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On structures of IVF approximation spaces ∗

Ningxin Xie†

March 2, 2015

Abstract: Rough set theory is a powerful mathematical tool for dealing
with inexact, uncertain or vague information. An IVF rough set, which is the
result of approximation of an IVF set with respect to an IVF approximation
space, is an extension of fuzzy rough sets. In this paper, properties of IVF rough
approximation operators and construction of IVF rough sets are investigated.
Topological and lattice structures of IVF approximation spaces are given.

Keywords: IVF set; IVF relation; IVF approximate space; IVF rough set;
Topology; Lattice.

1 Introduction

Rough set theory was proposed by Pawlak [14] as a mathematical tool to
handle imprecision and uncertainty in data analysis. It has been successfully
applied to machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, image processing, signal analysis, knowledge discovery,
decision analysis, expert systems and many other fields [15, 16, 17, 18]. The
foundation of its object classification is an equivalence relation. The upper and
lower approximation operations are two core notions of this theory. They can
also be seen as the closure operator and the interior operator of the topology
induced by an equivalence relation on the universe, respectively. In the real
world, the equivalence relation is, however, too restrictive for many practical
applications. To address this issue, many interesting and meaningful extensions
of Pawlak’s rough sets have been presented in the literature. Equivalence rela-
tions can be replaced by tolerance relations [21], similarity relations [22], binary
relations [10, 25].

By replacing crisp relations with fuzzy relations, various fuzzy generaliza-
tions of rough approximations have been proposed [1, 3, 9, 13, 19, 24, 28].
Dubois [3] first proposed the concept of rough fuzzy set and fuzzy rough set.

∗This work is supported by the National Natural Science Foundation of China (11461005),
the Natural Science Foundation of Guangxi (2014GXNSFAA118001), the Science Research
Project of Guangxi University for Nationalities (2012MDZD036), the Science Research Project
2014 of the China-ASEAN Study Center (Guangxi Science Experiment Center) of Guangxi
University for Nationalities (KT201427).

†Corresponding Author, College of Information Science and Engineering, Guangxi Univer-
sity for Nationalities, Nanning, Guangxi 530006, P.R.China. ningxinxie100@126.com

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

621 Ningxin Xie 621-639



Fuzzy rough set have been applied to solve a lot of practical problems. For
example, medical time series, neural networks, case generation and descriptive
dimensionality reduction.

As a generalization of Zadeh’s fuzzy set, interval-valued fuzzy (IVF, for
short) sets were introduced by Gorzalczany [5] and Turksen [23], and they were
applied to the fields of approximate inference, signal transmission and controller,
etc. Mondal et al. [12] defined IVF topologies and studied their properties.

By integrating Pawlak rough set theory with IVF set theory, Sun et al.
[20] introduced IVF rough sets based on an IVF approximation space, defined
IVF information systems and discussed their attribute reduction. Gong et al. [6]
presented IVF rough sets based on approximation spaces, studied the knowledge
discovery in IVF information systems. However, structures of IVF rough sets
have not been deeply studied.

Topologies are widely used in the research field of machine learning and
cybernetics. For example, Koretelainen [7, 8] used topologies to detect de-
pendencies of attributes in information systems with respect to gradual rules.
Choudhury et al. [2] applied topology to study the evolutionary impact of learn-
ing on social problems. Topological structures are the most powerful notions
and are important bases in data and system analysis.

Lattices and ordered sets play an important role in many areas of computer
science. These range from lattices as models for logics, which are fundamental
to understanding computation, to the ordered sets as models for computation,
to the role both lattices and ordered sets play in combinatorics, a fundamental
aspect of computation. Some researchers investigated relationships between
rough sets and lattices. For example, Yang et al. [26] studied lattice structures
in generalized approximation spaces. Estaji et al. [4] considered rough set theory
applied to lattice theory. Zheng al. [4] investigated topological structures in IVF
approximation spaces where the universe may be infinite.

The purpose of this paper is to investigate construction of IVF rough sets
and topological or lattice structures of IVF approximation spaces.

2 Preliminaries

Throughout this paper, “interval-valued fuzzy” denotes briefly by “IVF”. U
denotes a nonempty finite set called the universe of discourse. I denotes [0, 1]
and [I] denotes {[a, b] : a, b ∈ I and a ≤ b}. F (i)(U) denotes the family of all
IVF sets in U . ā denotes [a, a] for each a ∈ [0, 1].

2.1 IVF sets

For any [aj , bj ] ∈ [I]( j = 1, 2), we define

[a1, b1] = [a2, b2] ⇐⇒ a1 = a2, b1 = b2;

[a1, b1] ≤ [a2, b2] ⇐⇒ a1 ≤ a2, b1 ≤ b2;

2
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[a1, b1] < [a2, b2] ⇐⇒ [a1, b1] ≤ [a2, b2] and [a1, b1] 6= [a2, b2];

1̄− [a1, b1] or [a1, b1]c = [1− b1, 1− a1].

Obviously, ([a, b]c)c = [a, b] for each [a, b] ∈ [I].

Definition 2.1 ([5, 23]). For each {[aj , bj ] : j ∈ J} ⊆ [I], we define
∨

j∈J

[aj , bj ] = [
∨

j∈J

aj ,
∨

j∈J

bj ] and
∧

j∈J

[aj , bj ] = [
∧

j∈J

aj ,
∧

j∈J

bj ],

where
∨

j∈J

aj = sup {aj : j ∈ J} and
∧

j∈J

aj = inf {aj : j ∈ J}.

Definition 2.2 ([5, 23]). An IVF set A in U is defined by a mapping A : U →
[I]. Denote

A(x) = [A−(x), A+(x)] (x ∈ U).

Then A−(x) (resp. A+(x) ) is called the lower (resp. upper) degree to which x
belongs to A. A− (resp. A+ ) is called the lower (resp. upper) IVF set of A.

The set of all IVF sets in U is denoted by F (i)(U).
Let a, b ∈ I. ˜[a, b] represents the IVF set which satisfies ˜[a, b](x) = [a, b] for

each x ∈ U . We denoted [̃a, a] by ã.
We recall some basic operations on F (i)(U) as follows ([5, 23]): for any

A,B ∈ F (i)(U) and [a, b] ∈ [I],
(1) A = B ⇐⇒ A(x) = B(x) for each x ∈ U .
(2) A ⊆ B ⇐⇒ A(x) ≤ B(x) for each x ∈ U .
(3) A = Bc ⇐⇒ A(x) = B(x)c for each x ∈ U .
(4) (A ∩B)(x)=A(x) ∧B(x) for each x ∈ U .
(5) (A ∪B)(x)=A(x) ∨B(x) for each x ∈ U .
(6) ([a, b]A)(x) = [a, b] ∧ [A−(x), A+(x)] for each x ∈ U .
Obviously,

A = B ⇐⇒ A− = B− and A+ = B+ ; ( ˜[a, b])c = [̃a, b]c ([a, b] ∈ [I]).

Definition 2.3 ([12]). A ∈ F (i)(U) is called an IVF point in U , if there exist
[a, b] ∈ [I]− {0̄} and x ∈ U such that

A(y) =

{
[a, b], y = x,

0̄, y 6= x.

We denote A by x[a,b].

Remark 2.4. A =
⋃

x∈U

(A(x)x1̄) (A ∈ F (i)(U)).

3
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2.2 IVF topologies

Definition 2.5 ([12]). τ ⊆ F (i)(U) is called an IVF topology on U , if
(i) 0̃, 1̃ ∈ τ ,
(ii) A,B ∈ τ =⇒ A ∩B ∈ τ ,
(iii) {Aj : j ∈ J} ⊆ τ =⇒ ⋃

j∈J

Aj ∈ τ .

The pair (U, τ) is called an IVF topological space. Every member of τ is
called an IVF open set in U . Its complement is called an IVF closed set in U .

An IVF topology τ is called Alexandrov, if (ii) in Definition 2.5 is replaced
by

(ii)′ {Aj : j ∈ J} ⊆ τ =⇒ ⋂
j∈J

Aj ∈ τ .

We denote τ c = {A : Ac ∈ τ}.
The interior and closure of A ∈ F (i)(U) denoted respectively by int(A) and

cl(A), are defined as follows:

int(A) or intτ (A) =
⋃
{B ∈ τ : B ⊆ A}, cl(A) or clτ (A) =

⋂
{B ∈ τ c : B ⊇ A}.

Proposition 2.6 ([12]). Let τ be an IVF topology on U . Then for any A,B ∈
F (i)(U),

(1) int(1̃) = 1̃, cl(0̃) = 0̃.
(2) int(A) ⊆ A ⊆ cl(A).
(3) A ⊆ B =⇒ int(A) ⊆ int(B), cl(A) ⊆ cl(B).
(4) int(Ac) = (cl(A))c, cl(Ac) = (int(A))c.
(5) int(A ∩B) = int(A) ∩ int(B), cl(A ∪B) = cl(A) ∪ cl(B).
(6) int(int(A)) = int(A), cl(cl(A)) = cl(B).

3 Construction of IVF rough sets

3.1 IVF rough sets and IVF rough approximation opera-
tors

Recall that R is called an IVF relation on U if R ∈ F (i)(U × U).

Definition 3.1 ([20]). Let R be an IVF relation on U . Then R is called
(1) serial, if

∨
y∈U

R(x, y) = 1̄ for each x ∈ U .

(2) reflexive, if R(x, x) = 1̄ for each x ∈ U .
(3) symmetric, if R(x, y) = R(y, x) for any x, y ∈ U .
(4) transitive, if R(x, z) ≥ R(x, y) ∧R(y, z) for any x, y, z ∈ U .
(5) Euclidian, if R(x, z) ≥ R(y, x) ∧R(y, z) for any x, y, z ∈ U .

Let R be an IVF relation on U . R−1 is called the inverse relation of R if
R−1(x, y) = R(y, x) for each (x, y) ∈ U×U . R is called preorder if R is reflexive
and transitive (see [10]).

4
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Definition 3.2 ([20]). Let R be an IVF relation on U . The pair (U,R) is called
an IVF approximation space. For each A ∈ F (i)(U), the IVF lower and the IVF
upper approximation of A with respect to (U,R), denoted by R(A) and R(A),
are two IVF sets and are respectively defined as follows:

R(A)(x) =
∧

y∈U

(A(y)∨ (1̄−R(x, y))), R(A)(x) =
∨

y∈U

(A(y)∧R(x, y)) (x ∈ U).

The pair (R(A), R(A)) is called the IVF rough set of A with respect to (U,R).
R : F (i)(U) → F (i)(U) and R : F (i)(U) → F (i)(U) are called the IVF lower

approximation operator and the IVF upper approximation operator, respectively.

Remark 3.3. Let (U,R) be an IVF approximation space. Then
(1) For each x, y ∈ U ,

R(x1̄)(y) = R(y, x) and R((x1̄)
c)(y) = 1̄−R(y, x).

(2) For each [a, b] ∈ [I], R( ˜[a, b]) ⊇ ˜[a, b] ⊇ R( ˜[a, b]).

Proposition 3.4 ([20]). Let (U,R) be an IVF approximation space. Then for
each A ∈ F (i)(U),

(R(A))− = R+(A−), (R(A))+ = R−(A+),

(R(A))− = R−(A−) and (R(A))+ = R+(A+).

3.2 Properties of IVF rough approximation operators

Theorem 3.5 ([27]). Let (U,R) be an IVF approximation space. Then for any
A,B ∈ F (i)(U), {Aj : j ∈ J} ⊆ F (i)(U) and [a, b] ∈ [I],

(1) R(1̃) = 1̃, R(0̃) = 0̃.
(2) A ⊆ B =⇒ R(A) ⊆ R(B), R(A) ⊆ R(B).
(3) R(Ac) = (R(A))c, R(Ac) = (R(A))c.
(4) R(

⋂
j∈J

Aj) =
⋂

j∈J

R(Aj), R(
⋃

j∈J

Aj) =
⋃

j∈J

R(Aj).

(5) R( ˜[a, b] ∪A) = ˜[a, b] ∪R(A), R([a, b]A) = [a, b]R(A).

Theorem 3.6 ([27]). Let R be an IVF relation on U and let τ be an IVF
topology on U . If one of the following conditions is satisfied, then R is preorder.

(1) R is the interior operator of τ .
(2) R is the closure operator of τ .

5
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Theorem 3.7. Let (U,R) be an IVF approximation space. Then

(1) R is serial ⇐⇒ (ILS∗)∀[a, b] ∈ [I], R( ˜[a, b]) = ˜[a, b].

⇐⇒ (IUS∗)∀[a, b] ∈ [I], R( ˜[a, b]) = ˜[a, b].
⇐⇒ (IUS∗∗)R(1̃) = 1̃.

⇐⇒ (ILS∗∗)R(1̃) = 1̃.

(2) R is reflexive ⇐⇒ (ILR) ∀A ∈ F (i)(U), R(A) ⊆ A.

⇐⇒ (IUR) ∀A ∈ F (i)(U), A ⊆ R(A).
(3) R is symmetric ⇐⇒ (ILS) ∀(x, y) ∈ U × U,R((x1̄)

c)(y) = R((y1̄)
c)(x).

⇐⇒ (IUS) ∀(x, y) ∈ U × U,R(x1̄)(y) = R(y1̄)(x).
(4) R is transitive ⇐⇒ (ILT ) ∀A ∈ F (i)(U), R(A) ⊆ R(R(A)).

⇐⇒ (IUT ) ∀A ∈ F (i)(U), R(R(A)) ⊆ R(A).

Proof. (1) By Theorem 3.5(3), (ILS∗) and (IUS∗) are equivalent, (ILS∗∗) and
(IUS∗∗) are equivalent. We only need to prove that the serialisation of R is
equivalent to (IUS∗) or (IUS∗∗).

For any [a, b] ∈ [I] and x ∈ U , we have

R( ˜[a, b])(x) =
∨

y∈U

([a, b] ∧R(x, y)) = [a, b] ∧ (
∨

y∈U

R(x, y)) (?).

Assume that R is serial. Then for each x ∈ U ,
∨

y∈U

R(x, y) = 1̄. By (?),

R( ˜[a, b])(x) = [a, b]. Thus R( ˜[a, b]) = ˜[a, b] and so R(1̃) = 1̃.
Assume R( ˜[a, b]) = ˜[a, b] for each [a, b] ∈ [I]. For each x ∈ U , then

R( ˜[a, b])(x) = [a, b]. By (?),
∨

y∈U

R(x, y) ≥ [a, b]. Put [a, b] = 1̄, then
∨

y∈U

R(x, y) ≥
1̄. Hence

∨
y∈U

R(x, y) = 1̄. So R is serial.

Assume that R(1̃) = 1̃. For each x ∈ U , by (?),
∨

y∈U

R(x, y) = 1̄. So R is

serial.
(2), (3) and (4) hold by Theorem 13 in [27].

Corollary 3.8 ([27]). Let (U,R) be an IVF approximation space. If R is pre-
order, then

R(R(A)) = R(A) and R(R(A)) = R(A) (A ∈ F (i)(U)).

3.3 Lower and upper sets in IVF approximation spaces

Definition 3.9. Let (U,R) be an IVF approximation space.
(1) A ∈ F (i)(U) is called an upper set if A(x)

∧
R(x, y) ≤ A(y) for any

x, y ∈ U .
(2) A ∈ F (i)(U) is called a lower set if A(y)

∧
R(x, y) ≤ A(x) for any

x, y ∈ U .

6
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Proposition 3.10. Let (U,R) be an IVF approximation space. Then the fol-
lowing are equivalent.

(1) R(A) ⊆ A;
(2) A is a lower set in (U,R);
(3) A is an upper set in (U,R−1).

Proof. (1) =⇒ (2). Suppose that R(A) ⊆ A. Since for each x ∈ U ,
∨

y∈U

(A(y) ∧R(x, y)) = R(A)(x) ≤ A(x),

A(y) ∧R(x, y) ≤ A(x) (x, y ∈ U).

Then A is a lower set in (U,R).
(2) =⇒ (3). This is obvious.
(3) =⇒ (1). Suppose that A is an upper set in (U,R−1). Then for any

x, y ∈ U , A(x) ∧R−1(x, y) ≤ A(y). So A(x) ∧R(y, x) ≤ A(y). Thus

R(A)(y) =
∨

x∈U

(A(x) ∧R(y, x)) ≤ A(y) (y ∈ U).

Hence R(A) ⊆ A.

Corollary 3.11. Let (U,R) be an IVF approximation space. If R is reflexive,
then the following are equivalent.

(1) R(A) = A;
(2) A is a lower set in (U,R);
(3) A is an upper set in (U,R−1).

Proof. This holds by Theorem 3.7(2) and Proposition 3.10.

Let R be an IVF relation on U . For each z ∈ U , we define IVF sets [z]R :
U → [I], [z]R(x) = R(z, x) and [z]R : U → [I], [z]R(x) = R(x, z).

Theorem 3.12. Let (U,R) be an IVF approximation space. Then

(1) R is reflexive ⇐⇒ (ILS′)∀x ∈ U, [x]R(x) = 1̄.

⇐⇒ (IUR′) ∀x ∈ U, [x]R(x) = 1̄.

(2) R is symmetric ⇐⇒ (ILS′)∀x ∈ U, [x]R = [x]R.

=⇒ ∀A ∈ F (i)(U), A is a lower set if and only if

A is an upper set.

(3) R is transitive ⇐⇒ (ILT ′)∀x ∈ U, [x]R is a lower set.

⇐⇒ (IUT ′)∀x ∈ U, [x]R is an upper set.

⇐⇒ (IUT ′′)∀A ∈ F (i)(U), R(A) is a lower set.

(4) R is Euclidian ⇐⇒ (ILE)∀x ∈ U, [x]R is an upper set.

7
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Proof. (1) and (2) are obvious.
(3) (IUT ′′)

⇐⇒ ∀A ∈ F (i)(U), R(R(A)) ⊆ R(A). (Proposition 3.10)
⇐⇒ R is transitive. (Theorem 3.7(4))
⇐⇒ ∀x, y, z ∈ U,R(x, y) ∧R(y, z) ≤ R(x, z).
⇐⇒ ∀x, y, z ∈ U, [z]R(y) ∧R(x, y) ≤ [z]R(x).
⇐⇒ (ILT ′) ∀x ∈ U, [x]R is a lower set.

⇐⇒ ∀x, y, z ∈ U, [x]R(y) ∧R(y, z) ≤ [x]R(z).
⇐⇒ (IUT ′) ∀x ∈ U, [x]R is an upper set.

(4) The proof is similar to (3).

3.4 IVF rough equal relations

Definition 3.13. Let (U,R) be an IVF approximation space. Then for any
A,B ∈ F (i)(U),

(1) If R(A) = R(B), then A and B are called IVF lower rough equal. We
denote it by A∼B.

(2) If R(A) = R(B), then A and B are called IVF upper rough equal. We
denote it by A w B.

(3) If R(A) = R(B) and R(A) = R(B), then A and B are called IVF rough
equal. We denote it by A ∼ B.

Proposition 3.14. Let (U,R) be an IVF approximation space. Then for any
A,B, C, D ∈ F (i)(U),

(1) A ∼ B ⇐⇒ (A ∩B) ∼ A, (A ∩B) ∼ B.
(2) A w B ⇐⇒ (A ∪B) w A, (A ∪B) w B.
(3) A ∼ B, C ∼ D =⇒ (A ∩B) ∼ (C ∩D), (A ∪B) ∼ (C ∪D);

A w B, C w D =⇒ (A ∩B) w (C ∩D), (A ∪B) w (C ∪D).
(4) A ∼ 0̃ or B ∼ 0̃ =⇒ (A ∩B) ∼ 0̃;

A w 1̃ or B w 1̃ =⇒ (A ∪B) w 1̃.
(5) A ⊆ B, B ∼ 0̃ =⇒ A ∼ 0̃;

A ⊆ B, A w 1̃ =⇒ B w 1̃.
(6) If R is reflexive, then

a) A ∼ 1̃ ⇐⇒ A = 1̃; b)A w 0̃ ⇐⇒ A = 0̃.

Proof. (1) Let A ∼ B. Then R(A) = R(B). By Theorem 3.5(4),

R(A ∩B) = R(A) ∩R(B) = R(A) = R(B).

Hence (A ∩B) ∼ A, (A ∩B) ∼ B.
Let (A∩B) ∼ A, (A∩B) ∼ B. Then R(A) = R(A∩B) = R(B). So A ∼ B.
(2) Let A w B. Then R(A) = R(B). By Theorem 3.5(4),

R(A ∪B) = R(A) ∪R(B) = R(A) = R(B).

8
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Hence (A ∪B) w A, (A ∪B) w B.
Let (A∩B) w A, (A∩B) w B. Then R(A) = R(A∪B) = R(B). So A w B.
(3) This holds by Theorem 3.5(4).
(4) This holds by (1) and (2).
(5) This holds by Theorem 3.5(2).
(6) a) Obviously, A = 1̃ implies A ∼ 1̃.
Let A ∼ 1̃. Then R(A) = R(1̃). By Theorem 3.5(1), R(1̃) = 1̃. Note that R

is reflexive. Then for each x ∈ U ,

A(x) = A(x)∨ (1̄−R(x, x)) ≥
∧

y∈U

(A(y)∨ (1̄−R(x, y))) = R(A)(x) = 1̃(x) = 1̄.

Thus A = 1̃.
b) The proof is similar to a).

Theorem 3.15. Let (U,R) be an IVF approximation space. If R is preorder,
then for each A ∈ F (i)(U),

(1) R(A) =
⋂{B ∈ F (i)(U) : B ∼ A}.

(2) R(A) =
⋃{B ∈ F (i)(U) : B w A}.

Proof. (1) By Theorem 3.7(2), R(A) ⊆ ⋂{B ∈ F (i)(U) : B ∼ A}. By Corollary
3.8, R(A) ⊇ ⋂{B ∈ F (i)(U) : B ∼ A}. Then R(A) =

⋂{B ∈ F (i)(U) : B ∼ A}.
(2) The proof is similar to (1).

4 Topological structures of IVF approximation
spaces

Let (U,R) be an IVF approximation space. We denote

τR = {A ∈ F (i)(U) : R(A) = A}, θR = {R(A) : A ∈ F (i)(U)}.

4.1 IVF topologies based on IVF relations

Theorem 4.1 ([27]). Let R be an IVF relation on U . If R is reflexive, then τR

is an IVF topology on U .

Definition 4.2 ([27]). Let R be an IVF relation on U . If R is reflexive, then
τR is called the IVF topology induced by R on U .

Theorem 4.3. Let R be a reflexive IVF relation on U and let τR be the IVF
topology induced by R on U . Then the following properties hold.

(1) a) τR ⊆ θR.
b) For each A ∈ F (i)(U),

intτR
(A) ⊆ R(A) ⊆ A ⊆ R(A) ⊆ clτR

(A).

c) For each [a, b] ∈ [I], ˜[a, b] ∈ τR ∩ τ c
R.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

629 Ningxin Xie 621-639



(2) If R is transitive, then
a) τR = θR.
b) R is the interior operator of τR.
c) R is the closure operator of τR.
d) intτ (A) =

⋂{B ∈ F (i)(U) : B ∼ A}.
e) clτ (A) =

⋃{B ∈ F (i)(U) : B w A}.
Proof. (1) holds by Theorem 17 in [27].

(2) a) b) and c) holds by Theorem 18 in [27].
d) This holds by (2) b) Proposition 3.18(1).
e) This holds by (2) c) Proposition 3.18(2).

Theorem 4.4. Let R be a preorder IVF relation on U and let τR be the IVF
topology induced by R on U . Then for any x, y ∈ U

R(x, y) =
∧

A∈(y)τR

A(x) ,

where (y)τR
= {A ∈ τ c

R : A(y) = 1̄}.
Proof. For any x, y ∈ U , by Remark 3.3(1) and Theorem 4.3(2),

R(x, y) = R(y1̄)(x) = clτR
(y1̄)(x)

= (
⋂
{A ∈ τ c

R : A ⊇ y1̄})(x)

=
∧
{A(x) : A ∈ τ c

R, A ⊇ y1̄}.

Note that A ⊇ y1̄ if and only if A(y) = 1̄. Thus

R(x, y) =
∧
{A(x) : Ac ∈ τR, A(y) = 1̄} =

∧

A∈(y)τR

A(x).

Theorem 4.5. Let R1 and R2 be two preorder IVF relations on U . Let τR1

and τR2 be the IVF topologies induced by R1 and R2 on U , respectively. Then
the following properties hold.

(1) If R1 ⊆ R2, then τR2 ⊆ τR1 .
(2) τR1 = τR2 ⇐⇒ R1 = R2.

Proof. (1) Let R1 ⊆ R2. For each A ∈ τR2 , R2(A) = A. For each x ∈ U , by the

10
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transitivity of R2,

R1(A)(x) = R1(R2(A))(x)

=
∧

y∈U

(R2(A)(y) ∨ (1̄−R1(x, y)))

=
∧

y∈U

((
∧

z∈U

(A(z) ∨ (1̄−R2(y, z)))) ∨ (1̄−R1(x, y)))

=
∧

y∈U

(
∧

z∈U

((A(z) ∨ (1̄−R2(y, z))) ∨ (1̄−R1(x, y))))

=
∧

y∈U

(
∧

z∈U

(A(z) ∨ ((1̄−R2(y, z)) ∨ (1̄−R1(x, y)))))

≥
∧

y∈U

(
∧

z∈U

(A(z) ∨ ((1̄−R2(y, z)) ∨ (1̄−R2(x, y)))))

=
∧

y∈U

(
∧

z∈U

(A(z) ∨ (1̄−R2(x, y) ∧R2(y, z))))

≥
∧

y∈U

(
∧

z∈U

(A(z) ∨ (1̄−R2(x, z))))

=
∧

z∈U

(A(z) ∨ (1̄−R2(x, z)))

= R2(A)(x) = A(x).

Then R1(A) ⊇ A.
By Theorem 3.7(2), R1(A) ⊆ A.
Then R1(A) = A and so A ∈ τR1 . Thus τR2 ⊆ τR1 .
(2) Let τR1 = τR2 . By Remark 3.3(1) and Theorem 4.3(2),

R1(x, y) = R1(y1̄)(x) = clRτ1
(y1̄)(x) = clRτ2

(y1̄)(x) = R2(x, y)

for any x, y ∈ U . Then R1 = R2.
Conversely, this is obvious.

4.2 IVF relations based on IVF topologies

4.2.1 IVF relations induced by IVF topologies

Definition 4.6. Let τ be an IVF topology. Define an IVF relation Rτ on U by

Rτ (x, y) = clτ (y1̄)(x)

for each (x, y) ∈ U ×U . Then Rτ is called the IVF relation induced by τ on U .

Theorem 4.7. Let τ be an IVF topology on U and let Rτ be the IVF relation
induced by τ on U . Then the following properties hold.

(1) Rτ is reflexive.
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(2) If {˜[a, b] : [a, b] ∈ [I]} ⊆ τ , then

Rτ (A) ⊆ intτ (A) ⊆ A ⊆ clτ (A) ⊆ Rτ (A) (A ∈ F (i)(U)).

Proof. (1) holds by Theorem 21 in [27].
(2) Since {˜[a, b] : [a, b] ∈ [I]} ⊆ τ , we have {˜[a, b] : [a, b] ∈ [I]} ⊆ τ c. For

each A ∈ F (i)(U), by Remark 2.4, Proposition 2.6 and Theorem 3.5,

clτ (A) = clτ (
⋃

y∈U

(A(y)y1̄)) =
⋃

y∈U

clτ (A(y)y1̄) =
⋃

y∈U

clτ (Ã(y) ∩ y1̄)

⊆
⋃

y∈U

(clτ (Ã(y)) ∩ clτ (y1̄)) =
⋃

y∈U

(Ã(y) ∩ clτ (y1̄)).

Then for each x ∈ U ,

clτ (A)(x) ≤
∨

y∈U

(Ã(y)(x) ∧ clτ (y1̄)(x)) =
∨

y∈U

(A(y) ∧Rτ (x, y)) = Rτ (A)(x).

Hence clτ (A) ⊆ Rτ (A).
By Proposition 2.6(4) and Theorem 3.5(3),

intτ (A) = (clτ (Ac))c ⊇ (Rτ (Ac))c = Rτ (A).

So Rτ (A) ⊆ intτ (A) ⊆ A ⊆ clτ (A) ⊆ Rτ (A).

Theorem 4.8. Let R be a reflexive IVF relation on U , let τR be the IVF
topology induced by τ on U and let RτR

be the IVF relation induced by τ on U .
If R is transitive, then RτR

= R.

Proof. For each (x, y) ∈ U × U , by Remark 3.3(1) and Theorem 4.3(2),

R(x, y) = R(y1̄)(x) = clθR
(y1̄)(x) = clτR

(y1̄)(x)

Note that RτR
(x, y) = clτR

(y1̄)(x). Then RτR
(x, y) = R(x, y).

Thus RτR
= R.

4.2.2 The (CC) axiom

An IVF topology τ on U is said to satisfy the follows:
The (CC) axiom: for any [a, b] ∈ [I] and A ∈ F (i)(U),

clτ ([a, b]A) = [a, b]clτ (A).

Proposition 4.9. Let τ be an IVF topology on U . If τ satisfies the (CC) axiom,
then

(1) Rτ is the closure operator of τ .
(2) Rτ is the interior operator of τ .
(3) For each [a, b] ∈ [I], ˜[a, b] ∈ τ .
(4) τ is Alexandrov.
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Proof. (1) For each A ∈ F (i)(U), by Remark 2.4 and Proposition 2.6(5),

clτ (A) = clτ (
⋃

y∈U

(A(y)y1̄)) =
⋃

y∈U

clτ (A(y)y1̄) =
⋃

y∈U

(A(y)clτ (y1̄)).

Then for each x ∈ U ,

clτ (A)(x) =
∨

y∈U

(A(y)(x) ∧ clτ (y1̄)(x)) =
∨

y∈U

(A(y) ∧Rτ (x, y)) = Rτ (A)(x).

Hence Rτ (A) = clτ (A). Thus Rτ is the closure operator of τ .
(2) This holds by (1), Proposition 2.6(4) and Theorem 3.5(3).
(3) For each [a, b] ∈ [I], by (2), Remark 3.3(2) and Proposition 2.6(2),

˜[a, b] ⊇ intτ ( ˜[a, b]) = R( ˜[a, b]) ⊇ ˜[a, b].

Then intτ ( ˜[a, b]) = ˜[a, b] and so ˜[a, b] ∈ τ .
(4) Let {Aj : j ∈ J} ⊆ τ . By (2), then for each j ∈ J , Aj = intτ (Aj) =

R(Aj). By Proposition 2.6 and Theorem 3.5,
⋂

j∈J

Aj =
⋂

j∈J

R(Aj) = R(
⋂

j∈J

Aj) = intτ (
⋂

j∈J

Aj).

So
⋂

j∈J

Aj ∈ τ . Hence τ is Alexandrov.

Proposition 4.10. Let R be a preorder IVF relation on U . Then τR satisfies
the (CC) axiom.

Proof. For any [a, b] ∈ [I] and A ∈ F (i)(U), by Theorems 4.3(2) and 3.5(5),

clτR
([a, b]A) = R([a, b]A) = [a, b]R(A) = [a, b]clτR

(A).

Thus τR satisfies the (CC) axiom.

Theorem 4.11. Let τ be an IVF topology on U and {˜[a, b] : [a, b] ∈ [I]} ⊆ τ .
Let Rτ be the IVF relation induced by τ on U and let τRτ

be the IVF topology
induced by Rτ on U . Then

τRτ
= τ if and only if τ satisfies the (CC) axiom.

Proof. Necessity. Let τRτ = τ . By Theorems 4.7(1), Rτ is reflexive.
For each A ∈ F (i)(U), by Theorems 4.3(2) and 4.7(2),

intτ (A) = intτRτ
(A) ⊆ Rτ (A) ⊆ intτ (A).

Then intτ (A) = Rτ (A). So Rτ is the interior operator of τ . By Theorem 3.6(1),
Rτ is a preorder. By Proposition 4.10, τ satisfies the (CC) axiom.
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Sufficiency. By Theorem 4.7(1), Rτ is reflexive. For any x, y, z ∈ U , put
cl(z1̄)(y) = [a, b]. By Remark 2.4 and Theorem 3.5(2),

[a, b]clτ (y1̄) = clτ ([a, b]y1̄) = clτ (clτ (z1̄)(y)y1̄)

⊆ clτ (
⋃

t∈U

(clτ (z1̄)(t)t1̄)) = clτ (clτ (z1̄)) = clτ (z1̄).

Then

Rτ (x, y) ∧Rτ (y, z) = clτ (y1̄)(x) ∧ clτ (z1̄)(y) = clτ (y1̄)(x) ∧ [a, b]
= [a, b] ∧ clτ (y1̄)(x) = ([a, b]clτ (y1̄))(x)
≤ clτ (z1̄)(x) = Rτ (x, z).

So R is transitive.
So Rτ is preorder. For each A ∈ F (i)(U), by Theorem 4.3(2),

clτRτ
(A) = clθRτ

(A) = Rτ (A).

By Proposition 4.9(1), Rτ (A) = clτ (A). So clτRτ
(A) = clτ (A).

Thus τRτ
= τ .

Theorem 4.12. Let

Σ = {R : R is a preorder IV F relation on U}

and

Γ = {τ : τ is an IV F topology on U satisfying the (CC) axiom }.

Then there exists a one-to-one correspondence between Σ and Γ.

Proof. Two mappings f : Σ → Γ and g : Γ → Σ are defined as follows:

f(R) = τR (R ∈ Σ), g(τ) = Rτ (τ ∈ Γ).

By Theorem 4.8, g ◦ f = iΣ, where g ◦ f is the composition of f and g, and
iΣ is the identity mapping on Γ.

By Proposition 4.9(3) and Theorem 4.11, f ◦ g = iΓ, where f ◦ g is the
composition of g and f , and iΓ is the identity mapping on Σ.

Hence f and g are two one-to-one correspondences. This prove that there
exists a one-to-one correspondence between Σ and Γ.

Theorem 4.13. Let τ be an IVF topology on U . Then the following are equiv-
alent.

(1) τ satisfies the (CC) axiom;
(2) For any [a, b] ∈ [I] and A ∈ F (i)(U),

intτ ( ˜[a, b] ∪A) = ˜[a, b] ∪ intτ (A);
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(3) There exists a preorder IVF relation ρ on U such that ρ is the closure
operator of τ ;

(4) There exists a preorder IVF relation ρ on U such that ρ is the interior
operator of τ ;

(5) Rτ is the closure operator of τ ;
(6) Rτ is the interior operator of τ .

Proof. (1) ⇐⇒ (2) is obvious.
(1) =⇒ (3). Suppose that τ satisfies the (CC) axiom. Pick ρ = Rτ . By

Proposition 4.9(1), ρ is the closure operator of τ . By Theorem 3.6(2), ρ is
preorder.

(3) =⇒ (4). Let ρ be the closure operator of τ for some preorder IVF relation
ρ on U . For each A ∈ F (i)(U), by Proposition 2.6(4) and Theorem 3.5(3),

ρ(A) = (ρ(Ac))c = (clτ (Ac))c = intτ (A).

Thus, ρ is the interior operator of τ .
(4) =⇒ (6). Let ρ be the interior operator of τ for some preorder IVF relation

ρ on U . For each (x, y) ∈ U × U , by Remark 3.3(1),

ρ(x, y) = 1̄− ρ((y1̄)
c)(x) = 1̄− intτ ((y1̄)

c)(x) = clτ (y1̄)(x) = Rτ (x, y).

Then ρ = Rτ . Note that ρ is the interior operator of τ . Then Rτ is the interior
operator of τ .

(6) ⇐⇒ (5) holds by Proposition 2.6(4) and Theorem 3.5(3).
(5) =⇒ (1). For any [a, b] ∈ [I] and A ∈ F (i)(U), by Theorem 3.5(5),

clτ ([a, b]A) = Rτ ([a, b]A) = [a, b]Rτ (A) = [a, b]clτ (A).

Thus τ satisfies the (CC) axiom.

5 Lattice structures of IVF approximation spaces

Let (U,R) be an IVF approximation space. We denote

Fix(R) = {A ∈ F (i)(U) : R(A) = A}, F ix(R) = {A ∈ F (i)(U) : R(A) = A};

Im(R) = {R(A) : A ∈ F (i)(U)}, Im(R) = {R(A) : A ∈ F (i)(U)};
Def(R) = {A ∈ F (i)(U) : R(A) = R(A)};

Fix(R◦R) = {A ∈ F (i)(U) : R(R(A)) = A}, F ix(R◦R) = {A ∈ F (i)(U) : R(R(A)) = A};
O(R) = {A ∈ F (i)(U) : R(R(A)) = R(A)}, O(R) = {A ∈ F (i)(U) : R(R(A)) = R(A)}.

For A ⊆ F (i)(U), denote Ac = {A : Ac ∈ A}.
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Proposition 5.1. Let (U,R) be an IVF approximation space.
(1)

Fix(R) ⊆ Im(R), F ix(R) ⊆ Im(R);

Fix(R) ⊆ Fix(R ◦R), F ix(R) ⊆ Fix(R ◦R).

(2) If R is reflexive, then
a) For each [a, b] ∈ [I],

˜[a, b] ∈ Fix(R)
⋂

Fix(R)
⋂

Fix(R ◦R)
⋂

Fix(R ◦R)
⋂

Im(R)
⋂

Im(R)
⋂

Def(R)
⋂

O(R)
⋂

O(R).

b)
(Fix(R))c = Fix(R);

(Fix(R ◦R))c = Fix(R ◦R);

(Im(R))c = Im(R);

(O(R))c = O(R).

c)

Fix(R) = Fix(R ◦R) ⊆ O(R), F ix(R) = Fix(R ◦R) ⊆ O(R);

Fix(R ◦R) ⊆ Im(R), F ix(R ◦R) ⊆ Im(R).

d)
Def(R) = Fix(R)

⋂
Fix(R).

(3) If R is proorder, then

Fix(R) = Im(R), F ix(R) = Im(R);

O(R) = F (i)(U) = O(R).

Proof. These hold by Theorem 3.5, Theorem 3.7 and Corollary 3.8.

Theorem 5.2. Let (U,R) be an IVF approximation space. If R is reflexive,
then

(1) (Fix(R),∩,∪) is a complete distributive lattice.
(2) (Fix(R),∩,∪) is a complete distributive lattice.

Proof. (1) By Proposition 5.1(1), Fix(R) 6= ∅.
Let {Aj : j ∈ J} ⊆ Fix(R). Then R(Aj) = Aj for each j ∈ J . By Theorem

3.5,

R(
⋂

j∈J

Aj) =
⋂

j∈J

R(Aj) =
⋂

j∈J

Aj , R(
⋃

j∈J

Aj) ⊇
⋃

j∈J

R(Aj) =
⋃

j∈J

Aj .

By Theorem 3.7(2), R(
⋃

j∈J

Aj) ⊆
⋃

j∈J

Aj . Then R(
⋃

j∈J

Aj) =
⋃

j∈J

Aj . So
⋂

j∈J

Aj ,
⋃

j∈J

Aj ∈
Fix(R).

Thus (Fix(R),∩,∪) is a complete lattice. Note that (Fix(R),∩,∪) satisfies
distributive law. Then (Fix(R),∩,∪) is a complete distributive lattice.

(2) The proof is similar to (1).
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Theorem 5.3. Let (U,R) be an IVF approximation space. If R is preorder,
then (Im(R),∩,∪) and (Im(R),∩,∪) are both complete distributive lattice.

Proof. This hold by Proposition 5.1(4) and Theorem 5.2.

Theorem 5.4. Let (U,R) be an IVF approximation space. If R is reflexive,
then (Def(R),∩,∪) is a complete lattice.

Proof. Let {Aj : j ∈ J} ⊆ Def(R). Then R(Aj) = R(Aj) for each j ∈ J . By
Theorems 3.5 and 3.7(2),

R(
⋂

j∈J

Aj) =
⋂

j∈J

R(Aj) =
⋂

j∈J

R(Aj) ⊇ R(
⋂

j∈J

Aj), R(
⋂

j∈J

Aj) ⊆ R(
⋂

j∈J

Aj);

R(
⋃

j∈J

Aj) ⊇
⋃

j∈J

R(Aj) =
⋃

j∈J

R(Aj) = R(
⋃

j∈J

Aj), R(
⋃

j∈J

Aj) ⊆ R(
⋃

j∈J

Aj).

Then R(
⋂

j∈J

Aj) = R(
⋂

j∈J

Aj), R(
⋃

j∈J

Aj) = R(
⋃

j∈J

Aj). So
⋂

j∈J

Aj ,
⋃

j∈J

Aj ∈
Def(R).

Thus (Def(R),∩,∪) is a complete lattice.

Theorem 5.5. Let (U,R) be an IVF approximation space. If R is reflexive,
then

(1) (Fix(R ◦R),∩,∪) is a complete distributive lattice.
(2) (Fix(R ◦R),∩,∪) is a complete distributive lattice.

Proof. (1) By Proposition 5.1(1), Fix(R ◦R) 6= ∅.
Let {Aj : j ∈ J} ⊆ Fix(R ◦ R). Then R(R(Aj)) = Aj for each j ∈ J . By

Theorem 3.5,

R(R(
⋂

j∈J

Aj)) = R(
⋂

j∈J

R(Aj)) =
⋂

j∈J

R(R(Aj)) =
⋂

j∈J

Aj ,

R(R(
⋃

j∈J

Aj)) ⊇ R(
⋃

j∈J

R(Aj)) ⊇
⋃

j∈J

R((R(Aj)) =
⋃

j∈J

Aj .

By Theorem 3.7(2), R(R(
⋃

j∈J

Aj)) ⊆ R(
⋃

j∈J

Aj) ⊆
⋃

j∈J

Aj . Then R(R(
⋃

j∈J

Aj)) =
⋃

j∈J

Aj . So
⋂

j∈J

Aj ,
⋃

j∈J

Aj ∈ Fix(R ◦ R). Thus (Fix(R ◦ R),∩,∪) is a complete

lattice.
Note that (Fix(R◦R),∩,∪) satisfies distributive law. Then (Fix(R◦R),∩,∪)

is a complete distributive lattice.
(2) The proof is similar to (1).

Theorem 5.6. Let (U,R) be an IVF approximation space. If R is reflexive,
then

(1) (O(R),∩,∪) is a complete distributive lattice.
(2) (O(R),∩,∪) is a complete distributive lattice.
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Proof. (1) By Proposition 5.1(1), O(R) 6= ∅.
Let {Aj : j ∈ J} ⊆ O(R). Then R(R(Aj)) = R(Aj) for each j ∈ J . By

Theorem 3.5,

R(R(
⋂

j∈J

Aj)) = R(
⋂

j∈J

R(Aj)) =
⋂

j∈J

R(R(Aj)) =
⋂

j∈J

R(Aj) = R(
⋂

j∈J

Aj),

R(R(
⋃

j∈J

Aj)) ⊇ R(
⋃

j∈J

R(Aj)) ⊇
⋃

j∈J

R(R(Aj)) =
⋃

j∈J

R(Aj).

By Theorem 3.7(2), R(R(
⋃

j∈J

Aj)) ⊆ R(
⋃

j∈J

Aj). Then R(R(
⋃

j∈J

Aj) =
⋃

j∈J

Aj .

So
⋂

j∈J

Aj ,
⋃

j∈J

Aj ∈ O(R).

Thus (O(R),∩,∪) is a complete distributive lattice.
(3) The proof is similar to (2).
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Abstract. In this paper, we use a fixed point method to prove the stability of ternary m-derivations on ternary Banach

algebras.

1. Introduction and preliminaries

Consider the functional equation =1(f) = =2(f) (=) in a certain general setting. A mapping g is an approximate solution

of (=) if =1(g) and =2(g) are close in some sense. The Ulam stability problem asks whether or not there is a true solution of

(=) near g. A functional equation is superstable if every approximate solution of the equation is an exact solution of it. For

more details about various results concerning such problems the reader is referred to [3, 7, 9, 11, 14, 15, 18, 19, 20, 22, 28].

Ternary algebraic operations were considered in the 19th century by several mathematicians: Cayley [6] introduced the

notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii in 1990 [13]. As an application

in physics, the quark model inspired a particular brand of ternary algebraic systems. There are also some applications,

although still hypothetical, in the fractional quantum Hall effect, the non-standard statistics (the anyons), supersymmetric

theories, Yang-Baxter equation, etc, (cf. [1, 29]).

The comments on physical applications of ternary structures can be found in (see [10, 24, 26]).

The monomial f(x) = axm (x ∈ R, m = 1, 2, 3, 4) is a solution of the following functional equation

f(ax+ y) + f(ax− y) = am−2[f(x+ y) + f(x− y)] + 2(a2 − 1)[am−2f(x) +
(m− 2)(1− (m− 2)2)

6
f(y)]. (1.1)

For m = 1, 2, 3, 4, the functional equation (1.1) is equivalent to the additive, quadratic, cubic and quartic functional equation,

respectively. The general solution of the functional equation (1.1) for any fixed integer a with a 6= 0,±1, was obtained by

Eshaghi Gordji et al. [8].

Let A be an algebra. An additive mapping f : A→ A is called a derivation if f(xy) = xf(y)+f(x)y holds for all x, y ∈ A.

If, in addition, f(λx) = λf(x) for all x ∈ A and all λ ∈ F, then f is called a linear derivation, where F denotes the scalar

field of A. The stability result concerning derivations between operator algebras was first obtained by Šemrl [23]. In [2],

Badora proved the stability of functional equation f(xy) = xf(y) + f(x)y, where f is a mapping on normed algebra A with

unit. Recently, Miura et al. [17] examined the stability of derivations on Banach algebras.

Suppose that A is a Banach algebra. Let θ, r be nonnegative real numbers. If r 6= 1 and f : A → A is a mapping such

that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖r + ‖y‖r),

02014 Mathematics Subject Classification. Primary 39B52; 39B82; 46B99; 17A40.
0Keywords: ternary m-derivations; stability; ternary algebra.
0Corresponding Author: Jrlee@daejin.ac.kr (Jung Rye Lee).
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‖f(xy)− xf(y)− f(x)y‖ ≤ θ(‖x‖r · ‖y‖r)

for all x, y ∈ A. Then there exists a unique derivation D : A→ A satisfying

‖f(x)−D(x)‖ ≤ 2θ

|2− 2r| ‖x‖
r,

for all x, y ∈ A. In particular, if A is a Banach algebra, then f is a derivation.

