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Numerical simulation of an electro-thermal model for superconducting
nanowire single-photon detectors 1

Wan Tanga, Jianguo Huanga,b 2 and Hao Lic

aDepartment of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
bDivision of Computational Science, E-Institute of Shanghai Universities, Shanghai 200235, China

cState Key Laboratory of Functional Materials for Information, SIMIT, CAS, Shanghai 200050, China

Abstract

The electro-thermal model for Superconducting Nanowire Single-Photon Detectors
is a nonlinear free boundary problem involving the temperature and the current, which
are coupled together by a nonlinear parabolic interface equation and a second order
ordinary differential equation. In this paper, we propose a novel method to numeri-
cally solve the preceding electro-thermal model. A series of numerical experiments are
provided to demonstrate the effectiveness of the method proposed.
Keywords. Electro-thermal model, free boundary problem, finite difference method,
shooting method

1 Introduction

In recent years, superconducting nanowires single photon detection (SNSPD) has emerged
as a new and promising single photon detection technology and has received wide attention
in the field of applied superconductivity (cf. [1, 8]). The corresponding device structures
nanometer zigzag line on the ultra-thin superconducting material, and uses the highly sen-
sitive response of superconducting nanowire to realize single-photon detection. As shown in
Figure 1 (see [1]), the key step of SNSPD is to discover the variation of the photon-induced
hotspot.

In 2007, some researchers in MIT (cf. [15]) proposed a relevant electro-thermal mecha-
nism to account for the variation of the photon-induced hotspot in SNSPD, after a small
resistive hotspot forms along the nanowire. In this model, the SNSPD is approximated as a
one-dimensional structure, the thermal response is modeled by a one-dimensional nonlinear
parabolic interface equation involving the current flowing through the nanowire, and the
electrical response is modeled by a second order ordinary differential equation. The two
equations are coupled together to form a free boundary problem (cf. [3]).

To be more precise, let L denote the length of the superconducting nanowire under
discussion, d the wire thickness, and W the width of nanowire. The domain occupying
the nanowire is simply written as Ω̃ = (−L/2, L/2). Due to the symmetry of the physical
process, it suffices for us to discuss the variation of physical quantities in the half part
Ω = (0, L/2). This domain is further split into two regions, Ωnorm(t) = (0, l(t)) and
Ωsuper(t) = (l(t), L/2), corresponding to the normal/resistive and superconducting states,
respectively. The interface x = l(t) is used to separate the two states at time t. Let T (x, t)
represent the temperature of the material in the point x at time t. Then, as given in [15],
T (x, t) is determined by the parabolic interface equation

J2ρ+ κn
∂2T

∂x2
− α

d
(T − Tsub) =

∂CnT

∂t
, 0 < x < l(t), t > 0, (1.1)

κs
∂2T

∂x2
− α

d
(T − Tsub) =

∂CsT

∂t
, l(t) < x < L/2, t > 0, (1.2)

1The work of this author was partly supported by NSFC (Grant no. 11171219) and E–Institutes of
Shanghai Municipal Education Commission (E03004).

2Corresponding author. E-mail address: jghuang@sjtu.edu.cn.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: The variation of the photon-induced hotspot in SNSPD. (a) Bias direct current
close to (but less than) its critical current, and set the nanowire temperature well below
its superconducting critical temperature. (b) Form a small resistive hotspot. (c) The
hotspot region forces the supercurrent to flow around the periphery of the hotspot, since
the hotspot itself is not large enough to span the width of the nanowire. (d) Form a resistive
barrier across the width of the nanowire, results in an easily measurable voltage pulse. (e)
Resistive region is increased, the bias current is shunted by the external circuit. (f) The
NbN nanowire becomes fully superconducting again.

with the initial condition
T (x, 0) = T0, 0 ≤ x ≤ L/2.

Observe that T (x, t) is symmetric about x = 0 with respect to x, and L is taken large enough
such that the temperature at x = L/2 almost coincides with the substrate temperature.
Then we impose the following boundary conditions:

∂T (x, t)

∂x

∣∣∣
x=0

= 0, T (L/2, t) = Tsub, t > 0. (1.3)

Moreover, at the interface point x = l(t) we impose the standard interface conditions:

T (x, t)|l− = T (x, t)|l+ , κn
∂T (x, t)

∂x

∣∣∣
l−

= κs
∂T (x, t)

∂x

∣∣∣
l+
, t > 0, (1.4)

as well as a phase transition condition

Ic(T ) = Ic(0)× (1− (T/TC)
2)2. (1.5)

Here, J = I(t)
Wd is the current density through the nanowire, ρ is the electrical resistivity, κn

and κs are the thermal conductivity coefficients, α is the thermal boundary conductance
between the film and the substrate, Tsub is the substrate temperature (since the nanowire
is thin enough), Cn and Cs are the heat capacity (per unit volume) of the superconducting
film, Ic(0) is the initial critical current, and Tc is the critical temperature. We mention that
the transition condition is an empirical relation (see [15, p. 582]), which was obtained from
an excellent fit with experimental measurements. Using this expression, one can determine

2
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a segment to be resistive when I > Ic(T ), where T = T (x) is the temperature of a nanowire
at the position x. The remaining part of the nanowire then belongs to the superconducting
state.

On the other hand, using Kirchhoff’s first law, we can find as in [3] that the current
I(t) through the nanowire satisfies an ordinary differential equation

I(t)R(t) + Lk
dI(t)

dt
=

1

Cbt

∫ t

0
(Ibias − I(s))ds+ (Ibias − I(t))Z0, t > 0, (1.6)

with the initial condition
I(0) = I0.

Differentiating (1.6) once with respect to t gives

Cbt

(d2LkI

dt2
+
d(I(t)R(t))

dt
+ Z0

dI(t)

dt

)
= Ibias − I(t), t > 0, (1.7)

where Cbt is the capacitor, an inductor Lk and a resistor R(t) represent respectively the
kinetic inductance of the superconducting nanowire and the time-dependent hotspot resis-
tance, the time-dependent hotspot resistance respectively is given as R(t) = 2ρ l(t)

S = 2ρ l(t)
Wd ,

Z0 is the impedance of the transmission line connecting the probe to RF amplifiers (cf. [9]),
Ibias is the bias current of the SNSPD.

It is easy to see that the above electro-thermal model is a nonlinear free boundary
problem with the interface x = l(t) to be determined. Observe that the quantity J appearing

in (1.1) satisfies that J = I(t)
Wd , and the quantity R(t) appearing in (1.6) satisfies that

R(t) = 2ρ l(t)
Wd . Hence, the temperature T (x, t) and the current I(t) are coupled together by

the equations (1.1)-(1.2) and (1.7). Therefore, it is very challenging to devise an efficient
method for numerically approximating the solution of this model. As far as we know,
there is no work discussing numerical solution for the previous model systematically in the
literature. The goal of this paper is intended to design some efficient algorithms for such a
problem.

Before designing our algorithm, let us review some typical methods for numerically
solving free boundary problems. First of all, front-tracking methods which use an explicit
representation of the interface has always been a common way of solving moving boundary
problems. Juric and Tryggvason presented in [5] a front-tracking method which use a fixed
grid in space and explicit tracking of the liquid-solid interface, the method performs well in
approximating the exact solution. The moving grid method can also be used to solve free
boundary problems, which focuses on increasing the order of accuracy in discretization. For
example, Javierr (cf. [4]) located the interface in the rth node and the grid should be adapted
at each time step. Compared to the level set method, the accuracy of first-order convergence
in the interface position was slightly higher. The level set method (cf. [2,6]) is also a widely
used method for moving boundary problems. The main idea behind the method is that the
interface position is represented by the zero level set, and it captures the interface position
implicitly. Compared to the moving grid method, the level set has a main advantage that
a fixed grid can be used, which avoids the mesh generation at every time step. Phase-field
methods (cf. [4, 7]) have become increasingly popular for phase transition models over the
past decade. These methods are based on phase field models, a free boundary arising from
a phase field transition is assumed to have finite thickness, which differ from the classical
model of a sharp interface. Phase-field methods present an advantage over front-tracking
methods, because Phase-field methods only have an approximate representation of the
front location. The main difference between the level set and phase-field methods is that

3
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the level set method can capture the front on a fixed grid, in order to apply discretizations
that depend on the exact interface location. In contrast, in the phase-field model, the front
is not being explicitly tracked, and thus near the front the discretization of the diffusion
field is less accurate.

However, although there have developed many numerical methods for free boundary
problems, it seems very difficult to simulate the above electro-thermal model effectively with
these methods. Concretely speaking, since the moving grid method requires to introduce a
transformation mapping to map a fictitious domain into the physical domain to form space
grid points, it will lead to essential difficulty in discretization of the thermal equation, which
is a nonlinear parabolic interface equation; for the level set method, it is inconvenient to
establish a level set equation coupled with the original equations governing the variation of
the temperature and current; for the phase-field method, it is very difficult to construct a
relevant phase-field functional which involves very deep physical interpretation of the model.
Hence, we develop a new approach to solve the electro-thermal model under discussion.

The main novelty of our method proposed here is that we determine the interface
x = l(t) at time t by means of the idea of the shooting method (cf. [11]) combined with
the phase transition condition (1.5). We notice that the shooting method is often used in
solving nonlinear two-point boundary value problems (cf. [11]). Our algorithm can be briefly
described as follows. We use the finite difference method with fixed mesh to discretize the
thermal equations (1.1)-(1.2) and the current equation (1.7). Assume the temperature T
and the current I are available at time t = tn. We then select a grid position l̃ as the guess
of the interface position x = l(tn+1) at t = tn+1. Next, we compute the critical current
Ic(T ) at t = tn+1 in view of (1.5) at all grid points. If there exists a grid point x = l̃1
such that the numerical current In+1 is greater than the critical current at the left point
of x = l̃1, and less at the right side point, then we update the guess interface position l̃ as
l̃1. Repeat the above computation process until it converges. We present some numerical
examples to show the computational performance of our method.

The rest of this paper is organized as follows. In section 2, we describe the Crank-
Nicholson finite difference method and implicit-explicit scheme for the discretization of the
thermal equation, and the trapezoidal rule for the discretization of the current equation.
The algorithm for determination of the interface positions is given in section 3. A series of
numerical results are given in section 4. In the final section, we present a short conclusion
about our investigation in this paper.

2 Discretization of the governing equations

In order to numerically solve the electro-thermal model, we first partition the space
region [0, L/2] into N intervals with equal width ∆x, to get the spatial nodes 0 = x0 <
x1 < · · · < xN = L/2 with xi = i∆x, and then construct the time nodes tn = nτ with
τ > 0 as the time stepsize, n = 0, 1, · · · . We denote by Tn

i the approximate solution of
the temperature T at a grid point (xi, tn) and denote by In the approximate solution of
the current I at a grid point tn. In this section, we will design effective finite difference
methods for solving Tn

i and In, respectively.

4
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2.1 Discretization of the thermal equation

2.1.1 The Crank-Nicholson method

Because the physical parameters rely on the temperature T itself, the thermal equations
(1.1)-(1.2) are highly nonlinear. Hence, we use linearized schemes to carry out discretiza-
tion, in order to avoid heavy cost in solving a nonlinear system of algebraic equations.

Let x = l = ln+1
0 = xj be the approximate interface position at the time t = tn+1 =

(n+ 1)τ . For a spatial point x = xi = i∆x in (0, l), we view the physical parameters to be
constant in the time interval [tn, tn+1], equal to the ones corresponding to the temperature
at t = tn. Then we use the standard Crank-Nicholson finite difference method to discretize
the equation (1.1) (cf. [12]), to get the following difference equation:

( 1

Wd
× In+1 + In

2

)2
ρ+ κn(T

n
i )×

1

2

(Tn
i−1 − 2Tn

i + Tn
i+1

∆x2
+
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆x2

)
− 1

d
α(Tn

i )×
(Tn+1

i + Tn
i

2
− Tsub

)
=M(Tn

i )×
Tn+1
i − Tn

i

τ
,

(2.1)

where M(T ) := Cn(T ) + TC ′
n(T ) so that ∂CnT

∂t =M(T )∂T∂t .
Similarly, for x = xi = i∆x in (l, L/2) we can derive the following difference equation

from (1.2):

κs(T
n
i )×

1

2

(Tn
i−1 − 2Tn

i + Tn
i+1

∆x2
+
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆x2

)
− 1

d
α(Tn

i )×
(Tn+1

i + Tn
i

2
− Tsub

)
= H(Tn

i )×
Tn+1
i − Tn

i

τ
,

(2.2)

where H(T ) := Cs(T ) + TC ′
s(T ) so that ∂CsT

∂t = H(T )∂T∂t .
Next, let us deal with discretization of the boundary conditions. The homogeneous

Neumann boundary condition is imposed at the left boundary point x = x0. To ensure
second order accuracy of approximation, we use the ghost point method (cf. [12]). We
introduce a ghost point x−1 = −∆x outside the solution region [0, L/2] and let Tm

−1 denote
the approximate solution of T at the grid point (x−1, tm) fictitiously. Then using the central
difference scheme we have from (1.3) that

Tm
1 − Tm

−1

2∆x
= 0. (2.3)

On the other hand, we assume the difference scheme (2.1) holds at x = x0 to get

( 1

Wd
× In+1 + In

2

)2
ρ+ κn(T

n
0 )×

1

2

(Tn
−1 − 2Tn

0 + Tn
1

∆x2
+
Tn+1
−1 − 2Tn+1

0 + Tn+1
1

∆x2

)
− 1

d
α(Tn

0 )×
(Tn+1

0 + Tn
0

2
− Tsub

)
=M(Tn

0 )×
Tn+1
0 − Tn

0

τ
.

(2.4)

From (2.3) we know Tn
−1 = Tn

1 and Tn+1
−1 = Tn+1

1 , and plugging them into (2.4) we obtain

( 1

Wd
× In+1 + In

2

)2
ρ+ κn(T

n
0 )×

1

2

(−2Tn
0 + 2Tn

1

∆x2
+
−2Tn+1

0 + 2Tn+1
1

∆x2

)
− 1

d
α(Tn

0 )×
(Tn+1

0 + Tn
0

2
− Tsub

)
= H(Tn

0 )×
Tn+1
0 − Tn

0

τ
.

(2.5)
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The Dirichlet condition is imposed at the right boundary point x = L/2, so we directly
have

TN = Tsub. (2.6)

To discretize the interface condition (1.4) at the interface point x = xj , we use a

backward (resp. forward) scheme to approximate ∂T (x,t)
∂x from the left (resp. right) at

x = xj . So we have from (1.4) that

κn
Tj − Tj−1

∆x
= κs

Tj+1 − Tj
∆x

. (2.7)

The combination of the difference equations (2.1), (2.2), (2.5)-(2.7) can uniquely deter-
mine the grid function {Tn+1

i }N−1
i=0 . Obviously the scheme is implicit, and can be expressed

in matrix notation as a linear system with a tridiagonal coefficient matrix. So we can obtain
{Tn+1

i }N−1
i=0 in an efficient way.

2.1.2 The Implicit-Explicit (IMEX) method

In order to derive an efficient implicit-explicit scheme for solving the thermal model
given before, we first make a reformulation for the equations (1.1) and (1.2). As a matter
of fact, from some direct and routine manipulation, the two equations can be rewritten as
follows.

J2ρ

M(T )
+Gn(T )

∂2T

∂x2
+
F (T )

d
T − F (T )

d
Tsub =

∂T

∂t
, (2.8)

Gs(T )
∂2T

∂x2
+
E(T )

d
T − E(T )

d
Tsub =

∂T

∂t
. (2.9)

where Gn(T ) =
κn(T )
M(T ) , Gs(T ) =

κs(T )
H(T ) , F (T ) = −

α(T )
M(T ) , E(T ) = − α(T )

H(T ) .

Next, we choose a positive constant G0, large enough, such that G0 is no less than Gn(T )
and Gs(T ) at least. The constant can be obtained by some additional calculation in terms
of the explicit form of the underlying function. In our numerical experiments developed in
section 4, G0 is taken such that

G0 = max
Tsub≤T≤TC

{Gn(T ), Gs(T )}. (2.10)

Therefore, the above equations can be reformulated further as

G0
∂2T

∂x2
+

J2ρ

M(T )
+ [Gn(T )−G0]

∂2T

∂x2
+
F (T )

d
T − F (T )

d
Tsub =

∂T

∂t
, (2.11)

G0
∂2T

∂x2
+ [Gs(T )−G0]

∂2T

∂x2
+
E(T )

d
T − E(T )

d
Tsub =

∂T

∂t
. (2.12)

Hence, borrowing the same ideas to treat the variable coefficients as for the Crank-
Nicholson method and using the technique that we discretize the partial derives of T with
constant coefficients via implicit schemes and the other terms via explicit schemes (cf. [10]),
we obtain from (2.11) that, at x = xi = i∆x, x ∈ (0, l) and t = tn+1 = (n + 1)τ , the
difference equation for (1.1) reads

G0 ×
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆x2
+

1

M(Tn
i )
×
( 1

Wd
× In+1 + In

2

)2
ρ

+ [Gn(T
n
i )−G0]×

Tn
i−1 − 2Tn

i + Tn
i+1

∆x2
+
F (Tn

i )

d
× (Tn

i − Tsub) =
Tn+1
i − Tn

i

τ
. (2.13)
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Similarly, we have for x = xi = i∆x, x ∈ (l, L/2), the difference equation for (1.2) reads

G0 ×
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆x2
+ [Gs(T

n
i )−G0]×

Tn
i−1 − 2Tn

i + Tn
i+1

∆x2

+
E(Tn

i )

d
× (Tn

i − Tsub) =
Tn+1
i − Tn

i

τ
. (2.14)

Following the same ideas for construction of the Crank-Nicholson method mentioned
above, we can derive the difference equations corresponding to the boundary conditions
and the interface condition.

Compared to the Crank-Nicholson method, the present implicit-explicit (IMEX) scheme
has an advantage. That is, if the generic constant G0 is chosen feasibly, we only require to
solve a linear system with the same coefficient matrix at different time nodes t = tn. This
will reduce the computational cost greatly, in particular, in high-dimensional case.

2.2 Discretization of the current equation

The current equation (1.7) is a second order ordinary differential equation, we rewrite
it as a system of first-order equations and then carry out discretization. To this end,
let K(t) = 1

Cbt

∫ t
0 (Ibias − I(s))ds + IbiasZ0. Hence, by some direct manipulation, (1.7) is

equivalent to

K ′(t) =
Ibias − I(t)

Cbt
, (2.15)

LkI
′(t) = K(t)− (R(t) + Z0)I(t), (2.16)

where

R(t) = 2ρ
l(t)

S
= 2ρ

l(t)

Wd
.

The corresponding initial conditions are given by

I(0) = I0, K(0) = IbiasZ0.

Integrating both sides of the equation (2.15) in the domain [tn, tn+1] implies∫ tn+1

tn

K ′(t)dt =

∫ tn+1

tn

Ibias − I(t)
Cbt

dt,

and using the trapezoid method for numerical integration to the right side term we further
have

Kn+1 = Kn +
τ

2Cbt
(2Ibias − In − In+1), (2.17)

Similarly, integrating both sides of the equation (2.16) in the domain [tn, tn+1], we have∫ tn+1

tn

LkI
′(t)dt =

∫ tn+1

tn

(K(t)− (R(t) + Z0)I(t))dt,

which, in conjunction with the trapezoid method, implies(
Lk +

τ

2
Rn+1 +

τ

2
Z0

)
In+1 =

(
Lk −

τ

2
Rn −

τ

2
Z0

)
In +

τ

2
Kn +

τ

2
Kn+1. (2.18)

where Rn = Rn(t).
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Making use of (2.17) and (2.18) immediately gives

aIn+1 = bIn + τKn +
τ2

2Cbt
Ibias, (2.19)

where

a = Lk +
τ2

4Cbt
+
τ

2
Rn+1 +

τ

2
Z0, b = Lk −

τ2

4Cbt
− τ

2
Rn −

τ

2
Z0,

Rn = 2ρ
ln
Wd

, Rn+1 = 2ρ
ln+1

Wd
.

We remark that in the real applications, the interface positions ln and ln+1 at t = tn
and t = tn+1 should be replaced by their approximate values ln0 and ln+1

0 , respectively.
Therefore, it is clear that we can get the current In+1 whenever the unknowns at the time
t = tn and the interface position x = ln+1

0 are available.
Observing that for the superconducting nanowire single-photon detector described in

Figure 1, while the current drops below critical current and the resistive region subsides,
the wire becomes fully superconducting again, the bias current through the wire returns to
the original value. Thus, the time-dependent hotspot resistance Rn(t) = 0, and the current
equation (1.7) becomes

d2I(t)

dt2
+ a1

dI(t)

dt
+ a2I(t) = a3, (2.20)

where a1 =
Z0
Lk

, a2 =
1

CbtLk
, a3 =

Ibias
CbtLk

.
Since the equation (2.20) is a constant second order inhomogeneous linear equation, we

can easily derive its closed form of the solution:

I(t) = c1e
λ1t + c2e

λ2t +
a3
a2
. (2.21)

If the initial conditions are given by I(t̂) = a4 and I ′(t̂) = a5, then we know by a direct
manipulation that the undetermined coefficients in (2.21) are

λ1 =
−a1 +

√
a21 − 4a2
2

, λ2 =
−a1 −

√
a21 − 4a2
2

,

c1 =
a4λ2 − a5 − a3

a2
λ2

(λ2 − λ1)eλ1 t̂
, c2 =

a4λ1 − a5 − a3
a2
λ1

(λ1 − λ2)eλ2 t̂
.

Therefore, if the nanowire returns to superconducting state again, we are able to get
the current from the expression (2.21) explicitly, instead of the numerical solution. This
will increase the computational efficiency greatly.

3 Determination of the interface position

Similar to the standard numerical method for solving evolutionary equations, we will
conduct numerical simulation for the electro-thermal model along the time direction. That
means, once the numerical results at t = tn are obtained, we will try to get the numerical
results at t = tn+1. From our discussion given in the above section, we easily know the key
difficulty is to derive the interface position at this instant.

Our key points to overcome the above obstacle are as follows. First of all, we make
the partition of the region [0, L/2] fine enough, i.e. ∆x is taken small enough, so that we
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Figure 2: The flow chart of the iterative algorithm to form the interface position at different
time nodes.

can assume that the interface positions always lie in the spatial grid points, approximately
with desired accuracy. Next, we will use the shooting method to determine the interface
position at t = tn+1, in view of the idea of the shooting method (cf. [11]) combined with
the phase transition condition (1.5). To be more precise, we choose x = l̃ = ln as the
initial guess of the interface position at t = tn+1. Then, by means of the finite difference
methods in section 2, we can derive the approximate temperature values Tn+1

i at all grid
points as well as the approximate current In+1, and compute the critical current Ic(T )
at t = tn+1 in view of (1.5) at all grid points. If the initial guess x = l̃ satisfies that the
numerical current In+1 is greater than the critical current at the left point of x = l̃, and
less at the right side point, then we take ln+1

0 = l̃. Otherwise, we try to find a grid x = l̃1
such that the numerical current In+1 is greater than the critical current at the left point of
x = l̃, and less at the right side point. And then replace the guess interface position l̃ by
l̃1. Repeat the above computation process until it converges, and choose the final result l̃
as ln+1

0 . In all the calculations presented in the following section, the termination rule is
taken as |l̃1 − l̃| < tol, with tol = 1× 10−6.

For preciseness, the above algorithm is shown in a flow chart, described in Figure 2.

4 Numerical results

In this section, we give some numerical experiments to illustrate the performance and
accuracy of our method introduced in sections 2 and 3, from which we can observe the
evolution of interface positions, namely the growth of the normal region along the wire,
the change in current through the wire, the change of resistance along the wire after a
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Figure 3: The current variation in the electro-thermal model.(a) The calculated current
through the wire vs. time. (b) The calculated current and critical current at x = 100nm
vs time.

small resistive hotspot is formed. Here the photon-induced resistive barrier forms at t = 0.
Most of the physical parameters are taken from the monograph [13] about the theory of
superconductivity, and the other ones are taken from the related literature. In particular,
since the hotspot only forms and exists for several nanoseconds (cf. [1]), we choose in our
numerical simulation the terminal time to be tend = 10ns. Then we choose the stepsize in t
to be τ = 1ps, where 1ps = 10−3ns. If τ is taken a little larger, say τ = 5ps, our algorithms
will not converge.

In the normal/resistive state, the electrical resistivity ρ = 2.4 × 10−6Ωm. According
to the Wiedemann-Franz law, the ratio of the electronic contribution of the thermal con-
ductivity κn to the electrical conductivity ρ of a metal, is proportional to the temperature
T (κn = LT

ρ , where L = 2.45 × 10−8WΩ/K2 is the Lorenz number). The heat capac-
ity (per unit volume) of the superconducting film Cn includes electron specific Cen and
phonon specific heat Cpn, where Cen is proportional to the temperature T (Cen = γT ,
where γ = 240), and Cpn is proportional to T 3 such that Cpn = 9.8T 3 (cf. [8]). The thermal
boundary conductivity α between NbN and sapphire we used is obtained from [15], and we
only considered its cubic dependence on temperature (α = BT 3, where B = 800).

In the region of superconducting state, ρ is taken to be zero naturally. We express the
thermal conductivity as κs = L T 2

ρTc
(cf. [14]), where Tc = 10K is the critical temperature.

The heat capacity Cs also include two parts, the electron specific was calculated such

that Ces = Ae−
3.5Tc

T with A = 1.93 × 105 (cf. [13]), and the phonon specific heat is state
independent such that Cps = 9.8T 3. The thermal boundary conductivity is given as α =
BT 3.

Some more data used in all the computations are given as follows. The length of
superconducting nanowire L = 2000nm, the wire thickness d = 4nm, the width of nanowire
W = 100nm, the substrate temperature Tsub = 2K, the initial critical current Ic(0) =
20µA, the capacitor Cbt = 20 × 10−9F , the kinetic inductance of the superconducting
nanowire Lk = 807.7nH, the impedance of the transmission line connecting the probe to
RF amplifiers Z0 = 50Ω, the current of the SNSPD Ibias = 16.589µA, the initial interface
position l0 = 15nm, the initial temperature T0 = 5K where the wire is normal and T0 =
Tsub = 2K where the wire is superconducting.

For the Crank-Nicholson method and the IMEX method, we take N = 1000, so the
space step is ∆x = L/2N = 1nm. The time step is τ = 1ps, as introduced at the beginning
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Figure 4: The resistance variation in the electro-thermal model. (a) The calculated total
normal state resistance vs. time, and the inset shows in greater detail the change of the
resistance. (b) The interface position vs. time, and the inset shows in greater detail the
change of the position.
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Figure 5: The temperature variation in the electro-thermal model. (a) The calculated
temperature (shown using colors) at different positions along the wire and in time. (b) The
calculated temperature history at x = 100nm.

of this section. Furthermore, for the IMEX method, we choose the parameter G0 in view
of the formulation (2.10) to get G0 = 2 ∗ 10−5.

We first use the Crank-Nicholson method for solving the thermal equations, combined
with the numerical method for solving the current equation and the algorithm in section 3
to search for interface positions, to implement numerical simulation.

It is shown in Figure 3(a) the calculated current through the SNSPD. We find the curve
first forms a sharp decline within a short time period. Afterwards, the nanowire under
consideration switches to superconducting state, and the calculated current increases at an
exponential rate. It is shown in Figure 3(b) the calculated current and the critical current
at x = 100nm vs. time.

It is shown in Figure 4(a) the calculated total normal state resistance along the wire.
It appears that the resistance increases gradually and then decreases to 0 sharply, and
the inset shows in greater detail the change of the resistance. It is shown in Figure 4(b)
the evolution of the interface position in the electro-thermal model. The initial interface
position is taken as l0 = 15nm. The interface point moves forward to about the position
x = 463nm at t = 170ps, where the resistance increases to a maximum value. Then the
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Figure 6: Some numerical comparison between the Crank-Nicholson finite difference method
and the IMEX method. (a) The calculated current through the wire vs. time. (b) The
calculated temperature history at x = 100nm.

interface point returns gradually to the central position with x = 0, and the nanowire
becomes superconducting state.

It is shown in Figure 5(a) the calculated temperature (shown using colors) at different
positions along the wire and in time, the temperature at each segment show the segment
under consideration switches into the normal state or remains superconducting. And it is
shown in Figure 5(b) the calculated temperature history at x = 100nm. At that position,
the initial temperature is T = 5K where the wire is normal, then it increases to a maximum
value of about 10.7K, after that the temperature gradually returns to 2K and the position
lies in superconducting state.

All the numerical results given above coincide with the physical phenomenon observed
by experiments (cf. [15]).

We also compare the numerical results with the thermal equations numerically solved
by the Crank-Nicholson method and the IMEX method, respectively. We observe from the
numerical data in Figure 6 that the two methods which perform in the similar manners,
can produce very similar numerical results.

5 Conclusions

In this paper, we propose two algorithms for numerically solving the electro-thermal
model for Superconducting Nanowire Single-Photon Detectors. Such a model is governed
by a nonlinear free boundary problem involving the temperature and the current, which are
coupled together by a nonlinear parabolic interface equation and a second order ordinary
differential equation (see the equations (1.1)-(1.2) and (1.7) for details). In our numerical
experiments, for a fixed spatial size ∆x, only if the stepsize in time τ is taken small enough,
our numerical methods are convergent. Therefore, we only develop in this paper some
initial but interesting results for the coupled system of equations (1.1)-(1.2) and (1.7). Due
to the complexity of the model, it is very challenging to establish mathematical theory for
this model and discuss convergence analysis of the methods proposed in this paper.

Acknowledgements. The authors would like to thank the three referees for their
valuable comments and suggestions, which greatly improved the early version of the paper.
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Abstract: In this paper, we investigate the conditions concerning the existence or
non-existence of transcendental meromorphic or entire solutions of some kinds of
differential-difference equations. We also give examples to illustrate the sharpness
of our results.
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1 Introduction and main results

Throughout this paper, we assume that f(z) is a meromorphic function in the whole
complex plane, and use standard notations, such as m(r, f), T (r, f), N(r, f), in the
Nevanlinna theory (see e.g. [3, 7, 8, 17]). And we also use σ(f) and σ2(f) to denote
respectively the order and the hyper order of f(z). Moreover, we say that a meromorphic
function g(z) is small with respect to f(z), if T (r, g) = S(r, f), where S(r, f) means any
real quantity satisfying S(r, f) = o(T (r, f)) as r →∞ outside of a possible exceptional
set of finite logarithmic measure.

Recently, with some establishments of difference analogues of the classic Nevanlinna
theory (two typical and most important ones can be seen in [2, 4–6]), there has been a
renewed interest in the properties of complex difference expressions and meromorphic
solutions of complex difference equations (see e.g. [10–12, 18]). Further, Yang-Laine
gave analogies between nonlinear difference and differential equations in [15] . From
then on, some results concerning nonlinear differential-difference equations were found
(see e.g. [13]).

In what follows, we use the defintion of the differential-difference polynomial in
[15, 19]. A differential-difference polynomial is a polynomial in f(z), its shifts, its
derivatives and derivatives of its shifts, that is, an expression of the form

P (z, f) =
∑

λ∈I

aλ(z)f(z)λ0,0f ′(z)λ0,1 · · · f (k)(z)λ0,k

·f(z + c1)
λ1,0f ′(z + c1)

λ1,1 · · · f (k)(z + c1)
λ1,k · · ·

·f(z + cl)
λl,0f ′(z + cl)

λl,1 · · · f (k)(z + cl)
λl,k

∗Corresponding author.
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=
∑

λ∈I

aλ(z)
l∏

i=0

k∏
j=0

f (j)(z + ci)
λi,j , (1.1)

where I is a finite set of multi-indices λ = (λ0,0, · · · , λ0,k, λ1,0, · · · , λ1,k, · · · , λl,0, · · · , λl,k),
and c0(= 0), c1, · · · , cl are distinct complex constants. And we assume that the mero-
morphic coefficients aλ(z), λ ∈ I of P (z, f) are of growth S(r, f). We denote the degree

and the weight of the monomial
l∏

i=0

k∏
j=0

f (j)(z + ci)
λi,j of P (z, f) respectively by

d(λ) =
l∑

i=0

k∑
j=0

λi,j and w(λ) =
l∑

i=0

k∑
j=0

(j + 1)λi,j.

Then we denote the degree and the weight of P (z, f) respectively by

d(P ) = max
λ∈I

{d(λ)} and w(P ) = max
λ∈I

{w(λ)}.

In the following, we assume d(P ) ≥ 1.
We recall the following result due to Wang-Li [13] by rewriting the original differential-

difference polynomial in [13] as the one of the form (1.1).

Theorem A. Suppose that a nonlinear differential-difference equation is

fn(z) + P (z, f) = p(z), (1.2)

where n ∈ N, p(z) is a polynomial, and P (z, f) is a differential-difference polynomial of
the form (1.1) with polynomial coefficients. If

n > (s + 1)d(P )−
∑

λ∈I

d(λ), (1.3)

where s is the number of components of I, then the equation (1.2) has no transcendental
entire solutions of finite order.

Remark 1.1 Obviously, (1.3) results in

n > (s + 1)d(P )−
∑

λ∈I

d(λ) ≥ (s + 1)d(P )− sd(P ) = d(P ) ≥ 1.

Then, our first main purpose is to improve Theorem A. On the one hand, we improve
the restrict on n by introducing an important lemma of our own. On the other hand,
we also consider the non-existence of meromorphic solutions of the equation (1.2). Our
result is as follows.

Theorem 1.1 Consider the nonlinear differential-difference equation

fn(z) + P (z, f) = c(z), n ∈ N, (1.4)

where P (z, f) is a differential-difference polynomial of the form (1.1) with meromorphic
coefficients aλ(z), λ ∈ I, and c(z) is a meromorphic functions.

(i) If n > d(P ), then the equation (1.4) has no admissible transcendental entire
solutions with hyper order less than 1.

(ii) If n > w(P ), then the equation (1.4) has no admissible transcendental mero-
morphic solutions with hyper order less than 1.
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Remark 1.2 Here, a meromorphic or entire solution f(z) of the equation (1.4)
is called admissible, if aλ(z), λ ∈ I and c(z) are small with respect to f(z), that is,
T (r, aλ) = S(r, f), λ ∈ I and T (r, c) = S(r, f).

Wang-Li also investigated another kind of nonlinear differential-difference equation
in [13] as follows.

Theorem B For two integers n ≥ 3, k > 0 and a nonlinear differential-difference
equation

fn(z) + q(z)f (k)(z + t) = aeibz + de−ibz, (1.5)

where q(z) is a polynomial and t, a, b, d are complex numbers such that |a| + |d| 6= 0,
bt 6= 0.

(i) Let n = 3. If q(z) is nonconstant, then the equation (1.5) does not admit entire
solutions of finite order. If q = q(z) is constant, then the equation (1.5) admits three
distinct transcendental entire solutions of finite order, provided that

bt = 3mπ (m 6= 0, if q 6= 0), q3 = (−1)m+1(
3i

b
)3k27ad,

when k is even, or

bt =
3π

2
+ 3mπ (if q 6= 0), q3 = i(−1)m(

3i

b
)3k27ad,

when k is odd, for an integer m.
(ii) Let n > 3. If ad 6= 0, then the equation (1.5) does not admit entire solutions of

finite order. If ad = 0, then the equation (1.5) admits n distinct transcentental entire
solutions of finite order, provided that q = q(z) ≡ 0.

Moreover, they proposed a question in [13]: for the differential-difference equation
of the form

fn(z) + L(z, f) = aeibz + de−ibz, n ≥ 3,

where L(z, f) is some linear differential-difference polynomial of f(z) with polynomial
coefficients, what can we say considering Theorem B.

Then, our second main purpose is to give the following results, which answer the
above question to some extent.

Theorem 1.2 Consider the nonlinear differential-difference equation

fn(z) +
l∑

s=0

k∑
t=0

As,t(z)f (t)(z + cs) = aeibz + de−ibz, n ∈ N, n ≥ 3, (1.6)

where c0(= 0), c1, · · · , cl are distinct complex constants, As,t(z), s = 0, 1, · · · , l, t =
0, 1, · · · , k are polynomials, and a, b, d ∈ C such that b 6= 0 and |a|+ |d| 6= 0.

(i) Let n = 3. If

ad 6= 0 and
l∑

s=0

k∑
t=0

As,t(z)
(
e

ibcs
3 (

ib

3
)t − e

−ibcs
3 (

−ib

3
)t

)
6≡ 0,

then the equation (1.6) has no transcendental entire solutions of finite order. If

l∑
s=0

k∑
t=0

As,t(z)e
ibcs
3 (

ib

3
)t ≡ 0 = d, or

l∑
s=0

k∑
t=0

As,t(z)e
−ibcs

3 (
−ib

3
)t ≡ 0 = a,
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or

l∑
s=0

k∑
t=0

As,t(z)e
ibcs
3 (

ib

3
)t ≡

l∑
s=0

k∑
t=0

As,t(z)e
−ibcs

3 (
−ib

3
)t ≡ −3d1d2, d3

1 = a, d3
2 = d,

then the equation (1.6) has three transcendental entire solutions of finite order.
(ii) Let n > 3. If ad 6= 0, or

ad = 0 and
l∑

s=0

k∑
t=0

As,t(z)e
ibcs

n (
ib

n
)t 6≡ 0,

then the equation (1.6) has no transcendental entire solutions of finite order. If

ad = 0 and
l∑

s=0

k∑
t=0

As,t(z)e
ibcs

n (
ib

n
)t ≡ 0,

then the equation (1.6) has n transcendental entire solutions of finite order.
In particular, we obtain more concrete results for a special linear difference polyno-

mial L(z, f) as follows.

Theorem 1.3 Consider the nonlinear difference equation

fn(z) + q(z)4mf(z) = aeibz + de−ibz, n, m ∈ N, n ≥ 3, (1.7)

where q(z) is a polynomial, a, b, d ∈ C such that b 6= 0 and |a|+ |d| 6= 0.
(i) Let n = 3. If ad 6= 0 and q(z) is a nonconstant, then the equation (1.7) has

no transcendental entire solutions of finite order. If ad 6= 0 and q(z) is a constant q,
then the equation (1.7) has three transcendental entire solutions of the form f(z) =

d1e
ibz
3 + d2e

−ibz
3 , d3

1 = a, d3
2 = d, provided that

bc = 6kπ + 3π +
6sπ

m
(k ∈ Z, s ∈ {0, 1, · · · ,m− 1}) and q3 = (−1)m+1 27ad

(e
2sπi
m + 1)3m

.

If ad = 0, then the equation (1.7) has three transcendental entire solutions of the form

f(z) = d1e
ibz
3 + d2e

−ibz
3 , d3

1 = a, d3
2 = d, provided that q(z) ≡ 0 or bc = 6kπ, k ∈ Z.

(ii) Let n > 3. If ad 6= 0, then the equation (1.7) has no transcendental entire
solutions of finite order. If ad = 0, then the equation (1.7) has n transcendental entire

solutions of the form f(z) = d1e
ibz
n + d2e

−ibz
n , dn

1 = a, dn
2 = d, provided that q(z) ≡ 0 or

bc = 2knπ, k ∈ Z.

Remark 1.3 Here, the forward difference 4mf(z) for m ∈ N and c ∈ C\{0} is
defined in the standard way [14, p. 52] by

4f(z) = f(z+c)−f(z), 4mf(z) = 4(4m−1f(z)) = 4m−1f(z+c)−4m−1f(z), m ≥ 2.

And it is shown as in [2] that

4mf(z) =
m∑

j=0

Cj
m(−1)m−jf(z + jc), f(z + mc) =

m∑
j=0

Cj
m4jf(z),

where Cj
m, j = 0, 1, · · · ,m are the binomial coefficients.
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2 Lemmas

Lemma 2.1. ( [19]) Let f(z) be a transcendental meromorphic function of σ2(f) <
1, and P (z, f) be a differential-difference polynomial of the form (1.1), then we have

m(r, P (z, f)) ≤ d(P )m(r, f) + S(r, f).

Furthermore, if f(z) also satisfies N(r, f) = S(r, f), then we have

T (r, P (z, f)) ≤ d(P )T (r, f) + S(r, f).

Lemma 2.2. ( [6]) Let T : [0, +∞) → [0, +∞) be a non-decreasing continuous
function and let s ∈ (0, +∞). If the hyper order of T is strictly less than one, i.e.

lim
r→∞

log2 T (r)
log r

= ζ < 1, and δ ∈ (0, 1− ζ), then

T (r + s) = T (r) + o(
T (r)

rδ
),

where r runs to infinity outside of a set of finite logarithmic measure.
It is shown in [3, p.66] and [1, Lemma 1] that the inequality

(1 + o(1))T (r − |c|, f) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f)

holds for c 6= 0 and r → ∞. And from its proof, the above relation is also true for
counting function. By combining Lemma 2.2 and these inequalities, we immediately
deduce the following lemma.

Lemma 2.3. Let f(z) be a nonconstant meromorphic function of σ2(f) < 1, and
c be a nonzero complex constant. Then we have

T (r, f(z + c)) = T (r, f) + S(r, f),

N(r, f(z + c)) = N(r, f) + S(r, f), N(r,
1

f(z + c)
) = N(r,

1

f
) + S(r, f).

Laine-Yang [9] gave a difference analogue of Clunie lemma as follows.

Lemma 2.4. ( [9]) Let f(z) be a transcendental finite order meromorphic solution
of

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials in f(z) with small meromor-
phic coefficients, degf U = n and degf Q ≤ n. Moreover, we assume that U(z, f)
contains just one term of maximal total degree. Then

m(r, P (z, f)) = S(r, f).

Remark 2.1. Yang-Laine [15] also pointed out that Lemma 2.4 is also true if
P (z, f), Q(z, f) are differential-difference polynomials in f(z). Further, by a careful
inspection of the proof of Lemma 2.4, we see that the same conclusion holds for the
differential-difference case, if the coefficients bµ(z) of P (z, f), Q(z, f) satisfy m(r, bµ) =
S(r, f) instead of T (r, bµ) = S(r, f).

Lemma 2.5. ( [16]) Suppose that c is a nonzero complex constant, α(z) is a
nonconstant meromorphic function. Then the differential equation

f 2(z) + (cf (n)(z))2 = α(z)
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has no transcendental meromorphic solutions satisfying T (r, α) = S(r, f).

3 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1. (i) Let f(z) be an admissible transcendental entire solution
of (1.4) with σ2(f) < 1. By Lemma 2.1, we see that

m(r, P (z, f)) ≤ d(P )m(r, f) + S(r, f). (3.1)

By (1.4) and (3.1), we obtain that

nT (r, f) = T (r, P (z, f)) + S(r, f) = m(r, P (z, f)) + S(r, f) ≤ d(P )T (r, f) + S(r, f).
(3.2)

Since n > d(P ), (3.2) is a contradiction. Thus, (1.4) has no admissible transcendental
entire solutions with hyper order less than 1.

(ii) Let f(z) be an admissible transcendental meromorphic solution of (1.4) with
σ2(f) < 1. We consider each pole of P (z, f). Since each pole of P (z, f) in |z| < r
comes from the poles of f(z + ci), i = 0, · · · , l and aλ(z), λ ∈ I in |z| < r, and each pole
of f(z + ci) with multiplicity pi is a pole of P (z, f) with multiplicity at most

piλi,0+(pi+1)λi,1+· · ·+(pi+k)λi,k ≤ pi(λi,0+2λi,1+· · ·+(k+1)λi,k) = pi

k∑
j=0

(j+1)λi,j,

we have by Lemma 2.3 that

N(r, P (z, f)) ≤ max
λ∈I

{
l∑

i=0

k∑
j=0

(j + 1)λi,jN(r, f(z + ci))}+ S(r, f)

= max
λ∈I

{
l∑

i=0

k∑
j=0

(j + 1)λi,jN(r, f)}+ S(r, f)

= max
λ∈I

w(λ)N(r, f) + S(r, f) = w(P )N(r, f) + S(r, f). (3.3)

Clearly, (3.1) holds by Lemma 2.1 again. By (1.4), (3.1) and (3.3), we obtain that

nT (r, f) = T (r, P (z, f)) + S(r, f) = m(r, P (z, f)) + N(r, P (z, f)) + S(r, f)

≤ d(P )m(r, f) + w(P )N(r, f) + S(r, f) ≤ w(P )T (r, f) + S(r, f). (3.4)

Since n > w(P ), (3.4) is a contradiction. Thus, (1.4) has no admissible transcendental
meromorphic solutions with hyper order less than 1.¤

Proof of Theorem 1.3. Suppose that f(z) is a transcentental entire solution of
finite order of (1.7). Differentiating (1.7), we have

nfn−1(z)f ′(z) + q′(z)
m∑

j=0

Cj
m(−1)m−jf(z + jc) + q(z)

m∑
j=0

Cj
m(−1)m−jf ′(z + jc)

= ib(aeibz − de−ibz). (3.5)

By combining (1.7) and (3.5), we have

(
nfn−1(z)f ′(z) + q′(z)

m∑
j=0

Cj
m(−1)m−jf(z + jc) + q(z)

m∑
j=0

Cj
m(−1)m−jf ′(z + jc)

)2
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+b2
(
fn(z) + q(z)

m∑
j=0

Cj
m(−1)m−jf(z + jc)

)2

= 4adb2,

consequently,
f 2n−2(z)(b2f 2(z) + n2f ′2(z)) = Q(z, f), (3.6)

where Q(z, f) is a differential-difference polynomial of f(z) with the total degree at
most n + 1.

If b2f 2(z) + n2f ′2(z) ≡ 0, we differentiate it and obtain that

n2f ′′(z) + b2f(z) = 0, (3.7)

which implies the solution must be

f(z) = d1e
ibz
n + d2e

−ibz
n , (3.8)

where d1 and d2 are arbitrary complex constants. If b2f 2(z) + n2f ′2(z) 6≡ 0, we may
apply Lemma 2.4 and Remark 2.1 to (3.6) and obtain that

T (r, b2f 2 + n2f ′2) = m(r, b2f 2 + n2f ′2) = S(r, f).

Thus, by Lemma 2.5, we see that b2f 2(z) + n2f ′2(z) must be a constant M . Differenti-
ating b2f 2(z) + n2f ′2(z) = M , we obtain (3.7) and (3.8) again.

Substituting (3.8) into (1.7) and denoting w = w(z) = e
ibz
n , we obtain that

dn
1w

2n + C1
nd

n−1
1 d2w

2n−2 + C2
nd

n−2
1 d2

2w
2n−4 + · · ·+ Cn−2

n d2
1d

n−2
2 w4 + Cn−1

n d1d
n−1
2 w2 + dn

2

+d1q(z)
m∑

j=0

Cj
m(−1)m−je

ijbc
n wn+1 + d2q(z)

m∑
j=0

Cj
m(−1)m−je

−ijbc
n wn−1 = aw2n + d. (3.9)

(i) Let n = 3, then (3.9) reduces into

a6w
6 + a4w

4 + a2w
2 + a0 = 0,

where




a6 = d3
1 − a,

a4 = 3d2
1d2 + d1q(z)

m∑
j=0

Cj
m(−1)m−je

ijbc
3 = 3d2

1d2 + d1q(z)(e
ibc
3 − 1)m,

a2 = 3d1d
2
2 + d2q(z)

m∑
j=0

Cj
m(−1)m−je

−ijbc
3 = 3d1d

2
2 + d2q(z)(e

−ibc
3 − 1)m,

a0 = d3
2 − d.

Since w(z) is transcendental, we have

a6 = a4 = a2 = a0 = 0.

If ad 6= 0, then d3
1 = a 6= 0, d3

2 = d 6= 0. It follows from a4 = a2 = 0 that

3d1d2 + q(z)(e
ibc
3 − 1)m = 3d1d2 + q(z)(e

−ibc
3 − 1)m = 0. (3.10)
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If q(z) is a nonconstant, then (3.10) results in e
ibc
3 − 1 = e

−ibc
3 − 1 = 0, which implies

a contradiction that d1 = d2 = 0. Thus, (1.7) has no transcendental entire solutions of

finite order for this case. If q(z) is a constant q, then (3.10) results in (e
ibc
3 − 1)m =

(e
−ibc

3 − 1)m. Denoting v = e
ibc
3 , we have (v − 1)m = ( 1

v
− 1)m, consequently,

v − 1 = us(
1

v
− 1), s = 0, · · · ,m− 1,

where us = e
2sπi
m = εs, ε = e

2πi
m , s = 0, · · · ,m − 1. If s = 0 (that is, u0 = 1), then

v2 = e
2ibc
3 = 1, that is, bc = 3kπ, where k ∈ Z. Substituting it into (3.10), we deduce

that
3d1d2 + q((−1)k − 1)m = 0.

Then k is odd, and q3 = (−1)m+1 27ad
8m . Thus, (1.7) has three distinct transcendental

entire solutions of finite order for this case. If s ∈ {1, · · · ,m − 1} (that is, us = εs),
then v = 1 or −εs, that is, bc = 6kπ or bc = 6kπ + 3π + 6sπ

m
, where k ∈ Z. Substituting

bc = 6kπ into (3.10), we deduce that d1d2 = 0, which is a contradiction. Substituting
bc = 6kπ + 3π + 6sπ

m
into (3.10), we deduce that

3d1d2 + q(−εs − 1)m = 0.

Then q3 = (−1)m+1 27ad

(e
2sπi
m +1)3m

. Thus, (1.7) has three distinct transcendental entire

solutions of finite order for this case.
If a 6= 0 and d = 0, then d3

1 = a 6= 0 and d2 = 0. If q(z) ≡ 0, then (1.7) has
three distinct transcendental entire solutions of finite order for this case. If q(z) 6≡ 0, it

follows from a4 = a2 = 0 that e
ibc
3 − 1 = e

−ibc
3 − 1 = 0, that is, bc = 6kπ, where k ∈ Z.

Substituting bc = 6kπ into (1.7), we see that (1.7) has three distinct transcendental
entire solutions of finite order for this case.

If a = 0 and d 6= 0, then d1 = 0 and d3
2 = d 6= 0. We can deduce similar results as

the above.
(ii) Let n > 3 (which implies 2n− 2 > n + 1 and 2 < n− 1), then we deduce from

(3.9) that
a2nw

2n + a2n−2w
2n−2 + · · ·+ a2w

2 + a0 = 0, (3.11)

where 



a2n = dn
1 − a,

a2n−2 = ndn−1
1 d2,

· · · · · ·

a2 = nd1d
n−1
2 ,

a0 = dn
2 − d.

Since w(z) is transcendental, we have

a2n = a2n−2 = · · · = a2 = a0 = 0.

If ad 6= 0, then dn
1 = a 6= 0, dn

2 = d 6= 0. It follows from a2n−2 = a2 = 0 that
d1d2 = 0, which is a contradiction. Thus, (1.7) has no transcendental entire solutions
of finite order for this case.
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If a 6= 0 and d = 0, then dn
1 = a 6= 0 and d2 = 0. If n is even, then n + 1 is odd.

Hence, the coefficient of wn+1 in (3.11) is

an+1 = d1q(z)
m∑

j=0

Cj
m(−1)m−je

ijbc
n = d1q(z)(e

ibc
n − 1)m.

Since an+1 = 0, we have q(z) ≡ 0 or e
ibc
n − 1 = 0 (that is, bc = 2knπ, where k ∈ Z). If

n is odd, then n + 1 is even. Hence, the coefficient of wn+1 in (3.11) is

an+1 = C
n−1

2
n d

n+1
2

1 d
n−1

2
2 + d1q(z)

m∑
j=0

Cj
m(−1)m−je

ijbc
n = d1q(z)(e

ibc
n − 1)m.

Hence, we deduce the same result as the above, that is, q(z) ≡ 0 or bc = 2knπ, where
k ∈ Z. Thus, (1.7) has n distinct transcendental entire solutions of finite order for this
case.

If a = 0 and d 6= 0, then d1 = 0 and dn
2 = d 6= 0. We can deduce similar results as

the above.¤

Proof of Theorem 1.2. The proof of Theorem 1.2 is similar as the one of Theorem
1.3.¤

4 Examples

Example 4.1. In the following, we give examples to show the sharpness of Theorem
1.1.

