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Abstract

IIn this paper we study existence and uniqueness of solutions for mixed problems consisting non-
local Hadamard fractional integrals for coupled systems of Riemann-Liouville fractional differential
equations. The existence and uniqueness of solutions is established by using the Banach’s contrac-
tion principle, while the existence of solutions is derived by applying Leray-Schauder’s alternative.
Examples illustrating our results are also presented.

Key words and phrases: Riemann-Liouville fractional derivative; Hadamard fractional integral;
coupled system; existence; uniqueness; fixed point theorems.
AMS (MOS) Subject Classifications: 34A08; 34A12; 34B15.

1 Introduction

The aim of this paper is to investigate the existence and uniqueness of solutions for nonlocal Hadamard
fractional integrals for a coupled system of Riemann-Liouville fractional differential equations of the
form: 

RLDpx(t) = f(t, x(t), y(t)), t ∈ [0, T ], 1 < p ≤ 2,

RLDqy(t) = g(t, x(t), y(t)), t ∈ [0, T ], 1 < q ≤ 2,

x(0) = 0,

m1∑
i=1

µiHIαix(ηi) =
n1∑

j=1

δjHIβj y(ξj) + λ1,

y(0) = 0,

m2∑
k=1

τkHIσkx(γk) =
n2∑
l=1

ωlHIνly(θl) + λ2,

(1)

where RLDq, RLDp are the standard Riemann-Liouville fractional derivative of orders q, p, two contin-
uous functions f, g : [0, T ]×R2 → R, HIαi , HIβj , HIσk and HIνl are the Hadamard fractional integral
of orders αi, βj , σk, νl > 0, λ1, λ2 ∈ R are given constants, ηi, ξj , γk, θl ∈ (0, T ), and µi, δj , τk, ωl ∈ R, for
m1,m2, n1, n2 ∈ N, i = 1, 2, . . . ,m1, j = 1, 2, . . . , n1, k = 1, 2, . . . ,m2, l = 1, 2, . . . , n2 are real constants
such that (

m1∑
i=1

µiη
p−1
i

(p − 1)αi

)(
n2∑
l=1

ωlθ
q−1
l

(q − 1)νl

)
6=

 n1∑
j=1

δjξ
q−1
j

(q − 1)βj

 (
m2∑
k=1

τkγp−1
k

(p − 1)σk

)
.

Fractional calculus has a long history with more than three hundred years. Up to now, it has been
proved that fractional calculus is very useful. Many mathematical models of real problems arising
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in various fields of science and engineering were established with the help of fractional calculus, such
as viscoelastic systems, dielectric polarization, electrode-electrolyte polarization, and electromagnetic
waves. For examples and recent development of the topic, see ([1, 2, 3, 4, 5, 6, 7, 14, 16, 17, 18, 19,
20, 21]). However, it has been observed that most of the work on the topic involves either Riemann-
Liouville or Caputo type fractional derivative. Besides these derivatives, Hadamard fractional derivative
is another kind of fractional derivatives that was introduced by Hadamard in 1892 [12]. This fractional
derivative differs from the other ones in the sense that the kernel of the integral (in the definition of
Hadamard derivative) contains logarithmic function of arbitrary exponent. For background material of
Hadamard fractional derivative and integral, we refer to the papers [8, 9, 10, 13, 14, 15].

The paper is organized as follows: In Section 2 we will present some useful preliminaries and
lemmas. The main results are given in Section 3, where existence and uniqueness results are obtained by
using Banach’s contraction principle and Leray-Schauder’s alternative. Finally the uncoupled integral
boundary conditions case is studied in Section 4. Examples illustrating our results are also presented.

2 Preliminaries

In this section, we introduce some notations and definitions of fractional calculus and present preliminary
results needed in our proofs later [18, 14].

Definition 2.1 The Riemann-Liouville fractional derivative of order q > 0 of a continuous function
f : (0,∞) → R is defined by

RLDqf(t) =
1

Γ(n − q)

(
d

dt

)n ∫ t

0

(t − s)n−q−1f(s)ds, n − 1 < q < n,

where n = [q]+1, [q] denotes the integer part of a real number q, provided the right-hand side is point-wise
defined on (0,∞), where Γ is the gamma function defined by Γ(q) =

∫ ∞
0

e−ssq−1ds.

Definition 2.2 The Riemann-Liouville fractional integral of order q > 0 of a continuous function
f : (0,∞) → R is defined by

RLIqf(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s)ds,

provided the right-hand side is point-wise defined on (0,∞).

Definition 2.3 The Hadamard derivative of fractional order q for a function f : (0,∞) → R is defined
as

HDqf(t) =
1

Γ(n − q)

(
t
d

dt

)n ∫ t

0

(
log

t

s

)n−q−1
f(s)

s
ds, n − 1 < q < n, n = [q] + 1,

where log(·) = loge(·).

Definition 2.4 The Hadamard fractional integral of order q ∈ R+ of a function f(t), for all t > 0, is
defined as

HIqf(t) =
1

Γ(q)

∫ t

0

(
log

t

s

)q−1

f(s)
ds

s
,

provided the integral exists.

Lemma 2.5 ([14], page 113) Let q > 0 and β > 0. Then the following formulas

HIqtβ = β−qtβ and HDqtβ = βqtβ

hold.
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Lemma 2.6 Let q > 0 and x ∈ C(0, T )∩L(0, T ). Then the fractional differential equation RLDqx(t) =
0 has a unique solution x(t) = c1t

q−1 + c2t
q−2 + . . . + cntq−n, where ci ∈ R, i = 1, 2, . . . , n, and

n − 1 < q < n.

Lemma 2.7 Let q > 0. Then for x ∈ C(0, T ) ∩ L(0, T ) it holds

RLIq
RLDqx(t) = x(t) + c1t

q−1 + c2t
q−2 + . . . + cntq−n,

where ci ∈ R, i = 1, 2, . . . , n, and n − 1 < q < n.

Lemma 2.8 Given φ, ψ ∈ C([0, T ], R), the unique solution of the problem

RLDpx(t) = φ(t), t ∈ [0, T ], 1 < p ≤ 2,

RLDqy(t) = ψ(t), t ∈ [0, T ], 1 < q ≤ 2,

x(0) = 0,

m1∑
i=1

µiHIαix(ηi) =
n1∑

j=1

δjHIβj y(ξj) + λ1,

y(0) = 0,

m2∑
k=1

τkHIσkx(γk) =
n2∑
l=1

ωlHIνly(θl) + λ2,

(2)

is

x(t) = RLIpφ(t) +
tp−1

Ω

{
n2∑
l=1

ωlθ
q−1
l

(q − 1)νl

(
n1∑

j=1

δjHIβj
RLIqψ(ξj) −

m1∑
i=1

µiHIαi
RLIpφ(ηi) + λ1

)

−
n1∑

j=1

δjξ
q−1
j

(q − 1)βj

(
n2∑
l=1

ωlHIνl
RLIqψ(θl) −

m2∑
k=1

τkHIσk
RLIpφ(γk) + λ2

)}
,

(3)

and

y(t) = RLIqψ(t) +
tq−1

Ω

{
m2∑
k=1

τkγp−1
k

(p − 1)σk

(
n1∑

j=1

δjHIβj
RLIqψ(ξj) −

m1∑
i=1

µiHIαi
RLIpφ(ηi) + λ1

)

−
m1∑
i=1

µiη
p−1
i

(p − 1)αi

(
n2∑
l=1

ωlHIνl
RLIqψ(θl) −

m2∑
k=1

τkHIσk
RLIpφ(γk) + λ2

)}
,

(4)

where

Ω =
m1∑
i=1

µiη
p−1
i

(p − 1)αi

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
−

n1∑
j=1

δjξ
q−1
j

(q − 1)βj

m2∑
k=1

τkγp−1
k

(p − 1)σk
6= 0. (5)

Proof. Using Lemmas 2.6-2.7, the equations in (2) can be expressed as equivalent integral equations

x(t) = RLIpφ(t) + c1t
p−1 + c2t

p−2, (6)

y(t) = RLIqψ(t) + d1t
q−1 + d2t

q−2, (7)

for c1, c2, d1, d2 ∈ R. The conditions x(0) = 0, y(0) = 0 imply that c2 = 0, d2 = 0. Taking the Hadamard
fractional integral of order αi > 0, σk > 0 for (6) and βj > 0, νl > 0 for (7) and using the property of
the Hadamard fractional integral given in Lemma 2.5 we get the system

m1∑
i=1

µiHIαi
RLIpφ(ηi) + c1

m1∑
i=1

µiη
p−1
i

(p − 1)αi
=

n1∑
j=1

δjHIβj
RLIqψ(ξj) + d1

n1∑
j=1

δjξ
q−1
j

(q − 1)βj
+ λ1,

m2∑
k=1

τkHIσk
RLIpφ(γk) + c1

m2∑
k=1

τkγp−1
k

(p − 1)σk
=

n2∑
l=1

ωlHIνl
RLIqψ(θl) + d1

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
+ λ2,
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from which we have

c1 =
1
Ω

{
n2∑
l=1

ωlθ
q−1
l

(q − 1)νl

(
n1∑

j=1

δjHIβj
RLIqψ(ξj) −

m1∑
i=1

µiHIαi
RLIpφ(ηi) + λ1

)

−
n1∑

j=1

δjξ
q−1
j

(q − 1)βj

(
n2∑
l=1

ωlHIνl
RLIqψ(θl) −

m2∑
k=1

τkHIσk
RLIpφ(γk) + λ2

)}

and

d1 =
1
Ω

{
m2∑
k=1

τkγp−1
k

(p − 1)σk

(
n1∑

j=1

δjHIβj
RLIqψ(ξj) −

m1∑
i=1

µiHIαi
RLIpφ(ηi) + λ1

)

−
m1∑
i=1

µiη
p−1
i

(p − 1)αi

(
n2∑
l=1

ωlHIνl
RLIqψ(θl) −

m2∑
k=1

τkHIσk
RLIpφ(γk) + λ2

)}
.

Substituting the values of c1, c2, d1 and d2 in (6) and (7), we obtain the solutions (3) and (4). ¤

3 Main Results

Throughout this paper, for convenience, we use the following expressions

RLIwh(s, x(s), y(s))(v) =
1

Γ(w)

∫ v

0

(v − s)w−1h(s, x(s), y(s))ds,

and

HIu
RLIwh(s, x(s), y(s))(v) =

1
Γ(u)Γ(w)

∫ v

0

∫ t

0

(
log

v

t

)u−1

(t − s)w−1 h(s, x(s), y(s))
t

dsdt,

where u ∈ {ρi, γj}, v ∈ {t, T, ηi, θj}, w = {p, q} and h = {f, g}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Let C = C([0, T ], R) denotes the Banach space of all continuous functions from [0, T ] to R. Let us

introduce the space X = {x(t)|x(t) ∈ C([0, T ])} endowed with the norm ‖x‖ = max{|x(t)|, t ∈ [0, T ]}.
Obviously (X, ‖ · ‖) is a Banach space. Also let Y = {y(t)|y(t) ∈ C([0, T ])} be endowed with the norm
‖y‖ = max{|y(t)|, t ∈ [0, T ]}. Obviously the product space (X × Y, ‖(x, y)‖) is a Banach space with
norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

In view of Lemma 2.8, we define an operator T : X × Y → X × Y by T (x, y)(t) =
(

T1(x, y)(t)
T2(x, y)(t)

)
,

where

T1(x, y)(t) = RLIpf(s, x(s), y(s))(t) +
tp−1

Ω

{
n2∑
l=1

ωlθ
q−1
l

(q − 1)νl

(
n1∑

j=1

δjHIβj
RLIqg(s, x(s), y(s))(ξj)

−
m1∑
i=1

µiHIαi
RLIpf(s, x(s), y(s))(ηi) + λ1

)
−

n1∑
j=1

δjξ
q−1
j

(q − 1)βj

(
n2∑
l=1

ωlHIνl
RLIqg(s, x(s), y(s))(θl)

−
m2∑
k=1

τkHIσk
RLIpf(s, x(s), y(s))(γk) + λ2

)}
,

and

T2(x, y)(t) = RLIqg(s, x(s), y(s))(t) +
tq−1

Ω

{
m2∑
k=1

τkγp−1
k

(p − 1)σk

(
n1∑

j=1

δjHIβj
RLIqg(s, x(s), y(s))(ξj)

−
m1∑
i=1

µiHIαi
RLIpf(s, x(s), y(s))(ηi) + λ1

)
−

m1∑
i=1

µiη
p−1
i

(p − 1)αi

(
n2∑
l=1

ωlHIνl
RLIqg(s, x(s), y(s))(θl)
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−
m2∑
k=1

τkHIσk
RLIpf(s, x(s), y(s))(γk) + λ2

)}
.

Let us introduce the following assumptions which are used hereafter.

(H1) Assume that f, g : [0, T ] × R2 → R are continuous functions and there exist constants mi, ni, i =
1, 2 such that for all t ∈ [0, T ] and ui, vi ∈ R, i = 1, 2,

|f(t, u1, u2) − f(t, v1, v2)| ≤ K1|u1 − v1| + K2|u2 − v2|

and
|g(t, u1, u2) − g(t, v1, v2)| ≤ L1|u1 − v1| + L2|u2 − v2|.

(H2) Assume that there exist real constants ki, li ≥ 0 (i = 1, 2) and k0 > 0, l0 > 0 such that ∀xi ∈
R, (i = 1, 2) we have

|f(t, x1, x2)| ≤ k0 + k1|x1| + k2|x2|, |g(t, x1, x2)| ≤ l0 + l1|x1| + l2|x2|.

For the sake of convenience, we set

M1 =
1

Γ(p + 1)

(
T p +

T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|ηp
i

pαi
+

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|γp
k

pσk

)
, (8)

M2 =
T p−1

|Ω|Γ(q + 1)

(
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |ξq
j

qβj
+

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|θq
l

qνl

)
, (9)

M3 =
T p−1

|Ω|

(
|λ1|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl
+ |λ2|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

)
, (10)

M4 =
1

Γ(q + 1)

(
T q +

T q−1

|Ω|

m2∑
k=1

|τk|γp−1
k

(p − 1)σk

n1∑
j=1

|δj |ξq
j

qβj
+

T q−1

|Ω|

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

n2∑
l=1

|ωl|θq
l

qνl

)
, (11)

M5 =
T q−1

|Ω|Γ(p + 1)

(
m2∑
k=1

|τk|γp−1
k

(p − 1)σk

m1∑
i=1

|µi|ηp
i

pαi
+

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

m2∑
k=1

|τk|γp
k

pσk

)
, (12)

M6 =
T q−1

|Ω|

(
|λ1|

m2∑
k=1

|τk|γp−1
k

(p − 1)σk
+ |λ2|

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

)
, (13)

and

M0 = min{1 − (M1 + M5)k1 − (M2 + M4)l1, 1 − (M1 + M5)k2 − (M2 + M4)l2}, (14)

ki, li ≥ 0 (i = 1, 2).

The first result is concerned with the existence and uniqueness of solutions for the problem (1) and
is based on Banach’s contraction mapping principle.

Theorem 3.1 Assume that (H1) holds. In addition, suppose that

(M1 + M5)(K1 + K2) + (M2 + M4)(L1 + L2) < 1,

where Mi, i = 1, 2, 4, 5 are given by (3.1)-(3.2) and (3.4)-(3.5). Then the boundary value problem (1)
has a unique solution.

Proof. Define supt∈[0,T ] f(t, 0, 0) = N1 < ∞ and supt∈[0,T ] g(t, 0, 0) = N2 < ∞ such that

r ≥ max

{
M1N1 + M2N2 + M3

1 − (M1K1 + M2L1 + M1K2 + M2L2)
,

M4N2 + M5N1 + M6

1 − (M4L1 + M5K1 + M4L2 + M5K2)

}
,
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where M3 and M6 are defined by (3.3) and (3.6), respectively.

We show that T Br ⊂ Br, where Br = {(x, y) ∈ X × Y : ‖(x, y)‖ ≤ r}.

For (x, y) ∈ Br, we have

|T1(x, y)(t)| = max
t∈[0,T ]

{
RLIpf(s, x(s), y(s))(t) +

tp−1

Ω

[
n2∑
l=1

ωlθ
q−1
l

(q − 1)νl

×

(
n1∑

j=1

δjHIβj
RLIqg(s, x(s), y(s))(ξj) −

m1∑
i=1

µiHIαi
RLIpf(s, x(s), y(s))(ηi) + λ1

)

−
n1∑

j=1

δjξ
q−1
j

(q − 1)βj

(
n2∑
l=1

ωlHIνl
RLIqg(s, x(s), y(s))(θl)

−
m2∑
k=1

τkHIσk
RLIpf(s, x(s), y(s))(γk) + λ2

)]}

≤ RLIp(|f(s, x(s), y(s)) − f(s, 0, 0)| + |f(s, 0, 0)|)(T ) +
T p−1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

×

(
n1∑

j=1

|δj |HIβj
RLIq(|g(s, x(s), y(s)) − g(s, 0, 0)| + |g(s, 0, 0)|)(ξj)

+
m1∑
i=1

|µi|HIαi
RLIp(|f(s, x(s), y(s)) − f(s, 0, 0)| + |f(s, 0, 0)|)(ηi) + |λ1|

)

+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
n2∑
l=1

|ωl|HIνl
RLIq(|g(s, x(s), y(s)) − g(s, 0, 0)| + |g(s, 0, 0)|)(θl)

+
m2∑
k=1

|τk|HIσk
RLIp(|f(s, x(s), y(s)) − f(s, 0, 0)| + |f(s, 0, 0)|)(γk) + |λ2|

)]

≤ RLIp(K1‖x‖ + K2‖y‖ + N1)(T ) +
T p−1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

×

(
n1∑

j=1

|δj |HIβj
RLIq(L1‖x‖ + L2‖y‖ + N2)(ξj)

+
m1∑
i=1

|µi|HIαi
RLIp(K1‖x‖ + K2‖y‖ + N1)(ηi) + |λ1|

)

+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
n2∑
l=1

|ωl|HIνl
RLIq(L1‖x‖ + L2‖y‖ + N2)(θl)

+
m2∑
k=1

|τk|HIσk
RLIp(K1‖x‖ + K2‖y‖ + N1)(γk) + |λ2|

)]

= (K1‖x‖ + K2‖y‖ + N1)

{
RLIp(1)(T ) +

T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|HIαi
RLIp(1)(ηi)

+
T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|HIσk
RLIp(1)(γk)

}
+ (L1‖x‖ + L2‖y‖ + N2)

{
T p−1

|Ω|

×
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |HIβj
RLIq(1)(ξj) +

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|HIνl
RLIq(1)(θl)

}
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+|λ1|
T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl
+ |λ2|

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

= (K1‖x‖ + K2‖y‖ + N1)

{
T p

Γ(p + 1)
+

T p−1

|Ω|Γ(p + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|ηp
i

pαi

+
T p−1

|Ω|Γ(p + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|γp
k

pσk

}
+ (L1‖x‖ + L2‖y‖ + N2)

{
T p−1

|Ω|Γ(q + 1)

×
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |ξq
j

qβj
+

T p−1

|Ω|Γ(q + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|θq
l

qνl

}

+|λ1|
T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl
+ |λ2|

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

= (K1‖x‖ + K2‖y‖ + N1)M1 + (L1‖x‖ + L2‖y‖ + N2)M2 + M3

= (M1K1 + M2L1)‖x‖ + (M1K2 + M2L2)‖y‖ + M1N1 + M2N2 + M3

≤ (M1K1 + M2L1 + M1K2 + M2L2)r + M1N1 + M2N2 + M3 ≤ r.

In the same way, we can obtain that

|T2(x, y)(t)| ≤ (L1‖x‖ + L2‖y‖ + N2)

{
T q

Γ(q + 1)
+

T q−1

|Ω|Γ(q + 1)

m2∑
k=1

|τk|γp−1
k

(p − 1)σk

n1∑
j=1

|δj |ξq
j

qβj

+
T q−1

|Ω|Γ(q + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

n2∑
l=1

|ωl|θq
l

qνl

}
+ (K1‖x‖ + K2‖y‖ + N1)

{
T q−1

|Ω|Γ(p + 1)

×
m2∑
k=1

|τk|γp−1
k

(p − 1)σk

m1∑
i=1

|µi|ηp
i

pαi
+

T q−1

|Ω|Γ(p + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

m2∑
k=1

|τk|γp
k

pσk

}

+|λ1|
T q−1

|Ω|

m2∑
k=1

|τk|γp−1
k

(p − 1)σk
+ |λ2|

T q−1

|Ω|

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

= (L1‖x‖ + L2‖y‖ + N2)M4 + (K1‖x‖ + K2‖y‖ + N1)M5 + M6

= (M4L1 + M5K1)‖x‖ + (M4L2 + M5K2)‖y‖ + M4N2 + M5N1 + M6

≤ (M4L1 + M5K1 + M4L2 + M5K2)r + M4N2 + M5N1 + M6 ≤ r.

Consequently, ‖T (x, y)(t)‖ ≤ r.

Now for (x2, y2), (x1, y1) ∈ X × Y, and for any t ∈ [0, T ], we get

|T1(x2, y2)(t) − T1(x1, y1)(t)|

≤ RLIp|f(s, x2(s), y2(s)) − f(s, x1(s), y1(s))|(T ) +
T p−1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

×

(
n1∑

j=1

|δj |HIβj
RLIq(|g(s, x2(s), y2(s)) − g(s, x1(s), y1(s))|)(ξj)

+
m1∑
i=1

|µi|HIαi
RLIp(|f(s, x2(s), y2(s)) − f(s, x1(s), y1(s))|)(ηi)

)

+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
n2∑
l=1

|ωl|HIνl
RLIq(|g(s, x2(s), y2(s)) − g(s, x1(s), y1(s))|)(θl)

+
m2∑
k=1

|τk|HIσk
RLIp(|f(s, x2(s), y2(s)) − f(s, x1(s), y1(s))|)(γk)

)]

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

819 Ntouyas et al 813-828



S. K. NTOUYAS, J. TARIBOON AND P. THIRAMANUS

≤ (K1‖x2 − x1‖ + K2‖y2 − y1‖)

{
T p

Γ(p + 1)
+

T p−1

|Ω|Γ(p + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|ηp
i

pαi

+
T p−1

|Ω|Γ(p + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|γp
k

pσk

}
+ (L1‖x2 − x1‖ + L2‖y2 − y1‖)

×

{
T p−1

|Ω|Γ(q + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |ξq
j

qβj
+

T p−1

|Ω|Γ(q + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|θq
l

qνl

}
= (K1‖x2 − x1‖ + K2‖y2 − y1‖)M1 + (L1‖x2 − x1‖ + L2‖y2 − y1‖)M2

= (M1K1 + M2L1)‖x2 − x1‖ + (M1K2 + M2L2)‖y2 − y1‖,

and consequently we obtain

‖T1(x2, y2)(t) − T1(x1, y1)‖ ≤ (M1K1 + M2L1 + M1K2 + M2L2)[‖x2 − x1‖ + ‖y2 − y1‖]. (15)

Similarly,

‖T2(x2, y2)(t) − T2(x1, y1)‖ ≤ (M4L1 + M5K1 + M4L2 + M5K2)[‖x2 − x1‖ + ‖y2 − y1‖]. (16)

It follows from (15) and (16) that

‖T (x2, y2)(t) − T (x1, y1)(t)‖ ≤ [(M1 + M5)(K1 + K2) + (M2 + M4)(L1 + L2)](‖x2 − x1‖ + ‖y2 − y1‖).

Since (M1 + M5)(K1 + K2) + (M2 + M4)(L1 + L2) < 1, therefore, T is a contraction operator. So, By
Banach’s fixed point theorem, the operator T has a unique fixed point, which is the unique solution of
problem (1). This completes the proof. ¤

In the next result, we prove the existence of solutions for the problem (1) by applying Leray-Schauder
alternative.

Lemma 3.2 (Leray-Schauder alternative) ([11], page.4.) Let F : E → E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.

Then either the set E(F ) is unbounded, or F has at least one fixed point.

Theorem 3.3 Assume that (H2) holds. In addition it is assumed that

(M1 + M5)k1 + (M2 + M4)l1 < 1 and (M1 + M5)k2 + (M2 + M4)l2 < 1,

where M1, M2, M4, M5 are given by (3.1)-(3.2) and (3.4)-(3.5). Then there exists at least one solution
for the boundary value problem (1).

Proof. First we show that the operator T : X × Y → X × Y is completely continuous. By continuity
of functions f and g, the operator T is continuous.

Let Θ ⊂ X × Y be bounded. Then there exist positive constants P1 and P2 such that

|f(t, x(t), y(t))| ≤ P1, |g(t, x(t), y(t))| ≤ P2, ∀(x, y) ∈ Θ.

Then for any (x, y) ∈ Θ, we have

‖T1(x, y)‖ ≤ RLIp|f(s, x(s), y(s))|(T ) +
T p−1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

(
n1∑

j=1

|δj |HIβj
RLIq|g(s, x(s), y(s))|(ξj)

+
m1∑
i=1

|µi|HIαi
RLIp|f(s, x(s), y(s))|(ηi) + |λ1|

)
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+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
n2∑
l=1

|ωl|HIνl
RLIq|g(s, x(s), y(s))|(θl)

+
m2∑
k=1

|τk|HIσk
RLIp|f(s, x(s), y(s))|(γk) + |λ2|

)]

≤

(
T p

Γ(p + 1)
+

T p−1

|Ω|Γ(p + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|ηp
i

pαi

+
T p−1

|Ω|Γ(p + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|γp
k

pσk

)
P1 +

(
T p−1

|Ω|Γ(q + 1)

×
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |ξq
j

qβj
+

T p−1

|Ω|Γ(q + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|θq
l

qνl

)
P2

+|λ1|
T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl
+ |λ2|

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

= M1P1 + M2P2 + M3.

Similarly, we get

‖T2(x, y)‖ ≤

(
T q

Γ(q + 1)
+

T q−1

|Ω|Γ(q + 1)

m2∑
k=1

|τk|γp−1
k

(p − 1)σk

n1∑
j=1

|δj |ξq
j

qβj

+
T q−1

|Ω|Γ(q + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

n2∑
l=1

|ωl|θq
l

qνl

)
P2 +

(
T q−1

|Ω|Γ(p + 1)

×
m2∑
k=1

|τk|γp−1
k

(p − 1)σk

m1∑
i=1

|µi|ηp
i

pαi
+

T q−1

|Ω|Γ(p + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

m2∑
k=1

|τk|γp
k

pσk

)
P1

+|λ1|
T q−1

|Ω|

m2∑
k=1

|τk|γp−1
k

(p − 1)σk
+ |λ2|

T q−1

|Ω|

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

= M4P2 + M5P1 + M6.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then we have

|T1(x(t2), y(t2)) − T1(x(t1), y(t1))|

≤ 1
Γ(p)

∫ t1

0

[(t2 − s)p−1 − (t1 − s)p−1]|f(s, x(s), y(s))|ds

+
1

Γ(p)

∫ t2

t1

(t2 − s)p−1|f(s, x(s), y(s))|ds +
tp−1
2 − tp−1

1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

×

(
n1∑

j=1

|δj |HIβj
RLIq|g(s, x(s), y(s))|(ξj) +

m1∑
i=1

|µi|HIαi
RLIp|f(s, x(s), y(s))|(ηi) + |λ1|

)

+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
n2∑
l=1

|ωl|HIνl
RLIq|g(s, x(s), y(s))|(θl)

+
m2∑
k=1

|τk|HIσk
RLIp|f(s, x(s), y(s))|(γk) + |λ2|

)]

≤ P1

Γ(p)

∫ t1

0

[(t2 − s)p−1 − (t1 − s)p−1]ds +
P1

Γ(p)

∫ t2

t1

(t2 − s)p−1ds
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+
tp−1
2 − tp−1

1

|Ω|

[
n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

(
P2

n1∑
j=1

|δj |ξq
j

qβj Γ(q + 1)
) + P1

m1∑
i=1

|µi|ηp
i

pαiΓ(p + 1)
+ |λ1|

)

+
n1∑

j=1

|δj |ξq−1
j

(q − 1)βj

(
P2

n2∑
l=1

|ωl|θq
l

qνlΓ(q + 1)
+ P1

m2∑
k=1

|τk|γp
k

pσkΓ(p + 1)
+ |λ2|

)]
.

Analogously, we can obtain

|T2(x(t2), y(t2)) − T2(x(t1), y(t1))|

≤ P2

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]ds +
P2

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

+
tq−1
2 − tq−1

1

|Ω|

[
m2∑
k=1

|τk|γp−1
k

(p − 1)σk

(
P2

n1∑
j=1

|δj |ξq
j

qβj Γ(q + 1)
) + P1

m1∑
i=1

|µi|ηp
i

pαiΓ(p + 1)
+ |λ1|

)

+
m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

(
P2

n2∑
l=1

|ωl|θq
l

qνlΓ(q + 1)
+ P1

m2∑
k=1

|τk|γp
k

pσkΓ(p + 1)
+ |λ2|

)]
.

Therefore, the operator T (x, y) is equicontinuous, and thus the operator T (x, y) is completely contin-
uous.

Finally, it will be verified that the set E = {(x, y) ∈ X ×Y |(x, y) = λT (x, y), 0 ≤ λ ≤ 1} is bounded.
Let (x, y) ∈ E , then (x, y) = λT (x, y). For any t ∈ [0, T ], we have

x(t) = λT1(x, y)(t), y(t) = λT2(x, y)(t).

Then

|x(t)| ≤ (k0 + k1‖x‖ + k2‖y‖)

(
T p

Γ(p + 1)
+

T p−1

|Ω|Γ(p + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

m1∑
i=1

|µi|ηp
i

pαi

+
T p−1

|Ω|Γ(p + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

m2∑
k=1

|τk|γp
k

pσk

)
+ (l0 + l1‖x‖ + l2‖y‖)

×

(
T p−1

|Ω|Γ(q + 1)

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl

n1∑
j=1

|δj |ξq
j

qβj
+

T p−1

|Ω|Γ(q + 1)

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

n2∑
l=1

|ωl|θq
l

qνl

)

+|λ1|
T p−1

|Ω|

n2∑
l=1

|ωl|θq−1
l

(q − 1)νl
+ |λ2|

T p−1

|Ω|

n1∑
j=1

|δj |ξq−1
j

(q − 1)βj

and

|y(t)| ≤ (l0 + l1‖x‖ + l2‖y‖)

(
T q

Γ(q + 1)
+

T q−1

|Ω|Γ(q + 1)

m2∑
k=1

|τk|γp−1
k

(p − 1)σk

n1∑
j=1

|δj |ξq
j

qβj

+
T q−1

|Ω|Γ(q + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

n2∑
l=1

|ωl|θq
l

qνl

)
+ (k0 + k1‖x‖ + k2‖y‖)

×

(
T q−1

|Ω|Γ(p + 1)

m2∑
k=1

|τk|γp−1
k

(p − 1)σk

m1∑
i=1

|µi|ηp
i

pαi
+

T q−1

|Ω|Γ(p + 1)

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi

m2∑
k=1

|τk|γp
k

pσk

)

+|λ1|
T q−1

|Ω|

m2∑
k=1

|τk|γp−1
k

(p − 1)σk
+ |λ2|

T q−1

|Ω|

m1∑
i=1

|µi|ηp−1
i

(p − 1)αi
.

Hence we have

‖x‖ ≤ (k0 + k1‖x‖ + k2‖y‖)M1 + (l0 + l1‖x‖ + l2‖y‖)M2 + M3
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and

‖y‖ ≤ (l0 + l1‖x‖ + l2‖y‖)M4 + (k0 + k1‖x‖ + k2‖y‖)M5 + M6,

which imply that

‖x‖ + ‖y‖ ≤ (M1 + M5)k0 + (M2 + M4)l0 + [(M1 + M5)k1 + (M2 + M4)l1]‖x‖
+[(M1 + M5)k2 + (M2 + M4)l2]‖y‖ + M3 + M6.

Consequently,

‖(x, y)‖ ≤ (M1 + M5)k0 + (M2 + M4)l0 + M3 + M6

M0
,

for any t ∈ [0, T ], where M0 is defined by (14), which proves that E is bounded. Thus, by Lemma 3.2,
the operator T has at least one fixed point. Hence the boundary value problem (1) has at least one
solution. The proof is complete. ¤

3.1 Examples

Example 3.4 Consider the following system of coupled Riemann-Liouville fractional differential equa-
tions with Hadamard type fractional integral boundary conditions

RLD4/3x(t) =
t

(t + 6)2
|x(t)|

(1 + |x(t)|)
+

e−t

(t2 + 3)3
|y(t)|

(1 + |y(t)|)
+

3
4
, t ∈ [0, 2],

RLD3/2y(t) =
1
18

sinx(t) +
1

22t + 19
cos y(t) +

5
4
, t ∈ [0, 2],

x(0) = 0, 2HI2/3x(3/5) + πHI7/5x(1) =
√

2HI3/2y(1/3) + e2
HI5/4y(

√
3) + 4,

y(0) = 0, −3HI9/5x(2/3) + 4HI7/4x(9/7) +
2
5HI1/3x(

√
2)

=
e

2HI11/6y(8/5) − 2HI12/11y(1/4) − 10.

(17)

Here p = 4/3, q = 3/2, T = 2, λ1 = 4, λ2 = −10, m1 = 2, n1 = 2, m2 = 3, n2 = 2, µ1 = 2,
µ2 = π, α1 = 2/3, α2 = 7/5, η1 = 3/5, η2 = 1, δ1 =

√
2, δ2 = e2, β1 = 3/2, β2 = 5/4, ξ1 = 1/3,

ξ2 =
√

3, τ1 = −3, τ2 = 4, τ3 = 2/5, σ1 = 9/5, σ2 = 7/4, σ3 = 1/3, γ1 = 2/3, γ2 = 9/7, γ3 =
√

2,
ω1 = e/2, ω2 = −2, ν1 = 11/6, ν2 = 12/11, θ1 = 8/5, θ2 = 1/4 and f(t, x, y) = (t|x|)/(((t + 6)2)(1 +
|x|)) + (e−t|y|)/(((t2 + 3)3)(1 + |y|)) + (3/4) and g(t, x, y) = (sinx/18) + (cos y)/(22t + 19) + (5/4).
Since |f(t, x1, y1) − f(t, x2, y2)| ≤ ((1/18)|x1 − x2| + (1/27)|y1 − y2|) and |g(t, x1, y1) − g(t, x2, y2)| ≤
((1/18)|x1 − x2| + (1/20)|y1 − y2|). By using the Maple program, we can find

Ω =
m1∑
i=1

µiη
p−1
i

(p − 1)αi

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
−

n1∑
j=1

δjξ
q−1
j

(q − 1)βj

m2∑
k=1

τkγp−1
k

(p − 1)σk
≈ −218.9954766 6= 0.

With the given values, it is found that K1 = 1/18, K2 = 1/27, L1 = 1/18, L2 = 1/20, M1 '
2.847852451, M2 ' 0.5295490231, M4 ' 4.723846069, M5 ' 1.276954854, and

(M1 + M5)(K1 + K2) + (M2 + M4)(L1 + L2) ' 0.9364516398 < 1.

Thus all the conditions of Theorem 3.1 are satisfied. Therefore, by the conclusion of Theorem 3.1, the
problem (17) has a unique solution on [0, 2].

Example 3.5 Consider the following system of coupled Riemann-Liouville fractional differential equa-
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tions with Hadamard type fractional integral boundary conditions

RLDπ/2x(t) =
2
5

+
1

(t + 6)2
tan−1 x(t) +

1
20e

y(t), t ∈ [0, 3],

RLD7/4y(t) =
√

π

2
+

1
42

sinx(t) +
1

t + 20
y(t) cos x(t), t ∈ [0, 3],

x(0) = 0, 3HI1/4x(5/2) +
√

5HI
√

2x(7/8) + tan(4)HI
√

3x(9/4)

=
√

8π

3 HI5/3y(5/4) − 2HI6/11y(π/3) + 2,

y(0) = 0, −2
3HI2/3x(π/2) + 3HI6/5x(5/3) +

√
2

π
HI1/3x(

√
2)

+
7
9HI11/9x(

√
5) = eHI7/6y(π/6) − log(9)HI3/4y(7/4) − 1.

(18)

Here p = π/2, q = 7/4, T = 3, λ1 = 2, λ2 = −1, m1 = 3, n1 = 2, m2 = 4, n2 = 2, µ1 = 3, µ2 =
√

5,
µ3 = tan(4), α1 = 1/4, α2 =

√
2, α3 =

√
3, η1 = 5/2, η2 = 7/8, η3 = 9/4, δ1 =

√
8π/3, δ2 = −2,

β1 = 5/3, β2 = 6/11, ξ1 = 5/4, ξ2 = π/3, τ1 = −2/3, τ2 = 3, τ3 =
√

2/π, τ4 = 7/9, σ1 = 2/3,
σ2 = 6/5, σ3 = 1/3, σ4 = 11/9, γ1 = π/2, γ2 = 5/3, γ3 =

√
2, γ4 =

√
5, ω1 = e, ω2 = − log(9),

ν1 = 7/6, ν2 = 3/4, θ1 = π/6, θ2 = 7/4, f(t, x, y) = (2/5) + (tan−1 x)/((t + 6)2) + (y)/(20e) and
g(t, x, y) = (

√
π/2) + (sin x)/(42) + (y cos x)/(t + 20). By using the Maple program, we get

Ω =
m1∑
i=1

µiη
p−1
i

(p − 1)αi

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
−

n1∑
j=1

δjξ
q−1
j

(q − 1)βj

m2∑
k=1

τkγp−1
k

(p − 1)σk
≈ −59.01857601 6= 0.

Since |f(t, x, y)| ≤ k0 + k1|x| + k2|y| and |g(t, x, y)| ≤ l0 + l1|x| + l2|y|, where k0 = 2/5, k1 = 1/36,
k2 = 1/(20e), l0 =

√
π/2, l1 = 1/42, l2 = 1/20, it is found that M1 ' 7.406711671, M2 ' 1.110132269,

M4 ' 6.802999724, M5 ' 7.790182643. Furthermore, we can find that

(M1 + M5)k1 + (M2 + M4)l1 ≈ 0.6105438577 < 1,

and
(M1 + M5)k2 + (M2 + M4)l2 ≈ 0.6751878489 < 1.

Thus all the conditions of Theorem 3.3 holds true and consequently the conclusion of Theorem 3.3, the
problem (18) has at least one solution on [0, 3].

4 Uncoupled integral boundary conditions case

In this section we consider the following system

RLDpx(t) = f(t, x(t), y(t)), t ∈ [0, T ], 1 < p ≤ 2,

RLDqy(t) = g(t, x(t), y(t)), t ∈ [0, T ], 1 < q ≤ 2,

x(0) = 0,

m1∑
i=1

µiHIαix(ηi) =
n1∑

j=1

δjHIβj x(ξj) + λ1,

y(0) = 0,

m2∑
k=1

τkHIσky(γk) =
n2∑
l=1

ωlHIνly(θl) + λ2.

(19)

Lemma 4.1 (Auxiliary Lemma) For h ∈ C([0, T ], R), the unique solution of the problem
RLDpx(t) = h(t), 1 < p ≤ 2, t ∈ [0, T ]

x(0) = 0,

m1∑
i=1

µiHIαix(ηi) =
n1∑

j=1

δjHIβj x(ξj) + λ1,
(20)
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is given by

x(t) = RLIph(t) +
tp−1

Λ

 n1∑
j=1

δjHIβj
RLIph(ξj) −

m1∑
i=1

µiHIαi
RLIph(ηi) + λ1

 , (21)

where

Λ :=
m1∑
i=1

µiη
p−1
i

(p − 1)αi
−

n1∑
j=1

δjξ
p−1
j

(p − 1)βj
6= 0. (22)

4.1 Existence results for uncoupled case

In view of Lemma 4.1, we define an operator T : X × Y → X × Y by T(u, v)(t) =
(

T1(u, v)(t)
T2(u, v)(t)

)
where

T1(u, v)(t) = RLIpf(s, u(s), v(s))(t) +
tp−1

Λ

(
n1∑

j=1

δjHIβj
RLIpf(s, u(s), v(s))(ξj)

−
m1∑
i=1

µiHIαi
RLIpf(s, u(s), v(s))(ηi) + λ1

)
,

and

T2(u, v)(t) = RLIqg(s, u(s), v(s))(t) +
tq−1

Φ

(
n2∑
l=1

ωlHIνl
RLIqg(s, u(s), v(s))(θl)

−
m2∑
k=1

τkHIσk
RLIqg(s, u(s), v(s))(γk) + λ2

)
,

where

Φ =
m2∑
k=1

τkγq−1
k

(q − 1)σk
−

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
6= 0.

In the sequel, we set

M1 =
1

Γ(p + 1)

T p +
T p−1

|Λ|

n1∑
j=1

|δj |ξp
j

pβj
+

T p−1

|Λ|

m1∑
i=1

|µi|ηp
i

pαi

 , (23)

M2 =
T p−1λ1

|Λ|
, (24)

M3 =
1

Γ(q + 1)

(
T q +

T q−1

|Φ|

n2∑
l=1

|ωl|θq
l

qνl
+

T q−1

|Φ|

m2∑
k=1

|τk|γq
k

qσk

)
, (25)

M4 =
T q−1λ2

|Φ|
. (26)

Now we present the existence and uniqueness result for the problem (19). We do not provide the
proof of this result as it is similar to the one for Theorem 3.1.

Theorem 4.2 Assume that f, g : [0, T ] × R2 → R are continuous functions and there exist constants
Ki, Li, i = 1, 2 such that for all t ∈ [0, T ] and ui, vi ∈ R, i = 1, 2,

|f(t, u1, u2) − f(t, v1, v2)| ≤ K1|u1 − v1| + K2|u2 − v2|
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and
|g(t, u1, u2) − g(t, v1, v2)| ≤ L1|u1 − v1| + L2|u2 − v2|.

In addition, assume that
M1(K1 + K2) + M3(L1 + L2) < 1,

where M1 and M3 are given by (23) and (25) respectively. Then the boundary value problem (19) has
a unique solution.

Example 4.3 Consider the following system of coupled Riemann-Liouville fractional differential equa-
tions with uncoupled Hadamard type fractional integral boundary conditions

RLDe/2x(t) =
cos(πt)

(πt + 4)2
|x(t)|

|x(t)| + 2
+

3et/2

(t + 5)3
|y(t)|

|y(t)| + 3
+

2
e
, t ∈ [0, 4],

RLD
√

3y(t) =
sinx(t)

15(et + 3)
+

2
√
|y(t)| + 1

7π(t + 3)
+ 5, t ∈ [0, 4],

x(0) = 0,
√

11HI5/2x(2/3) +
tan2(5)

20 HI10/3x(π) =
5
e

HI3/7x(e)

− 7
6HI

√
5x(

√
2) +

π

2 HI2/5x(12/7) + 11,

y(0) = 0,
log(15)

9 HI7/4y(1/4) + 2HI5/6y(
√

7)

=
π2

15 HI4/3y(1/e) +
√

5HI9/7y(7/2) +
√

8/3.

(27)

Here p = e/2, q =
√

3, T = 4, λ1 = 11, λ2 =
√

8/3, m1 = 2, n1 = 3, m2 = 2, n2 = 2, µ1 =
√

11,
µ2 = tan2(5)/20, α1 = 5/2, α2 = 10/3, η1 = 2/3, η2 = π, δ1 = 5/e, δ2 = −7/6, δ3 = π/2, β1 = 3/7,
β2 =

√
5, β3 = 2/5, ξ1 = e, ξ2 =

√
2, ξ3 = 12/7, τ1 = log(15)/9, τ2 = 2, σ1 = 7/4, σ2 = 5/6,

γ1 = 1/4, γ2 =
√

7, ω1 = π2/15, ω2 =
√

5, ν1 = 4/3, ν2 = 9/7, θ1 = 1/e, θ2 = 7/2, f(t, x, y) =
(cos(πt)|x|)/(((πt+4)2)(|x|+2))+(3et/2|y|)/(((t+5)3)(|y|+3))+(2/e) and g(t, x, y) = (sin x(t))/(15(et+
3))+(2

√
|y| + 1)/(7π(t+3))+5. Since |f(t, x1, y1)−f(t, x2, y2)| ≤ ((1/50)|x1 −x2|+(e2/125)|y1 −y2|)

and |g(t, x1, y1)− g(t, x2, y2)| ≤ ((1/60)|x1 −x2|+(1/(21π))|y1 − y2|). By using the Maple program, we
can find

Λ :=
m1∑
i=1

µiη
p−1
i

(p − 1)αi
−

n1∑
j=1

δjξ
p−1
j

(p − 1)βj
≈ 69.35947949 6= 0

and

Φ =
m2∑
k=1

τkγq−1
k

(q − 1)σk
−

n2∑
l=1

ωlθ
q−1
l

(q − 1)νl
≈ −3.358717154 6= 0.

With the given values, it is found that K1 = 1/50, K2 = e2/125, L1 = 1/60, L2 = 1/(21π), M1 '
5.673444294, M3 ' 15.54186374. In consequence,

M1(K1 + K2) + M3(L1 + L2) ≈ 0.9434486991 < 1.

Thus all the conditions of Theorem 4.2 are satisfied. Therefore, there exists a unique solution for the
problem (27) on [0, 4].

The second result dealing with the existence of solutions for the problem (19) is analogous to
Theorem 3.3 and is given below.

Theorem 4.4 Assume that there exist real constants k̄i, l̄i ≥ 0 (i = 1, 2) and k̄0 > 0, l̄0 > 0 such that
∀xi ∈ R, (i = 1, 2) we have

|f(t, x1, x2)| ≤ k̄0 + k̄1|x1| + k̄2|x2|,

|g(t, x1, x2)| ≤ l̄0 + l̄1|x1| + l̄2|x2|.
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In addition it is assumed that

k̄1M1 + l̄1M3 < 1 and k̄2M1 + l̄2M3 < 1,

where M1 and M3 are given by (23) and (25) respectively. Then the boundary value problem (19) has
at least one solution.

Proof. Setting

M0 = min{1 − k̄1M1 − l̄1M3, 1 − k̄2M1 − l̄2M3}, k̄i, l̄i ≥ 0 (i = 1, 2),

the proof is similar to that of Theorem 3.3. So we omit it. ¤
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Abstract. Let A be a Banach ternary algebra. An additive mapping D : (A, [ ])→ (A, [ ]) is called a ternary Jordan ring
derivation if D([xxx]) = [D(x)xx] + [xD(x)x] + [xxD(x)] for all x ∈ A.

In this paper, we prove the Hyers-Ulam stability of ternary Jordan ring derivations on Banach ternary algebras.

1. Introduction

We say that a functional equation (Q) is stable if any function g satisfying the equation (Q) approximately is near to
true solution of (Q). Also, we say that a functional equation is superstable if every approximately solution is an exact
solution of it.

Recently, Bavand Savadkouhi et al. [4] investigate the stability of ternary Jordan derivations on Banach ternary algebras
by direct methods.

Ternary algebraic operations were considered in the 19th century by several mathematicians. Cayley [7] introduced the
notion of cubic matrix, which in turn was generalized by Kapranov, Gelfand and Zelevinskii [17].

The comments on physical applications of ternary structures can be found in [3, 12, 13, 14, 22, 23, 26, 28, 31, 32].
Let A be a Banach ternary algebra. An additive mapping D : (A, [ ])→ (A, [ ]) is called a ternary ring derivation if

D([xyz]) = [D(x)yz] + [xD(y)z] + [xyD(z)]

for all x, y, z ∈ A.
An additive mapping D : (A, [ ])→ (A, [ ]) is called a ternary Jordan ring derivation if

D([xxx]) = [D(x)xx] + [xD(x)x] + [xxD(x)]

for all x ∈ A.
Theorem 1.1. ([11]) Suppose that (Ω, d) is a complete generalized metric space and T : Ω → Ω is a strictly contractive
mapping with the Lipschitz constant L. Then, for any x ∈ Ω, either

d(Tnx, Tn+1x) =∞, ∀n ≥ 0,

or there exists a positive integer n0 such that
(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0;
(2) the sequence {Tnx} is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Ty) for all y ∈ Λ.

The study of stability problems originated from a famous talk given by Ulam [30] in 1940: “Under what condition
does there exist a homomorphism near an approximate homomorphism?” In the next year 1941, Hyers [15] answered
affirmatively the question of Ulam for additive mappings between Banach spaces. A generalized version of the theorem of
Hyers for approximately additive mappings was given by Rassias [24] in 1978. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many interesting results concerning
this problem (see [1, 5, 8, 10, 18, 19, 20, 21, 25, 27, 29, 33, 34]).

In this paper, we prove the Hyers-Ulam stability and superstability of ternary Jordan ring derivations on Banach
ternary algebras by the fixed point method.

02010 Mathematics Subject Classification. Primary 39B52; 39B82; 47H10; 46B99; 17A40.
0Keywords: Hyers-Ulam stability; ternary ring derivation; Banach ternary algebra; fixed point method; ternary Jordan

ring derivation.
0∗Corresponding author.
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2. Hyers-Ulam stability of ternary Jordan ring derivations

In this section, we prove the Hyers-Ulam stability of ternary Jordan ring derivations on Banach ternary algebras.
Throughout this section, assume that A is a Banach ternary algebra.

Lemma 2.1. Let f : A→ A be an additive mapping. Then the following assertions are equivalent.

f([a, a, a]) = [f(a), a, a] + [a, f(a), a] + [a, a, f(a)] (2.1)

for all a ∈ A, and

f([a, b, c] + [b, c, a] + [c, a, b]) =[f(a), b, c] + [a, f(b), c] + [a, b, f(c)] + [f(b), c, a] + [b, f(c), a]

+ [b, c, f(a)] + [f(c), a, b] + [c, f(a), b] + [c, a, f(b)]
(2.2)

for all a, b, c ∈ A.

Proof. Replacing a by a+ b+ c in (2.1), we have

f([(a+ b+ c), (a+ b+ c), (a+ b+ c)]) =[f(a+ b+ c), (a+ b+ c), (a+ b+ c)] + [(a+ b+ c), f(a+ b+ c), (a+ b+ c)]

+ [(a+ b+ c), (a+ b+ c), f(a+ b+ c)]

and so

f([(a+ b+ c), (a+ b+ c), (a+ b+ c)])

= f([a, a, a] + [a, b, a] + [a, c, a] + [b, a, a] + [b, b, a] + [b, c, a] + [c, a, a] + [c, b, a] + [c, c, a]

+ [a, a, b] + [a, b, b] + [a, c, b] + [b, a, b] + [b, b, b] + [b, c, b] + [c, a, b] + [c, b, b] + [c, c, b]

+ [a, a, c] + [a, b, c] + [a, c, c] + [b, a, c] + [b, b, c] + [b, c, c] + [c, a, c] + [c, b, c] + [c, c, c])

= f([a, a, a]) + f([a, b, a]) + f([a, c, a]) + f([b, a, a]) + f([b, b, a]) + f([b, c, a]) + f([c, a, a]) + f([c, b, a]) + f([c, c, a])

+ f([a, a, b]) + f([a, b, b]) + f([a, c, b]) + f([b, a, b]) + f([b, b, b]) + f([b, c, b]) + f([c, a, b]) + f([c, b, b]) + f([c, c, b])

+ f([a, a, c]) + f([a, b, c]) + f([a, c, c]) + f([b, a, c]) + f([b, b, c]) + f([b, c, c]) + f([c, a, c]) + f([c, b, c]) + f([c, c, c])

= [f(a), a, a] + [a, f(a), a] + [a, a, f(a)] + [f(a), b, a] + [a, f(b), a] + [a, b, f(a)] + [f(a), c, a] + [a, f(c), a] + [a, c, f(a)]

+ [f(b), a, a] + [b, f(a), a] + [b, a, f(a)] + [f(b), b, a] + [b, f(b), a] + [b, b, f(a)] + [f(b), c, a] + [b, f(c), a] + [b, c, f(a)]

+ [f(c), a, a] + [c, f(a), a] + [c, a, f(a)] + [f(c), b, a] + [c, f(b), a] + [c, b, f(a)] + [f(c), c, a] + [c, f(c), a] + [c, c, f(a)]

+ [f(a), a, b] + [a, f(a), b] + [a, a, f(b)] + [f(a), b, b] + [a, f(b), b] + [a, b, f(b)] + [f(a), c, b] + [a, f(c), b] + [a, c, f(b)]

+ [f(b), a, b] + [b, f(a), b] + [b, a, f(b)] + [f(b), b, b] + [b, f(b), b] + [b, b, f(b)] + [f(b), c, b] + [b, f(c), b] + [b, c, f(b)]

+ [f(c), a, b] + [c, f(a), b] + [c, a, f(b)] + [f(c), b, b] + [c, f(b), b] + [c, b, f(b)] + [f(c), c, b] + [c, f(c), b] + [c, c, f(b)]

+ [f(a), a, c] + [a, f(a), c] + [a, a, f(c)] + [f(a), b, c] + [a, f(b), c] + [a, b, f(c)] + [f(a), c, c] + [a, f(c), c] + [a, c, f(c)]

+ [f(b), a, c] + [b, f(a), c] + [b, a, f(c)] + [f(b), b, c] + [b, f(b), c] + [b, b, f(c)] + [f(b), c, c] + [b, f(c), c] + [b, c, f(c)]

+ [f(c), a, c] + [c, f(a), c] + [c, a, f(c)] + [f(c), b, c] + [c, f(b), c] + [c, b, f(c)] + [f(c), c, c] + [c, f(c), c] + [c, c, f(c)]

for all a, b, c ∈ A.
On the other hand, we have

f([(a+ b+ c), (a+ b+ c), (a+ b+ c)])

= [f(a), a, a] + [f(a), a, b] + [f(a), a, c] + [f(a), b, a] + [f(a), b, b] + [f(a), b, c] + [f(a), c, a] + [f(a), c, b] + [f(a), c, c]

+ [f(b), a, a] + [f(b), a, b] + [f(b), a, c] + [f(b), b, a] + [f(b), b, b] + [f(b), b, c] + [f(b), c, a] + [f(b), c, b] + [f(b), c, c]

+ [f(c), a, a] + [f(c), a, b] + [f(c), a, c] + [f(c), b, a] + [f(c), b, b] + [f(c), b, c] + [f(c), c, a] + [f(c), c, b] + [f(c), c, c]

+ [a, f(a), a] + [a, f(a), b] + [a, f(a), c] + [b, f(a), a] + [b, f(a), b] + [b, f(a), c] + [c, f(a), a] + [c, f(a), b] + [c, f(a), c]

+ [a, f(b), a] + [a, f(b), b] + [a, f(b), c] + [b, f(b), a] + [b, f(b), b] + [b, f(b), c] + [c, f(b), a] + [c, f(b), b] + [c, f(b), c]

+ [a, f(c), a] + [a, f(c), b] + [a, f(c), c] + [b, f(c), a] + [b, f(c), b] + [b, f(c), c] + [c, f(c), a] + [c, f(c), b] + [c, f(c), c]

+ [a, a, f(a)] + [a, b, f(a)] + [a, c, f(a)] + [b, a, f(a)] + [b, b, f(a)] + [b, c, f(a)] + [c, a, f(a)] + [c, b, f(a)] + [c, c, f(a)]

+ [a, a, f(b)] + [a, b, f(b)] + [a, c, f(b)] + [b, a, f(b)] + [b, b, f(b)] + [b, c, f(b)] + [c, a, f(b)] + [c, b, f(b)] + [c, c, f(b)]

+ [a, a, f(c)] + [a, b, f(c)] + [a, c, f(c)] + [b, a, f(c)] + [b, b, f(c)] + [b, c, f(c)] + [c, a, f(c)] + [c, b, f(c)] + [c, c, f(c)]

for all a, b, c ∈ A.
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It follows that

([f(b), c, a] + [b, f(c), a] + [b, c, f(a)]) + ([f(c), a, b] + [c, f(a), b] + [c, a, f(b)]) + ([f(a), b, c] + [a, f(b), c] + [a, b, f(c)])

= f([b, c, a]) + f([c, a, b]) + f([a, b, c]) = f([b, c, a] + [c, a, b] + [a, b, c]) = f([a, b, c] + [b, c, a] + [c, a, b])

and

[f(a), b, c] + [f(b), c, a] + [f(c), a, b] + [c, f(a), b] + [a, f(b), c] + [b, f(c), a] + [b, c, f(a)] + [c, a, f(b)] + [a, b, f(c)]

= ([f(a), b, c] + [a, f(b), c] + [a, b, f(c)]) + ([f(b), c, a] + [b, f(c), a] + [b, c, f(a)]) + ([f(c), a, b] + [c, f(a), b] + [c, a, f(b)])

for all a, b, c ∈ A. Then

f([a, b, c] + [b, c, a] + [c, a, b]) =([f(a), b, c] + [a, f(b), c] + [a, b, f(c)]) + ([f(b), c, a] + [b, f(c), a]

+ [b, c, f(a)]) + ([f(c), a, b] + [c, f(a), b] + [c, a, f(b)])

for all a, b, c ∈ A. Hence (2.2) holds true.
For the converse, replacing b and c by a in (2.2), we have

f([a, a, a] + [a, a, a] + [a, a, a]) =[f(a), a, a] + [a, f(a), a] + [a, a, f(a)] + [f(a), a, a] + [a, f(a), a]

+ [a, a, f(a)] + [f(a), a, a] + [a, f(a), a] + [a, a, f(a)]

and so

f(3[a, a, a]) = 3([f(a), a, a] + [a, f(a), a] + [a, a, f(a)])

for all a ∈ A. Thus

f([a, a, a]) = [f(a), a, a] + [a, f(a), a] + [a, a, f(a)]

for all a ∈ A. This completes the proof. �

Theorem 2.2. Let f : A→ A be a mapping for which there exists function ϕ : A×A×A→ [0,∞) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y, 0), (2.3)

‖f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

−[y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖ ≤ ϕ(x, y, z)
(2.4)

for all x, y, z ∈ A. If there exists a constant 0 < L < 1 such that

ϕ
(x

2
,
y

2
,
z

2

)
≤ L

8
ϕ(x, y, z) (2.5)

for all x, y, z ∈ A, then there exists a unique ternary Jordan ring derivation D : A→ A such that

‖f(x)−D(x)‖ ≤ L

8− 2L
ϕ(x, x, 0) (2.6)

for all x ∈ A.

