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FIXED POINTS IN TOPOLOGICAL VECTOR
SPACE(tvs)VALUED CONE METRIC SPACES

Muhammd Arshad(marshad_zia@yahoo.com)
Department of mathematics, International Islamic University,

H-10, Islamabad-44000, Pakistan.

Abstract: We use the notion of topological vector space valued cone metric
space and generalized a common �xed point theorem of a pair of mappings
satisfying a generalized contractive type condition. Our results extend some
well-known recent results in the literature.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2010 Mathematics Subject Classi�cation: 47H10; 54H25.
Keywords and Phrases: Topological vector space valued;cone metric space; non-
normal cones; �xed point; common �xed point.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 Introduction and Preliminaries

Many authors [1, 3, 4, 6, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21] studied
�xed points results of mappings satisfying contractive type condition in Banach
space valued cone metric spaces. The class of tvs-cone metric spaces is bigger
than the class of cone metric spaces studied in [2, 7, 8, 19, 20]. Recently Azam
et al. [5] obtain common �xed points of mappings satisfying a generalized
contractive type condition in tvs-cone metric spaces. In this paper we continue
these investigations to generalize the results in [1, 10].
Let (E; �) be always a topological vector space (tvs) and P a subset of E.

Then, P is called a cone whenever
(i) P is closed, non-empty and P 6= f0g,
(ii) ax+ by 2 P for all x; y 2 P and non-negative real numbers a; b,
(iii) P \ (�P ) = f0g.

For a given cone P � E, we can de�ne a partial ordering � with respect to
P by x � y if and only if y � x 2 P . x < y will stand for x � y and x 6= y,
while x� y will stand for y � x 2 intP , where intP denotes the interior of P .

De�nition 1 Let X be a non-empty set. Suppose the mapping d : X�X ! E
satis�es
(d1) 0 � d(x; y) for all x; y 2 X and d(x; y) = 0 if and only if x = y,
(d2) d(x; y) = d(y; x) for all x; y 2 X,
(d3) d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X.
Then d is called a topological vector space-valued cone metric on X and (X; d)
is called a topological vector space-valued cone metric space.
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If E is a real Banach space then (X; d) is called (Banach space valued) cone
metric space [1, 6, 17, 10, 21]

De�nition 2 [7] Let (X; d) be a tvs-cone metric space, x 2 X and fxngn�1 a
sequence in X. Then
(i) fxngn�1 converges to x whenever for every c 2 E with 0 � c there is a
natural number N such that d(xn; x) � c for all n � N . We denote this by
limn!1 xn = x or xn ! x.
(ii) fxngn�1 is a Cauchy sequence whenever for every c 2 E with 0 � c there
is a natural number N such that d(xn; xm)� c for all n;m � N .
(iii) (X; d) is a complete cone metric space if every Cauchy sequence is conver-
gent.

Lemma 3 [7] Let (X; d) be a tvs-cone metric space, P be a cone. Let fxng be a
sequence in X and fang be a sequence in P converging to 0. If d(xn; xm) � an
for every n 2 N with m > n, then fxng is a Cauchy sequence.

The �xed point theorems and other results, in the case of cone metric spaces
with non-normal solid cones, cannot be proved by reducing to metric spaces.
Further, the vector valued function cone metric is not continuous in the general
case.

Remark 4 [7] Let A;B;C;D;E be non negative real numbers with A + B +
C + D + E < 1; B = C or D = E: If � = (A + B + D)(1 � C � D)�1 and
� = (A+ C + E)(1�B � E)�1, then �� < 1.

2 Common Fixed Points

The following theorem improves/generalizes the results in [1, 7].

Theorem 5 Let (X; d) be a complete topological vector space-valued cone metric
space, P be a cone and m;n be positive integers. If mappings F;G : X !
X satis�es:

d(Fx;Gy) � A d(x; y)+B d(x; Fx)+Cd(y;Gy)+D d(x;Gy)+E d(y; Fx) (2.1)

for all x; y 2 X, where A;B;C;D;E are non negative real numbers with A +
B +C +D +E < 1; B = C or D = E: Then F and G have a unique common
�xed point.

Proof. For x0 2 X and k � 0, de�ne

x2k+1 = Fx2k

x2k+2 = Gx2k+1:

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

412 Muhammd Arshad  411-423



Then,

d(x2k+1; x2k+2) = d(Fx2k; Gx2k+1)

� Ad(x2k; x2k+1) +Bd(x2k; Fx2k) + Cd(x2k+1; Gx2k+1)

+Dd(x2k; Gx2k+1) + Ed(x2k+1; Fx2k)

� [A+B] d(x2k; x2k+1) + Cd(x2k+1; x2k+2) +D d(x2k; x2k+2)

� [A+B +D] d(x2k; x2k+1) + [C +D] d(x2k+1; x2k+2):

It implies that

[1� C �D]d(x2k+1; x2k+2) � [A+B +D] d(x2k; x2k+1):

That is,
d(x2k+1; x2k+2) � � d(x2k; x2k+1);

where � =
A+B +D

1� C �D . Similarly,

d(x2k+2; x2k+3) = d(Fx2k+2; Gx2k+1)

� Ad(x2k+2; x2k+1) +B d(x2k+2; Fx2k+2) + Cd(x2k+1; Gx2k+1)

+Dd(x2k+2; Gx2k+1) + E d(x2k+1; Fx2k+2)

� A d(x2k+2; x2k+1) +B d(x2k+2; x2k+3) + Cd(x2k+1; x2k+2)

+D d(x2k+2; x2k+2) + E d(x2k+1; x2k+3)

� [A+ C + E] d(x2k+1; x2k+2) + [B + E] d(x2k+2; x2k+3);

which implies
d(x2k+2; x2k+3) � �d(x2k+1; x2k+2)

with � =
A+ C + E

1�B � E . Now by induction, we obtain for each k = 0; 1; 2; : : :

d(x2k+1; x2k+2) � � d(x2k; x2k+1)

� (�) d(x2k�1; x2k)

� �(��) d(x2k�2; x2k�1)

� � � � � �(��)kd(x0; x1)

and

d(x2k+2; x2k+3) � �d(x2k+1; x2k+2)

� � � � � (��)k+1 d(x0; x1):

3
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For p < q and by Remark 1.4, we have

d(x2p+1; x2q+1) � d(x2p+1; x2p+2) + d(x2p+2; x2p+3) + d(x2p+3; x2p+4)

+ � � �+ d(x2q; x2q+1)

�

24� q�1X
i=p

(��)
i
+

qX
i=p+1

(��)
i

35 d(x0; x1)
�

�
�(��)p

1� �� +
(��)p+1

1� ��

�
d(x0; x1)

� (1 + �)

�
(��)p

1� ��

�
d(x0; x1):

In analogous way, we deduce

d(x2p; x2q+1) � (1 + �)
�
(��)p

1� ��

�
d(x0; x1);

d(x2p; x2q) � (1 + �)
�
(��)p

1� ��

�
d(x0; x1)

and

d(x2p+1; x2q) � (1 + �)
�
(��)p

1� ��

�
d(x0; x1):

Hence, for 0 < n < m
d(xn; xm) � an

where an = (1+�)
�
(��)p

1� ��

�
d(x0; x1) with p the integer part of n=2: Fix 0� c

and choose a symmetric neighborhood V of 0 such that c + V � intP . Since
an ! 0 as n!1, by Lemma 1.3, we deduce that fxng is a Cauchy sequence.
Since X is a complete, there exist u 2 X such that xn ! u: Fix 0 � c and
choose n0 2 N be such that

d(u; x2n)�
c

3K
; d(x2n�1; x2n)�

c

3K
; d(u; x2n�1)�

c

3K

for all n � n0, where

K = max

�
1 +D

1�B � E ;
A+ E

1�B � E ;
C

1�B � E

�
:

4
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Now,

d(u; Fu) � d(u; x2n) + d(x2n; Fu)

� d(u; x2n) + d(Gx2n�1; Fu)

� d(u; x2n) +A d(u; x2n�1) +B d(u; Fu) + Cd(x2n�1; Gx2n�1)

+D d(u;Gx2n�1) + E d(x2n�1; Fu)

� d(u; x2n) +A d(u; x2n�1) +B d(u; Fu) + Cd(x2n�1; x2n)

+D d(u; x2n) + E d(x2n�1; u) + E d(u; Fu)]

� (1 +D) d(u; x2n) + (A+ E) d(u; x2n�1) + Cd(x2n�1; x2n)

+(B + E) d(u; Fu):

So,

d(u; Fu) � K d(u; x2n) +K d(u; x2n�1) +K d(x2n�1; x2n)

� c

3
+
c

3
+
c

3
= c

Hence
d(u; Fu)� c

p

for every p 2 N. From
c

p
� d(u; Fu) 2 intP;

being P closed, as p!1, we deduce �d(u; Fu) 2 P and so d(u; Fu) = 0. This
implies that u = Fu: Similarly, by using the inequality,

d(u;Gu) � d(u; x2n+1) + d(x2n+1; Gu);

we can show that u = Gu; which in turn implies that u is a common �xed point
of F;G and, that is

u = Fu = Gu:

For uniqueness, assume that there exists another point u� in X such that

u� = Tu� = Gu�

for some u� in X: From

d(u; u�) = d(Fu;Gu�)

� Ad(u; u�) +Bd(u; Fu) + Cd(u�; Gu�)

+Dd(u;Gu�) + Ed(u�; Fu)

� Ad(u; u�) +Bd(u; u) + Cd(u�; u�)

+D d(u; u�) + Ed(u; u�)

� (A+D + E)d(u; u�);

we obtain that u� = u:

By substituting D = E = 0 in the Theorem 2.1, we obtain the following
result.

5
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Corollary 6 Let (X; d) be a complete topological vector space-valued cone met-
ric space, P be a cone and m;n be positive integers. If mappings F;G : X !
X satis�es:

d(Fx;Gy) � A d(x; y) +B d(x; Fx) + Cd(y;Gy) (2.2)

for all x; y 2 X, where A;B;C are non negative real numbers with A+B+C < 1:
Then F and G have a unique common �xed point.

By substituting B = C = 0 in the Theorem 2.1, we obtain the following
result.

Corollary 7 Let (X; d) be a complete topological vector space-valued cone met-
ric space, P be a cone and m;n be positive integers. If mappings F;G : X !
X satis�es:

d(Fx;Gy) � A d(x; y) +D d(x;Gy) + E d(y; Fx) (2.3)

for all x; y 2 X, where A;D;E are non negative real numbers with A+D+E < 1:
Then F and G have a unique common �xed point.

By substituting F = Tm; G = Tn in the Theorem 2.1, we obtain the follow-
ing result.

Corollary 8 [7] Let (X; d) be a complete topological vector space-valued cone
metric space, P be a cone and m;n be positive integers. If a mapping T : X !
X satis�es:

d(Tmx; Tny) � A d(x; y)+B d(x; Tmx)+Cd(y; Tny)+D d(x; Tny)+E d(y; Tmx)
(2.4)

for all x; y 2 X, where A;B;C;D;E are non negative real numbers with A +
B + C +D + E < 1; B = C or D = E: Then T has a unique �xed point.

Corollary 9 [1] Let (X; d) be a complete Banach space-valued cone metric
space, P be a cone. If a mapping F;G : X ! X satis�es:

d(Fx;Gy) � pd(x; y) + q [d(x; Fx) + d(y;Gy)] + r [d(x;Gy) + E d(y; Fx)]
(2.5)

for all x; y 2 X, where p; q; r are non negative real numbers with p+2q+2r < 1:
Then F and G have a unique common �xed point.

3 Multivalued Fixed point results in tvs-valued
cone metric spaces

In the sequel, let E be a locally convex Hausdor¤ tvs with its zero vector �, P
be a proper, closed and convex pointed cone in E with int P 6= ; and 4 denotes
the induced partial ordering with respect to P .

6
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According to [5] let (X; d) be a tvs-valued cone metric space with a solid cone
P and CB(X) be a collection of nonempty closed and bounded subsets of X.
Let T : X ! CB(X) be a multi-valued mapping. For any x 2 X; A 2 CB(X),
de�ne a set Wx(A) as follows:

Wx(A) = fd(x; a) : a 2 Ag:

Thus, for any x; y 2 X, we have

Wx(Ty) = fd(x; u) : u 2 Tyg:

De�nition 10 [9] Let (X; d) be a cone metric space with the solid cone P . A
multi-valued mapping S : X ! 2E is said to be bounded from below if, for any
x 2 X, there exists z(x) 2 E such that

Sx� z(x) � P:

De�nition 11 [9] Let (X; d) be a cone metric space with the solid cone P . A
cone P is said to be complete if, for any bounded from above and nonempty
subset A of E, supA exists in E. Equivalently, a cone P is complete if, for any
bounded from below and nonempty subset A of E, inf A exists in E.

De�nition 12 [5] Let (X; d) be a tvs-valued cone metric space with the solid
cone P: A multi-valued mapping T : X ! CB(X) is said to have the lower
bound property ( l.b. property) on X if, for any x 2 X, the multi-valued mapping
Sx : X ! 2E de�ned by

Sx(y) =Wx(Ty)

is bounded from below, that is, for any x; y 2 X, there exists an element
`x (Ty) 2 E such that

Wx(Ty)� `x (Ty) � P:
`x (Ty) is called the lower bound of T associated with (x; y) :

De�nition 13 [5] Let (X; d) be a tvs-valued cone metric space with the solid
cone P: A multi-valued mapping T : X ! CB(X) is said to have the greatest
lower bound property (for short, g.l.b. property) on X if the greatest lower bound
of Wx(Ty) exists in E for all x; y 2 X: We denote d(x; Ty) by the greatest lower
bound of Wx(Ty); that is,

d(x; Ty) = inffd(x; u) : u 2 Tyg:

According to [20], we denote

s (p) = fq 2 E : p 4 qg

for all q 2 E and

s (a;B) = [
b2B

s (d (a; b)) = [
b2B

fx 2 E : d (a; b) 4 xg

7
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for all a 2 X and B 2 CB(X). For any A;B 2 CB(X), we denote

s (A;B) =
�
\
a2A

s (a;B)
�
\
�
\
b2B

s (b; A)
�
:

Remark 14 [20] Let (X; d) be a tvs-valued cone metric space. If E = R and
P = [0;+1); then (X; d) is a metric space. Moreover, for any A;B 2 CB(X),
H(A;B) = inf s(A;B) is the Hausdor¤ distance induced by d:

Now we present the following theorem regarding the common �xed point of
multivalued mapping with g.l.b property.

Theorem 15 Let (X; d) be a complete tvs-valued cone metric space with the
solid (normal or non-normal) cone P and let S; T : X �! CB(X) be multival-
ued mappings with g.l.b property such that

A d(x; y)+B d(x; Sx)+Cd(y; Ty)+Dd(x; Ty)+Ed(y; Sx)) 2 s (Sx; Ty) (2.6)

¤or all x; y 2 X, where A;B;C;D;E are non negative real numbers with A+
B + C +D + E < 1: Then S and T have common �xed point.
Proof. Let x0 be an arbitrary point in X and x1 2 Sx0: From (2.6), we have

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2 s (Sx0; Tx1) :

This implies that

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2
�

\
x2Sx0

s (x; Tx1)

�
and

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2 s (x; Tx1) for all x 2 Sx0:

Since x1 2 Sx0; so we have

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2 s (x1; Tx1)

and

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2 s (x1; Tx1) = [
x2Tx1

s (d (x1; x)) :

So there exists some x2 2 Tx1; such that

Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0) 2 s (d(x1; x2)):

That is

d(x1; x2) � Ad (x0; x1)+B(x0; Sx0)+Cd(x1; Tx1)+Dd(x0; Tx1)+Ed(x1; Sx0):

8
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By using the greatest lower bound property (g.l.b property) of S and T; we get

d (x1; x2) � Ad (x0; x1) +B(x0; x1) + Cd(x1; x2) +Dd(x0; x2) + Ed(x1; x1);

which implies that

d (x1; x2) � (A+B +D)d (x0; x1) + (C +D)d(x1; x2)

which further implies that

d (x1; x2) �
A+B +D

1� C �D d (x0; x1) :

Similarly from (2.6), we get

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2 s (Tx1; Sx2) :

This implies that

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2
�

\
x2Tx1

s (x; Sx2)

�
and

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2 s (x; Sx2) for all x 2 Tx1:

Since x2 2 Tx1; so we have

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2 s (x2; Sx2)

and

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2 s (x2; Sx2) = [
x2Sx2

s (d (x2; x)) :

So there exists some x3 2 Sx2; such that

Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2) 2 s (d(x2; x3)):

That is

d(x2; x3) � Ad (x1; x2)+B(x2; Sx2)+Cd(x1; Tx1)+Dd(x2; Tx1)+Ed(x1; Sx2):

By using the greatest lower bound property (g.l.b property) of S and T; we get

d(x2; x3) � Ad (x1; x2) +B(x2; x3) + Cd(x1; x2) +Dd(x2; x2) + Ed(x1; x3):

which implies that

d(x2; x3) � (A+ C + E)d (x1; x2) + (B + E)(x2; x3):

9
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This further implies

d(x2; x3) �
A+ C + E

1�B � E d (x1; x2) :

Let � = maxfA+B+D1�C�D ;
A+C+E
1�B�E g. Then � < 1: Thus inductively, one can easily

construct a sequence fxng in X such that

x2n+1 2 Sx2n; x2n+2 2 Tx2n+1

and
d(x2n; x2n+1) 4 �d(x2n�1; x2n):

for each n � 0. We assume that xn 6= xn+1 for each n � 0. Otherwise, there
exists n such that x2n = x2n+1: Then x2n 2 Sx2n and x2n is a �xed point of S
and hence a �xed point of T: Similarly, if x2n+1 = x2n+2 for some n, then x2n+1
is a common �xed point of T and S: Similarly, one can show that

d(x2n+1; x2n+2) 4 �d(x2n; x2n+1):

Thus we have

d(xn; xn+1) 4 �d(xn�1; xn) 4 �2d(xn�2; xn�1) 4 � � � 4 �nd(x0; x1)

for each n � 0. Now, for any m > n; consider

d(xm; xn) 4 d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xm�1; xm)
4

�
�n + �n+1 + � � �+ �m�1

�
d(x0; x1)

4
�
�n

1� �

�
d(x0; x1):

Let � � c be given and choose a symmetric neighborhood V of � such that

c+ V � intP . Also, choose a natural number k1 such that
h
�n

1��

i
d(x0; x1) 2 V

for all n � k1. Then �n

1��d(x1; x0)� c for all n � k1. Thus we have

d(xm; xn) 4
�
�n

1� �

�
d(x0; x1)� c

for all m > n. Therefore, fxng is a Cauchy sequence. Since X is complete,
there exists � 2 X such that xn ! �: Choose a natural number k2 such that

1 + E

1� C d(�; x2n+1)�
c

3
;

A

1� C d(x2n; v)�
c

3
and

B

1� C d(x2n; x2n)�
c

3
(2.7)

for all n � k2. Then, for all n � k2, we have

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2 s (Sx2n; T �) :

10
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This implies that

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2
�

\
x2Sx2n

s (x; Tv)

�
and we have

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2 s (x; Tv) for all x 2 Sx2n :

Since x2n+1 2 Sx2n ; so we have

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2 s
�
x
2n+1

; T v
�
:

By de�nition, we obtain

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2 s
�
x
2n+1

; T v
�
= [

u02Tu
s
�
d
�
x
2n+1

; u0
��
:

There exists some �n 2 Tv such that

Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n) 2 s
�
x2n+1 ; T v

�
2 s

�
d(x2n+1 ; �n)

�
;

that is

d(x2n+1 ; �n) � Ad(x2n; v)+Bd(x2n; Sx2n)+Cd(v; Tv)+Dd(x2n; T �)+Ed(�; Sx2n):

By using the greatest lower bound property (g.l.b property) of S and T; we have

d(x
2n+1

; vn) � Ad(x2n; v)+Bd(x2n; x2n)+Cd(v; �n)+Dd(x2n; �n)+Ed(�; x2n+1):

Now by using the triangular inequality, we get

d (x2n+1; �n) � Ad(x2n; v)+Bd(x2n; x2n+1)+Cd(v; x2n+1)+Dd(x2n; �n)+Ed(�; x2n+1)

and it follows that

d (x2n+1; �n) �
A

1� C d(x2n; v) +
B

1� C d(x2n; x2n)) +
C + E

1� C d(�; x2n+1):

By using again triangular inequality, we get

d(�; �n) � d(�; x2n+1) + d(x2n+1; �n)

� d(�; x2n+1) +
A

1� C d(x2n; v) +
B

1� C d(x2n; x2n)) +
C + E

1� C d(�; x2n+1)

� 1 + E

1� C d(�; x2n+1) +
A

1� C d(x2n; v) +
B

1� C d(x2n; x2n)

� c

3
+
c

3
+
c

3
= c

Thus, we get
d(v; vn)�

c

m
for all m � 1 and so c

m � d(v; vn) 2 P for all m � 1. Since c
m ! � as m ! 1

and P is closed, it follows that �d(v; vn) 2 P: But d(v; vn) 2 P . Therefore,
d(v; vn) = � and vn ! v 2 Tv; since Tv is closed. This implies that v is a
common point of S and T . This completes the proof.
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Corollary 16 [5] Let (X; d) be a complete tvs-valued cone metric space with
the solid (normal or non-normal) cone P and let S; T : X �! CB(X) be
multivalued mappings with g.l.b property such that

B d(x; Sx) + Cd(y; Ty) 2 s (Sx; Ty)

¤or all x; y 2 X, where B;C are non negative real numbers with B+C < 1:
Then S and T have common �xed point.

Theorem 17 [5] Let (X; d) be a complete tvs-valued cone metric space with
the solid (normal or non-normal) cone P and let S; T : X �! CB(X) be
multivalued mappings with g.l.b property such that

Dd(x; Ty) + Ed(y; Sx)) 2 s (Sx; Ty)

¤or all x; y 2 X, where D;E are non negative real numbers with D+E < 1:
Then S and T have common �xed point.
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ON THE TWISTED q-CHANGHEE POLYNOMIALS OF HIGHER

ORDER

JIN-WOO PARK

Abstract. The q-Changhee polynomials and numbers are introduced by T.

Kim et al in [3]. Some interesting properties of those polynomials are derived
from umbral calculus (see [4]). In this paper, we consider Witt-type formula

for the n-th twisted q-Changhee numbers and polynomials of higher order and

derive some new interesting identities and properties of those polynomials and
numbers from the Witt-type formula which are related to special polynomials

and numbers.

1. Introduction

Let p be an odd prime number. Zp, Qp and Cp will denote the ring of p-adic
integers, the field of p-adic numbers and the completion of algebraic closure of
Qp. The p-adic norm | · |p is normalized by |p|p = 1

p . Let C(Zp) be the space of

continuous functions on Zp. For f ∈ C(Zp), the fermionic p-adic integral on Zp is
defined by T.Kim to be

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (see [6, 7, 9]). (1.1)

Let f1(x) = f(x+ 1). Then, by (1.1), we get

qI−q(f1) + I−q(f) = [2]qf(0), (see [6, 7]). (1.2)

By (1.2), we easily see that

qnI−q + (−1)n−1I−q = [2]q

n−1∑
l=0

(−1)n−1−lf(l), (1.3)

where fn(x) = f(x+ n) and n ≥ 0.
It is well known that the twisted q-Euler polynomials are defined by the gener-

ating function to be

[2]q
1 + qεet

ext =
∞∑

n=0

En,ε,q(x)
tn

n!
, (see [13]). (1.4)

When x = 0, En,ε,q = En,ε,q(0) are called the n−th twisted q-Euler numbers.
For ε = 1, En,1,q(x) = En,q(x) are the n-th q-Euler polynomials, and x = 0 ,
En,1,q(0) = En,q(0) are the n-th q-Euler numbers.

2000 Mathematics Subject Classification. 11S80, 11B68, 05A30.
Key words and phrases. Euler numbers, q-Changhee numbers, twisted q-Changhee numbers

of higher order.
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2 JIN-WOO PARK

Indeed, we note that En,1,q(x) = Hn(x| − q), where Hn(x|λ) are the Frobenius-
Euler polynomials which are defined by the generating function to be

1− λ
et − λ

etx =
∞∑

n=0

Hn(x|λ)
tn

n!
, (see [1]).

Recently, the q-Changhee polynomials are defined by the generating function to
be

[2]q
1 + qεt

(1 + t)x =
∞∑

n=0

Chn,q(x)
tn

n!
, (see [10]). (1.5)

When x = 0, Chn,ε,q = Chn,ε,q(0) are called the q-Changhee numbers, (see [3]).
The Stirling number of the first kind is defined by

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑

l=0

S1(n, l)xl, (see [3]). (1.6)

The q-Changhee numbers and polynomials are introduced by T. Kim et. al. in
[3], and found interesting identities in [5, 8, 11, 12]. In this paper, we consider the
twisted q-Changhee numbers and polynomials of order k which are derived from
the multivariate fermionic p-adic q-integral of higher order on Zp, and give some
relationship between twisted q-Changhee polynomials and numbers of higher-order
and special polynomials and numbers.

2. Twisted q-Changhee numbers and polynomials of higher-order

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp = ∪∪∪
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn =
{
ω|ωpn

= 1
}

is the cyclic group of order pn.

For ε ∈ Tp, let us take f(x) = (1 + εt)x for |t|p < p−
1

p−1 . Then by (1.2), we get∫
Zp

(1 + εt)xdµ−q(x) =
[2]q

qεt+ [2]q
=

∞∑
n=0

Chn,ε,q
tn

n!
(2.1)

where Chn,ε,q are called the n-th twisted q-Changhee numbers.
From (2.1), we can derive the following equation:∫

Zp

(1 + εt)x+ydµ−q(y) =
[2]q

qεt+ [2]q
(1 + εt)x =

∞∑
n=0

Chn,ε,q(x)
tn

n!
, (2.2)

where Chn,ε,q(x) are called the n-th twisted q-Changhee polynomials. Note that
Chn,ε,q(0) = Chn,ε,q are n-th twisted q-Changhee numbers.

Since ∫
Zp

(1 + εt)x+ydµ−q(y) =
∞∑

n=0

εn
∫
Zp

(
x+ y

n

)
dµ−q(y)tn

=

∞∑
n=0

εn
∫
Zp

(x+ y)ndµ−q(y)
tn

n!
,

(2.3)

by (2.2) and (2.3), we obtained the following theorem.
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ON THE TWISTED q-CHANGHEE POLYNOMIALS OF HIGHER ORDER 3

Theorem 2.1. For n ≥ 0, we have

Chn,ε,q(x) = εn
∫
Zp

(x+ y)ndµ−q(y).

From (2.1), we note that

∞∑
n=0

εn
∫
Zp

(
x

n

)
dµ−q(x)tn =

[2]q
qεt+ [2]q

=
∞∑

n=0

(
− qε

[2]q

)n

tn. (2.4)

Thus, by comparing the coefficients on the both sides, we obtain the following
theorem.

Theorem 2.2. For n ≥ 0, we have∫
Zp

(
x

n

)
dµ−q(x) =

(
− q

[2]q

)n

.

Replacing t by et−1
ε in (2.2), we get

∞∑
n=0

En,q(x)
tn

n!
=

[2]q
qet − 1

ext =
∞∑

n=0

Chn,ε,q(x)
1

n!

(
et − 1

ε

)n

, (2.5)

where En,q is the n-th q-Euler polynomials and

∞∑
n=0

Chn,ε,q(x)
1

n!

(
et − 1

ε

)n

=
∞∑

n=0

Chn,ε,q(x)
1

n!
ε−nn!

( ∞∑
m=n

S2(m,n)
tm

m!

)

=
∞∑

m=0

m∑
n=0

Chn,ε,q(x)S2(m,n)ε−n
tm

m!
,

(2.6)

where S2(m,n) is the Striling number of the second kind.
By comparing the coefficients on the both sides of (2.5) and (2.6), we obtain the

following theorem.

Theorem 2.3. For n ≥ 0, we have

En,q(x) =
n∑

m=0

Chm,ε,q(x)S2(n,m)ε−m.

By Theorem 2.1, we easily get

Chn,ε,q(x) =εn
∫
Zp

(x+ y)ndµ−q(y)

=εn
n∑

l=0

S1(n, l)

∫
Zp

(x+ y)ldµ−q(y) = εn
n∑

l=0

S1(n, l)El,q(x).

(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

Chn,ε,q(x) = εn
n∑

l=0

S1(n, l)El,q(x).

where S1(n, l) is the Stirling number of the first kind.
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In viewpoint of (2.3), the n−th twisted q-Changhee numbers of the first kind with
order k are defined by the generating function to be

Ch(k)n,ε = εn
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk)ndµ−q(x1) . . . dµ−q(xk), (2.8)

where n is a positive integer.
By (2.8), we easily get

∞∑
n=0

Ch(k)n,ε,q

tn

n!
=

∫
Zp

· · ·
∫
Zp

∞∑
n=0

(
x1 + · · ·+ xk

n

)
(εt)ndµ−q(x1) · · · dµ−q(xk)

=

∫
Zp

· · ·
∫
Zp

(1 + εt)ndµ−q(x1) · · · dµ−q(xk).

(2.9)

From (2.1) and (2.9), we have

∞∑
n=0

Ch(k)n,ε,q

tn

n!
=

(
[2]q

qεt+ [2]q

)k

, (2.10)

and(
[2]q

qεt+ [2]q

)k

=

∞∑
n=0

( ∑
l1+···+lk=n

(
n

l1, . . . , lk

)
Chl1,ε,q · · ·Chlk,ε,q

)
tn

n!
. (2.11)

By simple calculation. we easily see that(
[2]q

qεt+ [2]q

)k

=
∞∑

n=0

(
− q

[2]q

)n

n!εn
(
k + n− 1

n

)
tn

n!
. (2.12)

Thus, by (2.10) and (2.12), we get

[2]nqCh
(k)
n,ε,q =(−q)nn!εn

(
n+ k − 1

n

)
=(−q)nεn(k + n− 1)n

=(−q)nεn
n∑

l=0

S1(n, l)(k + n− 1)l.

(2.13)

Therefore, by (2.10), (2.11) and (2.13), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

[2]nqCk
(k)
n,ε,q =[2]nq

∑
l1+···+lk=n

(
n

l1, . . . , lk

)
Chi1,ε,q · · ·Chlk,ε,q

=(−q)nεn
n∑

l=0

S1(n, l)(k + n− 1)l.

From (2.8), we have

Ch(k)n,ε,q =εn
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk)ndµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk)ldµ−q(x1) · · · dµ−q(xk).

(2.14)
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ON THE TWISTED q-CHANGHEE POLYNOMIALS OF HIGHER ORDER 5

Now, we observe that∫
Zp

· · ·
∫
Zp

e(x1+···+xk)tdµ−q(x1) · · · dµ−q(xk) =

(
[2]q

qet + 1

)k

=
∞∑

n=0

E(k)
n,q

tn

n!
, (2.15)

where E
(k)
n,q are the q-Euler numbers of order k.

From (2.14) and (2.15), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

Ch(k)n,ε,q = εn
n∑

l=0

S1(n, l)E
(k)
l,q .

Replacing t by et−1
ε , we get

∞∑
n=0

Ch(k)n,ε,q

1

n!

(
et − 1

ε

)n

=

(
[2]q

qet + 1

)k

=
∞∑

n=0

E(k)
n,q

tn

n!
, (2.16)

and
∞∑

n=0

Ch(k)n,ε,q

1

n!

(
et − 1

ε

)n

=
∞∑

m=0

(
m∑

n=0

ε−nCh(k)n,ε,qS2(m,n)

)
tm

m!
. (2.17)

Thus, by (2.16) and (2.17), we obtain the following theorem.

Theorem 2.7. For n ≥ 0, we have

E(k)
n,q =

n∑
m=0

ε−mCh(k)m,ε,qS2(n,m).

Now we define the twisted q-Changhee polynomials of the first kind with order k
as follows:

Ch(k)n,ε,q(x) = εn
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk + x)ndµ−q(x1) · · · dµ−q(xk), (2.18)

where n ≥ 0 and k ∈ N.
From (2.18), we can derive the generating function of the twisted q-Changhee

polynomials as follows:
∞∑

n=0

Ch(k)n,ε,q(x)
tn

n!
=

∫
Zp

· · ·
∫
Zp

(1 + εt)x1+···+xk+xdµ−q(x1) · · · dµ−q(xk)

=

(
[2]q

qεt+ [2]q

)k

(1 + εt)x.

(2.19)

It is easy to show that(
[2]q

qεt+ [2]q

)k

(1 + εt)x =
∞∑

n=0

(
n∑

m=0

εm
(
n

m

)
(x)mCh

(k)
n−m,ε,q

)
tn

n!
. (2.20)

By (2.20), we get

Ch(k)n,ε,q(x) =
n∑

m=0

εm
(
x

m

)
n!

(n−m)!
Ch

(k)
n−m,ε,q

=
n∑

m=0

εn−m
(

x

n−m

)
n!

m!
Ch(k)m,ε,q.

(2.21)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

428 JIN-WOO PARK 424-431



6 JIN-WOO PARK

From (2.18), we have

Ch(k)n,ε,q(x) =εn
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk + x)ndµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk + x)ldµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)E
(k)
l,q (x).

(2.22)

Hence, by (2.22), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

Ch(k)n,ε,q(x) =
n∑

m=0

εm
(

x

n−m

)
n!

m!
Ch(k)m,ε,q = εn

n∑
l=0

S1(n, l)E
(k)
l,q (x).

where E
(k)
l,q are the q-Euler polynomials of order k.

Now, we consider the twisted q-Changhee polynomials of second kind with order
k as follows:

Ĉh
(k)

n,ε,q(x) = εn
∫
Zp

· · ·
∫
Zp

(−x1 − · · · − xk + x)ndµ−q(x1) · · · dµ−q(x)k. (2.23)

By (2.23), we have

∞∑
n=0

Ĉh
(k)

n,ε,q(x)
tn

n!
=

∫
Zp

· · ·
∫
Zp

(1 + εt)−x1−···−xk+xdµ−q(x1) · · · dµ−q(xk)

=

(
[2]q

εt+ [2]q

)k

(1 + εt)k+x,

(2.24)

where k is positive integer.
Hence,

Ĉh
(k)

n,ε,q(x)

=εn
∫
Zp

· · ·
∫
Zp

(−x1 − · · · − xk + x)ndµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)(−1)l
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk − x)ldµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)(−1)lE
(k)
l,q (−x).

(2.25)

Therefor, by (2.25), we obtain the following theorem.

Theorem 2.9. For n ≥ 0, we have

Ĉh
(k)

n,ε,q(x) = εn
n∑

l=0

S1(n, l)(−1)lE
(k)
l,q (−x).
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Now, we consider the n-th twisted q-Changhee polynomials of the first kind relate
to n-th twisted q-Changhee polynomials of second kind.

(−1)nĈh
(k)

n,ε,q(x)

n!

=(−1)nεn
∫
Zp

· · ·
∫
Zp

(
−x1 − · · · − xk + x

n

)
dµ−q(x1) · · · dµ−q(xk)

=εn
∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xk − x+ n− 1

n

)
dµ−q(x1) · · · dµ−q(xk)

=εn
∞∑

m=0

(
n− 1

n−m

)∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xk − x

m

)
dµ−q(x1) · · · dµ−q(xk)

=εn
n∑

m=1

(
n− 1

m− 1

)
ε−m

m!
m!εm

∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xk − x

m

)
dµ−q(x1) · · · dµ−q(xk)

=
n∑

m=1

(
n− 1

m− 1

)
εn−m

Ch
(k)
m,ε,q(−x)

m!
.

(2.26)

By (2.26) and proceeding similar to (2.26), we have the following theorem.

Theorem 2.10. For n ≥ 0, we have

(−1)nĈh
(k)

n,ε,q(x)

n!
=

n∑
m=1

(
n− 1

m− 1

)
εn−m

Ch
(k)
m,ε,q(−x)

m!
,

and

(−1)nCh
(k)
n,ε,q(x)

n!
=

n∑
m=1

(
n− 1

m− 1

)
εn−m

Ĉh
(k)

m,ε,q(−x)

m!
,

By (2.25),

Ĉhn,ε,q(x)

=εn
n∑

l=0

S1(n, l)(−1)l
∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xk − x)ldµ−q(x1) · · · dµ−q(xk)

=εn
n∑

l=0

S1(n, l)
l∑

m=0

(−1)l+m

(
l

m

)
E

(k)
l−mx

m,

and thus we obtain the following theorem.

Theorem 2.11. For n ≥ 0, we have

Ĉhn,ε,q(x) = εn
n∑

l=0

l∑
m=0

(−1)l+m

(
l

m

)
S1(n, l)E

(k)
l−mx

m.
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SOME SYMMETRY IDENTITIES FOR THE (h, q)-BERNOULLI

POLYNOMIALS UNDER THE THIRD DIHEDRAL GROUP D3

ARISING FROM q-VOLKENBORN INTEGRAL ON Zp

S.-H. RIM, T. G. KIM, S. H. LEE

Abstract. In this paper, we give some new identities of symmetry for the

(h, q)-Bernoulli polynomials arising from q-Volkenborn integral on Zp.

1. Introduction

let p be a fixed prime number. Throughout this paper, Zp, Qp and Cp will,
respectively, denote the ring of p-adic integers, the field of p-adic rational numbers
and the completion of algebraic closure of Qp. Let vp be the normalized exponential

valuation of Cp with |p|p = p−vp(p) = 1/p and let q be an indeterminate in Cp with

|1 − q|p < p−
1
p−1 . The q-extension of x is defined by [x]q = 1−qx

1−q . Note that

limq→1[x]q = x. Suppose that f is a uniformly differentiable function on Zp. Then
the p-adic q-Vollenborn integral is defined by Kim to be

Iq(f) =

∫
Zp
f(x)dµq(x) = lim

N→∞

pN−1∑
x=0

f(x)µq(x+ pNZp)

= lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx.

(1)

As is well known, Carlitz’s q-Bernoulli numbers are defined by

β0,q = 1, q(qβ + 1)n − βn,q =

{
1 if n = 1

0 if n > 1,

with the usual convention about replacing βnq by βn,q (see [1,8,10]).
The q-Bernoulli polynomials are given by

βn,q(x) =
n∑
l=0

(
n

l

)
[x]n−lq qlxβl,q

=
1

(1− q)n
n∑
l=0

(
n

l

)
(−1)lqlx

l + 1

[l + 1]q
, (see [10]).

In 1999, Kim gave the formula which is given by

βn,q(x) =

∫
Zp

[x+ y]nq dµq(x), (n ∈ N ∪ {0}, ) (see [1-15]).

1
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For h ∈ Z, we consider (h, q)-Bernoulli polynomials as follows:

β(h)
n,q(x) =

∫
Zp
q(h−1)x[x+ y]nq dµq(x), (n ∈ Z≥0)

=
1

(1− q)n
n∑
l=0

(
n

l

)
qlx(−1)l

h+ 1

[h+ l]q
, (see [8,10]).

(2)

When x = 0, β
(h)
n,q = β

(h)
n,q(0) are called the (h, q)-Bernoulli numbers.

In this paper, we consider the symmetric identities for the (h, q)-Bernoulli poly-
nomials under the third Dihedral groupD3 which are derive from p-adic q-Volkenborn
integral on Zp.

2. Symmetric identities for the (h, q)-Bernoulli polynomials

Let w1, w2, w3 be positive integers. Then we observe that

∫
Zp
q(h−1)w2w3ye[w2w3y+w1w2w3x+w1w3i+w1w2j]qtdµqw2w3 (y)

= lim
N→∞

1

[pN ]qw2w3

pN−1∑
y=0

q(h−1)w2w3ye[w2w3y+w1w2w3x+w1w3i+w1w2j]qtqw2w3y

= lim
N→∞

1

[w1pN ]qw2w3

w1−1∑
k=0

pN−1∑
y=0

qhw2w3(k+w1y)e[w2w3(k+w1y)+w1w2w3x+w1w3i+w1w2j]qt.

(3)

By (3), we get

1

[w2w3]q

w2−1∑
i=0

w3−1∑
j=0

q(w1w3i+w1w2j)h

×
∫
Zp
q(h−1)w2w3ye[w2w3y+w1w2w3x+w1w3i+w1w2j]qtdµqw2w3 (y)

= lim
N→∞

1

[w1w2w3pN ]q

w2−1∑
i=0

w3−1∑
j=0

w1−1∑
k=0

qh(w1w3i+w1w2j+w2w3k)+hw1w2w3y

× e[w2w3(k+w1y)+w1w2w3x+w1w3i+w1w2j]qt.

(4)

From (4), we note that the expression is invariant under any permutation of w1, w2, w3

in third Dihedral group D3. Therefore, by (4), we obtain the following theorem.

Theorem 2.1. Let w1, w2, w3 be positive integers. Then, the following expressions

1

[wσ(2)wσ(3)]q

wσ(2)−1∑
i=0

wσ(3)−1∑
j=0

qh(wσ(1)wσ(3)i+wσ(1)wσ(2)j)

×
∫
Zp
q(h−1)wσ(2)wσ(3)ye[wσ(2)wσ(3)y+wσ(1)wσ(2)wσ(3)x+wσ(1)wσ(3)i+wσ(1)wσ(2)j]qtdµqwσ(2)wσ(3) (y)

are the same for any σ ∈ D3.
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Now, we note that

[w2w3y + w1w2w3x+ w1w3i+ w1w2j]q = [w2w3]q

[
y + w1x+

w1

w2
i+

w1

w3
j

]
qw2w3

(5)

Therefore, by (2), Theorem 1 and (5), we obtain the following theorem.

Theorem 2.2. For w1, w2, w3 ∈ N, the following expressions

[wσ(2)wσ(3)]
n−1
q

wσ(2)−1∑
i=0

wσ(3)−1∑
j=0

qh(wσ(1)wσ(3)i+wσ(1)wσ(2)j)

× β(h)

n,q
wσ(2)wσ(3)

(
wσ(1)x+

wσ(1)

wσ(2)
i+

wσ(1)

wσ(3)
j
)

are the same for any σ ∈ D3.

It is not difficult to show that

[
y + w1x+

w1

w2
i+

w1

w3
j

]
qw2w3

=
1− qw1w3i+w1w2j

1− qw2w3
+ qw1w3i+w1w2j [y + w1x]qw2w3

=
[w1]q

[w2w3]q
[w3i+ w2j]qw1 + qw1w3i+w1w2j [y + w1x]qw2w3

(6)

From (6), we have∫
Zp

[
y + w1x+

w1

w2
i+

w1

w3
j

]n
qw2w3

q(h−1)w2w3ydµqw2w3 (y)

=
n∑
k=0

(
n

k

)(
[w1]q

[w2w3]q

)n−k
[w3i+ w2j]

n−k
qw1 q

k(w1w3i+w1w2j)β
(h)
k,qw2w3 (w1x).

(7)

Thus, by Theorem 2 and (7), we get

[w2w3]n−1q

w2−1∑
i=0

w3−1∑
j=0

qh(w1w3i+w1w2j)

∫
Zp
q(h−1)w2w3y

[
y + w1x+

w1

w2
i+

w1

w3
j

]n
qw2w3

dµqw2w3 (y)

=
n∑
k=0

(
n

k

)
[w2w3]k−1q [w1]n−kq β

(h)
k,qw2w3 (w1x)

w2−1∑
i=0

w3−1∑
j=0

q(k+h)(w1w3i+w1w2j)[w3i+ w2j]
n−k
qw1

=
n∑
k=0

(
n

k

)
[w2w3]k−1q [w1]n−kq β

(h)
k,qw2w3 (w1x) T

(h)
n,qw1 (w2, w3|k),

(8)

where

T (h)
n,q (w1, w2|k) =

w1−1∑
i=0

w2−1∑
j=0

q(k+h)(w2i+w1j)[w2i+ w1j]
n−k
q .(9)

As this expression is invariant under the third Dihedral group D3, we have the
following theorem.
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Theorem 2.3. For n ≥ 0, w1, w2, w3 ∈ N, the following expressions
n∑
k=0

(
n

k

)
[wσ(2)wσ(3)]

k−1
q [wσ(1)]

n−k
q β

(h)

k,q
wσ(2)wσ(3) (wσ(1)x) T

(h)

n,q
wσ(1) (wσ(2), wσ(3)|k)

are all the same for any σ ∈ D3.
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SOME IDENTITIES OF BELL POLYNOMIALS ASSOCIATED

WITH p-ADIC INTEGRAL ON Zp

SEOG-HOON RIM, HONG KYUNG PAK, J.K. KWON, AND TAE GYUN KIM

Abstract. In this paper, we investigate some identities of Bell polynomials as-
sociated with special polynomials which are derived from p-adic integral on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp,Qp and Cp
will denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of algebraic closure of Qp. Let νp be the normalized exponential valuation

of Cp with |p|p = p−νp(p) = 1
p . Let q be an indeterminate in Cp with |1−q|p < p

− 1
p−1

and let the q-extension of number x is defined as [x]q = 1−qx
1−q . The Euler polynomials

of order r are defined by the generating function to be( 2

et + 1

)r
ext =

∞∑
n=0

E(r)
n (x)

tn

n!
, (see [1− 18])

and the higher-order Bernoulli polynomials of order r are given by( t

et − 1

)r
ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (see [9− 10]).

When x = 0, B
(r)
n = B

(r)
n (0), E

(r)
n = E

(r)
n (0) are called higher-order Bernoulli

numbers and Euler numbers.
Let f(x) be a uniformly continuous function on Zp. Then the bosonic p-adic

integral on Zp is defined by

(1)

∫
Zp

f(x)dµ0(x) = lim
N→∞

1

pN

pN−1∑
x=0

f(x), (see [12]),

and the fermieuic p-adic integral on Zp is given by

(2)

∫
Zp

f(x)dµ−1(x) = lim
N→∞

1

pN

pN−1∑
x=−1

f(x)(−1)x, (see [12]).

Thus, we have

(3)

∫
Zp

f(x+ 1)dµ0(x)−
∫
Zp

f(x)dµ0(x) = f ′(0),

and

(4)

∫
Zp

f(x+ 1)dµ−1(x) +

∫
Zp

f(x)dµ−1(x) = 2f(0).

1
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As is well know, the higher-order Changhee polynomials are given by

(5)
( 2

t+ 2

)r
(1 + t)x =

∞∑
n=0

Ch(r)n (x)
tn

n!
, (see [11− 15]),

and the higher-order Daehee polynomials are defined by the generating function to
be

(6)
( log(1 + t)

t

)r
(1 + t)x =

∞∑
n=0

D(r)
n (x)

tn

n!
, (see [11− 15]).

When x = 0, Ch
(r)
n = Ch

(r)
n (0) and D

(r)
n = D

(r)
n (0) are called the Changhee numbers

and the Daehee numbers with order r.
Finally, we introduce the Bell polynomials which are given by the generating

function to be

(7) e(e
t−1)x =

∞∑
n=0

Beln(x)
tn

n!
, (see [4, 14, 16]).

The purpose of this paper is to given some identities of Bell polynomials associated
with special polynomials arising from p-adic integral on Zp.

2. Some identities of Bell polynomials

From (2), we note that

(8)

∫
Zp

e(e
t−1)(x+y)dµ0(y)

=
∞∑
n=0

∫
Zp

(x+ y)ndµ0(y)
(et − 1)n

n!

=
∞∑
n=0

( n∑
k=0

Bk(x)S2(n, k)
) tn
n!
,

where S2(n, k) is the Stirling number of the second kind. On the other hand,

(9)

∫
Zp

e(e
t−1)(x+y)dµ0(y) =

∞∑
n=0

∫
Zp

Beln(x+ y)dµ0(y)
tn

n!
.

Thus, by (8) and (9), we get

(10)

∫
Zp

Beln(x+ y)dµ0(y) =
n∑
k=0

Bk(x)S2(n, k).

By the same method as (10), we get

(11)

∫
Zp

Beln(x+ y)dµ−1(y) =

n∑
k=0

Ek(x)S2(n, k).
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Note that

(12)

∫
Zp

· · ·
∫
Zp

(1 + t)(x1+···+xr+x)dµ0(x1) · · · dµ0(xr) =
( log(1 + t)

t

)r
(1 + t)x

=

∞∑
n=0

D(r)
n (x)

tn

n!
.

By replacing t by ee
t−1 − 1, we get

(13)

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)dµ0(x1) · · · dµ0(xr)

=
( et − 1

eet−1 − 1

)r
e(e

t−1)x =
( ∞∑
l=0

B
(r)
l

(et − 1)l

l!

)( ∞∑
m=0

Belm(x)
tm

m!

)
=
( ∞∑
l=0

B
(r)
l

∞∑
k=l

S2(k, l)
tk

k!

)( ∞∑
m=0

Belm(x)
tm

m!

)

=
( ∞∑
k=0

( k∑
l=0

B
(r)
l S2(k, l)

) tk
k!

