) = b, ||f̃ ||(1) =

||f̃ ||(2) = f and ||f̃ ||(3) = c. By routine calculations, we know that ||f̃ || is a positive implicative superior

ideal on (L, f̃).

(2) Let (g̃, L) be a pair on (U,�) where g̃ is given as follows:

g̃ : L→ P(U), x 7→


{a, b} if x = 0,

{b, c, d, e} if x = 3,

{b, c, d, f} if x ∈ {1, 2}.

Then the superior mapping ||g̃|| of L with respect to (g̃, L) is described as follows: ||g̃||(0) = b, ||f̃ ||(1) =

||f̃ ||(2) = f and ||f̃ ||(3) = e. It is not a positive implicative superior ideal on (L, f̃) since there does not

exist sup{||f̃ ||((3 ∗ 2) ∗ 1), ||f̃ ||(2 ∗ 1)} because ||f̃ ||((3 ∗ 2) ∗ 1) = e and ||f̃ ||(2 ∗ 1) = f are noncomparable.

Example 3.3. Let U = {a, b, c, d, e, f} be ordered as pictured in Figure B3.

r r r
rr ra

b

c

e

d

f�
�

@
@

@
@�
�

@
@

Figure B3

Let L = {0, 1, 2, 3, 4} be a set with a binary operation ‘∗’ shown in Table 2.

Table 2. Cayley table for the binary operation ‘∗’

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 4 4 0
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Then L := (L, ∗, 0) is a BCK-algebra (see [10]). Let
(
f̃ , L

)
be a pair on (U,�) where f̃ is defined by

f̃ : L→ P(U), x 7→



{b, c} if x = 0,

{a, b, e} if x = 1,

{b, e, f} if x = 2,

{a, c, e, f} if x = 3,

{d, e} if x = 4.

Then the superior mapping of L with respect to
(
f̃ , L

)
is described as follows: ||f̃ ||(0) = b, ||f̃ ||(1) = c,

||f̃ ||(2) = e, ||f̃ ||(3) = c and ||f̃ ||(4) = d, and it is neither a superior ideal nor a positive implicative

superior ideal on (L, f̃).

Theorem 3.4. Let
(
f̃ , L

)
be a pair on (U,�). If ||f̃ || is a positive implicative superior ideal on (L, f̃),

then the nonempty set

||f̃ ||α := {x ∈ L | ||f̃ ||(x) � α}

is a positive implicative ideal of L for all α ∈ U .

Proof. Let α ∈ U be such that ||f̃ ||α 6= ∅. Clearly 0 ∈ ||f̃ ||α. Let x, y, z ∈ L be such that (x∗y)∗z ∈ ||f̃ ||α
and y ∗ z ∈ ||f̃ ||α. Then ||f̃ ||((x ∗ y) ∗ z) � α and ||f̃ ||(y ∗ z) � α. It follows from (3.1) that

||f̃ ||(x ∗ z) � sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(y ∗ z)} � α.

Thus x ∗ z ∈ ||f̃ ||α, and therefore ||f̃ ||α is a positive implicative ideal of L. �

Corollary 3.5. Let
(
f̃ , L

)
be a pair on (U,�). If ||f̃ || is a positive implicative superior ideal on (L, f̃),

then the set

A := {x ∈ L | ||f̃ ||(x) = ||f̃ ||(0)}

is a positive implicative ideal of L.

Theorem 3.6. Every positive implicative superior ideal is a superior ideal.

Proof. Let ||f̃ || be a positive implicative superior ideal on (L, f̃). If we take z = 0 in (3.1) and use (2.2),

then

||f̃ ||(x) = ||f̃ ||(x ∗ 0) � sup{||f̃ ||((x ∗ y) ∗ 0), ||f̃ ||(y ∗ 0)} = sup{||f̃ ||(x ∗ y), ||f̃ ||(y)}

for all x, y ∈ L. Hence ||f̃ || is a superior ideal on (L, f̃). �

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7. Let L = {0, a, b, c} be a set with a binary operation ‘∗’ shown in Table 3.

Then L := (L, ∗, 0) is a BCK-algebra (see [10]). Let U = {1, 2, 3, · · · , 8} be ordered as pictured in Figure

1.
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Table 3. Cayley table for the binary operation ‘∗’

∗ 0 a b c

0 0 0 0 0

a a 0 0 a

b b a 0 b

c c c c 0

r
r

r
r

r
r
r
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Figure 1

Consider a pair
(
f̃ , L

)
in which f̃ is given as follows:

f̃ : L→ P(U), x 7→


{6, 8} if x ∈ {0},
{4, 6, 7} if x ∈ {a, b},
{2, 3, 5, 6, 7} if x = c.

Then the superior mapping ||f̃ || on (L, f̃) is described as follows: ||f̃ ||(0) = 6, ||f̃ ||(a) = ||f̃ ||(b) = 3 and

||f̃ ||(c) = 2. Routine calculations show that ||f̃ || is a superior ideal on (L, f̃). But it is not a positive

implicative superior ideal on (L, f̃) since

||f̃ ||(b ∗ a) = 3 � 6 = sup{||f̃ ||((b ∗ a) ∗ a), ||f̃ ||(a ∗ a)}.

We provide conditions for a superior ideal to be a positive implicative superior ideal.

Theorem 3.8. For a superior ideal ||f̃ || on (L, f̃), the following are equivalent.

(i) ||f̃ || is a positive implicative superior ideal on (L, f̃).

(ii) (∀x, y ∈ L)
(
||f̃ ||(x ∗ y) � ||f̃ ||((x ∗ y) ∗ y)

)
.

Proof. Assume that ||f̃ || is a positive implicative superior ideal on (L, f̃). If we put z = y in (3.1), then

||f̃ ||(x ∗ y) � sup{||f̃ ||((x ∗ y) ∗ y), ||f̃ ||(y ∗ y)}

= sup{||f̃ ||((x ∗ y) ∗ y), ||f̃ ||(0)}

= ||f̃ ||((x ∗ y) ∗ y)

for all x, y ∈ L.

Conversely, let ||f̃ || be a superior ideal on (L, f̃) which satisfies the condition (ii). Note that

((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z
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for all x, y, z ∈ L. It follows from (ii), (2.11) and Proposition 2.2 that

||f̃ ||(x ∗ z) � ||f̃ ||((x ∗ z) ∗ z)

� sup{||f̃ ||(((x ∗ z) ∗ z) ∗ (y ∗ z)), ||f̃ ||(y ∗ z)}

� sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(y ∗ z)}

for all x, y, z ∈ L. Therefore ||f̃ || is a positive implicative superior ideal on (L, f̃). �

Theorem 3.9. For a superior ideal ||f̃ || on (L, f̃), the following are equivalent.

(i) ||f̃ || is a positive implicative superior ideal on (L, f̃).

(ii) (∀x, y, z ∈ L)
(
||f̃ ||((x ∗ z) ∗ (y ∗ z)) � ||f̃ ||((x ∗ y) ∗ z)

)
.

Proof. Suppose that ||f̃ || is a positive implicative superior ideal on (L, f̃). Then ||f̃ || is a superior ideal

on (L, f̃) by Theorem 3.6. Note that

((x ∗ (y ∗ z)) ∗ z) ∗ z = ((x ∗ z) ∗ (y ∗ z)) ∗ z ≤ (x ∗ y) ∗ z

for all x, y, z ∈ L. It follows from (2.4), Theorem 3.8 and Proposition 2.2 that

||f̃ ||((x ∗ z) ∗ (y ∗ z)) = ||f̃ ||((x ∗ (y ∗ z)) ∗ z)

� ||f̃ ||(((x ∗ (y ∗ z)) ∗ z) ∗ z)

� ||f̃ ||((x ∗ y) ∗ z)

for all x, y, z ∈ L.

Conversely, let ||f̃ || be a superior ideal on (L, f̃) which satisfies the second condition. Using (2.11) and

the second condition, we have

||f̃ ||(x ∗ z) = sup{||f̃ ||((x ∗ z) ∗ (y ∗ z)), ||f̃ ||(y ∗ z)}

� sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(y ∗ z)}

for all x, y, z ∈ L. Therefore ||f̃ || is a positive implicative superior ideal on (L, f̃). �

Theorem 3.10. Let ||f̃ || be the superior mapping of L with respect to
(
f̃ , L

)
. Then ||f̃ || is a positive

implicative superior ideal on (L, f̃) if and only if it satisfies the condition (2.10) and

(∀x, y, z ∈ L)
(
||f̃ ||(x ∗ y) � sup{||f̃ ||(((x ∗ y) ∗ y) ∗ z), ||f̃ ||(z)}

)
. (3.2)

Proof. Assume that ||f̃ || is a positive implicative superior ideal on (L, f̃). Then ||f̃ || is a superior ideal

on (L, f̃) by Theorem 3.6, and so ||f̃ || satisfies the condition (2.10). Using (2.11), (III), (2.2), (2.4) and

Theorem 3.9, we have

||f̃ ||(x ∗ y) � sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(z)}

= sup{||f̃ ||(((x ∗ z) ∗ y) ∗ (y ∗ y)), ||f̃ ||(z)}

� sup{||f̃ ||(((x ∗ z) ∗ y) ∗ y), ||f̃ ||(z)}

= sup{||f̃ ||(((x ∗ y) ∗ y) ∗ z), ||f̃ ||(z)}

for all x, y, z ∈ L.
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Conversely, suppose that ||f̃ || satisfies two conditions (2.10) and (3.2). Then

||f̃ ||(x) = ||f̃ ||(x ∗ 0)

� sup{||f̃ ||(((x ∗ 0) ∗ 0) ∗ z), ||f̃ ||(z)}

= sup{||f̃ ||(x ∗ z), ||f̃ ||(z)}

for all x, z ∈ L, and so ||f̃ || is a superior ideal on (L, f̃). If we take z = 0 in (3.2) and use (2.2) and

(2.10), then

||f̃ ||(x ∗ y) � sup{||f̃ ||(((x ∗ y) ∗ y) ∗ 0), ||f̃ ||(0)}

= sup{||f̃ ||((x ∗ y) ∗ y), ||f̃ ||(0)}

= ||f̃ ||((x ∗ y) ∗ y)

for all x, y ∈ L. Therefore ||f̃ || is a positive implicative superior ideal on (L, f̃) by Theorem 3.8. �

Lemma 3.11. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then ||f̃ ||

is a superior ideal on (L, f̃) if and only if it satisfies the following assertion:

(∀x, y, z ∈ L)
(

(x ∗ y) ∗ z = 0 ⇒ ||f̃ ||(x) � sup{||f̃ ||(y), ||f̃ ||(z)}
)
. (3.3)

Proof. Assume that ||f̃ || is a superior ideal on (L, f̃). Let x, y, z ∈ L be such that x ∗ y ≤ z. Then

(x ∗ y) ∗ z = 0, and so

||f̃ ||(x ∗ y) � sup{||f̃ ||((x ∗ y) ∗ z), ||f̃ ||(z)} = sup{||f̃ ||(0), ||f̃ ||(z)} = ||f̃ ||(z)

by (2.11) and (2.10). It follows that

||f̃ ||(x) � sup{||f̃ ||(x ∗ y), ||f̃ ||(y)} � sup{||f̃ ||(z), ||f̃ ||(y)}.

Conversely, suppose that the assertion (3.3) is valid. Since

(0 ∗ x) ∗ x = 0 and (x ∗ (x ∗ y)) ∗ y = 0

for all x, y ∈ L, it follows from (3.3) that

||f̃ ||(0) � sup{||f̃ ||(x), ||f̃ ||(x)} = ||f̃ ||(x)

and

||f̃ ||(x) � sup{||f̃ ||(x ∗ y), ||f̃ ||(y)}

for all x, y ∈ L. Therefore ||f̃ || is a superior ideal on (L, f̃). �

Corollary 3.12. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then

||f̃ || is a superior ideal on (L, f̃) if and only if it satisfies the following assertion:

||f̃ ||(x) � sup{||f̃ ||(a1), ||f̃ ||(a2), · · · , ||f̃ ||(an)} (3.4)

for all x, a1, a2, · · · , an ∈ L with (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0.
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Theorem 3.13. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then

||f̃ || is a positive implicative superior ideal on (L, f̃) if and only if it satisfies the following assertion:

||f̃ ||(x ∗ y) � sup{||f̃ ||(a), ||f̃ ||(b)} (3.5)

for all x, y, a, b ∈ L with (((x ∗ y) ∗ y) ∗ a) ∗ b = 0.

Proof. Assume that ||f̃ || is a positive implicative superior ideal on (L, f̃). Then ||f̃ || is a superior ideal

on (L, f̃) by Theorem 3.6. Let x, y, a, b ∈ L be such that (((x ∗ y) ∗ y) ∗ a) ∗ b = 0. Using Theorem 3.8(ii)

and (3.3), we have

||f̃ ||(x ∗ y) � ||f̃ ||((x ∗ y) ∗ y) � sup{||f̃ ||(a), ||f̃ ||(b)}.

Conversely, suppose that ||f̃ || satisfies the condition (3.5) for all x, y, a, b ∈ L with (((x∗y)∗y)∗a)∗b = 0.

Assume that (x∗u)∗v = 0 for all x, u, v ∈ L. Then (((x∗0)∗0)∗u)∗v = 0, and so ||f̃ ||(x) = ||f̃ ||(x∗0) �
sup{||f̃ ||(u), ||f̃ ||(v)} by (3.5). It follows from Lemma 3.11 that ||f̃ || is a superior ideal on (L, f̃). Note

that

(((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ 0 = 0

for all x, y ∈ L. Using (3.5) and (2.10), we have

||f̃ ||(x ∗ y) � sup{||f̃ ||((x ∗ y) ∗ y), ||f̃ ||(0)} = ||f̃ ||((x ∗ y) ∗ y)

for all x, y ∈ L. Therefore ||f̃ || is a positive implicative superior ideal on (L, f̃) by Theorem 3.8. �

Corollary 3.14. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then

||f̃ || is a positive implicative superior ideal on (L, f̃) if and only if it satisfies the following assertion:

||f̃ ||(x ∗ y) � sup{||f̃ ||(a1), ||f̃ ||(a2), · · · , ||f̃ ||(an)} (3.6)

for all x, y, a1, a2, · · · , an ∈ L with (· · · ((((x ∗ y) ∗ y) ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0.

Theorem 3.15. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then

||f̃ || is a positive implicative superior ideal on (L, f̃) if and only if it satisfies the following assertion:

||f̃ ||((x ∗ z) ∗ (y ∗ z)) � sup{||f̃ ||(a), ||f̃ ||(b)} (3.7)

for all x, y, z, a, b ∈ L with (((x ∗ y) ∗ z) ∗ a) ∗ b = 0.

Proof. Assume that ||f̃ || is a positive implicative superior ideal on (L, f̃). Then ||f̃ || is a superior ideal

on (L, f̃) by Theorem 3.6. Suppose that (((x ∗ y) ∗ z) ∗ a) ∗ b = 0 for all x, y, z, a, b ∈ L. Then

||f̃ ||((x ∗ z) ∗ (y ∗ z)) � ||f̃ ||((x ∗ y) ∗ z) � sup{||f̃ ||(a), ||f̃ ||(b)}

by Theorem 3.9 and Lemma 3.11.

Conversely, suppose that ||f̃ || satisfies the condition (3.7) for all x, y, z, a, b ∈ L with (((x∗y)∗z)∗a)∗b =

0. Let x, y, a, b ∈ L be such that (((x ∗ y) ∗ y) ∗ a) ∗ b = 0. Then

||f̃ ||(x ∗ y) = ||f̃ ||((x ∗ y) ∗ (y ∗ y)) � sup{||f̃ ||(a), ||f̃ ||(b)}

by (3.7). It follows from Theorem 3.13 that ||f̃ || is a positive implicative superior ideal on (L, f̃). �
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Corollary 3.16. Let ||f̃ || be the superior mapping of L with respect to a pair
(
f̃ , L

)
on (U,�). Then

||f̃ || is a positive implicative superior ideal on (L, f̃) if and only if it satisfies the following assertion:

||f̃ ||((x ∗ z) ∗ (y ∗ z)) � sup{||f̃ ||(a1), ||f̃ ||(a2), · · · , ||f̃ ||(an)} (3.8)

for all x, y, z, a1, a2, · · · , an ∈ L with (· · · ((((x ∗ y) ∗ z) ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0.

Theorem 3.17. Let ||f̃ || and ||g̃|| be superior ideals on (L, f̃) and (L, g̃), respectively, such that ||f̃ ||(0) =

||g̃||(0) and ||g̃||(x) � ||f̃ ||(x) for all x(6= 0) ∈ L. If ||f̃ || is a positive implicative superior ideal on (L, f̃),

then ||g̃|| is a positive implicative superior ideal on (L, g̃).

Proof. For any x, y, z ∈ L, let u := (x ∗ y) ∗ z. Then

||g̃||(((x ∗ z) ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ z)) = ||g̃||(((x ∗ z) ∗ (y ∗ z)) ∗ u)

= ||g̃||(((x ∗ u) ∗ z) ∗ (y ∗ z)) � ||f̃ ||(((x ∗ u) ∗ z) ∗ (y ∗ z))

� ||f̃ ||(((x ∗ u) ∗ y) ∗ z) = ||f̃ ||(((x ∗ y) ∗ z) ∗ u)

= ||f̃ ||(0) = ||g̃||(0),

and so ||g̃||(((x ∗ z) ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ z)) = ||g̃||(0). It follows from (2.11) that

||g̃||((x ∗ z) ∗ (y ∗ z)) � sup{||g̃||(((x ∗ z) ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ z)), ||g̃||((x ∗ y) ∗ z)}

= sup{||g̃||(0), ||g̃||((x ∗ y) ∗ z)} = ||g̃||((x ∗ y) ∗ z).

Therefore ||g̃|| is a positive implicative superior ideal on (L, g̃) by Theorem 3.9. �
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Abstract
By using the Tsuji’s characteristic, we deal with the uniqueness problem of

meromorphic functions sharing sets in an angular domain and obtain some theo-
rems which improve and extend the results given by Zheng, Xuan.
Key words: Meromorphic function; Angular domain; Uniqueness; Tsuji’s charac-
teristic.
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1 Introduction and main results

The purpose of this paper is to investigate the uniqueness of meromorphic functions
sharing sets in an angular domain by using the Tsuji’s characteristic functions of angular
domain. It is assumed that the readers are familiar with the notations of the Nevanlinna
theory such as T (r, f),m(r, f), N(r, f) and so on, that can be found, for instance, in
[5, 17].

We use C to denote the open complex plane, Ĉ(= C
⋃
{∞}) to denote the extended

complex plane, and Ω(⊂ C) to denote an angular domain. Let S be a set of distinct

elements in Ĉ and Ω ⊆ C. Define

E(S,Ω, f) =
⋃
a∈S
{z ∈ Ω|fa(z) = 0, counting multiplicities},

∗This project was supported by the NSF of China(11561033), the Natural Science foundation of
Jiangxi Province in China (20151BAB201008). The last author is supported by the project of Beijing
Municipal Science and Technology(D161100003516003).
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E(S,Ω, f) =
⋃
a∈S
{z ∈ Ω|fa(z) = 0, ignoring multiplicities},

where fa(z) = f(z)− a if a ∈ C and f∞(z) = 1/f(z).
Let f and g be two non-constant meromorphic functions in C. If E(S,Ω, f) =

E(S,Ω, g), we say that f and g share the set S CM (counting multiplicities) in Ω.
If E(S,Ω, f) = E(S,Ω, g), we say f and g share the set S IM(ignoring multiplicities)

in Ω. In particular, when S = {a}, where a ∈ Ĉ, we say f and g share the value a
CM in Ω if E(S,Ω, f)) = E(S,Ω, g), and we say f and g share the value a IM in
Ω if E(S,Ω, f) = E(S,Ω, g). When Ω = C, we give the simple notation as before,
E(S, f), E(S, f) and so on(see [13]).

Let l be a nonnegative integer or infinity. For a ∈ C∪ {∞}, we denote by El(a,Ω, f)
the set of all a-points of f in Ω, where an a-point of multiplicity k is counted one times
if k ≤ l and zero times if k > l.

R.Nevanlinna(see [9]) proved the following well-known theorem.

Theorem 1.1 (see [9].) If f and g are two non-constant meromorphic functions that
share five distinct values a1, a2, a3, a4, a5 IM in Ω = C, then f(z) ≡ g(z).

After his theorems, the uniqueness problems of meromorphic functions sharing values
in the whole complex plane attracted many investigations (see [15]). In 2004, Zheng
[19] studied the uniqueness problem under the condition that five values are shared in
some angular domain in C. It is an interesting topic to investigate the uniqueness with
shared values in the remaining part of the complex plane removing an unbounded closed
set, see [3, 4, 7, 8, 10, 13, 18, 19, 20]. Zheng [20], Cao and Yi [2], Xu and Yi [13]
continued to investigate the uniqueness of meromorphic functions sharing five values and
four values, Lin, Mori and Tohge [7] and Lin, Mori and Yi [8] investigated the uniqueness
of meromorphic and entire functions sharing sets in an angular domain. To state theirs
results, we need the following basic notations and definitions of meromorphic functions
in an angular domain(see [5, 19, 20]).

In 2009, the present author [14] investigated the uniqueness of meromorphic functions
with finite order sharing some values in an angular domain and obtained the following
theorem

Theorem 1.2 (see [14]). Let f(z) and g(z) be both transcendental meromorphic func-

tions, and let f(z) be of finite order λ (lower order µ) and such that for some a ∈ Ĉ and
an integer p ≥ 0, δ = δ(a, f (p)) > 0. For m pair of real numbers {αj , βj} satisfying

−π ≤ α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αm ≤ βm ≤ 2π

and
m∑
j=1

(αj+1 − βj) <
4

σ
arcsin

√
δ

2
,

where σ = max{ω, µ}, ω = max{ π
β1−α1

, . . . , π
βm−αm

}, assume that aj(j = 1, 2, . . . , q) be q

distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers or ∞ satisfying

k1 ≥ k2 ≥ · · · ≥ kp, (1)
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Ekj (aj ,Ω, f) = Ekj (aj ,Ω, g),

q∑
j=3

kj
kj + 1

> 2, (2)

where Ω =
⋃m
j=1{z : αj ≤ arg z ≤ βj}. If ω < λ(f), then f(z) ≡ g(z).

In 2009, Cao and Yi [2] investigated the uniqueness problem of two transcendental
meromorphic functions f, g sharing five values IM in an angular domain and obtained
the following result which extended Theorem 1.1 to an angular domain.

Theorem 1.3 (see [2, Theorem 1.3].) Let f and g be two transcendental meromorphic
functions. Given one angular domain Ω = {z : α < arg z < β} with 0 < β − α ≤ 2π,
we assume that f and g share five distinct values aj(j = 1, 2, 3, 4, 5) IM in Ω. Then
f(z) ≡ g(z), provided that

lim
r→∞

Sα,β(r, f)

log(rT (r, f))
=∞, (r 6∈ E),

where Sα,β(r, f) is called the Nevanlinna’s angular characteristic.

Moreover, Cao and Yi [2] also investigated the two uniqueness problems of two tran-
scendental meromorphic functions f, g sharing four distinct values CM in an angular
domain X and f, g sharng two distinct values CM in an angular domain X and the
other two distinct values IM in an angular domain X, and they obtained two interesting
results which extended the analogous results as in the whole complex plane to an angular
domain. In 2011, Xu and Cao [11, 12] improve the results given by Cao and Yi[1, 2] to
some extent.

Most recently, Zheng [21] prove the following theorem by using the Tsuji’s character-
istic to extend the five IM theorem of Nevanlinna’s to an angular domain. The Tsuji’s
characteristic will be introduced in Section 2.

Theorem 1.4 (see [21]). Let f(z) and g(z) be both meromorphic functions in an angular
domain Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in
the Tsuji’s sense. Assume that aj(j = 1, 2, . . . , 5) be 5 distinct complex numbers. If
E(aj ,Ω, f) = E(aj ,Ω, g), then f(z) ≡ g(z).

In this paper, we will deal with the uniqueness of meromorphic functions sharing sets
in an angular domain by using the Tsuji’s characteristic and obtain the following results
which are improvement of Theorem 1.4.

Theorem 1.5 Let f(z) and g(z) be both meromorphic functions in an angular domain
Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in the Tsuji’s
sense. Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, Si∩Sj = ∅, (i 6= j). Let kj (j = 1, 2, . . . , q) be positive integers or∞ satisfying
(1) and

Ekj)(Sj ,Ω, f) = Ekj)(Sj ,Ω, g), (j = 1, 2, . . . , q). (3)
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Furthermore, let

ΘT (f) =
∑
a

ΘT (0, f − a)−
q∑
j=1

l−1∑
s=0

ΘT (0, f − (aj + sb)),

A1 =

∑m−1
j=1

∑l−1
s=0 δT (0, f − (aj + sb))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δT (0, f − (aj + sb))

kj + 1

+
(lm− 3l + 1)km

km + 1
− (2l − 1)kn

kn + 1
+ Θ0(f)− 2

and

A2 =

∑n−1
j=1

∑l−1
s=0 δT (0, g − (aj + sb))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δT (0, g − (aj + sb))

kj + 1

+
(ln− 3l + 1)kn

kn + 1
− (2l − 1)km

km + 1
+ Θ0(g)− 2,

where m and n are positive integers in {1, 2, . . . , q} and a is an arbitrary complex number
or ∞. If

min{A1, A2} ≥ 0, and max{A1, A2} > 0. (4)

Then f1(z) ≡ f2(z).

From Theorem 1.5, we can get the following corollaries.

Corollary 1.1 Let f(z) and g(z) be both meromorphic functions in an angular domain
Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in the Tsuji’s
sense. Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, Si∩Sj = ∅, (i 6= j). Let kj (j = 1, 2, . . . , q) be positive integers or∞ satisfying
(1) and

Ekj)(Sj ,Ω, f) = Ekj)(Sj ,Ω, g), (j = 1, 2, . . . , q).

If

q∑
j=3

l−1∑
s=0

kj
kj + 1

+
(2− 2l)k3

k3 + 1
> 2.

Then f(z) ≡ g(z).

Proof: Let m = n = 3. Since ΘT (f) ≥ 0,ΘT (g) ≥ 0, δT (0, f − (aj + sb)) ≥ 0 and
δT (0, g − (aj + sb)) ≥ 0 for j = 1, 2, . . . , q, one can deduce from Theorem 1.5 that
Corollary 1.1 follows. 2

The following corollary is an analog of a result due to Yi (Theorem 10.7 in [15], see
also [16]) on C.
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Corollary 1.2 Let f(z) and g(z) be both meromorphic functions in an angular domain
Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in the Tsuji’s
sense. Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, q > 4, Si ∩ Sj = ∅, (i 6= j). If E(Sj ,Ω, f) = E(Sj ,Ω, g), (j = 1, 2, . . . , q).
Then f(z) ≡ g(z).

Proof: Let k1 = k2 = . . . = kq = ∞. One can deduce from Corollary 1.1 that Corollary
1.2 follows immediately. 2

Let l = 1. Then it is easily derived the following corollary from Corollary 1.1, which
is an analog of the Corollary of Theorem 3.15 in [15].

Corollary 1.3 Let f(z) and g(z) be both meromorphic functions in an angular do-
main Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcenden-

tal in the Tsuji’s sense. Let aj (j = 1, 2, . . . , q) be q distinct complex numbers in Ĉ,
and kj(j = 1, 2, . . . , q) be positive integers or ∞ satisfying (1) and Ekj)(aj ,Ω, f) =

Ekj)(aj ,Ω, g), (j = 1, 2, . . . , q). Then
(i) if q = 7, then f(z) ≡ g(z).
(ii) if q = 6 and k3 ≥ 2, then f(z) ≡ g(z).
(iii) if q = 5, k3 ≥ 3 and k5 ≥ 2, then f(z) ≡ g(z).
(iv) if q = 5 and k4 ≥ 4, then f(z) ≡ g(z).
(v) if q = 5, k3 ≥ 5 and k4 ≥ 3, then f(z) ≡ g(z).
(vi) if q = 5, k3 ≥ 6 and k4 ≥ 2, then f(z) ≡ g(z).

Another main theorem of this paper is listed as follows.

Theorem 1.6 Let f(z) and g(z) be both meromorphic functions in an angular domain
Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in the Tsuji’s
sense. Suppose that

Sj = {c+ aj , c+ ajw, . . . , c+ ajw
l−1}, j = 1, 2, . . . , q,

with aj 6= 0, (j = 1, 2, . . . , q), w = exp( 2πi
l ), Si ∩ Sj = ∅, (i 6= j). Let kj (j = 1, 2, . . . , q)

be positive integers or ∞ satisfying (1) and

Ekj)(Sj ,Ω, f) = Ekj)(Sj ,Ω, g), (j = 1, 2, . . . , q). (5)

Furthermore, let

ΘT (f) =
∑
a

ΘT (0, f − a)−
q∑
j=1

l−1∑
s=0

ΘT (0, f − (c+ ajw
s)),

A1 =

∑m−1
j=1

∑l−1
s=0 δT (0, f − (c+ ajw

s))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δT (0, f − (c+ ajw
s))

kj + 1

+
l(m− 2)km
km + 1

− lkn
kn + 1

+ ΘT (f)− 2
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and

A2 =

∑n−1
j=1

∑l−1
s=0 δT (0, g − (c+ ajw

s))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δT (0, g − (c+ ajw
s))

kj + 1

+
l(n− 2)kn
kn + 1

− lkm
km + 1

+ ΘT (g)− 2,

where m and n are positive integers in {1, 2, . . . , q} and a is an arbitrary complex number
or ∞. If

min{A1, A2} ≥ 0, and max{A1, A2} > 0. (6)

Then (f(z)− c)l ≡ (g(z)− c)l.

From Theorem 1.6, we can get the following corollary immediately.

Corollary 1.4 Let f(z) and g(z) be both meromorphic functions in an angular domain
Ω = {z : α < arg z < β} with 0 ≤ α < β ≤ 2π and f(z) be transcendental in the Tsuji’s
sense. Suppose that

Sj = {c+ aj , c+ ajw, . . . , c+ ajw
l−1}, j = 1, 2, . . . , q,

with aj 6= 0, (j = 1, 2, . . . , q), q > 2 + 2
l , w = exp(2πi

l ), Si ∩ Sj = ∅, (i 6= j). If

E(Sj ,Ω, f) = E(Sj ,Ω, g) for j = 1, 2, . . . , q, then (f(z)− c)l ≡ (g(z)− c)l.

Proof: Set m = n = 1 and k1 = k2 = . . . = ∞. Since ΘT (f) ≥ 0,ΘT (g) ≥ 0, δT (0, f −
(aj + sb)) ≥ 0 and δT (0, g− (aj + sb)) ≥ 0 for j = 1, 2, . . . , q. Then Corollary 1.4 follows
immediately from Theorem 1.6. 2

2 Preliminaries

In this section, we will introduce some notations of Tsuji’s characteristic in an angular
domain (see [6, 21]). For meromorphic function f in an angular domain Ω and ω = π

β−α ,
we define

Mα,β(r, f) =
1

2π

∫ π−arcsin(r−ω)

arcsin(r−ω)

log+
∣∣∣f(rei(α+ω−1θ) sinω

−1

θ)
∣∣∣ 1

rω sin2 θ
dθ,

Nα,β(r, f) =
∑

1<|bn|<r(sin(ω(βn−α)))ω−1

(
sinω(βn − α)

|bn|ω
− 1

rω

)
,

where bn are the poles of f(z) in Ξ(α, β; r) = {z = reiθθ : α < θ < β, 1 < t ≤
r(sin(ω(βn − α)))ω

−1

appearing often according to their multiplicities and then Tsuji
characteristic of f is

Tα,β(r, f) = Mα,β(r, f) + Nα,β(r, f).

We denote by nα,β(r, f) the number of poles of f(z) in Ξ(α, β; r), and then

Nα,β(r, f) =

∫ r

1

(
1

tω
− 1

rω

)
dnα,β(r, f) = ω

∫ r

1

nα,β(t, f)

tω+1
dt,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

649 Yong Zheng Zhou et al 644-656



when pole bn occurs in the sum
∑

1<|bn|<r(sin(ω(βn−α)))ω−1 only once, we denote it by

Nα,β(r, f). For meromorphic function f in Ω and for all complex numbers a, if

lim sup
r→∞

Tα,β(r, f)

log r
=∞,

then f is called transcendental with respect to the Tsuji characteristic[21], and we have
the Tsuji deficiency of f(z) as follows

δT (a, f ;α, β) = lim inf
r→∞

Mα,β

(
r, 1
f−a

)
Tα,β(r, f)

= 1− lim sup
r→∞

Nα,β

(
r, 1
f−a

)
Tα,β(r, f)

,

and

ΘT (a, f ;α, β) = 1− lim sup
r→∞

Nα,β

(
r, 1
f−a

)
Tα,β(r, f)

,

for a 6≡ ∞ and δT (∞, f ;α, β) is defined by the above formula with Mα,β(r, f) and
Nα,β(r, f) in place of Mα,β(r, 1

f−a ) and Nα,β(r, 1
f−a ), ΘT (∞, f ;α, β) is defined by the

above formula with Nα,β(r, f) in place of Nα,β(r, 1
f−a ). If no confusion occur in the

context, then we simply write δT (a, f) for δT (a, f ;α, β) and ΘT (a, f) for ΘT (a, f ;α, β).
δT (a, f) is called the Tsuji deficiency of f at a and if δT (a, f) > 0, then a is said to be a
Tsuji deficient value of f . In addition, from ref.[21], we have the following properties of
this Tsuji’s characteristic

Tα,β

(
r,

1

f − a

)
= Tα,β(r, f) +O(1), (7)

and the fundamental inequalities

(q − 2)Tα,β(r, f) ≤
q∑
j=1

Nα,β

(
r,

1

f − aj

)
+Qα,β(r, f), (8)

hold for q distinct points aj ∈ Ĉ,

Qα,β(r, f) = O(log+ Tα,β(r, f) + log r), r 6∈ E

where E denotes a set of r with finite linear measure. It is not necessarily the same for ev-
ery occurrence in the context. For sake of simplicity, we omit the subscript in all notations
and use M(r, f),N(r, f), Q(r, f) and T(r, f) instead of Mα,β(r, f),Nα,β(r, f), Qα,β(r, f)
and Tα,β(r, f), respectively.

By using Lo Yang’s method in dealing with the multiple values problem, we can get
the following lemma

Lemma 2.1 For meromorphic function f in an angular domain Ω and ω = π
β−α , Let a

be an arbitrary complex number, and k be a positive integer. Then

(i) Nα,β(r,
1

f − a
) ≤ k

k + 1
N
k)

α,β(r,
1

f − a
) +

1

k + 1
Nα,β(r,

1

f − a
),

(ii) Nα,β(r,
1

f − a
) ≤ k

k + 1
N
k)

α,β(r,
1

f − a
) +

1

k + 1
Tα,β(r, f) +O(1),
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where N
k)

α,β(r, 1
f−a ) to denote the zeros of f(z) − a in Ω, whose multiplicities are no

greater than k and are counted only once. Likewise, we use N
(k

α,β(r, 1
f−a ) to denote the

zeros of f(z)−a in Ω, whose multiplicities are greater than k and are counted only once.

By using Lemma 2.1 and (8), we can obtain the following lemma

Lemma 2.2 For meromorphic function f in an angular domain Ω and ω = π
β−α . Let

a1, a2, . . . , aq be q distinct complex numbers in the extended complex plane Ĉ, let k1, k2,
. . . , kq be q positive integers. Then

(i) (q − 2)T(r, f) <

q∑
j=1

kj
kj + 1

N
kj)

(r,
1

f − aj
) +

q∑
j=1

1

kj + 1
N(r,

1

f − aj
) +Q(r, f),

(ii) (q − 2−
q∑
j=1

1

kj + 1
)T(r, f) <

q∑
j=1

kj
kj + 1

N
kj)

(r,
1

f − aj
) +Q(r, f),

where

N(1)(r, f) = N(r,
1

f ′
) + 2N(r, f)−N(r, f

′
),

and Q(r, f) is stated as in (8).

From (8) and the definition of transcendental in Tsuji sense, we can get the following
lemma.

Lemma 2.3 (Picard theorem for angular domain) Let f be an transcendental meromor-
phic function in Ω in the Tsuji sense. Then f has at most two Picard exceptional values
in Ω.

3 Proof of Theorem 1.5

Suppose that f(z) 6≡ g(z). Without loss of generality, we assume that there exist infinitely
many d such that ΘT (0, f−d) > 0 and d 6∈ {aj+sb : j = 1, 2, . . . , q and s = 0, 1, . . . , l−1}.
We denote them by dk (k = 1, 2, . . . ,∞). Obviously, ΘT (f) =

∑∞
k=1 ΘT (0, f − dk). Thus

there exits a p such that
∑p
k=1 ΘT (0, f − dk) > ΘT (f) − ε holds for any given ε(> 0).

From (8) we have

(ql + p− 2)T(r, f) <

q∑
j=1

n−1∑
s=0

N(r,
1

f − (aj + sb)
) +

p∑
k=1

N(r,
1

f − dk
) +Q(r, f).

From the definition of deficiency in Tsuji sense, we have

N(r,
1

f − dk
) < (1−ΘT (0, f − dk))T(r, f) +Q(r, f).
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From Lemma 2.1 and the definition of deficiency in Tsuji sense, it follows that for s ∈
{0, 1, . . . , l − 1}

N(r,
1

f − (aj + sb)
)

≤ kj
kj + 1

N
kj)

(r,
1

f − (aj + sb)
) +

1

kj + 1
N(r,

1

f − (aj + sb)
)

<
kj

kj + 1
N
kj)

(r,
1

f − (aj + sb)
) +

1

kj + 1
(1− δT (0, f − (aj + sb)))T(r, f)

+Q(r, f).

Thus, from Lemma 2.2, we have

(ql + p− 2)T(r, f)

<

{
p∑
k=1

(1−ΘT (0, f − dk))

}
T(r, f) +

q∑
j=1

l−1∑
s=0

kj
kj + 1

N
kj)

(r,
1

f − (aj + sb)
)

+


q∑
j=1

l−1∑
s=0

1

kj + 1
(1− δT (0, f − (aj + sb)))

T(r, f) +Q(r, f).

Since

1 ≥ k1

k1 + 1
≥ k2

k2 + 1
≥ · · · ≥ kq

kq + 1
≥ 1

2
,

we can deduce that

(ql + p− 2)T(r, f)

< (p−ΘT (f) + ε)T(r, f) +
km

km + 1

q∑
j=1

l−1∑
s=0

N
kj)

(r,
1

f − (aj + sb)
)

+


m−1∑
j=1

l−1∑
s=0

(
kj

kj + 1
− km
km + 1

)
(1− δT (0, f − (aj + sb)))

T(r, f)

+


q∑
j=1

l−1∑
s=0

1− δT (0, f − (aj + sb))

kj + 1

T(r, f) +Q(r, f),

that is,(
l(m− 1)km
km + 1

+B1 − ε
)
T(r, f) <

q∑
j=1

l−1∑
s=0

km
km + 1

N
kj)

(r,
1

f − (aj + sb)
) +Q(r, f),

where

B1 =

∑m−1
j=1

∑l−1
s=0 δT (0, f − (aj + sb))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δT (0, f − (aj + sb))

kj + 1
+ ΘT (f)− 2.
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Similar to the above discussion, we also have(
l(n− 1)kn
kn + 1

+B2 − ε
)
T(r, g) <

q∑
j=1

l−1∑
s=0

kn
kn + 1

N
kj)

0 (r,
1

g − (aj + sb)
) +Q(r, g),

where

B2 =

∑n−1
j=1

∑l−1
s=0 δT (0, g − (aj + sb))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δT (0, g − (aj + sb))

kj + 1
+ ΘT (g)− 2.

Thus, (
l(m− 1)km
km + 1

+B1 − ε
)
T(r, f) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T(r, g)

<

q∑
j=1

l−1∑
s=0

km
km + 1

N
kj)

(r,
1

f − (aj + sb)
) +

q∑
j=1

l−1∑
s=0

kn
kn + 1

N
kj)

(r,
1

g − (aj + sb)
)

+Q(r, f) +Q(r, g).

We will prove that f(z)−g(z) 6≡ sb, s = 1, 2, . . . , l−1. Suppose that f(z)−g(z) ≡ sb,
s = 1, 2, . . . , l − 1., we get that aj (j = 1, 2, . . . , q) are the Picard exceptional values
of f, and that aj + (l − 1)b (j = 1, 2, . . . , q) are the Picard exceptional values of g in
Ω. By Lemma 2.3, we can get a contradiction. Similarly, we have g(z) − f(z) 6≡ sb,
s = 1, 2, . . . , l − 1.

By using (7) and condition (4), we have

q∑
j=1

l−1∑
s=0

N
kj)

(r,
1

f − (aj + sb)
)

≤ N(r,
1

f − g
) +

l−1∑
s=1

N(r,
1

f − g − sb
) +

l−1∑
s=1

N(r,
1

g − f − sb
)

≤ (2l − 1)(T(r, f) + T(r, g)) +O(1).

and

q∑
j=1

l−1∑
s=0

N
kj)

(r,
1

g − (aj + sb)
)

≤ N(r,
1

f − g
) +

l−1∑
s=1

N(r,
1

f − g − sb
) +

l−1∑
s=1

N(r,
1

g − f − sb
)

≤ (2l − 1)(T(r, f) + T(r, g)) +O(1).

Therefore, from the above discussion we obtain(
l(m− 1)km
km + 1

+B1 − ε
)
T(r, f) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T(r, g)

< (2l − 1)

(
km

km + 1
+

kn
kn + 1

)
(T(r, f) + T(r, g)) +Q(r, f) +Q(r, g),
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that is,

(A1 − ε)T(r, f) + (A2 − ε)T(r, g) < Q(r, f) +Q(r, g).

Since f and g are transcendental in Tsuji sense and ε is arbitrary, the above inequality
contradicts the conditions (4).