Proof. It follows from (2.5) that

lim
n→∞

23nϕ
( x

2n
,
y

2n
,
z

2n

)
= 0 (2.7)

for all x, y, z ∈ A. By (2.5), ϕ(0, 0, 0) = 0. Letting x = y = 0 in (2.3), we get ‖f(0)‖ ≤ ϕ(0, 0, 0) = 0 and so f(0) = 0. Let
Ω = {g : A→ X, g(0) = 0}. We introduce a generalized metric on Ω as follows:

d(g, h) = dϕ(g, h) = inf{C ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Cϕ(x, x, 0), ∀x ∈ A} .

It is easy to show that (Ω, d) is a generalized complete metric space [16]. Now, we consider the mapping T : Ω → Ω
defined by Tg(x) = 2g(x

2
) for all x ∈ A and g ∈ Ω. Note that, for all g, h ∈ Ω and x ∈ A,

d(g, h) < C ⇒ ‖g(x)− h(x)‖ ≤ Cϕ(x, x, 0)

⇒ ‖2g(
x

2
)− 2h(

x

2
)‖ ≤ 2 C ϕ(

x

2
,
x

2
, 0)

⇒ ‖2g(
x

2
)− 2h(

x

2
)‖ ≤ L

4
C ϕ(x, x, 0)

⇒ d(Tg, Th) ≤ L

4
C.

Hence we obtain that

d(Tg, Th) ≤ L

4
d(g, h)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

831 Gordji et al 829-834



M. Eshaghi Gordji, Sh. Bazeghi, C. Park, S. Y. Jang

for all g, h ∈ Ω, that is, T is a strictly contractive mapping of Ω with the Lipschitz constant L. Putting y = x in (2.3), we
have

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x, 0), (2.8)

and so ∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ ϕ(x
2
,
x

2
, 0
)
≤ L

8
ϕ(x, x, 0)

for all x ∈ A. Let us denote

D(x) = lim
n→∞

2nf
( x

2n

)
(2.9)

for all x ∈ A. By the result in ([2, 6]), D is an additive mapping and so it follows from the definition of D, (2.4) and (2.7)
that

‖D([x, y, z] + [y, z, x] + [z, x, y])− [D(x), y, z]− [x,D(y), z]− [x, y,D(z)]− [D(y), z, x]− [y,D(z), x]

− [y, z,D(x)]− [D(z), x, y]− [z,D(x), y]− [z, x,D(y)]‖

= lim
n→∞

8n‖f([
x, y, z

23n
] + [

y, z, x

23n
] + [

z, x, y

23n
])− [f(

x

2n
),
y

2n
,
z

2n
]− [

x

2n
, f(

y

2n
),
z

2n
]− [

x

2n
,
y

2n
, f(

z

2n
)]

− [f(
y

2n
),
z

2n
,
x

2n
]− [

y

2n
, f(

z

2n
),
x

2n
]− [

y

2n
,
z

2n
, f(

x

2n
)]− [f(

z

2n
),
x

2n
,
y

2n
]− [

z

2n
, f(

x

2n
),
y

2n
]− [

z

2n
,
x

2n
, f(

y

2n
)]‖

≤ lim
n→∞

8nϕ
( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ A and so D([x, y, z]+[y, z, x]+[z, x, y]) = [D(x), y, z]+[x,D(y), z]+[x, y,D(z)]+[D(y), z, x]+[y,D(z), x]+
[y, z,D(x)] + [D(z), x, y] + [z,D(x), y] + [z, x,D(y)], which implies that D is a ternary Jordan ring derivation, by Lemma
2.1. According to Theorem 1.1, since D is the unique fixed point of T in the set Λ = {g ∈ Ω : d(f, g) < ∞}, D is the
unique mapping such that

‖f(x)−D(x)‖ ≤ C ϕ(x, x, 0)

for all x ∈ A and C > 0. By Theorem 1.1, we have

d(f,D) ≤ 1

1− L
4

d(f, Tf) ≤ 4L

8(4− L)

and so

‖f(x)−D(x)‖ ≤ L

8− 2L
ϕ(x, x, 0)

for all x ∈ A. This completes the proof. �

Corollary 2.3. Let θ, r be nonnegative real numbers with r > 1. Suppose that f : A→ A is a mapping such that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖r + ‖y‖r), (2.10)

‖f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

−[y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)
(2.11)

for all x, y, z ∈ A. Then there exists a unique ternary Jordan ring derivation D : A→ A satisfying

‖f(x)−D(x)‖ ≤ θ

2r+1 − 1
‖x‖r

for all x ∈ A.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(x, y, z) := θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ A. Then we can choose L = 21−r and so we obtain the desired conclusion. �

Remark 2.4. Let f : A → A be a mapping with f(0) = 0 such that there exists a function ϕ : A × A × A → [0,∞)
satisfying (2.3) and (2.4). Let 0 < L < 1 be a constant such that

ϕ(2x, 2y, 2z) ≤ 2Lϕ(x, y, z)

for all x, y, z ∈ A. By a similar method as in the proof of Theorem 2.2, one can show that there exists a unique ternary
Jordan ring derivation D : A→ A satisfying

‖f(x)−D(x)‖ ≤ 2

4− Lϕ(x, x, 0)

for all x ∈ A. For the case
ϕ(x, y, z) := δ + θ(‖x‖r + ‖y‖r + ‖z‖r),
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(where θ, δ are nonnegative real numbers and 0 < r < 1, there exists a unique ternary Jordan ring derivation D : A→ X
satisfying

‖f(x)−D(x)‖ ≤ 4δ

8− 2r
+

8θ

8− 2r
‖x‖r

for all x ∈ A.

Now, we formulate a theorem for the superstability of ternary Jordan ring derivations.

Theorem 2.5. Suppose that there exist a function ϕ : A×A×A→ [0,∞) and a constant 0 < L < 1 such that

ψ
(x

2
,
y

2
,
z

2

)
≤ L

8
ϕ(x, y, z)

for all x, y, z ∈ A. Moreover, if f : A→ A is an additive mapping such that

‖f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

−[y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ A, then f is a ternary Jordan ring derivation.

Proof. The proof is similar to the proof of Theorem 2.2. We will omit it. �

Corollary 2.6. Let θ, s be nonnegative real numbers and s > 3. If f : A→ A is an additive mapping such that

‖f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

−[y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖ ≤ θ(‖x‖s + ‖y‖s + ‖z‖s)

for all x, y, z ∈ A, then f is a ternary Jordan ring derivation.

Remark 2.7. Suppose that there exist a function ψ : A×A×A→ [0,∞) and a constant 0 < L < 1 such that

ϕ(2x, 2y, 2z) ≤ 2Lϕ(x, y, z)

for all x, y, z ∈ A. Moreover, if f : A→ A is an additive mapping such that

‖f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

−[y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ A, then f is a ternary Jordan ring derivation.
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Abstract

In this paper, we discuss the following initial value problem for first order nonlinear
integro-differential equations of mixed type in a Banach space:{

u′ = f(t, u, Tu, Su)
u(t0) = u0.

In the case of the integral kernel k(t, s) of the operator (Tu)(t) =
∫ t

t0
k(t, s)u(s)ds being

unbounded, we obtain the existence of maximal and minimal solutions for the above
problem by establishing a new comparison theorem.

Keywords: noncompactness measure, unbounded integral kernel, maximal and
minimal solutions, integro-differential equations.

1 Introduction and Preliminaries

Suppose that E is a Banach space. In this paper, We consider the following initial value
problem for first order nonlinear integro-differential equations of mixed type in E:{

u = f(t, u, Tu, Su)
u(t0) = u0,

(1.1)

where f ∈ C[J × E × E × E, E], J = [t0, t0 + a](a > 0), u0 ∈ E, and

(Tu)(t) =

∫ t

t0

k(t, s)u(s)ds, (Su)(t) =

∫ t0+a

t0

h(t, s)u(s)ds. (1.2)

∗The work was supported by the Natural Science Foundation of Jiangxi Province (No. 20122BAB201008,
20143ACB21001) and Science and Technology Plan of Education Department of Jiangxi Province (No.
GJJ08169).
†Corresponding author. E-mail address: jxnumath@163.com, xjzh1985@126.com.
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In (1.2), k(t, s) = ρ(t,s)
(t−s)α (0 < α < 1), ρ(t, s) ∈ C[D,R+], and h(t, s) ∈ C[D0, R

+], where

R+ = [0,+∞), D =
{

(t, s) ∈ R2
∣∣t0 ≤ s ≤ t ≤ t0 + a

}
, D0 =

{
(t, s) ∈ R2

∣∣(t, s) ∈ J × J}.
Here, k(t, s) is unbounded on D, ρ(t, s) is bounded on D, and h(t, s) is bounded on D0.
Set R0 = max

{
ρ(t, s)

∣∣(t, s) ∈ D}, h0 = max
{
h(t, s)

∣∣(t, s) ∈ D0

}
.

The study of initial value problems for nonlinear integro-differential equations has been
of great interest for many researchers for its physical backgrounds and applications in
mathematical models. We refer the reader to [1, 5–12] and references therein for some
recent results on equation (1.1). However, in many earlier results, the kernel k(t, s) of
the operator T is bounded. In this paper, we will make further study on the initial value
problem (1.1) in the case of k(t, s) being unbounded. By establishing a comparison theorem,
we achieve an existence theorem about minimal and maximal solutions for equation (1.1).

Throughout the rest of this paper, let (E, ‖ · ‖) be a real Banach space and P be a cone
in E which defines a partial ordering in E denoted by ”≤”.

Suppose that E∗ is the dual space of E, the dual cone of the cone P is P ∗ = {ϕ ∈
E∗|ϕ(x) ≥ 0,∀x ∈ P}. A cone P ⊂ E is said to be normal there exists a constant γ > 0
such that

θ ≤ x ≤ y =⇒ ‖x‖ ≤ γ‖y‖,∀x, y ∈ E.

The cone P is normal if and only if any order interval [x, y] = {z ∈ E|x ≤ z ≤ y} is
bounded in norm(see [3]). Set

C[J,E] =
{
u(t) : J → E

∣∣∣u(t) is continuous on J
}

,

C1[J,E] =
{
u(t) : J → E

∣∣∣u(t) and u
′
(t) are continuous on J

}
.

Let ‖u‖c = max
t∈J
‖u(t)‖ be a norm for u ∈ C[J,E], then C[J,E] will be a Banach space

with norm ‖·‖c. It is easy to know Pc =
{
u ∈ C[J,E]

∣∣u(t) ≥ θ,∀t ∈ J
}

is a cone in C[J,E].
The cone Pc defines an ordering in C[J,E] which also denoted by ”≤” here. Obviously,
when the cone P is normal, Pc is a normal cone in C[J,E].

Assume that V is a bounded set in E. The Kuratowski measure of noncompactness
α(V ) and the Hausdorff measure of noncompactness β(V ) are defined respectively as follow:

α(V ) = inf{δ > 0|V can be expressed as the union S =
m⋃
i=1

Vi of a finite number of sets Vi

with diameter diam(Vi) ≤ δ},

β(V ) = inf
{
δ > 0

∣∣∣V can be covered by a finite number of closed balls Vi with diameter

diam(Vi) ≤ δ
}

.

The relationship of the two noncompactness measures is

β(V ) ≤ α(V ) ≤ 2β(V ). (1.3)

2
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For the basic properties of cones and noncompactness measures, we refer the reader to
[2–4]. For convenience, the Kuratowski measure of noncompactness for bounded sets in
E and C[J,E] are all denoted by α(·). In the sequel, we denote B(t) = {u(t)|u ∈ B},
(TB)(t) = {(Tu)(t)|u ∈ B}, (SB)(t) = {(Su)(t)|u ∈ B} for all B ⊂ C[J,E] with t ∈ J .

Lemma 1.1. Let m ∈ C1[J,R1] be such that

m′(t) ≥ −Mm(t)−N
∫ t

t0

k(t, s)m(s)ds, m(t0) ≥ 0, t ∈ J, (1.4)

where M ≥ 0 and N ≥ 0 are two constants satisfying one of the following conditions:
(i)

NR0e
Ma a

2−α

1− α
≤ 1; (1.5)

(ii)

aM +
NR0a

2−α

1− α
≤ 1. (1.6)

Then m(t) ≥ 0 for all t ∈ J .

Proof. Case 1. If the condition (i) is established, let v(t) = m(t)eMt. From (1.4), we have

v′(t) ≥ −N
∫ t

t0

k∗(t, s)v(s)ds, ∀t ∈ J, v(t0) ≥ 0, (1.7)

where k∗(t, s) = k(t, s)eM(t−s). Now, we prove that

v(t) ≥ 0, ∀t ∈ J. (1.8)

In fact, if there exists t0 ≤ t1 ≤ t0 + a such that v(t1) < 0 and let max{v(t) : t0 ≤ t ≤
t1} = b, then b ≥ 0. If b = 0, then v(t) ≤ 0 for all t0 ≤ t ≤ t1 and so (1.7) implies that

v′(t) ≥ 0, ∀t0 ≤ t ≤ t1.

Hence we have v(t1) ≥ v(t0) = m(t0)e
Mt0 ≥ 0, which contradicts v(t1) < 0.

If b > 0, then there exists t0 ≤ t2 < t1 such that v(t2) = b > 0 and so there exists
t2 < t3 < t1 such that v(t3) = 0. Then, by the mean value theorem, there exists t2 < t4 < t3
such that

v′(t4) =
v(t3)− v(t2)

t3 − t2
=
−v(t2)

t3 − t2
=
−b

t3 − t2
< − b

a
. (1.9)

On the other hand, from (1.7), we have

v′(t4) ≥ −N
∫ t4

t0

k∗(t4, s)v(s)ds

3
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≥ −Nb
∫ t4

t0

k∗(t4, s)ds

= −Nb
∫ t4

t0

ρ(t4, s)

(t4 − s)α
eM(t4−s)ds

≥ −NbR0

∫ t4

t0

(t4 − s)−αeM(t4−s)ds

≥ −NbR0e
Ma

∫ t4

t0

(t4 − s)−αds

= −NbR0e
Ma (t4 − t0)1−α

1− α

≥ −NbR0e
Ma a

1−α

1− α
.

Then from (1.9), we have NR0e
Ma a2−α

1−α > 1 which contradicts (1.5). Therefore, (1.8)
is true and so m(t) ≥ 0 for all t ∈ J .

Case 2. If the assumption (ii) holds, but the conclusion does not hold, then there
exists t1 ∈ (t0, t0 + a] such that

m(t1) = min
t∈J

m(t) < 0,

and so m′(t1) ≤ 0. If max
t0≤t≤t1

m(t) ≤ 0, from (1.4), we have

0 ≥ m′(t1) ≥ −Mm(t1)−N
∫ t1

t0

k(t1, s)m(s)ds ≥ −Mm(t1) > 0,

which is a contradictory statement. Therefore, there exists t2 ∈ [t0, t1) such that m(t2) =
max
t0≤t≤t1

m(t) = µ > 0. Then, by the mean value theorem, there exists t3 ∈ (t2, t1) such that

m′(t3) =
m(t1)−m(t2)

t1 − t2
< −µ

a
.

It follows from (1.4) that

−µ
a
> m′(t3) ≥ −Mm(t3)−N

∫ t3

t0

ρ(t3, s)

(t3 − s)α
m(s)ds

≥ −Mµ−NR0µ

∫ t3

t0

1

(t3 − s)α
ds

= −Mµ−NR0µ
(t3 − t0)1−α

1− α

≥ −Mµ−NR0µ
a1−α

1− α
,

i.e. aM +NR0
a2−α

1−α > 1 which contradicts (1.6). The Lemma is proved.

4
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Lemma 1.2. Let m ∈ C[J,R+] be such that

m(t) ≤M1

∫ t

t0

m(s)ds+M2(t− t0)
∫ t0+a

t0

m(s)ds, t ∈ J (1.10)

where M1 > 0, M2 ≥ 0, are constants for satisfying one of the following conditions:
(i)aM2(e

aM1 − 1) < M1, (ii)a(2M1 + aM2) < 2. Then m(t) ≡ 0, t ∈ J .

Proof. Case 1. If the condition (i) holds, letting v(t) = m(t)eMt, then m1(t0) = 0,
m′1(t) = m(t), t ∈ J . If m1(t0 + a) 6= 0, it follows from (1.10) that

m′1(t) ≤M1m1(t) + aM2m1(t0 + a), t ∈ J

and from e−M1(t−t0) > 0 we have(
m1(t)e

−M1(t−t0)
)′
≤ aM2m1(t0 + a)e−M1(t−t0), t ∈ J.

Now, we integrate the above inequality between t0 and t with noticing m1(t0) = 0, we can
obtain

m1(t)e
−M1(t−t0) ≤ aM2m1(t0 + a)

∫ t

t0

e−M1(s−t0)ds

≤ aM2

M1
m1(t0 + a)

(
1− e−M1(t−t0)

)
, t ∈ J.

By choosing t = t0 + a, we can get

aM2

(
eaM1 − 1

)
≥M1

which contradicts (i). Consequently, m1(t0 + a) =
∫ t0+a
t0

m(s)ds = 0 which implies m(t) ≡
0, t ∈ J .

Case 2. If the condition (ii) is established, it follows from (1.10) that

m(t) ≤ [M1 +M2(t− t0)]
∫ t0+a

t0

m(s)ds.

Integrating the above inequality between t0 and t0 + a, we get∫ t0+a

t0

m(t)dt ≤
[
aM1 +

a2M2

2

] ∫ t0+a

t0

m(s)ds.

From the above inequality and conditio (ii), it follows that
∫ t0+a
t0

m(t)dt = 0, so m(t) ≡
0, t ∈ J . This completes the proof.

Lemma 1.3. If B is a equicontinuous bounded set in ⊂ C[J,E], then α(B) = max
t∈J

α(B(t)).

5
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Lemma 1.4. If B is a equicontinuous bounded set in ⊂ C[J,E] with J = [a, b], then
α({u(t)|u ∈ B}) is continuous with respect to t ∈ J and

α

({∫ b

a
u(t)dt

∣∣∣∣u ∈ B}) ≤ ∫ b

a
α
{
u(t)

∣∣u ∈ B} dt.
Lemma 1.5. (see [2]) Let E be a separable Banach space, J = [a, b] and {un} : J → E
be continuous abstract function sequences. If there exists a function φ ∈ L[a, b] such that
‖un(t)‖ ≤ φ(t), t ∈ J, n = 1, 2, 3, · · · , then β

({
un(t)

∣∣n = 1, 2, 3, · · ·
})

is integrable on J
and

β

({∫ b

a
un(t)dt

∣∣∣∣n = 1, 2, 3, · · ·
})
≤
∫ b

a
β
({
un(t)

∣∣n = 1, 2, 3, · · ·
})
dt.

Now, we give our assumptions:
(H1) There exist v0, ω0 ∈ C1[J,E] such that v0(t) ≤ ω0(t)(t ∈ J) and v0, ω0 are a lower

solution and an upper solution respectively for the initial value problem (1.1), that is

v′0 ≤ f(t, v0, T v0, Sv0), ∀t ∈ J ; v0(t0) ≤ u0,

ω′0 ≥ f(t, ω0, Tω0, Sω0), ∀t ∈ J ; ω0(t0) ≥ u0.

(H2) For any t ∈ J , any u, v ∈ [v0, ω0] = {u ∈ C[J,E]|v0 ≤ u ≤ ω0} and u ≤ v, we
have

f(t, v, Tv, Sv)− f(t, u, Tu, Su) ≥ −M(v − u)−NT (v − u),

where M > 0, N ≥ 0 are constants satisfying the condition (i) or (ii) in Lemma 1.1.
(H3) For any t ∈ J and equicontinuous bounded monotone sequences B = {un} ⊂

[v0, ω0], we have

α(f(t, B(t), (TB)(t), (SB)(t)) ≤ c1α(B(t)) + c2α((TB)(t)) + c3α((SB)(t)),

where ci(i = 1, 2, 3) are constants satisfying one of the following two conditions:

(i)ah0c3

(
e2a(c1+M+

c2R0a
1−α

1−α +
2NR0a

1−α
1−α ) − 1

)
< c1 +M + c2R0a1−α

1−α + 2NR0a1−α

1−α ;

(ii)a
(

2c1 + 2M + 2c2R0a1−α

1−α + 4NR0a1−α

1−α + ah0c3

)
< 1.

2 Main results

Theorem 2.1. Let E be a real Banach space, P ⊂ E be a normal cone and the conditions
(H1), (H2), (H3) be satisfied. Then the initial value problem (1.1) has a minimal solu-
tion and a maximal solution u, u∗ ∈ C1[J,E] in [v0, ω0], and for the initial value v0 and
ω0, the iterative sequences {vn(t)} and {ωn(t)} defined by the following formulas converge
uniformly to u(t), u∗(t) on J according to the norm in E respectively:

vn(t) = u0e
−M(t−t0) +

∫ t

t0

eM(s−t)[f(s, vn−1(s), (Tvn−1)(s), (Svn−1)(s))
6
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+Mvn−1(s)−NT (vn − vn−1)(s)
]
ds, ∀t ∈ J, (2.1)

ωn(t) = u0e
−M(t−t0) +

∫ t

t0

eM(s−t)[f(s, ωn−1(s), (Tωn−1)(s), (Sωn−1)(s))
+Mωn−1(s)−NT (ωn − ωn−1)(s)

]
ds, ∀t ∈ J (n = 1, 2, 3, · · · ). (2.2)

Moreover, there holds

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ u ≤ u∗ ≤ · · · ≤ ω1 ≤ ω0. (2.3)

Proof. For any η ∈ [v0, ω0], we consider the initial value problem of linear integro-differential
equation in Banach space E:

u′ = g(t)−Mu−NTu, u(t0) = u0, (2.4)

where g(t) = f
(
t, η(t), (Tη)(t), (Sη)(t)

)
+Mη(t) +N(Tη)(t). It is easy to show that u is a

solution of the linear initial value problem (2.4) if and only if u is the fixed point in C[J,E]
of the following operator

(Au)(t) = u0e
−M(t−t0) +

∫ t

t0

eM(s−t)[g(s)−N(Tu)(s)
]
ds. (2.5)

In the following, we will prove there exists n0 such that An0 is a contraction operator.
For any u, v ∈ C[J,E], t ∈ J , it follows from (2.5) that

‖(Au)(t)− (Av)(t)‖ ≤ N

∫ t

t0

‖T (u− v)(s)‖ds

≤ N

∫ t

t0

[∫ s

t0

k(s, τ)‖u(τ)− v(τ)‖dτ
]
ds

= N

∫ t

t0

[∫ s

t0

ρ(s, τ)

(s− τ)α
‖u(τ)− v(τ)‖dτ

]
ds

≤ NR0‖u− v‖c
∫ t

t0

∫ s

t0

1

(s− τ)α
dτds

=
NR0(t− t0)2−α

(1− α)(2− α)
‖u− v‖c. (2.6)

In the same way, by (2.5) and (2.6), we have

∥∥(A2u)(t)− (A2v)(t)
∥∥ ≤ N

∫ t

t0

‖T (Au−Av)(s)‖ds

≤ N

∫ t

t0

[∫ s

t0

k(s, τ)‖(Au)(τ)− (Av)(τ)‖dτ
]
ds

7
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≤ NR0

∫ t

t0

[∫ s

t0

1

(s− τ)α
NR0(τ − t0)2−α

(1− α)(2− α)
‖u− v‖cdτ

]
ds

=
(NR0)

2

(1− α)(2− α)
‖u− v‖c

∫ t

t0

[∫ s

t0

(τ − t0)2−α

(s− τ)α
dτ

]
ds

≤ (NR0)
2‖u− v‖c

(1− α)(2− α)

∫ t

t0

∫ s

t0

(s− τ)−α(s− t0)2−αdτds

=
(NR0)

2‖u− v‖c
(1− α)(2− α)

∫ t

t0

(s− t0)3−2α

1− α
ds

=
(NR0)

2

(1− α)22(2− α)2
‖u− v‖c(t− t0)4−2α.

It is easy to prove that by mathematical induction

∥∥(Anu)(t)− (Anv)(t)
∥∥ ≤ (NR0)

n

n![(1− α)(2− α)]n
(t− t0)n(2−α)‖u− v‖c, t ∈ J, n = 1, 2, 3, · · · .

Thus

‖Anu−Anv‖c ≤
(NR0a

2−α)n

n![(1− α)(2− α)]n
‖u− v‖c, n = 1, 2, 3, · · · .

We can choose n0 ∈ {1, 2, 3, · · · } such that (NR0a2−α)n

n![(1−α)(2−α)]n < 1, and so An0 a contraction

operator in C[J,E]. Therefore, it follows from the principle of contraction mapping that
An0 , that is, A has a unique fixed point uη in C[J,E] which implies the linear initial value
problem (2.4) has a unique solution uη in C[J,E]. Now, we define a operator

Bη = uη (2.7)

where uη is a unique solution for η of the linear initial value problem (2.4), and satisfies

u′η = f(t, η(t), (Tη)(t), (Sη)(t))−M(uη(t)− η(t))−NT (uη − η)(t), uη(t0) = u0.

Then B : [v0, ω0] −→ C[J,E], and the iterative sequences (2.1)(2.2) can be written

vn = Bvn−1, ωn = Bωn−1, n = 1, 2, 3, · · · . (2.8)

Moreover, we claim that the operator B defined by (2.7) satisfies
i)

v0 ≤ Bv0, Bω0 ≤ ω0; (2.9)

ii)
Bη1 ≤ Bη2, ∀η1, η2 ∈ [v0, ω0], η1 ≤ η2. (2.10)

Next, we will prove i) and ii). Firstly, we prove the result i). Set v1 = Bv0, it follows
from the definition of B that

8
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v′1 = f(t, v0, T v0, Sv0)−M(v1 − v0)−NT (v1 − v0), v1(t0) = u0. (2.11)

For any ϕ ∈ P ∗, let m(t) = ϕ(v1(t)−v0(t)), it follows from (2.11) and the assumption (H1)
that

m′(t) ≥ −Mm(t)−N
∫ t

t0

k(t, s)m(s)ds, m(t0) ≥ 0.

Thus, by lemma 1.1, it follows that m(t) ≥ 0 for all t ∈ J , which implies v1(t)− v0(t) ≥ 0
for all t ∈ J . It follows theorem 2.4.3 in [3] that v0 ≤ Bv0. Similarly, we can prove that
Bω0 ≤ ω0. Consequently, the result i) is proved.

Next, we prove ii). Let uη1 = Bη1, uη2 = Bη2, it follows from the hypothesis (H2) and
the definition of B that

u′η1 − u
′
η2 = f(t, η2, Tη2, Sη2)−M(uη2 − η2)−NT (uη2 − η2)

−f(t, η1, Tη1, Sη1) +M(uη1 − η1) +NT (uη1 − η1)
≥ −M(uη2 − uη1)−NT (uη2 − uη1) (2.12)

and
uη2(t0)− uη1(t0) = u0 − u0 = θ. (2.13)

For any ϕ ∈ P ∗, let m(t) = ϕ(uη2(t)− uη1(t)). From (2.12) and (2.13), it follows that

m′(t) ≥ −Mm(t)−N
∫ t

t0

k(t, s)m(s)ds, m(t0) = 0

Thus, by lemma 1.1, it follows that m(t) ≥ 0 for all t ∈ J , which implies uη2(t)−uη1(t) ≥ θ,
t ∈ J , that is, Bη1 ≤ Bη2. So the result ii) is proved.

Form (2.8)-(2.10) and observing that v0 ≤ ω0, it follows that

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ ωn ≤ · · · ≤ ω1 ≤ ω0. (2.14)

and B is a mapping with [v0, ω0] into [v0, ω0].
In the following, we prove that {vn(t)} converges uniformly to some element u ∈ C[J,E]

in J . By the normality of P , the cone Pc is normal in C[J,E] which implies the order
interval [v0, ω0] is a bounded set in C[J,E]. Then, it follows from (2.14) that {vn} is a
bounded set in C[J,E]. On the one hand, for any η ∈ [v0, ω0], by the conditions (H1) and
(H2), we have

v′0 +Mv0 +NTv0 ≤ f(t, v0, T v0, Sv0) +Mv0 +NTv0

≤ f(t, η, Tη, Sη) +Mη +NTη

≤ f(t, ω0, Tω0, Sω0) +Mω0 +NTω0

≤ ω′0 +Mω0 +NTω0.

9
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Then, by the normality of Pc, the set
{
f(t, η, Tη, Sη) + Mη + NTη

∣∣η ∈ [v0, ω0]
}

is a
bounded set in C[J,E]. On the other hand, the set

{
Tη
∣∣η ∈ [v0, ω0]

}
is also a bounded set

in C[J,E], because it follows from the boundedness of [v0, ω0] that for any η ∈ [v0, ω0],

‖Tη(t)‖ ≤
∫ t

t0

k(t, s)‖η(s)‖ds

≤ ‖η‖c
∫ t

t0

ρ(t, s)

(t− s)α
ds

≤ R0‖η‖c
∫ t

t0

1

(t− s)α
ds

= R0‖η‖c
(t− t0)1−α

1− α
.

Therefore, {f(t, η, Tη, Sη)|η ∈ [v0, ω0]} is a bounded set in C[J,E]. Thus, from

v′n = f(t, vn−1, T vn−1, Svn−1)−M(vn−vn−1)−NT (vn−vn−1), t ∈ J, n = 1, 2, 3, · · · , (2.15)

it follows that {v′n|n = 1, 2, 3, · · · } is a bounded set in C[J,E]. Applying the mean value
theorem, we see that all the functions {vn(t)|n = 1, 2, 3, · · · } is equicontinuous on J . From
Lemma 1.3, we have

α({vn|n = 1, 2, 3, · · · }) = max
t∈J

α({vn(t)|n = 1, 2, 3, · · · }). (2.16)

Now, we prove α({vn|n = 1, 2, 3, · · · }) = 0. From (2.4), (2.5), (2.7) and (2.8), it follows
that

vn(t) = u0e
−M(t−t0) +

∫ t

t0

eM(s−t)[f (s, vn−1(s), (Tvn−1), (Svn−1)(s))

+Mvn−1(s)−NT (vn − vn−1)(s)
]
ds. (2.17)

Let m(t) = α{vn(t)|n = 1, 2, 3, · · · }, then m(t0) = α({u0}) = 0, m ∈ C[J,R+]. For
every n, by the continuity of vn(t), {vn(t)|t ∈ J} is a separable set in E, so {vn(t)|t ∈
J, n = 1, 2, 3, · · · } is a separable set in E. Thus, we can assume that E is a separable
Banach space without loss of generality

(
otherwise, the closed subspace in E is spanned

by {vn(t)|t ∈ J, n = 1, 2, 3, · · · } can be used in place of E
)
. By (2.17), (1.3) and Lemma

1.5 and observing 0 < eM(s−t) ≤ 1, (t, s) ∈ D, we can obtain

m(t) ≤ α

(∫ t

t0

eM(s−t)[f(s,B(s), (TB)(s), (SB)(s)) +MB(s)−NT (B1 −B)(s)
]
ds

)
≤ 2β

(∫ t

t0

eM(s−t)[f(s,B(s), (TB)(s), (SB)(s)) +MB(s)−NT (B1 −B)(s)
]
ds

)
≤ 2

∫ t

t0

β
[
f(s,B(s), (TB)(s), (SB)(s)) +MB(s)−NT (B1 −B)(s)

]
ds

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

844 Xiong-Jun Zheng et al 835-847



≤ 2

∫ t

t0

[
β (f (s,B(s), (TB)(s), (SB)(s)))

+Mβ(B(s)) +Nβ(T (B1 −B)(s))
]
ds. (2.18)

where B(s) = {vn(s)|n = 0, 1, 2, · · · }, B1(s) = {vn(s)|n = 1, 2, 3, · · · }. By the condition
(H3) and (1.3), we have

β (f(s,B(s), (TB)(s), (SB)(s)))

≤ α (f(s,B(s), (TB)(s), (SB)(s)))

≤ c1α(B(s)) + c2α(((TB))(s)) + c3α((SB)(s)). (2.19)

From the uniform boundedness of B(s) and uniform continuity of h(t, s), it easy to prove
(SB)(s) is a equicontinuous bounded set, so it follows from Lemma 1.4 that

α((SB)(s)) = α

(∫ t0+a

t0

h(s, τ)B(τ)dτ

)
≤ h0

∫ t0+a

t0

m(τ)dτ. (2.20)

Now, we consider dealing with α
(
(TB)(s)

)
. Firstly,∫ s

t0

k(s, τ)dτ =

∫ s

t0

ρ(s, τ)

(s− τ)α
dτ ≤ R0

∫ s

t0

1

(s− t)α
dτ ≤ R0a

1−α

1− α
.

Since B(s) is equicontinuous bounded sequences and α(B(s)) = m(s), there exists a par-

tition B(s) =
l⋃

i=1
Bi such that the partition (TB)(s) =

l⋃
i=1

TBi exists, where TBi ={∫ s
t0
k(s, τ)vi(τ)dτ

∣∣vi ∈ Bi}, so we have

diam(TBi) = sup
∀v1i ,v2i ∈Bi

∥∥∥∥∫ s

t0

k(s, τ)
[
v1i (τ)− v2i (τ)

]
dτ

∥∥∥∥
≤ R0a

1−α

1− α
sup

∀v1i ,v2i ∈Bi

∥∥v1i (τ)− v2i (τ)
∥∥

=
R0a

1−α

1− α
diam(Bi)

<
R0a

1−α

1− α
α(B(s)) +

R0a
1−α

1− α
· ε.

By using the arbitrariness of ε, we have

α(TB(s) ≤ R0a
1−α

1− α
α(B(s)) =

R0a
1−α

1− α
m(s), (2.21)

and by (1.3), we have

β (T (B1 −B)(s)) ≤ α (T (B1 −B)(s)) ≤ 2R0a
1−α

1− α
m(s). (2.22)

11
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Thus, it follows from (2.18)-(2.22) that

m(t) ≤ 2

∫ t

t0

[
c1m(s) +

c2R0a
1−α

1− α
m(s) + c3h0

∫ t0+a

t0

m(τ)dτ

+Mm(s) +
2NR0a

1−α

1− α
m(s)

]
ds

= 2

(
c1 +M +

c2R0a
1−α

1− α
+

2NR0a
1−α

1− α

)∫ t

t0

m(s)ds

+2h0c3(t− t0)
∫ t0+a

t0

m(s)ds.

Therefore, from Lemma 1.2 and the conditions (i)(ii) of the assumption (H3), we have
m(t) ≡ 0, t ∈ J which implies α{vn|n = 1, 2, 3, · · · } = 0 from (2.16), that is, vn ⊂ [v0, ω0]
is a relatively compact set in C[J,E]. Thus there exists a subsequence {vnk} ⊂ {vn} and
some u ∈ [v0, ω0] such that {vnk} converges to u in norm ‖ · ‖c. Further, from (2.14) and
the normality of Pc, it is easy to prove that {vn} converges to u in norm ‖ · ‖c, that is,
{vn(t)} converges uniformly to u(t) on J according to the norm in E. Similarly, we can
prove that {ωn(t)} converges uniformly to some u∗ ∈ [v0, ω0] on J according to the norm
in E. Clearly, the result (2.3) is true.

Finally, we prove that u and u∗ are a minimal solution and a maximal solution respec-
tively of the initial value problem (1.1). Let

un(t) = −M (vn(t)− vn−1(t))−NT (vn − vn−1) (t), t ∈ J, n = 1, 2, 3, · · · .

Since {vn(t)} converges uniformly to u(t) on J , it is easy to prove ‖un‖c → 0(n → ∞).
Setting εn = ‖un‖c, from (2.15), we get

v′n = f (t, vn−1, T vn−1, Svn−1) + un(t), vn(t0) = u0, ‖un(t)‖ ≤ εn, t ∈ J.

Applying Corollary 2.1.1 in [4], we know u is a solution of the initial value problem (1.1).
Similarly, we can prove that ω∗ is also a solution of the initial value problem (1.1). If u is
a solution in [v0, ω0] of the initial value problem (1.1), then Bu = u, so by v0 ≤ u ≤ ω0

and (2.8)-(2.10), it is easy to obtain

vn ≤ u ≤ ωn, n = 1, 2, 3, · · · .

Letting n → ∞ in above formula, we get u ≤ u ≤ u∗. Consequently, u, u∗ are the
minimal solution and maximal solution of the initial value problem (1.1) respectively. This
completes the proof.
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Solving the multicriteria transportation equilibrium system

problem with nonlinear path costs

Chaofeng Shi, Yingrui Wang

Abstract. In this paper, we present an self-adaptive algorithm for solving the multicriteria
transportation equilibrium system problem with variable demand and nonlinear path costs. The
path cost function considered is comprised of three attributes, travel time, toll and travel fares,
that are combined into a nonlinear generalized cost. Travel demand is determined endogenously
according to a travel disutility function. Travelers choose routes with the minimum overall gener-
alized costs. Numerical experiments are conducted to demonstrate the feasibility of the algorithm
to this class of transportation equilibrium system problems.

Key Words and Phrases: multicriteria, general networks, nonlinear path costs, transportation
equilibrium system

2000 Mathematics Subject Classification: 49J40, 90C33.

1 Introduction

Usually, there are more than one kind of goods transported through the traffic network, in reality. As
we know, the transportation cost of one kind of goods can be affected by other kinds of goods under the
same traffic network. In detail, the flows of different kinds of goods are not independent. Generally, in
2010, He et. al . [1] called this problem as dynamic traffic network equilibrium system. Several authors
(see, for instance, [2-5]) study the model with elastic demands and develop some results in this context
theoretical features and numerical procedures. For example, in the general economic case, the equilibrium
cost will affect to the market demand of goods, so the O-D pair demand of these goods depends on the
equilibrium cost and the equilibrium distribution. Therefore, it is reasonable to consider the traffic
equilibrium problem with elastic demand when there are many kinds of goods transported through the
same traffic network. At the same time, the travel cost function is considered widely and deeply. It is
generally accepted that travelers consider a number of criteria (e.g., time, money, distance, safety, route
complexity, etc.) when selecting routes. Presumably, these criteria are then combined in some manner to
form a generalized cost for each particular route or path under consideration, and a route selected based
on minimization of the generalized cost of the trip. Most commonly, it is assumed that travelers select
the ’best’ route based on either a single criterion, such as travel time, or several criteria using a linear
(or additive) path cost function. However, as pointed out by Gabriel and Bernstein [6], there are many
situations in which the linear path cost function is inadequate for addressing factors affecting a variety
of transportation policies. Such factors include: (i) Nonlinear valuation of travel time–small amounts
of time are valued proportionately less than larger amounts of time. (ii) Emissions fees–emissions of
hydrocarbons and carbon monoxide are a nonlinear function of travel times. (iii) Path-specific tolls and
fares–most existing fare and toll pricing structures are not directly proportional to either travel time
or distance. These, and other such factors, are generally difficult to accommodate without explicitly
using path flows in the formulation and solution, particularly for traffic equilibrium problems involving
multi-dimensional nonlinear path costs. Despite the obvious usefulness of incorporating multiple criteria
and relaxing the assumption of linear path costs for an important class of traffic equilibrium problems,
there have been relatively few attempts to incorporate multiple criteria within route choice modeling.
Under the assumption that the nonlinear path cost function is known a priori, Scott and Bernstein [7]
solved a constrained shortest path problem (CSPP) to generate a set of Pareto optimal paths and then
identify the best path by evaluating the cost values of the alternative paths. In a later study, Scott
and Bernstein [8] embedded the CSPP into the gradient projection method to solve the non-additive

1
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traffic equilibrium problem. Using a new gap function recently proposed by Facchinei and Soares [9], Lo
and Chen [10] reformulated the nonadditive traffic equilibrium problem as an equivalent unconstrained
optimization and solved a special case involving fixed demand and route-specific costs. Chen et al. [11]
provided a projection and contraction algorithm for solving the elastic traffic equilibrium problem with
route-specific costs. Recently, some formulations and properties of the non-additive traffic equilibrium
models were also explored, such as the nonlinear time/money relation [12], the uniqueness and convexity
of the bicriteria traffic equilibrium problem [13]. Furthermore, Altman and Wynter [14] discussed the non-
additive cost structures in both transportation and telecommunication networks. Howerver, there are few
results to discuss the problem related to the transportation network system for the nonlinear multiciteria
transportation cost functions. On the other hand, Verma [15] investigated the approximation solvability
of a new system of nonlinear variational inequalities involving strongly monotone mappings. In 2005,
Bnouhachem [16] presented a new self-adaptive method for solving general mixed variational inequalities.
In 2007, Shi [17] proposed a new self-adaptive iterative method for solving nonlinear variational ineuality
system (SNVI) and proved the convergence of the proposed method. The numerical examples were given
to illustrate the efficiency of the proposed method. In this paper, we consider the traffic equilibrium
problem with variable demand, fixed tolls, and a nonlinear path cost function. We first discuss the
multicriteria traffic equilibrium problem and its equivalent nonlinear variational inequality formulation,
and present the associated multicriteria shortest path problem and solution algorithm. We then explore a
new self-adaptive iterative method (SI) developed by Shi [17] to solve SNVI that characterizes this class of
traffic equilibrium system problem. The SI method is simple and can handle a general monotone mapping.
Unlike the non-smooth equations/sequential quadratic programming (NE/SQP) method proposed by
Gabriel and Bernstein [6] to solve the non-additive traffic equilibrium problem, the SI method does not
require the mapping to be differentiable.

2 Preliminaries

Without loss of generality, we consider the case that there are only two kinds of goods transported
through the network. Suppose that a traffic network consists of a set N of nodes, a set Ω of origin-
destination (O/D) pairs, and a set R of routes. Each route r ∈ R links one given origin-destination pair
ω ∈ Ω. The set of all r ∈ R which links the same origin-destination pair ω ∈ Ω is denoted by R(ω). Assume
that n is the number of the route in R and m is the number of origin-destination (O/D) pairs in Ω. Let
vector Hi = (Hi

1,H
i
2, · · · ,Hi

r, · · · ,Hi
n)T ∈ Rn i = 1, 2 denote the flow vector for the two kinds of goods,

where Hi
r, r ∈ R, denotes the flow in route r ∈ R. A feasible flow has to satisfy the capacity restriction

principle: λi
r ≤ Hi

r ≤ µi
r, for all r ∈ R , and a traffic conservation law:

∑
r∈R(ω) Hi

r = ρi
ω(H1,H2) , for

all ω ∈ Ω, where λ andµ are given in Rn, is the travel demand related to the given pair ω ∈ Ω , and
ρi

ω(H1,H2) ≥ 0 denotes the travel demand vector, which generally depends on equilibrium cost and,
essentially, on the equilibrium distribution H1andH2. Thus the set of all feasible flows is given by

Ki(H1,H2) := {H ∈ Rn‖λi ≤ H ≤ µi,ΦH = ρi(H1,H2)}, (2.1)

where Φ = (δωr)m × n is defined as

δωr =
{

1 if r ∈ R(ω)
0 Otherwise

Thus the set of feasible flows is given by K1(H1,H2)×K2(H1,H2) . We call that is a flow of the traffic
network system with elastic demands. As pointed out by Gabriel and Bernstein [6], the linear assumption
is rather restrictive and cannot adequately model certain important applications.

Let mappingCi : K → Rn be the cost function of the ith kinds of goods for i = 1, 2. Ci
r(H

1,H2)
gives the marginal cost of transporting one additional unit of the ith kind of goods under the rth route.
For the multicriteria traffic equilibrium problem with nonlinear path costs based on travel time, toll and
transportation fares, a possible nonlinear path cost function can be the following form:

Ci
r(H

1,H2) = gr(
∑

a∈A

δrs
patia(H1,H2)) +

∑

a∈A

δrs
paτa +

∑

a∈A

δrs
paf i

a(H1,H2), (2.2)

2
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Where gr is a nonlinear function describing the value-of-time for path r, τa is the toll on link a , and fa

is the transportation fares function on link a .

Definition 2.1. (H1,H2) ∈ K1(H1,H2) ×K2(H1,H2) is an equilibrium flow if and only if for all
ω ∈ Ω and q, s, p, r ∈ R(ω) there holds

C1
q (H1,H2) < C1

s (H1,H2) ⇒ H1
q = µ1

q or H1
s = λ1

s, (2.3)

C2
p(H1,H2) < C2

r (H1,H2) ⇒ H2
p = µ2

p or H2
r = λ2

r,

3 Existence and Uniqueness of the solution for the multicriteria
transportation equilibrium system problem

The following result establishes relationship between the system of dynamic traffic equilibrium problem
and a system of variational inequalities.

Theorem 3.1. (H1,H2) ∈ K1(H1,H2)×K2(H1,H2) is an equilibrium flow if and only if ,

< C1(H1,H2), F 1 −H1 >≥ 0 ∀F 1 ∈ K1(H1,H2), (3.1)
< C2(H1,H2), F 2 −H2 >≥ 0 ∀F 2 ∈ K2(H1,H2),

Proof. First assume that (3.1) holds and (2.3) does not hold. Then there exist ω ∈ Ω and q, s ∈ R(ω)
such that

Ci
q(H

1,H2) < Ci
s(H

1,H2), Hi
q < µi

s, Hi
q > λi

s, i = 1, 2. (3.2)

Let δi = min{µi
q −Hi

q, h
i
s − λi

s}, i = 1, 2.
Then δi > 0, i = 1, 2.
We define a vector Fi ∈ Ki(H1,H2), i = 1, 2, whose components are

F i
q(t) = Hi

q + δi, F i
s(t) = Hi

s − δi, F i
r = Hi

r, (3.3)

when r 6= q, s.
Thus,

< Ci(H1,H2), F i −Hi >=
n∑

j=1

Ci
j(H

1,H2)(F i
j −Hi

j) = δi(Ci
q(H

1,H2)− Ci
s(H

1,H2)) < 0, (3.4)

and so (3.1) is not satisfied. Therefore, it is proved that (3.1) implies (2.4).
Next, assume that (2.4) holds. That is

Ci
q(H

1,H2) < Ci
s(H

1,H2) ⇒ Hi
q = µi

q, or Hi
s = µi

s, i = 1, 2. (3.5)

Let F i ∈ Ki(H1,H2) for i = 1, 2. Then (3.1) holds from Definition 2.1. The proof is completed.
Furthermore, we discuss the existence and uniqueness of the solution for the dynamic traffic equilibrium
system (3.1). In order to get our main results, the following definitions will be employed.

Definition 3.2. Ci(x, y)(i = 1, 2) is said to be θ-strictly monotone with respect to x on K1(H1,H2)×
K2(H1,H2) if there exists θ > 0such that

< Ci(x1, y)− Ci(x2, y), x1 − x2 >≥ θ‖x1 − x2‖22, (3.6)

∀x1, x2 ∈ K1(H1,H2),∀y ∈ K2(H1,H2).

3
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Definition 3.3. Ci(x, y)(i = 1, 2) is said to be L-Lipschitz continuous with respect to x on
K1(H1,H2)×K2(H1,H2) if there exists θ > 0such that

‖Ci(x1, y)− Ci(x2, y)‖2 ≤ L‖x1 − x2‖2, (3.7)

∀x1, x2 ∈ K1(H1,H2),∀y ∈ K2(H1,H2).

Remark 3.4. Based on Definitions 3.2 and 3.3, we can similarly define the θ -strict monotonicity
and L-Lipschitz continuity of Ci(x, y) with respect to y on K1(H1,H2)×K2(H1,H2), for i = 1, 2.

Theorem 3.5. (H1,H2) ∈ K1(H1,H2)×K2(H1,H2) is an equilibrium flow if and only if there exist
α > 0 and β > 0 such that

H1 = PK1(H
2 − αC1(H1,H2)), (3.8)

H2 = PK2(H
2 − βC1(H1,H2)),

where Pki
: Rn → Ki(H1,H2) is a projection operator for i = 1, 2.

Proof. The proof is analogous to that of Theorem 5.2.4 of [18].
Let ‖(x, y)1‖ be the norm on space K1(H1,H2)×K2(H1,H2) defined as follows:

‖(x, y)‖1 = ‖x‖2 + ‖y‖2,∀x ∈ K1(H1,H2), y ∈ K2(H1,H2). (3.9)

It is easy to see that (K1(H1,H2)×K2(H1,H2), ‖.‖1)is a Banach space. Similar to Theorem 3.9 in He
et. al. [1], one can easily obtain the following theorem, the proof is omitted.

Theorem 3.6. Suppose that C1(H1,H2) is θ1-strictly monotone and L11-Lipschitz continuous with
respect to H1 , and L12-Lipschitz continuous with respect to H2 on K1(H1,H2)×K2(H1,H2). Suppose
that C2(H1,H2) is L21-Lipschitz continuous with respect to H1, θ2-strictly monotone, and L22-Lipschitz
continuous with respect to H2 on K1(H1,H2)×K2(H1,H2). If there exist α > 0 and β > 0 such that

√
1− 2γθ1 + α2L2

11 + βL21 < 1, (3.10)
√

1− 2ηθ2 + β2L2
22 + αL12 < 1,

then problem (3.1) admits unique solution.

Remark 3.7. If f1
j (H1,H2) is θ̂1

j -strictly monotone with respect to H1and g1
j ◦

∑n
j=1 δrs

pj t
1
j is θ

1

j -
strictly monotone with respect to H1 , then

θ1 =
n∑

j=1

(θ
1

j + δrs
pj θ̂

1
j ).

In fact,

< C1
j (H1,H2)− C2

j (Ĥ1,H2),H1 − Ĥ1 >

=< gr(
n∑

j=1

δrs
pj t

1
j (H

1,H2)) +
n∑

j=1

δrs
pjτj +

n∑

j=1

δrs
pjf

1
j (H1,H2)− gr(

n∑

j=1

δrs
pj t

1
j (Ĥ

1,H2)) (3.11)

+
n∑

j=1

δrs
pjτj +

n∑

j=1

δrs
pjf

1
j (Ĥ1,H2),H1 − Ĥ1 >

≥
n∑

j=1

(θ
1

j + δrs
pj θ̂

1
j )‖H1 − Ĥ1‖22

So,
< Cj(H1,H2)− Cj(Ĥ1,H2),H1 − Ĥ1 >≥ θ1‖H1 − Ĥ1‖.
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4 Algorithms for solving the multicriteria transportation equi-
librium system problem

Here, we describe an iterative algorithm with fixed step-sizes, and also describe a self-adaptive algo-
rithm, which uses a self-adaptive stratedgy of step-size choice.

