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Some new Chebyshev type quantum integral inequalities

on finite intervals
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Wanzhou 844000, China
2Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia 472000, China

Abstract: By using the two parameters of deformation q1 and q2, we establish some new Chebyshev type
quantum integral inequalities on finite intervals. Furthermore, we also consider their relevance with other
related known results.
Keywords: Chebyshev type inequalities; quantum integral inequalities; synchronous (asynchronous) functions
2010 Mathematics Subject Classification: 34A08; 26D10; 26D15

1 Introduction

Let us start by considering the following celebrated Chebyshev functional (see [1]):

T (f, g, p, q) =

(∫ b

a

q(x)dx

)(∫ b

a

p(x)f(x)g(x)dx

)
+

(∫ b

a

p(x)dx

)(∫ b

a

q(x)f(x)g(x)dx

)

−

(∫ b

a

q(x)f(x)dx

)(∫ b

a

p(x)g(x)dx

)
−

(∫ b

a

p(x)f(x)dx

)(∫ b

a

q(x)g(x)dx

)
, (1.1)

where f, g : [a, b]→ R are two integrable functions on [a, b] and p(x) and q(x) are positive integrable functions
on [a, b]. If f and g are synchronous on [a, b], that is,

(f(x)− f(y))(g(x)− g(y)) ≥ 0,

for any x, y ∈ [a, b], then we have (see, e.g., [2, 3])

T (f, g, p, q) ≥ 0, (1.2)

The inequality in (1.2) is reversed if f and g are asynchronous on [a, b], that is,

(f(x)− f(y))(g(x)− g(y)) ≤ 0,

for any x, y ∈ [a, b]. If p(x) = q(x) for any x, y ∈ [a, b], we get the Chebyshev inequality, see [1].
Here we should point out that the Chebyshev functional (1.1) has attracted many researchers attention

mainly due to its distinguished applications in numerical quadrature, probability and statistical problems and
transform theory. At the same time, the Chebyshev functional (1.1) has also been employed to yield a number
of integral inequalities, see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and the references therein.

The integral inequalities can be applied for the study of qualitative and quantitative properties of integrals,
see [14, 15, 16, 17]. In order to generalize and spread the existing inequalities, we specify two ways to overcome
the problems which ensue from the general definition of q-integral. In [18], Gauchman has introduced the
restricted q-integral over [a, b]. In [19], Stanković, Rajković and Marinković have introduced the definition of
the q-integral of the Riemann type. In [18], Gauchman gave the q-analogues of the well-known inequalities in the
integral calculus, as Chebyshev, Grüss, Hermite-Hadamard for all the types of the q-integrals. In [19], Stanković,
Rajković and Marinković obtained some new q-Chebyshev, q-Grüss, q-Hermite-Hadamard type inequalities.
In [20, 21], by using the weighted q-integral Montgomery identity, Yang and Liu and Yang established the
weighted q-Čebyšev-Grüss type inequalities for single and double integrals, respectively. Recently, Tariboon

∗Corresponding author.
Email: cfx2002@126.com (F. Chen) and wgyang0617@yahoo.com (W. Yang).
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and Ntouyas [22] introduced the quantum calculus on finite intervals, they extended the Hölder, Hermite-
Hadamard, trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, and Grüss-Čebyšev integral inequalities
to quantum calculus on finite intervals in the paper [23].

Motivated by the results mentioned above, by using the two parameters of deformation q1 and q2, we establish
some new Chebyshev type quantum integral inequalities on finite intervals. Furthermore, we also obtain their
relevance with other related known results.

2 Preliminaries

Let J := [a, b] ⊂ R, K := [c, d] ⊂ R, J0 := (a, b) be interval and 0 < q, q1, q2 < 1 be a constant. We give the
definition q-derivative of a function f : J → R at a point x ∈ J on [a, b] as follows.

Definition 2.1 ([22]). Assume f : J → R is a continuous function and let x ∈ J . Then the expression

aDqf(x) =
f(x)− f(qx+ (1− q)a)

(1− q)(x− a)
, x 6= a, aDqf(a) = lim

x→a a
Dqf(x), (2.1)

is called the q-derivative on J of function f at x.

We say that f is q-differentiable on J provided aDqf(x) exists for all x ∈ J . Note that if a = 0 in (2.1),
then 0Dqf = Dqf , where Dq is the well-known q-derivative of the function f(x) defined by

Dqf(x) =
f(x)− f(qx)

(1− q)x
.

For more details, see [24].

Definition 2.2 ([22]). Assume f : J → R is a continuous function. Then the q-integral on J is defined by

Iaq f(x) =

∫ x

a

f(t)adqt = (1− q)(x− a)
∞∑
n=0

qnf(qnx+ (1− qn)a), (2.2)

for x ∈ J . Moreover, if c ∈ (a, x) then the definite q-integral on J is defined by∫ x

c

f(t)adqt =

∫ x

a

f(t)adqt−
∫ c

a

f(t)adqt

= (1− q)(x− a)
∞∑
n=0

qnf(qnx+ (1− qn)a)− (1− q)(c− a)
∞∑
n=0

qnf(qnc+ (1− qn)a).

Note that if a = 0, then (2.2) reduces to the classical q-integral of a function f(x) defined by (see [24])∫ x

0

f(t)0dqt = (1− q)x
∞∑
n=0

qnf(qnx), ∀x ∈ [0,∞).

Lemma 2.3. Assume f, g : J → R are two continuous functions and f(t) ≤ g(t) for all t ∈ J . Then∫ x

a

f(t)adqt ≤
∫ x

a

g(t)adqt. (2.3)

Proof. For x ∈ J , then qnx+ (1− qn)a ∈ J . Because f, g : J → R are two continuous functions and f(t) ≤ g(t)
for all t ∈ J . Then

f(qnx+ (1− qn)a) ≤ g(qnx+ (1− qn)a). (2.4)

Summing from 0 to ∞ with respect to n and multiplying both sides of (2.4) by (1− q)(x− a) ≥ 0, then we get∫ x

a

f(t)adqt = (1− q)(x− a)
∞∑
n=0

qnf(qnx+ (1− qn)a)

≤ (1− q)(x− a)
∞∑
n=0

qng(qnx+ (1− qn)a) =

∫ x

a

g(t)adqt,

which implies (2.3). The proof is completed.
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3 Chebyshev type quantum integral inequalities

In this section, we establish some new Chebyshev type quantum integral inequalities on finite intervals. For the
sake of simplicity, we always assume that in this paper all of quantum integral exist and

Iaq (uf)(b) =

∫ b

a

u(t)f(t)adqt and Iaq (ufg)(b) =

∫ b

a

u(t)f(t)g(t)adqt.

Lemma 3.1. Let f and g be two continuous and synchronous functions on J and let u, v : J → [0,∞) be two
continuous functions. Then the following inequality holds true

Iaq u(b)Iaq (vfg)(b) + Iaq v(b)Iaq (ufg)(b) ≥ Iaq (uf)(b)Iaq (vg)(b) + Iaq (vf)(b)Iaq (ug)(b). (3.1)

Proof. Since f and g be two continuous and synchronous functions on J , then for all τ, ρ ∈ J , we have

(f(τ)− f(ρ))(g(τ)− g(ρ)) ≥ 0. (3.2)

By (3.2), we write
f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ). (3.3)

Multiplying both sides of (3.3) by v(τ) and integrating the resulting identity with respect to τ from a to b, then
we obtain

Iaq (vfg)(b) + f(ρ)g(ρ)Iaq v(b) ≥ g(ρ)Iaq (vf)(b) + f(ρ)Iaq (vg)(b). (3.4)

Multiplying both side of (3.4) by u(ρ) and integrating the resulting identity with respect to ρ from a to b, then
we get

Iaq u(b)Iaq (vfg)(b) + Iaq v(b)Iaq (ufg)(b) ≥ Iaq (uf)(b)Iaq (vg)(b) + Iaq (vf)(b)Iaq (ug)(b),

which implies (3.1).

Theorem 3.2. Let f and g be two continuous and synchronous functions on J and let φ, ϕ, ψ : J → [0,∞) be
three continuous functions. Then the following inequality holds true

2Iaq φ(b)
(
Iaqϕ(b)Iaq (ψfg)(b) + Iaq ψ(b)Iaq (ϕfg)(b)

)
+ 2Iaqϕ(b)Iaq ψ(b)Iaq (φfg)(b)

≥ Iaq φ(b)
(
Iaq (ϕf)(b)Iaq (ψg)(b) + Iaq (ψf)(b)Iaq (ϕg)(b)

)
+ Iaqϕ(b)

(
Iaq (φf)(b)Iaq (ψg)(b)

+ Iaq (ψf)(b)Iaq (ϕg)(b)
)

+ Iaq ψ(b)
(
Iaq (φf)(b)Iaq (ϕg)(b) + Iaq (ϕf)(b)Iaq (φg)(b)

)
. (3.5)

Proof. Putting u = ϕ, v = ψ and using Lemma 3.1, we can write

Iaqϕ(b)Iaq (ψfg)(b) + Iaq ψ(b)Iaq (ϕfg)(b) ≥ Iaq (ϕf)(b)Iaq (ψg)(b) + Iaq (ψf)(b)Iaq (ϕg)(b). (3.6)

Multiplying both sides of (3.6) by Iaq φ(b), we obtain

Iaq φ(b)
(
Iaqϕ(b)Iaq (ψfg)(b) + Iaq ψ(b)Iaq (ϕfg)(b)

)
≥ Iaq φ(b)

(
Iaq (ϕf)(b)Iaq (ψg)(b) + Iaq (ψf)(b)Iaq (ϕg)(b)

)
. (3.7)

Putting u = φ, v = ψ and using Lemma 3.1, we can write

Iaq φ(b)Iaq (ψfg)(b) + Iaq ψ(b)Iaq (φfg)(b) ≥ Iaq (φf)(b)Iaq (ψg)(b) + Iaq (ψf)(b)Iaq (φg)(b). (3.8)

Multiplying both sides of (3.8) by Iaqϕ(b), we obtain

Iaqϕ(b)
(
Iaq φ(b)Iaq (ψfg)(b) + Iaq ψ(b)Iaq (φfg)(b)

)
≥ Iaqϕ(b)

(
Iaq (φf)(b)Iaq (ψg)(b) + Iaq (ψf)(b)Iaq (φg)(b)

)
. (3.9)

With the same arguments as before, we can get

Iaq ψ(b)
(
Iaq φ(b)Iaq (ϕfg)(b) + Iaqϕ(b)Iaq (φfg)(b)

)
≥ Iaq ψ(b)

(
Iaq (φf)(b)Iaq (ϕg)(b) + Iaq (ϕf)(b)Iaq (φg)(b)

)
. (3.10)

The required inequality (3.5) follows on adding the inequalities (3.7), (3.9) and (3.10).
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Lemma 3.3. Let f and g be two continuous and synchronous functions on J ∪K and let u, v : J ∪K → [0,∞)
be two continuous functions. Then the following inequality holds true

Iaq1u(b)Icq2(vfg)(d) + Icq2v(d)Iaq1(ufg)(b) ≥ Iaq1(uf)(b)Icq2(vg)(d) + Icq2(vf)(d)Iaq1(ug)(b). (3.11)

Proof. Multiplying both sides of (3.3) by v(ρ) and q2-integrating the resulting inequality obtained with respect
to ρ from c to d, then we have

f(τ)g(τ)Icq2v(d) + Icq2(vfg)(d) ≥ f(τ)Icq2(vg)(d) + g(τ)Icq2(vf)(d). (3.12)

Multiplying both sides of (3.12) by u(τ) and q1-integrating the resulting identity with respect to τ from a to b,
then we obtain

Iaq1u(b)Icq2(vfg)(d) + Icq2v(d)Iaq1(ufg)(b) ≥ Iaq1(uf)(b)Icq2(vg)(d) + Icq2(vf)(d)Iaq1(ug)(b),

which implies (3.11).

Theorem 3.4. Let f and g be two continuous and synchronous functions on J ∪K and let φ, ϕ, ψ : J ∪K →
[0,∞) be three continuous functions. Then the following inequality holds true

Iaq1φ(b)
(
Iaq1ψ(b)Icq2(ϕfg)(d) + 2Iaq1ϕ(b)Icq2(ψfg)(d) + Icq2ψ(d)Iaq1(ϕfg)(b)

)
+
(
Iaq1ϕ(b)Icq2ψ(d) + Icq2ϕ(d)Iaq1ψ(b)

)
Iaq1(φfg)(b) ≥ Iaq1φ(b)

(
Iaq1(ϕf)(b)Icq2(ψg)(d) + Icq2(ϕf)(d)Iaq1(ϕg)(b)

)
+Iaq1ϕ(b)

(
Iaq1(φf)(b)Icq2(ψg)(d)+Icq2(ψf)(d)Iaq1(φg)(b)

)
+Iaq1ψ(b)

(
Iaq1(φf)(b)Icq2(ϕg)(d)+Icq2(ϕf)(d)Iaq1(φg)(b)

)
.

(3.13)

Proof. Putting u = ϕ, v = ψ and using Lemma 3.3, we can write

Iaq1ϕ(b)Icq2(ψfg)(d) + Icq2ψ(d)Iaq1(ϕfg)(b) ≥ Iaq1(ϕf)(b)Icq2(ψg)(d) + Icq2(ψf)(d)Iaq1(ϕg)(b). (3.14)

Multiplying both sides of (3.14) by Iaq1φ(b), we obtain

Iaq1φ(b)
(
Iaq1ϕ(b)Icq2(ψfg)(d) + Icq2ψ(d)Iaq1(ϕfg)(b)

)
≥ Iaq1φ(b)

(
Iaq1(ϕf)(b)Icq2(ψg)(d) + Icq2(ψf)(d)Iaq1(ϕg)(b)

)
,

(3.15)
Putting u = φ, v = ψ and using Lemma 3.3, we can write

Iaq1φ(b)Icq2(ψfg)(d) + Icq2ψ(d)Iaq1(φfg)(b) ≥ Iaq1(φf)(b)Icq2(ψg)(d) + Icq2(ψf)(d)Iaq1(φg)(b). (3.16)

Multiplying both sides of (3.16) by Iaq1ϕ(b), we obtain

Iaq1ϕ(b)
(
Iaq1φ(b)Icq2(ψfg)(d) + Icq2ψ(d)Iaq1(φfg)(b)

)
≥ Iaq1ϕ(b)

(
Iaq1(φf)(b)Icq2(ψg)(d) + Icq2(ψf)(d)Iaq1(φg)(b)

)
,

(3.17)
With the same arguments as before, we can get

Iaq1ψ(b)
(
Iaq1φ(b)Icq2(ϕfg)(d) + Icq2φ(d)Iaq1(φfg)(b)

)
≥ Iaq1ψ(b)

(
Iaq1(φf)(b)Icq2(ϕg)(d) + Icq2(ϕf)(d)Iaq1(φg)(b)

)
,

(3.18)
The required inequality (3.14) follows on adding the inequalities (3.15), (3.17) and (3.18).

Remark 3.5. The inequalities (3.5) and (3.13) are reversed in the following cases: (a) The functions f and g
are synchronous on J ∪K. (b) The functions φ, ϕ and ψ are negative on J ∪K. (c) Two of he functions φ, ϕ
and ψ are positive and the third one is negative on J ∪K.

Theorem 3.6. Let f, g, h be three continuous and synchronous functions on J ∪K and let u : J ∪K → [0,∞)
be a continuous function. Then the following inequality holds true

Iaq1u(b)Icq2(ufgh)(d) + Iaq1(uh)(b)Icq2(ufg)(d) + Iaq1(ufg)(b)Icq2(uh)(d) + Iaq1(ufgh)(b)Icq2u(d)

≥ Iaq1(uf)(b)Icq2(ugh)(d) + Iaq1(ug)(b)Icq2(ufh)(d) + Iaq1(ugh)(b)Icq2(uf)(d) + Iaq1(ufh)(b)Icq2(ug)(d). (3.19)
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Proof. Let f, g, h be three continuous and synchronous functions on J ∪K, then for all τ, ρ ∈ J ∪K, we have

(f(τ)− f(ρ))(g(τ)− g(ρ))(h(τ) + h(ρ)) ≥ 0,

which implies that

f(τ)g(τ)h(τ) + f(ρ)g(ρ)h(ρ) + f(τ)g(τ)h(ρ) + f(ρ)g(ρ)h(τ)

≥ f(τ)g(ρ)h(τ) + f(τ)g(ρ)h(ρ) + f(ρ)g(τ)h(τ) + f(ρ)g(τ)h(ρ). (3.20)

Multiplying both sides of (3.20) by u(τ) and q2-integrating the resulting identity with respect to τ from c to d,
then we obtain

Icq2(ufgh)(d) + f(ρ)g(ρ)h(ρ)Icq2u(d) + h(ρ)Icq2(ufg)(d) + f(ρ)g(ρ)Icq2(uh)(d)

≥ g(ρ)Icq2(ufh)(d) + g(ρ)h(ρ)Icq2(uf)(d) + f(ρ)Icq2(ugh)(d) + f(ρ)h(ρ)Icq2(ug)(d). (3.21)

Multiplying both sides of (3.21) by u(ρ) and q1-integrating the resulting inequality obtained with respect to ρ
from c to d, then we have

Iaq1u(b)Icq2(ufgh)(d) + Iaq1(uh)(b)Icq2(ufg)(d) + Iaq1(ufg)(b)Icq2(uh)(d) + Iaq1(ufgh)(b)Icq2u(d)

≥ Iaq1(uf)(b)Icq2(ugh)(d) + Iaq1(ug)(b)Icq2(ufh)(d) + Iaq1(ugh)(b)Icq2(uf)(d) + Iaq1(ufh)(b)Icq2(ug)(d),

which implies ((3.19).

Theorem 3.7. Let f, g, h be three continuous and synchronous functions on J ∪K and let u, v : J ∪K → [0,∞)
be two continuous functions. Then the following inequality holds true

Iaq1u(b)Icq2(vfgh)(d) + Iaq1(uh)(b)Icq2(vfg)(d) + Iaq1(ufg)(b)Icq2(vh)(d) + Iaq1(ufgh)(b)Icq2v(d)

≥ Iaq1(uf)(b)Icq2(vgh)(d) + Iaq1(ug)(b)Icq2(vfh)(d) + Iaq1(ugh)(b)Icq2(vf)(d) + Iaq1(ufh)(b)Icq2(vg)(d). (3.22)

Proof. Multiplying both sides of (3.20) by v(τ) and integrating the resulting identity with respect to τ from c
to d, then we obtain

Icq2(vfgh)(d) + f(ρ)g(ρ)h(ρ)Icq2u(d) + h(ρ)Icq2(vfg)(d) + f(ρ)g(ρ)Icq2(vh)(d)

≥ g(ρ)Icq2(vfh)(d) + g(ρ)h(ρ)Icq2(vf)(d) + f(ρ)Icq2(vgh)(d) + f(ρ)h(ρ)Icq2(vg)(d). (3.23)

Multiplying both sides of (3.23) by u(ρ) and integrating the resulting inequality obtained with respect to ρ from
a to b, then we have

Iaq1u(b)Icq2(vfgh)(d) + Iaq1(uh)(b)Icq2(vfg)(d) + Iaq1(ufg)(b)Icq2(vh)(d) + Iaq1(ufgh)(b)Icq2v(d)

≥ Iaq1(uf)(b)Icq2(vgh)(d) + Iaq1(ug)(b)Icq2(vfh)(d) + Iaq1(ugh)(b)Icq2(vf)(d) + Iaq1(ufh)(b)Icq2(vg)(d),

which implies (3.22).

Remark 3.8. It may be noted that the inequalities in (3.19) and (3.22) are reversed if functions f, g and h
are asynchronous. It is also easily seen that the special case u = v of (3.22) in Theorem 3.7 reduces to that in
Theorem 3.6.

4 Other quantum integral inequalities

The first class are the inequalities related to Cauchy’s inequality.

Theorem 4.1. Let φ, f and g be three continuous functions on J . Then the following inequality holds true

[T (φ, f, g)]
2 ≤ T (φ, f, f)T (φ, g, g), (4.1)

where T (φ, f, g) = Iaq φ(b)Iaq (φfg)(b)− Iaq (φf)(b)Iaq (φg)(b).
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Proof. By simple computation, we have the following fact that

T (φ, f, g) =
1

2

∫ b

a

∫ b

a

φ(ρ)φ(τ)[f(ρ)− f(τ)][g(ρ)− g(τ)]adqρadqτ. (4.2)

From (4.2) and weighted Cauchy’s inequality, we easily obtain (4.1).

Lemma 4.2. Let f and h be two continuous functions on J and let φ : J → [0,∞) be a continuous function.
Then the following inequality holds true

m[g(ρ)− g(τ)] ≤ f(ρ)− f(τ) ≤M [g(ρ)− g(τ)], ∀ρ, τ ∈ J, (4.3)

where m and M are given real numbers. Then for all t > 0 and ν > 0, we have

T (φ, f, f) +mMT (φ, g, g) ≤ (m+M)T (φ, f, g), (4.4)

where T (φ, f, g) is defined as in Theorem 4.1.

Proof. If we use the condition (4.3), we get

(M [g(ρ)− g(τ)]− [f(ρ)− f(τ)])([f(ρ)− f(τ)]−m[g(ρ)− g(τ)]) ≥ 0, ∀ρ, τ ∈ J. (4.5)

From (4.5) and through simple computation, we have

[f(ρ)− f(τ)]2 +mM [g(ρ)− g(τ)]2 ≤ (m+M)[f(ρ)− f(τ)][g(ρ)− g(τ)]. (4.6)

Multiplying both sides of (4.6) by φ(ρ)φ(τ) and integrating the resulting identity with respect to ρ and τ from
a to b, we deduce the required inequality (4.4).

Theorem 4.3. Let f, g, φ be defined as in Lemma 4.2 and 0 < m ≤ M < ∞. Then the following inequalities
hold true

T (φ, f, f)T (φ, g, g) ≤ (m+M)2

4mM
[T (φ, f, g)]2, (4.7)

0 ≤
√
T (φ, f, f)T (φ, g, g)− T (φ, f, g) ≤ (

√
M −

√
m)2

2
√
mM

T (φ, f, g), (4.8)

and

0 ≤ T (φ, f, f)T (φ, g, g)− [T (φ, f, g)]2 ≤ (M −m)2

4mM
[T (φ, f, g)]2, (4.9)

where T (φ, f, g) is defined as in Theorem 4.1.

Proof. We use the following elementary inequality

2xy ≤ αx2 +
1

α
y2, ∀x, y ≥ 0, α > 0,

to get, for the choices

α =
√
mM > 0, x =

√
T (φ, g, g) ≥ 0, y =

√
T (φ, f, f) ≥ 0

the following inequality

2
√
T (φ, f, f)T (φ, g, g) ≤

√
mMT (φ, g, g) +

1√
mM

T (φ, f, f). (4.10)

Using (4.4) and (4.10), we deduce

2
√
T (φ, f, f)T (φ, g, g) ≤ m+M√

mM
T (φ, f, g).

which is clearly equivalent to (4.7). By a few transformations of (4.7), similarly, we obtain (4.8) and (4.9).
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The second class are the inequalities related to Hölder’s inequality.

Theorem 4.4. Let φ : J → [0,∞) be a continuous function on J and f, g : J → (0,∞) be two continuous
functions on J such that 0 < m ≤ fα(τ)/gβ(τ) ≤M <∞ on J . If 1/α+1/β = 1 with α > 1, then the following
inequality holds true (

Iaq (φfα)(b)
) 1
α
(
Iaq (φgβ)(b)

) 1
β ≤

(M
m

) 1
αβ Iaq (φfg)(b). (4.11)

Proof. Since fα(τ)/gβ(τ) ≤M , then fα/β ≤M1/βg. Multiplying by φf > 0, it follows that

φfα = φf1+
α
β ≤M

1
β φfg

and integrating the above inequality from a to b, then we have(
Iaq (φfα)(b)

) 1
α ≤M

1
αβ (Iaq (φfg)(b))

1
α . (4.12)

On the other hand, since m ≤ fα(τ)/gβ(τ), then f ≥ m1/αgβ/α. Multiplying by φg > 0, it follows that

φfg ≥ m 1
αφg1+

β
α = m

1
αφgβ .

Integrating the above inequality from a to b, we obtain that(
Iaq (φfg)(b)

) 1
β ≥ m

1
αβ
(
Iaq (φgα)(b)

) 1
β . (4.13)

Combining (4.12) and (4.13), we have the desired inequality (4.11). The proof is completed.

Theorem 4.5. Suppose that 1/α + 1/β = 1/γ with α, β, γ > 0. Let φ : J → [0,∞) be a continuous function
on J and f, g : J → (0,∞) be two continuous functions on J . If 0 < m ≤ fγ(τ)/gβγ/α(τ) ≤ M < ∞ for any
τ ∈ J , then the following inequalities hold true

(M −m)Iaq (φfα)(b) +
(
mM

α
γ −Mm

α
γ
)
Iaq (φgβ)(b) ≤

(
M

α
γ −m

α
γ
)
Iaq (φfγgγ)(b), (4.14)

and

α
1
α β

1
β γ−

1
γ

(M −m)
1
α

(
mM

α
γ −Mm

α
γ
) 1
β(

M
α
γ −m

α
γ
) 1
γ

(
Iaq (φfα)

) 1
α
(
Iaq (φgβ)(b)

) 1
β ≤

(
Iaq (φfγgγ)(b)

) 1
γ . (4.15)

Proof. If 0 < m ≤ xγ/yβγ/α ≤M <∞, then the following inequality is valid (see [25]):

(M −m)xα +
(
mM

α
γ −Mm

α
γ
)
yβ ≤

(
M

α
γ −m

α
γ
)
xγyγ . (4.16)

Substituting in the inequality (4.16) x→ f(τ) and y → g(τ), and multiplying both sides of the obtained result
by φ(τ) and integrating the resulting identity with respect to τ from a to b, we obtain (4.14).

Now, rewrite (4.14) in the form(γ
α

)((α
γ

)
(M −m)Iaq (φfα)(b)

)
+

(
γ

β

)((
β

γ

)(
mM

α
γ −Mm

α
γ
)
Iaq (φgβ)(b)

)
≤
(
M

α
γ −m

α
γ
)
Iaq (φfγgγ)(b),

(4.17)
and applying arithmetic-geometric inequality on the left-hand side of (4.17) we get (4.15).

The next class are the inequalities related to Minkowsky’s inequality.

Theorem 4.6. Let p ≥ 1 and φ : J → [0,∞) be a continuous function on J and f, g : J → (0,∞) be two
continuous functions on J . If 0 < m ≤ f(τ)/g(τ) ≤M <∞ for any τ ∈ J , then we have

(
Iaq (φfp)(b)

) 1
p +

(
Iaq (φgp)(b)

) 1
p ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

(
Iaq (φ(f + g)p)(b)

) 1
p . (4.18)
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Proof. Using the condition f(τ)/g(τ) ≤M for any τ ∈ J , we can get

(M + 1)pfp(τ) ≤Mp(f + g)p(τ). (4.19)

Multiplying both sides of (4.19) by φ(τ) and integrating the resulting inequalities with respect to τ from a to
b, we obtain

(M + 1)pIaq (fp)(b) ≤MpIaq ((f + g)p)(b).

Hence, we can write (
Iaq (φfp)(b)

) 1
p ≤ M

M + 1

(
Iaq (φ(f + g)p)(b)

) 1
p . (4.20)

On the other hand, using the condition m ≤ f(τ)/g(τ), we can get

(m+ 1)pgp(τ) ≤ (f + g)p(τ). (4.21)

Multiplying both sides of (4.21) by φ(τ) and integrating the resulting inequalities with respect to τ from a to
b, we obtain

(m+ 1)pIaq (φgp)(b) ≤ Iaq (φ(f + g)p)(b).

Hence, we can write (
Iaq (φgp)(b)

) 1
p ≤ 1

m+ 1

(
Iaq (φ(f + g)p)(b)

) 1
p . (4.22)

Adding the inequalities (4.20) and (4.22), we obtain the inequality (4.19).

Theorem 4.7. Let p ≥ 1 and φ : J → [0,∞) be a continuous function on J and f, g : J → (0,∞) be two
continuous functions on J . If 0 < m ≤ f(τ)/g(τ) ≤M <∞ for any τ ∈ J , then we have

(
Iaq (φfp)(b)

) 2
p +

(
Iaq (φgp)(b)

) 2
p ≥

(
(m+ 1)(M + 1)

M
− 2

)(
Iaq (φfp)(b)

) 1
p
(
Iaq (φgp)(b)

) 1
p . (4.23)

Proof. Multiplying the inequalities (4.20) and (4.22), we obtain

(m+ 1)(M + 1)

M

(
Iaq (φfp)(b)

) 1
p
(
Iaq (φgp)(b)

) 1
p ≤

((
Iaq (φ(f + g)p)(b)

) 1
p
)2
. (4.24)

Applying Minkowski’s inequality to the right hand side of (4.24), we get

((
Iaq (φ(f + g)p)(b)

) 1
p
)2 ≤ ((Iaq (φfp)(b)

) 1
p + [Iaq (φgp)(b)

) 1
p
)2

=
(
Iaq (φfp)(b)

) 2
p +

(
Iaq (φgp)(b)

) 2
p + 2

(
Iaq (φfp)(b)

) 1
p
(
Iaq (φgp)(b)

) 1
p . (4.25)

Combining (4.24) and (4.25), we obtain (4.23).

Theorem 4.8. Suppose that 1/α+ 1/β = 1 with α > 1. Let φ : J → [0,∞) be a continuous function on J and
f, g : J → (0,∞) be two continuous functions on J . If 0 < m ≤ f(τ)/g(τ) ≤ M < ∞ for any τ ∈ J , then the
following inequality holds true

Iaq (φfg)(b) ≤ 2α

α

(
M

M + 1

)α(Iaq (φfα)(b) + Iaq (φgα)(b)

2

)
+

2β

β

(
1

m+ 1

)β (Iaq (φfβ)(b) + Iaq (φgβ)(b)

2

)
.(4.26)

Proof. From m ≤ f(τ)/g(τ) ≤M for any τ ∈ J , we have

f(τ) ≤ M

M + 1
(f(τ) + g(τ)), g(τ) ≤ 1

m+ 1
(f(τ) + g(τ)). (4.27)

8
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From (4.27) and the following Young-type inequality

xy ≤ 1

α
xα +

1

β
yβ , ∀x, y ≥ 0, α > 1,

1

α
+

1

β
= 1,

we obtain

Iaq (φfg)(b) ≤ 1

α
Iaq (φfα)(b) +

1

β
Iaq (φgβ)(b)

≤ 1

α

(
M

M + 1

)α
Iaq (φ(f + g)α)(b) +

1

β

(
1

m+ 1

)β
Iaq (φ(f + g)β)(b). (4.28)

Using the elementary inequality (c+ d)α ≤ 2α−1(cα + dα), (α > 1 and c, d > 0) in (4.28), we get

Iaq (φfg)(b) ≤ 1

α

(
M

M + 1

)α
2α−1Iaq (φ(fα + gα))(b) +

1

β

(
1

m+ 1

)β
2β−1Iaq (φ(fβ + gβ))(b)

=
2α

α

(
M

M + 1

)α(Iaq (φfα)(b) + Iaq (φgα)(b)

2

)
+

2β

β

(
1

m+ 1

)β (Iaq (φfβ)(b) + Iaq (φgβ)(b)

2

)
.

This completes the proof of the inequality in (4.26).

Theorem 4.9. Suppose that 1/α + 1/β = 1 with α, β > 0. Let φ : J → [0,∞) be a continuous function on
J and f, g : J → (0,∞) be two continuous functions on J . If 0 < m ≤ f(τ)/(f(τ) + g(τ)) ≤ M < ∞ and
0 < m ≤ g(τ)/(f(τ) + g(τ)) ≤M <∞ for any τ ∈ J , then we have

(
Iaq (φ(f + g)α)(b)

) 1
α ≥ α 1

α β
1
β

(M −m)
1
α

(
mMα −Mmα

) 1
β

Mα −mα

((
Iaq (φfα)(b)

) 1
α +

(
Iaq (φgα)(b)

) 1
α
)
. (4.29)

Proof. Due to (4.15) with γ = 1 of Theorem 4.5, m ≤ f(τ)/gβ/α(τ) ≤M for any τ ∈ J , we have

α
1
α β

1
β

(M −m)
1
α (mMα −Mmα)

1
β

Mα −mα

(
Iaq (φfα)(b)

) 1
α
(
Iaq (φgβ)(b)

) 1
β ≤ Iaq (φfg)(b). (4.30)

By simple computation, we have

Iaq (φ(f + g)α)(b) = Iaq (φf(f + g)α−1) + Iaq (φg(f + g)α−1)(b). (4.31)

From m ≤ f(τ)/(f(τ)+g(τ)) ≤M and m ≤ g(τ)/(f(τ)+g(τ)) ≤M for any τ ∈ J , we have m ≤ f(τ)/
(
(f(τ)+

g(τ))α−1
)β/α ≤M and m ≤ g(τ)/

(
(f(τ) + g(τ))α−1)β/α ≤M for any τ ∈ J . Applying (4.30) on right hand of

(4.31), we get

Iaq (φ(f(f + g)α−1)(b) ≥ α 1
α β

1
β

(M −m)
1
α (mMα −Mmα)

1
β

Mα −mα
[Iaq (φfα)(b)]

1
α [Iaq (φ(f + g)(α−1)β)(b)]

1
β ,

Iaq (φ(g(f + g)α−1)(b) ≥ α 1
α β

1
β

(M −m)
1
α (mMα −Mmα)

1
β

Mα −mα
[Iaq (φgα)(b)]

1
α [Iaq (φ(f + g)(α−1)β)(b)]

1
β . (4.32)

Using (4.31) and adding two inequalities of (4.32), we obtain

Iaq (φ(f + g)α)(b) ≥ α 1
α β

1
β

(M −m)
1
α (mMα −Mmα)

1
β

Mα −mα

((
Iaq (φfα)(b)

) 1
α +

(
Iaq (φgα)(b)

) 1
α
)(
Iaq (φ(f + g)α)(b)

) 1
β .

(4.33)

Dividing both sides of (4.33) by
(
Iaq (φ(f + g)α)(b)

) 1
β , we get (4.29).

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

425 Feixiang Chen et al 417-426



References

[1] P.L. Chebyshev, Sur les expressions approximati ves des integrales definies par les autres prises entre
lesmemes limites, Proc. Math. Soc. Kharkov 2 (1882) 93-98.

[2] J.C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, Shandong, China, 2004.
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A FIRST ORDER DIFFERENTIAL SUBORDINATION
AND ITS APPLICATIONS

M. A. KUTBI AND A. A. ATTIYA

Abstract. In this paper we use the differential subordinations
techniques to obtain some properties of functions belonging to the
class of analytic functions in the open unit disc U. Also, some
properties of the class of two fixed points in U, are also discussed.
Furthermore, some interesting results of Hurwitz Lerch Zeta func-
tion and Digamma function are obtained.

1. Introduction

Let Ak denote the class of functions f of the form

(1.1) f(z) = z +
∞∑

m=k+1

amz
m (k ∈ N = {1, 2, ...}),

which are analytic in the open unit disc U = {z : |z| < 1}. Also, let
H[a, k] denote the class of analytic functions in U in the form

(1.2) r(z) = a +
∞∑
m=k

amz
m (z ∈ U) ,

for a ∈ C (C is the complex plane).
Usually the analytic functions with the normalization f(0) = 0 =

f
′
(0) − 1 is studied. Moreover, we can obtain interesting results by

using the Montel’s normalization of f (cf. [16], [6]) as follows

(1.3) f(z)|z=0 = 0 and
f(z)

z

∣∣∣∣
z=ρ

= 1,

2010 Mathematics Subject Classification. 30C45; 30C80; 11M35; 33B15.
Key words and phrases. Analytic function, differential subordination, Hurwitz-

Lerch Zeta function, fixed point, two fixed points, Digamma function, Srivastava-
Attiya operator.
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2 M. A. KUTBI AND A. A. ATTIYA

where ρ is a fixed point in U. We see that, when ρ = 0, we get the
classical normalization in U. We denote by Ak,ρ the class of functions
f in Ak with Montel’s normalization. The class Ak,ρ will be called the
class of functions f with two fixed points.

A function f in the class Ak is said to be in the class Rk(α) if it
satisfies

(1.4) Re

(
f(z)

z

)
> α (z ∈ U),

for some α (0 ≤ α < 1) . The classes R1(α) = C(α), and R1(0) = C(0),
were earlier studied by Èzrohi [7] and MacGregor [19], respectively.
Further; a function f in the class Ak is said to be in the class Pk(α) if
it satisfies

(1.5) Re
(
f
′
(z)
)
> α (z ∈ U),

for some α (0 ≤ α < 1) . The class P1(0) = B(0) , was earlier studied
by Yamaguchi [28]. For some α(0 ≤ α < 1), λ 6= 0 with Re(λ) ≥ 0
and z ∈ U we write :

(1.6) R1k(α, λ) :=

{
f(z) ∈ Ak : Re

(
(1− λ)

f(z)

z
+ λf

′
(z)

)
> α

}
and

(1.7) R2k(α, λ) :=
{
f(z) ∈ Ak : Re

(
f
′
(z) + λ z f

′′
(z)
)
> α

}
.

We note that
(i) R1k(α, 1) = Pk(α),
(ii) f ∈ R2k(α, λ) if and only if z f

′ ∈ R1k(α, λ) .

Now, if f ∈ Ak , we define the function Gk(µ, γ; z) by

(1.8)

Gk(µ, γ; z) :=

(
f
′
(z)
)µ

(f(z))1−µ

γ z1−µ

(
(γ − 1) + (1− µ)

zf
′
(z)

f(z)
+ µ

(
1 +

zf
′′
(z)

f ′(z)

))
,

with z1−µ

(f ′ (z))
µ
(f(z))1−µ

6= 0, for µ ∈ R , γ 6= 0 with Re(γ) ≥ 0 and

z ∈ U.
Let Hk(µ, γ, α) denote the class of functions f satisfying the condi-

tion
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A FIRST ORDER DIFFERENTIAL SUBORDINATION... 3

(1.9) Re (Gk(µ, γ; z)) > α (z ∈ U),

for some α(0 ≤ α < 1) and Gk(µ, γ; z) defined by (1.8).
Also, we note that
(i) For λ 6= 0 with Re(λ) ≥ 0

(1.10) Hk

(
0,

1

λ
, α

)
= R1k(α, λ) and Hk

(
1,

1

λ
, α

)
= R2k(α, λ) .

(ii) One can define the R1k(α, λ) for λ = 0. Therefore we may use the
following relations

(1.11) Rk(α) = R1k(α, 0) = lim
λ →0

Hk

(
0,

1

λ
, α

)
,

and

(1.12) R2k(α, 0) = lim
λ →0

Hk

(
1,

1

λ
, α

)
.

A general Hurwitz- Lerch Zeta function (or Lerch transcendent)
Φ(z, s, b) (cf., e.g., [24, Section 2.5, P. 121]) is the analytic continu-
ation of the series

(1.13) Φ(z, s, b) =
∞∑
k=0

zk

(k + b)s
,

which converges for b (b ∈ C \Z−0 , Z−0 = {0, −1, −2, ... }) if z and
s ∈ C are any complex numbers with either z ∈ U, or |z| = 1 and
Re(s) > 1. See also [2, Section 1.11].

Many authors obtained several properties of Φ(z, s, b), for example,
Attiya and Hakami [1], Cho et al. [3], Choi and et al. [5], Ferreira
and López [9], Guillera and Sondow [10, Section 2 ], Gupta et al. [11],
Kutbi and Attiya ([13],[14]), Luo and Srivastava [15], Owa and Attiya
[21], Prajapat and Bulboaca [22], Srivastava and Attiya [23], Srivastava
et al. [25] and Wang et al. [27].

Moreover, the Digamma function (or Psi) (cf., e.g., [24, Section 1.2,
P. 13]) is the logarithmic derivative of the classical gamma function,
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4 M. A. KUTBI AND A. A. ATTIYA

defined by

(1.14) Ψ(z) =
Γ
′
(z)

Γ(z)
= −C − 1

z
+
∞∑
n=1

(
1

n
− 1

z + n

)
,

with the Euler constant C = 0.57721566... . See also [2, Section 1.7]
and [18, Section 5.1]. Several properties of Ψ can be found in [17], [4],
[8] and [26].

We shall also need the following definitions

Definition 1.1. Let f andF be analytic functions. The function
f is said to be subordinate to F , written f(z) ≺ F (z), if there exists
a function w analytic in U, with w(0) = 0 and |w(z)| ≤ 1, and such
that f(z) = F (w(z)). If F is univalent, then f(z) ≺ F (z) if and only
if f(0) = F (0) and f(U) ⊂ F (U) .

Definition 1.2. Let Ψ : C3 × U→C and let h be univalent in
U. If q ∈ H[a, k] satisfies the differential subordination

(1.15) Ψ(p(z), z p
′
(z), z2 p

′′
(z) ; z) ≺ h(z) (z ∈ U) ,

then q will be called (a, k)−solution .The univalent function s is called
(a, k) − domainant, if q(z) ≺ s(z) for all q satisfying (1.15) , (a, k) −
domainant s̄(z) ≺ s(z) for all (a, k)− domainant s of (1.15) is said to
be the best (a, k)− domainant of (1.15).

In this paper, using the technique of differential subordination, some
properties of functions in the class Hk(µ, γ, α) are obtained. Further-
more, some properties of the class of two fixed points in U, are also
introduced. Some applications to Analytic Number Theory are also
discussed.

2. The class Hk(µ, γ, α) with first order differential
subordination

To prove our results, we need the following theorem due to Hallen-
beck and Ruscheweyh [12] (see also Miller and Mocanu [20, P. 71]).

Theorem 2.1. Let h be convex univalent in U, with h(0) = a, γ 6=
0 and Re(γ) ≥ 0. If q ∈ H[a, k] and

(2.1) q(z) +
z q
′
(z)

γ
≺ h(z),

then
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(2.2) q(z) ≺ S(z) ≺ h(z),

where

(2.3) S(z) =
γ

k z
γ
k

z∫
0

h(t) t
γ
k
−1 dt .

The function S is a convexunivalent and is the best (a, k)− domainint.

Now, we prove

Theorem 2.2. Let γ be a complex number satisfying γ 6= 0 with
Re(γ) ≥ 0. If q ∈ H[1, k] and

(2.4) Re

(
q(z) +

z q
′
(z)

γ

)
> α ,

then

(2.5)

Re (q(z)) > (2α− 1)+2(1−α)2F1

(
1,
|γ|2

kRe(γ)
;
|γ|2

kRe(γ)
+ 1,−1

)
(z ∈ U),

for some α (0 ≤ α < 1) and λ 6= 0 with Re(λ) > 0 . The constant(2α− 1)+

2(1− α)2F1

(
1, |γ|2

kRe(γ)
; |γ|2
kRe(γ)

+ 1,−1
)
is the best possible.

Proof. If we take the convex univalent function h defined by

(2.6) h(z) =
1 + (2α− 1) z

1 + z
( 0 ≤ α < 1) ,

then, we have

(2.7) q(z) +
z q
′
(z)

γ
≺ h(z) ,

where h is defined by (2.6) satisfying h(0) = 1 .
Applying Theorem 2.1, then

(2.8) q(z) ≺ S(z) ,

where the convex function S defined by

S(z) =
γ

k z
γ
k

z∫
0

1 + (2α− 1) t

1 + t
t
γ
k
−1 dt,
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6 M. A. KUTBI AND A. A. ATTIYA

(2.9) = ( 2α− 1) + 2 (1− α)

1∫
0

d t

1 + t
k
γ z

,

since Re(h(z)) > 0 and S(z) ≺ h(z) , we have Re (S(z)) > 0 .
Also, since

(2.10) inf
z∈ U

Re

(
1

1 + t
k
γ z

)
=

1

1 + t
k Re(γ)

|γ|2
(0 ≤ t ≤ 1) .

Hence

inf
z∈ U

Re (S(z)) = (2α− 1) + 2(1− α)

1∫
0

dt

1 + t
k Re(γ)

|γ|2

= (2α− 1) + 2(1− α)2F1

(
1,
|γ|2

kRe(γ)
;
|γ|2

kRe(γ)
+ 1,−1

)
.(2.11)

Therefore, the constant (2α− 1)+2(1−α)2F1

(
1, |γ|2

kRe(γ)
; |γ|2
kRe(γ)

+ 1,−1
)

cannot be replaced by a larger one, which completes the proof of The-
orem 2.2. �

Theorem 2.3. Let the function f defined by (1.1) be in the class
Hk(µ, γ, α), then

(2.12)

Re

((
f
′
(z)
)µ

(f(z))1−µ

z1−µ

)
> (2α− 1)+2(1−α)2F1

(
1,
|γ|2

kRe(γ)
;
|γ|2

kRe(γ)
+ 1,−1

)
(z ∈ U),

for some α (0 ≤ α < 1), µ ∈ R and γ 6= 0 with Re(γ) ≥ 0. The
constant (2α− 1) + 2(1 − α)2F1(1,

|γ|2
kRe(γ)

; |γ|2
kRe(γ)

+ 1,−1) is the best
possible.

Proof. Defining the function

(2.13) q(z) =

(
f
′
(z)
)µ

(f(z))1−µ

z1−µ
(z ∈ U),

then, we have q ∈ H[1, k] .

Taking the logarithmic differentiation in both sides of (2.13), we have

(2.14) q(z) +
z q
′
(z)

γ
= Gk(µ, γ; z) ,
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since f ∈ Hk(µ, γ, α), then

(2.15) Re

(
q(z) +

z q
′
(z)

γ

)
> α.

Therefore, we have (2.12) by applying Theorem 2.2. �

Putting µ = 0 and γ = 1/λ (λ 6= 0; Re(λ) ≥ 0), in Theorem 2.3, we
have

Corollary 2.1. Let the function f defined by (1.1) be in the class
R1k(α, λ), then

(2.16)

Re

(
f(z)

z

)
> (2α− 1)+2(1−α)2F1

(
1,

1

kRe(λ)
;

1

kRe(λ)
+ 1,−1

)
(z ∈ U),

for some α (0 ≤ α < 1) and λ 6= 0 with Re(λ) ≥ 0 . The constant

(2α− 1) + 2(1− α)2F1

(
1, 1

kRe(λ)
; 1
kRe(λ)

+ 1,−1
)
is the best possible.

Assuming µ = 1 and γ = 1/λ (λ 6= 0; Re(λ) ≥ 0), in Theorem 2.3
or putting zf

′
instead of f, in Corollary (2.1) , we have

Corollary 2.2. Let the function f defined by (1.1) be in the class
R2k(α, λ) , then

(2.17)

Re
(
f
′
(z)
)
> (2α− 1)+2(1−α)2F1

(
1,

1

kRe(λ)
;

1

kRe(λ)
+ 1,−1

)
(z ∈ U),

for some α (0 ≤ α < 1) and λ 6= 0 with Re(λ) ≥ 0. The constant

(2α− 1) + 2(1− α)2F1

(
1, 1

kRe(λ)
; 1
kRe(λ)

+ 1,−1
)
is the best possible.

Corollary 2.3. Let the function f defined by (1.1) be in the class
Ak,ρ of functions f with two fixed points. Also, let f be in the class
R1k(α, λ), then

Re

( ∞∑
m=k+2

amz
k
(
zm−k−1 − ρm−k−1

))
>(2.18)

2(1− α)

(
2F1

(
1,

1

kRe(λ)
;

1

kRe(λ)
+ 1,−1

)
− 1

)
(z ∈ U),

for some α (0 ≤ α < 1), ρ is a fixed point in U defined in (1.3) and λ 6=
0 withRe(λ) ≥ 0. The constant 2(1−α)

(
2F1

(
1, 1

kRe(λ)
; 1
kRe(λ)

+ 1,−1
)
− 1
)

is the best possible.
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Proof. Since f ∈ Ak,ρ, then we have

(2.19) ak+1 = −
∞∑

m=k+2

amρ
m−k−1,

therefore, the function f(z)/z, takes the form

(2.20)
f(z)

z
= 1 +

( ∞∑
m=k+2

amz
k(zm−k−2 − ρm−k−1

)
,

Then, we have the Corollary by applying Corollary 2.1. �

By using the same technique in Corollary 2.3, we have

Corollary 2.4. Let the function f defined by (1.1) be in the class
Ak,ρ of functions f with two fixed points. Also, let f be in the class
R2k(α, λ), then

Re

( ∞∑
m=k+2

amz
k(m zm−k−1 − ρm−k−1)

)
>(2.21)

2(1− α)

(
2F1

(
1,

1

kRe(λ)
;

1

kRe(λ)
+ 1,−1

)
− 1

)
(z ∈ U),

for some α (0 ≤ α < 1), ρ is a fixed point in U defined in (1.3) and
λ 6= 0 with Re(λ) ≥ 0. The constant 2F1

(
1, 1

kRe(λ)
; 1
kRe(λ)

+ 1,−1
)
is

the best possible.

3. Some applications in Analytic Number Theory

In this section we need the following lemma due to Guillera and
Sondow [10].

Lemma 3.1. For z ∈ C− [1, ∞) and δ > 0, we have

(3.1)

1∫
0

1∫
0

−(x y)δ−1

(1− xyz) ln xy
dx dy = Φ (z, 1, δ) ,

and

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

434 KUTBI et al 427-438



A FIRST ORDER DIFFERENTIAL SUBORDINATION... 9

(3.2)

1∫
0

1∫
0

−(x y)δ−1

(1 + xy) ln xy
dx dy =

1

2

{
Ψ

(
δ

2
+

1

2

)
−Ψ

(
δ

2

)}
,

where Φ (z, s, δ) and Ψ (δ) defined by (1.13) and (1.14) respectively

Corollary 3.1. Let Φ(z, s, b) be the Lerch transcendental function
defined by (1.13), then

(3.3) Re (Φ (z, 1, δ)) >
1

2

(
Ψ

(
δ

2
+

1

2

)
−Ψ

(
δ

2

))
(|z| < 1; δ > 0),

and this result is the best possible.

