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A new result on the almost increasing sequences

H. S. ÖZARSLAN and A. KARAKAŞ

Department of Mathematics, Erciyes University, 38039 Kayseri, TURKEY

E-mail:seyhan@erciyes.edu.tr; ahmetkarakas1985@hotmail.com

Abstract

In this paper, we have generalized a known theorem on |N̄ , pn|k summability factors of

infinite series to the ϕ− |A, pn|k summability by using an almost increasing sequence. This

new theorem also includes several new results.

1. INTRODUCTION

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing

sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]).

Let
∑
an be a given infinite series with partial sums (sn) and let A = (anv) be a normal

matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the

sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)),

where

An(s) =
n∑
v=0

anvsv, n = 0, 1, ... (1)

The series
∑
an is said to be summable |A|k , k ≥ 1, if (see [13])

∞∑
n=1

nk−1
∣∣∆̄An(s)

∣∣k <∞, (2)

2010 AMS Subject Classification: 40D15, 40F05, 40G99.

Key Words: Summability factors, absolute matrix summability, almost increasing se-

quence, infinite series.
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where

∆̄An(s) = An(s)−An−1(s). (3)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (4)

The sequence-to-sequence transformation

un =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (un) of the (N̄ , pn) mean of the sequence (sn), generated by the

sequence of coefficients (pn) (see [8]). The series
∑
an is said to be summable | N̄ , pn |k,

k ≥ 1, if (see [2])

∞∑
n=1

(Pn/pn)k−1 | ∆un−1 |k<∞, (6)

and it is said to be summable |A, pn|k , k ≥ 1, if (see [12])

∞∑
n=1

(
Pn
pn

)k−1 ∣∣∆̄An(s)
∣∣k <∞, (7)

where

∆̄An(s) = An(s)−An−1(s).

Let (ϕn) be any sequence of positive real numbers. The series
∑
an is summable ϕ −

|A, pn|k, k ≥ 1, if (see [11])

∞∑
n=1

ϕk−1n |∆̄An(s)|k <∞. (8)

If we take ϕn = Pn
pn

, then ϕ − |A, pn|k summability reduces to |A, pn|k summability (see

[10]). Also, if we take ϕn = Pn
pn

and anv = pv
Pn

, then we get |N̄ , pn|k summability. If we

take ϕn = n and anv = pv
Pn

, then we get |R, pn|k summability (see [5]). Furthermore, if we

take ϕn = n and anv = pv
Pn

and pn = 1 for all values of n, then ϕ − |A, pn|k summability

reduces to |C, 1|k summability (see [7]).
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In [6], Bor has proved the following theorem for
∣∣N̄ , pn∣∣k summability factors of infinite

series.

Theorem 1.1. Let (Xn) be an almost increasing sequence and let there be sequences

(βn) and (λn) such that

| ∆λn |≤ βn, (9)

βn → 0 as n→∞, (10)

∞∑
n=1

n | ∆βn | Xn <∞, (11)

| λn | Xn = O(1) (12)

and

n∑
v=1

| tv |k

v
= O(Xn) as n→∞, (13)

where (tn) is the n-th (C, 1) mean of the sequence (nan). Suppose further, the sequence

(pn) is such that

Pn = O(npn), (14)

Pn∆pn = O(pnpn+1), (15)

then the series
∑∞
n=1 an

Pnλn
npn

is summable | N̄ , pn |k, k ≥ 1.

Remark 1.2. It should be noted that, from the hypotheses of the Theorem 1.1, (λn) is

bounded and ∆λn = O(1/n) (see [3]).

2. THE MAIN RESULT

The aim of this paper is to generalize Theorem 1.1 for absolute matrix summability.

3
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Before stating the main theorem we must first introduce some further notations.

Given a normal matrix A = (anv), we associate two lover semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = 0, 1, ... (16)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (17)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and

series-to-series transformations, respectively. Then, we have

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav (18)

and

∆̄An(s) =
n∑
v=0

ânvav. (19)

Now, we shall prove the following theorem.

Theorem 2.1. Let A = (anv) be a positive normal matrix such that

ano = 1, n = 0, 1, ..., (20)

an−1,v ≥ anv, for n ≥ v + 1, (21)

ann = O(
pn
Pn

), (22)

| ân,v+1 |= O(v | ∆v(ânv) |) (23)

Let (Xn) be an almost increasing sequence and (ϕnpn
Pn

) be a non-increasing sequence. If

conditions (9)-(15) of the Theorem 1.1 and

m∑
n=1

ϕk−1n (
pn
Pn

)k|tn|k = O(Xm) as m→∞ (24)

4
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are satisfied, then the series
∑∞
n=1 an

Pnλn
npn

is summable ϕ− |A, pn|k, k ≥ 1.

We need the following lemmas for the proof of our theorem.

Lemma 2.2. ([9]) If (Xn) an almost increasing sequence, then under the conditions

(10)-(11) we have that

nXnβn = O(1), (25)

∞∑
n=1

βnXn <∞. (26)

Lemma 2.3. ([4]) If the conditions (14) and (15) are satisfied, then ∆(Pn/pnn
2) =

O(1/n2).

3. PROOF OF THEOREM 2.1

Let (Tn) denotes A-transform of the series
∑∞
n=1

anPnλn
npn

. Then we have by (18) and (19)

∆̄Tn =
n∑
v=1

ânv
avPvλv
vpv

.