Algorithm 4.1 Iterative Method with fixed step-sizes
Step 1. Given ε > 0, α, β ∈ [0, 1), and (H0

1 ,H0
2 ) ∈ K1(H1,H2)×K2(H1,H2), set k = 0.

Step 2. Get the next iterate:

H1,k+1 = PK1(H
2,k − αC1(H1,k,H2,k),

H2,k+1 = PK2(H
2,k − βC1(H1,k,H2,k),

Step 3. Compute r1 = ‖H(k+1)
1 −H

(k)
1 ‖, r2 = ‖H(k+1)

2 −H
(k)
2 ‖ , if r1, r2 < ε, then stop; Otherwise,k = k+1,

go to step 2.

Algorithm 4.2 SI method
Step 1. Given ε > 0, γ ∈ [1, 2),µ ∈ (0, 1),ρ > 0 ,δ ∈ (0, 1) ,δ0 ∈ (0, 1) , and µ0 ∈ H, set k = 0.
Step 2. Setρk = ρ , if ‖r1(H1K , ρ)‖ < ε and ‖r1(H1K , ρ)‖ < ε, then stop; otherwise, find the smallest
nonnegative integer mk, such that ρk = ρµmk satisfying

‖ρk(C1(H1k,H2k)− C1(wk,H2k)‖ ≤ δ‖r(xk, ρk)‖, (4.1)

where wk = PK [H1k − ρkC1(H1k,H2k)].
Step 3. Compute

d(H1k, ρk) = r(H1k, ρk)− ρkC2(H1k,H2k) + ρkC2(PK [H1k − ρkC(H1k,H2k)],H2k), (4.2)

where r(H1k, ρ) = H1k − PK [H1k − ρC2(H1k,H2k)] .
Step 4. Get the next iterate:

H2k = PK [H1k − γd(H1k, ρk)− γC2(H1k,H2k)]; (4.3)
H1,k+1 = PK [H1k − ρC1(H1k,H2k)]

Step 5. If ‖ρk(C(H1k,H2k) − C(wk,H2k)‖ ≤ δ0‖r(xk, ρk)‖ , then set ρ = ρk/µ, else set ρ = ρk. Set
k = k + 1, and go to Step 2.

Remark 4.2. Note that Algorithm 4.2 is obviously a modification of the standard procedure. In
Algorithm 4.2, the searching direction is taken as H1k − γd(H1k, ρk) − γC(H1k,H2k) , which is closely
related to the projection residue, and differs from the standard procedure. In addition, the self-adaptive
strategy of step-size choice is used. The numerical results show that these modifications can introduce
computational efficiency substantially.

Theorem 4.3. Suppose that C1(H1,H2) is θ1 -strictly monotone and L11-Lipschitz continuous
with respect to H1, and L12-Lipschitz continuous with respect to H2 on K1(H1,H2) × K2(H1,H2).
Suppose that C2(H1,H2) is L21-Lipschitz continuous with respect to H1 ,θ2 -strictly monotone, and
L22-Lipschitz continuous with respect to H2 on K1(H1,H2) ×K2(H1,H2). Let H1∗,H2∗ ∈ K form a
solution set for the SNVI (2.1) and let the sequences {H1k} and {H2k} be generated by Algorithm 4.2.
If 0 < θ <

√
1− 2ρθ1 + 2ρ2L2

12(1 + γL21)/(1− γL22) +
√

2ρL2
11 + 2ρL11 < 1 , then the sequence {H1k}

converges to H1∗ and the sequence {H2k} converges to H2∗, for 0 < ρ < 2r/s2.
Proof. Since (H1∗,H2∗) is a solution of transportation equilibrium system (3.2), it follows from Theorem
3.5 that

H1∗ = PK1 [H
2∗ − ρC1(H1∗,H2∗)], (4.4)

H2∗ = PK2 [H
1∗ − γC2(H1∗,H2∗)]
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Applying Algorithm 4.2, we know

‖H1,k+1 −H1∗‖ = ‖PK1 [H
2k − ρC1(H1k,H2k)]− PK1 [H

2∗ − ρC1(H1∗,H2∗)]

≤ ‖H2k −H2∗ − ρC1(H1k,H2k) + ρC1(H1∗,H2∗)‖
Since T is r-strongly monotone and s-Lipschitz continuous, we know

‖H2k −H2∗ − ρC1(H1∗,H2∗)‖2

≤ ‖H2k−H2∗‖2−2ρ < C1(H1k−H2k−C1(H1∗,H2∗,H2k−H2∗ > +ρ2‖C1(H1k,H2k)−C1(H1∗,H2∗)‖
≤ ‖H2k −H2∗‖2 − 2ρθ1‖H2k −H2∗‖2 + 2ρL11‖H1k −H1∗‖2 + ρ2‖C1(H1k,H2k)− C1(H1∗,H2∗)‖

≤ ‖H2k−H2∗‖2−2ρθ1‖H2k−H2∗‖2 +2ρL11‖H1k−H1∗‖2 +2ρ2L2
11‖H1k−H1∗‖2 +2ρ2L2

12‖H2k−H2∗‖2

≤ (1− 2ρθ1 + 2ρ2L2
12)‖H2k −H2∗‖2 + (2ρ2L2

11 + 2ρL11)‖H1k −H1∗‖2

It follows that

‖H1,k+1 −H1∗‖ ≤
√

1− 2ρθ1 + 2ρ2L2
12‖H2k −H2∗‖+

√
2ρ2L2

11 + 2ρL11‖H1k −H1∗‖. (4.5)

Next, we consider

‖H2k −H2∗‖ = ‖PK2 [H
1k − γd(H1k, ρk)− γC2(H1k,H2k)]− PK2 [H

1∗ − γC2(H1∗,H2∗)‖ (4.6)
≤ ‖H1k − γd(H1k, ρk)− γC2(H1k,H2k)−H1∗ + γC2(H1∗,H2∗)‖
≤ ‖H1k − γd(H1k, ρk)−H1∗‖+ γ‖C2(H1k,H2k)− C2(H1∗,H2∗)‖

where we use the property of the operator PK . Now, we consider

‖H1k −H1∗ − γd(H1k, ρk)‖2 (4.7)
≤ ‖H1k −H1∗‖2 − 2γ < H1k −H1∗, d(H1k, ρk) > +γ2‖d(H1k, ρk)‖2

≤ ‖H1k −H1∗‖2,

where we use the definition of d(H2k, ρk).
It follows that

‖H2,k −H2∗‖ ≤ (1 + γL21)‖H1k −H1∗‖+ γL22‖H2k −H2∗‖. (4.8)

From (4.5) to (4.8), we know

‖H1,k+1 −H1∗‖ ≤ (
√

1− 2ρθ1 + 2ρ2L2
12(1 + γL21)/(1− γL22) +

√
2ρL2

11 + 2ρL11)‖H1k −H1∗‖. (4.9)

Since 0 < θ < 1 , from (4.9), we know H1k → H1∗. Thus from (4.8), we know H2k → H2∗.

5 Numerical results

In this section, we presented some numerical results for the proposed method. we consider a simple traffic
network consisting of two nodes, only a origin-destination (O/D) pair, and a set R of routes. Each route
r ∈ R links the origin-destination pair in parallel. Assume that n is the number of the route in R.
Let C1(H1,H2) = DH1(t) + cT

1 H2(t), C2(H1,H2) = DH1(t) + cT
2 H2(t) , where

D =




4 −2 · · · · · ·
1 4 · · · · · ·
· · · · · · 4 −2
· · · · · · 1 4


 ,

c1 = (−1,−1, · · · ,−1)T , c2 = (1, 1, · · · , 1)T ,H1(t) = H1 ∈ Rn,H1(t) = H2 ∈ Rn. let

K1(H1,H2) = {H1|H1 ∈ [l, u],Hi
1 + Hi

2 ≤ 2000, i = 1, 2, · · · , n},
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K2(H1,H2) = {H1|H1 ∈ [l, u],Hi
1 + Hi

2 ≤ 2000, i = 1, 2, · · · , n}.
where l = (0, 0, · · · , 0)T , u = (1000, 1000, · · · , 1000)T . The calculations are started with vectors H1 =
(0, 0, · · · , 0)T ,H2 = (5, 5, · · · , 5)T and stopped whenever r1, r2 < 10−5. Table 1 gives the numerical results
of Algorithms 4. 1. Table 2 gives the numerical results of Algorithms 4. 2.
Comparing Table 2 and Table 1, it show that Algorithm 4.2 is very effective for the problem tested. In
addition, it seems that the computational time and the iteration numbers are not very sensitive to the
problem size.

Table 1: Computation performance with different scales by Algorithm 4.1

n Iteration CPU(s)
50 366 29.5469
100 183 28.5469
200 93 27.2813
300 63 30.4375

Table 2: Computation performance with different scales by Algorithm 4.2

n Iteration CPU(s)
50 220 17.7282
100 110 16.1281
200 56 15.3687
300 38 18.2625
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BARNES’ MULTIPLE FROBENIUS-EULER AND HERMITE

MIXED-TYPE POLYNOMIALS

DAE SAN KIM, DMITRY V. DOLGY, AND TAEKYUN KIM

Abstract. In this paper, we consider the Barnes’ multiple Frobenius-Euler
and Hermite mixed-type polynomials. Using the umbral calculus, we derive

several explicit formulas and recurrence relations for these polynomials. Also,
we establish connections between our polynomials and several known families
of polynomials.

1. Introduction

For λ ̸= 1, s ∈ N, the Frobenius-Euler polynomials of order s are defined by the
generating function

(1.1)

(
1− λ
et − λ

)s

ext =
∞∑

n=0

H(s)
n (x | λ) t

n

n!
, (see [7, 12, 19]) .

Let a1, a2, . . . , ar, λ1, λ2, . . . , λr ∈ C with a1, . . . , ar ̸= 0, λ1, . . . , λr ̸= 1. Then
the Barnes’ multiple Frobenius-Euler polynomials Hn (x | a1, . . . , ar;λ1, . . . , λr) are
given by the generating funciton
(1.2)

r∏
j=1

(
1− λj
eajt − λj

)
ext =

∞∑
n=0

Hn (x | a1, . . . , ar;λ1, . . . , λr)
tn

n!
, (see [13, 15]) .

When x = 0,Hn (a1, . . . , ar;λ1, . . . , λr) = Hn (0 | a1, . . . , ar;λ1, . . . , λr) are called
the Barnes’ multiple Frobenius-Euler numbers (see [13]).

For a1 = a2 = · · · = ar = 1, λ1 = λ2 = · · · = λr = λ, we have Hn(x |
1, 1, . . . , 1︸ ︷︷ ︸
r−times

;λ, λ, . . . , λ︸ ︷︷ ︸)
r−times

= H(r)
n (x | λ). When x = 0, H(r)

n (λ) = H(r)
n (0 | λ) are called

the Frobenius-Euler numbers of order r.
The Hermite polynomials H

(ν)
n (x) of variance ν (0 ̸= ν ∈ R) are given by the

generating function

(1.3) e−νt2/2ext =
∞∑

n=0

H(ν)
n (x)

tn

n!
, (see [24]) .

When x = 0, H
(ν)
n = H

(ν)
n (0) are called the Hermite numbers of variance ν. It

is well known that the Bernoulli polynomials of order r (∈ N) are defined by the
generating function

2010 Mathematics Subject Classification. 05A19, 05A40, 11B75, 11B83.
Key words and phrases. Barnes’ multiple Frobenius-Euler and Hermite mixed-type polynomi-

als, umbral calculus.
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2 DAE SAN KIM, DMITRY V. DOLGY, AND TAEKYUN KIM

(1.4)

(
t

et − 1

)r

ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (see [1–24, 26]) .

When x = 0, B
(r)
n = B

(r)
n (0) are called the Bernoulli numbers of order r. For

n ≥ 0, the Stirling numbers of the first kind are given by

(1.5) (x)n = x (x− 1) · · · (x− n+ 1) =

n∑
l=0

S1 (n, l)x
l, (see [24]) .

The Stirling numbers of the second kind are defined by the generating function

(1.6)
(
et − 1

)n
= n!

∞∑
l=n

S2 (l, n)
xl

l!
, (see [24]) .

Let C be the complex field and let F be the set of all formal power series in the
variable t:

(1.7) F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
.

Let P = C [x] and let P∗ be the vector space of all linear functionals on P. We
use the notation ⟨L | p (x)⟩ to denote the action of the linear functional L on the
polynomial p (x), and we recall that the vector space operations on P∗ are defined
by ⟨L+M | p (x)⟩ = ⟨L | p (x)⟩+ ⟨M | p (x)⟩, and ⟨cL | p (x)⟩ = c ⟨L| p (x)⟩, where
c is a complex constant in C. The linear functional ⟨f (t)| ·⟩ on P is defined by

(1.8) ⟨f (t)|xn⟩ = an, (n ≥ 0) , where f (t) ∈ F , (see [17, 21, 24]) .

By (1.8), we easily get

(1.9)
⟨
tk
∣∣xn⟩ = n!δn,k, (n, k ≥ 0) , (see [8, 21, 24]) ,

where δn,k is the Kronecker’s symbol.

Let fL (t) =
∑∞

k=0
⟨L|xk⟩

k! tk. Then, by (1.9), we get ⟨fL (t)|xn⟩ = ⟨L | xn⟩ . So,
the map L 7→ fL (t) is a vector space isomorphism from P∗ onto F . Henceforth,
F denotes both the algebra of formal power series in t and the vector space of all
linear functionals on P, and so an element f (t) of F will be thought of as both
a formal power series and a linear functional. We call F the umbral algebra and
the umbral calculus is the study of umbral algebra. The order o (f (t)) of a power
series f (t) ̸= 0 is the smallest integer k for which the coefficient of tk does not
vanish. If the order of f (t) is 1, then f (t) is called a delta series; if the order g (t)
is 0, then g (t) is called an invertible series. Let f (t) , g (t) ∈ F with o (f (t)) = 1
and o (g (t)) = 0. Then there exists a unique sequence sn (x) (deg sn (x) = n) such

that
⟨
g (t) f (t)

k | sn (x)
⟩

= n!δn,k for n, k ≥ 0. Such a sequence sn (x) is called

the Sheffer sequence for (g (t) , f (t)) which is denoted by sn (x) ∼ (g (t) , f (t)) (see
[21, 24]). In particular, if sn (x) ∼ (g (t) , t), then sn (x) is called an Appell sequence
for g (t). For f (t) , g (t) ∈ F , we have
(1.10)
⟨f (t) g (t)| p (x)⟩ = ⟨f (t)| g (t) p (x)⟩ = ⟨g (t)| f (t) p (x)⟩ = ⟨1| f (t) g (t) p (x)⟩ ,

(1.11) f (t) =
∞∑
k=0

⟨
f (t)|xk

⟩ tk
k!
, p (x) =

∞∑
k=0

⟨
tk
∣∣ p (x)⟩ xk

k!
, (see [24]) .
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BARNES’ MULTIPLE FROBENIUS-EULER AND HERMITE MIXED-TYPE POLYNOMIALS 3

Thus, by (1.11), we get
(1.12)

tkp (x) = p(k) (x) =
dkp (x)

dxk
, eytp (x) = p (x+ y) , and

⟨
eyt
∣∣ p (x)⟩ = p (y) .

The sequence sn (x) is Sheffer for (g (t) , f (t)) if and only if

(1.13)
1

g
(
f (t)

)eyf(t) = ∞∑
k=0

sk (x)

k!
tk, (y ∈ C) , (see [17, 21, 24]) ,

where f (t) is the compositional inverse of f (t) with f (f (t)) = f
(
f (t)

)
= t. It is

well known that the Sheffer identity is given by
(1.14)

sn (x+ y) =
∞∑
j=0

(
n

j

)
sj (x) pn−j (y) , where pn (x) = g (t) sn (x) , (see [17, 24]) .

For sn (x) ∼ (g (t) , f (t)), we have

(1.15) sn+1 (x) =

(
x− g′ (x)

g (x)

)
1

f ′ (x)
sn (x) , (n ≥ 0) ,

(1.16) sn (x) =
n∑

j=0

1

j!

⟨
g
(
f (t)

)−1
f (t)

j
∣∣∣xn⟩xj ,

and

(1.17) ⟨f (t)|xp (x)⟩ = ⟨∂tf (t)| p (x)⟩ , f (t) sn (x) = nsn−1 (x) , (n ≥ 1) .

Let sn (x) ∼ (g (t) , f (t)) and rn (x) ∼ (h (t) , l (t)), (n ≥ 0). Then we have

(1.18) sn (x) =
n∑

m=0

Cn,mrm (x) , (n ≥ 0) ,

where

(1.19) Cn,m =
1

m!

⟨
h
(
f (t)

)
g
(
f (t)

) l (f (t))m∣∣∣∣∣xn
⟩
, (see [17, 21, 24]) .

In this paper, we consider the polynomials FH
(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) whose

generating function is given by

r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2ext =

r∏
j=1

(
1− λj
eajt − λj

)
ext−νt2/2(1.20)

=
∞∑

n=0

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

tn

n!
,

where r ∈ Z>0, a1, . . . , ar, λ1, . . . , λr ∈ C with a1, . . . , ar ̸= 0, λ1, . . . , λr ̸= 1, and

ν ∈ R with ν ̸= 0. FH
(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) are called Barnes’ multiple

Frobenius-Euler and Hermite mixed-type polynomials.

When x = 0, FH
(ν)
n (a1, . . . , ar;λ1, . . . , λr) = FH

(ν)
n (0 | a1, . . . , ar;λ1, . . . , λr)

are called the Barnes’ multi[ple Frobenius-Euler and Hermite mixed-type numbers.

We observe here that FH
(ν)
n (x | a1, . . . , ar;λ1, . . . , λr),Hn (x | a1, . . . , ar;λ1, . . . , λr),
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4 DAE SAN KIM, DMITRY V. DOLGY, AND TAEKYUN KIM

andH
(ν)
n (x) are respectively Appell sequences for

∏r
j=1

(
eajt−λj

1−λj

)
eνt

2/2,
∏r

j=1

(
eajt

n
−λj

1−λj

)
,

and eνt
2/2. That is,

(1.21) FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) ∼

 r∏
j=1

(
eajt − λj
1− λj

)
eνt

2/2, t

 ,

(1.22) Hn (x | a1, . . . , ar;λ1, . . . , λr) ∼

 r∏
j=1

(
eajt − λj
1− λj

)
, t

 ,

and

(1.23) H(ν)
n (x) ∼

(
eνt

2/2, t
)
.

From the Barnes’ multiple Frobenius-Euler and Hermite mixed-type polynomi-
als, we investigate some properties of those polynomials. Finally, we give some new
and interesting identities which are derived from umbral calculus.

2. Barnes’ multiple Frobenius-Euler and Hermite mixed-type
polynomials

From (1.21), (1.22) and (1.23), we note that

tFH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) =

d

dx
FH(ν)

n (x | a1, . . . , ar;λ1, . . . , λr)(2.1)

= nFH
(ν)
n−1 (x | a1, . . . , ar;λ1, . . . , λr) ,

tHn (x | a1, . . . , ar;λ1, . . . , λr) =
d

dx
Hn (x | a1, . . . , ar;λ1, . . . , λr)(2.2)

= nHn−1 (x | a1, . . . , ar;λ1, . . . , λr) ,
and

(2.3) tH(ν)
n (x) =

d

dx
H(ν)

n (x) = nH
(ν)
n−1 (x) .

Now, we give explicit expressions related to the Barnes’ multiple Frobenius-Euler
and Hermite mixed-type polynomials.

From (1.13), we note that

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) = e−νt2/2

r∏
j=1

(
1− λj
eajt − λj

)
xn(2.4)

=e−νt2/2Hn (x | a1, . . . , ar;λ1, . . . , λr)

=
∞∑

m=0

1

m!

(
−ν
2

)m
t2mHn (x | a1, . . . , ar;λ1, . . . , λr)

=

[n2 ]∑
m=0

1

m!

(
−ν
2

)m
(n)2mHn−2m (x | a1, . . . , ar;λ1, . . . , λr)

=

[n2 ]∑
m=0

(
n

2m

)
(2m)!

m!

(
−ν
2

)m
Hn−2m (x | a1, . . . , ar;λ1, . . . , λr) .
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By (1.9), we get

FH(ν)
n (y | a1, . . . , ar;λ1, . . . , λr)(2.5)

=

⟨ ∞∑
i=0

FH
(ν)
i (y | a1, . . . , ar;λ1, . . . , λr)

ti

i!

∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)∣∣∣∣∣∣ e−νt2/2eytxn

⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)∣∣∣∣∣∣
∞∑
l=0

H
(ν)
l (y)

tl

l!
xn

⟩

=
n∑

l=0

(
n

l

)
H

(ν)
l (y)

⟨
r∏

j=1

(
1− λj
eajt − λj

)∣∣∣∣∣∣xn−l

⟩

=
n∑

l=0

(
n

l

)
H

(ν)
l (y)

⟨ ∞∑
i=0

Hi (a1, . . . , ar;λ1, . . . λr)
ti

i!

∣∣∣∣∣xn−l

⟩

=
n∑

l=0

(
n

l

)
Hn−l (a1, . . . , ar;λ1, . . . , λr)H

(ν)
l (y) .

Thus, by (2.5), we get
(2.6)

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr

) =
n∑

l=0

(
n

l

)
Hn−l (a1, . . . , ar;λ1, . . . , λr)H

(ν)
l (x) .

Therefore, by (2.4) and (2.6), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=

[n2 ]∑
m=0

(
n

2m

)
(2m)!

m!

(
−ν
2

)m
Hn−2m (x | a1, . . . , ar;λ1, . . . , λr)

=
n∑

l=0

(
n

l

)
Hn−l (a1, . . . , ar;λ1, . . . , λr)H

(ν)
l (x) .

From (1.9), we have

FH(ν)
n (y | a1, . . . , ar;λ1, . . . , λr)(2.7)

=

⟨ ∞∑
i=0

FH
(ν)
i (y | a1, . . . , ar;λ1, . . . , λr)

ti

i!

∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn
⟩
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=

⟨
e−νt2/2

∣∣∣∣∣∣
r∏

j=1

(
1− λj
eajt − λj

)
eytxn

⟩

=

⟨
e−νt2/2

∣∣∣ ∞∑
l=0

Hl (y | a1, . . . , ar;λ1, . . . , λr)
tl

l!
xn

⟩

=
n∑

l=0

(
n

l

)
Hl (y | a1, . . . , ar;λ1, . . . , λr)

⟨ ∞∑
i=0

H
(ν)
i

ti

i!

∣∣∣∣∣xn−l

⟩

=
n∑

l=0

(
n

l

)
Hl (y | a1, . . . , ar;λ1, . . . , λr)H(ν)

n−l.

Thus, by (2.7), we get
(2.8)

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) =

n∑
l=0

(
n

l

)
Hl (x | a1, . . . , ar;λ1, . . . , λr)H(ν)

n−l.

Now, we will use the conjugation representation in (1.16). For FH
(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) ∼(

g (t) =
∏r

j=1

(
eajt−λj

1−λj

)
eνt

2/2, f (t) = t
)
, we observe that⟨

g
(
f (t)

)−1
f (t)

j
∣∣∣xn⟩(2.9)

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2tj

∣∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣ tjxn
⟩

=(n)j

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣xn−j

⟩

=(n)j

⟨
e−νt2/2

∣∣∣Hn−j (x | a1, . . . , ar;λ1, . . . , λr)
⟩

=(n)j

⟨ ∞∑
m=0

1

m!

(
−ν
2

)m
t2m

∣∣∣∣∣Hn−j (x | a1, . . . , ar;λ1, . . . , λr)

⟩

=(n)j

[n−j
2 ]∑

m=0

1

m!

(
−ν
2

)m
(n− j)2mHn−j−2m (a1, . . . , ar;λ1, . . . , λr) .

From (1.16) and (2.9), we can derive the following equation:

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)(2.10)

=
n∑

j=0

(
n

j

) [n−j
2 ]∑

m=0

1

m!

(
−ν
2

)m
(n− j)2mHn−j−2m (a1, . . . , ar;λ1, . . . , λr)x

j .

Therefore, by (2.8) and (2.10), we obtain the following theorem.
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Theorem 2.2. For n ≥ 0, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=
n∑

l=0

(
n

l

)
H

(ν)
n−lHl (x | a1, . . . , ar;λ1, . . . , λr)

=
n∑

j=0

(
n

j

) [n−j
2 ]∑

m=0

1

m!

(
−ν
2

)m
(n− j)2mHn−j−2m (a1, . . . , ar;λ1, . . . , λr)x

j .

Remark. From (1.14), we have

FH(ν)
n (x+ y | a1, . . . , ar;λ1, . . . , λr)(2.11)

=
n∑

j=0

(
n

j

)
FH

(ν)
j (x | a1, . . . , ar;λ1, . . . , λr) yn−j .

By (1.15) and (1.21), we get

FH
(ν)
n+1 (x | a1, . . . , ar;λ1, . . . , λr)(2.12)

=

(
x− g′ (t)

g (t)

)
FH(ν)

n (x | a1, . . . , ar;λ1, . . . , λr) ,

where g (t) =
∏r

j=1

(
eajt−λj

1−λj

)
eνt

2/2.

Now, we compute that

g′ (t)

g (t)
= (log g (t))

′
(2.13)

=

 r∑
j=1

log
(
eajt − λj

)
−

r∑
j=1

log (1− λj) +
1

2
νt2

′

=

r∑
j=1

aje
ajt

eajt − λj
+ νt.

So

g′ (t)

g (t)
FH(ν)

n (x | a1, . . . , ar;λ1, . . . , λr)(2.14)

=
r∑

j=1

aje
ajt

1− λj
· 1− λj
eajt − λj

r∏
i=1

(
1− λi
eait − λi

)
e−νt2/2xn

+ νtFH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=

r∑
j=1

aj
1− λj

FH(ν)
n (x+ aj | a1, . . . , ar, aj ;λ1, . . . , λr, λj)

+ nνFH
(ν)
n−1 (x | a1, . . . , ar;λ1, . . . , λr)

=

r∑
j=1

aj
1− λj

FH(ν)
n (x+ aj | a1, . . . , ar, aj ;λ1, . . . , λr, λj)

+ nνFH
(ν)
n−1 (x | a1, . . . , ar, aj ;λ1, . . . , λr) .
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By (2.12) and (2.14), we get

FH
(ν)
n+1 (x | a1, . . . , ar;λ1, . . . , λr)(2.15)

=xFH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

−
r∑

j=1

aj
1− λj

FH(ν)
n (x+ aj | a1, . . . , ar, aj ;λ1, . . . , λr, λj)

− nνFH(ν)
n−1 (x | a1, . . . , ar;λ1, . . . , λr) .

For n ≥ 2, by (1.9), we get

FH(ν)
n (y | a1, . . . , ar;λ1, . . . , λr)(2.16)

=

⟨ ∞∑
i=0

FH
(ν)
i (y | a1, . . . , ar;λ1, . . . , λr)

ti

i!

∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn
⟩

=

⟨
∂t

 r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn−1

⟩

=

⟨∂t r∏
j=1

(
1− λj
eajt − λj

) e−νt2/2eyt

∣∣∣∣∣∣xn−1

⟩

+

⟨
r∏

j=1

(
1− λj
eajt − λj

)(
∂te

−νt2/2
)
eyt

∣∣∣∣∣∣xn−1

⟩

+

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
∂te

yt
)∣∣∣∣∣∣xn−1

⟩
.

The third term is

y

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn−1

⟩
(2.17)

=yFH
(ν)
n−1 (y | a1, . . . , ar;λ1, . . . , λr) .

The second term is

− ν

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣ txn−1

⟩
(2.18)

=− ν (n− 1)

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2eyt

∣∣∣∣∣∣xn−2

⟩

=− ν (n− 1)FH
(ν)
n−2 (y | a1, . . . , ar;λ1, . . . , λr) .
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We observe that

∂t

 r∏
j=1

(
1− λj
eajt − λj

)(2.19)

=

r∑
i=1

(
1− λi
eait − λi

)′∏
j ̸=i

(
1− λj
eajt − λj

)

=−
r∏

j=1

(
1− λj
eajt − λj

) r∑
i=1

aie
ait

eait − λi
,

where
(2.20)

r∑
i=1

aie
ait

eait − λi
=

r∑
i=1

ai
1− λi

eait
1− λi
eait − λi

=
r∑

i=1

ai
1− λi

eait
∞∑

m=0

Hm (λi)
ami
m!

tm.

So, by (2.19) and (2.20), we get
(2.21)

∂t

 r∏
j=1

1− λj
eajt − λj

 = −
r∏

j=1

(
1− λj
eajt − λj

) r∑
i=1

ai
1− λi

eait
∞∑

m=0

Hm (λi)
ami
m!

tm.

Now, the first term is

−
r∑

i=1

ai
1− λi

⟨
e(y+ai)t

r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣
n−1∑
m=0

Hm (λi)
ami
m!

tmxn−1

⟩(2.22)

=−
r∑

i=1

ai
1− λi

n−1∑
m=0

(
n− 1

m

)
Hm (λi) a

m
i

×

⟨
e(y+ai)t

r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣xn−1−m

⟩

=−
r∑

i=1

ai
1− λi

n−1∑
m=0

(
n− 1

m

)
Hm (λi) a

m
i

×

⟨ ∞∑
l=0

FH
(ν)
l (y + ai | a1, . . . , ar;λ1, . . . , λr)

tl

l!

∣∣∣∣∣xn−1−m

⟩

=−
r∑

i=1

n−1∑
m=0

(
n− 1

m

)
am+1
i

1− λi
Hm (λi)FH

(ν)
n−1−m (y + ai | a1, . . . , ar;λ1, . . . , λr) .

Therefore, by (2.16), (2.17), (2.18) and (2.22), we obtain the following theorem.

Theorem 2.3. For n ≥ 2, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=xFH
(ν)
n−1 (x | a1, . . . , ar;λ1, . . . , λr)− ν (n− 1)FH

(ν)
n−2 (x | a1, . . . , ar;λ1, . . . , λr)
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−
r∑

i=1

n−1∑
m=0

(
n− 1

m

)
am+1
i

1− λi
Hm (λi)FH

(ν)
n−1−m (x+ ai | a1, . . . , ar;λ1, . . . , λr) .

Remark. We compute the following in two different ways in order to derive an
identity: ⟨

r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2tm

∣∣∣∣∣∣xn
⟩
, (m,n ≥ 0) .

On one hand, it is ⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2tm

∣∣∣∣∣∣xn
⟩

(2.23)

= (n)m

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣xn−m

⟩

=(n)m FH
(ν)
n−m (a1, . . . , ar;λ1, . . . , λr) .

On the other hand, it is⟨
∂t

 r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2tm

∣∣∣∣∣∣xn−1

⟩
(2.24)

=

⟨∂t r∏
j=1

(
1− λj
eajt − λj

) e−νt2/2tm

∣∣∣∣∣∣xn−1

⟩

+

⟨
r∏

j=1

(
1− λj
eajt − λj

)(
∂te

−νt2/2
)
tm

∣∣∣∣∣∣xn−1

⟩

+

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2 (∂tt

m)

∣∣∣∣∣∣xn−1

⟩
.

From (2.23) and (2.24), we can derive the following equation: for n ≥ m+ 2,

FH
(ν)
n−m (a1, . . . , ar;λ1, . . . , λr)

(2.25)

=− ν (n−m− 1)FH
(ν)
n−m−2 (a1, . . . , ar;λ1, . . . , λr)

−
r∑

i=1

n−m−1∑
l=0

(
n−m− 1

l

)
al+1
i

1− λi
Hl (λi)FH

(ν)
n−1−l−m (ai; a1, . . . , ar;λ1, . . . , λr) .

For FH
(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) ∼

(∏r
j=1

(
eajt−λj

1−λj

)
eνt

2/2, t
)
, (x)n ∼ (1, et − 1),

we have

(2.26) FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) =

n∑
m=0

Cn,m (x)m ,

Cn,m(2.27)
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=
1

m!

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
et − 1

)m∣∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣ 1

m!

(
et − 1

)m
xn

⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣
∞∑

l=m

S2 (l,m)
tl

l!
xn

⟩

=

n∑
l=m

(
n

l

)
S2 (l,m)

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣xn−l

⟩

=

n∑
l=m

(
n

l

)
S2 (l,m)FH

(ν)
n−l (a1, . . . , ar;λ1, . . . , λr) .

Therefore, by (2.26) and (2.27), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

FH(ν)
n (x | a1, . . . , ar;λ1 . . . , λr) =

n∑
m=0

n∑
l=m

(
n

l

)
S2 (l,m)FH

(ν)
n−l (a1, . . . , ar;λ1, . . . , λr) (x)m .

It is easy to show that

x(n) = x (x+ 1) · · · (x+ n− 1) ∼
(
1, 1− e−t

)
.

From (1.18) and (1.19), we have

(2.28) FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) =

n∑
m=0

Cn,mx
(m),

where

Cn,m(2.29)

=
1

m!

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
1− e−t

)m∣∣∣∣∣∣xn
⟩

=
1

m!

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2e−mt

(
et − 1

)m∣∣∣∣∣∣xn
⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2e−mt

∣∣∣∣∣∣ 1

m!

(
et − 1

)m
xn

⟩

=

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2e−mt

∣∣∣∣∣∣
∞∑

l=m

S2 (l,m)
tl

l!
xn

⟩

=
n∑

l=m

(
n

l

)
S2 (l,m)

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2e−mt

∣∣∣∣∣∣xn−l

⟩
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=
n∑

l=m

(
n

l

)
S2 (l,m)

⟨ ∞∑
i=0

FH
(ν)
i (−m | a1, . . . , ar;λ1, . . . , λr)

ti

i!

∣∣∣∣∣xn−l

⟩

=
n∑

l=m

(
n

l

)
S2 (l,m)FH

(ν)
n−l (−m | a1, . . . , ar;λ1, . . . , λr) .

Therefore, by (2.28) and (2.29), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=

n∑
m=0

n∑
l=m

(
n

l

)
S2 (l,m)FH

(ν)
n−l (−m | a1, . . . , ar;λ1, . . . , λr)x

(m).

From (1.4), (1.13), (1.18), (1.19) and (1.21), we have

(2.30) FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr) =

n∑
m=0

Cn,mB
(s)
m (x) , (s ∈ N) ,

where

Cn,m

(2.31)

=
1

m!

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
et − 1

t

)s

tm

∣∣∣∣∣∣xn
⟩

=

(
n

m

)⟨ r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣
(
et − 1

t

)s

xn−m

⟩

=

(
n

m

)⟨ r∏
j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣
∞∑
l=0

s!

(l + s)!
S2 (l + s, s) tlxn−m

⟩

=

(
n

m

) n−m∑
l=0

s!

(l + s)!
S2 (l + s, s) (n−m)l

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣xn−m−l

⟩

=

(
n

m

) n−m∑
l=0

(
n−m

l

)(
l+s
s

) S2 (l + s, s)FH
(ν)
n−m−l (a1, . . . , ar;λ1, . . . , λr) .

Therefore, by (2.30) and (2.31), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, and s ∈ N, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=
n∑

m=0

(
n

m

) n−m∑
l=0

(
n−m

l

)(
l+s
s

) S2 (l + s, s)FH
(ν)
n−m−l (a1, . . . , ar;λ1, . . . , λr)B

(s)
m (x) .
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From (1.1), (1.18), (1.19) and (1.21), we have

(2.32) FH(ν)
n (x | a1, . . . , ar;λ1, , . . . , λr) =

n∑
m=0

Cn,mH(s)
m (x | λ) , (s ∈ N) ,

where

Cn,m(2.33)

=
1

m!

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
et − λ
1− λ

)s

tm

∣∣∣∣∣∣xn
⟩

=
1

m! (1− λ)s

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

(
et − λ

)s∣∣∣∣∣∣ tmxn
⟩

=

(
n
m

)
(1− λ)s

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2

∣∣∣∣∣∣
s∑

j=0

(
s

j

)
(−λ)s−j

ejtxn−m

⟩

=

(
n
m

)
(1− λ)s

s∑
j=0

(
s

j

)
(−λ)s−j

⟨
r∏

j=1

(
1− λj
eajt − λj

)
e−νt2/2ejt

∣∣∣∣∣∣xn−m

⟩

=

(
n
m

)
(1− λ)s

s∑
j=0

(
s

j

)
(−λ)s−j

FH
(ν)
n−m (j | a1, . . . , ar;λ1, . . . , λr) .

Therefore, by (2.32) and (2.33), we obtain the following theorem.

Theorem 2.7. For n ≥ 0, we have

FH(ν)
n (x | a1, . . . , ar;λ1, . . . , λr)

=
1

(1− λ)s
n∑

m=0

(
n

m

) s∑
j=0

(
s

j

)
(−λ)s−j

FH
(ν)
n−m (j | a1, . . . , ar;λ1, . . . , λr)H(s)

m (x|λ) .
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Robust stability and stabilization of linear uncertain

stochastic systems with Markovian switching

Yifan Wu1

Department of Basic Courses Jiangsu Food & Pharmaceutical Science College,

HuaiAn, Jiangsu, 223003, China

Abstract. This paper is concerned with robust stability and stabilization problem for a class of

linear uncertain stochastic systems with Markovian switching. The uncertain system under con-

sideration involves parameter uncertainties both in the drift part and in the diffusion part. New

criteria for testing the robust stability of such systems are established in terms of bi-linear matrix

inequalities (BLMIs), and sufficient conditions are proposed for the design of robust state-feedback

controllers. An example illustrates the proposed techniques.

Keywords: Bi-linear matrix inequalities (BLMIs); Robust stabilization; Stochastic system with

Markovian switching; Uncertainty

1 Introduction

Stochastic systems with Markovian switching have been used to model many practical systems

where they may experience abrupt changes in their structure and parameters. Such systems have

played a crucial role in many applications, such as hierarchical control of manufacturing systems([4,

5, 16]), financial engineering ([19]) and wireless communications ( [6]).

In the past decades, the stability and control of Markovian jump systems have recently received

a lot of attention. For example, [3] and [15] systematically studied stochastic stability properties of

jump linear systems. [1] discussed the stability of a semi-linear stochastic differential equation with

Markovian switching. [7, 9, 10, 12] discussed the exponential stability of general nonlinear stochastic

systems with Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t). (1.1)

1E-mail address: yifanwu1980@126.com

1
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Over the last decade, stochastic control problems governed by stochastic differential equation with

Markovian switching have attracted considerable research interest, and we here mention[2, 11, 20,

23, 24]. It is well known that uncertainty occurs in many dynamic systems and is frequently a cause

of instability and performance degradation. In the past few years, considerable attention has been

given to the problem of designing robust controllers for linear systems with parameter uncertainty,

such as[8, 13, 17, 21, 22]. However, a literature search reveals that the issue of stabilization of

uncertain system under consideration involves parameter uncertainties both in the drift part and

in the diffusion part has not been fully investigated and remains important and challenging. This

situation motivates the present study on the robust stabilization of linear uncertain stochastic systems

with Markovian switching. We aim at designing a robust state-feedback controller such that, for all

admissible uncertainties , the closed-loop system is exponentially stable in mean square.

The structure of this paper is as follows. In Section 2, we introduce notations, definitions and

results required from the literature. In Section 3, we shall discuss the problem of mean square

exponential stabilization for a linear jump stochastic system. In Section 4, sufficient conditions are

proposed for the design of robust state-feedback controllers. An example is discussed for illustrating

our main results in Section 5.

2 Preliminaries

In this paper, we will employ the following notation. Let |.| be the Euclidean norm in Rn. The

interval [0,∞) be denoted by R+. If A is a vector or matrix, its transpose is denoted by AT .

In denotes the n × n identity matrix. If A is a symmetric matrix λmin(A) and λmax(A) mean

the smallest and largest eigenvalue, respectively. If A and B are symmetric matrices, by A > B

and A ≥ B we mean that A − B is positive definite and nonnegative definite, respectively. And

C2,1(Rn × R+ × S;R+) denotes the family of all R+-valued functions on Rn × R+ × S which are

continuously twice differentiable in x and once differentiable in t. We write diag(a1, ..., an) for a

diagonal matrix whose diagonal entries starting in the upper left corner are a1, ..., an.

Let (Ω,F , (F)t, P ) be a complete probability space with a filtration (F)t satisfying the usual

conditions. Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking

values in a finite state space S = {1, 2, ..., N} with generator Q = (qij)N×N given by

P (r(t+ ∆) = j | r(t) = i) =

 qij∆ + o(∆), if i 6= j

1 + qii∆ + o(∆), if i = j

where ∆ > 0, and qij ≥ 0 denotes the switching rate from i to j if i 6= j while qii = −
∑
i6=j

qij .

2
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Definition 1 ([9]) The trivial solution of system (1), or simply system (1) is said to be exponentially

stable in mean square if

lim sup
t→∞

1

t
log(E|x(t; t0, x0, r0)|2) < 0,

for all (t0, x0, r0) ∈ R+ ×Rn × S.

If V ∈ C2,1(Rn ×R+ × S;R+) , define operator LV (x, t, i) associated with system (1) by

LV (x, t, i) =
∂V (x, t, i)

∂t
+
∂V (x, t, i)

∂x
f(x, t, i)

+
1

2
tr[gT (x, t, i)

∂2V (x, t, i)

∂x2
g(x, t, i)] +

N∑
j=1

qijV (x, t, i).

We have the following lemma.

Lemma 2.1([9]) Let λ, c1, c2 be positive numbers. Assume that there exists a function V (x, t, i) ∈

C2,1(Rn ×R+ × S;R+) such that

c1|x(t)|2 ≤ V (x, t, i) ≤ c2|x(t)|2

and

LV (x, t, i) ≤ −λ|x(t)|2

for all (x, t, i) ∈ Rn ×R+ × S, then system (1) is exponentially stable in mean square.

In this note, we consider the following linear uncertain stochastic systems with Markovian switch-

ing:

dx(t) = Ã(r(t))x(t)dt+
d∑
k=1

B̃k(r(t))x(t)dwk(t),

x(t0) = x0 ∈ Rn, t ≥ t0,

(2.2)

where w(t) = (w1(t), w2(t), · · · , wd(t))T denotes a d-dimensional Brownian motion or Wiener process,

x(t) ∈ Rn is the system state, we assume that w(t) and r(t) are independent. For any i ∈ S, 1 ≤

k ≤ d, Ãi = Ã(r(t) = i) and B̃ki = B̃k(r(t) = i) are not precisely known a priori, but belong to the

following admissible uncertainty domains:

Da = {Ai +D0iF0i(t)E0i : F0i(t)
TF0i(t) ≤ I, i ∈ S},

Dbk = {Bki +DkiFki(t)Eki : Fki(t)
TFki(t) ≤ I, i ∈ S},

where Ai, Bki, D0i, E0i, Dki, Eki are known constant real matrices with appropriate dimensions, while

F0i(t) and Fki(t) denotes the uncertainties in the system matrices, for all i ∈ S.

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

873 Yifan Wu 871-880



Lemma 2.2 ([14, 18]) Let A,D,E,W and F (t) be real matrices of appropriate dimensions such

that FT (t)F (t) ≤ I and W > 0, then ,

1) For scalar ε > 0, DF (t)E + (DF (t)E)T ≤ εDDT + 1
εE

TE

2) For any scalar ε > 0 such that W − εDDT > 0,

(A+DF (t)E)TW−1(A+DF (t)E) ≤ AT (W − εDDT )−1A+ 1
εE

TE.

3 Robust stability analysis

This section, we discuss the robust stability for system (2). For convenience, we will let the initial

values x0 and r0 be non-random, namely x0 ∈ Rn and r0 ∈ S, but the theory developed in this

paper can be generalized without any difficulty to cope with the case of random initial values, and

we write x(t; t0, x0, r0) = x(t) simply.

Theorem 3.1 Suppose that there exist N symmetric positive-definite matrices Pi and positive

scalars εi, γi, and λi, such that ∀ i ∈ S, the following BLMIs hold:



Π11 ∗ ∗ ∗ ∗

E0iPi −γiI ∗ ∗ ∗

Π31 0 Π33 ∗ ∗

Π41 0 0 −εiI ∗

Π51 0 0 0 Π55


< 0, (3.3)

where the symbol ‘∗’ denotes the transposed element at the symmetric position, and

Π11 = AiPi + PiA
T
i + qiiPi + λiPi + γiD0iD

T
0i,

Π31 = [PiB
T
1i, PiB

T
2i, . . . , PiB

T
di]
T ,

Π41 = [PiE
T
1i, PiE

T
2i, . . . , PiE

T
di]
T ,

Π33 = diag[εiD1iD
T
1i − Pi, . . . , εiDdiD

T
di − Pi],

Π51 = [Pi, Pi, . . . , Pi︸ ︷︷ ︸
N−1

]T ,

Π55 = diag[
−1

qi1
P1, . . . ,

−1

qi(i−1)
Pi−1,

−1

qi(i+1)
Pi+1, . . . ,

−1

qiN
PN ],

then system (2) is exponentially stable in mean square.

Proof Let Xi = P−1i and define V (x, i) = xTXix for all i ∈ S. And let c1 = min{λmin(Xi) : i ∈

S}, c2 = max{λmax(Xi) : i ∈ S}, it is clear that

c1|x(t)|2 ≤ V (x, i) ≤ c2|x(t)|2. (3.4)

4
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On the other hand, a calculation shows that

LV (x, i) = x(t)T
[
Xi(Ai +D0iF0iE0i) + (Ai +D0iF0iE0i)

TXi +
N∑
j=1

qijXj

+
d∑
k=1

(Bki +DkiFkiEki)
TXi(Bki +DkiFkiEki)

]
x(t),

by Lemma 2.2, for all i ∈ S, if there exist positive scalars εi and γi such that εiDkiD
T
ki − Pi < 0,

1 ≤ k ≤ d, then we have

LV (x, i) ≤ x(t)T
[
XiAi +ATi Xi + γiXiD0iD

T
0iXi + 1

γi
ET0iE0i

+
d∑
k=1

BTki(Pi − εiDkiD
T
ki)
−1Bki +

d∑
k=1

1

εi
ETkiEki +

N∑
j=1

qijXj

]
x(t).

Thus, there exists a λ > 0 such that

LV (x, i) ≤ −λ|x(t)|2

will hold if for any i ∈ S there exists a λi > 0 such that

XiAi +ATi Xi + γiXiD0iD
T
0iXi + 1

γi
ET0iE0i

+
d∑
k=1

BTki(Pi − εiDkiD
T
ki)
−1Bki +

d∑
k=1

1

εi
ETkiEki +

N∑
j=1

qijXj + λiXi

< 0.

(3.5)

Pre- and post-multiplying (5) by Pi yields

AiPi + PiA
T
i + γiD0iD

T
0i + 1

γi
PiE

T
0iE0iPi

+
d∑
k=1

PiB
T
ki(Pi − εiDkiD

T
ki)
−1BkiPi

+
d∑
k=1

1

εi
PiE

T
kiEkiPi +

∑
j 6=i

qijPiP
−1
j Pi + qiiPi + λiPi

< 0,

which is equivalent to inequality (3) in view of Schur complement equivalence. The assertion of this

theorem follows from Lemma 2.1 immediately.

Remark 1 Theorem 3.1 provides the analysis results for the exponential stability of the system

(2). It can be seen from (3) that we need to check whether there exist N symmetric positive-definite

matrices Pi and positive scalars εi, γi, and λi meeting the N coupled matrix inequalities. It is clear

that inequality (3) is BLMIs, and it is LMIs for a prescribed λi, then we are able to determine

exponential stability of the system (3) readily by checking the solvability of the LMIs.

5
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4 Robust stabilization synthesis

This section deals with the robust stabilization problem for linear uncertain stochastic systems with

Markovian switching. Let us consider the uncertain stochastic control system of the form

dx(t) =
[
Ã(r(t))x(t) + C(r(t))u(t)

]
dt+

d∑
k=1

[
B̃k(r(t))x(t) + Ck(r(t))u(t)

]
dwk(t),

x(t0) = x0 ∈ Rn, t ≥ t0.

(4.6)

We aim to design a state-feedback controller u(t) = K(r(t))x(t) such that the resulting closed-loop

system

dx(t) =
[
Ã(r(t)) + C(r(t))K(r(t))

]
x(t)dt+

d∑
k=1

[
B̃k(r(t)) + Ck(r(t))K(r(t))

]
x(t)dwk(t),

x(t0) = x0 ∈ Rn, t ≥ t0.

(4.7)

is exponentially stable in mean square over all admissible uncertainty domains Da and Dbk, where

Ki = K(r(t) = i) (i ∈ S) is the controller to be determined.

The following results solve the robust stabilization problem for system (6).

Theorem 4.1 The closed-loop system (7) is exponentially stable in mean square with respect to

state-feedback gain Ki = YiP
−1
i , if there exist N symmetric positive-definite matrices Pi, N matrices

Yi and positive scalars εi, γi, and λi, such that∀ i ∈ S, the following BLMIs hold:



Π11 ∗ ∗ ∗ ∗

E0iPi −γiI ∗ ∗ ∗

Π31 0 Π33 ∗ ∗

Π41 0 0 −εiI ∗

Π51 0 0 0 Π55


< 0, (4.8)

where

Π11 = (AiPi + CiYi) + (AiPi + CiYi)
T + qiiPi

+ λiPi + γiD0iD
T
0i,

Π31 = [(B1iPi + C1iYi)
T , . . . , (BdiPi + CdiYi)

T ]T ,

Π41 = [PiE
T
1i, PiE

T
2i, . . . , PiE

T
di]
T ,

Π33 = diag[εiD1iD
T
1i − Pi, . . . , εiDdiD

T
di − Pi],

Π51 = [Pi, Pi, . . . , Pi︸ ︷︷ ︸
N−1

]T ,

Π55 = diag[
−1

qi1
P1, . . . ,

−1

qi(i−1)
Pi−1,

−1

qi(i+1)
Pi+1, . . . ,

−1

qiN
PN ].

6
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Proof The proof is similar to that of Theorem 3.1, so we only give an outlined one. Let Xi = P−1i

and define V (x, i) = xTXix . There exists a λ > 0 such that LV (x, i) ≤ −λ|x(t)|2 will hold if for

any i ∈ S there exist positive scalars εi , γi and λi, where εiDkiD
T
ki − Pi < 0, 1 ≤ k ≤ d, such that

Xi(Ai + CiKi) + (Ai + CiKi)
TXi + γiXiD0iD

T
0iXi + 1

γi
ET0iE0i

+
d∑
k=1

(Bki + CkiKi)
T (Pi − εiDkiD

T
ki)
−1(Bki + CkiKi)

+
d∑
k=1

1

εi
ETkiEki +

N∑
j=1

qijXj + λiXi < 0.

(4.9)

Noting that Yi = KiPi, and Pre- and post-multiplying (9) by Pi yields

(AiPi + CiYi) + (AiPi + CiYi)
T + γiD0iD

T
0i + 1

γi
PiE

T
0iE0iPi

+
d∑
k=1

(BkiPi + CkiYi)
T (Pi − εiDkiD

T
ki)
−1(BkiPi + CkiYi)

+
d∑
k=1

1

εi
PiE

T
kiEkiPi +

∑
j 6=i

qijPiP
−1
j Pi + qiiPi + λiPi < 0,

which is equivalent to (8) in view of Schur complement equivalence. The assertion of this theorem

follows from Lemma 2.1 immediately.

Remark 2 It is shown in Theorem 4.1 that the robust exponentially stabilization of system (6)-

(7) is guaranteed if the inequalities (8) are valid. And the inequality (8) is linear in Yi and Pi for a

prescribed λi, thus the standard LMI techniques can be exploited to check the exponential stability

of the closed-loop system (7).

5 Example

Let w(t) be a one-dimensional Brownian motion, let r(t) be a right-continuous Markov chain

taking values in S = {1, 2} with generator Q =

−1 1

1 −1

, consider a two-dimensional stochastic

systems with Markovian switching of the form

dx(t) =

[(
A(r(t)) +D0(r(t))F0(r(t), t)E0(r(t))

)
x(t) + C(r(t))u(t)

]
dt

+

[(
B(r(t)) +D1(r(t))F1(r(t), t)E1(r(t))

)
x(t) + C1(r(t))u(t)

]
dw(t),

(5.10)

where

A1 =

 0.5 0.2

0.3 0.8

, A2 =

 1 0.1

0.2 2

, B1 =

−1 0.5

0.5 −1

, B2 =

−2 0.1

0.1 1

,
7
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D01 = diag(−1,−2), D02 = diag(0.2, 0.3), D11 = diag(−1,−1), D12 = diag(5,−0.5),

E01 = diag(0.2, 0.2), E02 = diag(−3,−5), E11 = diag(−0.9,−0.9), E12 = diag(0.5, 1),

C1 =

 −8 0.1

0.05 −10

, C2 =

−20 0

0 −30

, C11 =

−1 0.5

2 3

, C12 =

−2 1

0.5 −4

,
for i = 1, 2, F0i(t) and F1i(t) denote the uncertainties of system (10). Let λ1 = 1, λ2 = 2, by solving

LMIs (8), we find the feasible solution:

P1 =

 98.708 4.383

4.383 85.385

, P2 =

 233.108 −0.786

−0.786 180.327

, Y1 =

 93.468 −16.376

−20.698 70.862

,

Y2 =

 171.947 −64.056

75.520 82.513

, γ1 = 0.082, γ2 = 1.170, ε1 = 0.034, ε2 = 0.004,

therefore, by Theorem 4.1, closed-loop system (10) is exponentially stable in mean square with

respect to state-feedback gain Ki = YiP
−1
i .

6 Conclusions

Based on the exponential stability theory, we have investigated the robust stochastic stability

of the uncertain stochastic system with Markovian switching, sufficient stability conditions were

developed. The robust stability of such systems can be tested based on the feasibility of bi-linear

matrix inequalities An example has been presented to illustrate the effectiveness of the main results.

