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Riesz Basis in de Branges Spaces of Entire

Functions

Sa’ud Al-Sa’di1∗ and Hamed Obiedat2
1,2 Department of Mathematics, Faculty of Science, The Hashemite University,

P.O Box 330127, Zarqa 13133, Jordan

Abstract

In this paper we consider the problem of Riesz basis in de Branges
spaces of entire functions H(E) with the condition that ϕ′(x) ≥ α > 0,
where ϕ is the corresponding phase function. We are concerned with the
sets of real numbers {λn} such that the normalized reproducing kernels
k(λn, .)/‖k(λn, .)‖ satisfies the restricted isometry property, which in turn
constitute a Riesz basis in H(E). Then we give a criterion on stability
of reproducing kernels corresponding to real points which form a Riesz
basis in H(E) with respect to small perturbations, which generalize some
well-known Riesz basis perturbation results in the Paley-Wiener space.

2010 Mathematics Subject Classification: 46E22; 41A99; 30B99; 30D10
Key words and phrases: de Branges Spaces; Reproducing kernels; phase

function; Restricted isometry property; Riesz basis.

1 Introduction

Compressive sensing provides an alternative method for efficiently acquiring and
reconstructing a signal to the Shannon sampling theorem when the signal under
acquisition is known to be sparse or compressible. Recently, Candès and Tao [4]
introduced very intense activity related to compressed sensing, known as the
restricted isometry property, which is also known as the uniform uncertainty
principle. The restricted isometry property generalizes the notion of coherence,
and allow recovering and extending many known compressive sampling results.

In this paper we work in the context of a reproducing kernel Hilbert spaces.
In these spaces the restricted isometry property is a very convenient tool which
allows one to reconstruct a signal from its sampling values. It is known that
a frame which satisfies a restricted isometry property with isometry constant
δ < 1 act as an orthogonal basis. For this reason, one of the main interests
of the present paper is to understand what properties of a sequence {λn} of
real numbers guarantee that the corresponding normalized reproducing kernels

∗ Corresponding author: saud@hu.edu.jo
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satisfies a restricted isometry property in de Branges spaces H(E) of entire
functions as a special class of reproducing kernel Hilbert spaces. Theory of de
Branges spaces is an important branch of modern analysis having numerous
interesting applications in mathematical physics, harmonic analysis and even
number theory.

The problem of description of Riesz bases of normalized reproducing kernels
is one of intriguing open problems in the area, results in this direction would
be of interests for specialists in de Branges theory and its applications. In
spite of many deep and important results, there is still no explicit description
of bases in general de Branges spaces. The present paper studies stability of
Riesz bases of reproducing kernels in the class of de Branges spaces with the
condition that ϕ′(x) ≥ α > 0 on R, where ϕ is an important characteristic of
a de Branges space known as a phase function. Specifically, we are concerned
with the sets of real numbers Λ = {λn} such that the normalized reproducing
kernels k(λn, .)/‖k(λn, .)‖ constitute a Riesz basis. We also prove new results
on stability of reproducing kernels corresponding to real points which form a
Riesz basis in H(E) with respect to small perturbations, which generalize some
well-known Riesz basis perturbation results in the Paley-Wiener space.

In order to properly state our results, we need to review the main concepts
and terminology of the theory of de Branges spaces of entire functions intro-
duced by L. de Branges [13] in connection with inverse spectral problems for
differential operators. These spaces generalize the classical Paley-Wiener space
which consists of the entire functions of exponential type and square integrable
on the real line. More information about these spaces can be found in [8–11].

2 Theory of de Branges spaces

In this section, we present a brief review and some relevant results on de Branges
spaces theory. Assume f is an analytic function on the upper half-plane C+ =
{z ∈ C : =z > 0}, then f is said to be of bounded type in C+ if it can be written
as a quotient of two bounded analytic functions in C+. The mean type of f in
C+ is defined by

mt+(f) := lim sup
y→+∞

log |f(iy)|
y

.

For an entire function f , we define the function f∗ as f∗(z) := f(z̄). The
Hermite-Biehler class, denoted by HB, consists of all entire functions E(z) that
has no zeros in the upper half-plane and satisfies the condition

|E(z̄)| < |E(z)|, whenever =z > 0. (1)

Given a function E ∈ HB, the associated de Branges space H(E) consists of
all entire functions f(z) such that

||f ||2
E

:=

∫
R

∣∣∣∣ f(t)

E(t)

∣∣∣∣2dt <∞, (2)

2
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and f(z)/E(z) and f∗(z)/E(z) are of bounded type and nonpositive mean type
in the upper half-plane. This is a Hilbert space with respect to the inner product

〈f, g〉E =

∫
R

f(t)g(t)

|E(t)|2
dt.

The Hilbert space H(E) has the special property that, for every nonreal
number w, the linear functional defined on the space by f 7→ f(w) is continuous.
Therefore, for every nonreal w ∈ C there exists a function k(w, z) in H(E) such
that

f(w) = 〈f(t), k(w, t)〉E , (3)

for every f ∈ H(E). Property (3) is known as the reproducing kernel property.
The function k(w, z) is called the reproducing kernel of H(E), which is given by
(see [13, Theorem 19])

k(w, z) =
Ē(w)E(z)− E(w̄)E∗(z)

2πi(w̄ − z)
. (4)

An important feature of the de Branges space H(E) is the phase function
corresponding to the generating function E, that is, for any entire function
E ∈ HB, there exists a continuous and strictly increasing function ϕ : R → R
such that E(x)eiϕ(x) ∈ R for all x ∈ R, essentially, ϕ = −arg(E) on R, and
E(x) can be written as

E(x) = |E(x)|e−iϕ(x), x ∈ R. (5)

If a function ϕ has these properties then it is referred to as a phase function
of E. It follows that a phase function of E is defined uniquely up to an additive
constant, a multiple of 2π. If ϕ(x) is any such function, and E(x) 6= 0, then
using (4) and (5), an easy computation gives

‖k(x, .)‖2 = k(x, x) =
1

π
ϕ′(x)|E(x)|2. (6)

The leading example of de Branges spaces is the Paley-Wiener space

H(e−iπz) = PWπ,

consists of square-integrable functions on the real line whose Fourier trans-
forms are supported on [−π, π]. The reproducing kernel for PWπ is k(w, z) =
sinπ(z−w̄)
π(z−w̄) , w, z ∈ C, z 6= w̄, and the corresponding phase function ϕ(x) = πx.

A key feature of a de Branges space is that it always has a basis consisting
of reproducing kernels corresponding to real points, [2].

Theorem 2.1. Let H(E) be a de Branges space and ϕ(x) be a phase function
associated with E. If α ∈ R, and Λ = {λn}n∈Z is a sequence of real numbers,
such that ϕ(λn) = α + πn, n ∈ Z, then The functions {k(λn, z)}n∈Z form an
orthogonal set in H(E).

3
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If eiαE(z)−e−iαE∗(z) /∈ H(E), then
{ k(λn,z)
‖k(λn,.)‖

}
n∈Z is an orthonormal basis

for H(E). Moreover, for every f(z) ∈ H(E),

f(z) =
∑
n∈Z

f(λn)
k(λn, z)

‖k(λn, .)‖2
, (7)

and

‖f‖2 =
∑
n∈Z

∣∣∣∣ f(λn)

E(λn)

∣∣∣∣2 π

ϕ′(λn)
. (8)

A central tool in our proofs is the following Bernstein inequality in de
Branges spaces introduced by A. Baranov, whose proof can be found in [2]:

Lemma 2.2. Let E ∈ HB be such that E′/E ∈ H∞(C+), then

‖f ′/E‖2 ≤ CBer‖f‖E

for all f ∈ H(E), where C
Ber

= (4 +
√

6)‖E′/E‖∞.

3 Basis Theory

In this section we recall some basic concept of frames and Riesz bases for Hilbert
spaces (see for example, Daubechies [7]; Duffin and Schaeffer [14]).

A family of elements {fn}∞n=1 in a separable Hilbert space H forms a frame
if there exist 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2, for all f ∈ H. (9)

The constants A,B in (9) are called the frame bounds for {fn}∞n=1. If the
two frame bounds are equal we call a frame {fn}∞n=1 a tight frame. For each
f ∈ H we have the frame expansions

f =
∞∑
n=1

〈f, fn〉f̃n =
∞∑
n=1

〈f, f̃n〉fn, (10)

with unconditional convergence of these series, where {f̃n} is the dual frame of
{fn}. If, in addition to (9), {fn}∞n=1 is a linearly independent set, we call it
a Riesz basis for H. An equivalent characterization for a sequence {fn}∞n=1 to
be a Riesz basis is that {fn}∞n=1 be a complete sequence in H and there exist
positive constants A and B such that

A
∑
n

|cn|2 ≤
∥∥∥∥∑
n

cnfn

∥∥∥∥2

H
≤ B

∑
n

|cn|2 , (11)

for all finite sequences of scalars {cn}, see [20].

4
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If the Reisz basis is an orthogonal basis, then A = B = 1. Hence, a Riesz
basis is automatically a frame, moreover, inequality in (9) holds with the same
constants A and B as the inequality in (11). A Riesz basis {fn}∞n=1 is equivalent
to an orthonormal basis {en}∞n=1 for H, namely, if there is a bounded invertible
operator U : H → H such that Ufn = en. Consequently, any Riesz basis of H
is an unconditional basis of H but not conversely in general. Because of this
parallelism, the Riesz bases is the appropriate framework from which to obtain
nonorthogonal sampling formulas. It follows that every f ∈ H has a unique
expression

f =
∑
n

〈f, f̃n〉fn

where f̃n = U∗Ufn are the elements of the dual basis of {fn}.
If H is a reproducing kernel Hilbert space, a sequence Λ = {λn} is inter-

polating for H if there exists an f ∈ H satisfying f (λn) = an for any choice
of interpolation data {an/ ‖k(λn, .)‖} ∈ `2(C). It is complete interpolating if in
addition f is unique. From an equivalent point of view, it is well known that a
sequence Λ is an interpolating sequence in H if and only if {k(λn, .)/‖k(λn, .)‖}
is a Riesz sequence, and Λ is a complete interpolating sequence if and only if
{k(λn, .)/‖k(λn, .)‖} is a Riesz basis in H, see [17] for more details and discus-
sions.

Definition 3.1. A sequence {fn}∞n=1 is said to have the restricted isometry
property if there exists δ ∈ (0, 1) such that

(1− δ)
∞∑
n=1

|cn|2 ≤
∥∥∥∥ ∞∑
n=1

cnfn

∥∥∥∥2

≤ (1 + δ)

∞∑
n=1

|cn|2, (12)

for any sequence of scalars {cn}, where δ is known as the isometry constant.

Although the restricted isometry property is difficult to verify, small re-
stricted isometry constants are desired; the closed δ to zero, the closer to or-
thogonal basis. On the other hand, this definition in particular means that {fn}
is a Riesz basis for its linear span. Conversely, if {fn} is a Riesz basis satisfying

(11) then the scaled sequence {
√

2
B+Afn} satisfies (12) with δ = B−A

B+A . In this

work, we approach the problem of stability of Riesz basis of a Hilbert space H.
Specifically, given a family {gn}∞n=1 ⊆ H which is close, in some sense, to the
Riesz basis (or a frame) {fn}∞n=1 ⊆ H, we find conditions to ensure that {gn}∞n=1

is also a Riesz basis (or a frame). This problem is important in practice, and
has been studied widely by many authors in the context of bases of exponentials
in L2 on some interval. The first result due to Paley and N. Wiener [18] states
that if {λn}n∈Z ⊆ R and supn∈Z |λn − n| ≤ δ < 1

π2 , then the set {eiλnx}n∈Z
is a Riesz basis for the Paley-Wiener space PWπ (in this cae fn = einx and
gn = eiλnx). In [19] M. Kadec proved that the result is true for δ < 1

4 , whereas
the conclusion may fail if supn∈Z |λn − n| = 1

4 (see [5]). Recently, some results
obtained in [3] on the stability of bases and frames of reproducing kernels based
on the estimates of derivatives in terms of Carleson measure in model spaces

5
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K2
Θ = H2 	ΘH2 of the Hardy class H2 in the upper half plane C+, where Θ is

an inner function in C+.
In the present paper we are particularly interested in the reproducing kernel

Hilbert space H(E), we shall take for the fn’s the normalized reproducing kernel

functions k(λn,.)
‖k(λn,.)‖ , where Λ = {λn} is a sequence of real numbers. To be exact,

we are interested in stability of the basis k(λn,.)
‖k(λn,.)‖ : given a Riesz basis k(λn,.)

‖k(λn,.)‖
for H(E) and a set of points µn which, in some sense, close to λn, whether the

system k(µn,.)
‖k(µn,.)‖ is also a Riesz basis for H(E), which, as a result, leads to a

Riesz basis expansion.
We will need below the following lemma which will play the key role in our

proofs, see Corollary 15.1.5 in [6].

Lemma 3.1. Let {fn}∞n=1 be a frame for a Hilbert space H with bounds A,B,
and let {gn}∞n=1 be a sequence in H. If there exists a constant R < A such that

∞∑
n=1

|〈f, fn − gn〉H|2 6 R ‖f‖2H, ∀f ∈ H,

then {gn}∞n=1 is a frame for H with bounds

A(1−
√
R/A )2, B(1 +

√
R/B )2.

If {fn}∞n=1 is a Riesz basis, then {gn}∞n=1 is a Riesz basis.

4 Riesz Basis in de Branges Spaces

Given a de Branges space H(E) with reproducing kernel k(w, z), we can assume,
without loss of generality, that E has no real zeros (see [16]), hence k(x, x) > 0
for all x ∈ R by (6). Let Λ = {λn}∞n=1 be a sequence of real numbers, from now
on, we set

fn(z) :=
k(λn, z)

‖k(λn, .)‖
, n ∈ N, z ∈ C. (13)

Definition 4.1. Let Λ = {λn}∞n=1 be a sequence of distinct points. We say that
Λ is sequentially separated if |λn+1 − λn| ≥ σn, for all n ≥ 1, and σn ≤ σn+1

for all n ≥ 1.

Next we derive an estimate of the isometry constant δ. This estimate leads
to a sufficient condition for a sequence {fn} to have the Restricted Isometry
Property.

Lemma 4.1. Given a de Branges space H(E), and ϕ(x) a phase function as-
sociated with E such that ϕ′(x) ≥ α > 0 on R. Let {λn}∞n=1 be a sequentially

6
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separated sequence of real numbers such that σn ≥ 1. If
∞∑
n=1

1
σ2
n
< 3α2

π2 , then

δ :=

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

< 1 (14)

Proof. For any real number x, E(x) = e−iϕ(x)|E(x)|, which implies that E(x)

E(x)
=

e−2iϕ(x). Let a, b ∈ R, then using (4) and the fact that k(a, b) = 〈k(a, .), k(b, .)〉
we get,

k(a, b)

E(a)
=

1

E(a)

E(a)E(b)− E(a)E(b)

2πi(a− b)

=
E(b)− e−2iϕ(a)E(b)

2πi(a− b)
.

Simple calculations then shows that〈k(a, .)

E(a)
,
k(b, .)

E(b)

〉
=

1

E(b)

k(a, b)

E(a)

=
1− e2i(ϕ(b)−ϕ(a))

2πi(a− b)

and,
k2(a, b)

|E(a)|2|E(b)|2
=

sin2 (ϕ(a)− ϕ(b))

π2(a− b)2
.

Consequently, since k(x, x) = 1
πϕ
′(x)|E(x)|2 for all x ∈ R, we have

k2(a, b)

k(a, a)k(b, b)
= π2 k2(a, b)

ϕ′(a)ϕ′(b)|E(a)|2|E(b)|2

=
1

ϕ′(a)ϕ′(b)

sin2 (ϕ(a)− ϕ(b))

(a− b)2

In particular, for fn defined in (13) we have

|〈fn, fm〉|2 =
∣∣∣〈 k(λn, .)

‖k(λn, .)‖
,
k(λm, .)

‖k(λm, .)‖
〉
∣∣∣2

=
1

ϕ′(λm)ϕ′(λn)

sin2 (ϕ(λm)− ϕ(λn))

(λm − λn)2

≤ 1

α2

1

(λm − λn)2

because ϕ′(x) ≥ α on R by the hypothesis. Since {λn} is sequentially sepa-
rated and σn ≥ 1 then for m > n, m = n+ k, for some k ≥ 1, and

(λm − λn) ≥ (m− n)σn = kσn

7
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Therefore, for any n ≥ 1,

∞∑
m=n+1

|〈fn, fm〉|2 ≤ 1

α2

∞∑
m=n+1

1

(λm − λn)2

≤ 1

α2

∞∑
m=n+1

1

(m− n)2σ2
n

≤ 1

α2σ2
n

∞∑
k=1

1

k2
=
π2

6

1

α2σ2
n

.

Consequently,

∞∑
m,n=1
m6=n

|〈fn, fm〉|2 = 2
∞∑
n=1

∞∑
m=n+1

|〈fn, fm〉|2 ≤
π2

3α2

∞∑
n=1

1

σ2
n

.

From this the conclusion follows with δ < 1.

Next we apply the estimate obtained in Lemma 4.1 to give conditions for
the sequence {fn} to have the Restricted Isometry Property.

Theorem 4.2. Given a de Branges space H(E), and ϕ(x) a phase function
associated with E such that ϕ′(x) ≥ α > 0 on R. Let {λn}∞n=1 be a sequentially

separated sequence of real numbers such that σn ≥ 1, ∀n ≥ 1. If
∞∑
n=1

1
σ2
n
< 3α2

π2 ,

then the sequence {fn}∞n=1 satisfies the Restricted Isometry Property.

Proof. From the definition of fn, ‖fn‖ = 1, for n ≥ 1, then for any finite
sequence of complex numbers {cn}n≥1 we have

8
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∥∥∥∥ ∞∑
n=1

cnfn

∥∥∥∥2

=
∞∑

m,n=1

cnc̄m〈fn, fm〉

=
∞∑
n=1

|cn|2
∥∥fn∥∥2

+
∞∑

m,n=1
m6=n

cnc̄m〈fn, fm〉

≤
∞∑
n=1

|cn|2 +
∞∑

m,n=1
m6=n

|cnc̄m〈fn, fm〉|

≤
∞∑
n=1

|cn|2 +

( ∞∑
m,n=1
m6=n

|cn|2|cm|2
) 1

2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

≤
∞∑
n=1

|cn|2 +

( ∞∑
n=1

|cn|2
) 1

2
( ∞∑
m=1

|cm|2
) 1

2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

=

∞∑
n=1

|cn|2 +

∞∑
n=1

|cn|2
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

=

(
1 +

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2
) ∞∑
n=1

|cn|2

= (1 + δ)
∞∑
n=1

|cn|2

where

( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2

= δ, by Lemma 4.1.

Similarly, we prove the first part of the inequality. We use the claim in
equation (14) above, we have∥∥∥∥ ∞∑

n=1

cnfn

∥∥∥∥2

≥
(

1−
( ∞∑
m,n=1
m6=n

|〈fn, fm〉|2
) 1

2
) ∞∑
n=1

|cn|2

= (1− δ)
∞∑
n=1

|cn|2.

Therefore, the sequence {fn} satisfies the Restricted Isometry Property for
some δ ∈ (0, 1), completing the proof.

If Λ = {λn}∞n=1 is a given sequence, then for ε > 0, we define a perturbation

9
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sequence

Mε :=

{
µn ∈ R : µn = λn + εn, 0 < εn ≤ ε

k(λn, λn)

τn
, n ≥ 1

}
, (15)

where τn = max
t∈[λn,λn+1]

k(t, t). In what follows, the constant Af is the lower frame

bound of the sequence {fn} in (9) and (11), and C
Ber

is the Berntein constant
from Lemma 2.2.

Theorem 4.3. Given a de Branges space H(E), such that E′/E ∈ H∞(C+),
and ϕ(x) a phase function associated with E such that ϕ′(x) ≥ α > 0 on R. If

{fn} is a Riesz basis in H(E), then the sequence { k(µn,z)
‖k(λn,.)‖ : µn ∈ Mε} is also

a Riesz basis in H(E) whenever ε <
αAf

πC2
Ber

.

Proof. Since the function k(t, t) is continuous for all t ∈ R, the Mean Value
Theorem implies that there exists tn ∈ (λn, µn) such that∫ µn

λn

k(t, t)

k(λn, λn)
dt = εn

k(tn, tn)

k(λn, λn)
, for alln ≥ 1.

Moreover, since µn ∈Mε, then

εn
k(tn, tn)

k(λn, λn)
≤ ε k(λn, λn)

τn

k(tn, tn)

k(λn, λn)
≤ ε, for alln ≥ 1.

Let f ∈ H(E), and hn(z) := k(µn,z)
‖k(λn,.)‖ , for µn ∈Mε. Then

|〈f, fn − hn〉|2 =
1

k(λn, λn)
|f(λn)− f(µn)|2

=
1

k(λn, λn)

∣∣∣∣∫ µn

λn

(f(t))′ dt

∣∣∣∣2
≤ 1

k(λn, λn)

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

|E(t)|2 dt

=

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

π
k(t, t)

k(λn, λn)

1

ϕ′(t)
dt

≤ π

α

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt ∫ µn

λn

k(t, t)

k(λn, λn)
dt

≤ π ε

α

∫ µn

λn

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt.
Hence, we have

∞∑
n=1

|〈f, fn − hn〉|2 ≤
π ε

α

∫
R

∣∣∣∣f ′(t)E(t)

∣∣∣∣2 dt
=
π ε

α
‖f ′/E‖2

≤ π ε

α
C2

Ber
‖f‖2,

10
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where the last inequality follows from Lemma 2.2. Consequently, {hn} is a Riesz
basis by Lemma 3.1 with R = π ε

α C
2
Ber

< Af by the hypothesis.

Theorem 4.4. Let H(E) be a de Branges space, with reproducing kernel func-
tion k(w, z). Let {λn}, {µn} be two sequences of real numbers, and {hn(z) :=
k(µn,z)
‖k(λn,.)‖} be a Riesz basis in H(E) with frame bounds Ah and Bh. If there exits

positive constants C1, C2 such that

C1k(λn, λn) ≤ k(µn, µn) ≤ C2 k(λn, λn), (16)

for all n ≥ 1, then the sequence { k(µn,z)
‖k(µn,.)‖} is also a Riesz basis in H(E),

whenever CBh < Ah, where C = (1 + 1
C1
− 2√

C2
).

Proof. Since the sequence {hn} is a Riesz basis, then for all f ∈ H(E),

Ah‖f‖2 ≤
∞∑
n=1

|〈f, hn〉|2 ≤ Bh‖f‖2.

Let f ∈ H(E), and gn(z) := k(µn,z)
‖k(µn,.)‖ . Then

|〈f, hn − gn〉|2 =

∣∣∣∣∣ f(µn)√
k(λn, λn)

− f(µn)√
k(µn, µn)

∣∣∣∣∣
2

= |f(µn)|2
∣∣∣∣∣ 1√

k(λn, λn)
− 1√

k(µn, µn)

∣∣∣∣∣
2

= |f(µn)|2
∣∣∣∣∣ 1

k(λn, λn)
+

1

k(µn, µn)
− 2√

k(λn, λn)k(µn, µn)

∣∣∣∣∣
≤ R |f(µn)|2

k(λn, λn)

where R = 1 + 1
C1
− 2√

C2
. Thus, we have

∞∑
n=1

|〈f, hn − gn〉|2 ≤ R
∞∑
n=1

|f(µn)|2

k(λn, λn)

= R
∞∑
n=1

|〈f, hn〉|2

≤ RBh‖f‖2.

Consequently, {gn} is a Riesz basis by Lemma 3.1 as RBh < Ah.

Now we state the main result on stability of Riesz basis in de Branges spaces,
the proof is an immediate consequence of Theorem 4.3 and Theorem 4.4.

11
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Theorem 4.5. Given a de Branges space H(E), such that E′/E ∈ H∞(C+),
and ϕ(x) a phase function associated with E such that ϕ′(x) ≥ α > 0 on R.
Let {fn} be a Riesz basis in H(E) with bounds Af , Bf . Let Mε be the sequence
defined in (15), and assume that there exits positive constants C1, C2 such that

C1k(λn, λn) ≤ k(µn, µn) ≤ C2 k(λn, λn), for all n ≥ 1. (17)

Then the sequence { k(µn,z)
‖k(µn,.)‖ : µn ∈ Mε} is also a Riesz basis in H(E)

whenever

ε <
αAf
πC2

Ber

and CBf (1 +
√
R/Bf )2 < Af (1−

√
R/Af )2

where R = π ε
α C

2
Ber

and C = (1 + 1
C1
− 2√

C2
).

Remark 4.1. de Branges spaces H(E) that satisfy the conditions of the pre-
vious theorems in general do not have simple analytic characterizations. We
would like to emphasize that the best way to construct the corresponding gen-
erating functions E ∈ HB is via their Weierstrass factorization formula. A
special class of Hermite-Biehler functions is the Pólya class where any function
can be characterized by its Hadamard factorization formula. For the sake of
completeness, we include some examples of such functions, see [1] and [13]:

(1) Let E have the form

E(z) = γ ebze−iaz
∏
n∈Z

(
1− z

zn

)
ezRe(

1
zn

), (18)

and let the zeros zn satisfy the following conditions:

(a). zn = βn+wn, for all n ∈ Z, where β > 0, and the sequence {wn}n∈Z
is bounded,

(b). Im(wn) ≥ α > 0.

Then E′

E ∈ H∞(C+). If, in addition, wn = un + ivn where un ∈ [α1, α2]
and vn ∈ [a1, a2], a1 > 0 for all n ∈ Z, then E′/E ∈ H∞(C+). and ϕ′(x)
is bounded away from zero.

(2) Let

E(z) = γe−iazS(z)
∞∏
n=1

(
1− z

z̄n

)
ehnz,

for all z ∈ C, where the sequence {zn}∞n=1 ⊂ C+ has no condensation
points in C and satisfies the Blaschke condition

∞∑
n=1

yn/
(
x2
n + y2

n

)
< +∞,

12
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which guarantee the convergence of the previous product, and

hn = xn/
(
x2
n + y2

n

)
, n ∈ N,

a > 0, S is an entire function taking the real values on the real line and
having only real zeros, and γ is a complex number with modulus 1. If the
sequence {zn}∞n=1 is contained in the set Γτ = {z ∈ C+ : τ < arg z <

π − τ}, τ > 0, then E′

E ∈ H∞(C+) and ϕ′(x) is bounded away from zero.

Furthermore, a wide class of de Branges spaces for which the previous the-
orems may be applied is the homogeneous de Branges spaces. Such spaces are
related to the classical Bessel functions and more general confluent hypergeo-
metric functions, and were characterized by L. de Branges [12,13]. We present
a brief review of the construction of these spaces. Let ν > −1. A space H(E) is
said to be homogeneous of order ν if, for all 0 < a < 1 and all F ∈ H(E), the
function z 7→ aν+1F (az) belongs to H(E) and has the same norm as F . For
ν > −1 consider the real entire functions Aν(z) : C → C and Bν(z) : C → C
given by

Aν(z) =

∞∑
n=0

(−1)n
(

1
2z
)2n

n!(ν + 1)(ν + 2) . . . (ν + n)
= Γ(ν + 1)

(
1

2
z

)−ν
Jν(z)

and

Bν(z) =
∞∑
n=0

(−1)n
(

1
2z
)2n+1

n!(ν + 1)(ν + 2) . . . (ν + n+ 1)
= Γ(ν + 1)

(
1

2
z

)−ν+1

Jν(z)

where

Jν(z) =
∑
n≥0

(−1)n
(

1
2z
)2n+ν

n!Γ(ν + n+ 1)

is the classical Bessel function of the first kind. These special functions have
only real, simple zeros and have no common zeros. Furthermore, they satisfy
the following differential equations

A′ν(z) = −Bν(z) and B′ν(z) = Aν(z)− (2ν + 1)Bν(z)/z. (19)

If we define
Eν(z) := Aν(z)− iBν(z),

then the function Eν(z) is a Hermite-Biehler function with no real zeros, of
bounded type in the upper-half, and is of exponential type 1 in C. Also we have
that

cν |x|2ν+1 ≤ |Eν(x)|−2 ≤ Cν |x|2ν+1,

for all real |x| ≥ 1 and for some cν , Cν > 0, see [15]. Moreover, it is known
that Aν , Bν /∈ H(Eν). Note that if ν = −1/2 we have A−1/2(z) = cos z and
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B−1/2(z) = sin z, hence, E−1/2(z) = e−iz and the space H(E−1/2) coincides
with the Paley-Wiener space PW1. By (19) we have

i
E′ν(z)

Eν(z)
= 1− (2ν + 1)

Bν(z)

zEν(z)
,

for all z ∈ C+. Hence E′ν(z)/Eν(z) ∈ H∞(C+). This also implies that the
phase function ϕν(z) associated with Eν(z) satisfies

ϕ′ν(x) = 1− (2ν + 1)Aν(x)Bν(x)

x |Eν(x)|2
.

Hence, ϕ′ν(x) ' 1 for all real x.
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Abstract

The present paper aimed to explore the linear moment problem for the
real sequences defined by the nonhomogeneous linear recursive relation.
Various properties are provided, especially, those related to the Hankel
matrices. Some considerations in connection with K-moment problem,
for the nonhomogeneous recursive are discussed.

Keywords: Linear moment problem, K−moment problem, Hankel
matrix, nonhomogeneous linear recursive sequences.

1 Introduction

In view of its fundamental role in various fields of mathematics and applied
science, the linear moment problem has been extensively studied in the literature
(see [4,5,9,11–13]). Especially, it has been shown that this problem is useful for
some topics in physics, such that the quantum dynamical systems, the resolvent
Rφ(λ) of a given Hamiltonian A, which can be written as an infinite series in
terms of 1/λ, whose coefficients are the moment µn = ⟨φ|An|φ⟩ of order n of the
operator A, where φ is a state vector of the given system (see [4,12] for example).
Furthermore, the linear moment problem is also related to the Lanczos numerical
method, which is an important technique for finding the positions of n particles
such that the first 2n − 1 moments own given values (see [5, 13] for example).
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Recently, the linear moment problem has been investigated in the literature, by
various methods (see, for example, [4, 9, 11,12]).

The linear moment problem is simple to formulate. Indeed, let H be a
real separable Hilbert space, L(H) be the space of linear operators on H and
S(H) ⊂ L(H) the subspace of self adjoint operators on H. For a given operator
A ∈ L(H) and non-vanishing x ∈ H, the sequence Γ = {αn}n≥0 defined by
αn = ⟨Anx|x⟩ for n ≥ 0, is called the moment sequence of A on x, and αn is
the moment of order n of the operator A on x. The linear moment problem
is the reciprocal of the previous situation. More precisely, let Γ = {αn}0≤n≤p

(p ≤ +∞) be a sequence of real numbers, the linear moment problem associated
with Γ consists to find a self-adjoint operator A ∈ S(H) and a non-vanishing
vector x ∈ H such that,

αn = ⟨Anx|x⟩, for 0 ≤ n ≤ p. (1)

The problem (1) is called the full linear moment problem when p = +∞ and
the truncated linear moment problem for p < +∞ (see [7–9,12], for example).

On the other hand, the linear moment problem (1) for the sequence Γ, is
also related to the classical power K-moment problem (K is a closed set of R),
whose aim is to find a positive Borelean measure µ with supp(µ) ⊂ K such that

αn =

∫
K

tndµ(t), for 0 ≤ n ≤ p, (2)

where p ≤ +∞. The moment problem (2) is important in operator theory,
particularly, it is related to the study of the shift of subnormal operators and
subnormal extension (see [1, 3, 6–8]). Recently, the two preceding moment
problems (1) and (2) have been studied in [3,9–11], for some sequences defined
by linear recursive relations. Moreover, it was established the closed connection
between the full and the truncated moment problem for recursive sequences
in [9, 11]. More precisely, let {un}n≥0 be the sequence satisfying the following
linear recursive relation of order r,

un+1 = a0un + a1un−1 + · · ·+ ar−1un−r+1 for n ≥ r − 1, (3)

where u0, u1, . . . , ur−1 are the initial data, it was shown in [9–11] that, for the
linear moment problems (1), the full one (p = +∞) and the truncated one
(p < +∞) are closely related. Especially, it was shown in [9] that in the finite
dimensional case (dimR H < +∞), the two preceding linear moment problems
(the full and the truncated) are identical. On the other side, it was shown in [9]
that the full and truncated moment problem (2), for the recursive sequence (3),
are equivalent.

The purpose of this paper is to study the linear moment problem (1), for
a real non-homogeneous recursive sequence {vn}n≥0 of order r, defined by the
following recursive relation,

vn+1 = a0vn + a1vn−1 + · · ·+ ar−1vn−r+1 + cn+1 for n ≥ r − 1, (4)
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where the coefficients a0, . . . , ar−1 (r ≥ 2, ar−1 ̸= 0) are real numbers, v0 =
α0, . . . , vr−1 = αr−1 are the initial values, and C = {cn}n≥r is a (non trivial)
real sequence. It seems to us that properties of the linear moment problem (1)
for nonhomogeneous sequences (4), can be useful for the study of certain related
perturbed physical systems. For the K-moment problem (2), it can be also, for
studying the perturbed moment, of the shift of operators.

In this study, we characterize the solution of the linear moment problem (1)
for sequences (4) in the general setting, especially, when the operator A ∈ S(H),
namely, A is self-adjoint. When the real separable Hilbert space H is of finite
dimension and the non-homogeneous sequence {vn}n≥0 is a moment sequence
of an operator A, on a non-vanishing x ∈ H, we establish that the sequence
{cn}n≥r is a linear recursive sequence of type (3). And when the real separable
Hilbert space H is of infinite dimension and the non-homogeneous sequence
{vn}n≥0 is a moment sequence of an operator A, on a non-vanishing x ∈ H,
then the general term of the sequence {cn}n≥r, is expressed as a limit of

cn = lim
s→+∞

c(s)n , where c
(s)
n is a linear recursive sequence of type (3). We establish

the solution of the linear moment problem (1), using the properties of the Hankel
matrices. The special case when {cn}n≥r is a linear recursive sequence of type
(3), is discussed. Moreover, the K-moment problem (2) for nonhomogeneous
recursive sequences (4) is provided, using the spectral measures of self-adjoint
operators. By the way, some other consequences are derived, especially, the
Stieltjes and Hamburger moment problems (2), for the nonhomogeneous recursive
sequences (4), are discussed through the spectral measures of self-adjoint operators.
It should be noted that the study of these two problems for the sequences (4),
is not common in the literature.

2 Linear moment problem and sequences (4)

Let improve the connections between solutions of (4) considered as a difference
equation and the linear moment problem (1). Let {Qn}n≥r be the family of
polynomials defined by Qn(z) = zn−rP (z), where P (z) = zr−a0z

r−1−a1z
r−2−

· · · − ar−1, is the so-called characteristic polynomial of the homogeneous part
of the sequence (4). Let x ̸= 0 be an element of H and A ∈ S(H). Suppose
that vn = ⟨Anx|x⟩, for every n ≥ 0. Then, we have, ⟨An+1x|x⟩ = a0⟨Anx|x⟩+
· · ·+ ar−1⟨An−r+1x|x⟩+ cn+1, for every n ≥ r− 1. Therefore, we derive cn+1 =
⟨Qn+1(A)x|x⟩, for every n ≥ r − 1. Consequently, we can state the following
proposition.

Proposition 2.1. Let T = {vn}n≥0 be a sequence (4), of characteristic polynomial
P (z) = zr−a0z

r−1−a1z
r−2−· · ·−ar−1. Suppose that T = {vn}n≥0, is a moment

sequence of an operator A ∈ S(H), namely, vn = ⟨Anx|x⟩, for every n ≥ 0,
where x ̸= 0. Then, the sequence {cn}n≥r is given by cn+1 = ⟨Qn+1(A)x|x⟩, for
every n ≥ r − 1, where Qn(z) = zn−rP (z).

Therefore, the question of studying the converse of the preceding affirmation
of Proposition 2.1 arises.
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Theorem 2.2. Let T = {vn}n≥0 be a sequence (4), of characteristic polynomial
P (z) = zr −a0z

r−1−a1z
r−2−· · ·−ar−1. Let A ∈ S(H) and x ̸= 0 ∈ H. Then,

we have vn = ⟨Anx|x⟩, for every n ≥ 0, if and only if, vn = ⟨Anx|x⟩ for
n = 0, 1, . . . , r − 1 and cn = ⟨An−rP (A)x|x⟩, for n ≥ r.

Proof. Suppose vn = ⟨Anx|x⟩ (n ≥ 0), for some x ̸= 0 in H and A ∈ S(H).

Then, we have ck = vk−
r−1∑
j=0

ajvk−j−1 =

〈
(Ak −

r−1∑
j=0

ajA
k−j−1)x|x

〉
=

〈
Ak−rP (A)x|x

〉
,

for every k ≥ r. Conversely, suppose that vn = ⟨Anx|x⟩, for n = 0, 1, . . . , r − 1
and cn = ⟨An−rP (A)x|x⟩ for every n ≥ r. Therefore, we have

vr =
r−1∑
j=0

aj⟨Ar−j−1x|x⟩+ ⟨P (A)x|x⟩ = ⟨Arx|x⟩.

And, by induction, we derive that vn = ⟨Anx|x⟩, for every n ≥ 0.

As a consequence of Theorem 2.2, we obtain the following corollary.

Corollary 2.3. Let A ∈ S(H) and x ∈ H, then under the data of Theorem 2.2,
the following statements are equivalent,

(i) vn = ⟨Anx|x⟩, for every n ≥ 0.

(ii) vn = ⟨Anx|x⟩, for n = 0, 1, . . . , 2r−1, and cn =
r−1∑
j=0

ajcn−j−1+⟨An−2rz|z⟩

for every n ≥ 2r, where z = P (A)x.

Proof. It suffices to establish the equivalence between (ii) and the second statement
of Theorem 2.2. Let A be a self-adjoint operator, suppose that vn = ⟨Anx|x⟩
for n = 0, 1, . . . , r− 1 and cn = ⟨An−rP (A)x|x⟩, for every n ≥ r. Then, for z =

P (A)x, we have, ⟨An−2rz|z⟩ = ⟨An−rx|P (A)x⟩ −
r−1∑
j=0

aj⟨An−r−j−1P (A)x|x⟩ =

cn −
r−1∑
j=0

ajcn−j−1, for any n ≥ 2r. Conversely, suppose that (ii) holds. A

direct computation shows that cn = ⟨An−rP (A)x|x⟩, for n = r, r+1, . . . , 2r−1.
On the other hand, by induction we prove that cn = ⟨An−rP (A)x|x⟩, for every
n ≥ 2r. It follows that (i) and (ii) are equivalent.

We conclude this section by the following observation. Let T = {vn}n≥0 be a
sequence (4), whose characteristic polynomial is P (z) = zr −a0z

r−1−a1z
r−2−

· · · − ar−1. Suppose that there exist A ∈ S(H) and x ∈ H such that vn =

⟨Anx|x⟩. Then, we have, c2k −
r−1∑
j=0

ajc2k−j−1 = ∥Ak−rP (A)x∥2 for every k ≥ r.