Proof. We can show that the function

(3.4)

g(z) = z

(2α− 1) +
2(1− α)

λ

1∫
0

t
1−λ
λ d t

1− t z

 (0 ≤ α < 1; z ∈ U),

is a member in the class R11(α, λ). Using (3.4) and (1.13) we obtain

(3.5)

g(z) = z

{
(2α− 1) +

2(1− α)

λ
Φ(z, 1,

1

λ
)

}
(0 ≤ α < 1 ; z ∈ U),

which a member in the class R11(α, λ), where Φ(z, s, b) is the Lerch

transcendental function defined by (1.13).
Using (2.16) and (3.5), we readily obtain the following property with

λ > 0; real

(3.6) Re

(
Φ

(
z, 1,

1

λ

))
> λ

1∫
0

dt

1 + tλ
(|z| < 1),

which is equivalent to

(3.7) Re (Φ (z, 1, δ)) > Φ (−1, 1, δ) , (|z| < 1; δ > 0),

the constant Φ (−1, 1, δ) , cannot be replaced by a larger one .

Using (1.14) and (3.7), we have

(3.8) Re (φ (z, 1, δ)) >
1

2

(
Ψ

(
δ

2
+

1

2

)
−Ψ

(
δ

2

))
( |z| < 1; δ > 0),
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this result is the best possible in general, which completes the proof of
Corollary 3.2 . �

Using (3.2) and (3.3), we have the following corollary

Corollary 3.2. For δ > 0, we have

(3.9)

1∫
0

1∫
0

−(x y)δ−1

(1 + xy) ln xy
dx dy < Re (φ (z, 1, δ)) (|z| < 1) .

This result is the best possible.

Using (3.1) and (3.3), we have the following corollary

Corollary 3.4. For δ > 0, we have

(3.10)

Re

 1∫
0

1∫
0

−(x y)δ−1

(1− xy z) ln xy
dx dy

 >
1

2

(
Ψ

(
δ

2
+

1

2

)
−Ψ

(
δ

2

))
(|z| < 1).

This result is the best possible.
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type operators in compact disks
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Abstract. In this paper we introduce a kind of complex summation-integral
type operators and study the approximation properties of these operators. We
obtain a Voronovskaja-type result with quantitative estimate for these opera-
tors attached to analytic functions on compact disks. We also study the exact
order of approximation. More important, our results show the overconvergence
phenomenon for these complex operators.

Keywords: Complex summation-integral type operators; Voronovskaja-type
result; Exact order of approximation; Simultaneous approximation; Overcon-
vergence

Mathematical subject classification: 30E10, 41A25, 41A36

1. Introduction

In 1986, some approximation properties of complex Bernstein polynomials
in compact disks were initially studied by Lorentz [15]. Very recently, the
problem of the approximation of complex operators has been causing great
concern, which is becoming a hot topic of research. A Voronovskaja-type
result with quantitative estimate for complex Bernstein polynomials in com-
pact disks was obtained by Gal [2]. Also, in [1, 3-14, 16-19] similar results
for complex Bernstein-Kantorovich polynomials, Bernstein-Stancu polynomi-
als, Kantorovich-Schurer polynomials, Kantorovich-Stancu polynomials, com-
plex Favard-Szász-Mirakjan operators, complex Beta operators of first kind,
complex Baskajov-Stancu operators, complex Bernstein-Durrmeyer polynomi-
als, complex Bernstein-Durrmeyer operators based on Jacobi weights, complex
genuine Durrmeyer Stancu polynomials and complex q-Durrmeyer type opera-
tors were obtained.

The aim of the present article is to obtain approximation results for a kind
of complex summation-integral type operators (introduced and studied in the
case of real variable by Ren [20]), which are defined for f : [0, 1] → C continuous

∗Corresponding authors: Mei-Ying Ren and Xiao-Ming Zeng.
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on [0, 1] by

Mn(f ; z) := pn,0(z)f(0) +
n−1∑

k=1

pn,k(z)Ln,k(f) + pn,n(z)f(1), (1)

where z ∈ C, n = 1, 2, . . . , pn,k(z) =
(

n
k

)
zk(1 − z)n−k is Bernstein basis

function, and Ln,k(f) = 1
B(n(n−k),nk)

∫ 1

0
tnk−1(1 − t)n(n−k)−1f(t)dt, B(x, y) is

Beta function.

2. Auxiliary results

In the sequel, we shall need the following auxiliary results.

Lemma 1. Let m,n ∈ N, z ∈ C, we have Mn(tm; z) is a polynomial of degree
less than or equal to min (m,n) and

Mn(tm; z) =
(n2 − 1)!

(n2 + m− 1)!

m∑
s=1

cs(m)n2sBn(ts; z),

where cs(m) ≥ 0 are constants depending on m and

Bn(f ; z) =
n∑

k=0

pn,k(z)f(
k

n
).

Proof. By the definition of Beta function, for all m,n ∈ N, z ∈ C, we have

Mn(tm; z) =
(n2 − 1)!

(n2 + m− 1)!

n−1∑

k=1

pn,k(z)
(nk + m− 1)!

(nk − 1)!
+ zn.

Considering the definition of the Bn(f ; z), for any m ∈ N, applying the prin-
ciple of mathematical induction, we immediately obtain the desired conclusion.

Let m = 0, 1, 2, by Lemma 1, we have

Mn(1; z) = 1;
Mn(t; z) = z;

Mn(t2; z) =
n(n− 1)
n2 + 1

z2 +
n + 1
n2 + 1

z.

Lemma 2. For all m,n ∈ N we can get the equality

(n2 − 1)!
(n2 + m− 1)!

m∑
s=1

cs(m)n2s = 1.

Proof. For all m,n ∈ N, by Lemma 1 we have

Mn(tm; 1) =
(n2 − 1)!

(n2 + m− 1)!

m∑
s=1

cs(m)n2s.

2
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On the other hand, we have pn,k(1) = 0, k = 0, 1, 2, . . . , n− 1, and pn,n(1) =
1. So, by the formula (1) and using these above value, we have Mn(tm; 1) = 1,
which implies that we get desired conclusion.

Corollary 1. Let em(t) = tm, m ∈ N∪{0}, z ∈ C, n ∈ N, for all |z| ≤ r, r ≥ 1,
we have |Mn(em; z)| ≤ rm.

Proof. Since Mn(e0; z) = 1, therefor this result is established for m = 0. When
m ∈ N, by using the methods Gal [5], p. 61, proof of Theorem 1.5.6, we have
|Bn(ts; z)| ≤ rs. Thus, for all m ∈ N and |z| ≤ r, the proof follows directly by
Lemma 1 and Lemma 2.

Lemma 3. Let em(t) = tm, m ∈ N ∪ {0} and z ∈ C, we have

Mn(em+1; z) =
nz(1− z)
n2 + m

(Mn(em; z))′ +
m + n2z

n2 + m
Mn(em; z). (2)

Proof. By Lemma 1, we have Mn(e0; z) = 1 and Mn(e1; z) = z, therefore, this
result is established for m = 0. Now let m ∈ N, in view of

z(1− z) [pn,k(z)]′ = (k − nz)pn,k(z),

it follows that

z(1− z)(Mn(em; z))′

=
n−1∑

k=1

(k − nz)pn,k(z)Ln,k(tm) + nzn(1− z)

=
n−1∑

k=1

[
(n2 + m)(nk + m)

n(n2 + m)
− m

n

]
pn,k(z)Ln,k(tm) + nzn − nzMn(em; z)

=
n2 + m

n

n−1∑

k=1

pn,k(z)Ln,k(tm+1)− m

n

n−1∑

k=1

pn,k(z)Ln,k(tm) + nzn − nzMn(em; z)

=
n2 + m

n
Mn(em+1; z)− m

n
Mn(em; z)− nzMn(em; z)

=
n2 + m

n
Mn(em+1; z)− m + n2z

n
Mn(em; z),

which implies the recurrence in the statement.

Lemma 4. Let m, n ∈ N, z ∈ C, em(z) = zm, Sn,m(z) := Mn(em; z)− zm , we
have

Sn,m(z) =
nz(1− z)

n2 + m− 1
(Mn(em−1; z))′ +

m− 1 + n2z

n2 + m− 1
Sn,m−1(z)

+
m− 1 + n2z

n2 + m− 1
zm−1 − zm (3)

Proof. Using the recurrence formula (2), by simple calculation, we can easily
get the recurrence (3), the proof is omitted.

3
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3. Main results

The first main result is expressed by the following upper estimates.

Theorem 1. Let 1 ≤ r ≤ R, DR = {z ∈ C : |z| < R}. Suppose that

f : DR → C is analytic in DR, i.e. f(z) =
∞∑

m=0
cmzm for all z ∈ DR.

(i) for all |z| ≤ r and n ∈ N, we have

|Mn(f ; z)− f(z)| ≤ Kr(f)
n

,

where Kr(f) = (1 + r)
∞∑

m=1
|cm|m(m− 1)rm−1 < ∞.

(ii) (Simultaneous approximation) If 1 ≤ r < r1 < R are arbitrary fired,
then for all |z| ≤ r and n, p ∈ N we have

|(Mn(f ; z))(p) − f (p)(z)| ≤ Kr1(f)p!r1

n(r1 − r)p+1
,

where Kr1(f) is defined as at the above point (i).

Proof. Taking em(z) = zm, by hypothesis that f(z) is analytic in DR, i.e.

f(z) =
∞∑

m=0
cmzm for all z ∈ DR, it is easy for us to obtain

Mn(f ; z) =
∞∑

m=0

cmMn(em; z),

therefore, we get

|Mn(f ; z)− f(z)| ≤
∞∑

m=0

|cm| · |Mn(em; z)− em(z)|

=
∞∑

m=1

|cm| · |Mn(em; z)− em(z)|,

as Mn(e0; z) = e0(z) = 1.
(i) For m ∈ N, taking into account that Mn(em−1; z) is a polynomial degree

≤ min(m − 1, n), by the well-known Bernstein inequality and Corollary 1, we
get

|(Mn(em−1; z))′| ≤ m− 1
r

max{|Mn(em−1; z)| : |z| ≤ r} ≤ (m− 1)rm−2.

On the one hand, when m = 1, for |z| ≤ r, by Lemma 1, we have

|Mn(e1; z)− e1(z)| = (1 + r)
m(m− 1)

n
rm−1.

On the other hand, when m ≥ 2, for n ∈ N, |z| ≤ r, r ≥ 1, using the

4
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recurrence formula (3) and the above inequality, we have

|Mn(em; z)− em(z)| = |Sn,m(z)|

≤ r(1 + r)
n

(m− 1)rm−2 + r|Sn,m−1(z)|

+
m− 1

n
(1 + r)rm−1

=
2(m− 1)

n
(1 + r)rm−1 + r|Sn,m−1(z)|.

By writing the last inequality, for m = 2, · · · , we easily obtain step by step
the following

|Mn(em; z)− em(z)| ≤ r

(
r|Sn,m−2(z)|+ 2(m− 2)

n
(1 + r)rm−2

)

+
2(m− 1)

n
(1 + r)rm−1

= r2|Sn,m−2(z))|+ 2(m− 2) + 2(m− 1)
n

(1 + r)rm−1

≤ . . . ≤ (1 + r)
m(m− 1)

n
rm−1.

In conclusion, for any m,n ∈ N, |z| ≤ r, r ≥ 1, we have

|Mn(em; z)− em(z)| ≤ (1 + r)
m(m− 1)

n
rm−1,

it follows that

|Mn(f ; z)− f(z)| ≤ 1 + r

n

∞∑
m=1

|cm|m(m− 1)rm−1.

By assuming that f(z) is analytic in DR, we have f (2)(z) =
∞∑

m=2
cmm(m −

1)zm−2 and the series is absolutely convergent in |z| ≤ r, so we get
∞∑

m=2
|cm|m(m−

1)rm−2 < ∞, which implies Kr(f) = (1 + r)
∞∑

m=1
|cm|m(m− 1)rm−1 < ∞.

(ii) For the simultaneous approximation, denoting by Γ the circle of radius
r1 > r and center 0, since for any |z| ≤ r and υ ∈ Γ, we have |υ − z| ≥ r1 − r,
by Cauchy’s formulas it follows that for all |z| ≤ r and n ∈ N, we have

|(Mn(f ; z))(p) − f (p)(z)| = p!
2π

∣∣∣∣
∫

Γ

Mn(f ; υ)− f(υ)
(υ − z)p+1

dυ

∣∣∣∣

≤ Kr1(f)
n

p!
2π

2πr1

(r1 − r)p+1

=
Kr1(f)

n
· p!r1

(r1 − r)p+1
,

which proves the theorem.

Theorem 2. Let R > 1, DR = {z ∈ C : |z| < R}. Suppose that f : DR → C

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

443 Mei-Ying Ren et al 439-450



is analytic in DR, i.e. f(z) =
∞∑

k=0

ckzk for all z ∈ DR. For any fixed r ∈ [1, R]

and all n ∈ N, |z| ≤ r, we have
∣∣∣∣Mn(f ; z)− f(z)− (n + 1)z(1− z)f ′′(z)

2(n2 + 1)

∣∣∣∣ ≤
Mr(f)

n2
. (4)

where Mr(f) =
∞∑

k=2

|ck|(k− 1)Fk,rr
k and Fk,r = 10k3− 30k2 + 39k− 16 + 4(k−

2)(k − 1)2(1 + r).

Proof. For all z ∈ DR, we have
∣∣∣∣Mn(f ; z)− f(z)− (n + 1)z(1− z)f ′′(z)

2(n2 + 1)

∣∣∣∣

≤
∞∑

k=2

|ck|
∣∣∣∣Mn(ek; z)− ek(z)− (n + 1)k(k − 1)(1− z)zk−1

2(n2 + 1)

∣∣∣∣ .

Denoting

Ek,n(z) = Mn(ek; z)− ek(z)− (n + 1)k(k − 1)(1− z)zk−1

2(n2 + 1)
,

it is obvious that Ek,n(z) is a polynomial of degree less than or equal to k. For
all k ≥ 2, by simple computation and the use of Lemma 3, we can get

Ek,n(z) =
nz(1− z)
n2 + k − 1

(Ek−1,n(z))′ +
k − 1 + n2z

n2 + k − 1
Ek−1,n(z) + Gk,n(z), (5)

where Gk,n(z) = zk−2

n2+k−1 (z2Ak,n + zBk,n + Ck,n) and Ak,n = −n(k − 1) +
n(n+1)(k−1)2(k−2)

2(n2+1) + n2 − n2(n+1)(k−1)(k−2)
2(n2+1) − (n2 + k− 1) + (n+1)k(k−1)(n2+k−1)

2(n2+1) ,

Bk,n = n(k−1)− n(n+1)(k−1)2(k−2)
2(n2+1) − n(n+1)(k−1)(k−2)2

2(n2+1) +k−1− (n+1)(k−1)2(k−2)
2(n2+1) +

n2(n+1)(k−1)(k−2)
2(n2+1) − (n+1)k(k−1)(n2+k−1)

2(n2+1) , Ck,n = n(n+1)(k−1)(k−2)2

2(n2+1) + (n+1)(k−1)2(k−2)
2(n2+1) .

For all k ≥ 2, n ∈ N and |z| ≤ r, r ≥ 1, we easily obtain

|Ck,n| ≤ (k − 1)(k − 2)(2k − 3),

it follows that

| zk−2Ck,n

n2 + k − 1
| ≤ (2k3 − 9k2 + 13k − 6)rk

n2
.

By simple computation, we have Bk,n = 1
2(n2+1){2n(k − 1) − n(n + 1)(k −

1)2(k − 2) − n(n + 1)(k − 1)(k − 2)2 + 2(n2 + 1)(k − 1) − (n + 1)(k − 1)2(k −
2) + n2(k − 1)(k − 2)− nk(k − 1)2 − n2k(k − 1)− k(k − 1)2}, so, we can get

| zk−1Bk,n

n2 + k − 1
| ≤ (5k3 − 15k2 + 18k − 8)rk

n2
.

By simple computation, we have Ak,n = 1
2(n2+1){−2n(k− 1) + n(n + 1)(k−

1)2(k− 2)+ 2n2−n2(k− 1)(k− 2)− 2(n2k + k− 1)+ nk(k− 1)2 + n2k(k− 1)+
k(k − 1)2}, so, we can get

| zkAk,n

n2 + k − 1
| ≤ (3k3 − 6k2 + 8k − 2)rk

n2
.
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Thus, for all k ≥ 2, n ∈ N and |z| ≤ r, r ≥ 1, we can obtain

|Gk,n(z)| ≤ rk

n2
Dk,

whereDk = 10k3 − 30k2 + 39k − 16.
By formula (5), for all k ≥ 2, n ∈ N and |z| ≤ r, r ≥ 1, we have

|Ek,n(z)| ≤ r(1 + r)
n

|(Ek−1,n(z))′|+ r|Ek−1,n(z)|+ |Gk,n(z)|.

Using the estimate in the proof of Theorem 1 (i), we get

|Mn(ek; z)− ek(z)| ≤ 1 + r

n
k(k − 1)rk−1,

for all k, n ∈ N , |z| ≤ r, r ≥ 1.
So, denote ‖f‖r = max{|f(z)|; |z| ≤ r}, we have

|(Ek−1.n(z))′| ≤ k − 1
r

‖ Ek−1,n ‖r

≤ k − 1
r

[
‖Mn(ek−1; ·)− ek−1‖r + ‖ (n + 1)(k − 1)(k − 2)(1− e1)ek−2

2(n2 + 1)
‖r

]

≤ k − 1
r

[
(k − 1)(k − 2)(1 + r)rk−2

n
+

(k − 1)(k − 2)(1 + r)rk−2

n

]

≤ 4(k − 2)(k − 1)2rk−1

n
,

for all n ∈ N, k ≥ 2 and |z| ≤ r, r ≥ 1.
It follows

|Ek,n(z)| ≤ 4(k − 2)(k − 1)2(1 + r)rk

n2
+ r|Ek−1,n(z)|+ rk

n2
Dk

:=
rk

n2
Fk,r + r|Ek−1,n(z)|,

where Fk,r is a polynomial of degree 3 in k defined as Fk,r = Dk + 4(k− 2)(k−
1)2(1 + r), Dk is expressed in the above.

Since E0.n(q; z) = E1.n(q; z) = 0 for any z ∈ C , therefore, by writing the
last inequality for k = 2, 3, . . ., we easily obtain step by step the following

|Ek,n(z)| ≤ rk

n2

k∑

j=2

Fj,r ≤ (k − 1)Fk,rr
k

n2
.

As a conclusion, we have
∣∣∣∣Mn(f ; z)− f(z)− (n + 1)z(1− z)f ′′(z)

2(n2 + 1)

∣∣∣∣ ≤
∞∑

k=2

|ck||Ek,n(q; z)|

≤ 1
n2

∞∑

k=2

|ck|(k − 1)Fk,rr
k.

7
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As f (4)(z) =
∞∑

k=4

ckk(k−1)(k−2)(k−3)zk−4 and the series is absolutely con-

vergent in |z| ≤ r, it easily follows that
∞∑

k=4

|ck|k(k− 1)(k− 2)(k− 3)rk−4 < ∞,

which implies that
∞∑

k=2

|ck|(k − 1)Fk,rr
k < ∞, this completes the proof of theo-

rem.

In the following theorem, we will obtain the exact order in approximation.

Theorem 3. Let R > 1, DR = {z ∈ C : |z| < R}. Suppose that f : DR → C is
analytic in DR. If f is not a polynomial of degree ≤ 1 , then for any r ∈ [1, R)
we have

‖Mn(f ; ·)− f‖r ≥ Cr(f)
n

, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constant Cr(f) > 0 depends on f , r
but it is independent of n.

Proof. Denote e1(z) = z and

Hn(f ; z) = Mn(f ; z)− f(z)− (n + 1)z(1− z)
2(n2 + 1)

f ′′(z).

For all z ∈ DR and n ∈ N, we have

Mn(f ; z)− f(z) =
n + 1

2(n2 + 1)

{
z(1− z)f ′′(z) +

2(n2 + 1)
n2(n + 1)

[
n2Hn(f ; z)

]}
.

In view of the property: ‖F +G‖r ≥ |‖F‖r−‖G‖r| ≥ ‖F‖r−‖G‖r, it follows

‖Mn(f ; ·)− f‖r ≥ n + 1
2(n2 + 1)

{
‖e1(1− e1)f ′′‖r − 2(n2 + 1)

n2(n + 1)
[
n2||Hn(f ; ·)||r

]}
.

Considering the hypothesis that f is not a polynomial of degree ≤ 1 in DR,
we have

‖e1(1− e1)f ′′‖r > 0.

Indeed, supposing the contrary, it follows that

z(1− z)f ′′(z) = 0, for all z ∈ Dr.

By hypothesis that f(z) is analytic in DR, we can denote f(z) =
∞∑

k=0

ckzk, the

identification of the coefficients method immediately leads to ck = 0, k = 2, 3, ···.
This implies that f is a polynomial of degree ≤ 1 on Dr, a contradiction with
the hypothesis.

Using the inequality (4), we get

n2‖Hn(f ; ·)‖r ≤ Mr(f),

therefore, there exists an index n0 depending only on f , r, such that for all
n ≥ n0, we have

‖e1(1− e1)f ′′‖r − 2(n2 + 1)
n2(n + 1)

[
n2||Hn(f ; ·)||r

] ≥ 1
2
‖e1(1− e1)f ′′‖r ,

8
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which implies

‖Mn(f ; ·)−f‖r ≥ n + 1
4(n2 + 1)

‖e1(1− e1)f ′′‖r ≥
1
4n
‖e1(1− e1)f ′′‖r , for all n ≥ n0.

For n ∈ {1, 2, · · ·, n0 − 1}, we have

‖Mn(f ; ·)− f‖r ≥ Wr,n(f)
n

,

where Wr,n(f) = n‖Mn(f ; ·)− f‖r > 0.
As a conclusion, we have

‖Mn(f ; ·)− f‖r ≥ Cr(f)
n

, for all n ∈ N,

where

Cr(f) =min

{
Wr,1(f),Wr,2(f), . . . , Wr,n0−1(f),

1
4
‖e1(1− e1)f ′′‖r

}
,

this complete the proof.

Combining Theorem 3 with Theorem 1, we get the following result.

Corollary 2. Let R > 1, DR = {z ∈ C : |z| < R}. Suppose that f : DR → C
is analytic in DR. If f is not a polynomial of degree ≤ 1 , then for any r ∈ [1, R)
we have

‖Mn(f ; ·)− f‖r ³ 1
n

, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constants in the equivalence depend
on f , r but it is independent of n.

Theorem 4. Let R > 1, DR = {z ∈ C : |z| < R}. Suppose that f : DR → C
is analytic in DR. Also, let 1 ≤ r < r1 < R and p ∈ N be fixed. If f is not a
polynomial of degree ≤ max{1, p− 1}, then we have

‖(Mn(f ; ·))(p) − f (p)‖r ³ 1
n

, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constants in the equivalence depend
on f , r, r1, p, but it is independent of n.

Proof. Taking into account the upper estimate in Theorem 1, it remains to
prove the lower estimate only.

Denoting by Γ the circle of radius r1 > r and center 0 , by the Cauchy’s
formula it follows that for all |z| ≤ r and n ∈ N we have

M (p)
n (f ; z)− f (p)(z) =

p!
2πi

∫

Γ

Mn(f ; v)− f(v)
(v − z)p+1

dv.

Keeping the notation there for Hn(f ; z), for all n ∈ N, we have

Mn(f ; z)− f(z) =
n + 1

2(n2 + 1)

{
z(1− z)f ′′(z) +

2(n2 + 1)
n2(n + 1)

[
n2Hn(f ; z)

]}
.

9
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By using Cauchy’s formula, for all v ∈ Γ, we get

M (p)
n (f ; z)− f (p)(z) =

n + 1
2(n2 + 1)

{[z(1− z)f ′′(z)]p

+
2(n2 + 1)
n2(n + 1)

p!
2πi

∫

Γ

n2Hn(f ; v)
(v − z)p+1

dv

}
,

passing now to ‖ · ‖r and denoting e1(z) = z, it follows

‖M (p)
n (f ; ·)− f (p)‖r ≥ n + 1

2(n2 + 1)

{∥∥∥[e1(1− e1)f ′′](p)
∥∥∥

r

− 2(n2 + 1)
n2(n + 1)

∥∥∥∥
p!

2πi

∫

Γ

n2Hn(f ; v)
(v − ·)p+1

dv

∥∥∥∥
r

}
,

Since for any |z| ≤ r and υ ∈ Γ we have |υ − z| ≥ r1 − r, so, by using
Theorem 2, we get

∥∥∥∥
p!

2πi

∫

Γ

n2Hn(f ; v)
(v − ·)p+1

dv

∥∥∥∥
r

≤ p!
2π

2πr1n
2‖Hn(f ; ·)‖r1

(r1 − r)p+1
≤ Mr1(f)p!r1

(r1 − r)p+1
.

By hypothesis on f , we have

‖[e1(1− e1)f ′′](p)‖r > 0.

Indeed, supposing the contrary, it follows that ‖[e1(1− e1)f ′′](p)‖r = 0, that
is z(1 − z)f ′′(z) is a polynomial of degree ≤ p− 1. let p = 1 and p = 2,
then the analyticity of f obviously implies that f is a polynomial of degree
≤ 1 = max(1, p− 1), a contradiction.

Now let p ≥ 3, then the analyticity of f obviously implies that f is a poly-
nomial of degree ≤ p− 1 = max(1, p− 1), a contradiction with the hypothesis.

In conclusion, ‖[e1(1−e1)f ′′](p)‖r > 0 and in continuation, reasoning exactly
as in the proof of Theorem 3, we can get the desired conclusion.

Remark 1. If we use King’s approach to consider King type modification of
the complex extension of the operators which was given by (1), we will obtain
better approximation (cf. [21-23]).
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Abstract

In this paper, we introduce two new iteration schemes, namely modified Mann and

modified Ishikawa to approximate the fixed points of quasi contractive operators on

a normed space. Various test problems are presented to reveal the validity and high

efficiency of these iterative schemes.
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Key Words: Quasi contraction, fixed point, strong convergence.

1 Introduction and preliminaries

In the last few decades, various researchers have explored the fixed points of contractive

type operators in metric spaces, Hilbert spaces and different classes of Banach spaces,

see [1] and references there in. To approximate unique fixed point of strict contractive

type operators, Picard iterative scheme can be used effectively [1, 10, 15, 16]. But this

scheme does not generally converge for the operators with slightly weaker contractive

∗Corresponding author
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conditions. For such operators, Mann iteration [13] (cf. [6, 14]), Ishikawa iteration [7] and

Krasnosel’okǐı iteration [11] (cf. [3]) are much useful.

Let E be a normed space and C a nonempty convex subset of E. Let T : C → C be

an operator and {αn} and {βn} sequences of real numbers in [0, 1].

The Mann iteration [13] is defined by the sequence {xn}
∞

n=0
as

xn+1 = (1− αn) xn + αnTxn, n ≥ 0. (1.1)

The sequence {xn}
∞

n=0
defined by

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0, (1.2)

yn = (1 − βn) xn + βnTxn, n ≥ 0

is called Ishikawa iteration [7].

It is noticeable that for αn = λ (constant), the iterative procedure (1.1) turn into

Krasnosel’okǐı iteration. Also for βn = 0, Ishikawa iteration(1.2) reduces to Mann iteration

(1.1).

Definition 1.1. Let (X, d) be a metric space and a ∈ (0, 1). A mapping T : X → X

satisfying

d (Tx, Ty) ≤ ad (x, y) for all x, y ∈ X (1.3)

is called a contraction.

The following theorem is the classical Banach’s contraction principle and of fundamen-

tal importance in the study of Fixed Point Theory.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a contraction.

Then T has a unique fixed point p and the Picard iteration {xn}
∞

n=0
defined by

xn+1 = Txn, n ≥ 0 (1.4)

converges to p for any x0 ∈ X .

The contraction in the above theorem forces T to be continuous. Despite this condition,

Theorem 1.2 has many applications in solving the nonlinear equation f (x) = 0. Kannan [9]

developed a fixed point theorem by relaxing the condition of continuity of T . He produced

the following by taking b in
(

0, 1

2

)

:

d (Tx, Ty) ≤ b [d (x, Tx) + d (y, Ty)] for all x, y ∈ X. (1.5)

Chatterjea [4] obtained a similar result by considering c ∈
(

0, 1

2

)

as follows:

d (Tx, Ty) ≤ c [d (x, Ty) + d (y, Tx)] for all x, y ∈ X. (1.6)

In 1972, Zamferescu [17] proved the following very interesting and important fixed

point theorem by taking into account (1.3), (1.5) and (1.6).
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Theorem 1.3. Let (X, d) be a metric space and T : X → X be a mapping for which there

exist real numbers a, b and c satisfying 0 < a < 1, 0 < b and c < 1

2
such that for each

x, y ∈ X, at least one of the following is true:

(z1) d (Tx, Ty) ≤ ad (x, y) ,

(z2) d (Tx, Ty) ≤ b [d (x, Tx) + d (y, Ty)] ,

(z3) d (Tx, Ty) ≤ c [d (x, Ty) + d (y, Tx)] .

Then T has a unique fixed point p and the Picard iteration {xn}
∞

n=0
defined by

xn+1 = Txn, n ≥ 0

converges to p for any x0 ∈ X .

An operator T : X → X satisfying the contractive conditions (z1), (z2) and (z3) is

called Zamferescu operator.

In 1974, Ćirić [5] obtained a more general contraction to approximate unique fixed

point with the help of Picard iteration: there exists 0 < h < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ h max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (1.7)

Definition 1.4. Let (X, d) be a metric space and T : X → X a mapping satisfying (1.7).

Then T is called quasi contraction.

A new class of operators on an arbitrary Banach space E, satisfying

‖Tx − Ty‖ ≤ δ ‖x − y‖+ 2δ ‖x − Tx‖ for all x, y ∈ E, 0 ≤ δ < 1, (1.8)

was established by Berinde [2] in 2004. He approximated fixed points of this class of

operators via Ishikawa iteration.

It is well known that a nonlinear equation f(x) = 0 can be expressed in terms of fixed

point iteration method as follows:

x = Tx. (1.9)

Taking up the technique of [8], if T ′x 6= 1, θ 6= −1, it can easily be seen by adding θx to

both sides of (1.9) that

x =
θx + Tx

1 + θ
= Tθx. (1.10)

So as to make (1.10) to be efficient, we can choose T ′

θx = 0, which gives

θ = −T ′x. (1.11)

Now we are in a position to define modified Mann and modified Ishikawa iterative

schemes.

Replacing Txn and Tyn in (1.1) and (1.2) with Tθxn and Tθyn, respectively, we get

xn+1 = (1 − αn) xn + αnTθxn (1.12)

and

xn+1 = (1− αn) xn + αnTθyn, (1.13)

yn = (1− βn)xn + βnTθxn.

3
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Using (1.10) in (1.12) and (1.13) and also the error term, we obtain

xn+1 =

(

1 −
1

1 + θ
αn

)

xn +
1

1 + θ
αnTxn + µn (1.14)

and

xn+1 =

[

1−
αn

1 + θ

(

1 +
θβn

1 + θ

)]

xn +
αn

1 + θ

[

θβn

1 + θ
Txn + Tyn

]

+ µn, (1.15)

yn =

(

1 −
1

1 + θ
βn

)

xn +
1

1 + θ
βnTxn + νn.

We call the procedures defined in (1.14) and (1.15), the modified Mann and modified

Ishikawa iterative procedures. It is obvious that (1.14) and (1.15) without error term

reduce to (1.1) and (1.2), respectively for θ = 0.

In this paper, we have proved the strong convergence of quasi contractive operator

T satisfying (1.14) and (1.15) in the setting of normed space. We also present some test

problems to compare the iterative procedures defined in (1.1), (1.2), (1.14) and (1.15). The

numerical results obtained demonstrate the high performance and efficiency of modified

Mann and modified Ishikawa iterative processes.

We use the following lemma in the sequal.

Lemma 1.5. ([12]) Let {rn}, {sn}, {tn} and {kn} be the sequences of nonnegative numbers

satisfying

rn+1 ≤ (1− sn) rn + sntn + kn, n ≥ 0.

If
∑

∞

n=0
sn = ∞ and limn→∞ tn = 0 and

∑

∞

n=0
kn < ∞ hold, then limn→∞ rn = 0.

2 Main results

Assuming that the operator T has at least one fixed point, we prove the covergence theo-

rems for iterative procedures (1.14) and (1.15).

Theorem 2.1. Let C be a nonempty closed convex subset of a normed space E and

T : C → C be an operator satisfying (1.8). For arbitrary x0 ∈ C, let {xn}
∞

n=0
be the

sequence defined by the iterative process (1.14) satisfying θ > −1,
∑

∞

n=0
αn = ∞ and

‖µn‖ = 0(αn). Then the sequence {xn}
∞

n=0
converges strongly to a fixed point of T .

Proof. Let p be the fixed point of the operator T . We consider

‖xn+1 − p‖

=

∥

∥

∥

∥

(

1 −
1

1 + θ
αn

)

xn +
1

1 + θ
αnTxn + µn − p

∥

∥

∥

∥

=

∥

∥

∥

∥

(

1 −
1

1 + θ
αn

)

xn +
1

1 + θ
αnTxn + µn −

(

1 −
1

1 + θ
αn +

1

1 + θ
αn

)

p

∥

∥

∥

∥

=

∥

∥

∥

∥

(

1 −
1

1 + θ
αn

)

(xn − p) +
1

1 + θ
αn(Txn − p) + µn

∥

∥

∥

∥

≤

(

1 −
1

1 + θ
αn

)

‖xn − p‖+
1

1 + θ
αn ‖Txn − p‖ + ‖µn‖ . (2.1)
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Substituting y = xn and x = p in (1.8), we get

‖Txn − p‖ ≤ δ ‖xn − p‖ .

Thus (2.1) implies

‖xn+1 − p‖ ≤

(

1 −
1

1 + θ
αn

)

‖xn − p‖ +
δ

1 + θ
αn ‖xn − p‖ + ‖µn‖

=

(

1 −
1

1 + θ
αn +

δ

1 + θ
αn

)

‖xn − p‖ + ‖µn‖

=

(

1 −
1 − δ

1 + θ
αn

)

‖xn − p‖ + ‖µn‖ .

Using Lemma 1.5 and the fact that 0 ≤ δ < 1, 0 ≤ αn ≤ 1, θ > −1, ‖µn‖ = 0(αn) and
∑

∞

n=0
αn = ∞, we obtain

lim
n→∞

‖xn − p‖ = 0.

Hence xn → p. This completes the proof.

Taking θ = 0 in the setting of normed space and the contraction condition (1.8), we

obtain the following corollary.

Corollary 2.2. Let C be a nonempty closed convex subset of a normed space E and

T : C → C be an operator satisfying (1.8). For arbitrary x0 ∈ C, let {xn}
∞

n=0
be the

sequence defined by the iterative process (1.1) satisfying
∑

∞

n=0
αn = ∞. Then the sequence

{xn}
∞

n=0
converges strongly to a fixed point of T .

Now we prove the convergence of modified Ishikawa iterative process in the form of

the following theorem.

Theorem 2.3. Let C a nonempty closed convex subset of a normed space E and T :

C → C be an operator satisfying (1.8). For arbitrary x0 ∈ C, let {xn}
∞

n=0
be the sequence

defined by the iterative process (1.15) satisfying θ > −1,
∑

∞

n=0
αn = ∞, ‖νn‖ = 0(αn) and

‖µn‖ = 0(αn). Then the sequence {xn}
∞

n=0
converges strongly to a fixed point of T .

Proof. Let p be the fixed point of the operator T . We consider

‖xn+1 − p‖

= ‖(1 − αn)xn + αnTθyn + µn − p‖

=

∥

∥

∥

∥

(1− αn) xn + αn

(

θyn + Tyn

1 + θ

)

+ µn − p

∥

∥

∥

∥

≤ (1 − αn) ‖xn − p‖ + αn

∥

∥

∥

∥

Tyn + θyn

1 + θ
− p

∥

∥

∥

∥

+ ‖µn‖

= (1 − αn) ‖xn − p‖ + αn

∥

∥

∥

∥

(Tyn − p) + θ (yn − p)

1 + θ

∥

∥

∥

∥

+ ‖µn‖

≤ (1 − αn) ‖xn − p‖ +
αn

1 + θ
‖Tyn − p‖+

θαn

1 + θ
‖yn − p‖ + ‖µn‖ . (2.2)
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Substituting x = p and y = yn in (1.8), we get

‖Tyn − p‖ ≤ δ ‖yn − p‖ . (2.3)

Thus (2.2) implies

‖xn+1 − p‖

≤ (1 − αn) ‖xn − p‖+
δαn

1 + θ
‖yn − p‖ +

θαn

1 + θ
‖yn − p‖ + ‖µn‖ .

= (1 − αn) ‖xn − p‖+
δ + θ

1 + θ
αn ‖yn − p‖+ ‖µn‖ . (2.4)

Consider

‖yn − p‖ =

∥

∥

∥

∥

(

1 −
1

1 + θ
βn

)

xn +
1

1 + θ
βnTxn + νn − p

∥

∥

∥

∥

=

∥

∥

∥

∥

(

1 −
1

1 + θ
βn

)

(xn − p) +
1

1 + θ
βn(Txn − p) + νn

∥

∥

∥

∥

≤

(

1 −
1

1 + θ
βn

)

‖xn − p‖ +
1

1 + θ
βn ‖Txn − p‖+ ‖νn‖ . (2.5)

Substituting x = p and y = xn in (1.8), we get

‖Txn − p‖ ≤ δ ‖xn − p‖ . (2.6)

Thus (2.5) implies

‖yn − p‖ ≤

(

1 −
1

1 + θ
βn

)

‖xn − p‖ +
δ

1 + θ
βn ‖xn − p‖+ ‖νn‖

=

(

1 −
1− δ

1 + θ
βn

)

‖xn − p‖ + ‖νn‖ . (2.7)

Using (2.7) in (2.4), we get

‖xn+1 − p‖

≤ (1 − αn) ‖xn − p‖+
δ + θ

1 + θ
αn

[(

1 −
1 − δ

1 + θ
βn

)

‖xn − p‖ + ‖νn‖

]

+ ‖µn‖

=

[

1 − αn +
δ + θ

1 + θ
αn

(

1 −
1− δ

1 + θ
βn

)]

‖xn − p‖ +
δ + θ

1 + θ
αn ‖νn‖ + ‖µn‖

=

[

1 − αn

{

1−
δ + θ

1 + θ

(

1 −
1 − δ

1 + θ
βn

)}]

‖xn − p‖

+
δ + θ

1 + θ
αn ‖νn‖+ ‖µn‖ . (2.8)

6
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Let

An = 1 − αn

[

1 −
δ + θ

1 + θ

(

1 −
1− δ

1 + θ
βn

)]

= 1 − αn

(

1 −
δ + θ

1 + θ
+

(δ + θ) (1− δ)

(1 + θ)2
βn

)

= 1 − αn

(

1 −
(1 + θ) (δ + θ) − (δ + θ) (1 − δ)βn

(1 + θ)2

)

= 1 − αn

(

(1 + θ)2 − (1 + θ) (δ + θ) + (δ + θ) (1− δ)βn

(1 + θ)2

)

= 1 − αn

(

(1 − δ) (1 + θ) + (δ + θ) (1 − δ)βn

(1 + θ)2

)

= 1 −
(1− δ)

(1 + θ)
αn

(

(1 + θ) + (δ + θ) βn

(1 + θ)

)

= 1 −
(1− δ)

(1 + θ)
αn

(

1 +
δ + θ

1 + θ
βn

)

. (2.9)

Since βn ≥ 0, 0 ≤ δ < 1 and θ > −1, therefore δ+θ
1+θ

βn ≥ 0 and 1 + δ+θ
1+θ

βn ≥ 1.

Hence (2.9) gives

An = 1 −
1− δ

1 + θ
αn

(

1 +
δ + θ

1 + θ
βn

)

≤ 1 −
1 − δ

1 + θ
αn.

Thus from (2.8), we get

‖xn+1 − p‖ ≤

(

1 −
1 − δ

1 + θ
αn

)

‖xn − p‖ +
δ + θ

1 + θ
αn ‖νn‖ + ‖µn‖ .

With the help of Lemma 1.5 and using the fact that 0 ≤ δ < 1, 0 < αn < 1, θ > −1,

‖νn‖ = 0(αn), ‖µn‖ = 0(αn) and
∑

∞

n=0
αn = ∞, we get

lim
n→∞

‖xn − p‖ = 0.

Consequently, xn → p ∈ F and this completes the proof.

Corollary 2.4. Let C a nonempty closed convex subset of a normed space E and T :

C → C be an operator satisfying (1.8). For arbitrary x0 ∈ C, let {xn}
∞

n=0
be the sequence

defined by the iterative process (1.2) satisfying
∑

∞

n=0
αn = ∞. Then the sequence {xn}

∞

n=0

converges strongly to a fixed point of T .

The above corollary in fact is the generalization of Theorem 2 of Berinde [2] in the

context of a normed space and the contraction condition (1.8).

3 Applications

In this section, we consider various test problems to apply Mann (M), modified Mann

(MM), Ishikawa (I) and modified Ishikawa (MI) iterative procedures for the estimation

7
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of fixed points. The data in the following table indicates the rapidness of convergence in

each problem. We make use of Maple software and 10−3 tolerence for the purpose. Here

we denote the number of iterations (NI).

Tx θ αn βn x0 Method NI x [k] Tx |x [k] − Tx|

3 − x2 2x 1
√

n+1
1

√

n+1
1

M

MM

I

MI

9
4
22
2

1.3044
1.3047
1.3009
1.3009

1.2985
1.2977
1.3076
1.3077

0.0059
0.0070
0.0067
0.0068

3(1−x) − cos x ln 3
`

3(1−x)´

− sin x 1
1+n

1
1+n

0.5

M

MM

I

MI

4
4
11
1

0.6657
0.6576
0.6570
0.6588

0.6572
0.6652
0.6658
0.6641

0.0085
0.0076
0.0088
0.0053

1 − x − cos x 1 − sin x 1
√

n+1
1

√

n+1
0.1

M

MM

I

MI

4
1
6
1

0.0000
−0.0026
0.0037
0.0001

−0.0000
0.0026
−0.0036
−0.0001

0.0000
0.0052
0.0073
0.0002

cos x − ex + 1 sin x + ex 1
√

n+1
1

√

n+1
0.4

M

MM

I

MI

5
1
12
1

0.4120
0.4101
0.4076
0.4101

0.4066
0.4100
0.4150
0.4101

0.0054
0.0001
0.0074
0.0000

1 − x

2 − 1
2

1
√

n+1
1

√

n+1
0.5

M

MM

I

MI

2
1
3
1

0.6616
0.6667
0.6616
0.6667

0.6692
0.6667
0.6692
0.6667

0.0076
0.0000
0.0076
0.0000

x

2
− 1

2
1

√

n+1
1

√

n+1
0.5

M

MM

I

MI

12
1
6
1

0.0181
0.0000
0.0154
0.0000

0.0091
0.0000
0.0077
0.0000

0.0091
0.0000
0.0077
0.0000

e(1−x)2 − 1 2 (1 − x) e(1−x)2 1
1+n

1
1+n

0.5

M

MM

I

MI

4
2
13
1

0.4160
0.4089
0.4159
0.4136

0.4065
0.4182
0.4067
0.4104

0.0095
0.0093
0.0092
0.0032

4 Conclusion

We have developed two new iterative schemes, namely modified Maan and modified

Ishikawa. The convergence theorems for our proposed schemes have been proved. In

Section 2, the table provides comparison between Mann, modified Mann, Ishikawa and

modified Ishikawa iterative procedures. Our results clearly indicate that how rapidly our

proposed methods converge to the fixed points. In some given test problems, due to large

difference in number of iterations, it is obvious that modified Mann and modified Ishikawa

iterative schemes require very little time to produce fixed point.
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MEAN ERGODIC THEOREMS FOR SEMIGROUPS OF LINEAR

OPERATORS IN P-BANACH SPACES

H. M. KENARI, REZA SAADATI, AND CHOONKIL PARK∗

Abstract. In this paper, by using the Rode’s method, we extend Yosida’s theorem to
semigroups of linear operators in p-Banach spaces. Our paper is motivated from ideas in [7].

1. Introduction

In 1938, Yosida [14] Proved the following mean ergodic theorem for linear operators: Let
E be a real Banach space and T be a linear operator of E into itself such that there exists a
constant C with ‖Tn‖ ≤ C for n = 1, 2, 3, ..., and T is weakly completely continuous,i.e., T
maps the closed unite ball of E into a weakly compact subset of E. Then, the Cesaro mean

Snx =
1

n

n∑
k=1

T kx

converges strongly as n→ +∞ to a fixed point of T for each x ∈ E.
On the other hand, in 1975, Baillon [1] proved the following nonlinear ergodic theorem: Let
X be a Banach space and C a closed convex subset of X. The mapping T : C → C is called
nonexpansive on C if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C.
Let F (T ) be the set of fixed point of T . If X is stricly convex, F (T ) is closed and convex.

In [1, 4], Baillon proved the first nonlinear ergodic theorem such that if X is a real Hilbert
space and F (T ) 6= ∅, then for each x ∈ C, the sequence {Snx} defined by

Snx = (
1

n
)(x+ Tx+ ...+ Tn−1x)

converges weakly to a fiexd point of T . It was also shown by Pazy [8] thet if X a real Hilbert
space and Snx converges weakly to y ∈ C, then y ∈ F (T ).

Recently, Rode [10] and Takahashi [13] tried to extend this nonlinear ergodic theorem to
semigroup, generalizing the Cesaro means on N = {1, 2, ...}, such that the corresponding
sequence of mappings converges to a projection onto the set of common fixed points. In
this paper, by using the Rode’s method, we extend Yosida’s theorem to semigroups of linear
operators in P-Banach spaces. The proofs employ the methods of Yosida[14], Greenleaf [5],
Rode [10] and Takahashi [6, 12] . Our paper is motivated from ideas in [7]

2. p-Norm

Definition 2.1. ([3, 11]) Let X be a real linear space. A function ‖.‖ : X → R is a quasi–
norm ( valuation ) if it satisfies the following conditions :
(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

MSC(2010): Primary 39A10, 39B72; Secondary 47H10, 46B03.

Keywords: ergodic theorem, semigroup, p-Banach space.
∗Corresponding author: baak@hanyang.ac.kr (Choonkil Park).
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(2) ‖λx‖ = |λ|.‖x‖ for all λ ∈ R and all x ∈ X;
(3) There is a constant M ≥ 1 such that ‖x+ y‖ ≤M(‖x‖+ ‖y‖) for all x, y ∈ X.
Then (X, ‖.‖) is called a quasi-normed space. The smallest possible M is called the modulus
of concavity of ‖.‖. A quasi-Banach space is a complete quas-normed space.

A quasi-norm ‖.‖ is called a p-norm 0 < p < 1 if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p
for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz [11], each quasi-norm is equivalent to some p-norm (see also [9]).
Since it is much easier to work with p-norm, henceforth we restrict our attention mainly to
p-norms.

3. Preliminaries and lemmas

Let E a real p-Banach space and let E∗ be the conjugate space of E, that is, the space of
all continuous linear functionals on E. The value of x∗ ∈ E∗ at x ∈ E will be denoted by
< x, x∗ >. We denote by coD the convex hull of D, coD the closure of coD.
Let U be a linear continuous operator of E into itself. Then, we denote by U∗ the conjugate
operator of U .

Assumption (A). Let (E, ‖.‖p) be a p-Banach space and {Tt : t ∈ G}, be a family of linear
continuous operators of a real Banach space E into itself such that there exist a real number
C with ‖Tt‖p ≤ C for all t ∈ G and the weak closure of {Ttx : t ∈ G} is weakly compact, for
each x ∈ E. The index set G is a topological semigroup such that Tst = Ts.Tt for all s, t ∈ G
and T is continuous with respect to the weak operator topology : < Tsx, x

∗ >→< Ttx, x
∗ >

for all x ∈ E and x∗ ∈ E∗ if s→ t in G.

We denote by m(G) the p-Banach space of all bounded continuous real valued functions
on the topological semigroup G with the p-norm. For each s ∈ G and f ∈ m(G), we define
elements lsf and rsf in m(G) given by lsf(t) = f(st) and rsf(t) = f(ts) for all t ∈ G. An
element µ ∈ m(G)∗ (the conjugate space of m(G)) is called a mean on G if ‖µ‖p = µ(1) = 1. A
mean µ on G is called left (right) invariant if µ(lsf) = µ(f) (µ(rsf) = µ(f)) for all f ∈ m(G)
and s ∈ G. An invariant mean is a left and right invariant mean. We know that µ ∈ m(G)∗

is a mean on G if and only if

inf{f(t) : t ∈ G} ≤ µ(f) ≤ sup{f(t) : t ∈ G}
for every f ∈ m(G); see [4, 5, 9].

Let {Tt : t ∈ G} be a family of linear continuous operators of E into itself satisfying the
assumption (A) and µ be a mean on G. Fix x ∈ E. Then, for x∗ ∈ E∗, the real valued function
t →< Ttx, x

∗ > is in m(G). Denote by µt < Ttx, x
∗ > the valued of µ at this function. By

linearity of µ and of < ., . >, this is linear in x∗; moreover, since

|µt < Ttx, x
∗ > | ≤ ‖µ‖p · sup

t
| < Ttx, x

∗ > | ≤ sup
t
‖Ttx‖p · ‖x∗‖p ≤ C · ‖x‖p · ‖x∗‖p,

it is continuous in x∗. Hence µt < Ttx, . > is an element of E∗∗. So it follows from weak
compactness of co{Ttx : t ∈ G} that µt < Ttx, x

∗ >=< Tµx, x
∗ > for every x∗ ∈ E∗.

Put K = co{Ttx : t ∈ G} and suppose that the element µt < Ttx, . > is not contained in the
n(K), where n is the natural embedding of the p-Banach space E into its second conjugate
space E∗∗. Since the convex set n(K) is compact in the weak∗ topology of E∗∗, there exists
an element y∗ ∈ E∗ such that

µt < Ttx, y
∗ >< inf{< y∗, z∗∗ >: z∗∗ ∈ n(k)}
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Hence we have

µt < Ttx, y
∗ > < inf{< y∗, z∗∗ >: z∗∗ ∈ n(k)} ≤ inf{< Ttx, y

∗ >: t ∈ G} ≤ µt < Ttx, y
∗ > .

This is a contradiction. Thus, for a mean µ on G, we can define a linear continuous operator
Tµ of E into itself such that ‖Tµ‖p ≤ C, Tµx ∈ co{Ttx : t ∈ G} for all x ∈ E, and µt <
Ttx, x

∗ >=< Tµx, x
∗ > for all x ∈ E and x∗ ∈ E∗. we denote by F (G) the set all common

fixed points of the mappings Tt, t ∈ G.

