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PRODUCT-TYPE OPERATORS FROM WEIGHTED
BERGMAN-ORLICZ SPACES TO BLOCH-ORLICZ SPACES

HONG-BIN BAI AND ZHI-JIE JIANG

Abstract. Let D = {z ∈ C : |z| < 1} be the open unit disk, ϕ an analytic

self-map of D and ψ an analytic function on D. Let D be the differentiation
operator and Wϕ,ψ the weighted composition operator. The boundedness

and compactness of the product-type operators DWϕ,ψ from the weighted

Bergman-Orlicz spaces to the Bloch-Orlicz spaces on D are characterized.

1. Introduction

Let C be the complex plane, D = {z ∈ C : |z| < 1} the open unit disk and H(D)
the class of all analytic functions on D. Let ϕ be an analytic self-map of D and
ψ ∈ H(D). Weighted composition operator Wϕ,ψ on H(D) is defined by

Wϕ,ψf(z) = ψ(z)f(ϕ(z)), z ∈ D.
If ψ ≡ 1, the operator is reduced to, so called, composition operator and usually
denoted by Cϕ. If ϕ(z) = z, it is reduced to, so called, multiplication operator and
usually denoted by Mψ. A standard problem is to provide function theoretic char-
acterizations when ϕ and ψ induce a bounded or compact weighted composition
operator. Composition operators and weighted composition operators between vari-
ous spaces of holomorphic functions on different domains have been studied in many
papers, see, for example, [1,3,8,11–15,17,19,22,26,27,31,33–36,40,42,48,53,55,60]
and the references therein.

Let D be the differentiation operator on H(D), that is,

Df(z) = f ′(z), z ∈ D.
Operator DCϕ has been studied, for example, in [6, 16, 18, 24, 25, 28, 41, 45, 50].
In [32] Sharma studied the operators DMψCϕ and DCϕMψ from Bergman spaces
to Bloch type spaces. These operators on weighted Bergman spaces were also
studied in [58] and [59] by Stević, Sharma and Bhat. If we consider the product-
type operator DWϕ,ψ, it is clear that DMψCϕ = DWϕ,ψ and DCϕMψ = DWϕ,ψ◦ϕ.
Quite recently, the present author has considered this operator in [7, 9]. For some
other product-type operators, see, for example, [10,20,21,23,37–39,43,44,46,47,51,
52,54,56,61] and the references therein. This paper is devoted to characterizing the
boundedness and compactness of the operators DWϕ,ψ from the weighted Bergman-
Orlicz spaces to the Bloch-Orlicz spaces.

Next we are ready to introduce the needed spaces and some facts in [30]. The
function Φ 6≡ 0 is called a growth function, if it is a continuous and nondecreasing

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B37.
Key words and phrases. Weighted Bergman-Orlicz spaces, product-type operators, Bloch-

Orlicz spaces, boundedness, compactness.
E-mail address: hbbai@suse.edu.cn, matjzj@126.com.
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2 HONG-BIN BAI AND ZHI-JIE JIANG

function from the interval [0,∞) onto itself. It is clear that these conditions imply
that Φ(0) = 0. It is said that the function Φ is of positive upper type (respectively,
negative upper type), if there are q > 0 (respectively, q < 0) and C > 0 such
that Φ(st) ≤ CtqΦ(s) for every s > 0 and t ≥ 1. By Uq we denote the family of
all growth functions Φ of positive upper type q (q ≥ 1), such that the function
t 7→ Φ(t)/t is nondecreasing on [0,∞). It is said that function Φ is of positive lower
type (respectively, negative upper type), if there are r > 0 (respectively, r < 0) and
C > 0 such that Φ(st) ≤ CtrΦ(s) for every s > 0 and 0 < t ≤ 1. By Lr we denote
the family of all growth functions Φ of positive lower type r (0 < r ≤ 1), such that
the function t 7→ Φ(t)/t is nonincreasing on [0,∞). If f ∈ Uq, we will also assume
that it is convex.

Let dA(z) = 1
πdxdy be the normalized Lebesgue measure on D. For α > −1, let

dAα(z) = (α + 1)(1 − |z|2)αdA(z) be the weighted Lebesgue measure on D. Let
Φ be a growth function. The weighted Bergman-Orlicz space AΦ

α(D) := AΦ
α is the

space of all f ∈ H(D) such that

‖f‖AΦ
α

=
∫

D
Φ(|f(z)|)dAα(z) <∞.

On AΦ
α is defined the following quasi-norm

‖f‖luxAΦ
α

= inf
{
λ > 0 :

∫
D

Φ
( |f(z)|

λ

)
dAα(z) ≤ 1

}
.

If Φ ∈ Uq or Φ ∈ Lr, then the quasi-norm on AΦ
α is finite and called the Luxembourg

norm. The classical weighted Bergman space Apα, p > 0, corresponds to Φ(t) = tp,
consisting of all f ∈ H(D) such that

‖f‖p
Apα

=
∫

D
|f(z)|pdAα(z) <∞.

It is well known that for p ≥ 1 it is a Banach space, while for 0 < p < 1 it is a
translation-invariant metric space with d(f, g) = ‖f − g‖p

Apα
. Moreover, if Φ ∈ Us,

then A
Φp
α , where Φp(t) = Φ(tp), is a subspace of Apα ( [30]).

Recently, the Bloch-Orlicz space was introduced in [29] by Ramos Fernández.
More precisely, let Ψ be a strictly increasing convex function such that Ψ(0) = 0.
From these conditions it follows that limt→∞Ψ(t) = ∞. The Bloch-Orlicz space
associated with the function Ψ, denoted by BΨ, is the class of all f ∈ H(D) such
that

sup
z∈D

(1− |z|2)Ψ(λ|f ′(z)|) <∞

for some λ > 0 depending on f . On BΨ Minkowski’s functional

‖f‖Ψ = inf
{
k > 0 : SΨ

(f ′
k

)
≤ 1
}

defines a seminorm, where

SΨ(f) = sup
z∈D

(1− |z|2)Ψ(f(z)).

Moreover, BΨ is a Banach space with the norm

‖f‖BΨ = |f(0)|+ ‖f‖Ψ.
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In fact, Ramos Fernández in [29] proved that BΨ is isometrically equal to µ-Bloch
space, where

µ(z) =
1

Ψ−1( 1
1−|z|2 )

, z ∈ D.

Thus, for f ∈ BΨ, we have

‖f‖BΨ = |f(0)|+ sup
z∈D

µ(z)|f ′(z)|.

We can study the operator DWϕ,ψ : AΦp
α → BΨ with the help of this equivalent

norm. It is obviously seen that if Ψ(t) = tp with p > 0, then the space BΨ

coincides with the weighted Bloch space Bα (see [62]), where α = 1/p. Also, if
Ψ(t) = t log(1 + t) then BΨ coincides with the Log-Bloch space (see [2]). For the
generalization of Log-Bloch spaces, see, for example, [49, 57].

Let X and Y be topological vector spaces whose topologies are given by trans-
lation invariant metrics dX and dY , respectively. It is said that a linear operator
L : X → Y is metrically bounded if there exists a positive constant K such that

dY (Lf, 0) ≤ KdX(f, 0)

for all f ∈ X. When X and Y are Banach spaces, the metrical boundedness
coincides with the usual definition of bounded operators between Banach spaces.
Operator L : X → Y is said to be metrically compact if it maps bounded sets
into relatively compact sets. When X and Y are Banach spaces, the metrical com-
pactness coincides with the usual definition of compact operators between Banach
spaces. Let X = AΦ

α and Y a Banach space. The norm of operator L : X → Y is
defined by

‖L‖AΦ
α→Y = sup

‖f‖AΦ
α
≤1

‖Lf‖Y

and often written by ‖L‖.
Throughout this paper, an operator is bounded (respectively, compact), if it is

metrically bounded (respectively, metrically compact). C will be a constant not
necessary the same at each occurrence. The notation a . b means that a ≤ Cb for
some positive constant C. When a . b and b . a, we write a ' b.

2. Auxiliary results

In order to prove the compactness of the product-type operators, we need the
following result which is similar to Proposition 3.11 in [4]. The details of the proof
are omitted.

Lemma 2.1. Let p ≥ 1, α > −1, and Φ ∈ Us such that Φp ∈ Lr. Then the
bounded operator DWϕ,ψ : AΦp

α → BΨ is compact if and only if for every bounded
sequence {fn}n∈N in A

Φp
α such that fn → 0 uniformly on every compact subset of

D as n→∞, it follows that

lim
n→∞

‖DWϕ,ψfn‖BΨ = 0.

We formulate the following two useful point estimates. For the first, see Lemma
2.4 in [30], and for the second, see Lemma 2.3 in [9].
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Lemma 2.2. Let p ≥ 1, α > −1 and Φ ∈ Us. Then for every f ∈ AΦp
α and z ∈ D

we have

|f(z)| ≤ Φ−1
p

(( 4
1− |z|2

)α+2)
‖f‖lux

A
Φp
α

.

Lemma 2.3. Let p ≥ 1, α > −1, Φ ∈ Us and n ∈ N. Then there are two positive
constants Cn = C(α, p, n) and Dn = D(α, p, n) independent of f ∈ AΦp

α and z ∈ D
such that

|f (n)(z)| ≤ Cn
(1− |z|2)n

Φ−1
p

(
Dn

(1− |z|2)α+2

)
‖f‖lux

A
Φp
α

.

We also need the following lemma which provides a class of useful test functions
in space AΦp

α (see [9]).

Lemma 2.4. Let p > 0, α > −1 and Φ ∈ Us. Then for every t ≥ 0 and w ∈ D the
following function is in A

Φp
α

fw,t(z) = Φ−1
p

(( C

1− |w|2
)α+2)(1− |w|2

1− wz

) 2(α+2)
p +t

,

where C is an arbitrary positive constant.
Moreover,

sup
w∈D
‖fw,t‖lux

A
Φp
α

. 1.

3. The operator DWϕ,ψ : AΦp
α → BΨ

First we characterize the boundedness of operator DWϕ,ψ : AΦp
α → BΨ. We

assume that Φ ∈ Us such that Φp ∈ Lr. Under this assumption, AΦp
α is a complete

metric space (see [30]).

Theorem 3.1. Let p ≥ 1, α > −1, and Φ ∈ Us such that Φp ∈ Lr. Then the
following conditions are equivalent:

(i) The operator DWϕ,ψ : AΦp
α → BΨ is bounded.

(ii) Functions ϕ and ψ satisfy the following conditions:

M1 := sup
z∈D

µ(z)
∣∣ψ′′(z)∣∣Φ−1

p

(( 4
1− |ϕ(z)|2

)α+2)
<∞,

M2 := sup
z∈D

µ(z)
1− |ϕ(z)|2

∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

<∞,

and

M3 := sup
z∈D

µ(z)
(1− |ϕ(z)|2)2

|ψ(z)||ϕ′(z)|2Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

<∞.

Moreover, if the operator DWϕ,ψ : AΦp
α → BΨ is nonzero and bounded, then∥∥DWϕ,ψ

∥∥ ' 1 +M1 +M2 +M3.
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Proof. (i)⇒ (ii). Suppose that DWϕ,ψ : AΦp
α → BΨ is bounded. For w ∈ D, we

choose the function

f1,ϕ(w)(z) = c0

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p

+ c1

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +1

+ c2

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +2

−
(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +3

,

where

c0 =
2(α+ 2) + 3p

2(α+ 2)
, c1 = −6(α+ 2) + 9p

2(α+ 2) + p
, c2 =

6(α+ 2) + 9p
2(α+ 2) + 2p

.

By a direct calculation, we have

f ′1,ϕ(w)(ϕ(w)) = f ′′1,ϕ(w)(ϕ(w)) = 0. (1)

Using the function f1,ϕ(w), we define the function

f(z) = Φ−1
p

(( 4
1− |ϕ(w)|2

)α+2)
f1,ϕ(w)(z).

Applying (1) to f ′ and f ′′, we obtain

f ′(ϕ(w)) = f ′′(ϕ(w)) = 0. (2)

It is clear that

f(ϕ(w)) = CΦ−1
p

(( 4
1− |ϕ(w)|2

)α+2)
, (3)

where

C =
2(α+ 2) + 3p

2(α+ 2)
− 6(α+ 2) + 9p

2(α+ 2) + p
+

6(α+ 2) + 9p
2(α+ 2) + 2p

− 1 6= 0.

By Lemma 2.4, f ∈ A
Φp
α and ‖f‖

A
Φp
α
≤ C. By (2), (3) and the boundedness of

DWϕ,ψ : AΦp
α → BΨ,

µ(w)
∣∣ψ′′(w)

∣∣Φ−1
p

(( 4
1− |ϕ(w)|2

)α+2)
≤ C‖DWϕ,ψ‖, (4)

which means that

M1 = sup
z∈D

µ(z)|ψ′′(z)|Φ−1
p

(( 4
1− |ϕ(z)|2

)α+2)
≤ C‖DWϕ,ψ‖ <∞. (5)

Next we will prove M2 < ∞. For this we consider the functions f1(z) = z and
f2(z) ≡ 1, respectively. Since the operator DWϕ,ψ : AΦp

α → BΨ is bounded, we
have

sup
z∈D

µ(z)
∣∣ψ′′(z)ϕ(z) + 2ψ′(z)ϕ′(z) + ψ(z)ϕ′′(z)

∣∣
≤ ‖DWϕ,ψf1‖BΨ ≤ C‖DWϕ,ψ‖ (6)

and

sup
z∈D

µ(z)|ψ′′(z)| ≤ ‖DWϕ,ψf2‖BΨ ≤ C‖DWϕ,ψ‖. (7)

By (6), (7) and the boundedness of ϕ,

J1 := sup
z∈D

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ ≤ C‖DWϕ,ψ‖. (8)
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For w ∈ D, choose the function

f2,ϕ(w)(z) = c0

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p

+ c1

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +1

+ c2

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +2

−
(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +3

,

where

c1 =
36p(α+ 2)2 + 78p2(α+ 2) + 36p3

[4(α+ 2) + 2p][2(α+ 2) + 2p][2(α+ 2) + 3p]
,

c2 =
4(α+ 2)2 + 42p(α+ 2) + 36p2

[2(α+ 2) + 2p][4(α+ 2) + 6p]
,

and
c0 = 1− c1 − c2.

From a calculation, we obtain

f2,ϕ(w)(ϕ(w)) = f ′′2,ϕ(w)(ϕ(w)) = 0. (9)

Define the function

g(z) = Φ−1
p

(( D1

1− |ϕ(w)|2
)α+2)

f2,ϕ(w)(z).

Then by (9),

g(ϕ(w)) = g′′(ϕ(w)) = 0, (10)

and by a direct calculation,

g′(ϕ(w)) = C
ϕ(w)

1− |ϕ(w)|2
Φ−1
p

(( D1

1− |ϕ(w)|2
)α+2)

, (11)

where C = c1 + 2c2 − 3. Also by Lemma 2.4, g ∈ A
Φp
α and ‖g‖

A
Φp
α
≤ C. Since

DWϕ,ψ : AΦp
α → BΨ is bounded, we have

µ(z)|(DWϕ,ψg)′(z)| ≤ C‖DWϕ,ψ‖, (12)

for all z ∈ D. By (10) and (11), letting z = w in (12) gives

J(w) : =
µ(w)|ϕ(w)|
1− |ϕ(w)|2

∣∣ψ(w)ϕ′′(w) + 2ψ′(w)ϕ′(w)
∣∣Φ−1
p

(( D1

1− |ϕ(w)|2
)α+2)

≤ C‖DWϕ,ψ‖. (13)

Hence

sup
z∈D

J(z) ≤ C‖DWϕ,ψ‖. (14)

For the fixed δ ∈ (0, 1), by (8)

sup
{z∈D:|ϕ(z)|≤δ}

µ(z)
1− |ϕ(z)|2

∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

≤ J1

1− δ2
Φ−1
p

(( D1

1− δ2

)α+2)
≤ C‖DWϕ,ψ‖, (15)
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and by (14)

sup
{z∈D:|ϕ(z)|>δ}

µ(z)
1− |ϕ(z)|2

∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

≤ 1
δ

sup
z∈D

J(z) ≤ C‖DWϕ,ψ‖. (16)

Consequently, it follows from (15) and (16) that

M2 ≤ C‖DWϕ,ψ‖ <∞. (17)

Now we prove that M3 <∞. First taking the function f(z) = z2, we have

sup
z∈D

µ(z)
∣∣ψ′′(z)ϕ(z)2 + 4ψ′(z)ϕ′(z)ϕ(z) + 2ψ(z)ϕ′′(z)ϕ(z) + 2ψ(z)ϕ′(z)2

∣∣
≤ ‖DWϕ,ψz

2‖BΨ ≤ C‖DWϕ,ψ‖ (18)

By (7) and the boundedness of ϕ, we obtain

sup
z∈D

µ(z)|ψ′′(z)||ϕ(z)|2 ≤ C‖DWϕ,ψ‖. (19)

From (8), (18), (19) and the boundedness of ϕ, it follows that

J2 := sup
z∈D

µ(z)|ψ(z)||ϕ′(z)|2 ≤ C‖DWϕ,ψ‖. (20)

For w ∈ D, consider the function

f3,ϕ(w)(z) = c0

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p

+ c1

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +1

+ c2

(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +2

−
(1− |ϕ(w)|2

1− ϕ(w)z

) 2(α+2)
p +3

,

where

c0 =
2(α+ 2) + p

2(α+ 2) + 2p
, c1 = −3(α+ 2) + 4p

α+ 2 + p
, c2 =

6(α+ 2) + 7p
2(α+ 2) + 2p

.

For the function f3,ϕ(w), we have

f3,ϕ(w)(ϕ(w)) = f ′3,ϕ(w)(ϕ(w)) = 0. (21)

For the function

h(z) = Φ−1
p

(( D2

1− |ϕ(w)|2
)α+2)

f3,ϕ(w)(z),

it follows from (21) that

h(ϕ(w)) = h′(ϕ(w)) = 0. (22)

By (21) and (22), the boundedness of the operator DWϕ,ψ : AΦp
α → BΨ gives

K(w) : =
µ(w)|ϕ(w)|2

(1− |ϕ(w)|2)2
|ψ(w)||ϕ′(w)|2Φ−1

p

(( D2

1− |ϕ(w)|2
)α+2)

≤ C‖DWϕ,ψ‖.

This yields

sup
z∈D

K(z) ≤ C‖DWϕ,ψ‖ <∞. (23)
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For the fixed δ ∈ (0, 1), by (20) and (23) we respectively obtain

sup
{z∈D:|ϕ(z)|≤δ}

µ(z)
(1− |ϕ(z)|2)2

|ψ(z)||ϕ′(z)|2Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

≤ J2

(1− δ2)2
Φ−1
p

(( D2

1− δ2

)α+2)
≤ C‖DWϕ,ψ‖ (24)

and

sup
{z∈D:|ϕ(z)|>δ}

µ(z)
(1− |ϕ(z)|2)2

|ψ(z)||ϕ′(z)|2Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

≤ 1
δ2

sup
z∈D

K(z) ≤ C‖DWϕ,ψ‖. (25)

So, by (24) and (25) we have

M3 ≤ C‖DWϕ,ψ‖ <∞. (26)

(ii)⇒ (i). By Lemmas 2.2 and 2.3, for all f ∈ AΦp
α we have

‖DWϕ,ψf‖BΨ =
∣∣(ψ · f ◦ ϕ)′(0)

∣∣+ sup
z∈D

µ(z)
∣∣(ψ · f ◦ ϕ)′′(z)

∣∣
≤
∣∣(ψ · f ◦ ϕ)′(0)

∣∣+ + sup
z∈D

µ(z)
∣∣ψ′′(z)∣∣∣∣f(ϕ(z))

∣∣
+ sup
z∈D

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣f ′(ϕ(z))
∣∣

+ sup
z∈D

µ(z)|ψ(z)||ϕ′(z)|2
∣∣f ′′(ϕ(z))

∣∣
≤ C

(
1 +M1 +M2 +M3

)
‖f‖

A
Φp
α
. (27)

From condition (ii) and (27), it follows that DWϕ,ψ : AΦp
α → BΨ is bounded.

Suppose that the operator DWϕ,ψ : AΦp
α → BΨ is nonzero and bounded. Then

from the preceding inequalities (5), (17) and (26), we obtain

M1 +M2 +M3 . ‖DWϕ,ψ‖. (28)

Since the operator DWϕ,ψ : AΦp
α → BΨ is nonzero, we have ‖DWϕ,ψ‖ > 0. From

this, we can find a positive constant C such that 1 ≤ C‖DWϕ,ψ‖. This means that

1 . ‖DWϕ,ψ‖. (29)

Hence, combing (28) and (29) gives

1 +M1 +M2 +M3 . ‖DWϕ,ψ‖. (30)

From (27), it is clear that

‖DWϕ,ψ‖ . 1 +M1 +M2 +M3. (31)

So, from (30) and (31), we obtain the asymptotic expression of ‖DWϕ,ψ‖. The
proof is finished. �

Remark 3.1. If DWϕ,ψ : A
Φp
α → BΨ is a zero operator, then is obviously

‖DWϕ,ψ‖ = 0. Hence, the case is usually excluded from such considerations.

Now we characterize the compactness of operator DWϕ,ψ : AΦp
α → BΨ.

Theorem 3.2. Let p ≥ 1, α > −1, and Φ ∈ Us such that Φp ∈ Lr. Then the
following conditions are equivalent:
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(i) The operator DWϕ,ψ : AΦp
α → BΨ is compact.

(ii) Functions ϕ and ψ are such that ψ′ ∈ BΨ,

J1 := sup
z∈D

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣ <∞,
J2 := sup

z∈D
µ(z)|ψ(z)||ϕ′(z)|2 <∞,

lim
|ϕ(z)|→1−

µ(z)
∣∣ψ′′(z)∣∣Φ−1

p

(( 4
1− |ϕ(z)|2

)α+2)
= 0,

lim
|ϕ(z)|→1−

µ(z)
1− |ϕ(z)|2

∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)
∣∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

= 0,

and

lim
|ϕ(z)|→1−

µ(z)
(1− |ϕ(z)|2)2

|ψ(z)||ϕ′(z)|2Φ−1
p

(( D2

1− |ϕ(z)|2
)α+2)

= 0.

Proof. (i)⇒ (ii). Suppose that (i) holds. Then the operatorDWϕ,ψ : AΦp
α → BΨ

is bounded. In the proof of Theorem 3.1, we have obtained that ψ′ ∈ BΨ and J1,
J2 <∞.

Next consider a sequence {ϕ(zn)}n∈N in D such that |ϕ(zn)| → 1− as n → ∞.
If such sequence does not exist, then condition (ii) obviously holds. Using this
sequence, we define the functions

fn(z) = Φ−1
p

(( 4
1− |ϕ(zn)|2

)α+2)
f1,ϕ(zn)(z).

By Lemma 2.4, we know that the sequence {fn}n∈N is uniformly bounded in A
Φp
α .

From the proof of Theorem 3.6 in [30], it follows that the sequence {fn}n∈N uni-
formly converges to zero on any compact subset of D as n→∞. Hence by Lemma
2.1,

lim
n→∞

‖DWϕ,ψfn‖BΨ = 0.

From this, (2) and (3), we have

lim
n→∞

µ(zn)
∣∣ψ′′(zn)

∣∣Φ−1
p

(( 4
1− |ϕ(zn)|2

)α+2)
= 0.

By using the sequence of functions

gn(z) = Φ−1
p

(( D1

1− |ϕ(zn)|2
)α+2)

f2,ϕ(zn)(z),

similar to the above, we obtain

lim
n→∞

µ(zn)
1− |ϕ(zn)|2

∣∣∣ψ(zn)ϕ′′(zn) + 2ψ′(zn)ϕ′(zn)
∣∣∣Φ−1
p

(( D1

1− |ϕ(zn)|2
)α+2)

= 0.

Also, by using sequence of functions

hn(z) = Φ−1
p

(( D2

1− |ϕ(zn)|2
)α+2)

f3,ϕ(zn)(z),

we obtain

lim
n→∞

µ(zn)
(1− |ϕ(zn)|2)2

|ψ(zn)||ϕ′(zn)|2Φ−1
p

(( D2

1− |ϕ(zn)|2
)α+2)

= 0.
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The proof of the implication is finished.
(ii) ⇒ (i). We first check that DWϕ,ψ : AΦp

α → BΨ is bounded. For this we
observe that condition (ii) implies that for every ε > 0, there is an η ∈ (0, 1) such
that

L1(z) := µ(z)
∣∣ψ′′(z)∣∣Φ−1

p

(( 4
1− |ϕ(z)|2

)α+2)
< ε, (32)

L2(z) :=
µ(z)

1− |ϕ(z)|2
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣Φ−1
p

(( D1

1− |ϕ(z)|2
)α+2)

< ε, (33)

and

L3(z) :=
µ(z)

(1− |ϕ(z)|2)2
|ψ(z)||ϕ′(z)|2Φ−1

p

(( D2

1− |ϕ(z)|2
)α+2)

< ε, (34)

for any z ∈ K = {z ∈ D : |ϕ(z)| > η}. Then since ψ′ ∈ BΨ and by (32), we have

M1 = sup
z∈D

L1(z) ≤ sup
z∈D\K

L1(z) + sup
z∈K

L1(z) ≤ ‖ψ′‖BΨΦ−1
p

(( 4
1− η2

)α+2)
+ ε.

By (33) and J1 <∞, we obtain

M2 = sup
z∈D

L2(z) ≤ sup
z∈D\K

L2(z) + sup
z∈K

L2(z) ≤ J1

1− η2
Φ−1
p

(( D1

1− η2

)α+2)
+ ε.

By (34) and J2 <∞, it follows that M3 <∞. So by Theorem 3.1, DWϕ,ψ : AΦp
α →

BΨ is bounded.
To prove that the operator DWϕ,ψ : AΦp

α → BΨ is compact, by Lemma 2.1 we
just need to prove that, if {fn}n∈N is a sequence in A

Φp
α such that ‖fn‖AΦp

α
≤ M

and fn → 0 uniformly on any compact subset of D as n→∞, then

lim
n→∞

‖DWϕ,ψfn‖BΨ = 0.

For any ε > 0 and the above η, we have, by using again the condition (ii), Lemma
2.2 and Lemma 2.3,

sup
z∈D

µ(z)
∣∣(DWϕ,ψfn)′(z)

∣∣ = sup
z∈D

µ(z)
∣∣(ψ · fn ◦ ϕ)′′(z)

∣∣ ≤ sup
z∈D

µ(z)
∣∣ψ′′(z)∣∣∣∣fn(ϕ(z))

∣∣
+ sup
z∈D

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣f ′n(ϕ(z))
∣∣+ sup

z∈D
µ(z)|ψ(z)||ϕ′(z)|2

∣∣f ′′n (ϕ(z))
∣∣

≤ sup
z∈D\K

µ(z)
∣∣ψ′′(z)∣∣∣∣fn(ϕ(z))

∣∣+ sup
z∈K

µ(z)
∣∣ψ′′(z)∣∣∣∣fn(ϕ(z))

∣∣
+ sup
z∈D\K

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣f ′n(ϕ(z))
∣∣

+ sup
z∈K

µ(z)
∣∣ψ(z)ϕ′′(z) + 2ψ′(z)ϕ′(z)

∣∣∣∣f ′n(ϕ(z))
∣∣

+ sup
z∈D\K

µ(z)|ψ(z)||ϕ′(z)|2
∣∣f ′′n (ϕ(z))

∣∣+ sup
z∈K

µ(z)|ψ(z)||ϕ′(z)|2
∣∣f ′′n (ϕ(z))

∣∣
≤ Kn +M sup

z∈K
L1(z) +M sup

z∈K
L2(z) +M sup

z∈K
L3(z)

≤ Kn + 3Mε,

where

Kn = ‖ψ′‖BΨ sup
{z:|z|≤η}

∣∣fn(z)
∣∣+

2∑
i=1

Ji sup
{z:|z|≤η}

∣∣f (i)
n (z)

∣∣.
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Hence

‖DWϕ,ψfn‖BΨ ≤ Kn + 3Mε+
∣∣(ψ · fn ◦ ϕ)′(0)

∣∣
= Kn + 3Mε+

∣∣ψ′(0)fn(ϕ(0)) + ψ(0)f ′n(ϕ(0))ϕ′(0)
∣∣. (35)

It is easy to see that, when {fn}n∈N uniformly converges to zero on any compact
subset of D, {f ′n}n∈N and {f ′′n}n∈N also do as n→∞. From this, we obtain Kn → 0
as n→∞. Since {z : |z| ≤ η} and {ϕ(0)} are compact subsets of D, letting n→∞
in (35) gives

lim
n→∞

‖DWϕ,ψfn‖BΨ = 0.