Consider the nonlinear differential-difference equation

f 2(z) + P1(z, f) = 1 + 4(z − π)2, (4.1)

where

P1(z, f) =
1

4z2
f ′2(z)+f ′2(z−π)+4(z−π)2f 2(z−π)+f(z+

√
π)+f(z−√π)+2 cos(2

√
πz)f(z).

Clearly, n = 2 = d(P ), and f1(z) = sin z2 is an admissible transcendental entire solution
of (4.1). This shows our assumption “n > d(P )” in Theorem 1.1(i) is sharp.

Consider the nonlinear differential-difference equation

f 4(z) + P2(z, f) = 1 + z, (4.2)

where

P2(z, f) = 2f ′(z)− f ′2(z + π)− zf(z)f(z +
π

2
).

Clearly, n = 4 = w(P ), and f2(z) = tan z is an admissible transcendental meromorphic
solution of (4.2). This shows our assumption “n > w(P )” in Theorem 1.1(ii) is sharp.

Example 4.2. In the following, we give examples to illustrate the existence of
entire solutions of finite order of (1.7) under the assumptions in Theorem 1.3.

Denote ε = −1
2

+
√

3
2

i, which is a cubit root of unity, and consider the nonlinear
difference equation

f 3(z) + q4mf(z) = π3eibz − e−ibz. (4.3)
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If m = 2, q = 3
4
π, b = 3

2
π, c = 2, then (4.3) has three solutions as follows.

f1(z) = πe
iπz
2 − e−

iπz
2 ,

f2(z) = πεe
iπz
2 − ε2e−

iπz
2 ,

f3(z) = πε2e
iπz
2 − εe−

iπz
2 .

If m = 3, q = 3π, b = π, c = 1, then (4.3) has three solutions as follows.

f1(z) = πe
iπz
3 − e−

iπz
3 ,

f2(z) = πεe
iπz
3 − ε2e−

iπz
3 ,

f3(z) = πε2e
iπz
3 − εe−

iπz
3 .

If m = 4, q = −3
4
π, b = −3π, c = 1

2
, then (4.3) has three solutions as follows.

f1(z) = πe−iπz − eiπz,

f2(z) = πεe−iπz − ε2eiπz,

f3(z) = πε2e−iπz − εeiπz.

Consider the nonlinear difference equation

fn(z) + q(z)4mf(z) = ie−3z, n, m ∈ N, n ≥ 3, (4.4)

where p(z) is a polynomial. If q(z) ≡ 0 or c = −2knπi
3

, k ∈ Z, then (4.4) has n solutions
as follows.

fj(z) = dje
− 3z

n , j = 0, 1, · · · , n− 1,

where dn
j = i, j = 0, 1, · · · , n− 1.
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Abstract. We find the asymptotic approximations of the stable and unstable manifolds of the sad-
dle equilibrium solutions and the saddle period-two solutions of the following difference equation
xn+1 = cx2

n−1 + dxn + 1, where the parameters c and d are positive numbers and initial conditions
x−1 and x0 are arbitrary nonnegative numbers. These manifolds determine completely global dy-
namics of this equation.
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1 Introduction

In this paper we consider the difference equation

xn+1 = cx2
n−1 + dxn + 1, (1)

where the parameters c and d are positive numbers and initial conditions x−1 and x0 are arbitrary
nonnegative numbers. Set

un = xn−1 and vn = xn for n = 0, 1, . . . (2)

and write Eq.(1) in the equivalent form:

un+1 = vn (3)

vn+1 = cu2
n + dvn + 1.

Let T be the corresponding map defined by:

T

(
u
v

)
=

(
v

cu2 + dv + 1

)
. (4)

It is easy to see that

T 2

(
u
v

)
= T

(
T

(
u
v

))
=

(
cu2 + dv + 1

d
(
cu2 + dv + 1

)
+ cv2 + 1

)
. (5)

The local dynamics of the map T was derived in [1] where it was shown that the following
holds:

Theorem 1 If
d < 1 and (d− 1)2 − 4c ≥ 0

1Corresponding author, e-mail: mkulenovic@mail.uri.edu
2Partially supported by FMON Grant No. 05-39-3632–1/14
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then Eq.(1) has the equilibrium points x̄1 and x̄2 where

x̄1 =
1− d−

√
(d− 1)2 − 4c

2c
, x̄2 =

1− d+
√

(d− 1)2 − 4c

2c

and the following holds:

i) x̄1 is locally asymptotically stable if

c <
(d− 1)2

4
.

ii) x̄1 a non-hyperbolic point if

c =
(d− 1)2

4
.

iii) x̄2 is a repeller if

c <
(1− 3d)(d+ 1)

4
.

iv) x̄2 is a saddle point if
(1− 3d)(d+ 1)

4
< c <

(d− 1)2

4

v) x̄2 a non-hyperbolic point if

c =
(1− 3d)(d+ 1)

4
or c =

(d− 1)2

4
.

Theorem 2 If

c <
(1− 3d)(d+ 1)

4

then Eq.(1) has the minimal period-two solution

P =

{
d+ 1−

√
1− 4c− d(3d+ 2)

2c
,
d+ 1 +

√
1− 4c− d(3d+ 2)

2c

}
which is a saddle point.

The global dynamics of Eq.(1) is delicate and is described by the following theorem [1].

Theorem 3 Consider Eq.(1). Then the following holds:

(i) If c < (1+d)(1−3d)
4

then Eq.(1) has two equilibrium solutions 0 < x̄− < x̄+, where x− is lo-
cally asymptotically stable, x̄+ is a repeller and the minimal period-two solution . . . ,Φ,Ψ, . . .,
Φ < Ψ is a saddle point. All non-equilibrium solutions {xn} converge to x−, or to the period-
two solution or are asymptotic to ∞. More precisely, there exist four continuous curves
W s(P1),W s(P2) (stable manifolds of P1(Φ,Ψ) and P2(Ψ,Φ)), Wu(P1),Wu(P2), (unstable
manifolds of P1 and P2) where W s(P1),W s(P2) are passing through the point E+(x̄+, x̄+),
and are graphs of decreasing functions. The curves Wu(P1),Wu(P2) are the graphs of in-
creasing functions and are starting at E−(x̄−, x̄−). Every solution {xn} which starts below
W s(P1) ∪W s(P2) in North-east ordering converges to E−(x̄−, x̄−) and every solution {xn}
which starts above W s(P1) ∪W s(P2) in North-east ordering satisfies limxn =∞.

(ii) If c = (1+d)(1−3d)
4

then Eq.(1) has two equilibrium solutions 0 < x̄− < x̄+, where x− is
locally asymptotically stable and x̄+ is the non-hyperbolic equilibrium solution. There exist
the continuous decreasing curve W s(E+) passing through the point E+ = (x̄+, x̄+), such
that every solution {xn} which starts below W s(E+) in North-east ordering converges to
E−(x̄−, x̄−) and every solution {xn} which starts above W s(E+) in North-east ordering
satisfies limxn =∞.

(iii) If (1+d)(1−3d)
4

< c < (1−d)2
4

then Eq.(1) has two equilibrium solutions 0 < x̄− < x̄+ and no
minimal period-two solutions. If x̄+ is a saddle equilibrium solution, then there exist two
continuous curves W s(E+) and Wu(E+), both passing through the point E+ = (x̄+, x̄+),
such that W s(E+) is a graph of decreasing function and Wu(E+) is a graph of an increasing

2
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function. The first quadrant of initial condition Q1 = {(x−1, x0) : x−1 ≥ 0, x0 ≥ 0} is is the
union of three disjoint basins of attraction, namely

Q1 = B(E−) ∪ B(E+) ∪ B(E∞),

where E− and E∞ denote the points (x−, x−) and (∞,∞) respectively, and B(E+) = W s(E+),

B(E−) = {(x, y)|(x, y) �ne (xE+ , yE+) for some (xE+ , yE+) ∈W s(E+)},

B(E∞) = {(x, y)|(xE+ , yE+) �ne (x, y) for some (xE+ , yE+) ∈W s(E+)}.
In addition, for every (x−1, x0) ∈ Q1 \W s(E+) every solution is asymptotic to Wu(E+).

(iv) If c = (1−d)2
4

then Eq.(1) has one non-hyperbolic equilibrium solution x̄ and there exists
an invariant continuous curve W s(E), where E(x̄, x̄), which is the graph of a decreasing
function, such that every solution {xn} of Eq.(1) for which (x−1, x0) ∈ W s(E) is attracted
to E as well as every solution {xn} of Eq.(1) for which (x−1, x0) �ne W s(E).

Every solution {xn} of Eq.(1) for which there exists (xW , yW ) ∈W s(E) such that (xW , yW ) �ne
(x−1, x0), (x−1, x0) /∈W s(E) satisfies limxn =∞.

(v) If c > (1−d)2
4

then Eq.(1) neither has an equilibrium solution nor the minimal period-two
solution and every solution {xn} of Eq.(1) satisfies limn→∞ xn =∞.

As one may see from Theorem 3 the boundaries of the basins of attraction of all attractors of
Eq.(1) are the stable manifolds of either equilibrium points or of the period-two solution. In
addition, by using the results from [9] one can see that the solutions which are asymptotic to
the locally asymptotically stable equilibrium solutions are approaching the unstable manifolds of
the neighboring saddle equilibrium points or period-two point. The monotonicity and smoothness
of stable and unstable manifolds for the map T given with (4) is guaranteed by Theorems 4,
5, 6 of [9]. See [4, 7, 9, 12, 13] for related results about the stable manifolds for competitive
maps. Our main goal here is to get the local asymptotic estimates for these manifolds for both
equilibrium solutions and the period-two solutions. We will bring the considered map to the normal
form around the equilibrium solutions and the period-two solutions and then use the method of
undetermined coefficients to find the local approximations of the considered manifolds. Since the
map T is cooperative, it is guaranteed that both stable and unstable manifolds are as smooth as the
functions of the considered map and that are monotonic such that the stable manifold is decreasing
and unstable manifold is increasing, see [2, 9]. See [4, 10, 14] for similar local approximations of
stable and unstable manifolds. See [3, 5, 6, 11, 14] for basic results on stable ad unstable manifolds
for general maps.

2 Preliminaries

In this section we present some basic results for the cooperative maps which describe the existence
and the properties of their invariant manifolds.

A first order system of difference equations{
xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, 2, . . . , (x0, y0) ∈ S , (6)

where S ⊂ R2 is nonempty, (f, g) : S → S, f , g are continuous functions is cooperative if f(x, y)
and g(x, y) are non-decreasing in x and y. Strongly cooperative systems of difference equations or
strongly cooperative maps are those for which the functions f and g are coordinate-wise strictly
monotone.

If v = (u, v) ∈ R2, we denote with Q`(v), ` ∈ {1, 2, 3, 4}, the four quadrants in R2 relative to v,
i.e., Q1(v) = {(x, y) ∈ R2 : x ≥ u, y ≥ v}, Q2(v) = {(x, y) ∈ R2 : x ≤ u, y ≥ v}, and so on. Define
the South-East partial order �se on R2 by (x, y) �se (s, t) if and only if x ≤ s and y ≥ t. Similarly,
we define the North-East partial order �ne on R2 by (x, y) �ne (s, t) if and only if x ≤ s and y ≤ t.
For A ⊂ R2 and x ∈ R2, define the distance from x to A as dist(x,A) := inf {‖x− y‖ : y ∈ A}. By
intA we denote the interior of a set A.

It is easy to show that a map F is cooperative if it is non-decreasing with respect to the
North-East partial order, that is if the following holds:

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

37 J. Bektesevic et al 35-51



(
x1

y1

)
�ne

(
x2

y2

)
⇒ F

(
x1

y1

)
�ne F

(
x2

y2

)
. (7)

The following five results were proved by Kulenović and Merino [8, 9] for competitive systems
in the plane, when one of the eigenvalues of the linearized system at an equilibrium (hyperbolic or
non-hyperbolic) is by absolute value smaller than 1 while the other has an arbitrary value. We give
the analogue versions for cooperative maps.

A region R ⊂ R2 is rectangular if it is the cartesian product of two intervals in R.

Theorem 4 Let T be a cooperative map on a rectangular region R ⊂ R2. Let x ∈ R be a fixed
point of T such that ∆ := R∩ int (Q2(x)∪Q4(x)) is nonempty (i.e., x is not the NE or SW vertex
of R), and T is strongly cooperative on ∆. Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.

b. The Jacobian matrix of T at x has real eigenvalues λ, µ such that 0 < |λ| < µ, where |λ| < 1,
and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of
attraction of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly
decreasing continuous function of the first coordinate on an interval. Any endpoints of C in the
interior of R are either fixed points or minimal period-two points. In the latter case, the set of
endpoints of C is a minimal period-two orbit of T .

Corollary 1 If T has no fixed point nor periodic points of minimal period two in ∆, then the
endpoints of C belong to ∂R.

For maps that are strongly cooperative near the fixed point, hypothesis (b). of Theorem 4
reduces just to |λ| < 1. This follows from a change of variables [13] that allows the Perron-Frobenius
Theorem to be applied to give that at any point, the Jacobian matrix of a strongly cooperative
map has two real and distinct eigenvalues, the larger one in absolute value being positive, and that
corresponding eigenvectors may be chosen to point in the direction of the second and first quadrant,
respectively. Also, one can show that in such a case no associated eigenvector is aligned with a
coordinate axis.

Theorem 5 Under the hypotheses of Theorem 4, suppose there exists a neighborhood U of x in R2

such that T is of class Ck on U ∪∆ for some k ≥ 1, and that the Jacobian of T at each x ∈ ∆ is
invertible. Then the curve C in the conclusion of Theorem 4 is of class Ck.

The following result gives a description of the global stable and unstable manifolds of a saddle
point of a cooperative map. The result is the modification of Theorem 5 from [7]. See also [8].

Theorem 6 In addition to the hypotheses of Theorem 4, suppose that µ > 1 and that the eigenspace
Eµ associated with µ is not a coordinate axis. If the curve C of Theorem 4 has endpoints in ∂R,
then C is the global stable manifold Ws(x) of x, and the global unstable manifold Wu(x) is a curve
in R that is tangential to Eµ at x and such that it is the graph of a strictly increasing function of
the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed points of T .

Theorem 7 Assume the hypotheses of Theorem 4, and let C be the curve whose existence is guar-
anteed by Theorem 4. If the endpoints of C belong to ∂R, then C separates R into two connected
components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x �ne y} and W+ := {x ∈ R \ C : ∃y ∈ Cwith y �ne x} , (8)

such that the following statements are true.

(i) W− is invariant, and dist(Tn(x),Q1(x))→ 0 as n→∞ for every x ∈ W−.

(ii) W+ is invariant, and dist(Tn(x),Q3(x))→ 0 as n→∞ for every x ∈ W+.

4
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If, in addition, x is an interior point of R and T is C2 and strongly cooperative in a neighborhood
of x, then T has no periodic points in the boundary of Q2(x)∪Q4(x) except for x, and the following
statements are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ1(x) for n ≥ n0.

(iv) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ3(x) for n ≥ n0.

Remark 1 The map T defined with (4) is strongly cooperative in the first quadrant of initial
conditions. Theorems 4, 5 and 6 show that the stable and unstable manifolds of cooperative maps,
which satisfies certain conditions, are simple monotonic curves which are as smooth as the functions
of the map. Thus the assumed forms of these manifolds are justified. As is well-known the stable
and unstable manifolds of general maps can have complicated structure consisting of many branches
or being strange attractors, see [3, 5, 10, 14] for some examples of polynomial maps such as Henon
with unstable manifold being a starnge attractor. Finally, see [13] for examples of competitive and
so cooperative maps in the plane with chaotic attractors.

3 Invariant manifolds and Normal Forms

Let (
ξn+1

ηn+1

)
=

(
µ1 0
0 µ2

)(
ξn
ηn

)
+

(
g1(ξn, ηn)
g2(ξn, ηn)

)
, (9)

where
g1(0, 0) = 0, g2(0, 0) = 0, Dg1(0, 0) = 0 and Dg2(0, 0) = 0.

Suppose that |µ1| < 1 and |µ2| > 1. Then, there are two unique invariant manifolds Ws and
Wu tangents to (1, 0) and (0, 1) at (0,0), which are graphs of the maps

ϕ : E1 → E2 and ψ : E1 → E2,

such that
ϕ(0) = ψ(0) = 0 and ϕ′(0) = ψ′(0) = 0.

See [4, 5, 10, 14]. Letting ηn = ϕ(ξn) yields

ηn+1 = ϕ(ξn+1) = ϕ(µ1ξn + g1(ξn, ϕ(ξn))). (10)

On the other hand by (9)
ηn+1 = µ2ϕ(ξn) + g2(ξn, ϕ(ξn)). (11)

Equating equations (10) and (11) yields

ϕ(µ1ξn + g1(ξn, ϕ(ξn))) = µ2ϕ(ξn) + g2(ξn, ϕ(ξn)). (12)

Similarly, letting ξn = ψ(ηn) yields

ξn+1 = ψ(ηn+1) = ψ(µ2ηn + g2(ψ(ηn), ηn)). (13)

By using (9) we obtain
ξn+1 = µ1ψ(ηn) + g1(ψ(ηn), ηn). (14)

Equating equations (13) and (14) yields

ψ(µ2ηn + g2(ψ(ηn), ηn)) = µ1ψ(ηn) + g1(ψ(ηn), ηn). (15)

Thus the functional equations (12) and (15), define the local stable manifold

Ws = {(ξ, η) ∈ R2 : η = ϕ(ξ)},

and the local unstable manifold

Wu = {(ξ, η) ∈ R2 : ξ = ψ(η)}.

Without loss generality, we can assume that solutions of the functional equations (12) and (15)
take the forms

ψ(η) = α2η
2 + β2η

3 +O(|η|4)

and
ϕ(ξ) = α1ξ

2 + β1ξ
3 +O(|ξ|4),

where αi, βi, i = 1, 2 are undetermined coefficients.

5
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3.1 Normal form of the map T at x̄2

Put yn = xn − x̄2. Then Eq(1) becomes

yn+1 = c (x̄2 + yn−1) 2 + d (x̄2 + yn)− x̄2 + 1. (16)

Set
un = yn−1 and vn = yn for n = 0, 1, . . . (17)

and write Eq(16) in the equivalent form:

un+1 = vn (18)

vn+1 = c (x̄2 + un) 2 + d (x̄2 + vn)− x̄2 + 1.

Let F be the function defined by:

F

(
u
v

)
=

(
v

c (x̄2 + u) 2 + d (x̄2 + v)− x̄2 + 1

)
. (19)

Then F has the fixed point (0, 0) and maps (−x̄2,∞)2 into (−x̄2,∞)2. The Jacobian matrix of F
is given by

JacF (u, v) =

(
0 1

2c (u+ x̄2) d

)
.

At (0, 0), JacF (u, v) has the form

J0 = JacF (0, 0) =

(
0 1

2cx̄2 d

)
. (20)

The eigenvalues of (20) are µ1,2 where

µ1 =
1

2

(
d−

√
8cx̄2 + d2

)
and µ2 =

1

2

(
d+

√
8cx̄2 + d2

)
,

and the corresponding eigenvectors are given by

v1 =

(
−d+

√
8cx̄2 + d2

4cx̄2
, 1

)T
and v2 =

(
−d−

√
8cx̄2 + d2

4cx̄2
, 1

)T
,

respectively.
Then we have that

F

(
u
v

)
=

(
0 1

2cx̄2 d

)(
u
v

)
+

(
f1(u, v)
g1(u, v)

)
, (21)

where

f1(u, v) = 0

g1(u, v) = x̄2 (cx̄2 + d− 1) + cu2 + 1.

Then, the system (16) is equivalent to(
un+1

vn+1

)
=

(
0 1

2cx̄2 d

)(
un
vn

)
+

(
f1(un, vn)
g1(un, vn)

)
. (22)

Let (
un
vn

)
= P ·

(
ξn
ηn

)
where

P =

(
− d+
√
d2+8cx̄2
4cx̄2

− d−
√
d2+8cx̄2
4cx̄2

1 1

)
and P−1 =

 − 2cx̄2√
d2+8cx̄2

√
d2+8cx̄2−d

2
√
d2+8cx̄2

2cx̄2√
d2+8cx̄2

d+
√
d2+8cx̄2

2
√
d2+8cx̄2

 .

Then system (22) is equivalent to(
ξn+1

ηn+1

)
=

(
µ1 0
0 µ2

)(
ξn
ηn

)
+ P−1 ·H1

(
P ·
(
ξn
ηn

))
, (23)

6
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where

H1

(
u
v

)
:=

(
f1(u, v)
g1(u, v)

)
.

Let

G1

(
u
v

)
:=

(
f̃1(u, v)
g̃1(u, v)

)
= P−1 ·H1

(
P ·
(
u
v

))
.

By straightforward calculation we obtain that

f̃1(u, v) =
Υ1(u, v)

(√
8cx̄2 + d2 − d

)
16cx̄2

2

√
8cx̄2 + d2

,

g̃1(u, v) =
Υ1(u, v)

(√
8cx̄2 + d2 + d

)
16cx̄2

2

√
8cx̄2 + d2

,

where

Υ1(u, v) = 8c2x̄4
2 + d

(
u2 − v2)√8cx̄2 + d2 + 4cx̄2

(
2(d− 1)x̄2

2 + 2x̄2 + (u− v)2)+ d2 (u2 + v2) .
3.2 Stable and unstable manifolds corresponding to x̄2

Assume that d < 1 and (d− 1)2 − 4c ≥ 0. Then Eq.(1) has the equilibrium point x̄2 where

x̄2 =
1− d+

√
(d− 1)2 − 4c

2c

which is a saddle point if
(1− 3d)(d+ 1)

4
< c <

(d− 1)2

4
.

Let us assume that the local stable manifold is the graph of the map ϕ1 of the form

ϕ1(ξ) = α1ξ
2 + β1ξ

3 +O(|ξ|4), α1, β1 ∈ R.

Now we compute the constants α1 and β1. The function ϕ1 must satisfy the stable manifold equation

ϕ1

(
µ1ξ + f̃1 (ξ, ϕ1(ξ))

)
= µ2ϕ1(ξ) + g̃1 (ξ, ϕ1(ξ)) ,

This leads to the following polynomial equation

p1ξ
2 + p2ξ

3 + · · ·+ p18ξ
18 = 0

where the coefficients p1 and p2, obtain by using Mathematica are in appendix A. Substituting x̄2

into (42) and (43) and solving system p1 = 0 and p2 = 0, we obtain the values

α1 =
−8c2

Υ1(c, d) + Υ2(c, d)
√

4
√

(d− 1)2 − 4c+ d2 − 4d+ 4

and

β1 =
4α1c(4c+ (d+ 1)(3d− 1))

Υ3(c, d) + Υ4(c, d)
√

4
√

(d− 1)2 − 4c+ d2 − 4d+ 4

where

Υ1(c, d) =
√

(d− 1)2 − 4c
(
d6 − 4c

(
13d2 − 4d+ 8

))
− 4c

(
7d4 − 12d3 + 17d2 − 12d+ 8

)
+ (d− 1)d6 + 64c2,

Υ2(c, d) =
√

(d− 1)2 − 4c
(
4c(5d+ 2)− d5)+ 4c

(
5d3 − 4d2 + 3d+ 2

)
+ (1− d)d5,

Υ3(c, d) =
√

(d− 1)2 − 4c
(
−4c

(
5d2 − 12d+ 16

)
− 15d4 + 27d3 − 13d2 − 32d+ 24

)
+ 64c2 − 4c

(
d4 − 6d3 + 7d2 − 32d+ 28

)
− 3d6 + 16d5 − 42d4 + 40d3 + 19d2 − 56d+ 24,

Υ4(c, d) =
√

(d− 1)2 − 4c
(
4c(3d− 2) + 9d3 + d2 − 3d+ 6

)
+ 3d5 − 10d4 + 8d3 + 4d2 − 9d+ 6

+ 4c
(
d3 − 4d2 + 5d− 6

)
.

(24)
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Since
ηn = α1ξ

2
n + β1ξ

3
n,(

ξn
ηn

)
= P−1 ·

(
un
vn

)
,

and
un = xn−1 − x̄2 and vn = xn − x̄2

we can approximate locally the local stable manifold Ws
loc(x̄2, x̄2) as the graph of the map ϕ̃1(u)

such that S(u, ϕ̃1(u)) = 0 where

S(u, v) :=α1

(
(v − x̄2)

(√
8cx̄2 + d2 − d

)
2
√

8cx̄2 + d2
− 2cx̄2 (u− x̄2)√

8cx̄2 + d2

)2

+ β1

(
(v − x̄2)

(√
8cx̄2 + d2 − d

)
2
√

8cx̄2 + d2
− 2cx̄2 (u− x̄2)√

8cx̄2 + d2

)3

− 2cx̄2 (u− x̄2)√
8cx̄2 + d2

−
(v − x̄2)

(√
8cx̄2 + d2 + d

)
2
√

8cx̄2 + d2

(25)

and which satisfies

ϕ̃1(x̄2) = x̄2 and ϕ̃′1(x̄2) = − 4cx̄2√
8cx̄2 + d2 + d

.

Let us assume that the local unstable manifold is the graph of the map ψ that has the form

ψ1(η) = α2η
2 + β2η

3 +O(|η|4), α1, β1 ∈ R.

Now we compute the constants α2 and β2. The function ψ1 must satisfy the unstable manifold
equation

ψ1(µ2η + g̃1(ψ1(η), η)) = µ1ψ1(η) + f̃1(ψ1(η), η),

This leads to the following polynomial equation

q1η
2 + q2η

3 + · · ·+ q18η
18 = 0

where the coefficients q1 and q2 are in appendix A.
Substituting x̄2 into (44) and (45) and solving system q1 = 0 and q2 = 0, we obtain the values

α2 =
−8c2

Γ1(c, d) + Γ2(c, d)
√

4
√

(d− 1)2 − 4c+ d2 − 4d+ 4

and

β2 =
α2Γ5(c, d)

Γ3(c, d) + Γ4(c, d)
√

4
√

(d− 1)2 − 4c+ d2 − 4d+ 4

where

Γ1(c, d) =64c2 +
√

(d− 1)2 − 4c
(
d6 − 4c

(
13d2 − 4d+ 8

))
− 4c

(
7d4 − 12d3 + 17d2 − 12d+ 8

)
+ (d− 1)d6,

Γ2(c, d) =
√

(d− 1)2 − 4c
(
d5 − 4c(5d+ 2)

)
− 4c

(
5d3 − 4d2 + 3d+ 2

)
+ (d− 1)d5,

Γ3(c, d) =256c2 +
√

(d− 1)2 − 4c
((
d2 − 8d+ 8

)2 (
d2 − 2d+ 3

)
− 32c

(
3d2 − 8d+ 10

))
− 4c

(
9d4 − 72d3 + 208d2 − 304d+ 176

)
−
(
d2 − 8d+ 8

)2 (
d3 − 3d2 + 5d− 3

)
,

Γ4(c, d) =d
√

(d− 1)2 − 4c
(
−48c+ d4 − 14d3 + 61d2 − 88d+ 40

)
− d

(
4c
(
7d2 − 36d+ 32

)
+
(
d3 − 13d2 + 48d− 40

)
(d− 1)2) ,

Γ5(c, d) =

√
4
√

(d− 1)2 − 4c+ d2 − 4d+ 4
(
−2c(d− 2)2 − 8c

√
(d− 1)2 − 4c

)
− 4c

(
d2 − 10d+ 8

)√
(d− 1)2 − 4c+ 2c

(
32c+ 3d3 − 22d2 + 36d− 16

)
.

(26)
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Since
ξn = α2η

2
n + β2η

3
n,(

ξn
ηn

)
= P−1 ·

(
un
vn

)
,

and
un = xn−1 − x̄2 and vn = xn − x̄2

we can approximate locally the local unstable manifold Wu
loc(x̄2, x̄2) as the graph of the map ψ̃1(u)

such that U(ψ̃1(v), v) = 0 where

U(u, v) :=α2

(
2cx̄2 (u− x̄2)√

8cx̄2 + d2
+

(v − x̄2)
(√

8cx̄2 + d2 + d
)

2
√

8cx̄2 + d2

)2

+ β2

(
2cx̄2 (u− x̄2)√

8cx̄2 + d2
+

(v − x̄2)
(√

8cx̄2 + d2 + d
)

2
√

8cx̄2 + d2

)3

+
2cx̄2 (u− x̄2)√

8cx̄2 + d2
−

(v − x̄2)
(√

8cx̄2 + d2 − d
)

2
√

8cx̄2 + d2

(27)

and which satisfies

ψ̃1(x̄2) = x̄2 and ψ̃′1(x̄2) =
4cx̄2√

8cx̄2 + d2 − d
.

Thus we proved the following result

Theorem 8 Consider Eq.(1) subject to the condition (1−3d)(d+1)
4

< c < (d−1)2

4
. Then the local

stable and unstable manifolds are given with the asymptotic expansions (25) and (27) respectively.

3.3 Some numerical examples

In this section we provide some numerical examples and we compare visually the asymptotic ap-
proximations of stable and unstable manifolds, obtained by using Mathematica, with the boundaries
of the basins of attraction obtained by using the software package Dynamica 3 [6].
For c = 0.06 and d = 0.3 we have that

S1(u, v) =− 0.0000205931x3 + x2(0.0000492004y + 0.0322121)

+ x
(
−0.0000391827y2 − 0.0513067y + 0.411741

)
+ 0.0000104016y3 + 0.0204302y2 + 0.672096y − 10.9718

and for c = 0.075 and d = 0.42

S2(u, v) =y2(0.0227887− 0.000731949x) + 0.000814449(x− 62.2685)xy

− 0.000302082(x− 105.844)x(x+ 12.4415)

+ 0.000219269y3 + 0.642493y − 6.35325.

Figures 1 and 2 show the graph of the functions S1(u, v) = 0 and S2(u, v) = 0 with the basins
of attraction created with Dynamica 3. Figure 3 shows the graph of the functions S1(u, v) = 0 and
S2(u, v) = 0 for different values of the parameters c and d.
For c = 0.06 and d = 0.3 we have that

U1(u, v) =(0.000113205x− 0.00441057)y2 + 0.000108186(x− 77.922)xy

+ 0.0000344633(x− 183.477)x(x+ 66.5943)

+ 0.0000394854y3 + 0.559375y + 0.00870931

and for c = 0.075 and d = 0.42

U2(u, v) =(0.000446197x− 0.010175)y2 + 0.000309085(x− 45.6077)xy

+ 0.000071369(x− 111.063)x(x+ 42.6512)

+ 0.00021471y3 + 0.511958y − 0.265003
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Figure 1: The graph of the function S1(u, v) = 0 (red curve) for c = 0.06 and d = 0.3
with the basins of attraction generated by Dynamica 3.

Figure 2: The graph of the function S2(u, v) = 0 (red curve) for c = 0.075 and
d = 0.42 with the basins of attraction generated by Dynamica 3.

3.4 Normal form of the map T 2 at the period-two solution

The period-two solution of (1) is given as

ū1 =
d+ 1−D

2c
and v̄1 =

d+ 1 +D

2c
,

where
D =

√
1− 4c− 2d− 3d2.

First we transform the period two solution (ū1, v̄1) of (1) to the origin by the translation

ũ = u− ū1 and ṽ = v − v̄1

under which the corresponding map (5) becomes

(
ũ
ṽ

)
→ F̃

(
ũ
ṽ

)
= T 2

(
ũ+ ū1

ṽ + v̄1

)
−
(
ũ
ṽ

)
=

(
cũ2 + ũ(d−D + 1) + dṽ(

cũ2 −Dũ+ ũ+ ṽ
)

+ ṽ(cṽ +D + 1) + d2(ũ+ ṽ)

)
.

(28)
Then F̃ has the fixed point at (0, 0). The Jacobian matrix of F̃ is given by

JacF̃ (ũ, ṽ) =

(
d−D + 2cũ+ 1 d

d2 + (−D + 2cũ+ 1)d d2 + d+D + 2cṽ + 1

)
.

At (0, 0), JacF̃ (ũ, ṽ) has the form

J0 = JacF̃ (0, 0) =

(
d−D + 1 d

d2 + (1−D)d d2 + d+D + 1

)
. (29)

The eigenvalues of (29) are

ν1 =
1

2
(d(d+ 2) + 2− C) and ν2 =

1

2
(d(d+ 2) + 2 + C),

10
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Figure 3: a) The graph of the functions S1(u, v) = 0 (red curve) and U1(u, v) = 0
(blue curve) for c = 0.06 and d = 0.3. b) The graph of the functions S2(u, v) = 0
(red curve) and U2(u, v) = 0 (blue curve) for c = 0.075 and d = 0.42.

where
C =

√
−16c+ (d− 2)d(d(d+ 6) + 4) + 4.

The eigenvectors corresponding to the eigenvalues ν1,2 are given by

v1 =

(
2d

−C + d2 + 2D
, 1

)T
and v2 =

(
2d

C + d2 + 2D
, 1

)T
,

respectively.
Then we have that(

ũ
ṽ

)
→ F̃

(
ũ
ṽ

)
=

(
d−D + 1 d

d2 + (1−D)d d2 + d+D + 1

)(
ũ
ṽ

)
+

(
f2(ũ, ṽ)
g2(ũ, ṽ)

)
, (30)

where

f2(ũ, ṽ) = cũ2, g2(ũ, ṽ) = c(dũ2 + ṽ2).

Let (
ũ
ṽ

)
= P ·

(
ξ
η

)
where

P =

(
2d

d2−C+2D
2d

d2+C+2D

1 1

)
and P−1 =

 (d2+2D)2−C2

4Cd
− d

2−C+2D
2C

C2−(d2+2D)2

4Cd
d2+C+2D

2C

 .

Then (30) leads to the corresponding normal form(
ξ
η

)
→
(
ν1 0
0 ν2

)(
ξ
η

)
+ P−1 ·H2

(
P ·
(
ξ
η

))
, (31)

where

H2

(
u
v

)
:=

(
f2(u, v)
g2(u, v)

)
.

Let

G2

(
u
v

)
=

(
f̃2(u, v)
g̃2(u, v)

)
= P−1 ·H2

(
P ·
(
u
v

))
.

By straightforward calculation we obtain that

f̃2(u, v) = cΥ2(u, v)
((
d2 + 2D

)2 − C2
)
,

g̃2(u, v) = −cΥ2(u, v)
((
d2 + 2D

)2 − C2
)
,

where

11
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Υ2(u, v) =
1

2C

2d

(
u

−C + d2 + 2D
+

v

C + d2 + 2D

)2

−
4d3

(
u

−C+d2+2D
+ v

C+d2+2D

)2

+ (u+ v)2

C + d2 + 2D

 .

3.5 Stable and unstable manifolds corresponding to the saddle period-
two solution

If c < (1−3d)(d+1)
4

then Eq.(1) has minimal period-two solution {P1(ū1, v̄1), P2(v̄1, ū1)} which is a
saddle point.

In view of the fact that the T 2 is cooperative map if T is cooperative map, we can assume that
the stable manifold W s

loc at the period-two solution (0, 0), which corresponding to (ū1, v̄1), is the
graph of the map

ϕ2(ξ) = α3ξ
2 + β3ξ

3, α3, β3 ∈ R.
Now we compute the constants α3 and β3. The function ϕ2 must satisfy the stable manifold equation

ϕ2 (µ1ξ + g̃1 (ξ, ϕ2(ξ))) = µ2ϕ2(ξ) + g̃2 (ξ, ϕ2(ξ)) ,

This leads to the following polynomial equation

p̃1ξ
2 + p̃2ξ

3 + · · ·+ p̃18ξ
18 = 0

where

p̃1 =
1

4
α3(−C + d(d+ 2) + 2)2 +

1

2
α3(−C − d(d+ 2)− 2)

+
cd
((
d2 + 2D

)2 − C2
)

C (−C + d2 + 2D)2 −
c
((
d2 + 2D

)2 − C2
)

2C (−C + d2 + 2D)
−

2cd3
((
d2 + 2D

)2 − C2
)

C (−C + d2 + 2D)3 (32)

and

p̃2 =
1

8
β3

(
−C3 + 3C2(d(d+ 2) + 2)− C(3d(d+ 2)(d(d+ 2) + 4) + 16)

+d(d+ 2)(d(d+ 2) + 2)(d(d+ 2) + 4)) +
4α3c(−d(d+ 2)− 4)

(
(d+ 2)d3 + 4(d− 1)dD + 4D2

)
2C (−C + d2 + 2D)

+
4α3c

(
C3 − C2(d(3d+ 4) + 4D) + C

(
3d4 + 8d3 + 8d2(D + 1) + 4dD + 4D(D + 2)

))
2C (−C + d2 + 2D)

. (33)

By solving system p̃1 = 0 and p̃2 = 0, we obtain the values

α3 =
2c
(
C + d2 + 2D

) (
d2(4D − 2C) + 2d(C − 2D) + (C − 2D)2 + d4 + 2d3

)
C (C2 − 2C(d(d+ 2) + 3) + d(d+ 2)(d(d+ 2) + 2)) (−C + d2 + 2D)2

and

β3 =
α3Φ1(c, d)

Φ2(c, d)
,

where

Φ1(c, d) = 4c
(
−C3 + C2(d(3d+ 4) + 4D)− C

(
3d4 + 8d3 + 8d2(D + 1) + 4dD + 4D(D + 2)

)
+(d(d+ 2) + 4)

(
(d+ 2)d3 + 4(d− 1)dD + 4D2)) , (34)

Φ2(c, d) = 4C
(
−C3 + 3C2(d(d+ 2) + 2)− C(3d(d+ 2)(d(d+ 2) + 4) + 16)

+d(d+ 2)(d(d+ 2) + 2)(d(d+ 2) + 4))
(
−C + d2 + 2D

)
. (35)

Let us assume that the unstable manifold at the period two solution (0, 0), which corresponding
to (ū1, v̄1), is the graph of the map

ψ2(η) = α4η
2 + β4η

3, α3, β3 ∈ R.

12
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Now we compute the constants α4 and β4. The function ψ2 must satisfy the stable manifold equation

ψ2(µ2η + g̃2(ψ2(η), η)) = µ1ψ2(η) + f̃2(ψ2(η), η),

This leads to the following polynomial equation

q̃1η
2 + q̃2η

3 + · · ·+ q̃18η
18 = 0

where

q̃1 =
1

4
A(C + d(d+ 2) + 2)2 +

1

2
A(C − d(d+ 2)− 2)

−
cd
((
d2 + 2D

)2 − C2
)

C (C + d2 + 2D)2 +
c
((
d2 + 2D

)2 − C2
)

2C (C + d2 + 2D)
+

2cd3
((
d2 + 2D

)2 − C2
)

C (C + d2 + 2D)3 (36)

and

q̃2 =
1

8
B
(
C3 + 3C2(d(d+ 2) + 2) + C(3d(d+ 2)(d(d+ 2) + 4) + 16)

+d(d+ 2)(d(d+ 2) + 2)(d(d+ 2) + 4)) +
α3c(d(d+ 2) + 4)

(
(d+ 2)d3 + 4(d− 1)dD + 4D2

)
2C (C + d2 + 2D)

+
Ac
(
C3 + C2(d(3d+ 4) + 4D) + C

(
3d4 + 8d3 + 8d2(D + 1) + 4dD + 4D(D + 2)

))
2C (C + d2 + 2D)

. (37)

By solving system q̃1 = 0 and q̃2 = 0, we obtain the values

α4 = −
2c
(
−C + d2 + 2D

) (
2d2(C + 2D)− 2d(C + 2D) + (C + 2D)2 + d4 + 2d3

)
C (C2 + 2C(d(d+ 2) + 3) + d(d+ 2)(d(d+ 2) + 2)) (C + d2 + 2D)2

and

β4 =
α4Φ̃1(c, d)

Φ̃2(c, d)
,

where

Φ̃1(c, d) = 4c
(
−C3 − C2(d(3d+ 4) + 4D)

−C
(
3d4 + 8d3 + 8d2(D + 1) + 4dD + 4D(D + 2)

)
+ (−d(d+ 2)− 4)(

(d+ 2)d3 + 4(d− 1)dD + 4D2)) , (38)

Φ̃2(c, d) = C
(
C3 + 3C2(d(d+ 2) + 2)

+C(3d(d+ 2)(d(d+ 2) + 4) + 16) + d(d+ 2)(d(d+ 2) + 2)(d(d+ 2) + 4))
(
C + d2 + 2D

)
. (39)

As in the case of the saddle point equilibrium, one can show that we can approximate locally
local stable manifoldWs

loc(ū1, v̄1) and local unstable manifoldWu
loc(ū1, v̄1) as the graph of the maps

ϕ̃2(u) and ψ̃2(u) such that S̃( ˜u, ϕ2(u)) = 0 and Ũ(ψ̃2(v), v) = 0 hold, where

S̃(u, v) := α3

 (u− ū1)
((
d2 + 2D

)2 − C2
)

4Cd
−

(v − v̄1)
(
−C + d2 + 2D

)
2C

2

+ β3

 (u− ū1)
((
d2 + 2D

)2 − C2
)

4Cd
−

(v − v̄1)
(
−C + d2 + 2D

)
2C

3

−
(u− ū1)

(
C2 −

(
d2 + 2D

)2)
4Cd

−
(v − v̄1)

(
C + d2 + 2D

)
2C

, (40)
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Ũ(u, v) := α4

 (u− ū1)
(
C2 −

(
d2 + 2D

)2)
4Cd

+
(v − v̄1)

(
C + d2 + 2D

)
2C

2

+ β4

 (u− ū1)
(
C2 −

(
d2 + 2D

)2)
4Cd

+
(v − v̄1)

(
C + d2 + 2D

)
2C

3

−
(u− ū1)

((
d2 + 2D

)2 − C2
)

4Cd
+

(v − v̄1)
(
−C + d2 + 2D

)
2C

(41)

Thus we proved the following result

Theorem 9 Consider Eq.(1) subject to the condition c < (1−3d)(d+1)
4

. Then the local stable and
local unstable manifolds of the unique period-two solution are given with the asymptotic expansions
(40) and (41) respectively.

3.6 Some numerical examples

For c = 0.09 and d = 0.23 we have that

S̃1(u, v) =0.147835(0.207875(v − 7.64414)− 0.422497(u− 6.02253))3

− 0.418625(0.207875(v − 7.64414)− 0.422497(u− 6.02253))2

− 0.422497(u− 6.02253)− 0.792125(v − 7.64414)

and

Ũ1(u, v) =− 0.00042726(0.422497(u− 6.02253) + 0.792125(v − 7.64414))3

+ 0.00729364(0.422497(u− 6.02253) + 0.792125(v − 7.64414))2

+ 0.422497(u− 6.02253)− 0.207875(v − 7.64414).

Figure 4: The graphs of the functions S̃1(u, v) = 0 (red curve) and Ũ1(u, v) = 0
(green curve) for c = 0.09 and d = 0.23 with the basins of attraction generated by
Dynamica 3.

For c = 0.03 and d = 0.22 we have that

S̃2(u, v) =0.0912789(0.0236741(v − 29.3826)− 0.125096(u− 11.2841))3

− 0.458495(0.0236741(v − 29.3826)− 0.125096(u− 11.2841))2

− 0.125096(u− 11.2841)− 0.976326(v − 29.3826)

and

Ũ2(u, v) =3.7× 10−6(0.125096(u− 11.2841) + 0.976326(v − 29.3826))3

+ 0.000212577(0.125096(u− 11.2841) + 0.976326(v − 29.3826))2

+ 0.125096(u− 11.2841)− 0.0236741(v − 29.3826)
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Figure 5: The graphs of the functions S̃2(u, v) = 0 (red curve) and Ũ2(u, v) = 0
(green curve) for c = 0.03 and d = 0.22 with the basins of attraction generated by
Dynamica 3.

Figures 4 and 5 show the graph of the functions S̃2(u, v) = 0 and Ũ2(u, v) = 0 with the basins
of attraction created with Dynamica 3. for different values of the parameters c and d.
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A Values of coefficients p1, p2, q1 and q2

p1 =− 12cβ1x̄
3
2d

6 − 12c2β1x̄
4
2d

5 + 12cβ1x̄
3
2d

5 − 4cα1x̄
2
2d

5 − 12cβ1x̄
2
2d

5 − d5 − 168c2β1x̄
4
2d

4

− 4cα1x̄
2
2d

4 − 168c3β1x̄
5
2d

3 + 156c2β1x̄
4
2d

3 − 64c2α1x̄
3
2d

3 − 168c2β1x̄
3
2d

3 − 14cx̄2d
3

− 600c3β1x̄
5
2d

2 + 24c2β1x̄
4
2d

2 − 64c2α1x̄
3
2d

2 − 24c2β1x̄
3
2d

2 − 588c4β1x̄
6
2d+ 600c3β1x̄

5
2d

− 256c3α1x̄
4
2d− 600c3β1x̄

4
2d− 12c2β1x̄

4
2d+ 24c2β1x̄

3
2d− 48c2x̄2

2d− 12c2β1x̄
2
2d− 256c3α1x̄

4
2

+
√
d2 + 8cx̄2

(
204c4β1x̄

6
2 − 216c3β1x̄

5
2 + 120c3d2β1x̄

5
2 + 216c3dβ1x̄

5
2 + 144c3α1x̄

4
2 + 12c2d4β1x̄

4
2

+ 216c3β1x̄
4
2 + 120c2d3β1x̄

4
2 + 12c2β1x̄

4
2 − 108c2d2β1x̄

4
2 − 24c2dβ1x̄

4
2 − 16c2α1x̄

3
2

+ 48c2d2α1x̄
3
2 − 16c2dα1x̄

3
2 + 12cd5β1x̄

3
2 − 12cd4β1x̄

3
2 − 24c2β1x̄

3
2 + 120c2d2β1x̄

3
2 + 24c2dβ1x̄

3
2

−16c2x̄2
2 + 4cd4α1x̄

2
2 − 4cd3α1x̄

2
2 + 16c2α1x̄

2
2 + 12cd4β1x̄

2
2 + 12c2β1x̄

2
2 − 10cd2x̄2 − d4) ,

(42)

p2 =− β1x̄2d
6 + 3α1β1x̄

2
2d

5 + 6cα1β1x̄
3
2d

4 − 18cβ1x̄
2
2d

4 − 6α1β1x̄
2
2d

4 + 2α2
1x̄2d

4 + 6α1β1x̄2d
4

− β1x̄2d
4 + 3c2α1β1x̄

4
2d

3 + 12cα1β1x̄
3
2d

3 + 2α2
1d

3 + 2cα2
1x̄

2
2d

3 − 6cβ1x̄
2
2d

3 + 6cα1β1x̄
2
2d

3

+ 3α1β1x̄
2
2d

3 + α1d
3 + 3α1β1d

3 − 2α2
1x̄2d

3 − 6α1β1x̄2d
3 + 36c2α1β1x̄

4
2d

2 − 102c2β1x̄
3
2d

2

− 36cα1β1x̄
3
2d

2 + 16cα2
1x̄

2
2d

2 − 10cβ1x̄
2
2d

2 + 36cα1β1x̄
2
2d

2 − 4cα1x̄2d
2 − 6cβ1x̄2d

2

+ 18c3α1β1x̄
5
2d− 36c2α1β1x̄

4
2d+ 16c2α2

1x̄
3
2d− 48c2β1x̄

3
2d+ 36c2α1β1x̄

3
2d+ 18cα1β1x̄

3
2d

− 16cα2
1x̄

2
2d− 36cα1β1x̄

2
2d+ 16cα2

1x̄2d+ 8cα1x̄2d+ 18cα1β1x̄2d− 176c3β1x̄
4
2 − 16c2β1x̄

3
2

− 32c2α1x̄
2
2 − 48c2β1x̄

2
2 +

√
d2 + 8cx̄2

(
β1x̄2d

5 − 3α1β1x̄
2
2d

4 − 6cα1β1x̄
3
2d

3 + 14cβ1x̄
2
2d

3

+ 6α1β1x̄
2
2d

3 − 2α2
1x̄2d

3 − 6α1β1x̄2d
3 − β1x̄2d

3 − 3c2α1β1x̄
4
2d

2 − 2α2
1d

2 − 2cα2
1x̄

2
2d

2

+ 6cβ1x̄
2
2d

2 − 6cα1β1x̄
2
2d

2 − 3α1β1x̄
2
2d

2 + α1d
2 − 3α1β1d

2 + 2α2
1x̄2d

2 + 6α1β1x̄2d
2

− 12c2α1β1x̄
4
2d+ 54c2β1x̄

3
2d+ 12cα1β1x̄

3
2d− 8cα2

1x̄
2
2d− 14cβ1x̄

2
2d− 12cα1β1x̄

2
2d

+ 6cβ1x̄2d− 6c3α1β1x̄
5
2 + 12c2α1β1x̄

4
2 − 8c2α2

1x̄
3
2 − 12c2α1β1x̄

3
2 − 6cα1β1x̄

3
2 + 8cα2

1x̄
2
2

+12cα1β1x̄
2
2 − 8cα2

1x̄2 + 8cα1x̄2 − 6cα1β1x̄2

)
(43)

q1 =12β2cx̄
3
2d

7 + 12β2c
2x̄4

2d
6 − 12β2cx̄

3
2d

6 + 4α2cx̄
2
2d

6 + 12β2cx̄
2
2d

6 − d6 + 216β2c
2x̄4

2d
5 − 4α2cx̄

2
2d

5

+ 216β2c
3x̄5

2d
4 − 204β2c

2x̄4
2d

4 + 80α2c
2x̄3

2d
4 + 216β2c

2x̄3
2d

4 − 18cx̄2d
4 + 1176β2c

3x̄5
2d

3

− 24β2c
2x̄4

2d
3 − 48α2c

2x̄3
2d

3 + 24β2c
2x̄3

2d
3 + 1164β2c

4x̄6
2d

2 − 1080β2c
3x̄5

2d
2 + 528α2c

3x̄4
2d

2

+ 1176β2c
3x̄4

2d
2 + 12β2c

2x̄4
2d

2 − 16α2c
2x̄3

2d
2 − 24β2c

2x̄3
2d

2 + 16α2c
2x̄2

2d
2 + 12β2c

2x̄2
2d

2

− 96c2x̄2
2d

2 + 1728β2c
4x̄6

2d− 192β2c
3x̄5

2d− 128α2c
3x̄4

2d+ 192β2c
3x̄4

2d+ 1632β2c
5x̄7

2

− 1728β2c
4x̄6

2 + 1152α2c
4x̄5

2 + 1728β2c
4x̄5

2 + 96β2c
3x̄5

2 − 128α2c
3x̄4

2 − 192β2c
3x̄4

2 + 128α2c
3x̄3

2

+ 96β2c
3x̄3

2 − 128c3x̄3
2 +

√
d2 + 8cx̄2

(
12β2cx̄

3
2d

6 + 12β2c
2x̄4

2d
5 − 12β2cx̄

3
2d

5 + 4α2cx̄
2
2d

5

+ 12β2cx̄
2
2d

5 + d5 + 168β2c
2x̄4

2d
4 + 4α2cx̄

2
2d

4 + 168β2c
3x̄5

2d
3 − 156β2c

2x̄4
2d

3 + 64α2c
2x̄3

2d
3

+ 168β2c
2x̄3

2d
3 + 14cx̄2d

3 + 600β2c
3x̄5

2d
2 − 24β2c

2x̄4
2d

2 + 64α2c
2x̄3

2d
2 + 24β2c

2x̄3
2d

2

+ 588β2c
4x̄6

2d− 600β2c
3x̄5

2d+ 256α2c
3x̄4

2d+ 600β2c
3x̄4

2d+ 12β2c
2x̄4

2d− 24β2c
2x̄3

2d

+12β2c
2x̄2

2d+ 48c2x̄2
2d+ 256α2c

3x̄4
2

)
,

(44)
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q2 =β2x̄2d
6 − 3α2β2x̄

2
2d

5 − 6cα2β2x̄
3
2d

4 + 18cβ2x̄
2
2d

4 + 6α2β2x̄
2
2d

4 − 2α2
2x̄2d

4 − 6α2β2x̄2d
4

+ β2x̄2d
4 − 3c2α2β2x̄

4
2d

3 − 12cα2β2x̄
3
2d

3 − 2α2
2d

3 − 2cα2
2x̄

2
2d

3 + 6cβ2x̄
2
2d

3 − 6cα2β2x̄
2
2d

3

− 3α2β2x̄
2
2d

3 − α2d
3 − 3α2β2d

3 + 2α2
2x̄2d

3 + 6α2β2x̄2d
3 − 36c2α2β2x̄

4
2d

2 + 102c2β2x̄
3
2d

2

+ 36cα2β2x̄
3
2d

2 − 16cα2
2x̄

2
2d

2 + 10cβ2x̄
2
2d

2 − 36cα2β2x̄
2
2d

2 + 4cα2x̄2d
2 + 6cβ2x̄2d

2

− 18c3α2β2x̄
5
2d+ 36c2α2β2x̄

4
2d− 16c2α2

2x̄
3
2d+ 48c2β2x̄

3
2d− 36c2α2β2x̄

3
2d− 18cα2β2x̄

3
2d

+ 16cα2
2x̄

2
2d+ 36cα2β2x̄

2
2d− 16cα2

2x̄2d− 8cα2x̄2d− 18cα2β2x̄2d+ 176c3β2x̄
4
2 + 16c2β2x̄

3
2

+ 32c2α2x̄
2
2 + 48c2β2x̄

2
2 +

√
d2 + 8cx̄2

(
β2x̄2d

5 − 3α2β2x̄
2
2d

4 − 6cα2β2x̄
3
2d

3 + 14cβ2x̄
2
2d

3

+ 6α2β2x̄
2
2d

3 − 2α2
2x̄2d

3 − 6α2β2x̄2d
3 − β2x̄2d

3 − 3c2α2β2x̄
4
2d

2 − 2α2
2d

2 − 2cα2
2x̄

2
2d

2

+ 6cβ2x̄
2
2d

2 − 6cα2β2x̄
2
2d

2 − 3α2β2x̄
2
2d

2 + α2d
2 − 3α2β2d

2 + 2α2
2x̄2d

2 + 6α2β2x̄2d
2

− 12c2α2β2x̄
4
2d+ 54c2β2x̄

3
2d+ 12cα2β2x̄

3
2d− 8cα2

2x̄
2
2d− 14cβ2x̄

2
2d− 12cα2β2x̄

2
2d

+ 6cβ2x̄2d− 6c3α2β2x̄
5
2 + 12c2α2β2x̄

4
2 − 8c2α2

2x̄
3
2 − 12c2α2β2x̄

3
2 − 6cα2β2x̄

3
2 + 8cα2

2x̄
2
2

+12cα2β2x̄
2
2 − 8cα2

2x̄2 + 8cα2x̄2 − 6cα2β2x̄2

)
(45)
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Abstract

We investigate the existence of solutions for a coupled system of fractional differential equations
with integral and ordinary-fractional flux boundary conditions. The existence results are derived via
Schauder’s fixed point theorem and Leray-Schauder’s alternative, while the uniqueness of solutions
is established by applying Banach’s contraction principle. Several new results appear as a special
case of the present work with appropriate choice of the parameters involved in the problem at hand.