Applying Abel’s transformation to this sum, we get that

∆̄Tn =
n∑
v=1

ânv
vavPvλv
v2pv

=
n−1∑
v=1

∆v(
ânvPvλv
v2pv

)
v∑
r=1

rar +
ânnPnλn
n2pn

n∑
r=1

rar

=
n−1∑
v=1

∆v(
ânvPvλv
v2pv

)(v + 1)tv +
annPnλn
n2pn

(n+ 1)tn

=
annPnλn
n2pn

(n+ 1)tn +
n−1∑
v=1

∆v(ânv)
(v + 1)

v2
Pvλv
pv

tv

+
n−1∑
v=1

ân,v+1Pv
pv

∆λvtv
(v + 1)

v2
+
n−1∑
v=1

ân,v+1λv+1∆(
Pv
v2pv

)tv(v + 1)

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

Since

|Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k(|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k)

5
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to complete the proof of Theorem 2.1, it is sufficient to show that

m∑
n=1

ϕk−1n | Tn,r |k<∞, for r = 1, 2, 3, 4. (27)

Firstly, by using Abel’s transformation, we have that

m∑
n=1

ϕk−1n | Tn,1 |k = O(1)
m∑
n=1

ϕk−1n aknn(
Pn
pn

)k|λn|k
|tn|k

nk

= O(1)
m∑
n=1

ϕk−1n (
pn
Pn

)k|λn|k−1|λn||tn|k

= O(1)
m∑
n=1

ϕk−1n (
pn
Pn

)k|λn||tn|k

= O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

ϕk−1v (
pv
Pv

)k|tv|k +O(1)|λm|
m∑
n=1

ϕk−1n (
pn
Pn

)k|tn|k

= O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.

Now, using the fact that Pv = O(vpv) by (14), we have that

m∑
n=1

ϕk−1n | Tn,2 |k = O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|∆v(ânv)| |λv| |tv|
)k

Now, applying Hölder’s inequality with indices k and k’, where k > 1 and 1
k + 1

k’ = 1, as

in Tn,1, we have that

m∑
n=1

ϕk−1n | Tn,2 |k = O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

×(
n−1∑
v=1

|∆v(ânv)|)k−1

= O(1)
m+1∑
n=2

ϕk−1n ak−1nn

(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

= O(1)
m+1∑
n=2

(
ϕnpn
Pn

)k−1
(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

6
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= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1|λv|k|tv|k
m+1∑
n=v+1

|∆v(ânv)|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1|λv|k−1|λv||tv|kavv

= O(1)
m∑
v=1

ϕk−1v (
pv
Pv

)k |λv| |tv|k

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.

Now, using Hölder’s inequality we have that

m+1∑
n=2

ϕk−1n | Tn,3 |k = O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|ân,v+1||∆λv||tv|
)k

= O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|ân,v+1|βv|tv|k
)
×
(
n−1∑
v=1

|ân,v+1|βv

)k−1

= O(1)
m+1∑
n=2

ϕk−1n ak−1nn (
n−1∑
v=1

|ân,v+1|βv|tv|k)

= O(1)
m+1∑
n=2

(
ϕnpn
Pn

)k−1(
n−1∑
v=1

|ân,v+1|βv|tv|k)

= O(1)
m∑
v=1

βv|tv|k
m+1∑
n=v+1

(
ϕnpn
Pn

)k−1|ân,v+1|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1βv|tv|k
m+1∑
n=v+1

|ân,v+1|

= O(1)
m∑
v=1

ϕk−1v (
pv
Pv

)kvβv|tv|k

= O(1)
m−1∑
v=1

∆(vβv)
v∑
r=1

ϕk−1r (
pr
Pr

)k|tr|k +O(1)mβm

m∑
v=1

ϕk−1v (
pv
Pv

)k|tv|k

= O(1)
m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βv+1Xv+1 +O(1)mβmXm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

995 OZARSLAN et al 989-998



Finally, since ∆( Pv
v2pv

) = O( 1
v2

), as in Tn,1, we have that

m+1∑
n=2

ϕk−1n |Tn(4)|k = O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

= O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|ân,v+1||λv+1|k
|tv|k

v

)(
n−1∑
v=1

|ân,v+1|
1

v

)k−1

= O(1)
m+1∑
n=2

ϕk−1n

(
n−1∑
v=1

|ân,v+1||λv+1|k
|tv|k

v

)(
n−1∑
v=1

|∆vânv|
)k−1

= O(1)
m+1∑
n=2

ϕk−1n ak−1nn

(
n−1∑
v=1

|ân,v+1||λv+1|k−1|λv+1|
|tv|k

v

)

= O(1)
m+1∑
n=2

(
ϕnpn
Pn

)k−1
(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)

= O(1)
m∑
v=1

|λv+1|
|tv|
v

k m+1∑
n=v+1

(
ϕnpn
Pn

)k−1|ân,v+1|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1|λv+1|
|tv|
v

k m+1∑
n=v+1

|ân,v+1|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1|λv+1|
|tv|
v

k

= O(1)
m∑
v=1

ϕk−1v (
pv
Pv

)k|λv+1||tv|k

= O(1) as m→∞.

by virtue of hypotheses of Theorem 2.1 and Lemma 2.3

Therefore we get

m∑
n=1

ϕk−1n | Tn,r |k= O(1) as m→∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 2.1

Corollary 3.1. If we take ϕn = Pn
pn

, then we get a theorem dealing with |A, pn|k summa-

bility.