From Lemma 2.1, it follows that the operator DWϕ,ψ : AΦp
α → BΨ is compact. The

proof is finished. �
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[19] S. Li, S. Stević, Weighted composition operators between H∞ and α-Bloch spaces in the unit

ball, Taiwan. J. Math. Soc. 12 (2008), 1625-1639.
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[55] S. Stević, R. P. Agarwal, Weighted composition operators from logarithmic Bloch-type spaces
to Bloch-type spaces, J. Inequal. Appl. Vol. 2009, Article ID 964814, (2009), 21 pages.
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Lyapunov inequalities of linear Hamiltonian

systems on time scales
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Abstract In this paper, we establish several Lyapunov-type inequalities for the
following linear Hamiltonian systems

x∆(t) = −A(t)x(σ(t))−B(t)y(t), y∆(t) = C(t)x(σ(t)) + AT (t)y(t)

on the time scale interval [a, b]T ≡ [a, b] ∩ T for some a, b ∈ T, where B and C are
real n× n symmetric matrix-valued functions on [a, b]T with B being semi-positive
definite, A is real n × n matrix-valued function on [a, b]T with I + µ(t)A being
invertible, and x, y are real vector-valued functions on [a, b]T.
AMS Subject Classification: 34K11, 34N05, 39A10.

Keywords: Lyapunov inequality; Hamiltonian system; Time scale

1. Introduction

In 1990, Hilger introduced in [9] the theory of time scales with one goal being the unified

treatment of differential equations (the continuous case) and difference equations (the discrete

case). A time scale T is an arbitrary nonempty closed subset of the real numbers R, which

has the topology that it inherits from the standard topology on R. The two most popular

examples are R and the integers Z. The study of dynamic equations on time scales reveals such

discrepancies, and helps avoid proving results twice-once for differential equations and once

again for difference equations. Not only can the theory of dynamic equations unify the theories

of differential equations and difference equations, but also extends these classical cases to cases

“in between”, e.g., to the so-called q-difference equations when T = {1, q, q2, · · · , qn, · · · }, which

has important applications in quantum theory (see [11]). For the time scale calculus, and some

related basic concepts, and the basic notions connected to time scales, we refer the readers to

the books by Bohner and Peterson [2,3] for further details.

In this paper, we study Lyapunov-type inequalities for the following linear Hamiltonian

Project Supported by NNSF of China (11461003) and NSF of Guangxi (2012GXNSFDA276040).

∗ Corresponding author: E-mail: hql19680914@163.com
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systems

x∆(t) = −A(t)x(σ(t))−B(t)y(t), y∆(t) = C(t)x(σ(t)) + AT (t)y(t), (1.1)

on the time scale interval [a, b]T ≡ [a, b] ∩ T for some a, b ∈ T, where B and C are real n × n

symmetric matrix-valued functions on [a, b]T with B being semi-positive definite, A is real n×n

matrix-valued function on [a, b]T with I + µ(t)A being invertible, and x, y are real vector-valued

functions on [a, b]T.

When n = 1, (1.1) reduces to

x∆(t) = α(t)x(σ(t)) + β(t)y(t), y∆(t) = −γ(t)x(σ(t))− α(t)y(t) (1.2)

on an arbitrary time scale T, where α(t), β(t) and γ(t) are real-valued rd-continuous functions

defined on T with β(t) ≥ 0 for any t ∈ T.

In [10], Jiang and Zhou obtained some interesting Lyapunov-type inequalities.

Theorem 1.1[10] Suppose that for any t ∈ T,

1− µ(t)α(t) > 0, β(t) > 0, γ(t) > 0,

and let a, b ∈ Tk with σ(a) < b. Assume that (1.2) has a real solution (x(t), y(t)) such that

x(a)x(σ(a)) < 0, and x(b)x(σ(b)) < 0. Then the inequality

∫ b

a
|α(t)| 4 (t) +

[ ∫ σ(b)

a
β(t)4 (t)

∫ b

a
γ(t)4 (t)

]1/2
> 1 (1.3)

holds.

Theorem 1.2[10] Suppose that for any t ∈ T,

1− µ(t)α(t) > 0, β(t) > 0,

and let a, b ∈ Tk with σ(a) < b. Assume that (1.2) has a real solution (x(t), y(t)) such that

x(a)x(σ(a)) < 0, and x(σ(b)) = 0. Then the inequality

∫ b

σ(a)
|α(t)| 4 (t) +

[ ∫ σ(b)

σ(a)
β(t)4 (t)

∫ b

a
γ+(t)4 (t)

]1/2
> 1 (1.4)

holds, where γ+(t) = max{γ(t), 0}.
In [8], He et al. obtained the following Lyapunov-type inequality.

Theorem 1.3[8] Suppose for any t ∈ T,

1− µ(t)α(t) > 0,

and let a, b ∈ Tk with σ(a) ≤ b. Assume that (1.2) has a real solution (x(t), y(t)) such that x(t)

has generalized zeros at end-points a and b and x(t) is not identically zero on [a, b]T ≡ {t ∈T:
a ≤ t ≤ b}, i.e.,

x(a) = 0 or x(a)x(σ(a)) < 0; x(b) = 0 or x(b)x(σ(b)) < 0; max
t∈[a,b]T

|x(t)| > 0.
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Then the inequality

∫ b

a
|α(t)| 4 (t) +

[ ∫ σ(b)

a
β(t)4 (t)

∫ b

a
γ+(t)4 (t)

]1/2
≥ 2 (1.5)

holds.

For some other related results on Lyapunov-type inequality, see, for example, [1,4-6,8,10,12-

16].

2. Preliminaries and some lemmas

For any x ∈ Rn and any A ∈ Rn×n (the space of real n× n matrices), denote by

|x| =
√

xT x and |A| = max
x∈Rn,|x|=1

|Ax|

the Euclidean norm of x and the matrix norm of A respectively, where CT is the transpose of a

n×m matrix C. It is easy to show

|Ax| ≤ |A||x|

for any x ∈ Rn and any A ∈ Rn×n. Denote by Rn×n
s the space of all symmetric real n × n

matrices. For A ∈ Rn×n
s , we say that A is semi-positive definite (resp. positive definite), written

as A ≥ 0 (resp. A > 0), if xT Ax ≥ 0 (resp. xT Ax > 0) for all x ∈ Rn. If A is semi-positive

definite (resp. positive definite), then there exists a unique semi-positive definite matrix (resp.

positive definite matrix), written as
√

A, such that [
√

A]2 = A.

In this paper, we study Lyapunov-type inequalities of (1.1) which admits some solution

(x(t), y(t)) satisfying

x(a) = x(b) = 0 and max
t∈[a,b]T

|x(t)| > 0, (2.1)

where a, b ∈ T with σ(a) < b, A, B, C ∈ Crd(T,Rn×n) are n × n-matrix-valued functions on T
with I +µ(t)A being invertible, B,C ∈ Rn×n

s and B ≥ 0. we first introduce the following notions

and lemmas.

A partition of [a, b)T is any finite ordered subset P = {t0, t1, · · · , tn} ⊂ [a, b]T with a =

t0 < t1 < · · · < tn = b. For given δ > 0, we denote by Pδ([a, b)T) the set of all partitions

P : a = t0 < t1 < · · · < tn = b that possess the property: for every i ∈ {1, 2, · · · , n}, either

ti − ti−1 ≤ δ or ti − ti−1 > δ and σ(ti) = ti−1.

Definition 2.1[7] Let f be a bounded function on [a, b)T, and let P : a = t0 < t1 < · · · < tn = b

be a partition of [a, b)T. In each interval [ti−1, ti)T (1 ≤ i ≤ n), choose an arbitrary point ξi and

form the sum

S(P, f) = Σn
i=1f(ξi)(ti − ti−1).

We say that f is ∆-integrable from a to b (or on [a, b)T) if there exists a constant number I with

the following property: for each ε > 0 there exists δ > 0 such that

|S(P, f)− I| < ε

3
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for every P ∈ Pδ([a, b)T) independent of the way in which we choose ξi ∈ [ti−1, ti)T (1 ≤ i ≤ n).

It is easily seen that such a constant number I is unique. The number I, written as
∫ b
a f(t)∆t,

is called the ∆-integral of f from a to b.

Remark 2.2 In [7], Guseinov showed that if there exists F : T → R such that F4(t) = f(t)

holds for all t ∈ Tk, then
∫ b

a
f(t)4 t = F (b)− F (a), for any a, b ∈ T.

Lemma 2.3 Let ai, bi, ci ∈ R (i ∈ {1, 2, · · · , n}) with ci ≥ 0. Then

( n∑

i=1

aici

)2
+

( n∑

i=1

bici

)2
≤

[ n∑

i=1

√
a2

i + b2
i ci

]2
. (2.2)

Proof. Since 2aibiajbj ≤ b2
i a

2
j + b2

ja
2
i for any i, j ∈ {1, 2, · · · , n}, we have

aiciajcj + bicibjcj ≤
√

a2
i + b2

i ci

√
a2

j + b2
jcj ,

which implies

n∑

i=1

n∑

j=1

(aiciajcj + bicibjcj) ≤
n∑

i=1

n∑

j=1

√
a2

i + b2
i ci

√
a2

j + b2
jcj .

That is ( n∑

i=1

aici

)2
+

( n∑

i=1

bici

)2
≤

[ n∑

i=1

√
a2

i + b2
i ci

]2
.

This completes the proof of Lemma 2.3

Lemma 2.4 Let f, g, f2 + g2 be ∆-integrable from a to b. Then

[ ∫ b

a
f(t)∆t

]2
+

[ ∫ b

a
g(t)∆t

]2
≤

[ ∫ b

a

√
f2(t) + g2(t)∆t

]2
. (2.3)

Proof. By Definition 2.1, for any ε > 0 there exists δi > 0 (i = 1, 2, 3) such that

|S(P1, f)−
∫ b

a
f(t)∆t| < ε, (2.4)

|S(P2, g)−
∫ b

a
g(t)∆t| < ε (2.5)

and

|S(P3,
√

f2(t) + g2(t))−
∫ b

a

√
f2(t) + g2(t)∆t| < ε (2.6)

for every Pi ∈ Pδi
([a, b)T). Let P = P1∪P2∪P3 (∈ ∩3

i=1Pδi
([a, b)T)) : a = t0 < t1 < · · · < tn = b

4
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and choose an arbitrary point ξi ∈ [ti−1, ti). Then from (2.4)-(2.6) and Lemma 2.3 we have
[ ∫ b

a
f(t)∆t

]2
+

[ ∫ b

a
g(t)∆t

]2
≤ [|S(P, f)|+ ε]2 + [|S(P, g)|+ ε]2

= [|Σn
i=1f(ξi)(ti − ti−1)|+ ε]2 + [|Σn

i=1g(ξi)(ti − ti−1)|+ ε]2

≤ [Σn
i=1f(ξi)(ti − ti−1)]2 + [Σn

i=1g(ξi)(ti − ti−1)]2

+2ε
[
|
∫ b

a
f(t)∆t|+ |

∫ b

a
g(t)∆t|+ 3ε

]

≤ [Σn
i=1

√
f2(ξi) + g2(ξi)(ti − ti−1)]2

+2ε
[
|
∫ b

a
f(t)∆t|+ |

∫ b

a
g(t)∆t|+ 3ε

]

≤ [
∫ b

a

√
f2(t) + g2(t)∆t + ε]2

+2ε
[
|
∫ b

a
f(t)∆t|+ |

∫ b

a
g(t)∆t|+ 3ε

]
.

Let ε −→ 0, we obtain (2.3). This completes the proof of Lemma 2.4.

Corollary 2.5 Let a, b ∈ T with a < b and f1(t), f2(t), · · · , fn(t) be ∆-integrable on [a, b]T.

write x(t) = (f1(t), f2(t), · · · , fn(t)). Then

|
∫ b

a
x(t)∆t| =

{ n∑

i=1

( ∫ b

a
fi(t)∆t

)2} 1
2 ≤

∫ b

a

{ n∑

i=1

f2
i (t)

} 1
2 ∆t =

∫ b

a
|x(t)|∆t. (2.7)

Proof. By Lemma 2.4, we know that (2.7) holds when n = 2. Assume that (2.7) holds when

n = k ≥ 2, that is
k∑

i=1

( ∫ b

a
fi(t)∆t

)2
≤

[ ∫ b

a

{ k∑

i=1

f2
i (t)

} 1
2 ∆t

]2
.

Then
[ ∫ b

a

{ k+1∑

i=1

f2
i (t)

} 1
2 ∆t

]2
=

{∫ b

a
{f2

k+1(t) + [(
k∑

i=1

f2
i (t))

1
2 ]2} 1

2 ∆t
}2

≥
( ∫ b

a
fk+1(t)∆t

)2
+

[ ∫ b

a
{

k∑

i=1

f2
i (t)} 1

2 ∆t
]2

≥
k+1∑

i=1

( ∫ b

a
fi(t)∆t

)2
.

This completes the proof of Corollary 2.5.

Lemma 2.6[2] (Cauchy-Schwarz inequality) Let a, b ∈ T and f, g ∈ Crd(T,R). Then
∫ b

a
|f(t)g(t)| 4 (t) ≤

{∫ b

a
f2(t)4 (t) ·

∫ b

a
g2(t)4 (t)

} 1
2
. (2.8)

Lemma 2.7[2] Suppose that A ∈ Crd(T,Rn×n) with I + µ(t)A being invertible and f ∈
Crd(T,Rn). Let t0 ∈ T and xo ∈ Rn. Then the initial value problem

x∆(t) = −A(t)x(σ(t)) + f(t), x(t0) = x0

5
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has a unique solution x : T→ Rn. Moreover, this solution is given by

x(t) = eΘA(t, t0)x0 +
∫ t

t0

eΘA(t, τ)f(τ)∆τ. (2.9)

Lemma 2.8 Let C ∈ Rn×n
s . Then for any C1 ∈ Rn×n

s with C1 ≥ C (i.e.,C1 − C ≥ 0), we have

(xσ)T Cxσ ≤ |C1||xσ|2, x ∈ Rn. (2.10)

Proof. For C, C1 ∈ Rn×n
s with C1 ≥ C, we have C1 − C ≥ 0. Then for all x ∈ Rn, we obtain

(xσ)T (C1 − C)xσ ≥ 0. Thus

(xσ)T Cxσ ≤ (xσ)T C1x
σ ≤ |xσ||C1x

σ|
≤ |xσ||C1||xσ| = |C1||xσ|2.

This completes the proof of Lemma 2.8.

3. Main results and proofs

Denote

ξ(σ(t)) =
∫ σ(t)

a
|B(s)||eΘA(σ(t), s)|2∆s (3.1)

and

η(σ(t)) =
∫ b

σ(t)
|B(s)||eΘA(σ(t), s)|2∆s. (3.2)

Theorem 3.1 Let a, b ∈ T with σ(a) < b. If (1.1) has a solution (x(t), y(t)) satisfying (2.1) on

the interval [a, b]T, then for any C1 ∈ Rn×n
s with C1(t) ≥ C(t), one has the following inequality

∫ b

a

ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

|C1(t)| 4 t ≥ 1. (3.3)

Proof. At first let us notice that any solution (x(t), y(t)) of (1.1) satisfies the following equality

(yT (t)x(t))∆ = (yT (t))∆xσ(t) + yT (t)x∆(t)

= (xσ(t))T y∆(t) + yT (t)x∆(t)

= (xσ(t))T C(t)xσ(t)− yT (t)B(t)y(t). (3.4)

By integrating (3.4) from a to b and taking into account that x(a) = x(b) = 0, one has
∫ b

a
yT (t)B(t)y(t)4 t =

∫ b

a
(xσ(t))T C(t)xσ(t)4 t.

Moreover, since B(t) is semi-positive definite, we have

yT (t)B(t)y(t) ≥ 0, t ∈ [a, b]T.

If

yT (t)B(t)y(t) ≡ 0, t ∈ [a, b]T

6
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then

B(t)y(t) = 0.

Thus the first equation of (1.1) would read as

x∆(t) = −A(t)x(σ(t)), x(a) = 0.

By Lemma 2.7, it follows

x(t) = eΘA(t, a) · 0 = 0,

a contradiction with (2.1). Hence we have that
∫ b

a
yT (t)B(t)y(t)4 t =

∫ b

a
(xσ)T (t)C(t)xσ(t)4 t > 0, (3.5)

and for t ∈ [a, b]T, let t0 = a and t0 = b, from Lemma 2.7, we obtain

x(t) = −
∫ t

a
eΘA(t, τ)B(τ)y(τ)∆τ = −

∫ t

b
eΘA(t, τ)B(τ)y(τ)∆τ. (3.6)

Which follows that for t ∈ [a, b)T,

xσ(t) = −
∫ σ(t)

a
eΘA(σ(t), τ)B(τ)y(τ)∆τ = +

∫ b

σ(t)
eΘA(σ(t), τ)B(τ)y(τ)∆τ. (3.7)

Note that for a ≤ τ ≤ σ(t) ≤ b,

|eΘA(σ(t), τ)B(τ)y(τ)| ≤ |eΘA(σ(t), τ)||B(τ)y(τ)|
= |eΘA(σ(t), τ)|{yT (τ)BT (τ)B(τ)y(τ)} 1

2

= |eΘA(σ(t), τ)|{(
√

B(τ)y(τ))T B(τ)
√

B(τ)y(τ)} 1
2

≤ |eΘA(σ(t), τ)|{|
√

B(τ)y(τ)||B(τ)||
√

B(τ)y(τ)|} 1
2

= |eΘA(σ(t), τ)||B(τ)| 12 (yT (τ)B(τ)y(τ))
1
2 .

Then from Corollary 2.5 and Lemma 2.6 we obtain

|xσ(t)| = |
∫ σ(t)

a
eΘA(σ(t), τ)B(τ)y(τ)∆τ |

≤
∫ σ(t)

a
|eΘA(σ(t), τ)B(τ)y(τ)|∆τ

≤
∫ σ(t)

a
|eΘA(σ(t), τ)||B(τ)| 12 (yT (τ)B(τ)y(τ))

1
2 ∆τ

≤
( ∫ σ(t)

a
|eΘA(σ(t), τ)|2|B(τ)|4τ

) 1
2
( ∫ σ(t)

a
yT (τ)B(τ)y(τ)∆τ

) 1
2
,

that is

|xσ(t)|2 ≤ ξ(σ(t))
∫ σ(t)

a
yT (τ)B(τ)y(τ)∆τ. (3.8)

Similarly, by letting η(σ(t)) be as in (3.2), for a ≤ σ(t) ≤ τ ≤ b, we have

|xσ(t)|2 ≤ η(σ(t))
∫ b

σ(t)
yT (τ)B(τ)y(τ)∆τ. (3.9)

7
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It follows from (3.8) and (3.9) that

η(σ(t))ξ(σ(t))
∫ σ(t)

a
yT (τ)B(τ)y(τ)∆τ ≥ |xσ(t)|2η(σ(t))

and

η(σ(t))ξ(σ(t))
∫ b

σ(t)
yT (τ)B(τ)y(τ)∆τ ≥ |xσ(t)|2ξ(σ(t)).

Thus

|xσ(t)|2 ≤ ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

∫ b

a
yT (τ)B(τ)y(τ)∆τ.

By Lemma 2.8 we see
∫ b

a
|C1(t)||xσ(t)|2∆t ≤

∫ b

a
(|C1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))

∫ b

a
yT (τ)B(τ)y(τ)∆τ)∆t

=
∫ b

a
|C1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
yT (τ)B(τ)y(τ)∆τ

=
∫ b

a
|C1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
(xσ(t))T C(t)xσ(t)4 t

≤
∫ b

a
|C1(t)| ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
∆t

∫ b

a
|C1(t)||xσ(t)|2∆t.

Since
∫ b

a
|C1(t)||xσ(t)|2∆t ≥

∫ b

a
(xσ)T (t)C(t)xσ(t)4 t =

∫ b

a
yT (t)B(t)y(t)∆t > 0,

we get ∫ b

a

ξ(σ(t))η(σ(t))
ξ(σ(t)) + η(σ(t))

|C1(t)| 4 t ≥ 1.

This completes the proof of Theorem 3.1.

Theorem 3.2 Let a, b ∈ T with σ(a) < b. If (1.1) has a solution (x(t), y(t)) satisfying (2.1) on

the interval [a, b]T, then for any C1 ∈ Rn×n
s with C1(t) ≥ C(t), one has the following inequality

∫ b

a
|C1(t)|

{∫ b

a
|B(s)||eΘA(σ(t), s)|2∆s

}
4 t ≥ 4. (3.10)

Proof. Note
ξ(σ(t))η(σ(t))

ξ(σ(t)) + η(σ(t))
≤ ξ(σ(t)) + η(σ(t))

4
.

It follows from (3.3) that

∫ b

a

ξ(σ(t)) + η(σ(t))
4

|C1(t)| 4 t ≥ 1.

Combining (3.1) and (3.2), we obtain

∫ b

a

( ∫ b

a
|B(s)||eΘA(σ(t), s)|2∆s|C1(t)|

)
4 t ≥ 4.

8
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That is ∫ b

a
|C1(t)|

{∫ b

a
|B(s)||eΘA(σ(t), s)|2∆s

}
4 t ≥ 4.

This completes the proof of Theorem 3.2.

Theorem 3.3 Let a, b ∈ T with σ(a) < b. If (1.1) has a solution (x(t), y(t)) satisfying (2.1) on

the interval [a, b]T, then for any C1 ∈ Rn×n
s with C1(t) ≥ C(t), one has the following inequality

∫ b

a
|A(t)| 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
|C1(t)| 4 t

)1/2
≥ 2. (3.11)

Proof. From the proof of Theorem 3.1, we have
∫ b

a
yT (t)B(t)y(t)4 t =

∫ b

a
(xσ(t))T C(t)xσ(t)4 t.

It follows from the first equation of (1.1) that for all a ≤ t ≤ b, we get

x(t) =
∫ t

a
(−A(τ)xσ(τ)−B(τ)y(τ))4 τ

x(t) =
∫ b

t
(A(τ)xσ(τ) + B(τ)y(τ))4 τ.

Thus, from Corollary 2.5, Lemma 2.6 and Lemma 2.8 we obtain

|x(t)| =
1
2

[
|
∫ t

a
(A(τ)xσ(τ) + B(τ)y(τ))4 τ |+ |

∫ b

t
(A(τ)xσ(τ) + B(τ)y(τ))4 τ |

]

≤ 1
2

[ ∫ t

a
|A(τ)xσ(τ) + B(τ)y(τ)| 4 τ +

∫ b

t
|A(τ)xσ(τ) + B(τ)y(τ)| 4 τ

]

≤ 1
2

[ ∫ b

a
(|A(τ)xσ(τ)|+ |B(τ)y(τ)|)4 τ

]

≤ 1
2

[ ∫ b

a
|A(τ)||xσ(τ)| 4 τ +

∫ b

a
|
√

B(τ)||
√

B(τ)y(τ)| 4 τ
]

≤ 1
2

[ ∫ b

a
|A(t)||xσ(t)| 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
|
√

B(t)y(t)|2 4 t
)1/2]

=
1
2

[ ∫ b

a
|A(t)||xσ(t)| 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
(
√

B(t)y(t))T
√

B(t)y(t)4 t
)1/2]

=
1
2

[ ∫ b

a
|A(t)||xσ(t)| 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
(xσ)T (t)C(t)(xσ(t))4 t

)1/2]

≤ 1
2

[ ∫ b

a
|A(t)||xσ(t)| 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
|C1(t)||xσ(t)|2 4 t

)1/2]
.

Denote M = maxa≤t≤b |x(t)| > 0, then

M ≤ 1
2

[ ∫ b

a
|A(t)|M 4 t +

( ∫ b

a
|
√

B(t)|2 4 t
)1/2( ∫ b

a
|C1(t)|M2 4 t

)1/2]
. (3.12)

Thus inequality (3.11) follows from (3.12).This completes the proof of Theorem 3.3.

9
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Error analysis of distributed algorithm for large scale data

classification ∗

Cheng Wang Feilong Cao †

Department of Applied Mathematics, China Jiliang University,
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Abstract

The distributed algorithm is an important and basic approach, and it is usually used for
large scale data processing. This paper aims to error analysis of distributed algorithm for
large scale data classification generated from Tikhonov regularization schemes associated
with varying Gaussian kernels and convex loss functions. The main goal is to provide fast
convergence rates for the excess misclassification error. The number of subsets randomly
divided from a large scale datasets is determined to guarantee that the distributed algorithm
have lower time complexity and memory complexity.
Keywords: Distributed algorithm; Classification; Large scale data; Generalization error
Mathematics Subject Classification: 68T05, 68P30.

1 Introduction

In [11], a binary classification problem, which is generated from Tikhonov regularization schemes
with general convex loss functions and varying Gaussian kernels, was studied well. This paper
addresses error analysis of distributed algorithm for the classification with large scale datasets.
For ease of description, we first introduce some concepts and notations. Most of them are the
same as that of [11].
We denote the input space by a compact subset X of Rp. To represent the two classes, we

write the output space Y = {−1, 1}. Clearly, classification algorithms produce binary classi-
fiers C : X → Y , and the prediction power of such classifier C can be measured by using its
misclassification error defined by

R(C) = Prob(C(x) ̸= y) =

∫
X

P (y ̸= C(x)|x) dρ
X
,

where ρ is a probability distribution on Z := X × Y , ρX is the marginal distribution of ρ on
X, and P (y|x) is the conditional distribution at x ∈ X. So-called Bayes rule is the classifier
minimizing R(C), and is given by

fc(x) =

{
1, if P (y = 1|x) ≥ P (y = −1|x),
−1, otherwise.

So the excess misclassification error R(C) − R(fc) of a classifier C can be used to measure the
performance of the classifier C.
In this paper we consider classifiers Cf induced by real-valued functions f : X → R, which is

defined by

Cf = sgn(f)(x) =

{
1, if f(x) ≥ 0,

−1, otherwise.

The real-valued functions are generated from Tikhonov regularization schemes associated with
general convex loss functions and varying Gaussian kernels.
Now we give a definition for loss function [11].

∗This work was supported by the National Natural Science Foundation of China (Grant Nos. 10901137,
91330118, and 61272023) and Zhejiang Provincial Natural Science Foundation of China (No. LY14A010026)

†Corresponding author. E-mail: feilongcao@gmail.com
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C. Wang & F. L. Cao: Distributed algorithm for large scale data classification

Definition 1.1. (see [11]) We say φ : R → R+ is a classifying loss (function) if it is
convex, differentiable at 0 with φ′(0) < 0, and the smallest zero of φ is 1.

For details of such loss function, we refer reader to Cucker and Zhou [4].

The function on X×X given by Kσ(x, x′) = exp
{
− |x−x′|

2σ2

}
is called the Gaussian kernel with

variance σ > 0. From [1], this function can be used to define a reproducing kernel Hilbert space
(RKHS). We denote the RKHS by Hσ.
From [10] and [5], the Tikhonov regularization scheme with the loss φ, Gaussian kernelKσ, and

a sample z = {(xi, yi)}ni=1 ∈ Zn can be defined as the solution fz of the following minimization
problem

fz = argmin
f∈Hσ

{
1

m

n∑
i=1

φ(yif(xi)) + λ∥f∥2Hσ

}
, (1.1)

where λ > 0 is called the regularization parameter. The regularizing function in terms of the
generalization error Eφ is defined as

f̃σ,λ := arg min
f∈Hσ

{Eφ(f) + λ∥f∥2Hσ
}, where Eφ(f) =

∫
Z

φ(yf(x)) dρ.

This function was used in Zhang [13], De Vito et al. [6], and Yao [12]. Zhou and Xiang
[11] constructed a function (denoted by fσ,λ) which works better than f̃σ,λ due to the special
approximation ability of varying Gaussian kernels. The construction of fσ,λ is done under
a Sobolev smoothness condition of a measurable function fφρ minimizing Eφ, i.e., for almost
everywhere x ∈ X,

fφρ (x) = argmin
t∈R

∫
Y

φ(yt) dρ(y|x) = argmin
t∈R

{φ(t)P (y = 1|x) + φ(−t)P (y = −1|x)}.

The constructed function fσ,λ was used to estimate the excess misclassification error in [11].
The following Lemma 2.2 is a key result in [11], which will be employed as a base of our proof.
We will use the concept of Sobolev space with index s > 0 and denote the space by Hs(Rp).