Key words and phrases: Fractional differential systems; nonlocal boundary conditions; integral
boundary conditions; fixed point theorem.
AMS (MOS) Subject Classifications: 34A08, 34B15.

1 Introduction

In this paper, we study a coupled system of Caputo type fractional differential equations:{ cDαx(t) = f(t, x(t), y(t)), t ∈ [0, 1], 1 < α ≤ 2

cDβy(t) = h(t, x(t), y(t)), t ∈ [0, 1], 1 < β ≤ 2,
(1)

supplemented with integral and ordinary-fractional flux boundary conditions:
x(0) + x(1) = a

∫ 1

0

x(s)ds, x′(0) = b cDγx(1), 0 < γ ≤ 1,

y(0) + y(1) = a1

∫ 1

0

y(s)ds, y′(0) = b1
cDδy(1), 0 < δ ≤ 1,

(2)

where cDα,c Dβ denote the Caputo fractional derivatives of orders α and β respectively, f, h : [0, 1] ×
R× R → R are given continuous functions and a, b, a1, b1 are real constants.

Fractional differential equations arise in the mathematical modeling of systems and processes occur-
ring in many engineering and scientific disciplines such as biophysics, blood flow phenomena, control
theory, aerodynamics, electrodynamics of complex medium, polymer rheology, signal and image pro-
cessing to name a few [1]-[4]. The popularity of fractional order operators owes to their ability to
describe the hereditary properties of various materials and processes. With this distinguished capabil-
ity, fractional order models have become more realistic and practical than the corresponding classical
integer order models. For some recent development on the topic, see [5]-[15] and the references therein.
The investigation of coupled systems of fractional order differential equations is also very significant as
such systems appear in a variety of problems of applied nature, especially in biosciences. For details
and examples, the reader is referred to the papers [16]-[23] and the references cited therein.
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The paper is organized as follows. In Section 2, we recall some basic definitions of fractional calculus
and present some auxiliary lemmas. The main results are presented in Section 3. We give two existence
results relying on Leray-Schauder’s alternative and Schauder’s fixed point theorem, while the uniqueness
result is established by means of Banach’s contraction mapping principle. It is worthwhile to note that
our results are not only new in the present configuration but also correspond to some new special results
for different values of the parameters involved in the given problem.

2 Preliminaries

Before presenting an auxiliary lemma, we recall some basic definitions of fractional calculus [1, 2].

Definition 2.1 For (n−1)−times absolutely continuous function g : [0,∞) → R, the Caputo derivative
of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)
(t− s)1−q

ds, q > 0,

provided the integral exists.

Lemma 2.3 (see [1], [2]) (i) If α > 0, β > 0, β > α, f ∈ L(0, 1) then

IαIβf(t) = Iα+βf(t), DαIαf(t) = f(t), DαIβf(t) = Iβ−αf(t).

(ii) cDαtλ−1 =
Γ(λ)

Γ(λ− α)
tλ−α−1, λ > [α] and cDαtλ−1 = 0, λ < [α].

To define the solution for the problem (1)-(2), we use the following lemma.

Lemma 2.4 Let a 6= 2 and Γ(2−β) 6= b. For φ ∈ C([0, 1], R), the integral solution of the linear problem
cDαx(t) = φ(t), t ∈ [0, 1], 1 < q ≤ 2,

x(0) + x(1) = a

∫ 1

0

x(s)ds, x′(0) = b cDγx(1), 0 < γ ≤ 1,
(3)

is given by

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
φ(s)ds +

b(2t− 1)Γ(2− γ)
2(Γ(2− γ)− b)

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
φ(s)ds

− 1
2− a

∫ 1

0

(1− s)α−1

Γ(α)
φ(s)ds +

a

2− a

∫ 1

0

(1− s)α

Γ(α + 1)
φ(s)ds.

(4)

Proof. As argued in [2], the general solution of the fractional differential equation in (3) can be
written as

x(t) = c0 + c1t +
∫ t

0

(t− s)α−1

Γ(q)
φ(s)ds, (5)

where c0, c1 ∈ R are arbitrary constants.
Using the boundary condition x′(0) = b cDγx(1) in (5), we find that

c1 =
bΓ(2− β)

Γ(2− β)− b

∫ 1

0

(1− s)α−β−1

Γ(α− β)
φ(s)ds.
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In view of the condition x(0) + x(1) = a
∫ 1

0
x(s)ds, (5) yields

2c0 + c1 +
∫ 1

0

(1− s)α−1

Γ(α)
φ(s)ds = a

∫ 1

0

∫ s

0

(s− u)α−1

Γ(α)
φ(u)du +

ac1

2
+ ac0,

which, on inserting the value of c1 and using the composition law of Riemann-Liouville integration,
gives

c0 = −1
2

bΓ(2− β)
[Γ(2− β)− b]

∫ 1

0

(1− s)α−β−1

Γ(α− β)
φ(s)ds

+
a

2− a

∫ 1

0

(1− s)α

Γ(α + 1)
φ(s)ds− 1

2− a

∫ 1

0

(1− s)α−1

Γ(α)
φ(s)ds.

Substituting the values of c0, c1 in (5) yields (4). This completes the proof. �

3 Main Results

Let us introduce the space Xi = {ui(t)|ui(t) ∈ C([0, 1])} endowed with the norm ‖ui‖ = sup{|ui(t)|, t ∈
[0, 1]}, i = 1, 2. Obviously (Xi, ‖ · ‖) is a Banach space. In consequence, the product space (X1 ×
X2, ‖(u1, u2)‖) is also a Banach space with norm ‖(u1, u2)‖ = ‖u1‖+ ‖u2‖.

In view of Lemma 2.4, we define an operator T : X1 ×X2 → X1 ×X2 by

T (u, v)(t) =
(

T1(u, v)(t)
T2(u, v)(t)

)
,

where

T1(u, v)(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s), v(s))ds +

b(2t− 1)Γ(2− γ)
2(Γ(2− γ)− b)

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
f(s, u(s), v(s))ds

+
1

2− a

∫ 1

0

(1− s)α−1

Γ(α)
f(s, u(s), v(s))ds− a

2− a

∫ 1

0

(1− s)α

Γ(α + 1)
f(s, u(s), v(s))ds,

and

T2(u, v)(t) =
∫ t

0

(t− s)β−1

Γ(α)
h(s, u(s), v(s))ds +

b1(2t− 1)Γ(2− δ)
2(Γ(2− δ)− b1)

∫ 1

0

(1− s)β−δ−1

Γ(β − δ)
h(s, u(s), v(s))ds

+
1

2− a1

∫ 1

0

(1− s)β−1

Γ(β)
h(s, u(s), v(s))ds− a1

2− a1

∫ 1

0

(1− s)β

Γ(β + 1)
h(s, u(s), v(s))ds.

For the sake of convenience, let us set

M1 =
1 + |2− a|

|2− a|Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)

+
|a|

|2− a|Γ(α + 2)
, (6)

M2 =
1 + |2− a1|

|2− a1|Γ(β + 1)
+

|b1|Γ(2− δ)
2|Γ(2− δ)− b1|Γ(β − δ + 1)

+
|a1|

|2− a1|Γ(β + 2)
. (7)

We need the following known theorems in the sequel.

Lemma 3.1 (Schauder’s fixed point theorem) [24]. Let U be a closed, convex and nonempty subset of
a Banach space X. Let P : U → U be a continuous mapping such that P (U) is a relatively compact
subset of X. Then P has at least one fixed point in U.

Lemma 3.2 (Leray-Schauder alternative) ([24] p. 4.) Let F : E → E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.

Then either the set E(F ) is unbounded, or F has at least one fixed point.
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3.1 Existence results

Here we study the existence of solutions for the system (1)-(2) by means of Schauder’s fixed point
theorem and Leray-Schauder alternative.

Theorem 3.3 Assume that there exist positive constants ci, di, ei ∈ (0,∞), i = 1, 2 such that the
following condition holds:

(H1) |f(t, x, y)| ≤ c1|x|ρ1 + d1|y|σ1 + e1, and
|h(t, x, y)| ≤ c2|x|ρ2 + d2|y|σ2 + e2, 0 < ρi, σi < 1, i = 1, 2.

Then the system (1)-(2) has at least one solution on [0, 1].

Proof. Define a ball in Banach space X1×X2 as BR = {(u, v) : (u, v) ∈ X1×X2, ‖(u, v)‖ ≤ R}, where

R ≥ max{(6Mici)
1

1−ρi , (6Midi)
1

1−σi , 6Miei, }, i = 1, 2. (8)

Obviously BR is a closed, bounded and convex subset of the Banach space X1 ×X2. In the first step,
we show that T : BR → BR. For (u, v) ∈ BR. For that we have

|T1(u, v)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds

+
|b(2t− 1)|Γ(2− γ)

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
|f(s, u(s), v(s))|ds

+
1

|2− a|

∫ 1

0

(1− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds +

|a|
|2− a|

∫ 1

0

(1− s)α

Γ(α + 1)
|f(s, u(s), v(s))|ds

≤ (c1R
ρ1 + d1R

σ1 + e1)

{
1

Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)

+
1

|2− a|Γ(α + 1)
+

|a|
|2− a|Γ(α + 2)

}
,

which implies that

‖T1(u, v)‖ ≤ M1(c1R
ρ1 + d1R

σ1 + e1) ≤
R

6
+

R

6
+

R

6
=

R

2
.

Similarly, we can obtain

‖T2(u, v)‖ ≤ M2(c2R
ρ2 + d2R

σ2 + e2) ≤
R

6
+

R

6
+

R

6
=

R

2
.

Clearly
‖T (u, v)‖ = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≤ R,

and in consequence we get T : BR → BR.
Observe that continuity of f, h implies that T is continuous. Next, we shall show that for every

bounded subset BR of X1 ×X2 the family F (BR) is equicontinuous. Since f, g are continuous, we can
assume that |f(t, u(t), v(t)| ≤ N1 and |h(t, u(t), v(t)| ≤ N2 for any u, v ∈ BR and t ∈ [0, 1].

Now let 0 ≤ t1 < t2 ≤ 1. Then we have

|T1(u, v)(t2)− T1(u, v)(t1)|

≤
∣∣∣∣ 1
Γ(α)

∫ t2

0

(t2 − s)α−1f(s, u(s), v(s))ds− 1
Γ(α)

∫ t1

0

(t1 − s)α−1f(s, u(s), v(s))ds

∣∣∣∣
+

2|b|Γ(2− γ)|t2 − t1|
2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
|f(s, u(s), v(s))|ds
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≤ N1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds +
N1

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
2N1|b|Γ(2− γ)|t2 − t1|

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
ds

≤ N1

Γ(α + 1)
(tα2 − tα1 ) +

2N1|b|Γ(2− γ)|t2 − t1|
2|Γ(2− γ)− b|Γ(α− γ + 1)

.

Analogously, we can have

|T2(u, v)(t2)− T2(u, v)(t1)| ≤
N2

Γ(β + 1)
(tα2 − tα1 ) +

2N2|b|Γ(2− δ)|t2 − t1|
2|Γ(2− δ)− b|Γ(β − δ + 1)

.

So
‖T1(u, v)(t2)− T1(u, v)(t1)‖ → 0, ‖T2(u, v)(t2)− T2(u, v)(t1)‖ → 0, as t1 → t2.

Therefore it follows that the operator T : BR → BR is equicontinuous and uniformly bounded. Hence,
by Arzelá-Ascoli theorem, T is completely continuous operator. Thus all the conditions of Theorem 3.1
are satisfied, which in turn, implies that the problem (1) has at least one solution. This completes the
proof. �

Remark 3.4 For ρi, σi > 1 (i = 1, 2) in the condition (H1), the conclusion of Theorem 3.6 remains
true with a modified value of R given by (8).

Theorem 3.5 Assume that:

(H2) There exist real constants ki, λi ≥ 0 (i = 1, 2) and k0 > 0, λ0 > 0 such that ∀xi ∈ R, i = 1, 2, we
have

|f(t, x1, x2)| ≤ k0 + k1|x1|+ k2|x2|, |h(t, x1, x2)| ≤ λ0 + λ1|x1|+ λ2|x2|.

Then the system (1)-(2) has at least one solution, provided

M1k1 + M2λ1 < 1 and M1k2 + M2λ2 < 1,

where M1 and M2 are given by (6) and (7) respectively.

Proof. First we show that the operator T : X1×X2 → X1×X2 is completely continuous. By continuity
of functions f and h, the operator T is continuous.

Let Ω ⊂ X1 ×X2 be bounded. Then there exist positive constants L1 and L2 such that

|f(t, u(t), v(t)| ≤ L1, |h(t, u(t), v(t)| ≤ L2, ∀(u, v) ∈ Ω.

Then for any (u, v) ∈ Ω, we have

|T1(u, v)(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds

+
|b(2t− 1)|Γ(2− γ)

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
|f(s, u(s), v(s))|ds

+
1

|2− a|

∫ 1

0

(1− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds +

|a|
|2− a|

∫ 1

0

(1− s)α

Γ(α + 1)
|f(s, u(s), v(s))|ds

≤ L1

{
1

Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)

+
1

|2− a|Γ(α + 1)
+

|a|
|2− a|Γ(α + 2)

}
,

which implies that

‖T1(u, v)‖ ≤ L1

{
1

Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)
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+
1

|2− a|Γ(α + 1)
+

|a|
|2− a|Γ(α + 2)

}
= L1M1.

Similarly, we can get

‖T2(u, v)‖ ≤ L2

{
1

Γ(β + 1)
+

|b1|Γ(2− δ)
2|Γ(2− δ)− b1|Γ(β − δ + 1)

+
1

|2− a1|Γ(β + 1)
+

|a1|
|2− a1|Γ(β + 2)

}
= L2M2.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

|T1(u(t2), v(t2))− T1(u(t1), v(t1))|

≤ L1

∣∣∣∣ 1
Γ(α)

∫ t2

0

(t2 − s)α−1ds− 1
Γ(α)

∫ t1

0

(t1 − s)α−1ds

∣∣∣∣
+L1

2|b|Γ(2− γ)|t2 − t1|
2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
ds

≤ L1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds +
1

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
2|b|L1Γ(2− γ)|t2 − t1|

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
ds

≤ L1

Γ(α + 1)
(tα2 − tα1 ) +

2L1|b|Γ(2− γ)|t2 − t1|
2|Γ(2− γ)− b|Γ(α− γ + 1)

.

Analogously, we can obtain

|T2(u(t2), v(t2))− T2(u(t1), v(t1))| ≤
L2

Γ(α + 1)
(tα2 − tα1 ) +

2L2|b1|Γ(2− δ)|t2 − t1|
2|Γ(2− δ)− b1|Γ(β − δ + 1)

.

Therefore, the operator T (u, v) is equicontinuous, and thus the operator T (u, v) is completely continu-
ous.

Finally, it will be verified that the set E = {(u, v) ∈ X1 × X2|(u, v) = λT (u, v), 0 ≤ λ ≤ 1} is
bounded. Let (u, v) ∈ E , then (u, v) = λT (u, v). For any t ∈ [0, 1], we have

u(t) = λT1(u, v)(t), v(t) = λT2(u, v)(t).

Then

|u(t)| ≤

{
1 + |2− a|

|2− a|Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)

+
|a|

|2− a|Γ(α + 2)

}
(k0 + k1‖u‖+ k2‖v‖),

and

|v(t)| ≤

{
1 + |2− a1|

|2− a1|Γ(α + 1)
+

|b|Γ(2− δ)
2|Γ(2− δ)− b1|Γ(β − δ + 1)

+
|a|

|2− a|Γ(β + 2)

}
(λ0 + λ1‖u‖+ λ2‖v‖).

Hence we have

‖u‖ ≤ M1(k0 + k1‖u‖+ k2‖v‖), ‖v‖ ≤ M2(λ0 + λ1‖u‖+ λ2‖v‖),

which imply that

‖u‖+ ‖v‖ = (M1k0 + M2λ0) + (M1k1 + M2λ1)‖u‖+ (M1k2 + M2λ2)‖v‖.
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Consequently,

‖(u, v)‖ ≤ M1k0 + M2λ0

M0
,

for any t ∈ [0, 1], where

M0 = min{1− (M1k1 + M2λ1), 1− (M1k2 + M2λ2)}, ki, λi ≥ 0 (i = 1, 2).

This shows that E is bounded. Thus, by Lemma 3.2, the operator T has at least one fixed point. Hence
the problem (1)-(2) has at least one solution. This completes the proof. �

3.2 Uniqueness of solutions

In this subsection, we prove the uniqueness of solutions for the system (1)-(2) via Banach’s contraction
mapping principle.

Theorem 3.6 Assume that

(H3) f, h : [0, 1]×R2 → R are continuous functions and there exist constants mi, ni (i = 1, 2) such that
for all t ∈ [0, 1] and ui, vi ∈ R, i = 1, 2,

|f(t, u1, u2)− f(t, v1, v2)| ≤ m1|u1 − v1|+ m2|u2 − v2|

and
|h(t, u1, u2)− h(t, v1, v2)| ≤ n1|u1 − v1|+ n2|u2 − v2|.

Then the system (1)-(2) has a unique solution if M1(m1 + m2) + M2(n1 + n2) < 1, where M1 and M2

are given by (6) and (7) respectively.

Proof. Let us fix supt∈[0,1] f(t, 0, 0) = ζ1 < ∞ and supt∈[0,1] h(t, 0, 0) = ζ2 < ∞ such that

r ≥ ζ1M1 + ζ2M2

1−M1(m1 + m2)−M2(n1 + n2)
.

As a first step, we show that TBr ⊂ Br, where Br = {(u, v) ∈ X × Y : ‖(u, v)‖ ≤ r}. For (u, v) ∈ Br,
we have

|T1(u, v)(t)| ≤ sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds

+
|b(2t− 1)|Γ(2− γ)

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
|f(s, u(s), v(s))|ds

+
1

|2− a|

∫ 1

0

(1− s)α−1

Γ(α)
|f(s, u(s), v(s))|ds +

|a|
|2− a|

∫ 1

0

(1− s)α

Γ(α + 1)
|f(s, u(s), v(s))|ds

}

≤ sup
t∈[0,1]

{∫ t

0

(t− s)α−1

Γ(α)
(|f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|)ds

+
|b|Γ(2− γ)

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
(|f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|)ds

+
1

|2− a|

∫ 1

0

(1− s)α−1

Γ(α)
(|f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|)ds

+
|a|

|2− a|

∫ 1

0

(1− s)α

Γ(α + 1)
|(f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|)ds

}

≤

{
1

Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)
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+
1

|2− a|Γ(α + 1)
+

|a|
|2− a|Γ(α + 2)

}
(m1‖u‖+ m2‖v‖+ ζ1)

= M1[(m1 + m2)r + ζ1].

Hence
‖T1(u, v)(t)‖ ≤ M1[(m1 + m2)r + ζ1].

In the same way, we can obtain that

‖T2(u, v)(t)‖ ≤ M2[(n1 + n2)r + ζ2].

Consequently, it follows that ‖T (u, v)(t)‖ ≤ r.
Now for (u2, v2), (u1, v1) ∈ X1 ×X2, and for any t ∈ [0, 1], we get

|T1(u2, v2)(t)− T1(u1, v1)(t)|

≤
∫ t

0

(t− s)α−1

Γ(α)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

+
|b(2t− 1)|Γ(2− γ)

2|Γ(2− γ)− b|

∫ 1

0

(1− s)α−γ−1

Γ(α− γ)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

+
1

|2− a|

∫ 1

0

(1− s)α−1

Γ(α)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

+
|a|

|2− a|

∫ 1

0

(1− s)α

Γ(α + 1)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

≤

{
1

Γ(α + 1)
+

|b|Γ(2− γ)
2|Γ(2− γ)− b|Γ(α− γ + 1)

+
1

|2− a|Γ(α + 1)
+

|a|
|2− a|Γ(α + 2)

}
(m1‖u2 − u1‖+ m2‖v2 − v1‖)

= M1(m1‖u2 − u1‖+ m2‖v2 − v1‖)
≤ M1(m1 + m2)(‖u2 − u1‖+ ‖v2 − v1‖),

and consequently we obtain

‖T1(u2, v2)(t)− T1(u1, v1)‖ ≤ M1(m1 + m2)(‖u2 − u1‖+ ‖v2 − v1‖). (9)

Similarly, we can get

‖T2(u2, v2)(t)− T2(u1, v1)‖ ≤ M2(n1 + n2)(‖u2 − u1‖+ ‖v2 − v1‖). (10)

Clearly it follows from (9) and (10) that

‖T (u2, v2)(t)− T (u1, v1)(t)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)](‖u2 − u1‖+ ‖v2 − v1‖).

Since M1(m1 + m2) + M2(n1 + n2) < 1, therefore T is a contraction operator. So, by Banach’s fixed
point theorem, the operator T has a unique fixed point, which is the unique solution of problem (1)-(2).
This completes the proof. �

Example 3.7 Consider the following problem

cD3/2x(t) =
1

4(t + 2)2
|x(t)|

1 + |x(t)|
+ 1 +

1
32

sin2 y(t), t ∈ [0, 1],

cD5/3y(t) =
1

32π
sin(2πx(t)) +

|y(t)|
16(1 + |y(t)|)

+
1
2
, t ∈ [0, 1],

x(0) + x(1) = 4
∫ 1

0

x(s)ds, x′(0) =
1
2

cD1/2x(1),

y(0) + y(1) =
1
5

∫ 1

0

y(s)ds, y′(0) = 3 cD1/3y(1).

(11)
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Here α = 3/2, β = 5/3, γ = 1/2, δ = 1/3, a = 4, a1 = 1/5, b = 1/2, b1 = 3. Using the given data, it
is found that M1 ≈ 5.6166715, M2 ≈ 1.6038591,

|f(t, u1, u2)− f(t, v1, v2)| ≤
1
16
|u1 − u2|+

1
16
|v1 − v2|,

|h(t, u1, u2)− h(t, v1, v2)| ≤
1
16
|u1 − u2|+

1
16
|v1 − v2|,

and M1(m1 + m2) + M2(n1 + n2) ≈ 0.9025662 < 1. As all the conditions of Theorem 3.6 are satisfied,
therefore its conclusion applies to the problem (11).

3.3 Special cases

We obtain some special cases of the results obtained in this paper by fixing the parameters involved in
the problem (1)-(2) which are listed below.

• If b = b1 = 0, then our results correspond to the boundary conditions: x(0)+x(1) = a
∫ 1

0
x(s)ds, x′(0) =

0; y(0) + y(1) = a1

∫ 1

0
y(s)ds, y′(0) = 0.

• We can get the results for the boundary data: x(0)+x(1) = 0, x′(0) = 0; y(0)+y(1) = 0, y′(0) = 0
by fixing a = 0, a1 = 0, b = 0, b1 = 0.

• In case we choose a = 0, a1 = 0, b 6= 0, b1 6= 0, we get the results for the boundary conditions:
x(0) + x(1) = 0, x′(0) = b cDγx(1); y(0) + y(1) = 0, y′(0) = b1

cDδy(1), 0 < γ, δ ≤ 1.

• By taking γ = δ = 1 with b 6= 1 6= b1, our results reduce to the ones for a given system of
fractional differential equations with boundary conditions: x(0) + x(1) = a

∫ 1

0
x(s)ds, x′(0) =

bx′(1); y(0) + y(1) = a1

∫ 1

0
y(s)ds, y′(0) = b1y

′(1).

We emphasize that all the results obtained for different values of the parameters are new.
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Abstract In this article, we investigate the combined KdV-MKdV equation to

obtain new exact traveling wave solutions via the generalized Riccati equa-

tion mapping together with the(G′/G)-expansion method. In this method,

G′ (θ) = h+f G (ϕ)+g G2 (θ) is used with constant coefficients, as the auxiliary

equation and called the generalized Riccati equation. By using this method,

we obtain twenty seven exact traveling wave solutions including solitons and

periodic solutions and solutions are expressed in the hyperbolic, the trigono-

metric and the rational functions. It is found that one of our solutions is in

good agreement for a special case with the published results which validates our

other results.

Keywords: The generalized Riccati equation, (G′/G)-expansion method, Exp-

function method, traveling wave solutions, nonlinear evolution equations.

Mathematics Subject Classification: 35K99, 35P99, 35P05.

PACS: 02.30.Jr,05.45.Yv,02.30.Ik.

1. Introduction

The enormous analysis of exact solutions of the nonlinear partial differential

equations (PDEs) is one of the important and amazing research fields in all areas

in science and engineering, such as, plasma physics, fluid mechanics, chemical

∗syedtauseefs@hotmail.com,qazimahmood@yahoo.com,hasibun06tasuf@gmail.com,farahain@usm.my
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physics, optical fibers, solid state physics, chemistry, biology, plasma physics

and many others [1-41]. In recent years, many researchers used various meth-

ods to different nonlinear partial differential equations for constructing traveling

wave solutions, for instance, the Backlund transformation [1], the inverse scat-

tereing [2,3], the Jacobi elliptic function expansion [4,5], the tanh function [6,7],

the variational iteration [8], the Hirota’s bilinear transformation [9], the direct

algebraic [10], the Cole-Hopf transformation [11], the Exp-function [12-18] and

others [19-25].

Recently, Wang et al. [26] presented a method, called the (G′/G)-expansion

method. By using this method, they constructed exact traveling wave solutions

for the nonlinear evolution equations (NLEEs). In this method, the second order

linear ordinary differential equation with constant coefficients G′′ (θ)+λG′ (θ)+

µG (θ) = 0 is used, as an auxiliary equation. Afterwards, many researchers ap-

plied the (G′/G)-expansion method to obtain exact traveling wave solutions for

the NLEEs. For example, Ozis and Aslan [27] investigated the Kawahara type

equations using symbolic computation via this method. In Ref. [28] Gepreel em-

ployed this method and found exact solutions for nonlinear PDEs with variable

coefficients in mathematical physics whilst Zayed and Al-Joudi [29] studied non-

linear partial differential equations by applying the same method to construct

solutions. Naher et al. [30] investigated the Caudrey-Dodd-Gibbon equation by

using the useful (G′/G)-expansion method and obtained abundant exact trav-

eling wave solutions. Feng et al. [31] applied the method to the Kolmogorov-

Petrovskii-Piskunov equation for constructing traveling wave solutions. In Ref.

[32], Zhao et al. concerned about this method to obtain exact solutions for

the variant Boussinesq equations while Nofel et al. [33] implemented the same

method to the higher order KdV equation to get exact traveling wave solutions

and so on.

Zhu [34] introduced the generalized Riccati equation mapping to solve the (2+1)-

dimensional Boiti-Leon-Pempinelle equation. In this generalized Riccati equa-

tion mapping, he employed G′ (θ) = h + f G (ϕ) + g G2 (θ) with constants co-
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efficients, as the auxiliary equation. In Ref. [35], Li et al. used the Riccati

equation expansion method to solve the higher dimensional NLEEs. Bekir and

Cevikel [36] investigated nonlinear coupled equation in mathematical physics

by applying the tanh-coth method combined with the Riccati equation. Guo

et al. [37] studied the diffusion-reaction and the mKdV equation with vari-

able coefficient via the extended Riccati equation mapping method whilst Li

and Dai [38] implemented the generalized Riccati equation mapping with the

(G′/G)-expansion method to construct traveling wave solutions for the higher

dimensional Jimbo-Miwa equation. In Ref. [39,40] Salas used the projective

Riccati equation method to obtain some exact solutions for the Caudrey-Dodd-

Gibbon equation and the generalized Sawada-Kotera equations respectively.

Many researchers utilized different methods for investigating the combined KdV-

MKdV equation to construct exact traveling wave solutions, such as, Liu et al.

[41] studied the equation by applying the (G′/G)-expansion method to obtain

traveling wave solutions. In the (G′/G)-expansion method, they used the second

order linear ordinary differential equation (LODE) with constant coefficients, as

an auxiliary equation. To the best of our knowledge, the combined KdV-MKdV

equation is not examined by applying the generalized Riccati equation mapping

together with the (G′/G)-expansion method.

In this article, we construct twenty seven exact traveling wave solutions in-

cluding solitons, periodic, and rational solutions of the combined KdV-MKdV

equation involving parameters via the generalized Riccati equation mapping

together with the (G′/G)-expansion method and Exp-function method.

2. The generalized Riccati equation mapping together with the(G′/G)-

expansion method

Suppose the general nonlinear partial differential equation:

H (v, vt, vx, vxt, vt t, vx x, ...) = 0, (1)

where v = v (x, t) is an unknown function, H is a polynomial in v = v (x, t)and
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the subscripts indicate the partial derivatives.

The most important steps of the generalized Riccati equation mapping together

with the (G′/G)-expansion method [26,34] are as follows:

Step 1. Consider the traveling wave variable:

v (x, t) = r (θ) , θ = x−B t, (2)

where Bis the wave speed. Now using Eq. (2), Eq. (1) is converted into an

ordinary differential equation for r (θ) :

F (r, r′, r′′, r′′′, ...) = 0, (3)

where the superscripts stand for the ordinary derivatives with respect to θ.

Step 2. Eq. (3) integrates term by term one or more times according to

possibility, yields constant(s) of integration. The integral constant(s) may be

zero for simplicity.

Step 3. Suppose that the traveling wave solution of Eq. (3) can be expressed

in the form [26,34]:

r (θ) =
n∑

j = 0

ej

(
G′

G

)j
(4)

where ej (j = 0, 1, 2, ..., n)and en 6= 0, with G = G (θ) is the solution of the

generalized Riccati equation:

G′ = h+ f G+ g G2, (5)

where f, g, h are arbitrary constants and g 6= 0.

Step 4. To decide the positive integer n, consider the homogeneous balance

between the nonlinear terms and the highest order derivatives appearing in Eq.

(3).

Step 5. Substitute Eq. (4) along with Eq. (5) into the Eq. (3), then collect

all the coefficients with the same order, the left hand side of Eq. (3) converts
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into polynomials in G k (θ) and G− k (θ) , (k = 0, 1, 2, ...). Then equating each

coefficient of the polynomials to zero, yield a set of algebraic equations for

fj (j = 0, 1, 2, ..., n) , f, g, h and B.

Step 6. Solve the system of algebraic equations which are found in Step 5 with

the aid of algebraic software Maple and we obtain values for fj (j = 0, 1, 2, ..., n)

and B. Then, substitute obtained values in Eq. (4) along with Eq. (5) with the

value of n, we obtain exact solutions of Eq. (1).

In the following, we have twenty seven solutions including four different families

of Eq. (5).

Family 1: When f2− 4gh > 0 and f g 6= 0 or g h 6= 0 , the solutions of Eq. (5)

are:

G1 =
−1

2g

(
f +

√
f2 − 4gh tanh

(√
f2 − 4gh

2
θ

))
,

G2 =
−1

2g

(
f +

√
f2 − 4gh coth

(√
f2 − 4gh

2
θ

))
,

G3 =
−1

2g

(
f +

√
f2 − 4gh

(
tanh

(√
f2 − 4gh θ

)
± i sech

(√
f2 − 4gh θ

)))
,

G4 =
−1

2g

(
f +

√
f2 − 4gh

(
coth

(√
f2 − 4gh θ

)
± csch

(√
f2 − 4gh θ

)))
,

G5 =
−1

4g

(
2f +

√
f2 − 4gh

(
tanh

(√
f2 − 4gh

4
θ

)
+ coth

(√
f2 − 4gh

4
θ

)))
,

G6 =
1

2g

−f +

√
(X2 + Y 2) (f2 − 4gh) −X

√
f2 − 4gh cosh

(√
f2 − 4gh θ

)
X sinh

(√
f2 − 4gh θ

)
+ Y

 ,

G7 =
1

2g

−f −
√

(Y 2 −X2) (f2 − 4gh) +X
√
f2 − 4gh sinh

(√
f2 − 4gh θ

)
X cosh

(√
f2 − 4gh θ

)
+ Y

 ,

where X and Y are two non-zero real constants and satisfies Y 2 −X2 > 0.

G8 =

2h cosh

(√
f2−4gh

2 θ

)
√
f2 − 4gh sinh

(√
f2−4gh

2 θ

)
− f cosh

(√
f2−4gh

2 θ

) ,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

66 Hassan et al 62-82



G9 =

−2h sinh

(√
f2−4gh

2 θ

)
f sinh

(√
f2−4gh

2 θ

)
−
√
f2 − 4gh cosh

(√
f2−4gh

2 θ

) ,

G10 =
2h cosh

(√
f2 − 4gh θ

)
√
f2 − 4gh sinh

(√
f2 − 4gh θ

)
− f cosh

(√
f2 − 4gh θ

)
± i

√
f2 − 4gh

,

G11 =
2h sinh

(√
f2 − 4gh θ

)
−f sinh

(√
f2 − 4gh θ

)
+
√
f2 − 4gh cosh

(√
f2 − 4gh θ

)
±
√
f2 − 4gh

,

G12 =

4h sinh

(√
f2−4gh

4 θ

)
cosh

(√
f2−4gh

4 θ

)
−2f sinh

(√
f2−4gh

4 θ

)
cosh

(√
f2−4gh

4 θ

)
+ 2

√
f2 − 4gh cosh2

(√
f2−4gh

4 θ

)
−
√
f2 − 4gh

,

Family 2: When f2 − 4gh < 0 and fg 6= 0 or gh 6= 0 , the solutions of Eq. (5)

are:

G13 =
1

2g

(
−f +

√
4gh− f2 tan

(√
4gh− f2

2
θ

))
,

G14 =
−1

2g

(
f +

√
4gh− f2 cot

(√
4gh− f2

2
θ

))
,

G15 =
1

2g

(
− f +

√
4gh− f2

(
tan

(√
4gh− f2 θ

)
± sec

(√
4gh− f2 θ

)))
,

G16 =
−1

2g

(
f +

√
4gh− f2

(
cot
(√

4gh− f2 θ
)
± csc

(√
4gh− f2 θ

)))
,

G17 =
1

4g

(
−2f +

√
4gh− f2

(
tan

(√
4gh− f2

4
θ

)
− cot

(√
4gh− f2

4
θ

)))
,

G18 =
1

2g

− f +
±
√

(X2 − Y 2) (4gh− f2) −X
√

4gh− f2 cos
(√

4gh− f2 θ
)

X sin
(√

4gh− f2 θ
)

+ Y

 ,

G19 =
1

2g

−f − ±
√

(X2 − Y 2) (4gh− f2) +X
√

4gh− f2 cos
(√

4gh− f2 θ
)

X sin
(√

4gh− f2 θ
)

+ Y

 ,
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where X and Y are two non-zero real constants and satisfies X2 − Y 2 > 0.

G20 =

−2h cos

(√
4gh−f2

2 θ

)
√

4gh− f2 sin

(√
4gh−f2

2 θ

)
+ f cos

(√
4gh−f2

2 θ

) ,

G21 =

2h sin

(√
4gh−f2

2 θ

)
− f sin

(√
4gh−f2

2 θ

)
+
√

4gh− f2 cos

(√
4gh−f2

2 θ

) ,

G22 =
− 2h cos

(√
4gh− f2 θ

)
√

4gh− f2 sin
(√

4gh− f2 θ
)

+ f cos
(√

4gh− f2 θ
)
±
√

4gh− f2 θ
,

G23 =
2h sin

(√
4gh− f2 θ

)
− f sin

(√
4gh− f2θ

)
+
√

4gh− f2 cos
(√

4gh− f2 θ
)
±
√

4gh− f2
,

G24 =

4h sin

(√
4gh−f2

4 θ

)
cos

(√
4gh−f2

4 θ

)
−2f sin

(√
4gh−f2

4 θ

)
cos

(√
4gh−f2

4 θ

)
+ 2
√

4gh− f2 cos2

(√
4gh−f2

4 θ

)
−
√

4gh− f2

,

Family 3: when h = 0 and fg 6= 0, the solution Eq. (5) becomes:

G25 =
− f b1

g (b1 + cosh (fθ)− sinh (fθ))
,

G26 =
− f (cosh (fθ) + sinh (fθ))

g (b1 + cosh (fθ) + sinh (fθ))
,

where b1 is an arbitrary constant.

Family 4: when g 6= 0 and h = f = 0, the solution of Eq. (5) becomes:

G27 =
−1

g θ + u1
,

where u1 is an arbitrary constant.

2.1. Exp-function Method

Consider the general nonlinear partial differential equation of the type (1)

Using the transformation (2) in equation (1) we have equation of the type (3).
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According to the Exp-function method, developed by He and Wu [12-18],we

assume that the wave solutions can be expressed in the following form

u(η) =

∑d
n=−c anexp(nη)∑q
m=−p bmexp(mη)

(6)

where p, q, c and d are positive integers which are to be further determined,an

and bm are unknown constants. We can rewrite equation (6) in the following

equivalent form

u (η) =
ac exp (cη) + ...+ a−d exp (−dη)

bp exp (pη) + ...+ b−q exp (−qη)
. (7)

To determine the value of c andp, we balance the linear term of highest order

of equation (3) with the highest order nonlinear term. Similarly, to determine

the value of dandq, we balance the linear term of lowest order of equation (3)

with lowest order non linear term.

3. Solution procedure

By using Exp-function method and the generalized Riccati equation mapping

together with the(G′/G)-expansion method, we construct new exact traveling

wave solutions for the combined KdV-MKdV equation (Gardner equation) in

this section.

3.1 The combined KdV-MKdV equation (Gardner equation)

We consider the combined KdV-MKdV equation with parameters followed by

Liu et al. [41]:

ut + p uux + q u2 ux − s uxxx = 0, (8)

where p, s are free parameters and q 6= 0.

Now, we use the transformation Eq. (2) into the Eq. (8), which yields:

− B r′ + prr′ + qr2r′ − sr′′′ = 0, (9)
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Eq. (9) is integrable, therefore, integrating with respect θ once yields:

−B r +
p

2
r2 +

q

3
r3 − sr′′ +K = 0, (10)

where Kis an integral constant which is to be determined later.

Taking the homogeneous balance between r′′and r3 in Eq. (10), we obtain

n = 1.

Therefore, the solution of Eq. (10) is of the form:

r (θ) = e1 (G′/G) + e0, e1 6= 0. (11)

Using Eq. (5), Eq. (11) can be re-written as:

r (θ) = e1

(
f + hG−1 + g G

)
+ e0, (12)

where f, g and hare free parameters.

By substituting Eq. (12) into Eq. (10), collecting all coefficients of Gk and

G− k (k = 0, 1, 2, ...) and setting them equal to zero, we obtain a set of algebraic

equations for e0, e1, f, g, h,K and B (algebraic equations are not shown, for

simplicity). Solving the system of algebraic equations with the help of algebraic

software Maple, we obtain

e0 =
∓p
√

6s
q −6sf

± 2q
√

6s
q

, e1 = ±
√

6s
q , B = 2sqf2−p2+16sqgh

4q ,

K =
−48psqgh

(
±
√

6s
q

)
+6psqf2

(
±
√

6s
q

)
−p3

(
±
√

6s
q

)
+288s2qfgh

24q2
(
±
√

6s
q

) ,

where p, s are free parameters and q 6= 0.

Family 1: The soliton and soliton-like solutions of Eq. (6) (when f2− 4gh > 0

and f g 6= 0 or g h 6= 0) are:

r1 = e1

∆2 sech2
(

∆
2 θ
)

2
(
f + ∆ tanh

(
∆
2 θ
)) + e0,
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where ∆ =
√
f2 − 4gh, ∆2 = f2 − 4gh, e0 =

∓p
√

6s
q −6sf

± 2q
√

6s
q

, e1 = ±
√

6s
q and

θ = x−
(

2sqf2−p2+16sqgh
4q

)
t.

r2 = e1

− ∆2 csch2
(

∆
2 θ
)

2
(
f + ∆ coth

(
∆
2 θ
)) + e0,

r3 = e1

∆2
(
sech2 (∆ θ)∓ i tanh (∆θ) sech (∆ θ)

)
f +

√
f2 − 4gh (tanh (∆ θ ) ± i sech (∆ θ))

+ e0,

r4 = e1

− ∆2
(
csch2 (∆ θ)± coth (∆θ) csch (∆ θ )

)
f + ∆ (coth (∆θ) ± csch (∆ θ))

+ e0,

r5 = e1

∆ 2
(
sech2

(
∆
4 θ
)
− csch2

(
∆
4 θ
))

8 f + 4∆
(
tanh

(
∆
4 θ
)

+ coth
(

∆
4 θ
)) + e0,

r6 = e1

−X
(
f2X − sinh (∆ θ) f2Y − 4ghX + 4ghY sinh (∆ θ)−∆2

√
(X2 + Y 2) cosh (∆ θ)

)
(X sinh (∆ θ) + Y )

(
f X sinh (∆ θ) + f Y −∆

√
(X2 + Y 2) +X∆ cosh (∆ θ)

) +e0,

r7 = e1

X
(
f2Y cosh (∆ θ) f2Y − 4ghY cosh (∆ θ)−∆2

√
− (X2 − Y 2) sinh (∆ θ) + f2X − 4ghX

)
(X cosh (∆ θ) + Y )

(
fX cosh (∆ θ) + fY + ∆

√
− (X2 − Y 2) +X∆ sinh (∆ θ)

) +e0,

where X and Y are two non-zero real constants and satisfies Y 2 −X2 > 0.

r8 = e1
−∆ 2

2 cosh
(

∆
2 θ
) (

∆ sinh
(

∆
2 θ
)
− f cosh

(
∆
2 θ
)) + e0,

r9 = e1
∆ 2

2 sinh
(

∆
2 θ
) (
−f sinh

(
∆
2 θ
)

+ ∆ cosh
(

∆
2 θ
)) + e0,

r10 = e1
−∆2 + i f2 sinh (∆ θ)− i4gh sinh (∆ θ)

∆ sinh (∆ θ)− f cosh (∆ θ) + i∆ cosh (∆ θ)
+ e0,

r11 = e1
∆2 + f2 cosh (∆ θ)− 4gh cosh (∆ θ)

(−f sinh (∆ θ) + ∆ cosh (∆ θ) + ∆ ) sinh (∆ θ)
+ e0,

r12 = e1
∆2

4 sinh
(

∆
4 θ
)

cosh
(

∆
4 θ
) (
−2f sinh

(
∆
4 θ
)

cosh
(

∆
4 θ
)

+ 2∆ cosh2
(

∆
4 θ
)
−∆

)+e0,

Family 2: The periodic form solutions of Eq. (8) (when f2 − 4gh < 0 and
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fg 6= 0 or gh 6= 0) are:

r13 = e1
Ω2

2 cos
(

Ω
2 θ
) (
−f cos

(
Ω
2 θ
)

+ Ω sin
(

Ω
2 θ
)) + e0,

where Ω =
√
− f2 + 4 gh, Ω2 = 4 gh − f2,e0 =

∓p
√

6s
q −6sf

± 2q
√

6s
q

, e1 = ±
√

6s
q and

θ = x−
(

2sqf2−p2+16sqgh
4q

)
t.

r14 = e1
Ω2

2
(
−1 + cos2

(
Ω
2 θ
)) (

f + Ω cot
(

Ω
2 θ
)) + e0,

r15 = e1
Ω2 (1 + sin (Ωθ))

cos (Ωθ) (−f cos (Ωθ) + Ω sin (Ωθ) + Ω)
+ e0,

r16 = e1
Ω2 sin (Ωθ)

cos (Ωθ) f sin (Ωθ) + Ω cos2 (Ωθ)− f sin (Ωθ)− Ω
+ e0,

r17 = e1
−Ω2

4 cos2
(

Ω
4 θ
) (
−1 + cos2

(
Ω
4 θ
)) (
−2f + Ω

(
tan

(
Ω
4 θ
)
− cot

(
Ω
4 θ
))) + e0,

r18 = e1
X.N1

(−X2 +X2 cos2 (Ωθ)− 2XY sin (Ωθ)− Y 2)

(
−f +

Ω
√

(X2−Y 2)

X sin(Ωθ)+Y −XΩ cos (Ωθ)

)+e0,

(13)

where

N1 = −4ghX − 4ghY sin (Ωθ) + f2X + f2Y sin (Ωθ) +

4gh
√

(X2 − Y 2) cos (Ωθ)− f2
√

(X2 − Y 2) cos (Ωθ)

r19 = e1

X
(
−4ghX−4ghY sin(Ωθ)+f2X+f2Y sin(Ωθ)−4gh

√
(X2−Y 2) cos(Ωθ)+f2

√
(X2−Y 2) cos(Ωθ)

)
(−X2+X2 cos2(Ωθ)−2XY sin(Ωθ)−Y 2)

(
−f−

Ω
√

(X2−Y 2)
X sin(Ωθ)+Y

+XΩ cos(Ωθ)

) +

e0,

where X and Y are two non-zero real constants and satisfies X2 − Y 2 > 0.

r20 = e1

−Ω2 sec
(

Ω
2 θ
) (

Ω sin
(

Ω
2 θ
)

+ f cos
(

Ω
2 θ
))

2
(
4gh− 4gh cos2

(
Ω
2 θ
)
− f2 + 2f2 cos2

(
Ω
2 θ
)

+ 2fΩ sin
(

Ω
2 θ
)

cos
(

Ω
2 θ
)) +e0,

r21 = e1

−Ω2
(
−f sin

(
Ω
2 θ
)

+ Ω cos
(

Ω
2 θ
))

2 sin
(

Ω
2 θ
) (
−f2 + 2f2 cos2

(
Ω
2 θ
)

+ 2fΩ sin
(

Ω
2 θ
)

cos
(

Ω
2 θ
)
− 4gh cos2

(
Ω
2 θ
)) +e0,

r22 =
1
2e1 sec (Ωθ)

(
−Ω2 − 4gh sin (Ωθ) + f2 sin (Ωθ)

)
(Ω sin (Ωθ) + f cos (Ωθ) + Ω)

N2
+e0,
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where

N2 = 4gh− 2gh cos2 (Ωθ)− f2 + f2 cos2 (Ωθ) + Ωf sin (Ωθ) cos (Ωθ) +

4gh sin (Ωθ)− f2 sin (Ωθ) + fΩ cos (Ωθ)

r23 = e1
−Ω2 (−f sin (Ωθ) + Ω cos (Ωθ) + Ω)

2 sin (Ωθ) (−2gh cos (Ωθ) + f2 cos (Ωθ) + fΩ sin (Ωθ)− 2gh)
+ e0,

q24 =
−Ω2

4 e1 csc
(

Ω
4 θ
)

sec
(

Ω
4 θ
) (
−2f sin

(
Ω
4 θ
)

cos
(

Ω
4 θ
)

+ 2Ω cos2
(

Ω
4 θ
)
− Ω

)
N3

+e0,

where

N3 = −8f2 cos2

(
Ω

4
θ

)
+ 8f2 cos4

(
Ω

4
θ

)
+ 8Ωf cos3

(
Ω

4
θ

)
sin

(
Ω

4
θ

)
−

4fΩ sin

(
Ω

4
θ

)
cos

(
Ω

4
θ

)
− 16gh cos4

(
Ω

4
θ

)
+ 16gh cos2

(
Ω

4
θ

)
− Ω2

Family 3: The soliton and soliton-like solutions of Eq. (6) (when h = 0

and f g 6= 0) are:

r25 = e1
f (cosh (fθ)− sinh (fθ))

b1 + cosh (fθ)− sinh (fθ)
+ e0,

r26 = e1
f b1

b1 + cosh (fθ) + sinh (fθ)
+ e0,

where b1 is an arbitrary constant, e0 =
∓p
√

6s
q −6sf

± 2q
√

6s
q

, e1 = ±
√

6s
q and θ =

x−
(

2sqf2−p2+16sqgh
4q

)
t.

Family 4: The rational function solution (when g 6= 0 and h = f = 0) is:

r27 =
−e1g

g θ + u1
,

where u1 is an arbitrary constant , e1 = ±
√

6s
q and θ = x−

(
2sqf2−p2+16sqgh

4q

)
t.

3.2 The combined KdV-MKdV equation (Gardner equation) using

Exp-function method
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We consider the combined KdV-MKdV equation (8) with parameters followed

by Liu et al. [41]:

Now, we use the transformation Eq. (2) into the Eq. (8), which yields (9).

Using Exp-function Method we have following solution sets satisfy the given

combined KdV-MKdV equation (8)

1st Solution set:


B = B, b−1 = 1

4

(p2+4Bq+−2sq)
b1(p2+4Bq+4sq) , b0 = b0, b1 = b1, a−1 = − 1

8

b20

(
p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) ,

a0 =
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

, a1 = − 1
2

(
p+
√
p2+4Bq+4sq

q

)
b1


We therefore, obtained the following generalized solitary solution

U (η) =

− 1
8

b20

(
p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) e−η +
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

− 1
2

(
p+
√
p2+4Bq+4sq

q

)
b1e

η

1
4

(p2+4Bq+−2sq)
b1(p2+4Bq+4sq)

e−η+b0+b1eη

U (x, t) =

− 1
8

b20

(
p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) e−(x−Bt) +
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

− 1
2

(
p+
√
p2+4Bq+4sq

q

)
b1e

(x−Bt)

1
4

(p2+4Bq+−2sq)
b1(p2+4Bq+4sq)

e−(x−Bt)+b0+b1e(x−Bt)

2nd Solution set:


B = B, b−1 = 1

4

(p2+4Bq+−2sq)b20
b1(p2+4Bq+4sq) , b0 = b0, b1 = b1, a−1 = − 1

8

b20

(
−p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) ,

a0 = −
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

, a1 = 1
2

(
−p+
√
p2+4Bq+4sq

q

)
b1


We therefore, obtained the following generalized solitary solution

U (η) =

− 1
8

b20

(
−p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) e−η −
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

− 1
2

(
−p+
√
p2+4Bq+4sq

q

)
b1e

η

1
4

(p2+4Bq+−2sq)b20
b1(p2+4Bq+4sq) e

−η + b0 + b1eη
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U (x, t) =

− 1
8

b20

(
−p+
√
p2+4Bq+4sq

)
(4Bq+p2−2sq)

qb1(p2+4Bq+4sq) e−(x−Bt) −
b0

(
4s−2B− 1

2p

(
p+
√
p2+4Bq+4sq

q

))
√
p2+4Bq+4sq

− 1
2

(
−p+
√
p2+4Bq+4sq

q

)
b1e

(x−Bt)

1
4

(p2+4Bq+−2sq)b20
b1(p2+4Bq+4sq) e

−(x−Bt) + b0 + b1e(x−Bt)

4. Results and discussion

It is significance mentioning that our solution q27is coincided with u3,4 (x, t) in

example 1 of section 4 of Liu et al. [41] for s = 1, q = 1, p = 2 and u1 =

0. Moreover, it is showing that our solution q27is coincided with u3,4 (x, t)

in example 2 of section 4 of Liu et al. [41] for s = −1, q = 1, p = 2 and

u1 = 0. In addition, we construct many new exact traveling wave solutions for

the combined KdV-MKdV equation in this work, which have not been found in

the previous literature. Furthermore, the graphical demonstrations of some of

them are depicted in the following subsection in figures below.

