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Abstract

In this manuscript, we will use the new modified version of the Runge-
Kutta method suitable for solving fuzzy two coupled systems of Nonlinear
Ordinary Differential Equations (ODE). With the aid of a numerical exam-
ple, we will demonstrate the accuracy of the RK−4 coupled method for solv-
ing these two coupled differential equations. To find the analytical solutions
we use Laplace Adomian Decomposition Method since it is a semianalytical
method used well in many existing studies on dynamical systems. In order
to tell the accuracy, we use the error analysis technique. With the help of
numerical simulations, we are able to show at what point of t, both x(t) and
y(t) will interact in order to support the theory.

Keywords: New theory of Numerical methods; Analytical Solution; Laplace Ado-
mian Decomposition method; Runge-Kutta method; Two Coupled Differential Equa-
tions.

1 Introduction
The equivalence relations to a set of the non-crisp data set called fuzzy sets or fuzzy
data set obtained by partisioning the existing relation that will not fail to satisfy
the oprations satisfied by the crisp data set. The subsequent of differentiation as
well as integration of fuzzy defined equations, and the ever existing theorems on
existence and with it the uniqueness of FDE solutions in those space of quotients of
fuzzy numbers are presented by various existing studies. The unique solution to the
FDE’s IVP will be well established if fuzzy normed f satisfies Lipschitz condition.

Many recent studies also developed the fuzzy methods and they have been im-
plemented in so many grounds, such as optimization of multi-objective problems
with various decision criteria. The development of mathematics has reached a very
high level and is still available today.

The need of RK-4 method was very first arisen at the time of Euler methods
to solve ODE numerically. Since it was clearly found very first time by the mathe-
maticians Runge-Kutta, that the convergence of Euler method is only about O(h2)
and error existence affects the coincidense of approximate solutions obtained by
Euler with that of Exact solutions. O(h2) is not a good approximation order. So
RK-4 methood was developed and found with O(h4) which provides the confidence

1
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of least error and better approximation that coincdes to atleast four decimal places
i.e., O(h4) for solving linear ode. It also helped the researchers to get the bet-
ter approximate solutions to that of few non-linear problems like non-linear hybrid
differential equations. But for two coupled system of differential equations there
are still a research going on many fields like mathematical modelling in poplation
dynamics, epidemiology etc.,

There are few noticable works are done on nonlinear epidemic modells and RK-
4 methods have also been used but it is also to be mentioned that those modells
are not completely three coupled differential equations. After this modell has been
developed and if got published we hope strongely that it could be applied to get
the solutions of three ccoupled or four coupled DE on the epidemic modells epi-
demic models. Also, The entire manuscript is brought up by the motivation of well
established researches and some of the notable works are Allen, [1] gave his way
of introduction mathematical biology. Abbasbandy extended a numerical method
called Newtons method to deal with the nonlinear system of equations using modi-
fied Adomian Decomposition Method (ADM) in [2]. In [3] Bukley et al., researched
on fuzzy differential equations (FDEs). Kermack et al., [4] mathematically ana-
lyzed theory of epidemics. Makinde et al., [5] applied ADM to a SIR epidemic
model with uniform vaccination therapy. Farman [10] presented solution of SEIR
epidemic model of meseales with non- integer time fractional derivatives by using
LADM. Ongun [11], applied the LADM for solving a model for HIV infection of
CD4+T cells. Palese [12] analysed Variation of Influenza A, B, and C. Saberiad
[15] applied of Homotopy Perturbation Method for solving Hybrid Fuzzy Differ-
ential Equations. Pederson et al., [19] numerically solved hybrid fuzzy differential
equation IVPs by a characterisation theorem. [20] Kandel et al., studied Fuzzy dy-
namical systems and nature of their solutions. In [21], [22], Lakshmikantham et al.,
Impulsive hybrid systems and stability theory, Theory of fuzzy differential equations
and inclusions. In [23] Seikkala, On the fuzzy initial value problem. [24] Sepah-
vandzadeh et al., applied Variational Iteration method (VIM) for solving Hybrid
Fuzzy Differential Equations. Also there are many researchers who are working
on different types fuzzy differential equations in his research on hybrid systems,
delay systems, epidemic models etc., in [13, 14], [16],[17, 18], [6, 7], [8, 9]. The
manuscript consists of preliminaries in 2, fuzzy-two-coupled non-linear differential
equations in 3, Analytical Solution, Semi Analytical Solution in 4, modified Fuzzy
RK-4 Algorithm in 5, and finally conclusion in 6

2 Preliminaries
Let E1 represents the set of functions q : R → [0, 1] such that

q(y) =

 4y − 3, if y ∈ (0.75, 1],
−2y + 3, if y ∈ (1, 1.5),
0, if y /∈ (0.75, 1.5).

(2.1)

The r-level set of q in (2.1) can be wriiten as

[q; r] = [0.75 + 0.25r, 1.5− 0.5r]. (2.2)

We define 0̂ ∈ E1 as 0̂(y) = 1 if y = 0 and 0̂(y) = 0 if y ̸= 0 for future reference.
From [23] of y : I → E1 where I ⊂ R is an interval. If ỹ(t) = [y(t; r), y(t; r)] for

all t ∈ I and r ∈ [0, 1], then ỹ′(t) = [y′(t; r), y′(t; r)], if y′(t; r) ∈ E1.
Following IVP,

y′(t) = g(t, y(t)), y(0) = y0, (2.3)

2
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where g : [0,∞) × R → R is continuous. We would like to interpret (2.3) us-
ing the Seikkala’s derivative and y0 ∈ E1. Let ỹ0 = [y(0; r), y(0; r)] and ỹ(t) =
[y(t; r), y(t; r)].

2.1 Definitions and Basic Results
This secion consits of important results considered from [25, 23, 3, 26] “Let Gk(R

n)
represents the house of complete nonempty, compacted, convex collection of subsets
of Rn . Sum and product in Gk(R

n) are existing as usual. Let y be a point in Rn

and B be a non-empty sub set of Rn . The distance D(y,B) from y to B is defined
by

D(y,B) = inf
b∈B

{∥y − b∥}

Let M and N be two nonempty bounded subsets of Rn . The Housdorff separation
of M from N is defined by

D∗
H(M,N) = sup

µ∈M
{d(µ, ν)},

The Housdorff separation of N from M is defined by

D∗
H(N,M) = sup

ν∈N
{d(ν, µ)},

The distance of separation between M and N as understood by the Housdorff sense

DH(M,N) = max
{

sup
m∈M

inf
n∈N

∥m− n∥, sup
n∈M

inf
m∈M

∥m− n∥
}
,

where ∥ · ∥ is the traditional Euclidean norm ||.|| in Rn. Then it is clear that
(Fk(R

n), D) becomes a complete metric space.
A fuzzy subset of Rn is explained in terms of a membership arguments which

coins to each point x ∈ Rn, a grade of membership in the fuzzy set. Such a
membership function q : Rn → I ∈ [0, 1] is used to denote the corresponding fuzzy
set.

To every r ∈ (0, 1], the r- level set [q]r of a fuzzy set u is the subset of values
y ∈ Rn with memberships q(y) of r powers, that is [q]r = {y ∈ Rn : q(y) ≥ r}.
The support [q]0 of a fuzzy set is then defined as the closure of the union of all its
level sets, that is, [q]0 =

⋃
r∈(0,1]

[q]r. An inclusion result arrives spontaneously from

the above definitions.
Result 1
To every 0 ≤ r1 ≤ r2 ≤ 1, [q]r2 ⊆ [q]r1 ⊆ [q]0.

Universally, some level sets usually be null in a ordinary fuzzy set. Particularly,
the triviality arise when q(y) ≡ 0 for all y ∈ Rn, though the support is null: q is
null fuzzy set in this sense. Here we shall pay focus only to the normal fuzzy sets
which satisfy.
In view of Result 1. we have
Result 2
[q]r is a compact subset of Rn for all r ∈ I.
Result 3
“If u is fuzzy convex, then [q]r is convex for each r ∈ I.

Let I = [0, 1] ⊆ R be as compact interval and let En denote the set of all
q : Rn → I such that q satisfies the following conditions.
(i) q is normal, that is, there exist an q0 ∈ Rn such that q0 = 1,
(ii) q is fuzzy convex,
(iii) q is upper semicontinuous,

3
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(iv) [q]0 ≡ closure of {q ∈ Rn : q(x) > 0} is compact.
Then, from (1)− (4), it follows that the r-level set [q]r ∈ Pk(R

1) for all 0 ≤ r ≤ 1.
If g : Rn ×Rn → Rn is a function, then using Zadeh’s extension principle we can
extend g to En × En → En by the equation"

g̃(q1, q2)(z) = sup
z=g(x,y)

min{q1(x), q2(y)}. (2.4)

It is well known that[g̃(q1, q2)]r = g([q1]
r, [q2]

r), for all q1, q2 ∈ En, 0 ≤ r ≤ 1, and
continuous function g. Further we have

[qr1 + qr2] = ([q1]
r + [q2]

r), (2.5)
[kq]

r
= k[q]r, (2.6)

where k ∈ R. The real numbers can be embedded in En by the rule c → ĉ(t)”,
where,

ĉ(t) =

{
1 for t = c,
0 elsewhere.

3 Fuzzy-Two-Coupled Non-linear Differential Equa-
tions

For preliminary definitins of fuzzy differential equations authors are encouraged to
go through [25, 26], [18], etc., Two Coupled differential Equations have wide range
of applications in any mathematicall modell of physical phenomena in epidemiology,
ecology,etc., By the application of fuzzy it is used to eliminate the randomness and
vagueness that arises in any dynamics of the system.

x′(t) = c1x(t)y(t), t0 ≤ t ≤ tn
y′(t) = c2x(t)y(t), t0 ≤ t ≤ tn
x(t0) = x0,
y(t0) = y0

(3.1)

where c1, c2 are numeric constants such that they are not equal to zero and also
c1 ̸= c2. By using the concept fuzzy, the equation (3.1) becomes,

x̃′(t) = c1x̃(t)ỹ(t), t0 ≤ t ≤ tn
ỹ′(t) = c2x̃(t)ỹ(t), t0 ≤ t ≤ tn
x̃(t0) = x0,
ỹ(t0) = y0

(3.2)

Such that x̃(t) = [x(t; r), x(t; r)]. In the same way for ỹ(t) x̃′(t) ỹ′(t) and also for
x̃0, ỹ(0)

4 Analytical Solution, Semi Analytical Solution
The analytical Solution of the system (3.2) is given by

x̃(t) = x̃0e
c1

∫ t
0
y(s)ds

ỹ(t) = ỹ0e
c2

∫ t
0
x(s)ds

(4.1)

In order to obtain the semi analytical solution we are here by making use of well
known Laplace Adomian Decomposition method (LADM). We prefer this method
to compare the solutions of nonlinear coupled differential equations. The method
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is already defined and described in somany papers previously whereas the RK-4
algorith or method for nonlinear coupled differential equations is not defined clearly
yet but found traces of the authors try over it in the literature. The method is taken
since we are unable to process the analytical solutions even though its structure is
expalined above.

4.1 Fuzzy Laplace Adomian Decomposition Method

X(k + 1) = L−1(c1/s× L(Ak))
Y (k + 1) = L−1(c2/s

α2 × L(Ak))
(4.2)

Where (Ak) is an Adomian polynomial defined by Ak = 1
k!

dk

λk (
∑k

l=0(λ
l.xlλ

l.yl)|λ=0

i.e.,
A0 = x0y0
A1 = x0y1 + x1y0
A2 = x0y2 + x1y1 + x2y0 and so on.
x(t) =

∑∞
k=0(x(k))

y(t) =
∑∞

k=0(y(k))

5 Modified Fuzzy RK-4 Algorithm:
We are at present sharing the new algorithm for novel RK-4 method for solving
nonlinear coupled differential equations. In this section we are using the fourth order
Runge-Kutta method (RK-4). We are finding the values of x̃(t),ỹ(t), at h = 0.1 for
the best approximation. For 0 ≤ r ≤ 1.
To evaluate x(t), and y(t):
Consider,

x̃(t+ 1) = (x̃(t) + (1/6(A1 + 2A2 + 2A3 +K4)))
ỹ(t+ 1) = (ỹ(t) + (1/6(L1 + 2B2 + 2B3 +B4)))

(5.1)

To estimate (5.1), consider the following.

Ã1 = h× c1((x̃(t))(ỹ(t))

B̃1 = h× c2((x̃(t))(ỹ(t))

Ã2 = h× c1(x̃(t) + (Ã1/2))(ỹ(t) + (B̃1/2))

B̃2 = h× c2(x̃(t) + (Ã1/2))(ỹ(t) + (B̃1/2))

Ã3 = h× c1(x̃(t) + (Ã2/2))(ỹ(t) + (B̃2/2))

B̃3 = h× c2(x̃(t) + (Ã2/2))(ỹ(t) + (B̃2/2))

Ã4 = h× c1(x̃(t) + (Ã3))(ỹ(t) + (B̃3))

B̃4 = h× c2(x̃(t) + (Ã3))(ỹ(t) + (B̃3))

(5.2)

For 1 ≤ p ≤ 4 and 0 ≤ r ≤ 1,
Ãp = Ãp(t; r) = [Ap(t; r), Ap(t; r)],

B̃p = B̃p(t; r) = [Bp(t; r), Bp(t; r)],
For 0 ≤ t ≤ n, n = 1, 2, 3, ...,,
and for q = t, q = t+ 1, t = 0, 1, 2, 3, ...
x̃(q) = x̃(q)(t; r) = [xq(t; r), xq(t; r)],
ỹ(q) = ỹ(q)(t; r) = [y

q
(t; r), yq(t; r)],

Where, [f(t; r), f(t; r)] = [0.75 + 0.25r, 1.125− 0.125r]f(t).

5
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Table 1: Approximate solution by RK-4 for non-fuzzy case

t LADM-4 RK-4 Error
x(t) y(t) x(t) y(t) x(t) y(t)

0 5 3 5 3 0 0
0.1 4.991 3.0045 5.006 2.99325 0.015 0.01125
0.2 4.98201 3.009 4.99701 2.99775 0.015 0.01125
0.3 4.97301 3.01349 4.98802 3.00224 0.01501 0.01125
0.4 4.96402 3.01799 4.97904 3.00673 0.01502 0.01126
0.5 4.95503 3.02248 4.97006 3.01122 0.01503 0.01126
0.6 4.94605 3.02697 4.96108 3.01571 0.01503 0.01126
0.7 4.93707 3.03147 4.9521 3.0202 0.01503 0.01127
0.8 4.92809 3.03595 4.94313 3.02469 0.01504 0.01126
0.9 4.91912 3.04044 4.93416 3.02917 0.01504 0.01127
1.0 4.91014 3.04493 4.92519 3.03366 0.01505 0.01127

Table 2: Approximate solution by RK-4 for fuzzy case

r x(t;r) y(t;r)
min max min max

0 3.6939 5.625 2.27524 3.41286
0.1 3.81703 5.56917 2.35108 3.37494
0.2 3.94016 5.49671 2.42692 3.33702
0.3 4.06329 5.42447 2.50277 3.2991
0.4 4.18641 5.35246 2.57861 3.26118
0.5 4.30954 5.28068 2.65445 3.22326
0.6 4.43267 5.20913 2.73029 3.18534
0.7 4.5558 5.13781 2.80613 3.14742
0.8 4.67893 5.06671 2.88197 3.1095
0.9 4.80206 4.99584 2.95781 3.07158
1 4.92519 4.92519 3.03366 3.03366

5.1 An Example
Let us consider the following problem and compare the results of the method LADM
RKM-4 in both non-fuzzy and as well as fuzzy. In Table 1, we are presenting the
values of x(t), y(t), in non fuzzy by means of LADM-4 and RK-4, and also the
error analysis between them. In table 1, we have presented only the values for
t ∈ [0, 1] but one can estimate the values for t ∈ [0, 100]. In that way we found
that at t = 15.5, x(t) = 3.66502, y(t) = 3.66749, i.e x(t) ≈ y(t), t = 20., there is a
interaction between x(t), and y(t).


x̃′(t) = −0.006x̃(t)ỹ(t), 0 ≤ t ≤ 1
ỹ′(t) = 0.003x̃(t)ỹ(t), 0 ≤ t ≤ 1
x̃(0) = 5,
ỹ(0) = 3.

(5.3)

We calculate error by means of Error = |(LADM − 4)− (RK − 4)| Let us present
below the table value of x(t) and y(t) in terms of fuzzy in Table 2. So that we have
x(t; r) and y(t; r) for t ∈ [0, 1] and r ∈ [0, 1].
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5.2 Numerical Simlations
For non-Fuzzy coupled case of above example:
For Fuzzy coupled case of above example:

x(t)

y(t)

20 40 60 80 100
t

1

2

3

4

5

x(t),y(t)

Figure 1: Non-Fuzzy Nonlinear Two Coupled Differential Systems

By the above figures, Figure1 and 2 we are able to understand the travel of

Figure 2: Fuzzy Nonlinear Two Coupled Differential Systems

solutions in t ∈ 0, 100 for non-fuzzy case and for t ∈ [0, 1] and r ∈ [0, 1] for fuzzy
case respectively.

6 Conclusion
There are numerous numerical methods that one want to use other than Rung-
Kutta method when it comes to the need to solve the function with non-linear
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ODE especially for coupled differential equaions we are having so many applications
but the methods like Laplace Adomian Decomposition method etc., are used as
presented in earlier section. But now we had presented the new coupled form of
RK-4 algorithm for solving any kind of nonlinear two coupled nonlinear ODE. We
recommend this RK-4 algorithm since its accuracy is of about O(h1) or one decimal
place when it is compared with semianalytical method like LADM. The important
aspect is that one can easily see the interaction between x(t) and y(t) in figure
1 which tells us at t = 15.5, x(t) ≈ y(t). As a future work, we will present this
approach on completely coupled fuzzy disease modelling problems.
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Abstract

Here we examine the multivariate quantitative approximations of Ba-

nach space valued continuous multivariate functions on a box or RN ,

N ∈ N, by the multivariate normalized, quasi-interpolation, Kantorovich

type and quadrature type neural network operators. We research also the

case of approximation by iterated operators of the last four types, that

is multi hidden layer approximations. These approximations are achieved

by establishing multidimensional Jackson type inequalities involving the

multivariate modulus of continuity of the engaged function or its high or-

der Fréchet derivatives. Our multivariate operators are defined by using a

multidimensional density function induced by a parametrized hyperbolic

tangent sigmoid function. The approximations are pointwise, uniform

and Lp. The related feed-forward neural networks are with one or multi

hidden layers.
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Keywords and Phrases: multi layer approximation, parametrized hy-

perbolic tangent sigmoid function, multivariate neural network approximation,

quasi-interpolation operator, Kantorovich type operator, quadrature type oper-

ator, multivariate modulus of continuity, abstract approximation, iterated and
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Lp approximations.

1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish neu-

ral network approximations to continuous functions with rates by very specif-

ically defined neural network operators of Cardaliaguet-Euvrard and ”Squash-

ing” types, by employing the modulus of continuity of the engaged function or

its high order derivative, and producing very tight Jackson type inequalities.

He treats there both the univariate and multivariate cases. The defining these

operators ”bell-shaped” and ”squashing” functions are assumed to be of com-

pact support. Also in [3] he gives the Nth order asymptotic expansion for the

error of weak approximation of these two operators to a special natural class of

smooth functions, see chapters 4-5 there.

Motivations for this work are the article [22] of Z. Chen and F. Cao, and

[4]-[19], [23], [24].

Here we perform a parametrized hyperbolic tangent sigmoid function based

neural network multivariate approximation to continuous functions over boxes or

over the whole RN , N ∈ N, and also iterated, multi layer and Lp approximations.

All convergences here are with rates expressed via the multivariate modulus of

continuity of the involved function or its high order Fréchet derivative and given

by very tight multidimensional Jackson type inequalities.

We come up with the ”right” precisely defined multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well

as Kantorovich type and quadrature type related operators on RN . Our boxes

are not necessarily symmetric to the origin. In preparation to prove our results

we establish important properties of the basic multivariate density function in-

duced by a parametrized hyperbolic tangent sigmoid function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
n∑

j=0

cjσ (⟨aj · x⟩+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection

weights, cj ∈ R are the coefficients, ⟨aj · x⟩ is the inner product of aj and x,

and σ is the activation function of the network. In many fundamental neural

network models, the activation function is based on the hyperbolic tangent

sigmoid function. About neural networks read [25]-[27].
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2 Background

We consider here the generalized hyperbolic tangent function tanhλx, x ∈ R,
λ > 0 :

tanhλx =
eλx − e−λx

eλx + e−λx
. (1)

It is tanhλ0 = 0,−1 < tanhλx < 1,∀ x ∈ R, and tanhλ (−x) = − tanhλx.

Furthermore we have tanhλ (∞) = 1 and tanhλ (−∞) = −1, and tanhλx is

strictly increasing on R, with

d

dx
tanhλx =

λ

cos2 λx
> 0. (2)

The induced activation function will be

θ (x) :=
1

4
(tanhλ (x+ 1)− tanhλ (x− 1)) > 0,∀x ∈ R, (3)

with θ (x) = θ (−x) .

Clearly θ (x) is differentiable and thus it is continuous.

Proposition 1 θ (x) is strictly decrasing on (0,∞) and strictly increasing on

(−∞, 0] . We have that θ (−∞) = θ (∞) = 0. So that θ has the bell shape with

horizontal asymptote the x-axis. The maximum of θ is

θ (0) =
tanhλ

2
. (4)

We mention

Theorem 2 ([20]) It holds

∞∑
i=−∞

θ (x− i) = 1, ∀ x ∈ R. (5)

Theorem 3 ([20]) We have that∫ ∞

−∞
θ (x) dx = 1. (6)

So that θ is a density function on R.

Theorem 4 ([20]) Let 0 < α < 1, λ > 0 and n ∈ N. It holds

∞∑
 k = −∞
: |nx− k| ≥ n1−α

θ (nx− k) < e4λe−2λn(1−α)

. (7)

3
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Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the

number.

Theorem 5 ([20]) Let x ∈ [a, b] ⊂ R and n ∈ N, so that ⌈na⌉ ≤ ⌊nb⌋. Then

1
⌊nb⌋∑

k=⌈na⌉
θ (nx− k)

<
4

tanh 2λ
=

1

θ (1)
. (8)

We make

Remark 6 ([20])

(i) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

θ (nx− k) ̸= 1, (9)

for at least some x ∈ [a, b] .

(ii) Let [a, b] ⊂ R. For large n we always have ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b,

iff ⌈na⌉ ≤ k ≤ ⌊nb⌋.
In general it holds

⌊nb⌋∑
k=⌈na⌉

θ (nx− k) ≤ 1. (10)

We introduce

Z (x1, ..., xN ) := Z (x) :=

N∏
i=1

θ (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (11)

It has the properties:

(i) Z (x) > 0, ∀ x ∈ RN ,

(ii)

∞∑
k=−∞

Z (x− k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

Z (x1 − k1, ..., xN − kN ) = 1, (12)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence

(iii)
∞∑

k=−∞

Z (nx− k) = 1, (13)

∀ x ∈ RN ; n ∈ N,
and

4
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(iv) ∫
RN

Z (x) dx = 1, (14)

that is Z is a multivariate density function.

Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞),

−∞ := (−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(15)

where a := (a1, ..., aN ), b := (b1, ..., bN ) .

We obviously see that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

θ (nxi − ki)

)
=

⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN⌋∑
kN=⌈naN⌉

(
N∏
i=1

θ (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

θ (nxi − ki)

 . (16)

For 0 < β < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

Z (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) . (17)

In the last two sums the counting is over disjoint vector sets of k’s, because the

condition
∥∥ k
n − x

∥∥
∞ > 1

nβ implies that there exists at least one
∣∣kr

n − xr

∣∣ > 1
nβ ,

where r ∈ {1, ..., N} .
(v) As in, Theorem 4 we derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k)
(7)
< e4λe−2λn(1−β)

, 0 < β < 1, λ > 0. (18)

with n ∈ N : n1−β > 2, x ∈
∏N

i=1 [ai, bi] .

(vi) By Theorem 5 we get that

0 <
1∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
<

(
4

tanh 2λ

)N

, (19)
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λ > 0, ∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that

(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z (nx− k) < e4λe−2λn(1−β)

, (20)

λ > 0, 0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .

Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) ̸= 1, (21)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Here
(
X, ∥·∥γ

)
is a Banach space.

Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, x = (x1, ..., xN ) ∈

∏N
i=1 [ai, bi] , n ∈ N such

that ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N.

We introduce and define the following multivariate linear normalized neural

network operator (x := (x1, ..., xN ) ∈
(∏N

i=1 [ai, bi]
)
):

An (f, x1, ..., xN ) := An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
=

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN⌋
kN=⌈naN⌉ f

(
k1

n , ..., kN

n

) (∏N
i=1 θ (nxi − ki)

)
∏N

i=1

(∑⌊nbi⌋
ki=⌈nai⌉ θ (nxi − ki)

) . (22)

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also

ai ≤ ki

n ≤ bi, iff ⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

When g ∈ C
(∏N

i=1 [ai, bi]
)
we define the companion operator

Ãn (g, x) :=

∑⌊nb⌋
k=⌈na⌉ g

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
. (23)

Clearly Ãn is a positive linear operator. We have that

Ãn (1, x) = 1, ∀ x ∈

(
N∏
i=1

[ai, bi]

)
.

Notice that An (f) ∈ C
(∏N

i=1 [ai, bi] , X
)
and Ãn (g) ∈ C

(∏N
i=1 [ai, bi]

)
.

6
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Furthermore it holds

∥An (f, x)∥γ ≤
∑⌊nb⌋

k=⌈na⌉
∥∥f ( kn)∥∥γ Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
= Ãn

(
∥f∥γ , x

)
, (24)

∀ x ∈
∏N

i=1 [ai, bi] .

Clearly ∥f∥γ ∈ C
(∏N

i=1 [ai, bi]
)
.

So, we have that

∥An (f, x)∥γ ≤ Ãn

(
∥f∥γ , x

)
, (25)

∀ x ∈
∏N

i=1 [ai, bi], ∀ n ∈ N, ∀ f ∈ C
(∏N

i=1 [ai, bi] , X
)
.

Let c ∈ X and g ∈ C
(∏N

i=1 [ai, bi]
)
, then cg ∈ C

(∏N
i=1 [ai, bi] , X

)
.

Furthermore it holds

An (cg, x) = cÃn (g, x) , ∀ x ∈
N∏
i=1

[ai, bi] . (26)

Since Ãn (1) = 1, we get that

An (c) = c, ∀ c ∈ X. (27)

We call Ãn the companion operator of An.

For convenience we call

A∗
n (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
Z (nx− k) =

⌊nb1⌋∑
k1=⌈na1⌉

⌊nb2⌋∑
k2=⌈na2⌉

...

⌊nbN⌋∑
kN=⌈naN⌉

f

(
k1
n
, ...,

kN
n

)( N∏
i=1

θ (nxi − ki)

)
, (28)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

That is

An (f, x) :=
A∗

n (f, x)∑⌊nb⌋
k=⌈na⌉ Z (nx− k)

, (29)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

Hence

An (f, x)− f (x) =
A∗

n (f, x)− f (x)
(∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
)

∑⌊nb⌋
k=⌈na⌉ Z (nx− k)

. (30)
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Consequently we derive

∥An (f, x)− f (x)∥γ
(19)

≤
(

4

tanh 2λ

)N
∥∥∥∥∥∥A∗

n (f, x)− f (x)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

∥∥∥∥∥∥
γ

,

(31)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

We will estimate the right hand side of (31).

For the last and others we need

Definition 7 ([15], p. 274) Let M be a convex and compact subset of
(
RN , ∥·∥p

)
,

p ∈ [1,∞], and
(
X, ∥·∥γ

)
be a Banach space. Let f ∈ C (M,X) . We define the

first modulus of continuity of f as

ω1 (f, δ) := sup

x, y ∈ M :

∥x− y∥p ≤ δ

∥f (x)− f (y)∥γ , 0 < δ ≤ diam (M) . (32)

If δ > diam (M), then

ω1 (f, δ) = ω1 (f, diam (M)) . (33)

Notice ω1 (f, δ) is increasing in δ > 0. For f ∈ CB (M,X) (continuous and

bounded functions) ω1 (f, δ) is defined similarly.