It is believed that this approach is one step further toward the descriptions of the uncertain stochastic

systems.
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Abstract

In this paper, we introduce twice weakly differentiable and twice H-
differentiable interval valued functions. The existence of twice H-differentiable
interval-valued function and its relation with twice weakly differentiable func-
tions are presented. Interval valued bonvex and generalized bonvex func-
tions involving twice H-differentiability are proposed. Under the proposed
settings, necessary conditions are elicited naturally in order to achieve LU -
efficient solution. Mangasarian type dual is discussed for a nondifferentiable
multiobjective programming problem and appropriate duality results are also
derived. The theoretical developments are illustrated through non-trivial nu-
merical examples.

Keyword: Interval valued functions; twice weak differentiability; twice H- differ-
entiability, LU -efficient solution; generalized bonvexity; duality.

Mathematics Subject Classification: 90C25, 90C29, 90C30.

1 Introduction

The study of uncertain programming is always challenging in its modern face. Sev-
eral attempts to achieve optimal in the same have been made in several directions.
However optimality conditions still needs to be optimized. In this direction interval
valued programming is one of the several techniques which has got attention of
researchers in the recent past. Existing literature [2, 4, 5, 7, 8, 9, 10, 11, 12, 13,
17, 19, 20, 21, 22] contains many interesting results on the study of interval val-
ued programming involving different types of differentiability concepts and various
types of convexity concepts of interval valued functions.

Second order duality gives tighter bounds for the value of the objective function
when approximations are used. For more information, authors may see ([11], pp

∗Corresponding author.

E-mail addresses: drizhar@kfupm.edu.sa (Izhar Ahmad), dk.singh1002@gmail.com (Deepak
Singh), sahilbilal99in@gmail.com (Bilal Ahmad Dar), homidan@kfupm.edu.sa (S.Al-Homidan)
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93). One more advantage is that if a feasible point in the primal problem is given
and first order duality does not use, then we can apply second order duality to
provide a lower bound of the value of the primal problem.

Note that the study of nondifferentiable interval valued programming problems
has not been studied extensively as quoted in Sun and Wang [18] therefore to study
the second order duals of the aforesaid problem is an interesting move, we consider
the following nondifferentiable vector programming problem with interval valued
objective functions and constraint conditions and study its second order dual of
Mangasarian type.
(IP )

min f(x) + (xTBx)
1
2 =

(
f1(x) + (xTBx)

1
2 , ..., fk(x) + (xTBx)

1
2

)
subject to gj(x) �LU [0, 0], j ∈ Λm

where fi = [fL
i , f

U
i ], i ∈ Λk and gj = [gLj , g

U
j ], j ∈ Λm are interval valued functions

with fL
i , f

U
i , g

L
j , g

U
j : Rn → R, i ∈ Λk, j ∈ Λm be twice differentiable functions.

The remaining paper is designed as: section 2 is devoted to preliminaries. Sec-
tion 3 represents the differentiation of interval valued functions with the introduc-
tion of twice weakly differentiable and twice H-differentiable interval valued func-
tions. Some properties of these functions are also presented. Section 4 highlights
the concept of so-called bonvexity and its quasi and pseudo forms of interval valued
functions and their properties. In section 5, the necessary conditions for proposed
solution concept are elicited naturally by considering above settings. Finally with
the proposed settings the section 6 is devoted to study the Mangasarian type dual
of primal problem (IP ). Lastly we conclude in section 7.

2 Preliminaries

Let Ic denote the class of all closed and bounded intervals in R. i.e.,

Ic = {[a, b] : a, b ∈ R and a ≤ b}.

And b − a is the width of the interval [a, b] ∈ Ic. Then for A ∈ Ic we adopt
the notation A = [aL, aU ], where aL and aU are respectively the lower and upper
bounds of A. Let A = [aL, aU ], B = [bL, bU ] ∈ Ic and λ ∈ R, we have the following
operations.

(i) A+B = {a+ b : a ∈ A and b ∈ B} = [aL + bL, aU + bU ]
(ii)

λA = λ[aL, aU ] =

{
[λaL, λaU ] if λ ≥ 0
[λaU , λaL] if λ < 0;

(iii)
A×B = [min

ab
,max

ab
],

where
min
ab

= min{aLbL, aLbU , aUbL, aUbU}

2
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and
max
ab

= max{aLbL, aLbU , aUbL, aUbU}

In view of (i) and (ii) we see that

−B = −[bL, bU ] = [−bU ,−bL] and A−B = A+ (−B) = [aL − bL, aU − bL].

Also the real number a ∈ R can be regarded as a closed interval Aa = [a, a], then
we have for B ∈ Ic

a+B = Aa +B = [a+ bL, a+ bU ].

Note that the space Ic is not a linear space with respect to the operations (i) and
(ii), since it does not contain inverse elements.

3 Differentiation of interval valued functions

Definition 1. [20] Let X be open set in R. An interval-valued function f : X →
Ic is called weakly differentiable at x∗ if the real-valued functions fL and fU are
differentiable at x∗ (in the usual sense).

Given A,B ∈ Ic, if there exists C ∈ Ic such that A = B+C, then C is called the
Hukuhara difference of A and B. We also write C = A	H B when the Hukuhara
difference C exists, which means that aL− bL ≤ aU − bU and C = [aL− bL, aU − bU ].

Proposition 1. [20] Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals in R.
If aL−bL ≤ aU−bU , then the Hukuhara difference C exists and C = [aL−bL, aU−bU ].

Definition 2. [20] Let X be an open set in R. An interval-valued function f :
X → Ic is called H-differentiable at x∗ if there exists a closed interval A(x∗) ∈ Ic
such that

lim
h→0+

f(x∗ + h)	H f(x∗)

h
and lim

h→0+

f(x∗)	H f(x∗ + h)

h

both exist and are equal to A(x∗). In this case, A(x∗) is called the H-derivative of
f at x∗.

Proposition 2. [20] Let f be an interval-valued function defined on X ⊆ Rn. If f
is H-differentiable at x∗ ∈ X, then f is weakly differentiable at x∗.

Next we introduce twice differentiable interval valued functions and study some
properties.

Definition 3. Let X be an open set in Rn, and let x∗ = (x∗1, ..., x
∗
n) ∈ X be fixed.

Then we say that f is twice weakly differentiable interval valued function at x∗ if

3
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fL and fU are twice differentiable functions at x∗ (in usual sense). We denote by
∇2f the second differential of f , then we have

∇2f(x∗) = ∇(∇f(x))x=x∗

= ∇(∇[fL(x), fU(x)])x=x∗

= ∇([∇fL(x),∇fU(x)])x=x∗

= [∇2fL(x),∇2fU(x)]x=x∗

=

[(
∂2fL

∂xi∂xj

)
i,j

(x),

(
∂2fU

∂xi∂xj

)
i,j

(x)

]
x=x∗

.

Definition 3 is illustrated by the following example.

Example 1. Consider the interval valued function

f(x1, x2) = [fL = 2x1 + x22, f
U = x21 + x22 + 1]. (1)

Therefore we have

∇f(x) = [(2, 2x2), (2x1, 2x2)]
T

and

∇2f(x) =

[(
0 0
0 2

)
,

(
2 0
0 2

)]
.

Definition 4. Let X be an open set in Rn, and let x∗ = (x∗1, ..., x
∗
n) ∈ X be fixed.

Then we say that f is twice H-differentiable interval valued function if f ′ is H-
differentiable at x∗, where f ′ is H-derivative of f . We denote by ∇2

Hf the second
order H-differential of f , then we have

∇2
Hf(x∗) = ∇H(∇Hf(x))x=x∗

= ∇H

(
∂f

∂x1
(x), ...,

∂f

∂xn
(x)

)T

x=x∗

=

(
∇H

[
∂fL

∂x1
(x),

∂fU

∂x1
(x)

]
, ...,∇H

[
∂fL

∂xn
(x),

∂fU

∂xn
(x)

])T

x=x∗

=


[
∂2fL

∂2x1
(x), ∂

2fU

∂2x1
(x)
]
...
[

∂2fL

∂x1∂xn
(x), ∂2fU

∂x1∂xn
(x)
]

...
. . .

...[
∂2fL

∂xn∂x1
(x), ∂2fU

∂xn∂x1
(x)
]
...
[
∂2fL

∂2xn
(x), ∂

2fU

∂2xn
(x)
]


n×n,x=x∗

.

(2)

Following example justifies the existence of twiceH-differentiable interval valued
function.

Example 2. Consider the interval valued function (1), then by definition we have

∇Hf(x) = ([2, 2x1], [2x2, 2x2])
T

4
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which exist for x1 ≥ 1. Therefore we have

∇2
Hf(x) = ∇H([2, 2x1], [2x2, 2x2])

T

=

(
[0, 2] [0, 0]
[0, 0] [2, 2]

)
.

The relation between twice weakly differentiable and twice H-differentiable in-
terval valued functions is furnished as follows.

Proposition 3. Let f be an interval-valued function defined on X ⊆ Rn. If f is
twice H-differentiable at x∗ ∈ X, then f is twice weakly differentiable at x∗.

Proof. From (2) we have

∇2
Hf(x∗) =




∂2fL

∂2x1
(x) ... ∂2fL

∂x1∂xn
(x)

...
. . .

...
∂2fL

∂xn∂x1
(x) ... ∂2fL

∂2xn
(x)


n×n

,


∂2fU

∂2x1
(x) ... ∂2fU

∂x1∂xn
(x)

...
. . .

...
∂2fU

∂xn∂x1
(x) ... ∂2fU

∂2xn
(x)


n×n


x=x∗

= [∇2fL(x),∇2fU(x)]x=x∗

= ∇2f(x∗).

We authenticate Proposition 3 by following example.

Example 3. From Example 2 we have

∇2
Hf(x) =

(
[0, 2] [0, 0]
[0, 0] [2, 2]

)
=

[(
0 0
0 2

)
,

(
2 0
0 2

)]
=
[
∇2fL(x),∇2fU(x)

]
= ∇2f(x). (see Example 1).

The converse of Proposition 3 is not true in general, however we have the fol-
lowing result.

Proposition 4. Let f ∈ T , be twice weakly differentiable function at x∗, with
(fL)′′(x∗) = aL

′
(x∗) and (fU)′′(x∗) = aU

′
(x∗).

1. if (fL)′(x∗+h)−(fL)′(x∗) ≤ (fU)′(x∗+h)−(fU)′(x∗) and (fL)′(x∗)−(fL)′(x∗−
h) ≤ (fU)′(x∗)−(fU)′(x∗−h) for every h > 0, then f is twice H-differentiable
with second H-derivative [aL

′
(x∗), aU

′
(x∗)].

2. if aL
′
(x∗) > aU

′
(x∗), then f is not twice H-differentiable at x∗.

Proof. The proof is similar as that of Proposition 4.3 of [20].

The existence of twice weakly differentiable interval valued functions which are
not twice H-differentiable is proved by following example.

Example 4. Consider f : [0, 2] → [x3 + x2 + 1, x3 + 2x + 2] be an interval valued
function defined on [0, 2]. Then f is twice weakly differentiable on (0, 2) but f is
not twice H-differentiable on (0, 2) as aL

′
(x∗) > aU

′
(x∗).

5
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4 Interval valued bonvex functions

Convexity is an important concept in studying the theory and methods of mathe-
matical programming, which has been generalized in several ways. For differentiable
functions numerous generalizations of convexity exist in the literature. An impor-
tant concept so-called second order convexity for twice differentiable real valued
functions was introduced in Mond [14], however Bector and Chandra [6] named
them as bonvex functions. Now consider f to be real valued twice differentiable
function, then for the definitions of (strictly) bonvexity, (strictly) pseudobonvexity
and (strictly) quasibonvexity, one is refered to [3].

In this section, we introduce LU -bonvex, LU -pseudobonvex and LU -quasibonvex
interval valued functions and their strict conditions. We consider T to be the set
of all interval valued functions defined on X ⊆ Rn.

Definition 5. Let f ∈ T be twice H-differentiable function at x∗ ∈ X. If we have
for every x ∈ X and P = (P1, ..., Pn) with Pi ∈ Ic such that PL

i ≥ 0, i ∈ Λk.

1.

f(x)	H f(x∗) +
1

2
P T∇2

Hf(x∗)P �LU

{
∇Hf(x∗) +∇2

Hf(x∗)P
}

(x− x∗)

then we say that f is LU-bonvex at x∗. We also say that f is strictly LU-
bonvex at x∗(6= x) if the inequality is strict.

2. If

f(x)	H f(x∗) +
1

2
P T∇2

Hf(x∗)P �LU [0, 0],

⇒
{
∇Hf(x∗) +∇2

Hf(x∗)P
}

(x− x∗) �LU [0, 0]

then we say that f is LU-quasibonvex at x∗. We also say that f is strictly
LU-quasibonvex x∗(6= x) if the inequality is strict.

3. If {
∇Hf(x∗) +∇2

Hf(x∗)P
}

(x− x∗) �LU [0, 0],

⇒ f(x)	H f(x∗) +
1

2
P T∇2

Hf(x∗)P �LU [0, 0]

then we say that f is LU-pseudobonvex at x∗. We also say that f is strictly LU-
pseudobonvex at x∗(6= x) if the inequality is strict.

Now we present some non-trivial examples which authenticates that the class
of interval valued functions introduced in this section is non-empty.

Example 5. Consider an interval valued function f(x) = [x2 + 3x + 2, x2 + 3x +
5], x ≥ 0. Then we have

∇Hf(x) = ([2x+ 3, 2x+ 3])

6
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= ([3, 3])x=0

and
∇2

Hf(x) = ([2, 2])

we have

[x2 + 3x+ 2, x2 + 3x+ 5]	H [2, 5] +
1

2
([0, 1])T [2, 2][0, 1] = [x2 + 3x+ 2, x2 + 3x+ 2]

�LU ([3, 3] + [2, 2][0, 1])(x)

= [3x, 5x]

therefore f is LU-bonvex at x = 0.

Next consider another interval valued functions defined as

f(x1, x2) = [x21 + x22 + 3, x21 + x22 + 5], x ≥ 0.

Then we have

∇Hf(x1, x2) = ([2x1, 2x1], [2x2, 2x2])
T

=
(
[4, 4], [4, 4]T

)T
(x1,x2)=(2,2)

and

∇2
Hf(x) =

(
[2, 2] [0, 0]
[0, 0] [2, 2]

)
Now let

[x21 + x22 + 3, x21 + x22 + 5]	H [11, 13] +
1

2

(
[1, 1]
[1, 1]

)T (
[2, 2] [0, 0]
[0, 0] [2, 2]

)(
[1, 1]
[1, 1]

)
�LU [0, 0]

then ((
[4, 4]
[4, 4]

)
+

(
[2, 2] [0, 0]
[0, 0] [2, 2]

)(
[1, 1]
[1, 1]

))(
x1 − 2
x2 − 2

)
�LU [0, 0].

this shows that f is LU-quasibonvex at (2, 2).
However if((

[4, 4]
[4, 4]

)
+

(
[2, 2] [0, 0]
[0, 0] [2, 2]

)(
[1, 1]
[1, 1]

))(
x1 − 2
x2 − 2

)
�LU [0, 0].

then

[x21 + x22 + 3, x21 + x22 + 5]	H [11, 13] +
1

2

(
[1, 1]
[1, 1]

)T (
[2, 2] [0, 0]
[0, 0] [2, 2]

)(
[1, 1]
[1, 1]

)
�LU [0, 0]

this shows that f is LU-pseudobonvex at (2, 2).

7
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Proposition 5. Let f ∈ T be twice H-differentiable function at x∗ and P =
(P1, ..., Pn) with Pi ∈ Ic such that PL

i ≥ 0, i ∈ Λn.

1. if f is LU-bonvex at x∗ then fL and fU are bonvex functions at x∗.

2. if f is LU-quasibonvex at x∗ then fL and fU are quasibonvex functions at x∗.

3. if f is LU-pseudobonvex at x∗ then fL and fU are pseudobonvex functions at
x∗.

Proof. (i) Let f is LU -bonvex at x∗, then by definition we have

f(x)	H f(x∗) +
1

2
P T∇2

Hf(x∗)P �LU

{
∇Hf(x∗) +∇2

Hf(x∗)P
}

(x− x∗)

Since f is twice H-differentiable at x∗, then by Proposition 3 and Definition 3 fL

and fU are twice differentiable at x∗. Also since PL
i ≥ 0, therefore we have

fL(x)− fL(x∗) +
1

2
PLT∇2fL(x∗)PL ≥

{
∇fL(x∗) +∇2fL(x∗)PL

}
(x− x∗),

and

fU(x)− fU(x∗) +
1

2
PUT∇2fU(x∗)PU ≥

{
∇fU(x∗) +∇2fU(x∗)PU

}
(x− x∗).

Therefore fL and fU are bonvex functions at x∗.
(ii) and (iii) follows by similar treatment.

Note that the converse of Proposition 5 follows in the light of Proposition 4.

Proposition 6. Let f ∈ T be twice H-differentiable function at x∗ and P =
(P1, ..., Pn) with Pi ∈ Ic such that PL

i ≥ 0, i ∈ Λn.

1. if f is strictly LU-bonvex at x∗ then either fL or fU or both are strictly bonvex
functions at x∗.

2. if f is strictly LU-quasibonvex at x∗ then either fL or fU or both are strictly
quasibonvex functions at x∗.

3. if f is strictly LU-pseudobonvex at x∗ then either fL or fU or both are strictly
pseudobonvex functions at x∗.

Proof. Proof is same as that of Proposition 5.

Remark 1. If we assume that fL = fU , then bonvexity comes as a sub-case of
LU-bonvexity, and similarly for quasi and pseudobonvexity.

8
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5 Solution concept and necessary conditions

In this section we shall propose solution concept and derive some necessary condi-
tions for problem (IP ). We define by SIP the set of feasible solutions of (IP ).

Definition 6. Let x∗ ∈ SIP . We say that x∗ is an efficient solution of (IP ) if there
exist no x̂ ∈ SIP , such that

fi(x̂) �LU fi(x
∗), i ∈ Λk and fh(x̂) ≺LU fh(x∗), for at least one index h.

An efficient solution x∗ is said to be properly efficient solution of (IP ) if there exist
scalar M > 0, such that for all i ∈ Λk, fi(x) ≺LU fi(x

∗) and x ∈ SIP imply that

fi(x
∗)	H fi(x) �LU M{fh(x)	H fh(x∗)}

for atleast one index h ∈ Λk − i such that fh(x∗) ≺LU fh(x).

Theorem 1. (Mond et al. [16]) Let x∗ be a properly efficient solution of (P ) (see,
[3]) at which constraint qualification [15] is satisfied. Then there exist λ∗ ∈ Rk, u∗ ∈
Rm and v∗i ∈ Rn, i ∈ ΛK such that

k∑
i=1

λ∗i (fi(x
∗) +Biv

∗
i ) +∇u∗Tg(x∗) = 0,

u∗Tg(x∗) = 0,

(x∗TBix
∗)

1
2 = x∗TBiv

∗
i , i ∈ Λk,

v∗i
TBiv

∗
i ≤ 1, i ∈ Λk,

λ∗ > 0,
k∑

i=1

λ∗i = 1, u∗ ≥ 0.

Now we present the necessary conditions for problem(IP ). Consider the follow-
ing constraint qualification CQ1

dT∇Hgj(x
∗) �LU [0, 0], j ∈ J0(x∗)

dT∇Hfi(x
∗) + dTBix

∗/(x∗TBix
∗)

1
2 �LU [0, 0], if x∗TBix

∗ > 0

dT∇Hfi(x
∗) + (dTBid)

1
2 �LU [0, 0], if x∗TBix

∗ = 0

Theorem 2. Let x∗ be a properly efficient solution of (IP ) at which a constraint
qualification CQ1 is satisfied. Then there exist λ∗ ∈ Rk, u∗ ∈ Rm and v∗i ∈ Rn, i ∈
ΛK such that

k∑
i=1

λ∗i (∇Hfi(x
∗) +Biv

∗
i ) +∇Hu

∗Tg(x∗) = [0, 0],

u∗Tg(x∗) = [0, 0],

(x∗TBix
∗)

1
2 = x∗TBiv

∗
i , i ∈ Λk,

v∗i
tBiv

∗
i ≤ 1, i ∈ Λk,

λ∗ > 0,
k∑

i=1

λ∗i = 1, u∗ ≥ 0.

9
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Proof. Since x∗ is properly efficient solution of (IP ) at which a constraint qualifica-
tion CQ1 is satisfied. Then using the property of intervals and twice H-derivative,
for 0 < ξLi , ξ

U
i ∈ R, i ∈ Λk with ξLi + ξUi = 1, i ∈ Λk, we have

CQ2
dT∇gLj (x∗) > 0, j ∈ J0(x∗)

dT∇gUj (x∗) > 0, j ∈ J0(x∗)

dT (ξLi ∇fL
i (x∗) + ξUi ∇fU

i (x∗)) + dTBix
∗/(x∗TBix

∗)
1
2 < 0, if x∗TBix

∗ > 0

dT (ξLi ∇fL
i (x∗) + ξLi ∇fU

i (x∗)) + (dTBid)
1
2 < 0, if x∗TBix

∗ = 0

Further using the property of intervals and twice H-derivative, for 0 < ξLi , ξ
U
i ∈

R, i ∈ Λk with ξLi + ξUi = 1, i ∈ Λk we have new conditions as

k∑
i=1

λ∗i ((ξ
L
i ∇fL

i (x∗) + ξLi ∇fU
i (x∗)) +Biv

∗
i ) +∇u∗T (gL(x∗) + gU(x∗)) = 0,

u∗TgL(x∗) = 0,

u∗TgU(x∗) = 0,

(x∗TBix
∗)

1
2 = x∗TBiv

∗
i , i ∈ Λk,

v∗i
TBiv

∗
i ≤ 1, i ∈ Λk,

λ∗ > 0,
k∑

i=1

λ∗i = 1, u∗ ≥ 0.

Now using constraint qualification CQ2 the above conditions are justified by Theo-
rem 1 for the problem (say (IP1)) heaving objective function (ξL1 f

L
1 (x) + ξL1 f

U
1 (x),

..., ξLk f
L
k (x)+ξLk f

U
k (x)) and constraint functions gLj (x), gUj (x) ≤ 0, j ∈ Λm. Now it is

easy to see that the optimal solutions of (IP ) and (IP1) are same. This completes
the proof.

6 Mangasarian type duality

In this section, we propose the following Mangasarian type dual of primal problem
(IP ).
(MSD) V-maximize(

f1(y) + uTg(y) + yTB1v1 	H
1

2
P T∇2

H{f1(y) + uTg(y)}P, ...,

fk(y) + uTg(y) + yTBkvk 	H
1

2
P T∇2

H{fk(y) + uTg(y)}P
)

subject to

k∑
i=1

λi(∇Hfi(y) +∇2
Hfi(y)P +Bivi) +∇Hu

Tg(y) +∇2
Hu

Tg(y)P = [0, 0] (3)

10
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vTi Bivi ≤ 1, i ∈ Λk (4)

λ > 0,
r∑

i=1

λi = 1 (5)

u = (u1, ..., um)T ≥ 0, g = (g1, ..., gm) such that gj = [gLj , g
U
j ], j = 1, ...,m, P =

(P1, ..., Pn) with Pi ∈ Ic such that PL
i ≥ 0, i ∈ Λk. and y, vi ∈ Rn.

We define by SMSD the set of all feasible solutions of (MSD), therefore if
z ∈ SMSD then z = (y, u, v, λ, P ), such that v ∈ Rk with vi ∈ Rn, and Pi ∈ Ic such
that PL

i ≥ 0, i ∈ Λk. We shall use the following generalized Schwartz inequality:

xTAz ≤ (xTAx)1/2(zTAz)1/2,

where x, z ∈ Rn and A is positive semidefinite symmetric matrix of order n.

Theorem 3. (weak duality) Let x ∈ SIP and z ∈ SMSD. Assume that fi(.) +
(.)TBivi, i ∈ Λk and gj(.), j ∈ Λm are LU-bonvex at y, then the following can not
hold.

fi(x)+(xTBix)
1
2 �LU fi(y)+uTg(y)+yTBivi	H

1

2
P T{∇2

Hfi(y) + uTg(y)}P, i ∈ Λk.

(6)
and

fh(x)+(xTBhx)
1
2 ≺LU fh(y)+uTg(y)+yTBhvh	H

1

2
P T{∇2

Hfh(y) + uTg(y)}P, (7)

for at least one index h.

Proof. From (3) we have

k∑
i=1

λi
(
∇fL

i (y) +∇2fL
i (y)PL +Bivi

)
+∇uTgL(y) +∇2uTgL(y)PL = 0.

k∑
i=1

λi
(
∇fU

i (y) +∇2fU
i (y)PU +Bivi

)
+∇uTgU(y) +∇2uTgU(y)PU = 0.

Adding we get,

k∑
i=1

λi
(
∇fL

i (y) +∇fU
i (y) +∇2fL

i (y)PL +∇2fU
i (y)PU + 2Bivi

)
+∇uTgL(y)

+∇uTgU(y) +∇2uTgL(y)PL +∇2uTgU(y)PU = 0. (8)

If possible let (6) and (7) holds then by definition we have{
fL
i (x) + (xTBix)

1
2 ≤ fL

i (y) + uTgL(y) + yTBivi − 1
2
PLT∇2{fL

i (y) + uTgL(y)}PL.

fU
i (x) + (xTBix)

1
2 ≤ fU

i (y) + uTgU(y) + yTBivi − 1
2
PUT∇2{fU

i (y) + uTgU(y)}PU .

for i ∈ Λk, and{
fL
h (x) + (xTBhx)

1
2 < fL

h (y) + uTgL(y) + yTBhvh − 1
2
PLT∇2{fL

h (y) + uTgL(y)}PL.

fU
h (x) + (xTBhx)

1
2 ≤ fU

h (y) + uTgU(y) + yTBhvh − 1
2
PUT∇2{fU

h (y) + uTgU(y)}PU .

11
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or{
fL
h (x) + (xTBhx)

1
2 ≤ fL

h (y) + uTgL(y) + yTBhvh − 1
2
PLT∇2{fL

h (y) + uTgL(y)}PL.

fU
h (x) + (xTBhx)

1
2 < fU

h (y) + uTgU(y) + yTBhvh − 1
2
PUT∇2{fU

h (y) + uTgU(y)}PU .

or{
fL
h (x) + (xTBhx)

1
2 < fL

h (y) + uTgL(y) + yTBhvh − 1
2
PLT∇2{fL

h (y) + uTgL(y)}PL.

fU
h (x) + (xTBhx)

1
2 < fU

h (y) + uTgU(y) + yTBhvh − 1
2
PUT∇2{fU

h (y) + uTgU(y)}PU .

for atleast one index h.
This yields for λ = (λ1, ..., λr);λi > 0

k∑
i=1

λi

{(
fL
i (x) + (xTBix)

1
2

)
+
(
fU
i (x) + (xTBix)

1
2

)}
<

k∑
i=1

λi

{
fL
i (y) + yTBivi −

1

2
PLT∇2fL

i (y)PL

}
+ uTgL(y)− 1

2
PLT∇2uTgL(y)PL+

k∑
i=1

λi

{
fU
i (y) + yTBivi −

1

2
PUT∇2fU

i (y)PU

}
+ uTgU(y)− 1

2
PUT∇2uTgU(y)PU .

(9)

From the hypothesis that fi(.) + (.)TBix, i ∈ Λk and gj, j ∈ Λm are LU -bonvex at
y, we have

fi(x) + xTBivi 	H (fi(y) + yTBivi) +
1

2
P T∇2

Hfi(y)P �LU(
∇Hfi(y) +∇2

Hfi(y)P +Bivi
)

(x− y), i ∈ Λk (10)

and

gj(x)	H gj(y)+
1

2
P T∇2

Hgj(y)P �LU

(
∇Hgj(y) +∇2

Hgj(y)P
)

(x−y), j ∈ Λm. (11)

After multiplying (10) by λi, i ∈ Λk and (11) by uj, j ∈ Λm and adding, yields

k∑
i=1

λi

{
fL
i (x) + xTBivi − fL

i (y)− yTBivi +
1

2
PLT∇2fL

i (y)PL

}
+uTgL(x)−uTgL(y)+

1

2
PLT∇2uTgL(y)PL+

k∑
i=1

λi

{
fU
i (x)+xTBivi−fU

i (y)−yTBivi+
1

2
PUT∇2fU

i (y)PU
}

+

uTgU(x)− uTgU(y) +
1

2
PUT∇2uTgU(y)PU ≥{

k∑
i=1

λi(∇fL
i (y) +∇2fL

i (y)PL +Bivi) +∇uTgL(y) +∇2uTgL(y)PL

}
(x− y)+

{
k∑

i=1

λi(∇fU
i (y) +∇2fU

i (y)PU +Bivi) +∇uTgU(y) +∇2uTgU(y)PU

}
(x− y).

12
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Now by (4), (9), Schewartz inequality and uTg(x) �LU [0, 0], we get

k∑
i=1

λi

{
∇fL

i (y) +∇2fL
i (y)PL +∇fU

i (y) +∇2fU
i (y)PU + 2Bvi

}
+∇uTgL(y)+

∇uTgU(y) +∇2uTgL(y)PL +∇2uTgU(y)PU < 0.

which is a contradiction to (8). This completes the proof.

Theorem 4. (Strong duality theorem) Assume that x∗ is properly efficient solution
of problem (IP ) at which constraint qualification CQ1 is satisfied. Then there
exist λ∗ ∈ Rk, u∗ ∈ Rm and v∗i ∈ Rn, i ∈ Λk, such that (x∗, u∗, v∗i , λ

∗, P ∗T =
([0, 0], ..., [0, 0])) is feasible for (MSD) and the corresponding objective values of
(IP ) and (MSD) are equal. Moreover assume that the weak duality between (IP )
and (MSD) in Theorem are satisfied, then (x∗, u∗, v∗i , λ

∗, P ∗T = ([0, 0], ..., [0, 0])) is
an efficient solution of (MSD).

Proof. Since x∗ is efficient solution of problem (IP ) at which constraint qualification
CQ1 is satisfied. Then by Theorem 2 there exist λ∗ ∈ Rk, u∗ ∈ Rm and v∗i ∈ Rn, i ∈
Λk, such that

k∑
i=1

λ∗i (∇Hfi(x
∗) +Biv

∗
i ) +∇Hu

∗Tg(x∗) = [0, 0],

u∗Tg(x∗) = [0, 0],

(x∗TBix
∗)

1
2 = x∗TBiv

∗
i , i ∈ Λk,

v∗i
TBiv

∗
i ≤ 1, i ∈ Λk,

λ∗ > 0,
k∑

i=1

λ∗i = 1, u∗ ≥ 0.

Which yields that (x∗, u∗, v∗i , λ
∗, P ∗T = ([0, 0], ..., [0, 0])) ∈ SMSD and the corre-

sponding objective values of (IP ) and (MSD) are equal.

Now let (x∗, u∗, v∗i , λ
∗, P ∗T = ([0, 0], ..., [0, 0])) is not efficient solution of dual prob-

lem (MSD), then by Definition there exist (y∗, u∗, v∗i , λ
∗, P ∗) ∈ SMSD, such that

fi(x
∗) + x∗TBiv

∗
i + u∗Tg(x∗) �LU fi(y

∗) + u∗Tg(y∗) + y∗TBiv
∗
i

	H
1

2
P ∗T∇2

H{fi(y∗) + u∗Tg(y∗)}P ∗, i ∈ Λk

and
fi(x

∗) + x∗TBiv
∗
i + u∗Tg(x∗) ≺LU fi(y

∗) + u∗Tg(y∗) + y∗TBiv
∗
i

	H
1

2
P ∗T∇2

H{fi(y∗) + u∗Tg(y∗)}P ∗,

for atleast one index h.

Now using (x∗TBix
∗)

1
2 = x∗TBiv

∗
i , i ∈ Λk and u∗Tg(y∗) = [0, 0], we get a contra-

diction to weak duality theorem. Therefore (x∗, u∗, v∗i , λ
∗, P ∗T = ([0, 0], ..., [0, 0]))

is an efficient solution of dual problem (MSD).

13
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Theorem 5. (Strict converse duality) Let x∗ ∈ SIP and z∗ ∈ SMSP such that

k∑
i=1

λ∗i {fi(x∗) + x∗TBiv
∗
i } �LU

k∑
i=1

λ∗i

{
fi(y

∗) + y∗TBiv
∗
i 	H

1

2
P ∗T∇2

Hfi(y
∗)P ∗

}

+u∗Tg(y∗)	H
1

2
P ∗T∇2

Hu
∗Tg(y∗)P ∗. (12)

Assume that fi(.) + (.)TBiv
∗
i , i ∈ Λk are strictly LU-bonvex at y∗ and gj(.), j ∈ Λm

is LU-bonvex at y∗ then x∗ = y∗.

Proof. If possible let x∗ 6= y∗. Now since fi(.) + (.)TBiv
∗
i , i ∈ Λk are strictly LU -

bonvex at y∗ , we have

fi(x
∗) + x∗TBiv

∗
i 	H (fi(y

∗) + y∗TBiv
∗
i ) +

1

2
P ∗T∇2

Hfi(y
∗)P ∗ �LU(

∇Hfi(y
∗) +∇2

Hfi(y
∗)P ∗ +Bivi

∗) (x∗ − y∗), i ∈ Λk. (13)

and

gj(x
∗)	Hgj(y

∗)+
1

2
P ∗T∇2

Hgj(y
∗)P ∗ �LU (∇Hgj(y

∗)+∇2
Hgj(y

∗)P ∗)(x∗−y∗), j ∈ Λm.

(14)
Now multiplying (13) by λ∗i , i ∈ Λk and (14) by u∗j , j ∈ Λm and then summing up
we get

k∑
i=1

λ∗i
{
fi(x

∗) + x∗TBiv
∗
i

}
+ u∗Tg(x∗)	H

k∑
i=1

λ∗i

{
fi(y

∗) + y∗TBivi	H

1

2
P ∗T∇2

Hfi(y
∗)P ∗

}
	H u∗Tg(y∗) +

1

2
P ∗T∇2

Hu
∗Tgj(y

∗)P ∗ �LU{
k∑

i=1

λ∗j(∇Hfi(y
∗)+∇2

Hfi(y
∗)P ∗+Biv

∗
i )+∇Hu

∗Tg(y∗)+∇2
Hu
∗Tg(y∗)P ∗

}
(x∗−y∗).

The above inequality on using (3) and u∗Tg(x∗) �LU [0, 0] gives

k∑
i=1

λ∗i {fi(x∗) + x∗TBiv
∗
i } �LU

k∑
i=1

λ∗i

{
fi(y

∗) + y∗TBiv
∗
i	H

1

2
P ∗T∇2

Hfi(y
∗)P ∗

}
+ u∗Tg(y∗)	H

1

2
P ∗T∇2

Hu
∗Tg(y∗)P ∗.

which is a contradiction to (12). Hence x∗ = y∗

7 Conclusions

This paper represents the study of nondifferentiable vector problem in which objec-
tive functions and constraints are interval valued. Firstly the twice H- differentiable
interval valued functions are introduced, secondly the concepts of LU -bonvexity,
LU -quasibonvexity and LU -pseudobonvexity are introduced, thirdly the necessary
conditions for proposed solution concept are obtained. And lastly the Mangasarian

14
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type dual is proposed and the corresponding duality results are obtained. Although
the interval valued equality constraints are not considered in this paper, the similar
methodology proposed in this paper can also be used to handle the interval valued
equality constraints. However it will be interesting to study the Mond-Weir type
duality results [1] for the problem (IP ). Future research is oriented to consider the
uncertain environment in order to study the optimality conditions involving Fuzzy
parameters.
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ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN

β-HOMOGENEOUS NORMED SPACES

SUNGSIK YUN, GEORGE A. ANASTASSIOU AND CHOONKIL PARK∗

Abstract. In this paper, we solve the following additive-quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ (0.1)

≤
∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥ ,
where ρ is a fixed complex number with |ρ| < 1, and∥∥∥2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

∥∥∥
≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖, (0.2)

where ρ is a fixed complex number with |ρ| < 1
2
, and prove the Hyers-Ulam stability of the additive-

quadratic ρ-functional inequalities (0.1) and (0.2) in β-homogeneous complex Banach spaces and
prove the Hyers-Ulam stability of additive-quadratic ρ-functional equations associated with the
additive-quadratic ρ-functional inequalities (0.1) and (0.2) in β-homogeneous complex Banach
spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [24] concerning
the stability of group homomorphisms. The functional equation f(x + y) = f(x) + f(y) is called
the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive
mapping. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias [15]
for linear mappings by considering an unbounded Cauchy difference. A generalization of the
Rassias theorem was obtained by Găvruta [8] by replacing the unbounded Cauchy difference by

a general control function in the spirit of Rassias’ approach. The functional equation f
(
x+y
2

)
=

1
2f(x) + 1

2f(y) is called the Jensen equation.
The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called the quadratic functional

equation. In particular, every solution of the quadratic functional equation is said to be a quadratic
mapping. The stability of quadratic functional equation was proved by Skof [23] for mappings
f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [6] noticed that
the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian group. The

functional equation 2f
(
x+y
2

)
+ 2

(
x−y
2

)
= f(x) + f(y) is called a Jensen type quadratic equation.

The stability problems of various functional equations have been extensively investigated by a
number of authors (see [1, 4, 5, 13, 14, 18, 19, 20, 21, 22]).

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.
Key words and phrases. Hyers-Ulam stability; β-homogeneous space; additive-quadratic ρ-functional equation;

additive-quadratic ρ-functional inequality.
∗Corresponding author: Choonkil Park (email: baak@hanyang.ac.kr).
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In [9], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [16]. Gilányi [10] and Fechner [7] proved the Hyers-Ulam stability of the functional
inequality (1.1). Park, Cho and Han [12] proved the Hyers-Ulam stability of additive functional
inequalities.

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F -norm if it
satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C (see
[17]).

In Section 2, we solve the additive-quadratic ρ-functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive-quadratic ρ-functional inequality (0.1) in β-homogeneous complex
Banach spaces. We moreover prove the Hyers-Ulam stability of an additive-quadratic ρ-functional
equation associated with the additive-quadratic ρ-functional inequality (0.1) in β-homogeneous
complex Banach spaces.

In Section 3, we solve the additive-quadratic ρ-functional inequality (0.2) and prove the Hyers-
Ulam stability of the additive-quadratic ρ-functional inequality (0.2) in β-homogeneous complex
Banach spaces. We moreover prove the Hyers-Ulam stability of an additive-quadratic ρ-functional
equation associated with the additive-quadratic ρ-functional inequality (0.2) in β-homogeneous
complex Banach spaces.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and β2 ≤ 1. Assume
that X is a β1-homogeneous real or complex normed space with norm ‖ · ‖ and that Y is a β2-
homogeneous complex Banach space with norm ‖ · ‖.

2. Additive-quadratic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we investigate the additive-quadratic ρ-functional inequality (0.1) in β-homogeneous

complex Banach spaces.

Lemma 2.1. An even mapping f : X → Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ (2.1)

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥
for all x, y ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.2)
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for all x ∈ X.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥
=
|ρ|β2
2β2
‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.
The converse is obviously true. �

Corollary 2.2. An even mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) (2.3)

= ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)
for all x, y ∈ X if and only if f : X → Y is quadratic.

The functional equation (2.3) is called an additive-quadratic ρ-functional equation.
We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (2.1) in

β-homogeneous complex Banach spaces for an even mapping case.

Theorem 2.3. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ (2.4)

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2β1r − 4β2
‖x‖r (2.5)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.4), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.4), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.6)

for all x ∈ X. So
∥∥f(x)− 4f

(
x
2

)∥∥ ≤ 2
2β1r

θ‖x‖r for all x ∈ X. Hence∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥ ≤ 2

2β1r

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (2.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{4nf( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.7), we get (2.5).
Since f : X → Y is even, the mapping Q : X → Y is even.
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It follows from (2.4) that

‖Q(x+ y) +Q(x− y)− 2Q(x)−Q(y)−Q(−y)‖

= lim
n→∞

4β2n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− f

(
y

2n

)
− f

(−y
2n

)∥∥∥∥
≤ lim

n→∞
4β2n|ρ|β2

(∥∥∥∥2f (x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− 3

2
f

(
x

2n

)
+

1

2
f

(−x
2n

)
−1

2
f

(
y

2n

)
− 1

2
f

(−y
2n

)∥∥∥∥)+ lim
n→∞

4β2nθ

2β1nr
(‖x‖r + ‖y‖r)

= |ρ|β2
∥∥∥∥2Q(x+ y

2

)
+ 2Q

(
x− y

2

)
− 3

2
Q(x) +

1

2
Q(−x)− 1

2
Q(y)− 1

2
Q(−y)

∥∥∥∥
for all x, y ∈ X. So

‖Q(x+ y) +Q(x− y)− 2Q(x)−Q(y)−Q(−y)‖

≤
∥∥∥∥ρ(2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
− 3

2
Q(x) +

1

2
Q(−x)− 1

2
Q(y)− 1

2
Q(−y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping Q : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.5). Then we have

‖Q(x)− T (x)‖ = 4β2n
∥∥∥∥Q( x

2n

)
− T

(
x

2n

)∥∥∥∥
≤ 4β2n

(∥∥∥∥Q( x

2n

)
− f

(
x

2n

)∥∥∥∥+

∥∥∥∥T ( x

2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 4 · 4β2n

(2β1r − 4β2)2β1nr
θ‖x‖r,

which tends to zero as n→∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all x ∈ X.
This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique quadratic mapping
satisfying (2.5). �

Theorem 2.4. Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping satisfying (2.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4β2 − 2β1r
‖x‖r (2.8)

for all x ∈ X.

Proof. It follows from (2.6) that
∥∥∥f(x)− 1

4f(2x)
∥∥∥ ≤ 2θ

4β2
‖x‖r for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f(2jx)− 1

4j+1
f(2j+1x)

∥∥∥∥ ≤ m−1∑
j=l

2β1rj

4β2j
2θ

4β2
‖x‖r (2.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.9) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.8).
The rest of the proof is similar to the proof of Theorem 2.3. �
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Lemma 2.5. An odd mapping f : X → Y satisfies (2.1) if and only if f : X → Y is additive.

Proof. Since f : X → Y is an odd mapping, f(0) = 0.
Assume that f : X → Y satisfies (2.1).
Letting y = x in (2.1), we get ‖f(2x)− 2f(x)‖ ≤ 0 and so f(2x) = 2f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

2
f(x) (2.10)

for all x ∈ X.
It follows from (2.1) and (2.10) that

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥
= |ρ|β2‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

and so

f(x+ y) + f(x− y) = 2f(x) (2.11)

for all x, y ∈ X. Letting z = x+ y and w = z − y in (2.11), we get

f(z) + f(w) = 2f

(
z + w

2

)
= f(z + w)

for all z, w ∈ X.
The converse is obviously true. �

Corollary 2.6. An odd mapping f : X → Y satisfies (2.3) if and only if f : X → Y is additive.

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (2.1) in
β-homogeneous complex Banach spaces for an odd mapping case.

Theorem 2.7. Let r > β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (2.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2β1r − 2β2
‖x‖r (2.12)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.4), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.4), we get

‖f(2x)− 2f(x)‖ ≤ 2θ‖x‖r (2.13)

for all x ∈ X. So
∥∥f(x)− 2f

(
x
2

)∥∥ ≤ 2
2β1r

θ‖x‖r for all x ∈ X. Hence∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥ ≤ 2

2β1r

m−1∑
j=l

2β2j

2β1rj
θ‖x‖r (2.14)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.14) that
the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{2nf( x

2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.14), we get (2.12).
Since f : X → Y is odd, the mapping A : X → Y is odd.
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It follows from (2.4) that

‖A(x+ y) +A(x− y)− 2A(x)−A(y)−A(−y)‖

= lim
n→∞

2β2n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− f

(
y

2n

)
− f

(−y
2n

)∥∥∥∥
≤ lim

n→∞
2β2n|ρ|β2

(∥∥∥∥2f (x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− 3

2
f

(
x

2n

)
+

1

2
f

(−x
2n

)
−1

2
f

(
y

2n

)
− 1

2
f

(−y
2n

)∥∥∥∥)+ lim
n→∞

2β2nθ

2β1nr
(‖x‖r + ‖y‖r)

= |ρ|β2
∥∥∥∥2A(x+ y

2

)
+ 2A

(
x− y

2

)
− 3

2
A(x) +

1

2
A(−x)− 1

2
A(y)− 1

2
A(−y)

∥∥∥∥
for all x, y ∈ X. So

‖A(x+ y) +A(x− y)− 2A(x)−A(y)−A(−y)‖

≤
∥∥∥∥ρ(2A

(
x+ y

2

)
+ 2A

(
x− y

2

)
− 3

2
A(x) +

1

2
A(−x)− 1

2
A(y)− 1

2
A(−y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.5, the mapping A : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.12). Then we have

‖A(x)− T (x)‖ = 2β2n
∥∥∥∥A( x

2n

)
− T

(
x

2n

)∥∥∥∥
≤ 2β2n

(∥∥∥∥A( x

2n

)
− f

(
x

2n

)∥∥∥∥+

∥∥∥∥T ( x

2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 4 · 2β2n

(2β1r − 2β2)2β1nr
θ‖x‖r,

which tends to zero as n→∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.
This proves the uniqueness of A. Thus the mapping A : X → Y is a unique additive mapping
satisfying (2.12). �

Theorem 2.8. Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (2.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2β2 − 2β1r
‖x‖r (2.15)

for all x ∈ X.

Proof. It follows from (2.13) that
∥∥∥f(x)− 1

2f(2x)
∥∥∥ ≤ 2θ

2β2
‖x‖r for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥ ≤ m−1∑
j=l

2β1rj

2β2j
2θ

2β2
‖x‖r (2.16)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.16) that the
sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.16), we get (2.15).
The rest of the proof is similar to the proof of Theorem 2.7. �
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By the triangle inequality, we have

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

−
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥
≤ ‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥ .
As corollaries of Theorems 2.3, 2.4, 2.7 and 2.8, we obtain the Hyers-Ulam stability results for the
additive-quadratic ρ-functional equation (2.3) in β-homogeneous complex Banach spaces.

Corollary 2.9. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) (2.17)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

)∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (2.5).

Corollary 2.10. Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping satisfying (2.17). Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.8).

Corollary 2.11. Let r > β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (2.17). Then there exists a unique additive mapping A : X → Y satisfying
(2.12).

Corollary 2.12. Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (2.17). Then there exists a unique additive mapping A : X → Y satisfying
(2.15).

Remark 2.13. If ρ is a real number such that −1 < ρ < 1 and Y is a β2-homogeneous real Banach
space, then all the assertions in this section remain valid.

3. Additive-quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1
2 .

In this section, we investigate the additive-quadratic ρ-functional inequality (0.2) in β-homogeneous
complex Banach spaces.

Lemma 3.1. An even mapping f : X → Y satisfies∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

∥∥∥∥
≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖ (3.1)

for all x, y ∈ X if and onlt if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get ∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ 0 (3.2)
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for all x ∈ X. So f
(
x
2

)
= 1

4f(x) for all x ∈ X.
It follows from (3.1) and (3.2) that

1

2β2
‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

=

∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

∥∥∥∥
≤ |ρ|β2‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.
The converse is obviously true. �

Corollary 3.2. An even mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

= ρ (f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)) (3.3)

for all x, y ∈ X if and only if f : X → Y is quadratic.

The functional equation (3.3) is called an additive-quadratic ρ-functional equation.
We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (3.1) in

β-homogeneous complex Banach spaces for an even mapping case.

Theorem 3.3. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)‖ (3.4)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖+ θ(‖x‖r + ‖y‖r)
for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2β1rθ

2β1r − 4β2
‖x‖r (3.5)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.4), we get ∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.6)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥ ≤ m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (3.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.7) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{4nf( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.7), we get (3.5).
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Since f : X → Y is even, the mapping Q : X → Y is even.
It follows from (3.4) that∥∥∥∥2Q(x+ y

2

)
+ 2Q

(
x− y

2

)
− 3

2
Q(x) +

1

2
Q(−x)− 1

2
Q(y)− 1

2
Q(−y)

∥∥∥∥
= lim

n→∞
4β2n

(∥∥∥∥2f (x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− 3

2
f

(
x

2n

)
+

1

2
f

(−x
2n

)
− 1

2
f

(
y

2n

)
− 1

2
f

(−y
2n

)∥∥∥∥)
≤ lim

n→∞
4β2n

∥∥∥∥ρ(f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− f

(
y

2n

)
− f

(−y
2n

))∥∥∥∥
+ lim
n→∞

4β2nθ

2β1nr
(‖x‖r + ‖y‖r)

= ‖ρ(Q(x+ y) +Q(x− y)− 2Q(x)−Q(y)−Q(−y))‖
for all x, y ∈ X. So∥∥∥∥2Q(x+ y

2

)
+ 2Q

(
x− y

2

)
− 3

2
Q(x) +

1

2
Q(−x)− 1

2
Q(y)− 1

2
Q(−y)

∥∥∥∥
≤ ‖ρ(Q(x+ y) +Q(x− y)− 2Q(x)−Q(y)−Q(−y))‖

for all x, y ∈ X. By Lemma 3.1, the mapping Q : X → Y is quadratic.
Now, let T : X → Y be another quadratic mapping satisfying (3.5). Then we have

‖Q(x)− T (x)‖ = 4β2n
∥∥∥∥Q( x

2n

)
− T

(
x

2n

)∥∥∥∥
≤ 4β2n

(∥∥∥∥Q( x

2n

)
− f

(
x

2n

)∥∥∥∥+

∥∥∥∥T ( x

2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 2 · 4β2n · 2β1r

(2β1r − 4β2)2β1nr
θ‖x‖r,

which tends to zero as n→∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all x ∈ X.
This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique quadratic mapping
satisfying (3.5). �

Theorem 3.4. Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping satisfying (3.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2β1rθ

4β2 − 2β1r
‖x‖r (3.8)

for all x ∈ X.

Proof. It follows from (3.6) that
∥∥∥f(x)− 1

4f(2x)
∥∥∥ ≤ 2β1rθ

4β2
‖x‖r for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f(2jx)− 1

4j+1
f(2j+1x)

∥∥∥∥ ≤ 2β1rθ

4β2

m−1∑
j=l

2β1rj

4β2j
‖x‖r (3.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.9) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.9), we get (3.8).
The rest of the proof is similar to the proof of Theorem 3.3. �
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Lemma 3.5. An odd mapping f : X → Y satisfies (3.1) if and only if f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get ∥∥∥∥4f (x2

)
− 2f(x)

∥∥∥∥ ≤ 0 (3.10)

for all x ∈ X. So f
(
x
2

)
= 1

2f(x) for all x ∈ X.
It follows from (3.1) and (3.10) that

1

2β2
‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

=

∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

∥∥∥∥
≤ |ρ|β2‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖

and so

f(x+ y) + f(x− y) = 2f(x)

for all x, y ∈ X.
The converse is obviously true. �

Corollary 3.6. An odd mapping f : X → Y satisfies (3.3) if and only if f : X → Y is additive.

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (3.1) in
β-homogeneous complex Banach spaces for an odd mapping case.

Theorem 3.7. Let r > β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (3.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2β1rθ

(2β1r − 2β2)2β2
‖x‖r (3.11)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.4), we get ∥∥∥∥4f (x2

)
− 2f(x)

∥∥∥∥ ≤ θ‖x‖r (3.12)

for all x ∈ X. So∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥ ≤ m−1∑
j=l

2β2j

2β1rj
θ

2β2
‖x‖r (3.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.13) that
the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{2nf( x

2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.13), we get (3.11).
Since f : X → Y is odd, the mapping A : X → Y is odd.
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It follows from (3.4) that∥∥∥∥2A(x+ y

2

)
+ 2A

(
x− y

2

)
− 3

2
A(x) +

1

2
A(−x)− 1

2
A(y)− 1

2
A(−y)

∥∥∥∥
= lim

n→∞
2β2n

(∥∥∥∥2f (x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− 3

2
f

(
x

2n

)
+

1

2
f

(−x
2n

)
− 1

2
f

(
y

2n

)
− 1

2
f

(−y
2n

)∥∥∥∥)
≤ lim

n→∞
2β2n

∥∥∥∥ρ(f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− f

(
y

2n

)
− f

(−y
2n

))∥∥∥∥
+ lim
n→∞

2β2nθ

2β1nr
(‖x‖r + ‖y‖r)

= ‖ρ(A(x+ y) +A(x− y)− 2A(x)−A(y)−A(−y))‖
for all x, y ∈ X. So∥∥∥∥2A(x+ y

2

)
+ 2A

(
x− y

2

)
− 3

2
A(x) +

1

2
A(−x)− 1

2
A(y)− 1

2
A(−y)

∥∥∥∥
≤ ‖ρ(A(x+ y) +A(x− y)− 2A(x)−A(y)−A(−y))‖

for all x, y ∈ X. By Lemma 3.5, the mapping A : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (3.11). Then we have

‖A(x)− T (x)‖ = 2β2n
∥∥∥∥A( x

2n

)
− T

(
x

2n

)∥∥∥∥
≤ 2β2n

(∥∥∥∥A( x

2n

)
− f

(
x

2n

)∥∥∥∥+

∥∥∥∥T ( x

2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 2 · 2β2n · 2β1r

(2β1r − 2β2)2β1nr
θ

2β2
‖x‖r,

which tends to zero as n→∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.
This proves the uniqueness of A. Thus the mapping A : X → Y is a unique additive mapping
satisfying (3.11). �

Theorem 3.8. Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (3.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2β1rθ

(2β2 − 2β1r)2β2
‖x‖r (3.14)

for all x ∈ X.

Proof. It follows from (3.12) that
∥∥∥f(x)− 1

2f(2x)
∥∥∥ ≤ 2β1rθ

4β2
‖x‖r for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥ ≤ 2β1rθ

4β2

m−1∑
j=l

2β1rj

2β2j
‖x‖r (3.15)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.15) that the
sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.15), we get (3.14).
The rest of the proof is similar to the proof of Theorem 3.7. �
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By the triangle inequality, we have∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

∥∥∥∥
−‖ρ (f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖

≤
∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y)

−ρ (f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖ .
As corollaries of Theorems 3.3, 3.4, 3.7 and 3.8, we obtain the Hyers-Ulam stability results for the
additive-quadratic ρ-functional equation (3.3) in β-homogeneous complex Banach spaces.