In fact, the space is consisted by all functions in L2(Rp) with the finite semi-norm

|f |Hs(Rp) = {(2π)−n

∫
Rp

|ξ|2s|f̂(ξ)|2 dξ} 1
2 ,

where f̂ is the Fourier transform of f defined for f ∈ L1(Rp) as f̂(ξ) =
∫
Rp f(x)e

−ixξ dx.
It was proved in Chen et al. [3] and Bartlett et al. [2] that

R(sgn(f))−R(fc) ≤ cφ
√
Eφ(f)− Eφ(fφρ ) (1.2)

holds for some cφ > 0.
Although the statistical aspects of (1.1) are well investigated, the computation of (1.1) can

be complicated for large data with size N . For example, in a standard implementation [9], it
requires costs O(N3) and O(N2) in time and memory, respectively. Such scaling are prohibitive
when the sample size is large.
In this work, we study a decomposition-based learning approach for large datasets, which is

also called distributed algorithm for large datasets. Recently, the approach has attacked more
attentions of researchers, and more results have been explored, such as McDonald et al. [8]
for perceptron-based algorithms, Kleiner et al. [7] for bootstrap, and Zhang et al. [14] for
parametric smooth convex optimization problems. The aim of this paper is to study the binary
classification error of the distributed algorithm with varying λ and σ for general loss functions.
For this purpose, we first describe the distributed algorithm [15].
We are given N samples (x1, y1), . . . , (xN , yN ) drawn independent identically distributed

(i.i.d.) according to the distribution ρ on Z = X × Y . Rather than solving the problem
(1.1) on all N samples, we execute the following three steps: (1) Divide the set of samples
{(x1, y1), . . . , (xN , yN )} randomly and evenly into m disjoint subsets S1, . . . , Sm ⊂ Z, and each
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Si has n = N
m samples; (2) For each i = 1, 2, . . . ,m, compute the local estimate

f̂i := argmin
f∈Hσ

 1

n

∑
(x,y)∈Si

φ(yf(x)) + λ∥f∥2Hσ

 ;

(3) Average together the local estimates and output f̄ = 1
m

∑m
i=1 f̂i.

Our aim is to estimate the error R(sgn(f̄)) − R(fc). However, from (1.2), we only need to
estimate Eφ(f̄)−Eφ(fφρ ). The following section presents some results to bound Eφ(f̄)−Eφ(fφρ )
and R(sgn(f̄)) − R(fc). When solving each f̂i, similarly to [11], we take λ = λ(n) = n−γ ,
σ = σ(n) = λζ = n−γζ , for some γ, ζ > 0.

2 Main results

Lemma 2.1. We have Eφ(f̄)− Eφ(fφρ ) ≤ 1
m

∑m
i=1

(
Eφ(f̂i)− Eφ(fφρ )

)
.

Proof. Due to the convexity of φ, we have

Eφ(f̄) =
∫
Z

φ(yf̄(x)) dρ ≤
∫
Z

1

m

m∑
i=1

φ(yf̂i(x)) dρ =
1

m

m∑
i=1

∫
Z

φ(yf̂i(x)) dρ =
1

m

m∑
i=1

Eφ(f̂i).

So Eφ(f̄)− Eφ(fφρ ) ≤ 1
m

∑m
i=1

(
Eφ(f̂i)− Eφ(fφρ )

)
.

Now in order to bound Eφ(f̄)−Eφ(fφρ ), we only need to estimate Eφ(f̂i)−Eφ(fφρ ) for each i.
In fact, the results for each i are the same because f̂i (i = 1, 2, . . . ,m) are i.i.d., and share the
same properties. We take Xiang and Zhou’s approach [11] and make some modifications.

Lemma 2.2. (see [11]) Assume that for some s > 0,

fφρ = f̃φρ |X for some f̃φρ ∈ Hs(Rp) ∩ L∞(Rp) and
dρX
dx
∈ L2(X). (2.1)

Then we can find functions {fσ,λ ∈ Hσ : 0 < σ ≤ 1, λ > 0} such that

∥fσ,λ∥L∞(X) ≤ Ã, (2.2)

D(σ, λ) := Eφ(fσ,λ)− Eφ(fφρ ) + λ∥fσ,λ∥2Hσ
≤ Ã(σs + λσ−p)

for 0 < σ ≤ 1, λ > 0, where Ã ≥ 1 is a constant independent of σ and λ.

Using the method of error decomposition of [11], we easily obtain the following Lemma 2.3.

Lemma 2.3. Let φ be a classifying loss function, we have

Eφ(fi)− Eφ(fφρ ) ≤ D(σ, λ) + Sz(fσ,λ)− Sz(f̂i), (2.3)

where Sz(f) is defined for any f by Sz(f) = [Eφz (f)−E
φ
z (f

φ
ρ )]− [Eφ(f)−Eφ(fφρ )], and E

φ
z (f) =

1
n

∑
(x,y)∈Si

φ(yf(x)).

We also need the following Definition 2.1.

Definition 2.1. (see [11]) A variancing power τ = τφ,ρ of the pair (φ, ρ) is the maximal

number τ in [0, 1] such that for any B̃ ≥ 1, there exists C1 = C1(B̃) satisfying

E[φ(yf(x))− φ(yfφρ (x))]2 ≤ C1[Eφ(f)− Eφ(fφρ )]τ ∀f : X → [−B̃, B̃], (2.4)

where Eξ denotes the expected value of ξ.

The following Lemma 2.4 is to bound the second term of (2.3).
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Lemma 2.4. (see [11]) Suppose Ã and fσ,λ are as in Lemma 2.2, τ = τφ,ρ and C1 = C1(Ã)
are as in Definition 2.1. Then for any 0 < δ < 1, with confidence 1− δ

2 , we have

Sz(fσ,λ) ≤ 2
(
∥φ∥C[−Ã,Ã] + C1

)
ln

2

δ
n−

1
2−τ +

(
Eφ(fσ,λ)− Eφ(fφρ )

)
.

To bound the third term of (2.3), −Sz(f̂i), we need the following Lemma 2.5, Lemma 2.6, and
Lemma 2.7.

Lemma 2.5. For any λ > 0 , we have ∥f̂i∥Hσ ≤
√
φ(0)/λ.

The proof is easy by taking f = 0 in the definition of f̂i, referring to De Vito et al. [6].
The next Lemma 2.6 is from Cucker and Zhou [4].

Lemma 2.6. (see [4]) Let 0 ≤ τ ≤ 1, c,B ≥ 0, and G be a set of functions on Z such that
for every g ∈ G, E(g) ≥ 0, ∥g − E(g)∥∞ ≤ B and E(g2) ≤ c(E(g))τ . Then for all ε > 0,

Prob
z∈Zn

{
sup
g∈G

E(g)− 1
n

∑n
i=1 f(zi)√

(E(g))τ + ετ
> 4ε1−

τ
2

}
≤ N (G, ε) exp

{
− nε2−τ

2(c+ 1
3Bε

1−τ )

}
,

where N (G, ε) denotes the covering number to be the minimal ℓ ∈ N such that there exist ℓ disks
in G with radius ε covering G.

Note that if ∥f∥Hσ ≤
√
φ(0)/λ, then ∥f∥∞ ≤ Cσ

√
φ(0)/λ. From the above Lemma 2.6, we

obtain the following Lemma 2.7.

Lemma 2.7. Let τ = τφ,ρ with B̃ = Cσ

√
φ(0)/λ and C1 = C1(B̃) in Definition 2.1. For

any ε > 0, there holds

Prob
z∈Zn

 sup
∥f∥Hσ≤

√
φ(0)/λ

[Eφ(f)− Eφ(fφρ )]− [Eφ
z
(f)− Eφ

z
(fφρ )]√

(Eφ(f)− Eφ(fφρ ))τ + ετ
≤ 4ε1−

τ
2

 ≥
1−N

(
B1,

ε
√
λ

D1

√
φ(0)

)
exp

{
− nε2−τ

2C1 +
4
3D2ε1−τ

}
,

where D1 = max{|φ′
+(−B̃)|, |φ′

−(B̃)|}, and D2 = max{φ(−1), ∥φ∥C[−B̃,B̃]}.

Proof. We apply the above Lemma 2.6 to the function set

G =
{
φ(yf(x))− φ(yfφρ (x)) : ∥f∥Hσ ≤

√
φ(0)/λ

}
,

and see that each function g ∈ G satisfies E(g2) ≤ c(E(g))τ for c = C1. Obviously ∥g∥∞ ≤
D2 := max{φ(−1), ∥φ∥C[−B̃,B̃]}, so ∥g − E(g)∥∞ ≤ B := 2D2. To draw our conclusion, we

only need to bound the covering number N (G, ε). To do so, note that for f1 and f2 satisfying
∥f∥Hσ ≤

√
φ(0)/λ and (x, y) ∈ Z, we have

|{φ(yf1(x))− φ(yfφρ (x))} − {φ(yf2(x))− φ(yfφρ (x))}|
= |φ(yf1(x))− φ(yf2(x))| ≤ D1∥f1 − f2∥∞.

Therefore, N (G, ε) ≤ N
(
B√

φ(0)/λ
, ε
D1

)
= N (B1,

ε
√
λ

D1

√
φ(0)

), where B√
φ(0)/λ

denotes the ball

with radius
√
φ(0)/λ in Hσ. The statement is proved.

Let ε∗(n, λ, σ, δ) denote the smallest positive number ε satisfying

1−N

(
B1,

ε
√
λ

D1

√
φ(0)

)
exp

{
− nε2−τ

2C1 +
4
3D2ε1−τ

}
≥ 1− δ

2
.

Then we have the following proposition.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.7, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1173 Cheng Wang et al 1170-1175



C. Wang & F. L. Cao: Distributed algorithm for large scale data classification

Proposition 2.1. Let σ = λζ with 0 < ζ < 1
p (Noting p is the dimension of X), s be as

in Lemma 2.2, and fσ,λ ∈ Hσ satisfy (2.2). For any 0 < δ < 1, with confidence at least 1 − δ,
we have

Eφ(f̂i)− Eφ(fφρ ) ≤ 8Ãλmin{sζ,1−pζ} + 40ε∗(n, λ, σ, δ) + 4(∥φ∥C[−Ã,Ã] + C1) ln
2

δ
n−

1
2−τ . (2.5)

Proof. Xiang and Zhou [11] (see Proposition 2 in [11]) have proved that for any 0 < δ < 1, with
confidence at least 1− δ,

Eφ(f̂i)− Eφ(fφρ ) ≤ 4D(σ, λ) + 40ε∗(n, λ, σ, δ) + 4(∥φ∥C[−Ã,Ã] + C1) ln
2

δ
n−

1
2−τ .

With Lemma 2.2 and σ = λζ , we have D ≤ Ã(λsζ + λ1−pζ) ≤ 2Ãλmin{sζ,1−pζ}. So Proposition
2.1 is proved.

To get the more explicit bound, we need the following Lemma 2.8 to bound ε∗(m,λ, σ, δ). It
can be proved via the same method as in [11].

Lemma 2.8. Let 0 ≤ τ ≤ 1, λ = n−γ and σ = λζ with γ > 0 and 0 < ζ < 1
2γ(p+1) . Then

we have

ε∗(m,λ, σ, δ) ≤ C2n
− 1−2γζ(p+1)

2−τ ln 2
δ . (2.6)

From Proposition 2.1 and Lemma 2.8, we have the following Proposition 2.2.

Proposition 2.2. Let σ = λζ and λ = n−γ for some 0 < ζ < 1
p and 0 < γ < 1

2ζ(p+1) . If

(2.1) is valid for some s > 0, then for any 0 < δ < 1, with confidence 1− δ we have

Eφ(f̂i)− Eφ(fφρ ) ≤ C̃n−θ ln
2

δ
, (2.7)

where

θ = min

{
sζγ, γ(1− pζ), 1− 2γζ(p+ 1)

2− τ

}
, (2.8)

and C̃ is a constant independent of n and δ.

Proof. Applying the bound for ε∗ from Lemma 2.8 on Proposition 2.1, with confidence at least
1− δ, we have

Eφ(f̂i)− Eφ(fφρ ) ≤ 8Ãλmin{sζ,1−pζ} + 40C2n
− 1−2γζ(p+1)

2−τ ln 2
δ + 4(∥φ∥C[−Ã,Ã] + C1) ln

2

δ
n−

1
2−τ .

Putting λ = n−γ into the above formula, we easily see that Eφ(f̂i)− Eφ(fφρ ) ≤ C̃n−θ ln 2
δ . Here

θ is given by (2.8) and C̃ is the constant independent of n and δ given by C̃ = 8Ã + 40C2 +
4(∥φ∥C[−Ã,Ã] + C1).

Now we can obtain our main result to bound Eφ(f)− Eφ(fφρ ).

Theorem 2.1. Under the condition of Proposition 2.2, for any 0 < δ < 1, with confidence
1− δ we have

Eφ(f)− Eφ(fφρ ) ≤ C̃n−θ ln
2m

δ
, (2.9)

where θ and C̃ are as in Proposition 2.2.

Proof. From Proposition 2.2, for any δ > 0, with confidence 1− δ
m , Eφ(f̂i)−Eφ(fφρ ) ≤ C̃n−θ ln 2m

δ .
From Lemma 2.1,

Prob

{
Eφ(f)− Eφ(fφρ ) ≤ C̃n−θ ln

2m

δ

}
≥ Prob

{
1

m

m∑
i=1

(
Eφ(f̂i)− Eφ(fφρ )

)
≤ C̃n−θ ln

2m

δ

}

≥ Prob

{
m∩
i=1

{
Eφ(f̂i)− Eφ(fφρ ) ≤ C̃n−θ ln

2m

δ

}}
≥ 1−m× δ

m
= 1− δ.
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Remark 2.1. Given N , we take n = ma, i.e. m = N
1

a+1 and n = N
a

a+1 . We easily see
that the above bound 1

maθ ln 2m
δ → 0(m→∞) for all a > 0.

As mentioned in Introduction, the Tikhonov regularization scheme for all N samples have
time complexity O(N3) and memory complexity O(N2). Now we can determine m (also n) to
guarantee that the distributed algorithm have lower time complexity and memory complexity.

Corollary 2.1. For any k < 3, the time complexity of the distributed algorithm is less than

O(Nk) if and only if m > N
3−k
2 .

Proof. Let n = ma, i.e. m = N
1

a+1 . The time complexity is m ·O(n3) = O(m3a+1) = O(N
3a+1
a+1 ).

For k < 3, to ensure 3a+1
a+1 < k, it only needs a < k−1

3−k . So m = N
1

a+1 > N
3−k
2 .

For memory complexity, we have a similar result as follows.

Corollary 2.2. For any k < 2, the memory complexity of the distributed algorithm is less
than O(Nk) if and only if m > N2−k.

Due to (1.2), we have

Theorem 2.2. R(sgn(f̄))−R(fc) ≤ cφ
√
C̃n−θ ln 2m

δ .
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Abstract. In this paper, we prove a Korovkin type approximation theorem for a function of two
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double sequences. We also display an example in support of our results.
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1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced

by Fast [8] and further studied Fridy [9] and many others.

Let K ⊆ N and Kn = {k ≤ n : k ∈ K} .Then the natural density of K is defined

by δ(K) = limn n
−1|Kn| if the limit exists, where |Kn| denotes the cardinality of Kn.

A sequence x = (xk) of real numbers is said to be statistically convergent to L

provided that for every ε > 0 the set Kε := {k ∈ N : |xk − L| ≥ ε} has natural density

zero, i.e. for each ε > 0,

lim
n

1

n
|{j ≤ n : |xj − L| ≥ ε}| = 0.

By the convergence of a double sequence we mean the convergence in the Pring-

sheim’s sense [20]. A double sequence x = (xjk) is said to be Pringsheim’s convergent

(or P -convergent) if for given ε > 0 there exists an integer N such that |xjk − `| < ε

whenever j, k > N . In this case, ` is called the Pringsheim limit of x = (xjk) and it is

written as P − limx = `.

A double sequence x = (xjk) is said to be bounded if there exists a positive number

M such that |xjk| < M for all j, k.

1
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Note that, in contrast to the case for single sequences, a convergent double se-

quence need not be bounded.

The idea of statistical convergence for double sequences was introduced and studied

by Moricz [17] and Mursaleen and Edely [18], independently in the same year and

further studied in [15].

Let K ⊆ N × N be a two-dimensional set of positive integers and let K(m,n) =

{(j, k) : j ≤ m, k ≤ n}. Then the double natural density of the set K is defined as

P − lim
m,n

| K(m,n) |
mn

= δ2(K)

provided that the sequence (| K(m,n) | /mn) has a limit in Pringsheim’s sense.

For example, let K = {(i2, j2) : i, j ∈ N}. Then

δ2(K) = P − lim
m,n

| K(m,n) |
mn

≤ P − lim
m,n

√
m
√
n

mn
= 0,

i.e. the set K has double natural density zero, while the set {(i, 2j) : i, j ∈ N} has

double natural density 1
2
.

A real double sequence x = (xjk) is said to be statistically convergent to the

number L if for each ε > 0, the set

{(j, k), j ≤ m and k ≤ n :| xjk − L |≥ ε}

has double natural density zero. In this case we write st2- lim
j,k→∞

xjk = L.

Remark 1.1. Note that if x = (xjk) is P -convergent then it is statisically convergent

but not conversely. See the following example.

Example 1.1. The double sequence w = (wjk) defined by

wjk =

{
1 , if j and k are squares;

0 , otherwise .
(1.1.1)

Then w is statistically convergent to zero but not P -convergent.

Let C[a, b] be the space of all functions f continuous on [a, b] equipped with the

norm

‖f‖C[a,b] := sup
x∈[a,b]

|f(x)|, f ∈ C[a, b].

The classical Korovkin approximation theorem states as follows (cf. [10], [13]):

2
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Let (Tn) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then

limn ‖Tn(f, x) − f(x)‖C[a,b] = 0, for all f ∈ C[a, b] if and only if limn ‖Tn(fi, x) −
fi(x)‖C[a,b] = 0, for i = 0, 1, 2, where f0(x) = 1, f1(x) = x and f2(x) = x2.

Korovkin type approximation theorems are also proved for different summability

methods to replace the ordinary convergence, e.g. [4], [7], [11], [14], [16] etc..

Quite recently, such type of approximation theorems are proved in [1], [2], [3],

[6] and [19] for functions of two variables by using almost convergence and statisti-

cal convergence of double sequences, respectively. For single sequences, Boyanov and

Veselinov [2] have proved the Korovkin theorem on C[0,∞) by using the test functions

1, e−x, e−2x. In this paper, we extend the result of Boyanov and Veselinov for func-

tions of two variables by using the notion of Pringsheim’s convergence and statistical

convergence of double sequences.

2. Main result

Let C(I2) be the Banach space with the uniform norm ‖ . ‖ of all real-valued

two dimensional continuous functions on I × I, where I = [0,∞); provided that

lim(x,y)→(∞,∞) f(x, y) is finite. Suppose that Tm,n : C(I2)→ C(I2). We write Tm,n(f ;x, y)

for Tm,n(f(s, t);x, y); and we say that T is a positive operator if T (f ;x, y) ≥ 0 for all

f(x, y) ≥ 0.

The following result is an extension of Boyanov and Veselinov theorem [5] for func-

tions of two variables.

Theorem 2.1. Let (Tj,k) be a double sequence of positive linear operators from C(I2)

into C(I2). Then for all f ∈ C(I2)

P - lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥= 0. (2.1.0)

if and only if

P - lim
j,k→∞

∥∥∥∥Tj,k(1;x, y)− 1

∥∥∥∥= 0, (2.1.1)

P - lim
j,k→∞

∥∥∥∥Tj,k(e−s;x, y)− e−x
∥∥∥∥= 0, (2.1.2)

P - lim
j,k→∞

∥∥∥∥Tj,k(e−t;x, y)− e−y
∥∥∥∥= 0, (2.1.3)

P - lim
j,k→∞

∥∥∥∥Tj,k(e−2s + e−2t;x, y)− (e−2x + e−2y)

∥∥∥∥= 0. (2.1.4)

3
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Proof. Since each 1, e−x, e−y, e−2x + e−2y belongs to C(I2), conditions (2.1.1)-(2.1.4)

follow immediately from (2.1.0). Let f ∈ C(I2). There exist aconstant M > 0 such

that |f(x, y)| ≤M for each (x, y) ∈ I2. Therefore,

|f(s, t)− f(x, y)| ≤ 2M, −∞ < s, t, x, y <∞. (2.1.5)

It is easy to prove that for a given ε > 0 there is a δ > 0 such that

|f(s, t)− f(x, y)| < ε, (2.1.6)

whenever |e−s − e−x| < δ and |e−t − e−y| < δ for all (x, y) ∈ I2.
Using (2.1.5), (2.1.6), putting ψ1 = ψ1(s, x) = (e−s − e−x)2 and ψ2 = ψ2(t, y) =

(e−t − e−y)2, we get

|f(s, t)− f(x, y)| < ε+
2M

δ2
(ψ1 + ψ2), ∀ |s− x| < δ and |t− y| < δ.

This is,

−ε− 2M

δ2
(ψ1 + ψ2) < f(s, t)− f(x, y) < ε+

2M

δ2
(ψ1 + ψ2).

Now, operating Tj,k(1;x, y) to this inequality since Tj,k(f ;x, y) is monotone and linear.

We obtain

Tj,k(1;x, y)

(
−ε− 2M

δ2
(ψ1 + ψ2)

)
< Tj,k(1;x, y)(f(s, t)− f(x, y))

< Tj,k(1;x, y)

(
ε+

2M

δ2
(ψ1 + ψ2)

)
.

Note that x and y are fixed and so f(x, y) is constant number. Therefore

−εTj,k(1;x, y)− 2M

δ2
Tj,k(ψ1 + ψ2;x, y) < Tj,k(f ;x, y)− f(x, y)Tj,k(1;x, y)

< εTj,k(1;x, y) +
2M

δ2
Tj,k(ψ1 + ψ2;x, y). (2.1.7)

But

Tj,k(f ;x, y)− f(x, y) = Tj,k(f ;x, y)− f(x, y)Tj,k(1;x, y) + f(x, y)Tj,k(1;x, y)− f(x, y)

= [Tj,k(f ;x, y)− f(x, y)Tj,k(1;x, y)] + f(x, y)[Tj,k(1;x, y)− 1]. (2.1.8)

Using (2.1.7) and (2.1.8), we have

Tj,k(f ;x, y)− f(x, y) < εTj,k(1;x, y) +
2M

δ2
Tj,k(ψ1 +ψ2;x, y) + f(x, y)(Tj,k(1;x, y)− 1).

(2.1.9)

Now

Tj,k(ψ1 +ψ2;x, y) = Tj,k((e
−s− e−x)2 + (e−t− e−y)2;x, y)

4
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= Tj,k(e
−2s − 2e−se−x + e−2x + e−2t − 2e−te−y + e−2y;x, y)

= Tj,k(e
−2s + e−2t;x, y)− 2e−xTj,k(s;x, y)− 2e−yTj,k(t;x, y)

+(e−2x + e−2y)Tj,k(1;x, y)

= [Tj,k(e
−2s + e−2t;x, y)− (e−2x + e−2y)]− 2e−x[Tj,k(e

−s;x, y)− e−x]

− 2e−y[Tj,k(e
−t;x, y)− e−y] + (e−2x + e−2y)[Tj,k(1;x, y)− 1].

Using (2.1.9), we obtain

Tj,k(f ;x, y)−f(x, y) < εTj,k(1;x, y)+
2M

δ2
{[Tj,k((e−2s+e−2t);x, y)− (e−2x+e−2y)]

− 2e−x[Tj,k(e
−s;x, y)− e−x]− 2e−y[Tj,k(e

−t;x, y)− e−y]

+ (e−2x + e−2y)[Tj,k(1;x, y)− 1]}+ f(x, y)(Tj,k(1;x, y)− 1)

= ε[Tj,k(1;x, y)−1]+ε+
2M

δ2
{[Tj,k((e−2s+e−2t);x, y)−(e−2x+e−2y)]

− 2e−x[Tj,k(e
−s;x, y)− e−x]− 2e−y[Tj,k(e

−t;x, y)− e−y]

+ (e−2x + e−2y)[Tj,k(1;x, y)− 1]}+ f(x, y)(Tj,k(1;x, y)− 1).

Since ε is arbitrary, we can write

Tj,k(f ;x, y)−f(x, y) ≤ ε[Tj,k(1;x, y)−1]+
2M

δ2
{[Tj,k((e−2s+e−2t);x, y)− (e−2x+e−2y)]

− 2e−x[Tj,k(e
−s;x, y)− e−x]− 2e−y[Tj,k(e

−t;x, y)− e−y]

+ (e−2x + e−2y)[Tj,k(1;x, y)− 1]}+ f(x, y)(Tj,k(1;x, y)− 1).

Therefore

| Tj,k(f ;x, y)−f(x, y) |≤ ε+(ε+M) | Tj,k(1;x, y)−1 | +2M

δ2
| e−2x+e−2y || Tj,k(1;x, y)−1 |

+
2M

δ2
| Tj,k(e−2s + e−2t;x, y) | −(e−2x + e−2y) |

+
4M

δ2
| e−x || Tj,k(e−s;x, y)− e−x | +4M

δ2
| e−y || Tj,k(e−t;x, y)− e−y |

≤ ε+ (ε+M +
4M

δ2
) | Tj,k(1;x, y)− 1 | +2M

δ2
| e−2x + e−2y || Tj,k(1;x, y)− 1 |

+
2M

δ2
| Tj,k(e−2s + e−2t;x, y)− (e−2x + e−2y) |

+
4M

δ2
| Tj,k(e−s;x, y)− e−x | +4M

δ2
| Tj,k(e−t;x, y)− e−y | . (2.1.10)

since | e−x |, | e−y |≤ 1 for all x, y ∈ I. Now, taking sup(x,y)∈I2 , we get∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥≤ ε+K

(∥∥∥∥Tj,k(1;x, t)− 1

∥∥∥∥
5
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+

∥∥∥∥Tj,k(e−s;x, y)− e−x
∥∥∥∥+

∥∥∥∥Tj,k(e−t;x, y)− e−y
∥∥∥∥

+

∥∥∥∥Tj,k(e−2s + e−2t;x, y)− (e−2x + e−2y)

∥∥∥∥), (2.1.11)

where where K = max{ε + M + 4M
δ2
, 4M
δ2
, 2M
δ2
}. Taking P -lim as j, k → ∞ and using

(2.1.1), (2.1.2), (2.1.3), (2.1.4), we get

P − lim
p,q→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥= 0, uniformly in m,n.

This completes the proof of the theorem.

3. Statistical version

In the following theorem we use the notion of statistical convergence of double

sequences to generalize the above theorem. We also display an interesting example to

show its importance.

Theorem 3.1. Let (Tj,k) be a double sequence of positive linear operators from C(I2)

into C(I2). Then for all f ∈ C(I2)

st2- lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥= 0. (3.1.0)

if and only if

st2- lim
j,k→∞

∥∥∥∥Tj,k(1;x, y)− 1

∥∥∥∥= 0, (3.1.1)

st2- lim
j,k→∞

∥∥∥∥Tj,k(e−s;x, y)− e−x
∥∥∥∥= 0, (3.1.2)

st2- lim
j,k→∞

∥∥∥∥Tj,k(e−t;x, y)− e−y
∥∥∥∥= 0, (3.1.3)

st2- lim
j,k→∞

∥∥∥∥Tj,k(e−2s + e−2t;x, y)− (e−2x + e−2y)

∥∥∥∥= 0. (3.1.4)

Proof. For a given r > 0 choose ε > 0 such that ε < r . Define the following sets

D := {(j, k), j ≤ m and k ≤ n :

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥≥ r},

D1 := {(j, k), j ≤ m and k ≤ n :

∥∥∥∥Tj,k(1;x, y)− 1

∥∥∥∥≥ r − ε
4K
},

D2 := {(j, k), j ≤ m and k ≤ n :

∥∥∥∥Tj,k(e−s;x, y)− e−x
∥∥∥∥≥ r − ε

4K
},

6
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D3 := {(j, k), j ≤ m and k ≤ n :

∥∥∥∥Tj,k(e−t;x, y)− e−y
∥∥∥∥≥ r − ε

4K
}.

D4 := {(j, k), j ≤ m and k ≤ n :

∥∥∥∥Tj,k(e−2s + e−2t;x, y)− (e−2x + e−2y)

∥∥∥∥≥ r − ε
4K
}.

Then from (2.1.11), we see that D ⊂ D1 ∪ D2 ∪ D3 ∪ D4 and therefore δ2(D) ≤
δ2(D1)+δ2(D2)+δ2(D3)+δ2(D4). Hence conditions (3.1.1)–(3.1.4) imply the condition

(3.1.0).

This completes the proof of the theorem.

We show that the following double sequence of positive linear operators satisfies

the conditions of Theorem 3.1 but does not satisfy the conditions of Theorem 2.1.