4.1 Graphical representations of the solutions

The graphical depictions of the solutions are shown in the figures with the help

of Maple:

Fig. 1: Periodic solutions for
f = 5, g = 4, h = 3, p = 3, s = 2, q = 5

Fig. 2: Periodic solutions for
f = 9, g = 8, h = 0, p = 8, s = 6, q = 7, b1 = 8
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Fig. 3: Periodic solutions for
f = 5, g = 4, h = 3, p = 2, s = 5, q = 9

Fig. 4: Periodic solutions for
f = 3, g = 4, h = 0, p = 1, s = 3, q = 4, b1 = 4

Fig. 5: Periodic solutions for
f = 3, g = 4, h = 0, p = 2, s = 5, q = 7, b1 = 8

Fig. 6: Periodic solutions for
f = 5, g = 7, h = 0, p = 5, s = 5, q = 7, b1 = 2
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Fig. 7: Periodic solutions for
f = 2, g = 4, h = 0, p = 1, s = 3, q = 1, b1 = 2

Fig. 8: Periodic solutions for
f = 5, g = 4, h = 0, p = 3, s = 4, q = 3, b1 = 2

Fig. 9: Periodic solutions for
f = 7, g = 15, h = 0, p = 3, s = 4, q = 5, b1 = 4

Fig. 10: Periodic solutions for
f = 0, g = 11, h = 0, p = 3, s = 5, q = 9, b1 = 2

5. Conclusions

In this article, we apply the Exp-function method and generalized Riccati equa-
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tion mapping together with the(G′/G)-expansion method to solve the combined

KdV-MKdV equation. In (G′/G)-expansion method, the generalized Riccati

equation G′ (θ) = h+f G (ϕ)+g G2 (θ) is used with constant coefficients, as the

auxiliary equation, instead of the second order linear ordinary differential equa-

tion with constant coefficients. By applying these methods, we obtain abundant

exact traveling wave solutions including solitons and periodic solutions and solu-

tions are expressed in terms of the hyperbolic, the trigonometric and the rational

functions. The correctness of the obtained solutions is verified to compare with

the published results. We hope that these useful and powerful methods can be

effectively used to solve many nonlinear evolution equations which are arising

in technical arena.
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STABILITY OF A LATTICE PRESERVING FUNCTIONAL EQUATION ON

RIESZ SPACE: FIXED POINT ALTERNATIVE

EHSAN MOVAHEDNIA, SEYED MOHAMMAD SADEGH MODARRES MOSADEGH, CHOONKIL PARK,

AND DONG YUN SHIN∗

Abstract. The aim of this paper is to investigate Hyers-Ulam stability of the following lattice

preserving functional equation on Riesz space with fixed point method:

‖F (τx ∨ ηy)− τF (x) ∨ ηF (y)‖ ≤ ϕ(τx ∨ ηy, τx ∧ ηy),

where X is a Banach lattice and ϕ : X × X → X is a mapping such that

ϕ(x, y) ≤ (τη)
α
2 ϕ

(
x

τ
,
y

η

)
for all τ, η ≥ 1 and α ∈ [0, 1

2
).

1. Introduction

In 1940 Ulam [1] proposed the famous Ulam stability problem: When is it true that a function
which satisfies some functional equation approximately must be close to one satisfying the equation
exactly?. If the answer is affirmative, we would say that the equation is stable. In 1941, Hyers [2]
solved this stability problem for additive mappings subject to the Hyers condition on approximately
additive mappings. The result of Hyers was generalized by Rassias [3] for linear mapping by
considering an unbounded Cauchy difference.

In 1996, Isac and Rassias [4] were the first authors to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. Some authors
have considered the Hyers-Ulam stability of quadratic functional equations in random normed
spaces [5, 6, 7, 8, 9, 10, 11, 12, 13]. By the fixed point method, the stability problems of several
functional equations have been extensively investigated by a number of authors (see [14, 15]). We
generalize the Agbeko’s theorem [16] and prove it by fixed point method.

A non-empty set M with a relation ”≤” is said to be an order set whenever the following
conditions are satisfied:

1. x ≤ x for every x ∈M;
2. x ≤ y and y ≤ x implies that x = y;
3. x ≤ y and y ≤ z implies that x ≤ z.
If, in addition, for two elements x, y ∈ M either x ≤ y or y ≤ x, then M is called a totally

ordered set. Let A be a subset of an ordered set M. x ∈ M is called an upper bound of A if
y ≤ x for all y ∈ A. z ∈ M is called a lower bound of A if y ≥ z for all y ∈ A. Moreover, if there
is an upper bound of A, then A is said to be bounded from above. If there is an lower bound of
A, then A is said to be bounded from below. If A is bounded from above and from below, then
we will briefly say that A is order bounded.
An order set (M,≤) is called a lattice if any two elements x, y ∈ M have a least upper bound
denoted by x ∨ y = sup(x, y) and a greatest lower bound denoted by x ∧ y = inf(x, y).
A real vector space E which is also an order set is called an order vector space if the order and the
vector space structure are compatible in the following sense:

1. if x, y ∈ E such that x ≤ y then x+ z ≤ y + z for all z ∈ E;

2010 Mathematics Subject Classification. 47H10, 46B42, 39B82.
Key words and phrases. Hyers-Ulam stability; Riesz space; fixed point theory.
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2. if x, y ∈ E such that x ≤ y then αx ≤ αy for all α ≥ 0.
(E,≤) is called a Riesz space if (E,≤) is a lattice and order vector space.
A norm ρ on Riesz space E, is called a lattice norm if ρ(x) ≤ ρ(y) whenever |x| ≤ |y|. In the latter
case (E, ‖.‖) is called a normed Riesz space.
(E, ‖.‖) is called a Banach lattice if (E, ‖.‖) is a Banach space, E is Riesz space and |x| ≤ |y|
implies that ‖x‖ ≤ ‖y‖ for all x, y ∈ E.

Example 1.1. Suppose that X is a compact Hausdorff space. We denote by C(K) the Banach
space of all real-valued continuous functions on X . Let “≤” be a point-wise order on C(K), and
f ≤ g if and only if f(t) ≤ g(t) for all t ∈ K. It is easy to show that (C(K),≤) is a Banach lattice.

Let E be a Riesz space, and let the positive cone E+ of E consist of all ∈ E such that x ≥ 0.
For every x ∈ E let

x+ = x ∨ 0 x− = −x ∨ 0 |x| = x ∨ −x.
Let E be a Riesz space. For all x, y, z ∈ E and a ∈ R, the following assertions hold:
1. x+ y = x ∨ y + x ∧ y , −(x ∨ y) = −x ∧ y.
2. x+ (y ∨ z) = (x+ y) ∨ (x+ z) , x+ (y ∧ z) = (x+ y) ∧ (x+ z).
3. |x| = x+ + x− , |x+ y| ≤ |x|+ |y|.
4. x ≤ y is equivalent to x+ ≤ y+ and y− ≤ x−
5. (x ∨ y) ∧ z = (x ∧ y) ∨ (y ∧ z) , (x ∧ y) ∨ z = (x ∨ y) ∧ (y ∨ z)

A Riesz space E is called Archimedean if x ≤ 0 holds whenever the set {nx : n ∈ N} is
bounded from above.

Theorem 1.1. Let E be a normed Riesz space. The following assertions hold:
1. the lattice operations is continuous;
2. the positive cone E+ is closed;
3. limn→∞ xn = sup{xn : n ∈ N}.

Definition 1.1. Let X ,Y be Banach lattices. A mapping T : X → Y is called positive if T (X+) =
{T (|x|) : x ∈ X} ⊂ Y+.

Definition 1.2. Let X ,Y be Banach lattices and let T : X → Y be a positive mapping. We define
P1) lattice homomorphism:

T (|x| ∨ |y|) = T (|x|) ∨ T (|y|);
P2) semi-homogeneity: for all x ∈ X and all α ∈ R+

T (α|x|) = αT (|x|);
P3) continuity from below on the positive cone: for all increasing sequences xn ⊂ X+

lim
n→∞

T (xn) = T ( lim
n→∞

xn).

Observe that every lattice homomorphism T : X → Y is necessarily a positive operator. Indeed,
if x ∈ E+ then

T (x) = T (x ∨ 0) = T (x) ∨ T (0) = T (x)+ ≥ 0

holds in Y. Also it is important to note that the range of a lattice homomorphism is a Riesz
subspace.

Theorem 1.2. For an operator T : X → Y between two Riesz spaces, the following statements are
equivalent:

1. T is a lattice homomorphism;
2. T (x+) = T (x)+ for all x ∈ X ;
3. T (x ∧ y) = T (x) ∧ T (y);
4. if x ∧ y = 0 in X , then T (x) ∧ T (y) = 0 holds in Y;
5. T (|x|) = |T (x)|.
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Definition 1.3. Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on
X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X ;
(b) d(x, y) = d(y, x) for all x, y ∈ X ;
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Note that the only substantial difference of the generalized metric from the metric is that the
range of generalized metric includes the infinity.

Theorem 1.3. Let (X ,d) be a complete generalized metric space and J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X , either

d(J nx,J n+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(J nx,J n+1x) <∞ for all n ≥ n0;
(b) the sequence {J nx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(J n0x, y) <∞};
(d) d(y, y∗) ≤ 1

1−Ld(y,J y) for all y ∈ Y.

2. Main results

Using the fixed point method, we prove the Hyers-Ulam stability of lattice homomorphisms in
Banach lattices.

Theorem 2.1. Let X ,Y be Banach lattices. Consider a positive operator F : X → Y such that

‖F (τx ∨ ηy)− τF (x) ∨ ηF (y)‖ ≤ ϕ(τx ∨ ηy, τx ∧ ηy), (2.1)

where ϕ : X × X → X is a mapping such that

ϕ(x, y) ≤ (τη)
α
2 ϕ

(
x

τ
,
y

η

)
for all x, y ∈ X , τ, η ≥ 1 and for which there is a real number α ∈ [0, 12 ) Then there is a unique
positive operator T : X → Y satisfying the properties P1, P2 and the inequality

‖T (x)− F (x)‖ ≤ τα

τ − τα
for all x ∈ X .

Proof. Putting τ = η and x = y in (2.1), we get

‖F (τx)− τF (x)‖ ≤ ϕ(τx, τy).

Then ∥∥∥∥1

τ
F (τx)− F (x)

∥∥∥∥ ≤ 1
τ ϕ(τx, τx) ≤ τα−1ϕ(x, x). (2.2)

Consider the set
∆ = {g | g : X → Y g(0) = 0}

and introduce the generalized metric on ∆

d(g, h) = inf
{
c ∈ R+, ‖g(x)− h(x)‖ ≤ c ϕ(x, x) for all x ∈ X

}
,

where as usual, inf ∅ = ∞. It is easy to show that (∆, d) is complete generalized metric space.
Now we define the operator J : ∆→ ∆ by

Jg(x) =
1

τ
g(τx)

for all x ∈ X . Given g, h ∈ ∆, let c ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ c, that is,

‖g(x)− h(x)‖ ≤ c ϕ(x, x).
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So we have

‖Jg(x)− Jh(x)‖ =
1

τ
‖g(τx)− h(τx)‖ ≤ 1

τ
c ϕ(τx, τx)

≤ 1

τ
c ταϕ(x, x) = τα−1 c ϕ(x, x)

for all x ∈ X , that is, d(Jg, Jh) < τα−1 c. Thus we have

d(Jg, Jh) ≤ τα−1d(g, h)

for all g, h ∈ ∆. So J is a strictly contractive mapping with constant τα−1 < 1 on ∆, For all
g, h ∈ ∆ and α ∈ [0, 12 ). By (2.2), we have

d(JF, F ) ≤ τα−1 <∞.

By Theorem 1.3, there exists a mapping T : X → Y satisfying the following:
1. T is a fixed point of J , i.e.,

T (τx) = τT (x)

for all x ∈ X . Also the mapping T is a unique fixed point of J in the set

M = {g ∈ ∆ : d(g, h <∞)}.

This implies that P2 holds.
2. d(JnF, T )→ 0 as n→∞. This implies the equality

lim
n→∞

1

τn
F (2nx) = T (x)

for all x ∈ X .
3. d(F, T ) ≤ 1

1−Ld(F, JF ), which implies the inequality

‖T (x)− F (x)‖ ≤ τα−1

1− τα−1
=

τα

τ − τα
,

which implies that the inequality (2.1) holds.
Now we show that T satisfies P1. Putting τ = η = τn in (2.1), we get

‖F (τn(x ∨ y))− τnF (x) ∨ τnF (y)‖ ≤ τ2nαϕ(x ∨ y, x ∧ y). (2.3)

Replacing x, y by τnx and τny in (2.3), respectively, we get∥∥F (τ2n(x ∨ y))− τnF (τnx) ∨ τnF (τny)
∥∥ ≤ τ2nαϕ(τnx ∨ τny, τnx ∧ τny)

= τ4nα(ϕ(x ∨ y, x ∧ y).

Then ∥∥∥∥ 1

τ2n
F (τ2n(x ∨ y))− 1

τn
F (τnx) ∨ 1

τn
F (τny)

∥∥∥∥ ≤ (
τ2n(2α−1).ϕ(x ∨ y, x ∧ y)

)
.

Since α ∈ [0, 12 ), when n→∞, we have

‖T (x ∨ y)− T (x) ∨ T (y)‖ ≤ 0.

and so

T (x ∨ y) = T (x) ∨ T (y)

for all x, y ∈ X . Note that the lattice operation is continuous. �

Theorem 2.2. Let X ,Y be Banach lattices and let a continuous function p : [0,∞) → [0,∞) be
given. Consider a positive T : X → Y for which there are real numbers ν ∈ (0,∞) and 0 ≤ r < 1
such that ∥∥∥∥T (α|x| ∨ β|y|)− αp(α)T (|x|) ∨ βp(β)T (|y|)

p(α) ∨ p(β)

∥∥∥∥ ≤ ν (‖x‖r + ‖y‖r) (2.4)
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for all x, y ∈ X and α, β ∈ R+. Then there exist a unique positive mapping F : X → Y which
satisfies the properties P1, P2 and the inequality

‖F (|x|)− T (|x|)‖ ≤ 2ν

2− 2r

for all x ∈ X .

Proof. Putting α = β = 2 and x = y in (2.4), we get∥∥∥∥T (2|x| ∨ 2|x|)− 2p(2)T (|x|) ∨ 2p(2)T (|x|)
p(2) ∨ p(2)

∥∥∥∥ ≤ 2ν‖x‖r

for all x ∈ X and r ∈ [0, 1). Thus

‖T (2|x|)− 2T (|x|)‖ ≤ 2ν‖x‖r

and so ∥∥∥∥1

2
T (2|x| − T (|x|))

∥∥∥∥ ≤ ν‖x‖r (2.5)

for all x ∈ X and α ∈ [0, 1). Consider the set

∆ := {S : S : X → Y , S(0) = 0}
and introduce the generalized metric on ∆

d(S,H) = inf{c ∈ R+, ‖S(x)−H(x)‖ ≤ c‖x‖r, ∀x ∈ X},
where, as usual, inf ∅ = ∞. It is know that (∆, d) is complete. Now we define the mapping
J : ∆→ ∆ by

JS(|x|) =
1

2
S(2|x|)

for all x ∈ X . First we assert that J is strictly contractive with constant 2r−1 on ∆. Given
S,H ∈ ∆, let c ∈ [0,∞] be an arbitrary constant with d(S,H) < c, that is,

‖S(|x|)−H(|x|)‖ ≤ c‖x‖r.
So we have

‖JS(x)− JH(x)‖ =
1

2
‖S(2|x|)−H(2|x|)‖ ≤ 1

2
c‖2x‖r = 2r−1c‖x‖r

for all x ∈ X , that is, d(JS, JH) ≤ 2r−1c. Thus we have

d(JS, JH) ≤ 2r−1d(S,H)

for all S,H ∈ ∆ and so J is strictly contractive with constant 2r−1 < 1 on ∆. For all S,H ∈ ∆
and r ∈ [0, 1]. By (2.5) we have

d(JF, F ) ≤ ν <∞
By Theorem 1.3, there exists a mapping F : X → Y satisfying the following:

1. F is a fixed point J i. e.
F (2|x|) = 2F (|x|)

for all x ∈ X . Also the mapping F is a unique fixed point of J in the set

M = {S ∈ ∆ : d(S,H) <∞}.
2. d(JnT, F )→ 0 as n→∞. This implies the equality

lim
n→∞

1

2n
T (2nx) = F (x) (2.6)

for all x ∈ X .

3. d(T, F ) ≤ 1

1− L
d(T, JT ), which implies the inequality

‖F (|x|)− T (|x|)‖ ≤ ν

1− 2r−1
=

2ν

2− 2r
.
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This implies that the inequality (2.2) holds.
Now, we show that F is a lattice homomorphism. Putting α = β = 2n in (2.4),

‖T (2n(|x| ∨ |y|))− 2n(T (|x|) ∨ T (|y|))‖ ≤ ν(‖x‖r + ‖y‖r). (2.7)

Replacing x and y by 2x and 2ny in (2.7), respectively, we obtain

‖T (4n(|x| ∨ |y|))− 2n(T (2n|x|) ∨ T (2n|y|))‖ ≤ 2nrν(‖x‖r + ‖y‖r)

and so ∥∥∥∥ 1

4n
T (4n(|x| ∨ |y|))− 1

2n
(T (2n|x|) ∨ T (2n|y|))

∥∥∥∥ ≤ 2n(r−2)ν(‖x‖r + ‖y‖r).

As n→∞, we have

‖F (|x| ∨ |y|)− F (|x|) ∨ F (|y|)‖ ≤ 0.

and so

F (|x| ∨ |y|) = F (|x|) ∨ F (|y|)
for all x, y ∈ X . Next we show that T (α|x|) = αT (|x|) for all x ∈ X and all real numbers α ∈ [0,∞).
Letting α = β, y = 0 and replacing α by 2nα in (2.4), we get F (0) = 0 and so F satisfies P1. So
T (0) = 0 with (2.6) and

‖T (2nα|x|)− 2nαT (|x|)‖ ≤ ν‖x‖r (2.8)

for all x ∈ X and all real numbers α ∈ [0,∞). Replacing x by 2nx in (2.8),

‖T (4nα|x|)− 2nαT (2n|x|)‖ ≤ ν 2nr ‖x‖r

and so ∥∥∥∥T (4nα|x|)
4n

− αT (2n(|x|))
2n

∥∥∥∥ ≤ ν 2n(r−2) ‖x‖r

for all x ∈ X . As n→∞, we obtain

‖F (α|x| − αF (|x|))‖ ≤ 0

and so

F (α|x| = αF (|x|).
for all x ∈ X and α ∈ [0,∞). �

Corollary 2.1. Let X ,Y be Banach lattices. Consider a positive operator T : X → Y for which
there are real numbers ν ∈ (0,∞) and 0 ≤ r < 1 such that

‖T (α|x| ∨ β|y|)− αT (|x|) ∨ βT (|y|)‖ ≤ ν(‖x‖r + ‖y‖r)

for all x, y ∈ X and α, β ∈ R+. Then there exists a unique positive mapping F : X → Y which
satisfies the properties P1, P2 and the inequality

‖F (|x|)− T (|x|)‖ ≤ 2ν

2− 2r
.

for all x ∈ X .

Corollary 2.2. Let X ,Y be Banach lattices. Consider a positive operator T : X → Y for which
there are real numbers ν ∈ (0,∞) and 0 ≤ r < 1 such that∥∥∥∥T (α|x| ∨ β|y|)− α2T (|x|) ∨ β2T (|y|)

α ∨ β

∥∥∥∥ ≤ ν(‖x‖r + ‖y‖r)

for all x, y ∈ X and α, β ∈ R+. Then there exists a unique positive mapping F : X → Y which
satisfies the properties P1, P2 and the inequality

‖F (|x|)− T (|x|)‖ ≤ 2ν

2− 2r

for all x ∈ X .
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UNIQUENESS THEOREM OF MEROMORPHIC

FUNCTIONS AND THEIR k-TH DERIVATIVES SHARING

SET

JUNFENG XU AND FENG LÜ

Abstract. In this paper, due to the theories of normal family and com-
plex differential equation, we consider a uniqueness problem of meromor-
phic functions share set S = {a, b} with their k-th derivatives.

1. Introduction and main results

Let F be a family of meromorphic functions defined in D. F is said to be
normal in D, in the sense of Montel, if for any sequence fn ∈ F , there exists
a subsequence fnj , such that fnj converges spherically locally uniformly in
D, to a meromorphic function or ∞ (see, [18]).

Let f and g be two meromorphic functions in a domain D, and let a be
a complex number. If g(z) = a whenever f(z) = a, we write f(z) = a ⇒
g(z) = a. If f(z) = a ⇒ g(z) = a and g(z) = a ⇒ f(z) = a, we write
f(z) = a ⇔ g(z) = a and say that f and g share the value a IM (ignoring
multiplicity). If f − a and g − a have the same zeros with the same multi-
plicities, we write f(z) = a
 g(z) = a and say that f and g share the value
a CM (counting multiplicity). Let S be a set of complex numbers. Provide
that f(z) ∈ S if and only if g(z) ∈ S in a domain D, then we say f and
g share the set S in D. It is assumed that the reader is familiar with the
standard symbols and fundamental results of Nevanlinna theory, as found
in [4, 21].

In the theory of normal family, it is meaningful to find sufficient condi-
tions for normality(see. [1, 7, 8, 9, 10, 11, 15, 17, 20]). Recently, Y. Li [7]
obtained a normal family of holomorphic functions share set with their k-th
derivatives as follows.

2000 Mathematics Subject Classification. 30D35, 30D45.
Key words and phrases. Share set, Nevanlinna theory, uniqueness, normal family, dif-

ferential equation.
This work was supported by NSF of Guangdong Province(No. 2015A030313644), the

Natural Science Foundation of Shandong Province Youth Fund Project (ZR2012AQ021)
and the training plan for the Outstanding Young Teachers in Higher Education of Guang-
dong (Nos. Yq2013159, SYq2014002).
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2 J.F. XU AND F. LÜ

Theorem A. Let F be a family of holomorphic functions in a domain D,
let k(≥ 2) be a positive integer, and let a, b be two distinct finite complex
numbers. If for each f ∈ F , all the zeros of f are of multiplicity at least k,
and f and f ′ share the set S = {a, b}, then F is normal in D.

Remark 1. In fact, for the case ab ̸= 0, the conclusion of Theorem A still
holds if the condition f and f (k) share the set S = {a, b } CM is replaced by

f(z) ∈ S ⇒ f (k)(z) ∈ S.

See Section 3.
In the uniqueness theory, an important subtopic that a meromorphic func-

tion and it’s derivative share some values or functions or set is well investi-
gated. Due to Theorem A, Y. Li [7] obtained a uniqueness theorem of entire
functions.

Theorem B. Let k(≥ 2) be a positive integer, and let a, b be two distinct
finite complex numbers, and let f be a non-constant entire function. If all
the zeros of f are of multiplicity at least k, and f and f (k) share the set
S = {a, b } CM, then

(1). f(z) = CeDz, where C ̸= 0 and D are two constants with Dk = ±1,
(2). f = −f (k) + a+ b.

In [7], Y. Li also gave an example to show that the case (2) can not omit-
ted.

Example 1. Let f(z) = cos2 z
2 . Then f and f ′′ share set {0, 12} CM and

all zeros of f are of multiplicity at least 2. Obviously, f = −f ′′ + 1
2 .

After considering Theorem B and Example 1, we naturally ask the fol-
lowing questions.

Question 1. What happens if f is a meromorphic function?
Question 2. Note that k = 2 in Example 1. Naturally, we ask whether

Case (2) occurs for k ̸= 2 or not?
Question 3. What’s the specific form of f in Case (2)?
In the work, we focus on the above questions. Basing on the idea of Y.

Li in [7] and due to the theories of normal family and complex differential
equation, we further study the uniqueness problem of meromorphic functions
of finitely many poles sharing a set CM with their derivatives.

Theorem 1.1. Let k(≥ 2) be a positive integer, and let a, b be two distinct
finite complex numbers, and let f be a non-constant meromorphic function
with finitely many poles. If all the zeros of f are of multiplicity at least k,
and f and f (k) share the set S = {a, b} CM, then one of the following cases
must occur:
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(1). f(z) = CeDz, where C ̸= 0 and D are two constants with Dk = 1,

and f = f (k);
(2). f(z) = CeDz, where C ̸= 0 and D are two constants with Dk = −1,

f = −f (k) and S = {a,−a};
(3). f(z) = A1e

iz + A2e
−iz + a + b, where A1 and A2 are two nonzero

constants with (a+ b)2 = 4A1A2, f = −f ′′
+ a+ b, and k must be 2.

Remark 2. For the special case that A1 = A2 = 1
4 , a = 0 and b = 1

2 ,
then Case (3) becomes Example 1.

Remark 3. We answer the Questions 2 and find out the case (2) occurs
only for k = 2 in Theorem B. We also answer the Question 3 and give the
form of f . We partial answer the Question 1.

In 2008, we considered the case of k = 1 and obtained a normal criteria
theorem and a uniqueness theorem[10].

Theorem C. Let F be a family of functions holomorphic in a domain, let
a and b be two distinct finite complex numbers with a + b ̸= 0. If for all
f ∈ F , f and f ′ share S = {a, b} CM, then F is normal in D.

Theorem D. Let a and b be two distinct complex numbers with a+ b ̸= 0,
and let f(z) be a nonconstant entire function. If f and f ′ share the set
{a, b} CM, then one and only one of the following conclusions holds: (i)
f = Aez or (ii) f = Ae−z + a+ b, where A is a nonzero constant.

By the same way to Theorem 1.1, we can obtain the following.

Theorem 1.2. Let a and b be two distinct complex numbers with a+ b ̸= 0,
and let f(z) be a nonconstant meromorphic function with finite poles. If
f and f ′ share the set {a, b} CM, then one and only one of the following
conclusions holds: (i) f = Aez or (ii) f = Ae−z + a + b, where A is a
nonzero constant.

2. Some Lemmas

Lemma 2.1. [15] Let F be a family of functions holomorphic on a domain
D, all of whose zeros have multiplicity at least k , and suppose that there
exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not
normal at z0 ∈ D, for each 0 ≤ α ≤ k, there exist,

(a) a number 0 < r < 1;
(b) points zn → z0;
(c) functions fn ∈ ζ, and
(d) positive number ρn → ∞ such that ρ−α

n fn(zn + ρnξ) = gn(ξ) → g(ξ)
locally uniformly, where g is a nonconstant entire function on C with order
at most 1, all of whose zeros have multiplicity at least k, such that g♯(ξ) ≤
g♯(0) = kA+ 1.
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4 J.F. XU AND F. LÜ

Here, as usual,

g♯(ξ) =
|g′(ξ)|

1 + |g(ξ)|2
is the spherical derivative.

Lemma 2.2. [3, 13] Let f be an entire (resp. meromorphic) function, and
let M be a positive number. If f ♯(z) ≤M for any z ∈ C, then f is of order
at most 1 (resp. 2).

It is well known that it is very important of the Wiman-Valiron theory[5,
6] to investigate the property of the entire solutions of differential equations.
In 1999, Zong-Xuan Chen[2] has extented the Wiman-Valiron theory from
entire functions to meromorphic functions with infinitely many poles. Here
we show the following form given by Jun Wang and Wei-Ran Lü[19].

Lemma 2.3. Let f(z) = g(z)
d(z) be a meromorphic function with ρ(f) = ρ,

where g, d are entire functions satisfying one of the following conditions:
(i) g being transcendental and d being polynomial;
(ii) g, d all being transcendental and λ(d) = ρ(d) = β < ρ(g) = ρ.
Then there exists one sequence {rk}(rk →∞) such that

f (n)(z)

f(z)
= (

ν(rk, g)

z
)n(1 + o(1)), n ∈ N

holds for enough large rk as |z| = rk and |g(z)| = M(rk, g), where ν(rk, g)
denotes the central index of g.

Lemma 2.4. [14] Let f be an entire function of order at most 1 and k be a
positive integer, then

m(r,
f (k)

f
) = o(log r), as r →∞.

Lemma 2.5. [21] Let f be a nonconstant meromorphic function, and aj
(j = 1, · · · q) be q (≥ 3) distinct constant (one of them may be ∞), then

(q − 2)T (r, f) ≤
q∑

j=1

N(r,
1

f − aj
) + S(r, f),

where

S(r, f) = m(r,
f ′

f
) +m(r,

q∑
j=1

f ′

f − aj
) +O(1).

Combining Lemmas 2.4 and 2.5, we have the following special case of the
Nevanlinna’s second fundamental theorem.

Lemma 2.6. Let f be a nonconstant entire function of order at most 1, and
aj (j = 1, · · · q) be q (≥ 3) distinct constants (one of them may be ∞), then

(q − 2)T (r, f) ≤
q∑

j=1

N(r,
1

f − aj
) + o(log r).
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3. Proof of Theorem 1.1

Firstly, we will prove that the meromorphic (resp. entire) function f is
of order at most 2 (resp. 1).

Suppose that the spherical derivative of f is bounded. Then by Lemma
2.2, we have meromorphic (resp. entire) function f is of order at most 2
(resp. 1). Now, we assume that the spherical derivative of f is unbounded.
Then there exist a sequence {wn} such that wn → ∞, f ♯(wn) → +∞ as
n→∞.

Define D = {z : |z| < 1} and

Fn(z) = f(wn + z).

Since f only has finitely many poles, we can assume that all Fn(z) are an-

alytic in D. Furthermore, F ♯
n(0) = f ♯(wn)→∞ as n→∞. It follows from

Marty’s criterion that (Fn)n is not normal at z = 0.

Obviously, for each n, Fn has zeros with multiplicities at least k, Fn and

F
(k)
n share S CM. Thus, from Theorem A, we derive that (Fn)n is normal

at z = 0, a contradiction.

Thus, we prove that the meromorphic (resp. entire) function f is of order
at most 2 (resp. 1).

Since f and f (k) share S CM and f has finitely many poles, we have

(3.1)
(f (k) − a)(f (k) − b)

(f − a)(f − b)
=
eQ

P
,

where P, Q are two polynomials. Rewrite (3.1) as follows.

(3.2) Q = logP
(f

(k)

f −
a
f )(

f (k)

f −
b
f )

(1− a
f )(1−

b
f )

,

where log h is the principle branch of Log h.

If f(z) = g(z)
d(z) is a transcendental meromorphic function, where g(z) is a

transcendental entire function and d(z) is a polynomial. Then by Lemma
2.3, we get

(3.3)
f (k)(z)

f(z)
= (

ν(rk, g)

z
)k(1 + o(1)),

holds for enough large rk as |z| = rk and |g(z)| = M(rk, g). Note that f is
transcendental, we have a

f |zr → 0 and b
f |zr → 0 as r → ∞. It follows from
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the fact g is of finite order that log ν(r, g) = O(log r). Then, we deduce that

|Q(z)| = | logP
(f

(k)

f −
a
f )(

f (k)

f −
b
f )

(1− a
f )(1−

b
f )

|zr = O(log r),

for enough large rk as |z| = rk and |g(z)| =M(rk, g). It implies that Q is a
constant.

If f(z) is a rational function, then by (3.1) we know that Q must be a
constant.

Without loss of generality, we rewrite (3.1) as

1

P
=

(f (k) − a)(f (k) − b)
(f − a)(f − b)

.

Next, we will prove that P is also a constant. On the contrary, suppose that
P is not a constant. We know any zero of P comes from the pole of f , so
d = degP ≥ 2k.

From the above equation, we get

1 = P
(f

(k)

f −
a
f )(

f (k)

f −
b
f )

(1− a
f )(1−

b
f )

.

In a similar way as the above, we get

1 = |P (zr)(
ν(r, g)

zr
)2k(1 + o(1))| = |ν(r, g)2|zr|d−2k| = ν(r, g)2rd−2k,

possibly outside a finite logarithmic measure set E, where |g(zr)| =M(r, g)
and |z| = rk. Since d = degP ≥ 2k, it implies that ν(r, g) is bound, a
contradiction. Hence, P is also a constant.

Thus, we prove that

A =
(f (k) − a)(f (k) − b)

(f − a)(f − b)
,

where A is a nonzero constant. From the above equation, we see that f is
an entire function, so the order of f is at most 1.

Set F = f − a+b
2 and G = f (k) − a+b

2 . Then
G2− (a−b)2

4

F 2− (a−b)2

4

= A. Set h1 =

G−
√
AF and h2 = G+

√
AF , then we have

h1h2 =
(a− b)2

4
(1−A).

We consider two cases.

Case 1. A ̸= 1.
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Obviously, h1, h2 has no zeros and poles. Then we set h1(z) = A1e
Bz and

h2(z) = A2e
−Bz, where A1, A2, B are constants. Furthermore, we have

f(z) =
a+ b

2
+

1

2
√
A
(−A1e

Bz +A2e
−Bz),

f (k)(z) =
a+ b

2
+

1

2
(A1e

Bz +A2e
−Bz),

f ′(z) =
B

2
√
A
(−A1e

Bz −A2e
−Bz).

The above part is based on the idea in [7]. Now, we consider two subcases
again.

Case 1.1. A1A2 ̸= 0.

It follows from the form of f that f has infinitely many zeros. Noting
that the zeros of f has multiplicities at least k, we have f (s) (s = 0, · · · k−2)
has multiple zeros. Clearly, f ′ just has simple zeros. Then, k − 2 ≤ 0, so k
must equal to 2. By differentiating f ′ one time, we have

f ′′(z) =
B2

2
√
A
(−A1e

Bz +A2e
−Bz).

Comparing it to the above form of f (k), we have

a+ b

2
+

1

2
(A1e

Bz +A2e
−Bz) =

B2

2
√
A
(−A1e

Bz +A2e
−Bz),

which means that either A1 or A2 is zero, a contradiction.

Case 1.2. A1A2 = 0.

Without loss of generality, we assume that A2 = 0. Then we have

f(z) =
a+ b

2
− 1

2
√
A
A1e

Bz.

From the form of f , it is easy to see that if f has zeros, then f just has
simple zeros. It contradicts with the fact f has zeros of multiplicities at
least k. So, f has no zeros and a+ b = 0. Thus, we can set

f(z) = CeDz,

where C, D are two constants. By differentiating f k-times, we have
f (k)(z) = CDkeDz. From f and f (k) share S CM, we have Dk = ±1.

If Dk = 1, then f = f (k), and f and f (k) share a, b CM.
If Dk = −1, then f = −f (k), and b = −a.

Case 2. A = 1.
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Then it is easy to see that f = f (k) or f (k) + f = a+ b.
Suppose that f = f (k). Noting that f equals to f (k), so they share 0 CM.

Moreover, from the fact that all the zeros of f has multiplicities at least k,
we derive f has no zeros. Then, by the same way in Case 1.2, we get the
same results.

Finally, by the similar way in [12], we will discuss the case of f (k) + f =
a+ b.

Solving the differential equation, we have

(3.4) f(z) =

k−1∑
j=0

Cj exp
λjz +a+ b,

where λj = exp
2jπ+π

k
i and Cj are constants. Since f is a non-constant, then

there exist Cj ∈ {C0, C1, · · · , Ck−1} such that Cj ̸= 0. Denote the non-zero
constants in {Cj} by Cjm 0 ≤ jm ≤ k − 1 and m = 0, 1, · · · , s, s ≤ k − 1.
Thus, rewrite (3.4) as

(3.5) f(z) =

s∑
m=0

Cjm expλjmz +a+ b.

Differentiating (3.5) t-times yields

(3.6) f (t)(z) =

s∑
m=0

Cjmλ
t
jm expλjmz, (t = 1, 2 · · · , k − 1).

Suppose that f has finitely many zeros, then we can set f(z) = P1(z)e
λz,

where P1 is a polynomial. By differentiating it k times, we have

f (k)(z) = [λkP1 + λk−1P ′
1 +H(P ′′

1 , P
′′′
1 , · · · , P

(k)
1 )]eλz,

whereH(P ′′
1 , P

′′′
1 , · · · , P

(k)
1 ) is the linear combination of P ′′

1 , P
′′′
1 , · · · , P

(k)
1 .

Substituting the above forms of f and f (k) into f + f (k) = a+ b, we derive
that

P1 + λkP1 + λk−1P ′
1 +H(P ′′

1 , P
′′′
1 , · · · , P

(k)
1 ) = 0,

which implies that λk = −1 and P ′
1 = 0. Thus, P1 is a constant and f has

no zeros. By the same way in Subcase 1.2, we derive the desired results.

Thus, in what follows, we assume that f has infinitely many zeros, say
zn = rne

θn , where 0 ≤ θn < 2π. Without loss of generality, we may assume
that θn → θ0 and rn →∞ as n→∞. Substituting zn into (3.5) and (3.6),
we have

(3.7) f(zn) =

s∑
m=0

Cjm expλjmzn = −(a+ b)
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and

(3.8) f (t)(zn) =

s∑
m=0

Cjm(λjm)
t expλjmzn = 0, (t = 1, 2 · · · , k − 1).

We consider two cases again.

Subcase 2.1. s = k − 1.

From (3.7) and (3.8), we have
a+ b
0
...
0

 =


Cj0 Cj1 · · · Cjk−1

Cj0λj0 Cj1λj1 · · · Cjk−1λjk−1

...

Cj0(λj0)
k−1 Cj1(λj1)

k−1 · · · Cjk−1(λjk−1)
k−1




expλj0
zn

expλj1
zn

...

exp
λjk−1

zn

 .

We know

det


Cj0 Cj1 · · · Cjk−1

Cj0λj0 Cj1λj1 · · · Cjk−1λjk−1

...

Cj0(λj0)
k−1 Cj1(λj1)

k−1 · · · Cjk−1(λjk−1)
k−1



= Cj0Cj1 · · ·Cjk−1det


1 1 · · · 1
λj0 λj1 · · · λjk−1

...

(λj0)
k−1 (λj1)

k−1 · · · (λjk−1)
k−1


= Cj0Cj1 · · ·Cjk−1

∏
0≤q<p≤k−1

(λjp − λjq ).

It’s is a Vandermonde determinant.
Noting that λjp ̸= λjq (0 ≤ q < p ≤ k − 1), we obtain that the system of

linear equations of expλj0
zn , expλj1

zn , · · · , expλjk−1
zn has a unique solution.

A routine calculation leads to the solution that

(3.9) expλjpzn = Dp, (0 ≤ p ≤ k − 1).

where Dp is a constant and is of independent with zn.

If a+ b = 0, we see that Dp = 0, a contradiction. Then, we assume that
a+ b ̸= 0.

Thus, as n→∞, by (3.9) we can deduce that

(3.10) cos(θ0 +
2jpπ + π

k
) = 0, (0 ≤ p ≤ k − 1).

Otherwise, we have cos(θ0 +
2jpπ+π

k ) > 0 or cos(θ0 +
2jpπ+π

k ) < 0.

If cos(θ0+
2jpπ+π

k ) > 0, then we can assume (for n large enough) cos(θn+
2jpπ+π

k ) > δ, here δ is a small positive number. Thus, as n → ∞, by (3.9)
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we have

|Dp| = exprn cos(θn+
2jpπ+π

k
) →∞,

a contradiction.

If cos(θ0+
2jpπ+π

k ) < 0, then we can assume (for n large enough) cos(θn+
2jpπ+π

k ) < −δ, here δ is a small positive number. Thus, as n→∞, by (3.9)
we have

|Dp| = exprn cos(θn+
2jpπ+π

k
) → 0,

a contradiction.
Observing that 0 ≤ jp, jq ≤ k − 1, by (3.10), we deduce

(3.11) |2jpπ + π

k
− 2jqπ + π

k
| = π, (0 ≤ p ̸= q ≤ k − 1).

Let jp = 0 and jq = k − 1. Substitute them into (3.11), we have

2(k − 1) = k,

that is k = 2. Thus, k must be 2.

Now we discuss the equation f + f
′′
= a+ b. From the above discussion,

we can obtain λ0 = i, λ1 = −i. Then, we have

f(z) = A1e
iz +A2e

−iz + a+ b.

Noting that f has zeros of multiplicity at leat 2, Then

(a+ b)2 = 4A1A2.

Then, we finish the proof of this subcase.

Subcase 2.2. s < k − 1.

Then, by (3.8), we can choose t = 1, 2, · · · , s + 1. Then they form a
system of linearly equation of expλj0

zn , expλj1
zn , · · · , expλjszn . By solving

it, we have

(3.12) expλjpzn = 0,

a contradiction.

Hence, we complete the proof of this theorem.

4. Proof of Theorem 1.2

If Theorem A is replaced by Theorem C, by the same way to the proof of
Theorem 1.1, we can also obtain the

A =
(f ′ − a)(f ′ − b)
(f − a)(f − b)

,

where A is a nonzero constant. From the above equation, we see that f is
an entire function. Hence we can get the conclusion by Theorem D.
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Compact adaptive aggregation multigrid method
for Markov chains

Ying Chen∗, Ting-Zhu Huang†, Chun Wen
School of Mathematical Sciences,
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Abstract

A new adaptive aggregation-based multigrid scheme is presented for the calcu-
lation of the stationary probability vector of an irreducible Markov chain. By ex-
ploiting the experimental observation that components of vectors converge nonuni-
formly, we develop a new algorithm to speed up the on-the-fly adaptive multigrid
method proposed by Treiter and Yavney [On-the-fly adaptive smoothed aggregation
multigrid for Markov chains, SIAM J. Sci. Comput., 33(2011): 2927-2949]. In our al-
gorithm, the converged components are collected and compacted into one aggregate
on the finest level, which is able to cut down the cost of coarsen operators construc-
tion and the total amount of work. In addition, we present a technique to delete the
possible weak-links introduced in the process of aggregation. Several types of test
cases are calculated, and experiment results show that the new adaptive method can
improve the on-the-fly algorithm in terms of total execution time.

Key words: Adaptive aggregation multigrid; on-the-fly adaptive method; Markov
chains; converged components

1 Introduction
This paper is concerned with a new adaptive multigrid method for the numerical calcula-
tion of the stationary probability vector of irreducible, large and sparse Markov matrices.
Let B ∈ Rn×n be a sparse column-stochastic matrix, which means 1T B = 1T , where 1 is
the column vector of all ones, and 0 ≤ bi j ≤ 1∀i, j. We seek a vector x ∈ Rn that satisfies

Bx = x, ∥ x ∥1 = 1, xi ≥ 0∀i. (1.1)
∗E-mail: chenying36@gmail.com
†Corresponding author. E-mail: tingzhuhuang@126.com
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Matrix B represents the transition matrix of a Markov chain and x is a stationary prob-
ability vector of this Markov chain. If B is irreducible, that is, there exists a path from
each vertex i to each vertex j in its directed graph, then according to the Perron-Frobenius
theorem for nonnegative matrices [1], the equation (1.1) has a unique solution x, with
xi > 0∀i. This problem (1.1) is equivalent to the singular linear system

Ax = 0, ∥ x ∥1 = 1, xi ≥ 0∀i. (1.2)

where A := I − B, by 1T B = 1T , we have 1T A = 0,which means the vector we seek, x, is
the only left null-vector of the matrix A.

Algebraic multigrid method (AMG) was developed and applied widely due to its
efficiency for solving large problems arising from partial differential equations and M-
matrices. Compared with geometric multigrid methods, AMG constructs the multigrid
hierarchy only using the information of the given matrix, which extends the application
of multigrid methods. However, it leads to the inefficiency and the lack of robustness,
because the operators of these multigrid methods are constructed based on the unsatisfied
assumptions made on the near null spaces of the matrices. To overcome this disadvantage,
several adaptive algebraic multigrid methods were developed in [4, 26, 5]. The basic idea
of these adaptive approaches was of improving multigrid methods by updating interpola-
tion and coarsen operators to fit the slow-to-converge components of the vector. The idea
was further developed in adaptive AMG [23] and adaptive SA [24, 25], where slow-to-
converge components were exposed through multiscale development instead of relaxation
on finest-level.

The Markov chains solver which was outlined in [13] was actually another form of
adaptive AMG, because they share the same concept of updating operator to get more
accurate approximation of the near null space of A. With the same idea, a multilevel
adaptive aggregation [7] was suggested with aggregates updated in each step of the it-
eration. Based on this algorithm, a collection of Markov chains solvers were proposed
recently: adaptive aggregation multigrid for Markov chains (AGG) [7], smoothed aggre-
gation multigrid (SA) [6], AMG for Markov chains (MCAMG) [8]. Several accelerated
methods were developed in [18, 10]. While all these adaptive approaches improved the
algorithms robustness and accuracy by adapting coarsen operators in every cycle, they
also suffered from considerable computation time for calculating the coarsen matrix [27].
The on-the-fly adaptive multigrid hierarchy for Markov chains which was developed in
[19] significantly cut the cost of constructing the coarse-level operators. Here, the classi-
cal solution cycles are preferred over the adaptive cycles, under the assumption that the
former is comparatively cheaper but it needs the operators provided by the latter.

The algorithm presented in this paper is inspired by the following experimental ob-
servation: when applying aggregation multigrid V-cycle to obtain approximation of sta-
tionary probability vector, the elements of the stationary probability vector do not con-
verge uniformly. Based on this observation, we propose a compressed on-the-fly adaptive
scheme to save the cost on constructing coarsen operators. The main idea is to compact
the converged components into a single aggregate and rescale the coarsen operators . Also

2
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we develop a new technique that deletes weak-links introduced by the above procedure.
As the improvement of the on-the-fly adaptive aggregation method, the new algorithm
adopts the same adaptive hierarchy as on-the-fly method does. It differs, however, in that
the on-the-fly method uses operators supplied by SET cycles without any amendment,
whereas in new algorithm, the coarsen operators are rescaled to smaller size to fit the not-
converged-yet components. It is shown numerically that the new algorithm can reduce
the total execution time of the on-the-fly adaptive multigrid method. New algorithm can
also be applied to various adaptive multigrid Markov solvers. In this paper we apply it to
the aggregation-based algebraic multigrid solver (AGG), with unsmoothed interpolation
and prolongation operators.

In the next section, we give a brief description of multilevel aggregation multigrid
method for Markov problems. Then we recall the on-the-fly adaptive framework in Sec-
tion 3, which the new algorithm is based on. In Section 4, we outline the experimental
observation as the stage for the introduction of new algorithm, and we compare the pro-
posed algorithm with compatible relaxation method as well. Numerical tests are presented
in Section 5.

2 Classical aggregation multigrid for Markov chains
In this section, we briefly recall the aggregation-based multigrid methods for Markov
chains from [13, 7, 6]. The interpolation operators of aggregation multigrid are often
smoothed to overcome the instinct difficulties produced by aggregation [6, 14]. In our
work, we stay with the unsmoothed coarsen operators.

First, we define the multiplicative error ei by x = diag(xi)ei, where xi is the current
approximate at ith iterate. Thus we have

Adiag(xi)ei = 0. (2.1)

It is necessary to assume that all components of xi are nonzero. At convergence, xi = x
and the fine-level error ei = 1, where 1 is the column vector with all ones.

Note that the aggregation technique used in this paper is the same as that used in [7],
which is based on strength of connection in the scaled matrix Ã = Adiag(xi), the benefit
of using the scaled matrix Ã instead of original matrix A is that the former gives more
appropriate notion of weak and strong links than the latter, more details are in [7]. We
consider node i is strongly connected to node j if

−ãi j ≥ θmax
k,i
{−ãik}. (2.2)

where θ ∈ [0, 1] is a strength threshold parameter, we choose θ = 0.8. Aggregates based
on the strength of connection are then constructed by the following procedure: choose
point i with the largest value in current proximation xi from the unassigned points as the
seed point of a new aggregate, then add all unassigned points j satisfies (4) to the new

3
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aggregates. Repeat this procedure until all points are assigned to aggregates. Assuming
that the n fine-level points are aggregated into m groups, then the aggregation matrix
Q ∈ Rn×m are formed, where qi j = 1 indicates that fine-level point i belongs to aggregate
j and qi j = 0 the opposite[6]. Then the coarse version of (3) is given by

QT Adiag(xi)Qec = 0, (2.3)

where ec is the coarse-level approximation of the fine-level error ei, with ei ≈ Qec.
The restriction and prolongation operators, R and P are defined as follows:

R = QT , P = diag(xi)Q. (2.4)

Then (5) can be rewrited as
RAPec = 0. (2.5)

Same as the definition of fine-level multiplicative error xi, the coarse-level error xc is given
by

xc = diag(Rxi)ec. (2.6)

Notice that PT 1 = Rxi,thus (3) can be rewrited as

RAPdiag(PT 1)−1xc = 0. (2.7)

Then the coarse-level error equation (5) is equivalent to coarse-level probability equation
Acxc = 0, with coarsen matrix Ac defined by

Ac = RAPdiag(PT 1)−1. (2.8)

When the coarsen solution xc is obtained, the next iterate, xi+1 can be calculated according
to the coarse-level correction

xi+1 = Pec = Pdiag(PT 1)−1xc. (2.9)

In this paper we use weighted Jacobi method for all relaxation procedure, at each coarser
level we perform v1 pre-relaxation and v2 post-relaxations. One iteration of weighted
Jacobi relaxation applied to problem Ax = b is given by

x← x + ωD−1(b − Ax). (2.10)

where D is the diagonal part of A, its relaxation parameter ω = 0.7. On coarsest level we
perform direct solver described in [8]. The procedure above is described in Algorithm 1,
which is originally presented in [13]. The multilevel aggregation method is obtained by
recursively applying Algorithm 1 to step 5.

4
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Algorithm 1: Two-level aggregation for Markov chains x← AGG(A,x,µ,v1,v2)
Input:Initial vector: x ∈ Rn, operator: A ∈ Rn×n, cycle index: µ,

number of pre-relaxations: v1, number of post-relaxations: v2.
Output: New approximation to the solution of Ax = 0.
Algorithm:
if not at coarsest level
1. x← Relax(A,x,0) v1 times
2. Build Q based on A and x
3. Set R← QT , P← diag(xi)Q
4. Set xc ← Rx, and repeat µ ≥ 1 times:

xc ← AGG(RAPdiag(PT 1)−1, xc, µ, v1, v2)
5. Coarse-grid correction: x← Pdiag(PT 1)−1xc

6. x← Relax(A,x,0) v2 times
else
7. Direct solve of Ax = 0
end

3 On-the-fly aggregation multigrid for Markov chains
In this section, we briefly describe the on-the-fly multigrid method developed recently in
[19]. The main idea of this method is reducing the cost of expensive SET cycle such as
Algorithm 1, which updating the whole multigrid hierarchy of operators in every cycle,
by using classical algebraic multigrid cycles (Algorithm 2) instead, as the two algorithms
are actually equivalent. In the approach, SET cycle provide classical cycle with improved
operators, while classical cycle use them without adaptation and then offer SET cycle with
better approximation of vector. It is obvious that the classical cycle with frozen operators
are much more cheaper than the SET cycle, the advantage of this scheme is, by combin-
ing the two algorithms neatly, it speeds up the multigrid methods without sacrificing the
convergence rate.