)( ∞∑
m=0

Belm(x)
tm

m!

)
=
∞∑
n=0

( n∑
m=0

Belm(x)n!

m!(n−m)!

n−m∑
l=0

B
(r)
l S2(n−m, l)

) tn
n!

=

∞∑
n=0

( n∑
m=0

(
n

m

)
Belm(x)

n−m∑
l=0

B
(r)
l S2(n−m, l)

) tn
n!
.

On the other hand,

(14)

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)dµ0(x1) · · · dµ0(xr)

=
∞∑
n=0

∫
Zp

· · ·
∫
Zp

Beln(x1 + · · ·+ xr + x)dµ0(x1) · · · dµ0(xr)
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

∫
Zp

· · ·
∫
Zp

Beln(x1 + · · ·+ xr + x)dµ0(x1) · · · dµ0(xr)

=
n∑

m=0

(
n

m

)
Belm(x)

n−m∑
l=0

B
(r)
l S2(n−m, l).
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From (12), we note that

(15)

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)dµ0(x1) · · · dµ0(xr)

=
∞∑
n=0

D(r)
n (x)

1

n!

(
e(e

t−1) − 1
)n

=
∞∑
k=0

D
(r)
k (x)

∞∑
m=k

S2(m, k)
(et − 1)m

m!

=
∞∑
m=0

m∑
k=0

D
(r)
k (x)S2(m, k)

1

m!
(et − 1)m

=
∞∑
m=0

m∑
k=0

D
(r)
k (x)S2(m, k)

∞∑
n=m

S2(n,m)
tn

n!

=
∞∑
n=0

{ n∑
m=0

m∑
k=0

D
(r)
k (x)S2(m, k)S2(n,m)

} tn
n!
.

Therefore, by Theorem 1 and (15), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

n∑
m=0

(
n

m

)
Belm(x)

n−m∑
l=0

B
(r)
l S2(n−m, l)

=
n∑

m=0

m∑
k=0

D
(r)
k (x)S2(m, k)S2(n,m).

From (7), we note that

(16)

ext =

∞∑
m=0

Belm(x)
1

m!

(
log(1 + t)

)m
=
∞∑
m=0

Belm(x)
∞∑
n=m

S1(n,m)
tm

m!

=

∞∑
n=0

( n∑
m=0

Belm(x)S1(n,m)
) tn
n!
,

where S1(n,m) is the Stirling number of the first kind.
Therefore, by (16), we obtain the following theorem.

Theorem 3. For n ≥ 0, we have

xn =
n∑

m=0

Belm(x)S1(n,m).

It is easy to show that

(17)

∫
Zp

extdµ0(x) =
t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

Thus, by (17), we have ∫
Zp

xndµ0(x) = Bn, (n ≥ 0).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

440 SEOG-HOON RIM et al 437-446



SOME IDENTITIES OF BELL POLYNOMIALS 5

From Theorem 3, we can derive the following equation:

(18) Bn =

∫
Zp

xndµ0(x) =

n∑
m=0

S1(n,m)

∫
Zp

Belm(x)dµ0(x), (n ≥ 0).

Therefore, by (10) and (18), we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

Bn =

n∑
m=0

m∑
k=0

S1(n,m)S2(m, k)Bk.

It is not difficult to show that

(19)

∫
Zp

extdµ−1(x) =
2

et + 1
=

∞∑
n=0

En
tn

n!
.

Thus, by (19), we get

(20)

∫
Zp

xndµ−1(x) = En, (n ≥ 0).

From Theorem 3 and (20), we have

(21) En =

∫
Zp

xndµ−1(x) =
n∑

m=0

S1(n,m)

∫
Zp

Belm(x)dµ−1(x).

Therefore, by (11) and (21), we obtain the following theorem.

Theorem 5. For n ≥ 0, we have

En =
n∑

m=0

m∑
k=0

S1(n,m)S2(m, k)Ek.

Now, we consider the following equation.

(22)

e(x+x1+···+xr)t =

∞∑
m=0

Belm(x1 + · · ·+ xr + x)
(log(1 + t))m

m!

=
∞∑
m=0

Belm(x1 + · · ·+ xr + x)
∞∑
n=m

S1(n,m)
tn

n!

=

∞∑
n=0

( n∑
m=0

Belm(x1 + · · ·+ xr + x)S1(n,m)
) tn
n!
.

Thus, by (22), we have the following theorem.

Theorem 6. For n ≥ 0, we have

(x+ x1 + · · ·+ xr)
n =

n∑
m=0

Belm(x1 + · · ·+ xr + x)S1(n,m).
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From (4), we can easily derive the following equation:

(23)

∫
Zp

· · ·
∫
Zp

e(x1+···+xr+x)tdµ−1(x1) · · · dµ−1(xr) =
( 2

et + 1

)r
ext

=

∞∑
n=0

E(r)
n (x)

tn

n!
.

Thus, by (23), we get

(24)

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)ndµ−1(x1) · · · dµ−1(xr) = E(r)
n (x).

By (3), we easily get

(25)

∫
Zp

· · ·
∫
Zp

e(x1+···+xr+x)tdµ0(x1) · · · dµ0(xr) =
( t

et − 1

)r
ext

=
∞∑
n=0

B(r)
n (x)

tn

n!
.

From (25), we have

(26)

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)ndµ0(x1) · · · dµ0(xr) = B(r)
n (x).

From Theorem 6, (24) and (26), we have

(27) B(r)
n (x) =

n∑
m=0

S1(n,m)

∫
Zp

· · ·
∫
Zp

Belm(x+ x1 + · · ·+ xr)dµ0(x1) · · · dµ0(xr)

and
(28)

E(r)
n (x) =

n∑
m=0

S1(n,m)

∫
Zp

· · ·
∫
Zp

Belm(x+ x1 + · · ·+ xr)dµ−1(x1) · · · dµ−1(xr).

Now, we observe that

(29)

∞∑
n=0

∫
Zp

· · ·
∫
Zp

Beln(x+ x1 + · · ·+ xr)dµ0(x1) · · · dµ0(xr)
tn

n!

=

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)tdµ0(x1) · · · dµ0(xr)

=
∞∑
m=0

B(r)
m (x)

1

m!

(
et − 1

)m
=
∞∑
n=0

( n∑
m=0

B(r)
m (x)S2(n,m)

) tn
n!
.

Thus, by (29), we get

(30)

∫
Zp

· · ·
∫
Zp

Beln(x1 + · · ·+ xr + x)dµ0(x1) · · · dµ0(xr) =

n∑
m=0

B(r)
m (x)S2(n,m).

Therefore, by (27) and (30), we obtain the following theorem.
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Theorem 7. For n ≥ 0, we have

B(r)
n (x) =

n∑
m=0

m∑
k=0

S1(n,m)S2(m, k)B
(r)
k (x).

By the same method of (29), we get

(31)

∞∑
n=0

∫
Zp

· · ·
∫
Zp

Beln(x+ x1 + · · ·+ xr)dµ−1(x1) · · · dµ−1(xr)
tn

n!

=

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)tdµ−1(x1) · · · dµ−1(xr)

=
∞∑
n=0

( n∑
m=0

E(r)
m (x)S2(n,m)

) tn
n!
.

From (31), we have

(32)

∫
Zp

· · ·
∫
Zp

Beln(x1+· · ·+xr+x)dµ−1(x1) · · · dµ−1(xr) =
n∑

m=0

E(r)
m (x)S2(n,m).

Therefore, by Theorem 6 and (32), we obtain the following theorem.

Theorem 8. For n ≥ 0, we have

E(r)
n (x) =

n∑
m=0

m∑
k=0

S1(n,m)S2(m, k)E
(r)
k (x).

From (4), we have

(33)

∫
Zp

· · ·
∫
Zp

(1 + t)(x1+···+xr+x)dµ−1(x1) · · · dµ−1(xr)

=
( 2

1 + t

)r
(1 + t)x =

∞∑
n=0

Ch(r)n (x)
tn

n!
.

By replacing t by e(e
t−1) − 1, we get

(34)

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)dµ−1(x1) · · · dµ−1(xr)

=
∞∑
m=0

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)dµ−1(x1) · · · dµ−1(xr)
1

m!
(et − 1)m

=

∞∑
m=0

E(r)
m (x)

1

m!
(et − 1)m

=
∞∑
m=0

E(r)
m (x)

∞∑
n=m

S2(n,m)
tn

n!

=

∞∑
n=0

( n∑
m=0

E(r)
m (x)S2(n,m)

) tn
n!
,
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and

(35)

2re−(e
t−1)re(e

t−1)x = 2r
( ∞∑
l=0

Bell(−r)
tl

l!

)( ∞∑
m=0

Belm(x)
tm

m!

)
= 2r

∞∑
n=0

( n∑
m=0

Belm(x)Beln−m(−r)n!

m!(n−m)!

) tn
n!

=
∞∑
n=0

(
2r

n∑
m=0

(
n

m

)
Belm(x)Beln−m(−r)

) tn
n!
.

Therefore, by (33),(34) and (35), we obtain the following theorem.

Theorem 9. For n ≥ 0, we have

n∑
m=0

E(r)
m (x)S2(n,m) = 2r

n∑
m=0

(
n

m

)
Belm(x)Beln−m(−r).

Now, we observe that

(36)

∞∑
m=0

Ch(r)m (x)
1

m!

(
e(e

t−1) − 1
)m

=
∞∑
m=0

Ch(r)m (x)
∞∑
k=m

S2(k,m)
(et − 1)k

k!

=

∞∑
k=0

k∑
m=0

Ch(r)m (x)S2(k,m)
1

k!
(et − 1)k

=
∞∑
k=0

k∑
m=0

Ch(r)m (x)S2(k,m)
∞∑
n=k

S2(n, k)
tn

n!

=
∞∑
n=0

( n∑
k=0

k∑
m=0

Ch(r)m (x)S2(k,m)S2(n, k)
) tn
n!
.

Therefore, by (33), (34) and (36), we obtain the following theorem.

Theorem 10. For n ≥ 0, we have

n∑
m=0

E(r)
m (x)S2(n,m) =

n∑
k=0

k∑
m=0

Ch(r)m (x)S2(k,m), S2(n, k).
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From (4), we have

(37)

∫
Zp

· · ·
∫
Zp

e(e
t−1)(x1+···+xr+x)dµ−1(x1) · · · dµ−1(xr)

=
( 2

eet−1 + 1

)r
e(e

t−1)x

=
( ∞∑
m=0

E(r)
m

(et − 1)m

m!

)( ∞∑
l=0

Bell(x)
tl

l!

)
=
( ∞∑
m=0

E(r)
m

∞∑
k=m

S2(k,m)
tk

k!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=
( ∞∑
k=0

( k∑
m=0

E(r)
m S2(k,m)

) tk
k!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=
∞∑
n=0

{ n∑
k=0

k∑
m=0

E(r)
m (x)S2(k,m)Beln−k(x)

n!

k!(n− k)!

} tn
n!

=
∞∑
n=0

{ n∑
k=0

(
n

k

) k∑
m=0

E(r)
m (x)S2(k,m)Beln−k(x)

} tn
n!

Therefore, by (34) and (37), we obtain the following theorem.

Theorem 11. For n ≥ 0, we have

n∑
k=0

E
(r)
k (x)S2(n, k) =

n∑
k=0

(
n

k

) k∑
m=0

E(r)
m (x)S2(k,m)Beln−k(x).
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ON A PRODUCT-TYPE OPERATOR FROM WEIGHTED

BERGMAN-NEVANLINNA SPACES TO WEIGHTED ZYGMUND

SPACES ON THE UNIT DISK

ZHI JIE JIANG, HONG BIN BAI, AND ZUO AN LI

Abstract. Let D = {z ∈ C : |z| < 1} be the open unit disk, ϕ an analytic
self-mapping of D and ψ an analytic function in D. Let D be the differentiation

operator and Wϕ,ψ the weighted composition operator. The boundedness and

compactness of the product-type operator Wϕ,ψD from weighted Bergman-
Nevanlinna spaces to weighted Zygmund spaces on D are characterized.

1. Introduction

Let C be the complex plane, D = {z ∈ C : |z| < 1} the open unit disk in C,
H(D) the class of all holomorphic functions on D, ϕ a holomorphic self-mapping of
D and ψ ∈ H(D). Weighted composition operator Wϕ,ψ on H(D) is defined by

Wϕ,ψf(z) = ψ(z) · f(ϕ(z)), z ∈ D.

If ψ ≡ 1 the operator is reduced to, so called, composition operator and usually
denote by Cϕ. If ϕ(z) = z, it is reduced to, so called, multiplication operator
and usually denote by Mψ. Standard problem is to provide function theoretic
characterizations when ϕ and ψ induce a bounded or compact weighted composition
operator. Weighted composition operators between various spaces of holomorphic
functions on different domains have been studied by numerous authors, see, e.g.,
[1, 2, 8, 9, 11,13–17,19,21,23,28,34,35,45,49,50,53] and the references therein.

Let D be the differentiation operator on H(D), that is,

Df(z) = f ′(z), z ∈ D.

The product-type operator CϕD has been studied, for example, in [4, 18,20,25,26,
29, 41, 44, 46]. In [31] Sharma has studied the following operators from Bergman-
Nevanlinna spaces to Bloch-type spaces:

MψCϕDf(z) = ψ(z)f ′(ϕ(z)),

MψDCϕf(z) = ψ(z)ϕ′(z)f ′(ϕ(z)),

CϕMψDf(z) = ψ(ϕ(z))f ′(ϕ(z)),

and

CϕDMψf(z) = ψ′(ϕ(z))f(ϕ(z)) + ψ(ϕ(z))f ′(ϕ(z)),

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B37.
Key words and phrases. Weighted Bergman-Nevanlinna spaces, product-type operators,

weighted Zygmund spaces, little weighted Zygmund spaces.
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for z ∈ D and f ∈ H(D). These operators on weighted Bergman spaces, were
also studied in [51] and [52] by Stević, Sharma and Bhat. If we consider the
product-type operator Wϕ,ψD, then it is clear that

MψCϕD = Wϕ,ψD, MψDCϕ = Wϕ,ψ·ϕ′D,
CϕMψD = Wϕ,ψ◦ϕD and CϕDMψ = Wϕ,ψ′◦ϕ +Wϕ,ψ◦ϕD.

Quite recently, the present author has considered operator Wϕ,ψD from weighted
Bergman spaces to weighted Zygmund spaces in [10]. This paper is devoted to
characterizing the boundedness and compactness of operator Wϕ,ψD from weighted
Bergman-Nevanlinna spaces to weighted Zygmund spaces. It can be regarded as a
continuation of the investigation of operators from weighted Bergman-Nevanlinna
spaces to other spaces (see. e.g., [12] and [30]).

Next we introduce the needed spaces and some facts. Let dA(z) = 1
πdxdy

be the normalized Lebesgue measure on D. For α > −1, let dAα(z) = (α +
1)(1−|z|2)αdA(z) be the weighted Lebesgue measure on D. The weighted Bergman-
Nevanlinna space Aαlog on D consists of all f ∈ H(D) such that

‖f‖Aαlog =

∫
D

log(1 + |f(z)|)dAα(z) <∞.

It is a Fréchet space with the translation invariant metric

d(f, g) = ‖f − g‖Aαlog .

For some details of this space, see, e.g., [6], [7], [47] and [54].
For β > 0, the weighted-type Aβ consists of all f ∈ H(D) such that

sup
z∈D

(1− |z|2)β |f(z)| <∞.

This space is a non-separable Banach space with the norm defined by

‖f‖Aβ = sup
z∈D

(1− |z|2)β |f(z)|.

The closure of the set of polynomials in Aβ is denoted by Aβ,0, which is a separable
Banach space and consists exactly of those functions f in Aβ satisfying the next
condition

lim
|z|→1−

(1− |z|2)β |f(z)| = 0.

For β > 0, the weighted Bloch space is defined by

Bβ =
{
f ∈ H(D) : sup

z∈D
(1− |z|2)β |f ′(z)| <∞

}
.

Under the norm
‖f‖Bβ = |f(0)|+ sup

z∈D
(1− |z|2)β |f ′(z)|,

it is a Banach space. For more detail on the space, see, e.g. [55]. The closure of the
set of polynomials in Bβ is called the little weighted Bloch space and is denoted by
Bβ,0. For a good source for such spaces, we refer to [55].

For β > 0, the weighted Zygmund space Zβ consists of all f ∈ H(D) such that

sup
z∈D

(1− |z|2)β |f ′′(z)| <∞.

It is a Banach space with the norm

‖f‖Zβ = |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)β |f ′′(z)|.
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The little weighted Zygmund space Zβ,0 consists those functions f in Zβ satisfying

lim
|z|→1−

(1− |z|2)β |f ′′(z)| = 0,

and it is a closed subspace of the weighted Zygmund space.
For weighted-type spaces, weighted Bloch spaces and weighted Zygmund spaces

on the unit disk, the upper half plane, the unit ball, the unit polydisk and some
operators, see, e.g. [5,11,16,22–24,27,28,32,33,36–40,42,43,48] and the references
therein.

Since the weighted Bergman-Nevanlinna space is a Fréchet space and not a Ba-
nach space, it is necessary to introduce several definitions needed in this paper. Let
X and Y be topological vector spaces whose topologies are given by translation
invariant metrics dX and dY , respectively, and let L : X → Y be a linear operator.
It is said that L is metrically bounded if there exists a positive constant K such
that dY (Lf, 0) ≤ KdX(f, 0) for all f ∈ X. When X and Y are Banach spaces,
the metrical boundedness coincides with the usual definition of bounded operators
between Banach spaces. Recall that L : X → Y is metrically compact if it maps
bounded sets into relatively compact sets. When X and Y are Banach spaces,
the metrical compactness coincides with the usual definition of compact operators
between Banach spaces. When X = Aαlog and Y is a Banach space, we define

‖L‖Aαlog→Y = sup
‖f‖Aα

log
≤1
‖Lf‖Y ,

and we often write ‖L‖Aαlog→Y by ‖L‖.
Throughout this paper, an operator is bounded (respectively, compact), if it is

metrically bounded (respectively, metrically compact). Constants are denoted by
C, they are positive and may differ from one occurrence to the next. The notation
a � b means that there exists a positive constant C such that a/C ≤ b ≤ Ca.

2. The operator Wϕ,ψD : Aαlog → Zβ (Zβ,0)

Our first lemma characterizes the compactness in terms of sequential conver-
gence. Since the proof is standard, it is omitted (see, e.g., Proposition 3.11 in [3]).

Lemma 2.1. Let α > −1, β > 0 and Y ∈ {Zβ ,Zβ,0}. Then the bounded operator
Wϕ,ψD : Aαlog → Y is compact if and only if for every bounded sequence (fn)n∈N
in Aαlog such that fn → 0 uniformly on every compact subset of D as n → ∞, it
follows that

lim
n→∞

‖Wϕ,ψDfn‖Y = 0.

The next result can be found, for example, in [54].

Lemma 2.2. Let α > −1 and n ∈ N0 = N∪{0}. Then for all f ∈ Aαlog and z ∈ D,
there exists a positive constant C independent of f such that

(1− |z|2)n|f (n)(z)| ≤ exp
C‖f‖Aαlog

(1− |z|2)α+2
.

Now we consider the boundedness of operator Wϕ,ψD : Aαlog → Zβ .
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Theorem 2.3. Let α > −1, β > 0, ϕ be an analytic self-map of D and ψ ∈ H(D).
Then for all c > 0, the following statements are equivalent:

(i) The operator Wϕ,ψD : Aαlog → Zβ is bounded.

(ii) The operator Wϕ,ψD : Aαlog → Zβ is compact.

(iii) ψ ∈ Zβ,

M0 = sup
z∈D

(1− |z|2)β |ψ(z)||ϕ′(z)|2 <∞,

M1 = sup
z∈D

(1− |z|2)β |ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)| <∞,

lim
ϕ(z)→∂D

(1− |z|2)β

1− |ϕ(z)|2
|ψ′′(z)| exp

c

(1− |ϕ(z)|2)α+2
= 0,

lim
ϕ(z)→∂D

(1− |z|2)β

(1− |ϕ(z)|2)2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2
= 0,

and

lim
ϕ(z)→∂D

(1− |z|2)β

(1− |ϕ(z)|2)3
|ψ(z)||ϕ′(z)|2 exp

c

(1− |ϕ(z)|2)α+2
= 0.

Proof. Suppose that (i) holds. Take the functions f(z) = z and f(z) = z2,
respectively. Since the operator Wϕ,ψD : Aαlog → Zβ is bounded, we have

sup
z∈D

(1− |z|2)β |ψ′′(z)| ≤ ‖Wϕ,ψDz‖Zβ ≤ C‖Wϕ,ψD‖ (1)

and

sup
z∈D

(1− |z|2)β
∣∣ψ′′(z)ϕ(z) + 2ψ′(z)ϕ′(z) + ψ(z)ϕ′′(z)

∣∣ ≤ C‖Wϕ,ψD‖. (2)

Inequality (1) shows that ψ ∈ Zβ . Also by (1) and the boundedness of ϕ,

sup
z∈D

(1− |z|2)β |ψ′′(z)||ϕ(z)| <∞. (3)

Then by (2), (3) and the boundedness of ϕ,

M1 = sup
z∈D

(1− |z|2)β |ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)| <∞. (4)

Let the function f(z) = z3. Then

sup
z∈D

(1− |z|2)β
∣∣ψ′′(z)ϕ(z)2+2ψ(z)ϕ′(z)2 + 4ψ′(z)ϕ′(z)ϕ(z) + 2ψ(z)ϕ′′(z)ϕ(z)

∣∣
≤ C‖Wϕ,ψD‖. (5)

By (1), (4) and (5),

M0 = sup
z∈D

(1− |z|2)β |ψ(z)||ϕ′(z)|2 ≤ C‖Wϕ,ψD‖ <∞. (6)

For w ∈ D, we choose the function

f1(z) = c1
(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
+ c2

(1− |ϕ(w)|2)α+4

(1− ϕ(w)z)2(α+2)+2

+ c3
(1− |ϕ(w)|2)α+5

(1− ϕ(w)z)2(α+2)+3
− (1− |ϕ(w)|2)α+6

(1− ϕ(w)z)2(α+2)+4
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where

c2 = −48α3 + 460α2 + 1398α+ 1340

24α3 + 214α2 + 655α+ 682
,

c3 =
16α2 + 104α+ 164

6α2 + 37α+ 62
,

and

c1 = 1− c2 − c3.
We also choose the function

g1(z) =
2α+ 7

4α+ 8

(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
− 6α+ 21

4α+ 12

(1− |ϕ(w)|2)α+4

(1− ϕ(w)z)2(α+2)+2

+
(1− |ϕ(w)|2)α+5

(1− ϕ(w)z)2(α+2)+3
.

For the functions f1 and g1, we have

f1(ϕ(w)) = f ′′1 (ϕ(w)) = f ′′′1 (ϕ(w)) = 0 (7)

and

g′1(ϕ(w)) = g′′1 (ϕ(w)) = 0. (8)

Consequently, (7) and (8) make the function f(z) = f1(z) exp cg1(z) to satisfy

f ′′(ϕ(w)) = f ′′′(ϕ(w)) = 0

and

f ′(ϕ(w)) = C
ϕ(w)

(1− |ϕ(w)|2)α+3
exp

c

(1− |ϕ(w)|2)α+2
,

where

C = 2c2 + 3c3 − 4.

By the boundedness of the operator Wϕ,ψD : Aαlog → Zβ , we find

|ϕ(w)|(1− |w|2)β

(1− |ϕ(w)|2)α+3

∣∣ψ′′(w)
∣∣ exp

c

(1− |ϕ(w)|2)α+2
≤ C.

Thus

lim
ϕ(w)→∂D

(1− |w|2)β

1− |ϕ(w)|2
∣∣ψ′′(w)

∣∣ exp
c

(1− |ϕ(w)|2)α+2
= 0.

For w ∈ D, we choose the functions

f2(z) =
3α+ 8

3α+ 10

(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
− 6α+ 22

3α+ 10

(1− |ϕ(w)|2)α+4

(1− ϕ(w)z)2(α+2)+2

+
6α+ 24

3α+ 10

(1− |ϕ(w)|2)α+5

(1− ϕ(w)z)2(α+2)+3
− (1− |ϕ(w)|2)α+6

(1− ϕ(w)z)2(α+2)+4
,

and

g2(z) =
α+ 3

α+ 2

(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
− (1− |ϕ(w)|2)α+4

(1− ϕ(w)z)2(α+2)+2
.

Then

f2(ϕ(w)) = f ′2(ϕ(w)) = f ′′′2 (ϕ(w)) = 0 (9)
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and g′2(ϕ(w)) = 0. From this and (9), for the function g(z) = f2(z) exp cg2(z) we
have

g′(ϕ(w)) = g′′′(ϕ(w)) = 0

and

g′′(ϕ(w)) = C
ϕ(w)

2

(1− |ϕ(w)|2)α+4
exp

c

(1− |ϕ(w)|2)α+2
,

where

C = −24α+ 120α+ 141

3α+ 10
.

By the boundedness of Wϕ,ψD : Aαlog → Zβ ,

‖Wϕ,ψDg‖Zβ ≤ C‖Wϕ,ψD‖,
and from which we obtain

|ϕ(w)|2(1− |w|2)β

(1− |ϕ(w)|2)α+4

∣∣ψ(w)ϕ′′(w) + 2ψ′(w)ϕ′(w)
∣∣ exp

c

(1− |ϕ(w)|2)α+2
≤ C.

This shows that

lim
ϕ(w)→∂D

(1− |w|2)β

(1− |ϕ(w)|2)2
∣∣ψ(w)ϕ′′(w) + 2ψ′(w)ϕ′(w)

∣∣ exp
c

(1− |ϕ(w)|2)α+2
= 0.

For w ∈ D, we choose the functions

f3(z) =
1

3

(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
− 2

(1− |ϕ(w)|2)α+4

(1− ϕ(w)z)2(α+2)+2

+
8

3

(1− |ϕ(w)|2)α+5

(1− ϕ(w)z)2(α+2)+3
− (1− |ϕ(w)|2)α+6

(1− ϕ(w)z)2(α+2)+4

and

g3(z) =
(1− |ϕ(w)|2)α+2

(1− ϕ(w)z)2(α+2)
.

From a calculation, we obtain

f3(ϕ(w)) = f ′3(ϕ(w)) = f ′′3 (ϕ(w)) = 0. (10)

Define the function h(z) = f3(z) exp cg3(z). Then by (10),

h′(ϕ(w)) = h′′(ϕ(w)) = 0,

and by a direct calculation,

h′′′(ϕ(w)) = C
ϕ(w)

3

(1− |ϕ(w)|2)α+5
exp

c

(1− |ϕ(w)|2)α+2
,

where C = −30(α+ 2)2 − 8. Since Wϕ,ψD : Aαlog → Zβ is bounded, we have

‖Wϕ,ψDh‖Zβ ≤ C‖Wϕ,ψD‖,
and so

(1− |z|2)β |(Wϕ,ψDh)′′(z)| ≤ C‖Wϕ,ψD‖, (11)

for all z ∈ D. Letting z = w in (11) yields to

(1− |w|2)β

(1− |ϕ(w)|2)α+5
|ψ(w)||ϕ′(w)|2|ϕ(w)|3 exp

c

(1− |ϕ(w)|2)α+2
≤ C‖Wϕ,ψD‖.
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Thus

(1− |w|2)β

(1− |ϕ(w)|2)3
|ψ(w)||ϕ′(w)|2 exp

c

(1− |ϕ(w)|2)α+2
≤ C(1− |ϕ(w)|2)α+2

|ϕ(w)|3
. (12)

Taking limit as ϕ(w)→ ∂D in (12) gives

lim
ϕ(w)→∂D

(1− |w|2)β

(1− |ϕ(w)|2)3
|ψ(w)||ϕ′(w)|2 exp

c

(1− |ϕ(w)|2)α+2
= 0.

The proof of the implication is finished.
(iii) ⇒ (ii). Let (fn)n∈N be a sequence in Aαlog with supn∈N ‖fn‖Aαlog ≤ M and

fn → 0 uniformly on every compact subset of D as n → ∞. We have that for the
constant C in Lemma 2.2, for any ε > 0 there exits a constant δ ∈ (0, 1) such that
whenever δ < |ϕ(z)| < 1, it follows that

(1− |z|2)β

1− |ϕ(z)|2
|ψ′′(z)| exp

C

(1− |ϕ(z)|2)α+2
< ε,

(1− |z|2)β

(1− |ϕ(z)|2)2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
C

(1− |ϕ(z)|2)α+2
< ε,

and

(1− |z|2)β

(1− |ϕ(z)|2)3
|ψ(z)||ϕ′(z)|2 exp

C

(1− |ϕ(z)|2)α+2
< ε.

Then by Lemma 2.2, for a fixed δ ∈ (0, 1) we have

‖Wϕ,ψDfn‖Zβ =
∣∣(ψ · f ′n ◦ ϕ)(0)

∣∣+
∣∣(ψ · f ′n ◦ ϕ)′(0)

∣∣+ sup
z∈D

(1− |z|2)β
∣∣(ψ(z)f ′n(ϕ(z))′′

∣∣
=
∣∣ψ(0)

∣∣∣∣f ′n(ϕ(0))
∣∣+
∣∣∣ψ′(0)f ′n(ϕ(0)) + ψ(0)f ′′n (ϕ(0))ϕ(0)

∣∣∣
+ sup
z∈D

(1− |z|2)β
∣∣∣ψ′′(z)f ′n(ϕ(z)) +

(
ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

)
f ′′n (ϕ(z)) + ψ(z)ϕ′(z)2f ′′′n (ϕ(z))

∣∣∣
≤
(∣∣ψ(0)

∣∣+
∣∣ψ′(0)

∣∣)∣∣f ′n(ϕ(0))
∣∣+
∣∣ϕ(0)

∣∣∣∣ψ(0)
∣∣∣∣f ′′n (ϕ(0))

∣∣+ sup
z∈D

(1− |z|2)β
∣∣ψ′′(z)∣∣∣∣f ′n(ϕ(z))

∣∣
+ sup
z∈D

(1− |z|2)β
∣∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣∣f ′′n (ϕ(z))
∣∣+ sup

z∈D
(1− |z|2)β

∣∣ψ(z)
∣∣∣∣ϕ′(z)∣∣2∣∣f ′′′n (ϕ(z))

∣∣
≤
(∣∣ψ(0)

∣∣+
∣∣ψ′(0)

∣∣)∣∣f ′n(ϕ(0))
∣∣+
∣∣ϕ(0)

∣∣∣∣ψ(0)
∣∣∣∣f ′′n (ϕ(0))

∣∣
+ sup
|ϕ(z)|≤δ

(1− |z|2)β
∣∣ψ′′(z)∣∣∣∣f ′n(ϕ(z))

∣∣+ sup
δ<|ϕ(z)|<1

(1− |z|2)β
∣∣ψ′′(z)∣∣∣∣f ′n(ϕ(z))

∣∣
+ sup
|ϕ(z)|≤δ

(1− |z|2)β
∣∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣∣f ′′n (ϕ(z))
∣∣

+ sup
δ<|ϕ(z)|<1

(1− |z|2)β
∣∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣∣f ′′n (ϕ(z))
∣∣

+ sup
|ϕ(z)|≤δ

(1− |z|2)β
∣∣ψ(z)

∣∣∣∣ϕ′(z)∣∣2∣∣f ′′′n (ϕ(z))
∣∣

+ sup
δ<|ϕ(z)|<1

(1− |z|2)β
∣∣ψ(z)

∣∣∣∣ϕ′(z)∣∣2∣∣f ′′′n (ϕ(z))
∣∣

≤
(∣∣ψ(0)

∣∣+
∣∣ψ′(0)

∣∣)∣∣f ′n(ϕ(0))
∣∣+
∣∣ϕ(0)

∣∣∣∣ψ(0)
∣∣∣∣f ′′n (ϕ(0))

∣∣+ ‖ψ‖Zβ sup
|ϕ(z)|≤δ

∣∣f ′n(ϕ(z))
∣∣
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+ sup
δ<|ϕ(z)|<1

(1− |z|2)β

1− |ϕ(z)|2
|ψ′′(z)| exp

C

(1− |ϕ(z)|2)α+2
+M1 sup

|ϕ(z)|≤δ

∣∣f ′′n (ϕ(z))
∣∣

+ sup
δ<|ϕ(z)|<1

(1− |z|2)β

(1− |ϕ(z)|2)2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
C

(1− |ϕ(z)|2)α+2

+M0 sup
|ϕ(z)|≤δ

∣∣f ′′′n (ϕ(z))
∣∣+ sup

δ<|ϕ(z)|<1

(1− |z|2)β

(1− |ϕ(z)|2)3
|ψ(z)||ϕ′(z)|2 exp

C

(1− |ϕ(z)|2)α+2
.

By Cauchy’s estimation, if (fn)n∈N converges to zero on each compact subset of D,
then (f ′n)n∈N, (f ′′n )n∈N and (f ′′′n )n∈N also do as n→∞. From this, and since both
{z ∈ D : |z| ≤ δ} and {0} are compact subset of D, there exists a natural number
N such that whenever n > N , it follows that(∣∣ψ(0)

∣∣+
∣∣ψ′(0)

∣∣)∣∣f ′n(ϕ(0))
∣∣+
∣∣ϕ(0)

∣∣∣∣ψ(0)
∣∣∣∣f ′′n (ϕ(0))

∣∣ < ε

and

sup
|ϕ(z)|≤δ

∣∣f (i)n (ϕ(z))
∣∣ < ε,

where i = 1, 2, 3. Consequently, for all n > N it follows that

‖Wϕ,ψDfn‖Zβ ≤ (4 + ‖ψ‖Zβ +M0 +M1)ε,

which shows that the operator Wϕ,ψD : Aαlog → Zβ is compact.

(ii)⇒ (i). This implication is obvious. The proof is finished.

Now, we consider the boundedness of operator Wϕ,ψD : Aαlog → Zβ,0. We first
have the following result.

Lemma 2.4. Let α > −1, β > 0, ϕ be an analytic self-map of D and ψ ∈ H(D).
Then for all c > 0, the following statements are equivalent:

(i)

lim
z→∂D

(1− |z|2)β

1− |ϕ(z)|2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2
= 0.

(ii)

lim
ϕ(z)→∂D

(1− |z|2)β

1− |ϕ(z)|2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2
= 0,

and ψϕ′′ + 2ψ′ϕ′ ∈ Aβ,0.

Proof. Suppose that (i) holds. Since

1

1− |ϕ(z)|2
exp

c

(1− |ϕ(z)|2)α+2
≥ 1

for all z ∈ D, we have

(1− |z|2)β |ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)|

≤ (1− |z|2)β

1− |ϕ(z)|2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2

→ 0,

as z → ∂D. Hence ψϕ′′ + 2ψ′ϕ′ ∈ Aβ,0. Since ϕ(z) → ∂D implies z → ∂D, it
follows that the first assertion in (ii) holds.
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Now suppose that (ii) holds, but (i) is not true. Then there exist constants
c0 > 0, ε0 > 0 and a sequence {zn} tending to ∂D as n→∞ such that

(1− |zn|2)β

1− |ϕ(zn)|2
∣∣ψ(zn)ϕ′′(zn) + 2ψ′(zn)ϕ′(zn)

∣∣ exp
c

(1− |ϕ(zn)|2)α+2
≥ ε0. (13)

Since ψϕ′′ + 2ψ′ϕ′ ∈ Aβ,0, it follows from (13) that the sequence (zn)n∈N has a
subsequence (znk)k∈N with ϕ(znk)→ ∂D. Therefore, applying (znk)k∈N to the first
assertion in (ii), we arrive a contradiction to (13), finishing the proof.

By Lemma 2.4, the following result follows similar to the proof of Theorem 2.3.
Hence, the proof is omitted.

Theorem 2.5. Let α > −1, β > 0, ϕ be an analytic self-mapping of D and
ψ ∈ H(D). Then for all c > 0, the following statements are equivalent:

(i) The operator Wϕ,ψD : Aαlog → Zβ,0 is bounded.

(ii) The operator Wϕ,ψD : Aαlog → Zβ,0 is compact.

(iii)

ψ′′, ψϕ′2, ψϕ′′ + 2ψ′ϕ′ ∈ Aβ,0,

lim
ϕ(z)→∂D

(1− |z|2)β

1− |ϕ(z)|2
|ψ′′(z)| exp

c

(1− |ϕ(z)|2)α+2
= 0,

lim
ϕ(z)→∂D

(1− |z|2)β

(1− |ϕ(z)|2)3
|ψ(z)||ϕ′(z)|2 exp

c

(1− |ϕ(z)|2)α+2
= 0,

and

lim
ϕ(z)→∂D

(1− |z|2)β

(1− |ϕ(z)|2)2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2
= 0.

(iv)

lim
z→∂D

(1− |z|2)β

1− |ϕ(z)|2
|ψ′′(z)| exp

c

(1− |ϕ(z)|2)α+2
= 0,

lim
z→∂D

(1− |z|2)β

(1− |ϕ(z)|2)3
|ψ(z)||ϕ′(z)|2 exp

c

(1− |ϕ(z)|2)α+2
= 0,

and

lim
z→∂D

(1− |z|2)β

(1− |ϕ(z)|2)2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ exp
c

(1− |ϕ(z)|2)α+2
= 0.
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[35] S. Stević, Norm of weighted composition operators from Bloch space to H∞ on the unit ball,

Ars Combin., 88 (2008), 125-127.
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Hesitant fuzzy Maclaurin symmetric mean operators

and their application in multiple attribute decision

making
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Abstract: The Maclaurin symmetric mean (MSM), originally introduced by Maclaurin, can capture the
interrelationship among the multi-input arguments. It plays an important role in many multiple attribute
decision making problems. In this paper, we first extend MSM operator to deal with hesitant fuzzy infor-
mation and propose some new hesitant fuzzy aggregation operators, such as the hesitant fuzzy Maclaurin
symmetric mean (HFMSM) and the weighted hesitant fuzzy Maclaurin symmetric mean (WHFMSM).
Then, we further investigate some desirable properties and special cases of those operators in detail. Finally,
we develop an approach to hesitant fuzzy multiple attribute decision making problems based on the pro-
posed operators. A practical example is given to illustrate the practicality and effectiveness of the proposed
method.

Keywords: fuzzy set; hesitant fuzzy set; aggregation operator; Maclaurin symmetric mean; multiple at-
tribute decision making

1 Introduction

Multiple attribute decision making is one of the most significant human activities in many fields includ-
ing social science, economics, medical science, engineering, environmental science and so on. The purpose
of a decision making is to find a desirable solution from a finite alternatives. In order to obtain a desirable
solution, the decision information provided by decision makers always need to be aggregated into an overall
one by using a proper aggregation technique. Therefore, the research on information aggregation method is
an important topic in multiple attribute decision making. In the past few decades, a variety of aggregation
operators have been developed and applied to multiple attribute decision making with different decision in-
formation, such as accurate numbers, fuzzy numbers, intuitionistic fuzzy numbers, trapezoidal fuzzy numbers
and so on [1–4].

Recently, Torra introduced the hesitant fuzzy set (HFS) [5], which allows membership degree to have a
set of possible values. Therefore, it is an efficient tool in the situation where the evaluation of an alternative
under each attribute is represented by several possible values. Since its appearance, HFS has attracted more
and more attention from researchers [6–8]. Hesitant fuzzy information aggregation has become a hot topic
in the hesitant fuzzy set theory and lots of hesitant fuzzy aggregation operators have been developed [9–17].
For example, Xia and Xu [11] first presented some hesitant fuzzy operational laws, based on which they
proposed a series of aggregation operators, such as hesitant fuzzy weighted averaging (HFWA) operator,
hesitant fuzzy weighted geometric (HFWG) operator and so on. Xia et al. [17] developed some confidence
induced aggregation operators for hesitant fuzzy information. Xia et al. [12] gave several series of hesitant
fuzzy aggregation operators with the help of quasi-arithmetic means. Wei [10] explored some hesitant fuzzy
prioritized aggregation operators and applied them to hesitant fuzzy decision making problems in which the
attributes are in different priority levels. Zhang [14] extended the power aggregation operator to the hesitant
fuzzy power aggregation operators, whose weighting vectors depend upon the input arguments and allow
values being aggregated to support and reinforce each other. Zhu et al. [16] extended Bonferroni mean to
deal with hesitant fuzzy information and get the hesitant fuzzy Bonferroni mean operator. By combining

∗Corresponding author. Tel: +86 13789003995. E-mail address: zxq0923@163.com, liwu0817@163.com.
Mailing address: School of Computer, Hunan Institute of Science and Technology, Yueyang, Hunan, 414006, P.R.China
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the Bonferroni mean and the geometric mean, Zhu et al. [15] further investigated the geometric Bonferroni
mean under hesitant fuzzy environment.

The Maclaurin symmetric mean (MSM) was originally proposed by Maclaurin [18] and many important
results on the MSM have been obtained [19–22]. It is worth noting that the MSM has desirable properties
capturing the interrelationships among multi-input arguments. The BM also can capture the interrelation-
ships among arguments, but it only reflect the interrelationships between two arguments whereas the MSM
can reflect the interrelationships among multi-input arguments. Furthermore, for the same collection of ar-
guments, the MSM is monotonically decreasing with respect to the parameter, which make the decision
makers can select easily the parameter value according to their risk preferences in decision making progress.
Therefore, the MSM is more flexible and robust such that it is more adequate to solve multiple attribute
decision making problem where the attributes are independent. So far, the MSM has been used successful
to deal with not only the crisp values but also the intuitionistic fuzzy values [23]. But we have not seen
any work based on the MSM for aggregating hesitant fuzzy information. Thus, it is meaningful to use the
MSM to develop the aggregation techniques under hesitant fuzzy environment. In this paper, motivated by
Qin [23], we develop some new hesitant fuzzy aggregation operators based on the MSM , and apply them to
multiple attribute decision making under hesitant fuzzy environment.

The rest of this paper is organized as follows. In Section 2, we review the notions of HFS and the
MSM . In Section 3, we introduce the hesitant fuzzy Maclaurin symmetric mean (HFMSM) operator and
discuss some desirable properties and special cases of the proposed operator. In Section 4, we further develop
the weighted forms of the previous operator and apply them to hesitant fuzzy decision making. Finally,
conclusions are stated in Section 5.

2 Preliminaries

In this section, we recall briefly the necessary notations on HFS and MSM . We also present the dual
Maclaurin symmetric mean based on the MSM .

2.1 Hesitant fuzzy set

Torra and Narukawa [5] extended the fuzzy set to the hesitant fuzzy set (HFS), shown as follows:

Definition 2.1. Let X be a reference set, an HFS on X is in terms of a function that when applied to X
returns a subset of [0, 1].

To be easily understood, Xia and Xu [11] expressed the HFS by mathematical symbol

H =

{
hH(x)

x
|x ∈ X

}
,

where hH(x) is a set of some values in [0, 1], denoting the possible membership degrees of the element x ∈ X
to the set H. For convenience, Xu and Xia [7] called hH(x) an hesitant fuzzy element (HFE).

Let h1 and h2 be HFEs, the union, intersection and complement of them are definded by Torra and
Narukawa [5] as:

(1) h1 ∪ h2 = ∪γ1∈h1,γ2∈h2max{γ1, γ2};
(2) h1 ∩ h2 = ∪γ1∈h1,γ2∈h2

min{γ1, γ2};
(3) hc1 = ∪γ1∈h1{1− γ1}.
Let α > 0, h1 and h2 be two HFEs, Xu and Xia [11] defined some operations on the HFEs h1 and h2

as follows:
(5) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2 {γ1 + γ2 − γ1γ2}
(6) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2 {γ1γ2}
(7) αh = ∪γ∈h {γα}
(8) hα = ∪γ∈h {1− (1− γ)α}
In [11], Xia and Xu defined the score function of HFEs and gave the comparison laws.

Definition 2.2. Let h be an HFE, s(h) = 1
n(h)

∑
γ∈h γ is called the score function of h, where n(h) is the

number of values of h. For two HFEs h1 and h2, if s(h1) > s(h2), then h1 > h2; if s(h1) = s(h2), then
h1 = h2.

Xia and Xu [11,12] further gave some hesitant fuzzy aggregation operators as follows:
Let hj(j = 1, 2, · · · , n) be a collection of HFEs, ω = (ω1, ω2, · · · , ωn)T be the weight vector of hj(j =

1, 2, · · · , n) with ωj ∈ [0, 1] and
n∑
j=1

ωj = 1, then
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(1) The hesitant fuzzy weighted averaging (HFWA) operator

HFWA(h1, h2, · · · , hn) =
n⊕
j=1

(ωjhj) =
∪

γj∈hj ,
i=1,··· ,n

1−
n∏
j=1

(1− γj)
ωj


Especially, if ω = (1/n, 1/n, · · · , 1/n)T , then the HFWA operator reduces to the hesitant fuzzy averaging

(HFA) operator

HFA(h1, h2, · · · , hn) =
∪

γj∈hj ,
i=1,··· ,n

1−
n∏
j=1

(1− γj)
1/n

 (1)

(2) The hesitant fuzzy weighted geometric (HFWG) operator

HFWG(h1, h2, · · · , hn) =
n⊗
j=1

hj
ωj =

∪
γj∈hj ,
i=1,··· ,n


n∏
j=1

γj
ωj


Especially, if ω = (1/n, 1/n, · · · , 1/n)T , then the HFWG operator becomes to the hesitant fuzzy geo-

metric (HFG) operator

HFG(h1, h2, · · · , hn) =
∪

γj∈hj ,
i=1,··· ,n


n∏
j=1

γj
1/n

 (2)

2.2 Maclaurin symmetric mean

The MSM introduced by Maclaurin [18] is a useful technique characterized by the ability to capture
the interrelationship among the multi-input arguments. The definition of MSM is given as follows.

Definition 2.3. [18] Let ai(i = 1, 2, · · · , n) be a collection of nonnegative real numbers and r = 1, 2, · · · , n.
If

MSM (r)(a1, a2, · · · , an) =


∑

1≤i1<···<ir≤in

r∏
j=1

aij

Crn


1
r

then MSM (r) is called the Maclaurin symmetric mean, where (i1, i2, · · · , ir) traversal all the r-tuple combi-
nation of (1, 2, · · · , n), Crn is the binomial coefficient.

It is clear that the MSM (r) have the following properties:

(1)MSM (r)(0, 0, · · · , 0) = 0;

(2)MSM (r)(a, a, · · · , a) = a;

(3)MSM (r)(a1, a2, · · · , an) ≤MSM (r)(b1, b2, · · · , bn), if ai ≤ bi for all i;

(4)min
i
{ai} ≤MSM (r)(a1, a2, · · · , an) ≤ max

i
{ai}.

3 Hesitant fuzzy MSM operator

In this section, we shall extend MSM to aggregate hesitant fuzzy information and obtain a hesitant fuzzy
Maclaurin symmetric mean operator. We also investigate a variety of desirable properties and some special
cases.

Definition 3.1. Let hi(i = 1, 2, · · · , n) be a collection of HFEs and r = 1, 2, · · · , n. If

HFMSM (r)(h1, h2, · · · , hn) =


⊕

1≤i1<···
<ir≤in

r⊗
j=1

hij

Crn



1
r

(3)
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then HFMSM (r) is called the hesitant fuzzy Maclaurin symmetric mean (HFMSM), where (i1, i2, · · · , ir)
traversal all the r-tuple combination of (1, 2, · · · , n), Crn is the binomial coefficient.

Based on the operations of HFEs described in Section 2, we can derive the following Theorem 3.2.

Theorem 3.2. Let hi(i = 1, 2, · · · , n) be a collection of HFEs and r = 1, 2, · · · , n. Then the aggregated
value by using the HFMSM (r) is also an HFE, and

HFMSM (r)(h1, h2, · · · , hn) =
∪

γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γij




1
Cr
n


1
r

,


(4)

Proof. By the operational laws (5)-(8) described in Section 2, we have

r⊗
j=1

hij =
∪

γi∈hi,
i=1,··· ,n


r∏
j=1

γij


and

⊕
1≤i1<···
<ir≤n

r⊗
j=1

hij =
∪

γi∈hi,
i=1,··· ,n

1−
∏

1≤i1<···
<ir≤n

1−
r∏
j=1

γij




then we obtain

1

Crn

 ⊕
1≤i1<···
<ir≤n

r⊗
j=1

hij

 =
∪

γi∈hi,
i=1,··· ,n

1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γij




1
Cr
n


Thus

HFMSM (r)(h1, h2, · · · , hn) =
∪

γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γij




1
Cr
n


1
r

 ,

which completes the proof of Theorem 3.2.

In the following, we shall study some desirable properties of HFMSM .