Lemma 8 ([15], p. 274) We have ω1 (f, δ) → 0 as δ ↓ 0, iff f ∈ C (M,X),

where M is a convex compact subset of
(
RN , ∥·∥p

)
, p ∈ [1,∞] .

Clearly we have also: f ∈ CU

(
RN , X

)
(uniformly continuous functions),

iff ω1 (f, δ) → 0 as δ ↓ 0, where ω1 is defined similarly to (32). The space

CB

(
RN , X

)
denotes the continuous and bounded functions on RN .

When f ∈ CB

(
RN , X

)
we define,

Bn (f, x) := Bn (f, x1, ..., xN ) :=
∞∑

k=−∞

f

(
k

n

)
Z (nx− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

f

(
k1
n
,
k2
n
, ...,

kN
n

)( N∏
i=1

θ (nxi − ki)

)
, (34)

n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network

operator.

Also for f ∈ CB

(
RN , X

)
we define the multivariate Kantorovich type neural

network operator

Cn (f, x) := Cn (f, x1, ..., xN ) :=
∞∑

k=−∞

(
nN

∫ k+1
n

k
n

f (t) dt

)
Z (nx− k) =

8

497

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 490-519



∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

(
nN

∫ k1+1
n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN ) dt1...dtN

)

·

(
N∏
i=1

θ (nxi − ki)

)
, (35)

n ∈ N, ∀ x ∈ RN .

Again for f ∈ CB

(
RN , X

)
, N ∈ N, we define the multivariate neural net-

work operator of quadrature type Dn (f, x), n ∈ N, as follows.
Let θ = (θ1, ..., θN ) ∈ NN , r = (r1, ..., rN ) ∈ ZN

+ , wr = wr1,r2,...rN ≥ 0, such

that
θ∑

r=0
wr =

θ1∑
r1=0

θ2∑
r2=0

...
θN∑

rN=0
wr1,r2,...rN = 1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN
(f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)
=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rN f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN
n

+
rN
nθN

)
, (36)

where r
θ :=

(
r1
θ1
, r2
θ2
, ..., rN

θN

)
.

We set

Dn (f, x) := Dn (f, x1, ..., xN ) :=
∞∑

k=−∞

δnk (f)Z (nx− k) = (37)

∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

δn,k1,k2,...,kN
(f)

(
N∏
i=1

θ (nxi − ki)

)
,

∀ x ∈ RN .

In this article we study the approximation properties of An, Bn, Cn, Dn

neural network operators and as well of their iterates. That is, the quantitative

pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate Parametrized Hyperbolic Tangent

Induced Banach Space Valued Network Ap-

proximations

Here we present several vectorial neural network approximations to Banach

space valued functions given with rates.

We give

9
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Theorem 9 Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, 0 < β < 1, λ > 0, x ∈

(∏N
i=1 [ai, bi]

)
, N, n ∈

N with n1−β > 2. Then

1)

∥An (f, x)− f (x)∥γ ≤
(

4

tanh 2λ

)N
ω1

(
f,

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)

 =: Ω1 (n) ,

(38)

and

2) ∥∥∥∥An (f)− f∥γ
∥∥∥
∞

≤ Ω1 (n) . (39)

We notice that lim
n→∞

An (f)
∥·∥γ
= f , pointwise and uniformly.

Above ω1 is with respect to p = ∞ and the speed of convergence is max
(

1
nβ ,

1

e2λn(1−β)

)
=

1
nβ .

Proof. We observe that

∆ (x) := A∗
n (f, x)− f (x)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
Z (nx− k)−

⌊nb⌋∑
k=⌈na⌉

f (x)Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
f

(
k

n

)
− f (x)

)
Z (nx− k) . (40)

Thus

∥∆(x)∥γ ≤
⌊nb⌋∑

k=⌈na⌉

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k)+

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k)
(13)

≤

10
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ω1

(
f,

1

nβ

)
+ 2

∥∥∥∥f∥γ∥∥∥∞
⌊nb⌋∑

 k = ⌈na⌉∥∥ k
n − x

∥∥
∞ > 1

nβ

Z (nx− k)
(18)

≤

ω1

(
f,

1

nβ

)
+ 2

∥∥∥∥f∥γ∥∥∥∞ e4λe−2λn(1−β)

, 0 < β < 1, λ > 0. (41)

So that

∥∆(x)∥γ ≤ ω1

(
f,

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λn(1−β)
. (42)

Now using (31) we finish the proof.

We make

Remark 10 ([15], pp. 263-266) Let
(
RN , ∥·∥p

)
, N ∈ N; where ∥·∥p is the Lp-

norm, 1 ≤ p ≤ ∞. RN is a Banach space, and
(
RN
)j

denotes the j-fold product

space RN × ...×RN endowed with the max-norm ∥x∥(RN )j := max
1≤ρ≤j

∥xρ∥p, where

x := (x1, ..., xj) ∈
(
RN
)j

.

Let
(
X, ∥·∥γ

)
be a general Banach space. Then the space Vj := Vj

((
RN
)j

;X
)

of all j-multilinear continuous maps g :
(
RN
)j → X, j = 1, ...,m, is a Banach

space with norm

∥g∥ := ∥g∥Vj
:= sup(

∥x∥
(RN )j

=1

) ∥g (x)∥γ = sup
∥g (x)∥γ

∥x1∥p ... ∥xj∥p
. (43)

Let M be a non-empty convex and compact subset of RN and x0 ∈ M is

fixed.

Let O be an open subset of RN : M ⊂ O. Let f : O → X be a continuous

function, whose Fréchet derivatives (see [28]) f (j) : O → Vj = Vj

((
RN
)j

;X
)

exist and are continuous for 1 ≤ j ≤ m, m ∈ N.
Call (x− x0)

j
:= (x− x0, ..., x− x0) ∈

(
RN
)j
, x ∈ M .

We will work with f |M .

Then, by Taylor’s formula ([21]), ([28], p. 124), we get

f (x) =
m∑
j=0

f (j) (x0) (x− x0)
j

j!
+Rm (x, x0) , all x ∈ M, (44)

where the remainder is the Riemann integral

Rm (x, x0) :=

∫ 1

0

(1− u)
m−1

(m− 1)!

(
f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
du,

(45)

11
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here we set f (0) (x0) (x− x0)
0
= f (x0) .

We consider

ω := ω1

(
f (m), h

)
:= sup

x,y∈M :

∥x−y∥p≤h

∥∥∥f (m) (x)− f (m) (y)
∥∥∥ , (46)

h > 0.

We obtain∥∥∥(f (m) (x0 + u (x− x0))− f (m) (x0)
)
(x− x0)

m
∥∥∥
γ
≤∥∥∥f (m) (x0 + u (x− x0))− f (m) (x0)

∥∥∥ · ∥x− x0∥mp ≤

ω ∥x− x0∥mp

⌈
u ∥x− x0∥p

h

⌉
, (47)

by Lemma 7.1.1, [1], p. 208, where ⌈·⌉ is the ceiling.

Therefore for all x ∈ M (see [1], pp. 121-122):

∥Rm (x, x0)∥γ ≤ ω ∥x− x0∥mp
∫ 1

0

⌈
u ∥x− x0∥p

h

⌉
(1− u)

m−1

(m− 1)!
du

= ωΦm

(
∥x− x0∥p

)
(48)

by a change of variable, where

Φm (t) :=

∫ |t|

0

⌈ s
h

⌉ (|t| − s)
m−1

(m− 1)!
ds =

1

m!

 ∞∑
j=0

(|t| − jh)
m
+

 , ∀ t ∈ R, (49)

is a (polynomial) spline function, see [1], p. 210-211.

Also from there we get

Φm (t) ≤

(
|t|m+1

(m+ 1)!h
+

|t|m

2m!
+

h |t|m−1

8 (m− 1)!

)
, ∀ t ∈ R, (50)

with equality true only at t = 0.

Therefore it holds

∥Rm (x, x0)∥γ ≤ ω

(
∥x− x0∥m+1

p

(m+ 1)!h
+

∥x− x0∥mp
2m!

+
h ∥x− x0∥m−1

p

8 (m− 1)!

)
, ∀ x ∈ M.

(51)

We have found that ∥∥∥∥∥∥f (x)−
m∑
j=0

f (j) (x0) (x− x0)
j

j!

∥∥∥∥∥∥
γ

≤

12
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ω1

(
f (m), h

)(∥x− x0∥m+1
p

(m+ 1)!h
+

∥x− x0∥mp
2m!

+
h ∥x− x0∥m−1

p

8 (m− 1)!

)
< ∞, (52)

∀ x, x0 ∈ M.

Here 0 < ω1

(
f (m), h

)
< ∞, by M being compact and f (m) being continuous

on M .

One can rewrite (52) as follows:∥∥∥∥∥∥f (·)−
m∑
j=0

f (j) (x0) (· − x0)
j

j!

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), h

)(∥· − x0∥m+1
p

(m+ 1)!h
+

∥· − x0∥mp
2m!

+
h ∥· − x0∥m−1

p

8 (m− 1)!

)
, ∀ x0 ∈ M, (53)

a pointwise functional inequality on M .

Here (· − x0)
j
maps M into

(
RN
)j

and it is continuous, also f (j) (x0) maps(
RN
)j

into X and it is continuous. Hence their composition f (j) (x0) (· − x0)
j

is continuous from M into X.

Clearly f (·)−
∑m

j=0
f(j)(x0)(·−x0)

j

j! ∈ C (M,X), hence
∥∥∥f (·)−

∑m
j=0

f(j)(x0)(·−x0)
j

j!

∥∥∥
γ
∈

C (M).

Let
{
S̃N

}
N∈N

be a sequence of positive linear operators mapping C (M) into

C (M) .

Therefore we obtainS̃N

∥∥∥∥∥∥f (·)−
m∑
j=0

f (j) (x0) (· − x0)
j

j!

∥∥∥∥∥∥
γ

 (x0) ≤

ω1

(
f (m), h

)
(
S̃N

(
∥· − x0∥m+1

p

))
(x0)

(m+ 1)!h
+

(
S̃N

(
∥· − x0∥mp

))
(x0)

2m!
+

h
(
S̃N

(
∥· − x0∥m−1

p

))
(x0)

8 (m− 1)!

 , (54)

∀ N ∈ N, ∀ x0 ∈ M .

Clearly (54) is valid when M =
N∏
i=1

[ai, bi] and S̃n = Ãn, see (23).

All the above is preparation for the following theorem, where we assume

Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [15], pp. 268-270. The

operators An, Ãn fulfill its assumptions, see (22), (23), (25), and (26).

We present the following high order approximation results.

13
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Theorem 11 Let O open subset of
(
RN , ∥·∥p

)
, p ∈ [1,∞], such that

N∏
i=1

[ai, bi] ⊂

O ⊆ RN , and let
(
X, ∥·∥γ

)
be a general Banach space. Let m ∈ N and f ∈

Cm (O,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approximation of f | N∏
i=1

[ai,bi]
. Let x0 ∈

(
N∏
i=1

[ai, bi]

)
and r > 0. Then

1) ∥∥∥∥∥∥(An (f)) (x0)−
m∑
j=0

1

j!

(
An

(
f (j) (x0) (· − x0)

j
))

(x0)

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

[
1

(m+ 1)
+

r

2
+

mr2

8

]
, (55)

2) additionally if f (j) (x0) = 0, j = 1, ...,m, we have

∥(An (f)) (x0)− f (x0)∥γ ≤

ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

(56)[
1

(m+ 1)
+

r

2
+

mr2

8

]
,

3)

∥(An (f)) (x0)− f (x0)∥γ ≤
m∑
j=1

1

j!

∥∥∥(An

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ
+

ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

(57)[
1

(m+ 1)
+

r

2
+

mr2

8

]
,

and

4) ∥∥∥∥An (f)− f∥γ
∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

14
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m∑
j=1

1

j!

∥∥∥∥∥∥∥(An

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ

∥∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]

+

ω1

f (m), r
∥∥∥(Ãn

(
∥· − x0∥m+1

p

))
(x0)

∥∥∥ 1
m+1

∞,x0∈
N∏

i=1

[ai,bi]


rm!∥∥∥(Ãn

(
∥· − x0∥m+1

p

))
(x0)

∥∥∥( m
m+1 )

∞,x0∈
N∏

i=1
[ai,bi]

(58)

[
1

(m+ 1)
+

r

2
+

mr2

8

]
.

We need

Lemma 12 The function
(
Ãn

(
∥· − x0∥mp

))
(x0) is continuous in x0 ∈

(
N∏
i=1

[ai, bi]

)
,

m ∈ N.

Proof. By Lemma 10.3, [15], p. 272.

Remark 13 By Remark 10.4 [15], p.273, we get that

∥∥∥(Ãn

(
∥· − x0∥kp

))
(x0)

∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]
≤
∥∥∥(Ãn

(
∥· − x0∥m+1

p

))
(x0)

∥∥∥( k
m+1 )

∞,x0∈
N∏

i=1

[ai,bi]
,

(59)

for all k = 1, ...,m.

We give

Corollary 14 (to Theorem 11, case of m = 1) Then

1)

∥(An (f)) (x0)− f (x0)∥γ ≤
∥∥∥(An

(
f (1) (x0) (· − x0)

))
(x0)

∥∥∥
γ
+

1

2r
ω1

(
f (1), r

((
Ãn

(
∥· − x0∥2p

))
(x0)

) 1
2

)((
Ãn

(
∥· − x0∥2p

))
(x0)

) 1
2

(60)[
1 + r +

r2

4

]
,

and

2) ∥∥∥∥(An (f))− f∥γ
∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

15
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∥∥∥∥∥∥∥(An

(
f (1) (x0) (· − x0)

))
(x0)

∥∥∥
γ

∥∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]

+

1

2r
ω1

f (1), r
∥∥∥(Ãn

(
∥· − x0∥2p

))
(x0)

∥∥∥ 1
2

∞,x0∈
N∏

i=1

[ai,bi]


∥∥∥(Ãn

(
∥· − x0∥2p

))
(x0)

∥∥∥ 1
2

∞,x0∈
N∏

i=1

[ai,bi]

[
1 + r +

r2

4

]
, (61)

r > 0.

We make

Remark 15 We estimate 0 < α < 1, λ > 0, m,n ∈ N : n1−α > 2,

Ãn

(
∥· − x0∥m+1

∞

)
(x0) =

∑⌊nb⌋
k=⌈na⌉

∥∥ k
n − x0

∥∥m+1

∞ Z (nx0 − k)∑⌊nb⌋
k=⌈na⌉ Z (nx0 − k)

(19)
<

(
4

tanh 2λ

)N ⌊nb⌋∑
k=⌈na⌉

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k) = (62)

(
4

tanh 2λ

)N


⌊nb⌋∑

 k = ⌈na⌉
:
∥∥ k
n − x0

∥∥
∞ ≤ 1

nα

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k)+

⌊nb⌋∑
 k = ⌈na⌉
:
∥∥ k
n − x0

∥∥
∞ > 1

nα

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k)


(20)

≤

(
4

tanh 2λ

)N
{

1

nα(m+1)
+

e4λ ∥b− a∥m+1
∞

e2λ(n1−β)

}
, (63)

(where b− a = (b1 − a1, ..., bN − aN )).

We have proved that (∀ x0 ∈
N∏
i=1

[ai, bi])

Ãn

(
∥· − x0∥m+1

∞

)
(x0) <

(
4

tanh 2λ

)N
{

1

nα(m+1)
+

e4λ ∥b− a∥m+1
∞

e2λ(n1−β)

}
=: Λ1 (n)

(64)

16
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(0 < α < 1, m,n ∈ N : n1−α > 2, λ > 0).

And, consequently it holds∥∥∥Ãn

(
∥· − x0∥m+1

∞

)
(x0)

∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]
<

(
4

tanh 2λ

)N
{

1

nα(m+1)
+

e4λ ∥b− a∥m+1
∞

e2λ(n1−β)

}
= Λ1 (n) → 0, as n → +∞.

(65)

So, we have that Λ1 (n) → 0, as n → +∞. Thus, when p ∈ [1,∞], from

Theorem 11 we have the convergence to zero in the right hand sides of parts (1),

(2).

Next we estimate
∥∥∥(Ãn

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ
.

We have that

(
Ãn

(
f (j) (x0) (· − x0)

j
))

(x0) =

∑⌊nb⌋
k=⌈na⌉ f

(j) (x0)
(
k
n − x0

)j
Z (nx0 − k)∑⌊nb⌋

k=⌈na⌉ Z (nx0 − k)
.

(66)

When p = ∞, j = 1, ...,m, we obtain∥∥∥∥∥f (j) (x0)

(
k

n
− x0

)j
∥∥∥∥∥
γ

≤
∥∥∥f (j) (x0)

∥∥∥∥∥∥∥kn − x0

∥∥∥∥j
∞

. (67)

We further have that∥∥∥(Ãn

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ

(19)
<

(
4

tanh 2λ

)N
 ⌊nb⌋∑

k=⌈na⌉

∥∥∥∥∥f (j) (x0)

(
k

n
− x0

)j
∥∥∥∥∥
γ

Z (nx0 − k)

 ≤

(
4

tanh 2λ

)N
 ⌊nb⌋∑

k=⌈na⌉

∥∥∥f (j) (x0)
∥∥∥∥∥∥∥kn − x0

∥∥∥∥j
∞

Z (nx0 − k)

 = (68)

(
4

tanh 2λ

)N ∥∥∥f (j) (x0)
∥∥∥
 ⌊nb⌋∑

k=⌈na⌉

∥∥∥∥kn − x0

∥∥∥∥j
∞

Z (nx0 − k)

 =

(
4

tanh 2λ

)N ∥∥∥f (j) (x0)
∥∥∥


⌊nb⌋∑
 k = ⌈na⌉
:
∥∥ k
n − x0

∥∥
∞ ≤ 1

nα

∥∥∥∥kn − x0

∥∥∥∥j
∞

Z (nx0 − k)

17
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+

⌊nb⌋∑
 k = ⌈na⌉
:
∥∥ k
n − x0

∥∥
∞ > 1

nα

∥∥∥∥kn − x0

∥∥∥∥j
∞

Z (nx0 − k)


(20)

≤ (69)

(
4

tanh 2λ

)N ∥∥∥f (j) (x0)
∥∥∥{ 1

nαj
+

e4λ ∥b− a∥j∞
e2λ(n1−β)

}
→ 0, as n → ∞.

That is ∥∥∥(Ãn

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ
→ 0, as n → ∞.

Therefore when p = ∞, for j = 1, ...,m, we have proved:∥∥∥(Ãn

(
f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ
<

(
4

tanh 2λ

)N ∥∥∥f (j) (x0)
∥∥∥{ 1

nαj
+

e4λ ∥b− a∥j∞
e2λ(n1−β)

}
≤

(
4

tanh 2λ

)N ∥∥∥f (j) (x0)
∥∥∥
∞

{
1

nαj
+

e4λ ∥b− a∥j∞
e2λ(n1−β)

}
=: Λ2j (n) < ∞, (70)

and converges to zero, as n → ∞.

We conclude:

In Theorem 11, the right hand sides of (57) and (58) converge to zero as

n → ∞, for any p ∈ [1,∞].

Also in Corollary 14, the right hand sides of (60) and (61) converge to zero

as n → ∞, for any p ∈ [1,∞] .

Conclusion 16 We have proved that the left hand sides of (55), (56), (57),

(58) and (60), (61) converge to zero as n → ∞, for p ∈ [1,∞]. Consequently

An → I (unit operator) pointwise and uniformly, as n → ∞, where p ∈ [1,∞].

In the presence of initial conditions we achieve a higher speed of convergence,

see (56). Higher speed of convergence happens also to the left hand side of (55).

We further give

Corollary 17 (to Theorem 11) Let O open subset of
(
RN , ∥·∥∞

)
, such that

N∏
i=1

[ai, bi] ⊂ O ⊆ RN , and let
(
X, ∥·∥γ

)
be a general Banach space. Let m ∈ N

and f ∈ Cm (O,X), the space of m-times continuously Fréchet differentiable

functions from O into X. We study the approximation of f | N∏
i=1

[ai,bi]
. Let x0 ∈

18
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(
N∏
i=1

[ai, bi]

)
and r > 0. Here Λ1 (n) as in (65) and Λ2j (n) as in (70), where

n ∈ N : n1−α > 2, 0 < α < 1, λ > 0, j = 1, ...,m. Then

1) ∥∥∥∥∥∥(An (f)) (x0)−
m∑
j=0

1

j!

(
An

(
f (j) (x0) (· − x0)

j
))

(x0)

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), r (Λ1 (n))

1
m+1

)
rm!

(Λ1 (n))
( m

m+1 )
[

1

(m+ 1)
+

r

2
+

mr2

8

]
, (71)

2) additionally, if f (j) (x0) = 0, j = 1, ...,m, we have

∥(An (f)) (x0)− f (x0)∥γ ≤

ω1

(
f (m), r (Λ1 (n))

1
m+1

)
rm!

(Λ1 (n))
( m

m+1 )
[

1

(m+ 1)
+

r

2
+

mr2

8

]
, (72)

3) ∥∥∥∥An (f)− f∥γ
∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

m∑
j=1

Λ2j (n)

j!
+

ω1

(
f (m), r (Λ1 (n))

1
m+1

)
rm!

(Λ1 (n))
( m

m+1 )[
1

(m+ 1)
+

r

2
+

mr2

8

]
=: Λ3 (n) → 0, as n → ∞. (73)

We continue with

Theorem 18 Let f ∈ CB

(
RN , X

)
, 0 < β < 1, λ > 0, x ∈ RN , N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then

1)

∥Bn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

nβ

)
+

e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
=: Ω2 (n) , (74)

2) ∥∥∥∥Bn (f)− f∥γ
∥∥∥
∞

≤ Ω2 (n) . (75)

Given that f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Bn (f) = f , uni-

formly. The speed of convergence above is max
(

1
nβ ,

1

e2λn(1−β)

)
= 1

nβ .
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Proof. We have that

Bn (f, x)− f (x)
(13)
=

∞∑
k=−∞

f

(
k

n

)
Z (nx− k)− f (x)

∞∑
k=−∞

Z (nx− k) = (76)

∞∑
k=−∞

(
f

(
k

n

)
− f (x)

)
Z (nx− k) .

Hence

∥Bn (f, x)− f (x)∥γ ≤
∞∑

k=−∞

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k) =

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k)+

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

∥∥∥∥f (k

n

)
− f (x)

∥∥∥∥
γ

Z (nx− k)
(13)

≤

ω1

(
f,

1

nβ

)
+ 2

∥∥∥∥f∥γ∥∥∥∞
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z (nx− k)
(20)

≤

ω1

(
f,

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
, (77)

proving the claim.

We give

Theorem 19 Let f ∈ CB

(
RN , X

)
, 0 < β < 1, x ∈ RN , λ > 0, N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then

1)

∥Cn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

n
+

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
=: Ω3 (n) , (78)

2) ∥∥∥∥Cn (f)− f∥γ
∥∥∥
∞

≤ Ω3 (n) . (79)

Given that f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Cn (f) = f , uni-

formly.
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Proof. We notice that∫ k+1
n

k
n

f (t) dt =

∫ k1+1
n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, t2, ..., tN ) dt1dt2...dtN =

∫ 1
n

0

∫ 1
n

0

...

∫ 1
n

0

f

(
t1 +

k1
n
, t2 +

k2
n
, ..., tN +

kN
n

)
dt1...dtN =

∫ 1
n

0

f

(
t+

k

n

)
dt.

(80)

Thus it holds (by (35))

Cn (f, x) =
∞∑

k=−∞

(
nN

∫ 1
n

0

f

(
t+

k

n

)
dt

)
Z (nx− k) . (81)

We observe that

∥Cn (f, x)− f (x)∥γ =∥∥∥∥∥
∞∑

k=−∞

(
nN

∫ 1
n

0

f

(
t+

k

n

)
dt

)
Z (nx− k)−

∞∑
k=−∞

f (x)Z (nx− k)

∥∥∥∥∥
γ

=

∥∥∥∥∥
∞∑

k=−∞

((
nN

∫ 1
n

0

f

(
t+

k

n

)
dt

)
− f (x)

)
Z (nx− k)

∥∥∥∥∥
γ

=

∥∥∥∥∥
∞∑

k=−∞

(
nN

∫ 1
n

0

(
f

(
t+

k

n

)
− f (x)

)
dt

)
Z (nx− k)

∥∥∥∥∥
γ

≤ (82)

∞∑
k=−∞

(
nN

∫ 1
n

0

∥∥∥∥f (t+ k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Z (nx− k) =

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

(
nN

∫ 1
n

0

∥∥∥∥f (t+ k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Z (nx− k)+

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

(
nN

∫ 1
n

0

∥∥∥∥f (t+ k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Z (nx− k) ≤

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

(
nN

∫ 1
n

0

ω1

(
f, ∥t∥∞ +

∥∥∥∥kn − x

∥∥∥∥
∞

)
dt

)
Z (nx− k)+
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2
∥∥∥∥f∥γ∥∥∥∞


∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z (|nx− k|)

 ≤

ω1

(
f,

1

n
+

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
, (83)

proving the claim.

We also present

Theorem 20 Let f ∈ CB

(
RN , X

)
, 0 < β < 1, x ∈ RN , λ > 0, N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then

1)

∥Dn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

n
+

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
=: Ω4 (n) , (84)

2) ∥∥∥∥Dn (f)− f∥γ
∥∥∥
∞

≤ Ω4 (n) . (85)

Given that f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Dn (f) = f ,

uniformly.

Proof. We have that (by (37))

∥Dn (f, x)− f (x)∥γ =

∥∥∥∥∥
∞∑

k=−∞

δnk (f)Z (nx− k)−
∞∑

k=−∞

f (x)Z (nx− k)

∥∥∥∥∥
γ

=

∥∥∥∥∥
∞∑

k=−∞

(δnk (f)− f (x))Z (nx− k)

∥∥∥∥∥
γ

=

∥∥∥∥∥
∞∑

k=−∞

ωr

(
f

(
k

n
+

r

nθ

)
− f (x)

)
Z (nx− k)

∥∥∥∥∥
γ

≤

∞∑
k=−∞

(
θ∑

r=0

ωr

∥∥∥∥f (k

n
+

r

nθ

)
− f (x)

∥∥∥∥
γ

)
Z (nx− k) =

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

(
θ∑

r=0

ωr

∥∥∥∥f (k

n
+

r

nθ

)
− f (x)

∥∥∥∥
γ

)
Z (nx− k)+
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∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

(
θ∑

r=0

ωr

∥∥∥∥f (k

n
+

r

nθ

)
− f (x)

∥∥∥∥
γ

)
Z (nx− k) ≤

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

(
θ∑

r=0

ωr

∥∥∥∥f (k

n
+

r

nθ

)
− f (x)

∥∥∥∥
γ

)
Z (nx− k)+

2
∥∥∥∥f∥γ∥∥∥∞


∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

(Z (nx− k))

 ≤

ω1

(
f,

1

n
+

1

nβ

)
+

2e4λ
∥∥∥∥f∥γ∥∥∥∞

e2λ(n1−β)
= Ω4 (n) ,

proving the claim.

Next we perform multi layer neural network approximations.

We make

Definition 21 Let f ∈ CB

(
RN , X

)
, N ∈ N, where

(
X, ∥·∥γ

)
is a Banach

space. We define the general neural network operator

Fn (f, x) :=
∞∑

k=−∞

lnk (f)Z (nx− k) =


Bn (f, x) , if lnk (f) = f

(
k
n

)
,

Cn (f, x) , if lnk (f) = nN
∫ k+1

n
k
n

f (t) dt,

Dn (f, x) , if lnk (f) = δnk (f) .

(86)

Clearly lnk (f) is anX-valued bounded linear functional such that ∥lnk (f)∥γ ≤∥∥∥∥f∥γ∥∥∥∞ .

Hence Fn (f) is a bounded linear operator with
∥∥∥∥Fn (f)∥γ

∥∥∥
∞

≤
∥∥∥∥f∥γ∥∥∥∞.

We need

Theorem 22 Let f ∈ CB

(
RN , X

)
, N ≥ 1. Then Fn (f) ∈ CB

(
RN , X

)
.

Proof. Lengthy and similar to the proof of Theorem 11 of [18], as such is

omitted.
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Remark 23 By (22) it is obvious that
∥∥∥∥An (f)∥γ

∥∥∥
∞

≤
∥∥∥∥f∥γ∥∥∥∞ < ∞, and

An (f) ∈ C

(
N∏
i=1

[ai, bi] , X

)
, given that f ∈ C

(
N∏
i=1

[ai, bi] , X

)
.

