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Abstract

For solving non-linear equations, iterative root-finding methods are
important because of the broad range of applications in science and engi-
neering. We have constructed an iterative method based on multiplicative
calculus in this paper. Some numerical results are performed to exposed
the efficiency of proposed and earlier method.

Keywords: Multiplicative calculus, Non linear equations, Iterative methods,
Newton’s-Raphson method, Order of convergence

1 Introduction

In the field of engineering and sciences, solving nonlinear equations effectively
is one of the interesting task. Sometimes it is difficult to solve these problems.
Then, we rely on iterative schemes to execute the root of non-linear function
g(t) = 0. One of the popular methods for approximating the root of a non-linear
function is the Newton’s method [14] defined as

tq+1 = tq −
g(tq)

g′(tq)
, q = 0, 1, 2, 3... (1)

The convergence order of Newton’s method is two for the simple root. Sev-
eral variants of Newton’s method are developed to improve the convergence
order in the literature such as Halley method [23], super-Halley method [16],
Euler’s method [21], Weerakoon and Fernando [22] etc. All of the above men-
tioned methods consist second-order derivatives except Weerakoon and Fer-
nando. From 1964 to 2012, researchers [1],[9],[15],[24] has developed fourth-
order methods to find the non-linear equations roots like Traub and Ostrowski
[15], Chun and Ham [9], Cordero and Torregrosa [1], Kanwar et al. [24] etc.
Out of them, Kanwar et. al. introduced a method which consists second-order
derivatives while other listed methods have first-order derivative. Sometime it

1
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is difficult to achieve the second-order derivative at each step of the method. So
some authors [10-11] developed second-order derivative free methods to solve
the non-linear equations.
But still handling of first-order or second-order derivative in iterative techniques
is difficult task. Nowdays, non-linear equations g(t) + 1 = 1 are solved using
multiplicative calculus instead of function g(t) = 0. Initially, in 2008 Bashirov
et al. [3] discussed the theoretical foundations and various applications of mul-
tiplicative calculus. In 2009 and 2011 Misirli and Gurefe [12], Riza et al. [18],
and Ozyapici & Misirli [13] used multiplicative calculus to develop multiplica-
tive numerical methods and in 2010 Filip and Piatecki [11] used it to examine
economic growth and Uzer [8] extended the multiplicative calculus to include
complex valued functions of complex variables, which was previously applica-
ble only to positive real valued functions of real variables. In 2011 Bashirov et
al. [4] used it to develop multiplicative differential equations. Bashirov & Riza
[5] and in 2012 Florack and van Assen [17] used in biomedical image analysis.
Currently, in 2016 Ozyapici, Sensoy and Karanfiller constructed a Multiplica-
tive Newton’s method. Keeping the same fact in mind, we consider the joint
four-order multiplicative Newton’s method.
This paper is structured as follows. Some basic terms of Multiplicative Calculus
forms Section 2. As described in Section 3, a convergence analysis is conducted
to determine the fourth-order of convergence of the proposed method. In Sec-
tion 4, we presents comparisons of results obtained by proposed method with
some other fourth-order methods. Finally, the conclusions form Section 5.

2 Some basic terms of Multiplicative Calculus

Definition: Let g(t) be a real positive valued function in the open interval
(a, b). Assume function be changes in t ∈ (a, b) s.t. g(t) changes in g(t + h).
Then [13] multiplicative forward operator denoted as ∆∗ defined as follows

∆∗g(t) =
g(t+ h)

g(t)
(2)

By considring the operator ∆∗ in (2), multiplicative derivative can be defined
as below

g∗(t) = lim
h→0

(∆∗g)
1/h

(3)

The function g∗(t) is said to be multiplicative differentiable at t if the limit on
R.H.S exists.
If g is positive function and the derivative of g at t exist, then qth multiplicative
derivatives of g exist and

g∗(q)(t) = exp
{
(ln ◦ g)(q)(t)

}
(4)

2
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Theorem 1: (Multiplicative Taylor Theorem in one variable) [5] Let g(t) be a
function in open interval (a, b) s.t the functions is q + 1 times ∗ differentiable
on (a, b). Then for any t, t+ h ∈ A(a, b), there is a number θ ∈ (a, b) such that

g(t+ h) =
n∏

p=0

(
g∗(p)(t)

)hp

p! .
(
g∗(q+1)(t+ θh)

) hq+1

(q+1)!

(5)

Theorem 2: (Multiplicative Newton’s-Raphson method) [7] Assume that g ∈
C2[a, b] and there exist a number p ∈ [a, b] such that g(p) = 1. If g∗(p) ̸= 1

and h(t) = t − ln g(t)

ln g∗(t)
then there exist a δ > 0 such that the sequence pk∞k=1

defined by iteration will converge to m for any initial value p0 ∈ [p− δ, p+ δ]

pk = pk−1 −
ln g(pk−1)

ln g∗(pk−1)
(6)

with error eq+1 = b2e
2
q + 2(b3 − b22)e

3
q +O(e4q)

3 The Proposed Method and Analysis of Con-
vergence

Here we constructed two step iterative method by considering first step as mul-
tiplicative Newton’s-Raphson method and second step as considering ordinary
Newton’s-Raphson Scheme.

yq = tq −
ln g(tq)

ln g∗(tq)
,

tq+1 = yq −
g(yq)

g′(yq)
. (7)

Where q = 1, 2, 3, ... is the iteration level .
For convergence analysis, we have proved the following theorem.

Theorem 3: Suppose that for an open interval I, the function g : I ⊆ R → R
has only one root, s ∈ I. Let g(t) be a sufficiently ordinary differentiable and
then multiplicative differentiable in the neighborhood of s. Then the proposed
method (7) has fourth-order of convergence.
Proof: Let s be the simple root of g(t) and eq = tq − s. Consider the function
H(t) = tq+1 defined by

H(t) = yq −
g(yq)

g′(yq)
,

3
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where

yq = tq −
ln g(tq)

ln g∗(tq)
(8)

By using Mathematica version 11.1.1 with the fact that y′(s) = 0 from Theorem
2, the function H(t) satisfies

H(s) = r and H(q)(s) = 0, q = 1, 2, 3. (9)

Thus, H(4)(s) can be given as

H(4)(s) =
3(g′(t)2 − g′′(t))2g′′(t)

g′(t)3

By Taylor expansion of H(tn) around s with condition (9), one obtain

tq+1 = H(tq) = H(s) +
H(4)

4!
e4q +O(e5q).

Hence,

eq+1 =
H(4)(s)

4!
e4q +O(e5q)

Hence, the method (8) has fourth-order of convergence.

4 Numerical Examples

Several examples are given in this section to illustrate the applicability of the
proposed method. The results of proposed method denoted as (PM) is also
compared with earlier methods such as two-step Newton’s Method [19] denoted
as (NM), Chun method [10] denoted as (CM) and Maheshwari method [6] de-
noted as (MM) reprsented in Table 1 - Table 4. All computations can be done
in Mathematica version 11.1.1 software and the stopping criteria |tq+1 − tq| < ϵ
and ϵ = 10−14 is used. The obtained results are compared for first three itera-
tions. Moreover, the Approximated computational order of convergence(ACOC)
is computed by using the following.

ρ ∼=
ln

∣∣∣∣ tq+1 − s

tq − s

∣∣∣∣
ln

∣∣∣∣ tq − s

tq−1 − s

∣∣∣∣ .

4

174

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Gurjeet Singh 171-179



Example 1: A fraction conversion problem is considered firstly, in which nitrogen-
hydrogen feed is converted to ammonia fractionally. A temperature of 500°C
and a pressure of 250 atm have been used in this problem. The nonlinear form
of this problem is as follows::

g1(t) = −0.186− 8t2(t− 4)2

9(t− 2)3
, (10)

The simplified form of equation (10) is reduces to non-linear function as

g1(t) = t4 − 7.79075t3 + 14.7445t2 + 2.511t− 1.674 (11)

Since the polynomial above has a degree of four, there must be exactly four
roots. Due to its definition, fraction conversion lies in the interval (0,1), so
there can be only one root in this interval, and that is 0.2777595428. Using the
initial guess t0 = 0.4 in Table 1, it is clear that our suggested method takes
fewer iterations than others.
Example 2: Consider a Kepler’s Equation

g2(t) = t− α1Sin(t)−K, (12)

where 0 ≤ α1 < 1 and 0 ≤ K ≤ π. We solve the equation by taking K = 0.1
and α1 = 0.25. For this set of values the root is 0.13320215082857313... which
is approximated by proposed and earlier methods at the initial root t0 = 2 and
results are shown in Table 2.
Example 3: Problems of transcendental and algebraic nature. The following
equations are used to numerically analyze the proposed technique:

(a) g3(t) = e−t + Cost, with exact root s = 1.7461. (13)

(b) g4(t) = tet
2

−Sin2t+3Cost−4, with exact root s = 1.0651. (14)

Table 3 and Table 4 shows the numerical outcomes starting with the initial
guess 2.0 and 1.0 respectively. According to the numerical results, the proposed
method requires fewer steps and reduces computation time.

5
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Method q |tq − tq−1| |g(tq)| ρ
1 2.7402× 10−1 22.441

NM 2 2.7338× 10−2 9.6722× 10−1 4.000
3 3.4387× 10−4 4.3475× 10−15

1 2.5637× 10−1 22.4486
CM 2 4.4424× 10−2 1.7056 3.9987

3 5.9249× 10−4 1.8635× 10−2

1 2.5941× 10−1 22.4486
MM 2 4.1567× 10−2 1.5720 4.000

3 4.0948× 10−4 1.2868× 10−2

1 5.46149× 10−1 23.4486
PM 2 3.07797× 10−2 2.13315 3.999

3 3.44644× 10−4 1.0109

Table 1: Fraction Conversion of Nitrogen-Hydrogen to Ammonia

Method q |tq − tq−1| |g(tq)| ρ
1 1.6621 1.5227

NM 2 6.5678× 10−3 5.0169× 10−3 4.000
3 2.8775× 10−13 2.1973× 10−13

1 1.6495 1.5226
CM 2 1.9131× 10−2 1.4623× 10−2 4.000

3 3.3555× 10−10 −2.5622× 10−10

1 1.6490 1.5226
MM 2 1.9652× 10−2 1.5022× 10−2 4.000

3 3.2303× 10−10 −2.4667× 10−10

1 1.66756 2.5226
PM 2 1.12051× 10−3 1.0008 4.000

3 9.0489× 10−15 1.0000

Table 2: Kepler’s Equation

6
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Method q |tq − tq−1| |g(tq)| ρ
1 2.5389× 10−1 −2.8081× 10−1

NM 2 3.2728× 10−5 3.7935× 10−5 4.000
3 3.9104× 10−21 4.5325× 10−21

1 2.5424× 10−1 −2.8081× 10−1

CM 2 3.7917× 10−4 4.3955× 10−4 4.000
3 7.1375× 10−16 8.2731× 10−16

1 2.5418× 10−1 −2.8081× 10−1

MM 2 3.2177× 10−4 3.7299× 10−4 4.000
3 3.3377× 10−16 3.8688× 10−16

1 2.5398× 10−1 7.1919× 10−1

PM 2 1.1458× 10−4 1.0001 4.000
3 4.7761× 10−18 1.0000

Table 3: e−t + Cost

Method q |tq − tq−1| |g(tq)| ρ
1 4.2454× 10−1 103.12

NM 2 3.6870× 10−1 13.838 3.8484
3 1.3811× 10−1 1.3718
1 3.4554× 10−1 103.121

CM 2 3.3105× 10−1 20.3079 3.9221
3 2.1605× 10−1 3.4207
1 3.6468× 10−1 103.121

MM 2 3.4233× 10−1 18.5257 3.9615
3 2.0077× 10−1 2.7788
1 9.2639× 10−1 104.12

PM 2 8.4709× 10−3 1.0580 4.000
3 7.6367× 10−9 1.0000

Table 4: tet
2 − Sin2t+ 3Cost− 4

5 Conclusion

Here, we developed the Joint Multiplicative Newton’s method which is mixture
of multiplicative Newton’s method and Ordinary Newton’s method. We tested
the proposed method for approximating the roots of nonlinear equations and
compared it with ordinary methods. The obtained results are efiicient as com-
pared with earlier ones in terms of residual error, consecutive error and order
of convergence.
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Analysis of Tripled System of Fractional

Differential Equation using Certain Fixed Points

Theorems with Fractional Boundary Condition
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Abstract

This paper presents the tripled system of differential equations of frac-
tional type with fractional integral boundary conditions as well as inte-
ger and fractional derivative. Here the Banach fixed points theorem and
Scheafer’s fixed points theorem are used as a main tool. To justify the
results we illustrate some examples.

Key Words and Phrases: Fixed points theorem, Banach fixed
point, Fractional differential equations, Fractional integral boundary con-
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1

1 Introduction

Fractional differential equation are applicable in many streams of science
and engineering like as fitting of experimental data, e electromagnetics, physics,
viscoelasticity, lectro chemistry, biophysics, blood flow phenomena,porous me-
dia,biology, electrical circuits, etc. Therefore compare to models of integer order,
fractional order model become more practical and realistic. Thus there has been
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a significant developments in problems of boundary value for the existence and
uniqueness of fractional differential equations; see [1, 4, 5, 6, 8, 9, 10, 12]. and the
references therein. Many authors have worked on existence and uniqueness of
solution of tripled system of fractional differential equations [2, 3, 7, 11, 13, 14].
The tripled systems of fractional differential equation often exits in numerous
models such as Chemostats and Microorganism Culturing, Brine Tanks, Irregu-
lar Heartbeats, Chemical Kinetics, Lidocaine and Pesticides, Predator Prey etc.
[8] study fractional differential equations for Boundary value problems of non-
linear type and include nonlocal and integral boundary condition of fractional
type. Inspired by the problem [9],

CDa1x1(α) = e1(α, x2(α), x3(α)), α ∈ [0, 1]
CDa2x2(α) = e2(α, x1(α), x3(α)), α ∈ [0, 1]
CDa1x3(α) = e3(α, x1(α), x2(α)), α ∈ [0, 1]

x1(0) = x′1(0) = x1”(0) = 0,
CDp1x1(1) = γ1(J

q1x1)(1),

x2(0) = x′2(0) = x2”(0) = 0,
CDp2x2(1) = γ2(J

q2x2)(1)

x3(0) = x′3(0) = x3”(0) = 0,
CDp3x3(1) = γ3(J

q3x3)(1)

Where CDai Caputo fractional derivative with order ai, J
q represent the Riemann-

Liouville fractional integral whose order a1, a2 ∈ (4, 5], p1, p2, p3 ∈ (0, 4] q1, q2, q3 >

0, e1, e2, : [0, 1]×R→ R are smooth functions and γi ̸= Γ(qi+5)
Γ(5−pi)

, i = 1, 2, 3.

Existence and uniqueness of solution for the mentioned above tripled system of
nonlinear fractional order differential equations is main focus of the paper.

2 Preliminaries

Firstly we introduce some notation, lemmas and definitions.
Definition 2.1 [6] Caputo derivative whose fractional order is a for smooth
function e : [0,∞) → R is define as

CDae(α) =
1

Γ(n− a)

∫ α

0

(α− t)n−a−1e(n)(t)dt

gives e(n)(α) exist, where [a] represents the integer part of the real number a
and Γ is the Euler’s Gamma function.
Definition 2.2 [12] Riemann-Liouville fractional integral of the order a > 0
for a smooth function

Jae(α) =
1

Γ(a)

∫ α

0

(α− t)a−1e(t)dt.

Lemma 2.1 [2] Let f, g > 0 and e ∈ L1[a, b] then J
fJge = Jf+ge

2
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Lemma 2.2 [2] If e is continuous and n ≥ 0, then

CDnJne = e

It follows from Lemmas 2.1 and 2.2 that if e is continuous and γ > a, then
CDae = Jγ−ae.
Lemma 2.3 [2] Let γ > −1 and n > 0. Then

Jnzγ =
Γ(γ + 1)

Γ(n+ γ + 1)
zn+γ

Lemma 2.4 [2] Let γ ≥ 0 and m = [n] + 1, then

CDnxγ =


0, ifγ ∈ 0, 1, 2, . . .m− 1
Γ(γ+1)

Γ(γ+1−n) (z − a)γ−n, ifγϵNandγ ≥ m

orγ /∈ N, γ > m− 1

Lemma 2.5 [7] Let a > 0 then,

JaCDaV (α) = V (α) + h0 + h1α+ h2α
2 + · · ·+ hn−1α

n−1

for some hi ∈ R, i = 0, 1, 2, . . . n − 1, n is smallest integer grater than or equal
to a.

3 Supporting Result

In this part, we establish the result required in our main proofs.

Lemma 3.1 Let y ∈ H([0, 1],R) and γ ̸= Γ(q+5)
Γ(5−p) . Then the problem{

CDax(α) = y(α)α ∈ [0, 1]

x(0) = x′(0) = x′′(0) = x′′′(0) = 0,C Dpx(1) = γ(Jqx)(1)
(3.1)

has unique solution

x(α) =
1

Γa

∫ α

0

(α− t)α−1y(t)dt

− γΓ(5− p)Γ(5 + q)α3

24Γ(a− p)[γΓ(5− p)− Γ(q + 4)

∫ 1

0

(1− t)q+a−1y(t)dt

+
Γ(5− p)Γ(q + 5)α3

24Γ(a− p)[γΓ(5− p)− Γ(q + 5)]

∫ 1

0

(1− t)a−p−1y(t)dt (3.2)

Proof: From Lemma 2.2, (3.2) is similar to

x(α) = Jay(α)− h0 − h1α− h2α
2 − h3α

3 − h4α
4 (3.3)

3
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for some hi ∈ R, i from 0to4.
from x(0) = 0 it follows h0 = 0 also x′(0) = 0 =⇒ h1 = 0, x′′(0) = 0 =⇒
h2 = 0 and x′′′(0) = 0 =⇒ h3 = 0. Thus (3.3) becomes

x(α) = Jay(α)− h4α
4 (3.4)

Now

(CDpx) = Ja−py(α)− c4
Γ5

Γ(5− p)
α4−p

Jqx(α) = Jp+qy(α)− c4
Γ5

Γ(5 + q)
α4+q

From the boundary condition,

(CDpx)(1) = (Jqx)(1)

=⇒ Ja−py(1)− c4
Γ5

Γ(5− p)
= γJp+qy(1)− c4

Γ5

Γ(5 + q)

=⇒ c4

[
Γ5(γΓ(5− p)− Γ(5 + q))

Γ(5 + q)Γ(5− q)

]
= γJp+qy(1)− Ja−py(1)

=⇒ c4 =
Γ(5− q)Γ(5 + q)

24(γΓ(5− p)− Γ(5 + q)

[
γJp+qy(1)− Ja−py(1)

]
.

On substituting the value of c4 in (3.4) we find solution (3.2). It clear from
lemma (3) that solution of the tripled system (1.1) is given by the integral
equation,

x1(α) =
1

Γa1

∫ α

0

(α− t)a1−1e1(t, x2(t), x3(t))dt

− γ1R1α
3

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1e1(t, x2(t), x3(t))dt

+
R1α

3

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1e1(t, x2(t), x3(t))dt

x2(α) =
1

Γa2

∫ α

0

(α− t)a2−1e2(t, x2(t), x3(t))dt

− γ2R2α
3

24Γ(q2 + a2)

∫ 1

0

(1− t)q2+a2−1e2(t, x2(t), x3(t))dt

+
R2α

3

Γ(a2 − p2)

∫ 1

0

(1− t)a2−p2−1e2(t, x2(t), x3(t))dt

x3(α) =
1

Γa3

∫ α

0

(α− t)a3−1e3(t, x2(t), x3(t))dt

− γ3R3α
3

24Γ(q3 + a3)

∫ 1

0

(1− t)q3+a3−1e3(t, x2(t), x3(t))dt

+
R3α

3

Γ(a3 − p3)

∫ 1

0

(1− t)a3−p3−1e3(t, x2(t), x3(t))dt

4
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Where

Ri =
Γ(5− pi)Γ(qi + 5)

γiΓ(5− pi)− Γ(qi + 4)
,

for i =1, 2, 3.
Let X = H[0, 1] then (X, ∥.∥X) is Banach space fit out with the norm.

∥X∥X = (sup|x(α)|: α ∈ [0, 1])

Let B = X ×X ×X then (B, ∥.∥B) is also a Banach space equipped with the
norm.

∥(x1, x2, x3)∥B = ∥x1∥X + ∥x2∥X + ∥x3∥X

Let us define an operation F : B → B

f(x1, x2, x3)(α) = (f1x2(α)x3(α), f2x1(α)x3(α),

f3x1(α)x2(α)

Where

f1x2(α)x3(α) =
1

Γa1

∫ α

0

(α− t)a1−1e1(t, x2(t), x3(t))dt

− γ1R1α
3

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1e1(t, x2(t), x3(t))dt

+
R1α

3

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1e1(t, x2(t), x3(t))dt

f2x1(α)x3(α) =
1

Γa2

∫ α

0

(α− t)a2−1e2(t, x2(t), x3(t))dt

− γ2R2α
3

24Γ(q2 + a2)

∫ 1

0

(1− t)q2+a2−1e2(t, x2(t), x3(t))dt

+
R2α

3

Γ(a2 − p2)

∫ 1

0

(1− t)a2−p2−1e2(t, x2(t), x3(t))dt

f3x1(α)x2(α) =
1

Γa3

∫ α

0

(α− t)a3−1e3(t, x2(t), x3(t))dt

− γ3R3α
3

24Γ(q3 + a3)

∫ 1

0

(1− t)q3+a3−1e3(t, x2(t), x3(t))dt

+
R3α

3

Γ(a3 − p3)

∫ 1

0

(1− t)a3−p3−1e3(t, x2(t), x3(t))dt

We see fixed point of F are solution of tripled system(1.1). To simplify and our
convenience we put.

Λi =
1

Γ(ai + 1)
+

γ|Ri|
24Γ(qi + ai + 1)

+
|Ri|

24Γ(ai − pi + 1)

for i = 1, 2, 3

5
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4 Main Theorem

We will use well know Banach fixed points theorem to prove our first result.

Theorem 4.1 Suppose that γi ̸= Γ(qi+5)
Γ(5−pi)

, i = 1, 2, 3 and the following hypothesis

holds. (H 1) Assume that a non-negative continuous functions ki ∈ C[0, 1], i =
1, 2 exist such that

|ei(α, y1)− ei(α, y2)|≤ ki(α)|y1 − y2|
|ei(α, y2)− ei(α, y3)|≤ ki(α)|y2 − y3|
|ei(α, y3)− ei(α, y1)|≤ ki(α)|y3 − y1|

∀y1, y2, y3 ∈ Rand∀α ∈ [0, 1]

with Ii = sup ki(α)i = 1, 2, 3 α ∈ [0, 1] and I = max
i
Ii and if I(η1+η2+η3) < 1

where ηi, i = 1, 2, 3 and defined by (7) then on [0, 1] the tripled system (1) has
a unique. We shall show F is contraction.
Proof. Let (x1, x2, x3), (x

′
1, x

′
2, x

′
3) ∈ B then ∀α ∈ [0, 1]

|f1(x2)(x3)(α)− f1(x
′
2)(x

′
3)(α)|≤

1

Γa1

∫ α

0

(α− t)a1−1

|e1(t, x2(t), x3(t)− e1(t, x
′
2(t), x

′
3(t)|dt+

|R1|γ1
24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1|e1(t, x2(t), x3(t)− e1(t, x
′
2(t), x

′
3(t)|dt

+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1|e1(t, x2(t), x3(t)

−e1(t, x′2(t), x′3(t)|dt

≤ I∥x2x3 − x′2x
′
3∥
[

1

Γa1

∫ α

0

(α− t)a1−1dt+
|R1|γ1

24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1dt+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1dt

]
≤ ∥x2x3 − x′2x

′
3∥×

[
1

Γa1
+

|R1|
24Γ(q1 + a1)

+
|R1|γ1

Γ(a1 − p1)

]
Thus

∥f1(x2)(x3)− f1(x
′
2)(x

′
3)∥≤ Iη1∥x2x3 − x′2x

′
3∥x

Similarly

∥f2(x1)(x3)− f2(x
′
1)(x

′
3) ≤ Iη2∥x1x3 − x′1x

′
3∥

and

∥f2(x1)(x2)− f2(x
′
1)(x

′
2) ≤ Iη2∥x1x2 − x′1x

′
2∥

6
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∥f(x1, x2, x3)− f(x′1, x
′
2, x

′
3)∥B≤

I(η1 + η2 + η3)∥(x1, x2, x3)− (x′1, x
′
2, x

′
3)∥B

As I(η1 + η2 + η3) < 1 therefore f is a contradiction and by Banach fixed point
result, f must have unique fixed point i.e. the tripled system (1.1) has unique
solution.
Theorem 4.2 Assume γi ̸= Γ(qi+5)

Γ(5−pi)
, i = 1, 2, 3 and the following hypothesis

holds.
(H 2) there exist non negative continuous function l1, l2, l3 ∈ C[0, 1] such

that |ei(α, y)|≤ li(α) ∀y ∈ R and ∀α ∈ [0, 1] with Li = sup
α∈[0,1]

li(α), i = 1, 2, 3.

Then the tripled system (1.1) defined on [0, 1] has at least one solution
Proof: To prove this result we take help of Schaefer fixed point theorems.
Step-1 F is smooth.
Since e1, e2 and e3 are smooth therefore f is also smooth.
Step-2 Under the mapping f bounded set of B are mapped into bounded sets
of B.
Let ωξ = (x1, x2, x3) ∈ B; ∥(x1, x2, x3)∥B≤ ξ
where ξ > 0 Now for (x1, x2, x3) ∈ ωξ and ∀α ∈ [0, 1]

|f1(x1)(x2)(x3)|≤
1

Γa1

∫ α

0

(α− t)a1−1|e1(t, x2(t), x3(t)|dt

+
|R1|γ1

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1|e1(t, x2(t), x3(t)|dt

+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1|e1(t, x2(t), x3(t)|dt

≤ ω1

[
1

Γa1

∫ α

0

(α− t)a1−1dt+
|R1|γ1

24Γ(q1 + a1)∫ 1

0

(1− t)q1+a1−1dt+
|R1|

Γ(a1 − p1)

∫ 1

0

(1− t)a1−p1−1dt

]
≤ ω1

[
1

Γa1
+

|R1|γ1
24Γ(q1 + a1)

+
|R1|

Γ(a1 − p1)

]
Thus

∥f1(x2)(x3)∥X≤ ω1η1

similar

∥f1(x1)(x3)∥X≤ ω2η2

and

∥f1(x1)(x2)∥X≤ ω3η3

=⇒ ∥f1(x1, x2, x3)∥X≤ ω1η1 + ω2η2 + ω3η3

7
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i.e. ∥f1(x1, x2, x3)∥X≤ ∞ Step-3. F : B → B is completely continuous opera-
tor. Let (x1, x2, x3) ∈ ωξ and α1, α2, α3 ∈ [0, 1] with α1 < α2 < α3, then

|f1(x2)(α2)− f1(x2)(α1)|≤
ω1

Γa1

∫ α1

0

[
(α2 − t)a1−1 − (α1 − t)a1−1

]
dt

+
ω1

Γa1

∫ α1

0

(α2 − t)a1−1 +
ω1γ1|R1|∥α3

2 − α3
1∥

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1dt

+
ω1γ1|R1|∥α3

2 − α3
1∥

24Γ(q2 − p1)

∫ 1

0

(1− t)a1−p1−1dt ≤ ω1

Γ(a1 + 1)
[(α2 − α1)

a1 (4.1)

+(αa1
2 − αa1

1 )] +
(α2 − α1)

a1

Γ(a1 + 1)
+
ω1γ|R1|∥α3

2 − α3
1∥

24Γ(q1 + a1 + 1)
+

ω|R1|∥α3
2 − α3

1∥
24Γ(a1 − p1 + 1)

(4.2)

right- hand side tends to zero when α1 → α2.
Thus ∥f1x2(α2)− f1x2(α1)∥X→ 0 as α1 → α2.
Similarly ∥f2x1(α2)− f2x1(α1)∥X→ 0 as α1 → α2

∥f3x1(α2)− f3x1(α1)∥X→ 0 as α1 → α2.
Thus ∥f(x1, x2, x3)(α2)− f(x1, x2, x3)(α1)∥B→ 0 as α1 → α2

Similarly ∥f(x1, x2, x3)(α3)− f(x1, x2, x3)(α1)∥B→ 0 as α1 → α3

Combining step 1 to 3 and by reaction of Arzela - Ascoli theorem, F : B → B
is completely continuous operation.
Step-4
Let

ψ = {(x1, x2, x3) ∈ B : (x1, x2, x3) = ϕF (x1, x2, x3)

for some ϕ ∈ (0, 1) we shall show that set ψ is bounded. Let (x1, x2, x3) ∈
ψ =⇒ (x1, x2, x3)(α) = ϕf(x1, x2, x3)(α) for some ϕ ∈ (0, 1). Then we have

x1(α) = ϕf1x2x3(α)

x2(α) = ϕf2x2x3(α)

x3(α) = ϕf3x2x3(α),∀α ∈ [0, 1]

∥x1(α)∥= |ϕf1x2x3(α)|≤ ϕω1

[
1

Γa1

∫ α

0

(α− t)a1−1dt

+
γ1|R1|

24Γ(q1 + a1)

∫ 1

0

(1− t)q1+a1−1dt+
|R1|

24Γ(a1 − p1)∫ 1

0

(1− t)a1−p1−1dt

]
≤ ω1

[
1

Γ(a1 + 1)
+

γ1|R1|
24Γ(q1 + a1 + 1)

+
|R1|

24Γ(a1 − p1 + 1)

]
(4.3)

Thus

∥x1∥X≤ ω1η1

8
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Similarly

∥x2∥X≤ ω2η2

and

∥x3∥X≤ ω3η3

Hence, we get

∥(x1, x2, x3)∥X ≤ ω1η1 + ω2 + ω3η3η2

∥(x1, x2, x3)∥B ≤ ∞

Thus Scheafer’s fixed point result present ϕ is bounded set. f must have mini-
mum one fixed point which is solution of tripled system (1.1).