Therefore, when c2k ̸= 0, for some k ∈ N, we have c2k >
r−1∑
j=0

ajc2k−j−1, for

any k ≥ r. This later inequality is a necessary condition for the existence of
the solution of the linear moment problem (1), for the sequence T = {vn}n≥0

defined by (4).
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3 The linear moment problem (1) for sequences
(4)

Let H be a finite dimensional Hilbert space over R (m = dimR H) and T =
{vn}n≥0 a sequence (4). A straightforward computation and by using Theorem
2.2, allows us to see that T = {vn}n≥0 is a moment sequences of a self-adjoint

operator A on a non-vanishing vector x of H if and only if vn =
s∑

j=1

λj
n∥xj∥2

for n = 0, 1, . . . , r − 1 and

cn =
s∑

j=1

P (λj)

λr
j

∥xj∥2λj
n, (5)

where xj = Πjx ∈ Hj (0 ≤ j ≤ s), the subspace of the eigenvectors of A,
corresponding to the eigenvalues λj (0 ≤ j ≤ s). Expression (5) is nothing else
but the analytic formula of the sequence {cn}n≥r, viewed as a linear recursive
sequence of type (3) of order s. More precisely, (5) implies that {cn}n≥r is
a linear recursive sequence of type (3), of characteristic polynomial K(z) =
s∏

j=1

(z − λj). Thus, we can state the following proposition.

Proposition 3.1. Let T be a sequence (4). Suppose that T is a moment
sequences of a self-adjoint operator A on the finite dimensional Hilbert space
H. Then, the nonhomogeneous part C is a linear recursive sequence of type (3)
of order s (with s ≤ dimH). More precisely, the characteristic polynomial of C
is K(z) =

s∏
j=1

(z − λj), where the λj (0 ≤ j ≤ s) are the eigenvalues of A.

Suppose thatH is a separable real Hilbert space (over C) of infinite dimension.
The simplest spectral theorem (after the algebraic case) concerns a compact self-
adjoint and a compact normal operator A on H, and asserts that H coincide
with the closure of the orthogonal sum of the eigenspaces Hn, corresponding to
all possible eigenvalues {λn}n≥0. With a view to generalization it is convenient

to express it under the spectral resolution form Ax =
+∞∑
n=0

λnΠnx, where Πn is

an orthoprojection onto Hn, the eigenspace corresponding to the eigenvalue λj ,

and x =
+∞∑
n=0

Πnx. We consider the class of operators satisfying the Spectral

Theorem, which are called spectral operators or S-operators for short.
Let T = {vn}n≥0 be a sequence (4), with characteristic polynomial P .

Suppose that T is a sequence of moments of an S-operator A of L(H), on a
non-vanishing vector x ∈ H, namely, vn = ⟨Anx|x⟩, for every n ≥ 0, where A is

an S-operator and x =
+∞∑
n=0

Πnx ∈ H.

Let s ≥ 1 and consider the sequence {v(s)n }n≥0 defined as follows: v
(s)
j = vj

5
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for i = 0, 1, . . . , r − 1, and

v
(s)
n+1 = a0v

(s)
n + a1v

(s)
n−1 + · · ·+ ar−1v

(s)
n−r+1 + c

(s)
n+1, (6)

for n ≥ r − 1, where c(s)n =
s∑

p=0

P (λp)

λr
p

∥xp∥2λp
n. It is easy to see that cn =

lim
s→+∞

c
(s)
n . For n = r, expression (6) shows that we have vr = lim

s→+∞
v
(s)
r . By

induction on n, we have vn = lim
s→+∞

v(s)n , for every n ≥ r. In conclusion, we

have the following result.

Theorem 3.2. Let T = {vn}n≥0 be a sequence (4), with characteristic polynomial
P . Suppose the Hilbert space H is of infinite dimension and that T is a moment

sequences of an S-operator A on H, on a non-vanishing vector x =
+∞∑
n=0

Πnx.

Then, we have vn = lim
s→+∞

v(s)n , for every n ≥ r, where {v(s)n }n≥0 is a sequence

(4), whose associate nonhomogeneous term is

c(s)n =
s∑

p=0

P (λp)

λr
p

∥xp∥2λp
n, (7)

where P (z) = zr − a0z
r−1 − a1z

r−2 − · · ·− ar−1 (ar−1 ̸= 0) is the characteristic
polynomial of T and xp = Πpx ∈ H. Moreover, expression (7) stands for the

analytic formula of the sequence {c(s)n }n≥0, viewed as a linear recursive sequence
of type (3).

From Theorem 3.2, we derive that

cn =
+∞∑
p=0

P (λp)

λr
p

∥xp∥2λp
n. (8)

Remark 3.3. If there exists s ≥ 1 such that λp = 0, for every p ≥ s+1, we show
that expressions (5) and (8) are identical. Suppose that for every N > 0 there
exists k ≥ N such that λk ̸= 0. Therefore, expression (8) doesn’t represent a
recursive sequence of finite order. Meanwhile, we can approximate this situation
by a family of sequences (4), whose associated cn is given by expression (7).

4 Hankel matrices and solution of the linear moment
problem (1)

In this section, we present algebraic treatment of the Hankel matrix related
to the sequences defined by (4), and its use for characterizing the existence of
solutions for the linear moment problem (1).

Let Hk be the Hankel matrix of size k+1, whose entries are defined from the
elements of the sequence T = {vi}i≥0, in the sense that Hk := (vi+j)0≤i,j≤k.

6
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The jth column of Hk will be denoted by Vj := (vj+ℓ)
k
ℓ=0 , 0 ≤ j ≤ k, so that

Hk can be briefly written as Hk = (V0 V1 · · · Vk). Observe that we can
verify that

Vr+k = a0Vr+k−1 + a1Vr+k−2 + · · ·+ ar−1Vk + Ĉr+k, (9)

where Ĉr+k := (cr+ℓ)
r+k−1
ℓ=0 .

With a vectorial representation, we can write the matrix Hr+n as follows

Hr+n =
(
V0 V1 · · · Vr−1 Vr · · · Vr+k · · · Vr+n−1

)
.

Using expression (9) and some computational techniques emanated from determinant
properties, we get,

detHr+n = det
(
V0 V1 · · · Vr−1 Ĉr · · · Ĉr+k · · · Ĉr+n−1

)
.

Repeating the same treatment on the matrix Sk := (vi+j+1)0≤i,j≤k, one gets
out of it by the following result.

Proposition 4.1. Let T = {vn}n≥0 be a sequence (4),

Hr+n = (vi+j)0≤i,j≤r+n−1 and Sr+n = (vi+j+1)0≤i,j≤r+n−1

be the Hankel matrices associated with T . Then, we have

detHr+n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 · · · vr−1 cr · · · cr+n−1

:
. . . : :

. . . :
vr−1 · · · v2r−2 c2r−1 · · · c2r+n−2

vr · · · v2r−1 c2r · · · c2r+n−1

:
. . . : :

. . . :
vr+n−1 · · · v2r+n−2 c2r+n−1 · · · c2r+2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10)

and

detSr+n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 · · · vr cr+1 · · · cr+n

:
. . . : :

. . . :
vr · · · v2r−1 c2r · · · c2r+n−1

vr+1 · · · v2r c2r+1 · · · c2r+n

:
. . . : :

. . . :
vr+n · · · v2r+n−1 c2r+n · · · c2r+2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (11)

Expression (10) shows that, for n ≥ 0, it appears only the columns which
depend on the entries of the sequence {cn}n≥r after the r-th column, in the
determinant of the Hankel matrix Hr+n. A similar situation is observed for the
matrix Sk = (vi+j+1)0≤i,j≤k .

If the sequence C = {cn}n≥r is also of type (3) of order s, then the r+ s− th
column of the matrixHr+n is a linear combination of the columns r, r+1, . . . , r+
s− 1, and the r+ s+1− th column of the matrix Sr+n is a linear combination
of the columns r+ 1, r+ 2, . . . , r+ s. Therefore, by Proposition 4.1, we get the
following property.
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Proposition 4.2. If the sequence {cn}n≥r is also a linear recursive sequence
of type (3) of order s, then we have,

1. detHr+n = 0, for n ≥ s, if and only if, the r + s + 1-column of the
matrix Hr+n is a linear combination of the previous s columns, namely,
the r, r + 1, . . . , r + s− 1 columns of the matrix Hr+n.

2. detSr+n = 0, for n ≥ s + 1, if and only if, the s + 1-column of the
matrix Sr+n is a linear combination of the previous s columns, namely,
the r + 1, r + 2, . . . , r + s columns of the matrix Hr+n.

The two Hankel matricesHr+n = (vi+j)0≤i,j≤r+n−1 and Sr+n = (vi+j+1)0≤i,j≤r+n−1

and their determinants (10)-(11), play a central role for solving the two moment
problems (1)-(2) and their applications.
We recall that it was established in [12, Lemma 1.1] that a N × N Hermitean
matrix A is strictly positive definite if and only if each sub-matrix Ak =
(aij)1≤i,j≤k has det(Ak) > 0, for k = 1, 2, . . . , N . For a given Hankel matrix
H = (mi+j)i,j≥0, we consider the family of sub-matrices Hn = (mi+j)0≤i,j≤n.
Then, [12, Proposition 1.2] shows that for a Hankel matrix the family of sesquilinear
form F = {Hn}n≥0, defined by Hn(α, β) =

∑n
j,k=0 mj+kαj β̄k, is (strictly)

positive definite if and only if det(Hn) > 0, whereHn = (mi+j)0≤i,j≤n. Equivalently,
we say that the Hankel matrix Hn = (mi+j)0≤i,j≤n is positive definite if and
only if det(Hn) > 0, where Hn = (mi+j)0≤i,j≤n.

In order to establish the existence of solution of the linear moment problem
(1), we will present a result of the closed relation between Hankel positive
matrix, self-adjoint operator and measure. More precisely, we recall that from [6]
the following theorem.

Theorem 4.3. If {vn}n≥0 is a sequence of real numbers, the following statements
are equivalent.

(a) There is a self-adjoint operator A and a vector e such that e ∈ domAn

for all n and vn = ⟨Ane, e⟩, for all n ≥ 0.

(b) If α = (α0, . . . , αn), where αj ∈ C, then we have

n∑
j,k=0

mj+kαjᾱk ≥ 0, for

every n ≥ 0.

(c) There is a positive regular Borelean measure µ on R such that

∫
|t|ndµ(t) <

∞ for all n ≥ 0 and vn =

∫
tndµ(t).

Therefore, for the Hankel matrix H = (mi+j)i,j≥0, the second assertion of
Theorem 4.3, implies that the sesquilinear form defined by Hn(α, β) =

∑n
j,k=0 mj+kαj β̄k,

is a (strictly) positive definite form if and only if the matrix Hn = (mi+j)0≤i,j≤n

is (strictly) positive definite, for every n ≥ 0. Equivalently, the second assertion
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of Theorem 4.3, shows that the Hankel matrix H = (mi+j)i,j≥0 is positive, or
in an equivalent way, detHn ≥ 0, for every n ≥ 0, where Hn = (mi+j)0≤i,j≤n.

Combining Proposition 4.1 and Theorem 4.3, we can formulate the following
result.

Theorem 4.4. Let T = {vn}n≥0 be a sequence (4). Then, the following
assertions are equivalent,

1. The linear moment problem (1) for sequence (4) owns a solution.

2. The Hankel matrix H = (vi+j)i,j≥0 is positive.

3. detHn ≥ 0, for every 0 ≤ n ≤ r − 1 and detHn+r ≥ 0, for every n ≥ 0,
where detHn+r is given by (10).

Let T = {vn}n≥0 be a sequence (4) and suppose that the associated nonhomogeneous
part C = {cn}n≥r is a sequence of type (3) of order s, whose characteristic
polynomial is Q(z) = zs − b0z

s−1 − b1z
s−2 − · · · − bs−1. Let R(z) = zr −

a0z
r−1−a1z

r−2−· · ·−ar−1 be the characteristic polynomial of the homogeneous
part of (4). The linearization process of [2, Theorem 2.1 (Linearization Process)]
applied to the sequence (4), allows us to show that T = {vn}n≥0 is a sequence of
type (3) of order r+s, with initial data v0, v1, . . . , vr+s−1 and whose coefficients
c0, c1, . . . , cr+s are obtained from its characteristic polynomial given by P (z) =
Q(z)R(z). Therefore, following Proposition 4.2, we get the following property.

Proposition 4.5. Let T = {vn}n≥0 be a sequence (4) and Hr+n = (vi+j)0≤i,j≤r+n−1

its associated Hankel matrices of order r + n. Suppose that C is a sequence of
type (3) of order s. Then, we have detHr+n = 0, for every n ≥ s.

On the other hand, let A be a self-adjoint operator on a Hilbert space
H be a solution of the linear moment problem (1) on a vector on a non-
vanishing x ∈ H, associated with the sequence T = {vn}n≥0 defined by (4).
By the linear recursive relation (3), related to the linearized expression of
(4), we have ⟨AnP (A)x|x⟩ = ⟨P (A)x|Anx⟩ = 0, for every n ≥ 0, where
P (z) = Q(z)R(z) is the characteristic polynomial of the linearized sequence
of (4). Therefore, we have ⟨AnP (A)x|AmP (A)x⟩ = 0, for every n ≥ 0, m ≥ 0,
especially ∥AnP (A)x∥ = 0, for every n ≥ 0. This implies that Anx is a linear
combination of x, Ax, . . . , Ar+s−1x. Therefore, when the nonhomogeneous part
C is an s−GFS, if the linear moment problem owns a solution A, a self-adjoint
operator on a Hilbert spaceH, then it has a solution A on some r+s-dimensional
Hilbert space (for more details see [11, Proposition 2.2 ]). This allows us to
suppose that the Hilbert space H is of finite dimension (r + s). Therefore, we
have the following result.

Proposition 4.6. Let T = {vn}n≥0 be a sequence (4), with positive definite
associated Hankel matrix Hr, and let P (z) the characteristic polynomial of its
homogeneous part. Suppose that C is a linear recursive sequence of type (3) of
order s, whose characteristic polynomial is Q(z). Then, there exists a (deg(P )+
deg(Q))-dimensional Hilbert space H(T ) and a self-adjoint operator A on H(T ),
solution of the moment problem (1).
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Proposition 4.6 shows the main role of the recursiveness of the sequence
{cn}n≥0, in reducing the study of the linear moment problem (1) to the finite
dimensional Hilbert space H.

5 Some considerations on the K-moment problems
(2) for sequences (4)

The aim here is to apply results of the preceding sections for solving the K-
moment problem (2) for nonhomogeneous recursive sequences (4), using results
of the linear moments problems in Hilbert spacesH. More precisely, the solution
of K-moment problem (2) is obtained in terms of representing measure of the
self-adjoint operator A and the vector x ∈ H solution of the linear moment
problem (1), for the nonhomogeneous recursive sequences (4). The Stieltjes and
Hamburger moment problems for the nonhomogeneous recursive sequences (4)
are discussed.

5.1 K−moment problems associated with sequences (4)

Recall that the purpose of the K−moment problem associated with a given
sequence T = {vn}0≤n≤p, where K is a closed subset of R, is to find a positive
Borel measure µ such that Expression (2) is verified, namely,

vn =

∫
K

tndµ(t) and supp(µ) ⊂ K.

As mentioned above, the problem (2) has been studied in the literature, by
various methods and techniques. It is called the full moment problem when
p = +∞ and the truncated moment problem, for p < +∞ (see [7–9]). Using
the spectral representation of the self-adjoint operators, we can show that the
linear moment problem (1) and the moment problem (5.1) are equivalent (see
for example [6]). Moreover, using Theorem 4.3 and Theorem 4.4, we get,

Theorem 5.1. Let T = {vn}n≥0 be a sequence (4). Suppose that the Hankel
matrix H = (vi+j)i,j≥0 is positive. Then, there exists a positive Borel measure
µ such that

vn =

∫
K

tndµ(t),

where K = supp(µ). Namely, the there exists a positive Borel measure µ solution
of the K-moment problem (2).

Now consider the moment problem (2) for a sequence T = {vn}n≥0 given by
(4). Let µ be a positive Borel measure of support K. Then, following the proof

of Theorem 2.2, we have vn =

∫
K

tndµ(t) for every n ≥ 0, if and only if, vn =∫
K

tndµ(t) for any n = 0, . . . , r−1 and cn =

∫
K

tn−rP (t)dµ(t) for n ≥ r, where
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K = supp(µ). Moreover, a direct computation allows us to get the following
result.

Proposition 5.2. Under the preceding data, the following assertions are equivalent.

(i) vn =
∫
K
tndµ(t), for every n ≥ 0, where K = supp(µ).

(ii) vn =
∫
K
tndµ(t) for n = 0, . . . , 2r−1 and cn−

r−1∑
j=0

ajcn−j−1 =
∫
K
tn−2rP (t)

2
dµ(t),

for every n ≥ 2r, where K = supp(µ).

It is easy to show that the second assertion of the Proposition 5.2 implies

that c2k −
r−1∑
j=0

ajc2k−j−1 =

∫
[tk−rP (t)]

2
dµ(t), for any k ≥ r, and if there

exists k0 ≥ r such that c2k0 −
r−1∑
j=0

ajc2k0−j−1 = 0, then supp(µ) ⊂ Z(P ) ∪ {0}

or equivalently the sequence T is an r − GFS, in which case the sequence C
vanish. This allows us to give a necessary condition for a sequence (4) to be a
moment sequences of some positive Borel measure. Thus, we recover Lemma
2.2 of [10], considered for the special case of the Hausdorff moment problem.
Since the sequence C is a nontrivial, if a sequence (4) is a moment sequence of

a positive Borel measure µ, we have c2k >
r−1∑
j=0

ajc2k−j−1, for k ≥ r. Hence, we

can obtain the following.

Proposition 5.3. Let T = {vn}n≥0 be a sequence (4). If T is a moment

sequences of a positive Borel measure µ, then c2k >
r−1∑
j=0

ajc2k−j−1 for any k ≥ r.

Using Proposition 4.5, we can easily establish the following.

Proposition 5.4. Let T = {vn}n≥0 be a sequence (4), µ a positive Borel
measure and ρ a measure given by trdρ(t) = P (t)dµ(t). Then µ is a solution
of the full moment problem (2) associated with T if and only if µ is a solution
of the truncated moment problem (2) associated with Tr = {vn}0≤n≤r−1 and
{cn+r}n≥0 is a moment sequences of ρ.

Particularly, when T = {vn}n≥0 is a sequence of type (3) of order r (i.e
cn = 0, for every n ≥ 0), then the second assertion of the preceding proposition
is equivalent to the fact that µ is a solution of the truncated moment problem
(2) associated with Tr = {vn}0≤n≤r−1 and

∫
K
tndρ(t) =

∫
K
tn−rP (t)dµ(t), for

every n ≥ r. The last statement is equivalent to supp(µ) ⊂ Z(P ), and we obtain
Lemma 2.2 of [10] in the particular case of the Hausdorff moment problem.

5.2 Moment problems (2) associated with sequences (4),
with cn satisfying (3)

Let consider the linear moment problem (1) for sequence sequences (4), where
the sequence C = {cn}n≥r satisfies the linear recursive relation (3). Then, by
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Proposition 4.2, Theorem 4.4, Proposition 4.6 and Theorem 5.1, we get the
following result concerning the Hamburger moment problem for sequences (4).

Theorem 5.5. Let T = {vn}n≥0 be a sequence (4). Suppose that C = {cn}n≥0

is a sequence of type (3) of order s. Then, a necessary and sufficient condition
that there exists a measure µ solution of the truncated Hamburger moment
problem associated with a sequence T = {vn}n≥0 is that the Hankel matrix
Hr+s is positive definite or equivalently detHn > 0 for n = 0, 1, . . . , r + s.

Similarly, we get the following result concerning the Stieltjes moment problem
for sequences (4).

Theorem 5.6. Let T = {vn}n≥0 be a sequence (4). Suppose that C = {cn}n≥0

is a sequence of type (3) of order s. Then, a necessary and sufficient condition
that there exists a measure µ solution of the truncated Stieltjes moment problem
associated with a sequence T = {vn}n≥0 is that the two matrices Hr+s and
Sr+s are positive definite or equivalently detHn > 0 and detSn > 0 for n =
0, 1, . . . , r + s.

Note that a similar result can be established for the Hausdorff moment
problem.
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ABSTRACT

Sometimes, it is not possible to �nd a general solution for some di�erential
equations using some classical methods, like separation of variables. In such
a case, one can try to use theory of tensor product of Banach spaces to �nd
certain solutions, called atomic solution. The aim of this paper is to �nd
atomic solution for conformable non-linear wave equation.
Key Words: fractional wave type equation; conformable derivative; atomic solu-

tion.

1 Introduction

In [Khalil et al., 2014], a new de�nition called α-conformable fractional deriva-
tive was introduced as follows:
Letting α ∈ (0, 1), and f : E ⊆ (0,∞). Then for x ∈ E

Dαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
. (1)

If the limit exists then it is called the α-conformable fractional derivative of
f at x.
For x=0, if f is α-di�erentiable on (0, r) for some r > 0, and limx→0 D

αf(0)
exists then we de�ne Dαf(0) = limx→0D

αf(0). The new de�nition satis�es:

1. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

*i.aldarawi@ju.edu.jo
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2. Tα(λ) = 0, for all constant functions f(t) = λ.

Further, for α ∈ (0, 1] and f ,g are α-di�erentiable at a point t, with g(t) ̸= 0.
Then

1. Tα(fg) = fTα(g) + gTα(f).

2. Tα(
f
g
) = gTα(f)−fTα(g)

g2
, g(t) ̸= 0.

We list here the fractional derivatives of certain functions,

1. Tα(t
p) = ptp−α.

2. Tα(sin
1
α
tα) = cos 1

α
tα.

3. Tα(cos
1
α
tα) = − sin 1

α
tα.

4. Tαe
1
α
tα = e

1
α
tα .

On letting α = 1 in these derivatives, we get the corresponding classical rules
for the ordinary derivatives.
One should notice that a function could be α-conformable di�erentiable at a
point but not di�erentiable, for example, take f(t) = 2

√
t. Then T 1

2
(f)(0) =

1.
This is not the case for the known classical fractional derivatives, since
T1(f)(0) does not exist.
A vast number of researcher dedicated so much of their work to study con-
formable derivatives and its applications. Among them, [Abdeljawad, 2015],
[Abu Hammad and Khalil, 2014], [Aldarawi, 2018], [Alhabees and Aldarawi, 2020],
[ALHabees, 2021], [ALHorani and Khalil, 2018], [Anderson et al., 2018], [Atangana et al., 2015],
[Chung, 2015], [Hammad and Khalil, 2014], [Khalil et al., 2016], [Kilbas, ],
[Mhailan et al., 2020].

2 Atomic Solution

Let X and Y be two Banach spaces and X∗ be the dual of X. Assume x ∈ X
and y ∈ Y . The operator T : X∗ → Y , de�ned by

T (x∗) = x∗(x)y (2)

is bounded one rank linear operator. We write x ⊗ y for T . Such operators
are called atoms. Atoms are among the main ingredient in the theory of
tensor products.
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Atoms are used in theory of best approximation in Banach spaces, see [Al Horani et al., 2016].
According to [Khalil, 1985], one of the known results that we need in our
paper is: if the sum of two atoms is an atom, then either the �rst components
are dependent or the second are dependent.
For more on tensor product of Banach spaces we refer to [Deeb and Khalil, 1988]
and [Khalil, 1985].
Our main object in this paper is to �nd an atomic solution of the equation

Dα
t D

α
t u = c2Dβ

xD
β
xu+Dα

t D
β
xu. (3)

This is called the conformable non-linear wave equation, where c is constant.
Let c = 1 for simplicity to get

Dα
t D

α
t u = Dβ

xD
β
xu+Dα

t D
β
xu. (4)

If one tries to solve this equation via separation of variables, then it is not
possible since the variables can not be separated.

3 Procedure

Let u(x, t) = X(x)T (t). substitute in equation (4) to get:

X(x)T 2α(t) = X2β(x)T (t) +Xβ(x)Tα(t). (5)

This can be written in tensor product form as:

X(x)⊗ T 2α(t) = X2β(x)⊗ T (t) +Xβ(x)⊗ Tα(t). (6)

Let us consider the following conditions: X(0) = 1, Xβ(0) = 1.
In equation (6), we have the situation: the sum of two atoms is an atom.
Hence, we have two cases:

3.1 case I: X2β(x) = Xβ(x)

The situation of case I:X2β(x) = Xβ(x), using the result in [Al-Horani et al., 2020],
we get

X(x) = e
xβ

β . (7)

Now, we substitute in (6) to get

3
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e
xβ

β ⊗ T 2α(t) = e
xβ

β ⊗ T (t) + e
xβ

β ⊗ Tα(t).

e
xβ

β ⊗ T 2α(t) = e
xβ

β ⊗ [T (t) + Tα(t)].

T 2α(t) = T (t) + Tα(t). (8)

Hence, T 2α(t) = T (t)+Tα(t). Again, using the result in [Al-Horani et al., 2020],

T (t) = c1e
( 1+

√
5

2
)
tα
α + c2e

( 1−
√
5

2
)
tα
α . (9)

Using the conditions T (0) = Tα(0) = 1, we get

T (t) =

√
5 + 1

2
√
5

e(
1+

√
5

2
)
tα
α +

√
5− 1

2
√
5

e(
√
5−1
2

)
tα
α . (10)

From (7) and (10), we obtain the atomic solution of (4) as follows:

u(x, t) = e
xβ

β

(√
5 + 1

2
√
5

e(
1+

√
5

2
)
tα
α +

√
5− 1

2
√
5

e(
1−

√
5

2
)
tα
α

)
. (11)

3.2 case II: T (t) = T α(t)

This is conformable linear di�erential equation. Hence, we can use the result
in [Khalil, 1985], or use the fact that

Tα(t) = t1−αT ′(t). (12)

To get

T (t) = t1−αT ′(t)
dT (t)

T (t)
= tα−1dt

LnT (t) =
tα

α
+ k. (13)

Where k is constant. Hence,

T (t) = Ke
tα

α , K = ek. (14)

Again, by using the conditions T (0) = Tα(0) = 1, we get

T (t) = e
tα

α . (15)

4
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Substitute in equation (4) to get

X(x)⊗ e
tα

α = (X2β(x) +Xβ(x))⊗ e
tα

α

X(x) = X2β(x) +Xβ(x). (16)

Again, by using the result in [Khalil, 1985], and the conditions X(0) =
Xβ(0) = 1, we get

X(x) =

(
3 +

√
5

2
√
5

)
e

−1+
√
5

2
xβ

β +

(
−3 +

√
5

2
√
5

)
e

−1−
√
5

2
xβ

β (17)

From (15) and (17), we obtain the atomic solution of (4) as follows:

u(x, t) =

((
3 +

√
5

2
√
5

)
e

−1+
√
5

2
xβ

β +

(
−3 +

√
5

2
√
5

)
e

−1−
√
5

2
xβ

β

)
e

tα

α (18)

3.3 Example

Considering the following fractional wave equation

D0.5
t D0.5

t u = D0.2
x D0.2

x u+D0.5
t D0.2

x u. (19)

The solution of (19) is

u(x, t) = e
x0.2

0.2

(√
5 + 1

2
√
5

e(
1+

√
5

2
)
t0.5

0.5 +

√
5− 1

2
√
5

e(
1−

√
5

2
)
t0.5

0.5

)
. (20)
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Abstract This paper deals with stability of nonlinear differential equations with
parameter with periodic perturbation. We determine values of the parameter under
which the solutions of the perturbed systems could be uniformly exponentially stable.
Sufficient conditions for global uniform asymptotic stability and/or practical stability
in terms of Lyapunov-like functions are obtained in the sense that the trajectories
converge to a small ball centered at the origin. Moreover, to illustrate the applicability
of our result, we study the stabilization problem for a class of control system.

Keywords: Differential equations, parametric systems, perturbation, asymptotic
behavior of solutions.
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1 Introduction

The investigation of stability analysis of nonlinear uncertain systems is an important
topic in systems theory. The problem of stability analysis of nonlinear time-varying
systems has attracted the attention of several researchers and has produced a vast
body of important results (see [2]-[26], [29], [32], [33], [34] and the references therein).
There have been a number of interesting developments in searching the stability cri-
teria for nonlinear differential systems, but most have been restricted to finding the
asymptotic stability conditions for some classes of certain systems. In particular,
parametric stability for nonlinear systems is an interesting area of research, and it
naturally arises in diverse fields such as population biology, economics, neural net-
works, and chemical processes.
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Basically, parametric stability for nonlinear systems addresses the stability of equilib-
ria for nonlinear systems with real parametric uncertainty, especially the feasibility
of equilibria and the stability nature of the equilibria with respect to small variations
of the real parametric uncertainty (see [25]). Dynamic systems governed by ordinary
differential equations with periodically varying coefficients have been studied since
one and a half centuries ago (see [12], [14], [19] and the references therein).
Mathieu [31] introduced a differential equation with periodic coefficient and Hill [24]
presented the first ever solution technique of linear periodic equations. Lyapunov [30]
demonstrated the Lyapunov-Floquet transformation for autonomous systems which
is a linear periodic system into a dynamically equivalent time-invariant form. Unlike
the differential systems without parameters, studying stability of differential para-
metric systems with periodic coefficients may not be easily verified ([16]-[17]).
It is well known that for linear parametric systems of the form: ẋ = A(α)x, α is a
real parameter which can be constant or depending on time. For technical reasons, it
is important to distinguish between constant and time-varying parameters. Constant
parameters have a fixed value that is known only approximately. In this case, the
underlying dynamical linear system is time invariant. Time-varying parameter α(t)
is a certain function which varies in some range and the resulting system is then
time-varying. Kharitonov’s theorem (see [27]) gives a simple necessary and sufficient
condition for parametric system where a quadratic Lyapunov function is used to solve
the problem of stability. Barmish in [3] introduced the notion of parameter dependent
Lyapunov functions for continuous-time linear systems whose dynamic matrices are
affected by bounded uncertain time-varying parameters. Floquet [20] developed the
complete study for stability of linear time-periodic differential equations. Based on
Floquet theory the stability of the linear system with time-periodic coefficients can
be determined from the eigenvalues of a certain matrix. These eigenvalues are often
called Floquet multipliers. He proved that, if all Floquet multipliers have magnitude
less than one, the linear system with time-periodic coefficient is asymptotically stable.
In general to solve the problem of stability the usual techniques are related to some
linear matrices inequalities that finding an adequate Lyapunov matrix to solve a sys-
tem of Lyapunov inequalities which is a convex program. Perturbation theory is a
pertinent discipline for the applications of time parametric dynamics which is a com-
pilation of methods systematically used to evaluate the global behavior of solutions
to differential equations. This motivates us to study the problem of uniform exponen-
tial stability of perturbed systems by assuming that the nominal associated system
is globally uniformly asymptotically stable by imposing some restrictions on the size
of perturbations in particular that are periodic in time.
The goal is to obtain estimates for the solutions of perturbed differential equations
and to get uniform boundedness and uniform convergence to a small neighborhood of
the origin. The notion of practical stability, (see [6]), is introduced in a special case.
We determine values of parameters under which the systems are uniformly practically
exponentially stable where some estimates on the decay rate of solutions at infinity
are obtained. Finally, we give an application for the stabilization a class of control
parametric system.

2
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2 General definitions

Consider the non-autonomous system

dx

dt
= f(t, x) (1)

where f : [0,∞)×Rn −→ Rn is continuous in t and locally Lipschitz in x on [0,∞)×
Rn. The origin is an equilibrium point for (1), if f(t, 0) = 0, ∀t ≥ 0.

Definition 1. (Exponential stability) The zero solution of system (1) is exponen-
tially stable if there exist positive constants c, µ, and λ such that

∥x(t)∥ ≤ µ∥x(t0)∥e−λ(t−t0), ∀ ∥x(t0)∥ < c (2)

and globally exponentially stable if (2) is satisfied for any initial state x(t0) ∈ Rn.

The exponential stability is more important than stability, also the desired system
may be unstable and yet the system may oscillate sufficiently near this state that
its performance is acceptable, in particular when f(t, 0) ̸= 0, thus the notion of
practical stability is more suitable in several situations than Lyapunov stability, it
means that the trajectories converge to a small neighborhood of the origin, in the
sense of uniform stability and uniform attractivity of system (1) with respect a certain
ball Br = {x ∈ Rn/∥x∥ ≤ r}.

Definition 2. (Uniform stability of Br) Br is uniformly stable if for all ε > r,
there exists δ = δ(ε) > 0, such that

∥x(t0)∥ < δ =⇒ ∥x(t)∥ < ε, ∀t ≥ t0. (3)

Definition 3. (Uniform attractivity of Br) Br is uniformly attractive, if for
ε > r, t0 > 0 and x(t0) ∈ D, there exists T (ε, x(t0)) > 0, such that

∥x(t)∥ < ε, ∀t ≥ t0 + T (ε, x(t0)). (4)

Br is globally uniformly attractive if (4) is satisfied for all x(t0) ∈ Rn.

Definition 4. (Practical stability) System (1) is said uniformly practically asymp-
totically stable, if there exists Br ⊂ Rn, such that Br is uniformly stable and uniformly
attractive. It is globally uniformly practically asymptotically stable if x(t0) ∈ Rn.

Definition 5. System (1) is said uniformly exponentially convergent to Br, if there
exist γ > 0 and k ≥ 0, such that

∥x(t)∥ ≤ k∥x(t0)∥ exp(−γ(t− t0)) + r, ∀t ≥ t0, ∀x(t0) ∈ Rn. (5)

If x(t0) ∈ Rn, the system is globally uniformly exponentially convergent to Br.
We say that the system is globally uniformly practically exponentially stable if for
r > 0, it is globally uniformly exponentially convergent to Br.

Here, we study the asymptotic behavior of a small ball centered at the origin for
0 ≤∥ x(t) ∥ −r, so that if r = 0 we find the classical definition of the uniform
asymptotic or exponential stability of the origin viewed as an equilibrium point.

3
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3 Problem formulation

We consider the following system of differential equations

dx

dt
= µ(A(α(t)) +B(t))x+ νφ(t, x), t ≥ 0, (6)

where A(α(t)) ∈ Rn×n is a matrix given by A(α(t)) = α1(t)A1+α2(t)A2, with α1(t)+
α2(t) = 1, αi(t) ∈ R+, ∀t ≥ 0, B(t) ∈ Rn×n is T-periodic matrix, µ, ν ∈ R are
parameters and φ(t, x) is a smooth vector function such that, for all t ≥ 0 and
x ∈ Rn

φ(t+ T, x) = φ(t, x)

and

∥φ(t, x)∥ ≤ k∥x∥1+δ + r, δ ≥ 0, k > 0, r > 0. (7)

Suppose that the spectrum of matrices A1 and A2 belong to the left half-plane
{λ ∈ C,R(λ) < 0} and ∫ T

0

B(t)d(t) = 0. (8)

Throughout this paper, we indicate the following domains:

I1 = {µ ∈ R, 0 < µ < µ0}, I2 = {ν ∈ R, |ν| < ν0},

such that the system (6) is practically uniformly exponentially stable for µ ∈ I1, ν ∈
I2. Moreover, we obtain estimates on the solutions of (6) that guarantee exponential
decay when t −→ +∞ to a certain ball B(0, ri) with a radius ri, i = 1, 2.

Remark For µ = ν = 1, the system (6) can be seen as a perturbed system (see [8],
[9]).

Notations: The following notations will be used throughout this paper. For a matrix
X, the notation X∗ denotes the transpose of matrix X. λmin(X) and λmax(X) denote
the minimum and the maximum eigenvalues of X respectively.

Since

spect(Ai)i=1,2 ⊂ {λ ∈ C, Re(λ) < 0},

then, there exist symmetric and positive definite matrices H1 and H2 solutions of
the matrices Lyapunov equations (see [26] for the existence and uniqueness of the
matrices Hi, i = 1, 2),

H1A1 + A∗
1H1 = −I (9)

and

H2A2 + A∗
2H2 = −I. (10)

The matrices Hi, i = 1, 2 satisfy:

Hi =

∫ ∞

0

esA
∗
i esAids.

4
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In many cases, it is hard to find a common positive-definite matrix H = H1 = H2.
In fact, the existence of a common positive-definite matrix depends on the difference
of the two matrices Ai, i = 1, 2. In order to solve these problems, many scholars have
made many further investigations. For example, in [28], the authors showed that, if
the matrices A1 and A2 are real Hurwitz matrices, and that their difference is rank
one, then A1 and A2 have a common quadratic Lyapunov function if and only if the
product A1A2 has no real negative eigenvalue. We can solve this problem, in the
special case when A1 + A∗

1 = A2 + A∗
2, we get

H =

∫ ∞

0

esA
∗
1esA1ds =

∫ ∞

0

esA
∗
2esA2ds.

To facilitate our task, we will suppose that, (9) and (10) have a unique solution
H = H∗ > 0.
We have

γ1∥x∥2 ≤ ⟨Hx, x⟩ ≤ ∥H∥∥x∥2,
where γ1 = λmin(H).

Now, In order to study the asymptotic behavior of solutions, we shall impose some
conditions on the parameters under which the system (6) can be practically uniformly
exponentially stable.

Theorem 1. Let

β1 = max
τ∈[t0,t0+T ]

∥H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH∥,

β2 = max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A1 +B(τ))∥,

β3 = max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A2 +B(τ))∥,

and

µ0 = min{γ1
β1

,
1

2β
} where β = max{β2, β3}.

Let H be a solution to the matrices Lyapunov equations (9) and (10) and δ = 0.
Then, for parameters µ and ν such that

0 < µ < µ0 and 2µβ + 2|ν| k
(
∥H∥
µ

+ β1

)
< 1,

and for any initial data x(t0) ∈ Rn, the solutions of system (6) converge exponentially
towards the ball B(0, r1) whose radius is given by

r1 = 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
5
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Remark Note that, if ν = ν(t) with |ν(t)| −→ 0 as t −→ +∞, then the solution of
system (6) tend to zero when t tends to infinity.

Proof Define the following matrix

H(t, µ) =
1

µ
H −H

∫ t

t0

B(s)ds−
∫ t

t0

B∗(s)ds H. (11)

Since H = H∗, it follows that

H(t, µ) = H∗(t, µ)

and by (8), the matrix H(t, µ) is T-periodic, i.e.

H(t+ T, µ) = H(t, µ).

Let x(t) be a solution to (6), then the function

h(t, µ, ν) = ⟨H(t, µ)x(t), x(t)⟩

is continuously differentiable on t. It follows that, the derivative of h(t, µ, ν) is given
by

d

dt
h(t, µ, ν) = ⟨ d

dt
H(t, µ)x(t), x(t)⟩+ ⟨H(t, µ)

d

dt
x(t), x(t)⟩+ ⟨H(t, µ)x(t),

d

dt
x(t)⟩.

Since
d

dt
H(t, µ) = −HB(t)−B∗(t)H,

then

d

dt
h(t, µ, ν) = −⟨(HB(t) +B∗(t)H)x(t), x(t)⟩

+⟨µH(t, µ)(A(α(t)) +B(t))x(t), x(t)⟩
+⟨µ(A(α(t))∗ +B∗(t))H(t, µ)x(t), x(t)⟩
+ν⟨H(t, µ)φ(t, x), x(t)⟩+ ν⟨H(t, µ)x(t), φ(t, x)⟩.

Using the definition of matrix H(t, µ), we obtain

d

dt
h(t, µ, ν) = ⟨(−HB(t)−B∗(t)H)x(t), x(t)⟩+ ⟨H(A(α(t)) + B(t))x(t), x(t)⟩

−µ⟨(H
∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A(α(t)) +B(t))x(t), x(t)⟩

+⟨(A(α(t))∗ +B∗(t))Hx(t), x(t)⟩

−µ⟨(A(α(t))∗ +B∗(t))(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩

+2 (ν⟨H(t, µ)φ(t, x), x(t)⟩) .

