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Abstract. Formulation of uncertainty Volterra integrodifferential equations (VIDEs) is very important issue in applied 

sciences and engineering; whilst the natural way to model such dynamical systems is to use the fuzzy approach. In this 

work, we present and prove the existence and uniqueness of four solutions of fuzzy VIDEs based on the Hausdorff 

distance under the assumption of strongly generalized differentiability for the fuzzy-valued mappings of a real variable 

whose values are normal, convex, upper semicontinuous, and compactly supported fuzzy sets in  . In addition to that, 

we utilize and prove the characterization theorem for solutions of fuzzy VIDEs which allow us to translate a fuzzy VIDE 

into a system of crisp equations. The proof methodology is based on the assumption of the generalized Lipchitz property 

for each nonlinear term appears in the fuzzy equation subject to the specific metric used, while the main tools employed 

in the analysis are founded on the applications of the Banach fixed point theorem and a certain integral inequality with 

explicit estimate. An efficient computational algorithm is provided to guarantee the procedure and to confirm the 

performance of the proposed approach. 

Keywords: Fuzzy VIDE; Banach fixed point theorem; Existence and uniqueness 

AMS Subject Classification: 26E50; 46S40; 34A07 
 

1. Introduction 

There is an inexhaustible supply of applications of VIDEs, especially, in characterizing many social, physical, biological, 

and engineering problems. On the other aspect as well, since many real-world problems are too complex to be defined in 

precise terms, uncertainty is often involved in any real-world design process. Fuzzy sets provide a widely appreciated 

tool to introduce uncertain parameters into mathematical applications. In many applications, at least some of the 

parameters of the model should be represented by fuzzy rather than crisp numbers. Thus, it is immensely important to 

develop appropriate and applicable definitions and theorems to accomplish the mathematical construction that would 

appropriately treat fuzzy VIDEs and solve them. 

In this work we are interested in the following main questions; firstly, under what conditions can we be sure that 

solutions of fuzzy VIDE exist; secondly, under what conditions can we be sure that there are four unique solutions; one 

solution for each lateral derivative; to fuzzy VIDE, thirdly under what conditions can we be sure that fuzzy VIDE is 

equivalent into system of crisp VIDEs. Anyhow, in this paper we will answered the aforementioned questions and 

present an efficient computational algorithm to guarantee the procedure and to confirm the performance of the proposed 

approach. More precisely, we consider the following second-order fuzzy VIDE under the assumption of strongly 

generalized differentiability of the general form: 

                                           
 

 

          (1.1) 

subject to the fuzzy initial conditions 

                (1.2) 

where           
     and            

     are continuous fuzzy-valued functions that satisfy a generalized 

Lipchitz condition and       . 

The topics of fuzzy VIDEs which is growing interest for some time, in particular in relation to fuzzy control, fuzzy 

population growth model, fuzzy oscillating magnetic fields, have been rapidly developed in recent years. Anyhow, in 
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this work, we are focusing our attention on second-order fuzzy VIDEs subject to given fuzzy initial conditions. At the 

beginning, approaches to fuzzy IDEs and other fuzzy equations can be of three types. The first approach assumes that 

even if only the initial values are fuzzy, the solution is a fuzzy function, and consequently the derivatives in the IDE 

must be considered as fuzzy derivatives [1,2]. These can be done by the use of the Hukuhara derivative for fuzzy-valued 

functions. Generally, this approach has a drawback; the solution becomes fuzzier as time goes, hence, the fuzzy solution 

behaves quite differently from the crisp solution. In the second approach, the fuzzy IDE is transformed to a crisp one by 

interpreted it as a family of differential inclusions [3,4]. The main shortcoming of using differential inclusions is that we 

do not have a derivative of a fuzzy-valued function. The third approach based on the Zadeh's extension principle, where 

the associated crisp problem is solved and in the solution the initial fuzzy values are substituted instead of the real 

constants, and in the final solution, arithmetic operations are considered to be operations on fuzzy numbers [5,6]. The 

weakness of this approach is the need to rewrite the solution in the fuzzy setting which in turn makes the methods of 

solution are not user-friendly and more restricted with more computation steps. As a conclusion, to overcome the above-

mentioned shortcoming, the concept of a strongly generalized differentiability was developed and investigated in [7-14]. 

Anyhow, using the strongly generalized differentiability, the fuzzy IDE has locally four solutions. Indeed, with this 

approach, we can find solutions for a larger class of fuzzy IDEs than using other types of differentiability. 

The solvability analysis of fuzzy VIDEs has been studied by several researchers by using the strongly generalized 

differentiability, the Hukuhara derivative, or the Zadeh's extension principle for the fuzzy-valued mappings of a real 

variable whose values are normal, convex, upper semicontinuous, and compactly supported fuzzy sets in  . The reader is 

asked to refer to [15-22] in order to know more details about these analyzes, including their kinds and history, their 

modifications and conditions for use, their scientific applications, their importance and characteristics, and their 

relationship including the differences. But on the other aspect as well, more details about characterization theorem can 

be found in [23,24]. 

The organization of the paper is as follows. In the next section, we present some necessary definitions and 

preliminary results from the fuzzy calculus theory. The procedure of solving fuzzy VIDEs is presented in section 3. In 

section 4, existence and uniqueness of four solutions are introduced. In section 5, we utilize the characterization theorem 

for the solution of fuzzy VIDEs. This article ends in section 6 with some concluding remarks. 

2. Excerpts of fuzzy calculus theory 

Fuzzy calculus is the study of theory and applications of integrals and derivatives of uncertain functions. This branch of 

mathematical analysis, extensively investigated in the recent years, has emerged as an effective and powerful tool for the 

mathematical modeling of several engineering and scientific phenomena. In this section, we present some necessary 

definitions from fuzzy calculus theory and preliminary results. For the concept of fuzzy derivative, we will adopt 

strongly generalized differentiability, which is a modification of the Hukuhara differentiability and has the advantage of 

dealing properly with fuzzy VIDEs. 

Let   be a nonempty set. A fuzzy set   in   is characterized by its membership function          . Thus,      is 

interpreted as the degree of membership of an element   in the fuzzy set   for each    . A fuzzy set   on   is called 

convex if for each       and        ,                            , is called upper semicontinuous if 

             is closed for each        , and is called normal if there is     such that       . The support of 

a fuzzy set   is defined as             . 

Definition 2.1. [25] A fuzzy number   is a fuzzy subset of the real line with a normal, convex, and upper 

semicontinuous membership function of bounded support. 

For each          , set                   and                  , where     denote the closure of    . 

Then, it easily to establish that   is a fuzzy number if and only if      is compact convex subset of   for each         

and        [26]. Thus, if   is a fuzzy number, then                 , where                    and      

              for each        . The symbol      is called the  -cut representation or parametric form of a fuzzy 

number  . We will let    denote the set of fuzzy numbers on  . 

The question arises here is, if we have an interval-valued function             defined on      , then is there a fuzzy 

number   such that                    . The next theorem characterizes fuzzy numbers through their  -cut 

representations. 
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Theorem 2.1. [26] Suppose that           and           satisfy the following conditions; first,   is a bounded 

increasing function and   is a bounded decreasing function with          ; second, for each             and   are 

left-hand continuous functions at    ; third,   and   are right-hand continuous functions at    . Then           

defined by 

                         (2.1) 

is a fuzzy number with parameterization            . Furthermore, if           is a fuzzy number with 

parameterization            , then the functions   and   satisfy the aforementioned conditions. 

In general, we can represent an arbitrary fuzzy number   by an order pair of functions       which satisfy the 

requirements of Theorem 2.1 Frequently, we will write simply    and    instead of      and     , respectively. 

The metric structure on    is given by                 such that                                 for 

arbitrary fuzzy numbers   and  , where    is the Hausdorff metric between      and     . This metric is defined as 

                                                                       , where the two set           

and           are the  -neighborhoods of      and     , respectively. It is shown in [27] that         is a complete 

metric space. 

Lemma 2.1. [27] For each            with     the metric function    satisfies the following properties: 

i.                    , 

ii.                        , 

iii.                            , 

iv.                     . 

For arithmetic operations on fuzzy numbers, the following results are well-known and follow from the theory of 

interval analysis. If   and   are two fuzzy number, then for each        , we have; firstly,                  

             ; secondly,                                        ; thirdly,                

                                                   ; fourthly,     if and only if           if and only if 

      and      . In fact, the collection of all fuzzy number with aforementioned addition and scalar multiplication 

is a convex cone [28]. 

Let       . If there exists a      such that      , then   is called the  -difference of   and  , denoted by 

   . Here, the sign " " stands always for  -difference and let us remark that            . Usually we 

denote         by    , while     stands for the  -difference. It follows that Hukuhara differentiable function 

has increasing length of support [25]. To avoid this difficulty, we consider the following definition. 

Definition 2.2. [8] Let            and         . We say that   is strongly generalized differentiable at   , if there 

exists an element           such that either 

i. for all     sufficiently close to  , the  -differences              ,               exist and 

   
    

             

 
    

    

             

 
         

ii. for all     sufficiently close to  , the  -differences              ,               exist and 

   
    

              

  
    

    

              

  
         

Here, the limit is taken in the metric space         and at the endpoints of      , we consider only one-sided 

derivatives. For customizing, in Definition 2.2, the first case corresponds to the H-derivative introduced in [28], so this 

differentiability concept is a generalization of the Hukuhara derivative. 

Definition 2.3. [10] Let           . We say that   is    -differentiable on       if   is differentiable in the sense (i) 

of Definition 2.2 and its derivative is denoted   
  . Similarly, we say that   is (2)-differentiable on       if   is 

differentiable in the sense (ii) of Definition 2.2 and its derivative is denoted   
  . 

The subsequent theorems show us a way to translate a fuzzy VIDE  into a system of crisp VIDEs without the need to 

consider the fuzzy setting approach. Anyhow, these theorems have many uses in the applied mathematics and the 

numerical analysis fields. 

Theorem 2.2. [10] Let            and put                       for each        . 
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i. if   is    -differentiable, then    and    are differentiable functions on       and    
            

       
 
    , 

ii. if   is    -differentiable, then    and    are differentiable functions on       and    
            

 
      

     . 

Next, we introduce the definitions for second fuzzy derivatives based on the selection of derivative type in each step 

of differentiation. For a given fuzzy-valued function  , we have two possibilities according to Definition 2.3 in order to 

obtain the derivative of   as follows:   
      and   

     . Anyhow, for each of these two derivative, we have again two 

possibilities of derivatives:   
    

         
    

       and   
    

         
    

      , respectively. 

Definition 2.4. [29] Let            and          , we say that   is      -differentiable on       if   
   exist and 

its    -differentiable. The second derivatives of   are denoted by     
  . 

Theorem 2.3. [29] Let   
            or   

           , where                       for each        : 

i. if   
   is    -differentiable, then   

  and   
 
 are differentiable functions on       and      

      
 

     
        

  
    , 

ii. if   
   is    -differentiable, then   

  and   
 
 are differentiable functions on       and      

      
 

    
  
      

       , 

iii. if   
   is    -differentiable, then   

  and   
 
 are differentiable functions on       and      

      
 

    
  
      

       ,  

iv. if   
   is (2)-differentiable, then   

  and   
 
 are differentiable functions on        and      

      
 

     
        

  
    . 

A fuzzy-valued function            is called continuous at a point          provided for arbitrary fixed    , 

there exists an     such that                  whenever          for each        . We say that   is 

continuous on       if   is continuous at each          such that the continuity is one-sided at endpoints   and  . 

In order to complete the expert results about the fuzzy calculus theory we finalize the present section by some 

preliminary information about the fuzzy integral. Following [26], we define the integral of a fuzzy-valued function using 

the Riemann integral concept. 

Definition 2.5. [26] Suppose that           , for each partition      
    

      
   of       and for arbitrary points 

        
    

  ,      , let             
      

   
    and              

      
  . Then the definite integral of 

     over           is defined by        
 

 
          provided the limit exists in the metric space        . 

Theorem 2.4. [26] Let            be continuous fuzzy-valued function and put                       for each 

       . Then        
 

 
 exist, belong to   ,    and    are integrable functions on      , and         

 

 
 
 

 

         
 

 
         

 

 
 . 

Lemma 2.2. [30] Let              be integrable fuzzy-valued functions and    . Then the following are hold: 

i.               is integrable, 

ii.           
 

 
        

 

 
                  

 

 
, 

iii.         
 

 
         

 

 
, 

iv.               
 

 
        

 

 
        

 

 
. 

It should be noted that the fuzzy integral can be also defined using the Lebesgue-type approach [25] or the Henstock-

type approach [31]. However, if   is continuous function, then all approaches yield the same value and results. 

Moreover, the representation of the fuzzy integral using Defintion 2.5 is more convenient for numerical calculations and 

computational mathematics. The reader is kindly requested to go through [25,26,30-32] in order to know more details 

about the fuzzy integral, including its history and kinds, its properties and modification for use, its applications and 

characteristics, its justification and conditions for use, and its mathematical and geometric properties. 

3. Algorithm of solving fuzzy VIDEs 

The topic of fuzzy VIDEs are one of the most important modern mathematical fields that result from modeling of 

uncertain physical, engineering, and economical problems. In this section, we study fuzzy VIDEs using the concept of 

strongly generalized differentiability in which fuzzy equation is converted into equivalent system of crisp equations for 

each type of differentiability. Furthermore, we present an algorithm to solve the new system which consists of four crisp 

VIDEs. 
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Problem formulation is normally the most important part of the process. It is the determination of  -cut representation 

form of nonlinear terms    , the selection of the differentiability type, and the separation of fuzzy initial conditions. 

Next, fuzzy VIDE (1.1) and (1.2) is first formulated as an crisp set of VIDEs subject to crisp set of initial conditions, 

after that, a new discretized form of fuzzy VIDE (1.1) and (1.2) is presented. Anyhow, by considering the parametric 

form for both sides of fuzzy VIDE (1.1) and (1.2), one can write 

     
      

 
             

      
 
                

      
 
  

 

 

  (3.1) 

subject to the crisp initial conditions 

                
             (3.2) 

in which the endpoints functions of             
      

 
 and               

      
 
 are given, respectively, as follows: 

            
      

 
                

                         
         

 
              

         

                                                             
       

                           
       

        
(3.3) 

 

              
      

 
                  

                           
         

 
                

         

                                                                 
       

 
                            

       
 
       

(3.4) 

Definition 3.1. Let            and            , we say that   is a      -solution for fuzzy VIDE (1.1) and (1.2) 

on      , if   
   and     

   exist on       and     
                 

                     
        

 

 
 with      

         . 

The object of the next algorithm is to implement a procedure to solve fuzzy VIDE in parametric form in term of its  -

cut representation. To do so, let   be a      -solution, utilizing Theorems 2.2 and 2.3, and considering fuzzy VIDE 

(1.1) and (1.2), we can thus translate it into system of crisp VIDEs, hereafter, called corresponding      -system. 

Anyhow, four IDEs systems are possible as given in the follow algorithm. 

Algorithm 3.1: To find      -solution of fuzzy VIDE (1.1) and (1.2), we discuss the following four cases: 

Input: The independent interval      , the unit truth interval      , and the fuzzy numbers    . 

Output: The      -differentiable solution of VIDE (1.1) and (1.2) on      . 

Step 1: Set             
      

 
                  

         
 
              

        , 

            Set               
      

 
                    

         
 
                

        , 

            Set              and            
 . 

 Case I.  If      is      -differentiable, then use    
        and      

      
 
, and solving fuzzy VIDE (1.1) and (1.2) 

translates into the following      -system: 

  
                      

          
 
                

     
 
   

 

 

 

  
       

 
              

          
 
                

     
 
   

 

 

 

 (3.5) 

  subject to the crisp initial conditions 

                    
          

      
 
  (3.6) 

 Case II. If      is      -differentiable, then use    
        and      

      
 
, and solving fuzzy VIDE (1.1) and (1.2) 

translates into the following      -system: 

  
       

 
              

          
 
                

     
 
   

 

 

 

  
                      

          
 
                

     
 
   

 

 

 

 (3.7) 
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  subject to the crisp initial conditions 

                    
          

 
     

 
  (3.8) 

Case III. If      is      -differentiable, then use    
        and      

      
 
, and solving fuzzy VIDE (1.1) and (1.2) 

translates into the following      -system: 

  
       

 
              

          
 
                

         
 

 

 

  
  
                    

          
 
                

         
 

 

 

 (3.9) 

  subject to the crisp initial conditions 

                    
      

 
   

 
        (3.10) 

Case IV. If      is      -differentiable, then use    
        and      

      
 
, and solving fuzzy VIDE (1.1) and (1.2) 

translates into the following      -system: 

  
                      

          
 
                

         
 

 

 

  
  
     

 
              

          
 
                

         
 

 

 

 (3.11) 

  subject to the crisp initial conditions 

                    
      

 
   

         (3.12) 

Step 2: Solve the obtained      -system of crisp VIDEs for       and      . 

Step 3: Ensure that      is      -solution on the interval      . 

Step 4: Construct a      -differentiable solution such that                   . 

Step 5: Stop. 

Sometimes, we can't decompose the membership function of the fuzzy solution      as a function defined on   for 

each        . Then, using identity (2.1) we can leave a      -solution in term of its  -cut representation form. To 

summarize the evolution process; our strategy for solving fuzzy VIDE (1.1) and (1.2) is based on the selection of 

derivatives type in the given fuzzy VIDE. The first step is to choose the type of solution and translate fuzzy VIDE into 

the corresponding system of equations with coupled crisp VIDE for each type of differentiability. The second step is to 

solve the obtained VIDEs system, while aim of the third step is to use the representation Theorem 2.1 in order to 

construct the fuzzy solution. 

Next, we construct a procedure based on Algorithm 3.1 to obtain the solutions of fuzzy VIDE (1.1) and (1.2). Here, 

we discussing and considering the      -differentiability in Case I of Algorithm 3.1 only; since the same procedure can 

be applied directly for the remaining cases. Anyhow, without the loss of generality and for simplicity, we assume that the 

function   takes the form                                      . So, based on this, fuzzy VIDE (1.1) can be 

written in a new discretized form as                                              
 

 
, in which the  -cut 

representation form of               should be of the form 

               
 

                
     

 
                

     
 
    (3.13) 

In order to design a scheme for solving fuzzy VIDE (1.1) and (1.2), we first replace it by the following equivalent 

crisp system of VIDEs: 

  
                      

                           
     

 
   

 

 

 

  
       

 
              

                           
     

 
   

 

 

 

 (3.14) 

subject to the crisp initial conditions 

                    
          

      
 
  (3.15) 

where the new functions       are given, respectively, as 
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 (3.16) 

Prior to applying the analytic or the numerical methods for solving system of crisp VIDEs (3.14) and (3.15), we 

suppose that the kernel function        is nonnegative for       and nonpositive for      . Therefore, system 

of crisp VIDEs (3.14) can be translated again into the following form: 

  
                     

                             
     

 
   

 

 

                      
     

 
   

 

 

 

  
 
     

 
              

                             
     

 
   

 

 

                      
     

 
   

 

 

 

 (3.17) 

4. Existence and uniqueness of four fuzzy solutions 

It is worth stating that in many cases, since fuzzy VIDEs are often derived from problems in physical world, existence 

and uniqueness are often obvious for physical reasons. Notwithstanding this, a mathematical statement about existence 

and uniqueness is worthwhile. Uniqueness would be of importance if, for instance, we wished to approximate the 

solutions. If two solutions passed through a point, then successive approximations could very well jump from one 

solution to the other with misleading consequences.  

Denote by              the set of all continuous mapping from       to   . The supremum metric on             is 

defined by                                  such that                                      for each 

               , where     is fixed. It is shown in [33] that                 is a complete metric space. On the 

other aspect as well, by              , we denote the set of all continuous mapping from       to    such that          

   exists as a continuous function. Anyhow, for             , we define the distance function                

                    such that                       . Indeed, it is shown in [33] that                  is 

also a complete metric space. 

The following lemma transforms a fuzzy VIDE into four fuzzy Volterra integral equations. Here the equivalence 

between equations means that any solution of an equation is a solution too for the other one with respect to the 

differentiability type used. 

Lemma 4.1. The fuzzy VIDE (1.1) and (1.2), where           
     and            

     are supposed to be 

continuous is equivalent to one of the following fuzzy Volterra integral equations: 

i.                               
 

 
   

 

 
                         

 

 
   

 

 
   

 

 
, when   is      - 

differentiable, 

ii.                                   
 

 
   

 

 
                             

 

 
   

 

 
   

 

 
, when   is 

     - differentiable, 

iii.                                    
 

 
   

 

 
                         

 

 
   

 

 
   

 

 
 , when   is      - 

differentiable, 

iv.                                        
 

 
   

 

 
                             

 

 
   

 

 
   

 

 
 , 

when   is      - differentiable. 

Proof. Since   and   are continuous functions; so they are integrable. Now, we determine the equivalent integral forms 

of fuzzy VIDE (1.1) and (1.2) under each type of strongly generalized differentiability as follows. Firstly, let us consider 

  is      -differentiable, then the equivalent integral form of fuzzy VIDE (1.1) and (1.2) can be written by 

implementation of fuzzy integration on both sides of the original equation two times as follows: 

                              
 

 

                       
 

 

   
 

 

  (4.1) 

for         and again for        , one can write 

                                     
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

  (4.2) 
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Secondly, let us consider   is      -differentiable, then the equivalent integral form of fuzzy VIDE (1.1) and (1.2) can be 

written by implementation of fuzzy integration on both sides of the original equation two times as 

                                  
 

 

                           
 

 

   
 

 

  (4.3) 

for        , again for        , we must have 

                                          
 

 

   
 

 

                             
 

 

   
 

 

   
 

 

   

(4.4) 

Thirdly, if   is      -differentiable, then the equivalent form of fuzzy VIDE (1.1) and (1.2) can be written as  

                              
 

 

                       
 

 

   
 

 

  (4.5) 

for        , which is equivalent for         to the integral equation of the form 

                                          
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

   

(4.6) 

Fourthly, since   is      -differentiable, then one can write 

                                  
 

 

                           
 

 

   
 

 

  (4.7) 

for         and for        , we can also write 

                                              
 

 

   
 

 

                             
 

 

   
 

 

   
 

 

   

(4.8) 

which is equivalent to the form of part (iv). 

In mathematics, the Banach fixed-point theorem; also known as the contraction mapping theorem; is an important 

tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of 

metric spaces, and provides a constructive method to find those fixed points. The following results (Definition 4.1 and 

Theorem 4.1) were collected from [34]. 

Definition 4.1. Let        be a metric space. A mapping       is said to be a contraction mapping, if there exist a 

positive real number   with     such that                        for each      . 

We observe that, applying   to each of the two points of the space contracts the distance between them; obviously   

is continuous. Anyhow, a point     is called a fixed point of the mapping       if       . Next, we present the 

Banach fixed-point theorem. 

Theorem 4.1. Any contraction mapping   of a nonempty complete metric space        into itself has a unique fixed 

point. 

Lemma 4.2. The real-valued functions               with     represented by 

     
 

 
         

     
 

  
                

     
 

  
               

  

 
        

 (4.9) 

are continuous nondecreasing functions on      . Furthermore,                    ,                    ,      

              , and                          . 
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Proof. Clearly       are continuous functions on       for each    . Since             ,              , 

and       
 

 
         for each         and    ; thus,       are nondecreasing functions. As a result one can 

conclude that                    ,                    , and                    . On the other aspect as well, 

using the limit functions techniques it yields that 

   
    

                

    
    

 
 

 
         

 

  
                

 

  
               

  

 
        

    

(4.10) 

It should be mention here that Lemma 4.2 guarantees the existence of a unique fixed point for the next theorem. In 

other word, an existence of a unique solution for fuzzy VIDE (1.1) and (1.2) for each type of differentiability. 

Throughout this paper, we will try to give the results of the all theorems; however, in some cases we will switch 

between the results obtained for the four type of differentiability in order not to increase the length of the paper without 

the loss of generality for the remaining results. Actually, in the same manner, we can employ the same technique to 

construct the proof for the omitted cases. 

Theorem 4.2. Let           
     and            

     are continuous fuzzy-valued functions. If there exists 

              such that 

                                                                          

                                                                              
 (4.11) 

for each           and                           . Then, the fuzzy VIDE (1.1) and (1.2) has four unique solutions 

on       for each type of differentiability. 

Proof. Without the loss of generality, we consider the      -differentiability only; actually, in the same manner, we can 

employ the same technique for the remaining types. For each         and         define the operator    and      , 

respectively, as follows: 

                                 
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

 

                             
 

 

                       
 

 

   
 

 

 

 (4.12) 

Thus,             is continuous and                                    . Now, we are going to show that 

the operator    satisfies the hypothesis of the Banach-fixed point theorem. For each                     , we have 

                                 

    
       

                             
       

                            

    
       

                             
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

  

                        
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

       

         
       

                        
 

 

                       
 

 

   
 

 

  

                   
 

 

                       
 

 

   
 

 

       

(4.13) 
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where          
 

          
  

 
  

 

  
         

 

 
       . But since               from Lemma 

4.2, So, we can choose     such that 

                        (4.14) 

Anyhow, G is a contractive mapping; whilst the unique fixed point of   is in the space             . Using that    

is the integral of a continuous function, we conclude that it is actually in the space             . Hence, by the Banach 

fixed-point theorem, fuzzy VIDE (1.1) and (1.2) has a unique fixed point               . That is, a contiunuous 

function   on       satisfying     . As a result, writing              out, we have by Eq. (4.12) 

                              
 

 

   
 

 

                         
 

 

   
 

 

   
 

 

  (4.15) 

On the other aspect as well, differentiate both sides Eq. (4.15) and substitute     to obtain fuzzy VIDE (1.1) and 

(1.2). Hence, every solution of fuzzy VIDE (1.1) and (1.2) must satisfy Eq. (4.15), and conversely. So, the proof of the 

theorem is complete. 

Remark 4.1: The continuous nonlinear terms           
     and            

     are said to satisfy a 

generalized Lipchitz condition relative to their last argument in fuzzy sense with respect to the metric space         if 

the conditions of Eq. (4.11) of Theorem 4.2 are hold. 

5. Generalized characterization theorem 

The characterization theorem shows us the following general hint on how to deal with the analytical or the numerical 

solutions of fuzzy VIDEs. We can translate the original fuzzy VIDE equivalently into a system of crisp VIDEs. The 

solutions techniques of the system of crisp VIDEs are extremely well studied in the literature, so any method we can 

consider for the system of crisp VIDEs, since the solution will be as well solution of the fuzzy VIDE under study. As a 

conclusion one does not need to rewrite the methods of solution for system of crisp VIDEs in fuzzy setting, but instead, 

we can use the methods directly on the obtained crisp system. 

A function              is said to be equicontinuous if for any     and any                     , we 

have                                      , whenever                                , and uniformly 

bounded on any bounded set. Similarly, for a function defined on           with the need for attention to change the 

metric used on          . 

Theorem 5.1. Consider the fuzzy VIDE (1.1) and (1.2), where           
     and            

     are such 

that  

i.             
      

 
                       

       
                           

       
      , 

              
      

 
                         

       
                             

       
      , 
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ii.           and           are equicontinuous functions and uniformly bounded on any bounded set, 

iii. there exists real-finite constants           such that 

                                                                                         , 

                                                                                             , 

for each              ,        , and                      . Then, for      -differentiability, the fuzzy VIDE 

(1.1) and (1.2) and the corresponding      -system are equivalent. 

Proof. Since the proof procedure is similar for each type of differentiability with respect to the corresponding      -

system. Anyhow, we assume that   is      -differentiable (Case I of Algorithm 3.1) without the loss of generality. The 

equicontinuity of           and           implies the continuity of   and  , respectively. Furthermore, the Lipchitz 

property of condition (iii) ensures that   and   are satisfies a Lipchitz property in the metric space         as follows: 

                                       
       

                    
 
                  

 
  

     
       

      
 
                

 
                  

 
                

 
                 

     
       

                          
       

 
    

                
      

      
 

                             
       

     

                
      

      
 

        

     
       

                          
 
          

       
      

 
      

 

         
 
     

 

 
      

     
       

                        
       

          
 
        

 
  

                                  

(5.1) 

Whilst on the other aspect as well, by similar fashion, it is easy to conclude that 

                                                                         (5.2) 

By the continuity of   and  , from this last Lipchitz conditions of Eqs. (5.1) and (5.2), and the boundedness property of 

condition (ii), it follows that fuzzy VIDE (1.1) and (1.2) has a unique solution on      . Whilst, the solution of fuzzy 

VIDE (1.1) and (1.2) is      -differentiable and so, by Theorems 2.2 and 2.3, the functions       and   
    

 
 are 

differentiable on      . As a conclusion one can obtained that               is a solution of crisp VIDEs (3.5) and (3.6). 

Conversely, suppose that we have a solution               with         is fixed, of fuzzy VIDE (1.1) and (1.2) 

(note that this solution exists by property of condition (iii)). Whilst, the Lipchitz conditions of Eqs. (5.1) and (5.2) 

implies the existence and uniqueness of fuzzy solution      . Indeed, since    is      -differentiable, then        and        

the endpoints of          are a solution of crisp VIDEs (3.5) and (3.6) (note that       and    
      are obviously valid level 

sets of fuzzy-valued functions). But since the solution of crisp VIDEs (3.5) and (3.6) is unique, we have          

               
 

              
 

        . That is the fuzzy VIDE (1.1) and (1.2) and the system of crisp VIDEs (3.5) 

and (3.6) are equivalent. This completes the proof of the theorem. 

The purpose of the next corollary is not to make an essential improvement of Theorem 5.1, but rather to give alternate 

conditions under which fuzzy VIDE (1.1) and (1.2) and the corresponding system of crisp VIDEs are equivalent. 

Corollary 5.1. Suppose that           
     and            

     are such that the condition (i) of Theorem 

5.1 hold. If there exists real-finite constants           such that 

                                                

                                           
  

 
                                  

                                                      

                                                                                                

(5.3) 

for each                ,        , and                      . Then, for      -differentiability, the fuzzy VIDE (1.1) 

and (1.2) and the corresponding      -system are equivalent. 
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Proof. Here, we consider the      -differentiability only; actually, in the same manner, we can employ the same 

technique for the remaining types of      -differentiability. To this end, assume the hypothesis of Corollary 5.1, then 

the conditions (i) and (iii) of Theorem 5.1 are clearly hold. To establish condition (ii), apply the following: fix    , 

choose           and          , and suppose                         and                        . 

Then, for each        , one can write 

                                           

                                                                                                             

                                                                                                    

                                                                   

(5.4) 

Next, we want to show that           are uniformly bounded on any bounded set. To do so, let   be any bounded subset of 

        . Then there exist constants                           such that if                , then        , 

         ,          ,          , and           . For the conduct of proceedings in the proof, fix          and 

    , further, let                                                    , and           

         , where           is the support of      . Suppose that         and    . Then one can write 

               
                                                             (5.5) 

while on the other aspect as well, the triangle inequality will gives 

                                   
         

              

                                                        
           

              

                                                              

(5.6) 

But since                                             or                        , therefore      is uniformly 

bounded on  . Similarly,      is uniformly bounded on any bounded set. The same procedure can be applied directly for 

         . Hence, fuzzy VIDE (1.1) and (1.2) and the corresponding      -system are equivalent by Theorem 5.1. 

Remark 5.1. The following requirement conditions on   and  : 

                 
 

                       
       

 
                          

       
 
      

                   
 

                         
       

                             
       

       
 (5.7) 

are fulfilled by any fuzzy-valued functions obtained from continuous real-valued functions by Zadeh’s extension 

principle and Nguyen theorem [35-37]. So these conditions are not too restrictive. 

6. Conclusion 

Existence and uniqueness theorem is the tool which makes it possible for us to conclude that there exists only one 

solution to a given problem which satisfies a constraint condition. How does it work? Why is it the case? We believe it 

but it would be interesting to see the main ideas behind. To this end, in this paper we investigated and proved the 

existence, uniqueness, and other properties of solutions of a certain nonlinear second-order fuzzy VIDE under strongly 

generalized differentiability by considered four cases of differentiability. We make use of the standard tools of the fixed 

point theorem and a certain integral inequality with explicit estimate to establish the main results. In addition to that, 

some results for characterizing solution by an equivalent system of crisp VIDEs are presented and proved. 
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αβ-statistical convergence and strong αβ-convergence of
order γ for a sequence of fuzzy numbers†

Zeng-Tai Gonga,∗, Xue Fenga,b

aCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
bSchool of Mathematics and Statistics, Qinghai University for Nationalities, Xining 810007, China

Abstract The purpose of this paper is to introduce the concepts of αβ-statistical convergence of order
γ and strong αβ-convergence of order γ for a sequence of fuzzy numbers. At the same time, some
connections between αβ-statistical convergence of order γ and strong αβ-convergence of order γ for a
sequence of fuzzy numbers are established. It also shows that if a sequence of fuzzy numbers is strongly
αβ-convergent of order γ then it is αβ-statistically convergent of order γ.
Keywords: Fuzzy numbers; sequence of fuzzy numbers; statistical convergence.

1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [1] and subsequently
several authors have discussed various aspects of theory and applications of fuzzy sets. Recently Matloka
[2] introduced bounded and convergent sequences of fuzzy numbers, studied some of their properties, and
showed that every convergent sequence of fuzzy numbers is bounded. In addition, sequences of fuzzy
numbers have been discussed by Aytar and Pehlivan [3], Basarir and Mursaleen [4,5] and many others.
The notion of statistical convergence was introduced by Fast [6] which is a very useful functional tool for
studying the convergence problems of numerical sequences. Some applications of statistical convergence
in number theory and mathematical analysis can be found in [7, 8]. The idea is based on the notion
of natural density of subsets of N, and the natural density of s subset A of N is denoted by δ(A) and
defined by

δ(A) = lim
n→∞

1
n
|{k < n : k ∈ A}|.

In 2014, Hüseyin Aktuǧlu [9] introduced the concepts of αβ-statistically convergence and αβ-statistically
convergence of order γ for a sequence, which shows that αβ-statistically convergence is a non-trivial
extension of ordinary and statistical convergences.

In this paper, we define the sequence spaces of αβ-statistical convergence of order γ and strong αβ-
convergence of order γ, and testify some properties of these spaces. At the same time, some connections
between αβ-statistical convergence of order γ and strong αβ-convergence for a sequence of order γ of
fuzzy numbers are established. In Section 2 we will give a brief overview about fuzzy numbers, statistical
convergence, and present δα,β(k, γ). In Section 3 we show that αβ-statistical convergence for a sequence
of fuzzy numbers can reduce to statistical convergence, λ-statistical convergence, and lacunary statistical
convergence. Meanwhile, strong αβ-convergence for a sequence of fuzzy numbers can reduce to strong
convergence, strong λ−convergence and strongly lacunary convergence.

2. Definitions and preliminaries

Let Ã ∈ F̃ (R) be a fuzzy subset on R. If Ã is convex, normal, upper semi-continuous and has compact
support, we say that Ã is a fuzzy number. Let R̃c denote the set of all fuzzy numbers [10,11,12].

For Ã ∈ R̃c, we write the level set of Ã as Aλ = {x : A(x) ≥ λ} and Aλ = [A−λ , A+
λ ]. Let Ã, B̃ ∈ R̃c,

we define Ã+ B̃ = C̃ iff Aλ +Bλ = Cλ, λ ∈ [0, 1] iff A−λ +B−λ = C−λ and A+
λ +B+

λ = C+
λ for any λ ∈ [0, 1].

†Supported by the Natural Scientific Fund of China (11461062, 61262022).
∗Corresponding Author:Zeng-Tai Gong. Tel.: +869317971430. E-mail addresses: zt-gong@163.com
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Define
D(Ã, B̃) = sup

λ∈[0,1]
d(Aλ, Bλ) = sup

λ∈[0,1]
max{|A−λ −B−λ |, |A

+
λ −B+

λ |},

where d is the Hausdorff metric. D(Ã, B̃) is called the distance between Ã and B̃ [11,13,14].
Using the results of [10,11], we see that
(1) (R̃c, D) is a complete metric space,
(2) D(u + w, v + w) = D(u, v),
(3) D(ku, kv) = |k|D(u, v), k ∈ R,
(4) D(u + v, w + e) ≤ D(u, w) + D(v, e),
(5) D(u + v, 0̄) ≤ D(u, 0̄) + D(v, 0̄),
(6) D(u + v, w) ≤ D(u, w) + D(v + 0̄),

where u, v, w, e ∈ R̃c, 0̃(t) =

{
1, t = (0, 0, 0..., 0),

0, otherwise.
Definitions 2.1.[15] A sequence {xn} of fuzzy numbers is said to be statistically convergent to a fuzzy
number x0 if for each ε > 0 the set A(ε) = {n ∈ N : D(xn, x0) ≥ ε} has natural density zero. The fuzzy
number x0 is called the statistical limit of the sequence {xn} and we write st- lim

n→∞
xn = x0.

Now let α(n) and β(n) be two sequences of positive numbers satisfying the following conditions:
(1) α(n) and β(n) are both non-decreasing,
(2) β(n) ≥ α(n),
(3) β(n)− α(n) →∞, as n →∞,

and let Λ denote the set of pairs (α, β) satisfying (1), (2) and (3).
For each pair (α, β) ∈ Λ, 0 < γ ≤ 1 and K ⊂ N, we define δα,β(K, γ) in the following way:

δα,β(K, γ) = lim
n

|K ∩ Pα,β
n |

(β(n)− α(n) + 1)γ

where Pα,β
n is the closed interval [α(n), β(n)] and |S| represents the cardinality of S.

Lemma 2.1. Let K and M be two subsets of N and 0 < γ ≤ δ ≤ 1. Then for all (α, β) ∈ Λ, we have
(1) δα,β(∅, γ)=0,
(2) δα,β(N, 1)=1,
(3) if K is a finite set, the δα,β(K, γ) = 0,
(4) K ⊂ M ⇒ δα,β(K, γ) ≤ δα,β(M,γ),
(5) δα,β(K, δ) ≤ δα,β(K, γ).

3. Main results

Definition 3.1. A sequence of fuzzy numbers is said to be αβ-statistically convergent of order γ to x0,
if for every ε > 0,

δα,β({k : D(xk, x0) ≥ ε}, γ) = lim
n

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}|

(β(n)− α(n) + 1)γ
= 0.

In this case, we write S̃α,β
γ − lim xk = x0. The set of all αβ-statistically convergent of order γ will be

denoted simply by S̃α,β
γ .

For γ = 1, we say that x is αβ-statistically convergent to x0 and this is denoted by S̃α,β − lim xk = x0.
The following example shows that Definition 3.1 is non-trivial generalization of both ordinary and

statistical convergence.
Example 3.1. Taking α(n) = 1 and β(n) = n

1
γ , where 0 < γ < 1 is fixed, then

δα,β({k : D(xk, x0) ≥ ε}, γ) = lim
n

|{k ∈ [1, n
1
γ ] : D(xk, x0) ≥ ε}|

n

and, in particular, for γ = 1
2 we have

δα,β({k : D(xk, x0) ≥ ε}, 1
2
) = lim

n

|{k ∈ [1, n2] : D(xk, x0) ≥ ε}|
n

.
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Consider the sequence of fuzzy numbers

xk(t) =



t + 1, − 1 ≤ t ≤ 0, k 6= n2,

−t + 1, 0 < t ≤ 1, k 6= n2,

t, 0 ≤ t ≤ 1, k = n2,

2− t, 1 < t ≤ 2, k = n2,

0, others;

x0(t) =


t + 1, − 1 ≤ t ≤ 0,

−t + 1, 0 < t ≤ 1,

0, others;

Obviously st− lim
n

xk = x0, however

δα,β({k : D(xk, x0) ≥ ε}, 1
2
) = lim

n

|{k ∈ [1, n2] : D(xk, x0) ≥ ε}|
n

6= 0.

for all ε > 0, S̃α,β
γ − lim xk 6= x0.

Definition 3.2. Based on strongly αβ-convergence of order γ, for every ε > 0, we define the following
sets

W̃α,β
γ =

{
x = {xk} : lim

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, x0) = 0
}
,

W̃α,β
γ0 =

{
x = {xk} : lim

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, 0̄) = 0
}
,

W̃α,β
γ∞ =

{
x = {xk} : sup

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, 0̄) < ∞
}
,

where

0̃(t) =

{
1, t = (0, 0, 0..., 0),

0, otherwise.

If x ∈ W̃α,β
γ , we say that x is strongly αβ-convergent of order γ to x0 and we write W̃α,β

γ − lim xk = x0.

For γ = 1, we say that x is strongly αβ-convergent to x0 and this is denoted by W̃α,β − lim xk = x0.

Remark 3.1. Take α(n) = 1, β(n) = n and γ = 1, then Pα,β
n = [1, n] and

δα,β({k : D(xk, x0) ≥ ε}, γ) = lim
n

|{k ≤ n : D(xk, x0) ≥ ε}|
n

= 0.

This shows that in this case, αβ-statistical convergence of order γ reduces to statistical convergence which
we denoted by S̃. Meanwhile, the sequences space W̃α,β

γ reduces to W̃ , W̃α,β
γ0 reduces to W̃0 and W̃α,β

γ∞

reduces to W̃∞. Where W̃ , W̃0 and W̃∞ are defined by Mursaleen and Basarir [16].

W̃ =
{
x = {xk} : lim

n

1
n

n∑
k=1

D(xk, x0) = 0
}
,

W̃0 =
{
x = {xk} : lim

n

1
n

n∑
k=1

D(xk, 0̄) = 0
}
,

W̃∞ =
{
x = {xk} : sup

n

1
n

n∑
k=1

D(xk, 0̄) < ∞
}
.

Remark 3.2. Let λn be a non-decreasing sequence of positive numbers tending to ∞ such that λn+1 ≤
λn + 1, λ1 = 1 and In = [n − λn + 1, n]. We choose α(n) = n − λn + 1, β(n) = n and γ = 1, then
Pα,β

n = [n− λn + 1, n]. Moreover,

δα,β({k : D(xk, x0) ≥ ε}, γ) = lim
n

|{k ∈ In : D(xk, x0) ≥ ε}|
λn

= 0.
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This shows that in this case, αβ-statistical convergence of order γ reduces to λ-statistical convergence
which we denoted by S̃(λ). Meanwhile, the sequences space W̃α,β

γ reduces to W̃ (λ), W̃α,β
γ0 reduces to

W̃0(λ) and W̃α,β
γ∞ reduces to W̃∞(λ). Where W̃ (λ), W̃0(λ) and W̃∞(λ) are defined by Savas [17].

W̃ (λ) =
{
x = {xk} : lim

n

1
λn

∑
k∈In

D(xk, x0) = 0
}
,

W̃0(λ) =
{
x = {xk} : lim

n

1
λn

∑
k∈In

D(xk, 0̄) = 0
}
,

W̃∞(λ) =
{
x = {xk} : sup

n

1
λn

∑
k∈In

D(xk, 0̄) < ∞
}
.

Remark 3.3. A lacunary sequence θ = {kr} is an increasing sequence such that k0 = 0, hr = kr−kr−1 →
∞, r → ∞ and Ir = (kr−1, kr]. Take α(r) = kr−1 + 1, β(r) = kr and γ = 1, then Pα,β

r = [kr−1 + 1, kr].
However (kr−1, kr] ∩N = [kr−1 + 1, kr] ∩N, we have

δα,β({k : D(xk, x0) ≥ ε}, γ) = lim
r

|{k ∈ Ir : D(xk, x0) ≥ ε}|
hr

= 0.

This shows that in this case, αβ-statistical convergence of order γ coincides with lacunary statistical
convergence which we denoted by S̃(θ). Meanwhile, the sequences space W̃α,β

γ reduces to W̃ (θ), W̃α,β
γ0

reduces to W̃0(θ) and W̃α,β
γ∞ reduces to W̃∞(θ).

Where
W̃ (θ) =

{
x = {xk} : lim

r

1
hr

∑
k∈Ir

D(xk, x0) = 0
}
,

W̃0(θ) =
{
x = {xk} : lim

r

1
hr

∑
k∈Ir

D(xk, 0̄) = 0
}
,

W̃∞(θ) =
{
x = {xk} : sup

r

1
hr

∑
k∈Ir

D(xk, 0̄) < ∞
}
.

Theorem 3.1. Let x = {xk}, y = {yk} be two sequences of fuzzy numbers. We have
(1) If S̃α,β

γ − lim xk = x0 and c ∈ R, then S̃α,β
γ − lim cxk = cx0;

(2) If S̃α,β
γ − lim xk = x0, S̃α,β

γ − lim yk = y0, then S̃α,β
γ − lim(xk + yk) = x0 + y0.

Proof. (1) The proof is obvious when c=0. Suppose that c 6= 0, then the proof of (1) follows from the
following inequality,

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(cxk, cx0) ≥ ε}| ≤ 1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(xk, x0) ≥
ε

|c|
}|.

(2)Suppose that S̃α,β
γ − lim xk = x0, S̃α,β

γ − lim yk = y0, then

lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥

ε

2
}| = 0,

lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(yk, y0) ≥

ε

2
}| = 0.

Since

D(xk + yk, x0 + y0) ≤ D(xk + yk, x0 + yk) + D(x0 + yk, x0 + y0) = D(xk, x0) + D(yk, y0).

For ε > 0, we have

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk + yk, x0 + y0) ≥ ε}|

≤ 1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥

ε

2
}|+ 1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(yk, y0) ≥
ε

2
}|
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→ 0, n →∞. Hence S̃α,β
γ − lim(xk + yk) = x0 + y0.

Definition 3.3. The sequence of fuzzy numbers x = {xk} is a αβ-statistically Cauchy sequence of order
γ, if for every ε > 0 there exists a number N(= N(ε)) such that

lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, xN ) ≥ ε}| = 0.

Theorem 3.2. Let x = {xk} be a sequence of fuzzy numbers. It is a αβ-statistically convergent sequence
of order γ if and only if x is a αβ-statistical Cauchy sequence of order γ.

Proof. Suppose that S̃α,β
γ − lim xk = x0 and let ε > 0, then

lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}| = 0,

and N is choosen such that lim
n

1
(β(n)−α(n)+1)γ |{k ∈ Pα,β

n : D(xN , x0) ≥ ε}| = 0,

then we have

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, xN ) ≥ ε}|

≤ 1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}|+ 1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(xN , x0) ≥ ε}|.

Hence x = {xk} is a αβ-statistically Cauchy sequence of order γ.
Next, assume that x = {xk} be αβ-statistical Cauchy sequence of order γ, then there exists a strictly

increasing sequence Np of positive integers such that lim
n

1
(β(n)−α(n)+1)γ |{k ∈ Pα,β

n : D(xk, xNp) ≥ εp}| = 0,

where εp : p = 1, 2, 3, · · · is a strictly decreasing sequence of numbers converging to zero for each p and q
pair (p 6= q) of positive integers, we can select Kpq such D(xKpq , xNp) < εp and D(xKpq , xNq) < εq.
It follows that

D(xNp , xNq) ≤ D(xKpq , xNp) + D(xKpq , xNq) < εp + εq → 0, p, q →∞.

Hence, {xNp} : p = 1, 2, · · · is a Cauchy sequence and statisfies the Cauchy convergence criterion. Let
{xNp} converge to x0. Since εp : p = 1, 2, · · · → 0, so for ε > 0, there exists p0 such that εp0 < ε

2 and
D(xNp , x0) < ε

2 , p ≥ p0, then

D(xk, x0) ≤ D(xk, xNp0
) + D(xNp0

, x0) ≤ D(xk, xNp0
) +

ε

2
,

we have

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}| ≤ 1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(xk, xNP0
) ≥ ε

2
}|

≤ 1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, xNP0

) ≥ εp0}| → 0, n →∞.

This shows that x = {xk} is αβ-statistically convergent of order γ.
Theorem 3.3. Let x = {xk} is a sequence of fuzzy numbers. There exsit a αβ-statistically convergent
of order γ sequence y = {yk} such that xk = yk for almost all k according to γ, then x = {xk} is a
αβ-statistically convergent sequence of order γ.

Proof. Let xk = yk for almost all k according to γ and S̃α,β
γ − lim yk = x0. Suppose ε > 0. Then for each

n,
{k ∈ Pα,β

n : D(xk, x0) ≥ ε} ⊆ {k ∈ Pα,β
n : D(yk, x0) ≥ ε} ∪ {k ∈ Pα,β

n : xk 6= yk}.
Since xk = yk for almost all k according to γ, the latter set contains a fixed number of integers, say
S = S(ε). Then

lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}|

≤ lim
n

1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(yk, x0) ≥ ε}|+ lim

n

S

(β(n)− α(n) + 1)γ
,
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Hence S̃α,β
γ − lim xk = x0, i.e. x = {xk} is a αβ-statistically convergent sequence of order γ.

Theorem 3.4. Let 0 < γ1 ≤ γ2 ≤ 1, then S̃α,β
γ1 ⊆ S̃α,β

γ2 .
Proof. Let 0 < γ1 ≤ γ2 ≤ 1. Then we have

1
(β(n)− α(n) + 1)γ2

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}| ≤ 1

(β(n)− α(n) + 1)γ1
|{k ∈ Pα,β

n : D(xk, x0) ≥ ε}|,

for every ε > 0 and so we get S̃α,β
γ1 ⊆ S̃α,β

γ2 .
Corollary 3.1. If a sequence x = {xk} of fuzzy numbers is αβ-statistically convergent of order γ, then
it is αβ-statistically convergent, for each γ ∈ (0, 1], i.e. S̃α,β

γ ⊆ S̃α,β.

Theorem 3.5. The sequence spaces of fuzzy numbers W̃α,β
γ0 , W̃α,β

γ and W̃α,β
γ∞ satisfy the relationship:

W̃α,β
γ0 ⊂ W̃α,β

γ ⊂ W̃α,β
γ∞ .

Proof. Let x = {xk} ∈ W̃α,β
γ . Note that

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, 0̄)

≤ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, x0) +
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(x0, 0̄)

≤ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, x0) +
1

(β(n)− α(n) + 1)γ
D(x0, 0̄),

according to the above inequality, we have sup
n

1
(β(n)−α(n)+1)γ

∑
k∈P α,β

n

D(xk, 0̄) < ∞, thus we get x ∈ W̃α,β
γ∞ .

The proof of W̃α,β
γ0 ⊂ W̃α,β

γ is obvious.
Theorem 3.6. The sequence spaces of fuzzy numbers W̃α,β

γ0 , W̃α,β
γ and W̃α,β

γ∞ are linear spaces over the
set of real numbers.
Proof. Let x = {xk}, y = {yk} ∈ W̃α,β

γ0 , α, β ∈ R. In order to get result we need to prove the following

lim
n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(αxk + βyk, 0̄) = 0.

Since x = {xk}, y = {yk} ∈ W̃α,β
γ0 , we have

lim
n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, 0̄) = 0,

lim
n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(yk, 0̄) = 0.

And D(αxk + βyk, 0̄) ≤ D(αxk, 0̄) + D(βyk, 0̄) = |α|D(xk, 0̄) + |β|D(yk, 0̄),
we get

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(αxk + βyk, 0̄) ≤ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(αxk, 0̄) + D(βyk, 0̄)

]
≤ |α|

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, x0) +
|β|

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(yk, x0) → 0, n →∞.

Thus αx + βy ∈ W̃α,β
γ0 . Similarly it can be shown that the other spaces are also linear spaces.

Theorem 3.7. Let 0 < γ ≤ 1. If a sequence x = {xk} of fuzzy number is strongly αβ-convergent of
order γ, then it is αβ-statistically convergent of order γ, i.e. W̃α,β

γ ⊂ S̃α,β
γ .
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Proof. Given ε > 0 and any sequence x = {xk} of fuzzy numbers, we write∑
k∈P α,β

n

D(xk, x0) =
∑

k∈P α,β
n ,D(xk,x0)<ε

D(xk, x0) +
∑

k∈P α,β
n ,D(xk,x0)≥ε

D(xk, x0)

≥
∑

k∈P α,β
n ,D(xk,x0)≥ε

D(xk, x0) ≥ |{k ∈ Pα,β
n : D(xk, x0) ≥ ε}| · ε

and hence

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

D(xk, x0) ≥
1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(xk, x0) ≥ ε}| · ε.

Here, it can be easily to see that if a sequence x = {xk} of fuzzy number is strongly αβ-convergent of
order γ, then it is αβ-statistically convergent of order γ.
Corollary 3.2. Let 0 < γ ≤ η ≤ 1. If a sequence x = {xk} of fuzzy number is strongly αβ-convergent of
order γ, then it is αβ-statistically convergent of order η, i.e. W̃α,β

γ ⊂ S̃α,β
η .

Definition 3.4. Let p = {pk} be any sequence of strictly positive real numbers. A sequence x = {xk} of
fuzzy numbers is said to be strongly αβ(p)-convergent of order γ, if for γ ∈ (0, 1], there is a fuzzy number
x0 such that

lim
n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk = 0,

we denote the set of all strongly αβ(p)-convergent of order γ for fuzzy sequences by W̃α,β
γ (p). Where

W̃α,β
γ (p) =

{
x = {xk} : lim

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk = 0
}
,

W̃α,β
γ0 (p) =

{
x = {xk} : lim

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, 0̄)

]pk = 0
}
,

W̃α,β
γ∞ (p) =

{
x = {xk} : sup

n

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, 0̄)

]pk < ∞
}
.