Classical algebraic multigrid method for linear systems are generally based on the
following basic idea. Given the linear system

Ax = b, (3.1)

where A ∈ Rn×n is a positive definite matrix. Traditional one-level iterative method for
calculating x, such as Power method or weighted Jocobi relaxation, converge very slowly
due to only a relatively small number of components in the error, known as algebraically
smooth, that approximately satisfy Ae = 0. To eliminate the algebraic smoothed errors,
classical multigrid methods solve this problem on a coarse level with smaller size, referred
to as coarse-grid correction process. It is noted that on the coarse grid, the smooth error
appears to be relatively higher in frequency, which means relaxations are more effective

5
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on coarser grid [3]. Algorithm 2 gives a typical two-level classical multigid cycle [5], a
multilevel V-cycle is obtained by recursively applying the algorithm in step 4.

Algorithm 2: Two-level additive cycle
Input:Initial vector: x ∈ Rn, Right-hand-side vector: b ∈ Rn,

operator: A ∈ Rn×n, P ∈ Rn×nc ,R ∈ Rnc×n,Ac ∈ Rnc×nc .
Output: New approximation to the solution of Ax = b.
Algorithm:
1. Apply pre-relaxations: x← Relax(A,x,b)
2. Define the residual: r← b − Ax
3. Restrict the residual: rc ← Rr
4. Define ec as the solution of the coarse-grid problem: Acec = rc

5. Prolong ec and apply coarse-grid correction: x← x + Pec

6. Apply post-relaxations: x← Relax(A,x,b)
The difference between Algorithm 1 and Algorithm 2 is that, on the coarse-grid, the

correction scheme of two-level additive cycle approximates the error e rather than the ex-
act solution x. Moreover, the classical algorithm requires the whole hierarchy of coarsen
operators in advance, while the setup schemes calculate them in every cycle. In spite of
that, Algorithm 2 can be written as the form of Algorithm 1 equivalently. For the problem
(2) in which b = 0, the residual r in step 2 and rc in step 3 of algorithm 2 are given as
r = −Ax and rc = −RAx, the coarse-grid problem then is given by

Acec = RAPec = −RAx, (3.2)

then we obtain
RA(Pec + x) = 0. (3.3)

Since the approximation x is in the range of P, there exists a vector xc satisfies x = Pxc.
Then the equation above can be rewritten as RAP(ec + xc) = 0. Note that the xc we
mentioned above is not necessary the same as xc in Step 5 in Algorithm 1. We define
zc = ec + xc, thus Aczc = 0, which is equivalent to the coarse-grid problem in SET cycle
of Algorithm 1.

In the on-the-fly approach, an initial SET cycle is performed, followed by a SOL
cycle which freezes the operators the SET cycle provided. If the convergence speed of
SOL cycle is acceptable, another SOL cycle is performed. Conversely, a SET cycle is
performed to yield more accurate operators. This procedure is described as follows.

Procedure: try-SOL-else-SET(γ)
1. Try a solution cycle: y = Vsol(x)
2. If q(y) > q(x) do x← Vset(x) and return
3. If q(y) > γq(x) then x = y, else x← Vset(y)

In above procedure, Vsol represents a SOL cycle (Algorithm 2), Vset represents a SET
cycle (Algorithm 1) and γ ∈ [0, 1] is the scalar threshold for acceptable convergence speed
of the SOL cycles. We use

q(x) =
∥ Ax ∥1
∥ x ∥1

, (3.4)

6
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which means the convergence factor is measured by the l1 residual norm. The criteria
q(y) > q(x) indicates that the SOL cycle increases the error and should be abandoned.
The criteria q(y) > γq(x) indicates that if the convergence factor of SOL cycle is better
than the scalar threshold, then accept it, otherwise, perform a SET cycle instead. The
on-the-fly adaptive algorithm is described as in Algorithm 3.

Algorithm 3: On-the-fly adaptive multigrid method
Input:Initial tolerance: εα, convergence parameter: γ, operator: A ∈ Rn×n,

initial guess x0.
Output: New approximation to the solution of Ax = 0.
Algorithm:
1. Initial Setup:

Apply a few relaxations to smooth x0

Do an initial Setup cycle: x← Vset(x0)
if ∥ Ax0 ∥1 < εα, goto Step 4

2. Improve Solution Cycle:
while ∥ Ax0 ∥1 > εα do try-SOL-else-SET(γ)

3. Finalize Setup cycle:
x← Vset(x)

4. Solution:
Apply x← Vsol(x) until convergence

4 Compact adaptive aggregation multigrid
In this section, we show how compacting the converged points into an aggregate, coupled
with deleting the weak-links between them, can lead to better performance of on-the-fly
method for Markov chains.

4.1 Experimental observation
We define a point has already converged as in [15]:

|x(ν+1)
i − x(ν)

i |/|x
(ν)
i | < τp, (4.1)

where xi denotes the ith element of the vector, x(ν)
i denotes ith element at νth iterate, and

τp is the convergence parameter. In [15], it is noted that the convergence patterns of the
stationary probability vector of web matrix in the power method have a nonuniform dis-
tribution. Additional theoretical analysis in [17] has confirmed this conclusion recently.
During the application of AGG on Markov problems, we have seen the similar conver-
gence behavior that some points converge quickly while some others need more iterations
before convergence. It is shown in Figure 1 that the number of the converged points
increased gradually as iteration number increased.

To exploit this observation, the method outlined in [15] is that the converged com-
ponents won’t be recomputed so that computation cost can be reduced. The basic idea

7
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(b) Uniform 2D lattice with n=4096

Fig. 1: (a) Tandem queueing network with n=1600, (b) Uniform 2D lattice with n=4096,
where x-axis represents iterations and y-axis represents the proportion of the points that
satisfy the equation (4.1).

developed there has three steps: splitting the vector into converged and not-yet-converged
components, setting the submatrix AN ∈ Rm×n which corresponds to the not-yet-converged
components as target matrix, and then applying the power method until convergence with-
out recomputing converged components. More details can be seen in [15]. However, as
AN is not a n × n matrix, many algorithms including AMG can not be applied to this
method. For this reason, with the similar principle but different procedures, we propose a
new algorithm in this paper.

4.2 Compact adaptive aggregation multigrid
The main idea of our algorithm is reducing the computational cost by reducing the size
of the coarse levels as well as the time spent on the coarse matrix construction. The new
algorithm follows the same framework as the on-the-fly adaptive multigrid method does.

Consider that we have executed a setup cycle, then an approximation x and the aggre-
gation matrix Q are constructed in this cycle. Perform the try-SOL-else-SET procedure
until the number of converged points meets m > ζn, where m is the number of the con-
verged points, n is the size of the problem, ζ ∈ (0, 1) is the threshold parameter. The
reason why we set this standard will be addressed in the following paragraphs. Let C as
set of the converged points whose elements are positive integers between 1 and n, and N
as set of the points have not converged yet.

Partitioning the finest-level matrix as

Â =
(
ANN ANC

ACN ACC

)
. (4.2)

8
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Similarly, the current approximation x and its multiplicative error, ê are reordered as

x̂ =
(
xN

xC

)
, (4.3)

ê =
(
eN

eC

)
, (4.4)

respectively. To reduce the time cost of coarse matrix construction, on-the-fly method
proposed that the SOL cycle use the aggregation matrix Q which is offered by SET cycle
without any modification [19]. Whereas in our method, we modify the aggregation matrix
Q before we perform a SOL cycle. As to modifications, we keep the non-converged points
in their aggregates and collect the converged points into a new aggregate. Then a further
standard solution cycle is performed with amended operators and smaller scales.

The motivation is that we try to speed up the multigrid solvers by cutting down the
cost on coarsen operators construction as well as reducing the size of coarse operators.

Now we show how to construct the new aggregation matrix Q̂ by modifying the ag-
gregation matrix Q from the setup cycle. We first delete the rows of Q which belongs to
C, then check for those columns with all zero elements and delete them, finally, construct
Q̂ as given in Algorithm 3, where the length of 1 equals to that of C. The procedure is
simple and inexpensive:

Procedure: Construct compact aggregation matrix Q̂
1. Delete Q(i, :), i ∈ C
2. Delete Q(:, j) if Q(:, j) = 0

3. Q̂←
(
Q 0
0 1

)
, where 1 is the column vector of all ones, with length equals that of C

Now we constructed coarse operators based on aggregation matrix Q̂. As the same
definition in the classical AMG, the restriction and prolongation operators, R and P, are
given by

R̂ = Q̂T , (4.5)

P̂ = diag(x̂C)Q̂, (4.6)

respectively. The coarse-level operator Âc is given by

Âc = R̂ÂP̂. (4.7)

Thus we obtain the complete hierarchy of multigrid operators the SOL cycle required,
then we perform a standard SOL cycle as the final step to finish the new solution cycle, as
described in Algorithm 4.

9
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Algorithm 4: Compact Solution Cycle(C-SOL)
Input:Approximate vector: x ∈ Rn, operator: A ∈ Rn×n, the converged points set C.

aggregation matrix Q ∈ Rnc×n

Output: New approximation to the solution of Ax = 0.
Initial setup:

1. Set Â←
(
ANN ANC

ACN ACC

)
, x̂←

(
xN

xC

)
2. Construct compactive aggregation matrix Q̂ based on Q and C.
3. Set R̂ = Q̂T , P̂ = diag(x̂C)Q̂, Set Âc = R̂ÂP̂
Apply solution cycle:
4. Do a standard solution cycle described in Algorithm 2

In new method we prefer C-SOL cycle over SOL cycle if the former’s error reduction
is acceptable. The underlying assumption is that C-SOL cycles are considerably cheaper
with satisfied convergence rate. However, if the ratio of m above n is too small or too big,
this assumption will be ruined.

On the one hand, for most of test cases, when we put a small number (m < 0.1n)
of the converged points into an aggregate, the C-SOL cycle is more expensive than the
SOL cycle. This is because the cost on SET process in Algorithm 4 cannot be balanced
out by the time saved by cutting scales of coarse-levels. On the other hand, if a large
number of the converged points are compacted into an aggregate, it may lead to quite
inaccurate operators in coarse-levels. Numerical experiments confirm that the resulting
algorithm performs worse than the original on-the-fly method or leads to divergence for
most problems. For the above reasons, we introduce the restriction for the number of
converged points m: if m < ζn we perform the procedure try-SOL-else-SET(γ), elsewhere
we perform try-CSOL-else-SET(γ) instead.

Similar with on-the-fly method, the goal of our method is to fall off the time cost on
reaching the accuracy ∥ Ax0 ∥1 < εα. Whereas the most distinguished difference of the
new algorithm from on-the-fly adaptive multigrid is in Step 2. At Step 2 in new algorithm
we initially perform the procedure try-SOL-else-SET until the number of the converged
points meets the compactive condition m ≥ ζn. With the converged points set C supplied
by the process above and the aggregation matrix Q provided by SET cycle, we construct
the C-SOL cycle, then we repeat the procedure try-CSOL-else-SET with the until the
residual norm of the approximation reduced to εα. It is noted that in C-SOL cycle we
frozen the coarsen operators as well as the converged points. The algorithm is described
in Algorithm 5.

10
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Algorithm 5: Compactive On-the-fly adaptive multigrid method
Input:Initial tolerance: εα, convergence criterion: τp,convergence factor: γ,

size control parameter: ζ, operator: A ∈ Rn×n,initial guess x0,
Output: New approximation to the solution of Ax = 0.
Algorithm:
1. Initial Setup:

Apply a few relaxations to smooth x0

Do an initial Setup cycle: x← Vset(x0)
if ∥ Ax0 ∥1 < εα goto Step 5

2. Improve Solution Cycle:
[N,C]← Detect-converged-points(x(1), x(0), τp)
While ∥ Ax0 ∥1 > εα do

While m < ζn do
try-SOL-else-SET(γ)
[N,C]← Detect-converged-points(x(v+1), x(v), τp)

end
try-CSOL-else-SOL(γ)

end
4. Finalize Setup cycle:

x← Vset(x)
5. Solution:

Apply x← Vsol(x) until convergence
As mentioned above, compacting the converged points into an aggregate may lead to

a single aggregate with a large number of points that are not strongly connected to each
other. As is shown in [6], the aggregate of points that are weakly connected may result in
very poor convergence of the multilevel method. The reason is that if the link between two
points is weak compared to the other links in the same aggregate, the differences in the
error of these two points can neither be eliminated efficiently by relaxation, nor smoothed
out by coarse-level correction. Thus, although we have made the restriction for the size
of the aggregate, it may still induce unsatisfied convergence.

Our next work is trying to define and delete the weak links in the aggregation of
converged points to avoid the poor convergency.

4.3 Compactive on-the-fly method with correction
We illustrate with a simple example. In C-SOL cycles, the converged points are com-
pacted into a single aggregation. Figure 2 is an example of such an aggregation. Links
between the converged points and not-converged-yet points are not presented in this fig-
ure. We assume that the converged points set as C=[4,5,9,10,14,17,18,38].

To capture the weak links in this aggregate, we need to determine what is meant by
weak links. In the classical AMG, the strong connection is defined by formula (2.2),
which indicates that if the size of the transition probability from i to j timed with the

11
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Figure 2: Single aggregate of converged points with fine-level transitions. The converged points
are indicated by numbers in cycles, and the transitions are indicated by arrows with strength
based on the scaled matrix ACCdiag(xC). Connections between the converged points and those
have not converged yet are not presented in this figure.

probability of residing in i is comparative large, then it is a strong link. Rather than the
connection strength between two points, our attention is turned to the overall connec-
tion strength between a point and the rest points in the same aggregate, which is used to
measure the importance of a point in its aggregate.

We define the connection strength of point i based on scaled matrix ACCdiag(xC) with
elements ãil by

S i = −
∑
l,i

(ãil + ãli). (4.8)

This definition has an simple intuitive interpretation that the overall connection strength
of a point is measured not only by the probability from other points to it but also by the
probability from it to others. If a point’s overall connection strength is comparative small,
it cannot contribute efficiently to the elimination of errors but may lead to poor conver-
gence. In the view of the above, we define a point is weakly connected to the others
if

S i ≤ δS̄ i, (4.9)

where S̄ i is the mean value of all S i (i ∈ C), and δ is a fixed threshold parameter, whose
function is as the same as θ in (2.2). Choosing δ > 1 may set down all points as ”not
important” points especially when the number of points strong connected to the others
is large. Meanwhile, it should not be taken much smaller than 1 because this may leave
weak-links staying in the aggregate. The numerical results indicate that choosing δ < 1
but close to 1 results in the best convergence properties for the new method. In generally
we take δ = 0.8.

It is easy to calculate and conclude that the points 14,17,18,38 in figure 1 are weakly
connected to the other points in the aggregate, thus we have the new C̄ = [4, 5, 9, 10] to
replace the original C.

12
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5 Numerical results and discussion
In this section, we demonstrate the performance of the new algorithm for several test prob-
lems. The algorithm is applied to the two-level classical aggregation multigrid method,
without smoothing operators. We compare the results of original on-the-fly adaptive ag-
gregation multigrid algorithms (OTF) and the compactive on-the-fly adaptive aggregation
multigrid algorithms (C-OTF). We start with an initial guess of unit vector with its ele-
ments all equal to 1/n, in which n is the length of the vector. All setup cycles employ
(4,1) cycles, with four prerelaxations and one postrelaxation on each level, while all com-
pactive solution cycles and original solution cycles use (2,1) cycles. We use the stopping
criteria

stop if v > maxit or
∥ Axv ∥1
∥ xv ∥1

< τ∥ Ax0 ∥1. (5.1)

proposed in [9],where maxit is the upper limit of the number of iterations the algorithm
will be allowed to perform, v is the current vth iteration. Here we use maxit = 200
and τ = 10−8. We also say the problem has reached global convergence if this criterion
has met. Several threshold value τp are tested in the experiments. Through extensive
simulations, we found that τp = 10−3 achieved the best performance among any others
for most of test cases. For OTF algorithm we use scalar threshold γ = 0.8 and εα = 10−5,
while for C-OTF algorithm we use γ = 0.8 and various choices of εα are presented in the
following table. As to the AGG part in algorithms we use the aggregation strategy based
on scaled matrix proposed in [7], with the strength threshold parameter θ = 0.25.

In the following tables, we show the operator complexity COP and the work units WU
which is defined as the cost of a single Vsol(2, 1) [19]. WU is calculated as follows: for
each problem and its size, averaging the execution time of a Vsol(2, 1) by calculating the
mean value of last five solution cycles in step 4 in Algorithm 3, the work units are the total
execution time of the algorithm divided by this time. The motivation is that the execution
time of the algorithm is susceptible to MATLAB’s compilation time. Vset, Vsol, Vcsol are
the number of SET cycles, SOL cycles and C-SOL cycles, respectively. The experiments
were performed using MATLAB R2010a with an Intel core i3 CPU with 4 GB of RAM
memory.

5.1 Uniform chain
The first three test problems are generated by graphs with weighted edges[6, 20]. Their
transition probabilities are determined by weights of the edge: if node i transforms to j
with p weights and then its probability p ji is obtained by p divided by the sum of the
weights of all outgoing edges from node i. Our first test problem is the 1D uniform chain,
generated by linear graphs in which each of two connected points has one outgoing edge
with weight 1. The stencil of the matrix of uniform chain is given by

HUni f ormChain =
(

1
2 0 1

2

)
. (5.2)
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Table 5.1 shows the results for the uniform chain problem using OTF-AGG algorithm
(Algorithm 3) and C-OTF-AGG algorithm (Algorithm 5). When we set τp = 10−3 the new
algorithm achieves the much better performance compared with τp = 10−4 and τp = 10−2.

Various choices of weak-links parameter δ are tested and it does not make too much
difference when δ ≤ 0.9. We set δ = 0.8 and the size control parameter ζ = 0.45 for
this test case. The experiments show that the SET cycle is significantly more expensive
than the SOL cycle, while the C-SOL cycle is cheaper than SOL when the number of
converged points meets m > 0.1n. Comparing the C-OTF and the corrected C-OTF under
the same parameters, we observe a decrease in work units and the number of cycles. The
results also indicate that a sufficiently small εα enhance the opportunities of executing
C-SOL cycles, as is shown in the table 5.1, so that reduce the total execution time.

Table 5.1. Uniform chain results. tsol is the average timing of a single Vsol(2, 1) solution cycle, εα
is the threshold parameter for performing the on-the-fly procedure at step 3 in algorithm 5, τp is
the threshold parameter to explore the converged points in equation (12), COP is the operator
complexity, Vset,Vsol,Vcsol are the number of SET cycles, SOL cycles and C-SOL cycles,
respectively. WU is the work units defined as the cost of a single Vsol(2, 1) solution cycle. Iter is
the number of overall iterations.

n tsol Algorithm (εα,τp) Vset,Vsol,Vcsol COP WU Iter

961 0.05s

OTF (10−4, - ) 2,18,0 1.50 81 20
C-OTF (10−5,10−3) 2,16,4 1.22 80 > 20

C-OTF(-cor) (10−5,10−3) 2,15,3 1.27 80 20
C-OTF(-cor) (10−6,10−3) 2,12,6 1.05 73 20

4096 2.67s

OTF (10−4, - ) 2,18,0 1.50 45 20
C-OTF(10−8,10−3) 2,15,16 0.77 42 > 21

C-OTF(-cor) (10−8,10−3) 2,9,10 0.79 36 21
C-OTF(-cor) (10−10,10−3) 2,3,16 0.35 30 21

13225 339.25s

OTF (10−4, - ) 2,18,0 1.54 54 20
C-OTF (10−8,10−3) 2,18,11, 0.82 56 > 20

C-OTF(-cor) (10−8,10−3) 2,9,9 0.82 44 20
C-OTF(-cor) (10−10,10−3) 2,4,15 0.43 37 21

5.2 Uniform chain with two weak links
The next test problem is a chain with uniform weights, except for two weak links with
weight ϵ in the middle of the chain [6]. The stencil matrix is given by

HTwoWeakLinks =
(

1
2

1
1+ϵ 0 ϵ

1+ϵ
1
2

)
. (5.3)

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

114 Ying Chen et al 101-120



where ϵ = 10−3 same as in [6]. As the same as the first case, we set the weak-links
parameter δ = 0.8 and the size control parameter ζ = 0.45 here. The experiments show
that the convergence criterion parameter τp = 10−3 is the best choice for this case. Results
in Table 5.2 show again that the corrected C-OTF method is competitive compared with
OTF and C-OTF without corrections.

5.3 Uniform 2D lattice
The next test problem is a 2D lattice with uniform weights [6, 20]. The stencil matrix is
given by

HUni f orm2D =
1
4

 1
1 0 1

1

 . (5.4)

We set the weak-links parameter δ = 0.8 and the size control parameter ζ = 0.45 for this
test case. Table 5.3 shows numerical results for this problem.

For the small scale n = 4096 of this case, the choice of τp = 10−2 performs better than
τp = 10−3 because the components of the prototype vector converge comparative slowly.
In the larger case n = 13225, when we set τp = 10−3, the new algorithm fails to reduce the
work units of OTF, largely due to the poor convergency of C-SOL cycles. To be specific,
if the convergence rate of C-SOL cycle is unacceptable, we perform a SOL cycle instead.
This procedure costs more time than a single SOL cycle and thus results in the worse
performance than that of OTF.

Table 5.2. Uniform chain with two weak links results.

n tsol Algorithm (εα,τp) Vset,Vsol,Vcsol COP WU Iter

962 0.05

OTF (10−4, - ) 2,18,0 1.50 79 20
C-OTF (10−5,10−3) 2,17,2 1.40 80 21

C-OTF(-cor) (10−5,10−3) 2,17,2 1.41 80 21
C-OTF(-cor) (10−6,10−3) 2,13,5 1.26 78 21

4096 2.63s

OTF (10−4, - ) 2,20,0 1.50 47 22
C-OTF(10−8,10−4) 2,15,11 0.91 42 > 22

C-OTF(-cor) (10−8,10−3) 2,8,11 0.71 36 21
C-OTF(-cor) (10−10,10−3) 2,14,17 0.31 29 21

13224 426.50

OTF (10−4, - ) 2,19,0 1.54 53 21
C-OTF (10−8,10−3) 2,19,12, 0.77 43 > 21

C-OTF(-cor) (10−8,10−3) 2,9,10, 0.79 35 21
C-OTF(-cor) (10−10,10−3) 2,3,16 0.35 26 21
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Table 5.3. Uniform 2D lattice results.

n tsol Algorithm (εα,τp) Vset,Vsol,Vcsol COP WU cycles

961 0.05s

OTF (10−4, - ) 2,31,0 1.63 97 33
C-OTF (10−5,10−2) 2,32,5 1.35 98 > 33

C-OTF(-cor) (10−5,10−2) 2,29,8 1.30 94 > 33
C-OTF(-cor) (10−6,10−2) 2,31,12 1.15 98 > 33

4096 2.48s

OTF (10−4, - ) 2,33,0 1.66 61 35
C-OTF(10−8,10−3) 2,41,15 0.99 60 > 35

C-OTF(-cor) (10−8,10−2) 2,28,24 0.82 51 > 35
C-OTF(-cor) (10−6,10−2) 2,22,16 1.06 53 > 35

13225 522.11s

OTF (10−4, - ) 2,24,0 1.70 44 26
C-OTF (10−8,10−3) 2,37,23 0.96 49 > 26

C-OTF(-cor) (10−8,10−3) 2,36,21 0.97 48 > 26
C-OTF(-cor) (10−10,10−3) 2,37,25 0.92 48 > 26

Table 5.4. Tandem queueing network results.

n tsol Algorithm (εα,τp) Vset,Vsol,Vcsol COP WU Iter

961 0.04

OTF (10−4, - ) 2,23,0 1.57 97 25
C-OTF (10−5,10−3) 2,22,0 1.57 99 24

C-OTF(-cor) (10−5,10−3) 2,22,0 1.57 99 24
C-OTF(-cor) (10−6,10−3) 2,22,2 1.42 97 26

4096 2.40s

OTF (10−4, - ) 2,23,0 1.60 52 25
C-OTF(10−8,10−3) 2,15,5 1.20 50 > 25

C-OTF(-cor) (10−6,10−3) 2,21,1 1.59 51 24
C-OTF(-cor) (10−8,10−3) 2,15,5 1.22 50 > 25

13225 570.38s

OTF (10−4, - ) 2,23,0 1.66 49 25
C-OTF (10−8,10−3) 2,25,3, 1.30 47 > 25

C-OTF(-cor) (10−8,10−3) 2,25,3 1.30 44 > 25
C-OTF(-cor) (10−10,10−3) 2,26,6 1.10 36 >25
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5.4 Tandem queueing network
The next test problem is a tandem queueing network appeared in [2, 6, 9, 20], which has
two finite single-server queues placed in tandem. Customers arrive in Poisson distribution
with rate µ, and two server stations’ service time distribution is Poisson with rates µ1 and
µ2 respectively. The stencil matrix of tandem queueing work is given by

HTandemQueue =
1

µ + µ1 + µ2

 µ1

µ 0
µ2

 , (5.5)

where we use µ = 10, µ1 = 11, µ2 = 10 as in [2, 6, 9, 20]. Table 5.4 shows numerical
results for this problem.

In this case we set the weak-links parameter δ = 0.8, the size control parameter ζ =
0.45 and convergence parameter τp = 10−3 . We also try using more strict convergency
parameter τp = 10−4. Results show that the algorithm fails to expose the converged points
and the number of C-SOL cycle is equal to 0. Similar with the previous problems, several
choices of εα are tested. Experiments show that with a sufficiently small εα, new algorithm
improves the performance of OTF in terms of the total execution time, but suffers from
an unsatisfied convergence rate, which increases the number of iterations. For the reason
that the operators of C-SOL cycles are less accurate than that of SOL cycles, they have
a probability to lead to poor convergence rate. To achieve the same accuracy εα, more
C-SOL cycles are needed. Whereas, the total execution time is reduced because C-SOL
cycles are comparative cheaper than SOL cycles.

Table 5.5. Random walk on unstructured planar graph results.

n tsol Algorithm (εα,τp) Vset,Vsol,Vcsol COP WU Iter

961 2

OTF (10−4, - ) 2,27,0 1.20 182 29
C-OTF (10−5,10−3) 2,29,3 1.07 186 > 29

C-OTF(-cor) (10−5,10−3) 2,29,3 1.12 186 > 29
C-OTF(-cor) (10−6,10−3) 2,40,2 0.95 183 > 29

4096 0.23s

OTF (10−4, - ) 2,29,0 1.21 162 31
C-OTF(10−6,10−3) 2,32,6 0.99 162 > 31

C-OTF(-cor) (10−6,10−3) 2,18,6 0.99 157 > 31
C-OTF(-cor) (10−8,10−3) 2,18,6 0.94 158 > 31

13225 6.16s

OTF (10−4, - ) 2,28,0 1.21 122 30
C-OTF (10−6,10−3) 2,29,8, 0.98 130 > 30

C-OTF(-cor) (10−6,10−3) 2,30,5 0.94 120 > 30
C-OTF(-cor) (10−9,10−3) 2,41,20 0.57 116 > 30
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5.5 Random walk on unstructured planar graph
The next test problem is random walks on graphs, which have significant applications in
many fields, one of the well-known examples is Google’s pagerank algorithm. Here we
consider an unstructured planar graph, which is generated by choosing n random points
in the unit square, and triangulating them by Delaunay triangulation. The transition prob-
ability from point i to point j is given by the reciprocal of the number of egdes incident
on point i.

In this test case, when m < 0.6n, a single C-SOL cycle costs more time than SOL
cycle does, thus we use the size control parameter ζ = 0.6 here. We set the weak-links
parameter δ = 0.8. Experiments show that convergence parameter τp = 10−3 is the best
choice among any others. The performance of corrected C-OTF method is moderate.
However, the work units, which indicates the total execution time, is still smaller than
that of OTF and C-OTF without corrections. Table 5.5 shows numerical results for this
problem.

6 Conclusions
This paper proposes a compact on-the-fly adaptive aggregation multigrid method for
Markov chain problems. As is known, adaptive multigrid methods suffer from the com-
mon defect that considerable computation cost is spent on coarsen operators construction.
The reason is that they update the entire multigrid hierarchy of operators in every cycles.
We consider distributing the converged points into an aggregate and reducing the scale of
the coarsen operators to decrease this cost. Meanwhile, a simple technique is proposed to
delete the possible weak-links introduced by the procedure above. According to numeri-
cal results, for most of test cases, the corrected algorithm leads to better performance than
on-the-fly adaptive aggregation multigrid algorithm in terms of total execution time. New
algorithm can also be applied to various adaptive multigrid Markov solvers. One future
work may be to study how to improve the convergence rate of compacted solution cycles.
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Abstract. In this paper, generalized Wick-type stochastic Kadomtsev-Petviashvili equations
are investigated. Abundant white noise functional solutions for Wick-type generalized stochastic
Kadomtsev-Petviashvili equations are obtained. By using white noise analysis, Hermite transform,
modified Riccati equation and modified tanh-coth method many exact travelling wave solutions are
given. Detailed computations and implemented examples for the investigated model are explicitly
provided .
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1 Introduction

In this paper we investigate the generalized variable coefficient Kadomtsev-Petviashvili (KP) equa-
tion:

ut +
∂

∂x
(φ(t)u

∂u

∂x
+ ψ(t)

∂3u

∂x3
) + θ(t)

∂2u

∂y2
= 0, (x, y, t) ∈ R2 × R+ (1.1)

where u is a stochastic process on R2×R+ and φ(t), ψ(t) and θ(t) are bounded measurable or
integrable functions on R+ . Equation (1.1) plays a significant role in many scientific applications
such as solid state physics, nonlinear optics, chemical kinetics, etc. The KP equations[1-2] are
universal models(normal forms) for the propagation of long, dispersive, weakly nonlinear waves
that travel predominantly in the x direction, with weak transverse effects. The notion of well-
posed-ness will be the usual one in the context of nonlinear dispersive equations, that is, it includes
existence, uniqueness, persistence property, and continuous dependence upon the data. Recently,
many researchers pay more attention to study of random waves, which are important subjects of
stochastic partial differential equation (SPDE). Wadati [3] first answered the interesting question,
How does external noise affect the motion of solitons? and studied the diffusion of soliton of the
KdV equation under Gaussian noise, which satisfies a diffusion equation in transformed coordinates.
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Wadati and Akutsu also studied the behaviors of solitons under the Gaussian white noise of the
stochastic KdV equations with and without damping [4]. Wadati [3] first answered the interesting
question, “How does external noise affect the motion of solitons?” and studied the diffusion of soliton
of the KdV equation under Gaussian noise, which satisfies a diffusion equation in transformed
coordinates. The stochastic PDEs was discussed by many authors, e.g., de Bouard and Debussche
[6, 7], Debussche and Printems [8, 9], Printems [17] and Ghany and Hyder [13]. On the basis of white
noise functional analysis [5], Ghany et al. [10-16] studied more intensely the white noise functional
solutions for some nonlinear stochastic PDEs. This paper is mainly concerned to investigate the
white noise functional solutions for the generalized Wick-type stochastic Kadomstev-Petviashvili
(KP) equation:

Ut +Φ(t) � Ux � Ux +Ψ(t) � U � Uxx +Ψ(t) � Uxxxx +Θ(t) � Uyy = 0. (1.2)

where “�” is the Wick product on the Kondratiev distribution space (S)−1 and Φ(t),Ψ(t) and Θ(t)
are (S)−1-valued functions [5]. It is well known that the solitons are stable against mutual collisions
and behave like particles. In this sense, it is very important to study the nonlinear equations
in random environment. However, variable coefficients nonlinear equations, as well as constant
coefficients equations, cannot describe the realistic physical phenomena exactly. The rest of this
paper is organized as follows: In Section 2, we recall the definition and some properties of white
noise analysis. In Section 3, we apply some method to explore exact travelling wave solutions for
Eq.(1.1). In Section 4, we use the Hermite transform and [5,Theorem 4.1.1] to obtain white noise
functional solutions for Eq.(1.2). In Section 5, we give illustrative examples for the investigated
model. The last section is devoted to summary and discussion.

2 Preliminaries

Suppose that S(Rd) and S′(Rd) are the Hida test function space and the Hida distribution
space on Rd , respectively. Let hn(x) be Hermite polynomials and put

ζn = e
−x2hn(

√
2x)/((n− 1)!π)

1
2 , n > 1. (2.1)

then, the collection {ζn}n>1 constitutes an orthogonal basis for L2(R) .
Let α = (α1, α2, ..., αd) denote d-dimensional multi-indices with α1, α2, ..., αd ∈ N . The

family of tensor products

ζα := ζ(α1,α2,...,αd) = ζα1 ⊗ ζα2 ⊗ ...⊗ ζαd (2.2)

forms an orthogonal basis for L2(Rd) .

Suppose that α(i) = (α
(i)
1 , α

(i)
2 , ..., α

(i)
d ) is the i-th multi-index number in some fixed ordering

of all d-dimensional multi-indices α . We can, and will, assume that this ordering has the property
that

i < j ⇒ α
(i)
1 + α

(i)
2 + ...+ α

(i)
d < α

(j)
1 + α

(j)
2 + ...+ α

(j)
d (2.3)

i.e., the {α(j)}∞j=1 occurs in an increasing order. Now

2
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Define
ηi := ζα(i)1

⊗ ζ
α
(i)
2

⊗ ...⊗ ζ
α
(i)
d

, i > 1. (2.4)

We need to consider multi-indices of arbitrary length. For simplification of notation, we regard
multi-indices as elements of the space (NN0 )c of all sequences α = (α1, α2, ..., αd) with elements
αi ∈ N0 and with compact support, i.e., with only finitely many αi 6= 0 . We write J = (NN0 )c ,
for α ∈ J ,
Define

Hα(ω) :=
∞∏

i=1

hαi(< ω, ηi >), ω = (ω1, ω2, ..., ωd) ∈ S
′(Rd) (2.5)

For a fixed n ∈ N and for all k ∈ N , suppose the space (S)n1 consists of those f(ω) =∑
α cαHα(ω) ∈

⊕n
k=1 L2(μ) with cα ∈ Rn such that

||f ||21,k =
∑

α

c2α(α!)
2(2N)kα <∞ (2.6)

where, c2α = |cα|
2 =

∑n
k=1(c

(k)
α )2 if cα = (c

(1)
α , c

(2)
α , ..., c

(n)
α ) ∈ Rn and μ is the white noise

measure on (S′(R), B(S′(R))) , α! =
∏∞
k=1 αk! and (2N)

α =
∏
j(2j)

αj for α ∈ J .
The space (S)n−1 consists of all formal expansions F (ω) =

∑
α bαHα(ω) with bα ∈ Rn such

that ||f ||−1,−q =
∑
α b
2
α(2N)

−qα < ∞ for some q ∈ N. The family of seminorms ||f ||1,k, k ∈ N
gives rise to a topology on (S)n1 , and we can regard (S)

n
−1 as the dual of (S)

n
1 by the action

< F, f >=
∑

α

(bα, cα)α! (2.7)

where (bα, cα) is the inner product in Rn .
The Wick product f �F of two elements f =

∑
α aαHα, F =

∑
β bβHβ ∈ (S)

n
−1 with aα, bβ ∈

Rn , is defined by
f � F =

∑

α,β

(aα, bβ)Hα+β (2.8)

The spaces (S)n1 , (S)
n
−1, S(R

d) and S′(Rd) are closed under Wick products.
For F =

∑
α bαHα ∈ (S)

n
−1 , with bα ∈ Rn , the Hermite transformation of F , is defined by

HF (z) = F̃ (z) =
∑

α

bαz
α ∈ CN (2.9)

where z = (z1, z2, ...) ∈ CN (the set of all sequences of complex numbers) and zα = zα11 z
α2
2 ...z

αn
n ,

if α ∈ J , where z0j = 1.
For F,G ∈ (S)n−1 we have

F̃ �G(z) = F̃ (z).G̃(z) (2.10)

for all z such that F̃ (z) and G̃(z) exist. The product on the right-hand side of the above formula
is the complex bilinear product between two elements of CN defined by (z11 , z

1
2 , ..., z

1
n).(z

2
1 , z
2
2 , ..., z

2
n) =∑n

k=1 z
1
kz
2
k .

Let X =
∑
α aαHα , then the vector c0 = X̃(0) ∈ RN is called the generalized expectation

3
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of X which denoted by E(X) . Suppose that g : U −→ CM is an analytic function, where U is
a neighborhood of E(X) . Assume that the Taylor series of g around E(X) have coefficients in
RM . Then the Wick version g�(X) = H−1(g◦X̃) ∈ (S)M−1 . In other words, if g has the power series
expansion g(z) =

∑
aα(z − E(X))α , with aα ∈ RM , then g�(z) =

∑
aα(z − E(X))�α ∈ (S)M−1.

3 Exact travelling wave solutions

In this section, we will give exact solutions of Eq.(1.1). Taking the Hermite transform of Eq.(1.2),
we get:

Ũt(t, x, y, z) + Φ̃(t).Ũx(t, x, y, z).Ũx(t, x, y, z) + Ψ̃(t).Ũ(t, x, y, z).Ũxx(t, x, y, z)

+ Ψ̃(t).Ũxxxx(t, x, y, z) + Θ̃(t).Ũyy(t, x, y, z) = 0 (3.1)

where z = (z1, z2, ...) ∈ CN is a parameter. To look for the travelling wave solution of Eq.(3.1),we
make the transformations u(t, x, y, z) := Ũ(t, x, y, z) = ϕ(ξ(t, x, y, z)) with

ξ(t, x, y, z) := k1x++k2y + s

∫ t

0
l(τ, z)dτ + c

where k1, k2, s, c are arbitrary constants which satisfy k1k2s 6= 0 , l(τ, z) is a non zero functions
of indicated variables to be determined. So, Eq.(3.1) can be changing into the form:

slu′(t, x, z) + k21Φu
′(t, x, z)u′(t, x, z) + k21Ψu(t, x, z)u

′′(t, x, z)+

k41Ψu
′′′′(t, x, z) + k22Θu

′′(t, x, z) = 0 (3.2)

The solution can be proposed by the tanh method as a finite power series in Y in the form:

u(μζ) = S(Y ) =

M∑

k=0

akY
k, (3.3)

limiting them to solitary and shock wave profiles. However, the extended tanh method admits the
use of the finite expansion

u(μζ) = S(Y ) =
M∑

k=0

akY
k +

M∑

k=1

bkY
−k, (3.4)

where M is a positive integer, in most cases, that will be determined. Expansion (3.4) reduces to
the standard tanh method [4-6], where Y (ξ) satisfies the Riccati equation

Y ′ = c0 + c1Y + c2Y
2, (3.5)

and c0, c1, c2 are constant to be prescribed later. By virtue of (3.3) and (3.4) with observation
of the linear independence of Y n(n = −6,−5, ..., 6) and using Mathematica Eqn.(3.2) implies the

4
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following nonlinear algebraic system of equations:






slα1,0 + k
4
1Ψα4,0 + k

2
2Θα2,0 + k

2
1[Φ(α

2
1,0 + 2α1,1α1,−1 + 2α1,2α1,−2 + 2α1,3α1,−3)

+Ψ(a0α2,0 + a1α2,−1 + a2α2,−2 + b1α2,1 + b2α2,2)] = 0,

slα1,1 + k
4
1Ψα4,1 + k

2
2Θα2,1 + k

2
1[Φ(2α1,0α1,1 + 2α1,−1α1,2 + 2α1,−2α1,3)

+Ψ(a0α2,1 + a1α2,0 + a2α2,−1 + b1α2,2 + b2α2,3)] = 0,

slα1,−1 + k
4
1Ψα4,−1 + k

2
2Θα2,−1 + k

2
1[Φ(2α1,0α1,−1 + 2α1,1α1,−2 + 2α1,2α1,−3)

+Ψ(a0α2,−1 + a1α2,0−2 + a2α2,−3 + b1α2,0 + b2α2,1)] = 0,

slα1,2 + k
4
1Ψα4,2 + k

2
2Θα2,2 + k

2
1[Φ(α

2
1,1 + 2α1,0α1,2 + 2α1,−1α1,3)

+Ψ(a0α2,2 + a1α2,1 + a2α2,0 + b1α2,3 + b2α2,4)] = 0,

slα1,−2 + k
4
1Ψα4,−2 + k

2
2Θα2,−2 + k

2
1[Φ(α

2
1,−1 + 2α1,0α1,−2 + 2α1,1α1,−3)

+Ψ(a0α2,−2 + a1α2,−3 + a2α2,−4 + b1α2,−1 + b2α2,0)] = 0,

slα1,3 + k
4
1Ψα4,3 + k

2
2Θα2,3 + k

2
1[Φ(2α1,0α1,3 + 2α1,1α1,2)

+Ψ(a0α2,3 + a1α2,2 + a2α2,1 + b1α2,4)] = 0,

slα1,−3 + k
4
1Ψα4,−3 + k

2
2Θα2,−3 + k

2
1[Φ(2α1,0α1,−3 + 2α1,−1α1,−2)

+Ψ(a0α2,−3 + a1α2,−4 + b1α2,−2 + b2α2,−1)] = 0,

k41Ψα4,4 + k
2
2Θα2,4 + k

2
1[Φ(2α1,1α1,3 + α

2
1,2) + Ψ(a0α2,4 + a1α2,3 + a2α2,2)] = 0,

k41Ψα4,−4 + k
2
2Θα2,−4 + k

2
1[Φ(2α1,−1α1,−3 + α

2
1,−2) + Ψ(a0α2,−4 + b1α2,−3 + b2α2,−2)] = 0,

k41Ψα4,5 + 2k
2
1α1,2α1,3 + k

2
1(a1α2,4 + a2α2,3) = 0,

k41Ψα4,−5 + 2k
2
1α1,−2α1,−3 + k

2
1(b1α2,−4 + b2α2,−3) = 0,

k41Ψα4,6 + k
2
1Φα

2
1,3 + k

2
1Ψa2α2,4 = 0,

k41Ψα4,−6 + k
2
1Φα

2
1,−3 + k

2
1Ψb2α2,−4 = 0,

(3.6)

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

125 Ghany et al 121-131



where






α1,0 = a1c0 − b1c2, α1,1 = a1c1 + 2a2c0, α1,2 = a1c2 + 2a2c1, α1,3 = 2a2c2,

α1,−2 = −(b1c0 + 2b2c1), α1,−1 = −(b1c1 + 2b2c2), α2,0 = α1,1c0 − α1,−1c2,

α1,−3 = −2b2c0, α2,1 = α1,1c1 + 2α1,2c0, α2,2 = α1,1c2 + 2α1,2c1 + 3α1,3c0,

α2,3 = 2α1,2c2 + 3α1,3c1, α2,4 = 3α1,3c2, α2,−1 = −(α1,−1c1 + 2α1,−2c2),

α2,−2 = −(α1,−1c0 + 2α1,−2c1 + 3α1,−3c2), α2,−3 = −(2α1,−2c0 + 3α1,−3c1),

α2,−4 = −3α1,−3c0, α3,0 = α2,1c0 − α2,−1c2, α3,1 = α2,1c1 + 2α2,2c0,

α3,2 = α2,1c0 + 2α2,2c1 + 3α2,3c2, α3,3 = 2α2,2c2 + 3α2,3c1 + 4α2,4c0,

α3,4 = 3α2,3c2 + 4α2,4c1, α3,5 = 4α2,4c2, α3,−1 = −(α2,−1c1 + 2α2,−2c2),

α3,−2 = −(α2,−1c0 + 2α2,−2c1 + α2,−3c2), α3,−4 = −(3α2,−3c0 + 4α2,−4c1),

α3,−3 = −(2α2,−2c0 + 3α2,−3c1 + 4α2,−4c2), α3,−5 = −(4α2,−4c0),

α4,0 = α3,1c0 − α3,−1c2, α4,1 = α3,1c1 + 2α3,2c0, α4,6 = 5α3,5c2,

α4,2 = α3,1c2 + 2α3,2c1 + 3α3,3c0, α4,3 = 2α3,2c2 + 3α3,3c1 + 4α3,4c0,

α4,4 = 3α3,3c2 + 4α3,4c1 + 5α3,5c0, α4,5 = 4α3,4c2 + 5α3,5c0,

α4,−1 = −(α3,−1c1 + 2α3,−2c2), α4,−3 = −(2α3,−2c0 + 3α3,−3c1 + 4α3,−4c2),

α4,−2 = −(α3,−1c0 + 2α3,−2c1 + 3α3,−3c2), α4,−6 = −5α3,−5c0,

α4,−4 = −(3α3,−3c0 + 4α3,−4c1 + 5α3,−5c2), α4,−5 = −(4α3,−4c0 + 5α3,−5c2).

At the rest of this section we will discuss and solve our problem for some particular cases for the
Riccati equation as follows:

A. c0 = c1 = 1, c2 = 0 .

For this choice of the constants, the Riccati equation has the solution:

Y1(ξ) = exp(ξ)− 1 (3.7)

By the aid of Mathematica, the above system of equations (3.6) can be solved for the following cases:

Case 1:
a1 = a2 = 0, αi,j = 0 for all i, j > 0 ; a0 =

1

k21Ψ̃
{sl − k41Ψ̃− k

2
2Θ̃} ; b1 = 12k

2
1
3Ψ
5Φ ; b2 = −12k

2
1
Ψ
Φ .

According to (3.2),(3.6) and (3.7), Eq.(3.1) has the solution

u1(t, x, y, z) =
1

k21Ψ̃
{sl − k41Ψ̃− k

2
2Θ̃}+

36k21Ψ̃

5Φ̃
(exp(ξ)− 1)−1 −

12k21Ψ̃

Φ̃
(exp(ξ)− 1)−2. (3.8)

where,

ξ = k1x+ k2y − 11.4k
4
1

∫ t

0
Ψ̃(τ, z)dτ (3.9)

6
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Case 2:
a2 = b2 = 0; a 0 = 25k

2
1
Φ̃+3Ψ̃

Φ̃+2Ψ̃
− 25k21 − (

k21
k22
)2 Θ̃
Ψ̃
; b1 = −50k21

Ψ̃

Φ̃+2Ψ̃
; a1 = −2k21

Ψ̃

Φ̃+Ψ̃
.

According to (3.2),(3.6) and (3.7), Eq.(3.1) has the solution

u2(t, x, y, z) = 25k
2
1

Φ̃ + 3Ψ̃

Φ̃ + 2Ψ̃
− 25k21 − (

k22
k21
)2
Θ̃

Ψ̃
−
2k21Ψ̃

Φ̃ + Ψ̃
(exp(ξ)− 1)−

50k21Ψ̃

Φ̃ + 2Ψ̃
(exp(ξ)− 1)−1(3.10)

where,

ξ = k1x+ k2y + k
4
1

∫ t

0

11Ψ̃2(τ, z)− 12Φ̃2(τ, z) + 12Φ̃(τ, z)Ψ̃(τ, z)

(Φ̃(τ, z) + Ψ̃(τ, z))(Φ̃(τ, z) + 3Ψ̃(τ, z))
Ψ̃(τ, z)dτ (3.11)

B. c0 = −c2 = 0.5, c1 = 0 .

For this choice of the constants, the Riccati equation has the solution:

Y2(ξ) = tanh(ξ)± isech(ξ) (3.12)

or

Y3(ξ) = coth(ξ)± csch(ξ) (3.13)

By the aid of Mathematica, the above system of equations (3.6) can be solved for the following case:

Case 3:

a2 = b1 = b2 = 0; a 0 = 1.25k
2
1 − (

k2
k1
)2 Θ̃
Ψ̃
− 7.5k21

Φ̃

2Φ̃+3Ψ̃
− 3.75k21

Ψ̃

2Φ̃+3Ψ̃
; a2 = −15k21

Ψ̃

2Φ̃+3Ψ̃
.

According to (3.2),(3.6) and (3.7), Eq.(3.1) has the solution

ui(t, x, y, z) = 1.25k
2
1 − (

k2
k1
)2
Θ̃

Ψ̃
− 7.5k21

Φ̃

2Φ̃ + 3Ψ̃
− 3.75k21

Ψ̃

2Φ̃ + 3Ψ̃
−

15k21
Ψ̃

2Φ̃ + 3Ψ̃
Y 2i−1(ξ), i = 3, 4. (3.14)

where,

ξ = k1x+ k2y. (3.15)

C. c2 = 4c0 = 1, c1 = 0 .

7
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For this choice of the constants, the Riccati equation has the solution:

Y4(ξ) = 0.5tan(2ξ) (3.16)

or

Y5(ξ) = 0.5cot(2ξ) (3.17)

By the aid of Mathematica, the above system of equations (3.6) can be solved for the following case:

Case 4:
a1 = a2 = b1 = 0; a 0 = −16k21 − (

k2
k1
)2 Θ̃
Ψ̃
; b2 = −120k21

Ψ̃

4Φ̃+6Ψ̃
.

According to (3.2),(3.6) and (3.7), Eq.(3.1) has the solution

ui(t, x, y, z) = −16k
2
1 − (

k2
k1
)2
Θ̃

Ψ̃
− 120k21

Ψ̃

4Φ̃ + 6Ψ̃
Y −2i−1(ξ), i = 5, 6. (3.18)

where,

ξ = k1x+ k2y. (3.19)

At the end of this section we should remark that, there exists infinitely number of solutions for
Eqn.(1.1) these solution coming from solving the system (3.6) with regarding the Riccati equation
(3.5). The above mentioned cases are just to clarify how far my technique is applicable.

4 White noise functional solutions

The main aim of the rest of this paper is to obtain white noise functional solutions of Eqs.(1.2).
As pointed out from Xie [16], we will use Theorem 2.1 of for d = 2 . The properties of hyperbolic
functions yield that there exists a bounded open set S ⊂ R+ × R2,m > 0 and n > 0 such
that u(x, y, t, z), uxt(x, y, t, z) are uniformally bounded for all (t, x, y, z) ∈ S×Km(n) , continuous
with respect to (t, x, y) ∈ S for all z ∈ Km(n) and analytic with respect to z ∈ Km(n) for all
(t, x, y) ∈ S . Using Theorem 2.1 of Xie [16], there exists a stochastic process U(t, x, y) such that
the Hermite transformation of U(t, x, y) is u(t, x, y, z) for all S×Km(n) , and U(t, x, y) is the
solution of (1.2). This implies that U(t, x, y) is the inverse Hermite transformation of u(t, x, y, z) .
Hence, for Φ(t)Ψ(t)Θ(t) 6= 0 the white noise functional solutions of Eqs.(1.2) can be written as
follows:

U1(t, x, y) =
1

k21Ψ(t)
{sl − k41Ψ(t)− k

2
2Θ(t)}+

36k21Ψ(t)

5Φ(t)(exp�(Ξ1(t, x, y))− 1)

−
12k21Ψ(t)

Φ(t)(exp�(Ξ1(t, x, y))− 1)
�2

(4.1)

8
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where,

Ξ1 = k1x+ k2y − 11.4k
4
1

∫ t

0
Ψ(τ)dτ (4.2)

and,

U2(t, x, y) = 25k
2
1

Φ(t) + 3Ψ(t)

Φ(t) + 2Ψ(t)
− 25k21 − (

k2
k1
)2
Θ(t)

Ψ(t)
− 2k21

Ψ(t)

Φ(t) + Ψ(t)
Y �1 (Ξ2(t, x, y))

− 50k21
Ψ(t)

Φ(t) + 2Ψ(t)
Y −�1 (Ξ2(t, x, y)) (4.3)

where,

Y �1 (Ξ2(t, x, y)) = exp
�(Ξ2(t, x, y))− 1

and,

Ξ2 = k1x+ k2y + k
4
1

∫ t

0

11Ψ2(τ)− 12Φ2(τ) + 12Φ(τ)Ψ(τ)
(Φ(τ) + Ψ(τ))(Φ(τ) + 3Ψ(τ))

Ψ(τ)dτ (4.4)

Ui(t, x, y) = 1.25k
2
1 − (

k2

k1
)2
Θ(t)

Ψ(t)
− 7.5k21

Φ(t)

2Φ(t) + 3Ψ(t)
− 3.75k21

Ψ(t)

2Φ(t) + 3Ψ(t)

− 15k21
Ψ(t)

2Φ(t) + 3Ψ(t)
Y
�2
i−1(Ξ3(x, y)), i = 3, 4. (4.5)

where

Y �2 (Ξ3(x, y)) = tanh
�(Ξ3(x, y))± isech

�(Ξ3(x, y))

or

Y �3 (Ξ3(x, y)) = coth
�(Ξ3(x, y))± csch

�(Ξ3(x, y))

Ui(t, x, y) = −16k
2
1 − (

k2

k1
)2
Θ(t)

Ψ(t)
− 120k21

Ψ(t)

(4Φ(t) + 6Ψ(t))Y
�2
i−1(Ξ3(x, y))

, i = 5, 6. (4.6)

where,

Y �4 (Ξ3(x, y)) = 0.5tan
�(2Ξ3(x, y))

or

Y �5 (Ξ3(x, y)) = 0.5cot
�(2Ξ3(x, y))

9
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and,

Ξ3(x, y) = k1x+ k2y (4.7)

5 Discussions

Our first interest in present work being in implementing the extended tanh-coth method, Hermite
transform and white noise analysis to stress its power in handling nonlinear equations so that one
can apply it to models of various types of nonlinearity. The next interest is in the determination of
exact travelling wave solutions for modified KP equations. Also, we have presented Riccati equation
expansion method and applied it to the modified KP equations. As a result, some new exact trav-
elling wave solutions of the modified KP equation are obtained because of more special solutions of
Eq.(2.1). The method which we have proposed in this letter is standard, direct and computerized
method, which allow us to do complicated and tedious algebraic calculation. It is shown that the
algorithm can be also applied to other NLPDEs in mathematical physics such as KdV-Burgers,
Modified KdV-Burgers, Zhiber-Shabat equations (specially: Liouville equation, Sinh-Gordon equa-
tion, Dodd-Bullough-Mikhailov equation, Dodd-Bullough-Mikhailov equation and Tzitzeica-Dodd-
Bullough equation) and Benjamin-Bona-Mahony equations. Also, we remark that, since the Riccati
equation has other solution if select other values of c0, c1 and c2 , there are many other exact so-
lutions of variable coefficient and wick-type stochastic modified KP equation.
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Abstract.We investigate the bifurcations and the global asymptotic stability of the following two difference equation

xn+1 =
βxnxn−1 + γxn−1

Ax2n +Bxnxn−1
, x0 + x−1 > 0, A+B > 0

xn+1 =
αx2n + βxnxn−1 + γxn−1

Ax2n
, x0 > 0, A > 0

where all parameters and initial conditions are positive.