Therefore, the proof of Theorem 1.5 is completed

4 The proof of Theorem 1.6

Suppose that (f(z) − c)l 6≡ (g(z) − c)l. Without loss of generality, we assume that
there exist infinitely many d such that ΘT (0, f − d) > 0 and d 6∈ {c + ajw

s : j =
1, 2, . . . , q and s = 0, 1, . . . , l − 1}. We denote them by dk (k = 1, 2, . . . ,∞). Obviously,
ΘT (f) =

∑∞
k=1 ΘT (0, f − dk). Thus there exits a p such that

∑p
k=1 ΘT (0, f − dk) >

ΘT (f)− ε holds for any given ε(> 0).
Using a similar discussion as in the proof of Theorem 1.5, we obtain(

l(m− 1)km
km + 1

+B1 − ε
)
T(r, f) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T(r, g)

<

q∑
j=1

l−1∑
s=0

km
km + 1

N
kj)

(r,
1

f − (c+ ajws)
) +

q∑
j=1

l−1∑
s=0

kn
kn + 1

N
kj)

(r,
1

g − (c+ ajws)
)

+Q(r, f) +Q(r, g),

where

B1 =

∑m−1
j=1

∑l−1
s=0 δT (0, f − (c+ ajw

s))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δT (0, f − (c+ ajw
s))

kj + 1
+ΘT (f)−2,

B2 =

∑n−1
j=1

∑l−1
s=0 δT (0, g − (c+ ajw

s))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δT (0, g − (c+ ajw
s))

kj + 1
+ΘT (g)−2.

Furthermore, from the condition (5), (7) and Lemma 2.1, we have

q∑
j=1

l−1∑
s=0

N
kj)

(r,
1

f − (c+ ajws)
) < N(r,

1

(f − c)l − (g − c)l
) ≤ l(T(r, f) + T(r, g)) +O(1),

and

q∑
j=1

l−1∑
s=0

N
kj)

(r,
1

g − (c+ ajws)
) < N(r,

1

(f − c)l − (g − c)l
) ≤ l(T(r, f) + T(r, g)) +O(1).

Therefore, from the above discussion we obtain(
l(m− 1)km
km + 1

+B1 − ε
)
T(r, f) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T(r, g)

< l

(
km

km + 1
+

kn
kn + 1

)
(T(r, f) + T(r, g)) +Q(r, f) +Q(r, g),
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that is,

(A1 − ε)T(r, f) + (A2 − ε)T(r, g) < Q(r, f) +Q(r, g).

Since f and g are transcendental and ε is arbitrary, the above inequality contradicts (6).
Therefore, the proof of Theorem 1.6 is completed.

5 Remarks

Zheng [21] had proved the results related to Tsuji’s characteristic and Nevanlinna’s char-
acteristic as follows

Lemma 5.1 (see [21, lemma 2.3.3]) Let f(z) be a meromorphic function in Ω(α, β), for
any real number ε > 0, Ωε = Ω(α+ ε, β − ε). Then for ε > 0, we have

N(r, f) ≤ ωN(r,Ω, f)

rω
+ ω2

∫ r

1

N(t,Ω, f)

tω+1
dt,

and

N(r, f) ≥ ωcωN(cr,Ωε, f)

rω
+ ω2cω

∫ cr

1

N(t,Ωε, f)

tω+1
dt

where 0 < c < 1 is a constant depending on ε, ω = π
β−α and N(t,Ω, f) =

∫ r
1
n(t,Ω,f)

t dt,

n(t,Ω, f) is the number of poles of f(z) in Ω ∩ {z : 1 < |z| ≤ t}.

From Lemma 5.1, we can get that f is transcendental in Tsuji sense if f satisfies
condition (9). Thus, we can get the following results

Theorem 5.2 Let the assumptions of Theorems 1.5-1.6 and Corollaries 1.1-1.4 be given
with the exception of that f(z) is transcendental in Tsuji sense. Assume that for some

a ∈ Ĉ and ε > 0,

lim sup
r→∞

N(r,Ωε, f = a)

rω log r
=∞, (9)

where ω,N(t,Ω, f) are stated as in Lemma 5.1. Then f(z) ≡ g(z).
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Yasin YAZLIKa,∗, Cahit KÖMEa, Vinay MADHUSUDANANb
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Abstract

In this paper, we define a new generalization of the Fibonacci and Lucas p−numbers. Further, we build up

the tree diagrams for generalized Fibonacci and Lucas p−sequence and derive the recurrence relations of these

sequences by using these diagrams. Also, we show that the generalized Fibonacci and Lucas p−sequences

can be reduced into the various number sequences. Finally, we develop Binet formulas for the generalized

Fibonacci and Lucas p−numbers and present the numerical and graphical results, which obtained by means

of the Binet formulas, for specific values of a, b and p.

Keywords: The generalized Fibonacci p−numbers, The generalized Lucas p−numbers, Binet formula.

2010 MSC: 11B39

1. Introduction

Fibonacci and Lucas sequences are one of the most popular and fascinating sequences that arise in

various situations, especially in mathematics, physics and related fields. The classical Fibonacci and Lucas

sequences are defined by Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln, for n ∈ N, with initial conditions

F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively. One of the most important sources of this area is [1],

which was written by Thomas Koshy, and contains numerous applications, generalizations and recurrence

relations of Fibonacci and Lucas numbers. In recent years, many authors have studied generalizations of the

Fibonacci and Lucas sequences [2–12]. For instance, in [8, 10] the authors defined the generalized Fibonacci

{qn}n∈N0
sequence as

q0 = 0, q1 = 1, qn+2 =

aqn+1 + qn, if n ≡ 0 (mod 2)

bqn+1 + qn, if n ≡ 1 (mod 2),

(1)

∗Corresponding Author

Email addresses: yyazlik@nevsehir.edu.tr (Yasin YAZLIK), cahitkome@gmail.com (Cahit KÖME),
vinay.m2000@gmail.com (Vinay MADHUSUDANAN)
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and the generalized Lucas {ln}n∈N0 sequence as in the form

l0 = 2, l1 = a, ln+2 =

bln+1 + ln, if n ≡ 0 (mod 2)

aln+1 + ln, if n ≡ 1 (mod 2).

(2)

Stakhov and Rozin introduced Fibonacci and Lucas p−numbers, one of the most significant mathematical

discoveries of the modern Fibonacci numbers theory, and they presented some properties of this sequence,

Fp(n) = Fp(n− 1) + Fp(n− p− 1) (3)

and

Lp(n) = Lp(n− 1) + Lp(n− p− 1), (4)

in [13], with the initial conditions Fp(0) = 0, Fp(1) = 1, Fp(2) = 1, . . . , Fp(p) = 1 and Lp(0) = p+ 1, Lp(1) =

1, Lp(2) = 1, . . . , Lp(p) = 1, respectively. After that, Kocer et al. defined the m−extension of the Fibonacci

and Lucas p−numbers,

Fp,m(n+ p+ 1) = mFp,m(n+ p) + Fp,m(n) (5)

and

Lp,m(n+ p+ 1) = mLp,m(n+ p) + Lp,m(n), (6)

with initial conditions Fp,m(0) = 0, Fp,m(1) = 1, Fp,m(2) = m,Fp,m(3) = m2, . . . , Fp,m(p + 1) = mp and

Lp,m(0) = p + 1, Lp,m(1) = m,Lp,m(2) = m2, Lp,m(3) = m3, . . . , Lp,m(p + 1) = mp+1, where p and n are

nonnegative integers and m is a positive real number [14]. The main purpose of the present article is to give

a wider generalization of the generalized Fibonacci and Lucas sequence given by (1) and (2), the Fibonacci

and Lucas p-sequences given by (3) and (4) and the m−extension of the Fibonacci and Lucas p-sequences

given by (5) and (6) to introduce a new class of the recurrence numerical sequences called the generalization

of Fibonacci and Lucas p−numbers.

2. Generalized Fibonacci and Lucas p−numbers

Definition 2.1. For any positive real numbers a, b and positive integer p, the generalized Fibonacci

p−sequence {fn}∞n=0 and Lucas p−sequence {`n}∞n=0 are defined recursively by

fn =

afn−1 + fn−p−1, if n ≡ 0 (mod 2)

bfn−1 + fn−p−1, if n ≡ 1 (mod 2),

and `n =

b`n−1 + `n−p−1, if n ≡ 0 (mod 2)

a`n−1 + `n−p−1, if n ≡ 1 (mod 2),

where n ≥ p+ 1 and the initial conditions of fn and `n are

f0 = 0, f1 = 1, f2 = a, . . . , fp = ab
p
2 cbb

p−1
2 c (7)

2
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and

`0 = p+ 1, `1 = a, `2 = ab, . . . , `p = ab
p+1
2 cbb

p
2 c, (8)

respectively.

Note that, these sequences can be reduced to different sequences for specific values of p, a and b. It is

not difficult to see from the following table that Fibonacci, Lucas, Pell, Pell−Lucas, k−Fibonacci, k−Lucas,

Fibonacci p, Lucas p, Pell p, Pell−Lucas p, m−extension of Fibonacci p and m−extension of Lucas p-

sequences are special cases of generalized Fibonacci and Lucas p−sequence.

p a b fn `n

1 1 1 Classical Fibonacci sequence Fn Classical Lucas sequence Ln

1 2 2 Classical Pell sequence Pn Classical Pell-Lucas sequence Qn

1 k k k−Fibonacci numbers {Fk,n}∞n=0 k−Lucas numbers {Lk,n}∞n=0

p 1 1 Fibonacci p−sequence Fp,n Lucas p−sequence Lp,n

p 2 2 Pell p−sequence Fp,n Pell-Lucas p−sequence Lp,n

p m m m−extension of Fibonacci p−numbers Fp,m,n m−extension of Lucas p−numbers Lp,m,n

Let a and b be positive real numbers, p be a positive integer and ξ(n) = n − 2bn2 c. We can construct the

tree diagrams for the generalized Fibonacci and Lucas p−numbers as:

fn

fn−p−1

fn−2p−2fn−p−2

aξ(n+p)b1−ξ(n+p) 1

fn−1

fn−p−2fn−2

aξ(n)b1−ξ(n) 1

a1−ξ(n)bξ(n) 1

Figure 1: Tree diagram for generalized Fibonacci p−numbers

`n

`n−p−1

`n−2p−2`n−p−2

a1−ξ(n+p)bξ(n+p) 1

`n−1

`n−p−2`n−2

a1−ξ(n)bξ(n) 1

aξ(n)b1−ξ(n) 1

Figure 2: Tree diagram for generalized Lucas p−numbers.

By considering Figures 1 and 2, we will derive the recurrence relations for fn and `n. First we suppose

that p is even. Then, {fn} satisfies the recurrence relation

fn = a1−ξ(n)bξ(n)fn−1 + fn−p−1

= a1−ξ(n)bξ(n)
(
aξ(n)b1−ξ(n)fn−2 + fn−p−2

)
+ aξ(n+p)b1−ξ(n+p)fn−p−2 + fn−2p−2

= abfn−2 + a1−ξ(n)bξ(n)fn−p−2 + aξ(n)b1−ξ(n)fn−p−2 + fn−2p−2

= abfn−2 +
(
a1−ξ(n)bξ(n) + aξ(n)b1−ξ(n)

)
fn−p−2 + fn−2p−2

= abfn−2 + (a+ b) fn−p−2 + fn−2p−2.

3
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Next, we suppose that p is odd. Then, fn also satisfies the recurrence relation

fn = a1−ξ(n)bξ(n)fn−1 + fn−p−1

= a1−ξ(n)bξ(n)
(
aξ(n)b1−ξ(n)fn−2 + fn−p−2

)
+ aξ(n+p)b1−ξ(n+p)fn−p−2 + fn−2p−2

= abfn−2 + a1−ξ(n)bξ(n)fn−p−2 + a1−ξ(n)bξ(n)fn−p−2 + fn−2p−2

= abfn−2 + 2a1−ξ(n)bξ(n)fn−p−2 + fn−2p−2

= abfn−2 + 2 (fn−p−1 − fn−2p−2) + fn−2p−2

= abfn−2 + 2fn−p−1 − fn−2p−2.

In a similar way, we can easily obtain the same recurrence relation for `n. Let

αn =

fn, if α0 = 0, α1 = 1, α2 = a, . . . , αp = ab
p
2 cbb

p−1
2 c

`n, if α0 = p+ 1, α1 = a, α2 = ab, . . . , αp = ab
p+1
2 cbb

p
2 c

be a sequence that satisfies both fn and `n. Thereby, αn satisfies the recurrence relation

αn =

abαn−2 + (a+ b)αn−p−2 + αn−2p−2, if p is even,

abαn−2 + 2αn−p−1 − αn−2p−2, if p is odd.

(9)

By considering eq. (9), the characteristic polynomial of αn is

αp(x) =

x
2p+2 − abx2p − (a+ b)xp − 1, if p is even,

x2p+2 − abx2p − 2xp+1 + 1, if p is odd.

(10)

By taking r = x2, we can express the characteristic equation (10) as

βp(r) =

r
p+1 − abrp − (a+ b) r

p
2 − 1, if p is even,

rp+1 − abrp − 2r
p+1
2 + 1, if p is odd.

(11)

Lemma 2.1. Assume that p is odd. Then the characteristic equation of the generalized Fibonacci and

Lucas p−numbers αp(x) does not have multiple roots.

For the other case, it can easily seen that there are no multiple real roots. However, whether there exists

complex multiple roots or not is an open problem, and we suggest that interested readers study it with us.

Proof of Lemma. The characteristic equation of the generalized Fibonacci and Lucas p−numbers for odd p

can be written in the form

αp(x) = (xp+1 − 1)2 − abx2p

and its derivative is

α′p(x) = 2(p+ 1)xp(xp+1 − 1)− 2pabx2p−1.

4
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Then, αp(x) = 0 if and only if

ab =
(xp+1 − 1)2

x2p

and α′p(x) = 0 if and only if

ab =
(p+ 1)xp(xp+1 − 1)

px2p−1
=

(p+ 1)x

p

xp+1 − 1

xp
.

Upon simplifying, we obtain ab =

(
p+ 1

p

)
x
√
ab. Therefore, αp(x) and α′p(x) vanish for the same x if and

only if for some root x of αp(x),

ab =

(
p+ 1

p

)
x
√
ab or equivalently, x =

p
√
ab

p+ 1
.

So, for every p and ab, if such an x is a root, it is a multiple root. Let t be a multiple root. Then,

ab =

(
p+ 1

p

)2

t2. Since αp(t) = 0, we have

t2p+2 −
(
p+ 1

p

)2

t2p+2 − 2tp+1 + 1 = 0

− (2p+ 1)

p2
t2p+2 − 2tp+1 + 1 = 0

(2p+ 1)t2(p+1) + 2p2tp+1 − p2 = 0.

When treated as a quadratic equation in tp+1, the discriminant is

4p4 + 4p2(2p+ 1) = 4p2(p+ 1)2,

and therefore, the solutions are

tp+1 = −p, p

2p+ 1
.

But substituting the same ab in α′p(t) = 0, we get

2(p+ 1)tp(tp+1 − 1)− 2p

(
p+ 1

p

)2

t2p+1 = 0

p(tp+1 − 1)− (p+ 1)tp+1 = 0

tp+1 = −p

Then, by ab =

(
p+ 1

p

)2

t2, we have

ab =
(p+ 1)2

(−p)
2p
p+1

.

The equation has multiple roots exactly when ab and p are related as above. Note that for odd values of p,

ab will be a real number, and then, ab < 0. This is a contradiction. Therefore the characteristic equation

αp(x) has distinct roots. The proof is complete.

5
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We will describe the terms of the sequence {αn} clearly by using the Binet formula. So, we can give the

generalized Binet formula for the generalized Fibonacci and Lucas p−numbers with the following theorem.

Theorem 2.1. Suppose that the characteristic equation (11) has (p+1) distinct roots, r1, r2, . . . , rp+1. Then

αn satisfies the relation

αn =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
α2j−2+ξ(n) +

1∏
1≤k≤p+1

k 6=i

(ri − rk)
α2p+ξ(n)

 r
bn2 c
i .

Proof. Let r1, r2, . . . , rp+1 be (p + 1) distinct roots of the characteristic equation (11). There are (2p + 2)

coefficients k1, k2, . . . , k2p+1, k2p+2 such that

αn = k1(
√
r1)n + k2(−

√
r1)n + k3(

√
r2)n + k4(−

√
r2)n + · · ·+ k2p+1(

√
rp+1)n + k2p+2(−√rp+1)n.

First, we suppose that n is even. Then we obtain

αn = (k1 + k2)(
√
r1)n + (k3 + k4)(

√
r2)n + · · ·+ (k2p+1 + k2p+2)(

√
rp+1)n

=

p+1∑
i=1

(k2i−1 + k2i)(
√
ri)

n. (12)

In order to determine the coefficients k1, k2, . . . , k2p+1, k2p+2, we must solve the linear equation system

Vγ = α, where Vi,j = ri−1j is a Vandermonde matrix, γ = (γ1, γ2, . . . , γp+1)T and α = (α0, α2, . . . , α2p)
T

are the column vectors. Considering the cases n = 0, 2, 4, . . . , 2p in (12), we have the linear equation system

1 1 1 . . . 1

r1 r2 r3 . . . rp+1

r21 r22 r23 . . . r2p+1

...
...

...
. . .

...

rp1 rp2 rp3 . . . rpp+1





γ1

γ2

γ3
...

γp+1


=



α0

α2

α4

...

α2p


, (13)

where γp = k2p−1 +k2p. The (p+ 1)× (p+ 1) Vandermonde matrix can be factorized as V = LU, (see [15]),

where L is a lower triangular matrix with units on its main diagonal, (i, j)-th element of L is

Li,j =



1 , if i = j ,∑
1≤k1≤k2≤...≤ki−j≤j

rk1rk2 . . . rkj , if i > j ≥ 1,

0 , if i < j ,
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and U is an upper triangular matrix, (i, j)-th element of U is

Ui,j =



1 , if i = 1 ,
i−1∏
k=1
k 6=j

(rj − rk) , if i ≤ j,

0 , if i > j .

Now we suppose that λ1v1 + λ2v2 + · · ·+ λpvp + λp+1vp+1 = (0, 0, . . . , 0), where vk = (1, r1k, r
2
k, . . . , r

p
k) is

the k-th column vector and λ1, λ2, . . . , λp+1 are real numbers. Then the k-th coordinate

λ1 + λ2rk + λ3r
2
k + . . .+ λp+1r

p
k = 0,

which means that rk is a zero of the polynomial ξ(r) = λ1 + λ2r + λ3r
2 + . . . + λp+1r

p. If the polynomial

ξ(r) of degree at most p has (p+1) distinct zeros r1, r2, . . . , rp+1 then it must be zero polynomial and we get

λ1 = λ2 = . . . = λp+1 = 0. So it is easily seen that the vectors v1,v2, . . . ,vp+1 are linearly independent. This

proves that V is invertible. So, we can factorize the inverse of the Vandermonde matrix as V−1 = U−1L−1,

(see [16]), where L−1 is a lower triangular matrix with units on its main diagonal, (i, j)-th element of L−1 is

L−1i,j =


1 , if i = j ,

L−1i−1,j−1 − L−1i−1,jri−1 , i = 2, 3, . . . , p+ 1; j = 2, 3, . . . , i− 1,

0 , if i < j ,

and U−1 is an upper triangular matrix, (i, j)-th element of U−1 is

U−1i,j =


j∏

k=1
k 6=i

1

ri − rk
, if i ≤ j,

0 , if i > j .

Therefore (i, j)-th element of V−1 can be written as

V−1i,j =



(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
, if 1 ≤ j < p+ 1,

1∏
1≤k≤p+1

k 6=i

(ri − rk)
, if j = p+ 1 .

7
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Since γ = V−1α, the i-th element of γ is γi =
∑p+1
j=1 V−1i,j α2j−2. So, we have

αn =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
α2j−2 +

α2p∏
1≤k≤p+1

k 6=i

(ri − rk)

 r
n
2
i . (14)

Next, we suppose that n is odd. Then we obtain

αn = (k1 − k2)(
√
r1)n + (k3 − k4)(

√
r2)n + · · ·+ (k2p+1 − k2p+2)(

√
rp+1)n

=

p+1∑
i=1

(k2i−1 − k2i)(
√
ri)

n. (15)

Considering the cases n = 1, 3, 5, . . . , 2p+ 1 in (15), we have

√
r1

√
r2

√
r3 . . .

√
rp+1

√
r1

3 √
r2

3 √
r3

3 . . .
√
rp+1

3

√
r1

5 √
r2

5 √
r3

5 . . .
√
rp+1

5

...
...

...
. . .

...
√
r1

2p+1 √
r2

2p+1 √
r3

2p+1 . . .
√
rp+1

2p+1





γ1

γ2

γ3
...

γp+1


=



α1

α3

α5

...

α2p+1


, (16)

where γp = k2p−1 − k2p. It can be easily seen that Li,j and L−1i,j are the same as in the previous case. In a

similar way, we can find the (i, j)−th element of the matrices Ui,j and U−1i,j , respectively, as

U(i, j) =



√
rj , if i = 1 ,

√
rj

i−1∏
k=1
k 6=j

(rj − rk) , if i ≤ j,

0 , if i > j

and U−1i,j =


j∏

k=1
k 6=i

1
√
ri(ri − rk)

, if i ≤ j,

0 , if i > j .

Using these identities, we find the (i, j)−th element of V−1 as

V−1i,j =



(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

√
ri

∏
1≤k≤p+1

k 6=i

(ri − rk)
, if 1 ≤ j < p+ 1,

1
√
ri

∏
1≤k≤p+1

k 6=i

(ri − rk)
, if j = p+ 1 .

8
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Thus, αn satisfies the recurrence relation

αn =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
α2j−1 +

α2p+1∏
1≤k≤p+1

k 6=i

(ri − rk)

 r
n−1
2

i . (17)

Finally, by combining (14) and (17), we have the generalized Binet formula

αn =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
α2j−2+ξ(n) +

α2p+ξ(n)∏
1≤k≤p+1

k 6=i

(ri − rk)

 r
bn2 c
i , (18)

which proves the theorem.

Corollary 2.1. If we take the initial conditions
{
α0 = 0, α1 = 1, α2 = a, . . . , αp = ab

p
2 cbb

p−1
2 c
}

in (18), we

obtain the Binet formula of the generalized Fibonacci p−numbers as

fn =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
f2j−2+ξ(n) +

f2p+ξ(n)∏
1≤k≤p+1

k 6=i

(ri − rk)

 r
bn2 c
i . (19)

If we take the initial conditions
{
α0 = p+ 1, α1 = a, α2 = ab, . . . , αp = ab

p+1
2 cbb

p
2 c
}

in (18), we obtain the

Binet formula of the generalized Lucas p−numbers as

`n =

p+1∑
i=1


p∑
j=1

(−1)j

∑
1≤k1<k2<...<kp+1−j≤p+1

k1,k2,...,kp+1−j 6=i

rk1rk2 . . . rkp+1−j

∏
1≤k≤p+1

k 6=i

(ri − rk)
`2j−2+ξ(n) +

`2p+ξ(n)∏
1≤k≤p+1

k 6=i

(ri − rk)

 r
bn2 c
i . (20)

3. Examples

In this section, we present the numerical results of generalized Fibonacci and Lucas p−sequence by

specifying p, a and b.

3.1. Case p = 1

By considering (18), we obtain the Binet formulas of the generalized Fibonacci and Lucas 1−numbers as

fn =

(
f2+ξ(n) − fξ(n)r2

r1 − r2

)
r
bn2 c
1 −

(
f2+ξ(n) − fξ(n)r1

r1 − r2

)
r
bn2 c
2 (21)

9
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and

`n =

(
`2+ξ(n) − `ξ(n)r2

r1 − r2

)
r
bn2 c
1 −

(
`2+ξ(n) − `ξ(n)r1

r1 − r2

)
r
bn2 c
2 , (22)

where r1 =
(
ab+2−

√
a2b2+4ab
2

)
and r2 =

(
ab+2+

√
a2b2+4ab
2

)
. We give the first few terms of the generalized

Fibonacci and Lucas 1−numbers with the following table as

Table 1: Generalized Fibonacci and Lucas 1−numbers for different a and b

(a, b) (1, 1) (1, 2) (2, 1) (2, 2)

fn {0, 1, 1, 2, 3, 5, 8 . . .} {0, 1, 1, 3, 4, 11, 15, . . .} {0, 1, 2, 3, 8, 11, 30, . . .} {0, 1, 2, 5, 12, 29, 70, . . .}

`n {2, 1, 3, 4, 7, 11, 18, . . .} {2, 1, 4, 5, 14, 19, 52, . . .} {2, 2, 4, 10, 14, 38, 52, . . .} {2, 2, 6, 14, 34, 82, 198, . . .}

Moreover, we give the graphical illustration of the first 30 terms of the generalized Fibonacci and Lucas

1−numbers for different values of a and b, ( see Figure 3 and Figure 4 ).
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Figure 3: generalized Fibonacci 1−numbers
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Figure 4: generalized Lucas 1−numbers

3.2. Case p = 2

Recall the equation (18). The Binet formulas for the generalized Fibonacci and Lucas 2−numbers are

fn =

(
f4+ξ(n) − (r2 + r3)f2+ξ(n) + r2r3fξ(n)

(r1 − r3)(r1 − r2)

)
r
bn2 c
1 +

(
f4+ξ(n) − (r1 + r3)f2+ξ(n) + r1r3fξ(n)

(r2 − r3)(r2 − r1)

)
r
bn2 c
2

+

(
f4+ξ(n) − (r1 + r2)f2+ξ(n) + r1r2fξ(n)

(r3 − r2)(r3 − r1)

)
r
bn2 c
3 (23)

and

`n =

(
`4+ξ(n) − (r2 + r3)`2+ξ(n) + r2r3`ξ(n)

(r1 − r3)(r1 − r2)

)
r
bn2 c
1 +

(
`4+ξ(n) − (r1 + r3)`2+ξ(n) + r1r3`ξ(n)

(r2 − r3)(r2 − r1)

)
r
bn2 c
2

+

(
`4+ξ(n) − (r1 + r2)`2+ξ(n) + r1r2`ξ(n)

(r3 − r2)(r3 − r1)

)
r
bn2 c
3 , (24)
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where

r1 =

3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

3 3
√

2

+
3
√

2
(
a2b2 + 3a+ 3b

)
3

3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

+
ab

3
,

r2 =

(
−1 + i

√
3
) 3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

6 3
√

2

+

(
1 + i

√
3
) (
−a2b2 − 3a− 3b

)
3 22/3

3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

+
ab

3

and

r3 = −

(
1 + i

√
3
) 3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

6 3
√

2

+

(
1− i

√
3
) (
−a2b2 − 3a− 3b

)
3 22/3

3

√
2a3b3 + 9a2b+

√
(2a3b3 + 9a2b+ 9ab2 + 27)

2 − 4 (a2b2 + 3a+ 3b)
3

+ 9ab2 + 27

+
ab

3
.

We give the the first few terms of the generalized Fibonacci and Lucas 2−numbers with the following table

as

Table 2: Generalized Fibonacci and Lucas 2−numbers for different a and b

(a, b) (1, 1) (1, 2) (2, 1) (2, 2)

fn {0, 1, 1, 1, 2, 3, 4 . . .} {0, 1, 1, 2, 3, 7, 9, . . .} {0, 1, 2, 2, 5, 7, 16, . . .} {0, 1, 2, 4, 9, 20, 44, . . .}

`n {3, 1, 1, 4, 5, 6, 10, . . .} {3, 1, 2, 5, 11, 13, 31, . . .} {3, 2, 2, 7, 9, 20, 27, . . .} {3, 2, 4, 11, 24, 52, 115, . . .}

Moreover, we give the graphical illustration of the first 30 terms of the generalized Fibonacci and Lucas

2−numbers for different values of a and b, ( see Figure 5 and Figure 6 ).
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Figure 5: generalized Fibonacci 2−numbers
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Figure 6: generalized Lucas 2−numbers

4. Conclusion

In this study, for the first time in literature we define a new generalization of Fibonacci and Lucas

p−numbers. Also, we produce a Binet formula for these sequences by taking different initial conditions.

The generalized Binet formula of the Fibonacci and Lucas p−numbers can be reduced to different Binet

formulas in the literature. For example, if we take p = 1, we reduce the Binet formula of {fn} to the

bi-periodic Fibonacci numbers qn =
(
a1−ξ(n)

(ab)b
n
2
c

)
αn−βn
α−β , in [8]. If we take p = 2, we reduce the Binet formulas

of {fn} and {`n} to the γn, in [12], Theorem 2.1. As a result, this study contributes to the literature by

providing essential information for the generalization of Fibonacci and Lucas p−numbers.
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SOME FAMILIES OF GENERATING FUNCTIONS FOR THE
GENERALIZED CESÀRO POLYNOMIALS

NEJLA ÖZMEN AND ESRA ERKUŞ-DUMAN

Abstract. The present study deals with some new properties for the gener-
alized Cesàro polynomials. The results obtained here include various families
of multilinear and multilateral generating functions, miscellaneous properties
and also some special cases for these polynomials. In addition, we derive a
theorem giving certain families of bilateral generating functions for the gen-
eralized Cesàro polynomials and the generalized Lauricella functions. Finally,
we get several interesting results of this theorem.

1. Introduction

The Cesàro polynomials g(s)n (x) are de�ned by the generating relation (see, for
example,[2], p. 449, Problem 20)

1X
n=0

g(s)n (x)tn = (1� t)�s�1(1� xt)�1: (1.1)

It is from (1.1) that

g(s)n (x) =

�
s+ n

n

�
2F1 [�n; 1;�s� n;x] ; (1.2)

where 2F1 denotes Gauss�s hypergeometric series whose natural generalization of
an arbitrary number of p numerator and q denominator parameters (p; q 2 N0 :=
N[f0g) is called and denoted by the generalized hypergeometric series pFq de�ned
by

pFq

�
�1; :::; �p;
�1; :::; �q;

z

�
=

1X
n=0

(�1)n ::: (�p)n
(�1)n ::: (�q)n

zn

n!

= pFq (�1; :::; �p;�1; :::; �q; z) :

Here (�)� denotes the Pochhammer symbol de�ned (in terms of gamma function)
by

(�)� =
�(�+ �)

�(�)
(� 2 C n Z�0 )

=

�
1; if � = 0; � 2 Cnf0g
�(�+ 1):::(�+ n� 1); if � = n 2 N; � 2 C :

and Z�0 denotes the set of nonpositive integers and �(�) is the familiar Gamma
function.

Key words and phrases. Generalized Cesàro polynomials, generating function, multilinear and
multilateral generating functions, recurrence relation, hypergeometric function.
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2 NEJLA ÖZMEN AND ESRA ERKUŞ-DUMAN

In addition, we have the following relationship between the Cesàro polynomials
g
(s)
n (x) and the classical Jacobi polynomials P (�;�)n (x) [2] :

g(s)n (x) = P (s+1;�s�n�1)n (2x� 1):

In 2011, Lin et. al. [3] introduced the generalized Cesàro polynomials as follows:

g(s)n (�; x) =

�
s+ n

n

�
2F1 [�n; �;�s� n;x] : (1.3)

It is noted that the special case � = 1 of (1.3) reduces immediately to the Cesàro
polynomials de�ned by (1.2).
The four Appell functions of two variables, denoted by F1; F2; F3 and F4; were

generalized by Lauricella functions of n variables which are denoted by F (n)A ; F
(n)
B ; F

(n)
C

and F (n)D [2] and

F
(2)
A = F2; F

(2)
B = F3; F

(2)
C = F4; F

(2)
D = F1:

A further generalization of the familiar Kampé de Fériet hypergeometric function
in two variables is due to Srivastava and Daoust [4] who de�ned the generalized
Lauricella (or the Srivastava-Daoust ) function as follows:

FA:B
(1);:::;B(n)

C:D(1);:::;D(n)

0BB@
h
(a) : �(1); :::; �(n)

i
:
h
(b(1)) : �(1)

i
; :::;

h
(b(n)) : �(n)

i
;

z1; :::; znh
(c) :  (1); :::;  (n)

i
:
h
(d(1)) : �(1)

i
; :::;

h
(d(n)) : �(n)

i
;

1CCA
=

1P
m1;:::;mn=0


(m1; :::;mn)
zm1
1

m1!
:::
zmn
n

mn!
;

where, for convenience,


(m1; :::;mn) :=

AY
j=1

(aj)m1�
(1)
j +:::+mn�

(n)
j

CY
j=1

(cj)m1 
(1)
j +:::+mn 

(n)
j

B(1)Y
j=1

(b
(1)
j )

m1�
(1)
j

D(1)Y
j=1

(d
(1)
j )

m1�
(1)
j

:::

B(n)Y
j=1

(b
(n)
j )

mn�
(n)
j

D(n)Y
j=1

(d
(n)
j )

mn�
(n)
j

the coe¢ cients

�
(k)
j (j = 1; :::; A; k = 1; :::; n); and �(k)j (j = 1; :::; B(k); k = 1; :::; n);

 
(k)
j (j = 1; :::; C; k = 1; :::; n); and �(k)j (j = 1; :::; D(k); k = 1; :::; n)

are real constants and
�
b
(k)

B(k)

�
abbreviates the array of B(k) parameters

b
(k)
j (j = 1; :::; B(k); k = 1; :::; n)

with similar interpretations for other sets of parameters [1].
For a suitably bounded non-vanishing multiple sequence f
(m1;m2; :::;ms)gm1;m2;:::;ms2N0

of real or complex parameters, let �n(u1;u2; :::; us) of s (real or complex) variables
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u1;u2; :::; us de�ned by

�n(u1;u2; :::; us) : =
nX

m1=0

1X
m2;:::;ms=0

(�n)m1((b))m1�

((d))m1�

�
 (f(m1;m2; :::;ms);m2; :::;ms)
um1
1

m1!
:::
ums
s

ms!
(1.4)

where, for convenience,

((b))m1� =
BY
j=1

(bj)m1�j and ((d))m1� =
DY
j=1

(dj)m1�j :

The main object of this paper to study di¤erent properties of the generalized
Cesàro polynomials. We give various families of multilinear and multilateral gen-
erating functions, miscellaneous properties and also some special cases for these
polynomials. In addition, we derive a theorem giving certain families of bilateral
generating functions for the generalized Cesàro polynomials and the generalized
Lauricella functions.

2. Generating Functions

Theorem 2.1. The generalized Cesàro polynomials g(s)n (�; x) have the following
generating function:

1X
n=0

g(s)n (�; x)tn = (1� t)�s�1(1� xt)��: (2.1)

Proof. If we denote the right-hand side of (2.1) by G, then we obtain

G =

1X
n=0

(s+ 1)n
tn

n!

1X
m=0

(�)m
(xt)m

m!

=
1X
n=0

1X
m=0

(s+ 1)n(�)m
n!m!

xmtn+m

=
1X
n=0

nX
m=0

(s+ 1)n�m(�)m
(n�m)!m! xmtn:

By using the formula

(s+ 1)n�m =
(s+ n�m)!

s!
;

we get

G =
1X
n=0

nX
m=0

(s+ 1)n�m(�)m
(n�m)!m! xmtn

=
1X
n=0

nX
m=0

�
s+ n

n

�
(�n)m

1

(�s� n)m
(�)m
m!

xmtn

=
1X
n=0

�
s+ n

n

�
2

F1[�n; �;�s� n;x]tn

=

1X
n=0

g(s)n (�; x)tn:
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�

Lemma 2.2. The following generating function holds true:
1X
n=0

�
n+m

n

�
g
(s)
n+m(�; x)t

n = (1� t)�s�m�1(1� xt)��g(s)m
�
�;
x(1� t)
1� xt

�
: (2.2)

Proof. If we write t+ u instead of t in (2.1) , we get
1X
n=0

g(s)n (�; x)(t+ u)n = (1� t� u)�s�1(1� xt� xu)��

1X
n=0

g(s)n (�; x)
nX

m=0

�
n

m

�
tn�mum = (1� t)�s�1

�
1� u

1� t

��s�1
(1� xt)��

�
1� xu

1� xt

���
:

Replacing n by n+m in last relation, we may write that
1X
n=0

1X
m=0

�
n+m

m

�
g
(s)
n+m(�; x)t

num = (1�t)�s�1(1�xt)��
1X
m=0

(1�t)�mg(s)m
�
�;
x(1� t)
1� xt

�
um

From the coe¢ cients of um on the both sides of the equality, one can get the desired
result. �

Lemma 2.3. The following addition formula holds for the generalized Cesàro poly-
nomials g(s)n (�; x):

g(s1+s2+1)n (�1 + �2; x) =
nX
k=0

g
(s1)
n�k(�1; x)g

(s2)
k (�2; x): (2.3)

Proof. Replacing s by s1 + s2 + 1 and � by �1 + �2 in (2.1), we obtain
1X
n=0

g(s1+s2+1)n (�1 + �2; x)t
n = (1� t)�s1�s2�2(1� xt)�(�1+�2)

= (1� t)�s1�1(1� xt)��1(1� t)s2�1(1� xt)��2

=
1X
n=0

g(s1)n (�1; x)t
n
1X
k=0

g
(s2)
k (�2; x)t

k

=
1X
n=0

1X
k=0

g(s1)n (�1; x)g
(s2)
k (�2; x)t

n+k

=
1X
n=0

nX
k=0

g
(s1)
n�k(�1; x)g

(s2)
k (�2; x)t

n:

From the coe¢ cients of tn on the both sides of the last equality, one can get the
desired result. �

3. Bilinear and Bilateral Generating Functions

In this section, we derive several families of bilinear and bilateral generating
fuctions for the generalized Cesàro polynomials g(s)n (�; x) given by (1.3) .
We begin by stating the following theorem.
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ON THE GENERALIZED CESÀRO POLYNOMIALS 5

Theorem 3.1. Corresponding to an identically non-vanishing function 
�(y1; :::; yr )
of r complex variables y1; :::; yr (r 2 N) and of complex order �;  , let

��; (y1; :::; yr; �) :=
1X
k=0

ak
�+ k(y1; :::; yr)�
k (ak 6= 0) (3.1)

and

��; n;p (�; x; y1; :::; yr; �) :=

[n=p]X
k=0

akg
(s)
n�pk (�; x)
�+ k(y1; :::; yr)�

k:

Then, for p 2 N, we have
1X
n=0

��; n;p

�
�; x; y1; :::; yr;

�

tp

�
tn = (1� t)�s�1(1� xt)����; (y1; :::; yr; �) (3.2)

provided that each member of (3.2) exists.

Proof. For convenience, let S denote the �rst member of the assertion (3.2) of
Theorem 3.1. Then,

S =
1X
n=0

[n=p]X
k=0

akg
(s)
n�pk (�; x) 
�+ k(y1; :::; yr)�

ktn�pk:

Replacing n by n+ pk; we may write that

S =
1X
n=0

1X
k=0

ak g
(s)
n (�; x) 
�+ k(y1; :::; yr)�

ktn

=
1X
n=0

g(s)n (�; x) tn
1X
k=0

ak
�+ k(y1; :::; yr)�
k

= (1� t)�s�1(1� xt)����; (y1; :::; yr; �)

which completes the proof. �

By using a similar idea, we also get the next result immediately.

Theorem 3.2. Corresponding to an identically non-vanishing function 
�(y1; :::; yr )
of r complex variables y1; :::; yr (r 2 N) and of complex order �;  , let

�n;p�; (�1 + �2; x; y1; :::; yr; z) :=

[n=p]X
k=0

akg
(s1+s2+1)
n�pk (�1 + �2; x)
�+ k(y1; :::; yr)z

k;

where ak 6= 0 ; n; p 2 N and the notation [n=p] means the greatest integer less than
or equal n=p.
Then, for p 2 N , we have

nX
k=0

[k=p]X
l=0

alg
(s1)
n�k(�1; x)g

(s2)
k�pl(�2; x)
�+ l(y1; :::; yr)z

l = �n;p�; (�1 + �2; x; y1; :::; yr; z)

(3.3)
provided that each member of (3.3) exists.
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Proof. For convenince, let T denote the �rst member of the assertion (3.3). Then,
upon substituting for the polynomials g(s1+s2+1)n (�1+�2; x) from the (2.3) into the
left-hand side of (3.3), we obtain

T =

[n=p]X
l=0

n�plX
k=0

alg
(s1)
n�k�pl(�1; x)g

(s2)
k (�2; x)
�+ l(y1; :::; yr)z

l

=

[n=p]X
l=0

al

 
n�plX
k=0

g
(s1)
n�k�pl(�1; x)g

(s2)
k (�2; x)

!

�+ l(y1; :::; yr)z

l

=

[n=p]X
l=0

alg
(s1+s2+1)
n�pl (�1 + �2; x)
�+ l(y1; :::; yr)z

l

= �n;p�; (�1 + �2; x; y1; :::; yr; z):

�

Theorem 3.3. Corresponding to an identically non-vanishing function 
�(y1; :::; yr )
of r complex variables y1; :::; yr (r 2 N) and of complex order �, let

��;p;q [�; x; y1; :::; yr; t] :=
1X
n=0

ang
(s)
m+qn(�; x)
�+pn(y1; :::; yr)t

n

where an 6= 0 and

�n;p;q(y1; :::; yr; z) :=

[n=q]X
k=0

�
m+ n

n� qk

�
ak
�+pk(y1; :::; yr)z

k:

Then, for p 2 N; we have

1X
n=0

g
(s)
m+n(�; x)�n;p;q(y1; :::; yr; z)t

n

= (1� t)�s�m�1(1� xt)����;p;q
�
�;
x(1� t)
1� xt ; y1; :::; yr; z(

t

1� t )
q

�
(3.4)

provided that each member of (3.4) exists.