Example 3.2. Consider the sequence of classical Baskakov operators of two variables

[12]

Bm,n(f ;x, y) :=
∞∑
j=0

∞∑
k=0

f

(
j

m
,
k

n

)(
m− 1 + j

j

)(
n− 1 + k

k

)
xj(1+x)−m−jyk(1+y)−n−k;

where 0 ≤ x, y <∞ . Let Lm,n : C(I2)→ C(I2) be defined by

Lm,n(f ;x, y) = (1 + wmn)Bm,n(f ;x, y),

where the sequence (wmn) is defined by (1.1.1). Since

Bm,n(1;x, y) = 1,

Bm,n(e−s;x, y) = (1 + x− xe−
1
m )−m,

Bm,n(e−t;x, y) = (1 + y − ye−
1
n )−n,

Bm,n(e−2s + e−2t;x, y) = (1 + x2 − x2e−
1
m )−m + (1 + y2 − y2e−

1
n )−n,

we have that the sequence (Lm,n) satisfies the conditions (3.1.1), (3.2.2), (3.1.3) and

(3.1.4). Hence by Theorem 3.1, we have

st2- lim
m,n→∞

‖Lm,n(f ;x, y)− f(x, y)‖ = 0.

On the other hand, we get Lm,n(f ; 0, 0) = (1+wmn)f(0, 0), since Bm,n(f ; 0, 0) = f(0, 0),

and hence

‖Lm,n(f ;x, y)− f(x, y)‖ ≥ |Lm,n(f ; 0, 0)− f(0, 0)| = wmn|f(0, 0)|.

We see that (Lm,n) does not satisfy the conditions of Theorem 2.1, since P - lim
m,n→∞

wmn

does not exist.

7
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Abstract

Here are presented �ve new advanced fractional Taylor�s formulae un-
der as weak as possible assumptions.
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1 Introduction

In [3] we proved

Theorem 1 Let f; f 0; :::; f (n); g; g0 be continuous functions from [a; b] (or [b; a])
into R, n 2 N. Assume that

�
g�1

�(k)
, k = 0; 1; :::; n; are continuous functions.

Then it holds

f (b) = f (a) +

n�1X
k=1

�
f � g�1

�(k)
(g (a))

k!
(g (b)� g (a))k +Rn (a; b) ; (1)

where

Rn (a; b) :=
1

(n� 1)!

Z b

a

(g (b)� g (s))n�1
�
f � g�1

�(n)
(g (s)) g0 (s) ds (2)

=
1

(n� 1)!

Z g(b)

g(a)

(g (b)� t)n�1
�
f � g�1

�(n)
(t) dt:

Remark 2 Let g be strictly increasing and g 2 AC ([a; b]) (absolutely continu-
ous functions). Set g ([a; b]) = [c; d], where c; d 2 R, i.e. g (a) = c, g (b) = d,
and call l := f � g�1.
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Assume that l 2 ACn ([c; d]) (i.e. l(n�1) 2 AC ([c; d])).
[Obviously here it is implied that f 2 C ([a; b]) :]
Furthermore assume that

�
f � g�1

�(n) 2 L1 ([c; d]). [By this very last as-

sumption, the function (g (b)� t)n�1
�
f � g�1

�(n)
(t) is integrable over [c; d].

Since g 2 AC ([a; b]) and it is increasing, by [9] the function
(g (b)� g (s))n�1

�
f � g�1

�(n)
(g (s)) g0 (s) is integrable on [a; b], and again by

[9], (2) is valid in this general setting.] Clearly (1) is now valid under these
general assumptions.

2 Results

We need

Lemma 3 Let g be strictly increasing and g 2 AC ([a; b]). Assume that
�
f � g�1

�(m)
is Lebesgue measurable function over [c; d]. Then


�f � g�1�(m)




1;[c;d]
�



�f � g�1�(m) � g




1;[a;b]
; (3)

where
�
f � g�1

�(m) � g 2 L1 ([a; b]) :
Proof. We observe by de�nition of k�k1 that:


�f � g�1�(m) � g




1;[a;b]
= (4)

inf
n
M : m

n
t 2 [a; b] :

�����f � g�1�(m) � g� (t)��� > M
o
= 0

o
;

where m is the Lebesgue measure.
Because g is absolutely continuous and strictly increasing function on [a; b],

by [11], p. 108, exercise 14, we get that

m
n
z 2 [c; d] :

����f � g�1�(m) (z)��� > M
o
=

m
n
g (t) 2 [c; d] :

����f � g�1�(m) (g (t))��� > M
o
=

m
�
g
�n
t 2 [a; b] :

����f � g�1�(m) (g (t))��� > M
o��

= 0;

given that

m
n
t 2 [a; b] :

�����f � g�1�(m) � g� (t)��� > M
o
= 0:

Therefore each M of (4) ful�lls

M 2
n
L : m

n
z 2 [c; d] :

����f � g�1�(m) (z)��� > L
o
= 0

o
: (5)

The last implies (3).
We give
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De�nition 4 (see also [10, p. 99]) The left and right fractional integrals, re-
spectively, of a function f with respect to given function g are de�ned as follows:
Let a; b 2 R, a < b, � > 0. Here g 2 AC ([a; b]) and is strictly increasing,

f 2 L1 ([a; b]). We set�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt; x � a; (6)

where � is the gamma function, clearly
�
I�a+;gf

�
(a) = 0, I0a+;gf := f and

�
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt; x � b; (7)

clearly
�
I�b�;gf

�
(b) = 0, I0b�;gf := f:

When g is the identity function id, we get that I�a+;id = I�a+, and I
�
b�;id = I�b�,

the ordinary left and right Riemann-Liouville fractional integrals, where

�
I�a+f

�
(x) =

1

� (�)

Z x

a

(x� t)��1 f (t) dt; x � a; (8)

�
I�a+f

�
(a) = 0 and

�
I�b�f

�
(x) =

1

� (�)

Z b

x

(t� x)��1 f (t) dt; x � b; (9)

�
I�b�f

�
(b) = 0:

In [5], we proved

Lemma 5 Let g 2 AC ([a; b]) which is strictly increasing and f Borel measur-
able in L1 ([a; b]). Then f � g�1 is Lebesgue measurable, and

kfk1;[a;b] �


f � g�1

1;[g(a);g(b)]

; (10)

i.e.
�
f � g�1

�
2 L1 ([g (a) ; g (b)]).

If additionally g�1 2 AC ([g (a) ; g (b)]), then

kfk1;[a;b] =


f � g�1

1;[g(a);g(b)]

: (11)

Remark 6 We proved ([5]) that�
I�a+;gf

�
(x) =

�
I�g(a)+

�
f � g�1

��
(g (x)) , x � a (12)

and �
I�b�;gf

�
(x) =

�
I�g(b)�

�
f � g�1

��
(g (x)) , x � b: (13)

3
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It is well known that, if f is a Lebesgue measurable function, then there exists
f� a Borel measurable function, such that f = f�, a.e. Also it holds kfk1 =

kf�k1, and
R
:::f:::dx =

R
:::f�:::dx:

Of course a Borel measurable function is a Lebesgue measurable function.
Thus, by Lemma 5, we get

kfk1;[a;b] = kf
�k1;[a;b] �



f� � g�1

1;[g(a);g(b)]
: (14)

We observe the following:
Let �; � > 0, then�

I�a+;g
�
I�a+;gf

��
(x) =

�
I�a+;g

�
I�a+;gf

��� (x) =
I�g(a)+

��
I�a+;gf

�� � g�1� (g (x)) = I�g(a)+

�
I�g(a)+

�
f� � g�1

�
� g � g�1

�
(g (x)) =

(15)�
I�g(a)+I

�
g(a)+

�
f� � g�1

��
(g (x))

(by [8], p. 14)
=�

I�+�g(a)+f
� � g�1

�
(g (x)) =

�
I�+�a+;gf

�
�
(x) =

�
I�+�a+;gf

�
(x) a.e.

The last is true for all x, if �+ � � 1 or f 2 C ([a; b]).
We have proved the semigroup composition property�

I�a+;gI
�
a+;gf

�
(x) =

�
I�+�a+;gf

�
(x) =

�
I�a+;gI

�
a+;gf

�
(x) ; x � a, (16)

a.e., which is true for all x, if �+ � � 1 or f 2 C ([a; b]) :
Similarly we get�

I�b�;g
�
I�b�;gf

��
(x) =

�
I�b�;g

�
I�b�;gf

��� (x) =
I�g(b)�

��
I�b�;gf

�� � g�1� (g (x)) = I�g(b)�

�
I�g(b)�

�
f� � g�1

�
� g � g�1

�
(g (x)) =

(17)

I�g(b)�

�
I�g(b)�

�
f� � g�1

��
(g (x))

(by [1])
=�

I�+�g(b)�
�
f� � g�1

��
(g (x)) =

�
I�+�b�;g f

�
�
(x) =

�
I�+�b�;g f

�
(x) a.e.,

true for all x 2 [a; b], if �+ � � 1 or f 2 C ([a; b]).
We have proved the semigroup property that�
I�b�;gI

�
b�;gf

�
(x) =

�
I�+�b�;g f

�
(x) =

�
I�b�;gI

�
b�;gf

�
(x) ; a.e., x � b, (18)

which is true for all x 2 [a; b], if �+ � � 1 or f 2 C ([a; b]) :

From now on without loss of generality, within integrals we may assume that
f = f�, and we mean that f = f�, a.e.
We make
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De�nition 7 Let � > 0, d�e = n, d�e the ceiling of the number. Again here g 2
AC ([a; b]) and strictly increasing. We assume that

�
f � g�1

�(n)�g 2 L1 ([a; b]).
We de�ne the left generalized g-fractional derivative of f of order � as follows:�
D�
a+;gf

�
(x) :=

1

� (n� �)

Z x

a

(g (x)� g (t))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt,

(19)
x � a:

If � =2 N, by [6], we have that D�
a+;gf 2 C ([a; b]).

We see that�
In��a+;g

��
f � g�1

�(n) � g�� (x) = �D�
a+;gf

�
(x) , x � a: (20)

We set
Dn
a+;gf (x) :=

��
f � g�1

�(n) � g� (x) ; (21)

D0
a+;gf (x) = f (x) , 8 x 2 [a; b] : (22)

When g = id, then
D�
a+;gf = D�

a+;idf = D�
�af; (23)

the usual left Caputo fractional derivative.

We make

Remark 8 Under the assumption that
�
f � g�1

�(n)�g 2 L1 ([a; b]), which could
be considered as Borel measurable within integrals, we obtain�

I�a+;gD
�
a+;gf

�
(x) =

�
I�a+;g

�
In��a+;g

��
f � g�1

�(n) � g��� (x) =�
I�+n��a+;g

��
f � g�1

�(n) � g�� (x) = Ina+;g

��
f � g�1

�(n) � g� (x) = (24)

1

(n� 1)!

Z x

a

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt:
We have proved that�
I�a+;gD

�
a+;gf

�
(x) =

1

(n� 1)!

Z x

a

(g (x)� g (t))n�1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt

(25)
= Rn (a; x) , 8 x � a;

see (2).
But also it holds

Rn (a; x) =
�
I�a+;gD

�
a+;gf

�
(x) = (26)

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt; x � a:

5
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We have proved the following g-left fractional generalized Taylor�s formula:

Theorem 9 Let g be strictly increasing function and g 2 AC ([a; b]). We as-
sume that

�
f � g�1

�
2 ACn ([g (a) ; g (b)]), where N 3 n = d�e, � > 0. Also we

assume that
�
f � g�1

�(n) � g 2 L1 ([a; b]). Then
f (x) = f (a) +

n�1X
k=1

�
f � g�1

�(k)
(g (a))

k!
(g (x)� g (a))k +

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt; 8 x 2 [a; b] : (27)

Calling Rn (a; x) the remainder of (27), we get that

Rn (a; x) =
1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
��
D�
a+;gf

�
� g�1

�
(z) dz; 8 x 2 [a; b] :

(28)

Remark 10 By [6], Rn (a; x) is a continuous function in x 2 [a; b]. Also, by
[9], change of variable in Lebesgue integrals, (28) is valid.

By [3] we have

Theorem 11 Let f; f 0; :::; f (n); g; g0 be continuous from [a; b] into R, n 2 N.
Assume that

�
g�1

�(k)
, k = 0; 1; :::; n; are continuous. Then

f (x) = f (b) +
n�1X
k=1

�
f � g�1

�(k)
(g (b))

k!
(g (x)� g (b))k +Rn (b; x) ; (29)

where

Rn (b; x) :=
1

(n� 1)!

Z x

b

(g (x)� g (s))n�1
�
f � g�1

�(n)
(g (s)) g0 (s) ds (30)

=
1

(n� 1)!

Z g(x)

g(b)

(g (x)� t)n�1
�
f � g�1

�(n)
(t) dt; 8 x 2 [a; b] : (31)

Notice that (29), (30) and (31) are valid under more general weaker assump-
tions, as follows: g is strictly increasing and g 2 AC ([a; b]),

�
f � g�1

�
2

ACn ([g (a) ; g (b)]), and
�
f � g�1

�(n) 2 L1 ([g (a) ; g (b)]) :
We make

6
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De�nition 12 Here we assume that
�
f � g�1

�(n) � g 2 L1 ([a; b]), where N 3
n = d�e, � > 0. We de�ne the right generalized g-fractional derivative of f of
order � as follows:

�
D�
b�;gf

�
(x) :=

(�1)n

� (n� �)

Z b

x

(g (t)� g (x))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt,

(32)
all x 2 [a; b] :
If � =2 N, by [7], we get that

�
D�
b�;gf

�
2 C ([a; b]).

We see that

In��b�;g

�
(�1)n

�
f � g�1

�(n) � g� (x) = �D�
b�;gf

�
(x) , a � x � b: (33)

We set
Dn
b�;gf (x) = (�1)

n
��
f � g�1

�(n) � g� (x) ; (34)

D0
b�;gf (x) = f (x) , 8 x 2 [a; b] :

When g = id, then

D�
b�;gf (x) = D�

b�;idf (x) = D�
b�f; (35)

the usual right Caputo fractional derivative.

We make

Remark 13 Furthermore it holds�
I�b�;gD

�
b�;gf

�
(x) =

�
I�b�;gI

n��
b�;g

�
(�1)n

�
f � g�1

�(n) � g�� (x) =�
Inb�;g

�
(�1)n

�
f � g�1

�(n) � g�� (x) = (�1)n �Inb�;g ��f � g�1�(n) � g�� (x) =
(36)

(�1)n

(n� 1)!

Z b

x

(g (t)� g (x))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt =
(�1)2n

(n� 1)!

Z x

b

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt =
1

(n� 1)!

Z x

b

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt = Rn (b; x) ; (37)

as in (30).
That is

Rn (b; x) =
�
I�b�;gD

�
b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt; all a � x � b: (38)

7
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We have proved the g-right generalized fractional Taylor�s formula:

Theorem 14 Let g be strictly increasing function and g 2 AC ([a; b]). We
assume that

�
f � g�1

�
2 ACn ([g (a) ; g (b)]), where N 3 n = d�e, � > 0. Also

we assume that
�
f � g�1

�(n) � g 2 L1 ([a; b]). Then
f (x) = f (b) +

n�1X
k=1

�
f � g�1

�(k)
(g (b))

k!
(g (x)� g (b))k +

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt; all a � x � b: (39)

Calling Rn (b; x) the remainder in (39), we get that

Rn (b; x) =
1

� (�)

Z g(b)

g(x)

(z � g (x))��1
��
D�
b�;gf

�
� g�1

�
(z) dz; 8 x 2 [a; b] :

(40)

Remark 15 By [7], Rn (b; x) is a continuous function in x 2 [a; b]. Also, by
[9], change of variable in Lebesgue integrals, (40) is valid.

Basics 16 The right Riemann-Liouville fractional integral of order � > 0, f 2
L1 ([a; b]), a < b, is de�ned as follows:

I�b�f (x) :=
1

� (�)

Z b

x

(z � x)��1 f (z) dz, 8 x 2 [a; b] : (41)

I0b� := I (the identity operator).

Let �; � � 0, f 2 L1 ([a; b]). Then, by [1], we have

I�b�I
�
b�f = I�+�b� f = I�b�I

�
b�f; (42)

valid a.e. on [a; b]. If f 2 C ([a; b]) or � + � � 1, then the last identity is true
on all of [a; b] :
The right Caputo fractional derivative of order � > 0, m = d�e, f 2

ACm ([a; b]) is de�ned as follows:

D�
b�f (x) := (�1)

m
Im��b� f (m) (x) ; (43)

that is

D�
b�f (x) =

(�1)m

� (m� �)

Z b

x

(z � x)m���1 f (m) (z) dz; 8 x 2 [a; b] ; (44)

with Dm
b�f (x) := (�1)

m
f (m) (x) :

8
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By [1], we have the following right fractional Taylor�s formula:
Let f 2 ACm ([a; b]), x 2 [a; b], � > 0, m = d�e, then

f (x)�
m�1X
k=0

f (k) (b)

k!
(x� b)k = 1

� (�)

Z b

x

(z � x)��1D�
b�f (z) dz = (45)

�
I�b�D

�
b�f

�
(x) = (�1)m

�
I�b�I

m��
b� f (m)

�
(x) = (�1)m

�
Imb�f

(m)
�
(x) =

(�1)m 1

(m� 1)!

Z b

x

(z � x)m�1 f (m) (z) dz =

(�1)m (�1)m

(m� 1)!

Z x

b

(x� z)m�1 f (m) (z) dz = (46)

1

(m� 1)!

Z x

b

(x� z)m�1 f (m) (z) dz:

That is �
I�b�D

�
b�f

�
(x) = (�1)m

�
Imb�f

(m)
�
(x) =

f (x)�
m�1X
k=0

f (k) (b)

k!
(x� b)k = 1

(m� 1)!

Z x

b

(x� z)m�1 f (m) (z) dz: (47)

We make

Remark 17 If 0 < � � 1, then m = 1, hence�
I�b�D

�
b�f

�
(x) = f (x)� f (b) (48)

=
1

� (�)

Z b

x

(z � x)��1D�
b�f (z) dz =: ( 1) :

[Let f 0 2 L1 ([a; b]), then by [4], we get that D�
b�f 2 C ([a; b]), 0 < � < 1,

where �
D�
b�f

�
(x) =

(�1)
� (1� �)

Z b

x

(z � x)�� f 0 (z) dz; (49)

with
�
D1
b�f

�
(x) = �f 0 (x) :

Also (z � x)��1 > 0, over (x; b), andZ b

x

(z � x)��1 dz = (b� x)�

�
<1; for any 0 < � � 1; (50)

thus (z � x)��1 is integrable over [x; b] :]

9
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By the �rst mean value theorem for integration, when 0 < � < 1, we get
that

( 1) =

�
D�
b�f

�
(�x)

� (�)

Z b

x

(z � x)��1 dz =
�
D�
b�f

�
(�x)

� (�)

(b� x)�

�
(51)

=

�
D�
b�f

�
(�x)

� (�+ 1)
(b� x)� , �x 2 [x; b] :

Thus, we obtain

f (x)� f (b) =
�
D�
b�f

�
(�x)

� (�+ 1)
(b� x)� , �x 2 [x; b] ; (52)

where f 2 AC ([a; b]) :
We have proved

Theorem 18 (Right generalized mean value theorem). Let f 2 AC ([a; b]),
f 0 2 L1 ([a; b]), 0 < � < 1. Then

f (x)� f (b) =
�
D�
b�f

�
(�x)

� (�+ 1)
(b� x)� , (53)

with x � �x � b, where x 2 [a; b] :

If f 2 C ([a; b]) and there exists f 0 (x), for any x 2 (a; b), then

f (x)� f (b) = (�1) f 0 (�x) (b� x) ; (54)

equivalently,
f (b)� f (x) = f 0 (�x) (b� x) ; (55)

the usual mean value theorem.
We make

Remark 19 In general: we notice the following

��D�
b�f (x)

�� � 1

� (m� �)

Z b

x

(z � x)m���1
���f (m) (z)��� dz

(assuming f (m) 2 L1 ([a; b]))

�


f (m)

1
� (m� �)

Z b

x

(z � x)m���1 dz =


f (m)

1
� (m� �)

(b� x)m��

m� � (56)

=



f (m)

1
� (m� �+ 1) (b� x)

m�� �


f (m)

1

� (m� �+ 1) (b� a)
m��

:

10
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So when f (m) 2 L1 ([a; b]) we get that

D�
b�f (b) = 0, where � =2 N, (57)

and 

D�
b�f




1 �



f (m)

1
� (m� �+ 1) (b� a)

m��
: (58)

In particular when f 0 2 L1 ([a; b]), 0 < � < 1, we have that

D�
b�f (b) = 0: (59)

Notation 20 Denote by

Dn�
b� := D�

b�D
�
b�:::D

�
b� (n times), n 2 N: (60)

Also denote by
In�b� := I�b�I

�
b�:::I

�
b� (n times), n 2 N: (61)

We have

Theorem 21 Suppose that Dn�
b�f , D

(n+1)�
b� f 2 C ([a; b]), 0 < � � 1: Then

�
In�b�D

n�
b�f

�
(x)�

�
I
(n+1)�
b� D

(n+1)�
b� f

�
(x) =

(b� x)n�

� (n�+ 1)

�
Dn�
b�f

�
(b) : (62)

Proof. By (42) we get that�
In�b�D

n�
b�f

�
(x)�

�
I
(n+1)�
b� D

(n+1)�
b� f

�
(x) =

In�b�

��
Dn�
b�f

�
(x)�

�
I�b�D

(n+1)�
b� f

�
(x)
�
=

In�b�
��
Dn�
b�f

�
(x)�

��
I�b�D

�
b�
� �
Dn�
b�f

��
(x)
� (48)
=

In�b�
��
Dn�
b�f

�
(x)�

�
Dn�
b�f

�
(x) +

�
Dn�
b�f

�
(b)
�
= (63)

In�b�
��
Dn�
b�f

�
(b)
�
=
(b� x)n�

� (n�+ 1)

�
Dn�
b�f

�
(b) :

Remark 22 Suppose that Dk�
b�f 2 C ([a; b]), for k = 0; 1; :::; n + 1; 0 < � � 1:

By (62) we get that

nX
i=0

��
Ii�b�D

i�
b�f

�
(x)�

�
I
(i+1)�
b� D

(i+1)�
b� f

�
(x)
�
=

nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b) : (64)
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That is

f (x)�
�
I
(n+1)�
b� D

(n+1)�
b� f

�
(x) =

nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b) : (65)

Hence it holds

f (x) =
nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b) +

�
I
(n+1)�
b� D

(n+1)�
b� f

�
(x) = (66)

nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b) +R� (x; b) ;

where

R� (x; b) :=
1

� ((n+ 1)�)

Z b

x

(z � x)(n+1)��1
�
D
(n+1)�
b� f

�
(z) dz: (67)

We see that (there exists �x 2 [x; b] :)

R� (x; b) =

�
D
(n+1)�
b� f

�
(�x)

� ((n+ 1)�)

Z b

x

(z � x)(n+1)��1 dz =

�
D
(n+1)�
b� f

�
(�x)

� ((n+ 1)�)

(b� x)(n+1)�

(n+ 1)�
=

�
D
(n+1)�
b� f

�
(�x)

� ((n+ 1)�+ 1)
(b� x)(n+1)� : (68)

We have proved the following right generalized fractional Taylor�s formula:

Theorem 23 Suppose that Dk�
b�f 2 C ([a; b]), for k = 0; 1; :::; n + 1, where

0 < � � 1. Then

f (x) =
nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b)+ (69)

1

� ((n+ 1)�)

Z b

x

(z � x)(n+1)��1
�
D
(n+1)�
b� f

�
(z) dz =

nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b) +

�
D
(n+1)�
b� f

�
(�x)

� ((n+ 1)�+ 1)
(b� x)(n+1)� ; (70)

where �x 2 [x; b], with x 2 [a; b] :

We make

Remark 24 Let � > 0, m = d�e, g is strictly increasing and g 2 AC ([a; b]).
Call l = f � g�1, f : [a; b] ! R. Assume that l 2 ACm ([c; d]) (i.e. l(m�1) 2
AC ([c; d])) (where g ([a; b]) = [c; d], c; d 2 R : g (a) = c, g (b) = d; hence here f
is continuous on [a; b]).

Assume also that
�
f � g�1

�(m) � g 2 L1 ([a; b]) :
12
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The right generalized g-fractional derivative of f of order � is de�ned as
follows:�
D�
b�;gf

�
(x) :=

(�1)m

� (m� �)

Z b

x

(g (t)� g (x))m���1 g0 (t)
�
f � g�1

�(m)
(g (t)) dt,

(71)
a � x � b:

We saw that

Im��b�;g

�
(�1)m

�
f � g�1

�(m) � g� (x) = �D�
b�;gf

�
(x) , a � x � b: (72)

We proved earlier (37), (38), (39) that (a � x � b)�
I�b�;gD

�
b�;gf

�
(x) =

1

(m� 1)!

Z x

b

(g (x)� g (t))m�1 g0 (t)
��
f � g�1

�(m) � g� (t) dt = (73)

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt =

f (x)� f (b)�
m�1X
k=1

�
f � g�1

�(k)
(g (b))

k!
(g (x)� g (b))k :

If 0 < � � 1, then m = 1, hence�
I�b�;gD

�
b�;gf

�
(x) = f (x)� f (b) (74)

=
1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt

(when � 2 (0; 1), D�
b�;gf is continuous on [a; b] and )

=

�
D�
b�;gf

�
(�x)

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) dt =

�
D�
b�;gf

�
(�x)

� (�+ 1)
(g (b)� g (x))� ;

(75)
where �x 2 [x; b] :
We have proved

Theorem 25 (right generalized g-mean value theorem). Let 0 < � < 1, and
f � g�1 2 AC ([c; d]),

�
f � g�1

�0 � g 2 L1 ([a; b]), where g strictly increasing,
g 2 AC ([a; b]), f : [a; b]! R. Then

f (x)� f (b) =

�
D�
b�;gf

�
(�x)

� (�+ 1)
(g (b)� g (x))� , (76)

where �x 2 [x; b], for x 2 [a; b] :

13
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Denote by

Dn�
b�;g := D�

b�;gD
�
b�;g:::D

�
b�;g (n times), n 2 N: (77)

Also denote by
In�b�;g := I�b�;gI

�
b�;g:::I

�
b�;g (n times): (78)

Here to remind

�
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt; x � b: (79)

We need

Theorem 26 Suppose that Fk := Dk�
b�;gf , k = n; n + 1, ful�ll Fk � g�1 2

AC ([c; d]), and
�
Fk � g�1

�0 � g 2 L1 ([a; b]), 0 < � � 1; n 2 N: Then

�
In�b�;gD

n�
b�;gf

�
(x)�

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =

(g (b)� g (x))n�

� (n�+ 1)

�
Dn�
b�;gf

�
(b) :

(80)

Proof. By semigroup property of I�b�;g, we get�
In�b�;gD

n�
b�;gf

�
(x)�

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =�

In�b�;g

�
Dn�
b�;gf � I�b�;gD

(n+1)�
b�;g f

��
(x) = (81)�

In�b�;g
�
Dn�
b�;gf �

�
I�b�;gD

�
b�;g

� �
Dn�
b�;gf

���
(x)

(74)
=�

In�b�;g
�
Dn�
b�;gf �Dn�

b�;gf +D
n�
b�;gf (b)

��
(x) =�

In�b�;g
�
Dn�
b�;gf (b)

��
(x) =

�
Dn�
b�;gf (b)

� �
In�b�;g (1)

�
(x) = (82)

[Notice that

�
I�b�;g1

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) dt = (83)

1

� (�)

(g (b)� g (x))�

�
=

1

� (�+ 1)
(g (b)� g (x))� :

Thus we have �
I�b�;g1

�
(x) =

(g (b)� g (x))�

� (�+ 1)
: (84)

Hence it holds

�
I2�b�;g1

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) (g (b)� g (t))
�

� (�+ 1)
dt =

14
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1

� (�) � (�+ 1)

Z b

x

(g (b)� g (t))� (g (t)� g (x))��1 g0 (t) dt =

1

� (�) � (�+ 1)

Z g(b)

g(x)

(g (b)� z)(�+1)�1 (z � g (x))��1 dz =

1

� (�) � (�+ 1)

� (�+ 1)� (�)

� (2�+ 1)
(g (b)� g (x))2� = 1

� (2�+ 1)
(g (b)� g (x))2� ;

(85)
etc.]