Theorem 3.3. Let hi(i = 1, 2, · · · , n) be a collection of HFEs. If hi = h = {γ} for all i ∈ {1, 2, · · · , n},
then

HFMSM (r)(h1, h2, · · · , hn) = h
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Proof. Let hi = {γi}, then γi = γ(i = 1, 2, · · · , n). By Theorem 3.2, we have

HFMSM (r)(h1, h2, · · · , hn)

=
∪

γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γi




1
Cr
n


1
r


=

∪
γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

(1− γri )


1

Cr
n


1
r


=

∪
γi∈hi,
i=1,··· ,n

{(
1−

(
(1− γri )

Cr
n

) 1
Cr
n

) 1
r

}

=
{
(1− (1− γr))

1
r

}
= {γ} = h.

Corollary 3.4. Let hi(i = 1, 2, · · · , n) be a collection of HFEs.
(1) If hi = h = {0} for all i, then HFMSM (r)(h1, h2, · · · , hn) = {0};
(2) If hi = h = {1} for all i, then HFMSM (r)(h1, h2, · · · , hn) = {1}.

Theorem 3.5. Let hi(i = 1, 2, · · · , n) be a collection of HFEs, and h
′

i(i = 1, 2, · · · , n) be any permutation
of hi(i = 1, 2, · · · , n), then

HFMSM (r)(h1, h2, · · · , hn) = HFMSM (r)(h
′

1, h
′

2, · · · , h
′

n)

Proof. Since h
′

i(i = 1, 2, · · · , n) is any permutation of hi(i = 1, 2, · · · , n), by Definition 3.1, we have

HFMSM (r)(h1, h2, · · · , hn) =


⊕

1≤i1<···
<ir≤in

r⊗
j=1

hij

Crn



1
r

=


⊕

1≤i1<···
<ir≤in

r⊗
j=1

h
′

ij

Crn



1
r

= HFMSM (r)(h
′

1, h
′

2, · · · , h
′

n).

Theorem 3.6. Let hα = {hα1 , · · · , hαn} and hβ = {hβ1 , · · · , hβn} be two collections of HFEs. If for any
γαi ∈ hαi and γβi ∈ hβi , we have γαi ≤ γβi for all i(i = 1, · · · , n), then

HFMSM (r)(hα1 , hα2 , · · · , hαn) ≤ HFMSM (r)(hβ1 , hβ2 , · · · , hβn)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

463 Wu Li et al 459-469



6 W. Li, X. Q. Zhou

Proof. Since γαi ≤ γβi for all i, i = 1, · · · , n, we have

1−
r∏
j=1

γαi
≥ 1−

r∏
j=1

γβi

=⇒

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γαi




1
Cr
n

≥

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γβi




1
Cr
n

=⇒

1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γαi




1
Cr
n


1
r

≤

1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γβi




1
Cr
n


1
r

According to Definition 2.2 and Eq. (4), we can complete the proof of Theorem 3.6.

Theorem 3.7. Let hi(i = 1, 2, · · · , n) be a collection of HFEs, h−min = min
i
{h−i |h

−
i = min{γi ∈ hi}}, and

h+max = max
i

{h+i |h
+
i = max{γi ∈ hi}}. Then

h−min ≤ HFMSM (r)(h1, h2, · · · , hn) ≤ h+max

Proof. Since h−min ≤ h−i ≤ γi ≤ h+i ≤ h+max for any γi ∈ hi(i = 1, 2, · · · , n), then we have

(h−min)
r ≤

∪
γi∈hi,
i=1,··· ,n


r∏
j=1

γij

 ≤ (h+max)
r

=⇒1− (h−min)
r ≥

∪
γi∈hi,
i=1,··· ,n


 ∏

1≤i1<···
<ir≤n

1−
r∏
j=1

γij




1
Cr
n

 ≥ 1− (h+max)
r

=⇒h−min ≤
∪

γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γij




1
Cr
n


1
r

 ≤ h+max.

Thus the proof is completed.

Next, we present some special cases of the HFMSM (r) operator by changing the parameter r.

Theorem 3.8. If r = 1, then HFMSM (r) operator reduces to the hesitant fuzzy averaging (HFA) operator
(i.e., Eq. (1)).

Proof. By the definition of HFMSM (r), we have

HFMSM (1)(h1, h2, · · · , hn)

=
∪

γi∈hi,
i=1,··· ,n


1−

 ∏
1≤i1≤n

1−
1∏
j=1

γij

 1
C1
n


1
1


=

∪
γi∈hi,
i=1,··· ,n

1−

 ∏
1≤i1≤n

(1− γi1)

 1
n

 (let i1 = i)

=
∪

γi∈hi,
i=1,··· ,n

{
1−

n∏
i=1

(1− γi)
1
n

}

= HFA(h1, h2, · · · , hn)
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Theorem 3.9. If r = 2, then HFMSM (r) operator reduces to the hesitant fuzzy interrelated square Bon-
ferroni mean (HFBM1,1) which was introduced by Zhu et al. in [16].

Proof. Let ρi,j,i̸=j = hi ⊗ hj =
∪

γi∈hi,γj∈hj ,i ̸=j
{1 − γiγj} =

∪
δi,j∈ρi,j

{1− δi,j}, then by the definition of

HFMSM (r), we have

HFMSM (2)(h1, h2, · · · , hn)

=
∪

γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<
i2≤n

1−
2∏
j=1

γij




1
C2
n


1
2


=

∪
γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<
i2≤n

(1− γi1γi2)


2

n(n−1)


1
2

 (let i1 = i, i2 = j)

=
∪

γi∈hi,γj∈hj ,
i,j=1,··· ,n,i<j


1−

n∏
i,j=1
i<j

(1− γiγj)
2

n(n−1)


1
2


=

∪
δi,j∈ρi,j ,

i,j=1,··· ,n,i ̸=j


1−

n∏
i,j=1
i̸=j

(1− δi,j)
1

n(n−1)


1
2


= HFB1,1(h1, h2, · · · , hn)

Theorem 3.10. If r = n, then HFMSM operator reduces to the hesitant fuzzy geometric (IFG) operator
(i.e., Eq. (2)).

Proof. By the definition of HFMSM , we have

HFMSM (1)(h1, h2, · · · , hn)

=
∪

γi∈hi,
i=1,··· ,n


1−

 ∏
1=i1<···
<in=n

1−
n∏
j=1

γij




1
Cn
n


1
n


=

∪
γi∈hi,
i=1,··· ,n


1−

1−
n∏
j=1

γij

 1
1


1
n

 (let ij = j)

=
∪

γj∈hj ,
j=1,··· ,n


 n∏
j=1

γj

 1
n


= HFG(h1, h2, · · · , hn)

Theorem 3.8-3.10 show that some exiting hesitant fuzzy aggregation operators are the special cases of
the HFMSM oprator.
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4 The weighted hesitant fuzzy operator and its application in de-
cision making

In many practical applications, the weights of attributes should be taken into account. Especially for
multiple attribute decision making problems, the considered attributes usually are of different importance.
To overcome the limitations of the HFMSM operator defined in the previous section, in this section, we
shall introduce the weighted hesitant fuzzy Maclaurin symmetric mean (WHFMSM) operator and apply
it to solve multiple attribute decision making problems.

4.1 WHFMSM operator

we first introduce the definition of WHFMSM operator as follows.

Definition 4.1. Let hi(i = 1, 2, · · · , n) be a collection of HFEs, r = 1, 2, · · · , n, w = (w1, w2, · · · , wn)T is

the weight vector of hi(i = 1, 2, · · · , n) with wi ∈ [0, 1] and
n∑
i=1

= 1. If

WHFMSM (r)
w (h1, h2, · · · , hn) =


⊕

1≤i1<···
<ir≤in

r⊗
j=1

wijhij

Crn



1
r

(5)

then WHFMSM
(r)
w is called the weighted hesitant fuzzy Maclaurin symmetric mean, where (i1, i2, · · · , ir)

traversal all the r-tuple combination of (1, 2, · · · , n), Crn is the binomial coefficient.

According to the operations of HFEs described in Section 2, we can derive the following Theorem 4.2.

Theorem 4.2. Let hi(i = 1, 2, · · · , n) be a collection of HFEs and r = 1, 2, · · · , n. Then the aggregated
value, by using the WHFMSM (r), is also an HFE, and

WHFMSM (r)
w (h1, h2, · · · , hn) =

∪
γi∈hi,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

(
1− (1− γij )

wij
)


1
Cr
n


1
r


Proof. The proof is similar to one of Theorem 3.2.

4.2 An application to multiple attribute decision making

Based on WHFMSM operator, below we develop an approach to multiple attribute decision making
under hesitant fuzzy environment.

For a multiple attribute decision making problem, let Y = {Y1, Y2, · · · , Ym} be a discrete set of alter-
natives, A = {A1, A2, · · · , An} be a collection of attributes, whose weight vector is w = (w1, w2, · · · , wn)T ,
satisfying wi ∈ [0, 1] and

∑n
i=1 = 1, where wi represents the importance degree of the attribute Ai.

The decision makers provide several values for the alternative Yi(i = 1, 2, · · · ,m) under the attribute
Aj(j = 1, 2, · · · , n) with anonymity, these values can be considered as an HFE hij = ∪γij∈hij{γij}. All
elements hij(i = 1, 2, · · · ,m, j = 1, 2, · · · , n) construct a hesitant fuzzy decision matrix the decision matrix
H = (hij)m×n.

Then, we use the WHFMSM operator to develop an approach to multiple attribute decision making
problems with hesitant fuzzy information, which can be described as follows:
Step1. According to the decision information provided by the decision makers, construct the hesitant fuzzy
decision matrix H = (hij)m×n. If there are some cost attributes in decision making problems, then we need
to transform the decision matrix H = (hij)m×n into a normalization matrix P = (pij)m×n, where

pij =

{
pij , for benefit attribute Aij ,
pcij , for for cost attribute Aij .

Here pij = ∪γij∈pij{γij}, pcij is the complement of pij and p
c
ij = ∪γij∈pij{1− γij}.

Step2. Utilize the WHFMSM operator

pi =WHFMSM (r)
w (pi1, pi2, · · · , pin)
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to aggregate all the performance values pij (j = 1, 2, · · · , n) of the ith line and get the overall performance
value pi corresponding to the alternative Yi (i = 1, 2, · · · ,m).
Step3. Calculate the score values s(pi) of the overall preference value pi (i = 1, 2, · · · ,m).
Step4. Rank all the alternatives Yi (i = 1, 2, · · · ,m) according to s(pi) in descending order, and then select
the best one.

4.3 Illustrative example

Let us consider a Management School in a Chinese university, which wants to introduce a teacher
(adapted from [24]). There is a panel with five possible alternatives. A set of four factors are considered:
A = {A1, A2, A3, A4}={morality, research capability, teaching skill, education background}, whose weight
vector is w = (0.3, 0.2, 0.1, 0.4)T . The experts evaluate four alternatives Yi(i = 1, 2, · · · , 4) in relation to the
factors A = {A1, A2, A3, A4}. The evaluation information on the four alternatives Yi(i = 1, 2, · · · , 4) under
the factors A = {A1, A2, A3, A4} are represented by the HFEs.

Step1. Construct the hesitant fuzzy decision matrix H = (hij)5×4, which is listed in Table 1. Considering
that all the attributes Aj(j = 1, 2, 3, 4) are the benefit type attributes, the performance values of the
alternatives Yi(j = 1, 2, · · · , 5) do not need normalization.

Step2. Utilize the WHFMSM operator aggregate all the performance values hij(j = 1, 2, 3, 4) of the
ith line and obtain the overall preference value hi corresponding to the alternative Yi. Take alternative Y1
for an example, and let r = 2, we have

h1 =WHFDMSM (r)
w (h11, h12, · · · , h14)

=
∪

γi∈h1i,
i=1,··· ,n



1−

 ∏
1≤i1<···
<ir≤n

1−
r∏
j=1

γ
wij

ij




1
Cr
n


1
r

,


= {0.814019, 0.816764, 0.819298, 0.818635, 0.821303, 0.823767, 0.823095, 0.82569, 0.828086,

0.820225, 0.822867, 0.825307, 0.824669, 0.827238, 0.829611, 0.828963, 0.831463, 0.833771,

0.826476, 0.829016, 0.831362, 0.830748, 0.833218, 0.8355, 0.834877, 0.837281, 0.839501}.

As the parameter r changes we can get different results for each alternative, here we will not list them
for vast amounts of data.

Step3. Compute the score values s(hi)(i = 1, 2, · · · , 5) of hi(i = 1, 2, 3, 4) by Definition 2.2. The score
values for the alternatives are listed in Table 2.

Step4. By ranking s(hi)(i = 1, 2, · · · , 5), we can get the priorities of the alternatives Yi(i = 1, 2, · · · , 5)
as the parameter r changes, which are shown in Table 2.

From Table 2, it can be seen that the ranking results are slightly different when the parameter change,
which indicates the parameter can reflect the decision maker’s risk preferences. Furthermore, we can find that
the score values obtained by the WHFMSM operator become smaller when the parameter r increases for
the same aggregation arguments. Therefore, the decision makers can choose a proper value of the parameter
r according to their risk preferences in real practical decision making process.

Table 1: Hesitant fuzzy decision making matrix H
A1 A2 A3 A4

Y1 {{0.4, 0.5,0.6} {0.7} {0.2} {0.4}
Y2 {0.2, 0.5, 0.8} {(0.5, 0.7} {0.6, 0.8} {0.6, 0.7}
Y3 {0.8, 0.9} {0.4, 0.6} {0.3, 0.4} {0.1, 0.3}
Y4 {0.3, 0.4, 0.6, 0.8} {0.4, 0.8} {0.3, 0.5} {0.5, 0.6}
Y5 {0.3, 0.5, 0.7} {0.2, 0.4} {0.6, 0.7} {0.4, 0.6}
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Table 2: Score values obtained by the WHFMSM and the rankings of alternatives
Y1 Y2 Y3 Y4 Y5 Rankings

r = 1 0.156157 0.218865 0.194147 0.188703 0.158 Y2 ≻ Y3 ≻ Y4 ≻ Y5 ≻ Y1

r = 2 0.14665 0.205581 0.15069 0.175264 0.147543 Y2 ≻ Y4 ≻ Y3 ≻ Y5 ≻ Y1

r = 3 0.135688 0.198208 0.132396 0.163811 0.140404 Y2 ≻ Y4 ≻ Y5 ≻ Y1 ≻ Y3

r = 4 0.113003 0.185361 0.116269 0.14538 0.130822 Y2 ≻ Y4 ≻ Y5 ≻ Y3 ≻ Y1

Remark 4.3. To demonstrate the advantages of our method, in the following, we compare our method
with the existing methods, such as the HFWA and HFWG operators introduced by Xia and Xu [11], and
the weighted hesitant fuzzy Bonferroni mean (WHFBp,qw ) and weighted hesitant fuzzy geometric Bonferroni
mean (WHFGBp,qw ) proposed by [15,16]. The rankings obtained by different aggregation operators are listed
in Table 3.

From Table 3, we can see that i) when r = 1, the WHFMSM and HFWA operators have the same
rankings; ii) when r = n, the WHFMSM and HFWG operators have the same rankings; iii) when r = 2,
the WHFMSM , WHFBp,qw and WHFGBp,qw operators have the same rankings. It verifies the proposed
method is reasonable and validity.

(1) Compare with the HFWA and HFWG operators. Our method can deal with the multiple attribute
decision making problems where the attributes are independent, whereas the HFWA and HFWG operators
can not do them. In addition, theWHFMSM has an alterable parameter, With the change of the parameter,
the proposed operator can be evolved into lots of different aggregation operators, which make decision making
more flexible and can meet the needs of different types of decision makers. But the HFWA (or HFWG)
operator has not alterable parameter, so they can only satisfy the demand of a type of decision makers.

(2) Compare with the WHFBp,qw and WHFGBp,qw operators. The main advantage of the proposed
method is that it can capture the interrelationship among the multi-input arguments, while the WHFBp,qw
and WHFGBp,qw operators can only capture the interrelationship between two arguments. That is to say,
our method is more general. In addition, the WHFBp,qw and WHFGBp,qw operators consider two parame-
ters, while our method only needs to take one parameter. Therefore, the computational complexity of the
WHFBp,qw and WHFGBp,qw operators are much higher than our method. Moreover, the WHFMSM has a
desirable property that the score values are more smaller when the parameter r increases, which indicates
the decision makers can select easily a proper value for the parameter r according to their risk preferences.
But the WHFBp,qw and WHFGBp,qw operators do not have the property. It follows that they are difficult
to determine the values of the parameters p and q to reflect the decision makers’ risk preferences in real
practical decision making process.

According to the comparisons and analysis above, it is clear that our method is more flexible and robust
to aggregate hesitant fuzzy information. Therefore, It is more suitable than the exiting aggregation operators
to solve hesitant fuzzy multiple attribute decision making problems in which the attributes are independent.

Table 3: Comparisons with the exiting aggregation operators
Aggregation operator Rankings Aggregation operator Rankings

WHFMSM
(1)
w Y2 ≻ Y3 ≻ Y4 ≻ Y5 ≻ Y1 WHFMSM

(2)
w Y2 ≻ Y4 ≻ Y3 ≻ Y5 ≻ Y1

HFWA Y2 ≻ Y3 ≻ Y4 ≻ Y5 ≻ Y1 WHFB1,1
w Y2 ≻ Y4 ≻ Y3 ≻ Y5 ≻ Y1

WHFMSM
(n)
w Y2 ≻ Y4 ≻ Y5 ≻ Y3 ≻ Y1 WHFGB1,1

w Y2 ≻ Y4 ≻ Y3 ≻ Y5 ≻ Y1

HFWG Y2 ≻ Y4 ≻ Y5 ≻ Y3 ≻ Y1

5 Conclusions

The MSM is a classical averaging mean operator, which has been widely used in information fusion.
However, it can not deal with the hesitant fuzzy information. To fill this gap, in this paper, we have extended
the MSM to hesitant fuzzy environment, and defined a hesitant fuzzy Maclaurin symmetric mean. Some
desirable properties and special cases have been discussed in detail. Considering the weight vector of the
arguments, we have further developed a weighted hesitant fuzzy Maclaurin symmetric mean which can
consider the importance of each attribute and the interrelationship among multi-input arguments. We also
have proposed a method to solve hesitant fuzzy multiple attribute decision making problems. The illustrative
example has shown that the proposed method is not only reasonable and validity but also more suitable
to deal with multiple attribute decision making problems in which the attributes are independent under
hesitant fuzzy environment.
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A NOTE ON THE GENERALIZED q-CHANGHEE NUMBERS OF

HIGHER ORDER

EUN-JUNG MOON1 AND JIN-WOO PARK2,∗

Abstract. Recently, Changhee numbers and polynomials are introduced by

T. Kim et al in [3]. In this paper, we consider the generalized q-Changhee

polynomials and numbers of higher order by using the fermionic p-adic q-
integral and give some relations between the generalized q-Changhee numbers

of higher order and special numbers.

1. Introduction

Let d be fixed odd positive integer and let p be a fixed odd prime number.
Throughout this paper, Zp, Qp, and Cp will respectively denote the ring of p-
adic rational integers, the field of p-adic rational numbers and the completions of
algebraic closure of Qp. The p-adic norm is defined |p|p = 1

p .

We set

X = Xd = lim←−
N

Z�dpNZ, X∗ =
⋃

0<a<dp
(a,p)=1

(a+ dpZp) ,

a+ dpNZp =
{
x ∈ X|x ≡ a (mod dpN )

}
,

where a ∈ Z and 0 ≤ a < dpn.
When one talks of q-extension, q is various considered as an indeterminate, a

complex q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that

|q| < 1. If q ∈ Cp, then we assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q)
for each x ∈ Zp. Throughout this paper, we use the notation :

[x]−q =
1− (−q)x

1− (−q)
and [x]q =

1− qx

1− q
.

Hence, limq→1[x]q = x for each x ∈ Zp.
Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the

fermionic p-adic q-integral on Zp is defined by T. Kim as follows :

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (see [4, 5]). (1.1)

Then, by (1.1), we can get the following well-known integral identity

I−q(f1) + I−q(f) = [2]qf(0), (1.2)

1991 Mathematics Subject Classification. 11B68, 11S40, 11S80.
Key words and phrases. the generalized q-Changhee numbers attached to χ, the generalized

q-Euler numbers attached to χ, the p-adic q-integral on Zp, the Stirling numbers of the first kind,

the Stirling numbers of the second kind.
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where f1(x) = f(x+ 1) (see [1, 4, 5, 6]).
Recently, q-Changhee numbers and polynomials are introduced by Kim et. al. in

[9], and have been studied by many mathematicians, and possess many interesting
properties (see [3, 7, 9, 10]). In this paper, we consider the generalized q-Changhee
polynomials and numbers of higher order by using the fermionic p-adic q-integral
and give some relations between the generalized q-Changhee numbers of higher
order and special numbers.

2. The generalized q-Daehee numbers attached to χ

Let χ be the Dirichlet character with conductor d ∈ N = {1, 2, . . .} with d ≡
1 (mod 2). Then the generalized q-Changhee numbers Chn,χ,q attached to χ are
defined by the generating function to be

[2]q
1 + qd(1 + t)d

d−1∑
a=0

(−1)aχ(a)qa(1 + t)a =
∞∑
n=0

Chn,χ,q
tn

n!
, (2.1)

where t ∈ Cp and |t|p < p−
1

p−1 .
As is well known, the generalized q-Euler numbers En,χ,q attached to χ are defined

by the generating function to be

[2]q
1 + qdedt

d−1∑
a=0

(−1)aχ(a)qaeat =

∞∑
n=0

En,χ,q
tn

n!
, (see [12]).

The Stirling numbers of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑
l=0

S1(n, l)xl (x ≥ 0),

and the Stirling numbers of the second kind is defined by the generating function
to be

(et − 1)n = n!

∞∑
l=n

S2(l, n)
tl

l!

(see [2, 11]).
By replacing t by et − 1 in (2.1), we can have

∞∑
n=0

Chn,χ,q
(et − 1)n

n!
=

[2]q
1 + qdedt

d−1∑
a=0

(−1)aχ(a)qaeat =
∞∑
m=0

Em,χ,q
tm

m!
, (2.2)

and
∞∑
n=0

Chn,χ,q
(et − 1)n

n!
=
∞∑
n=0

Chn,χ,q
n!

n!
∞∑
m=n

S2(m,n)
tm

m!

=
∞∑
m=0

(
m∑
n=0

Chn,χ,qS2(m,n)

)
tm

m!
.

(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For m ≥ 0, we have

Em,χ,q =

m∑
n=0

Chn,χ,qS2(m,n).
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Now, we define the generalized q-Changhee polynomials Chn,χ,q(x) as follows:

[2]q
1 + qd(1 + t)d

d−1∑
a=0

(−1)aχ(a)qa(1 + t)a+x =
∞∑
n=0

Chn,χ,q(x)
tn

n!
, (2.4)

where t ∈ Cp and |t|p < p−
1

p−1 .
Note that, in the special case, x = 0, Chn,χ,q(0) = Chn,χ,q are generalized

q-Changhee numbers.
From (1.2), we can derive the following equation.:

qnI−q(fn) + (−1)n−1I−q(f) = [2]q

n−1∑
l=0

(−1)n−1−lqlf(l), (2.5)

where fn(x) = f(x+ n) and n ≥ 0.
If taking f(x) = χ(x)(1 + t)x in (2.5), we can have

qd
∫
X

χ(x)(1 + t)x+ddµ−q(x) +

∫
X

χ(x)(1 + t)xdµ−q(x)

=[2]q

d−1∑
a=0

(−1)aχ(a)qa(1 + t)a.

(2.6)

By (2.6), we can easily have∫
X

χ(x)(1 + t)xdµ−q(x) =
[2]q

1 + qd(1 + t)d

d−1∑
a=0

(−1)aχ(a)qa(1 + t)a

=

∞∑
n=0

Chn,χ,q
tn

n!
,

(2.7)

and ∫
X

χ(x)(1 + t)xdµ−q(x) =

∞∑
n=0

(∫
X

χ(x)(x)ndµ−q(x)

)
tn

n!
. (2.8)

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

Chn,χ,q
n!

=

∫
X

χ(x)

(
x

n

)
dµ−q(x).

By (2.4), we note that

∞∑
n=0

Chn,χ,q(x)
tn

n!
=

[2]q
1 + qd(1 + t)d

d−1∑
a=0

(−1)aχ(a)qa(1 + t)a+x

=

( ∞∑
m=0

Chm,χ,q
tm

m!

)( ∞∑
l=0

(
x

l

)
tl

)

=
∞∑
n=0

n∑
m=0

(
x

n−m

)
Chm,χ,q
m!

tn.

(2.9)

So, by (2.9), we can have
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Chn,χ,q(x)

n!
=

n∑
m=0

(
x

n−m

)
Chm,χ,q
m!

. (2.10)

From Theorem 2.2 and (2.10), we can derive the equations

Chn,χ,q(x)

n!
=

n∑
m=0

(
x

n−m

)
1

m!

∫
X

χ(y)

(
y

m

)
dµ−q(y)

=

∫
X

χ(y)

(
x+ y

n

)
dµ−q(y).

(2.11)

Therefore, by (2.11), we obtain the following corollary.

Corollary 2.3. For n ≥ 0, we have

Chn,χ,q(x)

n!
=

∫
X

χ(y)

(
x+ y

n

)
dµ−q(y).

For r ∈ N, let us consider the generalized q-Changhee numbers of order r attached
to χ as follows:

(
d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r

=

d−1∑
a1,...,ar=0

(
[2]q

1 + qd(1 + t)d

)r
(−1)a1+···+arχ(a1) · · ·χ(ar)q

a1+···+ar (1 + t)a1+···+ar

=
∞∑
n=0

Ch(r)n,χ,q
tn

n!
.

(2.12)

By (2.7), we can see that

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(1 + t)x1+···+xrdµ−q(x1) · · · dµ−q(xr)

=
d−1∑

a1,...,ar=0

(
[2]q

1 + qd(1 + t)d

)r
(−1)a1+···+arχ(a1) · · ·χ(ar)q

a1+···+ar (1 + t)a1+···+ar .

(2.13)

Thus, by (2.12) and (2.13), we get

Ch(r)n,χ,q =

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr)ndµ−q(x1) · · · dµ−q(xr). (2.14)
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From (2.14) and Theorem 2.2, we can drive

Ch
(r)
n,χ,q

n!

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)

(
x1 + · · ·+ xr

n

)
dµ−q(x1) · · · dµ−q(xr)

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)
n∑

l1=0

(
x1
l1

) n−l1∑
l2=0

(
x2
l2

)
· · ·

n−l1···−lr−2∑
lr−1=0

(
xr−1
lr−1

)

×
(

xr
n− l1 − · · · − lr−1

)
dµ−q(x1) · · · dµ−q(xr)

=
n∑

l1=0

n−l1∑
l2=0

· · ·
n−l1···−lr−2∑
lr−1=0

Chl1,χ,qChl2,χ,q · · ·Chlr−1,χ,qChn−l1−···−lr−1,χ,q

l1!l2! · · · lr−1!(n− l1 − l2 − · · · − lr−1)!
.

(2.15)

Therefore, by (2.13), (2.14) and (2.15), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

Ch(r)n,χ,q =
n∑

l1=0

n−l1∑
l2=0

· · ·
n−l1···−lr−2∑
lr−1=0

(
n

l1, l2, · · · , lr−1, n− l1 − · · · − lr−1

)
× Chl1,χ,qChl2,χ,q · · ·Chlr−1,χ,qChn−l1−···−lr−1,χ,q

where
(

n
l1,l2,··· ,lr

)
= n!

l1!l2!···lr! .

From (2.14), we note that

Ch(r)n,χ,q

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr)ndµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

S1(n, l)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr)
ldµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

S1(n, l)E
(r)
l,χ,q,

(2.16)

where E
(r)
l,χ,q are the l-th generalized q-Euler numbers of order r attached to χ,

which given by

(
[2]q

1 + qdedt

d−1∑
a=0

(−1)aχ(a)qaeat

)r
=
∞∑
n=0

E(r)
n,χ,q

tn

n!
, (see [8]).

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

Ch(r)n,χ,q =
n∑
l=0

S1(n, l)E
(r)
l,χ,q.
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By replacing t by et − 1 in (2.12), we can get

∞∑
n=0

Ch(r)n,χ,q
(et − 1)n

n!

=
d−1∑

a1,...,ar=0

(
[2]q

1 + qdedt

)r
(−1)a1+···+arχ(a1) · · ·χ(ar)q

a1+···+are(a1+···+ar)t

=
∞∑
m=0

E(r)
m,χ,q

tm

m!
,

(2.17)

and

∞∑
n=0

Ch(r)n,χ,q
(et − 1)n

n!
=
∞∑
n=0

Ch
(r)
n,χ,q

n!
n!
∞∑
m=n

S2(m,n)
tm

m!

=
∞∑
m=0

(
m∑
n=0

Ch(r)n,χ,qS2(m,n)

)
tm

m!
.

(2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

E(r)
m,χ,q =

m∑
n=0

Ch(r)n,χ,qS2(m,n).

From (2.12), we can consider the generalized q-Changhee polynomials of order r
attached to χ as follows:(

d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r
(1 + t)x

=

d−1∑
a1,...,ar=0

(
[2]q

1 + qd(1 + t)d

)r
(−1)a1+···+arχ(a1) · · ·χ(ar)q

a1+···+ar (1 + t)a1+···+ar+x

=
∞∑
n=0

Ch(r)n,χ,q(x)
tn

n!
.

(2.19)

and∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(1 + t)x1+···+xr+xdµ−q(x1) · · · dµ−q(xr)

=
d−1∑

a1,...,ar=0

(
[2]q

1 + qd(1 + t)d

)r
(−1)a1+···+arχ(a1) · · ·χ(ar)q

a1+···+ar (1 + t)a1+···+ar+x.

Thus, we get

Ch(r)n,χ,q(x) =

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr + x)ndµ−q(x1) · · · dµ−q(xr).

(2.20)
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From (2.20), we have

Ch(r)n,χ,q(x)

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr + x)ndµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

S1(n, l)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr + x)ldµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

S1(n, l)E
(r)
l,χ,q(x).

(2.21)

Therefore, by (2.21), we obtain the following theorem.

Theorem 2.7. For n ≥ 0, we have

Ch(r)n,χ,q(x) =
n∑
l=0

S1(n, l)E
(r)
l,χ,q(x).

In (2.19), by replacing t by et − 1, we can get

∞∑
n=0

Ch(r)n,χ,q(x)
(et − 1)n

n!
=

(
d−1∑
a=0

[2]q
1 + qdedt

(−1)aχ(a)qaeat

)r
ext

=
∞∑
m=0

E(r)
m,χ,q(x)

tm

m!
.

(2.22)

and

∞∑
n=0

Ch(r)n,χ,q(x)
(et − 1)n

n!
=

∞∑
m=0

(
m∑
n=0

Ch(r)n,χ,q(x)S2(m,n)

)
tm

m!
. (2.23)

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

E(r)
m,χ,q(x) =

m∑
n=0

Ch(r)n,χ,q(x)S2(m,n).

As is well-known, the rising factorial is given by

(x)(n) = x(x+ 1) · · · (x+ n− 1) = (−1)n(−x)n =

n∑
l=0

(−1)n−lS1(n, l)xl, (2.24)

where n ≥ 0 (see [2, 11]).
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Next, we consider the generalized q-Changhee numbers of order r attached to χ
of the second kind as follows:

Ĉh
(r)

n,χ,q

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(−x1 − · · · − xr)ndµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

(−1)lS1(n, l)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr)
ldµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

(−1)lS1(n, l)E
(r)
l,χ,q.

The generating function of Ĉh
(r)

n,χ,q is given by

∞∑
n=0

Ĉh
(r)

n,χ,q

tn

n!

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(1 + t)−x1−···−xr
n dµ−q(x1) · · · dµ−q(xr)

=

(
d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r
(1 + t)r.

(2.25)

Now, we can observe that(
d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r
(1 + t)r

=

∞∑
n=0

(
n∑

m=0

(
r

m

)
Ch

(r)
n−m,χ,q

n!

(n−m)!

)
tn

n!
.

(2.26)

Thus, by (2.25) and (2.26), we get

Ĉh
(r)

n,χ,q =
n∑

m=0

m!

(
r

m

)(
n

m

)
Ch

(r)
n−m,χ,q. (2.27)

Therefore, by (2.27), we obtain the following theorem.

Theorem 2.9. For n ≥ 0, we have

Ĉh
(r)

n,χ,q =
n∑

m=0

m!

(
r

m

)(
n

m

)
Ch

(r)
n−m,χ,q.

In (2.25), by replacing t by et − 1, we can get

∞∑
n=0

Ĉh
(r)

n,χ,q

(et − 1)n

n!
=

(
d−1∑
a=0

[2]q
1 + qdedt

(−1)aχ(a)qaeat

)r
ert

=
∞∑
m=0

E(r)
m,χ,q(r)

tm

m!
.

(2.28)

and
∞∑
n=0

Ĉh
(r)

n,χ,q

(et − 1)n

n!
=
∞∑
m=0

(
m∑
n=0

Ĉh
(r)

n,χ,qS2(m,n)

)
tm

m!
. (2.29)
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Therefore, by (2.28) and (2.29), we obtain the following theorem.

Theorem 2.10. For n ≥ 0, we have

E(r)
m,χ,q(r) =

m∑
n=0

Ĉh
(r)

n,χ,qS2(m,n).

Now, we define the generalized q-Changhee polynomials of order r attached to χ
of the second kind as follows:

Ĉh
(r)

n,χ,q(x) =

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(−x1 − · · · − xr + x)ndµ−q(x1) · · · dµ−q(xr).

(2.30)
Thus, by (2.30), we get

∞∑
n=0

Ĉh
(r)

n,χ,q(x)
tn

n!

=

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(1 + t)−x1−···−xr+x
n dµ−q(x1) · · · dµ−q(xr)

=

(
d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r
(1 + t)x+r.

(2.31)

It is easy to show that(
d−1∑
a=0

[2]q
1 + qd(1 + t)d

(−1)aχ(a)qa(1 + t)a

)r
(1 + t)x+r

=

∞∑
n=0

(
n∑

m=0

m!

(
x

m

)(
n

m

)
Ch

(r)
n−m,χ,q

)
tn

n!
.

(2.32)

Therefore, by (2.31) and (2.32), we obtain the following theorem.

Theorem 2.11. For n ≥ 0, we have

Ĉh
(r)

n,χ,q(x) =

n∑
m=0

m!

(
x

m

)(
n

m

)
Ch

(r)
n−m,χ,q.

By (2.30), we get

Ĉh
(r)

n,χ,q(x)

=
n∑
l=0

(−1)lS1(n, l)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(x1 + · · ·+ xr − x)ldµ−q(x1) · · · dµ−q(xr)

=
n∑
l=0

(−1)lS1(n, l)E
(r)
l,χ,q(−x).

In (2.32), by replacing t by et − 1, we can get

∞∑
n=0

Ĉh
(r)

n,χ,q(x)
(et − 1)n

n!
=

(
d−1∑
a=0

[2]q
1 + qdedt

(−1)aχ(a)qaeat

)r
e(x+r)t

=
∞∑
m=0

E(r)
m,χ,q(x+ r)

tm

m!
.

(2.33)
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and
∞∑
n=0

Ĉh
(r)

n,χ,q(x)
(et − 1)n

n!
=
∞∑
m=0

(
m∑
n=0

Ĉh
(r)

n,χ,q(x)S2(m,n)

)
tm

m!
. (2.34)

Therefore, by (2.33) and (2.34), we obtain the following theorem.

Theorem 2.12. For n ≥ 0, we have

E(r)
m,χ,q(x+ r) =

m∑
n=0

Ĉh
(r)

n,χ,q(x)S2(m,n).
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[1] S. Araci, M. Acikgoz, E. Şen, On the extended Kim’s p-adic q-deformed fermionic integral

in the p-adic integral ring, J. Number Theory, 133 (2013), no.10, 3348-3361.
[2] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

[3] D. S. Kim, T. Kim and J. J. Seo, A Note on Changhee Polynomials and Numbers, Adv.Studies

Theor. Phys., 7, 2014, no. 20, 993-1003.
[4] T. Kim, Some identities on the q-Euler polynomials of higher-order and q-Strirling numbers

by the fermionic p-adic integral on Zp, Russ. J. Math. Phys., 16 (2009), 484-491.

[5] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), no. 3, 288-299.
[6] T. Kim, On q-analogye of the p-adic log gamma functions and related integral, J. Number

Theory, 76 (1999), no. 2, 320-329.

[7] T. Kim, T. Mansour, S. H. Rim and J. J. Seo, A Note on q-Changhee Polynomials and
Numbers, Adv.Studies Theor. Phys., 8, 2014, no. 1, 35-41.

[8] T. Kim and Y. H. Kim, Generalized q-Euler numbers and polynomials of higher order and
some theoretic identities, J. Inequal. Appl., 2010, Art. 682072, 6 pp.

[9] S. H. Lee, W. J. Kim and Y. S. Jang, Higher-order q-Changhee polynomials, to appear.

[10] S. H. Rim, J. W. Park, S. S. Pyo and J. Kwon, On the twisted Changhee polynomials and
numbers, to appear.

[11] S. Roman, The umbral calculus, Dover Publ. Inc. New York, 2005.

[12] C. S. Ryoo, Some identities on the generalized q-Euler polynomials with weak weight, Int.
Math. Forum, 8 (2013), no.20, 983-98.

1 Department of Mathematics, Kyungpook National University, Taegu 702-701, Re-

public of Korea.
E-mail address: mej0917@naver.com

2 Department of Mathematics Education, Daegu University, Jillyang, Gyeongsan,

Gyeongbuk 712-714, Republic of Korea.
E-mail address: a0417001@knu.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

479 EUN-JUNG MOON et al 470-479



An Investigation of the Certain Class of

Multivalent Harmonic Mappings

H. Esra Özkan Uçar, Yaşar Polatoğlu and Melike Aydog̃an

September 23, 2014

The main purpose of the present paper is to investigate some properties of
the certain class of sense-preserving p-valent harmonic mappings in the open
unit disc D = {z ∈ C||z| < 1}.

1 Introduction

Let Ω1 be the family of functions ϕ(z) which are analytic in the open unit disc
D, and satisfying the condition |ϕ(z)| < 1 for all z ∈ D, and let Ω2 be the family
of functions φ(z) which are regular in D and satisfying the conditions φ(0) = 0
and |φ(z)| < 1 for every z ∈ D. Denote by P(p, n), p ≥ 1, n ≥ 1 the family of
functions p(z) = p+p1z+· · · which are regular in D and satisfying the condition
Rep(z) > 0. Let s1(z) = z + d2z

2 + · · · and s2(z) = z + e2z
2 + · · · be analytic

functions in D. If there exists φ(z) ∈ Ω2 such that s1(z) = s2(φ(z)) for every
z ∈ D, then we say that s1(z) is subordinate to s2(z) and we write s1 ≺ s2.
Specially, if s2(z) is univalent in D, then s1 ≺ s2 if and only if s1(D) ⊂ s2(D),
and s1(0) = s2(0) implies s1(Dr) ⊂ s2(Dr), where Dr = {z||z| < r, 0 < r < 1}
(see [1], [4]).

We denote by S(p, n) (p ≥ 1 and n ≥ 1, integers) the class of all regular and
p-valent functions in D, having the series expansion of the form

s(z) = zp+cnp+1z
np+1+cnp+2z

np+2+cnp+3z
np+3+ · · ·+cnp+mznp+m+ · · · (1)

for all z ∈ D. It is clear that S(p, 1) ⊃ S(p, 2) ⊃ S(p, 3) ⊃ · · · S(p,m) ⊃ · · · .
Let S∗(p, n) (p ≥ 1 and n ≥ 1 integers) denote the class of functions of the form
(1) which are regular in D and satisfying

Re

(
z
s′(z)

s(z)

)
> 0 (2)

———————————————————————————————-
2000 AMS Mathematics Subject Classification 30C45, 30C55.
Keywords and phrases: p valent starlike function, distortion theorem, growth
theorem
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and ∫ 2π

0

Re

(
z
s′(z)

s(z)

)
dθ = 2pnπ (3)

for every z ∈ D. A member of S∗(p, n) is called p-valent starlike function in the
unit disc D.

Finally, a planar harmonic mapping in the open unit disc D is a complex-
valued harmonic function f , which maps D onto the some planar domain f(D).
Since D is a simply connected domain, the mapping f has a canonical decompo-
sition f = h+ g, where h(z) and g(z) are analytic in D and have the following
power series expansion

h(z) = zp + anp+1z
np+1 + anp+2z

np+2 + · · ·+ anp+mz
np+m + · · ·

and

g(z) = bnpz
np + bnp+1z

np+1 + bnp+2z
np+2 + · · ·+ bnp+mz

np+m + · · ·

where |bnp| < 1, p ≥ 1 and n ≥ 1 integers, anp+m, bnp+m ∈ C and every
z ∈ D. As usual, we call h(z) the analytic part and g(z) the co-analytic part
of f , respectively, and let the class of such harmonic mappings is denoted by
SH(p, n). Lewy (see [2]) proved in 1936 that the harmonic mapping f is locally
univalent in D if and only if its Jacobian Jf = |h′(z)|2 − |g′(z)|2 is strictly
positive in D. In view of this result, locally univalent harmonic mappings in the
open unit disc are either sense-reversing if |g′(z)| > |h′(z)| or sense-preserving
if |g′(z)| < |h′(z)| in D. Throughout this paper, we restrict ourselves to the
study of sense-preserving harmonic mappings. We also note that an elegant and
complete treatment theory of the harmonic mapping is given Duren’s monograph
(see [2]).

The main aim of this paper is to investigate the some properties of the
following class

S∗H(p, n) =
{
f = h+ g ∈ SH(p, n)|w(z) =

g′(z)

h′(z)
≺ bnp

1 + φ(z)

1− φ(z)
,

φ(z) = znψ(z), ψ(z) ∈ Ω1, h(z) ∈ S∗(p, n), z ∈ D
}

and for this aim we need the following lemma

Lemma 1.1 ([3]) Let w(z) = anz
n+an+1z

n+1+an+1z
n+2+· · · (an 6= 0, n ≥ 1)

be analytic in D. If the maximum value of |w(z)| on the circle |z| = r < 1 is
attained at z = z0, then we have z0w

′(z0) = pw(z0) where p ≥ n and every
z ∈ D.

2 Main Results

Lemma 2.1 If p(z) ∈ P(p, n) then

p(z) = p
1 + znψ(z)

1− znψ(z)
, z ∈ D (4)

2
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where ψ(z) ∈ Ω1.

Proof. Consider the function H(z) such that

H(z) =
p(z)

p
, z ∈ D (5)

where p(z) ∈ P(p, n). So, that H(z) is regular and satisfies the conditions
ReH(z) > 0 and H(0) = 1 in D. Let ϕ(z) = (1 +H(z))/(1−H(z)), then ϕ(z)
is regular and |ϕ(z)| < 1 in the unit disc D, and also ϕ(z) has nth order zero at
the origin. Hence, ϕ(z) = znψ(z) where ψ(z) in Ω1 for all z ∈ D. Expressing
H(z) in terms of ϕ(z) we have

H(z) =
1 + ϕ(z)

1− ϕ(z)
, z ∈ D. (6)

Thus,

H(z) =
p(z)

p
=

1 + ϕ(z)

1− ϕ(z)
=

1 + znψ(z)

1− znψ(z)

or

p(z) = p
1 + znψ(z)

1− znψ(z)

for all z ∈ D.

Lemma 2.2 Let f = h+ g be an element of S∗H(p, n), then∣∣∣∣w(z)− bnp(1− r2m)

1− |bnp|2r2m

∣∣∣∣ ≤ (1− |bnp|2)rm

1− |bnp|2r2m
, |z| = r < 1 (7)

where m = np− p+ 1.

Proof. Since f = h+ g ∈ S∗H(p, n), then

w(z) =
g′(z)

h′(z)
=

(bnpz
p + bnp+1z

np+1 + bnp+2z
np+2 + · · · )′

(zp + anp+1znp+1 + anp+2znp+2 + · · · )′

=
bnp +

(np+1)bnp+1

p znp+1−p + · · ·

1 +
(np+1)anp+1

p znp+1−p + · · ·

so that w(0) = bnp. On the other hand, because of the sense-preserving property
we have that |w(z)| < 1 for every z ∈ D. Thus, the function defined by

φ(z) =
w(z)− w(0)

1− w(0)w(z)
, z ∈ D

satisfies the conditions of Schwarz Lemma (see [1]). Therefore, we have the
following subordination relation

w(z) =
bnp + φ(z)

1 + bnpφ(z)
if and only if w(z) ≺ bnp + zm

1 + bnpzm
z ∈ D. (8)
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It is easy to see that the linear transformation
bnp+z

m

1+bnpzm
maps |z| = r onto the

circle with the center C(r) =
(
α1(1−r2m)
1−|bnp|2r2m ,

α2(1−r2m)
1−|bnp|2r2m

)
and having the radius

ρ(r) =
(1−|bnp|2)rm
1−|bnp|2r2m , where α1 =Rebnp and α2 =Imbnp, then we can write∣∣∣∣w(z)− bnp(1− r2m)

1− |bnp|2r2m

∣∣∣∣ ≤ (1− |bnp|2)rm

1− |bnp|2r2m

for all |z| = r < 1. As a simple consequence of Lemma 2.2, we give the following
corollary.

Corollary 2.3 If f = h(z) + g(z) ∈ S∗H(p, n), then

|bnp| − rn

1− |bnp|rn
≤ |w(z)| ≤ |bnp|+ rn

1 + |bnp|rn
,

(1− rn)(1− |bnp|)
1 + |bnp|rn

≤ 1− |w(z)| ≤ (1 + rn)(1− |bnp|)
1 + |bnp|rn

(1− rn)(1 + |bnp|)
1− |bnp|rn

≤ 1 + |w(z)| ≤ (1 + rn)(1 + |bnp|)
1 + |bnp|rn

and
(1− |bnp|2)(1− r2n)

(1 + |bnp|rn)2
≤ 1− |w(z)|2 ≤ (1− |bnp|2)(1− r2n)

(1− |bnp|rn)2
,

for all |z| = r < 1.

Theorem 2.4 Let s(z) be an element of S∗(p, n), then the inequalities

rp

(1 + rn)2p/n
≤ |s(z)| ≤ rp

(1− rn)2p/n
(9)

and
prp−1(1− rn)

(1 + rn)(2p/n)+1
≤ |s′(z)| ≤ prp−1(1 + rn)

(1− rn)(2p/n)+1
(10)

hold for every |z| = r < 1.

Proof. Since f = h(z) + g(z) ∈ S∗H(p, n) then we have z s
′(z)
s(z) ≺ p 1+zn

1−zn for

all z in D. Therefore, the inequality
∣∣∣z s′(z)s(z)

p(1+r2n)
1−r2n

∣∣∣ ≤ 2prn

1−r2n holds for every

|z| = r < 1. Thus, we have

p(1− rn)

1 + rn
≤
∣∣∣∣z s′(z)s(z)

∣∣∣∣ ≤ p(1 + rn)

1− rn
(11)

or
p(1− rn)

1 + rn
≤ Re

(
z
s′(z)

s(z)

)
≤ p(1 + rn)

1− rn
(12)
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for all |z| = r < 1. It is fact that

Re

(
z
s′(z)

s(z)

)
= r

∂

∂r
log |s(z)| (13)

true for every |z| = r < 1. Considering (12) and (13) together we obtain

p(1− rn)

r(1 + rn)
≤ ∂

∂r
log |s(z)| ≤ p(1 + rn)

r(1− rn)
, |z| = r < 1. (14)

Integrating (14), we get (9). On the other hand the inequality (11) can be
written in the form

p(1− rn)

r(1 + rn)
|s(z)| ≤ |s′(z)| ≤ p(1 + rn)

r(1− rn)
|s(z)|, |z| = r < 1. (15)

Using (9) in (15) we get (10).

Theorem 2.5 Let f = h(z) + g(z) be an element of S∗H(p, n), then

g(z)

h(z)
= bnp

1 + φ(z)

1− φ(z)

where |bnp| < 1, φ(z) = znψ(z) and ψ(z) ∈ Ω1 for every z ∈ D.