The various problems of the stability of derivations have been studied during last few years (see, for instance, [10, 25, 27]).

Definition 1.1. Let A be a ternary algebra.

(i) A mapping f : A→ A is called a ternary additive derivation (briefly, ternary 1-derivation) if f is an additive mapping

satisfying f([a, b, c]) = [f(a), b, c] + [a, f(b), c] + [a, b, f(c)] for all a, b, c ∈ A;

(ii) A mapping f : A → A is called a ternary quadratic derivation (briefly, ternary 2-derivation) if f is a quadratic

mapping satisfying f([a, b, c]) =
[
f(a), b, [b, c, c]

]
+

[
a, a, [f(b), c, c]

]
+

[
a, a, [b, b, f(c)]

]
for all a, b, c ∈ A;

(iii) A mapping f : A → A is called a ternary cubic derivation (briefly, ternary 3-derivation) if f is a cubic mapping

satisfying f([a, b, c]) =
[
f(a), b, [b, b, [c, c, c]]

]
+

[
a, a, [a, f(b), [c, c, c]]

]
+

[
a, a, [a, b, [b, b, f(c)]]

]
for all a, b, c ∈ A;

(iv) A mapping f : A→ A is called a ternary quartic derivation (briefly, ternary 4-derivation) if f is a quartic mapping

satisfying f([a, b, c]) =
[
f(a), b, [b, b, [b, c, [c, c, c]]]

]
+
[
a, a, [a, a, [f(b), c, [c, c, c]]]

]
+
[
a, a, [a, a, [b, b, [b, b, f(c)]]]

]
for all a, b, c ∈ A.

The main theorem of [16], which is called the alternative of fixed point, plays an important role in proving the stability

problem. Recently, Cădariu and Radu [4] applied the fixed point method to the investigation of the Cauchy additive

functional equation (see also [5, 12, 21]).

In this paper, we adopt the idea of Cădariu and Radu to establish the stability of m−derivations on ternary Banach

algebras related to the functional equation (1.1). In addition, we study the superstability of the functional equation (1.1)

by suitable control functions.

2. Stability of ternary m-derivations on ternary Banach algebras via fixed point method

Throughout this section, we suppose that A is a ternary Banach algebra, and m is a fixed positive integer less than 5.

For convenience, we use the following abbreviation for a given mapping f : A→ A

∆mf(x, y) = f(wx+ y) + f(wx− y)

−wm−2[f(x+ y) + f(x− y)]− 2(w2 − 1)[wm−2f(x) +
(m− 2)(1− (m− 2)2)

6
f(y)]

for all x, y ∈ A and any fixed integers w 6= 0,±1.

Let

F1f(a, b, c) : = [f(a), b, c] + [a, f(b), c] + [a, b, f(c)],

F2f(a, b, c) : =
[
f(a), b, [b, c, c]

]
+

[
a, a, [f(b), c, c]

]
+

[
a, a, [b, b, f(c)]

]
,

F3f(a, b, c) : =
[
f(a), b, [b, b, [c, c, c]]

]
+

[
a, a, [a, f(b), [c, c, c]]

]
+

[
a, a, [a, b, [b, b, f(c)]]

]
,

F4f(a, b, c) : =
[
f(a), b, [b, b, [b, c, [c, c, c]]]

]
+

[
a, a, [a, a, [f(b), c, [c, c, c]]]

]
+

[
a, a, [a, a, [b, b, [b, b, f(c)]]]

for all a, b, c ∈ A.

Theorem 2.1. Let f : A→ A be a mapping for which there exists function ϕm : A5 → [0,∞) such that

‖∆mf(x, y) + f([a, b, c])− Fmf(a, b, c)‖ ≤ ϕm(x, y, a, b, c) (2.1)
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for all x, y, a, b, c ∈ A. If there exists a constant 0 < L < 1 such that

ϕm

(
x

w
,
y

w
,
a

w
,
b

w
,
c

w

)
≤ L

|w|mϕm(x, y, a, b, c), (2.2)

for all x, y, a, b, c ∈ A, then there exists a unique ternary m-derivation Dm : A→ A such that

‖f(x)−Dm(x)‖ ≤ L

2|w|m(1− L)
ϕm(x, 0, 0, 0, 0), (2.3)

for all x ∈ A.

Proof. First of all, if we take x = y = a = b = c = 0 in (2.2), then we obtain that ϕm(0, 0, 0, 0, 0) = 0, since 0 < L < 1 and

w 6= 0,±1. Letting x = y = a = b = c = 0 in (2.1), we obtain f(0) = 0.

It follows from (2.2) that

lim
n→∞

|w|mnϕm

(
x

wn
,
y

wn
,
a

wn
,
b

wn
,
c

wn

)
= 0 (2.4)

for all x, y, a, b, c ∈ A.

Let us define Ω to be the set of all mappings g : A→ A and introduce a generalized metric on Ω as follows:

d(g, h) = dϕm(g, h) = inf{K ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Kϕm(x, 0, 0, 0, 0), x ∈ A}

It is easy to show that (Ω, d) is a generalized complete metric space [4, 5].

Now we consider the mapping T : Ω→ Ω defined by Tg(x) = wm g( x
w

) for all x ∈ A and all g ∈ Ω.

Note that for all g, h ∈ Ω,

d(g, h) < K ⇒ ‖g(x)− h(x)‖ ≤ Kϕm(x, 0, 0, 0, 0) for all x ∈ A,

⇒
∥∥∥wmg

( x
w

)
− wmh

( x
w

)∥∥∥ ≤ |w|m K ϕm

( x
w
, 0, 0, 0, 0

)
for all x ∈ A,

⇒
∥∥∥wmg

( x
w

)
− wmh

( x
w

)∥∥∥ ≤ L K ϕm(x, 0, 0, 0, 0) for all x ∈ A,

⇒ d(Tg, Th) ≤ L K.

Hence we see that

d(Tg, Th) ≤ L d(g, h)

for all g, h ∈ Ω, that is, T is a strictly contractive mapping of Ω with the Lipschitz constant L.

Putting y = a = b = c = 0 in (2.1), we have

‖2f(wx)− 2wmf(x)‖ ≤ ϕm(x, 0, 0, 0, 0) (2.5)

for all x ∈ A. So ∥∥∥f(x)− wmf
( x
w

)∥∥∥ ≤ 1

2
ϕm

( x
w
, 0, 0, 0, 0

)
≤ L

2|w|m ϕm(x, 0, 0, 0, 0)

for all x ∈ A, that is, d(f, Tf) ≤ L
2|w|m <∞.

Now, from the fixed point alternative, it follows that there exists a fixed point Dm of T in Ω such that

Dm(x) = lim
n→∞

wmnf
( x

wn

)
(2.6)

for all x ∈ A, since limn→∞ d(Tnf,Dm) = 0.

On the other hand, it follows from (2.1), (2.4) and (2.6) that

‖∆mDm(x, y)‖ = lim
n→∞

|w|mn
∥∥∥∆mf

( x

wn
,
y

wn

)∥∥∥ ≤ lim
n→∞

|w|mnϕm

( x

wn
,
y

wn
, 0, 0, 0

)
= 0
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for all x, y ∈ A. So ∆mDm(x, y) = 0. By [8], Dm is an m-mapping. So it follows from the definition of Dm, (2.2) and (2.4)

that

‖Dm([a, b, c])− FmDm(a, b, c)‖ = lim
n→∞

|w|3mn

∥∥∥∥f ([
a

wn
,
b

wn
,
c

wn
]

)
− Fmf

(
a

wn
,
b

wn
,
c

wn

)∥∥∥∥
≤ lim

n→∞
|w|3mnϕm

(
0, 0,

a

wn
,
b

en
,
c

wn

)
= 0

for all a, b, c ∈ A. So Dm([a, b, c]) = FmDm(a, b, c) for all a, b, c ∈ A.

According to the fixed point alterative, since Dm is the unique fixed point of T in the set Λ = {g ∈ Ω : d(f, g) < ∞},

Dm is the unique mapping such that

‖f(x)−Dm(x)‖ ≤ K ϕm(x, 0, 0, 0, 0)

for all x ∈ A and K > 0. Again using the fixed point alterative, we obtain

d(f,Dm) ≤ 1

1− Ld(f, Tf) ≤ L

2|w|m(1− L)

and so we conclude that

‖f(x)−Dm(x)‖ ≤ L

2|w|m(1− L)
ϕm(x, 0, 0, 0, 0)

for all x ∈ A. This completes the proof. �

Corollary 2.2. Let θ, r, s be nonnegative real numbers with s > m and r > m. Suppose that f : A→ A is a mapping such

that

‖∆mf(x, y) + f([a, b, c])− Fmf(a, b, c)‖ ≤ θ(‖x‖r + ‖y‖r + ‖a‖s · ‖b‖s · ‖c‖s)

for all x, y, a, b, c ∈ A. Then there exists a unique ternary m-derivation Dm : A→ A satisfying

‖f(x)−Dm(x)‖ ≤ θ

2(|w|r − |w|m)
‖x‖r

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕm(x, y, a, b, c) := θ(‖x‖r + ‖y‖r + ‖a‖s · ‖b‖s · ‖c‖s)

for all x, y, a, b, c ∈ A. Then we can choose L = |w|m−r and we get the desired results. �

Remark 2.3. Let f : A→ A be a mapping with f(0) = 0 for which there exist functions ϕm : A5 → [0,∞) satisfying (2.1)

and (2.2). Let 0 < L < 1 be a constant such that ϕm(wx,wy,wa,wb, wc) ≤ |w|mLϕm(x, y, a, b, c) for all x, y, a, b, c ∈ A. By

a similar method to the proof of Theorem 2.1, we can show that there exists a unique ternary m-derivation Dm : A → X

satisfying

‖f(x)−Dm(x)‖ ≤ 1

2|w|m(1− L)
ϕm(x, 0, 0, 0, 0)

for all x ∈ A.

For the case ϕm(x, y, a, b, c) := δ + θ(‖x‖r + ‖y‖r + ‖a‖s.‖b‖s.‖c‖s) (where θ, δ are nonnegative real numbers and 0 <

r, s < m), there exists a unique ternary m-derivation Dm : A→ A satisfying

‖f(x)−Dm(x)‖ ≤ δ

2(|w|m − |w|r)
+

θ

2(|w|m − |w|r)
‖x‖r

for all x ∈ A.
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On IF approximating spaces ∗

Bin Qin† Fanping Zeng‡ Kesong Yan§
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Abstract: In this paper, a IF approximating space is introduced. It is a
particular type of IF topological spaces which associate with IF relations. A
characteristic condition for IF topological spaces to be IF approximating spaces
is established.

Keywords: IF set; IF relation; IF approximate space; IF rough set; IF
topology; IF approximating space.

1 Introduction

Rough set theory was proposed by Pawlak [16, 17] as a mathematical tool to
handle imprecision and uncertainty in data analysis. Usefulness and versatility
of this theory have amply been demonstrated by successful applications in a
variety of problems [21, 22].

The basic structure of rough set theory is an approximation space. Based
on it, rough approximations can be induced. Using them, knowledge hidden in
information systems may be revealed and expressed in the form of decision rules
[16].

Intuitionistic fuzzy (IF, for short) sets were originated by Atanassov [1, 2]. It
is a straightforward extension of Zadeh’s fuzzy sets [26]. IF sets have played an
useful role in the research of uncertainty theories. Unlike a fuzzy set, which gives
a degree of which element belongs to a set, an IF set gives both a membership
degree and a nonmembership degree. Thus, an IF set is more objective than a
fuzzy set to describe the vagueness of data or information.
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Recently, IF approximate spaces were introduced and then IF rough sets were
presented [6, 7, 8, 20, 23, 27, 28, 29, 30]. For example, Zhou et al. [27, 28, 29, 30]
studied structures of IF rough sets, Wu et al. [23] researched IF topologies based
on preorder IF relations, Zhang et al. [31] investigated IF rough sets on two
universes.

It is well known that topology is a branch of mathematics, whose concepts
exist not only in almost all branches of mathematics but also in many real life
applications. Topology and rough set theory have been widely used in research
field of computer science. An interesting and natural research topic is to study
the relationship between rough sets and topologies.

The purpose of this paper is to investigate IF approximating space where
the given IF topology coincides with the IF topology induced by some reflexive
IF relation.

2 Preliminaries

Throughout this paper, “ Intuitionistic fuzzy ” is briefly written “ IF ”, X
denotes a infinite universe. I denotes [0, 1], J = {λ ∈ I × I : a + b ≤ 1}, F (X)
denotes the family of all fuzzy sets in X and IF (X) denotes the family of all
IF sets in X.

In this section, we recall some basic notions and properties related to IF
sets, IF topologies and fuzzy rough sets.

2.1 IF sets

Definition 2.1 ([11]). Let (a, b), (c, d) ∈ I × I. Define
(1) (a, b) = (c, d) ⇐⇒ a = c, b = d.
(2) (a, b) t (c, d) = (a ∨ c, b ∧ d), (a, b) u (c, d) = (a ∧ c, b ∨ d).
(3) (a, b)c = (b, a).
Moreover, for {(aα, bα) : α ∈ Γ} ⊆ I × I,⊔
α∈Γ

(aα, bα) = (
∨

α∈Γ

aα,
∧

α∈Γ

bα) and
d

α∈Γ

(aα, bα) = (
∧

α∈Γ

aα,
∨

α∈Γ

bα).

Definition 2.2 ([11]). Let (a, b), (c, d) ∈ J and let S ⊆ J × J . (a, b)S(c, d), if
a ≤ c and b ≥ d. We denote S by ≤.

Obviously, (a, b) = (c, d) ⇐⇒ (a, b) ≤ (c, d) and (c, d) ≤ (a, b).

Remark 2.3. (1) (J,≤) be a poset with 0J = (0, 1) and 1J = (1, 0).
(2) (a, b)cc = (a, b).
(3) ((a, b) t (c, d)) t (e, f) = (a, b) t ((c, d) t (e, f)),

((a, b) u (c, d)) u (e, f) = (a, b) u ((c, d) u (e, f)).
(4) (a, b) t (c, d) = (c, d) t (a, b), (a, b) u (c, d) = (c, d) u (a, b).
(5) ((a, b) t (c, d)) u (e, f) = ((a, b) u (e, f)) t ((c, d) u (e, f)).

((a, b) u (c, d)) t (e, f) = ((a, b) t (e, f)) u ((c, d) t (e, f)).
(6) (

⊔
α∈Γ

(aα, bα))c =
d

α∈Γ

(aα, bα)c, (
d

α∈Γ

(aα, bα))c =
⊔

α∈Γ

(aα, bα)c.

2
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Proposition 2.4 ([11]). (J,≤,u,t) be a complete distributive lattice.

Definition 2.5 ([1]). An IF set A in X is an object having the form

A = {< x, µA(x), νA(x) >: x ∈ X},
where µA, νA ∈ F (X) satisfying 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X, and
µA(x), νA(x) are used to define the degree of membership and the degree of non-
membership of the element x to A, respectively.

For the sake of simplicity, we give the following definition.

Definition 2.6. A is called an IF set in X, if A = (A∗, A∗) ∈ F (X) × F (X)
and for each x ∈ X, A(x) = (A∗(x), A∗(x)) ∈ J , where A∗(x), A∗(x) are used
to define the degree of membership and the degree of non-membership of the
element x to A, respectively.

For each A ⊆ IF (X), we denote

Ac = {Ac : A ∈ A},
A∗ = {A∗ : A ∈ A} and A∗ = {A∗ : A ∈ A}.

Let λ ∈ J . λ̂ represents a constant IF set which satisfies λ̂(x) = λ for each
x ∈ X. Denote 1∼ = (̂1, 0) and 0∼ = (̂0, 1).

Some IF relations and IF operations are defined as follows ([1, 2]): for any
A,B ∈ IF (X) and {Aα : α ∈ Γ} ⊆ IF (X),

(1) A = B ⇐⇒ A(x) = B(x) for each x ∈ X.
(2) A ⊆ B ⇐⇒ A(x) ≤ B(x) for each x ∈ X.

(3) (
⋃

α∈Γ

Aα)(x) =
⊔

α∈Γ

Aα(x) for each x ∈ X.

(4) (
⋂

α∈Γ

Aα)(x) =
d

α∈Γ

Aα(x) for each x ∈ X.

(5) Ac(x) = A(x)c for each x ∈ X.
(6) (λA)(x) = λ u (A∗(x), A∗(x)) for any x ∈ X and λ ∈ J .
Obviously, A = B ⇐⇒ A∗ = B∗ and A∗ = B∗ ⇐⇒ A ⊆ B and B ⊆ A.
We define two special IF sets 1y = ((1y)∗, (1y)∗) and 0y = ((0y)∗, (0y)∗) for

some y ∈ X as follows:

(1y)∗(x) =

{
1, x = y,

0, x 6= y.
(1y)∗(x) =

{
0, x = y,

1, x 6= y.

(0y)∗(x) =

{
0, x = y,

1, x 6= y.
(0y)∗(x) =

{
1, x = y,

0, x 6= y.

Remark 2.7. For each A ∈ IF (X),

A =
⋃

y∈X

(A(y)1y).

3
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2.2 IF topologies

Definition 2.8 ([5]). Let τ ⊆ IF (X). Then τ is called an IF topology on X, if
(i) 0∼, 1∼ ∈ τ ,
(ii) A,B ∈ τ implies A ∩B ∈ τ ,
(iii) {Aα : α ∈ Γ} ⊆ τ implies

⋃{Aα : α ∈ Γ} ∈ τ .
The pair (X, τ) is called an IF topological space and every member of τ is

called an IF open set in X. Its complement is called an IF closed set in X.

We denote τ c = {A : Ac ∈ τ}.
The interior and closure of A ∈ IF (X) denoted respectively by int(A) and

cl(A), are defined as follows:

int(A) or intτ (A) =
⋃
{B ∈ τ : B ⊆ A},

cl(A) or clτ (A) =
⋂
{B ∈ τ c : B ⊇ A}.

An IF topology τ is called Alexandrov, if (i) and (ii) in Definition 2.8 are
replaced by

(i)′ For each λ ∈ J , λ̂ ∈ τ .
(ii)′ {Aα : α ∈ Γ} ⊆ τ implies

⋂
α∈Γ

Aα ∈ τ .

Proposition 2.9 ([5]). Let (X, τ) be an IF topological space. Then
(1) τ∗ is the fuzzy topology on X in Chang’ sense.
(2) (τ∗)c = {(A∗)c : A ∈ τ} is the fuzzy topology on X in Chang’ sense and

τ∗ is the family of all fuzzy closed sets in X.

Proposition 2.10 ([5]). Let (X, τ) be an IF topological space and A ∈ IF (X).
Then

(1) If A ∈ τ , then A∗ ∈ τ∗ and A∗ ∈ (τ∗)c.
(2) If A ∈ τ c, then A∗ ∈ (τ∗)c and A∗ ∈ τ∗.

2.3 Fuzzy rough sets

Recall that R is called a fuzzy relation on X if R ∈ F (X ×X).

Definition 2.11 ([18]). Let R be a fuzzy relation on X. Then the pair (X, R)
is called a fuzzy approximation space. Based on (X, R), the fuzzy lower and the
fuzzy upper approximation of A ∈ F (X) with respect to (X, R), denoted by R(A)
and R(A) are respectively, defined as follows:

R(A)(x) =
∧

y∈X

(A(y) ∨ (1−R(x, y))) (x ∈ X)

and
R(A)(x) =

∨

y∈X

(A(y) ∧R(x, y)) (x ∈ X).

4
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The pair (R(A), R(A)) is called the fuzzy rough set of A with respect to
(X, R).

R : F (X) → F (X) and R : F (X) → F (X) are called the fuzzy lower ap-
proximation operator and the fuzzy upper approximation operator, respectively.
In general, we refer to R and R as the fuzzy rough approximation operators.

Proposition 2.12 ([18]). Let (X, R) be a fuzzy approximation space. Then for
any A,B ∈ F (X), {Aα : α ∈ Γ} ⊆ F (X) and λ ∈ I,

(1) R(1̄) = 1̄, R(0̄) = 0̄.
(2) A ⊆ B =⇒ R(A) ⊆ R(B), R(A) ⊆ R(B).
(3) R(Ac) = (R(A))c, R(Ac) = (R(A))c.
(4) R(

⋂
α∈Γ

Aα) =
⋂

α∈Γ

(R(Aα)), R(
⋃

α∈Γ

Aα) =
⋃

α∈Γ

(R(Aα)).

(5) R(λ̄ ∪A) = λ̄ ∪R(A), R(λA) = λR(A).

3 IF approximation spaces and IF rough sets

In this section, we investigate properties related to IF approximation spaces.
An IF relation R on X is an IF set in X×X ([3]), we write R ∈ IF (X×X),

namely,
R = (R∗, R∗),

R(x, y) = (R∗(x, y), R∗(x, y)) ∈ J for any x, y ∈ X

where
R∗ and R∗ are two fuzzy relations on X.

Let R be an IF relation on a finite set X. R may be represent by a matrix.
That is, if X = {t1, t2, ..., tn}, then R may be represented by the following
matrix




R(t1, t1) R(t1, t2) ... R(t1, tn)
R(t2, t1) R(t2, t2) ... R(t2, tn)

...
...

...
R(tn, t1) R(tn, t2) ... R(tn, tn)


 .

Definition 3.1 ([3]). Let R be an IF relation on X. Then R is called
(1) reflexive, if R(x, x) = (1, 0) for each x ∈ X.
(2) symmetric, if R(x, y) = R(y, x) for any x, y ∈ X.
(3) transitive, if R(x, z) ≥ R(x, y) uR(y, z) for any x, y, z ∈ X.

Remark 3.2. Let R be an IF relation on X. Then
(1) If R is reflexive, then R∗ and (R∗)c are reflexive.
(2) If R is symmetric, then R∗ and (R∗)c are symmetric.
(3) If R is transitive, then R∗ and (R∗)c are transitive.

Let R be an IF relation on X. R is called preorder if R is reflexive and
transitive. Rc is called the dual of R if Rc(x, y) = (R∗(x, y), R∗(x, y)) for any
x, y ∈ X.

5
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Definition 3.3 ([29]). Let R be an IF relation on X. Then the pair (X, R) is
called an IF approximation space. Based on (X, R), the IF lower and the IF
upper approximation of A ∈ IF (X) with respect to (X, R), denoted by R(A) and
R(A), are two IF sets and are respectively defined as follows:

R(A)(x) = ((R(A))∗(x), (R(A))∗(x)) (x ∈ X),

R(A)(x) = ((R(A))∗(x), (R(A))∗(x)) (x ∈ X),

where

(R(A))∗(x) =
∧

y∈X

(A∗(y) ∨R∗(x, y)), (R(A))∗(x) =
∨

y∈X

(A∗(y) ∧R∗(x, y)),

(R(A))∗(x) =
∨

y∈X

(A∗(y) ∧R∗(x, y)), (R(A))∗(x) =
∧

y∈X

(A∗(y) ∨R∗(x, y)).

The pair (R(A), R(A)) is called the IF rough set of A with respect to (X, R).
R : IF (X) → IF (X) and R : IF (X) → IF (X) are called the IF lower

approximation operator and the IF upper approximation operator, respectively.
In general, we refer to R and R as the IF rough approximation operators.

Remark 3.4 ([29]). Let (X, R) be an IF approximation space. Then

R(1x)(y) = R(y, x) and R(0x)(y) = Rc(y, x) (x, y ∈ X).

Proposition 3.5. Let (X, R) be an IF approximation space. Then for any
A ∈ IF (X) and x ∈ X,

(1) (R(A))∗ = (R∗)c(A∗), (R(A))∗ = R∗(A∗),

(R(A))∗ = R∗(A∗), (R(A))∗ = (R∗)c(A∗).

(2) R(A)(x) =
d

y∈X

(A(y) tRc(x, y)), R(A)(x) =
⊔

y∈X

(A(y) uR(x, y)).

Proof. (1) This is obvious.
(2) For any A ∈ IF (X) and x ∈ X, since
l

y∈X

(A(y) tRc(x, y)) =
l

y∈X

((A∗(y), A∗(y)) t (R∗(x, y), R∗(x, y)))

=
l

y∈X

(A∗(y) ∨R∗(x, y), A∗(y) ∧R∗(x, y))

= (
∧

y∈X

(A∗(y) ∨R∗(x, y)),
∨

y∈X

(A∗(y) ∧R∗(x, y)))

= ((R(A))∗(x), (R(A))∗(x))
= R(A)(x),

we have R(A)(x) =
d

y∈X

(A(y) tRc(x, y)).

Similarly, we can prove R(A)(x) =
⊔

y∈X

(A(y) uR(x, y)).

6
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Proposition 3.6 ([29]). Let (X, R) be an IF approximation space. Then for
any A,B ∈ IF (X), {Aα : α ∈ Γ} ⊆ IF (X) and λ ∈ J ,

(1) R(1∼) = 1∼, R(0∼) = 0∼;
(2) A ⊆ B =⇒ R(A) ⊆ R(B), R(A) ⊆ R(B);
(3) R(Ac) = (R(A))c, R(Ac) = (R(A))c;
(4) R(

⋂
α∈Γ

Aα) =
⋂

α∈Γ

(R(Aα)), R(
⋃

α∈Γ

Aα) =
⋃

α∈Γ

(R(Aα));

(5) R(λ̂ ∪A) = λ̂ ∪R(A), R(λA) = λR(A).

Theorem 3.7 ([29]). Let (X, R) be an IF approximation space. Then

(1) R is reflexive ⇐⇒ (ILR) ∀A ∈ IF (X), R(A) ⊆ A.

⇐⇒ (IUR) ∀A ∈ IF (X), A ⊆ R(A).
(2) R is symmetric ⇐⇒ (ILS) ∀x, y ∈ X, R(0x)(y) = R(0y)(x).

⇐⇒ (IUS) ∀x, y ∈ X, R(1x)(y) = R(1y)(x).
(3) R is transitive ⇐⇒ (ILT ) ∀A ∈ IF (X), R(A) ⊆ R(R(A)).

⇐⇒ (IUT ) ∀A ∈ IF (X), R(R(A)) ⊆ R(A).

Proposition 3.8. Let (X, R) be an IF approximation space.
(1) For each λ ∈ J ,

R(λ̂) ⊇ λ̂ ⊇ R(λ̂).

(2) If R is reflexive, then for each λ ∈ J ,

R(λ̂) = λ̂ = R(λ̂).

Proof. (1) For any λ ∈ J and x ∈ X, by Proposition 3.5(2),

R(λ̂)(x) =
⊔

y∈X

(λ uR(x, y)) = λ u (
⊔

y∈X

R(x, y)) ≤ λ.

Hence λ̂ ⊇ R(λ̂). By Propsition 3.6(3),

R(λ̂) = (R((λ̂)c))c = (R(λ̂c))c ⊇ (λ̂c)c = λ̂.

(2) This holds by (1) and Theorem 3.7(1).

Theorem 3.9. Let R be an IF relation on X and let τ be an IF topology on
X. If one of the following conditions is satisfied, then R is preorder.

(1) R is the closure operator of τ .
(2) R is the interior operator of τ .

Proof. (1) By Remark 3.4, R(1x)(y) = R(y, x) for any x, y ∈ X. Note that R
is the interior operator of τ . Then for each x ∈ X,

R(x, x) = R(1x)(x) = clτ (1x)(x) ≥ 1x(x) = 1,

Thus R is reflexive.

7
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For any x, y, z ∈ X, denote clτ (1z)(y) = λ, by Remark 2.7, Remark 3.4 and
Proposition 3.6(5),

R(x, y) uR(y, z) = R(1y)(x) uR(1z)(y) = R(1y)(x) u clτ (1z)(y)
= R(1y)(x) u λ = λR(1y)(x) = R(λ1y)(x)
= clτ (λ1y)(x) = clτ (clτ (1z)(y)1y)(x)

≤ clτ (
⋃

t∈X

(clτ (1z)(t)1t))(x)

= clτ (clτ (1z))(x) = clτ (1z)(x) = R(x, z).

Then R is transitive. Hence R is preorder.
(2) The proof is similar to (1).

4 Relationships between IF relations and IF topolo-
gies

In this section we establish relationships between IF relations and IF topolo-
gies.

4.1 IF topologies induced by IF relations

For R ∈ IF (X ×X), we denote

τR = {A ∈ IF (X) : A = R(A)}, θR = {R(A) : A ∈ IF (X)}.
Proposition 4.1. Let (X, R) be an IF approximation space. If R is preorder,
then

τR = θR.

Proof. Obviously, τR ⊆ θR. For each R(A) ∈ θR, by Theorem 3.7, R(R(A)) =
R(A). So R(A) ∈ τR. Thus θR ⊆ τR. Hence τR = θR.

Theorem 4.2 ([29]). Let R be a preorder IF relation. Then
(1) θR is an IF topology on X.
(2) R is the interior operator of θR.
(3) R is the closure operator of θR.

Theorem 4.3. Let R be a reflexive IF relation. Then
(1) τR is an Alexandrov IF topology on X.
(2) For each A ∈ IF (X),

intτR
(A) ⊆ R(A) ⊆ A ⊆ R(A) ⊆ clτR

(A).

(3) A ∈ (τR)c ⇐⇒ A = R(A).
(4) For each λ ∈ J , λ̂ ∈ (τR)c.
(5) (τR)∗ = τ(R∗)c where τ(R∗)c = {V ∈ F (X) : (R∗)c(V ) = V }.

(τR)∗ = (τR∗)c where τR∗ = {V ∈ F (X) : R∗(V ) = V }.

8
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Proof. (1) (i) For each λ ∈ J , by Proposition 3.8(2), R(λ̂) = λ̂. Then λ̂ ∈ τR.
(ii) Let {Aα : α ∈ Γ} ⊆ τR. Then R(Aα) = Aα for each α ∈ Γ. By

Proposition 3.6(4),

R(
⋂

α∈Γ

Aα) =
⋂

α∈Γ

R(Aα) =
⋂

i∈J

Aα.

Hence
⋂

α∈Γ

Aα ∈ τR.

(iii) Let {Aα : α ∈ Γ} ⊆ τR. Then R(Aα) = Aα for each α ∈ Γ. By the
reflexivity of R and Theorem 3.7(1), R(

⋃
α∈Γ

Aα) ⊆ ⋃
α∈Γ

Aα. Note that

R(
⋃

α∈Γ

Aα) ⊇
⋃

α∈Γ

R(Aα) =
⋃

α∈Γ

Aα.

Then R(
⋃

α∈Γ

Aα) =
⋃

α∈Γ

Aα. Hence
⋃

α∈Γ

Aα ∈ τR.

So τR is an Alexandrov IF topology on X.
(2) For each A ∈ IF (X), by Proposition 3.6(2),

intτR
(A) =

⋃
{B ∈ τR : B ⊆ A} ⊆

⋃
{B ∈ τR : R(B) ⊆ R(A)}

=
⋃
{B ∈ IF (X) : B = R(B) ⊆ R(A)} ⊆ R(A).

By Proposition 3.6(3),

clτR
(A) = (intτR

(Ac))c ⊇ (R(Ac))c = R(A).

By the reflexivity of R and Proposition 3.6(1),

intτR
(A) ⊆ R(A) ⊆ A ⊆ R(A) ⊆ clτR

(A).

(3) This holds by Proposition 3.6(3).
(4) This holds by (3) and Proposition 3.8(2).
(5) Let V ∈ (τR)∗. Then A∗ = V for some A ∈ τR and so R(A) = A. By

Proposition 3.5(1),

(R∗)c(V ) = (R∗)c(A∗) = (R(A))∗ = A∗ = V.

So V ∈ τ(R∗)c . Thus (τR)∗ ⊆ τ(R∗)c .
Let V ∈ τ(R∗)c . Put A = (V, 0̄). By Remark 3.2, (R∗)c is reflexive. Then

(R∗)c(0̄) = 0̄. Thus A∗ = V , A∗ = 0̄. By Proposition 3.5(1), we have

(R(A))∗ = (R∗)c(A∗) = (R∗)c(V ) = V = A∗

and
(R(A))∗ = (R∗)c(A∗) = (R∗)c(0̄) = 0̄ = A∗.

Then R(A) = A and so A ∈ τR. This implies that V = A∗ ∈ (τR)∗. Thus
(τR)∗ ⊇ τ(R∗)c .

Hence (τR)∗ = τ(R∗)c .
Similarly, we can prove that (τR)∗ = (τR∗)c.

9
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Definition 4.4. Let R be a reflexive IF relation. Then τR is called the IF
topology induced by R on X.

Example 4.5. Let U = {x, y, z, w} and let R be an IF relation on X where

R =




(0, 1) (1, 0) (1, 0) (1, 0)
(1, 0) (0, 1) (1, 0) (1, 0)
(1, 0) (1, 0) (0, 1) (1, 0)
(1, 0) (1, 0) (1, 0) (0, 1)


 .

Then R is not reflexive.
For any A ∈ IF (X) and t ∈ X,

R(A)(t) =
l

s∈X

(A(s) tRc(t, s)) =
l

s∈X−{t}
A(s).

Suppose that A(x) ≤ A(y) ≤ A(z) ≤ A(w). Since R(A) = A, we have

A(x) ∧A(y) ∧A(z) = A(w).

Then A(t) ≥ A(w) for each t ∈ {x, y, z}. So A(x) = A(y) = A(z) = A(w).
Thus τR = {λ̂ : λ ∈ J}.

Obviously, τR is an Alexandrov IF topology on X.

4.2 IF relations induced by IF topologies

Definition 4.6. Let τ be an IF topology on X. Define an IF relation Rτ on X
by

Rτ (x, y) = clτ (1y)(x)

for each x, y ∈ X. Then Rτ is called the IF relation induced by τ on X and
(X, Rτ ) is called the IF approximation space induced by τ on X.

Theorem 4.7. Let τ be an IF topology on X and let Rτ be the IF relation
induced by τ on X. Then the following properties hold.

(1) Rτ is reflexive.
(2) If {λ̂ : λ ∈ J} ⊆ τ c, then for each A ∈ IF (X),

Rτ (A) ⊆ intτ (A) ⊆ A ⊆ clτ (A) ⊆ Rτ (A).

Proof. (1) For each x ∈ X,

Rτ (x, x) = clτ (1x)(x) ≥ (1x)(x) = (1, 0).

Then Rτ is reflexive.
(2) For each A ∈ IF (X), by Remark 2.7 and Proposition 3.6(2),

clτ (A) = clτ (
⋃

y∈X

(A(y)1y)) =
⋃

y∈X

clτ (A(y)1y) =
⋃

y∈X

clτ (Â(y) ∩ 1y)

⊆
⋃

y∈X

(clτ (Â(y)) ∩ clτ (1y)) =
⋃

y∈X

(Â(y) ∩ clτ (1y)).

10
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Then for each x ∈ X,

clτ (A)(x) ≤
⊔

y∈X

(Â(y)(x) u clτ (1y)(x)) =
⊔

y∈X

(A(y) uRτ (x, y)) = Rτ (A)(x).

Hence clτ (A) ⊆ Rτ (A).
By Proposition 3.6(3),

intτ (A) = (clτ (Ac))c ⊇ (Rτ (Ac))c = Rτ (A).

So
Rτ (A) ⊆ intτ (A) ⊆ A ⊆ clτ (A) ⊆ Rτ (A).

Theorem 4.8 ([23]). Let R be a reflexive IF relation on X, let τR be the IF
topology by R on X and let RτR

be the IF relation induced by τR on X. If R is
transitive, then RτR

= R.

4.3 (C1) and (C2) axioms

The following conditions for an IF topology τ on X are respectively called (C1)
axiom and (C2) axiom: for any λ ∈ J , A ∈ IF (X) and {Aα : α ∈ Γ} ⊆ IF (X),

(C1) axiom : clτ (λA) = λclτ (A); (C2) axiom : clτ (
⋃

α∈Γ

Aα) =
⋃

α∈Γ

clτ (Aα).

Proposition 4.9. Let τ be an IF topology on U . If τ satisfies (C1) and (C2)
axioms, then

(1) Rτ is the closure operator of τ .
(2) Rτ is the interior operator of τ .
(3) For each λ ∈ J , λ̂ ∈ τ .
(4) τ is Alexandrov.

Proof. (1) For each A ∈ IF (X), by Remark 2.7, (C1) axiom and (C2) axiom,

clτ (A) = clτ (
⋃

y∈X

(A(y)1y)) =
⋃

y∈X

clτ (A(y)1y) =
⋃

y∈X

(A(y)clτ (1y)).

Then for each x ∈ X,

clτ (A)(x) =
⊔

y∈X

(Â(y)(x) u clτ (1y)(x)) =
⊔

y∈X

(A(y) uRτ (x, y)) = Rτ (A)(x).

Thus Rτ (A) = clτ (A). So Rτ is the closure operator of τ .
(2) This holds by (1) and Proposition 3.6(3).
(3) For each λ ∈ J , by (2) and Proposition 3.8(1),

λ̂ ⊇ intτ (λ̂) = R(λ̂) ⊇ λ̂.
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Then intτ (λ̂) = λ̂ and so λ̂ ∈ τ .
(4) Suppose that τ satisfies (C1) and (C2) axioms. For each λ ∈ J , by (1)

and Proposition 3.6(3),

intτ (λ̂) = (clτ (λ̂c))c = (R(λ̂c))c = R(λ̂) ⊇ λ̂.

Note that intτ (λ̂) ⊆ λ̂. Then intτ (λ̂) = λ̂. Thus λ̂ ∈ τ .
For each A ∈ IF (X), by (1), (C1) axiom and (C2) axiom, R(Ac) = clτ (Ac).

Then R(A) = intτ (A).
Let {Aα : α ∈ Γ} ⊆ τ . Note that R(Aα) = intτ (Aα). Then Aα = R(Aα).

By Proposition 3.6(4),
⋂

α∈Γ

Aα =
⋂

α∈Γ

R(Aα) = R(
⋂

α∈Γ

Aα) = intτ (
⋂

α∈Γ

Aα).

So
⋂

α∈Γ

Aα ∈ τ . Hence τ is Alexandrov.

Proposition 4.10 ([29]). Let R be a preorder IF relation on X. Then τR

satisfies (C1) and (C2) axioms.

Theorem 4.11. Let τ be an IF topology on X, let Rτ be the IF relation induced
by τ on X and let τRτ be the IF topology induced by Rτ on X. Then

τRτ = τ if and only if τ satisfies (C1) and (C2) axioms.

Proof. Necessity. For each A ∈ IF (X), by Theorem 4.7(2), Rτ (A) ⊆ intτ (A).
By Theorem 4.3(2),

intτ (A) = intτRτ
(A) ⊆ Rτ (A).

Then intτ (A) = Rτ (A). So Rτ is the interior operator of τ . By Theorem 3.9(2),
Rτ is a preorder IF relation on X. By Theorem 4.10, τRτ

satisfies (C1) and (C2)
axioms.

Sufficiency. By Theorem 4.7(1), Rτ is reflexive. For any x, y, z ∈ X, put
clτ (1z)(y) = λ. By Remark 2.7, Proposition 3.6(2),

λclτ (1y) = clτ (λ1y) = clτ (clτ (1z)(y)1y)

⊆ clτ (
⋃

t∈X

(clτ (1z)(t)1t)) = clτ (clτ (1z)) = clτ (1z).

Then

Rτ (x, y) uRτ (y, z) = clτ (1y)(x) u clτ (1z)(y) = clτ (1y)(x) u λ

= λ u clτ (1y)(x) = (λclτ (1y))(x)
≤ clτ (1z)(x) = Rτ (x, z).

Then Rτ is transitive.

12
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So Rτ is preorder. For each A ∈ IF (X), by Proposition 4.1 and Theorem
4.2(3),

clτRτ
(A) = clθRτ

(A) = Rτ (A).

By (C1) axiom, (C2) axiom and Proposition 4.9(1), Rτ (A) = clτ (A). So
clτRτ

(A) = clτ (A). Thus τRτ = τ .

Theorem 4.12. Let

Σ = {R : R is a preorder IF relation on X}
and

Γ = {τ : τ is an IF topology on X satisfying (C1) and (C2) axioms }.
Then there exists a one-to-one correspondence between Σ and Γ.

Proof. Two mappings f : Σ → Γ and g : Γ → Σ are defined as follows:

f(R) = τR (R ∈ Σ),

g(τ) = Rτ (τ ∈ Γ).

By Theorem 4.8,
g ◦ f = iΣ,

where g ◦ f is the composition of f and g, and iΣ is the identity mapping on Γ.
By Theorem 4.11,

f ◦ g = iΓ,

where f ◦ g is the composition of g and f , and iΓ is the identity mapping on Σ.
Hence f and g are two one-to-one correspondences. This prove that there

exists a one-to-one correspondence between Σ and Γ.

5 IF approximating spaces

As can be seen from Section 4, a reflexive IF relation yields an IF topology.
In this section, we consider the reverse problem, that is, under which conditions
can an IF topology be associated with an IF relation which produces the given
IF topology?

Definition 5.1. Let (X, τ) be an IF topological space. If there exists a reflexive
IF relation R on X such that τR = τ , then (X, τ) is called an IF approximating
space.

Theorem 5.2. Let τ be an IF topology on X. Then the following are equivalent.
(1) τ satisfies (C1) and (C2) axioms;
(2) For any λ ∈ J , A ∈ IF (X) and {Aα : α ∈ Γ} ⊆ IF (X),

intτ (λ̂ ∪A) = λ̂ ∪ intτ (A), intτ (
⋂

α∈Γ

Aα) =
⋂

α∈Γ

intτ (Aα).

13
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(3) There exists a preorder IF relation ρ on X such that ρ is the closure
operator of τ ;

(4) There exists a preorder IF relation ρ on X such that ρ is the interior
operator of τ ;

(5) Rτ is the closure operator of τ ;
(6) Rτ is the interior operator of τ .

Proof. (1) ⇐⇒ (2). This is obvious.
(1) =⇒ (3). Suppose that τ satisfies (C1) and (C2) axioms. Pick ρ = Rτ . By

Theorem 4.9, ρ is the closure operator of τ . By Theorem 3.9(1), ρ is preorder.
(3) =⇒ (4). Let ρ be the closure operator of τ for some preorder IF relation

ρ on X. For each A ∈ IF (X), by Proposition 3.6(3),

ρ(A) = (ρ(Ac))c = (clτ (Ac))c = intτ (A).

Thus, ρ is the interior operator of τ .
(4) =⇒ (6). Let ρ be the interior operator of τ for some preorder IF relation

ρ on X.
For x, y ∈ X, by Remark 3.4,

ρ(x, y) = (ρ((1y)c)(x))c = (intτ ((1y)c)(x))c = clτ (1y)(x) = Rτ (x, y).

Then ρ = Rτ . Note that ρ is the interior operator of τ . Then Rτ is the interior
operator of τ .

(6) =⇒ (5) holds by Proposition 3.6(3).
(5) =⇒ (1). For any λ ∈ J and A ∈ IF (X), by Proposition 3.6,

clτ (λA) = Rτ (λA) = λRτ (A) = λclτ (A),

and
clτ (

⋃

α∈Γ

Aα) = Rτ (
⋃

α∈Γ

Aα) =
⋃

α∈Γ

Rτ (Aα) =
⋃

α∈Γ

clτ (Aα)

Thus τ satisfies (C1) and (C2) axioms.

Theorem 5.3. Let (X, τ) be an IF topological space. If one of the following
conditions is satisfied, then (X, τ) is an IF approximating space.

(1) τ satisfies (C1) and (C2) axioms.
(2) For any λ ∈ J , A ∈ IF (X) and {Aα : α ∈ Γ} ⊆ IF (X),

intτ (λ̂ ∪A) = λ̂ ∪ intτ (A), intτ (
⋂

α∈Γ

Aα) =
⋂

α∈Γ

intτ (Aα).

(3) There exists a preorder IF relation R on X such that R is the closure
operator of τ .

(4) There exists a preorder IF relation R on X such that R is the interior
operator of τ .

(5) Rτ is the closure operator of τ .
(6) Rτ is the interior operator of τ .

Proof. These hold by Theorems 4.11 and 5.2.

Example 5.4. {λ̂ : λ ∈ J} is an IF approximating space.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

658 Bin Qin et al 645-660



References

[1] K.Atanssov, Intuitionistic fuzzy sets, Fuzzy sets and systems 20(1986) 87-
96.

[2] K.Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, 1999.

[3] H.Bustince, P.Burillo, Structures on intuitionistic fuzzy relations, Fuzzy
sets and systems 78(1996) 293-303.

[4] C.Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and
Applications 24(1968) 182-190.

[5] D.Coker, An introduction of intuitionistic fuzzy topological spaces, Fuzzy
sets and systems 88(1997) 81-89.

[6] D.Coker, Fuzzy rough sets are intuitionistic L-fuzzy sets, Fuzzy Sets and
Systems 96(1998) 381-383.

[7] C.Cornelis, M.De Cock, E.E.Kerre, Intuitionistic fuzzy rough sets: at the
crossroads of imperfect knowledge, Expert systems 20(2003) 260-270.

[8] K.Chakrabarty, T.Gedeon, L.Koczy, Intuitionistic fuzzy rough set, in:
Proceedings of Fourth Joint Conference on Information Sciences (JCIS),
Durham, NC. 1998, pp. 211-214.

[9] D.Dubois, H.Prade, Rough fuzzy sets and fuzzy rough sets, International
Journal of General Systems 17(1990) 191-208.

[10] L.I.Kuncheva, Fuzzy rough sets: application to feature selection, Fuzzy
Sets and Systems 51(1992) 147-153.

[11] Z.Li, R.Cui, On the topological structure of intuitionistic fuzzy soft sets,
Annals of Fuzzy Mathematics and Informatics 5(1)(2013) 229-239.

[12] Z.Li, T.Xie, Q.Li, Topological structure of generalized rough sets, Comput-
ers and Mathematics with Applications 63(2012) 1066-1071.

[13] Y.Liu, M.Luo, Fuzzy topology, World Scientific Publishing, Singapore,
1998.