Proof. For convenience, let T denote the �rst member of the assertion (3.4) of
Theorem 3.3. Then,

T =
1X
n=0

g
(s)
m+n(�; x)

[n=q]X
k=0

�
m+ n

n� qk

�
ak
�+pk(y1; :::; yr)z

ktn:
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Replacing n by n+ qk and then using (2.2), we may write that

T =
1X
n=0

1X
k=0

�
m+ n+ qk

n

�
g
(s)
m+n+qk(�; x)ak 
�+pk(y1; :::; yr)z

ktn+qk

=
1X
k=0

 1X
n=0

�
m+ n+ qk

n

�
g
(s)
m+n+qk(�; x)t

n

!
ak
�+pk(y1; :::; yr)(zt

q)k

=
1X
k=0

(1� t)�s�m�qk�1(1� xt)��g(s)m+qk
�
�;
x(1� t)
1� xt

�
ak
�+pk(y1; :::; yr)(zt

q)k

= (1� t)�s�m�1(1� xt)��
1X
k=0

(1� t)�qkg(s)m+qk
�
�;
x(1� t)
1� xt

�
ak
�+pk(y1; :::; yr)(zt

q)k

= (1� t)�s�m�1(1� xt)����;p;q
�
�;
x(1� t)
1� xt ; y1; :::; yr; z(

t

1� t )
q

�
which completes the proof. �

4. Special Cases

When the multivariable function 
�+ k(y1; :::; yr), k 2 N0; r 2 N, is expressed
in terms of simpler functions of one and more variables, then we can give further
applications of the above theorems. We �rst set


�+ k(y1; :::; yr ) = �
(�)
�+ k(y1; :::; yr)

in Theorem 3.1 , where the multivariable polynomials �(�)�+ k(x1; :::; xr) [5], gener-
ated by

(1� x1t)��e(x2+:::+xr) t =
1X
n=0

�
(�)
n (x1; :::; xr) t

n�
� 2 C ; jtj <

n
jx1j�1

o�
:

(4.1)

Thus, we have the following result which provides a class of bilateral generating
functions for the multivariable polynomials �(�)�+ k(x1; :::; xr) and the generalized
Cesàro polynomials.

Corollary 4.1. If

��; (y1; :::; yr;w) : =

1X
k=0

ak�
(�)
�+ k(y1; :::; yr)w

k

(ak 6= 0 ; �;  2 C) ;

then, we have

1X
n=0

[n=p]X
k=0

akg
(s)
n�pk (�; x)�

(�)
�+ k(y1; :::; yr)

wk

tpk
tn (4.2)

= (1� t)�s�1(1� xt)����; (y1; :::; yr;w)

provided that each member of (4.2) exists.
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Remark 4.1. Using the generating relation (4.1) for the multivariable polynomials
�
(�)
n (x1; :::; xr) and getting ak = 1; � = 0;  = 1 in Corollary 4.1, we �nd that

1X
n=0

[n=p]X
k=0

g
(s)
n�pk (�; x)�

(�)
k (y1; :::; yr)w

ktn�pk

= (1� t)�s�1(1� xt)��(1� y1w)��e(y2+:::+yr) w;�
jwj <

n
jy1j�1

o�
:

If we set r = 1 and

�+ k(y1) = g

(s3)
�+ k(�3; y)

in Theorem 3.2, we have the following bilinear generating functions for the gener-
alized Cesàro polynomials.

Corollary 4.2. If

�n;p�; (�1 + �2; x;�3; y; z) : =

[n=p]X
k=0

akg
(s1+s2+1)
n�pk (�1 + �2; x)g

(s3)
�+ k(�3; y)z

k

(ak 6= 0 ; �;  2 C)
then, we have

nX
k=0

[k=p]X
l=0

alg
(s1)
n�k(�1; x)g

(s2)
k�pl(�2; x)g

(s3)
�+ l(�3; y)z

l = �n;p�; (�1 + �2; x;�3; y; z) (4.3)

provided that each member of (4.3) exists.

Remark 4.2. Using (4.3) and taking al = 1; � = 0;  = 1; x = y , p = 1 in
Corollary 4.2, we have
1X
n=0

nX
l=0

g
(s1+s2+1)
n�l (�1+�2; x)g

(s3)
l (�3; x)z

n = (1�z)�(s1+s2+s3)�3(1�xz)�(�1+�2+�3):

Finally, choosing

s = r and 
�+ k(y1; :::; yr) = u
(�1;:::;�r)
�+ k (y1; :::; yr)

in Theorem 3.3, where the Erkus-Srivastava polynomials u(�1;:::;�r)n (y1; :::; yr) is
generated by [7]

rY
j=1

�
(1� xjtmj )��j

	
=

1X
n=0

u(�1;:::;�r)n (x1; :::; xr) t
n;

(�j 2 C (j = 1; :::; r) ; jtj < min
n
jx1j�1=m1 ; :::; jxrj�1=mr

o
we get a family of the bilateral generating functions for the Erkus-Srivastava poly-
nomials and the generalized Cesàro polynomials as follows:

Corollary 4.3. If

�m;q [�; x; y1; :::; yr; z] : =

1X
k=0

akg
(s)
m+qk(�; x)u

(�1;:::;�r)
�+ k (y1; :::; yr)z

k

(ak 6= 0; m 2 N0; k 6= 0)
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and

�p;�n;m;q(y1; :::; yr; z) :=

[n=q]X
k=0

�
m+ n

n� qk

�
aku

(�1;:::;�r)
�+ k (y1; :::; yr)z

k

where n; p 2 N, then we have
1X
n=0

g
(s)
m+n(�; x)�

p;�
n;m;q(y1; :::; yr; z)t

n (4.4)

= (1� t)�s�m�1(1� xt)���m;q
�
�;
x(1� t)
1� xt ; y1; :::; yr; z

�
t

1� t

�q�
provided that each member of (4.4) exists.

Furthermore, for every suitable choice of the coe¢ cients ak (k 2 N0); if the multi-
variable functions 
�+ k(y1; :::; yr), r 2 N, are expressed as an appropriate product
of several simpler functions, the assertions of Theorem 3.1, Theorem 3.2, Theorem
3.3 can be applied in order to derive various families of multilinear and multilat-
eral generating functions for the family of the generalized Cesáro polynomials given
explicitly by (1.3).

5. Miscellaneous Properties

In this section we give some properties for the generalized Cesàro polynomials
g
(s)
n (�; x) given by (1.3).

Theorem 5.1. The generalized Cesàro polynomials g(s)n (�; x) have the following
integral representation:

g(s)n (�; x) =
1

�(s+ 1)�(�)

1Z
0

1Z
0

e�(u1+u2)
(u1 + u2x)

n

n!
us1u

��1
2 du1du2: (5.1)

Proof. If we use the identity

a�v =
1

�(v)

1Z
0

e�attv�1dt; (Re(v) > 0)

on the right-hand side of the generating function (2.1), we have

1X
n=0

g(s)n (�; x)tn =
1

�(s+ 1)

1Z
0

e�(1�t)u1us1du1
1

�(�)

1Z
0

e�(1�xt)u2u��12 du2

=
1

�(s+ 1)�(�)

1Z
0

1Z
0

e�(u1+u2)e(u1+u2x)tus1u
��1
2 du1du2

=
1

�(s+ 1)�(�)

1Z
0

1Z
0

e�(u1+u2)
1X
n=0

(u1 + u2x)
n

n!
tnus1u

��1
2 du1du2:

From the coe¢ cents of tn on the both sides of the last equality, one can get the
desired result. �
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We now discuss some miscellaneous recurrence relations of the generalized Cesàro
polynomials. By di¤erentiating each member of the generating function relation
(2.1) with respect to x and using

1X
n=0

1X
k=0

A(k; n) =
1X
n=0

nX
k=0

A(k; n� k); (5.2)

we arrive at the following (di¤erential) recurrence relation for the generalized Cesàro
polynomials:

@

@x
g(s)n (�; x)� x @

@x
g
(s)
n�1(�; x) = �g

(s)
n�1(�; x); n � 1: (5.3)

On the other hand, by di¤erentiating each member of the generating function rela-
tion (2.1) with respect to x; we have

@

@x
g(s)n (�; x) = �

n�1X
k=0

xn�k�1g
(s)
k (�; x): (5.4)

If we consider (5.3) and (5.4), we can easily get the following recurrence relation
for the generalized Cesàro polynomials :

n�1X
k=0

xn�k�1g
(s)
k (�; x)�

n�2X
k=0

xn�k�1g
(s)
k (�; x) = g

(s)
n�1(�; x):

Besides, by di¤erentiating each member of the generating function relation (2.1)
with respect to t, we have the following another recurrence relation for these poly-
nomials:

(n+ 1)g
(s)
n+1(�; x) =

nX
m=0

h
(s+ 1) g

(s)
n�m(�; x) + �x

m+1g
(s)
n�m(�; x)

i
:

6. The Generalized Lauricella Functions

In the present section, we derive various families of bilateral generating func-
tions for the generalized Cesàro polynomials and the generalized Lauricella (or the
Srivastava-Daoust) functions.

Theorem 6.1. The following bilateral generating function holds true:

1X
n=0

g(s)n (�; x)�n(u1;u2; :::; uk)t
n

= (1� t)�s�1 (1� xt)��
1X

m1;p;m2;:::;mk=0

((b))(m1+p)�(s+ 1)m1
(�)p

((d))(m1+p)�

�
(f((m1 + p) ;m2; :::;mk);m2; :::;mk)
( u1tt�1 )

m1

m1!

�
u1xt
xt�1

�p
p!

um2
2

m2!
:::
umk

k

mk!
;

where �n(u1;u2; :::; uk) is given by (1.4).
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ON THE GENERALIZED CESÀRO POLYNOMIALS 11

Proof. By using the relationship (2.2), it is easily observed that

1X
n=0

g(s)n (�; x)�n(u1;u2; :::; uk)t
n

=
1X
n=0

g(s)n (�; x)
nX

m1=0

1X
m2;:::;mk=0

(�n)m1((b))m1�

((d))m1�

� 
 (f(m1;m2; :::;mk);m2; :::;mk)
um1
1

m1!
:::
umk

k

mk!
tn

=
1X

m1;m2;:::;mk=0

((b))m1�

((d))m1�

 (f(m1;m2; :::;mk);m2; :::;mk)

� (�u1t)m1
um2
2

m2!
:::
umk
s

mk!
(1� t)�s�m1�1(1� xt)��g(s)m1

�
�;
x(1� t)
1� xt

�
= (1� t)�s�1(1� xt)��

1X
m1;m2;:::;mk=0

((b))m1�

((d))m1�

 (f(m1;m2; :::;mk);m2; :::;mk)

� (�u1t)m1
um2
2

m2!
:::
umk

k

mk!
(1� t)�m1

�
s+m1

m1

� m1X
p=0

(�m1)p(�)p
(�s�m1)pp!

�
x(1� t)
1� xt

�p
= (1� t)�s�1(1� xt)��

�
1X

m1;p;m2;:::;mk=0

((b))(m1+p)�

((d))(m1+p)�

 (f((m1 + p) ;m2; :::;mk);m2; :::;mk) (s+ 1)m1

(�)p

( u1tt�1 )
m1

m1!

�
u1xt
xt�1

�p
p!

um2
2

m2!
:::
umk

k

mk!
:

�

By appropriately choosing the multiple sequence 
(m1;m2; :::;ms) in Theorem
6.1, we obtain several interesting results as follows which give bilateral generating
functions for the generalized Cesàro polynomials and the generalized Lauricella (or
the Srivastava-Daoust) functions.
I.By letting


 (f(m1;m2; :::;mk);m2; :::;mk)

=

AY
j=1

(aj)m1�
(1)
j +:::+mk�

(k)
j

EY
j=1

(cj)m1 
(1)
j +:::+mk 

(k)
j

B(2)Y
j=1

(b
(2)
j )

m2�
(2)
j

D(2)Y
j=1

(d
(2)
j )

m2�
(2)
j

:::

B(k)Y
j=1

(b
(k)
j )

mk�
(k)
j

D(k)Y
j=1

(d
(k)
j )

mk�
(k)
j

in Theorem 6.1,we get the following result.
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12 NEJLA ÖZMEN AND ESRA ERKUŞ-DUMAN

Corollary 6.2. The following bilateral generating function holds true:
1X
n=0

g(s)n (�; x)FA:B+1;B
(2);:::;B(k)

E:D;D(2);:::;D(k)0BB@
h
(a) : �(1); :::; �(k)

i
: [�n : 1]; [(b) : �]; [(b(2)) : �(2)]; :::; [(b(k)) : �(k)];

h
(c) :  (1); :::;  (k)

i
: [(d) : �]; [(d(2)) : �(2)]; :::; [(d(k)) : �(k)];

u1; u2; :::; uk

�
tn

= (1� t)�s�1 (1� xt)�� FA+B:1;1;B
(2);:::;B(k)

E+D:0;0;D(2);:::;D(k)0B@
�
(e) : '(1); :::; '(k+1)

�
: [s+ 1 : 1]; [� : 1]; [(b(2)) : �(2)]; :::; [(b(k)) : �(k)];h

(f) : �(1); :::; �(k+1)
i
: � �; [(d(2)) : �(2)]; :::; [(d(k)) : �(k)];

(
u1t

t� 1); (
u1xt

xt� 1); u2; :::; uk

!

where the coe¢ cients ej ; fj ; '
(k)
j and �(k)j are given by

ej =

�
aj
bj�A

(1 � j � A)

(A < j � A+B);

fj =

�
cj

dj�E

(1 � j � E)

(E < j � E +D);

'
(r)
j =

8>>><>>>:
�
(1)
j (1 � j � A; 1 � r � 2)

�
(r�1)
j (1 � j � A; 2 < r � k + 1)

�j�A (A < j � A+B; 1 � r � 2)
0 (A < j � A+B; 2 < r � k + 1)

and

�
(r)
j =

8>>><>>>:
 
(1)
j (1 � j � E; 1 � r � 2)

 
(r�1)
j (1 � j � E; 2 < r � k + 1)

�j�E (E < j � E +D; 1 � r � 2)
0 (E < j � E +D; 2 < r � k + 1)

respectively.
II.Upon setting


 (f(m1;m2; :::;mk);m2; :::;mk) =
(a)m1+:::+mk

(b2)m2
:::(bk)mk

(c1)m1 :::(ck)mk

and

� = � = 0 (that is, �1 = ::: = �B = �1 = ::: = �D = 0)

in Theorem 6.1,we obtain the following result.
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ON THE GENERALIZED CESÀRO POLYNOMIALS 13

Corollary 6.3. The following bilateral generating function holds true:
1X
n=0

g(s)n (�; x)F
(k)
A [a;�n; b2; :::; bk; c1; :::; ck;u1; u2; :::; uk] tn

= (1� t)�s�1(1� xt)��F 1:1;1;1;:::;11:0;0;1;:::;10B@ [(a) : 1; :::; 1] : [s+ 1 : 1] ; [� : 1] ; [b2 : 1] ; :::; [bk : 1] ;h
(c1) :  

(1); :::;  (k+1)
i
: �; �; [c2 : 1] ; :::; [ck : 1] ;

(
u1t

t� 1); (
u1xt

xt� 1); u2; :::; uk

!
;

where the coe¢ cients  (�) are given by

 (�) =

�
1; (1 � � � 2)
0; (2 < � � k + 1)

:

III. If we put


 (f(m1;m2; :::;mk);m2; :::;mk) =
(a
(1)
1 )m2

:::(a
(k�1)
1 )mk

(a
(1)
2 )m2

:::(a
(k�1)
2 )mk

(c)m1+:::+mk

and
B = 1; b1 = b; �1 = 1 and � = 0

in Theorem 6.1,we obtain Corollary 6.4 below.

Corollary 6.4. The following bilateral generating function holds true:
1X
n=0

g(s)n (�; x)F
(k)
B

h
�n; a(1)1 ; :::; a

(k�1)
1 ; b; a

(1)
2 ; :::; a

(k�1)
2 ; c;u1; u2; :::; uk

i
tn

= (1� t)�s�1(1� xt)��F 1:1;1;2;:::;21:0;0;0;:::;00B@
h
(b) : �(1); :::; �(k+1)

i
: [s+ 1 : 1] ; [� : 1] ;

�
a(1) : 1

�
; :::;

�
a(k�1) : 1

�
;

[(c) : 1; :::; 1] : �; �; �; :::; �;

(
u1t

t� 1); (
u1xt

xt� 1); u2; :::; uk

!
;

where the coe¢ cients �(�) are given by

�(�) =

�
1; (1 � � � 2)
0; (2 < � � k + 1)

:

IV.By letting


 (f(m1;m2; :::;mk);m2; :::;mk) =
(a)m1+:::+mk

(b2)m2
:::(bs)mk

(c)m1+:::+mk

and
� = � = 0;

in Theorem 6.1,we obtain the following result.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

682 NEJLA ÖZMEN et al 670-683



14 NEJLA ÖZMEN AND ESRA ERKUŞ-DUMAN

Corollary 6.5. The following bilateral generating function holds true:
1X
n=0

g(s)n (�; x)F
(k)
D [a;�n; b2; :::; bk; c;u1; u2; :::; uk] tn

= (1� t)�s�1(1� xt)��F (k+1)D

�
a; s+ 1; �; b2; :::; bk; c; (

u1t

t� 1); (
u1xt

xt� 1); u2; :::; uk
�
:
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On uniqueness of meromorphic functions sharing one small

function
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Abstract: In this paper, we prove the uniqueness theorems of meromorphic functions concerning

shared small functions. Let f and g be meromorphic functions with finite order. We prove f ≡ tg under

some conditions, when fnf (k) and gng(k) share a small function a(z). We improve the results of Wang

and Gao in [7].

Keywords: meromorphic function; shared value; uniqueness.

1. Introduction and results

In this article, a meromorphic function means meromorphic in the whole complex plane. We shall

use the standard notations in the Nevanlinna value distribution theorem of meromorphic functions such

as T (r, f), N(r, f), m(r, f), N(r, f), etc. (see [1],[2]) For any nonconstant meromorphic function f , we

denote by S(r, f) any quantity satisfying

lim
r→∞

S(r, f)

T (r, f)
= 0,

possibly outside of a finite linear measure in R+.

Let f and g be two nonconstant meromorphic functions. A meromorphic function a(z) is called a

small function with respect to f provided that T (r, a) = S(r, f). Note that the set of all small functions of

f is a field. Let a(z) be a small function with respect to f and g. We say that f and g share a(z) CM(IM)

provided that f − a(z) and g − a(z) have same zeros counting multiplicities (ignoring multiplicities).

Throughout this paper, we need the following definitions.

Θ(b, f) = 1− lim sup
r→∞

N(r, b; f)

T (r, f)
,

where b is a value in the extended complex plane.

The order of growth ρ of f :

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
.

∗Xuan Zuxing is the corresponding author and he is supported in part by NNSFC (No. 91420202) , the Project of

Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality

(CIT and TCD201504041) and the project of Beijing Municipal Science and technology(D161100003516003).
1
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The exponent of convergence of a−value of f :

λ(a, f) = inf

{
τ > 0 :

∞∑
n=1

1

|an|τ
<∞

}

= lim sup
r→∞

log+ n(r, 1
f−a )

log r

= lim sup
r→∞

log+N(r, 1
f−a )

log r
.

where {an} is the sequence of a-value of f(z). If a = 0, we denote λ(0, f) by λ(f). If a = ∞, we denote

λ(∞, f) by λ( 1f ).

In 1920’s, Nevanlinna [3] proved the famous four-valued theorem, which is an important result about

uniqueness of meromorphic functions. Then many results about meromorphic functions that share more

than or equal to two values have been obtained (see [4]). In 1997, Yang and Hua [5] studied meromorphic

functions sharing one value.

Theorem A. (see [5]). Let f(z) and g(z) be two nonconstant meromorphic functions and let n ≥ 11 be

a positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2,

and c are three constants satisfying (c1c2)
n+1c2 = −1, or f(z) ≡ tg(z) for a constant such that tn+1 = 1.

In 2002, Fang and Qiu [6] investigated meromorphic functions sharing fixed point.

Theorem B. (see [6]). Let f(z) and g(z) be two nonconstant meromorphic(entire) functions and let n ≥
11(n ≥ 6) be a positive integer. If fnf ′ and gng′ share z CM, then either f(z) = c1e

cz2

, g(z) = c2e
−cz2

,

where c1, c2, and c are three constants satisfying 4(c1c2)
n+1c2 = −1, or f(z) ≡ tg(z) for a constant such

that tn+1 = 1.

In 2007, Wang and Gao [7] extended Theorem B, in which they studied meromorphic functions sharing

a small function.

Theorem C. (see [7]). Let f(z) and g(z) be two transcendental meromorphic functions, and let a(z)(̸≡ 0)

be a common small function with respect to them, and let n ≥ 11 be a positive integer. If fnf ′ and gng′

share a(z) CM, then either fnf ′gng′ ≡ a(z)2, or f(z) ≡ tg(z) for a constant such that tn+1 = 1.

In this paper we replace f ′ by f (k) in Theorem C and obtain the following results which improve

Theorem C.

Theorem 1. Let f and g be two transcendental meromorphic functions with finite order and max{λ(f), λ( 1f )} <
1. Let k, n be two positive integers and a(z)(̸≡ 0) be a small function of f and g. If fnf (k) and gng(k)

share a(z) CM, f and g share 0 CM, and n > k + 4 +
√
k2 + 4k + 25, then f ≡ tg for a constant such

that tn+1 = 1 or fnf (k)gng(k) ≡ a(z)2.

Remark: When k = 1, n ≥ 11 > 5+
√
30. Let a(z) = z, f(z), g(z) in the Theorem B satisfy the conditions

of Theorem 1 and fnf ′gng′ ≡ z2.

Theorem 2. Let f and g be two transcendental meromorphic functions with finite order and max
{
λ(f), λ( 1f )

}
<

1. Let k, n be two positive integers and a(z)(̸≡ 0) be a small function of f and g. If fnf (k) and gng(k)

share a(z) IM, f and g share 0 CM and ∆ = min{∆1,∆2} > 6k + 20− n, where

∆1 = (3k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) + 4Θ(0, f) + 3Θ(0, g)

+ δk+2(0, f) + δk+2(0, g) + 2δk+1(0, f) + δk+1(0, g),

2
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∆2 = (3k + 4)Θ(∞, g) + (2k + 3)Θ(∞, f) + 4Θ(0, g) + 3Θ(0, f)

+ δk+2(0, g) + δk+2(0, f) + 2δk+1(0, g) + δk+1(0, f),

then f ≡ tg for a constant such that tn+1 = 1 or fnf (k)gng(k) ≡ a(z)2.

2.Lemmas

In this section, we present some lemmas which will be needed in the sequel. We now explain some

definitions and notions which are used in this paper.

Definition 1. Let k be a positive integer. We denote by Nk)

(
r, 1

f−a

)
the counting function for the zeros

of f − a with multiplicity ≤ k and by Nk)

(
r, 1

f−a

)
the corresponding one for which the multiplicity is

not counted. Let N(k

(
r, 1

f−a

)
be the counting function for the zeros of f − a with multiplicity ≥ k, and

N (k

(
r, 1

f−a

)
be the corresponding one for which the multiplicity is not counted. Set

Nk

(
r, 1

f−a

)
= N

(
r, 1

f−a

)
+N (2

(
r, 1

f−a

)
+ · · ·+N (k

(
r, 1

f−a

)
.

Definition 2. For b ∈ C ∪ {∞} we put

δk(b, f) = 1− lim sup
r→∞

Nk(r, b; f)

T (r, f)
.

Definition 3. Let f and g be two non-constant meromorphic functions such that f and g share the value

1IM. Let z0 be a zero of f − 1 with multiplicity p, and a zero of g − 1 with multiplicity q. We denote

by NL(r, 1; f) the reduced counting function of those common zeros of f − 1 and g − 1 satisfying p > q.

Similarly we define NL(r, 1; g). In addition, we denote by N
1)
E

(
r, 1

f−1

)
the counting function of those

common simple 1-points of f(z) and g(z).

Lemma 2.1([9], Lemma 3) Let f be a nonconstant meromorphic function and k be a positive integer.

Then

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f) (2.1).

Lemma 2.2([10], Lemma 2) Let f be a nonconstant meromorphic function. If f and g share 1 IM, then

NL

(
r,

1

f (k) − 1

)
< N

(
r,

1

f (k)

)
+N(r, f) + S(r, f). (2.2)

Lemma 2.3([7,11], Lemma 3) Let f and g be two transcendental meromorphic functions defined in the

complex plane C. If f and g share 1 CM, then one of the following cases will occur:

(i)T (r, f) ≤ N2(r,
1
f ) +N2(r,

1
g ) +N2(r, f) +N2(r, g) + S(r, f), (2.3)

(ii)f ≡ g or fg ≡ 1.

Lemma 2.4 Let f and g be two meromorphic functions with finite order defined in the complex plane C
and let k, n be two positive integers. If f and g share 0 CM, max

{
λ(f), λ( 1f )

}
< 1 and fnf (k) ≡ gng(k),

then f ≡ tg for a constant such that tn+1 = 1.

Proof: Let z0 be a pole of f with multiplicity p, then by fnf (k) ≡ gng(k), z0 is also a pole of g with

multiplicity p, thus f and g share ∞ CM. Since f and g share 0 CM, f and g have same zeros and poles.

Suppose f and g have the forms f = h1(z)
h2(z)

eα(z), g = h1(z)
h2(z)

eβ(z), where h1(z), h2(z) are entire functions,

and α(z), β(z) are polynomials.
3
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Let h(z) = h1(z)
h2(z)

. Thus f and g have the forms f = h(z)eα(z), g = h(z)eβ(z). Since max
{
λ(f), λ( 1f )

}
<

1, ρ(h) < 1.

First we assume k = 1, then fnf ′ ≡ gng′, by integration we have fn+1 = gn+1 + c, where c is a

constant. From the condition that f and g share 0 CM we have c = 0, thus f ≡ tg where tn+1 = 1.

Next we assume k = 2, then

fnf ′′ = e(n+1)αhn[h(α′)2 + 2h′α′ + hα′′ + h′′],

gng′′ = e(n+1)βhn[h(β′)2 + 2h′β′ + hβ′′ + h′′],

thus fnf ′′ ≡ gng′′ gives

e(n+1)α[h(α′)2 + 2h′α′ + hα′′ + h′′] ≡ e(n+1)β [h(β′)2 + 2h′β′ + hβ′′ + h′′]. (2.4)

If α ̸≡ β, we set α− β = C where C is constant or α− β = P (z) where P (z) is a polynomial.

Let α− β = C. We have f = C1g and replace (2.4) by the following equality

Cn+1
1 gng′′ = gng′′,

then f ≡ tg where tn+1 = 1.

Let α− β = P (z). We replace (2.4) by the following equality

e(n+1)P (z)[h(α′)2 + 2h′α′ + hα′′ + h′′] ≡ [h(β′)2 + 2h′β′ + hβ′′ + h′′].

P (z) is a nonconstant polynomial, then ρ(e(n+1)P (z)) ≥ 1. Since ρ(h) < 1 and α, β are polynomials,

ρ

(
h(α′)2 + 2h′α′ + hα′′ + h′′

h(β′)2 + 2h′β′ + hβ′′ + h′′

)
< 1.

It is a contradiction.

At last we consider fnf (k) ≡ gng(k). By calculation we get

fnf (k) = e(n+1)αhn[h(α′)k +D(α′, α′′, · · · , α(k), h, h′, h′′, · · · , h(k))],

where D is a differential polynomial concerning α and h.

Similarly,

gng(k) = e(n+1)βhn[h(β′)k +D(β′, β′′, · · · , β(k), h, h′, h′′, · · · , h(k))].

Thus fnf (k) ≡ gng(k) yields

e(n+1)(α−β)[h(α′)k +D(α′, α′′, · · · , α(k), h, h′, h′′, · · · , h(k))]

≡ [h(β′)k +D(β′, β′′, · · · , β(k), h, h′, h′′, · · · , h(k))] (2.5)

If α− β = C, as the same proof of the case where k = 2, we obtain f ≡ tg where tn+1 = 1.

If α− β = P (z) where P (z) is a polynomial, from (2.5) we get a contraction. The proof of Lemma 2.4 is

completed.

3. The Proof of Theorem 1

4
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Let

F =
fnf (k)

a(z)
, G =

gng(k)

a(z)
. (3.1)

Then F and G share 1 CM. This and Lemma 2.1 imply that

N2

(
r,

1

F

)
= N2

(
r,

a(z)

fnf (k)

)
≤ N2

(
r,

1

fnf (k)

)
+N2(r, a(z))

≤ 2N

(
r,

1

f

)
+N

(
r,

1

f (k)

)
+ S(r, f)

=
2

n

[
nN

(
r,

1

f

)
+N

(
r,

1

f (k)

)]
+

(
1− 2

n

)
N

(
r,

1

f (k)

)
+ S(r, f)

≤ 2

n
N(r,

1

fnf (k)
) + S(r, f)

+ (1− 2

n
)

1

n+ 1

[
nNk

(
r,

1

f

)
+N

(
r,

1

f (k)

)
+ nkN(r, f)

]
≤ 2

n
N

(
r,

1

fnf (k)

)
+

(
1− 2

n

)
1

n+ 1
N

(
r,

1

fnf (k)

)
+

(
1− 2

n

)
nk

n+ 1
N(r, f) + S(r, f)

≤ 3

n+ 1
N

(
r,

1

fnf (k)

)
+

(n− 2)k

n+ 1
N(r, f) + S(r, f). (3.2)

Thus we have

N2

(
r,

1

F

)
+N2(r, F ) ≤ 3

n+ 1
N

(
r,

1

fnf (k)

)
+

(n− 2)k

n+ 1
N(r, f)

+ 2N(r, f) + S(r, f)

=
3

n+ 1
N

(
r,

1

fnf (k)

)
+

(n− 2)k + 2n+ 2

n+ 1
N(r, f) + S(r, f)

≤ 3

n+ 1
N

(
r,

1

F

)
+

(n− 2)k + 2n+ 2

(n+ 1)2
N(r, fnf (k)) + S(r, f)

≤ 3

n+ 1
N(r,

1

F
) +

(n− 2)k + 2n+ 2

(n+ 1)2
N(r, F ) + S(r, f)

≤ (n− 2)k + 5n+ 5

(n+ 1)2
T (r, F ) + S(r, f). (3.3)

Since

nT (r, f) = T

(
r,
fnf (k)

a(z)
· a(z)
f (k)

)
+ S(r, f)

≤ T (r, F ) + T

(
r,
a(z)

f (k)

)
+ S(r, f)

≤ T (r, F ) + T (r, f (k)) + S(r, f)

≤ T (r, F ) + T (r,
f (k)

f
) + T (r, f) + S(r, f)

≤ T (r, F ) +N

(
r,
f (k)

f

)
+m

(
r,
f (k)

f

)
+ T (r, f) + S(r, f)

≤ T (r, F ) +N(r, f) + kN(r, f) + T (r, f) + S(r, f)

≤ T (r, F ) + (k + 2)T (r, f) + S(r, f), (3.4)
5
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we have S(r, f) = S(r, F ). Combining with (3.3), we obtain

N2

(
r,

1

F

)
+N2(r, F ) ≤

(n− 2)k + 5n+ 5

(n+ 1)2
T (r, F ) + S(r, F ). (3.5)

Similarly, we get

N2

(
r,

1

G

)
+N2(r,G) ≤

(n− 2)k + 5n+ 5

(n+ 1)2
T (r,G) + S(r,G) (3.6)

By Lemma 2.3, if (i) holds, then we have

T (r, F ) + T (r,G) ≤ 2(n− 2)k + 10n+ 10

(n+ 1)2
[T (r, F ) + T (r,G)] + S(r, F ) + S(r,G),

this contradicts with the assumption n > k+4+
√
k2 + 4k + 25, therefore, fnf (k) ≡ gng(k) or fnf (k)gng(k) ≡

a(z)2. If fnf (k) ≡ gng(k), by Lemma 2.4, we obtain f ≡ tg. This completes the proof of Theorem 1.

4. The Proof of Theorem 2

Let

F =
fnf (k)

a(z)
, G =

gng(k)

a(z)
, (4.1)

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
. (4.2)

Suppose that H ̸≡ 0, from the condition that fnf (k) and gng(k) share a(z)IM, we have F and G share

1IM, so the common simple 1-point of F and G is the zero of H, and

N
1)

E

(
r,

1

F − 1

)
= N

1)

E

(
r,

1

G− 1

)
≤ N

(
r,

1

H

)
≤ T (r,H) +O(1)

≤ N(r,H) + S(r, f) + S(r, g), (4.3)

From (4.2) we have

N(r,H) ≤ N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N(r, F ) +N(r,G) +NL

(
r,

1

F − 1

)
+ NL

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f) + S(r, g). (4.4)

where N0

(
r, 1

F ′

)
is the counting function of the zeros of F ′, which are not the zeros of F and F − 1 and

N0

(
r, 1

G′

)
is the counting function of the zeros of G′, which are not the zeros of G and G − 1. Noting

6
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that F and G share 1 IM, we get

N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
= 2N

1)

E

(
r,

1

F − 1

)
+ 2N

(2

E

(
r,

1

F − 1

)
+ 2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ S(r, f) + S(r, g)

≤ N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ 2N

(2

E

(
r,

1

F − 1

)
+N

1)

E

(
r,

1

F − 1

)
+ N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f) + S(r, g). (4.5)

It is easy to see that

NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ 2N

(2

E

(
r,

1

F − 1

)
+N

1)

E

(
r,

1

F − 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1). (4.6)

This and (4.5) give

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+ N(r, F ) +N(r,G) + 2NL(r,

1

F − 1
)

+ NL(r,
1

G− 1
) + T (r,G) +N0(r,

1

F ′ )

+ N0(r,
1

G′ ) + S(r, f) + S(r, g). (4.7)

By the second fundamental theorem and (4.7), we have

T (r, F ) + T (r,G) ≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+N(r, F ) +N(r,G) +N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
−N0

(
r,

1

F ′

)
−N0

(
r,

1

G′

)
+ S(r, f) + S(r, g)

≤ T (r,G) + 2N(r, F ) + 2N(r,G) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f) + S(r, g).

Thus

T (r, F ) ≤ 2N(r, F ) + 2N(r,G) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f) + S(r, g). (4.8)

7
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From Lemma 2.2, we obtain

NL

(
r,

1

F − 1

)
≤ N (r, F ) +N

(
r,

1

F

)
, (4.9)

NL

(
r,

1

G− 1

)
≤ N(r,G) +N

(
r,

1

G

)
. (4.10)

Taking (4.9) and (4.10) into (4.8) and combining with Lemma 2.1 , we get

T (r, F ) ≤ 4N(r, F ) + 3N(r,G) +N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f) + S(r, g)

≤ 4N(r, f) + 3N(r, g) +N2

(
r,

1

fn

)
+ N2

(
r,

1

f (k)

)
+N2

(
r,

1

gn

)
+N2

(
r,

1

g(k)

)
+ 2N

(
r,

1

fn

)
+ 2N

(
r,

1

f (k)

)
+N

(
r,

1

gn

)
+ N

(
r,

1

g(k)

)
+ S(r, f) + S(r, g)

≤ 4N(r, f) + 3N(r, g) + 4N(r,
1

f
)

+ 3N

(
r,
1

g

)
+N2

(
r,

1

f (k)

)
+N2

(
r,

1

g(k)

)
+ 2N(r,

1

f (k)
) +N

(
r,

1

g(k)

)
+ S(r, f) + S(r, g)

≤ (3k + 4)N(r, f) + (2k + 3)N(r, g) + 4N

(
r,

1

f

)
+ 3N

(
r,
1

g

)
+N2+k

(
r,

1

f

)
+N2+k

(
r,
1

g

)
+ 2N1+k

(
r,

1

f

)
+N1+k

(
r,
1

g

)
+ S(r, f) + S(r, g). (4.11)

On the other hand, from (3.4) we have

T (r, F ) ≥ (n− k − 1)T (r, f) + S(r, f). (4.12)

Thus from (4.11) and (4.12), it follows that

(n− k − 1)T (r, f) ≤ (3k + 4)N(r, f) + (2k + 3)N(r, g)

+ 4N

(
r,

1

f

)
+ 3N

(
r,
1

g

)
+N2+k

(
r,

1

f

)
+ N2+k

(
r,
1

g

)
+ 2N1+k

(
r,

1

f

)
+N1+k

(
r,
1

g

)
+ S(r, f) + S(r, g). (4.13)
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In a similar way, we can get

(n− k − 1)T (r, g) ≤ (3k + 4)N(r, g) + (2k + 3)N(r, f)

+ 4N

(
r,
1

g

)
+ 3N

(
r,

1

f

)
+N2+k

(
r,
1

g

)
+ N2+k

(
r,

1

f

)
+ 2N1+k

(
r,
1

g

)
+N1+k

(
r,

1

f

)
+ S(r, f) + S(r, g). (4.14)

We suppose that there exists a set I of infinite measure such that T (r, g) ≤ T (r, f) for r ∈ I. Hence by

(4.13) we have

nT (r, f) ≤ [(6k + 20)− (3k + 3)Θ(∞, f)− (2k + 3)Θ(∞, g)− 4Θ(0, f)

− 3Θ(0, g)− δk+2(0, f)− δk+2(0, g)− 2δk+1(0, f)− δk+1(0, g) + ϵ]T (r, f) + S(r, f)

for r ∈ I and 0 < ϵ < ∆1 − (6k + 20 − n). And we obtain T (r, f) ≤ S(r, f) for r ∈ I, which is a

contradiction.

Similarly, if T (r, f) ≤ T (r, g) for r ∈ I, by (4.14) we have

nT (r, g) ≤ [(6k + 20)− (3k + 3)Θ(∞, g)− (2k + 3)Θ(∞, f)− 4Θ(0, g)

− 3Θ(0, f)− δk+2(0, g)− δk+2(0, f)− 2δk+1(0, g)− δk+1(0, f) + ϵ]T (r, g) + S(r, g)

for r ∈ I and 0 < ϵ < ∆2 − (6k + 20− n), which also is a contradiction.

Hence H(z) ≡ 0. That is
F ′′

F ′ − 2F ′

F − 1
≡ G′′

G′ − 2G′

G− 1
.

Without loss of generality, next we suppose that there exists a set I of infinite measure such that T (r, g) ≤
T (r, f) for r ∈ I. By integrating two sides of the above equality we get

1

G− 1
=

A

F − 1
+B, (4.15)

where A(̸= 0) and B are constants.

We consider the following three cases:

Case 1. Let B ̸= 0 and A = B. If B = −1, from (4.15) we obtain FG ≡ 1, that is fnf (k)gng(k) ≡ a(z)2.

If B ̸= −1, from (4.15) we get 1
G = BF

(1+B)F−1 , thus N(r, 1
F− 1

B+1

) = N(r, 1
G ). By the second funda-

9
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mental theorem, (4.12) and Lemma 2.1, we have

(n− k − 1)T (r, f) ≤ T (r, F ) + S(r, F )

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − 1
B+1

)
+ S(r, F )

= N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, F )

≤ N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f (k)

)
+ N

(
r,
1

g

)
+N

(
r,

1

g(k)

)
+ S(r, f)

≤ (k + 1)N(r, f) + kN(r, g) +N

(
r,

1

f

)
+N

(
r,
1

g

)
+ N1+k

(
r,

1

f

)
+N1+k

(
r,
1

g

)
+ S(r, f)

≤ (3k + 4)N(r, f) + (2k + 3)N(r, g)

+ 4N

(
r,

1

f

)
+ 3N

(
r,
1

g

)
+N2+k

(
r,

1

f

)
+ N2+k

(
r,
1

g

)
+ 2N1+k

(
r,

1

f

)
+ N1+k

(
r,
1

g

)
+ S(r, f) + S(r, g).

That is,

(n− k − 1)T (r, f) ≤ (3k + 4)N(r, f) + (2k + 3)N(r, g)

+ 4N

(
r,

1

f

)
+ 3N

(
r,
1

g

)
+N2+k

(
r,

1

f

)
+ N2+k

(
r,
1

g

)
+ 2N1+k

(
r,

1

f

)
+ N1+k

(
r,
1

g

)
+ S(r, f) + S(r, g).

Thus we obtain

[∆1 − (5k + 18− n)]T (r, f) ≤ S(r, f),

which is a contradiction.

Case 2. Let B ̸= 0 and A = B. If B = −1, we have from (4.15) that G = A
−F+A+1 , therefore

N(r, 1
−F+A+1 ) = N(r,G). By the second fundamental theorem and the same argument as in case 1, we

get a contradiction.

If B ̸= −1, we have from (4.15) that G− (1 + 1
B ) = −A

B2(F+A−B
B )

, therefore N
(
r, 1

F+A−B
B

)
= N(r,G).

Next by the second fundamental theorem and the same argument as in case 1, we get a contradiction.

Case 3. Let B = 0, then we obtain from (4.15) that G = F
A + 1− 1

A . If A ̸= 1, then N
(
r, 1

G−A−1
A

)
=

N
(
r, 1

F

)
. By the second fundamental theorem and the same argument as in case 1, we get a contradiction.

Thus A = 1, so we have F ≡ G, that is fnf (k) ≡ gng(k). By Lemma 2.4 we have f ≡ tg for a constant

such that tn+1 = 1. From the above proof we obtain f ≡ tg or fnf (k)gng(k) ≡ a(z)2.

The proof of Theorem 2 is completed.
10
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Stochastic elastic equation in d-dimensional

space driven by multiplicative multi-parameter

fractional white noise

Yinghan Zhang∗

School of Mathematics and Physics, University of Science and Technology Beijing,

Beijing 100083, P.R.China.

Abstract

Stochastic elastic equation in d-dimensional space driven by multiplicative multi-

parameter fractional white noise are considered. By using the Wiener chaos expan-

sion and undetermined coefficient methods, we obtain the existence and uniqueness

of the solution in a distribution space. The Lyapunov exponents and the Hölder

continuity in the distribution space of the solution are also estimated.

Key Words: Fractional Brownian motion; Multi-parameter fractional white

noise; Winner Chaos expansion; Asymptotic behavior.