Corollary 3.2. If we take ϕn = Pn
pn

and anv = pv
Pn

, then we get Theorem 1.1.

Corollary 3.3. If we take anv = pv
Pn

, then we have another a result dealing with

ϕ− |N̄ , pn|k summability.

8
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Corollary 3.4. If we take anv = pv
Pn

and pn = 1 for all values of n, then we get a result

dealing with ϕ− |C, 1|k summability.

Corollary 3.5. If we take ϕn = n, anv = pv
Pn

and pn = 1 for all values of n, then we get

a result for |C, 1|k summability.

Corollary 3.6. If we take k = 1 and anv = pv
Pn

, then we get a result for
∣∣N̄ , pn∣∣ summa-

bility and in this case the condition ”
(
ϕnpn
Pn

)
is a non-increasing sequence” is not needed.
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Abstract: In this paper, we establish certain new Chebyshev type fractional integral inequalities involving the
Gauss hypergeometric function. Several special cases as Chebyshev type fractional integral inequalities involving
Saigo, Erdélyi-Kober, and Riemann-Liouville type fractional integral operators are presented. Furthermore, we
also consider their relevance with other related known results. An example is also given to show the applications
of obtained results.
Keywords: Chebyshev type inequalities; fractional integral inequalities; hypergeometric fractional integrals;
synchronous (asynchronous) functions
2010 Mathematics Subject Classification: 26D10; 26A33; 33C05

1 Introduction and preliminaries

Due to the fact that the tools of fractional integral inequalities have many applications in establishing u-
niqueness of solutions in fractional boundary value problems and in fractional partial differential equations,
fractional integral inequalities involving the fractional operators (like Saigo, Erdélyi-Kober, Riemann-Liouville
type fractional integral operators, etc.) has gained considerable attention, attracting the interest of sev-
eral researchers. For some recent developments on fractional integral inequalities, we refer the reader to
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references cited therein. Belarbi and Dahmani [13] gave the
following integral inequality, using the Riemann-Liouville fractional integrals: if f and g are two synchronous
functions (see Definition 1.4) on C[0,∞), then

Jα(fg)(t) ≥ Γ(α+ 1)

tα
Jαf(t)Jαg(t), (1.1)

and
tα

Γ(α+ 1)
Jβ(fg)(t) +

tβ

Γ(β + 1)
Jα(fg)(t) ≥ Jαf(t)Jβg(t) + Jβf(t)Jαg(t), (1.2)

for all t > 0, α > 0, and β > 0. Öğünmez and Özkan [14], Chinchane and Pachpatte [15] and Purohit and
Raina [16] obtained the Riemann-Liouville fractional q-integral inequalities, the Hadamard fractional integral
inequalities and the Saigo fractional integral and q-integral inequalities similar to the inequalities (1.1) and
(1.2), respectively.

Dahmani in [17] established the following fractional integral inequalities which are generalizations of the
inequalities (1.1) and (1.2), by using the Riemann-Liouville fractional integrals. Let f and g be two synchronous
functions on [0,∞) and let u, v : [0,∞)→ [0,∞). Then

Jαu(t)Jα(vfg)(t) + Jαv(t)Jα(ufg)(t) ≥ Jα(uf)(t)Jα(vg)(t) + Jα(vf)(t)Jα(ug)(t), (1.3)

and
Jαu(t)Jβ(vfg)(t) + Jβv(t)Jα(ufg)(t) ≥ Jα(uf)(t)Jβ(vg)(t) + Jβ(vf)(t)Jα(ug)(t), (1.4)

for all t > 0, α > 0 and β > 0. Yang [18], Brahim and Taf [19] and Chinchane and Pachpatte [20] and Agarwal
et al. [21] gave the fractional q-integral inequalities, the fractional integral inequalities with two parameters of
deformation q1 and q2, the Hadamard fractional integral inequalities and generalized Erdélyi-Kober fractional
q-integral inequalities similar to inequalities (1.3) and (1.4), respectively.

∗Corresponding author.
Email:lz790821ks@126.com (Z. Liu), wgyang0617@yahoo.com (W. Yang) and goyal.praveen2011@gmail.com (P. Agarwal)
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Let us consider the celebrated Chebyshev functional (see [22])

T (f, g) =
1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a

∫ b

a

f(x)dx · 1

b− a

∫ b

a

g(x)dx

where f and g are two integrable functions on [a, b]. In [23], Grüss proved the well known inequality:

|T (f, g)| ≤ 1

4
(Φ− φ)(Ψ− ψ), (1.5)

where f and g are two integrable functions on [a, b] satisfying the conditions

φ ≤ f(x) ≤ Φ, ψ ≤ g(x) ≤ Ψ, φ,Φ, ψ,Ψ ∈ R, x ∈ [a, b]. (1.6)

The inequality (1.5) is known as Grüss inequality. By using the Riemann-Liouville fractional integral and q-
integral operators, Dahmani et al. [26] and Zhu et al. [27] gave the fractional integral and q-integral inequality
similar to inequality (1.5) satisfying the conditions (1.6), respectively. Wang et al. [29] and Baleanu [30] et al.
obtained some q-integral inequality of Grüss type for the Saigo fractional q-integral operator, respectively.