Example 4.1. Take the following tripled system

CD
17
4 x1(α) =

1
α2+16

|x2(α)x3(α|)
1+|x2(α)x3(α)|

CD
9
2x2(α) =

1
α2+25 tan

−1(x1(α)x3(α)), α ∈ [0, 1]
CD

13
2 x3(α) =

1
α2+49 cot

−1(x1(α)x3(α)), α ∈ [0, 1]

x1(0) = x′1(0) = x′′1(0) = 0,C D
1
2x1(1) =

15
16 (J

5
2x1)(1)

x2(0) = x′2(0) = x′′2(0) = 0,C D
3
2x2(1) =

16
17 (J

7
2x2)(1)

x3(0) = x′3(0) = x′′3(0),
C D

4
3x3(1) =

17
18 (J

9
2x3)(1)

a1 = 17
4 , p1 = 1

2 , q1 = 5
2 , γ1 = 15

16 ̸= Γ(q1+5)
Γ(5−p1)

= 160.875

a2 = 9
2 , p2 = 3

2 , q2 = 7
2 , γ2 = 16

7 ̸= Γ(q2+5)
Γ(5−p2)

= 422.96

a3 = 13
2 , p3 = 4

3 , q3 = 9
2 , γ3 = 17

8 ̸= Γ(q3+5)
Γ(5−p3)

= 4558.125

(4.4)

for α ∈ [0, 1] and y1, y2, y3 ∈ R.

|ei(α, y1)− ei(α, y2)|≤
1

α2 + 16
|y1 − y2|

|ei(α, y2)− ei(α, y3)|≤
1

α2 + 25
|y2 − y3|

|ei(α, y3)− ei(α, y1)|≤
1

α2 + 49
|y3 − y1|

So, we can take K1 = 1
α2+16 ,K2 = 1

α2+25 ,K3 = 1
α2+49

I1 = sup
α∈[0,1]

K1(α) =
1

16

I2 = sup
α∈[0,1]

K2(α) =
1

25

I3 = sup
α∈[0,1]

K3(α) =
1

49

9
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and then, we have

I = max{I1, I2, I3} =
1

16

Further,

|R1| =
Γ(5− p1)Γ(q1 + 5)

|Γ(5− p1)− Γ(q1 + 5)|
=

2786582
√
π

1467322
= 3.37

|R2| =
Γ(5− p2)Γ(q2 + 5)

|Γ(5− p2)− Γ(q2 + 5)|
=

8968428
√
π

9624241
= 1.65

|R3| =
Γ(5− p3)Γ(q3 + 5)

|Γ(5− p3)− Γ(q3 + 5)|
=

7525863
√
π

9569341
= 1.39

Iη1 = I

[
1

Γ(a1 + 1)
+

α1|R1|
24Γ(q1 + a1 + 1)

+
R1

24Γ(a1 − p1 + 1)

]
=

1

16
[0.078 + 0.0034 + 0.0007]

=
1

16
[0.08211]

= 0.00513

Iη2 = I

[
1

Γ(a2 + 1)
+

α2|R2|
24Γ(q2 + a2 + 1)

+
R2

24Γ(a2 − p2 + 1)

]
=

1

16
[0.4357 + 0.0046 + 0.0036]

=
1

16
[0.44066]

= 0.027

Iη3 = I

[
1

Γ(a3 + 1)
+

α3|R3|
24Γ(q3 + a3 + 1)

+
R3

24Γ(a3 − p3 + 1)

]
=

1

16
[0.00742 + 0.0000127 + 0.00332]

=
1

16
[0.010752]

= 0.005376

and then

I(η1 + η2 + η3) = 0.005131 + 0.027 + 0.005376 = 0.0375087 < 1

Hence all assumptions of Theorem 4.1 are justify and consequently the tripled
system (4.4) must have unique solution defined on [0, 1].

10
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Example 4.2. Now consider the following tripled system

CD
5
2x1(α) =

cos x2x3(α)
7+α

CD
11
4 x2(α) =

sin x1x3(α)
4+α2

CD
17
4 x3(α) =

cos 2πx2x3(α)
7+α3

x1(0) = x′1(0) = x′′′1 (0) = 0,C D
1
2x1(1) =

13
4 (J

13
2 x1)(1)

x2(0) = x′2(0) = x′′′2 (0) = 0,C D
3
2x2(1) =

9
8 (J

9
2x2)(1)

x3(0) = x′3(0) = x′′′3 (0),C D
5
2x3(1) =

6
7 (J

7
2x3)(1)

a1 = 5
2 , p1 = 1

2 , q1 = 13
2 , α1 = 13

4 ̸= Γ(q1+5)
Γ(5−p1)

= 1023014.17

a2 = 11
4 , p2 = 3

2 , q2 = 9
2 , α2 = 9

8 ̸= Γ(q2+5)
Γ(5−p2)

= 35.895.23

a3 = 17
4 , p3 = 5

2 , q3 = 7
2 , α3 = 6

7 ̸= Γ(q3+5)
Γ(5−p3)

= 10557.42

(4.5)

for α ∈ [0, 1] and B ∈ R, we get

|e1(α,B)|= | cosB
7 + α

|≤ 1

7 + α

|e2(α,B)|= | sinB
4 + α2

|≤ 1

4 + α2

|e3(α,B)|= |cos 2πB
7 + α

|≤ 1

9 + α3

so we can take l1(α) =
1

7+α , l2(α) =
1

4+α2 , l3(α) =
1

9+α3 and then, we have

w1 = sup
α∈[0,1]

l1(α) =
1

7

w2 = sup
α∈[0,1]

l2(α) =
1

4

w3 = sup
α∈[0,1]

l3(α) =
1

9

Hence all assumption of Theorem 4.2 are satisfied therefor the tripled solution
(4.5).
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L1-Convergence of Newly Defined Trigonometric

Sums Under Some New Class of Fourier

Coefficients
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Tough difficulties in the trigonometric series convergence in L1 norm is ap-
pearance of trigonometric series as Fourier series, and its L1- convergence.
Many academics investigated trigonometric series separately by examining the
cosine & sine series , so as a result, modified cosine sums and sine sums were
developed to assess the sharp consequences on trigonometric series’s integrabil-
ity & L1-convergence, as improved sums approach respective limits closer than
traditional trigonometric sums. This work presents ‘KP’, a new class of Fourier
Coefficients, as well as advanced cosine and sine sums of trigonometric series
with real coefficients. As a result, necessary & sufficient criterion for Integrabil-
ity and L1-normed convergence for trigonometric functions is achieved. Here,
authors also discuss about L1-convergence of rth differential of newly defined
improved trigonometric sums with Fourier coefficients are from an enlarged class
KP r.
Keywords: L1- convergence; Integrability; Modified Sums; Dirichlet Kernel
Mathematics Subject Classifications: 42A20; 42A32

1 Introduction

Take a look at sine & cosine series

∞∑
κ=1

c∗κ sinκy (1.1)

c∗0
2

+
∞∑
κ=1

c∗κ cosκy (1.2)

and these equations collectively written as

∞∑
κ=1

c∗κψy (1.3)

1
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where ψy is sinκy or cosκy respectively.
ηth sum of

∑∞
κ=1 c

∗
κψy is represented as Sη(y). So limη→∞ Sη(y) = Z(y).

Kano’s[1] outcome is popularly known as sequence {c∗κ} fulfilling {c∗κ} → 0 as

κ→ ∞ &
∑∞

κ=1 κ
2|∆2

(
c∗κ
κ

)
|<∞ then

∑∞
κ=1 c

∗
κ sinκy and

c∗0
2 +

∑∞
κ=1 c

∗
κ cosκy

are known to us as Fourier Series.

Definitions:

Convex Sequence: {c∗τ} is called a convex sequence(seq.) satisfying

∆2c∗τ ≥ 0, where ∆c∗τ = c∗τ − c∗τ+1 and ∆2c∗τ = ∆c∗τ −∆c∗τ+1.

Quasi-Convex Sequence([2],Vol.2, page 204): A seq. {c∗τ} is called quasi-
convex satisfying

∞∑
τ=1

(τ + 1)|∆2c∗τ |< ∞.

Sequence {c∗τ} is known as generalised quasi-convex satisfying

∞∑
τ=1

τκ |∆2c∗τ |<∞ : κ = 0, 1, 2, ...

‘S’ Class([4]: sequence {c∗τ} follow class S by satisfying c∗τ = 0(1), τ mono-
tonically decreasing seq. converging to 0 → ∞ and ∃ a sequence {A∗

τ} s.t.

(a)A∗
τ is monotonically decreasing seq. converging to 0, asτ → ∞, (b)

∞∑
τ=0

A∗
τ<∞,

(c) |∆c∗τ | ≤ A∗
τ ∀ τ.

Convergence in L1-norm: The series L1-converges in (0,π) if ||f∗ − S∗
τ || =

o(1), τ → ∞.
Young[5] began to work on this issue in 1913 by examining a class of convex seq.,
which was followed by Kolmogorov[6] in 1923 by addressing a general class of
quasi-convex seq.Then Telyakovskii[4] analysed Sidon’s significantly weaker class
S rather than the previously defined classes for L1- normed convergence(cgs.)
of trigonometric series. Following theorems are famous about the L1- normed
cgs. of Fourier series:

Theorem 1.1:[2], Vol.2, page 204

If {c∗κ} is monotonically decreasing and {c∗κ} is convex/quasi-convex seq. , then

necessary & sufficient condition for L1-normed convergence of
c∗0
2 +
∑∞

κ=1 c
∗
κ cosκy

is c∗κ log κ = o(1) κ→ ∞.
Telyakovskˇii generalised Theorem 1.1 for expression (1.2) where the coefficients
of series (1.2) satisfy the requirements of class S[7] as follows:

2
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Theorem 1.2:[4]

When coefficients of
c∗0
2 +

∑∞
κ=1 c

∗
κ cosκy satisfying criterion of class S[7] then

criterion of its L1 convergence is that c∗κ log κ = o(1) as κ→ ∞

Many writers examined and generalised these findings by examining various
generalisations of seq. classes.Recently,the coefficient seq. SJ[8] was introduced
to study the integrability and L1-cgs. of modified cosine and sine sums, which
was further generalied by Krasniqi[9]. A contemporary class of Fourier coeffi-
cients is formulated in this study as:

Definition 1.3: A monotonically decreasing seq. {c∗η} with c∗η → 0 as η →
∞ is follow a new class KP if ∃ a seq. {A∗

η} satisfying

(i)A∗
η ↓ 0 (1.4)

(ii)
∑

ηA∗
η<∞ (1.5)

(iii)

∣∣∣∣∆( c∗ηη2
)∣∣∣∣ ≤ A∗

η

η2
(1.6)

Here, coefficient sequence KP r will be formulated that is enlargement of coef-
ficient sequence KP.
Definition 1.4:: A monotonically decreasing seq. {c∗η} with c∗η → 0 as η →
∞ is from a new class KP r if ∃ seq. {A∗

η} satisfying

(i)A∗
η ↓ 0 (1.7)

(ii)
∑

ηr+1A∗
η<∞ (1.8)

(iii)

∣∣∣∣∆( c∗ηη2
)∣∣∣∣ ≤ A∗

η

η2
(1.9)

Obviously, KP = KP r when r = 0. It is obvious that KP r+1 ⊆ KPr, but its
reverse does not hold.
Example. Define bη = 1

ηr+3, r = 0,1,2,... Firstly we are going to demonstrate

that{bη}/∈ KPr+1

As, bη = 1
ηr+3 → 0 as η → ∞.

Let ∃ Aη = 1
ηr+3 , r = 0, 1, 2, 3, ...s.t.

∞∑
η=1

ηr+2Aη =
∞∑
η=1

1
η is divergent, means

{bη} does not belong to KPr+1.
But, Aη is monotonically decreasing and converging to 0 η → ∞, &
∞∑
η=1

ηr+1A∗
η =

∞∑
η=1

1
η2<∞,

Also |∆(
bη
η2 )| ≤

A∗
η

η2 ,∀η.
Therefore, {bη} ∈ KPr.

3
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2 Main Results:

Now we will give proof of the succeeding statement:

Theorem 2.1: If the coefficients of series (1.3) meet the class KP criteria,
then it will be a Fourier series.

Explanation

∞∑
κ=1

κ2
∣∣∣∣∆2

(
c∗κ
κ

)∣∣∣∣ = ∞∑
κ=1

κ2
∣∣∣∣∆(c∗κκ

)
−∆

(
c∗κ+1

κ+ 1

)∣∣∣∣
=

∞∑
κ=1

κ2
∣∣∣∣c∗κκ −

c∗κ+1

κ+ 1
−
c∗κ+1

κ+ 1
+
c∗κ+2

κ+ 2

∣∣∣∣
c∗κ+2<c

∗
κ+1 and κ+ 2>κ+ 1 therefore

1

κ+ 2
<

1

κ+ 1

⇒
c∗κ+2

κ+ 2
<
c∗κ+1

κ+ 1


≤

∞∑
κ=1

κ2
∣∣∣∣c∗κκ −

c∗κ+1

κ+ 1

∣∣∣∣
=

∞∑
κ=1

κ2

∣∣∣∣∣κ c∗κκ2 − (κ+ 1)
c∗κ+1

(κ+ 1)
2

∣∣∣∣∣
<

∞∑
κ=1

κ3
∣∣∣∣ c∗κκ2 −

c∗κ+1

κ+ 12

∣∣∣∣
=

∞∑
κ=1

κ3
∣∣∣∣∆( c∗κκ2

)∣∣∣∣
≤

∞∑
κ=1

κ3
A∗

κ

κ2
by defined class KP of Fourier Coefficients.

=
∞∑
κ=1

κA∗
κ<∞

As c∗κ is null sequence, So by the result given by Kano[1], Theorem 1 holds. In
this study, we provide latest improved trigonometric sums.

Zη(y) =
c∗0
2 +

η∑
κ=1

[
η∑

j=κ

∆
(

c∗j cos jy

j2

)]
κ2,

rη(y) =
η∑

κ=1

[
η∑

j=κ

∆
(

c∗j sin jy

j2

)]
κ2.

4
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Also investigated their L1-convergence following the newly established class KP
of coefficient sequences

Theorem 2.2: Suppose that coefficients of series (1.3) follow class KP, then

lim
η→∞

Zη(y) = Z(y), exists for y ∈ (o, π] (2.2.1)

Z(y) ∈ L1(0, π] (2.2.2)

||Z(y)− Sη(y)|| = o(1), η → ∞ (2.2.3)

Theorem 2.3: If coefficients of a sequence (1.3) are from a class KPr, then

lim
η→∞

Zr
η(y) = Zr(y), exists for y ∈ (o, π] (2.3.1)

Zr(y) ∈ L1(0, π], (r = 0, 1, 2, ...) (2.3.2)

||Zr(y)− Sr
η(y)|| = o(1), η → ∞. (2.3.3)

3 Lemmas:

The subsequent lemmas are required to prove our main results.

Lemma 3.1[3]

Let η ≥ 1 & r ∈ Z+ ∪ 0, y ∈ [s,π] So |D̃r
η(y)| ≤ Cs

ηr

y Where Cs is +ve

constant rely upon s, 0<s<π & D̃r
η(y) is conjugate Dirichlet kernel.

Lemma 3.2[4]

Suppose {c∗η} is a sequence of ℜ s.t. |c∗η| ≤ 1 forall η. So the relation∫ π

π
η+1

|
η∑

κ=0

c∗κD̃κ(y)|dy ≤ N(η + 1)

exists, where N is perfectly constant.
By Bernstein’s inequality,∫ π

π
η+1

|
η∑

κ=0

c∗κD̃
r
κ(y)|dx ≤ N(η + 1)s+1 for s = 0,1,2,...

lemma 3.3[3]

||Ds
η(y)||L1 = o(ηs log η) + o(ηs), s = 0, 1, 2, ...., and Dr

η(y) shows the rth

differentials of Dirichlet Kernel.

5
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4 Proof of Main results:

4.1 Solution of theorem 2.1:

We will just show the evidence for cosine sums here, while the argument for sine
sums will be shown on parallel paths.
To prove (2.2.1), we notice that

Zη (y) =
c∗0
2

+

η∑
κ=1

 η∑
j=κ

∆

(
c∗j cos jy

j2

)κ2
=
c∗0
2

+

η∑
κ=1

 η∑
j=κ

(
c∗j cos jy

j2
−
c∗j+1 cos (j + 1) y

(j + 1)
2

)κ2
=
c∗0
2

+

η∑
κ=1

c∗κ cosκy −
η∑

κ=1

κ2
c∗η+1 cos (η + 1) y

(η + 1)
2

= Sη(y)−
c∗η+1 cos ({η + 1}y)η(η + 1)(2η + 1)

6(η + 1)2

lim
η→∞

Zη(y) = lim
η→∞

Sη(y)− lim
η→∞

c∗η+1η(2η + 1) cos ((η + 1) y)

6(η + 1)

Since cos(η + 1)y is bounded in (0, π] and limη→∞
2η+1
η+1 = 2 and

η
∣∣c∗η∣∣ = η3c∗η

η2
= η3

∞∑
κ=η

∣∣∣∣∆( c∗κκ2
)∣∣∣∣

≤
∞∑

κ=η

κ3
∣∣∣∣∆( c∗κκ2

)∣∣∣∣
≤

∞∑
κ=η

κ3
A∗

κ

κ2
=

∞∑
κ=η

κA∗
κ = 0(1)

as η → ∞

{if
∑

c∗η is convergent then lim
η→∞

c∗η = 0}

So, lim
η→∞

Zη(y) = lim
η→∞

Sη(y) = Z(y) where

Z(y) =
c∗0
2

+ lim
η→∞

η∑
κ=1

c∗κ cosκy

= lim
η→∞

Zη(y) = lim
η→∞

Sη(y)

= lim
η→∞

(
c∗0
2

+

η∑
κ=1

c∗κ cosκy)

6
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Now lim
η→∞

(

η∑
κ=1

c∗κ cosκy)

= lim
η→∞

(

η∑
κ=1

c∗κ
κ2
κ2 cosκy)

= lim
η→∞

(

η−1∑
κ=1

∆(
c∗κ
κ2

(−D
′′

κ(y)) +
c∗η
η2

(−D
′′

η (y)))

=
∞∑
κ=1

∆(
c∗κ
κ2

)(−D
′′

κ(y))

≤
∞∑
κ=1

∆(
A∗

κ

κ2
)(−D

′′

κ(y))

According to the provided hypothesis & lemma 1,
∑∞

κ=1 ∆(
A∗

κ

κ2 )(−D
′′

κ(y)) con-
verges. Therefore Z(y)exists for y ∈ (0,π]
This brings the proof of (2.2.1).

Now||Z(y)− Zη(y)|| =
∫ π

0

|Z(y)− Zη(y)|dy

=

∫ π

0

|
∞∑

κ=η+1

c∗κ cosκy +
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

= lim
m→∞

∫ π

0

|
m∑

κ=η+1

c∗κκ
2 cosκy

κ2
+
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

We obtain by employing Abel’s Transformation

=

∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
+
c∗η+1D

′′

η (y)

(η + 1)2

+
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

≤
∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
|dy +

∫ π

0

|
c∗η+1D

′′

η (y)

(η + 1)2
|dy

+

∫ π

0

|
η(2η + 1)c∗η+1 cos (η + 1)y

6(η + 1)
|dy

= (i) + (ii) + (iii)

Evidence of part (i)

∫ π

0

|
∞∑

κ=η+1

∆

(
c∗κ
κ2

)(
−D

′′

κ(y)
)
|dy =

∫ π

0

|
∞∑

κ=η+1

A∗
κ

κ2 ∆
(

c∗κ
κ2

)(
−D′′

κ(y)
)

A∗
κ

κ2

|dy

7
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Implementing Abel’s Transformation Once More

=

∫ π

0

|
∞∑

κ=η+1

∆
A∗

κ

κ2
)

κ∑
j=1

∆
c∗j
j2

(
Aj

j2 )
(−D

′′

j (x))|dy

≤
∞∑

κ=η+1

∆

(
A∗

κ

κ2

)∫ π

0

|
κ∑

j=1

∆
(

c∗j
j2

)
A∗

j

j2

(D′′

j (y)
)
|dy

Now by given assumption

≤
∞∑

κ=η+1

∆

(
A∗

κ

κ2

)
M(κ+ 1)3

= o

( ∞∑
κ=η+1

(κ+ 1)3∆

(
A∗

κ

κ2

))
= o(1) as {c∗κ} ∈ new defined class.

Validation of (ii) component

c∗η+1

(η + 1)2

∫ π

0

|D
′′

η (y)|dy =
c∗η+1

(η + 1)2

(
4

π
(η2 log η) +O(η2)

)
≤ c∗η+1

(
4

π

η2 log η

(η + 1)2
+

1

(η + 1)2
o(η2)

)
≤ c∗η+1

(
4

π

η2 log η

(η + 1)2
+ o(1)

)
= o

(
c∗η+1 log η

)
Now log η ≤ η ∀ η ≥ 1
And ηc∗η = o(1) as η → ∞ as already proved above.
Proof of (iii)part
(iii) part is equal to o(ηc∗η+1) which is equal to o(1) as η → ∞.
Therefore ||Z(y)− Zη(y)|| = o(1) as η → ∞
Therefore Z(y) ∈ L1(0, π]
This concludes (2.2.2).
Now we shall provide evidence of (2.2.3)

||Z − Sη|| = ||Z − Zη + Zη − Sη||
≤ ||Z − Zη||+ ||Zη − Sη||

= ||Z − Zη||+ ||η(2η + 1)

6(η + 1)
c∗η+1 cos (η + 1)y||

≤ ||Z − Zη||+
η(2η + 1)

6(η + 1)
c∗η+1

∫ π

0

| cos (η + 1)y|dy

→ o(1) as η → ∞

8
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by employing the assertion (2.2.1) and (2.2.2). This brings the proof of (2.2.3)
to a close. Apparently theorem 2 is developed for feeble class than class S, yet
conclusions are produced for L1 -convergence by not employing condition like
c∗η log η = o(1), as η → ∞.

4.2 Explanation of theorem 2.3:

We will just show the evidence for cosine sums here, while the argument for sine
sums will be shown on parallel paths.

Zη (y) = Sη(y)−
c∗η+1 cos ((η + 1)y)(η)(2η + 1)

6(η + 1)

Zr
η (y) = Sr

η(y)−
c∗η+1 cos (((η + 1)y) + r π2 )(η)(2η + 1)(η + 1)r

6(η + 1)

Since Aκ is monotonically decreasing and converging to 0 as κ→ ∞ &
∞∑
κ=1

κr+1Aκ<∞,

So, we got κr+2Aκ → 0, as κ→ ∞ and

ηr+1c∗η = ηr+3
∞∑

κ=η

|∆(
aκ
κ2

)| ≤
∞∑

κ=η

κr+3|∆(
c∗κ
κ2

)| ≤
∞∑

κ=η

κr+3(
A∗

κ

κ2
) = o(1), η → ∞.

(4.2.1)
As cos ((η + 1)y + r π2 ) is finite in (0,π]. So,

zr(y) = lim
η→∞

zη
r(y)

= lim
η→∞

Sη
r(y)

= lim
η→∞

(

η∑
κ=1

κrc∗κ cos(κy + r
π

2
))

After using Abel’s Transformation, obtained as

lim
η→∞

(

η∑
κ=1

κrc∗κ cos(κy + r
π

2
)) = lim

η→∞
[

η−1∑
κ=1

∆(
c∗κ
κ2

)(−Dr+2
κ(y)) +

c∗η
η2
Dr+2

η(y)]

=
∞∑
κ=1

∆(
c∗κ
κ2

)(−Dr+2
κ(y)) + lim

η→∞

c∗η
η2
Dr+2

η(y)

≤
∞∑
κ=1

A∗
κ

κ2
(−Dr+2

κ(y)) + lim
η→∞

c∗η
η2
Dr+2

η(y)

Using the provided assumptions, lemma 1 & (4.2.1), the series
∞∑
κ=1

A∗
κ

κ2 (−Dr+2
κ(y))

converges.

9
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So, the limit zr(y) exists for y ∈ (0, π] and (2.3.1) follows.
Take the following consideration to establish (2.3.2).

zr(y)− zη
r(y) =

∞∑
κ=η+1

κrc∗κ cos(κy + r
π

2
) +

c∗η+1 cos (η + 1)y + r π2 η(2η + 1)(η + 1)r

6(η + 1)

=
∞∑

κ=η+1

∆(
c∗κ
κ2

)(−Dκ
r+2(y)) +

c∗η+1

(η + 1)2
Dr+2

η (y)

+
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

=
∞∑

κ=η+1

A∗
κ

κ2
∆(

c∗κ
κ2 )

A∗
κ

κ2

(−Dκ
r+2(y)) +

c∗η+1

(η + 1)2
Dr+2

η (y)

+
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

=

∞∑
κ=η+1

∆(
A∗

κ

κ2
)

κ∑
j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y)) + (

A∗
η+1

η + 1
)

η∑
j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))

+
c∗η+1

(η + 1)2
Dr+2

η (y) +
η(η + 1)r(2η + 1)

6(η + 1)
c∗η+1 cos((η + 1)y + r

π

2
)

After applying the lemma 2 & lemma 3

||zr(y)− zη
r(y)|| ≤

∞∑
κ=η+1

∆(
A∗

κ

κ2
)

∫ π

0

|
κ∑

j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))|dy

+ (
A∗

η+1

η + 1
)

∫ π

0

|
η∑

j=1

∆(
c∗j
j2 )

A∗
j

j2

(−Dj
r+2(y))|dy +

∫ π

0

|
c∗η+1

(η + 1)2
Dr+2

η (y)|dy

+
η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1|

∫ π

0

| cos((η + 1)y + r
π

2
)|dy

= O(
∞∑

κ=η+1

κr+3∆(
A∗

κ

κ2
)) +O(ηr+3(

A∗
η+1

η + 12
)) +O(ηrc∗η+1 log η)

+
η(η + 1)r(2η + 1)

6(η + 1)

∣∣∣∣c∗η+1|
∫ π

0

| cos
(
(η + 1)y + r

π

2

)∣∣∣∣ dy
Using the reasoning provided in the explanation of theorem 2, researchers may

conclude that
∞∑

κ=η+1
κr+3∆(Aκ

κ2 ) converges.∫ π

0
| cos((η + 1)y + r π2 )|dy ≤ 2

η+1 and for η ≥ 1, ηr+1c∗η log η ≤ ηr+2c∗η = o(1) as
η → ∞. This implies that

||zr(y)− zη
r(y)|| = 0(1) as η → ∞. (4.2.2)

10
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Because,zη
r(y) is a monomial, so zr(y) ∈ L1(0, π] which completes (2.3.2). We

are now proceeding on to the evidence of (2.3.3)

||zr − Sη
r|| = ||zr − zη

r + zη
r − Sη

r||
≤ ||zr − zη

r||+ ||zηr − Sη
r||

= ||zr − zη
r||+ ||η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1 cos((η + 1)y + r

π

2
)||

≤ ||zr − zη
r||+ η(η + 1)r(2η + 1)

6(η + 1)
|c∗η+1|

∫ π

0

| cos((η + 1)y + r
π

2
)|dy

Further ||zr(y)−zηr(y)|| = 0(1) as η → ∞ by using (1.11),
∫ π

0
| cos((η+1)y+

r π2 )|dy ≤ 2
η+1 and c∗η is a seq. converging to 0,so the (2.3.3)part of theorem 2.3

holds.
Note The scenario r = 0 in main result 2.3 gives output of main result 2.2.
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Abstract
The current research analyzes Soret and Dufour effects on magneto hydrodynamic
natural convection viscous-elastic radiative Casson fluid flow across a non-linear
stretchy sheet. First, the PDEs (partial differential equations) are changed using
similarity analysis into non-linear paired ODEs (ordinary differential equations).
Then, using the BVP4C technique, ordinary differential equations are numerically
solved. Engineering interest of substantial quantities like skin-friction coefficient,
Nusselt parameter, and Sherwood parameter debated in the table with multiple
significant characteristics. The current study describes that the temperature profile
increases with rising thermal radiation and the Dufour effect. A declining Sherwood
impression of Soret number is depicts in current study. An increasing radiation im-
pact declines the Nusselt number.In addition, the concentration field enhances due
to an increasing Soret effect.

Key words: Non-linear stretchy sheet, Soret and Dufour effects, Casson fluid,
Radiation Parameter, BVP4C technique.

1 Introduction

When most organic and commercial fluids, including hemoglobin, printer inks,
greasing heavy oils, watercolors, gypsum pastes, fluid cleansers, multigrade oils,
ceramic materials, fruit drinks, polymeric materials and others are pressured, they
modify their initial fluid properties or viscosity nature. The traditional Newton’s
law of viscosity is significantly deviated by these non-Newtonian fluids. Many
Researchers have explore a variety of non-Newtonian viscous-elastic flow samples
through evaluate their unique flow movement in order to estimate these conventional
fluids’ features of flow, temperature and concentration dispensation in a suitable
way.

Thermal radiation is the process through which energy or heat is conveyed by
electromagnetic waves. Thermal radiation is important when there is a large tem-
perature difference between the boundary surface and the surrounding fluid. In
physics and engineering, radiative impacts are essential. The effects of radiation
heat transfer on various flows are critical when performing activities requiring high
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temperatures and space technologies. For instance, the effects of radiation are es-
sential for observing heat transfer in the polymer sectors, where heat regulating
elements have a mild influence on the quality of the finished product. Relevant
are also the effects of radiation on nuclear power plants, aircraft, gas turbines,
spacecraft, liquid metal fluids, and solar radiation.A comprehensive examination of
mixture convective flow of Casson and Oldroyd-B fluids through a linearly strat-
ified stretchy sheet was reported by Kumam, P.et al. [1]. Additionally Thermal
radiation, chemical reactivity, and magnetization are all properties of Casson and
Oldroyd-B fluids. The property of slide boundary circumstances and chemical re-
active on heat and mass transport via mix convective boundary stratum flow of
a non-Newtonian fluid over a non-linear stretchy sheet are studied by Ahemed et
al. [2]. Ahmad. et al. [3] studied the free convection slippage flow of fractional
viscous fluid by considering the thermal radiation, heat generation, chemical reac-
tion of order first, and Newtonian heating through a porous medium by considering
single-wall carbon nanotube (SWCNT).The Casson fluid form is used to explain
the performance of non-Newtonian fluids. Basha et al. [4] investigated the MHD
convective heat transport viscous-elastic boundary layer of the Casson fluid with
Joule and viscous dissipation characteristics under the impact of chemical process
and in the presence of Lorentz forces, a non-linear stretched sheet was utilized.
Basha et al. [5] developed a 2D numerical form to explore the result of buoyancy
forces on magnetized free convective Walters-B fluid flow across a stretched sheet
with Soret impact, heat radiative, heat source/sink, and viscous dissipation. The
stretchy sheet geometry is used to generate the present physical model. The elec-
tromagnetic force on a charged particle, effect on a non-linear structure is analyzed.
The work focuses exclusively on contributions to the utilization of non-Newtonian
Casson fluid entropy generation across an exponentially stretched sheet. Entropy
generation and homogeneous–heterogeneous reactions are explored by Das et al.
[6]. Instead of no-slip situation at the boundary, motion and thermal slips are mea-
sured. The buoyancy influence on 2D Casson fluid flow and mix convection over a
non-linear stretched sheet is detected from Gangadhar et al. [7].