Keywords. asymptotic stability, attractivity, bifurcation, difference equation, global, local stability, period two;

AMS 2000 Mathematics Subject Classification: 39A10, 39A28, 39A30.

1 Introduction and Preliminaries
We investigate global behavior of the equations:

xn+1 =
βxnxn−1 + γxn−1

Ax2n +Bxnxn−1
, n = 0, 1, . . . (1)

xn+1 =
αx2n + βxnxn−1 + γxn−1

Ax2n
, n = 0, 1, . . . (2)

where the parameters α, β, γ,A,B and the initial conditions x−1, x0 are positive numbers. Equations (1), (2)) are the
special cases of equations

xn+1 =
αx2n + βxnxn−1 + γxn−1

Ax2n +Bxnxn−1 + Cxn−1
, n = 0, 1, 2, ... (3)

and

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1 +Dxn + Exn−1 + F

ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f
, n = 0, 1, 2, .... (4)

Some special cases of equation (4) have been considered in the series of papers [3, 4, 12, 13, 20, 22]. Some special second
order quadratic fractional difference equations have appeared in analysis of competitive and anti-competitive systems
of linear fractional difference equations in the plane, see [5, 8, 7, 9, 18, 19]. Local stability analysis of the equilibrium
solutions of equation (3) was performed in [11].

Describing the global dynamics of equation (4) is a formidable task as this equation contains as a special cases many
equations with complicated dynamics, such as the linear fractional difference equation

xn+1 =
Dxn + Exn−1 + F

dxn + exn−1 + f
, n = 0, 1, 2, .... (5)

The special cases considered so far shows that all kind of dynamics are possible including conservative and non-conservative
chaos, Naimark-Sacker bifurcation, period-doubling bifurcation, exchange of stability bifurcation, etc. In this paper we
use the theory of monotone maps developed in [16, 17] to describe precisely the basins of attraction of all attractors of this
equation as well as bifurcations. Equations (1) and (2) exhibit essentially one period doubling bifurcation with different
outcomes. Equation (1) allows the coexistence of the unique minimal period-two solution, which is a saddle point and the
equilibrium but only the equilibrium solution and the degenerate period-two solution (0,∞) and (∞, 0) have substantial
basins of attraction. In one region of parameters, Equation (2) also allows the coexistence of the unique minimal period-
two solution, which is locally asymptotically stable and the equilibrium, but the period-two solution attracts all solutions
outside the global stable manifold of the equilibrium. In the complementary region of parameters every solution is either
attracted to the equilibrium or to the degenerate period-two solution (1,∞) and (∞, 1).

1Partially supported by FMON Grant No. 05-39-3632–1/14
2Corresponding author, e-mail: mkulenovic@mail.uri.edu
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September 1, 2015 2

Our results will be based on the following theorem for a general second order difference equation

xn+1 = f (xn, xn−1) , n = 0, 1, 2, ..., (6)

see [2].

Theorem 1 Let I be a set of real numbers and f : I × I → I be a function which is non-increasing in the first variable
and non-decreasing in the second variable. Then, for ever solution {xn}∞n=−1 of the equation

xn+1 = f (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, 2, ... (7)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution do exactly one of the following:
(i) Eventually they are both monotonically increasing.
(ii) Eventually they are both monotonically decreasing.
(iii) One of them is monotonically increasing and the other is monotonically decreasing.

The consequence of Theorem 1 is that every bounded solution of (7) converges to either equilibrium or period-two
solution or to the point on the boundary, and most important question becomes determining the basins of attraction of
these solutions as well as the unbounded solutions. The answer to this question follows from an application of theory of
monotone maps in the plane which will be presented for the sake of completeness.

We now give some basic notions about monotone maps in the plane.
Consider a partial ordering � on R2. Two points x, y ∈ R2 are said to be related if x � y or x � y. Also, a

strict inequality between points may be defined as x ≺ y if x � y and x 6= y. A stronger inequality may be defined as
x = (x1, x2)� y = (y1, y2) if x � y with x1 6= y1 and x2 6= y2.

A map T on a nonempty set R ⊂ R2 is a continuous function T : R → R. The map T is monotone if x � y implies
T (x) � T (y) for all x, y ∈ R, and it is strongly monotone on R if x ≺ y implies that T (x) � T (y) for all x, y ∈ R. The
map is strictly monotone on R if x ≺ y implies that T (x) ≺ T (y) for all x, y ∈ R. Clearly, being related is invariant under
iteration of a strongly monotone map.

Throughout this paper we shall use the North-East ordering (NE) for which the positive cone is the first quadrant,
i.e. this partial ordering is defined by (x1, y1) �ne (x2, y2) if x1 ≤ x2 and y1 ≤ y2 and the South-East (SE) ordering
defined as (x1, y1) �se (x2, y2) if x1 ≤ x2 and y1 ≥ y2.

A map T on a nonempty set R ⊂ R2 which is monotone with respect to the North-East ordering is called cooperative
and a map monotone with respect to the South-East ordering is called competitive.

If T is differentiable map on a nonempty set R, a sufficient condition for T to be strongly monotone with respect to
the SE ordering is that the Jacobian matrix at all points x has the sign configuration

sign (JT (x)) =

[
+ −
− +

]
, (8)

provided that R is open and convex.
For x ∈ R2, define Q`(x) for ` = 1, . . . , 4 to be the usual four quadrants based at x and numbered in a counterclockwise

direction, for example, Q1(x) = {y ∈ R2 : x1 ≤ y1, x2 ≤ y2}. Basin of attraction of a fixed point (x̄, ȳ) of a map T ,
denoted as B((x̄, ȳ)), is defined as the set of all initial points (x0, y0) for which the sequence of iterates Tn((x0, y0))
converges to (x̄, ȳ). Similarly, we define a basin of attraction of a periodic point of period p. The next five results, from
[17, 16], are useful for determining basins of attraction of fixed points of competitive maps. Related results have been
obtained by H. L. Smith in [21, 22].

Theorem 2 Let T be a competitive map on a rectangular region R ⊂ R2. Let x ∈ R be a fixed point of T such that
∆ := R ∩ int (Q1(x) ∪Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R), and T is strongly competitive on
∆. Suppose that the following statements are true.

a. The map T has a C1 extension to a neighborhood of x.
b. The Jacobian JT (x) of T at x has real eigenvalues λ, µ such that 0 < |λ| < µ, where |λ| < 1, and the eigenspace

Eλ associated with λ is not a coordinate axis.
Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction of x, such that

C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing continuous function of the first
coordinate on an interval. Any endpoints of C in the interior of R are either fixed points or minimal period-two points.
In the latter case, the set of endpoints of C is a minimal period-two orbit of T .

We shall see in Theorem 4 that the situation where the endpoints of C are boundary points of R is of interest. The
following result gives a sufficient condition for this case.

Theorem 3 For the curve C of Theorem 2 to have endpoints in ∂R, it is sufficient that at least one of the following
conditions is satisfied.

i. The map T has no fixed points nor periodic points of minimal period two in ∆.
ii. The map T has no fixed points in ∆, det JT (x) > 0, and T (x) = x has no solutions x ∈ ∆.
iii. The map T has no points of minimal period-two in ∆, det JT (x) < 0, and T (x) = x has no solutions x ∈ ∆.
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For maps that are strongly competitive near the fixed point, hypothesis b. of Theorem 2 reduces just to |λ| < 1. This
follows from a change of variables [22] that allows the Perron-Frobenius Theorem to be applied. Also, one can show that
in such case no associated eigenvector is aligned with a coordinate axis. The next result is useful for determining basins
of attraction of fixed points of competitive maps.

Theorem 4 Assume the hypotheses of Theorem 2, and let C be the curve whose existence is guaranteed by Theorem 2.
If the endpoints of C belong to ∂R, then C separates R into two connected components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x �se y} and W+ := {x ∈ R \ C : ∃y ∈ C with y �se x} , (9)

such that the following statements are true.
(i) W− is invariant, and dist(Tn(x), Q2(x))→ 0 as n→∞ for every x ∈ W−.
(ii) W+ is invariant, and dist(Tn(x), Q4(x))→ 0 as n→∞ for every x ∈ W+.
(B) If, in addition to the hypotheses of part (A), x is an interior point of R and T is C2 and strongly competitive

in a neighborhood of x, then T has no periodic points in the boundary of Q1(x) ∪Q3(x) except for x, and the following
statements are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.
(iv) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

If T is a map on a set R and if x is a fixed point of T , the stable set Ws(x) of x is the set {x ∈ R : Tn(x)→ x} and

unstable set Wu(x) of x is the set{
x ∈ R : there exists {xn}0n=−∞ ⊂ R s.t. T (xn) = xn+1, x0 = x, and lim

n→−∞
xn = x

}
When T is non-invertible, the setWs(x) may not be connected and made up of infinitely many curves, orWu(x) may not
be a manifold. The following result gives a description of the stable and unstable sets of a saddle point of a competitive
map. If the map is a diffeomorphism on R, the sets Ws(x) and Wu(x) are the stable and unstable manifolds of x.

Theorem 5 In addition to the hypotheses of part (B) of Theorem 4, suppose that µ > 1 and that the eigenspace Eµ

associated with µ is not a coordinate axis. If the curve C of Theorem 2 has endpoints in ∂R, then C is the stable set
Ws(x) of x, and the unstable set Wu(x) of x is a curve in R that is tangential to Eµ at x and such that it is the graph
of a strictly decreasing function of the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed points of
T .

Remark 1 We say that f(u, v) is strongly decreasing in the first argument and strongly increasing in the second argument
if it is differentiable and has first partial derivative D1f negative and first partial derivative D2f positive in a considered
set. The connection between the theory of monotone maps and the asymptotic behavior of equation (7) follows from the
fact that if f is strongly decreasing in the first argument and strongly increasing in the second argument, then the second
iterate of a map associated to equation (7) is a strictly competitive map on I × I, see [17].

Set xn−1 = un and xn = vn in Eq.(7) to obtain the equivalent system

un+1 = vn
vn+1 = f(vn, un)

, n = 0, 1, . . . .

Let T (u, v) = (v, f(v, u)). The second iterate T 2 is given by

T 2(u, v) = (f(v, u), f(f(v, u), v))

and it is strictly competitive on I × I, see [17].

Remark 2 The characteristic equation of Eq.(7) at an equilibrium point (x̄, x̄):

λ2 −D1f(x̄, x̄)λ−D2f(x̄, x̄) = 0, (10)

has two real roots λ, µ which satisfy λ < 0 < µ, and |λ| < µ, whenever f is strictly decreasing in first and increasing in
second variable. Thus the applicability of Theorems 2-5 depends on the nonexistence of minimal period-two solution.

There are several global attractivity results for Eq. (7). Some of these results give the sufficient conditions for all
solutions to approach a unique equilibrium and they were used efficiently in [14].

The next result is from [6]. See also [1].

Theorem 6 Consider Eq. (7) where f : I × I → I is a continuous function and f is decreasing in the first argument
and increasing in the second argument. Assume that x is a unique equilibrium point which is locally asymptotically stable
and assume that (ϕ,ψ) and (ψ,ϕ) are minimal period-two solutions which are saddle points such that

(ϕ,ψ) �se (x, x) �se (ψ,ϕ) .

Then, the basin of attraction B ((x, x)) of (x, x) is the region between the global stable sets Ws ((ϕ,ψ)) and Ws ((ψ,ϕ)) .
More precisely

B ((x, x)) = {(x, y) : ∃yu, yl : yu < y < yl, (x, yl) ∈ Ws ((ϕ,ψ)) , (x, yu) ∈ Ws ((ψ,ϕ))} .
The basins of attraction B ((ϕ,ψ)) =Ws ((ϕ,ψ)) and B ((ψ,ϕ)) =Ws ((ψ,ϕ)) are exactly the global stable sets of (ϕ,ψ)
and (ψ,ϕ).

If (x−1, x0) ∈ W+ ((ψ,ϕ)) or (x−1, x0) ∈ W− ((ϕ,ψ)), then Tn ((x−1, x0)) converges to the other equilibrium point
or to the other minimal period-two solutions or to the boundary of the region I × I.
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2 Equation xn+1 =
βx2n+γxn−1

Ax2n+Bxnxn−1

In this section we present the global dynamics of Eq. (11).

2.1 Local stability analysis

By substitution xn = β
A
yn, this equation is reduced to the equation

yn+1 =
ynyn−1 + γA

β2 yn−1

y2n + B
A
ynyn−1

, n = 0, 1, ...

Thus we consider the following equation

xn+1 =
xnxn−1 + γxn−1

x2n +Bxnxn−1
, n = 0, 1, ... (11)

Equation (11) has the unique positive equilibrium
−
x given by

−
x =

1+
√

1+4γ(1+B)

2(1+B)
.

The partial derivatives associated to the Eq(11) at equilibrium
−
x are

f ′x = −x2y−2γxy−Bγy2
(x2+Bxy)2

∣∣∣−
x

=
−2(1+2(1+B)(2+B)γ

√
1+4(1+B)γ)

(1+B)(1+
√

1+4(1+B)γ)2
, f ′y = x+γ

(x+By)2

∣∣∣
−
x

= 1
1+B

.

Characteristic equation associated to the Eq.(11) at equilibrium is

λ2 +
2(1+2(1+B)(2+B)γ

√
1+4(1+B)γ)

(1+B)(1+
√

1+4(1+B)γ)2
λ−

1

1 +B
= 0.

By applying the linearized stability Theorem [14, 15] we obtain the following result.

Theorem 7 The unique positive equilibrium point
−
x =

1+
√

1+4γ(1+B)

2(1+B)
of equation (11) is:

i) locally asymptotically stable when B > 4γ + 1;

ii) a saddle point when B < 4γ + 1;

ii) a nonhyperbolic point (with eigenvalues λ1 = −1 and λ2 = 1
2+4γ

) when B = 4γ + 1.

Lemma 1 If
B > 1 + 4γ

then Eq.(11) possesses a unique minimal period-two solution {P (φ, ψ) , Q (ψ, φ)} where

φ =
1

2
−
√
B−1−4γ

2
√
B−1

and ψ =
1

2
+
√
B−1−4γ

2
√
B−1

.

The minimal period-two solution {P (φ, ψ) , Q (ψ, φ)} is a saddle point.

Proof. Periodic solution φ, ψ, φ, ψ, . . . is the positive solution of the following system{
(B − 1)y − γ = 0
−xy + y = 0.

(12)

where φ+ ψ = x and φψ = y. We have that solution of system (12) is

x = 1 and y =
γ

B − 1
.

Since

x2 − 4y =
B − 1− 4γ

B − 1
> 0

if and only if B > 1 + 4γ, we have a unique minimal period-two solution {P (φ, ψ) , Q (ψ, φ)} where

φ =
1

2
−
√
B−1−4γ

2
√
B−1

and ψ =
1

2
+
√
B−1−4γ

2
√
B−1

.

Set
un = xn−1 and vn = xn, for n = 0, 1, ...
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and write equation (11) in the equivalent form

un+1 = vn

vn+1 =
unvn + γun

v2n +Bunvn
, n = 0, 1, ... .

Let T be the function on (0,∞)× (0,∞) defined by

T

(
u
v

)
=

(
v

uv+γu
v2+Buv

)
.

By a straightforward calculation we find that

T 2

(
u
v

)
=

(
g(u, v)
h(u, v)

)
where

g(u, v) =
uv + γu

v2 +Buv
, h(u, v) =

v2(Bu+ v)(v2γ + u(v + γ +Bvγ))

u(v + γ)(Bv3 + u(v +B2v2 + γ))
.

We have

JT2

(
φ
ψ

)
=

(
g′u(φ, ψ) g′v(φ, ψ)
h′u(φ, ψ) h′v(φ, ψ)

)
,

where

g′u = v+γ
(Bu+v)2

,

g′v = −u(v
2+Bγu+2γv)

v2(Bu+v)2
,

h′u = − v
3(Bγv5+2uγv2(v+γ+B2v2)+u2(v2+v(2+Bv(2+B2v))γ+(1+2Bv)γ2))

u2(v+γ)(Bv3+u(v+B2v2+γ))2
,

h′v =
v(B4u3v3γ2+B3u2v4γ(v+4γ)+B(v+2γ)(v6γ+4u2v2γ(v+γ)+u3(v+γ)2)

u2(v+γ)(Bv3+u(v+B2v2+γ))2

+
B2uvγ(u2(v+γ)(v+3γ)+v4(2v+5γ))+uv(v+γ)(u(v+γ)(2v+3γ)+v2γ(3v+5γ)))

u2(v+γ)(Bv3+u(v+B2v2+γ))2
.

Set
S = g′u(φ, ψ) + h′v(φ, ψ), D = g′u(φ, ψ)h′v(φ, ψ)− g′v(φ, ψ)h′u(φ, ψ).

After some lengthy calculation one can see that

S =
1 + 6γ +B(−3− 6γ +B(2 + γ))

(B − 1)(B + (B − 1)γ)
and D =

γ

(B − 1)(B + (B − 1)γ)
.

We have that
|S| > |1 +D| if and only if B > 1 + 4γ.

By applying the linearized stability Theorem we obtain that a unique prime period-two solution {P (φ, ψ) , Q (ψ, φ)} of
Eq.(11) is a saddle point if and only if B > 1 + 4γ .

2.2 Global results and basins of attraction
In this section we present global dynamics results for equation (11).

Theorem 8 If B > 4γ + 1 then equation (11) has a unique equilibrium point E(x, x) which is locally asymptotically
stable and there exists the minimal period-two solution {P (φ, ψ), Q(ψ, φ)}, where

φ =
1

2
−
√
B−1−4γ

2
√
B−1

and ψ =
1

2
+
√
B−1−4γ

2
√
B−1

which is a saddle point.
Furthermore, the global stable manifold of the periodic solution {P,Q} is given by Ws({P,Q}) = Ws(P ) ∪ Ws(Q)

where Ws(P ) and Ws(Q) are continuous increasing curves, that divide the first quadrant into two connected components,
namely
W+

1 := {x ∈ R \Ws(P ) : ∃y ∈ Ws(P ) with y �se x}, W−1 := {x ∈ R \Ws(P ) : ∃y ∈ Ws(P ) with x �se y},
and
W+

2 := {x ∈ R \Ws(Q) : ∃y ∈ Ws(Q) with y �se x}, W−2 := {x ∈ R \Ws(Q) : ∃y ∈ Ws(Q) with x �se y}
respectively such that the following statements are true.

i) If (u0, v0) ∈ Ws(P ) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P and the subsequence
of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q.

ii) If (u0, v0) ∈ Ws(Q) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to Q and the subsequence
of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P .
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iii) If (u0, v0) ∈ W−1 (the region above Ws(P )) then the subsequence of even-indexed terms {(u2n, v2n)} tends to
(0,∞) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (∞, 0).

iv) If (u0, v0) ∈ W+
2 (the region below Ws(Q)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to

(∞, 0) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (0,∞).

v) If (u0, v0) ∈ W+
1 ∩ W

−
2 (the region between Ws(P ) and Ws(Q)) then the sequence {(un, vn)} is attracted to

E(x, x).

Proof. From Theorem 7 Eq.(11) has a unique equilibrium point E(x, x), which is locally asymptotically stable. Theorem
1 implies that the periodic solution {P,Q} is a saddle point. The map T 2(u, v) = T (T (u, v)) is competitive on R =
R2 \{(0, 0)} and strongly competitive on int(R). It follows from the Perron-Frobenius Theorem and a change of variables
that at each point the Jacobian matrix of a strongly competitive map has two real and distinct eigenvalues, the larger
one in absolute value being positive and that corresponding eigenvectors may be chosen to point in the direction of the
second and first quadrant, respectively, see [16, 17]. Also, as is well known [16, 17] if the map is strongly competitive then
no eigenvector is aligned with a coordinate axis.

i) By Theorem 4 we have that if (u0, v0) ∈ Ws(P ) then (u2n, v2n) = T 2n(u0, v0)→ P as n→∞, which implies that
(u2n+1, v2n+1) = T (T 2n(u0, v0))→ T (P ) = Q as n→∞, which implies the statement i).

ii) The proof of the statement ii) is similar to the proof of the statement i) and will be ommitted.

iii) A straightforward calculation shows that (φ, ψ) �se (x, x) �se (ψ, φ). Since Eq.(11) has no the other equilibrium
point or the other minimal-period two solution from Theorem 6 we have if (x−1, x0) ∈ W−1 , then

(u2n, v2n) = T 2n((u0, v0))→ (0,∞) and (u2n+1, v2n+1) = T 2n+1((u0, v0))→ (∞, 0).

and hence if (x−1, x0) ∈ W−1 , then

lim
n→∞

x2n =∞ and lim
n→∞

x2n+1 = 0.

iv) If (x−1, x0) ∈ W+
2 , then

(u2n, v2n) = T 2n((u0, v0))→ (∞, 0) and (u2n+1, v2n+1) = T 2n+1((u0, v0))→ (0,∞).

and hence if (x−1, x0) ∈ W+
2 , then

lim
n→∞

x2n = 0 and lim
n→∞

x2n+1 =∞.

v) If (x−1, x0) ∈ W+
1 ∩W

−
2 , then

lim
n→∞

xn =
1+
√

1+4γ(1+B)

2(1+B)
.

Theorem 9 If B < 4γ + 1 then equation (11) has a unique equilibrium point E(x, x) which is a saddle point.
The global stable manifold Ws(E) which is a continuous increasing curve divides the first quadrant such that the

following holds:

i) Every initial point (u0, v0) in Ws(E) is attracted to E.

ii) If (u0, v0) ∈ W+(E) (the region below Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to
(∞, 0) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (0,∞).

iii) If (u0, v0) ∈ W−(E) (the region above Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to
(0,∞) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (∞, 0).

Proof. From Theorem 7 equation (11) has a unique equilibrium point E(x, x), which is a saddle point. The map T has

no fixed points or periodic points of minimal period-two in ∆ = R ∩ int(Q1(
−
x) ∪ Q3(

−
x)). It is immediate to see that

detJT (E) < 0 and T (x) = x only for x = x. Since the map T is anti-competitive, see [10] and T 2 is strongly competitive
we have that all conditions of Theorem 10 in [10] are satisfied from which the proof follows.

Theorem 10 If B = 4γ+1 then Eq.(11) has a unique equilibrium point E(x, x) = ( 1
2
, 1
2

) which is a nonhyperbolic point.
There exists a continuous increasing curve CE which is a subset of the basin of attraction of E and it divides the

first quadrant such that the following holds:

i) Every initial point (u0, v0) in CE is attracted to E.

ii) If (u0, v0) ∈ W−(E) (the region above CE) then the subsequence of even-indexed terms {(u2n, v2n)} tends to (0,∞)
and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (∞, 0).

iii) If (u0, v0) ∈ W+(E) (the region below CE) then the subsequence of even-indexed terms {(u2n, v2n)} tends to (∞, 0)
and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (0,∞).
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Proof. From Theorem 7 equation (11) has a unique equilibrium point E(x, x) = ( 1
2
, 1
2

), which is nonhyperbolic. All
conditions of Theorem 4 are satisfied, which yields the existence of a continuous increasing curve CE which is a subset of

the basin of attraction of E and for every x ∈ W−(E) there exists n0 ∈ N such that Tn(x) ∈ intQ2(
−
x) for n ≥ n0 and

for every x ∈ W+(E) there exists n0 ∈ N such that Tn(x) ∈ intQ4(
−
x) for n ≥ n0.

Set

U(t) =
1− (4γ + 1)t+

√
(1− (4γ + 1)t)2 + 4γ

2
.

It is easy to see that (t, U(t)) �se E if t < x and E �se (t, U(t)) if t > x. One can show that

T 2(t, U(t)) =

(
t,

2γ(t+ γ)

t(−t+ t2 + 2γ + 4t2γ + 8γ2 + t
√

4γ + (−1 + t+ 4tγ)2)

)
.

Now we have that
T 2(t, U(t)) �se (t, U(t)) if t < x

and
(t, U(t)) �se T 2(t, U(t)) if t > x.

By monotonicity if t < x we obtain that T 2n(t, U(t))→ (0,∞) as n→∞ and if t > x then we have that T 2n(t, U(t))→
(∞, 0) as n→∞.

If (u′, v′) ∈ intQ2(
−
x) then there exists t1 such that (u′, v′) �se (t1, U(t1)) �se E. By monotonicity of the map

T 2 we obtain that T 2n(u′, v′) �se T 2n(t1, U(t1)) �se E which implies that T 2n(u′, v′) → (0,∞) and T 2n+1(u′, v′) →
T (0,∞) = (∞, 0) as n→∞ which proves the statement ii).

If (u′′, v′′) ∈ intQ4(
−
x) then there exists t2 such that E �se (t2, U(t2)) �se (u′′, v′′). By monotonicity of the map T 2

we obtain that E �se T 2n(t2, U(t2)) �se T 2n(u′′, v′′) which implies that T 2n(u′′, v′′) → (∞, 0) and T 2n+1(u′′, v′′) →
T (∞, 0) = (0,∞) as n→∞ which proves the statement iii). This completes the proof of Theorem.

Remark 3 Theorems 8, 9 and 10 show new type of period doubling bifurcation. When B ≤ 4γ + 1 all solutions outside
the global stable manifold are asymptotic to (0,∞) or to (∞, 0), and when B > 4γ+ 1 all solutions are either asymptotic
to (0,∞) or to (∞, 0) or to the minimal period-two solution {P,Q} or a unique equilibrium E. In the second case each
attractor has a substantial basin of attraction.

Figure 1: Visual illustration of Theorems 8, 9 and 10 . Figures are generated by Dynamica 3, [15].

3 Equation xn+1 =
αx2n+βxnxn−1+γxn−1

Ax2n

In this section we present the global dynamics and bifurcation analysis of Equation (13).

3.1 Local stability analysis
This equation is reduced to the equation

xn+1 =
x2n + βxnxn−1 + γxn−1

x2n
, n = 0, 1, ... (13)

Equation (13) has the unique positive equilibrium x̄ given by

−
x =

1+β+
√

(1+β)2+4γ

2
.
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The partial derivatives associated to equation (13) at equilibrium
−
x are

f ′x = −xyβ−2γy
x3

∣∣∣−
x

= − 2(4γ+β(1+β+
√

(1+β)2+4γ))

(1+β+
√

(1+β)2+4γ)2
, f ′y = βx+γ

x2

∣∣∣
−
x

=
2(2γ+β(1+β+

√
(1+β)2+4γ))

(1+β+
√

(1+β)2+4γ)2
.

Characteristic equation associated to the Eq.(13) at equilibrium is

λ2 +
2(4γ+β(1+β+

√
(1+β)2+4γ))

(1+β+
√

(1+β)2+4γ)2
λ− 2(2γ+β(1+β+

√
(1+β)2+4γ))

(1+β+
√

(1+β)2+4γ)2
= 0.

By applying the linearized stability Theorem we obtain the following result.

Theorem 11 The unique positive equilibrium point
−
x =

1+β+
√

(1+β)2+4γ

2
of equation (13) is

i) locally asymptotically stable when 4γ + 2β + β2 < 3;

ii) a saddle point when 4γ + 2β + β2 > 3;

iii) a nonhyperbolic point (with eigenvalues λ1 = −1 and λ2 = β+1
β+3

) when 4γ + 2β + β2 = 3.

Lemma 2 Equation (13) has the minimal period-two solution {P (φ, ψ) , Q (ψ, φ)} where

φ =
−γ+βγ−γ

√
−3+2β+β2+4γ

2(−1+β+γ)
and ψ =

−γ+βγ+γ
√
−3+2β+β2+4γ

2(−1+β+γ)

if and only if

β < 1 and
3− 2β − β2

4
< γ < 1− β.

The minimal period-two solution {P (φ, ψ) , Q (ψ, φ)} is locally asymptotically stable.

Proof. Period-two solution is a positive solution of the following systems{
x− y − γ = 0

x2 − xy + (β − 1)y = 0.
(14)

where φ+ ψ = x and φψ = y. We have that only one solution of system (14) is

x =
(β − 1)γ

β + γ − 1
, y =

−γ2

β + γ − 1
,

Since

x2 − 4y =
γ2(−3 + 2β + β2 + 4γ)

(β + γ − 1)2
> 0

if and only if
3− 2β − β2

4
< γ

and x, y > 0 if and only if β < 1 and γ < 1− β, we have that φ and ψ are solution of the equation

t2 −
(β − 1)γ

β + γ − 1
t+

−γ2

β + γ − 1
= 0

if and only if

β < 1 and
3− 2β − β2

4
< γ < 1− β.

The second iterate of the map T is

T 2

(
u
v

)
=

(
g(u, v)
h(u, v)

)
where

g(u, v) =
v2 + βuv + γu

v2
, h(u, v) =

v4
(

1 + v(β + γ) +
u(2+vβ)(vβ+γ)

v2
+
u2(vβ+γ)2

v4

)
(v2 + βuv + γu)2

.

We have

JT2

(
φ
ψ

)
=

(
g′u(φ, ψ) g′v(φ, ψ)
h′u(φ, ψ) h′v(φ, ψ)

)
where

g′u = vβ+γ
v2

,

g′v = −u(vβ+2γ)

v3
,

h′u = − v
3(vβ+γ)(uvβ2+uβγ+v2(β+2γ))

(v2+βuv+γu)3
,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

139 Kalabusic et al 132-143



September 1, 2015 9

h′v =
v2(5u2vβ2γ+3u2βγ2+v4(β+γ)+3uv3β(β+γ)+uv2(2uβ3+γ(uβ+5γ)))

(v2+βuv+γu)3
.

Set
S = g′u(φ, ψ) + h′v(φ, ψ) and D = g′u(φ, ψ)h′v(φ, ψ)− g′v(φ, ψ)h′u(φ, ψ).

After some lengthy calculation one can see that

S =
4+β(−6+β+β2)−9γ+β(7+β)γ+6γ2

γ2
, D =

(−1+γ)(−1+β+γ)

γ2
.

Applying the linearized stability Theorem we obtain that a unique prime period-two solution {P (φ, ψ) , Q (ψ, φ)} of Eq(13)
is locally asymptotically stable when

β < 1 and
3− 2β − β2

4
< γ < 1− β.

3.2 Global results and basins of attraction
In this section we present global dynamics results for Eq.(13).

Theorem 12 If 4γ + 2β + β2 < 3 then Eq. (13) has a unique equilibrium point E(x, x) which is globally asymptotically
stable.

Proof. From Theorem 11 equation (13) has a unique equilibrium point E(x, x), which is locally asymptotically stable.
Every solution of equation (13) is bounded from above and from below by positive constants. If 4γ + 2β + β2 < 3 then
β + γ < 1 and we have

xn+1 =
x2n + βxnxn−1 + γxn−1

x2n
≥ 1

and

xn+1 = 1 +
βxn−1

xn
+
γxn−1

x2n
≤ 1 + βxn−1 + γxn−1 = 1 + (β + γ)xn−1.

x2n ≤ 1 + (β + γ)[1 + (β + γ)x2n−4] ≤ ...
≤ 1 + (β + γ) + (β + γ)2 + ...+ (β + γ)nx0,

<
1

1− α− β
+ (β + γ)nx0,

x2n−1 ≤ 1 + (β + γ)[1 + (β + γ)x2n−5] ≤ ...
≤ 1 + (β + γ) + (β + γ)2 + ...+ (β + γ)nx−1

<
1

1− α− β
+ (β + γ)nx−1.

Thus xn ≤ 1
1−α−β + ε, for some ε > 0 and n ≥ N and so every solution is bounded. Equation (13) has no

other equilibrium points or period two points and using Theorem 1 we have that equilibrium point E(x, x) is globally
asymptotically stable.

Theorem 13 If 4γ + 2β + β2 > 3 and β + γ < 1 then equation (13) has a unique equilibrium point E(x, x) which is a
saddle point and the minimal period-two solution {P (φ, ψ), Q(ψ, φ)} which is locally asymptotically stable, where

φ =
−γ+βγ−γ

√
−3+2β+β2+4γ

2(−1+β+γ)
, ψ =

−γ+βγ+γ
√
−3+2β+β2+4γ

2(−1+β+γ)
.

The global stable manifoldWs(E) which is a continuous increasing curve, divides the first quadrant such that the following
holds:

i) Every initial point (u0, v0) in Ws(E) is attracted to E.

ii) If (u0, v0) ∈ W+(E) (the region belowWs(E)) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted
to Q and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P .

iii) If (u0, v0) ∈ W−(E) (the region aboveWs(E)) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted
to P and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to Q.

Proof. From Theorem 11 equation (13) has a unique equilibrium point E(x, x), which is a saddle point. The map T has

no fixed points or periodic points of minimal period-two in ∆ = R ∩ int(Q1(
−
x) ∪Q3(

−
x)). A straightforward calculation

shows that detJT (E) < 0 and T (x) = x only for x = x. Since the map T is anti-competitive and T 2 is strongly competitive
we have that all conditions of Theorem 10 in [10] are satisfied from which the proof follows.

Theorem 14 If 4γ+ 2β+β2 > 3 and β+γ ≥ 1 then Eq. (13) has a unique equilibrium point E(x, x ) which is a saddle
point.

The global stable manifold Ws(E), which is a continuous increasing curve divides the first quadrant such that the
following holds:
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i) Every initial point (u0, v0) in Ws(E) is attracted to E.

ii) If (u0, v0) ∈ W+(E) (the region below Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to
(∞, 1) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (1,∞).

iii) If (u0, v0) ∈ W−(E) (the region above Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)} tends to
(1,∞) and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} tends to (∞, 1).

Proof. The proof is similar to the proof of the previous theorem using the fact that every solution of equation (13) is
bounded from below by 1.

Figure 2: Visual illustration of Theorems 12, 13, 14 and 15 . Figures are generated by Dynamica 3,
[15].

Theorem 15 If 4γ + 2β + β2 = 3 then Eq. (13) has a unique equilibrium point E(x, x ) which is a nonhyperbolic point
and a global attractor.

Proof. From Theorem 11 Eq.(13) has a unique equilibrium point E(x, x), which is non-hyperbolic. All conditions of
Theorem 4 are satisfied, which yields the existence a continuous increasing curve CE which is a subset of the basin of

attraction of E and for every x ∈ W−(E) (the region above CE) there exists n0 ∈ N such that Tn(x) ∈ intQ2(
−
x) for

n ≥ n0 and for every x ∈ W+(E) (the region below CE) there exists n0 ∈ N such that Tn(x) ∈ intQ4(
−
x) for n ≥ n0.

Set

U(t) =
βt+

√
β2t2 + (3− 2β − β2)(t2 − t)

2(t− 1)
.
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It is easy to see that (t, U(t)) �se E if t < x and E �se (t, U(t)) if t > x. One can show that

T 2(t, U(t)) =

t, (tβ + s)4(8t2 +
tβ+(3+(−2+4t−β)β)

t−1
+

(3+(−2+4t−β)β)s
t−1

8t4(−3 + t(3 + (−2 + 4t− β)β) + β(2 + β + 2s))2

 ,

where
s =

√
t(t(3− 2β) + (β − 1)(β + 3).

Now we have that
T 2(t, U(t)) �se (t, U(t)) if t > x

and
(t, U(t)) �se T 2(t, U(t)) if t < x

since
(tβ+s)4(8t2+

tβ+(3+(−2+4t−β)β)
t−1

+
(3+(−2+4t−β)β)s

t−1

8t4(−3+t(3+(−2+4t−β)β)+β(2+β+2s))2
− βt+

√
β2t2+(3−2β−β2)(t2−t)

2(t−1)
> 0,

if and only if t > x. By monotonicity if t < x then we obtain that T 2n(t, U(t))→ E as n→∞ and if t > x then we have
that T 2n(t, U(t))→ E as n→∞.

If (u′, v′) ∈ intQ2(
−
x) then there exists t1 such that (t1, U(t1)) �se (u′, v′) �se E. By monotonicity of the map T 2

we obtain that T 2n(t1, U(t1)) �se T 2n(u′, v′) �se E which implies that T 2n(u′, v′)→ E and T 2n+1(u′, v′)→ T (E) = E,
as n→∞ which proves the statement ii).

If (u′′, v′′) ∈ intQ4(
−
x) then there exists t2 such that E �se (u′′, v′′) �se (t2, U(t2)). By monotonicity of the map

T 2 we obtain that E �se T 2n(u′′, v′′) �se T 2n(t2, U(t2)) which implies that T 2n(u′′, v′′) → E and T 2n+1(u′′, v′′) →
T (E) = E as n→∞ which proves the statement iii), which completes the proof of the Theorem.

Remark 4 Theorems 12, 13, 14 and 15 show another type of period doubling bifurcation. When 4γ + 2β + β2 ≤ 3 all
solutions are asymptotic to the unique equilibrium E. When 4γ+ 2β+β2 > 3 and β+ γ < 1 all solutions which starts off
the global stable manifold of the unique equilibrium E are asymptotic to the unique minimal period-two solution {P,Q}.
Finally, when 4γ + 2β + β2 > 3 and β + γ ≥ 1 all solutions which starts off the global stable manifold of the unique
equilibrium E are asymptotic to (1,∞) or to (∞, 1).
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Abstract

In the paper, the authors introduce a new concept geometrically mean convex function
on co-ordinates and establish some new integral inequalities of Hermite–Hadamard type for
geometrically mean convex functions of two variables on the co-ordinates.
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1 Introduction

The following definitions are well known in the literature.

Definition 1.1 ([3, 4]). A function f : ∆ = [a, b] × [c, d] ⊆ R2 → R is said to be convex on the
co-ordinates on ∆ with a < b and c < d if the partial mappings

fy : [a, b]→ R, fy(u) = f(u, y) and fx : [c, d]→ R, fx(v) = f(x, v)

are convex for all x ∈ (a, b) and y ∈ (c, d).

Definition 1.2 ([3, 4]). A function f : ∆ = [a, b]×[c, d]→ R is said to be convex on the co-ordinates
on ∆ with a < b and c < d if

f(tx+ (1− t)z, λy+ (1−λ)w) ≤ tλf(x, y) + t(1−λ)f(x,w) + (1− t)λf(z, y) + (1− t)(1−λ)f(z, w)

holds for all t, λ ∈ [0, 1], (x, y), (z, w) ∈ ∆.

Definition 1.3 ([1]). A function f : ∆ = [a, b]× [c, d] ⊆ R2 → R+ is called co-ordinated log-convex
on ∆ with a < b and c < d for all t, λ ∈ [0, 1] and (x, y), (z, w) ∈ ∆, if

f(tx+ (1− t)z, λy+ (1− λ)w) ≤ [f(x, y)]tλ[f(x,w)]t(1−λ)[f(z, y)](1−t)λ[f(z, w)](1−t)(1−λ).

1
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In recent years, the following integral inequalities of Hermite–Hadamard type for the above
kinds of convex functions were published.

Theorem 1.1 ([3, Theorem 2.2] and [4, Theorem 2.2]). Let f : ∆ = [a, b] × [c, d] → R be convex
on the co-ordinates on ∆ with a < b and c < d. Then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ 1

4

[
1

b− a

(∫ b

a

f(x, c) dx+

∫ b

a

f(x, d) dx

)
+

1

d− c

(∫ d

c

f(a, y) d y +

∫ d

c

f(b, y) d y

)]
≤ 1

4

[
f(a, c) + f(b, c) + f(a, d) + f(b, d)

]
.

Theorem 1.2 ([7, Theorem 2.3]). Let f : ∆ = [a, b]× [c, d]→ R be a partial differentiable function

on ∆. If
∣∣ ∂2f
∂x∂y

∣∣ is convex on the co-ordinates on ∆, then∣∣∣∣∣19
[
f

(
a,
c+ d

2

)
+ f

(
b,
c+ d

2

)
+4f

(
a+ b

2
,
c+ d

2

)
+f

(
a+ b

2
, c

)
+f

(
a+ b

2
, d

)]

+
1

36

[
f(a, c) + f(a, d) + f(b, c) + f(b, d)

]
+

1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y −A

∣∣∣∣∣
≤
(

5

72

)2

(b− a)(d− c)
{∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣+∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣+∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣+∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣},
where

A =
1

b− a

∫ b

a

{
1

6

[
f(x, c) + 4f

(
x,
c+ d

2

)
+f(x, d)

]}
dx

+
1

d− c

∫ d

c

{
1

6

[
f(a, y) + 4f

(
a+ b

2
, y

)
+f(b, y)

]}
d y.

Theorem 1.3 ([6, Theorem 2]). Let f : ∆ = [a, b] × [c, d] → R be a partial differentiable function

on ∆. If
∣∣ ∂2f
∂x∂y

∣∣ is convex on the co-ordinates on ∆, then∣∣∣∣∣ 1

(b− a)(d− c)

∫ d

c

∫ b

a

f(x, y) dxd y + f

(
a+ b

2
,
c+ d

2

)
−A

∣∣∣∣∣
≤ (b− a)(d− c)

16

[∣∣∂2f(a,c)
∂x∂y

∣∣+∣∣∂2f(a,d)
∂x∂y

∣∣+∣∣∂2f(b,c)
∂x∂y

∣∣+∣∣∂2f(b,d)
∂x∂y

∣∣
4

]
,

where

A =
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
d y.

2
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Theorem 1.4 ([1, Corollary 3.1]). Suppose that f : ∆ = [a, b] × [c, d] → R+ is log-convex on the
co-ordinates on ∆. Then

ln f

(
a+ b

2
,
c+ d

2

)
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

ln f(x, y) dxd y

≤ ln f(a, c) + ln f(b, c) + ln f(a, d) + ln f(b, d)

4
.

In the papers [2, 5, 8, 9, 10, 11], there are also some new results on this topic.

2 A definition and lemmas

In this section, we introduce the notion “geometrically mean convex function” and establish an
integral identity.

Definition 2.1. A function f : ∆ = [a, b] × [c, d] ⊆ R2
+ → R+ is said to be geometrically mean

convex on the co-ordinates on ∆ with a < b and c < d, if

f
(
xtz1−t, yλw1−λ) ≤ [f(x, y)][t+λ]/4[f(x,w)][t+(1−λ)]/4[f(z, y)][(1−t)+λ]/4[f(z, w)][(1−t)+(1−λ)]/4

holds for all t, λ ∈ [0, 1] and (x, y), (z, w) ∈ ∆.

In order to prove our main results, we need the following integral identity.

Lemma 2.1. Let f : ∆ = [a, b]× [c, d] ⊆ R2
+ → R have partial derivatives of the second order with

a < b and c < d. If ∂2f
∂x∂y ∈ L1(∆), where L1(∆) denotes the set of all Lebesgue integrable functions

on ∆, then

S(f) ,
4

(ln b− ln a)(ln d− ln c)

[
f(a, c) + f(b, c) + f(a, d) + f(b, d)

4

−A+
1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dx d y

]
=

∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∂2

∂x∂y
f
(
atb1−t, cλd1−λ

)
d tdλ

−
∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∂2

∂x∂y
f
(
atb1−t, c1−λdλ

)
d tdλ

−
∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∂2

∂x∂y
f
(
a1−tbt, cλd1−λ

)
d tdλ

+

∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∂2

∂x∂y
f
(
a1−tbt, c1−λdλ

)
d tdλ,

where

A =
1

2(ln b− ln a)

∫ b

a

[
f(x, c)

x
+
f(x, d)

x

]
dx+

1

2(ln d− ln c)

∫ d

c

[
f(a, y)

y
+
f(b, y)

y

]
d y.

3
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Proof. Let x = atb1−t and y = cλd1−λ for 0 ≤ t, λ ≤ 1. Using integration by parts, we have∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∂2

∂x∂y
f
(
atb1−t, cλd1−λ

)
d tdλ

=
1

ln a− ln b

∫ 1

0

λcλd1−λ
[
t
∂

∂y
f
(
atb1−t, cλd1−λ

)∣∣∣1
0
−
∫ 1

0

∂

∂y
f
(
atb1−t, cλd1−λ

)
d t

]
dλ

=
1

ln a− ln b

[ ∫ 1

0

λcλd1−λ
∂

∂y
f
(
a, cλd1−λ

)
dλ−

∫ 1

0

∫ 1

0

λcλd1−λ
∂

∂y
f
(
atb1−t, cλd1−λ

)
d tdλ

]
=

1

(ln b− ln a)(ln d− ln c)

[
f(a, c)−

∫ 1

0

f
(
a, cλd1−λ

)
dλ

−
∫ 1

0

f
(
atb1−t, c

)
d t+

∫ 1

0

∫ 1

0

f
(
atb1−t, cλd1−λ

)
d tdλ

]
=

1

(ln b− ln a)(ln d− ln c)

[
f(a, c)− 1

ln b− ln a

∫ b

a

f(x, c)

x
dx

− 1

ln d− ln c

∫ d

c

f(a, y)

y
d y +

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dxd y

]
.

Similarly, we have∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∂2

∂x∂y
f
(
atb1−t, c1−λdλ

)
d tdλ

= − 1

(ln b− ln a)(ln d− ln c)

[
f(a, d)− 1

ln b− ln a

∫ b

a

f(x, d)

x
dx

− 1

ln d− ln c

∫ d

c

f(a, y)

y
d y +

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dxd y

]
,∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∂2

∂x∂y
f
(
a1−tbt, cλd1−λ

)
d tdλ

= − 1

(ln b− ln a)(ln d− ln c)

[
f(b, c)− 1

ln b− ln a

∫ b

a

f(x, c)

x
dx

− 1

ln d− ln c

∫ d

c

f(b, y)

y
d y +

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dx d y

]
,

and ∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∂2

∂x∂y
f
(
a1−tbt, c1−λdλ

)
d tdλ

=
1

(ln b− ln a)(ln d− ln c)

[
f(b, d)− 1

ln b− ln a

∫ b

a

f(x, d)

x
dx

− 1

ln d− ln c

∫ d

c

f(b, y)

y
d y +

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dx d y

]
.

Lemma 2.1 is proved.
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Lemma 2.2. Let u, v > 0. Then

F (u, v) ,
∫ 1

0

tutv1−t d t =


L(u, v)− u
ln v − lnu

, u 6= v,

1

2
u, u = v,

(2.1)

where L(u, v) is logarithmic mean defined by

L(u, v) ,
∫ 1

0

utv1−t d t =


v − u

ln v − lnu
, u 6= v,

u, u = v.

Proof. The proof is straightforward.

3 Some integral inequalities of Hermite–Hadamard type

In this section, we prove some new inequalities of Hermite–Hadamard type for geometrically mean
convex functions.

Theorem 3.1. Let f : ∆ = [a, b] × [c, d] ⊆ R2
+ → R be a partial differentiable function on ∆

with a < b, c < d and ∂2f
∂x∂y ∈ L1(∆). If

∣∣∣ ∂2f
∂x∂y

∣∣∣q is geometrically mean convex functions on the

co-ordinates on ∆ for q ≥ 1, then

|S(f)| ≤
[
F (a, b)F (c, d)

]1−1/q[
F
(
Mq(a, a),Mq(b, b)

)
F
(
Nq(c, c), Nq(d, d)

)]1/q
+
[
F (a, b)F (d, c)

]1−1/q[
F
(
Mq(a, a),Mq(b, b)

)
F
(
Nq(d, d), Nq(c, c)

)]1/q
+
[
F (b, a)F (c, d)

]1−1/q[
F
(
Mq(b, b),Mq(a, a)

)
F
(
Nq(c, c), Nq(d, d)

)]1/q
+
[
F (b, a)F (d, c)

]1−1/q[
F
(
Mq(b, b),Mq(a, a)

)
F
(
Nq(d, d), Nq(c, c)

)]1/q
,

(3.1)

where F (u, v) is defined by (2.1),

Mq(u
r, u) = ur

[∣∣∣∣∂2f(u, c)

∂x∂y

∣∣∣∣∣∣∣∣∂2f(u, d)

∂x∂y

∣∣∣∣]q/4, Nq(v
r, v) = vr

[∣∣∣∣∂2f(a, v)

∂x∂y

∣∣∣∣∣∣∣∣∂2f(b, v)

∂x∂y

∣∣∣∣]q/4 (3.2)

for r ≥ 0.

Proof. Since
∣∣∣ ∂2f
∂x∂y

∣∣∣q is geometrically mean convex on coordinates ∆, using Lemma 2.1 and by

Hölder’s integral inequality, we have

|S(f)| ≤
∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, cλd1−λ

)∣∣∣∣d tdλ

+

∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, c1−λdλ

)∣∣∣∣d tdλ

+

∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, cλd1−λ

)∣∣∣∣d tdλ

+

∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, c1−λdλ

)∣∣∣∣d tdλ

5
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≤
(∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ d tdλ

)1−1/q[∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[t+λ]/4
×
∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4

d tdλ

]1/q
+

(∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ d tdλ

)1−1/q[∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

×
∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[t+λ]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4 d tdλ

]1/q
+

(∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ d tdλ

)1−1/q[∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4
×
∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[t+λ]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

d tdλ

]1/q
+

(∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ d tdλ

)1−1/q[∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4

×
∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[t+λ]/4 d tdλ

]1/q
.

(3.3)

Also by Lemma 2.2, we have∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ d tdλ = F (a, b)F (c, d) (3.4)

and ∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[t+λ]/4∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

×
∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4

d tdλ

=

∫ 1

0

∫ 1

0

tλ[Mq(a, a)]t[Mq(b, b)]
1−t[Nq(c, c)]

λ[Nq(d, d)]1−λ d tdλ

= F
(
Mq(a, a),Mq(b, b)

)
F
(
Nq(c, c), Nq(d, d)

)
.

By simple computation,∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ d tdλ = F (a, b)F (d, c),

∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ d tdλ = F (b, a)F (c, d),∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ d tdλ = F (b, a)F (d, c),∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[t+λ]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4

6
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×
∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4 d tdλ = F
(
Mq(a, a),Mq(b, b)

)
F
(
Nq(d, d), Nq(c, c)

)
,∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[t+λ]/4
×
∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

d tdλ = F
(
Mq(b, b),Mq(a, a)

)
F
(
Nq(c, c), Nq(d, d)

)
and∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

×
∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[t+λ]/4 d tdλ = F
(
Mq(b, b),Mq(a, a)

)
F
(
Nq(d, d), Nq(c, c)

)
. (3.5)

Substituting equalities (3.4) to (3.5) into the inequality (3.3) and rearranging yield the inequal-
ity (3.1). Theorem 3.1 is proved.