Lemma 3.1. Assume that a left invariant mean µ exists on G. Then Tµ(E) ⊂ F (G). Espe-
cially, F (G) is not empty.

Proof. Let x ∈ E and µ be a left invariant mean on G. Then since, for s ∈ G and x∗,

< TsTµx, x
∗ > = < Tµx, T

∗
s x
∗ >= µt < Ttx, T

∗
s x
∗ >= µt < TsTtx, x

∗ >

= µt < Tstx, x
∗ >= µt < Ttx, x

∗ >=< Tµx, x
∗ >,

we have TsTµx = Tµx. Hence Tµ(E) ⊂ F (G). �

Lemma 3.2. Let λ be an invariant mean on G. Then TλTs = TsTλ = Tλ for each s ∈ G and
TλTµ = TµTλ = Tλ for each mean µ on G. Especially, Tλ is a projection of E onto F (G) .

Proof. Let s ∈ G. Since

< TλTsx, x
∗ >= λt < TtTsx, x

∗ >= λt < Ttsx, x
∗ >= λt < Ttx, x

∗ >=< Tλx, x
∗ >

for x ∈ E and x∗ ∈ E∗, we have TλTs = Tλ. It follows from Lemma 3.1 that TsTλ = Tλ for
each s ∈ G. Let µj be a mean on G. Then, since

< TµTλx, x
∗ >= µt < TtTλx, x

∗ >= µtTλx, x
∗ >=< Tλx, x

∗ >

and

< TλTµx, x
∗ > = < Tµx, T

∗
λx
∗ >= µt < Ttx, T

∗
λx
∗ >= µt < TλTtx, x

∗ >

= µt < Tλx, x
∗ >=< Tλx, x

∗ >

for x ∈ E and x∗ ∈ E∗, we have TµTλ = TλTµ = Tλ, Putting µ = λ, we have T 2
λ = Tλ and

hence Tλ is a projection of E onto F (G). �

As a direct consequence of Lemma 3.2, we have the following.

Lemma 3.3. Let µ and λ be invariant means on G. Then Tµ = Tλ.

Lemma 3.4. Assume that an invariant mean exists on G. Then, for each x ∈ E, the set
co{Ttx : t ∈ G} ∩ F (G) consists of a single point.

Proof. Let x ∈ E and µ be an invariant mean on G. Then, we know that Tµx ∈ F (G)
and Tµx ∈ co{Ttx : t ∈ G}. So, we show that co{Ttx : t ∈ G} ∩ F (G) = {Tµx}. Let
x0 ∈ co{Ttx : t ∈ G} ∩ F (G) and ε > 0. Then, for x∗ ∈ E∗, there exists an element∑n

i=1 αiTtix in the set co{Ttx : t ∈ G} such that ε > C · ‖x∗‖p.‖
∑n

i=1 αiTtix − x0‖p. Hence
we have

ε > C · ‖x∗‖p · ‖
n∑
i=1

αiTtix− x0‖p ≥ sup
t
‖Tt‖p · ‖

n∑
i=1

αiTtix− x0‖p · ‖x∗‖p

≥ sup
t
‖

n∑
i=1

αiTj,tTj,tix− x0‖j · ‖x∗‖j ≥ | <
n∑
i=1

αiTtTtix− x0, x∗ > |

= |
n∑
i=1

αiµt < Tttix− x0, x∗ > | = |µt < Ttx− x0, x∗ > | = | < Tµx− x0, x∗ > |.

Since ε is arbitrary, we have < Tµx, x
∗ >=< x0, x

∗ > for every x∗ ∈ E∗ and hence Tµx =
x0. �
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4. Ergodic Theorems

Now we can prove mean ergodic theorems for semigroups of linear continuous operators in
p-Banach space.

Theorem 4.1. Let {Tt : t ∈ G} be a family of linear continuous operators in a real p-Banach
space E satisfying Assumption (A). If a net {µα : α ∈ I} of means on G is asymptotically
invariant, i.e.,

µα − r∗sµα and µα − l∗sµα

converge to 0 in the weak∗ topology of m(G)∗ for each s ∈ G, then there exists a projection
Q of E onto F (G) such that ‖Q‖p ≤ C, Tµαx converges weakly to Qx for each x ∈ E,
QTt = TtQ = Q for each t ∈ G, and Qx ∈ co{Ttx : t ∈ G} for each x ∈ E. Furthermore, the
projection Q onto F (G) is the same for all asymptotically invariant nets.

Proof. Let µ be a cluster point of net {µα : α ∈ I} in the weak∗ topology of m(G)∗. Then
µ is an invariant mean on G. Hence, by Lemma 3.2, Tµ is a projection of E onto F (G)
such that ‖Tµ‖p ≤ C, TµTt = TtTµ = Tµ for each t ∈ G and Tµx ∈ co{Ttx : t ∈ G}
for each x ∈ E. Setting Q = Tµ, we show that Tµαx converges weakly to Qx for each
x ∈ E. Since Tµαx ∈ co{Ttx : t ∈ G} for all α ∈ I and co{Ttx : t ∈ G} is weakly compact,
there exists a subnet {Tµβx : β ∈ J} of {Tµαx : α ∈ I} such that Tµβx converges weakly
to an element x0 ∈ co{Ttx : t ∈ G}. To show that Tµαx converges weakly to Qx, it is
sufficient to show x0 = Qx. Let x∗ ∈ E∗ and s ∈ G. since Tµβx → x0 weakly, we have

µβt < Ttx, x
∗ >→< x0, x

∗ > and µβt < Ttx, T
∗
s x
∗ >→< x0, T

∗
s x
∗ >=< Tsx0, x

∗ >. On the
other hand, since µβ − l∗sµβ → 0 in the weak∗ topology, we have

µβt < Ttx, x
∗ > −l∗sµ

β
t < Ttx, x

∗ > = µβt < Ttx, x
∗ > −µβt < Tstx, x

∗ >

= µβt < Ttx, x
∗ > −µβt < Ttx, T

∗
s x
∗ >

→ 0.

Hence, we have< x0, x
∗ >=< Tsx0, x

∗ > and hence x0 ∈ F (G). So, we obtainQx = Tµx = x0
by Lemma 3.4. That the projection Q is the same for all asymptotically invariant nets is
obvious from Lemma 3.3. �

As a direct consequence of Theorem 4.1, we have the following.

Corollary 4.2. Let {Tt : t ∈ G} be as in Theorem 4.1 and assume that an invariant mean
exists on G. Then, there exists a projection Q of E onto F such that ‖Q‖p ≤ C, QTt = TtQ =
Q for each t ∈ G and Qx ∈ co{Ttx : t ∈ G} for each x ∈ E

Theorem 4.3. Let {Tt : t ∈ G} be as in Theorem 4.1. If a net {µα : α ∈ I} of means on G is
asymptotically invariant and further µα−r∗sµα converges to 0 in the strong topology of m(G)∗,
then exists a projection Q of E onto F (G) such that ‖Q‖p ≤ C, Tµαx converges strongly to
Qx for each x ∈ E, QTt = TtQ = Q for each t ∈ G, and Qx ∈ co{Ttx : t ∈ G} for each
x ∈ E.

Proof. As in the proof of Theorem 4.1, let Q = Tµ, where µ is a cluster point of the net
{µα : α ∈ I} in the weak∗ topology of m(G)∗. Then we show that Tµαx converges strongly
to Qx for each x ∈ E.
Let E0 = co{y − Tty : y ∈ E, t ∈ G}. Then, for any z ∈ E0, Tµαz converges strongly to 0. In
fact, if z = y − Tsy, then since, for any y∗ ∈ E∗,

| < Tµαz, y
∗ > | = |µαt < Tt(y − Tsy), y∗ > | = |µαt < Tty, y

∗ > −µαt < Ttsy, y
∗ > |

= |(µαt − r∗sµαt ) < Tty, y
∗ > | ≤ ‖µα − r∗sµα‖p · sup

t
| < Tty, y

∗ > |

≤ ‖µα − r∗sµα‖p · C · ‖y‖p · ‖y∗‖p,
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we have ‖Tµαz‖p ≤ C ·‖µα−r∗sµα‖p ·‖y‖p. Using this inequality, we show that Tµαz converges
strongly to 0 for any z ∈ E0. Let z be any element of E0 and ε be any positive number. By the
definition of E0, there exists an element

∑n
i=1 ai(yi−Tsiyi)ε in the set co{y−Tsy : y ∈ E, s ∈

G} such that ε > 2C · ‖z−
∑n

i=1 ai(yi− Tsiyi)‖p. On the other hand, from ‖µα− r∗sµα‖p → 0
for all s ∈ G, there exists a0 ∈ I such that, for all α ≥ α0 and i = 1, 2, ..., n,

ε > ‖µα − r∗siµ
α‖p · 2C‖yi‖p.

This implies

‖Tµαz‖p ≤ ‖Tµαz − Tµα(
n∑
i=1

ai(yi − Tsiyi))‖p + ‖Tµα(
n∑
i=1

ai(yi − Tsiyi))‖p

≤ ‖Tµα‖p · ‖z −
n∑
i=1

ai(yi − Tsiyi)‖p + |
n∑
i=1

ai|P ‖Tµα(yi − Tsiyi)‖p

≤ C · ‖z −
n∑
i=1

ai(yi − Tsiyi)‖P + sup
i
‖µα − r∗siµ

α‖p · C · ‖yi‖p

<
ε

2
+
ε

2
= ε.

Hence Tµαz converges strongly to 0 for each z ∈ E0.
Next, assume that x−Tµx for some x ∈ E is not contained in the set E0. Then, by the Hahn–
Banach theorem, there exists a linear continuous functional y∗ such that < x− Tµx, y∗ >= 1
and < z, y∗ >= 0 for all z ∈ E0. and so since x− Ttx ∈ E0 for all t ∈ G, we have

< x− Tµjx, y∗ >= µt < x− Ttx, y∗ >= 0.

This is a contradiction. Hence x− Tµ for all x ∈ E are contained in E0. Therefore, we have
Tµαx−Tµx = Tµα(x−Tµ) converges strongly to 0 for all x ∈ E. This completes the proof. �

By using Theorem 4.3, we can obtain the following corollary.

Corollary 4.4. Let E be a real p-Banach space and T be a linear operator of E into itself
such that exists a constant C with ‖Tn‖p ≤ C for n = 1, 2, .... Assume that T is weakly
completely continuous, i.e., T maps the closed unit ball of E into a weakly compact subset of
E. Then there exists a projection Q of E onto the set F (T ) of all fixed points of T such that
‖Q‖p ≤ C, the Cesaro means Sn = 1

n

∑n
k=1 T

kx converges strongly to Qx for each x ∈ E, and
TQ = QT = Q.

Proof. Let x ∈ E. Then, since {Tnx : n = 1, 2, ...} = T ({Tn−1x : n = 1, 2, ...}) ⊂ T (B(0, ‖x ·
(c + 1))), where B(x, r) means the closed ball with center x and radius r, the weak closure
of {Tnx : n = 1, 2, ...} is weakly compact. On the other hand, let G = {1, 2, 3, ...} with the
discrete topology and µn be a mean on G such that µn(f) =

∑n
i=1(

1
n)f(i) for each f ∈ m(G).

Then, it is obvious that ‖µn − r∗kµn‖p ≤
2k
n → 0 for all k ∈ G. So, it follows from Theorem

4.3 that the corollary is true. �

If G = [0,∞) whit the natural topology, then we obtain the corresponding result.

Corollary 4.5. Let E be a real p-Banach space and {Tt : t ∈ [0,∞)} be a family of linear
operators of E into itself satisfying Assumption (A). Then there exists a projection Q of E

onto F (G) such that ‖Q‖p ≤ C, 1
T

∫ T
0 T

∫
t xdt converges strongly to Qx for each x ∈ E, and

TtQ = QTt = Q for each t ∈ [0,∞).

Remark. 1
T

∫ T
0 T

∫
t xdt is a weak vector valued integral with respect to means on G =

[0,∞). As in Section IV of Rode [10], we can also obtain the strong convergence of the
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sequences

(1− r)
∞∑
k=1

rkT kx, r → 1−

and

λ

∫ ∞
0

e−λtTtxdt, λ→ 0 + .
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Abstract: The aim of this paper is to establish some new �xed point results for

Ćiríc type �-�-GF -contraction in a complete metric space. We extend the con-

cept of F -contraction and introduce the notion Ćiríc type �-�-GF -contraction.

An example is given to demonstrate the novelty of our work.
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�-�-GF -contraction.

1 Introduction

In metric �xed point theory the contractive conditions on underlying functions

play an important role for �nding solutions of �xed point problems. Banach

contraction principle [4] is a fundamental result in metric �xed point theory. Due

to its importance and simplicity, several authors have generalized/extended it

in di¤erent directions. In 1973, Geraghty [9] studied a generalization of Banach

contraction principle. Ćiríc [5], introduced quasi contraction theorem, which

generalized Banach contraction principle. Over the years, Banach contraction

theorem has been generalized in di¤erent ways by several mathematicians (see

[1-24]).

In 2012, Samet et al. [22], introduced a concept of � �  - contractive type

1
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mappings and established various �xed point theorems for mappings in com-

plete metric spaces. Afterwards Karapinar et al. [16], re�ned the notion and

obtained various �xed point results. Hussain et al. [12], extended the concept of

�-admissible mappings and obtained useful �xed point theorems. Subsequently,

Abdeljawad [1] introduced pair of ��admissible mappings satisfying new suf-

�cient contractive conditions di¤erent from those in [12, 22], and proved �xed

point and common �xed point theorems. Lately, Salimi et al. [21], modi�ed the

concept of ��  � contractive mapping and established �xed point results.

De�nition 1 ([22]). Let T : X ! X and � : X �X ! [0;+1). We say that

T is �-admissible if x; y 2 X; �(x; y) � 1 implies that �(Tx; Ty) � 1:

De�nition 2 ([21]). Let T : X ! X and �; � : X � X ! [0;+1) be two

functions. We say that T is �-admissible mapping with respect to � if x; y 2 X;

�(x; y) � �(x; y) implies that �(Tx; Ty) � �(Tx; Ty):

If �(x; y) = 1; then above de�nition reduces to de�nition 1. If �(x; y) = 1;

then T is called an �-subadmissible mapping.

De�nition 3 [11] Let (X; d) be a metric space. Let T : X ! X and �; � :

X�X ! [0;+1) be two functions. We say that T is ���-continuous mapping

on (X; d) if for given x 2 X; and sequence fxng with

xn ! x as n!1; �(xn; xn+1) � �(xn; xn+1) for all n 2 N) Txn ! Tx:

In 1962, Edelstein proved the following version of the Banach contraction

principle.

Theorem 4 [7]. Let (X; d) be a metric space and T : X ! X be a self mapping.

Assume that

d(Tx; Ty) < d(x; y); holds for all x; y 2 X with x 6= y:

Then T has a unique �xed point in X.

2
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In 2012, Wardowski [24] introduce a new type of contractions called F -

contraction and proved new �xed point theorems concerning F -contraction. He

generalized the Banach contraction principle in a di¤erent way than as it was

done by di¤erent investigators. Piri et al. [19] de�ned the F -contraction as

follows.

De�nition 5 [19] Let (X; d) be a metric space. A mapping T : X ! X is said

to be an F contraction if there exists � > 0 such that

8x; y 2 X; d(Tx; Ty) > 0) � + F (d(Tx; Ty)) � F (d(x; y)) ; (1.1)

where F : R+ ! R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e. for all x; y 2 R+ such that x < y, F (x) < F (y);

(F2) For each sequence f�ng1n=1 of positive numbers, limn!1 �n = 0 if and

only if limn!1 F (�n) = �1;

(F3) There exists k 2 (0; 1) such that lim�! 0+�kF (�) = 0.

We denote by�F , the set of all functions satisfying the conditions (F1)-(F3).

Example 6 [24] Let F : R+ ! R be given by the formula F (�) = ln�: It is

clear that F satis�ed (F1)-(F2)-(F3) for any k 2 (0; 1): Each mapping T : X !

X satis�ying (1:1) is an F -contraction such that

d(Tx; Ty) � e��d(x; y); for all x; y 2 X; Tx 6= Ty:

It is clear that for x; y 2 X such that Tx = Ty the inequality d(Tx; Ty) �

e��d(x; y); also holds, i.e. T is a Banach contraction.

Example 7 [24] If F (�) = ln�+ �; � > 0 then F satis�es (F1)-(F3) and the

condition (1:1) is of the form

d(Tx; Ty)

d(x; y)
� ed(Tx;Ty)�d(x;y) � e�� ; for all x; y 2 X; Tx 6= Ty:

Remark 8 From (F1) and (1:1) it is easy to conclude that every F -contraction

is necessarily continuous.

3
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Wardowski [24] stated a modi�ed version of the Banach contraction principle

as follows.

Theorem 9 [24] Let (X; d) be a complete metric space and let T : X ! X be

an F contraction. Then T has a unique �xed point x� 2 X and for every x 2 X

the sequence fTnxgn2N converges to x�.

Hussain et al. [11] introduced the following family of new functions.

Let �G denotes the set of all functions G : R+4 ! R+ satisfying:

(G) for all t1; t2; t3; t4 2 R+ with t1t2t3t4 = 0 there exists � > 0 such that

G(t1; t2; t3; t4) = � .

De�nition 10 [11] Let (X; d) be a metric space and T be a self mapping on X:

Also suppose that �; � : X �X ! [0;+1) be two function. We say that T is �-

�-GF -contraction if for x; y 2 X; with �(x; Tx) � �(x; y) and d(Tx; Ty) > 0 we

have

G(d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)) + F (d(Tx; Ty)) � F (d(x; y)) ;

where G 2 �G and F 2 �F :

2 Main Result

In this section, we de�ne a new contraction called Ćiríc type �-�-GF -contraction

and obtained some new �xed point theorems for such contraction in the setting

of complete metric spaces. We de�ne Ćiríc type �-�-GF -contraction as follows:

De�nition 11 Let (X; d) be a metric space and T be a self mapping on X:

Also suppose that �; � : X � X ! [0;+1) two functions. We say that T is

Ćiríc type �-�-GF -contraction if for all x; y 2 X; with �(x; Tx) � �(x; y) and

d(Tx; Ty) > 0; we have

G(d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)) + F (d(Tx; Ty)) � F (M(x; y)) (2.1)

4
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where

M(x; y) = max

�
d(x; y); d(x; Tx); d(y; Ty);

d(x; Ty) + d(y; Tx)

2

�
G 2 �G and F 2 �F :

Now we state our main result.

Theorem 12 Let (X; d) be a complete metric space. Let T be a Ćiríc type

�-�-GF -contraction satisfying the following assertions:

(i) T is an �-admissible mapping with respect to �;

(ii) there exists x0 2 X such that �(x0; Tx0) � �(x0; Tx0);

(iii) T is �� �-continuous.

Then T has a �xed point in X: Moreover, T has a unique �xed point when

�(x; y) � �(x; x) for all x; y 2 Fix(T ).

Proof. Let x0 in X such that �(x0; Tx0) � �(x0; Tx0): For x0 2 X; we con-

struct a sequence fxng1n=1 such that x1 = Tx0, x2 = Tx1 = T 2x0. Con-

tinuing this process, xn+1 = Txn = Tn+1x0, for all n 2 N: Now since, T

is an �-admissible mapping with respect to � then �(x0; x1) = �(x0; Tx0) �

�(x0; Tx0) = �(x0; x1). By continuing in this process we have,

�(xn�1; Txn�1) = �(xn�1; xn) � �(xn�1; xn); for all n 2 N: (2.2)

If there exists n 2 N such that d(xn; Txn) = 0, there is nothing to prove. So,

we assume that xn 6= xn+1 with

d(Txn�1; Txn) = d(xn; Txn) > 0;8n 2 N:

Since T is Ćiríc type �-�-GF -contraction, for any n 2 N; we have

G(d(xn�1; Txn�1); d(xn; Txn); d(xn�1; Txn); d(xn; Txn�1))

+F (d(Txn�1; Txn)) � F (M(xn�1; xn))

which implies

G(d(xn�1; xn); d(xn; xn+1); d(xn�1; xn+1); 0)

+F (d(Txn�1; Txn)) � F (M(xn�1; xn)) (2.3)

5
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Now by de�nition of G, d(xn�1; xn):d(xn; xn+1):d(xn�1; xn+1):0 = 0, so there

exists � > 0 such that,

G(d(xn�1; xn); d(xn; xn+1); d(xn�1; xn+1); 0) = � :

Therefore

F (d(xn; xn+1)) = F (d(Txn�1; Txn)) � F (M(xn�1; xn))� � : (2.4)

Now

M(xn�1; xn) = max

8<: d(xn�1; xn); d(xn�1; xn); d(xn; xn+1);

d(xn�1;xn+1)+d(xn;xn)
2 ;

9=;
= max

8<: d(xn�1; xn); d(xn�1; xn); d(xn; xn+1);

d(xn�1;xn+1)
2 ;

9=;
� max

�
d(xn�1; xn); d(xn; xn+1);

d(xn�1; xn) + d(xn; xn+1)

2

�
= max fd(xn�1; xn); d(xn; xn+1)g :

So, we have

F (d(xn; xn+1)) = F (d(Txn�1; Txn)) � F (max fd(xn�1; xn); d(xn; xn+1)g)�� :

In this case M(xn�1; xn) = max fd(xn�1; xn); d(xn; xn+1)g = d(xn; xn+1) is

impossible, because

F (d(xn; xn+1)) = F (d(Txn�1; Txn)) � F (d(xn; xn+1))� � < F (d(xn; xn+1)) :

Which is a contradiction. So

M(xn�1; xn) = max fd(xn�1; xn); d(xn; xn+1)g = d(xn�1; xn):

Thus from (2:4); we have

F (d(xn; xn+1)) � F (d(xn�1; xn))� � :

6
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Continuing this process, we get

F (d(xn; xn+1)) � F (d(xn�1; xn))� �

= F (d(Txn�2; Txn�1))� �

� F (d(xn�2; xn�1))� 2�

= F (d(Txn�3; Txn�2))� 2�

� F (d(xn�3; xn�2))� 3�
...

� F (d(x0; x1))� n�:

This implies that

F (d(xn; xn+1)) � F (d(x0; x1))� n�: (2.5)

From (2:5), we obtain limn!1 F (d(xn; xn+1)) = �1. Since F 2 �F ; we have

lim
n!1

d(xn; xn+1) = 0: (2.6)

From (F3), there exists k 2 (0; 1) such that

lim
n!1

�
(d(xn; xn+1))

k
F (d(xn; xn+1))

�
= 0: (2.7)

From (2:5), for all n 2 N; we obtain

(d(xn; xn+1))
k
(F (d(xn; xn+1))� F (d(x0; x1))) � � (d(xn; xn+1))k n� � 0:

(2.8)

By using (2:6), (2:7) and letting n!1; in (2:8), we have

lim
n!1

�
n (d(xn; xn+1))

k
�
= 0: (2.9)

We observe that from (2:9); then there exists n1 2 N; such that n (d(xn; xn+1))k �

1 for all n � n1, we get

d(xn; xn+1) �
1

n
1
k

for all n � n1: (2.10)

7
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Now, m;n 2 N such that m > n � n1. Then, by the triangle inequality and

from (2:10) we have

d(xn; xm) � d(xn; xn+1) + d(xn+1; xn+2) + d(xn+2; xn+3) + :::+ d(xm�1; xm)(2.11)

=
m�1X
i=n

d(xi; xi+1)

�
1X
i=n

d(xi; xi+1)

�
1X
i=n

1

i
1
k

:

The series
P1

i=n
1

i
1
k
is convergent: By taking limit as n ! 1; in (2:11); we

have limn;m!1 d(xn; xm) = 0: Hence fxng is a Cauchy sequence. Since X is

a complete metric space there exists x� 2 X such that xn ! x� as n ! 1:

T is an �-�-continuous and �(xn�1; xn) � �(xn�1; xn); for all n 2 N then

xn+1 = Txn ! Tx� as n!1: That is, x� = Tx�. Hence x� is a �xed point of

T . To prove uniqueness, let x 6= y be any two �xed point of T , then from (2:1);

we have

G(d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)) + F (d(Tx; Ty)) � F (M(x; y))

we obtain

� + F (d(x; y)) � F (d(x; y)) :

which is a contradiction. Hence, x = y. Therefore, T has a unique �xed point.

Theorem 13 Let (X; d) be a complete metric space. Let T be a self mapping

satisfying the following assertions:

(i) T is an �-admissible mapping with respect to �;

(ii) T is Ćiríc type �-�-GF -contraction;

(iii) there exists x0 2 X such that �(x0; Tx0) � �(x0; Tx0);

(iv) if fxng is a sequence in X such that �(xn; xn+1) � �(xn; xn+1) with

xn ! x� as n!1 then either

�(Txn; x) � �(Txn; T
2xn) or �(T 2xn; x) � �(T 2xn; T

3xn)

8
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holds for all n 2 N.

Then T has a �xed point in X: Moreover, T has a unique �xed point when

�(x; y) � �(x; x) for all x; y 2 Fix(T ).

Proof. As similar lines of the Theorem 12, we can conclude that

�(xn; xn+1) � �(xn; xn+1) and xn ! x� as n!1:

Since, by (iv), either

�(Txn; x
�) � �(Txn; T

2xn) or �(T 2xn; x�) � �(T 2xn; T
3xn);

holds for all n 2 N. This implies

�(xn+1; x
�) � �(xn+1; xn+2) or �(xn+2; x�) � �(xn+2; xn+3); for all n 2 N:

Then there exists a subsequencefxnkg of fxng such that

�(xnk ; Txnk) = �(xnk ; xnk+1) � �(xnk ; x
�):

From (2:1), we have

G(d(xnk ; Txnk); d(x
�; Tx�); d(xnk ; Tx

�); d(x�; Txnk)) + F (d(Txnk ; Tx
�))

� F (M(xnk ; x
�))

= F

0@max
8<: d(xnk ; x

�); d(xnk ; Txnk); d(x
�; Tx�);

d(xnk ;Tx
�)+d(x�;Txnk )

2 ;

9=;
1A

= F

0@max
8<: d(xnk ; x

�); d(xnk ; xnk+1); d(x
�; Tx�);

d(xnk ;Tx
�)+d(x�;xnk+1)

2

9=;
1A :

Using the continuity of F and the fact that

lim
k!1

d(xnk ; x
�) = 0 = lim

k!1
d(xnk+1; x

�) (2.12)

we obtain

� + F (d(x�; Tx�)) � F (d(x�; Tx�)) : (2.13)

Which is a contradiction. Therefore, d(x�; Tx�) = 0, implies x� is a �xed point

of T . Uniqueness follows similar lines as in Theorem 12.

In the following we extend the Wardowski type �xed point theorem.

9
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Theorem 14 Let T be a continuous self mapping on a complete metric space

X. If for x; y 2 X with d(x; Tx) � d(x; y) and d(Tx; Ty) > 0; we have

G(d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)) + F (d(Tx; Ty)) � F (M(x; y)) ;

where

M(x; y) = max

�
d(x; y); d(x; Tx); d(y; Ty);

d(x; Ty) + d(y; Tx)

2

�
:

G 2 �G and F 2 �F : Then T has a �xed point in X:

Proof. Let us de�ne �; � : X �X ! [0;+1) by

�(x; y) = d(x; y) and �(x; y) = d(x; y) for all x; y 2 X:

Now, d(x; y) � d(x; y) for all x; y 2 X; so �(x; y) � �(x; y) for all x; y 2 X:

That is, conditions (i) and (iii) of Theorem 12 hold true. Since T is continuous,

so T is �-�-continuous. Let �(x; Tx) � �(x; y) and d(Tx; Ty) > 0; we have

d(x; Tx) � d(x; y) with d(Tx; Ty) > 0; then

G(d(x; Tx); d(y; Ty); d(x; Ty); d(y; Tx)) + F (d(Tx; Ty)) � F (M(x; y)) :

That is, T is Ćiríc type �-�-GF -contraction mapping. Hence, all conditions of

Theorem 12 satis�ed and T has a �xed point.

Corollary 15 Let T be a continuous selfmapping on a complete metric space

X. If for x; y 2 X with d(x; Tx) � d(x; y) and d(Tx; Ty) > 0; we have

� + F (d(Tx; Ty)) � F (M(x; y)) ;

where � > 0; and F 2 �F : Then T has a �xed point in X:

Corollary 16 Let T be a continuous selfmapping on a complete metric space

X. If for x; y 2 X with d(x; Tx) � d(x; y) and d(Tx; Ty) > 0; we have

� + F (d(Tx; Ty)) � F (d(x; y)) ;

where � > 0; and F 2 �F : Then T has a �xed point in X:

10
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Corollary 17 [11] Let (X; d) be a complete metric space. Let T : X ! X be a

self-mapping satisfying the following assertions:

(i) T is an �-admissible mapping with respect to �;

(ii) T is an �-�-GF -contraction

(iii) there exists x0 2 X such that �(x0; Tx0) � �(x0; Tx0);

(iv) T is �� �-continuous.

Then T has a �xed point in X: Moreover, T has a unique �xed point when

�(x; y) � �(x; x) for all x; y 2 Fix(T ).

Corollary 18 [11] Let (X; d) be a complete metric space. Let T : X ! X be a

self-mapping satisfying the following assertions:

(i) T is an �-admissible mapping with respect to �;

(ii) T is an �-�-GF -contraction

(iii) there exists x0 2 X such that �(x0; Tx0) � �(x0; Tx0);

(iv)if fxng is a sequence in X such that �(xn; xn+1) � �(xn; xn+1) with

xn ! x� as n!1 then either

�(Txn; x) � �(Txn; T
2xn) or �(T 2xn; x) � �(T 2xn; T

3xn)

holds for all n 2 N.

Then T has a �xed point in X: Moreover, T has a unique �xed point when

�(x; y) � �(x; x) for all x; y 2 Fix(T ).

Example 19 Consider the sequence,

S1 = 1� 3

S2 = 1� 3 + 2� 5

S3 = 1� 3 + 2� 5 + 3� 7

Sn = 1� 3 + 2� 5 + 3� 7 : : :+ n� (2n+ 1) = n(n+1)(4n+5)
6 :

Let X=fSn : n 2 Ng and d (x; y) = jx� yj : Then (X; d) is a complete metric

space. If F (�) = �+ln�; � > 0 and G(t1; t2; t3; t4) = � where � = 1: De�ne the

11
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mapping T : X ! X by, T (S1) = S1 and T (Sn) = Sn�1; n � 1 and �(x; y) = 1

if x 2 X; �(x; Tx) = 1
2 for all x 2 X: we have

lim
n!1

d (T (Sn) ; T (S1))

d (Sn; S1)
= lim

n!1

Sn�1 � 3
Sn � 3

=
(n� 1)n(4n+ 1)� 18
n(n+ 1)(4n+ 5)� 18 = 1:

So we conclude the following two cases:

Case 1:

we observe that for every m 2 N;m > 2; n = 1 or n = 1 and m > 1 then

�(Sm; Sn) � �(Sm; T (Sm)), we have

d (T (Sm) ; T (S1))

M (Sm; S1)
ed(T (Sm);T (S1))�M(Sm;S1) =

Sm�1 � 3
Sm � 3

eSm�1�Sm

=
(m� 1)m (4m+ 1)� 18
m (m+ 1) (4m+ 5)� 18e

�m(m+1)(4m+5)
6

< e�1:

Case 2:

for m > n > 1, then �(Sm; Sn) � �(Sm; T (Sm)), we have

d (T (Sm) ; T (Sn))

M (Sm; Sn)
ed(T (Sm);T (Sn))�M(Sm;Sn)

=
Sm�1 � Sn�1
Sm � Sn

eSn�Sn�1+Sm�1�Sm

=
(m� 1)m(4m+ 1)� (n� 1)n(4n+ 1)
m(m+ 1)(4m+ 5)� n(n+ 1)(4n+ 5) e

n(n+1)(4n+5)
6 �m(m+1)(4m+5)

6 � e�1:

So all condition of theorems are satis�ed, T has a �xed point in X:

Let (X; d;�) be a partially ordered metric space. Let T : X ! X is such

that for x; y 2 X; with x � y implies Tx � Ty, then the mapping T is said

to be non-decreasing. We derive following important result in partially ordered

metric spaces.

Theorem 20 Let (X; d;�) be a complete partially ordered metric space. As-

sume that the following assertions hold true:

(i) T is nondecreasing and ordered GF -contraction;

12
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(ii) there exists x0 2 X such that x0 � Tx0;

(iii) either for a given x 2 X and sequence fxng in X such that xn ! x as

n!1 and xn � xn+1 for all n 2 N we have Txn ! Tx

or if fxng is a sequence in X such that xn � xn+1 with xn ! x as n ! 1

then either

Txn � x or T 2xn � x

holds for all n 2 N.

Then T has a �xed point in X:

De�ne z = f� : R+ �! R+ : � is a Lebesgue integral mapping which is

summable, nonnegative and satis�es
�R
0

�(t)dt > 0, for each � > 0g:

We can easily deduce following result involving integral type inequalities.

Theorem 21 Let T be a continuous selfmapping on a complete metric space

X. If for x; y 2 X with

d(x;Tx)Z
0

�(t)dt �
d(x;y)Z
0

�(t)dt and

d(Tx;Ty)Z
0

�(t)dt > 0;

we have

G(

d(x;Tx)Z
0

�(t)dt;

d(y;Ty)Z
0

�(t)dt;

d(x;Ty)Z
0

�(t)dt;

d(y;Tx)Z
0

�(t)dt) + F

0B@ d(Tx;Ty)Z
0

�(t)dt

1CA
� F

0B@M(x;y)Z
0

�(t)dt

1CA ;

where

M(x; y) = max

�
d(x; y); d(x; Tx); d(y; Ty);

d(x; Ty) + d(y; Tx)

2

�
:

� 2 z; G 2 �G and F 2 �F : Then T has a �xed point in X:
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FIXED POINT AND QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN

NON-ARCHIMEDEAN BANACH SPACES

JUNG RYE LEE AND DONG YUN SHIN∗

Abstract. In this paper, we solve the following quadratic ρ-functional inequalities∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (0.1)

−4f(x)− 4f(y)− 4f(z))‖,
where ρ is a fixed non-Archimedean number with |ρ| < 1

|4| , and

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖ (0.2)

≤
∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z))‖ ,

where ρ is a fixed non-Archimedean number with |ρ| < |8|.
Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic ρ-

functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element
having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of
a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call
it simply a field.

Definition 1.1. ([19]) LetX be a vector space over a fieldK with a non-Archimedean valuation
| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the
following conditions:

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47H10, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; fixed point; quadratic ρ-

functional inequality.
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(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X
holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the
sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε
for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence {xn}
is called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

‖xn − x‖ ≤ ε
for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X
is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [27] con-
cerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [12] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [1] for additive mappings and by Rassias [24] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Găvruta [9] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called the quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. The stability of quadratic functional
equation was proved by Skof [26] for mappings f : E1 → E2, where E1 is a normed space and
E2 is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain E1 is replaced by an Abelian group. See [7, 15, 16] for more functional equations.

The functional equation 2f
(
x+y
2

)
+ 2

(
x−y
2

)
= f(x) + f(y) is called a Jensen type quadratic

equation.
In [10], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.2)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [25]. Gilányi [11] and Fechner [8] proved the Hyers-Ulam stability of the functional
inequality (1.1). Park, Cho and Han [22] proved the Hyers-Ulam stability of additive functional
inequalities.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.
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Theorem 1.3. [3, 6] Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant α < 1. Then for each given element
x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [13] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [4, 5, 14, 17, 20, 21, 23]).

In Section 2, we deal with quadratic functional equations. In Section 3, we solve the quadratic
ρ-functional inequality (0.1) and prove the Hyers-Ulam stability of the quadratic ρ-functional
inequality (0.1) in non-Archimedean Banach spaces. In Section 4, we solve the quadratic ρ-
functional inequality (0.2) and prove the Hyers-Ulam stability of the quadratic ρ-functional
inequality (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a
non-Archimedean Banach space. Let |2| 6= 1.

2. Quadratic functional equations

Theorem 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f

(
x+ y + z

2
+
x− y − z

2
+
y − x− z

2
+
z − x− y

2

)
= f(x) + f(y) + f(z) (2.1)

if and only if the mapping f : X → Y is a quadratic mapping.

Proof. Assume that f : X → Y satisfies (2.1)
Letting x = y = z = 0 in (2.1), we have 4f(0) = 3f(0). So f(0) = 0.
Letting y = z = 0 in (2.1), we get

2f

(
x

2

)
+ 2f

(
−x

2

)
= f(x) & 2f

(
−x

2

)
+ 2f

(
x

2

)
= f(−x) (2.2)

for all x ∈ X, which imply that f(x) = f(−x) for all x ∈ X.
From this and (2.2), we obtain 4f

(
x
2

)
= f(x) or f(2x) = 4f(x) for all x ∈ X.

Putting z = 0 in (2.1), we obtain 1
2f(x+y)+ 1

2f(x−y) = f(x)+f(y) for all x, y ∈ X, which
means that f : X → Y is a quadratic mapping.

The converse is obviously true. �

Corollary 2.2. Let X and Y be vector spaces. An even mapping f : X → Y satisfies

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) = 4f(x) + 4f(y) + 4f(z) (2.3)

for all x, y, z ∈ X. Then the mapping f : X → Y is a quadratic mapping.

Proof. Assume that f : X → Y satisfies (2.3).
Letting x = y = z = 0 in (2.3), we have 4f(0) = 12f(0). So f(0) = 0.
Letting z = 0 in (2.3), we get 2f(x+y)+2f(x−y) = 4f(x)+4f(y) and so f(x+y)+f(x−y) =

2f(x) + 2f(y) for all x, y ∈ X. �
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3. Quadratic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1
|4| .

In this section, we solve and investigate the quadratic ρ-functional inequality (0.1) in non-
Archimedean normed spaces.

Lemma 3.1. An even mapping f : X → Y satisfies∥∥∥∥f (
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.1)

−4f(x)− 4f(y)− 4f(z))‖
for all x, y, z ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = z = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖. So f(0) = 0.
Letting y = z = 0 in (3.1), we get

∥∥4f
(
x
2

)
− f(x)

∥∥ ≤ 0 and so

f

(
x

2

)
=

1

4
f(x) (3.2)

for all x ∈ X.
By (3.1) and (3.2), we have

f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X, since |ρ| < 1
|4| .

The converse is obviously true. �

Now we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in
non-Archimedean Banach spaces.

Theorem 3.2. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 such that there exists an
L < 1 with

ϕ

(
x

2
,
y

2
,
z

2

)
≤ L

|4|
ϕ (x, y, z) (3.3)

for all x, y, z ∈ X. Let f : X → Y be an even mapping such that∥∥∥∥f (
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.4)

−4f(x)− 4f(y)− 4f(z))‖+ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

1− L
ϕ (x, 0, 0) (3.5)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (3.4), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖. So f(0) = 0.
Letting y = z = 0 in (3.4), we get∥∥∥∥4f

(
x

2

)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0, 0) (3.6)
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for all x ∈ X.
Consider the set S := {h : X → Y, h(0) = 0} and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, 0, 0) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that Jg(x) := 4g

(
x
2

)
for all x ∈ X. Let

g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, 0, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥4g

(
x

2

)
− 4h

(
x

2

)∥∥∥∥ ≤ |4|εϕ(
x

2
, 0, 0

)
≤ |4|ε L

|4|
ϕ (x, 0, 0) ≤ Lεϕ (x, 0, 0)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (3.6) that d(f, Jf) ≤ 1.
By Theorem 1.3, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q

(
x

2

)
(3.7)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.7) such that there exists a µ ∈ (0,∞)
satisfying ‖f(x)−Q(x)‖ ≤ µϕ (x, 0, 0) for all x ∈ X;

(2) d(J lf,Q) → 0 as l → ∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all

x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies the inequality d(f,Q) ≤ 1
1−L . So ‖f(x)−Q(x)‖ ≤

1
1−Lϕ(x, 0, 0) for all x ∈ X.

It follows from (3.3) and (3.4) that∥∥∥∥Q(
x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)‖

= lim
n→∞

|4|n
∥∥∥∥f (

x+ y + z

2n+1

)
+ f

(
x− y − z

2n+1

)
+ f

(
y − x− z

2n+1

)
+ f

(
z − x− y

2n+1

)
−f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
≤ lim

n→∞
|4|n|ρ|

∥∥∥∥f (
x+ y + z

2n

)
+ f

(
x− y − z

2n

)
+ f

(
y − x− z

2n

)
+ f

(
z − x− y

2n

)
−4f

(
x

2n

)
− 4f

(
y

2n

)
− 4f

(
z

2n

)∥∥∥∥ + lim
n→∞

1

|4|n
ϕ

(
x

2n
,
y

2n
,
z

2n

)
= ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖
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for all x, y, z ∈ X. So∥∥∥∥Q(
x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)

∥∥∥∥
≤ ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)− 4Q(x)− 4Q(y)− 4Q(z))‖

for all x, y, z ∈ X. By Lemma 3.1, the mapping Q : X → Y is quadratic.
Now, let T : X → Y be another quadratic mapping satisfying (3.5). Then we have

‖Q(x)− T (x)‖ =

∥∥∥∥4qQ

(
x

2q

)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qQ

(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT

(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥} ≤ lim
n→∞

1

|4|n
ϕ

(
x

2n
, 0, 0

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all
x ∈ X. This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique quadratic
mapping satisfying (3.5). �

Corollary 3.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be an even
mapping such that∥∥∥∥f (

x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.8)

−4f(x)− 4f(y)− 4f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)
for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|rθ
|2|r − |2|2

‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by takig ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Then we can choose L = |2|2−r and we get desired result. �

Theorem 3.4. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 such that there exists an
L < 1 with

ϕ (x, y, z) ≤ |4|Lϕ
(
x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X Let f : X → Y be an even mapping satisfying (3.4). Then there exists a
unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ (x, 0, 0)

for all x ∈ X.

Proof. It follows from (3.6) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(2x, 0, 0) ≤ Lϕ(x, 0, 0) (3.9)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 3.2.
Now we consider the linear mapping J : S → S such that Jg(x) := 1

4g (2x) for all x ∈ X.
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It follows from (3.9) that d(f, Jf) ≤ L. So d(f,Q) ≤ L
1−L . So ‖f(x)−Q(x)‖ ≤ L

1−Lϕ(x, 0, 0)
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 3.5. Let r > 2 and θ be positive real numbers, and let f : X → Y be an even
mapping satisfying (3.8). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|rθ
|2|2 − |2|r

‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by takig ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Then we can choose L = |2|r−2 and we get desired result. �

4. Quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < |8|.
In this section, we solve and investigate the quadratic ρ-functional inequality (0.2) in non-

Archimedean normed spaces.

Lemma 4.1. An even mapping f : X → Y satisfies

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (

x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.1)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥
for all x, y, z ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (4.1).
Letting x = y = z = 0 in (4.1), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting x = y, z = 0 in (4.1), we get

‖2f (2x)− 8f(x)‖ ≤ 0 (4.2)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.
By (4.1) and (4.2), we have

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) = 4f(x) + 4f(y) + 4f(z)

for all x, y, z ∈ X, since |ρ| < |8| ≤ |4|.
The converse is obviously true. �

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (4.1) in non-
Archimedean Banach spaces.

Theorem 4.2. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 such that there exists an
L < 1 with

ϕ

(
x

2
,
y

2
,
z

2

)
≤ L

|4|
ϕ (x, y, z) (4.3)

for all x, y, z ∈ X. Let f : X → Y be an even mapping satisfying

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (

x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z))‖+ ϕ(x, y, z) (4.4)
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for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

|4|(1− L)
ϕ (x, x, 0) (4.5)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (4.4), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting x = y, z = 0 in (4.4), we get

∥∥∥∥4f

(
x

2

)
− f(x)

∥∥∥∥ ≤ ϕ(
x

2
,
x

2
, 0

)
≤ L

|4|
ϕ (x, x, 0) (4.6)

for all x ∈ X.
Consider the set S := {h : X → Y, h(0) = 0} and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x, 0) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [18]).
Now we consider the linear mapping J : S → S such that Jg(x) := 4g

(
x
2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then ‖g(x)− h(x)‖ ≤ εϕ (x, x, 0) for all x ∈ X.
Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥4g

(
x

2

)
− 4h

(
x

2

)∥∥∥∥ ≤ Lεϕ (x, x, 0)

for all a ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (4.6) that d(f, Jf) ≤ L
|4| .

By Theorem 1.3, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q

(
x

2

)
(4.7)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set M = {g ∈ S : d(f, g) <∞}.
This implies that Q is a unique mapping satisfying (4.7) such that there exists a µ ∈ (0,∞)
satisfying ‖f(x)−Q(x)‖ ≤ µϕ (x, x, 0) for all x ∈ X;

(2) d(J lf,Q) → 0 as l → ∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all

x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies the inequality d(f,Q) ≤ L
|4|(1−L) . So

‖f(x)−Q(x)‖ ≤ L

|4|(1− L)
ϕ(x, x, 0)

for all x ∈ X.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

489 JUNG RYE LEE et al 482-492



FIXED POINT AND QUADRATIC ρ-FUNCTIONAL INEQUALITIES

It follows from (4.3) and (4.4) that∥∥∥∥Q(
x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)‖

= lim
n→∞

|4|n
∥∥∥∥f (

x+ y + z

2n+1

)
+ f

(
x− y − z

2n+1

)
+ f

(
y − x− z

2n+1

)
+ f

(
z − x− y

2n+1

)
−f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
≤ lim

n→∞
|4|n|ρ|

∥∥∥∥f (
x+ y + z

2n

)
+ f

(
x− y − z

2n

)
+ f

(
y − x− z

2n

)
+ f

(
z − x− y

2n

)
−4f

(
x

2n

)
− 4f

(
y

2n

)
− 4f

(
z

2n

)∥∥∥∥ + lim
n→∞

|4|nϕ
(
x

2n
,
y

2n
,
z

2n

)
= ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖

for all x, y, z ∈ X. So∥∥∥∥Q(
x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)‖

≤ ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖

for all x, y, z ∈ X. By Lemma 4.1, the mapping Q : X → Y is quadratic.
The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 4.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be an even
mapping such that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (

x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.8)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥ + θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|2|r − |2|2
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.2 by takig ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Then we can choose L = |2|2−r and we get desired result. �

Theorem 4.4. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 such that there exists an
L < 1 with

ϕ (x, y, z) ≤ |4|Lϕ
(
x

2
,
y

2
,
z

2

)
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for all x, y, z ∈ X Let f : X → Y be an even mapping satisfying (4.4). Then there exists a
unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

|4|(1− L)
ϕ (x, x, 0)

for all x ∈ X.

Proof. It follows from (4.6) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(x, x, 0) (4.9)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 4.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (4.9) that d(f, Jf) ≤ 1

|4| . So d(f,Q) ≤ 1
|4|(1−L)d(f, Jf), which implies the

inequality

d(f,Q) ≤ 1

1− L
.

So

‖f(x)−Q(x)‖ ≤ 1

|4|(1− L)
ϕ(x, x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 4.5. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be an even
mapping satisfying (4.8). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|2|2 − |2|r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.4 by takig ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Then we can choose L = |2|r−2 and we get desired result. �
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[9] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J.
Math. Anal. Appl. 184 (1994), 431–43.
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ABSTRACT

In this paper, we study the behavior of the solutions of the following rational di¤erence equation with big order

xn+1 = axn�l + bxn�k +
cxn�s + dxn�t
exn�s + fxn�t

:

where the parameters a; b; c; d; e and f are positive real numbers and the initial conditions x�r; x�r+1 :::; x�1
and x0 are positive real numbers where r = maxfl; k; s; tg.
Keywords: recursive sequence, periodicity, boundedness, stability, di¤erence equations.

Mathematics Subject Classi�cation: 39A10

� � � � � � � � � � � � � � � � � � � � � �

1. INTRODUCTION

Di¤erence equations appear as natural descriptions of observed evolution phenomena because most measurements
of time evolving variables are discrete and as such these equations are in their own right important mathematical
models. Di¤erence equations related to di¤erential equations as discrete mathematics related to continuous
mathematics.

In recent years nonlinear di¤erence equations have attracted the attention of many researchers, for example:
Agarwal and Elsayed [1] studied the global stability, periodicity character and gave the solution form of some
special cases of the recursive sequence

xn+1 = axn +
bxnxn�3

cxn�2 + dxn�3
:

Cinar [5] obtained the solutions of the following di¤erence equation

xn+1 =
xn�1

�1 + axnxn�1
:

El-Metwally et al.[10] dealed with the following di¤erence equation

yn+1 =
yn�(2k+1) + p

yn�(2k+1) + qyn�2l
:

Elsayed [12] studied the global stability, and periodicity character of the following recursive sequence

xn+1 = axn�l +
bxn�l

cxn�l � dxn�k
:
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Elsayed et al. [18] investigated the behavior of the following second order rational di¤erence equation

xn+1 = axn +
b+ cxn�1
d+ exn�1

:

Elsayed and El-Dessoky [16] investigated the global convergence, boundedness, and periodicity of solutions of
the di¤erence equation

xn+1 = axn�s +
bxn�l + cxn�k
dxn�l + exn�k

:

Karatas et al. [21] got the solution of the di¤erence equation

xn+1 =
xn�5

1 + xn�2xn�5
:

Obaid et al. [24] studied the global attractivity and periodic character of the following fourth order di¤erence
equation

xn+1 = axn +
bxn�1 + cxn�2 + dxn�3
�xn�1 + �xn�2 + 
xn�3

:

Yalcinkaya [29] dealed with the following di¤erence equation

xn+1 = �+
xn�m
xkn

:

Zayed and El-Moeam [31], [32] studied the global asymptotic properties of the solutions of the following di¤erence
equations

xn+1 = axn �
bxn

cxn � dxn�k
:

xn+1 = Axn +Bxn�k +
pxn + xn�k
q + xn�k

:

For some related work see [1-33].

Our goal in this article is to investigate the global stability character and the periodicity of solutions of the
recursive sequence

xn+1 = axn�l + bxn�k +
cxn�s + dxn�t
exn�s + fxn�t

: (1)

where the parameters a; b; c; d; e and f are positive real numbers and the initial conditions x�r; x�r+1 :::; x�1
and x0 are positive real numbers where r = maxfl; k; s; tg.

2. SOME BASIC PROPERTIES AND DEFINITIONS

Here, we recall some basic de�nitions and some theorems that we need in the sequel.