[14] H.Lai, D.Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Sys-
tems 157(2006) 1865-1885.

[15] S.Nanda, Fuzzy rough sets, Fuzzy Sets and Systems 45(1992) 157-160.

[16] Z.Pawlak, Rough set, International Journal of Computer and Information
Science 11(5)(1982) 341-356.

[17] Z.Pawlak, Rough Sets: Theoretical aspects of reasoning about data, Kluwer
Academic Publishers, Boston, 1991.

15

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

659 Bin Qin et al 645-660



[18] K.Qin, Z.Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets
and Systems 151(2005) 601-613.

[19] A.M.Radzikowska, E.E.Kerre, A comparative study of fuzzy rough sets,
Fuzzy Sets and Systems 126(2002) 137-155.

[20] S.K.Samanta, T.K.Mondal, Intuitionistic fuzzy rough sets and rough intu-
itionistic fuzzy sets, Journal of Fuzzy Mathematics 9(2001) 561-582.

[21] A.Skowron, L.Polkowski, Rough set in knowledge discovery, Springer-
Verlag, Berlin, 1998.

[22] R.Slowinski, Intelligent decision support: Handbook of applications and
advances of the rough set theory, Kluwer Academic Publishers, Boston,
1992.

[23] W.Wu, L.Zhou, On intuitionistic fuzzy topologies based on intuitionistic
fuzzy reflexive and transitive relations, Soft Computing 15(2011) 1183-1194.

[24] W.Wu, J.Mi, W.Zhang, Generalized fuzzy rough sets, Information Sciences
151(2003) 263-282.

[25] Y.Y.Yao, Relational interpretations of neighborhood operators and rough
set approximation operators, Information Sciences 111(1998) 239-259.

[26] L.A.Zadeh, Fuzzy sets, Information and Control 8(1965) 338-353.

[27] L.Zhou, W.Wu, On generalized intuitionistic fuzzy rough approximation
operators, Information Sciences 178(2008) 2448-2465.

[28] L.Zhou, W.Wu, Characterization of rough set approximations in Atanassov
intuitionistic fuzzy set theory, Computers and Mathematics with Applica-
tions 62(2011) 282-296.

[29] L.Zhou, W.Wu, W.Zhang, On intuitionistic fuzzy rough sets and their topo-
logical structures, International Journal of General Systems 38(2009) 589-
616.

[30] L.Zhou, W.Wu, W.Zhang, On characterization of intuitionistic fuzzy
rough sets based on intuitionistic fuzzy implicators, Information Sciences
179(2009) 883-898.

[31] X.Zhang, B.Zhou, P.Li, A general frame for intuitionistic fuzzy rough sets,
Information Sciences 216(2012) 34-49.

16

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

660 Bin Qin et al 645-660



On Cauchy problems with Caputo Hadamard fractional

derivatives

March 2, 2015

Y. Adjabi1, F. Jarad2, D. Baleanu3,4, T. Abdeljawad5

Abstract

The current work is motivated by the so-called Caputo-type modification of the
Hadamard or Caputo Hadamard fractional derivative discussed in [4]. The main aim
of this paper is to study Cauchy problems for a differential equation with a left Caputo
Hadamard fractional derivative in spaces of continuously differentiable functions. The
equivalence of this problem to a nonlinear Volterra type integral equation of the second
kind is shown. On the basis of the obtained results, the existence and uniqueness of
the solution to the considered Cauchy problem is proved by using Banach’s fixed point
theorem. Finally, two examples are provided to explain the applications of the results.

MSC 2010: 26A33, 34A08, 34A12, 47B38.
Keywords: Caputo Hadamard fractional derivatives, Cauchy problem, Volterra integral

equation, continuously differentiable function, fixed point theorem.

1 Introduction

Fractional calculus, that is, the theory of derivatives and integrals of fractional non-
integer order, are used in many fields like: mathematics, physics, chemistry, engineering,
and other sciences.

Few years ago, many scholars started making deeper researches on fractional differential
equations. Intensive development of this latter and its applications led to that. (e.g.;
[1, 2, 3, 10, 11, 12]). Many definitions were supplied for the Fractional order differential
operators and many reports on the existence and uniqueness of solutions to differential
equations in the frame of these operators appeared. (see for example [14] and the references
therein).
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J. Hadamard [6] in 1892, introduced a new definition of fractional derivatives and inte-
grals in which he claims:(

J α
a+
g
)
(t) =

1

Γ (α)

∫
.ta

(
ln
t

τ

)α−1

g(τ)
dτ

τ
, (0 < a < t) , Re(α) > 0, (1)

for suitable functions g, where Γ represents gamma function. This is the generalization of
the nth integral(

J n
a+
g
)
(t) =

∫ t

a

dτ1
τ1

∫ τ1

a

dτ2
τ2
...

∫ τn−1

a

g(τn)
dτn
τn
≡ 1

Γ(n)

∫ t

a

(
ln
t

τ

)n−1

g(τ)
dτ

τ
, (2)

where n = [Re(α)] + 1 and [Re(α)] means the integer part of Re(α).
The corresponding left-sided Hadamard fractional derivative of order α is defined by(

Dα
a+
g
)
(t) = δn

1

Γ (n− α)

∫ t

a

(
ln
t

τ

)n−α−1

g (τ)
dτ

τ
, α ∈ [n− 1, n) , (3)

where δ = t d
dt . The main difference between Hadamard’s definition and the previous ones

is that the kernel integral contains logarithmic function of arbitrary exponent. The present
paper follows the Caputo-type definition based on the modification of Hadamard fractional
derivatives. This approach is given by the equality,(

cDα
a+
g
)
(t) =

(
Dα

a+

)[
g (τ)−

n−1∑
k=0

δkg (a)

k!

(
ln
τ

a

)k]
(t) , (0 < a < t) . (4)

We can use the following equivalent representation, which follows from (3) and (4)(
cDα

a+
g
)
(t) =

1

Γ (n− α)

∫ t

a

(
log

t

τ

)n−α−1

δng (τ)
dτ

τ
. (5)

The Caputo Hadamard derivative is obtained from the Hadamard derivative by changing
the order of its differential and integral parts. Despite the different requirements on the
function itself, the main difference between the Caputo Hadamard fractional derivative and
the Hadamard fractional derivative is that the Caputo Hadamard derivative of a constant
is zero [4]. The most important advantage of Caputo Hadamard is that it brought a new
definition through which the integer order initial conditions can be defined for fractional
order differential equations in the frame of the Hadamard fractional derivative.

In this article, we extend the approach of Kilbas et al. [10] to fractional Cauchy problems
with a left Caputo Hadamard in spaces of continuously differentiable functions and prove
the existence and uniqueness of solutions to these problems.

To get to our aim, the equivalence of the Cauchy type problems to a nonlinear Volterra
type integral equation of the second kind is first proved. Once that is done, Banach’s fixed
point theorem is applied. By the end, some examples are given to illustrate the obtained
results.

2 Preliminaries

Below, we recall some basic definitions, properties, theorems and lemmas needed in the
rest of this paper.

Let Cn ([a, b] ,R) be the Banach space of all continuously differentiable functions from
[a, b] to R. We will introduce the weighted space Cγ,ln [a, b] , C

n
δ,γ,ln [a, b] and C

α,r
δ,γ,ln [a, b] of

the function g on the finite interval [a, b] .
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Definition 2.1. If α ∈ (n− 1, n] and γ ∈ (0, 1] , then

(1) The space Cγ,ln [a, b] is defined by

Cγ,ln [a, b] =

{
g :

(
ln
t

a

)γ

g(t) ∈ C [a, b]

}
, C0,ln [a, b] = C [a, b] ,

and on this space we define the norm ∥.∥Cγ,ln
by

∥g∥Cγ,ln
=

∥∥∥∥(ln ta
)γ

g(t)

∥∥∥∥
C

= max
t∈[a,b]

∣∣∣∣(ln ta
)γ

g(t)

∣∣∣∣ .
(2) The space Cn

δ,γ,ln [a, b] is defined by

Cn
δ,γ,ln [a, b] =

{
g : δkg ∈ C [a, b] , k = 0, .., n− 1 and δng ∈ Cγ,ln [a, b]

}
,

and on this space we define the norm ∥.∥Cn
δ,γ,ln

by

∥g∥Cn
δ,γ,ln

=

n−1∑
k=0

∥∥δkg∥∥
C
+ ∥δng∥Cγ,ln

, ∥g∥Cn
δ
=

n∑
k=0

max
t∈[a,b]

∣∣δkg(t)∣∣ .
(3) We denote by Cα,r

δ,γ,ln [a, b] the space of functions g given on [a, b] and such that

Cα,r
δ,γ,ln [a, b] =

{
g ∈ Cr

δ [a, b] :
(
cDα

a+
g
)
∈ Cγ,ln [a, b] , r ∈ N

}
,

Cr,r
δ,γ,ln [a, b] = Cr

δ,γ,ln [a, b] .

Property 2.2 ([10]). The fractional integral operators
(
J α
a+

)
satisfy the semigroup

property (
J α
a+
J β
a+
g
)
(t) =

(
J α+β
a+

g
)
(t) , Re(α) > 0, Re(β) > 0.

The fractional derivative operators
(
Dα

a+

)
fullfil the semigroup property(

Dα
a+
J β
a+
g
)
(t) =

(
J β−α
a+

g
)
(t) .

Property 2.3 ([4]). Let Re(α) ≥ 0, n = [Re(α)] + 1 andRe(β) > 0, then

(cDα
a+

(
ln
t

a

)β−1

) =
Γ (β)

Γ (β − α)

(
ln
t

a

)β−α−1

, Re(β) > n.

On the other hand, for k = 0, 1, .., n− 1,

(cDα
a+

(
ln
t

a

)k

) = 0.

Lemma 2.4 ([4]). Let α ∈ C, n = [Re (α)] + 1, let g (t) ∈ ACn
δ [a, b] or Cn

δ [a, b] , then

(
J α
a+

(
cDα

a+
g
))

(t) = g (t)−
n−1∑
k=0

(
δkg
)
(a)

k!

(
ln
t

a

)k

.
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Lemma 2.5 ([10]). Let n ∈ N and 0 ≤ γ < 1.The space Cn
δ,γ,ln [a, b] consists of those

and only those functions g which are represented in the form

g (t) =
1

(n− 1)!

∫ t

a

(
ln
t

τ

)n−1

φ (τ)
dτ

τ
+

n−1∑
k=0

dk

(
ln
t

a

)k

,

where φ ∈ Cγ,ln [a, b] and dk (k = 0, 1, ..., n− 1) are arbitrary constants, such that

φ (t) = δng (t) , dk =
δkg (a)

k!
(k = 0, 1, ..., n− 1) .

Lemma 2.6 ([10]). Let 0 < a < b < +∞, Re (α) > 0, and 0 ≤ γ < 1, then

a. If γ > α > 0, then
(
J α
a+

)
is bounded from Cγ,ln [a, b] into Cγ−α,ln [a, b] :∥∥∥J α

a+
g
∥∥∥
Cγ−α,ln

≤ k ∥g∥Cγ,ln
, k =

(
ln
b

a

)Re(α)
Γ (1− γ)

Γ (1 + α− γ)
.

In particular
(
J α
a+

)
is bounded in Cγ,ln [a, b] .

b. If γ ≤ α, then
(
J α
a+

)
is bounded from Cγ,ln [a, b] into C [a, b] :

∥∥∥J α
a+
g
∥∥∥
C
≤ k ∥g∥Cγ,ln

, k =

(
ln
b

a

)Re(α)−γ
Γ (1− γ)

Γ (1 + α− γ)
.

In particular
(
J α
a+

)
is bounded in Cγ,ln [a, b] .

Lemma 2.7 ([10]). The fractional operator
(
J α
a+

)
represents a mapping from C [a, b]

to C [a, b] and ∥∥∥J α
a+
g
∥∥∥
C
≤ 1

Re (α) Γ (α)

(
ln
b

a

)Re(α)

∥g∥C .

Theorem 2.8 (Banach fixed point Theorem, [10]). Let (X, d) be a nonempty complete
metric space, let 0 ≤ w < 1, and let T : X −→ X be a map such that for every x, x̃ ∈ X, the
relation

d (Tx, T x̃) ≤ wd (x, x̃) ,
holds. Then the operator T has a uniquely defined fixed point x∗ ∈ X.

Furthermore, if T k (k ∈ N) is the sequence defined by

T 1 = T, T k = TT k−1 (k ∈ N− {1}) ,

then, for any x0 ∈ X
{
T kx0

}k=∞
k=1

converges to the above fixed point x∗.

Definition 2.9 ([10]). Let l ∈ N, G ⊂ Rl, [a, b] ⊂ R, g : [a, b]×G −→ R be a function
such that, for any (x1, ..., xl) , (x̃1, ..., x̃l) ∈ G, g satisfies generalized Lipschitizian condition:

|g [t, x1, ..., xl]− g [t, x̃, x̃1, ..., x̃l]| ≤ A1 |x1 − x̃1|+ ...+Al |xl − x̃l| , Aj ≥ 0, j = 1, ..., l. (6)

In particular,g satisfies the Lipschitzian condition with respect to the second variable if for
all t ∈ (a, b] and for any x, x̃ ∈ G one has

|g [t, x]− g [t, x̃]| ≤ A |x− x̃| , A > 0. (7)

4
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3 Nonlinear Cauchy problem

In this section, we present the existence and uniqueness results in the space Cα,r
δ,γ,ln [a, b]

of the Cauchy problem for the nonlinear fractional differential equation in the frame of
Caputo Hadamarad fractional derivative. That is we consider the equation(

CDα
a+
x
)
(t) = h [t, x (t)] , Re (α) > 0, t > a > 0, (8)

subject to the initial conditions(
δkx
)
(a+) = dk, dk ∈ R, k = 0, ..., n− 1, n = [Re(α)] + 1. (9)

The Volterra type integral equation corresponding to problem (8)-(9) is :

x(t) =

n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, x (τ)]
dτ

τ
, a ≤ t ≤ b. (10)

In partuclar, if α = n ∈ N then the problem (8)-(9) is as follows:

(δnx) (t) = h [t, x (t)] , a ≤ t ≤ b,
(
δkx
)
(a+) = dk ∈ R, k = 0, 1, ...n− 1. (11)

The corresponding integral equation to the problem (11) has the form:

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
(
J n
a+
h
)
(t) , a ≤ t ≤ b. (12)

Firstly, we we have to prove the equivalence of the Cauchy problem to the Volterra
type integral equation in the sense that, if x ∈ Cr

δ [a, b] satisfies one of them, then it also
satisfies the other one.

Theorem 3.1. Let Re (α) > 0, n = [Re(α)] + 1, (0 < a < b < +∞), and 0 ≤ γ < 1 be
such that α ≥ γ. Let G be an open set in R and let h : [a, b]×G −→ R be a function such
that h [t, x] ∈ Cγ,ln [a, b] for any x ∈ Cγ,ln [a, b].

(i) Let r = n− 1 for α /∈ N, if x ∈ Cn−1
δ [a, b] then x satisfies the relations (8) and (9) iff x

satisfies equation (10) .

(ii) Let r = n for α ∈ N, if x ∈ Cn
δ [a, b] then x satisfies the relation (11) if and only if, x

satisfies equation (12) .

Proof. (i) Let α /∈ N, n− 1 < α < n and x ∈ Cn−1
δ [a, b] .

(i.a) Here we prove the necessity. From definition of CDα
a+

and (3) we obtain

CDα
a+
x (t) = (δn)

J n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j (t) .

By hypothesis, h [t, x] ∈ Cγ,ln [a, b] and it follows from (8) that CDα
a+
x (t) ∈ Cγ,ln [a, b] ,

and hence, by applying Lemma 2.5, we haveJ n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
t

τ

)j
 (t) ∈ Cn

δ,γ,ln [a, b] .
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By using Lemma 2.4, we obtain

J α
a+

(
CDα

a+
x
)
(t) = x (t)−

n−1∑
j=0

δjx (a)

j!

(
ln
t

a

)j

. (13)

In view of Lemma 2.6-(b) , J α
a+
h [t, x] belongs to the C [a, b] space, Applying

(
J α
a+

)
to

the both sides of (8) and utilizing (13), with respect to the initial conditions (9), we deduce
that there exists a unique solution x ∈ Cn−1

δ [a, b] to equation (10).

(i.b) Let x ∈ Cn−1
δ [a, b] satisfies the equation (10).

– We want to show that x satisfies equation (8) . Applying
(
Dα

a+

)
to both sides of (10) ,

and taking into account (4) , (9) , Property 2.2 and Property 2.3, we get

Dα
a+

x (t)− n−1∑
j=0

δjx (a)

j!

(
ln
t

a

)j
 = Dα

a+

(
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, x (τ)]
dτ

τ

)
,

then (
CDα

a+
x
)
(t) =

(
Dα

a+

)(
J α
a+
h
)
(t) ≡ h [t, x (t)] .

– Now, we show that x satisfies the initial relations (9). We obtain by differentiation both
sides of (10) that,

δkx (t) =

n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

Γ (α− k)

∫ t

a

(
ln
t

τ

)α−k−1

h [τ, x (τ)] dτ.

Changing the variable τ = a

(
t

a

)s

, yieldys

δkx (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

Γ (α− k)

∫ 1

0

(
ln

t

a
(
t
a

)s
)α−k−1

×h
[
a

(
t

a

)s

, x

(
a

(
t

a

)s)]
a ln

(
t

a

)(
t

a

)s

ds

=
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+

ln

(
t

a

)α−k

Γ (α− k)

∫ 1

0

(1− s)α−k−1
h

[
a

(
t

a

)s

, x

(
a

(
t

a

)s)]
ds.

for k = 0, ..., n− 1. Because α− k > n− 1− k ≥ 0, using the continuity of h, Property
2.3 and Lemma 2.7 we get J α

a+
h [t, x] ∈ C [a, b], and taking a limit as t −→ a+ , we

obtain δkx (a+) = dk.

(ii) For α ∈ N and x (t) ∈ Cn
δ [a, b] be the solution to the Cauchy problem (11).

(ii.a) Firstly, we prove the necessity. Applying
(
J n
a+

)
to both sides of equation (11), using

(4) and Lemma 2.4, we have

J n
a+
δnx (t) = x (t)−

n−1∑
k=0

δkx (a)

k!

(
ln
t

a

)k

= J n
a+
h (t) ,

since δkx (a+) = dk, we arrive at equation (12) and hence the necessity is proved.

6
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(ii.b) If x ∈ Cn
δ [a, b] satisfies the equation (12), in addition, by term-by-term differentiation

of (12) in the usual sense k times, we get

δkx (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

(n− k − 1)!

∫ t

a

(
ln
t

τ

)n−k−1

h [τ, x (τ)]
dτ

τ
,

for k = 0, ..., n. Using Property 2.3 , taking the limit as t −→ a+, we obtain δ
kx (a+) =

dk, and δ
nx (t) = h [t, x (t)] . Thus the Theorem 3.1 is proved for α ∈ N.

This completes the proof of the theorem.

Corollary 3.2. Under the hypotheses of Theorem 3.1, with 0 < Re (α) < 1, if
x ∈ Cδ [a, b] then x (t) satisfies the relation(

CDα
a+
x
)
(t) = h [t, x (t)] , t > a > 0, x (a) = d0,

if and only if, x satisfies the equation

x(t) = d0 +
(
J α
a+
h
)
(t) , a ≤ t ≤ b.

The next step is to prove the existence of a unique solution to the Cauchy problem
(8)-(9) in the space of functions Cα,r

δ,γ,ln [a, b] by using the Banach’s fixed point theorem.

Theorem 3.3. Let α > 0, ad n = [ℜ(α)] + 1, 0 ≤ γ < 1 be such that α ≥ γ. Let
G be an open set in R and h : ]a, b] × G −→ C be a function such that, for any x ∈ G,
h [t, x] ∈ Cγ,ln [a, b], x ∈ Cγ,ln [a, b], and the Lipshitz condition (7) holds with respect to the
second variable.

(i) If n−1 < α < n, then there exists a unique solution x to (8)-(9) in the space Cα,n−1
δ,γ,ln [a, b] .

(ii) If α = n, then there exists a unique solution x ∈ Cn
δ,γ,ln [a, b].

Since the problem (8)-(9) and the equation (10) are equivalent, it is enough to prove that
there exists only one solution to (10).

Proof. Here we prove (i) only as (ii) can be proved similarly.

Step 1. First we show that there exists a unique solution x ∈ Cn−1
δ [a, b].

Divide the interval [a, b] into M subdivisions [a, t1] , [t1, t2] , ..., [tM−1, b] such that a <
t1 < t2 < ... < tM−1 < b.

(a) Choose t1 ∈ ]a, b] such that the inequality

w1 = A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

< 1, A > 0, (14)

holds. Now we prove that there exists a unique solution x (t) ∈ Cn−1
δ [a, t1] to equation

(10) in the interval [a, t1].

7
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It is easy to see that Cn−1
δ [a, t1] is a complete metric space equipped with the distance

d (x1, x2) = ∥x1 − x2∥Cn−1
δ [a,t1]

=
n−1∑
k=0

∥∥(δkx1 − δkx2)∥∥C[a,t1]
.

Now, for any x ∈ Cn−1
δ [a, t1] , define operator T as follows

(Tx) (t) ≡ Tx (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ
)

)α−1

h [τ, x (τ)]
dτ

τ
, (15)

with

x0 (t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

. (16)

Transforming the problem (10) into a fixed point problem, x (t) = Tx (t) , where T is
defined by (15). One can see that the fixed points of T are nothing but solutions to problem
(8)-(9) . Applying the Banach contraction mapping, we shall prove that T has a unique fixed
point.

Firstly, we have to show that:
(a.i) if x (t) ∈ Cn−1

δ [a, t1], then (Tx) (t) ∈ Cn−1
δ [a, t1] .

(a.ii) ∀x1, x2 ∈ Cn−1
δ [a, t1] the following inequality holds:

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥Cn−1
δ [a,t1]

, 0 < w1 < 1.

(a.i) Let us prove that Tx : Cn−1
δ [a, t1] −→ Cn−1

δ [a, t1] is a continuous operator. Differen-
tiating (15) k (k = 0, ..., n− 1) times, we arrive at the equality

(
δkTx

)
(t) = δkx0 (t) +

1

Γ (α− k)

∫ t

a

(
ln(

t

τ

)α−1−k

h [τ, x (τ)]
dτ

τ
,

with

δkx0 (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

.

It follows that δkx0 (t) ∈ Cδ [a, t1] because x0 (t) might be further decomposed as a finite
sum of functions in Cn−1

δ [a, t1] . When x0 (t) ∈ Cn−1
δ [a, t1] then

∥x0 (t)∥C[a,t1]
≤ ∥x0 (t)∥Cn−1

δ [a,t1]
=

n−1∑
k=1

∥∥(δkx0 (t))∥∥C[a,t1]
+ ∥x0 (t)∥C[a,t1]

.

On the other hand, we can apply Lemma 2.6-(b) with α ≥ γ, and α being replaced by
(α− k) , we have

J α−k
a+

h [τ, x (τ)] (t) ∈ Cδ [a, t1] .

In view of Lemma 2.6 and (7) , for all k = 0, ..., n− 1, we have∥∥∥J α−k
a+

h [τ, x (τ)]
∥∥∥
C[a,t1]

≤ Γ (1− γ)
Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k−γ

∥h [t, x (t)]∥Cγ,ln[a,t1]

≤ A
Γ (1− γ)

Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k−γ

∥x (t)∥Cγ,ln[a,t1]

≤ A
Γ (1− γ)

Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k

∥x (t)∥C[a,t1]
.
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As fractional integrals are bounded in the space of functions continuous in interval [a, t1].
The above implies that Tx (t) belongs to the Cn−1

δ [a, t1] space.

(a.ii) Next, we let x1, x2 ∈ Cn−1
δ [a, t1] the following estimate holds:

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

=
∥∥∥J α

a+
(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)

∥∥∥
Cn−1

δ [a,t1]

=
∑n−1

k=0

∥∥∥J α−k
a+

(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)
∥∥∥
C[a,t1]

≤
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k−γ ∥h [τ, x1 (τ)]− h [τ, x2 (τ)]∥Cγ,ln[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k−γ ∥x1 (t)− x2 (t)∥Cγ,ln[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥C[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥Cn−1
δ [a,t1]

.

Thus

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥Cn−1
δ [a,t1]

.

The last estimate shows that the operator T is a contraction mapping from Cn−1
δ [a, t1]Ṫhus,

the Banach fixed point theorem implies that there exists a unique function (solution) x∗0 ∈
Cn−1

δ [a, t1] and this given as:

x∗0 = lim
m→+∞

Tmx∗00, (m ∈ N∗) ,

where

(Tmx∗00) (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h
[
τ,
(
Tm−1x∗00

)
(τ)
] dτ
τ
,

with x∗00 ∈ Cn−1
δ [a, t1] is an arbitrary starting function.

Let us take x∗00 (t) = x0 (t) when dk ̸= 0 with x0 (t) defined by (16), if we denote by

xm (t) = (Tmx∗00) (t) , (m ∈ N∗) ,

then
lim

m→+∞
∥xm (t)− x∗0 (t)∥Cn−1

δ [a,t1]
= 0.

Now we show that this solution x∗0 (t) is unique. Suppose that there exist two solutions
x∗0 (t) , x̃

∗
0 (t) of equation (10) on [a, t1]. Using Lemma 2.6 and substituting them into (10),

we get

∥x∗0 (t)− x̃∗0 (t)∥Cn−1
δ [a,t1]

≤ A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

∥x∗0 (t)− x̃∗0 (t)∥Cn−1
δ [a,t1]

.

This relation yields

A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

≥ 1,

which contradicts the assumption (14). Thus there is a unique solution x∗0 (t) ∈ Cn−1
δ [a, t1].
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(b) We prove the existence of an unique solution x (t) ∈ Cn−1
δ [t1, b] . analogously

Further, if we consider the closed interval [t1,b], we can rewrite equation (10) in the form
x (t) = (Tx) (t) where

(Tx) (t) = x01 (t) +
1

Γ (α)

∫ t

t1

(
ln
t

τ

)α−1
h [τ, x (τ)]

τ
dτ, (17)

where x01 (t) defined by

x01 (t) = x0 (t) +
1

Γ (α)

∫ t1

a

(
ln
t

τ

)α−1
h [τ, x (τ)]

τ
dτ,

is a known function.
We note that x01 (t) ∈ Cn−1

δ [t1, b] . Differentiating (17) k (k = 0, ..., n− 1) times, we
arrive at the equality

(
δkTx

)
(t) = δkx01 (t) +

1

Γ (α− k)

∫ t

a

(
ln
t

τ

)α−k−1

h [τ, x (τ)]
dτ

τ
.

It follows that δkx01 (t) ∈ Cδ [t1, b] and J α−k
a+

h [τ, x (τ)] ∈ Cδ [t1, b] thus (Tx) (t) ∈
Cn−1

δ [t1, b] .

(b.i) Choose t2 ∈ ]t1, b] such that the inequality

w2 = A
n−1∑
k=1

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t2
t1

)Re(α)−k

< 1,

hold. Let x1, x2 ∈ Cn−1
δ [t1, t2] the following estimate holds:

∥Tx1 − Tx2∥Cn−1
δ [t1,t2]

≤
n−1∑
k=0

∥∥∥J α−k
a+

(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)
∥∥∥
C[t1,t2]

≤ A
n∑

k=0

Γ (1− γ)
Γ (α− k + 1)

(
ln
t2
t1

)Re(α)−k

∥x1 (t)− x2 (t)∥Cn−1
δ [t1,t2]

.

Hence Tx is a contraction in Cn−1
δ [t1, t2] .

By Lemma 2.6-(b) and α being replaced by α−k, we obtain that J α−k
t1+ (h [τ, x1 (τ)]− h [τ, x2 (τ)]) is

continuous in [t1, t2]. Then, the Banach fixed point theorem implies that there exists a unique
solution x∗1 ∈ Cn−1

δ [t1, t2] to the equation (10) on the interval [t1, t2] .
Notice that x∗1 (t1) = x∗0 (t1) = x01 (t1) . Further, Theorem 2.8 guarantees that this

solution x∗1 (t) is the limit of the convergent sequence Tmx∗01. Thus, we have

lim
m→+∞

∥Tmx∗01 − x∗1∥Cn−1
δ [t1,t2]

= 0,

with

(Tmx∗01) (t) = x01 (t) +
1

Γ (α)

∫ t

t1

(
ln(

t

τ
)

)α−1

h
[
τ,
(
Tm−1x∗01

)
(τ)
] dτ
τ
, (m ∈ N∗) .
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If x0 (t) ̸= 0 then we can take x∗01 (t) = x0 (t), therefore,

lim
m→+∞

∥xm (t)− x∗1 (t)∥Cn−1
δ [t1,t2]

= 0, xm (t) = (Tmx∗01) (t) .

Now let

x∗ (t) =

{
x∗0 (t) t ∈ [t1, t2] ,
x∗1 (t) t ∈ [a, t1] .

Moreover, since x∗ ∈ Cn−1
δ [a, t1] and x

∗ ∈ Cn−1
δ [t1, t2], we have x∗ ∈ Cn−1

δ [a, t2] , and
hence there is a unique solution x∗ ∈ Cn−1

δ [a, t2] to the equation (10) on the interval [a, t2].

(b.ii) Finally, we prove that a unique solution x (t) ∈ Cn−1
δ [t2, b] exists.

If t2 ̸= b, we choose ti+1 ∈ ]ti, b] such that the relation

wi+1 = A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
ti+1

ti

)Re(α)−k

< 1, i = 2, 3, ...,M, b = tM .

Repeating the above process i times, we also deduce that there exists a unique solution
x∗i ∈ C

n−1
δ [ti, ti+1] given as a limit of a convergent sequence Tmx∗0i i.e.,

lim
m−→+∞

∥Tmx∗0i − x∗i ∥Cn−1
δ [ti,ti+1]

= 0, i = 2, 3, ...,M.

Consequently, the previous relation can be rewritten as

lim
m→+∞

∥xm (t)− x∗ (t)∥Cn−1
δ [a,b] = 0, (18)

with
xm (t) = Tmx∗0i, x

∗
0i (t) = x0 (t) , x

∗ (t) = x∗i (t) , i = 0, 1, ...,M,

and
x∗i (ti+1) = x∗i+1 (ti+1) , [a, b] = ∪ [ti, ti+1] , a = t0 < ... < tM = b.

Step 2. Now we show that
(
CDα

a+
x∗
)
(t) ∈ Cγ,ln [a, b] .

By (8) , (18) and the Lipschitzian condition (7), we have that

lim
m→+∞

∥∥∥(CDα
a+
xm

)
(t)−

(
CDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= lim
m→+∞

∥h [t, xm (t)]− h [t, x∗ (t)]∥Cγ,ln[a,b]

≤ A lim
m→+∞

∥xm (t)− x∗ (t)∥Cγ,ln[a,b]

≤ A
(
ln b

a

)γ
lim

m→+∞
∥xm (t)− x∗ (t)∥C[a,b]

≤ A
(
ln b

a

)γ
lim

m→+∞
∥xm (t)− x∗ (t)∥Cn−1

δ [a,b] .

It is obvious that the right hand side of the above inequality approaches to zero inde-
pendently, thus

lim
m→+∞

∥∥∥(CDα
a+
xm

)
(t)−

(
CDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= 0.

By hypothesis,
(
CDα

a+
xm

)
(t) = h [t, xm (t)] and h [t, x (t)] ∈ Cγ,ln [a, b] for x ∈ Cn−1

δ [a, b] ,

we have
(
CDα

a+
x∗
)
(t) ∈ Cγ,ln [a, b] .

Consequently, x∗ ∈ Cα,n−1
δ,γ,ln [a, b] is the unique solution to the problem (8)-(9) .
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Corollary 3.4. Under the hypotheses of Theorem 3.3, with γ = 0, there exists a unique
solution x to the problem (8)-(9) in the space Cα,n−1

δ [a, b] and to the problem (11) in the
space Cn

δ [a, b] .

Proof. The above Corollary can be demonstrated in a similar way to that of Theorem
3.3, using the following inequality

wi+1 = A
n−1∑
k=0

1

Re (α− k) Γ (α− k + 1)

(
ln
ti+1

ti

)Re(α)−k

< 1, i = 0, ...,M, a = t0, b = tM ,

where ti ∈ [a, b] and we observe that T is a contractive mapping when the following inequality
holds, indeed, for any x1, x2 ∈ Cn−1

δ [ti, ti+1]

∥Tx1 − Tx2∥Cn−1
δ [ti,ti+1]

=
∑n−1

k=0

∥∥∥J α−k
ti+ (h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)

∥∥∥
C[ti,ti+1]

≤
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥h [t, x1 (t)]− h [t, x2 (t)]∥C[ti,ti+1]

≤ A
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥x1 (t)− x2 (t)∥C[ti,ti+1]

≤ A
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥x1 (t)− x2 (t)∥Cn−1
δ [ti,ti+1]

.

4 The Generalized Cauchy type problem

The results in the previous section can be extended to the following equation, which is
more general than (8) :(

cDα
a+
x
)
(t) = h

[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
, (19)

with αj ∈ (j − 1, j], j = 1, 2, ..., l, α0 = 0, and
(
cDαj

a+

)
denotes the Caputo Hadamard

operator of order αj .
The initial conditions for (19) are(

δkx
)
(a+) = dk, dk ∈ R (k = 0, ..., n− 1) . (20)

For simplicity, we denote by h [t, φ (t, x)] instead of h
[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
.

Similar to the things discussed in the previous, our investigations are based on reducing
the problem (19)-(20) to the Volterra equation

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
1

Γ (α)

t∫
a

(
ln
t

τ

)α−1

h [τ, φ (τ, x)]
dτ

τ
, (t > a) . (21)

Theorem 4.1. Let α > 0, n = [Re(α)] + 1 and αj ∈ C (j = 0, ..., l) be such that

0 = Re (α0) < Re (α1) < ... < Re (αl) < n− 1. (22)

Let G ∈ Rl+1 be open subsets and let h : (a, b] × G −→ R be a function such that
h [t, x, x1, ..., xl] ∈ Cγ,ln [a, b] for arbitrary x, x1, ..., xl ∈ Cγ,ln [a, b] and the Lipschitz
condition (6) is fulfilled.
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(i) If x ∈ Cα,n−1
δ,γ,ln [a, b], then x holds the relations (19)-(20) if and only if x holds the equation

(21) .

(ii) If 0 < α < 1, then x ∈ Cα
δ,γ,ln [a, b] satisfies the relations(

cDα
a+
x
)
(t) = h [t, φ (t, x)] , x (a+) = d0, d0 ∈ R, (23)

iff x satisfies the equation

x(t) = d0 +
(
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) . (24)

Proof. Let α ∈ (n− 1, n] and x ∈ Cn−1
δ [a, b] satisfies the relations (19)-(20) .

(i.a) According to (4) and (19) ,

(
cDα

a+
x
)
(t) =

(
Dα

a+

)[
x (τ)−

n−1∑
k=0

δkx (a)

k!

(
ln
τ

a

)k]
(t) .

We have
(
cDα

a+
x
)
(t) ∈ Cγ,ln [a, b] and hence

δnJ n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j ∈ Cγ,ln [a, b] .

Thus,

J n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j ∈ Cn
δ,γ,ln [a, b] ,

and by Lemma 2.4

(
J α
a+

)(
cDα

a+

)
x (t) = x (t)−

n−1∑
j=1

δjx (a)

(j − 1)!

(
ln
t

a

)j−1

,

Then, from (19) , (20) and the last relation, we obtain

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
(
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) .

That is x ∈ Cn−1
δ [a, b] satisfy the equation (21) .

(i.b) Now we prove the sufficiency. Let x ∈ Cn−1
δ [a, b] satisfies equation (21) .

– From (21) we have

x(t)−
n−1∑
j=0

dj
j!

(
ln
t

a

)j

=
(
J α
a+

)
h
[
τ, x (τ) ,

(
cDα1

a+
x
)
(τ) , ...,

(
cDαl

a+
x
)
(τ)
]
(t) .
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Applying
(
Dα

a+

)
on both sides of this relation, taking into acount the conditions for

h and using Property 2.2, we get

(
Dα

a+

)x(t)− n−1∑
j=0

dj
j!

(
ln
t

a

)j
 =

(
Dα

a+

)(
J α
a+

)
h [τ, φ (τ, x)] (t)

= h [t, φ (t, x)] .

By (4), the left hand of the above expression is
(
cDα

a+

)
and thus(

cDα
a+

)
x (t) = h

[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
.

Hence x ∈ Cn−1
δ [a, b] satisfies (19) .

– Applying δk (k = 0, ..., n− 1) to both sides of (21), we have

δkx(t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
(
δk
) (
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) , (25)

Since x ∈ Cn−1
δ [a, b] for any

((
cDα1

a+
x
)
, ...,

(
cDαl

a+
x
))
∈ Rn−1 and α−k > γ−(n− 1) >

0, we have (
J α−k
a+

)
h
[
τ, x (τ) ,

(
cDα1

a+
x
)
(τ) , ...,

(
cDαl

a+
x
)
(τ)
]
∈ C [a, b] . (26)

On the other hand, by Lemma 2.3, we let τ −→ a+ on the both sides of (25) , then we
obtain

δkx(τ)
∣∣
τ=a+

= dk, k = 0, ..., n− 1.

Hence, x satisfying (21) satisfies the initial condition (20). That is x ∈ Cn−1
δ [a, b] satisfies

the Cauchy problem (19)-(20).
Similarly, we prove the second part of the Theorem.

Theorem 4.2. Let α ∈ C, n = [Re(α)] + 1, 0 ≤ γ < 1 be such that γ ≤ α. Let
αj > 0 (j = 1, ..., l) be such that conditions in (22) are satisfied. Let G be an open set in
Rl+1 and let h : (a, b] × G −→ R be a function such that h [t, x, x1, ..., xl] ∈ Cγ,ln [a, b] for
any x, x1, ..., xl ∈ Cγ,ln [a, b] and the Lipschitz condition (6) is fulfilled.

(i) If n− 1 < α < n, then there is a unique solution x to the problem (19)-(20) in the space
Cα,n−1

δ,γ,ln [a, b] .

(ii) If 0 < α < 1, then there is a unique solution x ∈ Cα
δ,γ,ln [a, b] to (19) with the condition

x (a+) = d0 ∈ R.

Proof. By Theorem 4.1 it is sufficient to establish the existence of a unique solution x
∈ Cα,n−1

δ,γ,ln [a, b] to the integral equation (21) .

Step 1. First we show that there exists a unique solution x ∈ Cn−1
δ [a, b].
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(a) We choose t1 ∈ ]a, b] , we prove the existence of a unique solution x ∈ Cn−1
δ [a, t1] , so

that the conditions

w1 =
n−1∑
k=0

l∑
j=0

Aj

(
ln t1

a

)Re(α−αj)−k Γ(1−γ)
Γ(1−γ+α−αj−k) < 1 if γ ≤ α,

holds, and apply the Banach fixed point theorem to prove the existence of a unique
solution x ∈ Cn−1

δ [a, t1] of the integral equation (21) .

We rewrite the equation (21) in the form x (t) = (Tx) (t) , where

(Tx) (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, φ (τ, x)]
dτ

τ
,

with

x0 (t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

.

It follows that x0 (t) ∈ Cn−1
δ [a, t1] because x0 (t) my be further decomposed as a finite

sum of functions in Cn−1
δ [a, t1] ,

h [τ, φ (τ, x)] ∈ Cγ,ln [a, b] =⇒ h [τ, φ (τ, x)] ∈ Cγ,ln [a, t1] ,

and, from Lemma 2.6-(b) , we have, using the fact that α > 0 and 0 ≤ γ < 1,

J α
a+
h [τ, φ (τ, x)] ∈ C [a, t1] if γ ≤ α.

Let x ∈ Cn−1
δ [a, t1], by Lemma 2.7, the integral in the right-hand side of (21) also belongs

to Cn−1
δ [a, t1] i.e., J α

a+
h [τ, φ (τ, x)] ∈ Cn−1

δ [a, t1] , and hence Tx ∈ Cn−1
δ [a, t1] , this proves

T is continuous on Cn−1
δ [a, t1].

To show that T is a contraction we have to prove that, for any x1, x2 ∈ Cn−1
δ [a, t1] there

exists w1 > 0 such that

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥Cn−1
δ [a,t1]

.

By Lipschitzian condition (6) , Property 2.2 and Lemma 2.4, thus∥∥∥(J α
a+

(
h
[
τ, x1,

cDα1
a+
x1, ...,

cDαl
a+
x1

]
− h

[
τ, x2,

cDα1
a+
x2, ...,

cDαl
a+
x2

]))
(t)
∥∥∥

≤ J α
a+

(∥∥∥h [τ, x1,cDα1
a+
x1, ...,

cDαl
a+
x1

]
− h

[
τ, x2,

cDα1
a+
x2, ...,

cDαl
a+
x2

]∥∥∥) (t)
≤
∑l

j=0Aj

∥∥∥(J α−αj
a+

)
J αj
a+

(
cDαj

a+

)
(x1 − x2)

∥∥∥ (t)
=
(∑l

j=0AjJ
α−αj
a+

∥∥J αj
a+

(
cDαj

a+

)
(x1 − x2)

∥∥) (t)
=
[(∑l

j=0AjJ
α−αj
a+ ∥x1 − x2∥

)
(τ)−

∑nj−1
kj=0

δkj (x1−x2)(a+)
kj !

(
ln t

a

)kj
]
.

By the hypothesis and Lemma 2.4, δkjx1 (a+) = δkj (x2) (a+), kj = 0, ..., nj − 1, nj =
Re (αj) + 1, thus∥∥∥J αj

a+

(
cDαj

a+

)
(x1 − x2) (t)

∥∥∥ =

∥∥∥∥∥∥(x1 − x2) (t)−
nj−1∑
kj=0

δkj (x1 − x2) (a+)
kj !

(
ln
t

a

)kj

∥∥∥∥∥∥
= ∥(x1 − x2) (t)∥
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for arbitrary t ∈ [a, t1] . Thus we may continue our estimation above according to∥∥∥(J α
a+
{h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]}

)
(t)
∥∥∥ ≤ l∑

j=0

Aj

(
J α−αj
a+

(∥x1 − x2∥)
)
(t) . (27)

Moreover by Lemma 2.6-(b), (27) and by (a.ii) in Theorem 3.3 the following holds, indeed,
for x1, x2 ∈ Cn−1

δ [a, t1]∥∥∥J α
a+

(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)
∥∥∥
Cn−1

δ [a,t1]
≤
∥∥∥∥n−1∑
k=0

J α−k
a+

(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)

∥∥∥∥
Cδ[a,t1]

≤
n−1∑
k=0

l∑
j=0

Aj

(
ln t1

a

)Re(α−αj)−k Γ(1−γ)
Γ(1−γ+α−αj−k) ∥x1 (t)− x2 (t)∥Cn−1

δ [a,t1]
.

We conclude that mapping T satisfies

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥′Cn−1
δ [a,t1]

for any functions x1, x2 ∈ Cn−1
δ [a, t1] .Hence, a unique fixed point in space Cn−1

δ [a, t1] exists
and it is explicitly given as a limit of iterations of the mapping T i.e., ∃x∗0 ∈ Cn−1

δ [a, t1]
such that

lim
m→+∞

∥xm (t)− x∗0 (t)∥Cn−1
δ [a,t1]

= 0,

Thus we deduce that a unique solution x∗ (t) ∈ Cn−1
δ [a, b] xists such that

lim
m→+∞

∥xm (t)− x∗ (t)∥Cn−1
δ [a,b] = 0,

where
xm (t) = Tmx∗0i, x

∗
0i (t) = x0 (t) , x

∗ (t) = x∗i (t) , i = 0, 1, ...,M,

and
x∗i (ti+1) = x∗i+1 (ti+1) , [a, b] = ∪ [ti, ti+1] , a = t0 < ... < tM = b.

Step 2. To complete the proof of Theorem 4.2, we show that this unique solution x (t) =
x∗ (t) ∈ Cn−1

δ [a, b] belongs to the space Cα,n−1
δ,γ,ln [a, b]. It is sufficient to prove that(

cDα
a+
x
)
(t) ∈ Cα

δ,γ,ln [a, b]. Using the estimate (27) , we have∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= ∥h [t, φ (t, xm)]− h [t, φ (t, x∗)]∥Cγ,ln[a,b]

≤
l∑

j=0

Aj

∥∥cDαj
a+ (xm (t)− x∗ (t))

∥∥
Cγ,ln[a,b]

≤
l∑

j=0

Aj

∥∥∥J n−1−αj
a+ δn−1 (xm (t)− x∗ (t))

∥∥∥
Cγ,ln[a,b]

≤
l∑

j=0

Aj

(
ln b

a

)γ ∥∥∥J n−1−αj
a+ δn−1 (xm (t)− x∗ (t))

∥∥∥
C[a,b]

≤
l∑

j=0

Aj
(ln b

a )
γ

Re(n−1−αj)Γ(n−1−αj)

∥∥δn−1 (xm (t)− x∗ (t))
∥∥
C[a,b]

≤
l∑

j=0

Aj
(ln b

a )
γ

Re(n−1−αj)Γ(n−1−αj)
∥xm (t)− x∗ (t)∥Cn−1[a,b] ,
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It is clear that the right hand side of the above inequality approaches to zero indepen-
dently. Hence,

lim
m→+∞

∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= 0.

Consequently, a unique solution x∗ ∈ Cα,n−1
δ,γ,ln [a, b] of equation (21) exists. The second

part of the theorem can be proved analogously.

Corollary 4.3. Under the hypotheses of Theorem 4.2 with γ = 0. Then there exists a
unique solution x∗ (t) ∈ Cn−1

δ [a, b] to the Cauchy problem (19)-(20) .

Proof. The above Corollary can be demonstrated in a similar way to that of Theorem
4.2, using the following inequality∥∥∥J α

a+
(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)

∥∥∥
C[ti,ti+1]

≤
n−1∑
k=0

l∑
j=0

Aj

(
ln

ti
ti+1

)Re(α−αj)−k

ℜ(α−αj−k)Γ(α−αj−k) ∥x1 (t)− x2 (t)∥C[ti,ti+1]
,

for i = 0, 1, ...,M, a =t0, b = tM , and∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

≤

l∑
j=0

Aj

(
ln b

a

)γ
Re (n− 1− αj) Γ (n− 1− αj)

∥xm (t)− x∗ (t)∥Cn−1[a,b] .