Throughout the present paper, we shall investigate a fractional integral over the space Cλ introduced in [31]
and defined as follows.

Definition 1.1. For each real number λ, let Cλ define the space of all functions f : R+ → R that can be
represented in the form f(x) = xpf1(x) with p > λ and f1 ∈ C[0,∞), where C[0,∞) denotes the set of all
continuous real functions defined in [0,∞).

We give the generalized fractional integral operator Kα,β,η,µ
t associated with the Gauss hypergeometric

function as follows.

Definition 1.2. [28] Consider λ ∈ R and f ∈ Cλ. For α > max{0,−(µ + η + 1)}, β < 1, µ > −1 and
β − 1 < η < 0, we define the fractional integral

Kα,β,η,µ
t f(x) =

Γ(1− β)Γ(α+ µ+ η + 1)

Γ(η − β + 1)Γ(µ+ 1)
xβ+µIα,β,η,µt {f(x)}, (1.7)

where Iα,β,η,µt is the Gauss hypergeometric fractional integral of order α and is defined in the following.

Definition 1.3. Let α > 0, µ > −1, β, η ∈ R. Then the generalized fractional integral Iα,β,η,µt (in terms of the
Gauss hypergeometric function) of order α for real-valued continuous function f(t) is defined by [31] (see also
[32])

Iα,β,η,µt {f(x)} =
x−α−β−2µ

Γ(α)

∫ x

0

tµ(x− t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

x

)
f(t)dt, (1.8)

where the function 2F1(·) appearing as a kernel for the operator (1.7) is the Gaussian hypergeometric function
defined by

2F1(a, b; c; t) =
∞∑
n=0

(a)n(b)n
(c)n

tn

n!
,

and (a)n is the Pochhammer symbol defined by

(a)0 = 1; (a)n = a(a+ 1) · · · (a+ n− 1), for n ∈ N.

Here N denotes the set of positive integers.

The above integral (1.8) has the following commutative property(see also [32, 33]):

Iα,β,η,µt Iγ,δ,ζ,νt f(x) = Iγ,δ,ζ,νt Iα,β,η,µt f(x).

Definition 1.4. Two functions f and g are said to be synchronous (asynchronous) functions on [0,∞) if

A(u, v) = (f(u)− f(v))(g(u)− g(v)) ≥ (≤)0, u, v ∈ [0,∞).
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In [31], Baleanu et al. obtained the following fractional integral inequalities involving the Gauss hypergeo-
metric function: Let f and g be two synchronous functions on [0,∞). Then

Iα,β,η,µt {f(t)g(t)} ≥ Γ(1− β)Γ(1 + µ+ α+ η)tβ+µ

Γ(1 + µ)Γ(1− β + η)
Iα,β,η,µt {f(t)}Iα,β,η,µt {g(t)},

for all t > 0, where α, β, η, µ are real constants satisfying α > max{0,−β,−µ}, β < 1, µ > −1 and β−1 < η < 0,
and also

Γ(1 + µ)Γ(1− β + η)

Γ(1− β)Γ(1 + µ+ α+ η)tβ+µ
Iγ,δ,ζ,νt {f(t)g(t)}+

Γ(1 + ν)Γ(1− δ + ζ)

Γ(1− δ)Γ(1 + ν + γ + ζ)tδ+ν
Iα,β,η,µt {f(t)g(t)}

≥ Iα,β,η,µt {f(t)}Iγ,δ,ζ,νt {g(t)}+ Iγ,δ,ζ,νt {f(t)}Iα,β,η,µt {g(t)},

for all t > 0, where α, β, η, µ satisfies the above inequalities and the constants γ, δ, ζ, ν satisfies γ > max{0,−δ,−ν},
δ < 1, ν > −1, δ − 1 < ζ < 0.

In [28], Wang et al. gave the following integral inequalities by using the generalized fractional integral
operator: Let f and g be two integrable functions with f, g ∈ Cλ and satisfying the condition (1.6) on [0,∞).
Thus we have

|Kα,β,η,µ
t (fg)(x)−Kα,β,η,µ

t f(x)Kα,β,η,µ
t g(x)| ≤ 1

4
(Φ− φ)(Ψ− ψ),

for all x ∈ [0,∞), where α, β, η, µ are real constants with α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0. And Let f
and g be two synchronous functions on [0,∞). Then the following inequality holds:

Kα,β,η,µ
t (fg)(x) ≥ Kα,β,η,µ

t f(x)Kα,β,η,µ
t g(x),

for all x ∈ [0,∞), where α, β, η, µ are real constants such that α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0.
Motivated by the results mentioned above and using the generalized fractional integral operator, we establish

certain new Chebyshev type fractional integral inequalities and some related inequalities. Furthermore, several
special cases as Chebyshev type fractional integral inequalities involving Saigo, Erdélyi-Kober, and Riemann-
Liouville type fractional integral operators are given. Then we present an example to show the applications of
obtained results. At last, concluding remarks are also given.

2 Generalized fractional integral inequalities

In this section, we establish certain new Chebyshev type fractional integral inequalities and some related in-
equalities involving the generalized fractional integral operator.

For the sake of simplicity, we always assume that Kα,β,η,µ
t u denotes Kα,β,η,µ

t u(x) and all of the generalized
fractional integral operator holds in this work.