Proof. Since f = h(z) + g(z) ∈ S∗H(p, n), we can write

w(Dr) =

{
z ∈ C :

∣∣∣∣ g′(z)h′(z)
− bnp

1 + r2n

1− r2n

∣∣∣∣ ≤ 2|bnp|rn

1− r2n
, |z| = r < 1

}
. (16)

On the other hand, since h(z) is an element of S∗(p, n), the value of h(z)/(zh′(z))
at a point z1 on the circle |z| = r is

h(z1)

z1h′(z1)
=

1

p

1− rn

1 + rn
. (17)

Now, we define the function

g(z)

h(z)
=

1 + φ(z)

1− φ(z)
, (18)

where φ(z) = znψ(z), ψ(z) ∈ Ω1 and z ∈ D, then φ(z) analytic in D and
φ(0) = 0. We need to show that |φ(z)| < 1 for all z ∈ D. Assume to the
contrary, that there exists a z1 ∈ D such that |φ(z1)| = 1. If we take the
derivative of (18) and after simple calculations we get

w(z) =
g′(z)

h′(z)
= bnp

(
1 + φ(z)

1− φ(z)
+

2zφ′(z)

(1− φ(z))2
h(z)

zh′(z)

)
, z ∈ D.
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Considering (12), (13), (15) and Lemma 1.1 together we obtain that

w(z1) =
g′(z1)

h′(z1)
= bnp

(
1 + φ(z1)

1− φ(z1)
+

2pφ′(z1)

(1− φ(z1))2
1

p

1− rn

1 + rn

)
/∈ w(Dr), |z| = r.

But this is a contradiction, therefore, |φ(z)| < 1 for all z ∈ D. Thus, for a
function f = h(z) + g(z) in S∗H(p, n) we have

g(z)

h(z)
= bnp

1 + φ(z)

1− φ(z)
, z ∈ D.

Corollary 2.6 Let f = h(z) + g(z) be an element of S∗H(p, n), then

p|bnp|rp−1(1− rn)2

(1 + rn)
2p
n +2

≤ |g′(z)| ≤ p|bnp|rp−1(1 + rn)2

(1− rn)
2p
n +2

, (19)

and
|bnp|rp(1− rn)

(1 + rn)
2p
n +1

≤ |g(z)| ≤ |bnp|r
p(1 + rn)

(1− rn)
2p
n +1

, (20)

for every |z| = r < 1.

Proof.Using the definition of the class S∗H(p, n) and Theorem 2.5, we ob-
tain

|bnp|(1− rn)

1 + rn
|h′(z)| ≤ |g′(z)| ≤ |bnp|(1 + rn)

1− rn
|h′(z)|

and
|bnp|(1− rn)

1 + rn
|h(z)| ≤ |g(z)| ≤ |bnp|(1 + rn)

1− rn
|h(z)|

for all z in D. If we use Theorem 2.4 in the last inequalities we obtain (19) and
(20).

Corollary 2.7 If f = h(z) + g(z) ∈ S∗H(p, n), then

p2r2(p−1)(1− rn)3(1 + |bnp|2)

(1 + rn)
4p
n +1(1 + |bnp|rn)2

≤ Jf ≤
p2r2(p−1)(1 + rn)3(1− |bnp|2)

(1− rn)
4p
n +1(1− |bnp|rn)2

, |z| = r < 1.

This corollary is a simple consequence of Corollary 2.3, Theorem 2.4 and the
following equalities

Jf = |h′(z)|2 − |g′(z)|2 = |h′(z)|2(1− |w(z)|2), z ∈ D.

Corollary 2.8 Let f = h(z) + g(z) be an element of S∗H(p, n), then

p(1− |bnp|)
∫

rp−1(1− rn)2

(1 + rn)
2p
n +1(1 + |bnp|rn)

dr ≤ |f |

≤ p(1 + |bnp|)
∫

rp−1(1 + rn)2

(1− rn)
2p
n +1(1 + |bnp|rn)

dr

This corollary is a simple consequence of Corollary 2.3, Theorem 2.4 and the
following inequalities

|h′(z)|(1− |w(z)|)|dz| ≤ |df | ≤ |h′(z)|(1 + |w(z)|)|dz|, z ∈ D.
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Robust Stabilization Based on Periodic Observers for LDP Systems ∗

Ling-Ling Lv †, Lei Zhang ‡

Abstract

In this paper, the problem of robust stabilization based on observers for linear discrete-time periodic
(LDP) systems is studied. It is proofed that principle of separating exists in this type of systems. Based on
this, periodic controllers and periodic state observers can be builded independently. Utilizing parametric
poles assignment algorithm and robust performance index, an algorithm of robust stabilization based
on periodic observers is proposed. A numerical example is employed to verify the effectiveness of the
presented approaches.

Keywords:Robust stabilization; Periodic observers; Principle of separating; LDP systems.

1 Introduction

The analysis and control of linear discrete periodic (LDP) systems have long been interesting problems in
the control fields, because LDP systems, such as cyclostationary process, and multirate digital control which
occur in control systems, arise often in nature and in engineering ([1]). Thus, this type of systems have been
widely researched (see [2]-[8] and references therein). The lifting technique and the cyclic technique are used
to carry out such analysis studies, since they can preserve the system’s algebraic structure and norms. Based
on their lifted LTI reformulation, structural properties such as observability, reachability, detectability, and
stabilizability are analyzed [9].

Periodic linear systems have received renewed interested in recent years. For example, semi-global stabiliza-
tion of discrete-time periodic systems subject to actuator saturation is investigated in [10] by solutions to a
parametric periodic Lyapunov equation, stability and stabilization of discrete-time periodic linear systems
with actuator saturation is studied in [11] via periodic invariant set, stabilization of continuous-time periodic
linear systems is solved in [12] via a periodic Lyapunov equation based approach, L∞ and L2 semi-global
stabilization of continuous-time periodic linear systems with bounded controls is studied in [13], and stabi-
lization of periodic systems with input and output delays is investigated in [14]. For more related recent
work on the control of periodic systems, interested readers may refer to the references cited in [10, 11, 12]
and [13].

In engineering, it is usually required to stabilize an unstable periodic motion or a critically stable periodic
motion by using proper control. The stabilization problem has a fundamental importance in engineering, and
hence the stabilization of periodic motions of dynamic systems has drawn much attention over the past years
(see [11]-[15] and references therein). Observers can extract real-time information of a plant’s internal state
from its input-output data. Therefore, Observer-based control has been widely investigated (e.g., [16]-[21]).

In this paper, we investigate the problem of robust stabilization for uncertain LDP systems. On the problem
of observer based control without robustness considerations, a trivial result has been present at [22]. Accord-
ing to the principle of separating, the problem of stabilization based on observer is converted into problems
of stabilizing an argumented system and designing a periodic observer respectively. By adopting parametric
poles assignment approach combined with a sensitivity index, robust stabilization problem is solved. Two

∗This work is supported by the Programs of National Natural Science Foundation of China (No.
U1204605,11226239,61402149), Excellent-Young-Backbone Teacher Project in high school of Henan Province (No. 2013GGJS-
087), Scientific Research Key Project Fund of the Education Department of Henan Province(NO. 12B120007).

†Institute of electric power, North China University of Water Resources and Electric Power, Zhengzhou 450045, P. R. China.
‡Institute of Data and Knowledge Engineering, Henan University, Kaifeng, 475001, P. R. China. Email:

zhanglei@henu.edu.cn. Corresponding author.
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detailed algorithms are presented and an example is utilized to illustrate the design procedures proposed in
this paper.

Notation 1 The superscripts ”T” and ”-1” stand for matrix transposition and matrix inverse, respectively;
Rn denotes the n-dimensional Euclidean space; i, j represents the integer set {i, i+ 1, . . . , j − 1, j}; For a
square time-varying matrix A(t), t = 0, 1, · · · ,we denote ΦA(j, i) = A(j − 1)A(j − 2) · · ·A(i) for j > i and
ΦA(i, i) = I; The notation ∥ · ∥F is Frobenius norm.

2 Preliminaries

Consider LDP systems with the following state space representation{
x(t+ 1) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t)

(1)

where t ∈ Z, the set of integers, x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rm are respectively the state vector, the
input vector and the output vector, A(t), B(t), C(t) are matrices of compatible dimensions satisfying

A(t+ T ) = A(t), B(t+ T ) = B(t), C(t+ T ) = C(t).

In case that the state of system (1) can be measured, by periodic feedback control law

u(t) = K(t)x(t) + v(t), K(t+ T ) = K(t), K(t) ∈ Rr×n (2)

where v(t) is the reference input, we can obtain the following combined system with period T{
x(t+ 1) = (A(t) +B(t)K(t))x(t) +B(t)v(t)
y(t) = C(t)x(t)

(3)

When there exists some restrictions in practice, the state of system (1) can not be gotten by hardware, but
the input u(t) and the output y(t) can be measured. In this case, we need build another periodic system
giving an asymptotic estimation of system states. The system with the following form can be adopted:{

x̂(t+ 1) = A(t)x̂(t) +B(t)u(t) + L(t)(C(t)x̂− y(t))
x̂(0) = x̂0

(4)

where x̂ ∈ Rn and L(t) ∈ Rn×m, t ∈ Z are real matrices of period T.

Utilizing observer (4), we can build a periodic control law based on the observed states as

u(t) = K(t)x̂(t) + v(t) (5)

such that the combined system meets some control aims, e.g., stability.

Similar to its LTI counterpart, for LDP systems, we present a simple existence condition of observers and
omit its proof.

Proposition 1 There exist matrices L(t), t ∈ 0, T − 1 such that system (4) becomes a full order state
observer of system (1) if and only if periodic matrix pairs (A(t), C(t)) are detectable. In this case, we only
need to choose L(t), t ∈ 0, T − 1 such that matrix

ΦA+LC(T, 0) = (A(T − 1) + L(T − 1)C(T − 1))(A(T − 2) + L(T − 2)C(T − 2)) · · · (A(0) + L(0)C(0))

is stable.

Plugging (5) into (4) gives{
x̂(t+ 1) = (A(t) + L(t)C(t))x̂(t)− L(t)y(t) +B(t)u(t)
u(t) = K(t)x̂(t) + v(t)

(6)

2
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Integrating control law (6) into system (1), we can get
[
x(t+ 1)
x̂(t+ 1)

]
=

[
A(t) B(t)K(t)

−L(t)C(t) F (t) +B(t)K(t)

] [
x(t)
x̂(t)

]
+

[
B(t)
B(t)

]
v(t)

y(t) =
[
C(t) 0

] [ x(t)
x̂(t)

] (7)

where F (t) = A(t) + L(t)C(t).

With the preparation, the stabilization problem of system (1) based on observers can be formed as the
following:

Problem 1 Given a completely observable and reachable LDP system (1), find matrices L(t) ∈ Rn×m, t ∈
0, T − 1 and K(t) ∈ Rr×n, t ∈ 0, T − 1, such that the augmented system (7) is stable.

Because of the inaccuracy of modelling and the influence of their internal perturbation and external distur-
bance from environment, unavoidably, system model has uncertainties, leading to the necessity of the study
of robustness for LDP systems. Robust stabilization of system (1) based on observers can be formed as
follows:

Problem 2 Given a completely observable and reachable LDP system (1), find matrices L(t) ∈ Rn×m, t ∈
0, T − 1 and K(t) ∈ Rr×n, t ∈ 0, T − 1, such that the augmented system (7) is stable and as insensitive as
possible to small changes of system data.

3 Main result

Consider the following LDP system {
x(t+ 1) = Ã(t)x(t) + B̃(t)u(t)

y(t) = C̃(t)x(t)
(8)

where the system data possess the same dimensions with that of system (1).

Lemma 1 Given two LDP systems (1) and (8). If there exists a nonsingular matrix P satisfying

Ã(t) = PA(t)P−1, B̃(t) = PB(t), C̃(t) = C(t)P−1, (9)

then the lifted systems of this two systems are equivalent.

Proof. Lifting system (1) gives the following LTI system{
xL(t+ 1) = ALxL(t) +BLuL(t)
yL(t) = CLxL(t)

, (10)

where
AL = A(T − 1)A(T − 2) · · ·A(0)

BL =
[
A(T − 1)A(T − 2) · · ·A(1)B(0) · · · A(T − 1)B(T − 2) B(T − 1)

]

CL =


C(0)

C(1)A(0)
...

C(T − 1)A(T − 2) · · ·A(0)



3
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Lifting system (8) gives the following LTI system{
xL(t+ 1) = ÃLxL(t) + B̃LuL(t)

yL(t) = C̃LxL(t)
(11)

where
ÃL = Ã(T − 1)Ã(T − 2) · · · Ã(0),

B̃L =
[
Ã(T − 1)Ã(T − 2) · · · Ã(1)B̃(0) · · · Ã(T − 1)B̃(T − 2) B̃T−1

]
,

C̃L =


C̃(0)

C̃(1)Ã(0)
...

C̃(T − 1)Ã(T − 2) · · · Ã(0)

 .

According to (9), we get

ÃL = Ã(T − 1)Ã(T − 2) · · · Ã(0)
= PA(T − 1)P−1PA(T − 2)P−1 · · ·PA(0)P−1

= PALP−1,

B̃L =
[
Ã(T − 1)Ã(T − 2) · · · Ã(1)B̃(0) · · ·
Ã(T − 1)B̃(T − 2) B̃(T − 1)

]
=
[
PA(T − 1)A(T − 2) · · ·A(1)B(0) · · ·
PA(T − 1)B(T − 2) PB(T − 1)

]
= PBL,

C̃L =


C̃(0)

C̃1Ã(0)
...

C̃(T − 1)Ã(T − 2) · · · Ã(0)



=


C(0)P−1

C1A(0)P
−1

...
C(T − 1)A(T − 2) · · ·A(0)P−1


= CLP−1.

Thus, we can see the lifted systems (10) and (11) are algebraically equivalent, which means the equivalence
between system (1) and system (8).

By virtue of this conclusion, we can form the following Theorem.

Theorem 1 Consider systems (3) and (7). The eigenvalue set of system (7) are composed by sets σ(ΦA+BK(T, 0))
and σ(ΦF(T, 0)) corresponding to systems (3) and (4), respectively.

Proof. Let

P =

[
I 0
−I I

]
.

It is easily computed that

P−1 =

[
I 0
I I

]
.

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

490 Ling-Ling Lv et al 487-498



Therefore,

P

[
A(t) B(t)K(t)

−L(t)C(t) F (t) +B(t)K(t)

]
P−1 =

[
A(t) +B(t)K(t) B(t)K(t)

0 F (t)

]
,

P

[
B(t)
B(t)

]
=

[
B(t)
0

]
,[

C(t) 0
]
P−1 =

[
C(t) 0

]
.

By lemma 1, system (7) and the following system have equivalent lifted systems([
A(t) +B(t)K(t) B(t)K(t)

0 F (t)

]
,

[
B(t)
0

]
,
[
C(t) 0

])
. (12)

Thus, all the eigenvalues of the two lifted systems are the same. Since eigenvalues of LDP systems are defined
to be eigenvalues of their lifted system, the proof is completed.

We call the above result as principle of separating for LDP systems. It is shown that the introduction of
full order state observers has no influence on the stability of the close-loop system by state feedback law (2).
At the same time, the introduction of state feedback has no influence on the designed observers. By this
theorem, when discussing the problem of stabilizing LDP systems based on observers, periodic control laws
and periodic observers can be designed independently. The work remaining is to find matrices K(t) and L(t)
such that matrix ΦA+BK(T, 0) and matrix ΦF(T, 0) are stable respectively. Here, we adopt poles assignment
approach.

Let AL and BL denote the lifted system matrices corresponding to periodic matrix pair (A(·), C(·)), ALT and
CLT denote the lifted system matrices corresponding to periodic matrix pair (AT(·), CT(·)), and matrices
F and G are real matrices possessing the desired pole set of matrices ΦA+BK(T, 0) and matrix ΦF(T, 0)
respectively. Introducing the following polynomial matrix factorizations:

(zI −AL)−1BL = N(z)D−1(z) (13)

(zI −ALT)−1CLT = H(z)L−1(z) (14)

where N(z) ∈ Rn×Tr, D(z) ∈ RTr×Tr are right coprime matrix polynomials in z, and H(z) ∈ Rn×Tm,
L(z) ∈ RTm×Tm are the same. If we denote

D(z) = [dij(z)]Tr×Tr , N(z) = [nij(z)]n×Tr

H(z) = [hij(z)]Tm×Tm , L(z) = [lij(z)]n×Tm

and α = max {α1, α2} , β = max {β1, β2} , where

α1 = max
i,j∈1,Tr

{deg(dij(z))}

α2 = max
i∈1,n,j=1,Tr

{deg(nij(z))}

β1 = max
i,j∈1,Tm

{deg(hij(z))}

β2 = max
i∈1,n,j=1,Tm

{deg(lij(z))}

then N(z) and D(z) can be rewritten as
N(z) =

α∑
i=0

Niz
i, Ni ∈ Cn×Tr

D(z) =
α∑
i=0

Diz
i, Di ∈ CTr×Tr

(15)

5
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H(z) and L(z) can be rewritten as 
H(z) =

β∑
i=0

Hiz
i,Hi ∈ Cn×Tm

L(z) =
β∑
i=0

Liz
i, Li ∈ CTm×Tm

(16)

Denote {
VK (Z1) = N0Z1 +N1Z1F + · · ·+NαZ1F

α

WK (Z1) = D0Z1 +D1Z1F + · · ·+DαZ1F
α (17){

VL (Z2) = H0Z2 +H1Z2G+ · · ·+HβZ2G
β

WL (Z2) = L0Z + L1Z2G+ · · ·+ LβZ2G
β (18)

and

Z1 =

{
Z1

∣∣∣∣∣det
(

α∑
i=0

NiZ1F
i

)
̸= 0

}
(19)

Z2 =

{
Z2

∣∣∣∣∣det
(

β∑
i=0

HiZ2G
i

)
̸= 0

}
(20)

where Z1 and Z2 are arbitrary parameter matrices with compatible dimension.

Let

X (Z1) =WK (Z1)V
−1
K (Z1) ,

[
XT

0 XT
1 · · · XT

T−1

]T
(21)

Y (Z2) =WL (Z2)V
−1
L (Z2) ,

[
Y T
0 Y T

1 · · · Y T
T−1

]T
(22)

where Z1 ∈ Z1 and Z2 ∈ Z2.

According to theorem 1 in this paper and the theorem 1 of literature [23], we have the following conclusion.

Theorem 2 For given LDP system (1) and stable real constant matrices F,G with compatible dimensions
and the desired poles, if VK (Z1) and WK (Z1) are given by (17), VL (Z2) and WL (Z2) are given by (18), Xi,
i ∈ 0, T − 1 and Yi, i ∈ 0, T − 1 are given by (21) and (22) respectively, then the whole set of solutions to
Problem 1 can be given by (23) and (24).

K =




K(0)
K (1)

...
K(T − 1)


∣∣∣∣∣∣∣∣∣


X (Z) =WK (Z1)V

−1
K (Z1) , Z1 ∈ Z1

K(0) = [X1]
T
,

K(t) =

[
Xt+1

i−1∏
j=0

(A(j) +B(j)K(j))
−1

]T
, t ∈ 1, T − 1

 (23)

L =




L(0)
L (1)
...

L(T − 1)


∣∣∣∣∣∣∣∣∣


Y (Z) =WL (Z2)V

−1
L (Z2) , Z2 ∈ Z2

L(0) = [Y1]
T
,

L(t) =

[
Yt+1

i−1∏
j=0

(
AT(j) + CT(j)LT(j)

)−1

]T
, t ∈ 1, T − 1

 (24)

Based upon theorem 2, an algorithm for solving problem 1 follows.

Algorithm 1 (Stabilization of LDP systems)

1. Select constant matrices F and G such that all of their poles lie in the unit circle.

2. Solve the right coprime polynomial matrices N(z), D(z) satisfying factorization (13) and the right
coprime polynomial matrices H(z), L(z) satisfying factorization (14).

6
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3. According to formulae (15), compute matrices Ni, Di, i ∈ 0, α; According to formulae (16), compute
matrices Hi, Li, i ∈ 0, β.

4. Compute VK (Z1) and WK (Z1) by formulae (17); Compute VL (Z2) and WL (Z2) by formulae (18).

5. According to formulaes (21) and (23), compute periodic state feedback matrices K(t), t ∈ 0, T − 1;
According to formulaes (22) and (24), compute periodic observer gains L(t), t ∈ 0, T − 1.

Because of the arbitrariness of the choose of parameter matrices Z1 and Z2 in the design process, the above
parametric design algorithm can provide numerous solutions to problem 1. This makes multi-object design
possible for LDP systems. Here, we only consider robustness. According to literature [23], the following
robustness performance index can be adopted:

J1(Z1)
∆
= κF(VK)

T−1∑
t=0

∥A(t) +B(t)K(t)∥T−1
F , (25)

J2(Z2)
∆
= κF(VL)

T−1∑
t=0

∥A(t) + L(t)C(t)∥T−1
F , (26)

where κF(VK) ,
∥∥V −1

K

∥∥
F
∥VK∥F and κF(VL) ,

∥∥V −1
L

∥∥
F
∥VL∥F are the Frobenius-norm conditional numbers

of matrix VK and matrix VL respectively. Thus, we can summarize the robust stabilization algorithm based
on observers as follows.

Algorithm 2 (Robust stabilization algorithm of LDP systems)

1. Select constant matrices F and G such that all of their poles lie in the unit circle.

2. Solve the right coprime polynomial matrices N(z), D(z) satisfying factorization (13) and the right
coprime polynomial matrices H(z), L(z) satisfying factorization (14).

3. According to formulae (15), compute matrices Ni, Di, i ∈ 0, α; According to formulae (16), compute
matrices Hi, Li, i ∈ 0, β.

4. Construct general expressions for matrices VK and K(t), t ∈ 0, T − 1 according to formulaes (17), (21)
and (23), construct general expressions for matrices VL and L(t), t ∈ 0, T − 1 according to formulaes
(18), (22) and (24).

5. Solving optimization problems
MinimizeJ1(Z1)

and
MinimizeJ2(Z2)

by using gradient based searching method. The optimal decision matrix is denoted by Zopt
1 and Zopt

2

respectively.

6. Compute matrices Kopt(t), t ∈ 0, T − 1 according to (17), (21) and (23) by using optimal decision
matrix Zopt

1 ; Compute matrices Lopt(t), t ∈ 0, T − 1 according to (18), (22) and (24) by using optimal
decision matrix Zopt

2 .

4 Numerical example

Consider LDP system (1) with parameters as follows:

A(0) =

[
−4.5 −1
2.5 0.5

]
, A(1) =

[
0 1
1 2

]
,

A(2) =

[
0 2
1 1

]
, B(0) = B(1) = B(2) =

[
1
1

]
,

C(0) =
[
2 1

]
, C(1) =

[
−1 1

]
,

C(2) =
[
0 1

]
.

7
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It is an oscillation system possessing performances of complete reachability and complete observability. In
the following, we will design a robust stabilization law for this system.

For convenience, we can choose matrices F and G as

F =

[
−0.3 0
0 0.3

]
, G =

[
−0.5 0
0 0.5

]

According to algorithm 1, by randomly choosing parameter matrices Z1 and Z2, we obtain a group of
solutions as follows:

Krand(0) =
[
0.7900 0.3400

]
,

Krand(1) =
[
2.0000 2.2857

]
,

Krand(2) =
[
−0.6667 −1.2593

]
,

Lrand(0) =

[
1.6377
−0.8841

]
,

Lrand(1) =

[
0.3871
−0.0645

]
,

Lrand(2) =

[
−33.0000
−67.3333

]
.

Applying algorithm 2 gives solutions to problem 2 with the following gains:

Krobu(0) =
[
1.0448 0.0428

]
,

Krobu(1) =
[
−0.6217 −1.3782

]
,

Krobu(2) =
[
−0.6217 −1.6218

]
,

Lrobu(0) =

[
2.0876
−0.8805

]
,

Lrobu(1) =

[
−0.7062
−0.3082

]
,

Lrobu(2) =

[
−2.4536
−1.3617

]
.

Denote

Krand = (Krand(0), Krand(1), Krand(2))

Lrand = (Lrand(0), Lrand(1), Lrand(2))

Krobu = (Krobu(0), Krobu(1), Krobu(2))

Lrobu = (Lrobu(0), Lrobu(1), Lrobu(2))

Choose the sine signal v(t) = 0.1 ∗ sin(t+ π/2) as reference input and x0 =
[
−1 1

]T
, x̂0 =

[
0 0

]T
as

the initial states of systems (1) and (4), respectively. We give the state histories of the system (1) in Figure.
1. With (Krand, Lrand), Figure. 2 shows the state x(t) of system (7). From this figure, we can see the good
control effectiveness of Algorithm 1 when there is no uncertainty in system data.

To verify the effectiveness of the robust controller, let the system matrices be perturbed as follows:

A(t) 7→ A(t) + µ∆at, t ∈ 0, 2

B(t) 7→ B(t) + µ∆bt, t ∈ 0, 2

C(t) 7→ C(t) + µ∆ct, t ∈ 0, 2

8
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Figure 1: State x(t) of the original system
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Figure 2: x(t) and x̂(t) with (Krand, Lrand) when µ = 0
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Figure 3: x(t) with (Krand, Lrand) when µ = 0.015
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Figure 4: x(t) and x̂(t) with (Krobu, Lrobu) when µ = 0.35

where ∆at ∈ R2×2, ∆bt ∈ R2×1, ∆ct ∈ R1×2, t ∈ 0, 2 are random perturbations normalized such that
∥∆at∥F = 1, ∥∆bt∥F = 1, ∥∆ct∥F = 1, t ∈ 0, 2 and µ > 0 is a parameter controlling the level of perturbations.
Let µ = 0.015, we depict the response histories of x(t) and x̂(t) with gains (Krand, Lrand) in figure. 3,
where the solid line denotes x(t) and the dotted line denotes x̂(t). It is obvious that system (7) with gains
(Krand, Lrand) is not stable even the perturbation level is reduced to µ = 0.015. To measure robustness of the
designed robust controller based on periodic observers, we continuously increase the perturbation controlling
level until µ = 0.35 and depict the results in figure. 4. From simulation results, we can see the designed
robust controller has strong anti-interference ability. In addition, we notice that (Krobu, Lrobu) has a very
small norm compared with (Krand, Lrand). This means that the robust controllers and observers can possess
less energy consumption, since small gains lead to small control signals.

From the simulation results, we can see the approaches proposed in this paper are very effective.

5 Conclusion

In this paper, the observer-based robust stabilization problem for LDP systems is considered. It is proofed
that the principle of separating exists in this type of systems. Thus, periodic controllers and periodic
observers can be designed separately. By using poles assignment technique, numerous periodic controllers
and observers are obtained in the form of iteration and parametrization. Combined with our recent result
about robustness, robust stabilization problem based on observers is solved. Two detailed algorithms are
presented. The proposed approaches are checked by a numerical example and the simulation results are
of great satisfaction. A possible future study is to combine the developed approach with the truncated
predictor feedback [14, 24, 25] and constrained control theory [26, 27] to investigate the observer-based
robust stabilization problem for LDP systems with time delays and input saturation.
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Abstract. In this paper, we strengthen some of Leindler’s results from [L. Leindler. Em-
bedding relations of Besov classes. Acta Sci. Math. (Szeged), 73(2007)133-149.] under GBV
condition. First, we discuss embedding relations between two Besov classes. Next, we give an
equivalent estimate for the k-order modulus of continuity of f (x) in Lp norm under GBV condi-
tion. Finally, we give the condition to ensure a function f ∈ Lp have Fourier coefficients of GBV
belongs to the Besov class.
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1 Introduction

Many classical results in Fourier analysis have been generalized by weakening the condi-
tion imposed on the coefficients of trigonometric series from MS to RBVS, GBVS and, Finally,
to MVBVS(see [26] for more details). In [15], Leindler defined the class of sequences of rest
bounded variation, in symbol: RBVS, and showed that it is not comparable to the classical quasi
monotone sequences, in symbol: CQMS. In [6], Le and Zhou defined the class GBVS containing
both RBVS and CQMS. In [10], Leindler introduced a new class of sequences, the class γRBVS.

Definition 1.1. Let γ := {γn} be a positive sequence. A null-sequence A:= {an}(an → 0) of real
number satisfying the inequalities

(1.1)
∞∑

i=n

|∆ai| ≤ K(A)γn (∆ai := ai − ai+1), n = 1, 2, · · ·

with a positive constant K(A) is said to be a sequence of γ rest bounded variation, in symbol:
A∈ γRBVS.

If γ ≡A and an > 0, then γRBVS ≡ RBVS. It is easy to see that if A∈ RBVS, then it is also
almost monotone, in symbol: A∈ AMS, that is for all n ≥ m, we have

an ≤ K(A)am.

In [11] and [10], Leindler introduced the class of mean rest bounded variation sequences, where
γ is defined by a certain arithmetical mean of the coefficients, e.g.,

γ∗n :=
1
n

n∑
i≥n/2

ai or γn :=
1
n

2n−1∑
i=n

ai.

1
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It is easy to see that the class γ∗MRBVS includes the class RBVS, consequently the almost mono-
tone and monotone sequences, too; but γMRBVS does not, in general. In [21], B. Szal proved
that RBVS , γ∗MRBVS. Namely, he showed that the sequence

dn :=
{

1, if n = 1,
1+m+(−1)m

(2µm )2m , if µm ≤ n < µm+1

where µm = 2m for m = 1, 2, 3 · · · , belongs to the class γ∗MRBVS but it does not belong to the
class RBVS. In [23], B. Szal showed that γMRBVS ⊂ γ∗MRBVS and γMRBVS , γ∗MRBVS.
Namely, he showed that the above sequence dn belongs to the class γ∗MRBVS but it does not
belong to the class γMRBVS. In [22], B. Szal introduced the class of infinity mean rest bounded

variation, briefly A ∈ IMRBVS, if
∞∑

n=1

an

n
< ∞ and γn =

∞∑
i=n

ai

i
. Moreover, he showed that γMRBVS

, IMRBVS and γ∗MRBVS , IMRBVS.
In [6], Le and Zhou first defined the class GBVS as follow:

Definition 1.2. A positive sequence A := {an}
∞
n=1 satisfying the inequalities

2n−1∑
i=n

|∆ai| ≤ K(A)an, n = 1, 2, · · ·

with a positive constant K(A) is said to be a sequence of group bounded variation, in symbol:
A ∈ GBVS.

Moreover, they proved that RBVS ⊆ GBVS. If A∈ GBVS, then for all m ≤ n ≤ 2m, we have
an ≤ K(A)am. Thus, GBVS also named general monotone sequences in [16] and [24] ( in symbol:
GMS). In [11], Leindler proved that MRBVS / GBVS.

Many classical theorems were generalized under RBV condition or GBV condition in [9],
[5], [8], [7] and so on .The properties of the Besov classes have been studied by many authors
(see [22], [10], [14], [18], [19]). Their major work studied three theorems in connection with
Besov classes of functions f ∈ Lp

[−π,π] under coefficient sequence satisfying restricted condition.
In [22], [23], [10], [14], [18] and [19] studied them under IMRBV condition, γ∗MRBV condition,
γMRBV condition, RBV condition, M condition, respectively. In view of the relation between
GBVS and other RBVS, we make further efforts to generalize the three theorems under GBV.

The rest of the paper is organized as follows. In Section 2 we give notions and notations used
in the paper. In Section 3 we give our main results. In Section 4 we introduce some lemmas to
prove our results. In Section 5 we prove the main results.

2 Notions and notations

Let Lp
[−π,π](1 ≤ p ≤ ∞) be the space of all p-power integrable real functions of period 2π with

the norms

‖ f ‖p :=


(∫ π

−π
| f (t)|pdt

) 1
p
, 1 ≤ p < ∞,

ess sup
x∈[−π,π]

| f (t)|, p = ∞.

The best trigonometric approximation En( f )p and the modulus of smoothness ωk ( f ; δ)p are
defined as follows:

En( f )p = min
(
‖ f − T‖p : T ∈ Tn

)
, Tn = span {cos mx, sin mx : |m| ≤ n}

2
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and
ωk ( f ; δ)p = sup

|h|<δ

∥∥∥∆k
h f (x)

∥∥∥
p

∆k
h f (x) = ∆k−1

h (∆h f (x)) ∆h f (x) = f (x + h) − f (x),

respectively.
A function α(t) is called σ-type if it is measurable on [0, 1], integrable on [δ, 1] for every

δ ∈ (0, 1), and there exist positive constants C1 and C2 such that
(i) α(t) ≥ C1 for all t ∈ [0, 1],
(ii)

∫ δ

0
α(t)tσdt ≤ C2δ

σ
∫ 2δ

δ
α(t)dt for all δ ∈ (0, δ0), where 0 < δ0 ≤

1
2 is given.

A positive function α(t) is said to satisfy the λ-condition, λ > 0, if there exists a positive
constant C3 such that ∫ 1

2δ
α(t)tλdt ≤ C3δ

λ
∫ 2δ

δ
α(t)dt, for all δ ∈ (0, δ0).

We say that f ∈ B(p, γ, α) if
(i) f ∈ Lp

[−π,π],
(ii) 0 < γ < ∞,
(iii) α(t) is σ-type,
(iv)

∫ 1

0
ω
γ
k ( f ; t)p dt < ∞, k ≥ σ

γ
.

We use the notation L � R at inequalities if there exists a positive constant K such that
L ≤ KR; and if L � R and R � L hold simultaneously, then we shall write L � R.

3 Main results

We formulate our results as follow:

Theorem 3.1. If 1 < p < q ≤ ∞, the function α(t) satisfies λ-condition with

λ =

(
1
p
−

1
q

)
γ, 0 < γ < ∞, α∗(t) := α(t)tλ,

A:= {an}
∞
n=1 ∈ GBVS, and f has the Fourier expansion

(3.1) f (x) ∼
∞∑

n=1

an cos nx,

then the Besov classes B(p, γ, α) and B(p, γ, α∗) coincide. Furthermore, for any

k1 ≥
σ

γ
, k2 ≥

σ∗

γ
, k3 ≥

σ∗

γ
, σ∗ = σ − λ,

we have

(3.2)
∫ 1

0
α∗(t)ωγ

k2
( f ; t)qdt �

∫ 1

0
α(t)ωγ

k1
( f ; t)qdt �

∫ 1

0
α∗(t)ωγ

k3
( f ; t)qdt.

Theorem 3.2. If f ∈ Lp
[−π,π], 1 < p < ∞, f has the Fourier expansion (3.1) with A:= {an} ∈ GBVS,

then

(3.3) S (A, p, k, n) � ωk

(
f ;

1
n

)
p
� S (A, p, k, n),

3
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where

S (A, q, k, n) :=


an, i f q = 1,

n−k

(
n∑

i=1
aq

i i(k+1)q−2

)1/q

+

(
∞∑

i=n+1
aq

i iq−2

)1/q

, i f 1 < q < ∞,

n−k
n∑

i=1
aiik +

∞∑
i=n+1

ai, i f q = ∞.

Theorem 3.3. If f ∈ Lp
[−π,π], 1 < p < ∞, f has the Fourier expansion (3.1) with A:= {an} ∈ GBVS,

α(t) = t−rγ−1 and k > r. If γ ≥ 1, then f ∈ B(p, γ, α) if and only if

(3.4) J1 :=
∞∑

n=1

aγnnrγ+γ−
γ
p−1 < ∞.

If 0 < γ ≤ 1, then a sufficient condition for f ∈ B(p, γ, α) is

(3.5) J2 :=
∞∑

n=1

aγnnrγ−γ/p < ∞

and a necessary condition is

(3.6) J1 :=
∞∑

n=1

aγnnrγ+γ−
γ
p−1 < ∞.

4 Auxiliary lemmas

In order to verify our theorems we need several lemmas: most of them are the analogues of
the lemmas used in the proofs of the theorems with monotone coefficients or other conditions.

Lemma 4.1. ([13], Corollary 1) If λn > 0 and an ≥ 0, then

∞∑
n=1

λn

 n∑
k=1

ak

p

≤ pp
∞∑

n=1

λ1−p
n ap

n

 ∞∑
k=n

λk

p

(4.1)

∞∑
n=1

λn

 ∞∑
k=n

ak

p

≤ pp
∞∑

n=1

λ1−p
n ap

n

 n∑
k=1

λk

p

(4.2)

hold for any p ≥ 1; while if 0 < p < 1, then the inequality in (4.1) and (4.2) hold with opposite
direction.

Lemma 4.2. ([2], Theorem 19) If an ≥ 0 and 0 < p1 < p2 < ∞, then

(4.3)

 ∞∑
n=1

ap2
n


1

p2

≤

 ∞∑
n=1

ap1
n


1

p1

.

Lemma 4.3. ([1], p. 293) If f ∈ L∞[−π,π] ≡ C[−π,π] and an ≥ 0,

f (x) =

∞∑
n=1

an cos nx, x ∈ [−π, π],

then
∞∑

k=2n

ak ≤ 4En( f )C.

4
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Lemma 4.4. [25] If f ∈ Lp
[−π,π], 1 < p ≤ 2, then

ωk

(
f ;

1
n

)
p
� n−k

 n∑
i=1

ikp−1Ep
i ( f )p


1
p

;

while if p > 2, then the reverse inequality holds.

Lemma 4.5. ([19], pp. 847 − 848) If f ∈ Lp
[−π,π], 1 ≤ p ≤ ∞, 0 < γ < ∞, α is a σ-type function

and k ≥ σ
γ

, then

Er
0( f )p + Er

1( f )p +

∞∑
i=1

µ(i)Eγ

2i( f )p �

∫ 1

0
α(t)ωγ

k( f ; t)pdt,

where

µ(n) :=
∫ 2−n+1

2−n
α(t)dt, n ≥ 1 and µ(0) = 1.

Lemma 4.6. ([23],Lemma 6) If α is a σ-type function, then

(4.4) µ(n + 1) � µ(n)

hold for all n.

Lemma 4.7. ([20],Theorem 1) If f ∈ Lp
[−π,π], 1 ≤ p ≤ ∞, f has the Fourier expansion (3.1), and

P1 := min{2, p}, P2 := max{2, p}, then

S (A, P1, k, n) � ωk

(
f ;

1
n

)
p
� S (A, P2, k, n).

Lemma 4.8. ([18], Theorem 1) If f ∈ B(p, γ, α), 1 < p < q ≤ ∞ and α satisfies λ-condition with
λ =

(
1
p −

1
q

)
γ, then f ∈ B(q, γ, α∗), where

α∗(t) := α(t)tλ, that is, B(p, γ, α) ⊂ B(q, γ, α∗);
furthermore, ∫ 1

0
α∗(t)ωγ

k2
( f ; t)qdt �

∫ 1

0
α(t)ωγ

k1
( f ; t)pdt

for any
k1 ≥

σ
γ

, k2 ≥
σ∗

γ
and σ∗ := σ −

(
1
p −

1
q

)
+ ε, ε > 0.

Lemma 4.9. [6] Let {an} ∈ GBVS, then for all n ≥ 1, the following inequalities hold

(4.5)
∞∑

i=1

a2in �

∞∑
i=n

ai

i
.

(4.6) an+1 �

2n∑
i=[n/2]+1

ai

i
.

Lemma 4.10. [7] If 1 < p < ∞, and f has the Fourier expansion (3.1) with {an} ∈ GBVS, then
f ∈ Lp

[−π,π] if and only if

(4.7)
∞∑

n=1

np−2ap
n < ∞

or, more precisely

(4.8) ‖ f ‖p
p �

∞∑
n=1

np−2ap
n .

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

503 W. T. CHENG et al 499-513



Lemma 4.11. [3] Assume that f has the Fourier expansion (3.1) with {an} ∈ GBVS. If 1 < p < ∞
and (4.7) holds, then

(4.9) En( f )p � an+1(n + 1)1− 1
p +

 ∞∑
i=n+1

ip−2ap
i


1
p

.

Lemma 4.12. ([4], Theorem 5) If f ∈ Lp
[−π,π], 1 < p < ∞, and f has the Fourier expansion (3.1)

with an ≥ 0, then for η > 1
p

∞∑
i=n

ai

iη
≤ n−η+

1
p En( f )p.

Lemma 4.13. If f ∈ Lp
[−π,π], 1 < p < ∞, f has the Fourier expansion (3.1) with {an} ∈ GBVS , then

Ep
n ( f )p �

∞∑
i=2n

ap
i ip−2.

Proof. We want to apply Lemma 4.10 to the following function:

f0(x) := f (x) −
2n−1∑
i=1

ai cos ix + a2n

2n−1∑
i=1

cos ix.

First, we show that the A0 := {a0
n} of coefficients of f0 belongs to GBVS, that is, that

(4.10)
2m−1∑
i=m

∣∣∣∆a0
i

∣∣∣ � a0
m,m = 1, 2, · · · .

We consider three cases:
(i) If m ≥ 2n, then a0

i = ai for all i ≥ m, we easily know

2m−1∑
i=m

∣∣∣∆a0
i

∣∣∣ =

2m−1∑
i=m

|∆ai| � am = a0
m.

(ii) If m ≤ n, then a0
i = a2n for all 1 ≤ i ≤ 2m, we easily know

2m−1∑
i=m

∣∣∣∆a0
i

∣∣∣ = 0 < a0
m.

(iii) If n < m < 2n, then a0
i = a2n for all m ≤ i ≤ 2n and a0

i = ak for all i ≥ 2n, we easily know

2m−1∑
i=m

∣∣∣∆a0
i

∣∣∣ =

2n−1∑
i=m

∣∣∣∆a0
i

∣∣∣ +

2m−1∑
i=2n

∣∣∣∆a0
i

∣∣∣ < 0 +

4n−1∑
i=2n

|∆ai| � a2n = a0
m.

That means A0 ∈ GBVS, we can apply Lemma 4.10 to f0, thus we obtain

‖ f − S 2n−1( f )‖p
p + ap

2n

∥∥∥∥∥∥∥
2n−1∑
i=1

cos ix

∥∥∥∥∥∥∥
p

p

� ‖ f0‖
p
p �

∞∑
i=2n

ap
i ip−2.

6
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Since ∥∥∥∥∥∥∥
2n−1∑
i=1

cos ix

∥∥∥∥∥∥∥
p

p

= 2
∫ π

0

∣∣∣∣∣∣∣
2n−1∑
i=1

cos ix

∣∣∣∣∣∣∣
p

dx

= 2
∫ π

n

0
+

∫ π

π
n

 ∣∣∣∣∣∣cos nx sin 2n−1
2 x

sin x
2

∣∣∣∣∣∣
p

dx

� np
∫ π

n

0
dx +

∫ π

π
n

1
xp dx � np−1,

by a theorem of M. Riesz ([17], Theorem 3, p. 221), we obtain

(4.11)
∞∑

i=2n

ap
i ip−2 � Ep

2n−1( f )p + ap
2nnp−1 < Ep

n ( f )p + ap
2nnp−1.

Applying Lemma 4.12 with η = 1 and (4.5), we obtain

(4.12) ap
2nnp−1 ≤ np−1

 ∞∑
i=1

a2in

p

� np−1

 ∞∑
i=n

ai

i

p

� Ep
n ( f )p.

The inequalities (4.11) and (4.12) imply the assertion. �

Lemma 4.14. If f ∈ Lp
[−π,π], 1 < p < q ≤ ∞, and f has the Fourier expansion (3.1) with

A := {an}
∞
n=1 ∈ GBVS. If q < ∞, then

S 1 :=
∞∑

i=8n

i
q
p−2Eq

i ( f )p � Eq
n( f )q;

while if q = ∞, then

S 2 :=
16n∑
i=8n

i
1
p−2Ei( f )p � En( f )q.

Proof. By Lemma 4.11, we have

S 1 �

∞∑
i=8n

i
q
p−2aq

i+1(i + 1)q
(
1− 1

p

)
+

∞∑
i=8n

i
q
p−2

 ∞∑
l=i+1

lp−2ap
l


q
p

Using the inequalities of Lemma 4.1 and Lemma 4.13, we obtain

S 1 �

∞∑
i=8n

aq
i+1(i + 1)q−2 +

∞∑
i=8n

aq
i+1(i + 1)q−2+

q
p−

( q
p

)2
 i+1∑

l=1

l
q
p−2


q
p

≤

∞∑
i=8n

aq
i iq−2 � Eq

n( f )q.

To estimate S 2, we apply Lemma 4.11 again. Thus

S 2 �

∞∑
i=8n

i
1
p−1ai+1(i + 1)1− 1

p +

∞∑
i=8n

i
1
p−1

 ∞∑
l=i+1

ap
l lp−2


1
p

: = S 21 + S 22.

7
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First, we you

S 21 �

∞∑
i=2n

ai+1 <

∞∑
i=2n

ai � En( f )q

and since A ∈ GBVS, for all m ≤ i ≤ 2m, we have ai � am, if 2 jn ≤ i < 2 j+1n,

ai � a2 jn �

∞∑
i=2 jn

|∆ai| �

∞∑
v= j

a2vn �

∞∑
v=2 j−1n

av

v
�

∞∑
v=[i/4]

av

v + 1

we obtain

S 22 ≤

16n∑
i=8n

i
1
p−1

 ∞∑
l=i

ap
l lp−2


1
p

�

16n∑
i=8n

i
1
p−1

 ∞∑
l=i

lp−2

 ∞∑
v=[l/4]

av

v + 1


p

1
p

�

16n∑
i=8n

i
1
p−1

 ∞∑
l=i

lp−2

 ∞∑
v=[l/4]

av

v + 1


p

1
p

�

16n∑
i=8n

i
1
p−1

 ∞∑
l=i

l−2

 ∞∑
v=[l/4]

av


p

1
p

�

∞∑
i=2n

ai

16n∑
i=8n

i
1
p−1

 ∞∑
l=i

l−2


1
p

�

∞∑
i=2n

ai

16n∑
i=8n

i−1 �

∞∑
i=2n

ai.

Collecting our estimates, by Lemma 4.3, we obtain that S 2 � En( f )∞, herewith the proof of
lemma is complete. �

5 Proofs of the theorems

5.1 Proof of Theorem 3.1
By Lemma 4.8 the first inequality in (3.2) is proved, whence

B(p, γ, α) ⊂ B(q, γ, α∗)(5.1)

also holds. To prove the second inequality of (3.2), we use Lemma 4.5, Assume f ∈ B(q, γ, α∗),
then

Iq := Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ∗(n)Eγ
2n( f )q �

∫ 1

0
α∗(t)ωγ

k3
( f ; t)qdt < ∞,

where k3 ≥
σ∗

γ
and

µ∗(n) :=
∫ 21−n

2−n
α∗(t)dt, n > 1 and µ∗(0) = 1.

Since 1 < p < q, by Lemma 4.5 and Lemma 4.6, we have

µ(n) � µ∗(n)2n(1/p−1/q)γ, µ(4) � µ(3) � µ(2) � µ(1) � 1 and µ(n + 4) � µ(n).
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It is clear that

Ip : = Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ(n)Eγ
2n( f )q

� Eγ
0( f )q + Eγ

1( f )q +

4∑
n=1

µ(n)Eγ
2n( f )q +

∞∑
n=1

µ(n + 4)Eγ

2n+4( f )q

� Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ(n)Eγ

2n+4( f )q

� Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ∗(n)2n(1/p−1/q)γEγ

2n+4( f )q

� Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ∗(n)
(
2n(1/p−1/q)E2n+4( f )q

)γ
� Eγ

0( f )q + Eγ
1( f )q +

∞∑
n=1

µ∗(n)

 2n+4∑
i=2n+3

i(1/p−1/q)−1Ei( f )q


γ

.

Hence, if q = ∞, by Lemma 4.14, we obtain

Ip � Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ∗(n)Eγ
2n( f )q

and immediately Ip � Iq. If 1 < q < ∞, then applying Hölder’s inequality and Lemma 4.14, we
have

2n+4∑
i=2n+3

i(1/p−1/q)−1Ei( f )q =

2n+4∑
i=2n+3

i1/p−2/qEi( f )qi1/q−1

≤

 2n+4∑
i=2n+3

iq/p−2Eq
i ( f )q


1/q  2n+4∑

i=2n+3

(
i1/q−1

)q/(q−1)


1−1/q

�

 2n+4∑
i=2n+3

iq/p−2Eq
i ( f )q


1/q

.

From this and Lemma 4.5, we can obtain

Ip � Eγ
0( f )q + Eγ

1( f )q +

 2n+4∑
i=2n+3

iq/p−2Eq
i ( f )q


γ/q

� Eγ
0( f )q + Eγ

1( f )q +

∞∑
n=1

µ∗(n)Eγ
2n( f )q

then by Lemma 4.14, Ip � Iq is visible.
Finally, by Lemma 4.5, we obtain that∫ 1

0
α(t)ωγ

k1
( f ; t)pdt � Ip � Iq �

∫ 1

0
α∗(t)ωγ

k3
( f ; t)pdt < ∞

follows with k1 ≥
σ
γ

.
This proves the second inequality of (3.2), consequently

B(q, γ, α∗) ⊂ B(p, γ, α).(5.2)

Thus, (5.1) and (5.2) completes the proof of Theorem 3.1 with {an} ∈ GBVS.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

507 W. T. CHENG et al 499-513



5.2 Proof of Theorem 3.2

First, we prove S (A, p, k, n) � ωk

(
f ;

1
n

)
p
. We separate two cases:

(i) If 1 < p ≤ 2, by Lemma 4.7, we easily know S (A, p, k, n) � ωk

(
f ;

1
n

)
p

holds.