Corollary 3.9. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− 3

2
f(x) +

1

2
f(−x)− 1

2
f(y)− 1

2
f(−y) (3.16)

−ρ (f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y))‖ ≤ θ(‖x‖r + ‖y‖r)
for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (3.5).

Corollary 3.10. Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an even

mapping satisfying (3.16). Then there exists a unique quadratic mapping Q : X → Y satisfying
(3.8).

Corollary 3.11. Let r > β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (3.16). Then there exists a unique additive mapping A : X → Y satisfying
(3.11).

Corollary 3.12. Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y be an odd

mapping satisfying (3.16). Then there exists a unique additive mapping A : X → Y satisfying
(3.14).

Remark 3.13. If ρ is a real number such that −1
2 < ρ < 1

2 and Y is a β2-homogeneous real
Banach space, then all the assertions in this section remain valid.
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Abstract

In the fields of sciences and engineering, the role of discontinuous functions is of immense

importance. Heaviside function, for instance, describes the switching process of voltage in

an electrical circuit through mathematical process. The current paper aims at exploring the

existence theory for stochastic functional differential equations driven by G-Brownian motion

(G-SFDEs) whose drift coefficients may not be continuous. It is ascertain that G-SFDEs with

discontinuous drift coefficients have more than one bounded and continuous solutions.

Key words: Stochastic functional differential equations, discontinuous drift coefficints,

G-Brownian motion, existence.

1 Introduction

For the purpose of analysis and formulation of systems pertaining to engineering, economics and

social sciences, stochastic dynamical systems play an important role. Through these equations,

while considering the present status, one reconstructs the history and predicts the future of the

dynamical systems. On the other hand, in several applications, analysis of the modeling system

predicts that the change rate of the system’s existing status depends not only on the state that

is prevalent but also on the precedent record of the system. This leads to stochastic functional

differential equations. The stochastic functional differential equations driven by G-Brownian motion

(G-SFDEs) with Lipschitz continuous coefficients was initiated by Ren et.al. [12]. Afterwards,

Faizullah used the Caratheodory approximation scheme for developing the existence and uniqueness

of solution for G-SFDEs with continuous coefficients [3]. On the other hand, in this case, we study

∗Corresponding author, E-mail: faiz
¯

math@yahoo.com

1
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the existence theory for G-SFDEs with discontinuous drift coefficients, such as in the following

G-SFDE

dX(t) = H(Xt)dt+ d〈B〉(t) + dB(t),

where H : R→ R is the Heaviside function defined by

H(x) =

{
0, if x < 0 ;

1, if x ≥ 0.

The above mentioned equations arise, when we take into account the effects of background noise

switching systems with delays [5]. For more details on SDEs with discontinuous drift coefficients

see [4, 7]. The following stochastic functional differential equation driven by G-Brownian motion

(G-SFDE) with finite delay is considered

dX(t) = α(t,Xt)dt+ β(t,Xt)d〈B,B〉(t) + σ(t,Xt)dB(t), 0 ≤ t ≤ T, (1.1)

where X(t) is the value of stochastic process at time t and Xt = {X(t + θ) : −τ ≤ θ ≤ 0}
is a BC([−τ, 0];R)-valued stochastic process, which represents the family of bounded continuous

R-valued functions ϕ defined on [−τ, 0] having norm ‖ϕ‖ = sup
−τ≤θ≤0

| ϕ(θ) | . Let α : [0, T ] ×

BC([−τ, 0];R) → R, β : [0, T ] × BC([−τ, 0];R) → R and σ : [0, T ] × BC([−τ, 0];R) → R are

Borel measurable. The condition ξ(0) ∈ R is given , {〈B,B〉(t), t ≥ 0} is the quadratic variation

process of G-Brownian motion {B(t), t ≥ 0} and α, β, σ ∈M2
G([−τ, T ];R). Let L2 denote the space

of all Ft-adapted process X(t), 0 ≤ t ≤ T , such that ‖ X ‖L2= sup
−τ≤t≤T

|X(t)| < ∞. We define the

initial condition of equation (1.1) as follows;

Xt0 =ξ = {ξ(θ) : −τ < θ ≤ 0} is F0 −measurable, BC([−τ, 0];R)− valued

random variable such that ξ ∈M2
G ([−τ, 0];R) .

(1.2)

G-SFDEs (1.1) with initial condition (1.2) can be written in the following integral form;

X(t) = ξ(0) +

∫ t

0
α(s,Xs)ds+

∫ t

0
β(s,Xs)d〈B,B〉(s) +

∫ t

0
σ(s,Xs)dB(s).

Consider the following linear growth and Lipschitz conditions respectively.

(i) For any t ∈ [0, T ], |α(t, x)|2 + |β(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2),K > 0.

(ii) For all x, y ∈ (BC[−τ, 0];R) and t ∈ [0, T ], |α(t, x)−α(t, y)|2 + |β(t, x)−|β(t, y)|2 + |σ(t, x)−
σ(t, y)|2 ≤ K(x− y)2,K > 0.

The above G-SFDE has a unique solution X(t) ∈ M2
G ([−τ, T ];R) if all the coefficients α, β and

σ satisfy the Linear growth and Lipschitz conditions [3, 12]. However, we suppose that the drift

coefficient α does not need to be continuous. The solution of equation 1.1 with initial condition 1.2

is an R valued stochastic processes X(t), t ∈ [−τ, T ] if

2
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(i) X(t) is path-wise continuous and Ft-adapted for all t ∈ [0, T ];

(ii) α(t,Xt) ∈ L1([o, T ];R) and β(t,Xt), σ(t,Xt) ∈ L2([o, T ];R);

(iii) X0 = ξ and for each t ∈ [0, T ], dX(t) = α(t,Xt)dt+ β(t,Xt)d〈B,B〉(t) + σ(t,Xt)dB(t) q.s.

In the subsequent section, some preliminaries are given whereas in section 3, the comparison

theorem is developed. The last section, shows that under some suitable conditions, the G-SFDE

(1.1), provides more than one solutions.

2 Basic concepts and notions

In this section, we give some notions and basic definitions of the sublinear expectation [1, 2, 10, 11,

13]. Let Ω be a (non-empty) basic space and H be a linear space of real valued functions defined

on Ω such that any arbitrary constant c ∈ H and if X ∈ H then |X| ∈ H. We consider that H is

the space of random variables.

Definition 2.1. A functional E : H → R is called sub-linear expectation, if ∀ X,Y ∈ H, c ∈ R and

λ ≥ 0 it satisfies the following properties

(1) (Monotonicity): If X ≥ Y then E[X] ≥ E[Y ].

(2) (Constant preserving): E[c] = c.

(3) (Sub-additivity): E[X + Y ] ≤ E[X] + E[Y ].

(4) (Positive homogeneity): E[λX] = λE[X].

The triple (Ω,H,E) is called a sublinear expectation space. Consider the space of random

variables H such that if X1, X2, ..., Xn ∈ H then ϕ(X1, X2, ..., Xn) ∈ H for each ϕ ∈ Cl.Lip(Rn),

where Cl.Lip(Rn) is the space of linear functions ϕ defined as the following

Cl.Lip(Rn) ={ϕ : Rn → R | ∃C ∈ [0,∞) : ∀ x, y ∈ Rn,
|ϕ(x)− ϕ(y)| ≤ C(1 + |x|C + |y|C)|x− y|}.

G-expectation and G-Brownian Motion. Let Ω = C0([0,∞)), that is, the space of all

R-valued continuous paths (wt)t∈[0,∞) with w0 = 0 equipped with the distance

ρ(w1, w2) =
∞∑
k=1

1

2k
( max
t∈[0,k]

|w1
t − w2

t | ∧ 1),

and consider the canonical process Bt(w) = wt for t ∈ [0,∞), w ∈ Ω then for each fixed T ∈ [0,∞)

we have

Lip(ΩT ) = {ϕ(Bt1 , Bt2 , ..., Btn) : t1, ..., tn ∈ [0, T ], ϕ ∈ Cl.Lip(Rn), n ∈ N},

3
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where Lip(Ωt) ⊆ Lip(ΩT ) for t ≤ T and Lip(Ω) = ∪∞m=1Lip(Ωm).

Consider a sequence {ξi}∞i=1 of random variables on a sublinear expectation space (Ω̂, Ĥp, Ê)

such that ξi+1 is independent of (ξ1, ξ2, ..., ξi) for each i = 1, 2, ... and ξi is G-normally distributed

for each i ∈ {1, 2, ...}. Then a sublinear expectation E[.] defined on Lip(Ω) is introduced as follows.

For 0 = t0 < t1 < ... < tn <∞ (t0, t1, ..., tn ∈ [t,∞)) [13], ϕ ∈ Cl.Lip(Rn) and each

X = ϕ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −Btn−1) ∈ Lip(Ω),

E[ϕ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −Btn−1)]

= Ê[ϕ(
√
t1 − t0ξ1, ...,

√
tn − tn−1ξn)].

The conditional sublinear expectation of X ∈ Lip(Ωt) is defined by

E[X|Ωt] = E[ϕ(Bt1 , Bt2 −Bt1 , ..., Btm −Btm−1)|Ωt]

= ψ(Bt1 , Bt2 −Bt1 , ..., Btj −Btj−1),

where

ψ(x1, ..., xj) = Ê[ϕ(x1, ..., xj ,
√
tj+1 − tjξj+1, ...,

√
tn − tn−1ξn)].

Definition 2.2. The sublinear expectation E : Lip(Ω)→ R defined above is called a G-expectation

and the corresponding canonical process {Bt, t ≥ 0} is called a G-Brownian motion.

The completion of Lip(Ω) under the norm ‖X‖p = (E[|X|p])1/p [11, 13] for p ≥ 1 is denoted

by LpG(Ω) and LpG(Ωt) ⊆ LpG(ΩT ) ⊆ LpG(Ω) for 0 ≤ t ≤ T < ∞. The filtration generated by the

canonical process (Bt)t≥0 is denoted by Ft = σ{Bs, 0 ≤ s ≤ t}, F = {Ft}t≥0.

Itô’s Integral of G-Brownian motion. For any T ∈ [0,∞), a finite ordered subset πT =

{t0, t1, ..., tN} such that 0 = t0 < t1 < ... < tN = T is a partition of [0, T ] and

µ(πT ) = max{|ti+1 − ti| : i = 0, 1, ..., N − 1}.

A sequence of partitions of [0, T ] is denoted by πNT = {tN0 , tN1 , ..., tNN} such that lim
N→∞

µ(πNT ) = 0.

Consider the following simple process:

Let p ≥ 1 be fixed. For a given partition πT = {t0, t1, ..., tN} of [0, T ],

ηt(w) =

N−1∑
i=0

ξi(w)I[ti,ti+1](t), (2.1)

where ξi ∈ LpG(Ωti), i = 0, 1, ..., N − 1. The collection containing the above type of processes,

that is, containing ηt(w) is denoted by Mp,0
G (0, T ). The completion of Mp,0

G (0, T ) under the norm

‖η‖ = {
∫ T
0 E[|ηu|p]du}1/p is denoted by Mp

G(0, T ) and for 1 ≤ p ≤ q, Mp
G(0, T ) ⊃M q

G(0, T ).

4
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Definition 2.3. For each ηt ∈M2,0
G (0, T ), the Itô’s integral of G-Brownian motion is defined as

I(η) =

∫ T

0
ηudBu =

N−1∑
i=0

ξi(Bti+1 −Bti).

Definition 2.4. An increasing continuous process {〈B〉t : t ≥ 0} with 〈B〉0 = 0, defined by

〈B〉t = B2
t − 2

∫ t

0
BudBu,

is called the quadratic variation process of G-Brownian motion.

3 Comparison theorem for G-SFDEs

The purpose of this section is to establish comparison result for problem (1.1) with initial data

(1.2). Consider the following two stochastic functional differential equations

X (t) = ξ1(0) +

∫ t

t0

α1(s,Xs)ds+

∫ t

t0

β(s,Xs)d〈B,B〉(s) +

∫ t

t0

σ(s,Xs)dB(s), t ∈ [0, T ], (3.1)

X (t) = ξ2(0) +

∫ t

t0

α2(s,Xs)ds+

∫ t

t0

β(s,Xs)d〈B,B〉(s) +

∫ t

t0

σ(s,Xs)dB(s), t ∈ [0, T ]. (3.2)

Theorem 3.1. Assume that:

(i) X1 and X2 are unique strong solutions of problems (3.1) and (3.2) respectively.

(ii) α1(s,Xs) ≤ α2(s,Xs) componentwise for all t ∈ [t0, T ], x ∈ BC([−τ, 0];Rd) and ξ1 ≤ ξ2.

(iii) α1 or α2 is increasing such that f(t, x) ≤ f(t, y) when x ≤ y for all x, y ∈ C([−τ, 0];R).

Then for all t > 0 we have X1 ≤ X2 q.s.

Proof. First, we define an operator q(., .) : C([−τ, 0];R)× C([−τ, 0];R)→ C([−τ, 0];R) such that

q(x, y) = max[x, y].

Obviously, y → q(x, y) satisfies the linear growth and Lipschitz conditions. Now we suppose that

α2 is increasing and consider the following equation

Y (t) = ξ2(0) +

∫ t

t0

α2(s, q(Xs
1, Ys))ds+

∫ t

t0

β(s, q(Xs
1, Ys)d〈B,B〉(s)

+

∫ t

t0

σ(s, q(Xs
1, Ys)dB(s), t0 ≤ t ≤ T.

(3.3)

5
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Thus it is easy to see that the coefficients satisfy the linear growth and Lipschitz conditions, so

3.3 has a unique solution Y (t). We shall prove that Y (t) ≥ X1
s q.s. We define the following two

stopping times. For more details on stopping times we refere the reader to [7, 8].

τ1 = inf{t ∈ [t0, T ] : X1
s − Y (t) > 0} where τ1 < T,

τ2 = inf{t ∈ [τ1, T ] : X1
s − Y (t) < 0}.

Contrary suppose that there exist an interval (τ1, τ2) ⊂ [t0, T ] such that Y (τ1) = X1(τ1) = ξ∗(0)

and Y (t) ≤ X1(t) for all t ∈ (τ1, τ2). Then,

Y (t)−X1(t) = ξ∗(0) +

∫ t

τ1

α2(s, q(Xs
1, Ys))ds+

∫ t

τ1

β(s, q(Xs
1, Ys))d〈B,B〉(s)

+

∫ t

τ1

σ(s, q(Xs
1, Ys))dB(s)− ξ∗(0)−

∫ t

τ1

α1(s,Xs
1)ds

−
∫ t

τ1

β(s,Xs
1)d〈B,B〉(s)−

∫ t

τ1

σ(s,Xs
1)dB(s), t ∈ (τ1, τ2).

Y (t)−X1(t) =

∫ t

τ1

[α2(s, q(Xs
1, Ys))− α1(s,Xs

1)]ds

+

∫ t

τ1

[β(s, q(Xs
1, Ys))− β(s,Xs

1)]d〈B,B〉(s)

+

∫ t

τ1

[σ(s, q(Xs
1, Ys))− σ(s,Xs

1)]dB(s), t ∈ (τ1, τ2).

But our supposition Y (t) ≤ X1(t) yields q(X1, Y ) = max[X1, Y ] = X1. So, we have

Y (t)−X1(t) =

∫ t

τ1

[α2(s,Xs
1)− α1(s,Xs

1)]ds

+

∫ t

τ1

[β(s,Xs
1)− β(s,Xs

1)]d〈B,B〉(s)

+

∫ t

τ1

[σ(s,Xs
1)− σ(s,Xs

1)]dB(s)

Y (t)−X1(t) =

∫ t

τ1

[α2(s,Xs
1)− α1(s,Xs

1)]ds ≥ 0,

because α2(t, x) ≥ α1(t, x). Which gives contradiction. So, our supposition Y (t) ≤ X1(t) for all

t ∈ (τ1, τ2) is wrong. Thus Y (t) ≥ X1(t) q.s. and so p(X1, Y ) = Y . It means that Y = X2 ≥ X1

because G-SFDE (3.3) has a unique solution X2.

4 G-SFDEs with discontinuous drift coefficients

We now suppose that α is left continuous, increasing and α(t, x) ≥ 0 for all (t, x) ∈ [0, T ] ×
BC([−τ, 0];R) but not continuous. Consider the following sequence of problems.

Xn(t) = ξ(0) +

∫ t

0
α(s,Xn−1

s )ds+

∫ t

0
β(s,Xn

s )d〈B,B〉(s) +

∫ t

0
σ(s,Xn

s )dB(s), t ∈ [0, T ], (4.1)

6
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where X0 = Lt, Lt is the unique solution of the following problem

Lt = ξ +

∫ t

0
β(s, Ls)d〈B,B〉(s) +

∫ t

0
σ(s, Ls)dB(s), t ∈ [0, T ]. (4.2)

Thus using the comparison theorem and the fact that α(t, x) ≥ 0, we have X1 ≥ Lt. So, we can

see that Xn is an increasing sequence. Now we shall prove that Xn is bounded in L2 norm.

Lemma 4.1. Suppose Xn(t) be a solution of problem (4.1) then there exists a positive constant C

independent of n such that,

E

(
sup

−τ≤s≤T
|Xn(s)|2

)
≤ C.

Proof. For any n ≥ 1 we define the following stopping time in a similar way as given in [9]

τm = T ∧ inf{t ∈ [t0, T ] : ‖Xn
t ‖ ≥ m}.

We have τm ↑ T and define Xn,m(t) = Xn(t ∧ τm) for t ∈ (−τ, T ). Then for t ∈ [0, T ],

Xn,m(t) = ξ(0) +

∫ t

0
α(t,Xn−1,m

t )I[o,τm]dt+

∫ t

0
β(t,Xn,m

t )I[o,τm]d〈B,B〉t +

∫ t

0
σ(t,Xn,m

t )I[o,τm]dBt.

|Xn,m(t)|2 = |ξ(0) +

∫ t

0
α(t,Xn−1,m

t )I[0,τm]dt+

∫ t

0
β(t,Xn,m

t )I[0,τm]d〈B,B〉t

+

∫ t

0
σ(t,Xn,m

t )I[0,τm]dBt|2

≤ 4|ξ(0)|2 + 4|
∫ t

0
α(t,Xn−1,m

t )I[0,τm]dt|2 + 4|
∫ t

0
β(t,Xn,m

t )I[0,τm]d〈B,B〉t|2

+ 4|
∫ t

0
σ(t,Xn,m

t )I[0,τm]dBt|2

Taking G-expectation, using properties of G-integral, G-quadratic variation process [10, 11] and

linear growth condition we get

E[|Xn,m(t)|2] ≤ 4E|ξ(0)|2 + 4C1

∫ t

0
[1 + E|Xn−1,m

t |2]dt+ 4C2

∫ t

0
[1 + E|Xn,m

t |2]dt|

+ 4C3

∫ t

0
[1 + E|Xn,m

t |2]dt

≤ 4E|ξ(0)|2 + 4C1

∫ t

0
dt+ 4C1

∫ t

0
E|Xn−1,m

t |2dt+ 4C2

∫ t

0
dt+ 4C2

∫ t

0
E|Xn,m

t |2dt

+ 4C3

∫ t

0
dt+ 4C3

∫ t

0
E|Xn,m

t |2dt

= 4E|ξ(0)|2 + 4C1T + 4C1

∫ t

0
E|Xn−1,m

t |2dt+ 4C2T + 4C2

∫ t

0
E|Xn,m

t |2dt

+ 4C3T + 4C3

∫ t

0
E|Xn,m

t |2dt.

7
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Then for any k ∈ N we have,

max
1≤n≤k

E[|Xn,m(t)|2] ≤ C4+4C1

∫ t

0
max
1≤n≤k

E|Xn−1,m
t |2dt+4C2

∫ t

0
max
1≤n≤k

E|Xn,m
t |2dt+4C3

∫ t

0
max
1≤n≤k

E|Xn,m
t |2dt,

where C4 = 4[E|ξ|2 + C1T + C2T + C3T ] and thus using Doob’s martingale inequality for any

n,m ∈ N we have,

E[ sup
0≤s≤t

|Xn,m(s)|2] ≤ C4 + C5

∫ t

0
E|Xn,m

s |2dt, (4.3)

where C5 = 4(C1 + C2 + C3). One can observe the fact [9],

sup
−τ≤s≤t

|Xn,m(s)|2 ≤ ‖ξ‖+ sup
0≤s≤t

|Xn,m(s)|2,

and thus 4.3 yields

E[ sup
−τ≤s≤t

|Xn,m(s)|2] ≤ E[‖ξ‖] + C4 + C5

∫ t

0
E|Xn,m

s |2dt

≤ C6 + C5

∫ t

0
E[ sup
−τ≤r≤s

|Xn,m(r)|2]dt,

where C6 = E[‖ξ‖] + C4. So, using the Gronwall inequality and taking m→∞ we have,

E[ sup
−τ≤s≤t

|Xn(s)|2] ≤ C6e
C4t.

Letting t = T we get the desired result,

E[ sup
−τ≤s≤T

|Xn(s)|2] ≤ C∗, C∗ = C4e
CT .

Theorem 4.2. Suppose that:

(i) The coefficient α be left continuous and increasing in the second variable x.

(ii) For all (t, x) ∈ [0, T ]×BC([−τ, 0];R), α(t, x) ≥ 0.

Then the G-SFDE (1.1) has more than one solution X(t) ∈M2
G ([−τ, T ];R).

Proof. By theorem 3.1 we know that {Xn} is increasing and by Lemma 4.1 it is bounded in L2.

Then by Dominated Convergence theorem we can deduce that Xn converges in L2. Denoting the

limit of Xn by X and thus for almost all w, we get

α(t,Xn(t))→ α(t,X(t)) as n→∞,

and

|α(t,Xn(t))| ≤ K(1 + sup
n
|Xn(t)|) ∈ L1([t0, T ]).

8
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Thus, for almost all w and uniformly in t∫ t

0
α(s,Xn(s))ds→

∫ t

0
α(s,X(s))ds, n→∞.

By the properties of β, σ and by the continuity properties of G-integral and its quadratic variation

process we have,

sup
0≤t≤T

∣∣∣∣∫ t

0
β(s,Xn(s))d〈B,B〉s −

∫ t

0
β(s,X(s))d〈B,B〉s

∣∣∣∣→ 0 (q.s), n→∞.

sup
0≤t≤T

∣∣∣∣∫ t

0
σ(s,Xn(s))dB(s)−

∫ t

0
σ(s,X(s))dB(s)

∣∣∣∣→ 0 (q.s), n→∞.

It is easy to conclude that Xn converges uniformly to X in t, hence X is continuous. Taking limit in

equation (4.1), we get that X is the desired solution for stochastic functional differential equation

(1.1) with initial condition (1.2).
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SUBCLASSES OF JANOWSKI-TYPE FUNCTIONS
DEFINED BY CHO-KWON-SRIVASTAVA OPERATOR

SAIMA MUSTAFA, TEODOR BULBOACĂ, AND BADR S. ALKAHTANI

Abstract. We introduce a new subclass of analytic functions in
the unit disk U defined by using Cho-Kwon Srivastava integral
operator. Inclusion results radius problem and integral preserving
properties are investigated.

1. Introduction

Let Ap be the class of analytic functions in U of the form

(1.1) f(z) = zp +
∞∑
n=1

ap+nz
p+n, z ∈ U, (p ∈ N) ,

where N := {1, 2, . . . }. For p = 1 we denotes A := A1. Note that the
class Ap is closed under the convolution (or Hadamard) product, that
is

f(z) ∗ g(z) := zp +
∞∑
n=1

ap+nbp+nz
p+n, z ∈ U, (p ∈ N) ,

where f is given by (1.1) and g(z) = zp +
∑∞

n=1 bp+nz
p+n, z ∈ U.

The operator Lp(d, e) : Ap → Ap is defined by using the Hadamard
(convolution) product, that is

(1.2) Lp(d, e)f(z) := f(z) ∗ ϕp(d, e; z),

where

ϕp(d, e; z) := zp +
∞∑
n=1

(d)n
(e)n

zp+n,
(
d ∈ C, e ∈ C \ Z−0

)
,

and (d)n = d(d + 1) . . . (d + n − 1), with (d)0 = 1, represents the
well-known Pochhammer symbol.

From (1.2) it follows immediately that

z (Lp(d, e)f(z))′ = dLp(d+ 1, e)f(z)− (d− p)Lp(d, e)f(z).

The operator Lp(d, e) was introduced by Saitoh [16] and this is an
extension of the operator L(d, e) which was defined by Carlson and
Shaffer [2].

2010 Mathematics Subject Classification. 30C45, 30C50.
Key words and phrases. Analytic functions, univalent functions, Cho-Kwon-

Srivastava operator.
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2 S. MUSTAFA, T. BULBOACĂ, AND B. S. ALKAHTANI

Analogous to the Lp(d, e) operator, Cho et. al. [4] introduced the
operator Ipµ(d, e) : Ap → Ap defined by

(1.3) Ipµ(d, e)f(z) := f(z) ∗ ϕ†p(d, e; z),

where

ϕ†p(d, e; z) := zp +
∞∑
n=1

(µ+ p)n(e)n
n!(d)n

zp+n,
(
d, e ∈ C \ Z−0 , µ > −p

)
.

We notice that

ϕ†p(d, e; z) ∗ ϕp(d, e; z) =
zp

(1− z)µ+p
, z ∈ U.

From (1.3), the following identities can be easily obtained [4]:

z
(
Ipµ(d+ 1, e)f(z)

)′
= dIpµ(d, e)f(z)− (d− p) Ipµ(d+ 1, e)f(z),(1.4)

z
(
Ipµ(d, e)f(z)

)′
= (µ+ p)Ipµ+1(d, e)f(z)− µIpµ(d, e)f(z).(1.5)

We may easily remark the following relations

Ip1 (p+ 1, 1)f(z) = f(z), Ip1 (p, 1)f(z) =
zf ′(z)

p
,

and remark that the operator I1µ(a + 2, 1), with µ > −1 and a > −2,
was studied in [5].

If f and g are two analytic functions in U, we say that f is subordinate
to g, written symbolically as f(z) ≺ g(z), if there exists a Schwarz
function w, which (by definition) is analytic in U, with w(0) = 0,
and |w(z)| < 1, z ∈ U, such that f(z) = g(w(z)), for all z ∈ U.
Furthermore, if the function g is univalent in U, then we have the
following equivalence, (cf., e.g., [10], see also [11, p. 4]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.1. 1. Like in [3], for arbitrary fixed numbers A, B and
β, with −1 ≤ B < A ≤ 1 and 0 ≤ β < 1, let P [A,B, β] denote the
family of functions p that are analytic in U, with p(0) = 1, and such
that

p(z) ≺ 1 + [(1− β)A+ βB] z

1 +Bz
.

We will use the notations P [A,B] := P [A,B, 0] and P (0) := P [1,−1, 0].
2. Let Pl[A,B, β] denote the class of functions p that are analytic in

U, with p(0) = 1, that are represented by

(1.6) p(z) =

(
l

4
+

1

2

)
K1(z)−

(
l

4
− 1

2

)
K2(z),

where K1, K2 ∈ P [A,B, β], −1 ≤ B < A ≤ 1, 0 ≤ β < 1, and l ≥ 2.
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SUBCLASSES OF JANOWSKI-TYPE FUNCTIONS 3

Remarks 1.1. (i) Remark that the class Pl(β) := Pl[1,−1, β] was de-
fined and studied in [12], while for l = 2 and β = 0 the above class
was introduced by Janowski [8]. Moreover, the class Pl := Pl[1,−1, 0]
is the well-known class of Pinchuk [15].

Also, we see that Pl[A,B, β] ⊂ Pl(β̃), where β̃ =
1− A1

1−B
and A1 =

(1− β)A+ βB.
(ii) Notice that, if g is analytic in U with g(0) = 1, then there exit

functions g1 and g2 analytic in U with g1(z) = g2(z) = 1, such that the
function g could be written in the form (1.6). For example, taking

g1(z) =
g(z)− 1

k
+
g(z) + 1

2
and g1(z) =

g(z) + 1

2
− g(z)− 1

k
,

then g1 and g2 are analytic in U, and g1(z) = g2(z) = 1.

We will assume throughout our discussion, unless otherwise stated,
that λ > 0, d, e ∈ R\Z−0 , µ > −p, −1 ≤ B < A ≤ 1, ϑ ≥ 0, and p ∈ N.
Moreover, all the powers are the principal ones.

Using the Cho-Kwon-Srivastava integral operator Ipµ(d, e) defined by
(1.4), we will define the following subclasses of Ap.
Definition 1.2. Let d, e ∈ R \ Z−0 , λ > 0, µ > −p, 0 ≤ β < 1,
and ϑ ≥ 0. For the function f ∈ Ap, p ∈ N, we say that f ∈
N λ,ϑ
l,p (d, e;µ; β,A,B), with l ≥ 2, if and only if

(1 + ϑ)

(
zp

Ipµ(d, e)f(z)

)λ
−ϑ

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
∈ Pl[A,B, β].

We need to notice that, since the left-hand side function from the
above definition need to be analytic in U, we implicitly assumed that
Ipµ(d, e)f(z) 6= 0 for all z ∈ U̇.

Remarks 1.2. We remark the following special cases of the above classes:
(i) for β = 0 and l = 2 we obtain the subclass of non-Bazilević

functions defined by [18];
(ii) for µ = 0, l = 2, ϑ = B = −1, A = 1 and λ > 0, the above class

reduces to the class Q(λ) of p–valent non-Bazilević functions (see [14]).

2. Preliminaries

The following definitions and lemmas will be required in our present
investigation.

Lemma 2.1. [7] Let h be a convex function in U with h(0) = 1. Sup-
pose also that the function p given by

p(z) = 1 + cnz
n + cn+1z

n+1 + . . . , z ∈ U,

is analytic in U. Then

p(z) +
zp′(z)

γ
≺ h(z) (Re γ ≥ 0, γ 6= 0) ,
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4 S. MUSTAFA, T. BULBOACĂ, AND B. S. ALKAHTANI

implies

(2.1) p(z) ≺ q(z) =
γ

n
z−

γ
n

∫ z

0

t
γ
n
−1h(t) d t ≺ h(z),

and q is the best dominant of (2.1).

For real or complex numbers a, b and c, the Gauss hypergeometric
function is defined by

2F1(a, b, c; z) = 1 +
a · b
c

z

1!
+
a(a+ 1) · b(b+ 1)

c(c+ 1)

z2

2!
+ . . .

=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, a, b ∈ C, c ∈ C \ {0,−1,−2, . . . },(2.2)

where (d)k is the previously recalled Pochhammer symbol. The series
(2.2) converges absolutely for z ∈ U, hence it represents an analytic
function in U (see [19, Chapter 14]).

Each of the following identities are fairly well-known:

Lemma 2.2. [19, Chapter 14] For all real or complex numbers a, b
and c, with c 6= 0,−1,−2, . . . , , the next equalities hold:∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a d t =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b, c; z)(2.3)

where Re c > Re b > 0,

(2.4) 2F1(a, b, c; z) = (1− z)−a 2F1

(
a, c− b, c; z

z − 1

)
,

and

(2.5) 2F1(a, b, c; z) =2 F1(b, a, c; z).

Lemma 2.3. [17] Let f(z) =
∞∑
k=0

akz
k be analytic in U and g(z) =

∞∑
k=0

bkz
k be analytic and convex in U. If f(z) ≺ g(z), then

|ak| ≤ |b1| , k ∈ N.

3. Main results for the class N λ,ϑ
l,p (d, e;µ; β,A,B)

In this section, some properties of the class N λ,ϑ
l,p (d, e;µ; β,A,B)

such as inclusion results, integral preserving property, radius problem,
coefficient bound will be discussed.

Theorem 3.1. 1. If f ∈ N λ,ϑ
l,p (d, e;µ; β,A,B), then(
zp

Ipµ(d, e)f(z)

)λ
∈ Pl[A,B, β].
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SUBCLASSES OF JANOWSKI-TYPE FUNCTIONS 5

2. Moreover, if f ∈ N λ,ϑ
l,p (d, e;µ; β, γ) with ϑ 6= 0, then(

zp

Ipµ(d, e)f(z)

)λ
∈ Pl(β1),

where

β1 := β + (1− β)ϑ1

and

ϑ1 := ϑ1(p, λ, ϑ, µ;A,B) ={
A
B

+
(
1− A

B

)
(1−B)−1 2F1

(
1, 1, λ(µ+p)

ϑ
+ 1, B

B−1

)
, B 6= 0,

1− λ(µ+p)
λ(µ+p)+ϑ

A, B = 0.

(All the powers are the principal ones).

Proof. Since the implication is obvious for ϑ = 0, suppose that ϑ > 0.
Letting

(3.1) K(z) =

(
zp

Ipµ(d, e)f(z)

)λ
.

It follows that K is analytic in U, with K(0) = 1, and according to the
part (ii) of Remarks 1.1 the function K could be written in the form

(3.2) K(z) =

(
k

4
+

1

2

)
K1(z)−

(
k

4
− 1

2

)
K2(z),

where K1 and K2 are analytic in U, with K1(z) = K2(z) = 1.
From the part 2. of Definition 1.1 we have that K ∈ Pl[A,B, β], if

and only if the function K has the representation given by the above
relation, where K1, K2 ∈ P [A,B, β]. Consequently, supposing that K
is of the form (3.2), we will prove that K1, K2 ∈ P [A,B, β].

Differentiating the relation (3.1) and using the identity (1.5), we have

zK ′(z)

λ(µ+ p)
= K(z)−

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
,

and from this relation we deduce that

(1 + ϑ)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
=

K(z) +
ϑ

λ(µ+ p)
zK ′(z).

Since f ∈ N λ,ϑ
l,p (d, e;µ; β,A,B), from the above relation it follows that

K(z) +
ϑ

λ(µ+ p)
zK ′(z) ∈ Pl[A,B, β],
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and according to the second part of the Definition 1.1, this is equivalent
to

Ki(z) +
ϑ

λ(µ+ p)
zK ′i(z) ∈ P [A,B, β], (i = 1, 2),

that is

1

1− β

[
Ki(z) +

ϑ

λ(µ+ p)
zK ′i(z)− β

]
∈ P [A,B], (i = 1, 2).

Writing

(3.3) Ki(z) = (1− β)pi(z) + β, (i = 1, 2),

from the previous relation we have

pi(z) +
ϑ

λ(µ+ p)
zp′i(z) ∈ P [A,B], (i = 1, 2).

By using Lemma 2.1 for γ =
λ(µ+ p)

ϑ
and n = 1, from the above

relation we deduce that

pi(z) ≺ q(z) ≺ 1 + Az

1 +Bz
, (i = 1, 2),

where

q(z) =
λ(µ+ p)

ϑ
z−

λ(µ+p)
ϑ

∫ z

0

t
λ(µ+p)
ϑ
−1 1 + At

1 +Bt
d t

is the best dominant for pi, i = 1, 2.

Since pi(z) ≺ 1 + Az

1 +Bz
, i = 1, 2, from (3.3) it follows that Ki ∈

P [A,B, β], i = 1, 2, and according to (3.1) we conclude that K ∈
Pl[A,B, β], which proves the first part of the theorem.

For the second part of our result, we distinguish the following two
cases:

(i) For B = 0, a simple computation shows that

pi(z) ≺ q(z) = 1 +
λ(µ+ p)

λ(µ+ p) + ϑ
Az, (i = 1, 2).

(ii) For B 6= 0, making the change of variables s = zt, followed by
the use of the identities (2.3), (2.4) and (2.5) of Lemma 2.2, we obtain

pi(z) ≺ q(z) =
λ(µ+ p)

ϑ

∫ 1

0

s
λ(µ+p)
ϑ
−1 1 + Asz

1 +Bsz
d s =

A

B
+

(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1,

λ(µ+ p)

ϑ
+ 1,

Bz

Bz + 1

)
, (i = 1, 2).

Now, it is sufficient to show that

(3.4) inf {Re q(z) : z ∈ U} = q(−1).

We may easily show that

Re
1 + Az

1 +Bz
≥ 1− Ar

1−Br
, for |z| ≤ r < 1.
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Denoting G(t, z) =
1 + Atz

1 +Btz
and dµ(t) =

λ(µ+ p)

ϑ
t
λ(µ+p)
ϑ
−1 d t, which

is a positive measure on [0, 1], we have

q(z) =

∫ 1

0

G(t, z) dµ(t),

hence it follows

Re q(z) ≥
∫ 1

0

1− Atr
1−Btr

dµ(t) = q(−r), for |z| ≤ r < 1.

By letting r → 1− we obtain (3.4), and from (3.3) and (3.1) we conclude
that K ∈ Pl(β1), which completes our proof. �

Theorem 3.2. If 0 ≤ ϑ1 < ϑ2, then

N λ,ϑ2
l,p (d, e;µ; β,A,B) ⊂ N λ,ϑ1

l,p (d, e;µ; β,A,B)

Proof. The first part of Theorem 3.1 shows that the above inclusion
holds whenever ϑ1 = 0.

If 0 < ϑ1 < ϑ2, for an arbitrary f ∈ N λ,ϑ2
l,p (d, e;µ; β,A,B) let denote

U1(z) = (1 + ϑ1)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ1

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
and

U0(z) =

(
zp

Ipµ(d, e)f(z)

)λ
.

A simple computation shows that

(1 + ϑ1)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ1

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
=(

1− ϑ1

ϑ2

)
U0(z) +

ϑ1

ϑ2

U2(z).

Since Pl[A,B, β] is a convex set, from the first part of Theorem 3.1,
according to the above notations it follows that(

1− ϑ1

ϑ2

)
U0(z) +

ϑ1

ϑ2

U2(z) ∈ Pl[A,B, β],

that is f ∈ N λ,ϑ1
l,p (d, e;µ; β,A,B). �

Theorem 3.3. If f ∈ N λ,0
l,p (d, e;µ; β, 1,−1), then f(ρz) ∈ N λ,ϑ

l,p (d, e;µ; β, 1,−1),
where ρ is given by

(3.5) ρ =
−
(
β + ϑ

λ(µ+p)

)
+

√(
β + ϑ

λ(µ+p)

)2
+ 1− β2

1 + β
.
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Proof. For an arbitrary f ∈ N λ,0
l,p (d, e;µ; β, 1,−1), let denote(

zp

Ipµ(d, e)f(z)

)λ
= K(z) =

(
l

4
+

1

2

)
K1(z)−

(
l

4
− 1

2

)
K2(z),

where K1, K2 ∈ P [1,−1, β], which in equivalent to K1(0) = K2(0) = 1
and ReK1(z) > β, ReK2(z) > β, z ∈ U .

With this notation, like in the proof of Theorem 3.1 we obtain

(1 + ϑ)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
=

K(z) +
ϑ

λ(µ+ p)
zK ′(z) =(

l

4
+

1

2

)[
K1(z) +

ϑ

λ(µ+ p)
zK ′1(z)

]
−
(
l

4
− 1

2

)[
K2(z) +

ϑ

λ(µ+ p)
zK ′2(z)

]
.

In order to have f(ρz) ∈ N λ,ϑ
l,p (d, e;µ; β, 1,−1), according to the above

formula, we need to find the (bigger) value of ρ, such that

Re

[
Ki(z) +

ϑ

λ(µ+ p)
zK ′i(z)

]
> β, |z| < ρ, (i = 1, 2).

From the well-known estimates for the class P (0) (see, eq., [6]) we
have

|K ′i(z)| ≤ 2 ReKi(z)

1− r2
, |z| ≤ r < 1, (i = 1, 2),

ReKi(z) ≥ 1− r
1 + r

, |z| ≤ r < 1, (i = 1, 2),

thus, we deduce that

Re

[
Ki(z) +

ϑ

λ(µ+ p)
zK ′i(z)

]
≥ ReKi(z)− ϑ

λ(µ+ p)
|zK ′i(z)| ≥

ReKi(z)

[
1− ϑ

λ(µ+ p)

2r

1− r2

]
, |z| ≤ r < 1, (i = 1, 2).(3.6)

A simple computation shows that

(3.7) 1− ϑ

λ(µ+ p)

2r

1− r2
≥ 0,

for 0 ≤ r ≤ r0, where

r0 :=
−ϑ+

√
ϑ2 + λ2(µ+ p)2

λ(µ+ p)
∈ (0, 1).

Now, from the inequality (3.6) we have

Re

[
Ki(z) +

ϑ

λ(µ+ p)
zK ′i(z)

]
≥ 1− r

1 + r

[
1− ϑ

λ(µ+ p)

2r

1− r2

]
, |z| ≤ r0 < 1,
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for i = 1, 2. It is easy to check that

1− r
1 + r

[
1− ϑ

λ(µ+ p)

2r

1− r2

]
> β

for 0 ≤ r < ρ, where ρ is given by (3.5). Moreover, since the above
inequality is equivalent to

1− ϑ

λ(µ+ p)

2r

1− r2
>

1 + r

1− r
β

for r ∈ [0, 1), if follows that (3.7) holds for r ∈ [0, ρ), and our theorem
is completely proved. �

Next we will consider some properties of generalized p–valent Ber-
nardi integral operator. Thus, for f ∈ Ap, let Fη,p : Ap → Ap be
defined by

(3.8) Fη,pf(z) =
η + p

zη

∫ z

0

f(t)tη−1 d t, (η > −p).

We will give a short proof that this operator is well-defined, as follows.
If the function f ∈ Ap is of the form (1.1), then the definition relation
(3.8) could be written as

Fη,pf(z) =
η + p

zη

∫ z

0

f(t)tη−1 d t = (η + p)Iη,pf(z),

where

Iη,pf(z) =
1

zη

∫ z

0

f(t)tη−1 d t.

We see that integral operator Iη,p defined above is similar to that of
Lemma 1.2c. of [11]. According to this lemma, it follows that Iη,p is an
analytic integral operator for any function f of the form (1.1) whenever
Re η > −p, and Fη,pf ∈ Ap has the form

Fη,pf(z) = zp + (η + p)
∞∑
n=1

ap+n
p+ n+ η

zp+n, z ∈ U.

The operator defined in (3.8) is called the generalized p–valent Ber-
nardi integral operator, and for special case p = 1 we get the generalized
Bernardi integral operator. Thus, for p = 1 and η ∈ N, the operator
Fη := Fη,1 was introduced by Bernardi [1], and in particular, if η = 1
it reduces to the operator F1 that was earlier introduced by Livingston
[9].

Theorem 3.4. Let f ∈ Ap and F = Fη,pf , where Fη,p is given by
(3.8). If
(3.9)

(1 + ϑ)

(
zp

Ipµ(d, e)F (z)

)λ
−ϑ

Ipµ(d, e)f(z)

Ipµ(d, e)F (z)

(
zp

Ipµ(d, e)F (z)

)λ
∈ Pl[A,B, β],
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where d, e ∈ R \ Z−0 , λ > 0, µ > −p, 0 ≤ β < 1, ϑ ≥ 0 and l ≥ 2, then(
zp

Ipµ(d, e)F (z)

)λ
∈ Pl[A,B, β].

(All the powers are the principal ones).

Proof. Like we mentioned after the Definition 1.2, since the left-hand
side function from the relation (3.9) need to be analytic in U, we im-
plicitly assumed that Ipµ(d, e)F (z) 6= 0 for all z ∈ U̇.

The implication is obvious for ϑ = 0, hence suppose that ϑ > 0.
Letting

(3.10)

(
zp

Ipµ(d, e)F (z)

)λ
= K(z),

from the assumption (3.9) it follows that K is analytic in U, with
K(0) = 1.

It is easy to check that, if f, g ∈ Ap, then

(3.11)
z

p
(f(z) ∗ g(z))′ =

(
z

p
f ′(z)

)′
∗ g(z).

Moreover, since F = Fη,pf , where Fη,p is given by (3.8), a simple dif-
ferentiation shows that

(3.12) z
(
Ipµ(d, e)F (z)

)′
= (η + p)Ipµ(d, e)f(z)− ηIpµ(d, e)F (z).

Taking the logarithmical differentiation of (3.10), we have

λ

[
p−

z
(
Ipµ(d, e)F (z)

)′
Ipµ(d, e)F (z)

]
=
zK ′(z)

K(z)
,

and using the relations (3.11) and (3.12), it follows that

Ipµ(d, e)f(z)

Ipµ(d, e)F (z)
= 1− 1

λ(η + p)

zK ′(z)

K(z)
,

and thus

(1 + ϑ)

(
zp

Ipµ(d, e)F (z)

)λ
− ϑ

Ipµ(d, e)f(z)

Ipµ(d, e)F (z)

(
zp

Ipµ(d, e)F (z)

)λ
=

K(z) +
ϑ

λ(p+ η)
zK ′(z).

From the assumption (3.9), the above relation gives that

K(z) +
ϑ

λ(p+ η)
zK ′(z) ∈ Pl[A,B, β],

and using a similar proof with those of the first part of Theorem 3.1
we obtain that K ∈ Pl[A,B, β], which proves our result. �
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Theorem 3.5. If

(3.13) f(z) = zp +
∞∑
n=1

ap+nz
p+n ∈ N λ,ϑ

l,p (d, e;µ; β,A,B) ,

where d, e ∈ R \ Z−0 , λ > 0, µ > −p, 0 ≤ β < 1, ϑ ≥ 0 and l ≥ 2, then

(3.14) |ap+1| ≤
∣∣∣∣de
∣∣∣∣ (1− β)(A−B)

|ϑ+ λ(µ+ p)|
.

The inequality (3.14) is sharp.

Proof. If we let
(3.15)

(1 + ϑ)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ (d, e) f(z)

)λ
= p(z),

using the fact that

Ipµ(d, e)f(z) = zp +
∞∑
n=1

(µ+ p)n(e)n
n!(d)n

ap+nz
p+n,

we have

(1 + ϑ)

(
zp

Ipµ(d, e)f(z)

)λ
− ϑ

Ipµ+1(d, e)f(z)

Ipµ(d, e)f(z)

(
zp

Ipµ(d, e)f(z)

)λ
=

1−
(

1 +
ϑ

λ(µ+ p)

)
(µ+ p)1(e)1

1!(d)1
λ ap+1z + · · · =

1− e

d
[ϑ+ λ(µ+ p)] ap+1z + . . . , z ∈ U.(3.16)

Since f ∈ N λ,ϑ
l,p (d, e;µ; β,A,B), it follows that the function p defined

by (3.15) is of the form

p(z) =

(
l

4
+

1

2

)
p1(z)−

(
l

4
− 1

2

)
p2(z),

where p1, p2 ∈ P [A,B, β]. It follows that

pi(z) ≺ 1 + [(1− β)A+ βB] z

1 +Bz
(i = 1, 2),

and from the above relation we deduce that

(3.17) p(z) ≺ 1 + [(1− β)A+ βB] z

1 +Bz
.

According to (3.16), from the subordination (3.17) we obtain

1− e

d

ϑ+ λ(µ+ p)

1− β
ap+1z + · · · = p(z)− β

1− β
≺ 1 + Az

1 +Bz
,

and from Lemma 2.3 we conclude that∣∣∣∣−ed ϑ+ λ(µ+ p)

1− β

∣∣∣∣ |ap+1| ≤ |A−B|,
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which proves our result.
To prove that the inequality (3.14) is sharp we need to show that

there exists a function f ∈ N λ,ϑ
l,p (d, e;µ; β,A,B) of the form (3.13),

such that for this function we have equality in (3.14).

Thus, we will prove that there exists f ∈ N λ,ϑ
l,p (d, e;µ; β,A,B), such

that the identity (3.15) holds for the special case

p(z) =
1 + [(1− β)A+ βB] z

1 +Bz
.

Setting

(3.18) K(z) =

(
zp

Ipµ(d, e)f(z)

)λ
,

like in the proof of Theorem 3.1 we deduce that the relation (3.15) is
equivalent to

(3.19) K(z) +
1

γ
zK ′(z) = p(z), where γ :=

λ(µ+ p)

ϑ
.

(i) If ϑ = 0, the above differential equation has the solution K = p.
(ii) If ϑ > 0, then γ > 0 whenever λ > 0 and µ > −p. Since the

function p is convex in the unit disk U, according to Lemma 2.1 it
follows that this differential equation has the solution

K̃(z) =
γ

zγ

∫ z

0

tγ−1p(t) d t ≺ p(z).

It is easy to check that p(z) 6= 0 for all z ∈ U, and from the above

subordination we get that K̃(z) 6= 0, z ∈ U.
Now, if we define the function K0 by

K0(z) =

{
p(z), if ϑ = 0,

K̃(z), if ϑ > 0,

then K0 is the analytic solution of the differential equation (3.19), and
moreover K0(z) 6= 0, z ∈ U.

Thus, for K = K0 the relation (3.18) is equivalent to

Ipµ(d, e)f(z) = zpK
−1/λ
0 (z),

and this equation has the solution

(3.20) f0(z) := ψp(d, e; z) ∗
(
zpK

−1/λ
0 (z)

)
,

where

ψp(d, e; z) := zp +
∞∑
n=1

n!(d)n
(µ+ p)n(e)n

zp+n.
(
d, e ∈ C \ Z−0 , µ > −p

)
,

Consequently, for the function f0 defined by (3.20) we get equality in
(3.14), hence the sharpness of our result is proved. �
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As a special case, for l = 2 and β = 0 we obtain the corresponding
result for the class N λ,ϑ

2,p (d, e;µ; 0, A,B) (see [18] for n = 1).
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Gen. Math., 18(2)(2010), 31–46

[15] B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math.,
10(1971), 7–16.

[16] H. Saitoh, A linear operator and its applications of first order differential sub-
ordinations, Math. Japon., 44(1996), 31–38.

[17] W. Rogosinski, On the coefficients of subordinate functions, Proc. London
Math. Soc. (Ser. 2), 48(1943), 48–82.

[18] Z.-G. Wang, H.-T. Wang and Y. Sun, A class of multivalent non-Bazilević
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With an Account of the Principal Transcendental Functions, Fourth Edition,
Cambridige Univ. Press, Cambridge, 1927.

Department of Mathematics, Pir Mehr Ali Shah Arid Agriculture
University, Rawalpindi, Pakistan

E-mail address: saimamustafa28@gmail.com

Faculty of Mathematics and Computer Science, Babeş-Bolyai Uni-
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ON A PRODUCT-TYPE OPERATOR FROM MIXED-NORM SPACES TO
BLOCH-ORLICZ SPACES

HAIYING LI AND ZHITAO GUO

ABSTRACT. The boundedness and compactness of a product-type operator DMuCψ
from mixed-norm spaces to Bloch-Orlicz spaces are characterized in this paper.

1. INTRODUCTION

Let D denote the unit disk in the complex plane C, H(D) the class of all analytic func-
tions on D and N the set of nonnegative integers.

A positive continuous function φ on [0,1) is called normal if there exist two positive
numbers s and t with 0 < s < t, and δ ∈ [0, 1) such that (see [19])

φ(r)
(1− r)s

is decreasing on [δ, 1), lim
r→1

φ(r)
(1− r)s

= 0;

φ(r)
(1− r)t

is increasing on [δ, 1), lim
r→1

φ(r)
(1− r)t

= ∞.

For p, q ∈ (0,∞) and φ normal, the mixed-norm space H(p, q, φ)(D) = H(p, q, φ) is
the space of all functions f ∈ H(D) such that

‖f‖H(p,q,φ) =
( ∫ 1

0

Mp
q (f, r)

φp(r)
1− r

dr

) 1
p

<∞,

where

Mq(f, r) =
(

1
2π

∫ 2π

0

|f(reiθ)|qdθ
) 1

q

.

For 1 ≤ p, q < ∞, H(p, q, φ), equipped with the norm ‖f‖H(p,q,φ), is a Banach space,
while for the other vales of p and q, ‖ · ‖H(p,q,φ) is a quasinorm on H(p, q, φ), H(p, q, φ)

is a Fréchet space but not a Banach space. Note that if φ(r) = (1− r)
α+1

p , then H(p, q, φ)
is equivalent to the weighted Bergman space Apα(D) = Apα defined for 0 < p < ∞ and
α > −1, as the spaces of all f ∈ H(D) such that

‖f‖p
Ap

α
= (α+ 1)

∫
D
|f(z)|p(1− |z|2)αdm(z) <∞,

where dm(z) = 1
π rdrdθ is the normalized Lebesgue area measure on D ([8, 12, 18, 25,

27, 33, 35, 48, 51]). For more details on the mixed-norm space on various domains and
operators on them, see, e.g., [1, 7, 10, 20, 22, 23, 24, 28, 29, 34, 36, 37, 38, 41, 42, 43, 44,
46, 47, 54].

2000 Mathematics Subject Classification. Primary 47B33.
Key words and phrases. A product-type operator, mixed-norm spaces, Bloch-Orlicz spaces, boundedness,

compactness.
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2 HAIYING LI AND ZHITAO GUO

For every 0 < α < ∞, the α-Bloch space, denoted by Bα, consists of all functions
f ∈ H(D) such that

sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

Bα is a Banach space under the norm

‖f‖Bα = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|.

For α = 1 is obtained the Bloch space. α-Bloch space is introduced and studied by
numerous authors. Recently, many authors studied different classes of Bloch-type spaces,
where the typical weight function, ω(z) = 1 − |z|2(z ∈ D) is replaced by a bounded
continuous positive function µ defined on D. More precisely, a function f ∈ H(D) is
called a µ-Bloch function, denoted by f ∈ Bµ, if

‖f‖µ = sup
z∈D

µ(z)|f ′(z)| <∞.

Clearly, if µ(z) = ω(z)α with α > 0, Bµ is just the α-Bloch space Bα. It is readily seen
that Bµ is a Banach space with the norm

‖f‖Bµ = |f(0)|+ ‖f‖µ.
For some information on the Bloch, α-Bloch and Bloch-type spaces, as well as some op-
erators on them see, e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 25,
26, 27, 29, 30, 31, 32, 34, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55].