The Soret effect is related to mass flow phenomena caused by heat diffusion,
while the Dufour effect is tied to the energy flux generated by the solute differ-
ence. The Soret impact is used to cope with gas concentrations with lighter and
medium molecular weights. The Soret and Dufour phenomena are used to transfer
heat and mass in a variety of industrial and engineering applications, such as mul-
ticomponent melts in geosciences, groundwater pollutant migration, solidification
of binary alloys, chemical reactors, space cooling, isotope separation, oil reservoirs,
and mixtures of gases.An unsteady free convection slip flow of second grade fluid
over an infinite heated inclined plate solved with Caputo-Fabrizio fractional deriva-
tiveis studied by Haq et al. [8].Hussanan et al. [9] explored the heat transfer from
a Casson fluid to a non-linearly expanding sheet using Newtonian heating and the
magneto hydrodynamic flow of that fluid. Ibrahim et al. [10] constructed a mathe-
matical model for the investigation of mixed convection on MHD Casson fluid flow
through a non-linearly permeable extended sheet with radiative, viscous dispersion,
heat source/sink, chemical reaction, and suction. They also used the Buogiorno’s
type Nano-fluid form, which includes Brownian motion and thermophoresis. The
impacts of radiation parameter and chemical reactions on time dependent MHD
free convection flow in a porous plate were analyzed by Matta et al. [11].Mehta.
et al. [12] discussed magnetohydrodynamics varied convective stagnation point
stream with a vertically extended sheet embedded in a permeable material with
generation/absorption, radiation impacts, and viscous dissipation. The MHD flow
stalling at the point of Casson fluid across a non-linearly extending sheet with vis-
cous dispersion was studied from Medicare et al. [13].The MHD flow and heat
transmission of Casson nano particles across a non-linear (temperature variation
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throughout) stretchable sheet is studied by Mustafa et al. [14]. Mukhopadhyay, s.
[15] explored a boundary layer investigation for non-Newtonian fluid flow and heat
transport across a non-linearly stretchy sheet. The motion field is suppressed when
the Casson constraint is rised. However, as the Casson parameter is enhanced, the
temperature rises. In the existence of a chemical reaction, Naduvinamani et al.[16]
explored the heat and mass transport characteristics of a time dependent MHD
squeeze flow of Casson fluid between two parallel plates with viscous and Joule
dissipation influences. Compress flow is affected by Soret and Dufour impacts, as
well as radiation parameter and heat source/sink impacts are explored. Panigrahi
et al. [17] assessed the effects of Soret and Dufour on the properties of heat and
mass transport in a mixture Powell-Erying fluid boundary layer flow on a non-linear
stretch sheet. In the existence of thermal radiation and chemical reaction, Reddy
et al.[18] studied the time independent 2D MHD convective boundary layer flow of
a Casson fluid over an increasingly slope porous stretchy sheet.

Aside from the flow caused by an unstable or steady extending/shrinking sheet,
the influence of the buoyant force caused by the stretching sheets could not be ig-
nored. The importance of thermal radiation with mixed convective boundary layer
(BL) flow in geothermal engineering, space technology, and nuclear reactor cooling
has increased interest in the topic.Singh et al. [19] investigate thin film flow of a
third-grade fluid down a inclined planeusing an effective well organized computa-
tional scheme namely homotopy perturbation Elzaki transform method.Singh et al.
[20] studied the local fractional linear transport equations (LFLTE) in fractal porous
media.Sumalatha and Bandari [21] investigated the impact of radiation impact and
heat source/sink on the flow across a non-linearly expanding sheet of Casson fluid.
Sreedevi et al. [22] studied the convective heat and mass transport flow of an elec-
trical conducting fluid over a porous vertically stretched sheet under the assorted
property of the magnetic parameter, Joule heating, thermal radiation absorption,
viscous dissipation, buoyancy forces, Soret, and Dufour. Tak et al. [23] examined
the impressions of radiation parameter and magnetic impact on the heat and mass
transport features of natural convection around an upright surface embedded in
a dripping wet Darcian porous media, taking into account the Soret and Dufour
impacts. Ullah et al. [24] explored the impact of slip effects on MHD free convec-
tion flow of non-Newtonian fluid across a non-linear stretched sheet wringing wet in
porous media with Newtonian heating. Ullah et al. [25] investigated a time depen-
dent mix convection flow of Casson fluid for a non-linear extending sheet with slip
and convective boundary circumstances. Furthermore explored are the impacts of
thermo-diffusion, diffusion-thermo, viscous dissipation, and heat Source/Sink. The
flow and heat transport characteristics of a viscous fluid over a non-linear extending
sheet are investigated through studied by Vajravelu, K. [26].

Basha, H. et al. [4] are investigated the Casson fluid flow natural convection
viscous-elastic boundary layer in MHD over a non-linear stretched sheet with Joule
and viscous dissipation impacts under chemical reaction influence in the presence of
Lorentz forces. The current work fills the gap of Basha, H. et al. [4] by involving the
Soret and Dufour impacts in existence of radiation parameter, and the numerical
result discussed through graphs along with table using MATLAB software.

2 Problem Structure:

The current study examines the movement of 2D; time-independent, laminar, vis-
cous, incompressible boundary layer carrying a MHD Non-Newtonian Casson fluid
across a non-linear stretched sheet. Based on the geometry that is taken into con-
sideration, the current physical condition is modeled. On the other hand, Figure 1
gives clear clarification of the measured problems flow configuration completed with
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all required criteria. The contemplated flow design is consistent with the y = 0 plane
and stream are restricted to just y > 0. Still, exterior forces are used in combina-
tion with axial flow side in which the surface is enhanced and the origin is fixed. In
order to clearly give details the problem, the authors also established a rectangular
system where the y-direction is taken perpendicular to the stretchy surface and the
x-coordinate is measured along the flow direction. Also, B0 strength is applied to
the Y-coordinate, as is seen in Fig. 1. Furthermore; the free flow velocity, thermal,
and volume fraction are represented by U∞, T∞, and C∞.

Figure 1: Physical structure and coordinate system of the topic under investigation.

The established equation of a Casson fluid is inscribed by used Ref [4], [7], [9],
and [15]

τmn =

{
2(µB +

τy√
2π

)emn if π > πc

2(µB +
τy√
2π

)emn if π < πc .
(1)

Where π = emnemn and emn is the (m,n)th section of the rate of deformation, π
is the multiple of the sections of defacement rate, πc is critical worth of the multiply
founded by the non-Newtonian fluid form, µB is the plastic movable viscosity of the
non-Newtonian fluid and τy is the yield stress of the fluid.

The following criteria define the controlling relations for the proposed study Ref.
[4], [17], [18]

∂u

∂x
+

∂v

∂y
= 0, (2)
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u
∂u

∂x
+ v

∂v

∂y
= ν(1 +

1

β
)
∂2u

∂y2
− σB0

2u

ρ
+ gβT (T − T∞) + gβC(C − C∞), (3)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

Q0

ρcp
(T − T∞) +

µ

ρcp
(1 +

1

β
)(
∂u

∂y
)2 +

σB0
2u2

ρcp

− 1

ρcp

∂qr
∂y

+
DmKT

cscp

∂2C

∂y2
, (4)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+

DmKT

Tm

∂2T

∂y2
− k1(C − C∞). (5)

Earlier, equations (2) to (5) are in paired form, β = µB

√
2πC

τy
is a parameter

for the Casson fluid. And motion factors are u and v. and ν denotes kinematic
viscosity, β is a number of the shear thinning Casson fluid, σ shows the electro
conductivity, B0 signifies the magneto field strength, ρ symbol for the density, k
denotes thermal conductivity, T pointed for temperature, Q0 characterizes inside
heat source (> 0)/sink (< 0) amount, C is the occurrence of concentration, Dm

defines diffusivity, and k1 shows the chemical reactive parameter, µ symbol for the
dynamic viscosity, Cp represents for the specific heat capacity, Cs is the volume
fraction susceptibility, g is the gravitational force, βT and βC are the coefficients
of thermal and mass expansion. Where the non-linear stretchy surface speed is
represented by the parameters a (a > 0) and n. further the terms ρ − ρ∞ =
−(βT (T − T∞) + βC(C − C∞)) is buoyancy effects. Furthermore, the boundary-
layer supposition suggests that corporally the conditions on a particular location
are directly dependent upon those upstream. From a mathematical standpoint,
the behavior of the system was converted from an elliptical to a parabola form,
additionally; this change would significantly simplify the mathematical studies of
the problem.

The limitations are composed by used Ref. [4]

u = uw = axn, v = 0, T = Tw, C = Cw, at y = 0.

u → 0, T → T∞, C → C∞, at y → ∞. (6)

the Roseland approximation of the radiation heat flow is defined by Ref. [18],
[21]

qr =
−4σ

3k∗
∂T 4

∂y
, (7)

Inscribe the T 4 as a linear connection of thermal with Taylor’s series extension
regarding expansion about T∞ and deleting greater terms, we get

T 4 ≈ 4T∞
3T − T∞

4. (8)

In view of the similarity transformation, we change the dimensional governing
equation into non-dimensional equations and similarity transformation are written
as

u = axnf ′(η), v = −x(n−1)/2

√
νa(n+ 1)

2
[f(η) +

(n− 1)

(n+ 1)
ηf ′(η)], (9a)
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where η = y

√
a(n+ 1)

2ν
x(n−1)/2, θ(η) =

T − T∞

Tw − T∞
, ϕ(η) =

C − C∞

Cw − C∞
.(9b)

With the help of equations (7) to (9b), equations (2) to (6) are diminished to
the following regime with rejecting pressure gradient.

(1 +
1

β
)f ′′′ =

2n

(n+ 1)
(f ′)2 − ff ′′ + 2Mf ′ −GT θ −GCϕ = 0, (10)

((1+Nr))θ′′+2QPrθ+Prfθ′+(1+
1

β
)PrEc(f ′′)+2PrMEc(f ′)2+Duprϕ′′ = 0,

(11)
(1 + ScSr)ϕ′′ + Scfϕ′ − 2ScKrϕ = 0. (12)

With suitable boundary circumstances

f(0) = 0, f ′(0) = 1, θ(0) = 1, ϕ(0) = 0, at η = 0. (13a)

f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0, at η → ∞. (13b)

Where,M shows the magnetic parameter or Hartman number M = σB2(0)
ρa(n+1)xn−1 ,

GT andGC represent the local Temperature Grashof numberGT = gβT (Tw−T∞)

a2x2n−1 (n+1)
2

and

local Concentration Grashof number GC = gβC(Cw−C∞)

a2x2n−1 (n+1)
2

respectively, Pr shows the

Prandtl number Pr =
νρCpk , Nr denotes the Radiation parameter Nr = 16σT∞

3

3kk∗ ,

Ec denotes the Eckert number Ec = a2x2n

cp(Tw−T∞) , Du specifies the Dufour num-

ber Du = DmKT (Cw−C∞)
cscpν(Tw−T∞) , Sc denotes the Schmidt number Sc = ν

Dm
, Sr repre-

sents the Soret number Sr = DmKT (Cw−C∞)
Tmν(Tw−T∞) , β denotes the non-Newtonian Casson

parameterβ = µB

√
2πC

τy
, Kr shows that the chemical reaction Kr = K1

a(n+1)xn−1 ,

where K1 stands for porosity parameterK1 = ν
kc , and Q denotes the heat sorce sink

Q = Q0

ρacpxn−1 .

Physical Quantities:
Skin Friction Coefficient Cfx: The physical amount Skin friction Cfx that

getsup due to the viscous stretch in the surroundings of the plate is well-defined as

Cfx =
τw
ρu2

w

, where τw = (µB +
τy√
2π

)(
∂u

∂y
)y=0. (14)

Heat Transfer Coefficient: The dimensionless Nusselt number(Nux) is specified
by

Nux =
xqw

k(Tw − T∞)
, where qw = −k(

∂T

∂y
)y=0. (15)

Mass Transmission factor: The amount of mass transport is resulting through
a Sherwood parameter (Shx) which is assumed by

Shx =
xqm

Dm(Cw − C∞)
, where qm = −Dm(

∂C

∂y
)y=0. (16)

Here τw denotes the shear stress along with the shrinkage wall, qw signifies heat
flux, and qm is mass transmission quantity at wall.

Therefore, in terms of Equations (9a) to (9b), the following non-dimensional
quantities are obtained:

Rex
1/2Cfx = (

n+ 1

2
)1/2(1 +

1

β
)f ′′(0),
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local Nusselt

Rex
−1/2Nux = −(

n+ 1

2
)1/2θ′(0),

local Sherwood

Rex
−1/2Shx = −(

n+ 1

2
)1/2ϕ′(0). (18)

Where, Rex = uwx
ν is the local Reynolds number, Cfx is Skin Friction coefficient,

Nux is Nusselt number, Shx is Sherwood parameter,τw indicates the wall shear
stress, k signifies the thermo nano-fluid conductivity, qw shows the surface heat
flux, and qm directs the surface mass flux.

We resolve the reduced equations (10) to (12) with limit conditions (13a) and
(13b) via BVP4C method.

3 Results and Discussion:

The current research attempts to provide a fundamental physical understanding and
industrial level practical significance of the subject under consideration. The rheo-
logical equations (10 to 13b)are solved numerically with the BVP4C with rheolog-
ical quantities heat source/sink parameter, generative/destructive, chemical reac-
tive parameter, transverse magnetic impact, thermal diffusivity, viscous dissipation,
chemical reaction, radiation parameter, Dufour and Soret effect.Such as n,Gc,GT ,
β, M , Ec, Pr, Kr,Nr,Sr,Q,Du, and Sc.For existing study, The Fig. of different
parameters is designed with the service of MATLAB software and shown in Fig.
2 to Fig.25. Fig. (2-4) presents how the effects of β on flow sensibility, temper-
ature, and mass transport characteristics. Additionally, the impacts of β on the
dominant motion profile are also seen in Figure 2. The flow velocity in the domain
of the solution under consideration is significantly reduced by the increasing un-
der the impression of the magnetic and non-linear stretchy parameters, like shown
in Figure 2.Flow velocities are decreased for increasingβ because an enhance in β
rises the dynamic viscosity when stresses are present, that significantly increases
the resistance to the movement of fluid near the wall. Therefore, flow velocity was
decreased.Figure 3 also displays the effect ofβ thermal dispersion. This figure shows
that the thermal graph decomposes as β rises. The thermal layer is also seen to be
thinning.The temperature profile drops to zero until it is close to the surface.Like
this, Figure 4 depicts the effect of the Casson fluid parameter on the mass distri-
bution field.The concentration distribution increases near the stretching surface as
β increases. Greater β values result in stronger molecular scale contacts, which
increase molecular mobility and, ultimately, enhance the fluid’s mass distribution.
A thicker concentration boundary layer is subsequently observed.Figure 5 shows
that the thermal distribution enlarges at greater values of the Dufour impact Du.
this can be decoded that rise in the Dufour effect Du, which reason an enhance-
ment in the concentration gradient and a faster rate of mass diffusion. The rate of
heat transport associated to the particles rises as an outcome. The thermal profiles
improve as a result. Velocity and Temperature decreases with increasing Eckert
parameter Ec which is shown in Fig.-6 and 7, respectively. The purpose of Figs.
8 and 9 is to see how local concentration (local concentration Grashof number Gc)
affects velocity and concentration. As Gc rises, an enhancement in fluid velocity is
seen. As Gc increases, the buoyant force increasingly outweighs the viscous force.
As a result, the Grashof number improves fluid flow, raising both the velocity and
thickness of the motion barrier layer.Additionally, since the buoyancy force tends
to make the concentration gradient higher, the concentration is reduced.

Fig.10-12 shows that the influence of local temperature Grashof number GT on
motion, thermal and volume fraction. For the decrease in the thickness of the bound-
ary layer the motion reduces with rising values of the local temperature Grashof

7

210

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Shilpa et al 204-223



effect. For increasing the local temperature Grashof parameter, the thermal and
volume fraction profiles decrease. This decrease in temperature and concentration
profiles is primarily caused by the fact that raising the local temperature uses more
energy and causes more heat to flow to the surrounding fluid, which lowers the
thermal and volume fraction profiles. Figure 13 shows that the mass distribution
degraded at increasing Kr parameters. This decline in Solutal graph is mostly
caused by the increased mass distribution that also reduces the concentration dis-
tribution. The decreased velocity profile for the increasing Magnetic field M values
is depicted in Fig. 14. The resistance grows as the Lorentz forces increase, which
causes the velocity distribution close to the surface to flatten. Additionally, for an
increasing magnetic impact in the flow field, the factor of the velocity distribution
along the axial side decrease to nil at a greater distance from a given point. Con-
sequently, when the magnetic field increased, the velocity field degraded. Figures
15 and 16 explain the impact magnetic parameter M has on thermal and volume
fraction flow formulation. The temperature distribution increased for the growing
magnetic field M , as seen in Figure 15. Based to the fluid’s Joule heating, the
temperature field grows as the magnetic field rises since more thermal energy will
be liberated into the fluid as an outcome. Even as flexibility stress parameter lowers
due to an enhance in the magnetic parameter, the thermal field is augmented in
the fluid flow under consideration. Figure 16 also shows how the magnetic field
affects the concentration profile. The concentration distribution is seen to react as
a decreasing function of magnetic number in this graph.

Figure 2: Motion formulation of Casson fluid parameter β.

Figure 3: Thermal formulation of Casson fluid parameter β.
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Figure 4: Concentration formulation of Casson parameter β.

Figure 5: Temperature formulation of Dufour effect Du.

Figure 6: Velocity formulation of Eckert number Ec.

Figure 7: Temperature formulation of Eckert number Ec.
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Figures (17–19) show how non-linear stretched parameters affect velocity, tem-
perature, and concentration distribution behavior. Figures 17 illustrate how the
expanding stretching variable reduces flow velocity. Additionally, at higher n num-
bers, this decrease in f

′
(η) is quite small. Since 2n

n+1 is the coefficient in Equation
(10) approaches 2 when n > 1, and an outcome the velocity profile is reduced.
Additionally, the non-linear parameter n causes the velocity profile to be more dis-
connected. Furthermore, at a greater distance from the fixed value, the velocity
profile monotonically decreased to zero. Figures 18 and 19 show, correspondingly,
how the non - linear stretched parameter affects thermal and volume fraction pro-
files. The thermal and Solutal curves are magnified for the enhancing non - linear
parameter n, as shown in Figures 18 and 19. Additionally, at a greater distance from
the object, temperature and concentration exponentially decrease to zero. Also, as
the non - linear stretched number n increases, the temperature and concentration
boundary regions get thicker. As seen in figure.20, temperature is rising as the
radiation parameter Nr and the boundary layer thickness it depends on both grow.
This is because a rise in the radiation parameter heats the fluid more, which raises
the temperature and thickens the layer of thermal boundaries

Figure 8: Velocity formulation of concentration Grashof number Gc.

Figure 9: Concentration formulation of concentration Grashof number Gc.
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Figure 10: Velocity formulation of local thermal Grashof number GT .

Figure 11: Temperature formulation of local thermal Grashof number GT .

Figure 12: Concentration formulation of local thermal Grashof number GT .

Figure 13: Concentration formulation of chemical reaction parameter Kr.
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Figure 14: Velocity formulation of magnetic impact M .

Figure 15: Temperature formulation of magnetic impact M .

Figure 16: Volume fraction of magnetic impact M .

Figure 17: Motion formulation of the nonlinear parameter n.
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Figure 18: Temperature formulation of the nonlinear parameter n.

Figure 19: Concentration formulation of the nonlinear parameter n.

Figure 20: Temperature formulation of the Radiation parameter Nr.

Figure 21: Temperature formulation of the Prandtl parameter Pr.
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Figure 22: Concentration formulation of the Schmidt parameter Sc.

Figure 23: Motion formulations of Heat source sink Q.

Figure 24: Temperature formulations of Heat source sink Q.

Figure 25: Concentration formulations of Heat source sink Q.
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Figure 26: Concentration formulation of Soret effect Sr.
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The impact of the thermal graph is displayed in Fig. 21 for various Prandtl
number Pr quantities. Temperature distribution is shown to reduce for increasing in
this analysis. Physically, Prandtl parameter Pr affects the thickness of the thermal
boundary layer and momentum boundary layers. A larger Prandtl number denotes
a thickness of the thermal boundary layer that is thinner, maintaining the boundary
layer’s uniform thermal distribution. The heating-boundary layer is subordinated
to the magneto hydrodynamic boundary layer. Heat can dissipate more quickly in
reduced Prandtl parameter fluids than in highest Prandtl parameter fluids according
to their higher thermal conductivities. The impact of Schmidt parameter Sc on the
dispensation of concentrations is shown in Fig.22. The volume fraction field reduces
with rising Schmidt number Sc. Schmidt number, though it is constantly connected
to velocity and mass diffusivities. Therefore, the fluid concentration diffusion is
suppressed by rising values of Schmidt parameter Sc. In Figure 23, the motion
profile reduces with the enhancing value of heat source or sink Q. Figure 24 shows
how heating source or sink parameter Q affects temperature. The figure shows that
as the heat sink’s power rises, the non - dimensional temperature lowers, even as
the heat source’s power rises, the temperature rises. Therefore, as the heat sink
parameter is raised, the thermal boundary layer reduces thickness, whereas the
heat source effect causes it to rise. Also Fig.25 denotes the increasing concentration
profile with the increasing value of heat source or sink Q. Figure 26 provided a
visual representation of the consequences of thermal migration or Soret number
(Sr). Sr represents the mass transfer rate between lowest to the highest solute
concentrations and is essentially a ratio of temperature gradient to concentration.
Figure 26 show that the concentration profile is exhibiting a rising behavior along
with the rising value of Sr.

Table I: Impression of parameters of notice on skin friction, Nusselt parameter,
and Sherwood parameter:

n GT GC β M Pr Ec Sc Q Du Sr Nr Kr CfxRex
1/2 −NuxRex

−1/2 −ShxRex
−1/2

0.5 -1.85657 0.65240 0.55783
2.5 0.1 0.1 0.3 0.2 0.7 0.2 0.7 0.1 0.1 0.1 0.1 0.1 -2.23135 0.65017 0.54858
4.5 -2.3244 0.64932 0.54636

0.1 -1.85657 0.6524 0.55783
0.5 0.7 -1.59447 0.65546 0.56157

1.3 -1.33728 0.65742 0.56520
0.3 -1.85657 0.652401 0.557836

0.1 0.7 -1.43724 0.535531 0.5621336
0.7 -1.44060 0.482280 0.5611931

0.2 -1.85657 0.652401 0.557836
0.3 0.5 -2.33732 0.928422 0.508645

0.7 -2.05587 0.571925 0.545825
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0.7 -1.85657 0.652401 0.55783
0.2 0.8 -1.48080 0.727980 .561245

0.9 -1.53126 0.79666 0.5589154
0.1 -10.18979 2.044867 0.594878

0.02 0.7 0.3 -26.32619 10.6900 0.507348
0.5 -33.7957 18.38017 0.4583266

0.7 -1.85657 0.652401 0.557836
0.3 0.2 0.8 -2.01032 0.925019 0.558312

0.9 -1.42483 0.648136 0.558312
0.1 -1.85657 0.652401 0.557836

0.7 0.2 -1.463515 0.626327 0.56106
0.3 -1.63419 0.691826 0.551289

0.1 -1.856577 0.652401 0.557836
0.1 0.5 -1.9724632 0.809687 0.515012

1 -1.222268 0.336784 0.573077
0.1 -1.85657 0.652401 0.557836

0.1 0.5 -1.419446 0.663674 0.494086
1 -2.0097 0.948055 0.3811412

0.1 -1.856577 0.652401 0.557836
0.1 0.3 -1.34829 0.577117 0.56761

0.5 -1.283884 0.51627 0.570809
0.1 -1.856577 0.652401 0.557836

0.1 0.2 -1.42427 0.6509020 0.64566
0.3 -1.425672 0.645687 0.7180935

0.1 -3.678953 0.75017 0.200603
0.4 0.1 0.5 0.1 0.1 0.1 -3.2968876 0.7372915 0.20394816
0.8 -2.803422 0.720553 0.208056

Table II: validate the current values of various physical parameters to previ-
ouslyresults of Basha et al. Ref. [3] andVajraveluk. Ref. [21] respectively.

Vajraveluk.Ref[21] Basha et al. Ref. [3] current values

n Pr f
′′
(0) θ′(0) f

′′
(0) θ′(0) f

′′
(0) θ′(0)

1 0.71 -1.0000 -0.4590 -1.00005468353233 -0.45908783553 -1.00001 -0.459033
5 0.71 -1.1945 -0.4394 -1.19449559110388 -0.4395495710690 -1.1945 -0.4394
10 0.71 -1.2348 -0.4357 -1.23488263663213 -0.4356401511209 -1.23488 -0.435641
1 7 -1.0000 -1.8953 -1.00005468353233 -1.8953100096284 -1.00001 -1.89541
5 7 -1.1945 -1.8610 -1.19449559110388 -1.8609911518168 -1.1945 -1.86159
7 7 -1.2348 -1.8541 -1.23488263663213 -1.8540100137230 -1.23488 -1.85464

4 Conclusion:

From the current study we conclude that the mathematical outcomes for diverse
physical quantities have been dissolved. The effects of the transfer of mass and
heat including Soret and Dufour effects, heat absorption/ generation, Radiation
parameter, chemical reaction, have been expressed for a non-linear stretchy surface
in the rheology.This problem can be solved for future purpose if sheet is inclined at
some angle. The boundary conditions and fluids can also be changed. The ending
conclusion is

• An increasing value of Soret effect, grow the concentration of the fluid. And
an increasing value of Heat source/ sink, also enhancing the concentration of
the fluid
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• Temperature profile is increased for an increasing value of Dufour effect

• Motion and thermal profiles of the fluid are decreased due to increased Heat
source/sink

• Temperature profile of the fluid is increased when raised thermal radiation

• Motion and thermal profiles of the fluid are decreased due to enhanced Eckert
number

• The decreasing skin-friction rate impression is seen for radiation parameters

• For the Soret effect, the diminishing Sherwood parameter impression is ob-
served
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In this article, we present M/M/1 retrial queueing system with feedback and
Server breakdown. Arrival follows Poisson process. An arrival finds the system
is full, the arrival enters into an orbit of size infinity. From the orbit the cus-
tomers try their luck. The time between two successive retrials is called retrial
time, it follows negative exponential distribution. Service time is exponentially
distributed. Once the server experiences an unanticipated failure, it should be
repaired and returned to normal functioning. Feedback is when unsatisfied cus-
tomers join the orbit again for a service. Matrix geometric method is engaged
to determined performance measures. Some graphical representations are also
acquired.

AMS subject classification number— 90B22, 60K30 and 60K25
Key Words —- Retrial Queue, Arrival Rate, Server Breakdown, Feedback, Matrix
Geometric Method (MGM).

1 Introduction

Queueing model can be found in variety of real-life scenarios. Queueing system with
feedback have several uses in the manufacturing, computing and telecommunications
systems. In queueing theory in which customer arrives who finds the sever and waiting
places are engaged, may retry after an irregular measurement of time is known as retrial
queue. During the period of getting service the server may get sudden breakdown and
send to repair, at that time the customer wait to get complete service. After getting a
service the customer has to decide to leave the system or to continue the service. The
unsatisfied customer goes to the orbit for another service is called feedback. Artalejo
(2012) determined M/M/1 retrial queue with finite population. A survey of retrial
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queues was explored by Falin (1990). M/M/1 retrial queueing system with variable
service rates in priority service was analyzed by Ayyappan Govindan et al (2011).
Neuts (1981) discussed several matrix geometric stochastic model solutions. Praveen
Deora et al (2021) analyzed the cost analysis and optimization of machine repair model
with working vacation and feedback policy.

This model has been investigated by Choi, et al (1998) analyzed multi-server retrial
queue with feedback and loss. Choi and Kulkarni (1992) explored feedback retrial
queueing model. Chuen-Horng Lin and Jau-Chuan Ke (2011) determined multi server
retrial queue with loss and feedback. Retrial queue with server breakdown has been
investigated by Kalyanaraman and Seenivasan (2011) analyzed multi-server retrial
queue with breakdown and geometric loss. Seenivasan et al investigated different type
of queueing models and their characteristics behavior. With the help of that research
criteria we developed the concept using in retrial queueing model.

Following is an overview of the remaining sections of this article. Construction
of our model is presented in section 2. Section 3 includes some numerical examples.
Section 4 describes the system performance measures, as well as the summary follows
in the end part of this article. 1

2 Construction of the model

In this article, we concentrated on retrial queue with server breakdown and Feedback.
Arriving customer follows Poisson process with rate λ. Assuming that the server is
free, the incoming customer will be served instantly, and if the server is occupied, he
will joining the orbit. After certain uneven estimations of time, customers from orbit
attempt their luck. In retrial, each customer is viewed as equivalent to a primary
customer. The retrial time is exponentially distributed with rate ν. The service time
is exponential distributed with service rate µ. Eventually when the server could open
to unforeseen breakdown with rate α and after it ought to be fixed and goes to normal
service with rate φ. Server will wait unless there is no queue at the ending of the
vacation. Assuming that the served customer decide to leaves the framework forever
with rate β

′
= (1 − β) (or) he rejoins the orbit again for another service at a rate β

(it is called feedback). Our model’s transition diagram is depicted in (Figure. 1).
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Figure 1. Transition Diagram

Let A(t), B(t) : t ≥ 0 be a stochastic process with state space at time t,
A(t) = 0, server is idle,
A(t) = 1, server is working,
A(t) = 2, server gets breakdown.
B(t) indicates no. of customers in the orbit.
Lexicographical series is given by:
Ω = (0, 0)U(1, 0)U(i, j); i = 0, 1, j = 1, 2, ...., n ≥ 1
Infinitesimal generated matrix Q:

Q =


K00 L00 · · · · · · · · · · · · · · · · · ·
N00 M00 L00 · · · · · · · · · · · · · · ·

0 N00 M00 L00 · · · · · · · · · · · ·
0 · · · N00 M00 · · · · · · · · · · · ·
0 · · · · · · N00 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


Where

K00 =

(−(λ) λ 0

β
′
µ −(λ+ α+ µ) α

0 ϕ −(λ+ ϕ)

)
; L00 =

(
0 0 0
βµ λ 0
0 0 λ

)
;

N00 =

(
0 ν 0
0 0 0
0 0 0

)
; M00 =

(−(λ+ ν) λ 0

β
′
µ −(λ+ α+ µ) α

0 ϕ −(λ+ ϕ)

)
;

We define πij = {A = i, B = j}=limt→∞ Pr{A(t) = i, B(t) = j}, where j indi-
cates no. of customers in the orbit & i indicates the server state.
From the balance equation ΠQ = 0. (1)
π0K00 + π1N00 = 0 (2)
π0L00 + π1M00 + π2N00 = 0 (3)
π1L00 + π2M00 + π3N00 = 0 (4)

.