Lemma 2.1. Let f and g be two synchronous functions on [0,∞) and let u and v be two nonnegative functions
on [0,∞). Then we have

Kα,β,η,µ
t uKα,β,η,µ

t (vfg) +Kα,β,η,µ
t vKα,β,η,µ

t (ufg) ≥ Kα,β,η,µ
t (vf)Kα,β,η,µ

t (ug) +Kα,β,η,µ
t (uf)Kα,β,η,µ

t (vg),
(2.1)

for all x ∈ [0,∞), and real constants α, β, η, µ with α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0.

Proof. Since f and g are two synchronous functions on [0,∞), for all τ > 0 and ρ > 0, then we have

(f(τ)− f(ρ))(g(τ)− g(ρ)) ≥ 0. (2.2)

Rewriting (2.2), we obtain
f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ). (2.3)

Multiplying both side of (2.3) by v(τ) τ
µ(x−τ)α−1

Γ(α) 2F1(α+ µ+ β,−η;α; 1− τ
x ), where x > 0 and τ ∈ (0, x), when

we integrate the inequality with respect to τ from 0 to x, we obtain by Definition 1.2 that

Kα,β,η,µ
t (vfg)(x) + f(ρ)g(ρ)Kα,β,η,µ

t v(x) ≥ g(ρ)Kα,β,η,µ
t (vf)(x) + f(ρ)Kα,β,η,µ

t (vg)(x). (2.4)
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Again, by multiplying both side of (2.4) by u(ρ)ρ
µ(x−ρ)α−1

Γ(α) 2F1(α + µ + β,−η;α; 1 − ρ
x ), where x > 0 and

ρ ∈ (0, x), and integrating the resulting identity with respect to ρ from 0 to x, and then applying Definition
1.2, we conclude

Kα,β,η,µ
t u(x)Kα,β,η,µ

t (vfg)(x) +Kα,β,η,µ
t v(x)Kα,β,η,µ

t (ufg)(x)

≥ Kα,β,η,µ
t (vf)(x)Kα,β,η,µ

t (ug)(x) +Kα,β,η,µ
t (uf)(x)Kα,β,η,µ

t (vg)(x),

which implies (2.1).

Theorem 2.2. Let f and g be two synchronous functions on [0,∞) and let p, q and r be three nonnegative
functions on [0,∞). Then we have

2Kα,β,η,µ
t p

(
Kα,β,η,µ
t qKα,β,η,µ

t (rfg) +Kα,β,η,µ
t rKα,β,η,µ

t (qfg)

)
+ 2Kα,β,η,µ

t qKα,β,η,µ
t rKα,β,η,µ

t (pfg)

≥ Kα,β,η,µ
t p

(
Kα,β,η,µ
t (qf)Kα,β,η,µ

t (rg) +Kα,β,η,µ
t (rf)Kα,β,η,µ

t (qg)

)
+Kα,β,η,µ

t q

(
Kα,β,η,µ
t (pf)Kα,β,η,µ

t (rg)

+Kα,β,η,µ
t (rf)Kα,β,η,µ

t (pg)

)
+Kα,β,η,µ

t r

(
Kα,β,η,µ
t (pf)Kα,β,η,µ

t (qg) +Kα,β,η,µ
t (qf)Kα,β,η,µ

t (pg)

)
, (2.5)

for all x ∈ [0,∞), and real constants α, β, η, µ with α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0.

Proof. Putting u = q, v = r and using Lemma 2.1, we can write

Kα,β,η,µ
t qKα,β,η,µ

t (rfg)+Kα,β,η,µ
t rKα,β,η,µ

t (qfg) ≥ Kα,β,η,µ
t (rf)Kα,β,η,µ

t (qg)+Kα,β,η,µ
t (qf)Kα,β,η,µ

t (rg). (2.6)

Multiplying both sides of (2.6) by Kα,β,η,µ
t p, we obtain

Kα,β,η,µ
t p

(
Kα,β,η,µ
t qKα,β,η,µ

t (rfg) +Kα,β,η,µ
t rKα,β,η,µ

t (qfg)

)
≥ Kα,β,η,µ

t p

(
Kα,β,η,µ
t (rf)(x)Kα,β,η,µ

t (qg) +Kα,β,η,µ
t (qf)Kα,β,η,µ

t (rg)

)
. (2.7)

Putting u = p, v = r and using Lemma 2.1, we can state that

Kα,β,η,µ
t pKα,β,η,µ

t (rfg)+Kα,β,η,µ
t rKα,β,η,µ

t (pfg) ≥ Kα,β,η,µ
t (rf)Kα,β,η,µ

t (pg)+Kα,β,η,µ
t (pf)Kα,β,η,µ

t (rg). (2.8)

Multiplying both sides of (2.8) by Iα,β,η0,t y(t), one verifies that

Kα,β,η,µ
t q

(
Kα,β,η,µ
t pKα,β,η,µ

t (rfg) +Kα,β,η,µ
t r(x)Kα,β,η,µ

t (pfg)

)
≥ Kα,β,η,µ

t q

(
Kα,β,η,µ
t (rf)Kα,β,η,µ

t (pg) +Kα,β,η,µ
t (pf)Kα,β,η,µ

t (rg)

)
. (2.9)

With the same arguments as before, we can get

Kα,β,η,µ
t r

(
Kα,β,η,µ
t pKα,β,η,µ

t (qfg) +Kα,β,η,µ
t q(x)Kα,β,η,µ

t (pfg)

)
≥ Kα,β,η,µ

t r

(
Kα,β,η,µ
t (qf)Kα,β,η,µ

t (pg) +Kα,β,η,µ
t (pf)Kα,β,η,µ

t (qg)

)
. (2.10)

The required inequality (2.5) follows on adding the inequalities (2.7), (2.9) and (2.10).