Call Kn any of the operators An, Bn, Cn, Dn.

Clearly then∥∥∥∥∥K2
n (f)

∥∥
γ

∥∥∥
∞

=
∥∥∥∥Kn (Kn (f))∥γ

∥∥∥
∞

≤
∥∥∥∥Kn (f)∥γ

∥∥∥
∞

≤
∥∥∥∥f∥γ∥∥∥∞ , (87)

etc.

Therefore we get∥∥∥∥∥Kk
n (f)

∥∥
γ

∥∥∥
∞

≤
∥∥∥∥f∥γ∥∥∥∞ , ∀ k ∈ N, (88)

the contraction property.

Also we see that∥∥∥∥∥Kk
n (f)

∥∥
γ

∥∥∥
∞

≤
∥∥∥∥∥Kk−1

n (f)
∥∥
γ

∥∥∥
∞

≤ ... ≤
∥∥∥∥Kn (f)∥γ

∥∥∥
∞

≤
∥∥∥∥f∥γ∥∥∥∞ . (89)

Here Kk
n are bounded linear operators.

Notation 24 Here N ∈ N, 0 < β < 1. Denote by

cN :=

{(
4

tanh 2λ

)N
, if Kn = An,

1, if Kn = Bn, Cn, Dn,
(90)

Λ (n) :=

{
1
nβ , if Kn = An, Bn,
1
n + 1

nβ , if Kn = Cn, Dn,
(91)

Γ :=

C

(
N∏
i=1

[ai, bi] , X

)
, if Kn = An,

CB

(
RN , X

)
, if Kn = Bn, Cn, Dn,

(92)

and

Y :=


N∏
i=1

[ai, bi] , if Kn = An,

RN , if Kn = Bn, Cn, Dn.

(93)

We give the condensed

Theorem 25 Let f ∈ Γ, 0 < β < 1, x ∈ Y ; n, λ > 0; N ∈ N with n1−β > 2.

Then

(i)

∥Kn (f, x)− f (x)∥γ ≤ cN

ω1 (f,Λ (n)) +
2e4λ

∥∥∥∥f∥γ∥∥∥∞
e2λ(n1−β)

 =: τ (n) , (94)
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where ω1 is for p = ∞,

and

(ii) ∥∥∥∥Kn (f)− f∥γ
∥∥∥
∞

≤ τ (n) → 0, as n → ∞. (95)

For f uniformly continuous and in Γ we obtain

lim
n→∞

Kn (f) = f,

pointwise and uniformly.

Proof. By Theorems 9, 18, 19, 20.

Next we do iterated, multi layer neural network approximation. (see also

[10]).

We make

Remark 26 Let r ∈ N and Kn as above. We observe that

Kr
nf − f =

(
Kr

nf −Kr−1
n f

)
+
(
Kr−1

n f −Kr−2
n f

)
+(

Kr−2
n f −Kr−3

n f
)
+ ...+

(
K2

nf −Knf
)
+ (Knf − f) .

Then∥∥∥∥Kr
nf − f∥γ

∥∥∥
∞

≤
∥∥∥∥∥Kr

nf −Kr−1
n f

∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Kr−1

n f −Kr−2
n f

∥∥
γ

∥∥∥
∞

+∥∥∥∥∥Kr−2
n f −Kr−3

n f
∥∥
γ

∥∥∥
∞

+ ...+
∥∥∥∥∥K2

nf −Knf
∥∥
γ

∥∥∥
∞

+
∥∥∥∥Knf − f∥γ

∥∥∥
∞

=∥∥∥∥∥Kr−1
n (Knf − f)

∥∥
γ

∥∥∥
∞
+
∥∥∥∥∥Kr−2

n (Knf − f)
∥∥
γ

∥∥∥
∞
+
∥∥∥∥∥Kr−3

n (Knf − f)
∥∥
γ

∥∥∥
∞
+...+∥∥∥∥Kn (Knf − f)∥γ

∥∥∥
∞

+
∥∥∥∥Knf − f∥γ

∥∥∥
∞

≤ r
∥∥∥∥Knf − f∥γ

∥∥∥
∞

.

That is ∥∥∥∥Kr
nf − f∥γ

∥∥∥
∞

≤ r
∥∥∥∥Knf − f∥γ

∥∥∥
∞

. (96)

We give

Theorem 27 All here as in Theorem 25 and r ∈ N, τ (n) as in (94). Then∥∥∥∥Kr
nf − f∥γ

∥∥∥
∞

≤ rτ (n) . (97)

So that the speed of convergence to the unit operator of Kr
n is not worse than of

Kn.

Proof. As similar to [18] is omitted.
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Remark 28 Let m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr, 0 < β < 1, λ > 0,

f ∈ Γ. Then

Λ (m1) ≥ Λ (m2) ≥ ... ≥ Λ (mr) , Λ as in (91).

Therefore

ω1 (f,Λ (m1)) ≥ ω1 (f,Λ (m2)) ≥ ... ≥ ω1 (f,Λ (mr)) .

Assıme further that m
(1−β)
i > 2, i = 1, ..., r. Then

e4λ

e2λm
(1−β)
1

≥ e4λ

eλm
(1−β)
2

≥ ... ≥ e4λ

eλm
(1−β)
r

.

Let Kmi
as above, i = 1, ..., r, all of the same kind. We write

Kmr

(
Kmr−1 (...Km2 (Km1f ))

)
− f =

Kmr

(
Kmr−1

(...Km2
(Km1f ))

)
−Kmr

(
Kmr−1

(...Km2
f)
)
+

Kmr

(
Kmr−1 (...Km2f)

)
−Kmr

(
Kmr−1 (...Km3f)

)
+

Kmr

(
Kmr−1

(...Km3f)
)
−Kmr

(
Kmr−1

(...Km4
f)
)
+ ...+

Kmr

(
Kmr−1

f
)
−Kmr

f +Kmr
f − f =

Kmr

(
Kmr−1

(...Km2
)
)
(Km1

f − f) +Kmr

(
Kmr−1

(...Km3
)
)
(Km2

f − f)+

Kmr

(
Kmr−1 (...Km4)

)
(Km3f − f) + ...+Kmr

(
Kmr−1f − f

)
+Kmrf − f.

Hence by the triangle inequality of
∥∥∥∥·∥γ∥∥∥∞ we get∥∥∥∥∥Kmr

(
Kmr−1 (...Km2 (Km1f))

)
− f

∥∥
γ

∥∥∥
∞

≤∥∥∥∥∥KmrKmr−1 ...Km2 (Km1f − f)
∥∥
γ

∥∥∥
∞

+∥∥∥∥∥KmrKmr−1 ...Km2 (Km1f − f)
∥∥
γ

∥∥∥
∞

+∥∥∥∥∥Kmr

(
Kmr−1

(...Km4
)
)
(Km3

f − f)
∥∥
γ

∥∥∥
∞

+ ...+∥∥∥∥∥Kmr

(
Kmr−1

f − f
)∥∥

γ

∥∥∥
∞

+
∥∥∥∥Kmr

f − f∥γ
∥∥∥
∞

≤

(repeatedly applying (87))∥∥∥∥∥Km
1
f − f

∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Km

2
f − f

∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Km

3
f − f

∥∥
γ

∥∥∥
∞

+ ...+∥∥∥∥∥∥∥Km
r−1

f − f
∥∥∥
γ

∥∥∥∥
∞

+
∥∥∥∥Km2f − f∥γ

∥∥∥
∞

+
∥∥∥∥Km3f − f∥γ

∥∥∥
∞

+ ...+
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∥∥∥∥∥∥∥Km
r−1

f − f
∥∥∥
γ

∥∥∥∥
∞

+
∥∥∥∥Kmr

f − f∥γ
∥∥∥
∞

=r
i=1

∥∥∥∥Kmi
f − f∥γ

∥∥∥
∞

.

That is, we proved∥∥∥∥∥Kmr

(
Kmr−1

(...Km2
(Km1

f))
)
− f

∥∥
γ

∥∥∥
∞

≤r
i=1

∥∥∥∥Kmi
f − f∥γ

∥∥∥
∞

. (98)

We also present

Theorem 29 Let f ∈ Γ; m, N, m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr,

0 < β < 1, λ > 0; m
(1−β)
i > 2, i = 1, ..., r, x ∈ Y, and let (Km1

, ...,Kmr
) as

(Am1
, ..., Amr

) or (Bm1
, ..., Bmr

) or (Cm1
, ..., Cmr

) or (Dm1
, ..., Dmr

), p = ∞.

Then ∥∥Kmr

(
Kmr−1 (...Km2 (Km1f))

)
(x)− f (x)

∥∥
γ
≤∥∥∥∥∥Kmr

(
Kmr−1 (...Km2 (Km1f))

)
− f

∥∥
γ

∥∥∥
∞

≤
r∑

i=1

∥∥∥∥Kmif − f∥γ
∥∥∥
∞

≤

cN

r∑
i=1

ω1 (f,Λ (mi)) +
2e4λ

∥∥∥∥f∥γ∥∥∥∞
e2λm

(1−β)
i

 ≤

rcN

ω1 (f,Λ (m1)) +
2e4λ

∥∥∥∥f∥γ∥∥∥∞
e2λm

(1−β)
1

 . (99)

Clearly, we notice that the speed of convergence to the unit operator of the mul-

tiply iterated multi layer operator is not worse than the speed of Km1
.

Proof. As similar to [18] is omitted.

We continue with

Theorem 30 Let all as in Corollary 17, and r ∈ N. Here Λ3 (n) is as in (73).

Then ∥∥∥∥Ar
nf − f∥γ

∥∥∥
∞

≤ r
∥∥∥∥Anf − f∥γ

∥∥∥
∞

≤ rΛ3 (n) . (100)

Proof. As similar to [18] is omitted.

Next we present some Lp1
, p1 ≥ 1, approximation related results.

Theorem 31 Let p1 ≥ 1, f ∈ C

(
n∏

i=1

[ai, bi] , X

)
, 0 < β < 1, λ > 0; N,n ∈ N

with n1−β > 2, and Ω1 (n) as in (38), ω1 is for p = ∞.Then

∥∥∥∥Anf − f∥γ
∥∥∥
p1,

n∏
i=1

[ai,bi]
≤ Ω1 (n)

(
n∏

i=1

(bi − ai)

) 1
p1

. (101)

We notice that lim
n→∞

∥∥∥∥Anf − f∥γ
∥∥∥
p1,

n∏
i=1

[ai,bi]
= 0.
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Proof. Obvious, by integrating (38), etc.

It follows

Theorem 32 Let p1 ≥ 1, f ∈ CB

(
RN , X

)
, 0 < β < 1, λ > 0; N,n ∈ N with

n1−β > 2, and ω1 is for p = ∞; Ω2 (n) as in (74) and P a compact set of RN .

Then ∥∥∥∥Bnf − f∥γ
∥∥∥
p1, P

≤ Ω2 (n) |P |
1
p1 , (102)

where |P | < ∞, is the Lebesgue measure of P. We notice that lim
n→∞

∥∥∥∥Bnf − f∥γ
∥∥∥
p1,P

=

0 for f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
.

Proof. By integrating (74), etc.

Next come

Theorem 33 All as in Theorem 32, but we use Ω3 (n) of (78). Then∥∥∥∥Cnf − f∥γ
∥∥∥
p1, P

≤ Ω3 (n) |P |
1
p1 . (103)

We have that lim
n→∞

∥∥∥∥Cnf − f∥γ
∥∥∥
p1, P

= 0 for f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
.

Proof. By (78).

Theorem 34 All as in Theorem 32, but we use Ω4 (n) of (84). Then∥∥∥∥Dnf − f∥γ
∥∥∥
p1, P

≤ Ω4 (n) |P |
1
p1 . (104)

We have that lim
n→∞

∥∥∥∥Dnf − f∥γ
∥∥∥
p1, P

= 0 for f ∈
(
CU

(
RN , X

)
∩ CB

(
RN , X

))
.

Proof. By (84).

Application 35 A typical application of all of our results is when
(
X, ∥·∥γ

)
=

(C, |·|), where C is the set of the complex numbers.
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neural network approximation
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Abstract

Here we study the univariate quantitative approximation of Banach
space valued continuous functions on a compact interval or all the real line
by quasi-interpolation Banach space valued neural network operators. We
perform also the related Banach space valued fractional approximation.
These approximations are derived by establishing Jackson type inequal-
ities involving the modulus of continuity of the engaged function or its
Banach space valued high order derivative or fractional derivaties. Our
operators are de�ned by using a density function induced by a general
sigmoid function. The approximations are pointwise and with respect to
the uniform norm. The related Banach space valued feed-forward neural
networks are with one hidden layer. We �nish with a convergence analysis.

2020 AMSMathematics Subject Classi�cation: 26A33, 41A17, 41A25,
41A30, 46B25.
Keywords and Phrases: general sigmoid function, Banach space valued

neural network approximation, Banach space valued quasi-interpolation opera-
tor, modulus of continuity, Banach space valued Caputo fractional derivative,
Banach space valued fractional approximation.

1 Introduction

The author in [1] and [2], see Chapters 2-5, was the �rst to establish neural net-
work approximation to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliagnet-Euvrard and �Squashing�types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
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both the univariate and multivariate cases. The de�ning these operators �bell-
shaped�and �squashing�functions are assumed to be of compact suport. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.
The author inspired by [14], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3], [4], [5],[6],
[7], by treating both the univariate and multivariate cases. He did also the
corresponding fractional case [8].
In this article we are greatly inspired by the related works [15], [16].
The author here performs general sigmoid function based neural network

approximations to continuous functions over compact intervals of the real line
or over the whole R with values to an arbitrary Banach space (X; k�k). Finally
he treats completely the related X-valued fractional approximation. All con-
vergences here are with rates expressed via the modulus of continuity of the
involved function or its X-valued high order derivative, or X-valued fractional
derivatives and given by very tight Jackson type inequalities.
Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very �exible and general. In prepara-
tion to prove our results we establish important properties of the basic density
function de�ning our operators which is induced by a general sigmoid function.
Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed
as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) , x 2 Rs, s 2 N;

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 X are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental neural
network models, the activation function is derived from various speci�c sigmoid
functions. Here we work for a general sigmoid function. About neural networks
in general read [17], [18], [20]. See also [9] for a complete study of real valued
approximation by neural network operators.

2 Basics

Let h : R ! [�1; 1] be a general sigmoid function, such that it is strictly
increasing, h (0) = 0, h (�x) = �h (x), h (+1) = 1, h (�1) = �1. Also h
is strictly convex over (�1; 0] and striclty concave over [0;+1), with h(2) 2
C (R).

2

521

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 520-534



We consider the activation function

 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (1)

As in [13], p. 285, we get that  (�x) =  (x) ; thus  is an even function. Since
x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  (x) > 0, all x 2 R.
We see that

 (0) =
h (1)

2
: (2)

Let x > 1, we have that

 0 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) < 0;

by h0 being strictly decreasing over [0;+1):
Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds

h0 (x� 1) = h0 (1� x) > h0 (x+ 1), so that again  0 (x) < 0: Consequently  is
stritly decreasing on (0;+1) :
Clearly,  is strictly increasing on (�1; 0), and  0 (0) = 0:
See that

lim
x!+1

 (x) =
1

4
(h (+1)� h (+1)) = 0; (3)

and
lim

x!�1
 (x) =

1

4
(h (�1)� h (�1)) = 0: (4)

That is the x-axis is the horizontal asymptote on  .
Conclusion,  is a bell symmetric function with maximum

 (0) =
h (1)

2
:

We need

Theorem 1 We have that
1X

i=�1
 (x� i) = 1, 8 x 2 R: (5)

Proof. As exactly the same as in [13], p. 286 is omitted.

Theorem 2 It holds Z 1

�1
 (x) dx = 1: (6)

Proof. Similar to [13], p. 287. It is omitted.
Thus  (x) is a density function on R:
We give

3
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Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 (nx� k) <
�
1� h

�
n1�� � 2

��
2

: (7)

Notice that

lim
n!+1

�
1� h

�
n1�� � 2

��
2

= 0:

Proof. Let x � 1. That is 0 � x � 1 < x + 1. Applying the mean value
theorem we get

 (x)
(1)
=
1

4
� 2 � h0 (�) = h0 (�)

2
; (8)

for some x� 1 < � < x+ 1:

Since h0 is strictly decreasing we obtain h0 (�) < h0 (x� 1) and

 (x) <
h0 (x� 1)

2
, 8 x � 1: (9)

Therefore we have

1X
8<:k = �1: jnx� kj � n1��

 (nx� k) =
1X

8<:k = �1: jnx� kj � n1��

 (jnx� kj) <

1

2

1X
8<:k = �1: jnx� kj � n1��

h0 (jnx� kj � 1) � 1

2

Z +1

(n1���1)
h0 (x� 1) d (x� 1) =

1

2

�
h (x� 1) j+1(n1���1)

�
=
1

2

�
h (+1)� h

�
n1�� � 2

��
=
1

2

�
1� h

�
n1�� � 2

��
:

(10)
The claim is proved.
Denote by b�c the integral part of the number and by d�e the ceiling of the

number.
We further give

Theorem 4 Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  (nx� k)

<
1

 (1)
; 8 x 2 [a; b] : (11)

Proof. As similar to [13], p. 289 is omitted.

4
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Remark 5 We have that

lim
n!1

bnbcX
k=dnae

 (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :
See [13], p. 290, same reasoning.

Note 6 For large enough n we always obtain dnae � bnbc. Also a � k
n � b, i¤

dnae � k � bnbc. In general it holds (by (5))
bnbcX

k=dnae

 (nx� k) � 1: (13)

Let (X; k�k) be a Banach space.

De�nition 7 Let f 2 C ([a; b] ; X) and n 2 N : dnae � bnbc. We introduce and
de�ne the X-valued linear neural network operators

An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
 (nx� k)Pbnbc

k=dnae  (nx� k)
; x 2 [a; b] : (14)

Clearly here An (f; x) 2 C ([a; b] ; X). For convenience we use the same An
for real valued function when needed. We study here the pointwise and uniform
convergence of An (f; x) to f (x) with rates.
For convenience also we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
 (nx� k) ; (15)

(similarly A�n can be de�ned for real valued function) that is

An (f; x) =
A�n (f; x)Pbnbc

k=dnae  (nx� k)
: (16)

So that

An (f; x)� f (x) =
A�n (f; x)Pbnbc

k=dnae  (nx� k)
� f (x)

=
A�n (f; x)� f (x)

�Pbnbc
k=dnae  (nx� k)

�
Pbnbc

k=dnae  (nx� k)
: (17)

Consequently we derive

kAn (f; x)� f (x)k �
1

 (1)

A�n (f; x)� f (x)
0@ bnbcX
k=dnae

 (nx� k)

1A : (18)

5
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That is

kAn (f; x)� f (x)k �
1

 (1)


bnbcX

k=dnae

�
f

�
k

n

�
� f (x)

�
 (nx� k)

 : (19)

We will estimate the right hand side of (19).
For that we need, for f 2 C ([a; b] ; X) the �rst modulus of continuity

!1 (f; �)[a;b] := !1 (f; �) := sup

x; y 2 [a; b]
jx� yj � �

kf (x)� f (y)k ; � > 0: (20)

Similarly, it is de�ned !1 for f 2 CuB (R; X) (uniformly continuous and bounded
functions from R into X), for f 2 CB (R; X) (continuous and bounded X-
valued) and for f 2 Cu (R; X) (uniformly continuous).
The fact f 2 C ([a; b] ; X) or f 2 Cu (R; X), is equivalent to lim

�!0
!1 (f; �) = 0,

see [11].

De�nition 8 When f 2 CuB (R; X), or f 2 CB (R; X), we de�ne

An (f; x) :=
1X

k=�1
f

�
k

n

�
 (nx� k) , n 2 N; x 2 R; (21)

the X-valued quasi-interpolation neural network operator.

Remark 9 We have thatf �kn
� � kfk1;R < +1,

and f �kn
� (nx� k) � kfk1;R  (nx� k) ; (22)

and
�X

k=��

f �kn
� (nx� k) � kfk1;R

 
�X

k=��
 (nx� k)

!
;

and �nally
1X

k=�1

f �kn
� (nx� k) � kfk1;R ; (23)

a convergent in R series.
So the series

P1
k=�1 f

�
k
n

�
 (nx� k) is absolutely convergent in X, hence

it is convergent in X and An (f; x) 2 X.

We denote by kfk1 := sup
x2[a;b]

kf (x)k, for f 2 C ([a; b] ; X), similarly is

de�ned for f 2 CB (R; X) :

6
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3 Main Results

We present a series of X-valued neural network approximations to a function
given with rates.
We �rst give

Theorem 10 Let f 2 C ([a; b] ; X), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b] :
Then
i)

kAn (f; x)� f (x)k �
1

 (1)

�
!1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

��
kfk1

�
=: �;

(24)
and
ii)

kAn (f)� fk1 � �: (25)

We notice lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� h

�
n1�� � 2

���
:

Proof. As similar to [13], p. 293 is omitted.
Next we give

Theorem 11 Let f 2 CB (R; X), 0 < � < 1, n 2 N : n1�� > 2, x 2 R: Then
i)An (f; x)� f (x) � !1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

��
kfk1 =: �; (26)

and
ii) An (f)� f1 � �: (27)

For f 2 CuB (R; X) we get lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� h

�
n1�� � 2

���
:

Proof. As similar to [13], p. 294 is omitted.
In the next we discuss high order neural network X-valued approximation

by using the smoothness of f .

Theorem 12 Let f 2 CN ([a; b] ; X), n;N 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

kAn (f; x)� f (x)k �
1

 (1)

8<:
NX
j=1

f (j) (x)
j!

"
1

n�j
+

�
1� h

�
n1�� � 2

��
2

(b� a)j
#
+

(28)

7
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"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

#)
ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

kAn (f; x0)� f (x0)k �
1

 (1)(
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

)
; (29)

and
iii)

kAn (f)� fk1 � 1

 (1)

8<:
NX
j=1

f (j)1
j!

"
1

n�j
+

�
1� h

�
n1�� � 2

��
2

(b� a)j
#
+

"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h

�
n1�� � 2

�� f (N)1 (b� a)N
N !

#)
: (30)

Again we obtain lim
n!1

An (f) = f , pointwise and uniformly.

Proof. As similar to [13], pp. 296-301 is omitted.
All integrals from now on are of Bochner type [19].
We need

De�nition 13 ([12]) Let [a; b] � R, X be a Banach space, � > 0; m = d�e 2 N,
(d�e is the ceiling of the number), f : [a; b] ! X. We assume that f (m) 2
L1 ([a; b] ; X). We call the Caputo-Bochner left fractional derivative of order �:

(D�
�af) (x) :=

1

� (m� �)

Z x

a

(x� t)m���1 f (m) (t) dt; 8 x 2 [a; b] : (31)

If � 2 N, we set D�
�af := f (m) the ordinary X-valued derivative (de�ned similar

to numerical one, see [21], p. 83), and also set D0
�af := f:

By [12], (D�
�af) (x) exists almost everywhere in x 2 [a; b] and D�

�af 2
L1 ([a; b] ; X).
If
f (m)

L1([a;b];X)
<1, then by [12],D�

�af 2 C ([a; b] ; X) ; hence kD�
�afk 2

C ([a; b]) :

We mention

Lemma 14 ([11]) Let � > 0, � =2 N, m = d�e, f 2 Cm�1 ([a; b] ; X) and
f (m) 2 L1 ([a; b] ; X). Then D�

�af (a) = 0.

We mention

8
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De�nition 15 ([10]) Let [a; b] � R, X be a Banach space, � > 0, m := d�e.
We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b]! X. We call the Caputo-
Bochner right fractional derivative of order �:

�
D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(z � x)m���1 f (m) (z) dz; 8 x 2 [a; b] : (32)

We observe that
�
Dm
b�f

�
(x) = (�1)m f (m) (x) ; for m 2 N, and

�
D0
b�f

�
(x) =

f (x) :

By [10],
�
D�
b�f

�
(x) exists almost everywhere on [a; b] and

�
D�
b�f

�
2 L1 ([a; b] ; X).

If
f (m)

L1([a;b];X)
< 1, and � =2 N; by [10], D�

b�f 2 C ([a; b] ; X) ; henceD�
b�f

 2 C ([a; b]) :
We need

Lemma 16 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m = d�e,
� > 0, � =2 N. Then D�

b�f (b) = 0.

Convention 17 We assume that

D�
�x0f (x) = 0, for x < x0; (33)

and
D�
x0�f (x) = 0, for x > x0; (34)

for all x; x0 2 [a; b] :

We mention

Proposition 18 ([11]) Let f 2 Cn ([a; b] ; X), n = d�e, � > 0. Then D�
�af (x)

is continuous in x 2 [a; b].

Proposition 19 ([11]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0. Then D�
b�f (x)

is continuous in x 2 [a; b].

We also mention

Proposition 20 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
�x0f (x) =

1

� (m� �)

Z x

x0

(x� t)m���1 f (m) (t) dt; (35)

for all x; x0 2 [a; b] : x � x0:

Then D�
�x0f (x) is continuous in x0.

9
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Proposition 21 ([11]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
x0�f (x) =

(�1)m

� (m� �)

Z x0

x

(� � x)m���1 f (m) (�) d�; (36)

for all x; x0 2 [a; b] : x0 � x:

Then D�
x0�f (x) is continuous in x0.

Corollary 22 ([11]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0, x; x0 2 [a; b].
Then Da

�x0f (x) ; D
a
x0�f (x) are jointly continuous functions in (x; x0) from

[a; b]
2 into X, X is a Banach space.

We need

Theorem 23 ([11]) Let f : [a; b]2 ! X be jointly continuous, X is a Banach
space. Consider

G (x) = !1 (f (�; x) ; �; [x; b]) ; (37)

� > 0, x 2 [a; b] :
Then G is continuous on [a; b] :

Theorem 24 ([11]) Let f : [a; b]2 ! X be jointly continuous, X is a Banach
space. Then

H (x) = !1 (f (�; x) ; �; [a; x]) ; (38)

x 2 [a; b], is continuous in x 2 [a; b], � > 0.

We present the following X-valued fractional approximation result by neural
networks.

Theorem 25 Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b] ; X), 0 < � < 1,
x 2 [a; b], n 2 N : n1�� > 2: Then
i) An (f; x)�

N�1X
j=1

f (j) (x)

j!
An

�
(� � x)j

�
(x)� f (x)

 �
( (1))

�1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(39)
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ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

kAn (f; x)� f (x)k �
( (1))

�1

� (�+ 1)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(40)
iii)

kAn (f; x)� f (x)k � ( (1))�18<:
N�1X
j=1

f (j) (x)
j!

(
1

n�j
+ (b� a)j

 
1� h

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

;

(41)
8 x 2 [a; b] ;
and
iv)

kAnf � fk1 � ( (1))�18<:
N�1X
j=1

f (j)1
j!