1 Introduction

The subject of stochastic calculus with respect to fractional Brownian motion has

gained considerable popularity and importance due to its frequent appearance in a

wide variety of physical phenomena, such as hydrology, economic, telecommunications

and medicine. Many contributions for stochastic calculus with respect to fractional

Brownian motion have emerged in the last decades, see [3, 7, 23, 24]. Since some

physical phenomena are naturally modeled by stochastic partial differential equations

and the randomness can be described by multi-parameter fractional white noise, it is

important to study the problems of solutions of stochastic partial differential equations

with multi-parameter fractional white noise. Many studies of the solutions of stochastic

equations with fractional white noise have emerged recently, see [8, 15, 19, 25, 28] and

reference therein.

In [14], Y. Hu studied the existence and uniqueness of the solution for a stochastic

heat equation by chaos expansion, and estimated the Lyapunov exponent in a distribu-

tion space of the solution. In [11], the authors considered a class of hyperbolic stochastic

∗Corresponding author. E-mail: zhangyinghan007@126.com.
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partial differential equation driven by a space time fractional noise. In [1, 27], some au-

thors considered stochastic wave equation with fractional Gaussian noise. A stochastic

generalized Burgers equations driven by fractional noises has been studied in [20]. In

[3], the authors investigated stochastic Poisson equation and quasi-linear heat equation

driven by multi-parameter fractional white noise. In a recent paper [30], the authors

considered a 1-dimensional stochastic Burgers’ equation driven by a genuine cylindrical

fBm with Hurst parameter H > 1
4 . They proved the regularities of the solution to

the linear stochastic problem corresponding to the stochastic Burgers’ equation and

then obtained the global existence and uniqueness results of the stochastic Burgers’

equation. For more contributions on stochastic calculus with fractional noise, we refer

the reader to [4, 16–18, 20, 22, 26, 29, 30] and reference therein.

It should be noted that most of the papers and books on stochastic partial d-

ifferential equations with fractional noise are devoted to the case of additive noise.

However, there are few papers that consider the case of multiplicative fractional noise

[2, 9, 14, 18]. Enlightened by the above contributions, in this paper we will consider a

stochastic elastic equation driven by multiplicative multi-parameter white noise.

Let H = (h0, h1, . . . , hd) with 1
2 < hi < 1, i = 0, 1, . . . , d. Consider the following

stochastic elastic equation

dut(t, x)

dt
+∆2u(t, x) = u(t, x) ⋄WH(t, x), (1.1)

where t > 0, x ∈ D = (0, 1)d with initial and boundary conditions

u(0, x) = u0(x),
∂u

∂t
(0, x) = υ0(x), x ∈ D,

u(t, x) = ∆u(t, x) = 0, on ∂D.

We assume that u0 and υ0 are deterministic functions defined on [0, 1]d, u0 and ∆u0

both vanish at ∂D, WH is a (d+ 1)-dimensional fractional white noise and u ⋄WH is

Wick product which will be defined in section 2.

Stochastic elastic equation driven by Brownian motion has been studied by many

authors, (see [5, 6, 12, 21, 31]). However, there are few papers consider stochastic elastic

equation driven by fractional Brownian motion. Such equation is a fourth order partial

differential equation and has very wide applications in structural engineering. As an

engineering problem, it has its applications in beams, bridges and other structures, see

[5, 26].
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Our aim in this paper is to obtain the existence, uniqueness, the asymptotic be-

havior and the Hölder continuity of the mild solution of problem (1.1) in a distribution

space. The keys to the proof are the Wiener chaos expansion of the solution and the

undetermined coefficient method.

Throughout the paper, we use the letter C denotes a constant that may not be the

same form one occurrence to anther, even in the same line. We express the dependence

on some parameters by writing the parameters as arguments, e.g. C = C(H).

The remaining of this paper is organized as follows. In section 2, we give prelimi-

naries of the stochastic integral with respect to multi-parameter fractional white noise.

In section 3, we prove the the existence, uniqueness, asymptotic behavior and Hölder

continuity in a distribution space of the solutions of problem (1.1).

2 Stochastic integral with respect to multi-parameter frac-
tional white noise

In this section, we introduce the definition of stochastic integral with respect to

the d−parameter fractional Brownian fields for Hurst index H = (h1, · · · , hd), (12 <

hi < 1, i = 1, · · · , d) by using the fractional white noise analysis method. For more

contributions about white noise analysis, we refer the reader to [3, 13].

Let h ∈ (0, 1). A fractional Brownian motion Bh
t , t ≥ 0, of Hurst index h is a

continuous Gaussian stochastic process, such that for all s, t ∈ R+,

Bh
0 = 0, E(Bh

t ) = 0, E(Bh
t B

h
s ) =

1

2
(|t|2h + |s|2h − |t− s|2h). (2.1)

Since we are concerned with the fractional Brownian motions of multi-parameter,

some notations must be introduced. Let u = (u1, · · · , ud) ∈ Rd, denote du = du1 · · · dud.

Fix h with 1
2 < h < 1. We put

ϕh(s, t) = h(2h− 1)|s− t|2h−2, s, t ∈ R, (2.2)

and

ϕH(u, υ) =

d∏
i=1

ϕhi
(ui, υi), u = (u1, · · · , ud), υ = (υ1, · · · , υd) ∈ Rd (2.3)

for H = (h1, · · · , hd), (12 < hi < 1, i = 1, · · · , d).

Let S(Rd) be the Schwartz space of rapidly decreasing smooth functions on Rd and

S ′(Rd) be the dual of S(Rd), i.e., S ′(Rd) is the space of tempered distributions on Rd.

3
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The action of ω ∈ S ′(Rd) on f ∈ S(Rd) is given by ⟨ω, f⟩ =
∫
Rd ω(x)f(x)dx. Denote

⟨f, g⟩H =

∫
R2d

f(u)g(υ)ϕH(u, υ)dudυ, f, g ∈ S(Rd). (2.4)

If we equip S(Rd) with the inner product ⟨·, ·⟩H and the norm ∥f∥H = ⟨f, f⟩H , then

the completion of S(Rd), denote by L2
ϕH

(Rd), becomes a separable Hilbert space. Now

let Ω = S ′(Rd). The map f → e−
1
2
∥f∥2H is positive definite on S(Rd), by the Bochner-

Minlos theorem [13], there exists a probability measure PH on the Borel subset B(Ω)

of Ω such that ∫
Ω
ei⟨ω,f⟩dPH(ω) = e−

1
2
∥f∥2H , ∀f ∈ S(Rd). (2.5)

Let E denotes the expectation under the probability measure PH , then

E[⟨·, f⟩] = 0, E[⟨·, f⟩2] = ∥f∥2H . (2.6)

Now define a square integrable stochastic field BH(x), x ∈ Rd as

BH(x) = BH(x, ω) = ⟨ω, I[0,x](·)⟩, (2.7)

where x = (x1, · · · , xd) ∈ Rd, I[0,x] = I[0,x1] · · · I[0,xd] and for every i ∈ {1, 2, · · · , d},

I[0,xi](yi) =


1 0 ≤ yi ≤ xi,
−1 xi ≤ yi ≤ 0, excetp xi = yi = 0,
0 otherwise.

(2.8)

From (2.7), we see that BH(x) is a Gaussian field and for every x, y ∈ Rd,

E[BH(x)] = 0, E[BH(x)BH(y)] =
1

2d

d∏
i=1

(|xi|2hi + |yi|2hi − |xi − yi|2hi), (2.9)

where we have used the well known identity∫ xi

0

∫ yi

0
ϕh(s, t)dsdt =

1

2
(|xi|2hi + |yi|2hi − |xi − yi|2hi). (2.10)

By Kolmogorov’s continuity theorem, BH(x) has a continuous version. The fractional

Brownian field is defined as the continuous version of BH(x), which we sill denote it

by BH(x).

Similarly to the case of stochastic integral with respect to fractional Brownian

motion for deterministic function [3, 7, 10], we have the following lemma.

Lemma 2.1 If f ∈ L2
H(Rd), then

∫
Rd f(x)dB

H(x) is well-defined Gaussian random

variable and

E
[∫

Rd

f(x)dBH(x)

]
= 0, E

[∫
Rd

f(x)dBH(x)

]2
=

∫
R2d

f(u)f(υ)ϕH(u, υ)dudυ.

(2.11)
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The Hermite polynomials hn(x) are defined by

hn(x) = (−1)ne
1
2
x2 dn

dxn
(e−

1
2
x2
), n = 0, 1, 2, . . . . (2.12)

For example, the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x, · · · . (2.13)

Let ξn(x) be the Hermite functions defined by

ξn(x) = π−
1
4 ((n− 1)!)−

1
2hn−1(

√
2x)e−

x2

2 , n = 1, 2, . . . . (2.14)

It is proved in [13] that ξn ∈ S(R) and the collection {ξn}∞n=1 constitutes an orthonormal

basis of L2(R). The most important property of ξn used in this paper is

|ξn(x)| ≤

{
Cn−

1
12 , |x| ≤ 2

√
n,

Ce−γx2
, |x| > 2

√
n,

n = 1, 2, . . . , (2.15)

where constants C and γ are independent of n.

Lemma 2.2 [3] Let 1
2 < h < 1. The fractional integral I

h− 1
2

− is defined by

I
h− 1

2
− f(u) = ch

∫ ∞

u
(t− u)h−

3
2 f(t)dt, (2.16)

where ch =
√
h(2h− 1)Γ(3/2− h)/(Γ(h− 1/2)Γ(2− 2h)) and Γ denotes the gamma

function. Then I
h− 1

2
− is an isometry from L2

ϕh
(R) to L2(R).

Now we define ηhn(u) = (I
h− 1

2
− )−1(ξn)(u). Then by Lemma 2.2 and the properties of

ξn, {ηhn}∞n=1 is an orthonormal basis of L2
ϕh
(R).

Let δ = (δ1, . . . , δd) denote d-dimensional multi-indices with δi ∈ N, i = 1, . . . , d,

where N is the set of natural numbers. Then the family of tensor products

ηδ(x1, x2, . . . , xd) := ηh1
δ1
(x1)η

h2
δ2
(x2) · · · ηhd

δd
(xd), δ = (δ1, . . . , δd) ∈ Nd (2.17)

forms an orthonormal basis of L2
ϕH

(Rd). Let {δi = (δi1, . . . , δ
i
d)}∞i=1 be a fixed ordering

of Nd. From a detailed proof in [13], we can assume that the ordering has the properties

that

i < j ⇒ δi1 + δi2 + · · ·+ δid ≤ δj1 + δj2 + · · ·+ δjd. (2.18)

and

j
1
d ≤ δj1 · δ

j
2 · · · δ

j
d ≤ j. (2.19)

5
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Let J =
(
NN
0

)
c
denote the set of all multi-indices α = (α1, α2, . . .) with elements

αi ∈ N0 = N ∪ {0} and with compact support, i.e., with only finitely many αi ̸= 0.

Denote |α| =
∑∞

i=1 αi. Define

ej(x) = ηδj (x) = ηh1

δj1
(x1)η

h2

δj2
(x2) · · · ηhd

δjd
(xd), x = (x1, . . . , xd), j = 1, 2, . . . . (2.20)

Then {ej} forms an orthonormal basis of L2
ϕH

(Rd). If α = (α1, α2, . . . , αm) ∈ J , define

Hα(ω) =

m∏
i=1

hαi(⟨ω, ei⟩). (2.21)

Then we have the following fractional Wiener Ito chaos expansion theorem.

Theorem 2.1 [3] The family {Hα}α∈J constitutes an orthogonal basis for L2(PH) and

for α = (α1, α2, . . .) ∈ J ,

∥Hα∥2L2(PH) = E[H2
α] = α! = α1!α2! · · · . (2.22)

Moreover, if F ∈ L2(PH), then there exist constants cα ∈ R, α ∈ J , such that

F (ω) =
∑
α∈J

cαHα(ω), (2.23)

where the convergence holds in L2(PH) and

∥F∥2L2(PH) =
∑
α∈J

α!c2α. (2.24)

Now we compute the Wiener Ito chaos expansion of the fractional Brownian field

BH(x). By (2.7),

BH(x) = ⟨ω, I[0,x]⟩ = ⟨ω,
∞∑
i=1

⟨I[0,x], ei⟩Hei⟩ =
∞∑
i=1

⟨I[0,x], ei⟩H⟨ω, ei⟩

=

∞∑
i=1

[∫ x

0

∫
Rd

ei(υ)ϕH(u, υ)dυdu

]
Hε(i)(ω), (2.25)

where ε(i) = (0, . . . , 0, 1, 0, . . .) denote the ith unit vector.

The fractional Hida test function and distribution spaces are defined as follows.

Definition 2.1 The fractional Hida test function space (S)H =
∩∞

k=0(S)H,k, where

(S)H,k is the set of all ψ(ω) =
∑

α∈J aαHα(ω) ∈ L2(PH) such that

∥ψ∥2H,k =
∑
α∈J

α!a2α(2N)kα <∞, k ∈ N, (2.26)

6
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where (2N)γ =
∏∞

j=1(2j)
γj if γ = (γ1, γ2, . . .) ∈ J . The fractional Hida distribution

space (S)∗H =
∪∞

q=0(S)∗H,−q, where (S)∗H,−q is the set of all formal expansions G(ω) =∑
α∈J bαHα(ω) such that

∥G∥2H,−q =
∑
α∈J

α!a2α(2N)−qα <∞, q ∈ N. (2.27)

The family of seminorms ∥ · ∥H,k, k ∈ N gives rise to a topology on (S)H and (S)∗H
can be identified with the dual of (S)H by the action

≪ G,ψ ≫=
∑
α∈J

α!aαbα. (2.28)

Definition 2.2 G : Rd → (S)∗H is dx-integrable in (S)∗H if

≪ G(x), ψ ≫∈ L1(Rd), for all ψ ∈ (S)H . (2.29)

If G : Rd → (S)∗H is dx-integrable in (S)∗H , We define
∫
Rd G(x)dx to be the unique

element of (S)∗H such that

≪
∫
Rd

G(x)dx, ψ ≫=

∫
Rd

≪ G(x), ψ ≫ dx, for all ψ ∈ (S)H . (2.30)

The fractional noise WH(x) is defined by the formal derivative of BH(x) in (S)∗H ,

WH(x) =

∞∑
i=1

[∫
Rd

ei(υ)ϕH(x, υ)dυ

]
Hε(i)(ω). (2.31)

Then, WH(x) ∈ (S)∗H and d
dxB

H(x) =WH(x) in (S)∗H .

Definition 2.3 The Wick product F ⋄ G of F (ω) =
∑

α∈J aαHα(ω) ∈ (S)∗H and

G(ω) =
∑

α∈J bαHα(ω) ∈ (S)∗H is defined by

F ⋄G(ω) =
∑

α,β∈J
aαbβHα+β(ω) =

∑
γ∈J

 ∑
α+β=γ

aαbβ

Hγ(ω). (2.32)

Based on the preparations above, now we define the fractional Wick Ito Skorohod

integral as follows.

Definition 2.4 Suppose G : Rd → (S)∗H is a given function and G(x) ⋄WH(x) is dx-

integrable in (S)∗H . Then the fractional Wick Ito Skorohod integral
∫
Rd G(x)dB

H(x) is

defined by ∫
Rd

G(x)dBH(x) =

∫
Rd

G(x) ⋄WH(x)dx. (2.33)

For a interval in Rd, the integral can be defined as∫ x

0
G(y)dBH(y) =

∫
Rd

G(y)I[0,x](y)dB
H(y). (2.34)

7
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3 Main results

Let H = (h0, h1, . . . , hd) with
1
2 < hi < 1, i = 0, 1, . . . , d. In this section, we consider

the following stochastic elastic equation

dut(t, x)

dt
+∆2u(t, x) = u(t, x) ⋄WH(t, x), (3.1)

where t > 0, x ∈ D = (0, 1)d, with initial and boundary conditions

u(0, x) = u0(x),
∂u

∂t
(0, x) = υ0(x), x ∈ D,

u(t, x) = ∆u(t, x) = 0, on ∂D.

We assume that u0 and υ0 are deterministic functions defined on [0, 1]d, u0 and ∆u0

both vanish at x = 0 and x = 1, and that WH is a (d+1)-dimensional fractional white

noise has been defined in section 2.

Let r = (r1, . . . , rd) ∈ Nd, x = (x1, . . . , xd) ∈ Rd.Define φr(x) =
√
2d
∏d

i=1 sin(riπxi).

Then {φr}r∈Nd satisfy the boundary conditions of (3.1) and compose of a complete or-

thonormal system on L2(D) which diagonalize ∆ with

λr = π2|r|2 = π2
d∑

i=1

r2i , (3.2)

the corresponding eigenvalues.

For a given function g : D → R and ρ ∈ R, define

∥g∥ρ,2 :=

∑
r∈Nd

(1 + |r|2)ρ|⟨g, φr⟩|2
 1

2

,

where ⟨·, ·⟩ stands for the usual scalar product in L2(D), and denote by Hρ,2(D) the

set of functions g : D → R such that ∥g∥ρ,2 < ∞. Notice that Hρ,2(D) is a subspace

of the fractional Sobolev space of fractional differential order α and integrability order

p = 2 (see [27]). For a special case ρ = 0, it is clear that Hρ,2(D) = L2(D) and we will

denote ∥ · ∥0,2 by ∥ · ∥. By Parseval’s identity, we have

∥g∥2 =
∑
r∈Nd

|⟨g, φr⟩|2, ∀g ∈ L2(D). (3.3)

Since the fundamental solution of

υtt +∆2υ = 0,

υ = ∆u = 0 on ∂D, υ|t=0 = ϕ(x), υt|t=0 = ψ(x) on D

8
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is given by

υ(t, x) =
∑
r∈Nd

sin(λrt)

λr
φr(x)

∫
D
ψ(y)φr(y)dy +

∑
r∈Nd

cos(λrt)φr(x)

∫
D
ϕ(y)φr(y)dy,

(3.4)

we can define the solution of (3.1) as follows.

Definition 3.1 A random field u = u(t, x) : R+ ×D × Ω → R is said to be a solution

of (3.1), if

(i) u = u(t, x) : R+ ×D × Ω → R is jointly measurable.

(ii) There exists constant q ∈ N, such that for almost all x ∈ D and t ≥ 0,

∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)u(s, y)dB

H(s, y)

is well defined as an element of (S)∗H,−q, and that

∫
D

∥∥∥∥∥∥
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)u(s, y)dB

H(s, y)

∥∥∥∥∥∥
2

H,−q

dx <∞, ∀t ≥ 0.

(iii) It holds in (S)∗H,−q that

u(t, x) =
∑
r∈Nd

sin(λrt)

λr
φr(x)

∫
D
υ0(y)φr(y)dy

+
∑
r∈Nd

cos(λrt)φr(x)

∫
D
u0(y)φr(y)dy

+
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)u(s, y)dB

H(s, y). (3.5)

Let

U0(t, x) =
∑
r∈Nd

sin(λrt)

λr
φr(x)

∫
D
υ0(y)φr(y)dy

+
∑
r∈Nd

cos(λrt)φr(x)

∫
D
u0(y)φr(y)dy.

Then by the definition of the stochastic integral, the solution of (3.1), if it exists, can

be written as

u(t, x) = U0(t, x) +
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)u(s, y) ⋄WH(s, y)dsdy. (3.6)

9
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If we assume that the solution of (3.1) exists in (S)∗H and it has a formal expansions

u(t, x) =
∑
α∈J

cα(t, x)Hα, (3.7)

where cα(t, x), α ∈ J are coefficients of Wiener chaos expansion of u, which are unde-

termined. Let

cα−ε(i) = 0 if αi = 0. (3.8)

Then by the formal expansion of WH , we obtain that

u(t, x) ⋄WH(t, x) =
∑
α∈J

[ ∞∑
i=1

cα−ε(i)(t, x)

(∫
Rd+1

ei(υ)ϕH(t, x; υ)dυ

)]
Hα(ω). (3.9)

Brought (3.9) into (3.6), we derive that

u(t, x)− U0(t, x) =
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)u(s, y) ⋄WH(s, y)dsdy.

=
∑
|α|≥1

∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)

×
(∫

Rd+1

ei(υ)ϕH(s, y; υ)dυ

)
dsdy

]
Hα. (3.10)

Therefore, by (3.10) and (3.7), we get cα(t, x) = U0(t, x) if α = 0 and for |α| ≥ 1,

cα(t, x) =
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)

×
(∫

Rd+1

ei(υ)ϕH(s, y; υ)dυ

)
dsdy. (3.11)

We will need the following preliminaries and lemmas to estimate cα.

The boundedness and Hölder continuity of U0 are given by the following lemma.

Lemma 3.1 Assume that υ0 ∈ Hϱ,2(D) for some ϱ ≥ −2 and u0 ∈ Hρ,2(D) for some

ρ ≥ 0, then U0(t, ·) ∈ L2(D), and

sup
t∈R+

∥U0(t, ·)∥ < +∞. (3.12)

Moreover, if υ0 ∈ Hϱ,2(D) for some ϱ ≥ 0 and u0 ∈ Hρ,2(D) for some ρ ≥ 2, then, for

any t, s ∈ R+ with |t− s| < 1,

∥U0(t, ·)− U0(s, ·)∥2 ≤ C|t− s|2. (3.13)

10
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Proof. It is clear that ∥U0(t, ·)∥ ≤ ∥I(t, ·)∥+ ∥J(t, ·)∥, with

I(t, x) =
∑
r∈Nd

sin(λrt)

λr
φr(x)

∫
D
υ0(y)φr(y)dy,

J(t, x) =
∑
r∈Nd

cos(λrt)φr(x)

∫
D
u0(y)φr(y)dy.

By (3.2), (3.3) and the assumptions of υ0, we have

∥I(t, ·)∥2 =
∑
r∈Nd

| < I(t, ·), φr > |2

=
∑
r∈Nd

sin2(λrt)

λ2r
| < φr, υ0 > |2 ≤ C

∑
r∈Nd

| < φr, υ0 > |2

|r|4
< +∞.

Similarly, we have

∥J(t, ·)∥2 ≤ C
∑
r∈Nd

| < φr, u0 > |2 < +∞.

Thus, the first part of the lemma if proved. For the second part, we have

∥U0(t, ·)− U0(s, ·)∥2 ≤ 2(∥I1(t, s; ·)∥2 + ∥I2(t, s; ·)∥2),

where

I1(t, s;x) =
∑
r∈Nd

sin(λrt)− sin(λrs)

λr
φr(x)

∫
D
υ0(y)φr(y)dy,

I2(t, s;x) =
∑
r∈Nd

(cos(λrt)− cos(λrs))φr(x)

∫
D
u0(y)φr(y)dy.

By the assumptions on u0, υ0, we get

∥I1(t, s; ·)∥2 =
∑
r∈Nd

| < I1(t, s; ·), φr > |2

=
∑
r∈Nd

| sin(λrt)− sin(λrs)|2

λ2r
| < φr, υ0 > |2

≤ C(t− s)2
∑
r∈Nd

| < φr, υ0 > |2 ≤ C(t− s)2,

and

∥I2(t, s; ·)∥2 =
∑
r∈Nd

| < I2(t, s; ·), φr > |2

=
∑
r∈Nd

| cos(λrt)− cos(λrs)|2| < φr, υ0 > |2

≤ C(t− s)2
∑
r∈Nd

|λr|2| < φr, υ0 > |2

≤ C(t− s)2
∑
r∈Nd

(1 + |r|2)2| < φr, υ0 > |2 ≤ C(t− s)2.
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Bringing together the above estimates, we obtain

∥U0(t, ·)− U0(s, ·)∥2 ≤ C(t− s)2,

with a constant C independent of t. Thus the lemma is proved. ¶

Let Φi(t, x) =
∫
Rd+1 ei(s, y)ϕH(t, x; s, y)dsdy, then we have the following lemma.

Lemma 3.2 There exists constant C = C(h), such that

sup
x∈D

|Φi(t, x)| ≤ C(h)iσ(h)(1 ∨ th−
1
2 ), i ∈ N, (3.14)

where h = max{h0, h1, . . . , hd}, 1 ∨ th−
1
2 = max{1, th−

1
2 } and

σ(h) =

{
1
4(h− 2

3), if h < 2
3 ,

1
2(h− 2

3), if h ≥ 2
3 .

(3.15)

Proof. By the definitions of ei and ϕH , we have∫
Rd+1

ei(s, y)ϕH(t, x; s, y)dsdy

=

∫
R
ηh0

δi0
(s)ϕh0(t, s)ds

d∏
k=1

∫
R
ηhk

δik
(y)ϕhk

(x, y)dy. (3.16)

Let 1
2 < h < 1 and n ∈ N. It is proved in [? ] that

ϕh(t, s) = c2h

∫ t∧s

−∞
(s− u)h−

3
2 (t− u)h−

3
2du. (3.17)

where ch =
√
h(2h− 1)Γ(3/2− h)/(Γ(h− 1/2)Γ(2− 2h)). Therefore, by (2.15) and

Lemma 3.2, we have∣∣∣∣∫
R
ηhn(s)ϕh(t, s)ds

∣∣∣∣ = c2h

∣∣∣∣∫
R
ηhn(s)

∫ t∧s

−∞
(s− u)h−

3
2 (t− u)h−

3
2duds

∣∣∣∣
= c2h

∣∣∣∣∫ t

−∞
(t− u)h−

3
2du

∫ +∞

u
(s− u)h−

3
2 ηhn(s)ds

∣∣∣∣
= c2h

∣∣∣∣∫ t

−∞
(t− u)h−

3
2
1

ch
I
h− 1

2
− ηhn(u)du

∣∣∣∣ = ch

∣∣∣∣∫ t

−∞
(t− u)h−

3
2 ξn(u)du

∣∣∣∣
≤ ch

[∫
|u|≤2

√
n
(t− u)h−

3
2n−

1
12du+

∫
|u|>2

√
n
(t− u)h−

3
2 e−γu2

du

]
. (3.18)

If 0 ≤ t ≤ 2
√
n, it follows from (3.18) that∫
R
ηhn(s)ϕh(t, s)ds

≤ ch

[∫ −2
√
n

−∞

[
(t− u)h−

3
2
1

u

]
ue−γu2

du+

∫ t

−2
√
n
(t− u)h−

3
2n−

1
12du

]

≤ ch

[
e−4γn

4γ
n−

1
2 (t+ 2

√
n)h−

3
2 +

1

h− 1
2

n−
1
12 (t+ 2

√
n)h−

1
2

]
≤ C(h)n−

1
12 (t+ 2

√
n)h−

1
2 ≤ C(h)n

1
2
(h− 2

3
)(1 ∨ th−

1
2 ). (3.19)
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For the case of t > 2
√
n, we have∫

R
ηhn(s)ϕh(t, s)ds ≤ ch

[∫ 2
√
n

−2
√
n
(t− u)h−

3
2n−

1
12du

+

∫ −2
√
n

−∞

[
(t− u)h−

3
2
1

u

]
ue−γu2

du+

∫ t

2
√
n
(t− u)h−

3
2 e−γu2

du

]

≤ ch

[
e−4γn(t+ 2

√
n)h−

3
2

4γn
1
2

+
n−

1
12 (t+ 2

√
n)h−

1
2 − (n−

1
12 − e−4γn)(t− 2

√
n)h−

1
2

h− 1
2

]
≤ C(h)n−

1
12 (t+ 2

√
n)h−

1
2 ≤ C(h)n

1
2
(h− 2

3
)(1 ∨ th−

1
2 ). (3.20)

With the estimates of (3.19), (3.20), we obtain from (3.16) that∣∣∣∣∫
Rd+1

ei(s, y)ϕH(t, x; s, y)

∣∣∣∣ ≤ C(h0, h1, · · · , hd)
d∏

k=0

(δik)
1
2
(hk− 2

3
)(1 ∨ th1− 1

2 )

≤ C(h0, h1, · · · , hd)(
d∏

k=0

δik)
1
2
(h− 2

3
)(1 ∨ th−

1
2 ) ≤ C(h)iσ(h)(1 ∨ th−

1
2 ), (3.21)

where h = max{h0, h1, · · · , hd} and σ(h) is given by (3.15). This proves the lemma. ¶

Using the above lemmas, now we can estimate cα(t, x).

Lemma 3.3 Assume that all the assumptions of Lemma 3.1 are satisfied, then for

every α ∈ J and t ≥ 0, cα(t, ·) ∈ L2(D). Moreover, there exists constant C = C(h),

such that

∥cα(t, ·)∥2 ≤ C(h)2|α|
(N)(2σ(h)+1)α

α!
(t2 ∨ t2h+1)|α|. (3.22)

Proof. Let α = (α1, α2, . . . , αm) and Cα(t) = ∥cα(t, ·)∥2. By Cauchy-Schwartz

inequality, we obtain

Cα(t) =
∑
r∈Nd

| < cα(t, ·), φr > |2

=
∑
r∈Nd

∣∣∣∣∣
∫ t

0

∫
D

sin(λr(t− s))

λr
φr(y)

m∑
i=1

cα−ε(i)(s, y)Φi(s, y)dsdy

∣∣∣∣∣
2

≤ m
∑
r∈Nd

m∑
i=1

∣∣∣∣∫ t

0

sin(λr(t− s))

λr

∫
D
φr(y)cα−ε(i)(s, y)Φi(s, y)dyds

∣∣∣∣2

≤ m
∑
r∈Nd

m∑
i=1

∫ t

0

∣∣∣∣sin(λr(t− s))

λr

∣∣∣∣2 ds∫ t

0

∣∣∣∣∫
D
φr(y)cα−ε(i)(s, y)Φi(s, y)dy

∣∣∣∣2 ds
≤ Ctm

m∑
i=1

∫ t

0

∑
r∈Nd

| < φr, cα−ε(i)(s, ·)Φi(s, ·) > |2ds

≤ Ctm

m∑
i=1

∫ t

0
∥cα−ε(i)(s, ·)Φi(s, ·)∥2ds. (3.23)
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Owing to Lemma 3.2, supx∈D |Φi(t, x)| ≤ C(h)iσ(h)(1 ∨ th−
1
2 ). Hence, by (3.23),

Cα(t) ≤ Ctm
m∑
i=1

∫ t

0
∥cα−ε(i)(s, ·)Φi(s, ·)∥2ds

≤ C(h)2tm

m∑
i=1

i2σ(h)
∫ t

0
Cα−ε(i)(s)(1 ∨ (sh−

1
2 ))2ds

≤ C(h)2(t ∨ t2h)m
m∑
i=1

i2σ(h)
∫ t

0
Cα−ε(i)(s)ds. (3.24)

Now let n = |α| = α1 + · · ·+ αm. By iterating the above equation, we get

Cα(t) ≤ C(h)2(t ∨ t2h)m
m∑
i=1

i2σ(h)
∫ t

0
Cα−ε(i)(s)ds

≤ C(h)2n(t ∨ t2h)n[1α12α−2 · · ·mαm ]

m∑
i1,i2,...,in=1

(i1i2 · · · in)2σ(h) ×∫ t

0

∫ s

0

∫ s1

0
· · ·
∫ sn−2

0
Cα−ε(i1)−ε(i2)···−ε(in)(sn−1)dsn−1 · · · ds1ds. (3.25)

Since for some β ∈ J with βj = 0 we have Cβ−ε(j) = 0, and by Lemma 3.1, C0(t) =

∥U0(t, ·)∥ is bounded on R+, thus we derive from (3.25) that

Cα(t) ≤ C(h)2n(t ∨ t2h)n[1α12α−2 · · ·mαm ]
n!

α1! · · ·αm!
[1α12α2 · · ·mαm ]2σ(h) ×∫ t

0

∫ s

0

∫ s1

0
· · ·
∫ sn−2

0
C0(sn−1)dsn−1 · · · ds1ds

≤ C(h)2n(t ∨ t2h)n n!

α1! · · ·αm!
[1α12α2 · · ·mαm ]2σ(h)+1 t

n

n!

= C(h)2|α|
(N)(2σ(h)+1)α

α!
(t2 ∨ t2h+1)|α|. (3.26)

This proves the lemma. ¶

The following lemma will be used in the proof of our main results.

Lemma 3.4 Let constants a > 0, b ∈ R, q ∈ R. Then the sufficient and necessary

condition for ∑
α∈J

(aN)bα(2N)−qα <∞ (3.27)

is q > max{b+ 1, b log2 a}.

Proof. For α = (α1, α2, . . . , ) ∈ J , let α0 = max{j;αj ̸= 0}. Then

∑
α∈J

(aN)bα(2N)−qα =

∞∑
n=0

∑
α∈J ,α0=n

(aN)bα(2N)−qα :=

∞∑
n=0

an.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

708 Yinghan Zhang 695-713



We assume q > b log2 a and q > b+ 1, then a0 = 1 and for n ≥ 1,

an =
∑

α∈J ,α0=n

(aN)bα(2N)−qα =
∑

α1,...,αn−1≥0,αn≥1

(aN)bα(2N)−qα

=

( ∞∑
αn=1

(an)bαn(2n)−qαn

)n−1∏
j=1

 ∞∑
αj=0

(aj)bαj (2j)−qαj


=

( ∞∑
αn=1

[
(an)b

(2n)q

]αn
)n−1∏

j=1

 ∞∑
αj=0

[
(aj)b

(2j)q

]αj


=

(an)b

(2n)q − (an)b

n−1∏
j=1

(2j)q

(2j)2 − (aj)b
=

(an)b

(2n)q

n∏
j=1

(2j)q

(2j)2 − (aj)b
. (3.28)

By (3.28), we have

an
an+1

=
(an)b(2n+ 2)q

(an+ a)b(2n)q
× (2n+ 2)q − (an+ a)b

(2n+ 2)q

=

(
n

n+ 1

)b [(n+ 1

n

)q

− (an+ a)b

(2n)q

]
=

(
1 +

1

n

)q−b

− (an)b

(2n)q
. (3.29)

This gives
an
an+1

− 1 ≥ q − b

n
− (an)b

(2n)q
. (3.30)

Hence

lim inf
n→∞

n

(
an
an+1

− 1

)
≥ q − b > 1. (3.31)

Therefore, by Abel’s criterion for convergence,
∑∞

n=0 an < ∞. Conversely, if q ≤

b log2 a, then, by (3.28), an = ∞. If q = b+1, then, by (3.29), lim infn→∞ n
(

an
an+1

− 1
)
=

1 − 1
2(

a
2 )

b < 1, by Abel’s criterion,
∑∞

n=0 an = ∞. Hence, condition q > max{b +

1, b log2 a} is sufficient and necessary for the convergence of (3.27). ¶

We now present our main results.

Theorem 3.1 Assume that all the conditions in Lemma 3.1 are satisfied, then there

exists a unique solution of (3.1) in the sense of Definition 3.1.

Proof. From the above analyses and lemmas, we know that the stochastic field

u(t, x) with a formal expansions

u(t, x) =
∑
α∈J

cα(t, x)Hα, (3.32)

where cα(t, x) = U0(t, x) if α = 0 and for |α| ≥ 1,

cα(t, x) =
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)

×
(∫

Rd+1

ei(υ)ϕH(s, y; υ)dυ

)
dsdy, (3.33)
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is a solution of (3.1) in the sense of Definition 3.1, if for almost every x ∈ D and t ≥ 0,

it belongs to (S)∗H,−q for some q ∈ N and
∫
D ∥u(t, x)∥2H,−qdx < +∞, (∀t ≥ 0). Now we

compute
∫
D ∥u(t, x)∥2H,−qdx. By Lemma 3.3, we have∫

D
∥u(t, x)∥2H,−qdx =

∑
α∈J

α!∥cα(t, ·)∥2(2N)−qα

≤
∑
α∈J

C(h)2|α|(N)(2σ(h)+1)α(t2 ∨ t2h+1)|α|(2N)−qα

α!
. (3.34)

It is prove in [13] that for α ∈ J ,

|α|! ≤ α!(2N)2α. (3.35)

Therefore,∫
D
∥u(t, x)∥2H,−qdx ≤

∑
α∈J

C(h)2|α|(N)(2σ(h)+1)α(t2 ∨ t2h+1)|α|(2N)−qα(2N)2α

|α|!

=

∞∑
n=0

(t2 ∨ t2h+1)n

n!

∑
|α|=n

(
C(h)

2
2σ(h)+1N

)(2σ(h)+1)α
(2N)−(q−2)α. (3.36)

If we choose a natural number q > max{4 + 2σ(h), 2 + 2 log2C(h)}, then by Lemma

3.4,
∑

|α|=n

(
C(h)

1
2σ(h)+1N

)(2σ(h)+1)α
(2N)−(q−2)α <∞. Thus

∫
D
∥u(t, x)∥2H,−qdx ≤ C(h)

∞∑
n=0

(t2 ∨ t2h+1)n

n!
= C(h)et

2∨t2h+1
. (3.37)

Now we prove the uniqueness. Assume that stochastic fields u(t, x), υ(t, x) with formal

expansions

u(t, x) =
∑
α∈J

aα(t, x)Hα, υ(t, x) =
∑
α∈J

bα(t, x)Hα (3.38)

are two solutions of (3.1) in the sense of Definition 3.1. Then u(t, x) − υ(t, x) is a

solution of of (3.1) in the sense of Definition 3.1 with zero initial conditions, that is,

a0(t, x) − b0(t, x) = 0. Therefore, similarly to the proof of Lemma 3.3, we can derive

that

∥aα(t, ·)− bα(t, ·)∥2

≤ C(h)2n(t ∨ t2h)n[1α12α−2 · · ·mαm ]
n!

α1! · · ·αm!
[1α12α2 · · ·mαm ]2σ(h) ×∫ t

0

∫ s

0

∫ s1

0
· · ·
∫ sn−2

0
∥a0(sn−1, ·)− b0(sn−1, ·)∥2dsn−1 · · · ds1ds = 0. (3.39)

Thus the theorem follows. ¶

The following corollary deals with the asymptotic properties of u(t, x) in (S)∗H,−q.
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Corollary 3.1 Let u(t, x) be the solution of (3.1) and q > max{4+2σ(h), 2+2 log2C(h)},

where C(h) is given by (3.37), then u(t, x) ∈ (S)∗H,−q for almost all (t, x) ∈ R+ × [0, 1],

and

lim sup
t→+∞

ln(
∫
D ∥u(t, x)∥2H,−qdx)

t2h+1
<∞. (3.40)

Proof. By (3.37), we know that for sufficiently large t,∫
D
∥u(t, x)∥2H,−qdx ≤ C(h)et

2h+1
. (3.41)

Therefore

lim sup
t→+∞

ln(
∫
D ∥u(t, x)∥2H,−qdx)

t2h+1
≤ lim sup

t→+∞

ln(C(h)) + t2h+1

t2h+1
= 1. (3.42)

This shows the corollary. ¶

We now study the Hölder property of the trajectories of the solution of equation

(3.1) in the distribution space (S)∗H,−q.

Theorem 3.2 Fix T > 0 and let u(t, x) be the solution of (3.1) in time interval [0, T ]

with initial conditions υ0 ∈ Hβ1,2(D) for some β1 ≥ 0 and u0 ∈ Hβ2,2 for some β2 ≥ 2,

then there exists q ∈ N, such that for any t, τ ∈ [0, T ] with |t− τ | < 1,∫
D
∥u(t, x)− u(τ, x)∥2H,−qdx ≤ C|t− τ |. (3.43)

Proof. Let 0 ≤ τ < t ≤ T. First we estimate the term ∥cα(t, ·)− cα(τ, ·)∥. Since

cα(t, x)− cα(τ, x)

=
∑
r∈Nd

∫ t

0

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)Φi(s, y)dsdy

−
∑
r∈Nd

∫ τ

0

∫
D

sin(λr(τ − s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)Φi(s, y)dsdy

=
∑
r∈Nd

∫ t

τ

∫
D

sin(λr(t− s))

λr
φr(x)φr(y)

∞∑
i=1

cα−ε(i)(s, y)Φi(s, y)dsdy

+
∑
r∈Nd

∫ τ

0

∫
D

sin(λr(t− s))− sin(λr(τ − s))

λr
φr(x)φr(y)

×
∞∑
i=1

cα−ε(i)(s, y)Φi(s, y)dsdy

.
= I(t, τ ;x) + J(t, τ ;x).

By using the methods used in the proof of Lemma 3.3, we can derive that

∥I(t, τ ; ·)∥2 ≤ (t− τ)2C(h)2|α|
(N)(2σ(h)+1)α

α!
(T 2 ∨ T 2h+1)|α|,

∥J(t, τ ; ·)∥2 ≤ (t− τ)C(h)2|α|
(N)(2σ(h)+1)α

α!
(T 2 ∨ T 2h+1)|α|.
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Thus we have ∥cα(t, ·)− cα(τ, ·)∥2 ≤ C(t− τ)C(h)2|α| (N)
(2σ(h)+1)α

α! (T 2∨T 2h+1)|α|. By the

definition of the norm ∥ · ∥2H,−q, we can divide the term
∫
D ∥u(t, x) − u(τ, x)∥2H,−qdx

into two terms, that is∫
D
∥u(t, x)− u(τ, x)∥2H,−qdx

≤ 2

∥U0(t, ·)− U0(τ, ·)∥2 +
∑

α∈J ,|α|≥1

α!∥cα(t, ·)− cα(τ, ·)∥2(2N)−qα


≤ C(t− τ)

∑
α∈J

[
(C(h)(T ∨ T h+ 1

2 ))
2

2σ(h)+1N
](2σ(h)+1)α

(2N)−qα.

Bringing together the above estimates and by Lemma 3.1, Lemma 3.3, we obtain that∫
D
∥u(t, x)− u(τ, x)∥2H,−qdx ≤ C(h, T )(t− τ),

if q > max{2σ(h)+2, 2 log2C(h)(T ∨ T h+ 1
2 )}, where C(h) is given by (3.37). The proof

is finished. ¶
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FOURIER SERIES OF SUMS OF PRODUCTS OF EULER FUNCTIONS AND

THEIR APPLICATIONS

TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND LEE CHAE JANG

Abstract. We consider three types of sums of products of Euler functions and derive their Fourier
series expansions. In addition, we express each of them in terms of Bernoulli functions.