Recently, Fernández in [17] used Young’s functions to define the Bloch-Orlicz space.
More precisely, let ϕ : [0,∞) → [0,∞) be a strictly increasing convex function such that
ϕ(0) = 0 and limt→∞ ϕ(t) = ∞. The Bloch-Orlicz space associated with the function ϕ,
denoted by Bϕ, is the class of all analytic functions f in D such that

sup
z∈D

(1− |z|2)ϕ(λ|f ′(z)|) <∞

for some λ > 0 depending on f . Also, since ϕ is convex, it is not hard to see that the
Minkowski’s functional

‖f‖ϕ = inf
{
k > 0 : Sϕ

(
f ′

k

)
≤ 1

}
define a seminorm for Bϕ, which, in this case, is known as Luxemburg’s seminorm, where

Sϕ(f) = sup
z∈D

(1− |z|2)ϕ(|f(z)|)

We know that Bϕ is a Banach space with the norm ‖f‖Bϕ = |f(0)|+ ‖f‖ϕ. We also have
that the Bloch- Orlicz space is isometrically equal to µ-Bloch space, where

µ(z) =
1

ϕ−1( 1
1−|z|2 )

, z ∈ D.

Thus for any f ∈ Bϕ, we have

‖f‖Bϕ = |f(0)|+ sup
z∈D

µ(z)|f ′(z)|.

It is well known that the differentiation operator D is defined by

(Df)(z) = f ′(z), f ∈ H(D).

Let u ∈ H(D), then the multiplication operator Mu is defined by

(Muf)(z) = u(z)f(z), f ∈ H(D).
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Let ψ be an analytic self-map of D. The composition operator Cψ is defined by

(Cψf)(z) = f(ψ(z)), f ∈ H(D).

Investigation of products of these and integral-type operators attracted a lot of atten-
tion recently (see, e.g., [2]-[49], [51]-[55]). For example, in [3] and [17], the authors
investigated bounded superposition operators between Bloch-Orlicz and α-Bloch spaces
and composition operators on Bloch-Orlicz type spaces. In [37] and [38], S. Stević in-
vestigated extended Cesàro operators between mixed-norm spaces and Bloch-type spaces
and an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces
on the unit ball. In [36] and [41], S. Stević investigated an integral-type operator from
logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces and weighted dif-
ferentiation composition operators from mixed-norm spaces to weighted-type spaces. In
[42] and [46], S. Stević investigated an integral-type operator from Zygmund-type spaces
to mixed-norm spaces on the unit ball and weighted differentiation composition operators
from the mixed-norm space to the nth weighted-type space on the unit disk. S. Stević in
[34] gave the properties of products of integral-type operators and composition operators
from the mixed norm space to Bloch-type spaces. In [47], S. Stević investigated weighted
radial operator from the mixed-norm space to the nth weighted-type space on the unit ball.
In [54], X. Zhu studied extended Cesàro operators from mixed-norm spaces to Zygmund
type spaces.

Motivated, among others, by these papers, we will study here the boundedness and
compactness of the following operator, which is also a product-type one,

(DMuCψf)(z) = u′(z)f(ψ(z)) + u(z)ψ′(z)f ′(ψ(z)), f ∈ H(D),

from H(p, q, φ) to Bϕ.
In what follows,

µ(z) =
1

ϕ−1( 1
1−|z|2 )

,

and we use the letter C to denote a positive constant whose value may change at each
occurrence.

2. THE BOUNDEDNESS AND COMPACTNESS OF DMuCφ : H(p, q, φ) → Bϕ

In this section, we will give our main results and proofs. In order to prove our main
results, we need some auxiliary results. Our first lemma characterizes compactness in terms
of sequential convergence. Since the proof is standard, it is omitted here (see, Proposition
3.11 in [4]).

Lemma 1. Suppose u ∈ H(D), ψ is an analytic self-map of D, 0 < p, q < ∞ and φ
is normal. Then the operator DMuCψ : H(p, q, φ) → Bϕ is compact if and only if it is
bounded and for each sequence {fn}n∈N which is bounded in H(p, q, φ) and converges
to zero uniformly on compact subsets of D as n →∞, we have ‖DMuCψfn‖Bϕ → 0 as
n→∞.

The following lemma can be found in [36].

Lemma 2. Assume 0 < p, q <∞, ψ is normal and f ∈ H(p, q, φ). Then for every n ∈ N,
there is a positive constant C independent of f such that

|f (n)(z)| ≤
C‖f‖H(p,q,φ)

φ(|z|)(1− |z|2)
1
q +n

.
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4 HAIYING LI AND ZHITAO GUO

Theorem 3. Let u ∈ H(D), ψ be an analytic self-map of D, 0 < p, q < ∞ and φ be
normal. Then DMuCψ : H(p, q, φ) → Bϕ is bounded if and only if

k1 = sup
z∈D

µ(z)|u′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q

<∞, (1)

k2 = sup
z∈D

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q +1

<∞, (2)

k3 = sup
z∈D

µ(z)|u(z)||ψ′(z)|2

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +2

<∞. (3)

Proof. Assume that (1), (2) and (3) hold. By Lemma 2, then we get

|f(ψ(z))| ≤
C1‖f‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q

,

|f ′(ψ(z))| ≤
C2‖f‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +1

,

|f ′′(ψ(z))| ≤
C3‖f‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +2

.

Then for each f ∈ H(p, q, φ) \ {0}, we have:

Sϕ

(
(DMuCψf)′(z)
C‖f‖H(p,q,φ)

)

≤ sup
z∈D

(1− |z|2)ϕ
[(

k1φ(|ψ(z)|)(1− |ψ(z)|2)
1
q |f(ψ(z))|

Cµ(z)‖f‖H(p,q,φ)

)
+

(
k2φ(|ψ(z)|)(1− |ψ(z)|2)

1
q +1|f ′(ψ(z))|

Cµ(z)‖f‖H(p,q,φ)

)
+

(
k3φ(|ψ(z)|)(1− |ψ(z)|2)

1
q +2|f ′′(ψ(z))|

Cµ(z)‖f‖H(p,q,φ)

)]
≤ sup

z∈D
(1− |z|2)ϕ

[
k1C1 + k2C2 + k3C3

Cµ(z)

]
≤ sup

z∈D
(1− |z|2)ϕ

(
ϕ−1

(
1

1− |z|2

))
= 1

where C is a constant such that C ≥ k1C1 + k2C2 + k3C3. Now, we can conclude that
there exists a constant C such that ‖DMuCψf‖Bϕ ≤ C‖f‖H(p,q,φ) for all f ∈ H(p, q, φ),
so the product-type operator DMuCψ : H(p, q, φ) → Bϕ is bounded.

Conversely, suppose that DMuCψ : H(p, q, φ) → Bϕ is bounded, i.e., there exists
C > 0 such that ‖DMuCψf‖Bϕ ≤ C‖f‖H(p,q,φ) for all f ∈ H(p, q, φ). Taking the
function f(z) = 1 ∈ H(p, q, φ), and ‖f‖H(p,q,φ) ≤ C, then

Sϕ

(
(DMuCψf)′(z)

C

)
= Sϕ

(
u′′(z)
C

)
= sup

z∈D
(1− |z|2)ϕ

(
|u′′(z)|
C

)
≤ 1.

It follows that
sup
z∈D

µ(z)|u′′(z)| <∞. (4)
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Taking the function f(z) = z ∈ H(p, q, φ), and ‖f‖H(p,q,φ) ≤ C, then

Sϕ

(
(DMuCψf)′(z)

C

)
= sup

z∈D
(1− |z|2)ϕ

(
|u′′(z)ψ(z) + (2u′(z)ψ′(z) + u(z)ψ′′(z))|

C

)
≤ 1.

Hence
sup
z∈D

µ(z)|u′′(z)ψ(z) + 2u′(z)ψ′(z) + u(z)ψ′′(z)| <∞.

By (4) and the boundedness of ψ(z), we can see that

sup
z∈D

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)| <∞. (5)

Taking the function f(z) = z2

2 ∈ H(p, q, φ), similarly, we can get

sup
z∈D

µ(z)|u(z)||ψ′(z)|2 <∞. (6)

For a fixed ω ∈ D, set

fψ(ω)(z) =
A(1− |ψ(ω)|2)t+1

φ(|ψ(ω)|)(1− ψ(ω)z)
1
q +t+1

+
B(1− |ψ(ω)|2)t+2

φ(|ψ(ω)|)(1− ψ(ω)z)
1
q +t+2

+
(1− |ψ(ω)|2)t+3

φ(|ψ(ω)|)(1− ψ(ω)z)
1
q +t+3

, (7)

where the constant t is from the definition of the normality of the function φ.
Then supω∈D ‖fψ(ω)‖H(p,q,φ) <∞, and we have

fψ(ω)(ψ(ω)) =
A+B + 1

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q

,

f ′ψ(ω)(ψ(ω)) =
(AM1 +BM2 +M3)ψ(ω)

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +1

,

f ′′ψ(ω)(ψ(ω)) =
(AM1M2 +BM2M3 +M3M4)ψ(ω)

2

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

.

where Mi = 1
q + t+ i, i = 1, 2, 3, 4.

To prove (1), we choose the corresponding function in (7) with

A =
M3

M1
, B = −2M3

M2
,

and denote it by fψ(ω), then we have

fψ(ω)(ψ(ω)) =
P

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q

, f ′ψ(ω)(ψ(ω)) = f ′′ψ(ω)(ψ(ω)) = 0, (8)

where P = M3
M1

− 2M3
M2

+ 1.
By the boundedness of DMuCψ : H(p, q, φ) → Bϕ, we have ‖DMuCψfψ(ω)‖Bϕ ≤

C, then

1 ≥ Sϕ

(
(DMuCψfψ(ω))′(z)

C

)
≥ sup

w∈D
(1− |ω|2)ϕ

(
P |u′′(ω)|

Cφ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q

)
,
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from which we can get (1). To prove (2), we choose the corresponding function in (7) with

A =
−2M2 −M1M2 +M3M4

2M2
, B =

M1M2 −M3M4

2M2
,

and denote it by gψ(ω), then we have

g′ψ(ω)(ψ(ω)) =
Eψ(ω)

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +1

, gψ(ω)(ψ(ω)) = g′′ψ(ω)(ψ(ω)) = 0, (9)

where

E =
−2M1M2 −M2

1M2 +M1M3M4

2M2
+
M1M2 −M3M4

2
+M3.

By the boundedness of DMuCψ : H(p, q, φ) → Bϕ, we have ‖DMuCψgψ(ω)‖Bϕ ≤
C, then

1 ≥ Sϕ

(
(DMuCψgψ(ω))′(z)

C

)
≥ sup

1
2<|ψ(ω)|<1

(1− |ω|2)ϕ
( |(DMuCψgψ(ω))′(ω)|

C

)
= sup

1
2<|ψ(ω)|<1

(1− |ω|2)ϕ
(
E|ψ(ω)||2u′(ω)ψ′(ω) + u(ω)ψ′′(ω)|

Cφ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +1

)
.

It follows that

sup
1
2<|ψ(ω)|<1

µ(ω)|2u′(ω)ψ′(ω) + u(ω)ψ′′(ω)|
φ(|ψ(ω)|)(1− |ψ(ω)|2)

1
q +1

≤ 2 sup
1
2<|ψ(ω)|<1

µ(ω)|ψ(ω)||2u′(ω)ψ′(ω) + u(ω)ψ′′(ω)|
φ(|ψ(ω)|)(1− |ψ(ω)|2)

1
q +1

<∞. (10)

Since φ is normal, and using (5), we have

sup
|ψ(ω)|≤ 1

2

µ(ω)|2u′(ω)ψ′(ω) + u(ω)ψ′′(ω)|
φ(|ψ(ω)|)(1− |ψ(ω)|2)

1
q +1

≤ C sup
|ψ(ω)|≤ 1

2

µ(ω)|2u′(ω)ψ′(ω) + u(ω)ψ′′(ω)| <∞. (11)

From (10) and (11), we can get (2). To prove (3), we choose the corresponding function
in (7) with

A = 1, B = −2,

and denote it by hψ(ω), then we have

hψ(ω)(ψ(ω)) = h′ψ(ω)(ψ(ω)) = 0, h′′ψ(ω)(ψ(ω)) =
Fψ(ω)

2

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

, (12)

where F = M1M2 − 2M2M3 +M3M4.
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By the boundedness of DMuCψ : H(p, q, φ) → Bϕ, we have ‖DMuCψhψ(ω)‖Bϕ ≤
C, then

1 ≥ Sϕ

(
(DMuCψhψ(ω))′(z)

C

)
≥ sup

1
2<|ψ(ω)|<1

(1− |ω|2)ϕ
( |(DMuCψhψ(ω))′(ω)|

C

)
= sup

1
2<|ψ(ω)|<1

(1− |ω|2)ϕ
(

F |ψ(ω)|2|u(ω)||ψ′(ω)|2

Cφ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

)
.

It follows that

sup
1
2<|ψ(ω)|<1

µ(ω)|u(ω)||ψ′(ω)|2

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

≤ 4 sup
1
2<|ψ(ω)|<1

µ(ω)|ψ(ω)|2|u(ω)||ψ′(ω)|2

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

<∞. (13)

Since φ is normal, and using (6), we have

sup
|ψ(ω)|≤ 1

2

µ(ω)|u(ω)||ψ′(ω)|2

φ(|ψ(ω)|)(1− |ψ(ω)|2)
1
q +2

≤ C sup
|ψ(ω)|≤ 1

2

µ(ω)|u(ω)||ψ′(ω)|2 <∞. (14)

From (13) and (14), we can get (3), finishing the proof of the theorem. �

Theorem 4. Let u ∈ H(D), ψ be an analytic self-map of D, 0 < p, q <∞ and φ be nor-
mal. Then DMuCψ : H(p, q, φ) → Bϕ is compact if and only if DMuCψ : H(p, q, φ) →
Bϕ is bounded and

lim
|ψ(z)|→1

µ(z)|u′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q

= 0, (15)

lim
|ψ(z)|→1

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q +1

= 0, (16)

lim
|ψ(z)|→1

µ(z)|u(z)||ψ′(z)|2

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +2

= 0. (17)

Proof. Suppose that DMuCψ : H(p, q, φ) → Bϕ is compact. It is clear that DMuCψ :
H(p, q, φ) → Bϕ is bounded. Let {zn}n∈N be a sequence in D such that |ψ(zn)| → 1 as
n→∞. Set

fn(z) = fψ(zn)(z), gn(z) = gψ(zn)(z), hn(z) = hψ(zn)(z).

Then by the proof of Theorem 3,

sup
n∈N

‖fn‖H(p,q,φ) <∞, sup
n∈N

‖gn‖H(p,q,φ) <∞, sup
n∈N

‖hn‖H(p,q,φ) <∞.

Moreover, we can see that fn, gn, hn converges to 0 uniformly on compact subsets of D.
Since DMuCψ : H(p, q, φ) → Bϕ is compact, by Lemma 1, we get

lim
n→∞

‖DMuCψfn‖Bϕ = lim
n→∞

‖DMuCψgn‖Bϕ = lim
n→∞

‖DMuCψhn‖Bϕ = 0.

By (8) we have

fn(ψ(zn)) =
P

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q

, f ′n(ψ(zn)) = f ′′n (ψ(zn)) = 0,
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Then

1 ≥ Sϕ

(
(DMuCψfn)′(zn)
‖DMuCψfn‖Bϕ

)
≥ (1− |zn|2)ϕ

(
P |u′′(zn)|

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q ‖DMuCψfn‖Bϕ

)
.

It follows that

µ(zn)
∣∣u′′(zn)∣∣

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q

≤ C‖DMuCψfn‖Bϕ .

Therefore

lim
|ψ(zn)|→1

µ(zn)|u′′(zn)|
φ(|ψ(zn)|)(1− |ψ(zn)|2)

1
q

= lim
n→∞

µ(zn)|u′′(zn)|
φ(|ψ(zn)|)(1− |ψ(zn)|2)

1
q

= 0. (18)

So (15) follows. By (9) we have

g′n(ψ(zn)) =
E · ψ(zn)

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +1

, gn(ψ(zn)) = g′′n(ψ(zn)) = 0,

Then

1 ≥ Sϕ

(
(DMuCψgn)′(zn)
‖DMuCψgn‖Bϕ

)
≥ (1− |zn|2)ϕ

(
E|ψ(zn)||2u′(zn)ψ′(zn) + u(zn)ψ′′(zn)|

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +1‖DMuCψgn‖Bϕ

)
.

It follows that

µ(zn)|ψ(zn)||2u′(zn)ψ′(zn) + u(zn)ψ′′(zn)|
φ(|ψ(zn)|)(1− |ψ(zn)|2)

1
q +1

≤ C‖DMuCψgn‖Bϕ .

Therefore

lim
|ψ(zn)|→1

µ(zn)|2u′(zn)ψ′(zn) + u(zn)ψ′′(zn)|
φ(|ψ(zn)|)(1− |ψ(zn)|2)

1
q +1

= lim
n→∞

µ(zn)|ψ(zn)||2u′(zn)ψ′(zn) + u(zn)ψ′′(zn)|
φ(|ψ(zn)|)(1− |ψ(zn)|2)

1
q +1

= 0. (19)

So (16) follows. By (12), we have

hn(ψ(zn)) = h′n(ψ(zn)) = 0, h′′n(ψ(zn)) =
F · ψ(zn)

2

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +2

.

Then

1 ≥ Sϕ

(
(DMuCψhn)′(zn)
‖DMuCψhn‖Bϕ

)
≥ (1− |zn|2)ϕ

(
F |ψ(zn)|2|u(zn)||ψ′(zn)|2

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +2‖DMuCψhn‖Bϕ

)
.
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It follows that

µ(zn)|ψ(zn)|2|u(zn)||ψ′(zn)|2

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +2

≤ C‖DMuCψhn‖Bϕ .

Therefore

lim
|ψ(zn)|→1

µ(zn)|u(zn)||ψ′(zn)|2

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +2

= lim
n→∞

µ(zn)|ψ(zn)|2|u(zn)||ψ′(zn)|2

φ(|ψ(zn)|)(1− |ψ(zn)|2)
1
q +2

= 0.

So (17) follows.
Conversely, suppose DMuCψ : H(p, q, φ) → Bϕ is bounded and (15), (16), (17) hold.

Then (4), (5), (6) hold by Theorem 3 and for every ε > 0, there is a δ ∈ (0, 1) such that

µ(z)|u′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q

< ε, (20)

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)|
φ(|ψ(z)|)(1− |ψ(z)|2)

1
q +1

< ε, (21)

µ(z)|u(z)||ψ′(z)|2

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +2

< ε. (22)

whenever δ < |ψ(z)| < 1.
Assume that {tn}n∈N is a sequence in H(p, q, φ) such that supn∈N ‖tn‖H(p,q,φ) ≤ L,

and {tn} converges to 0 uniformly on compact subsets of D as n → ∞. Let K = {z ∈
D : |ψ(z)| ≤ δ}. Then by Lemma 2, (4), (5), (6), (21), (22) and (23), we have

sup
z∈D

µ(z)|(DMuCψtn)′(z)|

≤ sup
z∈D

µ(z)|u′′(z)||tn(ψ(z))|+ sup
z∈D

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)||t′n(ψ(z))|

+sup
z∈D

µ(z)|u(z)||ψ′(z)|2|t′′n(ψ(z))|

≤ sup
z∈K

µ(z)|u′′(z)||tn(ψ(z))|+ C1 sup
z∈D\K

µ(z)|u′′(z)|‖tn‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q

+ sup
z∈K

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)||t′n(ψ(z))|

+C2 sup
z∈D\K

µ(z)|2u′(z)ψ′(z) + u(z)ψ′′(z)|‖tn‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +1

+ sup
z∈K

µ(z)|u(z)||ψ′(z)|2|t′′n(ψ(z))|+ C3 sup
z∈D\K

µ(z)|u(z)||ψ′(z)|2‖tn‖H(p,q,φ)

φ(|ψ(z)|)(1− |ψ(z)|2)
1
q +2

≤ C

(
sup
|ω|≤δ

|tn(ω)|+ sup
|ω|≤δ

|t′n(ω)|+ sup
|ω|≤δ

|t′′n(ω)|
)

+ 3Lε.

So we obtain

‖DMuCψtn‖Bϕ = |u′(0)tn(ψ(0)) + u(0)ψ′(0)t′n(ψ(0))|+ sup
z∈D

µ(z)|(DMuCψtn)′(z)|

≤ |u′(0)||tn(ψ(0))|+ |u(0)||ψ′(0)||t′n(ψ(0))|

+C
(

sup
|ω|≤δ

|tn(ω)|+ sup
|ω|≤δ

|t′n(ω)|+ sup
|ω|≤δ

|t′′n(ω)|
)

+ 3Lε. (23)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

942 HAIYING LI et al 934-945



10 HAIYING LI AND ZHITAO GUO

Since tn converges to 0 uniformly on compact subsets of D as n → ∞, Cauchy’s estima-
tion gives that t′n, t′′n also do as n→∞. In particular, since {ω : |ω| ≤ δ} and {ψ(0)} are
compact it follows that

lim
n→∞

|u′(0)||tn(ψ(0))|+ |u(0)||ψ′(0)||t′n(ψ(0))| = 0,

lim
n→∞

sup
|ω|≤δ

|tn(ω)| = lim
n→∞

sup
|ω|≤δ

|t′n(ω)| = lim
n→∞

sup
|ω|≤δ

|t′′n(ω)| = 0.

Hence, letting n→∞ in (24), we get

lim
n→∞

‖DMuCψtn‖Bϕ = 0.

Employing Lemma 1 the implication follows. �
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[48] S. Stević and A. K. Sharma. Integral-type operators between weighted Bergman spaces on the
unit disk. J. Comput. Anal. Appl. 14 (7) (2012), 1339-1344.
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A SHORT NOTE ON INTEGRAL INEQUALITY OF TYPE

HERMITE-HADAMARD THROUGH CONVEXITY

MUHAMMAD IQBAL, SHAHID QAISAR, AND MUHAMMAD MUDDASSAR*

Abstract. In this short note, a Riemann-Liouville fractional integral identity

including first order derivative of a given function is established. With the help

of this fractional-type integral identity, some new Hermite-Hadamard-type in-
equality involving Riemann-Liouville fractional integrals for(m,h1, h2)−convex

function are considered. Our method considered here may be a stimulant for
further investigations concerning Hermite-Hadamard-type inequalities involv-

ing fractional integrals.

1. Introduction and Defintions

Many inequalities have been established for convex functions but the most famous
is the Hermite-Hadamarad inequality, due to its rich geometrical significance and
applications, which is stated as in [12]

Let f : I ⊂ R→ R be a convex function defined on the closed interval I of real
numbers and a, b ∈ I with a < b

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t)dt ≤ f (a) + f (b)

2

Both the inequalities hold in reversed direction if f is concave. We recall some
preliminary concepts about convex functions:

Definition 1. [7]. A function f : [0,∞) → R is said to be s-convex function or
f belongs to the class Ki

s if for all x, y ∈ [0,∞) and µ, ν ∈ [0, 1], the following
inequality holds

f (µx+ νy) ≤ µsf (x) + νsf (y)

for some fixed α ∈ (0, 1].

Note that, if µs + νs = 1, the above class of convex functions is called s-convex
functions in first sense and represented by K1

s and if µ + ν = 1 the above class is
called s-convex in second sense and represented by K2

s .

Definition 2. [11]. A function f : [0, b] → R is said to be (α,m)-convex, where
(α,m) ∈ [0, 1]2 , if for every x, y ∈ [0, b] and for λ ∈ [0, 1], the following inequality
holds

f (λy +m (1− λ)x) ≤ λαf (y) +m (1− λα) f (x)

where (α,m) ∈ [0, 1]2 and for some fixed m ∈ (0, 1].
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corresponding Author *.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

946 IQBAL et al 946-953



2 M. IQBAL, S. QAISAR, AND M. MUDDASSAR

Theorem 1. [3]. Let f : I ⊂ R→ R be a differentiable function on I◦ (interior of
I) where a, b ∈ I◦ with a < b. If |f ′| is convex on [a, b], then we have∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
8

[|f ′(a)|+ |f ′(b)|] .

Theorem 2. [8]. Let f : I ⊂ R → R be a differentiable function on Io (interior
of I) where a, b ∈ I with a < b. If the mapping |f ′|q is convex on [a, b], for some
q ≥ 1, then the following inequality holds:∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

Theorem 3. [13].Let f : I ⊂ [0,∞)→ R be differentiable mapping on Io a, b ∈ Io
with a < b, and If |f ′|q is quasi-convex on [a, b], p > 1. Then the following inequality
holds: ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)

16

(
4

1 + p

) 1
p

{[
|f ′(a)|

p
p−1 + 3 |f ′(b)|

p
p−1

]1− 1
p

+
[
3 |f ′(a)|

p
p−1 + |f ′(b)|

p
p−1

]1− p
p−1

}
Theorem 4. [9]. Let f : I ⊂ [0,∞) → R be a differentiable function on I0 where
a, b ∈ Io with a < b such that f ′ ∈ L [a, b] , where a, b ∈ I with a < b. If the mapping
|f ′′|q is s-convex on [a, b] for some fixed s ∈ (0, 1] and q ≥ 1, then the following
inequality holds:∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
2

1
q

[
s+

(
1
2

)s
(s+ 1) (s+ 2)

] 1
q [
|f ′(a)|q + |f ′(b)|q

] 1
q

Theorem 5. [4]. Suppose that f : [0,∞) → [0,∞) is a convex function in the
second sensewhere α ∈ (0, 1) and let a, b ∈ [0,∞) , a < b. if f ∈ L1 ([a, b]) , then
the following inequality holds

2α−1f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x)dx ≤ f (a) + f (b)

α+ 1
.

Fraction calculus [2, 6, 1, 5] was introduced at the end of the nineteenth century
by Riemann and Liouville the subject of which has become a rapidly growing area
and has found applications in diverse fields ranging from physical sciences and
engineering to biological sciences and economics. We recall some definitions and
preliminary facts of fractional calculus theory which will be used in this paper.

Definition 3. [6].Let f ∈ L1 [a, b] . The Riemann-Liouville fractional integrals
Jαα+f and Jαb−f of order α > 0 with α ≥ 0 are defined by

Jαα+f (x) =
1

Γ (α)

∫ x

a

(x− t)α−1
f (t) dt, (a < x) ,
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and

Jαb−f (x) =
1

Γ (α)

∫ b

x

(t− x)
α−1

f (t) dt, (b > x) ,

respectively.

Here Γ (α) =
∞∫
0

e−uuα−1du. Here is J0
a+f (x) = J0

b−f (x) = f (x) .

In case of α = 1, the fractional integral reduces to the classical integral. The
aim of this paper is to establish Hermite-Hadamard type inequalities based on
(m,h1, h2)− convexity. Using these results we obtained new inequalities of Hermite-
Hadamard type involving Riemann-Liouville fractional integrals.

2. Main Results

Before proceeding to our main results, we present some necessary definition and
lemma which are used further in this paper.

Definition 4. Let f : I ⊆ R0 → R, h1, h2 : [0, 1] → R0, and m ∈ (0, 1] , then f
is said to be (m,h1, h2)− convex. if f is non–negative and the following inequality

f (λx+m (1− λ) y) ≤ h1 (λ) f (x) +mh2 (1− λ) f (y) ,

holds for all x, y ∈ I and λ ∈ [0, 1].

If the above inequality is reversed then f is said to be (m,h1, h2)− concave.

Mα (a, b) = 1
4

[
f (a) + 1

2

(
f
(

3a+b
4

)
+ f

(
a+3b

4

))
+ f (b)

]
−Γ(α+1)4α−1

(b−a)α

[
Jαα+f

(
3a+b

4

)
+ Jα3a+b

4

+f
(
a+3b

4

)
+ Jαa+3b

4

+f (b)

]
.

Specially, when α = 1, we have

M1 (a, b) =
1

4

[
f (a) +

1

2

(
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

))
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt.

Lemma 1. Suppose f : [a, b] → R is a differentiable mapping on (a, b) . If f ′ ∈
L1 ([a, b]), then we have the following identity

Mα (a, b) =
b− a

16
×


∫ 1

0
(0− λα)f ′

(
λa+ (1− λ) 3a+b

4

)
dλ

+
∫ 1

0

(
1
2 − λ

α
)
f ′
(
λ 3a+b

4 + (1− λ) a+3b
4

)
dλ

+
∫ 1

0
(1− λα)f ′

(
λa+3b

4 + (1− λ) b
)
dλ


Proof. By integrating, and by making use of the substitution u = λa+(1− λ) 3a+b

4
we have

b−a
16

{∫ 1

0
(−λα)f ′

(
λa+ (1− λ) 3a+b

4

)
dλ
}

= 1
4

[
f (a)− α

∫ 1

0
(−λα)f

(
λa+ (1− λ) 3a+b

4

)
λα−1dλ

]
= 1

4f (a)− α4α−1

(b−a)α
∫ 3a+b

4

a

(
3a+b

4 − u
)α−1

f (u) du

= 1
4f (a)− Γ(α+1)4α−1

(b−a)α Jαα+f
(

3a+b
4

)
b−a
16

{∫ 1

0

(
1
2 − λ

α
)
f ′
(
λ 3a+b

4 + (1− λ) a+3b
4

)
dλ
}

= 1
8

[(
f
(

3a+b
4

)
+ f

(
a+3b

4

))]
= b−a

16

{∫ 1

0

(
1
2 − λ

α
)
f ′
(
λ 3a+b

4 + (1− λ) a+3b
4

)
dλ
}

= 1
8

[(
f
(

3a+b
4

)
+ f

(
a+3b

4

))]
− Γ(α+1)4α−1

(b−a)α Jαα+f
(
a+3b

4

)
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4 M. IQBAL, S. QAISAR, AND M. MUDDASSAR∫ 1

0
(1− λα)f ′

(
λa+3b

4 + (1− λ) b
)
dλ

= 1
4f (b)− Γ(α+1)4α−1

(b−a)α Jαa+3b
4

+f (b)

This proves as required.

Theorem 6. Suppose f : [a, b]→ R is a differentiable mapping on (a, b) with a < b.
such thatf ′ ∈ L1 ([a, b])for 0 < a < b. If |f ′|q is (m,h1, h2)−convex on [a, b] for
some fixed q > 1 and h1, h2 ∈ L1 ([a, b]), then we have the following inequality
Mα (a, b) ≤ b−a

16 ×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q ‖h1‖1 +m

∣∣f ′ ( 3a+b
4m

)∣∣q ‖h2‖1
)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q ‖h1‖1 +m
∣∣f ′ (a+3b

4m

)∣∣q ‖h2‖1
)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q ‖h1‖1 +m
∣∣f ′ ( bm)∣∣q ‖h2‖1

)1/q


Suppose ‖h1‖p =

(∫ 1

0
hp1 (λ) dλ

)1/p

for p ≥ 1 with B (x, y) is the classical Beta

function which may be defined B (x, y) =
∫ 1

0
λx−1 (1− λ)

y−1
, x > 0, y > 0. for

0 < a < b.

Proof. H older integral inequality and Lemma 1 together implies with (m,h1, h2)-
convexity of |f ′|q

Mα (a, b) ≤ b−a
16 ×

(∫ 1

0
λαq/q−1dλ

)1−1/q

×
(
|f ′ (a)|q ‖h1‖1 +m

∣∣f ′ ( 3a+b
4m

)∣∣q ‖h2‖1
)1/q

+
(
1
2

)1/q (∫ 1

0

∣∣ 1
2−λ

α
∣∣ dλ)1−1/q

×
(∣∣f ′ (3a+b4

)∣∣q ‖h1‖1+m
∣∣f ′ (a+3b

4m

)∣∣q ‖h2‖1
)1/q

+
(∫ 1

0
(1−λα)q/q−1

dλ
)1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q ‖h1‖1+m
∣∣f ′ ( bm)∣∣q ‖h2‖1

)1/q


Therefore,∫ 1

0
λαq/q−1dλ = q−1

αq+q−1 ,
∫ 1

0
(1− λα)

q/q−1
dλ = 1

αB
(

2q−1
q−1 ,

1
α

)
,∫ 1

0

∣∣ 1
2 − λ

α
∣∣ dλ = α2(α−1)/α−α+1

α+1

This completes the proof .

Corollary 1. In Theorem 6, if we choose h1 (λ) = h (λ) , h2 (λ) = h (1− λ) , then
we have,

Mα (a, b) ≤ (b−a)‖h1‖1/q1

16 ×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q +m

∣∣f ′ ( 3a+b
4m

)∣∣q)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q +m
∣∣f ′ (a+3b

4m

)∣∣q)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q +m
∣∣f ′ ( bm)∣∣q)1/q


Furthermore if we choose m = 1, we have

Mα (a, b) ≤ (b−a)‖h1‖1/q1

16 ×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q + |f ′ (b)|q
)1/q


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Corollary 2. Under the conditions of Corollary 1, if we chooseh1 (λ) = h (λ) =
λs,m = 1, we have the

Mα (a, b) ≤ (b−a)
16

(
1
s+1

)1/q

×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q + |f ′ (b)|q
)1/q


Specially, if we choose α = s = m = 1, we have the

Mα (a, b) ≤ (b− a)

16

(
1

2

)1/q

×


(
q−1
2q−1

)1−1/q

×
(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)1/q

+
(

1
2

)2−1/q ×
(∣∣f ′ ( 3a+b

4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q)1/q

+
(
q−1
2q−1

)1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q + |f ′ (b)|q
)1/q


Corollary 3. Under the conditions of Theorem 6, if we choose h1 (λ) = λα1 , h2 (λ) =
1− λα1 , we have the

Mα (a, b) ≤ (b−a)
16

(
1

α1+1

)1/q

×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q +mα1

∣∣f ′ ( 3a+b
4m

)∣∣q)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q +m
∣∣f ′ (a+3b

4m

)∣∣q)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q +mα1

∣∣f ′ ( bm)∣∣q)1/q


Specially, if we choose m = 1, we have the,

Mα (a, b) ≤ (b−a)
16

(
1

α1+1

)1/q

×
(

q−1
αq+q−1

)1−1/q

×
(
|f ′ (a)|q + α1

∣∣f ′ ( 3a+b
4

)∣∣q)1/q

+ 1
2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q)1/q

+
(

1
αB

(
2q−1
q−1 ,

1
α

))1−1/q

×
(∣∣f ′ (a+3b

4

)∣∣q + α1 |f ′ (b)|q
)1/q


Theorem 7. Suppose f : [a, b]→ R is a differentiable mapping on (a, b) with a < b.
such thatf ′ ∈ L1 ([a, b])for 0 < a < b. If |f ′|q is and (m,h1, h2)− convex on [a, b]
for q ≥ 1, and h1, h2 ∈ L1 ([a, b]), then we have the following inequality

Mα (a, b) ≤ (b−a)
16

(
1

α+1

)1−1/q

×

[
1
2 |f
′ (a)|q

(
1

2α+1 + ‖h1‖22
)

+ m
2

∣∣f ′ ( 3a+b
4m

)∣∣q ( 1
2α+1 + ‖h2‖22

)]1/q
+ 1

2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q ‖h1‖1 +m
∣∣f ′ (a+3b

4m

)∣∣q ‖h2‖1
)1/q

+α1−1/q

 1
2

∣∣f ′ (a+3b
4

)∣∣q ( 2α2

(2α+1)(α+1) + ‖h1‖22
)

+m
2

∣∣f ′ ( bm)∣∣q ( 2α2

(2α+1)(α+1) + ‖h1‖22
) 1/q


Where 1

p + 1
q = 1.
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Proof. Using Holder’s inequality and by Lemma 1, and (m,h1, h2)− convexity of
|f ′|q , we get

Mα (a, b) ≤ (b−a)
16 ×

(∫ 1

0
λαdλ

)1−1/q[
|f ′ (a)|q

∫ 1

0
λαh1(λ) dλ+m

2

∣∣f ′ (3a+b4m

)∣∣q∫ 1

0
λαh2(λ) dλ

]1/q
+
(
1
2

)1/q (∫ 1

0

∣∣ 1
2−λ

α
∣∣ dλ)1−1/q

×
(∣∣f ′ (3a+b4

)∣∣q ∫ 1

0
h1 (λ) dλ+m

∣∣f ′ (a+3b
4m

)∣∣q∫ 1

0
h2 (λ) dλ

)1/q

+
(∫ 1

0
(1− λα) dλ

)1−1/q
[ ∣∣f ′ (a+3b

4

)∣∣q ∫ 1

0
(1− λα)h1 (λ) dλ

+m
∣∣f ′( bm)∣∣q ∫ 1

0
(1−λα)h2 (λ) dλ

]1/q


Mα (a, b) ≤ (b−a)

16 ×

(∫ 1

0
λαdλ

)1−1/q [
|f ′(a)|q

∫ 1

0
λ2α+h2

1(λ)
2 dλ+m

∣∣f ′ (3a+b4m

)∣∣q∫ 1

0
λ2α+h2

2(λ)
2 dλ

]1/q
+
(
1
2

)1/q(∫ 1

0

∣∣ 1
2−λ

α
∣∣ dλ)1−1/q

×
(∣∣f ′ (3a+b4

)∣∣q∫ 1

0
h1 (λ) dλ+m

∣∣f ′ (a+3b
4m

)∣∣q∫ 1

0
h2 (λ) dλ

)1/q

+
(∫ 1

0
(1−λα) dλ

)1−1/q
[ ∣∣f ′ (a+3b

4

)∣∣q∫ 1

0
(1−λα)2+h2

1(λ)
2 dλ

+m
∣∣f ′ ( bm)∣∣q∫ 1

0
(1−λα)2+h2

2(λ)
2 dλ

]1/q


= (b−a)

16

(
1

α+1

)1−1/q

×

[
1
2 |f
′ (a)|q

(
1

2α+1 + ‖h1‖22
)

+ m
2

∣∣f ′ ( 3a+b
4m

)∣∣q ( 1
2α+1 + ‖h2‖22

)]1/q
+ 1

2

(
α2(α−1)/α−α+1

α+1

)1−1/q

×
(∣∣f ′ ( 3a+b

4

)∣∣q ‖h1‖1 +m
∣∣f ′ (a+3b

4m

)∣∣q ‖h2‖1
)1/q

+α1−1/q

 1
2

∣∣f ′ (a+3b
4

)∣∣q ( 2α2

(2α+1)(α+1) + ‖h1‖22
)

+m
2

∣∣f ′ ( bm)∣∣q ( 2α2

(2α+1)(α+1) + ‖h1‖22
) 1/q


This completes the proof .

Corollary 4. In Theorem 7, if we choose h1 (λ) = λα1 , h2 (λ) = 1− λα1 , we have

Mα (a, b) ≤ (b−a)
16

(
1

α+1

)1−1/q

×

[
1
2 |f
′ (a)|q

(
1

2α+1 + 1
2α1+1

)
+ m

2

∣∣f ′ ( 3a+b
4m

)∣∣q ( 1
2α+1 +

2α2
1

(2α1+1)(α1+1)

)]1/q
+ 1

2

(
α2(α−1)/α − α+ 1

)1−1/q ×
(∣∣f ′ ( 3a+b

4

)∣∣q 1
α1+1 +m

∣∣f ′ (a+3b
4m

)∣∣q α1

α1+1

)1/q

+α1−1/q

 1
2

∣∣f ′ (a+3b
4

)∣∣q ( 2α2

(2α+1)(α+1) + 1
2α1+1

)
+m

2

∣∣f ′ ( bm)∣∣q ( 2α2

(2α+1)(α+1) +
2α2

1

(2α1+1)(α1+1)

) 1/q


If we choose h1 (λ) = h (λ) , h2 (λ) = h (1− λ) , m = 1 we have

Mα (a, b) ≤ (b−a)
16 ×

(
1

α+1

)1−1/q [
1
2

(
1

2α+1 + ‖h1‖22
)

+
(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)]1/q
+ 1

2

(
α2(α−1)/α − α+ 1

)1−1/q ×
(
‖h1‖1

(∣∣f ′ ( 3a+b
4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q))1/q

+α1−1/q

 1
2

(
2α2

(2α+1)(α+1) + ‖h1‖22
)

×
(∣∣f ′ (a+3b

4

)∣∣q + |f ′ (b)|q
) 1/q


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If we choose h1 (λ) = h (λ) = λs, h2 (λ) = h (1− λ) , m = 1 we have the,

Mα (a, b) ≤ (b−a)
16 ×

(
1

α+1

)1−1/q [
1
2

(
1

2α+1 + 1
2s+1

)
+
(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)]1/q
+ 1

2

(
α2(α−1)/α − α+ 1

)1−1/q ×
(

1
s+1

(∣∣f ′ ( 3a+b
4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q))1/q

+α1−1/q

 1
2

(
2α2

(2α+1)(α+1) + 1
2s+1

)
×
(∣∣f ′ (a+3b

4

)∣∣q + |f ′ (b)|q
) 1/q


In Theorem 7, if we choose h1 (λ) = h (λ) = λs, h2 (λ) = h (1− λ) , α = s =

m = 1, we have

Mα (a, b) ≤ (b− a)

16
×


(

1
2

)1−1/q
[

1
3

(
|f ′ (a)|q +

∣∣f ′ ( 3a+b
4

)∣∣q)]1/q
+ 1

2

(
1
2

(∣∣f ′ ( 3a+b
4

)∣∣q +
∣∣f ′ (a+3b

4

)∣∣q))1/q

+
[

1
3

(∣∣f ′ (a+3b
4

)∣∣q + |f ′ (b)|q
)]1/q

 .
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DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE

SECOND KIND

DMITRY V. DOLGY, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

Abstract. In this paper, we introduce the degenerate poly-Bernoulli polynomials
of the second kind, which reduce in the limit to the poly-Bernoulli polynomials of the
second kind. We present several explicit formulas and recurrence relations for these
polynomials. Also, we establish a connection between our polynomials and several
known families of polynomials.

1. Introduction

The Korobov polynomials of the first kind Kn(λ, x) with λ 6= 0 introduced by Korobov
(actually he defined the polynomials 1

n!
Kn(λ, x)) (see [13, 14, 18]) are given by

λt

(1 + λt)λ − 1
(1 + t)x =

∑
n≥0

Kn(λ, x)
tn

n!
.(1.1)

When x = 0, we define Kn(λ) = Kn(λ, 0). These are what would have been called the
degenerate Bernoulli polynomials of the second kind, since limλ→0Kn(λ, x) = bn(x),
where bn(x) is the nth Bernoulli polynomial of the second kind (see [15]) given by

t

log(1 + t)
(1 + t)x =

∑
n≥0

bn(x)
tn

n!
.

On the other hand, the poly-Bernoulli polynomials of the second kind Pb
(k)
n (x) (of index

k) are introduced in [12] (see also [5, 7, 10]) and given by

Lik(1− e−t)

log(1 + t)
(1 + t)x =

∑
n≥0

Pb(k)n (x)
tn

n!
,(1.2)

where Lik(x) (k ∈ Z) is the classical polylogarithm function given by Lik(x) =
∑

n≥1
xn

nk
.

In this paper, we introduce the degenerate poly-Bernoulli polynomials of the second

kind Pb
(k)
n (λ, x) with λ 6= 0 (of index k) (see [3, 6, 8]) which are given by

λLik(1− e−t)

(1 + t)λ − 1
(1 + t)x =

∑
n≥0

Pb(k)n (λ, x)
tn

n!
.(1.3)

When x = 0, Pb
(k)
n (λ, 0) are called the degenerate poly-Bernoulli numbers of the second

kind. Clearly, Pb
(1)
n (λ, x) = Kn(λ, x) and limλ→0 Pb

(k)
n (λ, x) = Pb

(k)
n (x).

2010 Mathematics Subject Classification. 05A19, 05A40, 11B83.
Key words and phrases. Degenerate Poly-Bernoulli polynomials, Umbral calculus.
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2 DMITRY V. DOLGY, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

Recall here that the λ-Daehee polynomials of the first kind Dn,λ(x) (see [9]) are given
by

λ log(1 + t)

(1 + t)λ − 1
(1 + t)x =

∑
n≥0

Dn,λ(x)
tn

n!
.(1.4)

When x = 0, Dn,λ = Dn,λ(0) are called the λ-Daehee numbers of the first kind. Note

that, as λ log(1+t)
(1+t)λ−1

Li
k
(1−e−t)

log(1+t)
(1 + t)x =

∑
n≥0 Pb

(k)
n (λ, x) t

n

n!
, the degenerate poly-Bernoulli

polynomials of the second kind are mixed-type of the λ-Daehee polynomials of the first
kind and the poly-Bernoulli polynomials of the second kind.

The goal of this paper is to use umbral calculus to obtain several new and interesting
identities of degenerate poly-Bernoulli polynomials of the second kind. To do that
we refer the reader to umbral algebra and umbral calculus as given in [16, 17]. More
precisely, we give some properties, explicit formulas, recurrence relations and identities
about the degenerate poly-Bernoulli polynomials of the second kind. Also, we establish
a connection between our polynomials and several known families of polynomials.

2. Explicit formulas

In this section we present several explicit formulas for the degenerate poly-Bernoulli

polynomials of the second kind, namely Pb
(k)
n (λ, x). It is immediate from (1.3) that

the degenerate poly-Bernoulli polynomials of the second kind are given by the Sheffer
sequence for the pair

Pb(k)n (λ, x) ∼ (gk(t), f(t)) ≡

(
eλt − 1

λLik(1− e1−et)
, et − 1

)
.(2.1)

To do so, we recall that Stirling numbers S1(n, k) of the first kind can be defined by
means of exponential generating functions as

∑
ℓ≥j

S1(ℓ, j)
tℓ

ℓ
=

1

j!
logj(1 + t)(2.2)

and can be defined by means of ordinary generating functions as

(x)n =

n∑
m=0

S1(n,m)xm ∼ (1, et − 1),(2.3)

where (x)n = x(x− 1)(x− 2) · · · (x− n + 1) with (x)0 = 1.

Theorem 2.1. For all n ≥ 0,

Pb(k)n (λ, x) =

n∑
j=0

(
n∑

ℓ=j

(
n

ℓ

)
S1(ℓ, j)Pb

(k)
n−ℓ(λ, 0)

)
xj

=

n∑
j=0

(
n∑

ℓ=j

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ

m

)
S1(ℓ, j)Pb(k)m Dn−ℓ−m,λ

)
xj .
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DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND 3

Proof. By applying the fact that

sn(x) =
n∑

j=0

1

j!
〈g(f̄(t))−1f̄(t)j | xn〉xj ,(2.4)

for any sn(x) ∼ (g(t), f(t) (see [16, 17]) in the case of degenerate poly-Bernoulli poly-
nomials of the second kind (see (2.1)), we have

1

j!
〈gk(f̄(t))

−1f̄(t)j | xn〉

=
1

j!

〈
λLik(1− e−t)

(1 + t)λ − 1
(log(1 + t))j | xn

〉
=

〈
λLik(1− e−t)

(1 + t)λ − 1
|
logj(1 + t)

j!
xn

〉
,(2.5)

which, by (2.3), we have

1

j!
〈gk(f̄(t))

−1f̄(t)j | xn〉

=

〈
λLik(1− e−t)

(1 + t)λ − 1
|
∑
ℓ≥j

S1(ℓ, j)
tℓ

ℓ!
xn

〉
=

n∑
ℓ=j

(
n

ℓ

)
S1(ℓ, j)

〈
λLik(1− e−t)

(1 + t)λ − 1
| xn−ℓ

〉

=
n∑

ℓ=j

(
n

ℓ

)
S1(ℓ, j)Pb

(k)
n−ℓ(λ, 0),

which completes the proof of the first equality.

Now let us calculate aj =
1
j!
〈gk(f̄(t))

−1f̄(t)j | xn〉 in another way. By (2.5), we have

aj =
n∑

ℓ=j

(
n

ℓ

)
S1(ℓ, j)

〈
λ log(1 + t)

(1 + t)λ − 1
|
Lik(1− e−t)

log(1 + t)
xn−ℓ

〉
,

which, by (1.3) and (1.4), implies

aj =

n∑
ℓ=j

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ

m

)
S1(ℓ, j)Pb(k)m

〈
λ log(1 + t)

(1 + t)λ − 1
| xn−ℓ−m

〉

=

n∑
ℓ=j

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ

m

)
S1(ℓ, j)Pb(k)m Dn−ℓ−m,λ.

Thus,

Pb(k)n (λ, x) =

n∑
j=0

(
n∑

ℓ=j

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ

m

)
S1(ℓ, j)Pb(k)m Dn−ℓ−m,λ

)
xj ,

as required. �

Theorem 2.2. For all n ≥ 0,

Pb(k)n (λ, x) =

n∑
m=0

(
n

m

)
Dn−m,λPb(k)m (x) =

n∑
m=0

(
n

m

)
Pb

(k)
n−mDm,λ(x).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

956 DOLGY et al 954-966



4 DMITRY V. DOLGY, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

Proof. By (1.3), we have

Pb(k)n (λ, y) =

〈
λ log(1 + t)

(1 + t)λ − 1
|
Lik(1− e−t)

log(1 + t)
(1 + t)yxn

〉
,

which, by (1.2), we obtain

Pb(k)n (λ, y) =
n∑

m=0

(
n

m

)
Pb(k)m (y)

〈
λ log(1 + t)

(1 + t)λ − 1
| xn−m

〉
.

Therefore, by (1.4), we obtain the first equality. To obtain the second equality, we
reverse the order, namely we use at first (1.4) and then (1.2), to obtain

Pb(k)n (λ, y) =
n∑

m=0

(
n

m

)
Dm,λ(y)

〈
Lik(1− e−t)

log(1 + t)
| xn−m

〉
=

n∑
m=0

(
n

m

)
Dm,λ(y)Pb

(k)
n−m,

which completes the proof. �

Note that it was shown in [9] that Dn,λ(x) is given by
∑n

j=0 S1(n, j)λ
jBj(x/λ), where

Bm(x) is the mth Bernoulli polynomial. Thus, for x = 0, we have

Dn,λ =
n∑

j=0

S1(n, j)λ
jBj,

where Bm is the mth Bernoulli number. Hence, we obtain

Pb(k)n (λ, x) =
n∑

m=0

(
n−m∑
ℓ=0

(
n

m

)
S1(n−m, ℓ)λℓBℓ

)
Pb(k)m (x)

=

n∑
m=0

(
n∑

ℓ=m

(
n

ℓ

)
S1(ℓ,m)λmPb

(k)
n−ℓ

)
Bm(x/λ).

Note that Stirling number S2(n, k) of the second kind can be defined by the exponential
generating functions as

∑
n≥k

S2(n, k)
xn

n!
=

(et − 1)k

k!
.(2.6)

Theorem 2.3. For all n ≥ 1,

Pb(k)n (λ, x) =

n∑
r=0

(
n−r∑
ℓ=0

n−ℓ−r∑
m=0

(
n− 1

ℓ

)(
n− ℓ

r

)
B

(n)
ℓ Pb(k)m S2(n− ℓ− r,m)λr

)
Br(x/λ).

Proof. By 2.1, xn ∼ (1, t), and the transfer formula (see [16,17]), we obtain, for n ≥ 1,

eλt − 1

λLik(1− e1−et)
Pb(k)n (λ, x)

= x
tn

(et − 1)n
x−1xn = x

∑
ℓ≥0

B
(n)
ℓ

tℓ

ℓ!
xn−1 =

n−1∑
ℓ=0

(
n− 1

ℓ

)
B

(n)
ℓ xn−ℓ.
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DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND 5

Thus,

Pb(k)n (λ, x) =

n−1∑
ℓ=0

(
n− 1

ℓ

)
B

(n)
ℓ

λt

eλt − 1

λLik(1− e−s)

log(1 + s)
|s=et−1 x

n−ℓ,

which, by (1.2) and (2.6), implies

Pb(k)n (λ, x) =
n−1∑
ℓ=0

((
n− 1

ℓ

)
B

(n)
ℓ

λt

eλt − 1

∑
m≥0

Pb(k)m

(et − 1)m

m!
xn−ℓ

)

=
n−1∑
ℓ=0

n−ℓ∑
m=0

n−ℓ∑
r=m

(
n− 1

ℓ

)
B

(n)
ℓ Pb(k)m S2(r,m)

(
λt

eλt − 1

tr

r!
xn−ℓ

)

=

n−1∑
ℓ=0

n−ℓ∑
m=0

n−ℓ∑
r=m

(
n− 1

ℓ

)(
n− ℓ

r

)
B

(n)
ℓ Pb(k)m S2(r,m)

(
λt

eλt − 1
xn−ℓ−r

)

=
n−1∑
ℓ=0

n−ℓ∑
m=0

n−ℓ∑
r=m

(
n− 1

ℓ

)(
n− ℓ

r

)
B

(n)
ℓ Pb(k)m S2(r,m)λn−ℓ−rBn−ℓ−r(x/λ).

Here we used the following fact: 1
g(λt)

xn = λnsn(x/λ) for any sn(x) ∼ (g(t), t) and

λ 6= 0. Indeed, 〈tk | 1/g(λt)xn〉 = λ−k〈(λt)k/g(λt)|xn〉 = λ−k〈tk/g(t)|λnxn〉 = λn−k〈tk |
1/g(t)xn〉 = λn〈(t/λ)k | sn(x)〉 = 〈tk | λnsn(x/λ)〉.

By exchanging the indices of the summations, we obtain that

Pb(k)n (λ, x) =

n−1∑
ℓ=0

n−ℓ∑
m=0

n−ℓ−m∑
r=0

(
n− 1

ℓ

)(
n− ℓ

r

)
B

(n)
ℓ Pb(k)m S2(n− ℓ− r,m)λrBr(x/λ)

=
n∑

r=0

(
n−r∑
ℓ=0

n−ℓ−r∑
m=0

(
n− 1

ℓ

)(
n− ℓ

r

)
B

(n)
ℓ Pb(k)m S2(n− ℓ− r,m)λr

)
Br(x/λ),

as claimed. �

Theorem 2.4. For all n ≥ 0,

Pb(k)n (λ, x) =
n∑

r=0

(
n∑

ℓ=r

ℓ−r∑
m=0

(
ℓ

r

)
S1(n, ℓ)S2(ℓ− r,m)λrPb(k)m

)
Br(x/λ).

Proof. By (2.1) we have that eλt−1

λLi
k
(1−e1−e

t )
Pb

(k)
n (λ, x) ∼ (1, et − 1). Thus, by (2.3), we

obtain

Pb(k)n (λ, x) =
λLik(1− e1−et)

eλt − 1
(x)n =

n∑
ℓ=0

S1(n, ℓ)
λLik(1− e1−et)

eλt − 1
xℓ.(2.7)

By replacing the function λLi
k
(1−e1−e

t

)
eλt−1

by

λt

eλt − 1

λLik(1− e−s)

log(1 + s)
|s=et−1,

and by using very similar arguments as in the proof of Theorem 2.3, one can complete
the proof. �
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6 DMITRY V. DOLGY, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

Note that Li2(1 − e−t) =
∫ t

0
y

ey−1
dy =

∑
j≥0Bj

1
j!