It similar to the proofs of Theorem 3.5, 3.6, for strongly αβ(p)-convergent of order γ we have the
following results.
Theorem 3.8. The sequence spaces of fuzzy numbers W̃α,β

γ0 (p), W̃α,β
γ (p) and W̃α,β

γ∞ (p) satisfy the rela-
tionship: W̃α,β

γ0 (p) ⊂ W̃α,β
γ (p) ⊂ W̃α,β

γ∞ (p).
Theorem 3.9. The sequence spaces of fuzzy numbers W̃α,β

γ0 (p), W̃α,β
γ (p) and W̃α,β

γ∞ (p) are linear spaces
over the set of real numbers.
Theorem 3.10. Let 0 < pk ≤ qk, and { qk

pk
} be bounded. Then W̃α,β

γ (q) ⊂ W̃α,β
γ (p).

Proof. Let x = {xk} ∈ W̃α,β
γ (q), and tk =

[
D(xk, x0)

]qk , λk = pk
qk

, 0 < λk ≤ 1. Let 0 < λ < λk,

and define uk =

{
tk, tk ≥ 1,

0, tk < 1,
vk =

{
0, tk ≥ 1,

tk, tk < 1,
then tk = uk + vk, tλk

k = uλk
k + vλk

k , and

uλk
k ≤ uk ≤ tk, vλk

k ≤ vλ
k . We have

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk =
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

tλk
k

=
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

(uλk
k + vλk

k ) ≤ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

tk

+
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

vλ
k → 0, n →∞.
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Since x = {xk} ∈ W̃α,β
γ (q), we have lim

n

1
(β(n)−α(n)+1)γ

∑
k∈P α,β

n

tk = 0. And since vk < 1, λ < 1, we

get lim
n

1
(β(n)−α(n)+1)γ

∑
k∈P α,β

n

vλ
k = 0. Hence, W̃α,β

γ (q) ⊂ W̃α,β
γ (p).

In the following theorem, we shall discuss the relationship between the space W̃α,β
γ (p) and S̃α,β

γ .
Theorem 3.11. Let 0 < h = inf

k
pk ≤ sup

k
pk = H < ∞, l∞ be a set of all bounded sequence of fuzzy

numbers. Then
(1) W̃α,β

γ (p) ⊂ S̃α,β
γ ;

(2) If x = {xk} ∈ l∞ ∩ S̃α,β
γ , then x = {xk} ∈ W̃α,β

γ (p);
(3) l∞ ∩ S̃α,β

γ = l∞ ∩ W̃α,β
γ (p).

Proof. (1) Let x = {xk} ∈ W̃α,β
γ (p), Note that

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk ≥ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)≥ε

[
D(xk, x0)

]pk

≥ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)≥ε

min{εh, εH}

=
1

(β(n)− α(n) + 1)γ
|{k ∈ Pα,β

n : D(xk, x0) ≥ ε}| ·min{εh, εH},

follow from the above inequality, we have lim
n

1
(β(n)−α(n)+1)γ |{k ∈ Pα,β

n : D(xk, x0) ≥ ε}| = 0. Thus we get

x = {xk} ∈ S̃α,β
γ .

(2) Let x = {xk} ∈ l∞ ∩ S̃α,β
γ , then there is a constant T > 0, such that D(xk, x0) ≤ T. Therefore

1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk

=
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)≥ε

[
D(xk, x0)

]pk +
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)<ε

[
D(xk, x0)

]pk

≤ 1
(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)≥ε

max{T h, TH}+
1

(β(n)− α(n) + 1)γ

∑
k∈P α,β

n ,D(xk,x0)<ε

εpk

≤ 1
(β(n)− α(n) + 1)γ

|{k ∈ Pα,β
n : D(xk, x0) ≥ ε}| ·max{T h, TH}

+max{εh, εH},

follow from the above inequality, we have lim
n

1
(β(n)−α(n)+1)γ

∑
k∈P α,β

n

[
D(xk, x0)

]pk = 0. Thus we get x =

{xk} ∈ W̃α,β
γ (p).

(3) From (1) and (2), (3) is obvious.

4. Conclusion

In this article, we introduced some classes of sequences of fuzzy numbers defined by αβ-statistically
convergence of order γ, strong αβ-convergence of order γ, and strong αβ(p)-convergence of order γ. We
have proved some properties and relationships of these spaces. At the same time, it also shows that if a
sequence of fuzzy numbers is strongly αβ-convergent of order γ then it is αβ-statistically convergent of
order γ.
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IF rough approximations based on lattices∗
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Abstract:An IF rough set, which is the result of approximation of an IF set
with respect to an IF approximation space, is an extension of fuzzy rough sets.
This paper studies rough set theory within the context of lattices. First, we
introduce the concepts of IF rough sets and IF rough approximation operators
based on lattices. Then, we give some properties on IF rough approximations
of IF sublattices such as IF ideals and IF filters.

Keywords: Lattice; IF set; Full congruence relation; IF approximate space;
IF rough set; IF sublattice; IF rough approximation.

1 Introduction

Rough set theory was originally proposed by Pawlak [11, 12] as a mathemati-
cal approach to handle imprecision and uncertainty in data analysis. Usefulness
and versatility of this theory have amply been demonstrated by successful ap-
plications in a variety of problems [15, 16].

The basic structure of rough set theory is an approximation space. Based on
it, lower and upper approximations can be induced. Using these approximations,
knowledge hidden in information systems may be revealed and expressed in the
form of decision rules [11].

Intuitionistic fuzzy (IF, for short) sets were originated by Atanassov [1, 2].
It is an intuitively straightforward extension of Zadeh’s fuzzy sets [19]. IF sets
have played an useful role in the research of uncertainty theories. Unlike a fuzzy
set, which gives a degree of which element belongs to a set, an IF set gives both

∗This work is supported by the National Natural Science Foundation of China (11461005),
the Natural Science Foundation of Guangxi (2014GXNSFAA118001), Guangxi University Sci-
ence and Technology Research Project, Key Laboratory of Optimization Control and En-
gineering Calculation in Department of Guangxi Education and Special Funds of Guangxi
Distinguished Experts Construction Engineering.

†Corresponding Author, College of Information Science and Engineering, Guangxi Univer-
sity for Nationalities, Nanning, Guangxi 530006, P.R.China. zhanggangqiang100@126.com

‡College of Science, Guangxi University for Nationalities, Nanning, Guangxi 530006,
P.R.China.

§Guangxi Key Laboratory of Universities Optimization Control and Engineering Calcula-
tion, and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006,
P.R.China.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

237 Gangqiang Zhang et al 237-253



a membership degree and a nonmembership degree. Thus, an IF set is more
objective than a fuzzy set to describe the vagueness of data or information.

Recently, rough set approximation was introduced into IF sets [14, 20, 21, 22].
For example, Zhou et al. [20, 21, 22] proposed a general framework for the study
of IF rough sets, Zhang et al. [24] gave a general frame for IF rough sets on two
universes.

The purpose of this paper is to investigate IF rough approximations based
on lattices.

2 Preliminaries

Throughout this paper, “ Intuitionistic fuzzy ” is briefly written “ IF ”, U
denotes a universe, I denotes [0, 1], L denotes a lattice with the least element
0L and the greatest element 1L. J = {(a, b) ∈ I × I : a + b ≤ 1}.

In this section, we recall some basic notions and properties.

2.1 IF sets

Definition 2.1 ([8]). Let (a, b), (c, d) ∈ I × I. Define
(1) (a, b) = (c, d) ⇐⇒ a = c, b = d.
(2) (a, b) t (c, d) = (a ∨ c, b ∧ d), (a, b) u (c, d) = (a ∧ c, b ∨ d).
(3) (a, b)c = (b, a).
Moreover, for {(aα, bα) : α ∈ Γ} ⊆ I × I,⊔
α∈Γ

(aα, bα) = (
∨

α∈Γ

aα,
∧

α∈Γ

bα),
d

α∈Γ

(aα, bα) = (
∧

α∈Γ

aα,
∨

α∈Γ

bα).

Definition 2.2 ([8]). Let (a, b), (c, d) ∈ J and let S ⊆ J × J . (a, b)S(c, d), if a
≤ c and b ≥ d. We denote S by ≤.

Remark 2.3. (1) Let (J,≤) be a poset with 0J = (0, 1) and 1J = (1, 0).
(2) (a, b)cc = (a, b).
(3) ((a, b) t (c, d)) t (e, f) = (a, b) t ((c, d) t (e, f)),

((a, b) u (c, d)) u (e, f) = (a, b) u ((c, d) u (e, f)).
(4) (a, b) t (c, d) = (c, d) t (a, b), (a, b) u (c, d) = (c, d) u (a, b).
(5) ((a, b) t (c, d)) u (e, f) = ((a, b) u (e, f)) t ((c, d) u (e, f)).

((a, b) u (c, d)) t (e, f) = ((a, b) t (e, f)) u ((c, d) t (e, f)).
(6) (

⊔
α∈Γ

(aα, bα))c =
d

α∈Γ

(aα, bα)c, (
d

α∈Γ

(aα, bα))c =
⊔

α∈Γ

(aα, bα)c.

Definition 2.4 ([1]). An IF set A in U is an object having the form

A = {< x, µA(x), νA(x) >: x ∈ U},
where µA, νA ∈ F (U) satisfying 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ U , and
µA(x), νA(x) are used to define the degree of membership and the degree of non-
membership of the element x to A, respectively.

IF (U)) denotes the family of all IF sets in U .
For the sake of simplicity, we give the following definition.

2
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Definition 2.5. A is called an IF set in U , if A = (A∗, A∗) ∈ F (U) × F (U)
and for each x ∈ U , A(x) = (A∗(x), A∗(x)) ∈ J , where A∗(x), A∗(x) are used
to define the degree of membership and the degree of non-membership of the
element x to A, respectively.

For each A ⊆ IF (U), we denote

Ac = {Ac : A ∈ A},

A∗ = {A∗ : A ∈ A} and A∗ = {A∗ : A ∈ A}.
For each λ ∈ J , λ̂ represents a constant IF set which satisfies λ̂(x) = λ for

each x ∈ U .
A ∈ IF (U) is called proper if A 6= λ̂ for any λ ∈ J .
In this paper, if we concern IF sets in U without special statements, we

always refer to the proper IF subset.
Some IF relations and IF operations are defined as follows ([19]): for any

A,B ∈ IF (U) and {Aα : α ∈ Γ} ⊆ IF (U),
(1) A = B ⇐⇒ A(x) = B(x) for each x ∈ U .
(2) A ⊆ B ⇐⇒ A(x) ≤ B(x) for each x ∈ U .

(3) (
⋃

α∈Γ

Aα)(x) =
⊔

α∈Γ

Aα(x) for each x ∈ U .

(4) (
⋂

α∈Γ

Aα)(x) =
d

α∈Γ

Aα(x) for each x ∈ U .

(5) Ac(x) = A(x)c for each x ∈ U .
(6) (λA)(x) = λ u (A∗(x), A∗(x)) for any x ∈ U and λ ∈ J .
Obviously, A = B ⇐⇒ A∗ = B∗ and A∗ = B∗ ⇐⇒ A ⊆ B and B ⊆ A.
We define a special IF sets 1y = ((1y)∗, (1y)∗) for some y ∈ U as follows:

(1y)∗(x) =

{
1, x = y,

0, x 6= y.
(1y)∗(x) =

{
0, x = y,

1, x 6= y.

Remark 2.6. For each A ∈ IF (U),

A =
⋃

y∈U

(A(y)1y).

Let µ ∈ IF (U) and α, β ∈ [0, 1] with α + β ≤ 1, the (α, β)-level cut set of
µ,denoted by µβ

α,is defined as follows:

µβ
α = {x ∈ U : µ∗(x) ≥ α, µ∗(x) ≤ β}.

We respectively call the sets

µα = {x ∈ U : µ∗(x) ≥ α}, µβ = {x ∈ U : µ∗(x) ≤ β}
the α-level cut set, the β-level set of membership generated by A.

3
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For x ∈ U and (a, b) ∈ J − {(0, 1)}, x(a,b) ∈ IF (U) is called an IF point if

x(a,b)(y) =

{
(0, 1), y 6= x,

(a, b), y = x.

It is said that the IF point x(a,b) belongs to µ ∈ IF (U), which is written
x(a,b) ∈ µ. Obviously,

x(a,b) ∈ µ ⇐⇒ µ(x) ≥ (a, b).

IFP (U) denotes the set of all IF point of U .
For µ, λ ∈ IF (U),

µ ⊆ λ ⇐⇒ ∀ x(a,b) ∈ IFP (U), x(a,b) ∈ µ implies x(a,b) ∈ λ.

2.2 Lattices

Definition 2.7. Let L be a set and let ≤ be a binary relation on L. Then ≤ is
called a partial order on L, if

(i) a ≤ a for any a ∈ L, (ii) a ≤ b and b ≤ a imply a = b for any a, b ∈ L,
(iii) a ≤ b and b ≤ c imply a ≤ c for any a, b, c ∈ L.

Moreover, the pair (L,≤) is called a partial order set (briefly, a poset).

Definition 2.8. Let (L,≤) be a poset and a, b ∈ L.
(1) a is called a top (or maximal) element of L, if x ≤ a for any x ∈ L.
(2) b is called a bottom (or minimal) element of L,, if b ≤ x for any x ∈ L.

If a poset L has top elements a1, a2 (resp. bottom elements b1, b2), then
a1 = a2 (resp. b1 = b2). We denote this sole top element (resp. this sole bottom
element) by 1L (resp. 0L).

Definition 2.9. Let (L,≤) be a poset, S ⊆ L and a, b ∈ L.
(1) a is called a above boundary in S, if x ≤ a for any x ∈ S.
(2) b is called a under boundary in S, if b ≤ x for any x ∈ S.
(3) a = sup S or ∨ S, if a is a minimal above boundary in S.
(4) b = inf S or ∧ S, if b is a maximal under boundary in S.

Let (L,≤) be a poset and S ⊆ L. If S = {a, b}, then we denote ∨S = a ∨ b
and ∧S = a ∧ b.

Obviously, if (L,≤) is a poset and a, b ∈ L, then

a = a ∧ b ⇔ a ≤ b ⇔ b = a ∨ b.

A poset L is called a lattice, if for any a, b ∈ L, a ∨ b ∈ L and a ∧ b ∈ L.
Let L be a lattice. For X ⊆ L, we denote
(1) ↓ X = {y ∈ L : y ≤ x for some x ∈ X},
(2) ↑ X = {y ∈ L : y ≥ x for some x ∈ X}.
Especially, ↓ x =↓ {x}, ↑ x =↑ {x}.

4
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F (L)(resp. IF(L)) denotes the family of all fuzzy (resp. IF ) sets in L.
µ ∈ F (L) is called a fuzzy sublattice of L, if µ(x∧y)∧µ(x∨y) ≥ µ(x)∧µ(y)

for any x, y ∈ L.
Let µ be a fuzzy sublattice of L.
(1) µ is a fuzzy ideal of L, if µ(x ∨ y) = µ(x) ∧ µ(y) for any x, y ∈ L.
(2) µ is a fuzzy filter of L, if µ(x ∧ y) = µ(x) ∧ µ(y) for any x, y ∈ L.

2.3 Fuzzy rough approximation operators based on lat-
tices

Definition 2.10 ([3]). Let θ be an equivalence relation on L. The pair (L, θ)
is called Pawlak approximation space. For each µ ∈ F (L), the fuzzy lower and
the fuzzy upper approximation of µ with respect to (L, θ), denoted by θ(µ) and
θ(µ), are defined as follows: for each x ∈ L,

θ(µ)(x) =
∧

a∈[x]θ

A(a), θ(µ)(x) =
∨

a∈[x]θ

A(a).

The pair (θ(µ), θ(µ)) is called the fuzzy rough set of µ with respect to (L, θ).
θ : F (L) → F (L) and θ : F (L) → F (L) are called the fuzzy lower approx-

imation operator and the fuzzy upper approximation operator, respectively. In
general, we refer to θ and θ as the fuzzy rough approximation operators.

Proposition 2.11 ([3]). Let θ be an equivalence relation on L. Then for µ, λ ∈
F (L),

(1) θ(µ) ⊆ µ ⊆ θ(µ).
(2) Ifµ ⊆ λ, then θ(µ) ⊆ θ(λ) and θ(µ) ⊆ θ(λ).
(3) θ(µc) = (θ(µ))c and θ(µc) = (θ(µ))c.
(4) θθ(µ) = θ(µ) and θθ(µ) = θ(µ).
(5) θ(µ)(x) = θ(µ)(a) and θ(µ)(x) = θ(µ)(a) for any x ∈ L and a ∈ [x]θ.
(6) θθ(µ) = θ(µ) and θθ(µ) = θ(µ).

Definition 2.12 ([3]). Let θ be an equivalence relation on L. Then θ is called
a full congruence relation, if (a, b) ∈ θ implies that (a ∨ x, b ∨ x) ∈ θ and
(a ∧ x, b ∧ x) ∈ θ for any x ∈ L.

For a ∈ L, denote
[a]θ = {x ∈ L : (a, x) ∈ θ}, L/θ = {[a]θ : a ∈ L}.

Lemma 2.13 ([3]). Let θ be a full congruence relation on L. Then for any
a, b, c, d ∈ L,

(1) If (a, b), (c, d) ∈ θ, then (a ∨ c, b ∨ d), (a ∧ c, b ∧ d) ∈ θ.
(2) If x ∈ [a]θ, y ∈ [b]θ, then x ∨ y ∈ [a ∨ b]θ.
(3) If x ∈ [a]θ, y ∈ [b]θ, then x ∧ y ∈ [a ∧ b]θ.

Proposition 2.14 ([3]). Let θ be a full congruence relation on L.

5
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(1) If µ is a fuzzy ideal, then for x, y ∈ L,

θ(µ)(x ∧ y) =
∧

a∈[x]θ,b∈[y]θ

µ(a ∧ b), θ(µ)(x ∨ y) =
∨

a∈[x]θ,b∈[y]θ

µ(a ∨ b).

(2) If µ is a fuzzy filter, then for x, y ∈ L,

θ(µ)(x ∨ y) =
∧

a∈[x]θ,b∈[y]θ

µ(a ∨ b), θ(µ)(x ∧ y) =
∨

a∈[x]θ,b∈[y]θ

µ(a ∧ b).

3 IF rough sets and IF rough approximation op-
erators based on lattices

Definition 3.1. Let θ be an equivalence relation on L. The pair (L, θ) is called
Pawlak approximation space. For each µ ∈ IF (L), the IF lower and the IF
upper approximation of µ with respect to (L, θ), denoted by θ(µ) and θ(µ), are
defined as follows:

θ(µ) = ((θ(µ))∗, (θ(µ))∗),

θ(µ) = ((θ(µ))∗, (θ(µ))∗),

where for each x ∈ L,

(θ(µ))∗(x) =
∧

a∈[x]θ

µ∗(a), (θ(µ))∗(x) =
∨

a∈[x]θ

µ∗(a),

(θ(µ))∗(x) =
∨

a∈[x]θ

µ∗(a), (θ(µ))∗(x) =
∧

a∈[x]θ

µ∗(a).

The pair (θ(µ), θ(µ)) is called the IF rough set of µ with respect to (L, θ).
θ : IF (L) → IF (L) and θ : IF (L) → IF (L) are called the IF lower ap-

proximation operator and the IF upper approximation operator, respectively. In
general, we refer to θ and θ as the IF rough approximation operators.

Remark 3.2. (1) (θ(µ))∗ = θ(µ∗) (θ(µ))∗ = θ(µ∗)
(2) (θ(µ))∗ = θ(µ∗) (θ(µ))∗ = θ(µ∗)

Proposition 3.3. For any x ∈ L,

θ(µ)(x) =
l

a∈[x]θ

µ(a), θ(µ)(x) =
⊔

a∈[x]θ

µ(a).

Proof.

θ(µ)(x) = (
∧

a∈[x]θ

µ∗(a),
∨

a∈[x]θ

µ∗(a))

=
l

a∈[x]θ

(µ∗(a), µ∗(a))

=
l

a∈[x]θ

µ(a).

6
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θ(µ)(x) = (
∨

a∈[x]θ

µ∗(a),
∧

a∈[x]θ

µ∗(a))

=
⊔

a∈[x]θ

(µ∗(a), µ∗(a))

=
⊔

a∈[x]θ

µ(a).

Proposition 3.4. Let θ be an equivalence relation on L. Then for any µ, λ ∈
IF (L),

(1) θ(µ) ⊆ µ ⊆ θ(µ).
(2) Ifµ ⊆ λ, then θ(µ) ⊆ θ(λ) and θ(µ) ⊆ θ(λ).
(3) θθ(µ) = θ(µ) and θθ(µ) = θ(µ).
(4) θ(µ)(x) = θ(µ)(a) and θ(µ)(x) = θ(µ)(a) for any x ∈ L and a ∈ [x]θ
(5) θθ(µ) = θ(µ) and θθ(µ) = θ(µ).

Proof. It is straightforward.

Proposition 3.5. Let θ be an equivalence relation on L. Then for any {µi :
i ∈ I} ⊆ IF (L),

(1) θ(
⊔
i∈I

µi) ⊇
⊔
i∈I

θ(µi), θ(
d
i∈I

µi)=
d
i∈I

θ(µi).

(2) θ(
⊔
i∈I

µi) =
⊔
i∈I

θ(µi), θ(
d
i∈I

µi) ⊆
d
i∈I

θ(µi).

Proof. (1) For any x ∈ L,
θ(

⊔
i∈I

µi)(x)=
d

a∈[x]θ

⊔
i∈I

µi(a) ⊇ ⊔
i∈I

d
a∈[x]θ

µi(a)=
⊔
i∈I

θ(µi)(x),

θ(
d
i∈I

µi)(x)=
d

a∈[x]θ

d
i∈I

µi(a)=
d
i∈I

d
a∈[x]θ

µi(a)=
d
i∈I

θ(µi)(x).

Thus, θ(
⊔
i∈I

µi) ⊇
⊔
i∈I

θ(µi), θ(
d
i∈I

µi)=
d
i∈I

θ(µi).

(2) The proof is similar to (1).

4 IF sublattices and IF rough approximations
based on lattices

4.1 IF sublattices

Definition 4.1. µ ∈ IF (L) is called an IF sublattice of L, if
µ(x ∧ y) u µ(x ∨ y) ≥ µ(x) u µ(y) for any x, y ∈ L.

Definition 4.2. Let µ be an IF sublattice of L. Then
(1) µ is an IF ideal of L, if µ(x ∨ y) = µ(x) u µ(y) for any x, y ∈ L.
(2) µ is an IF filter of L, if µ(x ∧ y) = µ(x) u µ(y) for any x, y ∈ L.

7
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Denote the set of all IF ideals of L by IFI(L).

Proposition 4.3. Let µ be an IF sublattice of L. Then
(1) µ is an IF ideal of L ⇐⇒ x ≤ y implies that µ(x) ≥ µ(y) for any

x, y ∈ L.
(2) µ is an IF filterof L ⇐⇒ x ≤ y implies that µ(x) ≤ µ(y) for any

x, y ∈ L.

Proof. It is straightforward.

Let µ be a proper IF ideal of L. Then
(1) µ is called an IF prime ideal of L, if µ(x ∧ y) ≤ µ(x) t µ(y) for any

x, y ∈ L.
(2) µ is called an IF prime filter of L, if µ(x ∨ y) ≤ µ(x) t µ(y) for any

x, y ∈ L.

4.2 IF rough approximations of some IF sublattices

Lemma 4.4. Let θ be a full congruence relation on L.
(1) If µ is an IF ideal of L, then for any x, y ∈ L,

θ(µ)(x ∧ y) =
l

a∈[x]θ,b∈[y]θ

µ(a ∧ b), θ(µ)(x ∨ y) =
⊔

a∈[x]θ,b∈[y]θ

µ(a ∨ b).

(2) If µ is an IF filter of L, then for any x, y ∈ L,

θ(µ)(x ∨ y) =
l

a∈[x]θ,b∈[y]θ

µ(a ∨ b), θ(µ)(x ∧ y) =
⊔

a∈[x]θ,b∈[y]θ

µ(a ∧ b).

Proof. (1) By Lemma 2.12,∧
z∈[x∧y]θ

µ∗(z) ≤ ∧
a∈[x]θ,b∈[y]θ

µ∗(a ∧ b),
∨

z∈[x∧y]θ

µ∗(z) ≥ ∨
a∈[x]θ,b∈[y]θ

µ∗(a ∧ b).

Then
θ(µ)(x ∧ y) =

l

z∈[x∧y]θ

µ(z) ≤
l

a∈[x]θ,b∈[y]θ

µ(a ∧ b).

Now assume that z ∈ [x ∧ y]θ. Then z ∨ x ∈ [x]θ, z ∨ y ∈ [y]θ.
Since z ≤ (z ∨ x) ∧ (z ∨ y), by Proposition 2.14, we have

µ(z) ≥ µ(z ∨ x) ∧ (z ∨ y).

Then

µ∗(z) ≥ µ∗((z ∨ x) ∧ (z ∨ y)), µ∗(z) ≤ µ∗((z ∨ x) ∧ (z ∨ y)).

Note that
∧

z∈[x∧y]θ

µ∗(z) ≥
∧

a∈[x]θ,b∈[y]θ

µ∗(a ∧ b),
∨

z∈[x∧y]θ

µ∗(z) ≤
∨

a∈[x]θ,b∈[y]θ

µ∗(a ∧ b).

8
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Then
d

z∈[x∧y]θ

µ(z) ≥ d
a∈[x]θ,b∈[y]θ

µ(a ∧ b).

Thus
θ(µ)(x ∧ y) =

l

a∈[x]θ,b∈[y]θ

µ(a ∧ b).

Note that
∨

z∈[x∧y]θ

µ∗(z) ≥
∨

a∈[x]θ,b∈[y]θ

µ∗(a ∨ b),
∧

z∈[x∨y]θ

µ∗(z) ≥
∧

a∈[x]θ,b∈[y]θ

µ∗(a ∧ b).

Then
θ(µ)(x ∨ y) =

⊔

z∈[x∨y]θ

µ(z) ≥
⊔

a∈[x]θ,b∈[y]θ

µ(a ∨ b).

Now assume that z ∈ [x ∨ y]θ. Then

z ∧ x ∈ [x]θ, z ∧ y ∈ [y]θ.

Since z ≥ (z ∧ x) ∨ (z ∧ y), by Proposition 2.14, we have

µ(z) ≤ µ(z ∧ x) ∨ (z ∧ y).

Then µ∗(z) ≤ µ∗((z ∧ x) ∨ (z ∧ y)), µ∗(z) ≥ µ∗((z ∧ x) ∨ (z ∧ y)).
Since
∨

z∈[x∨y]θ

µ∗(z) ≤
∨

a∈[x]θ,b∈[y]θ

µ∗(a ∨ b),
∧

z∈[x∨y]θ

µ∗(z) ≥
∧

a∈[x]θ,b∈[y]θ

µ∗(a ∨ b).

we have ⊔

z∈[x∨y]θ

µ(z) ≤
⊔

a∈[x]θ,b∈[y]θ

µ(a ∨ b).

Thus
θ(µ)(x ∨ y) =

⊔

a∈[x]θ,b∈[y]θ

µ(a ∨ b).

(2) The proof is similar to (1).

Proposition 4.5. Let θ be a full congruence relation on L. Let µ ∈ IF (L) and
let θ(µ) be an IF sublattice of L. Then

(1) If µ is an IF ideal of L, then θ(µ) is an IF ideal of L.
(2) If µ is an IF filter of L, then θ(µ) is an IF filter of L.

Proof. (1) Since θ(u) is an IF sublattice of L, we conclude that for any x, y ∈ L
,

θ(µ)(x ∨ y) ≥ θ(µ)(x ∧ y) u θ(µ)(x ∨ y) ≥ θ(µ)(x) u θ(µ)(y).

9
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By Lemma 4.4, for any x, y ∈ L,

θ(µ)(x ∨ y) =
l

z∈[x∨y]θ

µ(z)

≤
l

a∈[x]θ,b∈[y]θ

µ(a ∨ b)

=
l

a∈[x]θ,b∈[y]θ

(µ(a) u µ(b))

=
l

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b), µ∗(a) ∨ µ∗(b))

= (
∧

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b)),
∨

a∈[x]θ,b∈[y]θ

(µ∗(a) ∨ µ∗(b)))

= ((
∧

a∈[x]θ

µ(a)) ∧ (
∧

b∈[y]θ

µ(b)), (
∨

a∈[x]θ

µ(a)) ∨ (
∨

b∈[y]θ

µ(b)))

= (
∧

a∈[x]θ

µ(a),
∨

a∈[x]θ

µ(a)) u (
∧

b∈[y]θ

µ(b),
∨

b∈[y]θ

µ(b))

= (
l

a∈[x]θ

µ(a)) u (
l

b∈[y]θ

µ(b))

= θ(µ)(x) u θ(µ)(y).

(2) The proof is similar to (1).

Proposition 4.6. Let θ be a full congruence relation on L. Then for µ ∈ IF (L),
(1) If µ is an IF sublattice of L, then θ(µ) is an IF sublattice of L.
(2) If µ is an IF ideal of L, then θ(µ) is an IF ideal of L.
(3) If µ is an IF filter of L, then θ(µ) is an IF filter of L.

Proof. (1) Suppose that µ is an IF sublattice of L. Then for any x, y ∈ L,

θ(µ)(x ∧ y)
d

θ(µ)(x ∨ y)
= (

∨
a∈[x∧y]θ

µ∗(a),
∧

a∈[x∧y]θ

µ∗(a))
d

(
∨

b∈[x∨y]θ

µ∗(b),
∧

b∈[x∨y]θ

µ∗(b))

= (
∨

a∈[x∧y]θ

µ∗(a) ∧ ∨
b∈[x∨y]θ

µ∗(b),
∧

a∈[x∧y]θ

µ∗(a) ∨ ∧
b∈[x∨y]θ

µ∗(b))

≥ (
∨

a∈[x]θ,c∈[y]θ

µ∗(a ∧ c) ∧ ∨
b∈[x]θ,d∈[y]θ

µ∗(b ∨ d),
∧

a∈[x]θ,c∈[y]θ

µ∗(a ∧ c) ∨ ∧
b∈[x]θ,d∈[y]θ

µ∗(b ∨ d))

≥ (
∨

a,b∈[x]θ,c,d∈[y]θ

µ∗(a ∧ c) ∧ µ∗(b ∨ d),
∧

a,b∈[x]θ,c,d∈[y]θ

µ∗(a ∧ c) ∨ µ∗(b ∨ d))

≥ (
∨

a∈[x]θ,c∈[y]θ

µ∗(a ∧ c) ∧ µ∗(a ∨ c),
∧

a∈[x]θ,c∈[y]θ

µ∗(a ∧ c) ∨ µ∗(a ∨ c))

≥ (
∨

a∈[x]θ,c∈[y]θ

µ∗(a) ∧ µ∗(c),
∧

a∈[x]θ,c∈[y]θ

µ∗(a) ∨ µ∗(c))

10
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= (
∨

a∈[x]θ

µ∗(a) ∧ ∨
c∈[y]θ

µ∗(c),
∧

a∈[x]θ,

µ∗(a) ∨ ∧
c∈[y]θ

µ∗(c))

= (
∨

a∈[x]θ

µ∗(a),
∧

a∈[x]θ

µ∗(a))
d

(
∨

b∈[y]θ

µ∗(b),
∧

b∈[y]θ

µ∗(b))

= θ(µ)(x)
d

θ(µ)(y)
Thus θ(µ) is an IF sublattice of L.
(2) Suppose that µ is an IF ideal of L. Then µ is an IF sublattice of L.
By (1), θ(µ) is an IF sublattice of L.
For any x, y ∈ L,

θ(µ)(x ∨ y) =
⊔

a∈[x]θ,b∈[y]θ

µ(a ∨ b)

=
⊔

a∈[x]θ,b∈[y]θ

(µ(a) u µ(b))

=
⊔

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b), µ∗(a) ∨ µ∗(b))

= (
∨

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b)),
∧

a∈[x]θ,b∈[y]θ

(µ∗(a) ∨ µ∗(b)))

= ((
∨

a∈[x]θ

µ∗(a)) ∧ (
∨

b∈[y]θ

µ∗(b)), (
∧

a∈[x]θ

µ∗(a)) ∨ (
∧

b∈[y]θ

µ∗(b)))

= (
∨

a∈[x]θ

µ∗(a),
∧

a∈[x]θ

µ∗(a)) u (
∨

b∈[y]θ

µ∗(b),
∧

b∈[y]θ

µ∗(b))

=
⊔

a∈[x]θ

µ(a) u
⊔

b∈[x]θ

µ(b)

= θ(µ)(x)
l

θ(µ)(y)

Thus θ(µ) is an IF ideal of L.
(3) The proof is similar to (2).

Proposition 4.7. Let θ be a full congruence relation on L and let θ(µ) is a
proper IF sublattice of L.

(1) If µ ∈ IF (L) is an IF prime ideal of L, then θ(µ) is an IF prime ideal
of L.

(2) If µ ∈ IF (L) is an IF prime filter of L, then θ(µ) is an IF prime filter
of L.

Proof. (1) Suppose that µ is an IF prime ideal of L.
By Proposition 4.5, θ(µ) is an IF ideal of L.

11
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By Proposition 4.3 and Lemma 4.4, for any x, y ∈ L.

θ(µ)(x ∧ y) =
l

a∈[x]θ,b∈[y]θ

µ(a ∧ b)

=
l

a∈[x]θ,b∈[y]θ

(µ∗(a ∧ b), µ∗(a ∧ b))

= (
∧

a∈[x]θ,b∈[y]θ

µ∗(a ∧ b),
∨

a∈[x]θ,b∈[y]θ

µ∗(a ∧ b))

≤ (
∧

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b)),
∨

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b)))

= (
∧

a∈[x]θ

µ∗(a) ∨
∧

b∈[y]θ

µ∗(b),
∨

a∈[x]θ

µ∗(a) ∧
∨

b∈[y]θ

µ∗(b))

= (
∧

a∈[x]θ

µ∗(a),
∨

a∈[x]θ

µ∗(a)) t (
∧

b∈[y]θ

µ∗(b),
∨

b∈[y]θ

µ∗(b))

=
l

a∈[x]θ

µ(a) t
l

b∈[y]θ

µ(b)

= θ(µ)(x) t θ(µ)(y).

Thus θ(µ) is an IF prime ideal of L.
(2) The proof is similar to (1).

Definition 4.8. Let θ be a full congruence relation on L. Then
(1) θ is called ∨-complete, if {x ∨ y : x ∈ [a]θ, y ∈ [b]θ} = [a ∨ b]θ for any

a, b ∈ L.
(2) θ is called ∧-complete, if {x ∧ y : x ∈ [a]θ, y ∈ [b]θ} = [a ∧ b]θ for any

a, b ∈ L.
(3) θ is called complete, if θ is both ∨-complete and ∧-complete.

Proposition 4.9. Let θ be a full congruence relation on L.
(1) Let µ be an IF prime ideal of L and let θ be ∧-complete. If θ(µ) is proper,

then θ(µ) is an IF prime ideal of L.
(2) Let µ be an IF prime filter of L and let θ be ∨-complete. If θ(µ) is proper,

then θ(µ) is an IF filter ideal.

Proof. (1) By Proposition 4.6, θ(µ) is an IF ideal of L.
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Since θ is ∧-complete, for any x, y ∈ L, we have

θ(µ)(x ∧ y) =
⊔

a∈[x]θ,b∈[y]θ

µ(a ∧ b)

≤
⊔

a∈[x]θ,b∈[y]θ

µ(a) t µ(b)

=
⊔

a∈[x]θ,b∈[y]θ

(µ∗(a) ∨ µ∗(b), µ∗(a) ∧ µ∗(b))

= (
∨

a∈[x]θ,b∈[y]θ

(µ∗(a) ∨ µ∗(b)),
∧

a∈[x]θ,b∈[y]θ

(µ∗(a) ∧ µ∗(b)))

= ((
∨

a∈[x]θ

µ∗(a)) ∨ (
∨

b∈[y]θ

µ∗(b)), (
∧

a∈[x]θ

µ∗(a)) ∧ (
∧

b∈[y]θ

µ∗(b)))

= (
∨

a∈[x]θ

µ∗(a),
∧

a∈[x]θ

µ∗(a)) t (
∨

b∈[y]θ

µ∗(b),
∧

b∈[y]θ

µ∗(b))

=
⊔

a∈[x]θ

µ(a) t
⊔

b∈[y]θ

µ(b)

= θ(µ)(x) t θ(µ)(y)

Thus θ(µ) is an IF prime ideal of L.
(2) The proof is similar to (1)

Definition 4.10. Let µ ∈ IF (L). The least IF ideal of L containing µ is called
an IF ideal of L induced by µ. We denoted it by < µ >.

For any µ ∈ IF (L), we denote

µ¦(x) =
⊔
{(α, β) ∈ J : x ∈ I(µβ

α)} (x ∈ L).

Proposition 4.11. Let µ ∈ IF (L). Then
(1) µ ⊆ µ¦.
(2) µ¦ =

⋂{ν ∈ IFI(L) : µ ⊆ ν , ν(0L) = 1J}.
Proof. (1) Consider that µβ

α = {x ∈ U : µ(x) ≥ (α, β)}. Then

µ(x) = t{(α, β) : x ∈ µβ
α} ≤ t{(α, β) : x ∈ I(µβ

α)} = µ¦.

(2) Firstly, we can prove that µ¦ ∈ IFI(L).
For any x, y ∈ L,

µ¦(x) =
⊔{(α, β) ∈ J : x ∈ I(µβ

α)},
µ¦(y) =

⊔{(α, β) ∈ J : y ∈ I(µβ
α)}.

Put

A = {(α, β) ∈ J : x ∈ I(µβ
α)}, B = {(α, β) ∈ J : y ∈ I(µβ

α)}.
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Suppose x ≤ y. Then A ⊆ B. So tA ≤ tB. This implies that

µ¦(y) ≤ µ¦(x).

Secondly, since 0L ∈ I(µ0
1), we have 1J ≤ µ¦(0L). Then µ¦(0L) = 1J .

Combined with (1), we have

µ¦ ∈ {ν ∈ IFI(L) : µ ⊆ ν , ν(0L) = 1J}.
Then

µ¦ ⊇ ∩{ν ∈ IFI(L) : µ ⊆ ν , ν(0L) = 1J}.
Now, we need to prove that

µ¦ ⊆ ∩{ν ∈ IFI(L) : µ ⊆ ν, ν(0L) = 1J}.
For any ν ∈ {ν ∈ IFI(L) : µ ⊆ ν , ν(0L) = 1J}, we have µ ⊆ ν. This implies

µβ
α ⊆ νβ

α.

Then I(µβ
α) ⊆ I(νβ

α).
Denote

C = {(α, β) ∈ J : x ∈ I(νβ
α)}.

Then A ⊆ C and so µ¦(x) ≤ ν¦(x).
Note that ν ∈ IFI(L). Then νβ

α ∈ IFI(L). So I(νβ
α) = νβ

α.
This implies that

ν¦(x) = tC = t{(α, β) ∈ J : x ∈ νβ
α} = ν(x).

Thus µ¦(x) ≤ ν(x).
Hence

µ¦ ⊆ ∩{ν ∈ IFI(L) : µ ⊆ ν, ν(0L) = 1J}.

Proposition 4.12. Let θ be a full congruence relation on L. Then for any
µ ∈ IF (L),

(1) θ(< µ >) = θ(< θ(µ) >).
(2) θ(µ¦) = θ((θ(µ))

¦
).

Proof. (1) Since µ ⊆< µ >, we conclude from Proposition 3.4 that

θ(µ) ⊆ θ(< µ >).

By Proposition 4.6 and Proposition 4.11,

< θ(µ) >⊆ θ(< µ >).

By Proposition 3.4,

θ(< θ(µ) >) ⊆ θ(< µ >).
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Note that µ ⊆ θ(µ). Then < µ >⊆< θ(µ) >.
By Proposition 3.4,

θ(< µ >) ⊆ θ(< θ(µ) >).

Thus
θ(< µ >) = θ(< θ(µ) >).

(2) Since < µ >⊆ µ¦, by Proposition 3.4, we have θ(< µ >) ⊆ θ(µ¦).
It is clear that

θ(µ¦)(0L) = 1J , < θ(µ) > ⊆ < θ(µ¦) > = θ(µ¦).

Then (θ(µ))
¦ ⊆ θ(µ¦)

By Proposition 3.4,
θ((θ(µ))

¦
) ⊆ θ(µ¦).

Since µ¦ ⊆ (θ(µ))
¦

we conclude θ(µ¦) ⊆ θ((θ(µ))
¦
).

Thus
θ(µ¦) = θ((θ(µ))

¦
).

Proposition 4.13. Let a(r,s), b(p,q) ∈ IFP (L) and µ ∈ IF (L). Then
(1) θ(a(r,s)) = χ

(r,s)
[a]θ

.

(2) < a(r,s) > (x) = χ
(r,s)
↓a and (a(r,s))¦(x) =





(1, 0) x = 0L,

(r, s) 0L 6= x,

(0, 1) otherwise.

(3) θ(< a(r,s) >)(x) =

{
(r, s) ↓ a ∩ [x]θ 6= ∅,
(0, 1) otherwise.

θ((a(r,s))¦)(x) =





(1, 0) 0L ∈ [x]θ
(r, s) ↓ a ∩ [x]θ 6= ∅,
(0, 1) otherwise.

(4) < a(r,s) > ∧ < b(p,q) >=< (a ∧ b)(r,s)∧(p,q) >

Proof. It is straightforward.

Let θ be an equivalence relation on L. µ ∈ F (L) is called a fixed-point of
θ-upper (resp. θ-lower) rough approximation, if θ(µ) = µ (resp. θ(µ) = µ).

Denote

Fix(θ) = {µ ∈ F (L) | θ(µ) = µ}, F ix(θ) = {µ ∈ F (L) | θ(µ) = µ}.
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Proposition 4.14. Let θ1 and θ2 be two equivalence relations on L. Then the
following are equivalent:

(1) For each µ ∈ F (L), θ1(µ) ≤ θ2(µ);
(2) For each µ ∈ F (L), θ1(µ) ≥ θ2(µ);
(3) Fix(θ2) ⊆ Fix(θ1);
(4) Fix(θ2) ⊆ Fix(θ1).

Proof. (1) =⇒ (2). This holds by Proposition 2.10.
(2) =⇒ (3) Let µ ∈ F (L) and θ1(µ

c) ≥ θ2(µ
c).

By Proposition 2.10, (θ1(µ))c ≥ θ2(µ))c.
Thus θ1(µ) ≤ θ2(µ).
Note that θ2(µ) = µ. Then µ ≤ θ1(µ) ≤ θ2(µ) = µ.
It follows that θ1(µ) = µ.
(3) =⇒ (1) Let µ ∈ F (L). Since θ2(µ) ∈ Fix(θ2), we have θ2(µ) ∈ Fix(θ1).
Thus θ1(µ) ≤ θ1(θ2(µ)) = θ2(µ).
(2) =⇒ (4) Let µ ∈ F (L) and θ2(µ) = µ. Then µ = θ2(µ) ≤ θ1(µ) = µ.
It follows that θ1(µ) = µ.
(4) =⇒ (2) Let µ ∈ F (L). By Proposition 3.4, θ2(µ) ∈ Fix(θ2).
Then θ2(µ) ∈ Fix(θ1). Thus

θ2(µ) = θ1(θ2(µ)) ≤ θ1(µ).
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Some results on approximating spaces ∗

Neiping Chen†

January 24, 2015

Abstract: Topology and rough set theory are widely used in research field
of computer science. In this paper, we study properties of topologies induced
by binary relations, investigate a particular type of topological spaces which
associate with some equivalence relation (i.e., approximating spaces) and obtain
some characteristic conditions of approximating spaces.

Keywords: Binary relation; Rough set; Topology; Approximating space

1 Introduction

Rough set theory, proposed by Pawlak [8], is a new mathematical tool for
data reasoning. It may be seen as an extension of classical set theory and
has been successfully applied to machine learning, intelligent systems, inductive
reasoning, pattern recognition, mereology, image processing, signal analysis,
knowledge discovery, decision analysis, expert systems and many other fields
[9, 10, 11, 12].

The basic structure of rough set theory is an approximation space. Based on
it, lower and upper approximations can be induced. Using these approximations,
knowledge hidden in information systems may be revealed and expressed in the
form of decision rules. A key notion in Pawlak rough set model is equivalence
relations. The equivalence classes are the building blocks for the construction
of these approximations. In the real world, the equivalence relation is, however,
too restrictive for many practical applications. To address this issue, many
interesting and meaningful extensions of Pawlak rough sets have been presented.
Equivalence relations can be replaced by tolerance relations [15], binary relations
[20] and so on.

Topological structure is an important base for knowledge extraction and
processing. Then, an interesting research topic in rough set theory is to study
relationships between rough sets and topologies. Many authors studied topo-
logical properties of rough sets [3, 4, 7, 18, 22]. It is known that the pair of
lower and upper approximation operators induced by a reflexive and transitive
relation is exactly the pair of interior and closure operators of a topology [21].

∗This work is supported by the National Natural Science Foundation of China (11461005).
†Corresponding Author, S School of Mathematics and Statistics, Hunan University of

Commerce, Changsha 410205, China, neipingchen100@126.com
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The purpose of this paper is to investigate further approximating spaces.

2 Preliminaries

Throughout this paper, I denotes [0, 1], N is the set of natural number. U
denotes a non-empty set, 2U denotes the set of all subsets of U , |X| denotes the
cardinality of X.

2.1 Binary relations

Recall that R is called a binary relation on U if R ∈ 2U×U .
Let R be a binary relation on U . R is called preorder if R is reflexive and

transitive. R is called tolerance if R is both reflexive and symmetric. R is called
equivalence if R is reflexive, symmetric and transitive.

Let R be a binary relation on U . For u, v, w ∈ U , we define

Ruvw = R ∪ Suvw and Ruv =
⋃

w∈U

Ruvw,

where Suvw =

{
{(u, v)}, (u,w) ∈ R and (w, v) ∈ R

∅, (u,w) 6∈ R or (w, v) 6∈ R
.

If Suvw 6= ∅, then

Suvw(x) =

{
{v}, x = u

∅, x 6= u
.

Definition 2.1 ([4]). Let R and Rs be two binary relations on U . If for all
x, y ∈ U , xRsy if and only if xRy or there exists {v1, v2, . . . , vn} ⊆ U such that
xθv1, v1Rv2, . . . , vnRy, then Rs is called the transmitting expression of R.

Theorem 2.2 ([4]). Let R be a binary relation on U and Rs the transmitting
expression of R. Then Rs is a transitive relation on U . Moreover,

(1) If R is reflexive, then Rs is also reflexive;
(2) If R is transitive, then Rs = R;
(3) If R is symmetric, then Rs is also symmetric.

2.2 Rough sets

Let R be an equivalence relation on U . Then the pair (U,R) is called a
Pawlak approximation space. Based on (U,R), one can define the following two
rough approximations:

R∗(X) = {x ∈ U : [x]R ⊆ X},
R∗(X) = {x ∈ U : [x]R ∩X 6= ∅}.

R∗(X) and R∗(X) are called the Pawlak lower approximation and the Pawlak
upper approximation of X, respectively.

2
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Definition 2.3 ([19]). Let R be a binary relation on U . ∀ x ∈ U , denote

R(x) = {y ∈ U : (x, y) ∈ R}.

Then R(x) is called the successor neighborhood of x, the pair (U,R) is called
an approximation space. The lower and upper approximations of X ∈ 2U with
regard to (U,R), denoted by R(X) and R(X) are respectively, defined as follows:

R(X) = {x ∈ U : R(x) ⊆ X} and R(X) = {x ∈ U : R(x) ∩X 6= ∅}.

Proposition 2.4. Let {Rα : α ∈ Γ} be a family of binary relations on U . Then
∀ X ∈ 2U ,

⋂

α∈Γ

Rα(X) =
⋃

α∈Γ

Rα(X).

Proof. Put R =
⋃

α∈Γ

Rα. By Rβ ⊆ R for each β ∈ Γ, Rβ(X) ⊇ R(X). Then
⋂

α∈Γ

Rα(X) ⊇ R(X).

Let x ∈ ⋂
α∈Γ

Rα(X). Then x ∈ Rα(X) and so Rα(x) ⊆ X for each α ∈ Γ.

Thus (
⋃

α∈Γ

Rα)(x) =
⋃

α∈Γ

(Rα(x)) ⊆ X. So x ∈ ⋃
α∈Γ

Rα(X). Hence Rβ(X) ⊆
⋃

α∈Γ

Rα(X).

Therefore,
⋂

α∈Γ

Rα(X) =
⋃

α∈Γ

Rα(X).

Proposition 2.5. Let R be a binary relation on U . Then ∀ u, v.w ∈ U ,

Ruvw(X)− {u} = R(X)− {u}.

Proof. (1) If Ruvw = R, then Ruvw(X)− {u} = R(X)− {u}.
(2) If Ruvw 6= R, then (u,w), (w, v) ∈ R and (u, v) 6∈ R.
Obviously, Ruvw(X)− {u} ⊆ R(X)− {u}.
For x ∈ R(X)− {u}, note that Suvw(x) = ∅ (x ∈ U − {u}), then

Ruvw(x) = (R ∪ Suvw)(x) = R(x) ∪ Suvw(x) = R(x) ⊆ X (x ∈ U − {u}).

So x ∈ Ruvw(X)− {u}. It follows Ruvw(X)− {u} ⊇ R(X)− {u}.
Hence

Ruvw(X)− {u} = R(X)− {u}.

Theorem 2.6. Let R be a binary relation on U and τ a topology on U . If one
of the following conditions is satisfied, then R is preorder.

(1) R is the closure operator of τ .
(2) R is the interior operator of τ .

3
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Proof. (1) Let x, y, z ∈ U . Denote clτ (z1)(y) = λ.
Note that R is the interior operator of τ and x ∈ clτ ({x}) = R({x}). Then

(x, x) ∈ R. So R is reflexive.
Let (x, y), (y, z) ∈ R. Then x ∈ R({y}), y ∈ R({z}).
Note that R is the closure operator of τ . Then x ∈ cl({y}), y ∈ cl({z}). So

x ∈ cl({x}) ⊆ cl(cl({y})) = cl({y}) ⊆ cl(cl({z})) = cl({z}) = R({z}).
This implies (x, z) ∈ R. So R is transitive.

Hence R is preorder.
(2) This proof is similar to (1).

3 Topologies induced by binary relations

3.1 Topologies induced by reflexive relations

Let R be a reflexive relation on U . Denote

τR = {X ∈ 2U : R(X) = X},
σR = {R(X) : X ∈ 2U}.

Kondo [2] proved that if R is a reflexive relation on X, then τR is a topology
on X, which may be called the topology induced by R on X.

Remark 3.1. (1) If R is preorder, then τR = σR.
(2) If R is equivalence, then τR = { ⋃

x∈X

[x]R : X ∈ 2U}.

Theorem 3.2 ([7]). Let R be a preorder relation on U . Then
(1) σR is a topology on U .
(2) R is an interior operator of σR.
(3) R is a closure operator of σR.

Proposition 3.3. Let ρ and R be two reflexive relations on U . Then
(1) ρ ⊆ R =⇒ τρ ⊇ τR.
(2) If ρ and R are preorder, then τρ = τR ⇐⇒ ρ = R.

Proof. (1) ∀ X ∈ τR, R(X) = X. By ρ ⊆ R and the reflexivity of ρ,

X = R(X) ⊆ ρ(X) ⊆ X.

Then ρ(X) = X and so X ∈ τρ. Thus τρ ⊇ τR.
(2) Necessity. Suppose τρ = τR. Note that ρ and R are preorder. Then

τρ = σρ = σR = τR.
By Theorem 3.2(3),

(x, y) ∈ ρ ⇐⇒ x ∈ ρ({y}) ⇐⇒ x ∈ clσρ
({y})

⇐⇒ x ∈ clσR
({y}) ⇐⇒ x ∈ R({y}) ⇐⇒ (x, y) ∈ R.

Then ρ = R.
Sufficiency. Obviously.

4
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Proposition 3.4. Let {Rα : α ∈ Γ} be a family of reflexive relations on U .
Then

τ ⋃
α∈Γ

Rα
=

⋂

α∈Γ

τRα
.

Proof. By Proposition 3.3(1), τ ⋃
α∈Γ

Rα
⊆ ⋂

α∈Γ

τRα .

Let X ∈ ⋂
α∈Γ

σRα . Then ∀ α ∈ Γ, Rα(X) = X. By Proposition 2.4,

X =
⋂

α∈Γ

Rα(X) =
⋃

α∈Γ

Rα(X).

So X ∈ τ ⋃
α∈Γ

Rα
. This implies τ ⋃

α∈Γ
Rα
⊇ ⋂

α∈Γ

τRα .

Hence τ ⋃
α∈Γ

Rα
=

⋂
α∈Γ

τRα .

3.2 The topologies induced by some binary relations

Theorem 3.5. Let ρ, λ, R be three reflexive relations on U . If τρ = τR = τλ

and ρ ⊆ δ ⊆ λ, then τδ = τR.