(ii) If p ≥ 2, then by Lemma 4.13, Jackson’s theorem and the properties ofωk( f ; δ)p, we obtain

(5.3)

 ∞∑
i=n+1

ap
i ip−2

1/p

� En∗( f )p � ωk

(
f ;

1
n

)
p
,

where

n∗ =

{
m, if n = 2m,
m, if n = 2m − 1.

By (4.6) and Lemma 4.13, we easily obtain

ap
i ip−1 �

(
2(i−1)∑

j=[(i−1)/2]+1

a j

j

)p

ip−1 �

(
2i∑

j=[i/4]+1

a j

j

)p

ip−1 �

(
2i∑

j=[i/4]+1
a j

)p

i−1 �

(
2i∑

j=[i/4]+1
j−1/pa j

)p

�
2i∑

j=[i/4]+1
ap

j

(
2i∑

j=[i/4]+1
j−1/(p−1)

)p−1

� ip−2
2i∑

j=[i/4]+1
ap

j �
2i∑

j=[i/4]+1
jp−2ap

j � Ep
[i/8]( f )p.

Putting this into the following sum and applying Lemma 4.4, we find the following estimates:

(5.4)
n−k

(
n∑

i=1
ap

i i(k+1)p−2

)1/p

� n−k

(
n∑

i=1
Ep

[i/8]( f )pikp−1

)1/p

� n−k

(
n∑

i=1
ikp−1Ep

i ( f )p

)1/p

� ωk

(
f ;

1
n

)
p
.

The inequalities (5.3) and (5.4) verify S (A, p, k, n) � ωk

(
f ;

1
n

)
p

for 2 ≤ p < ∞, thus it is proved

for any 1 < p < ∞.

Next, we prove that ωk

(
f ;

1
n

)
p
� S (A, p, k, n) . We consider two cases:

(i) If 2 ≤ p < ∞, by Lemma 4.7, we easily know ωk

(
f ;

1
n

)
p
� S (A, p, k, n) holds.

(ii) If 1 < p ≤ 2, then we use Lemma 4.4 and Lemma 4.2, thus an elementary calculation, we
obtain that
(5.5)

ωk

(
f ;

1
n

)
p
� n−k

(
n∑

i=1
ikp−1Ep

n ( f )p

)1/p

� n−k

(
n∑

i=1
ikp−1ap

i+1(i + 1)p−1 +
n∑

i=1
ikp−1

∞∑
j=i+1

jp−2ap
j

)1/p

� n−k

(
n∑

i=1
i(k+1)p−2ap

i+1 +
n∑

i=1
ikp−1

n∑
j=i+1

jp−2ap
j +

n∑
i=1

ikp−1
∞∑

j=n+1
jp−2ap

j

)1/p

� n−k

(
n∑

i=1
i(k+1)p−2ap

i +
n∑

j=2
jp−2ap

j

j∑
i=1

ikp−1 + (n + 1)(k+1)p−2ap
n+1 + nkp

∞∑
j=n+1

jp−2ap
j

)1/p

� n−k

(
n∑

i=1
i(k+1)p−2ap

i + nkp
∞∑

j=n+1
jp−2ap

j

)1/p

� n−k

(
n∑

i=1
i(k+1)p−2ap

i

)1/p

+

(
∞∑

j=n+1
jp−2ap

j

)1/p

= S (A, p, k, n).
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This proves ωk

(
f ;

1
n

)
p
� S (A, p, k, n) for 1 < p ≤ 2, and consequently for any 1 < p < ∞.

Herewith the proof of Theorem 3.2 is complete.

5.3 Proof of Theorem 3.3
By the following inequality

(5.6) J :=
∫ 1

0
t−rγ−1ω

γ
k ( f ; t)p dt �

∞∑
n=1

nrγ−1ω
γ
k

(
f ;

1
n

)
p

and Theorem 3.2, we can obtain

(5.7)

J �
∞∑

n=1
nrγ−1ω

γ
k

(
f ;

1
n

)
p

�
∞∑

n=1
nrγ−1

n−k

(
n∑

i=1
i(k+1)p−2ap

i

)1/p

+

(
∞∑

j=n+1
jp−2ap

j

)1/pγ
�

∞∑
n=1

n(r−k)γ−1

(
n∑

i=1
i(k+1)p−2ap

i

)γ/p

+
∞∑

n=1
nrγ−1

(
∞∑

j=n+1
jp−2ap

j

)γ/p

.

Case (i): γ ≥ 1
Sufficiency. We distinguish two cases listed under (A) and (B):
Case (A): γ/p ≥ 1, by Lemma 4.1, we can obtain

(5.8)
J �

∞∑
n=1

nrγ+γ−
γ
p−1− (r−k)γ2

p aγn

(
∞∑

i=n
i(r−k)γ−1

)γ/p

+
∞∑

n=1
nrγ+γ−

γ
p−1− rγ2

p aγn

(
n∑

i=1
irγ−1

)γ/p

�
∞∑

n=1
nrγ+γ−γ/p−1aγn.

From the above estimate we get that J � J1. under γ/p ≥ 1.
Case (B): γ/p < 1, by (5.6), we can yields that

(5.9) J �
∞∑

n=0

2nrγω
γ
k

(
f ;

1
2n

)
p

then using again Theorem 3.2, we obtain that

(5.10) J �
∞∑

n=0
2n(r−k)γ

(
2n∑
i=1

i(k+1)p−2ap
i

)γ/p

+
∞∑

n=0
2nrγ

(
∞∑

i=2n+1
ip−2ap

i

)γ/p

: = J11 + J12.

Applying Lemma 4.1, Lemma 4.2, Lemma 4.9 and Hölder’s inequality, we can obtain that
(5.11)

J11 =
∞∑

n=0
2n(r−k)γ

(
2n∑
i=1

i(k+1)p−2ap
i

)γ/p

�
∞∑

n=0
2n(r−k)γ

(
n∑

j=0

2 j+1∑
i=2 j

i(k+1)p−2

(
2i∑

t=[i/4]+1

at
t

)p)γ/p

�
∞∑

n=0
2n(r−k)γ

 n∑
j=0

2 j((k+1)p−1)

(
1
2 j

2 j+1∑
t=[2 j−2]+1

at

)pγ/p

�
∞∑

n=0
2n(r−k)γ

n∑
j=0

2 j((k+1)γ−γ/p)

(
1
2 j

2 j+1∑
t=[2 j−2]+1

at

)γ
�

∞∑
n=0

2n(r−k)γ
n∑

j=0
2 j((k+1)γ−γ/p−1)

2 j+1∑
t=[2 j−2]+1

aγt �
∞∑
j=0

2 j((k+1)γ−γ/p−1)
2 j+1∑

t=[2 j−2]+1
aγt

∞∑
n= j

2n(r−k)γ

�
∞∑
j=0

2 j((r+1)γ−γ/p−1)
2 j+1∑

t=[2 j−2]+1
aγt �

∞∑
j=0

2 j+1∑
t=[2 j−2]+1

t(r+1)γ−γ/p−1aγt �
∞∑

n=1
nrγ+γ−γ/p−1aγn
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and

(5.12)

J12 =
∞∑

n=0
2nrγ

(
∞∑

i=2n+1
ip−2ap

i

)γ/p

�
∞∑

n=0
2nrγ

(
∞∑

i=2n
ip−2ap

i+1

)γ/p

�
∞∑

n=0
2nrγ

(
∞∑
j=n

2 j+1∑
i=2 j

ip−2

(
2i∑

t=[i/2]+1

at
t

)p)γ/p

�
∞∑

n=0
2nrγ

 ∞∑
j=n

2 j p−1
(

2 j+1∑
t=[2 j−1]+1

at
t

)pγ/p

�
∞∑

n=0
2nrγ

∞∑
j=n

2 jγ−γ/p
(

2 j+1∑
t=[2 j−1]+1

at
t

)γ
�

∞∑
j=0

2 jγ−γ/p
(

2 j+1∑
t=[2 j−1]+1

at
t

)γ j∑
n=0

2nrγ

�
∞∑
j=0

2 jrγ+γ−γ/p−1 2 j+1∑
t=[2 j−1]+1

aγt �
∞∑

n=1
nrγ+γ−γ/p−1aγn.

The inequalities (5.11) and (5.12) verify J � J1 for γ/p ≤ 1 , and consequently we complete the
proof of sufficiency under γ ≥ 1.

Necessity. Now, we prove that J � J1, we start again with (5.9) and use Theorem 3.2, thus we
get that

(5.13) J �
∞∑

n=0
2n(r−k)γ

(
2n∑
i=1

i(k+1)p−2ap
i

)γ/p

+
∞∑

n=0
2nrγ

(
∞∑

i=2n+1
ip−2ap

i

)γ/p

: = J21 + J22

Similarly, we distinguish two cases listed under (C) and (D):
Case (C): If γ/p ≥ 1, since A∈ GBVS, we know that an ≤ am when m ≤ n ≤ 2m. From this

the property, we can deduce that

2 jaγ2 j+1 �

2 j+1∑
i=2 j+1

aγi .

Combining Lemma 4.1, Lemma 4.2, Lemma 4.9 and Hölder’s inequality, we can obtain that

J21 �

∞∑
n=0

2n(r−k)γ

 2n∑
i=1

i(k+1)p−2ap
i

γ/p

�

∞∑
n=0

2n(r−k)γ

 n−1∑
j=0

2 j+1∑
i=2 j

i(k+1)p−2ap
i


γ/p

�

∞∑
n=0

2n(r−k)γ

 n−1∑
j=0

2 j+1∑
i=[2 j−1]+1

i(k+1)p−2ap
i


γ/p

�

∞∑
n=0

2n(r−k)γ

 n−1∑
j=0

2 j((k+1)p−1) 1
2 j

2 j+1∑
i=[2 j−1]+1

ap
i


γ/p

�

∞∑
n=0

2n(r−k)γ
n−1∑
j=0

2 j((k+1)r−γ/p)

 1
2 j

2 j+1∑
i=[2 j−1]+1

ap
i


γ/p

�

∞∑
n=0

2n(r−k)γ
n−1∑
j=0

2 j((k+1)r−γ/p)

 1
2 j

2 j+1∑
i=[2 j−1]+1

ai


γ

�

∞∑
n=0

2n(r−k)γ
n−1∑
j=0

2 j((k+1)r−γ/p)aγ2 j+1 �

∞∑
j=0

2 j((k+1)r−γ/p)aγ2 j+1

∞∑
n= j

2n(r−k)γ �

∞∑
j=0

2 j(rγ+r−γ/p−1)2 jaγ2 j+1

�

∞∑
j=0

2 j(rγ+r−γ/p−1)
2 j+1∑

i=2 j+1

aγi �
∞∑
j=0

2 j+1∑
i=2 j+1

i(rγ+r−γ/p−1)aγi �
∞∑

n=1

nrγ+γ−γ/p−1aγn.

Similarly, we can get that

(5.14) J22 �
∞∑

n=1
nrγ+γ−γ/p−1aγn.

From the above two estimates we get that J � J1 under γ/p ≥ 1.
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Case (D): If γ/p < 1, using (5.6), Theorem 3.2 and Lemma 4.1, we can obtain that

(5.15)

J �
∞∑

n=1
n(r−k)γ−1

(
n∑

i=1
i(k+1)p−2ap

i

)γ/p

+
∞∑

n=1
nrγ−1

(
∞∑

j=n+1
jp−2ap

j

)γ/p

�
∞∑

n=1
nrγ+γ−

γ
p−1− (r−k)γ2

p aγn

(
∞∑

i=n
i(r−k)γ−1

)γ/p

+
∞∑

n=1
nrγ+γ−

γ
p−1− rγ2

p aγn

(
n∑

i=1
irγ−1

)γ/p

�
∞∑

n=1
nrγ+γ−γ/p−1aγn = J1.

The inequality (5.15) verify J � J1 for γ/p < 1, and consequently we complete the proof of
necessity under γ ≥ 1.

Case (ii): 0 < γ < 1, in this case, we easily know that γ/p < 1.
Necessity. Necessity can be proved by (5.15).
Sufficiency. Applying (5.10), Lemma 4.1, Lemma 4.2 and Lemma 4.9, we can obtain that

J �
∞∑

n=0

2n(r−k)γ

 2n∑
i=1

i(k+1)p−2ap
i

γ/p

+

∞∑
n=0

2nrγ

 ∞∑
i=2n+1

ip−2ap
i

γ/p

�

∞∑
n=0

2n(r−k)γ

 n∑
j=0

2 j+1∑
i=2 j

i(k+1)p−2ap
i


γ/p

+

∞∑
n=0

2nrγ

 ∞∑
j=n

2 j+1∑
i=2 j

ip−2ap
i


γ/p

�

∞∑
n=0

2n(r−k)γ

 n∑
j=0

2 j+1∑
i=2 j

i(k+1)p−2

 2i∑
l=[i/4]+1

al

l


p
γ/p

+

∞∑
n=0

2nrγ

 ∞∑
j=n

2 j+1∑
i=2 j

ip−2

 2i∑
l=[i/4]+1

al

l


p
γ/p

�

∞∑
n=0

2n(r−k)γ

 n∑
j=0

2 j+1∑
i=2 j

ikp−2

 2 j+2∑
l=[2 j−2]+1

al


p
γ/p

+

∞∑
n=0

2nrγ

 ∞∑
j=n

2 j+1∑
i=2 j

i−2

 2 j+2∑
l=[2 j−2]+1

al


p
γ/p

�

∞∑
n=0

2n(r−k)γ

 n∑
j=0

2 j(kp−1)

 2 j+2∑
l=[2 j−2]+1

al


p
γ/p

+

∞∑
n=0

2nrγ

 ∞∑
j=n

2− j

 2 j+2∑
l=[2 j−2]+1

al


p
γ/p

�

∞∑
n=0

2n(r−k)γ
n∑

j=0

2 j(kγ−γ/p)

 2 j+2∑
l=[2 j−2]+1

al


γ

+

∞∑
n=0

2nrγ
∞∑
j=n

2− jγ/p

 2 j+2∑
l=[2 j−2]+1

al


γ

�

∞∑
n=0

2n(r−k)γ
n∑

j=0

2 j(kγ−γ/p)
2 j+2∑

l=[2 j−2]+1

aγl +

∞∑
n=0

2nrγ
∞∑
j=n

2− jγ/p
2 j+2∑

l=[2 j−2]+1

aγl

�

∞∑
j=0

2 j(kγ−γ/p)
2 j+2∑

l=[2 j−2]+1

aγl

∞∑
n= j

2n(r−k)γ +

∞∑
j=0

2− jγ/p
2 j+2∑

l=[2 j−2]+1

aγl

j∑
n=0

2nrγ

�

∞∑
j=0

2 j(rγ−γ/p)
2 j+2∑

l=[2 j−2]+1

aγl �
∞∑

n=0

2n+2∑
i=[2n−2]+1

i(rγ−γ/p)aγi

�

∞∑
n=1

nrγ−γ/paγn � J2.

This ends our proof of Theorem 3.3.
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Abstract

In this paper, we discuss the existence of solutions for a new boundary value problem of non-
linear q-fractional integral equations involving fractional orders 0 < β ≤ 1, 1 < γ ≤ 2 and nonlocal
q-integral boundary conditions. Our results rely on classical tools of fixed point theory. We demon-
strate the application of our work with the aid of an example.
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1 Introduction

Fractional calculus has developed into a useful mathematical tool for modelling of several real world
phenomena occurring in applied and technical sciences ([1]-[3]). As a matter of fact, fractional-order
models are replacing their integer-order counterparts due to the ability of fractional-order operators
to describe the hereditary properties of processes and phenomena involved in the models under con-
sideration. For examples and details, we refer to a series of papers [4]-[10]) and the references cited
therein.

Motivated by the popularity of fractional differential equations, q-difference equations of fractional-
order are also attracting a considerable attention. Fractional q-difference equations may be regarded as
fractional analogue of q-difference equations. For earlier work on the topic, we refer to ([11]-[12]), while
some recent development of fractional q-difference equations, for instance, can be found in ([13]-[21]).
The basic concepts of q-fractional calculus can be found in a recent text [22].

In this paper, we consider a nonlocal fractional q-difference integral boundary value problem of
sequential orders given by

cDβ
q (cDγ

q + λ)x(t) = pf(t, x(t)) + kIξ
q g(t, x(t)), 0 ≤ t ≤ 1, 0 < q < 1, (1)

x(0) = aIα−1
q x(η) = a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)
x(s)dqs,

x(1) = bIα−1
q x(σ) = b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)
x(s)dqs, α > 2, 0 < η, σ < 1,

Dqx(1) = 0,

(2)

where cDβ
q and cDγ

q denote the fractional q-derivative of the Caputo type, 0 < β ≤ 1, 1 < γ ≤
2, Iξ

q,0(.) = Iξ
q (.) denotes Riemann-Liouville integral with 0 < ξ < 1, f, g are given continuous functions,

and λ, p, k are real constants.
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The paper is organized as follows. Section 2 contains some necessary background material on the
topic, while the main results are presented in Section 3. We make use of Banach’s contraction principle,
Krasnoselskii’s fixed point theorem and Leray-Schauder nonlinear alternative to establish the existence
results for the problem at hand. Although these tools are standard, yet their exposition in the framework
of the present problem is new.

2 Preliminaries on fractional q-calculus

This section is devoted to the notations of and basic concepts of q-fractional calculus [23]-[24].

A q-real number for a real parameter q ∈ R+ \ {1}, denoted by [u]q, is defined by

[u]q =
1− qu

1− q
, u ∈ R.

The q-analogue of the Pochhammer symbol (q-shifted factorial) is defined as

(u; q)0 = 1, (u; q)k =
k−1∏
i=0

(1− uqi), k ∈ N ∪ {∞}.

The q-analogue of the exponent (u− v)k is

(u− v)(0) = 1, (u− v)(k) =
k−1∏
j=0

(u− vqj), k ∈ N, u, v ∈ R.

The q-gamma function Γq(u) is defined as

Γq(u) =
(1− q)(u−1)

(1− q)u−1
,

where u ∈ R \ {0,−1,−2, . . .}. Observe that Γq(v + 1) = [v]qΓq(v).

Definition 2.1 ([23]) Let f be a function defined on [0, 1]. The fractional q-integral of the Riemann-
Liouville type of order β ≥ 0 is (I0

q f)(t) = f(t) and

Iβ
q f(t) :=

∫ t

0

(t− qs)(β−1)

Γq(β)
f(s)dqs = tβ(1− q)β

∞∑
k=0

qk (qβ ; q)n

(q; q)n
f(tqk), β > 0, t ∈ [0, 1].

Observe that β = 1 in the Definition 2.1 yields q-integral

Iqf(t) :=
∫ t

0

f(s)dqs = t(1− q)
∞∑

k=0

qk f(tqk).

For more details on q-integral and fractional q-integral, see Section 1.3 and Section 4.2 respectively in
[22].

Remark 2.2 The q-fractional integration possesses the semigroup property (Proposition 4.3 [22]):

Iγ
q Iβ

q f(t) = Iβ+γ
q f(t); γ, β ∈ R+.

Further, it has been shown in Lemma 6 of [24] that

Iβ
q (x)(σ) =

Γq(σ + 1)
Γq(β + σ + 1)

(x)(β+σ), 0 < x < a, β ∈ R+, σ ∈ (−1,∞).
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Before giving the definition of fractional q-derivative, we recall the concept of q-derivative.
We know that the q-derivative of a function f(t) is defined as

(Dqf)(t) =
f(t)− f(qt)

t− qt
, t 6= 0, (Dqf)(0) = lim

t→0
(Dqf)(t).

Furthermore,

D0
qf = f, Dn

q f = Dq(Dn−1
q f), n = 1, 2, 3, . . . . (3)

Definition 2.3 ([22]) The Caputo fractional q-derivative of order β > 0 is defined by

cDβ
q f(t) = Idβe−β

q Ddβe
q f(t),

where dβe is the smallest integer greater than or equal to β.

Next we recall some properties involving Riemann-Liouville q-fractional integral and Caputo frac-
tional q-derivative (Theorem 5.2 [22]):

Iβ
q

cDβ
q f(t) = f(t)−

dβe−1∑
k=0

tk

Γq(k + 1)
(Dk

q f)(0+), ∀ t ∈ (0, a], β > 0; (4)

cDβ
q Iβ

q f(t) = f(t), ∀ t ∈ (0, a], β > 0. (5)

In order to define the solution for the problem (1)-(2), we need the following lemma.

Lemma 2.4 For a given h ∈ C([0, 1], R), the unique solution of the linear boundary value problem:

cDβ
q (cDγ

q + λ)x(t) = h(t), 0 ≤ t ≤ 1, 0 < q < 1, (6)
x(0) = aIα−1

q x(η) = a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)
x(s)dqs,

x(1) = bIα−1
q x(σ) = b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)
x(s)dqs, α > 2, 0 < η, σ < 1,

Dqx(1) = 0,

(7)

is given by

x(t) =
∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

+aA(t)
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

−bB(t)
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

+B(t)
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

−C(t)
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs,

(8)

where

A(t) =
1
∆

[(
µ5[γ − 2]q − µ6[γ − 1]q

)
tγ −

(
µ4[γ − 2]q − µ6[γ]q

)
tγ−1 +

(
µ4[γ − 1]q − µ5[γ]q

)
tγ−2

]
, (9)

B(t) =
1
∆

[(
µ2[γ− 2]q −µ3[γ− 1]q

)
tγ −

(
µ1[γ− 2]q −µ3[γ]q

)
tγ−1 +

(
µ1[γ− 1]q −µ2[γ]q

)
t(γ−2)

]
, (10)
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C(t) =
1
∆

[(
µ3µ5 − µ2µ6

)
tγ −

(
µ3µ4 − µ1µ6

)
tγ−1 +

(
µ2µ4 − µ1µ5

)
tγ−2

]
, (11)

µ1 =
(aη(γ+α−1)Γq(γ + 1)

Γq(γ + α)

)
, µ2 =

(aη(γ+α−2)Γq(γ)
Γq(γ + α− 1)

)
,

µ3 =
(aη(γ+α−3)Γq(γ − 1)

Γq(γ + α− 2)

)
, µ4 =

(bσ(γ+α−1)Γq(γ + 1)
Γq(γ + α)

− 1
)
,

µ5 =
(bσ(γ+α−2)Γq(γ)

Γq(γ + α− 1)
− 1

)
, µ6 =

(bσ(γ+α−3)Γq(γ − 1)
Γq(γ + α− 2)

− 1
)
,

∆ = (µ1µ5 − µ2µ4)[γ − 2]q + (µ3µ4 − µ1µ6)[γ − 1]q + (µ2µ6 − µ3µ5)[γ]q 6= 0.

Proof. Using (4), the solution x(t) of (6) can be written as

x (t) =
∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu−

tγ

Γq(γ + 1)
c0 − tγ−1c1 − tγ−2c2. (12)

q-differentiating both sides of (12), we obtain

Dqx (t) =
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu

− [γ]qtγ−1

Γq(γ + 1)
c0 − [γ − 1]qtγ−2c1 − [γ − 2]qtγ−3c2, t ∈ [0, 1].

(13)

Using the boundary conditions (7) in (12), we have

1
Γq(γ + 1)

(aη(γ+α−1)Γq(γ + 1)
Γq(γ + α)

)
c0 +

(aη(γ+α−2)Γq(γ)
Γq(γ + α− 1)

)
c1 +

(aη(γ+α−3)Γq(γ − 1)
Γq(γ + α− 2)

)
c2

= a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs,

1
Γq(γ + 1)

(bσ(γ+α−1)Γq(γ + 1)
Γq(γ + α)

− 1
)
c0 +

(bσ(γ+α−2)Γq(γ)
Γq(γ + α− 1)

− 1
)
c1

+
(bσ(γ+α−3)Γq(γ − 1)

Γq(γ + α− 2)
− 1

)
c2

= b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

−
∫ 1

0

(1− qu)γ−1

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu,

1
Γq(γ + 1)

[γ]qc0 + [γ − 1]qc1 + [γ − 2]qc2 =
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu.

Solving the above system of equations for c0, c1, c2, we get

c0 =
Γq(γ + 1)

∆

[(
µ5[γ − 2]q − µ6[γ − 1]q

)
a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

−
(
µ2[γ − 2]q − µ3[γ − 1]q

)
b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs
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+
(
µ2[γ − 2]q − µ3[γ − 1]q

) ∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

−
(
µ3µ5 − µ2µ6

) ∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu

]
,

c1 =
−1
∆

[(
µ4[γ − 2]q − µ6[γ]q

)
a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

−
(
µ1[γ − 2]q − µ3[γ]q

)
b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

+
(
µ1[γ − 2]q − µ3[γ]q

) ∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

−
(
µ3µ4 − µ1µ6

) ∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu

]
,

c2 =
1
∆

[(
µ4[γ − 1]q − µ5[γ]q

)
a

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

−
(
µ1[γ − 1]q − µ2[γ]q

)
b

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
Iβ
q h(u)− λx(u)

)
dqu

)
dqs

+
(
µ1[γ − 1]q − µ2[γ]q

) ∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
Iβ
q h(u)− λx(u)

)
dqu

−
(
µ2µ4 − µ1µ5

) ∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
Iβ
q h(u)− λx(u)

)
dqu

]
.

Substituting the values of c0, c1 and c2 in (12) yields the solution (8). This completes the proof. �

3 Main results

Let C = C([0, 1], R) denote the Banach space of all continuous functions from [0, 1] into R endowed with
the usual norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.

In the sequel, we need the following assumptions:

(A1) f, g : [0, 1] × R → R are continuous functions such that |f(t, x) − f(t, y)| ≤ L1|x − y| and
|g(t, x)− g(t, y)| ≤ L2|x− y|, ∀t ∈ [0, 1], L1, L2 > 0, x, y ∈ R;

(A2) there exist δ1, δ2 ∈ C([0, 1], R+) with |f(t, x)| ≤ δ1(t), |g(t, x)| ≤ δ2(t), ∀(t, x) ∈ [0, 1]×R, where
supt∈[0,1] |δi(t)| = ‖δi‖, i = 1, 2.

For the sake of computational convenience, let us set the following notations:

ω1 =
(1 + B1)

Γq(β + γ + 1)
+

1
Γq(β + γ + α)

(
|a|A1η

(β+γ+α−1) + |b|B1σ
(β+γ+α−1)

)
+

C1

Γq(β + γ)
, (14)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

518 Bashir Ahmad et al 514-529



B. AHMAD, Y. ZHOU, A. ALSAEDI AND H. AL-HUTAMI

ω2 =
(1 + B1)

Γq(β + ξ + γ + 1)
+

1
Γq(β + ξ + γ + α)

(
|a|A1η

(β+ξ+γ+α−1) + |b|B1σ
(β+ξ+γ+α−1)

)
+

C1

Γq(β + ξ + γ)
,

(15)

ω3 =
(1 + B1)
Γq(γ + 1)

+
1

Γq(γ + α)

(
|a|A1η

(γ+α−1) + |b|B1η
(γ+α−1)

)
+

C1

Γq(γ)
, (16)

Ω = L
[
|p|

( 1
Γq(β + γ + α)

(
|a|A1η

(β+γ+α−1) + |b|B1σ
(β+γ+α−1)

)
+

B1

Γq(β + γ + 1)
+

C1

Γq(β + γ)

)
+|k|

( 1
Γq(β + ξ + γ + α)

(
|a|A1η

(β+ξ+γ+α−1) + |b|B1σ
(β+ξ+γ+α−1)

)
+

B1

Γq(β + ξ + γ + 1)
+

C1

Γq(β + ξ + γ)

)]
+|λ|

[ 1
Γq(γ + α)

(
|a|A1η

(γ+α−1) + |b|B1σ
(γ+α−1)

)
+

B1

Γq(γ + 1)
+

C1

Γq(γ)

]
,

(17)

where A1 = maxt∈[0,1] |A(t)|, B1 = maxt∈[0,1] |B(t)|, C1 = maxt∈[0,1] |C(t)|, L = max{L1, L2} and
A(t), B(t), C(t) are respectively given by (9), (10) and (11).

In view of Lemma 2.4, we define an operator F : C → C as

(Fx)(t)

=
∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m,x(m))dqm

+k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m,x(m))dqm− λx(u)

)
dqu

+aA(t)
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m,x(m))dqm

+k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m,x(m))dqm− λx(u)

)
dqu

)
dqs

−bB(t)
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m,x(m))dqm

+k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m,x(m))dqm− λx(u)

)
dqu

)
dqs

+B(t)
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m,x(m))dqm

+k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m,x(m))dqm− λx(u)

)
dqu

−C(t)
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m,x(m))dqm

+k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m,x(m))dqm− λx(u)

)
dqu.

(18)

Observe that problem (1)-(2) has solutions only if the operator equation x = Fx has fixed points.

Our first existence result is based on Krasnoselskii’s fixed point theorem.

Lemma 3.1 (Krasnoselskii) [25]. Let Y be a closed, convex, bounded and nonempty subset of a Banach
space X. Let Q1, Q2 be the operators such that (a) Q1x+Q2y ∈ Y whenever x, y ∈ Y ; (b) Q1 is compact
and continuous and (c) Q2 is a contraction mapping. Then there exists z ∈ Y such that z = Q1z +Q2z.
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Theorem 3.2 Let f, g : [0, 1]×R → R be continuous functions satisfying the assumption (A1)− (A2).
Furthermore Ω < 1, where Ω is given by (17) Then the problem (1)-(2) has at least one solution on
[0, 1].

Proof. Let us fix

ε ≥ |p|‖δ1‖ω1 + |k|‖δ2‖ω2

1− |λ|ω3
,

where ω1, ω2, ω3 are respectively given by (14), (15), (16), and consider Bε = {x ∈ C : ‖x‖ ≤ ε}. We
define operators S1 and S2 on Bε as

(S1x)(t)

=

∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m, x(m))dqm

+ k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m, x(m))dqm− λx(u)

)
dqu, t ∈ [0, 1],

(S2x)(t)

= aA(t)

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m, x(m))dqm

+ k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m, x(m))dqm− λx(u)

)
dqu

)
dqs

− bB(t)

∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m, x(m))dqm

+ k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m, x(m))dqm− λx(u)

)
dqu

)
dqs

+ B(t)

∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m, x(m))dqm

+ k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m, x(m))dqm− λx(u)

)
dqu

− C(t)

∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
p

∫ u

0

(u− qm)(β−1)

Γq(β)
f(m, x(m))dqm

+ k

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
g(m, x(m))dqm− λx(u)

)
dqu, t ∈ [0, 1].

For x, y ∈ Bε, we find that

‖S1x + S2y‖ ≤ |p|‖δ1‖ω1 + |k|‖δ2‖ω2 + |λ|εω3 ≤ ε.

Thus, S1x + S2y ∈ Bε. Continuity of f and g imply that the operator S1 is continuous. Also, S1 is uniformly
bounded on Bε as

‖S1x‖ ≤
|p|‖δ1‖

Γq(β + γ + 1)
+

|k|‖δ2‖
Γq(β + ξ + γ + 1)

+
|λ|ε

Γq(γ + 1)
.

Now we prove the compactness of the operator S1. In view of (A1), we define

sup
(t,x)∈[0,1]×Bε

|f(t, x)| = f, sup
(t,x)∈[0,1]×Bε

|g(t, x)| = g.

Consequently we have

‖(S1x)(t2)− (S1x)(t1)‖

≤
∫ t1

0

(t2 − qu)(γ−1) − (t1 − qu)(γ−1)

Γq(γ)

[
|p|f

∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

+ |k|g
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm + |λ|ε

]
dqu
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+

∫ t2

t1

(t2 − qu)(γ−1)

Γq(γ)

[
|p|f

∫ u

0

(u− qm)(β−1)

Γq(β)
dqm + |k|g

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm + |λ|ε

]
dqu,

which is independent of x and tends to zero as t2 → t1. Thus, S1 is relatively compact on Bε. Hence, by the
Arzelá-Ascoli Theorem, S1 is compact on Bε. Now, we shall show that S2 is a contraction.
From (A1) and for x, y ∈ Bε, we have

‖S2x− S2y‖

≤ sup
t∈[0,1]

{
|a||A(t)|

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

×
∣∣∣f(m, x(m))− f(m, y(m))

∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

∣∣∣g(m, x(m))− g(m, y(m))
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+|b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

×
∣∣∣f(m, x(m))− f(m, y(m))

∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

∣∣∣g(m, x(m))− g(m, y(m))
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+|B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

∣∣∣f(m, x(m))− f(m, y(m))
∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

∣∣∣g(m, x(m))− g(m, y(m))
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

+|C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

∣∣∣f(m, x(m))− f(m, y(m))
∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

∣∣∣g(m, x(m))− g(m, y(m))
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

}

≤ sup
t∈[0,1]

{
|a||A(t)|

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
L1

∣∣∣x(m)− y(m)
∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
L2

∣∣∣x(m)− y(m)
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+|b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
L1

∣∣∣x(m)− y(m)
∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
L2

∣∣∣x(m)− y(m)
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+|B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
L1

∣∣∣x(m)− y(m)
∣∣∣dqm

+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
L2

∣∣∣x(m)− y(m)
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

+|C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
L1

∣∣∣x(m)− y(m)
∣∣∣dqm
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+|k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
L2

∣∣∣x(m)− y(m)
∣∣∣dqm + |λ||x(u)− y(u)|

)
dqu

}

≤

[
L

[
|p|

( 1

Γq(β + γ + α)

(
|a|A1η

(β+γ+α−1) + |b|B1σ
(β+γ+α−1)

)
+

B1

Γq(β + γ + 1)
+

C1

Γq(β + γ)

)

+|k|
( 1

Γq(β + ξ + γ + α)

(
|a|A1η

(β+ξ+γ+α−1) + |b|B1σ
(β+ξ+γ+α−1)

)
+

B1

Γq(β + ξ + γ + 1)
+

C1

Γq(β + ξ + γ)

)]

+|λ|
[ 1

Γq(γ + α)

(
|a|A1η

(γ+α−1) + |b|B1σ
(γ+α−1)

)
+

B1

Γq(γ + 1)
+

C1

Γq(γ)

]]
‖x− y‖ = Ω‖x− y‖,

where we have used (17). Since Ω < 1 by our assumption, therefore S2 is a contraction. Thus all the assumptions
of Lemma 3.1 are satisfied. So, by the conclusion of Lemma 3.1, the problem (1)− (2) has at least one solution
on [0, 1]. �

In the next result, we make use of Leray-Schauder Alternative.

Lemma 3.3 (Nonlinear alternative for single valued maps)[26]. Let E be a Banach space, C a closed, convex
subset of E, W an open subset of C and 0 ∈ W. Suppose that F : W → C is a continuous, compact (that is,
F(W ) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in W, or

(ii) there is a x ∈ ∂W (the boundary of W in C) and τ ∈ (0, 1) with x = τF(x).

Theorem 3.4 Let f, g : [0, 1]× R → R be continuous functions and the following assumptions hold:

(A3) there exist functions φ1, φ2 ∈ C([0, 1], R+), and nondecreasing functions Ψ1, Ψ2 : R+ → R+ such that
|f(t, x)| ≤ φ1(t)Ψ1(‖x‖), |g(t, x)| ≤ φ2(t)Ψ2(‖x‖), ∀(t, x) ∈ [0, 1]× R.

(A4) There exists a constant H > 0 such that

H >
|p|‖φ1‖Ψ1(H)ω1 + |k|‖φ2‖Ψ2(H)ω2

1− |λ|ω3
,

where |λ| < 1
ω3

.

Then the boundary value problem (1)− (2) has at least one solution on [0, 1].

Proof. Consider the operator F : C → C defined by (18). The proof consists of several steps.

(i) F is continuous.
It is easy to show that F is continuous.

(ii) F maps bounded sets into bounded sets in C([0, 1]× R).
For a positive number r, let Br = {x ∈ C : ‖x‖ ≤ r} be a bounded set in C([0, 1]×R) and x ∈ Br. Then,
we have

‖(Fx)‖

≤ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm
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+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

)
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

)
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

+ |C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

}

≤ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(‖x‖)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(‖x‖)dqm + |λ||x(u)|

)
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(‖x‖)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(‖x‖)dqm + |λ||x(u)|

)
dqu

)
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(‖x‖)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(‖x‖)dqm + |λ||x(u)|

)
dqu

)
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(‖x‖)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(‖x‖)dqm + |λ||x(u)|

)
dqu

+ |C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(‖x‖)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(‖x‖)dqm + |λ||x(u)|

)
dqu

}

≤ |p|‖φ1‖Ψ1(‖x‖) sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

]
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

)
dqu

]
dqs
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+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

)
dqu

]
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

]
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

]
dqu

}

+ |k|‖φ2‖Ψ2(‖x‖) sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

]
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

)
dqu

]
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

)
dqu

]
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

]
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

]
dqu

}

+ |λ|‖x‖ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)
dqu + |a||A(t)|

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)
dqu

]
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)
dqu

]
dqs + |B(t)|

∫ 1

0

(1− qu)(γ−1)

Γq(γ)
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)
dqu

}
≤ |p|‖φ1‖Ψ1(‖x‖)ω1 + |k|‖φ2‖Ψ2(‖x‖)ω2 + |λ|‖x‖ω3.

(iii) F maps bounded sets into equicontinuous sets of C([0, 1]× R).
Let t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ Br, where Br is a bounded set of C([0, 1], R). Then, we obtain

‖(Fx)(t2)− (Fx)(t1)‖

≤

∣∣∣∣∣
∫ t1

0

(t2 − qu)(γ−1) − (t1 − qu)(γ−1)

Γq(γ)

[
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(r)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ|r

]
dqu

+

∫ t2

t1

(t2 − qu)(γ−1)

Γq(γ)

[
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(r)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ|r

]
dqu

∣∣∣∣∣
+

|a|
|∆|

[∣∣∣µ5[γ − 2]q − µ6[γ − 1]q

∣∣∣∣∣∣tγ
2 − tγ

1

∣∣∣ +
∣∣∣µ4[γ − 2]q − µ6[γ − 1]q

∣∣∣∣∣∣tγ−1
2 − tγ−1

1

∣∣∣
+

∣∣∣µ4[γ − 1]q − µ5[γ]q

∣∣∣∣∣∣tγ−2
2 − tγ−2

1

∣∣∣] ∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(r)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ|r

)
dqu

)
dqs
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+
|b|
|∆|

[∣∣∣µ2[γ − 2]q − µ3[γ − 1]q

∣∣∣∣∣∣tγ
2 − tγ

1

∣∣∣ +
∣∣∣µ1[γ − 2]q − µ3[γ − 1]q

∣∣∣∣∣∣tγ−1
2 − tγ−1

1

∣∣∣
+

∣∣∣µ1[γ − 1]q − µ2[γ]q

∣∣∣∣∣∣tγ−2
2 − tγ−2

1

∣∣∣] ∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

×
(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(r)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ|r

)
dqu

)
dqs

+
1

|∆|

[∣∣∣µ2[γ − 2]q − µ3[γ − 1]q

∣∣∣∣∣∣tγ
2 − tγ

1

∣∣∣ +
∣∣∣µ1[γ − 2]q − µ3[γ − 1]q

∣∣∣∣∣∣tγ−1
2 − tγ−1

1

∣∣∣
+

∣∣∣µ1[γ − 1]q − µ2[γ]q

∣∣∣∣∣∣tγ−2
2 − tγ−2

1

∣∣∣] ∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

× φ1(m)Ψ1(r)dqm + |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ||x(u)|

)
dqu

+
1

|∆|

[∣∣∣µ3µ5 − µ2µ6

∣∣∣∣∣∣tγ
2 − tγ

1

∣∣∣ +
∣∣∣µ3µ4 − µ1µ6

∣∣∣∣∣∣tγ−1
2 − tγ−1

1

∣∣∣ +
∣∣∣µ2µ4 − µ1µ5

∣∣∣∣∣∣tγ−2
2 − tγ−2

1

∣∣∣]

×
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
φ1(m)Ψ1(r)dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
φ2(m)Ψ2(r)dqm + |λ|r

)
dqu.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br as t2−t1 → 0.
As F satisfies the above assumptions, therefore it follows by the Arzelá-Ascoli theorem that F : C → C is
completely continuous.

(iv) Let x be a solution and x = τFx for τ ∈ (0, 1). Then, for t ∈ [0, 1], and using the computations in proving
that F is bounded, we have

|x(t)| = |τ(Fx)(t)| ≤ |p|‖φ1‖Ψ1(‖x‖)ω1 + |k|‖φ2‖Ψ2(‖x‖)ω2 + |λ|‖x‖ω3,

which implies that

‖x‖ ≤ |p|‖φ1‖Ψ1(‖x‖)ω1 + |k|‖φ2‖Ψ2(‖x‖)ω2

1− |λ|ω3
.

In view of (A4), there exists H such that ‖x‖ 6= H. Let us set

W = {x ∈ C : ‖x‖ < H}.

Note that the operator F : W → C([0, 1], R) is continuous and completely continuous. From the choice
of W , there is no x ∈ ∂W such that x = τF(x) for some τ ∈ (0, 1). Consequently, by the nonlinear
alternative of Leray-Schauder type (Lemma 3.3), we deduce that F has a fixed point x ∈ W which is a
solution of the problem (1)− (2). This completes the proof. �

The third existence result is based on Banach’s contraction principle (Banach fixed point theorem).

Theorem 3.5 Suppose that the assumption (A1) holds and that

Ω̄ = (LΩ1 + |λ|ω3) < 1, Ω1 = |p|ω1 + |k|ω2, (19)

where ω1, ω2, ω3 are respectively given by (14), (15), (16), and L = max{L1, L2}. Then the problem (1)-(2)
has a unique solution on [0, 1].
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Proof. Let us define M = max{M1, M2}, where M1, M2 are finite numbers given by supt∈[0,1] |f(t,

0)| = M1, supt∈[0,1] |g(t, 0)| = M2. Selecting ε ≥ MΩ1

1− Ω̄
, we show that FBε ⊂ Bε, where Bε = {x ∈ C : ‖x‖ ≤ ε}

For x ∈ Bε, we have

‖(Fx)‖

≤ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

)
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

)
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

+ |C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))|dqm + |λ||x(u)|

)
dqu

}

≤ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

(
|f(m, x(m))− f(m, 0)|+ |f(m, 0)|

)
dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

(
|g(m, x(m))− g(m, 0)|+ |g(m, 0)|

)
dqm + |λ||x(u)|

)
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

(
|f(m, x(m))− f(m, 0)|

+ |f(m, 0)|
)
dqm + |k|

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

(
|g(m, x(m))− g(m, 0)|+ |g(m, 0)|

)
dqm

+ |λ||x(u)|
)
dqu

)
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

(
|f(m, x(m))− f(m, 0)|

+ |f(m, 0)|
)
dqm + |k|

∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

(
|g(m, x(m))− g(m, 0)|+ |g(m, 0)|

)
dqm
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+ |λ||x(u)|
)
dqu

)
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

(
|f(m, x(m))− f(m, 0)|+ |f(m, 0)|

)
dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

(
|g(m, x(m))− g(m, 0)|+ |g(m, 0)|

)
dqm + |λ||x(u)|

)
dqu

+ |C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)

(
|f(m, x(m))− f(m, 0)|+ |f(m, 0)|

)
dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)

(
|g(m, x(m))− g(m, 0)|+ |g(m, 0)|

)
dqm + |λ||x(u)|

)
dqu

}

≤ |p|(L1ε + M1) sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

]
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

)
dqu

]
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

)
dqu

]
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

)
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)

[ ∫ u

0

(u− qm)(β−1)

Γq(β)
dqm

]
dqu

}

+ |k|(L2ε + M2) sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

]
dqu

+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

)
dqu

]
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)

( ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

)
dqu

]
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

)
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)

[ ∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
dqm

]
dqu

}

+ |λ|ε sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)
dqu + |a||A(t)|

∫ η

0

(η − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)
dqu

]
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

[ ∫ s

0

(s− qu)(γ−1)

Γq(γ)
dqu

]
dqs + |B(t)|

∫ 1

0

(1− qu)(γ−1)

Γq(γ)
dqu

+ |C(t)|
∫ t

0

(t− qu)(γ−2)

Γq(γ − 1)
dqu

}
≤ (Lε + M)Ω1 + |λ|εω3 ≤ ε.

This shows that FBε ⊂ Bε. Now, for x, y ∈ C, we obtain

‖Fx−Fy‖

≤ sup
t∈[0,1]

{ ∫ t

0

(t− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))− f(m, y(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))− g(m, y(m))|dqm + |λ||x(u)− y(u)|

)
dqu
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+ |a||A(t)|
∫ η

0

(η − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))− f(m, y(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))− g(m, y(m))|dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+ |b||B(t)|
∫ σ

0

(σ − qs)(α−2)

Γq(α− 1)

( ∫ s

0

(s− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))− f(m, y(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))− g(m, y(m))|dqm + |λ||x(u)− y(u)|

)
dqu

)
dqs

+ |B(t)|
∫ 1

0

(1− qu)(γ−1)

Γq(γ)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))− f(m, y(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))− g(m, y(m))|dqm + |λ||x(u)− y(u)|

)
dqu

+ |C(t)|
∫ 1

0

(1− qu)(γ−2)

Γq(γ − 1)

(
|p|

∫ u

0

(u− qm)(β−1)

Γq(β)
|f(m, x(m))− f(m, y(m))|dqm

+ |k|
∫ u

0

(u− qm)(β+ξ−1)

Γq(β + ξ)
|g(m, x(m))− g(m, y(m))|dqm + |λ||x(u)− y(u)|

)
dqu

}
≤ Ω̄‖x− y‖,

which shows that F is a contraction as Ω̄ < 1 by the given assumption. Therefore, it follows by Banach’s
contraction principle that the problem (1)-(2) has a unique solution. �

Example. Consider a boundary value problem of integro-differential equations of fractional order given by
cD

1/2
q (cD

1/2
q + 1

5
)x(t) = 1

6
f(t, x(t)) + 1

9
I
1/2
q g(t, x(t)), 0 ≤ t ≤ 1, 0 < q < 1,

x(0) = Iα−1
q x(1/3), x(1) = 1/2Iα−1

q x(2/3), Dqx(1) = 0,
(20)

Here f(t, x) = 1
(4+t2)2

(
sin t + |x|

1+|x| + |x|
)
, g(t, x) = 1

2
tan−1 x + t3. Clearly

|f(t, x)− f(t, y)| ≤ 1

8
|x− y|, |g(t, x)− g(t, y)| ≤ 1

2
|x− y|.

With β = ξ = 1/2, γ = 3/2, λ = 1/5, p = 1/6, k = 1/9, q = 1/2, L1 = 1/8, L2 = 1/2, we find that

Ω̄ = L(|p|ω1 + |k|ω2) + |λ|ω3 ' 0.49725 < 1.

Clearly L = max{L1, L2} = 1/2. Thus all the assumptions of Theorem 3.5 are satisfied. Hence, by the conclu-
sion of Theorem 3.5, the problem (20) has a unique solution.
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Abstract. In application, one often expands the functions f on [0, 1]2 into Fourier sine series and uses
few Fourier sine coefficients to reconstruct f . In this paper, we give a decomposition formula of Fourier sine
coefficients. Based on it, we discuss hyperbolic cross approximations of Fourier sine series and Fourier sine
expansion with simple polynomial factors. In the end of this paper, we consider the three-dimensional case.

1. Introduction

In application, one often expands the functions f on [0, 1]2 into Fourier sine series and uses few Fourier sine
coefficients to reconstruct f . But the precise representation of Fourier sine coefficients does not available. In
Section 2, we will give the following decomposition of Fourier sine coefficients.

Suppose that f is a bivariate function with ∂4f
∂x2∂y2 (x, y) ∈ C([0, 1]2). For its Fourier sine coefficients, we

have

cn1,n2(f)

= 4
∫
[0,1]2

f(x, y) sin(πn1x) sin(πn2y) dxdy

= 4
π2n1n2

(
Jn1,n2 − 1

πn1
(cn1(g1)− (−1)n2+1cn2(g2))− 1

πn2
(cn2(g3) + (−1)n1+1cn2(g4)) + 1

π2n1n2
cn1,n2(h)

)
,

where
Jn1,n2 = f(0, 0) + (−1)n1+1f(1, 0) + (−1)n2+1f(0, 1) + (−1)n1+n2f(1, 1)

is an algebraic sum of values of f at vertexes of the square [0, 1]d and

g1(t) =
∂2f

∂t2
(t, 0), g2(t) =

∂2f

∂t2
(t, 1),

g3(t) =
∂2f

∂t2
(0, t), g4(t) =

∂2f

∂t2
(1, t)

are the second-order derivatives of f on boundary of [0, 1]2 and

cn(gi) = 2
∫ 1

0

gi(t) sin(πnt) dt

∗This research is supported by National Key Science Programs No.2013CB956604 and No.2010CB950504; Beijing Higher Educa-
tion Young Elite Teacher Project, and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education
Ministry.
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is Fourier sine coefficients of univariate functions gi, and h = ∂4f
∂x2∂y2 and

cn1,n2(h) = 4
∫

[0,1]2
h(x, y) sin(πn1x) sin(πn2y) dxdy

is the Fourier sine coefficient of bivariate function h(x, y).
It is well known that in order to reconstruct f by using fewer Fourier sine coefficients, we should replace full

grid approximation by sparse grid approximation [1,3,4]. In Section 3, based on this decomposition, we prove
that for the hyperbolic cross truncations

S
(h)
N (f ;x, y) =

∑

1≤n1,n2≤N−1
1≤n1n2≤N−1

cn1,n2(f) sin(πn1x) sin(πn2y)

of Fourier sine series of f , the approximation errors satisfy

‖ f − S
(h)
N (f) ‖22

= 4
π4 (f2(0, 0) + f2(0, 1) + f2(1, 0) + f2(1, 1)) log N

N + O
(

1
N

)
.