.

.
πiL00 + πi+1M00 + πi+2N00 = 0 (5)
And πj = π0R

j forj ≥ 1. (6)
We can assuming that R is a rate matrix.
π0[K00 +RN00] = 0 (7)
π0[R2N00 +RM00 + L00] = 0 (8)
The normalizing condition is
Π0 [I −R]−1 e = 1 (9)
’e’ is a column vector with all elements equal to 1.
Π partitioned as Π = (Π0,Π1,Π2) is a static prob. vector of the (reducible) generator
matrix is D = L00 +M00 +N00.

D =

(−(λ+ ν) (λ+ ν) 0
µ −(µ+ α) α
0 ϕ −ϕ

)
(10)

3

226

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

M.SEENIVASAN 224-235



And Π could be displayed to be stationary in order that ΠD = 0 & Πe = 1.

Π0 = [1 +
λ+ ν

µ
+
α(λ+ ν)

ϕµ
]−1; Π1 =

λ+ ν

µ
Π0; Π2 =

α(λ+ ν)

ϕµ
Π0.

The static condition adopts the format actually determined by the drift condition.
ΠL00e < ΠN00e. Equation (10) determines D’s static probability. After obtaining rate
matrix R, our probability vectors Πj’s (j ≥ 1) are calculated using Eqs. (6) and (9).

3 Numerical Study

By changing the values of the parameter λ & fixing all other parameters

Case i

If λ = 0.10, µ = 2.0, β = 0.4,β
′

= 0.6,α = 0.30, ϕ = 0.50, ν = 0.05 &R =

(
0.3950 0.2226 0.0247
0.5926 0.1838 0.0370
0.4938 0.1868 0.1975

)

Table 1. Probability vectors
Πj π0j π1j π2j Total

π0 0.2436 0.0203 0.0361 0.3000

π1 0.1261 0.0647 0.0139 0.2047

π2 0.0950 0.0426 0.0083 0.1459

π3 0.0668 0.0305 0.0056 0.1029

π4 0.0472 0.0215 0.0039 0.0726

π5 0.0333 0.0152 0.0027 0.0512

π6 0.0235 0.0107 0.0019 0.0316

π7 0.0166 0.0076 0.0014 0.0256

π8 0.0117 0.0053 0.0010 0.0180

π9 0.0083 0.0038 0.0007 0.0128

π10 0.0058 0.0027 0.0005 0.0090

π11 0.0041 0.0012 0.0003 0.0063

π12 0.0029 0.0008 0.0002 0.0044

π13 0.0020 0.0006 0.0002 0.0031

π14 0.0014 0.0004 0.0001 0.0022

π15 0.0010 0.0003 0.0001 0.0016

π16 0.0007 0.0002 0.0001 0.0011
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π17 0.0005 0.0001 0.0000 0.0007

π18 0.0004 0.0001 0.0000 0.0006

π19 0.0003 0.0001 0.0000 0.0004

π20 0.0002 0.0001 0.0000 0.0003

Total 0.9999

The prob. vectors in table 1 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Π0 = (0.2436 0.0203 0.0361). Utilizing Π0 in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability
is affirmed to be 0.9999 ≈ 1.

Case ii

If λ = 0.15, µ = 2.0, β = 0.4,β
′

= 0.6, α = 0.30, ϕ = 0.50, ν = 0.05 &R =

(
0.4548 0.2665 0.0394
0.6064 0.2264 0.0525
0.4665 0.2100 0.2711

)

Table 2. Probability vectors
Πj π0j π1j π2j Total

π0 0.1364 0.0171 0.0338 0.1873

π1 0.0882 0.0473 0.0154 0.1509

π2 0.0760 0.0375 0.0101 0.1236

π3 0.0621 0.0309 0.0077 0.1006

π4 0.0505 0.0251 0.0062 0.0818

π5 0.0411 0.0204 0.0050 0.0665

π6 0.0334 0.0166 0.0040 0.0540

π7 0.0272 0.0135 0.0033 0.0440

π8 0.0221 0.0110 0.0027 0.0358

π9 0.0179 0.0089 0.0022 0.0290

π10 0.0146 0.0073 0.0018 0.0237

π11 0.0119 0.0059 0.0014 0.0192

π12 0.0096 0.0048 0.0012 0.0156

π13 0.0078 0.0039 0.0009 0.0126

π14 0.0064 0.0032 0.0008 0.0104

π15 0.0052 0.0026 0.0006 0.0084

π16 0.0042 0.0021 0.0005 0.0068

π17 0.0034 0.0017 0.0004 0.0055

π18 0.0028 0.0014 0.0003 0.0045
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π19 0.0023 0.0011 0.0003 0.0037

π20 0.0018 0.0009 0.0002 0.0029

π21 0.0015 0.0007 0.0002 0.0024

π22 0.0012 0.0006 0.0001 0.0019

π23 0.0010 0.0005 0.0001 0.0021

π24 0.0008 0.0004 0.0001 0.0013

π25 0.0007 0.0003 0.0001 0.0011

π26 0.0005 0.0003 0.0001 0.0009

π27 0.0004 0.0002 0.0001 0.0007

π28 0.0004 0.0002 0.0000 0.0006

π29 0.0003 0.0001 0.0000 0.0004

π30 0.0002 0.0001 0.0000 0.0003

Total 0.9998

The prob. vectors in table 2 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Π0 = (0.1364 0.0171 0.0338). Utilizing Π0 in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability
is affirmed to be 0.9998 ≈ 1.

Case iii

If λ = 0.20, µ = 2.0, β = 0.4,β
′

= 0.6, α = 0.30, ϕ = 0.50, ν = 0.05 &R =

(
0.4827 0.2894 0.0517
0.6034 0.2543 0.0647
0.4310 0.2160 0.3319

)

Table 3. Probability vectors
Πj π0j π1j π2j Total

π0 0.0849 0.0142 0.0305 0.1296

π1 0.0627 0.0348 0.0154 0.1129

π2 0.0579 0.0303 0.0106 0.0988

π3 0.0508 0.0268 0.0085 0.0861

π4 0.0443 0.0233 0.0072 0.0748

π5 0.0386 0.0203 0.0062 0.0651

π6 0.0335 0.0177 0.0054 0.0566

π7 0.0292 0.0154 0.0047 0.0493

π8 0.0253 0.0133 0.0040 0.0416

π9 0.0220 0.0116 0.0035 0.0371

π10 0.0192 0.0101 0.0031 0.0324

π11 0.0166 0.0088 0.0027 0.0281

π12 0.0145 0.0076 0.0023 0.0244
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π13 0.0126 0.0066 0.0020 0.0212

π14 0.0109 0.0058 0.0017 0.0184

π15 0.0095 0.0050 0.0015 0.0160

π16 0.0083 0.0044 0.0013 0.0140

π17 0.0072 0.0038 0.0011 0.0121

π18 0.0062 0.0033 0.0010 0.0105

π19 0.0054 0.0029 0.0009 0.0092

π20 0.0047 0.0025 0.0008 0.0080

π21 0.0041 0.0022 0.0007 0.0070

π22 0.0036 0.0019 0.0006 0.0061

π23 0.0031 0.0016 0.0005 0.0052

π24 0.0027 0.0014 0.0004 0.0045

π25 0.0023 0.0012 0.0004 0.0039

π26 0.0020 0.0011 0.0003 0.0034

π27 0.0018 0.0009 0.0003 0.0030

π28 0.0015 0.0008 0.0002 0.0025

π29 0.0013 0.0007 0.0002 0.0022

π30 0.0012 0.0006 0.0002 0.0020

π31 0.0010 0.0005 0.0002 0.0017

π32 0.0009 0.0005 0.0001 0.0015

π33 0.0008 0.0004 0.0001 0.0013

π34 0.0007 0.0003 0.0001 0.0011

π35 0.0006 0.0003 0.0001 0.0010

π36 0.0005 0.0003 0.0001 0.0009

π37 0.0004 0.0002 0.0001 0.0007

π38 0.0003 0.0002 0.0001 0.0006

π39 0.0003 0.0002 0.0000 0.0005

π40 0.0002 0.0001 0.0000 0.0003

Total 0.9980

The prob. vectors in table 3 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Π0 = (0.0849 0.0142 0.0305). Utilizing Π0 in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability
is affirmed to be 0.9980 ≈ 1.

Case iv

If λ = 0.25, µ = 2.0,β = 0.4,β
′

= 0.6, α = 0.30, ϕ = 0.50, ν = 0.05 &R =

(
0.4938 0.3055 0.0617
0.5926 0.2768 0.0741
0.3950 0.2161 0.3827

)

7
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Table 4. Probability vectors
Πj π0j π1j π2j Total

π0 0.0570 0.0119 0.0275 0.0964

π1 0.0416 0.0267 0.0149 0.0877

π2 0.0444 0.0247 0.0105 0.0796

π3 0.0407 0.0227 0.0086 0.0720

π4 0.0369 0.0206 0.0075 0.0650

π5 0.0334 0.0186 0.0067 0.0587

π6 0.0301 0.0168 0.0060 0.0529

π7 0.0272 0.0152 0.0054 0.0478

π8 0.0245 0.0137 0.0049 0.0431

π9 0.0221 0.0123 0.0044 0.0388

π10 0.0200 0.0111 0.0040 0.0351

π11 0.0180 0.0100 0.0036 0.0316

π12 0.0163 0.0091 0.0032 0.0286

π13 0.0147 0.0082 0.0029 0.0258

π14 0.0132 0.0074 0.0026 0.0232

π15 0.0119 0.0067 0.0024 0.0210

π16 0.0108 0.0060 0.0021 0.0189

π17 0.0097 0.0054 0.0019 0.0170

π18 0.0088 0.0049 0.0017 0.0154

π19 0.0079 0.0044 0.0016 0.0139

π20 0.0071 0.0040 0.0014 0.0125

π21 0.0064 0.0036 0.0013 0.0113

π22 0.0058 0.0032 0.0012 0.0102

π23 0.0052 0.0029 0.0010 0.0091

π24 0.0047 0.0026 0.0009 0.0082

π25 0.0043 0.0024 0.0008 0.0075

π26 0.0038 0.0021 0.0008 0.0067

π27 0.0035 0.0019 0.0007 0.0061

π28 0.0033 0.0017 0.0006 0.0054

π29 0.0028 0.0016 0.0006 0.0050

π30 0.0025 0.0014 0.0005 0.0044

π31 0.0023 0.0013 0.0005 0.0041

π32 0.0021 0.0012 0.0004 0.0037
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π33 0.0019 0.0010 0.0004 0.0033

π34 0.0017 0.0009 0.0003 0.0029

π35 0.0015 0.0008 0.0003 0.0026

π36 0.0014 0.0008 0.0003 0.0025

π37 0.0012 0.0007 0.0002 0.0021

π38 0.0011 0.0006 0.0002 0.0018

π39 0.0010 0.0006 0.0002 0.0018

π40 0.0009 0.0005 0.0002 0.0016

π41 0.0008 0.0005 0.0002 0.0015

π42 0.0007 0.0004 0.0001 0.0012

π43 0.0007 0.0004 0.0001 0.0012

π44 0.0006 0.0003 0.0001 0.0010

π45 0.0005 0.0003 0.0001 0.0009

π46 0.0005 0.0003 0.0001 0.0009

π47 0.0004 0.0002 0.0001 0.0007

Total 0.9990

The prob. vectors in table 4 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Π0 = (0.0570 0.0119 0.0275). Utilizing Π0 in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability
is affirmed to be 0.9990 ≈ 1.

4 Performance Measures

The following performance measures were discovered using steady-state probabilities.

• Pr{server is in idle} E(I) = Π0 (11)

• Pr{server is on busy period} E(B) =
∞∑
j=1

jπ1j (12)

• Pr{server gets breakdown} E(BD) =
∞∑
j=1

jπ2j (13)

• Pr{Total no. of customers in the system} E(N) = E(I) + E(B) + E(BD) (14)

• Pr{No customer in the orbit} PNCO =
2∑

i=0

πi0 (15)

9
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Table 5. Performance Measures
λ 0.1 0.15 0.2 0.25

E(I) 0.6917 0.6327 0.5954 0.5660

E(B) 0.7077 1.3304 2.0656 3.6330

E(BD) 0.1297 0.3255 0.6596 1.0317

E(N) 2.3764 4.3319 6.6537 9.8917

PNCO 0.3000 0.1873 0.1296 0.0964

Figure 2. Arrival rate versus E(I)

Figure 3. Arrival rate versus E(B)

Figure 4. Arrival rate versus E(BD)

10
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Figure 5. Arrival rate versus E(N)

Figure 6. Arrival rate versus PNCO

The values of arrival rate have been varied from 0.1 to 2.5 As the arrival increases,
Prob. that server is on idle and Prob. that orbit has no customer are decreases(refer
Fig. 2 & Fig. 6). Similarly, if arrival rate increases, then Prob. that server is on
busy period, Prob. that server gets breakdown and Prob. that total customers in the
system are gradually increases (refer Fig. 3, Fig. 4 & Fig. 5).

5 Summary

This article focused on M/M/1 retrial queue with breakdown & feedback by utilizing
Matrix geometric method. Using this type of model we can able to manage the time
during the server breakdown and customer who is not satisfied are also able to get
a servers again without any issues. By this producing this method the steady state
probability vectors are obtained. From that some system performance measures are
also determined with graphical representations.
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Abstract

Norm retrieval was introduced for Hilbert space frames for the first time
by Bahmanpour et. al. in the year 2015. In order for a subspace as
well as its orthogonal complement to do norm retrieval, it was proved
by Bahmanpour et. al. that norm retrieval is a necessary requirement.
Basically, norm retrieval refers to the process of reconstructing the signal’s
norm from the intensity measurements. We give a few characterizations
for norm retrieval by vectors and subspaces under the action of bounded
linear operators.
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Keywords: Norm retrieval; Phase retrieval; Frames; Hilbert spaces; Signal re-
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1 Introduction

For any orthonormal basis {u1, u2, u3, . . . }, a vector v ∈ H can be explicitly
represented as v =

∑
i

〈v, ui〉ui. Thus orthonormal bases help to reconstruct a

vector. In a similar manner, frames, having more flexible structure, also help to
reconstruct a vector in a stable way. Duffin and Schaeffer [9] for the first time
introduced frames for Hilbert spaces in the year 1952. Frames provides us with
a reconstruction formula for lost signals. Daubechies et. al. popularized frames
through their work in [7]. Over the last few decades, frame theory has become
a prestigious area of research. Researchers worked various generalizations of
frames, for instance, K-frame [13], fusion frame [5], wavelet frame [6] and many
more. Basically, frames help us to recover and reconstruct the signal, that was
lost or distorted, in a stable manner.

Reconstruction of signal is one of the important and significant problems in
engineering especially in signal processing. Here a signal can be thought as a
vector. This process of regaining the original signal becomes challenging when

∗Corresponding author. E-mail address: sumandowerah@nitm.ac.in
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there is a partial loss of information. Sometimes it happens that we only have
the intensity measurements or the phaseless measurements of the lost signal.
In such case, phase retrieval sequences help to reconstruct or regain the signal
from its intensity measurements or phaseless measurements. Phase retrieval was
introduced by Balan et al. [2] for Hilbert space frames in the year 2006. Since
then mathematicians have started to work in this area. Phase retrieval is one of
the challenging engineering problems. It includes a broad range of applications
in many fields, such as speech recognition technology, X-ray crystallography,
etc.

Norm retrieval means regaining or reconstructing the lost signal’s norm
from its intensity measurements or phaseless measurements. Norm retrieval
for Hilbert spaces was discussed for the first time by Bahmanpour et. al. [1] in
the year 2015. It was proved in [1] that norm retrieval is the necessary require-
ment for a subspace so that the subspace along with its orthogonal complement
do phase retrieval. We note that if a sequence does phase retrieval then it will
always do norm retrieval. In the last few years, it is observed that researchers
have worked on norm retrieval frames [10], norm retrieval subspaces in finite
dimensional Hilbert spaces [4]; and in infinite dimensional Hilbert spaces [15].
Apart from these, pertubation of norm retrieval frames is discussed in [11]. Be-
ing highly influenced as well as encouraged by the above mentioned work we
explore norm retrieval sequences for vectors under the action of bounded lin-
ear operators, T . We also provide a method for construction of norm retrieval
subspaces.

We stick to the following notations throughout paper. H,K represents sepa-
rable Hilbert spaces, B(H) represents the space of linear and bounded operators
from H to H. I,Λ,Λi represents a countable index set.

The paper is organised as follows. In Section 2, we give some preliminary
background on norm retrieval sequences for finite and infinite dimensional spaces
and we highlight some of the important results in these fields. We provide
characterizations of norm retrieval sequences and and norm retrieval subspaces
in Section 3.

2 Preliminaries

We recall the fundamental definitions and basic results that will be helpful for
the paper. Frames are mathematical tools that are used to reconstruct signals.

Definition 2.1. [6] Consider a sequence, say ϕ = {ϕi}i∈I , in H. If for all
x ∈ H, there exist constants 0 < A1 ≤ A2 <∞ such that ϕ satisfies

A1‖x‖2 ≤
∑
i∈I
|〈x, ϕi〉|2 ≤ A2‖x‖2.

Then ϕ is called a frame for H. Here the constants A1 is known as the lower
frame bound, A2 is known as the upper frame bound. The frame ϕ is called
Parseval frame if A1 = A2 = 1.

2
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For example, consider an orthonormal basis, say, {en} for H, then the se-
quence {e1, e1, e2, e3, e4, . . . } is a frame for H. The associated frame bounds are
A1 = 1, A2 = 2.

The frame operator, S, is a mapping S : H → H defined as

Sx =
∑
i∈I
〈x, ϕi〉ϕi, ∀x ∈ H.

The reconstruction formula given by frame operator and frame elements is as
follows:

x =
∑
i∈I
〈x, S−1ϕi〉ϕi =

∑
i∈I
〈x, ϕi〉S−1ϕi, ∀x ∈ H.

We note that this representation is not unique, owing to the fact that frame
elements are not necessarily linearly independent. Frames are one of the essential
tools for restoring a signal. There are many different types of frames. One
special type of frame is the scalable frame [14]. A scalable frame is a frame,
ϕ, for H such that there exists scalars, say c1, c2, c3, . . . with ci ≥ 0 for which
{ciϕi}i∈I is a Parseval frame forH. We refer the readers [6] for more information
in frame theory.

Definition 2.2. [2] Consider a sequence ϕ = {ϕi}i∈I ∈ H. We say ϕ performs
phase retrieval for H, if for x, y ∈ H, ϕ satisfies

|〈x, ϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I,

then x = cy and c satisfies |c| = 1.

The sequence of vectors {ei + ej}i<j , where ei’s are standard orthonormal
basis, performs phase retrieval for `2. If a sequence does phase retrieval in a
finite dimension space then it is also a frame, but it may not necessarily be a
frame in an infinite dimension space.

In [3], Cahill et. al. thoroughly discussed phase retrieval by subspaces or
projections.

Definition 2.3. [3] Suppose W = {Wi}i∈I ⊂ H is a collection of closed sub-
spaces with corresponding projections P = {Pi}i∈I . Then W or P does phase
retrieval whenever x, y ∈ H, P satisfies

‖Pix‖ = ‖Piy‖ ∀ i ∈ I,

we have x = cy and c satisfies |c| = 1.

Bahmanpour et. al. [1] introduced norm retrieval for frames in Hilbert
spaces in the year 2015. In his attempt to pass the phase retrieval condition
by subspaces to its orthogonal complements, Bahmanpour proved in [1] that
the property of norm retrieval is a necessary requirement. A norm retrieval
sequence helps to reconstruct partially lost signal’s norm.

3
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Definition 2.4. [1] A sequence of vectors ϕ = {ϕi}i∈I in H does norm retrieval
if for x, y ∈ H, ϕ satisfies

|〈x, ϕi〉| = |〈y, ϕi〉| ∀ i ∈ I,

then ‖x‖ = ‖y‖.

It is obvious for scalable frames, parseval frames, tight frames to do norm
retrieval. An orthonormal basis will always do norm retrieval for the corre-
sponding space. It is to be noted that if a sequence performs phase retrieval for
H then the sequence also performs norm retrieval for H, however the converse
is not true. For example, orthonormal bases do norm retrieval but not phase
retrieval.

Norm retrieval by projections is defined as follows.

Definition 2.5. [1] Consider a family of subspaces, say {Wi}i∈I , in an infinite
dimensional Hilbert space H and define the orthogonal projections, say {Pi}i∈I ,
onto {Wi}i∈I . Then {Wi}i∈I (or {Pi}i∈I) performs norm retrieval for H if for
x, y ∈ H, {Pi}i∈I satisfies ‖Pix‖ = ‖Piy‖, ∀ i ∈ I, we have ‖x‖ = ‖y‖.

Norm retrieval can be thought as having an advantage of one free measure-
ment when one tries to do phase retrieval.

The next proposition gives us a method to construct norm retrieval subspaces
with the help of dimension of the subspaces.

Proposition 2.6. [4] If {Wi}mi=1 are subspaces in Rn such that they do norm

retrieval then
m∑
i=1

dimWi ≥ n. Moreover, if ∃ k1, k2, . . . , km ∈ N with ki ≤ n

such that for some L ∈ N
m∑
i=1

ki = Ln then there exist subspaces {Wi}mi=1 that

perform norm retrieval in Rn where dimWi = ki for 1 ≤ i ≤ m.

The above result can easily be generalized as follows.

Theorem 2.7. Suppose {ki}mi=1 are natural numbers such that ki ≤ n and
m∑
i=1

ki ≥ n. If for some l ∈ N with 1 ≤ l ≤ m,
l∑

i=1

ki is a multiple of n, then

there exist subspaces {Wi}mi=1 in Rn satisfying dimWi = ki such that {Wi}mi=1

performs norm retrieval.

We recall the following properties of projection operators.

Lemma 2.8. [12] Consider any two Hilbert spaces, say, H1, H2 and T ∈
B(H1,H2). Consider a closed subspace, say, W1, of H1 and another closed
subspace, say, W2, of H2. Then the following statements are true.

(i) PW1
T ∗PW2

= PW1
T ∗ if and only if TW1 ⊂W2.

(ii) PW1T
∗PTW1

= PW1T
∗

4
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3 Main Results

We begin this section by studying norm retrieval sequences under the action of
bounded linear operators.

In [1], it was shown that orthogonal projections preserve the norm retrieval
property. However in [4], it is shown that the norm retrieval property is not
preserved by invertible operators. For instance, ϕ = {(1, 0), (0, 1)} does norm
retrieval for R2; consider an invertible on R2 defined by T (x1, x2) = (x1+x2, x2);
but Tϕ = {(1, 0), (1, 1)} does not do norm retrieval for R2.

Remark 3.1. ϕ = {ϕi}i∈I perform norm retrieval for H ⇐⇒ for ci 6= 0,
cϕ = {ciϕi}i∈I perform norm retrieval for H. Indeed, this can be easily verified
from the fact that |〈x, ciϕi〉| = |〈y, ciϕi〉| ⇐⇒ |〈x, ϕi〉| = |〈y, ϕi〉|, ∀i ∈ I.

Theorem 3.2. Suppose {ϕi}i∈I performs norm retrieval for H. Consider T ∈
B(H), such that T is an isometry. Then {T ∗ϕi}i∈I performs norm retrieval for
H.

Proof. Suppose x, y ∈ H such that |〈x, T ∗ϕi〉| = |〈y, T ∗ϕi〉| =⇒ |〈Tx, ϕi〉| =
|〈Ty, ϕi〉|, ∀ i ∈ I. Using the fact that {ϕi}i∈I performs norm retrieval for H
and T is an isometry, we get ‖x‖ = ‖y‖.

Corollary 3.3. Suppose T ∈ B(H) is an unitary operator and let ϕ = {ϕi}i∈I
be a sequence of vectors in H. Then, ϕ doing norm retrieval for H is equivalent
to Tϕ doing norm retrieval for H.

In [8] it was shown that phase retrieval is preserved by non-zero idempotent
operators for the range space. Theorem 3.4 shows that idempotent operators
also preserves norm retrieval for the range space.

Theorem 3.4. Consider T ∈ B(H), a non-zero idempotent operator and let
ϕ = {ϕi}i∈I be a sequence of vectors in H. Then ϕ doing norm retrieval for
R(T ∗) is equivalent to {Tϕi}i∈I doing norm retrieval for R(T ∗).

Proof. We note that for every x1, x2 ∈ R(T ∗), there exists y1, y2 ∈ H such that
T ∗y1 = x1, T ∗y2 = x2. Then we have,

|〈x1, Tϕi〉| = |〈x2, Tϕi〉| ⇐⇒ |〈T ∗y1, Tϕi〉| = |〈T ∗y2, Tϕi〉|
⇐⇒ |〈T ∗y1, ϕi〉| = |〈T ∗y2, ϕi〉|
⇐⇒ |〈x1, ϕi〉| = |〈x2, ϕi〉|,

for all i ∈ I. Hence the theorem holds.

Theorem 3.5. Given a closed subspace W of a Hilbert space H, every norm
sequence for H can be uniquely decomposed into norm retrieval sequences for W
and W⊥.

5
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Proof. Suppose ϕ = {ϕi}i∈I does norm retrieval for H and Pw is the orthogonal
projection onto W . Then ϕ can be uniquely decomposed as Pwϕ and (I−Pw)ϕ,
where Pwϕ = {Pwϕi}i∈I . The conclusion follows from the facts that for x, y ∈
W ,

|〈x, ϕi〉| = |〈x, Pwϕi〉| = |〈y, Pwϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I;

and for x, y ∈W⊥,

|〈x, ϕi〉| = |〈x, (I − Pw)ϕi〉| = |〈y, (I − Pw)ϕi〉| = |〈y, ϕi〉|, ∀ i ∈ I.

Corollary 3.3 shows that the norm retrieval property for vectors is preserved
by unitary operators. We now show that the norm retrieval property for sub-
spaces is also preserved by unitary operators.

Theorem 3.6. Consider W = {Wi}i∈I is a collection of closed subspaces in H.
Further, let T : H → K be unitary. If W does norm retrieval for H, then TW
does norm retrieval for K.

Proof. For y1, y2 ∈ K, let ‖PTWi
y1‖ = ‖PTWi

y2‖ for all i ∈ I. Since T is
surjective, ∃ x1, x2 ∈ H such that Tx1 = y1 and Tx2 = y2. We note that
for k = 1, 2, we have PTWiyk = PTWiTxk = PTWiTPWixk + PTWiTPW⊥

i
xk =

PTWi
TPWi

xk = TPWi
xk. Thus, we get ‖TPWi

x1‖ = ‖TPWi
x2‖. Using the fact

that T is isometry and {Wi}i∈I do norm retrieval, we obtain ‖y1‖ = ‖y2‖.

The following two examples show that if we drop the condition that T is
isometry or the condition that T is surjective then we may lose the property of
norm retrievality of {TWi}i∈I .

Example 3.7. Consider the subspaces W1 = x-axis and W2 = y-axis in
R2. Clearly, {W1,W2} does norm retrieval for R2. Define T1 : R2 → R2 as
T1(x1, x2) = (x1 + x2, x2). Thus T1 is not an isometry. Now T1W1 = x-axis
and T1W2 = span{(x, x) : x ∈ R}. However {T1W1, T1W2} does not do norm
retrieval in R2. This can be easily verified at (1, 1) and (1,−3).

Example 3.8. Consider the subspaces W1 = x-axis and W2 = y-axis in R2.
We note that {W1,W2} does norm retrieval for R2. Define T2 : R2 → R3 as
T2(x1, x2) = (x1, x2, 0). Clearly T2 is not surjective. Now T2W1 = x-axis and
T2W2 = y-axis in R3. But {T2W1, T2W2} does not do norm retrieval in R3.
This can be easily verified for (0, 0, 1) and (0, 0, 2).

Let {Pi}mi=1 be projections onto subspaces {Wi}mi=1 of Cn. Consider any
orthonormal bases {ϕij}Iij=1 of {Wi}mi=1 and a sub collection S ⊆ {(i, j) : 1 ≤
i ≤ m, 1 ≤ j ≤ Ii}. It was shown in [4] that if {Pi}mi=1 does norm retrieval
and x ⊥ span{ϕij}(i,j)∈S , y ⊥ span{ϕij}(i,j)∈Sc then Re〈x, y〉 = 0. In fact
〈x, y〉 = 0 for an arbitrary Hilbert space, this is eveident from the following
result. A similar result for weaving norm retrival subspaces was proved in [8].
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Theorem 3.9. Let {Pi}i∈Λ be projections onto subspaces {Wi}i∈Λ of H. Given
any orthonormal bases {ϕij}j∈Λi of {Wi}i∈Λ and a sub collection S ⊂ {(i, j) :
i ∈ Λ, j ∈ Λi}. If {Pi}i∈Λ does norm retrieval then {ϕij}⊥(i,j)∈S ⊥ {ϕij}⊥(i,j)∈Sc .

Proof. Given S ⊂ {(i, j) : i ∈ Λ, j ∈ Λi}. Let x ∈ {ϕij}⊥(i,j)∈S and y ∈
{ϕij}⊥(i,j)∈Sc . We note that for each i ∈ Λ,

‖Pi(x + y)‖2 =
∑
j∈Λi

|〈x + y, ϕij〉|2 =
∑
j∈Λi

(i,j)∈Sc

|〈x, ϕij〉|2 +
∑
j∈Λi

(i,j)∈S

|〈y, ϕij〉|2.