We can derive the corresponding results for the Cauchy problems for linear fractional
equations.

Corollary 4.4. Let α > 0, n = [Re(α)] + 1 and 0 ≤ γ < 1 be such that α ≥ γ. Let
l ∈ N, αj > 0 (j = 1, ..., l) be such that conditions in (22) are satisfied and let dj (t) ∈ C [a, b]
(j = 1, ..., l) and f (t) ∈ Cγ,ln [a, b] .

Then the Cauchy problem for the following linear differential equation of order α

(
cDα

a+
x
)
(t) +

l∑
j=1

dj (t)
(
cDαj

a+
x
)
(t) + d0 (t)x (t) = f (t) (t > a) ,

with the initial conditions (9) has a unique solution x (t) in the space Cα,n−1
δ,γ,ln [a, b] .

In particular, there exists a unique solution x (t) in the space Cα,n−1
δ,γ,ln [a, b] to the Cauchy

problem for the equation with λj ∈ R and βj = 0 (j = 1, ..., l) :

(
cDα

a+
x
)
(t) +

l∑
j=1

λj

(
ln
t

a

)βj (
cDαj

a+
x
)
(t) + λ0

(
ln
t

a

)β0

x (t) = f (t) (t > a) .

Proof. The proof is a direct consequence of Theorem 4.2.
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5 Illustrative Examples

We give here some applications of the above results to Cauchy problems with the Caputo
Hadamard derivative.

Example 5.1. We consider the fractional differential equation of the form

(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
; t > a > 0; Re(α) > 0, m > 0; m ̸= 1, (28)

with λ, β ∈ R (λ ̸= 0) , with the initial conditions(
δkx
)
(a+) = 0, k = 0, ..., n− 1. (29)

(a) Suppose that the solution has the folowing form:

x (t) = c

(
ln
t

a

)ν

,

then, this equation has the explicit solution

x (t) =

[
Γ (γ − α+ 1)

λΓ (γ + 1)

] 1
(m−1) (

ln
t

a

)α−γ

, γ =
(β +mα)

(m− 1)
. (30)

Moreover, the condition (29) is satisfied.
Hence x (t) is an eigenfunction if both of γ+1 and γ−α+1 are not equal to 0 or negative

integer. also using Property 2.3 it is easily verified that if the condition

(β + α)

(m− 1)
≥ −1, (31)

holds, this solution x (t) belongs to Cγ [a, b] and to C [a, b] in the respective cases 0 ≤ α and
γ − α ≤ 0.

x (t) ∈ Cγ [a, b] if 0 ≤ γ < 1 and 0 ≤ α,

x (t) ∈ C [a, b] if γ − α ≤ 0.
(32)

The right-hand side of the equation (28) takes the form

h [t, x (t)] =

[
Γ (γ − α+ 1)

λΓ (γ + 1)

] m
(m−1)

(
ln
t

a

)−γ

. (33)

The function h [t, x (t)] ∈ Cγ [a, b] when 0 ≤ γ < 1 and h [t, x (t)] ∈ C [a, b] when γ ≤ 0

h [t, x (t)] ∈ Cγ [a, b] if 0 ≤ γ < 1,

h [t, x (t)] ∈ C [a, b] if γ ≤ 0.
(34)

In accordance with (31) , the following case is possible for the space of the right-hand
side (33) and of the solution (30) :

18

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

678 Adjabi et al 661-681



1. When α > 0 and

m > 1, −mα ≤ β < m− 1−mα, β ≤ −α,
or
0 < m < 1, m− 1−mα < β ≤ −mα, β ≥ −α.

2. If 0 < α < 1 these conditions take the following forms

m > 1, −mα ≤ β ≤ −α or 0 < m < 1, −α ≤ β ≤ −mα. (35)

3. If α ≥ 1 then

m > 1, −mα ≤ β < m− 1−mα or 0 < m < 1, m− 1−mα < β ≤ −mα. (36)

(b) Now we establish the conditions for the uniqueness of the solution (30) to the above
problem (28)-(29). For this we have to choose the domain G and check when the
Lipschitz condition (7) with the right-hand side of (28) is valid.

We choose the following domain:

G =

{
(t, x) ∈ R2 : 0 < a < t ≤ b, 0 < x < p

(
ln
t

a

)q

, q ∈ R, p > 0

}
. (37)

To prove the Lipschitz condition (7) with

h [t, x (t)] = λ

(
ln
t

a

)β

(x (t))
m
, (38)

we have, for any (t, x1) (t, x2) ∈ G :

|h [t, x1]− h [t, x2]| ≤ |λ|
(
ln
t

a

)β

|xm1 − xm2 | . (39)

By definition (37) , we have

|xm1 − xm2 | < mK

(
ln
t

a

)q

|x1 − x2| , m > 0.

Substituting this estimate into (39) , we obtain

|h [t, x1]− h [t, x2]| ≤ |λ|mK
(
ln
t

a

)β+(m−1)q

|x1 − x2| .

Then the functions h [t, x (t)] fulfil the Lipschitizian condition provided that β+(m− 1) q ≥
0.

Proposition 5.2. Let λ, β ∈ R (λ ̸= 0) andm > 0 (m ̸= 1), γ = (β +mα) \ (m− 1) . Let
G be the domain (37), where q ∈ R is such that β + (m− 1) q ≥ 0.

(i) Let 0 < α < 1, if either of the conditions (35) holds, then the Cauchy problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m

and x (a+) = 0, (40)

has a unique solution x (t) ∈ Cα
δ,γ,ln [a, b] and this solution is given by (30).
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(ii) Let n−1 < α < n (n ∈ N \ {1}) , if either of the conditions (36) holds, then the problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m

and
(
δkx
)
(a+) = 0, k = 0, ..., n− 1, (41)

has a unique solution x (t) ∈ Cα,n−1
δ,γ,ln [a, b] and this solution is given by (30).

Remark 5.3. If β = 0, 0 < Re(α) < 1 then the Lipschitz condition is violated in the
domain (37) . The Cauchy problem (41) admits of two continuous solutions x = 0 and

x (t) =

[
Γ (γ + 1)

Γ (γ + 1− α)

] 1
(m−1)

(
ln
t

a

)γ

, γ =
α

(1−m)
.

Example 5.4. Let us consider the following problem of order α (Re (α) > 0)(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
+ c

(
ln
t

a

)ν

, λ, c ∈ R (λ ̸= 0) and ν, β ∈ R. (42)

Then it is verified that the equation (42) has the solution of the form

x (t) = µ

(
ln
t

a

)γ

, γ = (β + α) \ (1−m) . (43)

In this case the right-hand side of 42 takes the form

h [t, x (t)] = (λ+ c)

(
ln
t

a

)(β+αm)\(1−m)

. (44)

Using the same arguments as in the proof of Proposition 5.2 we derive the uniqueness
result for the Cauchy problem 42.

Proposition 5.5. Let λ, β ∈ R (λ ̸= 0) and m > 0 (m ̸= 1), γ = (β +mα) \ (m− 1).
Let G be the domain (37), where q ∈ R is such that β + (m− 1) q ≥ 0. Let ν = −γ and let
the transcendental equation

Γ

(
α+ β

1−m
+ 1− α

)
[λym + c]− Γ

(
α+ β

1−m
+ 1

)
y = 0,

have a unique solution y = µ.

(i) Let 0 < α < 1, if either of the conditions (35) holds, then the Cauchy problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
+ c

(
ln
t

a

)ν

, x (a+) = 0,

has a unique solution x (t) ∈ Cα
δ,γ,ln [a, b] and this solution is given by (43).

(ii) Let n − 1 < α < n, if either of the conditions (36) holds, then the problem (42)-(29)
has a unique solution x (t) ∈ Cα,n−1

δ,γ,ln [a, b] and this solution is given by (43).
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Abstract

In this paper, we prove some fixed point results for generalized con-
tractive multimaps with respect to generalized distance. Consequently,
several known fixed point results either generalized or improved including
the corresponding recent fixed point results of Ciric, BinDehaish-Latif,
Latif-Albar, Klim-Wardowski, Feng-Liu.

1 Introduction and Preliminaries

Let (X, d) be a metric space, 2X a collection of nonempty subsets of X, and
CB(X) a collection of nonempty closed bounded subsets of X, Cl(X) a col-
lection of nonempty closed subsets of X, K(X) a collection of nonempty com-
pact subsets of X and H the Hausdorff metric induced by d. Then for any
A,B ∈ CB(X),

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

where d(x,B) = infy∈B d(x, y).

An element x ∈ X is called a fixed point of a multivalued map T : X → 2X

if x ∈ T (x). We denote Fix(T ) = {x ∈ X : x ∈ T (x)}. A sequence {xn} in X is
called an orbit of T at x0 ∈ X if xn ∈ T (xn−1) for all n ≥ 1. A map f : X → R

0

2000 Mathematics Subject Classification: 47H09, 54H25.
Keywords: Fixed point, contractive multimap, w-distance, metric space.
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is called T-orbitally lower semicontinuous if for any orbit {xn} of T and x ∈ X,
xn → x imply that f(x) ≤ lim inf

n→∞
f(xn).

Using the concept of Hausdorff metric, Nadler [13] introduced a notion of
multivalued contraction maps and proved a multivalued version of the well-
known Banach contraction principle, which states that each closed bounded
valued contraction map on a complete metric space has a fixed point. Since
then various fixed point results concerning multivalued contractions have ap-
peared. Feng and Liu [4] extended Nadler’s fixed point theorem without using
the concept of Hausdorff metric. While in [7] Klim and Wardowski generalized
their result. Ciric [3] obtained some interesting fixed point results which extend
and generalize these cited results.

In [6], Kada et al. introduced the concept of w-distance on a metric space
and studied the properties, examples and some classical results with respect to
w-distance. Using this generalized distance, Suzuki and Takahashi [14] have
introduced notions of single-valued and multivalued weakly contractive maps
and proved fixed point results for such maps. Consequently, they generalized
the Banach contraction principle and Nadler’s fixed point result. Some other
fixed point results concerning w-distance can be found in [8, 9, 10, 16, 18].

In [15], Susuki generalized the concept of w-distance by introducing the no-
tion of τ -distance on metric space (X, d). In [15], Suzuki improved several clas-
sical results including the Caristi’s fixed point theorem for single-valued maps
with respect to τ -distance.

In the literature, several other kinds of distances and various versions of
known results are appeared. Most recently, Ume [17] generalized the notion of
τ -distance by introducing a concept of u-distance as follows:

A function p : X × X → R+ is called u-distance on X if there exists a
function θ : X × X × R+ × R+ → R+ such that the following hold for each
x, y, z ∈ X:

(u1) p(x, z) ≤ p(x, y) + p(y, z).
(u2) θ(x, y, 0, 0) = 0 and θ(x, y, s, t) ≥ min{s, t} for each s, t ∈ R+ ,

and for every ε > 0, there exists δ > 0 such that | s − s0 |< δ,
| t− t0 |< δ, s, s0, t, t0 ∈ R+ and y ∈ X imply

| θ(x, y, s, t)− θ(x, y, s0, t0) |< ε.

2
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(u3) limn→∞ xn = x

lim
n→∞

sup{θ(wn, zn, p(wn, xm), p(zn, xm)) : m ≥ n} = 0

imply

p(y, x) ≤ lim inf
n→∞

p(y, xn)

(u4)

lim
n→∞

sup{p(xn, wm)) : m ≥ n} = 0,

lim
n→∞

sup{p(yn, zm)) : m ≥ n} = 0,

lim
n→∞

θ(xn, wn, sn, tn) = 0,

lim
n→∞

θ(yn, zn, sn, tn) = 0

imply

lim
n→∞

θ(wn, zn, sn, tn) = 0

or

lim
n→∞

sup{p(wn, xm)) : m ≥ n} = 0,

lim
n→∞

sup{p(zm, yn)) : m ≥ n} = 0,

lim
n→∞

θ(xn, wn, sn, tn) = 0,

lim
n→∞

θ(yn, zn, sn, tn) = 0

imply

lim
n→∞

θ(wn, zn, sn, tn) = 0;

(u5)

lim
n→∞

θ(wn, zn, p(wn, xn), p(zn, xn)) = 0,

lim
n→∞

θ(wn, zn, p(wn, yn), p(zn, yn)) = 0

imply

lim
n→∞

d(xn, yn) = 0

3
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or

lim
n→∞

θ(an, bn, p(xn, an), p(xn, bn)) = 0,

lim
n→∞

θ(an, bn, p(yn, an), p(yn, bn)) = 0

imply

lim
n→∞

d(xn, yn) = 0.

Remark 1.1 [17] (a) Suppose that θ from X × X × R+ × R+ into R+ is a
mapping satisfying (u2) to (u5). Then there exists a mapping η from X ×X ×
R+ ×R+ into R+ such that η is nondecreasing in its third and fourth variable,
respectively, satisfying (u2)η to (u5)η, where (u2)η to (u5)η stand for substitut-
ing η for θ in (u2) to (u5), respectively.
(b) In the light of (a), we may assume that θ is nondecreasing in its third and
fourth variables, respectively, for a function θ from X ×X × R+ ×R+ into R+

satisfying (u2) to (u5).
(c) Each τ -distance p on a metric space (X, d) is also a u-distance on X.

Here we present some examples of u-distance which are not τ -distance. (For
the detail, see [17]).
Example 1.2. Let X = R+ with the usual metric. Define p : X ×X → R+ by
p(x, y) = ( 1

4 )x2 . Then p is a u-distance on X but not a τ distance on X.
Example 1.3. Let X be a normed space with norm ‖.‖. Then a function p :
X ×X → R+ defined by p(x, y) = ‖x‖ for every x, y ∈ X is a u-distance on X
but not a τ -distance.

It follows from the above examples and Remark 1.1(c) that u-distance is a
proper extension of τ -distance. Other useful examples on u-distance are also
given in [17].

Let (X, d) be a metric space and let p be a u-distance on X. A sequence
{xn} in X is called p-Cauchy [17] if there exists a function θ from X × X ×
R+×R+ into R+ satisfying (u2)∼(u5) and a sequence {zn} of X such that

lim
n→∞

sup{θ(zn, zn, p(zn, xm), p(zn, xm)) : m ≥ n} = 0,

or

4
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lim
n→∞

sup{θ(zn, zn, p(xm, zn), p(xm, zn)) : m ≥ n} = 0.

The following lemmas concerning u-distance are crucial for the proofs of our
results.

Lemma 1.4 [17] Let (X, d) be a metric space and let p be a u-distance on X.
If {xn} is a p-Cauchy sequence in X, then {xn} is a Cauchy sequence.
Lemma 1.5 [5] Let (X, d) be a metric space and let p be a u-distance on X.
If {xn} is a p-Cauchy sequence and {yn} is a sequence satisfying

lim
n→∞

sup{p(xn, ym)) : m ≥ n} = 0,

then {yn} is also a p-Cauchy sequence and lim
n→∞

d(xn, yn) = 0.

Lemma 1.6 [17] Let (X, d) be a metric space and let p be a u-distance on X.
Suppose that a sequence {xn} of X satisfies

lim
n→∞

sup{p(xn, xm)) : m > n} = 0,

or

lim
n→∞

sup{p(xm, xn)) : m > n} = 0.

Then {xn} is a p-Cauchy sequence.

The aim of this paper is to present some more general fixed point results
with respect to u-distance for multivalued maps satisfying certain conditions.
Our results unify and generalize the corresponding results of Mizoguchi and
Takahashi [12], Klim and Wardowski [7], Latif and Abdou [10], BinDehaish and
Latif [2], Ciric [3], Feng and Liu [4], and several others.

2 The Results

Using the u-distance, we prove a general result on the existence of fixed points
for multivalued maps.

Theorem 2.1 Let (X, d) be a complete metric space. Let T : X → Cl(X)
be a multivalued map and let ϕ : [0,∞) → [0, 1) be such that lim sup

r→t+
ϕ(r) < 1

5
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for each t ∈ [0,∞). Let p be a u-distance on X and assume that the following
conditions hold :
(I) for any x ∈ X, there exists y ∈ T (x) satisfying

p(x, y) ≤ (2− ϕ(p(x, y)))p(x, T (x)),

and
p(y, T (y)) ≤ ϕ(p(x, y))p(x, y)

(II) the map f : X → R, defined by f(x) = p(x, T (x)) is T-orbitally lower
semicontinuous.
Then there exists v0 ∈ X such that f(v0) = 0. Further if p(v0, v0) = 0, then
v0 ∈ T (v0).

Proof. let x0 ∈ X be an arbitrary but fixed element in X. Then there exists
x1 ∈ T (x0) such that

p(x0, x1) ≤ (2− ϕ(p(x0, x1)))p(x0, T (x0)), (1)

and
p(x1, T (x1)) ≤ ϕ(p(x0, x1))p(x0, x1). (2)

From (1) and (2), we get

p(x1, T (x1)) ≤ ϕ(p(x0, x1))(2− ϕ(p(x0, x1)))p(x0, T (x0)). (3)

Define a function ψ : [0,∞) → [0,∞) by

ψ(t) = ϕ(t)(2− ϕ(t)) = 1− (1− ϕ(t))2. (4)

Using the facts that for each t ∈ [0,∞), ϕ(t) < 1 and limr→t+ sup ϕ(r) < 1,
we have

ψ(t) < 1 (5)

and
lim sup

r→t+
ψ(r) < 1, for all t ∈ [0,∞) (6)

From (3) and (4), we have

p(x1, T (x1)) ≤ ψ(p(x0, x1))p(x0, T (x0)). (7)

6
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Similarly, for x1 ∈ X, there exists x2 ∈ T (x1) such that

p(x1, x2) ≤ (2− ϕ(p(x1, x2)))p(x1, T (x1)),

and
p(x2, T (x2)) ≤ ϕ(p(x1, x2))p(x1, x2).

Thus
p(x2, T (x2)) ≤ ψ(p(x1, x2))p(x1, T (x1)).

Continuing this process we can get an orbit {xn} of T in X satisfying the
following

p(xn, xn+1) ≤ (2− ϕ(p(xn, xn+1)))p(xn, T (xn)) (8)

and
p(xn+1, T (xn+1)) ≤ ψ(p(xn, xn+1))p(xn, T (xn)), (9)

for each integer n ≥ 0. Since ψ(t) < 1 for each t ∈ [0,∞) and from (9), we
have for all n ≥ 0

p(xn+1, T (xn+1)) < p(xn, T (xn)). (10)

Thus the sequence of non-negative real numbers {p(xn, T (xn))} is decreasing
and bounded below, thus convergent. Therefore, there is some δ ≥ 0 such that

lim
n→∞

p(xn, T (xn)) = δ. (11)

From (8), as ϕ(t) < 1 for all t ≥ 0, we get

p(xn, T (xn)) ≤ p(xn, xn+1) < 2p(xn, T (xn)), (12)

Thus, we conclude that the sequence of non-negative reals {ω(xn, xn+1)} is
bounded. Therefore, there is some θ ≥ 0 such that

lim inf
n→∞

p(xn, xn+1) = θ. (13)

Note that p(xn, xn+1) ≥ p(xn, T (xn)) for each n ≥ 0, so we have θ ≥ δ.

Now we shall show that θ = δ. If δ = 0. Then we get

lim
n→∞

p(xn, xn+1) = 0.

7
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Now consider δ > 0. Suppose to the contrary, that θ > δ. Then θ− δ > 0 and
so from (11) and (13) there is a positive integer n0 such that

p(xn, T (xn)) < δ +
θ − δ

4
for all n ≥ n0 (14)

and
θ − θ − δ

4
< p(xn, xn+1) for all n ≥ n0 (15)

Then from (15), (8) and (14), we get

θ − θ − δ

4
< p(xn, xn+1)

≤ (2− ϕ(p(xn, xn+1)))p(xn, T (xn))

< (2− ϕ(p(xn, xn+1)))
[
δ +

θ − δ

4

]
.

Thus for all n ≥ n0,

(2− ϕ(p(xn, xn+1))) >
3θ + δ

3δ + θ
,

that is;

1 + (1− ϕ(p(xn, xn+1))) > 1 +
2(θ − δ)
3δ + θ

,

and we get

−(1− ϕ(p(xn, xn+1)))2 < −
[
2(θ − δ)
3δ + θ

]2

.

Thus for all n ≥ n0,

ψ(p(xn, xn+1)) = 1− (1− ϕ(p(xn, xn+1)))2 (16)

< 1−
[
2(θ − δ)
3δ + θ

]2

.

Thus, from (9) and (16) , we get

p(xn+1, T (xn+1)) ≤ hp(xn, T (xn)) for all n ≥ n0, (17)

where h = 1 −
[

2(θ−δ)
3δ+θ

]2

. Clearly h < 1 as θ > δ. From (14) and (17), we
have for any k ≥ 1

p(xn0+k, T (xn0+k)) ≤ hkp(xn0 , T (xn0)). (18)

8
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Since δ > 0 and h < 1, there is a positive integer k0 such that hk0p(xn0 , T (xn0)) <
δ. Now, since δ ≤ p(xn, T (xn)) for each n ≥ 0, by (18) we have

δ ≤ p(xn0+k0 , T (xn0+k0)) ≤ hk0p(xn0 , T (xn0)) < δ.

a contradiction. Hence, our assumption θ > δ is wrong. Thus δ = θ. Now we
show that θ = 0. Since θ = δ ≤ p(xn, T (xn)) ≤ p(xn, xn+1), then from (13)
we can read as

lim inf
n→∞

p(xn, xn+1) = θ+,

so, there exists a subsequence {p(xnk
, xnk+1)} of {p(xn, xn+1)} such that

lim
k→∞

p(xnk
, xnk+1) = θ + .

Now from (6) we have

lim sup
p(xnk

,xnk+1)→θ+

ψ(p(xnk
, xnk+1)) < 1, (19)

and from (9), we have

p(xnk
, T (xnk+1)) ≤ ψ(p(xnk

, xnk+1))p(xnk
, T (xnk

)).

Taking the limit as k →∞ and using (11), we get

δ = lim sup
k→∞

p(xnk+1 , T (xnk+1))

≤ (lim sup
k→∞

ψ(p(xnk+1 , xnk+1)))(lim sup
k→∞

p(xnk
, T (xnk

))

= ( lim sup
p(xnk

,xnk+1)→θ+

ψ(p(xnk
, xnk+1)))δ.

If we suppose that δ > 0, then from last inequality, we have

lim sup
p(xnk

,xnk+1)→θ+

ψ(p(xnk
, xnk+1)) ≥ 1,

which contradicts with (19). Thus δ = 0. Then from (11) and (12), we have

lim
n→∞

p(xn, T (xn)) = 0+, (20)

and thus
lim

n→∞
p(xn, xn+1) = 0 + . (21)

9
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Now, let
α = lim

p(xnk
,xnk+1)→0+

supψ(p(xnk
, xnk+1)).

Then by (6), α < 1. Let q be such that α < q < 1. Then there is some
n0 ∈ N such that

ψ(p(xn, xn+1)) < q, for all n ≥ n0.

Thus it follows from (9)

p(xn+1, T (xn+1)) ≤ qp(xn, T (xn)) for all n ≥ n0.

By induction we get

p(xn+1, T (xn+1)) ≤ qn+1−n0p(xn0 , T (xn0)) for all n ≥ n0. (22)

Now, using (12) and (22), we have

p(xn, xn+1) ≤ 2qn−n0p(xn0 , T (xn0)) for all n ≥ n0. (23)

Now, we show that {xn} is a Cauchy sequence, for all m ≥ n ≥ n0, we get

p(xn, xm) ≤
m−1∑
k=n

p(xk, xk+1)

≤ 2
m−1∑
k=n

qk−n0p(xn0 , T (xn0))

≤ 2(
qn−n0

1− q
)p(xn0 , T (xn0)). (24)

and hence
lim

n→∞
sup{p(xn, xm) : m ≥ n} = 0.

Thus, by Lemma 1.6, {xn} is a p- Cauchy sequence and hence by Lemma 1.4,
{xn} is a Cauchy sequence. Due to the completeness of X, there exists some
v0 ∈ X such that limn→∞ xn = v0. Since f is T-orbitally lower semicontinuous
and from (20), we have

0 ≤ f (v0) ≤ lim inf
n→∞

f (xn) = lim inf
n→∞

p(xn, T (xn)) = 0,

and thus, f (v0) = p (v0, T (v0)) = 0. Thus there exists a sequence {vn} ⊂ T (v0)
such that limn→∞ p(v0, vn) = 0. It follows that

0 ≤ lim
n→∞

sup{p(xn, vm)) : m ≥ n} ≤ lim
n→∞

sup{p(xn, v0) + p(v0, vm) : m ≥ n} = 0. (25)

10
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Since {xn} is a p-Cauchy sequence, thus it follows from (25) and Lemma 1.5 that
{vn} is also a p-Cauchy sequence and limn→∞ d(xn, vn) = 0. Thus, by Lemma
1.4, {vn} is a Cauchy sequence in the complete space. Due to closedness of
T (v0), there exists z0 ∈ X such that limn→∞ vn = z0 ∈ T (v0). Consequently,
using (u3) we get

p(v0, z0) ≤ lim inf
n→∞

p(v0, vn) = 0,

and thus p(v0, z0) = 0. But, since limn→∞ xn = v0, limn→∞ vn = z0 and
limn→∞ d(xn, vn) = 0, we have v0 = z0. Hence v0 ∈ Fix(T ) and p(v0, v0) = 0.

Remarks 2.2 Theorem 2.1 generalizes fixed point theorems of Latif and Ab-
dou [10, Theorem 2.1], Ciric [3, Theorem 5], Bin Dehaish and Latif [2, Theorem
2.2], Latif and Abdou [8, Theorem 2.2], Susuki [15, Theorem 2], Bin Dehaish
and Latif [1, Theorem 2.2], Suzuki and Takahashi [14, Theorem 1], Klim and
Wardowski [7, Theorem 2.1] and Feng and Liu [4, Theorem 3.1]which contains
Nadler’ fixed point theorem.

We also have the following interesting result by replacing the hypothesis (II)
of Theorem 2.1 with another suitable condition.

Theorem 2.3 Suppose that all the hypotheses of Theorem 2.1 except (II) hold.
Assume that

inf{p(x, v)) + p(x, T (x))} : x ∈ X} > 0,

for every v ∈ X with v /∈ T (v). Then Fix(T ) 6= ∅.

Proof. Following the proof of Theorem 2.1, there exists there exists an orbit
{xn} of T , which is Cauchy sequence in a complete metric space X. Thus, there
exists v0 ∈ X such that lim

n→∞
xn = v0. Thus, using (u3) and (24) we have for

all n ≥ n0

p(xn, v0) ≤ lim
m→∞

inf p(xn, xm) ≤ (
2qn−n0

1− q
)p(xn0 , T (xn0)),

and
p(xn, T (xn)) ≤ p(xn, xn+1) ≤ 2qn−n0p(xn0 , T (xn0)).

Assume that v0 /∈ T (v0). Then, we have

0 < inf{p(x, v0) + p(x, T (x)) : x ∈ X}

11
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≤ inf{p(xn, v0) + p(xn, T (xn)) : n ≥ n0}

≤ inf{(2qn−n0

1− q
)p(xn0 , T (xn0)) + 2qn−n0p(xn0 , T (xn0)) : n ≥ n0}

=
2(2− q)

(1− q)qn0
p(xn0 , T (xn0)) inf{qn : n ≥ n0} = 0,

which is impossible and hence v0 ∈ Fix(T ).

Remarks 2.4 Theorem 2.3 generalizes [8, Theorem 2.4], [10, Theorem 3.3]
and [2, Theorem 2.5].
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ESSENTIAL COMMUTATIVITY AND ISOMETRY OF

COMPOSITION OPERATOR AND DIFFERENTIATION

OPERATOR

GENG-LEI LI

Abstract. In this paper, we characterize the essential commutativity and

isometry of composition operator and differentiation operator from the Bloch
type space to space of all weighted bounded analytic functions in the disk.

1. Introduction

Let D be the unit disk of the complex plane, and S(D) be the set of analytic
self-maps of D. The algebra of all holomorphic functions with domain D will be
denoted by H(D).

A positive continuous function v on [0, 1) is called normal (see, e.g., [17]), if there
exist three constants 0 ≤ δ < 1, and 0 < a < b <∞, such that for r ∈ [δ, 1)

v(r)

(1− r)a
↓ 0,

v(r)

(1− r)b
↑ ∞

as r → 1.
Assume v is normal, the weighted-type space H∞v consists of all f ∈ H(D) such

that

‖f‖H∞
v

= sup
z∈D

v(z)|f(z)| <∞.

When v(z) = 1, we know that H∞v = H∞, that is

H∞ = {f ∈ H(D), sup
z∈D
|f(z)| <∞}.

We recall that the Bloch type space Bα (α > 0) consists of all f ∈ H (D) such
that

‖f‖Bα = sup
z∈D

(1− |z|2)α |f ′ (z)| <∞,

then ‖·‖Bα is a complete semi-norm on Bα, which is Möbius invariant.
It is well known that Bα is a Banach space under the norm

‖f‖ = |f (0)|+ ‖f‖Bα .
Let ϕ be an analytic self-map of D, the composition operator Cϕ induced by ϕ

is defined by
(Cϕf)(z) = f(ϕ(z))

2010 Mathematics Subject Classification. Primary: 47B38; Secondary: 30H30, 30H05, 47B33.
Key words and phrases. Composition operator, differentiation operator, Bloch type space,
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2 G.L. LI

for z ∈ D and f ∈ H(D).
Let D be the differentiation operator on H(D), that is Df(z) = f ′(z). For

f ∈ H(D), the products of composition and differentiation operators DCϕ and
CϕD are defined by

CϕD(f) = f ′(ϕ)

DCϕ(f) = (f ◦ ϕ)′ = f ′(ϕ)ϕ′

The boundedness and compactness of DCϕ on the Hardy space were discussed
by Hibschweiler and Portnoy in [7] and by Ohno in [14].

We write Tϕ for the operators DCϕ −CϕD, which is from the Bloch type space
Bα to H∞v . Generally speaking, it is clear that DCϕ 6= CϕD, but it is interesting
to study when

DCϕ(Bα → H∞v ) ≡ CϕD(Bα → H∞v ),modK

where K denotes the collection of all compact operators from Bloch type space Bα
to H∞v . If the upper properties is satisfied, we say they are essential commutative.

In the past few decades, boundedness, compactness, isometries and essential
norms of composition and closely related operators between various spaces of holo-
morphic functions have been studied by many authors, see, e.g., [1, 3, 5, 9, 12,
15, 16, 21, 22]; the results about difference and other properties can be seen
[?, 4, 6, 10, 11, 13, 18, 20] and the related references therein. Recently, many
interests focused on studying the essential commutativity of virous different com-
position operators.

In [23], Zhou and Zhang studied the essential commutativity of the integral op-
erators and composition operators from a mixed-norm space to Bloch type space.
In [19, ?], Tong and Zhou characterized the intertwining relations for Volterra op-
erators on the Bergman space, and compact intertwining relations for composition
operators between the weighted Bergman spaces and the weighted Bloch spaces,
respectively.

The paper continues this line of research, and discusses the essential commu-
tativity of composition operator and differentiation operator from the Bloch type
space to the space of all weighted bounded analytic functions in the disk.

2. Notation and Lemmas

To begin the discussion, let us introduce some notations and state a couple of
lemmas.

For a ∈ D, the involution ϕa which interchanges the origin and point a, is defined
by

ϕa(z) =
a− z
1− az

.

For z, w in D, the pseudo-hyperbolic distance between z and w is given by

ρ(z, w) = |ϕz(w)| =
∣∣∣∣ z − w1− zw

∣∣∣∣ ,
and the hyperbolic metric is given by

β (z, w) = inf
γ

∫
γ

|dξ|
1− |ξ|2

=
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
,

where γ is any piecewise smooth curve in D from z to w.
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ESSENTIAL COMMUTATIVITY AND ISOMETRY 3

The following lemma is well known [24].

Lemma 1. For all z, w ∈ D, we have

1− ρ2(z, w) =
(1− |z|2)(1− |w|2)

|1− zw|2
.

For ϕ ∈ S(D), the Schwarz-Pick lemma shows that ρ (ϕ(z), ϕ(w)) ≤ ρ(z, w), and
if equality holds for some z 6= w, then ϕ is an automorphism of the disk. It is also
well known that for ϕ ∈ S(D), Cϕ is always bounded on B.

Lemma 2. [8, Lemma 3] Assume that f ∈ H∞(D), then for each n ∈ N , there is
a positive constant C independent of f such that

sup
z∈D

(|1− |z|)n
∣∣∣f (n)(z)

∣∣∣ < C||f ||∞.

A little modification of Lemma 1 in [?] shows the following lemma.

Lemma 3. There exists a constant C > 0 such that∣∣∣(1− |z|2
)α

f ′(z)−
(

1− |w|2
)α

f ′(w)
∣∣∣ ≤ C ‖f‖Bα · ρ(z, w)

for all z, w ∈ D and f ∈ Bα.

The following lemma is an easy modification of Proposition 3.11 in [2].

Lemma 4. Let 0 < α < ∞, g ∈ H(B) and ϕ be a holomorphic self-map of B.
Then P gϕ : H∞ → Bα is compact if and only if P gϕ : H∞ → Bα is bounded and for
any bounded sequence (fk)k∈N in H∞ which converges to zero uniformly on B as

k →∞, we have ||(P g1ϕ1
− P g2)

ϕ2 fk||Bα → 0 as k →∞.

Throughout the remainder of this paper, C will denote a positive constant, the
exact value of which will vary from one appearance to the next.

3. Main theorems

Theorem 1. Let 0 < α < ∞ and ϕ be a analytic self map of the unit disk. Then
Tϕ = DCϕ − CϕD is a bounded operator from Bα to H∞v if and only if

sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

<∞. (1)

Proof. We prove the sufficiency first.
Assume that (1) is true, for every f ∈ Bα, we have

||Tϕf ||H∞
v

= sup
z∈D

υ(z) |f ′(ϕ(z))ϕ′(z)− f ′(ϕ(z))|

= sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α |f ′(ϕ(z))|

≤ C‖f‖Bα .

This means that Tϕ = DCϕ − CϕD is a bounded operator from Bα to H∞v .
Now we turn to the necessity.
Suppose that Tϕ : Bα → H∞v is a bounded operator, that is, there exists a

constant C such that ||Tϕf ||H∞
v
≤ C‖f‖Bα , for any f ∈ Bα.
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4 G.L. LI

For any a ∈ D, we begin by taking test function

fa(z) =

∫ z

0

(1− |a|2)α

(1− āt)2α
dt.

It is clear that f ′a(z) = (1−|a|2)α

(1−āz)2α . Using Lemma 1, we have

(1− |z|2)α|f ′a(z)| = (1− |z|2)α(1− |a|2)α

|1− āz|2α
= (1− ρ2(a, z))α.

So

‖fa‖Bα = sup
z∈D

(1− |z|2)α|f ′a(z)| ≤ 1.

that is fa(z) ∈ Bα.
Therefore

∞ > C||Tϕ||Bα→H∞
υ
> ‖Tϕfϕ(a)‖H∞

υ

= sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α
∣∣∣f ′ϕ(a)(ϕ(z))

∣∣∣
≥ υ(z) |ϕ′(a)− 1|

(1− |ϕ(a)|2)α
.

So (1) follows by noticing a is arbitrary.
This completes the proof of this theorem. �

Theorem 2. Let 0 < α < ∞ and ϕ be a analytic self map of the unit disk. Then
Tϕ = DCϕ − CϕD is operator from Bα to H∞v . Then Cϕ and D are essential
commutative if and only if Tϕ is bounded and

lim
|ϕ(z)|→1

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

= 0. (2)

Proof. We prove the sufficiency first.
Assume that Tϕ is bounded and condition (2) holds. By the Theorem 1, we have

sup
z∈D

υ(z) |ϕ′(z)− 1| <∞ (3)

for any z ∈ D.
Let {fk}k∈N be a arbitrary sequence in Bα which converges to zero uniformly

on compact subset of D as k →∞,and its norm ||fk||Bα ≤ C.
Then, it follows from (2) that for any ε > 0, there is a δ > 0, with δ < |ϕ(z)| < 1,

such that

sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

<
ε

C
. (4)

Let A = {z ∈ D : |ϕ(z)| ≤ δ} and B = {w : |w| ≤ δ}, then B is a compact subset
of D.
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ESSENTIAL COMMUTATIVITY AND ISOMETRY 5

The boundedness of Tϕ implies (1) is true by the Theorem 1. Combining (3)
and(4), it follows from Lemma 2 that

||Tϕfk||H∞
v

= sup
z∈D

υ(z) |f ′k(ϕ(z))ϕ′(z)− f ′k(ϕ(z))|

= sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α |f ′k(ϕ(z))|

≤ sup
z∈A

υ(z) |ϕ′(z)− 1| |f ′k(ϕ(z))|

+ sup
z∈D\A

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α |f ′k(ϕ(z))|

≤ C sup
w∈B
|fk(w)|+ ε.

As we are assume that fk → 0 on compact subset of D as k → ∞ , and ε is an
arbitrary positive number. Letting k → ∞, we have ||Tϕfk||H∞

v
→ 0. Therefore,

the operator Tϕ is a compact operator by Lemma 3, so the operators Cϕ and D are
essentially commutative.

Now we turn to the necessity.
Assume that Cϕ and D are essentially commutative. Then Tϕ = DCϕ−CϕD is

obvious bounded since it is a compact operator.
Nest, let {zk}k∈N is a arbitrary sequence in D such that |ϕ(zk)| → 1 as k →∞.

we will show (2) holds.
For any zk, we begin by taking test function

fk(z) =

∫ z

0

(1− |ϕ(zk)|2)α

(1− ¯ϕ(zk)t)2α
dt.

It is clear that f ′k(z) = (1−|ϕ(zk)|2)α

(1− ¯ϕ(zk)z)2α
. Using Lemma 1, we have

(1− |z|2)α|f ′k(z)| = (1− |z|2)α(1− |ϕ(zk)|2)α

|1− ¯ϕ(zk)z|2α
= (1− ρ2(ϕ(zk), z))α.

So

‖fk‖Bα = sup
z∈D

(1− |z|2)α|f ′k(z)| ≤ 1.

that is fa(z) ∈ Bα, and the sequence {fk} converges to 0 uniformly on compact
subset of D as k →∞. As the operator Tϕ = DCϕ − CϕD is a compact operator,
it follows from Lemma 3 that

lim
k→∞

‖Tϕfk‖H∞
υ

= 0. (5)

So, we have

||Tϕfk||H∞
v

= sup
z∈D

(υ(z) |f ′k(ϕ(z))ϕ′(z)− f ′k(ϕ(z))|

≥ υ(zk) |f ′k(ϕ(zk))ϕ′(zk)− f ′k(ϕ(zk))|
= υ(zk) |ϕ′(zk)− 1| |f ′k(ϕ(zk))|

= υ(zk) |ϕ′(zk)− 1| 1

(1− |ϕ(zk)|2)α

So, the condition (2) is followed by combining (5) and the above result.
This completes the proof of this theorem. �
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6 G.L. LI

Remark If α = 1, υ(z) = 1 then the space Bα and H∞υ will be Bloch space
B and H∞. The similar results from Bloch space B to the H∞ corresponding to
Theorems 1 and 2 also hold.

In the next, we study the isometry of the operator Tϕ = DCϕ − Cϕ, which is
from Bαto space H∞β , and give the following theorem.

Theorem 3. Let 0 < α <∞ and ϕ be a analytic self maps of the unit disk . Then
the operator Tϕ = DCϕ−CϕD : Bα → H∞υ is an isometry in the semi-norm if and
only if the following conditions hold:

(a) sup
z∈D

υ(z)|ϕ′(z)−1|
(1−|ϕ(z)|2)α

≤ 1;

(b) For every a ∈ D, there at least exists a sequence {zn} in D, such that

lim
n→∞

ρ(ϕ(zn), a) = 0 and lim
n→∞

(1−|zn|2)β|ϕ′(zn)−1|
(1−|ϕ(zn)|2)α

= 1.

Proof. We prove the sufficiency first.
As condition (a), for every f ∈ Bα, we have

||Tϕf ||H∞
v

= sup
z∈D

υ(z) |f ′(ϕ(z))ϕ′(z)− f ′(ϕ(z)))|

= sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α |f ′(ϕ(z))|

≤ ‖f‖Bα .

Next we show that the property (b) implies ||Tϕf ||H∞
v
≥ ||f ||Bα .

Given any f ∈ Bα, then ||f ||Bα = lim
m→∞

(1 − |am|2)α|f ′(am)| for some sequence

{am} ⊂ D. For any fixed m, by property (b), there is a sequence {zmk } ⊂ D such
that

ρ(ϕ(zmk ), am)→ 0 and
υ(zmk ) |ϕ′(zmk )− 1|

(1− |ϕ(zmk )|2)α
→ 1

as k →∞. By Lemma 3, for all m and k,∣∣(1− |ϕ(zmk )|2)αf ′(ϕ(zmk ))− (1− |am|2)αf ′(am)
∣∣ ≤ C||f ||Bα · ρ(ϕ(zmk ), am).

Hence

(1− |ϕ(zmk )|2)α |f ′(ϕ(zmk ))| ≥ (1− |am|2)α|f ′(am)| − C||f ||Bα · ρ(ϕ(zmk ), am).

Therefore,

||Tϕf ||H∞
v

= sup
z∈D

υ(z) |f ′(ϕ(z))ϕ′(z)− f ′(ϕ(z)))|

= sup
z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α |f ′(ϕ(z))|

≥ lim sup
k→∞

υ(z(mk )) |ϕ′(zmk )− 1|
(1− |ϕ(zmk )|2)α

(1− |ϕ(zmk )|2)α |f ′(ϕ(zmk ))|

= (1− |am|2)α|f ′(am)|.

The inequality ||Tϕf ||H∞
v
≥ ||f ||Bα follows by letting m→∞.

From the above discussions, we have ‖Tϕf‖H∞
v

= ‖f‖Bα , which means that Tϕ
is an isometry operator in the semi-norm from Bα to H∞υ .

Now we turn to the necessity.
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For any a ∈ D, we begin by taking test function

fa(z) =

∫ z

0

(1− |a|2)α

(1− āt)2α
dt. (6)

It is clear that f ′a(z) = (1−|a|2)α

(1−āz)2α . Using Lemma 1, we have

(1− |z|2)α|f ′a(z)| = (1− |z|2)α(1− |a|2)α

|1− āz|2α
= (1− ρ2(a, z))α. (7)

So
‖fa‖Bα = sup

z∈D
(1− |z|2)α|f ′a(z)| ≤ 1.

On the other hand, since (1 − |a|2)α|f ′a(a)| = (1−|a|2)2α

(1−|a|2)2α = 1, we have ‖fa‖Bα = 1.

By isometry assumption, for any a ∈ D, we have

1 = ||fϕ(a)||Bα = ‖Tϕfϕ(a)‖H∞
v

= sup
z∈D

υ(z)
∣∣∣f ′ϕ(a)(ϕ(z))ϕ′(z)− f ′ϕ(a)(ϕ(z)))

∣∣∣
= sup

z∈D

υ(z) |ϕ′(z)− 1|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α
∣∣∣f ′ϕ(a)(ϕ(z))

∣∣∣
≥ υ(a) |ϕ′(a)− 1|

(1− |ϕ(a)|2)α
.

So (a) follows by noticing a is arbitrary.
Since ||Tϕfa||H∞

v
= ||fa||Bα = 1, there exists a sequence {zm} ⊂ D such that

υ(zm) |(Tϕfa)(zm)| = υ(zm)|f ′a(ϕ(zm))||ϕ′(zm)− 1| → 1 (8)

as m→∞.
It follows from (a) that

υ(zm)|f ′a(ϕ(zm))||ϕ′(zm)− 1|

=
υ(zm) |ϕ′(zm)− 1|

(1− |ϕ(zm)|2)α
(1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| (9)

≤ (1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| . (10)

Combining (8) and (10), it follows that

1 ≤ lim inf
m→∞

(1− |ϕ(zm)|2)α |f ′a(ϕ(zm))|

≤ lim sup
m→∞

(1− |ϕ(zm)|2)α |f ′a(ϕ(zm))| ≤ 1.

The last inequality follows by (7) since ϕ(zm) ∈ D.
Consequently,

lim
m→∞

(1− |ϕ(zm)|2)α|f ′a(ϕ(zm))| = lim
m→∞

(1− ρ2(ϕ(zm), a))α = 1. (11)

That is, lim
m→∞

ρ(ϕ(zm), a) = 0.

Combining (8), (9) and (11), we know

lim
m→∞

(1− |zm|2)β |ϕ′(zm)− 1|
(1− |ϕ(zm)|2)α

= 1.

This completes the proof of this theorem. �
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APPROXIMATION OF JENSEN TYPE QUADRATIC-ADDITIVE
MAPPINGS VIA THE FIXED POINT THEORY ∗

YANG-HI LEE, JOHN MICHAEL RASSIAS, AND HARK-MAHN KIM †

Abstract. In this article, we investigate the stability results of a Jensen type
quadratic-additive functional equation

f(x+ y) + f(x− y) + 2f(z) = 2f(x) + f(z + y) + f(z − y)
via the fixed point theory. And then, we present two counter-examples which do
not satisfy the stability results.