6
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Replacing A(α(t)) by its value and multiplying B(t) by (α1(t) + α2(t)), we get

d

dt
h(t, µ, ν) = ⟨α1(t)(HA1 + A∗

1H) + α2(t)(HA2 + A∗
2H)x(t), x(t)⟩

−α1(t)µ

(
⟨(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A1 +B(t))x(t), x(t)⟩

+ ⟨(A1 +B(t))∗(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩
)

−α2(t)µ

(
⟨(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A2 +B(t))x(t), x(t)⟩

+ ⟨(A2 +B(t))∗(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩
)

+2 (ν⟨H(t, µ)φ(t, x), x(t)⟩) .

(12)

Taking into account (9) and (10) and using the fact that 0 < µ < µ0, we obtain the
following estimate

d

dt
h(t, µ, ν) ≤ −∥x(t)∥2

+2µα1(t) max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A1 +B(τ))∥∥x(t)∥2

+2µα2(t) max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A2 +B(τ))∥∥x(t)∥2

+2|ν|k
(
∥H∥
µ

+ β1

)
∥x(t)∥2 + 2|ν|r

(
∥H∥
µ

+ β1

)
∥x(t)∥

≤ −
(
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

))
∥x(t)∥2

+2|ν|r
(
∥H∥
µ

+ β1

)
∥x(t)∥.

Since the matrix H(t, µ) is positive definite for 0 < µ < µ0, it follows that

0 < (
1

µ
γ1 − β1)I ≤ H(t, µ) ≤ (

1

µ
∥H∥+ β1)I.

Thus,

d

dt
h(t, µ, ν) ≤ −

1− 2µβ − 2|ν| k
(

∥H∥
µ

+ β1

)
1
µ
∥H∥+ β1

h(t, µ, ν)

+ 2|ν|r
(∥H∥

µ
+ β1)√

γ1
µ
− β1

√
h(t, µ, ν).
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Let H(t, µ, ν) =
√

h(t, µ, ν), it follows that,

d

dt
H(t, µ, ν) ≤ −

1− 2µβ − 2|ν| k
(

∥H∥
µ

+ β1

)
2(∥H∥

µ
+ β1)

H(t, µ, ν)

+ |ν|r
∥H∥
µ

+ β1√
γ1
µ
− β1

which implies that

H(t, µ, ν) ≤ H(t0, µ, ν) exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)


+2|ν|r

(∥H∥
µ

+ β1)
2√

γ1
µ
− β1

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

)
≤

√
∥H∥
µ

∥x(t0)∥ exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)


+2|ν|r

(∥H∥
µ

+ β1)
2√

γ1
µ
− β1

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

)
and consequently

∥x(t)∥ ≤

√
∥H∥

γ1 − µβ1

exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)

 ∥x(t0)∥

+ 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
Thus, we obtain an estimation as in Definition 5. Hence, the solutions of system (6)
converge exponentially towards the ball B(0, r1) whose radius is given by

r1 = 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
Remark A simple verification shows that r1 > 0.

In the next part of this paper, a new class of functions appears: functions that
depend on a set of constant parameters, that is, f = f(t, x, ε), where ε ∈ Rp. The
constant parameters could represent physical parameters of the system and the study
of perturbation of these parameters accounts for modeling errors or changes in the
parameter values due to aging. Let begin by introducing the following lemma.
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Lemma (see [26]) Let f(t, x, ε) be continuous in (t, x, ε) and locally Lipschitz in x
(uniformly in t and ε) on [t0,+∞[×Rn × {∥ε− ε0∥ ≤ c}. Let y(t, ε0) be a solution of
ẋ = f(t, x, ε0) with y(t0, ε0) = y0 ∈ Rn. Suppose y(t, ε0) is defined and belongs to Rn

for all t ≥ t0. Then, given λ > 0, there is γ > 0 such that, if

∥z0 − y0∥ < γ and ∥ε− ε0∥ < γ

then there is a unique solution z(t, ε) of ẋ = f(t, x, ε) defined for t ≥ t0, with z(t0, ε) =
z0, and z(t, ε) satisfies

∥z(t, ε)− y(t, ε0)∥ < λ, ∀t ≥ t0.

Quite often when we study the state equation ẋ = f(t, x, ε), where ε ∈ Rp, we need
to compute bounds on the solution x(t) without computing the solution itself. That
is why, in order to make our tache more easy, we will solve the differential equation
ẋ = f(t, x, ε0) where ε0 is a parameter sufficiently close to ε, i.e., ∥ε− ε0∥ sufficiently
small and after that we will approximate the solution of ẋ = f(t, x, ε).

Theorem 2. Let H be a solution to the matrices Lyapunov equations (9) and (10).
Let β1, β2, β3, β and µ0 be defined in the Theorem 1, let δ > 0, ρ > 0 and

ν0 =
µ1−δ/2 (γ1 − µβ1)

1+δ/2 (1− 2µβ)

2 k(∥H∥+ µβ1)2 (
√

∥H∥
µ
ρ+ γ)δ

with γ is some constant. Then, for 0 < µ < µ0, |ν| < ν0 and for any initial data

x(t0) ∈ Rn, ∥x(t0)∥ ≤ ρ,

the system (6) is practically uniformly exponentially stable.

Proof Let x(t) be a solution to system (6) and H(t, µ) be defined by (11). From
the proof of Theorem 1, the function h(t, µ, ν) satisfy the inequality (12). By the
definition of matrix H(t, µ) and taking into account that ∥φ(t, x)∥ ≤ k∥x∥1+δ + r, we
obtain the following estimate

d

dt
h(t, µ, ν) ≤ −(1− 2µβ)∥x(t)∥2 + 2|ν|k

(
∥H∥
µ

+ β1

)
∥x(t)∥2+δ

+2|ν|r
(
∥H∥
µ

+ β1

)
∥x(t)∥.

Since

∥x(t)∥2 ≤ h(t, µ, ν)

( 1
µ
γ1 − β1)

and ∥x(t)∥δ ≤ h(t, µ, ν)δ/2

( 1
µ
γ1 − β1)δ/2

,

then,

∥x(t)∥2+δ ≤ h(t, µ, ν)1+δ/2

( 1
µ
γ1 − β1)1+δ/2

.
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It follows that

d

dt
h(t, µ, ν) ≤ − 1− 2µβ

1
µ
∥H∥+ β1

h(t, µ, ν)

+
2|ν|k

(
1
µ
∥H∥+ β1

)
( 1
µ
γ1 − β1)1+δ/2

h(t, µ, ν)1+δ/2

+2|ν|r

(
∥H∥
µ

+ β1

)
√

1
µ
γ1 − β1

√
h(t, µ, ν).

Introduce the following notation

ϵ1 =
1− 2µβ

1
µ
∥H∥+ β1

, ϵ2 =
2|ν|k

(
1
µ
∥H∥+ β1

)
( 1
µ
γ1 − β1)1+δ/2

and ϵ3 = 2|ν|r

(
∥H∥
µ

+ β1

)
√

1
µ
γ1 − β1

,

hence
d

dt
h(t, µ, ν) ≤ −ϵ1h(t, µ, ν) + ϵ2h(t, µ, ν)

1+δ/2 + ϵ3
√

h(t, µ, ν).

Let
z(t) =

√
h(t, µ, ν),

we have
d

dt
z(t) ≤ −ϵ1

2
z(t) +

ϵ2
2
z(t)1+δ +

ϵ3
2
. (13)

Let z(t, ε) the solution of (13) where ε = (ϵ1, ϵ2, ϵ3) ∈ R3
+ and y1(t, ε0) the solution of

d

dt
z(t) ≤ −ϵ1

2
z(t) +

ϵ2
2
z(t)1+δ (14)

where ε0 = (ϵ1, ϵ2, 0) ∈ R3
+.

In order to solve (14), we can take η = 1 + δ and w(t) = y1(t, ε0)
1−η = y1(t, ε0)

−δ.
Thus,

d

dt
w(t) =

ϵ1δ

2
w − ϵ2δ

2
.

Solving the homogenous equation

d

dt
w(t) =

ϵ1δ

2
w,

we get

w(t) = L e

ϵ1δ

2
t
.

Now, suppose that L is a function that depends on t, i.e. we have

w(t) = L(t) e

ϵ1δ

2
t
.
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A simple computation shows that

L(t) =
ϵ2
ϵ1

e
−ϵ1δ

2
t
+ θ, ∀θ ≥ 0,

and consequently

w(t) =
ϵ2
ϵ1

+ θe

ϵ1δ

2
t

where

θ =

(
w(t0)−

ϵ2
ϵ1

)
e
−ϵ1δ

2
t0
.

It follows that,

w(t) =
ϵ2
ϵ1

+

(
w(t0)−

ϵ2
ϵ1

)
e

ϵ1δ

2
(t− t0)

.

Since y1(t, ε0) = w(t)−1/δ and w(t0) = y1(t0, ε0)
−δ, we obtain

y1(t, ε0) =

y1(t0, ε0)
−δ e

ϵ1δ

2
(t− t0)

+
ϵ2
ϵ1

− ϵ2
ϵ1

e

ϵ1δ

2
(t− t0)

−1/δ

.

If
ϵ2y

δ
1(t0, ε0) < ϵ1, (15)

which will be verified later on, and using the fact that for all a ≥ 0 and b ≥ 0, we
have

(a+ b)p ≤ ap(1 +
b

a
)p, ∀p ∈ R,

Thus,

y1(t, ε0) ≤ y1(t0, ε0)e
− ϵ1

2
(t−t0) ×

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

+ yδ1(t0, ε0)
ϵ2
ϵ1
e−

ϵ1
2
δ(t−t0)

)−1/δ

yields,

y1(t, ε0) ≤ y1(t0, ε0)e
− ϵ1

2
(t−t0)

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

)−1/δ

.

Then, by the Lemma, for ∥ϵ3∥2 < γ and λ > 0, we get

∥z(t, ε)− y1(t, ε0)∥ < λ,

which implies that

∥z(t, ε)∥ < λ+

∥∥∥∥∥y1(t0, ε0)e− ϵ1
2
(t−t0)

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

)−1/δ
∥∥∥∥∥

< λ+ (∥z(t0, ε)∥+ γ)e−
ϵ1
2
(t−t0)

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

< λ+ (

√
∥H∥
µ

∥x(t0)∥+ γ)e−
ϵ1
2
(t−t0)

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

.
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Since √
γ1
µ

− β1∥x(t)∥ ≤ z(t, ε) ≤

√
∥H∥
µ

+ β1∥x(t)∥,

then,

∥x(t)∥ ≤

√
∥H∥

γ1 − µβ1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

∥x(t0)∥e−
ϵ1
2
(t−t0)

+
λ√

γ1
µ
− β1

+
γ√

γ1
µ
− β1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

.

The last inequality implies that the solutions of system (6) converge exponentially
toward the ball B(0, r2) whose radius is given by

r2 =
λ√

γ1
µ
− β1

+
γ√

γ1
µ
− β1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

which is clearly positive.

Finally, let verify the condition (15). Since |ν| < ν0, 0 < µ < µ0 and ∥x(t0)∥ ≤ ρ,
then

ϵ2
ϵ1
yδ1(t0, ε0) ≤

2|ν|k
(

∥H∥
µ

+ β1

)2
( 1
µ
γ1 − β1)1+δ/2 (1− 2µβ)

(∥z(t0, ε)∥+ γ))δ

≤ 2ν0k

µ1−δ/2

(∥H∥+ µβ1)
2

(γ1 − µβ1)1+δ/2 (1− 2µβ)

(√
∥H∥
µ

ρ+ γ

)δ

.

Hence, according to the definition of ν0, we have

ϵ2
ϵ1
yδ1(t0, ε0) < 1.

4 Application to control

In this section we study the stabilization problem of a control system modeled by the
same dynamic as (6).

Definition 6. A function α : [0, a[→ [0,+∞[ is said to be of class K, if it is contin-
uous, strictly increasing and α(0) = 0. It is of class K∞ if, in addition, a = +∞ and
α(r) → +∞ as r → +∞.

Let as recall the following result (see [6]).
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Theorem 3. Let consider system (1) and suppose that there exist a continuously
differentiable real function h(·, ·) on R+×Rn, K∞ functions α1(·), α2(·), a K function
α3(·) and a small positive real number ϱ such that the following inequalities hold for
all t ∈ R+ and x ∈ Rn

α1(∥x∥) ≤ h(t, x) ≤ α2(∥x∥)
∂h

∂t
+

∂h

∂x
f(t, x) ≤ −α3(∥x∥) + ϱ.

Then the system is globally uniformly practically stable with r = α−1
1 ◦ α2 ◦ α−1

3 (ϱ).

When the function satisfying f(t, 0) ̸= 0 for certain t ∈ R+, we shall study the
asymptotic stability of the system at a neighborhood of the origin viewed as a small
ball centered at the origin. The state approaches the origin (or some sufficiently small
neighborhood of it) in a sufficiently fast manner. The following result gives sufficient
conditions for practical global exponential stability.

Theorem 4. Consider system (1). Let h : [0,+∞[×Rn → R be a continuously dif-
ferentiable Lyapunov function such that

c1∥x∥2 ≤ h(t, x) ≤ c2∥x∥2

∂h

∂t
+

∂h

∂x
f(t, x) ≤ −c3h(t, x) + ϱ

for all t ≥ 0 and x ∈ Rn, where c1, c2 and c3 are positive constants. Then Br is
globally uniformly exponentially stable, with r =

√
ϱ/c1c2.

Now we state the stabilizability problem associated with the following nonlinear time-
varying control system:

dx

dt
= f(t, x(t), u(t)), t ≥ 0, (16)

where x ∈ Rn, u ∈ Rm, f(t, x, u) : R+ × Rn × Rm → Rn.

Definition 7. The feedback controller u(t) = u(t, x(t)), where u(t, x) : R+×Rn → Rm

stabilizes globally uniformly asymptotically or exponentially the control system (16) if
the closed-loop system

dx

dt
= f(t, x(t), u(t, x(t))) (17)

is globally uniformly asymptotic or exponential stable.

In the case where f(t, 0, 0) ̸= 0 for a certain t ≥ 0. We can formulate the above
definition as:

Definition 8. The feedback controller u(t) = u(t, x(t)) stabilizes globally uniformly
asymptotically or exponentially the control system (16) with respect Br, if the as-
sociated closed-loop system (17) is globally practically uniformly asymptotically or
exponentially stable.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

60 Hammami 48-65



From Theorem 3, one has the following result which concern the asymptotic stabiliz-
ability problem of system (16).

Theorem 5. Suppose that there exist a stabilizing feedback controller u(t) = u(t, x(t))
for control system (16) and a continuously differentiable function h(·, ·) : R+ × Rn → R,
K∞ functions α1(·), α2(·), a K function α3(·) and a small positive real number ϱ such
that the following inequalities hold for all t ∈ R+ and x ∈ Rn

α1(∥x∥) ≤ h(t, x) ≤ α2(∥x∥)

∂V

∂t
+

∂h

∂x
f(t, x, u(t, x(t))) ≤ −α3(∥x∥) + ϱ.

Then system (16) in closed-loop with the feedback controller u = u(t, x(t)) is globally
uniformly practically asymptotically stable with r = α−1

1 ◦ α2 ◦ α−1
3 (ϱ).

Also, we can say that the control system (16) is globally uniformly exponentially
stabilizable by the feedback control u(t) = u(t, x(t)), where u(t, x) : R+ × Rn → Rm,
if the closed-loop system (17) is globally uniformly exponentially stable.

Definition 9. Br is globally uniformly exponentially stabilizable by the feedback con-
trol u(t) = u(t, x(t)) if there exist γ > 0 and k > 0 such that for all t ≥ t0 ≥ 0 and
x0 ∈ Rn, the solution x(t) of the closed-loop system (17) satisfies:

∥x(t)∥ ≤ k∥x0∥exp(−γ(t− t0)) + r.

In this case, system (16) is globally practically uniformly exponentially stabilizable by
the feedback control u(t) = u(t, x(t)).

One has the following result which concern the exponential stabilizability problem of
system (16).

Theorem 6. Let u = u(t, x(t)) an exponential stabilizing feedback law and

h : [0,+∞[×Rn → R

be a continuously differentiable Lyapunov function such that

c1∥x∥2 ≤ h(t, x) ≤ c2∥x∥2

∂h

∂t
+

∂h

∂x
f(t, x, u(t, x(t))) ≤ −c3h(t, x) + ϱ

for all t ≥ 0 and x ∈ Rn, where c1, c2 and c3 are positive constants. Then Br is
globally uniformly exponentially stable with r =

√
ϱ/c1c2, with respect the closed-loop

system (17).

Now, we will study the practical exponential stability problem a class of nonlinear
systems of the form (6). It is worth to notice that the origin is not required to be an
equilibrium point for the system (6). This may be in many situations meaningful from
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a practical point of view specially, when stability for control systems is investigated.

Consider the class of systems that can be modeled by:

dx

dt
= µ(A(α(t)) +B(t))x+ νφ(t, x, u), t ≥ 0, (18)

where A(α(t)) ∈ Rn×n is a matrix given by A(α(t)) = α1(t)A1+α2(t)A2, with α1(t)+
α2(t) = 1, αi(t) ∈ R+, ∀t ≥ 0, B(t) ∈ Rn×n is T-periodic matrix, µ ∈ R, ν ∈ R are
parameters and φ(t, x, u) is a smooth vector function. u denotes the control of the
system. We suppose that there exists a stabilizing feedback control u(t) = u(t, x(t)),
where the function u is a suitable feedback controller such that the condition (7) is
replaced as follows: φ(t, x, u) is a smooth vector function such that, for all t ≥ 0 and
x ∈ Rn,

φ(t+ T, x, u(t, x(t))) = φ(t, x, u(t, x(t)))

and
∥φ(t, x, u(t, x(t)))∥ ≤ k∥x∥1+δ + r, δ ≥ 0, k > 0, r > 0.

The practical uniform exponential stability can therefore be established as in Theo-
rem 2, an d an estimation as in Definition 9 can be obtained which gives that the
system (18) in closed-loop with u(t) = u(t, x(t)) is practically globally uniformly
exponentially stable.

5 Conclusion

Asymptotic stability of a class of parametric differential equations has been studied.
New sufficient conditions for practical uniform asymptotic exponential stability of so-
lutions for parametric systems with periodic coefficients are obtained. An application
to control system is given.
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Using generalized Canavati fractional left and right vectorial Tay-
lor formulae we prove corresponding left and right fractional Hilbert-
Pachpatte type inequalities for Banach algebra valued functions. We cover
also the sequential fractional case. We �nish with applications.
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1 Introduction

Motivation follows:
We need

De�nition 1 (see [5]) A de�nition of the Hausdor¤ measure h� goes as follows:
if (T; d) is a metric space, A � T and � > 0, let � (A; �) be the set of all
arbitrary collections (C)i of subsets of T , such that A � [iCi and diam (Ci) � �
(diam =diameter) for every i. Now, for every � > 0 de�ne

h�� (A) := inf
nX

(diamCi)
� j (Ci)i 2 � (A; �)

o
: (1)

Then there exists lim
�!0

h�� (A) = sup
�>0
h�� (A), and h� (A) := lim

�!0
h�� (A) gives an

outer measure on the power set P (T ), which is countably additive on the �-�eld

1
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of all Borel subsets of T . If T = Rn, then the Hausdor¤ measure hn, restricted
to the �-�eld of the Borel subsets of Rn, equals the Lebesgue measure on Rn up
to a constant multiple. In particular, h1 (C) = � (C) for every Borel set C � R,
where � is the Lebesgue measure.

We also need

De�nition 2 ([2], Ch. 1) Let [a; b] � R, X be a Banach space, � > 0; n :=
d�e 2 N, d�e is the ceiling of the number, f : [a; b] ! X. We assume that
f (n) 2 L1 ([a; b] ; X). We call the Caputo-Bochner left fractional derivative of
order �:

(D�
�af) (x) :=

1

� (n� �)

Z x

a

(x� t)n���1 f (n) (t) dt; 8 x 2 [a; b] : (2)

If � 2 N, we set D�
�af := f (�) the ordinary X-valued derivative, and also set

D0
�af := f: Here � is the gamma function and integrals are of Bochner type [3].

By [2], Ch. 1, (D�
�af) (x) exists almost everywhere in x 2 [a; b] and D�

�af 2
L1 ([a; b] ; X).
If


f (n)



L1([a;b];X)
<1, then by [2], Ch. 1, D�

�af 2 C ([a; b] ; X) :
We are motivated by a Hilbert-Pachpatte left fractional inequality:

Theorem 3 ([2], Ch. 1) Let p; q > 1 : 1
p +

1
q = 1, and �1 > 1

q , �2 >
1
p ,

ni := d�ie, i = 1; 2. Here [ai; bi] � R, i = 1; 2; X is a Banach space. Let
fi 2 Cni�1 ([ai; bi] ; X), i = 1; 2. Set

Fxi (ti) :=

ni�1X
ji=0

(xi � ti)ji

ji!
f
(ji)
i (ti) , (3)

8 ti 2 [ai; xi], where xi 2 [ai; bi]; i = 1; 2. Assume that f (ni)i exists outside a
�-null Borel set Bxi � [ai; xi], such that

h1 (Fxi (Bxi)) = 0, 8 xi 2 [ai; bi] ; i = 1; 2: (4)

We also assume that f (ni)i 2 L1 ([ai; bi] ; X), and

f
(ki)
i (ai) = 0, ki = 0; 1; :::; ni � 1; i = 1; 2; (5)

and �
D�1
�a1f1

�
2 Lq ([a1; b1] ; X) ;

�
D�2
�a2f2

�
2 Lp ([a2; b2] ; X) : (6)

Then Z b1

a1

Z b2

a2

kf1 (x1)k kf2 (x2)k dx1dx2�
(x1�a1)p(�1�1)+1
p(p(�1�1)+1) + (x2�a2)q(�2�1)+1

q(q(�2�1)+1)

� �
(b1 � a1) (b2 � a2)
� (�1) � (�2)



D�1
�a1f1




Lq([a1;b1];X)



D�2
�a2f2




Lp([a2;b2];X)

: (7)
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We need

De�nition 4 ([2], Ch. 2) Let [a; b] � R, X be a Banach space, � > 0, m :=

d�e. We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b] ! X. We call the
Caputo-Bochner right fractional derivative of order �:�

D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(J � x)m���1 f (m) (J) dJ; 8 x 2 [a; b] : (8)

We observe that Dm
b�f (x) = (�1)

m
f (m) (x) ; for m 2 N, and D0

b�f (x) = f (x) :

By [2], Ch. 2,
�
D�
b�f

�
(x) exists almost everywhere on [a; b] and

�
D�
b�f

�
2

L1 ([a; b] ; X).
If


f (m)



L1([a;b];X)
<1, and � =2 N; then by [2], Ch. 2,D�

b�f 2 C ([a; b] ; X) ;
hence



D�
b�f



 2 C ([a; b]) :
We are motivated also by the following Hilbert-Pachpatte right fractional

inequality:

Theorem 5 ([2], Ch. 2) Let p; q > 1 : 1
p +

1
q = 1, and �1 > 1

q , �2 >
1
p ,

mi := d�ie, i = 1; 2. Here [ai; bi] � R, i = 1; 2; X is a Banach space. Let
fi 2 Cmi�1 ([ai; bi] ; X), i = 1; 2. Set

Fxi (ti) :=

mi�1X
ji=0

(xi � ti)ji

ji!
f
(ji)
i (ti) , (9)

8 ti 2 [xi; bi], where xi 2 [ai; bi]; i = 1; 2. Assume that f (mi)
i exists outside a

�-null Borel set Bxi � [xi; bi], such that

h1 (Fxi (Bxi)) = 0, 8 xi 2 [ai; bi] ; i = 1; 2: (10)

We also assume that f (mi)
i 2 L1 ([ai; bi] ; X), and

f
(ki)
i (bi) = 0, ki = 0; 1; :::; ;mi � 1; i = 1; 2; (11)

and �
Da1
b1�f1

�
2 Lq ([a1; b1] ; X) ;

�
D�2
b2�f2

�
2 Lp ([a2; b2] ; X) : (12)

Then Z b1

a1

Z b2

a2

kf1 (x1)k kf2 (x2)k dx1dx2�
(b1�x1)p(�1�1)+1
p(p(�1�1)+1) + (b2�x2)q(�2�1)+1

q(q(�2�1)+1)

� �
(b1 � a1) (b2 � a2)
� (�1) � (�2)



D�1
b1�f1




Lq([a1;b1];X)



D�2
b2�f2




Lp([a2;b2];X)

: (13)

In this work we derive Hilbert-Pachpatte inequalities for Banach algebra
valued functions with respect to their Canavati type generalized left and right
fractional derivatives. We cover also the sequential fractional case. We �nish
with applications.
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2 Background on Vectorial generalized Canavati
fractional calculus

All in this section come from [2], pp. 109-115 and [1].
Let g : [a; b]! R be a strictly increasing function. such that g 2 C1 ([a; b]),

and g�1 2 Cn ([g(a); g(b)]), n 2 N, (X; k�k) is a Banach space. Let f 2
Cn ([a; b] ; X), and call l := f �g�1 : [g (a) ; g (b)]! X. It is clear that l; l0; :::; l(n)

are continuous functions from [g (a) ; g (b)] into f ([a; b]) � X:
Let � � 1 such that [�] = n, n 2 N as above, where [�] is the integral part of

the number.
Clearly when 0 < � < 1, [�] = 0.
I) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the left Riemann-Liouville Bochner

fractional integral as

(Jz0� h) (z) :=
1

� (�)

Z z

z0

(z � t)��1 h (t) dt; (14)

for g (a) � z0 � z � g (b), where � is the gamma function; � (�) =
R1
0
e�tt��1dt:

We set Jz00 h = h:
Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0) ([g (a) ; g (b)] ; X)

of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] as:

C�g(x0) ([g (a) ; g (b)] ; X) =n
h 2 C [�] ([g (a) ; g (b)] ; X) : Jg(x0)1�� h

([�]) 2 C1 ([g (x0) ; g (b)] ; X)
o
: (15)

So let h 2 C�g(x0) ([g (a) ; g (b)] ; X), we de�ne the left g-generalized X-valued
fractional derivative of h of order �, of Canavati type, over [g (x0) ; g (b)] as

D�
g(x0)

h :=
�
J
g(x0)
1�� h

([�])
�0
: (16)

Clearly, for h 2 C�g(x0) ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)

h
�
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)�� h([�]) (t) dt; (17)

for all g (x0) � z � g (b) :
In particular, when f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)��
�
f � g�1

�([�])
(t) dt; (18)

for all g (x0) � z � g (b). We have that Dn
g(x0)

�
f � g�1

�
=
�
f � g�1

�(n)
and

D0
g(x0)

�
f � g�1

�
= f � g�1, see [1].
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By [1], we have for f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X) ; where x0 2 [a; b]

the following left generalized g-fractional, of Canavati type,X-valued Taylor�s
formula:

Theorem 6 Let f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
(i) If � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (19)

for all x0 � x � b:
(ii) If 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (20)

for all x0 � x � b:

II) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the right Riemann-Liouville Bochner
fractional integral as�

J�z0�h
�
(z) :=

1

� (�)

Z z0

z

(t� z)��1 h (t) dt; (21)

for g (a) � z � z0 � g (b) : We set J0z0�h = h:
Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0)� ([g (a) ; g (b)] ; X)

of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] as:

C�g(x0)� ([g (a) ; g (b)] ; X) :=n
h 2 C [�] ([g (a) ; g (b)] ; X) : J1��g(x0)�h

([�]) 2 C1 ([g (a) ; g (x0)] ; X)
o
: (22)

So let h 2 C�g(x0)� ([g (a) ; g (b)] ; X), we de�ne the right g-generalized X-
valued fractional derivative of h of order �, of Canavati type, over [g (a) ; g (x0)]
as

D�
g(x0)�h := (�1)

n�1
�
J1��g(x0)�h

([�])
�0
: (23)

Clearly, for h 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)�h

�
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)�� h([�]) (t) dt; (24)

for all g (a) � z � g (x0) � g (b) :

5
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In particular, when f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)��
�
f � g�1

�([�])
(t) dt;

(25)
for all g (a) � z � g (x0) � g (b).
We get that�

Dn
g(x0)�

�
f � g�1

��
(z) = (�1)n

�
f � g�1

�(n)
(z) (26)

and
�
D0
g(x0)�

�
f � g�1

��
(z) =

�
f � g�1

�
(z), all z 2 [g (a) ; g (b)] ; see [1].

By [1], we have for f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; where x0 2 [a; b] is
�xed, the following right generalized g-fractional, of Canavati type, X-valued
Taylor�s formula:

Theorem 7 Let f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
(i) If � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (27)

for all a � x � x0;
(ii) If 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (28)

all a � x � x0:

III) Denote by

Dm�
g(x0)

= D�
g(x0)

D�
g(x0)

:::D�
g(x0)

(m-times), m 2 N. (29)

We mention the following modi�ed and generalized left X-valued fractional Tay-
lor�s formula of Canavati type:

Theorem 8 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing: g�1 2
C1 ([g (a) ; g (b)]). Assume that

�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)] ; X),

0 < � < 1, x0 2 [a; b], for i = 0; 1; :::;m. Then

f (x) =
1

� ((m+ 1) �)

Z g(x)

g(x0)

(g (x)� z)(m+1)��1
�
D
(m+1)�
g(x0)

�
f � g�1

��
(z) dz;

(30)
all x0 � x � b:

6
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IV) Denote by

Dm�
g(x0)� = D

�
g(x0)�D

�
g(x0)�:::D

�
g(x0)� (m times), m 2 N. (31)

We mention the following modi�ed and generalized right X-valued fractional
Taylor�s formula of Canavati type:

Theorem 9 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing: g�1 2
C1 ([g (a) ; g (b)]). Assume that

�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)] ; X),

0 < � < 1, x0 2 [a; b], for all i = 0; 1; :::;m. Then

f (x) =
1

� ((m+ 1) �)

Z g(x0)

g(x)

(z � g (x))(m+1)��1
�
D
(m+1)�
g(x0)�

�
f � g�1

��
(z) dz;

(32)
all a � x � x0 � b:

3 Banach Algebras background

All here come from [4].
We need

De�nition 10 ([4], p. 245) A complex algebra is a vector space A over the
complex �led C in which a multiplication is de�ned that satis�es

x (yz) = (xy) z; (33)

(x+ y) z = xz + yz, x (y + z) = xy + xz; (34)

and
� (xy) = (�x) y = x (�y) ; (35)

for all x; y and z in A and for all scalars �.
Additionally if A is a Banach space with respect to a norm that satis�es the

multiplicative inequality

kxyk � kxk kyk (x 2 A, y 2 A) (36)

and if A contains a unit element e such that

xe = ex = x (x 2 A) (37)

and
kek = 1; (38)

then A is called a Banach algebra.
A is commutative i¤ xy = yx for all x; y 2 A:

7
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We make

Remark 11 Commutativity of A will be explicited stated when needed.
There exists at most one e 2 A that satis�es (37).
Inequality (36) makes multiplication to be continuous, more precisely left and

right continuous, see [4], p. 246.
Multiplication in A is not necessarily the numerical multiplication, it is some-

thing more general and it is de�ned abstractly, that is for x; y 2 A we have
xy 2 A, e.g. composition or convolution, etc.
For nice examples about Banach algebras see [4], p. 247-248, § 10.3.

We also make

Remark 12 Next we mention about integration of A-valued functions, see [4],
p. 259, § 10.22:
If A is a Banach algebra and f is a continuous A-valued function on some

compact Hausdor¤ space Q on which a complex Borel measure � is de�ned, thenR
fd� exists and has all the properties that were discussed in Chapter 3 of [4],

simply because A is a Banach space. However, an additional property can be
added to these, namely: If x 2 A, then

x

Z
Q

f d� =

Z
Q

xf (p) d� (p) (39)

and �Z
Q

f d�

�
x =

Z
Q

f (p)x d� (p) : (40)

The Bochner integrals we will involve in our article follow (39) and (40). Also,
let f 2 C ([a; b] ; X), where [a; b] � R, (X; k�k) is a Banach space. By [2], p. 3,
f is Bochner integrable.

4 Main Results

We start with a left generalized Canavati fractional Hilbert-Pachpatte type in-
equality over a Banach algebra.

Theorem 13 Let p; q > 1, such that 1
p +

1
q = 1, and (A; k�k) is a Banach

algebra; and i = 1; 2. Let also x0i 2 [ai; bi] � R, �i � 1, ni = [�i], fi 2
Cni ([ai; bi] ; A); gi 2 C1 ([ai; bi]), strictly increasing, such that g�1i 2 Cni ([gi (ai) ; gi (bi)]),
with

�
fi � g�1i

�(ki)
(gi (x0i)) = 0, ki = 0; 1; :::; ni � 1. Assume further that

fi � g�1i 2 C�igi(x0i) ([gi (ai) ; gi (bi)] ; A). ThenZ g1(b1)

g1(x01)

Z g2(b2)

g2(x02)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(z1�g1(x01))p(�1�1)+1

p(p(�1�1)+1) + (z2�g2(x02))q(�2�1)+1
q(q(�2�1)+1)

� �
8
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(g1 (b1)� g1 (x01)) (g2 (b2)� g2 (x02))
� (�1) � (�2)

(41)





D�1
g1(x01)

�
f1 � g�11

�






Lq([g1(x01);g1(b1)];A)







D�2
g2(x02)

�
f2 � g�12

�






Lp([g2(x02);g2(b2)];A)

:

Proof. By (19) and assumptions we get that

�
fi � g�1i

�
(zi) =

1

� (�i)

Z zi

gi(x0i)

(zi � ti)�i�1
�
D�i
gi(x0i)

�
fi � g�1i

��
(ti) dti; (42)

for all gi (x0i) � zi � gi (bi); i = 1; 2:
By Hölder�s inequality we obtain

�f1 � g�11 � (z1)

 � 1

� (�1)

Z z1

g1(x01)

(z1 � t1)�1�1



�D�1

g1(x01)

�
f1 � g�11

��
(t1)




 dt1 �
1

� (�1)

 Z z1

g1(x01)

(z1 � t1)p(�1�1) dt1

! 1
p
 Z z1

g1(x01)




�D�1
g1(x01)

�
f1 � g�11

��
(t1)




q dt1!
1
q

=

1

� (�1)

(z1 � g1 (x01))
p(�1�1)+1

p

(p (�1 � 1) + 1)
1
p

 Z z1

g1(x01)




�D�1
g1(x01)

�
f1 � g�11

��
(t1)




q dt1!
1
q

:

(43)
That is 

�f1 � g�11 � (z1)

 � 1

� (�1)

(z1 � g1 (x01))
p(�1�1)+1

p

(p (�1 � 1) + 1)
1
p Z z1

g1(x01)




�D�1
g1(x01)

�
f1 � g�11

��
(t1)




q dt1!
1
q

; (44)

for all g1 (x01) � z1 � g1 (b1).
Similarly, we prove that



�f2 � g�12 � (z2)

 � 1

� (�2)

(z2 � g2 (x02))
q(�2�1)+1

q

(q (�2 � 1) + 1)
1
q

 Z z2

g2(x02)




�D�2
g2(x02)

�
f2 � g�12

��
(t2)




p dt2!
1
p

; (45)

for all g2 (x02) � z2 � g2 (b2).
Therefore we have



�f1 � g�11 � (z1)

 � 1

� (�1)

(z1 � g1 (x01))
p(�1�1)+1

p

(p (�1 � 1) + 1)
1
p
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�D�1
g1(x01)

�
f1 � g�11

��






q;[g1(x01);g1(b1)]

; (46)

for all g1 (x01) � z1 � g1 (b1);
and 

�f2 � g�12 � (z2)

 � 1

� (�2)

(z2 � g2 (x02))
q(�2�1)+1

q

(q (�2 � 1) + 1)
1
q





�D�2

g2(x02)

�
f2 � g�12

��






p;[g2(x02);g2(b2)]

; (47)

for all g2 (x02) � z2 � g2 (b2).
Hence we get that

�f1 � g�11 � (z1)



�f2 � g�12 � (z2)

 � 1

� (�1) � (�2) (p (�1 � 1) + 1)
1
p (q (�2 � 1) + 1)

1
q

(z1 � g1 (x01))
p(�1�1)+1

p (z2 � g2 (x02))
q(�2�1)+1

q (48)





�D�1
g1(x01)

�
f1 � g�11

��






q;[g1(x01);g1(b1)]







�D�2
g2(x02)

�
f2 � g�12

��






p;[g2(x02);g2(b2)]

�

(using Young�s inequality for a; b � 0, a
1
p b

1
q � a

p +
b
q )

1

� (�1) � (�2)

 
(z1 � g1 (x01))p(�1�1)+1

p(p (�1 � 1) + 1)
+
(z2 � g2 (x02))q(�2�1)+1

q(q (�2 � 1) + 1)

!






�D�1

g1(x01)

�
f1 � g�11

��






Lq([g1(x01);g1(b1)];A)







�D�2
g2(x02)

�
f2 � g�12

��






Lp([g2(x02);g2(b2)];A)

;

8 (z1; z2) 2 [g1 (x01) ; g1 (b1)]� [g2 (x02) ; g2 (b2)] :
So far we have 

�f1 � g�11 � (z1) �f2 � g�12 � (z2)

�

(z1�g1(x01))p(�1�1)+1
p(p(�1�1)+1) + (z2�g2(x02))q(�2�1)+1

q(q(�2�1)+1)

� � (50)



�f1 � g�11 � (z1)



�f2 � g�12 � (z2)

�
(z1�g1(x01))p(�1�1)+1

p(p(�1�1)+1) + (z2�g2(x02))q(�2�1)+1
q(q(�2�1)+1)

� � (51)

1

� (�1) � (�2)







�D�1
g1(x01)

�
f1 � g�11

��






Lq([g1(x01);g1(b1)];A)





�D�2

g2(x02)

�
f2 � g�12

��






Lp([g2(x02);g2(b2)];A)

;

8 (z1; z2) 2 [g1 (x01) ; g1 (b1)]� [g2 (x02) ; g2 (b2)] :
The denominators in (50), (51) can be zero only when both z1 = g1 (x01)

and z2 = g2 (x02) :
Therefore we obtain (41), by integrating (50), (51) over [g1 (x01) ; g1 (b1)] �

[g2 (x02) ; g2 (b2)] :

We continue with a right generalized Canavati fractional Hilbert-Pachpatte
type inequality over a Banach algebra.

10
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Theorem 14 All as in Theorem 13, however now it is fi�g�1i 2 C�igi(x0i)� ([gi (ai) ; gi (bi)] ; A),
for i = 1; 2. ThenZ g1(x01)

g1(a1)

Z g2(x02)

g2(a2)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(g1(x01)�z1)p(�1�1)+1

p(p(�1�1)+1) + (g2(x02)�z2)q(�2�1)+1
q(q(�2�1)+1)

� �
(g1 (x01)� g1 (a1)) (g2 (x02)� g2 (a2))

� (�1) � (�2)
(52)





D�1

g1(x01)�
�
f1 � g�11

�






Lq([g1(a1);g1(x01)];A)







D�2
g2(x02)�

�
f2 � g�12

�






Lp([g2(a2);g2(x02)];A)

:

Proof. Similar to Theorem 13, by using now (27).
Next comes a sequential left generalized Canavati fractional Hilbert-Pachpatte

type inequality over a Banach algebra.