=
∑
j∈Λi

|〈x− y, ϕij〉|2

= ‖Pi(x− y)‖2.

Therefore, we get ‖x + y‖2 = ‖x− y‖2 for all i ∈ Λ. Thus Re〈x, y〉 = 0.
Similarly, we obtain ‖Pi(x + iy)‖2 = ‖Pi(x − iy)‖2 =⇒ ‖x + iy‖2 =

‖x− iy‖2 =⇒ Im〈x, y〉 = 0 for all i ∈ Λ. Hence, x ⊥ y.

Corollary 3.10. Consider a sequence of vectors ϕ = {ϕi}i∈I in H. For non-
trivial J ⊂ I, let W1 = span{ϕi}i∈J and W2 = span{ϕi}i∈Jc . If ϕ does norm
retrieval then W⊥1 ⊂W2.

Proof. Since ϕ does norm retrieval, so by Theorem 3.9 we have W⊥1 ⊥ W⊥2 .
Hence the conclusion follows.

In [4], it has been proved that corollary 3.11 is true for Rn. We extend it to
Hn where Hn is an n-dimensional Hilbert space.

Corollary 3.11. Every norm retrieval set with n elements is orthogonal in Hn,
where Hn is an n-dimensional Hilbert space.

Proof. Consider a norm retrieval collection {ϕi}ni=1 in Hn. If possible, suppose
for some k with 1 ≤ k ≤ n, ϕk is not orthogonal to another element of this
collection. Let W1 = span{ϕi}i6=k and W2 = span{ϕk}. Then W⊥1 can not be
a subset W2, a contradiction to Corollary 3.10.
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Abstract

Any arriving customer who arrives and finds that the server is free, enters the
service station and the remaining customers connect into the orbit. When the
normal busy server is running, the system may at any time become defective
due to a disaster. All users are forced to quit the system due to a disaster,
which also brings about the failure of the main server. When a primary server
breaks, it is shipped out for repair, and the repair process starts instantly. The
server stops running as soon as the orbit is empty at a typical service finish
instant. During the working breakdown or working vacation, the replacement
server offers arriving customers a lower level of service. The arriving customer
receives service instantly if the server is idle. If not, he will choose whether
to leave the system without service or returning to receive service. Using the
supplementary variable technique, we calculate the steady state PGF for system
and orbit sizes. We generate performance measures and particular cases. With
the use of specific numerical examples, we analyse the model.
Keywords: Retrial queue, balking, disaster, working breakdown, working va-
cation.

Mathematics Subject Classification 2010: 60K25, 90B22

1 Introduction

Previously, various authors investigated queueing models with varying service
rates. These models drive almost made the assistance rate subject to the frame-
work’s circumstance, like lines in irregular conditions, lines with breakdown, and
working breakdown. Retrial lines with repeated tasks are distinguished in a re-
trial queueing system by the fact that an arriving customer sees the server busy
upon arrival and is encouraged to leave the support area and join a retry line
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known as orbit. After a specific measure of time has elapsed, the client in orbit
might make another assistance demand. It makes no difference to the other
customers in the orbit if any random customer in the orbit repeats the service
request. Such queues assume a novel part in PC and broadcast communications
frameworks. Rajadurai [8,9], estimated a Non-Markovian retrial queue includ-
ing calamity and working breakdown. Kalidass and Ramanath (2012) pioneered
“The concept of working breakdowns”. If a regular busy server fails due to a dis-
aster at any time, the system ought to be ready with a reinforcement (reserve)
server in the event that the primary server falls flat. It makes no difference to
the other customers in the orbit if any random customer in the orbit repeats the
service request. The main server rejoins the system and becomes operational as
soon as the repair is fulfilled. Furthermore, the operational breakdown service
can reduce customer complaints as the principal server is being repaired, as well
as the cost of customers who are waiting. As a result, a more sensible repair
strategy for problematic queueing framework is the working breakdown service.
Rajadurai et al [10], considered inconsistent queueing frameworks with different
highlights, one of which is that when a server falls flat, it is sent for fix, dur-
ing which time it stops offering support to essential clients until the assistance
channel is fixed, and the client who was simply being served before the server
disappointment trusts that the leftover help will finish.

2 Model Description

In this model the arrival follows Poisson process with rate λ and the service
discipline is FIFO. Since there is no waiting area, this is assumed. When a
customer arrives and determines that the server is busy, they are joined to the
orbit. If an orbital customer is permitted access to the server. Laplace-Stieltjes
Transforms (LST) represent inter retrial times as Υ∗(θ) and have an arbitrary
distribution function Υ(t). In normal service period (NS period), service time
have general distribution function S(t), with LST as S∗(θ). We assume that the
disaster occur only when the main service is in progress and disaster follows a
negative exponential distribution with rate δ. When the disaster occurs all cus-
tomers are clear out and the primary server is dispatched for maintenance. The
repair time follows an exponential distribution with parameter η. The server
gives a lower rate of service follows an arbitrary distribution function Sw(t) to
arriving customers during the working breakdown period, with LST as S∗

w(θ).
The server resumes normal operation after the repair is finished. As soon as the
service is finished and the orbit is empty, the server goes on vacation. The du-
ration of the vacation period is determined by an exponential distribution with
the parameter θ. If there are still users in the system at the time the vacation
ends, the server will begin a new busy period. Otherwise, he awaits the arrival
of a customer. The server gives a lesser rate of service follows an arbitrary
distribution function Sw(t) to arriving customers during the working vacation
period, with LST as S∗

w(θ). A vacation interruption occurred if the server quits

2

245

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

P. Manoharan 244-255



his vacation to return to the normal busy period after discovering that there
is a customer in the orbit. Working breakdown and working vacation are both
regarded as low service in this situation (LS period). If the server is idle, the
customer arrives and gets served instantly. If not, he will choose whether to
leave the system with probability (1− r) or joining the orbit with probability r.
Let Υ0(t) denotes the elapsed retrial time, S0(t) denotes the elapsed service
time in NS period , S0

w(t) denotes the elapsed service time in LS period .
Let F (t) denotes the size of the orbit at time “t”. and we use the subsequent
random variable as follows.
Let’s use the subsequent random variables.
F (t)- Size of the orbit at time “t”.
At time “t” the four distinct states of the server are

Θ(t) =



















0, if the server is idle in LS period

1, if the server is idle in NS period

2, if the server is busy in LS period

3, if the server is busy in NS period

o generate bivariate Markov Process, {(F (t),Θ(t)); t ≥ 0} further supplemen-
tary variables Υ0(t), S0(t), and S0

w(t) are introduced. The sequence of periods at
which a NS or LS periods completion occurs is {tm,m = 1, 2, 3, ...}. The Markov
chain that is formed by the random vector sequences Zm = {F (tm+),Θ(tm+)}
is incorporated into the retrial queueing system. The concerned embedded
Markov chain is ergodic if and only if ρ < Υ∗(λ)

[

See Sennott et al.,[12]
]

where

ρ =
λr

δ
(1− S∗(δ)) pretaining to our model.

Following are the limiting probabilities

Ω0,1 = lim
t→∞

P{Θ(t) = 1, F (t) = 0},

Ω0,2 = lim
t→∞

P{Θ(t) = 0, F (t) = 0},

Υm(x) = lim
t→∞

P{Θ(t) = 1, F (t) = m, x ≤ Υ0(t) < x+ dx},

x ≥ 0, m ≥ 1

Ωm,1(x) = lim
t→∞

P{Θ(t) = 3, F (t) = m, x ≤ S0(t) < x+ dx};

x ≥ 0, m ≥ 0,

Ωm,2(x) = lim
t→∞

P{Θ(t) = 2, F (t) = m, x ≤ S0
w(t) < x+ dx};

x ≥ 0, m ≥ 0.
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Following are the probability generating function

Υ(z, x) =

∞
∑

m=1

Υm(x)zm; Υ(z, 0) =

∞
∑

m=1

Υm(0)zm;

Υ∗(θ) =

∫

∞

0

e−θxr(x)dx; Ω1(z, x) =

∞
∑

m=0

Ωm,1(x)z
m;

Ω1(z, 0) =

∞
∑

m=0

Ωm,1(0)z
m; S∗(θ) =

∫

∞

0

e−θxµ(x)dx;

Ω2(z, x) =
∞
∑

m=0

Ωm,2(x)z
m; Ω2(z, 0) =

∞
∑

m=0

Ωm,2(0)z
m;

S∗

w(θ) =

∫

∞

0

e−θxµw(x)dx;

We are using the following hazard rate functions. Let r(x) denotes the condi-
tional retrial completion rate of Υ(x)

and r(x)dx =
dΥ(x)

1−Υ(x)
.

Let µ(x) denotes the conditional normal service completion rate of S(x)

and µ(x)dx =
dS(x)

1− S(x)
.

Let µw(x) denotes the conditional lower service completion rate of Sw(x)

and µw(x)dx =
dSw(x)

1− Sw(x)
.

The system was demonstrated in steady state by the following differential dif-
ference equations:

λΩ0,1 = (θ + η)Ω0,2, (1)

(λ+ θ + η)Ω0,2 =

∫

∞

0

Ω0,1(x)µ(x)dx+

∫

∞

0

Ω0,2(x)µw(x)dx

+δ

∫

∞

0

Ωm,1(x)dx,m ≥ 0, (2)

dΥm(x)

dx
= −(λ+ r(x))Υm(x),m ≥ 1, (3)

dΩ0,1(x)

dx
= −(λ+ δ + µ(x))Ω0,1(x) + λ(1− r)Ω0,1(x),m = 0 (4)

dΩm,1(x)

dx
= −(λ+ δ + µ(x))Ωm,1(x) + λ(1− r)Ωm,1(x)

+λrΩm−1,1(x),m ≥ 1, (5)

4
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dΩ0,2(x)

dx
= −(λ+ η + θ + µw(x))Ω0,2(x) + λ(1− r)Ω0,2(x),m = 0, (6)

dΩm,2(x)

dx
= −(λ+ η + θ + µw(x))Ωm,2(x) + λ(1− r)Ωm,2(x)

+λrΩm−1,2(x),m ≥ 1. (7)

At x = 0,

Υm(0) =

∫

∞

0

Ωm,1(x)µ(x)dx+

∫

∞

0

Ωm,2(x)µw(x)dx, m ≥ 1, (8)

Ω0,1(0) =

∫

∞

0

Υ1(x)r(x)dx+ (θ + η)

∫

∞

0

Ω0,2(x)dx+ λΩ0,1, m = 0, (9)

Ωm,1(0) =

∫

∞

0

Υm+1(x)r(x)dx+ (θ + η)

∫

∞

0

Ωm,2(x)dx

+λ

∫

∞

0

Υm(x)dx, m ≥ 1, (10)

Ωm,2(0) =

{

λΩ0,2, m = 0,

0, m ≥ 1,
(11)

The normalizing condition is

1 = Ω0,1 +Ω0,2 +
∞
∑

m=0

[

∫

∞

0

Ωm,1(x)dx+

∫

∞

0

Ωm,2(x)dx
]

+

∞
∑

m=1

∫

∞

0

Υm(x)dx

Multiply the equations (2) - (8) by the proper powers of z

dΥ(z, x)

dx
+ (λ+ r(x))Υ(z, x) = 0 (12)

dΩ1(z, x)

dx
+ (λ(1− rz)− λ(1− r) + δ + µ(x))Ω1(z, x) = 0 (13)

dΩ2(z, x)

dx
+ (λ(1− rz)− λ(1− r) + θ + η + µw(x))Ω2(z, x) = 0 (14)

Υ(z, 0) =

∫

∞

0

Ω1(z, x)µ(x)dx+

∫

∞

0

Ω2(z, x)µw(x)dx

−

∫

∞

0

Ω0,1(x)µ(x)dx−

∫

∞

0

Ω0,2(x)µw(x)dx (15)

Using the equation (2) in equation (15), we get

Υ(z, 0) =

∫

∞

0

Ω1(z, x)µ(x)dx+

∫

∞

0

Ω2(z, x)µw(x)dx+ δ

∫

∞

0

Ω1(z, x)dx

−(λ+ θ + η)Ω0,2 (16)

5
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Multiply the equations (10)− (11) by the proper powers of z

Ω1(z, 0) =
1

z

∫

∞

0

Υ(z, x)r(x)dx+ λ

∫

∞

0

Υ(z, x)dx+ λΩ0,1

+(η + θ)

∫

∞

0

Ω2(z, x)dx (17)

Ω2(z, 0) = λΩ0,2 (18)

Solving the first order linear differential equations (13), (14), (15) which yields,

Υ(z, x) = Υ(z, 0)[1−Υ(x)]e−λx (19)

Ω1(z, x) = Ω1(z, 0)[1− S(x)]e−B(z)x (20)

Ω2(z, x) = Ω2(z, 0)[1− Sw(x)]e
−Bw(z)x (21)

where B(z) = (λr(1− z) + δ) , Bw(z) = (λr(1− z) + θ + η).
Substituting the equations (19) and (21)in equation (17), we get

Ω1(z, 0) =
Υ(z, 0)

z

[

Υ∗(λ) + z(1−Υ∗(λ))
]

+ λΩ0,1 + λΩ0,2U(z) (22)

where, U(z) =
(η + θ)(1− S∗

w(Bw(z))

Bw(z)
.

Substituting the equations (20) and (21) in equation (16), we get

Υ(z, 0) = Ω1(z, 0)[S
∗(B(z)) + S(z)] + Ω2(z, 0)S

∗

w(B(z))− (λ+ θ + η)Ω0,2.

(23)

where S(z) =
δ(1− S∗(B(z)))

δ + λr(1− z)
Using equations (18) and (22) in equation (23) and get

Υ(z, 0) =
zΩ0,2

Dr1(z)

{

[θ + η + λU(z)][S∗(B(z)) + S(z)] + λ(S∗

w(Bw(z))− 1)

−(θ + η)
}

, (24)

Substituting the equation (24) in equation (22), we get

Ω1(z, 0) =
Ω0,2

Dr1(z)

{

[λ(S∗

w(Bw(z))− 1)− (θ + η)][Υ∗(λ) + z(1−Υ∗(λ))]

+z[θ + η + λU(z)])
}

(25)

where Dr1(z) = z − [S∗(B(z)) + S(z)][Υ∗(λ) + z(1−Υ∗(λ))]. Using the equa-
tions (24), (25) and (18) in equations (19), (20) and (21), then the limiting
PGF’s are Υ(z, x), Ω1(z, x), and Ω2(z, x).

6
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3 Steady state results

If ρ < Υ∗(λ), The PGF’s are listed below.
(i) The amount of orbiting customers as the server is not being utilized

Υ(z) =
(1−Υ∗(λ))

λDr1(z)

{

zΩ0,2

[

(λU(z) + θ + η)[S∗(B(z)) + S(z)]

+λ(S∗

w(Bw(z))− 1)− (θ + η)
]

}

(26)

(ii) The amount of orbiting customers as the server is regularly busy

Ω1(z) =
(1− S∗(B(z)))

B(z)Dr1(z)

{

Ω0,2

[

(λU(z) + θ + η)z + [λ(S∗

w(Bw(z))− 1)

−(θ + η)][Υ∗(λ) + z(1−Υ∗(λ))]
]

}

(27)

(iii) PGF is used to determine the total number of users in orbit (Cs(z)).

Cs(z) = Ω0,1 +Ω0,2 +Υ(z) + z(Ω1(z) + Ω2(z)),

Cs(z) =
Ω0,2

Dr1(z)

{

B(z)
(

z − (S∗(B(z)) + S(z))(Υ∗(λ) + z(1−Υ∗(λ)))
)

×
(η + θ

λ
+ 1

)

+
(

(U(z) +
1

λ
(θ + η))(S∗(B(z)) + S(z))

+(S∗

w(Bw(z))− 1)−
1

λ
(θ + η)

)

z(1−Υ∗(λ))B(z) + (1− S∗(B(z))

×
(

(λU(z) + θ + η)z + (λ(S∗

w(Bw(z))− 1)− (θ + η))(Υ∗(λ)

+z(1−Υ∗(λ)))
)

z +B(z)
(

z − (S∗(B(z)) + S(z))(Υ∗(λ)

+z(1−Υ∗(λ)))
)λzU(z)

(θ + η)

}

.

(iv) PGF is used to determine the total number of users in orbit (Co(z)).

Co(z) = Ω0,1 +Ω0,2 +Υ(z) + Ω1(z) + Ω2(z),

Co(z) =
Ω0,2

Dr1(z)

{

B(z)
(

z − (S∗(B(z)) + S(z))(Υ∗(λ) + z(1−Υ∗(λ)))
)

×
(η + θ

λ
+ 1

)

+
(

(U(z) +
1

λ
(θ + η))(S∗(B(z)) + S(z))

+(S∗

w(Bw(z))− 1)−
1

λ
(θ + η)

)

z(1−Υ∗(λ))B(z) + (1− S∗(B(z))

×
(

(λU(z) + θ + η)z + (λ(S∗

w(Bw(z))− 1)− (θ + η))(Υ∗(λ)

+z(1−Υ∗(λ)))
)

+B(z)
(

z − (S∗(B(z)) + S(z))(Υ∗(λ)

+z(1−Υ∗(λ)))
) λU(z)

(θ + η)

}

. (28)
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(v) The amount of orbiting customers as the server is lower speed service

Ω2(z) =
λΩ0,2U(z)

θ + η
(29)

Using normalizing condition , we find Ω0,1 , Ω0,2 by putting z = 1 and
we apply L’s hospital rule,
Ω0,1 +Ω0,2 +Υ(1) + Ω1(1) + Ω2(1) = 1,

Ω0,2 =
Υ∗(λ)−

λr

δ
(1− S∗(δ))

























Υ∗(λ)(
η + θ

λ
+ 1) +

λr

θ + η
(1− S∗

w(θ + η))

+
λ

δ
Υ∗(λ)(1− r)(1− S∗(δ)) +

η + θ

δ
Υ∗(λ)(1− r)

×(1− S∗(δ))−
λr

δ
S∗

w(θ + η)(1− S∗(δ))−
λ

δ
S∗

w(θ + η)

×Υ∗(λ)(1− r) +
λ

θ + η
Υ∗(λ)(1− r)(1− S∗

w(θ + η)

























(30)

Ω0,1 =
Υ∗(λ)−

λr

δ
(1− S∗(δ))

λ

η + θ

































Υ∗(λ)(
η + θ

λ
+ 1) +

λr

θ + η
(1− S∗

w(θ + η))

−
λr

δ
S∗

w(θ + η)(1− S∗(δ)) +
η + θ

δ
Υ∗(λ)(1− r)

×(1− S∗(δ)) +
λ

δ
Υ∗(λ)(1− r)(1− S∗(δ))

+
λ

θ + η
Υ∗(λ)(1− r)(1− S∗

w(θ + η)

−
λ

δ
S∗

w(θ + η)Υ∗(λ)(1− r)

































(31)

4 System Performance Measures

When the server is not being utilized,the steady state probability is Υ(1)

Υ(1) =

(1−Υ∗(λ))Ω0,2









(1− S∗

w(θ + η)[
λr

δ
(1− S∗(δ)) +

λr

θ + η
]

+(
(η + θ)r

δ
)(1− S∗(δ)









Υ∗(λ)−
λr

δ
(1− S∗(δ)

(32)
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When the server is busy, let Ω1(1) be the steady state probability.

Ω1(1) =

(1− S∗(δ))Ω0,2





(η + θ)Υ∗(λ)−Υ∗(λ)(λ(S∗

w(θ + η)− 1))

+
λ2r

θ + η
(1− S∗

w(θ + η))





δ[Υ∗(λ)−
λr

δ
(1− S∗(δ)]

(33)

When the server is providing slower service, let Ω2(1) be the steady state prob-
ability.

Ω2(1) =
λΩ0,2(1− S∗

w(θ + η))

θ + η
(34)

The busy cycle and busy period’s expected durations are E(Tb) and E(Tc). Then

E(Tb) =
1

λ

[

1

Ω0,1
− 1

]

,

E(Tc) =
1

λΩ0,1
,

E(T0) =
1

λ
.

where the duration of the system’s empty state is indicated by the time T0.

E(Tb) =

























Υ∗(λ) +
(η + θ)r

δ
(1− S∗(δ)) +

λr

θ + η
(1− S∗

w(θ + η))

+
η + θ

δ
Υ∗(λ)(1− r)(1− S∗(δ))−

λr

δ
S∗

w(θ + η)

×(1− S∗(δ)) +
λ

θ + η
Υ∗(λ)(1− r)(1− S∗

w(θ + η)

+
λ

δ
Υ∗(λ)(1− r)(1− S∗(δ))−

λ

δ
S∗

w(θ + η)Υ∗(λ)(1− r)

























(θ + η)[Υ∗(λ)−
λr

δ
(1− S∗(δ))]

(35)

E(Tc) =

























Υ∗(λ)(
η + θ

λ
+ 1) +

λr

θ + η
(1− S∗

w(θ + η))

+
η + θ

δ
Υ∗(λ)(1− r)(1− S∗(δ))−

λr

δ
S∗

w(θ + η)

×(1− S∗(δ)) +
λ

θ + η
Υ∗(λ)(1− r)(1− S∗

w(θ + η)

+
λ

δ
Υ∗(λ)(1− r)(1− S∗(δ))−

λ

δ
S∗

w(θ + η)Υ∗(λ)(1− r)

























(θ + η)[Υ∗(λ)−
λr

δ
(1− S∗(δ))]

(36)
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5 Particular Cases

Case(i) Assuming that r = 1 then our model reduces to a non Markovian retrial
queue with single working vacation, vacation interruption, disaster and working
breakdown.
Case(ii) Assuming that if there is no disaster, then our model reduces to a non
Markovian retrial queue with Balking, single working vacation and vacation
interruption.
Case(iii) Assuming that if there is no disaster, r = 1, and no vacation, then
our model reduces to a non Markovian retrial queue.

6 Numerical results

In Figure 1 displays the appropriate line graphs and Table 1 contains the values
of E(Tb) by fixing the values of µ = 4, µw = 2, λ = 3, θ = 6, and r = 0.5 subject
to stability conditions and extending the value of η from 1 to 2 increased with
0.2 and θ from the graph suggests that E(Tb) decreases as η increases as would
be predicted.

θ 2

θ 4

θ 6

1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

η

Ε
(T
b
)

Figure 1: E(Tb) with turn over of η

η θ = 2 θ = 4 θ = 6
1.0 8.0714 5.1388 4.1767
1.2 6.3738 3.9925 3.2156
1.4 5.3334 3.2963 2.6343
1.6 4.6285 2.8277 2.2444
1.8 4.1185 2.4905 1.9645
2.0 3.7321 2.2361 1.7537

Table 1: E(Tb) with turn over of η

In Figure 2 displays the appropriate line graphs and Table 2 contains the values
of E(Tb) subject to stability conditions, by fixing the values of µ = 2, µw = 1,
λ = 4, θ = 4, and r = 0.2, and extending the values of δ from 1 to 2 increased-
with 0.2 and η. The graph suggests that E(Tb) decreases as expected when δ
increases.

η=2

η=4

η=6

1.0 1.2 1.4 1.6 1.8 2.0

2

3

4

5

6

7

8

δ

Ε
(T
b
)

Figure 2: E(Tb) with turn over of δ

δ η = 2 η = 4 η = 6
1.0 8.0714 5.1388 4.1767
1.2 6.3738 3.9925 3.2156
1.4 5.3334 3.2963 2.6343
1.6 4.6285 2.8277 2.2444
1.8 4.1185 2.4905 1.9645
2.0 3.7321 2.2361 1.7537

Table 2: E(Tb) with turn over of δ
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In Figure 3 displays the appropriate line graphs and Table 3 contains the values
of E(Tb) by fixing the values of µ = 3, µw = 2, λ = 3, θ = 1, and r = 0.4,
subject to stability conditions, and extending the values of δ from 1 to 2 incre-
mented with 0.2 and η. From the graph, it can be deduced that E(Tc) decreases
as expected when δ increases.

η=2

η=4

η=6

1.0 1.2 1.4 1.6 1.8 2.0

1.5

2.0

2.5

3.0

δ

Ε
(T
c
)

Figure 3: E(Tc) with turn over of δ

δ η = 2 η = 4 η = 6
1.0 2.8708 2.0610 1.7847
1.2 2.7911 1.9492 1.6691
1.4 2.7016 1.8505 1.5719
1.6 2.6137 1.7646 1.4896
1.8 2.5316 1.6898 1.4194
2.0 2.4564 1.6245 1.3589

Table 3: E(Tc) with turn over of δ

In Figure 4 displays the appropriate line graphs and Table 4 contains the values
of E(Tb) subject to stability conditions, by fixing the values of µ = 3, µw = 2,
λ = 3, θ = 1, and r = 0.4, and extending the values of η from 1 to 2 increased
with 0.2 and δ. The graph suggests that E(Tc) decreases as η increases as would
be predicted.

=4

=6

=8

1.0 1.2 1.4 1.6 1.8 2.0

2.0

2.5

3.0

3.5

4.0

Ε
(T
c
)

Figure 4: E(Tc) with turn over of η

η δ = 4 δ = 6 δ = 8
1.0 3.5452 3.2272 3.0440
1.2 3.0212 2.7388 2.5773
1.4 2.6499 2.3931 2.2472
1.6 2.3738 2.1363 2.0022
1.8 2.1609 1.9385 1.8135
2.0 1.9920 1.7818 1.6641

Table 4: E(Tc) with turn over of η

7 Conclusion

In this paper, non Markovian retrial queue, balking, disaster under working
breakdown and working vacation is analysed. We discovered the PGF for the
total and average number of people in invisible waiting area. We derived some
performance measures and deduced some particular cases and illustrated some
numerical results.
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Abstract. Research on Casson fluid is very important due to its ap-
plicability in the progress of industrial and engineering industries. Here,
a fractional order model of the Casson fluid over an oscillating plate
in the presence of thermal radiation with constant wall temperature
and concentration has been considered. The solution of this fractional
model is obtained with the help of Laplace transform technique in terms
of Wright function. The graphical analysis is also done by making sev-
eral variations in parametric values including fractional parameter, mass
Grashoff number, Prandtl number, velocity, temperature, concentration
profiles etc.

1. Introduction

The physical characteristic of non-Newtonian fluid is always a barrier for
researchers while solving the problems of non-Newtonian fluid. There is yet
no comprehensive model that covers every aspect of a non-Newtonian fluid.
Non-Newtonian fluid is widely used in the manufacturing and processing in-
dustries, thus researchers are constantly attempting to develop new models.
One of the models is the Casson fluid model. In 1959, Casson [22] was the
first to present the rheological data of pigment oil suspensions in printing ink.

Khalid et al. [1] studied the Casson fluid across an oscillating vertical plate
for Unsteady boundary layer flow with constant wall temperature.

2010 Mathematics Subject Classification. 34A34, 26A33.
Key words and phrases. Casson fluid, fractional order, Wright function, Laplace

transform.
*Corresponding Author.
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Mahantesh et al. [4] studied the convective flow of Casson fluid across an
oscillating plate using non-coaxial rotation and quadratic density fluctua-
tion as its boundary conditions. Using variables without dimensions, the
governing equations were first transformed into a non - dimensional form.
Analytical solutions of the dimensionless momentum, heat, and mass equa-
tions were achieved using the Laplace transform method.

Using an exponentially permeable decreasing sheet, Nadeem et al. [25] in-
vestigated the boundary layer MHD flow of Casson fluid. The Adomian
decomposition method was employed to arrive at the analytical answer to
the problem. The velocity distributions resulting from a number of fasci-
nating parameters were displayed and investigated.

The role of the magnetic flux on the three-dimensional Casson fluid flow
over the boundary layer of a stretching porous sheet was taken into account
in the study by Nadeem et al., [26] . It was discovered that the magnetic
field, Casson fluid parameter, and porosity parameter all reduced the veloc-
ity profiles in the x and y directions.

The effects of chemical processes and heat generation of MHD convection
Casson fluid flow model in a porous media using a revolving vertical plate
is provided in the study done by Khan et al. [5].

The unstable MHD free convection flow of Casson fluid through a porous
medium past a vertical plate that was moving exponentially was explored by
Mohan et al.[24] in the presence of thermal radiation, chemical interaction,
and a heat source or sink. They discovered that the velocity profiles decrease
when the heat flow, magnetic field parameter, prandtl number, heat source,
and Casson parameter increase in value.

Deka [3] has conducted studies of an unstable MHD casson fluid in nanopores
with heat transfer through an accelerating vertical plate. It has been dis-
covered that the Casson parameter increases skin friction and fluid velocity.
Along with the casson parameter, the surface shear stress also rises.

It is assumed that the Casson fluid, a shear-thinning fluid, has infinite vis-
cosity at zero rate of shear, zero viscosity at infinite rate of shear, and a yield
stress below which no flow occurs. A fluid behaves like a solid when it is un-
der conditions where the yield stress is greater than the shear stress. When
the applied yield stress is greater than the applied shear stress, the fluid
starts to flow. Casson fluid can take the form of things like honey, soup,
chocolate, tomato sauce, jelly, blood, sludge, fused polymers, etc. These
fluid models have been shown to have important uses in the biomechanics,
textile, cosmetic, polymer processing, and pharmaceutical industries.
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The Casson fluid flow across an oscillating plate with chemical reaction and
sliding phenomenon was expressed by Saqib et al. [16]. The investigation
concentrated on the mass and heat transport processes. The Laplace trans-
form method was used to analyse the mathematical model once it had been
transformed into dimensionless form. The profiles of velocity, temperature,
and concentration were plotted.

Fractional derivatives have recently piqued the interest of many scholars due
to the extensive coverage of derivatives and integrals of non-integer order. A
variety of physical phenomena or natural circumstances have been studied
with the help of fractional calculus, together with the rheological properties
of winding polymers, traffic modelling, electric circuits, signal and image
processing, electrical networks, stochastic processes and bioengineering.

Imran et al. [18] used two distinct fractional derivatives known as Caputo
and Caputo-Fabrizio to study the convection flow of Newtonian fluid.The
solutions to the concentration , temperature and velocity profiles were dis-
covered by using the Laplace transform approach. The results were graphi-
cally depicted to compare and contrast the two fractional derivatives.

Also, the Caputo time-fractional derivatives are used by Imran et al. [19]
to formulate fluid flows with Newtonian heating and arbitrary velocities.It
was possible to obtain the dimensionless form of the governing equations
by using the specified dimensionless variables. Using the Laplace transform
approach, the dimensionless equations were solved.