∫ t

0
yjdy =

∑
j≥0

Bjtj+1

j!(j+1)
. For general

k ≥ 2, the function Lik(1− e−t) has integral representation as

Lik(1− e−t) =

∫ t

0

1

ey − 1

∫ y

0

1

ey − 1

∫ y

0

· · ·
1

ey − 1

∫ y

0︸ ︷︷ ︸
(k−2) times

y

ey − 1
dy · · · dydydy,

which, by induction on k, implies

Lik(1− e−t) =
∑
j1≥0

· · ·
∑

j
k−1≥0

tj1+···+j
k−1+1

k−1∏
i=1

Bji

ji!(j1 + · · ·+ ji + 1)
.(2.8)

Theorem 2.5. For all n ≥ 0 and k ≥ 2,

Pb(k)n (λ, x) =

n∑
ℓ=0

(n)ℓKn−ℓ(λ, x)


 ∑

j1+...+j
k−1=ℓ

k−1∏
i=1

Bji

ji!(j1 + · · ·+ ji + 1)


 .

Proof. By (2.1), we have

Pb(k)n (λ, y) =

〈
λLik(1− e−t)

(1 + t)λ − 1
(1 + t)y | xn

〉

=

〈
Lik(1− e−t)

t
|

λt

(1 + t)λ − 1
(1 + t)yxn

〉
,

which, by (1.1), implies

Pb(k)n (λ, y) =

〈
Lik(1− e−t)

t
|
∑
ℓ≥0

Kℓ(λ, y)
tℓ

ℓ!
xn

〉

=

n∑
ℓ=0

(
n

ℓ

)
Kℓ(λ, y)

〈
Lik(1− e−t)

t
| xn−ℓ

〉
.

Thus, by (2.8), we complete the proof. �

3. Recurrences

Note that, by (1.3) and the fact that (x)n ∼ (1, et−1), we obtain the following identity.

Pb
(k)
n (λ, x+ y) =

∑n
j=0

(
n
j

)
Pb

(k)
j (λ, x)(y)n−j. Moreover, in the next results, we present

several recurrences for the degenerate poly-Bernoulli polynomials, namely Pb
(k)
n (x).

Theorem 3.1. For all n ≥ 1, Pb
(k)
n (λ, x+ 1) = Pb

(k)
n (λ, x) + nPb

(k)
n−1(λ, x),

Proof. It is well-known that f(t)sn(x) = nsn−1(x) for all sn(x) ∼ (g(t), f(t)) (see

[16, 17]). Thus, by (2.1), we have (et − 1)Pb
(k)
n (λ, x) = nPb

(k)
n−1(λ, x), which gives

Pb
(k)
n (λ, x+ 1)− Pb

(k)
n (λ, x) = nPb

(k)
n−1(λ, x), as required. �
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DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND 7

Theorem 3.2. For all n ≥ 1,

Pb
(k)
n+1(λ, x) = xPb(k)n (λ, x− 1)

−
n∑

m=0

m+1∑
ℓ=0

m+1∑
j=ℓ

S1(n,m)S2(j, ℓ)

m+ 1

(
m+ 1

j

)
Pb

(k)
ℓ (λ, 0)λm+1−jBm+1−j(

x+ λ− 1

λ
)

+
n∑

m=0

m+1∑
ℓ=0

m+1∑
j=ℓ

S1(n,m)S2(j, ℓ)

m+ 1

(
m+ 1

j

)
PB

(k−1)
ℓ λm+1−jBm+1−j(

x

λ
).

Proof. It is well-known that that sn+1(x) = (x − g′(t)/g(t)) 1
f ′(t)

sn(x) for all sn(x) ∼

(g(t), f(t)) (see [16, 17]). Thus, by 2.1, we have

(x− g′k(t)/gk(t))
1

f ′(t)
= xe−t − e−tg′k(t)/gk(t),

which gives

Pb
(k)
n+1(λ, x) = xPb(k)n (λ, x− 1)− e−tg′k(t)/gk(t)Pb(k)n (λ, x),(3.1)

where

e−t g
′
k(t)

gk(t)
= e−t

(
λeλt

eλt − 1
−

1

Lik(1− e1−et)

Lik−1(1− e1−et)

1− e1−et
ete1−et

)

=
1

t

(
λte(λ−1)t

eλt − 1

λLik(1− e1−et)

eλt − 1
−

λt

eλt − 1

Lik−1(1− e1−et)

ee
t−1 − 1

)
eλt − 1

λLik(1− e1−et)
.

Note that the order te−t g
′

k
(t)

g
k
(t)

is at least one, and by (2.7) we have eλt−1

λLi
k
(1−e1−e

t )
Pb

(k)
n (λ, x) =∑n

m=0 S1(n,m)xm. Thus, by (1.3), we have

e−t g
′
k(t)

gk(t)
Pb(k)n (λ, x)

=
n∑

m=0

S1(n,m)

m+ 1

(
λte(λ−1)t

eλt − 1

λLik(1− e1−et)

eλt − 1
−

λt

eλt − 1

Lik−1(1− e1−et)

ee
t−1 − 1

)
xm+1.

Therefore, by (1.2) and (1.3), we have

e−t g
′
k(t)

gk(t)
Pb(k)n (λ, x)

=

n∑
m=0

S1(n,m)

m+ 1

(
λte(λ−1)t

eλt − 1

λLik(1− e−s)

(1 + s)λ − 1
−

λt

eλt − 1

Lik−1(1− e−s)

es − 1

∣∣∣∣
s=et−1

)
xm+1

=

n∑
m=0

S1(n,m)

m+ 1

λt

eλt − 1

(
e(λ−1)t

∑
ℓ≥0

Pb
(k)
ℓ (λ, 0)

(et − 1)ℓ

ℓ!
−
∑
ℓ≥0

PB
(k−1)
ℓ

(et − 1)ℓ

ℓ!

)
xm+1,
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where PB
(k)
ℓ are the poly-Bernoulli numbers(of index k). So with help of (2.6), we

obtain

e−t g
′(t)

g(t)
Pb(k)n (λ, x)

=

n∑
m=0

m+1∑
ℓ=0

m+1∑
j=ℓ

S1(n,m)S2(j, ℓ)

m+ 1

(
m+ 1

j

)(
Pb

(k)
ℓ (λ, 0)

λte(λ−1)t

eλt − 1
− PB

(k−1)
ℓ

λt

eλt − 1

)
xm+1−j

=

n∑
m=0

m+1∑
ℓ=0

m+1∑
j=ℓ

S1(n,m)S2(j, ℓ)

m+ 1

(
m+ 1

j

)
Pb

(k)
ℓ (λ, 0)λm+1−jBm+1−j(

x+ λ− 1

λ
)

−
n∑

m=0

m+1∑
ℓ=0

m+1∑
j=ℓ

S1(n,m)S2(j, ℓ)

m+ 1

(
m+ 1

j

)
PB

(k−1)
ℓ λm+1−jBm+1−j(

x

λ
).

Therefore, by changing the summation on j, then substituting into (3.1), we complete
the proof. �

In next theorem, we find expression for d
dx
Pb

(k)
n (λ, x).

Theorem 3.3. For all n ≥ 0,

d

dx
Pb(k)n (λ, x) = n!

n−1∑
ℓ=0

(−1)n−ℓ−1

ℓ!(n− ℓ)
Pb(ℓ)n (λ, x).

Proof. It is well-known that d
dx
sn(x) =

∑n−1
ℓ=0

(
n
ℓ

)
〈f̄(t) | xn−ℓ〉sℓ(x), for all sn(x) ∼

(g(t), f(t)). Thus, in the case of degenerate poly-Bernoulli polynomials of the second
kind (see (2.1)), we have

〈f̄(t) | xn−ℓ〉 = 〈log(1 + t) | xn−ℓ〉 = (−1)n−ℓ−1(n− ℓ− 1)!.

Thus
d

dx
Pb(k)n (λ, x) =

n−1∑
ℓ=0

(
n

ℓ

)
(−1)n−ℓ−1(n− ℓ− 1)!Pb(ℓ)n (λ, x),

which completes the proof. �

Theorem 3.4. For all n ≥ 1,

Pb(k)n (λ, x)− xPb
(k)
n−1(λ, x− 1)

=
1

n

n∑
m=0

(
n

m

)(
Pb(k−1)

m (λ, x)Bn−m − Pb(k)m (λ, x+ λ− 1)Kn−m(λ)
)
.

Proof. By (1.3), we have, for n ≥ 1,

Pb(k)n (λ, y) =

〈
λLik(1− e−t)

(1 + t)λ − 1
(1 + t)y | xn

〉

=

〈
λLik(1− e−t)

(1 + t)λ − 1

d

dt
(1 + t)y | xn−1

〉
(3.2)

+

〈
d

dt

λLik(1− e−t)

(1 + t)λ − 1
(1 + t)y | xn−1

〉
.(3.3)
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DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND 9

The term in (3.2) is given by

y

〈
λLik(1− e−t)

(1 + t)λ − 1
(1 + t)y−1) | xn−1

〉
= yPb

(k)
n−1(λ, y − 1).(3.4)

For the term in (3.3), we observe that d
dt

λLi
k
(1−e−t)

(1+t)λ−1
= 1

t
(A−B), where

A =
t

et − 1

λLik−1(1− e−t)

(1 + t)λ − 1
, B =

λt

(1 + t)λ − 1

λLik(1− e−t)

(1 + t)λ − 1
(1 + t)λ−1.

Note that the expression A − B has order at least 1. Now, we ready to compute the
term in (3.3). By (1.3), we have〈

d

dt

λLik(1− e−t)

(1 + t)λ − 1
(1 + t)y | xn−1

〉
=

〈
1

t
(A− B)(1 + t)y | xn−1

〉

=
1

n
〈A(1 + t)y | xn〉 −

1

n
〈B(1 + t)y | xn〉

=
1

n

〈
t

et − 1
|
∑
m≥0

Pb(k−1)
m (λ, y)

tm

m!
xn

〉

−
1

n

〈
λt

(1 + t)λ − 1
|
∑
m≥0

Pb(k)m (λ, y + λ− 1)
tm

m!
xn

〉

=
1

n

n∑
m=0

(
n

m

)
Pb(k−1)

m (λ, y)

〈
t

et − 1
| xn−m

〉

−
1

n

n∑
m=0

(
n

m

)
Pb(k)m (λ, y + λ− 1)

〈
λt

(1 + t)λ − 1
| xn−m

〉

=
1

n

n∑
m=0

(
n

m

)(
Pb(k−1)

m (λ, y)Bn−m − Pb(k)m (λ, y + λ− 1)Kn−m(λ)
)
.(3.5)

Thus, if we replace (3.2) by (3.4) and (3.3) by (3.5), we obtain

Pb(k)n (λ, x)− xPb
(k)
n−1(λ, x− 1)

=
1

n

n∑
m=0

(
n

m

)(
Pb(k−1)

m (λ, x)Bn−m − Pb(k)m (λ, x+ λ− 1)Kn−m(λ)
)
,

as claimed. �

4. Connections with families of polynomials

In this section, we present a few examples on the connections with families of polyno-
mials. To do that we use the following fact from [16, 17]: For sn(x) ∼ (g(t), f(t)) and
rn(x) ∼ (h(t), ℓ(t)), let sn(x) =

∑n
k=0 cn,krk(x). Then we have

cn,k =
1

k!

〈
h(f̄(t))

g(f̄(t))
(ℓ(f̄(t)))k|xn

〉
.(4.1)

We start with the connection to Korobov polynomials Kn(λ, x) of the first kind.
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10 DMITRY V. DOLGY, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

Theorem 4.1. For all n ≥ 0,

Pb(k)n (λ, x) =

n∑
m=0

((
n

m

) n−m∑
ℓ=0

1

n−m− ℓ+ 1

(
n−m

ℓ

)
PB

(k)
ℓ

)
Km(λ, x)

and

Pb(k)n (λ, x) =
1

n + 1

n∑
m=0

(
n−m+1∑
ℓ=0

(−1)n−m+1−ℓ

(
n+ 1

m

)
ℓ!

ℓk
S2(n−m+ 1, ℓ)

)
Km(λ, x).

Proof. By (1.1), we have that Kn(λ, x) ∼
(

eλt−1
λ(et−1)

, et − 1
)
. Let

Pb(k)n (λ, x) =
n∑

m=0

cn,mKm(λ, x).

Thus, by (2.1) and (4.1), we obtain

cn,m =
1

m!

〈
(1 + t)λ − 1

λt

λLik(1− e−t)

(1 + t)λ − 1
tm|xn

〉
=

1

m!

〈
Lik(1− e−t)

t
|tmxn

〉

=

(
n

m

)〈
et − 1

t
|
Lik(1− e−t)

et − 1
xn−m

〉
=

(
n

m

)〈
et − 1

t
|
∑
ℓ≥0

PB
(k)
ℓ

tℓ

ℓ!
xn−m

〉

=

(
n

m

) n−m∑
ℓ=0

(
n−m

ℓ

)
PB

(k)
ℓ

〈
et − 1

t
|xn−m−ℓ

〉

=

(
n

m

) n−m∑
ℓ=0

(
n−m

ℓ

)
PB

(k)
ℓ

∫ 1

0

un−m−ℓdu

=

(
n

m

) n−m∑
ℓ=0

1

n−m− ℓ+ 1

(
n−m

ℓ

)
PB

(k)
ℓ ,

which completes the proof of the first identity. Note that we can compute cn,m in
another way, as follows. By using

cn,m =

(
n

m

)〈
Lik(1− e−t)

t
|xn−m

〉
,

and Lik(1− e−t) =
∑

ℓ≥1
(1−e−t)ℓ

ℓk
together with (2.6), we obtain that

cn,m =
1

n+ 1

n−m+1∑
ℓ=0

(−1)n−m+1−ℓ

(
n + 1

m

)
ℓ!

ℓk
S2(n−m+ 1, ℓ),

which leads to the second identity. �

Theorem 4.2. For all n ≥ 0,

Pb(k)n (λ, x) =
n∑

m=0

((
n

m

) n−m∑
ℓ=0

(
n−m

ℓ

)
Kℓ(λ)Dn−m−ℓ

)
Pb(k)m (x),

where Dn is the nth Daehee number defined by
log(1+t)

t
=
∑

n≥0Dn
tn

n!
.
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Proof. By (1.2), we have that Pb
(k)
n (x) ∼

(
t

Li
k
(1−e1−e

t )
, et − 1

)
. Let

Pb(k)n (λ, x) =

n∑
m=0

cn,mPb(k)m (x).

Thus, by (2.1) and (4.1), we obtain

cn,m =
1

m!

〈
log(1 + t)

Lik(1− e−t)

λLik(1− e−t)

(1 + t)λ − 1
tm|xn

〉
=

(
n

m

)〈
log(1 + t)

t
|

λt

(1 + t)λ − 1
xn−m

〉

=

(
n

m

)〈
log(1 + t)

t
|
∑
ℓ≥0

Kℓ(λ)
tℓ

ℓ!
xn−m

〉

=

(
n

m

) n−m∑
ℓ=0

(
n−m

ℓ

)
Kℓ(λ)

〈
log(1 + t)

t
|xn−m−ℓ

〉

=

(
n

m

) n−m∑
ℓ=0

(
n−m

ℓ

)
Kℓ(λ)Dn−m−ℓ

which completes the proof. �

We start with the connection to Bernoulli polynomials B
(s)
n (x) of order s. Recall that

the Bernoulli polynomials B
(s)
n (x) of order s are defined by the generating function(

t

et − 1

)s

ext =
∑
n≥0

B(s)
n (x)

tn

n!
,

or equivalently,

B(s)
n (x) ∼

((
et − 1

t

)s

, t

)
(4.2)

(see [2,4]). In the next result, we express our polynomials Pb
(k)
n (x) in terms of Bernoulli

polynomials of order s. To do that, we recall that Bernoulli numbers of the second kind

b
(s)
n of order s are defined as

ts

logs(1 + t)
=
∑
n≥0

b(s)n

tn

n!
.(4.3)

Theorem 4.3. For all n ≥ 0,

Pb(k)n (λ, x) =

n∑
m=0

(
n∑

ℓ=m

n−ℓ∑
j=0

(
n

ℓ

)(
n− ℓ

j

)
S1(ℓ,m)Pb

(k)
j (λ, 0)b

(s)
n−ℓ−j

)
B(s)

m (x).

Proof. Let Pb
(k)
n (λ, x) =

∑n
m=0 cn,mB

(s)
m (x). By (2.1), (4.1) and (4.2), we have

cn,m =
1

m!

〈(
t

log(1 + t)

)s
λLik(1− e−t)

(1 + t)λ − 1
(log(1 + t))m | xn

〉
,
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which, by (2.3) and (1.3), implies

cn,m =

〈(
t

log(1 + t)

)s
λLik(1− e−t)

(1 + t)λ − 1
|
∑
ℓ≥m

S1(ℓ,m)
tℓ

ℓ!
xn

〉

=

n∑
ℓ=m

(
n

ℓ

)
S1(ℓ,m)

〈(
t

log(1 + t)

)s

|
λLik(1− e−t)

(1 + t)λ − 1
xn−ℓ

〉

=

n∑
ℓ=m

(
n

ℓ

)
S1(ℓ,m)

〈(
t

log(1 + t)

)s

|
∑
j≥0

Pb
(k)
j (λ, 0)

tj

j!
xn−ℓ

〉

=

n∑
ℓ=m

n−ℓ∑
j=0

(
n

ℓ

)(
n− ℓ

j

)
S1(ℓ,m)Pb

(k)
j (λ, 0)

〈(
t

log(1 + t)

)s

| xn−ℓ−j

〉
.

Thus, by (4.3), we obtain

cn,m =

n∑
ℓ=m

n−ℓ∑
j=0

(
n

ℓ

)(
n− ℓ

j

)
S1(ℓ,m)Pb

(k)
j (λ, 0)b

(s)
n−ℓ−j,

which completes the proof. �

Similar techniques as in the proof of the previous theorem, we can express our poly-

nomials Pb
(k)
n (λ, x) in terms of other families. For instance, we can express our poly-

nomials Pb
(k)
n (λ, x) in terms of Frobenius-Euler polynomials (we leave the proof to

the interested reader). Note that the Frobenius-Euler polynomials H
(s)
n (x|µ) of order

s are defined by the generating function
(

1−µ
et−µ

)s
ext =

∑
n≥0H

(s)
n (x|µ) t

n

n!
, (µ 6= 1), or

equivalently, H
(s)
n (x|µ) ∼

((
et−µ
1−µ

)s
, t
)
(see [1, 2, 4, 11]).

Theorem 4.4. For all n ≥ 0,

Pb(k)n (λ, x) =
n∑

m=0

(
n∑

ℓ=m

n−ℓ∑
r=0

(
n

ℓ

)(
n− ℓ

r

)
s!S1(ℓ,m)Pb

(k)
r (λ, 0)

(1− µ)n−ℓ−r(s+ ℓ+ r − n)!

)
H(s)

m (x|µ).
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Some results for meromorphic functions of several

variables

Yue Wang*

School of Information, Renmin University of China, Beijing, 100872, China

Abstract: Using the Nevanlinna theory of the value distribution of meromorphic functions, we

investigate the value distribution of complex partial q-difference polynomials of meromorphic

functions of zero order, and also investigate the existence of meromorphic solutions of some

types of systems of complex partial q-difference equations in Cn. Some existing results are

improved and generalized, and some new results are obtained. Examples show that our results

are precise.

Keywords: value distribution; meromorphic solution; complex partial q-difference polynomi-

als; complex partial q-difference equations

§1 Introduction

In this paper, we assume that the reader is familiar with the standard notation and basic

results of the Nevanlinna theory of meromorphic functions, see, for example [1].

The reference related to notations of this section are referred to Tu[2].

Let M be a connected complex manifold of dimension n and let

A(M) =
2m∑
n=0

An(M)

be the graded ring of complex valued differential forms on M . Each set An(M) can be split

into a direct sum

An(M) =
∑

p+q=n

Ap,q(M),

where Ap,q(M) is the forms of type p, q. The differential operators d and dc on A(M) are

defined as

d := ∂ + ∂ and dc :=
1

4πi
(∂ − ∂).

where

∂ : Ap,q(M) −→ Ap+1,q(M),

*Corresponding author
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2

∂ : Ap,q(M) −→ Ap,q+1(M).

Let z = (z1, ..., zn) ∈ Cn, and let r ∈ R+. We define

ωn(z) := ddc log |z|2 and σn(z) := dc log |z|2 ∧ ωn−1n (z),

where z ∈ Cn\{0} and |z|2 := |z1|2 + · · ·+ |zn|2.
Let Cn < r >= {z ∈ Cn : |z| = r}, Cn(r) = {z ∈ Cn : |z| < r}, Cn[r] = {z ∈ Cn : |z| ≤ r}.

Then σn(z) defines a positive measure on Cn < r > with total measure one. In addition, by

defining

νn(z) := ddc|z|2 and ρn(z) := νnn(z),

for all z ∈ Cn, it follows that ρn(z) is the Lebesgue measure on Cn normalized such that Cn(r)

has measure r2n.

Let w be a meromorphic function on Cn in the sense that w can be written as a quotient of

two relatively prime holomorphic functions. We will write w = (w0, w1) where w0 6≡ 0, thus w

can be regarded as a meromorphic map w : Cn −→ P1 such that w−1(∞) 6= Cn.
Let P1 be the Riemann sphere. For a, b ∈ P1, the chordal distance from a to b is denoted

by ‖ a, b ‖, ‖ a,∞ ‖= 1√
1+|a|2

, ‖ a, b ‖= |a−b|√
1+|a|2·

√
1+|b|2

, a, b ∈ C, where ‖ a, a ‖= 0 and

0 ≤‖ a, b ‖=‖ b, a ‖≤ 1. If a ∈ P1 and w−1(a) 6= Cn, then we define the proximity function as

m(r, w, a) =

∫
|z|=r

log
1

‖ a,w(z) ‖
σn ≥ 0, r > 0.

Let ν be a divisor on Cn. We identify ν with its multiplicity function, define

ν(r) = {z ∈ Cn : |z| < r}
⋂
suppν, r > 0.

The pre-counting function of ν is defined by

n(r, ν) =
∑
z∈ν(r)

ν(z), if n = 1, n(r, ν) = r2−2n
∫
ν(r)

ννn−1n , if n > 1.

The counting function of ν is defined by

N(r, ν) =

∫ r

s

n(t, ν)
dt

t
, r > s.

Let w be a meromorphic function on Cn. If a ∈ P1 and w−1(a) 6= Cn, the a-divisor

ν(w, a) ≥ 0 is defined, and its pre-counting function and counting function will be denoted by

n(r, w, a) and N(r, w, a), respectively.

For a divisor ν on Cn, let

n(r, ν) =
∑
z∈ν(r)

1, if n = 1, n(r, ν) = r2−2n
∫
ν(r)

νn−1n , if n > 1.

N(r, ν) =

∫ r

s

n(t, ν)
dt

t
, r > s. N(r, w, a) = N(r, ν(w, a)).

For 0 < s < r, the characteristic of w is defined by

T (r, w) =

∫ r

s

1

t2n−1

∫
Cn[t]

w∗(ω) ∧ νn−1n dt =

∫ r

s

1

t

∫
Cn[t]

w∗(ω) ∧ ωn−1n dt.

where the pullback w∗(ω) satisfies w∗(ω) = ddc log(|w0|2 + |w1|2).

The First Main Theorem states

T (r, w) = N(r, w, a) +m(r, w, a)−m(s, w, a).
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Y.W Some results for meromorphic functions of several variables 3

In 2012, Korhonen R has investigated the difference analogues of the lemma on the Log-

arithmic Derivate and of the Second Main Theorem of Nevanlinna theory for meromorphic

functions of several variables, see [3]. Particularly, in 2013, Cao T B, see [4], using different

method obtains difference analogues of the second main theorem for meromorphic functions

in several complex variables from which difference analogues of Picard-type theorems are also

obtained. His results are improvements or extensions of some results of Korhonen R.

Similarly, in 2014, Wen Z T has investigated the q-difference theory for meromorphic func-

tions of several variables, see [5]. Some results that we will use in this paper are as follows.

Theorem A [5] Let w be a meromorphic function in Cn of zero order such that w(0) 6= 0,∞,

and let q ∈ Cn\{0}. Then,

m(r,
w(qz)

w(z)
) = o(T (r, w)),

on a set of logarithmic density 1.

Theorem B [5] Let w be a meromorphic function in Cn of zero order such that w(0) 6= 0,∞,

and let q ∈ Cn\{0}. Then,

T (r, w(qz)) = T (r, w(z)) + o(T (r, w)),

on a set of logarithmic density 1.

Remark: From the proof of Theorem B in [5], we have

N(r, w(qz)) = N(r, w(z)) + o(N(r, w)).

The remainder of the paper is organized as follows. In §2, we discuss Theorem A’s appli-

cations to complex partial q-difference equations. We present q-shift analogues of the Clunie

lemmas which can be used to study value distribution of zero-order meromorphic solutions of

large classes of complex partial q-difference equations. In §3, we study the existence of mero-

morphic solutions of complex partial q-difference equation of several variables, and obtain four

theorems, and then we give some examples, which show that the results obtained in §3 are, in

a sense, the best possible. And finally, we prove these four theorems by a series of lemmas.

§2 Value distribution of complex partial q-difference polynomials

Recently, Laine I, Halburd R G, Korhonen R J, Barnett D, Morgan W, investigate complex

q-difference theory, and have obtained some results,see [6,7,8,9]. Especially, in 2007, Barnett D

C, Halburd R G have obtained a theorem which is analogous to the Clunie Lemma as follows

Theorem C [7] Let w(z) be a non-constant zero-order meromorphic solution of

wn1(z)P1(z, w) = Q1(z, w),

where P1(z, w) and Q1(z, w) are complex q-difference polynomials in w(z) of the form

P1(z, w) =
∑
λ1∈I′1

aλ1
(z)w(z)l

1
0(w(q1z))

l11 · · · (w(qνz))
l1ν ,

Q1(z, w) =
∑
γ1∈J′

1

bγ1(z)w(z)l
2
0(w(q1z))

l21 · · · (w(qµz))
l2µ .
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If the degree of Q1(z, w) as a polynomial in w(z) and its q-shifts is at most n1, then

m(r, P1(z, w)) = S(r, w) = o{T (r, w)},
for all r on a set of logarithmic density 1.

We will investigate the problem of value distribution of complex partial q-difference poly-

nomials (2.1), (2.2) and (2.3), where z = (z1, ..., zn) ∈ Cn.

P (z, w) =
∑
λ∈I1

aλ(z)w(z)lλ0 (w(qλ1
z))lλ1 · · · (w(qλσλ z))

lλσλ . (2.1)

Q(z, w) =
∑
µ∈J1

bµ(z)w(z)mµ0 (w(qµ1
z))mµ1 · · · (w(qµτµ z))

mµτµ . (2.2)

U(z, w) =
∑
ν∈K1

cν(z)w(z)nν0 (w(qν1z))
nν1 · · · (w(qνυν z))

nνυν . (2.3)

where coefficients {aλ(z)}, {bµ(z)}, {cν(z)} are small functions of w(z). I1, J1,K1 are three

finite sets of multi-indices, qj ∈ Cn\{0}, (j ∈ {λ1, . . . , λσλ , µ1, . . . , µτµ , ν1, . . . , νυν .}).
We will prove

Theorem 2.1. Let w be a meromorphic function in Cn, and be a non-constant meromorphic

solution of zero order of a complex partial q-difference equation of the form

U(z, w)P (z, w) = Q(z, w),

where complex partial q-difference polynomials P (z, w), Q(z, w) and U(z, w) are respectively

as the form of (2.1), (2.2), (2.3), the total degree degU(z, f) = n1 in w(z) and its shifts, and

degQ(z, f) ≤ n1. Moreover, we assume that U(z, w) contains just one term of maximal total

degree in w(z) and its shifts. Then, we have

m(r, P (z, w)) = S(r, w) = o{T (r, w)},
for all r on a set of logarithmic density 1.

Corollary 2.1. Let w be a meromorphic function in Cn, and be a non-constant transcendental

meromorphic solution of zero order of a complex partial q-difference equation of the form

H(z, w)P (z, w) = Q(z, w),

where H(z, w) is a complex partial q-difference product of total degree n1 in w(z) and its shifts,

and where P (z, w), Q(z, w) are complex partial q-difference polynomials such that the total degree

of Q(z, w) is at most n1. Then, we obtain

m(r, P (z, w)) = S(r, w) = o{T (r, w)},
for all r on a set of logarithmic density 1.

Proof of Theorem 2.1 As the proof of Theorem 1 in [10], we rearrange the expression

for the complex partial q-difference polynomial U(z, w) by collecting together all terms having

the same total degree and then writing U(z, w) as follows

U(z, w) =

n1∑
j=0

dj(z)w
j(z),

where dj(z) =
∑
ν=j

cν(z)(
w(qν1z)

w(z)
)nν1 · · · (

w(qνυν z)

w(z)
)nνυν , j = 0, 1, · · · , n1. Since degU(z, w) =

n1 in w(z) and its shifts, and U(z, w) contains just one term of maximal total degree n1 in w(z)
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Y.W Some results for meromorphic functions of several variables 5

and its shifts, therefore, dn1
(z) contains just one product of the described form.

By Theorem A, for all r on a set of logarithmic density 1, we have

m(r, dj(z)) = S(r, w) = o{T (r, w)}, j = 0, 1, · · · , n1.

It follows from the assumption that dn1
(z) has just one term of maximal total degree in

U(z, w), thus, for all r on a set of logarithmic density 1, we get

m(r,
1

dn1
(z)

) = S(r, w) = o{T (r, w)}.

Let

A(z) = max
1≤j≤n1

{1, 2 | dn1−j

dn1

|
1
j }.

Then

m(r,A(z)) ≤
n1∑
j=0

m(r, dn1−j) +m(r,
1

dn1

) +O(1) = S(r, w) = o{T (r, w)}.

Let

E1 = {z ∈ Cn < r >: | w(z) |≤ A(z)}, E2 = Cn < r > \E1.

Thus

m(r, P (z, w)) =

∫
E1

log+ |P (z, w)|σn(z) +

∫
E2

log+ |P (z, w)|σn(z). (2.4)

Next we estimate respectively

∫
E1

log+ |P (z, w)|σn(z) and

∫
E2

log+ |P (z, w)|σn(z) in (2.4).

When z ∈ E1, we have

| P (z, w) | = |
∑
λ∈I1

aλ(z)w(z)lλ0 (w(qλ1
z))lλ1 · · · (w(qλσλ z))

lλσλ |

≤
∑
λ∈I1

| aλ(z) || w(z) |lλ0 | w(qλ1
z) |lλ1 · · · | w(qλσλ z) |

lλσλ

=
∑
λ∈I1

| aλ(z) || w(z) |lλ | w(qλ1
z)

w(z)
|lλ1 · · · |

w(qλσλ z)

w(z)
|lλσλ

≤
∑
λ∈I1

| aλ(z) || A(z) |lλ | w(qλ1
z)

w(z)
|lλ1 · · · |

w(qλσλ z)

w(z)
|lλσλ ,

where lλ = lλ0
+ lλ1

+ · · ·+ lλσλ . By Theorem A, for all r on a set of logarithmic density 1, we

have ∫
E1

log+ |P (z, w)|σn(z) = S(r, w) = o{T (r, w)}. (2.5)

When z ∈ E2, we obtain

| w(z) |> A(z) ≥ 2 | dn1−j

dn1

|
1
j , (j = 1, 2, . . . , n1),

i.e.
| w(z) |j

2j
≥| dn1−j

dn1

|, (j = 1, 2, . . . , n1).
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It follows from U(z, w) =

n1∑
j=0

dj(z)w
j that

| U(z, w) | ≥ | dn1
|| w |n1 −(| dn1−1 || w |n1−1 + | dn1−2 || w |n1−2 + . . .

+ | d1 || w | + | d0 |)

= | dn1
|| w |n1 − | dn1

|| w |n1 (
| dn1−1 |
| dn1 || w |

+
| dn1−2 |
| dn1 || w |2

+ · · ·+ | d1 |
| dn1

|| w |n1−1
+

| d0 |
| dn1

|| w |n1
)

= | dn1 || w |n1 − | dn1 || w |n1 (

n1∑
j=1

| dn1−j |
| dn1 || w |j

)

≥ | dn1 || w |n1 (1−
n1∑
j=1

1

2j
)

=
| dn1

|| w |n1

2n1
.

Since z ∈ E2 , then

| w(z) |> A(z) ≥ 1,

that is
1

| w(z) |
< 1.

Using U(z, w)P (z, w) = Q(z, w) and the total degree of Q(z, w) is at most n1, we obtain

| P (z, w) | = | Q(z, w)

U(z, w)
|

≤ 2n1

| dn1
|| w |n1

∑
µ∈J1

| bµ(z) || w(z) |mµ0 | w(qµ1
z) |mµ1

· · · | w(qµτµ z) |
mµτµ

≤ 2n1

| dn1 |
∑
µ∈J1

| bµ(z) || w(qµ1
z)

w(z)
|mµ1 · · · |

w(qµτµ z)

w(z)
|mµτµ .

From Theorem A, for all r on a set of logarithmic density 1, we have∫
E2

log+ |P (z, w)|σn(z) = S(r, w) = o{T (r, w)}. (2.6)

Combining (2.4),(2.5),(2.6), yields

m(r, P (z, w)) =

∫
E1

log+ |P (z, w)|σn(z) +

∫
E2

log+ |P (z, w)|σn(z)

= S(r, w) = o{T (r, w)}.
This completes the proof of Theorem 2.1.

§3 Applications to complex partial q-difference equations

Recently, many authors, such as Chiang Y M, Halburd R G, Korhonen R J, Chen Zongxuan,

Gao Lingyun have studied solutions of some types of complex difference equation, and systems

of complex difference equations, and also obtained many important results, see[11, 12, 13, 14,

15, 16, 17].
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Let w be a non-constant meromorphic function of zero order, if meromorphic function g

satisfies T (r, g) = o {T (r, w)}, for all r outside of a set of upper logarithmic density 0, i.e.

outside of a set E such that lim sup
r→∞

∫
E∩[1,r]

dt
t

log r
= 0. The complement of E has lower logarithmic

density 1, then g is called small function of w.

Let qj ∈ Cn\{0}, j = 1, . . . , n2, wi : Cn → P1, i = 1, 2. z = (z1, ..., zn) ∈ Cn, I, J, I, J
are four finite sets of multi-indices, complex partial q-difference polynomials Ω1(z, w1, w2),

Ω2(z, w1, w2),Ω3(z, w1, w2),Ω4(z, w1, w2) can be expressed as

Ω1(z, w1, w2) =
∑
(i)∈I

a(i)(z)
2∏
k=1

wik0k (wk(q1z))
ik1 · · · (wk(qn2z))

ikn2 ,

Ω2(z, w1, w2) =
∑
(j)∈J

b(j)(z)
2∏
k=1

wjk0k (wk(q1z))
jk1 · · · (wk(qn2

z))
jkn2 ,

Ω3(z, w1, w2) =
∑
(i)∈I

c
(i)

(z)
2∏
k=1

wik0k (wk(q1z))
ik1 · · · (wk(qn2

z))
ikn2 ,

Ω4(z, w1, w2) =
∑
(j)∈J

d(j)(z)

2∏
k=1

w
jk0
k (wk(q1z))

jk1 · · · (wk(qn2z))
jkn2 ,

where coefficients {a(i)(z)}, {b(j)(z)}, {c(i)(z)}, {d(j)(z)} are small functions of w1, w2.

Let Φ1 =
Ω1(z, w1, w2)

Ω2(z, w1, w2)
, Φ2 =

Ω3(z, w1, w2)

Ω4(z, w1, w2)
, for Φ1, we denote λ11 = max

(i)
{
n2∑
l=0

i1l},

λ12 = max
(i)
{
n2∑
l=0

i2l}, λ21 = max
(j)
{
n2∑
l=0

j1l}, λ22 = max
(j)
{
n2∑
l=0

j2l}, λ1 = max{λ11, λ21}, λ2 =

max{λ12, λ22}. For Φ2, we denote similarly λ1, λ2.

We will investigate the existence of meromorphic solutions of complex partial q-difference

equation of several variables (3.1) and systems of complex partial q-difference equations of

several variables (3.2) and (3.3), where z = (z1, ..., zn) ∈ Cn.
n2∑
j=1

w(qjz) = R (z, w(z)) =
a0(z) + a1(z)w(z) + · · ·+ ap(z)w

p(z)

b0(z) + b1(z)w(z) + · · ·+ bq(z)wq(z)
, (3.1)

where q1, . . . , qn2
∈ Cn\{0}, R(z, w(z)) is irreducible rational function in w(z), a0(z), . . . , ap(z),

b0(z), . . . , bq(z) are rational functions.
Ω1(z, w1, w2) = R1(z, w1) =

a0(z) + a1(z)w1(z) + · · ·+ ap1(z)wp11 (z)

b0(z) + b1(z)w1(z) + · · ·+ bq1(z)wq11 (z)
,

Ω2(z, w1, w2) = R2(z, w2) =
c0(z) + c1(z)w2(z) + · · ·+ cp2(z)wp22 (z)

d0(z) + d1(z)w2(z) + · · ·+ dq2(z)wq22 (z)
,

(3.2)

where coefficients {ai(z)}, {bj(z)} are small functions of w1, {cl(z)}, {dm(z)} are small functions

of w2. ap1bq1 6= 0, cp2dq2 6= 0. The definition of Ω1(z, w1, w2) and Ω2(z, w1, w2) is as before.{
Φ1 = R1(z, w1, w2),

Φ2 = R2(z, w1, w2).
(3.3)
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where Rj(j = 1, 2) are irreducible rational functions with the meromorphic coefficients.

Definition 3.1. Let w1 and w2 be meromorphic functions in Cn.

S(r) =
∑

T (r, a(i)) +
∑

T (r, b(j)) +
∑

T (r, c
′

(i)
) +

∑
T (r, d(j)) +

∑
T (r, d

′

(j)
),

where
∑
T (r, d

′

(j)
) means the sum of characteristic functions of all coefficients in Rj(j = 1, 2).

(w1(z), w2(z)) be a set of meromorphic solutions of (3.2) or (3.3). If one (Let be w1(z)) of

meromorphic solutions (w1(z), w2(z)) of (3.2) or (3.3) satisfies S(r) = o {T (r, w1)}, outside a

possible exceptional set with finite logarithmic measure, then we say w1(z) is admissible.

We will prove

Theorem 3.1. Let w be a meromorphic function in Cn. If the q-difference equation (3.1)

admits a transcendental meromorphic solution of zero order, then

max{p, q} ≤ n2.

Remark 3.1. If we replace the left side of (3.1) by

n2∏
j=1

w(qjz), then the same assertion that

max{p, q} ≤ n2 holds.

Theorem 3.2. Let w1 and w2 be meromorphic functions in Cn, and (w1(z), w2(z)) be a set of

zero order meromorphic solution of (3.2). If

max{p1, q1} > λ11,max{p2, q2} > λ22,

and both w1 and w2 are admissible, then

[max{p1, q1} − λ11][max{p2, q2} − λ22] ≤ λ12λ21.

Example 3.1. (w1, w2) = (z1z2,
1

z1z2
) is a set of zero order admissible meromorphic solution

of the following system of complex partial q-difference equations
w2

2(−2z1,−2z2) =
1

16w2
1

,

w2
1(

1

3
z1,

1

3
z2) =

1

81w2
2

.

Easily, we obtain

λ11 = 0, λ22 = 0, λ12 = 2, λ21 = 2,max{p1, q1} = 2,max{p2, q2} = 2.

Thus

[max{p1, q1} − λ11] [max{p2, q2} − λ22] = 4 = λ12λ21.

This example shows the upper bound in Theorem 3.2 can be reached.

Example 3.2. For a system of complex partial q-difference equations
w2

1(−2z1,−2z2)w2(−1

2
z1,−

1

2
z2) =

w4
1 − ( 7

2z1z2 −
49
16 )w2

1 − 45
8 z1z2 −

65
16

w2
1 − 2w1 − z21z22 + 2

,

w1(−2z1,−2z2)w2
2(−1

2
z1,−

1

2
z2) =

1
256w

2
2 + 1

64z1z2
w3

2

3
z1z2

w2 − 3z1z2 + 1
.

(w1, w2) = (z1z2 + 1, z21z
2
2) is a set of non-admissible solutions.
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Clearly, we know

λ11 = 2, λ22 = 2, λ12 = 1, λ21 = 1,max{p1, q1} = 4,max{p2, q2} = 3.

Thus

[max{p1, q1} − λ11] [max{p2, q2} − λ22] = 2 > 1 = λ12λ21.

This example shows that we can not omit ’admissible’ in Theorem 3.2.

Theorem 3.3. Let w1 and w2 be meromorphic functions in Cn. Let (w1, w2) be a set of zero

order meromorphic solution of (3.2). If one of the following conditions is satisfied

(i) max{p1, q1} > λ11, (ii) max{p2, q2} > λ22,

then both w1 and w2 are admissible or none of w1 and w2 is admissible.

Theorem 3.4. Let w1 and w2 be meromorphic functions in Cn. Let (w1, w2) be a set of zero

order meromorphic solution of (3.3). If one of the following conditions is satisfied

(i) p1 > λ1, q2 > λ2, (ii) p2 > λ2, q1 > λ1,

then both w1 and w2 are admissible or none of w1 and w2 is admissible, where p1 and p2 are

the highest degree of w1 and w2 in R1(z, w1, w2), we denote similarly q1, q2 in R2(z, w1, w2).

Example 3.3. For a system of complex partial q-difference equations

w2
1(− 1

2z1,−
1
2z2)w2( 1

2z1,
1
2z2)

w1(3z1, 3z2) + w2(−
√

3z1,−
√

3z2)
=

5w3
1w

2
2 + 3w2

1w
2
2 − w2

1w2 + 2
z1z2

w1w
2
2 + 4w1w2 − w2 + 1

5− 21
z1z2

w3
1w

3
2 + 37w1w2

2 − 23z1z2w2
1w

2
2 − 4w2

1w2

,

(1− z1)(1− z2)w3
1( 1√

2
z1,

1√
2
z2)

w2(
√

3z1,
√

3z2)
=

( 8
z2

+ 8
z1

)w4
1w2 + 8w3

1 − 8w2
1

3w4
1w

3
2 − 7w4

1w
2
2 + 2w2

1w
2
2 + 5w2

1w2 + 4w2 + 2
,

admits a non-admissible meromorphic solution (w1, w2) = (− 1

z1z2
, z21z

2
2). Clearly, we obtain

λ1 = 2, λ2 = 1, p1 = 3, p2 = 3. λ1 = 3, λ2 = 1, q1 = 4, q2 = 3.

In this case

p1 > λ1, q2 > λ2, p2 > λ2, q1 > λ1.

This example shows that Theorem 3.4 holds.

To prove theorems, we need some lemmas as follows.

Lemma 3.1. [2] Let R (z, w(z)) =
a0(z) + a1(z)w(z) + · · ·+ ap′(z)w

p′(z)

b0(z) + b1(z)w(z) + · · ·+ bq′(z)wq
′(z)

be an irreducible

rational function in w(z) with the meromorphic coefficients {ai(z)} and {bj(z)}. If w(z) is a

meromorphic function in Cn, then

T (r,R(z, w)) = max{p′, q′}T (r, w) +O{
∑

T (r, ai) +
∑

T (r, bj)}.

Lemma 3.2. Let w1 and w2 be non-constant meromorphic functions of zero order in Cn,
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qi ∈ Cn\{0}, i = 1, ..., n2. If

Ω1(z, w1, w2) =
∑
(i)∈I

a(i)(z)
2∏
k=1

wik0k (wk(q1z))
ik1 · · · (wk(qn2

z))
ikn2 ,

{a(i)(z)} is a small function of w1 and w2. λ1k = max{
n2∑
l=0

ikl}(k = 1, 2), then

T (r,Ω1(z, w1, w2)) ≤ λ11T (r, w1) + λ12T (r, w2) + S(r, w1) + S(r, w2) + S(r).

Proof It is easy to prove by Theorem B.

As the proof of Theorem 2.1 in [18], we have

Lemma 3.3. Let w1 and w2 be nonconstant meromorphic functions in Cn. If

lim
r→∞

sup
r 6∈I1

S(r)

T (r, w1)
= 0, T (r, w2) = O {S(r)} (r 6∈ I2),

then

lim
r→∞

sup
r 6∈I1∪I2

T (r, w2)

T (r, w1)
= 0,

where I1, I2 are both exceptional sets with upper logarithmic density 0.

Lemma 3.4. Let w1 and w2 be non-constant meromorphic functions of zero order in Cn,

qi ∈ Cn\{0}, i = 1, ..., n2. Let Φ1 =
Ω1(z, w1, w2)

Ω2(z, w1, w2)
, {a(i)(z)}, {b(j)(z)} are both small functions

of w1 and w2. If

λ1 = max{λ11, λ21}, λ2 = max{λ12, λ22},
then

T (r,Φ1) ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2).

Proof Let Cn < r >= {z = (z1, ..., zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 = r2}.

Firstly, we estimate m (r,Φ1). Set

u(z) = max {|Ω1(z, w1, w2)|, |Ω2(z, w1, w2)|} ,
we have

log+ |Φ1| = log u(z)− log |Ω2(z, w1, w2)|,
thus ∫

Cn<r>
log+ |Φ1|σn =

∫
Cn<r>

log u(z)σn −
∫
Cn<r>

log |Ω2(z, w1, w2)|σn.

As the proof of Lemma 3.3 in [18], and using Theorem A and Theorem B, we have

T (r,Φ1) ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2).

This completes the proof of Lemma 3.4.

Proof of Theorem 3.1 Let w be a meromorphic function in Cn, and w(z) be a transcen-

dental meromorphic solution of zero order of (3.1). It follows from Lemma 3.1 and Theorem B
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that
max{p, q}T (r, w(z)) = T (r,R(z, w)) + S(r, w)

= T (r,

n2∑
j=1

w(qjz)) + S(r, w)

≤ n2T (r, w) + S(r, w).

Thus, we have

max{p, q} ≤ n2.

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2 Let w1 and w2 be meromorphic functions in Cn. Let (w1, w2) be

a set of admissible meromorphic function of (3.2). From the first and the second equation of

(3.2), and also using Lemma 3.1 and Lemma 3.2, we obtain

max{p1, q1}T (r, w1) ≤ λ11T (r, w1) + λ12T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.4)

max{p2, q2}T (r, w2) ≤ λ21T (r, w1) + λ22T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.5)

By (3.4) and (3.5), we have

[max{p1, q1} − λ11 + o(1)]T (r, w1) ≤ (λ12 + o(1))T (r, w2). (3.6)

[max{p2, q2} − λ22 + o(1)]T (r, w2) ≤ (λ21 + o(1))T (r, w1). (3.7)

Combining (3.6) and (3.7), we obtain

[max{p1, q1} − λ11] [max{p2, q2} − λ22] ≤ λ12λ21.

This completes the proof of Theorem 3.2.

Proof of Theorem 3.3 Let w1 and w2 be nonconstant meromorphic functions of zero

order in Cn. It follows from Lemma 3.1 and Lemma 3.2 that

max{p1, q1}T (r, w1) ≤ λ11T (r, w1) + λ12T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.8)

max{p2, q2}T (r, w2) ≤ λ21T (r, w1) + λ22T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.9)

If w1 is admissible and w2 is non-admissible, then the inequality (3.8) becomes

max{p1, q1} ≤ λ11 + (λ12 + o(1))
T (r, w2)

T (r, w1)
+

S(r)

T (r, w1)
,

using Lemma 3.3, we get

max{p1, q1} ≤ λ11,
outside of a set with upper logarithmic density 0. It is in contradiction with the condition (i).

If w2 is admissible and w1 is non-admissible, then the inequality (3.9) becomes

max{p2, q2} ≤ λ22 + (λ21 + o(1))
T (r, w1)

T (r, w2)
+

S(r)

T (r, w2)
,

using Lemma 3.3, we get

max{p2, q2} ≤ λ22,
outside of a set with upper logarithmic density 0. It is in contradiction with the condition (ii).

Thus both w1 and w2 are admissible or none of w1 and w2 is admissible.

This proves Theorem 3.3.

Proof of Theorem 3.4 Let w1 and w2 be meromorphic functions in Cn. Let (w1, w2) be
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a zero order meromorphic solution of (3.3). Using Lemma 3.1 and Lemma 3.4, we obtain

p1T (r, w1) +O {T (r, w2)} ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.10)

p2T (r, w2) +O {T (r, w1)} ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.11)

q1T (r, w1) +O {T (r, w2)} ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.12)

q2T (r, w2) +O {T (r, w1)} ≤ λ1T (r, w1) + λ2T (r, w2) + S(r, w1) + S(r, w2) + S(r). (3.13)

If w1 is admissible and w2 is non-admissible, then the inequality (3.10) becomes

p1 +
O {T (r, w2)}
T (r, w1)

≤ λ1 + (λ2 + o(1))
T (r, w2)

T (r, w1)
+

S(r)

T (r, w1)
.

Using Lemma 3.3, we get

p1 ≤ λ1,
outside of a set with upper logarithmic density 0. It is in contradiction with the first inequality

of (i).

If w2 is admissible and w1 is non-admissible, then the inequality (3.13) becomes

q2 +
O {T (r, w1)}
T (r, w2)

≤ λ2 +
(
λ1 + o(1)

) T (r, w1)

T (r, w2)
+

S(r)

T (r, w2)
.

Using Lemma 3.3, we get

q2 ≤ λ2,
outside of a set with upper logarithmic density 0. It is in contradiction with the second inequality

of (i).

Similarly, we can prove for conditions (ii).

Thus both w1 and w2 are admissible or none of w1 and w2 is admissible.

This completes the proof of Theorem 3.4.
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Abstract In this paper, we introduce a new family of nonstationary refinable functions from

Generalized Bernstein Polynomials, which include a class of nonstationary refinable functions

generated from the family of masks for the pseudo splines of type II (see [17]). Furthermore, a

proof of the convergence of nonstationary cascade algorithms associated with the new masks is

completed. We then construct symmetric compacted supported nonstationary C∞ tight wavelet

frames in L2(R) with the spectral frame approximation order.

Keywords Nonstationary tight wavelet frames; Nonstationary refinable functions; Nonsta-

tionary cascade algorithms; Generalized Bernstein Polynomials; Spectral frame approximation

order.
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1 Introduction

In frame systems, because tight wavelet frames (in the stationary case) can not satisfy

compactly supported C∞ properties, the nonstationary case was considered to obtain C∞ tight

wavelet frames with compacted support. Recently, the development of nonstationary tight

wavelet frames has attracted a considerable amount of attention.

In 2008, Han and Shen [17] obtained symmetric compactly supported C∞ tight wavelet

frames in L2(R) with the spectral frame approximation order based on pseudo-splines of type

II. In 2009, compactly supported nonstationary C∞ tight wavelet frames in L2(Rs) with the

spectral frame approximation order from pseudo box splines were constructed in [22]. Li and

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.5, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

980 Ting Cheng et al 980-993



NONSTATIONARY REFINABLE FUNCTIONS BASED ON GENERALIZED

Shen [22] generalized univariate pseudo-splines to the multivariate setting and got a new class

of refinable functions named pseudo box splines. Next, in [18] and [23], the analysis of char-

acterization of nonstationary tight wavelet frames in Sobolev spaces was given. Han and Shen

[18] characterized Sobolev spaces of an arbitrary order of smoothness using nonstationary tight

wavelet frames for L2(Rs). Also, approximation order of nonstationary tight wavelet frames

in Sobolev spaces was obtained in [23]. Recently, the nonstationary subdivision scheme, which

nonstationary cascade algorithms is closely related to, was studied in [2–10, 12, 15, 21, 24, 26].

In particular, in [14] and [20], the properties of nonstationary subdivision scheme were per-

formed. Daniel et al.[14] and Jeonga et al.[20] showed C2 approximating and Hölder regularities

of nonstationary subdivision scheme, respectively.

This paper is concerned with the study of symmetric C∞ nonstationary tight wavelet frames

in L2(R) with compacted support and the spectral frame approximation order, which gener-

alize nonstationary tight wavelet frames from pseudo-splines of type II in [17]. We discover

a new extensive function based on Generalized Bernstein polynomials [1]. Furthermore, exis-

tence of L2-solutions of nonstationary refinable functions from the new extensive function is

implemented. At last, we prove the convergence of nonstationary cascade algorithms of the new

family of nonstationary refinable functions.

The remainder of this paper is organized as follows: Section 2 collects some notations.

Section 3 elaborates on existence of L2-solutions of nonstationary refinable functions. Section 4

implements convergence of nonstationary cascade algorithms. Section 5 constructs symmetric

C∞ nonstationary tight wavelet frames in L2(R) with compacted support and the spectral

frame approximation order. Section 6 gives the conclusion.

2 Preliminaries

For the convenience of the readers, we review some definitions about nonstationary refinable

functions in this section.

Generalized Bernstein polynomials [1] are defined as

S
(n)
k (t) =

(
n
k

) t(t + α) · · · (t + [k − 1]α)(1− t)(1− t + α) · · · (1− t + [n− k − 1]α)
(1 + α)(1 + 2α) · · · (1 + [n− 1]α)

, (2.1)

where α ≥ 0. We apply (2.1) to marks of new refinable functions by substituting t = sin2(ω
2 ),

n = m + l in (2.1) and the summation of l + 1 terms of them as follows:

τm,l,α
0 (ω) :=

l∑

k=0

(
m+l

k

)
(

k−1∏

i=0

(sin2(
ω

2
) + iα)

m+l−k−1∏

i=0

(cos2(
ω

2
) + iα)

)
/

m+l−1∏

i=1

(1 + iα). (2.2)

Let τm,l,α
0,j (ω) = τ

mj ,lj ,αj

0 (ω) (j ∈ N) be defined in (2.2), we obtain

τm,l,α
0,j (ω) :=

lj∑

k=0

(
mj+lj

k

)



k−1∏

i=0

(sin2(
ω

2
) + iαj)

mj+lj−k−1∏

i=0

(cos2(
ω

2
) + iαj)


 /

mj+lj−1∏

i=1

(1 + iαj),(2.3)

2
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where two positive integers lj , mj and αj (j ∈ N) satisfy lj < mj − 5,
∞∑

j=1

2−jmj < ∞,

lim
j→∞

mj = ∞ and 0 ≤ αj < 1
3(mj + lj)− 7 .