1. Introduction

Let Em(x) be the Euler polynomials given by the generating function

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
, (see [1, 2, 14]). (1.1)

For any real number x, we let

< x >= x− [x] ∈ [0, 1) (1.2)

denote the fractional part of x.
Here we will consider the following three types of sums of products of Euler functions and derive

their Fourier series expansions. Further, we will express each of them in terms of Bernoulli functions
Bm(< x >).

(1) αm(< x >) =
∑m

k=0Ek(< x >)Em−k(< x >), (m ≥ 1);
(2) βm(< x >) =

∑m
k=0

1
k!(m−k)!Ek(< x >)Em−k(< x >), (m ≥ 1);

(3) γm(< x >) =
∑m−1

k=1
1

k(m−k)Ek(< x >)Em−k(< x >), (m ≥ 2).

For elementary facts about Fourier analysis, the reader may refer to any book (for example, see
[8,13,15,18]).

As to γm(< x >), we note that the polynomial identity (1.3 ) follows immediately from (4.16), which
is in turn derived from the Fourier series expansion of γm(< x >).

m−1∑
k=1

1

k(m− k)
Ek(x)Em−k(x)

= − 4

m

m∑
s=0,s̸=1

(
m

s

)
Em−s+1

m− s+ 1
(Hm−1 −Hm−s)Bs(x),

(1.3)

where Hm =
∑m

j=1
1
j are the harmonic numbers.

The obvious polynomial identities can be derived also for αm(< x >) and βm(< x >) from (2.21) and
(2.24), and (3.15) and (3.18), respectively. It is remarkable that from the Fourier series expansion of the

2010 Mathematics Subject Classification. 11B68, 42A16.
Key words and phrases. Fourier series, Euler polynomials, Euler functions.
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2 Fourier series of sums of products of Bernoulli functions and their applications

function
∑m−1

k=1
1

k(m−k)Bk(< x >)Bm−k(< x >) we can derive the following corresponding polynomial

identity:

m−1∑
k=1

1

k (m− k)
Bk (x)Bm−k (x) (1.4)

=
2

m2

(
Bm +

1

2

)
+

2

m

m−2∑
k=1

1

m− k

(
m

k

)
Bm−kBk (x) +

2

m
Hm−1Bm (x) , (m ≥ 2).

Simple modification of (1.3) yields

m−1∑
k=1

1

2k (2m− 2k)
B2k (x)B2m−2k (x) +

2

2m− 1
B1 (x)B2m−1 (x) (1.5)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k (x) +

1

m
H2m−1B2m (x)

+
2

2m− 1
B1 (x)B2m−1, (m ≥ 2) .

Letting x = 0 in (1.4) gives a slightly different version of the well-known Miki’s identity (see [3,6,16,17]):

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.6)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) .

Setting x = 1
2 in (1.5) with Bm =

(
1−2m−1

2m−1

)
Bm =

(
21−m − 1

)
Bm = Bm

(
1
2

)
, we have

m−1∑
k=1

1

2k (2m− 2k)
B2kB2m−2k (1.7)

=
1

m

m∑
k=1

1

2k

(
2m

2k

)
B2kB2m−2k +

1

m
H2m−1B2m, (m ≥ 2) ,

which is the Faber-Pandharipande-Zagier identity (see [4]). Some related works can be found in [9-12].

2. Fourier series of functions of the first type

In this section, we consider the function

αm(< x >) =

m∑
k=0

Ek(< x >)Em−k(< x >), (m ≥ 1) (2.1)

defined on (−∞,−∞) which is periodic of period 1. The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.2)
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T. Kim, D. S. Kim, G.-W. Jang, L. C. Jang 3

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.3)

Before proceeding further, we observe the following.

α′
m(x) =

m∑
k=0

(kEk−1(x)Em−k(x) + (m− k)Ek(x)Em−k−1(x))

=
m∑

k=1

(kEk−1(x)Em−k(x) +
m−1∑
k=0

(m− k)Ek(x)Em−k−1(x))

=
m−1∑
k=0

(k + 1)Ek(x)Em−k−1(x) +
m−1∑
k=0

(m− k)Ek(x)Em−k−1(x))

= (m+ 1)
m−1∑
k=0

Ek(x)Em−1−k(x)

= (m+ 1)αm−1(x).

(2.4)

From this, we have
(

αm+1(x)
m+2

)′
= αm(x).Then we have∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)). (2.5)

Noting that Em(x+ 1) + Em(x) = 2xm, we see that Em(1) + Em(0) = 2δm,0. So, we have

αm(1)− αm(0)

=

m∑
k=0

(Ek(1)Em−k(1)− Ek(0)Em−k(0))

=
m∑

k=0

((−Ek(0) + 2δk,0)(−Em−k(0) + 2δm−k,0)− Ek(0)Em−k(0))

=
m∑

k=0

(−2δm−k,0Ek(0)− 2Em−k(0)δk,0 + 4δk,0δm−k,0)

= 4δm,0 − 4Em(0), (m ≥ 0).

(2.6)

Thus, for m ≥ 1,

αm(1)− αm(0) = −4Em. (2.7)

Also, ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0))

= − 4

m+ 2
Em+1.

(2.8)

Now, we would like to determine the Fourier coefficients A
(m)
n .
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4 Fourier series of sums of products of Bernoulli functions and their applications

Case 1 : n ̸= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

α′
m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e
−2πinxdx

=
m+ 1

2πin
A(m−1)

n +
2

πin
Em

=
m+ 1

2πin

(
m

2πin
A(m−2)

n +
2

πin
Em−1

)
+

2

πin
En

=
(m+ 1)m

(2πin)2
A(m−2)

n +
m+ 1

2πin

2

πin
Em−1 +

2

πin
En

=
(m+ 1)m

(2πin)2

(
m− 1

2πin
A(m−3)

n +
2

πin
Em−2

)
+
m+ 1

2πin

2

πin
Em−1 +

2

πin
Em

=
(m+ 1)m(m− 1)

(2πin)3
A(m−3)

n +
(m+ 1)m

(2πin)2
2

πin
Em−2 +

m+ 1

2πin

2

πin
Em−1 +

2

πin
Em

= · · ·

=
(m+ 1)m−1

(2πin)m−1
A(1)

n +

m−1∑
k=1

(m+ 1)k−1

(2πin)k−1

2

πin
Em−k+1,

(2.9)

where

A(1)
n =

∫ 1

0

α1(x)e
−2πinxdx =

∫ 1

0

(2x− 1) e−2πinxdx = − 1

πin
. (2.10)

Hence

A(m)
n = −2(m+ 1)m−1

(2πin)m
+ 4

m−1∑
k=1

(m+ 1)k−1

(2πin)k
Em−k+1

=
4

m+ 2

m∑
k=1

(m+ 2)k
(2πin)k

Em−k+1.

(2.11)

Case 2: n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx = − 4

m+ 2
Em+1. (2.12)

We recall here that

B1 = −1

2
, B2n+1 = 0, for n ≥ 1, (−1)n+1B2n > 0, (2.13)

(see [5], Proposition 15.1.1), and

En = − 1

n+ 1
(2n+2 − 2)Bn+1 (n ≥ 0), (see [3]). (2.14)

From these, we see that

E2n = 0 (n ≥ 1), E2n−1 ̸= 0 (n ≥ 1), and E0 = 1. (2.15)
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From these and (2.7), we observe that

αm(1) = αm(0)(αm(1) ̸= αm(0)) ⇐⇒ Em = 0(Em ̸= 0)

⇐⇒ m is an even positive integer (m is an odd positive integer).
(2.16)

Here αm(< x >) is piecewise C∞. In addition, αm(< x >) is continuous for all even positive integers m
and discontinuous with jump discontinuities at integers for all odd positive integers m.

We now recall the following facts about Bernoulli functions Bm(< x >):
(a) for m ≥ 2,

Bm(< x >) = −m!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)m
. (2.17)

(b) for m = 1,

−
∞∑

n=−∞,n ̸=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z, (2.18)

where Zc = R − Z. Assume first that m is an even positive integer. Then αm(1) = αm(0). Thus
αm(< x >) is piecewise C∞, and continuous. Hence the Fourier series of αm(< x >) converges uniformly
to αm(< x >), and

αm(< x >)

= − 4

m+ 2
Em+1 +

∞∑
n=−∞,n̸=0

(
4

m+ 2

m∑
k=1

(m+ 2)k
(2πin)k

Em−k+1

)
e2πinx

= − 4

m+ 2
Em+1 −

4

m+ 2

m∑
k=1

(
m+ 2

k

)
Em−k+1

−k!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)k


= − 4

m+ 2
Em+1 −

4

m+ 2

m∑
k=2

(
m+ 2

k

)
Em−k+1Bk(< x >)

− 4

m+ 2

(
m+ 2

1

)
Em ×

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z

= − 4

m+ 2

m∑
k=0,k ̸=1

(
m+ 2

k

)
Em−k+1Bk(< x >),

(2.19)

for all x ∈ (−∞,∞). Hence we get the following theorem.

Theorem 2.1. Let m be an even positive integer. Then we have the following.
(a)

∑m
k=0Ek(< x >)Em−k(< x >) has the Fourier series expansion

m∑
k=0

Ek(< x >)Em−k(< x >)

= − 4

m+ 2
Em+1 +

∞∑
n=−∞,n̸=0

(
4

m+ 2

m∑
k=1

(m+ 2)k
(2πin)k

Em−k+1

)
e2πinx,

(2.20)

for all x ∈ (−∞,∞), where the convergence is uniform.
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6 Fourier series of sums of products of Bernoulli functions and their applications

(b)

m∑
k=0

Ek(< x >)Em−k(< x >)

= − 4

m+ 2

m∑
k=0,k ̸=1

(
m+ 2

k

)
Em−k+1Bk(< x >)

(2.21)

for all x ∈ (−∞,∞), where Bk(< x >) is the Bernoulli function.

Assume next that m is an odd positive integer. Then αm(1) ̸= αm(0), and hence αm(< x >) is
piecewise C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier series of αm(<
x >) converges pointwise to αm(< x >), for x ∈ Zc, and converges to

1

2
(αm(0) + αm(1)) = αm(0)− 2Em, (2.22)

for x ∈ Z., Thus we get the following theorem.

Theorem 2.2. Let m be an odd positive integer. Then we have the following.
(a)

∞∑
n=−∞,n̸=0

(
4

m+ 2

m∑
k=1

(m+ 2)k
(2πin)k

Em−k+1

)
e2πinx

=

{ ∑m
k=0Ek(< x >)Em−k(< x >), for x ∈ Zc,∑m
k=0EkEm−k − 2Em, for x ∈ Z.

(2.23)

(b)

− 4

m+ 2

m∑
k=1

(
m+ 2

k

)
Em−k+1Bk(< x >)

=
m∑

k=0

Ek(< x >)Em−k(< x >),

(2.24)

for x ∈ Zc;

− 4

m+ 2

m∑
k=2

(
m+ 2

k

)
Em−k+1Ek(< x >)

=

m∑
k=0

EkEm−k − 2Em,

(2.25)

for x ∈ Z.

3. Fourier series of functions of the second type

In this section, we consider the function

βm(< x >) =
m∑

k=0

1

k!(m− k)!
Ek(< x >)Em−k(< x >), (m ≥ 1) (3.1)
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defined on (−∞,−∞) which is periodic of period 1. The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx, (3.2)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx

=

∫ 1

0

βm(x)e−2πinxdx.

(3.3)

Before proceeding further, we observe the following.

β′
m(x) =

m∑
k=0

{
k

k!(m− k)!
Ek−1(x)Em−k(x) +

m− k

k!(m− k)!
Ek(x)Em−k−1(x)

}

=
m∑

k=1

1

(k − 1)!(m− k)!
Ek−1(x)Em−k(x) +

m−1∑
k=0

1

k!(m− k − 1)!
Ek(x)Em−k−1(x)

=
m−1∑
k=0

1

k!(m− 1− k)!
Ek(x)Em−1−k(x) +

m−1∑
k=0

1

k!(m− 1− k)!
Ek(x)Em−1−k(x)

= 2βm−1(x).

(3.4)

So, β′
m(x) = 2βm−1(x). From this, we have(

βm+1(x)

2

)′

= βm(x) (3.5)

and ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)). (3.6)

Using Em(1) + Em(0) = 2δm,0, we observe that

βm(1)− βm(0) =

m∑
k=0

1

k!(m− k)!
(Ek(1)Em−k(1)− Ek(0)Em−k(0))

=
m∑

k=0

1

k!(m− k)!
{(−Ek(0) + 2δk,0)(−Em−k(0) + 2δm−k,0)− Ek(0)Em−k(0)}

=
m∑

k=0

1

k!(m− k)!
{−2δk,0Em−k(0)− 2Ek(0)δm−k,0 + 4δk,0δm−k,0}

= − 4

m!
(Em(0)− δm,0).

(3.7)

So, for m ≥ 1,

βm(1)− βm(0) = − 4

m!
Em. (3.8)
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8 Fourier series of sums of products of Bernoulli functions and their applications

Also, we have ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0))

=
1

2

(
− 4

(m+ 1)!

)
(Em+1(0)− δm+1,0)

= − 2

(m+ 1)!
Em+1.

(3.9)

Now, we are ready to determine the Fourier coefficients B
(m)
n .

Case 1: n ̸= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin
[βm(x)e−2πinx]10 +

1

2πin

∫ 1

0

β′
m(x)e−2πinxdx

= − 1

2πin
(βm(1)− βm(0)) +

2

2πin

∫ 1

0

βm−1(x)e
−2πinxdx

=
1

πin
B(m−1)

n +
2

m!

1

πin
Em

=
1

πin

(
1

πin
B(m−2)

n +
2

(m− 1)!

1

πin
Em−1

)
+

2

m!

1

πin
Em

=
1

(πin)2
B(m−2)

n +
2

(m− 1)!

1

(πin)2
Em−1 +

2

m!

1

πin
Em

=
1

(πin)2

(
1

πin
B(m−3)

n +
2

(m− 2)!

1

πin
Em−2

)
+

2

(m− 1)!

1

(πin)2
Em−1 +

2

m!

1

πin
Em

=
1

(πin)3
B(m−3)

n +
2

(m− 2)!

1

(πin)3
Em−2 +

2

(m− 1)!

1

(πin)2
Em−1 +

2

m!

1

πin
Em

= · · ·

=
1

(πin)m−1
B(1)

n +
m−1∑
k=1

2

(m− k + 1)!

1

(πin)k
Em−k+1

= − 1

(πin)m
+

m−1∑
k=1

2

(m− k + 1)!

1

(πin)k
Em−k+1

= 2
m∑

k=1

Em−k+1

(m− k + 1)!

1

(πin)k
.

(3.10)

Case 2: n = 0. By (3.9), we see that

B
(m)
0 =

∫ 1

0

βm(x)dx = − 2

(m+ 1)!
Em+1. (3.11)

From (3.8), we observe that

βm(1) = βm(0)(βm(1) ̸= βm(0)) ⇐⇒ Em = 0(Em ̸= 0)

⇐⇒ m is an even positive integer (m is an odd positive integer).
(3.12)

Here βm(< x >) is piecewise C∞. In addition, βm(< x >) is continuous for all even positive integers m
and discontinuous with jump discontinuities at integers for all odd positive integers m.
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Assume first that m is an even positive integer. Then βm(1) = βm(0). So βm(< x >) is piecewise C∞,
and continuous. Thus the Fourier series of βm(< x >) converges uniformly to βm(< x >), and

βm(< x >)

= − 2

(m+ 1)!
Em+1 +

∞∑
n=−∞,n̸=0

(
2

m∑
k=1

Em−k+1

(m− k + 1)!

1

(πin)k

)
e2πinx

= − 2

(m+ 1)!
Em+1 −

1

(m+ 1)!

m∑
k=1

2k+1

(
m+ 1

k

)
Em−k+1

−k!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)k


= − 2

(m+ 1)!
Em+1 −

1

(m+ 1)!

m∑
k=2

2k+1

(
m+ 1

k

)
Em−k+1Bk(< x >)

− 4

(m+ 1)!

(
m+ 1

1

)
Em ×

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z

= − 1

(m+ 1)!

m∑
k=0,k ̸=1

2k+1

(
m+ 1

k

)
Em−k+1Bk(< x >),

(3.13)

for all x ∈ (−∞,∞).
Hence we get the following theorem.

Theorem 3.1. Let m be an even positive integer. Then we have the following.
(a)

∑m
k=0

1
k!(m−k)!Ek(< x >)Em−k(< x >) has the Fourier series expansion

m∑
k=0

1

k!(m− k)!
Ek(< x >)Em−k(< x >)

= − 2

(m+ 1)!
Em+1 +

∞∑
n=−∞,n̸=0

(
2

m∑
k=1

Em−k+1

(m− k + 1)!

1

(πin)k

)
e2πinx,

(3.14)

for all x ∈ (−∞,∞), where the convergence is uniform.
(b)

m∑
k=0

1

k!(m− k)!
Ek(< x >)Em−k(< x >)

= − 1

(m+ 1)!

m∑
k=0,k ̸=1

2k+1

(
m+ 1

k

)
Em−k+1Bk(< x >),

(3.15)

for all x ∈ (−∞,∞), where Bk(< x >) is the Bernoulli function.

Assume next thatm is an odd positive integer. Then βm(1) ̸= βm(0), and hence βm(< x >) is piecewise
C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier series of βm(< x >)
converges pointwise to βm(< x >), for x ∈ Zc, and converges to

1

2
(βm(0) + βm(1)) = βm(0)− 2

m!
Em, (3.16)

for x ∈ Z., Thus we get the following theorem.

Theorem 3.2. Let m be an odd positive integer. Then we have the following.
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(a)

∞∑
n=−∞,n ̸=0

(
2

m∑
k=1

Em−k+1

(m− k + 1)!

1

(πin)k

)
e2πinx

=

{ ∑m
k=0

1
k!(m−k)!Ek(< x >)Em−k(< x >), for x ∈ Zc,∑m

k=0
1

k!(m−k)!EkEm−k − 2
m!Em, for x ∈ Z.

(3.17)

Here the convergence is pointwise.
(b)

− 1

(m+ 1)!

m∑
k=1

2k+1

(
m+ 2

k

)
Em−k+1Bk(< x >)

=
m∑

k=0

1

k!(m− k)!
Ek(< x >)Em−k(< x >),

(3.18)

for x ∈ Zc;

− 1

(m+ 1)!

m∑
k=2

2k+1

(
m+ 1

k

)
Em−k+1Bk(< x >)

=

m∑
k=0

1

k!(m− k)!
EkEm−k − 2

m!
Em,

(3.19)

for x ∈ Z.

4. Fourier series of functions of the third type

In this section, we consider the function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
Ek(< x >)Em−k(< x >) (4.1)

defined on (−∞,−∞) which is periodic of period 1. The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.2)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.3)
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To proceed further, we note the following.

γ′m(x) =

m−1∑
k=1

1

m− k
Ek−1(x)Em−k(x) +

m−1∑
k=1

1

k
Ek(x)Em−k−1(x)

=
m−2∑
k=0

1

m− 1− k
Ek(x)Em−1−k(x) +

m−1∑
k=1

1

k
Ek(x)Em−1−k(x)

=
2

m− 1
Em−1(x) + (m− 1)

m−2∑
k=1

1

k(m− 1− k)
Ek(x)Em−1−k(x)

= (m− 1)γm−1(x) +
2

m− 1
Em−1(x).

(4.4)

So,

γ′m(x) = (m− 1)γm(x) +
2

m− 1
Em−1(x). (4.5)

From this, we note that

1

m

(
γm+1(x)−

2

m(m+ 1)
Em+1(x)

)′

= γm(x). (4.6)

∫ 1

0

γm(x)dx

=

[
1

m
(γm+1(x)−

2

m(m+ 1)
Em+1(x))

]1
0

=
1

m
(γm+1(1)− γm+1(0))−

2

m2(m+ 1)
(Em+1(1)− Em+1(0))

=
1

m
(γm+1(1)− γm+1(0))−

2

m2(m+ 1)
(−2Em+1(0) + 2δm+1,0)

=
1

m
(γm+1(1)− γm+1(0)) +

4

m2(m+ 1)
Em+1.

(4.7)

Observe that

γm(1)− γm(0) =
m−1∑
k=1

1

k(m− k)
(Ek(1)Em−k(1)− Ek(0)Em−k(0))

=

m−1∑
k=1

1

k(m− k)
((−Ek(0) + 2δk,0)(−Em−k(0) + 2δm−k,0)− Ek(0)Em−k(0))

=

m−1∑
k=1

1

k(m− k)
(−2δk,0Em−k(0)− 2Ek(0)δm−k,0 + 4δk,0δm−k,0)

= 0.

(4.8)

Thus, for m ≥ 2, γm(1)− γm(0) = 0. Also,∫ 1

0

γm(x)dx
1

m
(γm+1(x)− γm+1(0)) +

4

m2(m+ 1)
Em+1(0) =

4

m2(m+ 1)
Em+1. (4.9)
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We can show that ∫ 1

0

Em−1(x)e
−2πinxdx =

m−1∑
k=1

(m− 1)k−1

(2πin)k
Em−k. (4.10)

Now, we are ready to determine the Fourier coefficients C
(m)
n .

Case 1: n ̸= 0

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin
[γm(x)e−2πinx]10 +

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin
(γm(1)− γm(0)) +

1

2πin

∫ 1

0

(m− 1)γm−1(x) +
2

m− 1
Em−1(x))e

−2πinxdx

=
1

2πin

{
(m− 1)

∫ 1

0

γm−1(x)e
−2πinxdx+

2

m− 1

∫ 1

0

Em−1(x)e
−2πinxdx

}
=
m− 1

2πin
C(m−1)

n +
1

2πin

4

m− 1

m−1∑
k=1

(m− 1)k−1

(2πin)k
Em−k

=
m− 1

2πin

(
m− 2

2πin
C(m−2)

n +
4

m− 2

1

2πin

m−2∑
k=1

(m− 2)k−1

(2πin)k
Em−k−1

)
+

1

2πin

4

m− 1

m−1∑
k=1

(m− 1)k−1

(2πin)k
Em−k

=
(m− 1)(m− 2)

(2πin)2
C(m−2)

n +
m− 1

(2πin)2
4

m− 2

m−2∑
k=1

(m− 2)k−1

(2πin)k
Em−k−1

+
1

2πin

4

m− 1

m−1∑
k=1

(m− 1)k−1

(2πin)k
Em−k

= · · ·

=
(m− 1)!

(2πin)m−2
C(2)

n +
m−2∑
l=1

(m− 1)l−1

(2πin)l
4

m− l

m−l∑
k=1

(m− l)k−1

(2πin)k
Em−k−l+1

= −2(m− 1)!

(2πin)m
+

m−2∑
l=1

(m− 1)l−1

(2πin)l
4

m− l

m−l∑
k=1

(m− l)k−1

(2πin)k
Em−k−l+1

=
m−1∑
l=1

(m− 1)l−1

(2πin)l
4

m− l

m−l∑
k=1

(m− l)k−1

(2πin)k
Em−k−l+1

=
4

m

m−1∑
l=1

1

m− l

m−l∑
k=1

(m)k+l−1

(2πin)k+l
Em−k−l+1

=
4

m

m∑
s=2

(m)s−1

(2πin)s
Em−s+1

s−1∑
l=1

1

m− l

=
4

m

m∑
s=2

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s),

(4.11)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

725 TAEKYUN KIM et al 714-727



T. Kim, D. S. Kim, G.-W. Jang, L. C. Jang 13

where

c(2)n =

∫ 1

0

γ2(x)e
−2πinxdx =

∫ 1

0

(
x2 − x+

1

4

)
e−2πinxdx = − 2

(2πin)2
. (4.12)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
4

m2(m+ 1)
Em+1. (4.13)

As γm(1) = γm(0), for all m ≥ 2, γm(< x >) is piecewise C∞, and continuous. Hence the Fourier
series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >)

=
4

m2(m+ 1)
Em+1 +

∞∑
n=−∞,n ̸=0

(
4

m

m∑
s=2

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
e2πinx

=
4

m2(m+ 1)
Em+1 −

4

m

m∑
s=2

(
m

s

)
Em−s+1

m− s+ 1
(Hm−1 −Hm−s)

−s!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)s


=

4

m2(m+ 1)
Em+1 −

4

m

m∑
s=2

(
m

s

)
Em−s+1

m− s+ 1
(Hm−1 −Hm−s)Bs(< x >)

= − 4

m

m∑
s=0,s̸=1

(
m

s

)
Em−s+1

m− s+ 1
(Hm−1 −Hm−s)Bs(< x >)

(4.14)

Finally, we obtain the following theorem.

Theorem 4.1. Let m be an integer ≥ 2. Then we have the following.
(a)

∑m
k=0

1
k(m−k)Ek(< x >)Em−k(< x >) has the Fourier expansion

m−1∑
k=1

1

k(m− k)
Ek(< x >)Em−k(< x >)

=
4

m2(m+ 1)
Em+1 +

∞∑
n=−∞,n̸=0

(
4

m

m∑
s=2

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
e2πinx,

(4.15)

for all x ∈ (−∞,∞), where the convergence is uniform.
(b)

m−1∑
k=1

1

k(m− k)
Ek(< x >)Em−k(< x >)

= − 4

m

m∑
s=0,s̸=1

(
m

s

)
Em−s+1

m− s+ 1
(Hm−1 −Hm−s)Bs(< x >),

(4.16)

for all x ∈ (−∞,∞), where Bs(< x >) is the Bernoulli function.
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Quotient subtraction algebras by an int-soft ideal
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Abstract. The aim of this article is to lay a foundation for providing a soft algebraic tool in considering

many problems that contain uncertainties. In order to provide these soft algebraic structures, the notion of an

intersectional soft subalgebra and an intersectional soft ideal of a subtraction algebra are introduced, and related

properties are investigated. A quotient structure of a subtraction algebra using an intersectional soft ideal is

constructed.

1. Introduction

The real world is inherently uncertain, imprecise and vague. Various problems in system

identification involve characteristics which are essentially non-probabilistic in nature [16]. In

response to this situation Zadeh [17] introduced fuzzy set theory as an alternative to probability

theory. Uncertainty is an attribute of information. In order to suggest a more general framework,

the approach to uncertainty is outlined by Zadeh [18]. To solve complicated problem in economics,

engineering, and environment, we can’t successfully use classical methods because of various

uncertainties typical for those problems. There are three theories: theory of probability, theory

of fuzzy sets, and the interval mathematics which we can consider as mathematical tools for

dealing with uncertainties. But all these theories have their own difficulties. Uncertainties can’t

be handled using traditional mathematical tools but may be dealt with using a wide range of

existing theories such as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague

sets, theory of interval mathematics, and theory of rough sets. However, all of these theories have

their own difficulties which are pointed out in [14]. Maji et al. [13] and Molodtsov [14] suggested

that one reason for these difficulties may be due to the inadequacy of the parametrization tool

of the theory. To overcome these difficulties, Molodtsov [14] introduced the concept of soft set

as a new mathematical tool for dealing with uncertainties that is free from the difficulties that

have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the

applications of soft sets. Worldwide, there has been a rapid growth in interest in soft set theory

and its applications in recent years. Evidence of this can be found in the increasing number

02010 Mathematics Subject Classification: 06F35; 03G25; 06D72.
0Keywords: γ-inclusive set; int-soft subalgebra; int-soft ideal; subtraction algebra.
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of high-quality articles on soft sets and related topics that have been published in a variety of

international journals, symposia, workshops, and international conferences in recent years. Maji

et al. [13] described the application of soft set theory to a decision making problem. Maji et

al. [12] also studied several operations on the theory of soft sets. Aktaş and Çağman [4] studied

the basic concepts of soft set theory, and compared soft sets to fuzzy and rough sets, providing

examples to clarify their differences. They also discussed the notion of soft groups. Jun [9]

discussed the union soft sets with applications in BCK/BCI-algebras. We refer the reader to

the papers [1, 5, 7, 8, 15] for further information regarding algebraic structures/properties of soft

set theory.

In this paper, we discuss applications of the an intersectional soft sets in a subalgebra (an ideal)

of a subtraction algebra. We introduce the notion of an intersectional soft subalgebra (ideal) of

a subtraction algebra, and investigate some related properties. We consider a new construction

of a quotient subtraction algebra induced by an int-soft ideal. Also we investigated some related

properties.

2. Preliminaries

We review some definitions and properties that will be useful in our results (see [10]).

By a subtraction algebra we mean an algebra (X, ∗, 0) with a single binary operation “−” that

satisfies the following conditions: for any x, y, z ∈ S,

(S1) x− (y − x) = x,

(S2) x− (x− y) = y − (y − x),

(S3) (x− y)− z = (x− z)− y.

The subtraction determines an order relation on X: a ≤ b if and only if a−b = 0, where 0 = a−a

ia an element that does not depend on the choice of a ∈ X. The ordered set (X;≤) is a semi-

Boolean algebras in the sense of [2], that is, it is a meet semilattice with zero 0 in which every

interval [0, a] is a Boolean algebra with respect to the induced order. Hence a ∧ b = a− (a− b);

the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c =(b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))

= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true:

(a1) (x− y)− y = x− y,

(a2) x− 0 = x and 0− x = 0,

(a3) (x− y)− x = 0,
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(a4) x− (x− y) ≤ y,

(a5) (x− y)− (y − x) = x− y,

(a6) x− (x− (x− y)) = x− y,

(a7) (x− y)− (z − y) ≤ x− z,

(a8) x ≤ y if and only if x = y − w for some w ∈ X,

(a9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X,

(a10) x, y ≤ z implies x− y = x ∧ (z − y),

(a11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z).

A non-empty subset A of a subtraction algebra X is called a subalgebra ([10]) of X if x−y ∈ A

for any x, y ∈ A. A non-empty subset I of a subtraction algebra X is called an ideal ([10]) of X

if

(I1) 0 ∈ I,

(I2) x− y, y ∈ I imply x ∈ I for any x, y, z ∈ X.

A mapping f : X → Y of subtraction algebras is called a homomorphism if f(x−y) = f(x)−f(y)

for all x, y ∈ X.

Molodtsov [12] defined the soft set in the following way: Let U be an initial universe set and

let E be a set of parameters. We say that the pair (U,E) is a soft universe. Let P(U) denotes

the power set of U and A,B,C, · · · ⊆ E.

A fair (f̃ , A) is called a soft set over U , where f̃ is a mapping given by f̃ : X → P(U).

In other words, a soft set over U is parameterized family of subsets of the universe U . For

ε ∈ A, f̃(ε) may be considered as the set of ε-approximate elements of the set (f̃ , A). A soft set

over U can bd represented by the set of ordered pairs:

(f̃ , A) = {(x, f̃(x))|x ∈ A, f̃(x) ∈ P(U)},

where f̃ : X → P(U) such that f̃(x) = ∅ if x /∈ A. Clearly, a soft set is not a set.

For a soft set (f̃ , A) of X and a subset γ of U , the γ-inclusive set of (f̃ , A), defined to be the

set

iA(f̃ ; γ) := {x ∈ A|γ ⊆ f̃(x)}.

3. Intersectional soft subalgebras

In what follows let X denote a subtraction algebra unless otherwise specified.

Definition 3.1. A soft set (f̃ , X) over U is called an intersectional soft subalgebra (briefly,

int-soft subalgebra of X if it satisfies:

(3.1) f̃(x) ∩ f̃(y) ⊆ f̃(x− y) for all x, y ∈ X.
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Proposition 3.2. Every int-soft subalgebra (f̃ , X) of a subtraction algebra X satisfies the

following inclusion:

(3.2) f̃(x) ⊆ f̃(0) for all x ∈ X.

Proof. Using (3.1), we have f̃(x) = f̃(x) ∩ f̃(x) ⊆ f̃(x− x) = f̃(0) for all x ∈ X. □

Example 3.3. Let (U = Z, X) where X = {0, 1, 2, 3} is a subtraction algebra ([11]) with the

following Cayley table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 0

3 3 2 1 0

Let (f̃ , X) be a soft set over U defined as follows:

f̃ : X → P(U), x 7→


Z if x = 0

2Z if x ∈ {1, 2}
4Z if x = 3.

It is easy to check that (f̃ , X) is an int-soft subalgebra over U .

Theorem 3.4. A soft set (f̃ , X) of a subtraction algebra X over U is an int-soft subalgebra of

X over U if and only if the γ-inclusive set iX(f̃ ; γ) is a subalgebra of X for all γ ∈ P(U) with

iX(f̃ ; γ) ̸= ∅.

Proof. Assume that (f̃ , X) is an int-soft subalgebra over U . Let x, y ∈ X and γ ∈ P(U) be such

that x, y ∈ iX(f̃ ; γ). Then γ ⊆ f̃(x) and γ ⊆ f̃(y). It follows from (3.1) that γ ⊆ f̃(x) ∩ f̃(y) ⊆
f̃(x− y) Hence x− y ∈ iX(f̃ ; γ). Thus iX(f̃ , X) is a subalgebra of X.

Conversely, suppose that iX(f̃ ; γ) is a subalgebra X for all γ ∈ P(U) with iX(f̃ ; γ) ̸= ∅. Let
x, y ∈ X, be such that f̃(x) = γx and f̃(y) = γy. Take γ = γx ∩ γy. Then x, y ∈ iX(f̃ ; γ) and so

x− y ∈ iX(f̃ ; γ) by assumption. Hence f̃(x) ∩ f̃(y) = γx ∩ γy = γ ⊆ f̃(x− y). Thus (f̃ , X) is an

int-soft subalgebra over U . □

The subalgebra iX(f̃ ; γ) in Theorem 3.4 is called the inclusive subalgebra of X.

Theorem 3.5. Every subalgebra of a subtraction algebra can be represented as a γ-inclusive set

of an int-soft subalgebra.
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Proof. Let A be a subalgebra of a subtraction algebra X. For a subset γ of U , define a soft set

(f̃ , X) over U by

f̃ : X → P(U), x 7→
{

γ if x ∈ A

∅ if x /∈ A

Obviously, A = iX(f̃ ; γ). We now prove that (f̃ , X) is an int-soft subalgebra over U . Let x, y ∈ X.

If x, y ∈ A, then x− y ∈ A because A is a subalgebra of X. Hence f̃(x) = f̃(y) = f̃(x− y) = γ,

and so f̃(x)∩ f̃(y) ⊆ f̃(x−y). If x ∈ A and y /∈ A, then f̃(x) = γ and f̃(y) = ∅ which imply that

f̃(x) ∩ f̃(y) = γ ∩ ∅ = ∅ ⊆ f̃(x− y). Similarly, if x /∈ A and y ∈ A, then f̃(x) ∩ f̃(y) ⊆ f̃(x− y).

Obviously, if x /∈ A and y /∈ A, then f̃(x) ∩ f̃(y) ⊆ f̃(x − y). Therefore (f̃ , X) is an int-soft

subalgebra over U . □

Any subalgebra of a subtraction algebra X may not be represented as a γ-inclusive set of an

int-soft subalgebra (f̃ , X) over U in general (see the following example).

Example 3.6. Consider a subtraction algebra X = {0, 1, 2, 3} which is given Example 3.3.

Consider a soft set (f̃ , X) which is given by

f̃ : X → P(U), x 7→
{

{0, 1} if x = 0

{1} if x ∈ {1, 2, 3}

Then (f̃ , X) is an int-soft subalgebra over U . The γ-inclusive set of (f̃ , X) are described as

follows:

iX(f̃ ; γ) =


X if γ ∈ {∅, {1}}
{0} if γ ∈ {{0}, {0, 1}}
∅ otherwise.

The subalgebra {0, 2} cannot be a γ-inclusive set iX(f̃ ; γ) since there is no γ ⊆ U such that

iX(f̃ ; γ) = {0, 2}.

We make a new int-soft subalgebra from old one.

Theorem 3.7. Let (f̃ , X) be a soft set of a subtraction algebra X over U . Define a soft set

(f̃ ∗, X) of X over U by

f̃ ∗ : X → P(U), x 7→
{

f̃(x) if x ∈ iX(f̃ ; γ)

∅ otherwise

where γ is a non-empty subset subset of U . If (f̃ , X) is an int-soft subalgebra of X, then so is

(f̃ ∗, X).
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Proof. If (f̃ , X) is an int-soft subalgebra over U , then iX(f̃ ; γ) is a subalgebra of X for all γ ⊆ U

by Theorem 3.6. Let x, y ∈ X. If x, y ∈ iX(f̃ ; γ), then x− y ∈ iX(f̃ ; γ). Hence we have

f̃ ∗(x) ∩ f̃ ∗(y) = f̃(x) ∩ f̃(y) ⊆ f̃(x− y) = f̃ ∗(x− y).

If x /∈ iX(f̃ ; γ) or y /∈ iX(f̃ ; γ), then f̃ ∗(x) = ∅ or f̃ ∗(y) = ∅. Thus

f̃ ∗(x) ∩ f̃ ∗(y) = ∅ ⊆ f̃ ∗(x− y).

Therefore (f̃ ∗, X) is an int-soft subalgebra over U . □
Definition 3.8. A soft set (f̃ , X) over U is called an intersectional ideal (briefly, int-soft ideal)

of X if it satisfies (3.2) and

(3.3) f̃(x− y) ∩ f̃(y) ⊆ f̃(x) for all x, y ∈ X.

Example 3.9. (1) Let E = X be the set of parameters and let U = X be the universe set where

X = {0, a, b, c} is a subtraction algebra ([3]) with the following Cayley table:

∗ 0 a b c

0 0 0 0 0

a a 0 a a

b b b 0 b

c c c c 0

Let (f̃ , X) be a soft set over U defined as follows:

f̃ : X → P(U), x 7→
{

γ2 if x ∈ {0, a}
γ1 if x ∈ {b, c}

where γ1 and γ2 are subsets of U with γ1 ⊊ γ2 It is easy to check that (f̃ , X) is an int-soft ideal

of X.

(2) In Example 3.3, (f̃ , X) is an int-soft subalgebra of X. But it is not an int-soft ideal of X,

since f̃(3− 1) ∩ f̃(2) = 2Z ⊈ 4Z = f̃(3).

Proposition 3.10. Every int-soft ideal (f̃ , X) of a subtraction algebra X satisfies the following

inclusion:

(i) (∀x, y ∈ X)(x ≤ y ⇒ f̃(y) ⊆ f̃(x)),

(ii) (∀x, y, z ∈ X)(f̃((x− y)− z) ∩ f̃(y) ⊆ f̃(x− z)).

Proof. (i) Let x, y ∈ X be such that x ≤ y. Then x − y = 0. Hence f̃(y) = f̃(0) ∩ f̃(y) =

f̃(x− y) ∩ f̃(y) ⊆ f̃(x).

(ii) Let x, y, z ∈ X. Using (S3) and (3.3), we have f̃((x−y)−z))∩ f̃(y) = f̃((x−z)−y))∩ f̃(y) ⊆
f̃(x− z). □
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Theorem 3.11. Let (f̃ , X) be a soft set of X over U . Then (f̃ , X) is an int-soft ideal of X over

U if and only if

(3.4) (∀x, y, z ∈ X)(x− y ≤ z ⇒ f̃(z) ∩ f̃(y) ⊆ f̃(x)).

Proof. Assume that (f̃ , X) is an int-soft ideal of X over U . Let x, y and z ∈ X be such that

x− y ≤ z. By Proposition 3.10(i) and (3.3), we have f̃(z) ∩ f̃(y) ⊆ f̃(x− y) ∩ f̃(y) ⊆ f̃(x).

Conversely, suppose that (f̃ , X) satisfies (3.4). By (a2), we get 0 ≤ x for any x ∈ X. Using

Proposition 3.10(i), we have f̃(x) ⊆ f̃(0) for any x ∈ X. By (a4), we have x − (x − y) ≤ y for

any x, y ∈ X. It follows from (3.4) that f̃(y) ∩ f̃(x − y) ⊆ f̃(x). Hence (3.3) hold. Therefore

(f̃ , X) is an int-soft ideal of X over U . □

Theorem 3.12. A soft set (f̃ , X) of X over U is an int-soft ideal of a subtraction algebra X over

U if and only if the γ-inclusive set iX(f̃ ; γ) is an ideal of X for all γ ∈ P(U) with iX(f̃ ; γ) ̸= ∅.

Proof. Similar to Theorem 3.4. □

The ideal iX(f̃ ; γ) in Theorem 3.12 is called the inclusive ideal of X.

Proposition 3.13. Let (f̃ , X) be a soft set of a subtraction algebra X over U . Then the set

Xf̃ := {x ∈ X|f̃(x) = f̃(0)} is an ideal of X.

Proof. Obviously, 0 ∈ Xf̃ . Let x, y ∈ X be such that x−y ∈ Xf̃ and y ∈ Xf̃ . Then f̃(x−y) = f̃(0)

and f̃(y) = f̃(0). By (3.3), we have f̃(0) = f̃(x − y) ∩ f̃(y) ⊆ f̃(x). It follows from (3.2) that

f̃(x) = f̃(0). Hence x ∈ Xf̃ . Therefore Xf̃ is an ideal of X. □

4. Quotient subtraction algebras induced by an int-soft ideal

Let (f̃ , X) be an int-soft ideal of a subtraction algebra X. For any x, y ∈ X, we define a binary

operation “ ∼f̃ ” on X as follows:

x ∼f̃ y ⇔ f̃(x− y) = f̃(y − x) = f̃(0).

Lemma 4.1. The operation ∼f̃ is an equivalence relation on a subtraction algebra X.

Proof. Obviously, it is reflexive and symmetric. Let x, y and z ∈ X be such that x ∼f̃ y and

y ∼f̃ z. Then f̃(x − y) = f̃(y − x) = f̃(0) and f̃(y − z) = f̃(z − y) = f̃(0). By (a7), we

have (x − z) − (y − z) ≤ x − y and (z − x) − (y − x) ≤ z − y. Using (3.4) and (3.2), we have

f̃(0) = f̃(x− y)∩ f̃(y− z) ⊆ f̃(x− z) ⊆ f̃(0) and f̃(0) = f̃(z− y)∩ f̃(y− x) ⊆ f̃(z− x) ⊆ f̃(0).