(
1

n�j
+ (b� a)j

 
1� h

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

 
1� h

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]

D�
x�f


1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
:

(42)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain X-valued fractionally type pointwise and uniform
convergence with rates of An ! I the unit operator, as n!1:
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Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted.
Next we apply Theorem 25 for N = 1:

Theorem 26 Let 0 < �; � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2:
Then
i)

kAn (f; x)� f (x)k �

( (1))
�1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h

�
n1�� � 2

�
2

!�D�
x�f


1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(43)
and
ii)

kAnf � fk1 � ( (1))
�1

� (�+ 1)8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

 
1� h

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]

D�
x�f


1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!)
:

(44)

When � = 1
2 we derive

Corollary 27 Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2:

Then
i)

kAn (f; x)� f (x)k �

2 ( (1))
�1

p
�

8>><>>:
�
!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ !1

�
D

1
2�xf;

1
n�

�
[x;b]

�
n
�
2

+

 
1� h

�
n1�� � 2

�
2

!�D 1
2
x�f


1;[a;x]

p
(x� a) +

D 1
2�xf

1;[x;b]

p
(b� x)

�)
;

(45)
and

12
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ii)

kAnf � fk1 � 2 ( (1))
�1

p
�8>>>><>>>>:

 
sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

!
n
�
2

+

 
1� h

�
n1�� � 2

�
2

!p
(b� a)

 
sup
x2[a;b]

D 1
2
x�f


1;[a;x]

+ sup
x2[a;b]

D 1
2�xf

1;[x;b]

!)
<1:

(46)

We �nish with

Remark 28 Some convergence analysis follows:
Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2: We elaborate

on (46). Assume that

!1

�
D

1
2
x�f;

1

n�

�
[a;x]

� K1

n�
; (47)

and

!1

�
D

1
2�xf;

1

n�

�
[x;b]

� K2

n�
; (48)

8 x 2 [a; b], 8 n 2 N, where K1;K2 > 0.
Then it holds"

sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

#
n
�
2

�

(K1+K2)
n�

n
�
2

=
(K1 +K2)

n
3�
2

=
K

n
3�
2

; (49)

where K := K1 +K2 > 0:

The other summand of the right hand side of (46), for large enough n, con-

verges to zero at the speed
�
1�h(n1���2)

2

�
:

Then, for large enough n 2 N, by (46) and (49) and the last comment, we
obtain that

kAnf � fk1 �M max

 
1

n
3�
2

;

 
1� h

�
n1�� � 2

�
2

!!
; (50)
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where M > 0:

If 1

n
3�
2

�
�
1�h(n1���2)

2

�
, then 1

n�
�
�
1�h(n1���2)

2

�
, and consequently

kAnf � fk1 in (50) converges to zero faster than in Theorem 10. This because
the di¤erentiability of f .
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Abstract

Here we study the univariate quantitative approximation of time separating stochastic process over

a compact interval or all the real line by quasi-interpolation neural network operators. We perform

also the related fractional approximation. These approximations are derived by establishing Jackson

type inequalities involving the modulus of continuity of the engaged stochastic function or its high order

derivative or fractional derivatives. Our operators are defined by using a density function induced by a

general sigmoid function. The approximations are pointwise and with respect to the uniform norm. The

feed-forward neural networks are with one hidden layer. We finish with a lot of interesting applications.

2020 AMS Subject Classification: 26A33, 41A17, 41A25

Keywords and Phrases: general sigmoid function, time separating stochastic process, neural network

approximation, quasi-interpolation operator, modulus of continuity, Caputo fractional derivative, fractional

approximation.

1 Introduction

The first author in [1] and [2], see Chapters 2-5, was the first to establish neural network approximation

to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-

Euvrard and ”Squashing” types, by employing the modulus of continuity of the engaged function or its high

order derivative, and producing very tight Jackson type inequalities. He treats there both the univariate

and multivariate cases. The defining these operators ”bell-shaped” and ”squashing” functions are assumed

to be of compact suport. Also in [2] he gives the Nth order asymptotic expansion for the error of weak

approximation of these two operators to a special natural class of smooth functions, see Chapters 4-5 there.

The first author inspired by [15], continued his studies on neural networks approximation by introducing and

using the proper quasi interpolation operators of sigmoidal and hyperbolic tangent type which resulted into

1
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[3]-[7], by treating both the univariate and multivariate cases. He did also the corresponding fractional case

[8]. In this article we are also inspired by the related works [16], [17]. The authors here use general sigmoid

function based neural network quantitative approximations to continuous functions over compact intervals of

the real line or over the whole R with values to R. All convergences here are with rates expressed via the

modulus of continuity of the involved function or its high order derivative, or fractional derivatives and given

by very tight Jackson type inequalities. More precisely, here we perform quantitative approximations of time

separating stochastic processes by neural networks. We give plenty of varied and interesting applications.

Specific motivations came by:

1. Stationary Gaussian processes with an explicit representation such as

Xt = cos (αt) ξ1 + sin (αt) ξ2, α ∈ R,

where ξ1, ξ2 are independent random variables with the standard normal distribution, see [19],

2. by the “Fourier model” of a stationary process, see [20].

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal with in

this article, are mathematically expressed as

Nn (x) =
n
∑

j=0

cjσ (〈aj · x〉+ bj) , x ∈ R
s, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ R
s are the connection weights, cj ∈ X are the coefficients,

〈aj · x〉 is the inner product of aj and x, and σ is the activation function of the network. In many fundamental

neural network models, the activation function is derived from various specific sigmoid functions. Here we

work for a general sigmoid function. About neural networks in general read [18], [21],[23]. See also [9] for a

complete study of real valued approximation by neural network operators.

2 Background

Here we follow [14].

2.1 Basics on Neural Network

Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly increasing, h(0) = 0, h(−x) = −h(x)
for every x ∈ R, h(+∞) = 1, h(−∞) = −1. Also h is strictly convex over (−∞, 0 ] and strictly concave over

[0,+∞), with h(2) ∈ C (R).

Some examples of related sigmoid functions follow: 1
1+e−x ; tanhx;

2
π
arctan

(

π
2x
)

; x
2m
√
1+x2m

,m ∈ N; 2
π
gd(x);

x

(1+|x|λ)
1

λ

, λ is odd ; erf
(√

π

2 x
)

; 1
1+e−µx ; tanh(µx), µ > 0 for all x ∈ R

We consider the activation function

ψ(x) :=
1

4
(h(x+ 1)− h(x− 1)) , x ∈ R, , (1)

As in [13], p.285, we get that

ψ(−x) = ψ(x), for every x ∈ R.

2
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Thus ψ is an even function.

Since x+ 1 > x− 1, then h(x+ 1) > h(x− 1), and ψ(x) > 0, for all x ∈ R.

We see that

ψ(0) =
h(1)

2
. (2)

Let x > 1, we have that

ψ′(x) =
1

4
(h′(x+ 1)− h′(x− 1)) < 0, (3)

by h′ be strictly decreasing on [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds h′(x − 1) = h′(1 − x) > h′(x + 1), so

that again ψ′(x) < 0. Consequently ψ is strictly decreasing on (0,+∞). Clearly ψ is strictly increasing on

(−∞, 0) and ψ′(0) = 0. See that

lim
x→+∞

ψ(x) =
1

4
(h(+∞)− h(+∞)) = 0,

and

lim
x→−∞

ψ(x) =
1

4
(h(−∞)− h(−∞)) = 0.

(4)

That is the x-axis is the horizontal asymptote on ψ .

Conclusion, ψ is a bell symmetric function with maximum ψ(0) = h(1)
2 .

We need

Theorem 1. ([14]) We have that

+∞
∑

i=−∞
ψ(x− i) = 1, for every x ∈ R. (5)

Theorem 2. ([14]) It holds
∫ +∞

−∞
ψ(x)dx = 1. (6)

Thus, ψ(x) is a density function on R.

We give

Theorem 3. ([14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞
∑











k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(

1− h
(

n1−α − 2
))

2
. (7)

Notice that

lim
n→+∞

(

1− h
(

n1−α − 2
))

2
= 0.

Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the number.

We further give

Theorem 4. ([14])Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
<

1

ψ (1)
, ∀ x ∈ [a, b] . (8)
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Remark 5. We have that

lim
n→∞

⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k) 6= 1, (9)

for at least some x ∈ [a, b] . See [13], p. 290, same reasoning.

Note 6. For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n
≤ b, if and only if ⌈na⌉ ≤ k ≤ ⌊nb⌋.

In general it holds (by (5))
⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k) ≤ 1. (10)

Let (X, ‖·‖) be a Banach space.

Definition 7. ([14]) Let f ∈ C ([a, b] , X) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define the X-valued

linear neural network operators

An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(

k
n

)

ψ (nx− k)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
, x ∈ [a, b] . (11)

Clearly here An (f, x) ∈ C ([a, b] , X). For convenience we use the same An for real valued function

when needed. We mention here the pointwise and uniform convergence of An (f, x) to f (x) with rates. For

convenience also we call

A∗
n (f, x) :=

⌊nb⌋
∑

k=⌈na⌉
f

(

k

n

)

ψ (nx− k) , (12)

(similarly A∗
n can be defined for real valued function) that is

An (f, x) =
A∗

n (f, x)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
. (13)

So that

An (f, x)− f (x) =
A∗

n (f, x)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
− f (x)

=
A∗

n (f, x)− f (x)
(

∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

)

∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

. (14)

Consequently we derive

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

∥

∥

∥

∥

∥

∥

A∗
n (f, x)− f (x)





⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k)





∥

∥

∥

∥

∥

∥

. (15)

That is

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

∥

∥

∥

∥

∥

∥

⌊nb⌋
∑

k=⌈na⌉

(

f

(

k

n

)

− f (x)

)

ψ (nx− k)

∥

∥

∥

∥

∥

∥

. (16)

We will estimate the right hand side of (16).

For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ)[a,b] := ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

‖f (x)− f (y)‖ , δ > 0. (17)
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Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded functions from R into X),

for f ∈ CB (R, X) (continuous and bounded X-valued) and for f ∈ Cu (R, X) (uniformly continuous). The

fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent to lim
δ→0

ω1 (f, δ) = 0, see [11].

Definition 8. ([14]) When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

An (f, x) :=

∞
∑

k=−∞
f

(

k

n

)

ψ (nx− k) , n ∈ N, x ∈ R, (18)

the X-valued quasi-interpolation neural network operator.

Remark 9. ([14]) We have that the series

+∞
∑

k=−∞
f

(

k

n

)

ψ (nx− k)

is absolutely convergent in X, hence it is convergent in X and An (f, x) ∈ X.

We denote by ‖f‖∞ := sup
x∈[a,b]

‖f (x)‖, for f ∈ C ([a, b] , X), similarly is defined for f ∈ CB (R, X) . We

mention a series of X-valued neural network approximations to a function given with rates. We first give

Theorem 10. ([14]). Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] . Then

i)

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

[

ω1

(

f,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖f‖∞
]

=: ρ, (19)

and

ii)

‖An (f)− f‖∞ ≤ ρ. (20)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Next we give

Theorem 11. ([14]). Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ R. Then

i)
∥

∥An (f, x)− f (x)
∥

∥ ≤ ω1

(

f,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖f‖∞ =: µ, (21)

and

ii)
∥

∥An (f)− f
∥

∥

∞ ≤ µ. (22)

For f ∈ CuB (R, X) we get lim
n→∞

An (f) = f , pointwise and uniformly. The speed of convergence is

max

(

1

nα
,
(

1− h
(

n1−α − 2
))

)

.
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In the next we discuss high order neural network X-valued approximation by using the smoothness of f .

The X-valued derivatives are as the numerical ones, see ([24]).

Theorem 12. ([14])Let f ∈ CN ([a, b] , X), n,N ∈ N, 0 < α < 1, x ∈ [a, b] and n1−α > 2. Then

i)

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)







N
∑

j=1

∥

∥f (j) (x)
∥

∥

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(b− a)

j

]

+ (23)

[

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)
N

N !

]}

.

ii) Assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

‖An (f, x0)− f (x0)‖ ≤ 1

ψ (1)

{

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)
N

N !

}

, (24)

and

iii)

‖An (f)− f‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥f (j)
∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(b− a)

j

]

+

[

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)
N

N !

]}

. (25)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.

All integrals from now on are of Bochner type [22].

We need

Definition 13. ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = ⌈α⌉ ∈ N, (⌈·⌉ is the ceiling of the

number), f : [a, b] → X. We assume that f (m) ∈ L1 ([a, b] , X). We call the Caputo-Bochner left fractional

derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)
m−α−1

f (m) (t) dt, ∀ x ∈ [a, b] . (26)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar to numerical one, see [24],

p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈ L1 ([a, b] , X).

If
∥

∥f (m)
∥

∥

L∞([a,b],X)
<∞, then by [12], Dα

∗af ∈ C ([a, b] , X) , hence ‖Dα
∗af‖ ∈ C ([a, b]) .

Definition 14. ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := ⌈α⌉. We assume that f (m) ∈
L1 ([a, b] , X), where f : [a, b] → X. We call the Caputo-Bochner right fractional derivative of order α:

(

Dα
b−f

)

(x) :=
(−1)

m

Γ (m− α)

∫ b

x

(z − x)
m−α−1

f (m) (z) dz, ∀ x ∈ [a, b] . (27)

We observe that
(

Dm
b−f

)

(x) = (−1)
m
f (m) (x) , for m ∈ N, and

(

D0
b−f

)

(x) = f (x) .
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By [10],
(

Dα
b−f

)

(x) exists almost everywhere on [a, b] and
(

Dα
b−f

)

∈ L1 ([a, b] , X). If
∥

∥f (m)
∥

∥

L∞([a,b],X)
<

∞, and α /∈ N, by [10], Dα
b−f ∈ C ([a, b] , X) , hence

∥

∥Dα
b−f

∥

∥ ∈ C ([a, b]) .

In the next ω1 (f, δ)[a,b] refers to a modulus of continuity. ω1 defined over [a, b].

We mention the following X−valued fractional approximation result by neural networks.

Theorem 15. ([14]). Let α > 0, N = ⌈α⌉, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1, x ∈ [a, b], n ∈ N : n1−β > 2.

Then

i)
∥

∥

∥

∥

∥

∥

An (f, x)−
N−1
∑

j=1

f (j) (x)

j!
An

(

(· − x)
j
)

(x)− f (x)

∥

∥

∥

∥

∥

∥

≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)

}

, (28)

ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

‖An (f, x)− f (x)‖ ≤ (ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)

}

, (29)

iii)

‖An (f, x)− f (x)‖ ≤ (ψ (1))
−1







N−1
∑

j=1

∥

∥f (j) (x)
∥

∥

j!

{

1

nβj
+ (b− a)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)

}}

, (30)

∀ x ∈ [a, b] ,

and

iv)

‖Anf − f‖∞ ≤ (ψ (1))
−1







N−1
∑

j=1

∥

∥f (j)
∥

∥

∞
j!

{

1

nβj
+ (b− a)

j

(

1− h
(

n1−β − 2
)

2

)}

+

7
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1

Γ (α+ 1)























(

sup
x∈[a,b]

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ sup

x∈[a,b]

ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(b− a)
α

(

sup
x∈[a,b]

∥

∥Dα
x−f

∥

∥

∞,[a,x]
+ sup

x∈[a,b]

‖Dα
∗xf‖∞,[x,b]

)}}

. (31)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain X-valued fractionally type pointwise and uniform convergence with rates of

An → I the unit operator, as n→ ∞.

Next we apply Theorem 15 for N = 1.

Corollary 16. ([14]) Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. Then

i)

‖An (f, x)− f (x)‖ ≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)

}

, (32)

and

ii)

‖Anf − f‖∞ ≤ (ψ (1))
−1

Γ (α+ 1)






















(

sup
x∈[a,b]

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ sup

x∈[a,b]

ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(b− a)
α

(

sup
x∈[a,b]

∥

∥Dα
x−f

∥

∥

∞,[a,x]
+ sup

x∈[a,b]

‖Dα
∗xf‖∞,[x,b]

)}

. (33)

When α = 1
2 we derive

Corollary 17. ([14]) Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. Then

i)

‖An (f, x)− f (x)‖ ≤

2 (ψ (1))
−1

√
π















(

ω1

(

D
1

2

x−f,
1
nβ

)

[a,x]
+ ω1

(

D
1

2∗xf,
1
nβ

)

[x,b]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥

∥
D

1

2

x−f
∥

∥

∥

∞,[a,x]

√

(x− a) +
∥

∥

∥
D

1

2∗xf
∥

∥

∥

∞,[x,b]

√

(b− x)

)

}

, (34)
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and

ii)

‖Anf − f‖∞ ≤ 2 (ψ (1))
−1

√
π























(

sup
x∈[a,b]

ω1

(

D
1

2

x−f,
1
nβ

)

[a,x]
+ sup

x∈[a,b]

ω1

(

D
1

2∗xf,
1
nβ

)

[x,b]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(b− a)

(

sup
x∈[a,b]

∥

∥

∥
D

1

2

x−f
∥

∥

∥

∞,[a,x]
+ sup

x∈[a,b]

∥

∥

∥
D

1

2∗xf
∥

∥

∥

∞,[x,b]

)}

<∞. (35)

From now on we set X = R.

2.2 Time Seperating Stochastic Processes

Let (Ω,F , P ) be a probability space, ω ∈ Ω;Y1, Y2, . . . , Ym,m ∈ N, be real-valued random variables on Ω with

finite expectations, and h1(t), h2(t), . . . hm(t) : I → R, where I is an infinite subset of R. Typically here I is

an infinite length interval of R, usualy I = R or I = R+.

Clearly, then

Y (t, ω) :=
m
∑

i=1

hi(t)Yi(ω), t ∈ I, (36)

is a quite common stochastic process separating time.

We can assume that hi ∈ Cr(I), i = 1, 2, ...,m; r ∈ N. Consequently, we have that the expectation

(EY ) (t) =

m
∑

i=1

hi(t)EYi ∈ C(I) or Cr(I). (37)

A classical example of a stochastic process separating time is

(sin t)Y1(ω) + (cos t)Y2(ω), t ∈ I.

Notice that |sin t| ≤ 1 and |cos t| ≤ 1.

Another typical example is

sinh(t)Y1(ω) + cosh(t)Y2(ω), t ∈ I. (38)

In this article we will apply the main results of section 2.1, to f(t) = (EY ) (t). We will finish with several

applications. See the related [19], [20].

3 Main Results

We present the following general approximation of the seperating stochastic processes by neural network

operators.

Theorem 18. Let (EY )(t) as in (37), t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, hi ∈ C ([t1, t2]) for every

i = 1, 2, ...,m, 0 < α < 1, n ∈ N : n1−α > 2. Then
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i)

|An ((EY ) , t)− (EY ) (t)| ≤ 1

ψ (1)

[

ω1

(

EY,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EY ‖∞
]

=: ρ, (39)

and

ii)

‖An (EY )− EY ‖∞ ≤ ρ. (40)

We have that lim
n→∞

An (EY ) = EY , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Notice that when hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m, then (EY ) (t) ∈ C ([t1, t2]). Thus, the

conclusion comes from Theorem 10.

We continue with,

Theorem 19. Let (EY )(t) as in (37), hi ∈ CB (R) for every i = 1, 2, ...,m, 0 < α < 1, n ∈ N : n1−α > 2,

t ∈ R. Then

i)
∣

∣An (EY, t)− (EY ) (t)
∣

∣ ≤ ω1

(

EY,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EY ‖∞ =: µ, (41)

and

ii)
∥

∥An (EY )− EY
∥

∥

∞ ≤ µ. (42)

For EY ∈ CuB (R) we get lim
n→∞

An (EY ) = EY , pointwise and uniformly. The speed of convergence is

max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Since that hi ∈ CB (R) for every i = 1, 2, ...,m and t ∈ R, then EX ∈ CB (R). Therefore the results

come from Theorem 11.

Furthermore, we have

Theorem 20. Let (EY )(t) as in (37), t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, hi ∈ CN ([t1, t2]) for every

i = 1, 2, ...,m, n,N ∈ N, 0 < α < 1, and n1−α > 2. Then

i)

|An (EY, t)− (EY ) (t)| ≤ 1

ψ (1)







N
∑

j=1

∣

∣

∣
(EY )

(j)
(t)
∣

∣

∣

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+ (43)



ω1

(

(EY )
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EY )

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











.

ii) Assume further (EY )
(j)

(t0) = 0, j = 1, ..., N, for some t0 ∈ [t1, t2], it holds

|An (EY, t0)− (EY ) (t0)| ≤
1

ψ (1)
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ω1

(

(EY )
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EY )

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !







, (44)

and

iii)

‖An (EY )− EY ‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥

∥
(EY )

(j)
∥

∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+



ω1

(

(EY )
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EY )

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











. (45)

Again we obtain lim
n→∞

An (EY ) = EY , pointwise and uniformly.

Proof. By Theorem 12.

We also present

Theorem 21. Let α > 0, N = ⌈α⌉ , α /∈ N, 0 < β < 1, t ∈ [t1, t2] where t1, t2 ∈ R, with t1 < t2,

n ∈ N : n1−β > 2. Then

i)
∣

∣

∣

∣

∣

∣

An (EY, t)−
N−1
∑

j=1

(EY )
(j)

(t)

j!
An

(

(· − t)
j
)

(t)− (EY ) (t)

∣

∣

∣

∣

∣

∣

≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EY )‖∞,[t,t2]
(t2 − t)

α
)

}

, (46)

ii) if (EY )
(j)

(t) = 0, for j = 1, ..., N − 1, we have

|An (EY, t)− (EY ) (t)| ≤ (ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EY )‖∞,[t,t2]
(t2 − t)

α
)

}

, (47)

iii)

‖An (EY, t)− (EY ) (t)‖ ≤ (ψ (1))
−1







N−1
∑

j=1

∣

∣

∣
(EY )

(j)
(t)
∣

∣

∣

j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+
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(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EY )‖∞,[t,t2]
(t2 − t)

α
)

}}

, (48)

∀ t ∈ [t1, t2] ,

and

iv)

‖An (EY )− EY ‖∞ ≤ (ψ (1))
−1







N−1
∑

j=1

∥

∥

∥
(EY )

(j)
∥

∥

∥

∞
j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)























(

sup
x∈[t1,t2]

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]

‖Dα
∗t (EY )‖∞,[t,t2]

)}}

. (49)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain t-valued fractionally type pointwise and uniform convergence with rates of An → I

the unit operator, as n→ ∞.

Proof. By Theorem 15.

Next we apply Theorem 21 for N = 1.

Corollary 22. Let (EY )(t) as in (37), 0 < α, β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2,n ∈ N :

n1−β > 2. and hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m. Then

i)

|An (EY, t)− (EY ) (t)| ≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EY )‖∞,[t,t2]
(t2 − t)

α
)

}

, (50)

and

ii)

‖An (EY )− (EY )‖∞ ≤ (ψ (1))
−1

Γ (α+ 1)






















(

sup
t∈[t1,t2]

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
+ sup

x∈[t1,t2]

‖Dα
∗t (EY )‖∞,[t,t2]

)}

. (51)
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When α = 1
2 we derive

Corollary 23. Assume again (EY )(t) as in (37). Let 0 < β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2,

n ∈ N : n1−β > 2 and hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m. Then

i)

|An (EY, t)− (EY ) (t)| ≤

2 (ψ (1))
−1

√
π















(

ω1

(

D
1

2

t− (EY ) , 1
nβ

)

[t1,t]
+ ω1

(

D
1

2

∗t (EY ) , 1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥

∥
D

1

2

t− (EY )
∥

∥

∥

∞,[t1,t]

√

(t− t1) +
∥

∥

∥
D

1

2

∗t (EY )
∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)

}

, (52)

and

ii)

‖An (EY )− (EY )‖∞ ≤ 2 (ψ (1))
−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EY ) , 1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

D
1

2

∗t (EY ) , 1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥
D

1

2

t− (EY )
∥

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]

∥

∥

∥
D

1

2

∗t (EY )
∥

∥

∥

∞,[t,t2]

)}

<∞. (53)

4 Applications

For the next applications we consider (Ω, F, P ) be a probability space and Y0, Y1, Y2 be real valued random

variables on Ω with finite expectations. We consider the stochastic processes Zi(t, ω) for i = 1, 2, . . . , 9, where

t ∈ R and ω ∈ Ω as follows:

Z1(t, ω) =
[

(t− t0)
µ+1

+ 1
]

Y0(ω), (54)

where t0 ∈ R and µ ∈ N are fixed;

Z2(t, ω) = sin (ξt)Y1(ω) + cos (ξt)Y2(ω), (55)

where ξ > 0 is fixed;

Z3(t, ω) = sinh (µt)Y1(ω) + cosh (µt)Y2(ω), (56)

where µ > 0 is fixed;

Z4(t, ω) = sech (µt)Y1(ω) + tanh (µt)Y2(ω), (57)

where µ > 0 is fixed.

Here sechx := 1
cosh x

= 2
ex+e−x , x ∈ R.

Z5(t, ω) = e−ℓ1tY1(ω) + e−ℓ2tY2(ω), (58)

13
547

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 535-556



where ℓ1, ℓ2 > 0 are fixed;

Z6(t, ω) =
1

1 + e−ℓ1t
Y1(ω) +

1

1 + e−ℓ2t
Y2(ω), (59)

where ℓ1, ℓ2 > 0 are fixed;

Z7(t, ω) = e−e−µ1t

Y1(ω) + e−e−µ2t

Y2(ω), (60)

where µ1, µ2 > 0 are fixed;

Z8(t, ω) = Pm (ℓ1t)Y1(ω) + Pm (ℓ2t)Y2(ω), (61)

where ℓ1, ℓ2 > 0 and m ∈ N are fixed.

Here Pm(x) is the Legendre Polynomial of degree m ∈ N, i.e

Pm : [−1, 1] −→ [−1, 1]

such that,

Pm(x) =
1

2mm!

dm

dxm
(

x2 − 1
)m

=
1

2m

m
∑

k=0

(

m

k

)2

(x− 1)
m−k

(x+ 1)
k
, x ∈ [−1, 1] .

To define the stochastic process Z9 (t, ω), we consider the Cauchy function

f̂(x) =







e−
1

x2 , x 6= 0

0, x = 0
.

Notice that, f̂ ∈ C∞ (R) and it has f̂ (i)(0) = 0, for all i = 1, 2, . . . ,∞.

We set,

Z9(t, ω) = f̂(t)Y0(ω), (62)

The expectations of Zi, i = 1, 2, ..., 9 are

(EZ1) (t) =
[

(t− t0)
µ+1

+ 1
]

E(Y0), (63)

(EZ2) (t) = sin (ξt)E(Y1) + cos (ξt)E(Y2), (64)

(EZ3) (t) = sinh (µt)E(Y1) + cosh (µt)E(Y2), (65)

(EZ4) (t) = sech (µt)E(Y1) + tanh (µt)E(Y2), (66)

(EZ5) (t) = e−ℓ1tE(Y1) + e−ℓ2tE(Y2), (67)

(EZ6) (t) =
1

1 + e−ℓ1t
E(Y1) +

1

1 + e−ℓ2t
E(Y2), (68)

(EZ7) (t) = e−e−µ1t

E(Y1) + e−e−µ2t

E(Y2), (69)

(EZ8) (t) = Pm (ℓ1t)E(Y1) + Pm (ℓ2t)E(Y2), (70)

(EZ9) (t) = f̂(t)E(Y0), (71)

For the next (EZi) (t), i = 1, 2, . . . , 9 are as defined in relations between (63) and (71) respectively.

We present the following result.

14
548

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 535-556



Proposition 24. Let t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, n ∈ N : n1−α > 2. Then for

i = 1, 2, . . . , 9

i)

|An ((EZi) , t)− (EZi) (t)| ≤
1

ψ (1)

[

ω1

(

EZi,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi‖∞
]

=: ρ, (72)

and

ii)

‖An (EZi)− EZi‖∞ ≤ ρ. (73)

We have that lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. From Theorem 18.

In the cases of stochastic processes Zi (t, ω), for i = 2, 4, 6, 7 we have the next

Proposition 25. Let i ∈ {2, 4, 6, 7} , 0 < α < 1, n ∈ N : n1−α > 2, t ∈ R. Then

i)
∣

∣An (EZi, t)− (EZi) (t)
∣

∣ ≤ ω1

(

EZi,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi‖∞ =: µ, (74)

and

ii)
∥

∥An (EZi)− EZi

∥

∥

∞ ≤ µ. (75)

For EZi ∈ CuB (R) we get lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Notice that for every t ∈ R we have that:

for Z2 (t, ω), |sin (ξt)| ≤ 1 and |cos (ξt)| ≤ 1,

for Z4 (t, ω), |sech (µt)| ≤ 1 and |tanh (µt)| ≤ 1,

for Z6 (t, ω), 0 <
1

1+e−ℓ1t < 1 and 0 < 1
1+e−ℓ2t < 1,

for Z7 (t, ω), 0 < e−e−µ1t

< 1 and 0 < e−e−µ2t

< 1.

Thus, the results come from Theorem 19.

Moreover, we present the next

Proposition 26. Let i = 1, 2, . . . , 9, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, and n1−α > 2. Then

i)

|An (EZi, t)− (EZi) (t)| ≤
1

ψ (1)







N
∑

j=1

∣

∣

∣
(EZi)

(j)
(t)
∣

∣

∣

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+ (76)



ω1

(

(EZi)
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











.
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ii) Assume further (EZi)
(j)

(ta) = 0, j = 1, ..., N, for some ta ∈ [t1, t2], it holds

|An (EZi, ta)− (EZi) (ta)| ≤
1

ψ (1)







ω1

(

(EZi)
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !







, (77)

and

iii)

‖An (EZi)− EZi‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥

∥
(EZi)

(j)
∥

∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+



ω1

(

(EZi)
(N)

,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











. (78)

Again we obtain lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

Proof. By Theorem 20.