Numerous scholars have noted the impact of fractional parameters on tem-
perature and velocity characteristics. The computational analysis of frac-
tional diffusion equations occurring in oil pollution has been done by Singh
et al., [12].Research by Khan et al.,[11]gives the effect of fractional Caputo
time derivatives of general Cassonian fluids with oscillating boundary con-
ditions.

Ali et al. [9] employed the Caputo fractional derivative to examine the
blood flow in a horizontal cylinder that was simulated by a Casson fluid.
Magnetic particles were present in the fluid flow that was being driven by
an oscillating pressure gradient. With the use of finite Hankel and Laplace
transformations, the effects of magnetodynamics on Casson’s fluids have
been investigated and described.

The researchers observed that the fractional order fluid model performs no-
ticeably differently from the conventional model. Several recent important
analytical investigations on fluid problems can be found in preceding study
[7], [8], [24], and [24].
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Atangana-Baleanu and Caputo-Fabrizio are two fractional derivatives that
are compared in Sheikh et al. comparative analysis for the convection of
Casson’s liquid across an infinite vertical flat plate, together with heat and
mass transfer[20].

The researchers discovered that for a given unit of time, the velocities cal-
culated using the Caputo-Fabrizio and Atangana-Baleanu operators are the
same. Exact solutions for both situations were discovered using the Laplace
transform methodology, and the outcomes were compared graphically and
in tabular form.On the other hand, when time is less than unity, variance
occurs and further differences increase as time increases.
For more definitions and results about the fractional operators, the reader
can referes to [5], [13], [14].

2. Mathematical formulation of the problem

The present study takes into account the in compressible Casson fluid
flow past an infinitely vertical plate in a free convection flow that is un-
steady. Here, the flow range is y > 0, and y is the plate’s coordinate nor-
mal.Primarily, at a time τ = 0, the fluid and the plate are both at rest with a
uniform surface concentration of C∗

∞ and temperature T ∗
∞. The plate begins

to accelerate in its plane at time τ > 0 according to a velocity Aτ , where
unvarying A represents the plate’s acceleration. Both the concentration and
plate temperature are increased simultaneously to T ∗

∞and C∗
∞ respectively,

and then kept constant. The spatial variable y and the time variable t affect
the velocity and temperature.

Following the use of the Boussinesq approximation and unidirectional flow,
the momentum, energy, and concentration equations acquire the following
forms.

ρ∂u∗

∂τ∗ = µ
(
1 + 1

β

)
∂2u∗

∂y∗2 + ρgγ (T∗ − T∗
∞) + ρgβ′ (C∗ − C∗

∞) , (2.1)

ρcp
∂T∗

∂τ∗
= k

∂2T∗

∂y∗2
− ∂q∗r

∂y∗
, (2.2)

∂C∗

∂τ∗
=

1

Sc

∂2C∗

∂y∗2
. (2.3)

Here, β refers Casson parameter, u∗ represent fluid in the y-direction, and
time variable is denoted by τ∗. The fluid temperature near the plate is T ∗,
while T ∗

∞ refers plate’s temperature. ρ denotes fluid density,µ is dynamic
viscosity, Y refers to coefficients of the thermal expansion, q∗r present ra-
diative heat flux, cp is the heat constant pressure, Sc is Schmidt number, k
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denotes thermal conductivity.

C∗ is the concentration of the fluid near the plate, while C∗
∞ refers concen-

tration of the plate associated with initial and boundary conditions:

u∗ (y∗, 0) = 0, u∗ (0, τ∗) = Fτ∗∗;u∗ (∞, τ∗) = 0
T∗ (y∗, 0) = T∗

∞,T∗ (0, τ∗) = T∗
w,T

∗ (∞, τ∗) = T∗
∞

C∗ (y∗, 0) = C∗
∞,C∗ (0, τ∗) = C∗

w,C
∗ (∞, τ∗) = C∗

∞

 (2.4)

q∗r is the radiative heat flux in equation (2.2). When q∗r is differentiated in
terms of y using Rosseland’s approximation [2],[10],[27],[28], equation (2.2)
becomes:

ρcp
∂T ∗

∂τ∗
= k

∂2T ∗

∂y∗2
−
(
−16σT ∗

∞
3

3k∗

)
∂2T ∗

∂y∗2
. (2.5)

3. Problem Solution

The fundamental dimensional equations (2.1), (2.3), and (2.5) are changed
into dimensionless equations. The solutions are then derived by employing
the Laplace transform approach.
By employing appropriate dimensionless variables,

u =
u∗

(ϑA)
1
3

, t =
τ∗(A)

2
3

(ϑ)
1
3

, y =
y∗(A)

1
3

(ϑ)
2
3

,T =
T∗ − T∗

∞
T∗
w − T∗

∞
andC =

C∗ − C∗
∞

C∗
w − C∗

∞
.

(3.1)
The governing momentum (2.1), concentration (2.3) and energy (2.5) equa-
tions in the dimensionless form in view of (3.1) are

∂u

∂t
=

(
1 +

1

β

)
∂2u

∂y2
+GrT +GmC, (3.2)

Sc
∂C

∂t
=

∂2C

∂y2
, (3.3)

∂T

∂t
=

(
1 + N

Pr

)
∂2T

∂y2
. (3.4)

Also the boundary conditions (2.4) takes the form

u (y, 0) = 0, u (0, τ) = t; u (∞, τ) = 0
T (y, 0) = 0,T (0, τ) = 1,T (∞, τ) = 0
C (y, 0) = 0,C (0, τ) = 1,C (∞, τ) = 0.

 (3.5)

Next, equations (3.2), (3.3), and (3.4) are defined in terms of Caputo frac-
tional derivatives as:

Dα
t u =

(
1 +

1

β

)
∂2u

∂y2
+GrT +GmC, (3.6)
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ScD
α
t C =

∂2C

∂y2
, (3.7)(

Pr

1 + N

)
Dα

t T =
∂2T

∂y2
, (3.8)

where D denotes the differential operator, the fractional operator is α,
whereas Gr, N, Pr and Gm are the thermal Grashof number, radiation and
Prandtl number and mass Grashof number respectively.

4. Laplace Transform Technique

Unsteady differential equations are frequently solved using the Laplace trans-
form, an integral transform technique. The second order differential equa-
tions for the partial differential equations (3.2), (3.3), and (3.4)are generated
on using the Laplace transform technique.(

1 +
1

β

)
d2ū

dy2
− sαū (y, s) + GrT̄ +GmC̄ = 0, (4.1)

d2C̄

dy2
− sαScC̄ (y, s) = 0, (4.2)

d2T̄

dy2
−
(

Pr

1 + N

)
sαT̄ (y, s) = 0. (4.3)

Eq. (4.1), (4.2) and (4.3) are then solved by using the undetermined coeffi-
cient method and the solutions are presented as

ū (y, s) =
1

s2
e
−y

√
sα

z +
Gr0
sα+1

e
−y

√
sα

z +
Gm0

sα+1
e
−y

√
sα

z − Gr0
sα+1

e−y
√
asα−Gm0

sα+1
e−y

√
Scsα ,

(4.4)

T̄ (y, s) =
1

s
e−y

√
asα , (4.5)

C̄ (y, s) =
1

s
e−y

√
Scsα , (4.6)

where z =
(
1 + 1

β

)
, a =

(
Pr

1+N

)
,Gr0 = Gr

(az−1) andGm0 = Gm
(Scz−1) . The final

solution to the problem is provided by taking inverse Laplace of equations
(4.4), (4.5), and (4.6).

u (y, t) = tφ
(
2,−α

2 ;−y
√

sα

z t
−α

2

)
+ Gr0

Γ(α)t
α−1φ

(
1,−α

2 ;−y
√

sα

z t
−α

2

)
+Gm0

Γ(α) t
α−1φ

(
1,−α

2 ;−y
√

sα

z t
−α

2

)
− Gr0

Γ(α)t
α−1φ

(
1,−α

2 ;−y
√
at−

α
2

)
−Gm0

Γ(α) t
α−1φ

(
1,−α

2 ;−y
√
Sct

−α
2

)
,

(4.7)
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7

C (y, t) = φ
(
1,−α

2
;−y

√
Sct

−α
2

)
, (4.8)

T (y, t) = φ
(
1,−α

2
;−y

√
at−

α
2

)
, (4.9)

where φ (a,−ϱ; ζ) =
∞∑
n=0

(ζ)n

n!Γ(a−nϱ) is the Wright function.

Equations (4.7)–(4.9) are bounded by boundary conditions as in (3.5).

5. Result and Discussion

For the free convection flow of a generalised fractional Casson fluid over an
accelerating plate, equations (4.4), (4.5), and (4.6) show the closed form.
The graphs are generated with varied values of embedded parameters to
study how different parameters affect the profiles of velocity, concentration,
and temperature. The purpose of the graphs 1-3 is to investigate the impact
of the fractional parameter, Prandtl number Pr, and N radiation on temper-
ature profiles with different values.Figures 4–7 display the velocity profile
graphs, which were plotted with various fractional parameters, Casson fluid
parameters, mass Grashoff number Gm, and time t. In the meantime, Figure
8 shows validation of current solutions.

The Prandtl number’s impact on the temperature distribution is shown in
Figure 1. The graph shows that as the value of Pr rises, the temperature
profile rapidly falls. The thermal and momentum diffusivity relationship is
defined by Prandtl number. Further, the thermal boundary layer thickness
is more than the thickness of the momentum boundary layer when Pr ,
the Prandtl number is small because the fluid travels more slowly than

262

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Sapna Tyagi et al 256-269



8

heat transfer. Therefore, for higher Pr fluids, heat can flow from the sheet
more quickly. However, a bigger Prandtl number might result in a thinner
thermal boundary layer, which would then result in a weaker thermal force
for transport and a lower temperature profile.

Figure 2 displays the temperature profile of thermal radiation for constant
values of Pr and t and various values of N. It is evident that a rise in tem-
perature causes a rise in thermal radiation. The fluid temperature rises as a
result of the growing radiation parameter’s rising temperatures absorption.
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Figure 3 illustrates the effect of fractional parameters on temperature. As
shown in the figure, the temperature increases monotonically as falls. The
outcome here can be helpful for a few real-world issues. By using the com-
puted theoretical results and a suitable fractional mathematical model, the
expected outcome and the range for an experimental design are assessed.
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The impact of the Grashoff number Gm on the velocity profile is depicted
in Figure 4. It is possible to claim that when the value of Gm has been
increased, the velocity value also goes up gradually.

Figure 5 effects of time and alpha toward the velocity. The velocity increases
dramatically in figure 5.
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The impact of time t on velocity profiles is shown in Figure 6. The velocity
declines but at a different rate as the value of t rises. The velocity decreases
sharply in Figure 6. This tendency can be explained by the graphs’ trend
which indicates that as t increases, the energy produced by the fluid flow
will eventually fall as well.

The impact of the velocity profile by the Casson parameter is depicted in
Figure 7. The velocity initially suffers a falling tendency before progressively
increasing.
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Schmidt number S’s impact on the concentration profile may be seen in
Figure 8.The value of concentration decrease progressively as the value rise
up.

Figure 9 shows the effect of t and alpha on the concentration profile. As the
value of t and alpha increases, the value of concentration raised steadily.

6. Conclusion

An accelerating plate’s free convection flow of fractional order Casson fluid
flow has been investigated in the present study. The solutions for velocity
and temperature were obtained using the Laplace transform approach.The
impact of several parameters on fluid flow, including the Casson fluid pa-
rameter, fractional parameter, time, Schmidt number (S), thermal radiation
(N), and Prandtl number, is explored. Additionally, it is considered that
the obtained results are reliable and provide a new points of view on Casson
fluid flow.
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Abstract - Effect of the couple-stress on micro polar rotating fluid layer
heated from below in the presence of varying gravitational field in a porous
medium is studied, using normal mode, the problem has been analyzed and it is
found that the permeability has destabilizing effect. The rotation, couple-stress
parameter and micro-polar parameters have stabilizing effect. The condition of
over stability has been found.
Keywords - Micro-Polar Fluid; Couple-Stress; Porous Medium; Rotation

1 Introduction

There are some important classes of fluid in technology areas, one of them
being micro-polar fluid. The general theory of micro polar fluid was introduced
Eringen[3] . Sharma and Gupta [8] investigated the thermal convection on micro
polar fluid in porous medium. Sunil [12] et al. analyzed rotation and different
parameters on a micro-polar ferromagnetic fluid flow. Mittal and Rana [5]
investigated the medium permeability, suspended particles and other parameters
on the micro-polar ferromagnetic fluid.
Stokes [11] study the classical concept of couple-stress fluid. Kumar Pardeep [4]
et al. study the rotation on thermal instability in couple-stress viscous elastic
fluid. Banyal and Singh [2] investigated the rotation on the couple-stress fluid
in a porous medium. Shivakumara et al. [10] used the Galerkin method to
investigate the convection in a couple-stress fluid flow. Pundir [6] et al. analyzed
the effect of permeability, couple-stress parameter and magnetization. Shah
Zahir et al. [7] discussed the effect of couple stress on micro polar fluid flow
with hall current. Sharma K. Bhupendra et al. [9] study the effect of porosity,
magnetic field and electrically conducting. Aparna P. et al. [1] investigated

1
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the couple stress fluid on rotating permeable sphere. Xiong Pei-Ying et al.
[13] analyzed the couple stress fluid flow between parallel plates with thermal
convection.
Application of this work in geophysics, engineering science, chemical science and
industry like as liquid crystal, blood flows, colloids suspensions and clean engine
lubricants. In this paper, I attempt to study the couple-stress on micro-polar
rotating fluid flow saturating a porous medium. To my knowledge this problem
has not yet been investigated using the generalized Darcys model.

2 Mathematical Formulation

An infinite, horizontal, incompressible micro-polar fluid layer of thickness d is
assumed and has porosity ∈ and medium permeability k1. The upper limit z = d
and lower limit z = 0 are maintained at constant but varying temperatures T0

and T1 such that a study adverse temperature gradient β =
∣∣dT
dz

∣∣ has been
continued. The rotation and gravity are applied along z-axis to the system.

The equation of continuity, momentum, internal angular momentum, tem-
perature and state is

∇.~q = o (1)

ρ0

∈

[
∂~q

∂t
+

1

∈
(~q.∇) ~q

]
= −∇P − ρgêz +

(
µ− µ′

ρ0
∇2

)
∇2~q − 1

k1
(µ+ ς) ~q

+ ς (∇× ~v) +
2ρ0

∈
(~q × Ω) (2)

ρ0J

[
∂~v

∂t
+

1

∈
(~v.∇)~v

]
= (α′ + β′)∇ (∇.~v) + γ′∇2~v +

ς

∈
(∇× ~q)− 2ς~v (3)

[∈ ρ0Cv + (1− ∈) ρsCs]
∂T

∂t
+ ρ0Cv (~q.∇)T = χ∇2T + δ (∇× ~v) .∇T (4)

ρ = ρ0 [1− α (T − Ta)] (5)

Where ρ - Fluid density, ρ0 Reference density, ~q Filter velocity, ~v Spin
(micro rotation), µ - Shear kinematic viscosity coefficient, ς - Coupling viscosity

2
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coefficient, P - Pressure, µ′ - Couple stress viscosity, êz - Unit vector in z-
direction, α′ - Bulk spin viscosity coefficient, β′ - Shear spin viscosity coefficient,
γ′ - Micro-polar viscosity coefficient, J - Micro inertia constant, t - time, Cv -
Specific heat at constant volume, Cs - Specific heat of solid (Porous Material
Matrix), ρs - Density of solid matrix, χ - Thermal conductivity, T - Temperature,
δ - Micro-polar heat conduction coefficient, α - Coefficient of thermal expansion.

3 Basic State of Problem

The basic state is

~q = ~qb (0, 0, 0) , ~v = ~vb (0, 0, 0) , ρ = ρ = ρb (z) andP = Pb (z)

From equation (1) to (5)
dPb
dz

+ ρbg = 0 (6)

T = Tb (z) = −βz + Ta (7)

ρb = ρ0 (1 + αβz) (8)

4 Linearize Perturbation Equations

∇.~q′ = o (9)

ρ0

∈
∂~q′

∂t
= −∇P ′ + αθgêz +

(
µ− µ′

ρ0
∇2

)
∇2~q′ − 1

k1
(µ+ ς) ~q′ + ς (∇× ~v′)

+
2ρ0

∈
(~q′ × Ω) (10)

ρ0J
∂~v′

∂t
= (α′ + β′)∇ (∇.~v′) + γ′∇2~v′ +

ς

∈
(∇× ~q′)− 2ς~v′ (11)

E
∂θ

∂t
+ (~q.∇)Tb = kT∇2θ − δ

ρ0Cv
(∇× ~v′)zβ + β(~q′)z (12)

ρ′ = −ρ0αθ (13)

Converting equation (9) to (13) by the following transform x = dx∗, y =

dy∗, z = dz∗, ~q′ = kT
d ~q∗, P

′ = µkT
d2 P∗, ~v

′ = kT
d2 ~v∗, t = ρ0d

2

µ t∗, ∇ = ∇∗
d , θ =

βd θ∗, then we have
∇.~q = o (14)

1

∈
∂~q

∂t
= −∇P +Rθêz+

(
1− F∇2

)
∇2~q− 1

K1
(1 +K) ~q+K (∇× ~v)+

2

∈
(~q × Ω)

(15)

J̄
∂~v

∂t
= C1∇ (∇.~v)− C0∇ (∇× ~v) +K

{
1

∈
(∇× ~q)− 2~v

}
(16)
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EPr
∂θ

∂t
= ∇2θ − δ̄(∇× ~v)z + (~q)z (17)

Where R = ρ0gαβd
4

µkT
- Thermal Rayleigh number, Pr = µ

ρ0kT
- Prandtl number,

F = µ′

ρ0d2
, E =∈ + (1−∈)ρsCs

ρ0Cv
, J̄ = J

d2 , K1 = k1
d2 , δ̄ = δ

ρ0Cvd2
, C0 = γ′

µd2 , C1 =
α′+β′+γ′

µd2 , and W = ~q.êz .

5 Boundary conditions

W =
d2W

dz2
= 0, θ = 0 at z = 0 and z = d (18)

6 Dispersion Relation

Taking curl on both side equation (15) then we have[
1

∈
∂

∂t
+

(
1 +K

K1

)
−
(
1− F∇2

)
∇2

]
(∇× ~q) = R

(
∂θ

∂x
êx +

∂θ

∂x
êy

)
+K∇× (∇× ~v) +

2

∈
∇× (~q × Ω) (19)

Let ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , ∇
2
1 = ∂2

∂x2 + ∂2

∂y2 , D = ∂
∂z , ζz = (∇× ~q)z, Ωz

′ =

(∇× ~v)z
Taking curl and z-component of equation (19), (16), then we have[

1

∈
∂

∂t
+

(
1 +K

K1

)
−
(
1− F∇2

)
∇2

]
∇2W = R∇2

1θ +K∇2 Ωz
′ êz −

2

∈
Ω (Dζz)

(20)

J̄
∂Ωz

′

∂t
= C0∇2Ωz

′ −K
[

1

∈
∇2W + 2Ωz

′
]

(21)

Taking z-component of equation (19) and (17) then we have[
1

∈
∂

∂t
+

(
1 +K

K1

)
−
(
1− F∇2

)
∇2

]
ζz =

2

∈
ΩDW (22)

EPr
∂θ

∂t
= ∇2θ − δ̄Ωz

′ +W (23)

1. Normal Mode Analysis

Let
[
W, ζz, θ, Ωz

′] = [W (z) , X (z) , Θ (z) , G (z)] exp . [i kxx+ i kyy + σt]
Applying normal mode of equation (20) to (23), becomes[

σ

∈
+

(
1 +K

K1

)
+ F

(
D2 − a2

)2 − (D2 − a2
)] (

D2 − a2
)
W = −Ra2Θ

+K
(
D2 − a2

)
G− 2

∈
ΩDX (24)
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[
σ

∈
+

(
1 +K

K1

)
+ F

(
D2 − a2

)2 − (D2 − a2
)]
X =

2

∈
ΩDW (25)

[
mσ + 2A−

(
D2 − a2

)]
G = −A

∈
(
D2 − a2

)
W (26)[

EPrσ −
(
D2 − a2

)]
Θ = −δ̄G+W (27)

Where a2 = k2
x + k2

y - wave number, σ = σr + i σr - stability parameter and

m = J̄A
K , A = K

C0
, A - ratio between the micro-polar viscous effect and micro-

polar diffusion effects.

W = D2W = 0 = X = DX = G,Θ = 0 at z = 0 to z = 1 (28)

D2nW = 0 at z = 0 to z = 1, Where n > 0.

The solution of equation (28) is

W = W0 sinπz

Eliminating Θ, G, Φ , X from (24) to (27) and put the value of W and b =
π2 + a2, then we have

b

[
σ

∈
+

(
1 +K

K1

)
+ Fb2 + b

]2

[mσ + 2A+ b] [EPrσ + b]

= Ra2

[
σ

∈
+

(
1 +K

K1

)
+ Fb2 + b

] [
(mσ + 2A+ b)− δ̄Ab

∈

]
+
KAb2

∈

[
σ

∈
+

(
1 +K

K1

)
+ Fb2 + b

]
[EPrσ + b]

− 4Ω2π2

∈2
(mσ + 2A+ b) [EPrσ + b] (29)

7 Stationary Convection

Put the ρ = 0 in equation (29), then we have

R =
1

a2
[
2A+ b− δ̄Ab

∈

] [b2 (2A+ b)

(
1 +K

K1
+ Fb2 + b

)
− KAb3

∈

+
4Ω2π2

∈2 b (2A+ b)(
1+K
K1

+ Fb2 + b
)] (30)

To study the behavior of permeability, rotation, couple-stress parameter cou-
pling parameter, micro-polar coefficient, micro-polar heat transfer parameter
and find the nature of dR

dK1
, dRdΩ ,

dR
dF ,

dR
dK ,

dR
dA and

dR
dδ̄

respectively, then

dR

dK1
=
−b (2A+ b) (1 +K)

a2K1
2
[
2A+ b− δ̄Ab

∈

]
b− 4Ω2π2

∈2(
1+K
K1

+ Fb2 + b
)
 (31)
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dR
dK1

< 0 if 4Ω2π2

b < ∈2
(

1+K
K1

+ Fb2 + b
)
and δ̄ < ∈

A

From equation (31), we can say that the permeability has destabilizing effect

when 4Ω2π2

b < ∈2
(

1+K
K1

+ Fb2 + b
)
and δ̄ < ∈

A .

dR

dΩ
=

8Ωπ2∈−2b (2A+ b)

a2
(

1+K
K1

+ Fb2 + b
) [

2A+ b− δ̄Ab
∈

] (32)

dR
dΩ < 0 if δ̄ < ∈

A

From equation (32) shows that the rotation has stabilizing effect when δ̄ < ∈
A .

dR

dF
=

b3 (2A+ b)

[
b
(

1+K
K1

+ Fb2 + b
)2

− 4Ω2π2

∈2

]
a2
(

1+K
K + Fb2 + b

)2 [
2A+ b− δ̄Ab

∈

] (33)

dR
dF > 0 if

(
1+K
K1

+ Fb2 + b
)
> 2Ωπ
∈
√
b

It is clear that the couple-stress parameter has stabilizing effect when
(

1+K
K1

+ Fb2 + b
)
>

2Ωπ
∈
√
b
.

dR

dK
=

b

[
Ab
(

2
K1
− b
∈

)(
1+K
K1

+ Fb2 + b
)2

+

{
b2
(

1+K
K1

+ Fb2 + b
)2

− 4Ω2π2(2A+b)
∈2

}
1
K1

]
a2
(

1+K
K + Fb2 + b

)2 [
2A+ b− δ̄Ab

∈

]
(34)

dR
dK > 0 if 2

K1
> b
∈ and

(
1+K
K1

+ Fb2 + b
)
>

2Ωπ
√

(2A+b)

∈

Hence the coupling parameter has stabilizing effect when 2
K1

> b
∈ and

(
1+K
K1

+ Fb2 + b
)
>

2Ωπ
√

(2A+b)

∈ .

dR

dA
=

b4

∈

(
1+K
K1

+ Fb2 + b
)2 [

δ̄ −K
(

1+K
K1

+ Fb2 + b
)]

+ 4Ω2π2δ̄b3

∈3

a2
(

1+K
K1

+ Fb2 + b
) [

(2A+ b)− δ̄Ab
∈

]2 (35)

dR
dA > 0 if δ̄ > K

(
1+K
K1

+ Fb2 + b
)

6
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From equation (35), we can say that the micro-polar coefficient has stabilizing

effect when δ̄ > K
(

1+K
K1

+ Fb2 + b
)
.

dR

dδ̄
=

Ab
∈

a2
[
(2A+ b)− δ̄Ab

∈

]2 [b3{(1 +K

K1
+ Fb2 + b

)
− KA

∈

}

+ 2Ab2
(

1 +K

K1
+ Fb2 + b

)
+

4Ω2π2∈−2b (2A+ b)(
1+K
K1

+ Fb2 + b
) ]

(36)

dR
dδ̄

> 0 if
(

1+K
K1

+ Fb2 + b
)
> KA
∈

From equation (36), shows that the micro-polar heat transfer parameter has

stabilizing effect when
(

1+K
K1

+ Fb2 + b
)
> KA
∈

8 Oscillatory Convection

Putting σ = i σi in equation (29) then we get real and imaginary part, elimi-
nating R between them, then we have

f0σ
4
i + f1σ

2
i + f2 = 0

Put s = σ2
i then we have

f0s
2 + f1s+ f2 = 0 (37)

Where

f0 = a1q1 − p1b1
f1 = a2q1 − p2b1 − p1b2

f2 = a3q1 − p2b2

b1 = −ma
2

∈ , a1 = EPrmb
∈2 and b2 = a2 (2A+ b)

{
1+K
K1

+ Fb2 + b
}

a2 = −

[{
(2A+ b) b2

}
∈2

+
2b

∈

(
1 +K

K1
+ Fb2 + b

)
{(2A+ b)EPr +mb}

+

(
1 +K

K1
+ Fb2 + b

)2

EPrmb

]
+
KAb2EPr
∈2

− 4Ω2π2EPrm

∈2

a3 = (2A+ b) b2
(

1+K
K1

+ Fb2 + b
)2

− KAb3

∈

(
1+K
K1

+ Fb2 + b
)

+ 4Ω2π2(2A+b)b
∈2

P1 = − 1
∈

[
b
∈ {(2A+ b)EPr +mb}+ 2EPrmb

(
1+K
K1

+ Fb2 + b
)]
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P2 =

[
2 (2A+ b) b2∈−1

(
1 +K

K1
+ Fb2 + b

)
+ {(2A+ b)EPr +mb} b

(
1 +K

K1
+ Fb2 + b

)2

]

− KAb2

∈

(
b

∈
+ EPr

)
+

4Ω2π2

∈2
[(2A+ b)EPr +mb]

q1 = a2
[

(2A+b)
∈ +m

(
1+K
K1

+ Fb2 + b
)
− δ̄Ab
∈2

]
From (37), we saying that s = σ2

i is positive, equation (37) for the sum of roots
is positive, it is not possible if f0 > 0 and f1 > 0.
If f0 > 0 and f1 > 0 when δ̄ < ∈

A , K < 4Fb ∈, KEPr < 4b andAKb2 <
2π2Ω2m.
Above conditions of the overstability.

9 Numerical Calculation

Now we show numerically effect of different parameter from equation (29)

Figure 1:
E = 1, Pr = 2, ∈= 0.5, A = 0.1, F = 2, K = 0.2, Ω = 10 and δ̄ = 0.05.

Fig 1 shows the variation of Rayleigh number R with respect to medium per-
meability K1 i.e. medium permeability K1 increases then the Rayleigh number
R decreases.

8
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Figure 2:
E = 1, Pr = 2, ∈= 0.5, A = 0.1, F = 2, K = 0.2, K1 = 0.002 and δ̄ = 0.05.

Fig 2 represent the plot of Rayleigh number R versus rotation ω i.e. rotation
increases ω then the Rayleigh number R increases.

Figure 3:
E = 1, Pr = 2, ∈= 0.5, A = 0.1, Ω = 10, K = 0.2, K1 = 0.002 and δ̄ = 0.05.

Fig 3 plot between Rayleigh number R and couple-stress parameter F i.e.
couple-stress parameter F increases then the Rayleigh number R increases.

9
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Figure 4:
E = 1, Pr = 2, ∈= 0.5, A = 0.1, Ω = 10, F = 2, K1 = 0.002 and δ̄ = 0.05.

Fig 4 shows the variation of Rayleigh number R with respect to coupling
parameter K i.e. coupling parameter K increases then the Rayleigh number R
increases.

Figure 5:
E = 1, Pr = 2, ∈= 0.5, K = 0.2, Ω = 10, F = 2, K1 = 0.002 and δ̄ = 0.05.

Fig 5 represent the plot of Rayleigh number R versus micro-polar coefficient
i.e. micro-polar coefficient A increases then the Rayleigh number R increases.

10 Conclusions

According to the stationary convection and numerically discussion we found
that the effect of permeability is destabilizing. The effect of couple-stress pa-
rameter, rotation, coupling parameter, micro-polar coefficient and micro-polar
heat conduction are stabilizing. Among them the most important result that
the effect of rotation stabilize on the system. The condition of over stability is
δ̄ < ∈

A , K < 4Fb ∈, KEPr < 4b andAKb2 < 2π2Ω2m.

10
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Abstract

In order to give timely hospitalisation for infections that are dangerously ill, our
primary goal is to reduce the interaction between susceptibles and infections. For
this we add treatment T as a fifth compartment to the SEIR model, converting
it from SEIR to SEITR. The stabilities of endemic equilibrium and disease-free
equilibrium were tested. The next generation matrix method was used to calcu-
late the SEITR model’s basic reproduction number. Numerical simulations were
also presented to validate our analytic findings. A graphic depicted the impact of
parameters on infected populations. It was perceived that, anytime the treatment
rate increased, the infected population, exposed population, and treated population
all declined but the susceptible population increased.