Let I be some interval of real numbers and let F : Ik+1 ! I; be a continuously di¤erentiable function. Then
for every set of initial conditions x�k; x�k+1; ::: ; x0 2 I; the di¤erence equation

xn+1 = F (xn; xn�1; :::; xn�k); n = 0; 1; :::; (2)

has a unique solution fxng1n=�k :
De�nition 1. (Equilibrium point) A point �x 2 I is called an equilibrium point of Equation (2) if

�x = F (�x; �x; :::; �x):

That is, xn = �x for n � 0, is a solution of Equation (2), or equivalently, �x is a �xed point of F .
De�nition 2. (Periodicity)
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A sequence fxng1n=�k is said to be periodic with period p if xn+p = xn for all n � �k.
De�nition 3. (Stability)

(i) The equilibrium point �x of Equation (2) is locally stable if for every � > 0, there exists � > 0 such that
for all x�k; x�k+1; :::; x�1; x0 2 I with

jx�k � �xj+ jx�k+1 � �xj+ :::+ jx0 � �xj < �;

we have
jxn � �xj < � for all n � �k:

(ii) The equilibrium point �x of Equation (2) is locally asymptotically stable if �x is locally stable solution of
Equation (2) and there exists 
 > 0, such that for all x�k; x�k+1; :::; x�1; x0 2 I with

jx�k � �xj+ jx�k+1 � �xj+ :::+ jx0 � �xj < 
;

we have
lim
n!1

xn = �x:

(iii) The equilibrium point �x of Equation (2) is global attractor if for all x�k; x�k+1; :::; x�1; x0 2 I; we have

lim
n!1

xn = �x:

(iv) The equilibrium point �x of Equation (2) is globally asymptotically stable if �x is locally stable, and �x is also
a global attractor of Equation (2).

(v) The equilibrium point �x of Equation (2) is unstable if is not locally stable.

The linearized equation of Equation (2) about the equilibrium point �x is the linear di¤erence equation

yn+1 =
kX
i=0

@F (�x; �x; :::; �x)

@xn�i
yn�i: (3)

Theorem A [22] Assume that pi 2 R; i = 1; 2; ::: and k 2 f0; 1; 2; :::g: Then
kX
i=1

jpij < 1; (4)

is a su¢ cient condition for the asymptotic stability of the di¤erence equation

yn+k + p1yn+k�1 + :::+ pkyn = 0; n = 0; 1; ::: : (5)

Theorem B [23] Let g : [a; b]k+1 ! [a; b], be a continuous function, where k is a positive integer, and where
[a; b] is an interval of real numbers. Consider the di¤erence equation

xn+1 = g(xn; xn�1; :::; xn�k); n = 0; 1; ::: : (6)

Suppose that g satis�es the following conditions.

(1) For each integer i with 1 � i � k + 1; the function g(z1; z2; :::; zk+1) is weakly monotonic in zi for �xed
z1; z2; :::; zi�1; zi+1; :::; zk+1:

(2) If m;M is a solution of the system

m = g(m1;m2; :::;mk+1); M = g(M1;M2; :::;Mk+1);

then m =M , where for each i = 1; 2; :::; k + 1; we set

mi =

�
m; if g is non-decreasing in zi;
M; if g is non-increasing in zi;

�
; Mi =

�
M; if g is non-decreasing in zi;
m; if g is non-increasing in zi.

�
:

Then there exists exactly one equilibrium point �x of Equation.(6), and every solution of Equation (6) converges
to �x.
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3. LOCAL STABILITY OF EQUATION (1)

In this section, we investigate the local stability character of the solutions of Equation (1). Equation (1) has a
unique positive equilibrium point and is given by

�x = a�x+ b�x+
c�x+ d�x

e�x+ f �x
:

If (a+ b) < 1;then the unique positive equilibrium point is

�x =
c+ d

[1� (a+ b)](e+ f) :

Let f : (0;1)4 �! (0;1) be a function de�ned by

f(u0; u1; u2; u3) = au0 + bu1 +
cu2 + du3
eu2 + fu3

:

Therefore it follows that

@f(u0; u1; u2; u3)

@u0
= a;

@f(u0; u1; u2; u3)

@u1
= b;

@f(u0; u1; u2; u3)

@u2
=

(cf � de)u3
(eu2 + fu3)2

;
@f(u0; u1; u2; u3)

@u3
=
(de� cf)u2
(eu2 + fu3)2

:

Then, we see that

@f(�x; �x; �x; �x)

@u0
= a;

@f(�x; �x; �x; �x)

@u1
= b;

@f(�x; �x; �x; �x)

@u2
=

(cf � de)[1� (a+ b)]
(e+ f)(c+ d)

;
@f(�x; �x; �x; �x)

@u3
=
(de� cf)[1� (a+ b)]

(e+ f)(c+ d)
:

Then, the linearized equation of Equation (1) about �x is

yn+1 + ayn�l + byn�k +
(cf � de)[1� (a+ b)]

(e+ f)(c+ d)
yn�s +

(de� cf)[1� (a+ b)]
(e+ f)(c+ d)

yn�p = 0: (7)

Theorem 1. Assume that
2 jcf � dej < (e+ f) (c+ d) :

Then the equilibrium point of Equation (1) is locally asymptotically stable.

Proof. It follows by Theorem A that Equation (7) is asymptotically stable if

jaj+ jbj+
���� (cf � de)[1� (a+ b)](e+ f)(c+ d)

����+ ���� (de� cf)[1� (a+ b)](e+ f)(c+ d)

���� < 1;
or

2

���� (cf � de)[1� (a+ b)](e+ f)(c+ d)

���� < [1� (a+ b)];
and so

2 jcf � dej < (e+ f) (c+ d) :

This completes the proof.
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4. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQUATION (1)

In this section we deals the global attractivity character of solutions of Equation (1).

Theorem 2. The equilibrium point �x is a global attractor of equation (1) if one of the following conditions
holds:

(i) cf � de � 0; d � c:
(ii) de� cf � 0; c � d:

Proof. Let r; s be nonnegative real numbers and assume that f : [r; s]4 ! [r; s] be a function de�ned by

f(u0; u1; u2; u3) = au0 + bu1 +
cu2 + du3
eu2 + fu3

:

Then

@f(u0; u1; u2; u3)

@u0
= a;

@f(u0; u1; u2; u3)

@u1
= b;

@f(u0; u1; u2; u3)

@u2
=

(cf � de)u3
(eu2 + fu3)2

;
@f(u0; u1; u2; u3)

@u3
=
(de� cf)u2
(eu2 + fu3)2

:

We consider two cases:

Case1: Assume that cf�de � 0 is true, then we can easily see that the function f(u0; u1; u2; u3) is increasing
in u0; u1; u2 and decreasing in u3. Suppose that (m;M) is a solution of the system

M = f(M;M;M;m) and m = f(m;m;m;M):

Then from Equation (1), we see that

M = aM + bM +
cM + dm

eM + fm
; m = am+ bm+

cm+ dM

em+ fM
;

M [1� (a+ b)] =
cM + dm

eM + fm
; m[1� (a+ b)] = cm+ dM

em+ fM
;

then

M2e[1� (a+ b)] +mMf [1� (a+ b)] = cM + dm;

m2e[1� (a+ b)] +mMf [1� (a+ b)] = cm+ dM:

Subtracting this two equations, we obtain

(M �m) fe(M +m)[1� (a+ b)] + (d� c)g = 0;

under the condition (a + b) < 1; d > c; we see that M = m: It follows from Theorem B that �x is a global
attractor of Equation (1).

Case 2: Similar to Case 1.

5. BOUNDEDNESS OF SOLUTIONS OF EQUATION (1)

In this section we study the boundedness nature of the solutions of Equation (1).

Theorem 3. Every solution of Equation (1) is bounded if a+ b < 1:

Proof. Let fxng1n=�r be a solution of Equation (1). It follows from Equation (1) that

xn+1 = axn�l + bxn�k +
cxn�s + dxn�t
exn�s + fxn�t

= axn�l + bxn�k +
cxn�s

exn�s + fxn�t
+

dxn�t
exn�s + fxn�t

:
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Then

xn+1 6 axn�l + bxn�k +
cxn�s
exn�s

+
dxn�t
fxn�t

= axn�l + bxn�k +
c

e
+
d

f
for all n � 1:

By using a comparison, we can right hand side as follows

zn+1 = azn�l + bzn�k +
c

e
+
d

f
:

and this equation is locally asymptotically stable if a + b < 1; and converges to the equilibrium point �z =
cf+de

ef [1�(a+b)] : Therefore

lim
n!1

supxn 6 cf+de
ef [1�(a+b)] :

Thus the solution is bounded.

Theorem 4. Every solution of Equation (1) is unbounded if a > 1or b > 1:

Proof. Let fxng1n=�r be a solution of Equation (1).Then from Equation (1) we see that

xn+1 = axn�l + bxn�k +
cxn�s + dxn�p
exn�s + fxn�p

> axn�l for all n � 1:

We see that the right hand side can be written as follows zn+1 = azn�l: Then

zln+i = a
nzl+i + const:; i = 0; 1; :::; l;

and this equation is unstable because a > 1, and lim
n!1

zn =1:Then by using ratio test fxng1n=�r is unbounded
from above. When b > 1 is similar.

6. EXISTENCE OF PERIODIC SOLUTIONS

Here we study the existence of periodic solutions of Equation (1). The following theorem states the necessary
and su¢ cient conditions that this equation has periodic solution of prime period two.

Theorem 5. Equation (1) has a prime period two solutions if and only if

(i) (d� c)(e� f)(a+ b+ 1) > 4[cf + de(a+ b)]; l; k; s� even and t� odd:
(ii) (c� d)(f � e)(a+ b+ 1) > 4[cf(a+ b) + de]; l; k; t� even and s� odd:
(iii) (c� d)(f � e)(1 + a� b) > 4[de(1� b) + caf ]; l; t� even and k; s� odd:
(iv) (d� c)(e� f)(1 + a� b) > 4[cf(1� b) + dae]; l; s� even and k; t� odd:

(v) (c� d)(f � e) > 4de; c > d; f > e; l; k; s� odd; and t� even:
(vi) (d� c)(e� f) > 4cf; d > c; e > f; l; k; t� odd and s� even:

(vii) (d� c)(e� f)(1� a+ b) > 4[cf + dbe� daf ]; l; t� odd and k; s� even:
(viii) (c� d)(f � e)(1� a+ b) > 4[cbf � dae+ de]; l; s� odd and k; t� even:

Proof. We prove �rst case when l; k and s are even, and t is odd ( the other cases are similar and will be
left to readers). First suppose that there exists a prime period two solution :::p; q; p; q; :::; of Equation (1).We
will prove that Inequality (i) holds. We see from Equation (1) when l; k; s are even, and t is odd that

p = aq + bq +
cq + dp

eq + fp
; q = ap+ bp+

cp+ dq

ep+ fq
:

Then

epq + fp2 = (a+ b)eq2 + (a+ b)fpq + cq + dp; (8)

epq + fq2 = (a+ b)ep2 + (a+ b)fpq + cp+ dq: (9)
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Subtracting (8) from (9) gives

f(p2 � q2) = �(a+ b)e(p2 � q2)� c(p� q) + d(p� q);
f(p� q)(p+ q) = �(a+ b)e(p� q)(p+ q)� c(p� q) + d(p� q);

Since p 6= q , it follows that
f(p+ q) = �(a+ b)e(p+ q)� c+ d;

p+ q =
d� c

f + (a+ b)e
: (10)

Again, adding (8) and (9) yields

2epq + f(p2 + q2) = (a+ b)e(p2 + q2) + 2(a+ b)fpq + (c+ d)(p+ q);

(p2 + q2)[f � (a+ b)e] = (c+ d)(p+ q) + 2pq[(a+ b)f � e]; (11)

It follows by (10), (11) and the relation

p2 + q2 = (p+ q)2 � 2pq for all p; q 2 R;

that

[(p+ q)2 � 2pq][f � (a+ b)e] = (c+ d)(p+ q) + 2pq[(a+ b)f � e];
2pq[(a+ b)f � (a+ b)e+ f � e] = (p+ q)2[f � (a+ b)e]� (c+ d)(p+ q);

pq =
(d� c)[cf + de(a+ b)]

(a+ b+ 1)(e� f)[f + (a+ b)e]2 : (12)

Now it is clear from Equations (10) and (12) that p and q are the two distinct roots of the quadratic equation

r2 �
�

d� c
f + (a+ b)e

�
r +

�
(d� c)[cf + de(a+ b)]

(a+ b+ 1)(e� f)[f + (a+ b)e]2

�
= 0; (13)

(f + (a+ b)e)r2 � (d� c)r +
�

(d� c)[cf + de(a+ b)]
(a+ b+ 1)(e� f)[f + (a+ b)e]

�
= 0;

and so
(d� c)2

[f + (a+ b)e]
2 >

4(d� c)[cf + de(a+ b)]
(a+ b+ 1)(e� f)[f + (a+ b)e]2 :

Thus
(d� c)(e� f)(a+ b+ 1) > 4[cf + de(a+ b)]:

Therefore Inequality (i) holds.

Second suppose that Inequality (i) is true. We will show that Equation (1) has a prime period two solution.
Assume that

p =
d� c+ �
2(f +Ae)

; q =
d� c� �
2(f +Ae)

;

where

� =

s
(d� c)2 � 4(d� c)(cf +Ade)

(A+ 1)(e� f) ; and A = (a+ b):

We see from Inequality (1) that

(d� c)(e� f)(a+ b+ 1) > 4[cf + de(a+ b)]:

which equivalents to
(d� c)2

[f + (a+ b)e]
2 > 4

(d� c)[cf + de(a+ b)]
(a+ b+ 1)(e� f)[f + (a+ b)e]2 ;
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Therefore p and q are distinct real numbers. Set x�l = p; x�k = p; x�s = p; x�t = q; :::; x�2 = p; x�1 =
q; x0 = p: We wish to show that

x1 = x�1 = q and x2 = x0 = p:

It follows from Equation (1) that

x1 = A

�
d� c+ �
2(f +Ae)

�
+
c[ d�c+�2(f+Ae) ] + d[

d�c��
2(f+Ae) ]

e[ d�c+�2(f+Ae) ] + f [
d�c��
2(f+Ae) ]

;

Dividing the denominator and numerator by 2(f +Ae) gives

x1 = A

�
d� c+ �
2(f +Ae)

�
+
c[d� c+ �] + d[d� c� �]
e[d� c+ �] + f [d� c� �] ;

= A

�
d� c+ �
2(f +Ae)

�
+

d2 � c2 + �(c� d)
e(d� c) + f(d� c) + �(e� f) ;

= A

�
d� c+ �
2(f +Ae)

�
+

(d� c)(d+ c� �)
(d� c)(e+ f) + �(e� f) ;

Multiplying the denominator and numerator of the right side by (d� c)(e+ f)� �(e� f) gives

x1 = A

�
d� c+ �
2(f +Ae)

�
+

(d� c)(d+ c� �)[(d� c)(e+ f)� �(e� f)]
[(d� c)(e+ f) + �(e� f)][(d� c)(e+ f)� �(e� f)] ;

= A

�
d� c+ �
2(f +Ae)

�
+
(d� c)(d+ c� �)[(d� c)(e+ f)� �(e� f)]

(d� c)2(e+ f)2 � �2(e� f)2
;

= A

�
d� c+ �
2(f +Ae)

�
+

(d� c)(d+ c� �)[de+ df � ce� cf � �e� �f ]
(d� c)2(e+ f)2 � (e� f)2

h
(d� c)2 � 4(d�c)(cf+Ade)

(A+1)(e�f)

i ;
= A

�
d� c+ �
2(f +Ae)

�
+

(d� c)[e(d2 � c2) + f(d2 � c2) + 2�(cf � de) + �2(e� f)]
(d� c)2[e2 + 2ef + f2 � (e2 � 2ef + f2)] + 4(d�c)(e�f)(cf+Ade)

(A+1)

;

= A

�
d� c+ �
2(f +Ae)

�
+
(d� c)[(d2 � c2)(e+ f) + 2�(cf � de) + �2(e� f)]

4ef(A+1)(d�c)2+4(d�c)(e�f)(cf+Ade)
(A+1)

;

= A

�
d� c+ �
2(f +Ae)

�
+

(d�c)[(d2�c2)(e+f)+2�(cf�de)+ (d�c)(�3Ade�3cf+Afc�Afd�Aec+ed�ec�fd)
(A+1) ]

4(d�c)[ef(Ad�Ac+d�c)]+[ecf+Ae2d�cf2�Adef]
(A+1)

;

= A

�
d� c+ �
2(f +Ae)

�
+
(d� c)

h
2(d�c)(A�1)(cf�de)

A+1 + 2�(cf � de)
i

�
4(d� c)[efd�Acef +Ae2d� cf2]

(A+ 1)

� ;

= A

�
d� c+ �
2(f +Ae)

�
+

2(d� c)(cf � de)
h
(d�c)(A�1)

A+1 + �
i

�
4(d� c)[efd�Acef +Ae2d� cf2]

(A+ 1)

� ;
= A

�
d� c+ �
2(f +Ae)

�
+
(cf � de)f(d� c)(A� 1) + �(A+ 1)g

2[efd�Acef +Ae2d� cf2] ;

= A

�
d� c+ �
2(f +Ae)

�
+
(cf � de)f(d� c)(A� 1) + �(A+ 1)g

2(f +Ae)(de� cf) ;

= A

�
d� c+ �
2(f +Ae)

�
+
�f(d� c)(A� 1) + �(A+ 1)g

2(f +Ae)
;

=
Ad�Ac+A� �Ad+ d+Ac� c�A� � �

2(f +Ae)
=
d� c� �
2(f +Ae)

= q:
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Similarly as before we can easily show that x2 = p: Then it follows by induction that x2n = p and x2n+1 = q for
all n � �1: Thus Equation (1) has the prime period two solution :::; p; q; p; q; :::; where p and q are the distinct
roots of the quadratic equation (13) and the proof is complete.

7. NUMERICAL EXAMPLES

For con�rming the results of this article, we consider numerical examples which represent di¤erent types of
solutions to Equation (1).

Example 1. We consider numerical example for the di¤erence equation (1) when we take the constants and the
initial conditions as follows: l = 3; k = 2; s = 1 ; t = 3; x�3 = 5; x�2 = �12; x�1 = 6; x0 = 8; a = 0:4; b =
0:3; c = 2; d = 4; e = 6; f = 8: See Figure 1.

Example 2. See Figure (2) when we take Equation (1) with l = 1; k = 3; s = 2 ; t = 3; x�3 = 13; x�2 =
�9; x�1 = �7; x0 = 5; a = 0:6; b = 0:4; c = 3; d = 2; e = 5; f = 8.
Example 3. Figure (3) shows the behavior of the solution of the di¤erence equation (1) when we put l = 2; k =
1; s = 3 ; t = 3; x�3 = 15; x�2 = 11; x�1 = �9; x0 = 5; a = 0:6; b = 1:4; c = 2; d = 4; e = 6; f = 9.
Example 4. We assume l = 2; k = 3; s = 1 ; t = 2; x�3 = 15; x�2 = 11; x�1 = �9; x0 = 5; a = 1:5; b =
0:2; c = 2; d = 0; e = 6; f = 7: See Figure 4.

Example 5. Figure (5) shows the period two solution of Equation (1) when l = 0; k = 2; s = 2 ; t = 3; x�3 =
p; x�2 = q; x�1 = p; x0 = q; a = 0:06; b = 0:03; c = 1; d = 5; e = 7; f = 2, since p and q as in the previous
theorem.
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Abstra
t. We investigate the existen
e of solutions for the fra
tional di�erential in
lusion

cDαx(t) ∈ F (t, x(t))

equipped with the boundary value problems x(0) = 0 and x(1) =

∫
η

0

x(s)ds, where 0 < η < 1, 1 < α ≤ 2,

cDα
is the standard Caputo di�erentiation and F : [0, 1] × R → 2R is a 
ompa
t valued multifun
tion. An

illustrative example is also dis
ussed.
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1 Introdu
tion

During the last de
ade the fra
tional di�erential equations were investigated from theoreti
al

and applied viewpoints (see for example, [1℄-[6℄, [8℄-[15℄, and [32℄). A spe
ial attention was

given to the real world appli
ations where the power law e�e
t is present and where the

fra
tional models a give better results than the 
lassi
al ones.

We re
all that the Riemann-Liouville fra
tional integral of order α > 0 of f : (0,∞) → R

is given by Iαf(t) = 1
Γ(α)

∫ t

0

(t − s)α−1f(s)ds provided the right side is pointwise de�ned on

(0,∞) (see [26℄, [29℄, [31℄, [34℄ and [35℄). Also, the Caputo fra
tional derivative of order α of

f is de�ned by

cDαf(t) = 1
Γ(n−α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds, where n = [α]+1 (see [26℄, [29℄, [31℄, [34℄

and [35℄).

We re
all that the basi
 theory for fra
tional di�erential in
lusions is represented by the

�xed point theory of multivalued mappings whi
h was intensively investigated during last

years (the reader 
an �nd more details in [18℄-[25℄, [30℄ and the related referen
es). Thus,

many papers about ordinary and fra
tional di�erential in
lusions were written (e.g. [1℄-[2℄,

1
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[7℄, [16℄, [17℄ and [33℄).

Let (X, d) be a metri
 spa
e. Let us denote by P (X) and 2X the 
lass of all subsets and

the 
lass of all nonempty subsets of X respe
tively. As a result, Pcl(X), Pbd(X), Pcv(X) and
Pcp(X) denote the 
lass of all 
losed, bounded, 
onvex and 
ompa
t subsets of X respe
tively.

A mapping Q : X → 2X is 
alled a multifun
tion on X and u ∈ X is 
alled a �xed point of Q

whenever u ∈ Qu ([24℄). Also, we say that Q is 
onvex whenever Qx is 
onvex for all x ∈ X

([24℄). A multifun
tion G : [0, 1] → Pcl(R) is said to be measurable whenever the fun
tion

t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable for all y ∈ R. Put J = [0, 1].
The aim of this manus
ript is to investigate the existen
e of solutions for the fra
tional

di�erential in
lusion

cDαx(t) ∈ F (t, x(t)) (∗)

via the boundary value problems x(0) = 0 and x(1) =

∫ η

0

x(s)ds, where cDα
is the standard

Caputo di�erentiation, 0 < η < 1, 1 < α ≤ 2 and F : J × R → 2R is a 
ompa
t valued

multifun
tion. We say that F : J × R → 2R is a Caratheodory multifun
tion whenever

t 7→ F (t, x) is measurable for all x ∈ R and x 7→ F (t, x) is upper semi-
ontinuous for almost all

t ∈ J . Also, a Caratheodory multifun
tion F : J×R → 2R is 
alled L1
-Caratheodory whenever

for ea
h ρ > 0 there exists φρ ∈ L1(J,R+) su
h that ‖ F (t, x) ‖= sup{|v| : v ∈ F (t, x)} ≤ φρ(t)
for all ‖x‖∞ ≤ ρ and for almost all t ∈ J . For ea
h x ∈ C(J,R), de�ne the set of sele
tions of
F by

SF,x := {v ∈ L1(J,R) : v(t) ∈ F (t, x(t)) for almost all t ∈ J}.

Let E be a nonempty 
losed subset of a Bana
h spa
e X and G : E → 2X a multifun
tion with

nonempty 
losed values. We say that the multifun
tion G is lower semi-
ontinuous whenever

the set {y ∈ E : G(y) ∩ B 6= ∅} is open for all open set B in X . It has been proved that

ea
h 
ompletely 
ontinuous multifun
tion is lower semi-
ontinuous (see [24℄). We shall use

the following �xed point results.

Lemma 1.1. ([30℄) Let X be a Bana
h spa
e, F : J → Pcp,cv(X) an L1
-Caratheodory mul-

tifun
tion and Θ a linear 
ontinuous mapping from L1(J,X) to C(J,X). Then the operator

ΘoSF : C(J,X) → Pcp,cv(C(J), X) de�ned by (ΘoSF )(x) = Θ(SF,x) is a 
losed graph operator

in C(J,X)× C(J,X).

It has been proved that if dimX <∞, then SF (x) 6= ∅ for all x ∈ C(J,X) ([30℄).

Lemma 1.2. ([24℄) Let E be a Bana
h spa
e, C a 
losed 
onvex subset of E, U an open subset

of C and 0 ∈ U . Suppose that F : U → Pcp,cv(C) is a upper semi-
ontinuous 
ompa
t map,

where Pcp,cv(C) denotes the family of nonempty, 
ompa
t 
onvex subsets of C. Then either F

has a �xed point in U or there exist u ∈ ∂U and λ ∈ (0, 1) su
h that u ∈ λF (u).

Let (X, ‖.‖) be a normed spa
e. De�ne the Hausdor� metri
 Hd : 2
X × 2X → [0,∞]} by

Hd(A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)},

2
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where d(A, b) = infa∈A d(a; b). Then (Pb,cl(X), Hd) is a metri
 spa
e and (Pcl(X), Hd) is a

generalized metri
 spa
e ([27℄). A multifun
tion N : X → Pcl(X) is 
alled a 
ontra
tion

whenever there exists γ > 0 su
h that Hd(N(x), N(y)) ≤ γd(x, y) for all x, y ∈ X .

Lemma 1.3. ([19℄) Let (X, d) be a 
omplete metri
 spa
e. If N : X → Pcl(X) is a 
ontra
tion,
then N has a �xed point.

Lemma 1.4. [11℄ Let 0 < η < 1. Then x is a solution for the di�erential equation

cDαx(t) =

v(t) (t ∈ J and 1 < α ≤ 2) via the boundary value 
onditions x(0) = 0 and x(1) =

∫ η

0

x(s)ds

if and only if x is a solution of the integral equation

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds (t ∈ J).

2 Main results

Here, we give our results about the existen
e of solutions for the in
lusion problem (∗).

Theorem 2.1. Suppose that F : J×R → 2R is a Caratheodory multifun
tion with 
ompa
t and


onvex values and there exist a bounded 
ontinuous non-de
reasing map ψ : [0,∞) → (0,∞)
and a 
ontinuous fun
tion p : J → (0,∞) su
h that

‖F (t, x(t))‖ = sup{|v| : v ∈ F (t, x(t))} ≤ p(t)ψ(‖x‖∞)

for all t ∈ J and x ∈ C(J,R). Then the problem (∗) has at least one solution.

Proof. By using Lemma 1.4, we know that the existen
e of solution for the problem (∗) is
equivalent to the existen
e of solution for the integral equation

x(t) ∈
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds (t ∈ J).

Put E = C(J,R). De�ne the operator N : E → 2E by

N(x) = {h ∈ E : h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds, for some v ∈ SF,x}.

3
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We show that the operator N satis�es the assumptions of Lemma 1.2. First, we show that

N(x) is 
onvex for all x ∈ C(J,R). Let h1, h2 ∈ N(x). Choose v1, v2 ∈ SF,x su
h that

hi(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vi(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1vi(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1vi(m)dm)ds

for all t ∈ J and i = 1, 2. Let 0 ≤ w ≤ 1. Then, we have

[wh1 + (1− w)h2](t) =
1

Γ(α)

∫ t

0

(t− s)α−1[wv1(s) + (1− w)v2(s)]ds

−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1[wv1(s) + (1− w)v2(s)]ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1[wv1(m) + (1− w)v2(m)]dm)ds

for all t ∈ J . Sin
e SF,x is 
onvex (be
ause F has 
onvex values), wh1 + (1 − w)h2 ∈ N(x).
Now, we show that N(x) maps bounded sets of C(J,R) into bounded sets. Let r > 0 and

Br = {x ∈ C(J,R) : ‖x‖∞ ≤ r}. For ea
h h ∈ N(x) and x ∈ Br 
hoose v ∈ SF,x su
h that

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds

and

|h(t)| ≤ sup
t∈J

|
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds |

≤ sup
t∈J

1

Γ(α)

∫ t

0

(t− s)α−1 | v(s) | ds+ sup
t∈[0,1]

|
2t

(2− η2)Γ(α)
|

∫ 1

0

(1− s)α−1 | v(s) | ds

+sup
t∈J

|
2t

(2− η2)Γ(α)
|

∫ η

0

(

∫ s

0

(s−m)α−1 | v(m) | dm)ds ≤ ‖p‖∞ψ(‖x‖∞)A

for all t ∈ J , where ‖p‖∞ = supt∈J p(t) and A = (α+1)(2−η2)+2(α+1)+2ηα+1

(2−η2)Γ(α+2)
. Thus,

‖h(t)‖∞ = sup
t∈J

|h(t)| ≤ A‖p‖∞ψ(‖x‖∞).

4
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Now, we show that N maps bounded sets into equi-
ontinuous sets of C(J,R). Let t1, t2 ∈ J

with t1 < t2 and x ∈ Br. Then,

|h(t2)− h(t1)| =|
1

Γ(α)

∫ t2

0

(t2 − s)α−1v(s)ds−
1

Γ(α)

∫ t1

0

(t1 − s)α−1v(s)ds

−
2t2

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds+
2t1

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t2

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds

−
2t1

(2 − η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds |

≤ ‖p‖∞ψ(‖x‖∞)[
(2− η2)(tα2 − tα1 ) + 2(t1 − t2)

(2− η2)Γ(α + 1)
+

2(t2 − t1)η
α+1

(2− η2)Γ(α + 2)
]

For all h ∈ N(x). Thus, limt2→t1 |h(t2) − h(t1)| = 0 for all x ∈ Br. Hen
e by using the

Arzela-As
oli theorem, N is 
ompletely 
ontinuous. Here, we show that N has a 
losed graph.

Let xn → x0, hn ∈ N(xn) for all n and hn → h0. We have to show that h0 ∈ N(x0). For ea
h
n 
hoose vn ∈ SF,xn su
h that

hn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1vn(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1vn(m)dm)ds

for all t ∈ J . De�ne the 
ontinuous linear operator θ : L1(J,R) → C(J,R) by

θ(v) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds.

Note that,

‖hn(t)− h0(t)‖ = ‖
1

Γ(α)

∫ t

0

(t− s)α−1(vn(s)− v0(s))ds

−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1(vn(s)− v0(s))ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1(vn(m)− v0(m))dm)ds‖

5
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for all n and so limn→ ∞‖hn(t)− h0(t)‖ = 0. By using Lemma 1.1, θoSF is a 
losed graph

operator. Sin
e hn(t) ∈ θ(SF,xn) for all n and xn → x0, there exists v0 ∈ SF,x0 su
h that

h0(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v0(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v0(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v0(m)dm)ds.

Thus, N has a 
losed graph. If there exists λ ∈ (0, 1) su
h that x ∈ λN(x), then there exists

v ∈ SF,x su
h that

x(t) =
λ

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2λt

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2λt

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds

for all t ∈ J . Now, 
hoose M > 0 su
h that

‖p‖∞ψ(‖x‖∞)([α+1)(2−η2)+2(α+1)+2ηα+1 ]
(2−η2)Γ(α+2)

< M for all

x ∈ E. This is possible be
ause ψ is bounded. Thus,

‖x‖∞ ≤
‖p‖∞ψ(‖x‖∞)([α+ 1)(2− η2) + 2(α+ 1) + 2ηα+1]

(2− η2)Γ(α + 2)
< M.

Now, put U = {x ∈ C(J,R) : ‖x‖∞ < M + 1}. Thus, there are not x ∈ ∂U and λ ∈ (0, 1)
su
h that x ∈ λN(x). Note that, the operator N : U → Pcp,cv(U) is upper semi-
ontinuous

be
ause it is 
ompletely 
ontinuous. Now by using Lemma 1.2, N has a �xed point in U whi
h

is a solution of the problem (∗). This 
ompletes the proof.

Now, we present our next result about the existen
e of solutions for the problem (∗) with
non-
onvex valued assumption.

Theorem 2.2. Let m ∈ C(J,R+) be su
h that ‖m‖∞( 4−η2

(2−η2)Γ(α+1)
+ 2ηα+1

(2−η2)Γ(α+2)
) < 1. Suppose

that F : J × R → Pcp(R) is a multifun
tion su
h that Hd(F (t, x), F (t, y)) ≤ m(t)|x − y| and
d(x, F (t, x)) ≤ m(t) for almost all t ∈ J and x, y ∈ R. Then the boundary value in
lusion

problem (∗) has a solution.

Proof. Note that, SF,x is nonempty for all x ∈ C(J,R). By using Theorem III.6 in [18℄, we get

F has a measurable sele
tion. Now, similar to the proof of Theorem 2.1, 
onsider the operator

N : E → 2E by

N(x) = {h ∈ E : h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds, for some v ∈ SF,x},

6
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where E = C(J,R). First, we show that N(x) is a 
losed subset of E for all x ∈ E. Let x ∈ E

and {un}n≥1 be a sequen
e in N(x) with un → u. For ea
h n, 
hoose vn ∈ SF,x su
h that

un(t) =
1

Γ(α)

∫ t

0

(t− s)α−1vn(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1vn(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1vn(m)dm)ds

for all t ∈ J . Sin
e F has 
ompa
t values, {vn}n≥1 has a subsequen
e whi
h 
onverges to some

v ∈ L1(J,R). We denote this subsequen
e again by {vn}n≥1. It is easy to 
he
k that v ∈ SF,x
and

un(t) → u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v(m)dm)ds

for all t ∈ J . This implies that u ∈ N(x) and so the multifun
tion N has 
losed values. Now,

we show that N is a 
ontra
tive multifun
tion with 
onstant

γ = ‖m‖∞(
4− η2

(2− η2)Γ(α+ 1)
+

2ηα+1

(2− η2)Γ(α+ 2)
) < 1.

Let x, y ∈ E and h1 ∈ N(x). Choose v1 ∈ SF,x su
h that

h1(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v1(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v1(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v1(m)dm)ds

for all t ∈ J . Sin
e Hd(F (t, x), F (t, y)) ≤ m(t)|x(t) − y(t)| for almost all t ∈ J , there exists

w0 ∈ F (t, y(t)) su
h that |v1 − w0| ≤ m(t)|x(t) − y(t)| for almost all t ∈ [0, 1]. De�ne the

multifun
tion U : J → 2R by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− y(t)|} for almost all t ∈ J}.

By using Proposition III.4 in [18℄, we get the multifun
tion U(t)∩F (t, y(t)) is measurable. It

is easy to see that there exists v2 ∈ SF,y su
h that |v1(t) − v2(t)| ≤ m(t)|x(t) − y(t)| For all
t ∈ J . Now, de�ne

h2(t) =
1

Γ(α)

∫ t

0

(t− s)α−1v2(s)ds−
2t

(2− η2)Γ(α)

∫ 1

0

(1− s)α−1v2(s)ds

+
2t

(2− η2)Γ(α)

∫ η

0

(

∫ s

0

(s−m)α−1v2(m)dm)ds

7
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for all t ∈ J . Thus,

| h1(t)− h2(t) |≤
1

Γ(α)

∫ t

0

(t− s)α−1 | v1(s)− v2(s) | ds

+ |
2t

(2− η2)Γ(α)
|

∫ 1

0

(1− s)α−1 | v1(s)− v2(s) | ds

+ |
2t

(2− η2)Γ(α)
|

∫ η

0

(

∫ s

0

(s−m)α−1 | v1(m)− v2(m) | dm)ds

≤ ‖m‖∞(
4− η2

(2− η2)Γ(α + 1)
+

2ηα+1

(2− η2)Γ(α + 2)
)‖x− y‖∞ = γ‖x− y‖∞.

Therefore, the multifun
tion N is a 
ontra
tion with 
losed values. By using Lemma 1.3, N

has a �xed point whi
h is a solution of the in
lusion problem (∗).

3 Appli
ation

Consider the problem

cD3/2x(t) ∈ F (t, x(t)) (t ∈ [0, 1])

via the boundary value 
onditions x(0) = 0 and x(1) =

∫ 3/4

0

x(s)ds, where F : [0, 1]×R → 2R

is the multifun
tion de�ned by

F (t, x) = [
x5

4(x5 + 3)
+
t+ 1

8
,
1

4
sin x+

1

4
(t+ 1)].

Sin
e max[ x5

4(x5+3)
+ t+1

8
, 1
4
sin x+ 1

4
(t + 1)] ≤ 3

4
, it is easy to 
he
k that

sup{|γ| : γ ∈ F (t, x)} ≤ p(t)ψ(‖x‖∞)

for all x ∈ C([0, 1],R), where p(t) = 1 and ψ(t) = 3
4
for all t ∈ [0, 1]. Thus by using Theorem

2.1, this in
lusion problem has at least one solution.
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Stability and hyperstability of generalized orthogonally quadratic ternary
homomorphisms in non-Archimedean ternary Banach algebras: a fixed point

approach

M. Eshaghi Gordji1, G. Askari2, N. Ansari3, G. A. Anastassiou4, C. Park5∗

1,2,3Department of Mathematics, Semnan University, P.O Box 35195-363, Semnan, Iran
4Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

5Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

Abstract: Using the fixed point method, we prove the stability and the hyperstability of generalized orthogonally

quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras.

1. Introduction and preliminaries

The stability problem of functional equations had been first raised by Ulam [29]. This problem solved by Hyers [16]

in the framework of Banach spaces. For more details about the result concerning such problems, we refer the reader

to ([1, 3, 11, 17, 22, 25, 26, 27, 28, 31, 32]). The stability of homomorphisms and derivations in Banach algebras,

Banach ternary algebras, C∗-algebras, Lie C∗-algebras, C∗-ternary algebras has been studied by many authors (see

[9, 25, 26, 27, 28]).

Let A,B be two ternary algebras. A mapping f : A → B is called a quadratic ternary homomorphism if f is a quadratic

mapping (i.e. f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ A) and satisfies

f([a, b, c]) = [f(a), f(b), f(c)]

for all a, b, c ∈ A.

A mapping g : A → B is called a generalized quadratic ternary homomorphism if there exists a quadratic ternary

homomorphism f : A → B such that

g([a, b, c]) = [g(a), f(b), f(c)]

for all a, b, c ∈ A.
In 2003, Cădariu and Radu applied the fixed point methods to the investigation of Jensen functional equations [4] (see

also [5, 6, 12, 21, 24]).

Arriola and Beyer [2] initiated the stability of functional equations in non-Archimedean spaces. In fact they established

the stability of the Cauchy functional equation over p-adic fields. After their results some papers (see, for instance,

([7, 8, 9, 10]) on the stability of other equations in such spaces have been published.

In 1897, Hensel [15] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis.

During the last three decades p-adic numbers have gained the interest in of physicists for their research, in particular, in

the problems coming from quantum physics, p-adic strings and hyperstrings [18, 19]. A key property of p-adic numbers

is that they do not satisfy the Archimedean axiom: For any x, y > 0, there exists n ∈ N such that x < ny (see [13, 30]).

Let K denote a field and function (valuation absolute) |.| from K into [0,∞). A non-Archimedean valuation is a

function |.| that satisfies the strong triangle inequality; namely |x + y| ≤ max{|x|, |y|} ≤ |x| + |y| for all x, y ∈ K. The

associated field K is referred to as a non-Archimedean filed. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ≥ 1. A trivial

example of a non-Archimedean valuation is the function |.| taking everything except 0 into 1 and |0| = 0. We always

assume in addition that |.| is non trivial, i.e., there is a z ∈ K such that |z| 6= 0, 1.

02010 Mathematics Subject Classification: 17A40, 39B52, 39B55, 39B82, 47H10, 47S10.
0Keywords: non-Archimedean ternary Banach algebra; generalized orthogonally quadratic ternary homomorphism;

quadratic functional equation; fixed point approach; stability and hyperstability.
∗Corresponding author (Choonkil Park).

0E-mail: madjid.eshaghi@gmail.com; g.askari.math@gmail.com; ansari.najmeh@yahoo.com;
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Let X be a linear space over a field K with a non-Archimedean nontrivial valuation |.|. A function ‖.‖ : X → [0,∞)

is said to be a non-Archimedean norm if it is a norm over K with the strong triangle inequality (ultrametric); namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ K. Then (X, ‖.‖) is called a non-Archimedean space. In any such a space a

sequence {xn}n∈N is a Cauchy sequence if and only if {xn+1, xn}n∈N converges to zero. By a complete non-Archimedean

space we mean one in which every Cauchy sequence is convergent. A non-Archimedean ternary Banach algebra is a

complete non-Archimedean space A equipped with a ternary product (x, y, z) → [x, y, z] of A3 into A which is K-linear

in each variables and associative in the sense that

[x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v]

and satisfies the following:

‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖
(see [14]).

Let X be a nonempty set and let d : X ×X → [0,∞] satisfy: d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) and

d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle inequality), for all x, y, z ∈ X. Then (X, d) is called a non-Archimedean

generalized metric space. (X, d) is called complete if every d-Cauchy sequence in X is d-convergent.

Suppose that X is a real vector space (or an algebra) with dimX ≥ 2 and ⊥ is a binary relation on X with the

following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;

(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly independent;

(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;

(O4) the Thalesian property: if P is a 2−dimensional subspace (subalgebra) of X, x ∈ P and λ ∈ R+,

then there exists ux ∈ P such that x ⊥ ux and x+ ux ⊥ λx− ux.

The pair (X,⊥) is called an orthogonality space (algebra). By an orthogonality normed space (normed algebra) we

mean an orthogonality space (algebra) having a normed structure (see [23]).

2. Main results

Using the strong triangle inequality in the proof of the main result of [20], we get to the following result:

Theorem 2.1. (Non-Archimedean Alternative Contraction Principle) Suppose that (Ω, d) is a non-Archimedean gener-

alized complete metric space and T : Ω → Ω is a strictly contractive mapping with the Lipschitz constant L. Let x ∈ Ω.

If either

(i) d(Tm(x), Tm+1(x)) =∞ for all m ≥ 0, or

(ii) there exists some m0 such that d(Tm(x), Tm+1(x)) < ∞ for all m ≥ m0, then the sequence {Tm(x)} is convergent

to a fixed point x∗ of T ; x∗ is the unique fixed point of T in the set

Λ = {y ∈ Ω : d(Tm0(x), y) <∞};

and d(y, x∗) ≤ d(y, T (y)) for all y in this set.

In this section, we suppose thatA is a non-Archimedean ternary Banach algebra with ⊥:= ⊥́
⋃
{(x, αx) : x ∈ A, α ∈ R},

where ⊥
⋃

is an orthogonality on A, and B is a non-Archimedean ternary Banach algebra and l ∈ {1,−1} is fixed. Also,

let |4| < 1 and we assume that 4 6= 0 in K (i.e., the characteristic of K is not 4).

Theorem 2.2. Let g, f : A → B be two mappings with g(0) = f(0) = 0 for which there exists a function ϕ : A8 → [0,∞]

such that

‖η(ax+ by) + η(ax− by)− 2a2η(x)− 2b2η(y)‖+ ‖f([u, v, w])− [f(u), f(v), f(w)]‖

+ ‖g([r, s, t])− [g(r), f(s), f(t)]‖ ≤ ϕ(x, y, u, v, w, r, s, t)
(2.1)

for all η ∈ {f, g}, x, y ∈ A with x ⊥ y and for all u, v, w, r, s, t,∈ A, that are mutually orthogonal and nonzero fixed

integers a, b. Suppose that there exists L < 1 such that

ϕ(x, y, u, v, w, r, s, t) ≤ |4|l(l+2)Lϕ(
x

2l
,
y

2l
,
u

2l
,
v

2l
,
w

2l
,
r

2l
,
s

2l
,
t

2l
) (2.2)
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for all x, y ∈ A with x ⊥ y and for all u, v, w, r, s, t,∈ A, that are mutually orthogonal. Then there exist a unique orthogo-

nally quadratic ternary homomorphism h : A → B and a unique generalized orthogonally quadratic ternary homomorphism

H : A → B (respect to h) such that

max{‖g(x)−H(x)‖, ‖f(x)− h(x)‖} ≤ L
1−l
2

|4| ψ(x) (2.3)

for all x ∈ A, where

ψ(x) := max{ϕ(
x

a
,
x

b
, 0, 0, 0, 0, 0, 0), ϕ(

x

a
, 0, 0, 0, 0, 0, 0, 0),

1

|2b2|ϕ(x, x, 0, 0, 0, 0, 0, 0),

1

|2b2|ϕ(x,−x, 0, 0, 0, 0, 0, 0), ϕ(0,
x

b
, 0, 0, 0, 0, 0, 0)}.

for all x ∈ A.

Proof. By (2.2), one can show that

lim
n→∞

1

|4|l(l+2)n
ϕ(2lnx, 2lny, 2lnu, 2lnv, 2lnw, 2lnr, 2lns, 2lnt) = 0 (2.4)

for all x, y ∈ A with x ⊥ y and for all u, v, w, r, s, t,∈ A, that are mutually orthogonal. Putting η = g in (2.1) and

u = v = w = r = s = t = 0 in (2.1), we get

‖g(ax+ by) + g(ax− by)− 2a2g(x)− 2b2g(y)‖ ≤ ϕ(x, y, 0, 0, 0, 0, 0, 0) (2.5)

for all x, y ∈ A with x ⊥ y. Putting y = 0 in (2.5). Since x ⊥ 0, we get

‖2g(ax)− 2a2g(x)‖ ≤ ϕ(x, 0, 0, 0, 0, 0, 0, 0) (2.6)

for all x ∈ A. Setting y = −y in (2.5), by the definition of ⊥, we get

‖g(ax− by) + g(ax+ by)− 2a2g(x)− 2b2g(−y)‖ ≤ ϕ(x,−y, 0, 0, 0, 0, 0, 0) (2.7)

for all x, y ∈ A with x ⊥ y. It follows from (2.5) and (2.7) that

‖2b2g(y)− 2b2g(−y)‖ ≤ max{ϕ(x, y, 0, 0, 0, 0, 0, 0), ϕ(x,−y, 0, 0, 0, 0, 0, 0)} (2.8)

for all x, y ∈ A with x ⊥ y. Putting y = by in (2.8), by the definition of ⊥, we get

‖g(by)− g(−by)‖ ≤ max{ 1

|2b2|ϕ(x, by, 0, 0, 0, 0, 0, 0),
1

|2b2|ϕ(x,−by, 0, 0, 0, 0, 0, 0)} (2.9)

for all x, y ∈ A with x ⊥ y. Let x = 0 in (2.5). Since 0 ⊥ x, we get

‖g(by) + g(−by)− 2b2g(y)‖ ≤ ϕ(0, y, 0, 0, 0, 0, 0, 0) (2.10)

for all y ∈ A. It follows from (2.9) and (2.10) that

‖2g(by)− 2b2g(y)‖ ≤ max{ 1

|2b2|ϕ(x, by, 0, 0, 0, 0, 0, 0),
1

|2b2|ϕ(x,−by, 0, 0, 0, 0, 0, 0), ϕ(0, y, 0, 0, 0, 0, 0, 0)} (2.11)

for all x, y ∈ A with x ⊥ y. Replacing x and y by x
a

and y
b

in (2.5), respectively, and by the definition of ⊥, we get

‖g(2x)− 2a2g(
x

a
)− 2b2g(

x

b
)‖ ≤ ϕ(

x

a
,
x

b
, 0, 0, 0, 0, 0, 0) (2.12)

for all x ∈ A. Setting x = x
a

in (2.6), by the definition of ⊥, we get

‖2a2g(
x

a
)− 2g(x)‖ ≤ ϕ(

x

a
, 0, 0, 0, 0, 0, 0, 0) (2.13)

for all x ∈ A. Putting y = x
b

in (2.9), by the definition of ⊥, we get

‖2b2g(
x

b
)− 2g(x)‖ ≤ max{ 1

|2b2|ϕ(x, x, 0, 0, 0, 0, 0, 0),
1

|2b2|ϕ(x,−x, 0, 0, 0, 0, 0, 0), ϕ(0,
x

b
, 0, 0, 0, 0, 0, 0)} (2.14)

for all x ∈ A. It follows from (2.12), (2.13) and (2.14) that

‖g(2x)− 4g(x)‖ ≤ ψ(x) (2.15)

for all x ∈ A. Consider the set

X := {ǵ : ǵ : A → B ǵ(0) = 0}.
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For every ǵ, h́ ∈ X, define

d(ǵ, h́) := inf{K ∈ (0,∞) : ‖ǵ(x)− h́(x)‖ ≤ Kψ(x), ∀x ∈ A}.

It is easy to show that (X, d) is a complete generalized non-Archimedean metric space. Now, we consider the J : X → X

such that

J (ǵ)(x) :=
1

4l
ǵ(2lx)

for all x ∈ A. For any ǵ, h́ ∈ X, it follows that for all x ∈ A

d(ǵ, h́) < K ⇒ ‖ǵ(x)− h́(x)‖ ≤ Kψ(x)

⇒ ‖ ǵ(2lx)

4l
− h́(2lx)

4l
‖ ≤ Kψ(2lx)

|4|l

⇒ ‖J ǵ(x)− J h́(x)‖ ≤ LKψ(x).

Hence we have

d(J (ǵ),J (h́)) ≤ Ld(ǵ, h́).

By applying the inequality (2.15), we see that d(J(f), f) ≤ L
1−l
2

|4| . It follows from Theorem 2.1 that J has a unique

fixed point H : A → B in the set Λ : {ǵ ∈ X : d(ǵ, g) <∞}, where H is defined by

H(x) = lim
n→∞

J ng(x) = lim
n→∞

1

4ln
g(2lnx) (2.16)

for all x ∈ A. It follows from (2.4), (2.5) and (2.16) that

‖H(ax+ by) +H(ax− by)− 2a2H(x)− 2b2H(y)‖

= lim
n→∞

1

|4|ln ‖g(2lnax+ 2lnby) + g(2lnax− 2lnby)− 2a2g(2lnx)− 2b2g(2lny)‖

≤ lim
n→∞

1

|4|lnϕ(2lnx, 2lny, 0, 0, 0, 0, 0, 0)

≤ lim
n→∞

1

|4|ln(l+2)
ϕ(2lnx, 2lny, 0, 0, 0, 0, 0, 0) = 0

for all x, y ∈ A with x ⊥ y. This shows that H is an orthogonally quadratic.