1. Introduction

A classical question in the theory of functional equations is “when is it true that
a mapping, which satisfies approximately a functional equation, must be somehow
close to an exact solution of the equation?” Such a problem, called a stability prob-
lem of functional equations, was formulated by S. M. Ulam [31] in 1940 as follows:
Let G1 be a group and G2 a metric group with metric ρ(·, ·). Given ϵ > 0, does
there exist a δ > 0 such that if f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) < δ for all
x, y ∈ G1, then a homomorphism h : G1 → G2 exists with ρ(f(x), h(x)) < ϵ for all
x ∈ G1? When this problem has a solution, we say that the homomorphisms from
G1 to G2 are stable. In 1941, D. H. Hyers [16] considered the case of approximately
additive mappings between Banach spaces and proved the following result. Suppose
that E1 and E2 are Banach spaces and f : E1 → E2 satisfies the following condition:
there is a constant ϵ ≥ 0 such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ E1. Then the limit h(x) = limn→∞
f(2nx)

2n
exists for all x ∈ E1 and it is

a unique additive mapping h : E1 → E2 such that ∥f(x)− h(x)∥ ≤ ϵ.
The method which was provided by Hyers, and which produces the additive map-

ping h, was called a direct method. This method is the most important and most
powerful tool for studying the stability of various functional equations. Hyers’ The-
orem was generalized by T. Aoki [1] and D.G. Bourgin [3] for additive mappings
by considering an unbounded Cauchy difference. In 1978, Th.M. Rassias [26] also
provided a generalization of Hyers’ Theorem for linear mappings which allows the
Cauchy difference to be unbounded like this ∥x∥p + ∥y∥p. A generalized result of

2000 Mathematics Subject Classification. 39B82, 39B72, 47L05.
Key words and phrases. Fixed point method; Generalized Hyers–Ulam stability; Jensen type

quadratic-additive mapping.
∗This work was supported by research fund of Chungnam National University.
† Corresponding author:hmkim@cnu.ac.kr.
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Th.M. Rassias’ theorem was obtained by P. Gǎvruta in [10] and S. Jung in [18]. In
1990, Th.M. Rassias [27] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p ≥ 1.
In 1991, Z. Gajda [9] following the same approach as in [26], gave an affirmative so-
lution to this question for p > 1. It was shown by Z. Gajda [9], as well as by Th.M.

Rassias and P. S̆emrl [28], that one cannot prove a Th.M. Rassias’ type theorem
when p = 1. In 2003-2007 J.M. Rassias and M.J. Rassias [23, 24] and J.M. Rassias
[25] solved the above Ulam problem for Jensen and Jensen type mappings.

During the last decades, the stability problems of functional equations have been
extensively investigated by a number of mathematicians, see [6, 14, 17, 29, 22, 15].
Almost all subsequent proofs, in this very active area, have used Hyers’ direct
method, namely, the mapping F , which is a solution of he functional equation,
is explicitly constructed by the limit function of a Cauchy sequence starting from
the given approximate mapping f .

The first result of the generalized Hyers–Ulam stability for Jensen equation was
given in the paper [19] by the direct method. In 2003, L. Cădariu and V. Radu [4]
observed that the existence of the solution F for a Cauchy functional equation and
the estimation of the mapping F with the approximate mapping f of the equation
can be obtained from the alternative fixed point theorem. This method is called a
fixed point method. In addition, they applied this method to prove stability theorems
of the Jensen’s functional equation:

2f

(
x+ y

2

)
− f(x)− f(y) = 0⇔ 2f(x)− f(x+ y)− f(x− y) = 0.(1.1)

On the other hand, some properties of generalized Hyers-Ulam stability for a func-
tional equation of Jensen type were obtained in [7] by the fixed point method.
Further, the authors [5] obtained the stability of the quadratic functional equation:

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0(1.2)

by using the fixed point method. Notice that if we consider the functions f1, f2 :
R → R defined by f1(x) = ax + b and f2(x) = cx2, respectively, where a, b and c
are real constants, then f1 satisfies the equation (1.1) and f2 is a solution of the
equation (1.2), respectively.

Associating the equation (1.1) with the equation (1.2), we see the following well
known Drygas functional equation:

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y),(1.3)

which has quadratic solutions Q of equation (1.2) in the class of even functions, and
has additive solutions A of equation (1.1) in the class of odd functions. Hence the
general solution f of (1.3) is given by f(x) = Q(x) + A(x) [30].

Now, adding the equation (1.3) and the following Drygas functional equation

2f(z) + f(y) + f(−y) = f(z + y) + f(z − y),(1.4)

we get the Jensen type quadratic-additive functional equation:

f(x+ y) + f(x− y) + 2f(z) = f(z + y) + f(z − y) + 2f(x),(1.5)
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JENSEN TYPE QUADRATIC-ADDITIVE MAPPINGS 3

of which the general solution function f(x) − f(0) has of the form f(x) − f(0) =

Q(x) +A(x), where Q(x) := f(x)+f(−x)
2

− f(0) is a quadratic mapping satisfying the

equation (1.2) and A(x) := f(x)−f(−x)
2

is a Jensen mapping satisfying the equation
(1.1). In the paper, without splitting the given approximate mapping f : X → Y
of the equation (1.5) into two approximate even and odd parts, we are going to
derive the desired approximate solution F near f at once. Precisely, we introduce a
strictly contractive mapping with Lipschitz constant 0 < L < 1, and then, we show
that the contractive mapping has the fixed point F in a generalized metric function
space by using the fixed point method in the sense of L. Cădariu and V. Radu,
where, the fixed point F yields the precise solution of the equation (1.5) near f . In
Section 2, we prove several stability results of the functional equation (1.5) using
the fixed point method under suitable conditions. In Section 3, we use the results in
the previous section to get stability results of the Jensen’s functional equation (1.1)
and to get that of the quadratic functional equation (1.2), respectively.

2. Generalized Hyers–Ulam stability of (1.5)

In this section, we prove the generalized Hyers–Ulam stability of the Jensen type
quadratic-additive functional equation (1.5). We recall the following fundamental
result of the fixed point theory by Margolis and Diaz [20].

Theorem 2.1. Suppose that a complete generalized metric space (X, d), which
means that the metric d may assume infinite values, and a strictly contractive map-
ping Λ : X → X with the Lipschitz constant 0 < L < 1 are given. Then, for each
given element x ∈ X, either

d(Λnx,Λn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that

• d(Λnx,Λn+1x) < +∞ for all n ≥ k;
• the sequence {Λnx} is convergent to a fixed point y∗ of Λ;
• y∗ is the unique fixed point of Λ in X1 := {y ∈ X, d(Λkx, y) < +∞};
• d(y, y∗) ≤ 1

1−L
d(y,Λy) for all y ∈ X1.

Throughout this paper, let V be a (real or complex) linear space and Y a Banach
space. For a given mapping f : V → Y , we use the following abbreviation

Df(x, y, z) := f(x+ y) + f(x− y) + 2f(z)− f(z + y)− f(z − y)− 2f(x)

for all x, y, z ∈ V .
In the following theorem, we prove the stability of the Jensen type quadratic-

additive functional equation (1.5) using the fixed point method.

Theorem 2.2. Let f : V → Y be a mapping for which there exists a mapping
φ : V 3 → R+ := [0,∞) such that

∥Df(x, y, z)∥ ≤ φ(x, y, z)(2.1)
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for all x, y, z ∈ V . If φ(x, y, z) = φ(−x,−y,−z) for all x, y, z ∈ V and there exists
a constant 0 < L < 1 such that

φ(2x, 2y, 2z) ≤ 2Lφ(x, y, z),(2.2)

for all x, y, z ∈ V , then there exists a unique Jensen type quadratic-additive mapping
F : V → Y such that DF (x, y, z) = 0 for all x, y, z ∈ V and

∥f(x)− F (x)∥ ≤ φ(x, x, 0)

2(1− L)
(2.3)

for all x ∈ V . In particular, F is represented by

F (x) = f(0) + lim
n→∞

[
f(2nx) + f(−2nx)

2 · 4n
+
f(2nx)− f(−2nx)

2n+1

]
(2.4)

for all x ∈ V .

Proof. If we consider the mapping f̃ := f − f(0), then f̃ : V → Y satisfies

f̃(0) = 0 and

∥Df̃(x, y, z)∥ = ∥Df(x, y, z)∥ ≤ φ(x, y, z)(2.5)

for all x, y, z ∈ V . Let S be the set of all mappings g : V → Y with g(0) = 0, and
then we introduce a generalized metric d on S by

d(g, h) := inf
{
K ∈ R+ : ∥g(x)− h(x)∥ ≤ Kφ(x, x, 0) ∀x ∈ V

}
.(2.6)

It is easy to show that (S, d) is a generalized complete metric space. Now, we
consider an operator Λ : S → S defined by

Λg(x) :=
g(2x)− g(−2x)

4
+
g(2x) + g(−2x)

8
(2.7)

for all g ∈ S and all x ∈ V. Then we notice that

Λng(x) =
g(2nx)− g(−2nx)

2n+1
+
g(2nx) + g(−2nx)

2 · 4n
(2.8)

for all n ∈ N and x ∈ V .
First, we show that Λ is a strictly contractive self-mapping of S with the Lipschitz

constant L. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤
K. From the definition of d, we have

∥Λg(x)− Λh(x)∥ =
3

8
∥g(2x)− h(2x)∥+ 1

8
∥g(−2x)− h(−2x)∥(2.9)

≤ 1

2
Kφ(2x, 2x, 0) ≤ LKφ(x, x, 0)

for all x ∈ V , which implies that

d(Λg,Λh) ≤ Ld(g, h)(2.10)
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for any g, h ∈ S. That is, Λ is a strictly contractive self-mapping of S with the
Lipschitz constant L. Moreover, by (2.5) we see that

∥f̃(x)− Λf̃(x)∥ =
1

8
∥ − 3Df̃(x, x, 0) +Df̃(−x,−x, 0)∥(2.11)

≤ 1

2
φ(x, x, 0)

for all x ∈ V . It means that d(f̃ ,Λf̃) ≤ 1
2
< ∞ by the definition of d. Therefore,

according to Theorem 2.1, the sequence {Λnf̃} converges to the unique fixed point

F̃ : V → Y of Λ in the set S1 = {g ∈ S|d(f̃ , g) <∞}, which is represented by

F̃ (x) = lim
n→∞

[ f̃(2nx)− f̃(−2nx)
2n+1

+
f̃(2nx) + f̃(−2nx)

2 · 4n
]

(2.12)

for all x ∈ V . Putting F := F̃ + f(0), then we have the equality ∥f(x) − F (x)∥ =
∥f̃(x)− F̃ (x)∥ for all x ∈ V . Thus one notes that

d(f̃ , F̃ ) ≤ 1

1− L
d(f̃ ,Λf̃) ≤ 1

2(1− L)
,(2.13)

which implies (2.3) and (2.4).
By the definitions of F and F̃ , together with (2.5) and (2.2), we have that

∥DF (x, y, z)∥ = ∥DF̃ (x, y, z)∥

= lim
n→∞

∥∥∥Df(2nx, 2ny, 2nz)− f(−2nx,−2ny,−2nz)
2n+1

+
Df(2nx, 2ny, 2nz) +Df(−2nx,−2ny,−2nz)

2 · 4n
∥∥∥

≤ lim
n→∞

2n + 1

2 · 4n
(
φ(2nx, 2ny, 2nz) + φ(−2nx,−2ny,−2nz)

)
= 0

for all x, y, z ∈ V . Thus, the mapping F satisfies the Jensen type quadratic-additive
functional equation (2.3). This completes the proof of this theorem. �
Theorem 2.3. Let f : V → Y be a mapping for which there exists a mapping
φ : V 3 → [0,∞) such that

∥Df(x, y, z)∥ ≤ φ(x, y, z)(2.14)

for all x, y, z ∈ V . If φ(x, y, z) = φ(−x,−y,−z) for all x, y, z ∈ V and there exists
a constant 0 < L < 1 such that the mapping φ has the property

φ(x, y, z) ≤ L

4
φ(2x, 2y, 2z)(2.15)

for all x, y, z ∈ V , then there exists a unique Jensen type quadratic-additive mapping
F : V → Y such that DF (x, y, z) = 0 for all x, y, z ∈ V and

∥f(x)− F (x)∥ ≤ Lφ(x, x, 0)

4(1− L)
(2.16)
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for all x ∈ V. In particular, F is represented by

F (x) := f(0)(2.17)

+ lim
n→∞

[4n
2

(
f
( x
2n

)
+ f
(−x
2n

)
− 2f(0)

)
+ 2n−1

(
f
( x
2n

)
− f

(−x
2n

))]
for all x ∈ V .

Proof. The proof is similarly verified by the same argument as that of Theorem
2.2. �

3. Applications

For a given mapping f : V → Y , we use the following abbreviations

Jf(x, y) := 2f

(
x+ y

2

)
− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y)

for all x, y ∈ V . Using Theorem 2.2 and Theorem 2.3,
we will obtain the stability results of the quadratic functional equation Qf ≡ 0

and the Jensen’s functional equation Jf ≡ 0 in the following corollaries.

Corollary 3.1. Suppose that each fi : V → Y, i = 1, 2, and ϕi : V
2 → [0,∞), i =

1, 2, are given functions satisfying

∥Qfi(x, y)∥ ≤ ϕi(x, y)

and ϕi(x, y) = ϕi(−x,−y) for all x, y ∈ V , respectively. If there exists 0 < L < 1
such that

ϕ1(2x, 2y) ≤ 2Lϕ1(x, y),(3.1)

ϕ2(x, y) ≤
L

4
ϕ2(2x, 2y)(3.2)

for all x, y ∈ V , then we have unique quadratic mappings F1, F2 : V → Y such that

∥f1(x)− f1(0)− F1(x)∥ ≤
ϕ1(0, x) + ϕ1(x, x)

2(1− L)
,(3.3)

∥f2(x)− F2(x)∥ ≤
L[ϕ2(0, x) + ϕ2(x, x)]

4(1− L)
(3.4)

for all x ∈ V . In particular, F1 and F2 are represented by

F1(x) = lim
n→∞

f1(2
nx)

4n
,(3.5)

F2(x) = lim
n→∞

4nf2

( x
2n

)
(3.6)

for all x ∈ V . Moreover, if 0 < L < 1
2
and ϕ1 is continuous, then f1− f1(0) is itself

a Jensen type quadratic-additive mapping.
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Proof. Notice that

∥Dfi(x, y, z)∥ = ∥Qfi(x, y)−Qfi(z, y)∥ ≤ ϕi(x, y) + ϕi(z, y)

for all x, y, z ∈ V and i = 1, 2. Put

φi(x, y, z) := ϕi(x, y) + ϕi(z, y)

for all x, y, z ∈ V . Then φ1 satisfies (2.2) and φ2 satisfies (2.15). According to
Theorem 2.2, there exists a unique mapping F1 : V → Y satisfying (3.3) which is
represented by

F1(x) = lim
n→∞

(
f1(2

nx) + f1(−2nx)
2 · 4n

+
f1(2

nx)− f1(−2nx)
2n+1

)
.

Observe that

lim
n→∞

∥∥∥∥f1(2nx)− f1(−2nx)2n+1

∥∥∥∥ = lim
n→∞

1
2n+1∥Qf1(0, 2nx)∥

≤ lim
n→∞

1
2n+1ϕ1(0, 2

nx)

≤ lim
n→∞

Ln

2
ϕ1(0, x) = 0

as well as

lim
n→∞

∥∥∥∥f1(2nx)− f1(−2nx)2 · 4n

∥∥∥∥ ≤ lim
n→∞

Ln

2n+1ϕ1(0, x) = 0

for all x ∈ V . From these two properties, we lead to the mapping (3.5) for all x ∈ V .
Moreover, we have∥∥∥∥Qf1(2nx, 2ny)4n

∥∥∥∥ ≤ ϕ1(2
nx, 2ny)

4n
≤ Ln

2n
ϕ1(x, y)

for all x, y ∈ V . Taking the limit as n→∞ in the above inequality, we get

QF1(x, y) = 0

for all x, y ∈ V and so F1 : V → Y is a quadratic mapping.
On the other hand, since Lϕ2(0, 0) ≥ 4ϕ2(0, 0) and

∥2f2(0)∥ = ∥Qf2(0, 0)∥ ≤ ϕ2(0, 0)

we can show that ϕ2(0, 0) = 0 and f2(0) = 0. According to Theorem 2.3, there exists
a unique mapping F2 : V → Y satisfying (3.4), which is represented by (2.17). We
have

lim
n→∞

4n

2

∥∥∥− f2 ( x
2n

)
+ f2

(
− x

2n

)∥∥∥ = lim
n→∞

4n

2

∥∥∥Qf2 (0, x
2n

)∥∥∥
≤ lim

n→∞

4n

2
ϕ2

(
0,
x

2n

)
≤ lim

n→∞

Ln

2
ϕ2(0, x) = 0

as well as

lim
n→∞

2n−1
∥∥∥f2 ( x

2n

)
− f2

(
− x

2n

)∥∥∥ = 0
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for all x ∈ V . From these and (2.8), we get (3.6). Notice that∥∥∥4nQf2 ( x
2n
,
y

2n

)∥∥∥ ≤ 4nϕ2

( x
2n
,
y

2n

)
≤ Lnϕ2(x, y)

for all x, y ∈ V . Taking the limit as n→∞, then we have shown that

QF2(x, y) = 0

for all x, y ∈ V and so F2 : V → Y is a quadratic mapping. This completes the
corollary. �

Now, we obtain a stability result of Jensen functional equations.

Corollary 3.2. Let fi : V → Y, i = 1, 2, be mappings for which there exist functions
ϕi : V

2 → [0,∞), i = 1, 2, such that

∥Jfi(x, y)∥ ≤ ϕi(x, y)(3.7)

and ϕi(x, y) = ϕi(−x,−y) for all x, y ∈ V , respectively. If there exists 0 < L < 1
such that the mapping ϕ1 has the property (3.1) and ϕ2 holds (3.2) for all x, y ∈ V,
then there exist unique Jensen mappings Fi : V → Y, i = 1, 2, such that

∥f1(x)− F1(x)∥ ≤
ϕ1(0, 2x) + ϕ1(x,−x)

2(1− L)
,(3.8)

∥f2(x)− F2(x)∥ ≤
L(ϕ2(0, 2x) + ϕ2(x,−x))

4(1− L)
(3.9)

for all x ∈ V . In particular, the mappings F1, F2 are represented by

F1(x) = lim
n→∞

f1(2
nx)

2n
+ f1(0),(3.10)

F2(x) = lim
n→∞

2n
(
f2

( x
2n

)
− f2(0)

)
+ f2(0)(3.11)

for all x ∈ V .

Proof. The proof is similar to that of Theorem 3.1. �
Now, we obtain generalized Hyers-Ulam stability results in the framework of

normed spaces using Theorem 2.2 and Theorem 2.3.

Corollary 3.3. Let X be a normed space, θ ≥ 0, and p ∈ (0, 1) ∪ (2,∞). Suppose
that a mapping f : X → Y satisfies the inequality

∥Df(x, y, z)∥ ≤ θ(∥x∥p + ∥y∥p + ∥z∥p)

for all x, y, z ∈ X. Then there exists a unique Jensen type quadratic-additive map-
ping F : X → Y such that

∥f(x)− F (x)∥ ≤
{

2θ
2−2p
∥x∥p, if 0 < p < 1;

2θ
2p−4
∥x∥p, if p > 2,

for all x ∈ X.
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Proof. It follows from Theorem 2.2 and Theorem 2.3, by putting L := 2p−1 <
1 if 0 < p < 1,and L := 22−p < 1 if p > 2. �

In the following, we present counter-examples for the singular cases p = 1 and
p = 2 in Corollary 3.3.

Example 3.1. We remark that if we consider an odd function f : R→ R defined
by

f(x) =
∞∑
i=1

ϕ(2ix)

2i
, ϕ(x) =

 µx, if − 1 < x < 1;
µ, if x ≥ 1;
−µ, if x ≤ −1, (µ > 0),

which is the same type as that in the paper [9], then it follows from [28] that

|f(x+ y) + f(x− y)− 2f(x)| ≤ θ(|x|+ |y|),
|f(z + y) + f(z − y)− 2f(z)| ≤ θ(|z|+ |y|),

and so

|Df(x, y, z)| ≤ 2θ(|x|+ |y|+ |z|),
for all x, y, z and for some constant θ > 0. However, there doesn’t exist Jensen type
quadratic-additive function F : R → R such that |f(x) − F (x)| ≤ K(θ)|x| for all
x and for some constant K(θ). Hence, there exists a counter-example for the case
p = 1 in Corollary 3.3.

Also, we remark that if we consider an even function f : R→ R defined by

f(x) =
∞∑
i=1

ϕ(2ix)

4i
, ϕ(x) =

{
µx2, if |x| < 1;
µ, if |x| ≥ 1, (µ > 0),

which is the same type as that in the paper [8], then it is well known that

|f(x+ y) + f(x− y)− 2f(x)− 2f(y)| ≤ θ(|x|2 + |y|2),
|f(z + y) + f(z − y)− 2f(z)− 2f(y)| ≤ θ(|z|2 + |y|2),

and so

|Df(x, y, z)| ≤ 2θ(|x|2 + |y|2 + |z|2),
for all x, y, z and for some constant θ > 0. However, there doesn’t exist Jensen type
quadratic-additive function F : R → R such that |f(x) − F (x)| ≤ K(θ)|x|2 for all
x and for some constant K(θ). Hence, there exists a counter-example for the case
p = 2 in Corollary 3.3.

Corollary 3.4. Let X be a normd space, θ ≥ 0 and p, q, r > 0 be reals with p+q+r ∈
(−∞, 1) ∪ (2,∞). If a mapping f : X → Y satisfies

∥Df(x, y, z)∥ ≤ θ∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ X, then f is itself a Jensen type quadratic-additive mapping.

Proof. It follows from Theorem 2.2 and Theorem 2.3, by putting L := 2p+q+r−1 <
1 if p+ q + r < 1,and L := 22−p−q−r < 1 if p+ q + r > 2. �
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Corollary 3.5. Let X be a normd space, θi ≥ 0, (i = 1, 2, 3) and p, q, r > 0 be reals
such that either max{p + q, q + r, p + r} < 1 or min{p + q, q + r, p + r} > 2. If a
mapping f : X → Y satisfies

∥Df(x, y, z)∥ ≤ θ1∥x∥p∥y∥q + θ2∥y∥q∥z∥r + θ3∥x∥p∥z∥r

for all x, y, z ∈ X, Then there exists a unique Jensen type quadratic-additive map-
ping F : X → Y such that

∥f(x)− F (x)∥ ≤
{ θ1

2−2max{p+q,q+r,p+r}∥x∥p+q, if max{p+ q, q + r, p+ r} < 1;
θ1

2min{p+q,q+r,p+r}−4
∥x∥p+q, if min{p+ q, q + r, p+ r} > 2,

for all x ∈ X.

Proof. It follows from Theorem 2.2 and Theorem 2.3, by putting

L := 2max{p+q,q+r,p+r}−1 < 1, if max{p+ q, q + r, p+ r} < 1,

and

L := 22−min{p+q,q+r,p+r} < 1, if min{p+ q, q + r, p+ r} > 2.

�
In the following, we present counter-examples for the singular cases max{p+q, q+

r, p+ r} = 1 and min{p+ q, q + r, p+ r} = 2 in Corollary 3.5.
Example 3.2. We remark that if we consider an odd function f : R→ R defined

by

f(x) =

{
xln|x|, if x ̸= 0;
0, if x = 0,

then for any p with 0 < p < 1 it follows from [11, 12] that there exists a constant
c > 0 such that

|f(x+ y)− f(x)− f(y)| ≤ c|x|p|y|1−p,

and so

|f(x− y)− f(x) + f(y)| ≤ c|x|p|y|1−p,

|f(x+ y) + f(x− y)− 2f(x)| ≤ 2c|x|p|y|1−p,

|f(z + y) + f(z − y)− 2f(z)| ≤ 2c|z|p|y|1−p,

which yield

|Df(x, y, z)| ≤ 2c(|x|p|y|1−p + |y|1−p|z|p),
for all x, y, z. However, there doesn’t exist Jensen type quadratic-additive function
F : R→ R such that

|f(x)− F (x)| ≤ K(c, p)|x|
for all x and for some constant K(c, p). Hence, there exists a counter-example for
the case max{p+ q, q + r, p+ r} = 1 in Corollary 3.5.

Also, we remark that if we consider an even function f : R→ R defined by

f(x) =

{
x2ln|x|, if x ̸= 0;
0, if x = 0,
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then for any p with 0 < p < 2 it follows from [13] that there exists a constant k > 0
such that

|f(x+ y) + f(x− y)− 2f(x)− 2f(y)| ≤ k|x|p|y|2−p,

|f(z + y) + f(z − y)− 2f(z)− 2f(y)| ≤ k|z|p|y|2−p,

which yield

|Df(x, y, z)| ≤ k(|x|p|y|2−p + |y|2−p|z|p),
for all x, y, z. However, there doesn’t exist Jensen type quadratic-additive function
F : R→ R such that

|f(x)− F (x)| ≤ K(k, p)|x|2

for all x and for some constant K(k, p). Hence, there exists a counter-example for
the case min{p+ q, q + r, p+ r} = 2 in Corollary 3.5.
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1. Introduction and preliminaries

Let Ap be the class of functions of the form

f(z) = zp +
∞∑
k=1

ap+kz
p+k (1.1)

analytic in the unit disk U = {z ∈ C : |z| < 1} with p ∈ N = {1, 2, 3, · · · }. Let S be the subclass
of A1 = A consisting of univalent functions.

A function f ∈ Ap is said to be p-valent starlike of order α, denoted by S∗p(α), if and only if

Re
{
zf ′(z)
f(z)

}
> α (0 ≤ α < p; z ∈ U). (1.2)

Similarly, a function f ∈ Ap is said to be p-valent convex of order α, denoted by Cp(α), if and
only if

Re
{

1 + zf ′′(z)
f ′(z)

}
> α (0 ≤ α < p; z ∈ U). (1.3)

From (1.2) and (1.3), it follows that

f(z) ∈ Cp(α)⇐⇒ zf ′(z)
p
∈ S∗p(α).

Furthermore, we say that a function f ∈ Ap is said to be in the class Rp(α), if and only if

Re
{
f ′(z)
zp−1

}
> α (0 ≤ α < p; z ∈ U). (1.4)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

716 Patel et al 716-728



2

For functions f and g, analytic in the unit disk U, we say the f is said to be subordinate to
g, written as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there exists an analytic function ω in U with
ω(0) = 0, |ω(z)| ≤ |z| (z ∈ U) and f(z) = g(ω(z)) for all z ∈ U. In particular, if g is univalent in
U, then we have the following equivalence (cf., e.g., [14]):

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For the functions f and g given by the power series

f(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=0

bnz
n, (z ∈ U)

their Hadamard product (or convolution), denoted by f ? g is defined as

(f ? g)(z) =
∞∑
n=0

anbnz
n = (g ? f)(z) (z ∈ U).

Note that f ? g is analytic in U.
By making use of the Hadamard product, Saitoh [18] defined a linear operator Lp(a, c) :

Ap −→ Ap in terms of the function ϕp as

Lp(a, c)f(z) = ϕp(a, c; z) ? f(z) (f ∈ Ap; z ∈ U), (1.5)

where

ϕp(a, c; z) =
∞∑
k=0

(a)k
(c)k

zp+k (a ∈ C, c ∈ C \ {· · · ,−2,−1, 0}; z ∈ U) . (1.6)

and (x)k is the Pochhammer symbol (or shifted factorial) given by

(x)k =

1, n = 0,
x(x+ 1) · · · (x+ k − 1), k ∈ N.

For p = 1, the operator Lp(a, c) reduces to the Carlson-Shaffer operator L(a, c) [1]. If f ∈ Ap is
given by (1.1), then it follows from (1.5) and (1.6) that

Lp(a, c)f(z) = zp +
∞∑
k=1

(a)k
(c)k

ap+kz
p+k (z ∈ U) (1.7)

and
z (Lp(a, c)f)′ (z) = aLp(a+ 1, c)f(z)− (a− p)Lp(a, c)f(z) (z ∈ U). (1.8)

It is easily seen that for f ∈ Ap

(i) Lp(a, a)f(z) = f(z),

(ii) Lp(p+ 1, p)f(z) = zf ′(z)
p

,

(iii) Lp(n + p, p)f(z) = Dn+p−1f(z) (n ∈ Z;n > −p), the operator studied by Goel and
Sohi [5]. For the case p = 1, Dn is the Ruscheweyh derivative operator [17].

(iv) Lp(p + 1, n + p)f(z) = In,pf(z) (n ∈ Z;n > −p), the extended Noor integral operator
considered by Liu and Noor [10].
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(v) Lp(p+1, p+1−µ)f(z) = Ω(µ,p)
z f(z) (−∞ < µ < p+1), the extended fractional differintegral

operator studied by Patel and Mishra [16]. Note that

Ω(0,p)
z f(z) = f(z), Ω(1,p)

z f(z) = zf ′(z)
p

and Ω(2,p)
z f(z) = z2f ′′(z)

p(p− 1) (p ≥ 2).

As a special case, we get the operator Ωµ
z f(z) (0 ≤ µ < 1) for p = 1 introduced and studied by

Owa-Srivastava [15].
With the aid of the operator Lp(a, c), we introduce a subclass of Ap as follows.

Definition 1.1. For the fixed parameters A,B (−1 ≤ B < A ≤ 1), a > 0 and c > 0, we say that
a function f ∈ Ap is said to be in the class Vλp(a, c, A,B), if it satisfies the following subordination
relation

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) ≺ 1 +Az

1 +Bz
(0 ≤ λ ≤ 1; z ∈ U). (1.9)

We note that the class Vλp(a, c, A,B) includes many known subclasses of Ap as mentioned
below.

(i) V1
p

(
a, c, 1− 2α

p ,−1
)

= Sp(a, c;α) (0 ≤ α < p)

=
{
f ∈ Ap : Re

(
z (Lp(a, c)f)′ (z)
Lp(a, c)f(z)

)
> α, z ∈ U

}
.

Note that Sp(a, a;α) = S∗p(α), the class of p-valent starlike functions of order α and
Sp(p+ 1, p;α) = Cp(α), the class of p-valent convex functions of order α.

(ii) V0
p

(
a, c, 1− 2α

p ,−1
)

= Rp(a, c;α) (0 ≤ α < p)

=
{
f ∈ Ap : Re

(
Lp(a, c)f(z)

zp

)
>
α

p
, z ∈ U

}
which, in turn yields the class Rp(α) for a = p+ 1 and c = p.

For 0 ≤ α < 1, the functions in the class R1(α) = R(α) are called functions of bounded
turning. By the Nashiro-Warschowski Theorem [3], the functions in R(α) are univalent and
also close-to-convex in U. It is well-known that R(α)  S∗1(0) = S∗ and S∗  R(α). For more
information on the class R(0) = R (cf., e.g., [12]).

Fekete and Szegö [4] proved a remarkable result that the estimate

|a3 − γa2
2| ≤ 1 + 2 exp

(
− 2γ

1− γ

)
is sharp and holds for each γ ∈ [0, 1] over the class S consisting of functions f ∈ A of the form

f(z) = z +
∞∑
n=2

anz
n (z ∈ U). (1.10)

The coefficient functional

Φγ(f) = a3 − γa2
2 = 1

6

{
f ′′′(0)− 3γ

2
(
f ′′(0)

)2}
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on the functions in A represents various geometrical properties, for example, when γ = 1,
Φγ(f) = a3 − a2

2 becomes Sf (0)/6, where Sf denote the Schwarzian derivative

Sf (z) =
{(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2}
= f ′′′(z)

f ′(z) −
3
2

(
f ′′(z)
f ′(z)

)2

of locally univalent functions in U. For a family F of functions in A of the form (1.10), the more
general problem of maximizing the absolute value for the functional Φγ(f) for some γ (real as
well as complex) is popularly known as Fekete-Szegö problem for the class F. In literature,
there exists a large number of results about the inequalities for |Φγ(f)| corresponding to various
subclasses of S (see, e.g., [4, 7, 8, 9]).

The object of the present study is to solve Fekete-Szegö problem for a new class Vλp(a, c, A,B)
of p-valent analytic functions in U involving the Saitoh operator. We also obtain some subordi-
nation results along with some interesting corollaries for functions in Ap involving this operator.
Relevant connections of the results obtained here with those given by earlier workers on the
subject are pointed out.

2. Preliminaries

Let P denote the family of all functions of the form

ϕ(z) = 1 + q1z + q2z
2 + · · · (2.1)

analytic in U and satisfying the condition Re{ϕ(z)} > 0 in U.

To establish our main results, we need the following lemmas.

Lemma 2.1. If the function ϕ, given by (2.1) belongs to the class P, then for any complex
number γ,

|qk| ≤ 2 (2.2)

and ∣∣∣q2 − γq2
1

∣∣∣ ≤ 2 max{1, |2γ − 1|}. (2.3)

The result in (2.2) is sharp for the function ϕ1(z) = (1 + z)/(1− z) (z ∈ U), where as, the result
in (2.3) is sharp for the functions ϕ2(z) = (1 + z2)/(1− z2) (z ∈ U) and ϕ1(z).

We note that the estimate (2.2) is contained in [3], the estimate (2.3) is due to Ma and
Minda [11].

The following lemma is due to Miller and Mocanu [14].

Lemma 2.2. Let q be univalent in U and let θ and φ be analytic in a domain Ω containing q(U)
with φ(w) 6= 0, when w ∈ q(U). Set Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) + Q(z) and suppose
that either

(i) h is convex, or
(ii) Q is starlike.
In addition, assume that
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(iii) Re
{
zh′(z)
Q(z)

}
> 0 (z ∈ U).

If ψ is analytic in U with ψ(0) = q(0), ψ(U) ⊂ Ω and

θ(ψ(z)) + zψ′(z)φ(ψ(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) (z ∈ U),

then ψ(z) ≺ q(z) (z ∈ U) and the function q is the best dominant.

3. Main results

Unless otherwise mentioned, we assume throughout the sequel that a > 0, c > 0, 0 ≤ λ ≤ 1
and −1 ≤ B < A ≤ 1.

We first solve the Fekete-Szegö problem for the class Vλp(a, c, A,B).

Theorem 3.1. If γ ∈ R and the function f , given by (1.1) belongs to the class Vλp(a, c, A,B),
then

∣∣∣ap+2 − γa2
p+1

∣∣∣ ≤


−p(A−B)cQ
(p+ λ(1− p))2(p+ λ(2− p))a(a)2

, γ < ρ1

p(A−B)(c)2
{p+ (2− p)λ}(a)2

, ρ1 ≤ γ ≤ ρ2

p(A−B)cQ
(p+ λ(1− p))2(p+ λ(2− p))a(a)2

, γ > ρ2,

(3.1)

where

Q =
[
γp(p+ λ(2− p))(A−B)(a+ 1)c+ {B(p+ λ(1− p))2 − λp(A−B)}a(c+ 1)

]
,

ρ1 =
[
λp(A−B)− (1 +B){p+ λ(1− p)}2

]
a(c+ 1)

p{p+ λ(2− p)}(A−B)(a+ 1)c ,

and

ρ2 =
[
λp(A−B) + (1−B){p+ λ(1− p)}2

]
a(c+ 1)

p{p+ λ(2− p)}(A−B)(a+ 1)c .

All these results are sharp.

Proof. From (1.9), it follows that

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) = 1−A+ (1 +A)ϕ(z)

1−B + (1 +B)ϕ(z) (z ∈ U),

where the function ϕ defined by (2.1) belongs to the class P. Substituting the power series
expansion of Lp(a, c)f and ϕ in the above expression, we deduce that

ap+1 = p(A−B)c
2(p+ λ(1− p))aq1, (3.2)

and

ap+2 = p(A−B)(c)2
2(p+ λ(2− p))(a)2

{
q2 −

(1 +B

2

)
q2

1 + λp(A−B)
2(p+ λ(1− p))2 q

2
1

}
= q2 + λp(A−B)− (1 +B)(p+ λ(1− p))2

2(p+ λ(1− p))2 q2
1. (3.3)
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With the aid of (3.2) and (3.3), we get∣∣∣ap+2 − γ a2
p+1

∣∣∣ = p(A−B)(c)2
2 (p+ λ(2− p)) (a)2

×
∣∣∣∣∣q2 −

γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {(1 +B) (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)
2 (p+ λ(1− p))2 a(c+ 1)

q2
1

∣∣∣∣∣ ,
which in view of Lemma 2.1 yields∣∣∣ap+2 − γ a2

p+1

∣∣∣ = p(A−B)(c)2
(p+ λ(2− p)) (a)2

×max

1,

∣∣∣γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {B (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)
∣∣∣

(p+ λ(1− p))2 a(c+ 1)

 .
(3.4)

Now, we consider the following cases.
(i) If∣∣∣γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {B (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)

∣∣∣
(p+ λ(1− p))2 a(c+ 1)

≤ 1,

then it is easily seen that ρ1 ≤ γ ≤ ρ2 and (3.4) gives the second estimate in (3.1).
(ii) For∣∣∣γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {B (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)

∣∣∣
(p+ λ(1− p))2 a(c+ 1)

> 1,

we have either

γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {B (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)
(p+ λ(1− p))2 a(c+ 1)

< −1

or

γ p (p+ λ(2− p)) (A−B)(a+ 1)c+ {B (p+ λ(1− p))2 − λ p(A−B)}a(c+ 1)
(p+ λ(1− p))2 a(c+ 1)

> 1.

The above inequalities implies that either γ < ρ1 or γ > ρ2. Thus, again by use of (3.4), we get
the first and the third estimate in (3.1).

We note that the results are sharp for the function f defined in U by

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) =


1 +Az

1 +Bz
, if γ < ρ1 or γ > ρ2

1 +Az2

1 +Bz2 , if ρ1 ≤ γ ≤ ρ2,

where 0 ≤ λ ≤ 1, a > 0, c > 0 and −1 ≤ B < A ≤ 1. This completes the proof of Theorem
3.1. �

Taking λ = 1, A = 1− (2α/p) (0 ≤ α < p) and B = −1 in Theorem 3.1, we obtain
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Corollary 3.1. If γ ∈ R and the function f , given by (1.1) belongs to the class Sp(a, c;α), then

∣∣∣ap+2 − γa2
p+1

∣∣∣

≤



(p− α){(2(p− α) + 1)a(c)2 − 4γ(p− α)(a+ 1)c2}
a(a)2

, γ <
a(c+ 1)
2(a+ 1)c

(p− α)(c)2
(a)2

,
a(c+ 1)
2(a+ 1)c ≤ γ ≤

(p+ 1− α)a(c+ 1)
2(p− α)(a+ 1)c

(p− α){4γ(p− α)(a+ 1)c2 − (2(p− α) + 1)a(c)2}
a(a)2

, γ >
(p+ 1− α)a(c+ 1)

2(p− α)(a+ 1)c .

These results are sharp for the function f ∈ Ap defined in U by

f(z) =


ϕp(c, a; z) ∗ zp

(1− z)2(p−α) , γ <
a(c+ 1)
2(a+ 1)c or γ >

(p+ 1− α)a(c+ 1)
2(p− α)(a+ 1)c ,

ϕp(c, a; z) ∗ zp

(1− z2)p−α ,
a(c+ 1)
2(a+ 1)c ≤ γ ≤

(p+ 1− α)a(c+ 1)
2(p− α)(a+ 1)c .

Remark 3.1. (i) Setting c = a (a = p+ 1 and c = p, respectively) in Corollary 3.1, we get the
corresponding results obtained by Hayami and Owa [6, Theorem 3 and Theorem 4].

(ii) Using the fact that |q1| ≤ 2 in (3.2) and Lemma 2.1 in (3.3), we get the following coefficient
estimates for a function f , given by (1.1) in the class Vλp(a, c, A,B),

|ap+1| ≤
p(A−B)c

{p+ λ(1− p)}a

and

|ap+2| ≤
p(A−B)(c)2

{p+ λ(2− p)}(a)2
max

{
1, |B{p+ λ(1− p)}2 − λ p(A−B)|

{p+ λ(1− p)}2

}
.

Both the estimates are sharp.

For the case λ = 0, A = 1− (2α/p) (0 ≤ α < p) and B = −1, Theorem 3.1 yields the following
result.

Corollary 3.2. If γ ∈ R and the function f , given by (1.1) belongs to the class Ra,c(α), then

∣∣∣ap+2 − γa2
p+1

∣∣∣ ≤



−
2
(

1− α

p

){
2γ
(

1− α

p

)
(a+ 1)c− a(c+ 1)

}
a(a)2

, γ < 0

2
(

1− α

p

)
(c)2

(a)2
, 0 ≤ γ ≤

(
1− α

p

)−1
a(c+ 1)

(a+ 1)c

2
(

1− α

p

){
2γ
(

1− α

p

)
(a+ 1)c− a(c+ 1)

}
a(a)2

, γ >

(
1− α

p

)−1
a(c+ 1)

(a+ 1)c .
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The results are sharp for the function f ∈ Ap defined in U by

f(z) =


ϕp(c, a; z) ∗

zp
{

1 +
(

1− 2α
p

)
z

}
1− z , γ < 0 or γ >

(
1− α

p

)−1
a(c+ 1)

(a+ 1)c

ϕp(c, a; z) ∗
zp
{

1 +
(

1− 2α
p

)
z2
}

1− z2 , 0 ≤ γ ≤

(
1− α

p

)−1
a(c+ 1)

(a+ 1)c .

Letting c = a in Corollary 3.2, we get

Corollary 3.3. If γ ∈ R and the function f ∈ A, given by (1.1) satisfies the condition

Re
{
f(z)
zp

}
>
α

p
(0 ≤ α < p; z ∈ U),

then

∣∣∣ap+2 − γa2
p+1

∣∣∣ ≤


−2
(

1− α

p

){
2γ
(

1− α

p

)
− 1

}
, γ < 0

2
(

1− α

p

)
, 0 ≤ γ ≤

(
1− α

p

)−1

2
(

1− α

p

){
2γ
(

1− α

p

)
− 1

}
, γ >

(
1− α

p

)−1
.

These results are sharp for the function f ∈ A defined in U by

f(z) =



zp
{

1 +
(

1− 2α
p

)
z

}
1− z , γ < 0 or γ >

(
1− α

p

)−1

zp
{

1 +
(

1− 2α
p

)
z2
}

1− z2 , 0 ≤ γ ≤
(

1− α

p

)−1
.

For the choice a = p+ 1 and c = p in Corollary 3.2, we obtain

Corollary 3.4. If γ ∈ R and the function f ∈ A, given by (1.1) satisfies the condition

Re
{
f ′(z)
zp−1

}
> α (0 ≤ α < p; z ∈ U),

then

∣∣∣ap+2 − γa2
p+1

∣∣∣ ≤


−2(p− α){2γ(p+ 2)(p− α)− (p+ 1)2}
(p+ 1)2(p+ 2) , γ < 0

2(p− α)
p+ 2 , 0 ≤ γ ≤ (p+ 1)2

(p+ 2)(p− α)
2(p− α){2γ(p+ 2)(p− α)− (p+ 1)2}

(p+ 1)2(p+ 2) , γ >
(p+ 1)2

(p+ 2)(p− α) .

These results are sharp for the function f ∈ A defined in U by

f(z) =


ϕp(p, p+ 1; z) ∗

zp
{

1 +
(

1− 2α
p

)
z

}
1− z , γ < 0 or γ >

(
1− α

p

)−1

ϕp(p, p+ 1; z) ∗
zp
{

1 +
(

1− 2α
p

)
z2
}

1− z2 , 0 ≤ γ ≤
(

1− α

p

)−1
.
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Next, we prove the following subordination result.

Theorem 3.2. If a function f ∈ Ap satisfies the subordination relation

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z)

≺ 1 + (1− λ)(A−B)z
1 +Bz

+ λ(A−B)z
p(1 +Az)(1 +Bz) (0 < λ ≤ 1,−1 ≤ B < A ≤ 1; z ∈ U), (3.5)

then
Lp(a, c)f(z)

zp
≺ 1 +Az

1 +Bz
= q̃(z) (say) (z ∈ U) (3.6)

and the function q̃ is the best dominant of (3.6).

Proof. Setting

q(z) = 1 +Az

1 +Bz
(z ∈ U), θ(w) = λ+ (1− λ)w (w ∈ C) and φ(w) = λ

pw
(0 6= w ∈ C),

we see that
Q(z) = λ zq′(z)

p q(z) = λ (A−B)z
p(1 +Az)(1 +Bz)

and
Re
{
zQ′(z)
Q(z)

}
= Re

{ 1
1 +Az

− Bz

1 +Bz

}
> 0,

so that Q is starlike in U. Further, letting h(z) = θ(q(z)) +Q(z), we get

Re
{
zh′(z)
Q(z)

}
= (1− λ)p

λ
Re{q(z)}+ Re

{
zQ′(z)
Q(z)

}
> 0 (z ∈ U).

Suppose that

ψ(z) = Lp(a, c)f(z)
zp

(z ∈ U).

Then the hypothesis (3.5) implies that

θ(ψ(z)) + zψ′(z)φ(ψ(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) (z ∈ U),

which in view of Lemma 2.2 gives the required assertion (3.6) and the function q̃ is the best
dominant. The proof of Theorem 3.2 is thus completed. �

Taking λ = 1, A = −α/p and B = −1 in Theorem 3.2, we get

Corollary 3.5. If a function f ∈ Ap satisfies the subordination relation

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) ≺ p+ (p− α)z

(p− αz)(1− z) (0 ≤ α < p; z ∈ U),

then
Re
{
Lp(a, c)f(z)

zp

}
>
p+ α

2p (z ∈ U)

and the result is the best possible.

Putting A = 1− (2α/p) (0 ≤ α < p) and B = −1 in Theorem 3.2, we obtain
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Corollary 3.6. If a function f ∈ Ap satisfies the subordination relation

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z)

≺ 1 + 2(1− λ)(p− α)
p

z

1− z + 2λ(p− α)z
p{p+ (p− 2α)z}(1− z) (0 < λ ≤ 1; z ∈ U),

then
Re
{
Lp(a, c)f(z)

zp

}
>
α

p
(z ∈ U)

and the result is the best possible.

For the choice c = a (a = p + 1 and c = p, respectively), Corollary 3.5 yields the following
result.

Corollary 3.7. For 0 < λ ≤ 1 and 0 ≤ α < p, let

Φp(λ, α; z) = 1 + 2(1− λ)(p− α)
p

z

1− z + 2λ(p− α)z
p{p+ (p− 2α)z}(1− z) (z ∈ U).

(i) If a function f ∈ Ap satisfies

(1− λ)f(z)
zp

+ λ

p

zf ′(z)
f(z) ≺ Φp(λ, α; z) (z ∈ U),

then
Re
{
f(z)
zp

}
>
α

p
(z ∈ U).