Hence f̃(x − z) = f̃(z − x) = f̃(0). Thus x ∼f̃ z, that is, ∼f̃ is transitive. Therefore ∼f̃ is an

equivalence relation. □

Lemma 4.2. For any x, y, u, v ∈ X, if x ∼f̃ y and u ∼f̃ v, then x− u ∼f̃ y − v.
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Proof. Let x, y, u, v ∈ X be such that x ∼f̃ y and u ∼f̃ v. Then f̃(x− y) = f̃(y − x) = f̃(0) and

f̃(u−v) = f̃(v−u) = f̃(0). Since (x−u)−(y−u) ≤ x−y and (y−u)−(x−u) ≤ y−x, it follows

from Proposition 3.10(i) that f̃(0) = f̃(x − y) ≤ f̃((x − u) − (y − u)) and f̃(0) = f̃(y − x) ≤
f̃((y−u)−(x−u)). By (3.2), we have f̃((x−u)−(y−u)) = f̃(0) and f̃((y−u)−(x−u)) = f̃(0).

Hence x− u ∼f̃ y − u.

By (a4), (a9) and (S3), we have (y − (y − v)) − u = (y − u) − (y − v) ≤ v − u. Using

Proposition 3.10(i), we obtain f̃(0) = f̃(v − u) ≤ f̃((y − u) − (y − v)). It follows from (3.2)

that f̃((y − u) − (y − v)) = f̃(0). By a similar way, we get f̃((y − v) − (y − u)) = f̃(0). Hence

y−v ∼f̃ y−u. Since ∼f̃ is symmetric, we have y−u ∼f̃ y−v. Since ∼f̃ is transitive, x−u ∼f̃ y−v.

Therefore ∼f̃ is a congruence relation on X. □
Denote f̃x and X/f̃ the equivalence class containing x and the set of all equivalence classes of

X, respectively, i.e.,

f̃x := {y ∈ X|y ∼f̃ x} and X/f̃ := {f̃x|x ∈ X}.
Define a binary relation − on X/f̃ as follows:

f̃x − f̃y = f̃x−y

for all f̃x, f̃y ∈ X/f̃ . Then this operation is well-defined by Lemma 4.2.

Theorem 4.3. If (f̃ , X) is an int-soft ideal of a subtraction algebra X, then the quotient

X/f̃ := (X/f̃ ;−) is a subtraction algebra.

Proof. Straightforward. □
Proposition 4.4. Let µ : X → Y be an epimorphism of subtraction algebras. If (f̃ , Y ) is an

int-soft ideal of Y , then (f̃ ◦ µ,X) is an int-soft ideal of X.

Proof. For any x ∈ X, we have (f̃ ◦ µ)(x) = f̃(µ(x)) ⊆ f̃(0Y ) = f̃(µ(0X)) = (f̃ ◦ µ)(0X) and

(f̃ ◦ µ)(x) = f̃(µ(x)) ⊇ f̃(µ(x)−Y a) ∩ f̃(a) for any a ∈ Y . Let y be any preimage of a under µ.

Then we have

(f̃ ◦ µ)(x) ⊇ f̃(µ(x)−Y a)) ∩ f̃(a)

= f̃(µ(x)− µ(y)) ∩ f̃(µ(y))

= f̃(µ(x−X y) ∩ f̃(µ(y))

= (f̃ ◦ µ)(x−X y) ∩ (f̃ ◦ µ)(y).

Hence f̃ ◦ µ is an int-soft ideal of X. □
Proposition 4.5. Let (f̃ , X) be an int-soft ideal of a subtraction algebra X. The mapping

γ : X → X/f̃ , given by γ(x) := f̃x, is a surjective homomorphism, and Kerγ = {x ∈ X|γ(x) =
f̃0} = Xf̃ .
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Proof. Let f̃x ∈ X/f̃ . Then there exists an element x ∈ X such that γ(x) = f̃x. Hence γ is

surjective. For any x, y ∈ X, we have

γ(x− y) = f̃x−y = f̃x − f̃y = γ(x)− γ(y).

Thus γ is a homomorphism. Moreover, Ker γ = {x ∈ X|γ(x) = f̃0} = {x ∈ X|x ∈ f̃0} = {x ∈
X|x ∼f̃ 0} = {x ∈ X|f̃(x) = f̃(0)} = Xf̃ . It completes the proof. □

Proposition 4.6. Let a soft set (f̃ , X) over U of a subtraction algebra X be an int-soft ideal of

X. If J is an ideal of X, then J/f̃ is an ideal of X/f̃ .

Proof. Let a soft set (f̃ , X) over U of a subtraction algebras X be an int-soft ideal of X and let

J be an ideal of X. Then 0 ∈ J . Hence f̃0 ∈ J/f̃ . Let f̃x, f̃y ∈ J/f̃ such that f̃x − f̃y ∈ J/f̃ and

f̃y ∈ J/f̃ . Since f̃x−y = f̃x − f̃y, we have x − y, y ∈ J . Since J is an ideal of X, we have x ∈ J .

Hence f̃x ∈ J/f̃ . □

Theorem 4.7. If J∗ is an ideal of a quotient subtraction algebra X/f̃ , then there exists an ideal

J = {x ∈ X|f̃x ∈ J∗} in X such that J/f̃ = J∗.

Proof. Since J∗ is an ideal of X/f̃ , f̃0 ∈ J∗. Hence 0 ∈ J . Let f̃x, f̃y ∈ J/f̃ be such that

f̃x− f̃y, f̃y ∈ J∗. Since f̃x−y = f̃x− f̃y, we have x− y, y ∈ J . Since J∗ is an ideal of J/f̃ , f̃x ∈ J/f̃

and so x ∈ J . Therefore J is an ideal of X. By Proposition 4.6, we have

J/f̃ = {f̃j|j ∈ J}

= {f̃j|∃f̃x ∈ J∗ such that j ∼f̃ x}

= {f̃j|∃f̃x ∈ J∗ such that f̃x = f̃j}

= {f̃j|f̃j ∈ J∗} = J∗.

□

Theorem 4.8. Let a soft set (f̃ , X) over U be an int-soft ideal of a subtraction algebra X. If

J is an ideal of X, then
X/f̃

J/f̃
∼= X/J .

Proof. Note that
X/f̃

J/f̃
= {[f̃x]J/f̃ |f̃ ∈ X/f̃}. If we define φ :

X/f̃

J/f̃
→ X/J by φ([f̃x]J/f̃ ) =

[x]J = {y ∈ X|x ∼J y}, then it is well defined. In fact, suppose that [f̃x]J/f̃ = [f̃y]J/f̃ . Then

f̃x ∼J/f̃ f̃y and so f̃x−y = f̃x − f̃y, f̃y−x = f̃y − f̃x ∈ J/f̃ . Hence y − x, x − y ∈ J . Therefore
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x ∼J y, i.e., [x]J = [y]J . Given [f̃x]J/f̃ , [f̃y]J/f̃ ∈ X/f̃

J/f̃
, we have

φ([f̃x]J/f̃ − [f̃y]J/f̃ ) =φ([f̃x − f̃y]J/f̃ ) = [x− y]J

= [x]J − [y]J = φ([f̃x]J/f̃ )− φ([f̃y]J/f̃ ).

Hence φ is a homomorphism.

Obviously, φ is onto. Finally, we show that φ is one-to-one. If φ([f̃x]J/f̃ ) = φ([f̃y]J/f̃ ), then

[x]J = [y]J , i.e., x ∼J y. If f̃a ∈ [f̃x]J/f̃ , then f̃a ∼J/f̃ f̃x and hence f̃a−x, f̃x−a ∈ J/f̃ . It follows

that a − x, x − a ∈ J , i.e., a ∼J x. Since ∼J is an equivalence relation, a ∼J y and so Ja = Jy.

Hence a − y, y − a ∈ J and so f̃a−y, f̃y−a ∈ J/f̃ . Therefore f̃a ∼J/f̃ f̃y. Hence f̃a ∈ [f̃y]J/f̃ .

Thus [f̃x]J/f̃ ⊆ [f̃y]J/f̃ . Similarly, we obtain [f̃y]J/f̃ ⊆ [f̃x]J/f̃ . Therefore [f̃x]J/f̃ = [f̃y]J/f̃ . It is

completes the proof. □
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Abstract

In this paper, we study the solution set of variational like-inequalities (in this sense we are called

η-variational inequalities) and introduce the notion of a weak sharp set of solutions to η-variational

inequality problem in reflexive, strictly convex and smooth Banach space. We also present sufficient

conditions for the relevant mapping to be constant on the solutions. Moreover, we characterize the

weak sharpness of the solutions of η-variational inequality by primal gap function.

Keywords: η-variational inequality, Gap function, Weakly sharp solution

1. Introduction

Burke and Ferris [2] introduced the concept of a weak sharp minimum to present sufficient con-

ditions for the finite identification, by iterative algorithm, of local minima associated with mathe-

matical programming in space Rn. Patriksson [7] has generalized the concept of the weak sharpness

of the solution set of a variational inequality problem (in short, VIP). Their concepts have been

extended by Marcotte and Zhu [6] to introduce another the notion of weak sharp solutions for

variational inequalities. They also characterized the weak sharp solutions in terms of a dual gap

function for variational inequalities. The relevant results have been obtained by Zhang et al. [12].

It is further study by Wu and Wu [9–11]. Hu and Song [4] have extended the results of weak

sharpness for the solutions of VIP under some continuity and monotonicity assumptions in Banach

space. They also introduce the notion of weak sharp set of solutions to a variational inequality

problem in a reflexive, strictly convex and smooth Banach space and present its several equivalent

conditions. Liu and Wu [5] studied weak sharp solutions for the variational inequality in terms of

its primal gap function. They also characterized the weak sharpness of the solution set of VIP in

terms of primal gap function. Recently, AL-Hamidan et al. [1] give some characterization of weak

sharp solutions for the VIP without considering the primal or dual gap function.

In this paper, we provide some general two concepts of Liu and Wu [5] and Hu and Song [4] to

study the weak sharpness of solution set of η-variational inequality problem in Banach space. We

also give some characterizations of weak sharp solutions for the η-VIP and also present its several

equivalent conditions. Our purpose in this paper is to develop the weak sharpness result in space

Rn.
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Email addresses: kasamsuku@nu.ac.th (Kasamsuk Ungchittrakool), na_tta_pon@hotmail.com (Natthaphon 

Artsawang), faraj1348@yahoo.com (Ali Farajzadeh)
1Supported by The Royal Golden Jubilee Project Grant no. PHD/0158/2557, Thailand.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

738 Natthaphon Artsawang et al 738-750



The paper is organized as follows. Section 2 discuss the new concepts of the Gateaux differen-

tiable and Lipschitz continuity of the primal gap function and we also introduce the main definitions.

Several equivalent conditions for F to be constant are discuss and present some relationship among

Cη, Cη, Γ(x∗), and Λ(x∗) in Section 3. Finally, section 4 addresses the weak sharpness of Cη in

terms of the primal gap function is characterized.

2. Preliminaries and formulations

Let E be a real Banach space with is topological dual space E∗ and ⟨· , · ⟩ denote the pairing

between E and E∗ respectively. For a mapping from η : E × E to E . Let g be a mapping from

E into Banach space Y . The mapping g is called directionally differentiable at a point x ∈ E in a

direction v ∈ E if the limit

g′(x, v) := lim
t↓0

g(x+ tv)− g(x)

t

exists. We say that g is directionally differentiable at x, if g is directionally differentiable at x in

every direction v ∈ E.

The mapping g is called Gateaux differentiable at x if g is directionally differentiable at x and

the directional derivative g′(x, v) is linear and continuous in v and we denote this operator by

∇g(x), i.e. ⟨∇g(x), v⟩ = g′(x, v).

Definition 2.1. Let g be a mapping from E into Banach space Y . The mapping g is called η-

Gateaux differentiable at x if g is Gateaux differentiable at x and there exists a unique ξ ∈ E∗ such

that ⟨ξ, η(v, 0)⟩ = ⟨∇g(x), v⟩ , ∀v ∈ E. We denote this operator by ∇ηg(x) i.e. ⟨∇ηg(x), η(v, 0)⟩ =
g′(x, v).

We defined η-subdifferential of a proper convex function f at x ∈ E is given by

∂ηf(x) := {x∗ ∈ E∗ : ⟨x∗, η(y, x)⟩ ≤ f(y)− f(x), ∀y ∈ E}.

Let C be a closed convex subset of E. The mapping PC : E → 2C defined by

PC(x) := {y ∈ C : ∥x− y∥ = d(x,C)},

is called the metric projection operator.

We known that if E is a reflexive and strictly convex Banach space, PC is a single-valued

mapping.

The duality mappings J : E → 2E
∗
and J∗ : E∗ → 2E are defined by

J(x) = {x∗ ∈ E∗ : ⟨x∗, x⟩ = ∥x∗∥2∗ = ∥x∥2},∀x ∈ E

and

J∗(x∗) = {x ∈ E : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2∗}, ∀x∗ ∈ E∗.

We know the following (see [8])

(i) if E is smooth, then J is single-valued;

(ii) if E is reflexive, then J is onto;

(iii) if E is strictly convex, then J is one-to-one;

(iv) if E is strictly convex, then J is strictly monotone.

Thought out this paper, we let η : E × E to E be satisfy the following condition;

(i) η is continuous on E × E;

(ii) for any x, y ∈ E, η(x, y) = −η(y, x);

2
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(iii) for any x, y ∈ E and α, β are scalars, η(αx+ βy, 0) = αη(x, 0) + βη(y, 0);

(iv) there exists k > 0 such that ∥η(x, y)∥ = k∥x− y∥ for all x, y ∈ E;

(v) η(E × {0}) = E.

For a mapping g from a Banach space E into Banach space Y , we say that g is η-locally Lipschitz

on E if for any x ∈ E there exist δ > 0 and L ≥ 0 such that

∥g(x)− g(y)∥ ≤ L∥η(x, y)∥, for all x, y ∈ B(x, δ).

The following results are importance:

Lemma 2.2 ([3]). Let E be a Banach space, J : E → 2E
∗
a duality mapping and Φ(∥x∥) =

∫ ∥x∥

0

ds,

0 ̸= x ∈ X. Then J(x) = ∂Φ(∥x∥).

Lemma 2.3. Assume that E is a reflexive, strictly convex and smooth Banach space. Let C be a

closed convex subset of E and x̂ ∈ C. Then the following are equivalent:

(i) x̂ is a best approximation to x :∥η(x, x̂)∥ = inf
y∈C

∥η(x, y)∥.

(ii) the inequality ⟨J(η(x, x̂)), η(y, x̂)⟩ ≤ 0, ∀y ∈ C holds.

Proof. (ii) ⇒ (i) For each x ∈ E. Let x̂ ∈ C such that

⟨J(η(x, x̂)), η(y, x̂)⟩ ≤ 0 ∀y ∈ C.

Then

∥η(x, x̂)∥∥J(η(x, x̂))∥∗ = ⟨J(η(x, x̂)), η(x, x̂)⟩
≤ ⟨J(η(x, x̂)), η(x, x̂)⟩+ ⟨J(η(x, x̂)), η(x̂, y)⟩, ∀y ∈ C

= ⟨J(η(x, x̂)), η(x, y)⟩, ∀y ∈ C

≤ ∥J(η(x, x̂))∥∗∥η(x, y)∥, ∀y ∈ C.

Hence, ∥η(x, x̂)∥ = inf
y∈C

∥η(x, y)∥.

(i) ⇒ (ii) For each x ∈ E. Suppose that x̂ ∈ C such that

∥η(x, x̂)∥ = inf
y∈C

∥η(x, y)∥.

Since C is convex, we obtain that

∥η(x, x̂)∥ ≤ ∥η(x, (1− t)x̂+ ty)∥, ∀y ∈ C and t ∈ [0, 1],

which implies that

Φ(∥η(x, x̂)∥)− Φ(∥η(x, (1− t)x̂+ ty)∥), ∀y ∈ C and t ∈ [0, 1],

where Φ : R+ → R+ give by Φ(x) =

∫ x

0

ds, for all x ∈ R+.

By Lemma 2.2, J(z) = ∂Φ(∥z∥). It follows that

⟨J(η(x, (1− t)x̂+ ty)), η(x, x̂)− η(x, (1− t)x̂+ ty)⟩ ≤ Φ(∥η(x, x̂)∥)− Φ(∥η(x, (1− t)x̂+ ty)∥)
≤ 0, ∀y ∈ C and t ∈ [0, 1],

that is,

t⟨J(η(x, (1− t)x̂+ ty)), η(y, x̂)⟩ ≤ 0, ∀y ∈ C and t ∈ [0, 1]

3
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Therefore,

⟨J(η(x, (1− t)x̂+ ty)), η(y, x̂)⟩ ≤ 0, ∀y ∈ C and t ∈ [0, 1].

Taking t→ 0, we have

⟨J(η(x, x̂)), η(y, x̂)⟩ ≤ 0, ∀y ∈ C.

Remark 2.4. By definition of η for each x ∈ E if x̂ = PC(x) then ∥η(x, x̂)∥ = inf
y∈C

∥η(x, y)∥.

If C is a closed convex subset of E and x ∈ C, then the η-tangent cone to C at x has the form

T η
C(x) = {d ∈ E : there exists a bounded sequence {dk} ⊆ X with η(dk, 0) → d, tk ↓ 0

such that x+ tkdk ∈ C, ∀k ∈ N}.

In the above, denote xk = x + tkdk ∈ C. Taking the limit as k → +∞, tk → 0, which implies

that tkdk → 0, thereby leading to xk → x. Also from construction,

η(xk, x)

tk
= η(dk, 0) → d.

Thus, the η-tangent cone can be equivalently expressed as

T η
C(x) = {d ∈ E : there exists sequence {xk} ⊆ C with xk → x, tk ↓ 0

such that
η(xk, x)

tk
→ d}.

Proposition 2.5. Consider a set C ⊆ E and x ∈ C. Then the following hold:

(i) T η
C(x) is closed;

(ii) If C is convex, T η
C(x) is the closure of the cone generated by η(C × {x}), that is,

T η
C(x) = cone(η(C × {x}))

Proof. (i) Suppose that {dk} ⊆ T η
C(x) such that dk → d. Since dk ∈ T η

C(x), there exist {xrk} ⊆ C

with xrk → x and {trk} ⊆ R+ with trk → 0 such that

η(xrk, x)

trk
→ dk, ∀k ∈ N.

For a fixed k, there exists r such that

∥η(x
r
k, x)

trk
− dk∥ <

1

k
, ∀r ≥ r.

Taking k → +∞, one can generate a sequence {xk} ⊆ C with xk → x and tk ↓ 0 such that

η(xk, x)

tk
→ d.

Thus, d ∈ T η
C(x). Hence, T

η
C(x) is closed.

(ii) Suppose that d ∈ T η
C(x), which implies that there exist {xk} ⊆ C with xk → x and {tk} ⊆ R+

with tk → 0 such that
η(xk, x)

tk
→ d.

Observe that η(xk, x) ∈ η(C × {x}). Since tk > 0, 1
tk
> 0. Therefore,

η(xk, x)

tk
∈ cone η(C × {x}).

4
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Thus, d ∈ cone(η(C × {x})). Hence, T η
C(x) ⊆ cone(η(C × {x})).

Conversely, for each x ∈ C. Define a sequence

xk = x+
1

k
(x− x), ∀k ∈ N.

By the convexity of C, it is obvious that {xk} ⊆ C. Taking k → +∞, xk → x, by construction, we

obtain that

kη(xk, x) = η(x, x).

Set tk = 1
k > 0, tk → 0 such that η(xk,x)

tk
→ η(x, x), which implies that η(x, x) ∈ T η

C(x).

Since x ∈ C is arbitrary, η(C×{x}) ⊆ T η
C(x). Because T

η
C(x) is cone, we have cone(η(C×{x})) ⊆

T η
C(x). By (i), T η

C(x) is closed, which implies that cone(η(C × {x})) ⊆ T η
C(x).

The η-normal cone to C at x is defined by Nη
C(x) := [T η

C(x)]
◦, where

A◦ := {x∗ ∈ E∗ : ⟨x∗, x⟩ ≤ 0, ∀x ∈ A}.
If C is convex, then

Nη
C(x) :=

{
{x∗ ∈ E∗ : ⟨x∗, η(c, x)⟩ ≤ 0 for all c ∈ C} if x ∈ C,

∅, if x /∈ C.

Let C be a nonempty closed convex subset of reflexive, strictly convex and smooth Banach space

E. For a mapping F from E into E∗, the η-variational inequality problem [η-VIP] is to find a vector

x∗ ∈ C such that

⟨F (x∗), η(x, x∗)⟩ ≥ 0 for all x ∈ C. (2.1)

We denote the solution set of the η-VIP by Cη

The η-dual variational inequality problem [η-DVIP] is to find a vector x∗ ∈ C such that

⟨F (x), η(x, x∗)⟩ ≥ 0 for all x ∈ C. (2.2)

We denote the solution set of the η-DVIP by Cη

Definition 2.6. The mapping F : E → E∗ is said to be:

(i) η-monotone on C if ⟨F (x)− F (y), η(y, x)⟩ ≥ 0 for all x, y ∈ C;

(ii) η-pseudomonotone at x ∈ C if for each y ∈ C there holds

⟨F (x), η(y, x)⟩ ≥ 0 ⇒ ⟨F (y), η(y, x)⟩ ≥ 0;

(iii) η-pseudomonotone+ on C if it is η-pseudomonotone at each point in C and, for all x, y ∈ C,

⟨F (y), η(x, y)⟩ ≥ 0
}

⇒ F (x) = F (y).⟨F (x), η(x, y)⟩ = 0

Now, we define the primal gap function g(x) associated with η-VIP (2.1) as

g(x) := sup
y∈C

{⟨F (x), η(x, y)⟩}, for all x ∈ E,

and we setting

Γ(x) := {y ∈ C : ⟨F (x, η(x, y))⟩ = g(x)}.
Similarly, we define the dual gap function G(x) associated with η-DVIP (2.2) as

G(x) := sup
y∈C

{⟨F (y), η(x, y)⟩}, for all x ∈ E,

and we setting

Λ(x) := {y ∈ C : ⟨F (y, η(x, y))⟩ = G(x)}.

5
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3. Sufficient condition for constancy of F on Cη and some properties of the primal

gap function

In this section, we discuss about relations among Cη, Cη, Γ(x∗), and Λ(x∗). We study suf-

ficient condition for F to be constant on Cη and also study the η-Lipschitz continuity and η-

subdifferentiability of the primal gap function g in terms of the mapping F .

Proposition 3.1. Let x̂ ∈ C. Then

(i) x̂ ∈ Cη ⇔ g(x̂) = 0 ⇔ x̂ ∈ Γ(x̂);

(ii) x̂ ∈ Cη ⇔ G(x̂) = 0 ⇔ x̂ ∈ Λ(x̂).

Proof. (i) Consider

x̂ ∈ Cη ⇔ ⟨F (x̂), η(y, x̂)⟩ ≥ 0, ∀y ∈ C

⇔ ⟨F (x̂), η(x̂, y)⟩ ≤ 0, ∀y ∈ C

⇔ g(x̂) = 0.

And we also consider

x̂ ∈ Γ(x̂) ⇔ ⟨F (x̂), η(x̂, x̂)⟩ = g(x̂)

⇔ 0 = g(x̂).

Similarly, we can obtain (ii).

Proposition 3.2. If F is η-pseudomonotone on C, Cη ⊆ Cη.

Proof. Immediate from the definitions.

The following proposition we present a sufficient condition for F to be constant on Cη.

Proposition 3.3. Let F be η-pseudomonotone+ on Cη. Then F is constant on Cη

Proof. Let x1, x2 ∈ Cη. Since F is η-pseudomonotone+ on Cη, we have

⟨F (x1), η(x2, x1)⟩ ≥ 0 and ⟨F (x2), η(x1, x2)⟩ ≥ 0.

By pseudomonotonicity of F on Cη, we have

⟨F (x1), η(x1, x2)⟩ ≥ 0 it follows that ⟨F (x1), η(x1, x2)⟩ = 0.

Since F is η-pseudomonotone+ on Cη and ⟨F (x2), η(x1, x2)⟩ ≥ 0, implies that F (x1) = F (x2).

Hence, F is constant on Cη.

Proposition 3.4. Let F be η-pseudomonotone+ on C and x∗ ∈ Cη. Then Cη = Λ(x∗) and F is

constant on Λ(x∗).

Proof. First, we prove that F is constant on Λ(x∗). For x∗ ∈ Cη and c ∈ C, we have

⟨F (x∗), η(c, x∗)⟩ ≥ 0. Since F is pseudomonotone, we get that

⟨F (c), η(c, x∗)⟩ ≥ 0, ∀c ∈ C. It follows that G(x∗) = 0.

For c ∈ Λ(x∗), we have

⟨F (c), η(c, x∗)⟩ = −G(x∗) = 0 and hence F (c) = F (x∗).

6
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It sufficient to show that Cη = Λ(x∗).

(⊆): Let y∗ ∈ Cη. Then ⟨F (y∗), η(x∗, y∗)⟩ ≥ 0. Since x∗ ∈ Cη ⊆ Cη, we have

⟨F (z), η(z, x∗)⟩ ≥ 0, ∀z ∈ C.

It follows that G(x∗) = 0, and ⟨F (y∗), η(y∗, x∗)⟩ ≥ 0. Therefore,

⟨F (y∗), η(x∗, y∗)⟩ = 0 = G(x∗), that is, y∗ ∈ Λ(x∗). Thus Cη ⊆ Λ(x∗).

(⊇): Let y∗ ∈ Λ(x∗). Then ⟨F (y∗), η(x∗, y∗)⟩ = G(x∗) ≥ 0. Since x∗ ∈ Cη, we have

⟨F (x∗), η(y, x∗)⟩ ≥ 0,∀y ∈ C.

Note that x∗ ∈ Λ(x∗), we have F (x∗) = F (y∗). Consider, for all y ∈ C,

0 ≤ ⟨F (y∗), η(y, x∗)⟩ = ⟨F (y∗), η(y, y∗)⟩+ ⟨F (y∗), η(y∗, x∗)⟩

implies 0 ≤ ⟨F (y∗), η(x∗, y∗)⟩ ≤ ⟨F (y∗), η(y, y∗)⟩, ∀y ∈ C. Therefore, Cη = Λ(x∗).

Proposition 3.5. Suppose that F be η-pseudomonotone on C and x∗ ∈ Cη. If F is constant on

Γ(x∗) then F is constant on Cη. And hence

Cη = Cη = Γ(x∗) = Λ(x∗).

Proof. Since F is η-pseudomonotone on C, we have Cη ⊆ Cη. Let y
∗ ∈ Cη. Then

⟨F (x∗), η(x∗, y∗)⟩ ≥ 0.

By assumption, we obtain that g(x∗) = 0 and hence ⟨F (x∗), η(y∗, x∗)⟩ ≥ 0. It follows that

⟨F (x∗), η(x∗, y∗)⟩ = 0 = g(x∗). Thus y∗ ∈ Γ(x∗).

Therefore Cη ⊆ Cη ⊆ Γ(x∗). Let z∗ ∈ Γ(x∗). Then ⟨F (x∗), η(x∗, z∗)⟩ = g(x∗) = 0.

From above x∗ ∈ Cη ⊆ Γ(x∗) and F is constant on Γ(x∗), we obtain that F (x∗) = F (z∗). Since

x∗ ∈ Cη, we have ⟨F (x∗), η(z, x∗)⟩ ≥ 0, ∀z ∈ C.

It follows that, for all z ∈ C,

0 ≤ ⟨F (z∗), η(z, x∗)⟩
= ⟨F (z∗), η(z, z∗)⟩+ ⟨F (z∗), η(z∗, x∗)⟩
= ⟨F (z∗), η(z, z∗)⟩+ ⟨F (x∗), η(z∗, x∗)⟩
= ⟨F (z∗), η(z, z∗)⟩.

This implies that z∗ ∈ Cη. Thus Γ(x∗) ⊆ Cη and hence

Cη = Cη = Γ(x∗).

It sufficient to prove that Γ(x∗) = Λ(x∗). For c ∈ Γ(x∗), we have

⟨F (x∗), η(x∗, c)⟩ = g(x∗) = 0,

so ⟨F (c), η(x∗, c)⟩ = 0 = G(x∗). Therefore,

c ∈ Λ(x∗), which implies that Γ(x∗) ⊆ Λ(x∗).

Now let c ∈ Λ(x∗). Then

⟨F (c), η(x∗, c)⟩ = G(x∗) = 0.

7
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The pseudomonotonicity of F on C implies that ⟨F (x∗), η(x∗, c)⟩ ≥ 0. In this case,

⟨F (x∗), η(x∗, c)⟩ = 0 = g(x∗) since x∗ ∈ Cη.

Thus c ∈ Γ(x∗) and hence Λ(x∗) ⊆ Γ(x∗). Therefore

Cη = Cη = Γ(x∗) = Λ(x∗).

Proposition 3.6. Let F be η-pseudomonotone+ on C. Then, for x∗ ∈ Cη, F is constant on Γ(x∗)

if and only if

Cη = Cη = Γ(x∗) = Λ(x∗).

Proof. (⇒)Suppose that F is constant on Γ(x∗). By Proposition 3.5, we obtain that

Cη = Cη = Γ(x∗) = Λ(x∗).

(⇐)Assume that Cη = Cη = Γ(x∗) = Λ(x∗). Let x1, x2 ∈ Γ(x∗). Then

⟨F (x1), η(x2, x1)⟩ ≥ 0 and ⟨F (x2), η(x1, x2)⟩ ≥ 0 , because x1, x2 ∈ Cη.

Since F is η-pseudomonotone and ⟨F (x2), η(x1, x2)⟩ ≥ 0, we obtain that

⟨F (x1), η(x1, x2)⟩ ≥ 0 , that is , ⟨F (x1), η(x2, x1)⟩ ≤ 0.

Thus ⟨F (x1), η(x2, x1)⟩ = 0. Since F is η-pseudomonotone+ on C, we have F (x1) = F (x2).

Proposition 3.7. Let F be η-pseudomonotone+ on C. Then the following are equivalent:

(i) F is constant on Γ(x∗) for each x∗ ∈ Cη.

(ii) Cη = Cη = Γ(x∗) = Λ(x∗) for each x∗ ∈ Cη.

(iii) Cη = Γ(x∗) = Λ(x∗) for each x∗ ∈ Cη.

(iv) Cη = Γ(x∗) for each x∗ ∈ Cη.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are immediate. It suffices to show (iv) ⇒ (i). Suppose that Cη =

Γ(x∗) for each x∗ ∈ Cη. Let x∗ ∈ Cη and x1, x2 ∈ Γ(x∗). Then x1, x2 ∈ Cη and ⟨F (x1), η(x2, x1)⟩ ≥
0 and ⟨F (x2), η(x1, x2)⟩ ≥ 0.

Since F is η-pseudomonotone and ⟨F (x2), η(x1, x2)⟩ ≥ 0, we obtain that

⟨F (x1), η(x1, x2)⟩ ≥ 0 , that is , ⟨F (x1), η(x2, x1)⟩ ≤ 0.

Thus ⟨F (x1), η(x2, x1)⟩ = 0. Since F is η-pseudomonotone+ on C, we have

F (x1) = F (x2).

Next we prove that if F is η-locally Lipschitz on Cη, then so is g.

Lemma 3.8. Let C be compact. If F is η-locally Lipschitz on Cη, then g is also η-locally Lipschitz

on Cη.

Proof. Suppose that F is η-locally Lipschitz on Cη. Let x∗ be any element in Cη. Then there exist

δ > 0 and L0 ≥ 0 such that

∥F (x)− F (y)∥ ≤ L0∥η(x, y)∥ and ∥F (x)∥ ≤ L0 for all x, y ∈ B(x∗, δ).
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Let c ∈ Γ(x) with x ∈ B(x∗, δ). Then

g(x)− g(y) ≤ ⟨F (x), η(x, c)⟩ − ⟨F (y), η(y, c)⟩
= ⟨F (x), η(x, y)⟩+ ⟨F (x), η(y, c)⟩ − ⟨F (y), η(y, c)⟩
= ⟨η(x, y)⟩+ ⟨F (x)− F (y), η(y, c)⟩
≤ ∥F (x)∥∥η(x, y)∥+ ∥F (x)− F (y)∥∥η(y, c)∥
≤ L0∥η(x, y)∥+ L0∥η(x, y)∥∥η(y, c)∥.

By the compactness of C and definition of η implies that there exists a constant M ≥ 0 such that

∥η(y, c)∥ ≤M for all y ∈ B(x∗, δ) and c ∈ C.

We set L = L0 + L0M, we obtain that

g(x)− g(y) ≤ L∥η(x, y)∥.

We can conclude that g is η-locally Lipschitz on Cη.

The following Proposition 3.2 we present the η-subdifferential of g at x∗ ∈ Cη is a singleton

under sufficient condition.

Proposition 3.9. Let F be η-monotone on X and x∗ ∈ Cη. Suppose that g is finite on X and

η-Gateaux differentiable at x∗. Then ∂ηg(x
∗) = {F (x∗)}.

Proof. Since x∗ ∈ Cη, we have g(x∗) = 0. For each y ∈ X and F is η-monotone, we obtain that

g(y)− g(x∗) ≥ ⟨F (y), η(y, x∗)⟩ ≥ ⟨F (x∗), η(y, x∗)⟩.

Hence F (x∗) ∈ ∂ηg(x
∗).

Let z ∈ ∂ηg(x
∗). Then for each v ∈ X and t > 0, we get that

g(x∗ + tv)− g(x∗) ≥ ⟨z, η(x∗ + tv, x∗)⟩ = t⟨z, η(v, 0)⟩,

that is,
g(x∗ + tv)− g(x∗)

t
≥ ⟨z, η(v, 0)⟩.

By the η-Gateaux differentiability of g at x∗ implies that

⟨∇ηg(x
∗), η(v, 0)⟩ = lim

t→0

g(x∗ + tv)− g(x∗)

t
≥ ⟨z, η(v, 0)⟩.

Therefore, ⟨z − ∇ηg(x
∗), η(v, 0)⟩ ≤ 0, for all v ∈ X. By definition of η we can set η(v, 0) =

z − ∇ηg(x
∗), we have ∥z − ∇ηg(x

∗)∥2 ≤ 0. This implies that z = ∇ηg(x
∗), and hence ∂ηg(x

∗) =

{∇ηg(x
∗)} = {F (x∗)}.

4. Weak sharpness of Cη

Throughout this paper, we assume that Cη and Cη are nonempty and that E is a reflexive,

strictly convex, and smooth Banach space. We introduce the notion of weak sharpness solution for

generalized variational inequality(η-VIP).

Definition 4.1. The solution set Cη is said to be weakly sharp, if F satisfies

−F (x∗) ∈ int
∩

x∈Cη

[TC(x) ∩ J∗NCη (x)]◦ for all x∗ ∈ Cη.
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Theorem 4.2. Let F be η-monotone on E and constant on Γ(x∗) for some x∗ ∈ Cη. Suppose that

g is η-Gateaux differentiable, η-locally Lipschitz on Cη, and g(x) < +∞ for all x ∈ E. Then Cη is

weakly sharp if and only if there exists a positive number α such that

αdηCη (x) ≤ g(x) for all x ∈ C, (4.1)

where dηCη (x) := inf
y∈Cη

∥η(x, y)∥.

Proof. On the given assumption and by Proposition 3.5, we obtain that

Cη = Cη = Γ(x∗) = Λ(x∗).

If Cη is weakly sharp, then for any x∗ ∈ Cη there exists α > 0 such that

αBE∗ ⊆ F (x∗) +
∩

x∈Cη

[TC(x) ∩ J∗NCη (x)]◦, (4.2)

where BE∗ is the open unit ball in E∗.

Since F is constant on Γ(x∗), α satisfies (4.2) for all x∗ ∈ Cη. Therefore, for every y ∈ BE∗ , we

have

αy − F (x∗) ∈
∩

x∈Cη

[TC(x) ∩ J∗NCη (x)]◦ ⊆ [TC(x
∗) ∩ J∗NCη (x∗)]◦.

Thus, for every z ∈ [TC(x
∗) ∩ J∗NCη (x∗)]. It follows that

⟨αy − F (x∗), z⟩ ≤ 0. (4.3)

Taking y = Jz
∥Jz∥∗

in (4.3), we get that, for each x∗ ∈ Cη,

α∥Jz∥∗ =
α

∥Jz∥∗
⟨Jz, z⟩ ≤ ⟨F (x∗), z⟩.

This implies that for every z ∈ [TC(x
∗) ∩ J∗NCη (x∗)], we have

α∥z∥ ≤ ⟨F (x∗), z⟩.

For any x ∈ C, set x = PCη (x), we have η(x, x) ∈ TC(x)∩J∗NCη (x) by Proposition 2.5 and lemma

2.3. Therefore,

⟨F (x∗), η(x, x)⟩ ≥ α∥η(x, x)∥ = αdηCη (x).

Conversely, suppose that there exists α > 0 such that

αdηCη (x) ≤ g(x) for each x ∈ C.

We claim that

αBE∗ ⊆ F (x∗) + [TC(x
∗) ∩ J∗NCη (x∗)]◦ for each x∗ ∈ Cη. (4.4)

If TC(x
∗) ∩ J∗NCη (x∗) = {0} for x∗ ∈ Cη, then [TC(x

∗) ∩ J∗NCη (x∗)]η = E and αBE∗ ⊆ F (x∗) +

[TC(x
∗) ∩ J∗NCη (x∗)]η, trivially. So it suffices to prove (4.4) to hold if TC(x

∗) ∩ J∗NCη (x∗) ̸= {0}
for x∗ ∈ Cη. Now let 0 ̸= z ∈ TC(x

∗) ∩ J∗NCη (x∗). By definition of η there exists a unique v ∈ E

such that z = η(v, 0). Then

⟨J(η(v, 0)), η(v, 0)⟩ > 0 and ⟨J(η(v, 0)), η(y∗, x∗)⟩ ≤ 0 for each y∗ ∈ Cη,

which implies that Cη is separated from x∗ + v by the hyperplane

Hv = {x ∈ E : ⟨J(η(v, 0)), η(x, x∗)⟩ = 0} = {x ∈ E : ⟨J(η(v, 0)), η(x, 0)⟩ = ⟨J(η(v, 0)), η(x∗, 0)⟩}.
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Thus we can write

Hv = {x ∈ E : ⟨J(η(v, 0)), η(x, 0)⟩ = β}, where β = ⟨J(η(v, 0)), η(x∗, 0)⟩.

Since η(v, 0) ∈ TC(x
∗), for each positive sequence {ti} decreasing to 0, there exists a sequence {vi}

such that {η(vi, 0)} converging to η(v, 0) and x∗ + tivi ∈ C for sufficiently large i . By definition of

η, we obtain that vi converging to v. Thus ⟨J(η(v, 0)), η(vi, 0)⟩ > 0 holds for sufficiently large i, and

hence we suppose that x∗ + tivi lies in the open set {x ∈ E : ⟨J(η(v, 0)), η(x, x∗)⟩ > 0}. Therefore,

dηCη (x
∗ + tivi) ≥ dηHv

(x∗ + tivi). (4.5)

For each x ∈ E. We set

y := x−

[⟨
J(η(v, 0)), η(x, 0)

⟩
− β∥∥J(η(v, 0))∥∥2∗

]
v.

A straightforward computation show that ⟨J(η(v, 0)), η(y, 0)⟩ = β, i.e., y ∈ Hv.

Furthermore, for any z ∈ Hv, we have⟨
J(η(x, y)), η(z, y)

⟩
=

[⟨
J(η(v, 0)), η(x, 0)

⟩
− β∥∥J(η(v, 0))∥∥2∗

] (⟨
J(η(v, 0)), η(z, 0)

⟩
−
⟨
J(η(v, 0)), η(y, 0)

⟩)
= 0.

By Lemma 2.3, we have

dηHv
(x∗ + tivi) = ∥η(x∗ + tivi, y)∥

=
ti
⟨
J(η(v, 0)), η(vi, 0)

⟩∥∥J(η(v, 0))∥∥2∗ ∥η(v, 0)∥

=
ti
⟨
J(η(v, 0)), η(vi, 0)

⟩∥∥η(v, 0)∥∥ ,

and hence, by (4.1),

g(x∗ + tivi) ≥ αdCη (x∗ + tivi) ≥ αti
⟨Jη(v, 0), η(vi, 0)⟩

∥η(v, 0)∥
.

By Proposition 3.1, g(x∗) = 0 for any x∗ ∈ Cη, so

g(x∗ + tivi)− g(x∗) = g(x∗ + tivi) ≥ αti
⟨Jη(v, 0), η(vi, 0)⟩

∥η(v, 0)∥
.

Since g is η-locally Lipschitz and η-Gateaux differentiable on Cη, there hold

∥g(x∗ + tivi)− g(x∗ + tiv)∥ ≤ Lti∥η(vi, v)∥

for some L > 0 and all sufficiently large i and

⟨∇ηg(x
∗), η(v, 0)⟩ = lim

i→∞

g(x∗ + tiv)− g(x∗)

ti

= lim
i→∞

g(x∗ + tivi)− g(x∗)

ti
≥ α∥η(v, 0)∥.

By Proposition 3.9, ∇ηg(x
∗) = F (x∗). Thus

⟨F (x∗), η(v, 0)⟩ ≥ α∥η(v, 0)∥.
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This implies that for each w ∈ BE∗ ,

⟨αw − F (x∗), η(v, 0)⟩ = ⟨αw, η(v, 0)⟩ − ⟨F (x∗), η(v, 0)⟩ ≤ α∥η(v, 0)∥ − α∥η(v, 0)∥ = 0.

Hence αBE∗ − F (x∗) ⊆ [TC(x
∗) ∩ J∗NCη (x∗)]◦, that is,

αBE∗ ⊆ F (x∗) + [TC(x
∗) ∩ J∗NCη (x∗)]◦.

This shows that Cη is weakly sharp since F is constant on Cη.