We also present

Proposition 27. Let i = 1, 2, . . . , 9, α > 0, N = ⌈α⌉ , α /∈ N, 0 < β < 1, t ∈ [t1, t2] where t1, t2 ∈ R, with

t1 < t2, n ∈ N : n1−β > 2. Then

i)
∣

∣

∣

∣

∣

∣

An (EZi, t)−
N−1
∑

j=1

(EZi)
(j)

(t)

j!
An

(

(· − t)
j
)

(t)− (EZi) (t)

∣

∣

∣

∣

∣

∣

≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EZi)‖∞,[t,t2]
(t2 − t)

α
)

}

, (79)

ii) if (EZi)
(j)

(t) = 0, for j = 1, ..., N − 1, we have

|An (EZi, t)− (EZi) (t)| ≤
(ψ (1))

−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EZi)‖∞,[t,t2]
(t2 − t)

α
)

}

, (80)

iii)

‖An (EZi, t)− (EZi) (t)‖ ≤ (ψ (1))
−1
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N−1
∑

j=1

∣

∣

∣
(EZi)

(j)
(t)
∣

∣

∣

j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EZi)‖∞,[t,t2]
(t2 − t)

α
)

}}

, (81)

∀ t ∈ [t1, t2] ,

and

iv)

‖An (EZi)− EZi‖∞ ≤ (ψ (1))
−1







N−1
∑

j=1

∥

∥

∥
(EZi)

(j)
∥

∥

∥

∞
j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)























(

sup
x∈[t1,t2]

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]

‖Dα
∗t (EZi)‖∞,[t,t2]

)}}

. (82)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain t-valued fractionally type pointwise and uniform convergence with rates of An → I

the unit operator, as n→ ∞.

Proof. By Theorem 21.

Next we apply Proposition 27 for N = 1.

Corollary 28. Let i = 1, 2, . . . , 9, 0 < α, β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2,n ∈ N : n1−β > 2.

Then

i)

|An (EZi, t)− (EZi) (t)| ≤

(ψ (1))
−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α
+ ‖Dα

∗t (EZi)‖∞,[t,t2]
(t2 − t)

α
)

}

, (83)

and

ii)

‖An (EZi)− (EZi)‖∞ ≤ (ψ (1))
−1

Γ (α+ 1)
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(

sup
t∈[t1,t2]

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
+ sup

x∈[t1,t2]

‖Dα
∗t (EZi)‖∞,[t,t2]

)}

. (84)

When α = 1
2 we derive

Corollary 29. Assume i = 1, 2, . . . , 9. Let 0 < β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, and

n ∈ N : n1−β > 2. Then

i)

|An (EZi, t)− (EZi) (t)| ≤

2 (ψ (1))
−1

√
π















(

ω1

(

D
1

2

t− (EZi) ,
1
nβ

)

[t1,t]
+ ω1

(

D
1

2

∗t (EZi) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥

∥
D

1

2

t− (EZi)
∥

∥

∥

∞,[t1,t]

√

(t− t1) +
∥

∥

∥
D

1

2

∗t (EZi)
∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)

}

, (85)

and

ii)

‖An (EZi)− (EZi)‖∞ ≤ 2 (ψ (1))
−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EZi) ,
1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

D
1

2

∗t (EZi) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥
D

1

2

t− (EZi)
∥

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]

∥

∥

∥
D

1

2

∗t (EZi)
∥

∥

∥

∞,[t,t2]

)}

<∞. (86)

5 Specific Applications

Let (Ω,F , P ), where Ω is the set of non-negative integers, be a probability space, Y1,1, Y2,1 be real-valued

random variables on Ω following Poisson distributions with parameters λ1, λ2 ∈ (0,∞) respectively.

We consider the stochastic processes Zi,1(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as follows:

Z1,1(t, ω) =
[

(t− t0)
µ+1

+ 1
]

Y1,1(ω), (87)

where t0 ∈ R and µ ∈ N are fixed;

Z2,1(t, ω) = sin (ξt)Y1,1(ω) + cos (ξt)Y2,1(ω), (88)

where ξ > 0 is fixed;

Z3,1(t, ω) = sinh (µt)Y1,1(ω) + cosh (µt)Y2,1(ω), (89)
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where µ > 0 is fixed;

Z5,1(t, ω) = e−ℓ1tY1,1(ω) + e−ℓ2tY2,1(ω), (90)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,1) = λ1 and E (Y2,1) = λ2 , the expectations of Zi,1, i = 1, 2, 3, 5, are

(EZ1,1) (t) = λ1

[

(t− t0)
µ+1

+ 1
]

, (91)

(EZ2,1) (t) = λ1 sin (ξt) + λ2 cos (ξt) , (92)

(EZ3,1) (t) = λ1 sinh (µt) + λ2 cosh (µt) , (93)

(EZ5,1) (t) = λ1e
−ℓ1t + λ2e

−ℓ2t, (94)

For the next we consider (Ω,F , P ), where Ω = R, be a probability space, Y1,2, Y2,2 be real-valued random

variables on Ω following Gaussian distributions with expectations µ̂1, µ̂2 ∈ R respectively.

We consider the stochastic processes Zi,2(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as follows:

Z1,2(t, ω) =
[

(t− t0)
µ+1

+ 1
]

Y1,2(ω), (95)

where t0 ∈ R and µ ∈ N are fixed;

Z2,2(t, ω) = sin (ξt)Y1,2(ω) + cos (ξt)Y2,2(ω), (96)

where ξ > 0 is fixed;

Z3,2(t, ω) = sinh (µt)Y1,2(ω) + cosh (µt)Y2,2(ω), (97)

where µ > 0 is fixed;

Z5,2(t, ω) = e−ℓ1tY1,2(ω) + e−ℓ2tY2,2(ω), (98)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,2) = µ̂1 and E (Y2,2) = µ̂2 , The expectations of Zi,2, i = 1, 2, 3, 5 are

(EZ1,2) (t) = µ̂1

[

(t− t0)
µ+1

+ 1
]

, (99)

(EZ2,2) (t) = µ̂1 sin (ξt) + µ̂2 cos (ξt) , (100)

(EZ3,2) (t) = µ̂1 sinh (µt) + µ̂2 cosh (µt) , (101)

(EZ5,2) (t) = µ̂1e
−ℓ1t + µ̂2e

−ℓ2t. (102)

Furthermore, we consider (Ω,F , P ), where Ω = [0,∞), be a probability space, Y1,3, Y2,3 be real-valued random

variables on Ω following Weibull distributions with scale parameters 1 and shape parameters γ1, γ2 ∈ (0,∞)

respectively.

We consider the stochastic processes Zi,3(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as follows:

Z1,3(t, ω) =
[

(t− t0)
µ+1

+ 1
]

Y1,3(ω), (103)

where t0 ∈ R and µ ∈ N are fixed;

Z2,3(t, ω) = sin (ξt)Y1,3(ω) + cos (ξt)Y2,3(ω), (104)

where ξ > 0 is fixed;

Z3,3(t, ω) = sinh (µt)Y1,3(ω) + cosh (µt)Y2,3(ω), (105)
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where µ > 0 is fixed;

Z5,3(t, ω) = e−ℓ1tY1,3(ω) + e−ℓ2tY2,3(ω), (106)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,3) = Γ
(

1 + 1
γ1

)

and E (Y2,3) = Γ
(

1 + 1
γ2

)

, where Γ (·) is the Gamma function, The expectations

of Zi,3, i = 1, 2, 3, 5, are

(EZ1,3) (t) = Γ

(

1 +
1

γ1

)

[

(t− t0)
µ+1

+ 1
]

, (107)

(EZ2,3) (t) = Γ

(

1 +
1

γ1

)

sin (ξt) + Γ

(

1 +
1

γ2

)

cos (ξt) , (108)

(EZ3,3) (t) = Γ

(

1 +
1

γ1

)

sinh (µt) + Γ

(

1 +
1

γ2

)

cosh (µt) , (109)

(EZ5,3) (t) = Γ

(

1 +
1

γ1

)

e−ℓ1t + Γ

(

1 +
1

γ2

)

e−ℓ2t, (110)

We present the following result.

Proposition 30. Let t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, n ∈ N : n1−α > 2. Then for

i = 1, 2, 3, 5 and k = 1, 2, 3

i)

|An ((EZi,k) , t)− (EZi,k) (t)| ≤
1

ψ (1)

[

ω1

(

EZi,k,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi,k‖∞
]

=: ρ, (111)

and

ii)

‖An (EZi,k)− EZi,k‖∞ ≤ ρ. (112)

We have that lim
n→∞

An (EZi,k) = EZi,k, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. From Proposition 24.

In the cases of stochastic processes Z2,k (t, ω), for k = 1, 2, 3 we have the next

Proposition 31. Let k ∈ {1, 2, 3} , 0 < α < 1, n ∈ N : n1−α > 2, t ∈ R. Then

i)
∣

∣An (EZ2,k, t)− (EZ2,k) (t)
∣

∣ ≤ ω1

(

EZ2,k,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZ2,k‖∞ =: µ, (113)

and

ii)
∥

∥An (EZ2,k)− EZ2,k

∥

∥

∞ ≤ µ. (114)

For EZ2,k ∈ CuB (R) we get lim
n→∞

An (EZ2,k) = EZ2,k, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. The results come from Proposition 25.

Moreover, we present the next
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Corollary 32. Assume i = 1, 2, 3, 5 and k = 1, 2, 3. Let 0 < β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2,

and n ∈ N : n1−β > 2. Then

i)

|An (EZi,k, t)− (EZi,k) (t)| ≤

2 (ψ (1))
−1

√
π















(

ω1

(

D
1

2

t− (EZi,k) ,
1
nβ

)

[t1,t]
+ ω1

(

D
1

2

∗t (EZi,k) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥

∥
D

1

2

t− (EZi,k)
∥

∥

∥

∞,[t1,t]

√

(t− t1) +
∥

∥

∥
D

1

2

∗t (EZi,k)
∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)

}

, (115)

and

ii)

‖An (EZi,k)− (EZi,k)‖∞ ≤ 2 (ψ (1))
−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EZi,k) ,
1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]

ω1

(

D
1

2

∗t (EZi,k) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥
D

1

2

t− (EZi,k)
∥

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]

∥

∥

∥
D

1

2

∗t (EZi,k)
∥

∥

∥

∞,[t,t2]

)}

<∞.

(116)

Proof. From Corollary 29.
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Multivariate Gudermannian function based
neural network approximation
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Abstract

Here we present multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We examine also the case of
approximation by iterated operators of the last four types. These ap-
proximations are achieved by establishing multidimensional Jackson type
inequalities involving the multivariate modulus of continuity of the en-
gaged function or its high order Fréchet derivatives. Our multivariate
operators are de�ned by using a multidimensional density function in-
duced by the Gudermannian sigmoid function. The approximations are
pointwise and uniform. The related feed-forward neural network is with
one hidden layer.

2020 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A30,
41A36.
Keywords and Phrases: Gudermannian sigmoid function, multivariate

neural network approximation, quasi-interpolation operator, Kantorovich type
operator, quadrature type operator, multivariate modulus of continuity, abstract
approximation, iterated approximation.

1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the �rst to establish
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliaguet-Euvrard and �Squash-
ing�types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
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He treats there both the univariate and multivariate cases. The de�ning these
operators �bell-shaped�and �squashing� functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.
Motivations for this work are the article [17] of Z. Chen and F. Cao, and [4],

[5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [18], [19].
Here we perform multivariate Gudermannian sigmoid function based neural

network approximations to continuous functions over boxes or over the whole
RN , N 2 N, and also iterated approximations. All convergences here are with
rates expressed via the multivariate modulus of continuity of the involved func-
tion or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.
We come up with the �right� precisely de�ned multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well
as Kantorovich type and quadrature type related operators on RN . Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by Gudermannian sigmoid function and de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =

nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models, the activation function is the Gudermannian sigmoid function. About
neural networks see [20], [21], [22].

2 Background

See also [13], [24].
Here we consider gd (x) the Gudermannian function [24], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (1)

Let the normalized generator sigmoid function

f (x) :=
2

�
� (x) =

2

�

Z x

0

dt

cosh t
=
4

�

Z x

0

1

et + e�t
dt; x 2 R: (2)

2
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Here
f 0 (x) =

2

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

W (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (3)

By [3], we get that
W (x) =W (�x) ; 8 x 2 R; (4)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (5)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain W (x) > 0, 8 x 2 R:
By [13], we have that

W (0) =
1

�
gd (1) �= 0:2757: (6)

By [13] W is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and W 0 (0) = 0.
Also we have that

lim
x!+1

W (x) = lim
x!�1

W (x) = 0; (7)

that is the x-axis is the horizontal asymptote for W .
Conclusion, W is a bell shaped symmetric function with maximum W (0) �=

0:2757.
We need

Theorem 1 ([13]) It holds that

1X
i=�1

W (x� i) = 1, 8 x 2 R: (8)

Theorem 2 ([13]) We have thatZ 1

�1
W (x) dx = 1: (9)

So W (x) is a density function.

3
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Theorem 3 ([13]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

W (nx� k) < 2

�e(n1���2)
=

2e2

�en1��
: (10)

Denote by b�c the integral part of the number and by d�e the ceiling of the
number.

Theorem 4 ([13]) Let [a; b] � R and n 2 N; so that dnae � bnbc. It holds

1
bnbcP

k=dnae
W (nx� k)

<
2�

gd (2)
�= 4:824; (11)

8 x 2 [a; b] :

We make

Remark 5 ([13])
(i) We have that

lim
n!1

bnbcX
k=dnae

W (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :
(ii) Let [a; b] � R. For large n we always have dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general it holds

bnbcX
k=dnae

W (nx� k) � 1: (13)

We introduce

Z (x1; :::; xN ) := Z (x) :=
NY
i=1

W (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (14)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) = 1; (15)

4
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where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (16)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z (x) dx = 1; (17)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(18)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

W (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

W (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

W (nxi � ki)

1A : (19)
For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae k

n � x

1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k) : (20)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition

 k
n � x


1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :

5

561

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 557-582



(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae k

n � x

1 > 1

n�

Z (nx� k)
(10)
<

2e2

�en1��
, 0 < � < 1; m 2 N; (21)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

�
2�

gd (2)

�N
�= (4:824)N ; (22)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1 k

n � x

1 > 1

n�

Z (nx� k) < 2e2

�en1��
; (23)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (24)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k

�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1W (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaieW (nxi � ki)

� : (25)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .

6
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When g 2 C
�QN

i=1 [ai; bi]
�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (26)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k �
Pbnbc

k=dnae
f � kn� Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk ; x� ; (27)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k � eAn �kfk ; x� ; (28)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (29)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (30)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

W (nxi � ki)
!
; (31)

7

563

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 557-582



8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (32)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (33)

Consequently we derive

kAn (f; x)� f (x)k
(22)
� (4:824)

N

A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)




; (34)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (34).
For the last and others we need

De�nition 6 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k

�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k , 0 < � � diam (M) : (35)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (36)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 7 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),
where M is a convex compact subset of

�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (35). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

8
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When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

W (nxi � ki)
!
; (37)

n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

W (nxi � ki)
!
; (38)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=

�X
r=0

wrf

�
k

n
+
r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+
r1
n�1

;
k2
n
+
r2
n�2

; :::;
kN
n
+
rN
n�N

�
; (39)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (40)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

W (nxi � ki)
!
;

9
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8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

m;N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k � (4:824)
N

24!1�f; 1
n�

�
+
4e2
kfk1
�en1��

35 =: �1 (n) ;
(41)

and
2) kAn (f)� fk1 � �1 (n) : (42)

We notice that lim
n!1

An (f)
k�k
= f , pointwise and uniformly.

Above !1 is with respect to p =1:

Proof. We observe that

�(x) := A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k) =

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k)�

bnbcX
k=dnae

f (x)Z (nx� k) =

bnbcX
k=dnae

�
f

�
k

n

�
� f (x)

�
Z (nx� k) : (43)

Thus

k�(x)k �
bnbcX

k=dnae

f �kn
�
� f (x)




Z (nx� k) =

10
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bnbcX
8<: k = dnae k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+

bnbcX
8<: k = dnae k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k)
(21)
�

!1

�
f;
1

n�

�
+
4e2
kfk1
�en1��

: (44)

So that

k�(x)k � !1
�
f;
1

n�

�
+
4e2
kfk1
�en1��

: (45)

Now using (34) we �nish the proof.
We make

Remark 9 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k

�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k = sup kg (x)k
kx1kp ::: kxjkp

: (46)

Let M be a non-empty convex and compact subset of RN and x0 2 M is
�xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [23]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .

11
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We will work with f jM :
Then, by Taylor�s formula ([16]), ([23], p. 124), we get

f (x) =
mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (47)

where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(48)
here we set f (0) (x0) (x� x0)0 = f (x0) :
We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h

f (m) (x)� f (m) (y) ; (49)

h > 0:

We obtain�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m

�

f (m) (x0 + u (x� x0))� f (m) (x0) � kx� x0kmp �
w kx� x0kmp

�
u kx� x0kp

h

�
; (50)

by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k � w kx� x0k
m
p

Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(51)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R; (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (53)

12
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with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k � w
 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(54)
We have found that f (x)�

mX
j=0

f (j) (x0) (x� x0)j

j!




�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (55)

8 x; x0 2M:
Here 0 < !1

�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (55) as follows:f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (56)

a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence
f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!



2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

13
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+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (57)

8 N 2 N, 8 x0 2M .

Clearly (57) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (26).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (25), (26), (28), (29) and (30).
We present the following high order approximation results.

Theorem 10 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (58)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(59)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k �
mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)

+

14
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!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(60)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) kAn (f)� fk1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)



1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r � eAn �k� � x0km+1p

��
(x0)

 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!� eAn �k� � x0km+1p

��
(x0)

( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(61)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

We need

Lemma 11 The function
� eAn �k� � x0kmp �� (x0) is continuous in x0 2 � NQ

i=1

[ai; bi]

�
,

m 2 N.

Proof. By Lemma 10.3, [11], p. 272.
We give

Corollary 12 (to Theorem 10, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k �
�An �f (1) (x0) (� � x0)�� (x0)


+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(62)�
1 + r +

r2

4

�
;

and
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2) k(An (f))� fk1;
NQ
i=1

[ai;bi]
�

�An �f (1) (x0) (� � x0)�� (x0)

1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r � eAn �k� � x0k2p�� (x0) 1
2

1;x02
NQ
i=1

[ai;bi]

1A
� eAn �k� � x0k2p�� (x0) 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (63)

r > 0:

We make

Remark 13 We estimate 0 < � < 1, m;n 2 N : n1�� > 2,

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae

 k
n � x0

m+1
1 Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
(22)
<

(4:824)
N

bnbcX
k=dnae

kn � x0
m+1
1

Z (nx0 � k) = (64)

(4:824)
N

8>>>>>><>>>>>>:
bnbcX

8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
m+1
1

Z (nx0 � k)+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
m+1
1

Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
�

(4:824)
N

(
1

n�(m+1)
+
2e2 kb� akm+11

�en1��

)
; (65)

(where b� a = (b1 � a1; :::; bN � aN )).
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We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) < (4:824)

N

(
1

n�(m+1)
+
2e2 kb� akm+11

�en1��

)
=: '1 (n)

(66)
(0 < � < 1, m;n 2 N : n1�� > 2).
And, consequently it holds eAn �k� � x0km+11

�
(x0)


1;x02

NQ
i=1

[ai;bi]
<

(4:824)
N

(
1

n�(m+1)
+
2e2 kb� akm+11

�en1��

)
= '1 (n)! 0; as n! +1: (67)

So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate
� eAn �f (j) (x0) (� � x0)j�� (x0)


:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
:

(68)
When p =1, j = 1; :::;m; we obtainf (j) (x0)

�
k

n
� x0

�j


�
f (j) (x0)kn � x0

j
1
: (69)

We further have that� eAn �f (j) (x0) (� � x0)j�� (x0)


(22)
<

(4:824)
N

0@ bnbcX
k=dnae

f (j) (x0)
�
k

n
� x0

�j


Z (nx0 � k)

1A �

(4:824)
N

0@ bnbcX
k=dnae

f (j) (x0)kn � x0
j
1
Z (nx0 � k)

1A = (70)

(4:824)
N
f (j) (x0)

0@ bnbcX
k=dnae

kn � x0
j
1
Z (nx0 � k)

1A =
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(4:824)
N
f (j) (x0)

8>>>>>><>>>>>>:
bnbcX

8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
j
1
Z (nx0 � k)

+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
j
1
Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
� (71)

(4:824)
N
f (j) (x0)( 1

n�j
+
2e2 kb� akj1
�en1��

)
! 0, as n!1:

That is � eAn �f (j) (x0) (� � x0)j�� (x0)

! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:� eAn �f (j) (x0) (� � x0)j�� (x0)

<

(4:824)
N
f (j) (x0)( 1

n�j
+
2e2 kb� akj1
�en1��

)
� (72)

(4:824)
N
f (j)

1

(
1

n�j
+
2e2 kb� akj1
�en1��

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 10, the right hand sides of (60) and (61) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 12, the right hand sides of (62) and (63) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give
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Corollary 15 (to Theorem 10) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1

[ai;bi]
: Let x0 2�

NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (67) and '2j (n) as in (72), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (73)

2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (74)

3) kAn (f)� fk1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (75)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k � !1
�
f;
1

n�

�
+
4e2
kfk1
�en1��

=: �2 (n) ; (76)

2) kBn (f)� fk1 � �2 (n) : (77)
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Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly.

Proof. We have that

Bn (f; x)� f (x)
(16)
=

1X
k=�1

f

�
k

n

�
Z (nx� k)� f (x)

1X
k=�1

Z (nx� k) = (78)

1X
k=�1

�
f

�
k

n

�
� f (x)

�
Z (nx� k) :

Hence

kBn (f; x)� f (x)k �
1X

k=�1

f �kn
�
� f (x)




Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (nx� k)
(23)
�

!1

�
f;
1

n�

�
+
4e2
kfk1
�en1��

; (79)

proving the claim.
We give

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+
4e2
kfk1
�en1��

=: �3 (n) ; (80)

2) kCn (f)� fk1 � �3 (n) : (81)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. We notice thatZ k+1
n

k
n

f (t) dt =

Z k1+1
n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; t2; :::; tN ) dt1dt2:::dtN =

Z 1
n

0

Z 1
n

0

:::

Z 1
n

0

f

�
t1 +

k1
n
; t2 +

k2
n
; :::; tN +

kN
n

�
dt1:::dtN =

Z 1
n

0

f

�
t+

k

n

�
dt:

(82)
Thus it holds (by (38))

Cn (f; x) =
1X

k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k) : (83)

We observe that
kCn (f; x)� f (x)k =

1X
k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k)�

1X
k=�1

f (x)Z (nx� k)



=


1X

k=�1

  
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
� f (x)

!
Z (nx� k)




=


1X

k=�1

 
nN
Z 1

n

0

�
f

�
t+

k

n

�
� f (x)

�
dt

!
Z (nx� k)




� (84)

1X
k=�1

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

!1

�
f; ktk1 +

kn � x

1

�
dt

!
Z (nx� k)+
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2
kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (jnx� kj)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+
4e2
kfk1
�en1��

; (85)

proving the claim.
We also present

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+
4e2
kfk1
�en1��

= �4 (n) ; (86)

2) kDn (f)� fk1 � �4 (n) : (87)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. Similar to the proof of Theorem 17, as such is omitted.
We make

De�nition 19 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k

�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(88)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k �kfk1 :
Hence Fn (f) is a bounded linear operator with

kFn (f)k1 �
kfk1.

We need
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Theorem 20 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Lengthy and similar to the proof of Theorem 21 of [14], as such is
omitted.

Remark 21 By (25) it is obvious that
kAn (f)k1 �

kfk1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:
Clearly thenL2n (f)1 =

kLn (Ln (f))k1 �
kLn (f)k1 �

kfk1 ; (89)

etc.
Therefore we getLkn (f)1 �

kfk1 , 8 k 2 N, (90)

the contraction property.
Also we see thatLkn (f)1 �

Lk�1n (f)




1
� ::: �

kLn (f)k1 �
kfk1 : (91)

Here Lkn are bounded linear operators.

Notation 22 Here N 2 N, 0 < � < 1: Denote by

cN :=

(
(4:824)

N , if Ln = An;
1, if Ln = Bn; Cn; Dn;

(92)

' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(93)


 :=

8<:C
�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(94)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:
(95)

We give the condensed
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Theorem 23 Let f 2 
, 0 < � < 1, x 2 Y ; n; m; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k � cN

24!1 (f; ' (n)) + 4e2
kfk1
�en1��

35 =: � (n) ; (96)

where !1 is for p =1;
and
(ii) kLn (f)� fk1 � � (n)! 0, as n!1: (97)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18.
Next we talk about iterated neural network approximation (see also [9]).
We give

Theorem 24 All here as in Theorem 23 and r 2 N, � (n) as in (96). ThenkLrnf � fk1 � r� (n) : (98)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. As similar to [14] is omitted.
We also present

Theorem 25 Let f 2 
; m; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1 ; :::; Lmr ) as (Am1 ; :::; Amr )

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: ThenLmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
(x)� f (x)



�Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�

rX
i=1

kLmif � fk

1
�

cN

rX
i=1

24!1 (f; ' (mi)) +
4e2
kfk1
�em

1��
i

35 �
24
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rcN

24!1 (f; ' (m1)) +
4e2
kfk1
�em

1��
1

35 : (99)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1 :

Proof. As similar to [14] is omitted.
We also give

Theorem 26 Let all as in Corollary 15, and r 2 N. Here '3 (n) is as in (75).
Then kArnf � fk1 � r

kAnf � fk1 � r'3 (n) : (100)

Proof. As similar to [14] is omitted.

Application 27 A typical application of all of our results is when
�
X; k�k

�
=

(C; j�j), where C are the complex numbers.
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p-Schatten norm generalized Canavati fractional
Ostrowski, Opial and Grüss type inequalities

involving several functions
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Abstract

Using generalized Canavati fractional left and right vectorial Taylor
formulae we establish generalized fractional Ostrowski, Opial and Grüss
type inequalities for several functions that take values in the von Neumann-
Schatten class Bp (H), 1 � p < 1. The estimates are with respect to all
p-Schatten norms, 1 � p <1. We �nish with applications.

2020 Mathematics Subject Classi�cation : 26A33, 26D10, 26D15, 47A60,
47A63.
Keywords and Phrases: p-Schatten norms, von Neumann-Schatten class,
Ostrowski, Opial and Grüss inequalities, generalized Canavati fractional deriv-
ative, generalized Canavati fractional inequalities.

1 Introduction

The following results inspire our work.

Theorem 1 (1938, Ostrowski [16]) Let f : [a; b] ! R be continuous on [a; b]
and di¤erentiable on (a; b) whose derivative f 0 : (a; b)! R is bounded on (a; b),
i.e., kf 0ksup1 := sup

t2(a;b)
jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0ksup1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.

1

583

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 583-621



Ostrowski type inequalities have great applications to integral approxima-
tions in Numerical Analysis.
We mention

Theorem 2 (1882, µCeby�ev [8]) Let f; g : [a; b] ! R be absolutely continuous
functions with f 0; g0 2 L1 ([a; b]). Then����� 1

b� a

Z b

a

f (x) g (x) dx�
 

1

b� a

Z b

a

f (x) dx

! 
1

b� a

Z b

a

g (x) dx

!�����
� 1

12
(b� a)2 kf 0k1 kg

0k1 : (2)

The above integrals are assumed to exist.