Putting η = f , u = v = w = r = s = t = 0 in (2.1), we get

‖f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y)‖ ≤ ϕ(x, y, 0, 0, 0, 0, 0, 0)

for all x, y ∈ A with x ⊥ y. By the same reasoning as above, we can show that the limit

h(x) =: lim
n→∞

1

4ln
f(2lnx)

exists for all x ∈ A. Moreover, we can show that h is an orthogonally quadratic mapping on A satisfying (2.3). On the

other hand, we have

‖h([u, v, w])− [h(u), h(v), h(w)]‖ = lim
n→∞

1

|4|2ln ‖f(4ln[u, v, w])− [f(2lnu), f(2lnv), f(2lnw)]‖

≤ lim
n→∞

1

|4|2lnϕ(0, 0, 2lnu, 2lnv, 2lnw, 0, 0, 0)

≤ lim
n→∞

1

|4|l(l+2)n
ϕ(0, 0, 2lnu, 2lnv, 2lnw, 0, 0, 0) = 0

for all u, v, w ∈ A, that are mutually orthogonal. Therefore, h is an orthogonally quadratic ternary homomorphism on

A. Also, we have

‖H([r, s, t])− [H(r), h(s), h(t)]‖ = lim
n→∞

1

|4|2ln ‖g(4ln[r, s, t])− [g(2lnr), f(2lns), f(2lnt)]‖

≤ lim
n→∞

1

|4|2lnϕ(0, 0, 0, 0, 0, 2lnr, 2lns, 2lnt)

≤ lim
n→∞

1

|4|l(l+2)n
ϕ(0, 0, 0, 0, 0, 2lnr, 2lns, 2lnt) = 0
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for all r, s, t ∈ A, that are mutually orthogonal. It follows that H is a generalized orthogonally quadratic ternary

homomorphism (respect to h) on A. This completes the proof. �

From now on, we use the following abbreviation for any mappings g, f : A → B:

∆(g, f)(z1, ..., z8) :=‖f(az1 + bz2) + f(az1 − bz2)− 2a2f(z1)− 2b2f(z2)‖

+ ‖g(az1 + bz2) + g(az1 − bz2)− 2a2g(z1)− 2b2g(z2)‖

+ ‖f([z3, z4, z5])− [f(z3), f(z4), f(z5)]‖

+ ‖g([z6, z7, z8])− [g(z6), f(z7), f(z8)]‖.

Corollary 2.3. Let K = Q2 be the 2-adic number field. Let A be a non-Archimedean ternary Banach algebra on K with

⊥= ⊥́
⋃
{(x, αx) : x ∈ X,α ∈ R} and B be a non-Archimedean ternary Banach algebra on K. Let ε be a nonnegative real

number and let p be a real number such that p > 6 if l = 1 and 0 < p < 2 if l = −1. Suppose that mappings g, f : A → B
satisfy f(0) = g(0) = 0 and

∆(g, f)(z1, ..., z8) ≤ ε max{‖zi‖p : 1 ≤ i ≤ 8}

for all z1, z2 ∈ A with z1 ⊥ z2 and for all z3, ..., z8 ∈ A, that are mutually orthogonal. Then there exist a unique orthogo-

nally quadratic ternary homomorphism h : A → B and a unique generalized orthogonally quadratic ternary homomorphism

H : A → B (respect to h) such that

max{‖g(z)−H(z)‖, ‖f(z)− h(z)‖}

≤ |2|
l(4−p)+p

2 ε‖z‖p


2, gcd(a, 2) = gcd(b, 2) = 1;

max{2ip, 2}, a = k2i, gcd(b, 2) = 1;

max{2jp, 22j+1}, gcd(a, 2) = 1, b = m2j ∨ a = k2i, b = m2j(j ≥ i);
max{2jp, 22j+1}, a = k2i, b = m2j(i ≥ j)

for all x ∈ A, where i, j, k,m ≥ 1 are integers and gcd(k, 2) = gcd(m, 2) = 1.

Now, we have the following result on hyperstability of generalized orthogonally quadratic ternary homomorphisms in

non-Archimedean ternary Banach algebras.

Corollary 2.4. Let p > 0 be a nonnegative real number such that |2|(2l+4)p ≥ 1 and let j ∈ {3, 4, ..., 8} be fixed. Suppose

that mappings g, f : A → B satisfy f(0) = g(0) = 0 and

∆(g, f)(z1, ..., z8) ≤ (

8∑
i=1

‖zi‖p)‖zj‖p

for all z1, z2 ∈ A with z1 ⊥ z2 and for all z3, ..., z8 ∈ A, that are mutually orthogonal, where a, b are positive fixed

integers. Then f is an orthogonally quadratic ternary homomorphism and g is a generalized orthogonally quadratic

ternary homomorphism related to f .

Proof. It follows from Theorem 2.2 by taking

ϕ(z1, ..., z8) = (

8∑
i=1

‖zi‖p)‖zj‖p

for all z1, z2 ∈ A with z1 ⊥ z2 and for all z3, ..., z8 ∈ A, that are mutually orthogonal and putting L = |2|−(2l+4)p. �
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[11] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal.

Appl. 184 (1994), 431–436.
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SYMMETRY IDENTITIES OF HIGHER-ORDER q-EULER

POLYNOMIALS UNDER THE SYMMETRIC GROUP OF

DEGREE FOUR

DAE SAN KIM AND TAEKYUN KIM

Abstract. In this paper, we give some new identities of symmetry for the
higher-order q-Euler polynomials under the symmetric group of degree four

which are derived from the fermionic p-adic q-integrals on Zp.

1. Introduction

Let p be a fiixed odd prime number. Throughout this paper, Zp, Qp, and Cp
will denote the ring of p-adic integers, the field of p-adic rational numbers, and the
completion of the algebraic closure of Qp. Let νp be the normalized exponential

valuation of Cp with |p|p = p−νp(p) = 1
p . Let us assume that q is an indeterminate

in Cp such that |1− q|p < p−
1
p−1 . The q-number of x is defined as [x]q = 1−qx

1−q .

Note that limq→1 [x]q = x. Let C (Zp) be the space of all Cp-valued continuous

functions on Zp. For f ∈ C (Zp), the fermionic p-adic q-integral on Zp is defined
by Kim as

I−q (f)(1.1)

=

ˆ
Zp
f (x) dµ−q (x)

= lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f (x) (−q)x , (see [9, 10, 12, 13]) .

Thus, by (1.1), we get

(1.2) qI−q (f1) + I−q (f) = [2]q f (0) , (see [9]) ,

where f1 (x) = f (x+ 1). The Carlitz-type q-Euler numbers are defined by

(1.3) q (Eq + 1)
n

+ En,q = [2]q δ0,n, E0,q = 1, (see [9, 10]) ,

with the usual convention about replacing Enq by En,q.
The q-Euler polynomials are given by

(1.4) En,q (x) =
n∑
l=0

(
n

l

)
[x]

n−l
q qlxEl,q, (see [9]) .

2000 Mathematics Subject Classification. 11B68, 11S80, 05A19, 05A30.
Key words and phrases. identities of symmetry, higher-order q-Euler polynomials, symmetric

group of degree four.
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2 DAE SAN KIM AND TAEKYUN KIM

From (1.1) and (1.4), we have

(1.5)

ˆ
Zp

[x+ y]
n
q dµ−q (y) = En,q (x) , (n ≥ 0) , (see [9, 10, 12]) .

For r ∈ N, we consider the higher-order q-Euler polynomials as follows:

(1.6)

ˆ
Zp
· · ·
ˆ
Zp
et[x1+···+xr+x]qdµ−q (x1) · · · dµ−q (xr) =

∞∑
n=0

E(r)
n,q (x)

tn

n!
.

Thus, by (1.3), we get

E(r)
n,q (x)(1.7)

=

ˆ
Zp
· · ·
ˆ
Zp

[x1 + · · ·+ xr + x]
n
q dµ−q (x1) · · · dµ−q (xr) , (see [9]) .

When x = 0, E
(r)
n,q = E

(r)
n,q (0) are called the higher-order q-Euler numbers.

In this paper, we give some new identities of symmetry for the higher-order
q-Euler polynomials under the symmetric group S4 of degree four.

Recently, several authors have studied q-extensions of Euler numbers and poly-
nomials in the several different areas (see [1–23]).

2. Symmetry identities of E
(r)
n,q (x) under S4

Let w1, w2, w3, w4 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), w3 ≡ 1 (mod 2),
w4 ≡ 1 (mod 2). Then we have

ˆ
Zp
· · ·
ˆ
Zp
e
[w1w2w3

∑r
l=1 xl+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt

(2.1)

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)

= lim
N→∞

1

[pN ]
r
−qw1w2w3

pN−1∑
x1,...,xr=0

(−qw1w2w3)
∑r
l=1 xl

× e[w1w2w3

∑r
l=1 xl+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt

= lim
N→∞

1

[w4pN ]
r
−qw1w2w3

w4−1∑
l1,...,lr=0

pN−1∑
x1,...,xr=0

(−1)
∑r
i=1 li qw1w2w3

∑r
i=1(li+w4xi) (−1)

x1+···+xr

× e[w1w2w3

∑r
i=1(li+w4xi)+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt.

Now, we observe that

1

[2]
r
qw1w2w3

w1−1∑
i1,...,ir=0

w2−1∑
j1,...,jr=0

w3−1∑
k1,...,kr=0

(−1)
∑r
l=1(il+jl+kl)

(2.2)

× qw4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl

×
ˆ
Zp
· · ·
ˆ
Zp
e
[w1w2w3

∑r
l=1 xl+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)
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SYMMETRY IDENTITIES OF HIGHER-ORDER q-EULER POLYNOMIALS 3

= lim
N→∞

(
1

1 + qw1w2w3w4pN

)r w1−1∑
i1,...,ir=0

w2−1∑
j1,...,jr=0

w3−1∑
k1,...,kr=0

w4−1∑
l1,...,lr=0

(−1)
∑r
n=1(ln+jn+in+kn)

× qw4w2w3

∑r
l=1 il+w4w1w3

∑r
j=1 jl+w4w1w2

∑r
l=1 kl+w1w2w3

∑r
i=1 li

×
pN−1∑

x1...,xr=0

qw1w2w3

∑r
i=1 xi (−1)

x1+···+xr

× e[w1w2w3

∑r
i=1(li+xiw4)+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt.

As this expression is invariant under S4, we have the following theorem.

Theorem 2.1. For w1, w2, w3, w4 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2),
w3 ≡ 1 (mod 2), w4 ≡ 1 (mod 2), the following expression

1

[2]
r
q
wσ(1)wσ(2)wσ(3)

wσ(1)−1∑
i1,...,ir=0

wσ(2)−1∑
j1,...,jr=0

wσ(3)−1∑
k1,...,kr=0

(−1)
∑r
l=1(il+jl+kl)

× qwσ(4)wσ(2)wσ(3)
∑r
l=1 il+wσ(4)wσ(1)wσ(3)

∑r
l=1 jl+wσ(4)wσ(1)wσ(2)

∑r
l=1 kl

ˆ
Zp
· · ·
ˆ
Zp
e[A]qt

× dµ−qwσ(1)wσ(2)wσ(3) (x1) · · · dµ−qwσ(1)wσ(2)wσ(3) (xr)

are the same for any σ ∈ S4,
where A = wσ(1)wσ(2)wσ(3)

∑r
l=1 il+wσ(1)wσ(2)wσ(3)wσ(4)x+wσ(4)wσ(2)wσ(3)

∑r
l=1 il

+wσ(4)wσ(1)wσ(3)
∑r
l=1 jl + wσ(4)wσ(1)wσ(2)

∑r
l=1 kl.

From (1.7), we have

ˆ
Zp
· · ·
ˆ
Zp
e
[w1w2w3

∑r
l=1 xl+w1w2w3w4x+w4w2w3

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl]qt

(2.3)

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)

=
∞∑
n=0

[w1w2w3]
n
q

ˆ
Zp
· · ·
ˆ
Zp

[
r∑
l=1

xl + w4x+
w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

]n
qw1w2w3

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)
tn

n!

=
∞∑
n=0

[w1w2w3]
n
q E

(r)
n,qw1w2w3

(
w4x+

w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3
kl

)
tn

n!
.

Thus, by (2.3), we get

ˆ
Zp
· · ·
ˆ
Zp

[
w1w2w3

r∑
l=1

xl + w4w2w3

r∑
l=1

il + w4w1w3

r∑
l=1

jl + w4w1w2

r∑
l=1

kl

]n
q

(2.4)

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)

= [w1w2w3]
n
q E

(r)
n,qw1w2w3

(
w4x+

w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

)
.

Therefore, by (2.4) and Theorem 2.1, we obtain the following theorem.
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4 DAE SAN KIM AND TAEKYUN KIM

Theorem 2.2. For n ≥ 0, w1, w2, w3, w4 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1
(mod 2), w3 ≡ 1 (mod 2), w4 ≡ 1 (mod 2), the following expression[

wσ(1)wσ(2)wσ(3)
]n
q

[2]
r
q
wσ(1)wσ(2)wσ(3)

wσ(1)−1∑
i1,...,ir=0

wσ(2)−1∑
j1,...,jr=0

wσ(3)−1∑
k1,...,kr=0

(−1)
∑r
l=1(il+jl+kl)

× qwσ(4)wσ(2)wσ(3)
∑r
l=1 il+wσ(4)wσ(1)wσ(3)

∑r
l=1 jl+wσ(4)wσ(1)wσ(2)

∑r
l=1 kl

× E(r)

n,q
wσ(1)wσ(2)wσ(3)

(
wσ(4)x+

wσ(4)

wσ(1)

r∑
l=1

il +
wσ(4)

wσ(2)

r∑
l=1

jl +
wσ(4)

wσ(3)

r∑
l=1

kl

)
are the same for any σ ∈ S4.

Now, we observe that[
r∑
l=1

xl + w4x+
w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

]
qw1w2w3

(2.5)

=
[w4]q

[w1w2w3]q

[
w2w3

r∑
l=1

il + w1w3

r∑
l=1

jl + w1w2

r∑
l=1

kl

]
qw4

+ qw2w3w4

∑r
l=1 il+w1w3w4

∑r
l=1 jl+w1w2w4

∑r
l=1 kl .

By (2.5), we get[
r∑
l=1

xl + w4x+
w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

]n
qw1w2w3

(2.6)

=

n∑
m=0

(
n

m

)(
[w4]q

[w1w2w3]q

)n−m [
w2w3

r∑
l=1

il + w1w3

r∑
l=1

jl + w1w2

r∑
l=1

kl

]n−m
qw4

× qm(w2w3w4

∑r
l=1 il+w1w3w4

∑r
l=1 jl+w1w2w4

∑r
l=1 kl)

[
r∑
l=1

xl + w4x

]m
qw1w2w3

.

From (2.6), we can derive the following equation:

ˆ
Zp
· · ·
ˆ
Zp

[
r∑
l=1

xl + w4x+
w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

]n
qw1w2

(2.7)

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)

=
n∑

m=0

(
n

m

)(
[w4]q

[w1w2w3]q

)n−m [
w2w3

r∑
l=1

il + w1w3

r∑
l=1

jl + w1w2

r∑
l=1

kl

]n−m
qw4

× E(r)
m,qw1w2w3 (w4x)

× qm(w2w3w4

∑r
l=1 il+w1w3w4

∑r
l=1 jl+w1w2w4

∑r
l=1 kl).

Thus, by (2.7), we get

[w1w2w3]
n
q

[2]
r
qw1w2w3

w1−1∑
i1,...,ir=0

w2−1∑
j1,...,jr=0

w3−1∑
k1,...,kr=0

(−1)
∑r
l=1(il+jl+kl) qw2w3w4

∑r
l=1 il+w4w1w3

∑r
l=1 jl

(2.8)
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× qw1w2w4

∑r
l=1 kl

ˆ
Zp
· · ·
ˆ
Zp

[
r∑
l=1

xl + w4x+
w4

w1

r∑
l=1

il +
w4

w2

r∑
l=1

jl +
w4

w3

r∑
l=1

kl

]n
qw1w2w3

× dµ−qw1w2w3 (x1) · · · dµ−qw1w2w3 (xr)

=
n∑

m=0

(
n

m

)
[w1w2w3]

m
q

[2]
r
qw1w2w3

[w4]
n−m
q E

(r)
m,qw1w2w3 (w4x)

w1−1∑
i1,...,ir=0

w2−1∑
j1,...,jr=0

w3−1∑
k1,...,kr=0

× (−1)
∑r
l=1(il+jl+kl) q(m+1)(w2w3w4

∑r
l=1 il+w4w1w3

∑r
l=1 jl+w4w1w2

∑r
l=1 kl)

×

[
w2w3

r∑
l=1

il + w1w3

r∑
l=1

jl + w1w2

r∑
l=1

kl

]n−m
qw4

=
n∑

m=0

(
n

m

)
[w1w2w3]

m
q

[2]
r
qw1w2w3

[w4]
n−m
q E

(r)
m,qw1w2w3 (w4x)T

(r)
n,qw4 (w1, w2, w3 | m) ,

where

T (r)
n,q (w1, w2, w3 | m)(2.9)

=

w1−1∑
i1,...,ir=0

w2−1∑
j1,...,jr=0

w3−1∑
k1,...,kr=0

(−1)
∑r
l=1(il+jl+kl)

× q(m+1)(w2w3

∑r
l=1 jl+w1w3

∑r
l=1 jl+w1w2

∑r
l=1 kl)

×

[
w2w3

r∑
l=1

il + w1w3

r∑
l=1

jl + w1w2

r∑
l=1

kl

]n−m
q

.

As this expression is invariant under S4, we have the following theorem.

Theorem 2.3. For n ≥ 0, w1, w2, w3, w4 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1
(mod 2), w3 ≡ 1 (mod 2), w4 ≡ 1 (mod 2), the following expression

n∑
m=0

(
n

m

)[wσ(1)wσ(2)wσ(3)]mq
[2]
r
q
wσ(1)wσ(2)wσ(3)

[
wσ(4)

]n−m
q

× E(r)

m,q
wσ(1)wσ(2)wσ(3)

(
wσ(4)x

)
T

(r)

n,q
wσ(4)

(
wσ(1), wσ(2), wσ(3) | m

)
are the same for any σ ∈ S4.
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Abstract

The notions of soft saturated values and soft dried values are introduced, and their ap-

plications in BCK/BCI-algebras are discussed. Using these notions, properties of energetic

subsets are investigated. Using the concepts of intersectional (union) ideals, properties of

right vanished (stable) subsets are explored.

Keywords:

Energetic subset, Right vanished subset, Right stable subset, Saturated value, Dried value.
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1 Introduction

The real world is inherently uncertain, imprecise and vague. Various problems in system

identification involve characteristics which are essentially non-probabilistic in nature [32].

In response to this situation Zadeh [33] introduced fuzzy set theory as an alternative to

probability theory. Uncertainty is an attribute of information. In order to suggest a

∗ Correspondence: Tel.: +82 2 2220 0897, Fax: +82 2 2281 0019 (H. S. Kim).
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more general framework, the approach to uncertainty is outlined by Zadeh [34]. To solve

complicated problem in economics, engineering, and environment, we can’t successfully

use classical methods because of various uncertainties typical for those problems. There

are three theories: theory of probability, theory of fuzzy sets, and the interval mathematics

which we can consider as mathematical tools for dealing with uncertainties. But all

these theories have their own difficulties. Uncertainties can’t be handled using traditional

mathematical tools but may be dealt with using a wide range of existing theories such

as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague sets, theory of

interval mathematics, and theory of rough sets. However, all of these theories have their

own difficulties which are pointed out in [29]. Maji et al. [26] and Molodtsov [29] suggested

that one reason for these difficulties may be due to the inadequacy of the parametrization

tool of the theory. To overcome these difficulties, Molodtsov [29] introduced the concept

of soft set as a new mathematical tool for dealing with uncertainties that is free from

the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed

out several directions for the applications of soft sets. Worldwide, there has been a

rapid growth in interest in soft set theory and its applications in recent years. Evidence

of this can be found in the increasing number of high-quality articles on soft sets and

related topics that have been published in a variety of international journals, symposia,

workshops, and international conferences in recent years. Maji et al. [26] described the

application of soft set theory to a decision making problem. Maji et al. [25] also studied

several operations on the theory of soft sets. Aktaş and Çağman [2] studied the basic

concepts of soft set theory, and compared soft sets to fuzzy and rough sets, providing

examples to clarify their differences. They also discussed the notion of soft groups.

BCK and BCI-algebras are two classes of logical algebras which are introduced by

Imai and Iséki (see [9, 10]). This notion originated from two different ways:

(1) set theory, and

(2) classical and non-classical propositional calculi.

In set theory, we have the following simple relations: (A − B) − (A − C) ⊆ C − B and

A− (A−B) ⊆ B. Several properties on BCK/BCI-algebras are investigated in the papers

[11, 12, 13, 14] and [27]. There is a deep relation between BCK/BCI-algebras and posets.

Today BCK/BCI-algebras have been studied by many authors and they have been applied

to many branches of mathematics, such as group, functional analysis, probability theory,

topology, fuzzy set theory, and so on. Jun and Park [24] studied applications of soft

sets in ideal theory of BCK/BCI-algebras. Jun et al. [20, 22] introduced the notion of

2
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intersectional soft sets, and considered its applications to BCK/BCI-algebras. Also, Jun

[16] discussed the union soft sets with applications in BCK/BCI-algebras. We refer the

reader to the papers [1, 3, 5, 6, 7, 15, 18, 19, 21, 23, 30, 31, 35] for further information

regarding algebraic structures/properties of soft set theory.

In this paper, we introduce the notions of soft saturated values and soft dried values,

and discuss their applications in BCK/BCI-algebras. Using these notions, we investigate

several properties of energetic subsets. Using the concepts of intersectional (union) ideals,

we explore some properties of right vanished (stable) subsets.

2 Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and

was extensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following

conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following ax-

ioms:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0. A nonempty subset S of a BCK/BCI-algebra X is

called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. A subset I of a BCK/BCI-algebra

3
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X is called an ideal of X if it satisfies:

0 ∈ I, (2.5)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.6)

We refer the reader to the books [8, 28] for further information regarding BCK/BCI-

algebras.

A soft set theory is introduced by Molodtsov [29], and Çaǧman et al. [4] provided new

definitions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters. We

say that the pair (U,E) is a soft universe. Let P(U) denote the power set of U and

A,B,C, · · · ⊆ E.

Definition 2.1 ([4, 29]). A soft set (f, A) over U is defined to be the set of ordered pairs

(f, A) := {(x, f(x)) : x ∈ E, f(x) ∈P(U)} ,

where f : E →P(U) such that f(x) = ∅ if x /∈ A.

The function f is called an approximate function of the soft set (f, A). The subscript

A in the notation f indicates that f is the approximate function of (f, A).

Definition 2.2 ([16]). Let (U,E) = (U,X) where X is a BCK/BCI-algebra. A soft set

(f,X) over U is called a union soft subalgebra over U if the following condition holds:

(∀x, y ∈ X) (f(x ∗ y) ⊆ f(x) ∪ f(y)) . (2.7)

Definition 2.3 ([16]). Let (U,E) = (U,X) where X is a BCK/BCI-algebra. A soft set

(f,X) over U is called a union soft ideal over U if it satisfies:

(∀x, y ∈ X) (f(0) ⊆ f(x) ⊆ f(x ∗ y) ∪ f(y)) . (2.8)

Proposition 2.4 ([16]). Let (U,E) = (U,X) where X is a BCK/BCI-algebra. Every

union soft ideal (f,X) over U satisfies the following condition:

(∀x, y ∈ X) (x ≤ y ⇒ f(x) ⊆ f(y)) . (2.9)

4
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3 Energetic subsets and soft saturated (dried) values

In what follows, let

{
Q(U)

R(U)

}
be the class of all subsets of U such that

(∀A,B,C ∈P(U))

{
A ∩B ⊆ C ⇒ A ⊆ C or B ⊆ C

A ⊆ B ∪ C ⇒ A ⊆ B or A ⊆ C

}
,

and let (U,E) = (U,X) where X is a BCK/BCI-algebra unless otherwise specified.

Definition 3.1 ([17]). A non-empty subset G of X is said to be S-energetic if it satisfies:

(∀a, b ∈ X) (a ∗ b ∈ G ⇒ {a, b} ∩G 6= ∅) . (3.1)

Example 3.2 ([17]). Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley

table:

∗ 0 a b c d

0 0 0 0 0 0

a a 0 0 0 0

b b a 0 0 a

c c b a 0 b

d d a a a 0

The set G := {a, b, c} is an S-energetic subset of X, but H := {a, b} is not an S-energetic

subset of X since d ∗ c = a ∈ H but {d, c} ∩H = ∅.

Definition 3.3 ([22]). A soft set (f,X) over U is called an int-soft subalgebra over U if

it satisfies:

(∀x, y ∈ X) (f(x ∗ y) ⊇ f(x) ∩ f(y)) . (3.2)

Definition 3.4 ([22]). A soft set (f,X) over U is called an int-soft ideal over U if it

satisfies:

(∀x ∈ X) (f(x) ⊆ f(0)) , (3.3)

(∀x, y ∈ X) (f(x ∗ y) ∩ f(y) ⊆ f(x)) . (3.4)

Lemma 3.5 ([22]). Every int-soft ideal (f,X) over U satisfies the following conditions:

(1) (∀x, y ∈ X) (x ≤ y ⇒ f(y) ⊆ f(x)) .

5
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(2) (∀x, y, z ∈ X) (x ∗ y ≤ z ⇒ f(y) ∩ f(z) ⊆ f(x)) .

Given a soft set (f,X) over U and α ∈P(U), we define useful subsets of X.

f⊆
α := {x ∈ X | f(x) ⊆ α}, f⊂

α := {x ∈ X | f(x) ⊂ α},
f⊇
α := {x ∈ X | f(x) ⊇ α}, f⊃

α := {x ∈ X | f(x) ⊃ α}.

Proposition 3.6. If (f,X) is an int-soft subalgebra over U with f : X → Q(U), then

(∀α ∈ Q(U))
(
f⊆
α 6= ∅ ⇒ f⊆

α is an S-energetic subset of X
)
.

Proof. Let x, y ∈ X be such that x ∗ y ∈ f⊆
α . Then

f(x) ∩ f(y) ⊆ f(x ∗ y) ⊆ α,

and so f(x) ⊆ α or f(y) ⊆ α, that is, x ∈ f⊆
α or y ∈ f⊆

α . Hence {x, y}∩ f⊆
α 6= ∅. Therefore

f⊆
α is an S-energetic subset of X.

Corollary 3.7. If (f,X) is an int-soft subalgebra over U with f : X → Q(U), then

(∀α ∈ Q(U)) (f⊂
α 6= ∅ ⇒ f⊂

α is an S-energetic subset of X) .

Proof. Straightforward.

The following example shows that the converse of Proposition 3.6 is not true.

Example 3.8. Let (U,E) = (U,X) where X = {0, a, b, c, d} is a BCK-algebra as in

Example 3.2. Let (f,X) be a soft set over U in which f is given as follows:

f : X → Q(U), x 7→


γ2 if x = 0,

γ3 if x = d,

γ1 if x ∈ {a, b, c},

where γ1, γ2, γ3 ∈ Q(U) with γ1 ( γ2 ( γ3. For any α ∈ Q(U), if γ1 ⊆ α ( γ2 then

f⊆
α = {a, b, c} is an S-energetic subset of X. But (f,X) is not an int-soft subalgebra over

U since

f(d ∗ d) = f(0) = γ2 + γ3 = f(d) ∩ f(d).

Let (U,E) = (U,X) where X is a BCK-algebra. Then every int-soft ideal over U is

an int-soft subalgebra over U (see [22]). Hence we have the following corollary.

6
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Corollary 3.9. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is an int-soft

ideal over U with f : X → Q(U), then

(∀α ∈ Q(U))
(
f⊆
α 6= ∅ ⇒ f⊆

α is an S-energetic subset of X
)
.

The following example shows that the converse of Corollary 3.9 is not true.

Example 3.10. Consider the soft set (f,X) over U as in Example 3.8. For any α ∈ Q(U),

if γ1 ⊆ α ( γ2 then f⊆
α = {a, b, c} is an S-energetic subset of X. But (f,X) is not an

int-soft ideal over U since f(d) = γ3 * γ2 = f(0).

Definition 3.11. Let (f,X) be a soft set over U and α ∈P(U) with f⊇
α 6= ∅. Then α is

called a soft saturated S-value for (f,X) if the following assertion is valid:

(∀a, b ∈ X) (f(a ∗ b) ⊇ α ⇒ f(a) ∪ f(b) ⊇ α) . (3.5)

Example 3.12. Let (U,E) = (U,X) where X = {0, 1, 2, 3} is a BCK-algebra with the

following Cayley table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 2

3 3 1 3 0

Consider a soft set (f,X) over U in which f is given as follows:

f : X →P(U), x 7→


γ1 if x = 0,

γ2 if x = 1,

γ3 if x ∈ {2, 3},

where γ1, γ2 and γ3 are subsets of U with γ1 ( γ2 ( γ3. Take α ∈P(U) with γ2 ( α ⊆ γ3.

Then f⊇
α = {2, 3}, and it is easy to check that α is a soft saturated S-value for (f,X).

Example 3.13. Let (U,E) = (N, X) where N is the set of all natural numbers and

X = {0, 1, 2, a, b} is a BCI-algebra with the following Cayley table:

∗ 0 1 2 a b

0 0 0 0 b a

1 1 0 1 b a

2 2 2 0 b a

a a a a 0 b

b b b b a 0
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Consider a soft set (f,X) over U in which f is given as follows:

f : X →P(U), x 7→


N if x = 0,

2N if x ∈ {1, a},
2N− {2, 4, 6} if x = 2,

2N− {4, 6, 8} if x = b.

If α = 2N − {4}, then f⊇
α = {0, 1, a} 6= ∅, f(2 ∗ b) = f(a) = 2N ⊇ α, and f(2) ∪ f(b) =

2N− {4, 6} + α. Hence α is not a soft saturated S-value for (f,X).

Proposition 3.14. Let (f,X) be an int-soft subalgebra over U with f : X → R(U). If

α ∈ R(U) is a soft saturated S-value for (f,X), then

f⊇
α 6= ∅ ⇒ f⊇

α is an S-energetic subset of X.

Proof. Let a, b ∈ X be such that a ∗ b ∈ f⊇
α . Then f(a ∗ b) ⊇ α, which implies from (3.5)

that f(a) ∪ f(b) ⊇ α. Thus f(a) ⊇ α or f(b) ⊇ α, that is, a ∈ f⊇
α or b ∈ f⊇

α . Hence

{a, b} ∩ f⊇
α 6= ∅. Therefore f⊇

α is an S-energetic subset of X.

Theorem 3.15. Let (f,X) be a soft set over U and α ∈ P(U) be such that f⊇
α 6= ∅. If

(f,X) is a union soft subalgebra over U, then α is a soft saturated S-value for (f,X).

Proof. Let x, y ∈ X be such that f(x ∗ y) ⊇ α. Then

α ⊆ f(x ∗ y) ⊆ f(x) ∪ f(y),

and so α is a soft saturated S-value for (f,X).

Corollary 3.16. Let (U,E) = (U,X) where X is a BCK-algebra. Let (f,X) be a soft

set over U and let α ∈P(U) be such that f⊇
α 6= ∅. If (f,X) is a union soft ideal over U,

then α is a soft saturated S-value for (f,X).

Definition 3.17. Let (f,X) be a soft set over U and α ∈P(U) with f⊆
α 6= ∅. Then α is

called a soft dried S-value for (f,X) if the following assertion is valid:

(∀a, b ∈ X) (f(a ∗ b) ⊆ α ⇒ f(a) ∩ f(b) ⊆ α) . (3.6)

Example 3.18. Let (U,E) = (U,X) where X = {0, 1, 2, 3} is a BCK-algebra as in

Example 3.12. Consider a soft set (f,X) over U in which f is given as follows:

f : X →P(U), x 7→


γ2 if x = 0,

γ1 if x = 1,

γ3 if x ∈ {2, 3},
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where γ1, γ2 and γ3 are subsets of U with γ1 ( γ2 ( γ3. For any α ∈ P(U) with

γ1 ⊆ α ( γ2, f
⊆
α = {1} and α is a soft dried S-value for (f,X).

Theorem 3.19. Let (f,X) be a union soft subalgebra over U with f : X → Q(U). For

any soft dried S-value α ∈ Q(U) for (f,X), we have

f⊆
α 6= ∅ ⇒ f⊆

α is an S-energetic subset of X.

Proof. Let a, b ∈ X be such that a ∗ b ∈ f⊆
α . Then f(a ∗ b) ⊆ α, and so f(a) ∩ f(b) ⊆ α

by (3.6). Thus f(a) ⊆ α or f(b) ⊆ α, i.e., a ∈ f⊆
α or b ∈ f⊆

α . Hence {a, b} ∩ f⊆
α 6= ∅.

Therefore f⊆
α is an S-energetic subset of X.

Corollary 3.20. Let (U,E) = (U,X) where X is a BCK-algebra. Let (f,X) be a union

soft ideal over U with f : X → Q(U). For any soft dried S-value α ∈ Q(U) for (f,X),

we have

f⊆
α 6= ∅ ⇒ f⊆

α is an S-energetic subset of X.

Theorem 3.21. Let (f,X) be an int-soft subalgebra over U and let α ∈ P(U) be such

that f⊆
α 6= ∅. Then α is a soft dried S-value for (f,X).

Proof. Let a, b ∈ X be such that f(a ∗ b) ⊆ α. Then α ⊇ f(a ∗ b) ⊇ f(a) ∩ f(b), which

shows that α is a soft dried S-value for (f,X).

Corollary 3.22. Let (U,E) = (U,X) where X is a BCK-algebra. Let (f,X) be an int-

soft ideal over U and let α ∈ P(U) be such that f⊆
α 6= ∅. Then α is a soft dried S-value

for (f,X).

Definition 3.23 ([17]). Let X be a BCK/BCI-algebra. A non-empty subset G of X is

said to be I-energetic if it satisfies:

(∀x, y ∈ X) (y ∈ G ⇒ {x, y ∗ x} ∩G 6= ∅) . (3.7)

Example 3.24 ([17]). Let X = {0, 1, 2, a, b} be a BCI-algebra with the following Cayley

table:

∗ 0 1 2 a b

0 0 0 0 b a

1 1 0 1 b a

2 2 2 0 b a

a a a a 0 b

b b b b a 0

It is routine to verify that G := {a, b} is an I-energetic subset of X.
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Example 3.25 ([17]). Let X = {0, 1, 2, 3, 4} be a BCK-algebra with the following Cayley

table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 1

2 2 1 0 1 2

3 3 1 1 0 3

4 4 4 4 4 0

It is routine to verify that G := {0, 1, 4} is an I-energetic subset of X.

The notion of I-energetic subsets is independent to the notion of S-energetic subsets.

In fact, the S-energetic subset G := {a, b, c} in Example 3.2 is not an I-energetic subset

of X since {d, a ∗ d} ∩G = ∅. Also, in Example 3.25, the I-energetic subset G := {0, 1, 4}
is not an S-energetic subset of X since 3 ∗ 2 = 1 ∈ G and {3, 2} ∩G = ∅ (see [17]).

Definition 3.26. Let (f,X) be a soft set over U and α ∈P(U) with f⊇
α 6= ∅. Then α is

called a soft saturated I-value for (f,X) if the following assertion is valid:

(∀x, y ∈ X) (f(y) ⊇ α ⇒ f(y ∗ x) ∪ f(x) ⊇ α) . (3.8)

Example 3.27. Let (U,E) = (U,X) where X = {0, 1, 2, 3} is a BCK-algebra as in

Example 3.12. Consider a soft set (f,X) over U in which f is given as follows:

f : X →P(U), x 7→


γ3 if x = 0,

γ2 if x ∈ {1, 3},
γ1 if x = 2,

where γ1, γ2 and γ3 are subsets of U with γ1 ( γ2 ( γ3. Put α ∈P(U) with γ1 ( α ⊆ γ2.

Then f⊇
α = {0, 1, 3}. It is easy to check that α is a soft saturated I-value for (f,X).

Theorem 3.28. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is a union soft

subalgebra over U, then every soft saturated I-value for (f,X) is a soft saturated S-value

for (f,X).

Proof. Since (f,X) is a union soft subalgebra over U, f(0) ⊆ f(x) for all x ∈ X. Let

α ∈ P(U) be a soft saturated I-value for (f,X). Assume that f(a ∗ b) ⊇ α for all

a, b ∈ X. Using (3.8), (2.3), (III) and (V), we have

α ⊆ f((a ∗ b) ∗ a) ∪ f(a) = f((a ∗ a) ∗ b) ∪ f(a)

= f(0 ∗ b) ∪ f(a) = f(0) ∪ f(a) = f(a).

Thus f(a) ∪ f(b) ⊇ f(a) ⊇ α and therefore α is a soft saturated S-value for (f,X).
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Corollary 3.29. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is a union

soft ideal over U, then every soft saturated I-value for (f,X) is a soft saturated S-value

for (f,X).

Proof. Straightforward.

The converse of Theorem 3.28 is not true as seen in the following example.

Example 3.30. Let (U,E) = (U,X) where X = {0, a, b, c} is a BCK-algebra with the

following Cayley table:

∗ 0 a b c

0 0 0 0 0

a a 0 0 a

b b a 0 b

c c c c 0

Consider a soft set (f,X) over U in which f is given as follows:

f : X →P(U), x 7→


γ1 if x = 0,

γ2 if x = a,

γ3 if x ∈ {b, c},

where γ1, γ2 and γ3 are subsets of U with γ1 ( γ2 ( γ3. Take α ∈P(U) with γ2 ( α ⊆ γ3.

Then f⊇
α = {b, c}. It is easy to check that α is a soft saturated S-value for (f,X), but not

a soft saturated I-value for (f,X) since f(b) ⊇ γ3 and f(b ∗ a) ∪ f(a) = f(a) = γ2 + γ3.

Theorem 3.31. Let (f,X) be an int-soft ideal over U with f : X → Q(U). Then

(∀α ∈ Q(U))
(
f⊆
α 6= ∅ ⇒ f⊆

α is an I-energetic subset of X
)
.

Proof. Let x, y ∈ X be such that y ∈ f⊆
α . Then f(y) ⊆ α. It follows from (3.4) that

α ⊇ f(y) ⊇ f(y ∗ x) ∩ f(x).

Thus f(y ∗ x) ⊆ α or f(x) ⊆ α, i.e., y ∗ x ∈ f⊆
α or x ∈ f⊆

α . Hence {x, y ∗ x} ∩ f⊆
α 6= ∅, and

so f⊆
α is an I-energetic subset of X.

Theorem 3.32. Let (f,X) be an int-soft ideal over U with f : X → R(U). If α ∈ R(U)

is a soft saturated I-value for (f,X), then

f⊇
α 6= ∅ ⇒ f⊇

α is an I-energetic subset of X.
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Proof. Let x, y ∈ X be such that y ∈ f⊇
α . Then f(y) ⊇ α, which implies from (3.8) that

f(y ∗ x) ∪ f(x) ⊇ α. Hence f(y ∗ x) ⊇ α or f(x) ⊇ α, that is, y ∗ x ∈ f⊇
α or x ∈ f⊇

α . Thus

{x, y ∗ x} ∩ f⊇
α 6= ∅, and therefore f⊇

α is an I-energetic subset of X.

Theorem 3.33. Let α ∈P(U) be such that f⊇
α 6= ∅. If (f,X) is a union soft ideal over

U, then α is a soft saturated I-value for (f,X).

Proof. Let x, y ∈ X be such that f(y) ⊇ α. Then α ⊆ f(y) ⊆ f(y ∗ x) ∪ f(x) by (2.8).

Hence α is a soft saturated I-value for (f,X).

Theorem 3.34. If (f,X) is a union soft ideal over U with f : X → R(U), then

(∀α ∈ R(U))
(
f⊇
α 6= ∅ ⇒ f⊇

α is an I-energetic subset of X
)
.

Proof. Let x, y ∈ X be such that y ∈ f⊇
α . Then f(y) ⊇ α, and so

α ⊆ f(y) ⊆ f(y ∗ x) ∪ f(x)

by (2.8). Thus f(y∗x) ⊇ α or f(x) ⊇ α, i.e., y∗x ∈ f⊇
α or x ∈ f⊇

α . Hence {x, y∗x}∩f⊇
α 6= ∅,

and so f⊇
α is an I-energetic subset of X.

Definition 3.35. Let (f,X) be a soft set over U and α ∈P(U) with f⊆
α 6= ∅. Then α is

called a soft dried I-value for (f,X) if the following assertion is valid:

(∀x, y ∈ X) (f(y) ⊆ α ⇒ f(y ∗ x) ∩ f(x) ⊆ α) . (3.9)

Example 3.36. Let (U,E) = (U,X) where X = {0, a, b, c} is a BCK-algebra as in

Example 3.30. Consider the soft set (f,X) over U in Example 3.30. Take α ∈ P(U)

with γ2 ⊆ α ( γ3. Then f⊆
α = {0, a}. It is easy to check that α is a soft dried I-value for

(f,X).

Theorem 3.37. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is an int-soft

subalgebra over U, then every soft dried I-value for (f,X) is a soft dried S-value for (f,X).

Proof. Since (f,X) is an int-soft subalgebra over U, f(0) ⊇ f(x) for all x ∈ X. Let

α ∈ P(U) be a soft dried I-value for (f,X). Assume that f(a ∗ b) ⊆ α for all a, b ∈ X.
Using (3.9), (2.3), (III) and (V), we have

α ⊇ f((a ∗ b) ∗ a) ∩ f(a) = f((a ∗ a) ∗ b) ∩ f(a)

= f(0 ∗ b) ∩ f(a) = f(0) ∩ f(a) = f(a).

Thus f(a) ∩ f(b) ⊆ f(a) ⊆ α and therefore α is a soft dried S-value for (f,X).
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Theorem 3.38. If (f,X) is a union soft ideal over U with f : X → R(U), then

(∀α ∈ R(U))
(
f⊇
α 6= ∅ ⇒ f⊇

α is an I-energetic subset of X
)
.

Proof. Let x, y ∈ X be such that y ∈ f⊇
α . Then f(y) ⊃ α. It follows from (2.8) that

α ⊆ f(y) ⊆ f(y ∗ x) ∪ f(x).

Thus f(y ∗ x) ⊇ α or f(x) ⊇ α, i.e., y ∗ x ∈ f⊇
α or x ∈ f⊇

α . Hence {x, y ∗ x} ∩ f⊇
α 6= ∅, and

so f⊇
α is an I-energetic subset of X.

Theorem 3.39. Let (f,X) be a union soft ideal over U with f : X → Q(U). If α ∈ Q(U)

is a soft dried I-value for (f,X), then

f⊆
α 6= ∅ ⇒ f⊆

α is an I-energetic subset of X.

Proof. Let x, y ∈ X be such that y ∈ f⊆
α . Then f(y) ⊆ α, which implies from (3.9) that

f(y ∗ x) ∩ f(x) ⊆ α. Hence f(y ∗ x) ⊆ α or f(x) ⊆ α, that is, y ∗ x ∈ f⊆
α or x ∈ f⊆

α . Thus

{x, y ∗ x} ∩ f⊆
α 6= ∅, and therefore f⊆

α is an I-energetic subset of X.

Definition 3.40 ([17]). Let Q be a non-empty subset of a BCK/BCI-algebra X. Then

Q is said to be right vanished if it satisfies:

(∀a, b ∈ X) (a ∗ b ∈ Q ⇒ a ∈ Q) . (3.10)

Q is said to be right stable if Q ∗X := {a ∗ x | a ∈ Q, x ∈ X} ⊆ Q.

Theorem 3.41. Let (U,E) = (U,X) where X is a BCK-algebra and let (f,X) be an

int-soft ideal over U. Then f⊇
α and f⊃

α are right stable subsets of X for any α ∈ P(U)

with f⊇
α 6= ∅ 6= f⊃

α .

Proof. Let x ∈ X and a ∈ f⊇
α . Then f(a) ⊇ α. Since a ∗ x ≤ a and (f,X) is an int-soft

ideal over U, it follows from Lemma 3.5(1) that f(a ∗ x) ⊇ f(a) ⊇ α, i.e., a ∗ x ∈ f⊇
α .

Hence f⊇
α is a right stable subset of X. Similarly, f⊃

α is a right stable subset of X.

Theorem 3.42. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is a union

soft ideal over U, then f⊆
α and f⊂

α are right stable subsets of X for any α ∈ P(U) with

f⊆
α 6= ∅ 6= f⊂

α .
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Proof. Let α ∈ P(U) and x, a ∈ X be such that a ∈ f⊆
α . Then f(a) ⊆ α. Note that

a ∗ x ≤ a, i.e., (a ∗ x) ∗ a = 0. Since (f,X) is a union soft ideal of X, it follows that

f(a ∗ x) ⊆ f((a ∗ x) ∗ a) ∪ f(a) = f(0) ∪ f(a) = f(a) ⊆ α.

Hence a ∗ x ∈ f⊆
α , and so f⊆

α is a right stable subset of X. Similarly, f⊂
α is a right stable

subset of X.

Theorem 3.43. Let (U,E) = (U,X) where X is a BCK-algebra. If (f,X) is a union

soft ideal over U, then f⊇
α and f⊃

α are right vanished subsets of X for any α ∈P(U) with

f⊇
α 6= ∅ 6= f⊃

α .

Proof. Let α ∈P(U) and a, b ∈ X be such that a ∗ b ∈ f⊇
α . Then f(a ∗ b) ⊇ α. Note that

a ∗ b ≤ a, i.e., (a ∗ b) ∗ a = 0. Since (f,X) is a union soft ideal of X, it follows from (2.8),

(2.3), (III) and (V) that

α ⊆ f(a ∗ b) ⊆ f((a ∗ b) ∗ a) ∪ f(a)

= f((a ∗ a) ∗ b) ∪ f(a) = f(0 ∗ b) ∪ f(a)

= f(0) ∪ f(a) = f(a),

and so a ∈ f⊇
α . Therefore f⊇

α is a right vanished subset of X. Similarly, f⊃
α is a right

vanished subset of X.

4 Conclusions

We have introduced the notions of soft saturated values and soft dried values, and dis-

cussed their applications in BCK/BCI-algebras. Using these notions, we have investigated

several properties of energetic subsets. Using the concepts of int-soft ideals (union ideals),

we have explored some properties of right vanished (stable) subsets. Work is on going.

Some important issues for further work are:

1. To develop strategies for obtaining more valuable results,

2. To apply these notions and results for studying related notions in other (soft) alge-

braic structures such as soft (semi-, near-, Γ-) rings, soft lattices, soft BL-algebras,

soft R0-algebras, soft MV-algebras and soft MTL-algebras, etc.,

3. To study (fuzzy) rough set theoretical aspects based on this article.
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[9] Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. Jpn. Acad.

42 (1966), 19–21.
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Boundedness from Below of Composition

Followed by Differentiation on Bloch-type Spaces

Xiaosong Liu and Songxiao Li

Abstract. Let φ be an analytic self-map of the unit disk D. The composition
followed by differentiation operator, denoted by DCφ, is defined by

DCφf(z) = (f ◦ φ)′ = f ′(φ)φ′, f ∈ H(D).

In this paper, under some assumption conditions, we give a necessary and suf-
ficient condition for the operator DCφ : Bα → Bβ to be bounded below.

MSC 2000: 47B33, 30H30.

Keywords: Bloch-type space, composition operator, differentiation opera-
tor, bounded below.

1 Introduction

Let D denote the open unit disk in the complex plane C and ∂D be its boundary.
Let H(D) be the space of analytic functions on D. For 0 < α < ∞, an f ∈
H(D) is said to belong to Bloch-type space( or α-Bloch space), denoted by
Bα = Bα(D), if

∥f∥α = sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

It is easy to check that Bα is a Banach space with the norm ∥f∥Bα = |f(0)| +
∥f∥α. When α = 1, B1 = B is the well-known Bloch space.

Throughout the paper, S(D) denotes the set of all analytic self-maps of
D. Associated with φ ∈ S(D) is the composition operator Cφ defined by
Cφf = f ◦ φ for f ∈ H(D). The main subject in the study of composition
operators is to describe operator theoretic properties of Cφ in terms of function
theoretic properties of φ. See [4] and the references therein for the study of
the composition operator. See [7, 8, 9, 10, 11, 12, 13, 14, 15] for the study of
composition operators on Bloch-type spaces.

Let D be the differentiation operator and φ ∈ S(D). The composition fol-
lowed by differentiation operator, denoted by DCφ, is defined as follows.

DCφf(z) = (f ◦ φ)′ = f ′(φ)φ′, f ∈ H(D).
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In [7], the authors studied the boundedness and compactness of DCφ between
Bloch-type spaces. For example, they obtained the following results:

Theorem A. [7] Let α, β > 0 and φ ∈ S(D). Then DCφ: Bα → Bβ is bounded
if and only if

M1 := sup
z∈D

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
<∞, M2 := sup

z∈D

|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α
<∞.

Theorem B. [7] Let α, β > 0, φ ∈ S(D) such that DCφ : Bα → Bβ is bounded.
Then DCφ : Bα → Bβ is compact if and only if

lim
|φ(z)|→1

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
= 0 (1)

and

lim
|φ(z)|→1

|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α
= 0. (2)

Recall that the operator DCφ : Bα → Bβ is said to be bounded, if there exists
a C > 0, such that ∥DCφf∥Bβ ≤ C∥f∥Bα for all f ∈ Bα. A bounded operator
DCφ : Bα → Bβ is said to be bounded below, if there exists a δ > 0, such that

∥DCφf∥Bβ ≥ δ∥f∥Bα

for all f ∈ Bα. We notice that DCφ : Bα → Bβ is bounded below if and only
if DCφ has closed range. The boundedness from below of composition operator
Cφ on B was studied by Gathage, Zheng and Zorboska in terms of sampling
sets, see [6]. More precisely, they proved that Cφ is bounded below on B if and
only if there exists ε > 0, such that Gε = φ(Ωε) is a sampling set for B, where

Ωε = {z ∈ D :
(1− |z|2)|φ′(z)|

1− |φ(z)|2
≥ ε}.

See [1, 2, 5, 6] for other characterizations of the boundedness from below of
composition operator on B. The boundedness from below of multiplication
operator on Bloch-type spaces was studied in [3].

In this paper, we give a necessary and sufficient condition for the bounded-
ness from below of the operator DCφ : Bα → Bβ , i.e., we obtain the following
results.