Keywords: SEITR model, basic reproduction number, stability and numerical simula-
tion.
AMS Subject Classification: 34D20

1 Introduction

Kermack and McKendrick [21] introduced the first mathematical model, SIR (Susceptible-
Infectious-Recovered), early in the 20th century. Later Anderson and May[1] were pro-
posed the SEIR model by adding Exposed (E) as fourth compartment to SIR model to
define the spread of epidemic. Many authors introduced a numerous extended SEIR mod-
els to define the infectious diseases spread and their preventions [7]. ZhilanFeng (2007)
[31] developed a SEIR model which has been used to evaluate the electiveness of different
control strategies for the size of endemic with separation and isolation. Rafiqul Islam
et al [16] was proposed an SEIR model to analysis the influenza in Bangladesh. Vinod
kumar bais and Deepak kumar [29] was introduced a model SITR emphasized the condi-
tion of the dynamical classic to the transmission populace of H1N1 virus. By combining
these two SEIR and SITR models we developed an new SEITR model by including treat-
ment T as a fifth compartment to investigate the dynamics of the influenza epidemic’s
transmission. Hethcote and Yorke [14] were charity models to analyze the gonorrhea con-
troller techniques, such as showing, outling infectors, post treatment and vaccination.

*Corresponding author: avenkateshmaths@gmail.com
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Chinviriyasit (2007) was introduced a dynamic SIRC model [6] to study the Numerical
exhibiting modeling of the spread dynamics of influenza. Samuel Abubakar (2013) was
proposed a model [25] to investigation the spread of infectious disease and stability of
disease in population. Various researchers such as Andreasen et al. (1997)[2], Hethcote
(2000), Earn et al. (2002)[15], Casagrandi et al. (2006)[10], Murray et al. (2008) [23]
have been studied the dynamics of influenza and they recommended mathematical mod-
els to revision the spread of H1N1 and control the influenza epidemic. Over the past
several decades, the field of FDEs has made considerable advancements. To examine the
dynamical behaviour of a fish farm in relation to an arbitrary order Atangana-Baleanu
derivative, Jagdev et al. [19] suggested a fraction fish farm model. By Jagdev Singh [18],
a fractional guava fruit model with memory outcome was introduced. To analyse the
COVID-19 trend, Supriya, Yadav et al [28] created the FDE model. A fractional model
was created by Jagdev Singh and Arpita Gupta[17] to analyse the results of nonlinear
partial modified. To study malaria transmission, Rehman, Attiq ul, et al [?] proposed
a 9 compartment FDE model. A simple influenza(H1N1) model by means of optimal
control studied by Srivastav. A. K et al. (2016) [27], Also Mishra et al. (2013) [22],
consume suggested a mathematical model to analyze the spread and control of influenza
between two economic groups. Christian Quirouette et al[24] developed to unfolding the
localization and spread of influenza virus inside the human breathing area. The Mathe-
matical model [3], plays a crucial role to learning the spread dynamics of the Contagious
Disease Influenza, and control the virus through isolation, treatment and vaccination of
infected population. Environmental contaminations, global warming, ecosystems, roving
etc. are main reasons to spread the contagious diseases. So that certain assumptions
and parameters are considered to formulate the model. Influenza is a breathing con-
tagious disease instigated by influenza virus[18], which is also known as flu and it has
three kinds A, B and C. This virus spreads easily in the population very fast through the
air from coughing, sneezing and through contact by the hands touching our eyes, nose
or mouth etc. Communal symptoms of H1N1 are high fever, pain, sore gorge, muscle
pain, coughing and weariness [11]. The symptoms were appeared after two days and it
has been at most one week [12] but cough may last more than two weeks. Each year
individuals are infected by this virus an outbreak particularly in the winter session. The
formulation and analysis of the SEITR model were briefly detailed in this article. The
analyses of the model, together with the findings on local and global stability, as well as
the presence of endemic equilibrium, were investigated. Numerical evidence was used to
establish an analytical conclusion. It was seen that if the rate of treatment increased,
the susceptible population rose while the infected, exposed, and treated populations all
decreased. The limitations of the SEITR model is that it oversimplifies complicated
disease processes while still being easily calculable. The SEITR model does take this
parameter into account, however additional model extensions would be required.

2 Model Formation

In this study we proposed a new model SEITR by adding treatment T as fifth com-
partment to SEIR model to analyze the spread dynamics of epidemic Influenza in India.
The total populace N(t) at time t is separated into five different populaces , namely,
Susceptible populace S(t) at time t, Exposed populace E(t) at time t, Infected inhabi-
tants I(t) at time t, Treatment populace T (t) at time t, and Recovered populace R(t)
at time t. The susceptible (S(t)) populace are those who are at possibility to become
infected by virus. The exposed (E(t)) populace are those who are infested by virus but
not yet infectious that is not able to infect others. The infected populaces are those who

2

282

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

K. Arun Kumar 281-293



Figure 1: Schematic diagram of SEITR model

are diseased and able to infect others. The treatment populations are those who are
infected and taking treatment in hospitals. The recovered populations are those who are
recovered after treatment.
The flow diagram of influenza model was presented in fig1.

The susceptible human populace is created by the inflow rate of humans into the
populace (at the rate ∧) and the natural death rate µ. Therefore the incidence rate βSI
incorporate the transmission frequency at which susceptible individuals becomes exposed
and entered exposed populace without being infectious. Thus the rate of change of sus-
ceptible human populace is given by

dS

dt
= ∧ − βSI − µS

The exposed human populace at the rate α be the exposed rate which exposed
individuals becomes infected but not infectious and entered into infected populace and
the natural death rate µ. Thus the rate of variation of exposed human populace is spec-
ified by

dE

dt
= βSI − (α+ µ)E

The infected human populace at the rate γ be the people are joined in hospital for
treatment populace and the natural death rate µ. Thus the rate of variation of infected
human populace is specified by

dI

dt
= αE − (γ + µ) I

The treatment human populace at the rate σ be a rate at which the treatment
individuals recovered and entered into recovered populace. Hence the rate of variation
of treatment human populace is specified by

dT

dt
= γI − (σ + µ)T

Finally, the rate of variation of recovered human populace is specified by

dR

dt
= σT − µR

By using all above assumptions, a nonlinear structure of five differential equations for

3
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Table 1: Complete Description of relative parameters of the SEITR model

Parameter Depiction
∧ inflow rate of susceptible individuals
µ Normal death rate
β Rate at which susceptible populace becomes exposed
α Rate at which exposed populace becomes infected
γ Rate at which infected populace getting treatment
σ Rate at which treatment populace getting recovered

SEITR model is formed as follows

dS
dt = ∧ − βSI − µS
dE
dt = βSI − (α+ µ)E
dI
dt = αE − (γ + µ)I
dT
dt = γI − (σ + µ)T
dR
dt = σT − µR

(1)

Where the primary conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0 and R(0) ≥
0. The total population N(t) = S(t) + E(t) + I(t) + T (t) + R(t) will be assumed as
constant.

3 Analysis of the SEITR model

In the segment, the elementary belongings of SEITR model 1 such as positivity
and boundedness of the solution, basic reproduction number and stability analysis were
discorsed.

3.1 Positivity and boundedness

Theorem 1. All the solutions (S(t), E(t), I(t), T (t), R(t)) ∈ R5
+ of the sturcture 1 with

primary condition S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 are nonnegative
and uniformly bounded for all t ≥ 0.

Proof 1. Assume that (S(t), E(t), I(t), T (t), R(t)) ∈ R5
+ is a solution of 1 for t ∈

[0, t0), where t0 > 0.
Through 1st equation of system 1, we get

dS

dt
= ∧ − β∗S∗I − µ∗S ≥ ∧− ϕ(t)∗S.

where ϕ(t) = β∗I + µ
After integration, we get

S(t) = S0 exp

(
−
∫ t

0

ϕ(s)ds

)
+ ∧ exp

(
−
∫ t

0

ϕ(s)ds

)∫ t

0

e
∫ s
0
ϕ(u)duds ≥ 0 ≥ 0.

⇒S(t) ≥0.
From the 2nd equation of system 1, we develop

dE

dt
= βSI − (α+ µ)E ≥ − (α+ µ)E

4
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Which leads

E(t) = E0 exp

(
−
∫ t

0

(α+ µ) ds

)
≥ 0

⇒ E(t) ≥ 0
From the 3rd equation of system 1, we acquire

dI

dt
= αE − (γ + µ) ≥ − (γ + µ) I

Which leads

I(t) = I0 exp

(
−
∫ t

0

(γ + µ) ds

)
≥ 0.

⇒ I(t) ≥ 0
Similarly 4th and 5th equation of system 1

dT

dt
= γI − (σ + µ)T ≥ − (σ + µ)T

Which leads to

T (t) = T0 exp

(
−
∫ t

0

(σ + µ)

)
ds ≥ 0

⇒ T (t) ≥ 0

dR

dt
= σT–µR ≥ −µR

which leads to

R(t) = R0 exp

(
−
∫ t

0

µds

)
≥ 0

⇒ R(t) ≥ 0
Hence, the results (S, E, I, T , R) of 1 sustaining the primary conditions S(t) ≥ 0, E(t)
≥ 0, I(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 for all t ∈ [ 0, t0 ) are nonnegative in the section
[ 0, t0 ).
Now, we demonstrate that the boundedness of clarifications of system 1.
The positivity of the solutions indicates that
dS
dt ≤ ∧ - µS
From the beyond equation, we can write that limt→∞ supS ≤ ∧

µ and S ≤ ∧
µ .

Consider the total populations N = S + E + I + T + R.

On differentiation gives dN
dt ≤ ∧ -µN which leads to limt→∞ supN ≤ (∧)

(µ) .

Then, we get N ≤ ∧
µ

⇒ S + E + I + T + R ≤∧
µ

Therefore all the solution curves (S,E, I, T,R) sustaining by the primary conditions are
consistently bounded in R5

+ and in the section

Ω =
{
(S,E, I, T,R) ∈ R5

+ : 0 ≤ (S,E, I, T,R) ≤ ∧
µ

}
.

3.2 Basic Reproduction Number

A crucial factor for communicable disease is the Basic Reproduction Number (R0) which
is distinct as the middling number of subordinate cases obtained by distinct primary case
during the infectious dated in a susceptible populace. With R0, the epidemic growth
rate can be estimated and Stability of model will be analyzed [8]. R0 Value can be
determined through approach of Next Generation Matrix method [4], [13].
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R0 = FV −1

Where

F =

β + µ
0
0


and

V =

 (α+ µ)E
αE − (γ + µ) I
γI − (σ + µ)T


The Jacobian of F and V are dual matrices F and V which determined at an disinfection
state E = 0, I = 0 and T = 0, we have

F =

0 β µ
0 0 0
0 0 0


and

V =

(α+ µ) 0
α (γ + µ) 0
0 −γ (σ + µ)


FV −1 is βα

(α+µ)(γ+µ) +
ασµ

(α+µ)(γ+µ)(σ+µ)

Hence R0 = βα
(α+µ)(γ+µ) +

ασµ
(α+µ)(γ+µ)(σ+µ)

3.3 Local Stability of Disease Free Equilibrium

Theorem 2. For R0 < 1, the Disease-Free Equilibrium point E0=(∧µ , 0, 0, 0, 0) was

locally asymptotically stable and for R0 >1, it was unstable [17].

Proof 2. The Jacobian matrix corresponding to the structure 1 at disease free equilibrium
E0 is

J(E0) =


−µ 0 −β 0 0
0 − (µ+ α) β 0 0
0 α − (γ + µ) 0 0
0 0 γ − (σ + µ) 0
0 0 0 σ −µ


The characteristic equation is

(λ+ µ)
2
(λ+ (σ + µ))

(
λ2 + a1λ+ a2

)
= 0

Where a1= 2µ+ α+ γ and a2 = (µ+ α) (γ + µ)− αβ.
There are 5 Eigen values for the Jacobian matrix J(E0) of which first three are -µ, -µ, -
(σ + µ), and the remaining two Eigen values are roots of quadratic equation (λ2+a1λ+a2)
= 0, which are negative.
Through Routh-Hurwitz criterion [20], all the roots of charateristics equation have de-
structive real part which revenues steady equilibrium if a1 > 0 and a2 > 0.
Since µ > 0, α > 0 and γ > 0 , we have 2µ+ α+ γ > 0 that is a1 > 0.
Since (µ+ α) (γ + µ)− αβ > 0 >0 that is a2 > 0.
If R0 <1, then

βα

(α+ µ) (γ + µ)
+

ασµ

(α+ µ) (γ + µ) (σ + µ) (α+ µ)
< 1

6
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⇒ βα

(α+ µ)
<

βα

(α+ µ) (γ + µ)
+

ασµ

(α+ µ) (γ + µ) (σ + µ) (α+ µ)
< 1

⇒ βα

(α+ µ) (γ + µ)
< 1 ⇒ βα < (α+ µ) (γ + µ)

⇒ (µ+ α) (γ + µ)− αβ > 0thatisa2 > 0.

Therefore, a2 > 0 if R0 <1
Hence by Routh–Hurwitz Criteria, the disease free equilibrium point E0 is locally asymp-
totically stable if R0 <1.

3.4 Global Stability of Disease Free Equilibrium

Theorem 3. The disease-free equilibrium point E0=(∧µ , 0, 0, 0, 0) of structure 1 was

globally asymptotic stable if R0 <1 [19].

Proof 3. It can be detected that from the structure (1), the disease-free sections are S,
R and the infected sections are E, I, T. The system of equations (1) will be arranged as

dU

dt
= P (U, V ),

dV

dt
= G(U, V ), and G(U, 0) = 0 (2)

where U = (S,R) ∈ R2
+, V = (A, I,Q, J) ∈ R3

+.
By using the technique introduced by Castillo-Chavez [5], we derived global stability of the
disease-free equilibrium point E0 = (∧µ ,0,0,0,0). For the worldwide asymptotic stability
of E0 the succeeding two conditions should be satisfied.
1. dU

dt = P (U, 0) Where X∗ is world wide asymptotically steady.

2. G(U, V ) = KV - Ĝ(U, V ), Ĝ(U, V ) ≥ 0, where K = DV G(U∗, 0) is the Metzler
Matrix and (X,Y ) ∈ ω.
If the given system of equations 1 satisfies 2 then the equilibrium point E0 is a global
asymptotically stable for R0 < 1.
Hence, the system 1 can be rewritten as

P (U, 0) =

(
∧ − µS

0

)
,K =

(α+ µ) 0 0
α (γ + µ) 0
0 γ (σ + µ)

 and

Ĝ (U, V ) =

βI (S0 − S)
0
0


Since S0 > S, by observation, Ĝ ((U, V )) ≥ 0 (U, V ) ∈ Ω.
We can say that the matrix K is M matrix by the definition of M and also we able to
find that X∗ = (∧µ , 0) is globally asymptotic stable steady state of the limiting structure
dU
dt = P (U, 0).
Since the two conditions are fulfilled, disease-free steady state E0=(∧µ , 0, 0, 0, 0) of struc-
ture of equations 1 is globally asymptotic stable if R0 < 1.

3.5 Local Stability of Endemic Equilibrium point

We conclude the endemic steady state X∗= (S∗E∗, I∗, T ∗, R∗) with their possibility
conditions are

7
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S∗ = ∧
βI∗+µ ,

E∗ = βS∗I∗

(α+µ) ,

T ∗ = γI∗

(α+µ) ,

R∗ = σT∗

µ ,

I∗ = (∧αβ−µ(γ+µ))
(β(γ+µ(σ+µ))) = (∧(R0−1)−ασµ)

(β(γ+µ)(σ+µ))

Theorem 4. When R0 > 1,then Endemic Equilibrium point X∗ is locally asymptotically
steady and unstable if R0 < 1.

Proof 4. The Jacobian matrix corresponding to the system 1 at endemic equilibrium
point X∗ is

J(X∗) =


(−βI∗ + µ) 0 −βS∗ 0 0

βI∗ − (µ+ α) βS∗ 0 0
0 α − (γ + µ) 0 0
0 0 γ − (σ + µ) 0
0 0 0 σ −µ


The characteristic equation is

(γ + µ) (γ + (σ + µ))
(
λ3 + b1λ

2 + b2λ+ b3
)
= 0

Where b1=βI∗ + 3µ+ α+ γ,
b2= (α+ µ) (γ + µ)− αβS∗ + (γ + µ) (βI∗ + µ) and
b3 = (βI∗ + µ) ((α+ µ) (γ + µ)− αβS∗) –β2S∗I∗

Hence the first two Eigen values are – µ,-(σ + µ) and remaining three Eigen values are
the roots of the

(
λ3 + b1λ

2 + b2λ+ b3
)
= 0.

Yet over again if the constants of specific equation a1 > 0, a2 > 0, a3 > 0 and a1a2 >
a3 are true, formerly by Routh-Hurwitz criterion, altogether the roots of the specific
equation have negative real portions and hence a stable equilibrium. Therefore Endemic
equilibrium at X∗ is locally asymptotically stable if R0 > 1

4 Numerical Simulation

Numerical simulation was performed in order to establish analytical result. We assumed
some parameter values and initial conditions of proposed SEITR model and it can be
shown table 2.

4.1 Analysis of results

The basic reproduction number for this set of limitation is R0 = 2.806. The dynamical
performance of the system will be observed in 2 with the help of MATLAB programming.
From Fig. 2, we observed that the dynamics behavior of susceptible, exposed, Infected,
treatment and recovered classes. This graph demonstrated that when the treatment rate
rose, the infected population decreased and joined either the treatment population or
the recovered population.

4.2 Discussion of results

From Fig.3 it was observed that the infected population(Fig.3b), exposed population(Fig.3c)
and treatment population(Fig.3d) were decreased while the susceptible population(Fig.3a)
was increased whenever the treatment rate increases.

8
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Table 2: Influenza parameters values of the SEITR model

Parameter Values Source
β 1.2 [16],[30]
α 0.2 [9],[30]
γ 0.4 [16],[30]
σ 0.1 [16],[30]
µ 0.01 [26],[29]

S(0) 1 Assumed
E(0) 0.2 Assumed
I(0) 0.01 Assumed
T (0) 0.4 Assumed
R(0) 0.3 Assumed

Figure 2: Dynamic behavior various compartments of SEITR model

9
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(a) (b)

(c) (d)

Figure 3: Effect of treatment rate γ on susceptible, exposed, Infected and treatment
population
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5 CONCLUSION

The epidemiological models are enabled us a noble knowledge to understanding the
spread dynamics of infectious disease in better way. In this article, a five compartment
epidemiological model SEITR was proposed and the basic properties were discussed.
The basic reproduction number R0 value was determined. The positivity and uniform
boundedness were performed. The existence of disease free equilibrium point E0 was
discussed and showed that it is locally also globally asymptotically stable for R0 < 1
. Similarly the endemic equilibrium point X∗ be real and local asymptotically stable
for R0 > 1. The transmission dynamics of influenza has been observed. The result
of treatment rate on the susceptible, exposed, infected and treatment populaces has
been examined and it has a positive effect on the infected population. The reproduction
number R0 = 2.806 > 1 indicates that the outbreak has gotten out of hand and that there
are currently more sick people than ever before. Therefore, the only method to reduce
the rate of illness spread is to enhance the rate of treatment, which includes the quick
hospitalisation of infections that are dangerously ill. The outcome of the SEITR model
on the disease program mechanism can be investigated in next studies. Additionally,
future research can be done to ascertain the most effective management strategies for
the sickness spread model and the belongings of medications and immunizations on the
SEITR model.
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Abstract

The goal of this research is to see how thermal radiation, joule heating,
and heat Source/Sink affect two-dimensional nanofluid stagnation point flow
above a stretching sheet fixed in a spongy medium. This research accounts for
the magnetic field, and the nonlinear Rosseland approximation is used to cal-
culate heat radiation. The governing equations are converted into a system via
similarity transformations in joined nonlinear ordinary differential equations,
which are solved numerically using the Runge-Kutta fourth order approach
with shooting technique. The numerical results reveal that this method has
excellent correctness, good convergence with minimal computational cost, and
a lot of promise. The velocity and temperature are also found to increase as
a function of the radiation parameter, Eckert number, Brownian motion pa-
rameter, Thermophoresis parameter, Biot Number, and thermal buoyancy
parameter, as well as the reverse effect in Prandtl numeral. The skin friction,
local Nusselt number, and local Sherwood number are increasing functions of
the ratio of free stream velocity to stretching sheet velocity parameter, Biot
number, Brownian motion parameter, and thermophoresis parameter, with
the reverse effect in magnetic parameter, Prandtl number, and permeability
parameter.

Keywords: Nanofluid, Stretching Sheet, thermal radiation, joule heating, heat
Source/Sink.

1 Introduction:

Nanofluid is a base fluid containing nanometer-sized particles/fibers (water, oil,
ethylene glycol, etc.).Al2O3, Cu, TiO2, Ag, and other materials are commonly uti-
lized for nanoparticles. These liquid combinations were discovered to have excellent
assets that could make them useful in a variety of technical and manufacturing ap-
plications involving temperature transmission, nuclear reactors, petroleum cells, mi-
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croelectronics, power production and carrying, space expertise, security and ships,
and bony film solar power collectors are only few of the technologies that are being
developed. [5] deals with (MHD) nanofluid stream towards a nonlinear extended
plane with changeable depth in the company of an electric ground. In the exis-
tence of thermal radiation and Joule heating impacts, buoyant MHD nanofluid flow
and heat transmission over a stretching sheet are examined [7]. [12] examined the
impacts of thermally evolved thermophoresis diffusion and Brownian motion in non-
Newtonian nanofluids across an angled extending sheet, as well as the belongings of
hotness radiation and chemical response. [14]The influence of thermal radiation on
a heat absorbing magneto-viscous nanofluid’s dissipative boundary layer flow trans-
versely a holey exponentially overextended pane with thermal slips and Navier’s
velocity was investigated. When there is a consistent magnetic field present. [15]
Entropy generation study of a two-way nanofluid flick stream of Eyringâ€“Powell
liquid with warmth and mass transport through an unstable porous stretched sheet
was investigated (MHD). [21] The belongings of a magnetic ground and heat rays on
the compelled convection stream of CuO-water nano-fluid transversely a stretched
pane with a point of stagnation were statistically investigated. The effects of heat
radiation on the heat transfer of water-based nanofluids containing exponentially
stretched sheets of motile gyrotactic microorganisms were studied by [24]. [26] The
authors presented a Form in mathematics for MHD radiative stream of III-grade
nanomaterials limited by a nonlinear extending sheet of flexible thickness. [29] in-
vestigated the formation of entropy in a II-grade nanofluid MHD stream finished
a sheet that is being heated convectively and using nonlinear current radioactivity
and viscid .Numerous slip properties on MHD unsteady Maxwell nanofluid stream
finished a holey overextended pane with thermal radioactivity and thermo-diffusion
in the attendance of chemical response were examined by [1]. In the presence of
thermal radiation and a heat source, a 2-way MHD stream of a Jeffery nanofluid
transversely a stretched sheet has been quantitatively examined by [2]. In a 2-
dimensional accepted convection stream of unstable electrical nanofluid with MHD
across a linearly leaky stretched pane, the belongings of suction, as well as current
radioactivity, and Joule heating, are investigated by [4]. [18] looked explored the
influence of numerous slipups on axisymmetric (MHD) buoyant nano-fluid stream
across an extending sheet.[20] The stream of a nanofluid with changeable liquid
characteristics done an angled overextended pane in the existence of current en-
ergy and chemical response is investigated using unsteady magnetohydrodynamics
(MHD). The impact of slip circumstances on the two-way unsteady varied convec-
tion stream of electric MHD nanofluid over a stretched sheet in the company of
thermal energy, gluey debauchery, and chemical response are the subject of this
research. [4]. The effect of nonlinear thermal radiation and spatial and tempera-
ture dependent heat generation/absorption on a 3- way MHD Jeffrey liquid stream
across a nonlinearly With porous material present, a permeable stretched sheet was
investigated. [10]. The current and Joule boiler effect of Casson nanofluid stream
with chemical response across an inclined porous stretched surface is investigated
in [11]. The effects of buoyancy force on viscoelastic (second grade fluid) magne-
tized nanofluid were studied by [13]. [19] using a stretched sheet immersed in a
porous media generated by suction/blowing, researchers explored the belongings
of viscous-Joule boiler, current energy, and warmth production (or absorption) on
MHD nanofluid flow. [28] used the power of numerical computing-based Lobatto
IIIA method to investigate warmth and mass transmission in 3-D MHD radioactive
current of water-based mixture nanofluid across an extended sheet. [30] investigated
the three-dimensional border coating stream of Maxwell nanofluid across a extend-
ing sheet using magnetohydrodynamic (MHD) warmth and mass transmission. [31]
An unsteady magneto-hydrodynamic heat and mass transfer model is used to in-
vestigate the heat and mass transfer of a hybrid nanofluid flow across a stretched
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Figure 1: Schematic diagram of the Problem

surface. [32] investigated the heat and mass transfer characteristics of nanofluid flow
over a stretched surface embedded in a porous medium in both steady and unsteady
cases. [9] examined the effects of solar waves on 2-dimensional a stretched sheet
is traversed by nanofluid stagnation-point flow. [16] looked at the heat transport
and entropy of an unsteady flow of a non-Newtonian Casson nanofluid. [17] stud-
ied for magnetic dipole with stagnation point flow of micropolar nanofluids. [23]
warmth and mass transport across a linear extending pane, as well as the essence
of nonlinear thermal rays and entropy production for continuous laminar 2-way
convective MHD Jeffrey nanofluid stream, were examined. [25]. The effects of con-
vective boundary conditions on MHD Prandtl nanofluid flow over a stretched sheet
were investigated.[3]considered the rheological and thermophysical characteristics
of a non-Newtonian viscoelastic liquid under stratification over a linearly stretched
surface.[27]This pagination’s main goal is to outline characteristics of a water-based
hybrid nanoliquid flow with single-wall carbon nanotube dispersion.

2 Construction of the Problem:

A steady nanofluid boundary layer flow in two dimensions through an extending
sheet is using the speed of uw(x) = ax wherever a is a constant, as illustrated in
Fig.1. A homogenous attractive arena of B0 upright to the flow direction is supposed
to be influenced. Warmth transmission scrutiny is done in the company of viscous
dissipation and Joule heating and thermal energy qualities.Tw denotes the convec-
tive surface temperature which are based on Fig.1 and T∞ symbolizes the ambient
fluid temperature in the following governing equations. For this nano-fluid flow, the
stable border line coat equations for stagnation point flow that is in-compressible:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= u∞

∂u∞
∂x

+ ν
∂2u

∂y2
− σB0

2(u− u∞)

ρ
− ν

k
(u− u∞)

+gβT (T − T∞) + gβC(C − C∞),

(2)
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Where u∞ is the free stream velocity, ν means the kinematic viscocity, σ expressions
forelectric conduction of liquid, B0 establishes the unvarying magnetic arena along
y-direction, k is used for porosity factor, u and v, respectively, stand for the x- and
y-directional velocity components. We have the following border circumstances for
the problem under consideration:

u = uw(x) = ax, v = 0, at y = 0, and u→ u(∞) = bx, as y → ∞ (3)

The dimensionless variables are introduced in the form of

η =

√
a

ν
y , u =

∂ψ

∂y
= axf ′(η) , v = −∂ψ

∂x
= axf(η) (4)

Eq. (1) is satisfied in the same way, and Eqs. (2) and (3) can be rewritten as

f
′′′
+ ff

′′
− f

′2
− (M +K)(f

′
− λ) + λ2 + λ1θ + λ2ϕ = 0, (5)

f(0) = 0, f
′
(0) = 1, when η = 0 and f

′
(∞) = λ, as η → ∞, (6)

where M = (σB0
2)

ρa ,is the magnetic restriction, λ = b
a , represents the share of

the rates of unrestricted stream speed to the extending sheet speed, K = ν
ka is

the permeability parameter λ1 = Gr

R2
e
is the thermal buoyancy parameter, where

Gr = gβT (Tw − T∞)x
3

ν2 is Grashof numeral, and Re = (xUw)
ν is Reynolds number,

λ2 = gβC(Cw − C∞)x
3

ν2 is the concentration buoyancy parameter.
Equation of Energy

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp
(
∂u

∂y
)2 − 1

ρcp

∂qr
∂y

+
σB0

2(u− u∞)2

ρcp

+τ(Db
∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2) +

Q∗(T − T∞)

ρcp

(7)

Equation of Concentration

u
∂C

∂x
+ v

∂C

∂y
= Db

∂2C

∂y2
+
DT

T∞
(
∂T

∂y
)2 (8)

where T symbolizes the temperature, C symbolizes the nanoparticles concentration,
α is the current diffusivity, Db and DT are the Brownian motion coefficient and the

thermophoretic dispersal coefficient, correspondingly. τ =
(ρp)p
(ρp)f

is the share of the

nanoparticle active warmth size to the base fluid warmth size and qr states to the
radiative warmth flux amount. The radiative heat flux can be calculated using
the Rosseland guess for current radiation and applied to optically thick medium

as. qr = − 4
3

σ∗

K∗
∂T 4

∂y where σ∗, k∗ are the Stefan-Boltzman constant and average

assimilation coefficient, correspondingly. T 4 = 4TT∞
3−3T 4

∞ is achieved by utilising
the Taylor series to expand T 4with respect to T∞while disregarding terms of higher
orders. As a result, Eq. (7) is found to be

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp
(
∂u

∂y
)2 +

16σ∗T 3
∞

3ρCpk∗
∂2T

∂y2
+
σB0

2(u− u∞)2

ρcp

+τ(Db
∂T

∂y

∂C

∂y
+
DT

T∞
(
∂T

∂y
)2) +

Q∗(T − T∞)

ρcp

(9)
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For radiative heat flux modelling, the nonlinear Rosseland guess is used. As an
outcome, the relevant convective warmth transport boundary conditions can be
presented as.

−k∂T
∂y

= (T−TW ), C = Cw, at y = 0, T→ T∞, C→ C∞, as y → ∞ (10)

As a result of specifying the non-dimensional temperature T = T∞ + (Tw − T∞)θ(η)
and C = C∞ + (Cw − C∞)ϕ(η) . Eqs. (7) and (8) take the following format:

(1 +Ra)θ
′′
+ Pr[fθ

′
+MEc(f

′
− λ)2 + Ec(f

′′
)2 + (Nbθ

′
ϕ

′
+Ntθ

′2
) + δθ ] = 0

(11)

ϕ
′′
+ Lefϕ

′
+
Nt

Nb
θ
′′
= 0, (12)

and the borderline circumstances

θ
′
(0) = −(1− θ(0))Bi, ϕ(0) = 1, θ(+∞) → 0, ϕ(+∞) → (0), (13)

Where Pr = ν
α , is Prandtl number, Ra =

16σ∗T 3
∞

3kk∗ , is radiation parameter, Ec =
U2

w

Cp(Tw−T∞) , is the Eckert number, Nb = τDb(CW−C∞)
ν ,shows the Brownian mo-

tion restriction, Nt = τDT (TW−T∞)
νT∞

, is thermophoresis restriction,δ = Q∗L
ρCpUw

, heat

source/sink restriction, Le =
ν

Db
, Lewis factor, Bi =

h

k

√
ν
a , denotes the Biot num-

ber. The three physical measures of our attention are the coefficient of skin friction
Cfx , the local Nusselt numberNux

, and local Sherwood number Sux
, are given as.