Proof. By ρ ⊆ δ ⊆ λ and Proposition 3.3(1),

τR = τλ ⊆ τδ ⊆ τρ = τR.

Then τδ = τR.

Theorem 3.6. Let R be a reflexive relation on U . Then ∀ u, v.w ∈ U , τRuvw =
τR = τRuv .

Proof. Obviously, Ruvw and Ruv both are reflexive.
(1) 1) If u = v, then Ruvw = R and so τRuvw = τR.
2) If u 6= v, Ruvw = R, we have τRuvw = τR.
3) If u 6= v, Ruvw 6= R, we have (u,w) ∈ R, (w, v) ∈ R, (u, v) 6∈ R and

Suvw = {(u, v)}.
Let X ∈ σR. Then X ⊆ R(X). By Proposition 3.3(1), σR ⊇ σRuvw . By

Proposition 2.5, X − {u} ⊆ R(X)− {u} = Ruvw(X)− {u}.
i) If u 6∈ X, then X ⊆ Ruvw(X).
ii) If u ∈ X, then u ∈ R(X) and so

w ∈ R(u) ⊆ X ⊆ R(X).

We can obtain R(w) ⊆ R(X). Note that v ∈ R(w). Then v ∈ R(X). We have

Ruvw(u) = (R ∪ Suvw)(u) = R(u) ∪ Suvw(u) = R(u) ∪ {v} ⊆ X.

Then u ∈ Ruvw(X). Thus X ⊆ Ruvw(X). By the reflexivity of ρ, X ⊇
Ruvw(X). Then Ruvw(X) = X and So X ∈ σRuvw .

By i) and ii), τR ⊆ τRuvw .

5
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Thus
τRuvw = τR (w ∈ U).

(2) By (1) and Proposition 3.4,

τRuv = τ ⋃
w∈U

Ruvw =
⋂

w∈U

τRuvw = τR.

Denote R0 = R. Rn (n ∈ ω) are defined as follows:

Rn+1 =
⋃

u,v∈X

(Rn)uv.

Put
R∗ = lim

n→∞
Rn.

Obviously, R∗ =
∞⋃

n=0
Rn.

Corollary 3.7. Let R be a reflexive relation on U . Then τRn
= τR = τR∗ .

Proof. This holds by Proposition 3.4 and Theorem 3.6.

Theorem 3.8. Let R be a binary relation on U . Then

R is transitive ⇐⇒ R = R1.

Proof. Necessity. Obviously.
Sufficiency. Suppose that R is not translative. Then there exist x, y, z such

that (x, z), (z, y) ∈ R, (x, y) 6∈ R. So (x, y) ∈ Rxy. This implies

(x, y) ∈ R1 =
⋃

u,v∈X

Ruv.

We have R1 6= R. This is a contradiction.
Thus R is translative.

Corollary 3.9. If R is a preorder relation on U , then ∀ n ∈ ω, Rn = R.

Proof. This holds by Theorem 4.6.

Denote R0 = R. Rn (n ∈ ω) are defined as follows: Rn+1 =
⋃

u,v∈X

(Rn)uv

Denote
R∗ = lim

n→∞
Rn.

Theorem 3.10. If R is a reflexive relation on U , then R∗ is translative.

6
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Proof. Let (u,w), (w, v) ∈ R∗. Then there exist n1, n2 ∈ N such that (u,w) ∈
Rn1 , (w, v) ∈ Rn2 . Pick n0 = n1 + n2. Then (u,w) ∈ Rn0 , (w, v) ∈ Rn0 . So

(u, v) ∈ (Rn0)
uvw ⊆ (Rn0)

uv ⊆ Rn0+1 ⊆ R∗.

So R∗ is translative.

Theorem 3.11. Let R be a reflexive relation on U . Then Rs = R∗.

Proof. Note that

(x, y) ∈ R∗. (R∗ =
∞⋃

n=0

Rn)

⇐⇒ ∃n ∈ N, (x, y) ∈ Rn. (Rn =
⋃

u,v∈X

(Rn−1)uv)

⇐⇒ (x, y) ∈ (Rn−1)xy. ((Rn−1)xy =
⋃

w∈U

(Rn−1)xyw)

⇐⇒ ∃w2n ∈ U, (x, y) ∈ (Rn−1)xyw2n .

⇐⇒ ∃w2n ∈ U, (x,w2n), (w2n , y) ∈ Rn−1.

⇐⇒ ∃w2n−1, w2n , w2n−2 ∈ U,

(x,w2n−1), (w2n−1, w2n), (w2n , w2n−2), (w2n−2, y) ∈ Rn−2.

· · · · · · · · ·
⇐⇒ ∃w2, w3, · · · , w2n ∈ U,

(x,w3), · · · , (w2n−1, w2n), (w2n , w2n−2), · · · , (w2, y) ∈ R0 = R.

⇐⇒ (x, y) ∈ Rs.

Then Rs = R∗.

Corollary 3.12. Let R be a tolerance relation on U . Then
(1) Rs is equivalence.
(2) τRs

= τR.
(3) Rs is an interior operator of τR.
(4) Rs is a closure operator of τR.

Proof. (1) This holds by Theorem 3.11.
(2) This holds by Corollary 3.7 and Theorem 3.11
(3) This holds by (2) and Theorem 3.2.
(4) This holds by (2) and Theorem 3.2.

4 Some characteristic conditions of approximat-
ing spaces

Definition 4.1 ([4]). Let (U, µ) be a topological space. If there exists an equiv-
alence relation R on U such that τR = µ, then (U, τ) is called a approximating
space.

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

260 Neiping Chen 254-263



Definition 4.2. Let µ be a topology on U . Define a binary relation Rµ on U
by

(x, y) ∈ Rµ ⇐⇒ x ∈ clµ({y}).
Then Rµ is called the binary relation induced by µ on U .

Theorem 4.3. Let (U, µ) be a topological space. Then the following are equiv-
alent:

(1) (U, µ) is an approximating space;
(2) There exists a tolerance relation R on U such that τR = µ;
(3) There exists a tolerance relation R on U such that R is an interior

operator of µ;
(4) There exists a tolerance relation R on U such that R is a closure operator

of µ;
(5) There exists an equivalence relation R on U such that

µ = {
⋃

x∈X

[x]R : X ∈ 2U}.

Proof. (1) =⇒ (2) is obvious.
(1) =⇒ (3) and (1)=⇒ (4) hold by Theorem 3.2.
(1) =⇒ (5) holds by Remark 3.2.
(2) =⇒ (1) Suppose that there exists a tolerance relation R on U such that

τR = µ.
By Theorem 2.2 and Corollary 3.12, Rs is equivalence and τRs

= τR.
Then τRs

= µ.
Thus (U, µ) is an approximating space.
(3) =⇒ (1) Suppose that there exists a tolerance relation R on U such that

R is an interior operator of µ. Then

X ∈ τR ⇐⇒ R(X) = X ⇐⇒ intµ(X) = X ⇐⇒ X ∈ µ.

Then τR = µ.
By Theorem 2.6(2), R is preorder. So R is equivalence.
Thus (U, µ) is an approximating space.
(4) =⇒ (1) The proof is similar to (3) =⇒ (1).
(5) =⇒ (1) holds by Remark 3.2.

Corollary 4.4. If (U, µ) is an approximating space, then Rµ is an equivalence
relation.

Proof. Obviously, Rµ is reflexive.
By Theorem 4.3, there exists an equivalence relation R on U such that

µ = {
⋃

x∈X

[x]R : X ∈ 2U}.

By Remark 2.4, we have

(x, y) ∈ Rµ ⇒ x ∈ clµ({y}) = [y]R ⇒ y ∈ [y]R = [x]R = clµ({x}) ⇒ (y, x) ∈ Rµ.

8
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(x, y), (y, z) ∈ Rµ =⇒ x ∈ clµ({y}) = [y]R, y ∈ clµ({z}) = [z]R
=⇒ x ∈ [y]R = [z]R = clµ({z}) =⇒ (x, z) ∈ Rµ.

Thus Rµ is equivalence.
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Divisible and strong fuzzy filters of residuated lattices
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Abstract. In a residuated lattice, divisible fuzzy filters and strong fuzzy filters are introduced, and their properties

are investigated. Characterizations of a divisible and strong fuzzy filter are discussed. Conditions for a fuzzy filter

to be divisible are established. Relations between a divisible fuzzy filter and a strong fuzzy filter are considered.

1. Introduction

In order to deal with fuzzy and uncertain informations, non-classical logic has become a formal

and useful tool. As the semantical systems of non-classical logic systems, various logical algebras

have been proposed. Residuated lattices are important algebraic structures which are basic

of MTL-algebras, BL-algebras, MV -algebras, Gödel algebras, R0-algebras, lattice implication

algebras, etc. The filter theory plays an important role in studying logical systems and the

related algebraic structures, and various filters have been proposed in the literature. Zhang et

al. [8] introduced the notions of IMTL-filters (NM-filters, MV-filters) of residuated lattices, and

presented their characterizations. Ma and Hu [4] introduced divisible filters, strong filters and

n-contractive filters in residuated lattices.

In this paper, we consider the fuzzification of divisible filters and strong filters in residuated

lattices. We define divisible fuzzy filters and strong fuzzy filters, and investigate related properties.

We discussed characterizations of a divisible and strong fuzzy filter, and provided conditions for

a fuzzy filter to be divisible. We establish relations between a divisible fuzzy filter and a strong

fuzzy filter.
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2. Preliminaries

Definition 2.1 ([1, 2, 3]). A residuated lattice is an algebra L := (L,∨,∧,⊙,→, 0, 1) of type

(2, 2, 2, 2, 0, 0) such that

(1) (L,∨,∧, 0, 1) is a bounded lattice.

(2) (L,⊙, 1) is a commutative monoid.

(3) ⊙ and → form an adjoint pair, that is,

(∀x, y, z ∈ L) (x ≤ y → z ⇔ x⊙ y ≤ z) .

In a residuated lattice L, the ordering ≤ and negation ¬ are defined as follows:

(∀x, y ∈ L) (x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y ⇔ x→ y = 1)

and ¬x = x→ 0 for all x ∈ L.

Proposition 2.2 ([1, 2, 3, 4, 6, 7]). In a residuated lattice L, the following properties are valid.

1→ x = x, x→ 1 = 1, x→ x = 1, 0→ x = 1, x→ (y → x) = 1. (2.1)

x→ (y → z) = (x⊙ y)→ z = y → (x→ z). (2.2)

x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z. (2.3)

z → y ≤ (x→ z)→ (x→ y), z → y ≤ (y → x)→ (z → x). (2.4)

(x→ y)⊙ (y → z) ≤ x→ z. (2.5)

¬x = ¬¬¬x, x ≤ ¬¬x, ¬1 = 0, ¬0 = 1. (2.6)

x⊙ y ≤ x⊙ (x→ y) ≤ x ∧ y ≤ x ∧ (x→ y) ≤ x. (2.7)

x ≤ y ⇒ x⊙ z ≤ y ⊙ z. (2.8)

x→ (y ∧ z) = (x→ y) ∧ (x→ z), (x ∨ y)→ z = (x→ z) ∧ (y → z). (2.9)

x→ y ≤ (x⊙ z)→ (y ⊙ z). (2.10)

¬¬(x→ y) ≤ ¬¬x→ ¬¬y. (2.11)

x→ (x ∧ y) = x→ y. (2.12)

Definition 2.3 ([5]). A nonempty subset F of a residuated lattice L is called a filter of L if it

satisfies the conditions:

(∀x, y ∈ L) (x, y ∈ F ⇒ x⊙ y ∈ F ) . (2.13)

(∀x, y ∈ L) (x ∈ F, x ≤ y ⇒ y ∈ F ) . (2.14)
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Proposition 2.4 ([5]). A nonempty subset F of a residuated lattice L is a filter of L if and only

if it satisfies:

1 ∈ F. (2.15)

(∀x ∈ F ) (∀y ∈ L) (x→ y ∈ F ⇒ y ∈ F ) . (2.16)

Definition 2.5 ([9]). A fuzzy set µ in a residuated lattice L is called a fuzzy filter of L if it

satisfies:

(∀x, y ∈ L) (µ(x⊙ y) ≥ min{µ(x), µ(y)}) . (2.17)

(∀x, y ∈ L) (x ≤ y ⇒ µ(x) ≤ µ(y)) . (2.18)

Theorem 2.6 ([9]). A fuzzy set µ in a residuated lattice L is a fuzzy filter of L if and only if the

following assertions are valid:

(∀x ∈ L) (µ(1) ≥ µ(x)) . (2.19)

(∀x, y ∈ L) (µ(y) ≥ min{µ(x→ y), µ(x)}) . (2.20)

3. Divisible and strong fuzzy filters

In what follows let L denote a residuated lattice unless otherwise specified.

Definition 3.1 ([4]). A filter F of L is said to be divisible if it satisfies:

(∀x, y ∈ L) ((x ∧ y)→ [x⊙ (x→ y)] ∈ F ) . (3.1)

Definition 3.2. A fuzzy filter µ of L is said to be divisible if it satisfies:

(∀x, y ∈ L)
(
µ
(
(x ∧ y)→ [x⊙ (x→ y)]

)
= µ(1)

)
. (3.2)

Example 3.3. Let L = {0, a, b, 1} be a chain with Cayley tables which are given in Tables 1 and

2.

Table 1. Cayley table for the “⊙”-operation

⊙ 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 a b b

1 0 a b 1

Then L := (L,∨,∧,⊙,→, 0, 1) is a residuated lattice. Define a fuzzy set µ in L by µ(1) = 0.7

and µ(x) = 0.2 for all x(̸= 1) ∈ L. It is routine to verify that µ is a divisible fuzzy filter of L.
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Table 2. Cayley table for the “→”-operation

→ 0 a b 1

0 1 1 1 1

a a 1 1 1

b 0 a 1 1

1 0 a b 1

Example 3.4. Consider a residuated lattice L = [0, 1] in which two operations “⊙” and “→”

are defined as follows:

x⊙ y =

{
0 if x+ y ≤ 1

2
,

x ∧ y otherwise.

x→ y =

{
1 if x ≤ y,(
1
2
− x
)
∨ y otherwise.

The fuzzy set µ of L given by µ(1) = 0.9 and µ(x) = 0.2 for all x(̸= 1) ∈ L is a fuzzy filter of L.
But it is not divisible since

µ((0.3 ∧ 0.2)→ (0.3⊙ (0.3→ 0.2)) = µ(0.3) ̸= µ(1).

Proposition 3.5. Every divisible fuzzy filter µ of L satisfies the following identity.

(∀x, y, z ∈ L) (µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ z))) = µ(1)) . (3.3)

Proof. Let x, y, z ∈ L. If we let x := x⊙ y and y := x⊙ z in (3.2), then

µ(((x⊙ y) ∧ (x⊙ z))→ ((x⊙ y)⊙ ((x⊙ y)→ (x⊙ z)))) = µ(1). (3.4)

Using (2.2) and (2.7), we have

(x⊙ y)⊙ ((x⊙ y)→ (x⊙ z)) = x⊙ y ⊙ (y → (x→ (x⊙ z)))
≤ x⊙ (y ∧ (x→ (x⊙ z))),

and so

((x⊙ y) ∧ (x⊙ z))→ ((x⊙ y)⊙ ((x⊙ y)→ (x⊙ z)))
≤ ((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z))))

by (2.3). It follows from (3.4) and (2.18) that

µ(1) = µ(((x⊙ y) ∧ (x⊙ z))→ ((x⊙ y)⊙ ((x⊙ y)→ (x⊙ z))))
≤ µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z)))))

and so that

µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z))))) = µ(1) (3.5)
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since µ(1) ≥ µ(x) for all x ∈ L. On the other hand, if we take x := x→ (x⊙ z) in (3.2) then

µ(1) = µ((y ∧ (x→ (x⊙ z)))→ ((x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)))

≤ µ((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ ((x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))))

= µ((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)))

by using (2.10), (2.18) and the commutativity and associativity of ⊙. Hence

µ((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))) = µ(1). (3.6)

Using (2.5), we get

(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z)))))⊙
((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)))

≤ ((x⊙ y) ∧ (x⊙ z))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)).

It follows from (2.18), (2.17), (3.5) and (3.6) that

µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)))

≥ µ((((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z)))))⊙
((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))))

≥ min{µ((((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ (x→ (x⊙ z)))))),
µ(((x⊙ (y ∧ (x→ (x⊙ z))))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))))}
= µ(1)

Thus

µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))) = µ(1). (3.7)

Since x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)) ≤ x⊙ z ⊙ (z → y) ≤ x⊙ (y ∧ z), we obtain

((x⊙ y) ∧ (x⊙ z))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y)))

≤ ((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ z)).

It follows that

µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ z)))
≥ µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (x→ (x⊙ z))⊙ ((x→ (x⊙ z))→ y))))

= µ(1)

and that µ(((x⊙ y) ∧ (x⊙ z))→ (x⊙ (y ∧ z))) = µ(1). □

We consider characterizations of a divisible fuzzy filter.
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Theorem 3.6. A fuzzy filter µ of L is divisible if and only if the following assertion is valid:

(∀x, y, z ∈ L)
(
µ
(
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]

)
= µ(1)

)
. (3.8)

Proof. Assume that µ is a divisible fuzzy filter of L. If we take x := x → y and y := x → z in

(3.2) and use (2.9) and (2.2), then

µ(1) = µ ([(x→ y) ∧ (x→ z)]→ [(x→ y)⊙ ((x→ y)→ (x→ z))])

= µ ([x→ (y ∧ z)]→ [(x→ y)⊙ ((x⊙ (x→ y))→ z)]) .

Using (2.4) and (2.10), we have

(x ∧ y)→ [x⊙ (x→ y)] ≤ [(x⊙ (x→ y))→ z]→ [(x ∧ y)→ z]

≤ [(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]

for all x, y, z ∈ L. Since µ is a divisible fuzzy filter of L, it follows from (3.2) and (2.18) that

µ(1) = µ((x ∧ y)→ [x⊙ (x→ y)])

≤ µ([(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)])

and so from (2.19) that

µ([(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]) = µ(1)

for all x, y, z ∈ L. Using (2.5), we get(
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x⊙ (x→ y))→ z)]

)
⊙(

[(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]
)

≤ [x→ (y ∧ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)],

and so

µ
(
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]

)
≥ µ

((
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x⊙ (x→ y))→ z)]

)
⊙(

[(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]
))

≥ min
{
µ
(
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x⊙ (x→ y))→ z)]

)
,

µ
(
[(x→ y)⊙ ((x⊙ (x→ y))→ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]

)}
= µ(1).

Therefore µ
(
[x→ (y ∧ z)]→ [(x→ y)⊙ ((x ∧ y)→ z)]

)
= µ(1) for all x, y, z ∈ L.
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Conversely, let µ be a fuzzy filter that satisfies the condition (3.8). if we take x := 1 in (3.8)

and use (2.1), then we obtain (3.2). □

Theorem 3.7. A fuzzy filter µ of L is divisible if and only if it satisfies:

(∀x, y ∈ L) (µ ([y ⊙ (y → x)]→ [x⊙ (x→ y)]) = µ(1)) . (3.9)

Proof. Suppose that µ is a divisible fuzzy filter of L. Note that

(x ∧ y)→ [x⊙ (x→ y)] ≤ [y ⊙ (y → x)]→ [x⊙ (x→ y)]

for all x, y ∈ L. It follows from (3.2) and (2.18) that

µ(1) = µ ((x ∧ y)→ [x⊙ (x→ y)])

≤ µ ([y ⊙ (y → x)]→ [x⊙ (x→ y)])

and that µ ([y ⊙ (y → x)]→ [x⊙ (x→ y)]) = µ(1).

Conversely, let µ be a fuzzy filter of L that satisfies the condition (3.9). Since

y → x = y → (y ∧ x) for all x, y ∈ L,

the condition (3.9) implies that

µ ([y ⊙ (y → (x ∧ y))]→ [x⊙ (x→ (x ∧ y))]) = µ(1). (3.10)

If we take y := x ∧ z in (3.10), then

µ(1) = µ ([(x ∧ z)⊙ ((x ∧ z)→ (x ∧ (x ∧ z)))]→ [x⊙ (x→ (x ∧ (x ∧ z)))])
= µ ((x ∧ z)→ [x⊙ (x→ z)]) .

Therefore µ is a divisible fuzzy filter of L. □

We discuss conditions for a fuzzy filter to be divisible.

Theorem 3.8. If a fuzzy filter µ of L satisfies the following assertion:

(∀x, y ∈ L) (µ((x ∧ y)→ (x⊙ y)) = µ(1)) , (3.11)

then µ is divisible.

Proof. Note that x⊙ y ≤ x⊙ (x→ y) for all x, y ∈ L. It follows from (2.3) that

(x ∧ y)→ (x⊙ y) ≤ (x ∧ y)→ (x⊙ (x→ y)).

Hence, by (3.11) and (2.18), we have

µ(1) = µ((x ∧ y)→ (x⊙ y)) ≤ µ((x ∧ y)→ (x⊙ (x→ y))),

and so µ((x ∧ y)→ (x⊙ (x→ y))) = µ(1) for all x, y ∈ L. Therefore µ is a divisible fuzzy filter

of L. □
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Theorem 3.9. If a fuzzy filter µ of L satisfies the following assertion:

(∀x, y ∈ L) (µ((x ∧ (x→ y))→ y) = µ(1)) , (3.12)

then µ is divisible.

Proof. Taking y := x⊙ y in (3.12) implies that

µ(1) = µ((x ∧ (x→ (x⊙ y)))→ (x⊙ y))
≤ µ((x ∧ y)→ (x⊙ y))

and so µ((x ∧ y) → (x ⊙ y)) = µ(1) for all x, y ∈ L. It follows from Theorem 3.8 that µ is a

divisible fuzzy filter of L. □

Theorem 3.10. If a fuzzy filter µ of L satisfies the following assertion:

(∀x, y, z ∈ L) (µ(x→ z) ≥ min{µ((x⊙ y)→ z), µ(x→ y)}) , (3.13)

then µ is divisible.

Proof. If we take x := x ∧ (x→ y), y := x and z := y in (3.13), then

µ((x ∧ (x→ y))→ y) ≥ min{µ(((x ∧ (x→ y))⊙ x)→ y), µ((x ∧ (x→ y))→ x)}
= µ(1)

Thus µ((x ∧ (x → y)) → y) = µ(1) for all x, y ∈ L, and so µ is a divisible fuzzy filter of L by

Theorem 3.9. □

Theorem 3.11. If a fuzzy filter µ of L satisfies the following assertion:

(∀x ∈ L) (µ(x→ (x⊙ x)) = µ(1)) , (3.14)

then µ is divisible.

Proof. Let µ be a fuzzy filter of L that satisfies the condition (3.14). Using (2.10) and the

commutativity of ⊙, we have x→ y ≤ (x⊙ x)→ (x⊙ y), and so

(x→ (x⊙ x))⊙ (x→ y) ≤ (x→ (x⊙ x))⊙ ((x⊙ x)→ (x⊙ y))

for all x, y ∈ L by (2.8) and the commutativity of ⊙. It follows from (2.5), (2.8) and the

commutativity of ⊙ that

((x→ (x⊙ x))⊙ (x→ y))⊙ ((x⊙ y)→ z)

≤ ((x→ (x⊙ x))⊙ ((x⊙ x)→ (x⊙ y)))⊙ ((x⊙ y)→ z)

≤ (x→ (x⊙ y))⊙ ((x⊙ y)→ z)

≤ x→ z
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and so from (2.17), (2.18), (2.19) and (3.14) that

µ(x→ z) ≥ µ(((x→ (x⊙ x))⊙ (x→ y))⊙ ((x⊙ y)→ z))

≥ min{µ((x→ (x⊙ x))⊙ (x→ y)), µ((x⊙ y)→ z)}
≥ min{µ(x→ (x⊙ x)), µ(x→ y), µ((x⊙ y)→ z)}
= min{µ(1), µ(x→ y), µ((x⊙ y)→ z)}
= min{µ((x⊙ y)→ z), µ(x→ y)}

for all x, y, z ∈ L. Therefore µ is a divisible fuzzy filter of L by Theorem 3.10. □

Definition 3.12 ([4]). A filter F of L is said to be strong if it satisfies:

(∀x ∈ L) (¬¬(¬¬x→ x) ∈ F ) . (3.15)

Definition 3.13. A fuzzy filter µ of L is said to be strong if it satisfies:

(∀x ∈ L)
(
µ
(
¬¬(¬¬x→ x)

)
= µ(1)

)
. (3.16)

Example 3.14. Consider a residuated lattice L := {0, a, b, c, d, 1} with the following Hasse

diagram (Figure 3.1) and Cayley tables (see Table 3 and Table 4).

rb r
0

ra r1

r d
r c

�
�

@
@

�
�

�
�
�
�

@
@

Figure 3.1

Table 3. Cayley table for the “⊙”-operation

⊙ 0 a b c d 1

0 0 0 0 0 0 0

a 0 a b d d a

b c b b 0 0 b

c b d 0 d d c

d b d 0 d d d

1 0 a b c d 1

Define a fuzzy set µ in L by µ(1) = 0.6 and µ(x) = 0.5 for all x(̸= 1) ∈ L. It is routine to check

that µ is a strong fuzzy filter of L.
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Table 4. Cayley table for the “→”-operation

→ 0 a b c d 1

0 1 1 1 1 1 1

a 0 1 b c c 1

b c a 1 c c 1

c b a b 1 a 1

d b a b a 1 1

1 0 a b c d 1

We provide characterizations of a strong fuzzy filter.

Theorem 3.15. Given a fuzzy set µ of L, the following assertions are equivalent.

(1) µ is a strong fuzzy filter of L.
(2) µ is a fuzzy filter of L that satisfies

(∀x, y ∈ L) (µ((y → ¬¬x)→ ¬¬(y → x) = µ(1)) . (3.17)

(3) µ is a fuzzy filter of L that satisfies

(∀x, y ∈ L) (µ((¬x→ y)→ ¬¬(¬y → x)) = µ(1)) . (3.18)

Proof. Assume that µ is a strong fuzzy filter of L. Then µ is a fuzzy filter of L. Note that

¬¬(¬¬x→ x) ≤ ¬¬((y → ¬¬x)→ (y → x))

≤ ¬¬((y → ¬¬x)→ ¬¬(y → x))

= (y → ¬¬x)→ ¬¬(y → x)

and

¬¬(¬¬x→ x) ≤ ¬¬(((¬x→ y)⊙ ¬y)→ x)

= ¬¬((¬x→ y)→ (¬y → x))

≤ ¬¬((¬x→ y)→ ¬¬(¬y → x))

= (¬x→ y)→ ¬¬(¬y → x)

for all x, y ∈ L. If follows from (3.16) and (2.18) that

µ(1) = µ(¬¬(¬¬x→ x)) ≤ µ((y → ¬¬x)→ ¬¬(y → x)) (3.19)

and

µ(1) = µ(¬¬(¬¬x→ x)) ≤ µ((¬x→ y)→ ¬¬(¬y → x)). (3.20)

Combining (2.19), (3.19) and (3.20), we have µ((y → ¬¬x)→ ¬¬(y → x)) = µ(1) and µ((¬x→
y) → ¬¬(¬y → x)) = µ(1) for all x, y ∈ L. Therefore (2) and (3) are valid. Let µ be a fuzzy
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filter of L that satisfies the condition (3.17). If we take y := ¬¬x in (3.17) and use (2.1), then we

can induce the condition (3.16) and so µ is a strong fuzzy filter of L. Let µ be a fuzzy filter of L
that satisfies the condition (3.18). Taking y := ¬x in (3.18) and using (2.1) induces the condition

(3.16). Hence µ is a strong fuzzy filter of L. □

We investigate relationship between a divisible fuzzy filter and a strong fuzzy filter.

Theorem 3.16. Every divisible fuzzy filter is a strong fuzzy filter.

Proof. Let µ be a divisible fuzzy filter of L. If we put x := ¬¬x and y := x in (3.2), then we have

µ((¬¬x ∧ x)→ (¬¬x⊙ (¬¬x→ x))) = µ(1). (3.21)

Using (2.4) and (2.8), we get

(¬¬x ∧ x)→ (¬¬x⊙ (¬¬x→ x)) ≤ ¬(¬¬x⊙ (¬¬x→ x))→ ¬(¬¬x ∧ x)
≤ (¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x)))→ (¬¬x⊙ ¬(¬¬x ∧ x))
≤ ¬(¬¬x⊙ ¬(¬¬x ∧ x))→ ¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x)))

for all x ∈ L. It follows from (3.21) and (2.18) that

µ(1) = µ((¬¬x ∧ x)→ (¬¬ ⊙ (¬¬x→ x)))

≤ µ(¬(¬¬x⊙ ¬(¬¬x ∧ x))→ ¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x)))).
(3.22)

Combining (3.22) with (2.19), we have

µ(¬(¬¬x⊙ ¬(¬¬x ∧ x))→ ¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x)))) = µ(1) (3.23)

for all x ∈ L. Using (2.2), (2.11), (2.12) and (2.6), we get

¬(¬¬x⊙ ¬(¬¬x ∧ x)) = ¬¬x→ ¬¬(¬¬x ∧ x)
≥ ¬¬(x→ (¬¬x ∧ x))
= ¬¬(x→ (x ∧ ¬¬x))
= ¬¬(x→ ¬¬x) = ¬¬1 = 1

and so ¬(¬¬x⊙ ¬(¬¬x ∧ x)) = 1 for all x ∈ L. It follows from (3.23) and (2.20) that

µ(¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x))))

≥ min{µ(¬(¬¬x⊙ ¬(¬¬x ∧ x))→ ¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x)))),

µ(¬(¬¬x⊙ ¬(¬¬x ∧ x)))}
= µ(1)
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and so that

µ(1) = µ(¬(¬¬x⊙ ¬(¬¬x⊙ (¬¬x→ x))))

= µ(¬(¬¬x⊙ (¬¬x→ ¬(¬¬x→ x)))).
(3.24)

Taking x := ¬¬x and y := ¬(¬¬x→ x) in (3.2) induces

µ(1) = µ((¬¬x ∧ ¬(¬¬x→ x))→ (¬¬x⊙ (¬¬x→ ¬(¬¬x→ x))))

≤ µ(¬(¬¬x⊙ (¬¬x→ ¬(¬¬x→ x)))→ ¬(¬¬x ∧ ¬(¬¬x→ x)))

by using (2.3) and (2.18). Thus

µ(¬(¬¬x⊙ (¬¬x→ ¬(¬¬x→ x)))→ ¬(¬¬x ∧ ¬(¬¬x→ x))) = µ(1). (3.25)

Since ¬(¬¬x→ x) ≤ ¬¬x for all x ∈ L, it follows from (2.19), (2.20), (3.24) and (3.25) that

µ(1) = µ(¬(¬¬x ∧ ¬(¬¬x→ x))) = µ(¬¬(¬¬x→ x))

for all x ∈ L. Therefore µ is a strong fuzzy filter of L. □

Corollary 3.17. If a fuzzy filter µ of L satisfies one of conditions (3.8), (3.9), (3.11), (3.12),

(3.13) and (3.14), then µ is a strong fuzzy filter of L.

The following example shows that the converse of Theorem 3.16 may not be true in general.

Example 3.18. The strong fuzzy filter µ of L which is given in Example 3.14 is not a divisible

fuzzy filter of L since µ((a ∧ c)→ (a⊙ (a→ c))) = µ(a) ̸= µ(1).

4. Conclusions

The filter theory plays an important role in studying logical systems and the related algebraic

structures, and various filters have been proposed in the literature. Zhang et al. [8] introduced

the notions of IMTL-filters (NM-filters, MV-filters) of residuated lattices, and presented their

characterizations. Ma and Hu [4] introduced divisible filters, strong filters and n-contractive

filters in residuated lattices.

In this paper, we have considered the fuzzification of divisible filters and strong filters in

residuated lattices. We have defined divisible fuzzy filters and strong fuzzy filters, and have

investigated related properties. We have discussed characterizations of a divisible and strong

fuzzy filter, and have provided conditions for a fuzzy filter to be divisible. We have establish

relations between a divisible fuzzy filter and a strong fuzzy filter. In a forthcoming paper, we

will study the fuzzification of n-contractive filters in residuated lattices, and apply the results to

other algebraic structures.
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FREQUENT HYPERCYCLICITY OF WEIGHTED COMPOSITION

OPERATORS ON CLASSICAL BANACH SPACES

SHI-AN HAN AND LIANG ZHANG∗

Abstract. In this paper we characterize the frequent hypercyclicity of weighted com-

position operators on some classical Banach spaces, such as the weighted Dirichlet space

Sv . Besides, we also discuss the frequent hypercyclicity of the weighted composition
operators on the weighted Bergman space Apα.

1. Introduction and terminology

Let H(D) be the space of all holomorphic functions on D, where D is the open unit disk
of the complex plane C. The collection of all holomorphic self-maps of D will be denoted by
S(D), and let Aut(D) denote the set of all automorphisms on D. The disk algebra, denoted
by A(D), consists of all functions in H(D) that are continuous up to the boundary ∂D of the
unit disk D. Let dA denote the normalized Lebesegue measure on D. The space of bounded
analytic functions on D will be denoted by H∞, with the sup norm ‖ · ‖∞.

For α > −1 and 1 < p <∞, the weighted Bergman space Apα consists of analytic functions
f such that

‖f‖p =

∫
D
|f (z)|p dνα (z) <∞,

where dνα on D is defined by

dνα = (α+ 1)
(

1− |z|2
)α

dν (z)

and να (D) = 1. Under the norm ‖.‖, Apα is a separable infinite dimensional Banach space,
since the set of polynomials is dense in Apα.

For each real number v, the weighted Dirichlet space Sv is the space of holomorphic
functions f(z) =

∑∞
n=0 anz

n, z ∈ D such that the following norm

‖f‖2v =
∞∑
n=0

|an|2(n+ 1)2v

is finite. Observe that the space Sv is Hilbert space, where the inner product is defined by

〈f, g〉 =
∞∑
n=0

anbn(n+ 1)2v,

where f(z) =
∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n. For instance, if v = 0,−1/2, 1/2, then
Sv is, respectively, the classical Hardy space H2, the Bergman space A2, and the Dirichlet
space D.

By Lemma 1.2 in [5], we know the following expression

‖f‖2 =
l∑
i=0

|f (i)(0)|+
∫
D
|f (l+1)(z)|2(1− |z|2)2l+1−2vdA(z)

defines an equivalent norm on Sv, where l ≥ −1 is an integer such that v < l+ 1, and when
l = −1, the first term in the right hand side above does not appear.

The work was supported in part by the National Natural Science Foundation of China (Grant Nos.
11371276; 11301373; 11201331).
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2010 Mathematics Subject Classification. Primary: 47A16; Secondary: 47B38, 47B33, 30H99, 46E20.
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A bounded linear operator T acting on a separable Banach space X is said to be hyper-
cyclic if there is an f ∈ X such that orbit {Tnf}n≥0 is dense in X. One bounded operator
T is called similar to another bounded operator S on X if there exists a bounded and in-
vertible operator V on H such that TV = V S. And the similarity preserve hypercyclicity.
A continuous linear operator T acting on a separable Banach space X is said to be mixing,
if for any pair U, V of nonempty open subsets of X, there exists some N ≥ 0 such that

Tn (U) ∩ (V ) 6= ∅, for all n ≥ N.

The lower density of a subset A of N is defined as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N ;n ∈ A}
N + 1

.

A vector x ∈ X is called frequently hypercyclic for T , if for every non-empty open subset
U of X,

dens{n ∈ N, Tnx ∈ U} > 0.

The operator T is called frequently hypercyclic if it possesses a frequently hypercyclic vector.
It is obvious that if the operator T is frequently hypercyclic, then T is hypercyclic. More
related details can be founded in chapter 9 in the book [6].

Let u ∈ H(D) and ϕ ∈ S(D), the weighted composition operator uCϕ is defined as

(uCϕf)(z) = u(z)f(ϕ(z)), f ∈ H(D), z ∈ D.

And when u ≡ 1, we just have the composition operator Cϕ and when ϕ(z) = z, we get the
multiplication operator Mu.

For ϕ ∈ LFT (D), we define ϕ as following:

ϕ (z) =
az + b

cz + d
,

where ad− bc 6= 0.
Note that the linear fractional self-maps of D fall into distinct classes determined by their

fixed point properties (see [1]). There are:
(a) Maps with interior fixed point. By the Schwarz Lemma the interior fixed point is

either attractive, or the map is an elliptic automorphism.
(b) Parabolic maps. Its fixed point is on ∂D, and the derivative = 1 at the fixed point.
(c) Hyperbolic maps with attractive fixed point on ∂D and their repulsive fixed point

outside of D. Both fixed points are on ∂D if and only if the map is the automorphism of D.
In this case, the derivative < 1 at the attractive fixed point.

According to a result by P.R. Hurst [8], the composition operator Cϕ : Sv → Sv is
bounded for any v ∈ R and any ϕ ∈ LFT (D). In [4], the authors partially characterized
the frequent hypercyclicity of scalar multiples of composition operators, whose symbols are
linear fractional maps, acting on the weighted Dirichlet space Sv. E. Gallado and A. Montes
[5] have furnished a complete characterization of the hypercyclicity of λCϕ on Sv in terms
of λ, v, ϕ. Readers interested in related topics can refer to [3, 7, 9, 12, 13].

In this note, we will discuss the conditions of the frequent hypercyclicity of weighted
composition operators on some classical Banach spaces, such as the weighted Dirichlet space
Sv and the weighted Bergman space Apα.

2. Frequent hypercyclicity of uCϕ on Sv

In this section, we begin to discuss the frequent hypecyclicity of the weighted composition
operator uCϕ on Sv.

Theorem 2.1. If uCϕ is frequently hypercyclic on Sv, then ϕ is univalent and has no fixed
point in D, and u(z) 6= 0 for every z ∈ D.

Proof. It is well known that uCϕ is hypercyclic on Sv, so by Theorem 1 in [11], we obtain
it. �

The following result can be found in [11, Theorem 2].
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Theorem 2.2. Let v > 1/2. Then
(a) No weighted composition operator on Sv is hypercyclic.
(b) If ϕ has two fixed points α, β in D, and u(α) = u(β), then uCϕ is not cyclic on Sv.

Combining with the comparison principle, to discuss frequent hypecyclicity of the weight-
ed composition operator uCϕ on Sv, we may assume without loss of generality that 0 ≤ v ≤
1
2 .

2.1. The case for v = 0. In general, composition operators are bounded on H2 (see [2,
Charpter 3]). Mu is also a bounded operator on Sv if u ∈ H∞. So when v = 0, ϕ ∈ S(D)
and u ∈ H∞, uCϕ = MuCϕ.

According to the definition of [9], for any w ∈ ∂D and any positive number α, Lipα(w)
corresponds to the class of holomorphic functions ϕ such that there is some neighborhood
G of w in ∂D and a positive constant M with

|ϕ(z)− ϕ(w)| ≤M |z − w|α , for z ∈ G.

For example, if an analytic function ϕ on D is also analytic at w ∈ ∂D, then ϕ ∈ Lipα(w)
whenever 0 ≤ α ≤ 1. Moreover, if ϕ′ (ω) = 0, then ϕ ∈ Lipα(w) whenever 0 ≤ α ≤ 2.

We have the following proposition.

Proposition 2.3. Let ϕ ∈ LFT (D), w ∈ ∂D be the Denjoy-Wolff point of ϕ, u ∈ Lipα (w)∩
A (D) , ‖u‖∞ = |u (w)| 6= 0. Then u(w) is an eigenvalue for uCϕ, whenever ϕ is hyperbolic

and α > 0 or ϕ is parabolic automorphism and α > 1. Moreover, if u never vanishes on D,
then the eigenfunction also never vanishes.

Proof. According to the proof of Propositioin 2.4 of [9], we have that the function g(z) =
∞∏
n=0

u(ϕn(z))
u(w) is a nonzero holomorphic function on D. Since ‖u‖∞ = |u (w)| 6= 0, then for

every j ≥ 0 and z ∈ D,
∣∣∣u(ϕj(z))

u(w)

∣∣∣ ≤ 1. And note that for fixed z ∈ D,
n∏
j=0

∣∣∣u(ϕj(z))
u(w)

∣∣∣ is

decreasing with respect to n. Therefore, ‖g‖∞ = sup
z∈D

∣∣∣∣ ∞∏
n=0

u(ϕn(z))
u(w)

∣∣∣∣ ≤ sup
z∈D

∣∣∣u(ϕ(z))u(w)

∣∣∣ ≤ 1.

That is, g ∈ H∞ ⊂ Sv and u (z) g (ϕ (z)) = u (w) g (z) . Thus u(w) is an eigenvalue for uCϕ.

Since u (z) 6= 0 for every z ∈ D, g (z) 6= 0 for z ∈ D. �

Next, we obtain the following result.

Theorem 2.4. Let ϕ ∈ LFT (D), w ∈ ∂D be the Denjoy-Wolff point of ϕ, u ∈ Lipα (w) ∩
A (D) , ‖u‖∞ = |u (w)| 6= 0 and u (z) 6= 0 for every z ∈ D, then

(a) If ϕ is hyperbolic automorphism, α > 0 and ϕ′(w)1/2 < |u(w)| < ϕ′(w)−1/2, then
uCϕ is frequently hypecyclic on H2(D).

(b) If ϕ is parabolic automorphism, α > 1 and |u(w)| = 1, then uCϕ is frequently hy-
pecyclic on H2(D).

(c) If ϕ is hyperbolic non-automorphism, α > 0 and |u(w)| > ϕ′(w)1/2, then uCϕ is
frequently hypecyclic on H2(D).

Proof. By the proof of Proposition 2.4, g(z) =
∞∏
n=0

u(ϕn(z))
u(w) 6= 0 for z ∈ D, it is easy to see

that Mg is a bounded operator on H2(D) and uCϕMg = u (w)MgCϕ. Combining with the
comparison principle, we obtain this theorem. �

2.2. The case for 0 < v < 1/2. For v ∈ (0, 1/2), using the equivalent norm in Sv, we define
the Banach space Qc as follows:

Qc = {f ∈ Sv : ‖f‖Qc
= |f(0)|+ sup

w∈D
‖f ◦ ϕw − f‖ <∞},

where c = 1− 2v and ϕw(z) = (w − z)/(1 − w̄z). For different p ∈ (0, 1), Qp1 ⊂ Qp2 when
0 < p1 < p2 ≤ 1. In particular, Q1 = BMOA, the bounded mean oscillation space of
analytic functions and when p > 1, Qp = B, the Bloch space on D.
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Let g ∈ Q1−2v, by Corollary 2 in [10], we know that if

sup
ζ∈∂D

∫
D(ζ,r)

|g(z)|2(1− |z|)1−2vdA(z) = O(r3−2v), (2.1)

then Mg is bounded on Sv.
Thus we get the following theorems.

Theorem 2.5. Let 0 < v < 1/2 and α > 0. And let ϕ ∈ LFM(D) and ϕ be a hyperbolic
automorphism of the unit disc with Denjoy-Wolff point w ∈ ∂D, u ∈ Lipα(w) and u(w) 6= 0,
the function g =

∏∞
i=0

1
u(w)u(ϕi(w)) ∈ Q1−2v, ‖I −Mg‖Sv→Sv

< 1 and (2.1) holds, then the

following are equivalent:
(a) uCϕ is frequently hypercyclic.
(b) uCϕ is hypercyclic.

(c) ϕ′(w)(1−2v)/2 < |u(w)| < ϕ′(w)(2v−1)/2.

Proof. The implication (a) ⇒ (b) is trivial. If ϕ ∈ LFM(D) with Denjoy-Wolff point
w ∈ ∂D and u ∈ Lipα(w), u(w) 6= 0, as we saw in the proof of Proposition 2.4 in [9], the
map g(z) =

∏∞
i=0

1
u(w)u(ϕi(w)) is a nonzero holomorphic function satisfying uCϕg = u(w)g.

Since g ∈ Q1−2v and (2.1) holds, we have Mg is bounded operator on Sv, so g ∈ Sv,
thus the function g is an eigenfunction of uCϕ corresponding to u(w) on Sv, and uCϕMg =
u(w)MgCϕ.

Note that ‖I−Mg‖Sv→Sv
≤ 1+‖Mg‖Sv→Sv

. So I−Mg is also a bounded operator on Sv.
Because ‖I −Mg‖Sv→Sv < 1, then Mg is a invertible operator. It is obvious that (b)⇔ (c).
Besides, suppose that the condition (c) holds, by the proof of Theorem 2.6 in [4], u(w)Cϕ
satisfies the Frequent Hypercyclicity Criterion. The implication (c)⇒ (a) is obvious. �

2.3. The case for v = 1/2. If so, we know that Sv is the Dirichlet space D.

Theorem 2.6. Let ϕ ∈ LFT (D), α > 1, w ∈ ∂D be the Denjoy-Wolff point of ϕ, u ∈
Lipα (w) ∩ A (D) , ‖u‖∞ = |u (w)| > 1 and u (z) 6= 0 for every z ∈ D. If ϕ is hyperbolic
non-automorphism, then uCϕ is frequently hypecyclic on the Dirichlet space D.

Proof. By the proof of Proposition 2.4, g(z) =
∞∏
n=0

u(ϕn(z))
u(w) 6= 0 for z ∈ D, Since ‖u‖∞ =

|u (w)| > 1, so g ∈ H∞ ⊂ D and u (z) g (ϕ (z)) = u (w) g (z) . It is easy to see that Mg is a
bounded operator on the Dirichlet space D and uCϕMg = u (w)MgCϕ. By Theorem 1.8 in
[5] and the comparison principle, we complete the proof. �

3. Frequent hypercyclicity of uCϕ on Apα

In this section, we study in detail frequent hypercyclicity of uCϕ on the weighted Bergman
space Apα and we suppose that the weighted composition operator uCϕ is bounded on Apα.

Proposition 3.1. Let α > −1, 1 < p < ∞ and ϕ ∈ LFT (D). If uCϕ is frequently
hypercyclic on Apα, then

(i) ϕ has no fixed point in D and ϕ is univalent.
(ii) u(z) 6= 0 for every z ∈ D.

Proof. The proof is obvious, so we omit it. �

Next, we obtain the following results.

Theorem 3.2. Let α > −1, β > 0, 1 < p < ∞, ϕ ∈ LFT (D) and ϕ be a hyperbolic
automorphism and w ∈ ∂D be the Denjoy-Wolff point of ϕ, u ∈ Lipβ (w) ∩ A (D) , ‖u‖∞ =

|u (w)| 6= 0 and u (z) 6= 0 for every z ∈ D. If ϕ′ (w)
(2+α)/p

< |u(w)| < ϕ′ (w)
(−2−α)/p

, then
uCϕ is frequently hypecyclic on Apα.

Proof. First, since this space under consideration is unitarily invariant, we may assume that
1 and −1 are fixed points of ϕ and 1 is the attractive fixed point. The change of variables

σ (z) =
i(1− z)

1 + z
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takes the unit disk onto the upper half plane, 1 and −1 to 0 and ∞. We obtain that ϕ is
conjugate to the translation map

ψ (z) = ρz,

where 0 < ρ < 1. By using the equation σ ◦ ϕ = ψ ◦ σ, we can get

ϕ (z) =
(1 + ρ) z + 1− ρ
(1− ρ)z + 1 + ρ

,

where ϕ′ (1) = ρ.

Let X0 denote the subspace of polynomials vanishing m at 1, where m > 2(α+2)
p . It is

obvious that X0 is dense on Apα. Fix f ∈ X0. It is similarly proved as in Theorem 3.5 in [5]
that ∥∥λnCnϕf∥∥p ≤ C |λ|np ρ(α+2)n, n ∈ N,

where C is a constant independent of n. If ϕ′ (1)
(2+α)/p

< |λ| < ϕ′ (1)
(−2−α)/p

, we obtain
that

∞∑
n=1

‖(λCϕ)
n
f‖ <∞, for all f ∈ X0. (3.1)

Similarly, let Y0 denote the subspace of polynomials vanishing m at −1 and Y0 is dense
on Apα. We take S = (λCϕ)

−1
. Observe that −1 is the attractive fixed point of ϕ−1 with(

ϕ−1
)′

(−1) = 1
ϕ′(−1) = ρ and ϕ′ (1)

(2+α)/p
< |λ| < ϕ′ (1)

(−2−α)/p
. Therefore, a similar

argument leads to
∞∑
n=1

‖Snf‖ <∞, for all f ∈ Y0. (3.2)

If we set X := X0 ∩ Y0, then we obtain that X is dense in Apα. Clearly (3.1) and (3.2) hold
for all f ∈ X. It is obvious that λCϕS is the identity on X. Consequently, λCϕ satisfies the
Frequent Hypercyclicity Criterion. By Proposition 2.4, then uCϕ is frequently hypecyclic
on Apα. �

Theorem 3.3. Let α > −1, β > 0, 1 < p < ∞, ϕ ∈ LFT (D) and ϕ is a hyperbolic
non-automorphism, w ∈ ∂D be the Denjoy-Wolff point of ϕ, u ∈ Lipβ (w)∩A (D) , ‖u‖∞ =

|u (w)| 6= 0 and u (z) 6= 0 for every z ∈ D. If |u(w)| > ϕ′ (ζ)
(2+α)/p

, then uCϕ is frequently
hypecyclic on Apα.

Proof. First, we prove that if |λ| > ϕ′ (w)
(2+α)/p

, then λCϕ is frequently hypecyclic on Apα.
Now, we assume that w = 1 is the boundary fixed point and β is a exterior fixed point.

Upon conjugating with an appropriate map, ϕ is conjugate to

ρz + 1− ρ,
where 0 < ρ < 1. Hence we may assume that ϕ (z) = ρz + 1− ρ, where ϕ′ (1) = ρ. For any
n ∈ N, we have

ϕn (z) = ρnz + 1− ρn. (3.3)

Let X0 denote the subspace of polynomials vanishing m at 1, where m is to be determined
later on. Obviously, X0 is dense on Apα. Fix f ∈ X0. It is similarly proved as in Theorem
2.11 in [5] that ∥∥λnCnϕf∥∥p ≤ C |λ|np ρmnp, n ∈ N,
where C is a constant independent of n. Since 0 < ρ < 1, we can choose m large enough to
have |λρm| < 1. By the assumption, we obtain that

∞∑
n=1

‖(λCϕ)
n
f‖ <∞, for all f ∈ X0. (3.4)

Define T = λCϕ and the inverse S = λ−1Cϕ−1 . Let Y be the set of all polynomials that
vanish m times at β where m will be suitable number. The set Y0 will be

Y0 =
∞
∪
n=0

λ−nCn
ϕ−1

(Y ) =
∞
∪
n=0

λ−nCϕ−n (Y ) .
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Similarly, we obtain that for n large enough∥∥λ−nCϕ−n
f
∥∥p ≤ C |λ|−np ρn(α+2),

where C is a constant independent of n. By the assumption, we have
∞∑
n=1

‖Snf‖ <∞, for all f ∈ Y0. (3.5)

If we set X := ∪∞n=0S
n (X ∩ Y ) , then we obtain that X is dense in Apα. Clearly (3.4) and

(3.5) hold for all f ∈ X. It is obvious that λCϕS is the identity on X. Consequently, λCϕ
satisfies the Frequent Hypercyclicity Criterion. By Proposition 2.4, then uCϕ is frequently
hypecyclic on Apα. �
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ON THE SPECIAL TWISTED q-POLYNOMIALS

JIN-WOO PARK

Abstract. In this paper, we found some interesting identities of q-extension

of special twisted polynomials which are derive from the bosonic q-integral and
fermionic q-integral on Zp.

1. Introduction

Let p be a given odd prime number. Throughout this paper, we assume that Zp,
Qp and Cp will, respectively, denote the rings of p-adic integers, the fields of p-adic
rational numbers and the completion of algebraic closure of Qp. The p-adic norm
|·|p is normalized by |p|p = 1

p . Let UD(Zp) be the space of uniformly differentiable

functions on Zp. For f ∈ UD(Zp), the bosonic p-adic q-integral on Zp is defined by
T. Kim to be

Iq(f) =

∫
Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx, (see [9, 10]), (1.1)

and the fermionic p-adic q-integral on Zp is also defined by Kim to be

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (see [9, 11]). (1.2)

Let f1(x) = f(x+ 1). Then, by (1.1) and (1.2), we get

qIq(f1)− Iq(f) = (q − 1)f(0) +
q − 1

log q
f
′
(0), (1.3)

and

qI−q(f1) + I−q(f) = [2]qf(0), (1.4)

where f
′
(0) = d

dxf(x)
∣∣
x=0

(see [9, 10, 11]).
It is well known that the q-Bernoulli polynomials are defined by the generating

function to be
q − 1 + (q−1)t

log q

qet − 1
ext =

∞∑
n=0

Bn,q(x)
tn

n!
, (1.5)

and the q-Euler polynomials are given by

[2]q
qet + 1

ext =
∞∑
n=0

En,q(x)
tn

n!
. (1.6)

1991 Mathematics Subject Classification. 11S80, 11B68, 05A30.
Key words and phrases. twisted q-Daehee polynomials of order r, twisted q-Changhee polyno-

mials of order r, q-Cauchy polynomials of order r.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

283 JIN-WOO PARK 283-292



2 JIN-WOO PARK

When x = 0, Bn,q = Bn,q(0)(En,q = En,q(0)) are called the nth q-Bernoulli
numbers(nth q-Euler numbers, respectively)(see [7, 8, 14, 16]).