The related Grüss type inequalities have many applications to Probability
Theory. We presented also ([3], Ch. 8,9) mixed fractional Ostrowski and Grüss-
Cebysev type inequalities for several functions, acting to all possible directions.
The estimates involve the left and right Caputo fractional derivatives. See also
the monographs written by the author [1], Chapters 24-26 and [2], Chapters
2-6.
We are motivated also by S. Dragomir [11] recent work:
An operator A 2 B (H) is said to belong to the von Neumann-Schatten class

Bp (H), 1 � p <1 if the p-Schatten norm is �nite

kAkp := [tr (jAj
p
)]

1
p <1:

Assume that A : [a; b] ! Bp (H), B : [a; b] ! Bq (H), p; q > 1 with 1
p +

1
q = 1,

are continuous and B is strongly di¤erentiable on (a; b), then
Z b

a

A (t)B (t) dt�
 Z b

a

A (s) ds

!
B (u)


1

�

sup
t2[a;b]

kB0 (t)kq �

8>>>>>>>>>><>>>>>>>>>>:

�
1
2 (b� a) +

��u� a+b
2

��� R b
a
kA (t)kp dt;h

(u�a)�+1+(b�u)�+1
�+1

i 1
�
�R b

a
kA (t)k�p

� 1
�

;

for �; � > 1 with 1
� +

1
� = 1h

1
4 (b� a)

2
+
�
u� a+b

2

�2i
sup
t2[a;b]

kA (t)kp ;

(3)

for all u 2 [a; b], an Ostrowski type inequality.
Further inspiration comes from S. Dragomir [12] recent work on Grüss in-

equalities:

2
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For two continuous functions A;B : [a; b] ! B (H) we de�ne the noncom-
mutative Cebysev fractional

D (A;B) := (b� a)
Z b

a

A (t)B (t) dt�
Z b

a

A (t) dt

Z b

a

B (t) dt:

If p; q > 1 with 1
p+

1
q = 1, let A : [a; b]! Bp (H), B : [a; b]! Bq (H) be strongly

di¤erentiable functions on the interval (a; b), then

kD (A;B)k1 � D
 Z b

a

kA0 (u)kp du;
Z b

a

kB0 (u)kq du
!
� (4)

1

4
(b� a)2

Z b

a

kA0 (u)kp du
Z b

a

kB0 (u)kq du:

We are also inspired by Z. Opial [15], 1960, famous inequality.

Theorem 3 Let x (t) 2 C1 ([0; h]) be such that x (0) = x (h) = 0, and x (t) > 0
in (0; h). Then Z h

0

jx (t)x0 (t)j dt � h

4

Z h

0

(x0 (t))
2
dt: (5)

In (5), the constant h
4 is the best possible. Inequality (5) holds as equality for

the optimal function

x (t) =

�
ct; 0 � t � h

2 ;

c (h� t) ; h
2 � t � h;

(6)

where c > 0 is an arbitrary constant.

Opial-type inequalities are used a lot in proving uniqueness of solutions to
di¤erential equations and also to give upper bounds to their solutions.
For an extensive study about fractional Opial inequalities see the author�s

monograph [1].
In this article we generalize [3], Ch. 8,9 for several Banach algebra Bp (H)

valued functions, in the sense of developing fractional Ostrowski, Opial and
Grüss type inequalities. Now our left and right generalized Canavati frac-
tional derivatives are for Banach space valued functions and our integrals are of
Bochner type [13]. Applications �nish the article.

2 Background on Vectorial generalized Canavati
fractional calculus

All in this section come from [5], pp. 109-115 and [4].

3
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Let g : [a; b]! R be a strictly increasing function. such that g 2 C1 ([a; b]),
and g�1 2 Cn ([g(a); g(b)]), n 2 N, (X; k�k) is a Banach space. Let f 2
Cn ([a; b] ; X), and call l := f �g�1 : [g (a) ; g (b)]! X. It is clear that l; l0; :::; l(n)

are continuous functions from [g (a) ; g (b)] into f ([a; b]) � X:
Let � � 1 such that [�] = n, n 2 N as above, where [�] is the integral part of

the number.
Clearly when 0 < � < 1, [�] = 0.
I) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the left Riemann-Liouville Bochner

fractional integral as

(Jz0� h) (z) :=
1

� (�)

Z z

z0

(z � t)��1 h (t) dt; (7)

for g (a) � z0 � z � g (b), where � is the gamma function; � (�) =
R1
0
e�tt��1dt:

We set Jz00 h = h:
Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0) ([g (a) ; g (b)] ; X)

of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] as:

C�g(x0) ([g (a) ; g (b)] ; X) =n
h 2 C [�] ([g (a) ; g (b)] ; X) : Jg(x0)1�� h

([�]) 2 C1 ([g (x0) ; g (b)] ; X)
o
: (8)

So let h 2 C�g(x0) ([g (a) ; g (b)] ; X), we de�ne the left g-generalized X-valued
fractional derivative of h of order �, of Canavati type, over [g (x0) ; g (b)] as

D�
g(x0)

h :=
�
J
g(x0)
1�� h

([�])
�0
: (9)

Clearly, for h 2 C�g(x0) ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)

h
�
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)�� h([�]) (t) dt; (10)

for all g (x0) � z � g (b) :
In particular, when f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)��
�
f � g�1

�([�])
(t) dt; (11)

for all g (x0) � z � g (b). We have that Dn
g(x0)

�
f � g�1

�
=
�
f � g�1

�(n)
and

D0
g(x0)

�
f � g�1

�
= f � g�1, see [4].

By [4], we have for f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X) ; where x0 2 [a; b]

the following left generalized g-fractional, of Canavati type,X-valued Taylor�s
formula:

4
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Theorem 4 Let f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
(i) If � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (12)

for all x0 � x � b:
(ii) If 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (13)

for all x0 � x � b:

II) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the right Riemann-Liouville Bochner
fractional integral as�

J�z0�h
�
(z) :=

1

� (�)

Z z0

z

(t� z)��1 h (t) dt; (14)

for g (a) � z � z0 � g (b) : We set J0z0�h = h:
Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0)� ([g (a) ; g (b)] ; X)

of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] as:

C�g(x0)� ([g (a) ; g (b)] ; X) :=n
h 2 C [�] ([g (a) ; g (b)] ; X) : J1��g(x0)�h

([�]) 2 C1 ([g (a) ; g (x0)] ; X)
o
: (15)

So let h 2 C�g(x0)� ([g (a) ; g (b)] ; X), we de�ne the right g-generalized X-
valued fractional derivative of h of order �, of Canavati type, over [g (a) ; g (x0)]
as

D�
g(x0)�h := (�1)

n�1
�
J1��g(x0)�h

([�])
�0
: (16)

Clearly, for h 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)�h

�
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)�� h([�]) (t) dt; (17)

for all g (a) � z � g (x0) � g (b) :
In particular, when f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)��
�
f � g�1

�([�])
(t) dt;

(18)

5
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for all g (a) � z � g (x0) � g (b).
We get that�

Dn
g(x0)�

�
f � g�1

��
(z) = (�1)n

�
f � g�1

�(n)
(z) (19)

and
�
D0
g(x0)�

�
f � g�1

��
(z) =

�
f � g�1

�
(z), all z 2 [g (a) ; g (b)] ; see [4].

By [4], we have for f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; where x0 2 [a; b] is
�xed, the following right generalized g-fractional, of Canavati type, X-valued
Taylor�s formula:

Theorem 5 Let f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
(i) If � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (20)

for all a � x � x0;
(ii) If 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (21)

all a � x � x0:

III) Denote by

Dm�
g(x0)

= D�
g(x0)

D�
g(x0)

:::D�
g(x0)

(m-times), m 2 N. (22)

We mention the following modi�ed and generalized left X-valued fractional Tay-
lor�s formula of Canavati type:

Theorem 6 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing: g�1 2
C1 ([g (a) ; g (b)]). Assume that

�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)] ; X),

0 < � < 1, x0 2 [a; b], for i = 0; 1; :::;m. Then

f (x) =
1

� ((m+ 1) �)

Z g(x)

g(x0)

(g (x)� z)(m+1)��1
�
D
(m+1)�
g(x0)

�
f � g�1

��
(z) dz;

(23)
all x0 � x � b:

6
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IV) Denote by

Dm�
g(x0)� = D

�
g(x0)�D

�
g(x0)�:::D

�
g(x0)� (m times), m 2 N. (24)

We mention the following modi�ed and generalized right X-valued fractional
Taylor�s formula of Canavati type:

Theorem 7 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing: g�1 2
C1 ([g (a) ; g (b)]). Assume that

�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)] ; X),

0 < � < 1, x0 2 [a; b], for all i = 0; 1; :::;m. Then

f (x) =
1

� ((m+ 1) �)

Z g(x0)

g(x)

(z � g (x))(m+1)��1
�
D
(m+1)�
g(x0)�

�
f � g�1

��
(z) dz;

(25)
all a � x � x0 � b:

3 Basic Banach Algebras background

All here come from [17].
We need

De�nition 8 ([17], p. 245) A complex algebra is a vector space A over the
complex �led C in which a multiplication is de�ned that satis�es

x (yz) = (xy) z; (26)

(x+ y) z = xz + yz, x (y + z) = xy + xz; (27)

and
� (xy) = (�x) y = x (�y) ; (28)

for all x; y and z in A and for all scalars �.
Additionally if A is a Banach space with respect to a norm that satis�es the

multiplicative inequality

kxyk � kxk kyk (x 2 A, y 2 A) (29)

and if A contains a unit element e such that

xe = ex = x (x 2 A) (30)

and
kek = 1; (31)

then A is called a Banach algebra.
A is commutative i¤ xy = yx for all x; y 2 A:

7
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We make

Remark 9 Commutativity of A is explicited stated when needed.
There exists at most one e 2 A that satis�es (30).
Inequality (29) makes multiplication to be continuous, more precisely left and

right continuous, see [17], p. 246.
Multiplication in A is not necessarily the numerical multiplication, it is some-

thing more general and it is de�ned abstractly, that is for x; y 2 A we have
xy 2 A, e.g. composition or convolution, etc.
For nice examples about Banach algebras see [17], p. 247-248, § 10.3.

We also make

Remark 10 Next we mention about integration of A-valued functions, see [17],
p. 259, § 10.22:
If A is a Banach algebra and f is a continuous A-valued function on some

compact Hausdor¤ space Q on which a complex Borel measure � is de�ned, thenR
fd� exists and has all the properties that were discussed in Chapter 3 of [17],

simply because A is a Banach space. However, an additional property can be
added to these, namely: If x 2 A, then

x

Z
Q

f d� =

Z
Q

xf (p) d� (p) (32)

and �Z
Q

f d�

�
x =

Z
Q

f (p)x d� (p) : (33)

The Bochner integrals we will involve in our article follow (32) and (33). Also,
let f 2 C ([a; b] ; X), where [a; b] � R, (X; k�k) is a Banach space. By [5], p. 3,
f is Bochner integrable.

4 p-Schatten norms background

In this advanced section all come from [11].
Let (H; h�; �i) be a complex Hilbert space and B (H) the Banach algebra of

all bounded linear operators on H. If feigi2I an orthonormal basis of H, we
say that A 2 B (H) is of trace class if

kAk1 :=
X
i2I

hjAj ei; eii <1: (34)

The de�nition of kAk1 does not depend on the choice of the orthornormal basis
feigi2I . We denote by B1 (H) the set of trace class operators in B (H).

8
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We de�ne the trace of a trace class operator A 2 B1 (H) to be

tr (A) :=
X
i2I

hAei; eii ; (35)

where feigi2I an orthonormal basis of H. Note that this coincides with the
usual de�nition of the trace if H is �nite-dimensional. We observe that the
series (35) converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 11 We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

tr (A�) = tr (A); (36)

(ii) If A 2 B1 (H) and T 2 B (H), then AT; TA 2 B1 (H) and

tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ; (37)

(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A;B 2 B2 (H) then AB, BA 2 B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) (�nite rank operators) is a dense subspace of B1 (H) :

An operator A 2 B (H) is said to belong to the von Neumann-Schatten class
Bp (H), 1 � p <1 if the p-Schatten norm is �nite [19, p. 60-64]

kAkp := [tr (jAj
p
)]

1
p <1;

jAjp is an operator notation and not a power.
For 1 < p < q <1 we have that

B1 (H) � Bp (H) � Bq (H) � B (H) (38)

and
kAk1 � kAkp � kAkq � kAk : (39)

For p � 1 the functional k�kp is a norm on the �-ideal Bp (H), which is a Banach
algebra, and

�
Bp (H) ; k�kp

�
is a Banach space.

Also, see for instance [19, p. 60-64], for p � 1,

kAkp = kA
�kp , A 2 Bp (H) (40)

kABkp � kAkp kBkp , A;B 2 Bp (H) (41)

and

kABkp � kAkp kBk , kBAkp � kBk kAkp , A 2 Bp (H) , B 2 B (H) : (42)

9
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This implies that

kCABkp � kCk kAkp kBk , A 2 Bp (H) , B;C 2 B (H) : (43)

In terms of p-Schatten norm we have the Hölder inequality for p; q > 1 with
1
p +

1
q = 1 :

(jtr (AB)j �) kABk1 � kAkp kBkq , A 2 Bp (H) , B 2 Bq (H) : (44)

For the theory of trace functionals and their applications the interested reader
is referred to [18] and [19].
For some classical trace inequalities see [9], [10] and [14], which are contin-

uations of the work of Bellman [7].

5 Main Results

We start with 1-Schatten norm weighted mixed generalized Canavati fractional
Ostrowski type inequalities involving several functions taking values in the Ba-
nach algebra B2 (H) � B (H):

Theorem 12 Let the �-ideal B2 (H), which (B2 (H) ; k�k2) is a Banach algebra;
x0 2 [a; b] � R; � � 1, n = [�]; fi 2 Cn ([a; b] ;B2 (H)), i = 1; :::; r 2 N �
f1g; g 2 C1 ([a; b]), strictly increasing such that g�1 2 Cn ([g (a) ; g (b)]), with�
fi � g�1

�(k)
(g (x0)) = 0, k = 1; :::; n� 1; i = 1; :::; r: Assume further that fi �

g�1 2 C�g(x0)� ([g (a) ; g (b)] ;B2 (H)) \ C
�
g(x0)

([g (a) ; g (b)] ;B2 (H)), i = 1; :::; r:
Denote by

K (f1; :::; fr) (x0) :=

rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775 : (45)

Then

kK (f1; :::; fr) (x0)k1 �
1

� (� + 1)

rX
i=1

��D�
g(x0)�

�
fi � g�1

�
2


1;[g(a);g(x0)]

(g (x0)� g (a))�

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775+ (46)

2664D�
g(x0)

�
fi � g�1

�
2


1;[g(x0);g(b)]

(g (b)� g (x0))�

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775
3775 :

10

592

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 583-621



Proof. Since
�
fi � g�1

�(k)
(g (x0)) = 0, k = 1; :::; [�]�1; i = 1; :::; r; we have

by Theorem 4 that

fi (x)� fi (x0) =
1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt; (47)

8 x 2 [x0; b] ;
and by Theorem 5 that

fi (x)� fi (x0) =
1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt; (48)

8 x 2 [a; x0] ; for all i = 1; :::; r:

Left multiplying (47) and (48) with
�Qr

j=1
j 6=i

fj (x)

�
we get, respectively,

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)�
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =
�Qr

j=1
j 6=i

fj (x)

�
� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt; (49)

8 x 2 [x0; b] ;
and 0BB@ rY

j=1
j 6=i

fj (x)

1CCA fi (x)�
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) = (50)

�Qr
j=1
j 6=i

fj (x)

�
� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt;

8 x 2 [a; x0] ; for all i = 1; :::; r:
Adding (49) and (50) as separate groups, we obtain

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)� rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =

1

� (�)

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt; (51)

11
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8 x 2 [x0; b] ;
and

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x)� rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =
1

� (�)

rX
i=1

0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt; (52)

8 x 2 [a; x0] :
Next, we integrate (51) and (52) with respect to x 2 [a; b]. We have

rX
i=1

Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx� rX
i=1

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0) =

1

� (�)

rX
i=1

2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt

!
dx

3775 ;
(53)

and

rX
i=1

Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx� rX
i=1

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0) =

1

� (�)

rX
i=1

2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt

!
dx

3775 ;
(54)

Finally, adding (53) and (54) we obtain the useful identity

K (f1; :::; fr) (x0) :=

rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775 =
1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt

!
dx

3775
12
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+

2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt

!
dx

3775
3775 :
(55)

Therefore, we get that
kK (f1; :::; fr) (x0)k1 =

rX
i=1

2664Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA fi (x0)

3775

1

� 1

� (�)

rX
i=1

2664

2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt

!
dx

3775

1

(56)

+


2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt

!
dx

3775

1

3775 �

1

� (�)

rX
i=1

2664
2664Z x0

a


0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
fi � g�1

��
(t) dt

!
1

dx

3775
(57)

+

2664Z b

x0


0BB@ rY
j=1
j 6=i

fj (x)

1CCA
 Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
fi � g�1

��
(t) dt

!
1

dx

3775
3775 �

1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA
 Z g(x0)

g(x)

(t� g (x))��1
�D�

g(x0)�
�
fi � g�1

��
(t)

2
dt

!
dx

3775
(58)

+

2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA
 Z g(x)

g(x0)

(g (x)� t)��1
�D�

g(x0)

�
fi � g�1

��
(t)

2
dt

!
dx

3775
3775 =: (�) :

Hence it holds
kK (f1; :::; fr) (x0)k1 � (�) : (59)

We have that
(�) � 1

� (� + 1)

13
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rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��
2


1;[g(a);g(x0)]

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x0)� g (x))� dx
3775

+

2664�D�
g(x0)

�
fi � g�1

��
2


1;[g(x0);g(b)]

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x)� g (x0))� dx
3775
3775 �

(60)
1

� (� + 1)

rX
i=1

���D�
g(x0)�

�
fi � g�1

��
2


1;[g(a);g(x0)]

(g (x0)� g (a))�

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775+ (61)

2664�D�
g(x0)

�
fi � g�1

��
2


1;[g(x0);g(b)]

(g (b)� g (x0))�

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775
3775 ;

proving (46).
Next comes an L1 estimate.

Theorem 13 All as in Theorem 12. Then

kjK (f1; :::; fr) (x0)k1 �
1

� (�)

rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��
2


L1([g(a);g(x0)])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x0)� g (x))��1 dx
3775

(62)

+

2664�D�
g(x0)

�
fi � g�1

��
2


L1([g(x0);g(b)])

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x)� g (x0))��1 dx
3775
3775 :

Proof. We observe that (by (58), (59))

(�) � 1

� (�)

rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��
2


L1([g(a);g(x0)])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x0)� g (x))��1 dx
3775

(63)

14

596

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

George A. Anastassiou 583-621



+

2664�D�
g(x0)

�
fi � g�1

��
2


L1([g(x0);g(b)])

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x)� g (x0))��1 dx
3775
3775 ;

proving (62).
An Lp estimate follows.

Theorem 14 All as in Theorem 12. Let now p; q > 1 : 1p +
1
q = 1. Then

kK (f1; :::; fr) (x0)k1 �
1

(p (� � 1) + 1)
1
p � (�)

rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��
2


q;[g(a);g(x0)]

0BB@Z x0

a

(g (x0)� g (x))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775

(64)

+

2664�D�
g(x0)

�
fi � g�1

��
2


q;[g(x0);g(b)]

0BB@Z b

x0

(g (x)� g (x0))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775
3775 :

Proof. We have that (by (58), (59))

(�) � 1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA
 Z g(x0)

g(x)

(t� g (x))p(��1) dt
! 1

p

 Z g(x0)

g(x)

�D�
g(x0)�

�
fi � g�1

��
(t)
q
2
dt

! 1
q

dx

35+
2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA
 Z g(x)

g(x0)

(g (x)� t)p(��1) dt
! 1

p

 Z g(x0)

g(x)

�D�
g(x0)

�
fi � g�1

��
(t)
q
2
dt

! 1
q

dx

3535 � (65)

1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x0)� g (x))��1+
1
p

(p (� � 1) + 1)
1
p

�D�
g(x0)�

�
fi � g�1

��
2


q;[g(a);g(x0)]

dx

3775

15
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+

2664Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (g (x)� g (x0))��1+
1
p

(p (� � 1) + 1)
1
p

�D�
g(x0)

�
fi � g�1

��
(z)

2


q;[g(x0);g(b)]

dx

3775
3775

=
1

(p (� � 1) + 1)
1
p � (�)

rX
i=1

2664�D�
g(x0)�

�
fi � g�1

��
2


q;[g(a);g(x0)]

0BB@Z x0

a

(g (x0)� g (x))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA

(66)

+
�D�

g(x0)

�
fi � g�1

��
2


q;[g(x0);g(b)]

0BB@Z b

x0

(g (x)� g (x0))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775 ;

proving (64).
We continue with -Schatten norm related Ostrowski fractional inequalities:

Theorem 15 Let  � 1; the �-ideal B (H), which
�
B (H) ; k�k

�
is a Banach

algebra; x0 2 [a; b] � R; � � 1, n = [�]; fi 2 Cn ([a; b] ;B (H)), i = 1; :::; r 2
N � f1g; g 2 C1 ([a; b]), strictly increasing such that g�1 2 Cn ([g (a) ; g (b)]),
with

�
fi � g�1

�(k)
(g (x0)) = 0, k = 1; :::; n � 1; i = 1; :::; r: Assume further

that fi �g�1 2 C�g(x0)� ([g (a) ; g (b)] ;B (H))\C
�
g(x0)

([g (a) ; g (b)] ;B (H)), i =
1; :::; r:

Here K (f1; :::; fr) (x0) is as in (45). Then

kK (f1; :::; fr) (x0)k �
1

� (� + 1)

rX
i=1

""D�
g(x0)�

�
fi � g�1

�



1;[g(a);g(x0)]

(g (x0)� g (a))�

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+ (67)

2664D�
g(x0)

�
fi � g�1

�



1;[g(x0);g(b)]

(g (b)� g (x0))�

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 :

Proof. As similar to Theorem 12 is omitted. Use of (41).
An L1 estimate follows:

16
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Theorem 16 All as in Theorem 15. Then

kjK (f1; :::; fr) (x0)k �
1

� (�)

rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��



L1([g(a);g(x0)])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x0)� g (x))��1 dx
3775

(68)

+

2664�D�
g(x0)

�
fi � g�1

��



L1([g(x0);g(b)])

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (g (x)� g (x0))��1 dx
3775
3775 :

Proof. As similar to Theorem 13 is omitted.
An Lp estimate follows.

Theorem 17 All as in Theorem 15. Let now p; q > 1 : 1p +
1
q = 1. Then

kK (f1; :::; fr) (x0)k �
1

(p (� � 1) + 1)
1
p � (�)

rX
i=1

2664
2664�D�

g(x0)�
�
fi � g�1

��



q;[g(a);g(x0)]

0BB@Z x0

a

(g (x0)� g (x))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775

(69)

+

2664�D�
g(x0)

�
fi � g�1

��



q;[g(x0);g(b)]

0BB@Z b

x0

(g (x)� g (x0))��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 :

Proof. As similar to Theorem 14 is omitted.
When r = 2 we derive the following p-Schatten norm operator related Os-

trowski type Canavati fractional inequalities.

Theorem 18 Let p; q > 1 : 1p +
1
q = 1, and let the �-ideals Bp (H), Bq (H), for

which
�
Bp (H) ; k�kp

�
;
�
Bq (H) ; k�kq

�
are Banach algebras; x0 2 [a; b] � R, � �

1, n = [�]; A1 2 Cn ([a; b] ;Bp (H)), A2 2 Cn ([a; b] ;Bq (H)); g 2 C1 ([a; b]),
strictly increasing, such that g�1 2 Cn ([g (a) ; g (b)]), with

�
Ai � g�1

�(k)
(g (x0)) =

0, k = 1; :::; n�1; i = 1; 2: Assume further that A1�g�1 2 C�g(x0)� ([g (a) ; g (b)] ;Bp (H))\
C�g(x0) ([g (a) ; g (b)] ;Bp (H)), and A2 � g

�1 2 C�g(x0)� ([g (a) ; g (b)] ;Bq (H)) \
C�g(x0) ([g (a) ; g (b)] ;Bq (H)) : Then

17
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1) it holds

� (A1; A2) (x0) :=

Z b

a

A2 (x)A1 (x) +

Z b

a

A1 (x)A2 (x) dx�

 Z b

a

A2 (x) dx

!
A1 (x0)�

 Z b

a

A1 (x) dx

!
A2 (x0) =

1

� (�)

("Z x0

a

A2 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A1 � g�1

��
(z) dz

!
dx

#
+

(70)"Z b

x0

A2 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A1 � g�1

��
(z) dz

!
dx

#
+

"Z x0

a

A1 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A2 � g�1

��
(z) dz

!
dx

#
+

"Z b

x0

A1 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A2 � g�1

��
(z) dz

!
dx

#)
;

2) for ; � > 1 : 1 +
1
� = 1, we have that

k� (A1; A2) (x0)k1 �
1

� (�) ( (�� 1) + 1)
1
("D�

g(x0)�
�
A1 � g�1

�
p


�;[g(a);g(x0)]

Z x0

a

kA2 (x)kq (g (x0)� g (x))
�� 1

� dx

#
+

"D�
g(x0)

�
A1 � g�1

�
p


�;[g(x0);g(b)]

Z b

x0

kA2 (x)kq (g (x)� g (x0))
�� 1

� dx

#
+

(71)"D�
g(x0)�

�
A2 � g�1

�
q


�;[g(a);g(x0)]

Z x0

a

kA1 (x)kp (g (x0)� g (x))
�� 1

� dx

#
+

"D�
g(x0)

�
A2 � g�1

�
q


�;[g(x0);g(b)]

Z b

x0

kA1 (x)kp (g (x)� g (x0))
�� 1

� dx

#)
;

3) we also obtain

k� (A1; A2) (x0)k1 �
1

� (�)("D�
g(x0)�

�
A1 � g�1

�
p


L1([g(a);g(x0)])

Z x0

a

kA2 (x)kq (g (x0)� g (x))
��1

dx

#
+

18
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"D�
g(x0)

�
A1 � g�1

�
p


L1([g(x0);g(b)])

Z b

x0

kA2 (x)kq (g (x)� g (x0))
��1

dx

#
+

"D�
g(x0)�

�
A2 � g�1

�
q


L1([g(a);g(x0)])

Z x0

a

kA1 (x)kp (g (x0)� g (x))
��1

dx

#
+

(72)"D�
g(x0)

�
A2 � g�1

�
q


L1([g(x0);g(b)])

Z b

x0

kA1 (x)kp (g (x)� g (x0))
��1

dx

#)
;

and
4)

k� (A1; A2) (x0)k1 �
1

� (�+ 1)("D�
g(x0)�

�
A1 � g�1

�
p


1;[g(a);g(x0)]

Z x0

a

kA2 (x)kq (g (x0)� g (x))
�
dx

#
+

"D�
g(x0)

�
A1 � g�1

�
p


1;[g(x0);g(b)]

Z b

x0

kA2 (x)kq (g (x)� g (x0))
�
dx

#
+

"D�
g(x0)�

�
A2 � g�1

�
q


1;[g(a);g(x0)]

Z x0

a

kA1 (x)kp (g (x0)� g (x))
�
dx

#
+

(73)"D�
g(x0)

�
A2 � g�1

�
q


1;[g(x0);g(b)]

Z b

x0

kA1 (x)kp (g (x)� g (x0))
�
dx

#)
:

Proof. Here we have that (acting as in the proof of Theorem 12 for r = 2)

� (A1; A2) (x0) :=

Z b

a

A2 (x)A1 (x) +

Z b

a

A1 (x)A2 (x) dx� Z b

a

A2 (x) dx

!
A1 (x0)�

 Z b

a

A1 (x) dx

!
A2 (x0)

(55)
=

1

� (�)

("Z x0

a

A2 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A1 � g�1

��
(z) dz

!
dx

#
+

"Z b

x0

A2 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A1 � g�1

��
(z) dz

!
dx

#
+

"Z x0

a

A1 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A2 � g�1

��
(z) dz

!
dx

#
+

"Z b

x0

A1 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A2 � g�1

��
(z) dz

!
dx

#)
: (74)
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Therefore it holds by taking the 1-Schatten norm that

k� (A1; A2) (x0)k1 =

Z b

a

A2 (x)A1 (x) +

Z b

a

A1 (x)A2 (x) dx�

 Z b

a

A2 (x) dx

!
A1 (x0)�

 Z b

a

A1 (x) dx

!
A2 (x0)


1

�

1

� (�)

("
Z x0

a

A2 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A1 � g�1

��
(z) dz

!
dx


1

#
+

"
Z b

x0

A2 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A1 � g�1

��
(z) dz

!
dx


1

#
+

"
Z x0

a

A1 (x)

 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A2 � g�1

��
(z) dz

!
dx


1

#
+

"
Z b

x0

A1 (x)

 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A2 � g�1

��
(z) dz

!
dx


1

#)
�

(75)
1

� (�)