=
�
Dn�
b�;gf

�
(b)
(g (b)� g (x))n�

� (n�+ 1)
; (86)

proving the claim.
We make

Remark 27 Suppose that Fk = Dk�
b�;gf , for k = 0; 1; :::; n + 1; are as in last

Theorem 26, 0 < � � 1: By (80) we get
nX
i=0

��
Ii�b�;gD

i�
b�;gf

�
(x)� I(i+1)�b�;g D

(i+1)�
b�;g f (x)

�
= (87)

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) :

That is
(notice that I0b�;gf = D0

b�;gf = f)

f (x)�
�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) : (88)

Hence

f (x) =
nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) +

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) = (89)

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) +Rg (x; b) ; (90)

where

Rg (x; b) :=
1

� ((n+ 1)�)

Z b

x

(g (t)� g (x))(n+1)��1 g0 (t)
�
D
(n+1)�
b�;g f

�
(t) dt:

(91)
(here D(n+1)�

b�;g f is continuous over [a; b])

15
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Hence it holds

Rg (x; b) =

�
D
(n+1)�
b�;g f

�
( x)

� ((n+ 1)�)

Z b

x

(g (t)� g (x))(n+1)��1 g0 (t) dt =

�
D
(n+1)�
b�;g f

�
( x)

� ((n+ 1)�)

(g (b)� g (x))(n+1)�

(n+ 1)�
=

�
D
(n+1)�
b�;g f

�
( x)

� ((n+ 1)�+ 1)
(g (b)� g (x))(n+1)� ;

(92)
where  x 2 [x; b] :

We have proved the following g-right generalized modi�ed Taylor�s formula:

Theorem 28 Suppose that Fk := Dk�
b�;gf , for k = 0; 1; :::; n + 1, ful�ll: Fk �

g�1 2 AC ([c; d]) and
�
Fk � g�1

�0 � g 2 L1 ([a; b]) ; where 0 < � � 1. Then

f (x) =

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b)+

1

� ((n+ 1)�)

Z b

x

(g (t)� g (x))(n+1)��1 g0 (t)
�
D
(n+1)�
b�;g f

�
(t) dt = (93)

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) +

�
D
(n+1)�
b�;g f

�
( x)

� ((n+ 1)�+ 1)
(g (b)� g (x))(n+1)� ;

(94)
where  x 2 [x; b], any x 2 [a; b] :

We make

Remark 29 Let � > 0, m = d�e, g is strictly increasing and g 2 AC ([a; b]).
Call l = f � g�1, f : [a; b] ! R. Assume l 2 ACm ([c; d]) (i.e. l(m�1) 2
AC ([c; d])) (where g ([a; b]) = [c; d], c; d 2 R : g (a) = c, g (b) = d; hence here f
is continuous on [a; b]).

Assume also that
�
f � g�1

�(m) � g 2 L1 ([a; b]) :
The left generalized g-fractional derivative of f of order � is de�ned as

follows:�
D�
a+;gf

�
(x) =

1

� (m� �)

Z x

a

(g (x)� g (t))m���1 g0 (t)
�
f � g�1

�(m)
(g (t)) dt,

(95)
x � a:

If � =2 N, then
�
D�
a+;gf

�
2 C ([a; b]) :

We see that�
Im��a+;g

��
f � g�1

�(m) � g�� (x) = �D�
a+;gf

�
(x) , x � a: (96)

16
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We proved earlier (24), (25), (26), (27), that (a � x � b)�
I�a+;gD

�
a+;gf

�
(x) =

1

(m� 1)!

Z x

a

(g (x)� g (t))m�1 g0 (t)
��
f � g�1

�(m) � g� (t) dt = (97)

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt =

f (x)� f (a)�
m�1X
k=1

�
f � g�1

�(k)
(g (a))

k!
(g (x)� g (a))k : (98)

If 0 < � � 1, then m = 1, and then�
I�a+;gD

�
a+;gf

�
(x) = f (x)� f (a) (99)

=
1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt

(�2(0;1) case)
=

�
D�
a+;gf

�
(�x)

� (�+ 1)
(g (x)� g (a))� ; (100)

where �x 2 [a; x] ; any x 2 [a; b] :
We have proved

Theorem 30 (left generalized g-mean value theorem). Let 0 < � < 1 and
f � g�1 2 AC ([c; d]) and

�
f � g�1

�0 � g 2 L1 ([a; b]), where g strictly increasing,
g 2 AC ([a; b]), f : [a; b]! R. Then

f (x)� f (a) =
�
D�
a+;gf

�
(�x)

� (�+ 1)
(g (x)� g (a))� , (101)

where �x 2 [a; x], any x 2 [a; b] :

Denote by

Dn�
a+;g := D�

a+;gD
�
a+;g:::D

�
a+;g (n times), n 2 N: (102)

Also denote by
In�a+;g := I�a+;gI

�
a+;g:::I

�
a+;g (n times): (103)

Here to remind�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt; x � a: (104)

By convention I0a+;g = D0
a+;g = I (identity operator).

We give

17
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Theorem 31 Suppose that Fk := Dk�
a+;gf , k = n; n + 1, ful�ll Fk � g�1 2

AC ([c; d]), and
�
Fk � g�1

�0 � g 2 L1 ([a; b]), 0 < � � 1; n 2 N: Then

�
In�a+;gD

n�
a+;gf

�
(x)�

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =

(g (x)� g (a))n�

� (n�+ 1)

�
Dn�
a+;gf

�
(a) :

(105)

Proof. By semigroup property of I�a+;g, we get�
In�a+;gD

n�
a+;gf

�
(x)�

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =�

In�a+;g

�
Dn�
a+;gf � I�a+;gD

(n+1)�
a+;g f

��
(x) = (106)�

In�a+;g
�
Dn�
a+;gf �

�
I�a+;gD

�
a+;g

� �
Dn�
a+;gf

���
(x)

(99)
=�

In�a+;g
�
Dn�
a+;gf �Dn�

a+;gf +D
n�
a+;gf (a)

��
(x) =�

In�a+;g
�
Dn�
a+;gf (a)

��
(x) =

�
Dn�
a+;gf (a)

� �
In�a+;g (1)

�
(x) = (107)

[notice that

�
I�a+;g1

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) dt

=
(g (x)� g (a))�

� (�+ 1)
: (108)

Hence�
I2�a+;g1

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) (g (t)� g (a))
�

� (�+ 1)
dt = (109)

1

� (�) � (�+ 1)

Z x

a

(g (x)� g (t))��1 g0 (t) (g (t)� g (a))� dt =

1

� (�) � (�+ 1)

Z g(x)

g(a)

(g (x)� z)��1 (z � g (a))(�+1)�1 dt =

1

� (�) � (�+ 1)

� (�) � (�+ 1)

� (2�+ 1)
(g (x)� g (a))2� :

That is �
I2�a+;g1

�
(x) =

(g (x)� g (a))2�

� (2�+ 1)
; (110)

etc.]

=
�
Dn�
a+;gf (a)

� (g (x)� g (a))n�
� (n�+ 1)

; (111)

proving the claim.
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Remark 32 Suppose that Fk = Dk�
a+;gf , for k = 0; 1; :::; n+ 1; are as in Theo-

rem 31, 0 < � � 1: By (105) we get
nX
i=0

��
Ii�a+;gD

i�
a+;gf

�
(x)� I(i+1)�a+;g D

(i+1)�
a+;g f (x)

�
= (112)

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) :

That is

f (x)�
�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) :

Hence

f (x) =
nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) +

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) = (113)

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) +Rg (a; x) ; (114)

where

Rg (a; x) :=
1

� ((n+ 1)�)

Z x

a

(g (x)� g (t))(n+1)��1 g0 (t)
�
D
(n+1)�
a+;g f

�
(t) dt:

(115)
(there D(n+1)�

a+;g f is continuous over [a; b] :)
Hence it holds

Rg (a; x) =

�
D
(n+1)�
a+;g f

�
( x)

� ((n+ 1)�)

�Z x

a

(g (x)� g (t))(n+1)��1 g0 (t) dt
�
=

�
D
(n+1)�
a+;g f

�
( x)

� ((n+ 1)�+ 1)
(g (x)� g (a))(n+1)� ; (116)

where  x 2 [a; x] :

We have proved the following g-left generalized modi�ed Taylor�s formula:

Theorem 33 Suppose that Fk := Dk�
a+;gf , for k = 0; 1; :::; n + 1, ful�ll: Fk �

g�1 2 AC ([c; d]) and
�
Fk � g�1

�0 � g 2 L1 ([a; b]) ; where 0 < � � 1. Then

f (x) =
nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a)+ (117)
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1

� ((n+ 1)�)

Z x

a

(g (x)� g (t))(n+1)��1 g0 (t)
�
D
(n+1)�
a+;g f

�
(t) dt =

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) +

�
D
(n+1)�
a+;g f

�
( x)

� ((n+ 1)�+ 1)
(g (x)� g (a))(n+1)� ;

(118)
where  x 2 [a; x], any x 2 [a; b] :
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Abstract
We present here four new generalized Canavati type fractional Taylor�s

formulae.
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Key Words and Phrases: fractional integral, fractional derivative of

Canavati type, fractional Taylor�s formula.

1 Results

Let g : [a; b] ! R be a strictly increasing function. Let f 2 Cn ([a; b]), n 2
N. Assume that g 2 C1 ([a; b]), and g�1 2 Cn ([a; b]). Call l := f � g�1 :
[g (a) ; g (b)] ! R. It is clear that l; l0; :::; l(n) are continuous functions from
[g (a) ; g (b)] into f ([a; b]) � R.
Let � � 1 such that [�] = n, n 2 N as above, where [�] is the integral part of

the number.
Clearly when 0 < � < 1, [�] = 0. Next we follow [1], pp. 7-9.
I) Let h 2 C ([g (a) ; g (b)]), we de�ne the left Riemann-Liouville fractional

integral as

(Jz0� h) (z) :=
1

� (�)

Z z

z0

(z � t)��1 h (t) dt; (1)

for g (a) � z0 � z � g (b), where � is the gamma function; � (�) =
R1
0
e�tt��1dt:

We set Jz00 h = h:
Let � := � � [�] (0 < � < 1). We de�ne the subspace C�g(x0) ([g (a) ; g (b)])

of C [�] ([g (a) ; g (b)]), where x0 2 [a; b] :

C�g(x0) ([g (a) ; g (b)]) :=
n
h 2 C [�] ([g (a) ; g (b)]) : Jg(x0)1�� h

([�]) 2 C1 ([g (x0) ; g (b)])
o
:

(2)
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So let h 2 C�g(x0) ([g (a) ; g (b)]); we de�ne the left g-generalized fractional deriv-
ative of h of order �, of Canavati type, over [g (x0) ; g (b)] as

D�
g(x0)

h :=
�
J
g(x0)
1�� h

([�])
�0
: (3)

Clearly, for h 2 C�g(x0) ([g (a) ; g (b)]), there exists�
D�
g(x0)

h
�
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)�� h([�]) (t) dt; (4)

for all g (x0) � z � g (b) :
In particular, when f � g�1 2 C�g(x0) ([g (a) ; g (b)]) we have that�
D�
g(x0)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)��
�
f � g�1

�([�])
(t) dt; (5)

for all g (x0) � z � g (b) : We have Dn
g(x0)

�
f � g�1

�
=
�
f � g�1

�(n)
and

D0
g(x0)

�
f � g�1

�
= f � g�1:

By Theorem 2.1, p. 8 of [1], we have for f � g�1 2 C�g(x0) ([g (a) ; g (b)]),
where x0 2 [a; b] is �xed, that
(i) if � � 1, then

�
f � g�1

�
(z) =

[�]�1X
k=0

�
f � g�1

�(k)
(g (x0))

k!
(z � g (x0))k +

1

� (�)

Z z

g(x0)

(z � t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (6)

all z 2 [g (a) ; g (b)] : z � g (x0) ;
(ii) if 0 < � < 1, we get�

f � g�1
�
(z) =

1

� (�)

Z z

g(x0)

(z � t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (7)

all z 2 [g (a) ; g (b)] : z � g (x0) :
We have proved the following left generalized g-fractional, of Canavati type,

Taylor�s formula:

Theorem 1 Let f � g�1 2 C�g(x0) ([g (a) ; g (b)]), where x0 2 [a; b] is �xed.
(i) if � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; all x 2 [a; b] : x � x0; (8)

2
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(ii) if 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; all x 2 [a; b] : x � x0:

(9)

By the change of variable method, see [3], we may rewrite the remainder of
(8), (9), as

1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt = (10)

1

� (�)

Z x

x0

(g (x)� g (s))��1
�
D�
g(x0)

�
f � g�1

��
(g (s)) g0 (s) ds;

all x 2 [a; b] : x � x0:
We may rewrite (9) as follows:
if 0 < � < 1, we have

f (x) =
�
Jg(x0)�

�
D�
g(x0)

�
f � g�1

���
(g (x)) ; (11)

all x 2 [a; b] : x � x0:
II) Next we follow [2], pp. 345-348.
Let h 2 C ([g (a) ; g (b)]), we de�ne the right Riemann-Liouville fractional

integral as �
J�z0�h

�
(z) :=

1

� (�)

Z z0

z

(t� z)��1 h (t) dt; (12)

for g (a) � z � z0 � g (b). We set J0z0�h = h:
Let � := � � [�] (0 < � < 1). We de�ne the subspace C�g(x0)� ([g (a) ; g (b)])

of C [�] ([g (a) ; g (b)]), where x0 2 [a; b] :

C�g(x0)� ([g (a) ; g (b)]) :=n
h 2 C [�] ([g (a) ; g (b)]) : J1��g(x0)�h

([�]) 2 C1 ([g (x0) ; g (b)])
o
: (13)

So let h 2 C�g(x0)� ([g (a) ; g (b)]); we de�ne the right g-generalized fractional
derivative of h of order �, of Canavati type, over [g (a) ; g (x0)] as

D�
g(x0)�h := (�1)

n�1
�
J1��g(x0)�h

([�])
�0
: (14)

Clearly, for h 2 C�g(x0)� ([g (a) ; g (b)]), there exists�
D�
g(x0)�h

�
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)�� h([�]) (t) dt; (15)
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for all g (a) � z � g (x0) � g (b) :
In particular, when f � g�1 2 C�g(x0)� ([g (a) ; g (b)]) we have that�
D�
g(x0)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)��
�
f � g�1

�([�])
(t) dt;

(16)
for all g (a) � z � g (x0) � g (b) :
We get that�

Dn
g(x0)�

�
f � g�1

��
(z) = (�1)n

�
f � g�1

�(n)
(z) (17)

and
�
D0
g(x0)�

�
f � g�1

��
(z) =

�
f � g�1

�
(z) ; all z 2 [g (a) ; g (x0)] :

By Theorem 23.19, p. 348 of [2], we have for f �g�1 2 C�g(x0)� ([g (a) ; g (b)]),
where x0 2 [a; b] is �xed, that
(i) if � � 1, then

�
f � g�1

�
(z) =

[�]�1X
k=0

�
f � g�1

�(k)
(g (x0))

k!
(z � g (x0))k + (18)

1

� (�)

Z g(x0)

z

(t� z)��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt;

all z 2 [g (a) ; g (b)] : z � g (x0) ;
(ii) if 0 < � < 1, we get

�
f � g�1

�
(z) =

1

� (�)

Z g(x0)

z

(t� z)��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (19)

all z 2 [g (a) ; g (b)] : z � g (x0) :
We have proved the following right generalized g-fractional, of Canavati type,

Taylor�s formula:

Theorem 2 Let f � g�1 2 C�g(x0)� ([g (a) ; g (b)]), where x0 2 [a; b] is �xed.
(i) if � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; all a � x � x0; (20)

(ii) if 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; all a � x � x0:

(21)
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By change of variable, see [3], we may rewrite the remainder of (20), (21),
as

1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt = (22)

1

� (�)

Z x0

x

(g (s)� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(g (s)) g0 (s) ds;

all a � x � x0:
We may rewrite (21) as follows:
if 0 < � < 1, we have

f (x) =
�
J�g(x0)�

�
D�
g(x0)�

�
f � g�1

���
(g (x)) ; (23)

all a � x � x0 � b:
III) Denote by

Dm�
g(x0)

= D�
g(x0)

D�
g(x0)

:::D�
g(x0)

(m-times), m 2 N: (24)

Also denote by

Jg(x0)m� = Jg(x0)� Jg(x0)� :::Jg(x0)� (m-times), m 2 N: (25)

We need

Theorem 3 Here 0 < � < 1. Assume that
�
Dm�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)]),

where x0 2 [a; b] is �xed. Assume also that
�
D
(m+1)�
g(x0)

�
f � g�1

��
2 C ([g (x0) ; g (b)]).

Then�
Jg(x0)m� Dm�

g(x0)

�
f � g�1

��
(g (x))�

�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) = 0;

(26)
for all x0 � x � b:

Proof. We observe that (l := f � g�1)�
Jg(x0)m� Dm�

g(x0)
(l)
�
(g (x))�

�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

(l)
�
(g (x)) =�

Jg(x0)m�

�
Dm�
g(x0)

(l)� Jg(x0)� D
(m+1)�
g(x0)

(l)
��
(g (x)) = (27)�

Jg(x0)m�

�
Dm�
g(x0)

(l)�
�
Jg(x0)� D�

g(x0)

���
Dm�
g(x0)

(l)
�
� g � g�1

���
(g (x)) =�

Jg(x0)m�

�
Dm�
g(x0)

(l)�
�
Dm�
g(x0)

(l)
���

(g (x)) =
�
Jg(x0)m� (0)

�
(g (x)) = 0:

We make
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Remark 4 Let 0 < � < 1. Assume that
�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)]),

x0 2 [a; b], for all i = 0; 1; :::;m. Assume also that
�
D
(m+1)�
g(x0)

�
f � g�1

��
2

C ([g (x0) ; g (b)]). We have that
mX
i=0

h�
J
g(x0)
i� Di�

g(x0)

�
f � g�1

��
(g (x))�

�
J
g(x0)
(i+1)�D

(i+1)�
g(x0)

�
f � g�1

��
(g (x))

i
= 0:

(28)
Hence it holds

f (x)�
�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) = 0; (29)

for all x0 � x � b:
That is

f (x) =
�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) ; (30)

for all x0 � x � b:

We have proved the following modi�ed and generalized left fractional Tay-
lor�s formula of Canavati type:

Theorem 5 Let 0 < � < 1. Assume that
�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)]),

x0 2 [a; b], for i = 0; 1; :::;m. Assume also that
�
D
(m+1)�
g(x0)

�
f � g�1

��
2 C ([g (x0) ; g (b)]).

Then

f (x) =
1

� ((m+ 1) �)

Z g(x)

g(x0)

(g (x)� z)(m+1)��1
�
D
(m+1)�
g(x0)

�
f � g�1

��
(z) dz

(31)

=
1

� ((m+ 1) �)

Z x

x0

(g (x)� g (s))(m+1)��1
�
D
(m+1)�
g(x0)

�
f � g�1

��
(g (s)) g0 (s) ds;

all x0 � x � b:

IV) Denote by

Dm�
g(x0)� = D

�
g(x0)�D

�
g(x0)�:::D

�
g(x0)� (m-times), m 2 N: (32)

Also denote by

Jm�g(x0)� = J
�
g(x0)�J

�
g(x0)�:::J

�
g(x0)� (m-times), m 2 N: (33)

We need

Theorem 6 Here 0 < � < 1. Assume that
�
Dm�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)]),

where x0 2 [a; b] is �xed. Assume also that
�
D
(m+1)�
g(x0)�

�
f � g�1

��
2 C ([g (a) ; g (x0)]).

Then�
Jm�g(x0)�D

m�
g(x0)�

�
f � g�1

��
(g (x))�

�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) = 0;

(34)
for all a � x � x0:
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Proof. We observe that (l := f � g�1)�
Jm�g(x0)�D

m�
g(x0)� (l)

�
(g (x))�

�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)� (l)

�
(g (x)) =�

Jm�g(x0)�

�
Dm�
g(x0)� (l)� J

�
g(x0)�D

(m+1)�
g(x0)� (l)

��
(g (x)) =�

Jm�g(x0)�

�
Dm�
g(x0)� (l)�

�
J�g(x0)�D

�
g(x0)�

���
Dm�
g(x0)� (l)

�
� g � g�1

���
(g (x)) =

(35)�
Jm�g(x0)�

�
Dm�
g(x0)� (l)�D

m�
g(x0)� (l)

��
(g (x)) = Jm�g(x0)� (0) (g (x)) = 0:

We make

Remark 7 Let 0 < � < 1. Assume that
�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)]),

x0 2 [a; b], for all i = 0; 1; :::;m. Assume also that
�
D
(m+1)�
g(x0)�

�
f � g�1

��
2

C ([g (a) ; g (x0)]). We have that (by (34))

mX
i=0

h�
J i�g(x0)�D

i�
g(x0)�

�
f � g�1

��
(g (x))�

�
J
(i+1)�
g(x0)�D

(i+1)�
g(x0)�

�
f � g�1

��
(g (x))

i
= 0:

(36)
Hence it holds

f (x)�
�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) = 0; (37)

for all a � x � x0 � b:
That is

f (x) =
�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) ; (38)

for all a � x � x0 � b:

We have proved the following modi�ed and generalized right fractional Tay-
lor�s formula of Canavati type:

Theorem 8 Let 0 < � < 1. Assume that
�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)]),

x0 2 [a; b], for all i = 0; 1; :::;m. Assume also that
�
D
(m+1)�
g(x0)�

�
f � g�1

��
2

C ([g (a) ; g (x0)]). Then

f (x) =
1

� ((m+ 1) �)

Z g(x0)

g(x)

(z � g (x))(m+1)��1
�
D
(m+1)�
g(x0)�

�
f � g�1

��
(z) dz

(39)

=
1

� ((m+ 1) �)

Z x0

x

(g (s)� g (x))(m+1)��1
�
D
(m+1)�
g(x0)�

�
f � g�1

��
(g (s)) g0 (s) ds;

all a � x � x0 � b:
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Abstract
In this paper we have introduced and studied the subclass L(d,α,β) of univalent functions defined by the

linear operator Lnγf(z) defined by using the Ruscheweyh derivative R
nf(z) and the Sălăgean operator Snf(z),

as Lnγ : A→ A, Lnγf(z) = (1−γ)Rnf(z)+γSnf(z), z ∈ U, where An = {f ∈ H(U) : f(z) = z+an+1zn+1+
. . . , z ∈ U} is the class of normalized analytic functions with A1 = A. The main object is to investigate
several properties such as coefficient estimates, distortion theorems, closure theorems, neighborhoods and
the radii of starlikeness, convexity and close-to-convexity of functions belonging to the class L(d,α,β).

Keywords: univalent function, Starlike functions, Convex functions, Distortion theorem.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction
Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic

functions in U .
Let An = {f ∈ H(U) : f(z) = z + an+1zn+1 + . . . , z ∈ U} with A1 = A.

Definition 1.1 (Sălăgean [8]) For f ∈ A, n ∈ N, the operator Sn is defined by Sn : A→ A,

S0f (z) = f (z) , S1f (z) = zf 0(z), ...

Sn+1f(z) = z (Snf (z))0 , z ∈ U.

Remark 1.1 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then Snf (z) = z +
P∞

j=2 j
najz

j, for z ∈ U .

Definition 1.2 (Ruscheweyh [7]) For f ∈ A, n ∈ N, the operator Rn is defined by Rn : A→ A,

R0f (z) = f (z) , R1f (z) = zf 0 (z) , ...

(n+ 1)Rn+1f (z) = z (Rnf (z))
0
+ nRnf (z) , z ∈ U.

Remark 1.2 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then Rnf (z) = z +
P∞

j=2
(n+j−1)!
n!(j−1)! ajz

j, z ∈ U .

Definition 1.3 [1] Let γ ≥ 0, n ∈ N. Denote by Lnγ the operator given by Lnγ : A → A, Lnγf(z) = (1 −
γ)Rnf(z) + γSnf(z), z ∈ U.

Remark 1.3 If f ∈ A, f(z) = z +
P∞
j=2 ajz

j, then Lnγf(z) = z +
P∞

j=2

³
γjn + (1− γ) (n+j−1)!n!(j−1)!

´
ajz

j , z ∈ U.
This operator was studied also in [2], [3], [4], [5].

We follow the works of A.R. Juma and H. Ziraz .

Definition 1.4 Let the function f ∈ A. Then f(z) is said to be in the class L(d,α,β) if it satisfies the following
criterion: ¯̄̄̄

¯|1d( z(Lnγf(z))0 + αz2(Lnγf(z))
00

(1− α)Lnγf(z) + αz(Lnγf(z))
0 − 1)

¯̄̄̄
¯ < β, (1.1)

where d ∈ C− {0}, 0 ≤ α ≤ 1, 0 < β ≤ 1, z ∈ U .

1
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In this paper we shall first deduce a necessary and sufficient condition for a function f(z) to be in the
class L(d,α,β). Then obtain the distortion and growth theorems, closure theorems, neighborhood and radii of
univalent starlikeness, convexity and close-to-convexity of order δ, 0 ≤ δ < 1, for these functions.

2 Coefficient Inequality
Theorem 2.1 Let the function f ∈ A. Then f(z) is said to be in the class L(d,α,β) if and only if

∞X
j=2

(1 + α(j − 1))(j − 1 + β|d|)
½
γjn + (1− γ)

(n+ j − 1)!
n! (j − 1)!

¾
aj ≤ β|d|, (2.1)

where d ∈ C− {0}, 0 ≤ α ≤ 1, 0 < β ≤ 1, z ∈ U .

Proof. Let f(z) ∈ L(d,α,β). Assume that inequality (2.1) holds true. Then we find that¯̄̄
z(Lnγf(z))

0+αz2(Lnγf(z))
00

(1−α)Lnγf(z)+αz(Lnγf(z))0
− 1
¯̄̄
=

¯̄̄̄P∞
j=2(1+α(j−1))(j−1)[γj

n+(1−γ) (n+j−1)!
n!(j−1)! ]ajz

j

z+
P∞

j=2(1+α(j−1))[γjn+(1−γ)
(n+j−1)!
n!(j−1)! ]ajzj

¯̄̄̄
≤P∞

j=2(1+α(j−1))(j−1)[γj
n+(1−γ) (n+j−1)!n!(j−1)! ]aj |z|

j−1

1−
P∞

j=2(1+α(j−1))[γjn+(1−γ)
(n+j−1)!
n!(j−1)! ]aj |z|j−1

< β|d|.

Choosing values of z on real axis and letting z → 1−, we haveP∞
j=2(1 + α(j − 1))(j − 1 + β|d|)

h
γjn + (1− γ) (n+j−1)!n!(j−1)!

i
aj ≤ β|d|. Conversely, assume that f(z) ∈ L(d,α,β),

then we get the following inequality Re
n¯̄̄

z(Lnγf(z))
0+αz2(Lnγf(z))

00

(1−α)Lnγf(z)+αz(Lnγf(z))0
− 1
¯̄̄o
> −β|d|,

Re

½
z+
P∞

j=2 j(1+α(j−1))[γj
n+(1−γ) (n+j−1)!n!(j−1)! ]ajz

j

z+
P∞

j=2(1+α(j−1))[γjn+(1−γ)
(n+j−1)!
n!(j−1)! ]ajzj

− 1 + β|d|
¾
> 0

Re
β|d|z+

P∞
j=2(1+α(j−1))(j−1+β|d|)[γj

n+(1−γ) (n+j−1)!
n!(j−1)! ]ajz

j

z+
P∞

j=2(1+α(j−1))[γjn+(1−γ)
(n+j−1)!
n!(j−1)! ]ajzj

> 0. Since Re(−eiθ) ≥ −|eiθ| = −1, the above inequality

reduces to
β|d|r−

P∞
j=2(1+α(j−1))(j−1+β|d|)[γj

n+(1−γ) (n+j−1)!n!(j−1)! ]ajr
j

r−
P∞

j=2(1+α(j−1))[γjn+(1−γ)
(n+j−1)!
n!(j−1)! ]ajrj

> 0. Letting r → 1− and by the mean value

theorem we have desired inequality (2.1). This completes the proof of Theorem 2.1

Corollary 2.2 Let the function f ∈ A be in the class L(d,α,β). Then aj ≤ β|d|
(1+α(j−1))(j−1+β|d|)[γjn+(1−γ) (n+j−1)!n!(j−1)! ]

,

j ≥ 2.

3 Distortion Theorems
Theorem 3.1 Let the function f ∈ A be in the class L(d,α,β). Then for |z| = r < 1, we have
r − β|d|

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r
2 ≤ |f(z)| ≤ r + β|d|

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r
2.

The result is sharp for the function f(z) given by f(z) = z + β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]z

2.