The Stirling numbers of the first kind are defined by

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑
l=0

S1(n, l)xl, (n ≥ 0),

and the Stirling numbers of the second kind are defined by

(et − 1)n = n!
∞∑
l=n

S2(l, n)
tl

l!
, (see [1, 12]).

The Daehee polynomials of the first kind are defined by the generating function
to be (

log(1 + t)

t

)
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
(see [4, 5]).

Recently, the q-Daehee polynomials are defined by the generating function to be(
1− q + 1−q

log q

1− q − qt

)
(1 + t)x =

∞∑
n=0

Dn,q(x)
tn

n!
, (see [2, 13]), (1.7)

and the q-Changhee polynomials are defined by the generating function to be

[2]q
[2]q + qt

(1 + t)x =
∞∑
n=0

Chn,q(x)
tn

n!
, (see [3]) (1.8)

where t ∈ Cp with |t|p < p−
1

p−1 . When x = 0, Dn,q = Dn,q(0)(Chn,q = Chn,q(0))
are called the nth q-Daehee numbers(nth q-Changhee numbers, respectively).

The Daehee polynomials and Changhee polynomials are introduced by T. Kim
et. al. in [4, 6], and found interesting identities in [2, 4, 5, 6, 13, 15, 16]. In
this paper, we found some interesting identities of q-extension of special twisted
polynomials which are derive from the bosonic q-integral and fermionic q-integral
on Zp.

2. Twisted q-Daehee numbers and polynomials of higher-order

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp = ∪∪∪
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn =
{
ω|ωpn = 1

}
is the cyclic group of order pn.

In this section, we assume that t ∈ Cp with |t|p < p−
1

p−1 . We define the higher
order q-Beroulli polynomials as follows:(

q − 1 + q−1
log q t

qet − 1

)r
ext =

∞∑
n=0

B(r)
n,q(x)

tn

n!
. (2.1)

When x = 0, B
(r)
n,q(0) = B

(r)
n,q are called the higher order q-Bernoulli numbers.

For ε ∈ Tp, we consider the twisted q-Daehee polynomials of order r as follows:(
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)r
(1 + εt)x =

∞∑
n=0

D(r)
n,ε,q(x)

tn

n!
. (2.2)

When x = 0, D
(r)
n,ε,q(0) = D

(r)
n,ε,q are called twisted q-Daehee numbers of order r.
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From (1.1), we can obtain the equation:∫
Zp

· · ·
∫
Zp

(1 + εt)x1+···+xr+xdµq(x1) · · · dµq(xr)

=

(
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)r
(1 + εt)x

=
∞∑
n=0

D(r)
n,ε,q(x)

tn

n!
.

(2.3)

By (2.3), we get

∫
Zp

· · ·
∫
Zp

εn
(
x1 + · · ·+ xr + x

n

)
dµq(x1) · · · dµq(xr) =

D
(r)
n,ε,q(x)

n!
(n ≥ 0). (2.4)

By replacing t by 1
ε (et − 1) in (2.3), we have

∞∑
n=0

D(r)
n,ε,q(x)

(
1
ε (et − 1)

)n
n!

=

(
q − 1 + q−1

log q t

qet − 1

)r
ext =

∞∑
n=0

B(r)
n,q(x)

tn

n!
(2.5)

and

∞∑
n=0

D(r)
n,ε,q(x)

1

εnn!

(
et − 1

)n
=
∞∑
n=0

D(r)
n,ε,q(x)

1

εnn!
n!
∞∑
m=n

S2(m,n)
tm

m!

=
∞∑
n=0

(
n∑

m=0

D
(r)
m,ε,q(x)S2(n,m)

εn

)
tn

n!
.

(2.6)

Thus, by (2.5) and (2.6), we have

B(r)
n,q(x) =

n∑
m=0

D
(r)
m,ε,q(x)S2(n,m)

εn
. (2.7)

Therefore, by (2.4) and (2.7), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

B(r)
n,q(x) =

n∑
m=0

D
(r)
m,ε,q(x)S2(n,m)

εn

and

D
(r)
n,ε,q(x)

n!
=

∫
Zp

· · ·
∫
Zp

εn
(
x1 + · · ·+ xr + x

n

)
dµq(x1) · · · dµq(xr)

where S2(m,n) is the Stirling number of the second kind.
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From (2.1), by replacing t by log(1 + εt), we have(
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)r
(1 + εt)x

=
∞∑
n=0

B(r)
n,q(x)

1

n!
(log(1 + εt))

=
∞∑
n=0

B(r)
n,q(x)

1

n!
n!
∞∑
m=n

S1(m,n)
(εt)m

m!

=
∞∑
m=0

(
m∑
n=0

εmS1(m,n)B(r)
n,q(x)

)
tm

m!
,

(2.8)

where S1(m,n) is the Stirling number of the first kind. Thus, by (2.2) and (2.8),
we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

D(r)
n,ε,q(x) =

m∑
n=0

εmS1(m,n)B(r)
n,q(x).

Now, we consider the q-Changhee polynomials of order r which are defined by
the generating function as follows:

[2]q
qεt+ [2]q

(1 + εt)x =
∞∑
n=0

Ch(r)n,ε,q(x)
tn

n!
. (2.9)

In the special case x = 0, Ch
(r)
n,ε,q(0) = Ch

(r)
n,ε,q are called the q-Changhee numbers

of order r.
From (1.2), we note that∫

Zp

· · ·
∫
Zp

(1 + εt)x1+···+xr+xdµ−q(x1) · · · dµ−q(xr)

=

(
[2]q

qεt+ [2]q

)r
(1 + εt)x.

(2.10)

By (2.10), we have

∫
Zp

· · ·
∫
Zp

εn
(
x1 + · · ·+ xr + x

n

)
dµ−q(x1) · · · dµ−q(xr) =

Ch
(r)
n,ε,q(x)

n!
. (2.11)

In view of (1.6), we define the higher order q-Euler polynomials by generating
function to be (

[2]q
qet + 1

)r
ext =

∞∑
n=0

E(r)
n,q(x)

tn

n!
. (2.12)
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From (2.10), we note that∫
Zp

(1 + εt)x1+···+xr+xdµ−q(x1) · · · dµ−q(xr)

=

(
[2]q

qelog(1+εt) + 1

)r
ex log(1+εt)

=
∞∑
n=0

E(r)
n,q

1

n!
(log(1 + εt))

n

=
∞∑
n=0

E(r)
n,q(x)

1

n!
n!
∞∑
m=n

S1(m,n)
(εt)m

m!

=
∞∑
m=0

(
m∑
n=0

εmE(r)
n,q(x)S1(m,n)

)
tm

m!
.

(2.13)

Hence, by (2.11) and (2.13), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have∫
Zp

· · ·
∫
Zp

εn
(
x1 + · · ·+ xr + x

n

)
dµ−q(x1) · · · dµ−q(xr)

=
Ch

(r)
n,ε,q(x)

n!
=

1

n!

n∑
m=0

εnE(r)
m,q(x)S1(n,m).

By replacing t by 1
ε (et − 1) in (2.9), we have

∞∑
n=0

Ch(r)n,ε,q(x)
(et − 1)n

εnn!
=

(
[2]q

qet + 1

)r
ext (2.14)

and

∞∑
n=0

ε−nCh(r)n,ε,q(x)
1

n!

(
et − 1

)n
=

∞∑
n=0

ε−nCh(r)n,ε,q(x)

∞∑
m=n

S2(m,n)
tm

m!

=

∞∑
m=0

( ∞∑
n=0

ε−nCh(r)n,ε,q(x)S2(m,n)

)
tm

m!

(2.15)

By (2.12), (2.14) and (2.15), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

E(r)
n,q(x) =

n∑
m=0

ε−mCh(r)m,ε,q(x)S2(n,m).

From now on, we consider the q-analogue of the twisted Cauchy polynomials of
order r, which are defined by the generating function to be(

q(1 + εt)− 1

(q − 1) + q−1
log q log(1 + εt)

)r
(1 + εt)x =

∞∑
n=0

C(r)
n,ε,q(x)

tn

n!
. (2.16)
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In the special case x = 0, C
(r)
n,ε,q(0) = C

(r)
n,ε,q are called the twisted Cauchy numbers

of order r. Note that

lim
q→1

(
q(1 + εt)− 1

(q − 1) + q−1
log q log(1 + εt)

)r
(1 + r)x

=

(
εt

log(1 + εt)

)r
(1 + t)x =

∞∑
n=0

C(r)
n,ε(x)

tn

n!
,

(2.17)

where C
(r)
n,ε are called the Cauchy polynomials of order r.

By (2.2), we can derive the followings:

(1 + εt)x =

(
q(1 + εt)− 1

(q − 1) + q−1
log q log(1 + εt)

)r
(1 + εt)x

(
(q − 1) + q−1

log q log(1 + εt)

q(1 + εt)− 1

)r

=

( ∞∑
k=0

C(r)
n,ε,q

)( ∞∑
m=0

D(r)
m,ε,q

tm

m!

)

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
C

(r)
l,ε,q(x)D

(r)
n−l,ε,q

)
tn

n!

(2.18)

and

(1 + εt)x =
∞∑
n=0

εn(x)n
tn

n!
. (2.19)

By (2.18) and (2.19), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have(
x

n

)
=

1

εnn!

n∑
l=0

(
n

l

)
C

(r)
l,ε,q(x)D

(r)
n−l,ε,q.

Let n be a given nonnegative integer. In [2], authors defined q-analogue of the

Bernoulli-Euler mixed-type polynomials of order (r, s) BE
(r,s)
n,q (x), and derived the

following equation.

∞∑
n=0

BE(r,s)
n,q (x)

tn

n!
=

(
[2]q

qet + 1

)s(q − 1 + q−1
log q t

qet − 1

)r
ext. (2.20)

By replacing t by log(1 + εt), we get
∞∑
n=0

BE(r,s)
n,q (x)

(log(1 + εt))
n

n!

=

(
[2]q

q(1 + εt) + 1

)s(q − 1 + q−1
log q log(1 + εt)

q(1 + εt)− 1

)r
(1 + εt)x

=

( ∞∑
m=0

Ch(s)m,ε,q(x)
tm

m!

)( ∞∑
l=0

D
(r)
l,ε,q

tl

l!

)

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
Ch

(s)
l,ε,q(x)D

(r)
n−l,ε,q

)
tn

n!
,

(2.21)
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and
∞∑
n=0

BE(r,s)
n,q (x)

(log(1 + εt))
n

n!
=
∞∑
n=0

(
εn

n∑
m=0

BE(r,s)
m,q (x)S1(n,m)

)
tm

m!
. (2.22)

Thus, by (2.21) and (2.22), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have
n∑
l=0

(
n

l

)
Ch

(s)
l,ε,q(x)D

(r)
n−l,ε,q = εn

n∑
m=0

BE(r,s)
m,q (x)S1(n,m).

From now on, we consider the q-analogue of the twisted Daehee-Changhee mixed-
type polynomials of order (r, s) as follows:

DC(r,s)
n,ε,q(x) =

∫
Zp

· · ·
∫
Zp

D(r)
n,ε,q(x+ y1 + · · ·+ ys)dµ−q(y1) · · · dµ−q(ys) (2.23)

where n is a given nonnegative integer.
By (2.23), we get
∞∑
n=0

DC(r,s)
n,ε,q(x)

tn

n!

=

∫
Zp

· · ·
∫
Zp

D(r)
n,ε,q(x+ y1 + · · ·+ ys)

tn

n!
dµ−q(y1) · · · dµ−q(ys)

=

(
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)r ∫
Zp

· · ·
∫
Zp

(1 + εt)x+y1+···+ysdµ−q(y1) · · · dµ−q(ys)

=

(
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)r (
[2]q

qεt+ [2]q

)s
(1 + εt)x

=

( ∞∑
n=0

D(r)
n,ε,q(x)

tn

n!

)( ∞∑
m=0

Ch(s)m,ε,q
tm

m!

)

=
∞∑
n=0

( ∞∑
m=0

(
n

m

)
D(r)
m,ε,q(x)Ch

(s)
m−n,ε,q

)
tn

n!

(2.24)

and
∞∑
n=0

DC(r,s)
n,ε,q(x)

(
1
ε (et − 1)

)n
n!

=

(
q − 1 + q−1

log q t

qet − 1

)r (
[2]q

qet + 1

)s
ext

=
∞∑
n=0

(
n∑

m=0

(
n

m

)
B(r)
m,q(x)E

(s)
n−m,q

)
tn

n!
.

(2.25)

Note that
∞∑
n=0

DC(r,s)
m,ε,q(x)

(
1
ε (et − 1)

)n
n!

=
∞∑
n=0

DC(r,s)
n,ε,q(x)

1

εnn!
n!
∞∑
m=n

S2(m,n)
tm

m!

=
∞∑
n=0

(
n∑

m=0

ε−mDC(r,s)
m,ε,q(x)S2(n,m)

)
tn

n!
.

(2.26)

Hence, by (2.24), (2.25) and (2.26), we obtain the following theorem.
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Theorem 2.7. For n ≥ 0, we get

DC(r,s)
n,ε,q(x) =

∞∑
m=0

(
n

m

)
D(r)
m,ε,q(x)Ch

(s)
m−n,ε,q

and
n∑

m=0

(
n

m

)
B(r)
m,q(x)E

(s)
n−m,q =

n∑
m=0

ε−mDC(r,s)
m,ε,q(x)S2(n,m).

Now, we consider the q-analogue of the twisted Cauchy-Changhee mixed-type
polynomials of order (r, s) as follows:

CC(r,s)
n,ε,q(x) =

∫
Zp

· · ·
∫
Zp

C(r)
n,ε,q(x+ y1 + · · ·+ ys)dµ−q(y1) · · · dµ−q(ys) (2.27)

where n is a given nonnegative integer.
By (2.27), we have

∞∑
n=0

CC(r,s)
n,ε,q(x)

tn

n!

=

∫
Zp

· · ·
∫
Zp

∞∑
n=0

C(r)
n,ε,q(x+ y1 + · · ·+ ys)

tn

n!
dµ−q(y1) · · · dµ−q(ys)

=

(
q(1 + εt)− 1

(q − 1) + q−1
log q log(1 + εt)

)r (
[2]q

qεt+ [2]q

)s
(1 + εt)x

=

∞∑
n=0

( ∞∑
m=0

(
n

m

)
C(r)
m,ε,q(x)Ch

(s)
m−n,ε,q

)
tn

n!

(2.28)

and
∞∑
n=0

CC(r,s)
n,ε,q(x)

(
1
ε (et − 1)

)n
n!

=

(
qet − 1

q − 1 + q−1
log q t

)r (
[2]q

qet + 1

)s
ext

=
∞∑
n=0

(
n∑

m=0

(
n

m

)
B(−r)
m,q (x)E

(s)
n−m,q

)
tn

n!
.

(2.29)

Now, we observe that
∞∑
n=0

CC(r,s)
m,ε,q(x)

(
1
ε (et − 1)

)n
n!

=
∞∑
n=0

CC(r,s)
n,ε,q(x)

1

εnn!
n!
∞∑
m=n

S2(m,n)
tm

m!

=
∞∑
n=0

(
n∑

m=0

ε−mCC(r,s)
m,ε,q(x)S2(n,m)

)
tn

n!
.

(2.30)

Therefore, by (2.28), (2.29) and (2.30), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

CC(r,s)
n,ε,q(x) =

∞∑
m=0

(
n

m

)
C(r)
m,ε,q(x)Ch

(s)
m−n,ε,q

and
n∑

m=0

(
n

m

)
B(−r)
m,q (x)E

(s)
n−m,q =

n∑
m=0

ε−mCC(r,s)
m,ε,q(x)S2(n,m).
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From now on, we consider the q-analogue of twisted Cauchy-Daehee mixed-type
polynomials of order (r, s) as follows:

CD(r,s)
n,ε,q(x) =

∫
Zp

· · ·
∫
Zp

C(r)
n,ε,q(x+ y1 + · · ·+ ys)dµq(y1) · · · dµq(ys) (2.31)

where n is a given nonnegative integer.
By (2.31), we have

∞∑
n=0

CD(r,s)
n,ε,q(x)

tn

n!

=

∫
Zp

· · ·
∫
Zp

∞∑
n=0

C(r)
n,ε,q(x+ y1 + · · ·+ ys)

tn

n!
dµ−q(y1) · · · dµ−q(ys)

=

(
q(1 + εt)− 1

(q − 1) + q−1
log q log(1 + εt)

)r (
q − 1 + q−1

log q log(1 + εt)

qεt+ q − 1

)s
(1 + εt)x

=


∑∞
n=0 C

(r−s)
n,ε,q (x) t

n

n! if r > s,∑∞
n=0D

(s−r)
n,ε,q (x) t

n

n! if r < s,∑∞
n=0(x)n

tn

n! if r = s.

(2.32)

Thus, by (2.32), we obtain the following theorem.

Theorem 2.9. For n ≥ 0, we have

CD(r,s)
n,ε,q =


C

(r−s)
n,ε,q (x) if r > s,

D
(s−r)
n,ε,q (x) if r < s,

(x)n if r = s.
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Abstract: We mainly study the equicontinuity of maps on [0,1). Let f : X → X be
a continuous map on X = [0, 1). We show that if f is an equicontinuous map with
F (f) nonempty, then one of the following two conditions holds: (1) F (f) consists of
a single point and F (f2) =

⋂∞
n=1 fn(X);(2) F (f) =

⋂∞
n=1 fn(X). Last we construct

two examples to show that the converse result doesn’t hold.

Keywords: Interval , Equicontinous, Periodic point.
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1 Introduction

Let (X, d) be a metric space with the metric d (not necessary compact) and f : X → X be
a continuous map. For every nonnegative integer n define fn inductively by fn = f◦fn−1,
where f0 is the identity map on X. A point x of X is said to be a periodic point of f if
there is a positive integer n such that fn(x) = x. The least such n is called the period of
x. A point of period one is called a fixed point. Let F (f) denote the fixed point set of f
and P (f) the set of periodic points of f .

If x ∈ X then the trajectory (or orbit) of x is the sequence orb(x, f) = {fn(x) : n > 0}
and the ω−limit set of x is

ω(x, f) =
⋂

m>0

⋃
n>m

fn(x).

Equivalently, y ∈ ω(x, f) if and only if y ∈ X is a limit point of the trajectory orb(x, f),
i.e., fnk(x) → y for some sequence of integers nk →∞.

The map f is said to be equicontinuous (in some terminology also Lyapunov stable)
if given ε > 0 there exists a δ > 0 such that d(f i(x), f i(y)) < ε whenever d(x, y) < δ for
all x, y ∈ X and all i > 1.

In 1982, J. Cano [4] proved the following theorem on equicontinuous map for the
closed interval I.
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2 K. Yan, F. Zeng AND B. Qin

Theorem 1.1 Let f : I → I be an equicontinuous map. Then F (f) is connected and
if it is non-degenerate then F (f) = P (f).

The next theorem was due to Bruckner and Hu [3]. This result was also proved by
Blokh in [2].

Theorem 1.2 Let f : I → I be a continuous map. Then f is equicontinuous if and
only if

⋂∞
i=1 fn(I) = F (f2).

In [9], Valaristos described the characters of equicontinuous circle maps: A continuous
map f of the unit circle S1 to itself is equicontinuous if and only if one of the following
four statements holds: (1) f is topologically conjugate to a rotation; (2) F (f) contains
exactly two points and F (f2) = S1; (3) F (f) contains exactly one point and F (f2) =⋂∞

n=1 fn(S1); (4) F (f) =
⋂∞

n=1 fn(S1). In 2000, Sun [8] obtained some necessary and
sufficient conditions of equicontinuous σ-maps. Later, Mai [6] studied the structure of
equicontinuous maps of general metric spaces, and given some still simpler necessary and
sufficient conditions of equicontinuous graph maps.

In [5], Gu showed that a map on Warsaw circle W is equicontinuous if and only if
F (f) consists of a single point and F (f2) =

⋂∞
n=1 fn(X) or F (f) =

⋂∞
n=1 fn(X).

Warsaw circle W is simple connected but not locally connected, and it often appears
as an example of circle-like and non arc-like in the theory of continuum (see [7]). In
addition, Warsaw circle is not a continuous image of the closed interval. So it is not a
Peano continuum. However, it is easily to see that there is a continuous bijective map
φ : [0, 1) → X. Moreover, if f is a continuous self-map of Warsaw circle W , then there is
unique continuous map f̃ : [0, 1) → [0, 1) such that φ ◦ f̃ = f ◦ φ (see [10]). Note that φ
is not a homeomorphism since [0, 1) is not compact but Warsaw circle W is compact. It
follows that f and f̃ are not topologically conjugate. So, it may be that there are some
different dynamical properties between maps on [0, 1) and on Warsaw circle.

In this paper we shall deal with the problem of equicontinuity of maps on [0, 1). Our
main results are the following theorems.

Theorem 1.3 Let X = [0, 1) and f : X → X be an equicontinuous map. If F (f) 6= ∅,
then every periodic point of f has periodic 1 or 2, both F (f2) and F (f) are connected.
Furthermore, if F (f) is non-degenerate then F (f) = P (f).

Theorem 1.4 Let X = [0, 1) and f : X → X be a continuous map with F (f) 6= ∅.
If f is equicontinuous, then one of the following two conditions holds:

(1) F (f) consists of a single point and F (f2) =
⋂∞

n=1 fn(X);

(2) F (f) =
⋂∞

n=1 fn(X).

Moreover, it is equivalent whenever f is uniformly continuous.

In Section 3, we will construct two examples to show that the converse result of
Theorem 1.4 doesn’t hold.

2 Proof of Theorem 1.3 and 1.4

In this section, we mainly prove Theorem 1.3 and 1.4.
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2.1 Some lemmas

In this section, we give some lemmas which are needed in proof of Theorem 1.3 and 1.4.

Lemma 2.1 Let f : X → X be an continuous map of X = [0, 1). If F (f2) = X,
then f is the identity map on X.

Proof It is not hard to see that f(X) = X. Assume there exist x ∈ X such that
f(x) 6= x. Then we can choose 0 6 p1 < p2 < 1 such that f(p1) = p2 and f(p2) = p1.
Let m = maxx∈[0,p2] f(x). It is clear that p2 6 m < 1. For each x ∈ (p2, 1), we have
f(x) < p2 or there exists q ∈ (p2, 1) such that f(q) = p2 by the continuity of f , which
contradicts to q ∈ F (f2). Hence f(X) = [0,m]. This also contradicts to f(X) = X.
Therefore, f is the identity map on X.

Lemma 2.2 Let X = [0, 1) and f : X → X be an equicontinuous map with a fixed
point p. Suppose J is a component of F (f4) containing p. Then ω(x, f) ⊂ J for every
x ∈ X.

Proof Without loss of generality, we may assume that J is a proper subset of X
(note that it is clearly hold whenever J = X). Firstly, we prove that there is a connected
open subset K ⊃ J such that ω(x, f) ⊂ J for every x ∈ K.

Case 1 J = {p}. Let ε = (1/2)min(p, 1 − p). By the equicontinuity of f , there is an
open interval K of p such that |fn(x)− p| < ε for every x in K and every positive
integer n. Let L =

⋃
j>0 f j(K). Then L is a closed proper invariant interval

of X. It follows from Theorem 1.1 and 1.2 that the fixed point set of f |L and
f2|L is connected, and therefore it is {p}. Moreover, all periodic points of f |L
have period 1 or 2. But the fixed point p is the only periodic point of f in L.
Therefore P (f |L) = F (f |L) and by Proposition 15 in [1, p. 78] the ω-limit points
coincide with the fixed points. Hence p is the only ω-limit point of f in L. Thus
ω(x, f) = {p} = J for every x ∈ L. Since K ⊂ L, we have ω(x, f) = J for every
x ∈ K.

Case 2 J = [q1, q2] is a closed interval of X. For every i = 1, 2 we consider the or-
bit {qi, f(qi), f2(qi), f3(qi)} of qi. Let ε = (1/2)min(f j(qi), 1 − f j(qi)). By the
equicontinuity of f , there is an open interval Kij containing f j(qi) such that
|f4n(x) − f j(qi)| < ε for every x ∈ Kij and every positive integer n. Let
Ki =

⋂3
j=0 f−j(Kij), define L =

⋃∞
j=0 f j(K1 ∪ J ∪K2). Then L is a closed proper

invariant interval of X. We know from Theorem 1.1 and 1.2 that fixed point set of
f |L and f2|L is connected and therefore, it is contained in J . Moreover, all periodic
points of f |L have period 1 and 2. Since P (f |L) is closed, by Proposition 15 in [1,
p. 78], it coincides with the set of ω-limits points. Therefore, ω(x, f) ⊂ J for each
x ∈ L. Let K = K1 ∪ J ∪K2. Then K ⊃ J and ω(x, f) ⊂ J for each x ∈ K.

Case 3 J = [q, 1), where 0 < q < 1. Obviously, f(J) ⊂ J . By Lemma 2.1, we have
J ⊂ F (f). Then limx→1 f(x) = 1. Let g : [0, 1] → [0, 1] such that g|X = f
and g(1) = 1. So g is a equicontinuous map on [0, 1]. It follows from Theorem
1.1 and 1.2 that the fixed point set of g2 is connected and P (g) = F (g2). Hence
P (g) = [q, 1]. By Proposition 15 in [1, p. 78], ω(x, g) ⊂ [q, 1] for each x ∈ [0, 1].
Let K = X, then ω(x, f) ⊂ J for each x ∈ K.
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4 K. Yan, F. Zeng AND B. Qin

Secondly, we show that ω(x, f) ⊂ J for each x ∈ X. Let

S = {x ∈ X : ω(x, f) ⊂ J}.

Note that S is a nonempty set since K ⊂ S. Let y ∈ S. Then there is a positive integer m
such that fm(y) ∈ K. By the continuity of fm, there exists an open subset U containing
y such that fm(U) ⊂ K. Hence U ⊂ S and S is an open set. Let T be the component of
S containing J and therefore K as well. Then T is open and connected. It is sufficient to
show that T = X. Suppose that T 6= X. Let ε = (1/2) min{|x− y| : x ∈ J, y ∈ X − T}.
Then ε > 0. Assume that z is an endpoint of X − T . Then we have fn(z) /∈ T for each
positive integer n. On the other hand, for any δ > 0 we can choose x ∈ T such that
|x− z| < δ. Since ω(x, f) ⊂ J, there is a positive integer m such that fm(x) ∈ B(J, ε/2).
Hence |fm(x)− fm(z)| > ε/2. This is a contradiction. Therefore, T = X and the proof
is completed.

The following two lemmas are obviously facts on any compact metric space.

Lemma 2.3 Let f : X → X be a continuous map, where X is a compact metric
space. Let k be a positive integer and g = fk. Then f is equicontinuous if and only if g
is equicontinuous.

Lemma 2.4 Let f : X → X be a continuous map, where X is a compact metric
space. If f |f(X) is equicontinuous then f is equicontinuous.

2.2 Proof of Theorem 1.3

Let X = [0, 1) and f : X → X be an equicontinuous map. If p is a fixed point of f and
J is a component of F (f4) containing p, then we consider the following three case.

Case 1 J = {p}. By Lemma 2.2, ω(x, f) ⊂ {p} for each x ∈ X. This shows that p is a
unique periodic point of f . Hence F (f) = F (f2) = {p} is connected.

Case 2 J = [q1, q2]. By Lemma 2.2, ω(x, f) ⊂ J for each x ∈ X. This shows that
P (f) ⊂ J . Hence P (f) = F (f4) = J and F (f4) is connected. Applying Theorem
1.1 to f |J , we know that all periodic points of f have period 1 or 2, both F (f) and
F (f2) are connected. Furthermore, if F (f) is non-degenerate then F (f) = P (f).

Case 3 J = [q, 1). By Lemma 2.2, ω(x, f) ⊂ J for each x ∈ X. This shows that P (f) ⊂ J.
Hence P (f) = F (f4) = J and F (f4) is connected. Applying Lemma 2.1 to f |J , we
have P (f) = F (f) = J is connected.

This complete the proof of Theorem 1.3.

2.3 Proof of Theorem 1.4

Let X = [0, 1) and f : X → X be a continuous map. We suppose that f is equicontinuous.
By Theorem 1.3, both F (f2) and F (f) are connected.

(1) If F (f) consists a single point p then F (f2) = P (f). Moreover by Lemma 2.2, we
have ω(x, f) ⊂ F (f2) for every x ∈ X.
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Case 1 If F (f2) = [q1, q2], where 0 6 q1 6 q2 < 1. Similar the proof of Lemma 2.2, there
exists an open, connected subset K containing F (f2) such that L =

⋃∞
j=0 f j(K) ⊂

X is a closed and invariant interval. Fixed ε > 0, there is δ > 0 such that |x−y| < δ
implies |fn(x)− fn(y)| < ε for all n > 0. For x ∈ X, since ω(x, f) ⊂ F (f2) ⊂ K ⊂
L, there exists a positive integer Nx such that fNx(x) ∈ K. Then fm(x) ∈ L for
each m > Nx. By the continuity of fNx , there is an open neighborhood Vx of x
such that fNx(Vx) ⊂ K and hence fm(Vx) ⊂ L for every m > Nx. Note that the
collection {Vx}x∈Iδ

forms an open cover of Iδ = [0, 1 − δ]. By the compactness of
Iδ, there is a finite subcover {Vx1 , . . . , Vxs

}. Set N = max{Nx1 , . . . , Nxs
}. Then

fm(Vxi) ⊂ L for every m > N and any 1 6 i 6 s. Thus, fm(Iδ) ⊂ L for every
m > N , and hence fm(X) ⊂ B(L, ε) for all m > N , where B(L, ε) = {y ∈ X :
d(x, y) < ε for some x ∈ L}. By the arbitrary of ε, we can get

⋂∞
n=1 fn(X) ⊂

L. Using Theorem 1.2, we have
⋂∞

n=1 fn(L) = F (f2). It follows that F (f2) =⋂∞
n=1 fn(L) =

⋂∞
n=1 fn(X), i.e., (1) holds.

Case 2 If F (f2) = [q, 1). Applying Lemma 2.1 to f |[q,1), we have f(x) = x for all x ∈ [q, 1),
i.e., [q, 1) ⊂ F (f). This contradicts to F (f) consists a single point.

(2) If F (f) is non-degenerate, then F (f) = P (f) by Theorem 1.3. Similar to the
above argument we can get F (f) =

⋂∞
n=1 fn(X) whenever F (f) = [q1, q2]. Now we

assume F (f) = [q, 1) for some 0 6 q < 1. Define g : [0, 1] → [0, 1] as g|X = f and
g(1) = 1. So g is a equicontinuous map on [0, 1]. It follows from Theorem 1.1 and 1.2
that

⋂∞
n=1 gn([0, 1]) = F (g2) = F (g). Thus,

⋂∞
n=1 fn(X) = F (f).

3 Examples

In this section, we will construct two examples to show that the converse result of The-
orem 1.4 doesn’t hold.

Example 3.1 Let I = [0, 1) and let an = 1 − 1/2n for every n = 1, 2, · · · . Now we
define a piecewise linear continuous map f : I → I as follows (See Figure 1):

(1) f(x) = 1− x for each x ∈ [0, 1/2];

(2) f(a2n) = 1/2 and f(a2n−1) = 0 for all n = 1, 2, · · · .

It is easily to see that F (f) consists of a single point and F (f2) =
⋂∞

n=1 fn(I) =
[0, 1/2]. However, f is not equicontinuous since |an+1 − an| = 1

2n+1 → 0 but |f(an+1)−
f(an)| = 1/2 for all n > 1.

Figure 1
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6 K. Yan, F. Zeng AND B. Qin

Example 3.2 Let I = [0, 1) and let an = 1 − 1/2n for every n = 1, 2, · · · . Now we
define a piecewise linear continuous map f : I → I as follows (See Figure 2):

(1) f(x) = x for each x ∈ [0, 1/2];

(2) f(a2n) = 0 and f(a2n−1) = 1/2 for all n = 1, 2, · · · .

It is easily to see that F (f) is non-degenerate and F (f) =
⋂∞

n=1 fn(I) = [0, 1/2].
However, f is not equicontinuous since |an+1 − an| = 1

2n+1 → 0 but |f(an+1)− f(an)| =
1/2 for all n > 1.

Figure 2
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Abstract

In this paper, some new mixed type Riemann-Liouville and Hadamard fractional integral in-
equalities are established, in the case where the functions are bounded by integrable functions.
Moreover, mixed type Riemann-Liouville and Hadamard fractional integral inequalities of Cheby-
shev type are presented.

Key words and phrases: Fractional integral; fractional integral inequalities; Riemann-Liouville frac-
tional integral; Hadamard fractional integral; Chebyshev inequalities.
AMS (MOS) Subject Classifications: 26D10; 26A33.

1 Introduction

The study of mathematical inequalities play very important role in classical differential and integral
equations which has applications in many fields. Fractional inequalities are important in studying the
existence, uniqueness and other properties of fractional differential equations. Recently many authors
have studied integral inequalities on fractional calculus using Riemann-Liouville and Caputo derivative,
see [1], [2], [3], [4], [5], [6] and the references therein.

Another kind of fractional derivative that appears in the literature is the fractional derivative due
to Hadamard introduced in 1892 [7], which differs from the Riemann-Liouville and Caputo derivatives
in the sense that the kernel of the integral contains logarithmic function of arbitrary exponent. Details
and properties of Hadamard fractional derivative and integral can be found in [8, 9, 10, 11, 12, 13].
Recently in the literature, were appeared some results on fractional integral inequalities using Hadamard
fractional integral; see [14, 15, 16].

Recently, we have been established some new Riemann-Liouville fractional integral inequalities in
[17], and some fractional integral inequalities via Hadamard’s fractional integral in [18]. In the present
paper we combine the results of [17] and [18] and obtain some new mixed type Riemann-Liouville and
Hadamard fractional integral inequalities. In Section 3, we consider the case where the functions are
bounded by integrable functions and are not necessary increasing or decreasing as are the synchronous
functions. In Section 4, we establish mixed type Riemann-Liouville and Hadamard fractional integral
inequalities of Chebyshev type, concerning the integral of the product of two functions and the product
of two integrals. As applications, in Section 5, we present a way for constructing the four bounding
functions, and use them to give some estimates of Chebyshev type inequalities of Riemann-Liouville
and Hadamard fractional integrals for two unknown functions.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

299 Weerawat Sudsutad et al 299-314



W. SUDSUTAD, S. K. NTOUYAS AND J. TARIBOON

2 Preliminaries

In this section, we give some preliminaries and basic properties used in our subsequent discussion. The
necessary background details are given in the book by Kilbas et al. [8].

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 of a continuous function
f : (a,∞) → R is defined by

Iα
a f(t) =

1
Γ(α)

∫ t

a

(t − s)α−1f(s)ds,

provided the right-hand side is point-wise defined on (a,∞), where Γ is the gamma function.

Definition 2.2 The Hadamard fractional integral of order α ∈ R+ of a function f(t), for all 0 < a <
t < ∞, is defined as

Jα
a f(t) =

1
Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s)
ds

s
,

provided the integral exists.

From Definitions (2.1) and (2.2), we derive the following properties:

Iα
a Iβ

a f(t) = Iα+β
a f(t) = Iβ

a Iα
a f(t),

Jα
a Jβ

a f(t) = Jα+β
a f(t) = Jβ

a Jα
a f(t),

for α, β > 0 and

Iα
a (tγ) =

Γ(γ + 1)
Γ(γ + α + 1)

(t − a)γ+α,

Jα
a (log t)γ =

Γ(γ + 1)
Γ(γ + α + 1)

(
log

t

a

)γ+α

,

for α > 0, γ > −1, t > a > 0.

3 Inequalities Involving Mixed Type of Riemann-Liouville and
Hadamard Fractional Integral for Bounded Functions

In this section we obtain some new inequalities of mixed type for Riemann-Liouville and Hadamard
fractional integral in the case where the functions are bounded by integrable functions and are not
necessary increasing or decreasing as are the synchronous functions.

Theorem 3.1 Let f be an integrable function on [a,∞), a > 0. Assume that:

(H1) There exist two integrable functions ϕ1, ϕ2 on [a,∞) such that

ϕ1(t) ≤ f(t) ≤ ϕ2(t), for all t ∈ [a,∞), a > 0. (1)

Then for 0 < a < t < ∞ and α, β > 0, the following two inequalities hold:

(A1) Jα
a ϕ2(t)Iβ

a f(t) + Jα
a f(t)Iβ

a ϕ1(t) ≥ Jα
a ϕ2(t)Iβ

a ϕ1(t) + Jα
a f(t)Iβ

a f(t),

(B1) Iα
a ϕ2(t)Jβ

a f(t) + Iα
a f(t)Jβ

a ϕ1(t) ≥ Iα
a ϕ2(t)Jβ

a ϕ1(t) + Iα
a f(t)Jβ

a f(t).
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Proof. From condition (H1), for all τ, ρ > a, we have

(ϕ2(τ) − f(τ))(f(ρ) − ϕ1(ρ)) ≥ 0,

which implies
ϕ2(τ)f(ρ) + ϕ1(ρ)f(τ) ≥ ϕ1(ρ)ϕ2(τ) + f(τ)f(ρ). (2)

Multiplying both sides of (2) by (log(t/τ))α−1/τΓ(α), τ ∈ (a, t), we get

f(ρ)
(log(t/τ))α−1

τΓ(α)
ϕ2(τ) + ϕ1(ρ)

(log(t/τ))α−1

τΓ(α)
f(τ)

≥ ϕ1(ρ)
(log(t/τ))α−1

τΓ(α)
ϕ2(τ) + f(ρ)

(log(t/τ))α−1

τΓ(α)
f(τ). (3)

Integrating both sides of (3) with respect to τ on (a, t), we obtain

f(ρ)
1

Γ(α)

∫ t

a

(
log

t

τ

)α−1

ϕ2(τ)
dτ

τ
+ ϕ1(ρ)

1
Γ(α)

∫ t

a

(
log

t

τ

)α−1

f(τ)
dτ

τ

≥ ϕ1(ρ)
1

Γ(α)

∫ t

a

(
log

t

τ

)α−1

ϕ2(τ)
dτ

τ
+ f(ρ)

1
Γ(α)

∫ t

a

(
log

t

τ

)α−1

f(τ)
dτ

τ
,

which yields
f(ρ) Jα

a ϕ2(t) + ϕ1(ρ) Jα
a f(t) ≥ ϕ1(ρ) Jα

a ϕ2(t) + f(ρ) Jα
a f(t). (4)

Multiplying both sides of (4) by (t − ρ)β−1/Γ(β), ρ ∈ (a, t), we have

Jα
a ϕ2(t)

(t − ρ)β−1

Γ(β)
f(ρ) + Jα

a f(t)
(t − ρ)β−1

Γ(β)
ϕ1(ρ)

≥ Jα
a ϕ2(t)

(t − ρ)β−1

Γ(β)
ϕ1(ρ) + Jα

a f(t)
(t − ρ)β−1

Γ(β)
f(ρ). (5)

Integrating both sides of (5) with respect to ρ on (a, t), we get

Jα
a ϕ2(t)

1
Γ(β)

∫ t

a

(t − ρ)β−1f(ρ)dρ + Jα
a f(t)

1
Γ(β)

∫ t

a

(t − ρ)β−1ϕ1(ρ)dρ

≥ Jα
a ϕ2(t)

1
Γ(β)

∫ t

a

(t − ρ)β−1 ϕ1(ρ)dρ + Jα
a f(t)

1
Γ(β)

∫ t

a

(t − ρ)β−1 f(ρ)dρ. (6)

Hence, we get the desired inequality in (A1). The inequality (B1), is proved by similar arguments. ¤

Corollary 3.2 Let f be an integrable function on [a,∞), a > 0 satisfying m ≤ f(t) ≤ M, for all
t ∈ [a,∞) and m,M ∈ R. Then for 0 < a < t < ∞ and α, β > 0, the following two inequalities hold:

(A2) M
(log t

a )α

Γ(α + 1)
Iβ
a f(t) + m

(t − a)β

Γ(β + 1)
Jα

a f(t) ≥ mM
(log t

a )α(t − a)β

Γ(α + 1)Γ(β + 1)
+ Jα

a f(t)Iβ
a f(t),

(B2) M
(t − a)α

Γ(α + 1)
Jβ

a f(t) + m
(log t

a )β

Γ(β + 1)
Iα
a f(t) ≥ mM

(t − a)α(log t
a )β

Γ(α + 1)Γ(β + 1)
+ Iα

a f(t)Jβ
a f(t).

Theorem 3.3 Let f be an integrable function on [a,∞), a > 0 and θ1, θ2 > 0 satisfying 1/θ1+1/θ2 = 1.
In addition, suppose that the condition (H1) holds. Then for 0 < a < t < ∞ and α, β > 0, the following
two inequalities hold:

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

301 Weerawat Sudsutad et al 299-314



W. SUDSUTAD, S. K. NTOUYAS AND J. TARIBOON

(A3) Jα
a ϕ2(t)Iβ

a ϕ1(t) + Jα
a f(t)Iβ

a f(t) +
1
θ1

(t − a)β

Γ(β + 1)
Jα

a (ϕ2 − f)θ1(t) +
1
θ2

(log t
a )α

Γ(α + 1)
Iβ
a (f − ϕ1)θ2(t)

≥ Jα
a ϕ2(t)Iβ

a f(t) + Jα
a f(t)Iβ

a ϕ1(t),

(B3) Iα
a ϕ2(t)Jβ

a ϕ1(t), +Iα
a f(t)Jβ

a f(t) +
1
θ1

(log t
a )β

Γ(β + 1)
Iα
a (ϕ2 − f)θ1(t) +

1
θ2

(t − a)α

Γ(α + 1)
Jβ

a (f − ϕ1)θ2(t)

≥ Iα
a ϕ2(t)Jβ

a f(t) + Iα
a f(t)Jβ

a ϕ1(t).

Proof. Firstly, we recall the well-known Young’s inequality as

1
θ1

xθ1 +
1
θ2

yθ2 ≥ xy, ∀x, y ≥ 0, θ1, θ2 > 0,

where 1/θ1 + 1/θ2 = 1. By setting x = ϕ2(τ) − f(τ) and y = f(ρ) − ϕ1(ρ), τ, ρ > a, we have

1
θ1

(ϕ2(τ) − f(τ))θ1 +
1
θ2

(f(ρ) − ϕ1(ρ))θ2 ≥ (ϕ2(τ) − f(τ))(f(ρ) − ϕ1(ρ)). (7)

Multiplying both sides of (7) by (log(t/τ))α−1(t − ρ)β−1/τΓ(α)Γ(β), τ, ρ ∈ (a, t), we get

1
θ1

(log t/τ)α−1(t − ρ)β−1

τΓ(α)Γ(β)
(ϕ2(τ) − f(τ))θ1 +

1
θ2

(log t/τ)α−1(t − ρ)β−1

τΓ(α)Γ(β)
(f(ρ) − ϕ1(ρ))θ2

≥ (log t/τ)α−1

τΓ(α)
(ϕ2(τ) − f(τ))

(t − ρ)β−1

Γ(β)
(f(ρ) − ϕ1(ρ)).

Double integrating the above inequality with respect to τ and ρ from a to t, we have

1
θ1

Jα
a (ϕ2 − f)θ1(t)Iβ

a (1)(t) +
1
θ2

Jα
a (1)(t)Iβ

a (f − ϕ1)θ2(t) ≥ Jα
a (ϕ2 − f)(t)Iβ

a (f − ϕ1)(t),

which implies the result in (A3). By using the similar method, we obtain the inequality in (B3). ¤

Corollary 3.4 Let f be an integrable function on [a,∞), a > 0 satisfying m ≤ f(t) ≤ M, θ1 = θ2 = 2
for all t ∈ [a,∞) and m,M ∈ R. Then for 0 < a < t < ∞ and α, β > 0, the following two inequalities
hold:

(A4) (m + M)2
(log t

a )α(t − a)β

Γ(α + 1)Γ(β + 1)
+

(t − a)β

Γ(β + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iβ
a f2(t) + 2Jα

a f(t)Iβ
a f(t)

≥ 2(m + M)
(

(log t
a )α

Γ(α + 1)
Iβ
a f(t) +

(t − a)β

Γ(β + 1)
Jα

a f(t)
)

,

(B4) (m + M)2
(t − a)α(log t

a )β

Γ(α + 1)Γ(β + 1)
+

(t − a)α

Γ(α + 1)
Jβ

a f2(t) +
(log t

a )β

Γ(β + 1)
Iα
a f2(t) + 2Jβ

a f(t)Iα
a f(t)

≥ 2(m + M)

(
(log t

a )β

Γ(β + 1)
Iα
a f(t) +

(t − a)α

Γ(α + 1)
Jβ

a f(t)

)
.

Theorem 3.5 Let f be an integrable function on [a,∞), a > 0 and θ1, θ2 > 0 satisfying θ1 + θ2 = 1. In
addition, suppose that the condition (H1) holds. Then for 0 < a < t < ∞, and α, β > 0, the following
two inequalities hold:

(A5) θ1
(t − a)β

Γ(β + 1)
Jα

a ϕ2(t) + θ2

(log t
a )α

Γ(α + 1)
Iβ
a f(t)

≥ Jα
a (ϕ2 − f)θ1(t)Iβ

a (f − ϕ1)θ2(t) + θ1
(t − a)β

Γ(β + 1)
Jα

a f(t) + θ2

(log t
a )α

Γ(α + 1)
Iβ
a ϕ1(t),
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(B5) θ1

(log t
a )β

Γ(β + 1)
Iα
a ϕ2(t) + θ2

(t − a)α

Γ(α + 1)
Jβ

a f(t)

≥ Iα
a (ϕ2 − f)θ1(t)Jβ

a (f − ϕ1)θ2(t) + θ1

(log t
a )β

Γ(β + 1)
Iα
a f(t) + θ2

(t − a)α

Γ(α + 1)
Jβ

a ϕ1(t).

Proof. From the well-known weighted AM-GM inequality

θ1x + θ2y ≥ xθ1yθ2 , ∀x, y ≥ 0, θ1, θ2 > 0,

where θ1 + θ2 = 1, and setting x = ϕ2(τ) − f(τ) and y = f(ρ) − ϕ1(ρ), τ, ρ > a, we have

θ1(ϕ2(τ) − f(τ)) + θ2(f(ρ) − ϕ1(ρ)) ≥ (ϕ2(τ) − f(τ))θ1(f(ρ) − ϕ1(ρ))θ2 . (8)

Multiplying both sides of (8) by (log(t/τ))α−1(t − ρ)β−1/τΓ(α)Γ(β), τ, ρ ∈ (a, t), we obtain

θ1
(log(t/τ))α−1(t − ρ)β−1

τΓ(α)Γ(β)
(ϕ2(τ) − f(τ)) + θ2

(log(t/τ))α−1(t − ρ)β−1

τΓ(α)Γ(β)
(f(ρ) − ϕ1(ρ))

≥ (log t/τ)α−1

τΓ(α)
(ϕ2(τ) − f(τ))θ1

(t − ρ)β−1

Γ(β)
(f(ρ) − ϕ1(ρ))θ2 .

Double integration the above inequality with respect to τ and ρ from a to t, we have

θ1J
α
a (ϕ2 − f)(t)Iβ

a (1)(t) + θ2J
α
a (1)(t)Iβ

a (f − ϕ1)(t) ≥ Jα
a (ϕ2 − f)θ1(t)Iβ

a (f − ϕ1)θ2(t).

Therefore, we deduce the inequality in (A5). By using the similar method, we obtain the desired bound
in (B5). ¤

Corollary 3.6 Let f be an integrable function on [a,∞), a > 0 satisfying m ≤ f(t) ≤ M , θ1 = θ2 = 1/2
for all 0 < a < t < ∞ and m,M ∈ R. Then for 0 < a < t < ∞ and α, β > 0, the following two
inequalities hold:

(A6) M
(log t

a )α(t − a)β

Γ(α + 1)Γ(β + 1)
+

(log t
a )α

Γ(α + 1)
Iβ
a f(t)

≥ m
(log t

a )α(t − a)β

Γ(α + 1)Γ(β + 1)
+

(t − a)β

Γ(β + 1)
Jα

a f(t) + 2Jα
a (M − f)1/2(t)Iβ

a (f − m)1/2(t),

(B6) M
(t − a)α(log t

a )β

Γ(α + 1)Γ(β + 1)
+

(t − a)α

Γ(α + 1)
Jβ

a f(t)

≥ m
(t − a)α(log t

a )β

Γ(α + 1)Γ(β + 1)
+

(log t
a )β

Γ(β + 1)
Iα
a f(t) + 2Iα

a (M − f)1/2(t)Jβ
a (f − m)1/2(t).

Lemma 3.7 [19] Assume that a ≥ 0, p ≥ q ≥ 0, and p 6= 0. Then, we have

aq/p ≤
(

q

p
k(q−p)/pa +

p − q

p
kq/p

)
.

Theorem 3.8 Let f be an integrable function on [a,∞), a > 0 and constants p ≥ q ≥ 0, p 6= 0. In
addition, assume that the condition (H1) holds. Then for any k > 0, 0 < a < t < ∞, α > 0, the
following two inequalities hold:

(A7) Jα
a (ϕ2 − f)q/p(t)Iα

a (f − ϕ1)q/p(t) +
q

p
k(q−p)/p (Jα

a ϕ2(t)Iα
a ϕ1(t) + Jα

a f(t)Iα
a f(t))

≤ q

p
k(q−p)/p (Jα

a ϕ2(t)Iα
a f(t) + Jα

a f(t)Iα
a ϕ1(t)) +

p − q

p
kq/p (t − a)α(log t

a )α

Γ2(α + 1)
,
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(B7) Iα
a (ϕ2 − f)q/p(t)Jα

a (f − ϕ1)q/p(t) +
q

p
k(q−p)/p (Iα

a ϕ2(t)Jα
a ϕ1(t) + Iα

a f(t)Jα
a f(t))

≤ q

p
k(q−p)/p (Iα

a ϕ2(t)Jα
a f(t) + Iα

a f(t)Jα
a ϕ1(t)) +

p − q

p
kq/p (t − a)α(log t

a )α

Γ2(α + 1)
.

Proof. From condition (H1) and Lemma 3.7, for p ≥ q ≥ 0, p 6= 0, it follows that

((ϕ2(τ) − f(τ))(f(ρ) − ϕ1(ρ)))q/p ≤ q

p
k(q−p)/p(ϕ2(τ) − f(τ))(f(ρ) − ϕ1(ρ)) +

p − q

p
kq/p, (9)

for any k > 0. Multiplying both sides of (9) by (log(t/τ))α−1/τΓ(α), τ ∈ (a, t), and integrating the
resulting identity with respect to τ from a to t, one has

(f(ρ) − ϕ1(ρ))q/pJα
a (ϕ2 − f)q/p(t)

≤ q

p
k(q−p)/p(f(ρ) − ϕ1(ρ))Jα

a (ϕ2 − f)(t) +
p − q

p
kq/p (log t

a )α

Γ(α + 1)
. (10)

Multiplying both sides of (10) by (t−ρ)α−1/Γ(α), ρ ∈ (a, t), and integrating the resulting identity with
respect to ρ from a to t, we obtain

Jα
a (ϕ2 − f)q/p(t)Iα

a (f − ϕ1)(t)q/p

≤ q

p
k(q−p)/pJα

a (ϕ2 − f)(t)Iα
a (f − ϕ1)(t) +

p − q

p
kq/p (t − a)α(log t

a )α

Γ2(α + 1)
,

which leads to inequality in (A6). Using the similar arguments, we get the required inequality in (B6).
¤

Corollary 3.9 Let f be an integrable function on [a,∞), a > 0 satisfying m ≤ f(t) ≤ M for all
t ∈ [a,∞), constants q = 1, p = 2, k = 1 and m, M ∈ R. Then for 0 < a < t < ∞ and α > 0, the
following two inequalities hold:

(A8) 2Jα
a (M − f)1/2(t)Iα

a (f − m)1/2(t) + Jα
a f(t)Iα

a f(t)

≤
M(log t

a )α

Γ(α + 1)
Iα
a f(t) +

m(t − a)α

Γ(α + 1)
Jα

a f(t) + (1 − mM)
(t − a)α(log t

a )α

Γ2(α + 1)
,

(B8) 2Iα
a (M − f)1/2(t)Jα

a (f − m)1/2(t) + Iα
a f(t)Jα

a f(t)

≤ M(t − a)α

Γ(α + 1)
Jα

a f(t) +
m(log t

a )α

Γ(α + 1)
Iα
a f(t) + (1 − mM)

(t − a)α(log t
a )α

Γ2(α + 1)
.

4 Chebyshev Type Inequalities for Riemann-Liouville and Hadamard
Fractional Integrals

In this section, we establish our main fractional integral inequalities of Chebyshev type, concerning the
integral of the product of two functions and the product of two integrals, with the help of the following
lemma.