("Z x0

a

A2 (x)
 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A1 � g�1

��
(z) dz

!
1

dx

#
+

"Z b

x0

A2 (x)
 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A1 � g�1

��
(z) dz

!
1

dx

#
+

"Z x0

a

A1 (x)
 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A2 � g�1

��
(z) dz

!
1

dx

#
+

"Z b

x0

A1 (x)
 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A2 � g�1

��
(z) dz

!
1

dx

#)
�

(76)
(by using the p-Schatten norm and Hölder�s type inequality (44) for p; q > 1 :
1
p +

1
q = 1)

1

� (�)

8<:
24Z x0

a

kA2 (x)kq


 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A1 � g�1

��
(z) dz

!
p

dx

35+
24Z b

x0

kA2 (x)kq


 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A1 � g�1

��
(z) dz

!
p

dx

35+
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24Z x0

a

kA1 (x)kp


 Z g(x0)

g(x)

(z � g (x))��1
�
D�
g(x0)�

�
A2 � g�1

��
(z) dz

!
q

dx

35+
24Z b

x0

kA1 (x)kp


 Z g(x)

g(x0)

(g (x)� z)��1
�
D�
g(x0)

�
A2 � g�1

��
(z) dz

!
q

dx

359=; �

(77)
1

� (�)

("Z x0

a

kA2 (x)kq

 Z g(x0)

g(x)

(z � g (x))��1
�D�

g(x0)�
�
A1 � g�1

��
(z)

p
dz

!
dx

#
+

"Z b

x0

kA2 (x)kq

 Z g(x)

g(x0)

(g (x)� z)��1
�D�

g(x0)

�
A1 � g�1

��
(z)

p
dz

!
dx

#
+

"Z x0

a

kA1 (x)kp

 Z g(x0)

g(x)

(z � g (x))��1
�D�

g(x0)�
�
A2 � g�1

��
(z)

q
dz

!
dx

#
+

"Z b

x0

kA1 (x)kp

 Z g(x)

g(x0)

(g (x)� z)��1
�D�

g(x0)

�
A2 � g�1

��
(z)

q
dz

!
dx

#)
:

(78)
We have proved, so far, that

k� (A1; A2) (x0)k1 �

1

� (�)

("Z x0

a

kA2 (x)kq

 Z g(x0)

g(x)

(z � g (x))��1
�D�

g(x0)�
�
A1 � g�1

��
(z)

p
dz

!
dx

#
+

"Z b

x0

kA2 (x)kq

 Z g(x)

g(x0)

(g (x)� z)��1
�D�

g(x0)

�
A1 � g�1

��
(z)

p
dz

!
dx

#
+

"Z x0

a

kA1 (x)kp

 Z g(x0)

g(x)

(z � g (x))��1
�D�

g(x0)�
�
A2 � g�1

��
(z)

q
dz

!
dx

#
+

"Z b

x0

kA1 (x)kp

 Z g(x)

g(x0)

(g (x)� z)��1
�D�

g(x0)

�
A2 � g�1

��
(z)

q
dz

!
dx

#)
=: (�) :

(79)
Let now ; � > 1 such that 1+

1
� = 1, and we apply the usual Hölder�s inequality

in (79). Then we have that

k� (A1; A2) (x0)k1 � (�) �
1

� (�) ( (�� 1) + 1)
1
8<:

24Z x0

a

kA2 (x)kq (g (x0)� g (x))
(��1)+1



 Z g(x0)

g(x)

�D�
g(x0)�

�
A1 � g�1

��
(z)
�
p
dz

! 1
�

dx

35+
21
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24Z b

x0

kA2 (x)kq (g (x)� g (x0))
(��1)+1



 Z g(x)

g(x0)

�D�
g(x0)

�
A1 � g�1

��
(z)
�
p
dz

! 1
�

dx

35+
24Z x0

a

kA1 (x)kp (g (x0)� g (x))
(��1)+1



 Z g(x0)

g(x)

�D�
g(x0)�

�
A2 � g�1

��
(z)
�
q
dz

! 1
�

dx

35+
(80)24Z b

x0

kA1 (x)kp (g (x)� g (x0))
(��1)+1



 Z g(x)

g(x0)

�D�
g(x0)

�
A2 � g�1

��
(z)
�
q
dz

! 1
�

dx

359=;
� 1

� (�) ( (�� 1) + 1)
1
("D�

g(x0)�
�
A1 � g�1

�
p


�;[g(a);g(x0)]

Z x0

a

kA2 (x)kq (g (x0)� g (x))
�� 1

� dx

#
+

"D�
g(x0)

�
A1 � g�1

�
p


�;[g(x0);g(b)]

Z b

x0

kA2 (x)kq (g (x)� g (x0))
�� 1

� dx

#
+

(81)"D�
g(x0)�

�
A2 � g�1

�
q


�;[g(a);g(x0)]

Z x0

a

kA1 (x)kp (g (x0)� g (x))
�� 1

� dx

#
+

"D�
g(x0)

�
A2 � g�1

�
q


�;[g(x0);g(b)]

Z b

x0

kA1 (x)kp (g (x)� g (x0))
�� 1

� dx

#)
;

proving (71).
We also obtain

k� (A1; A2) (x0)k1 � (�) �
1

� (�)("D�
g(x0)�

�
A1 � g�1

�
p


L1([g(a);g(x0)])

Z x0

a

kA2 (x)kq (g (x0)� g (x))
��1

dx

#
+

"D�
g(x0)

�
A1 � g�1

�
p


L1([g(x0);g(b)])

Z b

x0

kA2 (x)kq (g (x)� g (x0))
��1

dx

#
+

"D�
g(x0)�

�
A2 � g�1

�
q


L1([g(a);g(x0)])

Z x0

a

kA1 (x)kp (g (x0)� g (x))
��1

dx

#
+

(82)"D�
g(x0)

�
A2 � g�1

�
q


L1([g(x0);g(b)])

Z b

x0

kA1 (x)kp (g (x)� g (x0))
��1

dx

#)
;

proving (72).
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At last we derive

k� (A1; A2) (x0)k1 � (�) �
1

� (�+ 1)("D�
g(x0)�

�
A1 � g�1

�
p


1;[g(a);g(x0)]

Z x0

a

kA2 (x)kq (g (x0)� g (x))
�
dx

#
+

"D�
g(x0)

�
A1 � g�1

�
p


1;[g(x0);g(b)]

Z b

x0

kA2 (x)kq (g (x)� g (x0))
�
dx

#
+

"D�
g(x0)�

�
A2 � g�1

�
q


1;[g(a);g(x0)]

Z x0

a

kA1 (x)kp (g (x0)� g (x))
�
dx

#
+

"D�
g(x0)

�
A2 � g�1

�
q


1;[g(x0);g(b)]

Z b

x0

kA1 (x)kp (g (x)� g (x0))
�
dx

#)
;

(83)
proving (73).
The theorem is proved.
Next we present p-Schatten left and right generalized Canavati fractional

Opial type inequalities:

Theorem 19 Let the �-ideal B2 (H), which (B2 (H) ; k�k2) is a Banach algebra;
x0 2 [a; b] � R; � � 1, n = [�]; f 2 Cn ([a; b] ;B2 (H)), g 2 C1 ([a; b]), strictly
increasing such that g�1 2 Cn ([g (a) ; g (b)]), with

�
f � g�1

�(k)
(g (x0)) = 0,

k = 0; 1; :::; n� 1: Assume further that f � g�1 2 C�g(x0) ([g (a) ; g (b)] ;B2 (H)) :
Let also p; q > 1 : 1p +

1
q = 1. ThenZ z

g(x0)

��f � g�1� (w)� ��D�
g(x0)

�
f � g�1

��
(w)
�

1
dw � (84)

2�
1
q (z � g (x0))�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

 Z z

g(x0)

�D�
g(x0)

�
f � g�1

��
(w)
q
2
dw

! 2
q

;

for all g (x0) � z � g (b) :

Proof. Very similar to the proof of Theorem 13 of [6]. Use of (44) for
p = q = 2:

A similar result comex next:

Theorem 20 Let  � 1, the �-ideal B (H), which
�
B (H) ; k�k

�
is a Banach

algebra; x0 2 [a; b] � R; � � 1, n = [�]; f 2 Cn ([a; b] ;B (H)), g 2 C1 ([a; b]),
strictly increasing such that g�1 2 Cn ([g (a) ; g (b)]), with

�
f � g�1

�(k)
(g (x0)) =

0, k = 0; 1; :::; n�1: Assume further that f�g�1 2 C�g(x0) ([g (a) ; g (b)] ;B (H)) :
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Let also p; q > 1 : 1p +
1
q = 1. ThenZ z

g(x0)

��f � g�1� (w)� ��D�
g(x0)

�
f � g�1

��
(w)
�


dw � (85)

2�
1
q (z � g (x0))�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

 Z z

g(x0)

�D�
g(x0)

�
f � g�1

��
(w)
q

dw

! 2
q

;

for all g (x0) � z � g (b) :

Proof. Very similar to the proof of Theorem 13 of [6]. Use of (41) for p = :

It follows the corresponding right side fractional Opial type inequalities:

Theorem 21 All as in Theorem 19, however now it is f�g�1 2 C�g(x0)� ([g (a) ; g (b)] ;B2 (H)).
Then Z g(x0)

z

��f � g�1� (w)� ��D�
g(x0)�

�
f � g�1

��
(w)
�

1
dw �

2�
1
q (g (x0)� z)�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

 Z g(x0)

z

�D�
g(x0)�

�
f � g�1

��
(t)
q
2
dt

! 2
q

;

(86)
for all g (a) � z � g (x0) :

Proof. Based on (20), and as similar to the proof of Theorem 19 is omitted.

Next comes another right ride fractional Opial type inequality:

Theorem 22 All as in Theorem 20, however now it is f�g�1 2 C�g(x0)� ([g (a) ; g (b)] ;B (H)).
Then Z g(x0)

z

��f � g�1� (w)� ��D�
g(x0)�

�
f � g�1

��
(w)
�


dw �

2�
1
q (g (x0)� z)�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

 Z g(x0)

z

�D�
g(x0)�

�
f � g�1

��
(t)
q

dt

! 2
q

;

(87)
for all g (a) � z � g (x0) :

Proof. Based on (20), and as similar to the proof of Theorem 19 is omitted.

It follows the modi�ed generalized left B2 (H)-valued fractional Opial in-
equality:
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Theorem 23 All as in Theorem 6, where X = B2 (H) and let p; q > 1 : 1p+
1
q =

1. Here we assume that 1
(m+1)q < � < 1: ThenZ z

g(x0)

��f � g�1� (w)� ��D(m+1)�
g(x0)

�
f � g�1

��
(w)
�

1
dw � (88)

2�
1
q (z � g (x0))(m+1)�+

1
p�

1
q

� ((m+ 1) �) [(p ((m+ 1) � � 1) + 1) (p ((m+ 1) � � 1) + 2)]
1
p Z z

g(x0)

�D(m+1)�
g(x0)

�
f � g�1

��
(t)
q
2
dt

! 2
q

;

for all g (x0) � z � g (b) :

Proof. As in Theorem 19.
Next comes another modi�ed generalized left B (H)-valued fractional Opial

inequality:

Theorem 24 All as in Theorem 6, where X = B (H) and let p; q > 1 : 1p+
1
q =

1. Here we assume that 1
(m+1)q < � < 1: ThenZ z

g(x0)

��f � g�1� (w)� ��D(m+1)�
g(x0)

�
f � g�1

��
(w)
�


dw � (89)

2�
1
q (z � g (x0))(m+1)�+

1
p�

1
q

� ((m+ 1) �) [(p ((m+ 1) � � 1) + 1) (p ((m+ 1) � � 1) + 2)]
1
p Z z

g(x0)

�D(m+1)�
g(x0)

�
f � g�1

��
(t)
q

dt

! 2
q

;

for all g (x0) � z � g (b) :

Proof. As in Theorem 19.
The corresponding modi�ed generalized right B2 (H)-valued fractional Opial

inequality comes next:

Theorem 25 All as in Theorem 7, where X = B2 (H) and let p; q > 1 : 1p+
1
q =

1. Here we assume that 1
(m+1)q < � < 1: ThenZ g(x0)

z

��f � g�1� (w)� ��D(m+1)�
g(x0)�

�
f � g�1

��
(w)
�

1
dw � (90)

2�
1
q (g (x0)� z)(m+1)�+

1
p�

1
q

� ((m+ 1) �) [(p ((m+ 1) � � 1) + 1) (p ((m+ 1) � � 1) + 2)]
1
p

25
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 Z g(x0)

z

�D(m+1)�
g(x0)�

�
f � g�1

��
(t)
q
2
dt

! 2
q

;

for all g (a) � z � g (x0) :

Proof. As in Theorem 19.
The corresponding modi�ed generalized right B (H)-valued fractional Opial

inequality comes next:

Theorem 26 All as in Theorem 7, where X = B (H) and let p; q > 1 : 1p+
1
q =

1. Here we assume that 1
(m+1)q < � < 1: ThenZ g(x0)

z

��f � g�1� (w)� ��D(m+1)�
g(x0)�

�
f � g�1

��
(w)
�


dw � (91)

2�
1
q (g (x0)� z)(m+1)�+

1
p�

1
q

� ((m+ 1) �) [(p ((m+ 1) � � 1) + 1) (p ((m+ 1) � � 1) + 2)]
1
p Z g(x0)

z

�D(m+1)�
g(x0)�

�
f � g�1

��
(t)
q

dt

! 2
q

;

for all g (a) � z � g (x0) :

Proof. As in Theorem 19.
We make

Remark 27 (to Theorem 12)
Case of inequality (46):
Call and assume

M1 (f1; :::; fr) := (92)

max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�
2


1;[g(a);g(x0)]

;

sup
x02[a;b]

D
g(x0)

�
fi � g�1

�
2


1;[g(x0);g(b)]

)
< +1:

Then
kK (f1; :::; fr) (x0)k1 � Right hand side (46) �

M1 (f1; :::; fr) (g (b)� g (a))�

� (� + 1)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA : (93)

We make
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Remark 28 (to Theorem 13)
Case of inequality (62):
Call and assume

M2 (f1; :::; fr) := (94)

max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�
2


L1([g(a);g(x0)])

;

sup
x02[a;b]

D�
g(x0)

�
fi � g�1

�
2


L1([g(x0);g(b)])

)
< +1:

Then
kK (f1; :::; fr) (x0)k1 � Right hand side (62) �

M2 (f1; :::; fr) (g (b)� g (a))��1

� (�)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA : (95)

We make

Remark 29 (to Theorem 14)
Case of inequality (64):
Call and assume (p; q > 1 : 1p +

1
q = 1):

M3 (f1; :::; fr) := (96)

max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�
2


q;([g(a);g(x0)])

;

sup
x02[a;b]

D�
g(x0)

�
fi � g�1

�
2


q;([g(x0);g(b)])

)
< +1:

Then
kK (f1; :::; fr) (x0)k1 � Right hand side (64) �

M3 (f1; :::; fr) (g (b)� g (a))��
1
q

(p (� � 1) + 1)
1
p � (�)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA : (97)

We make

Remark 30 (to Theorem 15) ( � 1)
Case of inequality (67):
Call and assume

M
1 (f1; :::; fr) := (98)
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max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�



1;[g(a);g(x0)]

;

sup
x02[a;b]

D
g(x0)

�
fi � g�1

�



1;[g(x0);g(b)]

)
< +1:

Then
kK (f1; :::; fr) (x0)k � Right hand side (67) �

M
1 (f1; :::; fr) (g (b)� g (a))

�

� (� + 1)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA : (99)

We make

Remark 31 (to Theorem 16) ( � 1)
Case of inequality (68):
Call and assume:

M
2 (f1; :::; fr) := (100)

max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�



L1([g(a);g(x0)])

;

sup
x02[a;b]

D�
g(x0)

�
fi � g�1

�



L1([g(x0);g(b)])

)
< +1:

Then
kK (f1; :::; fr) (x0)k � Right hand side (68) �

M
2 (f1; :::; fr) (g (b)� g (a))

��1

� (�)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA : (101)

We make

Remark 32 (to Theorem 17) ( � 1)
Case of inequality (69):
Call and assume (p; q > 1 : 1p +

1
q = 1):

M
3 (f1; :::; fr) := (102)

max
i=1;:::;r

(
sup

x02[a;b]

D�
g(x0)�

�
fi � g�1

�



q;([g(a);g(x0)])

;

sup
x02[a;b]

D�
g(x0)

�
fi � g�1

�



q;([g(x0);g(b)])

)
< +1:
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Then
kK (f1; :::; fr) (x0)k � Right hand side (69) �

M
3 (f1; :::; fr) (g (b)� g (a))

�� 1
q

(p (� � 1) + 1)
1
p � (�)

rX
i=1

0BB@Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA : (103)

Remark 33 (to Theorem 18)
i) for ; � > 1 : 1 +

1
� = 1, case of inequality (71):

Call and assume
N1 (A1; A2) :=

max

(
sup

x02[a;b]

D�
g(x0)�

�
A1 � g�1

�
p


�;[g(a);g(x0)]

; sup
x02[a;b]

D�
g(x0)

�
A1 � g�1

�
p


�;[g(x0);g(b)]

;

sup
x02[a;b]

D�
g(x0)�

�
A2 � g�1

�
q


�;[g(a);g(x0)]

; sup
x02[a;b]

D�
g(x0)

�
A2 � g�1

�
q


�;[g(x0);g(b)]

)
< +1:

(104)
Then

k� (A1; A2) (x0)k1 � right hand side (71) �

N1 (A1; A2) (g (b)� g (a))��
1
�

� (�) ( (�� 1) + 1)
1


"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
: (105)

ii) case of inequality (72):
Call and assume

N2 (A1; A2) := (106)

max

(
sup

x02[a;b]

D�
g(x0)�

�
A1 � g�1

�
p


L1([g(a);g(x0)])

; sup
x02[a;b]

D�
g(x0)

�
A1 � g�1

�
p


L1([g(x0);g(b)])

;

sup
x02[a;b]

D�
g(x0)�

�
A2 � g�1

�
q


L1([g(a);g(x0)])

; sup
x02[a;b]

D�
g(x0)

�
A2 � g�1

��1
q


L1([g(x0);g(b)])

)
< +1:

Then
k� (A1; A2) (x0)k1 � right hand side (72) �

N2 (A1; A2) (g (b)� g (a))��1

� (�)

"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
: (107)

iii) case of inequality (73):
Call and assume

N3 (A1; A2) := (108)

max

(
sup

x02[a;b]

D�
g(x0)�

�
A1 � g�1

�
p


1;[g(a);g(x0)]

; sup
x02[a;b]

D�
g(x0)

�
A1 � g�1

�
p


1;[g(x0);g(b)]

;
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sup
x02[a;b]

D�
g(x0)�

�
A2 � g�1

�
q


1;[g(a);g(x0)]

; sup
x02[a;b]

D�
g(x0)

�
A2 � g�1

��1
q


1;[g(x0);g(b)]

)
< +1:

Then
k� (A1; A2) (x0)k1 � right hand side (73) �

N3 (A1; A2) (g (b)� g (a))�

� (�+ 1)

"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
: (109)

We need

Remark 34 (i) This is regarding Theorems 12-17. Here K (f1; :::; fr) (x0),
x0 2 [a; b], is as in (45). Next we denote and have (case of 1 � � < 2):

�(f1; :::; fr) :=

Z b

a

K (f1; :::; fr) (x0) dx0 =

rX
i=1

2664(b� a)Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x) dx�
0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA dx
1CCA
 Z b

a

fi (x) dx

!3775 ;
(110)

(ii) This is regarding Theorem 18. Here � (A1; A2) (x0), x0 2 [a; b], is as in
(70). Next we denote and have (case of 1 � � < 2):

�(A1; A2) :=

Z b

a

� (A1; A2) (x0) dx0 =

(b� a)
 Z b

a

A2 (x)A1 (x) dx+

Z b

a

A1 (x)A2 (x) dx

!
� (111)

 Z b

a

A2 (x) dx

! Z b

a

A1 (x) dx

!
�
 Z b

a

A1 (x) dx

! Z b

a

A2 (x) dx

!
:

(iii) for  � 1, it holds

k�(f1; :::; fr)k �
Z b

a

kK (f1; :::; fr) (x)k dx; (112)

and

k�(A1; A2)k1 �
Z b

a

k� (A1; A2) (x)k1 dx: (113)

We give the following set of -Schatten norm generalized Canavati type
fractional Grüss type inequalities involving several functions over B (H),  � 1:

30
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Theorem 35 All as in Theorem 12, with 1 � � < 2 (i.e. n = 1). Then
i)

k�(f1; :::; fr)k1 �
M1 (f1; :::; fr) (g (b)� g (a))� (b� a)2

� (� + 1)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ; (114)

where M1 (f1; :::; fr) is as in (92),
ii)

k�(f1; :::; fr)k1 �
M2 (f1; :::; fr) (g (b)� g (a))��1 (b� a)2

� (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ; (115)

where M2 (f1; :::; fr) is as in (94),
iii) when p; q > 1 : 1p +

1
q = 1, we have

k�(f1; :::; fr)k1 �
M3 (f1; :::; fr) (g (b)� g (a))��

1
q (b� a)2

(p (� � 1) + 1)
1
p � (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ; (116)

where M3 (f1; :::; fr) is as in (96).

Proof. By Remarks 34, 27-29 and that

Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx � (b� a)


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

:

We continue with

Theorem 36 All as in Theorem 15, with 1 � � < 2 (i.e. n = 1),  � 1. Then
i)

k�(f1; :::; fr)k �
M
1 (f1; :::; fr) (g (b)� g (a))

�
(b� a)2

� (� + 1)
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rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k


1;[a;b]

1CCA ; (117)

where M
1 (f1; :::; fr) is as in (98),

ii)

k�(f1; :::; fr)k �
M
2 (f1; :::; fr) (g (b)� g (a))

��1
(b� a)2

� (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k


1;[a;b]

1CCA ; (118)

where M
2 (f1; :::; fr) is as in (100),

iii) when p; q > 1 : 1p +
1
q = 1, we have

k�(f1; :::; fr)k �
M
3 (f1; :::; fr) (g (b)� g (a))

�� 1
q (b� a)2

(p (� � 1) + 1)
1
p � (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k


1;[a;b]

1CCA ; (119)

where M
3 (f1; :::; fr) is as in (102).

Proof. By Remarks 34, 30-32 and that

Z b

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx � (b� a)


rY
j=1
j 6=i

kfj (x)k


1;[a;b]

:

Furthermore we have (r = 2 case of p-Schatten norm Grüss inequalities)

Theorem 37 All as in Theorem 18, with 1 � � < 2 (i.e. [�] = 1). Then
i) for ; � > 1 : 1 +

1
� = 1, we have

k�(A1; A2)k1 �
N1 (A1; A2) (g (b)� g (a))��

1
� (b� a)

� (�) ( (�� 1) + 1)
1
"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (120)
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where N1 (A1; A2) is as in (104),
ii)

k�(A1; A2)k1 �
N2 (A1; A2) (g (b)� g (a))��1 (b� a)

� (�)"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (121)

where N2 (A1; A2) is as in (106),
and
iii)

k�(A1; A2)k1 �
N3 (A1; A2) (g (b)� g (a))� (b� a)

� (�+ 1)"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (122)

where N3 (A1; A2) is as in (108).

Proof. By Remarks 34, 33.

6 Applications

We start with applications on Ostrowski type inequalities:

Corollary 38 (to Theorems 12-14) All as in Theorem 12 for g (t) = t. Then
i)

kK (f1; :::; fr) (x0)k1 �
1

� (� + 1)

rX
i=1

2664
2664�D�

x0�fi
�
2


1;[a;x0]

(x0 � a)�

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775+ (123)

2664�D�
x0fi

�
2


1;[x0;b]

(b� x0)�

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775
3775 ;

ii)

kK (f1; :::; fr) (x0)k1 �
1

� (�)

rX
i=1

2664
2664�D�

x0�fi
�
2


L1([a;x0])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (x0 � x)��1 dx
3775+
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2664�D�
x0fi

�
2


L1([x0;b])

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA (x� x0)��1 dx
3775
3775 ; (124)

iii) when p; q > 1 : 1p +
1
q = 1, we have

kK (f1; :::; fr) (x0)k1 �
1

(p (� � 1) + 1)
1
p � (�)

rX
i=1

2664
2664�D�

x0�fi
�
2


q;[a;x0]

0BB@Z x0

a

(x0 � x)��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775+

2664�D�
x0fi

�
2


q;[x0;b]

0BB@Z b

x0

(x� x0)��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k2

1CCA dx
1CCA
3775
3775 : (125)

It follows:

Corollary 39 (to Theorems 15-17) All as in Theorem 15 for g (t) = t,  � 1.
Then
i)

kK (f1; :::; fr) (x0)k �
1

� (� + 1)

rX
i=1

2664
2664�D�

x0�fi
�



1;[a;x0]

(x0 � a)�

0BB@Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+
(126)2664�D�

x0fi
�



1;[x0;b]

(b� x0)�

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 ;

ii)

kK (f1; :::; fr) (x0)k �
1

� (�)

rX
i=1

2664
2664�D�

x0�fi
�



L1([a;x0])

Z x0

a

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (x0 � x)��1 dx
3775+

2664�D�
x0fi

�



L1([x0;b])

Z b

x0

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA (x� x0)��1 dx
3775
3775 ; (127)
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iii) when p; q > 1 : 1p +
1
q = 1, we have

kK (f1; :::; fr) (x0)k �
1

(p (� � 1) + 1)
1
p � (�)

rX
i=1

2664
2664�D�

x0�fi
�



q;[a;x0]

0BB@Z x0

a

(x0 � x)��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775+

2664�D�
x0fi

�



q;[x0;b]

0BB@Z b

x0

(x� x0)��
1
q

0BB@ rY
j=1
j 6=i

kfj (x)k

1CCA dx
1CCA
3775
3775 : (128)

We continue with

Corollary 40 (to Theorem 18) All as in Theorem 18, with g (t) = et. Then
i) for ; � > 1 : 1 +

1
� = 1, we have

k� (A1; A2) (x0)k1 �
1

� (�) ( (�� 1) + 1)
1
��D�

ex0� (A1 � log)

p


�;[ea;ex0 ]

Z x0

a

kA2 (x)kq (e
x0 � ex)��

1
� dx

�
+"kD�

ex0 (A1 � log)kp

�;[ex0 ;eb]

Z b

x0

kA2 (x)kq (e
x � ex0)��

1
� dx

#
+

�D�
ex0� (A2 � log)


q


�;[ea;ex0 ]

Z x0

a

kA1 (x)kp (e
x0 � ex)��

1
� dx

�
+"kD�

ex0 (A2 � log)kq

�;[ex0 ;eb]

Z b

x0

kA1 (x)kp (e
x � ex0)��

1
� dx

#)
; (129)

ii) it holds

k� (A1; A2) (x0)k1 �
1

� (�)��D�
ex0� (A1 � log)


p


L1([ea;ex0 ])

Z x0

a

kA2 (x)kq (e
x0 � ex)��1 dx

�
+"kD�

ex0 (A1 � log)kp

L1([ex0 ;eb])

Z b

x0

kA2 (x)kq (e
x � ex0)��1 dx

#
+

�D�
ex0� (A2 � log)


q


L1([ea;ex0 ])

Z x0

a

kA1 (x)kp (e
x0 � ex)��1 dx

�
+ (130)
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"kD�
ex0 (A2 � log)kq


L1([ex0 ;eb])

Z b

x0

kA1 (x)kp (e
x � ex0)��1 dx

#)
;

and
iii)

k� (A1; A2) (x0)k1 �
1

� (�+ 1)��D�
ex0� (A1 � log)


p


1;[ea;ex0 ]

Z x0

a

kA2 (x)kq (e
x0 � ex)� dx

�
+"kD�

ex0 (A1 � log)kp

1;[ex0 ;eb]

Z b

x0

kA2 (x)kq (e
x � ex0)� dx

#
+

�D�
ex0� (A2 � log)


q


1;[ea;ex0 ]

Z x0

a

kA1 (x)kp (e
x0 � ex)� dx

�
+"kD�

ex0 (A2 � log)kq

1;[ex0 ;eb]

Z b

x0

kA1 (x)kp (e
x � ex0)� dx

#)
: (131)

We continue with applications on Opial inequalities

Corollary 41 (to Theorem 19) All as in Theorem 19 with g (t) = t. Let p; q >
1 : 1p +

1
q = 1: Then Z z

x0

f (w) �D�
x0f
�
(w)

1
dw �

2�
1
q (z � x0)�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

�Z z

x0

�D�
x0f
�
(w)
q
2
dw

� 2
q

; (132)

for all x0 � z � b:

It follows:

Corollary 42 (to Theorem 20) All as in Theorem 20,  � 1, with g (t) = et.
Let also p; q > 1 : 1p +

1
q = 1: ThenZ z

ex0
k((f � log) (w)) ((D�

ex0 (f � log)) (w))k dw �

2�
1
q (z � ex0)�+

1
p�

1
q

� (�) [(p (� � 1) + 1) (p (� � 1) + 2)]
1
p

�Z z

ex0
k(D�

ex0 (f � log)) (w)k
q
 dw

� 2
q

;

(133)
for all ex0 � z � eb:

We �nish with applications on Grüss inequalities:
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Corollary 43 (to Theorem 35) All as in Theorem 35 with g (t) = t (1 � � < 2).
Then
i)

k�(f1; :::; fr)k1 �
M1 (f1; :::; fr) (b� a)�+2

� (� + 1)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ;
(134)

where M1 (f1; :::; fr) is as in (92),
ii)

k�(f1; :::; fr)k1 �
M2 (f1; :::; fr) (b� a)�+1

� (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ;
(135)

where M2 (f1; :::; fr) is as in (94),
iii) when p; q > 1 : 1p +

1
q = 1, we have

k�(f1; :::; fr)k1 �
M3 (f1; :::; fr) (b� a)�+1+

1
p

(p (� � 1) + 1)
1
p � (�)

rX
i=1

0BB@


rY
j=1
j 6=i

kfj (x)k2


1;[a;b]

1CCA ;
(136)

where M3 (f1; :::; fr) is as in (96).