Corollary 3.1.1. Under the conditions of Theorem 3.1, when q = 1, we have

|S(f)| ≤ F (M1(a, a),M1(b, b))F (N1(c, c), N1(d, d)) + F (M1(a, a),M1(b, b))F (N1(d, d), N1(c, c))

+ F
(
M1(b, b),M1(a, a)

)
F (N1(c, c), N1(d, d)) + F

(
M1(b, b),M1(a, a)

)
F (N1(d, d), N1(c, c)),

where F (u, v) is defined by (2.1), and Mq(u
r, u) and Nq(v

r, v) are defined by (3.2).

Theorem 3.2. Let f : ∆ = [a, b] × [c, d] ⊆ R2
+ → R be a partial differentiable function on ∆

with a < b, c < d and ∂2f
∂x∂y ∈ L1(∆). If

∣∣∣ ∂2f
∂x∂y

∣∣∣q is geometrically mean convex functions on the

co-ordinates on ∆ for q > 1 and q ≥ r ≥ 0, then

|S(f)| ≤
[
F (a(q−r)/(q−1), b(q−r)/(q−1))F (c(q−r)/(q−1), d(q−r)/(q−1))

]1−1/q

×
[
F
(
Mq(a

r, a),Mq(b
r, b)

)
F
(
Nq(c

r, c), Nq(d
r, d)

)]1/q
+
[
F (a(q−r)/(q−1), b(q−r)/(q−1))F (d(q−r)/(q−1), c(q−r)/(q−1))

]1−1/q

×
[
F
(
Mq(a

r, a),Mq(b
r, b)

)
F
(
Nq(d

r, d), Nq(c
r, c)

)]1/q
+
[
F (b(q−r)/(q−1), a(q−r)/(q−1))F (c(q−r)/(q−1), d(q−r)/(q−1))

]1−1/q

×
[
F
(
Mq(b

r, b),Mq(a
r, a)

)
F
(
Nq(c

r, c), Nq(d
r, d)

)]1/q
+
[
F (b(q−r)/(q−1), a(q−r)/(q−1))F (d(q−r)/(q−1), c(q−r)/(q−1))

]1−1/q

×
[
F
(
Mq(b

r, b),Mq(a
r, a)

)
F
(
Nq(d

r, d), Nq(c
r, c)

)]1/q
,

where F (u, v) is defined by (2.1), and Mq(u
r, u) and Nq(v

r, v) are defined by (3.2).

7
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Proof. From Lemma 2.1, we have

|S(f)| ≤
∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, cλd1−λ

)∣∣∣∣ d tdλ

+

∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, c1−λdλ

)∣∣∣∣d tdλ

+

∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, cλd1−λ

)∣∣∣∣d tdλ

+

∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, c1−λdλ

)∣∣∣∣d tdλ.

(3.6)

Using Hölder’s integral inequality, and by the geometrically mean convexity of
∣∣∣ ∂2f
∂x∂y

∣∣∣q on ∆ and

Lemma 2.2, it is easy to observe that∫ 1

0

∫ 1

0

tλatb1−tcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, cλd1−λ

)∣∣∣∣ d tdλ

≤
(∫ 1

0

∫ 1

0

tλ
(
atb1−tcλd1−λ

)(q−r)/(q−1)
d tdλ

)1−1/q

×
[∫ 1

0

∫ 1

0

tλartbr(1−t)crλdr(1−λ)
∣∣∣∣∂2f(a, c)

∂x∂y

∣∣∣∣q[t+λ]/4∣∣∣∣∂2f(a, d)

∂x∂y

∣∣∣∣q[t+(1−λ)]/4

×
∣∣∣∣∂2f(b, c)

∂x∂y

∣∣∣∣q[(1−t)+λ]/4∣∣∣∣∂2f(b, d)

∂x∂y

∣∣∣∣q[(1−t)+(1−λ)]/4

d tdλ

]1/q
=
[
F
(
a(q−r)/(q−1), b(q−r)/(q−1)

)
F
(
c(q−r)/(q−1), d(q−r)/(q−1)

)]1−1/q

×
[
F
(
Mq(a

r, a),Mq(b
r, b)

)
F
(
Nq(c

r, c), Nq(d
r, d)

)]1/q
.

(3.7)

Similarly, we can show that∫ 1

0

∫ 1

0

tλatb1−tc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
atb1−t, c1−λdλ

)∣∣∣∣d tdλ

≤
[
F
(
a(q−r)/(q−1), b(q−r)/(q−1)

)
F
(
d(q−r)/(q−1), c(q−r)/(q−1)

)]1−1/q

×
[
F
(
Mq(a

r, a),Mq(b
r, b)

)
F
(
Nq(d

r, d), Nq(c
r, c)

)]1/q
,∫ 1

0

∫ 1

0

tλa1−tbtcλd1−λ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, cλd1−λ

)∣∣∣∣d tdλ

=
[
F
(
b(q−r)/(q−1), a(q−r)/(q−1)

)
F
(
c(q−r)/(q−1), d(q−r)/(q−1)

)]1−1/q

×
[
F
(
Mq(b

r, b),Mq(a
r, a)

)
F
(
Nq(c

r, c), Nq(d
r, d)

)]1/q
,

and ∫ 1

0

∫ 1

0

tλa1−tbtc1−λdλ
∣∣∣∣ ∂2

∂x∂y
f
(
a1−tbt, c1−λdλ

)∣∣∣∣d tdλ

≤
[
F
(
b(q−r)/(q−1), a(q−r)/(q−1)

)
F
(
d(q−r)/(q−1), c(q−r)/(q−1)

)]1−1/q

×
[
F
(
Mq(b

r, b),Mq(a
r, a)

)
F
(
Nq(d

r, d), Nq(c
r, c)

)]1/q
.

(3.8)
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Using the inequalities (3.7) to (3.8) in the inequality (3.6), we conclude the required inequality.
The proof is completed.

Corollary 3.2.1. Under the conditions of Theorem 3.2,

1. when r = 0, we deduce

|S(f)| ≤
[
F (aq/(q−1), bq/(q−1))F (cq/(q−1), dq/(q−1))

]1−1/q

×
[
F
(
Mq(1, a),Mq(1, b)

)
F
(
Nq(1, c), Nq(1, d)

)]1/q
+
[
F (aq/(q−1), bq/(q−1))F (dq/(q−1), cq/(q−1))

]1−1/q

×
[
F
(
Mq(1, a),Mq(1, b)

)
F
(
Nq(1, d), Nq(1, c)

)]1/q
+
[
F (bq/(q−1), aq/(q−1))F (cq/(q−1), dq/(q−1))

]1−1/q

×
[
F
(
Mq(1, b),Mq(1, a)

)
F
(
Nq(1, c), Nq(1, d)

)]1/q
+
[
F (bq/(q−1), aq/(q−1))F (dq/(q−1), cq/(q−1))

]1−1/q

×
[
F
(
Mq(1, b),Mq(1, a)

)
F
(
Nq(1, d), Nq(1, c)

)]1/q
;

2. when r = q, we have

|S(f)| ≤
(

1

4

)1−1/q{[
F
(
Mq(a

q, a),Mq(b
q, b)

)
F
(
Nq(c

q, c), Nq(d
q, d)

)]1/q
+
[
F
(
Mq(a

q, a),Mq(b
q, b)

)
F
(
Nq(d

q, d), Nq(c
q, c)

)]1/q
+
[
F
(
Mq(b

q, b),Mq(a
q, a)

)
F
(
Nq(c

q, c), Nq(d
q, d)

)]1/q
+
[
F
(
Mq(b

q, b),Mq(a
q, a)

)
F
(
Nq(d

q, d), Nq(c
q, c)

)]1/q}
,

where F (u, v) is defined by (2.1), and Mq(u
r, u) and Nq(v

r, v) are defined by (3.2).

Proof. This follows from letting r = 0 and r = q respectively in Theorem 3.2.

Theorem 3.3. Let f : ∆ = [a, b]× [c, d] ⊆ R2
+ → R+ be integrable on ∆ with a < b, c < d. If f is

geometrically mean convex on ∆, then

f
(√
ab ,
√
cd
)
≤ 1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

[
f(x, y)f

(
x, cdy

)
f
(
ab
x , y

)
f
(
ab
x ,

cd
y

)]1/4
xy

dxd y

≤
[
f(a, c)f(a, d)f(b, c)f(b, d)

]1/4
.

Proof. Taking x = atb1−t and y = cλd1−λ for 0 ≤ t, λ ≤ 1 and using the geometrically mean
convexity of f , we have

f
(√
ab ,
√
cd
)

=

∫ 1

0

∫ 1

0

f
(
[atb1−t]1/2[a1−tbt]1/2, [cλd1−λ]1/2[c1−λdλ]1/2

)
d tdλ
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≤
∫ 1

0

∫ 1

0

[
f
(
atb1−t, cλd1−λ

)
f
(
atb1−t, c1−λdλ

)
f
(
a1−tbt, cλd1−λ

)
f
(
a1−tbt, c1−λdλ

)]1/4
d tdλ

=
1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

[
f(x, y)f

(
x, cdy

)
f
(
ab
x , y

)
f
(
ab
x ,

cd
y

)]1/4
xy

dx d y

and ∫ 1

0

∫ 1

0

[
f
(
atb1−t, cλd1−λ

)
f
(
atb1−t, c1−λdλ

)
f
(
a1−tbt, cλd1−λ

)
f
(
a1−tbt, c1−λdλ

)]1/4
d tdλ

≤
∫ 1

0

∫ 1

0

{
[f(a, c)]t+λ[f(a, d)]t+(1−λ)[f(b, c)](1−t)+λ[f(b, d)](1−t)+(1−λ)

× [f(a, d)]t+λ[f(a, c)]t+(1−λ)[f(b, d)](1−t)+λ[f(b, c)](1−t)+(1−λ)

× [f(b, c)]t+λ[f(b, d)]t+(1−λ)[f(a, c)](1−t)+λ[f(a, d)](1−t)+(1−λ)

× [f(b, d)]t+λ[f(b, c)]t+(1−λ)[f(a, d)](1−t)+λ[f(a, c)](1−t)+(1−λ)}1/16 d tdλ

=

∫ 1

0

∫ 1

0

[
f(a, c)f(a, d)f(b, c)f(b, d)

]1/4
d tdλ =

[
f(a, c)f(a, d)f(b, c)f(b, d)

]1/4
.

The proof of Theorem 3.3 is complete.

Theorem 3.4. Let f : ∆ = [a, b]× [c, d] ⊆ R2
+ → R+ be integrable on ∆ with a < b, c < d. If f is

geometrically mean convex on ∆, then

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dxd y

≤ L
(
[f(a, c)f(a, d)]1/4, [f(b, c)f(b, d)]1/4

)
L
(
[f(a, c)f(b, c)]1/4, [f(a, d)f(b, d)]1/4

)
,

where L(u, v) is the logarithmic mean.

Proof. Putting x = atb1−t and y = cλd1−λ for 0 ≤ t, λ ≤ 1, from the geometrically mean convexity
of f , we obtain

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)

xy
dxd y =

∫ 1

0

∫ 1

0

f
(
atb1−t, cλd1−λ

)
d tdλ

≤
∫ 1

0

∫ 1

0

{
[f(a, c)]t+λ[f(a, d)]t+(1−λ)[f(b, c)](1−t)+λ[f(b, d)](1−t)+(1−λ)}1/4 d tdλ

= L
(
[f(a, c)f(a, d)]1/4, [f(b, c)f(b, d)]1/4

)
L
(
[f(a, c)f(b, c)]1/4, [f(a, d)f(b, d)]1/4

)
.

The proof of Theorem 3.4 is complete.

Theorem 3.5. Let f : ∆ = [a, b]× [c, d] ⊆ R2
+ → R+ be integrable on ∆ with a < b, c < d. If f is

co-ordinated geometrically mean convex on ∆, then

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y) dxd y

≤ L
(
a[f(a, c)f(a, d)]1/4, b[f(b, c)f(b, d)]1/4

)
L
(
c[f(a, c)f(b, c)]1/4, d[f(a, d)f(b, d)]1/4

)
,

where L(u, v) is the logarithmic mean.
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Proof. Similar to the proof of Theorem 3.4, by the geometrically mean convexity of f , we drive

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y) dxd y =

∫ 1

0

∫ 1

0

atb1−tcλd1−λf
(
atb1−t, cλd1−λ

)
d tdλ

≤
∫ 1

0

∫ 1

0

atb1−tcλd1−λ
{

[f(a, c)]t+λ[f(a, d)]t+(1−λ)[f(b, c)](1−t)+λ[f(b, d)](1−t)+(1−λ)}1/4 d tdλ

= L
(
a[f(a, c)f(a, d)]1/4, b[f(b, c)f(b, d)]1/4

)
L
(
c[f(a, c)f(b, c)]1/4, d[f(a, d)f(b, d)]1/4

)
.

The proof of Theorem 3.5 is complete.

We proceed similarly as in the proof of Theorem 3.3 to Theorem 3.5, we can get

Theorem 3.6. Let f, g : ∆ = [a, b]× [c, d] ⊆ R2
+ → R+ be integrable on ∆ with a < b, c < d. If f

and g are co-ordinated geometrically mean convex on ∆, then

f
(√
ab ,
√
cd
)
g
(√
ab ,
√
cd
)
≤ 1

(ln b− ln a)(ln d− ln c)

×
∫ d

c

∫ b

a

[
f(x, y)g(x, y)f

(
x, cdy

)
g
(
x, cdy

)
f
(
ab
x , y

)
g
(
ab
x , y

)
f
(
ab
x ,

cd
y

)
g
(
ab
x ,

cd
y

)]1/4
xy

dxd y

≤
[
f(a, c)g(a, c)f(a, d)g(a, d)f(b, c)g(b, c)f(b, d)g(b, d)

]1/4
.

Theorem 3.7. Under the conditions of Theorem 3.6, we have

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)g(x, y)

xy
dx d y

≤ L
(
[f(a, c)g(a, c)f(a, d)g(a, d)]1/4, [f(b, c)g(b, c)f(b, d)g(b, d)]1/4

)
× L

(
[f(a, c)g(a, c)f(b, c)g(b, c)]1/4, [f(a, d)g(a, d)f(b, d)g(b, d)]1/4

)
and

1

(ln b− ln a)(ln d− ln c)

∫ d

c

∫ b

a

f(x, y)g(x, y) dx d y

≤ L
(
a[f(a, c)g(a, c)f(a, d)g(a, d)]1/4, b[f(b, c)g(b, c)f(b, d)g(b, d)]1/4

)
× L

(
c[f(a, c)g(a, c)f(b, c)g(b, c)]1/4, d[f(a, d)g(a, d)f(b, d)g(b, d)]1/4

)
.
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Abstract. In this paper, we consider the generalized Hyers-Ulam stability

for the following quadratic functional equation.

f(ax + by) + f(ax− by) + Gf (x, y) = 2a2f(x) + 2b2f(y)

Here Gf is a functional operator of f . We consider some sufficient conditions

on Gf which can be applied easily for the generalized Hyers-Ulam stability,

and illustrate some new functional equations by using them.

1. Introduction

In 1940, Ulam proposed the following stability problem (See [17]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant

δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→

G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique

homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

*Corresponding author.
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2 CHANG IL KIM, GILJUN HAN, AND JEONGWOOK CHANG

In 1941, Hyers [7] answered this problem under the assumption that the groups are

Banach spaces. Aoki [1] and Rassias [13] generalized the result of Hyers. Th. M.

Rassias [13] solved the generalized Hyers-Ulam stability of the functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for some ε ≥ 0 and p with p < 1 and for all x, y ∈ X, where f : X −→ Y is a

function between Banach spaces. The paper of Rassias [13] has provided a lot of

influence in the development of what we call the generalized Hyers-Ulam stability

or Hyers-Ulam-Rassias stability of functional equations. A generalization of the

Rassias’ theorem was obtained by Gǎvruta [5] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias’ approach.

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation and a solution of a quadratic functional

equation is called quadratic. A generalized Hyers-Ulam stability problem for the

quadratic functional equation was proved by Skof [16] for mappings f : X −→ Y ,

where X is a normed space and Y is a Banach space. Cholewa [2] noticed that

the theorem of Skof is still true if the relevant domain X is replaced by an Abelian

group. Czerwik [3] proved the generalized Hyers-Ulam stability for the quadratic

functional equation and Park [12] proved the generalized Hyers-Ulam stability of

the quadratic functional eqution in Banach modules over a C∗-algebra.

Rassias [14] investigated the following Euler-Lagrange functional equation

f(ax+ by) + f(bx− ay) = 2(a2 + b2)[f(x) + f(y)]

and Gordji and Khodaei [6] investigated other Euler-Lagrange functional equations

f(ax+ by) + f(ax− by) =
b(a+ b)

2
f(x+ y)

+
b(a+ b)

2
f(x− y) + (2a2 − ab− b2)f(x) + (b2 − ab)f(y)

(1.2)

for fixed integers a, b with b 6= a,−a,−3a and

(1.3) f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y)
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3

for fixed integers a, b with a2 6= b2 and ab 6= 0.

In this paper, we are interested in what kind of terms can be added to the

quadratic functional equation

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y)

while the generalized Hyers-Ulam stability still holds for the new functional equa-

tion.

We denote the added term by Gf (x, y) which can be regarded as a functional

operator depending on the variables x, y, and function f . Then the new functional

equation can be written as

f(ax+ by) + f(ax− by) +Gf (x, y) = 2a2f(x) + 2b2f(y)

for some rational numbers a, b with ab 6= 0 and a2 6= b2. The precise definition of Gf

is given in section 2. In fact, the functional operator Gf (x, y) was introduced and

considered in the case of the additive functional equations with somewhat different

point of view by the authors([11]).

The new observation in this article makes possible to prove many previous prob-

lems on quadratic functional equations more easily and provides methods to con-

struct new ones. So we can have a larger class of functional equations related with

quadratic functions for the generalized Hyers-Ulam stability. We illustrate some

new functional equations in section 3 in order to see how our observation works for

the generalized Hyers-Ulam stability.

2. Quadratic functional equations with general terms

Let X be a real normed linear space and Y a real Banach space. For given l ∈ N

and any i ∈ {1, 2, · · ·, l}, let σi : X ×X −→ X be a binary operation such that

σi(rx, ry) = rσi(x, y)

for all x, y ∈ X and all r ∈ R. It is clear that σi(0, 0) = 0.

Also let F : Y l −→ Y be a linear, continuous function. For a map f : X −→ Y ,

define

Gf (x, y) = F (f(σ1(x, y)), f(σ2(x, y)), · · ·, f(σl(x, y))).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

158 CHANG IL KIM et al 156-169



4 CHANG IL KIM, GILJUN HAN, AND JEONGWOOK CHANG

Here, Gf is a functional operator on the function space {f |f : X −→ Y }. In this

paper, for an appropriate function φ : X2 −→ [0,∞), we consider the functional

inequalty

(2.1) ‖f(ax+ by) + f(ax− by) +Gf (x, y)− 2a2f(x)− 2b2f(y)‖ ≤ φ(x, y)

for fixed non-zero rational numbers a, b with a2 6= b2, where the functional operator

Gf satisfies

(2.2) Gf (x, 0) ≡ λ[f(ax)− a2f(x)]

for some λ(λ 6= −2). Here, ≡ means that Gf (x, 0) = λ[f(ax) − a2f(x)] holds for

all x ∈ X and all f : X −→ Y .

In fact, as we shall see in Theorem 2.2, for a function f with f(0) = 0 satisfying

the equation

(2.3) f(ax+ by) + f(ax− by) +Gf (x, y) = 2a2f(x) + 2b2f(y),

f is quadratic if and only if Gf (x, 0) = λ[f(ax)− a2f(x)] and Gf (x, y) = Gf (y, x).

So the condition (2.2) is reasonable for the stability problem of (2.1). From now

on, we assume that the functional operator Gf satisfies the condition (2.2) unless

otherwise stated. We deonte

Hf (x, y) = f(x+ y) + f(x− y)− 2f(x)− 2f(y).

The following lemma is proved in the authors’ previous paper [10].

Lemma 2.1. [10] Consider the following functional equation.

(2.4) f(ax+ by) + f(ax− by) + cHf (x, y) = 2a2f(x) + 2b2f(y)

for fixed non-zero rational numbers a, b with a2 6= b2 and a real number c. Then if

f : X −→ Y satisfies (2.4) and f(0) = 0, f is quadratic.

By using Lemma 2.1, we can examine the properties of a solution function of the

equation (2.3).

Theorem 2.2. Suppose the equation (2.3) holds. Then the following coditions are

equivalent :

(1) f is quadratic.

(2) Gf (x, y) = Gf (y, x) for all x, y ∈ X, and f(0) = 0
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(3) There are non-zero rational numbers m,n, δ such that a2m2 6= b2n2 and

(2.5) Gf (mx, ny) = δHf (x, y), f(mx) = m2f(x), f(nx) = n2f(x)

for all x, y ∈ X.

Proof. We prove the theorem by showing (1) ⇒ (2) ⇒ (3) ⇒ (1)

(1) ⇒ (2) Since f is quadratic, f(0) = 0 and Gf (x, y) = 0 for all x, y ∈ X. So

Gf (x, y) satisfies (2) with λ = 0 in (2.2).

(2) ⇒ (3) Putting y = 0 in (2.3) and by (2.2), we have

(2.6) (2 + λ)[f(ax)− a2f(x)] = 0

for all x ∈ X and since f(0) = 0, Gf (x, 0) = 2
(
a2f(x)− f(ax)

)
= 0. From the

condition Gf (x, 0) = Gf (0, x), we have

f(bx) + f(−bx) = 2b2f(x)

for all x ∈ X and so we have

(2.7) b2f(x) = b2f(−x)

for all x ∈ X. Since b 6= 0, by (2.7), f is even and hence f(bx) = b2f(x) for all

x ∈ X. Thus (2.3) becomes

Hf (ax, by) +Gf (x, y) = 0,

and from the condition Gf (x, y) = Gf (y, x) we have

(2.8) Gf (x, y) = −Hf (ay, bx)

for all x, y ∈ X. Replacing x and y by ax and by respectively in (2.8), we have

Gf (ax, by) = −Hf (aby, abx)

= −a2b2Hf (y, x)

= −a2b2Hf (x, y)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

160 CHANG IL KIM et al 156-169



6 CHANG IL KIM, GILJUN HAN, AND JEONGWOOK CHANG

for all x, y ∈ X. The last equality comes from the fact that f is even. Note that

a4 6= b4. So we have (3) with m = a, n = b, δ = −a2b2.

(3) ⇒ (1) By (2.3) and (3),

δHf (x, y)−Gf (mx, ny)

= δHf (x, y) + f(amx+ bny) + f(amx− bny)− 2a2f(mx)− 2b2f(ny)

= δHf (x, y) + f(amx+ bny) + f(amx− bny)− 2a2m2f(x)− 2b2n2f(y)

= 0

for all x, y ∈ X. Since a2m2 6= b2n2, by Lemma 2.1, f is quadratic. �

Now we prove the following stability theorem.

Theorem 2.3. Let φ : X2 −→ [0,∞) be a function such that

∞∑
n=0

a−2nφ(anx, any) <∞(2.9)

for all x, y ∈ X. Assume that Gf (x, y) satisfies one of the conditions in Thorem 2.2

when the equation (2.3) holds, and let f : X −→ Y be a mapping such that

(2.10) ‖f(ax+ by) + f(ax− by) +Gf (x, y)− 2a2f(x)− 2b2f(y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X −→ Y such

that

(2.11) ‖Q(x)− f(x)− f(0)‖ ≤ 1

|λ+ 2|

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Proof. By the standard argument, we may assume that f(0) = 0.

Setting y = 0 in (2.10), we have

‖f(ax) + 2−1Gf (x, 0)− a2f(x)‖ ≤ 2−1φ(x, 0)

for all x ∈ X and by (2.2), we have
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(2.12) ‖f(x)− a−2f(ax)‖ ≤ 1

|λ+ 2|
a−2φ(x, 0)

for all x ∈ X. Replacing x by anx in (2.12) and dividing (2.12) by a2n, we have

‖a−2nf(anx)− a−2(n+1)f(an+1x)‖ ≤ 1

|λ+ 2|
a−2(n+1)φ(anx, 0)

for all x ∈ X and all non-negative integer n. For m,n ∈ N ∪ {0} with 0 ≤ m < n,

‖a−2mf(amx)− a−2nf(anx)‖

= a−2m‖f(amx)− a−2(n−m)f(an−m(amx))‖

≤ 1

|λ+ 2|

n−1∑
k=m

a−2(k+1)φ(akx, 0)

(2.13)

for all x ∈ X. By (2.13), {a−2nf(anx)} is a Cauchy sequence in Y and since Y is

a Banach space, there exists a mapping Q : X −→ Y such that

Q(x) = lim
n−→∞

a−2nf(anx)

for all x ∈ X and

‖Q(x)− f(x)‖ ≤ 1

|λ+ 2|

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X. Replacing x and y by anx and any respectively in (2.10) and dividing

(2.10) by a2n, we have

‖a−2nf(an(ax+ by)) + a−2nf(an(ax− by)) + a−2nGf (anx, any)

− 2 · a2 · a−2nf(anx)− 2 · b2 · a−2nf(any)‖ ≤ a−2nφ(anx, any)

for all x, y ∈ X and letting n→∞ in the above inequality, we have

Q(ax+ by) +Q(ax− by)

+ lim
n−→∞

a−2nGf (anx, any)− 2a2Q(x)− 2b2Q(y) = 0
(2.14)

for all x, y ∈ X. Since F is continuous, we have
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lim
n−→∞

a−2nGf (anx, any)

= lim
n−→∞

F (a−2nf(anσ1(x, y)), a−2nf(anσ2(x, y)), · · · , a−2nf(anσl(x, y)))

= F (Q(σ1(x, y)), Q(σ2(x, y)), · · · , Q(σl(x, y)))

= GQ(x, y)

for all x, y ∈ X. Hence by (2.14), we have

(2.15) Q(ax+ by) +Q(ax− by) +GQ(x, y) = 2a2Q(x) + 2b2Q(y)

for all x, y ∈ X. Since Q satisfies (2.3), Q is quadratic by Theorem 2.2.

Now, we show the uniqueness of Q. Suppose that Q0 is a quadratic mapping

with (2.11). Then we have

‖Q(x)−Q0(x)‖

= a−2k‖Q(akx)−Q0(akx)‖

≤ 2

|λ+ 2|

∞∑
n=k

a−2(n+1)φ(anx, 0)

for all x ∈ X. Hence, letting k →∞ in the above inequality, we have

Q(x) = Q0(x)

for all x ∈ X. �

Theorem 2.4. Assume that Gf satisfies all of the conditions in Theorem 2.3. Let

φ : X2 −→ [0,∞) be a function such that

∞∑
n=0

a2nφ(a−nx, a−ny) <∞

for all x, y ∈ X. Let f : X −→ Y be a mapping such that

‖f(ax+ by) + f(ax− by) +Gf (x, y)− 2a2f(x)− 2b2f(y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X −→ Y such

that

‖Q(x)− f(x)− f(0)‖ ≤ 1

|λ+ 2|

∞∑
n=0

a2(n+1)φ(a−nx, 0)
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for all x ∈ X.

As examples of φ(x, y) in Theorem 2.3 and Theorem 2.4, we can take φ(x, y) =

ε(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p) which is appeared in [11]. Then we can formulate the

following corollary

Corollary 2.5. Assume that all of the conditions in Theorem 2.3 are satisfied.

Let p be a real number with p 6= 1. Let f : X −→ Y be a mapping such that

‖f(ax+ by) + f(ax− by)− 2a2f(x)− 2b2f(y) +Gf (x, y)‖

≤ ε(‖x‖p‖y‖p + ‖x‖2p + ‖x‖2p)

for fixed non-zero rational numbers a, b with a2 6= b2, a fixed positive real number ε,

and all x, y ∈ X. Then there exists a unique quadratic mapping Q : X −→ Y such

that

‖Q(x)− f(x)− f(0)‖ ≤ ε‖x‖2p

a2|λ+ 2|[1− a2(p−1)]

(p < 1 and |a| > 1, or p > 1 and |a| < 1)

and

‖Q(x)− f(x)− f(0)‖ ≤ a2ε‖x‖2p

|λ+ 2|[1− a2(1−p)]

(p > 1 and |a| > 1, or p < 1 and |a| < 1)

for all x ∈ X.

3. Applications

In this section we illustrate how the theorems in section 2 work well for the

generalized Hyers-Ulam stability of various quadratic functional equations. By

applying the results in this article, we can construct many concrete members in our

calss of functional equations easily.

First, we consider the following functional equation related with Theorem 2.3.

f(ax+ by) + f(ax− by) + f(x+ y) + f(x− y)

+ f(y − x)− f(−x)− f(−y) = 2(a2 + 1)f(x) + 2(b2 + 1)f(y)
(3.1)

for fixed non-zero rational numbers a, b with a2 6= b2.
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Using Theorem 2.3, we can prove the stability for (3.1).

Theorem 3.1. Let φ : X2 −→ [0,∞) be a function with (2.9) and f : X −→ Y a

mapping such that

‖f(ax+ by) + f(ax− by) + f(x+ y) + f(x− y) + f(y − x)

− f(−x)− f(−y)− 2(a2 + 1)f(x)− 2(b2 + 1)f(y)‖ ≤ φ(x, y).
(3.2)

for fixed non-zero rational numbers a, b with a2 6= b2, and all x, y ∈ X. Then there

exists a unique quadratic mapping Q : X −→ Y such that Q satisfies (3.1) and

(3.3) ‖Q(x)− f(x)− f(0)‖ ≤ 1

2

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Proof. In this case, Gf (x, y) = f(x+ y) + f(x− y) + f(y − x)− f(−x)− f(−y)−

2f(x) − 2f(y). So Gf (x, 0) = 0. Hence Gf and f satisfies all the conditions in

Theorem 2.3. and the functional inequality (3.2) can be rewritten as the functional

inequality

‖f(ax+ by) + f(ax− by) +Gf (x, y)− 2a2f(x)− 2b2f(y)‖ ≤ φ(x, y).

By Theorem 2.3, we get the result. �

When the equation (2.3) holds, Gf (x, y) can be represented as different forms.

In some cases, these forms together help us to analyze a solution. Especially the

following case happens often in some interesting equations. We will give an example

later.

Lemma 3.2. Suppose when the equation (2.3) with a2 6= b4 holds, Gf (x, y) can be

represented as both of the followings.

(3.4) Gf (0, y) = k[f(y)− f(−y)]

(3.5) Gf (x, by) = k1Hf (x, y)
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for all x, y ∈ X and a fixed positive real number k with k 6= b2, and a fixed real

number k1.

Then Gf satisfies the condition (3) in Theorem 2.2.

Proof. Suppose that (2.3) holds. Then we have

Gf (0, y)−Gf (0,−y) = 2b2[f(y)− f(−y)]

for all y ∈ X. Also by (3.4), we have

Gf (0, y)−Gf (0,−y) = 2k[f(y)− f(−y)]

Since k 6= b2, f is even and so f(bx) = b2f(x). By (3.5) and a2 6= b4, we get the

result with m = 1, n = b, and k1 = δ. �

Note that Lemma 3.2 is still valid if we does not impose the condition (2.2) on

Gf . By Lemma 3.2 and Theorem 2.3, we can formulate the following proposition.

Proposition 3.3. Let φ be a function in Theorem 2.2 and suppose that Gf (x, y)

satisfies the condition in Lemma 3.2 when the equation (2.3) holds. Then there

exists a unique quadratic mapping Q : X −→ Y such that

‖Q(x)− f(x)− f(0)‖ ≤ 1

|λ+ 2|

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Now, we consider the following functional equation related with Proposition 3.3.

f(ax+ by) + f(ax− by)− f(bx+ y)− f(bx− y) + 2f(bx)

= 2a2f(x) + 2(b2 − 1)f(y)
(3.6)

for fixed non-zero rational numbers a, b with a2 6= b2 and a2 6= b4.

Theorem 3.4. Let φ : X2 −→ [0,∞) be a function such that

∞∑
n=0

a−2nφ((anx, any) <∞

for all x, y ∈ X. Let f : X −→ Y be a mapping such that
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‖f(ax+ by) + f(ax− by)− f(bx+ y)− f(bx− y)

+ 2f(bx)− 2a2f(x)− 2(b2 − 1)f(y)‖ ≤ φ(x, y).
(3.7)

Then there exists a unique quadratic mapping Q : X −→ Y such that Q satisfies

(3.6) and

‖Q(x)− f(x)− f(0)‖ ≤ 1

2

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Proof. It is enough to show with the condition f(0) = 0. In this case, Gf (x, y) =

−f(bx + y) − f(bx − y) + 2f(bx) + 2f(y). First we can check Gf (x, 0) = 0 as a

functional operator. Now suppose that f satisfies (3.6). Then Gf (0, y) = f(y) −

f(−y) for all y ∈ X and hence f(by) = b2f(y). So Gf (x, by) = −b2Hf (x, y). Since

all the conditions in Proposition 3.3 are satisfied, we have the result. �

Similar to Proposition 3.3, we have the following proposition :

Proposition 3.5. Suppose that f(0) = 0 and Gf (x, y) satisfies

(3.8) Gf (ax, y) = k2Hf (x, y)

for all x, y ∈ X and a fixed real number k2 when the equation (2.3) holds. Let

φ be a function in Theorem 2.3. Then there exists a unique quadratic mapping

Q : X −→ Y such that

‖Q(x)− f(x)− f(0)‖ ≤ 1

|λ+ 2|

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Finally, we consider the following functional equation related with Proposition

3.5.

(3.9) 2f(2x+ y) + f(2x− y) + f(x− 2y) = 13f(x) + 6f(y) + f(−y)

for all x, y ∈ X.
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Theorem 3.6. Let φ : X2 −→ [0,∞) be a function such that

∞∑
n=0

a−2nφ(anx, any) <∞

for all x, y ∈ X. Let f : X −→ Y be a mapping such that

‖2f(2x+ y) + f(2x− y) + f(x− 2y)− 13f(x)− 6f(y)− (−y)‖

≤ φ(x, y)
(3.10)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X −→ Y such

that Q satisfies (3.6) and

‖Q(x)− f(x)− f(0)‖ ≤ 1

3

∞∑
n=0

a−2(n+1)φ(anx, 0)

for all x ∈ X.

Proof. In this case Gf (x, y) = f(2x + y) + f(x − 2y) − 5f(x) − 4f(y) − f(−y), so

Gf (x, 0) = f(2x) − 4f(x) under the condition f(0) = 0. Now suppose f satisfies

(3.9). Since Gf (0, y) = 3[f(−y) − f(y)] for all y ∈ X, by the argument in Lemma

3.2, f is even. Aso, the functional equation (3.9) implies

(3.11) f(2x+ y) + f(2x− y) + Ḡf (x, y) = 8f(x) + 2f(y),

where Ḡf (x, y) = 1
3f(x+ 2y) + 1

3f(x− 2y)− 2
3f(x)− 1

3f(y)− 7
3f(−y).

Since f is even, we have Ḡf (2x, y) = 4
3Hf (x, y) for all x, y ∈ X. By (3.10), we

have

‖f(2x+ y) + f(2x− y) + Ḡf (x, y)− 8f(x)− 2f(y)‖

≤ 1

3
[φ(x, y) + φ(x,−y)]

(3.12)

for all x, y ∈ X and so by Proposition 3.5, we have the result. �
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A FIXED POINT APPROACH TO THE STABILITY OF EULER-LAGRANGE

SEXTIC (a, b)-FUNCTIONAL EQUATIONS IN ARCHIMEDEAN AND

NON-ARCHIMEDEAN BANACH SPACES

MOHAMMAD BAGHER GHAEMI, MEHDI CHOUBIN, REZA SAADATI, CHOONKIL PARK AND DONG YUN

SHIN

Abstract. In this paper, we present a fixed point method to prove the Hyers-Ulam stability of the

system of Euler-Lagrange quadratic-quartic functional equations
f(ax1 + bx2, y) + f(bx1 + ax2, y) + abf(x1 − x2, y)

= (a2 + b2)[f(x1, y) + f(x2, y)] + 4abf(x1+x2
2

, y),

f(x, ay1 + by2) + f(x, by1 + ay2) + 1
2
ab(a− b)2f(x, y1 − y2)

= (a2 − b2)2[f(x, y1) + f(x, y2)] + 8abf(x, y1+y2
2

)

(0.1)

for all numbers a and b with a + b /∈ {0,±1}, ab + 2 6= 2(a + b)2 and ab(a − b)2 + 4 6= 4(a + b)4

in Archimedean and non-Archimedean Banach spaces and we show that the approximation in non-

Archimedean Banach spaces is better than the approximation in (Archimedean) Banach spaces.

1. Introduction

The stability problem of functional equations started with the following question concerning sta-

bility of group homomorphisms proposed by Ulam [69] during a talk before a Mathematical Col-

loquium at the University of Wisconsin. In 1941, Hyers [32] gave a first affirmative answer to

the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [3] for additive

mappings and by Rassias [61] for linear mappings by considering an unbounded Cauchy differ-

ence, respectively. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruta [28]

by replacing the unbounded Cauchy difference by a general control function in the spirit of Ras-

sias’ approach. For more details about the results concerning such problems, the reader refer to

[2, 5, 8, 11, 14, 15, 24, 27, 29, 33, 34, 35, 36, 40, 41, 42, 44], [52]–[67] and [71, 72, 73].

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is related to a symmetric bi-additive mapping [1, 43]. It is natural that this equation is called a

quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is called

a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation was

solved by Skof [68]. In [14], Czerwik proved the Hyers-Ulam stability of the equation (1.1). Eshaghi

Gordji and Khodaei [25] obtained the general solution and the Hyers-Ulam stability of the following

quadratic functional equation: for all a, b ∈ Z\{0} with a 6= ±1,±b,

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y). (1.2)
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space.

Corresponding author: Dong Yun Shin.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

170 GHAEMI et al 170-181



M. B. GHAEMI, M. CHOUBIN, R. SADATI, C. PARK, D. SHIN

Jun and Kim [38] introduced the following cubic functional equation:

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (1.3)

and they established the general solution and the Hyers-Ulam stability for the functional equation

(1.3). Jun et al. [39] investigated the solution and the Hyers-Ulam stability for the cubic functional

equation

f(ax+ by) + f(ax− by) = ab2(f(x+ y) + f(x− y)) + 2a(a2 − b2)f(x), (1.4)

where a, b ∈ Z\{0} with a 6= ±1,±b. For other cubic functional equations, see [50].

Lee et. al. [48] considered the following functional equation:

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y) (1.5)

In fact, they proved that a mapping f between two real vector spaces X and Y is a solution of the

equation (1.5) if and only if there exists a unique symmetric bi-quadratic mapping B2 : X ×X → Y

such that f(x) = B2(x, x) for all x ∈ X. The bi-quadratic mapping B2 is given by

B2(x, y) =
1

12
(f(x+ y) + f(x− y)− 2f(x)− 2f(y)).

Obviously, the function f(x) = cx4 satisfies the functional equation (1.5), which is called the

quartic functional equation. For other quartic functional equations, see [13].

Ebadian et al. [16] proved the Hyers-Ulam stability of the following systems of the additive-quartic

functional equation:
f(x1 + x2, y) = f(x1, y) + f(x2, y),

f(x, 2y1 + y2) + f(x, 2y1 − y2)
= 4f(x, y1 + y2) + 4f(x, y1 − y2) + 24f(x, y1)− 6f(x, y2)

(1.6)

and the quadratic-cubic functional equation:
f(x, 2y1 + y2) + f(x, 2y1 − y2)

= 2f(x, y1 + y2) + 2f(x, y1 − y2) + 12f(x, y1),

f(x, y1 + y2) + f(x, y1 − y2) = 2f(x, y1) + 2f(x, y2).

(1.7)

For more details about the results concerning mixed type functional equations, the readers refer

to [18, 20, 21] and [23].

Recently, Ghaemi et. al. [30] and Cho et. al. [10] investigated the the stability of the following

systems of the quadratic-cubic functional equation:
f(ax1 + bx2, y) + f(ax1 − bx2, y) = 2a2f(x1, y) + 2b2f(x2, y),

f(x, ay1 + by2) + f(x, ay1 − by2)
= ab2(f(x, y1 + y2) + f(x, y1 − y2)) + 2a(a2 − b2)f(x, y1)

(1.8)

and the additive-quadratic-cubic functional equation:
f(ax1 + bx2, y, z) + f(ax1 − bx2, y, z) = 2af(x1, y, z),

f(x, ay1 + by2, z) + f(x, ay1 − by2, z) = 2a2f(x, y1, z) + 2b2f(x, y2, z),

f(x, y, az1 + bz2) + f(x, y, az1 − bz2)
= ab2(f(x, y, z1 + z2) + f(x, y, z1 − z2)) + 2a(a2 − b2)f(x, y, z1)

(1.9)
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in PN -spaces and PM -spaces, where a, b ∈ Z\{0} with a 6= ±1,±b. The function f : R × R → R
given by f(x, y) = cx2y3 is a solution of the system (1.8). In particular, letting y = x, we get a

quintic function g : R→ R in one variable given by g(x) := f(x, x) = cx5.

In this paper, we present a fixed point method to prove the Hyers-Ulam stability of the following

system of the Euler-Lagrange quadratic-quartic (a, b)-functional equation:
f(ax1 + bx2, y) + f(bx1 + ax2, y) + abf(x1 − x2, y)

= (a2 + b2)[f(x1, y) + f(x2, y)] + 4abf(x1+x2
2 , y),

f(x, ay1 + by2) + f(x, by1 + ay2) + 1
2ab(a− b)

2f(x, y1 − y2)
= (a2 − b2)2[f(x, y1) + f(x, y2)] + 8abf(x, y1+y2

2 )

(1.10)

for all numbers a and b with a + b /∈ {0,±1}, ab + 2 6= 2(a + b)2 and ab(a − b)2 + 4 6= 4(a + b)4 in

Archimedean and non-Archimedean Banach spaces. For details about the results concerning such

problems in non-Archimedean normed spaces, the reader refer to [9, 12, 17, 20, 26, 37, 46, 47, 55, 72].

It is easy to see that the function f : R × R → R defined by f(x, y) = cx2y4 is a solution of the

system (1.10). In particular, letting x = y, we get a sextic function h : R→ R in one variable given

by h(x) := f(x, x) = cx6.

The proof of the following propositions is evident.

Proposition 1.1. Let X and Y be real linear spaces. If a mapping f : X × X → Y satisfies the

system (1.10), then f(λx, µy) = λ2µ4f(x, y) for all x, y ∈ X and rational numbers λ, µ.

In this paper, we investigate the Hyers-Ulam stability of a sextic mapping from linear spaces into

Archimedean and non-Archimedean Banach spaces. Hensel [31] has introduced a normed space which

does not have the Archimedean property. During the last three decades theory of non-Archimedean

spaces has gained the interest of physicists for their research in particular in problems coming from

quantum physics, p–adic strings and superstrings [45]. Although many results in the classical normed

space theory have a non–Archimedean counterpart, their proofs are different and require a rather

new kind of intuition [4, 22, 51, 54, 70]. One may note that |n| ≤ 1 in each valuation field, every

triangle is isosceles and there may be no unit vector in a non-Archimedean normed space; cf. [51].

These facts show that the non-Archimedean framework is of special interest.

Definition 1.2. Let K be a field. A valuation mapping on K is a function | · | : K → R such that

for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a+ b| ≤ |a|+ |b|.

A field endowed with a valuation mapping will be called a valued field. If the condition (iii) in

the definition of a valuation mapping is replaced with

(iii)′ |a+ b| ≤ max{|a|, |b|}

then the valuation | · | is said to be non-Archimedean. The condition (iii)′ is called the strict triangle

inequality. By (ii), we have |1| = |−1| = 1. Thus, by induction, it follows from (iii)′ that |n| ≤ 1 for

each integer n. We always assume in addition that | · | is non trivial, i.e., that there is an a0 ∈ K such

that |a0| 6∈ {0, 1}.The most important examples of non-Archimedean spaces are p-adic numbers.
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Example 1.3. Let p be a prime number. For any non–zero rational number a = pr mn such that m

and n are coprime to the prime number p, define the p-adic absolute value |a|p = p−r. Then | · | is

a non-Archimedean norm on Q. The completion of Q with respect to | · | is denoted by Qp and is

called the p-adic number field.

Definition 1.4. Let X be a linear space over a scalar field K with a non-Archimedean non-trivial

valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies the

following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.5. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ < ε

for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence {xn} is

called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

‖xn − x‖ < ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn =

x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is

called a non-Archimedean Banach space.

In 2003, Radu [60] proposed a new method for obtaining the existence of exact solutions and error

estimations, based on the fixed point alternative (see also [6, 7]). Our aim is based on the following

fixed point approach:

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz condition

with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤ Ld(x, y) for all

x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called a strictly contractive

operator. Note that the distinction between the generalized metric and the usual metric is that the

range of the former is permitted to include the infinity. We recall the following theorem by Margolis

and Diaz.

Theorem 1.6. ([49, 60]) Suppose that we are given a complete generalized metric space (Ω, d) and

a strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then for each given x ∈ Ω,

either

d(Tmx, Tm+1x) =∞ for all m ≥ 0,

or there exists a natural number m0 such that

• d(Tmx, Tm+1x) <∞ for all m ≥ m0;
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• the sequence {Tmx} is convergent to a fixed point y∗ of T ;

• y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) <∞};
• d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

2. Sextic functional inequalities in non-Archimedean Banach spaces

Throughout this section, we will assume that X is a non-Archimedean Banach space. In this

section, we establish the conditional stability of sextic functional equations in non–Archimedean

Banach spaces.

Theorem 2.1. Let s ∈ {−1, 1} be fixed. Let E be a real or complex linear space and let X be a

non–Archimedean Banach space. Suppose f : E×E → X satisfies the condition f(x, 0) = f(0, y) = 0

and inequalities of the form

‖f(ax1 + bx2, y) + f(bx1 + ax2, y) + abf(x1 − x2, y)

−(a2 + b2)[f(x1, y) + f(x2, y)]− 4abf(
x1 + x2

2
, y)‖ ≤ φ(x1, x2, y), (2.1)

‖f(x, ay1 + by2) + f(x, by1 + ay2) +
1

2
ab(a− b)2f(x, y1 − y2)

−(a2 − b2)2[f(x, y1) + f(x, y2)]− 8abf(x,
y1 + y2

2
)‖ ≤ ψ(x, y1, y2), (2.2)

where φ, ψ : E × E × E → [0,∞) is given functions such that

φ((a+ b)sx1, (a+ b)sx2, (a+ b)sy) ≤ |a+ b|6sLφ(x1, x2, y),

ψ((a+ b)sx, (a+ b)sy1, (a+ b)sy2) ≤ |a+ b|6sLψ(x, y1, y2),
(2.3)

and have the properties

lim
n→∞

∣∣∣(a+ b)−6sn
∣∣∣φ((a+ b)snx1, (a+ b)snx2, (a+ b)sny

)
= 0,

lim
n→∞

∣∣∣(a+ b)−6sn
∣∣∣ψ((a+ b)snx, (a+ b)sny1, (a+ b)sny2

)
= 0,

(2.4)

for all x, x1, x2, y, y1, y2 ∈ E and a constant 0 < L < 1. Then there exists a unique sextic mapping

T : E × E → X satisfying the system (1.10) and

‖T (x, y)− f(x, y)‖ ≤ 1

1− L
Φ(x, y), (2.5)

where

Φ(x, y) :=

∣∣∣∣12
∣∣∣∣max

{ ∣∣(a+ b)−3s+1
∣∣φ((a+ b)

s−1
2 x, (a+ b)

s−1
2 x, (a+ b)

s−1
2 y
)
,∣∣(a+ b)−3s−3

∣∣ψ ((a+ b)
s+1
2 x, (a+ b)

s−1
2 y, (a+ b)

s−1
2 y
)}

for all x, y ∈ E.

Proof. We denote A := a+ b. Putting x1 = x2 = x in (2.1), we get

‖f(Ax, y)−A2f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣φ(x, x, y) (2.6)

for all x, y ∈ E. Putting y1 = y2 = y and replacing x by Ax in (2.2), we get

‖f(Ax,Ay)−A4f(Ax, y)‖ ≤
∣∣∣∣12
∣∣∣∣ψ(Ax, y, y) (2.7)
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for all x, y ∈ E. Thus by (2.6) and (2.7) we have

‖f(Ax,Ay)−A6f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣max

{∣∣A4
∣∣φ(x, x, y), ψ(Ax, y, y)

}
,

for all x, y ∈ E. By last inequality we get

‖A−6f(Ax,Ay)− f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣max

{∣∣A−2∣∣φ(x, x, y),
∣∣A−6∣∣ψ(Ax, y, y)

}
, (2.8)

‖A6f
( x
A
,
y

A

)
− f(x, y)‖ ≤

∣∣∣∣12
∣∣∣∣max

{∣∣A4
∣∣φ( x

A
,
x

A
,
y

A

)
, ψ
(
x,
y

A
,
y

A

)}
, (2.9)

for all x, y ∈ E. Therefore ∥∥∥∥ 1

A6s
f(Asx,Asy)− f(x, y)

∥∥∥∥ ≤ Φ(x, y), (2.10)

for all x, y ∈ E. We now consider the set

S = {h : E × E → X, h(x, 0) = h(0, x) = 0 for all x ∈ E}

and introduce the generalized metric on S as follows:

d(h, k) = inf
{
α ∈ R+ : ‖h(x, y)− k(x, y)‖ ≤ αΦ(x, y), ∀x, y ∈ E

}
where, as usual, inf ∅ = +∞. The proof of the fact that (S, d) is a complete generalized metric

space, can be found in [6]. Now we consider the mapping J : S → S defined by

Jh(x, y) := A−6sh(Asx,Asy)

for all h ∈ S and x, y ∈ E. Let f, g ∈ S such that d(f, g) < ε. Then

‖Jg(x, y)− Jf(x, y)‖ = ‖A−6sg(Asx,Asy)−A−6sf(Asx,Asy)‖

= |A−6s|‖g(Asx,Asy)− f(Asx,Asy)‖

≤ |A−6s|εΦ(Asx,Asy)

≤ LεΦ(x, y),

that is, if d(f, g) < ε, then we have d(Jf, Jg) ≤ Lε. This means that

d(Jf, Jg) ≤ Ld(f, g)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on S with the Lipschitz constant L.

It follows from (2.10) that

‖Jf(x, y)− f(x, y)‖ ≤ Φ(x, y)

for all x, y ∈ E which implies that d(Jf, f) ≤ 1. Due to Theorem 1.6, there exists a unique mapping

T : E × E → X such that T is a fixed point of J , i.e., T (Asx,Asy) = A6sT (x, y) for all x, y ∈ E.
Also, d(Jmf, T )→ 0 as m→∞, which implies the equality

lim
m→∞

A−6smf(Asmx,Asmy) = T (x, y)

for all x, y ∈ E.
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It follows from (2.1), (2.2) and (2.4) that

‖T (ax1 + bx2, y) + T (bx1 + ax2, y) + abT (x1 − x2, y)− (a2 + b2)[T (x1, y) + T (x2, y)]

− 4abT (
x1 + x2

2
, y)‖ =

lim
n→∞

‖f(Ans(ax1 + bx2), A
nsy)

A6ns
+
f(Ans(bx1 + ax2), A

nsy)

A6ns
+ ab

f(Ans(x1 − x2), Ansy)

A6ns

− (a2 + b2)
f(Ansx1, A

nsy) + f(Ansx2, A
nsy)

A6ns
− 4ab

f(Ans{x1 + x2/2}, Ansy)

A6ns
‖ =

lim
n→∞

|A−6ns|‖f(Ans(ax1 + bx2), A
nsy) + f(Ans(bx1 + ax2), A

nsy) + abf(Ans(x1 − x2), Ansy)

− (a2 + b2)[f(Ansx1, A
nsy) + f(Ansx2, A

nsy)]− 4abf(Ans{x1 + x2/2}, Ansy)‖

≤ lim
n→∞

|A−6ns|φ(Ansx1, A
nsx2, A

nsy) = 0,

(2.11)

for all x1, x2, y ∈ E, and

‖T (x, ay1 + by2) + T (x, by1 + ay2) +
1

2
ab(a− b)2T (x, y1 − y2)− (a2 − b2)2[T (x, y1) + T (x, y2)]

− 8abT (x,
y1 + y2

2
)‖ =

lim
n→∞

‖f(Ansx,Ans(ay1 + by2))

A6ns
+
f(Ansx,Ans(by1 + ay2))

A6ns

+
1

2
ab(a− b)2 f(Ansx,Ans(y1 − y2))

A6ns
‖ =

− (a2 − b2)2 f(Ansx,Ansy1) + f(Ansx,Ansy2)

A6ns
− 8ab(a+ b)2

f(Ansx,Ans{y1 + y2/2})
A6ns

‖

≤ lim
n→∞

|A6ns|ψ(Ansx,Ansy1, A
nsy2) = 0,

(2.12)

for all x, y1, y2 ∈ E. It follows from (2.11)) and (2.12) that T satisfies (1.10), that is, T is sextic.