Since the number of coefficients in S
(h)
N (f) is Nc ∼ N log N . When we use the hyperbolic cross truncations to

reconstruct f , we need fewer Fourier sine coefficients than that by partial sums of Fourier sine series.
To obtain these results, we need to use a decomposition of bivariate functions in [8].
Suppose that f is a second-order continuously differentiable on [0, 1]2, denote by f ∈ W (2,2)([0, 1]2). Let

P (x, y) = f(0, 0)(1− x)(1− y) + f(0, 1)(1− x)y + f(1, 0)x(1− y) + f(1, 1)xy (1.1)

which is a bivariate polynomial determined by the values of f at vertexes of [0, 1]2, and let

Q(x, y) = f1(0, y)(1− x) + f1(1, y)x + f1(x, 0)(1− y) + f1(x, 1)y (f1 = f − P ). (1.2)

The bivariate function Q(x, y) is a sum of products of separated variable types. Denote the residual

R = f − P −Q. (1.3)

It is easy to check that

R(x, y) = 0 ((x, y) ∈ ∂([0, 1]2)),

∂2R

∂x2
(x, y) =

∂2R

∂x2
(x, y)− ∂2f1

∂x2
(x, 0)(1− y)− ∂2f1

∂x2
(x, 1)y.

So it follows that
R(x, 0) = R(x, 1) = 0 (0 ≤ x ≤ 1),

R(0, y) = R(1, y) = 0 (0 ≤ y ≤ 1), (1.4)

∂2R

∂x2
(x, 1) =

∂2R

∂x2
(x, 0) = 0,

2
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and we have a decomposition formula:

f(x, y) = P (x, y) + Q(x, y) + R(x, y), (1.5)

where P, Q, and R are stated in (1.1)-(1.3).
In Section 4, by using the decomposition (1.5), we expand f into Fourier sine series with simple polynomial

factors whose hyperbolic cross truncation can reconstruct f by using fewest Fourier sine coefficients. In order
to extend the above results to stochastic processes in Section 5, we need some concepts in Calculus of stochastic
processes [2,7].

If {ξn}∞1 is a sequence of stochastic variables and ξ is a stochastic variable, if the expectation

E[|ξn − ξ|2] → 0 (n →∞),

we say ξ is the limit of the sequence {ξn}∞1 . Based on this concept, one defines concepts of continuity, derivatives,
and integrals. If f(t) is a stochastic variable for each t ∈ [0, 1]d, we say f(t) is a stochastic process on [0, 1]d. If
f(t) is a stochastic process on [0, 1]d and E

[∫
[0,1]d

f2(t) dt
]

< ∞, then f can be expanded a Fourier sine series:

f(t) =
∑

n∈Zd
+

cn(f)

(
d∏

k=1

sin(πnktk)

)
,

where the coefficients:

cn(f) = 2d

∫

[0,1]d
f(t1, ..., td)

(
d∏

k=1

sin(πnktk)

)
dt1 · · ·dtd.

For convenience, the notation f ∈ W (l1,...,ld)([0, 1]d) means ∂l1+···+ld

∂t
l1
1 ∂t

l2
2 ···∂t

ld
d

f ∈ C([0, 1]d), and the notation

αn1,...,nd
= o(1) means that αn1,...,nd

→ 0 as n2
1 + · · ·+ n2

d →∞.
At the end of this paper (i.e. Section 6), we consider the three-dimensional case.

2. Fourier sine coefficient decomposition

From this decomposition formula (1.5), it follows that the Fourier sine coefficients of f satisfy

cn1,n2(f) = cn1,n2(P ) + cn1,n2(Q) + cn1,n2(R).

Suppose that f ∈ W (2,2)([0, 1]2). Then
(i)

cn1,n2(P ) =
4

π2n1n2
Jn,

where
Jn1,n2 = f(0, 0) + (−1)n1+1f(1, 0) + (−1)n2+1f(0, 1) + (−1)n1+n2f(1, 1). (2.1)

(ii)

cn1,n2(Q) =
4

πn1

∫ 1

0

F1(y) sin(πn2y) dy +
4

πn2

∫ 1

0

F2(x) sin(πn1x) dx,

where
F1(y) = f1(0, y) + f1(1, y)(−1)n1+1,

3
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F2(x) = f1(x, 0) + f1(x, 1)(−1)n2+1.

By f1 = f − P , we have
F1(0) = F1(1) = F2(0) = F2(1) = 0.

Since ∂2P
∂x2 = ∂2P

∂y2 = 0, we have

F ′′1 (y) =
∂2f

∂y2
(0, y) +

∂2f

∂y2
(1, y)(−1)n1+1,

F ′′2 (x) =
∂2f

∂x2
(x, 0) +

∂2f

∂x2
(x, 1)(−1)n2+1.

Let
g1(t) =

∂2f

∂t2
(t, 0), g2(t) =

∂2f

∂t2
(t, 1),

g3(t) =
∂2f

∂t2
(0, t), g4(t) =

∂2f

∂t2
(1, t). (2.2)

Then
F ′′1 (y) = g3(y) + (−1)n1+1g4(y),

F ′′2 (x) = g1(x) + (−1)n2+1g2(x).

From this, we deduce that

2
∫ 1

0
F1(y) sin(πn1y) dy = − 2

(πn1)2

∫ 1

0
F ′′1 (y) sin(πn1y) dy

= − cn1 (g3)+(−1)n1+1cn1 (g4)

(πn1)2
,

2
∫ 1

0
F2(x) sin(πn2x) dx = − 2

(πn2)2

∫ 1

0
F ′′2 (x) sin(πn2x) dx

= − cn2 (g1)+(−1)n2+1cn2 (g2)

(πn2)2
,

where cn(gi) = 2
∫ 1

0
gi(x) sin(πnx) dx, and so

cn1,n2(Q) = − 1
π3n1n2

(
cn1 (g3)+(−1)n1+1cn1 (g4)

n1
+ cn2 (g1)+(−1)n2+1cn2 (g2)

n2

)

= 1
n1n2

(
o
(

1
n1

)
+ o

(
1

n2

))
.

(iii)
1
4
cn1,n2(R) =

∫ 1

0

∫ 1

0

R(x, y) sin(πn1x) sin(πn2y) dxdy.

4
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Since R ∈ W (2.,2)([0, 1]2), using integration by parts, it follows by (1.4) that

1∫
0

R(x, y) sin(πn1x) dx

= − R(x,y)
πn1

cos(πn1x)
∣∣∣
1

0
+ 1

πn1

1∫
0

∂R
∂x (x, y) cos(πn1x) dx

= 1
πn1

(
1

πn1

∂R
∂x (x, y) sin(πn1x)

∣∣1
0
− 1

πn1

1∫
0

∂2R
∂x2 (x, y) sin(πn1x) dx

)

= − 1
(πn1)2

1∫
0

∂2R
∂x2 (x, y) sin(πn1x) dx.

So
1
4
cn1,n2(R) =

1
(πn1)2

∫ 1

0

sin(πn1x)
(∫ 1

0

∂2R

∂x2
(x, y) sin(πn2y) dy

)
dx.

By (1.4), we get

∫ 1

0

∂2R

∂x2
(x, y) sin(πn2y) dy = − 1

(πn2)2

∫ 1

0

∂4R

∂x2∂y2
(x, y) sin(πn2y) dy.

From this, we get

cn1,n2(R) = 4
π4n2

1n2
2

∫ 1

0

∫ 1

0
∂4f

∂x2∂y2 (x, y) sin(πn1x) sin(πn2y) dxdy

=
cn1,n2 ( ∂4f

∂x2∂y2 )

π4n2
1n2

2
= o

(
1

n2
1n2

2

)
.

(2.3)

Summarizing up all results, we get the following theorem.
Theorem 2.1. Let f ∈ W (2,2)([0, 1]2). Then its Fourier sine coefficients have the decomposition formula:

cn1,n2(f)

= 4
π2n1n2

(
Jn1,n2 − cn1 (g1)+(−1)n2+1cn1 (g2)

πn1
− cn2 (g3)+(−1)n1+1(g4)

πn2
+

cn1,n2 ( ∂4f

∂x2∂y2 )

π2n1n2

)
,

(2.4)

where Jn1,n2 is stated in (2.1) and gi (i = 1, 2, 3, 4) are stated in (2.2), and

cn(gi) = 2
∫ 1

0

gi(t) sin(πnt) dt, n ∈ Z+ (i = 1, 2, 3, 4).

By the Riemann-Lebesgue lemma [5],

cn1,n2(f) =
4

π2n1n2

(
Jn1,n2 + o

(
1
n1

)
+ o

(
1
n2

))
. (2.5)

5
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In detail, we have the following asymptotic formulas:

c2n1,2n2(f) = 1
π2n1n2

(
f(0, 0)− f(0, 1)− f(1, 0) + f(1, 1) + o

(
1

n1

)
+ o

(
1

n2

))
,

c2n1+1,2n2+1(f) = 1
π2n1n2

(
f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1) + o

(
1

n1

)
+ o

(
1

n2

))
,

c2n1+1,2n2(f) = 1
π2n1n2

(
f(0, 0)− f(0, 1) + f(1, 0)− f(1, 1) + o

(
1

n1

)
+ o

(
1

n2

))
,

c2n1,2n2+1(f) = 1
π2n1n2

(
f(0, 0) + f(0, 1)− f(1, 0)− f(1, 1) + o

(
1

n1

)
+ o

(
1

n2

))
.

Consider the sum of their squares:

1∑

i,j=0

c2
2n1+i,2n2+j(f) =

4
π4n2

1n
2
2

(
f2(0, 0) + f2(0, 1) + f2(1, 0) + f2(1, 1) + o

(
1
n1

)
+ o

(
1
n2

))
. (2.6)

This implies that the equality:

1∑

i,j=0

c2
2n1+i,2n2+j(f) = o

(
1
n1

)
+ o

(
1
n2

)

holds if and only if
f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0. (2.7)

This is equivalent to that the equality:

cn1,n2(f) = o

(
1
n1

)
+ o

(
1
n2

)

holds if and only if (2.7) holds. However, similar to an argument of (2.3), we can derive that cn1,n2 = o
(

1
n1n2

)

if and only if f(x, y) = 0 ((x, y) ∈ ∂([0, 1]2)).
If f ∈ W (1,2)([0, 1]2), f ∈ W (2,1)([0, 1]2), and f ∈ W (1,1)([0, 1]2), then we have the corresponding results.
Theorem 2.2. Let f ∈ W (l1,l2)([0, 1]2). Then Fourier sine coefficients of f satisfy asymptotic formulas:
(i) cn1,n2(f) = 4

π2n1n2

(
Jn1,n2 + o

(
1

n1

)
+ o

(
1

n2

))
, where l1 = l2 = 2;

(ii) cn1,n2(f) = 4
π2n1n2

( Jn1,n2 + η1 + η2), where l1 = l2 = 1;

(iii) cn1,n2(f) = 4
π2n1n2

(
Jn1,n2 + η1 + o

(
1

n2

))
, where l1 = 1, l2 = 2;

(iv) cn1,n2(f) = 4
π2n1n2

(
Jn1,n2 + o

(
1

n1

)
+ η2

)
, where l1 = l2 = 1.

Here Jn1,n2 is stated in (2.1) and ηi → 0 as ni →∞.

3. Approximation of hyperbolic cross truncations

Suppose that f ∈ W (2,2)([0, 1]2). We expand it into a Fourier sine series:

f(x, y) =
∑

n∈Z2

cn1,n2(f) sin(πn1x) sin(πn2y) (L2).

6
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Consider its hyperbolic cross truncations:

S
(h)
N (f ; x, y) =

∑

1≤n1,n2≤N−1
1≤n1n2≤N−1

cn1,n2(f) sin(πn1x) sin(πn2y).

Then

f(x, y)− S
(h)
N (f ; x, y) =




N−1∑
n1=1

∞∑

n2=
[

N−1
n1

]
+1

+
∞∑

n1=N

∞∑
n2=1


 cn1,n2(f) sin(πn1x) sin(πn2y).

By the Parseval identity,

4 ‖ f − S
(h)
N (f) ‖22=

N∑
n1=1

∞∑

n2=
[

N
n1

]
|cn1,n2(f)|2 +

∞∑

n1=N

∞∑
n2=1

|cn1,n2(f)|2 = I
(1)
N + I

(2)
N . (3.1)

By (2.5),

|cn1,n2(f)|2 =
16

π4n2
1n

2
2

(
J2

n1,n2
+ o

(
1
n1

)
+ o

(
1
n2

))
.

So
I
(2)
N = O

(
1
N

)

and

I
(1)
N = 16

π4

N∑
n1=1

∞∑
n2=

[
N−1
n1

]
+1

J2
n1,n2
n2

1n2
2

+ o(1)
N∑

n1=1

∞∑
n2=

[
N−1
n2

+1
]

1
n3

1n2
2

+ o(1)
N∑

n1=1

∞∑
n2=

[
N−1
n1

]
+1

1
n2

1n3
2

= 16
π4

N−1∑
n1=1

∞∑
n2=

[
N−1
n1

]
+1

J2
n1,n2
n2

1n2
2

+ o
(

1
N

)
.

(3.2)

By (3.1), we get

4 ‖ f − S
(h)
N (f) ‖22= KN + o

(
1
N

)
, (3.3)

where

KN =
16
π4

N−1∑
n1=1

∞∑

n2=
[

N
n1

]

J2
n1,n2

n2
1n

2
2

.

A direct computation shows that

KN = 1
π4

[N−1
2 ]∑

n1=1

∞∑
n2=

[
N

4n1

]
1

n2
1n2

2

(
J2

2n1,2n2
+ J2

2n1−1,2n2
+ J2

2n1,2n2−1 + J2
2n1−1,2n2−1

)
+ O

(
1
N

)

= 4M
π4

[N−1
2 ]∑

n1=1

∞∑
n2=

[
N

4n1

]
1

n2
1n2

2
+ O

(
1
N

)
,

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

536 Zhihua Zhang 530-547



where M = f2(0, 0) + f2(0, 1) + f2(1, 0) + f2(1, 1). Notice that

∑

n2=
[

N
4n1

]
1

n2
1n

2
2

=
1
n2

1

(∫ ∞

N
4n1

dt

t2
+ O

(
n2

1

N2

))
.

Then

KN =
16M

π4N

[N−1
2 ]∑

n1=1

1
n1

+ O

(
1
N

)
=

16M log N

π4N
+ O

(
1
N

)
.

From this and (3.1)-(3.3), it follows that

‖ f − S
(h)
N (f) ‖22=

4M

π4

log N

N
+ O

(
1
N

)
. (3.4)

The number of Fourier sine coefficients in the Nth hyperbolic cross truncation S
(h)
N (f) is

Nc =
N−1∑
n1=1

[
N−1
n1

]
∑
n2=1

1 =
N−1∑
n1=1

[
N − 1

n1

]
=

∫ N

1

N

t
dt + O(N) = N log N + O(N).

Then (3.4) can be written into

‖ f − S
(h)
N (f) ‖22=

4M

π4

log2 Nc

Nc
+ O

(
log Nc

Nc

)
.

Theorem 3.1. Let f ∈ W (l1,l2)([0, 1]2). Then the hyperbolic cross truncations of Fourier sine series of f

satisfy the asymptotic formulas:
(i) ‖ f − S

(h)
N (f) ‖22= 4M

π4
log N

N + O
(

1
N

)
(l1 = l2 = 2);

(ii) ‖ f − S
(h)
N (f) ‖22= 4M

π4
log N

N + o
(

log N
N

)
(l1 = l2 or l1 = 2, l2 = 1 or l1 = 1, l2 = 2,

where the constant M = f2(0, 0) + f2(0, 1) + f2(1, 0) + f2(1, 1).

4. Fourier sine expansion with polynomial factors

Suppose that f ∈ W (2,2)([0, 1]2). Then, by decomposition formula:

f(x, y) = P (x, y) + f1(0, y)(1− x) + f1(1, y)x + f1(x, 0)(1− y) + f1(x, 1)y + R(x, y),

denote
α1(y) = f1(0, y), α2(y) = f1(1, y),

α3(x) = f1(x, 0), α4(x) = f1(x, 1),

then αi(0) = αi(1) = 0 and αi ∈ W ([0, 1]) (i = 1, 2, 3, 4).
Expanding each αi into a univariate Fourier sine series and R(x, y) into a bivariate Fourier sine series, we

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

537 Zhihua Zhang 530-547



get a Fourier sine expansion of f with polynomial factors:

f(x, y) = P (x, y)

+ (1− x)
∞∑
1

cm(α1) sin(πmy) + x
∞∑
1

cm(α2) sin(πmy)

+ (1− y)
∞∑
1

cm(α3) sin(πmx) + y
∞∑
1

cm(α4) sin(πmx)

+
∞∑

n1,n2=1
cn1,n2(R) sin(πn1x) sin(πn2y),

(4.1)

where
cm(αi) = 2

∫ 1

0
αi(t) sin(πmt) dt

= − 2
(πm)2

∫ 1

0
α′′i (t) sin(πmt) dt

= − 1
(πm)2 cm(α′′i ) (i = 1, 2, 3, 4),

(4.2)

cn1,n2(R) =
cn1,n2(

∂4f
∂x2∂y2 )

π4n2
1n

2
2

.

By the definition of f1, we have α′′i (t) = h′′i (t) (i = 1, 2, 3, 4), where

h1(t) = f(0, t), h2(t) = f(1, t),

h3(t) = f(t, 0), h4(t) = f(t, 1).

Consider the hyperbolic cross truncations of the series (4.1):

S̃
(h)
N (x, y) = P (x, y)

+ (1− x)
N−1∑

1
cn(α1) sin(πmy) + x

N−1∑
1

cn(α2) sin(πmy)

+ (1− y)
N−1∑

1
cn(α3) sin(πmx) + y

N−1∑
1

cn(α4) sin(πmx)

+
∑

1≤n1,n2≤N−1
1≤n1n2≤N−1

cn1,n2(R) sin(πn1x) sin(πn2y).

By using Parseval identity, it follows from (4.1) and (4.3) that

‖ f − S̃
(h)
N (f) ‖22= O(1)




4∑

i=1

∞∑

m=N

|cn(αi)|2 +




N−1∑
n1=1

∞∑

n2=
[

N
n1

]
+

∞∑

n1=N

∞∑
n2=1


 |cn1,n2(R)|2


 .

Finally, by the estimates (4.2) and (2.3), we get

‖ f − S̃
(h)
N (f) ‖22= O

(
log N

N3

)
.
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The number of Fourier sine coefficients in the series (4.3) satisfies Nc ∼ N log N . Therefore,

‖ f − S̃
(h)
N (f) ‖22= O

(
log4 Nc

N3
c

)
.

Theorem 4.1. Let f ∈ W (l1,l2)([0, 1]2) (l1 = 1 or 2, l2 = 1 or 2). Then the hyperbolic cross truncations of
the series (4.1) satisfy

‖ f − S̃
(h)
N (f) ‖22= O

(
log N

N3

)
.

5. Uncertainty analysis

Suppose that f is a stochastic process and f ∈ W (2,2)([0, 1]2). Then the coefficient decomposition formula
still holds:

cn1,n2(f)

= 4
π2n1n2

Jn1,n2 − 2
π3n1n2

(
cn1 (g3)+(−1)n1+1cn1 (g4)

n1
+ cn2 (g1)+(−1)n2+1cn2 (g2)

n2

)
+ rn,

(5.1)

where the error rn1,n2 is equal to

rn1,n2 =
cn1,n2(

∂4f
∂x2∂y2 )

π4n2
1n

2
2

=
4

π4n2
1n

2
2

∫

[0,1]2

∂4f

∂x2∂y2
(x, y) sin(πn1x) sin(πn2y) dxdy. (5.2)

Consider the expectation of rn1,n2 . The expectation and integral can be exchanged, so

E[rn1,n2 ] =
4

π4n2
1n

2
2

∫

[0,1]2
E

[
∂4f

∂x2∂y2
(x, y)

]
sin(πn1x) sin(πn2y) dxdy. (5.3)

The expectation and limit can be exchanged, so it follows from ∂4f
∂x2∂y2 ∈ C([0, 1]2) that E

[
∂4f

∂x2∂y2

]
∈ C([0, 1]2).

By the Riemann-Lebesgue lemma,

E[rn1,n2 ] =
cn1,n2(E

[
∂4f

∂x2∂y2

]
)

π4n2
1n

2
2

= o

(
1

n2
1n

2
2

)
. (5.4)

Consider the variance of rn. By (5.2), we have

r2
n1,n2

= 16
π8n4

1n4
2

∫
[0,1]4

∂4f
∂x2∂y2 (x, y) ∂4f

∂t2∂s2 (t, s) sin(πn1x) sin(πn2y) sin(πn1t) sin(πn2s) dxdydtds.

From this and (5.4),

E[r2
n1,n2

]

= 16
π8n4

1n4
2

∫
[0,1]4

E[ ∂4f
∂x2∂y2 (x, y) ∂4f

∂t2∂s2 (t, s)] sin(πn1x) sin(πn1t) sin(πn2x) sin(πn2s) dxdydtds

=
cn1,n2,n1,n2 (E[ ∂4f

∂x2∂y2 (x,y) ∂4f

∂t2∂s2
(t,s)])

π8n4
1n4

2
= o

(
1

n4
1n4

2

)
.

(5.5)
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By (5.3),

(E[rn1,n2 ])
2

= 16
π8n4

1n4
2

∫
[0,1]4

E
[

∂4f
∂x2∂y2 (x, y)

]
E

[
∂4f

∂t2∂s2 (t, s)
]
sin(πn1x) sin(πn2y) sin(πn1t) sin(πn2s) dxdydtds.

Notice that
Var(rn1,n2) = E[r2

n1,n2
]− (E[rn1,n2 ])

2,

Cov
(

∂4f

∂x2∂y2
,

∂4f

∂t2∂s2

)
= E

[
∂4f

∂x2∂y2

∂4f

∂t2∂s2

]
− E

[
∂4f

∂x2∂y2

]
E

[
∂4f

∂t2∂s2

]
.

Then, by (5.4) and (5.5), the variance of rn:

Var(rn1,n2)

= 16
π8n4

1n4
2

∫
[0,1]4

Cov
(

∂4f
∂x2∂y2 (x, y), ∂4f

∂t2∂s2 (t, s)
)

sin(πn1x) sin(πn2y) sin(πn1t) sin(πn2s) dxdydtds

=
cn1,n2,n1,n2

(
Cov( ∂4f

∂x2∂y2 , ∂4f

∂t2∂s2
)
)

π8n4
1n4

2
= o

(
1

n4
1n4

2

)
.

Similarly, for i = 1, 2, 3, as ni →∞, we have

E[cni
(gi)] = cni

(E[gi]) = o(1);

E[c2
ni

(gi)] = cni,ni
(E[gi(x)gi(y)]) = o(1);

Var(cni
(gi)) = cni,ni

(Cov(gi(x), gi(y))) = o(1).

By (5.1), we get

E[cn1,n2(f)] =
4

π2n1n2

(
E[Jn1,n2 ] + o

(
1
n1

)
+ o

(
1
n2

))
.

For convenience, denote

τn1,n2 = − 2
π3n1n2

(
cn2(g1) + (−1)n2+1(g2)

n1
+

cn1(g3) + (−1)n1+1(g4)
n2

)

µn1,n2 =
4

π2n1n2
Jn1,n2 .

So cn1,n2(f) = µn1,n2 + τn1,n2 + rn1,n2 , and so

E[c2
n1,n2

(f)] = E[µ2
n1,n2

] + An1,n2 ,

where
An1,n2

= E[τ2
n1,n2

] + E[r2
n1,n2

] + 2E[µn1,n−2τn1,n2 ] + 2E[µn1,n2rn1,n2 ] + 2E[τn1,n2rn1,n2 ]

= 1
n2

1n2
2

(
o
(

1
n1

)
+ o

(
1

n2

))
.
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Therefore,

E[c2
n1,n2

(f)] =
16

π4n2
1n

2
2

(
E[J2

n1,n2
] + o

(
1
n1

)
+ o

(
1
n2

))
. (5.6)

Denote
M̃ = E[f2(0, 0)] + E[f2(0, 1)] + E[f2(1, 0)] + E[f2(1, 1)].

Similar to the argument from (3.1) to (3.4), we can deduce from (5.6) that

E
[
‖ f − S

(h)
N (f) ‖22

]
=

4M̃

π4

log N

N
+ O

(
1
N

)
.

Theorem 5.1. Let f be a stochastic process and f ∈ W (2,2)([0, 1]2). Then
(i) Fourier sine coefficients of f satisfy

cn1,n2(f)

= 4
π2n1n2

Jn1,n2 − 2
π3n1n2

(
cn2 (g1)+(−1)n2+1cn2 (g2)

n1
+ cn1 (g3)+(−1)n1+1(g4)

n2

)
+ rn1,n2 ,

where

E[rn1,n2 ] =
cn1,n2

(
E[ ∂4f

∂x2∂y2 ]
)

π4n2
1n

2
2

,

Var(rn1,n2) =
cn1,n2,n1,n2

(
Cov

(
∂4f

∂x2∂y2 , ∂4f
∂t2∂s2

))

π8n4
1n

4
2

,

where cn1,n2,n1,n2(Cov
(

∂4f
∂x2∂y2 , ∂4f

∂t2∂s2

)
) is the four-variate Fourier sine coefficient of the covariance of ∂4f

∂x2∂y2

and ∂4f
∂t2∂s2 at n = (n1, n2, n1, n2).

(ii) the hyperbolic cross truncations of Fourier sine series of f satisfy

E
[
‖ f − S

(h)
N (f) ‖22

]
=

4M̃

π4

log N

N
+ O

(
1
N

)
,

where M̃ = E[f2(0, 0)] + E[f2(0, 1)] + E[f2(1, 0)] + E[f2(1, 1)].

6. The three-dimensional case

For a three-dimensional function f on [0, 1]3, we can decompose f as follows:

f(x, y, z) = P (x, y, z) + Q(x, y, z) + R(x, y, z) + T (x, y, z), (6.1)

where
P (x, y, z) = f(0, 0, 0)(1− x)(1− y)(1− z) + f(0, 1, 0)(1− x)y(1− z)

+ f(0, 1, 1)(1− x)yz + f(0, 0, 1)(1− x)(1− y)z

+ f(1, 0, 0)x(1− y)(1− z) + f(1, 1, 0)xy(1− z)

+ f(1, 1, 1)xyz + f(1, 0, 1)x(1− y)z

(6.2)
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is a three-variate polynomial;

Q(x, y, z) = f1(x, 0, 0)(1− y)(1− z) + f1(x, 0, 1)(1− y)z

+ f1(x, 1, 0)y(1− z) + f1(x, 1, 1)yz

+ f1(1, y, 0)(1− x)(1− z) + f1(0, y, 1)(1− x)z

+ f1(1, y, 0)x(1− z) + f1(1, y, 1)xz

+ f1(0, 0, z)(1− x)(1− y) + f1(0, 1, z)(1− x)y

+ f1(1, 0, z)x(1− y) + f(1, 1, z)xy (f1 = f − P )

(6.3)

is a sum of products of separated variable types, where one factor is the restriction of f1 is each edge, the other
factor is a bivariate polynomial;

R(x, y, z) = f2(x, y, 0)(1− z) + f2(x, 0, z)(1− y)

+ f2(0, y, z)(1− x) + f2(x, y, 1)z

+ f2(x, 1, z)y + f2(1, y, z)x (f2 = f − P −Q)

(6.4)

is a sum of products of separated variable types, where one factor is the restriction of f2, the other factor is a
univariate polynomial and

T (x, y, z) = f(x, y, z)− P (x, y, z)−Q(x, y, z)−R(x, y, z).

It is easy to check the following proposition.
Proposition 6.1. f1(x, y, z) = 0 for each vertex of [0, 1]3 and f2(x, y, z) = 0 for each edge of [0, 1]3, and

T (x, y, z) = 0 for each face of [0, 1]3.
Consider the Fourier sine coefficients cn1,n2,n3(f). From the decomposition formula, it follows that

cn1,n2,n3(f) = cn1,n2,n3(P ) + cn1,n2,n3(Q) + cn1,n2,n3(R) + cn1,n2,n3(T ).

Since the Fourier sine coefficients:

cn1,n2,n3(f) = 8
∫

[0,1]3
f(x, y, z) sin(πn1x) sin(πn2y) sin(πn3z) dxdydz,

we obtain that
(i)

cn1,n2,n3(P ) =
8Un1,n2,n3

π3n1n2n3
,

where
Un1,n2,n3 = f(0, 0, 0) + (−1)n2+1f(0, 1, 0) + (−1)n2+n3f(0, 1, 1)

+ (−1)n3+1f(0, 0, 1) + (−1)n1+1f(1, 0, 0) + (−1)n1+n2f(1, 1, 0)

+ (−1)n1+n2+n3+1f(1, 1, 1) + (−1)n1+n3f(1, 0, 1);

(6.5)
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(ii)

cn1,n2,n3(Q) = − V
(1)
n1,n2,n3

π4n2
1n2n3

− V
(2)
n1,n2,n3

π4n1n2
2n3

− V
(3)
n1,n2,n−3

π4n1n2n2
3

,

where
V

(1)
n1,n2,n3 = cn1

(
∂2f
∂x2 (·, 0, 0)

)
+ (−1)n3+1cn1

(
∂2f
∂x2 (·, 0, 1)

)

+ (−1)n2+1cn1

(
∂2f
∂x2 (·, 1, 0)

)
+ (−1)n2+n3cn1

(
∂2f
∂x2 (·, 1, 1)

)
,

V
(2)
n1,n2,n3 = cn2

(
∂2f
∂y2 (0, ·, 0)

)
+ (−1)n3+1cn2

(
∂2f
∂y2 (0, ·, 1)

)

+ (−1)n1+1cn2

(
∂2f
∂y2 (1, ·, 0)

)
+ (−1)n1+n3cn2

(
∂2f
∂y2 (1, ·, 1)

)
,

V
(3)
n1,n2,n3 = cn3

(
∂2f
∂z2 (0, 0, ·)

)
+ (−1)n2+1cn3

(
∂2f
∂z2 (0, 1, ·)

)

+ (−1)n1+1cn3

(
∂2f
∂z2 (1, 0, ·)

)
+ (−1)n1+n2cn3

(
∂2f
∂z2 (1, 1, ·)

)
;

(iii)

cn1,n2,n3(R) =
M

(1)
n1,n2,n3

π5n2
1n

2
2n3

+
M

(2)
n1,n2,n3

π5n2
1n2n2

3

+
M

(3)
n1,n2,n3

π5n1n2
2n

2
3

,

where
M (1)

n1,n2,n3
= cn1,n2

(
∂4f

∂x2∂y2
(·, ·, 0)

)
+ (−1)n3+1cn1,n2

(
∂4f

∂x2∂y2
(·, ·, 1)

)
,

M
(2)
n1,n2,n−3 = cn1,n3

(
∂4f

∂x2∂z2
(·, 0, ·)

)
+ (−1)n2+1cn1,n3

(
∂4f

∂x2∂z2
(·, 1, ·)

)
,

M (3)
n1,n2,n3

= cn2,n3

(
∂4f

∂y2∂z2
(0, ·, ·)

)
+ (−1)n1+1cn2,n3

(
∂4f

∂y2∂z2
(1, ·, ·)

)
;

(iv)

cn1,n2,n3(T ) =
cn1,n2,n3

(
∂6f

∂x2∂y2z2

)

π6n2
1n

2
2n

2
3

.

From this and Proposition 6.1, we get the following theorem.
Theorem 6.2. Suppose that f ∈ W (2,2,2)([0, 1]3), i.e., ∂6f

∂x2∂y2∂z2 (x, y, z) ∈ C([0, 1]3). Then

cn1,n2,n3(f) =
8

π3n1n2n3

(
Un1,n2,n3 + o

(
1
n1

)
+ o

(
1
n2

)
+ o

(
1
n3

))
,

where Un1,n2,n3 is stated in (6.5).
Let ni = 2pi + qi (i = 1, 2, 3). Then

c2p1+q1,2p2+q2,2p3+q3(f) =
1

π3p1p2p3

(
U2p1+q1,2p2+q2,2p3+q3 + o

(
1
p1

)
+ o

(
1
p2

)
+ o

(
1
p3

))
,

where Un1,n2,n3 is stated in (6.5). It is clear from (6.5) that U2p1+q1,2p2+q2,2p3+q3 = Uq1,q2,q3 . So

c2
2p1+q1,2p2+q2,2p3+q3

(f) =
1

π2p2
1p

2
2p

2
3

(
Uq1,q2,q3 + o

(
1
p1

)
+ o

(
1
p2

)
+ o

(
1
p3

))
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and

∑

(q1,q2,q3)∈{0,1}3
c2
2p1+q1,2p2+q2,2p3+q3

(f) =
1

π2p2
1p

2
2p

2
3


 ∑

(q1,q2,q3)∈{0,1}3
U2

q1,q2,q3
+ o

(
1
p1

)
+ o

(
1
p2

)
+ o

(
1
p3

)
 .

By (6.5),
Uq1,q2,q3 = f(0, 0, 0) + (−1)q2+1f(0, 1, 0) + (−1)q2+q3f(0, 1, 1)

+ (−1)q3+1f(0, 0, 1) + (−1)q1+1f(1, 0, 0) + (−1)q1+q2f(1, 1, 0)

+ (−1)q1+q2+q3+1f(1, 1, 1) + (−1)q1+q3f(1, 0, 1).

A direct computation shows that
∑

(q1,q2,q3)∈{0,1}3
Uq1,q2,q3 = 8(f2(0, 0, 0) + f2(0, 1, 0) + f2(0, 1, 1) + f2(0, 0, 1)

+ f2(1, 0, 0) + f2(1, 1, 0) + f2(1, 1, 1) + f2(1, 0, 1))

= 8
∑

λ∈{0,1}3
f2(λ).

Therefore,

∑

(q1,q2,q3)∈{0,1}3
c2
2p1+q1,2p2+q2,2p3+q3

(f) =
1

π6p2
1p

2
2p

2
3


 8

∑

λ∈{0,1}3
f2(λ) + o

(
1
p1

)
+ o

(
1
p2

)
+ o

(
1
p3

)
 .

From this, we deduce the following proposition.
Proposition 6.3. Let f ∈ W (2,2,2)([0, 1]3). Then its Fourier sine coefficients

cn1,n2,n3(f) = o

(
1

n1n2n3

)(
o

(
1
n1

)
+ o

(
1
n2

)
+ o

(
1
n3

))

if and only if f(λ) = 0 for all λ ∈ {0, 1}3.
Suppose that f ∈ W (2,2,2)([0, 1]3). Then the hyperbolic cross truncation of its Fourier sine series:

S
(h)
N (f ;x, y, z)

=
∑

1≤n1,n2,n3≤N−1
1≤n1n2n3≤N−1

cn1,n2,n3(f) sin(πn1x) sin(πn2y) sin(πn3z)

=
∑

1≤p1,p2,p3≤[N−1
2 ]

1≤p1p2p3≤[N−1
8 ]

∑
(q1,q2,q3)∈{0,1}3

c2p1+q1,2p2+q2,2p3+q3(f) sin π(2p1 + q1)x sinπ(2p2 + q2)y sinπ(2p3 + q3)z.
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By the Parseval identity and (6.3), it follows that

8 ‖ f − S
(h)
N (f) ‖22

=




∞∑
p1,p2,p3=1

− ∑
1≤p1,p2,p3≤[N−1

2 ]
1≤p1p2p3≤[N−1

8 ]




∑
(q1,q2,q3)∈{0,1}3

c2
2p1+q1,2p2+q2,2p3+q3

(f)

= 1
π6




∞∑
p1,p2,p3=1

− ∑
1≤p1,p2,p3≤[N−1

2 ]
1≤p1p2p3≤[N−1

8 ]

8
p2
1p2

2p2
3

(
∑

λ∈{0,1}3
f2(λ) + o(1)

)



= 1
π6

[N−1
2 ]∑

p1=1

[
N

4p1

]
∑

p2=1

∞∑
p3=

[
N

2p1p2

]

(
∑

λ∈{0,1}3
f2(λ) + o(1)

)
.

Notice that ∞∑
p3=

[
N

8p1p2

]
1

p2
1p2

2p2
3

= 1
p2
1p2

2

∫∞
N

8p1p2

dt
t2 + O

(
1

N2

)
= 8

p1p2N + O
(

1
N2

)

and [
N

4p1

]
∑

p2=1

∞∑
p3=

[
N

8p1p2

]
1

p2
1p2

2p2
3

=

[
N

4p1

]
∑

p2=1

8
p1p2N + O

(
1

Np1

)
= 8

p1N

∫ N
4p1

1
dt
t + O

(
1

Np1

)

= 8
Np1

(log N − log p1) + O
(

1
Np1

)
.

Since
[N−1

2 ]∑
p1=1

1
p1

= log N + O(1)

and
[N−1

2 ]∑
p1=1

log p1

p1
=

∫ N
2

1

log t

t
dt + O(1) =

1
2

∫ N
2

1

d log2 t + O(1) =
1
2

log2 N + O(1),
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we have
[N−1

2 ]∑
p1=1

[
N

4p1

]
∑

p2=1

∞∑
p3=

[
N

8p1p2

]
1

p2
1p2

2p2
3

= 8 log N
N

[N−1
2 ]∑

p1=1

1
p1
− 8

N

[N−1
2 ]∑

p1=1

log p1
p1

+ O
(

log N
N

)

= 8 log2 N
N − 4 log2 N

N + O
(

log N
N

)
= 4 log2 N

N + O
(

log N
N

)
.

Finally, we have

‖ f − S
(h)
N (f) ‖22=

4
π6


 ∑

λ∈{0,1}3
f2(λ)


 log2 N

N
(1 + o(1)) (N →∞).

For stochastic processes, we have the corresponding result.
Theorem 6.4. Suppose that f is a stochastic process and f ∈ W (2,2,2)([0, 1]3). Then

E
[
‖ f − S

(h)
N (f) ‖22

]
=

4
π6


 ∑

λ∈{0,1}3
E[f2(λ)]


 log2 N

N
(1 + o(1)) (N →∞).

For a three-variate function f on [0, 1]3, in its decomposition formula (6.1)-(6.4), we expand univariate func-
tions f1(x, 0, 0), ..., f1(1, y, 1), bivariate functions f2(x, y, 0), ..., f2(x, y, 1), and three-variate function T (x, y, z)
into Fourier sine series, we get the Fourier sine series with polynomial factors. We again define the corresponding
hyperbolic cross truncations as follows:

(S̃(h)
N f)(x, y, z) = P (x, y, z) + QN (x, y, z) + RN (x, y, z) + TN (x, y, z), (6.6)

where P (x, y, z) is stated in (6.2), QN (x, y, z) is obtained by replacing eight univariate functions by their Nth
partial sums in (6.3), RN (x, y, z) is obtained by replacing four bivariate functions by their Nth hyperbolic cross
truncations in (6.4), and T

(h)
N is the Nth hyperbolic cross truncation of T (x, y, z).

Theorem 6.5. Let f ∈ W (2,2,2)([0, 1]3). Then hyperbolic cross truncations of the Fourier sine series of f

with polynomial factors satisfy

‖ f − S̃
(h)
N (f) ‖22= O

(
log2 N

N3

)
,

where S̃
(h)
N (f) is defined in (6.6).

The number of Fourier sine coefficients in S̃
(h)
N (f) satisfy Nc ∼ N log2 N . From this and (6.7), we have

‖ f − S
(h)
N (f) ‖22= O

(
log8 Nc

N3
c

)
.

Therefore, we can use fewest Fourier sine coefficients to reconstruct f . For stochastic processes, the correspond-
ing result is

E
[
‖ f − S

(h)
N (f) ‖22

]
= O

(
log8 Nc

N3
c

)
.
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Abstract. In this paper, mathematical programs with nonlinear complementarity constraints ( MPCC

) are investigated and a new relaxed method is proposed. Firstly, based on Mangasarian complementarity

function, MPCC is relaxed. The relaxed problem is a parametrized nonlinear programming. Secondly, it is

proved that the sequence of stationary points of the relaxed problems converges to M-stationary point of

MPCC under some mild assumptions; further, it is shown that the stationary point is strong for MPCC if

some additional conditions are satisfied. Thirdly, we analyze the existence of the Lagrange multipliers for

the relaxed problem. We show that Guignard constraint qualification holds for the relaxed problem under

MPCC-linear independence constraint qualifications, and then obtain the existence theorem of the Lagrange

multipliers.

Key words. Nonlinear complementarity constraints; Mathematical programs; Relaxed method; Con-

straint qualifications; Stationary points; Global convergence

AMS subject classification 90C, 49M.

1. Introduction

In this paper, we consider the following MPCC :

min f(z)

s.t. gi(z) ≤ 0, i ∈ I = {1, · · · ,m},
hi(z) = 0, i ∈ Ie = {1, · · · ,me},
Gi(z) ≥ 0, i ∈ Ic = {1, · · · ,mc},
Hi(z) ≥ 0, i ∈ Ic,
Gi(z)Hi(z) ≤ 0, i ∈ Ic,

(1.1)
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where f, gi, hi, Gi, Hi : Rn → R are all continuously differentiable. The MPCC (1.1) has many

applications in game theory, traffic transportation, engineering design and so on. The interested

reader is referred to the monograph [1] for more details.

As we know, the MPCC (1.1) is a highly difficult nonlinear program since the standard Mangasarian-

Fromovitz constraint qualification (MFCQ) is violated at any feasible point ( see [2]). This implies

that the well-developed approaches for the standard nonlinear programs typically have severe dif-

ficulties if they are directly used to solve the MPCC (1.1). So MPCC-tailed algorithms have to be

studied.

During last decade, several kinds of efficient methods for the MPCC (1.1) have been developed,

such as relaxation ( or regularization ) ([4–8]), smoothing ([1, 9–17]), interior point method ([1, 18–

20]) and penalization ([21]). In this paper, our focus is on relaxation method. The basic idea of

the relaxation method is to relax the complicated complementarity constraints

Gi(z) ≥ 0, Hi(z) ≥ 0, Gi(z)Hi(z) ≤ 0, i ∈ Ic

in a suitable way. The interested reader is referred to the recent review paper on relaxation method

[5] for more knowledge.

Kadrani et al. proposed a relaxation scheme in [8] as follows:

min f(z)

s.t. gi(z) ≤ 0, i ∈ I,
hi(z) = 0, i ∈ Ie,
Gi(z) ≥ −t, i ∈ Ic,
Hi(z) ≥ −t, i ∈ Ic,
(Gi(z)− t) (Hi(z)− t) ≤ 0, i ∈ Ic,

(1.2)

where t is a nonnegative parameter. It is shown that any accumulation point of the stationary

point sequence of (1.2) converges to an M-stationary point of MPCC (1.1) when t → 0 under

the MPCC-linear independence constraint qualification (MPCC-LICQ) condition and some mild

conditions. They also showed that existence of KKT multipliers for the relaxed problem (1.2) under

the MPCC-LICQ assumption. Figure 1, however, shows that there exist two disadvantages: (1)

the feasible region of the relaxed problem (1.2) is almost disconnected. Therefore, one has to meet

severe difficulties when solving (1.2) by means of a standard NLP algorithm; (2) the feasible region

of the MPCC (1.1) is not included in that of the relaxed problem (1.2), regardless of the choice of

t > 0.

In order to overcome the above drawbacks, Kanzow et al. recently proposed a new relaxation

2
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(t,t) 

0 

Figure 1: Geometric interpretation of relaxation in [8]

scheme in [5] as follows:

min f(z)

s.t. gi(z) ≤ 0, i ∈ I,
hi(z) = 0, i ∈ Ie,
Gi(z) ≥ −t, i ∈ Ic,
Hi(z) ≥ −t, i ∈ Ic,
Ψ(z; t) = (Ψi(z; t), i ∈ Ic) ≤ 0,

(1.3)

where t ≥ 0 is a parameter, Ψi(z; t) = ϕ(Gi(z) − t,Hi(z) − t), the complementarity function

ϕ : R2 → R is defined by

ϕ(x, y) =

{
xy, x+ y ≥ 0,

−1
2(x2 + y2), x+ y < 0.

The geometric interpretation of the relaxation scheme (1.3) is given in Figure 2. It is shown

that any accumulation point of the stationary point sequence of (1.3) converges to an M-stationary

point of MPCC (1.1) when t → 0 under much weaker MPCC-constant positive linear dependence

( MPCC-CPLD ) condition and some mild conditions. And they also showed the existence of the

Lagrange multipliers for the relaxed problem (1.3) under the MPCC-LICQ assumption.

It is worth noting that the feasible region of the original problem (1.1) is part of the boundary

of that of the relaxed problem (1.3). Consequently, some additional stricter conditions is required

for the search directions when solving the relaxed problem (1.3) by a standard NLP algorithm.

In this paper, motivated from the ideas in [5, 8] and based on the Mangasarian complementarity

3
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Figure 2: Geometric interpretation of relaxation in [5]

function ([25]) defined by

φ(a, b) = ρ(a) + ρ(b)− ρ(|a− b|) (1.4)

with ρ : R→ R being given by

ρ(τ) =

{
τ2, if τ ≥ 0

−τ2, if τ < 0,

we propose a new relaxation scheme:

min f(z)

s.t. gi(z) ≤ 0, i ∈ I,
hi(z) = 0, i ∈ Ie,
Gi(z) ≥ −t, i ∈ Ic,
Hi(z) ≥ −t, i ∈ Ic,
Φi(z; t) ≤ 0, i ∈ Ic,

(1.5)

where t is a nonnegative parameter and

Φi(z; t) = φ(Gi(z)− t,Hi(z)− t). (1.6)

The geometric interpretation of the relaxation scheme (1.5) is given in Figure 3.

We show that any accumulation point of the stationary point sequence of (1.5) converges to an

M-stationary point of MPCC (1.1) when t → 0 under much weaker MPCC-CPLD condition and

some mild conditions, and converges to a strongly stationary point of MPCC (1.1) under additional

conditions. We also show that the standard Guignard constraint qualification (GCQ) holds at every

4
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Figure 3: Geometric interpretation of the proposed relaxation scheme

feasible point of the relaxed problem (1.5) and the existence of Lagrange multipliers of the relaxed

problem (1.5) is verified under some mild conditions.

The rest of the paper is organized as follows. Some definitions of different stationary points and

constraint qualifications and preliminary results about MPCC are restated in Section 2. Section 3

contains the analysis and proof of the convergent results. The existence of Lagrange multipliers for

the relaxed problem is analyzed and verified in Section 4 and some concluding remarks are given

in the final section.

2. Preliminaries

As we know, except for Guignard CQ, all standard constraint qualifications are far too restrictive

for MPCCs ([22]). Some MPCC-tailed CQs are introduced in the past. Furthermore, due to the

fact that most standard CQs are likely to be violated at a local minimum of an MPCC, the KKT

conditions can not be considered as the optimality conditions. Hence, several weaker stationarity

notions have been proposed. For convenience and completeness, in this section we briefly restate

some concepts and results about the MPCC (1.1) which are needed in the sequel analysis. The

reader is also referred to [5, 22–24].

Let S be the feasible set of the MPCC (1.1). For any z∗ ∈ S, define different index sets for the

MPCC (1.1) as follows:

I0+(z∗) = {i ∈ Ic | Gi(z∗) = 0, Hi(z
∗) > 0},

I00(z∗) = {i ∈ Ic | Gi(z∗) = 0, Hi(z
∗) = 0},

I+0(z∗) = {i ∈ Ic | Gi(z∗) > 0, Hi(z
∗) = 0}.