(ii) If a function f ∈ Ap satisfies

(1− λ)f
′(z)
zp−1 + λ

{
1 + zf ′′(z)

f ′(z)

}
≺ pΦp(λ, α; z) (z ∈ U),

then
Re
{
f ′(z)
zp−1

}
> α (z ∈ U).

The results in (i) and (ii) are the best possible.

Remark 3.2. 1. Letting a = p+ 1, c = p in Corollary 3.5 and noting that

p+ Re
{ (p− α)z

(p− αz)(1− z)

}
>

(2p− 1)(p+ α) + 2α
2(p+ α) (0 ≤ α < p; z ∈ U),

we get the corresponding result obtained by Deniz [2, Theorem 2.1].
2. Setting p = 1 and α = 0(p = 1 and α = 1/2, respectively) in Corollary 3.6, we get the

following the following results due to Singh et al. [19, Theorem 1 and Theorem 2].
(i) If f ∈ A satisfies

Re
{

(1− λ)f ′(z) + λ

(
1 + zf ′′(z)

f ′(z)

)}
> λ (0 < λ < 1; z ∈ U),

then
Re{f ′(z)} > 0 (z ∈ U)

and the result is sharp for the function f(z) = −z − 2 log(1− z), z ∈ U.
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(ii) If f ∈ A satisfies

Re
{

(1− λ)f ′(z) + λ

(
1 + zf ′′(z)

f ′(z)

)}
>

1
2 (0 < λ ≤ 1; z ∈ U),

then

Re{f ′(z)} > 1
2 (z ∈ U)

and the result is sharp for the function f(z) = − log(1− z), z ∈ U.

Theorem 3.3. If 0 < λ < 1 and a function f ∈ Ap satisfies

Re
{
Lp(a, c)f(z)

zp

}
>
α

p
(0 ≤ α < p; z ∈ U), (3.7)

then

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) > (1− λ)α

p
+ λ (|z| < Rp(λ, α)) , (3.8)

where

Rp(λ, α) =


{λ+ (1− λ)(p− α)} −

√
λ2 + 2λ(1− λ)(p− α)

(1− λ)(p− 2α) , α 6= p

2
(1− λ)p

2λ+ (1− λ)p, α = p

2 .

The result is the best possible.

Proof. From (3.7), it follows that

Lp(a, c)f(z)
zp

= α

p
+
(

1− α

p

)
ϕ(z) (z ∈ U),

where ϕ ∈ P. Differentiating the above expression logarithmically followed by a simple calcula-
tions, we deduce that

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) − (1− λ)α

p
− λ

= (1− λ)
(

1− α

p

){
ϕ(z) + λ zϕ′(z)

(1− λ){α+ (p− α)ϕ(z)}

}
so that

Re
{

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z)

}
− (1− λ)α

p
− λ

≥ (1− λ)
(

1− α

p

)[
Re{ϕ(z)} − λ |zϕ′(z)|

(1− λ){|α+ (p− α)ϕ(z)|}

]
. (3.9)

Using the estimates [13]

|zϕ′(z)|
Re{ϕ(z)} ≤

2r
1− r2 and Re{ϕ(z)} ≥ 1− r

1 + r
(|z| = r)
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in (3.9), we get

Re
{

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z)

}
− (1− λ)α

p
− λ

≥ (1− λ)
(

1− α

p

)
Re{ϕ(z)}

[
1− 2λ r

(1− λ) {α(1− r2) + (p− α)(1− r)2}

]
. (3.10)

We note that the right hand side of (3.10) is positive, provided r < Rp(λ, α), where Rp(λ, α) is
defined as in the theorem.

To show that the bound Rp(λ, α) is the best possible, we consider the function f ∈ Ap defined
by

f(z) = ϕp(c, a; z) ?
zp
{

1 +
(

1− 2α
p

)
z

}
1− z (0 ≤ α < p; z ∈ U).

It follows that

Lp(a, c)f(z)
zp

=

{
1 +

(
1− 2α

p

)
z

}
1− z (0 ≤ α < p; z ∈ U),

which on differentiating logarithmically followed by a routine calculation yields

(1− λ)Lp(a, c)f(z)
zp

+ λ

p

z (Lp(a, c)f)′ (z)
Lp(a, c)f(z) − (1− λ)α

p
− λ

= (1− λ)
(

1− α

p

) 1 + z

1− z

[
1 + 2λ z

α(1− z2) + (p− α)(1− z)2

]
= 0 as z → −Rp(λ, α).

This completes the proof of Theorem 3.3. �

For the choice c = a, p = 1 and α = 0 (a = 2, c = p = 1 and α = 0, respectively), Theorem 3.3
yields the following result.

Corollary 3.8. Let 0 < λ < 1. If a function f ∈ A satisfies

Re
{
f(z)
z

}
> 0 (z ∈ U),

then
Re
{

(1− λ)f(z)
z

+ λ
zf ′(z)
f(z)

}
> λ

(
|z| < R̃(λ)

)
,

and if it satisfies
Re{f ′(z)} > 0 (z ∈ U),

then
Re
{

(1− λ)f ′(z) + λ

(
1 + zf ′′(z)

f ′(z)

)}
> λ

(
|z| < R̃(λ)

)
,

where

R̃(λ) = 1−
√
λ(2− λ)

1− λ .

The results are the best possible.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

727 Patel et al 716-728



13

4. Acknowledgements

This work was supported by a Research Grant of Pukyong National University(2014 year)
and the Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0007037).

References

[1] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15
(1984), 737-745.

[2] E. Deniz, On p-valently close-to-convex, starlike and convex functions, Hacet. J. Math. Stat., 41(5) (2012),
635-642.

[3] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag,
New York, USA (1983).

[4] M. Fekete and G. Szegö, Eine Bemerkung über ungerede schlichte funktionen, J. London Math. Soc., 8
(1933), 85-89.

[5] R.M. Goel and N.S. Sohi: A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
[6] T. Hayami and S.Owa, Hankel determinant for p-valently starlike and convex functions of order α, General

Math., 17(4) (2009), 29-44.
[7] F. R.Keogh and E. P.Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer.

Math. Soc., 20 (1969), 8-12.
[8] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions-II, Arch. Math.(Basel), 49 (1987),

420-433.
[9] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987),

89-95.
[10] J.-L. Liu and K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom., 21 (2002), 81-90.
[11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of

the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press,
Cambridge, MA, (1994) 157-169.

[12] T.H. MacGregor, Functions whose derivative have a positive real part. Trans. Amer. Math. Soc. 104(3)
(1962), 532-537.

[13] T.H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(3)
(1963), 514-520.

[14] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications in: Monographs and
Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000.

[15] S. Owa and H.M. Srivastava, Univalent and starlike generalized hyper- geometric functions. Canad. J. Math.
39 (1987), 1057-1077.

[16] J. Patel and A.K. Mishra, On certain multivalent functions associated with an extended fractional differin-
tegral operator, J. Math. Anal. Appl., 332 (2007), 109-122.

[17] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[18] H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japonica, 44

(1996), 31-38.
[19] V. Singh, S. Singh and S. Gupta, A problem in the theory of univalent functions, Integral Transforms Spec.

Funct., 16(2) (2005), 179-186.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

728 Patel et al 716-728



GENERALIZED φ-WEAK CONTRACTIVE FUZZY MAPPINGS AND RELATED

FIXED POINT RESULTS ON COMPLETE METRIC SPACE

AFSHAN BATOOL, TAYYAB KAMRAN, SUN YOUNG JANG∗ AND CHOONKIL PARK∗

Abstract. In this paper, we discuss the existence and uniqueness of a (common) fixed point of gen-

eralized φ-weak contractive fuzzy mappings on complete metric spaces. We present some examples to

illustrate the obtained results.

1. Introduction and preliminaries

1.1. Fuzzy fixed points of fuzzy mappings. In fixed point theory, the importance of various con-

tractive inequalities cannot be overemphasized. Existence theorems of fixed points have been established

for mappings defined on various types of spaces and satisfying different types of contractive inequalities.

The notion of fuzzy sets was introduced by Zadeh [27] in 1965. Following this initial result, Weiss

[24] and Butnariu [9] studied on the characterization of several notion in the sense of fuzzy numbers.

Heilpern [14] introduced the fuzzy mapping and further he established fuzzy Banach contraction prin-

ciple on a complete metric space. Subsequently several other researchers studied the existence of fixed

points and common fixed points of fuzzy mappings satisfying a contractive type condition on a metric

space (see [1, 3, 4, 7, 8, 10, 16, 19, 20, 22, 25]).

The following are some definitions and concepts required for our discussion in the paper. In fact most

of these are discussed in [13, 14, 17] in metric linear spaces. We discuss them in metric spaces.

Suppose that (X, d) is a metric space. A fuzzy set A over X is defined by a function µA,

µA : X → [0, 1],

where µA is called a membership function of A, and the value µA(x) is called the grade of membership

of x in X. The value represents the degree of x belonging to the fuzzy set X. The α-level set of A is

denoted by [A]α, and is defined as follows:

[A]α = {x : A(x) ≥ α} if α ∈ (0, 1],

[A]0 = {x : A(x) > 0},

where B denotes the closure of the set B.

Let F(X) be the collection of all fuzzy sets in a metric space X. For A,B ∈ F(X), A ⊂ B means

A(x) ≤ B(x) for each x ∈ X. A fuzzy set A in a metric linear space V is said to be an approximate

quantity if and only if [A]α is compact and convex in V for each α ∈ [0, 1] and supx∈VA(x) = 1. We

2010 Mathematics Subject Classification: Primary 47H10, 54E50, 54E40, 46S50.

Key words and phrases: contractive fuzzy mapping; complete metric space; fixed point.
∗Corresponding author.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

729 BATOOL et al 729-737



A. BATOOL, T. KAMRAN, S. Y. JANG, C. PARK

denote the collection of all approximate quantities in a metric linear space V by W (V ). Clearly when

X is a metric linear space W (X) ⊂ F(X).

Let X be an arbitrary set and (Y, d) be a metric space . A mapping G is called fuzzy mapping if

G is a mapping from X into F(Y ). A fuzzy mapping G is a fuzzy subset on X × Y with membership

function G(x)(y). The function G(x)(y) is the grade of membership of y in G(x).For convenience, we

denote α-level set of G(x) by [Gx]α instead of [G(x)]α.

Definition 1. Let G,H be fuzzy mappings from X into F(X). A point z in X is called an α-fuzzy

fixed point of H if z ∈ [Hz]α. The point z is called a common α-fuzzy fixed point of G and H if z ∈
[Gz]α ∩ [Hz]α.

1.2. Fixed point theory on metric spaces. Let (X, d) be a metric space, B(X) and CB(X) be the

sets of all nonempty bounded and closed subsets of X, respectively. For P,Q ∈ B(X) we define

δ(P,Q) = sup{d(p, q) : p ∈ P, q ∈ Q}

and

D(P,Q) = inf{d(p, q) : p ∈ P, q ∈ Q}.

If P = {p}, we write δ(P,Q) = δ(p,Q), and if Q = {q}, then δ(p,Q) = d(p, q). For P,Q,R in B(X) one

can easily prove the following properties.

δ(P,Q) = δ(P,Q) ≥ 0,

δ(P,Q) ≤ δ(P,R) + δ(R,Q),

δ(P, P ) = sup{d(p, r) : p, r ∈ P} = diam P

δ(P,Q) = 0 implies that P = Q = {p}.

Let {An} be a sequence in B(X). Then the sequence {An} converges to A if and only if

(i) a ∈ A implies that an → a for some sequence {an} with an ∈ An for n ∈ N ,

and

(ii) for any ε > 0, there exist n,m ∈ N with n > m such that

An ⊆ Aε = {x ∈ X : d(x, a) < ε for some a ∈ A}.

See [10, 11].

The following results will be useful in the proof of our main result.

Lemma 1. [11] Let {An} and {Bn} be sequences in B(X) and (X, d) be a complete metric space. If

An → A ∈ B(X) and Bn → B ∈ B(X), then δ(An, Bn)→ δ(A,B).

Lemma 2. [15] Let (X, d) be a complete metric space. If {An} is a sequence of nonempty bounded

subsets in (X, d) and if δ(An, y)→ 0 for some y ∈ X, then An → {y}.

Theorem 1. [21] Let(X, d) be a complete metric space and T be a φ-weak contraction on X; that is,

for each x, y ∈ X, there exists a function φ : [0,∞) → [0,∞) such that φ is positive on (0,∞) and

φ(0) = 0, and

d(Tx, Ty) ≤ d(x, y) − φ(d(x, y)) (1)

Also if φ is a continuous and nondecreasing function, then T has a unique fixed point.
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A weakly contractive mapping is a map satisfying the inequality (1) which was first defined by Alber

and Guerre-Delabriere [2]. For more results on these mappings, see [5, 6, 12, 18, 23] and the related

references therein. Zhang and Song [26] gave the following theorem.

Theorem 2. [26] Let (X, d) be a complete metric space and T, S : X → X be two mappings such that

for each x, y ∈ X,
d(Tx, Sy) ≤ m(x, y) − φ(m(x, y)),

where φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) > 0 for t > 0 and φ(0) = 0,

and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2
[d(y, Tx) + d(x, Sy)]

}
Then there exists a unique point u ∈ X such that u = Tu = Su.

2. Main results

This section includes the main theorem of the paper. More precisely, we find out a common fixed

point of fuzzy mappings which is also unique. Let (X, d) be a complete metric space. Then we define

and use the following notations:

ξX = {A : A is the subset of X},
B(ξX) = {A ∈ ξX : A is nonempty bounded},

CB(ξX) = {A ∈ ξX : A is nonempty closed and bounded}.

Theorem 3. Let (X, d) be a complete metric space and S, T : X → F(X) and for x ∈ X, there exist

αS(x), αT (x) ∈ (0, 1] such that [Sx]αS(x)
, [Tx]αT (x) ∈ B(ξx), such that for all x, y ∈ X.

δ
(
[Sx]αS(x)

, [Ty]αT (y)

)
≤M (x, y)− φ (M (x, y)) (2)

where, φ : [0,∞)→ [0,∞) is a lower semicontinous function with φ(t) > 0 for t ∈ (0,∞) and φ (0) = 0

and

M(x, y) = max

{
d(x, y), D(x, [Sx]αS(x)

), D(y, [Ty]αT (y)),
1

2

[
D(y, [Sx]αS(x)

) +D(x, [Ty]αT (y))
]}

(3)

Then there exists a unique z ∈ [Sx]αS(x)
and z ∈ [Tx]αT (x) .

Proof. Take a0 ∈ X. According to the given condition, there exists α(a0) ∈ (0, 1] such that [Sa0]α(a0) ∈
CB(ξX). Let us denote α(x0) by α1. We set a1 ∈ [Sa0]α(a0) , for this a1 there exists α2 ∈ (0, 1] such

that, [Ta1]α2
∈ CB(ξx). Iteratively, we shall construct a sequence {an} in X in a way that

a2k+1 ∈ [Sa2k]α2k+1
,

a2k+2 ∈ [Ta2k+1]α2k+2

It is clear that if M(an, an+1) = 0, then the proof is completed. Consequently, throughout the proof,

we suppose that

M(an, an+1) > 0 for all n ≥ 0. (4)

We shall prove that

d(a2n+1, a2n+2) ≤ d(a2n, a2n+1) for all n ≥ 0. (5)
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Suppose, on the contrary, that there exists ň ≥ 0 such that

d(a2ň+1, a2ň+2) > d(a2ň, a2ň+1),

which yields that

M(a2ň, a2ň+1) ≤ d(a2ň+1, a2ň+2).

Regarding (2), we derive that

d(a2ň0+1, a2ň+2) ≤ δ([Sa2ň]α(a2ň), [Ta2ň+1]α(a2ň+1))

≤ M(a2ň, a2ň+1)− φ(M(a2ň, a2ň+1))

≤ d(a2ň, a2ň+1)− φ(M(a2ň, a2ň+1)).

Consequently, we obtain that φ(M(a2ň, a2ň+1)) = 0 and so we haveM(a2ň, a2ň+1) = 0. This contradicts

the observation (4). Hence we have the inequality (5). In an analogous way, one can conclude that

d(a2n+2, a2n+3) ≤ d(a2n+1, a2n+2) for all n ≥ 0. (6)

By combining (5) and (6), we get that

d(an+1, an+2) ≤ d(an, an+1) for all n ≥ 0.

Hence we derive that the sequence {d(an, an+1)} is non-increasing and bounded below. Since (X, d) is

complete, there exists l ≥ 0 such that

lim
n→∞

d(an, an+1) = l. (7)

Due to hypothesis, we observe that

d(a2n, a2n+1) ≤M(a2n, a2n+1)

= max

{
d(a2n, a2n+1), D(a2n, [Sa2n]α(a2n)), D(a2n+1, [Ta2n+1]α(a2n+1)),

1
2

[
D(a2n+1, [Sa2n]α(a2n)) +D(a2n, [Ta2n+1]α(a2n+1))

] }
≤ max

{
d(a2n, a2n+1), d(a2n+1, a2n+2),

1

2
[d(a2n, a2n+1) + d(a2n+1, a2n+2)]

}
.

Thus we have

l ≤ lim
n→∞

M(a2n, a2n+1) ≤ l.

Hence we get

lim
n→∞

M(a2n, a2n+1) = l. (8)

Analogously, we have

lim
n→∞

M(a2n+1, a2n+2) = l. (9)

By combining (7), (8) and (9), we derive that

lim
n→∞

d(an, an+1) = lim
n→∞

M(an, an+1) = l.

By the lower semi-continuity of φ, we find

φ(l) ≤ lim inf
n→∞

φM(an, an+1)).

Now we claim that l = 0. From (2), we have

d(a2n+1, a2n+2) ≤ δ([Sa2n]α(a2n), [Ta2n+1]α(a2n+1))

≤ M(a2n, a2n+1)− φ(M(a2n, a2n+1)
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By letting the upper limit as n→∞ in the inequality above, we obtain

l ≤ l − lim inf
n→∞

φ(M(a2n, a2n+1))

≤ l − φ(l),

that is, φ(l) = 0. Regarding the property of φ, we conclude that l = 0.

As a next step, we shall show that {an} is Cauchy. For this purpose, it is sufficient to get that {a2n}
is Cauchy. Suppose, on the contrary, that {a2n} is not Cauchy. Then there is an ϵ > 0 such that for an

even integer 2k there exist even integers 2m(k) > 2n(k) > 2k such that

d(a2n(k), a2m(k)) > ϵ. (10)

For every even integer 2k, let 2m(k) be the least positive integer exceeding 2n(k), satisfying (10), and

such that

d(a2n(k), a2m(k)−2) < ϵ. (11)

Now

ϵ ≤ d(a2n(k), a2m(k))

≤ d(a2n(k), a2m(k)−2) + d(a2m(k)−2, a2m(k)−1)

+d(a2m(k)−1, a2m(k)).

By (10) and (11), we get

lim
k→∞

d(a2n(k), a2m(k)) = ϵ. (12)

Due to the triangle inequality, we have∣∣d(a2n(k), a2m(k)−1)− d(a2n(k), a2m(k))
∣∣ < d(a2m(k)−1, a2m(k)).

By (12), we get

d(a2n(k), a2m(k)−1) = ϵ. (13)

Now by (3) we observe that

d(a2n(k), a2m(k)−1) ≤M(a2n(k), a2m(k)−1)

= max


d(a2n(k), a2m(k)−1), D(a2n(k), [Sa2n(k)]α(a2n(k))),

D(a2m(k)−1, [Ta2m(k)−1]α(a2m(k)−1)),
1
2D(a2m(k)−1, [Sa2n(k)]α(a2n(k))) +D(a2n(k), [Ta2m(k)−1]α(a2m(k)−1))}


≤ max

{
d(a2n(k), a2m(k)−1), d(a2n(k), a2n(k)+1), d(a2m(k)−1, a2m(k))

1
2 [d(a2m(k)−1, a2n(k)+1) + d(a2n(k), a2m(k))]

}
≤ max

{
d(a2n(k), a2m(k)−1), d(a2n(k), a2n(k)+1), d(a2m(k)−1, a2m(k))

1
2

[
[d(a2m(k)−1, a2n(k)) + d(a2n(k), a2n(k)+1) + d(a2n(k), a2m(k))

] } .
By letting k →∞ in the inequality above and taking (12) and (13) into account, we conclude that

ε ≤ lim
k→∞

M(x2n(k), x2m(k)−1) ≤ ε.

Consequently, we have

lim
k→∞

M(x2n(k), x2m(k)−1) = ε.

By the lower semi-continuity of φ, we derive that

φ(ε) ≤ lim
k→∞

inf φ(M(x2n(k), x2m(k)−1)).
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Now by (2), we get

d(x2n(k), x2m(k))

≤ d(x2n(k), x2n(k)+1) + δ([Sx2n(k)]α(x2n(k)), [Tx2m(k)−1]α(x2m(k)−1))

≤ d(x2n(k), x2n(k)+1) +M(x2n(k), x2m(k)−1)− φ(M(x2n(k), x2m(k)−1)).

Letting the upper limit k →∞ in the inequality above, we have

ϵ ≤ ϵ− lim
k→∞

inf φ(M(a2n(k), a2m(k)−1))

≤ ϵ− φ(ϵ),

which is a contradiction. Hence we conclude that {a2n} is a Cauchy sequence. It follows from the

completeness of X that there exists c ∈ X such that an → c as n → ∞. Furthermore, a2n → c and

a2n+1 → c.

We shall prove that c ∈ [Sc]αS(c).

D(c, [Sc]αS(c)) ≤M(c, a2n−1)

= max

{
d(c, a2n−1), D(c, [Sc]αS(c)), D(a2n−1, [Ta2n−1]αT (a2n−1)),

1
2 [D(a2n−1, , [Sc]αS(c)) +D(c, [Ta2n−1]αT (a2n−1))]

}
≤ max

{
d(c, a2n−1), D(c, [Sc]αS(c)), d(a2n−1, a2n)

1
2 [D(a2n−1, , [Sc]αS(c)) + d(c, a2n)]

}
Letting n → ∞, we have lim

n→∞
M(c, a2n−1) = D(c, [Sc]αS(c)). Due to the lower semi-continuity of φ, we

have

φ(D(c, [Sc]αS(c))) ≤ lim
n→∞

φ(M(c, a2n−1)). (14)

On the other hand, from (2)

δ([Sc]αS(c), a2n) ≤ δ([Sc]αS(c), [Ta2n−1]αT (a2n−1))

≤ M(c, a2n−1)− φ(M(c, a2n−1))

and letting n→∞, we have

δ(([Sc]αS(c), c) ≤ D(c, ([Sc]αS(c))− lim
n→∞

φ(M(c, a2n−1)). (15)

This shows that lim
n→∞

φ(M(c, a2n−1)) = 0 and so from (14), we have φ(D(c, [Sc]αS(c))) = 0, that is,

D(c, [Sc]αS(c)) = 0. This implies, from (15), that {c} = [Sc]αS(c). Now, from (3) it is easy to see that

M(c, c) = D(c, [Tc]αT (c)), and so from (2) we have

δ(c, [Tc]αT (c)) ≤ δ([Sc]αS(c), [Tc]αT (c))

≤ M(c, c)− φ(M(c, c))

= D(c, [Tc]αT (c))− φ(D(c, [Tc]αT (c))).

Therefore, we have c ∈ [Tc]αT (c) and so {c} = [Tc]αT (c). As a consequence, we have {c} = [Sc]αS(c) =

[Tc]αT (c), that is, c is a common fixed point of S and T . Now we will show that this common fixed

point is unique. Assume that a and b are two common fixed points of S and T . Then a ∈ [Sa]αS(a), a
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∈ [Ta]αT (a) and b ∈ [Sb]αS(b), b ∈ [Tb]αT (b). Therefore, from (3) we have M(a, b) ≤ d(a, b) and so from

(2) we have

d(a, b) ≤ δ([Sa]αS(a), [Tb]αT (b))

≤ M(a, b)− φ(M(a, b))

≤ d(a, b)− φ(M(a, b)).

This shows that M(a, b) = 0 and so a = b. □

Example 1. Let X = [0, 1], d (a, b) = |a− b|, when a, b ∈ X and let G,H : X → F(X) be fuzzy

mappings defined as:

G(a)(t) =



1 if 0 ≤ t < a
6

1
2 if a

6 ≤ t ≤
a
4

1
3 if a

4 ≤ t <
a
3

0 if a
3 ≤ t <∞

H(a)(t) =



1 if 0 ≤ t < a
6

1
4 if a

6 ≤ t ≤
a
3

1
6 if a

3 ≤ t ≤
a
2

0 if a
2 < t <∞

[Ga] 1
3
=

{
t ∈ X : G(a)(t) ≥ 1

3
)

}
=
[
0,
a

3

)
,

[Ha] 1
4
=

{
t ∈ X : H(a)(t) ≥ 1

4
)

}
= [0,

a

3
]

It is clear that [Ga] 1
3
and [Ha] 1

4
are nonempty bounded for all a ∈ X. We will show that the condition

(2) of Theorem 3 is satisfied with φ(t) = t
2 . Indeed, for all a, b ∈ X, we have

δ([Ga] 1
3
, [Hb] 1

4
) = δ

([
0,
a

3

)
, [0,

b

3
]

)
=

b

3
=

1

2

2b

3
=

1

2
D

(
b, [0,

b

3
]

)
=

1

2
D
(
b, [Hb] 1

4

)
≤ 1

2
M (a, b) =M (a, b)− 1

2
M (a, b)

= M(a, b)− φ(M(a, b)).

All conditions of Theorem 3 are satisfied and so these mappings have a unique common fixed point in

X.
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Example 2. Let X = [0, 1], d (a, b) = |a− b| , where a, b ∈ X,λ, µ ∈ (0, 1] and let G,H : X → F(X) be

fuzzy mappings defined as:

if a = 0,

G(a)(t) =



1 if t = 0

1
2 if 0 < t ≤ 1

100

0 t > 1
100

T (a)(t) =



1 if t = 0

1
3 if 0 < t ≤ 1

150

0 t > 1
150

if a ̸= 0,

G(a)(t) =



λ if 0 ≤ t < a
16

λ
2 if a

16 ≤ t ≤
a
10

λ
3 if a

10 ≤ t < a

0 if a ≤ t <∞

T (x)(t) =



µ if 0 ≤ t < a
16

µ
4 if a

16 ≤ t ≤
a
10

µ
10 if a

10 ≤ t < a

0 if a ≤ t <∞
Note that

[G0]λS(0) = [H0]λT (0) = {0}, if λG(0) = λH(0) = 1,

and for a ̸= 0,

[Ga]λ =
[
0,
a

16

)
and [Ha]µ =

[
0,
a

16

)
,

[Ga]λ
2
=
[
0,
a

10

]
and [Ha]µ

4
=
[
0,
a

10

]
.

Since X is not linear and also [Ga]λ and [Ha]λ are not compact for each λ, all the previous fixed point

results [4, 9, 15, 16] for fuzzy mappings on complete linear metric spaces are not applicable. However,

G and H satisfy the conditions of Theorem 3.
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ON CARLITZ’S DEGENERATE EULER NUMBERS AND
POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM, AND DMITRY V. DOLGY

Abstract. In this paper, a p-adic measure is constructed by using the gen-

eralized distribution relation of degenerate Euler numbers and polynomials
generalizing those satisfied by Ek and Ek (x). Furthermore, a family of p-adic

measures are obtained by regularizing that one.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp

will denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of the algebraic closure of Qp. Let |·|p be the p-adic norm with |p|p = 1

p .
In [2], Carlitz defined degenerate Euler numbers and polynomials and proved some
properties generalizing those satisfied by Ek and Ek (x). Recently, D. S. Kim and
T. Kim gave some formulae and identities of degenerate Euler polynomials which
are derived from the fermionic p-adic integrals on Zp (see [2, 4]). In this note, we
use those properties of them, especially the distribution relation for the degenerate
Euler polynomials, to construct p-adic measures.

For λ, t ∈ Cp with |λt|p < p−
1

p−1 , the degenerate Euler polynomials are given by
the generating function to be

(1.1)
2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

En (x | λ)
tn

n!
, (see [1, 2]) .

Note that limλ→0 En (x | λ) = En (x), where En (x) are the Euler polynomials
defined by the generating function

(1.2)
(

2
et + 1

)
ext =

∞∑
n=0

En (x)
tn

n!
, (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

When x = 0, En (λ) = En (0 | λ) are called degenerate Euler numbers. From
(1.1), we can derive the following equation:

(1.3) En (x | λ) =
n∑

l=0

(
n

l

)
El (λ) (x | λ)n−l ,

where (x | λ)n = x (x− λ) (x− 2λ) · · · (x− (n− 1) λ).

2000 Mathematics Subject Classification. 11B68, 11S80.
Key words and phrases. fermionic p-adic integral, degenerate Euler polynomials.
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2 DAE SAN KIM, TAEKYUN KIM, AND DMITRY V. DOLGY

The degenerate Euler polynomials satisfy the following generalized distribution
relation [4] :

(1.4) En (x | λ) = dn
d−1∑
a=0

(−1)a En

(
a + x

d

∣∣∣∣ λ

d

)
,

where d ∈ N with d ≡ 1 (mod 2) and n ∈ N ∪ {0}.

2. Degenerate Euler measures

Let d ∈ N with d ≡ 1 (mod 2), and let p be a fixed odd prime number.

Proposition 2.1.

Xd = lim←
N

Z/dpN Z;

a + dpNZp =
{
x ∈ Xd | x ≡ a (mod dpN )

}
;

X∗d =
⋃

0<a<dp
(a,p)=1

a + dpZp.

We shall always take 0 ≤ a < dpN when we write a + dpNZp.

Theorem 2.2. For k ≥ 0, let µk,ε be given by

(2.1) µk,E
(
a + dpNZp

)
=
(
dpN

)k
(−1)a Ek

(
a

dpN

∣∣∣∣ λ

dpN

)
.

Then µk,E extends to a Cp-valued measure on compact open sets U ⊂ Xd.

Proof. It is enough to show that
p−1∑
i=0

µk,E
(
a + idpN + dpN+1Zp

)
= µk,E

(
a + dpNZp

)
.

From (2.1), we note that
p−1∑
i=0

µk,E
(
a + idpN + dpN+1Zp

)
=
(
dpN+1

)k p−1∑
i=0

(−1)a+idpN

Ek

(
a + idpN

dpN+1

∣∣∣∣ λ

dpN+1

)

=(−1)a (
dpN

)k
pk

p−1∑
i=0

(−1)i Ek

(
a

dpN + i

p

∣∣∣∣ λ
dpN

p

)

=(−1)a (
dpN

)k Ek

(
a

dpN

∣∣∣∣ λ

dpN

)
=µk,E

(
a + dpNZp

)
.

We easily see that |µk,E | ≤ M for some constant M . �

Definition 2.3. Let α ∈ X∗d , α 6= 1, k ≥ 1. For compact-open U ⊂ Xd, we define

µk,α (U) = µk,E (U)− α−kµk,E (αU) .

Remark. We note that µk,α are (bounded) Cp-valued measures on Xd for all k ≥ 0.
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ON CARLITZ’S DEGENERATE EULER NUMBERS AND POLYNOMIALS 3

For d ∈ N with d ≡ 1 (mod 2), let χ be a Dirichlet character with conductor d.
Then, we define the generalized degenerate Euler number attached to χ as follows:

(2.2)
2

(1 + λt)d/λ + 1

d−1∑
a=0

(−1)a
χ (a) (1 + λt)

a
λ =

∞∑
n=0

En,χ (λ)
tn

n!
.

Note that
∞∑

n=0

lim
λ→0

En,χ (λ)
tn

n!
(2.3)

= lim
λ→0

2

(1 + λt)d/λ + 1

d−1∑
a=0

(−1)a
χ (a) (1 + λt)

a
λ

=
2

edt + 1

d−1∑
a=0

(−1)a
χ (a) eat

=
∞∑

n=0

En,χ
tn

n!
,

where En,χ are called the generalized Euler numbers attached to χ.
From (2.3), we have limλ→0 En,χ = En,χ.
By (1.1) and (2.2), we get

∞∑
n=0

En,χ (λ)
tn

n!
(2.4)

=
d−1∑
a=0

(−1)a
χ (a)

2

(1 + λt)d/λ + 1
(1 + λt)

a
λ

=
∞∑

n=0

dn

(
d−1∑
a=0

(−1)a
χ (a) En

(
a

d

∣∣∣ λ

d

))
tn

n!
.

By comparing the coefficients of both sides of (2.4), we have

(2.5) En,χ (λ) = dn
d−1∑
a=0

(−1)a
χ (a) En

(
a

d

∣∣∣ λ

d

)
.

The locally constant function χ on Xd can be integrated against the measure
µk,E defined by (2.1), and the result is given by∫

Xd

χ (x) dµk,E (x)(2.6)

= lim
N→∞

dpN−1∑
a=0

χ (a)µk,E
(
a + dpNZp

)
= lim

N→∞

(
dpN

)k dpN−1∑
a=0

χ (a) (−1)a Ek

(
a

dpN

∣∣∣∣ λ

dpN

)

=dk
d−1∑
a=0

χ (a) (−1)a lim
N→∞

(
pN
)k pN−1∑

x=0

(−1)x Ek

(
a
d + x

pN

∣∣∣∣ λ
d

pN

)
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=dk
d−1∑
a=0

χ (a) (−1)a Ek

(
a

d

∣∣∣ λ

d

)
=Ek,χ (λ) .

Note that ∫
pXd

χ (x) dµk,E (x)(2.7)

= (pd)k
d−1∑
a=0

χ (pa) (−1)pa Ek

(
pa

pd

∣∣∣∣ λ

pd

)

=pkχ (p) dk
d−1∑
a=0

χ (a) (−1)a Ek

(
a

d

∣∣∣ λ
p

d

)

=pkχ (p) Ek,χ

(
λ

p

)
,

(2.8)
∫

Xd

χ (x) dµk,E (αx) = χ

(
1
α

)
Ek,χ (λ) ,

and

(2.9)
∫

pXd

χ (x) dµk,E (αx) = pkχ
( p

α

)
Ek,χ

(
λ

p

)
.

Hence, by definition of µk,α, we get∫
X∗

d

χ (x) dµk,α (x)(2.10)

=Ek,χ (λ)− pkχ (p) Ek,χ

(
λ

p

)
− 1

αk
χ

(
1
α

)
Ek,χ (λ)

+
pk

αk
χ
( p

α

)
Ek,χ

(
λ

p

)
=
(

1− α−kχ

(
1
α

))(
Ek,χ (λ)− pkχ (p) Ek,χ

(
λ

p

))
.

Therefore, by (2.6), (2.7), (2.8), (2.9) and (2.10), we obtain the following theo-
rem.

Theorem 2.4. For k ≥ 0, we have∫
Xd

χ (x) dµk,E (x) = Ek,χ (λ) ,∫
pXd

χ (x) dµk,E (x) = pkχ (p) Ek,χ

(
λ

p

)
,∫

Xd

χ (x) dµk,E (αx) = χ

(
1
α

)
Ek,χ (λ) ,∫

pXd

χ (x) dµk,E (αx) = pkχ
( p

α

)
Ek,χ

(
λ

p

)
,
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and ∫
X∗

d

χ (x) dµk,α (x) =
(

1− α−kχ

(
1
α

))(
Ek,χ (λ)− pkχ (p) Ek,χ

(
λ

p

))
.
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Dynamics and Behavior of the Higher Order
Rational Di¤erence equation
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Abstract

The main objective of this paper is to study the periodic character and the
global stability of the positive solutions of the di¤erence equation

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s ¡ αxn¡t
, n = 0, 1, ...,

where the parameters a, b, c, d, e and α are positive real numbers and the
initial conditions x¡σ, x¡σ+1, ..., x¡1, x0 are positive real numbers where σ =
maxfs, t, l, kg. Some numerical examples were given to illustrate our results.

Keywords: di¤erence equations, stability, global stability, periodic solutions.
Mathematics Subject Classi…cation: 39A10
—————————————————

1 Introduction

In this paper, we study the global stability character, the boundedness and the peri-
odicity of the positive solutions of the nonlinear di¤erence equation

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s ¡ αxn¡t

, n = 0, 1, ..., (1)

where the parameters a, b, c, d, e and αare positive real numbers and the initial con-
ditions x¡σ, x¡σ+1, ..., x¡1, x0 are positive real numbers where σ= maxfs, t, l, kg.
Here, we recall some notations and results, which will be useful in our investigation.
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Let I be some interval of real numbers and let

F : Ik+1 ! I, k 2 N

be a continuously di¤erentiable function. Then for every set of initial conditions
x¡k, x¡k+1, ..., x0 2 I, the di¤erence equation

xn+1 = F (xn, xn¡1, ..., xn¡k), n = 0, 1, ..., (2)

has a unique solution fxng1n=¡k.

De…nition 1 (Equilibrium Point)

A point x 2 I is called an equilibrium point of Eq.(2) if

x = F (x, x, ..., x).

That is, xn = x for n ¸ 0 is a solution of Eq.(2), or equivalently, x is a …xed point of
f.

De…nition 2 (Stability)
(i) The equilibrium point x of Eq.(2) is called locally stable if for every ε> 0, there
exists δ > 0 such that for all x¡k, ..., x¡1, x0 2 I with

jx¡k ¡ xj+ ...+ jx¡1 ¡ xj+ jx0 ¡ xj < δ,

we have
jxn ¡ xj < ε for all n ¸ ¡k.

(ii) The equilibrium point x of Eq.(2) is called locally asymptotically stable if x is
locally stable solution of Eq.(2) and there exists γ> 0, such that for all x¡k, ..., x¡1,
x0 2 I with

jx¡k ¡ xj+ ...+ jx¡1 ¡ xj+ jx0 ¡ xj < γ,

we have
lim

n!1
xn = x.

(iii) The equilibrium point x of Eq.(2) is called global attractor if for all x¡k, ..., x¡1, x0 2
I, we have

lim
n!1

xn = x.

(iv) The equilibrium point x of Eq.(2) is called globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(2).
(v) The equilibrium point x of Eq.(2) is called unstable if x is not locally stable.
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De…nition 3 (Boundedness)
A sequence fxng1n=¡k is said to be bounded and persisting if there exist positive con-
stants m and M such that

m · xn · M for all n ¸ ¡k.

De…nition 4 (Periodicity)
A sequence fxng1n=¡k is said to be periodic with period p if xn+p = xn for all n ¸ ¡k.
A sequence fxng1n=¡k is said to be periodic with prime period p if p is the smallest
positive integer having this property.

De…nition 5 The linearized equation of Eq.(2) about the equilibrium x is the linear
di¤erence equation

yn+1 =

kX
i=0

∂F (x, x, ..., x)

∂xn¡i
yn¡i. (3)

Now, assume that the characteristic equation associated with (3) is

p(λ) = p0λ
k + p1λ

k¡1 + ...+ pk¡1λ+ pk = 0, (4)

where

pi =
∂F (x, x, ..., x)

∂xn¡i

.

Theorem A [1]: Assume that pi 2 R, i = 1, 2, ..., k and k is non-negative integer.
Then

kX
i=1

jpij < 1

is a su¢cient condition for the asymptotic stability of the di¤erence equation

xn+k + p1xn+k¡1 + ...+ pkxn = 0, n = 0, 1, ... .

Theorem B [2]: Let g : [a, b]k+1 ! [a, b] be a continuous function, where k is a
positive integer, and [a, b] is an interval of real numbers and consider the di¤erence
equation

xn+1 = g(xn, xn¡1, ..., xn¡k), n = 0, 1, ... . (5)

Suppose that g satis…es the following conditions:
(i) For every integer i with 1 · i · k + 1, the function g(z1, z2, ..., zk+1) is weakly

monotonic in zi, for …xed z1, z2, ..., zi¡1, zi+1, ..., , zk+1.
(ii) If (m,M) is a solution of the system

m = g(m1, m2, ...,mk+1) and M = g(M1,M2, ..., Mk+1),
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then m = M , where for each i = 1, 2, ..., k + 1, we set

mi =

½
m if g is non-decreasing in zi

M if g is non-increasing in zi
,

and

Mi =

½
M if g is non-decreasing in zi

m if g is non-increasing in zi
.

Then, there exists exactly one equilibrium point x of the di¤erence equation (5), and
every solution of (5) converges to x.

Many research have been done to study the global attractivity, boundedness char-
acter, periodicity and the solution form of nonlinear di¤erence equations. For exam-
ple, Agarwal et al. [3] investigated the global stability, periodicity character and gave
the solution form of some special cases of the recursive sequence

xn+1 = axn +
bxnxn¡3

cxn¡2 + dxn¡3
, n = 0, 1, ...,

where a, b, c, d and the initial conditions x¡3, x¡2, x¡1, x0 are positive real numbers.
Sun et al [4] studied the behavior of the solutions of the di¤erence equation

xn+1 = p +
xn¡1
xn

, n = 0, 1, ....

where initial values x¡1, x0 2 (0, 1) and 0 < p < 1, and obtain the set of all initial
values (x¡1, x0) 2 (0,+1) £ (0,+1) such that the positive solutions fxng1n=¡1 are
bounded.

Elsayed and El-Dessoky [5] studied the global convergence, boundedness, and
periodicity of solutions of the di¤erence equation

xn+1 = axn¡s +
bxn¡l + cxn¡k

dxn¡l + exn¡k
, n = 0, 1, ...,

where the parameters a, b, c, d and e are positive real numbers and the initial
conditions x¡t, x¡t+1, ..., x¡1, x0 are positive real numbers where t = maxfs, l, kg.

Zayed [6] studied the global asymptotic properties of the solutions of the following
di¤erence equations

xn+1 = Axn +Bxn¡k +
pxn + xn¡k

q + xn¡k
.

Elsayed [7] studied the global stability character and the periodicity of solutions
of the di¤erence equation

xn+1 = axn +
bxn¡1 + cxn¡2
dxn¡1 + exn¡2

, n = 0, 1, ...,
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where the parameters a, b, c, d and e are positive real numbers and the initial
conditions x¡2, x¡1 and x0 are positive real numbers.

El-Moneam [8] investigated the periodicity, the boundedness and the global sta-
bility of the positive solutions of the following nonlinear di¤erence equation

xn+1 = Axn +Bxn¡k + Cxn¡l +Dxn¡σ+
bxn¡k

dxn¡k ¡ exn¡l

, n = 0, 1, ...,

where the coe¢cients A, B, C, D, b, d, e 2 (0, 1), while k, l and s are positive
integers. The initial conditions x¡s, ..., x¡l, ..., x¡k, ..., x¡1, x0 are arbitrary positive
real numbers such that k < l < s.

Yalç¬nkaya [9] investigated the global behaviour of the di¤erence equation

xn+1 = α+
xn¡m

xk
n

, n = 0, 1, ...,

where the parametere α, k 2 (0, 1) and the initial values are arbitrary positive real
numbers.

Elabbasy et al. [10] studied the dynamics, the global stability, periodicity char-
acter and the solution of special case of the recursive sequence

xn+1 = axn ¡ bxn

cxn ¡ dxn¡1
, n = 0, 1, ...,

where the initial conditions x¡1, x0 are arbitrary real numbers and a, b, c, d are
positive constants.

In [11] Berenhaut et al. studied the existence of positive prime periodic solutions
of higher order for rational recursive equations of the form

yn+1 = A+
yn¡1
yn¡m

, n = 0, 1, ...,

with y¡m, y¡m+1, ..., y¡1 2 (0, 1) and m = f2, 3, 4, ...g.
Papaschinopoulos et al. [12] investigated the asymptotic behavior and the peri-

odicity of the positive solutions of the nonautonomous di¤erence equation:

xn+1 = An +
xp

n¡1
xq

n
, n = 0, 1, ...,

where An is a positive bounded sequence, p, q 2 (0, 1) and x1, x0 are positive
numbers.

For some related results see [13-28].
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2 Local Stability of the Equilibrium Point of Eq.(1)

In this section, we study the local stability character of the equilibrium point of
Eq.(1).

Eq.(1) has an equilibrium point given by

x = ax+ bx+ cx ¡ dx

ex ¡ αx
,

and hence
(e ¡ α)(1¡ a ¡ b ¡ c)x2 + dx = 0.

Then if a+ b+ c < 1 and α> e, the only positive equilibrium point of Eq.(1) is given
by

x =
d

(α¡ e)(1¡ a ¡ b ¡ c)
.

Theorem 1 The equilibrium x of Eq. (1) is locally asymptotically stable if

α¡ e > 2d.

Proof: Let f : (0, 1)5 ¡! (0, 1) be a continuous function de…ned by

f (u1, u2, u3, u4, u5) = au1 + bu2 + cu3 +
du4

eu4 ¡ αu5
. (6)

Therefore, it follows that

∂f(u1, u2, u3, u4, u5)

∂u1
= a,

∂f(u1, u2, u3, u4, u5)

∂u2
= b,

∂f(u1, u2, u3, u4, u5)

∂u3
= c,

∂f(u1, u2, u3, u4, u5)

∂u4
=

αdu5
(eu4 ¡ αu5)2

.

∂f(u1, u2, u3, u4, u5)

∂u5
= ¡ αdu4

(eu4 ¡ αu5)2
.

So, we can write

∂f(x, x, x, x, x)

∂u1
= a = p1,

∂f(x, x, x, x, x)

∂u2
= b = p2,

∂f(x, x, x, x, x)

∂u3
= c = p3,
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∂f (x, x, x, x, x)

∂u4
=

d(1¡ a ¡ b ¡ c)

(e ¡ α)
= p4,

∂f (x, x, x, x, x)

∂u5
= ¡d(1¡ a ¡ b ¡ c)

(e ¡ α)
= p5.

Then the linearized equation of Eq.(1) about x is

yn+1 ¡ p1yn ¡ p2yn¡k ¡ p3yn¡l ¡ p4yn¡s ¡ p5yn¡t = 0.

It follows by Theorem A that, Eq.(1) is asymptotically stable if and only if

jp1j+ jp2j+ jp3j+ jp4j+ jp5j < 1.

Thus,

jaj+ jbj+ jcj+
¯̄̄
¯d(1¡ a ¡ b ¡ c)

(α¡ e)

¯̄̄
¯+

¯̄̄
¯d(1¡ a ¡ b ¡ c)

(α¡ e)

¯̄̄
¯ < 1,

and so

2

¯̄̄
¯d(1¡ a ¡ b ¡ c)

(α¡ e)

¯̄̄
¯ < 1¡ b ¡ a ¡ c,

or
2d < α¡ e.