Theorem 15 Let p; q > 1, such that 1
p +

1
q = 1, and (A; k�k) is a Banach

algebra; and i = 1; 2. Let also fi 2 C1 ([ai; bi] ; A); gi 2 C1 ([ai; bi]), strictly
increasing, such that g�1i 2 C1 ([gi (ai) ; gi (bi)]). Assume that 1

(mi+1)q
< �i < 1,

x0i 2 [ai; bi], and D
ji�i
gi(x0i)

�
fi � g�1i

�
2 C�igi(x0i) ([gi (ai) ; gi (bi)] ; A) ; for ji =

0; 1; :::;mi 2 N. ThenZ g1(b1)

g1(x01)

Z g2(b2)

g2(x02)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(z1�g1(x01))p((m1+1)�1�1)+1

p(p((m1+1)�1�1)+1) + (z2�g2(x02))q((m2+1)�2�1)+1

q(q((m2+1)�2�1)+1)

� �
(g1 (b1)� g1 (x01)) (g2 (b2)� g2 (x02))
� ((m1 + 1) �1) � ((m2 + 1) �2)

(53)





D(m1+1)�1
g1(x01)

�
f1 � g�11

�






Lq([g1(x01);g1(b1)];A)







D(m2+1)�2
g2(x02)

�
f2 � g�12

�






Lp([g2(x02);g2(b2)];A)

:

Proof. Using (30), as similar to Theorem 13 the proof is omitted.
The right side analog of Theorem 15 follows:

Theorem 16 Let p; q > 1, such that 1
p +

1
q = 1, and (A; k�k) is a Banach

algebra; and i = 1; 2. Let also fi 2 C1 ([ai; bi] ; A); gi 2 C1 ([ai; bi]), strictly
increasing, such that g�1i 2 C1 ([gi (ai) ; gi (bi)]). Assume that 1

(mi+1)q
< �i <

1, x0i 2 [ai; bi], and D
ji�i
gi(x0i)�

�
fi � g�1i

�
2 C�igi(x0i)� ([gi (ai) ; gi (bi)] ; A) ; for

ji = 0; 1; :::;mi 2 N. ThenZ g1(x01)

g1(a1)

Z g2(x02)

g2(a2)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(g1(x01)�z1)p((m1+1)�1�1)+1

p(p((m1+1)�1�1)+1) + (g2(x02)�z2)q((m2+1)�2�1)+1

q(q((m2+1)�2�1)+1)

� �
(g1 (x01)� g1 (a1)) (g2 (x02)� g2 (a2))

� ((m1 + 1) �1) � ((m2 + 1) �2)
(54)





D(m1+1)�1

g1(x01)�
�
f1 � g�11

�






Lq([g1(a1);g1(x01)];A)







D(m2+1)�2
g2(x02)�

�
f2 � g�12

�






Lp([g2(a2);g2(x02)];A)

:

Proof. Using (32), as similar to Theorem 13 is omitted.
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5 Applications

We give

Corollary 17 (to Theorem 13) All as in Theorem 13 for gi (t) = et, i = 1; 2:
Then Z eb1

ex01

Z eb2

ex02

k(f1 � log) (z1) (f2 � log) (z2)k dz1dz2�
(z1�ex01 )p(�1�1)+1

p(p(�1�1)+1) + (z2�ex02 )q(�2�1)+1
q(q(�2�1)+1)

� �
�
eb1 � ex01

� �
eb2 � ex02

�
� (�1) � (�2)

(55)

kkD�1
ex01 (f1 � log)kkLq([ex01 ;eb1 ];A) kkD

�2
ex02 (f2 � log)kkLp([ex02 ;eb2 ];A) :

We �nish with

Corollary 18 (to Theorem 15) All as in Theorem 15 for [a1; b1] � R, [a2; b2] �
(0;1), and g1 (t) = et and g2 (t) = log t. ThenZ eb1

ex01

Z log(b2)

log(x02)

k(f1 � log) (z1) (f2 � et) (z2)k dz1dz2�
(z1�ex01 )p((m1+1)�1�1)+1

p(p((m1+1)�1�1)+1) + (z2�log(x02))q((m2+1)�2�1)+1

q(q((m2+1)�2�1)+1)

� �
�
eb1 � ex01

�
log (b2=x02)

� ((m1 + 1) �1) � ((m2 + 1) �2)
(56)





D(m1+1)�1

ex01 (f1 � log)








Lq([ex01 ;eb1 ];A)







D(m2+1)�2
log(x02)

�
f2 � et

�






Lp([log(x02);log(b2)];A)

:
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Abstract

Using a generalized vectorial Taylor formula involving ordinary vector
derivatives we establish mixed Ostrowski, Opial and Hilbert-Pachpatte
type inequalities for several Banach algebra valued functions. The esti-
mates are with respect to all norms k�kp, 1 � p � 1. We �nish with
applications.

2020 Mathematics Subject Classi�cation : 26D10, 26D15.
Keywords and Phrases: vector valued derivative, generalized integral in-
equalities, Ostrowski-Opial-Hilbert-Pachpatte inequalities, Banach algebra.

1 Introduction

The following result motivates our work.

Theorem 1 (1938, Ostrowski [6]) Let f : [a; b]! R be continuous on [a; b] and
di¤erentiable on (a; b) whose derivative f 0 : (a; b)! R is bounded on (a; b), i.e.,
kf 0ksup1 := sup

t2(a;b)
jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0ksup1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.

1
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Ostrowski type inequalities have great applications to integral approxima-
tions in Numerical Analysis.
We present ([1], Ch. 8,9) mixed fractional Ostrowski inequalities for several

functions for various norms.
In this article we generalize [1], Ch. 8,9 for several Banach algebra valued

functions by using ordinary vector valued derivatives and our integrals here are
of Bochner type [4]. Motivation comes also from [3].
We are also inspired by Z. Opial [5], 1960, famous inequality.

Theorem 2 Let x (t) 2 C1 ([0; h]) be such that x (0) = x (h) = 0, and x (t) > 0
in (0; h). Then Z h

0

jx (t)x0 (t)j dt � h

4

Z h

0

(x0 (t))
2
dt: (2)

In (2), the constant h
4 is the best possible. Inequality (2) holds as equality for

the optimal function

x (t) =

�
ct; 0 � t � h

2 ;

c (h� t) ; h
2 � t � h;

(3)

where c > 0 is an arbitrary constant.

Opial-type inequalities are used a lot in proving uniqueness of solutions to
di¤erential equations and also to give upper bounds to their solutions.
In this work we also derive Opial type inequalities for Banach algebra valued

functions with respect to ordinary vector valued derivatives.
Additionally we include in this article related Hilbert-Pachpatte type in-

equalities, [7]. We �nish with selective applications to Ostrowski, Opial and
Hilbert-Pachpatte inequalities.

2 About Banach Algebras

All here come from [8].
We need

De�nition 3 ([8], p. 245) A complex algebra is a vector space A over the
complex �eld C in which a multiplication is de�ned that satis�es

x (yz) = (xy) z; (4)

(x+ y) z = xz + yz, x (y + z) = xy + xz; (5)

and
� (xy) = (�x) y = x (�y) ; (6)

2
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for all x; y and z in A and for all scalars �.
Additionally if A is a Banach space with respect to a norm that satis�es the

multiplicative inequality

kxyk � kxk kyk (x 2 A, y 2 A) (7)

and if A contains a unit element e such that

xe = ex = x (x 2 A) (8)

and
kek = 1; (9)

then A is called a Banach algebra.
A is commutative i¤ xy = yx for all x; y 2 A:

We make

Remark 4 Commutativity of A will be explicited stated when needed.
There exists at most one e 2 A that satis�es (8).
Inequality (7) makes multiplication to be continuous, more precisely left and

right continuous, see [8], p. 246.
Multiplication in A is not necessarily the numerical multiplication, it is some-

thing more general and it is de�ned abstractly, that is for x; y 2 A we have
xy 2 A, e.g. composition or convolution, etc.
For nice examples about Banach algebras see [8], p. 247-248, § 10.3.

We also make

Remark 5 Next we mention about integration of A-valued functions, see [8],
p. 259, § 10.22:
If A is a Banach algebra and f is a continuous A-valued function on some

compact Hausdor¤ space Q on which a complex Borel measure � is de�ned, thenR
fd� exists and has all the properties that were discussed in Chapter 3 of [8],

simply because A is a Banach space. However, an additional property can be
added to these, namely: If x 2 A, then

x

Z
Q

f d� =

Z
Q

xf (p) d� (p) (10)

and �Z
Q

f d�

�
x =

Z
Q

f (p)x d� (p) : (11)

The Bochner integrals we will involve in our article follow (10) and (11).

3
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3 Background

We use the following generalized vector Taylor�s formula:

Theorem 6 ([2], p. 97) Let n 2 N and f 2 Cn ([a; b] ; X), where [a; b] � R
and (X; k�k) is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that
g�1 2 Cn ([g (a) ; g (b)]). Let any x; y 2 [a; b]. Then

f (x) = f (y) +
n�1X
i=1

(g (x)� g (y))i

i!

�
f � g�1

�(i)
(g (y)) (12)

+
1

(n� 1)!

Z g(x)

g(y)

(g (x)� z)n�1
�
f � g�1

�(n)
(z) dz:

The derivatives here are de�ned similarly to the numerical ones, see [9], pp.
83-86.
The above integral is of Bochner type [4], and so are the integrals in this

work. By [2], p. 3, if f 2 C ([a; b] ; X) then f is Bochner integrable.

4 Main Results

We start with mixed generalized Ostrowski type inequalities for several functions
that are Banach algebra valued. A uniform estimate follows.

Theorem 7 Let n 2 N and fi 2 Cn ([a; b] ; A), i = 1; :::; r 2 N � f1g; where
[a; b] � R and (A; k�k) is a Banach algebra. Let g 2 C1 ([a; b]) ; strictly increas-
ing, such that g�1 2 Cn ([g (a) ; g (b)]). We assume that

�
fi � g�1

�(j)
(g (x0)) =

0; j = 1; :::; n� 1; i = 1; :::; r; where x0 2 [a; b] be �xed. Denote by

E (f1; :::; fr) (x0) :=

rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775 : (13)

Then
1)

E (f1; :::; fr) (x0) =
1

(n� 1)!

rX
i=1

2664(�1)n
2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775+
(14)

4
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2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775
3775 ;

and
2)

kE (f1; :::; fr) (x0)k �
1

n!8>><>>:
rX
i=1

2664
2664





�fi � g�1�(n)





1;[g(a);g(x0)]

(g (x0)� g (a))n

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+

(15)2664





�fi � g�1�(n)





1;[g(x0);g(b)]
(g (b)� g (x0))n

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775
9>>=>>; :

Proof. Let x0 2 [a; b] such that
�
fi � g�1

�(j)
(g (x0)) = 0, j = 1; :::; n � 1;

i = 1; :::; r: Let x 2 [a; x0], then by Theorem 6 we have

fi (x)� fi (x0) =
1

(n� 1)!

Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz (16)

=
(�1)n

(n� 1)!

Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz;

for i = 1; :::; r:
And for x 2 [x0; b], then again by Theorem 6 we get

fi (x)� fi (x0) =
1

(n� 1)!

Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz; (17)

for i = 1; :::; r:

We multiply (16) by
�Qr

j=1
j 6=i

fj (x)

�
to get:

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)�
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =
�Qr

j=1
j 6=i

fj (x)

�
(�1)n

(n� 1)!

Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz; (18)
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8 x 2 [a; x0] ; for i = 1; :::; r:
Similarly, we get (by (17))0BB@ rY

j=1
j 6=i

fj (x)

1CCA fi (x)�
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =
�Qr

j=1
j 6=i

fj (x)

�
(n� 1)!

Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz; (19)

8 x 2 [x0; b] ; for i = 1; :::; r:
Adding (18) and (19) as separate groups, we obtain

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)� rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =

(�1)n

(n� 1)!

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz; (20)

8 x 2 [a; x0] ;
and

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)� rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =

1

(n� 1)!

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz; (21)

8 x 2 [x0; b] :
Next, we integrate (20) and (21) with respect to x 2 [a; b]. We have

rX
i=1

Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx� rX
i=1

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0) = (22)

(�1)n

(n� 1)!

rX
i=1

2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775 ;
6
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and

rX
i=1

Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx� rX
i=1

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0) = (23)

1

(n� 1)!

rX
i=1

2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775 :
Finally, adding (22) and (23) we obtain the useful identity

E (f1; :::; fr) (x0) :=

rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775 = 1

(n� 1)!

rX
i=1

2664(�1)n
2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775 +
2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775
3775 ; (24)

proving (14).
Therefore, we get that

kE (f1; :::; fr) (x0)k =








rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775








 �

1

(n� 1)!

8>><>>:
rX
i=1

2664









2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775










+










2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz

!
dx

3775









3775
9>>=>>; �

7
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1

(n� 1)!

8>><>>:
rX
i=1

2664
2664Z x0

a










0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1
�
fi � g�1

�(n)
(z) dz

!







 dx
3775

+

2664Z b

x0










0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1
�
fi � g�1

�(n)
(z) dz

!







 dx
3775
3775
9>>=>>; �

(25)

1

(n� 1)!

8>><>>:
rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA
 Z g(x0)

g(x)

(z � g (x))n�1



�fi � g�1�(n) (z)


 dz! dx

3775

+

2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA
 Z g(x)

g(x0)

(g (x)� z)n�1



�fi � g�1�(n) (z)


 dz! dx

3775
3775
9>>=>>; =: (�) :

(26)
Hence it holds

kE (f1; :::; fr) (x0)k � (�) : (27)

We have that

(�) � 1

n!

8>><>>:
rX
i=1

2664
2664





�fi � g�1�(n)





1;[g(a);g(x0)]

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x0)� g (x))n dx
3775

+

2664





�fi � g�1�(n)





1;[g(x0);g(b)]

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x)� g (x0))n dx
3775
3775
9>>=>>; �

(28)

1

n!

8>><>>:
rX
i=1

2664
2664





�fi � g�1�(n)





1;[g(a);g(x0)]

(g (x0)� g (a))n

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775

+

2664





�fi � g�1�(n)





1;[g(x0);g(b)]
(g (b)� g (x0))n

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775
9>>=>>; ;

(29)
proving (15).
Next comes an L1 estimate.

8
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Theorem 8 All as in Theorem 7. Then

kE (f1; :::; fr) (x0)k �
1

(n� 1)!8>><>>:
rX
i=1

2664
2664





�fi � g�1�(n)





L1([g(a);g(x0)])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x0)� g (x))n�1 dx
3775

+

2664





�fi � g�1�(n)





L1([g(x0);g(b)])
Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x)� g (x0))n�1 dx
3775
3775
9>>=>>; :

(30)

Proof. By (26), (27), we get that

kE (f1; :::; fr) (x0)k � (�) �
1

(n� 1)!8>><>>:
rX
i=1

2664
2664





�fi � g�1�(n)





L1([g(a);g(x0)])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x0)� g (x))n�1 dx
3775

+

2664





�fi � g�1�(n)





L1([g(x0);g(b)])
Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x)� g (x0))n�1 dx
3775
3775
9>>=>>; ;

(31)
proving (30).
An Lp estimate follows.

Theorem 9 All as in Theorem 7, and let p; q > 1 : 1p +
1
q = 1. Then

kE (f1; :::; fr) (x0)k �
1

(n� 1)! (p (n� 1) + 1)
1
p

rX
i=1

2664





�fi � g�1�(n)





Lq([g(a);g(x0)])
0BB@Z x0

a

(g (x0)� g (x))n�
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA

+






�fi � g�1�(n)







Lq([g(x0);g(b)])

0BB@Z b

x0

(g (x)� g (x0))n�
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775 :

(32)

9
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Proof. By (26), (27), we get that

kE (f1; :::; fr) (x0)k � (�) �
1

(n� 1)!8>><>>:
rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA
 Z g(x0)

g(x)

(z � g (x))p(n�1) dz
! 1

p

 Z g(x0)

g(x)




�fi � g�1�(n) (z)


q dz!
1
q

dx

35+
2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA
 Z g(x)

g(x0)

(g (x)� z)p(n�1) dz
! 1

p

(33)

 Z g(x)

g(x0)




�fi � g�1�(n) (z)


q dz!
1
q

dx

35359=; =
1

(n� 1)!8>><>>:
rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x0)� g (x))
p(n�1)j+1

p

(p (n� 1) + 1)
1
p







�fi � g�1�(n)






Lq([g(a);g(x0)])

dx

3775

+

2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x)� g (x0))
p(n�1)j+1

p

(p (n� 1) + 1)
1
p







�fi � g�1�(n)






Lq([g(x0);g(b)])

dx

3775
3775
9>>=>>;

=
1

(n� 1)! (p (n� 1) + 1)
1
p8>><>>:

rX
i=1

2664





�fi � g�1�(n)





Lq([g(a);g(x0)])
0BB@Z x0

a

(g (x0)� g (x))n�
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA

+






�fi � g�1�(n)







Lq([g(x0);g(b)])

0BB@Z b

x0

(g (x)� g (x0))n�
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
9>>=>>; ;

(34)
proving (32).
Next we present a left generalized Opial type inequality for ordinary deriv-

atives:

10
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Theorem 10 Let p; q > 1 : 1p +
1
q = 1, and n 2 N; f 2 Cn ([a; b] ; A); where

[a; b] � R and (A; k�k) is a Banach algebra. Let g 2 C1 ([a; b]), strictly increas-
ing, such that g�1 2 Cn ([g (a) ; g (b)]) : We assume that

�
f � g�1

�(j)
(g (x0)) =

0, j = 0; 1; :::; n� 1; where x0 2 [a; b] be �xed. ThenZ g(x)

g(x0)




�f � g�1� (z) �f � g�1�(n) (z)


 dz �
(g (x)� g (x0))n+

1
p�

1
q

2
1
q (n� 1)! [(p (n� 1) + 1) (p (n� 1) + 2)]

1
p

 Z g(x)

g(x0)




�f � g�1�(n) (z)


q dz! 2
q

;

(35)
for all x0 � x � b:

Proof. Let x0 2 [a; b] such that
�
f � g�1

�(j)
(g (x0)) = 0, j = 0; 1; :::; n� 1.

For x 2 [x0; b] by Theorem 6 we have

�
f � g�1

�
(g (z)) =

1

(n� 1)!

Z g(x)

g(x0)

(g (x)� z)n�1
�
f � g�1

�(n)
(z) dz: (36)

By Hölder�s inequality we obtain



�f � g�1� (g (x))

 � 1

(n� 1)!

Z g(x)

g(x0)

(g (x)� z)n�1



�f � g�1�(n) (z)


 dz �

(37)

1

(n� 1)!

 Z g(x)

g(x0)

(g (x)� z)p(n�1) dt
! 1

p
 Z g(x)

g(x0)




�f � g�1�(n) (z)


q dz! 1
q

=

1

(n� 1)!
(g (x)� g (x0))

p(n�1)+1
p

(p (n� 1) + 1)
1
p

 Z g(x)

g(x0)




�f � g�1�(n) (z)


q dz! 1
q

:

Call

' (g (x)) :=

Z g(x)

g(x0)




�f � g�1�(n) (z)


q dz; (38)

' (g (x0)) = 0:

Thus
d' (g (x))

dg (x)
=



�f � g�1�(n) (g (x))


q � 0; (39)

and �
d' (g (x))

dg (x)

� 1
q

=



�f � g�1�(n) (g (x))


 � 0; (40)

8 g (x) 2 [g (x0) ; g (b)] :

11
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Consequently, we get

�f � g�1� (g (w))




�f � g�1�(n) (g (w))


 �
(g (w)� g (x0))

p(n�1)+1
p

(n� 1)! (p (n� 1) + 1)
1
p

�
' (g (w))

d' (g (w))

dg (w)

� 1
q

; (41)

8 g (w) 2 [g (x0) ; g (b)] :
Then we observe thatZ g(x)

g(x0)




�f � g�1� (g (w)) �f � g�1�(n) (g (w))


 dg (w) (7)�
Z g(x)

g(x0)



�f � g�1� (g (w))




�f � g�1�(n) (g (w))


 dg (w) �
1

(n� 1)! (p (n� 1) + 1)
1
pZ g(x)

g(x0)

(g (w)� g (x0))
p(n�1)+1

p

�
' (g (w))

d' (g (w))

dg (w)

� 1
q

dg (w) � (42)

1

(n� 1)! (p (n� 1) + 1)
1
p Z g(x)

g(x0)

(g (w)� g (x0))p(n�1)+1 dg (w)
! 1

p
 Z g(x)

g(x0)

' (g (w))
d' (g (w))

dg (w)
dg (w)

! 1
q

=

1

(n� 1)! (p (n� 1) + 1)
1
p (p (n� 1) + 2)

1
p

(g (x)� g (x0))
p(n�1)+2

p

 Z g(x)

g(x0)

' (g (w)) d' (g (w))

! 1
q

= (43)

(g (x)� g (x0))n+
1
p�

1
q

(n� 1)! (p (n� 1) + 1)
1
p (p (n� 1) + 2)

1
p

�
'2 (g (x))

2

� 1
q

=

(g (x)� g (x0))n+
1
p�

1
q

2
1
q (n� 1)! ((p (n� 1) + 1) (p (n� 1) + 2))

1
p

 Z g(x)

g(x0)




�f � g�1�(n) (z)


q dz! 2
q

;

(44)
for all g (x0) � g (x) � g (b), proving (35).
The corresponding right generalized Opial type inequality follows:

12
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Theorem 11 All as in Theorem 10. ThenZ g(x0)

g(x)




�f � g�1� (z) �f � g�1�(n) (z)


 dz �
(g (x0)� g (x))n+

1
p�

1
q

2
1
q (n� 1)! ((p (n� 1) + 1) (p (n� 1) + 2))

1
p

 Z g(x0)

g(x)




�f � g�1�(n) (z)


q dz! 2
q

;

(45)
for all a � x � x0:

Proof. As similar to Theorem 10 is omitted.
Next we present a left generalized Hilbert-Pachpatte inequality for ordinary

derivatives.

Theorem 12 Let i = 1; 2; p; q > 1 : 1p+
1
q = 1, and ni 2 N, fi 2 C

ni ([ai; bi] ; A);
where [ai; bi] � R and (A; k�k) is a Banach algebra. Let gi 2 C1 ([ai; bi]),
strictly increasing, such that g�1i 2 Cni ([gi (ai) ; gi (bi)]). We assume that�
fi � g�1i

�(ji)
(gi (x0i)) = 0, ji = 0; 1; :::; ni � 1; where x0i 2 [ai; bi] be �xed.

Then Z g1(b1)

g1(x01)

Z g2(b2)

g2(x02)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(z1�g1(x01))p(n1�1)+1

p(p(n1�1)+1) + (z2�g2(x02))q(n2�1)+1
q(q(n2�1)+1)

� �
(g1 (b1)� g1 (x01)) (g2 (b2)� g2 (x02))

(n1 � 1)! (n2 � 1)!
(46)





�f1 � g�11 �(n1)







Lq([g1(x01);g1(b1)];A)







�f2 � g�12 �(n2)






Lp([g2(x02);g2(b2)];A)

:

Proof. Let i = 1; 2; x0 2 [ai; bi], such that
�
fi � g�1i

�(ji)
(gi (x0i)) = 0,

ji = 0; 1; :::; ni � 1.
For xi 2 [x0i; bi] by Theorem 6 we have

�
fi � g�1i

�
(gi (xi)) =

1

(ni � 1)!

Z gi(xi)

gi(x0i)

(gi (xi)� zi)ni�1
�
fi � g�1i

�(ni)
(zi) dzi:

(47)
As in (37) we have



�f1 � g�11 � (g1 (x1))

 � 1

(n1 � 1)!
(g1 (x1)� g1 (x01))

p(n1�1)+1
p

(p (n1 � 1) + 1)
1
p

 Z g1(x1)

g1(x01)




�f1 � g�11 �(n1) (z)


q dz
! 1

q

�

13
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1

(n1 � 1)!
(g1 (x1)� g1 (x01))

p(n1�1)+1
p

(p (n1 � 1) + 1)
1
p







�f1 � g�11 �(n1)






Lq([g1(x01);g1(b1)])

;

(48)
for all x1 2 [x01; b1] :
Similarly, we obtain that



�f2 � g�12 � (g2 (x2))

 � 1

(n2 � 1)!
(g2 (x2)� g2 (x02))

q(n2�1)+1
q

(q (n2 � 1) + 1)
1
q





�f2 � g�12 �(n2)







Lp([g2(x02);g2(b2)])
; (49)

for all x2 2 [x02; b2] :
By (48) and (49) we get

�f1 � g�11 � (g1 (x1)) �f2 � g�12 � (g2 (x2))

 �

�f1 � g�11 � (g1 (x1))



�f2 � g�12 � (g2 (x2))

 � 1

(n1 � 1)! (n2 � 1)!

(g1 (x1)� g1 (x01))
p(n1�1)+1

p

(p (n1 � 1) + 1)
1
p

(g2 (x2)� g2 (x02))
q(n2�1)+1

q

(q (n2 � 1) + 1)
1
q

(50)







�f1 � g�11 �(n1)






Lq([g1(x01);g1(b1)])







�f2 � g�12 �(n2)






Lp([g2(x02);g2(b2)])

�

(using Young�s inequality for a; b � 0, a
1
p b

1
q � a

p +
b
q )

1

(n1 � 1)! (n2 � 1)!

 
(g1 (x1)� g1 (x01))p(n1�1)+1

p (p (n1 � 1) + 1)
+
(g2 (x2)� g2 (x02))q(n2�1)+1

q (q (n2 � 1) + 1)

!
(51)





�f1 � g�11 �(n1)







Lq([g1(x01);g1(b1)])







�f2 � g�12 �(n2)






Lp([g2(x02);g2(b2)])

;

8 (x1; x2) 2 [x01; b1]� [x02; b2] :
So far we have

�f1 � g�11 � (g1 (x1)) �f2 � g�12 � (g2 (x2))

�

(g1(x1)�g1(x01))p(n1�1)+1
p(p(n1�1)+1) + (g2(x2)�g2(x02))q(n2�1)+1

q(q(n2�1)+1)

� � (52)

1

(n1 � 1)! (n2 � 1)!







�f1 � g�11 �(n1)






Lq([g1(x01);g1(b1)];A)





�f2 � g�12 �(n2)







Lp([g2(x02);g2(b2)];A)
;

8 (x1; x2) 2 [x01; b1]� [x02; b2] :
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The denominator in (52) can be zero, only when both g1 (x1) = g1 (x01) and
g2 (x2) = g2 (x02) :

Therefore we obtain (46), by integrating (52) over [g1 (x01) ; g1 (b1)]�[g2 (x02) ; g2 (b2)] :

It follows the right generalized Hilbert-Pachpate inequality for ordinary
derivatives.

Theorem 13 All as in Theorem 12. ThenZ g1(x01)

g1(a1)

Z g2(x02)

g2(a2)



�f1 � g�11 � (z1) �f2 � g�12 � (z2)

 dz1dz2�
(g1(x01)�z1)p(n1�1)+1

p(p(n1�1)+1) + (g2(x02)�z2)q(n2�1)+1
q(q(n2�1)+1)

� �
(g1 (x01)� g1 (a1)) (g2 (x02)� g2 (a2))

(n1 � 1)! (n2 � 1)!
(53)





�f1 � g�11 �(n1)







Lq([g1(a1);g1(x01)];A)







�f2 � g�12 �(n2)






Lp([g2(a2);g2(x02)];A)

:

Proof. As similar to theorem 12 is omitted.

5 Applications

We make

Remark 14 Assume next that (A; k�k) is a commutative Banach algebra. Then,
we get that

E (f1; :::; fr) (x0)
(13)
= r

Z b

a

0@ rY
j=1

fj (x)

1A dx� rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0) ;

(54)
x0 2 [a; b] :
When r = 2, we have that

E (f1; f2) (x0) = 2

Z b

a

f1 (x) f2 (x) dx�f1 (x0)
Z b

a

f2 (x) dx�f2 (x0)
Z b

a

f1 (x) dx;

(55)
x0 2 [a; b] :

We give

Corollary 15 (to Theorem 7) All as in Theorem 7, (A; k�k) is a commutative
Banach algebra, r = 2. Then

kE (f1; f2) (x0)k �
1

n!

2X
i=1

��





�fi � g�1�(n)






1;[g(a);g(x0)]

15
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(g (x0)� g (a))n

0BB@Z x0

a

0BB@ 2Y
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+

2664





�fi � g�1�(n)





1;[g(x0);g(b)]
(g (b)� g (x0))n

0BB@Z b

x0

0BB@ 2Y
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 :
(56)

It follows

Corollary 16 (to Corollary 15) All as in Corollary 15, with g (t) = et. Then

kE (f1; f2) (x0)k �
1

n!

2X
i=1

��





(fi � log)(n)






1;[ea;ex0 ]

(ex0 � ea)n

0BB@Z x0

a

0BB@ 2Y
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+

2664





(fi � log)(n)





1;[ex0 ;eb]

�
eb � ex0

�n
0BB@Z b

x0

0BB@ 2Y
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 : (57)

We continue with

Corollary 17 (to Theorem 10) All as in Theorem 10 for g (t) = et. ThenZ ex

ex0




((f � log) (z)) (f � log)(n) (z)


 dz �
(ex � ex0)n+

1
p�

1
q

2
1
q (n� 1)! [(p (n� 1) + 1) (p (n� 1) + 2)]

1
p

�Z z

ex0




(f � log)(n) (z)


q dz� 2
q

;

(58)
for all x0 � x � b:

We �nish with

Corollary 18 (to Theorem 12) All as in Theorem 12 for gi (t) = et, i = 1; 2:
Then Z eb1

ex01

Z eb2

ex02

k(f1 � log) (z1) (f2 � log) (z2)k dz1dz2�
(z1�ex01 )p(n1�1)+1

p(p(n1�1)+1) + (z2�ex02 )q(n2�1)+1
q(q(n2�1)+1)

� �
16
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�
eb1 � ex01

� �
eb2 � ex02

�
(n1 � 1)! (n2 � 1)!

(59)





(f1 � log)(n1)






Lq([ex01 ;eb1 ];A)







(f2 � log)(n2)






Lp([ex02 ;eb2 ];A)

:

The simplest applications derive when g (t) = t and A = R, leading to basic
known results.
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Abstract

Here we are dealing with several smooth functions from a compact
convex set of Rk, k � 2 to a Banach algebra. For these we prove general
multivariate Ostrowski type inequalities with estimates in norms k�kp ; for
all 1 � p � 1. We provide also interesting applications.

2020 Mathematics Subject Classi�cation : 26D10, 26D15.
Keywords and Phrases: Multivariate integral inequality, Ostrowski inequal-
ity, mixed partial derivative, Banach algebra valued functions.

1 Introduction

In 1938, A Ostrowski [5] proved the following famous inequality:

Theorem 1 (1938, Ostrowski [6]) Let f : [a; b]! R be continuous on [a; b] and
di¤erentiable on (a; b) whose derivative f 0 : (a; b)! R is bounded on (a; b), i.e.,
kf 0ksup1 := sup

t2(a;b)
jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0ksup1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.

Since then there has been a lot of activity around these inequalities with
important applications to Numerical Analysis and Probability.
This article is also greatly motivated by the following result:

1
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Theorem 2 (see [1]) Let f 2 C1
�

kQ
i=1

[ai; bi]

�
, where ai < bi; ai; bi 2 R,

i = 1; :::; k, ans let �!x0 := (x01; :::; x0k) 2
kQ
i=1

[ai; bi] be �xed. Then

���������
1

kQ
i=1

(bi � ai)

Z b1

a1

:::

Z bi

ai

:::

Z bk

ak

f (z1; :::; zk) dz1:::dzk � f (�!x0)

��������� � (2)

kX
i=1

 
(x0i � ai)2 + (bi � x0i)2

2 (bi � ai)

!



 @f@zi





1
:

Inequality (2) is sharp, here the optimal function is

f� (z1; :::; zk) :=
kX
i=1

jzi � x0ij�i , �i > 1:

Clearly inequality (2) generalizes inequality (1) to multidimension.

We are inspired also by [2].
In this article we establish multivariate Ostrowski type inequalities for sev-

eral smooth functions from a compact convex subset of Rk, k � 2, to a Banach
algebra. These involve the norms k�kp, 1 � p � 1:

2 About Banach Algebras

All here come from [6].
We need

De�nition 3 ([6], p. 245) A complex algebra is a vector space A over the
complex �eld C in which a multiplication is de�ned that satis�es

x (yz) = (xy) z; (3)

(x+ y) z = xz + yz, x (y + z) = xy + xz; (4)

and
� (xy) = (�x) y = x (�y) ; (5)

for all x; y and z in A and for all scalars �.
Additionally if A is a Banach space with respect to a norm that satis�es the

multiplicative inequality

kxyk � kxk kyk (x 2 A, y 2 A) (6)

2
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and if A contains a unit element e such that

xe = ex = x (x 2 A) (7)

and
kek = 1; (8)

then A is called a Banach algebra.
A is commutative i¤ xy = yx for all x; y 2 A:

We make

Remark 4 Commutativity of A will be explicited stated when needed.
There exists at most one e 2 A that satis�es (7).
Inequality (6) makes multiplication to be continuous, more precisely left and

right continuous, see [6], p. 246.
Multiplication in A is not necessarily the numerical multiplication, it is some-

thing more general and it is de�ned abstractly, that is for x; y 2 A we have
xy 2 A, e.g. composition or convolution, etc.
For nice examples about Banach algebras see [6], p. 247-248, § 10.3.

We also make

Remark 5 Next we mention about integration of A-valued functions, see [6],
p. 259, § 10.22:
If A is a Banach algebra and f is a continuous A-valued function on some

compact Hausdor¤ space Q on which a complex Borel measure � is de�ned, thenR
fd� exists and has all the properties that were discussed in Chapter 3 of [6],

simply because A is a Banach space. However, an additional property can be
added to these, namely: If x 2 A, then

x

Z
Q

f d� =

Z
Q

xf (p) d� (p) (9)

and �Z
Q

f d�

�
x =

Z
Q

f (p)x d� (p) : (10)

The vector integrals we will involve in our article follow (9) and (10).

3 Vector Analysis Background

(see [8], pp. 83-94)

3
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Let f (t) be a function de�ned on [a; b] � R taking values in a real or complex
normed linear space (X; k�k), Then f (t) is said to be di¤erentiable at a point
t0 2 [a; b] if the limit

f 0 (t0) = lim
h!0

f (t0 + h)� f (t0)
h

(11)

exists in X, the convergence is in k�k. This is called the derivative of f (t) at
t = t0.
We call f (t) di¤erentiable on [a; b], i¤ there exists f 0 (t) 2 X for all t 2 [a; b].
Similarly and inductively are de�ned higher order derivatives of f , denoted

f 00; f (3); :::; f (k); k 2 N, just as for numerical functions.
For all the properties of derivatives see [8], pp. 83-86.
Let now (X; k�k) be a Banach space, and f : [a; b]! X:

We de�ne the vector valued Riemann integral
R b
a
f (t) dt 2 X as the limit of

the vector valued Riemann sums in X, convergence is in k�k. The de�nition is
as for the numerical valued functions.
If
R b
a
f (t) dt 2 X we call f integrable on [a; b]. If f 2 C ([a; b] ; X), then f is

integrable, [8], p. 87.
For all the properties of vector valued Riemann integrals see [8], pp. 86-91.
We de�ne the space Cn ([a; b] ; X), n 2 N, of n-times continuousky di¤er-

entiable functions from [a; b] into X; here continuity is with respect to k�k and
de�ned in the usual way as for numerical functions�:
Let (X; k�k) be a Banach space and f 2 Cn ([a; b] ; X), then we have the

vector valued Taylor�s formula, see [8], pp. 93-94, and also [7], (IV, 9; 47).
It holds

f (y)�f (x)�f 0 (x) (y � x)�1
2
f 00 (x) (y � x)2�:::� 1

(n� 1)!f
(n�1) (x) (y � x)n�1

(12)

=
1

(n� 1)!

Z y

x

(y � t)n�1 f (n) (t) dt; 8 x; y 2 [a; b] :

In particular (12) is true when X = Rm;Cm; m 2 N, etc.
A function f (t) with values in a normed linear spaceX is said to be piecewise

continuous (see [8], p. 85) on the interval a � t � b if there exists a partition
a = t0 < t1 < t2 < ::: < tn = b such that f (t) is continuous on every open
interval tk < t < tk+1 and has �nite limits f (t0 + 0) ; f (t1 � 0) ; f (t1 + 0) ;
f (t2 � 0) ; f (t2 + 0) ; :::; f (tn � 0) :
Here f (tk � 0) = lim

t"tk
f (t) ; f (tk + 0) = lim

t#tk
f (t) :

The values of f (t) at the points tk can be arbitrary or even unde�ned.
A function f (t) with values in normed linear space X is said to be piecewise

smooth on [a; b], if it is continuous on [a; b] and has a derivative f 0 (t) at all but
a �nite number of points of [a; b] ; and if f 0 (t) is piecewise continuous on [a; b]
(see [8], p. 85).
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Let u (t) and v (t) be two piecewise smooth functions on [a; b], one a numerical
function and the other a vector function with values in Banach space X. Then
we have the following integration by parts formulaZ b

a

u (t) dv (t) = u (t) v (t) jba �
Z b

a

v (t) du (t) ; (13)

see [8], p. 93.
We mention also the mean value theorem for Banach space valued functions.

Theorem 6 (see [4], p. 3) Let f 2 C ([a; b] ; X), where X is a Banach space.
Assume f 0 exists on [a; b] and kf 0 (t)k � K, a < t < b, then

kf (b)� f (a)k � K (b� a) : (14)

Here the multiple Riemann integral of a function from a real box or a real
compact and convex subset to a Banach space is de�ned similarly to numerical
one however convergence is with respect to k�k. Similarly are de�ned the vector
valued partial derivatives as in the numerical case.
We mention the equality of vector valued mixed partiasl derivatives.

Proposition 7 (see Proposition 4.11 of [3], p. 90) Let Q = (a; b)� (c; d) � R2
and f 2 C (Q;X), where (X; k�k) is a Banach space. Assume that @

@tf (s; t),
@
@sf (s; t) and

@2

@t@sf (s; t) exist and are continuous for (s; t) 2 Q, then
@2

@s@tf (s; t)

exists for (s; t) 2 Q and

@2

@s@t
f (s; t) =

@2

@t@s
f (s; t) , for (s; t) 2 Q: (15)

4 Main Results

We present general Ostrowski type inequalities results regarding several Banach
algebra valued functions.