Proof. Given that f(z) ∈ L(d,α,β), from the equation (2.1) and since (1+α)(1+β|d|) [2nγ + (1− γ) (n+ 1)]
is non decreasing and positive for j ≥ 2, then we have (1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]

P∞
j=2 aj ≤P∞

j=2(1 + α(j − 1))(j − 1 + β|d|)
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
aj ≤ β|d|, which is equivalent to,

∞X
j=2

aj ≤
β|d|

(1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]
. (3.1)

Using (3.1), we obtain for f(z) = z+
P∞
j=2 ajz

j that |f(z)| ≤ |z|+
P∞
j=2 aj |z|j ≤ r+

P∞
j=2 ajr

j ≤ r+r2
P∞
j=2 aj

≤ r+ β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r

2. Similarly, |f(z)| ≥ r2− β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r

2. This completes the
proof of Theorem 3.1.

Theorem 3.2 Let the function f ∈ A be in the class L(d,α,β). Then for |z| = r < 1, we have
− 2β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r ≤ |f 0(z)| ≤

2β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r.

The result is sharp for the function f(z) given by f(z) = z + β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]z

2.

2
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Proof. From (3.1) we obtain f 0(z) = 1+
P∞

j=2 jajz
j−1 and |f 0(z)| ≤ 1−

P∞
j=2 jaj |z|j−1 ≤ 1+

P∞
j=2 jajr

j−1 ≤
1+ 2β|d|

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r. Similarly, |f 0(z)| ≥ 1−
2β|d|

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]r. This completes the proof
of Theorem 3.2.

4 Closure Theorems
Theorem 4.1 Let the functions fk, k = 1, 2, ...,m, defined by

fk(z) = z +
∞X
j=2

aj,kz
j , aj,k ≥ 0, (4.1)

be in the class L(d,α,β). Then the function h(z) defined by h(z) =
Pm
k=1 µkfk(z), µk ≥ 0, is also in the class

L(d,α,β), where
Pm

k=1 µk = 1.

Proof. We can write h(z) =
Pm
k=1 µmz +

Pm
k=1

P∞
j=2 µkaj,kz

j = z +
P∞

j=2

Pm
k=1 µkaj,kz

j . Furthermore,
since the functions fk(z), k = 1, 2, ...,m, are in the class L(d,α,β), then from Theorem 2.1 we have

P∞
j=2(1 +

α(j−1))(j−1+β|d|)
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
aj,k ≤ β|d|. Thus it is enough to prove that

P∞
j=2(1+α(j−1))(j−

1+β|d|)
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
(
Pm
k=1 µkaj,k) =

Pm
k=1 µk

P∞
j=2(1+α(j−1))(j−1+β|d|)

n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
aj,k

≤
Pm

k=1 µkβ|d| = β|d|. Hence the proof is complete.

Corollary 4.2 Let the functions fk, k = 1, 2, defined by (4.1) be in the class L(d,α,β). Then the function h(z)
defined by h(z) = (1− ζ)f1(z) + ζf2(z), 0 ≤ ζ ≤ 1, is also in the class L(d,α,β).

Theorem 4.3 Let f1(z) = z, and fj(z) = z+
β|d|

(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
zj , j ≥ 2. Then the function

f(z) is in the class L(d,α,β) if and only if it can be expressed in the form f(z) = µ1f1(z) +
P∞
j=2 µjfj(z),

where µ1 ≥ 0, µj ≥ 0, j ≥ 2 and µ1 +
P∞
j=2 µj = 1.

Proof. Assume that f(z) can be expressed in the form f(z) = µ1f1(z) +
P∞
j=2 µjfj(z) =

z +
P∞
j=2

β|d|
(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

µjz
j .

Thus
P∞

j=2

(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
β|d|

β|d|
(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

µj =
P∞
j=2 µj = 1−

µ1 ≤ 1. Hence f(z) ∈ L(d,α,β).
Conversely, assume that f(z) ∈ L(d,α,β).
Setting µj =

(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
β|d| aj , since µ1 = 1 −

P∞
j=2 µj . Thus f(z) = µ1f1(z) +P∞

j=2 µjfj(z). Hence the proof is complete.

Corollary 4.4 The extreme points of the class L(d,α,β) are the functions f1(z) = z, and fj(z) = z +
β|d|

(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
zj , j ≥ 2.

5 Inclusion and Neighborhood Results
We define the δ- neighborhood of a function f(z) ∈ A by

Nδ(f) = {g ∈ A : g(z) = z +
∞X
j=2

bjz
j and

∞X
j=2

j|aj − bj | ≤ δ}. (5.1)

In particular, for e(z) = z

Nδ(e) = {g ∈ A : g(z) = z +
∞X
j=2

bjz
j and

∞X
j=2

j|bj | ≤ δ}. (5.2)

Furthermore, a function f ∈ A is said to be in the class Lξ(d,α,β) if there exists a function h(z) ∈ L(d,α,β)
such that ¯̄̄̄

f(z)

h(z)
− 1
¯̄̄̄
< 1− ξ, z ∈ U, 0 ≤ ξ < 1. (5.3)
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Theorem 5.1 If
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
≥ [2nγ + (1− γ) (n+ 1)] , j ≥ 2, and δ = 2β|d|

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)] ,

then L(d,α,β) ⊂ Nδ(e).

Proof. Let f ∈ L(d,α,β). Then in view of assertion (2.1) of Theorem 2.1 and the conditionn
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
≥ [2nγ + (1− γ) (n+ 1)] for j ≥ 2, we get (1+α)(1+β|d|) [2nγ + (1− γ) (n+ 1)]

P∞
j=2 aj ≤P∞

j=2(1 + α(j − 1))(j − 1 + β|d|)
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

o
aj ≤ β|d|, which implise

∞X
j=2

aj ≤
β|d|

(1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]
. (5.4)

Applying assertion (2.1) of Theorem 2.1 in conjunction with (5.4), we obtain
(1+α)(1+β|d|) [2nγ + (1− γ) (n+ 1)]

P∞
j=2 aj ≤ β|d|, 2(1+α)(1+β|d|) [2nγ + (1− γ) (n+ 1)]

P∞
j=2 aj ≤ 2β|d|

and
P∞
j=2 jaj ≤

2β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)] = δ, by virtue of (5.1), we have f ∈ Nδ(e).

This completes the proof of the Theorem 5.1.

Theorem 5.2 If h ∈ L(d,α,β) and

ξ = 1− δ

2

(1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]

(1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]− β|d| , (5.5)

then Nδ(h) ⊂ Lξ(d,α,β).

Proof. Suppose that f ∈ Nδ(h), we then find from (5.1) that
P∞
j=2 j|aj − bj | ≤ δ, which readily implies the

following coefficient inequality
∞X
j=2

|aj − bj | ≤
δ

2
. (5.6)

Next, since h ∈ L(d,α,β) in the view of (5.4), we have
∞X
j=2

bj ≤
β|d|

(1 + α)(1 + β|d|) [2nγ + (1− γ) (n+ 1)]
. (5.7)

Using (5.6) and (5.7), we get
¯̄̄
f(z)
h(z) − 1

¯̄̄
≤

P∞
j=2 |aj−bj |
1−
P∞

j=2 bj
≤ δ

2(1− β|d|
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)])

≤
δ
2

(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]
(1+α)(1+β|d|)[2nγ+(1−γ)(n+1)]−β|d| = 1 − ξ, provided that ξ is given by (5.5), thus by condition (5.3), f ∈

Lξ(d,α,β), where ξ is given by (5.5).

6 Radii of Starlikeness, Convexity and Close-to-Convexity
Theorem 6.1 Let the function f ∈ A be in the class L(d,α,β). Then f is univalent starlike of order δ,

0 ≤ δ < 1, in |z| < r1, where r1 = infj
½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

β|d|(1−δ)

¾ 1
j−1

. The result is sharp

for the function f(z) given by fj(z) = z +
β|d|

(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
zj, j ≥ 2.

Proof. It suffices to show that
¯̄̄
zf 0(z)
f(z) − 1

¯̄̄
≤ 1 − δ, |z| < r1. Since

¯̄̄
zf 0(z)
f(z) − 1

¯̄̄
=

¯̄̄̄P∞
j=2(j−1)ajz

j−1

1+
P∞

j=2 ajz
k−1 |

¯̄̄̄
≤P∞

j=2(j−1)aj |z|
j−1

1−
P∞

j=2 aj |z|j−1
. To prove the theorem, we must show that

P∞
j=2(j−1)aj |z|

j−1

1−
P∞

j=2 aj |z|j−1
≤ 1−δ. It is equivalent to

P∞
j=2(j−

δ)aj |z|j−1 ≤ 1−δ, using Theorem 2.1, we obtain |z| ≤
½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

β|d|(1−δ)

¾ 1
j−1

. Hence

the proof is complete.
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Theorem 6.2 Let the function f ∈ A be in the class L(d,α,β). Then f is univalent convex of order δ,

0 ≤ δ ≤ 1, in |z| < r2, where r2 = infj
½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

2(j−δ)β|d|

¾ 1
k−p

. The result is sharp

for the function f(z) given by

fj(z) = z +
β|d|

(1 + α(j − 1))(j − 1 + β|d|)
n
γjn + (1− γ) (n+j−1)!n!(j−1)!

ozj , j ≥ 2. (6.1)

Proof. It suffices to show that
¯̄̄
zf 00(z)
f 0(z))

¯̄̄
≤ 1−δ, |z| < r2. Since

¯̄̄
zf 00(z)
f 0(z)

¯̄̄
=

¯̄̄̄P∞
j=2 j(j−1)ajz

j−1

1+
P∞

j=2 jajz
j−1

¯̄̄̄
≤

P∞
j=2 j(j−1)aj |z|

j−1

1−
P∞

j=2 jaj |z|j−1
.

To prove the theorem, we must show that
P∞

j=2 j(j−1)aj |z|
j−1

1−
P∞

j=2 jaj |z|j−1
≤ 1− δ, and

P∞
j=2 j(j − δ)aj |z|j−1 ≤ 1− δ, using

Theorem 2.1, we obtain |z|j−1 ≤ (1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
2(j−δ)β|d| , or

|z| ≤
½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

2(j−δ)β|d|

¾ 1
j−1

. Hence the proof is complete.

Theorem 6.3 Let the function f ∈ A be in the class L(d,α,β). Then f is univalent close-to-convex of order

δ, 0 ≤ δ < 1, in |z| < r3, where r3 = infj
½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

jβ|d|

¾ 1
j−1

. The result is sharp

for the function f(z) given by (6.1).

Proof. It suffices to show that |f 0(z) − 1| ≤ 1 − δ, |z| < r3. Then |f 0(z) − 1| =
¯̄̄P∞

j=2 jajz
j−1
¯̄̄
≤P∞

j=2 jaj |z|j−1. Thus |f 0(z)− 1| ≤ 1− δ if
P∞
j=2

jaj
1−δ |z|j−1 ≤ 1. Using Theorem 2.1, the above inequality holds

true if |z|j−1 ≤ (1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }
jβ|d| or |z| ≤

½
(1−δ)(1+α(j−1))(j−1+β|d|){γjn+(1−γ) (n+j−1)!n!(j−1)! }

jβ|d|

¾ 1
j−1

.

Hence the proof is complete.
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Abstract

In this work we study a new operator IRm,nλ,l defined as the Hadamard product of the multiplier transformation
I (m,λ, l) and Ruscheweyh derivative Rn, given by IRm,nλ,l : A → A, IRm,nλ,l f (z) = (I (m,λ, l) ∗Rn) f (z) and
An = {f ∈ H (U) : f (z) = z+ an+1zn+1 + ..., z ∈ U} is the class of normalized analytic functions with A1 = A.
The purpose of this paper is to derive certain subordination and superordination results involving the operator
IRm,nλ.l and we establish differential sandwich-type theorems.

Keywords: analytic functions, differential operator, differential subordination, differential superordination.
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1 Introduction
Let H (U) be the class of analytic function in the open unit disc of the complex plane U = {z ∈ C : |z| < 1}.

Let H (a, n) be the subclass of H (U) consisting of functions of the form f(z) = a+ anz
n + an+1z

n+1 + . . . .
Let An = {f ∈ H(U) : f(z) = z + an+1zn+1 + . . . , z ∈ U} and A = A1.
Let the functions f and g be analytic in U . We say that the function f is subordinate to g, written f ≺ g, if there

exists a Schwarz function w, analytic in U , with w(0) = 0 and |w(z)| < 1, for all z ∈ U, such that f(z) = g(w(z)),
for all z ∈ U . In particular, if the function g is univalent in U , the above subordination is equivalent to f(0) = g(0)
and f(U) ⊂ g(U).
Let ψ : C3 × U → C and h be an univalent function in U . If p is analytic in U and satisfies the second order

differential subordination
ψ(p(z), zp0(z), z2p00(z); z) ≺ h(z), for z ∈ U, (1.1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the
solutions of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying (1.1). A dominanteq that satisfies eq ≺ q for all dominants q of (1.1) is said to be the best dominant of (1.1). The best dominant is
unique up to a rotation of U .
Let ψ : C2 × U → C and h analytic in U . If p and ψ

¡
p (z) , zp0 (z) , z2p00 (z) ; z

¢
are univalent and if p satisfies

the second order differential superordination

h(z) ≺ ψ(p(z), zp0(z), z2p00 (z) ; z), z ∈ U, (1.2)

then p is a solution of the differential superordination (1.2) (if f is subordinate to F , then F is called to be
superordinate to f). An analytic function q is called a subordinant if q ≺ p for all p satisfying (1.2). An univalent
subordinant eq that satisfies q ≺ eq for all subordinants q of (1.2) is said to be the best subordinant.
Miller and Mocanu [4] obtained conditions h, q and ψ for which the following implication holds h(z) ≺

ψ(p(z), zp0(z), z2p00 (z) ; z)⇒ q (z) ≺ p (z) .
For two functions f(z) = z +

P∞
j=2 ajz

j and g(z) = z +
P∞

j=2 bjz
j analytic in the open unit disc U , the

Hadamard product (or convolution) of f (z) and g (z), written as (f ∗ g) (z) is defined by f (z)∗g (z) = (f ∗ g) (z) =
z +

P∞
j=2 ajbjz

j .
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Definition 1.1 ([1]) Let λ, l ≥ 0 and n,m ∈ N. Denote by IRm,nλ,l : A → A the operator given by the Hadamard
product of the multiplier transformation I (m,λ, l) and the Ruscheweyh derivative Rn, IRm,nλ,l f (z) = (I (m,λ, l) ∗Rn) f (z) ,
for any z ∈ U and each nonnegative integers m,n.

Remark 1.1 If f ∈ A and f(z) = z+
P∞
j=2 ajz

j, then IRm,nλ,l f (z) = z+
P∞
j=2

³
1+λ(j−1)+l

l+1

´m
(n+j−1)!
n!(j−1)! a

2
jz
j, z ∈ U .

Using simple computation one obtains the next result.

Proposition 1.1 [2]For m,n ∈ N and λ, l ≥ 0 we have

(n+ 1) IRm,n+1λ,l f (z)− nIRm,nλ,l f (z) = z
³
IRm,nλ,l f (z)

´0
. (1.3)

The purpose of this paper is to derive the several subordination and superordination results involving a differ-
ential operator. Furthermore, we studied the results of Selvaraj and Karthikeyan [6], Shanmugam, Ramachandran,
Darus and Sivasubramanian [7] and Srivastava and Lashin [8].
In order to prove our subordination and superordination results, we make use of the following known results.

Definition 1.2 [5] Denote by Q the set of all functions f that are analytic and injective on U\E (f), where
E (f) = {ζ ∈ ∂U : lim

z→ζ
f (z) =∞}, and are such that f 0 (ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1.1 [5] Let the function q be univalent in the unit disc U and θ and φ be analytic in a domain D containing
q (U) with φ (w) 6= 0 when w ∈ q (U). Set Q (z) = zq0 (z)φ (q (z)) and h (z) = θ (q (z)) + Q (z). Suppose that Q

is starlike univalent in U and Re
³
zh0(z)
Q(z)

´
> 0 for z ∈ U . If p is analytic with p (0) = q (0), p (U) ⊆ D and

θ (p (z)) + zp0 (z)φ (p (z)) ≺ θ (q (z)) + zq0 (z)φ (q (z)) , then p (z) ≺ q (z) and q is the best dominant.

Lemma 1.2 [3] Let the function q be convex univalent in the open unit disc U and ν and φ be analytic in a

domain D containing q (U). Suppose that Re
³
ν0(q(z))
φ(q(z))

´
> 0 for z ∈ U and ψ (z) = zq0 (z)φ (q (z)) is starlike

univalent in U . If p (z) ∈ H [q (0) , 1] ∩ Q, with p (U) ⊆ D and ν (p (z)) + zp0 (z)φ (p (z)) is univalent in U and
ν (q (z)) + zq0 (z)φ (q (z)) ≺ ν (p (z)) + zp0 (z)φ (p (z)) , then q (z) ≺ p (z) and q is the best subordinant.

2 Main results
We begin with the following

Theorem 2.1 Let
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

∈ H (U) and let the function q (z) be analytic and univalent in U such that q (z) 6= 0,

for all z ∈ U . Suppose that zq
0(z)
q(z) is starlike univalent in U . Let

Re

µ
α+ µ

µ
+
2β

µ
q (z) +

zq00 (z)

q0 (z)

¶
> 0, (2.1)

for α,β, µ ∈ C, µ 6= 0, z ∈ U and

ψm,nλ,l (α,β, µ; z) := µ (n+ 2)
IRm,n+2λ,l f (z)

IRm,nλ,l f (z)
+ (α− µ)

IRm,n+1λ,l f (z)

IRm,nλ,l f (z)
+ [β − µ (n+ 1)]

Ã
IRm,n+1λ,l f (z)

IRm,nλ,l f (z)

!2
. (2.2)

If q satisfies the following subordination

ψm,nλ,l (α,β, µ; z) ≺ αq (z) + β (q (z))
2
+ µzq0 (z) , (2.3)

for α,β, µ ∈ C, µ 6= 0, then IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺ q (z), and q is the best dominant.

2
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Proof. Let the function p be defined by p (z) :=
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

, z ∈ U , z 6= 0, f ∈ A. We have p0 (z) =

(IRm,n+1
λ,l f(z))0IRm,n

λ,l f(z)−IR
m,n+1
λ,l f(z)(IRm,n

λ,l f(z))
0

(IRm,n
λ,l f(z))

2 =
(IRm,n+1

λ,l f(z))0

IRm,n
λ,l f(z)

− IR
m,n+1
λ,l f(z)

IRm,n
λ,l f(z)

· (IR
m,n
λ,l f(z))

0

IRm,n
λ,l f(z)

. Then zp0 (z) =
z(IRm,n+1

λ,l f(z))0

IRm,n
λ,l f(z)

−
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

· z(IR
m,n
λ,l f(z))

0

IRm,n
λ,l f(z)

.

By using the identity (1.3), we obtain

zp0 (z) = (n+ 2)
IRm,n+2λ,l f (z)

IRm,nλ,l f (z)
− (n+ 1)

Ã
IRm,n+1λ,l f (z)

IRm,nλ,l f (z)

!2
−
IRm,n+1λ,l f (z)

IRm,nλ,l f (z)
. (2.4)

By setting θ (w) := αw + βw2 and φ (w) := µ, it can be easily verified that θ is analytic in C, φ is analytic in
C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Also, by letting Q (z) = zq0 (z)φ (q (z)) = µzq0 (z) and h (z) = θ (q (z)) +Q (z) = αq (z) + β (q (z))2 + µzq0 (z),

we find that Q (z) is starlike univalent in U .
We have h0 (z) = (α+ µ) q0 (z) + 2βq (z) q0 (z) + µzq00 (z) and zh0(z)

Q(z) =
zh0(z)
µzq0(z) =

α+µ
µ + 2β

µ q (z) +
zq00(z)
q0(z) .

We deduce that Re
³
zh0(z)
Q(z)

´
= Re

³
α+µ
µ + 2β

µ q (z) +
zq00(z)
q0(z)

´
> 0.

By using (2.4), we obtain

αp (z) + β (p (z))
2
+ µzp0 (z) = µ (n+ 2)

IRm,n+2
λ,l f(z)

IRm,n
λ,l f(z)

+ (α− µ) IR
m,n+1
λ,l f(z)

IRm,n
λ,l f(z)

+ [β − µ (n+ 1)]
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶2
.

By using (2.3), we have αp (z) + β (p (z))
2
+ µzp0 (z) ≺ αq (z) + β (q (z))

2
+ µzq0 (z) .

By an application of Lemma 1.1, we have p (z) ≺ q (z), z ∈ U, i.e. IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺ q (z), z ∈ U and q is the best

dominant.

Corollary 2.2 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α,β, µ; z) ≺ α 1+Az1+Bz +

β
³
1+Az
1+Bz

´2
+µ (A−B)z

(1+Bz)2
, for α,β, µ ∈ C, µ 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.2), then

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺
1+Az
1+Bz , and

1+Az
1+Bz is the best dominant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.1 we get the corollary.

Corollary 2.3 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α,β, µ; z) ≺ α
³
1+z
1−z

´γ
+

β
³
1+z
1−z

´2γ
+ 2µγz
(1−z)2

³
1+z
1−z

´γ−1
, for α,β, µ ∈ C, 0 < γ ≤ 1, µ 6= 0, where ψm,nλ,l is defined in (2.2), then

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺³
1+z
1−z

´γ
, and

³
1+z
1−z

´γ
is the best dominant.

Proof. Corollary follows by using Theorem 2.1 for q (z) =
³
1+z
1−z

´γ
, 0 < γ ≤ 1.

Theorem 2.4 Let q be analytic and univalent in U such that q (z) 6= 0 and zq0(z)
q(z) be starlike univalent in U . Assume

that

Re

µ
α

µ
q0 (z) +

2β

µ
q (z) q0 (z)

¶
> 0, for α,β, µ ∈ C, µ 6= 0. (2.5)

If f ∈ A, IR
m,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1] ∩Q and ψm,nλ,l (α,β, µ; z) is univalent in U , where ψ
m,n
λ,l (α,β, µ; z) is as defined

in (2.2), then
αq (z) + β (q (z))

2
+ µzq0 (z) ≺ ψm,nλ,l (α,β, µ; z) (2.6)

implies q (z) ≺ IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

, z ∈ U, and q is the best subordinant.

Proof. Let the function p be defined by p (z) :=
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

, z ∈ U , z 6= 0, f ∈ A.
By setting ν (w) := αw + βw2 and φ (w) := µ it can be easily verified that ν is analytic in C, φ is analytic in

C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
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Since ν0(q(z))
φ(q(z)) =

q0(z)[α+2βq(z)]
µ , it follows that Re

³
ν0(q(z))
φ(q(z))

´
= Re

³
α
µq

0 (z) + 2β
µ q (z) q

0 (z)
´
> 0, for α,β, µ ∈ C,

µ 6= 0.
By using (2.4) and (2.6) we obtain αq (z) + µ (q (z))

2
+ µzq0 (z) ≺ αp (z) + β (p (z))

2
+ µzp0 (z) .

Using Lemma 1.2, we have q (z) ≺ p (z) = IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

, z ∈ U, and q is the best subordinant.

Corollary 2.5 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.5) holds. If f ∈ A, IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1] ∩ Q and

α 1+Az1+Bz +β
³
1+Az
1+Bz

´2
+µ (A−B)z

(1+Bz)2
≺ ψm,nλ,l (α,β, µ; z) , for α,β, µ ∈ C, µ 6= 0, −1 ≤ B < A ≤ 1, where ψ

m,n
λ,l is defined

in (2.2), then 1+Az
1+Bz ≺

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

, and 1+Az
1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.4 we get the corollary.

Corollary 2.6 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.5) holds. If f ∈ A, IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1] ∩ Q and

α
³
1+z
1−z

´γ
+ β

³
1+z
1−z

´2γ
+ 2µγz

(1−z)2
³
1+z
1−z

´γ−1
≺ ψm,nλ,l (α,β, µ; z) , for α,β, µ ∈ C, µ 6= 0, 0 < γ ≤ 1, where ψm,nλ,l is

defined in (2.2), then
³
1+z
1−z

´γ
≺ IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

, and
³
1+z
1−z

´γ
is the best subordinant.

Proof. For q (z) =
³
1+z
1−z

´γ
, 0 < γ ≤ 1 in Theorem 2.4 we get the corollary.

Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich theorem.

Theorem 2.7 Let q1 and q2 be analytic and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all z ∈ U ,
with zq01(z)

q1(z)
and zq02(z)

q2(z)
being starlike univalent. Suppose that q1 satisfies (2.1) and q2 satisfies (2.5). If f ∈ A,

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1]∩Q and ψm,nλ,l (α,β, µ; z) is as defined in (2.2) univalent in U , then αq1 (z) + β (q1 (z))
2
+

µzq01 (z) ≺ ψm,nλ,l (α,β, µ; z) ≺ αq2 (z) + β (q2 (z))
2 + µzq02 (z) , for α,β, µ ∈ C, µ 6= 0, implies q1 (z) ≺

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺
q2 (z), and q1 and q2 are respectively the best subordinant and the best dominant.

For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.

Corollary 2.8 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.5) hold. If f ∈ A, IR
m,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1] ∩Q

and α 1+A1z1+B1z
+ β

³
1+A1z
1+B1z

´2
+ µ (A1−B1)z

(1+B1z)
2 ≺ ψm,nλ,l (α,β, µ; z) ≺ α 1+A2z1+B2z

+ β
³
1+A2z
1+B2z

´2
+ µ (A2−B2)z

(1+B2z)
2 , for α,β, µ ∈ C,

µ 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in (2.2), then 1+A1z
1+B1z

≺ IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺ 1+A2z
1+B2z

, hence
1+A1z
1+B1z

and 1+A2z
1+B2z

are the best subordinant and the best dominant, respectively.

For q1 (z) =
³
1+z
1−z

´γ1
, q2 (z) =

³
1+z
1−z

´γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.

Corollary 2.9 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.5) hold. If f ∈ A, IR
m,n+1
λ,l f(z)

IRm,n
λ,l f(z)

∈ H [q (0) , 1] ∩Q

and α
³
1+z
1−z

´γ1
+β

³
1+z
1−z

´2γ1
+ 2µγ1z

(1−z)2
³
1+z
1−z

´γ1−1 ≺ ψm,nλ,l (α,β, µ; z) ≺ α
³
1+z
1−z

´γ2
+β

³
1+z
1−z

´2γ2
+ 2µγ2z

(1−z)2
³
1+z
1−z

´γ2−1
,

for α,β, µ ∈ C, µ 6= 0, 0 < γ1 < γ2 ≤ 1, where ψ
m,n
λ,l is defined in (2.2), then

³
1+z
1−z

´γ1 ≺ IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

≺
³
1+z
1−z

´γ2
,

hence
³
1+z
1−z

´γ1
and

³
1+z
1−z

´γ2
are the best subordinant and the best dominant, respectively.

We have also

Theorem 2.10 Let
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H (U) , f ∈ A, z ∈ U , δ ∈ C, δ 6= 0, m, n ∈ N, λ, l ≥ 0 and let the function

q (z) be convex and univalent in U such that q (0) = 1, z ∈ U . Assume that

Re

µ
1 +

ξ

β
q (z) +

2µ

β
q2 (z)− z q

0 (z)

q (z)
+ z

q00 (z)

q0 (z)

¶
> 0, (2.7)
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for α, ξ, µ,β ∈ C, β 6= 0, z ∈ U, and

ψm,nλ,l (δ,α, ξ, µ,β; z) := α+ ξ

Ã
IRm,n+1λ,l f (z)

IRm,nλ,l f (z)

!δ

+ µ

Ã
IRm,n+1λ,l f (z)

IRm,nλ,l f (z)

!2δ
+ (2.8)

βδ (n+ 2)
IRm,n+2λ,l f (z)

IRm,n+1λ,l f (z)
− βδ (n+ 1)

IRm,n+1λ,l f (z)

IRm,nλ,l f (z)
− βδ.

If q satisfies the following subordination

ψm,nλ,l (δ,α, ξ, µ,β; z) ≺ α+ ξq (z) + µq2 (z) +
βzq0 (z)

q (z)
, (2.9)

for α, ξ, µ,β ∈ C, β 6= 0, z ∈ U, then
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺ q (z), z ∈ U, δ ∈ C, δ 6= 0, and q is the best dominant.

Proof. Let the function p be defined by p (z) :=
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, z ∈ U , z 6= 0, f ∈ A. The function p is

analytic in U and p (0) = 1

We have zp0 (z) = δ

µ
IRm,n+1

λ,l f(z)

z

¶δ ∙
z(IRm,n+1

λ,l f(z))0

IRm,n
λ,l f(z)

− IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

· z(IR
m,n
λ,l f(z))

0

IRm,n
λ,l f(z)

¸
.