A class of 2π-periodic trigonometric polynomials âj , j ∈ N, and their associated nonstation-

ary refinable functions φ̂j−1, j ∈ N, defined by

φ̂j−1(ω) := âj(ω/2)φ̂j(ω/2) =
∞∏

n=1

ân+j−1(2−nω) ω ∈ R, j ∈ N, (2.4)

where the 2π-periodic trigonometric polynomials âj , j ∈ N, are called refinement masks. Here

the Fourier transform f̂ of a function f ∈ L1(R) is defined to be f̂(ω) :=
∫
R f(t)e−itωdt and

can be naturally extended to square integrable functions.

The notation T was introduced in [25], which is defined by

T := R/[2πZ].

Denote deg(â) the smallest nonnegative integer such that its Fourier coefficients of â vanish

outside [-deg(â),deg(â)]. deg(â) here is the minimal integer k such that [−k, k] contains the

support of the Fourier coefficients of both â and â(−·), which was introduced in [17].

In the following, we will adopt some of the notations from [19]. The transition operator Tâ

for 2π-periodic functions â and f can be defined as

[Tâf ](w) := |â(ω/2)|2f(ω/2) + |â(ω/2 + π)|2f(ω/2 + π), ω ∈ R.

For τ ∈ R, a quantity is defined by

ρτ (â,∞) := lim sup
n→∞

∥∥∥Tn
â

(∣∣∣sin
(ω

2

)∣∣∣
τ)∥∥∥

1/n

L∞(T)
.

The notation ρ(â) is defined by

ρ(â) := inf{ρτ (â,∞) : |â(ω + π)|2| sin(ω/2)|τ ∈ L∞(T) and τ ≥ 0}.

A function f ∈ W ν
2 (R) if it satisfys

‖f‖2W ν
2 (R) :=

∫

R
(1 + |ω|2ν)|f̂(ω)|2dω < ∞.

As [17], let {âj}∞j=1 be a sequence of 2π-periodic measurable functions. Define {fn}∞j=1 by

f̂n(ω) := χ[−π,π](2−nω)
n∏

j=1

âj(2−nω), ω ∈ R, n ∈ N, (2.5)

where χ[−π,π] denotes the characteristic function of the interval [−π, π]. This can be understood

as a representation of the nonstationary cascade algorithm associated with the masks {âj}∞j=1

in the frequency domain. For a sequence of masks {âj}∞j=1 and an initial function f ∈ W ν
2 (R),

we say that the (nonstationary) cascade algorithm associated with masks {âj}∞j=1 and an initial

3
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function f converges in the Sobolev space W ν
2 (R), if fn ∈ W ν

2 (R) for all n ∈ N and the sequence

{fn}∞j=1 is convergent in W ν
2 (R).

Denote ρ(â) the spectral radius of the square matrix (c2j−k)−K≤j,k≤K and define ν2(â) :=

−1/2−log2

√
ρ(â). It is known ([[16], Theorem 4.3 and Proposition 7.2] and [[19], Theorem 2.1])

that the stationary cascade algorithm associated with a 2π-periodic trigonometric polynomial

mask â converges in f ∈ W ν
2 (R) if and only if ν2(â) > ν.

For a sequence {φn}∞n=0 of functions in L2(R), we define the linear operators Pn(f), n ∈ N0,

by

Pn(f) :=
∑

k∈Z
〈f, φn;n,k〉φn;n,k, f ∈ L2(R) with φn;n,k := 2n/2φn(2n · −k). (2.6)

Wavelet functions ψ`
j−1, j ∈ N and ` ∈ {1, · · · ,Jj}, are obtained from φj by

ψ̂`
j−1(ω) := b̂`

j(ω/2)φ̂j(ω/2), ` ∈ {1, · · · ,Jj}, (2.7)

where Jj are positive integers and each b`
j , ` = 1, · · · ,Jj , is called a (high-pass) wavelet mask.

Denote N0 := N
⋃{0}. We say that {φ0}

⋃{ψ`
j : j ∈ N0, ` = 1, · · · ,Jj+1} generates a nonsta-

tionary tight wavelet frame in L2(R) if

{φ0(· − k) : k ∈ Z}
⋃
{ψ`

j;j,k := 2j/2ψ`
j(2

j · −k) : j ∈ N0, k ∈ Z, ` = 1, · · · ,Jj+1} (2.8)

is a tight frame of L2(R).

Finally, we note that the 2π-periodic trigonometric polynomial wavelet masks b̂`
j , j ∈ N

and ` ∈ {1, · · · , γ}, can be constructed from the masks âj by many ways provided that the

refinement masks âj , j ∈ N, satisfy |âj(ω)|2 + |âj(ω + π)|2 ≤ 1, a.e.ω ∈ R. Define

b̂1
j (ω) := e−iωâj(ω + π),

b̂2
j (ω) := 2−1[Aj(ω) + e−iωAj(ω)],

b̂3
j (ω) := 2−1[Aj(ω) + e−iωAj(ω)],

(2.9)

where Aj is a π-periodic trigonometric polynomial with real coefficients such that

|Aj(ω)|2 = 1− |âj(ω)|2 − |âj(ω + π)|2.

Then, âj , b̂1
j , b̂2

j and b̂3
j , j ∈ N, satisfy

|âj(ω)|2 +
Jj∑

`=1

|b̂`
j(ω)|2 = 1 and âj(ω)âj(ω + π) +

Jj∑

`=1

b̂`
j(ω)b̂`

j(ω + π) = 0, (2.10)

with J = 3. Thus, the wavelet system in (2.8) is a compactly supported tight wavelet frame in

L2(R) (see, [17], Theorem1.1). Furthermore, the corresponding wavelets defined by (2.7) using

masks in (2.9) are symmetric or antisymmetric whenever φj is symmetric.
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3 Existence of L2-solutions of nonstationary refinable func-
tions

In this section, demonstration of the existence of L2-solutions of nonstationary refinable

functions is given. For notational simplicity, we will introduce the following two definitions:

Bk,j(ω) :=




k−1∏

i=0

(sin2(
ω

2
) + iαj)

mj+lj−k−1∏

i=1

(cos2(
ω

2
) + iαj)


 /

mj+lj−1∏

i=1

(1 + iαj), j ∈ N.

T0,j(ω) :=
l∑

k=0

(
mj+lj

k

)



k−1∏

i=0

(sin2(
ω

2
) + iαj)

mj+lj−k−1∏

i=1

(cos2(
ω

2
) + iαj)


 /

mj+lj−1∏

i=1

(1+iαj), j ∈ N.

Two lemmas about the relations of the quantities ρτ (τm,l,α
0,j (ω),∞), j ∈ N associated with

masks (2.3) will be provided in the following.

Lemma 3.1 ([19], Theorem 4.1) Let â be a 2π-periodic measurable function such that |â|2 ∈
Cβ(T) with |â|2(0) 6= 0 and β > 0. If |â(ω)|2 = |1 + e−iω|2τ |Â(ω)|2 a.e. ω ∈ R for some τ ≥ 0

such that Â(ω) ∈ L∞(T), then

ρ2τ (â,∞) = inf
n∈N

‖Tn
â 1‖

1
n

L∞(T) = lim
n→∞

‖Tn
â 1‖

1
n

L∞(T) = ρ0(Â,∞).

Lemma 3.2 ([19], Theorem 4.3) Let â and ĉ be 2π-periodic measurable functions such that

|â(ω)| ≤ |ĉ(ω)|

for almost every ω ∈ R. Then

ρτ (â,∞) ≤ ρτ (ĉ,∞), τ ∈ R.

The following two lemmas are necessary for proving existence of L2-solutions of nonstation-

ary refinable functions.

Lemma 3.3 ([17], Lemma 2.1) Let âj , j ∈ N be a 2π-periodic trigonometric polynomials such

that supj∈N ‖âj‖L∞(R) < ∞. If
∑∞

j=1 2−jdeg(âj) < ∞ holds and
∑∞

j=1 |âj(0) − 1| < ∞, then

the infinite product (2.4) converges uniformly on every compact set of R and all φj , j ∈ N0, in

(2.4) are well-defined compactly supported tempered distributions.

Lemma 3.4 ([17], Lemma 2.2) Let âj , j ∈ N, be 2π-periodic measurable functions satisfying

|âj(ω)|2 + |âj(ω + π)|2 ≤ 1, a.e.ω ∈ R for each j ∈ N. Assume that, for every j ∈ N0,

φ̂j(ω) := limN→∞
∏N

n=1
̂an+j(2−nω) is well defined for almost every ω ∈ R; that is, the infinite

product in (2.4) exists for almost every point in R. Then [φ̂j , φ̂j ](ω) :=
∑

k∈Z |φ̂j(ω + 2πk)|2 ≤
1, a.e.ω ∈ R∀j ∈ N0 holds and consequently, φj ∈ L2(R) with ‖φj‖L2(R) ≤ 1 for every j ∈ N0.

A useful condition of establishing existence of L2-solutions of nonstationary refinable func-

tions is described in the following lemma.
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Lemma 3.5 For two positive integers lj ,mj, lj < mj − 5, j ∈ N, if

0 ≤ αj <
1

3(mj + lj)− 7
(j ∈ N), (3.1)

then

max
ω∈T

Bk,j(ω) ≤ (
1
2
)mj+lj−1, k = 1, 2, . . . , lj , (3.2)

Proof. For j ∈ N, k = 1, 2, . . . , lj , it is obvious that

Bk,j(ω) =
cos2(ω

2 ) + (mj + lj − 1− j)αj

sin2(ω
2 ) + jαj

Bk+1,j(ω).

We claim that
Bk,j(ω)

Bk+1,j(ω)
=

cos2(ω
2 ) + (mj + lj − 1− j)αj

sin2(ω
2 ) + jαj

> 1. (3.3)

Since lj < mj − 5, for k = 1, 2, . . . , lj , it holds that

k < mj + lj − 1− k. (3.4)

There are two cases to consider:

Case I: Suppose that cos(ω) ≥ 0. By (3.1) and (3.4) , it is easy to see that

αj > 0 >
− cos(ω)

mj + lj − 1− 2k
.

Then

cos2(
ω

2
) + (mj + lj − 1− k)αj > sin2(

ω

2
) + kαj . (3.5)

This implies Condition (3.3).

Case II: Suppose that cos(ω) < 0. Note that since

(22lj − 2−1)(mj − 1− lj)− lj
lj(mj − 1− lj)

>
0.5(mj − 1− lj)− lj

lj(mj − 1− lj)
> 0,

we can obtain that

2mj+lj−1 − 2−1

lj
− 1

mj − lj − 1
=

(2mj+lj−1 − 2−1)(mj − 1− lj)− lj
lj(mj − 1− lj)

>
(22lj − 2−1)(mj − 1− lj)− lj

lj(mj − 1− lj)
> 0.

By (3.1), then

αj ≥ 2mj+lj−1 − 2−1

lj
>

1
mj − lj − 1

=
1

mj + lj − 1− 2lj
≥ | cos(ω)|

mj + lj − 1− 2k
=

− cos(ω)
mj + lj − 1− 2k

,

for k = 1, 2, . . . , lj . Then (3.5) holds. This concludes the claim (3.3).

By using (3.1), one gets

(4(mj + lj − 2)− (mj + lj − 1))αj <
4(mj + lj − 2)− (mj + lj − 1)

3(mj + lj)− 7
= 1.

Then
(mj + lj − 2)αj

(1 + αj)(1 + (mj + lj − 1)αj)
<

(mj + lj − 2)αj

1 + (mj + lj − 1)αj
<

1
4
. (3.6)

6
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Since lj < mj − 5, we have

(3(mj + lj)− 7)− (mj + lj − 4) = 2mj + 2lj − 3 > 0.

Then

1
3(mj + lj)− 7)

<
1

mj + lj − 4
.

Thus

(2(mj + lj − 3)− (mj + lj − 2))αj <
2(mj + lj − 3)− (mj + lj − 2)

mj + lj − 4
= 1.

Similarly, one has

(mj + lj − 3)αj

1 + (mj + lj − 2))αj
<

1
2
. (3.7)

For any x, Notice that

(
x

1 + (1 + x)
)′ > 0 (3.8)

and B1,j(ω) which is a continuous function on [−π, π] and is differentiable on (−π, π), has the

maximum value at ω = π. The reason as follow:

The equation [B1,j(ω)]′ = 0 has three zeros, at ω = 0,±π. Since [B1,j(ω)]′′ > 0, B1,j(0)

is the minimum of B1,j(ω) on [−π, π]. Thus B1,j(±π) is the maximum of B1,j(ω) on [−π, π].

Therefore, applying (3.3), (3.6), (3.7), (3.8) and

B1,j(ω) =


sin2(

ω

2
)

mj+lj−2∏

i=1

(cos2(
ω

2
) + iαj)


 /

mj+lj−1∏

i=1

(1 + iαj)

≤
mj+lj−2∏

i=1

iαj/

mj+lj−1∏

i=1

(1 + iαj)

≤
mj+lj−3∏

i=1

iαj

1 + (i + 1)αj
· (mj + lj − 2)αj

(1 + αj)(1 + (mj + lj − 1)αj)

≤ (
(mj + lj − 3)αj

1 + (mj + lj − 2)αj
)mj+lj−3 · 1

4

= (
1
2
)mj+lj−1,

we get the inequality (3.2). ¶

Theorem 3.1 Let τm,l,α
0,j (ω) be the mark (2.3), which are defined in (2.4), then the infinite

product in (2.4) converges uniformly on every compact set of R.

Proof. Since τm,l,α
0,j (ω) = τm,l,α

0,j (ω + 2π), j ∈ N, we obtain τm,l,α
0,j (ω) are 2π-periodic trigono-
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metric polynomials. Applying Lemma 3.5, one has

|τm,l,α
0,j (ω)| = |

lj∑

k=0

(
mj+lj

k

)



k−1∏

i=0

(sin2(
ω

2
) + iαj)

mj+lj−k−1∏

i=0

(cos2(
ω

2
) + iαj)


 /

mj+lj−1∏

i=1

(1 + iαj)|

≤
∣∣∣∣∣∣
1 +

(
max
ω∈T

Bk,j(ω)
) lj∑

k=1

(
mj+lj

k

)
∣∣∣∣∣∣

= 1 + (
1
2
)mj+lj−1|

lj∑

k=1

(
mj+lj

k

)|

≤ 1 + (
1
2
)mj+lj−1 · 2mj+lj = 3.

Thus, there exists M = 3, for any j ∈ N, we derive that τm,l,α
0,j (ω)| ≤ 3 holds.

For τm,l,α
0,j (0) = 1, we obtain

∞∑

j=1

|τm,l,α
0,j (0)− 1| = 0 < ∞.

By using lj < mj − 5,
∑∞

j=1 2−jmj < ∞, ones get

∞∑

j=1

2−jdeg(τm,l,α
0,j (ω)) =

∞∑

j=1

2−j (2(mj + lj) + 1)

<
∞∑

j=1

2−j(4mj − 9) < ∞.

Therefore, by Lemma 3.3, the infinite product in (2.4) converges uniformly on every compact

set of R. ¶

Theorem 3.2 Let τm,l,α
0,j (ω) be the mark (2.3), which are defined in (2.4), then the correspond-

ing nonstationary refinable functions φj ∈ L2(R), j ∈ N0.

Proof. By Theorem 3.1, we obtain that

φ̂j(ω) = lim
N→∞

N∏
n=1

τm,l,α
0,n+j−1(ω)(2−nω)

is well defined for almost every ω ∈ R. In the following, we claim that

|τm,l,α
0,j (ω)|2 + |τm,l,α

0,j (ω + π)|2 ≤ 1, a.e.ω ∈ R. (3.9)

There are two cases to consider:

Case I: Suppose that ω = 0. One has

|τm,l,α
0,j (0)|2 + |τm,l,α

0,j (π)|2 = 0 + 1 = 1, a.e.ω ∈ R.

Case II: Suppose that ω 6= 0. Set E0 = {0}, for ω ∈ R \ E0, let t = 2ω, ones get

|τm,l,α
0,j (ω)|2 = 2−4(1 + e−it)4|T0,j(t)|2

= (1 + e−it)4|2−2T0,j(t)|2.

8
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Applying

B0,j(t) =
m+l−1∏

i=0

(cos2(
t

2
) + iαj)/

m+l−1∏

i=1

(1 + iαj)

≤
m+l−1∏

i=1

(1 + iαj)/
m+l−1∏

i=1

(1 + iαj) = 1

and Lemma 3.5, we obtain

max
t∈T0,ג

2|2−2Tm,l,α
0 (t)|2 = max

t∈T
2−3

∣∣∣∣∣∣
B0,j(t) +

l∑

j=0

(
m+l

j

)
Bk,j(t)

∣∣∣∣∣∣

2

< max
t∈T

2−3

∣∣∣∣∣1 +
(

max
t∈[−π,π]

Bk,j(t)
) l∑

k=1

(
m+l

k

)
∣∣∣∣∣

2

< max
t∈T

2−3

∣∣∣∣(1 + (
1
2
)m+l−1(2)m+l−1)

∣∣∣∣
2

=
1
2
. (3.10)

Bringing Lemma 3.1 and Lemma 3.2 together yields

ρ(τm,l,α
0,j (t)) 6 ρ4(τ

m,l,α
0,j (t),∞) = ρ0(2−2T(t),∞) < 1.

For

ρ0(2−2T0,j(t),∞) = lim sup
n→∞

‖Tn
τm,l,α
0,j (t)

‖1/n
L∞(T)

> Tτm,l,α
0,j (t)

= |τm,l,α
0,j (ω)|2 + |τm,l,α

0,j (ω + π)|2.

Thus,

|τm,l,α
0,j (ω)|2 + |τm,l,α

0,j (ω + π)|2 < 1.

This concludes the claim (3.9).

By Lemma 3.4, the corresponding nonstationary refinable functions φj ∈ L2(R), j ∈ N0. ¶

4 Convergence of nonstationary cascade algorithms

In this section, demonstration of the convergence of nonstationary cascade algorithms in

the Sobolev space W ν
2 (R) is given. We will show a lemma about a sufficient condition on the

convergence of a nonstationary cascade algorithm which is necessary for the following theorem.

Lemma 4.1 ([17], Proposition 2.6) Let âj and b̂j(j ∈ N) be 2π-periodic measurable functions

such that for all j ∈ N,

|âj(ω)| ≤ |b̂j(ω)|, a.e. ω ∈ R. (4.1)

Let η ∈ W ν
2 (R) such that limj→∞ η̂(2−jω) = 1 for almost every ω ∈ R. Define

f̂n(ω) := η̂(2−nω)
n∏

j=1

âj(2−nω) and ĝn(ω) := η̂(2−nω)
n∏

j=1

b̂j(2−nω), ω ∈ R.

9
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Assume that f̂∞(ω) := limn→∞
∏n

j=1 âj(2−nω) and ĝ∞(ω) := limn→∞
∏n

j=1 b̂j(2−nω) are well

defined for almost every ω ∈ R. Then, limn→∞ ‖gn − g∞‖W ν
2 (R) = 0 implies limn→∞ ‖fn −

f∞‖W ν
2 (R) = 0. In particular, suppose that there are a positive integer J and a 2π-periodic

measurable function b̂ such that

|âj(ω)| ≤ |b̂(ω)|, a.e.ω ∈ R, ∀j > J and âj ∈ L∞(R), 1 ≤ j ≤ J. (4.2)

For n ∈ N, define ĥn(ω) := η̂(2−nω)
∏n

j=1 b̂j(2−nω). If {hn}∞n=1 converges in W ν
2 (R), then fn

converges to fn in W ν
2 (R), i.e., limn→∞ ‖fn − f∞‖W ν

2 (R) = 0.

Theorem 4.1 Let τm,l,α
0,j (ω) be the mark (2.3), which are defined in (2.4), then, for every

n ∈ N0, the nonstationary cascade algorithm (2.5) associated with {τmj ,lj ,α
0,j+n (ω)}∞j=1 converges

in W ν
2 (R), for any ν ≥ 0. Consequently, the nonstationary refinable functions φ

mj ,lj ,α
j , j ∈ N0,

in (2.4) must be well-defined compactly supported C∞(R) functions.

Proof. Since deg(τm,l,α
0,j (ω)(ω)) ≤ 2(mj + lj) + 1 < 4mj − 9, and τm,l,α

0,j (ω)) = 1, applying
∑∞

j=1 2−jmj < ∞, we get

∞∑

j=1

2−jdeg(τm,l,α
0,j (ω)) ≤

∞∑

j=1

2−j(4mj − 9) ≤ 4
∞∑

j=1

2−jmj < ∞.

Moreover, by (3.9), ones obtain |τm,l,α
0,j (ω)| ≤ 1. By using Lemma (3.3), we can derive that

φ
mj ,lj ,α
0,j , j ∈ N0 are well defined compactly supported functions.

Because τm,l,α
0,j (ω) in the case α = 0 have ν2(τ

m,l,α
0,j (ω)) → ∞ ([11, 13]). The same proof is

carried out for any α. So, there exists a positive integer J such that ν2(τ
m,l,α
0,j (ω)) ≥ ν + 2. By

limj→∞mj = ∞, there exists a positive integer N such that mj > J and it is obtained that

ν2(τ
m,l,α
0,j (ω)) ≥ ν + 2. (4.3)

Let b̂ be the unique 2π-periodic trigonometric polynomial such that τm,l,α
0,j (ω) = 2−1(1 +

e−iω)b̂(ω). Bringing the definition of ν2(b̂) and (4.3) together yields ν2(b̂) = ν2(τ
m,l,α
0,j (ω))−1 ≥

ν + 1 > ν, thus, the stationary cascade algorithm associated with the mask b̂ converges in

W ν
2 (R) (see [([16]), Theorem 4.3]). Since |τm,l,α

0,j (ω)| ≤ |b̂(ω)|, applying Lemma (4.1), we derive

that the nonstationary cascade algorithm associated with masks τm,l,α
0,j (ω) converges in W ν

2 (R).

The same proof is carried out for every φ
mj ,lj ,α
n and for the nonstationary cascade algorithm

associated with masks {τm,l,α
0,j (ω)}∞j=1. ¶

Remark 4.1 Notice that when αj = 0 (j ∈ N), the Theorem 4.1 in this paper is the same as

corresponding Theorem 2.8 given in [17].

5 Construction of nonstationary tight wavelet frames

In this section, we shall construct the symmetric C∞ tight wavelet frames in L2(R) with

compact support and the spectral frame approximation order based on the masks (2.3). The

10
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following two lemmas analyze the approximation properties of the operators Pn and relations

of τm,l,α
0,j (ω), respectively, which are useful for construction of C∞ tight wavelet frames.

Lemma 5.1 ([17], Theorem 3.2) Let âj , j ∈ N be 2π-periodic measurable functions such that

|âj(ω)|2 + |âj(ω + π)|2 ≤ 1, a.e.ω ∈ R holds for all j ∈ N and for every n ∈ N0, the function

φ̂n(ω) := limJ→∞
∏J

j=1 âj+n(2−jω) is well defined for almost every ω ∈ R. Let ν ≥ 0. If, for

n ∈ N, ∣∣∣1− |φ̂n(ω)|2
∣∣∣
2

≤ Cφn
|ω|2ν , a.e. ω ∈ [−π, π],∑

k∈Z\{0}
|φ̂n(ω)|2|φ̂n(ω + 2πk)|2 ≤ C

φ̂n
|ω|2ν , a.e. ω ∈ [−π, π], (5.1)

where Cφn is a constant depending only on φn, then for the linear operators Pn in (2.6),

‖f − Pn(f)‖L2(R) ≤ max(2,
√

Cφn
)2−νn|f |W ν

2 (R) ∀f ∈ W ν
2 (R) and n ∈ N. (5.2)

In particular, (5.1) is satisfied if

1− |φ̂n(ω)|2 ≤ Cφn
|ω|2ν . (5.3)

Lemma 5.2 Let τm,l,α
0,j (ω) be the mark (2.3), which are defined in (2.4). For any 0 < ρ ≤ 1

and ν ≥ 0, there exist a positive integer N and a positive constant C, (both of them depend

only on ρ and ν), such that for all N ≤ ρm < l ≤ m,

0 ≤ 1− |τm,l,α
0,j (ω)|2 ≤ C|ω|2ν ∀ω ∈ [−π, π]. (5.4)

Proof. Suppose that α = 0, the case holds (see [17], Lemma 3.3). Assume that (5.4) holds

for α = k − 1. Then suppose that α = k, since τm,l,α
0,j (ω) increases as α increases, we have

0 ≤ 1− |τm,l,α
0,j (ω)|2 ≤ 1− |τm,l,α

0,j (ω)|2 ≤ C|ω|2ν .

This completes the claim (5.4). ¶

Theorem 5.1 Let τm,l,α
0,j (ω) be the mark (2.3). For j ∈ N, define φj−1 as in (2.4) and ψ1

j−1,

ψ2
j−1, ψ3

j−1 as in (2.7) with the wavelet masks b̂1
j , b̂2

j and b̂3
j being derived from âj in (2.8).

Then the following hold:

(1) Each nonstationary refinable function φj , j ∈ N0, is a compactly supported C∞ real-valued

function that is symmetric about the origin: φj(−·) = φj.

(2) Each wavelet function ψ`
j , ` = 1, 2, 3 and j ∈ N0, is a compactly supported C∞ real-valued

function with lj+1 vanishing moments and satisfies ψ`
j(1 − ·) = ψ`

j for ` = 1, 2 and

ψ3
j (1− ·) = −ψ3

j .

(3) The system {φ0(· − k) : k ∈ Z}⋃{ψ`
j;j,k := 2j/2ψ`

j(2
j · −k) : j ∈ N0, k ∈ Z, ` = 1, 2, 3} is a

compactly supported symmetric C∞tight wavelet frame in L2(R).

11
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(4) If in addition lim infj→∞ lj/mj > 0, then the tight wavelet frame in item (3) has the spectral

frame approximation order.

Proof. For item (1), by using Theorem 4.1, it is derived that all φj , j ∈ N0 are compactly

supported functions in C∞(R). Combining all the masks âj , which are 2π-periodic trigonometric

polynomials with real coefficients and are symmetric about the origin: âj = âj , and the definition

of φ̂j in (2.4) yields,

φ̂j(ω) = φ̂j(ω),

which φj are real-valued. By the definition of τm,l,α
0,j (ω) (j ∈ N) in (2.3), we get

1− |τm,l,α
0,j (ω)|2 = O(|ω|2l), ω → 0. (5.5)

b̂`
j = O(|ω|lj ), ω → 0 follows from the fact that (2.10) and (5.5). Thus, ψ`

j has lj+1 vanishing

moments.

For item (3), notice that the the definition of b̂`
j in (2.9), we can straightforward obtain

that (2.10). Therefore, the wavelet system in (2.8) is a compactly supported tight wavelet

frame in L2(R) (see [17], Theorem1.1). For item (4), let ν be an arbitrary positive integer

and denote d̂j := | ̂τm,l,α
0,j (ω)|2. For lim infj→∞ lj/mj > 0, there exist a positive integer N and

0 < ρ < lim infj→∞ lj/mj such that 2ν < N < ρmj < lj ≤ mj for all j ≥ N . By using Lemma

5.2, it is to see that (5.4) holds. That is, there exists a positive constant C, independent of j,

such that

0 ≤ 1− d̂j(ω) ≤ C|ω|2ν , ω ∈ [−π, π] and j ≥ N.

For n ≥ N and ` ∈ N, since d̂`+n(0) = 1, ones get

|d̂`+n(0)− d̂`+n(2−`ω)| = |1− d̂`+n(2−`ω)| ≤ C2−2ν`|ω|2ν , ∀ω ∈ [−π, π].

Since d̂`+n(0) = 1, 0 ≤ d̂`+n(ω) ≤ 1 and (3.9), we derive that

0 ≤ 1− |φ̂n(ω)|2 ≤
∞∑

`=1

|d̂`+n(0)− d̂`+n(2−`ω)| ω ∈ R. (5.6)

Applying (5.6), it is obtained that

1− |φ̂n(ω)|2 ≤ C|ω|2ν
∞∑

`=1

2−2ν`, ω ∈ [−π, π].

Thus, (5.3) holds with

Cφn
:= C

∞∑

`=1

2−2ν` =
C

1− 2−2ν
< ∞.

Combining Qn = Pn and Theorem 5.1, one has

‖f −Qn(f)‖L2(R) ≤ C12−νn|f |W ν
2 (R), ∀f ∈ W ν

2 (R) and n ∈ N,

where C1 := max(2,
√

C
1−2−2ν ) is independent of f and n. Since ν is arbitrary, the tight wavelet

frame has the desired spectral frame approximation order. ¶

12
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Remark 5.1 Under the condition αj = 0 (j ∈ N) of Theorem 5.1, one can derive that it is

consistent with the claim of Theorem 1.2 given in [17].
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Abstract

In this paper, the authors investigate the p-iterated order and p-iterated type of f1 +
f2, f1f2, where f1(z), f2(z) are meromorphic functions or entire functions with the same
p-iterated order and different p-iterated type, and we obtain some results which improve and
extend some previous results.
Key words: meromorphic function; entire function; iterated order; iterated type
AMS Subject Classification(2010): 30D35, 30D15

1. Introduction and Notations

In this paper, we assume that readers are familiar with the fundamental results and the
standard notations of the Nevanlinna value distribution theory of meromorphic functions in the
complex plane (e.g. [4, 6-8, 10, 14, 15]). Throughout this paper, by a meromorphic function f(z),
we mean a meromorphic function in the complex plane. We use T (r, f) and M(r, f) to denote
the characteristic function of a meromorphic function and the maximum modulus of an entire
function. In the following, we will recall some notations about meromorphic functions and entire
functions.
Definition 1.1. (see [4, 8, 10]) The order of a meromorphic function f(z) is defined by

σ(f) = lim
r→∞

log T (r, f)

log r
. (1.1)

Especially, if 0 < σ(f) <∞, then the type of f(z) is defined by

ψ(f) = lim
r→∞

T (r, f)

rσ(f)
. (1.2)

Definition 1.2. (see [4, 6− 8, 10]) The order of an entire function f(z) is defined by

∗Corresponding author:tujin2008@sina.com
†This project is supported by the National Natural Science Foundation of China (11561031, 11561033) the

Natural Science Foundation of Jiangxi Province in China (Grant No.20132BAB211002, 20122BAB211005) and the
Foundation of Education Bureau of Jiangxi Province in China (GJJ14271, GJJ14272).
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σ(f) = lim
r→∞

log T (r, f)

log r
= lim

r→∞

log logM(r, f)

log r
. (1.3)

Especially, if 0 < σ(f) <∞, then the type of f(z) is defined by

τ(f) = lim
r→∞

logM(r, f)

rσ(f)
. (1.4)

The order and type are two important indicators in revealing the growth of meromorphic functions
in the complex plane or analytic functions in the unit disc. Many authors have investigated the
growth ofmeromorphic functions or analytic functions in the unit disc(e.g. [3,4,7-10,12-15]) and
obtain a lot of classical results in the following.
Theorem A. (see [4, 10, 14, 15]) Let f1(z) and f2(z) be meromorphic functions of finite order

satisfying σ(f1) = σ1 and σ(f2) = σ2. Then

σ(f1 + f2) ≤ max{σ1, σ2}, σ(f1f2) ≤ max{σ1, σ2}.

Furthermore, if σ1 ̸= σ2, then σ(f1 + f2) = σ(f1f2) = max{σ1, σ2}.

Theorem B. (see [15]) Let f1(z) and f2(z) be meromorphic functions of finite order. Then
µ(f1 + f2) ≤ max{σ(f1), µ(f2)}, µ(f1f2) ≤ max{σ(f1), µ(f2)}.

Theorem C. (see [11]) Let f1(z) and f2(z) be meromorphic functions of finite order satisfying
σ(f1) < µ(f2), then µ(f1 + f2) = µ(f1f2) = µ(f2).

Theorem D. (see [7]) Let f1(z) and f2(z) be entire functions of finite order satisfying σ(f1) =
σ(f2) = σ. Then the following two statements hold:
(i) If τ(f1) = 0 and 0 < τ(f2) <∞, then σ(f1f2) = σ, τ(f1f2) = τ(f2).
(ii) If τ(f1) <∞ and τ(f2) =∞, then σ(f1f2) = σ, τ(f1f2) =∞.

Theorem E. (see [4, 14, 15]) Let f(z) be a meromorphic function of finite order, then σ(f ′) =
σ(f).

From Theorems A−E, a natural question is : can we get the similar results for entire functions
and meromorphic functions of infinite order (i.e. finite iterated order)? In the following, we recall
some notations and definitions of finite iterated order. For r ∈ (0,+∞), we define exp1 r = er

and expi+1 = exp(expi r), i ∈ N; for sufficiently large r ∈ (0,+∞), we define log1 r = log r
and logi+1 r = log(logi r), r ∈ N; we also denote exp0 r = r = log0 r and exp−1 r = log1 r.
Throughout this paper, we use p to denote a positive integer. We denote the linear measure of a
set E ⊂ (0,+∞) by mE =

∫
E dt and the logarithmic measure of E ⊂ (0,+∞) by mlE =

∫
E

dt
t .

Definition 1.3. (see [1, 5, 11]) The p-iterated order and p-iterated lower-order of a meromorphic

function f(z) are respectively defined by

σp(f) = lim
r→∞

logp T (r, f)

log r
; µp(f) = lim

r→∞

logp T (r, f)

log r
. (1.5)

Definition 1.4. (see [1, 5, 11]) The p-iterated order and p-iterated lower-order of an entire
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function f(z) are respectively defined by

σp(f) = lim
r→∞

logp+1M(r, f)

log r
= lim

r→∞

logp T (r, f)

log r
; (1.6)

µp(f) = lim
r→∞

logp+1M(r, f)

log r
= lim

r→∞

logp T (r, f)

log r
. (1.7)

Definition 1.5. Let f(z) be a meromorphic function satisfying 0 < σp(f) = σ < ∞ or 0 <

µp(f) = µ < ∞. Then the p-iterated type of order and the p-iterated lower-type of lower-order
of f(z) are respectively defined by

ψp(f) = lim
r→∞

logp−1 T (r, f)

rσ
; ψ

p
(f) = lim

r→∞

logp−1 T (r, f)

rµ
. (1.8)

Definition 1.6. Let f(z) be an entire function satisfying 0 < σp(f) = σ < ∞ or 0 < µp(f) =

µ < ∞. Then the p-iterated type of order and the p-iterated lower-type of lower-order of f(z)
are respectively defined by

τp(f) = lim
r→∞

logpM(r, f)

rσ
; τp(f) = lim

r→∞

logpM(r, f)

rµ
. (1.9)

From the above definitions, we can easily obtain the following propositions:

(i) If f1(z) and f2(z) are meromorphic functions with σp(f1) = σ1 < ∞ and σp(f2) = σ2 <
∞, then σp(f1 + f2) ≤ max{σ1, σ2}, σp(f1f2) ≤ max{σ1, σ2}. Furthermore, if σ1 ̸= σ2, then
σp(f1 + f2) = σp(f1f2) = max{σ1, σ2}.

(ii) If f1(z) and f2(z) are meromorphic functions with σp(f1) < ∞ and µp(f2) < ∞, then
max{µp(f1 + f2), µp(f1f2)} ≤ max{σp(f1), µp(f2)} or max{µp(f1 + f2), µp(f1f2)} ≤ max{µp(f1),
σp(f2)}.

(iii) If f1(z) and f2(z) are meromorphic functions satisfying σp(f1) < µp(f2) ≤ ∞, then
µp(f1 + f2) = µp(f1f2) = µp(f2).

(iv) If f(z) is an entire function with 0 < σp(f) <∞, then ψp(f) = τp(f), ψp
(f) = τp(f) for

p ≥ 2 and ψ(f) ≤ τ(f), ψ(f) ≤ τ(f) for p = 1.

2. Main Results

Here our first question is : can we get the similar results as Theorem D for meromorphic
function or entire function of finite iterated order? Since it is easy to see σp(f

′) = σp(f)(p ≥ 1)
for meromorphic function f(z) of finite iterated order; our second question is : can we get
ψp(f

′) = ψp(f) or τp(f
′) = τp(f) for meromorphic function or entire function of finite iterated

order? In fact, we obtain the following results.

Theorem 2.1. Let f1(z) and f2(z) be meromorphic functions satisfying 0 < σp(f1) = σp(f2) =
σ <∞, 0 ≤ ψp(f1) < ψp(f2) ≤ ∞. Set α = ψ(f2)− ψ(f1), β = ψ(f1) + ψ(f2), then
(i) σp(f1 + f2) = σp(f1f2) = σ(p ≥ 1); (ii) If p > 1, we have ψp(f1 + f2) = ψp(f1f2) = ψp(f2);
(iii) If p = 1, we have α ≤ ψ(f1 + f2) ≤ β, α ≤ ψ(f1f2) ≤ β.
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Theorem 2.2. Let f1(z) and f2(z) be entire functions satisfying 0 < σp(f1) = σp(f2) = σ <
∞, 0 ≤ τp(f1) < τp(f2) ≤ ∞. Then the following statements hold:
(i) If p ≥ 1, then σp(f1 + f2) = σ, τp(f1 + f2) = τp(f2);
(ii) If p > 1, then σp(f1f2) = σ, τp(f1f2) = τ(f2).

Remark 2.1. When p = 1, (ii) of Theorem 2.2 does not hold. For example, set f1 = e−z, f2 = e2z

satisfy τ(f1) = 1 < τ(f2) = 2, but τ(f1f2) = 1 < τ(f2) = 2.

Theorem 2.3. Let f1(z) and f2(z) be meromorphic functions satisfying σp(f1) = µp(f2) =
µ (0 < µ <∞), 0 ≤ ψp(f1) < ψ

p
(f2) ≤ ∞. Then the following statements hold:

(i) µp(f1 + f2) = µp(f1f2) = µ(p ≥ 1); (ii) If p > 1, then ψ
p
(f1 + f2) = ψ

p
(f1f2) = ψ

p
(f2);

(iii) If p = 1, then ψ(f2)− ψ(f1) ≤ max{ψ(f1 + f2), ψ(f1f2)} ≤ ψ(f1) + ψ(f2).

Theorem 2.4. Let f1(z) and f2(z) be entire functions satisfying σp(f1) = µp(f2) = µ (0 < µ <
∞), 0 ≤ τp(f1) < τp(f2) ≤ ∞. Then the following statements hold:
(i) µp(f1 + f2) = µp(f1f2) = µ(p ≥ 1); (ii) If p ≥ 1, then τp(f1 + f2) = τp(f2);
(iii) If p > 1, then τp(f1f2) = τp(f2); if p = 1, then τ(f2)− τ(f1) ≤ τ(f1f2) ≤ τ(f1) + τ(f2).

Theorem 2.5. Let p > 1, f(z) be a meromorphic function satisfying 0 < σp(f) < ∞. Then
ψp(f

′) = ψp(f).

Theorem 2.6. Let p ≥ 1, f(z) be an entire function satisfying 0 < σp(f) < ∞. Then τp(f ′) =
τp(f).

3. Preliminary Lemmas

Lemma 3.1. (see [11]) Let f(z) be an entire function of p-iterated order satisfying 0 < σp(f) =
σ < ∞, 0 < τp(f) = τ ≤ ∞. Then for any given β < τ, there exists a set E ⊂ [1, +∞) having
infinite logarithmic measure such that for all r ∈ E, we have

logpM(r, f) > βrσ.

Lemma 3.2. (see [7]) Let f(z) be an analytic function in the circle |z| ≤ R and has no zeros in
this circle, and if f(0) = 1, then its modulus in the circle |z| ≤ r < R satisfies the inequality

ln |f(z)| ≥ − 2r

R− r
lnM(R, f).

Lemma 3.3. (see [2]) Given any number H > 0 and complex numbers a1, a2, · · · , an, there is a

system of circles in the complex plane, with the sum of the radii equal to 2H, such that for each
point z lying outside these circles one has the inequality

n∏
k=1

|z − ak| ≥
(
H

e

)n

.
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Lemma 3.4. Let f(z) be an analytic function in the circle |z| ≤ βR (β > 1) with f(0) = 1, and
let ε be an arbitrary positive number not exceeding 2. Then inside the circle |z| ≤ R, but outside
of a family of excluded circles the sum of whose radii is not greater than 2εeβR, we have

ln |f(z)| > −
(

2

β − 1
+

ln 2− ln ε

lnβ

)
lnM(β2R, f).

Proof. By the similar proof in [7, p.21], constructing the function

h(z) =
(−βR)n

a1a2 · · · an

n∏
k=1

βR(z − ak)
(βR)2 − akz

,

where a1, a2, · · · , an are the zeros of f(z) in the circle |z| < βR, then we have h(0) = 1 and

|h(βReiθ)| = (βR)n

|a1a2···an| > 1, then function g(z) = f(z)
h(z) has no zeros in the circle |z| < βR.

Therefore, by Lemma 3.2, for any z satisfying |z| ≤ R < βR, we have

ln |g(z)| ≥ − 2R

βR−R
lnM(βR, g)

=− 2

β − 1
(lnM(βR, f)− ln |h(βReiθ)|)

≥− 2

β − 1
lnM(βR, f). (3.1)

For |z| ≤ βR, we get
∏n

k=1 |(βR)2−akz| ≤ [2(βR)2]n = 2n(βR)2n. By Lemma 3.3, we get outside
of a family of excluded circles the sum of whose radii are not greater than 2εeβR, we have

n∏
k=1

|βR(z − ak)| > (βR)n(βεR)n = εn(βR)2n,

where n = n(βR) denotes the number of zeros of f(z) in |z| < βR. So we have

|h(z)| ≥ (βR)n

|a1a2 · · · an|
εn(βR)2n

2n(βR)2n
≥
(ε
2

)n
. (3.2)

Since 0 < ε < 2, by (3.2), we have

ln |ψ(z)| ≥ −n ln 2

ε
. (3.3)

On the other hand, by Jensen’s formula, we have

M(β2R, f) ≥ exp

{
1

2π

∫ 2π

0
log |f(β2Reiθ)|dθ

}
=

n(β2R)∏
k=1

β2R

|ak|
≥

n(βR)∏
k=1

β2R

|ak|
≥ βn.

Therefore,

n ≤ lnM(β2R, f)

lnβ
. (3.4)
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By (3.1), (3.3) and (3.4), we have

ln |f(z)| ≥ − 2

β − 1
lnM(βR, f)− ln 2− ln ε

lnβ
lnM(β2R, f)

≥ −
(

2

β − 1
+

ln 2− ln ε

lnβ

)
lnM(β2R, f). (3.5)

Lemma 3.5. Let p > 1, f(z) be an entire function satisfying 0 < σp(f) = σ <∞ and τp(f) <∞.
Then for any given ε > 0, there exists a set E ⊂ (0,+∞) having finite logarithmic measure, such
that for all |z| = r ̸∈ E, we have

exp{− expp−1{(τp(f) + ε)rσ}} < |f(z)| < expp{(τp(f) + ε)rσ}.

Proof. By (1.9), for any given ε > 0 and for sufficiently large r, we have

|f(z)| < expp{(τp(f) + ε)rσ}, M(β2r, f) < expp{(τp(f) +
ε

2
)β2σrσ} (β > 1). (3.6)

For any given ε(0 < ε < 2) and any β > 1, we choose ε, β satisfying (τp(f) +
ε
2)β

2σ < τp(f) + ε,
by Lemma 3.4 and (3.5), there exists a set E ⊂ (0, +∞) having finite logarithmic measure, such
that for all |z| = r ̸∈ E, we have

|f(z)| > exp{− expp−1{(τp(f) + ε)rσ}} (p > 1). (3.7)

By (3.6), (3.7), we obtain that Lemma 3.5 holds.

Lemma 3.6. (see [4, 14]) Let f(z) be a meromorphic function satisfying f(0) ̸= ∞. Then for
any τ > 1 and r > 0, we have

T (r, f) < CτT (τr, f
′) + log+(τr) + 4 + log+ |f(0)|,

where Cτ > 0 is a constant related to τ .

Lemma 3.7. (see [6]) Let g : (0,∞) → R and h : (0,∞) → R be monotone non-decreasing
functions such that g(r) ≤ h(r) outside of an exceptional set E of finite linear measure. Then for
any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

4. Proofs of Theorems 2.1 - 2.6

Proof of Theorem 2.1. (i) Without loss of generality, set 0 ≤ ψp(f1) < ψp(f2) < ∞, by
(1.8), for any ε > 0 and for sufficiently large r, we have

T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) + ln 2

≤ expp−1{(ψp(f1) + ε)rσ}+ expp−1{(ψp(f2) + ε)rσ}
≤ 2 expp−1{(ψp(f2) + ε)rσ} (4.1)
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By (4.1), we get σp(f1+f2) ≤ σ. On the other hand, by (1.8), for any ε(0 < 2ε < ψp(f2)−ψp(f1)),
there exists a sequence {rn}∞n=1 tending to ∞ such that

T (rn, f1 + f2) ≥ T (rn, f2)− T (rn, f1)− ln 2

≥ expp−1{(ψp(f2)− ε)rσn} − expp−1{(ψp(f1) + ε)rσn} (4.2)

holds for sufficiently large rn. By (4.2), we get σp(f1+ f2) ≥ σ; therefore σp(f1+ f2) = σ (p ≥ 1).
(ii)-(iii) By (4.1) and (4.2), we have ψp(f1 + f2) = ψp(f2) for p > 1 and α ≤ ψ(f1 + f2) ≤ β

for p = 1. Since

T (r, f1f2) ≤ T (r, f1) + T (r, f2), T (r, f1f2) ≥ T (r, f2)− T (r, f1)− o(1)

and by the similar proof in (4.1) and (4.2), we can easily obtain that the conclusions in cases
(ii)-(iii) holds.

By the above proof, we can easily obtain that Theorem 2.1 also holds for 0 ≤ ψp(f1) <
ψp(f2) =∞.

Proof of Theorem 2.2. (i) Set 0 ≤ τp(f1) < τp(f2) < ∞. By (1.9), for any ε > 0 and for
sufficiently large r, we have

M(r, f1 + f2) ≤M(r, f1) +M(r, f2)

≤ expp{(τp(f1) + ε)rσ}+ expp{(τp(f2) + ε)rσ}
≤ 2 expp{(τp(f2) + ε)rσ}, (4.3)

by (4.3), we get σp(f1 + f2) ≤ σ, τp(f1 + f2) ≤ τp(f2). On the other hand, by (1.9), for any
ε (0 < 2ε < τp(f2)− τp(f1) there exists a sequence {rn}∞n=1 tending to ∞ such that

M(rn, f1) < expp{(τp(f1) + ε)rσn}, M(rn, f2) > expp{(τp(f2)− ε)rσn} (4.4)

holds for sufficiently large rn. In each circle |z| = rn(n = 1, 2, · · · ), we choose a sequence {zn}∞n=1
satisfying |f2(zn)| =M(rn, f2) such that

M(rn, f1 + f2) ≥ |f1(zn) + f2(zn)| ≥ |f2(zn)| − |f1(zn)|
≥M(rn, f2)−M(rn, f1)

≥ expp{(τp(f2)− ε)rσn} − expp{(τp(f1) + ε)rσn}

≥ 1

2
expp{(τp(f2)− ε)rσn} (rn →∞), (4.5)

by (4.5), we get σp(f1+f2) ≥ σ, τp(f1+f2) ≥ τp(f2); therefore σp(f1+f2) = σ, τp(f1+f2) = τp(f2).
(ii) By (1.9), for any ε > 0 and for sufficiently large r, we have

M(r, f1f2) ≤M(r, f1)M(r, f2)

≤ expp{(τp(f1) + ε)rσ} expp{(τp(f2) + ε)rσ}
≤ expp{(τp(f2) + 2ε)rσ} (p > 1), (4.6)
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by (4.6), we get σp(f1f2) ≤ σ, τp(f1f2) ≤ τp(f2)(p > 1). On the other hand, by Lemma 3.1, for
any ε > 0 there exists a set E1 having infinite logarithmic measure such that for all r ∈ E1, we
have

M(r, f2) > expp{(τp(f2)− ε)rσ}. (4.7)

By Lemma 3.5, for any ε > 0, there exists a set E2 having finite logarithmic measure such that
|z| = r ̸∈ E2, we have

|f1(z)| > exp{− expp−1{(τp(f1) + ε)rσ}} (p > 1). (4.8)

Therefore, by (4.7) and (4.8), for any ε > 0 and for all |z| = r ∈ E1\E2, we have

M(r, f1f2) ≥M(r, f2) exp{− expp−1{(τp(f1) + ε)rσ}}
≥ expp{(τp(f2)− ε)rσ} exp{− expp−1{(τp(f1) + ε)rσ}}. (4.9)

Since τp(f1) < τp(f2), we choose ε satisfying τp(f2)− ε > τp(f1)+ ε. By (4.9), for any ε(0 < 2ε <
τp(f2)− τp(f1)) and for all r ∈ E1\E2, we have

M(r, f1f2) > expp{(τp(f2)− 2ε)rσ} (p > 1). (4.10)

By (4.10), we have σp(f1f2) ≥ σ, τp(f1f2) ≥ τp(f2) for p > 1; Therefore σp(f1f2) = σ, τp(f1f2) =
τp(f2) for p > 1.

By the similar proof in cases (i) and (ii), we can easily obtain that Theorem 2.2 holds for
0 ≤ τp(f1) < τp(f2) =∞.

Proof of Theorem 2.3. Set 0 ≤ ψp(f1) < ψ
p
(f2) < ∞. By (1.8), for any ε > 0 and for

sufficiently large r, we have

T (r, f1) < expp−1{(ψp(f1) + ε)rµ}, T (r, f2) > expp−1{(ψp
(f2)− ε)rµ}. (4.11)

By (4.11), for any ε (0 < 2ε < ψ
p
(f2)− ψp(f1)) and for sufficiently large r, we have

T (r, f1 + f2) ≥ T (r, f2)− T (r, f1)− ln 2

≥ expp−1{(ψp
(f2)− ε)rµ} − expp−1{(ψp(f1) + ε)rµ}. (4.12)

By (4.12), we have

µp(f1 + f2) ≥ µ(p ≥ 1), ψ
p
(f1 + f2) ≥ ψp

(f2)(p > 1), ψ(f1 + f2) ≥ ψ(f2)− ψ(f1). (4.13)

On the other hand, by (1.8), for any ε > 0 there exists a sequence {rn}∞n=1 tending to ∞ such
that

T (rn, f2) < expp−1{(ψp
(f2) + ε)rµn} (4.14)

for sufficiently large rn. By (4.11) and (4.14), for any ε > 0 and for sufficiently large rn, we have

T (r, f1 + f2) ≤ T (rn, f1) + T (rn, f2) + ln 2

≤ expp−1{(ψp(f1) + ε)rµn}+ expp−1{(ψp
(f2) + ε)rµn}. (4.15)
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By (4.15), we have

µp(f1 + f2) ≤ µ(p ≥ 1), ψ
p
(f1 + f2) ≤ ψp

(f2)(p > 1), ψ(f1 + f2) ≤ ψ(f2) + ψ(f1). (4.16)

Therefore, by (4.13) and (4.16), the conclusions of Theorem 2.3 hold for f1+f2. Since T (r, f1f2) ≤
T (r, f1)+T (r, f2), T (r, f1f2) ≥ T (r, f2)−T (r, f1)−o(1), we can easily obtain that the conclusions
of Theorem 2.3 hold for f1f2.

Theorem 2.3 also holds for 0 ≤ ψp(f1) < ψ
p
(f2) =∞ by the above proof.

Proof of Theorem 2.4. We can obtain the conclusions of Theorem 2.4 by the similar proof
in Theorem 2.2 and Theorem 2.3.

Proof of Theorem 2.5. By the Lemma of logarithmic derivative, we have that

T (r, f ′) ≤ 3T (r, f) +O{log r}
holds outside of an exceptional set E of finite linear measure. By Lemma 3.7, there exists
α > 1 such that T (r, f ′) ≤ 3T (αr, f) + O{log(αr)} holds for sufficiently large r, so we have
τp(f

′) ≤ τp(f) (p > 1). On the other hand, by Lemma 3.6, for any τ > 1, there exists a constant
Cτ such that

T (r, f) < CτT (τr, f
′) + log+(τr) + 4 + log+ |f(0)|.

Set τ → 1+, by the above inequality, we have τp(f
′) ≥ τp(f)(p > 1). Therefore τp(f

′) = τp(f) for
p > 1.

Proof of Theorem 2.6. For an entire function f(z), we have

f(z) = f(0) +

∫ z

0
f ′(ζ)dζ, (4.17)

where the integral route is a line from 0 to z. By (4.17), we have

M(r, f) ≤ |f(0)|+ |
∫ z

0
f ′(ζ)dζ| ≤ |f(0)|+ rM(r, f ′), (4.18)

By (4.18), we have

M(r, f ′) ≥ M(r, f)− |f(0)|
r

. (4.19)

By (1.9) and (4.19), we have τp(f
′) ≥ τp(f). On the other hand, by Cauchy’s integral formula,

we have

f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ, (4.20)

where integral curve is the circle |ζ| = R. By (4.20), for any |z| = r < R,

M(r, f ′) ≤ 1

2π

∫
C

{
max

∣∣∣∣ f(ζ)

(ζ − z)2

∣∣∣∣} |dζ| ≤ 1

2π

M(R, f)

(R− r)2
· 2πR. (4.21)

Set R = βr (β > 1), then by (4.21), we have

M(r, f ′) ≤ β

(β − 1)2r
M(βr, f) ≤ β

(β − 1)2r
expp{(τp(f) + ε)(βr)σp(f)}, r →∞. (4.22)

Since σp(f
′) = σp(f), set β → 1, we have τp(f

′) ≤ τp(f); therefore τp(f ′) = τp(f).
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