Cfx =
τw
ρU2

w

, Nux
=

xqw
k(Tw − T∞)

, Sux
=

xqm
Db(Cw − C∞)

, (14)

where

τw = µ(
∂u

∂y
)y=0, qw = −k(∂T

∂y
)y=0 + (qr)y=0, qm = −Db(

∂C

∂y
)y=0, (15)

the relations will be.

Cfx(Re)
1
2 = f

′′
(0), Nux

(Re)
−1
2 = −(1 +Ra)θ

′(0), Sux
(Re)

1
2 = −ϕ

′
(0), (16)

The result of equations (4), (11) and (12) jointly through borderline circumstances
(5) and (13) is determine through by a systematic numerical method called shooting
technique. We translate the nonlinear equivalences into first order regular differen-
tial equivalences by labelling the variable quantity i.e.

f = f1, f
′
= f2, f

′′
= f3, f

′′′
= f

′

3, θ = f4, θ
′
= f5, θ

′′
= f ′5, ϕ = f6,

ϕ
′
= f7, ϕ

′′
= f

′

7, Hence, the system of equations becomes

f
′

1 = f2, f
′

2 = f3, f
′

3 = [f22 − f1f3 + (M +K)(f2 − λ)− λ2 − λ1f4 − λ1f6] (17)

f
′

4 = f5, (18)

f
′

5 = −(1 +Ra)
−1Pr[f1f5 +MEc(f2 − λ)2 + Ecf

2
3 +Nbf5f7 +Ntf

2
5 + δf4]

(19)
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f
′

6 = f7, (20)

f
′

7 = −(lef1f5 +
Nt

Nb
f

′

5), (21)

Subject to the following conditions

f1(0) = 0, f2(0) = 1, f3(0) = S1, f4(0) = (1 +
S2

Bi
), f5(0) = S2, f6(0) = 1,

f7(0) = S3, as η→ 0 and f2(∞) = λ, f4(∞) = 0, f6(∞) = 0, as η→ ∞
(22)

Now fourth order Runge-Kutta way with shooting technique is follow for stepwise
integration and calculations are passed out on MATLAB computer software.

3 Influence of Diverse Restrictions

Ordinary differential equations that are nonlinear. (4), (11) and (12) are numer-
ically solved with the borderline circumstances (5) and (13) using the MATLAB
software and the shooting and fourth-order Runga-Kutta method. The obtained
results demonstrate the impact of non-dimensional controlling parameters, specifi-
cally the magnetic field parameter M, Prandtl numeral Pr, radiation restriction Ra,
the proportion of the free stream speed to the extending sheet speed restriction λ,
Eckert numeral Ec, Thermophoresis restriction Nt, Brownian motion restriction Nb,
Biot Numeral Bi, Lewis factor Le, Permeability restriction K, thermal buoyancy
parameter λ1, Solutal buoyancy parameter λ2 and Heat Source/Sink δ. Figures 2
and 3 depict the effect of the magnetic field restriction M on the velocity and tem-
perature field distributions.It’s worth noting that when M gets higher, the velocity
field gets smaller. A resistive sort of force termed Lorentz force is created in the
stream when the magnetic field parameter increases, causing a decrease in velocity
field curves. It has been pragmatic that an enhance in magnetic parameters raises
the temperature. The Lorentz force causes some additional warmth to be created
in the flow. When the magnetic field is increased, the momentum layer thickness
decreases while the thermal layer thickness increases. The impact of Prandtl num-
ber Pr on the supply of speed and temperature ground is exposed in Fig.4 and 5. It
is perceived that growing values of Pr results a decline in velocity and temperature
field. Figure 6 and 7 exhibits the significance of the radiation parameter Ra on the
velocity and temperature, correspondingly. Figures 6 and 7 show that increasing
the radiation parameter increases fluid velocity and temperature. The impact of
proportion of the free stream speed to the speed of the extending sheet restriction λ
on temperature arena is exposed in Fig.9. escalating values of Λ results a decrement
in temperature field. The impact of Eckert number Ec, Brownian motion param-
eter Nb, Thermophoresis parameter Nt, Biot Numeral Bi on the sharing of speed
and warmth field is exposed in Fig. 10, 11, 12, 13, 14, 15 16 and 17It has been
observed that rising values of Ec, Nb, Nt and Bi results increment in velocity and
temperature field.

4 Conclusions

The influence of thermal radiation, Heat Source/Sink, and joule heating on two-
dimensional nanofluid stagnation point stream across a extending pane fixed in
porous medium is discussed in this study. The controlling PDEs are changed into
nonlinear ODEs using similarity transformations, and then These equations are
numerically solved . The effects of a variety of non-dimensional characteristics on
velocity and temperature fields are discussed and represented using graphs. The

6
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Figure 2: Velocity with η for disparate facts of magnetic restriction M.

Figure 3: Temperature with η for disparate facts of magnetic restriction M.
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Figure 4: Velocity with η for disparate facts of Prandtl numeral Pr.

Figure 5: Temperature with η for disparate facts of Prandtl numeral Pr.
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Figure 6: Velocity with η for disparate facts of radiation restriction Ra.

Figure 7: Temperature with η for disparate facts of radiation restriction Ra.
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Figure 8: Velocity with η for disparate facts of free stream velocity to stretch sheet
restriction velocity ratio of the stretching sheet parameter λ.

Figure 9: Temperature θ(η) related to η for unlike facts of ratio of the free stream
velocity to stretch sheet restriction velocity ratio parameter λ.
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Figure 10: Velocity with η for disparate facts of Eckert numeral Ec.

Figure 11: Temperature with η for disparate facts of Eckert numeral Ec.

11

304

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Ravindra Kumar 294-316



Figure 12: Velocity with η for disparate facts of Brownian motion parameter Nb.

Figure 13: Temperature with η for disparate facts of Brownian motion parameter
Nb.
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Figure 14: Velocity with η for disparate facts of Thermophoresis parameter Nt.

Figure 15: Temperature with η for disparate facts of Thermophoresis parameter
Nt.
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Figure 16: Velocity with η for disparate facts of Biot Numeral Bi.

Figure 17: Temperature with η for disparate facts of Biot Numeral Bi.

Figure 18: Velocity with η for disparate facts of Lewis factor Le.
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Figure 19: Concentration with η for disparate facts of Lewis factor Le.

Figure 20: Velocity with η for disparate facts about permeability limitations K.
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Figure 21: Temperature with η for disparate facts about permeability limitations
K.

Figure 22: Velocity with η for disparate facts of thermal buoyancy parameter λ1.
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Figure 23: Temperature with η for disparate facts of thermal buoyancy parameter
λ1.

Figure 24: Velocity with η for disparate facts of Solutal buoyancy parameter λ2.
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Figure 25: Temperature with η for disparate facts of Solutal buoyancy restriction
λ2.

Figure 26: Velocity with η for disparate facts of Heat Source/Sink δ.
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Table 1: Encouragement of the three physical dealings are the coefficient of skin
friction Cfx , the local Nusselt number Nux and local Sherwood number Sux .

Parameter Cfx Nux Sux

M = −0.5 -0.1951 0.1470 0.7460
M = 0 -0.2948 0.1080 0.7365
M = 0.5 -0.3866 0.0749 0.7291
M = 1 -0.4707 0.0450 0.7222
Pr = 0.5 -0.3827 0.1008 0.7316
Pr = 0.8 -0.3861 0.0870 0.7296
Pr = 1 -0.3866 0.0749 0.7291
K = 0 -0.2887 0.0930 0.7381
K = 0.5 -0.3866 0.0749 0.7291
K = 1 -0.4758 0.0585 0.7217
K = 1.5 -0.5573 0.0422 0.7160
λ = 0.3 -0.5386 -0.1136 0.7041
λ = 0.4 -0.4778 -0.0015 0.7141
λ = 0.5 -0.3866 0.0749 0.7291
λ = 0.6 -0.2743 0.1320 0.7460
Bi = 0.2 -0.4161 0.0630 0.7261
Bi = 0.5 -0.3866 0.0749 0.7291
Bi = 1 -0.3749 0.0813 0.7315
Bi = 4 -0.3641 0.0850 0.7326
λ1 = 0.2 -0.5240 0.0369 0.7145
λ1 = 0.3 -0.4762 0.0518 0.7196
λ1 = 0.4 -0.4307 0.0642 0.7251
λ1 = 0.5 -0.3866 0.0749 0.7291
λ2 = −1 -0.9295 -0.0525 0.6858
λ2 = −0.5 -0.7493 0.0030 0.7006
λ2 = 0.5 -0.3866 0.0749 0.7291
Ec = −0.9 -0.4532 0.2360 0.7191
Ec = −0.3 -0.4204 0.1557 0.7241
Ec = 0.3 -0.3866 0.0749 0.7291
Ec = 0.9 -0.3546 -0.0021 0.7352
δ = 0.3 -0.4505 0.2182 0.7189
δ = 0.4 -0.4241 0.1590 0.7231
δ = 0.5 -0.3866 0.0749 0.7291
δ = 0.6 -0.3283 -0.0563 0.7391
Nb = 0.5 -0.3866 0.0749 0.7291
Nb = 1 -0.3519 -0.0014 0.7335
Nb = 1.5 -0.3180 -0.0732 0.7375
Nb = 2 -0.2880 -0.1344 0.7406
Nt = 0 -0.4150 0.1347 0.7225
Nt = 0.5 -0.3866 0.0749 0.7291
Nt = 1 -0.3490 -0.0034 0.7398
Nt = 1.5 -0.2823 -0.1400 0.7571
Ra = 0 -0.3700 0.0060 0.7301
Ra = 0.3 -0.3846 0.0527 0.7296
Ra = 0.5 -0.3866 0.0749 0.7291
Ra = 1 -0.3879 0.1251 0.7290
Le = 0.5 -0.3643 0.0930 0.5055
Le = 1 -0.3866 0.0749 0.7291
Le = 1.5 -0.4030 0.0696 0.9021
Le = 2 -0.4162 0.0681 1.0503
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Figure 27: Temperature with η for disparate the Source/Sink facts δ.

table analyses and presents the effect of physical parameters on skin friction, local
Nusselt number, and local Sherwood number. The following is a summary of the
findings:

• Increasing the magnetic field parameter causes the velocity field to decrease
and the temperature distribution to improve.

• The velocity and temperature field both are decrease for Prandtl number but
reverse effect is seen in of radiation restriction Ra, Eckert numeral Ec, Ther-
mophoresis limitations Nt,Brownian motion limitations Nb, Biot Numeral Bi

and warmth Source/Sink δ.

• The parameter of proportion of the free stream speed to the speed of the
stretching sheet λ, decrease the distribution of temperature.

• The Lewis factor decrease the distribution of concentration.

• The Permeability restriction K help to lessening the velocity arena and in-
crease the supply of temperature arena.

• The thermal buoyancy parameter λ1 an Solutal buoyancy parameter λ2 help
to increase the speed and decrease the temperature field.

• Sherwood number, Skin friction, and Nusselt number are increasing function
of proportion of the free stream speed to the speed of the extending sheet
restriction λ, Biot Number Bi, thermal buoyancy restriction λ1 and Solutal
buoyancy restriction λ2 and decreasing function of magnetic field restriction
M, Prandtl numeral Pr and Permeability restriction K.

• Skin friction and Sherwood number are increasing function of Eckert number
Ec, heat Source/Sink δ, Brownian motion parameter Nb and Thermophoresis
parameter Nt. But reverse effect is seen in Nusselt number.
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[24] [23] [25] [26] [28] [29] [30] [31] [32] [3] [27]
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Abstract

This paper discusses the principle, design and theoretical dynamical
modelling of MEMS capacitive pressure sensors with different material
properties results that have been simulated as well as compared. The
properties of the material ensure that sensor performance analysis for
operating pressure range 0-25kPa. This work discusses Timoshenkos plate
deflection theory and follows the pull-in phenomenon. One important
factor that could influence the performance of a MEMS capacitive pressure
sensor is the structure of the diaphragm. The active area of this sensor
is made up of 0.5 mm0.5 mm and the cavity size are 2m. According
to the simulations, the optimized parameters have higher linearity and
greater sensitivity than the initial parameters. The comparison of results
shows that Aluminium material gives the highest deflection and better
capacitance sensitivities which is about 88 pF/pa and is more linear with
the applied pressure than other materials. The behaviour of the touch
mode capacitive pressure sensor in terms of the temperature dependence
of capacitance is analysed and repeatability error has been reduced. This
configuration of touch mode pressure sensor is promising for the use in
health monitoring devices like patient blood pressure due to small pressure
fluctuation.

Keywords— Capacitive pressure sensor, Linearity, Sensitivity, Range of Blood
pressure, Deflections
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1 Introduction

Nowadays CPS (Capacitive pressure sensor) is one of the popular MEMS pressure
sensors due to their fast dynamic range and less sensitivity to temperature in com-
parison with piezoresistive pressure sensors and is widely applied in high-performance
applications [4, 27, 5, 13] . The capacitive pressure sensor comprises the thin elastic
diaphragm and a sealed cavity between the elastic diaphragm and substrate. The thin
diaphragm is allowed to contact the substrate and a pair of plates behave as parallel
plate capacitors.

Micromachined MEMS CPS can be classified in different ranges such as low,
medium, ultra-low and high. Different ranging of pressure can work for different ap-
plications like gentle touches use low- a pressure range (1kPa- 10kPa) [3, 24] ,medium
pressure range (10kPa -100kPa) can be used for some pressure or movement of the
object that is operated by hands [21] . Ultra-low pressure ranging (< 1Pa) is used in
the progress of the microphone, and touch screen and finger-print recognition. Above
these sensors, the range is also used in commercial products like wearable touch key-
boards [29, 30] and household appliances. High-pressure ranges (> 100kPa) are used
in special applications such as industrial robots, colonoscopes [26], etc. MEMS ca-
pacitive pressure sensor has a fast-developed product range with brand-new features
in contemporary years and covers the foremost part of the sensor market. With the
increasing requirements of some sensing applications, great efforts are devoted to the
exploration in the direction of the application range of pressure sensors. The main
motive of this studies is to find out suitable material for better sensitivity and good
linearity. Sensitivity is the most important parameter to judge the quality of pressure
sensors [34]. To achieve good sensitivity, conductivity, stability, reproducibility and
resolutions. the main aim is to enhance these performance parameters of capacitive
pressure sensors. Particularly these parameters are dominantly determined by dif-
ferent two critical factors which are 1) the materials used for conductive electrodes
[15, 31] and 2) the shape and structure of the dielectric layer [22, 20, 7, 8, 6, 19] .
But there have some limitations of micromachined capacitive pressure sensors have
non-linear output and low sensitivity in terms of capacitance [28] . To address this
problem, one way is increasing the diaphragm thickness and another way is to expand
the middle of the diaphragm membrane in such a way that the output will be more
linear concerning the input but capacitive sensitivity reduces due to increasing the
stiffness [25, 17].

Many materials have been used as active and non-active components in pressure
design applications because the properties of materials play a very significant role in
the behaviour of capacitive pressure sensors. Still, one of the main concerns is Material
selection for the diaphragm, with rapid development in the world of research, it is not
impossible to discover a new material that can compete with the existing materials.
In this paper, firstly different capacitive pressure sensors using different diaphragm
membrane materials with their different application are investigated and simulated in
the same model. Detailed mathematical modelling and simulation results on various
characteristics are presented.

2 Design of Pressure Sensors

The diaphragm and substrate are used as mechanical components in many sensors and
are the most important part of the system. The size of the thin diaphragm, material

2

318

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Suman et al 317-332



S.NO Types of pressure sensors Measurement Range
1 Absolute Atmospheric pressure 101.3 kPa
2 Absolute In-vivo Blood Pressure 80/120 mm
3 Gauge Intraocular Pressure 15mm Hg
4 Gauge Tire pressure 30 Psi
5 Differential Ventilators 25cm H2O

Table 1: Types of Pressure Sensors with Specific Range and their Applications
[2]

selection of the diaphragm, and substrate depend upon the required applications.
Some types of pressure sensors along with their application and their pressure range
are given in table 1. The deflection of the diaphragm and sensitivity of the sensor is
depending upon according to properties of the materials and pressure mounted on the
thin membrane.

The design of the diaphragm membrane and structure of MEMS pressure sensor by
using finite element simulation software (FEA). MEMS pressure sensors are generally
used to measure one parameter at a time, but the value of parameters changes when
they operate in complex environments which create a major task for designing a MEMS
pressure sensor to achieve good sensitivity with operational precision and speed in
harsh environments.

3 Principle and Mathematics background Mod-
elling of the Capacitive Pressure Sensor

MEMS capacitive pressure is work on the principle of the electromechanics interface.
By changing applying the pressure to the top of the diaphragm, the membrane moves
towards the direction of the substrate. Then performance occurs in terms of diaphragm
deflection with thermal considerations. Due to the symmetric nature of the geometry,
only a single geometry is used for the analysis [18, 10]. this model contains a thin
membrane that is held at a fixed potential of 5V.

∂4w(x, y)

∂x4
+ 2α

∂4w(x, y)

∂x2∂y2
+
∂4w(x, y)

∂y4
=

p

Dh3
(1)

To avoid any connection between substrate and diaphragm membrane insulation con-
nection is provided. Basically, for designing diaphragm capacitive pressure sensors
uses the theory of thin plate and small deflection, where the condition of theory plates
uses a h ≈ a

10
and deflection is wmax ≈ h

4
[32] but in case of circular diaphragm r is

taken as radius and where h is the thickness and the rectangular diaphragm is taken a
is length and b is width. The mathematical expression for calculating diaphragm de-
flection with a clamped edge due to applied pressure P are governing the fourth-order
differential equation in x-y planes (1).

Where w (x, y) is deflection of diaphragm supported with boundary edge condition,
a is side of diaphragm, h is the thickness. The following mathematical expression can
be used to determine the capacitance of this structure [12].

c0 =
εkA

d0
(2)
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Where ε is absolute dielectric permittivity of, k is the relative permittivity of the
plates, A is the area of the plates on a squared meters and d0 is the separation between
the parallel conducting plates. However, the capacitance cannot be calculated using
equation (2) above when the diaphragm’s pressure has changed. As a result of uniform
pressure being applied, the diaphragm deflects. As can be seen, the deflection with a
uniformly loaded square shape plate is utmost at the diaphragm’s centre.

wmax = 0.00126
L4P

D
(3)

Where wmax is the maximum deflection, α is the length of the diaphragm mem-
brane, P is the differential pressure, D is the flexural rigidity can be computed by the
expression [16, 9, 11] .

D =
Eh3

12(1 − v2)
(4)

Where h is thickness of membrane, E is modulus of elasticity, ν is Poissons ratio
[23]. When above equation number 3 is insert in equation number 2 then, maximum
deflection occurs.

wmax = 0.01512(1 − v2)
PL4

Eh3
(5)

3.1 Measurements of Capacitance

The mentioned relation (6) can use to find out the change in capacitance and sensitivity
of the moving diaphragm towards the cavity after changing the load on the top of the
diaphragm.

cf = ε

∫ ∫
dx.dy

d− w(x, y),
(6)

cf =
ε

d

∫ ∫
dx.dy

d− w(x, y),
(7)

Taylor series expansion is given in the following equation,

1

1 + x
= 1 + x+ x2 + x3, for − 1 < x < 1 (8)

Since in this case(w/d=1), therefore formula (8) can be written in the equation (9),

cf =
ε

d

∫ ∫ a

−a

(1 +
w(x, y)

d
+
w2(x, y)

d
+ ..) (9)

As long as the sensor works with less deflection then, the capacitance, neglecting the
higher-order factors, can be calculated by,

cf =
ε

d

∫ ∫ a

−a

(1 +
w(x, y)

d
)dx.dy (10)

By using the binomial expression, the change in capacitance of square shape mem-
brane can be written as [1].

c = c0(1 +
12.5Pa4

2015dh
) (11)
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Where c is the final calculating capacitance, c0 is initial capacitance, P is uniform
(constant) pressure applied, d is the spacing between the plates and a is the length
(size) of the diaphragm. As the zero-pressure capacitance, is given in equations (12),

c0 =
4εa2

d
(12)

Capacitive pressure sensitivity of the square membrane is given by (9).

SA =
49εa6

2025d2D
(13)

3.2 Measurement of Sensitivity

Therefore, Sensitivity of above diaphragm depend upon thickness of membrane and
distance between electrodes, influence by applied load and sensitivity of membrane
can be expressed as (15).

Sc =
dc

dp
(14)

The mechanical sensitivity of a diaphragm is defined as

SM =
dW

dp
(15)

For small deflection, square diaphragm sensitivity is,

Sm =
a2

3.14h[ 4.2Eh3

3.14a2(1−v2)
]

(16)

Thus, the low capacitance will make the device more sensitive. As a result, high
displacement will lead to nonlinearity. The segmented or mesh model was created
using the FEM (Finite element method) as depicted in figure 2.

4 Simulation Result and Discussion

In this analysis, Diaphragm deflection, capacitance and mechanical sensitivity vary
according to the properties and characteristics of materials explained and simulated
results of each material are also presented, as well as the equation used for the mod-
elling of pressure to calculate and verify results. The shape of a diaphragm can be
square, elliptical and circular but in this paper, the shape of the diaphragm is taken as
square and dimensions are 0.5mm × 0.5mm × 10µm made up of different diaphragm
material has been examined under the uniform pressure range is 0 to 15kPa, the di-
mensions of the cavity is 2 m filled with vacuum, silicon is taken substrate is shown in
the figure 1 and FEM is used to create the segmented model is depicted in figure 2 and
mesh parameter is shown in table 2 and as seen in the diagram boundary condition
for the diaphragm deflection of this structure is limited in the z-direction only.

The result shown here in figure 3 is the simulation profile of deformation of the
Aluminium membrane at external pressure 15 kPa. The given results proves that
maximum deflection is occur at the centre and displacement reduces as moves away
from the centre as shown by the vertical line and in order to sustain the linearity
moving diaphragm/ plate should not move more than of the distance between the
plates. Figure 4. Shows the simulation profile of applied boundary load at 10kPa.
The maximum and mean deformations of the square diaphragm membrane at 10 kPa,
3.21 µm and 1.21 µm respectively.

5

321

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Suman et al 317-332



S.NO Parameter Size
1 Maximum element size 0.3
2 Minimum element size 0.054
3 Element Growth rate 1.5
4 Curvature factor 0.6
5 Resolution of the regions 0.5
6 Number of iterations 4

Table 2: Mesh Parameter of the Model

Figure 1: Three -dimensional view of Capacitive Pressure Sensor with different
Material

Figure 2: Mesh Model of Capacitive Pressure Sensor
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Figure 3: Quadrant Simulation Profile of Deformation of Diaphragm for 0.5mm
at 10 kPa pressure

Figure 4: Simulation profile of applied boundary load when applied pressure at
10 kPa
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Parameter Name Value Units
Youngs modulus 170 GPa
Poissons ratio 0.06 1
Density 2330 Kg/m3

Relative permittivity 11.7 1
Coefficient of thermal expansion 2.6 × 10−6 PPM/ ◦C

Table 3: Material properties of Si

Figure 5: Diaphragm Displacement with Applied Pressure

5 Analysis of Pressure Sensor Performance us-
ing Different Materials

Only a few materials are being investigated for capacitive pressure sensors in order to
achieve the required application. As three basic requirements of material defined by
Mc Donald [33] (a) good electrical and mechanical properties (b) compatible with the
fabrication device (c) good intrinsic properties that prevent high stress from developing
during processing. Here simulated result of all material is presented.

5.1 Silicon

Silicon material is used as diaphragm material in capacitive pressure sensors due to
high melting points and low hysteresis and low thermal expansion. Due to thermal
expansion added to the devices, the response of this device is more dependent on
the temperature and the capacitive response of the device is nonlinear with gradu-
ally increasing the pressure range. the simulated result of capacitance sensitivity is
52.8 × 10−6 pF/Pa and computation time calculated for the whole sensor is 23s. The
properties used for the device are shown the table 3 and the graph between diaphragm
deflection under applied uniform pressure with and without packaging stress is shown
in figure 5.

8
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Parameter Name Value Units
Youngs modulus 169 GPa
Poissons ratio 0.22 1
Density 2320 Kg/m3

Relative permittivity 4.5 1
Coefficient of thermal expansion 2.8 × 10−6 PPM/◦C

Table 4: Material Properties of Silicon Nanowires

Figure 6: Diaphragm Displacement with Applied Pressure

5.2 Silicon nanowires

Silicon nanowires are used as diaphragm material in capacitive pressure and used low
range pressure sensing application that is suitable for blood flow monitoring applica-
tions [14]and the simulated result of capacitance sensitivity is 2.3×10−6 pF/kPa. The
properties used for the device are shown the table 4 and the graph between diaphragm
deflection under applied pressure with and without packaging stress is shown in figure
6.

5.3 Titanium

Titanium metal is used as diaphragm material in capacitive pressure and titanium thin
films deposited in conjunction with other materials onto a single crystal substrate is
being used to create the micro devices. Due to strongest and high fracture toughness,
this element is more promising metal substrate. The properties used for the device
is shown the table 5 and graph between diaphragm deflection under applied pressure
with and without packaging stress is depicted in figure 7.

9
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Parameter Name Value Units
Youngs modulus 115.7 GPa
Poissons ratio 00.321 1
Density 4506 Kg/m3

Relative permittivity 89.1 1
Coefficient of thermal expansion 8.5 × 10−6 PPM/◦C

Table 5: Material Properties of Titanium

Figure 7: Diaphragm Displacement with Applied Pressure

5.4 Aluminium

Aluminium metal is used as diaphragm material in capacitive pressure and used in IC
microelectronics through the integration of CMOS (complementary metal oxide semi-
conductor) Technology. Capacitive pressure on-chip signal circuitry with aluminium
metal gives the highest sensitivity in square shape diaphragms under different pressure
ranges. The properties used for the device are shown the table 6 and the graph be-
tween diaphragm deflection under applied pressure with and without packaging stress
is shown in figure 8.

Parameter Name Value Units
Youngs modulus 70 GPa
Poissons ratio 0.35 1
Density 2700 Kg/m3

Relative permittivity 11.5 1
Coefficient of thermal expansion 25 × 10−6 PPM/◦C

Table 6: Material Properties of Aluminium

10
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Figure 8: Diaphragm Displacement with Applied Pressure

Parameter Name Value Units
Youngs modulus 120 GPa
Poissons ratio 0.34 1
Density 8960 Kg/m3

Relative permittivity 11.5 1
Coefficient of thermal expansion 25 × 10−6 PPM/◦C

Table 7: Material properties of copper

5.5 Copper

Copper metal is used as diaphragm material in capacitive pressure. Although it has
good electrical conductivity and high malleable as compared to other materials. it
cannot be used in high-pressure applications due to the weak nature of the metal.
The properties used for the device are shown in the table 7 and the graph between
diaphragm deflection under applied pressure with and without packaging stress is
shown in figure 9.

5.6 Comparative Analysis of all Materials

In this paper, different membrane materials were used on the same model and a com-
parative analysis of touch mode capacitive pressure sensor for different pressure range
0 to 25kPa has been investigated at 10µm thickness. The average diaphragm deflec-
tion and capacitance varied according to the used material properties. The average
diaphragm deflection of different membrane materials to different pressure ranges is
shown in the figure 10. In, the plots represent that the average deflection of all ma-
terial is increases with increasing the pressure range in a linear or non-linear manner.
On the other hand, among all materials Aluminium material has the highest deflection
and more linearity as compared to other materials.

Figure 11. depicts the relationship between the relative capacitance and applied
pressure in case of a square diaphragm. This plot represents that the aluminium
material has the highest capacitances when compared to other materials. At zero

11
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Figure 9: Diaphragm Displacement with Applied Pressure

Figure 10: Diaphragm Displacement with Applied Pressure
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Figure 11: Capacitance changes with Applied Pressure

Figure 12: Analytical and Simulation Capacitance with Pressure

applied pressure, the value of capacitances for all the materials is same and gradually
increases with applied pressure, but as is shown in the graph, Aluminium material
provides better linearity than others materials over the range 0 kPa to 25 kPa

Figure 12 shows the comparison of analytical and simulation results of capacitance
with applied pressure of a square diaphragm. This plot indicates that aluminium
material provides more accurate and promising result of analytical with simulation
result. At 10kPa, the value of capacitance is 9.69 × 10−13 F.

5.7 Sensitivity Analysis

Sensitivity is an important factor for the analysis of the capacitive pressure when
membrane deflection and capacitance changes. Here table 8 shows a comparative
analysis of the capacitance sensitivity of all Materials of the square diaphragm in
which aluminium material provides the highest sensitivity at 10 kPa externally applied
pressure is 22× 10−6 pF/pa (one fourth part of the model) and the overall sensitivity
of the model is 88 × 10−6 pF/pa with and without packaging stress.
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Material Name Sensitivity-Quadrant part (pF/pa) Overall Sensitivity(pF/pa)
Si 9 × 10−6 36 × 10−6

Si- Nanowires 9.6 × 10−6 38.4 × 10−6

Titanium 13.2 × 10−6 52.8 × 10−6

Aluminium 22.0 × 10−6 88.0 × 10−6

Copper 12.6 × 10−6 50.4 × 10−6

Table 8: Comparative Sensitivity of all Material

6 Conclusion

This paper has described the dynamical modelling of highly sensitive normal and touch
mode capacitive pressure sensor was analytically designed and simulated using the
finite element method. This sensor comprises of moving top membrane, fixed bottom
plate and cavity. In this investigation, the results show that the analytical result is
in good agreement with the simulated result. Based on the observed performance
its characteristics, accuracy and resolution are improved while repeatability error and
computation time are reduced. Aluminium has been found to be more compatible and
sensitive than other materials, making it more suitable for the measurement of blood
pressure measurement. It also discussed how the reduced cavity size enhanced the
sensitivity but this approach is restricted due to pull-in the phenomenon that faces
inaccuracies in response time. In addition, these findings open a new route for other
medical applications like ICP, IOP.
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