Corollary 4.3 ([5]). Let F be monotone on Rn and constant on Γ(x∗) for some x∗ ∈ C∗. Suppose

that g is Gateaux differentiable, locally Lipschitz on C∗, and g(x) < +∞ for all x ∈ Rn. Then C∗

is weakly sharp if and only if there exists a positive number α such that

αdC∗(x) ≤ g(x) for all x ∈ C.

Proof. By applying above Theorem 4.2, if we define η(x, y) = x − y, for all x, y ∈ E and space

E = Rn, then Cη can be reduce to C∗, where C∗ is the solution set of variational inequalities.

Moreover, the mapping g is Gateaux differentiable and locally Lipschitz on C∗.
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INEQUALITIES OF HERMITE-HADAMARD TYPE FOR n-TIMES DIFFERENTIABLE
(α,m)-LOGARITHMICALLY CONVEX FUNCTIONS

M. A. LATIF, S. S. DRAGOMIR1,2, AND E. MOMONIAT

Abstract. In this paper, some new integral inequalities of Hermite-Hadamard type are presented for functions
whose nth derivatives in absolute value are (α,m)-logarithmically convex. From our results, several inequalities
of Hermite-Hadamard type can be derived in terms of functions whose first and second derivatives in absolute
value are (α,m)-logarithmically convex functions as special cases. Our results may provide refinements of
some results for (α,m)-logarithmically convex functions already exist in the most recent concerned literature of
inequalities.

1. Introduction

Let us first refresh our knowledge how the following definition of classical convex functions is generalized.

Definition 1. A function f : I → R, ∅ 6= I ⊆ R, is said to be convex on I if the inequality
(1.1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
holds for all x, y ∈ I and t ∈ [0, 1]. The inequalities in (1.1) are swapped if f is a concave function.

The definition of convex functions plays an important role in the theory of convex analysis and in many other
branches of pure and applied mathematics. A number of remarkable and significant results in the theory of
inequality hinge on this definition.
One of the momentous results which uses the notion of convexity is stated as follows:

(1.2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
,

where f : ∅ 6= I ⊆ R→ R, is a convex function of single variable, a, b ∈ I with a < b. The inequalities in (1.2)
are celebrated as Hermite-Hadamard inequality and are overturned if f is a concave function.
The inequalities (1.2) have been target of extensive research because of its usefulness and usages in the theory

of inequalities and in various other branches of mathematics. A vast literature is reported on the Hermite-
Hadamard type inequalities during the past few years which generalize, improve and extend the inequalities
(1.2), see for example [6, 12, 13, 14, 15, 17, 19, 23, 28] and closely related references therein.
The classical convexity has been generalized in diverse ways such as s-convexity, m-convexity, (α,m)-

convexity, h-convexity, logarithmic-convexity, s- logarithmic convexity, (α,m)- logarithmic convexity and h-
logarithmic-convexity but we will focus on the following generalizations of the classical convexity to prove our
results.

Definition 2. [2, 33, 34] If a function f : I ⊆ R→ (0,∞) satisfies

(1.3) f (λx+ (1− λ) y) ≤ [f (x)]λ [f (y)]1−λ

for all x, y ∈ I, λ ∈ [0, 1], the function f is called logarithmically convex on I. If the inequality (1.3) reverses,
the function f is called logarithmically concave on I.

The above stated concept logarithmically convex functions is further generalized as in the definitions below.

Definition 3. [9] A function f : [0, b]→ (0,∞) is said to be m-logarithmically convex if

f (tx+m (1− t) y) ≤ [f (x)]t [f (y)]m(1−t)

holds for all x, y ∈ [0, b], t ∈ [0, 1] and m ∈ (0, 1].

Definition 4. [9] A function f : [0, b]→ (0,∞) is said to be (α,m)-logarithmically convex if

f (tx+m (1− t) y) ≤ [f (x)]t
α

[f (y)]
m(1−tα)

holds for all x, y ∈ [0, b], t ∈ [0, 1] and (α,m) ∈ (0, 1]× (0, 1].

Date : Today.
2000 Mathematics Subject Classification. Primary 26D15, 26D20, 26E60; Secondary 41A55.
Key words and phrases. Hermite-Hadamard’s inequality, (α,m)-logarithmically convex function, Hölder integral inequality.
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2 M. A. LATIF, S. S. DRAGOMIR1,2, AND E. MOMONIAT

It is also obvious that ifm = 1 in Definition 3 and if (α,m) = (1, 1) in Definition 4, the notion ofm-logarithmic
convexity and (α,m)-logarithmic convexity recapture the notion of usual logarithmic convexity.
Many papers have been written by a number of mathematicians concerning Hermite-Hadamard type inequal-

ities for different classes of convex functions see for instance the recent papers [2, 3, 4, 7, 8, 9, 16, 18, 24, 25,
27, 29, 31, 32, 33, 35] and the references within these papers.
The main purpose of the present paper is to establish new Hermite-Hadamard type integral inequalities by

using the notion of m- and (α,m)-logarithmically convex functions and a new identity for n-times differentiable
functions from [19]in Section 2.

2. Main Results

We will use the following Lemmas to establish our main results in this section.

Lemma 1. [19] Let f : I ⊂ R → R be a function such that f (n) exists on I◦ and f (n) ∈ L ([a, b]) for n ∈ N,
where a, b ∈ I◦ with a < b, we have the identity

(2.1)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)

=
(b− a)n

2n+1n!

∫ 1

0

(1− t)n−1 (n− 1 + t) f (n)
(
1− t
2

a+
1 + t

2
b

)
dt

+
(−1)n (b− a)n

2n+1n!

∫ 1

0

(1− t)n−1 (n− 1 + t) f (n)
(
1− t
2

b+
1 + t

2
a

)
dt,

where an empty sum is understood to be nil.

Lemma 2. [20] If µ > 0 and n ∈ N ∪ {0}, then

(2.2)
∫ 1

0

tnµtdt =


(−1)n+1n!
(lnµ)n+1

+ n!µ
∑n
k=0

(−1)k
(n−k)!(lnµ)k+1 , µ 6= 1

1
n+1 , µ = 1.

Lemma 3. If µ > 0 and N ∪ {0}, then

(2.3) E (n;µ) :=

∫ 1

0

(1− t)n µtdt =


n!µ

(lnµ)n+1
− n!

∑n
k=0

1
(n−k)!(lnµ)k+1 , µ 6= 1

1
n+1 , µ = 1.

Proof. By making the substitution t = 1− u in Lemma 2, we get (2.3). �

Lemma 4. [7] For α > 0 and µ > 0, we have

(2.4) G (α;µ) :=

∫ 1

0

(1− t)α−1 µtdt =
∞∑
k=1

(lnµ)
k−1

(α)k
<∞,

where

(α)k = α (α+ 1) (α+ 2) ... (α+ k − 1) .

From Lemma 3 and Lemma 4, by simple computations we get the following results.

Lemma 5. If µ > 0 and n ∈ N, then

(2.5) F (n;µ) := nE (n− 1;µ)− E (n;µ) =


n!µ(lnµ−1)
(lnµ)n+1

+ 1
lnµ − n!

∑n
k=1

lnµ−1
(n−k)!(lnµ)k+1 , µ 6= 1

n
n+1 , µ = 1.

Lemma 6. For α > 0 and µ > 0, we have

(2.6) H (α;µ) := nG (α;µ)−G (α+ 1;µ) =
∞∑
k=1

(nα+ nk − α) (lnµ)k−1

(α)k+1
<∞,

where

(α)k+1 = α (α+ 1) (α+ 2) ... (α+ k) .

Lemma 7. [35] Let 0 < ξ ≤ 1 ≤ η, 0 ≤ λ ≤ 1 and 0 < s ≤ 1. Then

(2.7) ξλ
s

≤ ξsλ and ηλ
s

≤ ηsλ+1−s.
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Theorem 1. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a function such that f (n) exists on
I. If f (n) ∈ L ([a, b]) for n ∈ N, where 0 ≤ a < b < ∞ and

∣∣f (n)∣∣q is (α,m)-logarithmically convex on [0, bm]
for (α,m) ∈ (0, 1]× (0, 1], q ∈ [1,∞). Then

(2.8)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)n

2n+1n!

(
n

n+ 1

)1− 1
q
∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ {[F (n;µ−αq2 )]1/q + [F (n;µαq2 )]1/q} ,
where F (n; ξ) is defined in Lemma 5, µ = |f(n)(a)|

|f(n)( bm )|m
and

θ =


α
2 , 0 < µ ≤ 1

1− α
2 , µ > 1.

Proof. From Lemma 1, the Hölder inequality and using the fact that
∣∣f (n)∣∣q is (α,m)-logarithmically convex on[

0, bm
]
, we have

(2.9)

∣∣∣∣∣∣f (a) + f (b)2
−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

[
f (n)

(
b

m

)]m(∫ 1

0

(1− t)n−1 (n− 1 + t) dt
)1− 1

q

×
{(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1−t
2 )

α

dt

)1/q
+

(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1+t
2 )

α

dt

)1/q}
,

where µ = |f(n)(a)|
|f(n)( bm )|m

.

It is obvious that

(2.10)
∫ 1

0

(1− t)n−1 (n− 1 + t) dt = n

n+ 1
.

When 0 < µ ≤ 1, by using Lemma 5 and Lemma 7, we obtain

(2.11)
(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1−t
2 )

α

dt

) 1
q

+

(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1+t
2 )

α

dt

) 1
q

≤
(∫ 1

0

(1− t)n−1 (n− 1 + t)µαq(
1−t
2 )dt

) 1
q

+

(∫ 1

0

(1− t)n−1 (n− 1 + t)µαq(
1+t
2 )dt

) 1
q

= µ
α
2

(∫ 1

0

(1− t)n−1 (n− 1 + t)µ−
αqt
2 dt

) 1
q

+ µ
α
2

(∫ 1

0

(1− t)n−1 (n− 1 + t)µ
αqt
2 dt

) 1
q

= µ
α
2

{[
F
(
n;µ−

αq
2

)]1/q
+
[
F
(
n;µ

αq
2

)]1/q}
.

When µ > 1, by using Lemma 5 and Lemma 7, we have

(2.12)
(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1−t
2 )

α

dt

) 1
q

+

(∫ 1

0

(1− t)n−1 (n− 1 + t)µq(
1+t
2 )

α

dt

) 1
q

≤
(∫ 1

0

(1− t)n−1 (n− 1 + t)µαq(
1−t
2 )+q−αqdt

) 1
q

+

(∫ 1

0

(1− t)n−1 (n− 1 + t)µαq(
1+t
2 )+q−αqdt

) 1
q

= µ1−
α
2

(∫ 1

0

(1− t)n−1 (n− 1 + t)µ−
αqt
2 dt

) 1
q

+ µ1−
α
2

(∫ 1

0

(1− t)n−1 (n− 1 + t)µ
αqt
2 dt

) 1
q

= µ1−
α
2

{[
F
(
n;µ−

αq
2

)]1/q
+
[
F
(
n;µ

αq
2

)]1/q}
.

A combination of (2.9)-(2.12) gives the desired result. �
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Corollary 1. Suppose the assumptions of Theorem 1 are satisfied and if q = 1, we have

(2.13)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)n

2n+1n!

∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ {F (n;µ−α2 )+ F (n;µα2 )} ,
where F (n; ξ) is defined in Lemma 5, µ = |f(n)(a)|

|f(n)( bm )|m
and θ is defined in Theorem 1.

Corollary 2. Under the assumptions of Theorem 1, if n = 1, we have the inequality

(2.14)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)

4

(
1

2

)1− 1
q
∣∣∣∣f ′ ( b

m

)∣∣∣∣m µθ {[F (1;µ−αq2 )]1/q + [F (1;µαq2 )]1/q} ,
where µ =

∣∣∣f ′ (a)∣∣∣
|f ′( bm )|m

, θ is defined in Theorem 1 and

F (1; ξ) =


1
ln ξ

[
ξ + 1−ξ

ln ξ

]
, ξ 6= 1

1
2 , ξ = 1.

Corollary 3. Corollary 2 with q = 1 gives the following result

(2.15)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)4

∣∣∣∣f ′ ( b

m

)∣∣∣∣m µθ {[F (1;µ−α2 )]+ [F (1;µα2 )]} ,
where F (1; ξ) and µ are defined as in Corollary 2 and θ is as defined in Theorem 1.

Corollary 4. Suppose the assumptions of Theorem 1 are fulfilled and if n = 2, we have

(2.16)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)2

16

(
2

3

)1− 1
q
∣∣∣∣f ′′ ( b

m

)∣∣∣∣m µθ {[F (2;µ−αq2 )]1/q + [F (2;µαq2 )]1/q} ,
where µ =

∣∣∣f ′′ (a)∣∣∣
|f ′′( bm )|m

, θ is as defined in Theorem 1 and

F (2; ξ) =

{
2ξ ln ξ−(ln ξ)2−2ξ+2

(ln ξ)3
, ξ 6= 1,

2
3 , ξ = 1.

Corollary 5. If q = 1 in Corollary 4, we have

(2.17)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)216

∣∣∣∣f ′′ ( b

m

)∣∣∣∣m µθ {F (2;µ−α2 )+ F (2;µα2 )} ,
where θ is defined in Theorem 1 and µ, F (2; ξ) are defined in Corollary 4.

Theorem 2. Let I ⊃ [0,∞) be an open interval and let f : I → (0,∞) be a function such that f (n) exists on
I. If f (n) ∈ L ([a, b]) for n ∈ N, where 0 ≤ a < b < ∞ and

∣∣f (n)∣∣q is (α,m)-logarithmically convex on [0, bm]
for (α,m) ∈ (0, 1]× (0, 1], q ∈ (1,∞), we have

(2.18)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤
(b− a)n

[
n(2q−1)/(q−1) − (n− 1)(2q−1)/(q−1)

]1− 1
q

2n+1n!

(
q − 1
2q − 1

)1/q ∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ
×
{[
G
(
nq − q + 1;µ−

αq
2

)] 1
q

+
[
G
(
nq − q + 1;µ

αq
2

)] 1
q

}
,

where µ = |f(n)(a)|
|f(n)( bm )|m

, G (α; ξ) is defined in Lemma 4 and θ is defined in Theorem 1.
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Proof. Using Lemma 1, the Hölder inequality and the (α,m)-logarithmic convexity of
∣∣f (n)∣∣q on [0, bm], we have

(2.19)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

∣∣∣∣f (n)( b

m

)∣∣∣∣m(∫ 1

0

(n− 1 + t)
q
q−1 dt

)1− 1
q

×
{(∫ 1

0

(1− t)q(n−1) µq(
1−t
2 )

α

dt

)1/q
+

(∫ 1

0

(1− t)q(n−1) µq(
1+t
2 )

α

dt

)}1/q
.

The proof follows by using similar arguments as in proving Theorem 1, using Lemma 4 and Lemma 7. �

Corollary 6. Under the assumptions of Theorem 2, if n = 1, we have the inequality

(2.20)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)

4

(
q − 1
2q − 1

)1/q ∣∣∣∣f ′ ( b

m

)∣∣∣∣m µθ {[G(1;µ−αq2 )] 1q + [G(1;µαq2 )] 1q} ,
where µ =

∣∣∣f ′ (a)∣∣∣
|f ′′( bm )|m

,

G (1; ξ) =
∞∑
k=1

(ln ξ)
k−1

k!
<∞

and θ is defined in Theorem 1.

Corollary 7. Under the assumptions of Theorem 2, if n = 2, we have the inequality

(2.21)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤
(b− a)2

[
2(2q−1)/(q−1) − 1

]1− 1
q

16

(
q − 1
2q − 1

)1/q ∣∣∣∣f ′′ ( b

m

)∣∣∣∣m µθ
×
{[
G
(
q + 1;µ−

αq
2

)] 1
q

+
[
G
(
q + 1;µ

αq
2

)] 1
q

}
,

where µ =

∣∣∣f ′′ (a)∣∣∣
|f ′′( bm )|m

,

G (q + 1; ξ) =
∞∑
k=1

(ln ξ)
k−1

(q + 1)k
<∞

and θ is defined in Theorem 1.

Theorem 3. Let I ⊃ [0,∞) be an open interval and let f : I → R be a function such that f (n) exists on I.
If f (n) ∈ L ([a, b]) for n ∈ N, where 0 ≤ a < b < ∞ and

∣∣f (n)∣∣q is (α,m)-logarithmically convex on [0, bm] for
(α,m) ∈ (0, 1]× (0, 1], q ∈ (1,∞), we have

(2.22)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ nn+1−

1
q (b− a)n

2n+1n!

[
B

(
1

n
;
nq − 1
q − 1 ,

2q − 1
q − 1

)]1− 1
q

µθ
{[
F3

(
µ−

αq
2

)] 1
q

+
[
F3

(
µ
αq
2

)] 1
q

}
,

where µ = |f(n)(a)|
|f(n)( bm )|m

,

F3 (ξ) =

{ ξ−1
ln ξ , ξ 6= 1
1, ξ = 1

,

B (z;α, β) =

∫ z

0

tα−1 (1− t)β−1 dt, 0 ≤ z ≤ 1, α > 0, β > 0

is the incomplete Beta function and θ is defined in Theorem 1.
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Proof. Using Lemma 1, the Hölder inequality and the (α,m)-logarithmic convexity of
∣∣f (n)∣∣q on [0, bm], we have

(2.23)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

∣∣∣∣f (n)( b

m

)∣∣∣∣m(∫ 1

0

(1− t)q(n−1)/(q−1) (n− 1 + t)q/(q−1) dt
)1−1/q

×
{(∫ 1

0

µq(
1−t
2 )

α

dt

)1/q
+

(∫ 1

0

µq(
1+t
2 )

α

dt

)1/q}
.

By using Lemma 7 and the fact that∫ 1

0

(1− t)q(n−1)/(q−1) (n− 1 + t)q/(q−1) dt

= n
nq+q−1
q−1

∫ 1
n

0

t
(n−1)q
q−1 (1− t)

q
q−1 dt = n

nq+q−1
q−1 B

(
1

n
;
nq − 1
q − 1 ,

2q − 1
q − 1

)
,

we get the required inequality (2.22) from (2.23). �

Corollary 8. Suppose the assumptions of Theorem 3 are satisfied and if n = 1, we have the inequality

(2.24)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)4

(
q − 1
2q − 1

)1− 1
q

µθ
{[
F3

(
µ−

αq
2

)] 1
q

+
[
F3

(
µ
αq
2

)] 1
q

}
,

where µ =

∣∣∣f ′ (a)∣∣∣
|f ′( bm )|m

,

F3 (ξ) =

{ ξ−1
ln ξ , ξ 6= 1
1, ξ = 1

and θ are defined as in Theorem 1.

Corollary 9. Suppose the assumptions of Theorem 3 are satisfied and if n = 2, we have the inequality

(2.25)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)2

21+
1
q

[
B

(
1

2
;
2q − 1
q − 1 ,

2q − 1
q − 1

)]1− 1
q

µθ
{[
F3

(
µ−

αq
2

)] 1
q

+
[
F3

(
µ
αq
2

)] 1
q

}
,

where µ =

∣∣∣f ′′ (a)∣∣∣
|f ′′( bm )|m

,

F3 (ξ) =

{ ξ−1
ln ξ , ξ 6= 1
1, ξ = 1

,

B (z;α, β) is the incomplete Beta function as defined in Theorem 3 and θ is defined as in Theorem 1.

Theorem 4. Let I ⊃ [0,∞) be an open interval and let f : I ⊂ [0,∞) → (0,∞) be a function such that f (n)
exists on I. If f (n) ∈ L ([a, b]) for n ∈ N, where 0 ≤ a < b <∞ and

∣∣f (n)∣∣q is (α,m)-logarithmically convex on[
0, bm

]
for (α,m) ∈ (0, 1]× (0, 1], q ∈ (1,∞) for 0 ≤ r ≤ (n− 1) q. Then

(2.26)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

[
(q − 1)

(
n2q − nr − 2n+ r + 1

)
(nq − r − 1) (nq + q − r − 2)

]1− 1
q ∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ
×
{[
H
(
r + 1;µ−

αq
2

)]1/q
+
[
H
(
r + 1;µ

αq
2

)]1/q}
.

µ =
|f(n)(a)|
|f(n)( bm )|m

, θ is defined in Theorem 1 and H (α; ξ) is defined in Lemma 6.
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Proof. From Lemma 1, the Hölder inequality and using the fact that
∣∣f (n)∣∣q is (α,m)-logarithmically convex on[

0, bm
]
, we have

(2.27)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

∣∣∣∣f (n)( b

m

)∣∣∣∣m(∫ 1

0

(1− t)(nq−q−r)/(q−1) (n− 1 + t) dt
)1− 1

q

×
{(∫ 1

0

(1− t)r (n− 1 + t)µq(
1−t
2 )

α

dt

)1/q
+

(∫ 1

0

(1− t)r (n− 1 + t)µq(
1+t
2 )

α

dt

)1/q}
,

The rest of the proof is similar to that of the proof of Theorem 2 by using Lemma 6 and Lemma 7. �

Corollary 10. Suppose the assumptions of Theorem 4 are fulfilled and if r = 0, we have

(2.28)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

[
(q − 1)

(
n2q − 2n+ 1

)
(nq − 1) (nq + q − 2)

]1− 1
q ∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ {[H (1;µ−αq2 )]1/q + [H (1;µαq2 )]1/q} .
Corollary 11. Suppose the assumptions of Theorem 4 are fulfilled and if r = (n− 1) q, we have

(2.29)

∣∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx−
n−1∑
k=1

k
[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

n

2n+1n!

[
2nq − 2n− q + 1

2 (q − 1)

]1− 1
q
∣∣∣∣f (n)( b

m

)∣∣∣∣m µθ
×
{[
H
(
(n− 1) q + 1;µ−

αq
2

)]1/q
+
[
H
(
(n− 1) q + 1;µ

αq
2

)]1/q}
.

Remark 1. Several interesting inequalities for m-logarithmically convex functions can be obtained by setting
α = 1 in the results presented in this section. However, we leave the details to the interested reader.

Remark 2. We can get several interesting inequalities for logarithmically convex functions by setting α = 1
and m = 1 in the results proved above. However, the details are left to the interested reader.

3. Applications to Special Means

For positive real numbers a > 0, b > 0, we consider the following means

A (a, b) =
a+ b

2
, G (a, b) =

√
ab, H (a, b) =

2ab

a+ b
,

I (a, b) =


1
e

(
bb

aa

)1/(b−a)
, a 6= b,

a a = b,

and

Lp (a, b) =



[
bp+1−ap+1
(p+1)(b−a)

]1/p
, p 6= 0,−1 and a 6= b,

b−a
ln b−ln a , p = −1 and a 6= b,

I (a, b) , p = 0 and a 6= b,

a, a = b.

It is well known that A, G, H, L = L−1, I = L0 and Lp are called the arithmetic, geometric, harmonic, identric,
exponential and generalized logarithmic means of positive real numbers a and b.
In what follows we will use the above means and the established results of the previous section to obtain

some interesting inequalities involving means.

Theorem 5. Let 0 < a < b ≤ 1, r < 0, r 6= −1 and q ≥ 1.
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(1) If r 6= −2, then∣∣A (ar+1, br+1)− Lr+1r+1 (a, b)
∣∣

≤ (b− a)
(
1

2

)3− 2
q

|r + 1|
(

1

qr (ln b− ln a)

)1/q {
br/2

[
bqr/2 − L

(
aqr/2, bqr/2

)]1/q
+ar/2

[
L
(
aqr/2, bqr/2

)
− aqr/2

]1/q}
.

(2) If r = −2, then∣∣∣∣ 1

H (a, b)
− 1

L (a, b)

∣∣∣∣
≤ (b− a)

(
1

2

)3− 1
q
(

1

q (ln a− ln b)

)1/q {
b−1

[
b−q − L

(
a−q, b−q

)]1/q
+a−1

[
L
(
a−q, b−q

)
− a−q

]1/q}
.

Proof. Let f (x) = xr+1

r+1 for 0 < x ≤ 1. Then
∣∣∣f ′ (x)∣∣∣ = xr and

ln
∣∣∣f ′ (λx+ (1− λ) y)∣∣∣q
≤ λ ln

∣∣∣f ′ (x)∣∣∣q + (1− λ) ln ∣∣∣f ′ (y)∣∣∣q
for x, y ∈ (0, 1], λ ∈ [0, 1] and q ≥ 1. This shows that

∣∣∣f ′ (x)∣∣∣q = xrq is logarithmically convex function on (0, 1]

so that we have (α,m) = (1, 1), µ =

∣∣∣∣ f ′ (a)f ′ (b)

∣∣∣∣ and θ = 1
2 .

Since
∣∣∣f ′ (a)∣∣∣ > ∣∣∣f ′ (b)∣∣∣ = br ≥ 1, hence

µ =

∣∣∣∣∣f
′
(a)

f ′(b)

∣∣∣∣∣ = (ab)r
and [

f
′
(
b

m

)]m
µθ
{[
F
(
1;µ−

αq
2

)]1/q
+
[
F
(
1;µ

αq
2

)]1/q}
=
√
f ′ (b) f ′ (a)

{[
F
(
1;µ−

q
2

)]1/q
+
[
F
(
1;µ

q
2

)]1/q}
=
√
arbr

{[
F
(
1;µ−

q
2

)]1/q
+
[
F
(
1;µ

q
2

)]1/q}
=

(
2

qr (ln b− ln a)

)1/q {
br/2

[
bqr/2 − L

(
aqr/2, bqr/2

)]1/q
+ar/2

[
L
(
aqr/2, bqr/2

)
− aqr/2

]1/q}
.

Substituting the above quantities in Corollary 2, we get the required results. �

Remark 3. Many interesting inequalities of means can be obtained from the other results of Section 2, however,
the details are left to the readers.
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Positive solutions for p-Laplacian fractional difference

equation with a parameter ∗
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School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, P R China
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Abstract: In this paper, we consider a boundary value problem for fractional difference
equation with p-Laplacian operator involving a parameter{

∆[φp(∆ν
Cu)](t) + λp−1f(t + ν − 1, u(t + ν − 1)) = 0, t ∈ [0, b− 1]N0 ,

∆u(ν − 2) = ∆ν
Cu(0) = 0, u(ν + b) = γu(η),

where 1 < ν ≤ 2 is a real number, φp(s) = |s|p−2s, p > 1, γ ∈ (0, 1), η ∈ (ν, ν+b), ∆ν
C denotes

the discrete Caputo fractional difference of order ν, f : [ν − 1, ν + b − 2]Nν−1 × [0, +∞) →
(0, +∞) is a continuous function, b ≥ 3 is an integer, λ > 0 is a parameter. We study the

existence of positive solutions to this problem by the properties of the Green function and

Guo-Krasnosel’skii fixed point theorem in cones.

Keywords: boundary value problem; discrete fractional calculus; existence of solutions;

p-Laplacian operator; Guo-Krasnosel’skii theorem.

Mathematics Subject Classification 2010: 39A12; 26A33; 34B15

1 Introduction

In recent years, fractional differential equations have received increasing attention. With the
development of computer, it is well known that discrete analogues of differential equations can be
very useful, especially for using computer to simulate the behavior of solutions for certain dynamic
equations. More recent works to the discrete fractional calculus can be find in [1–7] and references
contained therein. For example, Y. Pan and Z. Han et al. [5] studied the the existence and
nonexistence of positive solutions to a boundary value problem for fractional difference equation
with a parameter

−∆νy(t) = λf(t+ ν − 1, y(t+ ν − 1)), t ∈ [0, b+ 1]N0 ,

y(ν − 2) = y(ν + b+ 1) = 0,

where 1 < ν ≤ 2 is a real number, f : [ν − 1, ν + b]Nν−1 × R → (0,+∞) is a continuous function,
b ≥ 2 is an integer, λ is a parameter. The eigenvalue intervals of boundary value problem to a
nonlinear fractional difference equation are considered by the properties of the Green function and
Guo-Krasnosel’skii fixed point theorem in cones, some sufficient conditions to the nonexistence of
positive solutions for the boundary value problem are established.

Differential equations with p-Laplacian operator are applied in real life, especially in physics
and engineering [8]. Some theories of fractional difference equations with p-Laplacian operator are
just beginning to be investigated. W. Lv [9] investigated the following boundary value problem for
fractional difference equation involving a p-Laplacian operator

∆[φp(∆α
Cu)](t) = f(t+ α− 1, u(t+ α− 1)), t ∈ [0, b]N0 ,

u(α− 2) = β1u(α+ b+ 1),
∗Corresponding author: Shurong Sun, e-mail: sshrong@163.com. This research is supported by the Natural

Science Foundation of China(11571202, 61374074), and supported by Shandong Provincial Natural Science
Foundation(ZR2016AM17).
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∆u(α− 2) = ∆u(α− 1) = β2∆u(α+ b),

where 1 < α ≤ 2, b ∈ N1, β1 6= 1, β2 6= 1, ∆ is the forward difference operator with step size 1, ∆α
C

denotes the discrete Caputo fractional difference of order α, f : [α− 1, α+ b− 1]Nα−1 × R → R is
a continuous function, and φp is the p-Laplacian operator. Some existence and uniqueness results
are obtained by using the Banach contraction mapping theorem.

In this paper, we discuss the following boundary value problem for fractional difference equation
with p-Laplacian operator

∆[φp(∆ν
Cu)](t) + λp−1f(t+ ν − 1, u(t+ ν − 1)) = 0, t ∈ [0, b− 1]N0 , (1.1)

∆u(ν − 2) = ∆ν
Cu(0) = 0, u(ν + b) = γu(η), (1.2)

where 1 < ν ≤ 2 is a real number, γ ∈ (0, 1), η ∈ (ν, ν + b), ∆ν
C denotes the discrete Caputo

fractional difference of order ν, f : [ν − 1, ν + b − 2]Nν−1 × [0,+∞) → (0,+∞) is a continuous
function, b ≥ 3 is an integer, λ > 0 is a parameter. φp is the p–Laplacian operator, that is,
φp(s) = |s|p−2s, p > 1. Obviously, φp is invertible and its inverse operator is φq, where q > 1 is a
constant with 1

p + 1
q = 1.

Our work presented in this article has the following features which are worth emphasizing.
(i) As far as we know, there are not many results available concerning with three–point bound-

ary value problem of fractional difference equation which ∆ν
C is the standard Caputo fractional

difference.
(ii) We consider the boundary value problem with p-Laplacian which arises in the modeling of

different physical and natural phenomena.
(iii) We investigate the intervals of parameter λ for boundary value problem to a nonlinear

fractional difference equation with p-Laplacian.
The plan of the paper is as follows. In Section 2, we shall present some definitions and lemmas

in order to prove our main results, the corresponding Green function and some properties of the
Green function. In Section 3, we shall deduce the existence of positive solutions to problem (1.1)–
(1.2) by the properties of the Green function and Guo-Krasnosel’skii fixed point theorem in cones.
In Section 4, we give some examples to illustrate the theorems.

2 Preliminaries

For the convenience of the reader, we give some necessary basic definitions and lemmas that will
be important to us in what follows.

Definition 2.1 ([6]) We define tν := Γ(t+1)
Γ(t+1−ν) for any t and ν, for which the right-hand side

is defined. We also appeal to the convention that if t+ 1− ν is a pole of the Gamma function and
t+ 1 is not a pole, then tν = 0.

Definition 2.2 ([7]) Assume f : Na → R and ν > 0. Then the ν-th fractional sum of f(based
at a) at the point t ∈ Na+ν is defined by

∆−ν
a f(t) :=

1
Γ(ν)

t−ν∑
s=a

(t− s− 1)ν−1f(s).

Note that by our convention on delta sums we can extend the domain of ∆−ν
a f to Na+ν−N , where

N is the unique positive integer satisfying N − 1 < ν ≤ N , by noting that

∆−ν
a f(t) = 0, t ∈ Na+ν−1

a+ν−N .

Definition 2.3 ([10]) The ν-th Caputo fractional difference of a function f : Na → R, for
ν > 0, ν /∈ N, is defined by

∆ν
Cf(t) = ∆−(n−ν)∆nf(t)

= 1
Γ(n−ν)Σ

t−n+ν
s=a (t− s− 1)n−ν−1∆nf(s),

for t ∈ Na+n−ν , where n is the smallest integer greater than or equal to ν and ∆n is the n-th
forward difference operator. If ν = n, then ∆ν

Cf(t) = ∆nf(t).

2
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Lemma 2.1 ([11]) Assume that ν > 0 and f is defined on Na. Then

∆−ν∆ν
Cf(t) = f(t) + C0 + C1t+ · · ·+ Cn−1t

n−1,

for some Ci ∈ R, i = 1, 2, . . . , n− 1, and n is the smallest integer greater than or equal to ν.

Lemma 2.2 ([6]) Let t and ν be any numbers for which tν and tν−1 are defined. Then

∆tν = νtν−1.

Lemma 2.3 ([6]) For t and s, for which both (t− s− 1)ν and (t− s− 2)ν are defined, we find
that

∆s[(t− s− 1)ν ] = −ν(t− s− 2)ν−1.

Lemma 2.4 Let f : [ν − 1, ν + b − 2]Nν−1 × [0,+∞) → (0,+∞) be given. A function u is a
solution of the (1.1)–(1.2), if and only if it has the form

u(t) = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
, t ∈ [ν − 2, ν + b]Nν−2 ,

(2.2)

where G(t, s) is given by

G(t, s) =
1

Γ(ν)

{
(ν + b− s− 1)ν−1 − (t− s− 1)ν−1, 0 ≤ s < t− ν + 1 ≤ b,

(ν + b− s− 1)ν−1, 0 ≤ t− ν + 1 ≤ s ≤ b.
(2.3)

Proof. If u(t) is a solution to (1.1)–(1.2). Then from (1.1), together with condition ∆ν
Cu(0) = 0,

we find that

[φp(∆ν
Cu)](t) = φp(∆ν

Cu(0))− λp−1
∑t−1

s=0 f(s+ ν − 1, u(s+ ν − 1))

= −λp−1
∑t−1

s=0 f(s+ ν − 1, u(s+ ν − 1)), t ∈ [0, b]N0 ,

so

∆ν
Cu(t) = −λφq

( t−1∑
s=0

f(s+ ν − 1, u(s+ ν − 1))
)
, t ∈ [0, b]N0 ,

in view of Lemma 2.1, we have

u(t) = − λ

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1φq

( s−1∑
τ=0

f(τ + ν− 1, u(τ + ν− 1))
)

+C0 +C1t, t ∈ [ν− 2, ν+ b]Nν−2 .

(2.6)
Furthermore, (2.3) implies that

∆u(t) = − λ

Γ(ν − 1)

t−(ν−1)∑
s=0

(t−s−1)ν−2φq

( s−1∑
τ=0

f(τ+ν−1, u(τ+ν−1))
)

+C1, t ∈ [ν−2, ν+b−1]Nν−2 .

By condition ∆u(ν − 2) = 0, we can get that C1 = 0. Then we obtain

u(t) = − λ

Γ(ν)

t−ν∑
s=0

(t−s−1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
+C0, t ∈ [ν−2, ν+b]Nν−2 . (2.8)

Now

u(ν + b) = − λ

Γ(ν)

b∑
s=0

(ν + b− s− 1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
+ C0,

3
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γu(η) = − λγ

Γ(ν)

η−ν∑
s=0

(η − s− 1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
+ γC0,

by condition u(ν + b) = γu(η), we obtain that

C0 = λ
(1−γ)Γ(ν)

∑b
s=0(ν + b− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
− λγ

(1−γ)Γ(ν)

∑η−ν
s=0 (η − s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
.

Now, substitution of C0 and C1 into (2.6) gives

u(t) = − λ
Γ(ν)

∑t−ν
s=0(t− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λ

(1−γ)Γ(ν)

∑b
s=0(ν + b− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
− λγ

(1−γ)Γ(ν)

∑η−ν
s=0 (η − s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
, t ∈ [ν − 2, ν + b]Nν−2 ,

splitting the second sum in two parts on the basis of the following equality

1
Γ(ν)

+
γ

(1− γ)Γ(ν)
=

1
(1− γ)Γ(ν)

,

therefore,

u(t) = − λ
Γ(ν)

∑t−ν
s=0(t− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λ

Γ(ν)

∑b
s=0(ν + b− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

(1−γ)Γ(ν)

∑b
s=0(ν + b− s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
− λγ

(1−γ)Γ(ν)

∑η−ν
s=0 (η − s− 1)ν−1φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
, t ∈ [ν − 2, ν + b]Nν−2 ,

which is equivalent to (2.1) that

u(t) = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
, t ∈ [ν − 2, ν + b]Nν−2 .

On the other hand, if the function u(t) satisfies to (2.1), then u(ν + b) = γu(η). What’s more,
function u(t) defined by (2.2) can transform to (2.8) that

u(t) = − λ

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
+ C0, t ∈ [ν − 2, ν + b]Nν−2 .

Then we find that

∆u(t) = − λ

Γ(ν − 1)

t−(ν−1)∑
s=0

(t−s−1)ν−2φq

( s−1∑
τ=0

f(τ+ν−1, u(τ+ν−1))
)
, t ∈ [ν−2, ν+b−1]Nν−2 ,

(2.16)
and

∆ν
Cu(t) = −∆ν

C

{
∆−ν

[
λφq

(∑t−1
s=0 f(s+ ν − 1, u(s+ ν − 1))

)]}
= −φq

(∑t−1
s=0 λ

p−1f(s+ ν − 1, u(s+ ν − 1))
)
, t ∈ [0, b]N0 .

(2.17)

4
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From (2.16) and (2.17), we see that ∆u(ν − 2) = ∆ν
Cu(0) = 0.

From the above proofs, it is to say function u(t) meets the boundary condition (1.2). Then we will
proof that u(t) satisfies the fractional difference equation (1.1). Taking p-Laplacian operators on
sides of (2.17), we find that

[φp(∆ν
Cu)](t) = −

t−1∑
s=0

λp−1f(s+ ν − 1, u(s+ ν − 1)), t ∈ [0, b]N0 . (2.18)

By equation (2.18), function ∆[φp(∆ν
Cu)](t) has the form

∆[φp(∆ν
Cu)](t) = −λp−1f(t+ ν − 1, u(t+ ν − 1)), t ∈ [0, b− 1]N0 ,

which shows that if (1.1)–(1.2) has a solution, then it can be represented by (2.2) and that every
function of the form (2.2) is a solution of (1.1)–(1.2), which completes the proof.

Lemma 2.5 ([12]) Let ν be any positive real number and a, b be two real numbers such that
ν < a ≤ b. Then the following are valid.

(i) 1
xν is a decreasing function for x ∈ (0,+∞)N.

(ii) (a−x)ν

(b−x)ν is a decreasing function for x ∈ [0, a− ν)N.

Lemma 2.6 The function G(t, s) defined by (2.3) has the following properties:
1. 0 ≤ G(t, s) ≤ G(s+ ν − 1, s), for t ∈ [ν − 2, ν + b]Nν−2 and s ∈ [0, b]N0 ;
2. there exists a positive number κ ∈ (0, 1) such that

min
t∈[

(b+ν)
4 ,

3(b+ν)
4 ]

G(t, s) ≥ κ max
t∈[ν−2,ν+b]Nν−2

G(t, s) = κG(s+ ν − 1, s),

for s ∈ [0, b].

Proof. 1. For 0 ≤ s < t− ν + 1 ≤ b, we get

(ν + b− s− 1)ν−1 ≥ (t− s− 1)ν−1,

which implies G(t, s) ≥ 0. For 0 ≤ t− ν + 1 ≤ s ≤ b, clear G(t, s) ≥ 0.
On the other hand, case (1): 0 ≤ s < t− ν + 1 ≤ b,

∆tG(t, s) = − (ν − 1)(t− s− 1)ν−2

Γ(ν)
< 0;

case (2): 0 ≤ t− ν + 1 ≤ s ≤ b,
∆tG(t, s) = 0.

Combining the above two cases, we have the function G(t, s) is non-increasing of t, thus

G(t, s) ≤ G(s+ ν − 1, s), s ∈ [0, b]N0 .

2. For s ≥ t− ν + 1 and (b+ν)
4 ≤ t ≤ 3(b+ν)

4 , we have

G(t, s)
G(s+ ν − 1, s)

= 1.

For s < t− ν + 1 and (b+ν)
4 ≤ t ≤ 3(b+ν)

4 , we have that

G(t,s)
G(s+ν−1,s) = (ν+b−s−1)ν−1−(t−s−1)ν−1

(ν+b−s−1)ν−1

= 1− (t−s−1)ν−1

(ν+b−s−1)ν−1

≥ 1− (
3(b+ν)

4 −s−1)ν−1

(ν+b−s−1)ν−1 .

5
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By Lemma 2.5 (ii),
( 3(b+ν)

4 − s− 1)ν−1

(ν + b− s− 1)ν−1

is decreasing for 0 ≤ s < 3(b+ν)
4 − ν + 1. Hence

G(t, s)
G(s+ ν − 1, s)

≥ 1−
( 3(b+ν)

4 − 1)ν−1

(ν + b− 1)ν−1 ,

which implies
min

t∈[
(b+ν)

4 ,
3(b+ν)

4 ]

G(t, s) ≥ κG(s+ ν − 1, s),

where κ = 1− (
3(b+ν)

4 −1)ν−1

(ν+b−1)ν−1 .

Lemma 2.7 ([12]) Let B be a Banach space and let P ⊆ B be a cone. Assume that Ω1

and Ω2 are open subsets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Assume, further, that
T : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator. If either
(1)‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2; or
(2)‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.
Then T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Define the Banach space B by

B = {u : [ν − 2, ν + b]Nν−2 → R}

with norm ‖u‖ = max{|u(t)|, t ∈ [ν − 2, ν + b]Nν−2}.
Define the cone

P =

{
u ∈ B | u(t) ≥ 0, t ∈ [ν − 2, ν + b]Nν−2 , min

t∈[
(b+ν)

4 ,
3(b+ν)

4 ]Nν−2

u(t) ≥ σ‖u‖, σ = κ(1− γ)

}
.