Theorem 8 Let p; q > 1 : 1
p +

1
q = 1; (A; k�k) a Banach algebra and fi 2

Cn+1 (Q;A), i = 1; :::; r; r 2 N, n 2 Z+, and �xed �!x0 2 Q � Rk, k � 2,
where Q is a compact and convex subset. Here all vector partial derivatives

fi� :=
@�fi
@z� , where � = (�1; :::; �k), �� 2 Z+, � = 1; :::; k, j�j =

kP
�=1

�� = j,

j = 1; :::; n, ful�ll fi� (
�!x0) = 0, i = 1; :::; r:

Denote
Dn+1 (fi) := max

�:j�j=n+1
kkfi�kk1;Q ; (16)

i = 1; :::; r; and

k�!z ��!x0kl1 :=
kX
�=1

jz� � x0�j : (17)

5
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Then








rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)









 �
(18)

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA �

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!
min

8>><>>:
�Z

Q

k�!z ��!x0kn+1l1
d�!z
�2664 rX

i=1

0BB@ rY
�=1
�6=i

kkf�kk1;Q

1CCA
3775 ;




k� � �!x0kn+1l1





1;Q

2664 rX
i=1










0BB@ rY
�=1
�6=i

kf�k

1CCA









L1(Q;A)

3775 ;



k� � �!x0kn+1l1





Lp(Q;A)

2664 rX
i=1

2664









0BB@ rY
�=1
�6=i

kf�k

1CCA









Lq(Q;A)

3775
3775
9>>=>>; : (19)

Proof. Take gi�!z (t) := fi (
�!x0 + t (�!z ��!x0)), 0 � t � 1; i = 1; :::; r. Notice

that gi�!z (0) = fi (
�!x0) and gi�!z (1) = fi (�!z ). The jth derivative of gi�!z (t), based

on Proposition 7, is given by

g
(j)

i�!z (t) =

24 kX
�=1

(z� � x0�)
@

@z�

!j
fi

35 (x01 + t (z1 � x01) ; :::; x0k + t (zk � x0k))
(20)

and

g
(j)

i�!z (0) =

24 kX
�=1

(z� � x0�)
@

@z�

!j
fi

35 (�!x0) ; (21)

for j = 1; :::; n+ 1; i = 1; :::; r:
Let fi� be a partial derivative of fi 2 Cn+1 (Q;A). Because by assumption

of the theorem we have fi� (
�!x0) = 0 for all � : j�j = j, j = 1; :::; n, we �nd that

g
(j)

i�!z (0) = 0, j = 1; :::; n; i = 1; :::; r:

Hence by vector Taylor�s theorem (12) we see that

fi (
�!z )� fi (�!x0) =

nX
j=1

g
(j)

i�!z (0)

j!
+Rin (

�!z ; 0) = Rin (�!z ; 0) ; (22)

6
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where

Rin (
�!z ; 0) :=

Z 1

0

�Z t1

0

:::

�Z tn�1

0

�
g
(n)

i�!z (tn)� g
(n)

i�!z (0)
�
dtn

�
:::

�
dt1; (23)

i = 1; :::; r:

Therefore,

kRin (�!z ; 0)k �
Z 1

0

�Z t1

0

:::

�Z tn�1

0







g(n+1)i�!z (� (tn))








1
tndtn

�
:::

�
dt1; (24)

by the vector mean value Theorem 6 applied on g(n)
i�!z over (0; tn). Moreover, we

get

kRin (�!z ; 0)k �






g(n+1)i�!z








1;[0;1]

Z 1

0

Z t1

0

:::

�Z tn�1

0

tndtn

�
:::dt1

=







g(n+1)i�!z








1;[0;1]

(n+ 1)!
: (25)

However, there exists a ti0 2 [0; 1] such that






g(n+1)i�!z








1;[0;1]

=



g(n+1)i�!z (ti0)




 :
That is







g(n+1)i�!z








1;[0;1]

=








24 kX

�=1

(z� � x0�)
@

@z�

!n+1
fi

35 (�!x0 + ti0 (�!z ��!z0i))








�

24 kX
�=1

jz� � x0�j




 @

@z�






!n+1

fi

35 (�!x0 + ti0 (�!z ��!z0i)) :
I.e., 





g(n+1)i�!z








1;[0;1]

�

24 kX
�=1

jz� � x0�j








 @

@z�










1

!n+1
fi

35 ; (26)

i = 1; :::; r:

Hence by (26) we get

kRin (�!z ; 0)k �

"�
kP
�=1

jz� � x0�j






 @

@z�








1

�n+1
fi

#
(n+ 1)!

�

Dn+1 (fi)

(n+ 1)!

 
kX
�=1

jz� � x0�j
!n+1

=
Dn+1 (fi)

(n+ 1)!
k�!z ��!x0kn+1l1

; (27)

i = 1; :::; r:

7
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Therefore it holds

kRin (�!z ; 0)k �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!
k�!z ��!x0kn+1l1

; (28)

for i = 1; :::; r:
By (22) we get that0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z )�
0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!x0) =
0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) ;
(29)

for all i = 1; :::; r:
Hence

rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z )� rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!x0)

=

rX
i=1

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) : (30)

Therefore we �nd
E (f1; :::; fr) (x0) :=

rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0) =

rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z : (31)

Consequently, we have that

kE (f1; :::; fr) (x0)k =








rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z � rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)









 =

8
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rX
i=1

Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z








 � (32)

rX
i=1










Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0) d�!z








 �

rX
i=1

0BB@Z
Q










0BB@ rY
�=1
�6=i

f� (
�!z )

1CCARin (�!z ; 0)








 d
�!z

1CCA (6)
�

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA kRin (�!z ; 0)k d�!z
1CCA (28)
� (33)

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA :
So far we have proved

kE (f1; :::; fr) (x0)k �

max
i2f1;:::;rg

Dn+1 (fi)

(n+ 1)!

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

kf� (�!z )k

1CCA k�!z ��!x0kn+1l1
d�!z

1CCA =: (�) : (34)

Furthermore it holds

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!

�Z
Q

k�!z ��!x0kn+1l1
d�!z
�2664 rX

i=1

0BB@ rY
�=1
�6=i

kkf�kk1;Q

1CCA
3775 ;
(35)

and

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!




k� � �!x0kn+1l1





1;Q

2664 rX
i=1










0BB@ rY
�=1
�6=i

kf�k

1CCA









L1(Q;A)

3775 ;
(36)
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and �nally

(�) �
max

i2f1;:::;rg
Dn+1 (fi)

(n+ 1)!

2664 rX
i=1

2664









0BB@ rY
�=1
�6=i

kf�k

1CCA









Lq(Q;A)

3775
3775


k� � �!x0kn+1l1





Lp(Q;A)

;

(37)
proving (18), (19).
We give

Corollary 9 (to Theorem 8) All as in Theorem 8, with f1 = ::: = fr = f ,
r 2 N. Then 



Z

Q

fr (�!z ) d�!z �
�Z

Q

fr�1 (�!z ) d�!z
�
f (�!x0)





 �
Dn+1 (f)

(n+ 1)!

�Z
Q

kf (�!z )kr�1 k�!z ��!x0kn+1l1
d�!z
�
� (38)

Dn+1 (f)

(n+ 1)!
min

��Z
Q

k�!z ��!x0kn+1l1
d�!z
��
kkfkk1;Q

�r�1
;




k� � �!x0kn+1l1





1;Q




kfkr�1



L1(Q;A)

;



k� � �!x0kn+1l1





Lp(Q;A)




kfkr�1



Lq(Q;A)

�
:

(39)

We also give

Corollary 10 (to Theorem 8) All as in Theorem 8, with (A; k�k) being a com-
mutative Banach algebra. Then







r

Z
Q

 
rY
�=1

f� (
�!z )
!
d�!z �

rX
i=1

0BB@Z
Q

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)









 �
Right hand side of (18) � Right hand side of (19). (40)

We make

Remark 11 Of great interest are applications of Theorem 8 when Q =
kQ
�=1

[a�; b�],

where [a�; b�] � R, � = 1; :::; k:
We observe that by the multinomial theorem we get:

Z
kQ

�=1

[a�;b�]

 
kX
�=1

jz� � x0�j
!n+1

dz1:::dzk =
X

�1+�2+:::�k=n+1

(n+ 1)!

�1!�2!:::�k!

10
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Z
kQ

�=1

[a�;b�]

jz1 � x01j�1 jz2 � x02j�2 ::: jzk � x0kj�k dz1:::dzk = (41)

X
�1+�2+:::�k=n+1

(n+ 1)!

�1!�2!:::�k!

kY
�=1

 Z b�

a�

jz� � x0�j�� dz�

!
=

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 Z x0�

a�

(x0� � z�)�� dz� +
Z b�

x0�

(z� � x0�)�� dz�

!
=

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 
(x0� � a�)��+1 + (b� � x0�)��+1

�� + 1

!
: (42)

We have found that Z
kQ

�=1

[a�;b�]

k�!z ��!x0kn+1l1
d�!z = (43)

X
kP

�=1

��=n+1

(n+ 1)!
kQ
�=1

��!

kY
�=1

 
(b� � x0�)��+1 + (x0� � a�)��+1

�� + 1

!
:

Based on (18), (19) and (43) we conclude:

Theorem 12 Let (A; k�k) a Banach algebra and fi 2 Cn+1
�

kQ
�=1

[a�; b�] ; A

�
,

i = 1; :::; r; r 2 N, n 2 Z+, and �xed �!x0 2
kQ
�=1

[a�; b�] � Rk, k � 2. Here

all vector partial derivatives fi� :=
@�fi
@z� , where � = (�1; :::; �k), �� 2 Z+,

� = 1; :::; k, j�j =
kP
�=1

�� = j, j = 1; :::; n, ful�ll fi� (
�!x0) = 0, i = 1; :::; r:

Denote
Dn+1 (fi) := max

�:j�j=n+1
kkfi�kk

1;
kQ

�=1

[a�;b�]
; (44)

i = 1; :::; r:

Then 








rX
i=1

Z
kQ

�=1

[a�;b�]

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA fi (�!z ) d�!z �
rX
i=1

0BB@Z kQ
�=1

[a�;b�]

0BB@ rY
�=1
�6=i

f� (
�!z )

1CCA d�!z
1CCA fi (�!x0)









 � (45)
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�
max

i2f1;:::;rg
Dn+1 (fi)

�2664 rX
i=1

0BB@ rY
�=1
�6=i

kkf�kk
1;

kQ
�=1

[a�;b�]

1CCA
3775

26664 X
kP

�=1

��=n+1

1
kQ
�=1

��!
kQ
�=1

(�� + 1)

kY
�=1

�
(b� � x0�)��+1 + (x0� � a�)��+1

�37775 :
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Abstract

In this paper, we study the Mexican hat wavelet formulated from the
Gaussian function. The Mexican hat wavelet transform (MHWT) is de-
fined using this basic wavelet. A standard method is introduced to obtain
the gap formula for the MHWT. Further, an example for the gap formula
is also presented.

Key words: Fourier transform; Wavelet transform; Schwartz distri-
butions; Tempered Boehmians
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1

1 Introduction

By utilizing the theory of distributional as well as classical Fourier and Hilbert
transforms, the theory of wavelet transform in Lp-spaces (1 ≤ p ≤ ∞) is formu-
lated. The wavelet transform has been rising as a major mathematical tool for
the past two decades and its contribution to signal analysis is significant. The
major reason for this is the representation of functions in a time-frequency plane
is possible with wavelet transform. Hence, the wavelet transform can be treated
as an operator which localizes time and frequency. Moreover, one can regulate
wavelets within a fixed time period to acquire varied frequency components that
are useful in enhancing the study of signals having localized impulses and os-
cillations. Based on the idea of wavelets as a family of functions, the mother
wavelet ψb,a(t) is defined by dilating and translating the function ψ ∈ L2(R)
and is given by

ψb,a(u) = (
√
a)−1ψ

(

u− b

a

)

, b, u ∈ R, a ∈ R+ = (0,∞), (1.1)

1Corresponding author: Department of Mathematics and Statistics

Banasthali Vidhyapith, Banasthali, India
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where a is the dilation, which calculates the level of compression, and b is called
shifting parameter, which works out the wavelet’s time location. If |a|< 1, then
(1.1) is the compressed version of the mother wavelet and represents higher
frequencies.
For a square integrable function f , the wavelet transform with respect to ψb,a
is defined by [5],

W (b, a) =

∫

∞

−∞

f(u)ψb,a(u)du for a ∈ T+ and u, b ∈ R. (1.2)

The inversion formula for (1.2) is given as follows:

f(x) =
2

Cψ

∫

∞

0

[
∫

∞

−∞

1√
a
W (b, a)ψ

(

x− b

a

)

db

]

da

a2
, x ∈ R (1.3)

where

1

2
Cψ =

∫

∞

0

|ψ̂(u)|2
|u| du =

∫

∞

0

|ψ̂(−u)|2
|u| du <∞ [1, p. 64].

Recently among very many authors, the researches carried out by R. S. Pathak
et al. [4-10] have investigated the theory of wavelet transform to distributions
and ultradistribution spaces. Singh et al. have extended the theory for distri-
butional wavelet and mexican hat wavelet transform [11-14]. Further, inversion
formulae for the same are established in the sense of distributions and ultradis-
tributions.

Mexican hat wavelet that is formulated by taking the second derivative of
Gaussian function is defined by

ψ(u) = exp

(−u2
2

)

(1− u2) = − d2

du2
exp

(−u2
2

)

. (1.4)

Therefore,

ψb,a(u) = −a3/2D2
uexp

(

− (b− u)2

2a2

)

,

(

Du =
d

du

)

. (1.5)

Thus from (1.2), we have

W (b, a) = −a3/2
∫

∞

−∞

f(t) D2
t exp

(

− (b− t)2

2a2

)

dt, a > 0. (1.6)

Then, under certain conditions on f , we have

W (b, a) = −a3/2
∫

∞

−∞

f (2)(t) exp

(

− (b− t)2

2a2

)

dt, a > 0. (1.7)

From the above two equations we can consider the MHWT as the Weierstrass

transform of
(

d
du

)2
f(u). This relation can further be utilized to explore various

2
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properties of W (b, a). Also, as Weierstrass transform is defined for complex
values of b, therefore, the definition of the MHWT can be extended for b being
complex, whenever required.

Now for a ∈ (0,∞) and b ∈ C, we define

k(b, a) =
1√
2πa

exp

(−b2
2a

)

. (1.8)

Clearly,

D2
uk(b− u, a2) =

1√
2πa

D2
u

(

exp

(−(b− u)2

2a2

))

. (1.9)

Hence the Mexican hat wavelet transform of a function f(t) is given by [7]

W (b, a) = a3/2
∫

∞

−∞

f (2)(u)exp

(−(b− u)2

2a2

)

du. (1.10)

2 Gap formula for Mexican hat wavelet trans-

form

The gap formula which is also known as the jump operator provides a uni-
fied approach to obtain a relation between the determining function at a given
point in terms of the transform. Here, it acts as an operator which gives
f (2)(b+)−f (2)(b−) in terms ofW (b, a) whereW (b, a) and f (2)(b) are related by
(1.10). Such representations have been obtained for various integral transform
like Laplace transform, Stieltjes transform, Weierstrass transform, and many
more [2, 15, 16]. In the next theorem, we present Gap formula for the Mexican
hat wavelet transform.

Theorem 2.1. Let f (2)(y) ∈ L1(m,n) for any finite interval such that the
integral (1.10) relating W (b, a) to f (2)(y) converges for m < b < n. Also, there
exists numbers f (2)(b± 0) satisfying

∫ h

0

[f (2)(b± u)− f (2)(b ± 0)]du = o(h), h→ 0.

Then for d satisfying m < d < n we have for −∞ < b <∞,

lim
a2→1−

−i(1−a2)3/2a
∫ d+i∞

d−i∞

(s−b) exp
(

(s− b)2

2a2

)

W (s, 1)ds = f (2)(b+0)−f (2)(b−0).

Proof. Let α(u) =
∫ u

0 f
(2)(v)dv, ∀d ∈ (m,n). Also, let α(u) be locally bounded

variation, such that

|α(u)| =















M exp

(

(u− η)2

2

)

, u > x,

M exp

(

(u− ξ)2

2

)

, u < x.

(2.1)

3
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Then the MHWT of f(v) is defined by

W (b, 1) =

∫

∞

−∞

k(b− u, 1)f (2)(v)dv. (2.2)

Now, using integration by parts on (2.2), we get

W (b, 1) =

∫

∞

−∞

k1(b − u, 1)α(u)du, (2.3)

where

k1(b− u, 1) =
∂

∂b
k(b− u, 1).

Consider

I = −i(1− a2)13/2
∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)

W (s, 1)ds

= −i(1− a2)3/2
∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)
∫

∞

−∞

k1(s− u, 1)α(u)du

= −i(1− a2)3/2
√
2πa

∫

∞

−∞

α(u)du

∫ d+i∞

d−i∞

(s− b)√
2πa

exp

(

(s− b)2

2a2

)

k1(s− u, 1)ds.

Let us consider

J =
−i√
2πa

∫ d+i∞

d−i∞

(s− b) exp

(

(s− b)2

2a2

)

k1(s− u, 1)ds

=
1√
2πa

∫

∞

−∞

(d+ iy − b) exp

(

(d+ iy − b)2

2a2

)

k1(d+ iy − u, 1)dy, (s = d+ iy)

=
1√
2πa

∫

∞

−∞

i(y − i(d− b)) exp

(−(y − i(d− b))2

2a2

)

k1(iy + d− u, 1)dy

=

∫

∞

−∞

k(d+ iy − b, a2)k2(d+ iy − u, 1)dy,

where

k2(s− u, 1) =
∂2k(s− u, 1)

∂s2
= (s− u)k1(s− u, 1).

By [7, Theorem 2.1], we have

J =

∫

∞

−∞

k(d+ iy − b, a2)k2(d+ iy − u, 1)dy (2.4)

= k2(d+ iy − u− d− iy + b, 1− a2)

= k2(b − u, 1− a2).

Hence, we obtain J = k2(b − u, 1 − a2), by combining (2.4) with Corollary 2.2
of [3], where f (2)(b) = k2(b − u, 1 − a2). Further, breaking the integral I into

4
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4 parts, corresponding to the intervals (−∞, b − δ), (b − δ, b), (b, b + δ) and
(b+ δ,∞), we have

I = (1 − a2)3/2(2π)1/2a

{

∫ b−δ

−∞

+

∫ b

b−δ

+

∫ b+δ

b

+

∫

∞

b+δ

}

α(u)(u)k2(b− u, 1− a2)du

= I1(a) + I2(a) + I3(a) + I4(a).

For I2(a), we can choose a δ > 0 so that |f (2)(u)−f (2)(b−)|< ǫ for b−δ < u < b

and therefore,

|I2(a) + f (2)(b−)| =

∣

∣

∣

∣

∣

∫ b

b−δ

k1(b − u, 1− a2)[f (2)(u)− f (2)(b−)]du

∣

∣

∣

∣

∣

+ o(1)

=

∣

∣

∣

∣

∣

∫ b

b−δ

k2(b − u, 1− a2)β(u)du

∣

∣

∣

∣

∣

+ o(1)

≤ ǫ

∫ b

b−δ

k2(b − u, 1− a2)|s− u|du+ o(1)

≤ ǫM + o(1) as a2 → 1− .

Similarly |I3(a)− f (2)(b+)|≤ ǫM + o(1).

For ǫ being arbitrary, we have I2(a) ≈ −f (2)(b−) and I3(a) ≈ f (2)(b+).

For I1(a) and I4(a) by Lemma 2.1c of [3], for some ξ and η such that m <

ξ < η < n, at a = 1

f (2)(u) = o

[

exp

(

(u− η)2

2

)]

, u→ ∞,

f (2)(u) = o

[

exp

(

(u− ξ)2

2

)]

, u→ ∞.

Therefore,

|I1(a)| = lim
a2→1−

∣

∣

∣

∣

∣

(2π)1/2(1− a2)3/2
∫ b−δ

−∞

k1(b− u, 1− a2)f (2)(u)du

∣

∣

∣

∣

∣

≤ lim
a2→1−

(1− a2)−3/2

∫ b−δ

−∞

exp

(−(b− u)2

2(1− a2)

)

|f (2)(u)|du

≤ lim
a2→1−

M(1− a2)−3/2

∫ b−δ

−∞

exp

(−(b− u)2

2(1− a2)

)

exp

(−(u− ξ)2

2

)

du

= o(1).

Hence, I1(a) = o(1) and similarly I4(a) = o(1) as a2 → 1−, which concludes
the proof of the theorem.
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Example 2.2. As a simple example take the MHWT at a = 1,

W (s, 1) =

∫

∞

−∞

k1(s− u, 1)α(u)du

= exp

(−s2
2

)

, (2.5)

where

α(u) =

∫ u

0

f (2)(v)dv =

{

0 u < 0

1 u > 0.

Since the integral (1.10) converges always, therefore by Theorem 2.1, we have

= lim
a2→1−

−i(1− a2)3/2
∫

∞

−∞

(s− b) exp

(

(s− b)2

2a2

)

W (s, 1)ds

= lim
a2→1−

−i(1− a2)3/2
∫

∞

−∞

(s− b) exp

(

(s− b)2

2a2

)

exp

(−s2
2

)

ds

= lim
a2→1−

i(1− a2)3/2
√
2πa4

(a2 − 1)3/2
exp

( −b2
2(1− a2)

)

=

{

1 b = 0,

0 otherwise.
(2.6)

Conclusions

In this article, we studied the conditions needed to obtain a relation between
the determining function at a point of discontinuity with its MHWT. As the
Gaussian function derives the Mexican hat wavelet, therefore it satisfies the
Gaussian decays in both frequency and space. Further, as the MHWT has
localization in both space and frequency, it has a strong appeal to applications
in space-frequency analysis, mixed boundary value problems, approximation
theory, mathematical modeling, other digital modulation.
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Abstract

In an ecosystem, the balance of prey-predator system is greatly

influenced by the availability of prey and the fear imposed on

it’s population. In this paper, it is proposed that a prey-predator model

in which prey is assumed to be able to detect the presence of predator and

to counteract it by forming patches and incorporating the cost of fear into

prey reproduction. Equilibrium points are calculated and analysis

of the local and global asymptotic behaviors of the system are

done. Hopf-bifurcation is seen in case of adequate availability

of prey. The system stabilizes in presence of high levels of fear.

Availability of prey act as a crucial role to change the dynamics of the sys-

tem. Numerical simulations showcases the relationship between

prey patches and other related parameters like level of fear,

conversion rate of predator and availability of prey. These sim-

ulations reveal the impact of fear on the prey-predator system

and also justify the theoretical findings. In the end, the bifurcation

scenarios are derived when two different parameters switch together at a

same time. Numerical simulations are justified the theoretical findings.

Keywords: Fear; Patches; Hunting Stability; Bifurcation.

1 Introduction

The survey of prey-predator dynamics is one of the blooming topics of ecosystem
in last few decades. Predation process perform an indispensable part to main-
tain ecological balance. In real field application, the predator do not capture all
the prey population due to refuge property of prey [1, 2]. In biomathematics, the
research of prey refuge is one of the hot spot area. As a result, many researchers
focus in this aspect [3, 4, 5]. Some experimental finding confirm that fear effect
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on predator may alter the behavior of prey [6, 7, 8]. Some theoretical studies
have revealed that growth rate of prey need to improve through implementation
of fear effects [9, 10, 11]. Recently, the authors in [12] studied the hunting co-
operation and the fear factor among prey in a Leslie-Gower model. This study
revealed that fear factor is more effective than hunting cooperation to stabi-
lize the system. Also, the scientists in [13] proposed a Beddington-DeAngelis
functional response of predator-prey model and investigated the impact of anti-
predator activity on whole system. They noted that the system may exhibits
multiple Hopf-bifurcation. The researchers in [14] investigated that chaotic
system turned into stable system in presence of cost of fear in three species
model. But very few numbers of researchers explored the combine effects of
hunting cooperation and anti-predator activity in predator-prey system. In re-
cent past, the authors in [15] studied the combine effects of hunting cooperation
and fear factor in prey-predator system and observed that strong demographic
Allee phenomenon. Recently, the authors in [16] studies the influence of
harvesting and allee effects in disease induced prey-predator system
and reveals that allee effect and harvesting can be a handy technique
for controlling the spread of disease. Fractional order mathemati-
cal models are a new research field in non-linear dynamics [17, 18].
The authors in [19] apply the homotopy analysis transform technique
in prey-predator model to evaluate approximate solution which con-
verges to the exact solution of time-fractional nonlinear subject to
initial conditions.

Anti-grazing strategy is a vital part in prey-predator system to
protect prey from predator. In marine system, size of phytoplankton are
very small compare to the predatory enemies but they can survive from con-
sumes by using anti-grazing strategies like morphology [20] formation of colonies
[21] which resist the grazing pressure by higher trophic organisms. Toxin ejected
by phytoplankton is one of another anti-grazing strategies to protect from zoo-
plankton [22]. The author in [23] studied the formulation of patches for defense
mechanism and discussed the ability of releasing toxin chemicals. Thus, paired
mechanism over with patching and poison release outcomes will act a crucial
role for the coexistence species. Some experimental researches noted that the
patch size depend on organism density and also proportional with it [24]. In
real field, phytoplankton are allowed to form spherical patches or colonies and
release toxin chemicals [25].

Motivated by the above theoretical and experimental literatures,
the dynamics of such system in which hunting by predator and fear of prey is
studied. The aim of the present study is to investigate the impact of hunting,
fear effect and toxin effect due to formulation of patches. As per my knowledge,
the combine effect of three above factors has not to explore yet. The main
target in present manuscript is to investigate the subsequent biolog-
ical topics:
• How does availability of prey density influence on the dynamics of prey-
predator system.
• Can fear factor among prey influence to stabilize the prey-predator system.
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• How does patches influence the prey-predator dynamics.

It is considered that, birth rate of prey population is reduced due to fear
of hunting by predator. In the next section, proposed model is developed with
incorporate prey patches. Section 2 represents the construction of mathemat-
ical model based on some assumptions. Basic properties such as boundedness
is discussed in Section 3. Analytical results based on the model and global
stability are discussed in Section 4. Section 5 represents the local bifurcation
such as Hopf and transcritical-bifurcation analysis. Numerical simulations and
discussion are illustrated in Section 6 & 7. Finally, the paper summarize with
a brief conclusion.

2 Basic assumptions and model formulation

Let us consider the assumption to construct the following mathematical model:
Let x(t) and y(t) be the density of prey and predator population at time t > 0
respectively. Here r and r1 be the intrinsic growth rate and the intra-species
competition rate of prey. c and e represent the predation rate and conver-
sion rate of predator. Here (1−k1) terms represents the amount of availability
of prey for predation by the predator where, k1 ∈ (0, 1]. It is assumed that pre-
dation term is the Holling-II functional form. According to literature review, a
fraction part k1 of prey aggregate to form N patches. Therefore, each patches
represent as 1

N k1x. It is assume that the three dimensional patch is roughly

spherical in ocean. Therefore, the radius of patch is proportional to [ 1N k1x]
1/3.

As a result the surface of patch is proportional to [ 1N k1x]
2/3 = ρx2/3, where

ρ = [ 1N k1]
2/3. The effect of fear has a direct impact on prey reproduc-

tion [26, 27, 28]. In presence of predator, intrinsic growth of prey becomes
a function of the predator density like F (y;K) = r

1+Ky in which K is defined
as level of fear of the prey according to anti-predator response. This above
function follows some conditions:
(i) F (y; 0) = r: in the absence of fear effect, the prey reproduction rate remain
unaltered.
(ii) F (0;K) = r: in the absence of predator, the prey reproduction rate
remain unaltered.
(iii) lim

K→∞

F (y;K) = 0: extremely fearful prey fails to reproduce.

(iv) lim
y→∞

F (y;K) = 0: at a extremely higher predator density, prey fails

to reproduce.

(v) ∂F (y;K)
∂K < 0: the prey reproduction rate low with high amount of fear effect.

(vi) ∂F (y;K)
∂y < 0: the prey reproduction rate low with high amount of predator

density.
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dx

dt
=

rx

1 +Ky
− r1x

2 − c(1− k1)xy

1 + a(1− k1)x
≡ G1(x, y)

dy

dt
=

e(1− k1)xy

1 + a(1− k1)x
− dy − eρx2/3y ≡ G2(x, y).

(1)

The system (1) will be analyzed with the following initial conditions,

x(0) ≥ 0, y(0) ≥ 0. (2)

3 Mathematical preliminaries

Theorem 1. All non negative solutions (x(t), y(t) of the system (1) initiate in
R2

+ − {0, 0} are uniformly bounded.

Proof. Let us choose a function Θ = x+ y.

Therefore,

dΘ
dt = dx

dt +
dy
dt = rx

1+Ky − r1x
2 − c(1−k1)xy

1+a(1−k1)x
+ e(1−k1)xy

1+a(1−k1)x
− dy − eρx2/3y.

Let us consider a positive constant ζ such that ζ ≤ d. Therefore,

dΘ
dt + ζΘ ≤ r0x− r1x

2 + ζx − (1−k1)(c−e)
1+a(1−k1)x

− y(d− ζ)− eρx2/3y

≤ (r0 + ζ)x − r1x
2 ≤ (r0+ζ)2

4r1
.

By choosing Γ = (r0+ζ)2

4r1
, we obtain

0 ≤ Θ(x(t), y(t)) ≤ Γ
ζ (1 − e−ζt) + Θ(x(0), y(0))e−ζt,

which indicates that 0 ≤ Θ(x(t), y(t)) ≤ Γ
ζ as t → ∞. Therefore, all non nega-

tives solutions of the system (1) are originated from R2
+−{0, 0} will be restricted

in the region ∇ = {(x, y) ∈ R2
+ : x(t) + y(t) ≤ Γ

ζ + ε}.
In ecology, it means that the system act in a specified manner. Boundedness of
the system implies that none of the two interacting species grow unexpectedly or
exponentially for a long period of time. Clearly, as a result of limited resource,
numbers of each species is surely bounded.

From the ecological point of view, let us first consider the following
region R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Here, the function G1(x, y) = xf(x, y)
and G2 = yg(x, y) of the system (1) are continuously differentiable and
locally Lipschitz in R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Therefore, Theorem
A.4, page 423 in H. R. Thieme’s book [29] implies that the solutions of
the initial value problem with non-negative initial conditions exist on
the interval [0, S) and unique, where S is a sufficiently large number.
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4 Equilibria: Existence and stability

All possible equilibria are catalogued below:
(i) The predator free equilibrium E1 = ( r

r1
, 0).

(ii) The positive coexistence equilibrium E∗ = (x∗, y∗),
while x∗ is ensured by solving {a(1 − k1)}3e3ρ3x∗5 + 3{a(1 − k1)}2e3ρ3x∗4 +
[3e3ρ3a(1− k1)− {(1− k1)(e− da)}3]x∗3 + [e3ρ3 + 3{(1− k1)(e− da)}2d]x∗2 −
3{(1− k1)(e − da)}d2x∗ + d3 = 0.
Also, y∗ is ensured by solving cK(1 − k1)y

2 + [c(1 − k1) + r1x
∗(1 + a(1 −

k1)x
∗)K]y∗ − (1 + a(1 − k1)x

∗)(r − r1x
∗) = 0.

Thus the condition for the existence of the interior equilibrium pointE∗(x∗, y∗)
is given by, x∗ > 0, y∗ > 0.

Explicitly, general form of the Jacobian matrix at E = (x, y) is defined as

J =

[

r
(1+Ky) − 2r1x− c(1−k1)y

(1+a(1−k1)x)2
− rKx

(1+Ky)2 − c(1−k1)x
1+a(1−k1)x

e(1−k1)y
(1+a(1−k1)x)2

− 2
3eρy

1
x1/3

e(1−k1)x
1+a(1−k1)x

− d− eρx2/3

]

. (3)

There exists a feasible predator free steady state E1 of the system (1) which

is unstable if d
e + ρ r

r1

2/3 <
(1−k1)r

a(1−k1)r+r1
.

The Jacobian matrix at E∗ can be written as

J∗ =

[

r
(1+Ky∗) − 2r1x

∗ − c(1−k1)y
∗

(1+a(1−k1)x∗)2 − rKx∗

(1+Ky∗)2 − c(1−k1)x
∗

1+a(1−k1)x∗

e(1−k1)y
∗

(1+a(1−k1)x∗)2 − 2
3eρ

y∗

x∗1/3 0

]

.

Thus the eigenvalues in this case are obtained as roots of the quadratic
λ2 − tr(J∗) + det(J∗) = 0,

tr(J∗) = r
(1+Ky∗) − 2r1x

∗ − c(1−k1)y
∗

(1+a(1−k1)x∗)2 ,

det(J∗) = [ rK
(1+Ky∗)2 + c(1−k1)

1+a(1−k1)x∗
][ e(1−k1)
(1+a(1−k1)x∗)2 − 2

3eρ
1

x∗1/3 ]x
∗y∗.

Now tr(J∗) < 0 if r
(1+Ky∗) < 2r1x

∗ + c(1−k1)y
∗

(1+a(1−k1)x∗)2 as well as det(J∗) > 0 if

ρ < 27
8

(1−k1)
3x∗

(1+a(1−k1)x∗)6 .

Therefore, according Routh–Hurwitz criterion we can admit that E∗ is locally
asymptotically stable providing the above two conditions are fulfilled.

Theorem 2. If the non negative equilibrium E∗ exists, then (x∗, y∗) is

globally asymptotically stable in the x− y plane if r1 >
c(1−k1)

2a
1+a(1−k1)x∗

.

Proof. Let us consider a Lyapunov function about E∗

V = x− x∗ − x∗ln x
x∗

+ c
e(1 + a(1− k1)x

∗)(y − y∗ − y∗ln y
y∗
).

Differentiating V with respect to t of the system (1), we get
dV
dt = (x−x∗)( r

1+Ky−r1x− c(1−k1)y
1+a(1−k1)x

)+ c
e(1+a(1−k1)x

∗)(y−y∗)( e(1−k1)xy
1+a(1−k1)x

−
dy − eρx2/3y)

=(x−x∗)
(

rK(y−y∗)
(1+Ky)(1+Ky∗) − r1(x− x∗) + c(1−k1)(y−y∗)

1+a(1−k1)x
+ c(1−k1)

2a(x−x∗)
[1+a(1−k1)x][1+a(1−k1)x∗]

)

+

c
e(1 + a(1 − k1)x

∗)(y − y∗)
[

e(1−k1)(x−x∗)
(1+a(1−k1)x)(1+a(1−k1)x∗) − eρ(x

2

3 − x∗
2

3 )
]

.
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After some calculation and simplification we get

≤ −
[

r1 − c(1−k1)
2a

1+a(1−k1)x∗

]

(x− x∗)2 − rK
(1+Ky)(x − x∗)(y − y∗).

Clearly, V̇ is negative definite if r1 >
c(1−k1)

2a
1+a(1−k1)x∗

. Therefore by LaSalle’s

theorem [30] E∗ is globally asymptotically stable in x− y plane.

5 Local bifurcation

5.1 Hopf-Bifurcation

Theorem 3. The necessary and sufficient conditions for Hopf bifurcation of
the system (1) around E∗ at k1 = kc1 are [tr(J∗)]k1=kc

1
= 0, [det(J∗)]k1=kc

1
> 0

and d
dk1

[tr(J∗)]k1=kc
1
6= 0.

Proof. The condition [tr(J∗)]k1=kc
1
= 0 gives r

(1+Ky∗) −2r1x
∗− c(1−k1)y

∗

(1+a(1−k1)x∗)2 =

0, in which [tr(J∗)]k1=kc
1
= 0.

Now [det(J∗)]k1=kc
1
> 0 which is equivalent to the characteristic equation λ2 +

[det(J∗)]k1=kc
1
= 0 whose roots are purely imaginary,

For k1 = kc1, the characteristic can be written as

χ2 + ω = 0, (4)

where ω = [det(J∗)]k1=kc
1
> 0. Therefore, the above equation has two roots of

the form χ1 = +i
√
ω and χ2 = −i

√
ω. Let at any neighbouring point k1 of kc1,

we can express the above roots in general form like χ1,2 = θ1(k1) + ±iθ2(k1),

where θ1(k1) =
tr(J∗)

2 and θ2(k1) =
√

det(J∗)− tr(J∗)
4 . Now it is to be verified

the transversality condition d
dk1

(Re(χj(k1)))k1=kc
1
6= 0 for j = 1, 2.

Substituting χ1 = θ1(k1) + iθ2(k1) in (4) and calculate the derivative, we have

2θ1(k1)θ
′

1(k1)− 2θ2(k1)θ
′

2(k1) + ω′ = 0,

2θ2(k1)θ
′

1(k1) + 2θ1(k1)θ
′

2(k1) = 0. (5)

Solving (5), we get
d

dk1

(Re(χj(k1)))k1=kc
1
= −2θ1ω

′

2(θ2

1
+θ2

2
)
6= 0, i.e., d

dk1

[tr(J∗)]k1=kc
1
6= 0, which satisfy

the transversality condition. This implies that the system undergoes a Hopf-
bifurcation at k1 = kc1.

5.2 Transcritical-bifurcation

Theorem 4. System (1) undergoes a transcritical bifurcation when the system
parameters satisfy the restriction k1 = kTC

1 . Here, k1 is seen as the bifurcation
parameter.

6
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Proof. For k1 = kTC
1 , the Jacobian matrix J1 of the system (1) around E1

has one zero eigenvalue. Let U1 and V1 be the eigenvectors of the matrix J1
and (J1)

T corresponding to zero eigenvalue respectively. Therefore, we ob-

tain U1 =
(

−( r
r1

+ c(1−k1)
r1+a(1−k1)r

) 1
)T

and V1 = (0 1)T . We have Fk1
(x, y) =

(

0 −y
)T

, Fk1

(

E1; k1 = kTC
1

)

=
(

0 0
)T

and (V1)
T
Fk1

(

E1; k1 = kTC
1

)

=
0.
Also, DFk1

(

E1; k1 = kTC
1

)

U1 = (0 − 1)T .

Therefore, we obtain (V1)
T [

DFk1

(

E1; k1 = kTC
1

)

(U1)
]

= −1.

Further, (V1)
T
D2F

(

E1; k1 = kTC
1

)

(U1, U1)

= −2e
[

r2
1
(1−k1)

(r1+a(1−k1)r)2
− 2eρ

3 ( r1r )
1/3

] [

r1
r + e(1−k1)

r1+a(1−k1)r

]

< 0.

By applying Sotomayor’s theorem [31] we can conclude that the system experi-
ences a transcritical bifurcation at E1 when k1 crosses kTC

1 .

6 Numerical simulations

In order to visualize the analytical finding, we perform the numerical simulation
over the set of parametric values [32, 33, 34]

r = 1.2, r1 = 0.05,K = 0.1, k1 = 0.7,

c = 0.45, e = 0.25, a = 0.3, d = 0.1, ρ = 0.15. (6)

It is noted that the system (1) shows stable dynamics around at E∗(3.06, 5.74)
(cf. Fig. 1(a)).

6.1 Effect of k1

It is observed that when availability of prey species is high for predation, i.e.,
the low value of k1, the dynamical system switches to unstable behavior (viz.
k1 = 0.66). But high level of fear can stabilize the system (1) (viz. K = 0.2).
It is illustrated in Fig. 1(b). Thus, the fear effect can prevent the oc-
currence of limit cycle oscillation and increase the stability of the
system. Fig. 2(a-b) depicts various steady state behavior of prey and preda-
tor for the parameter k1. Here, it is noted that a Hopf point are situated
(H) at k1 = 0.673026 with eigenvalue ±0.284862i and one Limit point (LP)
and a Branch point (BP) coincide at k1 = 0.864180 with eigenvalue (0.− 1.2).
Branch point (BP) indicates that at that particular point, predator
goes to extension and the transcritical bifurcation occurs. The Limit
point (LP) is a collision and disappearance of two equilibria in the
dynamical system. The system switches from stable to unstable or
unstable to stable behavior after crossing the Hopf point(H). It is ob-
served that the first Lyapunov coefficient being −2.654148e−03 at Hopf point
(H) which confirm that a family of stable limit cycle generate from H (viz. Fig.
3(a)). It is clearly indicates that increasing the amount of prey refuge

7
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Figure 1: (a) The equilibrium point E∗ is stable for the set of parametric
values. (b) The figure depicts oscillatory behavior around at E∗ of system (1)
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Figure 7: (a) The trajectory represents a family of stable limit cycles generate
from Hopf (H) point for e in x− y − ρ plane.. (b) Bifurcation diagram for ρ.

can increase both densities of prey and predator. On the other hand,
when k1 reaches a high risk threshold of the prey refuge the preda-
tor goes to extinct and the equilibrium E1 is globally asymptotically
stable.