(2.1)

Definition 2.1 [5, 23] Let z∗ be a feasible point of the MPCC (1.1). Then z∗ is said to be

(1) weakly stationary for the MPCC (1.1), if there exist multipliers (α∗, β∗, γ∗, δ∗) ∈ Rm × Rme ×

5
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Rmc × Rmc such that

∇f(z∗) +
∑
i∈I

α∗i∇gi(z∗) +
∑
i∈Ie

β∗i∇hi(z∗)−
∑
i∈Ic

γ∗i∇Gi(z∗)−
∑
i∈Ic

δ∗i∇Hi(z
∗) = 0,

α∗i ≥ 0, α∗i gi(z
∗) = 0 (i ∈ I), γ∗i = 0 (i ∈ I+0(z∗)), δ∗i = 0 (i ∈ I0+(z∗));

(2.2)

(2) C-stationarity, if it is weakly stationarity and γ∗i δ
∗
i ≥ 0, ∀ i ∈ I00(z∗);

(3) M-stationary, if it is weakly stationarity and γ∗i > 0, δ∗i > 0 or γ∗i δ
∗
i = 0, ∀ i ∈ I00(z∗);

(4) strongly stationary, if it is weakly stationarity and γ∗i , δ
∗
i ≥ 0, ∀ i ∈ I00(z∗).

Obviously, we know that strong stationarity implies M-stationarity, M-stationarity implies C-

stationarity and C-stationarity implies weak stationarity. Moreover, it is shown in [22] that strong

stationarity is equivalent to the standard KKT conditions of an MPCC. However, a counterexample

given in [23] indicates that strong stationarity may not hold at a global minimum, even for very

simple MPCCs.

Definition 2.2 [5, 23] Let z∗ be a feasible point of the MPCC (1.1). Then

(1) MPCC-LICQ is said to hold at z∗ if the gradients

{∇gi(z∗) | i ∈ Ig(z∗)} ∪ {∇hi(z∗) | i ∈ Ie} ∪ {∇Gi(z∗) | i ∈ I00(z∗) ∪ I0+(z∗)}
∪{∇Hi(z

∗) | i ∈ I00(z∗) ∪ I+0(z∗)}

are linearly independent.

(2) MPCC-CPLD is said to hold at z∗ if, for any subsets I1 ⊆ Ig(z
∗), I2 ⊆ Ie, I3 ⊆ I00(z∗) ∪

I0+(z∗), I4 ⊆ I00(z∗) ∪ I+0(z∗) such that the gradients

{∇gi(z∗) | i ∈ I1} ∪ {{∇hi(z∗) | i ∈ I2} ∪ {∇Gi(z∗) | i ∈ I3} ∪ {∇Hi(z
∗) | i ∈ I4}}

are positive-linearly dependent, there exists a neighborhood N(z∗) of z∗ such that the gradients

{∇gi(z) | i ∈ I1} ∪ {∇hi(z) | i ∈ I2} ∪ {∇Gi(z) | i ∈ I3} ∪ {∇Hi(z) | i ∈ I4}

are linearly dependent for all z ∈ N(z∗).

It follows from [24] that MPCC-LICQ implies MPCC-CPLD.

3. Convergence results

In this section, we analyze the convergence behavior of the relaxed problem (1.5) as t → 0. For

convenience, denote by RMPCC(t) (1.5) the relaxed problem (1.5), and define the following index

sets for RMPCC(t) (1.5):

Ig(z) = {i ∈ I | gi(z) = 0}, IG(z; t) = {i ∈ Ic | Gi(z) = −t},
IH(z; t) = {i ∈ Ic | Hi(z) = −t}, IΦ(z; t) = {i ∈ Ic | Φi(z; t) = 0},
I0+

Φ (z; t) = {i ∈ IΦ(z; t) | Gi(z)− t = 0, Hi(z)− t > 0},
I00

Φ (z; t) = {i ∈ IΦ(z; t) | Gi(z)− t = 0, Hi(z)− t = 0},
I+0

Φ (z; t) = {i ∈ IΦ(z; t) | Gi(z)− t > 0, Hi(z)− t = 0},
supp(c) = {i | ci 6= 0, i = 1, . . . , l. c = (ci) ∈ Rl}.

6
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Obviously, we have I0+
Φ (z; t)∩ I00

Φ (z; t)∩ I+0
Φ (z; t) = ∅, I0+

Φ (z; t)∪ I00
Φ (z; t)∪ I+0

Φ (z; t) = IΦ(z; t).

By elementary computation and analysis, we can obtain the important properties of the com-

plementarity function φ given in (1.4), which play a key role in the subsequently analysis.

Lemma 3.1 [25] (1) φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

(2) φ is continuously differentiable, and its gradient is

∇φ(a, b) =



(
−4a+ 2b

−4b+ 2a

)
, if a < 0 and b < 0,(

−4a+ 2b

2a

)
, if a < 0 and b ≥ 0,(

2b

−4b+ 2a

)
, if a ≥ 0 and b < 0,(

2b

2a

)
, if a ≥ 0 and b ≥ 0.

(3) The following inequality holds:

φ(a, b)

{
> 0, if a > 0 and b > 0,

< 0, if a < 0 or b < 0.
(3.1)

According to the definition (1.6) of Φi, one obtains the expressions of Φi(z; t) and the gradient

of Φi(z; t), respectively :

Φi(z; t) = φ(Gi(z)− t,Hi(z)− t)

=


−2(Gi(z)− t)2 − 2(Hi(z)− t)2 + 2(Gi(z)− t)(Hi(z)− t), Gi(z)− t < 0 and Hi(z)− t < 0,

−2(Gi(z)− t)2 + 2(Gi(z)− t)(Hi(z)− t), Gi(z)− t < 0 and Hi(z)− t ≥ 0,

−2(Hi(z)− t)2 + 2(Gi(z)− t)(Hi(z)− t), Gi(z)− t ≥ 0 and Hi(z)− t < 0,

2(Gi(z)− t)(Hi(z)− t), Gi(z)− t ≥ 0 and Hi(z)− t ≥ 0,

(3.2)

∇Φi(z; t)

=


(2Hi(z)− 4Gi(z) + 2t)∇Gi(z) + (2Gi(z)− 4Hi(z) + 2t)∇Hi(z), Gi(z)− t < 0 and Hi(z)− t < 0,

(2Hi(z)− 4Gi(z) + 2t)∇Gi(z) + 2(Gi(z)− t)∇Hi(z), Gi(z)− t < 0 and Hi(z)− t ≥ 0,

2(Hi(z)− t)∇Gi(z) + (2Gi(z)− 4Hi(z) + 2t)∇Hi(z), Gi(z)− t ≥ 0 and Hi(z)− t < 0,

2(Hi(z)− t)∇Gi(z) + 2(Gi(z)− t)∇Hi(z), Gi(z)− t ≥ 0 and Hi(z)− t ≥ 0,

(3.3)

where the parameter t ≥ 0.

Let S(t) be the feasible set of RMPCC(t) (1.5). Then the following result is true.

Lemma 3.2 (1) S(0) = S; (2) S(t1) ⊆ S(t2), 0 ≤ t1 ≤ t2; (3) S =
⋂
t>0

S(t).

Next, we establish the convergence theorem of the proposed relaxation method.
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Theorem 3.1 Suppose that {tk} ↓ 0, (zk, αk, βk, γk, δk, νk) is a KKT pair of RMPCC(tk) (1.5) for

all k, z∗ is an accumulation point of the sequence {zk}, and MPCC-CPLD holds at z∗. Then the

following statements hold:

(1) z∗ is M-stationary for the MPCC (1.1);

(2) If {zk} additionally satisfies I0+
Φ (zk; tk) = I+0

Φ (zk; tk) = ∅, then z∗ is strongly stationary for

the MPCC (1.1).

Proof. (1) Note that zk → z∗, tk → 0 and the continuity of gi, hi, Gi, Hi, we obtain that z∗ is

feasible for MPCC (1.1) and the following inclusion relations are true:

Ig(z
k) ⊆ Ig(z∗),

IG(zk; tk) ∪ I00
Φ (zk; tk) ∪ I0+

Φ (zk; tk) ⊆ I00(z∗) ∪ I0+(z∗),

IH(zk; tk) ∪ I00
Φ (zk; tk) ∪ I+0

Φ (zk; tk) ⊆ I00(z∗) ∪ I+0(z∗).

(3.4)

Since (zk, αk, βk, γk, δk, νk) is a KKT pair of RMPCC(tk) (1.5), we have

0 = ∇f(zk) +
∑
i∈I

αki∇gi(zk) +
∑
i∈Ie

βki ∇hi(zk)−
∑
i∈Ic

γki ∇Gi(zk)−
∑
i∈Ic

δki∇Hi(z
k)

+
∑
i∈Ic

νki ∇Φi(z
k; tk),

(3.5)

αki

{
≥ 0, i ∈ Ig(zk),
= 0, i /∈ Ig(zk);

γki

{
≥ 0, i ∈ IG(zk; tk),

= 0, i /∈ IG(zk; tk);

δki

{
≥ 0, i ∈ IH(zk; tk),

= 0, i /∈ IH(zk; tk);
νki

{
≥ 0, i ∈ IΦ(zk; tk),

= 0, i /∈ IΦ(zk; tk).

(3.6)

From (3.3), one has

∇Φi(z
k; tk) =


2(Hi(z

k)− tk)∇Gi(zk), i ∈ I0+
Φ (zk; tk),

2(Gi(z
k)− tk)∇Hi(z

k), i ∈ I+0
Φ (zk; tk),

0, i ∈ I00
Φ (zk; tk).

Define νG,k = (νG,ki , i ∈ Ic) and νH,k = (νH,ki , i ∈ Ic) with

νG,ki =

{
2νki (Hi(z

k)− tk), if i ∈ I0+
Φ (zk; tk),

0, otherwise;
νH,ki =

{
2νki (Gi(z

k)− tk), if i ∈ I+0
Φ (zk; tk),

0, otherwise.

Note that IΦ(zk; tk) = I0+
Φ (zk; tk) ∪ I00

Φ (zk; tk) ∪ I+0
Φ (zk; tk), (3.5) can be rewritten as follows:

0 = ∇f(zk) +
∑
i∈I

αki∇gi(zk) +
∑
i∈Ie

βki ∇hi(zk)−
∑
i∈Ic

γki ∇Gi(zk)−
∑
i∈Ic

δki∇Hi(z
k)

+
∑
i∈Ic

νG,ki ∇Gi(zk) +
∑
i∈Ic

νH,ki ∇Hi(z
k).

(3.7)

Note that the multipliers vG,ki and δH,ki are nonnegative, too, according to [4, Lemma A.1], we

suppose, without loss of generality, the gradients corresponding to nonzero multipliers, that is,

{∇gi(zk) | i ∈ supp(αk)} ∪ {∇hi(zk) | i ∈ supp(βk)} ∪ {∇Gi(zk) | i ∈ supp(γk) ∪ supp(νG,k)}
∪{∇Hi(z

k) | i ∈ supp(δk) ∪ supp(νH,k)},
(3.8)
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are linearly independent.

In what follows, we show that the sequence {(αk, βk, γk, δk, νG,k, νH,k)} is bounded. Suppose,

by contradiction, that the conclusion is not true. Then there is a vector (α, β, γ, δ, νG, νH) and a

subset K ⊆ {1, 2, . . .} such that

(αk, βk, γk, δk, νG,k, νH,k)

‖(αk, βk, γk, δk, νG,k, νH,k)‖
K−→ (α, β, γ, δ, νG, νH) 6= 0.

Dividing by ‖(αk, βk, γk, δk, νG,k, νH,k)‖ in (3.7) and passing to the limit, we obtain

0 =
∑
i∈I

αi∇gi(z∗) +
∑
i∈Ie

βi∇hi(z∗)−
∑
i∈Ic

γi∇Gi(z∗)−
∑
i∈Ic

δi∇Hi(z
∗)

+
∑
i∈Ic

νGi ∇Gi(z∗) +
∑
i∈Ic

νHi ∇Hi(z
∗),

which implies the gradients

{∇gi(z∗) | i ∈ supp(α)} ∪ {∇hi(z∗) | i ∈ supp(β)} ∪ {∇Gi(z∗) | i ∈ supp(γ) ∪ supp(νG)}
∪{∇Hi(z

∗) | i ∈ supp(δ) ∪ supp(νH)}

are positive-linearly dependent.

Since MPCC-CPLD holds at z∗, there exists a neighourbood U(z∗) of z∗ such that ∀ z ∈ U(z∗),

the gradients

{∇gi(z) | i ∈ supp(α)} ∪ {∇hi(z) | i ∈ supp(β)} ∪ {∇Gi(z) | i ∈ supp(γ) ∪ supp(νG)}
∪{∇Hi(z) | i ∈ supp(δ) ∪ supp(νH)}

are linearly dependent. This contradicts the linear independence in (3.8) since supp(α, β, γ, δ, νG, νH) ⊆
supp(αk, βk, γk, δk, νG,k, νH,k) for k sufficiently large. Therefore, {(αk, βk, γk, δk, νG,k, νH,k)} is

bounded.

We suppose, without loss of generality, that {(αk, βk, γk, δk, νG,k, νH,k)} converges to (α∗, β∗, γ∗, δ∗,

νG,∗, νH,∗). Since IG(zk; tk) ∩ I0+
Φ (zk; tk) = ∅, IH(zk; tk) ∩ I+0

Φ (zk; tk) = ∅, we define

γ̃i =


γ∗i , if i ∈ supp(γ∗),
−νG,∗i , if i ∈ supp(νG,∗),
0, otherwise.

and δ̃i =


δ∗i , if i ∈ supp(δ∗),
−νH,∗i , if i ∈ supp(νH,∗),
0, otherwise.

(3.9)

By passing to the limit in (3.7), we have

0 = ∇f(z∗) +
∑
i∈I

α∗i∇gi(z∗) +
∑
i∈Ie

β∗i∇hi(z∗)−
∑
i∈Ic

γ̃i∇Gi(z∗)−
∑
i∈Ic

δ̃i∇Hi(z
∗), (3.10)

where α∗i ≥ 0, α∗i gi(z
∗) = 0, i ∈ I. And it follows for k sufficiently large that

supp(α∗) ⊆ Ig(zk) ⊆ Ig(z∗),
supp(γ̃) = supp(γ∗) ∪ supp(νG,∗) ⊆ IG(zk; tk) ∪ I0+

Φ (zk; tk) ⊆ I00(z∗) ∪ I0+(z∗),

supp(δ̃) = supp(δ∗) ∪ supp(νH,∗) ⊆ IH(zk; tk) ∪ I+0
Φ (zk; tk) ⊆ I00(z∗) ∪ I+0(z∗).

(3.11)
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From (3.11), one has γ̃i = 0, i ∈ I+0(z∗); δ̃i = 0, i ∈ I0+(z∗), together with (3.10), we can

conclude that z∗ is weakly stationary for MPCC (1.1).

In what follows, we prove z∗ is M-stationary, i.e., either γ̃i > 0, δ̃i > 0 or γ̃iδ̃i = 0, for all

i ∈ I00(z∗). Suppose, by contradiction, that there is an i ∈ I00(z∗) with γ̃i < 0 and δ̃i 6= 0 (the

case γ̃i 6= 0 and δ̃i < 0 can be proven in a similar way ). According to (3.9) and (3.11), one has i ∈
supp(νG,∗) ⊆ I0+

Φ (zk; tk) for k sufficiently large. Note that I0+
Φ (zk; tk)∩(IH(zk; tk)∪I+0

Φ (zk; tk)) = ∅,
it follows from (3.9) that δ̃i = 0, which yields a contradiction. Hence, z∗ is an M-stationary point.

(2) In order to show z∗ is a strongly stationary point of the MPCC (1.1), based on the result

(1), it is sufficient to show that γ̃i ≥ 0, ∀i ∈ I00(z∗); δ̃i ≥ 0, ∀i ∈ I00(z∗).

By (3.11), the equality (3.10) can be rewirtten as

0 = ∇f(z∗)+
∑

i∈supp(α∗)

α∗i∇gi(z∗)+
∑
i∈Ie

β∗i∇hi(z∗)−
∑

i∈supp(γ̃)

γ̃i∇Gi(z∗)−
∑

i∈supp(δ̃)

δ̃i∇Hi(z
∗). (3.12)

In view of I0+
Φ (zk; tk) = ∅, one gets from (3.9)

γ̃i =

{
γ∗i , i ∈ supp(γ∗),
0, else.

(3.13)

For ∀ i ∈ I00(z∗), if i ∈ supp(γ∗), then one obtains from (3.11) that γ̃ = γ∗i > 0; otherwise,

γ̃ = γ∗i = 0. This indicates γ̃i ≥ 0 for all i ∈ I00(z∗).

Similarly, one can show δ̃i ≥ 0 for all i ∈ I00(z∗).

Thus, z∗ is a strongly stationary point of the MPCC (1.1). �

4. Existence of multipliers

In the convergent theorem, i.e., Theorem 3.1, we assume that there exists a KKT point for

RMPCC(tk) (1.5). Whether does a KKT point for RMPCC(tk) (1.5) exist or not, or what con-

ditions can ensure the existence of KKT point ? In order to answer these questions, we will further

discuss the existence of Lagrange multipliers of RMPCC(t) (1.5) in this section.

Let z̃ be feasible for RMPCC(t) (1.5) and J be an arbitrary subset of I00
Φ (z̃; t), define an auxiliary

program (AP (t, J) for short) as follows:

min f(z)

s.t. gi(z) ≤ 0, i ∈ I,
hi(z) = 0, i ∈ Ie,
Gi(z) ≥ −t, Hi(z) ≥ −t, Gi(z) ≤ t, i ∈ J,
Gi(z) ≥ −t, Hi(z) ≥ −t,Hi(z) ≤ t, i ∈ J,
Gi(z) ≥ −t, Hi(z) ≥ −t,Φi(z; t) ≤ 0, i /∈ I00

Φ (z̃; t),

(4.1)

where J means the complement of J in I00
Φ (z̃; t).

It is obvious that z̃ is feasible for AP (t, J). Denote by S(t, J) the feasible set of AP (t, J) (4.1).

It is not difficult to obtain the relation of feasible sets between AP (t, J) (4.1) and RMPCC(t) (1.5).

10
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Lemma 4.1 Let J be an arbitrary subset of I00
Φ (z̃; t) and t ≥ 0. Then S(t, J) ⊆ S(t).

Lemma 4.2 For any t ≥ 0 and any feasible point z̃ of RMPCC(t) (1.5), the following equality

holds true:

TS(t)(z̃) =
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃),

where TS(t) and TS(t,J)(z̃) are the tangent cones of RMPCC(t) (1.5) and AP (t, J) (4.1) at z̃, respec-

tively.

Proof. For any d ∈ TS(t)(z̃), the definition of tangent cone tells us that there exists a sequence

{zk} ⊆ S(t), zk → z̃, and a sequence {τk} ↓ 0 such that d = lim
k→∞

zk−z̃
τk

.

In the following, we show that d ∈
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃). Note that zk ∈ S(t), one has

gi(z
k) ≤ 0, i ∈ I, hi(z

k) = 0, i ∈ Ie,
Gi(z

k) ≥ −t, Hi(z
k) ≥ −t, Φi(z

k; t) ≤ 0, i ∈ Ic.

Hence, one has Φi(z
k; t) ≤ 0 for any i ∈ Ic.

If i ∈ I00
Φ (z̃; t), there are six cases for Φi(z

k; t) ≤ 0 as follows:

Gi(z
k)− t < 0, Hi(z

k)− t < 0;

Gi(z
k)− t < 0, Hi(z

k)− t ≥ 0;

Gi(z
k)− t ≥ 0, Hi(z

k)− t < 0;

Gi(z
k)− t > 0, Hi(z

k)− t = 0;

Gi(z
k)− t = 0, Hi(z

k)− t = 0;

Gi(z
k)− t = 0, Hi(z

k)− t > 0.

Thus, there exists an infinity subset K ⊆ {1, 2, . . .} such that Gi(z
k) − t ≤ 0, ∀ k ∈ K. Let

J = {i ∈ I00
Φ (z̃; t) | Gi(zk)− t ≤ 0, ∀ k ∈ K}, J = I00

Φ (z̃; t)\J , then one gets {zk} ⊆ S(t, J). This

implies d ∈
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃). Therefore, we have TS(t)(z̃) ⊆
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃).

Conversely, for any d ∈
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃), there exists a subset J ⊆ I00
Φ (z̃; t) such that d ∈

TS(t,J)(z̃). Accordingly, there exists a sequence {zk} ⊆ S(t, J), zk → z̃ and a sequence {τk} ↓ 0

such that d = lim
k→∞

zk−z̃
τk

.

By Lemma 4.1, one has {zk} ⊆ S(t), so d ∈ TS(t)(z̃). Thus one obtains⋃
J⊆I00

Φ (z̃;t)

TS(t,J)(z̃) ⊆ TS(t)(z̃).

Hence, the result is true. The proof is finished. �

For the sake of convenience, we now give a conclusion in [26], which is used in the proof of our

Theorem 4.1.
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Lemma 4.3 Suppose that C1, C2 ⊆ Rn are cones defined by

C1 = {p ∈ Rn | xTi p ≤ 0, i ∈ I; yTi p = 0, i ∈ Ie},

C2 = {q ∈ Rn | q =
∑
i∈I

λixi +
∑
i∈Ie

µiyi, λi ≥ 0, ∀ i ∈ I}.

Then C1 = C◦2 and C2 = C◦1 , where C◦1 and C◦2 are the polar cones of C1 and C2, respectively.

The following theorem shows that standard Guignard CQ holds for RMPCC(t) (1.5) only under

MPCC-LICQ assumption.

Theorem 4.1 Let z∗ be feasible for MPCC (1.1) such that MPCC-LICQ holds at z∗. Then there

exists a t > 0 and a neighborhood U(z∗) of z∗ such that standard GCQ holds for RMPCC(t) (1.5)

for ∀ t ∈ (0, t] and ∀ z ∈ U(z∗) ∩ S(t).

Proof. Since MPCC-LICQ holds at z∗, the gradients

{∇gi(z) | i ∈ Ig(z∗)} ∪ {∇hi(z) | i ∈ Ie} ∪ {∇Gi(z) | i ∈ I0+(z∗) ∪ I00(z∗)}
∪{∇Hi(z) | i ∈ I+0(z∗) ∪ I00(z∗)}

(4.2)

are linearly independent at z∗. Since gi, hi, Gi and Hi are continuously differentiable, the gradients

(4.2) remain linearly independent in some neighborhood of z∗. Hence, there exists a t > 0 and

sufficiently small neighborhood U(z∗) of z∗ such that for all t ∈ (0, t] and all z ∈ U(z∗) ∩ S(t), the

gradients (4.2) are linearly independent at z, and the following inclusions hold from (3.4)

Ig(z) ⊆ Ig(z∗), IG(z; t) ⊆ I00(z∗) ∪ I0+(z∗), IH(z; t) ⊆ I00(z∗) ∪ I+0(z∗),

I00
Φ (z; t) ∪ I0+

Φ (z; t) ⊆ I00(z∗) ∪ I0+(z∗), I00
Φ (z; t) ∪ I+0

Φ (z; t) ⊆ I00(z∗) ∪ I+0(z∗).
(4.3)

For any t ∈ (0, t] and z̃ ∈ U(z∗) ∩ S(t), we have z̃ ∈ S(t, J) for any J ⊆ I00
Φ (z̃; t), and the active

gradients of AP (t, J) (4.1) are

{∇gi(z̃) | i ∈ Ig(z̃)} ∪ {∇hi(z̃) | i ∈ Ie} ∪ {∇Gi(z̃) | i ∈ IG(z̃; t) ∪ I0+
Φ (z̃; t) ∪ J}

∪{∇Hi(z̃) | i ∈ IH(z̃; t) ∪ I+0
Φ (z̃; t) ∪ J}.

Thus, the standard LICQ for AP (t, J) (4.1) holds at z̃. Since LICQ implies ACQ, we have

TS(t,J)(z̃) = LS(t,J)(z̃), ∀ J ⊆ I00
Φ (z̃; t),

which together with Lemma 4.1 yields

TS(t)(z̃) =
⋃

J⊆I00
Φ (z̃;t)

TS(t,J)(z̃) =
⋃

J⊆I00
Φ (z̃;t)

LS(t,J)(z̃).

From Theorem 3.1.9 in [26], we obtain

TS(t)(z̃)
◦ =

⋂
J⊆I00

Φ (z̃;t)

LS(t,J)(z̃)
◦. (4.4)

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

559 Jianling Li et al 548-565



To prove that GCQ for RMPCC(t) (1.5) holds at z̃, we need to show that LS(t)(z̃)
◦ = TS(t)(z̃)

◦.

Note that LS(t)(z̃)
◦ ⊆ TS(t)(z̃)

◦ since TS(t)(z̃) ⊆ LS(t)(z̃), we only prove the inclusion

TS(t)(z̃)
◦ ⊆ LS(t)(z̃)

◦.

The linearized tangent cone of AP (t, J) (4.1) at z̃ is given by

LS(t,J)(z̃) =
{
p ∈ Rn | ∇gi(z̃)T p ≤ 0, i ∈ Ig(z̃),

∇hi(z̃)T p = 0, i ∈ Ie,
∇Gi(z̃)T p ≥ 0, i ∈ IG(z̃; t),

∇Hi(z̃)
T p ≥ 0, i ∈ IH(z̃; t),

∇Gi(z̃)T p ≤ 0, i ∈ I0+
Φ (z̃; t) ∪ J,

∇Hi(z̃)
T p ≤ 0, i ∈ I+0

Φ (z̃; t) ∪ J
}
,

so it follows from Lemma 4.2 that

LS(t,J)(z̃)
◦ =

{
q ∈ Rn | q =

∑
i∈Ig(z̃)

αi∇gi(z̃) +
∑
i∈Ie

βi∇hi(z̃)−
∑

i∈IG(z̃;t)

γi∇Gi(z̃)

−
∑

i∈IH(z̃;t)

δi∇Hi(z̃) +
∑

i∈I0+
Φ (z̃;t)∪J

νi∇Gi(z̃)

+
∑

i∈I+0
Φ (z̃;t)∪J

σi∇Hi(z̃), α, γ, δ, ν, σ ≥ 0

 .

(4.5)

Now for q ∈ TS(t)(z̃)
◦, one obtains from (4.4) that q ∈ LS(t,J)(z̃)

◦ for any J ⊆ I00
Φ (z̃; t). So it

follows from (4.5) that

q =
∑

i∈Ig(z̃)

αi∇gi(z̃) +
∑
i∈Ie

βi∇hi(z̃)−
∑

i∈IG(z̃;t)

γi∇Gi(z̃)−
∑

i∈IH(z̃;t)

δi∇Hi(z̃)

+
∑

i∈I0+
Φ (z̃;t)∪J

νi∇Gi(z̃) +
∑

i∈I+0
Φ (z̃;t)∪J

σi∇Hi(z̃),
(4.6)

where αi, γi, δi, νi, σi ≥ 0.

On the other hand, in view of J ⊆ I00
Φ (z̃; t), we have from (4.4) that q ∈ LS(t,J)(z̃)

◦, thus it

follows that

q =
∑

i∈Ig(z̃)

αi∇gi(z̃) +
∑
i∈Ie

βi∇hi(z̃)−
∑

i∈IG(z̃;t)

γi∇Gi(z̃)−
∑

i∈IH(z̃;t)

δi∇Hi(z̃)

+
∑

i∈I0+
Φ (z̃;t)∪J

νi∇Gi(z̃) +
∑

i∈I+0
Φ (z̃;t)∪J

σi∇Hi(z̃), (4.7)

where αi, γi, δi, νi, σi ≥ 0.

Note that the gradients

{∇gi(z̃) | i ∈ Ig(z̃)} ∪ {∇hi(z̃) | i ∈ Ie} ∪ {∇Gi(z̃) | i ∈ IG(z̃; t) ∪ I0+
Φ (z̃; t) ∪ I00

Φ (z̃; t)}
∪{∇Hi(z̃) | i ∈ IH(z̃; t) ∪ I+0

Φ (z̃; t) ∪ I00
Φ (z̃; t)}
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are linearly independent, hence, the corresponding coefficients in (4.6) and (4.7) must be equal. In

particular, we obtain

νi = 0, i ∈ J ; σi = 0, i ∈ J.

Further, we obtain

q =
∑

i∈Ig(z̃)

αi∇gi(z̃) +
∑
i∈Ie

βi∇hi(z̃)−
∑

i∈IG(z̃;t)

γi∇Gi(z̃)−
∑

i∈IH(z̃;t)

δi∇Hi(z̃)

+
∑

i∈I0+
Φ (z̃;t)

νi∇Gi(z̃) +
∑

i∈I+0
Φ (z̃;t)

σi∇Hi(z̃).
(4.8)

Note that the linearized cone of RMPCC(t) (1.5) is given as follows:

LS(t)(z̃) =
{
p ∈ Rn | ∇gi(z̃)T p ≤ 0, i ∈ Ig(z̃),

∇hi(z̃)T p = 0, i ∈ Ie,
∇Gi(z̃)T p ≥ 0, i ∈ IG(z̃; t),

∇Hi(z̃)
T p ≥ 0, i ∈ IH(z̃; t),

∇Φi(z̃; t)
T p ≤ 0, i ∈ IΦ(z̃; t)

}
.

In view of ∇Φi(z̃; t) = 0, i ∈ I00
Φ (z̃; t) and IΦ(z̃; t) = I0+

Φ (z̃; t) ∪ I00
Φ (z̃; t) ∪ I+0

Φ (z̃; t), I0+
Φ (z̃; t) ∩

I00
Φ (z̃; t) ∩ I+0

Φ (z̃; t) = ∅, the representation above can be rewritten as follows:

LS(t)(z̃) =
{
p ∈ Rn | ∇gi(z̃)T p ≤ 0, i ∈ Ig(z̃),

∇hi(z̃)T p = 0, i ∈ Ie,
∇Gi(z̃)T p ≥ 0, i ∈ IG(z̃; t),

∇Hi(z̃)
T p ≥ 0, i ∈ IH(z̃; t),

∇Gi(z̃)T p ≤ 0, i ∈ I0+
Φ (z̃; t),

∇Hi(z̃)
T p ≤ 0, i ∈ I+0

Φ (z̃; t)
}
.

By Lemma 4.3 and (4.8), one obtains q ∈ LS(t)(z̃)
◦. The arbitrariness of q implies TS(t)(z̃)

◦ ⊆
LS(t)(z̃)

◦. The proof is finished. �

The following result shows that stronger CQ for RMPCC(t) (1.5) holds at all points where

I00
Φ (z; t) = ∅ holds.

Theorem 4.2 Let z∗ be feasible for the MPCC (1.1) such that MPCC-CPLD (MPCC-LICQ)

holds at z∗. Then there exists a t > 0 and a neighborhood U(z∗) of z∗ such that the following

statement holds for all t ∈ (0, t]: If z ∈ U(z∗)∩S(t) with I00
Φ (z; t) = ∅, then standard CPLD (LICQ)

for RMPCC(t) (1.5) holds at z.

Proof. We first prove the conclusion for MPCC-CPLD. Suppose, by contradiction, that there were

a sequence {tk} ↓ 0 and zk → z∗ with zk feasible for RMPCC(tk) (1.5), and I00
Φ (zk; tk) = ∅ for all

k ∈ {1, 2, . . .} such that standard CPLD is not satisfied in zk for all k ∈ {1, 2, . . .}. Thus there

exist index subsets

Ik1 ⊆ Ig(zk), Ik2 ⊆ Ie, Ik3 ⊆ IG(zk; tk), I
k
4 ⊆ IH(zk; tk), I

k
5 ⊆ I0+

Φ (zk; tk), I
k
6 ⊆ I+0

Φ (zk; tk)
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such that the gradients{
{∇gi(z) | i ∈ Ik1 } ∪ {−∇Gi(z) | i ∈ Ik3 } ∪ {−∇Hi(z) | i ∈ Ik4 } ∪ {(Hi(z)− tk)∇Gi(z) | i ∈ Ik5 }
∪{(Gi(z)− tk)∇Hi(z) | i ∈ Ik6 }

}
∪ {∇hi(z) | i ∈ Ik2 }

are positive-linearly dependent at zk, but linearly independent at points arbitrary close to zk.

Since Ig(z
k), Ie, IG(zk; tk), IH(zk; tk), I

0+
Φ (zk; tk), I

+0
Φ (zk; tk) are all finite sets, without loss of

generality, we may assume Iki ≡ Ii (i = 1, 2, . . . 6). Note that Ig(z
k) ⊆ Ig(z

∗) for all k sufficiently

large, thus I1 ⊆ Ig(z∗). Similarly, we obtain I3∪ I5 ⊆ I00(z∗)∪ I0+(z∗), I4∪ I6 ⊆ I00(z∗)∪ I+0(z∗).

Positive-linearly dependence at zk implies positive-linearly dependence of the gradients

{∇gi(zk) | i ∈ I1} ∪
{
{∇hi(zk) | i ∈ I2} ∪ {∇Gi(zk) | i ∈ I3 ∪ I5} ∪ {∇Hi(z

k) | i ∈ I4 ∪ I6}
}
.

(4.9)

Because the standard CPLD is not satisfied, there exists a sequence {yk} → z∗ such that the

gradients (4.9) are linearly independent at yk. If the gradients (4.9) were positive-linearly indepen-

dent at z∗, then from Theorem 2.2 in [27] we know that these gradients are also positive-linearly

independent at any point close to z∗. This is a contradiction. If the gradients (4.9) were positive-

linearly dependent at z∗, MPCC-CPLD would imply that they remain linearly dependent in some

neighborhood of z∗, which contradicts the statement the gradients (4.9) are linearly independent

at yk. Hence, CPLD holds at z.

Next we prove the conclusion for MPCC-LICQ. For all z ∈ U(z∗)∩S(t) and t ∈ (0, t) sufficiently

small, we have the following relations:

Ig(z) ⊆ Ig(z∗),
IG(z; t) ∪ I00

Φ (z; t) ∪ I0+
Φ (z; t) ⊆ I00(z∗) ∪ I0+(z∗),

IH(z; t) ∪ I00
Φ (z; t) ∪ I+0

Φ (z; t) ⊆ I00(z∗) ∪ I+0(z∗),

IG(z; t) ∩
(
I00

Φ (z; t) ∪ I0+
Φ (z; t)

)
= ∅,

IH(z; t) ∩
(
I00

Φ (z; t) ∪ I+0
Φ (z; t)

)
= ∅.

(4.10)

In view of MPCC-LICQ assumption and (4.10), for any z ∈ U(z∗), the gradients

{∇gi(z) | i ∈ Ig(z)} ∪ {∇hi(z) | i ∈ Ie} ∪ {∇Gi(z) | i ∈ IG(z; t) ∪ I0+
Φ (z; t)}

∪{∇Hi(z) | i ∈ IH(z; t) ∪ I+0
Φ (z; t)}

(4.11)

are linearly independent.

The active gradients of RMPCC(t) (1.5) at feasible point z ∈ U(z∗) are

∇gi(z), i ∈ Ig(z),
∇hi(z), i ∈ Ie,
∇Gi(z), i ∈ IG(z; t),

∇Hi(z), i ∈ IH(z; t),

∇Φi(z; t) =

{
2(Hi(z)− t)∇Gi(z), i ∈ I0+

Φ (z; t),

2(Gi(z)− t)∇Hi(z), i ∈ I+0
Φ (z; t).

(4.12)
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From (4.11), we know that the following equality∑
i∈Ig(z)

αi∇gi(z) +
∑
i∈Ie

βi∇hi(z)−
∑

i∈IG(z;t)

γi∇Gi(z)−
∑

i∈IH(z;t)

δi∇Hi(z) +
∑

i∈IΦ(z;t)

νi∇Φi(z; t)

=
∑

i∈Ig(z)

αi∇gi(z) +
∑
i∈Ie

βi∇hi(z)−
∑

i∈IG(z;t)

γi∇Gi(z)−
∑

i∈IH(z;t)

δi∇Hi(z)

+
∑

i∈I0+
Φ (z;t)

νi[2(Hi(z)− t)]∇Gi(z; t) +
∑

i∈I+0
Φ (z;t)

νi[2(Gi(z)− t)]∇Hi(z; t)

= 0

(4.13)

implies that

αi = 0, i ∈ Ig(z); βi = 0, i ∈ Ie; γi = 0, i ∈ IG(z; t); δi = 0, i ∈ IH(z; t);

νi[2(Hi(z)− t)] = 0, i ∈ I0+
Φ (z; t); νi[2(Gi(z)− t)] = 0, i ∈ i ∈ I+0

Φ (z; t).

Note that Hi(z)− t > 0 for i ∈ I0+
Φ (z; t), so νi = 0 for i ∈ I0+

Φ (z; t).

Similarly, we have νi = 0 for i ∈ I+0
Φ (z; t).

Summing up the above discussion, we can conclude that standard LICQ holds at z ∈ U(z∗)∩S(t)

for RMPCC(t) (1.5). �

The following result shows that the existence of Lagrange multipliers in a local minimum of

RMPCC(t) (1.5) can be guaranteed, which is a direct consequence of Theorem 4.1.

Theorem 4.3 Let z∗ be feasible for MPCC (1.1) such that MPCC-LICQ holds at z∗. Then there

is a t > 0 and a neighborhood U(z∗) of z∗ such that for all t ∈ (0, t]: If z ∈ U(z∗) is a local

minimizer of feasible point for RMPCC(t) (1.5), then there exists Lagrange multipliers such that z

together with Lagrange multiplier vector w is a KKT point of RMPCC(t) (1.5).

5. Concluding remarks

In this paper, based on Mangasarian complementarity function, a new relaxed method for math-

ematical program with complementarity constraints is proposed. Under MPCC-CPLD, any limit

point of a sequence of stationary points of a sequence of relaxed problems is M-stationary for

MPCC (1.1), and it is strongly stationary under additional conditions which is easily to be checked.

Moreover, we further analyze the existence of the Lagrange multipliers for relaxed problems. The

existence of the Lagrange multipliers can be guaranteed under MPCC-LICQ.
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1 Introduction

In 2007, Huang and Zhang [1] defined cone metric spaces with a different view in

respect to previous works. They substituted a normed space instead of the real line, but

went further, defining convergent and Cauchy sequences in terms of interior points of

the underlying cone. Moreover, they obtained some fixed point theorems in cone metric

spaces. Afterwards, some scholars focused on the investigation of fixed point theorems in

such spaces. According to incomplete statistics, more than six hundred papers dealing with

cone metric spaces have been published so far (see [9]). But now it is not popular since

∗Corresponding author: Huaping Huang. E-mail: mathhhp@163.com
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some researchers constructed several mappings from cone metric spaces to metric spaces,

and found some fixed point results in cone metric spaces could been directly obtained

from the corresponding metric versions (see [3-10]). This makes it become meaningless to

study fixed point theorems in cone metric spaces. However, the current situation changed,

since, very recently, Liu and Xu [18] introduced cone metric space over Banach algebra and

defined generalized Lipschitz mapping where the contractive coefficient is vector instead of

usual real constant. They proved the existence of fixed points in such settings under the

conditions that the underlying cones are normal cones. Furthermore, they gave an example

to explain that the fixed point theorems in cone metric spaces over Banach algebras are

not equivalent to those in metric spaces. Subsequently, Xu and Radenović [20] omitted

the normality of cones by using c-sequences. Starting with the similar approach of [18],

several papers have appeared (see [20-25]).

The main purpose of this article is to introduce a concept called cone b-metric space

over Banach algebra, which is a great improvement since it expands the concept of cone

metric space over Banach algebra. We present some fixed point theorems in such frame-

works without the assumption of normal cones. Moreover, we obtain the P properties of

the mappings. Further, by two examples, we support our results and establish the non-

equivalence of fixed point results between cone b-metric spaces over Banach algebras and

b-metric spaces.

We need the following definitions and results, consistent with [18], in the sequel.

Let A be a real Banach algebra, ‖·‖ be its norm and θ be its zero element. A nonempty

closed subset K of A is called a cone if K +K ⊂ K, K2 = K ∩K ⊂ K, K ∩ (−K) = {θ}
and λK ⊂ K for all λ ≥ 0. We denote intK as the interior of K. If intK 6= ∅, then

K is said to be a solid cone. Define a partial ordering � with respect to K by u � v

iff v − u ∈ K. Write u ≺ v iff v − u ∈ K and u 6= v. Define u � v iff v − u ∈ intK.

The cone K is called normal if there is a real number M > 0 such that for all u, v ∈ A,

θ � u � v implies ‖u‖ ≤ M‖v‖. The least positive number satisfying above is called the

normal constant of K.

In the sequel, unless otherwise specified, we always suppose that A is a real Banach

algebra with a unit e, K is a solid cone in A, and �, ≺ and � are partial orderings with

respect to K.

Definition 1.1([18]) Let X be a nonempty set and A be a Banach algebra. Suppose

2
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that a mapping d : X ×X → A satisfies for all x, y, z ∈ X,

(c1) θ � d(x, y) and d(x, y) = θ iff x = y;

(c2) d(x, y) = d(y, x);

(c3) d(x, z) � d(x, y) + d(y, z).

Then d is called a cone metric on X, and (X, d) is called a cone metric space over Banach

algebra.

Inspired by Definition 1.1 and [12, Definition 2.1], we introduce the notion of cone

b-metric space over Banach algebra.

Definition 1.2 Let X be a nonempty set, s ≥ 1 be a constant and A be a Banach

algebra. Suppose that a mapping d : X ×X → A satisfies for all x, y, z ∈ X,

(d1) θ � d(x, y) and d(x, y) = θ iff x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) � s[d(x, y) + d(y, z)].

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over

Banach algebra.

Remark 1.3 A cone metric space over Banach algebra must be a cone b-metric space

over Banach algebra. Conversely, it is not true. As a result, the concept of cone b-metric

space over Banach algebra greatly generalizes the concept of cone metric space over Banach

algebra.

We shall give some examples in an attempt to illustrate that it is an interesting increase

from cone b-metric space over Banach algebra to cone metric space over Banach algebra,

since there exist a lot of cone b-metric spaces over Banach algebras which are not cone

metric spaces over Banach algebras.

Example 1.4 Let A = C[0, 1] be the usual Banach space with the supremum norm.

Define multiplication in the usual way: (xy)(t) = x(t)y(t). Then A is a Banach algebra

with a unit 1. Put K = {x ∈ A : x(t) ≥ 0, t ∈ [0, 1]} and X = R. Define a mapping

d : X ×X → A by d(x, y)(t) = |x− y|pet for all x, y ∈ X, where p > 1 is a constant. This

makes (X, d) into a cone b-metric space over Banach algebra with the coefficient s = 2p−1,

but it is not a cone metric space over Banach algebra.

3
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Example 1.5 Let X = lp = {x = (xn)n≥1 :
∞∑
n=1

|xn|p <∞} (0 < p < 1). Let d : X×X →

R+,

d(x, y) =
( ∞∑
n=1

|xn − yn|p
) 1

p
,

where x = (xn)n≥1, y = (yn)n≥1 ∈ lp. Then (X, d) is a b-metric space (see [11]). Put

A = l1 = {a = (an)n≥1 :
∞∑
n=1

|an| <∞} with convolution as multiplication:

ab = (an)n≥1(bn)n≥1 =
( ∑
i+j=n

aibj

)
n≥1

.

Then A is a Banach algebra with a unit e = (1, 0, 0, . . .). Let K = {a = (an)n≥1 ∈ A :

an ≥ 0, for all n ≥ 1}, which is a normal cone in A. Defining a mapping d̃ : X ×X → A
by d̃(x, y) = (d(x,y)

2n
)n≥1, we conclude that (X, d̃) is a cone b-metric space over Banach alge-

bra with the coefficient s = 2
1
p
−1 > 1, but it is not a cone metric space over Banach algebra.

Definition 1.6 Let (X, d) be a cone b-metric space over Banach algebra A and {xn} a

sequence in X. We say that

(i) {xn} is a convergent sequence if, for every c ∈ A with θ � c, there is an N such

that d(xn, x)� c for all n ≥ N . Ones write it by xn → x (n→∞);

(ii) {xn} is a Cauchy sequence if, for every c ∈ A with θ � c, there is an N such that

d(xn, xm)� c for all n,m ≥ N ;

(iii) (X, d) is a complete cone b-metric space if every Cauchy sequence in X is conver-

gent.

Definition 1.7([17]) Let K be a solid cone in a Banach space A. A sequence {un} ⊂ K

is said to be a c-sequence if for each c � θ there exists a natural number N such that

un � c for all n > N .

Lemma 1.8([20]) Let K be a solid cone in a Banach algebra A, {un} and {vn} be two

c-sequences in K. If α, β ∈ K are two arbitrarily given vectors, then {αun + βvn} is a

c-sequence.

Proof It is evident that {un + vn} is a c-sequence (see [17]). We only show that {αun}
is a c-sequence. Indeed, without loss of generality, put θ ≺ α. For any c � θ, there is a
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δ > 0 such that

U(c, δ) = {u ∈ A : ‖u− c‖ < δ} ⊂ K.

Set c0 � θ and ‖c0‖ < δ
‖α‖ . Notice that

‖(c− αc0)− c‖ = ‖αc0‖ ≤ ‖α‖‖c0‖ < δ ⇒ c− αc0 ∈ U(c, δ) ⊂ K,

which implies that c − αc0 ∈ intK, i.e., αc0 � c. Since {un} is a c-sequence, then there

exists N such that un � c0 for all n > N , thus αun � c (n > N).

Lemma 1.9([19]) Let A be a Banach algebra with a unit e, then the spectral radius ρ(u)

of u ∈ A holds

ρ(u) = lim
n→∞

‖un‖
1
n = inf ‖un‖

1
n .

Further, e− u is invertible and (e− u)−1 =
∞∑
i=0

ui provided that ρ(u) < 1.

Lemma 1.10([19]) Let A be a Banach algebra with a unit e and u, v ∈ A. If u commutes

with v, then

ρ(u+ v) ≤ ρ(u) + ρ(v), ρ(uv) ≤ ρ(u)ρ(v).

Lemma 1.11([20]) Let A be a Banach algebra with a unit e and let k be a vector in A.

If ρ(k) < 1, then

ρ((e− k)−1) <
1

1− ρ(k)
.

The following properties are often used (in particular when dealing with cone b-metric

spaces over Banach algebras in which the cones need not be normal)(see [2], [20]).

(p1) If θ � u� c for each c ∈ intK, then u = θ.

(p2) If u � v and v � w, then u� w.

(p3) If u ∈ K and ρ(u) < 1, then ‖un‖ → 0 (n→∞).

(p4) If u � ku, where u, k ∈ K and ρ(k) < 1, then u = θ.

(p5) If c ∈ intK and un → θ (n → ∞), then there exists N such that, for all n > N ,

one has un � c.

2 Main results

In this section, by deleting the assumption of normality of cones, we shall prove some

fixed point theorems of generalized Lipschitz mappings in the setting of cone b-metric s-

5
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paces over Banach algebras. We also obtain the P properties of the mappings. Otherwise,

we present two examples to verify our results. Our examples indicate that cone b-metric

spaces over Banach algebras are never equivalent to b-metric spaces in terms of the exis-

tence of the fixed points of the mappings involved.

Theorem 2.1 Let (X, d) be a complete cone b-metric space over Banach algebra A
with the coefficient s ≥ 1. Let K be a solid not necessarily normal cone of A. Suppose

T : X → X is a mapping and suppose that there exists k ∈ K such that, for all x, y ∈ X,

at least one of the following generalized Lipschitz conditions holds:

(i) d(Tx, Ty) � kd(x, y) and ρ(k) < 1
s
;

(ii) d(Tx, Ty) � k(d(Tx, x) + d(Ty, y)) and ρ(k) < 1
1+s

;

(iii) d(Tx, Ty) � k(d(Tx, y) + d(Ty, x)) and ρ(k) < 1
s+s2

.

Then T has a unique fixed point in X.

Proof Fix x0 ∈ X and set x1 = Tx0 and xn+1 = Txn = T n+1x0. Then for all three cases

(i)-(iii), we shall prove that

d(xn+1, xn) � λd(xn, xn−1), (2.1)

where λ ∈ K and ρ(λ) < 1
s
.

For the case (i), it ensures us that

d(xn+1, xn) = d(Txn, Txn−1) � kd(xn, xn−1).

Let λ = k, (2.1) is clear.

For the case (ii), it is easy to see that

d(xn+1, xn) = d(Txn, Txn−1) � k(d(Txn, xn) + d(Txn−1, xn−1))

= k(d(xn+1, xn) + d(xn, xn−1)). (2.2)

As a consequence of ρ(k) < 1
1+s

< 1, it follows from Lemma 1.9 that e − k is invertible.

Hence by (2.2), we deduce that

d(xn+1, xn) � (e− k)−1kd(xn, xn−1).

By Lemma 1.10 and Lemma 1.11, we speculate that

ρ((e− k)−1k) ≤ ρ(k)

1− ρ(k)
<

1
1+s

1− 1
1+s

=
1

s
. (2.3)

6
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Put λ = (e− k)−1k, (2.1) is obvious.

For the case (iii), we have

d(xn+1, xn) = d(Txn, Txn−1) � k(d(Txn, xn−1) + d(xn, Txn−1))

= k(d(xn+1, xn−1) + d(xn, xn)) = kd(xn+1, xn−1)

� sk(d(xn+1, xn) + d(xn, xn−1)). (2.4)

On account of ρ(k) < 1
s
, it follows from Lemma 1.9 that e− sk is invertible, then by (2.4),

one has

d(xn+1, xn) � (e− sk)−1skd(xn, xn−1).