Theorem 1. Let 0 < α, β <∞. Let φ ∈ S(D) such that φ′(z) ̸≡ 0 and (2) hold-

s. Suppose that DCφ is bounded from Bα to Bβ and limφ(z)→∂D
|φ′(z)|2(1−|z|2)β
(1−|φ(z)|2)α+1

exists. Then DCφ: Bα → Bβ is bounded below if and only if

lim
φ(z)→∂D

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
> 0. (3)
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Theorem 2. Let 0 < α, β <∞. Let φ ∈ S(D) such that φ′(z) ̸≡ 0 and (1) hold-

s. Suppose that DCφ is bounded from Bα to Bβ and limφ(z)→∂D
|φ′′(z)|(1−|z|2)β
(1−|φ(z)|2)α

exists. Then DCφ: Bα → Bβ is bounded below if and only if

lim
φ(z)→∂D

|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α
> 0. (4)

Throughout the paper, we denote by C a positive constant which may differ
from one occurrence to the next. We say that P ≼ Q if there exists a constant
C such that P ≤ CQ. The symbol P ≈ Q means that P ≼ Q ≼ P .

2 Proof of main results

In this section, we prove the main results in this paper. For this purpose, we
need the following lemma.

Lemma 1. Let φ ∈ S(D) such that φ′(z) ̸≡ 0. Suppose that β > 0 and
fn ∈ H(D) for n = 1, 2, · · · . If ∥DCφfn∥Bβ → 0 as n→∞, then f ′n ◦ φ→ 0 as
n→∞, locally uniformly in D.

Proof. The proof is similar to the proof of Lemma 2.9 in [3]. For the convenience
of the readers, we give the detail of the proof. Since φ′(z) ̸≡ 0, then for any
r0 ∈ (0, 1), there exists an r′ such that r0 < r′ < 1 and φ′(z) ̸= 0 for |z| = r′.
By Lemma 2.2 of [3],

|φ′(z)f ′n(φ(z))| ≤ Cβ,r′∥φ′f ′n ◦ φ∥Bβ

for n = 1, 2, · · · , and |z| = r′. Let δ = min|z|=r′ |φ′(z)| > 0. Then we have
|f ′n(φ(z))| ≤ (Cβ,r′/δ)∥φ′f ′n ◦φ∥Bβ , for n = 1, 2, · · · , and |z| = r′. By Maximum
principle and the assumption that ∥φ′f ′n ◦ φ∥Bβ → 0 as n → ∞, we have
f ′n ◦ φ → 0 as n → ∞, uniformly for |z| ≤ r′. The proof of the lemma is
finished.

Lemma 2. [16] Let m be a positive integer and α > 0. Then f ∈ Bα if and
only if

sup
z∈D

(1− |z|2)m+α−1|f (m)(z)| <∞.

Moreover,

∥f∥Bα ≈
m−1∑
j=0

|f (j)(0)|+ sup
z∈D

(1− |z|2)m+α−1|f (m)(z)|.

Proof of Theorem 1. Necessity. By the assumption that DCφ is bounded
from Bα to Bβ , from Theorem A, we have

M1 := sup
z∈D

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
<∞.
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Hence,

M3 := sup
z∈D

(1− |z|2)β |φ′(z)|2 < sup
z∈D

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
<∞.

Assume that (3) does not hold, i.e., for any η1 > 0, there exists a δ1 > 0
such that

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
< η1 (5)

for |φ(z)| > δ1. Let an ∈ D such that φ(an)→ ∂D as n→∞(n = 1, 2, · · · ). Set

fn(z) =
1

αφ(an)

1− |φ(an)|2

(1− φ(an)z)α
.

It is easy to check that 1 ≤ ∥fn∥α ≤ 2α+1. Since DCφ from Bα to Bβ is bounded
below, then, there exists a δ > 0 such that

∥DCφfn∥Bβ ≥ δ∥fn∥Bα ≥ δ∥fn∥α ≥ δ. (6)

On the other hand, we obtain

∥DCφfn∥Bβ = |φ′(0)f ′n(φ(0))|+ sup
z∈D

(1− |z|2)β |
(
φ′ · f ′n ◦ φ

)′
(z)|

= |φ′(0)f ′n(φ(0))|+ sup
z∈D

(1− |z|2)β |φ′2(z)f ′′n (φ(z)) + φ′′(z)f ′n(φ(z))|

≤ |φ′(0)f ′n(φ(0))|+ sup
z∈D

(1− |z|2)β |φ′2(z)f ′′n (φ(z))|+ sup
z∈D

(1− |z|2)β |φ′′(z)f ′n(φ(z))|

= |φ′(0)f ′n(φ(0))|+ E1 + E2,

where

E1 = sup
z∈D

(1− |z|2)β |φ′2(z)f ′′n (φ(z))| and E2 = sup
z∈D

(1− |z|2)β |φ′′(z)f ′n(φ(z))|.

First we estimate E1. For any z ∈ D such that |φ(z)| > δ1, by (5), we have

(1− |z|2)β |φ′2(z)f ′′n (φ(z))|

= (α+ 1)(1− |z|2)β |φ′(z)|2|φ(an)|
1− |φ(an)|2

|1− φ(an)φ(z)|α+2

≤ (α+ 1)
|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1

(1− |φ(an)|2)(1− |φ(z)|2)α+1

|1− φ(an)φ(z)|α+2

≤ (α+ 1)
|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
(1 + |φ(an)|)(1 + |φ(z)|)α+1

≤ (α+ 1)2α+2η1. (7)
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For any η2 > 0, there exists a positive integer N , 1− |φ(an)|2 < η2 holds for all
n > N . For any z ∈ D such that |φ(z)| ≤ δ1 and n > N , we deduce

(1− |z|2)β |φ′2(z)f ′′n (φ(z))|

= (α+ 1)(1− |z|2)β |φ′(z)|2|φ(an)|
1− |φ(an)|2

|1− φ(an)φ(z)|α+2

≤ (α+ 1)(1− |z|2)β |φ′(z)|2 1− |φ(an)|2

(1− |φ(z)|)α+2

≤ (α+ 1)(1− |z|2)β |φ′(z)|2 η2
(1− δ1)α+2

≤ (α+ 1)
M3

(1− δ1)α+2
η2. (8)

From (7) and (8), we have

E1 ≤ sup
|φ(z)|>δ1

(1− |z|2)|φ′(z)|2|f ′′n (φ(z))|

+ sup
|φ(z)|≤δ1

(1− |z|2)|φ′(z)|2|f ′′n (φ(z))|

< (α+ 1)2α+2η1 + (α+ 1)
M3

(1− δ1)α+2
η2, as n > N.

By the arbitrary of η1 and η2, we see that E1 → 0 as n→∞.
Next we estimate E2. From (2), for any η3 > 0, there exists a δ2 > 0 such

that
|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α
< η3, when |φ(z)| > δ2.

For any z ∈ D such that |φ(z)| > δ2,

(1− |z|2)β |φ′′(z)f ′n(φ(z))| = (1− |z|2)β |φ′′(z)| 1− |φ(an)|2

|1− φ(an)φ(z)|α+1

≤ 2α(1 + |φ(an)|)
|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α

< 2α+1η3. (9)

For any z ∈ D such that |φ(z)| ≤ δ2 and n > N , we have

(1− |z|2)β |φ′′(z)f ′n(φ(z))| = (1− |z|2)β |φ′′(z)| 1− |φ(an)|2

|1− φ(an)φ(z)|α+1

≤ 2α
|φ′′(z)|(1− |z|2)β

(1− |φ(z)|2)α
1− |φ(an)|2

1− |φ(z)|

≤ 2α
M2η2
1− δ2

. (10)
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Then,

E2 ≤ sup
|φ(z)|>δ2

(1− |z|2)|φ′′(z)f ′n(φ(z))|+ sup
|φ(z)|≤δ2

(1− |z|2)|φ′′(z)f ′n(φ(z))|

≤ 2α+1η3 + 2α
M2

1− δ2
η2, as n > N.

Since η2 and η3 are arbitrary, then E2 → 0 as n→∞. In addition, |φ′(0)f ′n(φ(0))| →
0 as n → ∞. Therefore, ∥DCφfn∥Bβ → 0 as n → ∞, which contradicts (6).
Therefore (3) holds.

Sufficiency. Now assume that (3) holds. Denoted

ϵ = lim
φ(z)→∂D

|φ′(z)|2(1− |z|2)β

(1− |φ(z)|2)α+1
> 0. (11)

Suppose on the contrary that DCφ is not bounded below from Bα to Bβ . Then,
there exists a sequence {fn} ⊂ Bα such that ∥fn∥Bα = 1 for n = 1, 2, · · · , and

sup
z∈D

(1− |z|2)β |(f ′n(φ)φ′)′(z)| ≤ ∥DCφfn∥Bβ → 0

as n → ∞. By Lemma 1, f ′n ◦ φ → 0 and hence f ′n → 0 as n → ∞, locally
uniformly in D. By Cauchy’s estimate we see that f ′′n → 0 as n → ∞, locally
uniformly in D. Let zn ∈ D be a sequence such that

(1− |φ(zn)|2)α+1|f ′′n (φ(zn))| ≥
1

2
. (12)

Since for every n = 1, 2, · · · , ∥fn∥Bα = 1, we see that the above {zn} exist by
Lemma 2. Then φ(zn)→ ∂D as n→∞. Hence by (2) and (11), we get

|φ′′(zn)|(1− |zn|2)β

(1− |φ(zn)|2)α
→ 0 (13)

and

|φ′(zn)|2(1− |zn|2)β

(1− |φ(zn)|2)α+1
≥ ϵ/2 (14)

for sufficiently large n, respectively. Therefore, by (12), (13), (14) and Lemma
2, we obtain

∥DCφfn∥Bβ ≥ (1− |z|2)β |(φ′ · f ′n ◦ φ)′(z)|

≥ |φ′(zn)|2(1− |zn|2)β

(1− |φ(zn)|2)α+1
(1− |φ(zn)|2)α+1|f ′′(φ(zn))|

−|φ
′′(zn)|(1− |zn|2)β

(1− |φ(zn)|2)α
(1− |φ(zn)|2)α|f ′(φ(zn))|

≥ ϵ

4
, as n→∞.
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We arrive at a contradiction. Therefore DCφ is bounded below from Bα to Bβ .
This completes the proof of this theorem.

Proof of Theorem 2. The proof of Theorem 2 is similar to the proof of The-
orem 1. Hence we omit the details.
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Abstract

Further properties of uni-soft filters in a BE-algebra are investigated. The problem of

classifying uni-soft filters by their τ -exclusive filter is solved. New uni-soft filter from old

one is established.
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1 Introduction

To solve complicated problem in economics, engineering, and environment, we can’t suc-

cessfully use classical methods because of various uncertainties typical for those problems.

There are three theories: theory of probability, theory of fuzzy sets, and the interval math-

ematics which we can consider as mathematical tools for dealing with uncertainties. But

all these theories have their own difficulties. Uncertainties can’t be handled using tradi-

tional mathematical tools but may be dealt with using a wide range of existing theories

such as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague sets, theory

of interval mathematics, and theory of rough sets. However, all of these theories have their

own difficulties which are pointed out in [8]. Maji et al. [7] and Molodtsov [8] suggested

that one reason for these difficulties may be due to the inadequacy of the parametrization

tool of the theory. To overcome these difficulties, Molodtsov [8] introduced the concept

of soft set as a new mathematical tool for dealing with uncertainties that is free from

*Corresponding author.
e-mail: skywine@gmail.com (Y. B. Jun), nalshehri@kau.edu.sa (N. O. Alshehri)
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the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed

out several directions for the applications of soft sets. At present, works on the soft set

theory are progressing rapidly. Maji et al. [7] described the application of soft set theory

to a decision making problem. Maji et al. The algebraic structure of set theories dealing

with uncertainties has been studied by some authors. Çaǧman et al. [3] introduced fuzzy

parameterized (FP) soft sets and their related properties. They proposed a decision mak-

ing method based on FP-soft set theory, and provided an example which shows that the

method can be successfully applied to the problems that contain uncertainties. Feng [4]

considered the application of soft rough approximations in multicriteria group decision

making problems. Aktaş and Çağman [2] studied the basic concepts of soft set theory, and

compared soft sets to fuzzy and rough sets, providing examples to clarify their differences.

They also discussed the notion of soft groups. As a generalization of a BCK-algebra, Kim

and Kim [6] introduced the notion of a BE-algebra, and investigated several properties.

In [1], Ahn and So introduced the notion of ideals in BE-algebras. They gave several de-

scriptions of ideals in BE-algebras. Jun et al. [5] introduced the notion of uni-soft filter

of a BE-algebra, and investigated their properties. They considered characterizations of

a uni-soft filter, and provided conditions for a soft set to be a uni-soft filter.

In this paper, we investigate further properties of a uni-soft filter. We solve the problem

of classifying uni-soft filters by their τ -exclusive filters. We make a new uni-soft filter from

old one.

2 Preliminaries

Let K(τ) be the class of all algebras of type τ = (2, 0). By a BE-algebra (see [6]) we

mean a system (X; ∗, 1) ∈ K(τ) in which the following axioms hold:

(∀x ∈ X) (x ∗ x = 1), (2.1)

(∀x ∈ X) (x ∗ 1 = 1), (2.2)

(∀x ∈ X) (1 ∗ x = x), (2.3)

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)). (exchange) (2.4)

A relation “≤” on a BE-algebra X is defined by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 1). (2.5)

A BE-algebra (X; ∗, 1) is said to be transitive (see [1]) if it satisfies:

(∀x, y, z ∈ X) (y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)). (2.6)

2
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A BE-algebra (X; ∗, 1) is said to be self distributive (see [6]) if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)). (2.7)

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y, y ∗ z ≤ x ∗ z) . (2.8)

(∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y) , (2.9)

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) , (2.10)

(∀x, y, z ∈ X) ((x ∗ y) ∗ (x ∗ z) ≤ x ∗ (y ∗ z)) . (2.11)

Note that every self distributive BE-algebra is transitive, but the converse is not true

in general (see [1]).

Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F is a

filter of X (see [6]) if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

A soft set theory is introduced by Molodtsov [8]. In what follows, let U be an initial

universe set and X be a set of parameters. Let P(U) denotes the power set of U and

A,B, C, · · · ⊆ X.

A soft set
(
F̃ , A

)
of X over U is defined to be the set of ordered pairs

(
F̃ , A

)
:=

{(
x, F̃ (x)

)
: x ∈ X, F̃ (x) ∈ P(U)

}
,

where F̃ : X → P(U) such that F̃ (x) = ∅ if x /∈ A.

For a soft set
(
F̃ , A

)
of X and a subset τ of U, the τ -exclusive set of

(
F̃ , A

)
, denoted

by eA

(
F̃ ; τ

)
, is defined to be the set

eA

(
F̃ ; τ

)
:=

{
x ∈ A | τ ⊇ F̃ (x)

}
.

For any soft sets
(
F̃ , X

)
and

(
G̃ , X

)
of X, we call

(
F̃ , X

)
a soft subset of

(
G̃ , X

)
,

denoted by
(
F̃ , X

)
⊆̃

(
G̃ , X

)
, if F̃ (x) ⊆ G̃ (x) for all x ∈ X. The soft union of

(
F̃ , X

)

and
(
G̃ , X

)
, denoted by

(
F̃ , X

)
∪̃

(
G̃ , X

)
, is defined to be the soft set

(
F̃ ∪̃ G̃ , X

)
of

X over U in which F̃ ∪̃ G̃ is defined by
(
F̃ ∪̃ G̃

)
(x) = F̃ (x) ∪ G̃ (x) for all x ∈ M.

3
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The soft intersection of
(
F̃ , X

)
and

(
G̃ , X

)
, denoted by

(
F̃ , X

)
∩̃

(
G̃ , X

)
, is defined

to be the soft set
(
F̃ ∩̃ G̃ ,M

)
of X over U in which F̃ ∩̃ G̃ is defined by

(
F̃ ∩̃ G̃

)
(x) = F̃ (x) ∩ G̃ (x) for all x ∈ S.

3 Uni-soft filters

In what follows, we take a BE-algebra X, as a set of parameters unless otherwise specified.

Definition 3.1 ([5]). A soft set
(
F̃ , X

)
of X over U is called a uni-soft filter of X if it

satisfies:

(∀x ∈ X)
(
F̃ (1) ⊆ F̃ (x)

)
, (3.1)

(∀x, y ∈ X)
(
F̃ (y) ⊆ F̃ (x ∗ y) ∪ F̃ (x)

)
. (3.2)

We make a new uni-soft filter from old one.

Lemma 3.2 ([5]). For a soft set
(
F̃ , X

)
over U , the following are equivalent.

(i)
(
F̃ , X

)
is a uni-soft filter of X over U .

(ii) The τ -exclusive set eX

(
F̃ ; τ

)
is a filter of X for all τ ∈ P(U) with eX

(
F̃ ; τ

)
6= ∅.

Theorem 3.3. For a soft set
(
F̃ , X

)
over U , define a soft set (F̃ ∗, X) over U by

F̃ ∗ : X → P(U), x 7→
{

F̃ (x) if x ∈ eX(F̃ ; τ),

U otherwise

where τ is a nonempty subset of U . If
(
F̃ , X

)
is a uni-soft filter of X over U , then so

is (F̃ ∗, X).

Proof. Assume that
(
F̃ , X

)
is a uni-soft filter of X over U . Then eX(F̃ ; τ)(6= ∅) is a

filter of X over U for all τ ⊆ U by Lemma 3.2. Hence 1 ∈ eX(F̃ ; τ), and so F̃ ∗(1) =

F̃ (1) ⊆ F̃ (x) ⊆ F̃ ∗(x) for all x ∈ X. Let x, y ∈ X. If x∗y ∈ eX(F̃ ; τ) and x ∈ eX(F̃ ; τ),

then y ∈ eX(F̃ ; τ). Hence

F̃ ∗(y) = F̃ (y) ⊆ F̃ (x ∗ y) ∪ F̃ (x) = F̃ ∗(x ∗ y) ∪ F̃ ∗(x).

4
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If x ∗ y /∈ eX(F̃ ; τ) or x /∈ eX(F̃ ; τ), then F̃ ∗(x ∗ y) = U or F̃ ∗(x) = U. Thus

F̃ ∗(y) ⊆ U = F̃ ∗(x ∗ y) ∪ F̃ ∗(x).

Therefore (F̃ ∗, X) is a uni-soft filter of X over U .

Theorem 3.4. If
(
F̃ , X

)
and

(
G̃ , X

)
are uni-soft filters of X over U , then the soft

union
(
F̃ , X

)
∪̃

(
G̃ , X

)
of

(
F̃ , X

)
and

(
G̃ , X

)
is a uni-soft filter of X over U .

Proof. For any x ∈ X, we have

(
F̃ ∪̃ G̃

)
(1) = F̃ (1) ∪ G̃ (1) ⊆ F̃ (x) ∪ G̃ (x) = (F̃ ∪̃ G̃ )(x).

Let x, y ∈ X. Then

(
F̃ ∪̃ G̃

)
(y) = F̃ (y) ∪ G̃ (y)

⊆
(
F̃ (x ∗ y) ∪ F̃ (x)

)
∪

(
G̃ (x ∗ y) ∪ G̃ (x)

)

=
(
F̃ (x ∗ y) ∪ G̃ (x ∗ y)

)
∪

(
F̃ (x) ∪ G̃ (x)

)

=
(
F̃ ∪̃ G̃

)
(x ∗ y) ∪

(
F̃ ∪̃ G̃

)
(x).

Hence
(
F̃ , X

)
∪̃

(
G̃ , X

)
is a uni-soft filter of X over U .

The following example shows that the soft intersection of uni-soft filters of X over U

may not be a uni-soft filter of X over U

Example 3.5. Consider a BE-algebra X = {1, a, b, c, d, 0} with the Cayley table which

is given in Table 1 (see [1]).

Let E = X be the set of parameters and U = Z be the initial universe set. Define two

soft sets
(
F̃ , X

)
and

(
G̃ , X

)
over U as follows:

F̃ : X → P(U), x 7→
{

4N if x ∈ {1, c}
2Z if x ∈ {a, b, d, 0}

and

G̃ : X → P(U), x 7→
{

8N if x ∈ {1, a, b}
4Z if x ∈ {c, d, 0}

5
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Table 1: Cayley table for the “∗”-operation

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

respectively. It is easy to check that
(
F̃ , X

)
and

(
G̃ , X

)
are uni-soft filters of X over

U . But
(
F̃ , X

)
∩̃

(
G̃ , X

)
= (F̃ ∩̃ G̃ , X) is not a uni-soft filter of X over U , since

(F̃ ∩̃ G̃ )(d) = F̃ (d) ∩ G̃ (d) = 2Z ∩ 4Z

= 4Z * 4N = 8N ∪ 4N

= (F̃ (a) ∩ G̃ (a)) ∪ (F̃ (c) ∩ G̃ (c))

= (F̃ ∩̃ G̃ )(a) ∪ (F̃ ∩̃ G̃ )(c)

= (F̃ ∩̃ G̃ )(c ∗ d) ∪ (F̃ ∩̃ G̃ )(c).

Theorem 3.6. Let
(
F̃ , X

)
be a uni-soft filter of X. Let τ1 and τ2 be subsets of U such

that τ1 ) τ2. If the τ1-exclusive set of
(
F̃ , X

)
is equal to the τ2-exclusive set of

(
F̃ , X

)
,

then there is no x ∈ X such that τ1 ) F̃ (x) ) τ2.

Proof. Straightforward.

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7. Consider a BE-algebra X = {1, a, b, c} with the Cayley table which is

given in Table 2.

Given U = X, consider a soft set
(
F̃ , X

)
of X over U which is given by

F̃ : X → P(U), x 7→





∅ if x = 1,

{1, a, c} if x ∈ {a, b},
{1, a} if x = c.

6
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Table 2: Cayley table for the “∗”-operation

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

Then
(
F̃ , X

)
is a uni-soft filter of X. The τ -exclusive sets of

(
F̃ , X

)
are described as

follows:

eX(F̃ ; τ) =





X if τ ∈ {X, {1, a, c}}
{1, c} if {1, a} ⊆ τ ( {1, a, c},
{1} otherwise.

If we take τ1 = X and τ2 = {1, b}, then τ1 ) τ2 and there is no x ∈ X such that

τ1 ) F̃ (x) ) τ2. But eX(F̃ ; τ1) = X 6= {1} = eX(F̃ ; τ2).

Theorem 3.8. Let
(
F̃ , X

)
be a uni-soft filter of X. Let τ1 and τ2 be subsets of U such

that τ1 ) τ2 and {τ1, τ2, F̃ (x)} is totally ordered by set inclusion for all x ∈ X. If there

is no x ∈ X such that τ1 ⊇ F̃ (x) ) τ2, then the τ1-exclusive set of
(
F̃ , X

)
is equal to

the τ2-exclusive set of
(
F̃ , X

)
.

Proof. Since τ1 ) τ2, we have eX(F̃ ; τ2) ⊆ eX(F̃ ; τ1). If x ∈ eX(F̃ ; τ1), then τ1 ⊇ F̃ (x).

Since {τ1, τ2, F̃ (x) | x ∈ X} is totally ordered by set inclusion and there is no x ∈ X such

that τ1 ⊇ F̃ (x) ) τ2, it follows that τ2 ⊇ F̃ (x), that is, x ∈ eX(F̃ ; τ2). Therefore the

τ1-exclusive set of
(
F̃ , X

)
is equal to the τ2-exclusive set of

(
F̃ , X

)
.

We have the following question.

Question. Given a uni-soft filter
(
F̃ , X

)
of X, does any filter can be represented as a

τ -exclusive set of
(
F̃ , X

)
?

The following example shows that the answer to the question above is false.

7
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Example 3.9. Let X = {1, a, b, c} be the BE-algebra as in Example 3.7. Given U = X,

consider a soft set
(
F̃ , X

)
of X over U which is given by

F̃ : X → P(U), x 7→
{
{c} if x = 1,

{1, c} if x ∈ {a, b, c}.

Then
(
F̃ , X

)
is a uni-soft filter of X. The τ -exclusive sets of

(
F̃ , X

)
are described as

follows:

eX(F̃ ; τ) =





X if τ ⊇ {1, c},
{1} if {c} ⊆ τ ( {1, c},
∅ otherwise.

The filter {1, b} cannot be a τ -exclusive set eX(F̃ ; τ), since there is no τ ⊆ U such that

eX(F̃ ; τ) = {1, b}.

However, we have the following theorem.

Theorem 3.10. Every filter of a BE-algebra can be represented as a τ -exclusive set of

a uni-soft filter, that is, given a filter F of a BE-algebra X, there exists a uni-soft filter(
F̃ , X

)
of X over U such that F is the τ -exclusive set of

(
F̃ , X

)
for a nonempty subset

τ of U .

Proof. Let F be a filter of a BE-algebra X. For a nonempty subset τ of U, define a soft

set
(
F̃ , X

)
over U by

F̃ : X → P(U), x 7→
{

τ if x ∈ F,

U if x /∈ F .

Obviously, F = eX(F̃ ; τ). We now prove that
(
F̃ , X

)
is a uni-soft filter of X. Since

1 ∈ F = eX(F̃ ; τ), we have F̃ (1) ⊆ τ ⊆ F̃ (x) for all x ∈ X. Let x, y ∈ X. If x ∗ y ∈ F

and x ∈ F, then y ∈ F because F is a filter of X. Hence F̃ (x ∗ y) = F̃ (x) = F̃ (y) = τ,

and so F̃ (y) ⊆ F̃ (x ∗ y)∪ F̃ (x). If x ∗ y /∈ F or x /∈ F, then F̃ (x ∗ y) = U or F̃ (x) = U .

Hence F̃ (y) ⊆ U = F̃ (x ∗ y) ∪ F̃ (x). Therefore
(
F̃ , X

)
is a uni-soft filter of X.

Note that if E = X is a finite BE-algebra, then the number of filters of X is finite

whereas the number of τ -exclusive sets of a uni-soft filter of X over U = Z appears to be

infinite. But, since every τ -exclusive set is indeed a filter of X, not all these τ -exclusive

sets are distinct. The next theorem characterizes this aspect.

8
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Theorem 3.11. Let
(
F̃ , X

)
be a uni-soft filter of X over U = Z and let τ1 ( τ2 ⊆ U

be such that {τ1, τ2, F̃ (x)} is a chain for all x ∈ X. Two τ -exclusive sets eX(F̃ ; τ1) and

eX(F̃ ; τ2) are equal if and only if there is no x ∈ X such that τ1 ( F̃ (x) ( τ2.

Proof. Let τ1 and τ2 be subsets of U such that eX(F̃ ; τ1) = eX(F̃ ; τ2). Assume that there

exists x ∈ X such that τ1 ( F̃ (x) ( τ2. Then eX(F̃ ; τ2) is a proper superset of eX(F̃ ; τ1),

which contradicts the hypothesis.

Conversely, suppose that there is no x ∈ X such that τ1 ( F̃ (x) ( τ2. Obviously,

eX(F̃ ; τ2) ⊇ eX(F̃ ; τ1). If x ∈ eX(F̃ ; τ2), then τ2 ⊇ F̃ (x). It follows from the hypothesis

that τ1 ⊇ F̃ (x), i.e., x ∈ eX(F̃ ; τ1). Therefore eX(F̃ ; τ1) = eX(F̃ ; τ2).

Let
(
F̃ , X

)
be a soft set of X over U . For any a, b ∈ X and k ∈ N, consider the set

F̃ [ak; b] :=
{

x ∈ X | F̃ (
ak ∗ (b ∗ x)

)
= F̃ (1)

}

where F̃ (ak ∗ x) = F̃ (a ∗ (a ∗ (· · · ∗ (a ∗ (a ∗ x)) · · · ))) in which a appears k-times. Note

that a, b, 1 ∈ F̃ [ak; b] for all a, b ∈ X and k ∈ N.

Proposition 3.12. Let
(
F̃ , X

)
be a soft set of X over U satisfying the condition (3.1)

and F̃ (x∗y) = F̃ (x)∩F̃ (y) for all x, y ∈ X. For any a, b ∈ X and k ∈ N, if x ∈ F̃ [ak; b],

then y ∗ x ∈ F̃ [ak; b] for all y ∈ X.

Proof. Assume that x ∈ F̃ [ak; b]. Then F̃ (ak ∗ (b ∗ x)) = F̃ (1), and so

F̃ (ak ∗ (b ∗ (y ∗ x))) = F̃ (ak ∗ (y ∗ (b ∗ x)))

= F̃ (y ∗ (ak ∗ (b ∗ x)))

= F̃ (y) ∩ F̃ (ak ∗ (b ∗ x))

= F̃ (y) ∩ F̃ (1) = F̃ (1)

for all y ∈ X by the exchange property of the operation ∗ and (3.1). Hence y∗x ∈ F̃ [ak; b]

for all y ∈ X.

Proposition 3.13. For any soft set
(
F̃ , X

)
of X over U , if an element a ∈ X satisfies

a ∗ x = 1 for all x ∈ X then F̃ [ak; b] = X = F̃ [bk; a] for all b ∈ X and k ∈ N.

Proof. For any x ∈ X, we have

F̃ (ak ∗ (b ∗ x)) = F̃ (ak−1 ∗ (a ∗ (b ∗ x)))

= F̃ (ak−1 ∗ (b ∗ (a ∗ x)))

= F̃ (ak−1 ∗ (b ∗ 1))

= F̃ (1),

9
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and so x ∈ F̃ [ak; b]. Similarly, x ∈ F̃ [bk; a].

Proposition 3.14. Let X be a self distributive BE-algebra and let
(
F̃ , X

)
be an order-

reversing soft set of X over U with the property (3.1). If b ≤ c in X, then F̃ [ak; c] ⊆
F̃ [ak; b] for all a ∈ X and k ∈ N.

Proof. Let a, b, c,∈ X be such that b ≤ c. For any k ∈ N, if x ∈ F̃ [ak; c], then

F̃ (1) = F̃ (ak ∗ (c ∗ x)) = F̃ (c ∗ (ak ∗ x))

⊇ F̃ (b ∗ (ak ∗ x)) = F̃ (ak ∗ (b ∗ x))

by (2.4) and (2.8), and so F̃ (ak ∗ (b ∗ x)) = F̃ (1). Thus x ∈ F̃ [ak; b], which completes

the proof.

The following example shows that there exists a soft set
(
F̃ , X

)
of X over U , a, b ∈ X

and k ∈ N such that F̃ [ak; b] is not a filter of X.

Example 3.15. Consider the BE-algebra X = {1, a, b, c} in Example 3.7. Let
(
F̃ , X

)

be a soft set of X over U = N which is given by

F̃ : X → P(U), x 7→
{

6N if x = 1,

3N if x ∈ {a, b, c}.

Then it is a soft set of X over U . But F̃ [c; b] = {x ∈ X|F̃ (c∗ (b∗x)) = F̃ (1)} = {1, a, b}
is not a filter, since a ∗ c = a ∈ F̃ [c; b] and c /∈ F̃ [c; b].

We provide conditions for a set F̃ [ak; b] to be a filter.

Theorem 3.16. Let
(
F̃ , X

)
be a soft set over X. If X is a self distributive BE-algebra

and F̃ is injective, then F̃ [ak; b] is a filter of X for all a, b ∈ X and k ∈ N.

Proof. Assume that X is a self distributive BE-algebra and F̃ is injective. Obviously,

1 ∈ F̃ [ak; b]. Let a, b, x, y ∈ X and k ∈ N be such that x ∗ y ∈ F̃ [ak; b] and x ∈ F̃ [ak; b].

Then F̃ (ak ∗ (b ∗ x)) = F̃ (1) which implies that ak ∗ (b ∗ x) = 1 since F̃ is injective.

10
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Using (2.7), we have

F̃ (1) = F̃ (ak ∗ (b ∗ (x ∗ y)))

= F̃ (ak−1 ∗ (a ∗ (b ∗ (x ∗ y))))

= F̃ (ak−1 ∗ (a ∗ ((b ∗ x) ∗ (b ∗ y))))

= · · ·
= F̃ ((ak ∗ (b ∗ x)) ∗ (ak ∗ (b ∗ y)))

= F̃ (1 ∗ (ak ∗ (b ∗ y)))

= F̃ (ak ∗ (b ∗ y)),

which implies that y ∈ F̃ [ak; b]. Therefore F̃ [ak; b] is a filter of X for all a, b ∈ X and

k ∈ N.

Theorem 3.17. Let X be a self distributive BE-algebra. Let
(
F̃ , X

)
be a soft set of X

over U satisfying the condition (3.1) and

(∀x, y ∈ X)
(
F̃ (x ∗ y) = F̃ (x) ∪ F̃ (y)

)
. (3.3)

Then F̃ [ak; b] is a filter of X for all a, b ∈ X and k ∈ N.

Proof. Let a, b ∈ X and k ∈ N. Obviously, 1 ∈ F̃ [ak; b]. Let x, y ∈ X be such that

x∗y ∈ F̃ [ak; b] and x ∈ F̃ [ak; b]. Then F̃
(
ak ∗ (b ∗ x)

)
= F̃ (1), which implies from (3.3)

and (3.1) that

F̃ (1) = F̃ (ak ∗ (b ∗ (x ∗ y)))

= F̃ (ak−1 ∗ (a ∗ (b ∗ (x ∗ y))))

= F̃ (ak−1 ∗ (a ∗ ((b ∗ x) ∗ (b ∗ y))))

= · · ·
= F̃ ((ak ∗ (b ∗ x)) ∗ (ak ∗ (b ∗ y)))

= F̃ (ak ∗ (b ∗ x)) ∪ F̃ (ak ∗ (b ∗ y))

= F̃ (1) ∪ F̃ (ak ∗ (b ∗ y))

= F̃ (ak ∗ (b ∗ y)).

Hence y ∈ F̃ [ak; b] and therefore F̃ [ak; b] is a filter of X for all a, b ∈ X and k ∈ N.

11
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Abstract

In the present paper we introduce the Kantorovich type generalization of Stancu-

Schurer operators based on q-Riemann integral. A convergence theorem using the well

known Bohman-Korovkin criterion is proven and the rate of convergence involving the

modulus of continuity is established. Also, we obtain a Voronovskaja type theorem

for these operators.
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of convergence, Voronovskaja theorem.

1 Introduction

In recent years, the applications of q-calculus have played an important role in the area of
approximation theory, generalizations of many well-known linear and positive operators

based on the q-integers were studied by numbers of authors ([2, 5, 7, 10–12, 14, 16, 18–20]).
In 1987, Lupaş [9] introduced and studied q-analogue of Bernstein operators and in 1996

another generalization of these operators were introduced by Philips [17]. More results on
q-Bernstein polynomials were obtained by Ostrowska in [15]. In [1], Agratini introduced

a new class of q-Bernstein type operators which fix certain polynomials and studied their
approximation properties. Very recently, Muraru [14] proposed the q-Bernstein-Schurer

∗Corresponding author
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operators. Agrawal et al. [3] introduced the Stancu type generalization of Bernstein-

Schurer operators. Aral et al. [4] also presented many results on convergence of different
q-operators recently in their book.

First, we present some basic definitions and notations from q-calculus. Let q > 0. For

each nonnegative integer k, the q-integer [k]q and q-factorial [k]q! are respectively defined
by

[k]q :=

{

1−qk

1−q
, q 6= 1,

k, q = 1,
[k]q! :=

{

[k]q[k − 1]q · · · [1]q, k ≥ 1,

1, k = 0.

For the integers n, k satisfying n ≥ k ≥ 0, the q-binomial coefficients are defined by

[

n

k

]

q

:=
[n]q!

[k]q![n− k]q!
.

We denote (a+ b)k
q =

∏k−1

j=0
(a+ bqj).

The q-Jackson integral on the interval [0, b] is defined as

∫ b

0

f(t)dqt = (1 − q)b
∞
∑

j=0

f(qjb)qj, 0 < q < 1,

provided that sums converge absolutely. Suppose 0 < a < b. The q-Jackson integral on
the interval [a, b] is defined as

∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt, 0 < q < 1.

Dalmanog̃lu [5], Mahmudov and Sabancigil [12] defined some q-type generalizations
of Bernstein-Kantorovich operators using q-Jackson integral. In [18], Ren and Zeng were

introduced two kinds of Kantorovich-type q-Bernstein-Stancu operators. The first version
is defined using q-Jackson integral as follows

S(α,β)
n,q (f, x) = ([n+ 1]q + β)

n
∑

k=0

q−kpn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

f(t)dqt, (1.1)

where 0 ≤ α ≤ β, f ∈ C[0, 1] and pn,k(q; x) =
[ n

k

]

q
xk(1− x)n−k

q .

To guarantee the positivity of q-Bernstein-Stancu-Kantorovich operators, in [18] is

considered the Riemann-type q-integral (see [13]) defined by

∫ b

a

f(t)dR
q t = (1 − q)(b− a)

∞
∑

j=0

f
(

a + (b− a)qj
)

qj. (1.2)

Ren and Zeng [18] redefine S
(α,β)
n,q by putting the Riemann-type q-integral into the

operators instead of the q-Jackson integral as

S̃(α,β)
n,q (f, x) = ([n+ 1]q + β)

n
∑

k=0

q−kpn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

f(t)dR
q t. (1.3)

2
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Very recently, the q-Kantorovich extension of the Bernstein-Schurer operators have been

considered by Kumar et al. [8] as follows:

Kn,p(f, q; x) = [n+ 1]q

n+p
∑

k=0

bn,k(q; x)q
−k

∫

[k+1]q/[n+1]q

[k]q/[n+1]q

f(t)dR
q t, (1.4)

where x ∈ [0, 1], f ∈ C[0, 1+p], p ∈ N
0 = N∪{0} and bn,k(q; x) =

[

n + p
k

]

q
xk(1−x)n+p−k

q .

In the present paper, inspired by the new Kantorovich type generalization of the q-
Bernstein-Schurer operators we introduce the Kantorovich type of Stancu-Schurer opera-

tors involving the Riemann-type q-integral.

2 Construction of the operators

In this section we construct the Stancu-Schurer-Kantorovich operators based on q-integers.
Let α, β ∈ R be such that 0 ≤ α ≤ β and p ∈ N

0 = N ∪ {0}, then for any f ∈ C[0, 1 + p],

q ∈ (0, 1), the Stancu-Schurer-Kantorovich operators are defined using q-Riemann integral
as follows

K(α,β)
n,p (f, q; x) = ([n+ 1]q + β)

n+p
∑

k=0

q−kbn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

f(t)dR
q t. (2.1)

Lemma 2.1. Let K
(α,β)
n,p (f, q; x) be given by (2.1). Then the following equalities hold:

(i) K
(α,β)
n,p (1, q; x) = 1;

(ii) K
(α,β)
n,p (t, q; x) = 1

[n+1]q+β

{

1

[2]q
+ α + 2q

[2]q
[n+ p]qx

}

;

(iii) K
(α,β)
n,p (t2, q; x) = 1

([n+1]q+β)2

{

q
(

1+ 2(q−1)

[2]q
+ (q−1)2

[3]q

)

[n+p]q[n+p−1]qx
2 +

(

3q+1

[2]q
+

4αq
[2]q

+ q2
−1

[3]q

)

[n+ p]qx+ 1

[3]q
+ 2α

[2]q
+ α2

}

.

Proof. By definition of q-Riemann integral (1.2), we have

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

dR
q t =

qk

[n+ 1]q + β
; (2.2)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

tdR
q t =

1

([n+ 1]q + β)2

{

qk([k]q + α) +
q2k

[2]q

}

; (2.3)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

t2dR
q t =

1

([n+ 1]q + β)3

{

qk([k]q + α)2 +
2q2k

[2]
([k]q + α) +

q3k

[3]q

}

. (2.4)

The following identities hold

n+p
∑

k=0

bn,k(q; x)q
k = 1 − (1 − q)[n+ p]qx; (2.5)

n+p
∑

k=0

bn,k(q; x)q
2k = 1 − (1 − q2)[n+ p]qx+ q(1− q)2[n+ p]q[n+ p− 1]qx

2. (2.6)

3
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Hence, by using equality

n+p
∑

k=0

bn,k(q; x) = 1 and equation (2.2), we get

K(α,β)
n,p (1, q; x) = 1.

By using relations (2.3) and (2.5) we have

K(α,β)
n,p (t, q; x) =

1

[n+ 1]q + β

n+p
∑

k=0

q−kbn,k(q; x)

{

qk([k]q + α) +
q2k

[2]q

}

=
1

[n+ 1]q + β

{

1

[2]q
+ α+

2q

[2]q
[n+ p]qx

}

. (2.7)

Now, from the equations (2.4) and (2.6), we get

K(α,β)
n,p (t2, q; x)

=
1

([n+ 1]q + β)2

n+p
∑

k=0

q−kbn,k(q; x)

{

qk([k]q + α)2 +
2q2k

[2]
([k]q + α) +

q3k

[3]q

}

=
1

([n+ 1]q + β)2

n+p
∑

k=0

bn,k(q; x)

{

(

1

1 − q
+ α

)2

+ 2qk

[

1

[2]q

(

1

1− q
+α

)

−
(

1

1 − q
+α

)

1

1− q

]

+q2k

(

1

(1 − q)2
− 2

(1− q)[2]q
+

1

[3]q

)}

=
1

([n+ 1]q + β)2

{

q

(

1 +
2(q − 1)

[2]q
+

(q − 1)2

[3]q

)

[n+ p]q[n+ p− 1]qx
2

+

(

3q + 1

[2]q
+

4αq

[2]q
+
q2 − 1

[3]q

)

[n+ p]qx+
1

[3]q
+

2α

[2]q
+ α2

}

.

Remark 2.2. From Lemma 2.1, we get

K(α,β)
n,p (t− x, q; x) =

1 + [2]qα

[2]q([n+ 1]q + β)
+

(

2q

[2]q

[n+ p]q
[n+ 1]q + β

− 1

)

x;

K(α,β)
n,p

(

(t− x)2, q; x
)

= K(α,β)
n,p (t2; x)− 2xK(α,β)

n,p (t; x) + x2K(α,β)
n,p (1; x)

=
1

([n+ 1]q + β)2

{

q2(4q2 + q + 1)

[2]q[3]q
[n+ p]q[n+ p− 1]qx

2

+
q(4q2 + 5q + 3) + 4αq(q2 + q + 1)

[2]q[3]q
[n+ p]qx+

1

[3]q
+

2α

[2]q
+ α2

}

− 2x

[n+ 1]q + β

{

1

[2]q
+ α +

2q

[2]q
[n+ p]qx

}

+ x2

4
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=

[

q2(4q2 + q + 1)

[2]q[3]q

[n+ p]q[n+ p− 1]q
([n+ 1]q + β)2

− 4q

[2]q

[n+ p]q
[n+ 1]q + β

+ 1

]

x2

+

[

q(4q2 + 5q + 3) + 4αq(q2 + q + 1)

[2]q[3]q

[n+ p]q
([n+ 1]q + β)2

− 2(1 + [2]qα)

[2]q([n+ 1]q + β)

]

x

+
1

([n+ 1]q + β)2

(

1

[3]q
+

2α

[2]q
+ α2

)

.

Lemma 2.3. For f ∈ C[0, p+ 1], we have

‖K(α,β)
n,p (f, q; ·)‖C[0,1] ≤ ‖f‖C[0,p+1],

where ‖ · ‖C[0,p+1] is the sup-norm on [0, p+ 1].

Proof. We have

∣

∣K(α,β)
n,p (f, q; ·)

∣

∣ ≤ ([n+ 1]q + β)

n+p
∑

k=0

q−kbn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

|f(t)|dR
q t

≤ ‖f‖C[0,p+1]K
(α,β)
n,p (1, q; x) = ‖f‖C[0,p+1].

Lemma 2.4. For each x ∈ [0, 1] and 0 < q < 1, we have

K(α,β)
n,p

(

(t− x)2, q; x
)

≤ 4C
ϕ2(x)

[n+ p]q
+

8(α2 + 3β2 + 3[p]2q + 4)

([n+ 1]q + β)2
, (2.8)

K(α,β)
n,p

(

(t− x)4, q; x
)

≤ 64C̃
ϕ2(x)

[n+ p]2q
+

83(α4 + 27[p]4q + 27β4 + 28)

([n+ 1]q + β)4
, (2.9)

where ϕ2(x) = x(1− x) and C, C̃ are some constants.

Proof. We have

K(α,β)
n,p

(

(t− x)2, q; x
)

= ([n+ 1]q + β)

n+p
∑

k=0

q−kbn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

(t− x)2dR
q t

= (1 − q)

n+p
∑

k=0

bn,k(q; x)

∞
∑

j=0

(

[k]q + α

[n+ 1]q + β
+

qk

[n+ 1]q + β
qj − x

)2

qj

≤ 2(1− q)

n+p
∑

k=0

bn,k(q; x)





∞
∑

j=0

(

[k]q + α

[n+ 1]q + β
− x

)2

qj +

∞
∑

j=0

q2kq3j

([n+ 1]q + β)2





≤ 2

n+p
∑

k=0

bn,k(q; x)

[

[k]q + α

[n+ 1]q + β
− [k]q

[n+ p]q
−

(

x− [k]q
[n+ p]q

)]2

+
2

[3]q

n+p
∑

k=0

bn,k(q; x)
q2k

([n+ 1]q + β)2

5
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≤ 4

n+p
∑

k=0

bn,k(q; x)

(

[k]q+α

[n+ 1]q+β
− [k]q

[n+ p]q

)2

+4

n+p
∑

k=0

bn,k(q; x)

(

x− [k]q
[n+ p]q

)2

+
2

[3]q([n+ 1]q+β)2

≤ 8

n+p
∑

k=0

bn,k(q; x)

(

[k]q + α

[n+ 1]q + β
− [k]q

[n+ 1]q + β

)2

+ 8

n+p
∑

k=0

bn,k(q; x)

(

[k]q
[n+ 1]q + β

− [k]q
[n+ p]q

)2

+ 4Bn+p

(

(t− x)2, q; x
)

+
2

[3]q

1

([n+ 1]q + β)2
,

where Bn(f, q; x) =
∑n

k=0

(

n
k

)

q
xk(1 − x)n−k

q f ([k]q/[n]q) is the q-Bernstein operators. On

the other hand by [10], we have

|Bn ((t− x)m, q; x)| ≤ Km

x(1 − x)

[n]
b(m+1)/2c
q

,

for some constant Km > 0, where bac is the integer part of a ≥ 0. We find that

K(α,β)
n,p

(

(t− x)2, q; x
)

≤ 8α2

([n+ 1]q + β)2
+ 8

n+p
∑

k=0

bn,k(q; x)[k]
2
q

(qn+1[p]q − qn+p − β)2

[n+ p]2q([n+ 1]q + β)2

+ 4C
ϕ2(x)

[n+ p]q
+

2

[3]q([n+ 1]q + β)2

≤ 8α2

([n+ 1]q + β)2
+

24([p]2 + 1 + β2)

([n+ 1]q + β)2
+ 4C

ϕ2(x)

[n+ p]q
+

2

[3]q([n+ 1]q + β)2

≤ 4C
ϕ2(x)

[n+ p]q
+

8(α2 + 3β2 + 3[p]2q + 4)

([n+ 1]q + β)2
.

Also, we obtain

K(α,β)
n,p

(

(t− x)4, q; x
)

= ([n+ 1]q + β)

n+p
∑

k=0

q−kbn,k(q; x)

∫

[k+1]q+α

[n+1]q+β

[k]q+α

[n+1]q+β

(t− x)4dR
q t

= (1− q)

n+p
∑

k=0

bn,k(q; x)

∞
∑

j=0

(

[k]q + α

[n+ 1]q + β
+

qk

[n+ 1]q + β
qj − x

)4

qj

≤ 8(1− q)

n+p
∑

k=0

bn,k(q; x)

∞
∑

j=0

(

[k]q + α

[n+ 1]q+β
−x

)4

qj

+ 8(1− q)

n+p
∑

k=0

bn,k(q; x)

∞
∑

j=0

(

qk

[n+ 1]q+β

)4

q5j

6
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= 8

n+p
∑

k=0

bn,k(q; x)

(

[k]q + α

[n+ 1]q + β
− x

)4

+
8

[5]q

n+p
∑

k=0

bn,k(q; x)

(

qk

[n+ 1]q + β

)4

= 8

n+p
∑

k=0

bn,k(q; x)

[

[k]q + α

[n+ 1]q+β
− [k]q

[n+ p]q
−

(

x− [k]q
[n+ p]q

)]4

+
8

[5]q

n+p
∑

k=0

bn,k(q; k)

(

qk

[n+ 1]q+β

)4

≤ 64Bn+p

(

(t− x)4, q; x
)

+ 64

n+p
∑

k=0

bn,k(q; x)

[

[k]q + α

[n+ 1]q + β
− [k]q

[n+ p]q

]4

+
8

[5]q([n+ 1]q + β)4

≤ 64Bn+p

(

(t− x)4, q; x
)

+ 83

n+p
∑

k=0

bn,k(q; x)

(

[k]q + α

[n+ 1]q + β
− [k]q

[n+ 1]q + β

)4

+ 83

n+p
∑

k=0

bn,k(q; x)

(

[k]q
[n+ 1]q + β

− [k]q
[n+ p]q

)4

+
8

[5]q([n+ 1]q + β)4

≤ 64C̃
ϕ2(x)

[n+ p]2q
+

83α4

([n+ 1]q+β)4
+ 83

n+p
∑

k=0

bn,k(q; x)[k]
4
q

(qn+1[p]q − qn+p−β)4

[n+ p]4q([n+ 1]q +β)4

+
8

[5]q([n+ 1]q+β)4

≤ 64C̃
ϕ2(x)

[n+ p]2q
+

83α4

([n+ 1]q + β)4
+ 243

[p]4q + 1 + β4

([n+ 1]q + β)4
+

8

[5]q([n+ 1]q + β)4

≤ 64C̃
ϕ2(x)

[n+ p]2q
+

83(α4 + 27[p]4q + 27β4 + 28)

([n+ 1]q + β)4
.

3 Direct theorems

In this section we propose to study some approximation properties of the Stancu-Schurer-

Kantorovich operators defined in (2.1). First, we prove the basic convergence theorem of

K
(α,β)
n,p and then obtain the rate convergence of these operators in term of the modulus

of continuity. Further, we study local direct results for the q-analogue of Stancu-Schurer-
Kantorovich operators.

Theorem 3.1. Let (qn)n, 0 < qn < 1 be a sequence satisfying the following conditions

lim
n→∞

qn = 1, lim
n→∞

qn
n = a, a ∈ [0, 1). (3.1)

Then for any f ∈ C[0, p + 1], the sequence K
(α,β)
n,p (f, qn; x) converges to f uniformly on

[0, 1].
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Proof. From (3.1) we obtain [n + 1]qn → ∞ as n → ∞. Further
[n+p]qn

[n+1]qn
→ 1, hence

K
(α,β)
n,p (1, qn; x) → 1, K

(α,β)
n,p (t, qn; x) → x and K

(α,β)
n,p (t2, qn; x) → x2 uniformly on [0, 1]

as n → ∞. Therefore, using the Bohman-Korovkin theorem implies that Kn,p(f, qn; ·)
converges to f uniformly on [0, 1].