The proof is complete.

Example 1. The solution of the di¤erence equation (1) is local stability if k = 2,
l = 1, s = 3, t = 2, a = 0.23, b = 0.12, c = 0.3, d = 0.1, e = 0.6 and α= 0.9 and the
initial conditions x¡3 = 11.1, x¡2 = 1.1, x¡1 = 1.4 and x0 = 1.9 (See Fig. 1).
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Figure 1. Plot the behavior of the solution of equation (1).
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Example 2. The solution of the di¤erence equation (1) if k = 2, l = 1, s =
3, t = 2, a = 0.4, b = 0.2, c = 0.5, d = 0.1, e = 0.6 and α = 0.9 and the initial
conditions x¡3 = 11.1, x¡2 = 1.1, x¡1 = 1.4 and x0 = 1.9 (See Fig. 2).
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plot of x(n+1)=ax(n)+bx(n-k)+cx(n-l)-dx(n-s)/(ex(n-s)-alfax(n-t))

Figure 2. Plot the behavior of the solution of equation (1).

3 Global Attractivity of the Equilibrium Point of
Eq.(1)

In this section, the global asymptotic stability of Eq.(1) will be studied.

Theorem 2 The equilibrium point x is a global attractor of Eq.(1) if a+ b+ c < 1.

Proof: Suppose that ζand ηare real numbers and assume that g : [ζ, η]5 ¡! [ζ, η]
is a function de…ned by

g(u1, u2, u3, u4, u5) = au1 + bu2 + cu3 ¡ du4
eu4 ¡ αu5

.

Then

∂g(u1, u2, u3, u4, u5)

∂u1
= a,

∂g(u1, u2, u3, u4, u5)

∂u2
= b,

∂g(u1, u2, u3, u4, u5)

∂u3
= c,

∂g(u1, u2, u3, u4, u5)

∂u4
=

αdu5
(eu4 ¡ αu5)2

,

∂g(u1, u2, u3, u4, u5)

∂u5
= ¡ αdu4

(eu4 ¡ αu5)2
.
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Now, we can see that the function g(u1, u2, u3, u4, u5) increasing in u1, u2, u3, u4
and decreasing in u5.

Let (m, M) be a solution of the system M = g(M, M, M, M, m) and m =
g(m, m, m, m, M). Then from Eq.(1), we see that

M = aM + bM + cM ¡ dM

eM ¡ αm
and m = am+ bm+ cm ¡ dm

em ¡ αM
,

and then

M(1¡ a ¡ b ¡ c) = ¡ dM

eM ¡ αm
and m(1¡ a ¡ b ¡ c) = ¡ dm

em ¡ αM
,

thus
e(1¡ a ¡ b ¡ c)M2 ¡ α(1¡ a ¡ b ¡ c)Mm = ¡dM

and
e(1¡ a ¡ b ¡ c)m2 ¡ α(1¡ a ¡ b ¡ c)Mm = ¡dm.

Subtracting we obtain

e(1¡ a ¡ b ¡ c)(M2 ¡ m2) + d(M ¡ m) = 0,

then
(M ¡ m)fe(1¡ a ¡ b ¡ c)(M +m) + dg = 0

under the condition a+ b+ c < 1, we see that

M = m.

It follows by Theorem B that x is a global attractor of Eq.(1). This completes the
proof.

Example 3. The solution of the di¤erence equation (1) is global stability if k = 2,
l = 1, s = 3, t = 2, a = 0.2, b = 0.2, c = 0.5, d = 0.12, e = 0.6 and α= 0.9 and
the initial conditions x¡3 = 11.1, x¡2 = 1.1, x¡1 = 1.4 and x0 = 1.9 (See Fig. 3).
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Figure 3. Plot the behavior of the solution of equation (1).
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4 Existence of Periodic Solutions

In this section, we investigate the existence of periodic solutions of Eq.(1). The
following theorem states the necessary and su¢cient conditions for the Eq.(1) to be
periodic solutions of prime period two.

Theorem 3 Equation (1) has a prime period two solutions if and only if one of the
following conditions satis…es

(i) (e ¡ 3α)(a+ b+ c) + e+α> 0, l, k, t ¡ even and s ¡ odd.

(ii) (e+α)(a+ b+ c+ 1)¡ 4α > 0, l, k, s ¡ even and t ¡ odd.

(iii) (α+ e)(a+ c ¡ b+ 1)¡ 4α(a+ c) > 0, l, t ¡ even and k, s ¡ odd.

(iv) (α+ e)(b ¡ a ¡ c ¡ 1)¡ 4α(b ¡ 1) > 0, l, s ¡ even and k, t ¡ odd.

(v) (α+ e)(b ¡ a ¡ c ¡ 1)¡ 4αa > 0, l, k, s ¡ odd, and t ¡ even.

(vi) (α+ e)(b+ c ¡ a ¡ 1)¡ 4α(b+ c ¡ 1) > 0, l, k, t ¡ odd and s ¡ even.

(vii) (α+ e)(b+ a+ c ¡ 1)¡ 4α(c ¡ 1) > 0, l, t ¡ odd and k, s ¡ even.

(viii) (α+ e)(b+ a ¡ c + 1)¡ 4α(a+ b) > 0, l, s ¡ odd and k, t ¡ even.

Proof: We prove …rst case when l, k and t are even and s odd ( the other cases are
similar and will be left to readers).

First suppose that there exists a prime period two solution

...p, q, p, q, ...,

of Equation (1).We will prove that Inequality (i) holds.
We see from Equation (1) when l, k and t are even and s odd that

p = aq + bq + cq ¡ dp

ep ¡ αq
,

and

q = ap+ bp+ cp ¡ dq

eq ¡ αp
.

Therefore,
ep2 ¡ αpq = e(a+ b+ c)pq ¡ α(a+ b+ c)q2 ¡ dp, (7)

and
eq2 ¡ αpq = e(a+ b+ c)pq ¡ α(a+ b+ c)p2 ¡ dq. (8)

Subtracting (8) from (7) gives

e(p2 ¡ q2)¡ α(a+ b+ c)(p2 ¡ q2) + d(p ¡ q) = 0,

then
(p ¡ q) [e ¡ α(a+ b+ c))(p+ q) + d] = 0
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Since p 6= q, then

(p+ q) =
d

α(a+ b+ c)¡ e
. (9)

Again, adding (7) and (8) yields

e(q2 + p2)¡ 2αpq = 2e(a+ b+ c)pq ¡ α(a+ b+ c)(q2 + p2)¡ d(q + p),

then
2(e(a+ b+ c) +α)pq = (e+α(a+ b+ c))(q2 + p2) + d(q + p). (10)

By using (9), (10) and the relation

p2 + q2 = (p + q)2 ¡ 2pq for all p, q 2 R,

we obtain

(e+α(a+ b+ c))((p + q)2 ¡ 2pq) + d(q + p) = 2(e(a+ b+ c)¡ α)pq,

2 [e(a+ b+ c) +α+ e+α(a+ b+ c)] pq = (e+α(a+ b+ c))(p + q)2 + d(q + p),

2(e+α)(a+ b+ c+ 1)pq =
³

d
α(a+b+c)¡e

´2
(e+α(a+ b+ c) +α(a+ b+ c)¡ e) ,

2(e+α)(a+ b+ c+ 1)pq = 2α(a+ b+ c)
³

d
α(a+b+c)¡e

´2
.

Then,

pq =

µ
α(a+ b+ c)

(a+ b+ c+ 1)(e+α)

¶µ
d

α(a+ b+ c)¡ e

¶2

. (11)

Now it is obvious from Eq.(9) and Eq.(11) that p and q are the two distinct roots
of the quadratic equation

t2 ¡ d

α(a+ b+ c)¡ e
t+

µ
α(a+ b+ c)

(a+ b+ c+ 1)(e+α)

¶µ
d

α(a+ b+ c)¡ e

¶2

= 0,

(α(a+ b+ c) ¡ e) t2 ¡ dt+
d2α(a+ b+ c)

(a+ b+ c+ 1)(e+α) (α(a+ b+ c)¡ e)
= 0, (12)

and so

d2 ¡ 4d2α(a+ b+ c) (α(a+ b+ c)¡ e)

(a+ b+ c+ 1)(e+α) (α(a+ b+ c)¡ e)
> 0,

(a+ b+ c+ 1)(e+α)¡ 4α(a+ b+ c) > 0,

e(a+ b+ c+ 1) +α¡ 3α(a+ b+ c) > 0,

or
(e ¡ 3α)(a+ b+ c) + e+α> 0.
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For α(a+ b+ c) > e and e > 3α then the Inequality (i) holds.
Second suppose that Inequality (i) is true. We will show that Equation (1) has a

prime period two solution.
Suppose that

p =
d(1 +ζ)

2(αA ¡ e)
and q =

d(1¡ ζ)

2(αA ¡ e)
,

where ζ=

r
1¡ 4αA

(A+ 1)(e+α)
and A = a+ b+ c.

We see from the inequality (i) that

(e ¡ 3α)(a+ b+ c) + e+α > 0,

(a+ b+ c+ 1)(e+α)¡ 4α(a+ b+ c) > 0,

which equivalents to
(A+ 1)(e+α)¡ 4αA > 0.

Therefore p and q are distinct real numbers.
Set

x¡l = q, x¡k = q, x¡s = p, x¡t = q, ..., x¡3 = p, x¡2 = q, x¡1 = p, x0 = q.

We would like to show that

x1 = x¡1 = p and x2 = x0 = q.

It follows from Eq.(1) that

x1 = aq + bq + cq ¡ dp

ep ¡ αq
,

= (a+ b+ c)

µ
d(1¡ ζ)

2(αA ¡ e)

¶
¡

d
³

d(1+ζ)
2(αA¡e)

´
e
³

d(1+ζ)
2(αA¡e)

´
¡ α

³
d(1¡ζ)
2(αA¡e)

´ .

Dividing the denominator and numerator by 2(αA ¡ e) we get

x1 = (a+ c+ b)

µ
d(1¡ ζ)

2(αA ¡ e)

¶
¡ d(1 +ζ)

(e ¡ α) + (e+α)ζ
.

Multiplying the denominator and numerator of the right side by (e ¡ α)¡ (e+α)ζ

x1 = (a+ c+ b)

µ
d(1¡ ζ)

2(αA ¡ e)

¶
¡ d(1 +ζ) ((e ¡ α)¡ (e+α)ζ)

((e ¡ α) + (e+α)ζ) ((e ¡ α)¡ (e+α)ζ)
,

=
dA(1¡ ζ)

2(αA ¡ e)
¡ d

¡
(e ¡ α)¡ 2αζ¡ (e+α)ζ2

¢
(e ¡ α)2 ¡ (e+α)2ζ2

=
Ad(1¡ ζ)

2(αA ¡ e)
¡ d ((A ¡ 1)¡ ζ(A+ 1))

2(Aα¡ e)
,
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x1 =
d (A ¡ Aζ¡ A+ 1 + Aζ+ζ)

2(αA ¡ e)
=

d (1 +ζ)

2(αA ¡ e)
= p.

Similarly as before, it is easy to show that

x2 = q.

Then by induction we get

x2n = q and x2n+1 = p for all n ¸ ¡2.

Thus Eq.(1) has the prime period two solution

...,p,q,p,q,...,

where p and q are the distinct roots of the quadratic equation (12) and the proof is
complete.

Example 4. The solution of the di¤erence equation (1) has a prime period two
solution when k = 4, l = 2, s = 3, t = 2, a = 0.3, b = 0.02, c = 0.01, d = 9, e = 3
and α= 1.1 and the initial conditions x¡5 = p, x¡4 = q, x¡3 = p, x¡2 = q, x¡1 = p
and x0 = q since p and q as in the previous theorem (See Fig. 4).
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Figure 4. Plot the periodicity of the solution of equation (1).
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Theorem 4 Equation (1) has no prime period two solutions if one

(i) 1 + a+ b+ c 6= 0, l, k, s, t ¡ even.

(ii) 1 + a ¡ b ¡ c 6= 0, l, k, s, t ¡ odd.

(iii) 1 + a+ c ¡ b 6= 0, l, s, t ¡ even and k ¡ odd.

(iv) 1 + a+ c+ b 6= 0, l, k ¡ even and t, s ¡ odd.

(v) 1 + a+ c ¡ b 6= 0, l ¡ even and k, s, t ¡ odd.

(vi)1 + a+ b ¡ c 6= 0, l, s, t ¡ odd and k ¡ even.

(vii) 1 + a ¡ b ¡ c 6= 0, l, k ¡ odd and s, t ¡ even.

(viii) 1 + a+ b ¡ c 6= 0, l ¡ odd and k, s, t ¡ even.

Proof: We prove …rst case when l, k, s and t are both even positive integers ( the
other cases are similar and will be left to readers).

First suppose that there exists a prime period two solution

...p, q, p, q, ...,

of Equation (1).We will prove that Inequality (i) holds.
We see from Equation (1) when l, k, s andt are both even positive integers that

p = aq + bq + cq ¡ dq

eq ¡ αq
,

and

q = ap + bp + cp ¡ dp

ep ¡ αp
.

Therefore,

p ¡ (¡a ¡ b ¡ c)q = ¡ d

e ¡ α
, (13)

and

q ¡ (¡a ¡ b ¡ c)p = ¡ d

e ¡ α
. (14)

Subtracting (14) from (13) gives

(1¡ a ¡ b ¡ c)(p ¡ q) = 0.

Since a+ b+ c 6= 1, then p = q. This is a contradiction. Thus, the proof of (i) is
now completed.

Example 5. Figure (5) shows the di¤erence equation (1) has no period two solution
when k = 4, l = 2, s = 2, t = 4, a = 0.09, b = 0.2, c = 1, d = 9, e = 3 and α= 2.1
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and the initial conditions x¡4 = 2, x¡3 = 5, x¡2 = 8, x¡1 = 1.2 and x0 = 5.
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Figure 5. Plot of the solution of equation (1) has no periodic.

5 Existence of Bounded and Unbounded Solutions
of Eq.(1)

In this section, we investigate the boundedness nature of the positive solutions of
Eq.(1).

Theorem 5 Suppose fxng be a solution of Eq.(1). Then the following statements
are true:

(i) Let d < e and for some N ¸ 0, the initial conditions xN¡σ+1, xN¡σ+2,
..., xN¡1, xN 2 [ d

e
, 1], are valid, then for d 6= α and e2 6= dα, we have the inequality

d

e
(a+ b+ c)¡ d

d ¡ α
· xn · a+ b+ c ¡ d2

e2 ¡ αd
, for all n ¸ N. (15)

(ii) Let d > e and for some N ¸ 0, the initial conditions xN¡σ+1, xN¡σ+2,
..., xN¡1, xN 2 [1, d

e
], are valid, then for d 6= α, e2 6= dα and exn¡s 6= αxn¡t,

we have the inequality

a+ b+ c ¡ d2

e2 ¡ αd
· xn · d

e
(a+ b+ c)¡ d

d ¡ α
, for all n ¸ N. (16)
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Proof: Let fxng be a solution of Eq.(1). If for some N ¸ 0, d
e

· xn · 1 and d 6= α,
we have

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s ¡ αxn¡t

· a+ b+ c ¡ dxn¡s

exn¡s ¡ αxn¡t

.

But, we can see that exn¡s ¡ αxn¡t · e ¡ α
¡

d
e

¢
, exn¡s ¡ αxn¡t · e2¡αd

e
,

1
exn¡s¡αxn¡t

¸ e
e2¡αd

, dxn¡s

exn¡s¡αxn¡t
¸ de( d

e)
e2¡αd

, dxn¡s

exn¡s¡αxn¡t
¸ d2

e2¡αd
, ¡ dxn¡s

exn¡s¡αxn¡t
·

¡ d2

e2¡αd
. Then for αd 6= e2, we get

xn+1 · a+ b+ c ¡ d2

e2 ¡ αd
. (17)

Similarly, we can show that

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s ¡ αxn¡t
¸ d

e
(a+ b+ c)¡ dxn¡s

exn¡s ¡ αxn¡t
.

But, exn¡s¡αxn¡t ¸ d¡α, 1
exn¡s¡αxn¡t

· 1
d¡α

, dxn¡s

exn¡s¡αxn¡t
· d

d¡α
, ¡ dxn¡s

exn¡s¡αxn¡t
¸

¡ d
d¡α

. Then for d 6= α, we get

xn+1 ¸ d

e
(a+ b+ c)¡ d

d ¡ α
. (18)

From (17) and (18), we get

d

e
(a+ b+ c)¡ d

d ¡ α
· xn+1 · a+ b+ c ¡ d2

e2 ¡ αd
, for all n ¸ N.

The proof of part (i) is completed.
Similarly, for some N ¸ 0, 1 · xn · d

e
, d 6= α and e2 6= dα we can prove part (ii)

which is omitted here for convenience. Thus, the proof is now completed.
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A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY

2-BANACH SPACES

EHSAN MOVAHEDNIA, MADJID ESHAGHI GORDJI, CHOONKIL PARK, AND DONG YUN SHIN∗

Abstract. In this paper, we define an intuitionistic fuzzy 2-normed space. Using the fixed
point alternative approach, we investigate the Hyers-Ulam stability of the following quadratic
functional equation

f(ax+ by) + f(ax− by) =
a

2
f(x+ y) +

a

2
f(x− y) + (2a2 − a)f(x) + (2b2 − a)f(y)

in intuitionistic fuzzy 2-Banach spaces.

1. Introduction

In 1940, Ulam [1] proposed the famous Ulam stability problem for a metric group homomor-
phism. In 1941, Hyers [2] solved this stability problem for additive mappings subject to the
Hyers condition on approximately additive mappings in Banach spaces. In 1951, Bourgin [3]
treated the Ulam stability problem for additive mappings. Subsequently the result of Hyers was
generalized by Rassias [4] for linear mapping by considering an unbounded Cauchy difference.

The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called a quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be a
quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation
was proved by Skof [5] for mappings f : X → Y , where X is a normed space and Y is a Banach
space.

In 1984, Katrasas [6] defined a fuzzy norm on a linear space to construct a fuzzy vector
topological structure on the space. Later, some mathematicians have defined fuzzy norms on
a linear space from various points of view [7, 8]. In particular, in 2003, Bag and Samanta
[9], following Cheng and Mordeson [10], gave an idea of a fuzzy norm in such a manner that
the corresponding fuzzy metric is of Kramosil and Michalek type [11]. They also established
a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some
properties of fuzzy normed spaces. Recently, considerable attention has been increasing to the
problem of fuzzy stability of functional equations. Several various fuzzy stability results con-
cerning Cauchy, Jensen, simple quadratic, and cubic functional equations have been investigated
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Quite recently, the stability results in the setting of intuitionistic fuzzy normed space were
studied in [23, 24, 25, 26]; respectively, while the idea of intuitionistic fuzzy normed space was
introduced in [27].

2010 Mathematics Subject Classification. 47S40, 54A40, 46S40, 39B52, 47H10.
Key words and phrases. Intuitionistic fuzzy 2-normed space; Fixed point; Hyers-Ulam stability; Quadratic

functional equation.
∗The corresponding author.
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2. Preliminaries

Definition 2.1. Let X be a real linear space of dimension greater than one and let ∥·, ·∥ be a
real-valued function on X × X satisfying the following condition:

1. ∥x, y∥=∥y, x∥ for all x, y ∈ X
2. ∥x, y∥ = 0 if and only if x, y are linearly dependent.
3. ∥αx, y∥ = |α|∥x, y∥ for all x, y ∈ X and α ∈ R.
4. ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥ for all x, y, z ∈ X .

Then the function ∥., .∥ is called a 2-norm on X and pair (X, ∥., .∥) is called a 2-normed linear
space.

Definition 2.2. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm if ∗ satisfies
the following conditions:

1. ∗ is commutative and associative;
2. ∗ is continuous;
3 a ∗ 1 = a for all a ∈ [0, 1];
4 a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Example 2.1. An example of continuous t-norm is

a ∗ b = min{a, b}

Definition 2.3. A binary operation ⋄ : [0, 1] × [0, 1] → [0, 1] is a continuous t-conorm if ⋄
satisfies the following conditions:

1. ⋄ is commutative and associative;
2. ⋄ is continuous;
3 a ⋄ 0 = a for all a ∈ [0, 1];
4 a ⋄ b ≤ c ⋄ d, whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Example 2.2. An example of continuous t-conorm is

a ⋄ b = max{a, b}

Definition 2.4. Let X be a real linear space. A fuzzy subset µ of X × X × R is called a fuzzy
2-norm on X if and only if for x, y, z ∈ X , and t, s, c ∈ R:

1. µ(x, y, t) = 0 if t ≤ 0.
2. µ(x, y, t) = 1 if and only if x, y are linearly dependent, for all t > 0.
3. µ(x, y, t) is invariant under any permutation of x, y.
4. µ(x, cy, t) = µ(x, y, t

|c|) for all t > 0 and c ̸= 0.

5. µ(x+ z, y, t+ s) ≥ µ(x, y, t) ∗ µ(z, y, s) for all t, s > 0.
6. µ(x, y, .) is a non-decreasing function on R and

lim
t→∞

µ(x, y, t) = 1.

Then µ is said to be a fuzzy 2-norm on a linear space X , and the pair (X , µ) is called a fuzzy
2-normed linear space.

Example 2.3. Let (X , ∥., .∥) be a 2-normed linear space. Define

µ(x, y, t) =


t

t+∥x,y∥ if t > 0

0 if t ≤ 0

where x, y ∈ X and t ∈ R. Then (X , µ) is a fuzzy 2-normed linear space.
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Definition 2.5. Let (X , µ) be a fuzzy 2-normed linear space. Let {xn} be a sequence in X .
Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

µ(xn − x, y, t) = 1

for all t > 0.

Definition 2.6. Let (X , µ) be a fuzzy 2-normed linear space. Let {xn} be a sequence in X .
Then {xn} is said to be a Cauchy sequence if

lim
n→∞

µ(xn+p − xn, y, t) = 1

for all t > 0 and p = 1, 2, 3, · · · .

Let (X , µ) be a fuzzy 2-normed linear space and {xn} be a Cauchy sequence in X . If {xn} is
convergent in X then (X , µ) is said to be a fuzzy 2-Banach space.

Definition 2.7. Let X be a real linear space. A fuzzy subset ν of X × X × R such that for all
x, y, z ∈ X , and t, s, c ∈ R

1. ν(x, y, t) = 1, for all t ≤ 0.
2. ν(x, y, t) = 0 if and only if x, y are linearly dependent, for all t > 0.
3. ν(x, y, t) is invariant under any permutation of x, y.
4. ν(x, cy, t) = ν(x, y, t

|c|) for all t > 0, c ̸= 0.

5. ν(x, y + z, t+ s) ≤ ν(x, y, t) ⋄ ν(x, z, s) for all s, t > 0
6. ν(x, y, .) is a nonincreasing function and

lim
t→∞

ν(x, y, t) = 0

Then ν is said to be an anti fuzzy 2-norm on a linear space X and the pair (X , ν) is called an
anti fuzzy 2-normed linear space.

Definition 2.8. Let (X , ν) be an anti fuzzy 2-normed linear space and {xn} be a sequence in
X . Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

ν(xn − x, y, t) = 0

for all t > 0.

Definition 2.9. Let (X , ν) be an anti fuzzy 2-normed linear space and {xn} be a sequence in
X . Then {xn} is said to be a Cauchy sequence if

lim
n→∞

ν(xn+p − xn, y, t) = 0

for all t > 0 and p = 1, 2, 3, · · · .

Let (X , ν) be an anti fuzzy 2-normed linear space and {xn} be a Cauchy sequence in X . If
{xn} is convergent in X then (X , ν) is said to be an anti fuzzy 2-Banach space.

The following lemma is easy to prove and we will omit it.

Lemma 2.1. Consider the set L∗ and operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}

(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 , x2 ≥ y2
for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.
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Definition 2.10. A continuous t-norm τ on L = [0, 1]2 is said to be continuous t-representable
if there exist a continuous t-norm ∗ and a continuous t-conorm ⋄ on [0, 1] such that, for all
x = (x1, x2), y = (y1, y2) ∈ L

τ(x, y) = (x1 ∗ y1, x2 ⋄ y2).

Definition 2.11. Let X be a set. A function d : X ×X −→ [0,∞] is called a generalized metric
on X if and only if d satisfies:

(M1) d(x, y) = 0⇔ x = y ∀x, y ∈ X
(M2) d(x, y) = d(y, x) ∀x, y ∈ X
(M3) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

Theorem 2.1. ([28]) Let (X ,d) be a complete generalized metric space and J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X , either

d(J nx,J n+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(J nx,J n+1x) <∞ for all n ≥ n0;
(b) the sequence {J nx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(J n0x, y) <∞};
(d) d(y, y∗) ≤ 1

1−Ld(y,J y) for all y ∈ Y.

3. Main results

3.1. Intuitionistic fuzzy 2-normed spaces. In this subsection we define an intuitionistic
fuzzy 2-normed space. Then in next subsection by the fixed point technique we investigate
the Hyers-Ulam stability of a generalized quadratic functional equation in intuitionistic fuzzy
2-normed spaces.

Definition 3.1. A 3-tuple (X , ρµ,ν , τ) is said to be an intuitionistic fuzzy 2-normed space(for
short, IF2NS) if X is a real linear space, and µ and ν are a fuzzy 2-norm and an anti fuzzy
2-norm, respectively, such that ν(x, y, t) + µ(x, y, t) ≤ 1. τ is continuous t-representable, and

ρµ,ν : X × X × R→ L∗

ρµ,ν(x, y, t) = (µ(x, y, t), ν(x, y, t))

is a function satisfying the following conditions, for all x, y, z ∈ X , and t, s, α ∈ R
(1) ρµ,ν(x, y, t) = (0, 1) = 0L∗ for all t ≤ 0.
(2) ρµ,ν(x, y, t) = (1, 0) = 1L∗ if and only if x, y are linearly dependent, for all t > 0.
(3) ρµ,ν(αx, y, t) = ρµ,ν(x, y,

t
|α|) for all t > 0 and α ̸= 0

(4) ρµ,ν(x, y, t) is invariant under any permutation of x, y.
(5) ρµ,ν(x+ z, y, t+ s) ≥L∗ τ(ρµ,ν(x, y, t), ρµ,ν(z, y, s)) for all t, s > 0.
(6) ρµ,ν(x, y, .) is continuous and

lim
t→0

ρµ,ν(x, y, t) = 0L∗ and lim
t→∞

ρµ,ν(x, y, t) = 1L∗

Then ρµ,ν is said to be an intuitionstic fuzzy 2-norm on a real linear space X .

Example 3.1. Let (X , ∥·, ·∥) be a 2-normed space,

τ(a, b) = (a1b1,min(a2 + b2, 1))

be continuous t-representable for all a = (a1, a2), b = (b1, b2) ∈ L∗ and µ, ν be a fuzzy and an
anti fuzzy 2-norm, respectively. We define
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ρµ,ν(x, y, t) =

(
t

t+m∥x, y∥
,
∥x, y∥

t+m∥x, y∥

)
for all t ∈ R+ and m > 1. Then (X , ρµ,ν , τ) is an IF2NS.

Definition 3.2. A sequence {xn} in an IF2NS (X , ρµ,ν , τ) is said to be convergent to a point
x ∈ X if

lim
n→∞

ρµ,ν(xn − x, y, t) = 1L∗

for every t > 0.

Definition 3.3. A sequence {xn} in an IF2NS (X , ρµ,ν , τ) is said to be a Cauchy sequence if
for any 0 < ϵ < 1 and t > 0, there exists n0 ∈ N such that

ρµ,ν(xn − xm, y, t) ≥L∗ (1− ϵ, ϵ)

for all n,m ≥ n0.

Definition 3.4. An IF2NS space (X , ρµ,ν , τ) is said to be complete if every Cauchy sequence in
(X , ρµ,ν , τ) is convergent. A complete intuitionistic fuzzy 2-normed space is called an intuition-
istic fuzzy 2-Banach space.

3.2. Hyers-Ulam stability of a generalized quadratic functional equation in IF2NS.
In this subsection, using the fixed point alternative approach, we prove the Hyers-Ulam stability
of a generalized quadratic functional equation in intuitionistic fuzzy 2-Banach spaces.

Definition 3.5. Let X ,Y be real linear spaces. For a given mapping f : X → Y, we define

Df(x, y) := f(ax+ by) + f(ax− by)− a

2
f(x+ y)

−a
2
f(x− y)− (2a2 − a)f(x)− (2b2 − a)f(y)

where a, b ≥ 1 , a ̸= 2b2 and x, y ∈ X .

Theorem 3.1. Let X be a real linear space, (Z, ρ′µ,ν , τ ′) an intuitionistic fuzzy 2-normed space
and let ϕ : X × X → Z, φ : X × X → Z be mappings such that for some 0 < |α| < a

ρ′µ,ν (ϕ(ax, ay), φ(ax, ay), t) ≥L∗ ρ′µ,ν

( α
a2
ϕ(x, y), φ(x, y), t

)
(3.1)

for all x, y ∈ X and t ∈ R+. Let (Y, ρµ,ν , τ) be a complete intuitionistic fuzzy 2-normed space.
If ξ : X ×X → Y is a mapping such that ξ(ax, ay) = 1

αa2
ξ(x, y) for all x, y ∈ X and f : X → Y

is a mapping satisfying f(0) = 0 and

ρµ,ν(Df(x, y), ξ(x, y), t) ≥L∗ ρ′µ,ν(ϕ(x, y), φ(x, y), t) (3.2)

for all x, y ∈ X , t > 0, then there is a unique quadratic mapping Q : X → Y such that

ρµ,ν(f(x)−Q(x), ξ(x, 0), t) ≥L∗ ρ′µ,ν
(
ϕ(x, 0), φ(x, 0), (2(a2 − α2)t

)
(3.3)

Proof. Putting y = 0 in (3.2), we have

ρµ,ν
(
2f(ax)− a2f(x), ξ(x, 0), t

)
≥L∗ ρ′µ,ν (ϕ(x, 0), φ(x, 0), t)

and so

ρµ,ν

(
1

a2
f(ax)− f(x), ξ(x, 0), t

)
≥L∗ ρ′µ,ν

(
1

2a2
ϕ(x, 0), φ(x, 0), t

)
(3.4)
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for all x ∈ X and t > 0. Consider the set E = {g : X → Y} and define a generalized metric d on
E by

d(g, h) = inf
{
c ∈ R+ : ρµ,ν(g(x)− h(x), ξ(x, 0), t) ≥L∗ (cϕ(x, 0), φ(x, 0), t)

}
for all x ∈ X and t > 0 with inf ∅ = ∞. It is easy to show that (E, d) is complete (see [29]).
Define J : X → X by Jg(x) = 1

a2
g(ax) for all x ∈ X . Now, we prove that J is strictly contractive

mapping of E with the Lipschitz constant α2

a2
. Let g, h ∈ E be given such that d(g, h) < ϵ. Then

ρµ,ν (g(x)− h(x), ξ(x, 0), t) ≥L∗ ρ′µ,ν(ϵϕ(x, 0), φ(x, 0), t)

for all x ∈ X and t > 0. So

ρµ,ν (Jg(x)− Jh(x), ξ(x, 0), t) = ρµ,ν
(
g(ax)− h(ax), ξ(x, 0), a2t

)
≥L∗ ρ′µ,ν

(
cϕ(ax, 0), φ(ax, 0),

t

α

)
=L∗ ρ′µ,ν

(
α2

a2
cϕ(x, 0), φ(x, 0), t

)
.

Then d(Jg, Jh) <
α2

a2
d(g, h) for all g, h ∈ E. It follows from (3.4) that

d(f, Jf) ≤ 1

2a2
<∞

It follows from Theorem 2.1 that there exists a mapping Q : X → Y satisfying the following

(1) Q is a fixed point of J , that is ;

Q(ax) = a2Q(x) (3.5)

(2) The mapping Q is a unique fixed point of J in the set

∆ = {h ∈ E : d(g, h) <∞}

This implies that Q is a unique mapping satisfying (3.5).
(3) d(Jnf,Q)→ 0 as n→∞. This implies that

lim
n→∞

f(anx)

a2n
= Q(x)

for all x ∈ X.
(4) d(f,Q) ≤ 1

1− L
d(f, Jf) with f ∈ ∆, which implies the inequality

d(f,Q) ≤ 1

2(a2 − α2)

So

ρµ,ν (f(x)−Q(x), ξ(x, 0), t) ≥L∗ ρ′µ,ν
(
ϕ(x, 0), φ(x, 0), 2(a2 − α2t

)
.

This implies that the inequality (3.2) holds.

It remains to show that Q is a quadratic mapping. Replacing x and y by 2nx and 2ny in (3.2),
respectively, we get

ρµ,ν

(
1

a2n
Df(anx, any), ξ(anx, any),

t

a2n

)
≥L∗ ρ′µ,ν (ϕ(a

nx, any), φ(anx, any), t) .
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By the property of ξ(x, y), we have

ρµ,ν

(
1

a2n
Df(anx, any),

1

(αa2)n
ξ(x, y),

t

a2n

)
≥L∗ ρ′µ,ν (ϕ(a

nx, any), φ(anx, any), t) .

Thus

ρµ,ν

(
1

a2n
Df(anx, any), ξ(x, y), t

)
≥L∗ ρ′µ,ν

(
ϕ(anx, any), φ(anx, any),

t

αn

)
.

By (3.1), we obtain

ρµ,ν

(
1

a2n
Df(anx, any), ξ(x, y), t

)
≥L∗ ρ′µ,ν

(
αn

a2n
ϕ(x, y), φ(x, y),

t

αn

)
= ρ′µ,ν

(
α2n

a2n
ϕ(x, y), φ(x, y), t

)
.

As n→∞, we have
ρµ,ν(DQ(x, y), ξ(x, y), t) ≥L∗ 1L∗ .

Thus Q is a quadratic mapping, as desired. �
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ON A q-ANALOGUE OF (h, q)-DAEHEE NUMBERS AND

POLYNOMIALS OF HIGHER ORDER

JIN-WOO PARK

Abstract. In this paper, we introduce a new q-analogue of the Daehee num-

bers and polynomials of the first kind and the second kind, and derive some
new interesting identities.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp, and Cp will
respectively denote the ring of p-adic rational integers, the field of p-adic rational
numbers and the completions of algebraic closure of Qp. The p-adic norm is defined
|p|p = 1

p .

When one talks of q-extension, q is variously considered as an indeterminate, a
complex q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that

|q| < 1. If q ∈ Cp, then we assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q)
for each x ∈ Zp. Throughout this paper, we use the notation :

[x]q =
1− qx

1− q
.

Note that limq→1[x]q = x for each x ∈ Zp.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈

UD(Zp), the p-adic invariant integral on Zp is defined by Kim as follows :

Iq(f) =

∫
Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx, (see [8, 9, 10]). (1.1)

Let f1 be the translation of f with f1 (x) = f (x+ 1) . Then, by (1.1), we get

−qIq(f1) + Iq(f) = (1− q)f(0) +
1− q
log q

f ′(0), where f ′ (0) =
df (x)

dx

∣∣∣∣
x=0

. (1.2)

As it is well-known fact, the Stirling number of the first kind is defined by

(x)n = x (x− 1) · · · (x− n+ 1) =
n∑

l=0

S1 (n, l)xl, (1.3)

and the Stirling number of the second kind is given by the generating function to
be (

et − 1
)m

= m!
∞∑

l=m

S2 (l,m)
tl

l!
, (see [3, 17]). (1.4)

1991 Mathematics Subject Classification. 05A19, 11B65, 11B83.
Key words and phrases. (h, q)-Bernoulli polynomials, q-analogue of (h, q)-Daehee polynomials,

p-adic invariant integral.
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Unsigned Stirling numbers of the first kind is given by

x(n) = x(x+ 1) · · · (x+ n− 1) =
n∑

l=0

|S1(n, l)|xl. (1.5)

Note that if we replace x to −x in (1.3), then

(−x)n =(−1)nx(n) =
n∑

l=0

S1(n, l)(−1)lxl

=(−1)n
n∑

l=0

|S1(n, l)|xl.
(1.6)

Hence S1(n, l) = |S1(n, l)|(−1)n−l.
Recently, D. S. Kim and T. Kim introduced the Daehee polynomials of the first

kind of order r are defined by the generating function to be(
log(1 + t)

t

)r

(1 + t)x =
∞∑

n=0

D(r)
n (x)

tn

n!
, (1.7)

and the Daehee polynomials of the second kind of order r are given by(
log(1 + t)

t+ 1

)r

(1 + t)x =

∞∑
n=0

D̂(r)
n (x)

tn

n!
(see [5, 7, 9, 14, 16]),

and Cho et. al. defined the q-Daehee polynomials of order r as follows.(
1− q + 1−q

log q log(1 + t)

1− q − qt

)r

(1 + t)x =
∞∑

n=0

D(r)
n,q(x)

tn

n!
, (see [2]).

In recent years, Kim et. al. have studies the various generalization of Daehee
polynomials (see [2, 6, 12, 14, 15, 16]), and in [1], authors give new q-analogue of
Changhee numbers and polynomials.

In this paper, we introduce a new q-analogue of the Daehee numbers and polyno-
mials of the first kind and the second kind of order r, which are called the Witt-type
formula for the q-analogue of Daehee polynomials of order r. We can derive some
new interesting identities related to the q-Daehee polynomials of order r.

2. On a q-analogue of Daehee numbers and polynomials of order r

In this section, we assume that t, q ∈ Cp with |t|p < p−
1

p−1 . First, we consider
the following integral representation associated with the Pochhammer symbol :

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r−times

q
∑r

i=1 hiyi(x+ y1 + · · ·+ yr)ndµq(y1) · · · dµq(yr), (2.1)
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where n ∈ Z+ = N ∪ {0}, h1, . . . , hr ∈ Z and r ∈ N. By (2.1),

∞∑
n=0

∫
Zp

q
∑r

i=1 hiyi(x+ y1 + · · ·+ yr)ndµq(y1) · · · dµq(yr)
tn

n!

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

( ∞∑
n=0

(
x+ y1 + · · ·+ yr

n

)
tn

)
dµq(y1) · · · dµq(yr)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(1 + t)x+y1+···+yrdµq(y1) · · · dµq(yr),

(2.2)

where t ∈ Cp with |t|p < p−
1

p−1 . By (1.2) and (2.2), we have

∞∑
n=0

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(x+ y1 + · · ·+ yr)ndµq(y1) · · · dµq(yr)
tn

n!

=
r∏

i=1

(
q − 1 + q−1

log q (hi log q + log(1 + t))

qhi+1(1 + t)− 1

)
(1 + t)x.

(2.3)

If we put

F (h1,...,hr)
q (x, t) =

r∏
i=1

(
q − 1 + q−1

log q (hi log q + log(1 + t))

qhi+1(1 + t)− 1

)
(1 + t)x,

then

lim
q→1

F (−1,...,−1)
q (x, t) =

(
log(1 + t)

t

)r

(1 + t)x.

Note that F
(h1,...,hr)
q (x, t) seems to be a new q-extension of the generating function

for the Daehee polynomials of the first kind of order r. Thus, by (1.7) and (2.2),
we obtain the following definition.

Definition 2.1. A q-analogue of the nth (h, q)-Daehee polynomials of the first kind
is defined by the generating function to be

∞∑
n=0

D(h1,...,hr)
n (x|q) t

n

n!
=

r∏
i=1

(
q − 1 + q−1

log q (hi log q + log(1 + t))

qhi+1(1 + t)− 1

)
(1 + t)x.

Moreover,

D(h1,...,hr)
n (x|q) =

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(x+ y1 + · · ·+ yr)ndµq(y1) · · · dµq(yr).

In the special case x = 0 in Definition 2.1, D
(h1,...,hr)
n (0|q) = D

(h1,...,hr)
n (q) is

called a q-analogue of the nth (h, q)-Daehee numbers of the first kind of order r.
Note that, by (1.7) and Definition 2.1,

D(−1,...,−1)
n (x|q) =

(
q − 1

log q

)r

D(r)
n (x). (2.4)

The equation (2.4) shows that the q-analogue of the (h, q)-Daehee polynomials of
the first kind of order r is closely related the nth Daehee polynomials of order r.
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It is easy to show that

r∏
i=1

(
q − 1 + q−1

log q (hi log q + log(1 + t))

qhi+1(1 + t)− 1

)
(1 + t)x

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
D

(h1,...,hr)
n−m (q)(x)m

)
tn

n!
.

(2.5)

By Definition 2.1 and (2.5), we have

D(h1,...,hr)
n (x|q) =

n∑
m=0

(
x

m

)
D

(h1,...,hr)
n−m (q)

n!

n−m!

=
n∑

m=0

(
x

n−m

)
D(h1,...,hr)

m (q)
n!

m!
.

(2.6)

Since

(x+ y1 + · · ·+ yr)n =
n∑

l=0

S1(n, l)(x+ y1 + · · ·+ yr)l

=
n∑

l=0

S1(n, l)
∑

l1+···+lr=l

yl11 y
l2
2 · · · (x+ yr)lr ,

(2.7)

by Definition 2.1 and (2.6), we have

D(h1,...,hr)
n (x|q)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

n∑
l=0

S1(n, l)
∑

l1+···+lr=l

yl11 y
l2
2 · · · (x+ yr)lr

=

n∑
l=0

S1(n, l)
∑

l1+···+lr=l

B
(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x),

(2.8)

where B
(h)
n,q(x) are the (h, q)-Bernoulli polynomials derived from

B(h)
n,q(x) =

∫
Zp

qhy(x+ y)ndµq(y), (see [18]).

Thus, by (2.6) and (2.8), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

D(h1,...,hr)
n (x|q) =

n∑
m=0

(
x

n−m

)
D(h1,...,hr)

m (q)
n!

m!

=
n∑

l=0

∑
l1+···+lr=l

S1(n, l)B
(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x)

Note that, by (1.1), the generating function of (h, q)-Bernoulli polynomials are
∞∑

n=0

B(h)
n,q(x)

tn

n!
=

∫
Zp

qhye(x+y)tdµq(y)

=
q − 1 + q−1

log q (h log q + t)

qh+1et − 1
ext.

(2.9)
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By replacing t by et − 1 in Definition 2.1,
∞∑

n=0

D(h1,...,hr)
n (x|q) 1

n!

(
et − 1

)n
=
∞∑

n=0

D(h1,...,hr)
n (x|q) 1

n!
n!
∞∑
l=n

S2(l, n)
tl

l!

=
∞∑

n=0

n∑
m=0

D(h1,...,hr)
m (x|q)S2(n,m)

tn

n!
,

(2.10)

and, by (2.9),

r∏
i=1

(
q − 1 + q−1

log q (hi log q + t)

qhi+1et − 1

)
ext

=

(
r−1∏
i=1

( ∞∑
n=0

B(hi)
n,q

tn

n!

))( ∞∑
n=0

B(hr)
n,q (x)

tn

n!

)

=
∞∑

n=0

∑
l1+···+lr=n

(
n

l1, . . . , lr

)
B

(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x)
tn

n!
.

(2.11)

Thus, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have∑
l1+···+lr=n

(
n

l1, . . . , lr

)
B

(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x) =

n∑
m=0

D(h1,...,hr)
m (x|q)S2(n,m).

Let us define the q-analogue of the nth (h, q)-Daehee polynomials of the second
kind is defined as follows:

D̂(h1,...,hr)
n (x|q) =

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(−x− y1 − · · · − yr)ndµq(y1) · · · dµq(yr)

(2.12)

where n ∈ N ∪ {0}. In particular, D̂
(h1,...,hr)
n (0|q) = D̂

(h1,...,hr)
n (q) are called the

q-analogue of the nth (h, q)-Daehee numbers of the second kind.
By (1.3) and (2.12), it leads to

D̂(h1,...,hr)
n (x|q)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(−x− y1 − · · · − yr)ndµq(y1) · · · dµq(yr)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(−1)n(x+ y1 + · · ·+ yr)(n)dµq(y1) · · · dµq(yr)

=
n∑

l=0

|S1(n, l)|(−1)n
∑

l1+···+lr=l

B
(h1)
l1,q
· · ·B(hr)

lr,q
B

(hr)
lr−1,q

(x).

(2.13)

Thus, we state the following theorem.

Theorem 2.4. For n ≥ 0, we have

D̂(h1,...,hr)
n (x|q) =

n∑
l=0

∑
l1+···+lr=l

|S1(n, l)|(−1)nB
(h1)
l1,q
· · ·B(hr)

lr,q
B

(hr)
lr−1,q

(x).
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Let us now consider the generating function of the q-analogue of the (h, q)-Daehee
polynomials of the second kind as follows:

∞∑
n=0

D̂(h1,...,hr)
n (x|q) t

n

n!

=
∞∑

n=0

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiy1(x− y1 − · · · − yr)ndµq(y1) · · · dµq(yr)
tn

n!

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
x− y1 − · · · − yr

n

)
tndµq(y1) · · · dµq(yr)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi(1 + t)−x−y1−···−yrdµq(y1) · · · dµq(yr)

=

(
r∏

i=1

q − 1 + q−1
log q (hi log q − log(1 + t))

qhi+1 − 1− t

)
(1 + t)r−x.

(2.14)

By replacing t by et − 1, we have(
r∏

i=1

q − 1 + q−1
log q (hi log q − t)

qhi+1e−t − 1

)
e−xt

=
∞∑

n=0

D̂(h1,...,hr)
n (x|q) (et − 1)n

n!

=

∞∑
n=0

D̂(h1,...,hr)
n (x|q) 1

n!
n!

∞∑
l=n

S2(l, n)
xl

l!

=

∞∑
n=0

(
n∑

m=0

D̂(h1,...,hr)
m (x|q)S2(n,m)

)
xn

n!
,

(2.15)

and (
r∏

i=1

q − 1 + q−1
log q (hi log q − t)

qhi+1e−t − 1

)
e−xt

=

(
r−1∏
i=1

( ∞∑
n=0

(−1)nB(hi)
n,q

tn

n!

))( ∞∑
n=0

(−1)nB(hr)
n,q (x)

tn

n!