6.2 Effect of e

Fig. 4(a-b) indicates that predator’s conversion rate (e) play a crucial role to
switch the prey and predator natures. Here, we have one Hopf point (e =
0.360577), Branch point (e = 0.097047) and a Limit point (e = 0.096319).
Further, the system experiences a family of stable limit cycle generate from
Hopf point (viz. Fig. 5(a)).

6.3 Effect of ρ

It is observed that the prey patches play a big impact in the system (1). From
Fig. 6(a-b) & Fig. 7(a) it follow several stability behaviour and family of
stable limit cycle for the free parameter ρ respectively. At ρ = 1.416971, the
system experiences a super critical bifurcation with first Lyapunov coefficient
−2.031921e−03 and predator becomes extinct at ρ = 0.225770 i.e., at BP point.
Also, a Limit point (LP) is obtained at ρ = 0.254407.

6.4 Bifurcation

The bifurcation diagrams (cf. Fig. 3(b), Fig. 5(b) and Fig. 7(b)) illustrate the
complete dynamic pictures of the system (1) for the effect of parameter k1, e
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Figure 8: (a) Two parameters bifurcation diagram for k1 − ρ. (b) Two param-
eters bifurcation diagram for ρ− e.

and ρ respectively. Fig. 5(a-b) display the two parameters bifurcation diagram
for k1 − ρ and ρ− e respectively. In this case, we see a Bogdanov-Takens (BT),
Cusp bifurcation (CP) and Generalized Hopf (GH). Generalized Hopf sep-
arates branches of sub-and supercritical Andronov-Hopf bifurcations
in the two parameter plain. The It is clearly indicates that a saddle-node
bifurcation curve meet at transcritical curve at Cusp point(CP), i.e., SN-TC
point and saddle-node and Hopf bifurcation curve touch at BT point.
Also, the bifurcation curve exhibits a Generalized Hopf point (GH) where the
1st Lyapunov coefficient turn out to be zero. All the numerical finding are
summarized in Table 1.

7 Discussion

In this present article, a prey-predator model is designed by incorporating
patches, prey refuge and fear effect to discover the dynamics of prey-predator
systems. It is assumed that prey population grows logistically and
predators consume prey population under Holling II functional re-
sponse. Firstly, some basic properties are analyzed and verified which are
ecologically well behaved such as boundedness and properties of existence of
equilibria. The local stability behavior of the system is carried out
around each equilibrium. In order to explore the dynamics of pro-
posed system, it is identified that, the system (1) has two equilibrium
point such as axial (E1) and coexistence equilibrium (E∗). We also
perform the global stability of coexistence equilibrium by choosing a
suitable Lyapunov function. Throughout the analysis, availability of prey,
i.e., the parameter k1 play crucial role to exhibit Hopf bifurcation and stability
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Table 1: Natures of equilibrium points.
Parameters Values Eigenvalues Equilibrium points

k1 0.673026 (±0.284862i) Hopf (H)
0.864180 (0,−1.2029) Limit Point (LP)
0.864180 (0,−1.2029) Branch Point (BP)

e 0.360577 (±0.305907i) Hopf (H)
0.096319 (0,−1.00886) Limit Point(LP)
0.097047 (0,−1.2) Branch Point(BP)

ρ 0.074021 (±0.289879i) Hopf (H)
0.225770 (0,−1.2) Branch Point(BP)
0.254407 (0,−0.398958) Limit Point(BP)

(k1, ρ) (0.4146440.397248) (≈ ±0.00) Bogdanov-Takens (BT)
(0.8639100.150199) (0,−1.20027) Cusp bifurcation (CP)

(ρ, e) (0.0835480.129990) (0,−1.2) Cusp bifurcation (CP)
(0.319445, 26.549989) (±1.53468i) Generalized Hopf (GH)

switching behavior. Numerically, we observe that when k1 < kc1 = 0.673026, the
system exhibits oscillatory behavior and each population shows stable coexis-
tence between 0.673026 < k1 < 0.864180. When processed further, coexistence
equilibrium looses stability via transcritical bifurcation i.e., branch point and
the predator population will die out. Similar characteristic nature of prey and
predator have been seen for the effect of conversion rate of predator and toxic-
ity level due to patches. Further, to study the impact of fear effect, prey shows
anti-predator behaviours. Several two parameter bifurcations are drawn
that show different stability nature of dynamics. It is observed that high
value of fear level can stabilize the whole system in presence of high availability
of prey species for predation. So, availability of prey species, conversion
rate of predator, prey patches and fear level acts an crucial roles in in
determining the long-term population dynamics. We hope that this
study will contribute in understanding the impact of fear, effect of
conversion rate of predator and toxicity level due to patches. The
system (1) can also be modified further for two prey and one or two
predator which may be more significant to the biological diversity.

8 Conclusion

In this article, we consider fear effect prey-predator model and a prey refuge with
forming patches. By examining the characteristic equation of the corresponding
linearized system we obtain the threshold conditions for the stability of system.
It is observed that level of fear, availability of prey due to refuge mechanism,
conversion rate of predator and toxicity level due to patches play major role to
stabilize the system. We find that combined effects of more than one parameters
results in complex dynamical behaviour.
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Abstract

In this study, we have proposed second, fourth and sixth order convergent numerical techniques
for approximating linear and non-linear boundary value problems of second order with the help
of fractal non-polynomial spline function. We have discussed the convergence analysis and
error bound for sixth order method to prove the theoretical aspects of the presented method.
Numerical problems are experimented to validate the theoretical results. Comparison with
fractal polynomial and few other existing methods leads us to the conclusion that the proposed
technique is more efficient.

Keywords: Difference equations, fractal non-polynomial spline, quasilinearisation,
convergence analysis, truncation error.
Mathematics Subject Classification: 28A80, 65D07, 34B15

1. Introduction

With the help of fractal non-polynomial spline, we have developed numerical techniques to
find the approximate solution of boundary value problems(BVPs) of the type:wtt(t)+p(t)w(t) = f(t), t ∈ (0, 1),

w(0) = σ0, w(1) = σ1,
(1.1)

andwtt(t)+F(t,w(t)) = 0, t ∈ (0, 1),

w(0) = σ0, w(1) = σ1,
(1.2)

where σ0 and σ1 are constants. In (1.1), p(t) and f(t) are continuous functions in closed in-
terval I = [0, 1]. For random choices of p and f, exact solution of these BVPs cannot be find.

Email addresses: akhan1234in@rediffmail.com (Arshad Khana), zainavk@gmail.com (Zainav
Khatoona,∗), talat17m@gmail.com (Talat Sultanab)
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Therefore we approach numerical methods to get approximate solution of (1.1). In (1.2), pre-
sume that for (t,w(t)) ∈ D= {0≤ t≤ 1, −∞ < w(t)< ∞}, F and ∂F

∂w are continuous. We know
that (1.2) admits unique solution, if sup

(t,w(t))∈D

∂F
∂w < π2,[22]. Here we assume that ∂F

∂w ≤ 0 on

D and ∂F
∂w < 0 on D∗ = {0 < t < 1, −∞ < w(t) < ∞}. The notation wtt symbolizes second

derivative of w with respect to t.
Various authors have used different techniques to find numerical solution of linear as well as
non-linear BVPs. Authors in [11] used cubic spline functions to find the approximate solution
of nonlinear BVPs. Few numerical techniques derived by various authors for solving non-linear
BVPs are given in [1, 2, 8, 14, 23, 27, 28, 32] and fractional differential equations are given in
[13, 15, 16, 17, 18, 19, 29, 30].
With the help of quasilinearisation technique[6, 21, 26], the non-linear BVP (1.2) is converted
into a system of linear BVPs, which in turn are solved by derived numerical scheme using
fractal non-polynomial quintic spline function. A parameter λ called scaling factor is used in
fractal spline which is suitably restricted to obtain the approximate solution of the linearized
BVPs. Fractal interpolation function was introduced by Barnsley[4] using Iterated function
system. Although fractals are difficult to constrain but they are best suitable for generation
of various irregular shapes found in nature. It provides the possibility of simulating and de-
scribing landscapes precisely with the help of mathematical models. To find the numerical
solution of (1.2), Balasubramani et. al.[3] have worked upon fractal quintic polynomial spline
functions. In this paper we have worked upon finding the approximate solution using fractal
non-polynomial spline functions and observed that the proposed scheme provides better results.
The description of paper is as follows:
At the beginning ,we have given a brief description of the presented method which uses fractal
non-polynomial quintic spline to get a relation between w(t) and M(t) using continuity con-
ditions. In section 3, we have discussed the truncation error. Thereafter, possible classes of
method are discussed in section 4. Then we have discussed the convergence analysis of sixth
order method in section 5. Error bounds are carried out. Thereafter, we have given a briefing
about finite-difference method and Numerov’s method, and experimented four numerical prob-
lems to testify the efficacy of proposed method in section 6. Concluding remarks are provided
in section 7.

2. Fractal Nonpolynomial spline

Let 0 = t0 < t1 < t2 < .. . < tn = 1 be the partition of the interval I = [0,1] given in (1.1)
and (1.2). Let w(t) and Wj denote the analytical and approximate solutions respectively. For
tj = jh, h = 1/n, j = 0,1, . . . ,n. Let Mj and Sj denote the approximation corresponding to
wtt(tj) and wtttt(tj) respectively.
Concept of Iterated functions system (IFS) is used to develop fractal interpolation functions(FIF).
Basic details related to fractal interpolation are provided in [5, 9, 10].
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Define Hj : I→ Ij, where Ij = [tj−1, tj] such that
Hj(t) = ht+ tj−1, t ∈ I.

Clearly, Hj(t0) = tj−1 and Hj(tn) = tj,
and define Fj : I×R→ R such that

Fj(t,w) = λw+ rj(t), (t,w) ∈ I×R,
where λ is scaling factor such that |λ |< h4 and

rj(t) = Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2 +Ej(t− t0)+Fj.

Constructing the IFS as follows

I×R;Xj(t,w) = (Hj(t),(Fj(t,w))) : j= 1,2, . . . ,n,

which satisfies the following conditions:



Fj(t0,W0) = Wj−1, Fj(tn,Wn) = Wj,

Fj,1(tn,Wn,1) = Fj+1,1(t0,W0,1),

Fj,2(t0,M0) = Mj−1, Fj,2(tn,Mn) = Mj,

Fj,3(tn,Wn,3) = Fj+1,3(t0,W0,3),

Fj,4(t0,S0) = Sj−1, Fj,4(tn,Sn) = Sj,

where j= 1,2, ....,n−1, and Fj,k(t,w) =
λw+rkj(t)

hk , k= 1,2,3,4 and

W0,1 =
r(1)1 (t0)

h−λ
, Wn,1 =

r(1)n (tn)
h−λ

, W0,3 =
r(3)1 (t0)
h3−λ

, Wn,3 =
r(3)n (tn)
h3−λ

.

Clearly, IFS is satisfying C4-differentiability conditions on FIFs[5, 9, 10].

Let F =
{

Φ ∈ C4(I,R) | Φ(t0) = W0, Φ(tn) = Wn, Φ(2)(t0) = M0,

Φ(2)(tn) = Mn, Φ(4)(t0) = S0, Φ(4)(tn) = Sn
}
.

Then (F,d) is a complete metric space and d is a metric induced on F by C4−norm. Let us
define the Read-Bajraktarevic operator T on (F,d) as

T(Φ(Hj(t))) = λΦ(t)+Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2

+Ej(t− t0)+Fj , t ∈ [t0, tn], j= 1,2, ....,n.

As operator T is contraction map, it must have a unique fixed point ϕ (say) which will
satisfy the following conditions:

ϕ(Hj(t)) = λϕ(t)+Ajcosξ (t− t0)+Bjsinξ (t− t0)+Cj(t− t0)3 +Dj(t− t0)2

3
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+Ej(t− t0)+Fj, t ∈ [t0, tn], j= 1,2, ....,n. (2.1)

From [10], it can be seen thatFj(t0,W0) = Wj−1, Fj(tn,Wn) = Wj, Fj,2(t0,M0) = Mj−1,

Fj,2(tn,Mn) = Mj, Fj,4(t0,S0) = Sj−1, Fj,2(tn,Sn) = Sj,

are equivalent toϕ(tj−1) = Wj−1, ϕ(tj) = Wj, ϕ(2)(tj−1) = Mj−1,

ϕ(2)(tj) = Mj, ϕ(4)(tj−1) = Sj−1, ϕ(4)(tj) = Sj.
(2.2)

The conditions Fj,1(tn,Wn,1) = Fj+1,1(t0,W0,1), and Fj,3(tn,Wn,3) = Fj+1,3(t0,W0,3), can be
reevaluated as ϕ(1)(Hj(tn)) = ϕ(1)(Hj+1(t0)) and ϕ(3)(Hj(tn)) = ϕ(3)(Hj+1(t0)) respectively.
The coefficients A j, B j, C j, D j, E j and F j used in (2.1) are evaluated using (2.2). We get

Aj =
h4

ξ 4

(
Sj−1− λ

h4 S0

)
,

Bj =
h4

ξ 4 sinξ

(
Sj− λ

h4 Sn

)
− h4 cosξ

ξ 4 sinξ

(
Sj−1− λ

h4 S0

)
,

Cj =
h2

6

(
Mj− λ

h2 Mn

)
− h2

6

(
Mj−1− λ

h2 M0

)
+ h4

6ξ 2

(
Sj− λ

h4 Sn

)
− h4

6ξ 2

(
Sj−1− λ

h4 S0

)
,

Dj =
h2

2

(
Mj−1− λ

h2 M0

)
+ h4

2ξ 2

(
Sj−1− λ

h4 S0

)
,

Ej =
(

Wj−λWn

)
−
(

Wj−1−λW0

)
− h4

6ξ 4 (6+ξ 2)
(

Sj− λ

h4 Sn

)
+ h4

6ξ 4 (6−2ξ 2)
(

Sj−1− λ

h4 S0

)
− h2

6

(
Mj− λ

h2 Mn

)
− 2h2

6

(
Mj−1− λ

h2 M0

)
,

Fj =
(

Wj−1−λW0

)
+ h4

ξ 4

(
Sj−1− λ

h4 S0

)
.

For continuity of ϕ(1), we have used ϕ(1)(t−j ) = ϕ(1)(t+j ) i.e., ϕ(1)(Hj(tn)) = ϕ(1)(Hj+1(t0))
and eventually get the following condition:

λϕ
(1)(tn)−Ajξ sinξ +Bjξ cosξ +3Cj+2Dj+Ej = λϕ

(1)(t0)+ξBj+1 +Ej+1. (2.3)

Similarly for continuity of ϕ(3) we have used ϕ(3)(t−j ) = ϕ(3)(t+j ) i.e., ϕ(3)(Hj(tn)) =
ϕ(3)(Hj+1(t0)) and get

λϕ
(3)(tn)+Ajξ

3 sinξ −Bjξ
3 cosξ +6Cj = λϕ

(3)(t0)+ξ
3Bj+1 +6Cj+1. (2.4)

After substituting the values of Aj, Bj, Cj, Dj, Ej, Bj+1, Cj+1 and Ej+1 in (2.3) and (2.4),
we obtain(

S0 +Sn

)(
λ

2ξ 2 +
λ

ξ 3
cosξ

sinξ
− λ

ξ 3 sinξ

)
+
(

Sj−1 +Sj+1

)( h4

ξ 3 sinξ
− h4

6ξ 4 (6+ξ
2)
)

4
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+Sj
( h4

6ξ 4 (12−4ξ
2)− 2h4

ξ 3
cosξ

sinξ

)
= λϕ

(1)(tn)−λϕ
(1)(t0)− (Wj+1−2Wj+Wj−1)

−λ

2
(M0 +Mn)+

h2

6
(Mj+1 +4Mj+Mj−1), (2.5)

and

(S0 +Sn)
(

λ

ξ

cosξ

sinξ
− λ

ξ sinξ

)
+
( h4

ξ sinξ
− h4

ξ 2

)
(Sj−1 +Sj+1)+Sj

(2h4

ξ 2 −
2h4

ξ

cosξ

sinξ

)
= λ (ϕ(3)(t0)−ϕ

(3)(tn))+h2(Mj−1−2Mj+Mj+1), (2.6)

respectively. From equation (2.5), we have(
α2Sj−1 +2β2Sj+α2Sj+1

)
=− 1

6h2 (Mj+1 +4Mj+Mj−1)+
1
h4 k2

(
S0 +Sn

)
− λ

h4

(
ϕ
(1)(tn)

−ϕ
(1)(t0)

)
+

λ

2h4 (M0 +Mn)+
1
h4 (Wj+1−2Wj+Wj+1), (2.7)

and from equation (2.6), we have

(α1Sj−1 +2β1Sj+α1Sj+1) =
1
h2 (Mj+1−2Mj+Mj−1)−

1
h4 k1(S0 +Sn)

− λ

h4

(
ϕ
(3)(tn)−ϕ

(3)(t0)
)
, (2.8)

where
α1 =

1
ξ 2

(
ξ cosec(ξ )−1

)
, β1 =

1
ξ 2

(
1−ξ cot(ξ )

)
,

α2 =
1

ξ 2

(
1
6 −α1

)
, β2 =

1
ξ 2

(
1
3 −β1

)
,

k1 =
cotξ

ξ
− cosecξ

ξ
, k2 =

1
ξ 2

(
1
2 + k1

)
.

Solving (2.7) and (2.8), we get

Sj =
(S0 +Sn)

2h4
(α1k2 +α2k1)

(α1β2−α2β1)
− α1λ

2h4

(
ϕ(1)(tn)−ϕ(1)(t0)

)
(α1β2−α2β1)

+
α2λ

2h4

(
ϕ(3)(tn)−ϕ(3)(t0)

)
(α1β2−α2β1)

+
α1λ

4h4
(M0 +Mn)

(α1β2−α2β1)
+

α1

2h4
(Wj+1−2Wj+Wj−1)

(α1β2−α2β1)
− α1

12h2
(Mj+1 +4Mj+Mj−1)

(α1β2−α2β1)

− α2

2h2
(Mj+1−2Mj+Mj−1)

(α1β2−α2β1)
. (2.9)

Using equation (2.9) in equation (2.8), we have

α1(Wj+2 +Wj−2)+2(β1−α1)(Wj+1 +Wj−1)+(2α1−4β1)Wj

=−2(α1 +β1)λ (ϕ
(1)(t0)−ϕ

(1)(tn))+2(α2 +β2)λ (ϕ
(3)(t0)−ϕ

(3)(tn))

−(α1 +β1)λ (M0 +Mn)+h2(pMj+2 +qMj+1 + rMj+qMj−1 + pMj−2), (2.10)

5
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where
p = α2 +

α1
6 ,

q = 2
[

1
6(2α1 +β1)− (α2−β2)

]
,

r = 2
[

1
6(α1 +4β1)+(α2−2β2)

]
.

Remark 1: When
(

α1,β1,α2,β2

)
=
(

1
6 ,

2
6 ,
−7
360 ,

−8
360

)
equation (2.10) reduces to (2.5) of Bal-

asubramani et al.[3].
Remark 2: When λ = 0, equation (2.10) reduces to quintic non-polynomial spline method by
P. Srivastav et al.[31].

2.1. Spline Solution for Linear BVPs

Equation (1.1) is discretized at t= tj, since Mj+pjWj= fj, where pj= p(tj), fj= f(tj).
The boundary equations are discretized as W0 = σ0, Wn = σ1.

Substitute
ϕ(3)(t0) =

−W0+3W1−3W2+W3
h3 , ϕ(3)(tn) =

Wn−3Wn−1+3Wn−2−Wn−3
h3 ,

ϕ(1)(t0) =
W1−W0

h , ϕ(1)(tn) =
Wn−Wn−1

h ,

Mj = fj−pjWj,

in (2.10), and after some calculations we get,

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2−

[
2(α2+β2)λ

h3

]
W3−

[
α1 + ph2pj−2

]
Wj−2

−
[
2(β1−α1)+qh2pj−1

]
Wj−1−

[
(2α1−4β1)+ rh2pj

]
Wj−

[
2(β1−α1)

+qh2pj+1

]
Wj+1−

[
α1 + ph2pj+2

]
Wj+2−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
Wn−1 =−h2

[
p(fj+2 +fj−2)+q(fj+1 +fj−1)+ rfj

]
+λ (α1 +β1)[(f0 +fn)− (p0σ0 +pnσn)]−

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
σ0

−
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
σ1, j= 2,3, . . . ,(n−2).

(2.11)

In (2.11) we have (n− 1) unknowns W1, W2, . . .Wn−1 and (n− 3) equations. Therefore two
more equations are required to find unique solution. Hence we derive two boundary equations
as follows:

Boundary equations

Let the equation at j= 1 and j= n−1 be

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W0−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2

−
[

2(α2+β2)λ
h3

]
W3−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2−

[
2(α1+β1)λ

h

+6(α2+β2)λ
h3

]
Wn−1 +

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
Wn = λ (α1 +β1)[(f0 +fn)

−(q0σ0 +qnσn)]+∑
k=5
k=0
(
lkw(tk)+mkh2wtt(tk)

)
,

(2.12)

6
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and 

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W0−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W1 +

[
6(α2+β2)λ

h3

]
W2

−
[

2(α2+β2)λ
h3

]
W3−

[
2(α2+β2)λ

h3

]
Wn−3 +

[
6(α2+β2)λ

h3

]
Wn−2−

[
2(α1+β1)λ

h

+6(α2+β2)λ
h3

]
Wn−1 +

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
Wn = λ (α1 +β1)[(f0 +fn)

−(q0σ0 +qnσn)]+∑
k=n
k=n−5

(
lkw(tk)+mkh2wtt(tk)

)
,

(2.13)

respectively. The system (2.11), (2.12) and (2.13) provides the numerical solution Wj, j =

1,2, . . . ,n−1 for linear BVPs.

2.2. Spline Solution for nonlinear BVPs

2.2.1. Quasilinearisation technique
We use quasilinearisation technique to convert the non-linear BVP given in (1.2) into a sys-

tem of linear BVPs. Here w(0)(t) denotes the initial approximation and the function F(t,w(t))
is expanded around the w(0)(t) to obtain

F(t,w(1)(t)) = F(t,w(0)(t))+(w(1)−w(0))
( ∂F

∂w

)
(t,w(0)(t))+ . . . .

In general,

F(t,w(r+1)(t)) = F(t,w(r)(t))+(w(r+1)−w(r))
( ∂F

∂w

)
(t,w(r)(t))+ . . . ,

where r is the iteration index such that r= 0,1,2, ...
The nonlinear BVP (1.2) can be written asw(r+1)

tt (t)+F(t,w(r+1)(t)) = 0, t ∈ (0,1),

w(r+1)(0) = σ0, w(r+1)(1) = σ1.
(2.14)

By substituting

F(t,w(r+1)(t)) = F(t,w(r)(t))+(w(r+1)−w(r))
( ∂F

∂w

)
(t,w(r)(t))

in (2.14), we getw(r+1)
tt (t)+q(r)(t)w(r+1)(t) = f (r)(t), t ∈ (0,1), r= 0,1, ...,

w(r+1)(0) = σ0, w(r+1)(1) = σ1,
(2.15)

where

q(r)(t) =
( ∂F

∂w

)
(t,w(r)(t)), f (r)(t) = w(r)(t)

( ∂F

∂w

)
(t,w(r)(t))−F(t,w(r)(t)).

7
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Hence the non-linear BVP (1.2) is converted into a system of linear BVPs. Now we will proceed
to solve this system numerically.

2.2.2. Numerical scheme
Let W(r)

j is the approximate value of w(r)(tj) and M(r)
j is the approximate value of w(r)

tt (tj).
Now, at t = tj, the differential equation (2.15) can be discretized as

M(r+1)
j +q(r)j W(r+1)

j = f (r)j ,

where

q(r)j =
(∂F

∂w

)
(tj,w

(r)
j )

, f (r)j = w(r)
j

(∂F
∂w

)
(tj,w

(r)
j )
−F(tj,w

(r)
j ).

Also, the boundary conditions can be discretised as W(r+1)
0 = σ0, W(r+1)

n = σ1.

Substitute
ϕ(3)(t0) =

−W(r+1)
0 +3W(r+1)

1 −3W(r+1)
2 +W(r+1)

3
h3 ,

ϕ(3)(tn) =
W(r+1)

n −3W(r+1)
n−1 +3W(r+1)

n−2 −W(r+1)
n−3

h3 ,

ϕ(1)(t0) =
W(r+1)

1 −W(r+1)
0

h , ϕ(1)(tn) =
W(r+1)

n −W(r+1)
n−1

h ,

M(r+1)
j = f (r)j −q(r)j W(r+1)

j ,

in equation (2.10) we have

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2 −
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[
α1

+ph2q(r)j−2

]
W(r+1)

j−2 −
[
2(β1−α1)+qh2q(r)j−1

]
W(r+1)

j−1 −
[
(2α1−4β1)+ rh2q(r)j

]
W(r+1)

j

−
[
2(β1−α1)+qh2q(r)j+1

]
W(r+1)

j+1 −
[
α1 + ph2q(r)j+2

]
W(r+1)

j+2 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3

+
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

n−1 =−h2
[

p( f (r)j+2 + f (r)j−2)

+q( f (r)j+1 + f (r)j−1)+ r f (r)j

]
+λ (α1 +β1)[( f (r)0 + f (r)n )− (q(r)0 σ0 +q(r)n σn)]

−
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
σ0−

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
σ1, j= 2,3, . . . ,(n−2).

(2.16)

In (2.16) we have (n− 1) unknowns W(r+1)
1 , W(r+1)

2 , . . .W(r+1)
n−1 and (n− 3) equations.

Therefore two more equations are required to find unique solution. Hence we derive two bound-
ary equations as follows:

8
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Boundary equations

Let the equation at j= 1 and j= n−1 be

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)

0 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2

−
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3 +
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h

+6(α2+β2)λ
h3

]
W(r+1)

n−1 +
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
W(r+1)

n = λ (α1 +β1)[( f (r)0 + f (r)n )

−(q(r)0 σ0 +q(r)n σn)]+∑
k=5
k=0
(
lkw(r+1)(tk)+mkh2w(r+1)

tt (tk)
)
,

(2.17)

and

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)

0 −
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)

1 +
[

6(α2+β2)λ
h3

]
W(r+1)

2

−
[

2(α2+β2)λ
h3

]
W(r+1)

3 −
[

2(α2+β2)λ
h3

]
W(r+1)

n−3 +
[

6(α2+β2)λ
h3

]
W(r+1)

n−2 −
[

2(α1+β1)λ
h

+6(α2+β2)λ
h3

]
W(r+1)

n−1 +
[

2(α1+β1)λ
h + 2(α2+β2)λ

h3

]
W(r+1)

n = λ (α1 +β1)[( f (r)0 + f (r)n )

−(q(r)0 σ0 +q(r)n σn)]+∑
k=n
k=n−5

(
lkw(r+1)(tk)+mkh2w(r+1)

tt (tk)
)
,

(2.18)

respectively. For non-linear BVPs, system (2.16), (2.17) and (2.18) gives the approximate
solution W(r+1)

j , j= 1,2, . . . ,n−1.

3. Truncation error

From (2.16), we have

T (r)
j (h) =

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)(t0)−

[
2(α1+β1)λ

h + 6(α2+β2)λ
h3

]
W(r+1)(t1)

+
[

6(α2+β2)λ
h3

]
W(r+1)(t2)−

[
2(α2+β2)λ

h3

]
W(r+1)(t3)−

[
α1

+ ph2q(r)(tj−2)
]
W(r+1)(tj−2)−

[
2(β1−α1)+qh2q(r)(tj−1)

]
W(r+1)(tj−1)

−
[
(2α1−4β1)+ rh2q(r)(tj)

]
W(r+1)(tj)−

[
2(β1−α1)

+qh2q(r)(tj+1)
]
W(r+1)(tj+1)−

[
α1 + ph2q(r)(tj+2)

]
W(r+1)(tj+2)

−
[

2(α2+β2)λ
h3

]
W(r+1)(tn−3)+

[
6(α2+β2)λ

h3

]
W(r+1)(tn−2)

−
[

2(α1+β1)λ
h + 6(α2+β2)λ

h3

]
W(r+1)(tn−1)+

[
2(α1+β1)λ

h + 2(α2+β2)λ
h3

]
W(r+1)(tn)

+h2
[
p( f (r)(tj+2)+ f (r)(tj−2))+q( f (r)(tj+1)+ f (r)(tj−1))+ r f (r)(tj)

]
−λ (α1 +β1)[( f (r)(t0)+ f (r)(tn))− (q(r)(t0)W(r+1)(t0)

+q(r)W(r+1)(tn))], j= 2,3, . . . ,(n−2).

(3.1)

Substituting f (r)(tj) = w(r+1)
tt (tj)+q(r)(tj)w(r+1)(tj) in (3.1), we get

9
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

T (r)
j (h) =−2(α2 +β2)λ

[
−W(r+1)(t0)+3W(r+1)(t1)−3W(r+1)(t2)+W(r+1)(t3)

h3

]
+2(α2 +β2)λ

[
W(r+1)(tn)−W(r+1)(tn−1)+3W(r+1)(tn−2)−W(r+1)(tn−3)

h3

]
−2(α1 +β1)λ

[
W(r+1)

1 −W(r+1)
0

h

]
+2(α1 +β1)λ

[
W(r+1)

n −W(r+1)
n−1

h

]
− (α1 +β1)λW(r+1)

tt (t0)− (α1 +β1)λW(r+1)
tt (tn)

−α1(w(r+1)(tj+2)+w(r+1)(tj−2))−2(β1−α1)(w(r+1)(tj+1)+w(r+1)(tj−1))

− (2α1−4β1)w(r+1)(tj)+ ph2w(r+1)
tt (tj+2)+qh2w(r+1)

tt (tj+1)+ rh2w(r+1)
tt (tj)

+qh2w(r+1)
tt (tj+1)+ ph2w(r+1)

tt (tj+2).

(3.2)

After further simplification we obtain,

T (r)
j (h) =−2(α2 +β2)λ

[
W(r+1)

ttt (t0)+O(h)
]
+2(α2 +β2)λ

[
W(r+1)

ttt (tn)+O(h)
]

−2(α1 +β1)λ
[
W(r+1)

t (t0)+O(h)
]
+2(α1 +β1)λ

[
W(r+1)

t (tn)+O(h)
]

− (α1 +β1)λW(r+1)
tt (t0)− (α1 +β1)λW(r+1)

tt (tn)

+
[

1
6

(
7α1 +β1)− (4p+q)

]
h4w(r+1)

tttt (tj)+
[

1
180

(
31α1 +β1)

− 1
12(16p+q)

]
h6w(r+1)

tttttt (tj)+
[

1
131040(1611α1 +31β1)

− 1
360(4p+q)

]
h8w(r+1)

tttttttt (tj)+O(h9).

(3.3)

We write
T (r)
j (h) = T (r)

λ
(h)+T (r)

∗ (h),
where
T (r)

λ
(h) =−2(α2 +β2)λ

[
W(r+1)

ttt (t0)+O(h)
]
+2(α2 +β2)λ

[
W(r+1)

ttt (tn)+O(h)
]

−2(α1 +β1)λ
[
W(r+1)

t (t0)+O(h)
]
+2(α1 +β1)λ

[
W(r+1)

t (tn)+O(h)
]

− (α1 +β1)λW(r+1)
tt (t0)− (α1 +β1)λW(r+1)

tt (tn),
and
T (r)
∗ (h)=

[
1
6

(
7α1+β1)−(4p+q)

]
h4w(r+1)

tttt (tj)+
[

1
180

(
31α1+β1)− 1

12(16p+q)
]
h6w(r+1)

tttttt (tj)

+
[

1
131040(1611α1 +31β1)− 1

360(4p+q)
]
h8w(r+1)

tttttttt (tj)+O(h9).

4. Class of methods

4.1. Second order method

Choose λ such that |λ | < h4. For getting method of second order, unknown coefficients
must satisfy conditions:
(α1 +β1) =

1
2 .[

1
6

(
7α1 +β1)− (4p+q)

]
6= 0.

One such set of values are:

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

139 Arshad Khan 130-152



(α1,β1) =
(1

4 ,
1
4

)
and

p = 1/4, q = 0, r = 1/2.
Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
0,−1,2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
(
0, 1

6 ,
4
6 ,

1
6 ,0,0

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
0,−1,2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
(
0, 1

6 ,
4
6 ,

1
6 ,0,0

)
.

Since |λ |< h4, we have T (r)
λ

(h) = O(h4) and T (r)
∗ (h) = −2

3 h4w(r+1)
tttt (tj)+O(h5).

Therefore

T (r)
j (h) = O(h4). (4.1)

4.2. Fourth order method

Choose λ such that |λ | < h6. For getting method of order four, values of unknown coeffi-
cients must satisfy conditions:
(α1 +β1) =

1
2 ,[

1
6

(
7α1 +β1)− (4p+q)

]
= 0,[

1
180

(
31α1 +β1)− 1

12(16p+q)
]
6= 0.

One such set of values are (α1,β1) =
(1

6 ,
1
3

)
and

p = 1
120 ,q = 26

120 ,r =
66
120 .

Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
0,−1,2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
(
0, 1

12 ,
10
12 ,

1
12 ,0,0

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
0,−1,2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
(
0, 1

12 ,
10
12 ,

1
12 ,0,0

)
.

Since |λ |< h6, we have T (r)
λ

(h) = O(h6) and T (r)
∗ (h) = 7

5000h6w(r+1)
tttt (tj)+O(h7).

Therefore

T (r)
j (h) = O(h6). (4.2)

4.3. Sixth order method

Choose λ such that |λ | < h8. For getting method of order six, values of unknown coeffi-
cients must satisfy conditions:

11
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(α1 +β1) =
1
2 ,

1
6

(
7α1 +β1)− (4p+q) = 0,

1
180

(
31α1 +β1)− 1

12(16p+q) = 0,[
1

131040(1611α1 +31β1)− 1
360(4p+q)

]
6= 0.

The only set of such values are (α1,β1) =
( 1

12 ,
5

12

)
and p = 1

360 ,q = 56
360 ,r =

246
360 .

Also
at j= 1,

(
l0, l1, l2, l3, l4, l5

)
=
(
−4,7,−2,−1,0,0

)
,(

m0,m1,m2,m3,m4,m5
)
=
( 71

240 ,
43
12 ,

7
8 ,

1
3 ,
−5
48 ,

1
60

)
,

and
at j= n−1,

(
ln, ln−1, ln−2, ln−3, ln−4, ln−5

)
=
(
−4,7,−2,−1,0,0

)
,(

mn,mn−1,mn−2,mn−3,mn−4,mn−5
)
=
( 71

240 ,
43
12 ,

7
8 ,

1
3 ,
−5
48 ,

1
60

)
.

Since |λ |< h8, we have T (r)
λ

(h) = O(h8) and T (r)
∗ (h) = 7

5000h8w(r+1)
tttttttt (tj)+O(h9).

Therefore

T (r)
j (h) = O(h8). (4.3)

Remark 3: Since α2 =
1

ξ 2

(
1
6 −α1

)
and β2 =

1
ξ 2

(
1
3 −β1

)
,

i.e.(α2 +β2) =
1

ξ 2

(
1
2 − (α1 +β1)

)
,

therefore (α1 +β1) =
1
2 implies (α2 +β2) = 0.

5. Convergence analysis

The system given in (2.16), (2.17) and (2.18) can be written as

M(r)W(r+1) = d(r), (5.1)

where

M(r) =



M(r)
1,1 M(r)

1,2 M(r)
1,3 0 0 0 0 0 . . . 0 0 0 0 0 M(r)

1,n−3 M(r)
1,n−2 M(r)

1,n−1

M(r)
2,1 M(r)

2,2 M(r)
2,3 M(r)

2,4 0 0 0 0 . . . 0 0 0 0 0 M(r)
2,n−3 M(r)

2,n−2 M(r)
2,n−1

M(r)
3,1 M(r)

3,2 M(r)
3,3 M(r)

3,4 M(r)
3,5 0 0 0 . . . 0 0 0 0 0 M(r)

3,n−3 M(r)
3,n−2 M(r)

3,n−1

M(r)
4,1 M(r)

4,2 M(r)
4,3 M(r)

4,4 M(r)
4,5 M(r)

4,6 0 0 . . . 0 0 0 0 0 M(r)
4,n−3 M(r)

4,n−2 M(r)
4,n−1

M(r)
5,1 M(r)

5,2 M(r)
5,3 M(r)

5,4 M(r)
5,5 M(r)

5,6 M(r)
5,7 0 . . . 0 0 0 0 0 M(r)

5,n−3 M(r)
5,n−2 M(r)

5,n−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

M(r)
n−5,1 M(r)

n−5,2 M(r)
n−5,3 0 0 0 0 0 . . . 0 M(r)

n−5,n−7 M(r)
n−5,n−6 M(r)

n−5,n−5 M(r)
n−5,n−4 M(r)

n−5,n−3 M(r)
n−5,n−2 M(r)

n−5,n−1

M(r)
n−4,1 M(r)

n−4,2 M(r)
n−4,3 0 0 0 0 0 . . . 0 0 M(r)

n−4,n−6 M(r)
n−4,n−5 M(r)

n−4,n−4 M(r)
n−4,n−3 M(r)

n−4,n−2 M(r)
n−4,n−1

M(r)
n−3,1 M(r)

n−3,2 M(r)
n−3,3 0 0 0 0 0 . . . 0 0 0 M(r)

n−3,n−5 M(r)
n−3,n−4 M(r)

n−3,n−3 M(r)
n−3,n−2 M(r)

n−3,n−1

M(r)
n−2,1 M(r)

n−2,2 M(r)
n−2,3 0 0 0 0 0 . . . 0 0 0 0 M(r)

n−2,n−4 M(r)
n−2,n−3 M(r)

n−2,n−2 M(r)
n−2,n−1

M(r)
n−1,1 M(r)

n−1,2 M(r)
n−1,3 0 0 0 0 0 . . . 0 0 0 0 0 M(r)

n−1,n−3 M(r)
n−1,n−2 M(r)

n−1,n−1



,
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where W(r+1) = (W(r+1)
1 ,W(r+1)

2 , . . . ,W(r+1)
n−1 )T , M(r) is coefficient matrix of W(r+1)and

d(r) = (d(r)
1 ,d(r)

2 , . . . ,d(r)
n−1)

T .
Let N(r)(r) be the matrix when λ = 0 . Note that,

‖M(r)−N(r)‖∞ = m
i
ax

n−1

∑
i=1
‖M(r)

i,j −N(r)
i,j ‖.

Thus we get

‖M(r)−N(r)‖∞ = 2
∣∣∣∣2(α1 +β1)λ

h
+

6(α2 +β2)λ

h3

∣∣∣∣+2
∣∣∣∣−6(α2 +β2)λ

h3

∣∣∣∣+2
∣∣∣∣2(α2 +β2)λ

h3

∣∣∣∣.
Theorem 5.1. [7] : Let Q1andQ2 be any two matrices having matrix norm as ‖.‖. If the eigen
values of Q1 are given as θ1,θ2, . . . ,θn and eigenvalues of Q2 be given as µ1,µ2, . . . ,µn. Then

max
j
|θj−µj| ≤ 2

2N−1
N N

1
N (2P)

N−1
N ‖Q1−Q2‖

1
N , (5.2)

where P = max(‖Q1‖, ‖Q2‖).

In our case, we take the matrices M(r) = Q1, N(r) = Q2, N = n−1. Using ‖.‖∞ in theorem
5.1, we get

max
j
|θj−µj| ≤ 2

(
2n−3
n−1

)
(n−1)

(
1

n−1

)
(2P)

(
n−2
n−1

)
‖M(r)−N(r)‖

(
1

n−1

)
∞ , (5.3)

where P = max(‖M(r)‖∞, ‖N(r)‖∞) and M(r) and N(r) have eigenvalues θj and µj,j =

1,2, . . . ,n−1 respectively.