Let us consider the following K-functional

K2(f, δ) := inf
{

‖f − g‖+ δ‖g′′‖, g ∈ C2[0, p+ 1]
}

, where δ ≥ 0. (3.2)

It is known (see [6]) there exist an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ), (3.3)

where the second order modulus of smoothness for f ∈ C[0, p+ 1] is defined as

ω2(f, δ) := sup
0<h<δ; x,x+2h∈[0,p+1]

|f(x+ 2h) − 2f(x+ h) + f(x)|, where δ > 0.

The usual modulus of continuity for f ∈ C[0, p+ 1] is defined as

ω(f, δ) := sup
0<h<δ; x,x+h∈[0,p+1]

|f(x+ h) − f(x)|.

Theorem 3.2. Let (qn)n be a sequence satisfying conditions (3.1) and f ∈ C[0, 1 + p].

Then
∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤ 2ω(f, δn),

where

δn =

√

C

[n+ p]qn

+
8(α2 + 3β2 + 3[p]2qn

+ 4)

([n+ 1]qn + β)2
,

and C is a constant.

Proof. For any t, x ∈ [a, b], it is known that

|f(t) − f(x)| ≤ ω(f, δ)

(

(t− x)2

δ2
+ 1

)

.

Therefore, we obtain

∣

∣K(α,β)
n,p (f, qn; x)− f(x))

∣

∣ ≤ ω(f, δ)

(

1 +
1

δ2
K(α,β)

n,p

(

(t− x)2, qn; x
)

)

.

By using the relation (2.8), we obtain the required result.

In what follows, we give estimate of the rate of convergence by means of the Lipschitz
function for the operators defined in (2.1). Let

LipM(γ) = {f ∈ C[0, p+ 1], |f(t)− f(x)| ≤M |t− x|γ} , 0 < γ ≤ 1,

be the Lipschitz class.

8
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Theorem 3.3. Let (qn)n be a sequence satisfying conditions (3.1) and f ∈ LipM(γ). Then

|K(α,β)
n,p (f, qn; x)− f(x)| ≤M(δn(x))γ/2,

where δn(x) = K
(α,β)
n,p

(

(t− x)2, qn; x
)

.

Proof. Since K
(α,β)
n,p (e0, qn; ·) = e0 and f ∈ LipM(γ), we have

∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤ K(α,β)
n,p (|f(t) − f(x)|, qn; x) ≤MK(α,β)

n,p (|t− x|γ , qn; x) .

Applying the Hölder’s inequality with p = 2

γ and q = 2

2−γ , we get

∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤MK(α,β)
n,p

(

|t− x|2, qn; x
)

γ

2 = M (δn(x))
γ

2 .

Theorem 3.4. Let (qn)n be a sequence satisfying conditions (3.1) and f ∈ C[0, p + 1] .

Then, for every x ∈ [0, 1] we have
∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤ 4K2 (f, ψn,p(qn; x)) + ω (f, γn,p) ,

where C is a constant and

ψn,p(qn; x) =
Cϕ2(x)

[n+ p]qn

+
12[p]2qn

+ 7β2 + 3(α+ 1)2 + 10

([n+ 1]qn + β)2
,

γn,p =
α+ β + 2 + 2[p]qn

[n+ 1]qn + β
, ϕ2(x) = x(1− x).

Proof. We define the auxiliary operators

K∗(α,β)
n,p (f, qn; x) = K(α,β)

n,p (f, qn; x) + f(x) − f(anx+ bn), (3.4)

where

an =
2qn
[2]qn

[n+ p]qn

[n+ 1]qn + β
, bn =

1

[n+ 1]qn + β

(

1

[2]qn

+ α

)

.

From Lemma 2.1 we obtain

K∗(α,β)
n,p (1, qn; x) = 1 and K∗(α,β)

n,p (t, qn; x) = x.

Using Taylor’s formula,

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− s)g′′(s)ds, g ∈ C2[0, p+ 1],

we get

K∗(α,β)
n,p (g, qn; x)− g(x)

= g′(x)K∗(α,β)
n,p (t− x, qn; x) +K∗(α,β)

n,p

(
∫ t

x

(t− s)g′′(s)ds, qn; x

)

= K∗(α,β)
n,p

(
∫ t

x

(t− s)g′′(s)ds, qn; x

)

= K(α,β)
n,p

(
∫ t

x

(t− s)g′′(s)ds, qn; x

)

−
∫ anx+bn

x

(anx + bn − s)g′′(s)ds.

9
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Therefore, we have

∣

∣K∗(α,β)
n,p (g, qn; x)− g(x)

∣

∣

≤ K(α,β)
n,p

(∣

∣

∣

∣

∫ t

x

(t− s)g′′(s)ds

∣

∣

∣

∣

, qn; x

)

+

∣

∣

∣

∣

∫ anx+β

x

(anx+ bn − s)g′′(s)ds

∣

∣

∣

∣

≤ K(α,β)
n,p

(

(t− x)2, qn; x
)

‖g′′‖C[0,p+1] + (anx+ bn − x)2‖g′′‖C[0,p+1]. (3.5)

Using the relation (3.4) we obtain

∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤
∣

∣K∗(α,β)
n,p (f − g, qn; x)

∣

∣ +
∣

∣K∗(α,β)
n,p (g, qn; x)− g(x)

∣

∣

+ |f(x)− g(x)|+ |f(anx+ bn) − f(x)|.

Since ‖K∗(α,β)
n,p ‖C[0,1] ≤ 3‖f‖C[0,p+1], and using (3.5) we have

∣

∣K(α,β)
n,p (f, qn; x)−f(x)

∣

∣

≤ 4‖f−g‖C[0,p+1]+
[

K(α,β)
n,p

(

(t−x)2, qn; x
)

+(anx+bn − x)2
]

‖g′′‖C[0,p+1]

+ ω (f, |(an − 1)x+ bn|) .

Since

(anx+ bn − x)2 =

[

2qn
[2]qn

[n+ p]qn

[n+ 1]qn + β
x+

1

[n+ 1]qn + β

(

α+
1

[2]qn

)

− x

]2

=
1

([n+ 1]qn + β)2

{(

2qn
[2]qn

[n+ p]qn − [n+ 1]qn

)

x− βx+ α+
1

[2]qn

}2

≤ 3

([n+ 1]qn + β)2

{

(−1 + 2qn+1
n [p]qn − qn+1

n

1 + qn

)2

+ β2 +

(

α +
1

[2]qn

)2
}

≤
6 + 24[p]2qn

+ 3β2 + 3(α+ 1)2

([n+ 1]qn + β)2
,

we have

K(α,β)
n,p

(

(t−x)2, qn; x
)

+(anx+bn−x)2 ≤ 4Cϕ2(x)

[n+ p]2qn

+
4(12[p]2qn

+7β2 + 3(α+1)2) + 10)

([n+1]qn+β)2

≤ 4ψn,p(qn; x).

Also |(an − 1)x+ bn| ≤ γn,p. Therefore

∣

∣K(α,β)
n,p (f, qn; x)− f(x)

∣

∣ ≤ 4‖f − g‖C[0,p+1] + 4ψn,p(qn; x)‖g′′‖C[0,p+1] + ω(f, γn,p).

Taking the infimum over all g ∈ C2[0, p+ 1] and using (3.2), the proof of the theorem is
completed.
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4 A Voronovskaya theorem for q-Stancu-Schurer-Kantorovich

operators

In this section we shall establish a Voronovskaja type theorem for q-Stancu-Schurer-

Kantorovich operators. First, we need the auxiliary results contained in the following
lemmas.

Lemma 4.1. Let (qn)n be a sequence satisfying conditions (3.1). Then we have

lim
n→∞

[n]qnK
(α,β)
n,p (t− x, qn; x) = −1 + a− 2ap+ 2β

2
x+ α +

1

2
,

lim
n→∞

[n]qnK
(α,β)
n,qn

((t− x)2, qn; x) = −x2 + x.

Proof. Using the formulas for K
(α,β)
n,p (ti, qn; x), i= 0, 1, 2 given in Lemma 2.1, we get

lim
n→∞

[n]qnK
(α,β)
n,p (t− x, qn; x)

= lim
n→∞

[n]qn

{(

2qn
[2]qn

[n+ p]qn

[n+ 1]qn + β
− 1

)

x+
1

[n+ 1]qn + β

(

1

[2]qn

+ α

)}

= lim
n→∞

{

[n]qn

[2]qn([n+ 1]qn + β)
(−1 − qn+p+1

n + qn+1
n (1 + qn)[p]qn − [2]qnβ)x

+
α[n]qn

[n+ 1]qn + β
+

[n]qn

[2]qn([n+ 1]qn + β)

}

= −1 + a− 2ap+ 2β

2
x+ α +

1

2
,

and

lim
n→∞

[n]qnK
(α,β)
n,p ((t− x)2, qn; x)

= lim
n→∞

[n]qn

{

K(α,β)
n,p (t2, qn; x)− x2 − 2xK(α,β)

n,p (t− x, qn; x)
}

= lim
n→∞

[n]qn

(

4q4n + q3n + q2n
[2]qn[3]qn

· [n+ p− 1]qn[n+ p]qn

([n+ 1]qn + β)2
− 1

)

x2

+ lim
n→∞

qn(4q2n + 5qn + 3) + 4αqn(q2n + qn + 1))

[2]qn[3]qn([n+ 1]qn + β)2
[n]qn[n+ p]qnx

+ lim
n→∞

[n]qn

([n+ 1]qn + β)2

(

α2 +
2α

[2]qn

+
1

[3]qn

)

− lim
n→∞

2x[n]qnK
(α,β)
n,p (t− x, qn; x)

= −x2 + x.

Lemma 4.2. Let (qn)n be a sequence satisfying conditions (3.1). Then for each x ∈ [0, 1]
we have

K(α,β)
n,p

(

(t− x)2, qn; x
)

= O

(

1

[n]qn

)

; K(α,β)
n,p

(

(t− x)4, qn; x
)

= O

(

1

[n]2qn

)

.

11
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Proof. This result follows from Lemma 2.4.

The main result of this section is the following Voronovskaja type theorem:

Theorem 4.3. Let (qn)n be a sequence satisfying conditions (3.1) and f ′′ ∈ C[0, p+ 1].
Then we have

lim
n→∞

[n]qn(K(α,β)
n,p (f, q; x)− f(x))

=

(

−1 + a− 2ap+ 2β

2
x+ α+

1

2

)

f ′(x) +
1

2

(

−x2 + x
)

f ′′(x).

Proof. From the Taylor’s theorem, we have

f(t) = f(x) + (t− x)f ′(x) +
1

2
(t− x)2f ′′(x) + ξ(t, x)(t− x)2, (4.1)

where the function ξ(·, x) is the Peano form of remainder, ξ(·, x) ∈ C[0, p+1] and ξ(t, x) →
0 as t→ x.

Applying K
(α,β)
n,p on both side of (4.1), we obtain

[n]qn

(

K(α,β)
n,p (f, qn; x)− f(x)

)

= [n]qnf
′(x)K(α,β)

n,p (t− x, qn; x) +
1

2
[n]qnf

′′(x)K(α,β)
n,p

(

(t− x)2, qn; x
)

+ [n]qnK
(α,β)
n,p

(

ξ(t, x)(t− x)2, qn; x
)

. (4.2)

Now, we shall show that

lim
n→∞

[n]qnK
(α,β)
n,p

(

ξ(t, x)(t− x)2, qn; x
)

= 0. (4.3)

From the Cauchy-Schwarz inequality, we have

K(α,β)
n,p

(

ξ(t, x)(t− x)2, qn; x
)

≤
√

K
(α,β)
n,p (ξ2(t, x), qn; x)

√

K
(α,β)
n,p ((t− x)4, qn; x).

From Theorem 3.1, we have

lim
n→∞

K(α,β)
n,p

(

ξ2(t, x), qn; x
)

= ξ2(x, x) = 0

uniformly with respect to x ∈ [0, 1]. Since K
(α,β)
n,p

(

(t− x)4, qn; x
)

= O
(

1

[n]2qn

)

(see Lemma

2.4), it follows (4.3). In view of Lemma 4.1 the theorem is proved.
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56 (2011), 489–495.

[15] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123

(2003), 232–255.

[16] M. A. Özarslan and T. Vedi, q-Bernstein-Schurer-Kantrovich operators, J. Inequal.

Appl. 444 (2013), 15 pages.

[17] G. M. Philips, On generalized Bernstein polynomials, in D. F. Griffits and G. A.

Watson (Eds.), 1996, 263-269.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

576 Shin Min Kang et al 564-577



[18] M. Y. Ren and X. M. Zeng, Some statistical approximation properties of Kantorovich-

type q-Bernstein-Stancu, J. Inequal. Appl. 10 (2014), 12 pages.

[19] D. F. Sofonea, Some new properties in q-calculus, Gen. Math. 16 (2008), 47–54.

[20] D. F. Sofonea, On a sequence of linear and positive operators, Results Math. 53

(2009), 435–444.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.3, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

577 Shin Min Kang et al 564-577



Mathematical analysis of a cell mediated immunity in a virus

dynamics model with nonlinear infection rate and removal

A. M. Elaiw and N. H. AlShamrani

Department of Mathematics, Faculty of Science, King Abdulaziz University,

P.O. Box 80203, Jeddah 21589, Saudi Arabia.

Emails: a_m_elaiw@yahoo.com (A. Elaiw) nalshmrane@kau.edu.sa. (N. AlShamrani).

Abstract

In this paper, we investigate the dynamical behavior of a nonlinear model for viral infection with Cytotoxic

T Lymphocyte (CTL) immune response. The model is a generalization of several models presented in the

literature by considering more general functions for the: (i) intrinsic growth rate of uninfected cells; (ii)

incidence rate of infection; (iii) natural death rate of infected cells; (iv) rate at which the infected cells are

killed by CTL cells; (v) production and removal rates of viruses; (vi) activation and natural death rates

of CTLs. We derive two threshold parameters R0 (the basic infection reproduction number) and R1 (the

CTL immune response activation number) and establish a set of conditions on the general functions which

are su¢ cient to determine the global dynamics of the model. By using suitable Lyapunov functions and

LaSalle�s invariance principle, we prove the global asymptotic stability of all equilibria of the model.

Keywords: Viral infection; global stability; CTL immune response; Lyapunov functional.

1 Introduction

During the last decades, several mathematical models have been proposed to describe the interaction of the

virus with target cells (see e.g. [1]-[15]. The immune response is universal and necessary to eliminate or control

the disease after viral infection. The Cytotoxic T Lymphocyte (CTL) cells are responsible to attack and kill the

infected cells. Several viral infection models have been introduced in the literature to model the CTL immune

response to several diseases [16]-[20]. The basic virus dynamics model with CTL immune response has four

state variables: x, the population of uninfected target cells; y, the population of infected cells; v, the population

of free virus particles in the blood; and z; the population of CTL cells. The model equations are as follows [1]:

:
x = s� dx� �xv; (1)
:
y = �xv � ay � qyz; (2)
:
v = ky � cv; (3)
:
z = ryz � �z: (4)

Parameters s, k and r represent, respectively, the rate at which new healthy cells are generated from the

source within the body, the generation rate constant of free viruses produced from the infected cells and the

rate at which the CTL cells are produced. Parameters d, a, c and � are the natural death rate constants

of the uninfected target cells, infected cells, free virus particles and CTL cells, respectively. Parameter � is

the infection rate constant and q is the removal rate constant of the infected cells due to the CTLs. All the

parameters given in model (1)-(4) are positive. Our aim in this paper is to propose and analyze a nonlinear viral

infection model which generalizes model (1)-(4) and several models presented in the literature. We consider the
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following nonlinear viral infection model with CTL immune response.
:
x = n(x)�  (x; y; v); (5)
:
y =  (x; y; v)� a'1(y)� q'3(z)'1(y); (6)
:
v = k'1(y)� c'2(v); (7)
:
z = r'3(z)'1(y)� �'3(z); (8)

where n(x) represents the intrinsic growth rate of uninfected cells accounting for both production and natural

mortality;  (x; y; v) denotes the incidence rate of infection; a'1(y) refers to the natural death rate of infected

cells; q'3(z)'1(y) represents the rate at which the infected cells are killed by the CTL cells; k'1(y) denotes the

generation rate of free virus particles; c'2(v) accounts for the removal rate of free virus particles; r'3(z)'1(y)

and �'3(z) refer to the activation and natural death rates of CTLs, respectively. Functions n,  , 'i, i = 1; 2; 3

are continuously di¤erentiable and satisfy the following assumptions:

Assumption A1. (i) there exists x0 such that n(x0) = 0, n(x) > 0 for x 2 [0; x0),
(ii) n0(x) < 0 for all x > 0,

(iii) there are s; �s > 0 such that n(x) � s� �sx for x � 0.
Assumption A2. (i)  (x; y; v) > 0 and  (0; y; v) =  (x; y; 0) = 0 for all x > 0, y � 0; v > 0;

(ii)
@ (x; y; v)

@x
> 0;

@ (x; y; v)

@y
< 0;

@ (x; y; v)

@v
> 0 and

@ (x; 0; 0)

@v
> 0 for all x > 0; y � 0; v > 0,

(iii)
d

dx

�
@ (x; 0; 0)

@v

�
> 0 for all x > 0.

Assumption A3. (i) 'j(u) > 0 for all u > 0, 'j(0) = 0; j = 1; 2; 3;
(ii) '0j(u) > 0; for all u > 0; j = 1; 3, '

0
2(u) > 0; for all u � 0,

(iii) there are �j � 0; j = 1; 2; 3 such that 'j(u) � �ju; for all u � 0:

Assumption A4.
 (x; y; v)

'2(v)
is decreasing with respect to v for all v > 0:

1.1 Properties of solutions

In this subsection, we study some properties of the solution of the model such as the non-negativity and

boundedness of solutions.

Proposition. Assume that Assumptions A1-A3 are satis�ed. Then there exist positive numbers Li, i =
1; 2; 3, such that the compact set

� =
�
(x; y; v; z) 2 R4�0 : 0 � x; y � L1; 0 � v � L2; 0 � z � L3

	
is positively invariant.

Proof. We have

_x jx=0= n(0) > 0, _y jy=0=  (x; 0; v) � 0 for all x � 0; v � 0;

_v jv=0= k'1(y) � 0 for all y � 0, _z jz=0= 0:

Hence, the orthant R4�0 is positively invariant for system (5)-(8). Next, we show that the solutions of the system
are bounded. Let T (t) = x(t) + y(t) + a

2kv(t) +
q
r z(t), then

_T (t) = n(x)� a

2
'1(y)�

ac

2k
'2(v)�

q�

r
'3(z) � s� �sx� a

2
�1y �

ac

2k
�2v �

q�

r
�3z

� s� �
�
x+ y +

a

2k
v +

q

r
z
�
= s� �T (t);

where � = minf�s; a2�1; c�2; ��3g. Then,

T (t) � T (0)e��t +
s

�

�
1� e��t

�
= e��t

�
T (0)� s

�

�
+
s

�
:

Hence, 0 � T (t) � L1 if T (0) � L1 for t � 0 where L1 = s
� : It follows that, 0 � x(t); y(t) � L1, 0 � v(t) � L2

and 0 � z(t) � L3 for all t � 0 if x(0)+y(0)+ a
2kv(0)+

q
r z(0) � L1, where L2 =

2kL1
a

and L3 =
rL1
q
. Therefore,

x(t); y(t); v(t) and z(t) are all bounded. �
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1.2 The equilibria and threshold parameters

In this subsection we calculate the equilibria of the model and derive two threshold parameters.

Lemma. Assume that Assumptions A1-A4 are satis�ed, then there exist two threshold parameters R0 > 0
and R1 > 0 with R1 < R0 such that

(i) if R0 � 1; then there exists only one positive equilibrium E0 2 �,
(ii) if R1 � 1 < R0; then there exist only two positive equilibria E0 2 � and E1 2 �, and
(iii) if R1 > 1; then there exist three positive equilibria E0 2 �, E1 2 � and E2 2

�
�.

Proof. At any equilibrium we have

n(x)�  (x; y; v) = 0; (9)

 (x; y; v)� a'1(y)� q'1(y)'3(z) = 0; (10)

k'1(y)� c'2(v) = 0; (11)

(r'1(y)� �)'3(z) = 0: (12)

From Eq. (12), either '3(z) = 0 or '3(z) 6= 0. If '3(z) = 0, then from Assumption A3 we get, z = 0 and from

Eqs. (9)-(11) we have

n(x) =  (x; y; v) = a'1(y) =
ac'2(v)

k
: (13)

From Eq. (13), we have '1(y) =
n(x)
a ; '2(v) =

kn(x)
ac : Since '1; '2 are continuous and strictly increasing

functions with '1(0) = '2(0) = 0, then '
�1
1 ; '�12 exist and they are also continuous and strictly increasing [21].

Let {1(x) = '�11

�
n(x)
a

�
and {2(x) = '�12

�
kn(x)
ac

�
, then

y = {1(x); v = {2(x): (14)

Obviously from Assumption A1, {1(x);{2(x) > 0 for x 2 [0; x0) and {1(x0) = {2(x0) = 0. Substituting from
Eq. (14) into Eq. (13) we get

 (x;{1(x);{2(x))�
ac

k
'2({2(x)) = 0: (15)

We note that, x = x0 is a solution of Eq. (15). Then, from Eq. (14) we have y = v = 0, and this leads to the

infection-free equilibrium E0 = (x0; 0; 0; 0). Let

�1 (x) =  (x;{1(x);{2(x))�
ac

k
'2({2(x)) = 0:

Then from Assumptions A1-A3, we have

�1(0) = �
ac

k
'2({2(0)) < 0;

�1(x0) =  (x0; 0; 0)�
ac

k
'2(0) = 0:

Moreover,

�01 (x0) =
@ (x0; 0; 0)

@x
+ {01(x0)

@ (x0; 0; 0)

@y
+ {02(x0)

@ (x0; 0; 0)

@v
� ac

k
'02(0){02(x0):

Assumption A2 implies that @ (x0;0;0)@x = @ (x0;0;0)
@y = 0. Also, from Assumption A3, we have '02(0) > 0; then

�01 (x0) =
ac

k
{02(x0)'02(0)

�
k

ac'02(0)

@ (x0; 0; 0)

@v
� 1
�
:

From Eq. (14), we get

�01 (x0) = n0(x0)

�
k

ac'02(0)

@ (x0; 0; 0)

@v
� 1
�
:

From Assumption A1, we have n0(x0) < 0. Therefore, if
k

ac'02(0)

@ (x0; 0; 0)

@v
> 1; then �01 (x0) < 0 and there

exists a x1 2 (0; x0) such that �1(x1) = 0. From Eq. (14), we have y1 = {1(x1) > 0 and v1 = {2(x1) > 0.
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It follows that, a chronic-infection equilibrium without CTL immune response E1 = (x1; y1; v1; 0) exists when
k

ac'02(0)

@ (x0; 0; 0)

@v
> 1. Let us de�ne

R0 =
k

ac'02(0)

@ (x0; 0; 0)

@v
;

which describes the average number of newly infected cells generated from one infected cell at the beginning of

the infectious process. The other possibility of Eq. (12) is '3(z) 6= 0 which leads to y2 = '�11

��
r

�
> 0 and

v2 = '�12

�
k�

cr

�
> 0. Substituting y = y2 and v = v2 in Eq. (9), we letting

�2(x) = n(x)�  (x; y2; v2) = 0:

Clearly,

�2(0) = n(0) > 0 and �2(x0) = � (x0; y2; v2) < 0:

According to Assumptions A1 and A2, �2(x) is a strictly decreasing function of x. Thus, there exists a unique

x2 2 (0; x0) such that �2(x2) = 0. Now from Eq. (10) we have

z2 = '�13

�
a

q

�
k (x2; y2; v2)

ac'2(v2)
� 1
��

:

From Assumption A3, we have if
k (x2; y2; v2)

ac'2(v2)
> 1; then z2 > 0. Now we de�ne

R1 =
k (x2; y2; v2)

ac'2(v2)
;

which represents the immune response reproduction ratio which expresses the CTL load during the lifespan of

a CTL cell. Hence, z2 can be rewritten as z2 = '�13

�
a

q
(R1 � 1)

�
. It follows that, there is a chronic-infection

equilibrium with CTL immune response E2 = (x2; y2; v2; z2) if R1 > 1.

Now we show that E0; E1 2 � and E2 2
�
�. Clearly, E0 2 �. We have x1 < x0, then from Assumption A1

0 = n(x0) < n(x1) � s� �sx1:

It follows that

0 < x1 <
s

�s
� s

�
= L1:

From Eqs. (9)-(10), we get

a�1y1 � a'1(y1) = n(x1) < n(0) � s) 0 < y1 <
s

a�1
<

s
a
2�1

� L1:

Eq. (13) implies that,

c�2v1 � c'2(v1) = k'1(y1) =
k

a
n(x1) <

k

a
n(0) � ks

a
) 0 < v1 <

ks

ac�2
<
2ks

ac�2
� L2:

Moreover, z1 = 0 and then, E1 2 �. Let R1 > 1, then one can show that 0 < x2 < L1 and 0 < v2 < L2. From

Eq. (10), we have

a'1(y2) + q'1(y2)'3(z2) = n(x2):

Then

a�1y2 � a'1(y2) � n(x2)) a�1y2 � n(x2) < n(0) � s) 0 < y2 �
s

a�1
� L1:

and
q��3
r

z2 � q'1(y2)'3(z2) � n(x2) < n(0) � s) 0 < z2 �
sr

q��3
� L3:

Then, E2 2
�
�. Clearly from Assumptions A2 and A4, we obtain

R1 =
k (x2; y2; v2)

ac'2(v2)
<
k (x2; 0; v2)

ac'2(v2)
� k

ac
lim
v!0+

 (x2; 0; v)

'2(v)

=
k

ac'02(0)

@ (x2; 0; 0)

@v
<

k

ac'02(0)

@ (x0; 0; 0)

@v
= R0: �
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2 Global stability analysis

In this section, we investigate the global asymptotic stability of the infection-free, chronic-infection without CTL

immune response and chronic-infection with CTL immune response equilibria of model (5)-(8) by using direct

Lyapunov method and applying LaSalle�s invariance principle. Throughout the paper, we de�ne the function

H : (0;1)! [0;1) as: H(w) = w � 1� lnw, where H(w) � 0 for any w > 0 and H has the global minimum

H(1) = 0.

Theorem 1. Let Assumptions A1-A4 hold true and R0 � 1; then the infection-free equilibrium E0 is

globally asymptotically stable (GAS) in �:

Proof. We construct a Lyapunov functional as:

U0(x; y; v; z) = x� x0 �
Z x

x0

lim
v!0+

 (x0; 0; v)

 (�; 0; v)
d� + y +

a

k
v +

aq

rk
z: (16)

It is seen that, U0(x; y; v; z) > 0 for all x; y; v; z > 0 while U0(x; y; v; z) reaches its global minimum at E0. We

calculate dU0
dt along the solutions of model (5)-(8) as:

dU0
dt

=

�
1� lim

v!0+

 (x0; 0; v)

 (x; 0; v)

�
(n(x)�  (x; y; v)) +  (x; y; v)� a'1(y)

+
a

k
(k'1(y)� c'2(v)� q'2(v)'3(z)) +

aq

rk
(r'3(z)'2(v)� �'3(z))

= n(x)

�
1� lim

v!0+

 (x0; 0; v)

 (x; 0; v)

�
+  (x; y; v) lim

v!0+

 (x0; 0; v)

 (x; 0; v)
� ac

k
'2(v)�

aq�

rk
'3(z): (17)

Since n(x0) = 0; then we get

dU0
dt

= (n(x)� n(x0))
�
1� lim

v!0+

 (x0; 0; v)

 (x; 0; v)

�
+
ac

k

�
k

ac

 (x; y; v)

'2(v)
lim
v!0+

 (x0; 0; v)

 (x; 0; v)
� 1
�
'2(v)�

aq�

rk
'3(z):

(18)

From Assumptions A2 and A4 we have

 (x; y; v)

'2(v)
<
 (x; 0; v)

'2(v)
� lim
v!0+

 (x; 0; v)

'2(v)
=

1

'02(0)

@ (x; 0; 0)

@v
:

Then,

dU0
dt

� (n(x)� n(x0))
�
1� (@ (x0; 0; 0)=@v)

(@ (x; 0; 0)=@v)

�
+
ac

k

�
k

ac'02(0)

@ (x0; 0; 0)

@v
� 1
�
'2(v)�

aq�

rk
'3(z)

= (n(x)� n(x0))
�
1� (@ (x0; 0; 0)=@v)

(@ (x; 0; 0)=@v)

�
+
ac

k
(R0 � 1)'2(v)�

aq�

rk
'3(z): (19)

From Assumptions A1 and A2, we have

(n(x)� n(x0))
�
1� (@ (x0; 0; 0)=@v)

(@ (x; 0; 0)=@v)

�
� 0:

Therefore, if R0 � 1, then dU0
dt � 0 for all x; v; z > 0. We note that solutions of system (5)-(8) limited to �, the

largest invariant subset of
�
dU0
dt = 0

	
[22]. We see that, dU0dt = 0 if and only if x(t) = x0, v(t) = 0 and z(t) = 0

for all t. By the above discussion, each element of � satis�es v(t) = 0 and z(t) = 0. Then from Eq. (7) we get

_v(t) = 0 = k'1(y(t)):

It follows from Assumption A3 that, y(t) = 0 for all t. Using LaSalle�s invariance principle, we derive that E0
is GAS. �
To prove the global stability of the two equilibria E1 and E2, we need the following condition on the incidence

rate function.
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Assumption A5.�
 (x; y; v)

 (x; yi; vi)
� '2(v)

'2(vi)

��
1�  (x; yi; vi)

 (x; y; v)

�
� 0, x; y; v > 0; i = 1; 2

Theorem 2. Assume that Assumptions A1-A5 are satis�ed and R1 � 1 < R0, then the chronic-infection

equilibrium without CTL immune response E1 is GAS in �:

Proof. We de�ne the following Lyapunov functional

U1(x; y; v; z) = x� x1 �
Z x

x1

 (x1; y1; v1)

 (�; y1; v1)
d� + y � y1 �

yZ
y1

'1(y1)

'1(�)
d� (20)

+
a

k

0@v � v1 � vZ
v1

'2(v1)

'2(�)
d�

1A+ q

r
z:

It is seen that, U1(x; y; v; z) > 0 for all x; y; v; z > 0 while U1(x; y; v; z) reaches its global minimum at E1. The

time derivative of U1 along the trajectories of (5)-(8) is given by

dU1
dt

=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(n(x)�  (x; y; v)) +

�
1� '1(y1)

'1(y)

�
( (x; y; v)� a'1(y)� q'1(y)'3(z))

+
a

k

�
1� '2(v1)

'2(v)

�
(k'1(y)� c'2(v)) +

q

r
(r'1(y)'3(z)� �'3(z))

=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
n(x) +  (x1; y1; v1)

 (x; y; v)

 (x; y1; v1)
� '1(y1)

'1(y)
 (x; y; v)

+ a'1(y1) + q'1(y1)'3(z)�
ac

k
'2(v)� a'1(y)

'2(v1)

'2(v)
+
ac

k
'2(v1)�

q�

r
'3(z): (21)

Using the equilibrium conditions for E1:

n(x1) =  (x1; y1; v1) = a'1(y1) =
ac

k
'2(v1);

we obtain

dU1
dt

= (n(x)� n(x1))
�
1�  (x1; y1; v1)

 (x; y1; v1)

�
+ 3a'1(y1)� a'1(y1)

 (x1; y1; v1)

 (x; y1; v1)
+ a'1(y1)

 (x; y; v)

 (x; y1; v1)

� a'1(y1)
'1(y1) (x; y; v)

'1(y) (x1; y1; v1)
� a'1(y1)

'2(v)

'2(v1)
� a'1(y1)

'2(v1)'1(y)

'2(v)'1(y1)
+ q

�
'1(y1)�

�

r

�
'3(z): (22)

Collecting terms to get

dU1
dt

= (n(x)� n(x1))
�
1�  (x1; y1; v1)

 (x; y1; v1)

�
+ a'1(y1)

�
 (x; y; v)

 (x; y1; v1)
� '2(v)

'2(v1)
� 1 + '2(v) (x; y1; v1)

'2(v1) (x; y; v)

�
+ a'1(y1)

�
4�  (x1; y1; v1)

 (x; y1; v1)
� '1(y1) (x; y; v)

'1(y) (x1; y1; v1)
� '2(v1)'1(y)

'2(v)'1(y1)
� '2(v) (x; y1; v1)

'2(v1) (x; y; v)

�
+ q ('1(y1)� '1(y2))'3(z): (23)

Eq. (23) can be rewritten as:

dU1
dt

= (n(x)� n(x1))
�
1�  (x1; y1; v1)

 (x; y1; v1)

�
+ a'1(y1)

�
 (x; y; v)

 (x; y1; v1)
� '2(v)

'2(v1)

��
1�  (x; y1; v1)

 (x; y; v)

�
+ a'1(y1)

�
4�  (x1; y1; v1)

 (x; y1; v1)
� '1(y1) (x; y; v)

'1(y) (x1; y1; v1)
� '2(v1)'1(y)

'2(v)'1(y1)
� '2(v) (x; y1; v1)

'2(v1) (x; y; v)

�
+ q ('1(y1)� '1(y2))'3(z): (24)

From Assumptions A1-A5, we get that the �rst and second terms of Eq. (24) are less than or equal zero.

Since the geometrical mean is less than or equal to the arithmetical mean, the third term of Eq. (24) is also
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less than or equal zero. Now, if R1 � 1, then E2 does not exist since z2 =
a

q
(R1 � 1) � 0. It follows that,

:
z(t) = (r'1(y)� �)'3(z) � 0, i.e. '1(y1) � '1(y2). It follows from above that, dU1dt � 0 for all x; y; v; z > 0.

The solutions of system (5)-(8) limited to �, the largest invariant subset of
�
(x; y; v; z) : dU1dt = 0

	
[22]. We have

dU1
dt = 0 if and only if x(t) = x1, y(t) = y1, v(t) = v1 and z(t) = 0. So, � contains a unique point, that is

E1. Thus, the global asymptotic stability of the chronic-infection equilibrium without CTL immune response

E1 follows from LaSalle�s invariance principle. �
Theorem 3. Let Assumptions A1-A5 hold true and R1 > 1, then the chronic-infection equilibrium with

CTL immune response E2 is GAS in
�
�:

Proof. We construct a Lyapunov functional as follows:

U2(x; y; v; z) = x� x2 �
Z x

x2

 (x2; y2; v2)

 (�; y2; v2)
d� + y � y2 �

yZ
y2

'1(y2)

'1(�)
d�

+

�
a+ q'3(z2)

k

�0@v � v2 � vZ
v2

'2(v2)

'2(�)
d�

1A+ q

r

0@z � z2 � zZ
z2

'3(z2)

'3(�)
d�

1A : (25)

We have U2(x; y; v; z) > 0 for all x; y; v; z > 0 and U2(x2; y2; v2; z2) = 0. Calculating the derivative of U2 along

positive solutions of (5)-(8) gives us the following

dU2
dt

=

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(n(x)�  (x; y; v)) +

�
1� '1(y2)

'1(y)

�
( (x; y; v)� a'1(y)� q'1(y)'3(z))

+

�
a+ q'3(z2)

k

��
1� '2(v2)

'2(v)

�
(k'1(y)� c'2(v)) +

q

r

�
1� '3(z2)

'3(z)

�
(r'1(y)'3(z)� �'3(z)): (26)

Collecting terms of Eq. (26) and using n(x2) =  (x2; y2; v2) we obtain

dU2
dt

= (n(x)� n(x2))
�
1�  (x2; y2; v2)

 (x; y2; v2)

�
+  (x2; y2; v2)�  (x2; y2; v2)

 (x2; y2; v2)

 (x; y2; v2)

+  (x; y; v)
 (x2; y2; v2)

 (x; y2; v2)
� '1(y2) (x; y; v)

'1(y)
+ a'1(y2) + q'1(y2)'3(z)�

ac

k
'2(v)� a'1(y)

'2(v2)

'2(v)

+
ac

k
'2(v2)�

qc

k
'3(z2)'2(v)� q'3(z2)'1(y)

'2(v2)

'2(v)
+
qc

k
'3(z2)'2(v2)�

q�

r
'3(z) +

q�

r
'3(z2): (27)

By using the equilibrium conditions of E2

 (x2; y2; v2) = a'1(y2) + q'1(y2)'3(z2) =
ac

k
'2(v2) +

qc

k
'3(z2)'2(v2); '1(y2) =

�

r
;

we obtain
dU2
dt

= (n(x)� n(x2))
�
1�  (x2; y2; v2)

 (x; y2; v2)

�
+ 3 (x2; y2; v2)�  (x2; y2; v2)

 (x2; y2; v2)

 (x; y2; v2)

+  (x2; y2; v2)
 (x; y; v)

 (x; y2; v2)
�  (x2; y2; v2)

'1(y2) (x; y; v)

'1(y) (x2; y2; v2)

�  (x2; y2; v2)
'2(v)

'2(v2)
� a'1(y2)

'2(v2)'1(y)

'2(v)'1(y2)
� q'1(y2)'3(z2)

'2(v2)'1(y)

'2(v)'1(y2)
: (28)

Collecting terms of Eq. (28), we get

dU2
dt

= (n(x)� n(x2))
�
1�  (x2; y2; v2)

 (x; y2; v2)

�
+  (x2; y2; v2)

�
 (x; y; v)

 (x; y2; v2)
� '2(v)

'2(v2)
� 1 + '2(v) (x; y2; v2)

'2(v2) (x; y; v)

�
+  (x2; y2; v2)

�
4�  (x2; y2; v2)

 (x; y2; v2)
� '1(y2) (x; y; v)

'1(y) (x2; y2; v2)
� '2(v2)'1(y)

'2(v)'1(y2)
� '2(v) (x; y2; v2)

'2(v2) (x; y; v)

�
: (29)

We can rewrite (29) as

dU2
dt

= (n(x)� n(x2))
�
1�  (x2; y2; v2)

 (x; y2; v2)

�
+  (x2; y2; v2)

�
 (x; y; v)

 (x; y2; v2)
� '2(v)

'2(v2)

��
1�  (x; y2; v2)

 (x; y; v)

�
+  (x2; y2; v2)

�
4�  (x2; y2; v2)

 (x; y2; v2)
� '1(y2) (x; y; v)

'1(y) (x2; y2; v2)
� '2(v2)'1(y)

'2(v)'1(y2)
� '2(v) (x; y2; v2)

'2(v2) (x; y; v)

�
: (30)
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We note that from Assumptions A1-A5 and the relationship between the arithmetical and geometrical means,

we have dU2
dt � 0 for all x; y; v; z > 0: The solutions of model (5)-(8) limited to �, the largest invariant subset

of
�
(x; y; v; z) : dU2dt = 0

	
[22]. We have dU2

dt = 0 if and only if x(t) = x2, y(t) = y2 and v(t) = v2 for all t:

Therefore, if v(t) = v2 and y(t) = y2, then from Eq. (6),  (x2; y2; v2) � a'1(y2) � q'1(y2)'3(z(t)) = 0, which

gives z(t) = z2 for all t. Thus, dU2dt = 0 occurs at E2. The global asymptotic stability of the chronic-infection

equilibrium with CTL immune response E2 follows from LaSalle�s invariance principle. �

3 Conclusion

In this paper, we have proposed and analyzed a nonlinear viral infection model with CTL immune response.

We have considered more general nonlinear functions for the: (i) intrinsic growth rate of uninfected cells; (ii)

incidence rate of infection; (iii) natural death rate of infected cells; (iv) rate at which the infected cells are killed

by CTL cells; (v) production and removal rates of viruses; (vi) activation and natural death rates of CTLs. We

have derived a set of conditions on these general functions and have determined two threshold parameters to

prove the existence and the global stability of the model�s equilibria. The global asymptotic stability of the

three equilibria, infection-free, chronic-infection without CTL immune response and chronic-infection with CTL

immune response has been proven by using direct Lyapunov method and LaSalle�s invariance principle.
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ON THE STABILITY OF CUBIC LIE ∗-DERIVATIONS

DONGSEUNG KANG

Abstract. We will show the general solution of the functional equation
f(sx + y) + f(x− sy) − s2f(x + y) − sf(x− y) = (s− 1)(s2 − 1)f(x) −
(s+1)(s2−1)f(y) and investigate the stability of cubic Lie ∗-derivations
associated with the given functional equation.

1. Introduction

The concept of stability problem of a functional equation was first posed
by Ulam [14] concerning the stability of group homomorphisms as follows:
Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then there
is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are
stable, i.e., if a mapping is almost a homomorphism then there exists a true
homomorphism near it. By the problem raised by Ulam, several stability
problems of a large variety of functional equations have been extensively
studied and generalized by a number of authors and many interesting results
have been obtained for the last nearly fifty years. For further information
about the topic, we refer the reader to [9], [5], [1] and [2].

Recall that a Banach ∗-algebra is a Banach algebra (complete normed al-
gebra) which has an isometric involution. Jang and Park [6] investigated the
stability of ∗-derivations and of quadratic ∗-derivations with Cauchy func-
tional equation and the Jensen functional equation on Banach ∗-algebra.
The stability of ∗-derivations on Banach ∗-algebra by using fixed point al-
ternative was proved by Park and Bodaghi and also Yang et al.; see [12]
and [15], respectively. Also, the stability of cubic Lie derivations was intro-
duced by Fošner and Fošner; see [4].

Jun and Kim [8] introduced the following cubic functional equation:

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

and established a general solution. Najati [11] investigated the following
generalized cubic functional equation:

(1.1) f(sx+ y) + f(sx− y) = sf(x+ y) + sf(x− y) + 2(s3 − s)f(x)

2000 Mathematics Subject Classification. 39B55; 47B47; 39B72.
Keywords : Hyers-Ulam-Rassias Stability, Cubic Mapping, Lie ∗-Derivation, Fixed

Point Alternative, Banach ∗-Algebra.
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2 DONGSEUNG KANG

for a positive integer s ≥ 2 . Also, Jun and Kim [7] proved the Hyers-Ulam-
Rassias stability of a Euler-Lagrange type cubic mapping as follows:

f(sx+ y) + f(x+ sy)(1.2)

= (s+ 1)(s− 1)2[f(x) + f(y)] + s(s+ 1)f(x+ y) ,

where s ∈ Z (s 6= 0 ,±1) .
In this paper, we deal with the following the functional equation:

(1.3) f(sx+ y) + f(x− sy)− s2f(x+ y)− sf(x− y)

= (s− 1)(s2 − 1)f(x)− (s+ 1)(s2 − 1)f(y)

for all s ∈ Z (s 6= 0 ,±1) . We will show the general solution of the func-
tional equation (1.3) and investigate the stability of cubic Lie ∗-derivations
associated with the given functional equation on normed algebras.

2. Cubic Functional Equations

In this section let X and Y be vector spaces and we investigate the general
solution of the functional equation (1.3).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.3)
if and only if it satisfies the functional equation (1.1).

Proof. Suppose that f satisfies the equation (1.3). It is easy to show that
f(0) = 0 , f(sx) = s3f(x) for all x ∈ X and all s ∈ Z (s 6= 0 ,±1) . Letting
x = −x in the equation (1.3), we have

(2.1) −f(sx− y)− f(x+ sy) + (s+ 1)(s2 − 1)f(y)

= −s2f(x− y)− sf(x+ y)− (s− 1)(s2 − 1)f(x)

for all x , y ∈ X . Replacing x and y in the equation (2.1), we get

(2.2) f(x− sy)− f(sx+ y) + (s+ 1)(s2 − 1)f(x)

= s2f(x− y)− sf(x+ y)− (s− 1)(s2 − 1)f(y)

for all x , y ∈ X . Subtracting the equation (2.2) from the equation (1.3), we
obtain

(2.3) 2f(sx+ y) + 2(s2 − 1)f(y)

= (s2 + s)f(x+ y) + (s− s2)f(x− y) + 2s(s2 − 1)f(x)

for all x , y ∈ X . Now, letting y = −y in the equation (2.3)

(2.4) 2f(sx− y)− 2(s2 − 1)f(y)

= (s2 + s)f(x− y) + (s− s2)f(x+ y) + 2s(s2 − 1)f(x)

for all x , y ∈ X . Adding two equations (2.3) and (2.4), we have

(2.5) 2f(sx+ y) + 2f(sx− y) = 2sf(x+ y) + 2sf(x− y) + 4s(s2 − 1)f(x)

for all x , y ∈ X . Thus we have the equation (1.1). Conversely, suppose that
f satisfies the equation (1.1). It is easy to see that f(0) = 0 , f(sx) = s3f(x)
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CUBIC LIE ∗-DERIVATIONS 3

for all x ∈ X and all s ∈ Z(s 6= 0) . Letting y = sy in the equation (1.1), we
have

(2.6) f(x+ sy) + f(x− sy) = s2f(x+ y) + s2f(x− y)− 2(s2 − 1)f(x)

for all x , y ∈ X . Replacing x and y in the equation (2.6), we get

(2.7) f(sx+ y)− f(sx− y) = s2f(x+ y)− s2f(x− y)− 2(s2 − 1)f(y)

for all x , y ∈ X . By adding two equations (1.1) and (2.7), we obtain
(2.8)
2f(sx+y) = (s2+s)f(x+y)+(s−s2)f(x−y)+2s(s2−1)f(x)−2(s2−1)f(y)

for all x , y ∈ X . Now, letting y = sy in the equation (2.7), we have

(2.9) f(x+ sy)− f(x− sy) = sf(x+ y)− sf(x− y) + 2s(s2 − 1)f(y)

for all x , y ∈ X . Subtracting the equation (2.9) from the equation (2.6), we
know that
(2.10)
2f(x−sy) = (s2−s)f(x+y)+(s2+s)f(x−y)−2(s2−1)f(x)−2s(s2−1)f(y)

for all x , y ∈ X . By adding two equations (2.8) and (2.10), we have the
desired equation (1.3). �

3. Cubic Lie ∗-Derivations

Throughout this section, we assume that A is a complex normed ∗-algebra
and M is a Banach A-bimodule. We will use the same symbol || · || as norms
on a normed algebra A and a normed A-bimoduleM . A mapping f : A→M
is a cubic homogeneous mapping if f(µa) = µ3f(a) , for all a ∈ A and µ ∈ C .
A cubic homogeneous mapping f : A→M is called a cubic derivation if

f(xy) = f(x)y3 + x3f(y)

holds for all x , y ∈ A . For all x , y ∈ A , the symbol [x, y] will denote the
commutator xy−yx . We say that a cubic homogeneous mapping f : A→M
is a cubic Lie derivation if

f([x, y]) = [f(x), y3] + [x3, f(y)]

for all x, y ∈ A . In addition, if f satisfies in condition f(x∗) = f(x)∗ for all
x ∈ A , then it is called the cubic Lie ∗-derivation.

Example 3.1. Let A = C be a complex field endowed with the map z 7→
z∗ = z̄ (where z̄ is the complex conjugate of z). We define f : A → A by
f(a) = a3 for all a ∈ A . Then f is cubic and

f([a, b]) = [f(a), b3] + [a3, f(b)] = 0

for all a ∈ A . Also,

f(a∗) = f(ā) = ā3 = ¯f(a) = f(a)∗

for all a ∈ A . Thus f is a cubic Lie ∗-derivation.
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4 DONGSEUNG KANG

In the following, T1 will stand for the set of all complex units, that is,

T1 = {µ ∈ C | |µ| = 1} .
For the given mapping f : A→M , we consider

(3.1) ∆µf(x, y) := f(sµx+µy)+f(µx−sµy)−s2µ3f(x+y)−sµ3f(x−y)

−µ3(s− 1)(s2 − 1)f(x) + µ3(s+ 1)(s2 − 1)f(y) ,

∆f(x, y) := f([x, y])− [f(x), y3]− [x3, f(y)]

for all x, y ∈ A , µ ∈ C and s ∈ Z (s 6= 0 ,±1) .

Theorem 3.2. Suppose that f : A → M is a mapping with f(0) = 0 for
which there exists a function φ : A5 → [0, ∞) such that

(3.2) φ̃(a, b, x, y, z) :=
∞∑
j=0

1

|s|3j
φ(sja, sjb, sjx, sjy, sjz) <∞

(3.3) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.4) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1
n0

= {eiθ | 0 ≤ θ ≤ 2π
n0
} and all a, b, x, y, z ∈ A in which

n0 ∈ N . Also, if for each fixed a ∈ A the mapping r 7→ f(ra) from R to M
is continuous, then there exists a unique cubic Lie ∗-derivation L : A→M
satisfying

(3.5) ||f(a)− L(a)|| ≤ 1

|s|3
φ̃(a, 0, 0, 0, 0) .

Proof. Let b = 0 and µ = 1 in the inequality (3.3), we have

(3.6) ||f(a)− 1

s3
f(sa)|| ≤ 1

|s|3
φ(a, 0, 0, 0, 0)

for all a ∈ A . Using the induction, it is easy to show that

(3.7) || 1

s3t
f(sta)− 1

s3k
f(ska)|| ≤ 1

|s|3
t−1∑
j=k

φ(sja, 0, 0, 0, 0)

|s|3j

for t > k ≥ 0 and a ∈ A . The inequalities (3.2) and (3.7) imply that the
sequence { 1

s3n
f(sna)}∞n=0 is a Cauchy sequence. Since M is complete, the

sequence is convergent. Hence we can define a mapping L : A→M as

(3.8) L(a) = lim
n→∞

1

s3n
f(sna)

for a ∈ A . By letting t = n and k = 0 in the inequality (3.7), we have

(3.9) || 1

s3n
f(sna)− f(a)|| ≤ 1

|s|3
n−1∑
j=0

φ(sja, 0, 0, 0, 0)

|s|3j

for n > 0 and a ∈ A . By taking n → ∞ in the inequality (3.9), the
inequalities (3.2) implies that the inequality (3.5) holds.
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CUBIC LIE ∗-DERIVATIONS 5

Now, we will show that the mapping L is a unique cubic Lie ∗-derivation
such that the inequality (3.5) holds for all a ∈ A . We note that

(3.10) ||∆µL(a, b)|| = lim
n→∞

1

|s|3n
||∆µf(sna, snb)||

≤ lim
n→∞

φ(sna, snb, 0, 0, 0)

|s|3n
= 0 ,

for all a, b ∈ A and µ ∈ T1
1
n0

. By taking µ = 1 in the inequality (3.10), it

follows that the mapping L is a Euler-Lagrange cubic mapping. Also, the
inequality (3.10) implies that ∆µL(a, 0) = 0 . Hence

L(µa) = µ3L(a)

for all a ∈ A and µ ∈ T1
1
n0

. Let µ ∈ T1 = {λ ∈ C | |λ| = 1} . Then µ = eiθ ,

where 0 ≤ θ ≤ 2π . Let µ1 = µ
1
n0 = e

iθ
n0 . Hence we have µ1 ∈ T1

1
n0

. Then

L(µa) = L(µn0
1 a) = µ3n0

1 L(a) = µ3L(a)

for all µ ∈ T1 and a ∈ A . Suppose that ρ is any continuous linear functional
on A and a is a fixed element in A . Then we can define a function g : R→ R
by

g(r) = ρ(L(ra))

for all r ∈ R . It is easy to check that g is cubic. Let

gk(r) = ρ
(f(skra)

s3k

)
for all k ∈ N and r ∈ R .