Take advantage of Lemma 1.10 and Lemma 1.11, it establishes that

ρ((e− sk)−1sk) ≤ ρ((e− sk)−1)ρ(sk)

≤ ρ(sk)

1− ρ(sk)
=

sρ(k)

1− sρ(k)
<

s
s+s2

1− s
s+s2

=
1

s
. (2.5)

Choose λ = (e− sk)−1sk, (2.1) is valid.

Making full use of (2.1), we get

d(xn+1, xn) � λd(xn, xn−1) � λ2d(xn−1, xn−2) � · · · � λnd(x1, x0).

Note that ρ(λ) < 1
s

implies e− sλ is invertible and

(e− sλ)−1 =
∞∑
i=0

(sλ)i.

Hence, for any m ≥ 1, p ≥ 1 and λ ∈ K with ρ(λ) < 1
s
, we have that

d(xm, xm+p) � s[d(xm, xm+1) + d(xm+1, xm+p)]

� sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xm+p)]

� sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · ·+ sp−1d(xm+p−2, xm+p−1) + sp−1d(xm+p−1, xm+p)

� sλmd(x1, x0) + s2λm+1d(x1, x0) + s3λm+2d(x1, x0)

+ · · ·+ sp−1λm+p−2d(x1, x0) + spλm+p−1d(x1, x0)

= sλm[e+ sλ+ s2λ2 + · · ·+ (sλ)p−1]d(x1, x0)

� sλm(e− sλ)−1d(x1, x0).

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

572 Huaping Huang et al 566-583



Since ρ(λ) < 1
s
≤ 1 implies that ‖λm‖ → 0 (m → ∞), further, {λm} is a c-sequence.

Thus we derive from Lemma l.8 that {sλm(e−sλ)−1d(x1, x0)} is a c-sequence. This means

{xn} is a Cauchy sequence in X. Since (X, d) is complete, there exists x∗ ∈ X such that

xn → x∗ (n→∞). Next, we shall show x∗ is the fixed point. In order to complete it, we

consider three cases as follows.

For the case (i), one has

d(x∗, Tx∗) � s[d(xn+1, x
∗) + d(Txn, Tx

∗)] � s[d(xn+1, x
∗) + kd(xn, x

∗)].

In view of xn → x∗ (n→∞), it follows that {d(xn+1, x
∗)} and {d(xn, x

∗)} are c-sequences.

So by Lemma 1.8 that {s[d(xn+1, x
∗) + kd(xn, x

∗)]} is also a c-sequence. We obtain Tx∗ =

x∗.

For the case (ii), it is not hard to verify that

d(x∗, Tx∗) � s[d(xn+1, x
∗) + d(Txn, Tx

∗)]

� sd(xn+1, x
∗) + sk[d(xn, xn+1) + d(x∗, Tx∗)]. (2.6)

Note that e− sk is invertible, then (2.6) implies that

d(x∗, Tx∗) � s(e− sk)−1[d(xn+1, x
∗) + kd(xn, xn+1)].

Because {xn} is a Cauchy and convergent sequence, it means {d(xn+1, x
∗)} and {d(xn, xn+1)}

are c-sequences. Hence by Lemma 1.8 that {s(e−sk)−1[d(xn+1, x
∗) +kd(xn, xn+1)]} is also

a c-sequence. We have Tx∗ = x∗.

For the case (iii), it is evident that

d(x∗, Tx∗) � s[d(xn+1, x
∗) + d(Txn, Tx

∗)]

� sd(xn+1, x
∗) + sk[d(xn, Tx

∗) + d(x∗, xn+1)]

� sd(xn+1, x
∗) + s2k[d(xn, x

∗) + d(x∗, Tx∗)] + skd(x∗, xn+1). (2.7)

Now that ρ(k) < 1
s+s2

< 1
s2

determines that e− s2k is invertible, then (2.7) leads to

d(x∗, Tx∗) � s(e− s2k)−1[(e+ k)d(xn+1, x
∗) + skd(xn, x

∗)].

Since {d(xn, x
∗)} is a c-sequence, then by Lemma 1.8, {s(e − s2k)−1[(e + k)d(xn+1, x

∗) +

skd(xn, x
∗)]} is also a c-sequence. Accordingly, Tx∗ = x∗.

Finally, we shall prove the fixed point is unique. To this end, we suppose for absurd

that there exists another fixed point y∗. We need to show it for three cases.

8
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For the case (i), it may be verified that

d(x∗, y∗) = d(Tx∗, T y∗) � kd(x∗, y∗).

Consequently, y∗ = x∗.

For the case (ii), it is valid that

d(x∗, y∗) = d(Tx∗, T y∗) � k[d(x∗, Tx∗) + d(y∗, T y∗)] = θ.

That is, y∗ = x∗.

For the case (iii), we arrive at

d(x∗, y∗) = d(Tx∗, T y∗) � k[d(x∗, T y∗) + d(y∗, Tx∗)] = 2kd(x∗, y∗).

Because ρ(k) < 1
s+s2
≤ 1

2
leads to ρ(2k) < 1, we get y∗ = x∗. Finally, the claim holds.

Remark 2.2 Theorem 2.1 generalizes [20, Theorem 3.1-3.3]. Indeed, take s = 1 in The-

orem 2.1. Otherwise, Theorem 2.1 also generalizes [27, Corollary 3.8] from b-metric (or

metric type) space to cone b-metric (or cone metric type) space over Banach algebra.

It is well-known that if x∗ is a fixed point of a mapping T , then x∗ is also a fixed point

of T n for each n ∈ N. But the converse is not true. If a mapping T holds F (T ) = F (T n)

for each n ∈ N, where F (T ) denotes the set of all fixed points of T , then ones call T has

a P property (see [28-30]). The following results are generalizations of the corresponding

results in metric and cone metric spaces (see [28-30]). It will be obtained also without

using normality of cones.

Theorem 2.3 Let (X, d) be a cone b-metric space over Banach algebra A with the

coefficient s ≥ 1. Let K be a solid not necessarily normal cone of A. Suppose T : X → X

is a mapping such that F (T ) 6= ∅ and that

d(Tx, T 2x) � µd(x, Tx) (2.8)

for all x ∈ X, where µ ∈ K is a generalized Lipschitz constant with ρ(µ) < 1. Then T has

a P property.

9
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Proof We shall always assume that n > 1, since the statement for n = 1 is trivial. Let

z ∈ F (T n). By the assumption, it is clear that

d(z, Tz) = d(TT n−1z, T 2T n−1z) � µd(T n−1z, T nz) = µd(TT n−2z, T 2T n−2z)

� µ2d(T n−2z, T n−1z) � · · · � µnd(z, Tz).

By virtue of ρ(µ) < 1, it follows that ‖µn‖ → 0 (n→∞). Accordingly, {µnd(z, Tz)} is a

c-sequence. Then d(z, Tz) = θ, i.e., Tz = z.

Theorem 2.4 Let (X, d) be a complete cone b-metric space over Banach algebra A
with the coefficient s ≥ 1. Let K be a solid not necessarily normal cone of A. Suppose

T : X → X is a mapping and suppose that there exists k ∈ K such that, for all x, y ∈ X,

at least one of the following generalized Lipschitz conditions holds:

(i) d(Tx, Ty) � kd(x, y) and ρ(k) < 1
s
;

(ii) d(Tx, Ty) � k(d(Tx, x) + d(Ty, y)) and ρ(k) < 1
1+s

;

(iii) d(Tx, Ty) � k(d(Tx, y) + d(Ty, x)) and ρ(k) < 1
s+s2

.

Then T has a P property.

Proof Making full use of Theorem 2.1, we claim T has a unique fixed point. In order to

utilize Theorem 2.3, we have to show (2.8). To this end, we divide it into three cases.

For the case (i), it follows that

d(Tx, T 2x) = d(Tx, TTx) � kd(x, Tx).

Let µ = k, (2.8) is valid.

For the case (ii), we have

d(Tx, T 2x) = d(Tx, TTx) � k(d(x, Tx) + d(Tx, T 2x)),

which establishes that

d(Tx, T 2x) � (e− k)−1kd(x, Tx).

Owing to (2.3), ρ((e− k)−1k) < 1
s
≤ 1, then let µ = (e− k)−1k, (2.8) is trivial.

For the case (iii), we have

d(Tx, T 2x) = d(Tx, TTx) � k(d(x, T 2x) + d(Tx, Tx))

= kd(x, T 2x) � sk(d(x, Tx) + d(Tx, T 2x)),

10
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which means that

d(Tx, T 2x) � (e− sk)−1skd(x, Tx).

In view of (2.5), ρ((e− sk)−1sk) < 1
s
≤ 1, then let µ = (e− sk)−1sk, (2.8) is trivial.

Theorem 2.5 Let (X, d) be a complete cone b-metric space over Banach algebra A
with the coefficient s ≥ 1. Let K be a solid not necessarily normal cone of A. Suppose

T : X → X is a mapping and there exists k ∈ K and ρ(k) < 1
s

such that, for all x, y ∈ X,

the following generalized Lipschitz condition holds:

d(Tx, Ty) � k · u(x, y),

where

u(x, y) ∈
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty)

2s
,
d(y, Tx)

2s

}
.

Then T has a unique fixed point in X. Moreover, T has a P property.

Proof If u = d(x, y), then by Theorem 2.1(i) and Theorem 2.4(i), the proof is valid. We

shall consider the other cases.

Fix x0 ∈ X and set x1 = Tx0 and xn+1 = Txn = T n+1x0. Then we have that

d(xn+1, xn) = d(Txn, Txn−1) � k · u(xn, xn−1),

where

u(xn, xn−1) ∈
{
d(xn, Txn), d(xn−1, Txn−1),

d(xn, Txn−1)

2s
,
d(xn−1, Txn)

2s

}
=

{
d(xn, xn+1), d(xn−1, xn), θ,

d(xn−1, xn+1)

2s

}
If d(xn+1, xn) � kd(xn, xn+1) or d(xn+1, xn) � θ, then for all n ∈ N, d(xn+1, xn) = θ. That

is, Txn = xn+1 = xn for all n ∈ N, thus xn is the fixed point. If d(xn+1, xn) � kd(xn, xn−1),

i.e., (2.1) holds if λ = k. If d(xn+1, xn) � k · d(xn−1,xn+1)
2s

, then

d(xn+1, xn) � k · d(xn−1, xn+1)

2s
� k · d(xn−1, xn) + d(xn, xn+1)

2
. (2.9)

Since ρ(k) < 1
s

implies that 2e− k is invertible, then (2.9) leads to

d(xn+1, xn) � (2e− k)−1kd(xn, xn−1).

11
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Note that

ρ((2e− k)−1k) =
1

2
ρ
(

(e− k

2
)−1k

)
≤ 1

2
· ρ(k)

1− ρ(k
2
)

=
ρ(k)

2− ρ(k)
<

1
s

2− 1
s

=
1

2s− 1
≤ 1

s
.

Take λ = (2e− k)−1k, hence (2.1) holds. Therefore, following an argument similar to that

given in Theorem 2.1, we obtain that there exists x∗ ∈ X such that xn → x∗ (n→∞).

In the following, we shall divide two cases to prove that x∗ is the fixed point.

For the case that u(x, y) = d(y, Ty), we have

d(x∗, Tx∗) � s[d(x∗, Txn) + d(Txn, Tx
∗)]

� s[d(x∗, xn+1) + kd(x∗, Tx∗)],

which follows that

d(x∗, Tx∗) � s(e− sk)−1d(x∗, xn+1).

Because {d(xn+1, x
∗)} is a c-sequence, then x∗ = Tx∗.

For the case that u(x, y) = d(y,Tx)
2s

, we arrive at

d(x∗, Tx∗) � s[d(x∗, Txn) + d(Txn, Tx
∗)]

� s
[
d(x∗, xn+1) + k · d(x∗, xn+1)

2s

]
=
(
se+

1

2
k
)
d(x∗, xn+1).

Now that {d(xn+1, x
∗)} is a c-sequence, then x∗ = Tx∗.

Next, we shall prove that the fixed point is unique. Assume there exists another fixed

point y∗, then

d(x∗, y∗) = d(Tx∗, T y∗) � k · u(x∗, y∗),

where

u(x∗, y∗) ∈
{
d(x∗, Tx∗), d(y∗, T y∗),

d(x∗, T y∗)

2s
,
d(y∗, Tx∗)

2s

}
=

{
θ,
d(x∗, y∗)

2s

}
.

It is not hard to verify that x∗ = y∗.

Finally, we shall prove T has a P property. In order to end this, we have to show (2.8).

We divide it into four cases.

12
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For the case that u(x, y) = d(x, Tx), from

d(Tx, T 2x) = d(Tx, TTx) � kd(x, Tx),

we have (2.8).

For the case that u(x, y) = d(y, Ty), we get

d(Tx, T 2x) = d(Tx, TTx) � kd(Tx, T 2x),

which means that d(Tx, T 2x) = θ. Hence (2.8) is clear.

For the case that u(x, y) = d(x,Ty)
2s

, we obtain

d(Tx, T 2x) = d(Tx, TTx) � k · d(x, T 2x)

2s
� k

2
[d(x, Tx) + d(Tx, T 2x)],

which implies that d(Tx, T 2x) � (2e− k)−1kd(x, Tx). So (2.8) is obvious.

For the case that u(x, y) = d(y,Tx)
2s

, we obtain

d(Tx, T 2x) = d(Tx, TTx) � k · d(Tx, Tx)

2s
= θ,

which establishes that d(Tx, T 2x) = θ. Thus (2.8) is obvious.

Therefore, by using Theorem 2.3, T has a P property.

In the following, we shall furnish two nontrivial examples to support our main results.

Example 2.6(the case of a non-normal cone) Let A = C1
R[0, 1] and ‖u‖ = ‖u‖∞+ ‖u′‖∞

be its norm. Define usual pointwise multiplication as its multiplication. Clearly, A is a

Banach algebra with a unit e = 1. Put K = {u ∈ A : u = u(t) ≥ 0, t ∈ [0, 1]}. Then K

is a non-normal cone (see [2]). Set X = {a, b, c} and define a mapping d : X × X → A
by d(a, b)(t) = d(b, a)(t) = et, d(b, c)(t) = d(c, b)(t) = 2et, d(a, c)(t) = d(c, a)(t) = 4et,

d(a, a)(t) = d(b, b)(t) = d(c, c)(t) = 0. One claims that (X, d) is a cone b-metric space over

Banach algebra A with the coefficient s = 4
3
. But it is not a cone metric space over Banach

algebra since it does not satisfy the triangle inequality. Now let a mapping T : X → X

be Ta = Tb = b, Tc = a and let k ∈ K with k(t) = 1
6
t + 1

2
. It is not hard to verify that

all conditions of Theorem 2.1 in the case of (i) hold. Therefore, x∗ = b is the unique fixed

point. Clearly, T has a P property.

13
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Example 2.7(the case of a normal cone) Let A = R2 with the norm ‖(u1, u2)‖ = |u1|+
|u2| and the multiplication by

uv = (u1, u2)(v1, v2) = (u1v1, u1v2 + u2v1).

Put K = {u = (u1, u2) ∈ A : u1, u2 ≥ 0}. It is easy to see that K is a normal cone

and A is a Banach algebra with a unit e = (1, 0). Let X = [0, 0.55] × [−2, 2] and for all

x = (x1, x2), y = (y1, y2) ∈ X, d(x, y) = (|x1−y1|2, |x2−y2|2). We demonstrate that (X, d)

is a complete cone b-metric space over Banach algebra A with the coefficient s = 2.

Define a mapping T : X → X as

Tx = T (x1, x2) =
(1

2

(
cos

x1
2
− |x1 −

1

2
|
)
, arctan(2 + |x2|) + ln(x1 + 1)

)
.

By using mean value theorem of differentials, we have

d(Tx, Ty) = d(T (x1, x2), T (y1, y2))

=
(∣∣∣1

2

(
cos

x1
2
− cos

y1
2
− |x1 −

1

2
|+ |y1 −

1

2
|
)∣∣∣2,

| arctan(2 + |x2|)− arctan(2 + |y2|) + ln(x1 + 1)− ln(y1 + 1)|2
)

�
((∣∣x1 + y1

4

∣∣∣∣x1 − y1
4

∣∣+
1

2
|x1 − y1|

)2
,
(1

5
|x2 − y2|+ |x1 − y1|

)2)
�
(( |x1 + y1|

16
+

1

2

)2
|x1 − y1|2, 2

( 1

25
|x2 − y2|2 + |x1 − y1|2

))
�
(1

3
|x1 − y1|2,

2

25
|x2 − y2|2 + 2|x1 − y1|2

)
�
(1

3
, 2
)(
|x1 − y1|2, |x2 − y2|2

)
=
(1

3
, 2
)
d(x, y)

for all x, y ∈ X. Denote k = (1
3
, 2). Careful calculations show that all conditions of Theo-

rem 2.1 in the case of (i) hold. Thus T has a unique fixed point in X.

It is well-known that some results concerning fixed points and other results, in case of

cone spaces with non-normal cones, cannot be provided by reducing to metric spaces (see

[2]). In other words, if the underlying cones are non-normal, then some fixed point results

in cone spaces are not equivalent to those of metric spaces. Otherwise, [3-10] appeal to

the equivalence if the cones are normal cones. However, next, we shall claim our fixed

point results in cone b-cone metric spaces over Banach algebras are never equivalent to the

14
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counterparts in b-metric spaces even if the cones are normal cones. For this, we consider

Example 2.7. Put

dξ(x, y) = ξe ◦ d(x, y) = inf{r ∈ R : d(x, y) � re}, x, y ∈ X,

where e = (e1, e2) ∈ intK, ξe(y) = inf{r ∈ R : y ∈ re−K} (y ∈ A). Then by Theorem 2.1

of [8], dξ is a b-metric. We shall prove our conclusions are not equivalent to the well-known

Banach contraction principle in b-metric space. Indeed, taking x′ = (1
2
, 0), y′ = (0, 0) and

e = (1, 1
2
), we have

dξ(Tx
′, T y′) = inf

{
r ∈ R :

(1

4

(
cos

1

4
− 1

2

)2
,
(

ln
3

2

)2)
� r
(

1,
1

2

)}
= max

{(1

4

(
cos

1

4
− 1

2

)2
, 2
(

ln
3

2

)2)}
= 2
(

ln
3

2

)2
≥ 1

4
= dξ(x

′, y′),

which implies that there does not exist λ ∈ [0, 1) such that

dξ(Tx, Ty) ≤ λdξ(x, y)

for all x, y ∈ X. Thus it does not satisfy the contractive condition of Banach contraction

principle in b-metric space. That is to say, the proof of [8, Theorem 2.6] will be unreasonable

if under the setting of cone b-cone metric space over Banach algebra.
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[17] Z. Kadelburg, S. Radenović, A note on various types of cones and fixed point results

in cone metric spaces, Asian J. Math. Appl., 2013, Article ID ama0104, 7 pages, 2013.

[18] H. Liu, S.-Y. Xu, Cone metric spaces with Banach algebras and fixed point theorems

of generalized Lipschitz mappings, Fixed Point Theory Appl., 2013, 2013: 320.

[19] W. Rudin, Functional Anal., McGraw-Hill, New York, NY, USA, 2nd edition, 1991.
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SOME IDENTITIES OF BELL POLYNOMIALS

LEE-CHAE JANG AND TAEKYUN KIM
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Abstract. In this paper, we study some properties of Bell polynomials which are repre-
sented by the the linear combination of special polynomials. By using those properties, we
give some new identities of Bell polynomials associated with special numbers and polyno-

mials.

1. Introduction

The stirling number of the first kind is defined as

(x)n = x(x− 1) · · · (x− n− 1) =
n∑
l=0

s1(n, l)x
l, (n ≥ 0) (1)

and the stirling number of the second kind is given by

xn =

n∑
l=0

s2(n, l)x
l, (n ≥ 0) (see [10, 13, 17]). (2)

It is known that the Bell polynomials are defined by the generating function to be

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
(see [4, 6, 16, 17, 18]). (3)

When x = 1,Beln = Beln(1) are the Bell numbers. Note that Beln(0) = δ0,n, (n ≥ 0).
As is well known, the Bernoulli polynomials are defined by the generating function to be

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(see [1, 7]), (4)

and the Euler polynomials are given by the generating function to be

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
(see [1− 18]). (5)

1991 Mathematics Subject Classification. 11B68, 11S40.
Key words and phrases. Stirling number, Bell polynomial, Bernoulli polynomial, Daehee polynomial, Euler

polynomial, Chauchy polynomial, Changhee polynomial.
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The Cauchy polynomials are given by

t

log(t+ 1)
(1 + t)x =

∞∑
n=0

Cn(x)
tn

n!
(see [6, 11]), (6)

and the Daehee polynomials are defined by the generating function to be

log(t+ 1)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
(see [9]). (7)

Finally, we introduce the Changhee polynomials which are given by the generating function
to be

2

t+ 2
(1 + t)x =

∞∑
n=0

Chn(x)
tn

n!
(see [10]). (8)

Recently, several authors have studied these several special polynomials( see [1-18]).
In this paper, we study some properties of Bell polynomials which are represented by the

the linear combination of special polynomials. By using those properties, we give some new
identities of Bell polynomials associated with special numbers and polynomials.

2. Some identities of Bell polynomials

From (3), we easily derive the following equation:

Beln(x) = e−x
∞∑
l=0

xl

l!
ln. (9)

By replacing t by ee
t−1 in (4), we get

et − 1

eet−1 − 1
ex(e

t−1) =

∞∑
m=0

Bm(x)
1

m!
(et − 1)m

=
∞∑
m=0

Bm(x)
m!

m!

∞∑
n=m

s2(n,m)
tm

m!

=

∞∑
m=0

{
n∑

m=0

Bm(x)s2(n,m)

}
tm

m!
, (10)

and

et − 1

eet−1 − 1
ex(e

t−1) =

( ∞∑
m=0

Bm
1

m!
(et − 1)m

)( ∞∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
k=0

(
k∑

m=0

Bms2(k,m)

)
tk

k!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=
∞∑
n=0

{
n∑
k=0

(
n

k

) k∑
m=0

Bms2(k,m)Beln−k(x)

}
tn

n!
. (11)

Therefore, by (10) and (11), we obtain the following theorem.
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Theorem 2.1. For n ≥ 0, we have

n∑
m=0

Bm(x)s2(n,m) =

n∑
k=0

(
n

k

) k∑
m=0

Bms2(k,m)Beln−k(x). (12)

Let us take et − 1 instead of t in (5). Then we have

2

eet−1 + 1
ex(e

t−1) =
∞∑
m=0

Em(x)
1

m!
(et − 1)m

=
∞∑
m=0

Em(x)
∞∑
n=m

s2(n,m)
tn

n!

=
i∑

n=0

nfty

(
n∑

m=0

s2(n,m)Em(x)

)
tn

n!
, (13)

and

ee
t−1 − 1

et − 1
ex(e

t−1) =

( ∞∑
m=0

Em
(et − 1)m

m!

)(∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
m=0

Em

∞∑
k=m

s2(k,m)
tk

k!

)(∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
k=0

k∑
m=0

Ems2(k,m)
tk

k!

)(∑
l=0

Bell(x)
tl

l!

)

=

∞∑
n=0

{
m∑
k=0

(
n

k

) k∑
m=0

Ems2(k,m)Beln−k(x)

}
tn

n!
. (14)

Therefore, by (13) and (14), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

n∑
m=0

s2(n,m)Em(x) =

m∑
k=0

(
n

k

) k∑
m=0

Ems2(k,m)Beln−k(x). (15)

From (6), by replacing t by ee
t−1 − 1, we get

ee
t−1 − 1

et − 1
ex(e

t−1) =

∞∑
n=0

Cn(x)
1

n!

(
ee

t−1 − 1)n
)

=

∞∑
m=0

(
m∑
n=0

Cn(x)s2(m,n)

)
tm

m!
(16)

and

ee
t−1 − 1

et − 1
ex(e

t−1) =
e(x+1)(et−1) − ex(e

t−1)

et − 1

=
1

t

(
t

et − 1

)( ∞∑
m=1

{Belm(x+ 1)−Belm(x)} t
m

m!

)

=

( ∞∑
k=0

Bk
tk

k!

)( ∞∑
m=0

{
Belm+1(x+ 1)−Belm+1(x)

m+ 1

}
tm

m!

)
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=
∞∑
n=0

{
n∑

m=0

(
Belm+1(x+ 1)−Belm+1(x)

m+ 1

)
Bn−m

(
n

m

)}
tm

m!
. (17)

Therefore, by (16) and (17), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have
n∑

m=0

Cm(x)s2(n,m) =
n∑

m=0

(
n

m

)
Bn−m

(
Belm+1(x+ 1)−Belm+1(x)

m+ 1

)
. (18)

Let us take ee
t−1 − 1 instead of t in (7). Then we have

et − 1

eet−1 − 1
ex(e

t−1) =
∞∑
n=0

Dn(x)
1

n!
(ee

t−1 − 1)n

=
∞∑
n=0

Dn(x)
1

n
n!

∞∑
m=n

s2(m,n)
(et − 1)m

m!

=
∞∑
k=0

{
k∑

m=0

m∑
n=0

Dn(x)s2(m,n)s2(k,m)

}
k!

k!
(19)

and

et − 1

eet−1 − 1
ex(e

t−1) =

( ∞∑
m=0

Bm
1

m!
(et − 1)m

)( ∞∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
m=0

Bm(x)
∞∑
k=m

s2(k,m)
tk

k!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=
∞∑
n=0

{
n∑
k=0

(
n

k

) k∑
m=0

Bms2(k,m)Beln−k(x)

}
tn

n!
. (20)

Therefore, by (19) and (20), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

n∑
k=0

k∑
m=0

Dm(x)s2(k,m)s2(n, k) =
n∑
k=0

(
n

k

) k∑
m=0

Bms2(k,m)Beln−k(x). (21)

By replacing t by ee
t−1 − 1, we get

2

eet−1 + 1
ex(e

t−1) =

∞∑
n=0

Chn(x)
(ee

t−1 − 1)n

n!

=

∞∑
n=0

Chn(x)

∞∑
m=n

s2(m,n)
(et − 1)m

m!

=
∞∑
m=0

{
m∑
n=0

Chn(x)s2(m,n)

)
1

m!
(et − 1)m

=
∞∑
m=0

{
m∑
n=0

Chn(x)s2(m,n)

) ∞∑
k=m

s2(k,m)
tk

k!
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5

=

∞∑
k=0

{
k∑

m=0

m∑
n=0

Chn(x)s2(m,n)s2(k,m)

)
tk

k!

(22)

and

2

eet−1 + 1
ex(e

t−1) =

( ∞∑
n=0

En
(et − 1)n

n!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
n=0

En(x)
1

n!
n!

∞∑
k=n

s2(k, n)
tk

k!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=

( ∞∑
m=0

(
m∑
n=0

Ens2(m,n)

)
tm

m!

)( ∞∑
l=0

Bell(x)
tl

l!

)

=
∞∑
k=0

(
k∑

m=0

(
k

m

) m∑
n=0

Ens2(m,n)Belk−m(x)

)
tk

k!
. (23)

Therefore, by (22) and (23), we obtain the following theorem.

Theorem 2.5. For k ≥ 0, we have

k∑
m=0

(
k

m

) m∑
n=0

Ens2(m,n)Belk−m(x) =
k∑

m=0

m∑
n=0

Chn(x)s2(m,n)s2(k,m). (24)
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The rough intuitionistic fuzzy set theory is an extension of the theory of rough fuzzy sets. For
further studying the theories and applications of rough intuitionistic fuzzy sets, in this paper, we
propose a type of rough intuitionistic fuzzy sets and investigate its topological structure. It is
proved that an intuitionistic fuzzy topology is induced by a binary relation in a crisp approxima-
tion space, and a preorder is generated by a family of intuitionistic fuzzy sets. Moreover, there
exists a one-to-one correspondence between the set of all intuitionistic fuzzy topologies having
property (∗) and the set of all preorders. That is to say, there exists a one-to-one correspondence
between the set of all intuitionistic fuzzy topological spaces having property (∗) and the set of
all crisp approximation spaces whose relations are preorders.

Keywords: approximation operator; preorder; rough intuitionistic fuzzy set; intuitionistic
fuzzy topology.

1 Introduction

Rough set theory was proposed by Pawlak [14] to deal with imprecision, vagueness, and
uncertainty in data analysis. In classical Pawlak rough set theory, the lower and upper approxi-
mation operators are two important basic concepts. The equivalence (indiscernibility) relations
or partitions are the simplest formulation of the lower and upper approximation operators. How-
ever, the requirement of the equivalence relation in Pawlak rough set model seems to be a very
restrictive condition that may limit the application domain of the rough set model. To solve this
problem, many authors have generalized the notion of approximation operators by using more
general binary relations [4, 20, 21, 26, 27] or by employing coverings [2, 3, 28, 33]. Moreover,
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¯
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This work was supported by the National Natural Science Foundation of China (61379021), Natural Science
Foundation of Fujian (Grant Nos. JK2014028, 2013J01028, 2013J01265, JA13198, JA14200).
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rough sets can also be generalized into the fuzzy environment and the results are called rough
fuzzy sets and fuzzy rough sets [8, 9, 10, 12, 13, 15, 16, 19, 22, 23, 24, 30].

As an extension of the theory of fuzzy sets, the theory of intuitionistic fuzzy (IF, for short)
sets is originated by Atanassov [1]. A fuzzy set gives a degree of which element belongs to a set,
but an IF set gives both a membership degree and a nonmembership degree. Obviously, an IF
set is more objective than a fuzzy set to describe the vagueness of data or information. Many
authors generalized the concepts and operations in fuzzy set theory into IF set theory, to enrich
the theory of IF sets and enlarge the application of IF sets. Therefore, the combination of IF set
theory and rough set theory is an interesting research issue over the years [5, 7, 17, 18, 29, 31].
The rough IF sets are indeed natural generalizations of rough fuzzy sets and will be applied in
decision analysis.

Topology is a mathematical tool to study information systems and rough sets. It is important
to discuss topological structures of rough sets. Many authors investigated topological structures
of rough sets in the fuzzy environment [11, 32, 25]. Zhou et al. presented a one-to-one correspon-
dence between the set of all IF reflexive and transitive approximation spaces and the set of all
IF rough topological spaces [32]. Lin and Wang discussed the topological properties of IF rough
sets [11]. Xu and Wu investigated topological structures of a type rough IF sets [25].

This paper is devoted to the discussion of a type of rough IF sets and its topological structure.
Firstly, in a crisp approximation space, an IF topology is generated by the relation, whose interior
and closure operators are IF lower and upper approximation operators respectively. Then, a
preorder is induced by a family of IF sets. Moreover, there exists a one-to-one correspondence
between the set of all intuitionistic fuzzy topological spaces having property (∗) and the set of
all crisp approximation spaces whose relations are preorders.

2 Basic Concepts and properties

In this section, we introduce the basic concepts about binary relation, intuitionistic fuzzy set
and intuitionistic fuzzy topological space.

Throughout this paper, U will be a nonempty set called the universe of discourse. The class
of all subsets (intuitionistic fuzzy subsets, respectively) of U will be denoted by P(U) (by IF(U),
respectively).

Definition 1. Let U be a set, U × U the product set of U and U . Any subset R of U × U
is called a binary relation on U . For any (x, y) ∈ U × U , if (x, y) ∈ R, we say x has relation
R with y, and denote this relationship as xRy. For any x ∈ U , we call the set {y ∈ U |xRy}
the successor neighborhood of x in R and denote it as Rs(x), and the set {y ∈ U |yRx} the
predecessor neighborhood of x in R and denote it as Rp(x). Let R be a relation on U .

(Reflexive relation) If for any x ∈ U , xRx, we say R is reflexive. In another word, if for any
x ∈ U , x ∈ Rs(x), R is reflexive.

(Transitive relation) If for any x, y, z ∈ U , xRy and yRz ⇒ xRz, we say R is transitive. In
another word, if for any x, y ∈ U , y ∈ Rs(x) ⇒ Rs(y) ⊆ Rs(x), R is transitive.

(Preorder) A binary relation R is referred to as a preorder if R is reflexive and transitive.

Definition 2 [1]. Let U be a non-empty set. An intuitionistic fuzzy set A in U is an object

2
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having the form

A = {< x, µA(x), γA(x) > |x ∈ U},

where µA : U → [0, 1] and γA : U → [0, 1] satisfy 0 ≤ µA(x)+ γA(x) ≤ 1 for all x ∈ U , and µA(x)
and γA(x) are, respectively, called the degree of membership and the degree of nonmembership
of the element x ∈ U to A.

Obviously, a fuzzy set A = {< x, µA(x) > |x ∈ U}, can be identified with the IF set of the
form A = {< x, µA(x), 1 − µA(x) > |x ∈ U}. Thus, an IF set is indeed an extension of a fuzzy
set. We introduce some basic operations on IF(U) in the following definition.

Definition 3 [1]. Let A,B ∈ IF(U) and {Aj |j ∈ J} ⊆ IF(U), where J is an index set. Define
the operations as follows:

A ⊆ B ⇔ µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ U ,

A ⊇ B ⇔ B ⊇ A,

A = B ⇔ A ⊆ B and B ⊇ A,

A ∩B = {< x, µA(x) ∧ µB(x), γA(x) ∨ γB(x) > |x ∈ U},
A ∪B = {< x, µA(x) ∨ µB(x), γA(x) ∧ γB(x) > |x ∈ U},
Ac = {< x, γA(x), µA(x) > |x ∈ U},
∩Aj = {< x,∧µAj (x),∨γAj (x) > |x ∈ U},
∪Aj = {< x,∨µAj (x),∧γAj (x) > |x ∈ U},
0∼ = {< x, 0, 1 > |x ∈ U}, 1∼ = {< x, 1, 0 > |x ∈ U}.

Definition 4 [6]. An IF topology τ on a nonempty set U is a family of IF sets in U satisfying
the following axioms:

(T1) 0∼, 1∼ ∈ τ ,

(T2) G1 ∩G2 ∈ τ for all G1, G2 ∈ τ ,

(T3) ∪j∈JGj ∈ τ for an arbitrary family {Gj |j ∈ J} ⊆ τ .

In this case the pair (U, τ) is called an IF topological space and each IF set G ∈ τ is known as
an IF open set in U , and the complement Gc of an IF open set G in (U, τ) is called an IF closed
set in U . For any A ∈ IF(U), the IF interior and IF closure of A are, respectively, defined as
follows:

int(A) = ∪{G|G ∈ τ, G ⊆ A},
cl(A) = ∩{K|Kc ∈ τ, A ⊆ K},

where int and cl are, respectively, called the IF interior operator and the IF closure operator of
τ .

It can be shown that cl(A) is an IF closed set and int(A) is an IF open set in U , A is an IF
open set in U if and only if int(A) = A, and A is an IF closed set in U if and only if cl(A) = A.
Some properties of IF interior operator and IF closure operator are presented as

Proposition 1. Let (U, τ) be an IF topological space and A,B ∈ IF(U). Then the following

3
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properties hold:

(1) cl(Ac) = (int(A))c, int(Ac) = (cl(A))c,

(2) int(A) ⊆ A ⊆ cl(A),

(3) int(A ∩B) = int(A) ∩ int(B), cl(A ∪B) = cl(A) ∪ cl(B),

(4) int(int(A)) = int(A), cl(cl(A)) = cl(A),

(5) int(1∼) = 1∼, cl(0∼) = 0∼.

Conversely, it is easy to verify that if an IF operator i : IF(U) → IF(U) (c : IF(U) →
IF(U), respectively) satisfies the following properties: for any A,B ∈ IF(U),

(1) i(1∼) = 1∼, (c(0∼) = 0∼, )

(2) i(A) ⊆ A, (A ⊆ c(A),)

(3) i(A ∩B) = i(A) ∩ i(B), (c(A ∪B) = c(A) ∪ c(B),)

(4) i(i(A)) = i(A), (c(c(A)) = c(A),)

then {A|i(A) = A, A ∈ IF(U)} ({Ac|c(A) = A, A ∈ IF(U)}, respectively) is an IF topology
on U and denoted by τ(i) (τ(c), respectively).

3 The one-to-one correspondence between IF approxima-
tion operators and IF topological spaces

Firstly, we introduce the definition of IF approximation operators.

Definition 5. Let R be a binary relation on U . Then (U,R) is called a crisp approximation
space. Define a family of IF sets as follows:

A(R) = {A ∈ IF(U)|∀(x, y) ∈ R,µA(x) ≤ µA(y), γA(x) ≥ γA(y)}.

Then a pair of rough IF approximation operators are defined by

R(X) = ∪{A|A ⊆ X,A ∈ A(R)},
R(X) = ∩{A|X ⊆ A,A ∈ A(R)}.

Since Dubois and Prade proposed rough fuzzy set [8], much authors have discussed properties
of rough fuzzy set [9, 23, 24]. At the same time, the definitions of rough fuzzy set in [9, 23, 24]
were extended to rough IF set [17, 18, 25, 31]. It is easy to verify that the definition of the rough
IF in Definition 5 is different from that in [17, 18, 25, 31].

It is easy to get properties of rough IF approximation operators: ∀A,B ∈ IF(U),

(1) R(1∼) = 1∼, R(0∼) = 0∼;

(2) R(A) = (R(Ac))c, R(A) = (R(Ac))c;

(3) R(A) ⊆ A ⊆ R(A);

(4) A ⊆ B ⇒ R(A) ⊆ R(B), R(A) ⊆ R(B).

4
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3.1 From a crisp approximation space to an intuitionistic fuzzy topo-
logical space

In this subsection, we will present more properties of A(R), R and R.

Proposition 2. Let R be a binary relation on U . Then, for any B ⊆ A(R), ∪B,∩B ∈ A(R).

Proof. For any (x, y) ∈ R and B ∈ B, we get µB(x) ≤ µB(y) and γB(x) ≥ γB(y). Thus
µ∪B(x) ≤ µ∪B(y) and γ∪B(x) ≥ γ∪B(y), µ∩B(x) ≤ µ∩B(y) and γ∩B(x) ≥ γ∩B(y). So ∪B,∩B ∈
A(R).

Corollary 1. Let R be a binary relation on U . Then

(1) A(R) is an IF topology,

(2) R and R are, respectively, the IF interior operator and the IF closure operator of A(R).

Proof. (1) It is clear that 0∼, 1∼ ∈ A(R). Thus, according to Definition 4 and Proposition 2,
A(R) is an IF topology.

(2) By (1) and Definition 4, we can get this proposition.

From Corollary 1, we know that A(R) is a IF topology if R is an arbitrarily relation, and R and
R are, respectively, the IF interior and closure operators of A(R). Hence R(A)∩R(B) = R(A∩B)
and R(A)∪R(B) = R(A∪B) for all A,B ∈ IF(U). To get more properties of A(R), we suppose
R is a preorder in the following.

Proposition 3. Let R be a preorder on U . Then, for any x, y ∈ U , xRy if and only if
µA(x) ≤ µA(y) and γA(x) ≥ γA(y) for all A ∈ A(R).

Proof. “⇒”. If xRy, by the definition of A(R), it is easy to obtain that µA(x) ≤ µA(y) and
γA(x) ≥ γA(y) for all A ∈ A(R).

“⇐”. Suppose (x, y) ̸∈ R, then define an IF set B as follows: for any u ∈ U ,

µB(u) =

{
0, u ∈ Rp(y);
1, u ̸∈ Rp(y),

γB(u) = 1− µB(u).

For any (u1, u2) ∈ R, if u2 ̸∈ Rp(y), then µB(u2) = 1. So µB(u1) ≤ µB(u2). If u2 ∈ Rp(y),
hence (u2, y) ∈ R. Since R is transitive and (u1, u2) ∈ R, we have (u1, y) ∈ R. Thus u1 ∈ Rp(y),
µB(u1) = 0, which implies µB(u1) ≤ µB(u2). So we can conclude that µB(u1) ≤ µB(u2). Then
γB(u1) = 1− µB(u1) ≥ 1− µB(u2) = γB(u2). Consequently, B ∈ A(R).

Since R is reflexive, we obtain y ∈ Rp(y), so µB(y) = 0. By (x, y) ̸∈ R, x ̸∈ Rp(y), thus
µB(x) = 1.

In conclusion, there exists B ∈ A(R) such that µB(x) > µB(y), which contradicts the as-
sumption of this theorem.

Proposition 4. Let R be a preorder on U . Then, for any x ∈ U and a, b ∈ [0, 1] with a+ b ≤ 1,
there exists an A ∈ A(R) such that for any z ∈ U ,

µA(z) =

{
a, z ∈ Rs(x);
0, z ̸∈ Rs(x),

γA(z) =

{
b, z ∈ Rs(x);
1, z ̸∈ Rs(x).

5
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Proof. We only proveA ∈ A(R). In fact, for any (u, v) ∈ R, if u ∈ Rs(x), we have v ∈ Rs(x) since
R is transitive. R is reflexive, so µA(x) = µA(u) = µA(v) = a and γA(x) = γA(u) = γA(v) = b.
If u ̸∈ Rs(x), then µA(u) = 0 and γA(u) = 1. Hence µA(u) ≤ µA(v) and γA(u) ≥ γA(v). In
conclusion, µA(u) ≤ µA(v) and γA(u) ≥ γA(v). Therefore, A ∈ A(R).

3.2 From an intuitionistic fuzzy topological space to a crisp approxi-
mation space

Definition 6. Let A ⊆ IF (U), then define a binary relation from A as follows:

R(A)= {(x, y) ∈ U × U |∀A ∈ A, µA(x) ≤ µA(y), γA(x) ≥ γA(y)}.

In Definition 6, a binary relation is induced from a family of intuitionistic fuzzy sets. Propo-
sition 5 below gives the properties of R(A).

Proposition 5. Let A ⊆ IF (U), then R(A) is a preorder.

Proof. For any x ∈ U and A ∈ A, µA(x) = µA(x) and γA(x) = γA(x), then (x, x) ∈ R(A). We
obtain that R(A) is reflexive.

For any x, y, z ∈ U , if (x, y) ∈ R(A) and (y, z) ∈ R(A), then for any A ∈ A, µA(x) ≤ µA(y)
and γA(x) ≥ γA(y), µA(y) ≤ µA(z) and γA(y) ≥ γA(z). So µA(x) ≤ µA(z) and γA(x) ≥ γA(z).
Hence (x, z) ∈ R(A). It follows that R(A) is transitive.

By Proposition 5, we can induce a preorder from a family of IF sets. We first convert a
preorder R into a family of IF sets A(R), then convert the family of IF sets A(R) into a preorder
R(A(R)), and consider the relationship between R and R(A(R)).

Theorem 1. Let R be a preorder on U . Then R = R(A(R)).

Proof. For any (x, y) ∈ R, by the definition of A(R), µA(x) ≤ µA(y) and γA(x) ≥ γA(y) for all
A ∈ A(R). According to Definition 6, (x, y) ∈ R(A(R)), so R ⊆ R(A(R)). Conversely, for any
(x, y) ∈ R(A(R)), µA(x) ≤ µA(y) and γA(x) ≥ γA(y) for all A ∈ A(R). From Proposition 3,
(x, y) ∈ R, so R(A(R)) ⊆ R. Therefore, we obtain R = R(A(R)).

If we first convert a family of IF sets A into a preorder R(A), then change the preorder R(A)
into the family of IF sets A(R(A)), A = A(R(A))?

Proposition 6. Let A ⊆ IF(U), then A ⊆ A(R(A)).

Proof. For any A ∈ A, by the definition of R(A), µA(x) ≤ µA(y) and γA(x) ≥ γA(y) for all
(x, y) ∈ R(A). According to Definition 5, we have A ∈ A(R(A)). So A ⊆ A(R(A)).

Generally, A(R(A)) is not equal to A.

Example 1. Let U = {a, b} and A= {A}, where A = {< a, 13 ,
1
2 >,< b, 12 ,

1
3 >}. Then

R(A)= {(a, a), (a, b), (b, b)}. Thus, we have B = {< a, 12 ,
1
2 >,< b, 12 ,

1
2 >} ∈ A(R(A)) and

B ̸∈ A. So A(R(A)) ̸= A.

6
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In order to give a sufficient and necessary condition for A(R(A)) = A, we propose two
properties for a family of IF sets A.

Property (∗): for any x ∈ U and a, b ∈ [0, 1] with a+ b ≤ 1, there exists an A ∈ A such that
for any z ∈ U ,

µA(z) =

{
a, z ∈ R(A)s(x);
0, z ̸∈ R(A)s(x),

γA(z) =

{
b, z ∈ R(A)s(x);
1, z ̸∈ R(A)s(x).

Property (∗∗): for any B ⊆ A, ∪B ∈ A.

Theorem 2. Let A ⊆ IF(U), then A = A(R(A)) if and only if A has properties (∗) and (∗∗).

Proof. “⇒”. From Proposition 5, R(A) is a preorder. By Proposition 4, for any x ∈ U and
a, b ∈ [0, 1] with a+ b ≤ 1, there exists an A ∈ A(R(A)) such that for any z ∈ U ,

µA(z) =

{
a, z ∈ R(A)s(x);
0, z ̸∈ R(A)s(x),

γA(z) =

{
b, z ∈ R(A)s(x);
1, z ̸∈ R(A)s(x).

Since A = A(R(A)), A satisfies property (∗) by Proposition 2. According to Proposition 4,
A(R(A)) satisfies property (∗∗), which implies that A has property (∗∗).

“⇐”. By Proposition 6, A ⊆ A(R(A)). Now we prove A(R(A)) ⊆ A. Let A ∈ A(R(A)),
then for any (u, v) ∈ R(A), µA(u) ≤ µA(v) and γA(u) ≥ γA(v). Since A satisfies property (∗),
for any x ∈ U , there is Bx ∈ A such that for any z ∈ U ,

µBx
(z) =

{
µA(x), z ∈ R(A)s(x);

0, z ̸∈ R(A)s(x),
γBx

(z) =

{
γA(x), z ∈ R(A)s(x);

1, z ̸∈ R(A)s(x).

Then A =
∪
x∈U Bx. In fact, for any y ∈ U , since R(A) is reflexive, We have y ∈ R(A)s(y). So

µBy
(y) = µA(y) and γBy

(y) = γA(y). Hence

µA(y) ≤ ∨x∈UµBx(y) = µ(
∪

x∈U
Bx)

(y), γA(y) ≥ ∧x∈UγBx(y) = γ(
∪

x∈U
Bx)

(y).

Conversely, for any x ∈ U , if y ̸∈ R(A)s(x), then µBx(y) = 0 and γBx(y) = 1. If y ∈ R(A)s(x),
then µBx(y) = µA(x) ≤ µA(y) and γBx(y) = γA(x) ≥ γA(y). So

µ∪
x∈U

Bx
(y) = ∨x∈UµBx

(y) ≤ µA(y), γ(
∪

x∈U
Bx)

(y) = ∧x∈UγBx
(y) ≥ γA(y).

Therefore, by property (∗∗), A =
∪
x∈U Bx ∈ A, which implies A(R(A)) ⊆ A.

From Theorem 2, A having properties (∗) and (∗∗) is a sufficiency and necessary condition
for A = A(R(A)). By Corollary 1 and Theorem 2, it is easy to obtain

Corollary 2. Let A ⊆ IF(U), then A = A(R(A)) if and only if A is an IF topology satisfying
property (∗).

Denote the set of all preorders on U as R̃, and denote the family of all IF topologies on U
having property (∗) as Ã. Combining Theorem 1, Corollaries 1 and 2, we have

7
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Theorem 2. Let U be a non-empty set. Then there exists a one-to-one correspondence between
R̃ and Ã.

Proof. Define a mapping f : R̃ → Ã by f(R) = A(R). And define a mapping g : Ã → R̃ by

g(A) =R(A). For any R ∈ R̃, by Theorem 1 and Corollary 1, we get g ◦ f(R) = g(A(R)) =

R(A(R)) = R. For any A ∈ Ã, according to Proposition 5 and Corollary 2, f ◦g(A)= f(R(A)) =

A(R(A)) = A. Then there exists a one-to-one correspondence between R̃ and Ã.

By Theorem 2, there exists a one-to-one correspondence between crisp approximation spaces
whose relations are preorders and IF topological spaces having property (∗).

4 Conclusion

In this paper, an IF topology has been induced in a crisp approximation space, whose
IF interior and closure operators are IF lower and upper approximation operators respectively.
Conversely, a preorder has been generated by a family of IF sets. The important contribution of
this paper is that we establish a one-to-one correspondence between the set of all intuitionistic
fuzzy topological spaces having property (∗) and the set of all crisp approximation spaces whose
relations are preorders. In our future work, we will discuss relationships between this type of
rough IF sets and other types of rough IF sets, and explore connections between rough IF sets
and covering-based rough sets.
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