Lemma 2.3. Let f and g be two synchronous functions on [0,∞) and let u and v be two nonnegative functions
on [0,∞). Then we have

Kα,β,η,µ
t u(x)Kγ,δ,ζ,ν

t (vfg)(x) +Kγ,δ,ζ,ν
t v(x)Kα,β,η,µ

t (ufg)(x)

≥ Kα,β,η,µ
t (uf)(x)Kγ,δ,ζ,µ

t (vg)(x) +Kγ,δ,ζ,µ
t (vf)(x)Kα,β,η,ν

t (ug)(x), (2.11)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.
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Proof. Multiplying both sides of (2.3) by v(ρ)ρ
ν(x−ρ)γ−1

Γ(γ) 2F1(γ+ ν+ δ,−ζ; γ; 1− ρ
x ), where x > 0 and ρ ∈ (0, x),

when we integrate the inequality with respect to ρ from 0 to x, we obtain by Definition 1.2 that

f(τ)g(τ)Kγ,δ,ζ,ν
t v(x) +Kγ,δ,ζ,ν

t (vfg)(x) ≥ f(τ)Kγ,δ,ζ,ν
t (vg)(x) + g(τ)Kγ,δ,ζ,ν

t (vf)(x). (2.12)

Again, by multiplying both side of (2.12) by u(τ) τ
µ(x−τ)α−1

Γ(α) 2F1(α + µ + β,−η;α; 1 − τ
x ), where x > 0 and

τ ∈ (0, x), and integrating the resulting identity with respect to τ from 0 to x, and then applying Definition
1.2, we obtain

Kα,β,η,µ
t u(x)Kγ,δ,ζ,ν

t (vfg)(x) +Kγ,δ,ζ,ν
t v(x)Kα,β,η,µ

t (ufg)(x)

≥ Kα,β,η,µ
t (uf)(x)Kγ,δ,ζ,µ

t (vg)(x) +Kγ,δ,ζ,µ
t (vf)(x)Kα,β,η,ν

t (ug)(x),

which implies (2.11).

Theorem 2.4. Let f and g be two synchronous functions on [0,∞) and let p, q and r be three nonnegative
functions on [0,∞). Then we have

Kα,β,η,µ
t p

(
Kα,β,η,µ
t rKγ,δ,ζ,ν

t (qfg) + 2Kα,β,η,µ
t qKγ,δ,ζ,ν

t (rfg) +Kγ,δ,ζ,ν
t rKα,β,η,µ

t (qfg)

)
+

(
Kα,β,η,µ
t qIγ,δ,ζ0,t r +Kγ,δ,ζ,ν

t qKα,β,η,µ
t r

)
Kα,β,η,µ
t (pfg)

≥ Kα,β,η,µ
t p

(
Kα,β,η,µ
t (qf)Kγ,δ,ζ,ν

t (rg) +Kγ,δ,ζ,ν
t (rf)Kα,β,η,µ

t (qg)

)
+Kγ,δ,ζ,ν

t q

(
Kα,β,η,µ
t (pf)Kγ,δ,ζ,ν

t (rg)

+Kγ,δ,ζ,ν
t (rf)(t)Kα,β,η,µ

t (pg)

)
+Kγ,δ,ζ,ν

t r

(
Kα,β,η,µ
t (pf)Kγ,δ,ζ,ν

t (qg) +Kγ,δ,ζ,ν
t (qf)Kα,β,η,µ

t (pg)

)
, (2.13)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Putting u = q, v = r and using Lemma 2.3, we can write

Kα,β,η,µ
t qKγ,δ,ζ,ν

t (rfg) +Kγ,δ,ζ,ν
t rKα,β,η,µ

t (qfg) ≥ Kα,β,η,µ
t (qf)Kγ,δ,ζ,µ

t (rg) +Kγ,δ,ζ,µ
t (rf)Kα,β,η,ν

t (qg). (2.14)

Multiplying both sides of (2.14) by Kα,β,η,µ
t p, we obtain

Kα,β,η,µ
t p

(
Kα,β,η,µ
t qKγ,δ,ζ,ν

t (rfg) +Kγ,δ,ζ,ν
t rKα,β,η,µ

t (qfg)

)
≥ Kα,β,η,µ

t p

(
Kα,β,η,µ
t (qf)Kγ,δ,ζ,µ

t (rg) +Kγ,δ,ζ,µ
t (rf)Kα,β,η,ν

t (qg)

)
. (2.15)

Putting u = p, v = r and using Lemma 2.3, we can state that

Kα,β,η,µ
t pKγ,δ,ζ,ν

t (rfg) +Kγ,δ,ζ,ν
t rKα,β,η,µ

t (pfg) ≥ Kα,β,η,µ
t (pf)Kγ,δ,ζ,µ

t (rg) +Kγ,δ,ζ,µ
t (rf)Kα,β,η,ν

t (pg).