Lemma 4.1 Let f be an integrable function on [a,∞), a > 0 and ϕ1, ϕ2 are two integrable functions
on [a,∞). Assume that the condition (H1) holds. Then for 0 < a < t < ∞, and α, β > 0, the following
two equalities hold:

(A9)
(t − a)α

Γ(α + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iα
a f2(t) − 2Jα

a f(t)Iα
a f(t)

= Jα
a (f − ϕ1)(t)Iα

a (ϕ2 − f)(t) + Jα
a (ϕ2 − f)(t)Iα

a (f − ϕ1)(t)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

304 Weerawat Sudsutad et al 299-314



RIEMANN-LIOUVILLE & HADAMARD FRACTIONAL INTEGRAL INEQUALITIES

+
(t − a)α

Γ(α + 1)
(Jα

a (ϕ1f + ϕ2f − ϕ1ϕ2)(t) − Jα
a ((ϕ2 − f)(f − ϕ1))(t))

+
(log t

a )α

Γ(α + 1)
(Iα

a (ϕ1f + ϕ2f − ϕ1ϕ2)(t) − Iα
a ((ϕ2 − f)(f − ϕ1))(t))

+ Jα
a ϕ1(t)Iα

a (ϕ2 − f)(t) + Jα
a ϕ2(t)Iα

a (ϕ1 − f)(t) − Jα
a f(t)Iα

a (ϕ1 + ϕ2)(t),

(B9)
(t − a)β

Γ(β + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iβ
a f2(t) − 2Jα

a f(t)Iβ
a f(t)

= Jα
a (f − ϕ1)(t)Iβ

a (ϕ2 − f)(t) + Jα
a (ϕ2 − f)(t)Iβ

a (f − ϕ1)(t)

+
(t − a)β

Γ(β + 1)
(Jα

a (ϕ1f + ϕ2f − ϕ1ϕ2)(t) − Jα
a ((ϕ2 − f)(f − ϕ1))(t))

+
(log t

a )α

Γ(α + 1)
(
Iβ
a (ϕ1f + ϕ2f − ϕ1ϕ2)(t) − Iβ

a ((ϕ2 − f)(f − ϕ1))(t)
)

+ Jα
a ϕ1(t)Iβ

a (ϕ2 − f)(t) + Jα
a ϕ2(t)Iβ

a (ϕ1 − f)(t) − Jα
a f(t)Iβ

a (ϕ1 + ϕ2)(t).

Proof. For any 0 < a < τ, ρ < t < ∞, we have

(ϕ2(ρ) − f(ρ))(f(τ) − ϕ1(τ)) + (ϕ2(τ) − f(τ))(f(ρ) − ϕ1(ρ))
− (ϕ2(τ) − f(τ))(f(τ) − ϕ1(τ)) − (ϕ2(ρ) − f(ρ))(f(ρ) − ϕ1(ρ))

= f2(τ) + f2(ρ) − 2f(τ)f(ρ) + ϕ2(ρ)f(τ) + ϕ1(τ)f(ρ) − ϕ1(τ)ϕ2(ρ) (11)
+ ϕ2(τ)f(ρ) + ϕ1(ρ)f(τ) − ϕ1(ρ)ϕ2(τ) − ϕ2(τ)f(τ) + ϕ1(τ)ϕ2(τ)
− ϕ1(τ)f(τ) − ϕ2(ρ)f(ρ) + ϕ1(ρ)ϕ2(ρ) − ϕ1(ρ)f(ρ).

Multiplying (11) by (log(t/τ))α−1/τΓ(α), τ ∈ (a, t), 0 < a < t < ∞, and integrating the resulting
identity with respect to τ from a to t, we get

(ϕ2(ρ) − f(ρ))(Jα
a f(t) − Jα

a ϕ1(t)) + (Jα
a ϕ2(t) − Jα

a f(t))(f(ρ) − ϕ1(ρ))

− Jα
a ((ϕ2 − f)(f − ϕ1))(t) − (ϕ2(ρ) − f(ρ))(f(ρ) − ϕ1(ρ))

(log t
a )α

Γ(α + 1)

= Jα
a f2(t) + f2(ρ)

(log t
a )α

Γ(α + 1)
− 2f(ρ)HIα

a f(t) + ϕ2(ρ)HIα
a f(t) + f(ρ)Jα

a ϕ1(t) (12)

− ϕ2(ρ)Jα
a ϕ1(t) + f(ρ)Jα

a ϕ2(t) + ϕ1(ρ)Jα
a f(t) − ϕ1(ρ)Jα

a ϕ2(t)

− Jα
a ϕ2f(t) + Jα

a ϕ1ϕ2(t) − Jα
a ϕ1f(t) − ϕ2(ρ)f(ρ)

(log t
a )α

Γ(α + 1)

+ ϕ1(ρ)ϕ2(ρ)
(log t

a )α

Γ(α + 1)
− ϕ1(ρ)f(ρ)

(log t
a )α

Γ(α + 1)
.

Multiplying (12) by (t − ρ)α−1/Γ(α), ρ ∈ (a, t), 0 < a < t < ∞, and integrating the resulting identity
with respect to ρ from a to t, we have

(Jα
a f(t) − Jα

a ϕ1(t))(Iα
a ϕ2(t) − Iα

a f(t)) + (Jα
a ϕ2(t) − Jα

a f(t))(Iα
a f(t) − Iα

a ϕ1(t))

− Jα
a ((ϕ2 − f)(f − ϕ1))(t)

(t − a)α

Γ(α + 1)
− Iα

a ((ϕ2 − f)(f − ϕ1))(t)
(log t

a )α

Γ(α + 1)

= Jα
a f2(t)

(t − a)α

Γ(α + 1)
+ Iα

a f2(t)
(log t

a )α

Γ(α + 1)
− 2Jα

a f(t)Iα
a f(t)

+ Jα
a f(t)Iα

a ϕ2(t) + Jα
a ϕ1(t)Iα

a f(t) − Jα
a ϕ1(t)Iα

a ϕ2(t)
+ Jα

a ϕ2(t)Iα
a f(t) + Jα

a f(t)Iα
a ϕ1(t) − Jα

a ϕ2(t)Iα
a ϕ1(t)

− Jα
a ϕ2f(t)

(t − a)α

Γ(α + 1)
+ Jα

a ϕ1ϕ2(t)
(t − a)α

Γ(α + 1)
− Jα

a ϕ1f(t)
(t − a)α

Γ(α + 1)
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− Iα
a ϕ2f(t)

(log t
a )α

Γ(α + 1)
+ Iα

a ϕ1ϕ2(t)
(log t

a )α

Γ(α + 1)
− Iα

a ϕ1f(t)
(log t

a )α

Γ(α + 1)
.

Therefore, the desired equality (A9) is proved. The equality (B9) is derived by using the similar
arguments. ¤

Let now g be an integrable function on [a,∞), a > 0 satisfying the assumption:

(H2) There exist ψ1 and ψ2 integrable functions on [a,∞) such that

ψ1(t) ≤ g(t) ≤ ψ2(t) for 0 < a < t < ∞.

Theorem 4.2 Let f and g be two integrable functions on [a,∞), a > 0 and ϕ1, ϕ2, ψ1 and ψ2 are
four integrable functions on [a,∞) satisfying the conditions (H1) and (H2) on [a,∞). Then for all
0 < a < t < ∞ and α > 0, the following inequality holds:∣∣∣ (t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

∣∣∣
≤ |K(f, ϕ1, ϕ2)|1/2 |K(g, ψ1, ψ2)|1/2

. (13)

where K(u, v, w) is defined by

K(u, v, w) =
(t − a)α

Γ(α + 1)
Jα

a (uw + uv − vw)(t) +
(log t

a )α

Γ(α + 1)
Iα
a (uw + uv − vw)(t) − 2Jα

a u(t)Iα
a u(t).

Proof. Let f and g be two integrable functions defined on [a,∞) satisfying (H1) and (H2), respectively.
We define a function H for 0 < a < t < ∞ as follows

H(τ, ρ) := (f(τ) − f(ρ))(g(τ) − g(ρ)), τ, ρ ∈ (a, t). (14)

Multiplying both sides of (14) by (log(t/τ))α−1(t − ρ)α−1/τΓ2(α), τ, ρ ∈ (a, t), and double integrating
the resulting identity with respect to τ and ρ from a to t, we have

1
Γ2(α)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)α−1
H(τ, ρ)dρ

dτ

τ

=
(t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t). (15)

Applying the Cauchy-Schwarz inequality to (15), we have(
(t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

)2

≤

(
1

Γ2(α)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)α−1 (f(τ) − f(ρ))2dρ
dτ

τ

)

×

(
1

Γ2(α)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)α−1 (g(τ) − g(ρ))2dρ
dτ

τ

)

=

(
(t − a)α

Γ(α + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iα
a f2(t) − 2Jα

a f(t)Iα
a f(t)

)

×

(
(t − a)α

Γ(α + 1)
Jα

a g2(t) +
(log t

a )α

Γ(α + 1)
Iα
a g2(t) − 2Jα

a g(t)Iα
a g(t)

)
. (16)
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Since (ϕ2(t) − f(t))(f(t) − ϕ1(t)) ≥ 0 and (ψ2(t) − f(t))(f(t) − ψ1(t)) ≥ 0 for t ∈ [a,∞), we get

(t − a)α

Γ(α + 1)
Jα

a ((ϕ2 − f)(f − ϕ1))(t) ≥ 0,

(log t
a )α

Γ(α + 1)
Iα
a ((ϕ2 − f)(f − ϕ1))(t) ≥ 0,

(t − a)α

Γ(α + 1)
Jα

a ((ψ2 − g)(g − ψ1))(t) ≥ 0,

(log t
a )α

Γ(α + 1)
Iα
a ((ψ2 − g)(g − ψ1))(t) ≥ 0.

Thus, from Lemma 4.1, we obtain

(t − a)α

Γ(α + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iα
a f2(t) − 2Jα

a f(t)Iα
a f(t)

≤Jα
a (f − ϕ1)(t)Iα

a (ϕ2 − f)(t) + Jα
a (ϕ2 − f)(t)Iα

a (f − ϕ1)(t)

+
(t − a)α

Γ(α + 1)
Jα

a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iα
a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) (17)

+ Jα
a ϕ1(t)Iα

a (ϕ2 − f)(t) + Jα
a ϕ2(t)Iα

a (ϕ1 − f)(t) − Jα
a f(t)Iα

a (ϕ1 + ϕ2)(t)

=
(t − a)α

Γ(α + 1)
Jα

a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iα
a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) − 2Jα

a f(t)Iα
a f(t)

= K(f, ϕ1, ϕ2),

and

(t − a)α

Γ(α + 1)
Jα

a g2(t) +
(log t

a )α

Γ(α + 1)
Iα
a g2(t) − 2Jα

a g(t)Iα
a g(t)

≤Jα
a (g − ψ1)(t)Iα

a (ψ2 − g)(t) + Jα
a (ψ2 − g)(t)Iα

a (g − ψ1)(t)

+
(t − a)α

Γ(α + 1)
Jα

a (ψ2g + ψ1g − ψ1ψ2)(t) +
(log t

a )α

Γ(α + 1)
Iα
a (ψ2g + ψ1g − ψ1ψ2)(t) (18)

+ Jα
a ψ1(t)Iα

a (ψ2 − g)(t) + Jα
a ψ2(t)Iα

a (ψ1 − g)(t) − Jα
a g(t)Iα

a (ψ1 + ψ2)(t),

=
(t − a)α

Γ(α + 1)
Jα

a (ϕ2g + ϕ1g − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iα
a (ϕ2g + ϕ1g − ϕ1ϕ2)(t) − 2Jα

a g(t)Iα
a g(t)

= K(g, ψ1, ψ2).

From (16), (17) and (18), the required inequality in (13) is proved. ¤

Corollary 4.3 If K(f, ϕ1, ϕ2) = K(f,m,M) and K(g, ψ1, ψ2) = K(g, p, P ), m,M, p, P ∈ R, then
inequality (13) reduces to the following fractional integral inequality:∣∣∣∣ (t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

∣∣∣∣
≤1

4

{[ (
Jα

a f(t) − Iα
a f(t) + M

(t − a)α

Γ(α + 1)
− m

(log t
a )α

Γ(α + 1)

)2

+
(

Iα
a f(t) − Jα

a f(t) + M
(log t

a )α

Γ(α + 1)
− m

(t − a)α

Γ(α + 1)

)2
]1/2

×

[ (
Jα

a g(t) − Iα
a g(t) + P

(t − a)α

Γ(α + 1)
− p

(log t
a )α

Γ(α + 1)

)2
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+
(

Jα
a g(t) − Iα

a g(t) + p
(t − a)α

Γ(α + 1)
− P

(log t
a )α

Γ(α + 1)

)2
]1/2}

.

Theorem 4.4 Let f and g be two integrable function on [a,∞), a > 0. Assume that there exist four
integrable functions ϕ1, ϕ2, ψ1 and ψ2 satisfying the conditions (H1) and (H2) on [a,∞). Then for all
0 < a < t < ∞ and α, β > 0, the following inequality holds:∣∣∣ (t − a)β

Γ(β + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iβ
a fg(t) − Jα

a f(t)Iβ
a g(t) − Iβ

a f(t)Jα
a g(t)

∣∣∣
≤ |K1(f, ϕ1, ϕ2)|1/2 |K1(g, ψ1, ψ2)|1/2

, (19)

where K1(u, v, w) is defined by

K1(u, v, w) =
(t − a)β

Γ(β + 1)
Jα

a (uw + uv − vw)(t) +
(log t

a )α

Γ(α + 1)
Iβ
a (uw + uv − vw)(t) − 2Jα

a u(t)Iβ
a u(t).

Proof. Multiplying both sides of (14) by (log(t/τ))α−1(t − ρ)β−1/τΓ(α)Γ(β), τ, ρ ∈ (a, t), and double
integrating with respect to τ and ρ from a to t we get

1
Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
H(τ, ρ)dρ

dτ

τ

=
(t − a)β

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iβ
a fg(t) − Jα

a f(t)Iβ
a g(t) − Iβ

a f(t)Jα
a g(t). (20)

By using the Cauchy-Schwarz inequality for double integrals, we have∣∣∣∣ (t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

∣∣∣∣
≤

[
1

Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
f2(τ)dρ

dτ

τ

+
1

Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
f2(ρ)dρ

dτ

τ

− 2
Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
f(τ)f(ρ)dρ

dτ

τ

]1/2

×

[
1

Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
g2(τ)dρ

dτ

τ

+
1

Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
g2(ρ)dρ

dτ

τ

− 2
Γ(α)Γ(β)

∫ t

a

∫ t

a

(
log

t

τ

)α−1

(t − ρ)β−1
g(τ)g(ρ)dρ

dτ

τ

]1/2

.

Therefore, we get∣∣∣∣ (t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

∣∣∣∣
≤

[
(t − a)β

Γ(β + 1)
Jα

a f2(t) +

(
log t

τ

)α

Γ(α + 1)
Iβ
a f2(t) − 2Jα

a f(t)Iβ
a f(t)

]1/2

×

[
(t − a)β

Γ(β + 1)
Jα

a g2(t) +

(
log t

τ

)α

Γ(α + 1)
Iβ
a g2(t) − 2Jα

a g(t)Iβ
a g(t)

]1/2

.
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Thus, from Lemma 4.1, we get

(t − a)β

Γ(β + 1)
Jα

a f2(t) +
(log t

a )α

Γ(α + 1)
Iβ
a f2(t) − 2Jα

a f(t)Iβ
a f(t)

≤Jα
a (f − ϕ1)(t)Iβ

a (ϕ2 − f)(t) + Jα
a (ϕ2 − f)(t)Iβ

a (f − ϕ1)(t)

+
(t − a)β

Γ(β + 1)
Jα

a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iβ
a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) (21)

+ Jα
a ϕ1(t)Iβ

a (ϕ2 − f)(t) + Jα
a ϕ2(t)Iβ

a (ϕ1 − f)(t) − Jα
a f(t)Iβ

a (ϕ1 + ϕ2)(t)

=
(t − a)β

Γ(β + 1)
Jα

a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iβ
a (ϕ2f + ϕ1f − ϕ1ϕ2)(t) − 2Jα

a f(t)Iβ
a f(t)

= K1(f, ϕ1, ϕ2),

and

(t − a)β

Γ(β + 1)
Jα

a g2(t) +
(log t

a )α

Γ(α + 1)
Iβ
a g2(t) − 2Jα

a g(t)Iβ
a g(t)

≤Jα
a (g − ψ1)(t)Iβ

a (ψ2 − g)(t) + Jα
a (ψ2 − g)(t)Iβ

a (g − ψ1)(t)

+
(t − a)β

Γ(β + 1)
Jα

a (ψ2g + ψ1g − ψ1ψ2)(t) +
(log t

a )α

Γ(α + 1)
Iβ
a (ψ2g + ψ1g − ψ1ψ2)(t) (22)

+ Jα
a ψ1(t)Iβ

a (ψ2 − g)(t) + Jα
a ψ2(t)Iβ

a (ψ1 − g)(t) − Jα
a g(t)Iβ

a (ψ1 + ψ2)(t),

=
(t − a)β

Γ(β + 1)
Jα

a (ϕ2g + ϕ1g − ϕ1ϕ2)(t) +
(log t

a )α

Γ(α + 1)
Iβ
a (ϕ2g + ϕ1g − ϕ1ϕ2)(t) − 2Jα

a g(t)Iβ
a g(t)

= K1(g, ψ1, ψ2).

From (15), (21) and (22), we obtain the desired bound in (19). ¤

Corollary 4.5 If K(f, ϕ1, ϕ2) = K(f,m,M) and K(g, ψ1, ψ2) = K(g, p, P ), m,M, p, P ∈ R, then
inequality (13) reduces to the following fractional integral inequality:∣∣∣∣ (t − a)β

Γ(β + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iβ
a fg(t) − Jα

a f(t)Iβ
a g(t) − Iβ

a f(t)Jα
a g(t)

∣∣∣∣
≤1

4

{[ (
Jα

a f(t) − Iβ
a f(t) + M

(t − a)β

Γ(β + 1)
− m

(log t
a )α

Γ(α + 1)

)2

+
(

Iβ
a f(t) − Jα

a f(t) + M
(log t

a )α

Γ(α + 1)
− m

(t − a)β

Γ(β + 1)

)2
]1/2

×

[ (
Jα

a g(t) − Iα
a g(t) + P

(t − a)β

Γ(β + 1)
− p

(log t
a )α

Γ(α + 1)

)2

+
(

Jα
a g(t) − Iβ

a g(t) + p
(t − a)β

Γ(β + 1)
− P

(log t
a )α

Γ(α + 1)

)2
]1/2}

.

5 Applications

In this section we present a way for constructing the four bounding functions, and use them to give
some estimates of Chebyshev type inequalities of Riemann-Liouville and Hadamard fractional integrals
for two unknown functions.

From the Definitions 2.1 and 2.2, for 0 < a = t0 < t1 < t2 < · · · < tp < tp+1 = T , we define two
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notations of sub-integrals for Riemann-Liouville and Hadamard fractional integrals as

Iα
tj ,tj+1

f(T ) =
1

Γ(α)

∫ tj+1

tj

(T − τ)α−1f(τ)dτ, j = 0, 1, . . . , p. (23)

and

Jα
tj ,tj+1

f(T ) =
1

Γ(α)

∫ tj+1

tj

(
log

T

τ

)α−1

f(τ)
dτ

τ
, j = 0, 1, . . . , p. (24)

Note that

Iα
a f(T ) =

p∑
j=0

Iα
tj ,tj+1

f(T )

=
1

Γ(α)

∫ t1

a

(T − τ)α−1f(τ)dτ +
1

Γ(α)

∫ t2

t1

(T − τ)α−1f(τ)dτ

+ · · · + 1
Γ(α)

∫ T

tp

(T − τ)α−1f(τ)dτ,

and

Jα
a f(T ) =

p∑
j=0

Jα
tj ,tj+1

f(T )

=
1

Γ(α)

∫ t1

a

(
log

T

τ

)α−1

f(τ)dτ +
1

Γ(α)

∫ t2

t1

(
log

T

τ

)α−1

f(τ)dτ

+ · · · + 1
Γ(α)

∫ T

tp

(
log

T

τ

)α−1

f(τ)dτ.

Let u be a unit step function defined by

u(t) =
{

1, t > 0,
0, t ≤ 0,

(25)

and let ua(t) be the Heaviside unit step function defined by

ua(t) = u(t − a) =
{

1, t > a,
0, t ≤ a.

(26)

Let ϕ1 be a piecewise continuous functions on [0, T ] defined by

ϕ1(t) =m1(u0(t) − ut1(t)) + m2(ut1(t) − ut2(t)) + m3(ut2(t) − ut3(t)) + . . . + mp+1utp(t)
= m1u0(t) + (m2 − m1)ut1(t) + (m3 − m2)ut2(t) + . . . + (mp+1 − mp)utp(t)

=
p∑

j=0

(mj+1 − mj)utj (t), (27)

where m0 = 0 and 0 < a = t0 < t1 < t2 < · · · < tp < tp+1 = T.
Analogously, we define the functions ϕ2, ψ1 and ψ2 as

ϕ2(t) =
p∑

j=0

(Mj+1 − Mj)utj (t), (28)

ψ1(t) =
p∑

j=0

(nj+1 − nj)utj (t), (29)
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ψ2(t) =
p∑

j=0

(Nj+1 − Nj)utj
(t), (30)

where the constants n0 = N0 = M0 = 0. If there is an integrable function f on [a, T ] satisfying condition
(H1) then we get mj+1 ≤ f(t) ≤ Mj+1 for each t ∈ (tj , tj+1], j = 0, 1, 2, . . . , p. In particular, p = 4, the
time history of f can be shown as in figure 1.

Figure 1: Functions f , ϕ1 and ϕ2.

Proposition 5.1 Let f and g be two integrable functions on [a, T ], a > 0. Assume that the functions
ϕ1, ϕ2, ψ1 and ψ2 are defined by (27), (28), (29) and (30), respectively, satisfying (H1)-(H2). Then for
α > 0, the following inequality holds:∣∣∣∣ (t − a)α

Γ(α + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iα
a fg(t) − Jα

a f(t)Iα
a g(t) − Iα

a f(t)Jα
a g(t)

∣∣∣∣ (31)

≤ |K∗(f, ϕ1, ϕ2)|1/2 |K∗(g, ψ1, ψ2)|1/2
,

where

K∗(u, v, w)(T )

≤ (T − a)α

Γ(α + 1)

p∑
j=0

{
wJα

ti,tj+1
u(T ) + vJα

ti,tj+1
u(T ) − vw

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }

+
(log T

a )α

Γ(α + 1)

p∑
j=0

{
wIα

ti,tj+1
u(T ) + vIα

ti,tj+1
u(T ) − vw [(T − tj)α − (T − tj+1)α]

}

− 2

 p∑
j=0

Jα
ti,tj+1

u(T )

  p∑
j=0

Iα
ti,tj+1

u(T )

 .

Proof. Since

Iα
tj ,tj+1

(1)(T ) =
1

Γ(α)

∫ tj+1

tj

(T − τ)α−1
dτ

=
1

Γ(α + 1)
[(T − tj)

α − (T − tj+1)
α] ,

Jα
tj ,tj+1

(1)(T ) =
1

Γ(α)

∫ tj+1

tj

(
log

T

τ

)α−1
dτ

τ

=
1

Γ(α + 1)

[(
log

T

tj

)α

−
(

log
T

tj+1

)α]
,
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we have

Iα
a (ϕ1ϕ2)(T ) =

p∑
j=0

mj+1Mj+1

Γ(α + 1)
[(T − tj)

α − (T − tj+1)
α] ,

Jα
tj ,tj+1

(ψ1ψ2)(T ) =
p∑

j=0

nj+1Nj+1

Γ(α + 1)

[(
log

T

tj

)α

−
(

log
T

tj+1

)α]
.

Therefore, two functional K∗(f, ϕ1, ϕ2)(T ) and K∗(g, ψ1, ψ2)(T ) can be expressed by

K∗(f, ϕ1, ϕ2)(T ) ≤ (t − a)α

Γ(α + 1)

p∑
j=0

{
Mj+1J

α
ti,tj+1

f(T ) + mj+1J
α
ti,tj+1

f(T )

− mj+1Mj+1

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }

+
(log t

a )α

Γ(α + 1)

p∑
j=0

{
Mj+1I

α
ti,tj+1

f(T ) + mj+1I
α
ti,tj+1

f(T )

− mj+1Mj+1 [(T − tj)α − (T − tj+1)α]

}

− 2

 p∑
j=0

Jα
ti,tj+1

f(T )

 p∑
j=0

Iα
ti,tj+1

f(T )

 ,

and

K∗(g, ψ1, ψ2)(T ) ≤ (t − a)α

Γ(α + 1)

p∑
j=0

{
Nj+1J

α
ti,tj+1

g(T ) + nj+1J
α
ti,tj+1

g(T )

− nj+1Mj+1

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }

+
(log t

a )α

Γ(α + 1)

p∑
j=0

{
Nj+1I

α
ti,tj+1

g(T ) + nj+1I
α
ti,tj+1

g(T )

− nj+1Nj+1 [(T − tj)α − (T − tj+1)α]

}

− 2

 p∑
j=0

Jα
ti,tj+1

g(T )

  p∑
j=0

Iα
ti,tj+1

g(T )

 .

By applying Theorem (4.2), the required inequality (31) is established. ¤

Proposition 5.2 Let f and g be two integrable functions on [a, T ], a > 0. Assume that the functions
ϕ1, ϕ2, ψ1 and ψ2 are defined by (27), (28), (29) and (30), respectively, satisfying (H1)-(H2). Then for
α, β > 0, the following inequality holds:∣∣∣∣ (t − a)β

Γ(β + 1)
Jα

a fg(t) +
(log t

a )α

Γ(α + 1)
Iβ
a fg(t) − Jα

a f(t)Iβ
a g(t) − Iβ

a f(t)Jα
a g(t)

∣∣∣∣ (32)

≤ |K∗
1 (f, ϕ1, ϕ2)|1/2 |K∗

1 (g, ψ1, ψ2)|1/2
,

where

K∗
1 (u, v, w)(T ) ≤ (T − a)β

Γ(β + 1)

p∑
j=0

{
wJα

ti,tj+1
u(T ) + vJα

ti,tj+1
u(T ) − vw

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }
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+
(log T

a )α

Γ(α + 1)

p∑
j=0

{
wIβ

ti,tj+1
u(T ) + vIβ

ti,tj+1
u(T ) − vw

[
(T − tj)β − (T − tj+1)β

]}

− 2

 p∑
j=0

Jα
ti,tj+1

u(T )

  p∑
j=0

Iβ
ti,tj+1

u(T )

 .

Proof. By direct computations, we have

K∗
1 (f, ϕ1, ϕ2)(T ) ≤ (t − a)β

Γ(β + 1)

p∑
j=0

{
Mj+1J

α
ti,tj+1

f(T ) + mj+1J
α
ti,tj+1

f(T )

− mj+1Mj+1

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }

+
(log t

a )α

Γ(α + 1)

p∑
j=0

{
Mj+1I

α
ti,tj+1

f(T ) + mj+1I
β
ti,tj+1

f(T )

− mj+1Mj+1

[
(T − tj)β − (T − tj+1)β

]}

− 2

 p∑
j=0

Jα
ti,tj+1

f(T )

  p∑
j=0

Iβ
ti,tj+1

f(T )

 ,

and

K∗
1 (g, ψ1, ψ2)(T ) ≤ (t − a)β

Γ(β + 1)

p∑
j=0

{
Nj+1J

α
ti,tj+1

g(T ) + nj+1J
α
ti,tj+1

g(T )

− nj+1Mj+1

[(
log

T

tj

)α

−
(

log
T

tj+1

)α] }

+
(log t

a )α

Γ(α + 1)

p∑
j=0

{
Nj+1I

β
ti,tj+1

g(T ) + nj+1I
β
ti,tj+1

g(T )

− nj+1Nj+1

[
(T − tj)β − (T − tj+1)β

]}

− 2

 p∑
j=0

Jα
ti,tj+1

g(T )

  p∑
j=0

Iβ
ti,tj+1

g(T )

 ,

By applying Theorem (4.4), the required inequality (32) is established. ¤
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Abstract
The boundedness and compactness of the weighted composition operator from F (p, q, s) spaces to nth weighted-

Orlicz spaces are characterized in this paper.

Keywords: weighted composition operator, F (p, q, s) spaces, nth weighted-Orlicz spaces.

1 Introduction
Let H(D) be the space of all holomorphic functions on the open unit disk D in the complex plane C, N0 the set of all
nonnegative integers, N the set of all positive integers, and dA the Lebesgue measure on D normalized so that A(D) =
1. Let u ∈ H(D), the weighted composition operator uCφ is defined by (uCφf)(z) = u(z)f(φ(z)), f ∈ H(D), for
more details, see, [1, 3, 16, 18].

For 0 < p, s <∞, −2 < q <∞, a function f ∈ H(D) is said to belong to the general function space F (p, q, s) if

‖f‖F (p,q,s) = |f(0)|p + sup
z∈D

∫
D

|f ′(z)|p(1− |z|2)q(1− |ψa(z)|2)sdA(z) <∞,

where ψa(z) = (a− z)/(1− az), a ∈ D. The space F (p, q, s) was introduced by Zhao in [14]. Since for q+ s ≤ −1,
F (p, q, s) is the space of constant functions, we assume that q + s > −1. For some results on F (p, q, s) space see, for
example, [4, 5, 7, 8, 10, 11, 15, 16, 17, 18].

Let µ be a positive continuous function on [0,1). We say that µ is normal if there exist two positive numbers a and
b with 0 < a < b, and δ ∈ [0, 1) such that (see [6])

µ(r)
(1− r)a

is decreasing on [δ, 1), lim
r→1

µ(r)
(1− r)a

= 0;
µ(r)

(1− r)b
is increasing on [δ, 1), lim

r→1

µ(r)
(1− r)b

= ∞.

Let µ(z) = µ(|z|) be a normal function on D. The nth weighted-type space on D, denoted by W(n)
µ = W(n)

µ (D)
which was introduced by Stević in [9], consists of all f ∈ H(D) such that

bW(n)
µ

(f) = sup
z∈D

µ(z)|f (n)(z)| <∞.

For n = 0 the space becomes the weighted-type space H∞
µ (D), for n = 1 the Bloch-type space Bµ(D) and for n = 2

the Zygmund-type space Zµ(D). From now on, we will assume that n ∈ N. Set

‖f‖W(n)
µ

=
n−1∑
j=0

|f (j)(0)|+ bW(n)
µ

(f).

With this norm the nth weighted-type space becomes a Banach space.
Recently, Fernándz in [2] uses Young’s functions to define the Bloch-Orlicz space. More precisely, let ϕ : [0,∞) →

[0,∞) be a strictly increasing convex function such that ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.The Bloch-Orlicz space
associated with the function ϕ, denoted by Bϕ, is the class of all analytic functions f in D such that

sup
z∈D

(1− |z|2)ϕ(λ|f ′(z)|) <∞

for some λ > 0 depending on f . Also, since ϕ is convex, it is not hard to see that the Minkowski’s functional

‖f‖bϕ = inf
{
k > 0 : Sϕ

(
f ′

k

)
≤ 1

}
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defines a seminorm for Bϕ, which, in this case, is known as Luxemburgs seminorm, where

Sϕ(f) = sup
z∈D

(1− |z|2)ϕ(|f(z)|).

In fact, it can be shown that Bϕ is a Banach space with the norm ‖f‖Bϕ = |f(0)|+‖f‖bϕ . For more details, see [2]. We
also have that the Bloch-Orlicz space is isometrically equal to the µ-Bloch space, where µ(z) = 1

ϕ−1( 1
1−|z|2

)
, z ∈ D.

Inspired by this, now we define the nth weighted-Orlicz space, which is denoted byW(n)
ϕ , as the class of all analytic

function f in D such that
sup
z∈D

(1− |z|2)ϕ(λ|f (n)(z)|) <∞

for some λ > 0 depending on f . Same as the Bloch-Orlicz space, it is not difficult to see that the Minkowski’s
functional

‖f‖wϕ = inf
{
k > 0 : Sϕ

(
f (n)

k

)
≤ 1

}
defines a seminorm for W(n)

ϕ . Furthermore, it can be shown that W(n)
ϕ is a Banach space with the norm

‖f‖W(n)
ϕ

=
n−1∑
j=0

|f (j)(0)|+ ‖f‖wϕ .

In the same way as in the case Bϕ, for any f ∈ W(n)
ϕ \{0}, the relation

Sϕ

(
f (n)

‖f‖W(n)
ϕ

)
≤ 1

holds. Also, as a direct consequence of this, we have that the nth weighted-Orlicz space is isometrically equal to the
nth weighted-type space, where µ(z) = 1

ϕ−1( 1
1−|z|2

)
, z ∈ D. Thus, for any f ∈ W(n)

ϕ , we have

‖f‖W(n)
ϕ

=
n−1∑
j=0

|f (j)(0)|+ sup
z∈D

|f (n)(z)|
ϕ−1( 1

1−|z|2 )
.

Clearly, for n = 1, the nth weighted-Orlicz space W(n)
ϕ becomes the Bloch-Orlicz space, and for n = 2 the Zygmund-

Orlicz space. In this paper, we are devoted to investigating the boundedness and compactness of the weighted com-
position operator uCφ from F (p, q, s) spaces to nth weighted-Orlicz spaces. In what follows, we use the letter C to
denote a positive constant whose value may change its value at each occurrence.

2 Auxiliary Results
In this section we formulate some auxiliary results which will be used in the proof of the main results. Lemma 1 and
Lemma 2 can be found in [5].

Lemma 1. Assume that f ∈ F (p, q, s), 0 < p, s < ∞, −2 < q < ∞, q + s > −1. Then, for each n ∈ N, there is a
positive constant C, independent of f such that ‖f‖

B
2+q

p
≤ C‖f‖F (p,q,s) and

|f (n)(z)| ≤
C‖f‖F (p,q,s)

(1− |z|2)
2+q−p

p +n
, z ∈ D.

Lemma 2. Let α > 0 and f ∈ Bα. Then,

|f(z)| ≤


C‖f‖Bα , 0 < α < 1,
C log 2

1−|z|2 ‖f‖Bα , α = 1,
C

(1−|z|2)α−1 ‖f‖Bα , α > 1.
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Lemma 3 and Lemma 4 can be found in [12].

Lemma 3. Assume a > 0 and

Dn+1 =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
a a+ 1 · · · a+ n
...

...
...∏n−1

j=0 (a+ j)
∏n−1

j=0 (a+ j + 1) · · ·
∏n−1

j=0 (a+ j + n)

∣∣∣∣∣∣∣∣∣ .
Then, Dn+1 =

∏n
j=1 j!.

Lemma 4. Assume n ∈ N, u, f ∈ H(D) and φ is an analytic self-map of D. Then,(
u(z)f(φ(z))

)(n) =
n∑

k=0

f (k)(φ(z))
n∑

l=k

Cl
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)
,

where

Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)
=

∑
k1,··· ,kl

l!
k1!, · · · , kl!

l∏
j=1

(
φ(j)(z)
j!

)kj

, (1)

and the sum in (1) is overall non-negative integer k1, · · · , kl satisfying k1+k2+· · ·+kl = k and k1+2k2+· · ·+lkl = l.

The next characterization of compactness is proved in a standard way (see, e.g., the proofs of [1], Prop 3.11]).
Hence we omit it. The following Lemma 6 can be found in [13].

Lemma 5. Suppose that u ∈ H(D), n ∈ N, φ is an analytic self-map of D. Then, uCφ : F (p, q, s) → W(n)
ϕ is

compact if and only if uCφ : F (p, q, s) → W(n)
ϕ is bounded and for any bounded sequence {fk}k∈N in F (p, q, s)

which converges to zero uniformly on compact subsets of D as k →∞, we have ‖uCφf‖W(n)
ϕ

→ 0 as k →∞.

Lemma 6. Fix 0 < α < 1 and let {fk}k∈N be a bounded sequence in Bα which converges to zero uniformly on
compact subsets of D as k →∞. Then we have

lim
k→∞

sup
z∈D

|fk(z)| = 0. (2)

3 The Boundedness of uCφ : F (p, q, s) →W (n)
ϕ

Theorem 7. Let u ∈ H(D), 0 < p, s <∞, −2 < q <∞, q + s > −1, n ∈ N and φ be an analytic self-map of D.
(a) If 2 + q < p, then uCφ : F (p, q, s) →W(n)

ϕ is bounded if and only if

M0 = sup
z∈D

|u(n)(z)|
ϕ−1( 1

1−|z|2 )
<∞, (3)

and

Mk = sup
z∈D

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p +k
<∞, (4)

where k = 1, 2, · · · , n.
(b) If 2 + q = p, then uCφ : F (p, q, s) →W(n)

ϕ is bounded if and only if (4) holds and

M ′
0 = sup

z∈D

|u(n)(z)| log 2
1−|φ(z)|2

ϕ−1( 1
1−|z|2 )

<∞. (5)

(c) If 2 + q > p, then uCφ : F (p, q, s) →W(n)
ϕ is bounded if and only if (4) holds and

M ′′
0 = sup

z∈D

|u(n)(z)|
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p

<∞. (6)
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Proof. If 2 + q < p. Assume that (3) and (4) hold, then for each f ∈ W(n)
ϕ \{0}, by Lemma 1, Lemma 2 and Lemma

4, we have

Sϕ

(
(uCφf)(n)(z)
C‖f‖F (p,q,s)

)
≤ sup

z∈D
(1− |z|2) ·

ϕ

( |u(n)(z)||f(φ(z))|+
∣∣ ∑n

k=1 f
(k)(φ(z))

∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
C‖f‖F (p,q,s)

)
≤ sup

z∈D
(1− |z|2) ·

ϕ

(
ϕ−1( 1

1−|z|2 )M0|f(φ(z))|+ ϕ−1( 1
1−|z|2 )

∑n
k=1Mk(1− |φ(z)|2)

2+q−p
p +k

∣∣f (k)(φ(z))
∣∣

C‖f‖F (p,q,s)

)

≤ sup
z∈D

(1− |z|2)ϕ
(CM0‖f‖

B
2+q

p
+

∑n
k=1 CkMk‖f‖F (p,q,s)

C‖f‖F (p,q,s)
ϕ−1

(
1

1− |z|2

))
≤ sup

z∈D
(1− |z|2)ϕ

(∑n
j=0 CjMj

C
ϕ−1

(
1

1− |z|2

))
≤ 1.

HereCj(j = 0, 1, · · · , n) are all constants, andC ≥
∑n

j=0 CjMj . Now, we can conclude that there exists a constantC

such that ‖uCφf‖W(n)
ϕ

≤ C‖f‖F (p,q,s) and the weighted composition operator uCφ : F (p, q, s) →W(n)
ϕ is bounded.

If 2 + q = p, or 2 + q > p, from (4) (5), or (4) (6), we can get uCφ : F (p, q, s) →W(n)
ϕ is bounded similarly.

Conversely, suppose that uCφ : F (p, q, s) →W(n)
ϕ is bounded, that is, for all f ∈ F (p, q, s), there exists a constant

C such that ‖uCφf‖W(n)
ϕ

≤ C. For ω ∈ D, and constants c0, c1, · · · , cn, set

fω(z) =
n∑

j=0

cj
(1− |ω|2)j+1

(1− ωz)α+j
, (7)

where α = 2+q
p . It is well known that fω ∈ F (p, q, s), and

fω(ω) =
1

(1− |ω|2)α−1

n∑
j=0

cj , (8)

f (l)
ω (ω) =

ωl

(1− |ω|2)α−1+l

n∑
j=0

cj

l−1∏
r=0

(α+ j + r), l = 1, 2, · · · , n. (9)

We claim that for each k ∈ {1, 2, · · · , n}, there are constants c0, c1, · · · , cn such that
∑n

j=0 cj 6= 0 and

f (k)
ω (ω) =

ωk

(1− |ω|2)α−1+k
, f (t)

ω (ω) = 0, t ∈ {0, 1, 2, · · · , n}\{k}. (10)

In fact, by (8) and (9), (10) is equivalent to the following system of liner equations

c0 + c1 + · · ·+ cn = 0,
c0α+ c1(α+ 1) + · · ·+ cn(α+ n) = 0,
c0α(α+ 1) + c1(α+ 1)(α+ 2) + · · ·+ cn(α+ n)(α+ n+ 1) = 0,
· · · · · ·
c0

∏k−1
r=0(α+ r) + c1

∏k−1
r=0(α+ 1 + r) + · · ·+ cn

∏k−1
r=0(α+ n+ r) = 1,

· · · · · ·
c0

∏n−1
r=0 (α+ r) + c1

∏n−1
r=0 (α+ 1 + r) + · · ·+ cn

∏n−1
r=0 (α+ n+ r) = 0.

(11)
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By using Lemma 3, we obtain that the determinant of system of linear Eq.(11) is different from zero, from which
the claim follows. For each k ∈ {1, 2, · · · , n}, we choose the corresponding family of functions that satisfy (10) and
denote it by fω,k. Then, from Lemma 4 and the boundedness of uCφ : F (p, q, s) → W(n)

ϕ , for ω ∈ D such that
|φ(ω)| > 1

2 ,

1 ≥ Sϕ

(
(uCφfφ(ω),k)(n)(z)

C

)
≥ sup
|φ(ω)|> 1

2

(1− |ω|2)ϕ
( |(uCφfφ(ω),k)(n)(ω)|

C

)

= sup
|φ(ω)|> 1

2

(1− |ω|2)ϕ
( |φ(ω)|k

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
C(1− |φ(ω)|2)

2+q−p
p +k

)
It follows that

sup
|φ(ω)|> 1

2

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p +k
<∞. (12)

By the test functions fk(z) = zk(k = 1, 2, · · · , n), use the mathematical induction as in [12], we can get that

sup
z∈D

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )
<∞.

Then, for each k ∈ {1, 2, · · · , n},

sup
|φ(ω)|≤ 1

2

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p +k
<∞. (13)

Combining (12) with (13), we obtain that (4) is necessary for all cases.
If 2 + q < p, taking f(z) = 1, then (uCφf)(z) = u(z), by the boundedness of uCφ : F (p, q, s) →W(n)

ϕ , we have

Sϕ

(
(uCφf)(n)(z)

C

)
= sup

z∈D
(1− |z|2)ϕ

(
|u(n)(z)|

C

)
≤ 1.

It follows that (3) holds.
If 2 + q = p, for a fixed ω ∈ D, set

gω(z) = log
2

1− ωz
.

Then it is easy to see that gω ∈ F (p, q, s) and we have

gω(ω) = log
2

1− |ω|2
, g(k)

ω (ω) = (k − 1)!
ωk

(1− |ω|2)k
, k = 1, 2, · · · , n.

From Lemma 4 and the boundedness of uCφ : F (p, q, s) →W(n)
ϕ , we have

1 ≥ Sϕ

(
(uCφgφ(ω))(n)(z)

C

)
≥ sup

ω∈D
(1− |ω|2)ϕ

( |(uCφfφ(ω))(n)(ω)|
C

)
≥ sup

ω∈D
(1− |ω|2) ·

ϕ

(∣∣u(n)(ω) log 2
1−|φ(ω)|2

∣∣
C

−
n∑

k=1

|φ(ω)|k
∣∣ ∑n

l=k C
l
nu

(n−l)(z)Bl,k

(
φ′(z), · · · , φ(l−k+1)(z)

)∣∣
C(1− |φ(ω)|2)k

)
.

By Mk <∞ and the boundedness of φ(ω), it follows that

sup
ω∈D

|u(n)(ω)| log 2
1−|φ(ω)|2

ϕ−1( 1
1−|ω|2 )

≤ C +
n∑

k=1

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)k
<∞.
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If 2 + q > p, using the function in (7), and in the system of linear Eq.(11), we can also find c0, c1, · · · , cn and
denote the corresponding function hω(z) such that

hω(ω) =
1

(1− |ω|2)
2+q−p

p

, h(k)
ω (ω) = 0, k = 1, 2, · · · , n.

Then from Lemma 4 and the boundedness of uCφ : F (p, q, s) →W(n)
ϕ , we have

1 ≥ Sϕ

(
(uCφhφ(ω))(n)(z)

C

)
≥ sup

ω∈D
(1− |ω|2)ϕ

( |(uCφhφ(ω))(n)(ω)|
C

)
= sup

ω∈D
(1− |ω|2)ϕ

(
|u(n)(ω)|

C(1− |φ(ω)|2)
2+q−p

p

)
,

from which we can see that (6) holds.

4 The Compactness of uCφ : F (p, q, s) →W (n)
ϕ

Theorem 8. Let u ∈ H(D), 0 < p, s <∞, −2 < q <∞, q + s > −1, n ∈ N and φ be an analytic self-map of D.
(a) If 2 + q < p, then uCφ : F (p, q, s) →W(n)

ϕ is compact if and only if uCφ : F (p, q, s) →W(n)
ϕ is bounded and

lim
|φ(z)|→1

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p +k
= 0, (14)

where k = 1, 2, · · · , n.
(b) If 2 + q = p, then uCφ : F (p, q, s) → W(n)

ϕ is compact if and only if uCφ : F (p, q, s) → W(n)
ϕ is bounded,

(14) holds and

lim
|φ(z)|→1

|u(n)(z)| log 2
1−|φ(z)|2

ϕ−1( 1
1−|z|2 )

= 0. (15)

(c) If 2 + q > p, then uCφ : F (p, q, s) → W(n)
ϕ is compact if and only if uCφ : F (p, q, s) → W(n)

ϕ is bounded,
(14) holds and

lim
|φ(z)|→1

|u(n)(z)|
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p

= 0. (16)

Proof. Let {fi}i∈N be a sequence in F (p, q, s) with ‖fi‖F (p,q,s) ≤ L, and fi converges to zero uniformly on compact
subsets of D as i → ∞. To prove that uCφ : F (p, q, s) → W(n)

ϕ is compact, by Lemma 5, we only need to show
limi→∞ ‖uCφfi‖W(n)

ϕ
= 0.

If 2 + q < p, suppose that uCφ : F (p, q, s) →W(n)
ϕ is bounded and (14) holds, then for given ε > 0, there exists a

δ ∈ (0, 1), when δ < |φ(z)| < 1, we have∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )(1− |φ(z)|2)
2+q−p

p +k
< ε, k = 1, 2, · · · , n. (17)

By the proof of the boundedness, we know that M0 <∞ and

sup
z∈D

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )
≤ C, k = 1, 2, · · · , n.
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Let K = {z ∈ D, |φ(z)| ≤ δ}, then by Lemma 1 and (17), we have

sup
z∈D

∣∣(uCφfi)(n)(z)
∣∣

ϕ−1( 1
1−|z|2 )

≤ sup
z∈D

|u(n)(z)|
ϕ−1( 1

1−|z|2 )
|fi(φ(z))|

+
n∑

k=1

sup
z∈K

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )
|f (k)

i (φ(z))|

+
n∑

k=1

sup
z∈D\K

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣
ϕ−1( 1

1−|z|2 )
|f (k)

i (φ(z))|

≤ M0|fi(φ(z))|+ C
n∑

k=1

sup
z∈K

|f (k)
i (φ(z))|

+
n∑

k=1

sup
z∈D\K

∣∣ ∑n
l=k C

l
nu

(n−l)(z)Bl,k

(
φ′(z), φ′′(z), · · · , φ(l−k+1)(z)

)∣∣‖fk‖F (p,q,s)

ϕ−1( 1
1−|z|2 )(1− |φ(z)|2)

2+q−p
p +k

≤ M0|fi(φ(z))|+ nC sup
|ω|≤δ

|f (k)
i (ω)|+ nLε.

Since fk ∈ F (p, q, s) ⊂ B
2+q

p , by Lemma 6, we have limi→∞ supz∈D |fi(φ(z))| = 0. By Cauchy’s estimate, we
know sup|ω|≤δ |f

(k)
i (ω)| → 0, as i → ∞. On the other hand, since {φ(0)} is also compact subset of D, we have∑n−1

j=0 |f
(j)
i (0)| → 0, as i→∞. So ‖uCφfi‖W(n)

ϕ
→ 0, as i→∞. Hence uCφ : F (p, q, s) →W(n)

ϕ is compact.

If 2 + q = p or 2 + q > p, assume that uCφ : F (p, q, s) → W(n)
ϕ is bounded, (14), (15) or (14), (16) hold

respectively. Then given ε > 0, there exists a δ ∈ (0, 1), when δ < |φ(z)| < 1, we have

|u(n)(z)| log 2
1−|φ(z)|2

ϕ−1( 1
1−|z|2 )

< ε or
|u(n)(z)|

ϕ−1( 1
1−|z|2 )(1− |φ(z)|2)

2+q−p
p

< ε.

Then by Lemma 1, Lemma 2 and Lemma 5 and similar to the above, we can easily get that uCφ : F (p, q, s) →W(n)
ϕ

is compact.
Conversely, assume that uCφ : F (p, q, s) → W(n)

ϕ is compact, then it is clear that uCφ : F (p, q, s) → W(n)
ϕ is

bounded. Let {zi}i∈N be a sequence in D such that |φ(zi)| → 1, as i→∞. (If such a sequence does not exist, then the
condition in (14), (15), (16) automatically hold.) Let fω,k(z)(k = 1, 2, · · · , n) be as defined in the proof of Theorem
7. Then the sequence {fφ(zi),k} are bounded in F (p, q, s) and converge to zero uniformly on compact subsets of D as
i→∞. By Lemma 5 and the compactness of uCφ : F (p, q, s) →W(n)

ϕ , we have

lim
i→∞

‖uCφfφ(zi),k‖W(n)
ϕ

= 0. (18)

Then

1 ≥ Sϕ

(
(uCφfφ(zi),k)(n)(zi)
‖uCφfφ(zi),k‖W(n)

ϕ

)

≥ (1− |zi|2)ϕ
( |φ(zi)|k

∣∣ ∑n
l=k C

l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
‖uCφfφ(zi),k‖W(n)

ϕ
(1− |φ(zi)|2)

2+q−p
p +k

)

It follows that

|φ(zi)|k
∣∣ ∑n

l=k C
l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
ϕ−1( 1

1−|zi|2 )(1− |φ(zi)|2)
2+q−p

p +k
≤ ‖uCφfφ(zi),k‖W(n)

ϕ
.
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lim
|φ(zi)|→1

∣∣ ∑n
l=k C

l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
ϕ−1( 1

1−|zi|2 )(1− |φ(zi)|2)
2+q−p

p +k

= lim
i→∞

|φ(zi)|k
∣∣ ∑n

l=k C
l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
ϕ−1( 1

1−|zi|2 )(1− |φ(zi)|2)
2+q−p

p +k
= 0,

which implies that (14) is necessary for all cases. If 2 + q = p, set

gi(z) =
(

log
2

1− φ(zi)z

)2(
log

2
1− |φ(zi)|2

)−1

.

Then {gi(z)} is a bounded sequence in F (p, q, s) and converges to zero uniformly on compact subsets of D, and we
have

gi(φ(zi)) = log
2

1− |φ(zi)|2
, g

(k)
i (φ(zi)) =

2(k − 1)!φ(zi)
k

(1− |φ(zi)|2)k
+ Ck

φ(zi)
k

(1− |φ(zi)|2)k

(
log

2
1− |φ(zi)|2

)−1

,

where Ck(k = 1, 2, · · · , n) is constants about k. By Lemma 5 and the compactness of uCφ : F (p, q, s) → W(n)
ϕ , we

have

lim
i→∞

‖uCφgi‖W(n)
ϕ

= 0. (19)

Then

1 ≥ Sϕ

(
(uCφgi)(n)(zi)
‖uCφgi‖W(n)

ϕ

)
≥ (1− |zi|2) ·

ϕ

( |u(n)(zi)| log 2
1−|φ(zi)|2

‖uCφgi‖W(n)
ϕ

−
n∑

k=1

C|φ(zi)|k
∣∣ ∑n

l=k C
l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
‖uCφgi‖W(n)

ϕ
(1− |φ(zi)|2)

2+q−p
p +k

)
.

It follows that

|u(n)(zi)| log 2
1−|φ(zi)|2

ϕ−1( 1
1−|zi|2 )

≤ ‖uCφgi‖W(n)
ϕ

+
n∑

k=1

C
∣∣ ∑n

l=k C
l
nu

(n−l)(zi)Bl,k

(
φ′(zi), φ′′(zi), · · · , φ(l−k+1)(zi)

)∣∣
ϕ−1( 1

1−|zi|2 )(1− |φ(zi)|2)
2+q−p

p +k
.

Then by (14) and (19), we can get (15) holds.
If 2 + q > p, let hω(z) be as defined in the proof of Theorem 7. Then the sequence {hφ(zi)} is bounded in F (p, q, s)
and converges to zero uniformly on compact subsets of D as i → ∞. By Lemma 5 and the compactness of uCφ :
F (p, q, s) →W(n)

ϕ , we have

lim
i→∞

‖uCφhφ(zi)‖W(n)
ϕ

= 0. (20)

Then

1 ≥ Sϕ

(
(uCφhφ(zi))

(n)(zi)
‖uCφhφ(zi)‖W(n)

ϕ

)
≥ (1− |zi|2)ϕ

(
|u(n)(zi)|

‖uCφhφ(zi)‖W(n)
ϕ

(1− |φ(zi)|2)
2+q−p

p

)
.