For sufficiently small values of h, N(r)(r) becomes irreducible, N(r)
i,i > 0, N(r)

i,j ≤ 0, i 6= j

and the row sums give
R(r)

1 = 4− 43
12h2q(r)1 −

7
8h2q(r)2 −

1
3h2q(r)3 > 0,

R(r)
2 = 1

12 −
56
360h2q(r)1 −

246
360h2q(r)2 −

56
360h2q(r)3 −

1
360h2q(r)4 > 0,

R(r)
j =− 1

360h2q(r)i−2−
56

360h2q(r)i−1−
246
360h2q(r)i −

56
360h2q(r)i+1−

1
360h2q(r)i+2 > 0,

where j= 3,4, . . .n−3,

R(r)
n−2 =

1
12 −

56
360h2q(r)n−1−

246
360h2q(r)n−2−

56
360h2q(r)n−3−

1
360h2q(r)n−4 > 0,

R(r)
n−1 = 4− 43

12h2q(r)n−1−
7
8h2q(r)n−2−

1
3h2q(r)n−3 > 0.

Here N(r) is a monotone matrix [20]. Therefore for adequately small values of h, (N(r))−1
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exist and we get non-zero eigenvalues µj, j= 1,2, . . .n−1 . Thus for these values of h (corre-
sponding to which N(r) is a monotone matrix), λ lies in the region (−h8, h8). We select λ in
such a manner that it must satisfy the following two conditions :

(i) M(r) is invertible matrix, since ‖M(r)−N(r)‖∞ = 2
∣∣∣∣2(α1+β1)λ

h + 6(α2+β2)λ
h3

∣∣∣∣+2
∣∣∣∣−6(α2+β2)λ

h3

∣∣∣∣+
2
∣∣∣∣2(α2+β2)λ

h3

∣∣∣∣, and from (5.3) we find that eigenvalues of M(r) are non-zero, whenever λ is suf-

ficiently small.
(ii) Since N(r)

j > 0, j= 1,2, . . . ,n−1, , the row sum corresponding to M(r) is

S(r)j = Rj−
4(α1 +β1)λ

h
− 4(α2 +β2)λ

h3 , j= 1,2, . . . ,n−1, (5.4)

when λ is sufficiently small.
When N(r) is monotone (i.e. when h is adequately small ) and M(r) invertible and row sum of
M(r) is positive (i.e. for sufficiently small λ ∈ (−h8,h8) ).We derive the error bound as follows:

5.1. Error Bound for Sixth order method

The system (2.16), (2.17), and (2.18) with analytic solutions can be written as

M(r)w̄(r+1) = d(r)+T(r)(h), (5.5)

where
w̄(r+1) = (w̄(r+1)(t1), w̄(r+1)(t2), . . . , w̄(r+1)(tn−1))

T ,

and
T(r)(h) = (T

(r)
1 (h),T(r)2 (h), . . . ,T(r)n−1(h))

T .

Since from (5.1) we have

M(r)W(r+1) = d(r). (5.6)

Using (5.5) and (5.6) we get

M(r)(w̄(r+1)−W(r+1)) = T(r)(h),

that is,

M(r)E(r+1) = T(r)(h), (5.7)

14
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where E(r+1) = (E
(r+1)
1 ,E

(r+1)
2 , . . . ,E

(r+1)
n−1 )T , E

(r+1)
j = w(r+1)(tj)−W(r+1)

j .

Consequently, using (5.7) we obtain

E(r+1) = (M(r))
−1
T(r)(h). (5.8)

Using the definition of product of inverse of matrix with the matrix itself, we get

n−1

∑
j=1

M(r)−1

i,j S(r)j = 1, i = 1,2, . . . ,n−1.

Hence by (5.4) we get

n−1

∑
j=1

M(r)−1

i,j ≤ 1

S(r)j
1≤j≤n−1

=
1

C(r)
i h2

, (5.9)

such that C(r) is constant. Using (5.8) and (5.9) we get

E
(r+1)
i =

n−1

∑
j=1

M(r)−1

i,j T
(r)
j (h), i = 1,2, . . . ,n−1. (5.10)

Substituting (4.3) and (5.9) in (5.10), we get

|E(r+1)
i | ≤ qh8

C(r)
i h2

,

where q is a constant.
Hence we obtain

‖E‖∞ = O(h6),

which proves that the proposed scheme is sixth-order convergent. Similar procedure can be
used to derive the convergence of second as well as fourth order methods.

6. Numerical experiments

We take adequate number of iterations till the maximum error between the two succeeding
iterations satisfy the following tolerance bound:

max
j
|W(r+1)

j −W(r)
j |< TOL,

where TOL is convergence tolerance. When the condition is met, we believe W(r+1) is the
approximate value W of the given problem. Here we have considered TOL = 10−15.

For each n, EN denotes the maximum point-wise error which is determined by

max
j
|w(tj)−Wj|,

15
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where w(tj) and Wj are the analytic and approximate solutions respectively at t = tj. Order of
convergence of the proposed method is determined as

pn = log2

( En

E2n

)
.

6.1. Numerical Schemes for comparison
As we compare the presented method with Numerov’s method and second order finite dif-

ference method, here we give a brief particulars about these two methods.

6.1.1. Finite-difference method
Consider BVP given in (1.1) and (1.2), let W(r+1) be the approximate value of w(r+1)(t).

Putting

W(r+1)(t)
tt ≈ 1

h2

[
W(r+1)

j−1 −2W(r+1)
j +W(r+1)

j+1

]
, (6.1)

in (1.2) and after simplifying, we get

W(r+1)
j−1 +

[
−2+h2q(r+1)

j

]
W(r+1)

j +W(r+1)
j+1 = h2f

(r)
j , (6.2)

for j= 1,2, . . .n. Here W0 = σ0 and W1 = σ1.

6.1.2. Numerov’s method
For BVP given in (1.1) and (1.2), Numerov’s method can be written as

Wj−1−2Wj+Wj+1 =
h2

12
[
fj−1 +10fj+fj+1

]
, (6.3)

where fj = f(tj,Wj), j = 0,1 . . .n, W0 = σ0 and W1 = σ1. To get more details about this
method, one can refer [12].

Problem 1: Consider the following linear BVP[25, 31]wtt(t)+w(t) =−1, 0 < t < 1,

w(0) = 0, w(1) = 0,
(6.4)

with exact solution w(t) = cos(t)+ 1−cos(1)
sin(1) sin(t)−1. Approximate results are shown in Table

1 along with results given by Srivastava et al.[31] and Ramadan et al.[25]. λ varies according
to the order of method.

Problem 2: Consider the following nonlinear BVP[3]wtt(t)+ exp(−2w(t)) = 0, 0 < t < 1,

w(0) = 0, w(1) = log(2),
(6.5)
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Table 1: M.A.E. for problem 1.
h 1/8 1/16 1/32 1/64

Second Order Method
p = 0.04063483994113, 1.5516×10−03 2.0410×10−04 3.0770×10−05 5.2534×10−06

q = 0.25412730690212,
r = 0.41047570631347

pN 2.9263 2.7296 2.5502

(p,q,r) =
(1

4 ,0,
1
2

)
3.4324×10−03 6.0707×10−04 1.2491×10−04 2.8070×10−05

pN 2.4992 2.2809 2.1538
Fourth Order Method
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
1.9214×10−05 5.8656×10−07 1.7739×10−08 5.2095×10−10

pN 5.0337 5.0472 5.0896

(p,q,r) =
( 1

720 ,
11
45 ,

183
360

)
1.9558×10−05 6.0424×10−07 1.8788×10−08 5.8564×10−10

pN 5.0164 5.0072 5.0036
Sixth Order Method

(p,q,r) =
( 1

360 ,
56
360 ,

246
360

)
2.6594×10−07 2.2124×10−09 1.6972×10−11 1.2678×10−13

pN 6.9093 7.0262 7.0646

Srivastava et al.[31] 7.1329×10−08 5.2213×10−09 3.6359×10−10 3.1275×10−11

pN 3.7720 3.8440 3.5392

Ramadan et al.[25] 1.7538×10−04 2.1600×10−05 2.6770×10−06 3.3310×10−07

pN 3.0213 3.0123 3.0065
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with exact solution w(t) = log(1+ t). Approximate results are shown in Table 2 along with
results given by Balasubramani et al.[3], finite difference method and Mohanty et al.[24].

Table 2: M.A.E for problem 2.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
1.9977×10−03 4.5767×10−04 1.1324×10−04 2.8198×10−05

pN 2.1259 2.0148 2.0058

(p,q,r) =
(1

4 ,
1
4 ,0
)

2.7119×10−03 6.2781×10−04 1.5566×10−04 3.8770×10−05

pN 2.1109 2.0119 2.0053
Fourth Order Method

(p,q,r) =
( 1

720 ,
11
45 ,

183
360

)
2.6377×10−05 9.0287×10−07 3.0209×10−08 1.0626×10−09

pN 4.8686 4.9014 4.8292
Balasubramani et al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.7039×10−06 1.3093×10−07 4.6024×10−09 1.6823×10−10

pN 4.8222 4.8303 4.7739
Sixth Order Method

(p,q,r) =
( 1

360 ,
56

360 ,
246
360

)
2.4456×10−07 2.1358×10−09 1.6419×10−11 1.1984×10−13

pN 6.8392 7.0233 7.0980

Finite difference method 2.2281×10−04 5.6130×10−05 1.4060×10−05 3.5166×10−06

pN 1.9890 1.9972 1.9993

Mohanty et al.[24] 1.6424×10−05 1.0481×10−06 6.5976×10−08 3.8966×10−09

pN 3.9699 3.9896 4.0816

Problem 3: Consider the following nonlinear BVP[3]wtt(t)− (2−t)exp(2w(t))+(1/(t+1))
3 = 0, 0 < t < 1,

w(0) = 0, w(1) = log(1/2),
(6.6)

with exact solution w(t) = log(1/1+ t). Approximate results are shown in Table 3 along with
results given by Balasubramani et al.[3], finite difference method and Numerov’s method.
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Table 3: M.A.E for problem 3.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
1.3688×10−03 4.1286×10−04 1.1600×10−04 3.0846×10−05

pN 1.7292 1.8314 1.9110

(p,q,r) =
(1

4 ,
1
4 ,0
)

2.3839×10−03 6.2248×10−04 1.6526×10−04 4.2528×10−05

pN 1.9372 1.9132 1.9582
Fourth Order Method
(p,q,r) =

( 1
720 ,

11
45 ,

183
360

)
2.7594×10−05 9.4434×10−07 3.1573×10−08 1.1062×10−09

pN 4.8689 4.9025 4.8349

Balasubramani et al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.8662×10−06 1.3680×10−07 4.8082×10−09 1.7524×10−10

pN 4.8207 4.8304 4.7781
Sixth Order Method

(p,q,r) =
( 1

360 ,
56
360 ,

246
360

)
1.3851×10−07 1.2157×10−09 6.9262×10−12 1.2062×10−13

pN 6.8320 7.4555 5.8434

Finite difference method 2.3261×10−04 5.8573×10−05 1.4670×10−05 3.6702×10−06

pN 1.9890 1.9974 1.9989

Numerov′s Method 2.1034×10−06 1.3382×10−07 8.4017×10−09 5.2577×10−10

pN 3.9743 3.9935 3.9982
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Problem 4: Consider the following nonlinear BVP[3]wtt(t)− 25t8exp(w(t))−20t3

4+t5 = 0, 0 < t < 1,

w(0) =−log(4), w(1) =−log(5),
(6.7)

with exact solution w(t) =−log(4+ t5). Approximate results are shown in Table 4 along with
results given by Balasubramani et al.[3], finite difference method and Numerov’s method.

Table 4: M.A.E for problem 4.
h 1/8 1/16 1/32 1/64

Second Order Method
(p,q,r) =

(1
4 ,0,

1
2

)
5.5212×10−03 1.2773×10−03 3.3060×10−04 8.4161×10−05

pN 2.1118 1.9500 1.9738

(p,q,r) =
(1

4 ,
1
4 ,0
)

9.5912×10−03 2.0448×10−03 5.2840×10−04 1.3576×10−04

pN 2.2296 1.9523 1.9605
Fourth Order Method
(p,q,r) =

( 1
720 ,

11
45 ,

183
360

)
6.2487×10−05 1.0123×10−06 3.8928×10−08 2.7550×10−09

pN 5.9477 4.7007 3.8206
Balasubramani el al.[3]
(p,q,r) =

( 1
120 ,

26
120 ,

66
120

)
3.9439×10−06 3.3929×10−07 1.4653×10−08 6.6424×10−10

pN 3.5391 4.5332 4.4633
Sixth Order Method

(p,q,r) =
( 1

360 ,
56

360 ,
246
360

)
5.1118×10−06 1.2322×10−08 2.1551×10−10 3.1186×10−12

pN 8.6963 5.8374 6.1107

Finite difference Method 1.1795×10−03 2.9324×10−04 7.3024×10−05 1.8265×10−05

pN 2.0080 2.0056 1.9992

Numerov′s Method 3.0070×10−05 1.8480×10−06 1.1585×10−07 7.2337×10−09

pN 4.0242 3.9956 4.0014

7. Conclusion

This study deals with developing second, fourth and sixth order convergent numerical
schemes by using fractal non-polynomial spline function. With the help of quasilinearisation
technique, the non-linear BVPs is converted into a system of linear BVPs, which in turn are
solved by using the proposed schemes. These schemes are used to find approximate solution
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Figure 1: Relationship between analytical and approximate solution for problem 1.

Figure 2: Relationship between analytical and approximate solution for problem 2.

Figure 3: Relationship between analytical and approximate solution for problem 3.

Figure 4: Relationship between analytical and approximate solution for problem 4.
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of second order linear as well as nonlinear BVPs. Comparison with polynomial fractal quintic
spline and few other methods leads us to the conclusion that the presented methods are more
efficient.
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Abstract

Solitary wave propagation and interaction in plasma using numerical
tools like Galerkin Finite Element scheme are discussed in this paper.
A one-dimensional nonlinear Schrodinger-Korteweg De-Vries (Sch-KdV)
equation is taken as model equation for Non-linear waves propagation in
the said media. The derived system, with the help of cubic B-spline source
functions are engaged as element and weight functions, after finite element
formulation is solved with Runge Kutta Fourth Order method (RK4).
Previously the finite element methods with some numerical simulations
do not exhibit the complex nature of wave interaction, especially solitary
wave interaction. A combination of Galerkin Finite Element scheme with
RK4 is a very prominent instrument to study the nature of Non-linear
evolution equations in ionic medias, which is the novelty of the paper.

Key words: Schrödinger - Korteweg - De Vries (Sch-KdV)equations,
Galerkin Finite Element Scheme,Cubic B-spline source functions, Solitary
Wave
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1

1 Introduction

Several physical phenomena are described either by nonlinear coupled partial
differential equations or by nonlinear evolution equation. This Non-linear wave
propagation phenomenon appears in one or other ways can be well explained
by travelling and solitary wave solution of the said equations. Most of these
equations do not have an analytical solution, or it is extremely difficult and
expensive to compute their analytical solutions. Hence numerical study of these
nonlinear partial differential equations is important in practice. The Non-linear
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waves propagation in plasma can also be explained by these solutions. In the
past study, many methods for finding the Solitary and periodic solutions [1]-[8]
and numerical method [8]-[12],[21]-[24] are used for Non-linear evolution equa-
tions (NLEEs).
In this paper, we study a Galerkin finite element Scheme for the 1D nonlinear
Schrödinger -Korteweg-De -Vries (Sch-KdV) equation by using linear finite el-
ements in space and extrapolation to remove the nonlinear term. We discuss
the properties of this method and compare its accuracy with previous studies.
The interaction of two solitons is also studied. Moreover, the propagation of
the Maxwellian initial condition is simulated.
The outline of this paper is as follows, In the next section the model equation is
discretized to form a numerical scheme. In section 3 a numerical scheme is de-
veloped and results are explained graphically. Finally, we give a brief conclusion
in Section 4

2 Model Equation and Discretization

Non-linear waves propagation and interactions in plasma for this purpose we
consider the 1D nonlinear Schrödinger -Korteweg-De -Vries (Sch-KdV) equation
[13]-[15] as model equation as -

iθt = θxx + θυ (2.1)

υt = −6θυx − υxxx + (|θ|2)x (2.2)

Here θ(x, t)is complex function and υ(x,t)is real-valued function. This system
appeared as model equation for describing various types of wave propagation
such as Langmuir wave, dust-acoustic wave and electromagnetic waves in plasma
physics. with initial conditions

θ(x, 0) = f(x) = 9
√

2 eiαx k2sech2(kx) (2.3)

v(x, 0) = g(x) =
α+ 16k2

3
− 6k2tanh2(kx) (2.4)

and boundary conditions

θ(t, a) = 0, v(t, b) = 0, x ∈ [a, b] and t ∈ [0, T ] (2.5)

Here θ = θ(x, t) and υ = υ(x,t) are going to be considered as sufficiently differ-
entiable functions.
We multiplied weight function to the equations (2.1)-(2.2) and integrated over
the x domain for finite element method [16]-[20], so we get∫ b

a

(iωθt − ωθxx − ωθυ)dx = 0 (2.6)

∫ b

a

(ωυt + 6ωθυx + ωυxxx − ω(|θ|2)x)dx = 0 (2.7)

The domain [a, b] of x is separated into N finite subdivision as

2
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a = x0 < x1 < x2 < ... < xN−1 < xN = b

Here nodal point is {xm}Nm=0 i.e. m = 0,1,2,...,N and length of subdivision will
be h = xm+1 - xm . We construct the approximate solutions for the system
with cubic B-spline base functions

θN (x, t) =
N+1∑
j=−1

ψj(x)uj(t) (2.8)

υN (x, t) =
N+1∑
j=−1

ψj(x)vj(t) (2.9)

where uj(t) and vj(t) are function of time t and ψj(x) are function of x, called
element size functions. A local coordinate ξ = x−xm for 0≤ ξ ≤ h introduced
for cubic B-spline base functions with typical element [xm, xm+1] , which has
the form;

ψm−1 =
(h− ξ)3

h3

ψm =
(h3 + 3h2(h− ξ) + 3h(h− ξ)2 − 3(h− ξ)3)

h3

ψm+1 =
(h3 + 3h2ξ + 3hξ2 − 3ξ3)

h3

ψm+2 =
ξ3

h3
(2.10)

The approximate solutions of Eqs.((2.8)-(2.9)) with element size function eq.(2.10)
may be define as with typical element [xm, xm+1];

θN (ξ, t) =
m+2∑
j=m−1

uej(t)ψ
e
j (ξ) (2.11)

υN (ξ, t) =
m+2∑
j=m−1

vej (t)ψ
e
j (ξ) (2.12)

The point-wise values of θN and υN in terms u and v will be

θN (xm, t) = um−1 + 4um + um+1 (2.13)

υN (xm, t) = vm−1 + 4vm + vm+1 (2.14)

So Eqs. ((2.6)-(2.7)) with [xm, xm+1] will be∫ xm+1

xm

(iωθt − ωθxx − ωθυ)dx (2.15)

∫ xm+1

xm

(ωυt + 6ωθυx + ωxxυx − 2ωθθx)dx+ [ωυxx − ωxυx] (2.16)
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here weight function ωi with size functions ψj are takenfor the Galerkin finite
element method, Substituting Eqs. ((2.11)-(2.12)) into Eqs. ((2.15)-(2.16)),we
get

m+2∑
j=m−1

{
∫ h

0

[(iψiψj)u̇j − (ψiψ
′′

j )uj −
m+2∑

k=m−1

((ψiψjψk)uj)uk]dx} = 0 (2.17)

m+2∑
j=m−1

{
∫ h

0

[(ψiψj)v̇j+(ψ”
jψ
′
k)vj+

m+2∑
k=m−1

((6(ψiψjψ
′
k)uj)vk−2((ψiψj

ψ′k)uj)uk)]dx+ [((ψiψ
”
j )− (ψ′iψ

′
j))vj ]

h
0} = 0

(2.18)

where i, j, k = m-1, m, m+1, m+2, ue = (um−1, um, um+1, um+2) and ve =
(vm−1, vm,vm+1, um+2) are element parameters where

Aij =

∫ h

0

(iψiψj)dξ, Bij =

∫ h

0

(ψiψ
′′

j )dξ, Cjk =

∫ h

0

(ψ”
jψ
′
k)dξ

Dij =

∫ h

0

(ψiψj)dξ, Fijk =

∫ h

0

6(ψiψjψ
′
k)dξ, Gijk =

∫ h

0

(ψiψjψk)dξ

Hijk =

∫ h

0

2(ψiψjψ
′
k)dξ, Iij = [(ψiψ

”
j )]h0 , Jij = [(ψ′iψ

′

j)]
h
0

The element matrices in ((2.17)-(2.18)) are computed as follows:

Aij =
ih

140


20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20

 Bij =
3

10h


4 −7 2 1
33 −44 −11 22
22 −11 −44 33
1 2 −7 4



Cij =
3

2h2


−3 −5 7 1
5 3 −9 1
−1 9 −3 −5
−1 −7 5 3

 Dij =
h

140


20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20



Iij =
6

h2


−1 2 −1 0
−4 9 −6 1
−1 6 −9 4
0 1 −2 1

 Jij =
9

h2


−1 0 1 0
0 1 0 −1
1 0 −1 0
0 −1 0 1



Gij(u) =
h

840


G11(u) G12(u) G13(u) G14(u)
G21(u) G22(u) G23(u) G24(u)
G31(u) G32(u) G33(u) G34(u)
G41(u) G42(u) G43(u) G44(u)



4
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Fij(v) =
6h

840


F11(v) F12(v) F13(v) F14(v)
F21(v) F22(v) F23(v) F24(v)
F31(v) F32(v) F33(v) F34(v)
F41(v) F42(v) F43(v) F44(v)

 ;

Hij(u) =
2h

840


H11(u) H12(u) H13(u) H14(u)
H21(u) H22(u) H23(u) H24(u)
H31(u) H32(u) H33(u) H34(u)
H41(u) H42(u) H43(u) H44(u)


where
G11(u)=(84,463,172,1)(u), G12(u)=(463,2889,1275,17)(u),
G13(u)=(172,1275,696,17)(u), G14(u)=(1,17,17,1)(u)
G21(u)=(463,2889,1275,17)(u), G22(u)=(2889,23664,15519,696)(u)
G23(u)=(1275,15519,15519,1275)(u), G24(u)=(17,696,1275,172)(u),
G31(u)=(172,1275,696,17)(u), G32(u)=(1275,15519,15519,1275)(u),
G33(u)=(696,15519,23664,2889)(u), G34(u)=(17,1275,2889,463)(u),
G41(u)=(1,17,17,1)(u), G42(u)=(17,696,1275,172)(u),
G43(u)=(17,1275,2889,463)(u), G44(u)=(1,172,463,84)(u)

F11(v)=(-280,-150,420,10)(v) F12(v)=(-1605,-1305,2781,129)(v)
F13(v)=(-630,-792,1314,108)(v) F14(v)=(-5,-21,21,5)(v)
F21(v)=(-1605,-1305,2781,129)(v) F22(v)=(-10830,-17640,25002,3468)(v)
F23(v)=(-5349,-17541,17541,5349)(v) F24(v)=(-108,-1314,792,630)(v)
F31(v)=(-630,-792,1314,108)(v) F32(v)=(-5349,-17541,17541,5349)(v)
F33(v)=(-3468,-25002,17640,10830)(v) F34(v)=(-129,-2781,1305,1605)(v)
F41(v)=(-5,-21,21,5)(v) F42(v)=(-108,-1314,792,630)(v)
F43(v)=(-129,-2781,1305,1605)(v) F44(v)=(-10,-420,150,280)(v)

H11(u)=(-280,-150,420,10)(u) H12(u)=(-1605,-1305,2781,129)(u)
H13(u)=(-630,-792,1314,108)(u) H14(u)=(-5,-21,21,5)(u)
H21(u)=(-1605,-1305,2781,129)(u) H22(u)=(-10830,-17640,25002,3468)(u)
H23(u)=(-5349,-17541,17541,5349)(u) H24(u)=(-108,-1314,792,630)(u)
H31(u)=(-630,-792,1314,108)(u) H32(u)=(-5349,-17541,17541,5349)(u)
H33(u)=(-3468,-25002,17640,10830)(u) H34(u)=(-129,-2781,1305,1605)(u)
H41(u)=(-5,-21,21,5)(u) H42(u)=(-108,-1314,792,630)(u)
H43(u)=(129,2781,1305,1605)(u) H44(u)=(-10,-420,150,280)(u)

Here Aij , Bij , Cjk, Dij , Fijk, Gijk, Hijk, Iij and Jij are element matrices.
so, the new obtained system in matrix form

u̇ = A−1[{B −G(u)}u] (2.19)

v̇ = D−1[H(u)u+ (J − I)v − Cv − F (u)v] (2.20)

5
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Here u = (u−1, u0, u1, ..., uN , uN+1) and v = (v−1, v0, v1, ..., vN , vN+1) are time
dependent constraints, The generalized rows of the combined matrices are:

A = ι̇h
140 (1,120,1191,2416,1191,120,1)

B = 3
10h (1,24,15,-80,15,24,1)

C = 3
2h2 (-1,-8,19,0,-19,8,1)

D = h
140 (1,120,1191,2416,1191,120,1)

I = 6
h2 (0,0,0,0,0,0,0)

J = 9
h2 (0,0,0,0,0,0,0)

G(u) = h
840{(1,17,17,1,0,0,0)u,(17,868,2550,868,17,0,0)u,(17,2550,18871,18871,2550,17,0)u,

(1,868,18871,47496,18871,868,1)u,(0,17,2550,18871,18871,2550,17)u,(0,0,17,868,2550,868,
17)u,(0,0,0,1,17,17,1)u}

F(v) = 6h
840 {(-5,-21,21,5,0,0,0)v,(-108,-1944,0,1944,108,0,0)v,(-129,-8130,-17841,17841,8130,

129,0)v, (-10,-3888,-35682,0,35682,3888,10)v,(0,-129,-8130,-17841,17841,8130,129)v,(0,0,-
108,-1944,0,1944,108)v,
(0,0,0,-5,-21,21,5)v}

H(u) = 2h
840 {(-5,-21,21,5,0,0,0)u,(-108,-1944,0,1944,108,0,0)u,(-129,-8130,-17841,17841,8130,

129,0)u, (-10,-3888,-35682,0,35682,3888,10)u,(0,-129,-8130,-17841,17841,8130,129)u,(0,0,-
108,-1944,0,1944,108)u, (0,0,0,-5,-21,21,5)u }

The system equations (2.19) and (2.20) has (N + 3) × (N + 1) ordered un-
known equations. if we use time dependent boundary condition in Eqs.(2.13)
and (2.14) with m = 0 , then so parameters can be written as other parameters;

u−1, v−1 → u0, u1 and v0,v1 ; when we take m = 0

Similarly

uN+1 , vN+1 → uN−1,uN and vN−1,vN we take m = N

Then, the system of Eqs. (2.19) and( 2.20) will be two matrix systems of
(N + 1) × (N + 1) orders.These equations of systems will be solved by RK4

(Runge-Kutta fourth order method) to known initial condition u0j and v0j with
nodal points xm for m=0(1)N as follows:

u(xm, 0) = θN (xm, 0)

v(xm, 0) = υN (xm, 0)

If we write the system explicitly as

θN (x0, 0) = u−1 + 4u0 + u1 = u(x0, 0),

θN (x1, 0) = u0 + 4u1 + u2 = u(x1, 0),

θN (x2, 0) = u1 + 4u2 + u3 = u(x2, 0),

6
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.

.

θN (xN , 0) = uN−1 + 4uN + uN+1 = u(xN , 0),

and
υN (x0, 0) = v−1 + 4v0 + v1 = v(x0, 0),

υN (x1, 0) = v0 + 4v1 + v2 = v(x1, 0),

υN (x2, 0) = v1 + 4v2 + v3 = v(x2, 0),

.

.

υN (xN , 0) = vN−11 + 4vN + vN+1 = v(xN , 0),

if we write u−1 , uN+1 → u0 , uN , and v−1 , vN+1→ v0 and vN respectively.
then we get a new system (N + 1)× (N + 1) order in matrix form as :

4 2
1 4 1

1 4 1
.

.
.
1 4 1

2 4





u0
u1
u2
.
.
.

uN−1
uN


=



u(x0, 0)
u(x1, 0)
u(x2, 0)

.

.

.
u(xN−1, 0)
u(xN , 0)


(2.21)

and 

4 2
1 4 1

1 4 1
.

.
.
1 4 1

2 4





v0
v1
v2
.
.
.

vN−1
vN


=


v(x0, 0)
v(x1, 0)
v(x2, 0)

v(xN−1, 0)
v(xN , 0)

 (2.22)

By Matleb solving the algebraic Equations (2.21) and (2.22) with initial param-
eters u0j and v0j are gained for j=0(1)N.

3 Numerical Scheme

Non-Linear waves propagations and interaction are investigated to the system
of equations (2.1)-(2.2) numerically for numerous values of x and t. L2 , L∞ and
L′2 , L′∞ are error norms and used to investigate consistency with numerical
solutions(Soliton) for θ(x, t) and υ(x, t) respectively for initial conditions for the
Sch-KdV equation.

θ(x, 0) = f(x) = 9
√

2 eiαx k2sech2(kx), (3.1)

7
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v(x, 0) = g(x) =
α+ 16k2

3
− 6k2tanh2(kx) (3.2)

L2 = ‖θ − θN‖2 =

√√√√√h
N+1∑
j=−1

∣∣∣θj − (θN )j

∣∣∣2 (3.3)

L∞ = ‖θ − θN‖∞ = Max
0≤j≥N

∣∣∣θj − (θN )j

∣∣∣ (3.4)

And

L′2 = ‖υ − υN‖2 =

√√√√√h
N+1∑
j=−1

∣∣∣υj − (υN )j

∣∣∣2 (3.5)

L′∞ = ‖υ − υN‖∞ = Max
0≤j≥N

∣∣∣υj − (υN )j

∣∣∣ (3.6)

In figure 1 and 2 nonlinear wave propagation and its travelling wave solution is
presented. The coupled equations (2.1) and (2.2) are plotted for some fix values
of k, α,h and t (−5 < t < 5). the space step is taken as 0.001. It is shown in the
figure that the solution of said equation exhibit a soliton for the small values
of x (0 ≤ x ≤ 0.1). If we extend the range of x (−15 ≤ x ≤ 15) the solution
converted from soliton to a wave natured system. A solitary wave interaction
is presented in the figure 3 for the same values of k, α, h and step lengths with

8
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large values of x and t (−20 ≤ (x, t) ≤ 20). It clearly exhibit that solitons are
developed when the values of x and t coincides. For different values of x and t
the system represent the travelling wave solution.

4 Conclusions

In the present paper, we have investigated numerically a physical model for
wave propagation in a nonlinear, dispersive medium i.e a relativistic plasma.
A Galerkin finite element Scheme is exhibited to locate Solitary wave(Solitons)
propagation and interactions in plasma for Schrödinger - KortewegDe Vries (Sch-
KdV) equations. The new obtained systems (finite element formulation) solved

9
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by RK4 (Runge-Kutta fourth order method). The different values of x, t and
error norms L2 , L∞ are used for numerical solutions of Sch-KdV equations.The
numerical results obtained by this method are in good agreement with the ex-
act solutions available in the literature. The errors obtained by the proposed
method are less when compared with those of available in the literature. The
solitary wave solution in fig.-1, 2 and its interaction in fig.-3 of this system are
presented which are new. here, we learn that this method will emulates devel-
opment of many exact travelling wave solutions with new solitons.This scheme
is a significant instrument for Non-linear evolution equations (NLEEs).
The advantages of the present scheme for oscillatory problems are discussed in
detail. It can be expected that the main ideas will also be useful for other phys-
ical problems being highly oscillatory in nature, e.g., the nonlinearized model.
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MULTIPLE SUMMATION FORMULAE FOR THE MODIFIED
MULTIVARIABLE I-FUNCTION

D.K.PAVAN KUMAR1∗, FREDRIC AYANT2, Y. PRAGATHI KUMAR3, N.SRIMANNARAYANA4,
AND B.SATYANARAYANA5

ABSTRACT. The importance of I-function, H-function and many more special
functions has a wide range of applications in applied mathematics and applied
physics. Some of the multiple summations for the modified multivariable I-
function(MMIF) has been discussed in the present article. Some of the sum-
mation formulae are concluded at the end of the paper as special cases of our
primary results. Also these summation formulae leads to develop the solution
of a boundary value problem.

1. INTRODUCTION

Recent advancements of special functions and their applications in mathe-
matical modelling attracting researchers. The motivation of this work is by
the applications of special functions like G, H and I-functions by several au-
thors( [1], [2], [3]). The generalization of H-function, namely I-function has
great importance in Physics and Applied Mathematics. Prasad [15] generalized
the I-function and studied many results. In the literature of the special func-
tions like H, G, Meijer etc., many authors established integral results and solved
boundary value problems also( [7], [11], [5]). Recently, I-function has found
its applications in wireless communication.

Srivastava and Panda [8, 9] studied multivariable H-function. The extension
of the same as two functions H and I studied by Prasad and Singh [14, 15].
Here we establish four different summation formulae for the MMIF defined by
Prasad [15] and a number of summation formulae derived as particular cases.

1D.K.Pavan Kumar
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20.
Key words and phrases. Modified multivariable I and H-functions, Multiple Integral Contours,

Multiple Summation Formulae.
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Assume C,R and N as set of complex, real and positive integers respectively
and N0 = N ∪ {0}. We define MMIF as :

(1.1) I(Z1, ..., Zr) =

I
0,n2;0,n3;....;0,nr:|R1:m1,n1;....;m(r),n(r)

p2,q2;p3,q3;....;pr,nr:|R:p1,q1;....;p(r),q(r)


Z1

:

Zr

∣∣∣∣∣∣∣∣∣

(
a2j ;α

1
2j , α

11
2j

)
1,p2

;
(
α3j ;α

1
3j , α

11
3j , α

111
3j

)
1,p3

;

(
b2j ;β

1
2j , β

11
2j

)
1,q2

;
(
β3j ;β

1
3j , β

11
3j , β

111
3j

)
1,q3

;

...; (arj ;α
′
rj , ..., α

(r)
rj )1,pr : (ej ;u

′
jg

′
j , ..., u

(r)
j g

(r)
j )1,R′ :

.

.

...; (brj ;β
′
rj , ..., β

(r)
rj )1,qr : (lj ;U

′
jf

′
j , ..., U

(r)
j f

(r)
j )1,R :

(a′j ;α
′
j)1,p(1) , (a

(r)
j ;α

(r)
j )1,p(r)

.

.

(b′j ;β
′
j)1,q(1) , (b

(r)
j ;β

(r)
j )1,q(r)


=

1

(2π w)r

∫
L1

....

∫
Lr

ξ(s1, ...., sr)
r∏

i=1

ϕ(si) zi
sids1 ....dsr

where ξ(s1, ...., sr) and ϕ(si) clearly mentioned in [6]. The MMIF is analytic if

(1.2)
p2∑
k=1

α
(i)
2k +

p3∑
k=1

α
(i)
3k + ...+

ps∑
k=1

α
(i)
sk −

q2∑
k=1

β
(i)
2k −

q3∑
k=1

β
(i)
3k − ...−

qs∑
k=1

β
(i)
sk −

R∑
j=1

f
(i)
j ≤ 0

The contour integral in (1.1) converges absolutely if |arg zi| < 1
2
Ωiπ, where

(1.3) Ωi =

n(i)∑
k=1

α
(i)
k −

p(i)∑
k=n(i)+1

α
(i)
k +

m(i)∑
k=1

β
(i)
k −

q(i)∑
k=m(i)+1

β
(i)
k +

n2∑
k=1

α
(i)
2k −

p2∑
k=n2+1

α
(i)
2k

+

n3∑
k=1

α
(i)
3k −

p3∑
k=n3+1

α
(i)
3k + ....+

nr∑
k=1

α
(i)
rk −

pr∑
k=nr+1

α
(i)
rk

−
q2∑
k=1

β
(i)
2k −

q3∑
k=1

β
(i)
3k ....−

qr∑
k=1

β
(i)
rk +

R′∑
j=1

g
(i)
j −

R∑
j=1

f
(i)
j > 0 (i=1,. . . .,r).
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We note

(1.4) A=(a2j;α
′
2j, α

′′
2j)1,p2 ; ....;

(
a(r−1)j;α

′
(r−1)j, ...., α

r−1
(r−1)j

)
1,pr−1

(1.5) B =
(
b2j; β

′

2j, β
′′

2j

)
1,q2

; ....;
(
b(r−1)j; β

′

(r−1)j, ...., β
r−1
(r−1)j

)
1,qr−1

(1.6) A =
(
arj;α

′
rj, ...., α

(r)
rj

)
1,pr

;ℑ = (a′j, α
′
j)1,p′ ; ....;

(
a
(r)
j , α

(r)
j

)
1,p(r)

(1.7) B =
(
brj ;β

′
rj , ...., β

(r)
rj

)
1,qr

;ℜ =
(
b
′
j , β

′
j

)
1,q′

; ....;
(
b
(r)
j , β

(r)
j

)
1,q(r)

E =
(
ej ;u

′
jg

′
j , ...., u

(r)
j g

(r)
j

)
1,R′

;L =
(
lj ;U

′
jf

′
j , ...., U

(r)
j f

(r)
j

)
1,R

(1.8) U = p2, q2; p3, q3; ...; pr−1, qr−1 ; V = 0, n2; 0, n3; ...; 0, nr−1

(1.9) Y = (p′, q′) ; . . . .
(
p(r), q(r)

)
;X = (m′, n′) : . . . .;

(
m(r), n(r)

)
2. MAIN RESULTS

In this section, we establish the summation formulae for the MMIF as follows:

Theorem 2.1.

(2.1)

∞∑
u1,...um=0

m∏
J=1

((wj))uj
uj !

I
V ;0,nr+1:|R′:X
U ;pr+1,qr+1:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A;

.

.

B; B,

(1− g −
∑m

j=1 tj ; a1, ..., ar),A : E : ℑ
.

.

(1− h−
∑m

j=1 tj ; b1, ..., br) : L : ℜ



= I
V ;0,nr+2:|R′:X
U ;pr+2,qr+2:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g; a1, ...ar),

.

.

B; B,
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(1 + g − h+
∑m

j=1wj ; b1 − a1, ..., br − ar),A : E : ℑ
.

.

(1− h+
∑m

j=1wj ; b1, ..., br), (1 + g − h; b1 − a1, ..., br − ar) : L : ℜ


Following the lines of Braaksma( [4], p.278), we may establish the asymptotic

expansion in the following convenient way :

ai, bi, bi − ai > 0(i = 1, ..., r), Re(h− g −
m∑
j=1

wj) > 0 and |arg(zi)| < 1
2(Ωi − 2bi)π

Proof. To establish the Theorem (2.1), expressing the MMIF by Prasad [15] in
the Mellin-Barnes multiple integrals contour using (1.1) and interchanging the
order of summation and integration, we obtain

I = 1
(2πw)r

∫
L1

...
∫
Lr

ϕ(s1, ..., sr)
r∏

k=1

θk(sk)z
sk
k

Γ(g+
∑m

j=1 aisi)

Γ(h+
∑m

j=1 bisi)

×
∞∑

u1,...um=0

m∏
J=1

((wj))uj

uj !