Note that g as the pointwise limit of the sequence of measurable func-
tions gk is measurable. Hence g as a measurable cubic function is continu-
ous (see [3]) and

g(r) = r3g(1)

for all r ∈ R . Thus

ρ(L(ra)) = g(r) = r3g(1) = r3ρ(L(a)) = ρ(r3L(a))

for all r ∈ R . Since ρ was an arbitrary continuous linear functional on A we
may conclude that

L(ra) = r3L(a)

for all r ∈ R . Let µ ∈ C (µ 6= 0) . Then µ
|µ| ∈ T1 . Hence

L(µa) = L
( µ
|µ|
|µ|a

)
=
( µ
|µ|

)3
L(|µ|a) =

( µ
|µ|

)3
|µ|3L(a) = µ3L(a)

for all a ∈ A and µ ∈ C (µ 6= 0) . Since a was an arbitrary element in A , we
may conclude that L is cubic homogeneous.
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Next, replacing x, y by skx, sky , respectively, and z = 0 in the inequality
(3.4), we have

||∆L(x, y)|| = lim
n→∞

||∆f(snx, sny)

s3n
||

≤ lim
n→∞

1

|s|3n
φ(0, 0, snx, sny, 0) = 0

for all x, y ∈ A . Hence we have ∆L(x, y) = 0 for all x, y ∈ A . That is, L
is a cubic Lie derivation. Letting x = y = 0 and replacing z by skz in the
inequality (3.4), we get

(3.11)
∣∣∣∣∣∣f(snz∗)

s3n
− f(snz)∗

s3n

∣∣∣∣∣∣ ≤ φ(0, 0, 0, 0, snz)

|s|3n

for all z ∈ A . As n→∞ in the inequality (3.11), we have

L(z∗) = L(z)∗

for all z ∈ A . This means that L is a cubic Lie ∗-derivation. Now, assume
L′ : A → A is another cubic ∗-derivation satisfying the inequality (3.5).
Then

||L(a)− L′(a)|| =
1

|s|3n
||L(sna)− L′(sna)||

≤ 1

|s|3n
(
||L(sna)− f(sna)||+ ||f(sna)− L′(sna)||

)
≤ 1

|s|3n+1

∞∑
j=0

1

|s|3j
φ(sj+na, 0, 0, 0, 0)

=
1

|s|3
∞∑
j=n

1

|s|3j
φ(sja, 0, 0, 0, 0) ,

which tends to zero as k → ∞ , for all a ∈ A . Thus L(a) = L′(a) for all
a ∈ A . This proves the uniqueness of L . �

Corollary 3.3. Let θ , r be positive real numbers with r < 3 and let f : A→
M be a mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then there exists a unique cubic Lie

∗-derivation L : A→M satisfying

||f(a)− L(a)|| ≤ θ||a||r

|s|3 − |s|r

for all a ∈ A .

Proof. The proof follows from Theorem 3.2 by taking φ(a, b, x, y, z) =
θ(||a||r + ||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A . �
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Now, we will investigate the stability of the given functional equation
(3.1) using the alternative fixed point method. Before proceeding the proof,
we will state the theorem, the alternative of fixed point; see [10] and [13].

Definition 3.4. Let X be a set. A function d : X ×X → [0, ∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 3.5 ( The alternative of fixed point [10], [13] ). Suppose that we
are given a complete generalized metric space (Ω, d) and a strictly contractive
mapping T : Ω → Ω with Lipschitz constant l . Then for each given x ∈ Ω ,
either

d(Tnx, Tn+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;
(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) <∞} ;

(4) d(y, y∗) ≤ 1
1−l d(y, Ty) for all y ∈ 4 .

Theorem 3.6. Let f : A→M be a continuous mapping with f(0) = 0 and
let φ : A5 → [0,∞) be a continuous mapping such that

(3.12) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.13) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . If there exists a constant l ∈ (0, 1) such

that

(3.14) φ(sa, sb, sx, sy, sz) ≤ |s|3lφ(a, b, x, y, z)

for all a, b, x, y, z ∈ A , then there exists a cubic Lie ∗-derivation L : A→M
satisfying

(3.15) ||f(a)− L(a)|| ≤ 1

|s|3(1− l)
φ(a, 0, 0, 0, 0)

for all a ∈ A .

Proof. Consider the set

Ω = {g | g : A→ A , g(0) = 0}

and introduce the generalized metric on Ω ,

d(g, h) = inf {c ∈ (0,∞) | ‖ g(a)− h(a) ‖≤ cφ(a, 0, 0, 0, 0) , for all a ∈ A} .
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It is easy to show that (Ω, d) is complete. Now we define a function T : Ω→
Ω by

(3.16) T (g)(a) =
1

s3
g(sa)

for all a ∈ A . Note that for all g, h ∈ Ω , let c ∈ (0, ∞) be an arbitrary
constant with d(g, h) ≤ c . Then

(3.17) ||g(a)− h(a)|| ≤ cφ(a, 0, 0, 0, 0)

for all a ∈ A . Letting a = sa in the inequality (3.17) and using (3.14) and
(3.16), we have

||T (g)(a)− T (h)(a)|| =
1

|s|3
||g(sa)− h(sa)||

≤ 1

|s|3
c φ(sa, 0, 0, 0, 0) ≤ c l φ(a, 0, 0, 0, 0) ,

that is,

d(Tg, Th) ≤ c l .
Hence we have that

d(Tg, Th) ≤ l d(g, h) ,

for all g, h ∈ Ω , that is, T is a strictly self-mapping of Ω with the Lipschitz
constant l . Letting µ = 1 , b = 0 in the inequality (3.12), we get

|| 1
s3
f(sa)− f(a)|| ≤ 1

|s|3
φ(a, 0, 0, 0, 0)

for all a ∈ A . This means that

d(Tf, f) ≤ 1

|s|3
.

We can apply the alternative of fixed point and since limn→∞ d(Tnf, L) = 0 ,
there exists a fixed point L of T in Ω such that

(3.18) L(a) = lim
n→∞

f(sna)

s3n
,

for all a ∈ A . Hence

d(f, L) ≤ 1

1− l
d(Tf, f) ≤ 1

|s|3
1

1− l
.

This implies that the inequality (3.15) holds for all a ∈ A . Since l ∈ (0, 1) ,
the inequality (3.14) shows that

(3.19) lim
n→∞

φ(sna, snb, snx, sny, snz)

|s|3n
= 0 .

Replacing a , b by sna , snb , respectively, in the inequality (3.12), we have

1

|s|3n
||∆µf(sna, snb)|| ≤ φ(sna, snb, 0, 0, 0)

|s|3n
.
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Taking the limit as k tend to infinity, we have ∆µf(a, b) = 0 for all a , b ∈ A
and all µ ∈ T1

1
n0

. The remains are similar to the proof of Theorem 3.2. �

Corollary 3.7. Let θ , r be positive real numbers with r < 3 and let f : A→
M be a mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)

for all µ ∈ T1
1
n0

and a, b, x, y, z ∈ A . Then there exists a unique cubic Lie

∗-derivation L : A→M satisfying

||f(a)− L(a)|| ≤ θ||a||r

|s|3(1− l)
for all a ∈ A .

Proof. The proof follows from Theorem 3.6 by taking φ(a, b, x, y, z) =
θ(||a||r + ||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A . �
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Fuzzy share functions for cooperative fuzzy games†
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Abstract In this paper, the concept of fuzzy share functions of cooperative fuzzy games with fuzzy
characteristic functions is proposed. Players in the proposed cooperative fuzzy game do not need to
know precise information about the payoff value. We generalize the axiom of additivity by introducing
a positive fuzzy value function µ̃ on the class of cooperative fuzzy games in fuzzy characteristic function
form. The so-called axiom of µ̃-additivity generalizes the classical axiom of additivity by putting the
weight µ̃(ṽ) on the value of the game ṽ. We show that any additive function µ̃ determines a unique fuzzy
share function satisfying the axioms of efficient shares, null player property, symmetry and µ̃-additivity
on the subclass of games on which µ̃ is positive and which contains all positively scaled unanimity
games. Finally, we introduce the fuzzy Shapley share functions and fuzzy Banzhaf share functions for
the cooperative fuzzy games with fuzzy characteristic functions.
Keywords: Cooperative fuzzy game; Fuzzy share functions; Characteristic functions; Fuzzy numbers.

1. Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players N and
for any subset (coalition) of players a worth representing the total payoff that the coalition can obtain by
cooperating. A value function for TU-games is a function that assigns to every TU-game with n players
an n-dimensional vector representing a distribution of payoffs among the players. A value function is
efficient if for every game it distributes exactly the worth of the ’grand coalition’, N , over all players.
The most famous efficient value function is the Shapley value[16]. An example of a value function that is
not efficient is the Banzhaf value[3, 8, 14]. Since the Banzhaf value is not efficient, it is not adequate in
allocating the worth v(N). In order to allocate v(N) and according to the Banzhaf value, Van der Laan
et al. in [18] characterize the normalized Banzhaf value, which distributes the worth v(N) proportional
to the Banzhaf values of the players.

A different approach to efficiently allocate the worth v(N) is described in [19], who introduce share
functions as an alternative type of solution for TU-games. A share vector for an n-player game is an
n-dimensional real vector whose components add up to one. The ith component is player i’s share in the
total payoff that is to be distributed among the players. A share function assigns such a share vector to
every game. The share function corresponding to the Shapley value is the Shapley share function, which
is obtained by dividing the Shapley value of each player by v(N), i.e., by the sum of the Shapley values of
all players. Similarly, the Banzhaf share function is obtained by dividing the Banzhaf-value or normalized
Banzhaf-value by the corresponding sum of payoffs over all players. One advantage of share functions
over value functions is that share functions avoid the ”efficiency issue”, i.e., they avoid the question of
what is the final worth to be distributed over the players. This yields some major simplifications. For
example, although the Banzhaf and normalized Banzhaf value are very different value functions (e.g. the
Banzhaf value satisfies linearity and the dummy player property which are not satisfied by the normalized
Banzhaf value), they correspond to the same Banzhaf share function. Another main advantage of share
functions has been discovered by [15], who shows that on a ratio scale meaningful statements can be
made for a certain class of share functions, whereas all statements with respect to value functions are
meaningless. Besides the advantages of share functions for general TU-games, in [2, 20] they study share
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functions for so-called games in coalition structure, for which an extra advantage is that they provide
a natural method to define solutions for such games. Share functions, when multiplied by the worth of
the grand coalition N , yield a distribution of the worth of the grand coalition reflecting the individual
bargaining position of the players.

Mares and Vlach [12, 13] were concerned about the uncertainty in the value of the characteristic
function associated with a game. In their models, the domain of the characteristic function of a game
remains to be the class of crisp (deterministic) coalitions but the values assigned to them are fuzzy
quantities. However, the implicit assumption that all players and coalitions know the expected payoffs
even before the negotiation process, is evidently unrealistic. In fact, during the process of negotiation
and coalition forming, the players can have only vague idea about the real outcome of the situation, and
this vague expectation can be modeled by mathematical tools (see [12]).

In this paper, we consider the fuzzy share functions of a cooperative fuzzy game with fuzzy charac-
teristic function. The paper will be organized as follows. In Section 2, we introduce the concepts of fuzzy
numbers and the Hukuhara difference on fuzzy numbers. Then, the model of cooperative fuzzy games
is introduced. Moreover, some basic concepts of crisp games will be discussed. In Section 3, the fuzzy
share functions of cooperative fuzzy games with fuzzy characteristic function is proposed, we generalize
the axiom of additivity by introducing a positive fuzzy valued function µ̃ on the class of cooperative fuzzy
games in fuzzy characteristic function form. The so-called axiom of µ̃-additivity generalizes the classical
axiom of additivity by putting the weight µ̃(ṽ) on the value of the game ṽ. We show that any additive
function µ̃ determines a unique fuzzy share function satisfying the axioms of efficient shares, null player
property, symmetry and µ̃-additivity on the subclass of games on which µ̃ is positive and which contains
all positively scaled unanimity games. In Section 4, we introduce fuzzy Shapley share functions and fuzzy
Banzhaf share functions, furthermore, an applicable example is given. Finally, some conclusions will be
discussed in Section 5.

2. Preliminaries

In this section, we first recall the concept of fuzzy number, and then introduce some basic concepts
and notations in cooperative games with fuzzy characteristic functions.

2.1 A review of fuzzy numbers

Let us start by recalling the most general definition of a fuzzy number. Let R be (−∞,+∞), i.e., the
set of all real numbers.

Definition 2.1. A fuzzy number, denoted by ã, is a fuzzy subset of R with membership function
uã : R→ [0, 1] satisfying the following conditions:

(1) there exists at least one number a0 ∈ R such that uã(a0) = 1;

(2) uã(x) is nondecreasing on (−∞, a0) and nonincreasing on (a0,+∞);

(3) uã(x) is upper semi-continuous, i.e., limx→x+0
uã(x) = uã(x0) if x0 < a0; and limx→x−0

uã(x) =

uã(x0) if x0 > a0;

(4) Supp(uã), the support set of ã, is compact, where Supp(uã) = cl{x ∈ (R)|uã(x) > 0}.
We denote the set of all fuzzy numbers by <. An important type of fuzzy numbers in common use is

the triangular fuzzy number [9], whose membership function has the form

uã(x) =


x− a1
a2 − a1

, x ∈ [a1, a2],

a3 − x
a3 − a2

, x ∈ [a2, a3],

0, otherwise.

where a1, a2, a3 ∈ R with a1 ≤ a2 ≤ a3.
For a fuzzy number ã ∈ <, the level set is defined as ãλ = {x ∈ R|uã(x) ≥ λ}, uã(x) ∈ [0, 1]. It

follows from the properties of the membership function of a fuzzy number ã that each of its λ-cuts ãλ
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is an interval number, denoted by ãλ = [ãLλ , ã
R
λ ], λ ∈ (0, 1], where ãLλ and ãRλ mean the lower and upper

bounds of ãλ.
Let ã, b̃ ∈ <, and let ∗ be a binary operation on R. The ∗ operation can be extended to fuzzy numbers

by means of Zadeh’s extension principle [22] in the following way:

uã∗b̃(z) = supx∗ymin{uã(x), ub̃(x)}, z ∈ R, (2.1)

where ã ∗ b̃ is a fuzzy number with the membership function uã∗b̃.
It is not easy to apply Eq.(2.1) in calculation directly. However, calculating λ-cuts of the fuzzy number

ã ∗ b̃ is an easy task in each case because

(ã+ b̃)λ = ãλ + b̃λ = [ãLλ + b̃Lλ , ã
R
λ + b̃Rλ ],

(ã− b̃)λ = ãλ − b̃λ = [ãLλ − b̃Rλ , ãRλ − b̃Lλ ],

(mã)λ = mãλ = [mãLλ ,mã
R
λ ],∀m ∈ R,m > 0,

(ãb̃)λ = [min{ãLλ b̃Lλ , ãLλ b̃Rλ , ãRλ b̃Lλ , ãRλ b̃Rλ },max{ãLλ b̃Lλ , ãLλ b̃Rλ , ãRλ b̃Lλ , ãRλ b̃Rλ }].

Definition 2.2. For any two fuzzy numbers ã, b̃ ∈ <, we write

(1) ã ≥ b̃ if and only if ãLλ ≥ b̃Lλ and ãRλ ≥ b̃Rλ , ∀λ ∈ (0, 1];

(2) ã = b̃ if and only if ã ≥ b̃ and b̃ ≥ ã;

(3) ã ⊆ b̃ if and only if ãLλ ≥ b̃Lλ and ãRλ ≤ b̃Rλ , ∀λ ∈ (0, 1].

Remark 2.1. The ordering ”≥” between fuzzy numbers in Definition 2.2 has been defined in [9], which
is the extension of the max operator to fuzzy numbers with Zadeh’s extension principle, i.e.,

ã ≥ b̃ if and only max{ã, b̃} = ã, ∀ã, b̃ ∈ <.
In this paper, we will use the Hukuhara difference between fuzzy numbers [4,10] as follows.

Definition 2.3. Let ã, b̃ ∈ <. If there exists c̃ ∈ < such that ã = b̃ + c̃, then c̃ is called the Hukuhara
difference, and denoted by c̃ = ã−H b̃.

Remark 2.2. The Hukuhara difference is defined as an inverse calculation of the ”+” operator defined
based on Zadeh’s extension principle. But the Hukuhara difference between two fuzzy numbers does
not always exists. Regarding the existence of the Hukuhara difference, there is an extensive literature
described in [9].

Theorem 2.1. Let ã, b̃ ∈ <. The Hukuhara difference c̃ = ã−H b̃ exists if and only if
ãLλ − b̃Lλ ≤ ãLβ − b̃Lβ ≤ ãRβ − b̃Rβ ≤ ãRλ − b̃Rλ , ∀λ, β ∈ (0, 1], β > λ.

Lemma 2.1. Let ã, b̃ ∈ <. If ã−H b̃ exists, then for any λ ∈ (0, 1],

(ã−H b̃)λ = ãλ −H b̃λ = [ãLλ − b̃Lλ , ãRλ − b̃Rλ ].

Lemma 2.2. Let ã, b̃, c̃, d̃ ∈ <. If ã−H b̃ and c̃−H d̃ exists, then
(ã+ c̃)−H (b̃+ d̃) = (ã−H b̃) + (c̃−H d̃).

2.2 Cooperative games with fuzzy characteristic functions

We consider cooperative games with the set of players N = {1, 2, . . . , n}. A cooperative crisp game
is defined by (N, v), in which N is the set of players and the characteristic function v : 2N → R+ = {r ∈
R|r ≥ 0} satisfies the condition that v(∅) = 0.

In a cooperative crisp game, a characteristic function v describes a cooperative game and associates
a crisp coalition S with the worth v(S), which is interpreted as the payoff that the coalition S can
acquire only through the action of S. The cooperative crisp game is based on the assumption that
all players and coalitions know the payoff value v before the cooperation begins. As Borkotokey [5]
says, this assumption is not realistic because there are many uncertain factors during negotiation and
coalition formation. In many situations, the players can have only vague ideas about the real payoff
value. Taking into account the imprecision of information in decision making problems, we incorporate a
fuzzy characteristic function, which is represented by fuzzy numbers ṽ(S). Therefore, the characteristic
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function of such a game associates a crisp coalition S ∈ P(N) with a fuzzy number ṽ(S). Assessing such
fuzzy numbers for any crisp coalition S ∈ P(N), we define a cooperative game with fuzzy characteristic
values by a pair (N, ṽ), where the fuzzy characteristic function ṽ : P(N) → <+ is such that ṽ(∅) = 0.
Obviously, games with fuzzy characteristic functions are a kind of cooperative fuzzy games. Hereinafter,
a cooperative game with fuzzy characteristic function will be called a ”cooperative fuzzy game” for short.

Along the paper we use the | · | operator to denote the cardinality of a finite set, i.e., |S| is the number
of players in S, for any S ⊆ N . Alternatively, sometimes we use lowercase letters to denote cardinalities,
and thus s = |S| for any S ⊆ N . A fuzzy game (N, ṽ) is called monotone if for every S, T ⊆ N with
T ⊆ S, it holds that ṽLλ (T ) ≤ ṽLλ (S) and ṽRλ (T ) ≤ ṽRλ (S). That is, monotone fuzzy games are those in
which the cooperation among players is never pernicious. Since the whole paper deals with monotone
games, henceforth we will simply say game instead of monotone game.

For each S ⊆ N and i ∈ N , we will write S ∪ i instead of S ∪ {i} and S \ i instead of S \ {i}. For a
pair of fuzzy games (N, w̃), (N, ṽ) ∈ FG, the game (N, z̃) is defined by z̃(S) = w̃(S) + ṽ(S) for all S ⊆ N .
Further, given S ∈ P(N), the unanimity game with carrier S, (N, uT (S)), is defined by uT (S) = 1 if
T ⊆ S, and uT (S) = 0 otherwise. Notice that (N, uT (S)) ∈ FG for every S ∈ P(N).

Given (N, ṽ) ∈ FG, a player i ∈ N is a dummy if ṽ(S ∪ i) = ṽ(S) + ṽ(i) for all S ⊆ N \ i, that is, if
all her marginal contributions are equal to ṽ(i). A player i ∈ N is called a null player if she is a dummy
and ṽ(i) = 0. Two players i, j ∈ N are symmetric if ṽ(S ∪ i) = ṽ(S ∪ j) for all S ⊆ N \ {i, j}, that is, if
their marginal contributions to each coalition coincide.

3. Fuzzy Share Functions

In this section we extend the share function introduced by Van der Laan et al. in [18] to a fuzzy
environment. We consider a class of fuzzy share functions for n-person, the basic concept of fuzzy share
functions is that it assigns to each player his fuzzy share in the payoff ṽ(N) of the grand coalition N ,
i.e., a fuzzy share function on a class FC of games is a function ρ̃ : FC → <n giving player i the share
ρ̃i(ṽ) in the value ṽ(N), where FC is the subset of FG that is FC ⊂ FG. So, for any game ṽ, a fuzzy
share function ρ̃ gives a fuzzy payoff ρ̃i(ṽ)ṽ(N) to player i, i = 1, 2, . . . , n. Observe that we do not require
a priori that the share is nonnegative, although for monotone games this seems to be reasonable. We
return to this point at the end of this section. Of course the total payoff equals ṽ(N) if and only if∑n

i=1 ρ̃i(ṽ) = 1. Therefore, for a share function ρ̃ on FC, we redefine the axiom of efficiency as follows.

AXIOM 3.1. For any ṽ ∈ FC,
∑n

i=1 ρ̃i(ṽ) = 1.

Now, let µ̃ : FC → < be a fuzzy valued function on the class FC of games. Then we have the following
definition.

Definition 3.1.

(1) A fuzzy valued function µ̃ : FC → < is called additive on the class FC of fuzzy games if for
any pair w̃, ṽ on the class FC such that w̃ + ṽ ∈ FC, it holds that µ̃Lλ (w̃ + ṽ) = µ̃Lλ (w̃) + µ̃Lλ (ṽ),
µ̃Rλ (w̃ + ṽ) = µ̃Rλ (w̃) + µ̃Rλ (ṽ).

(2) A fuzzy valued function µ̃ : FC → < is called linear on the class FC of fuzzy games if it is additive
and if for any ṽ on FC it holds that µ̃(αṽ) = αµ̃(ṽ).

(3) A fuzzy valued function µ̃ : FC → < is called positive on the class FC of fuzzy games if µ̃(ṽ) > 0
for all ṽ ∈ FC.

For instance the function µ̃ defined by µ̃(ṽ) =
∑

T⊂N ṽ(T ) is additive function. For a given function
µ̃, we generalize the axioms of additivity and linearity to the concepts of µ̃-additivity and µ̃-linearity of
a share function ρ̃ on a class FC.
AXIOM 3.2.(µ̃-additivity) Let µ̃ : FC → < be given. Then for any pair w̃ and ṽ of games in FC such
that w̃ + ṽ ∈ FC it holds that µ̃λ(w̃ + ṽ)ρ̃λ(w̃ + ṽ) = [µ̃(w̃)ρ̃(w̃)]λ + [µ̃(ṽ)ρ̃(ṽ)]λ.

AXIOM 3.3.(µ̃-linearity) Let µ̃ : FC → < be given. Then for any pair w̃ and ṽ of games in FC such
that µ̃λ(aw̃ + bṽ)ρ̃λ(aw̃ + bṽ) = a[µ̃(w̃)ρ̃(w̃)]λ + b[µ̃(ṽ)ρ̃(ṽ)]λ for any pair of real numbers a and b such
that aw̃ + bṽ ∈ FC.
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Definition 3.2[7]. Let I : < → R, this function is defined by

I(m) =

∫ 1
0 xm(x)dx∫ 1
0 m(x)dx

.

I(m) denotes the center of gravity of m .
If m = (a1, a2, a3) be a triangular fuzzy number, the center of gravity of m is defined by

It(m) =

∫ 1
0 xm(x)dx∫ 1
0 m(x)dx

=
a1 + a2 + a3

3
.

Since the center of gravity could approximately denote the value of fuzzy number, so we use the center
of gravity I(ṽ) to denote the value ṽ(N).

We are now able to define a class of fuzzy share functions. Therefore, let FG be the collection of all
subclasses of games such that for any subclass FC ∈ FG holds that αuT ∈ FC for any T ⊂ N and any
real number α > 0, i.e., FG is the collection of all subclasses containing all positively scaled unanimity
games. As is known, see [10, 11, 21], every ṽ ∈ FG can be expressed as ṽ(S) =

∑
T⊂P (I):T 6=∅ uT (S)cT (ṽ)

with the so-called dividends cT (ṽ). So, any game ṽ ∈ FG can be written as the sum of scaled unanimity
games with the dividend cT (ṽ) as the scale of uT , T ⊂ N . In [21] we know that

ṽ(S) =
∑

T∈P (I):T 6=∅

uT (S)c̃T (ṽ) =
∑

T∈P (I):T 6=∅
c̃T (ṽ)≥0

uT (S)c̃T (ṽ)−
∑

T∈P (I):T 6=∅
c̃T (ṽ)<0

uT (S)(−c̃T (ṽ))

where c̃T (ṽ) = Sup{λ ∈ [0, 1]|x ∈ c̄λT (ṽ)}, c̄λT (ṽ) = [cT (ṽLλ ), cT (ṽRλ )] and

cT (ṽLλ ) =
∑
T⊂N

(−1)(|T |−|S|)ṽLλ (S), cT (ṽRλ ) =
∑
T⊂N

(−1)(|T |−|S|)ṽRλ (S).

Especially, for any S ∈ P(N), we let [ṽL0 (S), ṽR0 (S)] = cl{x ∈ R|ṽ(S)(x) > 0}, where cl denotes the
closure of sets, and let

cT (ṽL0 ) =
∑
T⊂N

(−1)(|T |−|S|)ṽL0 (S), cT (ṽR0 ) =
∑
T⊂N

(−1)(|T |−|S|)ṽR0 (S),

for T ∈ P(N) \ ∅.
Proposition 3.1[21]. Let v ∈ GH(I) satisfy the following three conditions:

(i) cT (vRλ ) ≥ cT (vLλ ), ∀λ ∈ (0, 1], ∀T ∈ P (I);

(ii) cT (vR0 ) ≤ 0 or cT (vL0 ) ≥ 0, ∀T ∈ P (I);

(iii) [cT (vLβ ), cT (vRβ )] ⊆ [cT (vLλ ), cT (vRλ )], ∀T ∈ P (I), ∀λ, β ∈ (0, 1], λ < β.

Then the Hukuhara-Shapley function is the unique Shapley value for game v.

Theorem 3.1. For some subclass of games FC ∈ FG, let µ̃ : FC → < be a positive fuzzy value function
on FC. Then on the subclass FC there exists a unique fuzzy share function ρ̃ : FC → <n satisfying the
axioms of efficient shares, null player property, symmetry and µ̃-additivity if and only if µ̃ is additive on
FC.
Proof. Firstly, we suppose ρ̃ satisfies efficiency and µ̃-additivity. From the µ̃-additivity it follows that

µ̃λ(w̃ + ṽ)

n∑
i=1

ρi(w̃ + ṽ)

= µ̃λ(w̃ + ṽ)[(ρ1(w̃ + ṽ)λ + . . .+ (ρn(w̃ + ṽ)λ]

= µ̃λ(w̃ + ṽ)[ρ1(w̃ + ṽ)]λ + . . .+ µ̃λ(w̃ + ṽ)[ρn(w̃ + ṽ)]λ

= [µ̃λ(w̃)(ρ1(w̃))λ + µ̃λ(ṽ)(ρ1(ṽ))λ] + . . .+ [µ̃λ(w̃)(ρn(w̃))λ + µ̃λ(ṽ)(ρn(ṽ))λ]

= µ̃λ(w̃)[(ρ1(w̃))λ + . . .+ (ρn(w̃))λ] + µ̃λ(ṽ)[(ρ1(ṽ))λ + . . .+ (ρn(ṽ))λ]

= µ̃λ(w̃)
n∑
i=1

ρi(w̃) + µ̃λ(ṽ)
n∑
i=1

ρi(ṽ)
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and for any w̃, ṽ ∈ FC such that w̃+ ṽ ∈ FC. Efficiency then implies that µ̃(w̃+ ṽ) = µ̃(w̃)+ µ̃(ṽ). Hence
µ̃ must be additive.

Secondly, we assume that µ̃ is additive. We shall show that there can be at most one share function
ρ̃ : FC → <n satisfying the four axioms. Therefore, let ρ̃ : FC → <n be a function satisfying the axioms.
Recall that any positively scaled unanimity game belongs to the subclass FC. For a unanimity game uT ,
we have that two players i and j are symmetric if they are both in T , whereas a player not in T is a null
player. Hence from the symmetry, null player property and efficient shares axioms it follows that for any
positively scaled unanimity game αuT , α > 0, it holds that

ρ̃i(αuT ) =
1

|T |
, when i ∈ T , (3.1)

ρ̃i(αuT ) = 0, when i /∈ T , (3.2)

Now, with c̃T (ṽ) the dividends of the game ṽ, we can rewrite c̃T (ṽ) as the difference of two sums of
positively scaled unanimity games by

ṽ(S) =
∑

T∈P (I):T 6=∅

uT (S)c̃T (ṽ) =
∑

T∈P (I):T 6=∅
c̃T (ṽ)≥0

uT (S)c̃T (ṽ)−
∑

T∈P (I):T 6=∅
c̃T (ṽ)<0

uT (S)(−c̃T (ṽ)).

Since ṽ is a positive function on FC and FC contains ṽ and all positively scaled unanimity games, it
follows by applying the axiom of ũ-additivity repeatedly that ρ̃(ṽ) is uniquely defined by

µ̃(ṽ)ρ̃(ṽ) =
∑

c̃T (ṽ)≥0 µ̃(c̃T (ṽ)uT )ρ̃(c̃T (ṽ)uT )−
∑

c̃T (ṽ)<0 µ̃(−c̃T (ṽ)uT )ρ̃(−c̃T (ṽ)uT ). (3.3)

It only need to prove that ρ̃ indeed satisfies the axioms.
First, because of the additivity of µ̃ it holds that

µ̃(ṽ) =
∑

c̃T (ṽ)≥0 µ̃(c̃T (ṽ)uT )−
∑

c̃T (ṽ)<0 µ̃(−c̃T (ṽ)uT ). (3.4)

Hence it follows from equation (3.1), (3.2), (3.3) and (3.4) that
∑n

j=1 ρ̃j(ṽ) = 1 and therefore the axiom
of efficient shares is satisfied. Second, observe that a null player in ṽ is a null player in any uT with
nonzero dividend c̃T (ṽ). Hence, by Equations (3.1) and (3.3) and the positiveness of ṽ it follows that ρ̃
satisfies the null player property. Third, if i and j are two symmetric players in ṽ, then c̃T (ṽ)i = c̃T (ṽ)j ,
whereas for each other T ⊂ N with nonzero weight c̃T (ṽ), i and j are either both in T or both not in T .
Hence by Equations (3.1), (3.2) and (3.3) and the positiveness of µ̃ it follows that ρ̃ satisfies the symmetry
property. Finally, for any two games ṽ, w̃ ∈ FC we have that ṽ+ w̃ =

∑
T⊂N (c̃T (ṽ)+ c̃T (w̃))uT . Together

with Equation (3.3) and the additivity of ũ this implies that µ̃(ṽ + w̃)ρ̃(ṽ + w̃) = µ̃(ṽ)ρ̃(ṽ) + µ̃(w̃)ρ̃(w̃)
and hence ρ̃ is µ̃-additive.

Theorem 3.2. For given positive numbers ωt, t = 1, . . . , n, let the function µ̃ω be defined by

µ̃ω(ṽ) =
∑

i∈N
∑
{T |i∈T} ωtm

i
T =

∑
i∈N

∑
{T |i∈T} ωt[ṽ(T ∪ i)−H ṽ(T )] = I(ṽ),

where t = |T |. Then the share function ρ̃ω defined by

ρ̃ωi (ṽ) =

∑
{T |i∈T} ωtm

i
T

I(ṽ)
=

∑
{T |i∈T} ωt[ṽ(T ∪ i)−H ṽ(T )]

I(ṽ)
, i ∈ N , (3.5)

is the unique share function satisfying the axioms of efficient shares, null player property, symmetry and
µ̃ω-additive on the subclass FC of FG on which µ̃ω is positive.

Proof. By definition of µ̃ω, all positively scaled unanimity games αuT are µ̃ω positively and hence
FC ∈ FG. Moreover, µ̃ω is additive. Hence, it follows from Theorem 3.1 that there exists a unique share
function that satisfies the four axioms with respect to µ̃ω on the class FC of µ̃ω-positive games.

It remains to show that ρ̃ω indeed satisfies the four axioms. First, by definition we have that ρ̃ω

satisfies the efficient shares axiom. Second, since mi
T (ṽ) = 0 for all T ⊂ N if i is a null player, the

null player property is satisfied. Third, if i and j are symmetric we have that mi
T (ṽ) = mj

T (ṽ) for all

T ⊂ N containing both i and j, mi
T∪{i}(ṽ) = mj

T∪{j}(ṽ) for all T ⊂ N such that both i, j /∈ T and

mi
T (ṽ) = mj

T∪{j}\{i}(ṽ) for all T ⊂ N such that i ∈ T and j /∈ T . Since the weights ωt only depend on t

this implies that the symmetry axiom holds. Finally, observe that
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µ̃ω(ṽ)ρωi (ṽ) =
∑
{T |i∈T} ωtm

i
T (ṽ), i = 1, . . . , n.

Since for all i and T it holds that mi
T (aṽ + bw̃) = ami

T (ṽ) + bmi
T (w̃), it follows that ρ̃ω is µ̃ω-linear

and hence also µ̃ω-additive.
Using the same method in [21], we could get the following Lemma 3.1.

Lemma 3.1[21]. Let S ∈ P (N) and i ∈ S. Then we have

[ρ̃(ṽ)(S)]λ = ρ̃(ṽ)λ(S),∀λ ∈ (0, 1],

where the function is defined by Eq.(3.5).

4. Fuzzy Share Functions: Examples

In this section, we will introduce fuzzy Shapley share functions and fuzzy Banzhaf share functions,
furthermore, an applicable example is given.

Definition 4.1[21]. The Shapley value, assigns to any game (N, v) ∈ G a vector in <n defined as

φSi (ṽ) =
∑

S⊆N\i
s!(n− s− 1)!

n!
[ṽ(S ∪ i)−H ṽ(S)], i ∈ N . (4.1)

Definition 4.2[21]. The Banzhaf value, assigns to any game (N, v) ∈ G a vector in <n defined as

φBi (ṽ) =
∑

S⊆N\i
1

2n−1
[ṽ(S ∪ i)−H ṽ(S)], i ∈ N . (4.2)

Definition 4.3[2].
(i) Given a game (N, v) ∈ G, the Shapley share function, ρS , assigns to any game (N, v) ∈ G a vector in

Rn defined as ρSi (N, v) =
φSi (v)

v(N)
, i ∈ N , if v 6= v0, and ρSi (N, v) = 1

|N | , i ∈ N .

(ii) Given a game (N, v) ∈ G, the Banzhaf share function, ρB, assigns to any game (N, v) ∈ G a vector

in Rn defined as ρBi (N, v) =
φBi (v)∑
j∈N φ

B
j (v)

, i ∈ N , if v 6= v0, and ρBi (N, v) = 1
|N | , i ∈ N .

Definition 4.4 Given a game (N, v) ∈ FG, the fuzzy Shapley share function, ρ̃S , assigns to any game

(N, v) ∈ FG a vector in <n defined as ρ̃Si (N, v) =
φ̃Si (N,v)
I(ṽ) , i ∈ N , if v 6= v0, and ρ̃Si (N, v) = 1

|N | , i ∈ N .

Definition 4.5 Given a game (N, v) ∈ FG, the fuzzy Banzhaf share function, ρ̃B, assigns to any game

(N, v) ∈ FG a vector in <n defined as ρ̃Bi (N, v) =
φ̃Bi (N,v)
I(ṽ) , i ∈ N , if v 6= v0, and ρ̃Bi (N, v) = 1

|N | , i ∈ N .

In Theorem 3.1 the class FC is restricted by the condition that the function µ̃ must satisfy µ̃(ṽ) > 0
for all ṽ ∈ FC. So, the restrictions on the class FC depend on the way in which µ̃ is specified. For
instance, if µ̃(ṽ) = ṽ(N) we have to exclude games with ṽ(N) ≤ 0. In the remaining of this paper, let
FGµ̃ denote the class of µ̃-positive games, i.e.

FGµ̃ = {ṽ ∈ FG|µ̃(ṽ) > 0}.
For a positive constant α > 0 and a function µ̃ it holds that FGµ̃ = FGαµ̃. Moreover, for an additive
function µ̃ we have that the class FGµ̃ is additive, i.e., the game ṽ + w̃ is µ̃-additive if both ṽ, w̃ are
µ̃-positive.

As shown in Theorem 4.1, ρ̃S is defined on the class FGµ̃ with µ̃(ṽ) = ṽ(N) > 0. Clearly on this class

we have the Shapley value φ̃S(ṽ) of player i is equal to his Shapley share ρ̃Si (ṽ) times the value ṽ(N) of
grand coalition.

Theorem4.1. Let the function µ̃S be defined by µ̃S = ṽ(N) = I(ṽ) and let FC ⊂ FGµ̃S be a subclass

of games in FG. Then the fuzzy Shapley share function ρ̃S is the unique fuzzy share function satisfying
the axioms of efficient shares, null player property, symmetry and ũS-linearity on the class FC.
Proof. For T ⊂ N with T = t, take ωt = t!(n−t−1)!

n! . Then, we have that µ̃ω as defined in Theorem 3.2 is
given by

µ̃ω =
∑

i∈N
∑
{T |i∈T} ωtm

i
T (ṽ) = ṽ(N) = µ̃S(ṽ) = I(ṽ).
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Further, the share function ρ̃ω is given by

ρωi (ṽ) =

∑
{T |i∈T} ωtm

i
T (ṽ)

I(ṽ)
=

∑
{T |i∈T}

t!(n−t−1)!
n! mi

T (ṽ)

I(ṽ)
=
φSi (ṽ)

I(ṽ)
= ρSi (ṽ), i ∈ N .

Since all positively scaled unanimity games belong to FC and µ̃S is linear, it follows from Theorem
3.1 that ρ̃ω = ρ̃S is the unique share function on FC that satisfies the axioms. �

Since FGµ̃S ⊂ FG, Theorem 4.1 holds on the class FGµ̃S and the restriction to the class of µ̃S-positive
games only requires that the value of the grand coalition is positive. Therefore the class of essential zero
normalized games is a subset of µ̃S-positive games, so that Theorem 4.1 also holds on this class of games.

Theorem4.2. Let the function µ̃B be defined by µ̃B(ṽ) = I(ṽ) and let FC ⊂ FGµ̃B be a subclass of

games in FG. Then the fuzzy Banzhaf share function ρ̃B is the unique share function satisfying the
axioms of efficient shares, null player property, symmetry and µ̃B-linearity on the class FC.
Proof. The function µ̃ω as defined in Theorem 3.2 is given by

µ̃ω(ṽ) =
∑

i∈N
∑
{T |i∈T} ωtm

i
T (ṽ) = µ̃B(ṽ) = I(ṽ).

Further, the share function ρ̃ω as defined in Theorem 3.2 is given by

ρ̃ωi (ṽ) =

∑
{T |i∈T} ωtm

i
T (ṽ)

I(ṽ)
=

∑
{T |i∈T}

1
2n−1m

i
T (ṽ)

I(ṽ)
= ρ̃Bi (ṽ), i ∈ N .

Since all positively scaled unanimity games belong to FC and µ̃B is linear, it follows from Theorem
3.1 that ρ̃ω = ρ̃B is the unique share function on FC that satisfies the axioms. �

Example 4.1. Consider a joint production model in which three decision makers pool three resources
to make seven finished products. Three decision makers, named 1, 2 and 3, possess three different initial
resources. Decision maker i has 10 tons of resource Ri and can produce ni tons of Product Pii , i = 1, 2, 3.
Now, decision makers decide to undertake a joint project: if decision makers i and j cooperate, they will
produce nij tons of product Pij , and if all three cooperate, n123 tons of product P123 can be produced.
The effective output of each finished product is shown in Table 1.

It is natural for the three decision makers to try to evaluate the revenue of the joint project in the
early period of the project in order to decide whether the project can be realized or not. However, the
average profit per ton of each product is dependent on a number of factors such as product market price,
product cost, consumer demand, the relation of commodity supply and demand, etc. Hence, the average
profit of each product is an approximate evaluation, which is represented by triangular fuzzy numbers as
shown in Table 1.

Table 1. The effective output and the average profit of each finished product

Product Output of product(tons) Average Profit(thousands of dollars)
P11 8.0 (1.8,2.0,2.2)
P12 18.0 (2.9,3.1,3.3)
P13 17.5 (2.0,2.3,2.6)
P22 9.0 (2.9,3.0,3.1)
P23 18.0 (3.0,3.2,3.4)
P33 10.0 (0.9,1.0,1.2)
P123 28.0 (3.2,3.5,3.8)

Now,we can make an imprecise assessment of the worth of each crisp coalition (i.e.,the fuzzy worth
of each crisp coalition) as follows:

ṽ({1}) = 8.0 · (1.8, 2.0, 2.2) = (14.4, 16.0, 17.6),

ṽ({2}) = 9.0 · (2.9, 3.0, 3.1) = (26.1, 27.0, 27.9),

ṽ({3}) = 10.0 · (0.9, 1.0, 1.2) = (9.0, 10.0, 12.0),

ṽ({1, 2}) = 18.0 · (2.9, 3.1, 3.3) = (52.2, 55.8, 59.4),

ṽ({1, 3}) = 17.5 · (2.0, 2.3, 2.6) = (35.0, 40.25, 45.5),
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ṽ({2, 3}) = 18.0 · (3.0, 3.2, 3.4) = (54.0, 57.6, 61.2),

ṽ({1, 2, 3}) = 28.0 · (3.2, 3.5, 3.8) = (89.6, 98.0, 106.4),

Fuzzy share Shapley function:
We can employ the proposed HukuharaõShapley function in Eq.(4.1) to estimate each decision

maker’s share in crisp coalition T ⊆ {1, 2, 3}.
For example,decision maker 1 in the grand coalition {1, 2, 3} has the profit share ρ1(ṽ)({1, 2, 3}),
φS1 (ṽ)({1, 2, 3}) = 1

3 ṽ({1}) + 1
6 [ṽ({1, 2})−H ṽ({2})] + 1

6 [ṽ({1, 3})−H ṽ({3})]
+ 1

3 [ṽ({1, 2, 3})−H ṽ({2, 3})]
= 1

3(14.4, 16.0, 17.6) + 1
6(26.1, 28.8, 31.5) + 1

6(26.0, 30.25, 33.5)

+ 1
3(35.6, 40.4, 45.2)

= (25.35, 28.64, 31.77).

ṽ(N) = I(ṽ) =
89.6 + 98.0 + 106.4

3
= 98

ρ̃S1 (ṽ)({1, 2, 3}) =
φS1 (ṽ)({1, 2, 3})

I(ṽ)
=

(25.35, 28.64, 31.77)

98
= (0.2587, 0.2922, 0.3242)

Using a similar method, the fuzzy share Shapley value for this game can be obtained as shown in
Table 2.

Table 2. The fuzzy share Shapley values of game with fuzzy characteristic function

Coalition Decision maker 1 Decision maker 2 Decision maker 3
{1} (0.1469,0.1633,0.1796) 0 0
{2} 0 (0.2663,0.2755,0.2847) 0
{3} 0 0 (0.0918,0.1020,0.1224)
{1, 2} (0.2066,0.2286,0.2505) (0.3260,0.3408,0.3556) 0
{1, 3} (0.2061,0.2360,0.2607) 0 (0.1510,0.1747,0.2036)
{2, 3} 0 (0.3628,0.3806,0.3934) (0.1882,0.2071,0.2311)
{1, 2, 3} (0.2587,0.2922,0.3242) (0.4153,0.4369,0.4568) (0.2403,0.2708,0.3047)

By judging the allocations in Table 2, decision makers can conclude whether the joint project can
be realized or not. To do so, decision makers can investigate the problem by varying parameter λ,
which is the degree of all the membership functions of the fuzzy numbers involved in the game, from
0.0 to 1.0. For example, consider the case of λ = 0.7. The expected worth of all the resources is the
interval ṽ0.7({1, 2, 3}) = [0.9743, 1.0257], which is allocated among three decision makers. By Eq.(3.4),
we estimate the interval Shapley function for each decision maker, i.e.,

ρ̃i(ṽ0.7)({1, 2, 3}) = ρ̃i(ṽ)({1, 2, 3})0.7, i = 1, 2, 3.

Therefore, ρ̃1(ṽ0.7)({1, 2, 3}) = [0.2822, 0.3018],

ρ̃2(ṽ0.7)({1, 2, 3}) = [0.4304, 0.4429],

ρ̃3(ṽ0.7)({1, 2, 3}) = [0.2617, 0.2810].

In other words, the expected worth is interval [0.9743, 1.0257], which is allocated among three de-
cision makers, i.e., [0.2822, 0.3018] for decision makers 1, [0.4304, 0.4429] for decision makers 2, and
[0.2617, 0.2810] for decision makers 3.
Fuzzy share Banzhaf function:

From definition 4.2, we could know that

φB1 (ṽ)({1, 2, 3}) = 1
4 ṽ({1}) + 1

4 [ṽ({1, 2})−H ṽ({2})] + 1
4 [ṽ({1, 3})−H ṽ({3})]

+ 1
4 [ṽ({1, 2, 3})−H ṽ({2, 3})]

= 1
4(14.4, 16.0, 17.6) + 1

4(26.1, 28.8, 31.5) + 1
4(26.0, 30.25, 33.5)

+ 1
4(35.6, 40.4, 45.2)

= (25.525, 28.8625, 31.95).

Using the same way, we could get
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φB2 (ṽ)({1, 2, 3}) = (40.875, 43.0375, 44.95), φB3 (ṽ)({1, 2, 3}) = (23.725, 26.7625, 30.05).

so µ̃B(ṽ) = (90.125, 98.6625, 106.95),

µ̃B(ṽ) = I(ṽ) =
90.125 + 98.6625 + 106.95

3
= 98.5792,

ρ̃B1 (ṽ)({1, 2, 3}) =
φB1 (ṽ)({1, 2, 3})

I(ṽ)
=

(25.525, 28.8625, 31.95)

98.5792
= (0.2589, 0.2928, 0.3241).

Using a similar method, the fuzzy share Shapley value for this game can be obtained as shown in
Table 3.

Table 3. The fuzzy share Banzhaf values of game with cooperative fuzzy game

Coalition Decision maker 1 Decision maker 2 Decision maker 3
{1} (0.1461,0.1623,0.1785) 0 0
{2} 0 (0.2648,0.2739,0.2830) 0
{3} 0 0 (0.0913,0.1014,0.1217)
{1, 2} (0.2054,0.2272,0.2490) (0.3241,0.3388,0.3535) 0
{1, 3} (0.2049,0.2346,0.2592) 0 (0.1501,0.1737,0.2024)
{2, 3} 0 (0.3606,0.3784,0.3911) (0.1872,0.2059,0.2298)
{1, 2, 3} (0.2589,0.2928,0.3241) (0.4146,0.4366,0.4560) (0.2407,0.2715,0.3048)

We also consider the case of λ = 0.7. The expected worth of all the resources is the interval
ṽ0.7({1, 2, 3}) = [0.9749, 1.0261], which is allocated among three decision makers. By Eq.(4.2), we es-
timate the interval Shapley function for each decision maker, i.e.,

ρ̃i(ṽ0.7)({1, 2, 3}) = ρ̃i(ṽ)({1, 2, 3})0.7, i = 1, 2, 3.

Therefore, ρ̃1(ṽ0.7)({1, 2, 3}) = [0.2826, 0.3022],

ρ̃2(ṽ0.7)({1, 2, 3}) = [0.4300, 0.4424],

ρ̃3(ṽ0.7)({1, 2, 3}) = [0.2622, 0.2815].

In other words, the expected worth is interval[0.9749, 1.0261], which is allocated among three de-
cision makers, i.e., [0.2826, 0.3022] for decision makers 1, [0.4300, 0.4424] for decision makers 2, and
[0.2622, 0.2815] for decision makers 3, and it satisfies efficiency.

5. Conclusion

Game theoretic approaches to cooperative situations in fuzzy environments have given rise to several
kinds of fuzzy games. We mention here only the games with fuzzy characteristic functions. In this paper,
we have extended the share function introduced by Van der Laan et al. in [18] to a fuzzy environment,
we generalize the axiom of additivity by introducing a positive fuzzy valued function µ̃ on the class
of cooperative fuzzy games in fuzzy characteristic function form. The so-called axiom of µ̃-additivity
generalizes the classical axiom of additivity by putting the weight µ̃(ṽ) on the value of the game ṽ. We
show that any additive function µ̃ determines a unique fuzzy share function satisfying the axioms of
efficient shares, null player property, symmetry and µ̃-additivity on the subclass of games on which µ̃
is positive and which contains all positively scaled unanimity games. Then we introduce fuzzy Shapley
share functions and fuzzy Banzhaf share functions, and at last, we give an applicable example for the
cooperative fuzzy games with fuzzy characteristic functions.
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