It follows (r = 2 case)

Corollary 44 (to Theorem 37) All as in Theorem 37, with [a; b] � R+ � f0g,
and g (t) = log t. Then
i) for ; � > 1 : 1 +

1
� = 1, we have

k�(A1; A2)k1 �
N1 (A1; A2)

�
log ba

��� 1
� (b� a)

� (�) ( (�� 1) + 1)
1
"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (137)

where N1 (A1; A2) is as in (104),
ii)

k�(A1; A2)k1 �
N2 (A1; A2)

�
log ba

���1
(b� a)

� (�)

37
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"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (138)

where N2 (A1; A2) is as in (106),
and
iii)

k�(A1; A2)k1 �
N3 (A1; A2)

�
log ba

��
(b� a)

� (�+ 1)"Z b

a

kA1 (x)kp dx+
Z b

a

kA2 (x)kq dx
#
; (139)

where N3 (A1; A2) is as in (108).
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Abstract multivariate algebraic function
activated neural network approximations
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Abstract

Here we exhibit multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We study also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are achieved by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are de�ned by using a multidimensional density function induced by the
algebraic sigmoid function. The approximations are pointwise and uni-
form. The related feed-forward neural network is with one hidden layer.

2020 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A30,
41A36.
Keywords and Phrases: algebraic sigmoid function, multivariate neural

network approximation, quasi-interpolation operator, Kantorovich type oper-
ator, quadrature type operator, multivariate modulus of continuity, abstract
approximation, iterated approximation.

1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the �rst to establish
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliagnet-Euvrard and �Squash-
ing�types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He treats there both the univariate and multivariate cases. The de�ning these

1
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operators �bell-shaped�and �squashing� functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.
Motivations for this work are the article [15] of Z. Chen and F. Cao, and [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13], [16], [17].
Here we perform multivariate algebraic sigmoid function based neural net-

work approximations to continuous functions over boxes or over the whole RN ,
N 2 N, and also iterated approximations. All convergences here are with rates
expressed via the multivariate modulus of continuity of the involved function
or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.
We come up with the �right� precisely de�ned multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well
as Kantorovich type and quadrature type related operators on RN . Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by algebraic sigmoid function and de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models, the activation function is the algebrai sigmoid function. About neural
networks see [18], [19], [20].

2 Basic

Here see also [12].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (1)

which is a sigmoid type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
m

> 0, 8 x 2 R, (2)

2
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proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

� (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (3)

Clearly it is � (x) = � (�x) ; 8 x 2 R, so that � is an even function and
symmetric with respect to the y-axis. Clearly � (x) > 0, 8 x 2 R:
Also it is

� (0) =
1

2 2m
p
2
: (4)

By [12], we have that �0 (x) < 0 for x > 0. That is � is strictly decreasing over
(0;+1) :
Clearly, � is strictly increasing over (�1; 0) and �0 (0) = 0.
Furthermore we obtain that

lim
x!+1

� (x) =
1

4
[' (+1)� ' (+1)] = 0; (5)

and
lim

x!�1
� (x) =

1

4
[' (�1)� ' (�1)] = 0: (6)

That is the x-axis is the horizontal asymptote of �.
Conclusion, � is a bell shape symmetric function with maximum

� (0) =
1

2 2m
p
2
; m 2 N: (7)

We need

Theorem 1 ([12]) We have that

1X
i=�1

� (x� i) = 1, 8 x 2 R: (8)

Theorem 2 ([12]) It holds Z 1

�1
� (x) dx = 1: (9)

Theorem 3 ([12]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

� (nx� k) < 1

4m (n1�� � 2)2m
; m 2 N: (10)

3
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Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We need

Theorem 4 ([12]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
� (nx� k)

< 2
�
2m
p
1 + 4m

�
; (11)

8 x 2 [a; b], m 2 N:

Note 5 1) By [12] we have that

lim
n!1

bnbcX
k=dnae

� (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :
2) Let [a; b] � R. For large n 2 N we always have dnae � bnbc. Also

a � k
n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

� (nx� k) � 1: (13)

We introduce

Z (x1; :::; xN ) := Z (x) :=

NY
i=1

� (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (14)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) = 1; (15)

where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (16)

8 x 2 RN ; n 2 N,

4
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and
(iv) Z

RN
Z (x) dx = 1; (17)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(18)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

� (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

� (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

� (nxi � ki)

1A : (19)

For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae k

n � x

1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k) : (20)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition

 k
n � x


1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae k

n � x

1 > 1

n�

Z (nx� k)
(10)
<

1

4m (n1�� � 2)2m
, 0 < � < 1; m 2 N; (21)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

5
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(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

1

(� (1))
N
�=
�
2
�
2m
p
1 + 4m

��N
; (22)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1 k

n � x

1 > 1

n�

Z (nx� k) < 1

4m (n1�� � 2)2m
; (23)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (24)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k

�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1 � (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie� (nxi � ki)

� : (25)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (26)

6
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Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k �
Pbnbc

k=dnae
f � kn� Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk ; x� ; (27)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k � eAn �kfk ; x� ; (28)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (29)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (30)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (31)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (32)

7
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8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (33)

Consequently we derive

kAn (f; x)� f (x)k
(22)
�
�
2
�
2m
p
1 + 4m

��N A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)




;

(34)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (34).
For the last and others we need

De�nition 6 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k

�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k , 0 < � � diam (M) : (35)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (36)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 7 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),
where M is a convex compact subset of

�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (35). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (37)

8
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n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

� (nxi � ki)
!
; (38)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=

�X
r=0

wrf

�
k

n
+
r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+
r1
n�1

;
k2
n
+
r2
n�2

; :::;
kN
n
+
rN
n�N

�
; (39)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (40)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

� (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

9
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3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

m;N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k �
�
2
�
2m
p
1 + 4m

��N 24!1�f; 1
n�

�
+

kfk1
2m (n1�� � 2)2m

35 =: �1 (n) ;
(41)

and
2) kAn (f)� fk1 � �1 (n) : (42)

We notice that lim
n!1

An (f)
k�k
= f , pointwise and uniformly.

Above !1 is with respect to p =1:

Proof. We observe that

�(x) := A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k) =

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k)�

bnbcX
k=dnae

f (x)Z (nx� k) =

bnbcX
k=dnae

�
f

�
k

n

�
� f (x)

�
Z (nx� k) : (43)

Thus

k�(x)k �
bnbcX

k=dnae

f �kn
�
� f (x)




Z (nx� k) =

bnbcX
8<: k = dnae k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+

10
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bnbcX
8<: k = dnae k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k)
(21)
�

!1

�
f;
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
: (44)

So that

k�(x)k � !1
�
f;
1

n�

�
+

kfk1
2m (n1�� � 2)2m

: (45)

Now using (34) we �nish the proof.
We make

Remark 9 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k

�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k = sup kg (x)k
kx1kp ::: kxjkp

: (46)

Let M be a non-empty convex and compact subset of RN and x0 2 M is
�xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [21]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .

We will work with f jM :
Then, by Taylor�s formula ([14]), ([21], p. 124), we get

f (x) =

mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (47)

11
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where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(48)
here we set f (0) (x0) (x� x0)0 = f (x0) :
We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h

f (m) (x)� f (m) (y) ; (49)

h > 0:

We obtain�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m

�f (m) (x0 + u (x� x0))� f (m) (x0) � kx� x0kmp �

w kx� x0kmp
�
u kx� x0kp

h

�
; (50)

by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k � w kx� x0k
m
p

Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(51)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R; (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (53)

with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k � w
 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(54)

12
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We have found that f (x)�
mX
j=0

f (j) (x0) (x� x0)j

j!




�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (55)

8 x; x0 2M:
Here 0 < !1

�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (55) as follows:f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (56)

a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence
f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!



2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (57)

8 N 2 N, 8 x0 2M .
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Clearly (57) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (26).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (25), (26), (28), (29) and (30).
We present the following high order approximation results.

Theorem 10 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (58)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(59)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k �
mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)

+

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(60)

14
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�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) kAn (f)� fk1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)



1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r � eAn �k� � x0km+1p

��
(x0)

 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!� eAn �k� � x0km+1p

��
(x0)

( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(61)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

We need

Lemma 11 The function
� eAn �k� � x0kmp �� (x0) is continuous in x0 2 � NQ

i=1

[ai; bi]

�
,

m 2 N.

Proof. By Lemma 10.3, [11], p. 272.
We give

Corollary 12 (to Theorem 10, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k �
�An �f (1) (x0) (� � x0)�� (x0)


+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(62)�
1 + r +

r2

4

�
;

and
2) k(An (f))� fk1;

NQ
i=1

[ai;bi]
�

15
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�An �f (1) (x0) (� � x0)�� (x0)

1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r � eAn �k� � x0k2p�� (x0) 1
2

1;x02
NQ
i=1

[ai;bi]

1A
� eAn �k� � x0k2p�� (x0) 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (63)

r > 0:

We make

Remark 13 We estimate 0 < � < 1, m;m; n 2 N : n1�� > 2,

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae

 k
n � x0

m+1
1 Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
(22)
<

�
2
�
2m
p
1 + 4m

��N bnbcX
k=dnae

kn � x0
m+1
1

Z (nx0 � k) = (64)

�
2
�
2m
p
1 + 4m

��N
8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
m+1
1

Z (nx0 � k)+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
m+1
1

Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
�

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11

4m (n1�� � 2)2m

)
; (65)

(where b� a = (b1 � a1; :::; bN � aN )).

We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) <

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11

4m (n1�� � 2)2m

)
=: '1 (n)

(66)

16
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(0 < � < 1, m;m; n 2 N : n1�� > 2).
And, consequently it holds eAn �k� � x0km+11

�
(x0)


1;x02

NQ
i=1

[ai;bi]
<

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11

4m (n1�� � 2)2m

)
= '1 (n)! 0; as n! +1:

(67)
So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from

Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate
� eAn �f (j) (x0) (� � x0)j�� (x0)


:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
:

(68)
When p =1, j = 1; :::;m; we obtainf (j) (x0)

�
k

n
� x0

�j


�
f (j) (x0)kn � x0

j
1
: (69)

We further have that� eAn �f (j) (x0) (� � x0)j�� (x0)


(22)
<

�
2
�
2m
p
1 + 4m

��N 0@ bnbcX
k=dnae

f (j) (x0)
�
k

n
� x0

�j


Z (nx0 � k)

1A �

�
2
�
2m
p
1 + 4m

��N 0@ bnbcX
k=dnae

f (j) (x0)kn � x0
j
1
Z (nx0 � k)

1A = (70)

�
2
�
2m
p
1 + 4m

��N f (j) (x0)
0@ bnbcX
k=dnae

kn � x0
j
1
Z (nx0 � k)

1A =

�
2
�
2m
p
1 + 4m

��N f (j) (x0)
8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
j
1
Z (nx0 � k)

17
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+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
j
1
Z (nx0 � k)

9>>>>>>=>>>>>>;
(21)
� (71)

�
2
�
2m
p
1 + 4m

��N f (j) (x0)( 1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
! 0, as n!1:

That is � eAn �f (j) (x0) (� � x0)j�� (x0)

! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:� eAn �f (j) (x0) (� � x0)j�� (x0)

<

�
2
�
2m
p
1 + 4m

��N f (j) (x0)( 1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
� (72)

�
2
�
2m
p
1 + 4m

��N f (j)
1

(
1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 10, the right hand sides of (60) and (61) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 12, the right hand sides of (62) and (63) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give

Corollary 15 (to Theorem 10) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1
[ai;bi]

: Let x0 2

18
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�
NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (66) and '2j (n) as in (72), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (73)

2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (74)

3) kAn (f)� fk1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (75)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k � !1
�
f;
1

n�

�
+

kfk1
2m (n1�� � 2)2m

=: �2 (n) ; (76)

2) kBn (f)� fk1 � �2 (n) : (77)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly.
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Proof. We have that

Bn (f; x)� f (x)
(16)
=

1X
k=�1

f

�
k

n

�
Z (nx� k)� f (x)

1X
k=�1

Z (nx� k) = (78)

1X
k=�1

�
f

�
k

n

�
� f (x)

�
Z (nx� k) :

Hence

kBn (f; x)� f (x)k �
1X

k=�1

f �kn
�
� f (x)




Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (nx� k)
(23)
�

!1

�
f;
1

n�

�
+

kfk1
2m (n1�� � 2)2m

; (79)

proving the claim.
We give

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+

kfk1
2m (n1�� � 2)2m

=: �3 (n) ; (80)

2) kCn (f)� fk1 � �3 (n) : (81)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. We notice thatZ k+1
n

k
n

f (t) dt =

Z k1+1
n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; t2; :::; tN ) dt1dt2:::dtN =

Z 1
n

0

Z 1
n

0

:::

Z 1
n

0

f

�
t1 +

k1
n
; t2 +

k2
n
; :::; tN +

kN
n

�
dt1:::dtN =

Z 1
n

0

f

�
t+

k

n

�
dt:

(82)
Thus it holds (by (38))

Cn (f; x) =
1X

k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k) : (83)

We observe that
kCn (f; x)� f (x)k =

1X
k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k)�

1X
k=�1

f (x)Z (nx� k)



=


1X

k=�1

  
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
� f (x)

!
Z (nx� k)




=


1X

k=�1

 
nN
Z 1

n

0

�
f

�
t+

k

n

�
� f (x)

�
dt

!
Z (nx� k)




� (84)

1X
k=�1

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

!1

�
f; ktk1 +

kn � x

1

�
dt

!
Z (nx� k)+
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2
kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (jnx� kj)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+

kfk1
2m (n1�� � 2)2m

; (85)

proving the claim.
We also present

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+

kfk1
2m (n1�� � 2)2m

= �4 (n) ; (86)

2) kDn (f)� fk1 � �4 (n) : (87)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. We have that (by (40))

kDn (f; x)� f (x)k =


1X
k=�1

�nk (f)Z (nx� k)�
1X

k=�1
f (x)Z (nx� k)




=

(88)
1X

k=�1
(�nk (f)� f (x))Z (nx� k)




=


1X

k=�1

 
�X
r=0

wr

�
f

�
k

n
+
r

n�

�
� f (x)

�!
Z (nx� k)




�

1X
k=�1

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k)+
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1X
8<: k = �1 k

n � x

1 > 1

n�

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

 
�X
r=0

wr!1

�
f;

kn � x

1
+
 r
n�


1

�!
Z (nx� k)+

2
kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (nx� k)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+

kfk1
2m (n1�� � 2)2m

; (89)

proving the claim.
We make

De�nition 19 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k

�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(90)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k �kfk1 :
Hence Fn (f) is a bounded linear operator with

kFn (f)k1 �
kfk1.

We need

Theorem 20 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Clearly Fn (f) is a bounded function.
Next we prove the continuity of Fn (f). Notice for N = 1, Z = � by (14).
We will use the generalized Weierstrass M test: If a sequence of positive

constants M1;M2;M3; :::; can be found such that in some interval
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(a) kun (x)k �Mn, n = 1; 2; 3; :::
(b)

P
Mn converges,

then
P
un (x) is uniformly and absolutely convergent in the interval.

Also we will use:
If fun (x)g, n = 1; 2; 3; ::: are continuous in [a; b] and if

P
un (x) converges

uniformly to the sum S (x) in [a; b], then S (x) is continuous in [a; b]. I.e. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.
We will prove that

P1
k=�1 lnk (f)� (nx� k) is continuous in x 2 R.

There always exists � 2 N such that nx 2 [��; �] :
Since nx � �, then �nx � �� and k � nx � k � � � 0, when k � �.

Therefore

1X
k=�

� (nx� k) =
1X
k=�

� (k � nx) �
1X
k=�

� (k � �) =
1X
k0=0

� (k0) � 1: (91)

So for k � � we get

klnk (f)k � (nx� k) �
kfk1� (k � �) ;

and kfk1
1X
k=�

� (k � �) �
kfk1 :

Hence by the generalizedWeierstrassM test we obtain that
P1

k=� lnk (f) � (nx� k)
is uniformly and absolutely convergent on

�
��
n ;

�
n

�
:

Since lnk (f) � (nx� k) is continuous in x, then
P1

k=� lnk (f) � (nx� k) is
continuous on

�
��
n ;

�
n

�
:

Because nx � ��, then �nx � �, and k � nx � k + � � 0, when k � ��.
Therefore

��X
k=�1

� (nx� k) =
��X

k=�1
� (k � nx) �

��X
k=�1

� (k + �) =
0X

k0=�1
� (k0) � 1:

So for k � �� we get

klnk (f)k � (nx� k) �
kfk1� (k + �) ; (92)

and kfk1
��X

k=�1
� (k + �) �

kfk1 :
Hence by Weierstrass M test we obtain that

P��
k=�1 lnk (f) � (nx� k) is uni-

formly and absolutely convergent on
�
��
n ;

�
n

�
:
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Since lnk (f) � (nx� k) is continuous in x, then
P��

k=�1 lnk (f) � (nx� k)
is continuous on

�
��
n ;

�
n

�
:

So we proved that
P1

k=� lnk (f) � (nx� k) and
P��

k=�1 lnk (f) � (nx� k)
are continuous on R. Since

P��1
k=��+1 lnk (f) � (nx� k) is a �nite sum of con-

tinuous functions on R, it is also a continuous function on R.
Writing

1X
k=�1

lnk (f) � (nx� k) =
��X

k=�1
lnk (f) � (nx� k)+

��1X
k=��+1

lnk (f) � (nx� k) +
1X
k=�

lnk (f) � (nx� k) (93)

we have it as a continuous function on R. Therefore Fn (f), when N = 1, is a
continuous function on R.
When N = 2 we have

Fn (f; x1; x2) =
1X

k1=�1

1X
k2=�1

lnk (f)� (nx1 � k1) � (nx2 � k2) =

1X
k1=�1

� (nx1 � k1)
 1X
k2=�1

lnk (f) � (nx2 � k2)
!

(there always exist �1; �2 2 N such that nx1 2 [��1; �1] and nx2 2 [��2; �2])

=

1X
k1=�1

� (nx1 � k1)
" ��2X
k2=�1

lnk (f) � (nx2 � k2)+

�2�1X
k2=��2+1

lnk (f)� (nx2 � k2) +
1X

k2=�2

lnk (f) � (nx2 � k2)
#
=

=
1X

k1=�1

��2X
k2=�1

lnk (f)� (nx1 � k1) � (nx2 � k2)+

1X
k1=�1

�2�1X
k2=��2+1

lnk (f) � (nx1 � k1) � (nx2 � k2)+

1X
k1=�1

1X
k2=�2

lnk (f) � (nx1 � k1) � (nx2 � k2) =: (�) :

(For convenience call

F (k1; k2; x1; x2) := lnk (f) � (nx1 � k1) � (nx2 � k2) : )
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Thus

(�) =
��1X

k1=�1

��2X
k2=�1

F (k1; k2; x1; x2) +

�1�1X
k1=��1+1

��2X
k2=�1

F (k1; k2; x1; x2)+

1X
k1=�1

��2X
k2=�1

F (k1; k2; x1; x2) +

��1X
k1=�1

�2�1X
k2=��2+1

F (k1; k2; x1; x2)+

�1�1X
k1=��1+1

�2�1X
k2=��2+1

F (k1; k2; x1; x2) +
1X

k1=�1

�2�1X
k2=��2+1

F (k1; k2; x1; x2)+

��1X
k1=�1

1X
k2=�2

F (k1; k2; x1; x2) +

�1�1X
k1=��1+1

1X
k2=�2

F (k1; k2; x1; x2)+ (94)

1X
k1=�1

1X
k2=�2

F (k1; k2; x1; x2) :

Notice that the �nite sum of continuous functions F (k1; k2; x1; x2),P�1�1
k1=��1+1

P�2�1
k2=��2+1 F (k1; k2; x1; x2) is a continuous function.

The rest of the summands of Fn (f; x1; x2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.
We will prove that

P1
k1=�1

P��2
k2=�1 lnk (f)� (nx1 � k1) � (nx2 � k2) is con-

tinuous in (x1; x2) 2 R2.
The continuous function

klnk (f)k � (nx1 � k1) � (nx2 � k2) �
kfk1� (k1 � �1)� (k2 + �2) ;

and kfk1
1X

k1=�1

��2X
k2=�1

� (k1 � �1) � (k2 + �2) =

kfk1
 1X
k1=�1

� (k1 � �1)
! ��2X

k2=�1
� (k2 + �2)

!
�

kfk1
0@ 1X
k01=0

� (k01)

1A0@ 0X
k02=�1

� (k02)

1A �
kfk1 :

So by the Weierstrass M test we get thatP1
k1=�1

P��2
k2=�1 lnk (f)� (nx1 � k1) � (nx2 � k2) is uniformly and absolutely

convergent. Therefore it is continuous on R2:
Next we prove continuity on R2 ofP�1�1
k1=��1+1

P��2
k2=�1 lnk (f) � (nx1 � k1) � (nx2 � k2).
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Notice here that

klnk (f)k � (nx1 � k1)� (nx2 � k2) �
kfk1� (nx1 � k1) � (k2 + �2)

�
kfk1� (0)� (k2 + �2) = 1

2 2m
p
2
�
kfk1� (k2 + �2) ;

and
1

2 2m
p
2
�
kfk1

 
�1�1X

k1=��1+1
1

! ��2X
k2=�1

� (k2 + �2)

!
=

1

2 2m
p
2
�
kfk1 (2�1 � 1)

0@ 0X
k02=�1

� (k02)

1A � 1

2 2m
p
2
� (2�1 � 1)

kfk1 :
(95)

So the double series under consideration is uniformly convergent and continuous.
Clearly Fn (f; x1; x2) is proved to be continuous on R2:
Similarly reasoning one can prove easily now, but with more tedious work,

that Fn (f; x1; :::; xN ) is continuous on RN , for any N � 1. We choose to omit
this similar extra work.

Remark 21 By (25) it is obvious that
kAn (f)k1 �

kfk1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:
Clearly thenL2n (f)1 =

kLn (Ln (f))k1 �
kLn (f)k1 �

kfk1 ; (96)

etc.
Therefore we getLkn (f)1 �

kfk1 , 8 k 2 N, (97)

the contraction property.
Also we see thatLkn (f)1 �

Lk�1n (f)




1
� ::: �

kLn (f)k1 �
kfk1 : (98)

Here Lkn are bounded linear operators.

Notation 22 Here N 2 N, 0 < � < 1: Denote by

cN :=

(�
2
�
2m
p
1 + 4m

��N
, if Ln = An;

1, if Ln = Bn; Cn; Dn;
(99)
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' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(100)


 :=

8<:C
�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(101)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:
(102)

We give the condensed

Theorem 23 Let f 2 
, 0 < � < 1, x 2 Y ; n; m; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k � cN

24!1 (f; ' (n)) +
kfk1

2m (n1�� � 2)2m

35 =: � (n) ; (103)
where !1 is for p =1;
and
(ii) kLn (f)� fk1 � � (n)! 0, as n!1: (104)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18.
Next we do iterated neural network approximation (see also [9]).
We make

Remark 24 Let r 2 N and Ln as above. We observe that

Lrnf � f =
�
Lrnf � Lr�1n f

�
+
�
Lr�1n f � Lr�2n f

�
+�

Lr�2n f � Lr�3n f
�
+ :::+

�
L2nf � Lnf

�
+ (Lnf � f) :

ThenkLrnf � fk1 �
Lrnf � Lr�1n f





1
+
Lr�1n f � Lr�2n f





1
+Lr�2n f � Lr�3n f





1
+ :::+

L2nf � Lnf1 +
kLnf � fk1 =
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Lr�1n (Lnf � f)




1
+
Lr�2n (Lnf � f)





1
+
Lr�3n (Lnf � f)





1

+:::+
kLn (Lnf � f)k1 +

kLnf � fk1 � r
kLnf � fk1 : (105)

That is kLrnf � fk1 � r
kLnf � fk1 : (106)

We give

Theorem 25 All here as in Theorem 23 and r 2 N, � (n) as in (104). ThenkLrnf � fk1 � r� (n) : (107)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. By (106) and (104).
We make

Remark 26 Let m;m1; :::;mr 2 N : m1 � m2 � ::: � mr, 0 < � < 1, f 2 
.
Then ' (m1) � ' (m2) � ::: � ' (mr), ' as in (100).
Therefore

!1 (f; ' (m1)) � !1 (f; ' (m2)) � ::: � !1 (f; ' (mr)) : (108)

Assume further that m1��
i > 2, i = 1; :::; r. Then

1

4m
�
m1��
1 � 2

�2m � 1

4m
�
m1��
2 � 2

�2m � ::: � 1

4m
�
m1��
r � 2

�2m : (109)

Let Lmi
as above, i = 1; :::; r; all of the same kind.

We write
Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
� f =

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� Lmr

�
Lmr�1 (:::Lm2

f)
�
+

Lmr

�
Lmr�1 (:::Lm2f)

�
� Lmr

�
Lmr�1 (:::Lm3f)

�
+

Lmr

�
Lmr�1 (:::Lm3

f)
�
� Lmr

�
Lmr�1 (:::Lm4

f)
�
+ :::+ (110)

Lmr

�
Lmr�1f

�
� Lmrf + Lmrf � f =

Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f) + Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)+

Lmr

�
Lmr�1 (:::Lm4)

�
(Lm3f � f) + :::+ Lmr

�
Lmr�1f � f

�
+ Lmrf � f:

Hence by the triangle inequality property of
k�k1 we getLmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�
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Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f)




1
+Lmr

�
Lmr�1 (:::Lm3)

�
(Lm2f � f)





1
+Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f)




1
+ :::+Lmr

�
Lmr�1f � f

�



1
+
kLmr

f � fk

1

(repeatedly applying (96))

�
kLm1

f � fk

1
+
kLm2

f � fk

1
+
kLm3

f � fk

1
+ :::+

Lmr�1f � f




1
+
kLmr

f � fk

1
=

rX
i=1

kLmi
f � fk


1
: (111)

That is, we provedLmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�

rX
i=1

kLmi
f � fk


1
: (112)

We give

Theorem 27 Let f 2 
; m; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1

; :::; Lmr
) as (Am1

; :::; Amr
)

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: ThenLmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
(x)� f (x)



�Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�

rX
i=1

kLmif � fk

1
�

cN

rX
i=1

264!1 (f; ' (mi)) +

kfk1
2m
�
m1��
i � 2

�2m
375 �

rcN

264!1 (f; ' (m1)) +

kfk1
2m
�
m1��
1 � 2

�2m
375 : (113)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

:

Proof. Using (112), (108), (109) and (103), (104).
We continue with
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Theorem 28 Let all as in Corollary 15, and r 2 N. Here '3 (n) is as in (75).
Then kArnf � fk1 � r

kAnf � fk1 � r'3 (n) : (114)

Proof. By (106) and (75).

Application 29 A typical application of all of our results is when
�
X; k�k

�
=

(C; j�j), where C are the complex numbers.
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