)

=
∞∑

n=0

(−1)n

( ∑
l1+···+lr=n

(
n

i1, . . . , lr

)
B

(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x)

)
tn

n!
.

(2.16)

By (2.15) and (2.16), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

n∑
m=0

D̂(h1,...,hr)
m (x|q)S2(n,m)

=(−1)n
∑

l1+···+lr=n

(
n

i1, . . . , lr

)
B

(h1)
l1,q
· · ·B(hr−1)

lr−1,q
B

(hr)
lr,q

(x).

By Theorem 2.3 and Theorem 2.5, we obtain the following corollary.
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Corollary 2.6. For n ≥ 0, we have
n∑

m=0

D(h1,...,hr)
m (x|q)S2(n,m) = (−1)n

n∑
m=0

D̂(h1,...,hr)
m (x|q)S2(n,m).

By Definition 2.1,

(−1)n
D

(h1,...,hr)
n (x|q)

n!

=(−1)n
∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
x+ y1 + · · ·+ yr

n

)
dµq(y1) · · · dµq(yr)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
−x− y1 − · · · − yr + n− 1

n

)
dµq(y1) · · · dµq(yr)

=
n∑

m=0

(
n− 1

n−m

)∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
−x− y1 − · · · − yr

m

)
dµq(y1) · · · dµq(yr)

=
n∑

m=1

(
n− 1

m− 1

)
D̂

(h1,...,hr)
m (x|q)

m!
,

(2.17)

and

(−1)n
D̂

(h1,...,hr)
n (x|q)

n!

=(−1)n
∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
−x− y1 − · · · − yr

n

)
dµq(y1) · · · dµq(yr)

=

∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
x+ y1 + · · ·+ yr + n− 1

n

)
dµq(y1) · · · dµq(yr)

=
n∑

m=0

(
n− 1

n−m

)∫
Zp

· · ·
∫
Zp

q
∑r

i=1 hiyi

(
x+ y1 + · · ·+ yr

m

)
dµq(y1) · · · dµq(yr)

=

n∑
m=1

(
n− 1

m− 1

)
D

(h1,...,hr)
m (x|q)

m!
.

(2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 2.7. For n ≥ 0, we have

(−1)n
D

(h1,...,hr)
n (x|q)

n!
=

n∑
m=1

(
n− 1

m− 1

)
D̂

(h1,...,hr)
m (x|q)

m!
,

and

(−1)n
D̂

(h1,...,hr)
n (x|q)

n!
=

n∑
m=1

(
n− 1

m− 1

)
D

(h1,...,hr)
m (x|q)

m!
.
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Abstract: In this paper, we study a semilinear damped wave equation with non-

linear dynamic boundary conditions. Under certain assumptions, we extend the

earlier exponentially growth result in Gerbi and Said-Houari (Adv. Differential

Equations 13: 1051-1074, 2008) to a blow-up in finite time result with positive

initial energy.

Keywords: damped wave equation; dynamic boundary conditions; blow-up
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1. Introduction

In this work, we investigate the following semilinear damped wave equation with dynamic

boundary conditions

utt −∆u− α∆ut = |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t ≥ 0,

utt(x, t) = −
[
∂u

∂ν
(x, t) + α

∂ut
∂ν

(x, t) + r|ut|m−2ut

]
, x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.1)

Here Ω is a regular and bounded domain in RN (N ≥ 1) and ∂Ω = Γ0 ∪ Γ1, mes(Γ0) > 0,

Γ0 ∩ Γ1 = ∅. We denote ∆ the Laplacian operator with respect to the x variable and ∂
∂ν the

unit outer normal derivative, m ≥ 2, p > 2, α, r are positive constants and u0 and u1 are given

functions.

From the mathematical point of view, the boundary conditions that do not neglect the accel-

eration terms are usually called dynamic boundary conditions. Researches on these problems

are very important in practical problems as well as in the theoretical fields.

For the cases of one dimension space, many results have been established (see [1, 2, 3, 11, 12,

13, 15, 24, 23, 35]). For example, Grobbelaar-van Dalsen [12] studied the following problem:

utt − uxx − utxx = 0, x ∈ (0, L), t > 0,

u(0, t) = 0, t > 0,

utt(L, t) = − [ux + utx] (L, t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ (0, L),

u(L, 0) = η, ut(L, 0) = µ t > 0.

(1.2)

By using the theory of B-evolutions and the theory of fractional powers, the author proved that

problem (1.2) gives rise to an analytic semigroup in an appropriate functional space and obtained

the existence and the uniqueness of solutions. For a problem related to (1.2), an exponential

1Corresponding author. E-mail: matdhwang@yeah.net
1
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decay result was obtained in [13], which describes the weakly damped vibrations of an extensible

beam. Later, Zhang and Hu [35] considered (1.2) in a more general form and an exponential

and polynomial decay rates for the energy were obtained by using the Nakao inequality. Pellicer

and Solà-Morales [24] considered the linear wave equation with strong damping and dynamical

boundary conditions as an alternative model for the classical spring-mass-damper ODE:

m1u
′′(t) + d1u

′(t) + k1(t) = 0. (1.3)

Based on the semigroup theory, spectral perturbation analysis and dominant eigenvalues, they

compared analytically these two approaches to the same physical system. Then, Pellicer [23]

considered the same problem with a control acceleration εf
(
u(1, t), ut(1,t)√

ε

)
as a model for a

controlled spring-mass-damper system and established some results concerning its large time

behavior. By applying invariant manifold theory, the author proved that the infinite dimensional

system admits a two-dimensional attracting manifold where the equation is well represented by

a classical nonlinear oscillations ODE, which can be exhibited explicitly.

For the multi-dimensional cases, we can cite [5, 6, 14, 21, 22, 30] for problems with the

Dirichlet boundary conditions and [27, 28, 29] for the Cauchy problems. Recently, Gerbi and

Said-Houari [7, 8] studied problem (1.1), in which the strong damping term −∆ut is involved.

They showed in [7] that if the initial data are large enough then the energy and the Lp norm of

the solution of problem (1.1) is unbounded and grows up exponentially as time goes to infinity.

Later, they established in [8] the global existence and asymptotic stability of solutions starting

in a stable set by combining the potential well method and the energy method. A blow-up result

for the case m = 2 with initial data in the unstable set was also obtained. However, as indicated

in [8], the blow-up of solutions in the presence of a strong damping and a nonlinear boundary

damping (i.e., m > 2) at the same time is still an open problem. For other related works, we

refer the readers to [4, 10, 9, 17, 18, 19, 20, 25, 26, 31, 32, 33, 34] and the references therein.

Motivated by the above works, in this article, we intend to extend the exponentially growth

result in [7] to a blow-up result with positive initial energy. The main difficulty here is the

simultaneous appearance of the strong damping term ∆ut, the nonlinear boundary damping

term r|ut|m−2ut, and the nonlinear source term |u|p−2u. For our purpose, the functional like

L(t) = H(t) + εF (t) in [7] is modified to L(t) = H1−α(t) + εF (t) for some α > 0 in this paper.

We also give a modified manner to estimate the term
∣∣∣∫Γ1
|ut|m−2utudσ

∣∣∣ so that the appearance

of the form like : γ = RH−σ(t) (for constants γ, R and σ) which has been used in many earlier

works (for example in [10, 16, 21, 22]) can be avoided.

The paper is organized as follows. In Section 2 we present some notations and assumptions

and state the main result. Section 3 is devoted to proof of the blow-up result - Theorem 2.2.

2. Preliminaries and main result

In this section, we first recall some notations and assumptions given in [7]. We denote

H1
Γ0
(Ω) =

{
u ∈ H1(Ω) | uΓ0 = 0

}
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with the scalar product (·, ·) in L2(Ω) and we also mean by ∥ · ∥q the Lq(Ω) norm for 1 ≤ q ≤ ∞
and by ∥ · ∥q,Γ1 the Lq(Γ1) norm. We will use the following embedding

H1
Γ0
(Ω) ↪→ Lq(Γ1), 2 ≤ q ≤ q̄,

where

q̄ =


2(N − 1)

N − 2
, if N ≥ 3,

+∞, if N = 1, 2.
(2.1)

We state the following local existence and uniqueness theorem established in [7].

Theorem 2.1. ([7, theorem 2.1]) Let 2 ≤ p ≤ q̄ and max
{
2, q̄

q̄+1−q

}
≤ m ≤ q̄. Then given

u0 ∈ H1
Γ0
(Ω) and u1 ∈ L2(Ω), there exists T > 0 and a unique solution u(t) of the problem (1.1)

on [0, T ) such that

u ∈ C(0, T ;H1
Γ0
(Ω)) ∩ C1(0, T ;L2(Ω)), ut ∈ L2(0, T ;H1

Γ0
(Ω)) ∩ Lm(Γ1 × [0, T )).

We define the energy functional

E(t) =
1

2
∥ut∥22 +

1

2
∥∇u∥22 −

1

p
∥u∥pp +

1

2
∥ut∥22,Γ1

(2.2)

and set

α1 = B−p/(p−2), E1 =

(
1

2
− 1

p

)
α2
1, (2.3)

where B is the best constant of the embedding H1
0 (Ω) ↪→ Lp(Ω). We can easily get

E′(t) = −α∥∇ut∥22 − r∥ut∥mm,Γ1
≤ 0. (2.4)

Our main result reads as follows.

Theorem 2.2. Suppose that m < p with 2 < p ≤ q̄ and that

0 <
N

2
− N − 1

m
≤ min

{
p− 2

p
,

2(p−m)

mp

}
(2.5)

holds. Assume that

E(0) < E1, ∥∇u0∥2 > α1. (2.6)

Then the solution of problem (1.1) blows up in a finite time T0, in the sense that

lim
t→T−

0

[
∥ut∥22 + ∥ut∥22,Γ1

+ ∥∇u∥22
]
= +∞. (2.7)

3. Blow-up of solutions

In this section, we prove our main result and use C to denote a generic positive constant. To

this end, we need the following lemmas.

Lemma 3.1. ([7, Lemma 3.1]) Let u be the solution of problem (1.1). Assume that 2 < p ≤ q̄
and (2.6) holds. Then there exists a constant α2 > α1 such that

∥∇u(·, t)∥2 ≥ α2, ∀ t ≥ 0, (3.1)

and

∥u∥p ≥ Bα2, ∀ t ≥ 0. (3.2)
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Lemma 3.2. Let u be the solution of problem (1.1). Assume that 2 < p ≤ q̄ and (2.6) holds.

Then we have

E1 <
p− 2

2p
∥u∥pp, ∀ t ≥ 0. (3.3)

Proof. Exploiting (2.3) and (3.2), we get

E1 =
p− 2

2p
α2−p
1 αp

1 =
p− 2

2p
Bpαp

1 <
p− 2

2p
Bpαp

2 ≤
p− 2

2p
∥u∥pp.

Set

H(t) = E1 − E(t), (3.4)

then we have

0 < H(0) ≤ H(t) <
1

p
∥u∥pp +

p− 2

2p
∥u∥pp ≤

1

2
∥u∥pp. (3.5)

As a result of (2.2) and (3.5), we can deduce as in [21, 22] the following lemma.

Lemma 3.3. Let u be the solution of problem (1.1). Assume that 2 < p ≤ q̄ and (2.6) holds.

Then

∥u∥κp ≤ C(∥∇u∥22 + ∥u∥pp) ≤ C
[
−H(t)− ∥ut∥22 − ∥ut∥22,Γ1

+ ∥u∥pp
]

(3.6)

for any 2 ≤ κ ≤ p.

Now, we are ready to prove our result.

Proof of Theorem 2.2. We assume by contradiction that (2.7) does not hold true. Then

for ∀ T ∗ < +∞ and all t ∈ [0, T ∗], we have

∥ut∥22 + ∥ut∥22,Γ1
+ ∥∇u∥22 ≤ C1, (3.7)

where C1 is a positive constant. Set

L(t) = H1−θ(t) + ε

∫
Ω
utudx+ ε

∫
Γ1

utudσ +
εα

2
∥∇u∥22 (3.8)

for ε small to be chosen later and

s

2
≤ θ ≤ min

{
p− 2

2p
,

1

m
− 1

p

}
with

0 <
N

2
− N − 1

m
≤ s ≤ min

{
p− 2

p
,

2(p−m)

mp

}
.

Taking a derivative of L(t) in (3.8) and use (1.1) and (2.2), we get

L′(t) =(1− θ)H−θ(t)H ′(t) + ε(∥ut∥22 + ∥ut∥22,Γ1
− ∥∇u∥22) + ε∥u∥pp − εr

∫
Ω
|ut|m−2utudσ

=(1− θ)H−θ(t)H ′(t) + 2ε(∥ut∥22 + ∥ut∥22,Γ1
)− 2εE1 + 2εH(t)

+ ε

(
1− 2

p

)
∥u∥pp − εr

∫
Ω
|ut|m−2utudσ. (3.9)

We now estimate the last term on the right-hand side of (3.9). By Hölder’s inequality, we obtain∣∣∣∣∫
Γ1

|ut|m−2utudσ

∣∣∣∣ ≤ ∥ut∥m−1
m,Γ1
∥u∥m,Γ1 . (3.10)

As in [7], for m ≥ 1 and N
2 −

N−1
m ≤ s ≤ min

{
p−2
p , 2(p−m)

mp

}
< 1,

∥u∥m,Γ1 ≤ C∥u∥Hs(Ω) ≤ C∥u∥1−s
2 ∥∇u∥s2 ≤ C∥u∥1−s

p ∥∇u∥s2 ≤ C∥u∥
p
m
p ∥u∥

1−s− p
m

p ∥∇u∥s2. (3.11)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

780 Gang Li et al 777-783



5

Combining (3.10), (3.11), (3.5) and (3.8), and using Young’s inequality we have∣∣∣∣∫
Γ1

|ut|m−2utudσ

∣∣∣∣ ≤CC s
2
1 ∥ut∥

m−1
m,Γ1
∥u∥

p
m
p ∥u∥

1−s− p
m

p ≤ CC
s
2
1 ∥ut∥

m−1
m,Γ1
∥u∥

p
m
p H

−θ1(t)

≤CC
s
2
1 H

−θ1(t)

(
βm

m
∥u∥pp +

(m− 1)β−m

m
∥ut∥mm,Γ1

)
, (3.12)

where θ1 =
1
m −

1−s
p ≥ θ and β > 0 will be chosen later. Substituting (3.12) in (3.9) yields

L′(t) ≥(1− θ)H−θ(t)H ′(t) + 2ε(∥ut∥22 + ∥ut∥22,Γ1
)− 2εE1 + 2εH(t)

+ ε

(
1− 2

p
− rCC

s
2
1 β

m

m
H−θ1(t)

)
∥u∥pp −

εrCC
s
2
1 (m− 1)

mβm
H−θ1(t)∥ut∥mm,Γ1

. (3.13)

By virtue of (2.4), (3.4) and (3.5), we get

H ′(t) ≥ r∥ut∥mm,Γ1

and

H−θ1(t) ≤ H−θ1(0), H−θ1(t) ≤ H−(θ1−θ)(0)H−θ(t).

Furthermore, using (3.2), we have

−2εE1 ≥ −2εE1B
−pα−p

2 ∥u∥
p
p.

Therefore, (3.13) becomes

L′(t) ≥r

(
1− θ − εCC

s
2
1 (m− 1)

mβm
H−(θ1−θ)(0)

)
H−θ(t)∥ut∥mm,Γ1

+ 2ε(∥ut∥22 + ∥ut∥22,Γ1
)

+ ε

(
1− 2

p
− rCC

s
2
1 β

m

m
H−θ1(0)− 2E1B

−pα−p
2

)
∥u∥pp + 2εH(t). (3.14)

Since α2 > α1 and combining the definition of E1, we have

1− 2

p
− 2E1B

−pα−p
2 =

p− 2

p

[
1−

(
α1

α2

)p]
> 0.

So, we can choose β small enough so that

1− 2

p
− rCC

s
2
1 β

m

m
H−θ1(0)− 2E1B

−pα−p
2 > 0.

Once β is fixed, we choose ε small enough such that

L(0) = H1−θ(0) + ε

∫
Ω
u0u1dx+ ε

∫
Γ1

u0u1dσ +
εα

2
∥∇u0∥22 > 0

and

1− θ − εCC
s
2
1 (m− 1)

mβm
H−(θ1−θ)(0) > 0.

Hence, we have

L′(t) ≥Λε
(
∥ut∥22 + ∥ut∥22,Γ1

+ ∥u∥pp +H(t)
)

(3.15)

for some positive constant Λ.

On the other hand, we have

L
1

1−θ (t) =

(
H1−θ(t) + ε

∫
Ω
utudx+ ε

∫
Γ1

utudσ +
εα

2
∥∇u∥22

) 1
1−θ
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≤C

(
H(t) +

∣∣∣∣∫
Ω
utudx

∣∣∣∣ 1
1−θ

+

∣∣∣∣∫
Γ1

utudσ

∣∣∣∣ 1
1−θ

+ ∥∇u∥
2

1−θ

2

)
. (3.16)

Using Hölder and Young inequalities, (3.7), (3.11) and Lemma 3.3, we get∣∣∣∣∫
Ω
utudx

∣∣∣∣ 1
1−θ

≤C(∥u∥2∥ut∥2)
1

1−θ ≤ C∥u∥
1

1−θ
p ∥ut∥

1
1−θ

2 ≤ C
(
∥u∥

2
1−2θ
p + ∥ut∥22

)
≤C

(
H(t) + ∥ut∥22 + ∥ut∥22,Γ1

+ ∥u∥pp
)
, (3.17)∣∣∣∣∫

Γ1

utudx

∣∣∣∣ 1
1−θ

≤ C(∥u∥2,Γ1∥ut∥2,Γ1)
1

1−θ ≤ C∥ut∥
1

1−θ

2,Γ1
∥u∥

1−s
1−θ
p ∥∇u∥

s
1−θ

2

≤CC
s

2(1−θ)

1

(
∥u∥

2(1−s)
1−2θ
p + ∥ut∥22,Γ1

)
≤ C

(
H(t) + ∥ut∥22 + ∥ut∥22,Γ1

+ ∥u∥pp
)
, (3.18)

and

∥∇u∥
2

1−θ

2 ≤ C
1

1−θ

1 . (3.19)

Using the Poincaré’s inequality and (3.7), we have

∥u∥pp ≤ Bp∥∇u∥p2 ≤ B
pC

p
2
1 . (3.20)

By virtue of (3.5) and (3.20), we know that H(t) is bounded. There exists a positive constant

C2 such that

H(t) + C
1

1−θ

1 ≤ C2H(t).

Therefore, we obtain

L
1

1−θ (t) ≤ C
(
∥ut∥22 + ∥ut∥22,Γ1

+ ∥u∥pp +H(t)
)
. (3.21)

A combining of (3.15) and (3.21) leads to

L′(t) ≥ εΛ

C
L

1
1−θ (t). (3.22)

A simple integration of (3.22) over [0, t] gives

L
θ

1−θ (t) ≥ 1

L− θ
1−θ (0)− θΛε

C(1−θ) t
, ∀ t ≥ 0. (3.23)

This shows that L(t) blows up in a finite time T0, where

T0 ≤
(1− θ)C

Λεθ[L(0)]θ/(1−θ)
.

If we choose T ∗ ≥ (1−θ)C

Λεθ[L(0)]θ/(1−θ) , then we obtain T0 ≤ T ∗, which contradicts to our assumption.

This completes the proof.
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J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

782 Gang Li et al 777-783



7

[6] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and
source terms, J. Differential Equations 109 (1994), no. 2, 295–308.

[7] S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation
with dynamic boundary conditions, Adv. Differential Equations 13 (2008), no. 11-12, 1051–1074.

[8] S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with
dynamic boundary conditions, Nonlinear Anal. 74 (2011), no. 18, 7137–7150.

[9] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential
Equations 11 (2006), no. 4, 457–480.

[10] P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic
boundary conditions, Appl. Math. Optim. 66 (2012), no. 1, 81–122.

[11] M. Grobbelaar-Van Dalsen and A. van der Merwe, Boundary stabilization for the extensible beam with
attached load, Math. Models Methods Appl. Sci. 9 (1999), no. 3, 379–394.

[12] M. Grobbelaar-Van Dalsen, On fractional powers of a closed pair of operators and a damped wave equation
with dynamic boundary conditions, Appl. Anal. 53 (1994), no. 1-2, 41–54.

[13] M. Grobbelaar-Van Dalsen, On the initial-boundary-value problem for the extensible beam with attached
load, Math. Methods Appl. Sci. 19 (1996), no. 12, 943–957.

[14] J.-M. Jeong, J. Y. Park, Y. H. Kang, Energy decay rates for viscoelastic wave equation with dynamic
boundary conditions, J. Comput. Anal. Appl. 19 (2015), no. 3, 500–517.

[15] M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and
hyperbolic type, Hokkaido Math. J. 21 (1992), no. 2, 221–229.

[16] G. Li, Y. N. Sun and W. J. Liu, Global existence and blow-up of solutions for a strongly damped Petrovsky
system with nonlinear damping, Appl. Anal. 91 (2012), no. 3, 575–586.

[17] W. J. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal
time-varying delay term, Taiwanese J. Math. 17 (2013), no. 6, 2101–2115.

[18] W. J. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math.
Lett. 38 (2014), 155–161.

[19] W. J. Liu and K. W. Chen, Existence and general decay for nondissipative distributed systems with boundary
frictional and memory dampings and acoustic boundary conditions, Z. Angew. Math. Phys., 66 (2015), DOI:
10.1007/s00033-014-0489-3.

[20] W. J. Liu and Y. Sun, General decay of solutions for a weak viscoelastic equation with acoustic boundary
conditions, Z. Angew. Math. Phys. 65 (2014), no. 1, 125–134.

[21] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr. 260
(2003), 58–66.

[22] S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation,
J. Math. Anal. Appl. 320 (2006), no. 2, 902–915.

[23] M. Pellicer, Large time dynamics of a nonlinear spring-mass-damper model, Nonlinear Anal. 69 (2008), no. 9,
3110–3127.
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UNIQUENESS OF MEROMORPHIC FUNCTIONS
WITH THEIR DIFFERENCE OPERATORS

XIAOGUANG QI, YONG LIU AND LIANZHONG YANG

Abstract. This paper is devoted to considering sharing value
problems for a meromorphic function f(z) with its difference op-
erator ∆cf = f(z + c) − f(z), which improve some recent results
in Chen and Yi in [2].

1. Introduction

In this paper a meromorphic function will mean meromorphic in the
whole complex plane. We assume that the reader is familiar with the el-
ementary Nevanlinna Theory, see, e.g. [8, 19]. In particular, we denote
the order, exponent of convergence of zeros and poles of a meromor-
phic function f(z) by σ(f), λ(f) and λ( 1

f
), respectively. As usual, the

abbreviation CM stands for ”counting multiplicities”, while IM means
”ignoring multiplicities”.

The classical results in the uniqueness theory of meromorphic functions
are the five-point, resp. four-point, theorems due to Nevanlinna [17]:

Theorem A. If two meromorphic functions f(z) and g(z) share five
distinct values a1, a2, a3, a4, a5 ∈ C ∪ {∞} IM, then f(z) = g(z).

Theorem B. If two meromorphic functions f(z) and g(z) share four
distinct values a1, a2, a3, a4 ∈ C ∪ {∞} CM, then f(z) = g(z) or
f(z) = T ◦ g(z), where T is a Möbius transformation.

It is well-known that 4 CM can not be improved to 4 IM, see [4].
Further, Gundersen [6, Theorem 1] has improved the assumption 4
CM to 2 CM+2 IM, while 1 CM+3 IM remains an open problem.
Meanwhile, Gundersen [7], Mues and Stinmetz [16] got some uniqueness
results on the case when g(z) is the derivative of f(z):

Theorem C. If a meromorphic functions f(z) and its derivative f ′(z)
share two distinct values a1, a2 CM, then f(z) = f ′(z).

2010 Mathematics Subject Classification. 30D35, 39A05.
Key words and phrases. Difference operator; Meromorphic functions; Value

sharing; Nevanlinna theory.
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2 XIAOGUANG QI,YONG LIU AND LIANZHONG YANG

Gundersen [7] has given a counterexample to show that the conclusion
of Theorem C is not valid if 2 CM is replaced by 1 CM +1 IM. However,
2 CM can be replaced by 3 IM, see [5, 15].

In recent papers [9, 10], Heittokangas et al. started to consider the
uniqueness of a finite order meromorphic function sharing values with
its shift. They concluded that:

Theorem D. Let f(z) be a meromorphic function of finite order, let
c ∈ C, and let a1, a2, a3 ∈ S(f) ∪ {∞} be three distinct periodic func-
tions with period c. If f(z) and f(z + c) share a1, a2 CM and a3 IM,
then f(z) = f(z + c) for all z ∈ C.

Some improvements of Theorem D can be found in [2, 11, 12, 18].
The difference operator ∆cf = f(z + c)− f(z) can be regarded as the
difference counterpart of f ′(z). Therefore, some research results [9, 13]
have been obtained for the problem that ∆cf and f(z) share one value
a CM, which can be seen as difference analogues of Brück conjecture
in [1]. Here, we just recall the following result in [2] as an example:

Theorem E. Let f(z) be a finite order transcendental entire function
which has a finite Borel exceptional value a, and let f(z) be not periodic
of period c. If ∆cf and f(z) share a CM, then a = 0 and ∆cf = τf(z),
where τ is a non-zero constant.

Zhang et al. gave some improvements of Theorem E, the reader is
referred to [14, 20]. A natural question is: what is the uniqueness result
on the case when f(z) is meromorphic and a(z) is a small function of
f(z) in Theorem E. Corresponding to this question, we get the following
results:

Theorem 1.1. Let f(z) be a transcendental meromorphic function of
finite order which has two Borel exceptional values a and ∞, and let
f(z) be not periodic of period c. If ∆cf and f(z) share values a and ∞
CM, then a = 0 and f(z) = AeBz, where A,B are non-zero constants.

Theorem 1.2. Let f(z) be a transcendental meromorphic function of
finite order which has a Borel exceptional value ∞, and let a(z) be a
non-constant meromorphic function such that σ(a) < σ(f) and λ(f −
a) < σ(f). If ∆cf and f(z) share values a(z) and ∞ CM, then f(z) =
a(z) + CeDz and σ(a) < 1, where C, D are non-zero constants, .

2. Some Lemmas

Lemma 2.1. [3, Theorem 2.1] Let f(z) be a non-constant meromorphic
function with finite order σ, and let c be a non-zero constant. Then,
for each ε > 0, we have

T (r, f(z + c)) = T (r, f(z)) + O(rσ−1+ε) + O(log r).
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UNIQUENESS OF FUNCTIONS WITH THEIR DIFFERENCE OPERATORS 3

Lemma 2.2. [3, Theorem 8.2] Let f(z) be a meromorphic function
of finite order σ, c be a non-zero constant. Let ε > 0 be a given real
constant, then there exits a subset E ⊂ (1,∞) of finite logarithmic
measure such that for all |z| = r /∈ [0, 1] ∪ E, we have

exp(−rσ−1+ε) ≤
∣∣∣∣
f(z + η)

f(z)

∣∣∣∣ ≤ exp(rσ−1+ε).

3. Proof of Theorem 1.2

It follows by the assumption that

f(z) = a(z) +
u(z)

v(z)
eh(z), (3.1)

where u(z), v(z) are two non-zero entire functions, h(z) is a non-
constant polynomial of degree m. Furthermore, we know f(z) is of
normal growth, and a(z), u(z), v(z) satisfy:

λ(f − a) = λ(u) = σ(u) < σ(f) = m, λ(
1

f
) = λ(v) = σ(v) < σ(f),

and

T (r, a) = S(r, f), T (r, u) = S(r, eh(z)), T (r, v) = S(r, eh(z)) = S(r, f).

From (3.1), we have

∆cf =

(
u(z + c)

v(z + c)
eh(z+c)−h(z) − u(z)

v(z)

)
eh(z) + a(z + c)− a(z)

= H(z)eh(z) + a(z + c)− a(z).

(3.2)

Applying Lemma 2.1 to equation (3.2), we conclude

σ(H) < m = σ(f),

which means that
T (r,H) = S(r, f).

By the sharing assumption, we obtain that

∆cf − a(z)

f(z)− a(z)
= ep(z), (3.3)

where p(z) is a polynomial. By combining Lemma 2.1 and (3.3), it
follows that deg p(z) ≤ σ(f) = m. From (3.1), (3.2) and (3.3), we
deduce that

H(z)eh(z) + a(z + c)− 2a(z) =
u(z)

v(z)
eh(z)+p(z). (3.4)

Case 1. Suppose that a(z + c)− 2a(z) 6≡ 0. Then by (3.4) we get

N

(
r,

1

eh(z) + a(z+c)−2a(z)
H(z)

)
≤ N

(
r,

1

u(z)

)
= S(r, eh(z)),

when H(z) 6≡ 0, which is a contradiction.
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If H(z) ≡ 0, then it follows from (3.2) that

u(z + c)

v(z + c)
eh(z+c)−h(z) − u(z)

v(z)
≡ 0,

this gives
u(z + c)v(z)

u(z)v(z + c)
eh(z+c)−h(z) ≡ 1. (3.5)

Denote

G(z) =
u(z + c)v(z)

u(z)v(z + c)
. (3.6)

From equation (3.5), we know that G(z) is a non-zero entire function.
By Lemma 2.2, we see∣∣∣∣

u(z + c)

u(z)

∣∣∣∣ ≤ exp(rσ(u)−1+ε),

∣∣∣∣
v(z)

v(z + c)

∣∣∣∣ ≤ exp(rσ(v)−1+ε),

which implies that

|G(z)| =
∣∣∣∣
u(z + c)v(z)

u(z)v(z + c)

∣∣∣∣ ≤ exp(2rσ−1+ε),

where σ = max{σ(u), σ(v)} < σ(f) = m, and 0 < ε < m−σ
2

. Hence,

T (r,G(z)) = m(r,G(z)) = 2rσ−1+ε,

that is

σ(G) ≤ σ − 1 + ε < m− 1. (3.7)

Consequently,

σ(f) = m = 1, (3.8)

from equations (3.5) and (3.7). Thus,

σ(a) < 1, σ(u) < 1, σ(v) < 1. (3.9)

Rewriting equation (3.5) as following

u(z + c)v(z)

u(z)
eh(z+c)−h(z) ≡ v(z + c), (3.10)

u(z + c)v(z)

v(z + c)
eh(z+c)−h(z) ≡ u(z). (3.11)

Next, we will prove that

u(z) 6≡ 0, v(z) 6≡ 0. (3.12)

In fact, suppose z0 is a zero of v(z), then from (3.10) and u(z0) 6= 0,
we get that z0 + c is also a zero of v(z). By calculation, we know
v(z0 + kc) = 0 as well, where k is a positive integer. Hence, σ(v) ≥ 1,
which contradicts equation (3.9). Hence, v(z) 6≡ 0. Similarly, we get
u(z) 6≡ 0. By combining equation (3.9) with (3.12), we affirm that
v(z) and u(z) are two non-zero constants. Therefore, we conclude that
f(z) = a(z) + CeDz, where C, D are non-zero constants.
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Case 2. Assume that

a(z + c)− 2a(z) ≡ 0. (3.13)

Then we affirm that σ(a) ≥ 1. In fact, if σ(a) < 1, then from (3.13)

and Lemma 2.2, for any given ε such that 0 < ε < 1−σ(a)
2

, there exits
a subset E ⊂ (1,∞) of finite logarithmic measure such that for all
|z| = r /∈ [0, 1] ∪ E, we deduce that

2 =

∣∣∣∣
a(z + c)

a(z)

∣∣∣∣ ≤ exp(rσ(a)−1+ε) → 0, r →∞,

which is impossible. Therefore, we conclude that

σ(a) ≥ 1.

(a). If deg p(z) = 0, then p(z) = p, where p is a constant. From
equations (3.1) and (3.3), it follows that

G(z)eh(z+c)−h(z) = 1 + ep,

where G(z) denotes as equation (3.6). Using a similar way as Case 1,
we know that σ(f) = m = 1, which contradicts the assumption that
σ(a) < σ(f).

(b). If deg p(z) ≥ 1, then by equations (3.1), (3.3) and (3.6), it follows
that

G(z)eh(z+c)−h(z) − 1 = ep(z). (3.14)

Similarly as Case 1, we get equation (3.7) hold as well. Therefore, by
equation (3.7), we obtain

λ(G(z)eh(z+c)−h(z)) = λ(G(z)) ≤ σ(G(z)) < m−1 = σ(G(z)eh(z+c)−h(z)),

which means 0 is a Borel exceptional value. Clearly, we obtain that 1
and ∞ are two Borel exceptional values of G(z)eh(z+c)−h(z). Hence, we
get the function G(z)eh(z+c)−h(z) have three Borel exceptional values,
which is a contradiction. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.1

From the assumption that f(z) has two Borel exceptional values a and
∞, f(z) can be expressed as in the following form:

f(z) = a +
U(z)

V (z)
eφ(z), (4.1)

where U(z), V (z) are two non-zero entire functions, φ(z) is a non-
constant polynomial of degree n. Similarly as Theorem 1.2, we get
U(z), V (z) satisfy:

λ(f − a) = λ(U) = σ(U) < σ(f) = n, λ(
1

f
) = λ(V ) = σ(V ) < σ(f),

and

T (r, U) = S(r, eφ(z)) = S(r, f), T (r, V ) = S(r, eφ(z)) = S(r, f).
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Moreover, we get

∆cf =

(
U(z + c)

V (z + c)
eφ(z+c)−φ(z) − U(z)

V (z)

)
eφ(z) = ψ(z)eφ(z), (4.2)

∆cf − a

f(z)− a
= eq(z), (4.3)

and

ψ(z)eφ(z) − a =
U(z)

V (z)
eφ(z)+q(z),

where q(z) is a polynomial.

Case 1. If a 6= 0, then by the above equation we obtain

N

(
r,

1

eφ(z) − a
ψ(z)

)
≤ N

(
r,

1

U(z)

)
= S(r, eφ(z))

when ψ(z) 6≡ 0, which is a contradiction. If ψ(z) ≡ 0, then we have
∆cf ≡ 0 by (4.2), which contradicts the assumption ∆cf 6≡ 0.

Case 2. If a = 0, then it follows that

∆cf

f
=

U(z + c)V (z)

U(z)V (z + c)
eφ(z+c)−φ(z) − 1 = ω(z)eφ(z+c)−φ(z) − 1 = eq(z).

(4.4)
Similarly as Theorem 1.2, we conclude that σ(ω) < n−1 = deg φ(z)−1,
which means that

T (r, ω) = S(r, eφ(z)).

From equation (4.4), we have

N

(
r,

1

eq(z) + 1

)
= N

(
r,

1

ω(z)

)
= S(r, eφ(z)),

which is impossible when q(z) is a non-constant polynomial. Hence,
q(z) is a constant. Let q(z) = q, then from equations (4.4), it follows
that

U(z + c)V (z)

U(z)V (z + c)
eφ(z+c)−φ(z) = 1 + eq.

Using a similar way as Case 1 of Theorem 1.2, we know that σ(f) = 1,
and obtain f(z) = AeBz further. The conclusion follows.
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méromorphes, Gauthiers-Villars, Paris, 1929.

[18] X. G. Qi, Value distribution and uniqueness of difference polynomials and en-
tire solutions of difference equations, Ann. Polon. Math. 102 (2011), 129-142.

[19] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions,
Kluwer Academic Publishers, 2003.

[20] J. Zhang and L. W. Liao, Entire functions sharing some values with their
difference operators, Sci. China. Ser. A 57 (2014), 2143-2152.

Xiaoguang Qi
University of Jinan, School of Mathematics,
Jinan, Shandong, 250022, P. R. China
E-mail address: xiaogqi@gmail.com or xiaogqi@mail.sdu.edu.cn

Yong Liu
Department of Mathematics, Shaoxing College of Arts and Sciences,
Shaoxing, Zhejiang, 312000, P. R. China.
E-mail address: liuyongsdu@aliyun.com

Lianzhong Yang
Shandong University, School of Mathematics,
Jinan, Shandong, 250100, P. R. China
E-mail address: lzyang@sdu.edu.cn

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

790 XIAOGUANG QI et al 784-790



QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN

NORMED SPACES

SUNGSIK YUN AND CHOONKIL PARK∗

Abstract. In this paper, we solve the quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥ , (0.1)

where ρ is a fixed non-Archimedean number with |ρ| < 1, and∥∥∥2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖, (0.2)

where ρ is a fixed non-Archimedean number with |ρ| < 1
2
.

Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1)
and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ρ-
functional equations associated with the quadratic ρ-functional inequalities (0.1) and (0.2) in non-
Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element having
the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are
examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If
the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of a
non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it
simply a field.

Definition 1.1. ([12]) Let X be a vector space over a field K with a non-Archimedean valuation
| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the following
conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; quadratic ρ-functional equation;

quadratic ρ-functional inequality.
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holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the
sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε
for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence {xn} is
called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

‖xn − x‖ ≤ ε
for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is
called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [25] concerning
the stability of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive
mappings and by Rassias [17] for linear mappings by considering an unbounded Cauchy difference.
A generalization of the Rassias theorem was obtained by Găvruta [8] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be a quadratic
mapping. The stability of quadratic functional equation was proved by Skof [24] for mappings
f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [5] noticed that
the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian group. The

functional equation 2f
(
x+y
2

)
+2

(
x−y
2

)
= f(x)+f(y) is called a Jensen type quadratic equation. The

stability problems of various functional equations have been extensively investigated by a number
of authors (see [1, 3, 4, 15, 16, 19, 20, 21, 22, 23, 26, 27]).

In [9], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation 2f(x)+2f(y) = f(xy)+f(xy−1). See
also [18]. Gilányi [10] and Fechner [7] proved the Hyers-Ulam stability of the functional inequality
(1.1). Park, Cho and Han [14] proved the Hyers-Ulam stability of additive functional inequalities.
The stability problems of functional equations and inequalities have also been treated by many
authors ([6, 13]).

In Section 2, we solve the quadratic ρ-functional inequality (0.1) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.1) in non-Archimedean Banach spaces. We
moreover prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with the
quadratic ρ-functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the quadratic ρ-functional inequality (0.2) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.2) in non-Archimedean Banach spaces. We
moreover prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with the
quadratic ρ-functional inequality (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a
non-Archimedean Banach space. Let |2| 6= 1.

2. Quadratic ρ-functional inequality (0.1) in non-Archimedean normed spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1.
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In this section, we solve the quadratic ρ-functional inequality (0.1) in non-Archimedean normed
spaces.

Lemma 2.1. A mapping f : X → Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ (2.1)

for all x, y ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
=
|ρ|
2
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.
The convesre is obviously true. �

Corollary 2.2. A mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
(2.3)

for all x, y ∈ X if and only if f : X → Y is quadratic.

The functional equation (2.3) is called a quadratic ρ-functional equation.
We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in non-Archimedean

Banach spaces.

Theorem 2.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping such
that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.4)

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

|2|r
‖x‖r (2.5)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.4), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.4), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.6)
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for all x ∈ X. So
∥∥f(x)− 4f

(
x
2

)∥∥ ≤ 2
|2|r θ‖x‖

r for all x ∈ X. Hence∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ (2.7)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl+1
, · · · , |4|m−1

|2|r(m−1)+1

}
2θ‖x‖r =

2θ

|2|(r−2)l+1
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {4nf( x
2n )}

converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.7), we get (2.5).
It follows from (2.4) that

‖h(x+ y) + h(x− y)− 2h(x)− 2h(y)‖

= lim
n→∞

|4|n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)∥∥∥∥
≤ lim

n→∞
|4|n|ρ|

∥∥∥∥2f (x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− f

(
x

2n

)
− f

(
y

2n

)∥∥∥∥+ lim
n→∞

|4|nθ
|2|nr

(‖x‖r + ‖y‖r)

= |ρ|
∥∥∥∥2h(x+ y

2

)
+ 2h

(
x− y

2

)
− h(x)− h(y)

∥∥∥∥
for all x, y ∈ X. So

‖h(x+ y) + h(x− y)− 2h(x)− 2h(y)‖ ≤
∥∥∥∥ρ(2h

(
x+ y

2

)
+ 2h

(
x− y

2

)
− h(x)− h(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.5). Then we have

‖h(x)− T (x)‖ =

∥∥∥∥4qh( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qh( x2q
)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥} ≤ 2θ

|2|(r−2)q+1
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for all x ∈ X.
This proves the uniqueness of h. Thus the mapping h : X → Y is a unique quadratic mapping
satisfying (2.5). �

Theorem 2.4. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.4). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

|4|
‖x‖r (2.8)

for all x ∈ X.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

794 SUNGSIK YUN et al 791-799



QUADRATIC ρ-FUNCTIONAL INEQUALITIES

Proof. It follows from (2.6) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2θ

|4|
‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (2.9)

≤ max

{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1
f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
= max

{
1

|4|l

∥∥∥∥f (2lx
)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1

∥∥∥∥f (2m−1x
)
− 1

4
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|4|l+1
, · · · , |2|

r(m−1)

|4|(m−1)+1

}
2θ‖x‖r =

2θ

|2|(2−r)l+2
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.9) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.8).
The rest of the proof is similar to the proof of Theorem 2.3. �

Let A(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y) and

B(x, y) := ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
for all x, y ∈ X.

For x, y ∈ X with ‖A(x, y)‖ ≤ ‖B(x, y)‖,

‖A(x, y)‖ − ‖B(x, y)‖ ≤ ‖A(x, y)−B(x, y)‖.

For x, y ∈ X with ‖A(x, y)‖ > ‖B(x, y)‖,

‖A(x, y)‖ = ‖A(x, y)−B(x, y) +B(x, y)‖
≤ max{‖A(x, y)−B(x, y)‖, ‖B(x, y)‖}
= ‖A(x, y)−B(x, y)‖
≤ ‖A(x, y)−B(x, y)‖+ ‖B(x, y)‖,

since ‖A(x, y)‖ > ‖B(x, y)‖. So we have

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ −
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
≤
∥∥∥∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ .
As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the quadratic
ρ-functional equation (2.3) in non-Archimedean Banach spaces.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.4, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

795 SUNGSIK YUN et al 791-799



S. YUN, C. PARK

Corollary 2.5. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.10)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (2.5).

Corollary 2.6. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.10). Then there exists a unique quadratic mapping h : X → Y satisfying (2.8).

3. Quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1
2 .

In this section, we solve the quadratic ρ-functional inequality (0.2) in non-Archimedean normed
spaces.

Lemma 3.1. A mapping f : X → Y satisfies∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖ (3.1)

for all x, y ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get ∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ 0 (3.2)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.
It follows from (3.1) and (3.2) that

1

2
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ =

∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥∥
≤ |ρ|‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.
The converse is obviously true. �

Corollary 3.2. A mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) (3.3)

for all x, y ∈ X and only if f : X → Y is quadratic.

The functional equation (3.3) is called a quadratic ρ-functional equation.
We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in non-Archimedean

Banach spaces.
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Theorem 3.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping such
that

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)‖ (3.4)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ θ‖x‖r (3.5)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.4), we get ∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.6)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ (3.7)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
θ‖x‖r =

θ

|2|(r−2)l
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.7) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {4nf( x
2n )}

converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.7), we get (3.5).
The rest of the proof is similar to the proof of Theorem 2.3. �

Theorem 3.4. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(3.4). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ |2|
rθ

|4|
‖x‖r (3.8)

for all x ∈ X.

Proof. It follows from (3.6) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ |2|rθ|4| ‖x‖r
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for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (3.9)

≤ max

{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1
f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
= max

{
1

|4|l

∥∥∥∥f (2lx
)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1

∥∥∥∥f (2m−1x
)
− 1

4
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|4|l+1
, · · · , |2|

r(m−1)

|4|(m−1)+1

}
|2|rθ‖x‖r =

|2|rθ
|2|(2−r)l+2

‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.9) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.9), we get (3.8).
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.3. �

Let A(x, y) := 2f
(
x+y
2

)
+ 2f

(
x−y
2

)
− f(x)− f(y) and

B(x, y) := ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

for all x, y ∈ X.
For x, y ∈ X with ‖A(x, y)‖ ≤ ‖B(x, y)‖,

‖A(x, y)‖ − ‖B(x, y)‖ ≤ ‖A(x, y)−B(x, y)‖.
For x, y ∈ X with ‖A(x, y)‖ > ‖B(x, y)‖,

‖A(x, y)‖ = ‖A(x, y)−B(x, y) +B(x, y)‖
≤ max{‖A(x, y)−B(x, y)‖, ‖B(x, y)‖}
= ‖A(x, y)−B(x, y)‖
≤ ‖A(x, y)−B(x, y)‖+ ‖B(x, y)‖,

since ‖A(x, y)‖ > ‖B(x, y)‖. So we have∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥∥− ‖ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

≤
∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥ .
As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the quadratic
ρ-functional equation (3.3) in non-Archimedean Banach spaces.

Corollary 3.5. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that ∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (3.10)

−ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖ ≤ θ(‖x‖r + ‖y‖r)
for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (3.5).

Corollary 3.6. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(3.10). Then there exists a unique quadratic mapping h : X → Y satisfying (3.8).
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[10] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–710.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
[12] M.S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.–

TMA 69 (2008), 3405–3408.
[13] C. Park, Functional inequalities in β-homogeneous normed spaces, Sylwan 158 (2014), No. 5 (2), 9 pages.
[14] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional

equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
[15] C. Park, K. Ghasemi, S. G. Ghaleh and S. Jang, Approximate n-Jordan ∗-homomorphisms in C∗-algebras, J.

Comput. Anal. Appl. 15 (2013), 365-368.
[16] C. Park, A. Najati and S. Jang, Fixed points and fuzzy stability of an additive-quadratic functional equation, J.

Comput. Anal. Appl. 15 (2013), 452–462.
[17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),

297–300.
[18] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66

(2003), 191–200.
[19] S. Schin, D. Ki, J. Chang and M. Kim, Random stability of quadratic functional equations: a fixed point approach,

J. Nonlinear Sci. Appl. 4 (2011), 37–49.
[20] S. Shagholi, M. Bavand Savadkouhi and M. Eshaghi Gordji, Nearly ternary cubic homomorphism in ternary
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