It follows that

|u(n)(zi)|
ϕ−1( 1

1−|zi|2 )(1− |φ(zi)|2)
2+q−p

p

≤ ‖uCφhφ(zi)‖W(n)
ϕ

from which we can get (16) holds by (20).

Acknowledgement. This work is supported by the NNSF of China (Nos.11201127;11271112) and IRTSTHN
(14IRTSTHN023).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

322 Haiying Li et al 315-323



Weighted composition operators from F (p, q, s) toW(n)
ϕ 9

References
[1] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic functions, CRC Press, Boca Roton, 1995.

[2] J. C. Ramos Fernández. Composition operators on Bloch-Orlicz type spaces. Applied Mathematics and Computation, 217(7)
(2010) 3392-3402.
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MODIFIED q-DAEHEE NUMBERS AND POLYNOMIALS

DONGKYU LIM

Abstract. The p-adic q-integral was defined by T. Kim to be

Iq(f) =

∫
Zp

f(x)dµq(x) = lim
N→∞

pN−1∑
x=0

qx

[pN ]q
f(x) (see [9, 10]).

From p-adic q-integrals’ equations, we can derive various q-extension of Bernoulli
polynomials and numbers (see [1-20]). In [4], T. Kim have studied Daehee polyno-
mials and numbers and their applications. Recently, many properties and valuable
identities related to Daehee polynomials and numbers are introduced by several
authors (see [1-20]). In [11], T. Kim et al. introduced the q-analogue of Daehee
numbers and polynomials which are called q-Daehee numbers and polynomials.
In this paper, we consider the modified q-Daehee numbers and polynomials which
are different the q-Daehee numbers and polynomials of T. Kim et al. and give
some useful properties and identities of those polynomials which are derived the
new p-adic q-integral equations.

MSC: 11B68, 11S40, 11S80

Keywords and phrases. Modified q-Daehee number; Modified q-Daehee poly-
nomial; Modified q-Bernoulli number; p-adic q-integral

1. Introduction

The q-Daehee polynomials Dn,q(x) are defined and studied by T. Kim et al., the
generating function to be

(1)
1− q + 1−q

log q log(1 + t)

1− q − qt
(1 + t)x =

∞∑
n=0

Dn,q(x)
tn

n!
(see [11]).

This generating function for Dn,q(x) is related with p-adic q-integral on Zp defined
by T. Kim(see [9, 10]).

In this paper, we consider modified p-adic q-integration on Zp which are used by
many authors(see [1-20]). We define modified q-Daehee polynomials Dn(x|q) from
modified p-adic q−integrals, and relate Dn(x|q) with modified q-Bernoulli polyno-
mials Bn(x|q).

Throughout this paper, we denote the ring of p-adic integers, the field of p-adic
numbers and the completion of algebraic closure of Qp by Zp, Qp and Cp, respec-
tively. The p-adic norm | · |p is normalized by |p|p = 1

p . We denote the space of

uniformly differentiable function on Zp by UD[Zp]. The q-Haar measure is defined

as (see [9, 10]) µq(a+pmZp) = qa

[Pm]q
, where [x]q = 1−qx

1−q . For a function f in UD[Zp],

the modified p-adic q-integral on Zp is given by

(2) Iq(f) =

∫
Zp

f(x)dµq(x) = lim
N→∞

pN−1∑
x=0

qx

[pN ]q
f(x) (see [9-20]).

1
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2 DONGKYU LIM

The bosonic integral on Zp is given by I1(f) = limq→1 Iq(f).
From (2), we have the following integral identity.

(3) qIq(f1)− Iq(f) =
q − 1

log q
f ′(0) + (q − 1)f(0),

where f1(x) = f(x+ 1) and f ′(x) = d
dxf(x).

In special case, we apply f(x) = q−xetx on (3), we have

(et − 1)

∫
Zp

q−xextdµq(x) =
q − 1

log q
t.

Thus

(4)

∫
Zp

q−xextdµq(x) =
q − 1

log q

t

et − 1
.

The q-analogue Bernoulli numbers Bn(q) are known as follows:

(5)

∞∑
n=0

Bn(q)
tn

n!
=
q − 1

log q

t

et − 1
(see [3, 5, 9]).

Indeed if q → 1, we have limq→1Bn(q) = Bn. So we call Bn(x|q) as the nth
modified q-Bernoulli polynomials and the generating function to be

(6)
q − 1

log q

t

et − 1
ext =

∞∑
n=0

Bn(x|q) t
n

n!
.

When x = 0, Bn(0|q) = Bn(q) are the nth modified q-Bernoulli numbers.
From (3) and (6), we have

Bn(x|q) =

∫
Zp

q−y(x+ y)ndµq(y).

From (6), we note that

(7) Bn(x|q) =

n∑
l=0

(
n

l

)
Bl(q)x

n−l.

For the case |t|p ≤ p−
1

p−1 , the Daehee polynomials are defined as follows:

(8)
∞∑
n=0

Dn(x)
tn

n!
=

log(1 + t)

t
(1 + t)x (see [11]).

From p-adic q-integrals’ equations, we can derive various q-extension of Bernoulli
polynomials and numbers(see [1-20]). In [4], T. Kim have studied Daehee polyno-
mials and numbers and their applications. Recently, many properties and valuable
identities related to Daehee polynomials and numbers are introduced by several
authors(see [1-20]). In [11], T. Kim et al. introduced the q-analogue of Daehee
numbers and polynomials which are called q-Daehee numbers and polynomials. In
this paper, we consider the modified q-Daehee numbers and polynomials which are
different the q-Daehee numbers and polynomials of T. Kim et al. and give some use-
ful properties and identities of those polynomials which are derived the new p-adic
q-integral equations.
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MODIFIED q-DAEHEE NUMBERS AND POLYNOMIALS 3

2. Modified q-Daehee numbers and polynomials

Let us now consider the p-adic q-integral representation as follows:

(9)

∫
Zp

q−y(x+ y)ndµq(y) (n ∈ Z+ = N ∪ {0}),

where (x)n is known as the Pochhammer symbol(or decreasing fractorial) defined by

(10) (x)n = x(x− 1) · · · (x− n+ 1) =
n∑

k=0

S1(n, k)xk

and here S1(n, k) is the Stirling number of the first kind (see [4, 11]).
From (9), we have

(11)

∞∑
n=0

(∫
Zp

q−y(x+ y)ndµq(y)

)
tn

n!
=

∫
Zp

q−y
( ∞∑

n=0

(
x+ y

n

)
tn
)
dµq(y)

=

∫
Zp

q−y(1 + t)x+ydµq(y),

where t ∈ Cp with |t|p < p
− 1

p−1 .

For t ∈ Cp with |t|p < p
− 1

p−1 , from (3), we have

(12)

∫
Zp

q−y(1 + t)x+ydµq(y) =
q − 1

log q

log(1 + t)

t
(1 + t)x.

Let

(13) Fq(x, t) =
q − 1

log q

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x|q) t
n

n!
.

In here the polynomial Dn(x|q) is called modified nth q-Daehee polynomials of
the first kind. Moreover, we have

(14) Dn(x|q) =

∫
Zp

q−y(x+ y)ndµq(y).

When x = 0, Dn(0|q) = Dn(q) is called modified the n-th q-Daehee numbers.
Notice that Fq(x, t) seems to be a new q-extension of the generating function for

Daehee polynomials of the first kind. Therefore, from (8) and the following fact,

lim
q→1

Fq(x, t) =
log(1 + t)

t
(1 + t)x.

On the other hand, we can derive

(15)
∞∑
n=0

(∫
Zp

q−x(x)ndµq(x)

)
tn

n!
=
q − 1

log q

log(1 + t)

t
=
∞∑
n=0

Dn(q)
tn

n!
.

From (10) and (15), we have

(16)
q − 1

log q
Dn(x) = Dn(x|q).
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4 DONGKYU LIM

From (10) and (11), we have

(17)

Dn(x|q) =

∫
Zp

q−y(x+ y)ndµq(y)

=

n∑
k=0

S1(n, k)Bk(x|q).

Bk(x|q) are the modified q-Bernoulli polynomials introduced in (6).
Thus we have the following theorem, which relates modified q-Bernoulli polyno-

mials and modified q-Daehee polynomials.

Theorem 1. For n,m ∈ Z+, we have the following equalities.

Dn(x|q) =
n∑

k=0

S1(n, k)Bk(x|q)

and

Dn(q) =

n∑
k=0

S1(n, k)Bk(q).

From the generating function of modified q-Daehee polynomials in Dn(x|q) in
(13), by replacing t to et − 1, we have

(18)

∞∑
n=0

Dn(x|q)(et − 1)n

n!
=
∞∑
n=0

Bn(x|q) t
n

n!

=
∞∑

m=0

Dm(x|q)
∞∑
n=0

S2(n,m)
tn

n!
.

Thus by comparing the coefficients of tn, we have

Bn(x|q) =
n∑

m=0

Dm(x|q)S2(n,m).

In here, S2(n,m) is the Stirling number of the second kind defined by the following
generating series:

(19)
∞∑

n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
cf.[4, 11].

Therefore, we obtan the following theorem.

Theorem 2. For n,m ∈ Z+, we have the following identity.

Bn(x|q) =

n∑
m=0

Dm(x|q)S2(n,m).

The increasing factorial sequence is known as

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) (n ∈ Z+).

Let us define the modified q-Daehee numbers of the second kind as follows:

(20) D̂n(q) =

∫
Zp

q−y(−y)ndµq(y) (n ∈ Z+).
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MODIFIED q-DAEHEE NUMBERS AND POLYNOMIALS 5

It is easy to observe that

(21) x(n) = (−1)n(−x)n =
n∑

k=0

S1(n, k)(−1)n−kxk.

From (20) and (21), we have

(22)

D̂n(q) =

∫
Zp

q−y(−y)ndµq(y)

=

∫
Zp

q−yy(n)(−1)ndµq(y)

=
n∑

k=0

S1(n, k)(−1)kBk(q).

Thus, we state the following theorem.

Theorem 3. The following holds true:

D̂n(q) =

n∑
k=0

S1(n, k)(−1)kBk(q).

Let us now consider the generating function of the modified q-Daehee numbers of
the second kind as follows:

(23)

∞∑
n=0

D̂n(q)
tn

n!
=
∞∑
n=0

(∫
Zp

q−y(−y)ndµq(y)

)
tn

n!

=

∫
Zp

q−y
( ∞∑

n=0

(
−y
n

)
tn
)
dµq(y)

=

∫
Zp

q−y(1 + t)−ydµq(y).

From (23), we denote the generating function for the modified q-Daehee numbers
of the second as follows:

(24) F̂q(t) =
q − 1

log q

log(1 + t)

t
(1 + t).

Let us consider the modified q-Daehee polynomials of the second kind as follows:

(25)
q − 1

log q

log(1 + t)

t
(1 + t)x+1 =

∞∑
n=0

D̂n(x|q) t
n

n!
.

It follows from (25) that

(26)

∫
Zp

q−y(1 + t)x−ydµq(y) =

∞∑
n=0

D̂n(x|q) t
n

n!
.

From (26) gives

(27)

D̂n(x|q) =

∫
Zp

q−y(x− y)ndµq(y)

= q−1
n∑

k=0

|S1(n, k)|Bk(x+ 1|q−1),
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6 DONGKYU LIM

where n ≥ 0 and |S1(n, k)| is the unsigned stirling numbers of the first kind.
Then, by (27), we have the following theorem.

Theorem 4. For n ≥ 0, the following are true.

D̂n(x|q) = q−1
n∑

k=0

|S1(n, k)|Bk(x+ 1|q−1).

From the modified q-Bernoulli polynomials in (6),

(28)

q
∞∑
n=0

Bn(x|q−1) t
n

n!
=
q − 1

log q

t

et − 1
e(1−x)t

=

∞∑
n=0

Bn(1− x|q) t
n

n!
.

Thus, we have

(29) q(−1)nBn(x|q−1) = Bn(1− x|q).
From (29), the value at x = 1, we have

q(−1)nBn(1|q−1) = Bn(q).

On the other hand, we can check easily the following

(30) (x+ y)n = (−1)n(−x− y + n− 1)n

and

(31)
(x+ y)n

n!
= (−1)n

(
−x+ y + n− 1

n

)
.

From (13), (27), (30) and (31), we have

(32)

(−1)n
Dn(x|q)
n!

=

∫
Zp

q−y
(
−x− y + n− 1

n

)
dµq(y)

=
n∑

m=0

(
n− 1

n−m

)∫
Zp

q−y
(
−x− y
m

)
dµq(y)

=
n∑

m=1

(
n− 1

m− 1

)
D̂m(−x|q)

m!

and

(33)

(−1)n
D̂n(x|q)
n!

= (−1)n
∫
Zp

q−y
(
−x+ y

n

)
dµq(y)

=

∫
Zp

q−y
(
−x+ y + n− 1

n

)
dµq(y)

=

n∑
m=0

(
n− 1

n−m

)∫
Zp

q−y
(
−x+ y

m

)
dµq(y)

=
n∑

m=1

(
n− 1

m− 1

)
Dm(−x|q)

m!
.

Therefore, we get the following theorem, which relates modified q-Daehee poly-
nomials of the first and the second kind.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

329 DONGKYU LIM 324-330



MODIFIED q-DAEHEE NUMBERS AND POLYNOMIALS 7

Theorem 5. For n ∈ N, the following equlity hold true.

(−1)n
Dn(x|q)
n!

=
n∑

m=1

(
n− 1

m− 1

)
D̂m(−x|q)

m!

and

(−1)n
D̂n(x|q)
n!

=

n∑
m=1

(
n− 1

m− 1

)
Dm(−x|q)

m!
.
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This paper is concerned with a class of boundary value problems for the non-
linear mixed impulsive integro-differential equations with the derivative u

′
and

deviating arguments in Banach space by using the cone theory and upper and
lower solutions method together with monotone iterative technique. Sufficient
conditions are established for the existence of extremal solutions of the given
problem.

Keywords Integro-differential equations; cone; upper and lower solutions;
monotone iterative technique; Impulsive

Mathematics Subject Classifications (2000) 34B15, 34B37.

1 Introduction

Impulsive differential equations have become more important in recent years in
some mathematical models of real processes and phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics etc.
and there have appeared many papers (see [1-28]) and the references therein).
There has been a significant development in impulse theory. Especially, there
is an increasing interest in the study of nonlinear mixed integro-differential

∗Project supported by the scientific research of yunnan province department of educa-
tion(Grant No. 2013Y493), the NSF of Yunnan Province (Grant No.2013FD054) and the
NSF of Jiangxi Province (Grant No.20144BAB2020010). Email: wangxuhuan84@163.com;
idolmy@163.com.
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equations with deviating arguments and multipiont BVPS[7-14] for impulsive
differential equations.

In this article, we are concerned with the following BVPS for the nonlin-
ear mixed impulsive integro-differential equations with the derivative u

′
and

deviating arguments in Banach space E:
u′′(t) = f(t, u(t), u(α(t)), u′(t), Tu, Su) t 6= tk, t ∈ J = [0, 1]
∆u(tk) = Qku′(tk) k = 1, 2, · · · ,m
∆u′(tk) = Ik(u′(tk), u(tk)) k = 1, 2, · · · ,m
u(0) = λ1u(1) + k1 u′(0) = λ2u

′(1) + λ3

∫ 1

0
w(s, u(s))ds + µu′(η) + k2

(1.1)
where 0 = t0 < t1 < t2 < · · · < tk < · · · < tm < tm+1 = 1, f ∈ C(J ×

E5, E), Ik ∈ C(E × E,E), Qk ≥ 0, (Tu)(t) =
∫ β(t)

0

k(t, s)u(γ(s))ds, (Su)(t) =∫ 1

0

h(t, s)u(δ(s))ds, D = {(t, s) ∈ J2 | 0 ≤ s ≤ β(t)}, k ∈ C(D,R+), and h ∈

C(J2, R+), w ∈ (J×E,E), α, β, γ, δ ∈ C(J, J), ∆u(tk) = u(t+k )−u(t−k ),∆u′(tk) =
u′(t+k )− u′(t−k ), 0 ≤ η ≤ 1, 0 ≤ µ, 0 < λ1, λ2 < 1, 0 ≤ λ3, k1, k2 ∈ E.

The article is organized as follow. In section 2, we establish comparison prin-
ciples and lemmas. In Section 3, we prove the existence of the result of minimal
and maximal solutions for the first order impulsive differential equations, which
nonlinearly involve the operator A by using upper and lower solutions, i.e. The-
orem 3.1. In Section 4, we obtain the main results (Theorem4.1) by applying
Theorem 3.1, that is the existence of the theorem of minimal and maximal
solutions of (1.1).

2 Preliminaries and lemmas

Let PC(J,E) = {x : J → E;x(t) is continuous everywhere expect for some tk at
which x(t+k ) and x(t−k ) exist and x(tk) = x(t−k ), k = 1, 2, · · · ,m} ;PC1(J,E) =
{x ∈ PC(J,E) : x′(t) is continuous everywhere expect for some tk at which
x′(t+k ) and x′(t−k ) exist and x′(tk) = x′(t−k ), k = 1, 2, · · · ,m}. Evidently,PC(J,E)
and PC1(J,E) are Banach spaces with the norms ‖ x ‖PC= sup{|x(t)| : t ∈ J}
and ‖ x ‖PC1= max{‖ x ‖PC , ‖ x′ ‖PC}. Let J− = J\{tk, k = 1, 2, · · · ,m},
Ω = PC1(J,E) ∩ C2(J−, E).

If P is a normal cone in E, then Pc = {x ∈ PC(J,E) | x(t) ≥ θ,∀t ∈ J} is a
normal cone in PC(J,E), P ∗ = {f ∈ E∗ | f(x) ≥ 0,∀x ∈ P} denotes the dual
cone of P.

A function x ∈ Ω is called a solution of BVPS (1.1) if it satisfies Eq.(1.1).
In this paper, we always assume that E is a real Banach space and P is a regular
cone in E,and denote K0 = max{k(t, s), (t, s) ∈ D} and H0 = max{h(t, s), (t, s) ∈
J2}.

We consider the following first order impulsive differential equation in Ba-

2
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nach space E:
x′(t) = f(t, Ax(t), Ax(α(t)), x(t), TAx, SAx) t 6= tk, t ∈ J = [0, 1]
∆x(tk) = Ik(Ax(tk), x(tk)) k = 1, 2, · · · ,m
x(0) = λ2x(1) + λ3

∫ 1

0
w(s,Ax(s))ds + µx(η) + k2

(2.1)
where f, Ik, T, S, w,Qk, tk, λ2, λ3, µ, k2 are difined as (1.1) and

Ax(t) =
k1

1− λ1
+

∫ 1

0

G(t, s)x(s)ds +
m∑

k=1

G(t, tk)Qkx(tk)

with

G(t, s) =


1

1− λ1
, 0 ≤ s ≤ t ≤ 1

λ1

1− λ1
, 0 ≤ t ≤ s ≤ 1

Lemma 2.1 Suppose x ∈ PC(J,E) ∩ C1(J−, E) satisfies x′(t) + Mx(t) + M1Bx + M2Bx(α(t)) + M3TBx + M4SBx ≤ 0 t 6= tk, t ∈ J = [0, 1]
∆x(tk) ≤ −LkBx(tk) k = 1, 2, · · · ,m
x(0) ≤ λ2x(1)

(2.2)
where

Bx(t) =
∫ 1

0

G(t, s)x(s)ds +
m∑

k=1

G(t, tk)Qkx(tk)

0 < λ1, λ2 < 1, Lk ≥ 0 and constants M,Mi(i = 1, 2, 3, 4) satisfy

M > 0, Mi ≥ 0, M+(M1+M2+M3K0+M4H0+
m∑

k=1

Lk)(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
) ≤ λ2.

(2.3)
then x(t) ≤ θ for t ∈ J .(θ denotes the zero elment of E )
Proof. For any given g ∈ P ∗, let y(t) = g(x(t)), then y ∈ PC(J,R)∩C1(J−, R)
and y′(t) = g(x′(t)).
In view of (2.2), we get y′(t) + My(t) + M1By + M2By(α(t)) + M3TBy + M4SBy ≤ 0 t 6= tk, t ∈ J = [0, 1]

∆y(tk) ≤ −LkBy(tk) k = 1, 2, · · · ,m
y(0) ≤ λ2y(1)

(2.4)
We will show that y(t) ≤ 0, t ∈ J.

(i)Suppose to contrary that y(t) ≥ 0, y(t) 6≡ 0 for t ∈ J,
In view of the first inequality of (2.4),we get y′(t) ≤ 0. And by the second one in
(2.4),we obtain that y(t) is decreasing in J. Then 0 ≤ y(1) ≤ y(t) ≤ y(0). By the
third inequality of(2.4), we have y(1) > 0 and λ2 ≥ 1, which is contradiction.

3
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(ii) Suppose there are t, t ∈ J such that y(t) > 0 and y(t) < 0.
Let y(t∗) = min

t∈J
y(t) = −λ, then λ > 0.By (2.4),we get

y′(t) ≤ {M + (M1 + M2)(
∫ 1

0
G(t, s)ds +

∑m
k=1 G(t, tk)Qk)

+M3(
∫ β(t)

0
K(t, s)[

∫ 1

0
G(s, r)dr +

∑m
k=1 G(s, tk)Qk]ds)

+M4(
∫ 1

0
H(t, s)[

∫ 1

0
G(s, r)dr +

∑m
k=1 G(s, tk)Qk]ds)}λ

≤ {M + (M1 + M2)(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

+M3K0(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
) + M4H0(

1
1− λ1

+
m∑

k=1

Qk

1− λ1
)}λ

≤ [M + (M1 + M2 + M3K0 + M4H0)(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λ t 6= tk

∆y(tk) ≤ −LkBy(tk)) ≤ λLk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
) k = 1, 2, · · · ,m

Case 1 If t∗ ∈ [0, t), integrating from t∗ to t,we get

0 < y(t) = y(t∗) +
∫ t

t∗

y′(s)ds +
∑

t∗≤tk<t

∆y(tk)

≤ −λ + [M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λ−

∑
t∗≤tk<t

LkBy(tk)

≤ −λ + [M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λ + λ

m∑
k=1

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

Hence

1 < [M+(M1+M2+M3K0+M4H0)(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]+

m∑
k=1

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

It is contradiction to (2.3).
Case 2 If t∗ ∈ [t, 1], we have

0 < y(t) = y(0) +
∫ t

0

y′(s)ds +
∑

0<tk<t

∆y(tk)

≤ y(0) +
∫ t

0

[M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λds + λ

∑
0<tk<t

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

4
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y(1) = u(t∗) +
∫ 1

t∗

y′(s)ds +
∑

t∗≤tk<1

∆y(tk)

≤ −λ +
∫ 1

t∗

[M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λds + λ

∑
t∗≤tk<1

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

Hence

−λ +
1
λ2

∫ 1

t∗

[M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λds +

1
λ2

λ
∑

t∗≤tk<1

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

> −λ +
∫ 1

t∗

[M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λds + λ

∑
t∗≤tk<1

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

≥ y(1) ≥ 1
λ2

y(0)

> − 1
λ2

∫ t

0

y′(s)ds− 1
λ2

∑
0<tk<t

∆y(tk)

≥ − 1
λ2

∫ t

0

[M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]λds− 1

λ2
λ

∑
0<tk<t

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)

≥ − 1
λ2

λ

∫ t∗

0

([M + (M1 + M2 + M3K0 + M4H0)

(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
)]ds− 1

λ2
λ

∑
0<tk<t∗

Lk(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
).

We obtain that M +(M1+M2+M3K0+M4H0+
m∑

k=1

Lk)(
1

1− λ1
+

m∑
k=1

Qk

1− λ1
) >

λ2 which is contradiction.
Since g ∈ P ∗ is arbitrary, we have x(t) ≤ θ, ∀t ∈ J.
We complete the proof.

Lemma 2.2 Assume that (2.3) is satisfied.Let ek, a ∈ E, σ ∈ PC(J,E).
Then the linear problem x′(t) = −Mx(t)−M1Ax−M2Ax(α(t))−M3TAx−M4SAx + σ(t) t 6= tk, t ∈ J = [0, 1]

∆x(tk) = −LkAx(tk) + ek k = 1, 2, · · · ,m
x(0) = λ2x(1) + a

(2.5)

5
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has a unique solution x ∈ PC1(J,E) if and only if x ∈ PC(J,E) is a solution
of the integral equation:

x(t) = aDe−Mt +
∫ 1

0
H(t, s)(σ(s)−M1Ax(s)−M2Ax(α(s))

−M3TAx(s)−M4SAx(s))ds +
m∑

k=1

H(t, tk)(−LkAx(tk) + ek),

(2.6)
where D = (1− λ2e

−M )−1,

H(t, s) =

 De−M(t−s), 0 ≤ s ≤ t ≤ 1,

Dλ2e
−M(1+t−s), 0 ≤ t ≤ s ≤ 1.

(2.7)

Proof. First, differentiating (2.6), we have

x′(t) = (aDe−Mt +
∫ 1

0
H(t, s)(σ(s)−M1Ax(s)−M2Ax(α(s))

−M3TAx(s)−M4SAx(s))ds +
m∑

k=1

H(t, tk)(−LkAx(tk) + ek))′

= −M(t)[aDe−Mt +
∫ 1

0
H(t, s)(σ(s)−M1Ax(s)

−M2Ax(α(s))−M3TAx(s)−M4SAx(s))ds

+
m∑

k=1

H(t, tk)(−LkAx(tk) + ek)]−M1Ax

−M2Ax(α(t))−M3TAx−M4SAx + σ(t)
= −M(t)x(t)−M1Ax(t)−M2Ax(α(t))−M3TAx(t)−M4SAx(t) + σ(t)

∆x(tk) = x(t+k )− x(t−k )
=

∑
0<tj<tk

∆x(tj)−
∑

0<tj<t−
k

∆x(tj)

=
k∑

j=1

(−LjAx(tj) + ej)−
k−1∑
j=1

(−LjAx(tj) + ej)

= −LkAx(tk) + ek.

Also

x(0) = λ2D
∫ 1

0
e−M(1−s)(σ(s)−M1Ax(s)−M2Ax(α(s))

−M3TAx(s)−M4SAx(s))ds + λ2D
∑m

k=1 e−M(1−tk)∆x(tk) + aD

x(1) = D
∫ 1

0
e−M(1−s)(σ(s)−M1Ax(s)−M2Ax(α(s))

−M3TAx(s)−M4SAx(s))ds + e−MaD
∑m

k=1 e−M(1−tk)∆x(tk) + aD.

It is easy to check that x(0) = λ2x(1) + a.
Hence, we know that (2.6) is a solution of (2.5).
Next we show that the solution of (2.5) is unique. Let x1, x2 are the solutions
of (2.5) and set p = x1 − x2, we get

p′ = x′1 − x′2
= −Mx1(t)−M1Ax1 −M2Ax1(α(t))−M3TAx1 −M4SAx1 + σ(t)

−(−Mx2(t)−M1Ax2 −M2Ax2(α(t))−M3TAx2 −M4SAx2 + σ(t))
= −Mp−M1Ap−M2Ap(α(t))−M3TAp−M4SAp,

6
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∆p(tk) = ∆x1 −∆x2

= −LkAx1(tk) + ek − (−LkAx2(tk) + ek)
= −LkAp(tk),

p(0) = x1(0)− x2(0)
= λ2x1(T ) + a− (λ2x2(1) + a)
= λ2p(1).

In view of Lemma 2.1, we get p ≤ θ which implies x1 ≤ x2. Similarly, we have
x1 ≥ x2. Hence x1 = x2. The proof is complete.

3 Results for first order impulsive differential
equation

For convenience, let us list the following conditions:
(H1) There exit x0, y0 ∈ PC1(J,E) satisfying

x′0(t) ≤ f(t, Ax0(t), Ax0(α(t)), x0(t), TAx0, SAx0) t 6= tk, t ∈ J = [0, 1]
∆x0(tk) ≤ Ik(Ax0(tk), x0(tk)) k = 1, 2, · · · ,m
x0(0) ≤ λ2x0(1) + λ3

∫ 1

0
w(s,Ax0(s))ds + µx0(η) + k2

y′0(t) ≥ f(t, Ay0(t), Ay0(α(t)), y0(t), TAy0, SAy0) t 6= tk, t ∈ J = [0, 1]
∆y0(tk) ≥ Ik(Ay0(tk), y0(tk)) k = 1, 2, · · · ,m
y0(0) ≥ λ2y0(T ) + λ3

∫ 1

0
w(s,Ay0(s))ds + µy0(η) + k2

(3.1)
(H2)

f(t, x, y, z, u, v)− f(t, x, y, z, u, v)
≥ −M1(x− x)−M2(y − y)−M(z − z)−M3(u− u)−M4(v − v) (3.2)

Ik(x, z)− Ik(x, z) ≥ −Lk(x− x) (3.3)

Where Ax0 ≤ x ≤ x ≤ Ay0, Ax0(α(t)) ≤ y ≤ y ≤ Ay0(α(t)), x0 ≤ z ≤ z ≤ y0,
TAx0 ≤ u ≤ u ≤ TAy0, SAx0 ≤ v ≤ v ≤ SAy0, ∀t ∈ J.
(H3) Constants Lk,M,Mi, i = 1, 2, 3, 4 satisfy (2.3).
(H4) Assume that a(t) is non-negative integral function, such that

w(t, Au)− w(t, Au) ≥ a(t)(Au−Au) (3.4)

Where x0 ≤ u ≤ u ≤ y0.
If x0, y0 ∈ PC1(J,E) and x0 ≤ y0, t ∈ J ,then the interval [x0, y0] denotes the
set

{x ∈ PC1(J,E) : x0(t) ≤ x(t) ≤ y0(t), t ∈ J}
Theorem 3.1 Assume the hypotheses (H1) − (H4) hold. Then Eq.(2.1) has
the extremal solutions x∗(t), y∗(t) ∈ [x0, y0]. Moreover there exist two iterative
sequences {xn} and {yn} satisfying

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0 (3.5)

7
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such that {xn},{yn} uniformly converge in PC(J,E)
⋂

C1(J−, E) to x∗, y∗, re-
spectively.
Proof. For z ∈ [x0, y0], considering (2.5) with
σ(t) = f(t, Az(t), Az(α(t)), z, TAz, SAz)+M(t)z(t)+M1Az(t)+M2Az(α(t))+
M3TAz + M4SAz,
ek = Ik(Az(tk), z(tk)) + LkAz(tk),
a = λ3

∫ T

0
w(s,Az(s)) + µz(η)ds + k2.

By Lemma 2.2, the BVPS has a unique solution z ∈ [x0, y0] .
We define an operator ϕ by x = ϕz, then ϕ is an operator from [x0, y0] to
PC(J,E).
We claim that
(a) x0 ≤ ϕx0 , ϕy0 ≤ y0,
(b) ϕ is nondecreasing on [x0, y0].
We prove (a), let x1 = ϕx0, p(t) = x0(t)− x1(t)

p′ = x′0 − x′1
≤ f(t, Ax0(t), Ax0(α(t)), x0(t), TAx0, SAx0)− [f(t, Ax0(t), Ax0(α(t)), x0(t), TAx0, SAx0)

+M(x0(t)− x1(t)) + M1(Ax0(t)−Ax1(t)) + M2(Ax0(α(t))−Ax1(α(t)))
+M3(TAx0 − TAx1) + M4(SAx0 − SAx1)]

= −Mp(t)−M1Ap−M2Ap(α(t))−M3TAp−M4SAp,

∆p(tk) = ∆x0(tk)−∆x1(tk)
≤ Ik(Ax0(tk), x0(tk))− [Ik(Ax0(tk), x0(tk))− Lk(Ax1 −Ax0)]
= −LkAp(tk),

p(0) = x0(0)− x1(0)
≤ λ2x0(1) + µu0(η) + λ3

∫ 1

0
w(s,Ax0(s))ds + k2

−(λ2u1(1) + µu0(η) + λ3

∫ 1

0
w(s,Ax0(s))ds + k2)

= λ1p(1).

By Lemma 2.1, we have p ≤ θ. That is x0 ≤ ϕx0. Similarly, we can prove
ϕy0 ≤ y0.
To prove (b), let x1 = ϕx0, y1 = ϕy0, p = x1 − y1, then

p′(t) = x′1 − y′1
= f(t, Ax0(t), Ax0(α(t)), x0(t), TAx0, SAx0) + M(x0(t)− x1(t))

+M1(Ax0(t)−Ax1(t)) + M2(Ax0(α(t))−Ax1(α(t)))
+M3(TAx0 − TAx1) + M4(SAx0 − SAx1)
−[f(t, Ay0(t), Ay0(α(t)), y0(t), TAy0, SAy0)
+M(y0(t)− y1(t)) + M1(Ay0(t)−Ay1(t))
+M2(Ay0(α(t))−Ay1(α(t))) + M3(TAy0 − TAy1) + M4(SAy0 − SAy1)]

≤ −Mp(t)−M1Ap−M2Ap(α(t))−M3TAp−M4SAp,

∆p(tk) = ∆x1(tk)−∆y1(tk)
= −LkAx1 + Ik(Ax0(tk), x0(tk)) + LkAx0

−(−LkAy1 + Ik(Ay0(tk), y0(tk)) + LkAy0)
≤ −Lk(Ax0 −Ay0) + LkAx0 − LkAy0 − LkAp
≤ −LkAp(tk),

8
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p(0) = x1(0)− y1(0)
≤ λ2x1(1) + µx0(η) + λ3

∫ 1

0
w(s,Ax0(s))ds + k2

−(λ2y1(1) + µy0(η) + λ3

∫ 1

0
w(s,Ay0(s))ds + k2)

= λ2p(1) + µ(x0(η)− y0(η)) + λ3

∫ 1

0
a(s)(Ax0(s)−Ay0(s))ds

≤ λ1p(1).

In view of Lemma 2.1 , we know ϕx0 ≤ ϕy0. Hence (b) holds.
We define two sequences {xn}, {yn}

xn+1 = ϕxn, yn+1 = ϕyn, (n = 0, 1, 2, · · ·)

By (a) and (b), we know that (3.5) holds.
And each xn, yn satisfies

x′n(t) = f(t, Axn−1(t), Axn−1(α(t)), xn−1(t), TAxn−1, SAxn−1)
+M(xn−1(t)− x1(t)) + M1(Axn−1(t)−Axn(t)) + M2(Axn−1(α(t))−Axn(α(t)))
+M3(TAxn−1 − TAxn) + M4(SAxn−1 − SAxn) t 6= tk, t ∈ J = [0, 1]
∆xn(tk) = −LkAxn(tk) + Ik(Axn−1(tk), xn−1(tk)) + LkAxn−1(tk) k = 1, 2, · · · ,m
xn(0) = λ2xn(1) + λ3

∫ 1

0
w(s,Axn−1(s))ds + µxn−1(η) + k2

(3.6)
y′n(t) = f(t, Ayn−1(t), Ayn−1(α(t)), yn−1(t), TAyn−1, SAyn−1)
+M(yn−1(t)− y1(t)) + M1(Ayn−1(t)−Ayn(t)) + M2(Ayn−1(α(t))−Ayn(α(t)))
+M3(TAyn−1 − TAyn) + M4(SAyn−1 − SAyn) t 6= tk, t ∈ J = [0, 1]
∆yn(tk) = −LkAyn(tk) + Ik(Ayn−1(tk), yn−1(tk)) + LkAyn−1(tk) k = 1, 2, · · · ,m
yn(0) = λ2yn(1) + λ3

∫ 1

0
w(s,Ayn−1(s))ds + µyn−1(η) + k2.

(3.7)
By virtue of the regularity of the cone P, we obtain that there exist x∗, y∗ ∈
[x0, y0] such that

lim
n−→∞

xn(t) = x∗(t) lim
n−→∞

yn(t) = y∗(t) (3.8)

and {xn|n = 1, 2, · · ·} is a bounded subset in PC(J,E).
Let X = {xn|n = 1, 2, · · ·}, X(t) = {xn(t)|n = 1, 2, · · ·} t ∈ J, in view of (3.8)
we get

α(X(t)) = 0 t ∈ J

which implies that X(t) is relatively compact for t ∈ J.
For any z ∈ [x0, y0], by (H1) (H2) we have

x′0(t) + Mx0(t) + M1Ax0(t) + M2Ax0(α(t)) + M3TAx0 + M4SAx0

≤ f(t, Ax0(t), Ax0(α(t)), x0(t), TAx0, SAx0) + Mx0(t)
+M1Ax0(t) + M2Ax0(α(t)) + M3TAx0 + M4SAx0

≤ f(t, Az0(t), Az0(α(t)), z0(t), TAz0, SAz0) + Mz0(t)
+M1Az0(t) + M2Az0(α(t)) + M3TAz0 + M4SAz0

≤ f(t, Ay0(t), Ay0(α(t)), y0(t), TAy0, SAy0) + My0(t)
+M1Ay0(t) + M2Ay0(α(t)) + M3TAy0 + M4SAy0

≤ y′0(t) + My0(t) + M1Ay0(t) + M2Ay0(α(t)) + M3TAy0 + M4SAy0.

9
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In view of the normality of the cone Pc, we get that there exists a constant
C > 0, such that

‖ f(t, Az0(t), Az0(α(t)), z0(t), TAz0, SAz0) + Mz0(t)
+M1Az0(t) + M2Az0(α(t)) + M3TAz0 + M4SAz0 ‖≤ C,

∀z ∈ [x0, y0], t ∈ J. From (3.5) (3.6), it is obviously to show that {x′n|n =
1, 2, · · ·} is a bounded subset in PC(J,E). It follows in view of the mean value
theorem that X is equicontinuous on Jk, k = 0, 1, 2, · · · ,m. So we obtain by
virtue of Ascoli-Arzela’s theorem and α(X(t)) = 0 that α(X) = supt∈J α(X(t)) =
0 which implies X is relatively compact in PC(J,E) and so there exists a se-
quence of {xn(t)} which converges uniformly on J to x∗(t). Since {xn|n =
1, 2, · · ·} is nondecreasing and the cone Pc is normal, we get that {xn|n =
1, 2, · · ·} itself converges uniformly on J to x∗(t), which implies x∗ ∈ PC(J,E).
By the lemma 2.2 and (3.6), we see that x∗ satisfies (2.1).

Similarly, we also can prove that yn converges uniformly on J to y∗(t), and
y∗ satisfies (2.1).

Finally, we assert that if z ∈ [x0, y0] is any solution of Eq.(2.1),then x∗(t) ≤
z(t) ≤ y∗(t) on J. We will prove that if xn ≤ z ≤ yn, for n = 0, 1, 2, · · · , then
xn+1(t) ≤ z(t) ≤ yn+1(t).

Letting p(t) = xn+1(t)− z(t), then p′(t) ≤ −Mp(t)−M1Ap−M2Ap(α(t))−M3TAp−M4SAp ≤ 0 t 6= tk, t ∈ J = [0, 1]
∆p(tk) ≤ −LkAp(tk) k = 1, 2, · · · ,m
p(0) ≤ λ2p(1)

By Lemma 2.1 , we have p(t) ≤ θ for all t ∈ J, that is xn+1(t) ≤ z(t). Simi-
larly , we can prove z(t) ≤ yn+1(t). for all t ∈ J. Thus xn+1(t) ≤ z(t) ≤ yn+1(t)
for all t ∈ J, which implies x∗(t) ≤ z(t) ≤ y∗(t).
The proof is complete.
Remark In (2.1), if w(s,Ax(s)) = a(s)Ax(s), where a(t) is non-negative in-
tegral function ,then (H4) is not required in Theorem 3.1, and we have the
following theorem.
Theorem 3.2 Suppose that conditions (H1)− (H3)are satisfied. In additional
that x0, y0 ∈ PC1(J,E) be such that x0 ≤ y0. Then the conclusion of Theorem
3.1 holds.
The proof is almost similar to theorem 3.1, so we omit it.

4 Results for second order impulsive differential
equation

In this section, we prove the existence theorem of maximal and minimal solutions
of (1.1) by applying Theorem 3.1 in Section 3.

Let us list other conditions for convenience.

10
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(G1) There exists u0, v0 ∈ Ω, satisfying u0(t) ≤ v0(t), u′0(t) ≤ v′0(t),
u′′0(t) ≤ f(t, u0(t), u0(α(t)), u0(t), Tu0, Su0) t 6= tk, t ∈ J = [0, 1]
∆u0(tk) = Qku′0(tk)
∆u′0(tk) ≤ Ik(u0(tk), u′0(tk)) k = 1, 2, · · · ,m
u0(0) = λ1u0(1) + k1

u′0(0) ≤ λ2u
′
0(1) + λ3

∫ 1

0
w(s, u0(s))ds + µu′0(η) + k2

(4.1)

and v0 satisfies inverse inequalities of (4.1)
(G2)

f(t, x, y, z, u, SAv)− f(t, x, y, z, u, v)
≥ −M1(x− x)−M2(y − y)−M(z − z)−M3(u− u)−M4(v − v) (4.2)

Ik(x, z)− Ik(x, z) ≥ −Lk(x− x) (4.3)

Where u0 ≤ x ≤ x ≤ v0, u0(α(t)) ≤ y ≤ y ≤ v0(α(t)), u′0 ≤ z ≤ z ≤ v′0,
Tu0 ≤ u ≤ u ≤ Tv0, Su0 ≤ v ≤ v ≤ Sv0, ∀t ∈ J.
(G3) Constants Lk,M,Mi, i = 1, 2, 3, 4 satisfy (2.3).
(G4) Assume that a(t) is non-negative integral function, such that

w(t, u)− w(t, u) ≥ a(t)(u− u) (4.4)

Where u0 ≤ u ≤ u ≤ v0.
Let Λ = {z ∈ [x0, y0]

⋂
PC1(J,E) | u′0(t) ≤ z′(t) ≤ v′0(t)}.

Theorem 4.1 Assume the conditions (G1)− (G4) hold.Then Eq.(1.1) has min-
imal and maximal solutions u∗, v∗ ∈ Ω in Λ.
Proof. In Eq.(1.1),let u′(t) = x(t). Then (1.1) is equivalent to the following
system: 

u′(t) = x(t)
x′(t) = f(t, u, u(α), x, Tu(t), Su(t))
∆u(tk) = Qkx(tk)
∆x(tk) = Ik(x(tk), u(tk))
u(0) = λ1u(1) + k1

x(0) = λ2x(1) + λ3

∫ 1

0
w(s, u(s))ds + µx(η) + k2

(4.5)

For x ∈ PC(J,E), the system u′(t) = x(t)
∆u(tk) = Qkx(tk)
u(0) = λ1u(1) + k1

(4.6)

has a unique solution x ∈ PC(J,E)
⋂

C1(J−, E), which satisfies

u(t) =
k1

1− λ1
+

∫ 1

0

G(t, s)x(s)ds +
m∑

k=1

G(t, tk)Qkx(tk) (4.7)

11
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It is easy to prove, so we omit it .
Define an operator A by u = Ax(t), t ∈ J. It is easy to show that
A : PC(J,E)

⋂
C1(J−, E) −→ Ω is continuous and nondecreasing .

Hence, from (4.5)-(4.7), Eq.(1.1) is transformed into first order boundary value
problem (2.1).

Let x0 = u′0, y0 = v′0, by (G1) we have x0 ≤ y0 and

u0(t) =
k1

1− λ1
+

∫ 1

0

G(t, s)x0(s)ds +
m∑

k=1

G(t, tk)Qkx0(tk) (4.8)

v0(t) =
k1

1− λ1
+

∫ 1

0

G(t, s)y0(s)ds +
m∑

k=1

G(t, tk)Qky0(tk) (4.9)

which imply that u0 = Ax0, v0 = Ay0, and x0, y0 satisfies (H1).
By the condition (G2) (G4) it is easy to see that (H2) (H4) hold .
Therefore, it follows from Theorem 3.1 that (2.1) has minimal and maximal
solutions x∗, y∗ ∈ PC(J,E)

⋂
C1(J−, E) in [x0, y0].

Let u∗ = Ax∗, v∗ = Ay∗, then u∗, v∗ ∈ Ω and

u∗(t) =
k1

1− λ1
+

∫ 1

0

G(t, s)x∗(s)ds +
m∑

k=1

G(t, tk)Qkx∗(tk) (4.10)

In view of (4.10), we have  u∗
′
(t) = x∗(t)

∆u∗(tk) = Qkx∗(tk)
u∗(0) = λ1u

∗(1) + k1

(4.11)

The fact that x∗ satisfies (2.1) and u∗ satisfies (4.11) implies u∗ is a solution of
(1.1). Similarly, we can prove v∗ is a solution of (1.1).
It is easy to show that u∗, v∗ ∈ Ω are minimal and maximal solutions for (1.1)
in Λ. We complete the proof.
Remark In (1.1), if w(s, x(s)) = a(s)x(s), where a(t) is non-negative integral
function, then (H4) is not required in Theorem 4.1, and we have the following
theorem.
Theorem 4.2 Suppose that conditions (G1) − (G3)are satisfied. Then the
conclusion of Theorem 4.1 holds.
The proof is almost similar to theorem 4.1, so we omit it.
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DISTRIBUTION AND SURVIVAL FUNCTIONS WITH
APPLICATIONS IN INTUITIONISTIC RANDOM LIE C∗-ALGEBRAS

AFRAH A. N. ABDOU, YEOL JE CHO*, AND REZA SAADATI

Abstract. In this paper, first, we consider the distribution and survival functions and
we define intuitionistic random Lie C∗-algebras. As an application, using the fixed point
method, we approximate the derivations on intuitionistic random Lie C∗-algebras for the
the following additive functional equation

m∑
i=1

f
(
mxi +

m∑
j=1, j ̸=i

xj

)
+ f

( m∑
i=1

xi

)
= 2f

( m∑
i=1

mxi

)
for all m ∈ N with m ≥ 2.

1. Introduction

Distribution and survival functions are important in probability theory. In this pa-
per, we use these functions to define intuitionistic random Lie C∗-algebras and find an
approximation of an m-variable functional equation.

2. Preliminaries

Now, we give some definitions and lemmas for our main results in this paper.

Definition 2.1. A function µ : R → [0, 1] is called a distribution function if it is left
continuous on R, non-decreasing and

inf
t∈R

µ(t) = 0, sup
t∈R

µ(t) = 1.

We denote by D the family of all measure distribution functions and by H a special
element of D defined by

H(t) =

{
0, if t ≤ 0,

1, if t > 0.

Forward, µ(x) is denoted by µx.

Definition 2.2. A function ν : R → [0, 1] is called a survival function if it is right
continuous on R, non-increasing and

inf
t∈R

ν(t) = 0, sup
t∈R

ν(t) = 1.

2010 Mathematics Subject Classification. Primary 39A10, 39B52, 39B72, 46L05, 47H10, 46B03.
Key words and phrases. intuitionistic random normed spaces, additive functional equation, fixed point,

derivations, random C∗-algebras, random Lie C∗-algebras, approximation.
*The corresponding author.
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2 AFRAH A. N. ABDOU, YEOL JE CHO, AND REZA SAADATI

We denote by B the family of all survival functions and by G a special element of B
defined by

G(t) =

{
1, if t ≤ 0,

0, if t > 0.

Forward, ν(x) is denoted by νx.

Lemma 2.3. ([1]) Consider the set L∗ and the operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1, x2 ≥ y2

for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

We denote the bottom and the top elements of lattices by 0L∗ = (0, 1) and 1L∗ = (1, 0).
Classically, the triangular norm ∗ = T on [0, 1] is defined as an increasing, commutative
and associative mapping T : [0, 1]2 −→ [0, 1] satisfying

T (1, x) = 1 ∗ x = x

for all x ∈ [0, 1]. The triangular conorm S = ⋄ is defined as an increasing, commutative,
associative mapping S : [0, 1]2 −→ [0, 1] satisfying S(0, x) = 0 ⋄ x = x for all x ∈ [0, 1].

Using the lattice (L∗,≤L∗), these definitions can be straightforwardly extended.

Definition 2.4. ([1]) A triangular norm (t–norm) on L∗ is a mapping T : (L∗)2 −→ L∗

satisfying the following conditions:
(1) for all x ∈ L∗, T (x, 1L∗) = x (: boundary condition);
(2) for all (x, y) ∈ (L∗)2, T (x, y) = T (y, x) (: commutativity);
(3) for all (x, y, z) ∈ (L∗)3, T (x, T (y, z)) = T (T (x, y), z) (: associativity);
(4) for all (x, x′, y, y′) ∈ (L∗)4, x ≤L∗ x′ and y ≤L∗ y′ =⇒ T (x, y) ≤L∗ T (x′, y′) (:

monotonicity).

In this paper, (L∗,≤L∗ , T ) has an Abelian topological monoid with the top element 1L∗

and so T is a continuous t–norm.

Definition 2.5. A continuous t–norm T on L∗ is said to be continuous representable
t-norm if there exist a continuous t–norm ∗ and a continuous t–conorm ⋄ on [0, 1] such
that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2 ⋄ y2).

For example,

T (a, b) = (a1b1,min{a2 + b2, 1})
and

M(a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2), b = (b1, b2) ∈ L∗ are the continuous representable t-norm.

Definition 2.6. (1) A negator on L∗ is any decreasing mapping N : L∗ −→ L∗ satisfying
N (0L∗) = 1L∗ and N (1L∗) = 0L∗ .

(2) If N (N (x)) = x for all x ∈ L∗, then N is called an involutive negator.
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(3) A negator on [0, 1] is a decreasing mapping N : [0, 1] −→ [0, 1] satisfying N(0) = 1
and N(1) = 0, where Ns denotes the standard negator on [0, 1] defined by

Ns(x) = 1− x

for all x ∈ [0, 1].

Definition 2.7. Let µ and ν be a distribution function and a survival function from
X × (0,+∞) to [0, 1] such that µx(t) + νx(t) ≤ 1 for all x ∈ X and t > 0. The 3-
tuple (X,Pµ,ν , T ) is said to be an intuitionistic random normed space (briefly, IRN-space)
if X is a vector space, T is a continuous representable t-norm and Pµ,ν is a mapping
X × (0,+∞)→ L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(1) Pµ,ν(x, 0) = 0L∗ ;
(2) Pµ,ν(x, t) = 1L∗ if and only if x = 0;
(3) Pµ,ν(αx, t) = Pµ,ν(x,

t
α
) for all α ̸= 0;

(4) Pµ,ν(x+ y, t+ s) ≥L∗ T (Pµ,ν(x, t),Pµ,ν(y, s)).

In this case, Pµ,ν is called an intuitionistic random norm, where

Pµ,ν(x, t) = (µx(t), νx(t)).

Note that, if (X,Pµ,ν , T ) is an IRN-space and define Pµ,ν(x−y, t) =Mµ,ν(x, y, t), then

(X,Mµ,ν , T )

is an intuitionistic Menger spaces.

Example 2.8. Let (X, ∥ · ∥) be a normed space. Let T (a, b) = (a1b1,min{a2 + b2, 1})
for all a = (a1, a2), b = (b1, b2) ∈ L∗ and µ, ν be a distribution function and a survival
function defined by

Pµ,ν(x, t) = (µx(t), νx(t)) =
( t

t+ ∥x∥
,
∥x∥

t+ ∥x∥

)
for all t ∈ R+. Then (X,Pµ,ν , T ) is an IRN-space.

Definition 2.9. (1) A sequence {xn} in an IRN-space (X,Pµ,ν , T ) is called a Cauchy
sequence if, for any ε > 0 and t > 0, there exists n0 ∈ N such that

Pµ,ν(xn − xm, t) >L∗ (Ns(ε), ε)

for all n,m ≥ n0, where Ns is the standard negator.
(2) A sequence {xn} in an IRN-space (X,Pµ,ν , T ) is said to be convergent to a point

x ∈ X (denoted by xn
Pµ,ν−→ x) if Pµ,ν(xn − x, t) −→ 1L∗ as n −→∞ for all t > 0.

(3) An IRN-space (X,Pµ,ν , T ) is said to be complete if every Cauchy sequence in X is
convergent to a point x ∈ X.

Definition 2.10. A intuitionistic random normed algebra (X,Pµ,ν , T , T ′) is a IRN-space
(X,Pµ,ν , T ) with algebraic structure such that

(4) Pµ,ν(xy, ts) ≥ T ′(Pµ,ν(x, t),Pµ,ν(y, s)) for all x, y ∈ X and t, s > 0, in which T ′ is
a continuous representable t-norm.
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Every normed algebra (X, ∥ ·∥) defines a random normed algebra (X,µ, TM , TP ), where

Pµ,ν(x, t) =
( t

t+ ∥x∥
,
∥x∥

t+ ∥x∥

)
for all t > 0 if and only if

∥xy∥ ≤ ∥x∥∥y∥+ s∥y∥+ t∥x∥

for all x, y ∈ X and t, s > 0. This space is called the induced random normed algebra (see
[6]). For more properties and example of theory of random normed spaces, we refer to
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Definition 2.11. Let (U ,Pµ,ν , T , T ′) be an intuitionistic random Banach algebra. An
involution on U is a mapping u→ u∗ from U into U satisfying the following conditions:

(1) u∗∗ = u for all u ∈ U ;
(2) (αu+ βv)∗ = αu∗ + βv∗ for all u, v ∈ U and α, β ∈ C;
(3) (uv)∗ = v∗u∗ for all u, v ∈ U .
If, in addition, νu∗u(ts) = T ′(νu(t), νu(s)) for all u ∈ U and t, s > 0, then U is an

intuitionistic random C∗–algebra.