By using the identity (1.3), we obtain

zp0 (z)

p (z)
= δ (n+ 2)

IRm,n+2λ,l f (z)

IRm,n+1λ,l f (z)
− δ (n+ 1)

IRm,n+1λ,l f (z)

IRm,nλ,l f (z)
. (2.10)

By setting θ (w) := α + ξw + µw2 and φ (w) := β
w , it can be easily verified that θ is analytic in C, φ is analytic in

C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Also, by letting Q (z) = zq0 (z)φ (q (z)) = βzq0(z)

q(z) , we find that Q (z) is starlike univalent in U.

Let h (z) = θ (q (z)) +Q (z) = α+ ξq (z) + µq2 (z) + βzq0(z)
q(z) .

We have Re
³
zh0(z)
Q(z)

´
= Re

³
1 + ξ

β q (z) +
2µ
β q

2 (z)− z q
0(z)
q(z) + z

q00(z)
q0(z)

´
> 0.

By using (2.10), we obtain α + ξp (z) + µ (p (z))
2
+ β zp

0(z)
p(z) = α + ξ

µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
+ µ

µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶2δ
+βδ (n+ 2)

IRm,n+2
λ,l f(z)

IRm,n+1
λ,l f(z)

− βδ (n+ 1)
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

− βδ.

By using (2.9), we have α+ ξp (z) + µ (p (z))
2
+ β zp

0(z)
p(z) ≺ α+ ξq (z) + µq2 (z) + βzq0(z)

q(z) .

From Lemma 1.1, we have p (z) ≺ q (z), z ∈ U, i.e.
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺ q (z), z ∈ U, δ ∈ C, δ 6= 0 and q is the

best dominant.

Corollary 2.11 Let q (z) = 1+Az
1+Bz , z ∈ U, −1 ≤ B < A ≤ 1, m, n ∈ N, λ, l ≥ 0. Assume that (2.7) holds. If f ∈ A

and ψm,nλ,l (δ,α, ξ, µ,β; z) ≺ α+ξ 1+Az1+Bz +µ
³
1+Az
1+Bz

´2
+β (A−B)z

(1+Az)(1+Bz) , for α, ξ, µ,β, δ ∈ C, β, δ 6= 0, −1 ≤ B < A ≤ 1,

where ψm,nλ,l is defined in (2.8), then
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺ 1+Az

1+Bz , and
1+Az
1+Bz is the best dominant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.10 we get the corollary.

Corollary 2.12 Let q (z) =
³
1+z
1−z

´γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.7) holds. If f ∈ A and ψm,nλ,l (δ,α, ξ, µ,β; z) ≺

α + ξ
³
1+z
1−z

´γ
+ µ

³
1+z
1−z

´2γ
+ 2βγz

1−z2 , for α, ξ, µ,β, δ ∈ C, 0 < γ ≤ 1, β, δ 6= 0, where ψm,nλ,l is defined in (2.8), thenµ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺
³
1+z
1−z

´γ
, and

³
1+z
1−z

´γ
is the best dominant.
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Proof. Corollary follows by using Theorem 2.10 for q (z) =
³
1+z
1−z

´γ
, 0 < γ ≤ 1.

Theorem 2.13 Let q be convex and univalent in U such that q (0) = 1. Assume that

Re

µ
ξ

β
q (z) q0 (z) +

2µ

β
q2 (z) q0 (z)

¶
> 0, for α, ξ, µ,β ∈ C, β 6= 0. (2.11)

If f ∈ A,
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1] ∩ Q and ψm,nλ,l (δ,α, ξ, µ,β; z) is univalent in U , where ψ

m,n
λ,l (δ,α, ξ, µ,β; z)

is as defined in (2.8), then

α+ ξq (z) + µq2 (z) +
βzq0 (z)

q (z)
≺ ψm,nλ,l (δ,α, ξ, µ,β; z) (2.12)

implies q (z) ≺
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, δ ∈ C, δ 6= 0, z ∈ U, and q is the best subordinant.

Proof. Let the function p be defined by p (z) :=
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, z ∈ U , z 6= 0, δ ∈ C, δ 6= 0, f ∈ A. The

function p is analytic in U and p (0) = 1.
By setting ν (w) := α+ ξw + µw2 and φ (w) := β

w it can be easily verified that ν is analytic in C, φ is analytic
in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Since ν0(q(z))

φ(q(z)) =
ξ
β q (z) q

0 (z)+ 2µ
β q

2 (z) q0 (z), it follows that Re
³
ν0(q(z))
φ(q(z))

´
= Re

³
ξ
β q (z) q

0 (z) + 2µ
β q

2 (z) q0 (z)
´
>

0, for α, ξ, µ,β ∈ C, β 6= 0.
Now, by using (2.12) we obtain α+ξq (z)+µq2 (z)+ βzq0(z)

q(z) ≺ α+ξp (z)+µp2 (z)+ βzp0(z)
p(z) , z ∈ U. From Lemma

1.2, we have q (z) ≺ p (z) =
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, z ∈ U, δ ∈ C, δ 6= 0, and q is the best subordinant.

Corollary 2.14 Let q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, z ∈ U, m,n ∈ N, λ, l ≥ 0. Assume that (2.11) holds. If f ∈ A,µ

IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1]∩Q, δ ∈ C, δ 6= 0 and α+ξ 1+Az1+Bz +µ

³
1+Az
1+Bz

´2
+β (A−B)z

(1+Az)(1+Bz) ≺ ψm,nλ,l (δ,α, ξ, µ,β; z) ,

for α, ξ, µ,β ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.8), then 1+Az
1+Bz ≺

µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, δ ∈ C,

δ 6= 0, and 1+Az
1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.13 we get the corollary.

Corollary 2.15 Let q (z) =
³
1+z
1−z

´γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.11) holds. If f ∈ A,

µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1] ∩Q and α+ ξ

³
1+z
1−z

´γ
+ µ

³
1+z
1−z

´2γ
+ 2βγz

1−z2 ≺ ψm,nλ,l (δ,α, ξ, µ,β; z) , for α, ξ, µ,β, δ ∈ C, 0 < γ ≤ 1, β

,δ 6= 0, where ψm,nλ,l is defined in (2.8), then
³
1+z
1−z

´γ
≺
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
, and

³
1+z
1−z

´γ
is the best subordinant.

Proof. Corollary follows by using Theorem 2.13 for q (z) =
³
1+z
1−z

´γ
, 0 < γ ≤ 1.

Combining Theorem 2.10 and Theorem 2.13, we state the following sandwich theorem.

Theorem 2.16 Let q1 and q2 be convex and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all z ∈ U .

Suppose that q1 satisfies (2.7) and q2 satisfies (2.11). If f ∈ A,
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1]∩Q , δ ∈ C, δ 6= 0 and

ψm,nλ,l (δ,α, ξ, µ,β; z) is as defined in (2.8) univalent in U , then α+ξq1 (z)+µq
2
1 (z)+

βzq01(z)
q1(z)

≺ ψm,nλ,l (δ,α, ξ, µ,β; z) ≺

α + ξq2 (z) + µq
2
2 (z) +

βzq02(z)
q2(z)

, for α, ξ, µ,β ∈ C, β 6= 0, implies q1 (z) ≺
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺ q2 (z), z ∈ U, δ ∈ C,

δ 6= 0, and q1 and q2 are respectively the best subordinant and the best dominant.

6
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For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.

Corollary 2.17 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.7) and (2.11) hold for q1 (z) = 1+A1z
1+B1z

and q2 (z) = 1+A2z
1+B2z

,

respectively. If f ∈ A,
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1] ∩ Q and α + ξ 1+A1z1+B1z

+ µ
³
1+A1z
1+B1z

´2
+ β (A1−B1)z

(1+A1z)(1+B1z)
≺

ψm,nλ,l (δ,α, ξ, µ,β; z) ≺ α + ξ 1+A2z1+B2z
+ µ

³
1+A2z
1+B2z

´2
+ β (A2−B2)z

(1+A2z)(1+B2z)
, z ∈ U, for α, ξ, µ,β ∈ C, β 6= 0, −1 ≤ B2 ≤

B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in (2.2), then 1+A1z
1+B1z

≺
µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺ 1+A2z

1+B2z
, z ∈ U, δ ∈ C, δ 6= 0,

hence 1+A1z
1+B1z

and 1+A2z
1+B2z

are the best subordinant and the best dominant, respectively.

For q1 (z) =
³
1+z
1−z

´γ1
, q2 (z) =

³
1+z
1−z

´γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.

Corollary 2.18 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.7) and (2.11) hold for q1 (z) =
³
1+z
1−z

´γ1
and q2 (z) =³

1+z
1−z

´γ2
, respectively. If f ∈ A,

µ
IRm,n+1

λ,l f(z)

IRm,n
λ,l f(z)

¶δ
∈ H [q (0) , 1] ∩ Q and α + ξ

³
1+z
1−z

´γ1
+ µ

³
1+z
1−z

´2γ1
+ 2βγ1z

1−z2 ≺

ψm,nλ,l (δ,α, ξ, µ,β; z) ≺ α + ξ
³
1+z
1−z

´γ2
+ µ

³
1+z
1−z

´2γ2
+ 2βγ2z

1−z2 , z ∈ U, for α, ξ, µ,β ∈ C, β 6= 0, 0 < γ1 < γ2 ≤ 1,

where ψm,nλ,l is defined in (2.2), then
³
1+z
1−z

´γ1 ≺ µ IRm,n+1
λ,l f(z)

IRm,n
λ,l f(z)

¶δ
≺
³
1+z
1−z

´γ2
, z ∈ U, δ ∈ C, δ 6= 0, hence

³
1+z
1−z

´γ1
and

³
1+z
1−z

´γ2
are the best subordinant and the best dominant, respectively.
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Abstract

We approximate fixed points of some iterative methods on a gener-
alized Banach space setting. Earlier studies such as [5, 6, 7, 12] require
that the operator involved is Fréchet-differentiable. In the present study
we assume that the operator is only continuous. This way we extend
the applicability of these methods to include generalized fractional calcu-
lus and problems from other areas. Some applications include generalized
fractional calculus involving the Riemann-Liouville fractional integral and
the Caputo fractional derivative. Fractional calculus is very important for
its applications in many applied sciences.

2010 AMS Subject Classification: 26A33, 65G99, 47J25.
Key Words and phrases: Generalized Banach space, Fixed point, semilo-

cal convergence, Riemann-Liouville fractional integral, Caputo fractional deriv-
ative.

1 Introduction

Many problems in Computational sciences can be formulated as an operator
equation using Mathematical Modelling [7, 10, 13, 14, 15]. The fixed points of
these operators can rarely be found in closed form. That is why most solution
methods are usually iterative.
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The semilocal convergence is, based on the information around an initial
point, to give conditions ensuring the convergence of the method.
We present a semilocal convergence analysis for some iterative methods on a

generalized Banach space setting to approximate fixed point or a zero of an op-
erator. A generalized norm is defined to be an operator from a linear space into
a partially order Banach space (to be precised in section 2). Earlier studies such
as [5, 6, 7, 12] for Newton’s method have shown that a more precise convergence
analysis is obtained when compared to the real norm theory. However, the main
assumption is that the operator involved is Fréchet-differentiable. This hypoth-
esis limits the applicability of Newton’s method. In the present study we only
assume the continuity of the operator. This may be expand the applicability of
these methods.
The rest of the paper is organized as follows: section 2 contains the basic

concepts on generalized Banach spaces and auxiliary results on inequalities and
fixed points. In section 3 we present the semilocal convergence analysis of these
methods. Finally, in the concluding sections 4-5, we present special cases and
applications in generalized fractional calculus.

2 Generalized Banach spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces
can be found in [5, 6, 7, 12], and the references there in.

Definition 2.1 A generalized Banach space is a triplet (x,E, /·/) such that
(i) X is a linear space over R (C) .
(ii) E = (E,K, k·k) is a partially ordered Banach space, i.e.
(ii1) (E, k·k) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K,
(iii3) The norm k·k is monotone on K.
(iii) The operator /·/ : X → K satisfies
/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,
/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X, θ ∈ R(C).
(iv) X is a Banach space with respect to the induced norm k·ki := k·k · /·/ .

Remark 2.2 The operator /·/ is called a generalized norm. In view of (iii) and
(ii3) k·ki , is a real norm. In the rest of this paper all topological concepts will
be understood with respect to this norm.

Let L
¡
Xj , Y

¢
stand for the space of j-linear symmetric and bounded op-

erators from Xj to Y , where X and Y are Banach spaces. For X,Y partially

2
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ordered L+
¡
Xj , Y

¢
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) . (2.1)

Definition 2.3 The set of bounds for an operator Q ∈ L (X,X) on a general-
ized Banach space (X,E, /·/) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} . (2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given
by

xn+1 := T (xn) = T
n+1 (x0) (2.3)

is well defined. We write in case of convergence

T∞ (x0) := lim (T
n (x0)) = lim

n→∞
xn. (2.4)

We need some auxiliary results on inequations.

Lemma 2.4 Let (E,K, k·k) be a partially ordered Banach space, ξ ∈ K and
M,N ∈ L+ (E,E).
(i) Suppose there exists r ∈ K such that

R (r) := (M +N) r + ξ ≤ r (2.5)

and
(M +N)

k
r → 0 as k →∞. (2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the
smaller than any solution of the inequality R (s) ≤ s.
(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then

there exists r ≤ q satisfying (i).

Proof. (i) Define sequence {bn} by bn = Rn (0). Then, we have by (2.5)
that b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, ..., n.
Then, we have by (2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =

R (Rn (0)) = R (bn) = (M +N) bn+ξ ≤ (M +N) r+ξ ≤ r⇒ bn+1 ≤ r. Hence,
sequence {bn} is bounded above by r. Set Pn = bn+1 − bn. We shall show that

Pn ≤ (M +N)n r for each n = 1, 2, ... (2.7)

We have by the definition of Pn and (2.6) that

P1 = R
2 (0)−R (0) = R (R (0))−R (0)

= R (ξ)−R (0) =
Z 1

0

R0 (tξ) ξdt ≤
Z 1

0

R0 (ξ) ξdt

3
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≤
Z 1

0

R0 (r) rdt ≤ (M +N) r,

which shows (2.7) for n = 1. Suppose that (2.7) is true for k = 1, 2, ..., n. Then,
we have in turn by (2.6) and the inductive hypothesis that

Pk+1 = R
k+2 (0)−Rk+1 (0) = Rk+1 (R (0))−Rk+1 (0) =

Rk+1 (ξ)−Rk+1 (0) = R
¡
Rk (ξ)

¢
−R

¡
Rk (0)

¢
=Z 1

0

R0
¡
Rk (0) + t

¡
Rk (ξ)−Rk (0)

¢¢ ¡
Rk (ξ)−Rk (0)

¢
dt ≤

R0
¡
Rk (ξ)

¢ ¡
Rk (ξ)−Rk (0)

¢
= R0

¡
Rk (ξ)

¢ ¡
Rk+1 (0)−Rk (0)

¢
≤

R0 (r)
¡
Rk+1 (0)−Rk (0)

¢
≤ (M +N) (M +N)k r = (M +N)k+1 r,

which completes the induction for (2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that

R (b) = R
³
lim
n→∞

Rn (0)
´
= lim
n→∞

Rn+1 (0) = b⇒ b solves the equation R (t) = t.

We have that bn ≤ r ⇒ b ≤ r, where r a solution of R (r) ≤ r. Hence, b is
smaller than any solution of R (s) ≤ s.
(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =

R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with
r ≤ q. We also get by (2.8) that wn − vn → 0 as n→∞ ⇒ wn → r as n→∞.

We also need the auxiliary result for computing solutions of fixed point
problems.

Lemma 2.5 Let (X, (E,K, k·k) , /·/) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X,X) . Suppose there exists y ∈ X and q ∈ K such
that

Pq + /y/ ≤ q and P kq → 0 as k →∞. (2.9)

Then, z = T∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y

and /z/ ≤ P /z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X|∃ θ ∈ R : {x} ≤ θq} .
The proof can be found in [12, Lemma 3.2].

4
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3 Semilocal convergence

Let (X, (E,K, k·k) , /·/) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X,Y ). A zero of
operator G is to be determined by a method starting at a point x0 ∈ D. The
results are presented for an operator F = JG, where J ∈ L (Y,X). The iterates
are determined through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (3.1)

⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we present the semilocal convergence analysis of method (3.1) using

the preceding notation.

Theorem 3.1 Let F : D ⊂ X, A (·) : D → L (X,Y ) and x0 ∈ D be as defined
previously. Suppose:
(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r→ 0 as k →∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T
∞
n (0) , Tn (y) := (I −A (xn)) y − F (xn) (3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, ... and converges to the
unique zero of operator F in U (x0, r) .
(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r

and for each n = 1, 2, ...

rn = P
∞
n (0) , Pn (t) =Mt+Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R
∞
n (0) , Rn (t) = (M +N) t+Nan−1,

5
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bn := /xn − x0/ ≤ r − rn ≤ r,

where
an−1 := /xn − xn−1/ for each n = 1, 2, ...

Proof. Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 2.4 and
(H3), (H5) there exists q ≤ r such that:

Mq + /F (x0)/ = q and Mkq ≤Mkr → 0 as k →∞.

Hence, by Lemma 2.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) =M (r − q) +Nr0
≤Mr −Mq +Nr = R0 (r)− q

≤ R0 (r)− q = r − q.

It follows with Lemma 2.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (Ij) is true for each j = 1, 2, ..., n. We need to show the existence
of xn+1 and to obtain a bound q for an. To achieve this notice that:

Mrn +N (rn−1 − rn) =Mrn +Nrn−1 −Nrn = Pn (rn)−Nrn ≤ rn.

Then, it follows from Lemma 2.4 that there exists q ≤ rn such that

q =Mq +N (rn−1 − rn) and (M +N)
k
q → 0, as k →∞. (3.3)

By (Ij) it follows that

bn = /xn − x0/ ≤
n−1X
j=0

aj ≤
n−1X
j=0

(rj − rj+1) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I −A (xn) .
We can write by (H2) that

/F (xn)/ = /F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)/

≤ Nan−1 ≤ N (rn−1 − rn) . (3.4)
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It follows from (3.3) and (3.4) that

Mq + /F (xn)/ ≤ q.

By Lemma 2.5, xn+1 is well defined and an ≤ q ≤ rn. In view of the definition
of rn+1 we have that

Pn+1 (rn − q) = Pn (rn)− q = rn − q,

so that by Lemma 2.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we
obtain in turn that

/xm+1 − xn/ ≤
mX
j=n

aj ≤
mX
j=n

(rj − rj+1) = rn − rm+1 ≤ rn. (3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M +N) rn ≤ ... ≤ (M +N)
n+1

r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete
sequence in a Banach space X by (3.5) and as such it converges to some x∗ ∈ X.
By letting m→∞ in (3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore, (3.4)
shows that x∗ is a zero of F . Hence, (C1) and (C2) are proved.
In view of the estimate

Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 2.4. That is sn is smaller in
general than rn. The conditions of Theorem 3.1 are satisfied for xn replacing x0.
A solution of the inequality of (C2) is given by sn (see (3.4)). It follows from
(3.5) that the conditions of Theorem 3.1 are easily verified. Then, it follows
from (C1) that x∗ ∈ U (xn, sn) which proves (C3).
In general the aposterior, estimate is of interest. Then, condition (H5) can

be avoided as follows:

Proposition 3.2 Suppose: condition (H1) of Theorem 3.1 is true.
(H03) There exists s ∈ K, θ ∈ (0, 1) such that

R0 (s) = (M +N) s+ /F (x0)/ ≤ θs.

(H04) U (x0, s) ⊂ D.
Then, there exists r ≤ s satisfying the conditions of Theorem 3.1. Moreover,

the zero x∗ of F is unique in U (x0, s) .
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Remark 3.3 (i) Notice that by Lemma 2.4 R∞n (0) is the smallest solution of
Rn (s) ≤ s. Hence any solution of this inequality yields on upper estimate for
R∞n (0). Similar inequalities appear in (H2) and (H

0
2).

(ii) The weak assumptions of Theorem 3.1 do not imply the existence of
A (xn)

−1. In practice the computation of T∞n (0) as a solution of a linear equa-
tion is no problem and the computation of the expensive or impossible to compute
in general A (xn)

−1 is not needed.
(iii) We can used the following result for the computation of the aposteriori

estimates. The proof can be found in [12, Lemma 4.2] by simply exchanging the
definitions of R.

Lemma 3.4 Suppose that the conditions of Theorem 3.1 are satisfied. If s ∈ K
is a solution of Rn (s) ≤ s, then q := s− an ∈ K and solves Rn+1 (q) ≤ q. This
solution might be improved by Rkn+1 (q) ≤ q for each k = 1, 2, ... .

4 Special cases and applications

Application 4.1 The results obtained in earlier studies such as [5, 6, 7, 12]
require that operator F (i.e. G) is Fréchet-differentiable. This assumption limits
the applicability of the earlier results. In the present study we only require that
F is a continuous operator. Hence, we have extended the applicability of these
methods to include classes of operators that are only continuous.

Example 4.2 The j-dimensional space Rj is a classical example of a general-
ized Banach space. The generalized norm is defined by componentwise absolute
values. Then, as ordered Banach space we set E = Rj with componentwise or-
dering with e.g. the maximum norm. A bound for a linear operator (a matrix) is
given by the corresponding matrix with absolute values. Similarly, we can define
the ”N” operators. Let E = R. That is we consider the case of a real normed
space with norm denoted by k·k. Let us see how the conditions of Theorem 3.1
look like.

Theorem 4.3 (H1) kI −A (x)k ≤M for some M ≥ 0.
(H2) kF (y)− F (x)−A (x) (y − x)k ≤ N ky − xk for some N ≥ 0.
(H3) M +N < 1,

r =
kF (x0)k

1− (M +N)
. (4.1)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r → 0 as k→∞, where r is given by (4.1).

Then, the conclusions of Theorem 3.1 hold.
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5 Applications to k-Fractional Calculus

Background
We apply Theorem 4.3 in this section.
Let f ∈ L∞ ([a, b]), the k-left Riemann-Liouville fractional integral ([15]) of

order α > 0 is defined as follows:

kJ
α
a+f (x) =

1

kΓk (α)

Z x

a

(x− t)
α
k−1 f (t) dt, (5.1)

all x ∈ [a, b], where k > 0, and Γk (a) is the k-gamma function given by Γk (α) =R∞
0
tα−1e−

tk

k dt.
It holds ([4]) Γk (α+ k) = αΓk (α), Γ (α) = lim

k→1
Γk (α), and we set kJαa+f (x) =

f (x) .

Similarly, we define the k-right Riemann-Liouville fractional integral as

kJ
α
b−f (x) =

1

kΓk (α)

Z b

x

(t− x)
α
k−1 f (t) dt, (5.2)

for all x ∈ [a, b], and we set kJαb−f (x) = f (x) .
Results
I) Here we work with kJ

α
a+f (x). We observe that¯̄

kJ
α
a+f (x)

¯̄
≤ 1

kΓk (α)

Z x

a

(x− t)
α
k−1 |f (t)| dt

≤ kfk∞
kΓk (α)

Z x

a

(x− t)
α
k−1 dt =

kfk∞
kΓk (α)

(x− a)
α
k

α
k

(5.3)

=
kfk∞

Γk (α+ k)
(x− a)

α
k ≤ kfk∞

Γk (α+ k)
(b− a)

α
k .

We have proved that

kJ
α
a+f (a) = 0, (5.4)

and °°
kJ

α
a+f

°°
∞ ≤

(b− a)
α
k

Γk (α+ k)
kfk∞ , (5.5)

proving that kJαa+ is a bounded linear operator.
By [3], p. 388, we get that

¡
kJ

α
a+f

¢
is a continuous function over [a, b] and

in particular continuous over [a∗, b], where a < a∗ < b.
Thus, there exist x1, x2 ∈ [a∗, b] such that¡

kJ
α
a+f

¢
(x1) = min

¡
kJ

α
a+f

¢
(x) , (5.6)¡

kJ
α
a+f

¢
(x2) = max

¡
kJ

α
a+f

¢
(x) , x ∈ [a∗, b] . (5.7)
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We assume that ¡
kJ

α
a+f

¢
(x1) > 0. (5.8)

Hence °°
kJ

α
a+f

°°
∞,[a∗,b] =

¡
kJ

α
a+f

¢
(x2) > 0. (5.9)

Here it is
J (x) = mx, m 6= 0. (5.10)

Therefore the equation
Jf (x) = 0, x ∈ [a∗, b] , (5.11)

has the same solutions as the equation

F (x) :=
Jf (x)

2
¡
kJαa+f

¢
(x2)

= 0, x ∈ [a∗, b] . (5.12)

Notice that

kJ
α
a+

Ã
f

2
¡
kJαa+f

¢
(x2)

!
(x) =

¡
kJ

α
a+f

¢
(x)

2
¡
kJαa+f

¢
(x2)

≤ 1
2
< 1, x ∈ [a∗, b] . (5.13)

Call

A (x) :=

¡
kJ

α
a+f

¢
(x)

2
¡
kJαa+f

¢
(x2)

, ∀ x ∈ [a∗, b] . (5.14)

We notice that

0 <

¡
kJ

α
a+f

¢
(x1)

2
¡
kJαa+f

¢
(x2)

≤ A (x) ≤ 1
2
, ∀ x ∈ [a∗, b] . (5.15)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
¡
kJ

α
a+f

¢
(x1)

2
¡
kJαa+f

¢
(x2)

=: γ0, ∀ x ∈ [a∗, b] . (5.16)

Clearly γ0 ∈ (0, 1) .
We have proved that

|1−A (x)| ≤ γ0, ∀ x ∈ [a∗, b] . (5.17)

Next we assume that F (x) is a contraction, i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a∗, b] , (5.18)

and 0 < λ < 1
2 .

Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ
¡
kJ

α
a+f

¢
(x2) |x− y| , all x, y ∈ [a∗, b] . (5.19)
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We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ψ1) , ∀ x, y ∈ [a∗, b] .
(5.20)

We have that¯̄¡
kJ

α
a+f

¢
(x)
¯̄
≤ (b− a)

α
k

Γk (α+ k)
kfk∞ <∞, ∀ x ∈ [a∗, b] . (5.21)

Hence

|A (x)| =
¯̄¡
kJ

α
a+f

¢
(x)
¯̄

2
¡
kJαa+f

¢
(x2)

≤ (b− a)
α
k kfk∞

2Γk (α+ k)
¡
kJαa+f

¢
(x2)

<∞, ∀ x ∈ [a∗, b] .

(5.22)
Therefore we get

(ψ1) ≤
Ã
λ+

(b− a)
α
k kfk∞

2Γk (α+ k)
¡
kJαa+f

¢
(x2)

!
|y − x| , ∀ x, y ∈ [a∗, b] . (5.23)

Call

0 < γ1 := λ+
(b− a)

α
k kfk∞

2Γk (α+ k)
¡
kJαa+f

¢
(x2)

, (5.24)

choosing (b− a) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , ∀ x, y ∈ [a∗, b] , γ1 ∈ (0, 1) .
(5.25)

Next we call and we need that

0 < γ := γ0 + γ1 = 1−
¡
kJ

α
a+f

¢
(x1)

2
¡
kJαa+f

¢
(x2)

+ λ+
(b− a)

a
k kfk∞

2Γk (α+ k)
¡
kJαa+f

¢
(x2)

< 1,

(5.26)
equivalently,

λ+
(b− a)

a
k kfk∞

2Γk (α+ k)
¡
kJαa+f

¢
(x2)

<

¡
kJ

α
a+f

¢
(x1)

2
¡
kJαa+f

¢
(x2)

, (5.27)

equivalently,

2λ
¡
kJ

α
a+f

¢
(x2) +

(b− a)
α
k kfk∞

Γk (α+ k)
<
¡
kJ

α
a+f

¢
(x1) , (5.28)

which is possible for small λ, (b− a). That is γ ∈ (0, 1). So our numerical
method converges and solves (5.11).
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II) Here we act on kJ
α
b−f (x), see (5.2).