Multiplying both sides of (2.14) by Kα,β,η,µ
t q, one verifies that

Kα,β,η,µ
t q

(
Kα,β,η,µ
t pKγ,δ,ζ,ν

t (rfg) +Kγ,δ,ζ,ν
t rKα,β,η,µ

t (pfg)

)
≥ Kα,β,η,µ

t q

(
Kα,β,η,µ
t (pf)Kγ,δ,ζ,µ

t (rg) +Kγ,δ,ζ,µ
t (rf)Kα,β,η,ν

t (pg)

)
. (2.16)

With the same arguments as before, we can get

Kα,β,η,µ
t r

(
Kα,β,η,µ
t qKγ,δ,ζ,ν

t (pfg) +Kγ,δ,ζ,ν
t pKα,β,η,µ

t (qfg)

)
≥ Kα,β,η,µ

t r

(
Kα,β,η,µ
t (qf)Kγ,δ,ζ,µ

t (pg) +Kγ,δ,ζ,µ
t (pf)Kα,β,η,ν

t (qg)

)
. (2.17)

The required inequality (2.13) follows on adding the inequalities (2.15), (2.16) and (2.17).
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Remark 2.5. The inequalities (2.5) and (2.13) are reversed in the following cases: (a) The functions f and g
are synchronous on [0,∞). (b) The functions p, q and r are negative on [0,∞). (c) Two of he functions p, q
and r are positive and the third one is negative on [0,∞).

Theorem 2.6. Let f, g and h be three synchronous functions on [0,∞) and let u be a nonnegative function on
[0,∞). Then we have

Kα,β,η,µ
t uKγ,δ,ζ,ν

t (ufgh) +Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (ufg) +Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (uh)

+Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t u ≥ Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (ugh) +Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (ufh)

+Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (uf) +Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (ug), (2.18)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Let f, g and h be three synchronous functions on [0,∞), Then, for all τ, ρ ≥ 0, we have

(f(τ)− f(ρ))(g(τ)− g(ρ))(h(τ) + h(ρ)) ≥ 0,

which implies that

f(τ)g(τ)h(τ) + f(ρ)g(ρ)h(ρ) + f(τ)g(τ)h(ρ) + f(ρ)g(ρ)h(τ)

≥ f(τ)g(ρ)h(τ) + f(τ)g(ρ)h(ρ) + f(ρ)g(τ)h(τ) + f(ρ)g(τ)h(ρ). (2.19)

Multiplying both side of (2.19) by u(τ) τ
ν(x−τ)γ−1

Γ(γ) 2F1(γ + ν + δ,−ζ; γ; 1− τ
x ), where x > 0 and τ ∈ (0, x), and

integrating the resulting identity with respect to τ from 0 to x, and then applying Definition 1.2, we obtain

Kγ,δ,ζ,ν
t (ufgh) + f(ρ)g(ρ)h(ρ)Kγ,δ,ζ,ν

t u+ h(ρ)Kγ,δ,ζ,ν
t (ufg) + f(ρ)g(ρ)Kγ,δ,ζ,ν

t (uh)

≥ g(ρ)Kγ,δ,ζ,ν
t (ufh) + g(ρ)h(ρ)Kγ,δ,ζ,ν

t (uf) + f(ρ)Kγ,δ,ζ,ν
t (ugh) + f(ρ)h(ρ)Kγ,δ,ζ,ν

t (ug). (2.20)

Again, by multiplying both sides of (2.20) by u(ρ)ρ
µ(x−ρ)α−1

Γ(α) 2F1(α + µ + β,−η;α; 1 − ρ
x ) where x > 0 and

ρ ∈ (0, x), when we integrate the inequality with respect to ρ from 0 to x, we obtain by Definition 1.2 that

Kα,β,η,µ
t uKγ,δ,ζ,ν

t (ufgh) +Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (ufg) +Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (uh)

+Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t u ≥ Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (ugh) +Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (ufh)

+Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (uf) +Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (ug),

which implies (2.18).

Theorem 2.7. Let f, g and h be three synchronous functions on [0,∞) and let u and v be two nonnegative
functions on [0,∞). Then we have

Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfgh) +Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (vfg) +Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (vh)

+Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t v ≥ Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vgh) +Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (vfh)

+Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (vf) +Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (vg), (2.21)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Multiplying both side of (2.19) by v(τ) τ
ν(x−τ)γ−1

Γ(γ) 2F1(γ+ν+ δ,−ζ; γ; 1− τ
x ), where x > 0 and τ ∈ (0, x),

and integrating the resulting identity with respect to τ from 0 to x, and then applying Definition 1.2, we obtain

Kγ,δ,ζ,ν
t (vfgh) + f(ρ)g(ρ)h(ρ)Kγ,δ,ζ,ν

t v + h(ρ)Kγ,δ,ζ,ν
t (vfg) + f(ρ)g(ρ)Kγ,δ,ζ,ν

t (vh)

≥ g(ρ)Kγ,δ,ζ,ν
t (vfh) + g(ρ)h(ρ)Kγ,δ,ζ,ν

t (vf) + f(ρ)Kγ,δ,ζ,ν
t (vgh) + f(ρ)h(ρ)Kγ,δ,ζ,ν

t (vg). (2.22)
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Again, by multiplying both sides of (2.22) by u(ρ)ρ
µ(x−ρ)α−1

Γ(α) 2F1(α + µ + β,−η;α; 1 − ρ
x ) where x > 0 and

ρ ∈ (0, x), when we integrate the inequality with respect to ρ from 0 to x, we obtain by Definition 1.2 that

Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfgh) +Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t v +Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (vfg)

+Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (vh) ≥ Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (vfh) +Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (vf)

+Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vgh) +Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (vg),

which implies (2.21).