(2.21)
From Lemma 2.4, we know that u is a solution of (1.1)–(1.2) if and only if u is a fixed point of the
operator T : B → B defined by

Tu(t) = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
, t ∈ [ν − 2, ν + b]Nν−2 .

(2.22)

Lemma 2.8 Let T be defined as in (2.22) and P as in (2.21). Then T : P → P is completely
continuous.

Proof. Note that T is a summation operator on a discrete finite set, so T is trivially completely
continuous. We have that

‖Tu‖ ≤ λ

1− γ

b∑
s=0

(ν + b− s− 1)ν−1

Γ(ν)
φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
. (2.23)

6
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For all u ∈ P , it follows from (2.23) that

min
t∈[

(b+ν)
4 ,

3(b+ν)
4 ]

(Tu)(t) = min
t∈[

(b+ν)
4 ,

3(b+ν)
4 ]

λ
b∑

s=0

G(t, s)φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)

+
λγ

(1− γ)Γ(ν)

b∑
s=0

(ν + b− s− 1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)

− λγ

(1− γ)Γ(ν)

η−ν∑
s=0

(η − s− 1)ν−1φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)

≥ κλ
b∑

s=0

max
t∈[ν−2,ν+b]Nν−2

G(t, s)φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)

= κ(1− γ)
λ

1− γ

b∑
s=0

G(s+ ν − 1, s)φq

(
s−1∑
τ=0

f(τ + ν − 1, u(τ + ν − 1))

)
≥ σ‖Tu‖.

It is obvious that (Tu)(t) ≥ 0 whenever u ∈ P , thus, T : P → P as desired.

3 Existence of positive solutions

In this section, we will show the existence of positive solutions for boundary value problem (1.1)–
(1.2). Let us put

ϕ(l) = min{f(t, u), (t, u) ∈ [ν − 1, ν + b− 2]Nν−1 × [0, l]},

ψ(l) = max{f(t, u), (t, u) ∈ [ν − 1, ν + b− 2]Nν−1 × [0, l]}.

(H1) The function f(t, u) satisfies lim
u→0+

maxt∈[ν−1,ν+b−2]Nν−1
f(t,u)

up−1 = 0.

(H2) The function f(t, u) satisfies lim
u→+∞

mint∈[ν−1,ν+b−2]Nν−1
f(t,u)

up−1 = +∞.

Set l0 = d (b+ν)
4 − ν + 1e, l1 = b 3(b+ν)

4 − ν + 1c, K = maxG(t, s), for (t, s) ∈ [ν − 2, ν + b]Nν−2 ×
[0, b]N0 . For convenience, we denote

A =
b∑

s=0

φq(s), B =
l1∑

s=l0

φq(s).

Theorem 3.1 If f ∈ C([ν−1, ν+b−2]Nν−1 × [0,+∞) → (0,+∞)) and there exist two positive
constants α2 > α1 such that

φp(δ1α1) ≤ ϕ(α1), ψ(α2) ≤ φp(δ2α2)

hold, where δ1, δ2 are positive constants satisfying

δ2A

1− γ
< κδ1B,

then for each

λ ∈

((
κδ1KB)

)−1

,

(
δ2KA

1− γ

)−1
)
,

the problem (1.1)–(1.2) has at least one positive solution.

Proof. Let Ω1 = {u ∈ B : ‖u‖ ≤ α1}. For any u ∈ P with ‖u‖ = α1, we have φp(δ1α1) ≤
ϕ(α1) ≤ f(t+ ν − 1, u(t+ ν − 1)) for (t+ ν − 1, u(t+ ν − 1)) ∈ [0, b− 1]N0 × [0, α1]. We have

7
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|Tu(t)| = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≥ λ

∑l1
s=l0

G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≥ κλK

∑l1
s=l0

φq

(∑s−1
τ=0 ϕ(α1)

)
≥ κλK

∑l1
s=l0

φq

(∑s−1
τ=0 φp(δ1α1)

)
= α1δ1λκKB

≥ α1.

So,
‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.2)

On the other hand, let Ω2 = {u ∈ B : ‖u‖ ≤ α2}. For any u ∈ P with ‖u‖ = α2, we have
f(t + ν − 1, u(t + ν − 1)) ≤ ψ(α2) ≤ φp(δ2α2) for (t + ν − 1, u(t + ν − 1)) ∈ [0, b − 1]N0 × [0, α2].
We have

|Tu(t)| = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≤ Kλ

∑b
s=0 φq

(∑s−1
τ=0 ψ(α2)

)
+ λγ

1−γK
∑b

s=0 φq

(∑s−1
τ=0 ψ(α2)

)
≤ K λ

1−γ

∑b
s=0 φq

(∑s−1
τ=0 φp(δ2α2)

)
= δ2α2λ

K
1−γA

≤ α2.

Hence,
‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.4)

Consequently, from (3.2) and (3.4), we may invoke Lemma 2.6 to deduce that T has a fixed point
in the set P ∩ (Ω2 \ Ω1). Then the theorem is proved.

Theorem 3.2 Suppose that conditions (H1)–(H2) hold. If there exist a sufficient small positive
constant δ3 and sufficient large δ4 such that

δ3
A

1− γ
< κδ4B

holds, then for each

λ ∈

((
δ4κKB

)−1

,

(
δ3KA

1− γ

)−1
)
,

then problem (1.1)–(1.2) has at least one positive solution.

Proof. Because of condition (H1), there exist β1 > 0 and a sufficient small constant δ3 > 0
such that

f(t, u) ≤ (δ3u)p−1, 0 < u ≤ β1. (3.5)

8
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So for u ∈ P with ‖u‖ = β1, by (2.22) and (3.5), we have for all t ∈ [ν − 2, ν + b]Nν−2 ,

‖Tu‖ = max
t∈[ν−2,ν+b]Nν−2

λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≤ λ‖u‖δ3KA+ ‖u‖ λγ

1−γ δ3KA

= λ‖u‖δ3K 1
1−γA

≤ ‖u‖.

(3.6)

Thus, if we choose Ω1 = {u ∈ B : ‖u‖ ≤ β1}, then (3.6) implies that

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1. (3.7)

On the other hand, condition (H2) implies that there exist a number 0 < β1 < β2 and a
sufficient large constant δ4 such that

f(t, u) ≥ (δ4u)p−1, u ≥ β2. (3.8)

And then we set β∗2 = β2
σ > β2. Then, u ∈ P and ‖u‖ = β∗2 implies min

t∈[
(b+ν)

4 ,
3(b+ν)

4 ]

u(t) ≥ σ‖u‖ = β2,

thus u(t) ≥ β2, for all t ∈ [ (b+ν)
4 , 3(b+ν)

4 ]. Therefore, for all t ∈ [ν − 2, ν + b]Nν−2 , by (2.11) and
(3.8), we have that

Tu(t) = λ
∑b

s=0G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
+ λγ

1−γ

∑b
s=0G(η, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≥ λ

∑l1
s=l0

G(t, s)φq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≥ λκ

∑l1
s=l0

Kφq

(∑s−1
τ=0 f(τ + ν − 1, u(τ + ν − 1))

)
≥ λ‖u‖δ4κKB

≥ ‖u‖.

(3.9)

Hence, if we choose Ω2 = {u ∈ B : ‖u‖ ≤ β∗2}, from (3.9) we have that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2. (3.10)

Consequently, from (3.7) and (3.10), we may invoke Lemma 2.6 to deduce that T has a fixed point
in the set P ∩ (Ω2 \ Ω1). Then the theorem is proved.

4 Examples

In this section, we will present some examples to illustrate main results.
Example 4.1 Suppose that ν = 3

2 , b = 9, p = 3
2 . Take γ = 0.1, α1 = 2 and α2 = 80000. Then

f(t, u) = t2 + sinu+ 6 and problem (1.1)–(1.2) becomes

∆[φp(∆
3
2
Cu)](t) + λp−1f(t, u) = 0, t ∈ [0, 8]N0 , (4.1)

∆u(ν − 2) = ∆
3
2
Cu(0) = 0, u(ν + b) = 0.1u(η). (4.2)

Make δ1 = 15 and δ2 = 1
10 . By calculation, we have K = max(t,s)∈[− 1

2 , 21
2 ]N0×[0,9]N0

G(t, s) ≈ 3.524,
√

30 = φp(δ2α1) < ϕ(α1) = 6 and 88 = ψ(α2) < φp(δ1α2) ≈ 89. Then δ1K
1

1−γ

∑b
s=0 φq(s) ≈

9
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3.524 × 1
9 × 285 ≈ 111.6 and δ2κK

∑b 3(b+ν)
4 −ν+1c

s=d (b+ν)
4 −ν+1e

φq(s) ≈ 15 × 0.0871 × 3.524 × 135 ≈ 690. So,

the conditions of Theorem 3.1 are satisfied. Then the boundary value problem (4.1)–(4.2) has at
least one positive solution for each λ ∈ (0.001, 0.009).

Example 4.2 Suppose that ν = 3
2 , b = 9, p = 3

2 . Take γ = 0.1, δ3 = 1
1000 and δ4 = 2. Then

f(t, u) = (t+ 1)u
3
2 , and problem (1.1)–(1.2) becomes

∆[φp(∆
3
2
Cu)](t) + λp−1f(t, u) = 0, t ∈ [0, 8]N0 , (4.3)

∆u(ν − 2) = ∆
3
2
Cu(0) = 0, u(ν + b) = 0.1u(η). (4.4)

In addition, we haveK = max(t,s)∈[− 1
2 , 21

2 ]N0×[0,9]N0
G(t, s) ≈ 3.524, lim

u→0+

maxt∈[ν−1,ν+b−2]Nν−1
f(t,u)

up−1 =

0 and lim
u→+∞

mint∈[ν−1,ν+b−2]Nν−1
f(t,u)

up−1 = +∞. Then δ3K 1
1−γ

∑b
s=0 φq(s) ≈ 1

1000×3.524× 10
9 ×285 ≈

1.116 and δ4κK
∑b 3(b+ν)

4 −ν+1c
s=d (b+ν)

4 −ν+1e
φq(s) ≈ 2× 0.0871× 3.524× 135× ≈ 90.90. So, the conditions of

Theorem 3.2 are satisfied. Then the boundary value problem (4.3)–(4.4) has at least one positive
solution for each λ ∈ (0.012, 0.896).
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Abstract

In this paper we characterize the boundedness and compactness of the weighted compo-

sition operator from the analytic Morrey spaces L2,λ to the Zygmund space Z, and the little

analytic Morrey spaces L2,λ
0 to the little Zygmund space Z0, respectively.
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1 Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane and H(D) denote the set of

all analytic functions on D. Let u, φ ∈ H(D), where φ is an analytic self-map of D. Then the

well-known weighted composition operator uCφ on H(D) is defined by uCφ(f)(z) = u(z) ·(f ◦φ(z))
for f ∈ H(D) and z ∈ D. Weighted composition operators can be regarded as a generalization

of multiplication operators Mu and composition operators Cφ. In 2001, Ohno and Zhao studied

the weighted composition operators on the classical Bloch space β in [18], which has led many

researchers to study this operator on other Banach spaces of analytic functions. The boundedness

and compactness of it have been studied on various Banach spaces of analytic functions, such as

Hardy, Bergman, BMOA, Bloch-type spaces, see, e.g. [4, 6, 11, 29].

For an arc I ⊂ ∂D, let |I| = 1
2π

∫
I
|dζ| be the normalized arc length of I,

fI =
1

|I|

∫
I

f(ζ)
|dζ|
2π

, f ∈ H(D),

and S(I) be the Carleson box based on I with

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1,
z

|z|
∈ I}.

Clearly, if I = ∂D, then S(I) = D.

Let L2,λ(D) represent the analytic Morrey spaces of all analytic functions f ∈ H2 on D such

that

sup
I⊂∂D

( 1

|I|λ

∫
I

|f(ζ)− fI |2
|dζ|
2π

)1/2
<∞,

∗The research was supported by the National Natural Science Foundation of China (Grant No. 11671357,

11571217) and the Natural Science Foundation of Fujian Province, China(Grant No. 2015J01005).
†E-mail: ye shanli@aliyun.com; slye@zust.edu.cn
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where 0 < λ ≤ 1 and the Hardy space H2 consists of analytic functions f in D satisfying

sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|2 dθ <∞.

From Theorem 3.1 of [25] or Theorem 3.21 of [26], we can define the norm of function f ∈ L2,λ(D)

and its equivalent formula as follows

∥f∥L2,λ = |f(0)|+ sup
I⊂∂D

( 1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|2)dm(z)
)1/2

≈ |f(0)|+ sup
a∈D

(
(1− |a|2)1−λ

∫
D

|f ′(z)|2(1− |φa(z)|2)dm(z)
)1/2

.

Similarly to the relation between BMOA space and VMOA space, we have that f ∈ L2,λ
0 (D),

the little analytic Morrey spaces, if f ∈ L2,λ(D) and

lim
|I|→0

( 1

|I|λ

∫
I

|f(ζ)− fI |2
|dζ|
2π

)1/2
= 0.

Clearly, L2,1
0 (D) = VMOA. The following lemma gives equivalent conditions of L2,λ

0 . The

proof is similar to that of Theorem 6.3 in [10], we omit the details.

Lemma 1.1 Suppose that 0 < λ < 1 and f ∈ H(D). Let a ∈ D, φa(z) =
a− z

1− az
. Then the

following statements are equivalent.

(i) f ∈ L2,λ
0 (D);

(ii) lim
|a|→1

(1− |a|2)1−λ

∫
D

|f ′(z)|2(1− |φa(z)|2)dm(z) = 0;

(iii) lim
|a|→1

(1− |a|2)1−λ

∫
D

|f ′(z)|2 log 1

|φa(z)|
dm(z) = 0.

It is known that L2,1(D) = BMOA and if 0 < λ < 1, BMOA ( L2,λ(D). For more information

on BMOA and VMOA, see [10].

The Zygmund space Z consists of all analytic functions f defined on D such that

z(f) = sup{(1− |z|2)|f ′′(z)| : z ∈ D} < +∞.

From a theorem of Zygmund (see [37, vol. I, p. 263] or [8, Theorem 5.3]), we see that f ∈ Z if

and only if f is continuous in the close unit disk D = {z : |z| ≤ 1} and the boundary function

f(eiθ) such that

sup
h>0,θ

|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|
h

<∞.

An analytic function f ∈ H(D) is said to belong to the little Zymund space Z0 consists of

all f ∈ Z satisfying lim|z|→1(1 − |z|2)|f ′′(z)| = 0. It can easily proved that Z is a Banach space

under the norm

∥f∥Z = |f(0)|+ |f ′(0)|+ z(f)

and the polynomials are norm-dense in closed subspace Z0 of Z. For some other information on

this space and some operators on it, see, for example, [12, 13, 15].

Morrey space was initially introduced in 1938 by Morrey [17] to show that certain systems

of partial differential equations (PDEs) had Hölder continuous solutions. In the past, Morrey

space has been studied heavily in different areas. For example, Adams and Xiao studied Morrey
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spaces which is defined on Euclidean spaces Rn by potential theory and Hausdorff capacity in

[1, 2]. Wang, Xiao [23] studied holomorphic Campanato spaces on the open unit ball Bn of Cn.

Wang and Xiao [24] characterized the first and second preduals of the analytic Morrey spaces

L2,λ on the unit disk. Xiao and Yuan [28] studied the analytic Campanato spaces (including the

analytic Morrey spaces) in terms of the Möbius mappings and the Littlewood-Paley forms. Xiao

and Xu [27] studied the composition operators of L2,λ spaces. Li, Liu and Lou[14] studied the

Volterra-type operators on L2,λ spaces. Zhuo and Ye [36] considered this operators from L2,λ

spaces to the classical Bloch space.

In 2006, the boundedness of composition operators on the Zygmund space Z was first studied

by Choe, Koo, and Smith in [3]. Later, many researchers have studied composition operators and

weighted composition operators acting on the Zygmund space Z. Li and Stević in [12] studied the

boundedness and compactness of the generalized composition operators on Zygmund spaces and

Bloch type spaces. Ye and Hu in [34] characterized boundedness and compactness of weighted

composition operators on the Zygmund space Z. Esmaeili and Lindström in [9] studied weighted

composition operators from Zygmund type spaces to Bloch type spaces and their essential norms.

Sanatpour and Hassanlou in [20] gave the essential norms of this operators between Zygmund-type

spaces and Bloch-type spaces. See also [7, 19, 22, 29, 30, 31, 32, 33, 35] for corresponding results

for weighted composition operators from one Banach space of analytic functions to another. In

this paper we consider the weighted composition operators from the analytic Morrey spaces L2,λ

to the Zygmund space Z, and the little analytic Morrey spaces L2,λ
0 to the little Zygmund space

Z0, respectively.

Notations: For two functions F and G, if there is a constant C > 0 dependent only on indexes

p, λ... such that F ≤ CG, then we say that F . G. Furthermore, denote that F ≈ G (F is

comparable with G) whenever F . G . F .

2 Auxiliary results

In order to prove the main results of this paper. we need some auxiliary results.

Lemma 2.1 Let 0 < λ < 1. If f ∈ L2,λ, then

(i) |f(z)| . ∥f∥L2,λ

(1− |z|2) 1−λ
2

for every z ∈ D;

(ii) |f ′(z)| . ∥f∥L2,λ

(1− |z|2) 3−λ
2

for every z ∈ D;

(iii) |f ′′(z)| . ∥f∥L2,λ

(1− |z|2) 5−λ
2

for every z ∈ D.

Proof (i) and (ii) are from Lemma 2.5 in [14]. For any f ∈ L2,λ. Fix z ∈ D and let ρ =
1 + |z|

2
,

by the Cauchy integral formula, we obtain that

|f ′′(z)| = | 1

2πi

∫
|ξ|=ρ

f ′(ξ)

(ξ − z)2
dξ| ≤ ∥f∥L2,λ

(1− ρ2)
3−λ
2

1

2π

∫ 2π

0

ρ dθ

|ρeiθ − z|2
=

∥f∥L2,λ

(1− ρ2)
3−λ
2

ρ

ρ2 − |z|2
. ∥f∥L2,λ

(1− |z|2) 5−λ
2

.

Hence (iii) holds.
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Lemma 2.2 Let 0 < λ < 1. If f ∈ L2,λ
0 , then

(i) lim
|z|→1

(1− |z|2)
3−λ
2 |f ′(z)| = 0;

(ii) lim
|z|→1

(1− |z|2)
1−λ
2 |f(z)| = 0;

(iii) lim
|z|→1

(1− |z|2)
5−λ
2 |f ′′(z)| = 0.

The proof of (i) is similar to that of Lemma 2.5 in [14], and we easily obtain (ii) and (iii) by (i).

These details are omitted here.

Lemma 2.3 Suppose uCφ : L2,λ
0 → Z0 is a bounded operator, then uCφ : L2,λ → Z is a bounded

operator.

The proof is similar to that of Lemma 2.3 in [33]. The details are omitted.

3 Boundedness of uCφ

In this section we characterize the boundedness of the weighted composition operator uCφ from

the analytic Morrey spaces L2,λ to the Zygmund space Z, and the little analytic Morrey spaces

L2,λ
0 to the little Zygmund space Z0, respectively.

Theorem 3.1 Let u be an analytic function on the unit disc D, and φ an analytic self-map of

D. Then uCφ is a bounded operator from the analytic Morrey spaces L2,λ to the Zygmund space

Z if and only if the following are satisfied:

sup
z∈D

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

<∞; (3.1)

sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

<∞; (3.2)

sup
z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

<∞. (3.3)

Proof Suppose uCφ is bounded from the analytic Morrey spaces L2,λ to the Zygmund space Z.

Using functions f(z) = 1, f(z) = z and and f(z) = z2 in L2,λ, we have

u ∈ Z, (3.4)

sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z) + φ(z)u′′(z)| < +∞, (3.5)

and

sup
z∈D

(1− |z|2)|4φ(z)φ′(z)u′(z) + φ2(z)u′′(z) + 2u(z)(φ(z)φ′′(z) + (φ′(z))2)| <∞.

Since φ(z) is a self-map, we get

K1 = sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| < +∞ (3.6)
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and

K2 = sup
z∈D

(1− |z|2)|(φ′(z))2u(z)| < +∞. (3.7)

Fix a ∈ D with |a| > 1
2 , we take the test functions:

fa(z) =
1− |a|2

(1− āz)
3−λ
2

− 2
(1− |a|2)2

(1− āz)
5−λ
2

+
(1− |a|2)3

(1− āz)
7−λ
2

(3.8)

for z ∈ D. Then, arguing as the proof of Lemma 3.2 in [14] we obtain that fa ∈ L2,λ and

supa ∥fa∥L2,λ . 1. Since fa(a) = 0, f ′a(a) = 0, f ′′a (a) =
2ā

(1− |a|2) 5−λ
2

, it follows that for all

λ ∈ D with |φ(λ)| > 1
2 , we have

∥fa∥L2,λ & ∥uCφfa∥Z ≥ sup
z∈D

(1− |z|2)|(uCφfa)
′′(z)|

= sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′a(φ(z))

+ f ′′a (φ(z))(φ
′(z))2u(z) + u′′(z)fa(φ(z))|.

Let a = φ(λ), it follows that

∥fa∥L2,λ & (1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
f ′φ(λ)(φ(λ))

+ f ′′φ(λ)(φ(λ))(φ
′(λ))2u(λ) + u′′(λ)fφ(λ)(φ(λ))|

= (1− |λ|2)|(φ′(λ))2u(λ)
2φ(λ)

(1− |φ(λ)|2) 5−λ
2

|

≥ (1− |λ|2)|φ′(λ))2u(λ)|
(1− |φ(λ)|2) 5−λ

2

.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (3.7), we have

sup
λ∈D

(1− |λ|2)|φ′(λ))2u(λ)|
(1− |φ(λ)|2) 5−λ

2

≤ (
4

3
)

5−λ
2 sup

λ∈D
(1− |λ|2)|φ′(λ))2u(λ)| < +∞.

Hence (3.3) holds.

Next, we will show that (3.2) holds. Fix a ∈ D with |a| > 1
2 , we take another test functions:

ga(z) =
1− |a|2

(1− āz)
3−λ
2

− 12− 2λ

7− λ

(1− |a|2)2

(1− āz)
5−λ
2

+
5− λ

7− λ

(1− |a|2)3

(1− āz)
7−λ
2

(3.9)

for z ∈ D. Then ga ∈ L2,λ and supa ∥ga∥L2,λ . 1(see [14]). Since ga(a) = 0, g′′a(a) = 0, g′a(a) =
−2ā

(7− λ)(1− |a|2) 3−λ
2

, it follows that for all λ ∈ D with |φ(λ)| > 1
2 , we have

∥ga∥L2,λ & ∥uCφga∥Z ≥ sup
z∈D

(1− |z|2)|(uCφga)
′′(z)|

= sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
g′a(φ(z))

+ g′′a(φ(z))(φ
′(z))2u(z) + u′′(z)ga(φ(z))|.
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Let a = φ(λ), it follows that

∥ga∥L2,λ & (1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
g′φ(λ)(φ(λ))

+ g′′φ(λ)(φ(λ))(φ
′(λ))2u(λ) + u′′(λ)gφ(λ)(φ(λ))|

= (1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

) −2φ(λ)

(7− λ)(1− |φ(λ)|2) 3−λ
2

|

≥ 1

7− λ

(1− |λ|2)|2φ′(λ)u′(λ) + φ′′(λ)u(λ)|
(1− |φ(λ)|2) 3−λ

2

.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (3.6), we have

sup
λ∈D

(1− |λ|2)|2φ′(λ)u′(λ) + φ′′(λ)u(λ)|
(1− |φ(λ)|2) 3−λ

2

≤ (
4

3
)

3−λ
2 sup

λ∈D
(1− |λ|2)|2φ′(λ)u′(λ) + φ′′(λ)u(λ)| < +∞.

Hence (3.2) holds.

Finally we will show (3.1) holds. Let

ha(z) =
1− |a|2

(1− āz)
3−λ
2

(3.10)

for z ∈ D. It is easily proved that sup 1
2<|a|<1 ∥ha∥L2,λ . 1. Then,

∥ha∥L2,λ & ∥uCφha∥Z ≥ (1− |z|2)|(uCφha)
′′(z)|

≥ (1− |z|2)|u′′(z)ha(φ(z))| − (1− |z|2)|(2φ′(z)u′(z) + φ′′(z)u(z))h′a(φ(z))|

− (1− |z|2)|h′′a(φ(z))(φ′(z))2u(z)|.

Therefore, by Lemma 2.1, (3.2) and (3.3), we obtain that

sup
z∈D

(1− |z|2)|u′′(z)ha(φ(z))| ≤ sup
z∈D

(1− |z|2)|(2φ′(z)u′(z) + φ′′(z)u(z))h′a(φ(z))|

+ sup
z∈D

(1− |z|2)|h′′a(φ(z))(φ′(z))2u(z)|+ C∥ha∥L2,λ

. sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

∥ha∥L2,λ

+ sup
z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

∥ha∥L2,λ + ∥ha∥L2,λ <∞.

Let a = φ(z), it follows that

sup
z∈D

(1− |z|2)|u′′(z)ha(φ(z))| = sup
z∈D

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

<∞.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (3.4), we have

sup
λ∈D

(1− |λ|2)|u′′(λ)|
(1− |φ(λ)|2) 1−λ

2

= (
4

3
)

1−λ
2 sup

λ∈D
(1− |λ|2)|u′′(λ)| <∞.

Hence (3.1) holds.
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Conversely, suppose that (3.1), (3.2), and (3.2) hold. For f ∈ L2,λ, by Lemma 2.1, we have

the following inequality:

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ (1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

. (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

∥f∥L2,λ

+
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2) 5−λ
2

∥f∥L2,λ +
(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

∥f∥L2,λ

. ∥f∥L2,λ ,

and

|u(0)f(φ(0))|+ |u′(0)f(φ(0))|+ |u(0)f ′(φ(0))φ′(0)|

≤
( |u(0)|+ |u′(0)|
(1− |φ(0)|2) 1−λ

2

+
|u(0)φ′(0)|

(1− |φ(0)|2) 3−λ
2

)
∥f∥L2,λ .

This shows that uCφ is bounded. This completes the proof of Theorem 3.1.

Theorem 3.2 Let u be an analytic function on the unit disc D, and φ an analytic self-map of

D. Then uCφ is bounded from the little analytic Morrey spaces L2,λ
0 to the little Zygmund space

Z0 if and only if u ∈ Z0, (3.1), (3.2) and (3.3) hold, and the following are satisfied:

lim
|z|→1

(1− |z|2)|u(z)(φ′(z))2| = 0; (3.11)

lim
|z|→1

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| = 0. (3.12)

Proof Suppose that uCφ is bounded from L2,λ
0 to Z0. Then u = uCφ1 ∈ Z0. Also uφ = uCφz ∈

Z0, thus

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z) + φ(z)u′′(z)| −→ 0 (|z| → 1−).

Since |φ| ≤ 1 and u ∈ Z0, we have lim
|z|→

(1−|z|2)|2φ′(z)u′(z)+φ′′(z)u(z)| = 0. Hence (3.12) holds.

Similarly, uCφz
2 ∈ Z0, then

(1− |z|2)|4φ(z)φ′(z)u′(z) + φ2(z)u′′(z) + 2u(z)(φ(z)φ′′(z) + (φ′(z))2)| −→ 0 (|z| → 1−).

By (3.12), |φ| ≤ 1 and u ∈ Z0, we get that lim
|z|→1

(1−|z|2)|u(z)(φ′(z))2| = 0, i. e. that (3.11) holds.

On the other hand, by Lemma 2.3 and Theorem 3.1, we obtain that (3.1), (3.2) and (3.3) hold.

Conversely, let

M1 = sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

<∞;
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M2 = sup
z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

<∞;

M3 = sup
z∈D

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

<∞.

For ∀f ∈ L2,λ
0 , by Lemma 2.2, given ϵ > 0 there is a 0 < δ < 1 such that (1− |z|2)

3−λ
2 |f ′(z)| <

ϵ

3M1
, (1− |z|2)

5−λ
2 |f ′′(z)| < ϵ

3M2
and (1− |z|2)

1−λ
2 |f(z)| < ϵ

3M3
for all z with δ < |z| < 1.

If |φ(z)| > δ, it follows that

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ (1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

<
(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|

(1− |φ(z)|2) 3−λ
2

ϵ

3M1

+
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2) 5−λ
2

ϵ

3M2
+

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

ϵ

3M3

< ϵ,

We know that there exists a constant K such that |f(z)| ≤ K, |f ′(z)| ≤ K and |f ′′(z)| ≤ K

for all |z| ≤ δ.

If |φ(z)| ≤ δ, it follows that

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ K(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|

+ K(1− |z|2)|(φ′(z))2u(z)|+K(1− |z|2)|u′′(z)|.

Thus we conclude that (1 − |z|2)|(uCφ(f))
′′(z)| → 0 as |z| → 1−. Hence uCφf ∈ Z0 for all

f ∈ L2,λ
0 . On the other hand, uCφ is bounded from L2,λ to Z by Theorem 3.1. Hence uCφ is a

bounded operator from L2,λ
0 to Z0.

Corollary 3.1 Let φ be an analytic self-map of D. Then Cφ is a bounded operator from the

analytic Morrey spaces L2,λ to the Zygmund space Z if and only if the following are satisfied:

sup
z∈D

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

<∞; (3.13)
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sup
z∈D

(1− |z|2)|φ′′(z)|
(1− |φ(z)|2) 3−λ

2

<∞. (3.14)

Corollary 3.2 Let φ be an analytic self-map of D. Then Cφ is a bounded operator from the little

analytic Morrey spaces L2,λ
0 to the little Zygmund space Z0 if and only if φ ∈ Z0, (3.13) and

(3.14) holds.

Proof By Theorem 3.2, Cφ is a bounded operator from L2,λ
0 to Z0 if and only if φ ∈ Z0,

lim|z|→1−(1 − |z|2)|(φ′(z))2| = 0, (3.13) and (3.14) hold. However, by (1.5) in [33], That φ ∈ Z0

implies that lim|z|→1−(1 − |z|2)|(φ′(z))2| = 0. Then, Cφ is a bounded operator if and only if

φ ∈ Z0, (3.13) and (3.14) hold.

In the formulation of lemma, we use the notation Mu on H(D) defined by Muf = uf for

f ∈ H(D).

Corollary 3.3 The pointwise multiplier Mu : L2,λ → Z is a bounded operator if and only if

u = 0.

4 Compactness of uCφ

In order to prove the compactness of uCφ, we require the following lemmas.

Lemma 4.1 Suppose that uCφ be a bounded operator from L2,λ to Z, then uCφ is compact if

and only if for any bounded sequence {fn} in L2,λ which converges to 0 uniformly on compact

subsets of D. We have ∥uCφ(fn)∥Z → 0 , as n→ ∞ .

The proof is similar to that of Proposition 3.11 in [5] . The details are omitted.

Lemma 4.2 Let U ⊂ Z0. Then U is compact if and only if it is closed, bounded and satisfies

lim
|z|→1

sup
f∈U

(1− |z|2)|f ′′(z)| = 0.

The proof is similar to that of Lemma 1 in [16], we omit it.

Theorem 4.1 Let u be an analytic function on the unit disc D and φ an analytic self-map of D.

Suppose that uCφ is a bounded operator from L2,λ to Z. Then uCφ is compact if and only if the

following are satisfied:

lim
|φ(z)|→1

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

= 0; (4.1)

lim
|φ(z)|→1

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

= 0; (4.2)

lim
|φ(z)|→1

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

= 0. (4.3)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

778 Shanli Ye 770-784



Proof Suppose that uCφ is compact from L2,λ to the Zygmund space Z. Let {zn} be a sequence

in D such that |φ(zn)| → 1 as n → ∞. If such a sequence does not exist, then (4.1), (4.2) and

(4.3) are automatically satisfied. Without loss of generality we may suppose that |φ(zn)| > 1
2 for

all n. We take the test functions

fn(z) =
1− |φ(zn)|2

(1− φ(zn)z)
3−λ
2

− 2(1− |φ(zn)|2)2

(1− φ(zn)z)
5−λ
2

+
(1− |φ(zn)|2)3

(1− φ(zn)z)
7−λ
2

. (4.4)

By the proof of Theorem 3.1 we know that that supn ∥fn∥L2,λ ≤ C < ∞. Then {fn} is a

bounded sequence in L2,λ which converges to 0 uniformly on compact subsets of D. Then

limn→∞ ∥uCφ(fn)∥Z = 0 by Lemma 4.1. Note that fn(φ(zn)) ≡ 0, f ′n(φ(zn)) ≡ 0 and

f ′′n (φ(zn)) =
2φ(zn)

(1− |φ(zn)|2)
5−λ
2

.

It follows that

∥uCφfn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))f
′
n(φ(zn))

+u(zn)f
′′
n (φ(zn))(φ

′(zn))
2 + u′′(zn)fn(φ(zn))|

= 2(1− |zn|2)|(φ′(zn))
2u(zn)

φ(zn)

(1− |φ(zn)|2)
5−λ
2

|

≥ (1− |zn|2)|u(zn)(φ′(zn))
2|

(1− |φ(zn)|2)
5−λ
2

.

Then lim
n→∞

(1− |zn|2)|u(zn)(φ′(zn))
2|

(1− |φ(zn)|2)
5−λ
2

= 0. Thus (4.3) holds.

Next, let

gn(z) =
1− |φ(zn)|2

(1− φ(zn)z)
3−λ
2

− 12− 2λ

7− λ

(1− |φ(zn)|2)2

(1− φ(zn)z)
5−λ
2

+
5− λ

7− λ

(1− |φ(zn)|2)3

(1− φ(zn)z)
7−λ
2

. (4.5)

We similarly obtain that {gn} is a bounded sequence in L2,λ which converges to 0 uniformly on

compact subsets of D. Then limn→∞ ∥uCφ(gn)∥Z = 0 by Lemma 4.1. Note that gn(φ(zn)) ≡

0, g′′n(φ(zn)) ≡ 0 and g′n(φ(zn)) =
−2(φ(zn))

2

(7− λ)(1− |φ(zn)|2)
3−λ
2

. It follows that

∥uCφgn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))g
′
n(φ(zn))

+u(zn)g
′′
n(φ(zn))(φ

′(zn))
2 + u′′(zn)gn(φ(zn))|

= (1− |zn|2)|2u′(zn)φ′(zn) + φ′′(zn)u(zn)|
2|φ(zn)|2

(7− λ)(1− |φ(zn)|2)
3−λ
2

≥ (1− |zn|2)|2u′(zn)φ′(zn) + φ′′(zn)u(zn)|
(7− λ)(1− |φ(zn)|2)

3−λ
2

.

Then lim
n→∞

(1− |zn|2)|2u′(zn)φ′(zn) + φ′′(zn)u(zn)|
(1− |φ(zn)|2)

3−λ
2

= 0. Thus (4.2) holds.

Finally, let

hn(z) =
1− |φ(zn)|2

(1− φ(zn)z)
3−λ
2

. (4.6)
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We know that {hn} is a bounded sequence in L2,λ which converges to 0 uniformly on com-

pact subsets of D. Then limn→∞ ∥uCφ(hn)∥Z = 0 by Lemma 4.1. Note that hn(φ(zn)) =
1

(1− |φ(zn)|2)
1−λ
2

, h′n(φ(zn)) =
3− λ

2(1− |φ(zn)|2)
3−λ
2

and h′′n(φ(zn)) =
(3− λ)(5− λ)

4(1− |φ(zn)|2)
5−λ
2

.

It follows that

∥uCφhn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))h
′
n(φ(zn))

+u(zn)h
′′
n(φ(zn))(φ

′(zn))
2 + u′′(zn)hn(φ(zn))|.

Then,

(1− |zn|2)|u′′(zn)|
(1− |φ(zn)|2)

1−λ
2

≤ ∥uCφhn∥Z + (1− |zn|2)|u(zn)(φ′(zn))
2| (3− λ)(5− λ)

4(1− |φ(zn)|2)
5−λ
2

+(1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))|
3− λ

2(1− |φ(zn)|2)
3−λ
2

,

hence (4.1) holds by (4.2) and (4.3). The proof of the necessary is completed.

Conversely, suppose that (4.1), (4.2), and (4.3) hold. Since uCφ is a bounded operator, by

Theorem 3.1, we have

M1 = sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

<∞;

M2 = sup
z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

<∞;

M3 = sup
z∈D

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

<∞.

Let {fn} be a bounded sequence in L2,λ with ∥fn∥L2,λ ≤ 1 and fn → 0 uniformly on compact

subsets of D. We only prove lim
n→∞

∥uCφ(fn)∥Z = 0 by Lemma 4.1. By the assumption, for any

ϵ > 0, there is a constant δ, 0 < δ < 1, such that δ < |φ(z)| < 1 implies

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

< ϵ,
(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

< ϵ,

and
(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|

(1− |φ(z)|2) 3−λ
2

< ϵ.

Let K = {w ∈ D : |w| ≤ δ}. Noting that K is a compact subset of D, we get that
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z(uCφfn) = sup
z∈D

(1− |z|2)|(uCφfn)
′′(z)|

≤ sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′n(φ(z))|

+ sup
z∈D

(1− |z|2)|f ′′n (φ(z))(φ′(z))2u(z)|+ sup
z∈D

(1− |z|2)|u′′(z)fn(φ(z))|

. 3ϵ+ sup
|φ(z)|≤δ

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′n(φ(z))|

+ sup
|φ(z)|≤δ

(1− |z|2)|f ′′n (φ(z))(φ′(z))2u(z)|+ sup
|φ(z)|≤δ

(1− |z|2)|u′′(z)fn(φ(z))|

≤ 3ϵ+M1 sup
w∈K

|f ′n(w)|+M2 sup
w∈K

|f ′′n (w)|+M3 sup
w∈K

|fn(w)|.

As n→ ∞,

∥uCφfn∥Z → 0.

Hence uCφ is compact. This completes the proof of Theorem 4.1.

Theorem 4.2 Let u be an analytic function on the unit disc D, and φ an analytic self-map of

D. Then uCφ is compact from L2,λ
0 to Z0 if and only if the following are satisfied:

lim
|z|→1

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

= 0; (4.7)

lim
|z|→1

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

= 0; (4.8)

lim
|z|→1

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

= 0. (4.9)

Proof Assume (4.7), (4.8), and (4.9) hold. From Theorem 4.2, we know that uCφ is bounded

from L2,λ
0 to Z0. Suppose that f ∈ L2,λ

0 with ∥f∥L2,λ ≤ 1. We obtain that

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ (1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

. (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

∥f∥L2,λ

+
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2) 5−λ
2

∥f∥L2,λ +
(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

∥f∥L2,λ ,
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thus
sup{|(1− |z|2)(uCφf)

′′(z)| : f ∈ L2,λ
0 , ∥f∥L2,λ ≤ 1}

. (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

+
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2) 5−λ
2

+
(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

,

and it follows that

lim
|z|→1

sup{|(1− |z|2)(uCφf)
′′(z)| : f ∈ L2,λ

0 , ∥f∥L2,λ ≤ 1} = 0,

hence uCφ : L2,λ
0 → Z0 is compact by Lemma 4.2.

Conversely, suppose that uCφ : L2,λ
0 → Z0 is compact.

First, it is obvious that uCφ : L2,λ
0 → Z0 is bounded, then by Theorem 3.2, we have u ∈ Z0

and that (3.11) and (3.12) hold. On the other hand, by Lemma 4.2 we have

lim
|z|→1

sup{|(1− |z|2)(uCφf)
′′(z)| : f ∈ L2,λ

0 , ∥f∥L2,λ ≤M} = 0,

for some M > 0.

Next, noting that the proof of Theorem 3.1 and the fact that the functions given in (3.8) are

in L2,λ
0 and have norms bounded independently of a, we obtain that

lim
|z|→1

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

= 0

for |φ(z)| > 1
2 . However, if |φ(z)| ≤

1
2 , by (3.11), we easily have

lim
|z|→1

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

≤ (
4

3
)

5−λ
2 lim

|z|→1
(1− |z|2)|u(z)(φ′(z))2| = 0.

Thus (4.9) holds. Also, the second statement, that (4.8), is proved similarly. We omitted it here.

Similarly, noting that the functions given in (3.10) are in L2,λ
0 and have norms bounded inde-

pendently of a, we obtain that

lim
|z|→1

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

. lim
|z|→1

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
(1− |φ(z)|2) 3−λ

2

+ lim
|z|→1

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

+ lim
|z|→1

(1− |z|2)|(uCφha)
′′(z)|,

for |φ(z)| > 1
2 . So by (4.8) and (4.9), it follows that

lim
|z|→1

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

= 0

for |φ(z)| > 1
2 . However, if |φ(z)| ≤

1
2 , by u ∈ Z0, we easily have

lim
|z|→1

(1− |z|2)|u′′(z)|
(1− |φ(z)|2) 1−λ

2

= lim
|z|→1

(
4

3
)

1−λ
2 (1− |z|2)|u′′(z)| = 0.

This completes the proof of Theorem 4.2.
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Corollary 4.1 Let φ be an analytic self-map of D. Then Cφ is a compact operator from the

analytic Morrey space L2,λ to the Zygmund space Z if and only if Cφ is bounded,

lim
|φ(z)|→1

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

= 0 and lim
|φ(z)|→1

(1− |z|2)|φ′′(z)|
(1− |φ(z)|2) 3−λ

2

= 0.

Corollary 4.2 Let φ be an analytic self-map of D. Then Cφ is a compact operator from L2,λ
0 to

Z0 if and only if

lim
|z|→1

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2) 5−λ

2

= 0

and

lim
|z|→1

(1− |z|2)|φ′′(z)|
(1− |φ(z)|2) 3−λ

2

= 0.
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[13] S. Li and S. Stević, Products of Volterra type operator and composition operator from H∞ and Bloch spaces to

Zygmund spaces, J. Math Anal. Appl. 345(2008), no. 1, 40-52.

[14] P. Li, J. Liu and Z. Lou, Integral operators on analytic Morrey spaces, Sci China Math, 57 (2014) 1961-1974.
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