Let f ∈ L∞ ([a, b]) . We have that

¯̄
kJ

α
b−f (x)

¯̄
≤ 1

kΓk (α)

Z b

x

(t− x)
α
k−1 |f (t)| dt

≤ kfk∞
kΓk (α)

Z b

x

(t− x)
α
k−1 dt =

kfk∞
kΓk (α)

(b− x)
α
k

α
k

=
kfk∞

Γk (α+ k)
(b− x)

α
k ≤ kfk∞

Γk (α+ k)
(b− a)

α
k . (5.29)

We observe that

kJ
α
b−f (b) = 0, (5.30)

and °°
kJ

α
b−f

°°
∞ ≤

(b− a)
α
k

Γk (α+ k)
kfk∞ . (5.31)

That is kJαb− is a bounded linear operator.
Let here a < b∗ < b.
By [4] we get that kJαb−f is continuous over [a, b] , and in particular it is

continuous over [a, b∗].
Thus, there exist x1, x2 ∈ [a, b∗] such that¡

kJ
α
b−f

¢
(x1) = min

¡
kJ

α
b−f

¢
(x) , (5.32)¡

kJ
α
b−f

¢
(x2) = max

¡
kJ

α
b−f

¢
(x) , x ∈ [a, b∗] .

We assume that ¡
kJ

α
b−f

¢
(x1) > 0. (5.33)

Hence °°
kJ

α
b−f

°°
∞,[a∗,b] =

¡
kJ

α
b−f

¢
(x2) > 0. (5.34)

Here it is
J (x) = mx, m 6= 0. (5.35)

Therefore the equation
Jf (x) = 0, x ∈ [a, b∗] , (5.36)

has the same solutions as the equation

F (x) :=
Jf (x)

2
¡
kJαb−f

¢
(x2)

= 0, x ∈ [a, b∗] . (5.37)

Notice that

kJ
α
b−

Ã
f

2
¡
kJαb−f

¢
(x2)

!
(x) =

¡
kJ

α
b−f

¢
(x)

2
¡
kJαb−f

¢
(x2)

≤ 1
2
< 1, x ∈ [a, b∗] . (5.38)
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Call

A (x) :=

¡
kJ

α
b−f

¢
(x)

2
¡
kJαb−f

¢
(x2)

, ∀ x ∈ [a, b∗] . (5.39)

We notice that

0 <

¡
kJ

α
b−f

¢
(x1)

2
¡
kJαb−f

¢
(x2)

≤ A (x) ≤ 1
2
, ∀ x ∈ [a, b∗] . (5.40)

Hence we have

|1−A (x)| = 1−A (x) ≤ 1−
¡
kJ

α
b−f

¢
(x1)

2
¡
kJαb−f

¢
(x2)

=: γ0, ∀ x ∈ [a, b∗] . (5.41)

Clearly γ0 ∈ (0, 1) .
We have proved that

|1−A (x)| ≤ γ0, ∀ x ∈ [a, b∗] , γ0 ∈ (0, 1) . (5.42)

Next we assume that F (x) is a contraction, i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] , (5.43)

and 0 < λ < 1
2 .

Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ
¡
kJ

α
b−f

¢
(x2) |x− y| , all x, y ∈ [a, b∗] . (5.44)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ψ1) , ∀ x, y ∈ [a, b∗] .
(5.45)

We have that¯̄¡
kJ

α
b−f

¢
(x)
¯̄
≤ (b− a)

α
k

Γk (α+ k)
kfk∞ <∞, ∀ x ∈ [a, b∗] . (5.46)

Hence

|A (x)| =
¯̄¡
kJ

α
b−f

¢
(x)
¯̄

2
¡
kJαb−f

¢
(x2)

≤ (b− a)
α
k kfk∞

2Γk (α+ k)
¡
kJαb−f

¢
(x2)

<∞, ∀ x ∈ [a, b∗] .

(5.47)
Therefore we get

(ψ1) ≤
Ã
λ+

(b− a)
α
k kfk∞

2Γk (α+ k)
¡
kJαb−f

¢
(x2)

!
|y − x| , ∀ x, y ∈ [a, b∗] . (5.48)
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Call

0 < γ1 := λ+
(b− a)

α
k kfk∞

2Γk (α+ k)
¡
kJαb−f

¢
(x2)

, (5.49)

choosing (b− a) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , ∀ x, y ∈ [a, b∗] , γ1 ∈ (0, 1) .
(5.50)

Next we call and we need that

0 < γ := γ0 + γ1 = 1−
¡
kJ

α
b−f

¢
(x1)

2
¡
kJαb−f

¢
(x2)

+ λ+
(b− a)

a
k kfk∞

2Γk (α+ k)
¡
kJαb−f

¢
(x2)

< 1,

(5.51)
equivalently,

λ+
(b− a)

a
k kfk∞

2Γk (α+ k)
¡
kJαb−f

¢
(x2)

<

¡
kJ

α
b−f

¢
(x1)

2
¡
kJαb−f

¢
(x2)

, (5.52)

equivalently,

2λ
¡
kJ

α
b−f

¢
(x2) +

(b− a)
α
k kfk∞

Γk (α+ k)
<
¡
kJ

α
b−f

¢
(x1) , (5.53)

which is possible for small λ, (b− a). That is γ ∈ (0, 1). So our numerical
method converges and solves (5.36).
III) Here we deal with the fractional M. Caputo-Fabrizio derivative defined

as follows (see [9]):
let 0 < α < 1, f ∈ C1 ([0, b]),

CFDα
∗ f (t) =

1

1− α

Z t

0

exp

µ
− α

1− α
(t− s)

¶
f 0 (s) ds, (5.54)

for all 0 ≤ t ≤ b.
Call

γ :=
α

1− α
> 0. (5.55)

I.e.
CFDα

∗ f (t) =
1

1− α

Z t

0

e−γ(t−s)f 0 (s) ds, 0 ≤ t ≤ b. (5.56)

We notice that ¯̄
CFDα

∗ f (t)
¯̄
≤ 1

1− α

µZ t

0

e−γ(t−s)ds

¶
kf 0k∞

=
e−γt

α

¡
eγt − 1

¢
kf 0k∞ =

1

α

¡
1− e−γt

¢
kf 0k∞ ≤

µ
1− e−γb

α

¶
kf 0k∞ . (5.57)
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That is ¡
CFDα

∗ f
¢
(0) = 0, (5.58)

and ¯̄
CFDα

∗ f (t)
¯̄
≤
µ
1− e−γb

α

¶
kf 0k∞ , ∀ t ∈ [0, b] . (5.59)

Notice here that 1− e−γt, t ≥ 0 is an increasing function.
Thus the smaller the t, the smaller it is 1− e−γt. We rewrite

CFDα
∗ f (t) =

e−γt

1− α

Z t

0

eγsf 0 (s) ds, (5.60)

proving that
¡
CFDα

∗ f
¢
is a continuous function over [0, b], in particular it is

continuous over [a, b], where 0 < a < b.
Therefore there exist x1, x2 ∈ [a, b] such that

CFDα
∗ f (x1) = min

CFDα
∗ f (x) , (5.61)

and
CFDα

∗ f (x2) = max
CFDα

∗ f (x) , for x ∈ [a, b] .

We assume that
CFDα

∗ f (x1) > 0. (5.62)

(i.e. CFDα
∗ f (x) > 0, ∀ x ∈ [a, b]).

Furthermore °°CFDα
∗ fG

°°
∞,[a,b] =

CF Dα
∗ f (x2) . (5.63)

Here it is
J (x) = mx, m 6= 0. (5.64)

The equation
Jf (x) = 0, x ∈ [a, b] , (5.65)

has the same set of solutions as the equation

F (x) :=
Jf (x)

CFDα
∗ f (x2)

= 0, x ∈ [a, b] . (5.66)

Notice that

CFDα
∗

µ
f (x)

2CFDα
∗ f (x2)

¶
=

CFDα
∗ f (x)

2CFDα
∗ f (x2)

≤ 1
2
< 1, ∀ x ∈ [a, b] . (5.67)

We call

A (x) :=
CFDα

∗ f (x)

2CFDα
∗ f (x2)

, ∀ x ∈ [a, b] . (5.68)

We notice that

0 <
CFDα

∗ f (x1)

2CFDα
∗ f (x2)

≤ A (x) ≤ 1
2
. (5.69)
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Furthermore it holds

|1−A (x)| = 1−A (x) ≤ 1−
CFDα

∗ f (x1)

2CFDα
∗ f (x2)

=: γ0, ∀ x ∈ [a, b] . (5.70)

Clearly γ0 ∈ (0, 1) .
We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a, b] . (5.71)

Next we assume that F (x) is a contraction over [a, b], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b] , (5.72)

and 0 < λ < 1
2 .

Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ
¡
CFDα

∗ f (x2)
¢
|x− y| , ∀ x, y ∈ [a, b] . (5.73)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ2) , ∀ x, y ∈ [a, b] . (5.74)

Here we have ¯̄¡
CFDα

∗ f
¢
(x)
¯̄
≤
µ
1− e−γb

α

¶
kf 0k∞ , ∀ t ∈ [a, b] . (5.75)

Hence, ∀ x ∈ [a, b] we get that

|A (x)| =
¯̄
CFDα

∗ f (x)
¯̄

2 (CFDα
∗ f) (x2)

≤
¡
1− e−γb

¢
kf 0k∞

2α (CFDα
∗ f) (x2)

<∞. (5.76)

Consequently we observe

(ξ2) ≤
Ã
λ+

¡
1− e−γb

¢
kf 0k∞

2α (CFDα
∗ f) (x2)

!
|y − x| , ∀ x, y ∈ [a, b] . (5.77)

Call

0 < γ1 := λ+

¡
1− e−γb

¢
kf 0k∞

2α (CFDα
∗ f) (x2)

, (5.78)

choosing b small enough, we can make γ1 ∈ (0, 1).
We have proved

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , γ1 ∈ (0, 1) , ∀ x, y ∈ [a, b] .
(5.79)
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Next we call and need

0 < γ := γ0 + γ1 = 1−
CFDα

∗ f (x1)

2CFDα
∗ f (x2)

+ λ+

¡
1− e−γb

¢
kf 0k∞

2α (CFDα
∗ f) (x2)

< 1, (5.80)

equivalently,

λ+

¡
1− e−γb

¢
kf 0k∞

2α (CFDα
∗ f) (x2)

<
CFDα

∗ f (x1)

2CFDα
∗ f (x2)

, (5.81)

equivalently,

2λCFDα
∗ f (x2) +

¡
1− e−γb

¢
α

kf 0k∞ <CF Dα
∗ f (x1) , (5.82)

which is possible for small λ, b.
We have proved that

γ = γ0 + γ1 ∈ (0, 1) . (5.83)

Hence equation (5.65) can be solved with our presented numerical methods.
Conclusion:
In all three applications we have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , (5.84)

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (5.85)

where γ1 ∈ (0, 1), and
γ = γ0 + γ1 ∈ (0, 1) , (5.86)

for all x, y ∈ [a∗, b], [a, b∗], [a, b], respectively.
Consequently, our presented Numerical methods here, Theorem 4.3, apply

to solve
f (x) = 0. (5.87)
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Abstract

In this paper, we first investigate and present several sets of sufficient conditions
for Carathéodory functions in the open unit disk U. We then apply the main results
proven here in order to derive some conditions for starlike functions in U. Relevant
connections with various known results are also considered.
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1. Introduction, Definitions and Preliminaries

Let P denote the class of functions p of the form:

p(z) =
∞∑
n=0

pnz
n,

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

The function p ∈ P is called a Carathéodory function if it satisfies the following condition:

R {p(z)} > 0 (z ∈ U).

Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n,
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which are analytic in U. A function f ∈ A is in the class S∗ of starlike functions in U, if it
satisfies the following condition:

R

{
zf ′(z)

f(z)

}
> 0 (z ∈ U).

In recent years, many authors (see, for example, [1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18]) have
investigated and derived sufficient conditions for Carathéodory functions and some of their re-
sults have been applied to find some sufficient conditions for starlikeness or convexity of analytic
functions (see, for example, [5, 11, 13, 14, 15, 17]).

Following the principle of differential subordination, we say that a function f is subordinate
to F in U, written as f ≺ F , if and only if

f(z) = F
(
w(z)

)
(z ∈ U)

for some Schwarz function w(z), with

w(0) = 0 and |w(z)| < 1 (z ∈ U).

If F (z) is univalent in U, then the subordination f ≺ F is equivalent to

f(0) = F (0) and f(U) ⊂ F (U).

We denote by Q the class of functions q that are analytic and injective on U \ E(q), where

E(q) =

{
ζ : ζ ∈ ∂U and lim

z→ζ
q(z) =∞

}
,

and are such that
q′(ζ) 6= 0

(
ζ ∈ ∂U \ E(q)

)
.

Furthermore, let the subclass of Q for which q(0) = a be denoted by Q(a).
The main object of this paper is to investigate and present several sets of sufficient conditions

for Carathéodory functions in the open unit disk U. The main results proven here are shown to
lead to some conditions for starlike functions in U. We also consider the relevant connections of
our results with various known results.

2. A Set of Main Results

In order to prove our main results, we need the following lemma due to Miller and Mocanu [7,
p. 24].

Lemma 1. Let q ∈ Q(a) and let the function p(z) given by

p(z) = a+ anz
n + · · · (n = 1)

be analytic in U with p(0) = a. If p is not subordinate to q, then there exist points z0 ∈ U and
ζ0 ∈ ∂U \ E(q) for which

(i) p(z0) = q(ζ0) and

2
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(ii) z0p
′(z0) = mζ0q

′(ζ0) (m = n = 1).

Applying Lemma 1, we can obtain the following results.

Theorem 1. Let P : U→ C with

R {P (z)} = I {P (z)} tanα = 0
(

0 5 α <
π

2

)
.

If the function p is an analytic in U with p(0) = 1 and

R
{

[p(z)]2 + P (z)zp′(z)
}
>
B2 sin2 α

4A cos2 α
− B

2 cosα
, (1)

where

A = cos 2α+
B

2 cosα
(2)

and
B = R {P (z)} cosα− I {P (z)} sinα, (3)

then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

Proof. Let us define two functions q(z) and h1(z) by

q(z) = eiαp(z)
(
q(z) 6≡ eiα; 0 5 α <

π

2
; z ∈ U

)
(4)

and

h1(z) =
eiα + eiαz

1− z

(
0 5 α <

π

2
; z ∈ U

)
, (5)

respectively. Then the functions q(z) and h1(z) are analytic in U with

q(0) = h1(0) = eiα ∈ C and h1(U) = {w : w ∈ C and R {w} > 0} .

We now suppose that the function q is not subordinate to h1. Then, by Lemma 1, there exist
points z1 ∈ U and ζ1 ∈ ∂U \ {1} such that

q(z1) = h1(ζ1) = iρ (ρ ∈ R) and z1q
′(z1) = mζ1h

′
1(ζ1) = mσ1 (m = 1), (6)

where

σ1 = −ρ
2 − 2ρ sinα+ 1

2 cosα
. (7)

Using the equations (4), (5), (6) and (7), we obtain

R
{

[p(z1)]
2 + P (z1)z1p

′(z1)
}

= R
{[

e−iαq(z1)
]2

+ P (z1)e
−iαz1q

′(z1)
}

= R
{

e−2iα[h1(ζ1)]
2 + P (z1)e

−iαmζ1h
′
1(ζ1)

}
= R

{
e−2iα(iρ)2 + P (z1)e

−iαmσ1
}

= −ρ2 cos 2α+mσ1B1

5 −
(

cos 2α+
B1

2 cosα

)
ρ2 +

(
B1 sinα

cosα

)
ρ− B1

2 cosα

= −A1ρ
2 +

(
B1 sinα

cosα

)
ρ− B1

2 cosα

=: g(ρ), (8)

3
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where B1 and A1 are given by

B1 = R {P (z1)} cosα− I {P (z1)} sinα

and

A1 = cos 2α+
B1

2 cosα
,

respectively. By a simple calculation, we see that the function g1(ρ) in (8) takes on the maximum
value at ρ∗ given by

ρ∗ =
B1 sinα

2A1 cosα
.

Hence we have

R
{

[p(z1)]
2 + P (z1)z1p

′(z1)
}

5 g1(ρ
∗)

=
B2

1 sin2 α

4A1 cos2 α
− B1

2 cosα

5
B2 sin2 α

4A cos2 α
− B

2 cosα
,

where A and B are given by (2) and (3), respectively. Moreover, this inequality is a contradiction
to (1). Therefore, we obtain

R
{

eiαp(z)
}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (9)

Next, let us define two analytic functions by

r(z) = e−iαp(z)
(

0 5 α <
π

2
; z ∈ U

)
(10)

and

h2(z) =
e−iα + e−iαz

1− z

(
0 5 α <

π

2
; z ∈ U

)
. (11)

Then the functions r and h2 are analytic in U with

r(0) = h2(0) = e−iα ∈ C and h2(U) = {w : w ∈ C and R {w} > 0} = h1(U).

Suppose that r is not subordinate to h2. Then, by Lemma 1, there exist points z2 ∈ U and
ζ2 ∈ ∂U \ {1} such that

r(z2) = h2(ζ2) = iρ (ρ ∈ R) and z2r
′(z2) = mζ2h

′
2(ζ2) = mσ2 (m = 1), (12)

where

σ2 = −ρ
2 + 2ρ sinα+ 1

2 cosα
. (13)

4
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From the equations (10), (11), (12) and (13), we get

R
{

[p(z2)]
2 + P (z2)z2p

′(z2)
}

= R
{

e2iα[h2(ζ2)]
2 + P (z2)e

iαmζ2h
′
2(ζ2)

}
= R

{
e2iα(iρ)2 + P (z2)e

iαmσ2
}

= −ρ2 cos 2α+mσ2B

5 −ρ2 cos 2α+ σ2B

= −Aρ2 −
(
B sinα

cosα

)
ρ− B

2 cosα

= g2(ρ)

5 g2

(
− B sinα

2A cosα

)
=
B2 sin2 α

4A cos2 α
− B

2 cosα
,

which is a contradiction to (1). Therefore, we have

R
{

e−iαp(z)
}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (14)

Hence, by applying the inequalities (9) and (14), we find that

| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

This evidently complete the proof of Theorem 1.

If we take P (z) ≡ β (β > 0) in Theorem 1, then we have the following corollary.

Corollary 1. Let the function p be analytic in U with p(0) = 1. If

R
{

[p(z)]2 + βzp′(z)
}
>

1

2β + 4 cos 2α

{
(β2 + 4β) sin2 α− β2 − 2β

}
(
β > 0; 0 5 α <

π

2
; z ∈ U

)
,

then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

More specially, if we take P (z) ≡ 1 in Theorem 1 or set β = 1 in Corollary 1, we obtain the
following corollary.

Corollary 2. Let the function p be analytic in U with p(0) = 1. If

R
{

[p(z)]2 + zp′(z)
}
>

5 sin2 α− 3

6− 8 sin2 α

(
0 5 α <

π

2
; z ∈ U

)
,

then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

5
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Taking α = 0 in Corollary 2, we have the following corollary.

Corollary 3. Let the function p be analytic in U with p(0) = 1. If

R
{

[p(z)]2 + zp′(z)
}
> −1

2
(z ∈ U),

then
R {p(z)} > 0 (z ∈ U).

The following corollary presents a sufficient condition for starlikeness of analytic functions
in U. It follows easily by taking

p(z) =
zf ′(z)

f(z)
(f ∈ A)

in Corollary 3.

Corollary 4. Let f ∈ A. Then

R

{
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)

)}
> −1

2
(z ∈ U)

implies that f ∈ S∗.

3. Further Sufficient Conditions

We now find another another set of sufficient conditions for Carathéodory functions.

Theorem 2. Let p(z) be a nonzero analytic function in U with p(0) = 1 and∣∣∣∣ zp′(z)[p(z)]2

∣∣∣∣ < 1

2
cosα

(
0 5 α <

π

2
; z ∈ U

)
. (15)

Then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

Proof. As before, we define the functions q(z) and h1(z) by (4) and (5), respectively. We also
suppose that q is not subordinate to h1. Then, by Lemma 1, there exist points z1 ∈ U and
ζ1 ∈ ∂U \ {1} satisfying (6). We note that ρ 6= 0 in (6), since the function p(z) cannot vanish in
U. Thus, from the equations (4), (5), (6) and (7), we obtain∣∣∣∣z1p′(z1)[p(z1)]2

∣∣∣∣ =

∣∣∣∣z1q′(z1)[q(z1)]2

∣∣∣∣ =

∣∣∣∣mζ1h′1(ζ1)[h1(ζ1)]2

∣∣∣∣ =

∣∣∣∣mσ1(iρ)2

∣∣∣∣ .
We also have ∣∣∣∣mσ1(iρ)2

∣∣∣∣ = m
|σ1|
ρ2

= −σ1
ρ2

=
1

2 cosα
g1(ρ),

where

g1(ρ) =
ρ2 − 2ρ sinα+ 1

ρ2
.

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.7, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1248 Young Jae Sim et al 1243-1254



For the case when α 6= 0, since g1 has its minimum at

ρ∗ =
1

sinα
,

we have ∣∣∣∣z1p′(z1)[p(z1)]2

∣∣∣∣ = 1

2 cosα
g1(ρ

∗) =
1

2
cosα,

which is a contradiction to (15). We thus have

q(z) ≺ h1(z) (z ∈ U)

or, equivalently,
R
{

eiαp(z)
}
> 0 (z ∈ U). (16)

We next define the functions r and h2 by (10) and (11), respectively. By using a similar method
as the above, we obtain

R
{

e−iαp(z)
}
> 0 (z ∈ U) (17)

for the case when α 6= 0. Thus, from (16) and (17), we have

| arg {p(z)} | < π

2
− α

(
0 < α <

π

2
; z ∈ U

)
.

For the case when α = 0, we have

g1(ρ) = 1 + ρ−2 = 1 (ρ ∈ R \ {0}) .

We thus have ∣∣∣∣z1p′(z1)[p(z1)]2

∣∣∣∣ = 1

2
g1(ρ) =

1

2
,

which is also a contradiction to (15). Finally, we have

q(z) ≺ h1(z) (z ∈ U)

or, equivalently,

| arg {p(z)} | < π

2
.

We thus find that
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

By setting

p(z) =
zf ′(z)

f(z)
(f ∈ A) and α = 0

in Theorem 2, we can deduce the following corollary.

Corollary 5. Let f ∈ A. Then∣∣∣∣∣∣
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

− 1

∣∣∣∣∣∣ < 1

2

(
0 5 α <

π

2
; z ∈ U

)
implies that f ∈ S∗.

7
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Theorem 3. Let β ∈ C with u := R {β} > 0. Let p be a nonzero analytic function with p(0) = 1
and

δ1(α) < I

{
p(z) + β

zp′(z)

p(z)

}
< δ2(α)

(
0 5 α <

π

2
; z ∈ U

)
, (18)

where

δ1(α) = −
√

(2 cos2 α+ u)u+ u sinα

cosα

and

δ2(α) =

√
(2 cos2 α+ u)u− u sinα

cosα
.

Then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

Proof. We define the functions q and h1 by (4) and (5), respectively. We also suppose that q is
not subordinate to h1. Then, by Lemma 1, there exist points z1 ∈ U and ζ1 ∈ ∂U\{1} satisfying
(6). We also have ρ 6= 0 in (6). Thus, from the equations (4), (5), (6) and (7), we have

I

{
p(z1) + β

z1p
′(z1)

p(z1)

}
= I

{
e−iαq(z1) + β

z1q
′(z1)

q(z1)

}
= I

{
e−iαh(ζ1) + β

mζ1h
′(ζ1)

h(ζ1)

}
= I

{
e−iα(iρ) + β

mσ1
iρ

}
= ρ cosα− mσ1u

ρ
,

where u = R {β} and σ1 is given by (7). For the case when ρ > 0, we have

ρ cosα− mσ1u

ρ

= ρ cosα− σ1u

ρ

= ρ cosα+
u(ρ2 − 2ρ sinα+ 1)

2ρ cosα

=
1

2 cosα

{
(2 cos2 α+ u)ρ+

u

ρ
− 2u sinα

}
=

1

2 cosα

{
2
√

(2 cos2 α+ u)u− 2u sinα
}

= δ2(α).

Therefore, we have

I

{
p(z1) + β

z1p
′(z1)

p(z1)

}
= δ2(α),

which is a contradiction to (18). For the case when ρ < 0, we put

ρ̃ = −ρ > 0.
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Then, by using the same method as the above, we obtain

ρ cosα− mσ1u

ρ

5 −ρ̃ cosα+
σ1u

ρ̃

= − 1

2 cosα

{
(2 cos2 α+ u)ρ̃+

u

ρ̃
+ 2u sinα

}
5 − 1

2 cosα

{
2
√

(2 cos2 α+ u)u+ 2u sinα
}

= δ1(α).

Moreover, this last inequality yields

I

{
p(z1) + β

z1p
′(z1)

p(z1)

}
5 δ1(α),

which is a contradiction to (18). Hence we have

R
{

eiαp(z)
}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (19)

We next define the functions r and h2 by (10) and (11), respectively. Then, by using a similar
method as the above, we obtain

R
{

e−iαp(z)
}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (20)

Thus, from (19) and (20), we have

| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

The proof of Theorem 3 is thus completed.

Remark 1. If we put β = 1 in Theorem 3, then we can obtain the result given earlier by Kim
and Cho [4, Theorem 2].

By setting

p(z) =
zf ′(z)

f(z)
(f ∈ A) and α = 0

in Theorem 3, we can deduce the following corollary.

Corollary 6. Let β ∈ C with u := R {β} > 0 and let f ∈ A. Then∣∣∣∣I{(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)}∣∣∣∣ <√u2 + 2u (z ∈ U)

implies that f ∈ S∗.
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Theorem 4. Let γ ∈ R with γ > 0. Let p be a nonzero analytic function with p(0) = 1 and∣∣∣∣p(z) + γ
zp′(z)

p(z)
− 1

∣∣∣∣ < (γ2 + 1
)
|p(z)| cosα

(
0 5 α <

π

2
; z ∈ U

)
. (21)

Then
| arg {p(z)} | < π

2
− α

(
0 5 α <

π

2
; z ∈ U

)
.

Proof. Let

q(z) =
eiα

p(z)

(
0 5 α <

π

2
; z ∈ U

)
.

Also let the function h1 be defined by (5). If the function q is not subordinate to h1, then there
exist points z1 ∈ U and ζ1 ∈ ∂U \ {1} satisfying (4). By using the equations (4), (5), (6) and
(7), we have

|p(z1) + γ z1p
′(z1)

p(z1)
− 1|

|p(z1)|
= |e−iαq(z1) + e−iαγz1q

′(z1)− 1|
= |h(ζ1) +mγζ1h

′
1(ζ1)− eiα|

= |iρ+mγσ1 − eiα|

=
√

(mγσ1 − cosα)2 + (ρ− sinα)2

=
√

(|σ1|γ + cosα)2 + (ρ− sinα)2

=

√(
γ

2 cosα
(ρ− sinα)2 +

1

2
γ cosα+ cosα

)2

+ (ρ− sinα)2

=
(γ

2
+ 1
)

cosα.

We thus find that ∣∣∣∣p(z1) + γ
z1p
′(z1)

p(z1)
− 1

∣∣∣∣ = (γ2 + 1
)
|p(z1)| cosα,

which is a contradiction to (21). Therefore, we have

q(z) ≺ h1(z) (z ∈ U),

that is,

R

{
eiα

p(z)

}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (22)

We next consider the function r(z) defined by

r(z) =
e−iα

p(z)

(
0 5 α <

π

2
; z ∈ U

)
and the function h2 defined by (11). Using a similar method as the above, we obtain

R

{
e−iα

p(z)

}
> 0

(
0 5 α <

π

2
; z ∈ U

)
. (23)

Therefore, by (22) and (23), we have the assertion of Theorem 4.
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Remark 2. If we put γ = 1 in Theorem 4, then we can obtain the result proven earlier by Kim
and Cho [4, Theorem 3].

If we take

p(z) =
zf ′(z)

f(z)
(f ∈ A) and α = 0

in Theorem 4, we obtain the following result.

Corollary 7. Let γ ∈ R with γ > 0 and let f ∈ A with

f(z)

z
6= 0 (z ∈ U).

Then the following inequality:∣∣∣∣(1− γ)
zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)
− 1

∣∣∣∣ < (γ2 + 1
) ∣∣∣∣zf ′(z)f(z)

∣∣∣∣
implies that f ∈ S∗.
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tions, Proc. Amer. Math. Soc. 107 (1989), 1017–1020.

[4] I. H. Kim and N. E. Cho, Sufficient conditions for Carathéodory functions, Comput. Math.
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Carathéodory functions, J. Math. Anal. Appl. 212 (1997), 324–332.

[11] M. Nunokawa, S. Owa, J. Nishiwaki and H. Saitoh, Sufficient conditions for starlikeness
and convexity of analytic functions with real coefficients, Southeast Asian Bull. Math. 33
(2008), 1149–1155.

[12] M. Nunokawa, S. Owa, N. Takahashi and H. Saitoh, Sufficient conditions for Carathéodory
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