Now, we recall a fundamental result in fixed point theory.

Let Ω be a set. A function d : Ω× Ω→ [0,∞] is called a generalized metric on Ω if d
satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ Ω;
(2) d(x, y) = d(y, x) for all x, y ∈ Ω;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Ω.

Theorem 2.12. ([2]) Let (Ω, d) be a complete generalized metric space and let J : Ω→ Ω
be a contractive mapping with Lipschitz constant L < 1. Then, for each given element
x ∈ Ω, either d(Jnx, Jn+1x) =∞ for all nonnegative integers n or there exists a positive
integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Γ = {y ∈ Ω | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Γ.

In this paper, using the fixed point method, we approximate the derivations on intu-
itionistic random Lie C∗-algebras for the the following additive functional equation

m∑
i=1

f
(
mxi +

m∑
j=1, j ̸=i

xj

)
+ f
( m∑

i=1

xi

)
= 2f

( m∑
i=1

mxi

)
(2.1)

for all m ∈ N with m ≥ 2.

3. Approximation of derivations in intuitionistic random Lie C∗-algebras

In this section, we approximate the derivations on intuitionistic random Lie C∗-algebras
(see also [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44]).
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For any mapping f : A→ A, we define

Dωf(x1, · · · , xm) :=
m∑
i=1

µf
(
mxi +

m∑
j=1, j ̸=i

xj

)
+ f
(
µ

m∑
i=1

xi

)
− 2f

(
µ

m∑
i=1

mxi

)
for all ω ∈ T1 := {ξ ∈ C : |ξ| = 1} and x1, · · · , xm ∈ A.

Note that a C-linear mapping δ : A→ A is called a derivation on intuitionistic random
C∗-algebras if δ satisfies δ(xy) = yδ(x) + xδ(y) and δ(x∗) = δ(x)∗ for all x, y ∈ A.

Now, we approximate the derivations on intuitionistic random Lie C∗-algebras for the
functional equation Dωf(x1, · · · , xm) = 0.

Theorem 3.1. Let f : A→ A be a mapping for which there are functions φ : Am → L∗,
ψ : A2 → L∗ and η : A→ L∗ such that

Pµ,ν(Dωf(x1, · · · , xm), t) ≥L φ(x1, · · · , xm, t), (3.1)

lim
j→∞

φ(mjx1, · · · ,mjxm,m
jt) = 1L, (3.2)

Pµ,ν(f(xy)− xf(y)− xf(y), t) ≥L ψ(x, y, t), (3.3)

lim
j→∞

ψ(mjx,mjy,m2jt) = 1L, (3.4)

Pµ,ν(f(x
∗)− f(x)∗, t) ≥L η(x, t), (3.5)

lim
j→∞

η(mjx,mjt) = 1L (3.6)

for all ω ∈ T1, x1, · · · , xm, x, y ∈ A and t > 0. If there exists R < 1 such that

φ(mx, 0, · · · , 0,mRt) ≥L φ(x, 0, · · · , 0, t) (3.7)

for all x ∈ A and t > 0, then there exists a unique derivation δ : A→ A such that

Pµ,ν(f(x)− δ(x), t) ≥L φ(x, 0, · · · , 0, (m−mR)t) (3.8)

for all x ∈ A and t > 0.

Proof. Consider the set X := {g : A → A} and introduce the generalized metric on X
defined by

d(g, h) = inf{C ∈ R+ : Pµ,ν(g(x)− h(x), Ct) ≥L φ(x, 0, · · · , 0, t), ∀x ∈ A, t > 0}.
It is easy to show that (X, d) is complete.

Now, we consider the linear mapping J : X → X such that

Jg(x) :=
1

m
g(mx)

for all x ∈ A. By Theorem 3.1 of [46],

d(Jg, Jh) ≤ Rd(g, h)

for all g, h ∈ X. Letting ω = 1, x = x1 and x2 = · · · = xm = 0 in (3.1), we have

Pµ,ν(f(mx)−mf(x), t) ≥L φ(x, 0, · · · , 0, t) (3.9)

for all x ∈ A and t > 0 and so

Pµ,ν(f(x)−
1

m
f(mx), t) ≥L φ(x, 0, · · · , 0,mt)
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for all x ∈ A and t > 0. Hence d(f, Jf) ≤ 1
m
. By Theorem 2.12, there exists a mapping

δ : A→ A such that
(1) δ is a fixed point of J , i.e.,

δ(mx) = mδ(x) (3.10)

for all x ∈ A. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) <∞}.
This implies that δ is a unique mapping satisfying (3.10) such that there exists C ∈ (0,∞)
satisfying

Pµ,ν(δ(x)− f(x), Ct) ≥L φ(x, 0, · · · , 0, t)
for all x ∈ A and t > 0.

(2) d(Jnf, δ)→ 0 as n→∞. This implies the equality

lim
n→∞

f(mnx)

mn
= δ(x) (3.11)

for all x ∈ A.
(3) d(f, δ) ≤ 1

1−R
d(f, Jf), which implies the inequality d(f, δ) ≤ 1

m−mR
. This implies

that the inequality (3.8) holds.

Thus it follows from (3.1), (3.2) and (3.11) that

Pµ,ν

( m∑
i=1

δ
(
mxi +

m∑
j=1, j ̸=i

xj

)
+ δ
( m∑

i=1

xi

)
− 2δ

( m∑
i=1

mxi

)
, t
)

= lim
n→∞

Pµ,ν

( m∑
i=1

f
(
mn+1xi +

m∑
j=1, j ̸=i

mnxj

)
+ f
( m∑

i=1

mnxi

)
− 2f

( m∑
i=1

mn+1xi

)
,mnt

)
≤L lim

n→∞
φ(mnx1, · · · ,mnxm,m

nt)

= 1L

for all x1, · · · , xm ∈ A and t > 0 and so
m∑
i=1

δ
(
mxi +

m∑
j=1, j ̸=i

xj

)
+ δ
( m∑

i=1

xi

)
= 2δ

( m∑
i=1

mxi

)
for all x1, · · · , xm ∈ A.

By a similar method to above, we get

ωδ(mx) = δ(mωx)

for all ω ∈ T1 and x ∈ A. Thus one can show that the mapping H : A→ A is C-linear.
Also, it follows from (3.3), (3.4) and (3.11) that

Pµ,ν(δ(xy)− yδ(x)− xδ(y), t)
= lim

n→∞
Pµ,ν(f(m

nxy)−mnyf(mnx)−mnxf(mny),mnt)

≤ lim
n→∞

ψ(mnx,mny,m2nt)

= 1L

for all x, y ∈ A and so
δ(xy) = yδ(x) + xδ(y)

for all x, y ∈ A. Thus δ : A→ A is a derivation satisfying (3.7), as desired.
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Also, Similarly, by (3.5), (3.6) and (3.11), we have δ(x∗) = δ(x)∗. This completes the
proof. �

4. Approximation of derivations on intuitionistic random Lie C∗-algebras

An intuitionistic random C∗-algebra C, endowed with the Lie product

[x, y] :=
xy − yx

2

in C, is called a intuitionistic random Lie C∗-algebra.

Definition 4.1. Let A and B be intuitionistic random Lie C∗-algebras. A C-linear
mapping δ : A→ A is called an intuitionistic random Lie C∗-algebra derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)]

for all x, y ∈ A.

Throughout this Section, assume that A is an intuitionistic random Lie C∗-algebra with
norm Pµ,ν .

Now, we approximate the derivations on intuitionistic random Lie C∗-algebras for the
functional equation

Dωf(x1, · · · , xm) = 0.

Theorem 4.2. Let f : A → A be a mapping for which there are functions φ : Am → L∗

and ψ : A2 → L∗ such that

lim
j→∞

φ(mjx1, · · · ,mjxm,m
jt) = 1L, (4.1)

Pµ,ν(Dωf(x1, · · · , xm), t) ≥L φ(x1, · · · , xm, t), (4.2)

Pµ,ν(f([x, y])− [f(x), y]− [x, f(y)], t) ≥L ψ(x, y, t), (4.3)

lim
j→∞

ψ(mjx,mjy,m2jt) = 1L (4.4)

for all ω ∈ T1, x1, · · · , xm, x, y ∈ A and t > 0. If there exists R < 1 such that

φ(mx, 0, · · · , 0,mx) ≥L φ(x, 0, · · · , 0, t)

for all x ∈ A and t > 0, then there exists a unique homomorphism δ : A→ A such that

Pµ,νf(x)− δ(x), t) ≥L φ(x, 0, · · · , 0, (m−mR)t) (4.5)

for all x ∈ A and t > 0.

Proof. By the same reasoning as the proof of Theorem 3.1, we can find the mapping
δ : A→ A given by

δ(x) = lim
n→∞

f(mnx)

mn
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for all x ∈ A. It follows from (4.3) that

Pµ,ν(δ([x, y])− [δ(x), y]− [x, δ(y)], t)

= lim
n→∞

Pµ,ν(f(m
2n[x, y])− [f(mnx), ·mny]− [mnx, f(mny)],m2nt)

≥L lim
n→∞

ψ(mnx,mny,m2nt) = 1L

for all x, y ∈ A and t > 0 and so

δ([x, y]) = [δ(x), y] + [x, δ(y)]

for all x, y ∈ A. Thus δ : A → B is an intuitionistic random Lie C∗-algebra derivation
satisfying (4.5). This completes the proof. �

Corollary 4.3. Let 0 < r < 1 and θ be nonnegative real numbers and f : A → A be a
mapping such that

Pµ,ν(Dωf(x1, · · · , xm), t)

≥L

( t

t+ θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)
,

θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)
t+ θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)

)
,

Pµ,ν(f([x, y])− [f(x), y]− [x, f(y)], t)

≥L

( t

t+ θ · ∥x∥rA · ∥y∥rA
,

θ · ∥x∥rA · ∥y∥rA
t+ θ · ∥x∥rA · ∥y∥rA

)
for all ω ∈ T1, x1, · · · , xm, x, y ∈ A and t > 0. Then there exists a unique derivation
δ : A→ A such that

Pµ,ν(f(x)− δ(x), t) ≤L

( t

t+ θ
m−mr ∥x∥rA

,
θ

m−mr ∥x∥rA
t+ θ

m−mr ∥x∥rA

)
for all x ∈ A and t > 0.

Proof. The proof follows from Theorem 4.2 by taking

φ(x1, · · · , xm, t)

=
( t

t+ θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)
,

θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)
t+ θ(∥x1∥rA + ∥x2∥rA + · · ·+ ∥xm∥rA)

)
,

ψ(x, y, t) :=
( t

t+ θ · ∥x∥rA · ∥y∥rA
,

θ · ∥x∥rA · ∥y∥rA
t+ θ · ∥x∥rA · ∥y∥rA

)
and

R = mr−1

for all x1, · · · , xm, x, y ∈ A and t > 0. This completes the proof. �
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CUBIC ρ-FUNCTIONAL INEQUALITY AND QUARTIC ρ-FUNCTIONAL

INEQUALITY

CHOONKIL PARK, JUNG RYE LEE∗, AND DONG YUN SHIN

Abstract. In this paper, we solve the following cubic ρ-functional inequality

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖

≤
∥∥∥ρ(4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)∥∥∥ , (0.1)

where ρ is a fixed complex number with |ρ| < 2, and the quartic ρ-functional inequality

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖ (0.2)

≤
∥∥∥ρ(8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)∥∥∥ ,
where ρ is a fixed complex number with |ρ| < 2.

Using the direct method, we prove the Hyers-Ulam stability of the cubic ρ-functional in-
equality (0.1) and the quartic ρ-functional inequality (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [17] con-
cerning the stability of group homomorphisms. Hyers [8] gave a first affirmative partial answer
to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for ad-
ditive mappings and by Rassias [12] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replac-
ing the unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

In [9], Jun and Kim considered the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1), which is
called a cubic functional equation and every solution of the cubic functional equation is said to
be a cubic mapping. We can define the following Jensen type cubic functional equation

4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
= f(x+ y) + f(x− y) + 6f(x).

Note that if f(2x) = 8f(x) then the Jensen type cubic functional equation is equivalent to the
cubic functional equation (1.1).

In [10], Lee et al. considered the following quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2), which is
called a quartic functional equation and every solution of the quartic functional equation is said

2010 Mathematics Subject Classification. Primary 39B62, 39B52.
Key words and phrases. Hyers-Ulam stability; cubic ρ-functional inequality; quartic ρ-functional inequality;

complex Banach space.
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to be a quartic mapping. We can define the following Jensen type quartic functional equation

8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
= 2f(x+ y) + 2f(x− y) + 12f(x)− 3f(y).

Note that if f(2x) = 16f(x) then the Jensen type quartic functional equation is equivalent to
the quartic functional equation (1.2).

Recently, considerable attention has been increasing to the problem of the Hyers-Ulam sta-
bility of functional equations. Several Hyers-Ulam stability results concerning Cauchy, Jensen,
quadratic, cubic and quartic functional equations have been investigated in [1, 3, 13, 14, 15,
16, 18].

In [6], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.3)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

Gilányi [7] and Fechner [4] proved the Hyers-Ulam stability of the functional inequality (1.3).
Park, Cho and Han [11] proved the Hyers-Ulam stability of additive functional inequalities.

In Section 3, we solve the cubic ρ-functional inequality (0.1) and prove the Hyers-Ulam
stability of the cubic ρ-functional inequality (0.1) in complex Banach spaces.

In Section 4, we solve the quartic ρ-functional inequality (0.2) and prove the Hyers-Ulam
stability of the quartic ρ-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, assume that X is a complex normed space and that Y is a complex
Banach space.

2. Cubic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 2.
In this section, we solve and investigate the cubic ρ-functional inequality (0.1) in complex

normed spaces.

Lemma 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies f(2x) = 8f(x)
and

4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
= f(x+ y) + f(x− y) + 6f(x)

if and only if the mapping f : X → Y is a cubic mapping.

Proof. One can easily prove it. We omit the proof. �

Lemma 2.2. If a mapping f : X → Y satisfies

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖

≤
∥∥∥∥ρ(4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)∥∥∥∥ (2.1)

for all x, y ∈ X, then f : X → Y is cubic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖ − 14f(0)‖ ≤ |ρ|‖0‖ = 0. So f(0) = 0.
Letting y = 0 in (2.1), we get ‖2f (2x) − 16f(x)‖ ≤ 0 and so f(2x) = 8f(x) for all x ∈ X.

Thus

f

(
x

2

)
=

1

8
f(x) (2.2)

for all x ∈ X.
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It follows from (2.1) and (2.2) that

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖

≤
∥∥∥∥ρ(4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)∥∥∥∥
=
|ρ|
2
‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖

and so

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

for all x, y ∈ X, since |ρ| < 2. So f : X → Y is cubic. �

We prove the Hyers-Ulam stability of the cubic ρ-functional inequality (2.1) in complex
Banach spaces.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping such that

Ψ(x, y) :=
∞∑
j=1

8jϕ(
x

2j
,
y

2j
) <∞, (2.3)

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖ (2.4)

≤
∥∥∥∥ρ(4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)∥∥∥∥+ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

‖f(x)− C(x)‖ ≤ 1

16
Ψ(x, 0) (2.5)

for all x ∈ X.

Proof. Letting y = 0 in (2.4), we get

‖2f(2x)− 16f(x)‖ ≤ ϕ(x, 0) (2.6)

and so
∥∥f(x)− 8f

(
x
2

)∥∥ ≤ 1
2ϕ
(
x
2 , 0

)
for all x ∈ X. So∥∥∥∥8lf ( x2l

)
− 8mf

(
x

2m

)∥∥∥∥ ≤ m∑
j=l+1

∥∥∥∥8jf ( x2j
)
− 8j+1f

(
x

2j+1

)∥∥∥∥
≤ 1

16

m∑
j=l+1

8jϕ

(
x

2j
, 0

)
(2.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the
sequence {8nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{8nf( x

2n )} converges. So one can define the mapping C : X → Y by

C(x) := lim
n→∞

8nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.7), we get (2.5).
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It follows from (2.3) and (2.4) that

‖C(2x+ y) + C(2x− y)− 2C(x+ y)− 2C(x− y)− 12C(x)‖

= lim
n→∞

8n
∥∥∥∥f (2x+ y

2n

)
+ f

(
2x− y

2n

)
− 2f

(
x+ y

2n

)
− 2f

(
x− y

2n

)
− 12f

(
x

2n

)∥∥∥∥
≤ lim

n→∞
8n|ρ|

∥∥∥∥4f (2x+ y

2n+1

)
+ 4f

(
2x− y
2n+1

)
− f

(
x+ y

2n

)
− f

(
x− y

2n

)
− 6f

(
x

2n

)∥∥∥∥
+ lim
n→∞

8nϕ

(
x

2n
,
y

2n

)
=

∥∥∥∥ρ(4C

(
x+

y

2

)
+ 4C

(
x− y

2

)
− C(x+ y)− C(x− y)− 6C(x)

)∥∥∥∥
for all x, y ∈ X. So

‖C(2x+ y) + C(2x− y)− 2C(x+ y)− 2C(x− y)− 12C(x)‖

≤
∥∥∥∥ρ(4C

(
x+

y

2

)
+ 4C

(
x− y

2

)
− C(x+ y)− C(x− y)− 6C(x)

)∥∥∥∥
for all x, y, z ∈ X. By Lemma 2.2, the mapping C : X → Y is cubic.

Now, let T : X → Y be another cubic mapping satisfying (2.5). Then we have

‖C(x)− T (x)‖ =

∥∥∥∥8qC ( x2q
)
− 8qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥8qC ( x2q
)
− 8qf

(
x

2q

)∥∥∥∥+

∥∥∥∥8qT ( x2q
)
− 8qf

(
x

2q

)∥∥∥∥
≤ 2

16
· 8qΨ

(
x

2q
, 0

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that C(x) = T (x) for all
x ∈ X. This proves the uniqueness of C. Thus the mapping C : X → Y is a unique cubic
mapping satisfying (2.5). �

Corollary 2.4. Let r > 3 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)‖ (2.8)

≤
∥∥∥∥ρ(4f

(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

‖f(x)− C(x)‖ ≤ θ

2r+1 − 16
‖x‖r

for all x ∈ X.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
(2.4) and

Ψ(x, y) :=
∞∑
j=0

1

8j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

‖f(x)− C(x)‖ ≤ 1

16
Ψ(x, 0) (2.9)

for all x ∈ X.
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Proof. It follows from (2.6) that∥∥∥∥f(x)− 1

8
f(2x)

∥∥∥∥ ≤ 1

16
ϕ(x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

8l
f(2lx)− 1

8m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

8j
f
(
2jx

)
− 1

8j+1
f
(
2j+1x

)∥∥∥∥
≤ 1

16

m−1∑
j=l

1

8j
ϕ(2jx, 0) (2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.10) that the
sequence { 1

8n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
8n f(2nx)} converges. So one can define the mapping C : X → Y by

C(x) := lim
n→∞

1

8n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.10), we get (2.9).
The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.6. Let r < 3 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (2.8). Then there exists a unique cubic mapping C : X → Y such that

‖f(x)− C(x)‖ ≤ θ

16− 2r+1
‖x‖r (2.11)

for all x ∈ X.

Remark 2.7. If ρ is a real number such that −2 < ρ < 2 and Y is a real Banach space, then
all the assertions in this section remain valid.

3. Quartic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 2.
In this section, we solve and investigate the quartic ρ-functional inequality (0.2) in complex

normed spaces.

Lemma 3.1. Let X and Y be vector spaces. An even mapping f : X → Y satisfies

8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
= 2f(x+ y) + 2f(x− y) + 12f(x)− 3f(y) (3.1)

if and only if the mapping f : X → Y is a quartic mapping.

Proof. Sufficiency. Assume that f : X → Y satisfies (3.1)
Letting x = y = 0 in (3.1), we have 16f(0) = 13f(0). So f(0) = 0.
Letting x = 0 in (3.1), we get 16f

(y
2

)
= f(y) for all y ∈ X. So f : X → Y satisfies the

quartic functional equation.
Necessity. Assume that f : X → Y is a quartic mapping. Then f(2x) = 16f(x) for all

x ∈ X. So f : X → Y satisfies (3.1). �

Lemma 3.2. If a mapping f : X → Y satisfies

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖ (3.2)

≤
∥∥∥∥ρ(8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)∥∥∥∥
for all x, y ∈ X, then the mapping f : X → Y is quartic.
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Proof. Assume that f : X → Y satisfies (3.2).
Letting x = y = 0 in (3.2), we get ‖24f(0)‖ ≤ |ρ|‖3f(0)‖. So f(0) = 0.
Letting y = 0 in (3.2), we get

‖2f (2x)− 32f(x)‖ ≤ 0 (3.3)

and so

f

(
x

2

)
=

1

16
f(x) (3.4)

for all x ∈ X.
It follows from (3.2) and (3.4) that

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖

≤
∥∥∥∥ρ(8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)∥∥∥∥
=
|ρ|
2
‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖

and so

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y)

for all x, y ∈ X, since |ρ| < 2. So f : X → Y is quartic. �

We prove the Hyers-Ulam stability of the quartic ρ-functional inequality (3.2) in complex
Banach spaces.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0,

Ψ(x, y) :=
∞∑
j=1

16jϕ(
x

2j
,
y

2j
) <∞,

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖ (3.5)

≤
∥∥∥∥ρ(8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)∥∥∥∥+ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

32
Ψ(x, 0) (3.6)

for all x ∈ X.

Proof. Letting y = 0 in (3.5), we get

‖2f(2x)− 32f(x)‖ ≤ ϕ(x, 0) (3.7)

and so
∥∥f(x)− 16f

(
x
2

)∥∥ ≤ 1
2ϕ
(
x
2 , 0

)
for all x ∈ X. So∥∥∥∥16lf

(
x

2l

)
− 16mf

(
x

2m

)∥∥∥∥ ≤ m∑
j=l+1

∥∥∥∥16jf

(
x

2j

)
− 16j+1f

(
x

2j+1

)∥∥∥∥
≤ 1

32

m∑
j=l+1

16jϕ

(
x

2j
, 0

)
(3.8)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the
sequence {16nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{16nf( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

16nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.6).
The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 3.4. Let r > 4 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖ (3.9)

≤
∥∥∥∥ρ(8f

(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ

2r+1 − 32
‖x‖r

for all x ∈ X.

Proof. Letting x = y = 0 in (3.9), we get ‖24f(0)‖ ≤ |ρ|‖3f(0)‖, So f(0) = 0. Letting
ϕ(x, y) := θ(‖x‖r + ‖y‖r) in Theorem 3.3, we obtain the desired result. �

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (3.5) and

Ψ(x, y) :=
∞∑
j=0

1

16j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

32
Ψ(x, 0) (3.10)

for all x ∈ X.

Proof. It follows from (3.7) that∥∥∥∥f(x)− 1

16
f(2x)

∥∥∥∥ ≤ 1

32
ϕ(x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

16l
f(2lx)− 1

16m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

16j
f
(
2jx

)
− 1

16j+1
f
(
2j+1x

)∥∥∥∥
≤ 1

32

m−1∑
j=l

1

16j
ϕ(2jx, 0) (3.11)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.11) that the
sequence { 1

16n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
16n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

16n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.11), we get (3.10).
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The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 3.6. Let r < 4 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (3.9). Then there exists a unique quartic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ

32− 2r+1
‖x‖r

for all x ∈ X.

Remark 3.7. If ρ is a real number such that −2 < ρ < 2 and Y is a real Banach space, then
all the assertions in this section remain valid.
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Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106–1114.
[15] D. Shin, C. Park, Sh. Farhadabadi, On the superstability of ternary Jordan C∗-homomorphisms, J. Comput.

Anal. Appl. 16 (2014), 964–973.
[16] D. Shin, C. Park, Sh. Farhadabadi, Stability and superstability of J∗-homomorphisms and J∗-derivations

for a generalized Cauchy-Jensen equation, J. Comput. Anal. Appl. 17 (2014), 125–134.
[17] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
[18] C. Zaharia, On the probabilistic stability of the monomial functional equation, J. Nonlinear Sci. Appl. 6

(2013), 51–59.

Choonkil Park
Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
E-mail address: baak@hanyang.ac.kr

Jung Rye Lee
Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea
E-mail address: jrlee@daejin.ac.kr

Dong Yun Shin
Department of Mathematics, University of Seoul, Seoul 130-743, Korea
E-mail address: dyshin@uos.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

362 CHOONKIL PARK et al 355-362



Complex Valued Gb-Metric Spaces

Ozgur EGE

Celal Bayar University

Department of Mathematics

45140 Manisa, Turkey

E-mail: ozgur.ege@cbu.edu.tr

February 3, 2015

Abstract

In this paper, we introduce the concept of complex valued Gb-metric spaces. We also prove Banach contrac-
tion principle and Kannan's �xed point theorem in this space. Our result generalizes some well-known results
in the �xed point theory.

Keywords: Complex valued Gb-metric space, �xed point, Banach contraction principle, Kannan's �xed point

theorem.
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1 Introduction

The concept of a metric space was introduced by Frechet [11]. Then many mathematicians study of �xed points of contractive
mappings. After the introduction of Banach contraction principle, the study of existence and uniqueness of �xed points
and common �xed points have been a major area of interest. In a number of generalized metric spaces, many researchers
proved the Banach �xed point theorem.

Bakhtin [6] presented b-metric spaces as a generalization of metric spaces. He also proved generalized Banach contraction
principle in b-metric spaces. After that, many papers related to variational principle for single-valued and multi-valued
operators have studied in b-metric spaces (see [7, 8, 9, 10, 18]). Azam et al. [4] de�ned the notion of complex valued metric
spaces and gave common �xed point result for mappings. Rao et al. [21] introduced the complex valued b-metric spaces.
Mustafa and Sims [13] presented the notion of G-metric spaces. Many researchers [1, 2, 3, 12, 14, 15, 19, 20, 22, 23, 25]
obtained common �xed point results for G-metric spaces. The concept of Gb-metric space was given in [5]. Mustafa et
al. [16] prove some coupled coincidence �xed point theorems for nonlinear (ψ,ϕ)-weakly contractive mappings in partially
ordered Gb-metric spaces. Other important studies on Gb-metric spaces, see [17, 24].

In this work, our aim is to prove Banach contraction principle and Kannan's �xed point theorem in complex valued
Gb-metric spaces. For this purpose, we give new de�nitions and additional theorems with proofs.

2 Preliminaries

In this section, we recall some properties of Gb-metric spaces.

De�nition 2.1. [5]. Let X be a nonempty set and s ≥ 1 be a given real number. Suppose that a mapping G : X×X×X →
R+ satis�es:

(Gb1) G(x, y, z) = 0 if x = y = z;

(Gb2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;

(Gb3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z;

(Gb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z;

(Gb5) G(x, y, z) ≤ s(G(x, a, a) +G(a, y, z)) for all x, y, z, a ∈ X (rectangle inequality).

Then, G is called a generalized b-metric and (X,G) is called a generalized b-metric or a Gb-metric space.

Note that each G-metric space is a Gb-metric space with s = 1.

Proposition 2.2. [5]. Let X be a Gb-metric space. Then for each x, y, z, a ∈ X it follows that:

1
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(i) if G(x, y, z) = 0 then x = y = z,

(ii) G(x, y, z) ≤ s(G(x, x, y) +G(x, x, z)),

(iii) G(x, y, y) ≤ 2sG(y, x, x),

(iv) G(x, y, z) ≤ s(G(x, a, z) +G(a, y, z)).

De�nition 2.3. [5]. Let X be a Gb-metric space. A sequence {xn} in X is said to be:
• Gb-Cauchy if for each ε > 0, there exists a positive integer n0 such that for all m,n, l ≥ n0, G(xn, xm, xl) < ε,
• Gb-convergent to a point x ∈ X if for each ε > 0, there exists a positive integer n0 such that for all m,n ≥ n0,
G(xn, xm, x) < ε.

Proposition 2.4. [5]. Let X be a Gb-metric space.

(1) The sequence {xn} is Gb-Cauchy.
(2) For any ε > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ε, for all m,n ≥ n0.

Proposition 2.5. [5]. Let X be a Gb-metric space. The following are equivalent:

(1) {xn} is Gb-convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.

(3) G(xn, x, x)→ 0 as n→∞.

De�nition 2.6. [5]. A Gb-metric space X is called complete if every Gb-Cauchy sequence is Gb-convergent in X.

The complex metric space was initiated by Azam et al. [4]. Let C be the set of complex numbers and z1, z2 ∈ C. De�ne
a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satis�ed:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2),

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2),

(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2),

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

Particularly, we write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is satis�ed and we write z1 ≺ z2 if only (C4) is
satis�ed. The following statements hold:

(1) If a, b ∈ R with a ≤ b, then az ≺ bz for all z ∈ C.
(2) If 0 - z1 � z2, then |z1| < |z2|.
(3) If z1 - z2 and z2 ≺ z3, then z1 ≺ z3.

3 Complex Valued Gb-Metric Spaces

In this section, we de�ne the complex valued Gb-metric space.

De�nition 3.1. Let X be a nonempty set and s ≥ 1 be a given real number. Suppose that a mapping G : X×X×X → C
satis�es:

(CGb1) G(x, y, z) = 0 if x = y = z;

(CGb2) 0 ≺ G(x, x, y) for all x, y ∈ X with x 6= y;

(CGb3) G(x, x, y) - G(x, y, z) for all x, y, z ∈ X with y 6= z;

(CGb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z;

(CGb5) G(x, y, z) - s(G(x, a, a) +G(a, y, z)) for all x, y, z, a ∈ X (rectangle inequality).

Then, G is called a complex valued Gb-metric and (X,G) is called a complex valued Gb-metric space.

From (CGb5), we have the following proposition.

Proposition 3.2. Let (X,G) be a complex valued Gb-metric space. Then for any x, y, z ∈ X,
• G(x, y, z) - s(G(x, x, y) +G(x, x, z)),
• G(x, y, y) - 2sG(y, x, y).
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De�nition 3.3. Let (X,G) be a complex valued Gb-metric space, let {xn} be a sequence in X.
(i) {xn} is complex valued Gb-convergent to x if for every a ∈ C with 0 ≺ a, there exists k ∈ N such that G(x, xn, xm) ≺ a
for all n,m ≥ k.
(ii) A sequence {xn} is called complex valued Gb-Cauchy if for every a ∈ C with 0 ≺ a, there exists k ∈ N such that
G(xn, xm, xl) ≺ a for all n,m, l ≥ k.
(iii) If every complex valued Gb-Cauchy sequence is complex valued Gb-convergent in (X,G), then (X,G) is said to be
complex valued Gb-complete.

Proposition 3.4. Let (X,G) be a complex valued Gb-metric space and {xn} be a sequence in X. Then {xn} is complex
valued Gb-convergent to x if and only if |G(x, xn, xm)| → 0 as n,m→∞.

Proof. (⇒) Assume that {xn} is complex valued Gb-convergent to x and let

a =
ε√
2

+ i
ε√
2

for a real number ε > 0. Then we have 0 ≺ a ∈ C and there is a natural number k such that G(x, xn, xm) ≺ a for all
n,m ≥ k. Thus, |G(x, xn, xm)| < |a| = ε for all n,m ≥ k and so |G(x, xn, xm)| → 0 as n,m→∞.
(⇐) Suppose that |G(x, xn, xm)| → 0 as n,m → ∞. For a given a ∈ C with 0 ≺ a, there exists a real number δ > 0 such
that for z ∈ C

|z| < δ ⇒ z ≺ a.
Considering δ, we have a natural number k such that |G(x, xn, xm)| < δ for all n,m ≥ k. This means that G(x, xn, xm) ≺ a
for all n,m ≥ k, i.e., {xn} is complex valued Gb-convergent to x.

From Propositions 3.2 and 3.4, we can prove the following theorem.

Theorem 3.5. Let (X,G) be a complex valued Gb-metric space, then for a sequence {xn} in X and point x ∈ X, the
following are equivalent:

(1) {xn} is complex valued Gb-convergent to x.

(2) |G(xn, xn, x)| → 0 as n→∞.

(3) |G(xn, x, x)| → 0 as n→∞.

(4) |G(xm, xn, x)| → 0 as m,n→∞.

Proof. (1)⇒ (2) It is clear from Proposition 3.4.
(2)⇒ (3) By Proposition 3.2, we have

G(xn, x, x) - s(G(xn, xn, x) +G(xn, xn, x))

and using (2), we get
|G(xn, x, x)| → 0

as n→∞.
(3)⇒ (4) If we use (CGb4) and Proposition 3.2, then

G(xm, xn, x) = G(x, xm, xn) - s(G(x, x, xm) +G(x, x, xn))

= s(G(xm, x, x) +G(xn, x, x))

and |G(xm, xn, x)| → 0 as m,n→∞.
(4)⇒ (1) We will use the equivalence in Proposition 3.4, (CGb3) and (CGb4). Since

G(x, xn, xm) = G(xm, x, xn) - s(G(xm, xm, x) +G(xm, xm, xn))

- s(G(xm, xn, x))

and |G(xm, xn, x)| → 0 as m,n→∞, we obtain |G(x, xn, xm)| → 0 and this completes the proof.

Theorem 3.6. Let (X,G) be a complex valued Gb-metric space and {xn} be a sequence in X. Then {xn} is complex valued
Gb-Cauchy sequence if and only if |G(xn, xm, xl)| → 0 as n,m, l→∞.

Proof. (⇒) Let {xn} be complex valued Gb-Cauchy sequence and

b =
ε√
2

+ i
ε√
2

where ε > 0 is a real number. Then 0 ≺ b ∈ C and there is a natural number k such that G(xn, xm, xl) ≺ b for all n,m, l ≥ k.
Therefore, we get |G(xn, xm, xl)| < |b| = ε for all n,m, l ≥ k and the required result.
(⇐) Assume that |G(xn, xm, xl)| → 0 as n,m, l→∞. Then there exists a real number γ > 0 such that for z ∈ C

|z| < γ implies z ≺ b

where b ∈ C with 0 ≺ b. For this γ, there is a natural number k such that |G(xn, xm, xl)| < γ for all n,m, l ≥ k. This
means that G(xn, xm, xl) ≺ b for all n,m, l ≥ k. Hence {xn} is complex valued Gb-Cauchy sequence.
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We prove the contraction principle in complex valued Gb-metric spaces as follows:

Theorem 3.7. Let (X,G) be a complete complex valued Gb-metric space with coe�cient s > 1 and T : X → X be a
mapping satisfying:

G(Tx, Ty, Tz) - kG(x, y, z) (3.1)

for all x, y, z ∈ X, where k ∈ [0, 1
s
). Then T has a unique �xed point.

Proof. Let T satisfy (3.1), x0 ∈ X be an arbitrary point and de�ne the sequence {xn} by xn = Tnx0. From (3.1), we obtain

G(xn, xn+1, xn+1) - kG(xn−1, xn, xn). (3.2)

Using again (3.1), we have
G(xn−1, xn, xn) - kG(xn−2, xn−1, xn−1)

and by (3.2), we get
G(xn, xn+1, xn+1) - k2G(xn−2, xn−1, xn−1).

If we continue in this way, we �nd
G(xn, xn+1, xn+1) - knG(x0, x1, x1). (3.3)

Using (CGb5) and (3.3) for all n,m ∈ N with n < m,

G(xn, xm, xm) - s[G(xn, xn+1, xn+1) +G(xn+1, xm, xm)]

- s[G(xn, xn+1, xn+1)] + s2[G(xn+1, xn+2, xn+2)

+G(xn+2, xm, xm)]

- s[G(xn, xn+1, xn+1)] + s2[G(xn+1, xn+2, xn+2)]+

s3[G(xn+2, xn+3, xn+3)] + . . .+ sm−nG(xm−1, xm, xm)]

- (skn + s2kn+1 + s3kn+2 + . . .+ sm−nkm−1)G(x0, x1, x1)

- skn[1 + sk + (sk)2 + (sk)3 + . . .+ (sk)m−n−1]G(x0, x1, x1)

-
skn

1− skG(x0, x1, x1).

Thus, we obtain

|G(xn, xm, xm)| ≤ skn

1− sk |G(x0, x1, x1)|.

Since k ∈ [0, 1
s
) where s > 1, taking limits as n→∞, then

skn

1− sk |G(x0, x1, x1)| → 0.

This means that
|G(xn, xm, xm)| → 0.

By Proposition 3.2, we get
G(xn, xm, xl) - G(xn, xm, xm) +G(xl, xm, xm)

for n,m, l ∈ N. Thus,
|G(xn, xm, xl)| ≤ |G(xn, xm, xm)|+ |G(xl, xm, xm)|.

If we take limit as n,m, l→∞, we obtain |G(xn, xm, xl)| → 0. So {xn} is complex valued Gb-Cauchy sequence by Theorem
3.6. Completeness of (X,G) gives us that there is an element u ∈ X such that {xn} is complex valued Gb-convergent to u.

To prove Tu = u, we will assume the contrary. From (3.1), we obtain

G(xn+1, Tu, Tu) - kG(xn, u, u)

and
|G(xn+1, Tu, Tu)| ≤ k|G(xn, u, u)|.

If we take the limit as n ≥ ∞, we get
|G(u, Tu, Tu)| ≤ k|G(u, u, u)|,

which is a contradiction since k ∈ [0, 1
s
). As a result, Tu = u.

Lastly, we prove the uniqueness. Let w 6= u be another �xed point of T . Using (3.1),

G(z, w,w) = G(Tz, Tw, Tw) - kG(z, w,w).

and
|G(z, w,w)| ≤ k|G(z, w,w)|.

Since k ∈ [0, 1
s
), we have |G(z, w,w)| ≤ 0. Thus, u = w and so u is a unique �xed point of T .
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Example 3.8. Let X = [−1, 1] and G : X ×X ×X → C be de�ned as follows:

G(x, y, z) = |x− y|+ |y − z|+ |z − x|

for all x, y, z ∈ X. (X,G) is complex valued G-metric space [12]. De�ne

G∗(x, y, z) = G(x, y, z)2.

G∗ is a complex valued Gb-metric with s = 2 (see [5]). If we de�ne T : X → X as Tx = x
3
, then T satis�es the following

condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) = G(
x

3
,
y

3
,
z

3
) =

1

3
G(x, y, z) - kG(x, y, z)

where k ∈ [ 1
3
, 1
s
), s > 1. Thus x = 0 is the unique �xed point of T in X.

We will prove Kannan's �xed point theorem for complex valued Gb-metric spaces.

Theorem 3.9. Let (X,G) be a complete complex valued Gb-metric space and the mapping T : X → X satis�es for every
x, y ∈ X

G(Tx, Ty, Ty) - α[G(x, Tx, Tx) +G(y, Ty, Ty)] (3.4)

where α ∈ [0, 1
2
). Then T has a unique �xed point.

Proof. Let x0 ∈ X be arbitrary. We de�ne a sequence {xn} by xn+1 = Txn for all n ≥ 0. We shall show that {xn} is
Gb-Cauchy sequence. If xn = xn+1, then xn is the �xed point of T . Thus, suppose that xn 6= xn+1 for all n ≥ 0. Setting
G(xn, xn+1, xn+1) = Gn, it follows from (3.4) that

G(xn, xn+1, xn+1) = G(Txn−1, Txn, Txn)

- α[G(xn−1, Txn−1, Txn−1) +G(xn, Txn, Txn)]

- α[G(xn−1, xn, xn) +G(xn, xn+1, xn+1)]

- α[Gn−1 +Gn]

Gn -
α

1− αGn−1 = βGn−1,

where β = α
1−α < 1 as α ∈ [0, 1

2
). If we repeat this process, then we get

Gn - βnG0. (3.5)

We can also suppose that x0 is not a periodic point. If xn = x0, then we have

G0 - βnG0.

Since β < 1, then 1− βn < 1 and
(1− βn)|G0| ≤ 0 ⇒ |G0| = 0.

It follows that x0 is a �xed point of T . Therefore in the sequel of proof we can assume Tnx0 6= x0 for n = 1, 2, 3, . . . From
inequality (3.4), we obtain

G(Tnx0, T
n+mx0, T

n+mx0) - α[G(Tn−1x0, T
n+mx0, T

n+mx0)

+G(Tn+m−1x0, T
n+mx0, T

n+mx0)]

- α[βn−1G(x0, Tx0, Tx0) + βn+m−1G(x0, Tx0, Tx0)].

So, |G(xn, xn+m, xn+m)| → 0 as n→∞. It implies that {xn} is a Gb-Cauchy in X. By the completeness of X, there exists
u ∈ X such that xn → u. From (CGb5), we get

G(Tu, u, u) - s[G(Tu, Tn+1x0, T
n+1x0) +G(Tn+1x0, u, u)]

- s(α[G(u, Tu, Tu) +G(Tnx0, T
n+1x0, T

n+1x0)]) + sG(Tn+1x0, u, u)

- sα[G(u, Tu, Tu) + sαG(Tnx0, T
n+1x0, T

n+1x0)]) + sG(Tn+1x0, u, u).

Letting n→∞, since sα < 1 and xn → u, we have |G(Tu, u, u)| → 0, i.e., u = Tu.
Now we show that T has a unique �xed point. For this, assume that there exists another point v in X such that v = Tv.

Now,
G(v, u, u) - G(Tv, Tu, Tu)

- α[G(v, Tv, Tv) +G(u, Tu, Tu)]

- α[G(v, v, v) +G(u, u, u)]

- 0.

Hence, we conclude that u = v.
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Abstract

Fractional order advection-diffusion equation is viewed as generaliza-
tions of classical diffusion equations, treating super-diffusive flow pro-
cesses. In this paper, we present a new weighted finite difference ap-
proximation for the equation with initial and boundary conditions in a
finite domain. Using mathematical induction, we prove that the weighted
finite difference approximation is conditionally stable and convergent. Nu-
merical computations are presented which demonstrate the effectiveness
of the method and confirm the theoretical claims.
Keywords: Fractional order advection-diffusion equation; Weighted fi-
nite difference approximation; Stability; Convergence.

1 INTRODUCTION

In recent years, fractional differential equations have attracted much attention.
Many important phenomena in physics [1, 2, 3], finance [4, 5], hydrology [6],
engineering [7], mathematics [8] and material science are well described by dif-
ferential equations of fractional order. These fractional order models tend to be
more appropriate than the traditional integer-order models. So, the fractional
derivatives are considered to be a very powerful and useful tool.

The fractional advection-diffusion equation provides a useful description of
transport dynamics in complex systems which are governed by anomalous diffu-
sion and non-exponential relaxation [9]. In this paper, we consider a special case

∗The authors would like to thank National Natural Science Foundation of China
(No.11161041).
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of anomalous diffusion, the two-sided space-time fractional advection-diffusion
equation can be written in the following way

∂βu(x,t)
∂tβ

= −v(x)∂u(x,t)
∂x + d+(x)∂

αu(x,t)
∂+xα

+ d−(x)∂
αu(x,t)
∂−xα

+ f(x, t), x ∈ [L,R], t ∈ (0, T ], (1)

u(L, t) = 0, u(R, t) = ϕ(t), t ∈ [0, T ], (2)

u(x, 0) = u0(x), x ∈ (L,R], (3)

where α and β are parameters describing the order of the space- and time-
fractional derivatives, respectively, physical considerations restrict 0 < β <
1, 1 < α < 2. The functions v(x, t), d+(x, t) and d−(x, t) are all non-negative,
bounded and d+(x, t), d−(x, t) ≥ v(x, t).

The left-sided (+) and the right-sided (−) Riemann-Liouville fractional deriva-
tives of order α of a function u(x, t) are defined as follows

∂αu(x, t)

∂+xα
=

1

Γ(n− α)

∂n

∂xn

∫ x

L

u(ξ, t)

(x− ξ)α+1−n dξ (4)

and

∂αu(x, t)

∂−xα
=

(−1)n

Γ(n− α)

∂n

∂xn

∫ R

x

u(ξ, t)

(x− ξ)α+1−n dξ, (5)

where n is an integer such that n − 1 < α ≤ n. The time derivative ∂βu(x,t)
∂tβ

is
given by a Caputo fractional derivative

∂βu(x, t)

∂tβ
=

1

Γ(1− β)

∫ t

0

(t− η)−β
∂u(x, η)

∂η
dη, (6)

where Γ(·) is the gamma function.
As is well known, the fractional order differential operator is a nonlocal op-

erator, which requires more involved computational schemes for its handling.
Finite difference schemes for fractional partial differential equations are more
complex than partial differential equations [1, 2, 4, 10, 11, 12, 13, 14]. It should
note the following work for fractional advection-diffusion equation. Su et al. [13]
presented a Crank-Nicolson type finite difference scheme for two-sided space
fractional advection-diffusion equation. Liu et al. [14] considered a space-
time fractional advection-diffusion with Caputo time fractional derivative and
Riemann-Liouville space fractional derivatives. In this paper, we present a new
weighted finite difference approximation for the equation.

The rest of the paper is as follows. In Section 2, we derive the new weighted
finite difference approximation (NWFDM) for the fractional advection-diffusion
equation. The convergence and stability of the finite difference scheme is given
in Section 3, where we apply discrete energy method. In Section 4, numerical
results are shown which confirm that the numerical method is effective.
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2 NEW WEIGHTED FINITE DIFFERENCE
SCHEME

To present the numerical approximation scheme, we give some notations: τ is
the time step, unj be the numerical solution at (xi, tn) for xj = L + ih, tn =
nτ, j = 0, 1, · · · , J, n = 0, 1, · · · , N .

The shifted Grünwald formula is applied to discretize the left-handed frac-
tional derivative and right-handed fractional derivative [15],

∂αu(xi, tn)

∂+xα
=

1

hα

i+1∑
j=0

gju(xi − (j − 1)h, tn) + o(h), (7)

∂αu(xi, tn)

∂−xα
=

1

hα

N−i+1∑
j=0

gju(xi + (j − 1)h, tn) + o(h), (8)

where the Grünwald coefficients are defined by

g0 = 1, gj = (1− α+ 1

j
)gj−1, j = 1, 2, 3, · · · .

Adopting the discrete scheme in [15], we discretize the Caputo time fractional
derivative as,

∂βu(xi, tn)

∂tβ
=

τ1−β

Γ(2− β)

n∑
j=0

u(xi, tn+1−j)− u(xi, tn−j)

τ
σj + o(τ),

where σj = (j + 1)1−β − j1−β .
Now we replace (1) with the following weighted finite difference approxima-

tion:

τ1−β

Γ(2− β)

n∑
j=0

un+1−j
i − un−ji

τ
σj = −vi[θ

uni+1 − uni−1

2h

+(1− θ)
un+1
i+1 − u

n+1
i−1

2h
] +

d+i

hα
[θ
i+1∑
k=0

gku
n
i−k+1

+(1− θ)
i+1∑
k=0

gku
n+1
i−k+1] +

d−i
hα

[θ
N−i+1∑
k=0

gku
n
i+k−1

+(1− θ)
N−i+1∑
k=0

gku
n+1
i+k−1] + θfni + (1− θ)fn+1

i , (9)

for i = 1, 2, · · · , J − 1, n = 0, 1, · · · , N − 1, where θ is the weighting parameter
subjected to 0 ≤ θ ≤ 1. When θ = 0, 1, 1

2 , we get the space-time fractional
implicit, explicit, Crank-Nicolson type difference scheme, respectively.

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

371 Yabin Shao et al 369-379



The above equation (9) can be simplified, for n = 0,

−(1− θ)(ξi + ηig2 + ζi)u
1
i−1 − (1− θ)ηi

i+1∑
k=3

gku
1
i−k+1

−(1− θ)ζi
J−i+1∑
k=3

gku
1
i+k−1 + (1− θ)(ξi − ηi − ζig2)u1

i+1

+[1− (1− θ)(ηig1 + ζig1)]u1
i = θ(ξi + ηig2 + ζi)u

0
i−1

+[1 + θ(ηig1 + ζig1)]u0
i + θ(−ξi + ηi + ζig2)u0

i+1

+θηi

i+1∑
k=3

gku
0
i−k+1 + θζi

J−i+1∑
k=3

gku
0
i+k−1

+Γ(1− β)τβ(θf0
i + (1− θ)f1

i ), (10)

and for n > 0,

−(1− θ)(ξi + ηig2 + ζi)u
n+1
i−1 − (1− θ)ηi

i+1∑
k=3

gku
n+1
i−k+1

−(1− θ)ζi
J−i+1∑
k=3

gku
n+1
i+k−1 + (1− θ)(ξi − ηi − ζig2)un+1

i+1

+[1− (1− θ)(ηig1 + ζig1)]un+1
i = θ(ξi + ηig2 + ζi)u

n
i−1

+[2− 21−β + θ(ηig1 + ζig1)]uni + θ(−ξi + ηi + ζig2)uni+1

+θηi

i+1∑
k=3

gku
n
i−k+1 + θζi

J−i+1∑
k=3

gku
n
i+k−1 +

n−1∑
j=1

dju
n−j
i

+u0
iσn + Γ(1− β)τβ(θfni + (1− θ)fn+1

i ), (11)

and Dirichlet boundary conditions

un0 = 0, unJ = ϕ(tn), n = 1, 2, · · · , N − 1,

and initial conditions

u0
i = u0(xi), i = 0, 1, · · · , J,

where ξi = viτ
βΓ(2−β)

2h , ηi = d+iτ
βΓ(2−β)
hα , ζi = d−iτ

βΓ(2−β)
hα and dj = σj+1 −

σj , j = 1, 2, · · · , n− 1.
The numerical method (10) and (11) can be written in the matrix form:

AU1 = B0U
0 +Q0,

AUn+1 = BUn + d1U
n−1 + · · ·+ dn−1U

1 + σnU
0 +Qn,

where

Un = (un1 , u
n
2 , · · · , unJ−1)T ,

4
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U0 = [u0(x1), u0(x2), · · · , u0(xJ−1)]T ,

b = (ηJ−1 + ζJ−1g2)[(1− θ)un+1
J + θunJ ],

Fn = (fn1 , f
n
2 , · · · , fnJ−1 + b)T ,

E = (ζ1gJ , ζ2gJ−1, · · · , ζJ−1g2)T ,

Qn = Γ(2− β)τβ(θFn + (1− θ)Fn+1)

+(1− θ)Un+1
J E + θUnJE,

and matrix A = (Aij)(J−1)×(J−1) is defined as follows:

Aij =


−(1− θ)(ξi + ηig2 + ζi), j = i− 1,

1− (1− θ)(ηig1 + ζig1), j = i,
(1− θ)(ξ − ηi − ζig2), j = i+ 1,
−(1− θ)ηigi+1−j , j = 1, 2, · · · , i− 2,

−(1− θ)ζigj+1−i, j = i+ 2, i+ 3, · · · , J − 1.

It is obvious that matrix A is strictly dominant, the system defined by (10) and
(11) has unique solution.

3 STABILITY AND CONVERGENCE

In this section, we investigate the stability and convergence of the numerical
scheme (9).

Theorem 1 For

θαΓ(2− β)τβ

hα
max
x∈[L,R]

(d+(x) + d−(x)) ≤ 2− 21−β , (12)

the weighted finite difference scheme (9) for solving equation (1)-(3) is stable.