According to the fixed point alternative, since T is the unique fixed point of J in the set Ω = {g ∈
S : d(f, g) <∞}, T is the unique mapping such that

‖f(x, y)− T (x, y)‖ ≤ Φ(x, y)

for all x, y ∈ E. Using the fixed point alternative, we obtain that

d(f, T ) ≤ 1

1− L
d(f, Jf) ≤ 1

1− L
Φ(x, y),

for all x, y ∈ E, which implies the inequality (2.5). �

Corollary 2.2. Let s ∈ {−1, 1} be fixed. Let E be a normed space and let F be a is a non-

Archimedean Banach space. Suppose f : E × E → F is a mapping with f(x, 0) = f(0, y) = 0 and

there exist constants θ, ϑ ≥ 0 and non-negative real number p such that ps < 6s and

‖f(ax1 + bx2, y) + f(bx1 + ax2, y) + abf(x1 − x2, y)

−(a2 + b2)[f(x1, y) + f(x2, y)]− 4abf(
x1 + x2

2
, y)‖ ≤ θ(‖x1‖p + ‖x2‖p + ‖y‖p),

‖f(x, ay1 + by2) + f(x, by1 + ay2) +
1

2
ab(a− b)2f(x, y1 − y2)

−(a2 − b2)2[f(x, y1) + f(x, y2)]− 8abf(x,
y1 + y2

2
)‖ ≤ ϑ(‖x‖p + ‖y1‖p + ‖y2‖p),
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for all x, x1, x2, y, y1, y2 ∈ E, where norms of the left-hand side of last inequalities is the non–

Archimedean norm on F . Then there exists a unique sextic mapping T : E × E → F such that

‖f(x, y)− T (x, y)‖ ≤ max
{ θ(2‖x‖p + ‖y‖p)

2s|a+ b|2 − 2s|a+ b|p−4
,
ϑ(‖|a+ b|x‖p + 2‖y‖p)
2s|a+ b|6 − 2s|a+ b|p

}
,

for all x, y ∈ E.

Proof. Defining

φ(x1, x2, y) = θ(‖x1‖p + ‖x2‖p + ‖y‖p), ψ(x, y1, y2) = ϑ(‖x‖p + ‖y1‖p + ‖y2‖p),

and applying Theorem 2.1, we get the desired result. �

3. Sextic functional inequalities in (Archimedean) Banach spaces

Throughout this section, we will assume that X is a (Archimedean) Banach space. In this section,

we establish the conditional stability of sextic functional equations.

Theorem 3.1. Let s ∈ {−1, 1} be fixed. Let E be a real or complex linear space and let X be a

(Archimedean) Banach space. Suppose f : E × E → X satisfies the condition f(x, 0) = f(0, y) = 0

and inequalities of (2.1) and (2.2), where φ, ψ : E×E×E → [0,∞) are given functions which satisfy

(2.3) and have the properties (2.4) for all x, x1, x2, y, y1, y2 ∈ E and a constant 0 < L < 1. Then

there exists a unique sextic mapping T : E × E → X satisfying the system (1.10) and

‖T (x, y)− f(x, y)‖ ≤ 1

1− L
Φ̃(x, y), (3.1)

where

Φ̃(x, y) :=

∣∣∣∣12
∣∣∣∣ { ∣∣(a+ b)−3s+1

∣∣φ((a+ b)
s−1
2 x, (a+ b)

s−1
2 x, (a+ b)

s−1
2 y
)

+
∣∣(a+ b)−3s−3

∣∣ψ ((a+ b)
s+1
2 x, (a+ b)

s−1
2 y, (a+ b)

s−1
2 y
)}

for all x, y ∈ E.

Proof. We denote A := a+ b. Putting x1 = x2 = x in (2.1), we get

‖f(Ax, y)−A2f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣φ(x, x, y) (3.2)

for all x, y ∈ E. Putting y1 = y2 = y and replacing x by Ax in (2.2), we get

‖f(Ax,Ay)−A4f(Ax, y)‖ ≤
∣∣∣∣12
∣∣∣∣ψ(Ax, y, y) (3.3)

for all x, y ∈ E. Thus by (3.2) and (3.3) we have

‖f(Ax,Ay)−A6f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣ {∣∣A4

∣∣φ(x, x, y) + ψ(Ax, y, y)
}
,

for all x, y ∈ E. By last inequality we get

‖A−6f(Ax,Ay)− f(x, y)‖ ≤
∣∣∣∣12
∣∣∣∣ {∣∣A−2∣∣φ(x, x, y) +

∣∣A−6∣∣ψ(Ax, y, y)
}
, (3.4)

‖A6f
( x
A
,
y

A

)
− f(x, y)‖ ≤

∣∣∣∣12
∣∣∣∣ {∣∣A4

∣∣φ( x
A
,
x

A
,
y

A

)
+ ψ

(
x,
y

A
,
y

A

)}
, (3.5)
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for all x, y ∈ E. Therefore ∥∥∥∥ 1

A6s
f(Asx,Asy)− f(x, y)

∥∥∥∥ ≤ Φ̃(x, y),

for all x, y ∈ E.

The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 3.2. Let s ∈ {−1, 1} be fixed. Let E be a normed space and let F be a (Archimedean)

Banach space. Suppose f : E × E → F is a mapping with f(x, 0) = f(0, y) = 0 and there exist

constants θ, ϑ ≥ 0 and non-negative real number p such that ps < 6s and

‖f(ax1 + bx2, y) + f(bx1 + ax2, y) + abf(x1 − x2, y)

−(a2 + b2)[f(x1, y) + f(x2, y)]− 4abf(
x1 + x2

2
, y)‖ ≤ θ(‖x1‖p + ‖x2‖p + ‖y‖p),

‖f(x, ay1 + by2) + f(x, by1 + ay2) +
1

2
ab(a− b)2f(x, y1 − y2)

−(a2 − b2)2[f(x, y1) + f(x, y2)]− 8abf(x,
y1 + y2

2
)‖ ≤ ϑ(‖x‖p + ‖y1‖p + ‖y2‖p),

for all x, x1, x2, y, y1, y2 ∈ E. Then there exists a unique sextic mapping T : E × E → F such that

‖f(x, y)− T (x, y)‖ ≤ θ(2‖x‖p + ‖y‖p)
2s|a+ b|2 − 2s|a+ b|p−4

+
ϑ(‖|a+ b|x‖p + 2‖y‖p)
2s|a+ b|6 − 2s|a+ b|p

,

for all x, y ∈ E.

Proof. Defining

φ(x1, x2, y) = θ(‖x1‖p + ‖x2‖p + ‖y‖p), ψ(x, y1, y2) = ϑ(‖x‖p + ‖y1‖p + ‖y2‖p),

and applying Theorem 3.1, we get the desired result. �

Remark 3.3. Comparison of (2.5) and (3.1) shows that the approximation in non-Archimedean

Banach spaces is better than the approximation in (Archimedean) Banach spaces.
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Abstract

In this paper, we study the global stability of a mathematical model that describes the virus

dynamics under the e¤ect of antibody immune response. The model is a modi�cation of some of the

existing virus dynamics models by considering the latently infected cells and nonlinear incidence

rate for virus infections. We show that the global dynamics of the model is completely determined

by two threshold values R0, the corresponding reproductive number of viral infection and R1, the

corresponding reproductive number of antibody immune response, respectively. Using Lyapunov

method, we have proven that, if R0 � 1, then the uninfected steady state is globally asymptotically

stable (GAS), if R1 � 1 < R0, then the infected steady state without antibody immune response

is GAS, and if R1 > 1, then the infected steady state with antibody immune response is GAS.

Keywords: Virus infection; Global stability; Immune response; Lyapunov function; nonlinear

infection rate.

1 Introduction

Recently, mathematical modeling and analysis of viral infections such as hepatitis C virus (HCV)

[1]-[3], hepatitis B virus (HBV) [4]-[5], human immunode�ciency virus (HIV) [6]-[15] human T cell

leukemia (HTLV) [16] have attracted the interest several researchers. In 1996, Nowak and Bangham

[7] has proposed the basic viral infection model which contains three compartments, the uninfected

target cells, infected cells and free virus particles. This model does not take into consideration the

latently infected cells which is due to the delay between the moment of infection and the moment

when the infected cell becomes active to produce infectious viruses. Latently infected cells have been

incorporated into the basic viral infection model in several papers (see e.g. [18], [19] and [20]). The
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basic viral infection model which takes into account the latently infected cells is given by [20]:

_x = �� dx� �xv; (1)

_w = �xv � (e+ b)w; (2)

_y = bw � ay; (3)

_v = ky � cv; (4)

where x, w; y and v representing the populations of the uninfected target cells, latently infected

cells, actively infected cells and free virus particles, respectively. Parameters � and k represent,

respectively, the rate at which new uninfected cells are generated from the source within the body,

and the generation rate constant of free viruses produced from the actively infected cells. Parameters

d, e, a and c are the natural death rate constants of the uninfected cells, latently infected cells, actively

infected cells and free virus particles, respectively. Parameter � is the infection rate constant. Eq. (2)

describes the population dynamics of the latently infected cells and show that they are converted to

actively infected cells with rate constant b. All the parameters given in model (1)-(4) are positive.

We observe that in model (1)-(4), the immune response has been neglected. To provide more

accurate modelling for the viral infection, the e¤ect of immune response has to be considered. The

antibody immune response which is based on the antibodies that are produced by the B cells plays

an important role in controlling the disease [17]. In the literature, several mathematical models have

been formulated to consider the antibody immune response into the viral infection models (see e.g.,

[21]-[24]). However, in [21]-[24], it was assumed that all the infected cells are active which is an

unrealistic assumption. The aim of this paper is to propose a viral infection model with antibody

immune response taking into consideration both latently and actively infected cells and investigate its

basic and global properties. The incidence rate is given by nonlinear function which is more general

than the bilinear incidence rate given in model (1)-(4). Using Lyapunov functions, we prove that

the global dynamics of the model is determined by two threshold parameters, the basic reproductive

number of viral infection R0 and the the basic reproductive number of antibody immune response R1.

If R0 � 1; then the infection-free steady state is globally asymptotically stable (GAS), if R1 � 1 < R0,

then the chronic-infection steady state without antibody immune response is GAS, and if R1 > 1,

then the chronic-infection steady state with antibody immune response is GAS.
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2 The mathematical model

In this section, we propose a viral infection model with latently infected cells and antibody immune

response. The incidence rate is given by a nonlinear infection rate.

_x = �� dx� �xnv

(�n + xn)(� + v)
; (5)

_w = (1� �) �xnv

(�n + xn)(� + v)
� (e+ b)w; (6)

_y = �
�xnv

(�n + xn)(� + v)
+ bw � ay; (7)

_v = ky � cv � rvz; (8)

_z = gvz � �z; (9)

where, z is the population of the antibody immune cells. Here �, � and n are positive constants. The

fractions (1 � �) and � with 0 < � < 1 are the probabilities that upon infection, an uninfected cell

will become either latently infected or actively infected. Parameters r, g and � are the removal rate

constant of the virus due to the antibodies, the proliferation rate constant of antibody immune cells

and the natural death rate constant of the antibody immune cells, respectively.

2.1 Positive invariance

We note that, model (5)-(9) is biologically acceptable in the sense that no population goes negative. It

is straightforward to check the positive invariance of the non-negative orthant R5�0 by model (5)-(9).

In the following, we show the boundednes of the solution of model (5)-(9).

Proposition 1. There exist positive numbers Li; i = 1; 2; 3 such that the compact set 
 =�
(x;w; y; v; z) 2 R5�0 : 0 � x;w; y � L1; 0 � v � L2; 0 � z � L3

	
is positively invariant.

Proof. Let X1(t) = x(t) + w(t) + y(t), then

_X1 = �� dx� ew � ay � �� s1X1;

where s1 = minfd; a; eg. Hence X1(t) � L1, if X1(0) � L1, where L1 =
�

s1
. Since x(t) > 0, w(t) � 0

and y(t) � 0, then 0 � x(t), w(t), y(t) � L1 if 0 � x(0) + w(0) + y(0) � L1. On the other hand, let

X2(t) = v(t) +
r
gz(t), then

_X2 = ky � cv �
r�

g
z � kL1 � s2

�
v +

r

g
z

�
= kL1 � s2X2;

where s2 = minfc; �g. Hence X2(t) � L2, if X2(0) � L2, where L2 =
kL1
s2
. Since v(t) � 0 and

z(t) � 0, then 0 � v(t) � L2 and 0 � z(t) � L3 if 0 � v(0) + r
gz(0) � L2, where L3 =

gL2
r .
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2.2 Steady states

In this subsection, we calculate the steady states of model (5)-(9) and derive two thresholds parameters.

The steady states of model (5)-(9) satisfy the following equations:

�� dx� �xnv

(�n + xn)(� + v)
= 0; (10)

(1� �) �xnv

(�n + xn)(� + v)
� (e+ b)w = 0; (11)

�
�xnv

(�n + xn)(� + v)
+ bw � ay = 0; (12)

ky � cv � rvz = 0; (13)

(gv � �)z = 0: (14)

Equation (14) has two possible solutions, z = 0 or v = �=g. If z = 0, then from Eqs. (11) and (12)

we obtain w and y as:

w =
(1� �)
e+ b

�xnv

(�n + xn)(� + v)
; y =

(e� + b)

a(e+ b)

�xnv

(�n + xn)(� + v)
: (15)

Substituting Eq. (15) into Eq. (13), we obtain

k(e� + b)

a(e+ b)

�xnv

(�n + xn)(� + v)
� cv = 0: (16)

Equation (16) has two possibilities, v = 0 or v 6= 0. If v = 0, then w = y = 0 and x = �
d which leads

to the uninfected steady state E0 = (x0; 0; 0; 0; 0), where x0 =
�
d . If v 6= 0, then from Eqs. (10) and

(16) we obtain

v =
k(e� + b)

ac(e+ b)

�xnv

(�n + xn)(� + v)
=
k(e� + b)(�� dx)

ac(e+ b)
(17)

) x = x0 �
ac(e+ b)

dk(e� + b)
v: (18)

From Eq. (18) into Eq. Eq. (16) we get

k(e� + b)

a(e+ b)

�
�
x0 � ac(e+b)

dk(e�+b)v
�n

�n +
�
x0 � ac(e+b)

dk(e�+b)v
�n v

(� + v)
� cv = 0:

Let us de�ne a function 	1 as

	1(v) =
k(e� + b)

a(e+ b)

�
�
x0 � ac(e+b)

dk(e�+b)v
�n

�n +
�
x0 � ac(e+b)

dk(e�+b)v
�n v

(� + v)
� cv = 0:

It is clear that, 	1(0) = 0, and when v = v =
x0dk(e�+b)
ac(e+b) > 0, then 	1(v) = �cv < 0. Since 	1(v) is

continuous for all v � 0; then we have

	01(0) = c

�
k(e� + b)

ac�(e+ b)

�xn0
�n + xn0

� 1
�
:
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Therefore, if 	01(0) > 0 i.e.
k(e� + b)

ac�(e+ b)

�xn0
�n + xn0

> 1;

then there exist a v1 2 (0; v) such that 	1(v1) = 0. From Eq. (13) we obtain y1 = c
kv1 > 0 and from

Eq. (10) we de�ne a function 	2 as:

	2(x) = �� dx�
�xnv1

(�n + xn)(� + v1)
= 0:

We have 	2(0) = � > 0 and 	2(x0) = � �xn0 v1
(�n+xn0 )(�+v1)

< 0. Since f(x) = xn

�n+xn is a strictly increasing

function of x; for all n; � > 0; then 	2 is a strictly decreasing function of x, and there exist a

unique x1 2 (0; x0) such that 	2(x1) = 0. It follows that, w1 =
(1��)
e+b

�xn1 v1
(�n+xn1 )(�+v1)

> 0 and y1 =
(e�+b)
a(e+b)

�xn1 v1
(�n+xn1 )(�+v1)

> 0. It means that, an infected steady state without antibody immune response

E1(x1; w1; y1; v1; 0) exists when
k(e�+b)
ac�(e+b)

�xn0
�n+xn0

> 1. Then we can de�ne the basic reproductive number

of viral infection as:

R0 =
k(e� + b)

ac�(e+ b)

�xn0
�n + xn0

:

The parameter R0 determines whether a chronic-infection can be established.

The other possibility of Eq. (14) is v2 =
�

g
. Inserting v2 in Eq. (10) and de�ning a function 	3

as:

	3(x) = �� dx�
�xnv2

(�n + xn)(� + v2)
= 0:

Note that, 	3 is a strictly decreasing function of x. Clearly, 	3(0) = � > 0 and 	3(x0) =

� �xn0 v2

(�n+xn0 )(�+v2)
< 0. Thus, there exists a unique x2 2 (0; x0) such that 	3(x2) = 0. It follows

from Eqs. (11)-(13) that,

w2 =
(1� �)
e+ b

�xn2v2
(�n + xn2 )(� + v2)

; y2 =
(e� + b)

a(e+ b)

�xn2v2
(�n + xn2 )(� + v2)

;

z2 =
c

r

�
k(e� + b)

ac(e+ b)

�xn2
(�n + xn2 )(� + v2)

� 1
�
:

Thus w2; y2 > 0, and if
k(e�+b)
ac(e+b)

�xn2
(�n+xn2 )(�+v2)

> 1, then z2 > 0. Now we de�ne the basic reproductive

number of antibody immune response:

R1 =
k(e� + b)

ac(e+ b)

�xn2
(�n + xn2 )(� + v2)

;

which determines whether a persistent antibody immune response can be established. Hence, z2 can

be rewritten as z2 = c
r (R1 � 1). It follows that, there exists an infected steady state with antibody

immune response E2(x2; w2; y2; v2; z2) when R1 > 1. Since x1 < x0 and v2 > 0, then

R1 =
k(e� + b)

ac(e+ b)

�xn2
(�n + xn2 )(� + v2)

<
k(e� + b)

ac�(e+ b)

�xn0
�n + xn0

= R0:

From above we have the following result.

Lemma 1 (i) if R0 � 1; then there exists only one positive steady state E0,

(ii) if R1 � 1 < R0; then there exist two positive steady states E0 and E1, and

(iii) if R1 > 1; then there exist three positive steady states E0, E1 and E2.
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3 Main results

In this section, we investigate the global stability of steady states E0, E1 and E2 employing the direct

Lyapunov method and LaSalle�s invariance principle.

3.1 Global stability of the uninfected steady state E0

Theorem 1. If R0 � 1; then E0 is globally asymptotically stable (GAS).

Proof. De�ne a Lyapunov functional W0 as follows:

W0 = x� x0 �
xZ

x0

xn0 (�
n + sn)

sn(�n + xn0 )
ds+

b

e� + b
w +

e+ b

e� + b
y +

a(e+ b)

k(e� + b)
v +

ar(e+ b)

kg(e� + b)
z:

Calculating dW0
dt along the trajectories of (5)-(9) as:

dW0

dt
=

�
1� x

n
0 (�

n + xn)

xn(�n + xn0 )

��
�� dx� �xnv

(�n + xn)(� + v)

�
+

b

e� + b

�
(1� �) �xnv

(�n + xn)(� + v)
� (e+ b)w

�
+
e+ b

e� + b

�
�

�xnv

(�n + xn)(� + v)
+ bw � ay

�
+
a(e+ b)

k(e� + b)
(ky � cv � rvz) + ar(e+ b)

kg(e� + b)
(gvz � �z)

= �

�
1� x

n
0 (�

n + xn)

xn(�n + xn0 )

��
1� x

x0

�
+

�xn0v

(�n + xn0 )(� + v)
� ac(e+ b)

k(e� + b)
v � ar�(e+ b)

kg(e� + b)
z

= �

�
1� x

n
0 (�

n + xn)

xn(�n + xn0 )

��
1� x

x0

�
+
ac(e+ b)

k(e� + b)

�
k(e� + b)

ac(e+ b)

�xn0
(�n + xn0 )(� + v)

� 1
�
v � ar�(e+ b)

kg(e� + b)
z

= �

�
1� x

n
0 (�

n + xn)

xn(�n + xn0 )

��
1� x

x0

�
+
ac(e+ b)

k(e� + b)

�
R0

�

� + v
� 1
�
v � ar�(e+ b)

kg(e� + b)
z

= �

�
1� x

n
0 (�

n + xn)

xn(�n + xn0 )

��
1� x

x0

�
+
ac(e+ b)

k(e� + b)

�
R0

�

� + v
� 1
�
v � ar�(e+ b)

kg(e� + b)
z

=
d�n(xn � xn0 ) (x0 � x)

xn(�n + xn0 )
+
ac(e+ b)

k(e� + b)
(R0 � 1)v �

ac(e+ b)R0
k(e� + b)

v2

� + v
� ar�(e+ b)
kg(e� + b)

z: (19)

We have (xn�xn0 ) (x0 � x) � 0 for all x; n > 0. Thus if R0 � 1 then dW0
dt � 0 for all x; v; z > 0. Thus,

the solutions of system (5)-(9) limited to M , the largest invariant subset of
n
dW0
dt = 0

o
[25]. Clearly,

it follows from Eq. (19) that dW0
dt = 0 if and only if x(t) = x0, v(t) = 0 and z(t) = 0. The set M is

invariant and for any element belongs to M satis�es v(t) = 0 and z(t) = 0, then _v(t) = 0. We can

see from Eq. (8) that, 0 = _v(t) = ky(t), and thus y(t) = 0. Moreover, from Eq. (7) we get w(t) = 0.

Hence, dW0
dt = 0 if and only if x(t) = x0, w(t) = 0, y(t) = 0; v(t) = 0 and z(t) = 0. From LaSalle�s

invariance principle, E0 is GAS.

3.2 Global stability of the infected steady state without antibody immune re-

sponse E1

Theorem 2. If R1 � 1 < R0; then E1 is GAS.
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Proof. We construct the following Lyapunov functional

W1 = x� x1 �
xZ

x1

xn1 (�
n + sn)

sn(�n + xn1 )
ds+

b

e� + b
w1H

�
w

w1

�

+
e+ b

e� + b
y1H

�
y

y1

�
+
a(e+ b)

k(e� + b)
v1H

�
v

v1

�
+
ar(e+ b)

kg(e� + b)
z:

The time derivative of W1 along the trajectories of (5)-(9) is given by

dW1

dt
=

�
1� x

n
1 (�

n + xn)

xn(�n + xn1 )

��
�� dx� �xnv

(�n + xn)(� + v)

�
+

b

e� + b

�
1� w1

w

��
(1� �) �xnv

(�n + xn)(� + v)
� (e+ b)w

�
+
e+ b

e� + b

�
1� y1

y

��
�

�xnv

(�n + xn)(� + v)
+ bw � ay

�
+
a(e+ b)

k(e� + b)

�
1� v1

v

�
(ky � cv � rvz) + ar(e+ b)

kg(e� + b)
(gvz � �z) : (20)

Applying � = dx1 +
�xn1 v1

(�n+xn1 )(�+v1)
and collecting terms of Eq. (20) we get

dW1

dt
=

�
1� x

n
1 (�

n + xn)

xn(�n + xn1 )

�
(dx1 � dx) +

�xn1v

(�n + xn1 )(� + v)

+
�xn1v1

(�n + xn1 )(� + v1)

�
1� x

n
1 (�

n + xn)

xn(�n + xn1 )

�
� b(1� �)

e� + b

�xnv

(�n + xn)(� + v)

w1
w
+
b(e+ b)

e� + b
w1 �

(e+ b)�

e� + b

�xnv

(�n + xn)(� + v)

y1
y

� (e+ b)b
e� + b

y1w

y
+
e+ b

e� + b
ay1 �

ac(e+ b)

k(e� + b)
v � a(e+ b)

(e� + b)

yv1
v
+
ac(e+ b)

k(e� + b)
v1

+
ar(e+ b)

k(e� + b)
v1z �

ar�(e+ b)

kg(e� + b)
z:

Using the equilibrium conditions for E1:

(1� �) �xn1v1
(�n + xn1 )(� + v1)

= (e+ b)w1; y1 =
(e� + b)

a(e+ b)

�xn1v1
(�n + xn1 )(� + v1)

; cv1 = ky1;

we obtain

dW1

dt
= dx1

�
1� x

n
1 (�

n + xn)

xn(�n + xn1 )

��
1� x

x1

�
+

�xn1v1
(�n + xn1 )(� + v1)

�
v(� + v1)

v1(� + v)
� v

v1

�
+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn1v1

(�n + xn1 )(� + v1)

�
1� x

n
1 (�

n + xn)

xn(�n + xn1 )

�
� b(1� �)

e� + b

�xn1v1
(�n + xn1 )(� + v1)

xn(�n + xn1 )(� + v1)vw1
xn1 (�

n + xn)(� + v)v1w

+
b(1� �)
e� + b

�xn1v1
(�n + xn1 )(� + v1)

� (e+ b)�
e� + b

�xn1v1
(�n + xn1 )(� + v1)

xn(�n + xn1 )(� + v1)vy1
xn1 (�

n + xn)(� + v)v1y

� b(1� �)
e� + b

�xn1v1
(�n + xn1 )(� + v1)

y1w

yw1
+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn1v1

(�n + xn1 )(� + v1)

�
�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn1v1

(�n + xn1 )(� + v1)

yv1
y1v

+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn1v1

(�n + xn1 )(� + v1)
+
ar(e+ b)

k(e� + b)

�
v1 �

�

g

�
z:
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Collecting terms we get

dW1

dt
= �d�

n(xn � xn1 ) (x� x1)
xn(�n + xn1 )

� �xn1�(v � v1)2
(�n + xn1 )(� + v)(� + v1)

2
+
ar(e+ b)

k(e� + b)

�
v1 �

�

g

�
z

+
b(1� �)
(e� + b)

�xn1v1
(�n + xn1 )(� + v1)

�
5� x

n
1 (�

n + xn)

xn(�n + xn1 )
� x

n(�n + xn1 )(� + v1)vw1
xn1 (�

n + xn)(� + v)v1w
� y1w
yw1

� yv1
y1v

� � + v

� + v1

�
+
(e+ b)�

(e� + b)

�xn1v1
(�n + xn1 )(� + v1)

�
4� x

n
1 (�

n + xn)

xn(�n + xn1 )
� x

n(�n + xn1 )(� + v1)vy1
xn1 (�

n + xn)(� + v)v1y
� yv1
y1v

� � + v

� + v1

�
:

(21)

Clearly, the �rst two terms of Eq. (21) are less than or equal zero. Because the geometrical mean is

less than or equal to the arithmetical mean, then the last two terms of Eq. (21) are less than or equal

zero. Now we show that if R1 � 1 then v1 � �
r = v2. This can be achieved if we show that

sgn (x2 � x1) = sgn (v1 � v2) = sgn (R1 � 1) :

We have

(xn2 � xn1 ) (x2 � x1) > 0; for all n > 0 (22)

Suppose that, sgn (x2 � x1) = sgn (v2 � v1). Using the conditions of the steady states E1 and E2 we

have

(�� dx2)� (�� dx1) =
�xn2v2

(�n + xn2 )(� + v2)
� �xn1v1
(�n + xn1 )(� + v1)

=
�xn2v2

(�n + xn2 )(� + v2)
� �xn2v1
(�n + xn2 )(� + v1)

+
�xn2v1

(�n + xn2 )(� + v1)
� �xn1v1
(�n + xn1 )(� + v1)

=
�xn2

�n + xn2

�(v2 � v1)
(� + v2)(� + v1)

+
�v1
� + v1

�
�n(xn2 � xn1 )

(�n + xn2 )(�
n + xn1 )

�
and from inequalities (22) we get:

sgn (x1 � x2) = sgn (x2 � x1) ;

which leads to contradiction. Thus, sgn (x2 � x1) = sgn (v1 � v2) : Using the steady state conditions

for E1 we have
k(e�+b)
ac(e+b)

�xn1
(�n+xn1 )(�+v1)

= 1, then

R1 � 1 =
k(e� + b)

ac(e+ b)

�
�xn2

(�n + xn2 )(� + v2)
� �xn1
(�n + xn1 )(� + v1)

�
=
k(e� + b)

ac(e+ b)

�
�xn2

(�n + xn2 )(� + v2)
� �xn2
(�n + xn2 )(� + v1)

+
�xn2

(�n + xn2 )(� + v1)
� �xn1
(�n + xn1 )(� + v1)

�
=
k(e� + b)

ac(e+ b)

�
�xn2 (v1 � v2)

(�n + xn2 )(� + v1)(� + v2)
+

��n(xn2 � xn1 )
(�n + xn2 )(�

n + xn1 )(� + v1)

�
:

From inequality (22) we get:

sgn (R1 � 1) = sgn (v1 � v2) :

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

189 M. A. Obaid 182-193



It follows that, if R1 � 1 then v1 � �
r = v2. Therefore, if R1 � 1 then

dW1
dt � 0 for all x;w; y; v; z > 0,

where the equality occurs at the steady state E1. LaSalle�s invariance principle implies the global

stability of E1.

3.3 Global stability of the infected steady state with antibody immune response

E2

Theorem 3. If R1 > 1, then E2 is GAS.

Proof. We construct the following Lyapunov functional

W2 = x� x2 �
xZ

x2

xn2 (�
n + sn)

sn(�n + xn2 )
ds+

b

e� + b
w2H

�
w

w2

�

+
e+ b

e� + b
y2H

�
y

y2

�
+
a(e+ b)

k(e� + b)
v2H

�
v

v2

�
+
ar(e+ b)

kg(e� + b)
z2H

�
z

z2

�
:

We calculate the time derivative of W2 along the trajectories of (5)-(9) as:

dW2

dt
=

�
1� x

n
2 (�

n + xn)

xn(�n + xn2 )

��
�� dx� �xnv

(�n + xn)(� + v)

�
+

b

e� + b

�
1� w2

w

��
(1� �) �xnv

(�n + xn)(� + v)
� (e+ b)w

�
+
e+ b

e� + b

�
1� y2

y

��
�

�xnv

(�n + xn)(� + v)
+ bw � ay

�
+
a(e+ b)

k(e� + b)

�
1� v2

v

�
(ky � cv � rvz) + ar(e+ b)

kg(e� + b)

�
1� z2

z

�
(gvz � �z) : (23)

Applying � = dx2 +
�xn2 v2

(�n+xn2 )(�+v2)
and collecting terms of Eq. (23) we get

dW2

dt
=

�
1� x

n
2 (�

n + xn)

xn(�n + xn2 )

�
(dx2 � dx) +

�xn2v

(�n + xn2 )(� + v)

+
�xn2v2

(�n + xn2 )(� + v2)

�
1� x

n
2 (�

n + xn)

xn(�n + xn2 )

�
� b(1� �)

e� + b

�xnv

(�n + xn)(� + v)

w2
w
+
b(e+ b)

e� + b
w2

� (e+ b)�
e� + b

�xnv

(�n + xn)(� + v)

y2
y
� (e+ b)b
e� + b

y2w

y
+
e+ b

e� + b
ay2 �

ac(e+ b)

k(e� + b)
v � a(e+ b)

(e� + b)

yv2
v

+
ac(e+ b)

k(e� + b)
v2 +

ar(e+ b)

k(e� + b)
v2z �

ar�(e+ b)

kg(e� + b)
z � ar(e+ b)

k(e� + b)
z2v +

ar�(e+ b)

kg(e� + b)
z2:

Using the steady state conditions for E2

(1� �) �xn2v2
(�n + xn2 )(� + v2)

= (e+ b)w2; �
�xn2v2

(�n + xn2 )(� + v2)
+ bw2 = ay2; ky2 = cv2 + rv2z2; � = gv2;
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we get

dW2

dt
= dx2

�
1� x

n
2 (�

n + xn)

xn(�n + xn2 )

��
1� x

x2

�
+

�xn2v2
(�n + xn2 )(� + v2)

�
v(� + v2)

v2(� + v)
� v

v2

�
+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn2v2

(�n + xn2 )(� + v2)

�
1� x

n
2 (�

n + xn)

xn(�n + xn2 )

�
� b(1� �)

e� + b

�xn2v2
(�n + xn2 )(� + v2)

xn(�n + xn2 )(� + v2)vw2
xn2 (�

n + xn)(� + v)v2w

+
b(1� �)
e� + b

�xn2v2
(�n + xn2 )(� + v2)

� (e+ b)�
e� + b

�xn2v2
(�n + xn2 )(� + v2)

xn(�n + xn2 )(� + v2)vy2
xn2 (�

n + xn)(� + v)v2y

� b(1� �)
e� + b

�xn2v2
(�n + xn2 )(� + v2)

y2w

yw2
+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn2v2

(�n + xn2 )(� + v2)

�
�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn2v2

(�n + xn2 )(� + v2)

yv2
y2v

+

�
b(1� �)
e� + b

+
(e+ b)�

e� + b

�
�xn2v2

(�n + xn2 )(� + v2)

= �d�
n(xn � xn2 ) (x� x2)
xn(�n + xn2 )

� �xn2�(v � v2)2
(�n + xn2 )(� + v)(� + v2)

2

+
b(1� �)
(e� + b)

�xn2v2
(�n + xn2 )(� + v2)

�
5� x

n
2 (�

n + xn)

xn(�n + xn2 )
� x

n(�n + xn2 )(� + v2)vw2
xn2 (�

n + xn)(� + v)v2w
� y2w
yw2

� yv2
y2v

� � + v

� + v2

�
+
(e+ b)�

(e� + b)

�xn2v2
(�n + xn2 )(� + v2)

�
4� x

n
2 (�

n + xn)

xn(�n + xn2 )
� x

n(�n + xn2 )(� + v2)vy2
xn2 (�

n + xn)(� + v)v2y
� yv2
y2v

� � + v

� + v2

�
:

(24)

Thus, if R1 > 1 then x2; w2; y2; v2 and z2 > 0. Clearly, dW2
dt � 0 and dW2

dt = 0 if and only if

x(t) = x2; w(t) = w2 and v(t) = v2. From Eq. (8), if v(t) = v2 and y(t) = y2, then _v(t) = 0 and

0 = ky2� cv2�rv2z(t), which yields z(t) = z2 and hence dW2
dt equal to zero at E2. LaSalle�s invariance

principle implies global stability of E2.

4 Conclusion

In this paper, we have proposed and analyzed a virus dynamics model with antibody immune re-

sponse. The model is a �ve dimensional that describe the interaction between the uninfected target

cells, latently infected cells, actively infected cells, free virus particles and antibody immune cells. The

incidence rate has been represented by nonlinear function. We have derived two threshold parameters,

the basic reproductive number of viral infection R0 and the basic reproductive number of antibody

immune response R1 which completely determined the basic and global properties of the virus dy-

namics model. Using Lyapunov method and applying LaSalle�s invariance principle we have proven

that, if R0 � 1, then the uninfected steady state is GAS, if R1 � 1 < R0, then the infected steady

state without antibody immune response is GAS, and if R1 > 1, then the infected steady state with

antibody immune response is GAS.
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Abstract : In this paper, we study the symmetry for the generalized twisted (h, q)-tangent numbers

T
(h)
n,χ,q,ζ and polynomials T

(h)
n,χ,q,ζ(x). We obtain some interesting identities of the power sums and the

generalized twisted polynomials T
(h)
n,χ,q,ζ(x) using the symmetric properties for the p-adic invariant

integral on Zp.

Key words : Symmetric properties, power sums, the tangent numbers and polynomials, the gen-
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1. Introduction

Recently, many mathematicians have studies different kinds of the Euler, Bernoulli, Genocchi,

Tangent numbers and polynomials(see [1-10]). These numbers and polynomials play important roles

in many different areas of mathematics such as number theory, combinatorics, special function and

analysis. The purpose of this paper is to obtain some interesting identities of the power sums and

generalized twisted (h, q)-tangent polynomials T
(h)
n,χ,q,ζ(x) using the symmetric properties for the

p-adic invariant integral on Zp.

Throughout this paper, we always make use of the following notations: N denotes the set of

natural numbers and Z+ = N ∪ {0} , C denotes the set of complex numbers, Zp denotes the ring

of p-adic rational integers, Qp denotes the field of p-adic rational numbers, and Cp denotes the

completion of algebraic closure of Qp. Let νp be the normalized exponential valuation of Cp with

|p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways such as an

indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume

that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for

|x|p ≤ 1.

Let UD(Zp) be the space of uniformly differentiable function on Zp. For g ∈ UD(Zp) the

fermionic p-adic invariant q-integral on Zp is defined by Kim as follows:

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, see [1, 2, 3] .

Note that

lim
q→1

I−q(g) = I−1(g) =

∫
Zp

g(x)dµ−1(x). (1.1)

If we take gn(x) = g(x+ n) in (1.1), then we see that

I−1(gn) = (−1)nI−1(g) + 2
n−1∑
l=0

(−1)n−1−lg(l). (1.2)
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Let a fixed positive integer d with (p, d) = 1, set

X = Xd = lim←−
N

(Z/dpNZ), X1 = Zp,

X∗ =
∪

0<a<dp
(a,p)=1

a+ dpZp,

a+ dpNZp = {x ∈ X | x ≡ a (mod dpN )},

where a ∈ Z satisfies the condition 0 ≤ a < dpN .

It is easy to see that

I−1(g) =

∫
X

g(x)dµ−1(x) =

∫
Zp

g(x)dµ−1(x). (1.3)

We assume that h ∈ Z. Let Tp = ∪N≥1CpN = limN→∞ CpN , where CpN = {ζ|wpN

= 1} is the cyclic
group of order pN . For ζ ∈ Tp, we denote by ϕζ : Zp → Cp the locally constant function x 7−→ ζx.

First, we introduce the tangent numbers and tangent polynomials. In [5], we investigated the

zeros of the tangent polynomials Tn(x). The tangent numbers Tn are defined by the generating

function:

F (t) =
2

e2t + 1
=

∞∑
n=0

Tn
tn

n!
(|t| < π

2
), cf. [5]

where we use the technique method notation by replacing Tn by Tn(n ≥ 0) symbolically. We consider

the tangent polynomials Tn(x) as follows:

F (x, t) =

(
2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (1.4)

Note that Tn(x) =
∑n

k=0

(
n
k

)
Tkx

n−k. In the special case x = 0, we define Tn(0) = Tn.

In [8], we introduced the generalized twisted (h, q)-tangent numbers T
(h)
n,χ,q,ζ and polynomials

T
(h)
n,χ,q,ζ(x) attached to χ. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡ 1(mod 2).

The generalized twisted (h, q)-tangent numbers T
(h)
n,χ,q,ζ attached to χ are defined by the generating

function:
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
=

∞∑
n=0

T
(h)
n,χ,q,ζ

tn

n!
, cf. [8]. (1.5)

We consider the generalized twisted (h, q)-tangent polynomials T
(h)
n,χ,q,w(x) attached to χ as follows:(

2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext =

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
. (1.6)

Let g(y) = χ(y)ϕζ(y)q
hye(2y+x)t. By (1.3), we derive

I−1

(
χ(y)ϕζ(y)q

hye(2y+x)t
)
=

∫
X

χ(y)ϕζ(y)q
hye(2y+x)tdµ−1(y)

=

(
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext

=
∞∑

n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
.

(1.7)

By using Taylor series of e(2y+x)t in the above equation (1.7), we obtain

∞∑
n=0

(∫
X

χ(y)ϕζ(y)q
hy(2y + x)ndµ−1(y)

)
tn

n!
=

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 21, NO.1, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

195 C. S. Ryoo 194-200



By comparing coefficients of
tn

n!
in the above equation, we have the Witt formula for the generalized

twisted (h, q)- tangent polynomials attached to χ as follows:

Theorem 1. For positive integers n, ζ ∈ Tp, and h ∈ Z, we have

T
(h)
n,χ,q,ζ(x) =

∫
X

χ(y)ϕζ(y)q
hy(2y + x)ndµ−1(y). (1.8)

If we take x = 0 in Theorem 1, we also have the following corollary.

Corollary 2. For positive integers n, ζ ∈ Tp, and h ∈ Z, we have

T
(h)
n,χ,q,ζ =

∫
X

χ(y)ϕζ(y)q
hy(2y)ndµ−1(y). (1.9)

By (1.8) and (1.9), we have the following theorem.

Theorem 3. For positive integers n, ζ ∈ Tp, and h ∈ Z, we have

T
(h)
n,χ,q,ζ(x) =

n∑
l=0

(
n

l

)
T

(h)
l,χ,q,ζx

n−l.

2. Symmetry for the generalized twisted (h, q)-tangent polynomials

In this section, we assume that q ∈ Cp and ζ ∈ Tp. By using the symmetric properties for

the p-adic invariant integral on Zp, we obtain some interesting identities of the power sums and the

generalized twisted polynomials T
(h)
n,χ,q,ζ(x). If n is odd from (1.2), we obtain

I−1(gn) + I−1(g) = 2
n−1∑
k=0

(−1)kg(k) (see [1], [2], [3], [5]). (2.1)

It will be more convenient to write (2.1) as the equivalent integral form∫
Zp

g(x+ n)dµ−1(x) +

∫
Zp

g(x)dµ−1(x) = 2
n−1∑
k=0

(−1)kg(k). (2.2)

Substituting g(x) = χ(x)ζxqhxe2xt into the above, we obtain∫
X

χ(x+ n)ζx+nqh(x+n)e(2x+2n)tdµ−1(x) +

∫
X

χ(x)ζxqhxe2xtdµ−1(x)

= 2
n−1∑
j=0

(−1)jχ(j)ζjqhje2jt.
(2.3)

For k ∈ Z+, let us define the power sums T (h)
k,χ,q,ζ(n) as follows:

T (h)
k,χ,q,ζ(n) =

n∑
l=0

(−1)lχ(l)ζlqhl(2l)k. (2.4)

After some elementary calculations, we have∫
X

χ(x)ζxqhxe2xtdµ−1(x) =
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
,∫

X

χ(x)ζx+nqh(x+n)e(2x+2n)tdµ−1(x) = ζnqhne2nt
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
.

(2.5)
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By using (2.5), we have∫
X

χ(x)ζx+ndqh(x+nd)e(2x+2nd)tdµ−1(x) +

∫
X

χ(x)ζxqhxe2xtdµ−1(x)

=
(
1 + ζndqhnde2ndt

) 2∑d−1
a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
.

From the above, we get∫
X

χ(x)ζx+ndqh(x+nd)e(2x+2nd))tdµ−1(x) +

∫
X

χ(x)ζxqhxe2xtdµ−1(x)

=
2
∫
X
χ(x)ζxqhxe2xtdµ−1(x)∫

X
ζndxqhndxe2ndtxdµ−1(x)

.

(2.6)

By substituting Taylor series of e2xt into (2.3), we obtain

∞∑
m=0

(∫
X

χ(x)ζx+ndqh(x+nd)(2x+ 2nd)mdµ−1(x) +

∫
X

χ(x)ζxqhx(2x)mdµ−1(x)

)
tm

m!

=
∞∑

m=0

2
nd−1∑
j=0

(−1)jχ(j)ζjqhj(2j)m
 tm

m!

By comparing coefficients
tm

m!
in the above equation, we obtain

ζndqhnd
m∑

k=0

(
m

k

)
(2nd)m−k

∫
X

χ(x)ζxqhx(2x)kdµ−1(x) +

∫
X

χ(x)ζxqhx(2x)mdµ−1(x)

= 2

nd−1∑
j=0

(−1)jχ(j)ζjqhj(2j)m

By using (2.4), we have

ζndqhnd
m∑

k=0

(
m

k

)
(2nd)m−k

∫
X

χ(x)ζxqhx(2x)kdµ−1(x) +

∫
X

χ(x)ζxqhx(2x)mdµ−1(x)

= 2T (h)
m,χ,q,ζ(nd− 1).

(2.7)

By using (2.6) and (2.7), we arrive at the following theorem:

Theorem 4. Let n be odd positive integer. Then we obtain

2
∫
X
χ(x)ζxqhxe2xtdµ−1(x)∫

X
ζndxqhndxe2ndtxdµ−1(x)

=
∞∑

m=0

(
2T (h)

m,χ,q,ζ(nd− 1)
) tm
m!
.

Let w1 and w2 be odd positive integers. Then we set

S(w1, w2) =∫
X

∫
X
χ(x1)χ(x2)ζ

(w1x1+w2x2)qh(w1x1+w2x2)e(2w1x1+2w2x2+w1w2x)tdµ−1(x1)dµ−1(x2)∫
X
ζw1w2dxqhw1w2dxe2w1w2dxtdµ−1(x)

.
(2.8)

By Theorem 4 and (2.8), after elementary calculations, we obtain

S(w1, w2) =

(
1

2

∫
X

χ(x1)ζ
w1x1qhw1x1e(2w1x1+w1w2x)tdµ−1(x1)

)
×

(
2
∫
X
χ(x2)ζ

w2x2qhw2x2e2x2w2tdµ−1(x2)∫
X
ζw1w2dxqhw1w2dxe2w1w2dtxdµ−1(x)

)

=

(
1

2

∞∑
m=0

T
(h)
m,χ,qw1 ,ζw1 (w2x)w

m
1

tm

m!

)(
2

∞∑
m=0

T (h)
m,χ,qw2 ,ζw2 (w1d− 1)wm

2

tm

m!

)
.

(2.9)
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By using Cauchy product in the above, we have

S(w1, w2) =
∞∑

m=0

 m∑
j=0

(
m

j

)
T

(h)
j,χ,qw1 ,ζw1 (w2x)w

j
1T

(h)
m−j,χ,qw2 ,ζw2 (w1d− 1)wm−j

2

 tm

m!
. (2.10)

From the symmetry of S(w1, w2) in w1 and w2, we also see that

S(w1, w2) =

(
1

2

∫
X

χ(x2)ζ
w2x2qhw2x2e(2w2x2+w1w2x)tdµ−1(x2)

)
×

(
2
∫
X
χ(x1)ζ

w1x1qhw1x1e2x1w1tdµ−1(x1)∫
X
ζw1w2dxqhw1w2dxe2w1w2dtxdµ−1(x)

)

=

(
1

2

∞∑
m=0

T
(h)
m,χ,qw2 ,ζw2 (w1x)w

m
2

tm

m!

)(
2

∞∑
m=0

T (h)
m,χ,qw1 ,ζw1 (w2d− 1)wm

1

tm

m!

)
.

Thus we have

S(w1, w2) =

∞∑
m=0

 m∑
j=0

(
m

j

)
T

(h)
j,χ,qw2 ,ζw2 (w1x)w

j
2T

(h)
m−j,χ,qw1 ,ζw1 (w2d− 1)wm−j

1

 tm

m!
(2.11)

By comparing coefficients
tm

m!
in the both sides of (2.10) and (2.11), we arrive at the following

theorem:

Theorem 5. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

(
m

j

)
wm−j

1 wj
2T

(h)
j,χ,qw2 ,ζw2 (w1x)T (h)

m−j,χ,qw1 ,ζw1 (w2d− 1)

=
m∑
j=0

(
m

j

)
wj

1w
m−j
2 T

(h)
j,χ,qw1 ,ζw1 (w2x)T (h)

m−j,χ,qw2 ,ζw2 (w1d− 1),

where T
(h)
k,χ,q,ζ(x) and T

(h)
m,χ,q,ζ(k) denote the generalized twisted (h, q)-tangent polynomials and the

alternating sums of powers of consecutive (h, q)-integers, respectively.

By Theorem 3, we have the following corollary.

Corollary 6. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wm−k

1 wj
2x

j−kT
(h)
k,χ,qw2 ,ζw2T

(h)
m−j,χ,qw1 ,ζw1 (w2d− 1)

=

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
wj

1w
m−k
2 xj−kT

(h)
k,χ,qw1 ,ζw1T

(h)
m−j,χ,qw2 ,ζw2 (w1d− 1).

Now we will derive another interesting identities for the generalized twisted (h, q)-tangent polyno-

mials using the symmetric property of S(w1, w2).
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S(w1, w2) =

(
1

2

∫
X

χ(x1)ζ
w1x1qhw1x1e(2w1x1+w1w2x)tdµ−1(x1)

)
×

(
2
∫
X
χ(x2)ζ

w2x2qhw2x2e2x2w2tdµ−1(x2)∫
X
ζw1w2dxqhw1w2dxe2w1w2dtxdµ−1(x)

)

=

(
1

2
ew1w2xt

∫
X

χ(x1)ζ
w1x1qhw1x1e2x1w1tdµ−1(x1)

)

×

2

w1d−1∑
j=0

(−1)jχ(j)ζw2jqw2hje2jw2t


=

w1d−1∑
j=0

(−1)jχ(j)ζw2jqw2hj

∫
X

χ(x1)ζ
w1x1qhw1x1e

(
2x1+w2x+

2jw2

w1

)
(w1t)

dµ−1(x1)

=
∞∑

n=0

w1d−1∑
j=0

(−1)jχ(j)ζw2jqw2hjT
(h)
n,χ,qw1 ,ζw1

(
w2x+

2jw2

w1

)
wn

1

 tn

n!
.

(2.12)

By using the symmetry property in (2.12), we also have

S(w1, w2) =

(
1

2
ew1w2xt

∫
X

χ(x2)ζ
w2x2qhw2x2e2x2w2tdµ−1(x2)

)
×

(
2
∫
X
χ(x1)ζ

w1x1qhw1x1e2x1w1tdµ−1(x1)∫
X
ζw1w2dxqhw1w2dxe2w1w2dtxdµ−1(x)

)

=

(
1

2
ew1w2xt

∫
X

χ(x2)ζ
w2x2qhw2x2e2x2w2tdµ−1(x2)

)

×

2

w2d−1∑
j=0

(−1)jχ(j)ζw1jqw1hje2jw1t


=

w2d−1∑
j=0

(−1)jχ(j)ζw1jqw1hj

∫
X

χ(x2)ζ
w2x2qhw2x2e

(
2x2+w1x+

2jw1

w2

)
(w2t)

dµ−1(x1)

=
∞∑

n=0

w2−1∑
j=0

(−1)jχ(j)ζw1jqw1hjT
(h)
n,χ,qw2 ,ζw2

(
w1x+

2jw1

w2

)
wn

2

 tn

n!
.

(2.13)

By comparing coefficients
tn

n!
in the both sides of (2.12) and (2.13), we have the following theorem.

Theorem 7. Let w1 and w2 be odd positive integers. Then we obtain

w1d−1∑
j=0

(−1)jχ(j)ζw2jqw2hjT
(h)
n,χ,qw1 ,ζw1

(
w2x+

2jw2

w1

)
wn

1

=

w2d−1∑
j=0

(−1)jχ(j)ζw1jqw1hjT
(h)
n,χ,qw2 ,ζw2

(
w1x+

2jw1

w2

)
wn

2 .

(2.14)

If we take x = 0 in Theorem 7, we also derive the interesting identity for the generalized twisted

(h, q)-tangent numbers as follows:

w1d−1∑
j=0

(−1)jχ(j)ζw2jqw2hjT
(h)
n,χ,qw1 ,ζw1

(
2jw2

w1

)
wn

1

=

w2d−1∑
j=0

(−1)jχ(j)ζw1jqw1hjT
(h)
n,χ,qw2 ,ζw2

(
2jw1

w2

)
wn

2 .
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