(
g +

∑m
j=1 aisi

)∑m
j=1 tj(

h+
∑m

j=1 bisi

)∑m
j=1 tj

ds1...ds2

Now applying result of Panda( [12], p.108, Eq.2) and Gauss’s theorem ( [10],
p.28, Eq.1.7.6) in the above equation and interpreting the resulting expression
with the help of (1.1), we arrive at Theorem (2.1).

□

Theorem 2.2.

(2.2)

∞∑
u1,...um=0

m∏
j=1

((wj))uj
uj !

I
V ;0,nr+2:|R′:X
U ;pr+2,qr+2:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g −

∑m
j=1 tj ; a1, ..., ar),

.

.

B; B,

(1− g′ −
∑m

j=1 tj ; a
′
1, ..., a

′
r),A : E : ℑ

.

.

(g′ − g −
∑m

j=1 tj ; a1 − a′1, ..., ar − a′r),(
∑m

j=1wj − g −
∑m

j=1 tj ; a1, ..., ar) : L : ℜ


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= I
V ;0,nr+3:|R′:X
U ;pr+3,qr+3:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g

2 ;
a1
2 , ...,

ar
2 ), (1− g′; a′1, ..., a

′
r),

.

.

B; B, (g′ − g
2 ;

a1
2 − a′1, ...,

ar
2 − a′r),

(g′ +
∑m

j=1wj − a
2 ;

a1
2 − a′1, ...,

ar
2 − a′r),A : E : ℑ

.

.

(
∑m

j=1wj + g′ − g; a1 − a′1, ..., ar − a′r) : L : ℜ


provided

ai, a
′
i, ai − 2ai > 0(i = 1, ..., r), Re(g′ − g

2 −
m∑
j=1

wj) > 0 and |arg(zi)| < 1
2(Ωi − 2ai)π

Theorem 2.3.

(2.3)

∞∑
u1,...um=0

m∏
j=1

((wj))uj
uj !

I
V ;0,nr+4:|R′:X
U ;pr+4,qr+4:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g −

∑m
j=1 tj ; a1, ..., ar),

.

.

B; B,

(1− g′ −
∑m

j=1 tj ; a
′
1, ..., a

′
r),(1− g′′ −

∑m
j=1 tj ; a

′′
1, ..., a

′′
r),

.

.

(g′ − g −
∑m

j=1 tj ; a1 − a′1, ..., ar − a′r), (
∑m

j=1wj − g −
∑m

j=1 tj ; a1, ..., ar)

(−g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ),A : E : ℑ

.

.

(1− g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ), (g

′′ − g −
∑m

j=1 tj ; a1 − a′′1, ..., ar − a′′r) : L : ℜ



= I
V ;0,nr+3:|R′:X
U ;pr+3,qr+3:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g′; a′1, ..., a

′
r)

.

.

B; B, (g′ − g +
∑m

j=1wj ; a1 − a′1, ..., ar − a′r),

(1− g′′; a′′1, ..., a
′′
r), (g

′ + g′′ − g +
∑m

j=1wj ; a1 − a′′1, ..., ar − a′′r),

.

.

(g′′ − g +
∑m

j=1wj ; a1 − a′′1, ..., ar − a′′r),
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A : E : ℑ
.

.

(g′ + g′′ − g +
∑m

j=1wj ; a1 − a′1 − a′′1, ..., ar − a′r − a′′r) : L : ℜ


provided ai, a

′
i, a

′′
i , ai − a′i − a′′i > 0(i = 1, ..., r), Re(g′ + g′′ − g −

m∑
j=1

wj) < 1

and |arg(zi)| < 1
2(Ωi − 7

2ai)π.

Theorem 2.4.

(2.4)

∞∑
u1,...um=0

m∏
j=1

((wj))uj

uj !
I
V ;0,nr+3:|R′:X
U ;pr+3,qr+3:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (−g

2 −
∑m

j=1 tj ;
a1
2 , ...,

ar
2 ),

.

.

B; B, (1− g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ),

(−g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ), (1− g −

∑m
j=1 tj ; a1, ..., ar),

.

.

(1− g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ), (−g −

∑m
j=1 tj +

∑m
j=1wj ;a1, ..., ar),

(g′′ −
∑m

j=1 tj ; a
′′
1, ..., a

′′
r),A : E : ℑ

.

.

(g′ − g −
∑m

j=1 tj ; a1 − a′′1, ..., ar − a′′r) : L : ℜ



= I
V ;0,nr+3:|R′:X
U ;pr+3,qr+3:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A;

.

.

B; B,

(1−g
2 ; a12 , ...,

ar
2 ), (1− g′′; a′′1, ..., a

′′
r),

.

.

(1−g
2 + g′; a12 − a′1, ...,

ar
2 − a′r), (

1−g
2 +

∑m
j=1wj ;

a1
2 , ..., ar),

(1−g
2 +

∑m
j=1wj ;

a1
2 , ...,

ar
2 ,A : E : ℑ

.

.

(g′ − g +
∑m

j=1wj ; a1 − a′1, ..., ar − a′r) : L : ℜ


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provided

ai, a
′
i, ai−a′i−2a′′i > 0(i = 1, ..., r), Re(g′− g

2 −
m∑
j=1

wj) <
1
2 and |arg(zi)| < 1

2(Ωi− 5
2ai)π

To prove Theorems (2.2, 2.3 and 2.4), we follow the similar lines with the
help of ( [10], p.52, Eq.(2.3.3.5)), ( [10], p.56, Eq.(2.3.4.5)) and ( [10], p.245,
Eq.(III.22)) respectively, instead of Gauss’s theorem.

3. PARTICULAR CASES

In this section, we observe several particular cases. If we take a′i = 0(i =

1, ..., r)and assume g′ → ∞ in Theorem (2.2) and Theorem (2.4), also using the
following properties of confluence,

(3.1) lim
λ→∞

[
(λ)m

(z
λ

)m]
= zm

and

(3.2) lim
ρ→∞

[
(ρw)m

(ρ)m

]
= wm, m = 0, 1, ....

After algebraic simplification, we obtain the following corollaries :

Corollary 3.1.

(3.3)

∞∑
u1,...um=0

m∏
j=1

(−1)tj ((wj))uj
uj !

I
V ;0,nr+1:|R′:X
U ;pr+1,qr+1:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A;

.

.

B; B,

(1− g −
∑m

j=1 tj ; a1, ..., ar),A : E : ℑ
.

.

(
∑m

j=1wj − g −
∑m

j=1 tj ; a1, ..., ar) : L : ℜ



= I
V ;0,nr+1:|R′:X
U ;pr+1,qr+1:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g

2 ;
a1
2 , ...,

ar
2 ),A : E : ℑ

.

.

B; B, (
∑m

j=1wj − g
2 ;

a1
2 , ...,

ar
2 ) : L : ℜ


provided ai > 0(i = 1, ..., r), Re(

m∑
j=1

wj) > 0 and |arg(zi)| < 1
2(Ωi − ai)π .
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Corollary 3.2.

(3.4)

∞∑
u1,...um=0

m∏
j=1

(−1)tj (wj)uj
uj !

I
V ;0,nr+2:|R′:X
U ;pr+2,qr+2:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A;

.

.

B; B,

(−g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ), (1− g −

∑m
j=1 tj ; a1, ..., ar),A : E : ℑ

.

.

(1− g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ), (−g −

∑m
j=1 tj +

∑m
j=1wj ;a1, ..., ar) : L : ℜ



= I
V ;0,nr+1:|R′:X
U ;pr+1,qr+1:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1−g

2 ; a12 , ...,
ar
2 ),A : E : ℑ

.

.

B; B, (1−g
2 +

∑m
j=1wj ;

a1
2 , ...,

ar
2 ) : L : ℜ


provided ai > 0(i = 1, ..., r), Re(

m∑
j=1

wj) <
1
2 and |arg(zi)| < 1

2(Ωi − 3
2ai)π.

Taking ai = 0(i = 1, ..., r) and assume g′′ → ∞ in Theorem (2.3). Also
using the equations (2.4),(3.1) and after algebraic manipulations, we obtain
the following corollary.

Corollary 3.3.

(3.5)

∞∑
u1,...um=0

m∏
j=1

(−1)tj (wj)uj
uj !

I
V ;0,nr+3:|R′:X
U ;pr+3,qr+3:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A;

.

.

B; B,

(1− g −
∑m

j=1 tj ; a1, ..., ar),(1− g′ −
∑m

j=1 tj ; a
′
1, ..., a

′
r),

.

.

(g′ − g −
∑m

j=1 tj ; a1 − a′1, ..., ar − a′r), (
∑m

j=1wj − g −
∑m

j=1 tj ; a1, ..., ar)

(−g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ),A : E : ℑ

.

.

(1− g
2 −

∑m
j=1 tj ;

a1
2 , ...,

ar
2 ) : L : ℜ


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= I
V ;0,nr+1:|R′:X
U ;pr+1,qr+1:|R:Y


z1

.

.

zr

∣∣∣∣∣∣∣∣∣
A; (1− g′; a′1, ..., a

′
r),A : E : ℑ

.

.

B; B, (g′ − g +
∑m

j=1wj ; a1 − a′1, ..., ar − a′r) : L : ℜ


provided ai > 0(i = 1, ..., r), Re(

m∑
j=1

wj) <
1
2

and |arg(zi)| < 1
2(Ωi − 3

2ai)π.

We can give a number of corollaries by specializing the parameters. The mul-
tiple summation formulae involved in this article are general in nature in their
manifold.

4. CONCLUDING REMARKS

If I-function defined by Prasad [15] reduces in generalized form of H-function
defined by Prasad and Singh [14], we obtain the similar relations using analogue
techniques. Also by modifying the functions defined by Srivastava and Panda(
[8], [9]) and Goyal and Garg [13], we can obtain similar type of relations.

The importance of all these results are common in nature. We can obtain
single, double or multiple summation formulae by making use of general mul-
tiple summation formulae used here. By specializing various parameters and
variables in the MMIF, we get several useful product of such functions like E,
F, G, H and I of one and several variables. These formulae are useful in many
interesting cases of Applied Mathematics and Mathematical Physics. In the next
extension of this work, we are going to apply these summation formulae to
obtain the solutions of Boundary value problems.
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Analysis of unsteady MHD Williamson nanofluid

flow past a stretching sheet with nonlinear mixed

convection, thermal radiation and velocity slips
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Abstract

This article examines the transient MHD convective flow with heat
and mass transport of Williamson nanofluid over a stretching sheet in the
presence of a chemical reaction. Velocity slips, convective heating and
vanishing mass flux conditions at the surface are imposed. As a novelty,
the effects of nonlinear thermal radiation, mixed convection, velocity slips
and activation energy are incorporated. Such problems find significant
applications in aircraft, missiles, gas turbines, etc. Similarity transforma-
tions are employed to convert controlling PDEs into a system of ODEs
and the resulting nonlinear BVP is solved numerically using bvp4c. The
effects of various parameters on velocity, temperature and concentration
distributions are demonstrated and depicted graphically. However, the
numerical values of local skin friction coefficients, Nusselt and Sherwood
numbers are tabulated and discussed. The graphs show that the nonlinear
convection parameters, for both temperature and concentration, boost the
primary flow. Higher values of the velocity slip parameters result in dimin-
ishing the flow. The fluid temperature rises as a result of both radiation
and convective heating. The activation energy improves the concentration
profile within the boundary layer. The current findings would appeal to
a broad audience in mechanical engineering, medical sciences, industrial
engineering, etc.
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Nomenclature

u, v, w
x, y, z
T∞
C∞
S
n
kr

uw,vw

B0

k
DB

Rd
Pr
g
cp
T
C
Nt
Tw
Cw

Nb
d∗1, d

∗
2

We1,We2

Ea
M
k∗

E

Velocity components
Space coordinate
Ambient temperature
Ambient concentration
Unsteadiness parameter
Fitted rate constant
Chemical reaction coefficient
Stretching velocities along
x and y directions
Constant magnetic field
Thermal conductivity
Mass diffusivity
Thermal radiation parameter
Prandtl number
Gravitational acceleration
Specific heat
Fluid Temperature
Species concentration
Thermophoresis parameter
Wall temperature
Wall concentration
Brownian motion parameter
Velocity slip coefficients
Weissenberg numbers
along x and y directions
Activation energy
Magnetic parameter
Mean absorption coefficient
Dimensionless activation energy

L
N
Le
DT

Bi

Greek
ν
µ
Γ1

σ
κ
σ∗

θ
Γ
α
φ

α1, α2

λ1, λ2

ρ
θw
β1
τ

βC , β
∗
C

βT , β
∗
T

λ

Dimensionless quantity
Buoyancy ratio parameter
Lewis number
Thermal diffusion coefficient
Biot number

Symbols
Kinetic viscosity
Dynamic viscosity
Chemical reaction parameter
Electrical conductivity
Boltzmann constant
Stefan-Boltzmann constant
Dimensionless temperature
Material parameter
Thermal diffusivity
Dimensionless concentration
Velocity slip parameters
Nonlinear thermal and solutal
convection parameters
Fluid density
Temperature ratio parameter
Velocity ratio parameter
Heat capacity ratio
Linear and non-linear solutal
expansion coefficients
Linear and non-linear thermal
expansion coefficients
Mixed convection parameter

1 Introduction

For the past few decades, nanotechnology-based techniques have been used to
create nanoscale particles with a size of less than 100 nm. Stable suspensions
can be made using nanoparticles to increase the thermal characteristics of the
base fluid. It has been demonstrated that adding tiny quantities of metal or
metal oxide nanoparticles to liquid improves thermal conductivity. Nanoflu-
ids, like current working fluids, have high heat absorption and heat transmis-
sion characteristics. Recent years have seen a significant increase in interest in
nanofluids research owing to its numerous usages in communication, electronics
and computer systems, as well as optical devices. Hayat et al. [1] discussed the
movement of a non-Newtonian fluid across a wedge as a mixed convection flow.
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Nourazar et al. [2] used the HPM to solve an MHD nanofluid flow on a horizon-
tal flat plate with a changing magnetic field and viscous dissipation. A study on
the effect of natural convection in viscoelastic fluid past a cone taking viscous
dissipation was done by Makanda et al. [3]. In a rotating device, Sheikholeslami
et al. [4] examined the nanofluid flow and heat transmission properties between
two parallel horizontal plates. Using a fixed wedge with changing wall temper-
ature and concentration, Srinivasacharya et al. [5] investigated the influence of
a varied magnetic field on nanofluid flow.

Understanding the boundary layer flow with heat transfer along a stretched
sheet has become more significant because of several engineering activities. Ex-
trusion of polymers, paper manufacturing, and other similar processes are ex-
amples of chemical engineering and metallurgy applications. The rate of heat
transfer between the fluid and stretching surface considering heating and/or
cooling has a significant impact on the quality of the final product. As a result,
the choice of heating or cooling fluid is critical to the heat transfer rate. In light
of the physical relevance of heat transmission across moving surfaces, several
researchers have been obliged to publish their discoveries in this area. Crane
[6] examined the flow past a stretched plate that is subject to the relation be-
tween the velocity and the distance from a slit. This yielded an accurate result.
Following Crane’s work, MHD viscous flow across a stretched sheet was given
by Azimi et al. [7], who discussed the analysis of momentum features in the
flow. Dessie and Kishan [8] investigated the effect of viscous dissipation and
heat source/sink over a stretching sheet. Mishra et al. [9] studied numerically
MHD power-law fluid flow over a stretching sheet taking a non-uniform heat
source.

Regarding the MHD heat transfer fluxes, thermal radiation is a crucial fac-
tor in controlling heat transfer rate. It may impact many industrial processes
such as glass manufacture, gas turbine production, furnace design, and re-entry
vehicle engine design. As a result, this generated extensive studies on the influ-
ence of heat radiation in hydromagnetic fluxes. Daniel and Daniel [10] explored
the impact of thermal radiation and buoyancy force on MHD flow through a
stretchable sheet with the help of the homotopy analysis method. Kumbhakar
and Rao [11] discussed MHD stagnation point flow of an electrically conducting
fluid over a nonlinearly stretching surface considering thermal radiation and vis-
cous dissipation. Kho et al. [12] studied thermal radiation effect in the flow of
Williamson nanofluid passing through a stretching sheet. With heat and mass
transfer through an unstable stretched surface in a uniform magnetic field, Ishaq
et al. [13] explored entropy production and thermal radiation. Alharbi et al.
[14] conducted experiments on MHD Eyring-Powell flow in an unstable oscilla-
tory stretching sheet to evaluate the influence of thermal radiation and a heat
source/sink. Kumar et al. [15] examined the transient natural/free convective
nanofluid flow past a vertical plate with effects of radiation and magnetic field.

According to current trends in chemical reaction analysis, it is essential to
create a mathematical model of a system to forecast its performance. Espe-
cially in the chemical and hydro-metallurgical sectors, heat and mass transport
research during chemical reactions is of great significance. Some examples of
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combined heat and mass transfer applications with chemical reaction effects are
chemical processing equipment design, fog formation and dispersion, temper-
ature and moisture distribution over agricultural fields and fruit tree groves,
crop damage due to freezing, cooling towers, and food processing. An excel-
lent example of a first-order homogeneous chemical reaction is the production
of smog. Das [16] examined the effects of thermal radiation and chemical reac-
tion on MHD micropolar fluid flow near an inclined porous plate. Sheikh and
Abbas [17] studied chemical reaction impact on MHD viscous fluid flow over an
oscillating stretching sheet under the influence of heat generation/absorption.
Tarakaramu and Narayan [18] explored the effect of chemical reactions on un-
steady MHD nanofluid flow towards a stretchable sheet. Kumar et al. [19]
investigated the influence of binary chemical reaction with Arrhenius activation
energy on the MHD Carreau fluid flow over a stretched surface. They found
that the chemical reaction has a significant impact on the flow. Khan et al.
[20] studied the aspects of activation energy and thermal radiation on MHD
flow containing Ti6Al4V nanoparticle past a stretching sheet. Chu et al. [21]
discussed the action of a chemical reaction and activation energy on MHD third
grade nanofluid flow past a stretching sheet.

The assumption that the flow field obeys the standard no-slip condition
at the sheet is quite common in the preceding research and all relevant refer-
ences. However, the no-slip criterion is inadequate when the fluid is made up
of particle emulsions and polymers. Furthermore, boundary-slipping fluids have
crucial technological uses, such as cleaning prosthetic heart valves and interior
cavities. In such circumstances, the partial slip is an appropriate boundary
condition. Additionally, when micro-scale dimensions are included in the flow
field, such a slip is necessary. Slip at the wall boundary significantly alters the
fluid’s flow behavior and shear stress than no-slip circumstances. Using a low-
magnetic Reynolds number assumption, Zheng et al. [22] investigated the slip
consequences of Oldroyd-B fluid flow across a plate. Hayat et al. [23] explored
velocity slip condition on MHD nanofluid flow past a rotating disk. Amanulla
et al. [24] discussed the slip effects on MHD Prandtl flow past an isothermal
sphere in a non-Darcy porous medium. Ellahi et al. [25] analyzed the combined
impact of slip and entropy generation on MHD flow through a moving plate.
Khan et al. [26] explored the significance of slip conditions for a magnetite
Jeffrey nanofluid flow over a porous stretching sheet in the existence of ther-
mal radiation and the Soret effect. Das et al. [27] studied mutiple slip effects
on tangent hyperbolic fluid flow along a stretching sheet considering Soret and
Dufour effects, thermal radiation and heat source.

In processes in which high temperatures are involved, convective heat trans-
fer is essential. Consider the following examples: gas turbines, nuclear power
plants, thermal energy storage, and so forth. It is more feasible to use convec-
tive boundary conditions in industrial and technical processes, such as material
drying and transpiration cooling operations [28]. Because of the practical signif-
icance of convective boundary conditions in viscous fluids, Many scholars have
investigated and presented their findings on this issue. Ramzan et al. [29] inves-
tigated the impact of convective heating conditions and Cattaneo-Christov heat
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flux with heat production/absorption on MHD 3D Maxwell fluid flow across
a bidirectional stretching surface. Nayak et al. [30] studied MHD nanofluid
flow over a linearly stretching sheet considering the convective heating bound-
ary constraint along with viscous dissipation, velocity slip, nonlinear thermal
radiation and Joule heating. Shah et al. [31] observed simultaneous effects of
convective boundary condition and thermal radiation on MHD Carbon nan-
otubes nanofluid flow across a stretching sheet. Aspects of convective boundary
condition, Joule heating, thermal radiation, and a changing heat source/sink
were studied in detail by Kumar et al. [32] concerning the flow and heat trans-
fer properties of an electrically conducting Casson fluid due to an exponentially
expanding curved surface. Loganathan et al. [33] examined the impact of con-
vective heating, Cattaneo-Christov double diffusion and thermal radiation on
MHD Maxwell fluid flow along an extended surface. Recently, Jamshed and
Nisar [34] studied convective heating, thermal radiation and heat source effects
on Williamson nanofluid flow over a stretching sheet.

Based on the above literature survey, the authors have found that no attempt
has been made yet to study the impacts of nonlinear thermal radiation and
Arrhenius activation energy on unsteady mixed convective flow of Williamson
nanofluid over a stretching surface. Therefore, this research aims to fill such gap
by exploring the novel circumstances of nonlinear thermal radiation and acti-
vation energy on unsteady MHD convective flow with heat and mass transport
of Williamson nanofluid over a stretching sheet in the presence of a chemical
reaction. The outcomes of this study may have significant bearings on several
practical applications such as in aircraft, missiles, gas turbines, food process-
ing, etc. Numerical solutions are obtained for the velocity, temperature and
concentration distributions with the help of bvp4c routine of MATLAB soft-
ware. The impacts of significant flow parameters on velocity, temperature and
concentration profiles are illustrated and presented graphically. However, the
variations in surface drag-coefficients, Nusselt and Sherwood numbers are dis-
cussed using numerical data. Moreover, for a limiting case of the present study,
a data comparison is made just to ensure that the obtained results are correct
and reliable.

2 Mathematical formulation

Consider a three-dimensional, unsteady and incompressible MHD Williamson
nanofluid flow along a stretching surface with velocity slip. Further, the in-
fluences of nonlinear thermal radiation and chemical reaction with activation
energy are also considered. A physical configuration of the flow problem is
demonstrated in Fig. 1. The figure shows that the sheet is positioned in the
Cartesian coordinate system (x, y, z) such that the x-axis is along the surface
in the direction of flow, y-axis is along the width of the surface, and z-axis is
normal to xy plane. A constant magnetic field of magnitude B0 is applied along
the z-direction. The surface is stretched along x and y-directions with velocities
uw = ax

1−βt and vw = by
1−βt (a, b being positive constants and β is a parameter
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having dimension time−1) respectively. The nanofluid temperature and species
concentration at the surface are kept at constant values of Tw and Cw respec-
tively. In contrast, the ambient fluid temperature and species concentration are
maintained at constant values of T∞ and C∞, respectively.

Figure 1: Physical configuration of the problem

Based on the aforementioned assumptions, the governing equations of the
current fluid flow (continuity, momentum, energy and species concentration)
may be modeled as ([35], [36]):

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂z2
+
√

2νΓ
∂u

∂z

∂2u

∂z2
+
νΓ√

2

∂v

∂z

∂2v

∂z2
− σB2(t)

ρf
u

+ g
[
βT (T − T∞) + β∗T (T − T∞)2 + βC(C − C∞) + β∗C(C − C∞)2

]
,

(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=ν

∂2v

∂z2
+
√

2νΓ
∂v

∂z

∂2v

∂z2
+
νΓ√

2

∂u

∂z

∂2u

∂z2

− σB2(t)

ρf
v,

(3)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2T

∂z2
+ τ

{
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2
}

− 1

(ρcp)f

∂qr
∂z

,

(4)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
=DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2

− kr (C − C∞)

(
T

T∞

)n
e
−
Ea
κT .

(5)

The physical boundary conditions for the current problem are given as follows:

u = uw + d∗1
∂u

∂z
, v = vw + d∗2

∂v

∂z
, w = 0, − k∂T

∂z
= hf (Tw − T ) ,

DB
∂C

∂z
+
DT

T∞

∂T

∂z
= 0, at z = 0,

u→ 0, v → 0, T → T∞, C → C∞ as z →∞.

 (6)

In order to approximate the radiative heat flux qr, the following Rosseland’s
approximation for an optically thick fluid is employed (Fatunmbi and Adeniyan
[37]):

qr = −16σ∗T 3

3k∗
∂T

∂z
. (7)

The energy equation has the form after applying expression (7) to equation (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2T

∂z2
+ τ

{
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2
}

+
16σ∗T 2

3 (ρcp)f k
∗

{
T
∂2T

∂Z2
+ 3

(
∂T

∂Z

)2
}
.

(8)

The variable aspects of wall temperature, wall concentration and magnetic field
are given by the following form [38]

Tw(x, t) =
T0xuw

ν(1− βt) 1
2

+T∞, Cw(x, t) =
C0xuw

ν(1− βt) 1
2

+C∞, B(t) =
B0

(1− βt) 1
2

.

To obtain similar solutions of equations (2), (3), (8) and (5) subject to the
boundary conditions (6), the following similarity variables are introduced:

u =
ax

1− βt
f ′(η), v =

ay

1− βt
g′(η), w = −

√
aν

1− βt
{f(η) + g(η)} ,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

, η = z

√
a

ν(1− βt)
.

 (9)
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Substitution of the above similarity variables in equations (2), (3), (8) and (5)
yields the following ordinary differential equations:

f ′′′ [1 +We1f
′′] +

We1
2

L2g′′g′′′ − f ′2 + (f + g) f ′′ − S
(
f ′ +

1

2
ηf ′′

)
−Mf ′ + λ (1 + λ1θ) θ + λN (1 + λ2φ)φ = 0,

(10)

g′′′ [1 +We2g
′′] +

We2
2L2

f ′′f ′′′ − g′2 + (f + g) g′′ − S
(
g′ +

1

2
ηg′′
)

−Mg′ = 0,

(11)

θ′′ + Pr (f + g) θ′ − PrS
2

(3θ + ηθ′)− 2Prθf ′ + +PrNbθ′φ′ + PrNtθ′
2

+Rd {1 + θ (θw − 1)}2
[
3θ′

2
(θw − 1) + {1 + θ (θw − 1)} θ′′

]
= 0,

(12)

φ′′ + PrLe (f + g)φ′ − PrLeS
2

(3φ+ ηφ′)− 2PrLeφf ′ +
Nt

Nb
θ′′

− PrLeΓ1 {1 + (θw − 1)θ}n e(−
E

1+(θw−1)θ )φ = 0.

(13)

The dimensionless boundary conditions are stated as

f ′(0) = 1 + α1f
′′(0), g′(0) = β1 + α2g

′′(0), f(0) = 0, g(0) = 0,

θ′(0) = −Bi (1− θ(0)) , φ′(0) = −Nt
Nb

θ′(0),

f ′(∞)→ 0, g′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0.

 (14)

where

We1 =

√
2Γ2au2w
ν(1− βt)

, We2 =

√
2Γ2av2w

β2
1ν(1− βt)

, N =
βC(Cw − C∞)

βT (Tw − T∞)
, S =

β

a
,

λ =
βT g(1− βt)(Tw − T∞)

auw
, M =

σB2
0

aρf
, L =

y

x
, Pr =

ν

α
, Le =

α

DB
,

Nb =
τDB (Cw − C∞)

ν
, Nt =

τDT (Tw − T∞)

νT∞
, θw =

Tw
T∞

, E =
Ea
κT∞

,

Γ1 =
kr(1− βt)

a
, α1 = d∗1

√
a

ν(1− βt)
, α2 = d∗2

√
a

ν(1− βt)
, β1 =

b

a
,

Bi =
hf
k

√
ν(1− βt)

a
, λ1 =

β∗T (Tw − T∞)

βT
, λ2 =

β∗C (Cw − C∞)

βC

δ =
Q1(1− βt)
a(ρcp)f

, Rd =
16σ∗T 3

∞
3(ρcp)fαk∗

.
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3 Skin-friction coefficients, Nusselt number and
Sherwood number

The physical quantities of engineering interest for the present fluid flow problem
are the local skin-friction coefficients, Nusselt number and Sherwood number.
The skin-friction coefficient measures the shear stress, whereas the Nusselt num-
ber and Sherwood number describe the rate of heat and mass transfer at the
surface. A low Nusselt number signifies that conductive heat transport is more
than the convective heat transfer, whereas a high Nusselt number indicates that
convective heat transfer dominates the conductive heat transfer. Thermal engi-
neering devices may be designed more effectively with this in mind. Convective
mass transfer is divided by diffusive mass transport, and this ratio is known
as the Sherwood number. It is used to conduct mass transfer analyses on sys-
tems such as liquid-liquid extraction. Mathematically, the local skin-friction
coefficients (Cfx, Cfy), Nusselt number (Nux) and Sherwood number (Shx) are
expressed as

Cfx =
ν

u2w

∂u
∂z

1 +
Γ√
2

√(
∂u

∂z

)2

+

(
∂v

∂z

)2


z=0

, (15)

Cfy =
ν

v2w

∂v
∂z

1 +
Γ√
2

√(
∂u

∂z

)2

+

(
∂v

∂z

)2


z=0

, (16)

Nux = − x

k (Tw − T∞)

[(
k +

16σ∗T 3

3k∗

)
∂T

∂z

]
z=0

, (17)

Shx = − xDB

DB (Cw − C∞)

(
∂C

∂z

)
z=0

. (18)

The aforementioned physical values can be expressed in non-dimensional form
using the dimensionless variables specified in (9)

Cfx
√
Rex = f ′′(0)

[
1 +

We1
2

√
f ′′2(0) + L2g′′2(0)

]
, (19)

Cfy
√
Rey = g′′(0)

[
1 +

We2
2

√
1

L2
f ′′2(0) + g′′2(0)

]√
β−31 , (20)

Nux√
Rex

= −
[
1 +Rd {1 + (θw − 1) θ(0)}3

]
θ′(0), (21)

Shx√
Rex

= −φ′(0), (22)

where Rex =
uwx

ν
and Rey =

vwy

ν
are the local Reynolds numbers.
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4 Numerical solution

4.1 Methodology

The coupled and highly nonlinear ordinary differential equations (10)-(13) sub-
ject to the boundary conditions (14) are solved numerically by employing the
bvp4c solver in MATLAB. The higher-order equations (10)-(13) are converted
into a set of first-order equations. Furthermore, while implementing the numer-
ical technique, the boundary value problem is metamorphosed into an initial
value problem by assuming some suitable guess values to those missing initial
conditions.

Table 1: Comparison of values of −f ′′(0) for altered values of M when β1 = 0.5

−f ′′(0)
M Present Oyelakin et al. [39] Nadeem et al. [40]

0 1.093096 1.09310 1.0932
10 3.342030 3.34204 3.3420
100 10.058166 10.05818 10.058

Table 2: Comparison of values of −g′′(0) for altered values of M when β1 = 0.5

−g′′(0)
M Present Oyelakin et al. [39] Nadeem et al. [40]

0 0.465206 0.46520 0.4653
10 1.645891 1.64590 1.6459
100 5.020785 5.02080 5.0208

4.2 Validation

The numerical values of −f ′′(0) and −g′′(0) displayed in Tables 1 and 2 have
been computed for different values of magnetic parameter M for a specific sit-
uation of the current problem, i.e., when We1 = We2 = λ = λ1 = λ2 = α1 =
α2 = N = 0, β1 = 0.5 and n = 1 to test the correctness of the obtained results
and the reliability of the employed numerical approach. From the tables, it is
clearly observed that our results have a firm agreement with the results reported
by Oyelakin et al. [39] and Nadeem et al. [40].

5 Results and discussion

This section presents the analysis of the obtained results for the current heat
and mass transport phenomenon. The behavior of the flow profiles as well as
the physical quantities of practical importance, is investigated in depth with
respect to the changes of the emergent parameters. For the computational
purpose, we have assumed the parameters’ values as We1 = We2 = S = 0.2,
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N = n = Nt = 0.5, Pr = θw = 1.2, L = Nb = λ = α1 = α2 = 0.4, Rd = 0.1,
Le = M = 1.0, β1 = 0.7, Bi = λ1 = λ2 = K1 = 0.3, E = 0.6. Throughout the
study, the same values for parameters are adopted, while the altered values of
the parameters are shown separately in the respective figures.
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Figure 2: Changes in f ′(η) vs λ
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Figure 3: Changes in g′(η) vs λ
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Figure 4: Changes in f ′(η) vs M
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Figure 5: Changes in g′(η) vs M
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Figure 6: Changes in f ′(η) vs S
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Figure 7: Changes in g′(η) vs S
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Figure 9: Changes in f ′(η) vs λ2
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Figure 10: Changes in f ′(η) vs α1
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Figure 11: Changes in g′(η) vs α2

Figures 2-11 illustrate the influence of λ, M , S, λ1, λ2, α1 and α2 on the
velocity field. Growth in f ′(η) and reduction in g′(η) are observed in Figures 2
and 3. The higher mixed convection parameter contributes to a larger buoyancy
force. This powerful force accelerates the primary flow by suppressing the flow
in the secondary direction. A significant increase in the magnetic parameter has
caused a significant drop in the nanofluid velocity profile. Increased M leads to
a corresponding rise in the resistive Lorentz force, which causes the fluid flow to
decrease as depicted in Figures 4 and 5. Decreasing nature of f ′(η) and g′(η) for
improvement in S is noted in Figures 6 and 7. In Figures 8 and 9, it is noticed
that larger values of λ1 and λ2 indicate an upsurge in f ′(η). Temperature and
concentration differences arise from nonlinear convection parameters λ1 and
λ2 that are greater than the equivalent linear convection values. Velocity is
therefore emphasized. Figures 10 and 11 express diminishing character of f ′(η)
and g′(η) w.r.t. α1 and α2. An increase in velocity slip parameters lead to
increase the slip between the fluid and surface of the sheet. So a partial slip
velocity moved to the flow field that has the tendency to decelerate the flow.

Figure 12 shows that θ(η) heightens on rising values of M . When the mag-
netic parameter increases, a stronger Lorentz force is generated. This force

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

187 M. Das 176-195



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

(
)

M = 1, 2, 3
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Figure 15: Changes in θ(η) vs Nb
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Figure 16: Changes in φ(η) vs Nb
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Figure 17: Changes in θ(η) vs Nt

provides resistance against the flow and thereby, the fluid temperature is inten-
sified. Figure 13 elucidates a rising trend for θ(η) on enhanced values of Rd.
Improved radiation parameter reduces the mean heat absorption coefficient. As
a result, the fluid temperature gets hiked. From Figure 14, an increase in θ(η)
is noticed for enlarged values of Bi. An increase in the Biot number leads to
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Figure 19: Changes in φ(η) vs K1
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Figure 20: Changes in φ(η) vs Le
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Figure 21: Changes in φ(η) vs E

enhance the heat transfer due to convective heating with hot fluid. So, temper-
ature of the fluid is augmented. Figure 15 shows that when Nb increases, θ(η)
decreases near the sheet and takes on an inverse nature far away from it. In
reality, a larger Nb causes more Brownian diffusion with lesser viscous forces,
and therefore, a hike in the temperature profile is observed. φ(η) is enhanced
near the sheet for uplifting Nb values, while a reverse influence is seen away
from the sheet, as shown in Figure 16. According to Figure 17, with upsurging
values of Nt, θ(η) is increased. Physically, an increase in Nt causes a stronger
thermophoretic force, which enriches the fluid’s temperature. Figure 18 shows
that φ(η) decreases towards the sheet, while the opposite trend is seen further
away from the sheet in terms of Nt.

Figure 19 shows that an improvement in K1 leads to a significant fall in
φ(η). A devastating chemical reaction corresponds to a positive K1. As a
result, an improvement in K1 causes a decrease in species concentration. In
Figure 20, it is seen that for growing values of Le, φ(η) is reduced. Lewis
number is basically the relation between thermal diffusivity to mass diffusivity.
So, higher Lewis number implies less mass diffusion in the fluid flow. Hence,
species concentration is lessened. Figure 21 reveals that there is an upward
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Table 3: Numerical values of the skin friction coefficients when ζC = ζT = 0.4,
L = λ = N = n = 0.5, We1 = We2 = 1.6 and β1 = 0.6

λ M S λ1 λ2 α1 α2 −
√
RexCfx −

√
ReyCfy

0.4 1 0.2 0.3 0.3 0.4 0.4 0.953465 1.833773
1 0.921040 1.766040
2 0.871657 1.663539

0.4 2 1.095809 2.137023
3 1.204741 2.373294
1 0.6 1.006186 1.945268

1.0 1.052698 2.044400
0.2 0.6 0.952571 –

0.9 0.951679 –
0.3 0.6 0.953415 –

0.9 0.953364 –
0.3 0.7 0.725064 –

1.0 0.586788 –
0.4 0.7 – 1.812118

1.0 – 1.799073

trend in φ(η) with the progress of the parameter E. Boosted E values aid in
the speeding up of chemical reactions and hence the species concentration is
escalated.

The numerical values of the local skin-friction coefficients for various values
of the controlling parameters λ, M , S, λ1, λ2, α1 and α2 are set forth in Table
3. For higher values of M and S, both

√
RexCfx and

√
ReyCfy are increased

whereas reverse trend is detected w.r.t. λ, λ1, λ2, α1 and α2. Local Nusselt and
Sherwood numbers calculated for flow parameters M , Rd, Bi, Nb, Nt, K1, Le
and E are described in Table 4. Increasing trend of Nux√

Rex
is found for Rd and

Bi but opposite nature is noticed for M , Nb and Nt. Growing values of Nt and
E imply increasing tendency of Shx√

Rex
whereas converse behavior is found w.r.t.

Nb, Le and K1.

6 Conclusions

The present analysis explores the aspects of nonlinear thermal radiation and
activation energy on unsteady convective heat and mass transport phenomena
of Williamson nanofluid over a stretching sheet in the existence of Lorentz force
and chemical reaction. Moreover, Navier’s velocity slip and convective heating
conditions are imposed at the surface boundary. The following are some of the
significant outcomes from the simulation of the problem:

• A diminishing nature is observed for the velocity profiles with the im-
provement in unsteadiness and the intensity of the Lorentz force.
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Table 4: Numerical values of the local Nusselt and Sherwood numbers when
Pr = 1.4, θw = 1.1 and Le = 1.5

M Rd Bi Nb Nt K1 Le E Nux√
Rex

− Shx√
Rex

1 0.1 0.3 0.4 0.5 0.3 1.0 0.6 0.267377 0.300448
2 0.262851 –
3 0.259108 –
1 0.5 0.361351 –

1.0 0.474500 –
0.1 0.5 0.395575 –

0.7 0.497861 –
0.3 0.6 0.267364 0.200288

0.8 0.267357 0.150212
0.4 1.0 0.267028 0.600074

1.5 0.266675 0.898864
0.5 0.6 – 0.300408

0.8 – 0.300385
0.3 0.5 – 0.300598

1.5 – 0.300337
1.0 2.0 – 0.300487

5.0 – 0.300502

• The temperature distribution is enhanced as the thermal radiation and
the convective heating at the bottom of the surface is boosted.

• The thermophoretic force and the activation energy are found to have
strong influence on rising the species concentration far away from the
sheet. However, the impact is getting reversed near the sheet.

• The skin friction coefficients are uplifted with the increase of unsteadiness
and the magnetic impact.

• There is an enhancement in heat transfer rate at the surface for growing
value of Biot number and thermal radiation parameter.

• Rate of mass transfer at the wall is improved as the values of thermophore-
sis and the activation energy parameters increase.
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