Proof. Let uni , ũ
n
i (i = 1, 2, · · · , J, n = 0, 1, 2, · · · , N − 1) be the numerical so-

lutions of (9) corresponding to the initial data u0
i and ũ0

i , respectively. Let
εni = ũni − uni , the stability condition is equivalent to

‖En‖∞ ≤ ‖E0‖∞, n = 0, 1, · · · , N − 1, (13)

where En = (εk1 , ε
k
2 , · · · , εkJ−1). We will use mathematical induction to get the

above result.
For n = 0, we have

−(1− θ)[(ξi + ηig2 + ζi)ε
1
i−1 + ηi

i+1∑
k=3

gkε
1
i−k+1

+ζi

J−i+1∑
k=3

gkε
1
i+k−1 − (ξi − ηi − ζig2)ε1

i+1]

5
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+[1− (1− θ)(ηig1 + ζig1)]ε1
i = θ[(ξi + ηig2 + ζi)ε

0
i−1

+ζi

J−i+1∑
k=3

gkε
0
i+k−1 + (−ξi + ηi + ζig2)ε0

i+1

+ηi

i+1∑
k=3

gkε
0
i−k+1] + [1 + θ(ηig1 + ζig1)]ε0

i , (14)

for n > 0,

−(1− θ)[(ξi + ηig2 + ζi)ε
n+1
i−1 + ηi

i+1∑
k=3

gkε
n+1
i−k+1

+ζi

J−i+1∑
k=3

gkε
n+1
i+k−1 − (ξi − ηi − ζig2)εn+1

i+1 ]

+[1− (1− θ)(ηig1 + ζig1)]εn+1
i =

n−1∑
j=1

djε
n−j
i

+σnε
0
i + θ[(−ξi + ηi + ζig2)εni+1 + ηi

i+1∑
k=3

gkε
n
i−k+1

+ζi

J−i+1∑
k=3

gkε
n
i+k−1 + (ξi + ηig2 + ζi)ε

n
i−1]

+[2− 21−β + θ(ηig1 + ζig1)]εni . (15)

Note that d+(x, t), d−(x, t) ≥ v(x, t), we have

ξi − ηi − ζig2 ≤ 0. (16)

In fact, if n = 0, suppose |ε1
l | = max1≤i≤J−1 |ε1

i |, note that ξi, ηi, ζi > 0 and
for any integer number m,

∑m
j=0 gj < 0, from (12), (16), we derive

‖E1‖∞ = |ε1
l | ≤ −(1− θ)ηl

l+1∑
k=0

gk|ε1
l |+ |ε1

l | − (1− θ)ζl
J−l+1∑
k=0

|ε1
l |

≤ | − (1− θ)[(ξl + ηlg2 + ζl)ε
1
l−1 + ζl

J−l+1∑
k=3

glε
1
l+k−1

+(ηl + ζlg2 − ξl)ε1
l+1 + ηl

l+1∑
k=3

gkε
1
l−k+1]

+[1− (1− θ)(ηlg1 + ζlg1)]ε1
l |

≤ θ[(ξl + ηlg2 + ζl)|ε0
l−1|+ ζl

J−l+1∑
k=3

gk|ε0
l+k−1|

6
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+(ηl + ζlg2)|ε0
l+1|+ ηl

l+1∑
k=3

gk|ε0
l−k+1|]

+[1− θ(ξl − ηlg1 − ζlg1)]|ε0
l | ≤ ‖E0‖∞,

Suppose that ‖En‖∞ ≤ ‖E0‖∞, n = 1, 2, · · · , s, then when n = s + 1, let
|εs+1
l | = max1≤i≤J−1 |εs+1

i |. Similar to former estimate, we obtain

‖Es+1‖∞ ≤ | − (1− θ)[(ξl + ηlg2 + ζl)ε
n+1
l−1 + ηl

l+1∑
k=3

gkε
n+1
l−k+1

+ζl

J−l+1∑
k=3

gkε
n+1
l+k−1 − (ξl − ηl − ζlg2)εn+1

l+1 ]

+[1− (1− θ)(ηlg1 + ζlg1)]εn+1
l |

≤ θ(ξl + ηlg2 + ζl)|εsl−1|+ θ(−ξl + ηl + ζlg2)|εsl+1|

+[2− 21−β + θ(ηlg1 + ζlg1)]|εsl |+ θηl

l+1∑
k=3

gk|εsl−k+1|

+θζl

J−l+1∑
k=3

gk|εsl+k−1|+
s−1∑
j=1

dj |εs−jl |+ σs|ε0
l |

≤ ‖E0‖∞.

Hence, ‖Es+1‖∞ ≤ ‖E0‖∞. The proof is completed.

Theorem 2 Suppose that u(x, t) is the sufficiently smooth solution of (1)-(3)
and uki is the difference solution of difference scheme (9). If the condition (12)
is satisfied, then

‖u(xi, tn)− uni ‖∞ ≤Mσ−1
n−1(τ1+β + τβh),

where M is a positive constant.

Proof. Define eni = u(xi, tn) − uni and en = (en1 , e
n
2 , · · · , enJ−1). Notice that

e0
j = 0, we have: when n = 0,

−(1− θ)[(ξi + ηig2 + ζi)e
1
i−1 + ηi

i+1∑
k=3

gke
1
i−k+1

+ζi

J−i+1∑
k=3

gke
1
i+k−1 − (ξi − ηi − ζig2)e1

i+1]

+[1− (1− θ)(ηig1 + ζig1)]e1
i = R1

i , (17)

when n > 0,

−(1− θ)[(ξi + ηig2 + ζi)e
n+1
i−1 + ηi

i+1∑
k=3

gke
n+1
i−k+1

7
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+ζi

J−i+1∑
k=3

gke
n+1
i+k−1 − (ξi − ηi − ζig2)en+1

i+1 ]

+[1− (1− θ)(ηig1 + ζig1)]en+1
i − θηi

i+1∑
k=3

gke
n
i−k+1

−[2− 21−β + θ(ηig1 + ζig1)]eni − θζi
J−i+1∑
k=3

gke
n
i+k−1

−θ(ξi + ηig2 + ζi)e
n
i−1 −

n−1∑
j=1

dje
n−j
i

−θ(−ξi + ηi + ζig2)eni+1 = Rn+1
i , (18)

where Rn+1
i is the truncation error of difference scheme (9). Furthermore, there

exists a positive constant M independent of step sizes such that |Rn+1
i | ≤

M(τ1+β + τβh).
We will prove by inductive method. Let |e1

l | = max1≤i≤J−1 |e1
i |. If k = 1,

subject to the condition (12), based on (17), we have

‖e1‖∞ ≤ | − (1− θ)[(ξi + ηig2 + ζi)e
1
i−1 + ηi

i+1∑
k=3

gke
1
i−k+1

+ζi

J−i+1∑
k=3

gke
1
i+k−1 − (ξi − ηi − ζig2)e1

i+1]

+[1− (1− θ)(ηig1 + ζig1)]e1
i |

≤M(τ1+β + τβh) = σ−1
0 M(τ1+β + τβh).

Assume that ‖en‖∞ ≤ Mσ−1
n−1(τ1+β + τβh), n = 1, 2, · · · , s, then when n =

s+ 1, let |es+1
l | = max1≤i≤J−1|es+1

i |, notice that σ−1
j < σ−1

k , j = 0, 1, · · · , k− 1.
Similarly, we obtain

‖es+1‖∞ ≤ d1‖es‖∞ +
n−1∑
j=1

dj‖es−j‖∞ +M(τ1+β + τβh)

≤ (d1σ
−1
s−1 + d2σ

−1
s−1 + · · ·+ dsσ

−1
0 + 1)M(τ1+β + τβh)

≤ σ−1
s M(τ1+β + τβh).

Thus, the proof is completed.
In additional, since

lim
n→∞

σ−1
n

nβ
= lim
n→∞

n−1

(1− β)n−1
=

1

1− β
.

there is a constant C1 for which

‖en‖∞ ≤ C1n
β(τ1+β + τβh).

and nτ ≤ T is finite, we obtain the following result.

8
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Theorem 3 Under the conditions of Theorem 2, then numerical solution con-
verges to exact solution as h and τ tend to zero. Furthermore there exists positive
constant C > 0, such that

‖u(xi, tn)− uni ‖ ≤ C(τ + h),

where i = 1, 2, · · · , J − 1;n = 1, 2, · · · , N.

4 NUMERICAL RESULTS

In this section, the following two-sided space-time space-time fractional advection-
diffusion equation in a bounded domain is considered in [15]:

∂0.6u(x, t)

∂t0.6
= −∂u(x, t)

∂x
+ d+(x, t)

∂1.6u(x, t)

∂+x1.6

+d−(x, t)
∂1.6u(x, t)

∂−x1.6
+ f(x, t), (x, t) ∈ [0, 1]× [0, 1]

u(0, t) = 0, u(1, t) = 1 + 4t2, t ∈ [0, 1],

u(x, 0) = x2, x ∈ [0, 1],

where d+(x, t) = 2
5Γ(0.4)x0.6, d−(x, t) = 5Γ(0.4)(1−x)1.6, and f(x, t) = 100

7Γ(0.4)x
2t1.4+

(1 + 4t2)(−25x2 + 40x− 12). The exact solution is u(x, t) = (1 + 4t2)x2.

Table 1: The error max |uki − u(xi, t
k)| for the IWFDMs with θ = 1

N J State The error

10 10 Divergence 1.1305e+019

100 10 Divergence 2.3237e+163

10000 10 Divergence Infinity

30000 10 Convergence 1.3230

Table 1 shows the maximum absolute numerical error between the exact
solution and the numerical solution obtained by NWFDM with θ = 1. From
Table 1, it can see that our scheme is conditionally stable.

Table 2 and Table 3 show the maximum absolute error, at time t = 1.0,
between the exact analytical solution and the numerical solution obtained by
NWFDM with θ = 1/2 and θ = 0, respectively.

Table 4 and Table 5 show the comparison of maximum absolute numerical
error of the weighted finite difference scheme in [12] (WFDM) and new weighted
finite difference (NWFDM). We can see that the NNWDM is more accurate
than WFDM at θ = 0, but at θ = 0.4 is opposite. From the above five tables,
it can seen that the numerical tests are in excellent agreement with theoretical
analysis.

9
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Table 2: The error and convergence rate for the scheme with θ = 1/2

N J Maximum error Convergence rate

200 200 0.0809 -

400 400 0.0486 1.6646

800 800 0.0298 1.6309

1600 1600 0.0055 1.6022

Table 3: The error and convergence rate for the scheme with θ = 0

N J Maximum error Convergence rate

200 200 0.0415 -

400 400 0.0209 1.9378

800 800 0.0107 1.9533

1600 1600 0.0054 1.9815
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Abstract
The non-symmetric algebraic Riccati equation arising in transport theory

can be rewritten as a vector equation and the minimal positive solution of the
non-symmetric algebraic Riccati equation can be obtained by solving the vector
equation. In this paper, based on the Newton-Shamanskii method, we propose a
new iterative method called modified Newton-Shamanskii method for solving the
vector equation. Some convergence results are presented. The convergence analy-
sis shows that sequence of vectors generated by the modified Newton-Shamanskii
method is monotonically increasing and converges to the minimal positive solu-
tion of the vector equation. Finally, numerical experiments are presented to
illustrate the performance of the modified Newton-Shamanskii method.

Key words: non-symmetric algebraic Riccati equation; M -matrix; transport
theory; minimal positive solution; modified Newton-Shamanskii method.
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1 Introduction

For convenience, firstly, we give some definitions and notations. For any matrices
A = [ai,j] and B = [bi,j] ∈ Rm×n, we write A ≥ B(A > B) if ai,j ≥ bi,j(ai,j > bi,j)
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holds for all i, j. The Hadamard product of A and B is defined by A ◦ B = [ai,j · bi,j].
I denotes the identity matrix with appropriate dimension. The superscript T denotes
the transpose of a vector or a matrix. We denote the norm by ‖ · ‖ for a vector or a
matrix.

In this paper we are interested in iteratively solving the following nonsymmetric
algebraic Riccati equation (NARE) arising in transport theory (see [3–5, 21] and the
references cited therein):

XCX −XE − AX + B = 0, (1.1)

where A,B,C,E ∈ Rn×n have the following special form:

A = ∆− eqT , B = eeT , C = qqT , E = D − qeT . (1.2)

Here and in the following, e = (1, 1, ..., 1)T , q = (q1, q2, ..., qn)T with qi = ci/2ωi,





∆ = diag(δ1, δ2, ..., δn) with δi =
1

cωi(1 + α)
,

D = diag(d1, d2, ..., dn) with di =
1

cωi(1− α)
,

(1.3)

and
0 < c ≤ 1, 0 ≤ α < 1, 0 < ωn < ... < ω2 < ω1 < 1 (1.4)

∑n
i=1 ci = 1, ci > 0, i = 1, 2, ..., n.
The form of the Riccati equation (1.1) arises in Markov models [22] and in nuclear

physics [3, 24], and it has many positive solutions in the componentwise sense. There
have been a lot of studies about algebraic properties [11, 21] and iterative methods
for the nonnegative solution of the nonsymmetric algebraic Riccati equations (1.1),
including the basic fixed-point iterations [5–8,19], the doubling algorithm [9], the Schur
method [23,28], the Matrix Sign Function method [13,25] and the alternately linearized
implicit iteration method [15], and so on; see related references therein. The existence
of positive solutions of (1.1) has been shown in [3] and [4], but only the minimal
positive solution is physically meaningful. So it is important to develop some effective
and efficient procedures to compute the minimal positive solution of Equation (1.1).

Recently, Lu [10] has shown that the matrix equation (1.1) is equivalent to a vector
equation and has developed a simple and efficient iterative procedure to compute the
minimal positive solution of (1.1). The fixed-point iteration methods were further
studied in [14, 16] for solving the vector equation. In [14] Bai, Gao and Lu proposed
two nonlinear splitting iteration methods: the nonlinear block Jacobi and the nonlinear
block Gauss-Seidel iteration methods. In [16] Bao, Lin and Wei proposed a modified
simple iteration method for solving the vector equation. Furthermore, the convergence
rates of various fixed-point iterations [10,14,16] were determined and compared in [20].
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The Newton method has been presented and analyzed by Lu for solving the vector
equation in [12]. It has been shown that the Newton method for the vector equation is
more simple and efficient than using the corresponding Newton method directly for the
original Riccati equation (1.1). Li, Huang and Zhang present a relaxed Newton-like
method [17] for solving the vector equation. Especially, in [18] Lin and Bao applied
the Newton-Shamanskii method [2,26] to solve the vector equation.

Based on the Newton-Shamanskii method [18], in this paper, we propose a modi-
fied Newton-Shamanskii method to solve the vector equation. The convergence analysis
shows that the sequence of vectors generated by the new iterative method is monoton-
ically increasing and converges to the minimal positive solution of the vector equation,
which can be used to obtain the minimal positive solution of the original Riccati equa-
tion. Our method extends the recent work done by Lu [12] and Lin and Bao [18].

Now, we give the definition of Z-matrix and M -matrix, and also give the following
two Lemmas which will be used later.

Definition 1 [1] A real square matrix A is called a Z-matrix if all its off-diagonal
elements are non-positive. Any Z-matrix A can be written as A = sI −B with B ≥ 0,
s > 0.

Definition 2 [1] Any matrix A of the form A = sI − B for which s > ρ(B), the
spectral radius of B, is called an M-matrix.

Lemma 1.1 [1] For a Z-matrix A, the following statements are equivalent:
(1) A is a nonsingular M-matrix;
(2) A is nonsingular and A−1 ≥ 0;
(3) Av > 0 for some vector v ≥ 0.

Lemma 1.2 [1] Let A ∈ Rn×n be a nonsingular M-matrix. If B ∈ Rn×n is a Z-matrix
and satisfies the relation B ≥ A, then B ∈ Rn×n is also a nonsingular M-matrix.

The rest of the paper is organized as follows. In Section 2, we review the Newton-
Shamanskii method and some useful results, and present the modified Newton-Shamanskii
method. Some convergence results are given in Section 3. Section 4 and 5 give numer-
ical experiments and conclusions, respectively.

2 The modified Newton-Shamanskii method

It has been shown in [10,12] that the solution of (1.1) must have the following form:

X = T ◦ (uvT ) = (uvT ) ◦ T,
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where T = [ti,j] = [1/(δi + dj)] and u, v are two vectors, which satisfy the vector
equations: {

u = u ◦ (Pv) + e,

v = v ◦ (P̃ u) + e,
(2.1)

where P = [pi,j] = [qj/(δi + dj)], P̃ = [p̃i,j] = [qj/(δj + di)]. Define w = [uT , vT ]T . The
equation (2.1) can be rewritten equivalently as

f(w) = w − w ◦ Pw − e = 0, (2.2)

where

P =

[
0 P

P̃ 0

]
.

The minimal positive solution of (1.1) can be obtained via computing the minimal
positive solution of the vector equation (2.2).

The Newton method presented by Lu in [12] for the vector equation (2.2) is the
following:

wk+1 = wk − f ′(wk)
−1f(wk), k = 0, 1, 2...

where for any w ∈ R2n, the Jacobian matrix f ′(w) of f(w) is given by

f ′(w) = I2n −G(w), with G(w) =

[
G1(v) H1(u)
H2(v) G2(u)

]
(2.3)

where G1(v) = diag(Pv), G2(u) = diag(P̃ u), H1(u) = [u ◦ p1, u ◦ p2, ..., u ◦ pn] and
H2(v) = [v ◦ p̃1, v ◦ p̃2, ..., v ◦ p̃n]. For i = 1, 2, ..., n, pi and p̃i are the ith column of P
and P̃ , respectively. Obviously, when w > 0, G(w) ≥ 0 and f ′(w) is a Z-matrix.

The Newton-Shamanskii method for solving the vector equation (2.2) is given in [18]
as follows:

Algorithm 2.1 (Newton-Shamanskii method) For a given m ≥ 1 and k = 0, 1, 2, ...,





w̃k,1 = wk − f ′(wk)
−1f(wk),

w̃k,p+1 = w̃k,p − f ′(wk)
−1f(w̃k,p), 1 ≤ p ≤ m− 1,

wk+1 = w̃k,m.

(2.4)

It has been shown in [18] that the Newton-Shamanskii method has a better conver-
gence than the Newton method [12]. However, if the inversion of the Jacobian matrix
f ′(w) is difficult to compute, the Newton-Shamanskii method may converge slowly.
Hence, based on the Newton-Shamanskii method, we propose the following modified
Newton-Shamanskii method:
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Algorithm 2.2 (Modified Newton-Shamanskii method) For a given m ≥ 1 and k =
0, 1, 2, ..., the Modified Newton-Shamanskii method is defined as follows:





w̃k,1 = wk − T−1
k f(wk),

w̃k,p+1 = w̃k,p − T−1
k f(w̃k,p), 1 ≤ p ≤ m− 1,

wk+1 = w̃k,m.

(2.5)

where Tk is a Z-matrix and Tk ≥ f ′(wk).

Remark 2.1 When Tk = f ′(wk), the modified Newton-Shamanskii method becomes
the Newton-Shamanskii method [18]. When m = 1 and Tk = f ′(wk), the modified
Newton-Shamanskii method becomes the Newton method [12].

Before we give the convergence analysis of the Modified Newton-Shamanskii method,
let us now state some results which are indispensable for our subsequent discussions.

Lemma 2.1 [18] For any vectors w1, w2 ∈ R2n, f ′(w1) − f ′(w2) = G(w2 − w1). Fur-
thermore, if w2 > w1, we have f ′(w1)− f ′(w2) = G(w2 − w1) ≥ 0.

Here and in the subsequent section, for convenience, [f ′′(w)y]y is define as f ′′(w)y2.
Let

f ′′(w)y = [L1y, L2y, ..., L2ny]T ∈ R2n×2n,

where Li ∈ R2n×2n, y ∈ R2n and for k = 1, 2, ..., n,

Lk =

[
0 (−ekP

T
k )

(−ekP
T
k )T 0

]
, Ln+k =

[
0 (−P̃ke

T
k )

(−P̃ke
T
k )T 0

]

with eT
k = (0, ..., 0, 1, 0, ...), P T

k and P̃k
T

are the kth rows of the matrices P and P̃ ,
respectively.

Lemma 2.2 [12] For any vectors w+, w ∈ R2n, we have

f(w+) = f(w) + f ′(w)(w+ − w) +
1

2
f ′′(w)(w+ − w, w+ − w). (2.6)

In particular, if w+ = w∗, the minimal positive solution of (2.2), then

0 = f(w) + f ′(w)(w∗ − w) +
1

2
f ′′(w)(w∗ − w, w∗ − w). (2.7)

Furthermore, for any y > 0 or y < 0,

f ′′(w)y2 < 0 (2.8)
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and f ′′(w)y2 is independent of w.
Because of the independence, in the following, we denote the operator f ′′(w) by L ,

i.e., L (y, y) = f ′′(w)(y, y) for any y ∈ R2n. By (2.7), we have

f(w) = f ′(w)(w − w∗)− 1

2
L (w − w∗, w − w∗), (2.9)

f ′(w)(w − w∗) = f(w) +
1

2
L (w − w∗, w − w∗). (2.10)

Lemma 2.3 [12] If 0 ≤ w < w∗ and f(w) < 0, then f ′(w) is a nonsingular M-matrix.

3 Convergence analysis of the Modified Newton-

Shamanskii method

Now, we analyse convergence of the modified Newton-Shamanskii method (2.5).

Theorem 3.1 Given a vector wk ∈ R2n. w̃k,1, w̃k,2, ..., w̃k,m, wk+1 are obtained by the
modified Newton-Shamanskii method (2.5). If wk < w∗ and f(wk) < 0, then, f ′(wk) is
a nonsingular M-matrix, moreover,

(1) wk < w̃k,1 < w̃k,2 < ... < w̃k,m = wk+1 < w∗;
(2) f(w̃k,p) < 0 for p = 1, 2, ..., m;
(3) f ′(w̃k,p) is a nonsingular M-matrix for p = 1, 2, ..., m.

Therefore, wk+1 < w∗, f(wk+1) < 0 and f ′(wk+1) is a nonsingular M-matrix.

Proof. Since wk < w∗ and f(wk) < 0, by Lemma 2.3, we can easily obtain that
f ′(wk) is a nonsingular M -matrix. By Lemma 1.2, we can conclude that Tk is also a
nonsingular M -matrix. Now, we prove the theorem by mathematical induction. Define
the error vectors ẽk,i = w̃k,i − w∗ and ek = wk − w∗, then ek < 0. For p = 1, we have
w̃k,1 = wk − T−1

k f(wk). Since f(wk) < 0 and Tk is also a nonsingular M -matrix, then
w̃k,1 > wk by Lemma 1.1.

By Eqs. (2.5) and (2.9), we obtain

ẽk,1 = ek − T−1
k f(wk)

= ek − T−1
k [f ′(wk)ek − 1

2
L (ek, ek)]

= T−1
k [Tk − f ′(wk)]ek +

1

2
T−1

k L (ek, ek) < 0. (3.1)

Thus, w̃k,1 < w∗.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

385 Jian-Lei Li et al 380-393



Jian-Lei Li etal: A modified Newton-Shamanskii method for Riccati equation

By Eq. (2.6) and Lemma 1.1, we have

f(w̃k,1) = f(wk − T−1
k f(wk))

= f(wk)− f ′(wk)T
−1
k f(wk) +

1

2
L (T−1

k f(wk), T
−1
k f(wk))

= [Tk − f ′(wk)]T
−1
k f(wk) +

1

2
L (T−1

k f(wk), T
−1
k f(wk)) < 0. (3.2)

By Lemma 2.3, it can be concluded that f ′(w̃k,1) is a nonsingular M -matrix. Therefore,
the results hold for p = 1.

Assume the results are true for 1 ≤ p ≤ t. Then, for p = t + 1, we have w̃k,t+1 =
w̃k,t − T−1

k f(w̃k,t). Since f(w̃k,t) < 0 and Tk is a nonsingular M -matrix, then w̃k,t+1 >
w̃k,t.

Since wk < w̃k,1 < w̃k,2 < ... < w̃k,t, by Lemma 2.1, we have f ′(wk) > f ′(w̃k,1) >
f ′(w̃k,2) > ... > f ′(w̃k,t). Therefore,

Tk − f ′(w̃k,t) > ... > Tk − f ′(w̃k,1) > Tk − f ′(wk) ≥ 0.

By Eqs. (2.5) and (2.9), we have the following error vectors equation

ẽk,t+1 = ẽk,t − T−1
k f(w̃k,t)

= ẽk,t − T−1
k [f ′(w̃k,t)ẽk,t − 1

2
L (ẽk,t, ẽk,t)]

= T−1
k [Tk − f ′(w̃k,t)]ẽk,t +

1

2
T−1

k L (ẽk,t, ẽk,t) < 0. (3.3)

Therefore, w̃k,t+1 < w∗.
Similarly, by Eq. (2.6) and Lemma 1.1, we have

f(w̃k,t+1) = f(w̃k,t − T−1
k f(w̃k,t))

= f(w̃k,t)− f ′(w̃k,t)T
−1
k f(w̃k,t) +

1

2
L (T−1

k f(w̃k,t), T
−1
k f(w̃k,t))

= [Tk − f ′(w̃k,t)]T
−1
k f(w̃k,t) +

1

2
L (T−1

k f(w̃k,t), T
−1
k f(w̃k,t)) < 0. (3.4)

By Lemma 2.3, we have that f ′(w̃k,t+1) is a nonsingular M -matrix. Therefore, the
results hold for p = t+1. Hence, by the principle of mathematical induction, the proof
of the theorem is completed. ¤

In practical computation, we should choose Tk such that the iteration step (2.5)
is less expensive to implement. For any wk ∈ R2n, according to the structure of the
Jacobian f ′(wk), Tk may be chosen as

Tk = I2n −
[

G1(vk) 0
0 G2(uk)

]
(3.5)
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or

Tk = I2n −
[

G1(vk) H1(uk)
0 G2(uk)

]
. (3.6)

Another choice for Tk is

Tk = I2n −
[

G1(vk) 0
H2(vk) G2(uk)

]
.

Numerical experiments show that the performance for this choice is almost the same
as that for Tk given by (3.6).

The following theorem provides some results concerning the convergence of the
modified Newton-Shamanskii method for the vector equation (2.2).

Theorem 3.2 Let w∗ be the minimal positive solution of the vector equation (2.2). The
sequence of the vector sets {wk, w̃k,1, w̃k,2, ..., w̃k,m} obtained by the modified Newton-
Shamanskii method (2.5) with the initial vector w0 = 0 is well defined. For all k ≥ 0
and 1 ≤ p ≤ m, we have

(1) f(wk) < 0 and f(w̃k,p) < 0;
(2) f ′(wk) and f ′(w̃k,p) are nonsingular M-matrices;
(3) w0 < w̃0,1 < w̃0,2 < ... < w̃0,m = w1 < w̃1,1 < w̃1,2 < ... < w̃1,m = w2 < ... <

w̃k−1,m = wk < w̃k,1 < ... < w̃k,m = wk+1 < ... < w∗.
Furthermore, we have

lim
k→∞

wk = w∗.

Proof. This theorem can also be proved by mathematical induction. The proof is
similar to that of the Theorem 1 in [18]. Therefore, it is omitted. ¤

4 Numerical experiments

In this section, we give numerical experiments to illustrate the performance of the
modified Newton-Shamanskii method presented in Section 3 with two different choices
of the matrix Tk. Let NS denote the Newton-Shamanskii iterative method [18], MNS1
and MNS2 denote the modified Newton-Shamanskii iterative method (2.5) with Tk

given by(3.5) and (3.6), respectively. In order to show numerically the performance
of the modified Newton-Shamanskii iterative method, we list the number of iteration
steps (denoted as IT), the CPU time in seconds (denoted as CPU), and relative residual
error (denoted as ERR). The residual error is defined by

ERR = max

{‖uk+1 − uk‖2

‖uk+1‖2

,
‖vk+1 − vk‖2

‖vk+1‖2

}
,
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Figure 1: CPU time and IT numbers for (c, α) = (0.999, 0.001) and
n = 512 with different m. Left: CPU time; right: IT numbers
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Figure 2: CPU time and IT numbers for (c, α) = (0.5, 0.5) and n = 512
with different m. Left: CPU time; right: IT numbers

where ‖ · ‖2 is the 2-norm for a vector. For comparison, every experiment is repeated
5 times, and the average of the 5 CPU times is shown here. All the experiments are
run in MATLAB 7.0 on a personal computer with Intel(R) Pentium(R) D 3.00GHz
CPU and 0.99 GB memory, and all iterations are terminated once the current iterate
satisfies ERR ≤ n · eps, where eps = 1× 10−16.

In the test example, the constants ci and wi, i = 1, 2, ...n, are given by the numerical
quadrature formula on the interval [0, 1], which are obtained by dividing [0, 1] into n

4

subintervals of equal length and applying a Gauss-Legendre quadrature [27] with 4
nodes to each subinterval; see the Example 5.2 in [6]

We test several different values (c, α). In Table 1, for n = 512 with different m and
pairs of (c, α), and in Table 2, for the fixed (c, α) = (0.99, 0.01) with different n, we list
ITs, CPUs and ERRs for the NS method and MNS methods, respectively. Figure 1 and
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Table 1: Numerical results for n = 512 and different pairs of (c, α)

m method
(c, α)

(0.999, 0.001) (0.99, 0.01) (0.9, 0.1) (0.5, 0.5)

1

NS
IT 10 9 7 5

CPU 2.9380 2.6100 2.2810 1.6090
ERR 2.1776e-15 1.5433e-15 1.4280e-15 1.5773e-14

MNS1
IT 376 130 43 16

CPU 5.9370 2.0630 0.7820 0.2810
ERR 4.7938e-14 4.3618e-14 2.7158e-14 7.0829e-15

MNS2
IT 195 69 24 10

CPU 3.7500 1.3430 0.5150 0.2190
ERR 4.7717e-014 3.3654e-14 1.6087e-14 1.7311e-15

3

NS
IT 6 5 5 4

CPU 2.5310 2.0630 2.0780 1.7190
ERR 5.3953e-15 4.6570e-14 1.2318e-15 1.0553e-15

MNS1
IT 132 46 16 6

CPU 2.5780 0.9370 0.3130 0.1410
ERR 4.3397e-14 3.7357e-14 1.0270e-14 2.6302e-14

MNS2
IT 69 25 10 5

CPU 1.8440 0.6720 0.2810 0.1410
ERR 4.4170e-14 2.9843e-14 8.7831e-16 1.5640e-16

6

NS
IT 5 4 4 3

CPU 2.9220 2.2340 2.2810 1.7350
ERR 1.9497e-15 1.7274e-15 1.3919e-15 1.0832e-15

MNS1
IT 68 24 9 4

CPU 1.9060 0.6100 0.2340 0.1100
ERR 4.7883e-14 4.0900e-14 3.3139e-15 2.9604e-16

MNS2
IT 36 14 6 3

CPU 1.3280 0.5160 0.2340 0.1250
ERR 4.7025e-14 8.5873e-15 5.5104e-16 2.1332e-15

12

NS
IT 4 4 3 3

CPU 3.4530 3.5160 2.5630 2.6410
ERR 1.9512e-15 1.6885e-15 1.3243e-15 1.1225e-15

MNS1
IT 36 13 5 3

CPU 1.2660 0.4680 0.1880 0.1250
ERR 2.9584e-14 2.6812e-14 1.9980e-14 1.64101e-16

MNS2
IT 20 8 4 3

CPU 1.2190 0.4530 0.2180 0.2030
ERR 1.1402e-14 4.8204e-15 5.5981e-16 1.6410e-16
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Table 2: Numerical results for (c, α) = (0.99, 0.01) and different n, m

m method
n

64 128 256 512 1024

1

NS
IT 9 9 9 9 9

CPU 0.0310 0.0620 0.4220 2.6100 16.9060
ERR 6.8597e-16 9.5495e-16 1.1845e-15 1.5433e-15 2.7143e-15

MNS1
IT 140 136 133 130 126

CPU 0.0630 0.0940 0.4850 2.0630 7.4530
ERR 5.3918e-15 1.2247e-14 2.3157e-14 4.3618e-14 1.0212e-14

MNS2
IT 73 72 70 69 67

CPU 0.0160 0.0630 0.2970 1.3430 4.7180
ERR 6.1723e-15 9.44380e-15 2.1990e-14 3.3654e-14 7.8688e-14

5

NS
IT 5 5 5 5 5

CPU 0.0160 0.0630 0.4220 2.3750 14.6560
ERR 8.1022e-16 8.6594e-16 1.2226e-15 1.6581e-15 2.1565e-15

MNS1
IT 31 30 29 29 28

CPU 0.0150 0.0310 0.1410 0.6410 2.3590
ERR 2.7024e-15 7.6059e-15 2.2028e-14 2.1877e-14 6.3491e-14

MNS2
IT 17 17 16 16 16

CPU 0.0160 0.0310 0.0930 0.5160 1.9530
ERR 2.4804e-15 2.4814e-15 2.0690e-14 2.0656e-14 2.0698e-14

10

NS
IT 4 4 4 4 4

CPU 0.0160 0.0780 0.5000 2.7500 16.6090
ERR 7.2604e-16 8.1207e-16 1.1571e-15 1.5460e-15 2.2290e-15

MNS1
IT 16 16 16 15 15

CPU 0.0150 0.0150 0.0780 0.4680 1.7350
ERR 6.0508e-15 5.8374e-15 6.0658e-15 4.9045e-14 4.8935e-14

MNS2
IT 10 10 9 9 9

CPU 0.0160 0.0320 0.0630 0.4380 1.6400
ERR 5.6442e-16 4.2340e-16 1.4346e-14 1.3941e-14 1.3698e-14
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Figure 2 describe the CPU time and IT numbers of those methods when n = 512 for
(c, α) = (0.999, 0.001) and (c, α) = (0.5, 0.5). From these Tables and Figures, we can
see that the optimal choice of m for the modified Newton-Shamanskii method is larger
when (c, α) = (0.999, 0.001), compared with (c, α) = (0.5, 0.5). Obviously, compared
with the Newton-Shamanskii iterative method, though the iterations number of the
modified Newton-Shamanskii iterative method is more, according to the CPU time,
we can find that the modified Newton-Shamanskii iterative method outperforms the
Newton-Shamanskii iterative method. Among these methods, the MNS2 method is the
best one.

5 Conclusion

In this paper, based on the Newton-Shamanskii method, we have proposed a modi-
fied Newton-Shamanskii method for solving the minimal positive solution of the non-
symmetric algebraic Riccati equation arising in transport theory and have given the
convergence analysis. The convergence analysis shows that the iteration sequence gen-
erated by the modified Newton-Shamanskii method is monotonically increasing and
converges to the minimal positive solution of the vector equation. Numerical experi-
ments show that the modified Newton-Shamanskii method has a better performance
than the Newton-Shamanskii method for the nonsymmetric algebraic Riccati equa-
tion. We find that when Tk is chosen as the block triangular of the Jacobian matrix,
the modified Newton-Shamanskii method has a better convergence rate. The choice
of the matrix Tk impacts the convergence rate of the modified Newton-Shamanskii
method, hence, the determination of the optimum matrix Tk such that the modified
Newton-Shamanskii method has a better convergence rate needs further to be studied.
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Hesitant fuzzy filters and hesitant fuzzy G-filters in

residuated lattices
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Abstract.

Characterizations of a hesitant fuzzy filter in a residuated lattice are considered. Given a

hesitant fuzzy set, a new hesitant fuzzy filter of a residuated lattice is constructed. The notion

of a hesitant fuzzy G-filter of a residuated lattice is introduced, and its characterizations are

discussed. Conditions for a hesitant fuzzy filter to be a hesitant fuzzy G-filter are provided.

Finally, the extension property of a hesitant fuzzy G-filter is established.

1. Introduction

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.

are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra and Narukawa

[5] and Torra [6] introduced the notion of hesitant fuzzy sets and discussed the relationship

between hesitant fuzzy sets and intuitionistic fuzzy sets. Xia and Xu [11] studied hesitant fuzzy

information aggregation techniques and their application in decision making. They developed

some hesitant fuzzy operational rules based on the interconnection between the hesitant fuzzy

set and the intuitionsitic fuzzy set. Xu and Xia [12] proposed a variety of distance measures for

hesitant fuzzy sets, and investigated the connections of the aforementioned distance measures

and further developed a number of hesitant ordered weighted distance measures and hesitant

ordered weighted similarity measures. Xu and Xia [13] defined the distance and correlation

measures for hesitant fuzzy information and then considered their properties in detail. Wei

[9] investigated the hesitant fuzzy multiple attribute decision making problems in which the

attributes are in different priority level.

Residuated lattices are a non-classical logic system which is a formal and useful tool for

computer science to deal with uncertain and fuzzy information. Filter theory, which is an

important notion, in residuated lattices is studied by Shen and Zhang [4] and Zhu and Xu [15].

Wei [10] introduced the notion of hesitant fuzzy (implicative, regular and Boolean) filters in

residuated lattice, and discussed its properties.
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In this paper, we deal with further properties of a hesitant fuzzy filter in a residuated lattice.

We consider characterizations of a hesitant fuzzy filter in a residuated lattice. Given a hesitant

fuzzy set, we construct a new hesitant fuzzy filter of a residuated lattice. We introduce the

notion of a hesitant fuzzy G-filter of a residuated lattice, and discuss its characterizations. We

provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy G-filter. Finally, we establish

the extension property of a hesitant fuzzy G-filter.

2. Preliminaries

Definition 2.1 ([1, 2, 3]). A residuated lattice is an algebra (L,∨,∧,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0)

such that

(1) (L,∨,∧, 0, 1) is a bounded lattice.

(2) (L,�, 1) is a commutative monoid.

(3) � and → form an adjoint pair, that is,

(∀x, y, z ∈ L) (x ≤ y → z ⇔ x� y ≤ z) .

In a residuated lattice L, the ordering ≤ and negation ¬ are defined as follows:

(∀x, y ∈ L) (x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y ⇔ x→ y = 1)

and ¬x = x→ 0 for all x ∈ L.

Proposition 2.2 ([1, 2, 3, 7, 8]). In a residuated lattice L, the following properties are valid.

1→ x = x, x→ 1 = 1, x→ x = 1, 0→ x = 1, x→ (y → x) = 1.(2.1)

y ≤ (y → x)→ x.(2.2)

x ≤ y → z ⇔ y ≤ x→ z.(2.3)

x→ (y → z) = (x� y)→ z = y → (x→ z).(2.4)

x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z.(2.5)

z → y ≤ (x→ z)→ (x→ y), z → y ≤ (y → x)→ (z → x).(2.6)

(x→ y)� (y → z) ≤ x→ z.(2.7)

x� y ≤ x ∧ y.(2.8)

x ≤ y ⇒ x� z ≤ y � z.(2.9)

y → z ≤ x ∨ y → x ∨ z.(2.10)

(x ∨ y)→ z = (x→ z) ∧ (y → z).(2.11)
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Definition 2.3 ([4]). A nonempty subset F of a residuated lattice L is called a filter of L if it

satisfies the conditions:

(∀x, y ∈ L) (x, y ∈ F ⇒ x� y ∈ F ) .(2.12)

(∀x, y ∈ L) (x ∈ F, x ≤ y ⇒ y ∈ F ) .(2.13)

Proposition 2.4 ([4]). A nonempty subset F of a residuated lattice L is a filter of L if and

only if it satisfies:

1 ∈ F.(2.14)

(∀x ∈ F ) (∀y ∈ L) (x→ y ∈ F ⇒ y ∈ F ) .(2.15)

3. Hesitant fuzzy filters

Let E be a reference set. A hesitant fuzzy set on E (see [6]) is defined in terms of a function

h that when applied to E returns a subset of [0, 1], that is, h : E →P([0, 1]).

In what follows, we take a residuated lattice L as a reference set.

Definition 3.1 ([10]). A hesitant fuzzy set h on L is called a hesitant fuzzy filter of L if it

satisfies:

(∀x, y ∈ L) (x ≤ y ⇒ h(x) ⊆ h(y)) ,(3.1)

(∀x, y ∈ L) (h(x) ∩ h(y) ⊆ h(x� y)) .(3.2)

Example 3.2. Let L = [0, 1] be a subset of R. For any a, b ∈ L, define

a ∨ b = max{a, b}, a ∧ b = min{a, b},

a→ b =

{
1 if a ≤ b,
(1− a) ∨ b otherwise,

and

a� b =

{
0 if a+ b ≤ 1,

a ∧ b otherwise.

Then (L,∨,∧,�,→, 0, 1) is a residuated lattice (see [15]). We define a hesitant fuzzy set

h : L→P([0, 1]), x 7→

{
(0.2, 0.7) if x ∈ (c, 1] where 0.5 ≤ c ≤ 1,

(0.3, 0.6] otherwise.

It is routine to verify that h is a hesitant fuzzy filter of L.

Example 3.3. Let L = {0, a, b, c, d, 1} be a set with the lattice diagram appears in Figure 1.
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Consider two operation ‘�’ and ’→’ shown in Table 1 and Table 2, respectively.

Table 1. Cayley table for the binary operation ‘�’

� 0 a b c d 1

0 0 0 0 0 0 0

a 0 a c c 0 a

b 0 c b c d b

c 0 c c c 0 c

d 0 0 d 0 0 d

1 0 a b c d 1

Table 2. Cayley table for the binary operation ‘→’

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 b b d 1

b 0 a 1 a d 1

c d 1 1 1 d 1

d a 1 1 1 1 1

1 0 a b c d 1

Then (L,∨,∧,�,→, 0, 1) is a residuated lattice. We define a hesitant fuzzy set

h : L→P([0, 1]), x 7→

{
[0.2, 0.9) if x ∈ {1, a},
(0.3, 0.8] otherwise.

It is routine to verify that h is a hesitant fuzzy filter of L.

Wei [10] provided a characterization of a hesitant fuzzy filter as follows.
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Lemma 3.4 ([10]). A hesitant fuzzy set h on L is a hesitant fuzzy filter of L if and only if it

satisfies

(∀x ∈ L) (h(x) ⊆ h(1)) .(3.3)

(∀x, y ∈ L) (h(x) ∩ h(x→ y) ⊆ h(y)) .(3.4)

We provide other characterizations of a hesitant fuzzy filter.

Theorem 3.5. A hesitant fuzzy set h on L is a hesitant fuzzy filter of L if and only if it

satisfies:

(∀x, y, z ∈ L) (x ≤ y → z ⇒ h(x) ∩ h(y) ⊆ h(z)) .(3.5)

Proof. Assume that h is a hesitant fuzzy filter of L. Let x, y, z ∈ L be such that x ≤ y → z.

Then h(x) ⊆ h(y → z) by (3.1), and so

h(z) ⊇ h(y) ∩ h(y → z) ⊇ h(x) ∩ h(y)

by (3.4).

Conversely let h be a hesitant fuzzy set on L satisfying (3.5). Since x ≤ x→ 1 for all x ∈ L,
it follows from (3.5) that

h(1) ⊇ h(x) ∩ h(x) = h(x)

for all x ∈ L. Since x→ y ≤ x→ y for all x, y ∈ L, we have

h(y) ⊇ h(x) ∩ h(x→ y)

for all x, y ∈ L. Hence h is a hesitant fuzzy filter of L. �

Theorem 3.6. A hesitant fuzzy set h on L is a hesitant fuzzy filter of L if and only if h satisfies

the condition (3.3) and

(∀x, y, z ∈ L) (h(x→ (y → z)) ∩ h(y) ⊆ h(x→ z)) .(3.6)

Proof. Assume that h is a hesitant fuzzy filter of L. Then the condition (3.3) is valid. Using

(2.4) and (3.4), we have

h(x→ z) ⊇ h(y) ∩ h(y → (x→ z))

= h(y) ∩ h(x→ (y → z))

for all x, y, z ∈ L.
Conversely, let h be a hesitant fuzzy set on L satisfying (3.3) and (3.6). Taking x := 1 in

(3.6) and using (2.1), we get

h(z) = h(1→ z) ⊇ h(1→ (y → z)) ∩ h(y)

= h(y → z) ∩ h(y)

for all y, z ∈ L. Thus h is a hesitant fuzzy filter of L by Lemma 3.4. �
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Lemma 3.7. Every hesitant fuzzy filter h on L satisfies the following condition:

(∀a, x ∈ L) (h(a) ⊆ h((a→ x)→ x)) .(3.7)

Proof. If we take y = (a→ x)→ x and x = a in (3.4), then

h((a→ x)→ x) ⊇ h(a) ∩ h(a→ ((a→ x)→ x))

= h(a) ∩ h((a→ x)→ (a→ x))

= h(a) ∩ h(1) = h(a).

This completes the proof. �

Theorem 3.8. A hesitant fuzzy set h on L is a hesitant fuzzy filter of L if and only if it satisfies

the following conditions:

(∀x, y ∈ L) (h(x) ⊆ h(y → x)) ,(3.8)

(∀x, a, b ∈ L) (h(a) ∩ h(b) ⊆ h((a→ (b→ x))→ x)) .(3.9)

Proof. Assume that h is a hesitant fuzzy filter of L. Using (2.1), (3.3) and (3.4), we have

h(y → x) ⊇ h(x) ∩ h(x→ (y → x)) = h(x) ∩ h(1) = h(x)

for all x, y ∈ L. Using (3.6) and (3.7), we get

h((a→ (b→ x))→ x) ⊇ h((a→ (b→ x))→ (b→ x)) ∩ h(b) ⊇ h(a) ∩ h(b)

for all a, b, x ∈ L.

Conversely, let h be a hesitant fuzzy set on L satisfying two conditions (3.8) and (3.9). If we

take y := x in (3.8), then h(x) ⊆ h(x→ x) = h(1) for all x ∈ L. Using (3.9) induces

h(y) = h(1→ y) = h((x→ y)→ (x→ y))→ y) ⊇ h(x→ y) ∩ h(x)

for all x, y ∈ L. Therefore h is a hesitant fuzzy filter of L by Lemma 3.4. �

Theorem 3.9. A hesitant fuzzy set h on L is a hesitant fuzzy filter of L if and only if the set

hτ := {x ∈ L | τ ⊆ h(x)}

is a filter of L for all τ ∈P([0, 1]) with hτ 6= ∅.

Proof. Assume that h is a hesitant fuzzy filter of L. Let x, y ∈ L and τ ∈ P([0, 1]) be such

that x ∈ hτ and x→ y ∈ hτ . Then τ ⊆ h(x) and τ ⊆ h(x→ y). It follows from (3.3) and (3.4)

that h(1) ⊇ h(x) ⊇ τ and h(y) ⊇ h(x) ∩ h(x → y) ⊇ τ and so that 1 ∈ hτ and y ∈ hτ . Hence

hτ is a filter of L by Proposition 2.4.

Conversely, suppose that hτ is a filter of L for all τ ∈P([0, 1]) with hτ 6= ∅. For any x ∈ L,

let h(x) = δ. Then x ∈ hδ and hδ is a filter of L. Hence 1 ∈ hδ and so h(x) = δ ⊆ h(1). For
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any x, y ∈ L, let h(x) = δx and h(x → y) = δx→y. If we take δ = δx ∩ δx→y, then x ∈ hδ and

x→ y ∈ hδ which imply that y ∈ hδ. Thus

h(x) ∩ h(x→ y) = δx ∩ δx→y = δ ⊆ h(y).

Therefore h is a hesitant fuzzy filter of L by Lemma 3.4. �

Theorem 3.10. For a hesitant fuzzy set h on L, let h̃ be a hesitant fuzzy set on L defined by

h̃ : L→P([0, 1]), x 7→

{
h(x) if x ∈ hτ ,
∅ otherwise,

where τ ∈P([0, 1]) \ {∅}. If h is a hesitant fuzzy filter of L, then so is h̃.

Proof. Suppose that h is a hesitant fuzzy filter of L. Then hτ is a filter of L for all τ ∈P([0, 1])

with hτ 6= ∅ by Theorem 3.9. Thus 1 ∈ hτ , and so h̃(1) = h(1) ⊇ h(x) ⊇ h̃(x) for all x ∈ L.

Let x, y ∈ L. If x ∈ hτ and x→ y ∈ hτ , then y ∈ hτ . Hence

h̃(x) ∩ h̃(x→ y) = h(x) ∩ h(x→ y) ⊆ h(y) = h̃(y).

If x /∈ hτ or x→ y /∈ hτ , then h̃(x) = ∅ or h̃(x→ y) = ∅. Thus

h̃(x) ∩ h̃(x→ y) = ∅ ⊆ h̃(y).

Therefore h̃ is a hesitant fuzzy filter of L. �

Theorem 3.11. If h is a hesitant fuzzy filter of L, then the set

Γa := {x ∈ L | h(a) ⊆ h(x)}

is a filter of L for every a ∈ L.

Proof. Since h(1) ⊇ h(a) for all a ∈ L, we have 1 ∈ Γa. Let x, y ∈ L be such that x ∈ Γa and

x → y ∈ Γa. Then h(x) ⊇ h(a) and h(x → y) ⊇ h(a). Since h is a hesitant fuzzy filter of L, it

follows from (3.4) that

h(y) ⊇ h(x) ∩ h(x→ y) ⊇ h(a)

so that y ∈ Γa. Hence Γa is a filter of L by Proposition 2.4. �

Theorem 3.12. Let a ∈ L and let h be a hesitant fuzzy set on L. Then

(1) If Γa is a filter of L, then h satisfies the following condition:

(∀x, y ∈ L) (h(a) ⊆ h(x) ∩ h(x→ y) ⇒ h(a) ⊆ h(y)).(3.10)

(2) If h satisfies (3.3) and (3.10), then Γa is a filter of L.
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Proof. (1) Assume that Γa is a filter of L. Let x, y ∈ L be such that

h(a) ⊆ h(x) ∩ h(x→ y).

Then x→ y ∈ Γa and x ∈ Γa. Using (2.15), we have y ∈ Γa and so h(y) ⊇ h(a).

(2) Suppose that h satisfies (3.3) and (3.10). From (3.3) it follows that 1 ∈ Γa. Let x, y ∈ L
be such that x ∈ Γa and x → y ∈ Γa. Then h(a) ⊆ h(x) and h(a) ⊆ h(x → y), which imply

that h(a) ⊆ h(x) ∩ h(x → y). Thus h(a) ⊆ h(y) by (3.10), and so y ∈ Γa. Therefore Γa is a

filter of L by Proposition 2.4. �

Definition 3.13 ([14]). A nonempty subset F of L is called a G-filter of L if it is a filter of L

that satisfies the following condition:

(∀x, y ∈ L) ((x� x)→ y ∈ F ⇒ x→ y ∈ F ) .(3.11)

We consider the hesitant fuzzification of G-filters.

Definition 3.14. A hesitant fuzzy set h on L is called a hesitant fuzzy G-filter of L if it is a

hesitant fuzzy filter of L that satisfies:

(∀x, y ∈ L) (h((x� x)→ y) ⊆ h(x→ y)) .(3.12)

Note that the condition (3.12) is equivalent to the following condition:

(∀x, y ∈ L) (h(x→ (x→ y)) ⊆ h(x→ y)) .(3.13)

Example 3.15. The hesitant fuzzy filter h in Example 3.3 is a hesitant fuzzy G-filter of L.

Lemma 3.16. Every hesitant fuzzy filter h of L satisfies the following condition:

(∀x, y, z ∈ L) (h(x→ (y → z)) ∩ h(x→ y) ⊆ h(x→ (x→ z))) .(3.14)

Proof. Let x, y, z ∈ L. Using (2.4) and (2.6), we have

x→ (y → z) = y → (x→ z) ≤ (x→ y)→ (x→ (x→ z)).

It follows from Theorem 3.5 that

h(x→ (y → z)) ∩ h(x→ y) ⊆ h(x→ (x→ z)).

This completes the proof. �

Theorem 3.17. Let h be a hesitant fuzzy set on L. Then h is a hesitant fuzzy G-filter of L if

and only if it is a hesitant fuzzy filter of L that satisfies the following condition:

(∀x, y, z ∈ L) (h(x→ (y → z)) ∩ h(x→ y) ⊆ h(x→ z)) .(3.15)
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Proof. Assume that h is a hesitant fuzzy G-filter of L. Then h is a hesitant fuzzy filter of L.

Note that x ≤ 1 = (x → y) → (x → y), and thus x → y ≤ x → (x → y) for all x, y ∈ L. It

follows from (3.1) that h(x→ y) ⊆ h(x→ (x→ y)). Combining this and (3.13), we have

h(x→ y) = h(x→ (x→ y))(3.16)

for all x, y ∈ L. Using (3.14) and (3.16), we have

h(x→ (y → z)) ∩ h(x→ y) ⊆ h(x→ z)

for all x, y, z ∈ L.

Conversely, let h be a hesitant fuzzy filter of L that satisfies the condition (3.15). If we put

y = x and z = y in (3.15) and use (2.1) and (3.3), then

h(x→ y) ⊇ h(x→ (x→ y)) ∩ h(x→ x)

= h(x→ (x→ y)) ∩ h(1)

= h(x→ (x→ y))

for all x, y ∈ L. Therefore h is a hesitant fuzzy G-filter of L. �

Theorem 3.18. Let h be a hesitant fuzzy filter of L. Then h is a hesitant fuzzy G-filter of L

if and only if the following condition holds:

(∀x ∈ L) (h(x→ (x� x)) = h(1)) .(3.17)

Proof. Assume that h satisfies the condition (3.17) and let x, y ∈ L. Since

x→ (x→ y) = (x� x)→ y ≤ (x→ (x� x))→ (x→ y)

by (2.4) and (2.6), it follows from (3.1) that

h(x→ (x→ y)) ⊆ h((x→ (x� x))→ (x→ y)).

Hence, we have

h(x→ y) ⊇ h((x→ (x� x))→ (x→ y)) ∩ h(x→ (x� x))

⊇ h(x→ (x→ y)) ∩ h(x→ (x� x))

= h(x→ (x→ y)) ∩ h(1)

= h(x→ (x→ y))

by using (3.4), (3.17) and (3.3). Hence h is a hesitant fuzzy G-filter of L. �

Theorem 3.19. (Extension property) Let h and g be hesitant fuzzy filters of L such that h ⊆ g,

i.e., h(x) ⊆ g(x) for all x ∈ L and h(1) = g(1). If h is a hesitant fuzzy G-filter of L, then so is

g.
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Proof. Assume that h is a hesitant fuzzy G-filter of L. Using (2.4) and (2.1), we have

x→ (x→ ((x→ (x→ y))→ y)) = (x→ (x→ y))→ (x→ (x→ y)) = 1

for all x, y ∈ L. Thus

g(x→ ((x→ (x→ y))→ y)) ⊇ h(x→ ((x→ (x→ y))→ y))

= h(x→ (x→ ((x→ (x→ y))→ y)))

= h(1) = g(1)

by hypotheses and (3.16), and so

g(x→ ((x→ (x→ y))→ y)) = g(1)

for all x, y ∈ L by (3.3). Since g is a hesitant fuzzy filter of L, it follows from (3.4), (2.4) and

(3.3) that

g(x→ y) ⊇ g(x→ (x→ y)) ∩ g((x→ (x→ y))→ (x→ y))

= g(x→ (x→ y)) ∩ g(x→ ((x→ (x→ y))→ y))

= g(x→ (x→ y)) ∩ g(1)

= g(x→ (x→ y))

for all x, y ∈ L. Therefore g is a hesitant fuzzy G-filter of L. �
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