Remark 2.8. It may be noted that the inequalities in (2.18) and (2.21) are reversed if functions f, g and h are
asynchronous. It is also easily seen that the special case u = v of (2.21) in Theorem 2.7 reduces to Theorem
2.6.

Lemma 2.9. Let f and u be two functions defined on [0,∞) satisfying the condition (1.6). Then we have

Kα,β,η,µ
t uKα,β,η,µ

t (uf2)−
(
Kα,β,η,µ
t (uf)

)2

=

(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)(
Kα,β,η,µ
t (xf)(t)− φKα,β,η,µ

t u

)
−Kα,β,η,µ

t uKα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
, (2.23)

for all x ∈ [0,∞), and real constants α, β, η, µ with α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0.

Proof. Let f be a function defined on [0,∞) satisfying the condition (1.6) on [0,∞). For any ρ, τ ∈ [0,∞), we
have

(Φ− f(ρ))(f(τ)− φ) + (Φ− f(τ))(f(ρ)− φ)− (Φ− f(τ))(f(τ)− φ)

− (Φ− f(ρ))(f(ρ)− φ) = f2(τ) + f2(ρ)− 2f(ρ)f(τ). (2.24)

Multiplying both sides of (2.24) by u(ρ)ρ
µ(x−ρ)α−1

Γ(α) 2F1(α+µ+β,−η;α; 1− ρ
x ) where x > 0 and ρ ∈ (0, x), when

we integrate the inequality with respect to ρ from 0 to x, we obtain by Definition 1.2 that

(f(τ)− φ)

(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)
+ (Φ− f(τ))

(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
− (Φ− f(τ))(f(τ)− φ)Kα,β,η,µ

t u−Kα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
= f2(τ)Kα,β,η,µ

t u+Kα,β,η,µ
t (uf2)− 2f(τ)Kα,β,η,µ

t (uf). (2.25)

Again, by multiplying both sides of (2.25) by u(ρ)ρ
µ(x−ρ)α−1

Γ(α) 2F1(α + µ + β,−η;α; 1 − ρ
x ) where x > 0 and

ρ ∈ (0, x), when we integrate the inequality with respect to ρ from 0 to x, we obtain by Definition 1.2 that(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)
+

(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
−Kα,β,η,µ

t

(
u(x)(Φ− f(x))(f(x)− φ)

)
Kα,β,η,µ
t u−Kα,β,η,µ

t uKα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
= Kα,β,η,µ

t (uf2)Kα,β,η,µ
t u+Kα,β,η,µ

t uKα,β,η,µ
t (uf2)− 2Kα,β,η,µ

t (uf)Kα,β,η,µ
t (uf),

which gives (2.23) and proves the lemma.

Theorem 2.10. Let f and g be two functions defined satisfying the condition (1.6) on [0,∞) and let u be a
nonnegative function on [0,∞). Then we have∣∣∣∣Kα,β,η,µ

t uKα,β,η,µ
t (ufg)−Kα,β,η,µ

t (uf)Kα,β,η,µ
t (ug)

∣∣∣∣ ≤ 1

4
(Φ− φ)(Ψ− ψ)

(
Kα,β,η,µ
t u

)2

, (2.26)

for all x ∈ [0,∞), and real constants α, β, η, µ with α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0.
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Proof. Let f and g be two functions satisfying the conditions of Theorem 2.10. Let H(τ, ρ) be defined by

H(τ, ρ) = (f(τ)− f(ρ))(g(τ)− g(ρ)), τ, ρ ∈ (0, x), x > 0. (2.27)

Multiplying both sides of (2.27) by u(τ)F (x, τ)u(ρ)F (x, ρ), where

F (x, τ) =
Γ(1− β)Γ(α+ µ+ η + 1)

Γ(η − β + 1)Γ(µ+ 1)
xα+β x

−α−β−2µ

Γ(α)
τµ(x− τ)α−1

2F1(α+ µ+ β,−η;α; 1− τ

x
), (2.28)

where x > 0 and τ ∈ (0, x), and integrating the resulting inequality obtained with respect to τ and ρ from 0 to
x, we have∫ x

0

∫ x

0

u(τ)F (x, τ)u(ρ)F (x, ρ)H(τ, ρ)dτdρ = 2Kα,β,η,µ
t uKα,β,η,µ

t (ufg)− 2Kα,β,η,µ
t (uf)Kα,β,η,µ

t (ug). (2.29)

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can write that(∫ x

0

∫ x

0

u(τ)F (x, τ)u(ρ)F (x, ρ)H(τ, ρ)dτdρ

)2

≤
(∫ x

0

∫ x

0

u(τ)F (x, τ)u(ρ)F (x, ρ)(f(τ)− f(ρ))dτdρ

)(∫ x

0

∫ x

0

u(τ)F (x, τ)u(ρ)F (x, ρ)(g(τ)− g(ρ))dτdρ

)
= 4

(
Kα,β,η,µ
t uKα,β,η,µ

t (uf2)−
(
Kα,β,η,µ
t (uf)

)2)(
Kα,β,η,µ
t uKα,β,η,µ

t (ug2)−
(
Kα,β,η,µ
t (ug)

)2)
. (2.30)

Since (Φ− f(τ))(f(τ)− φ) ≥ 0 and (Ψ− g(τ))(g(τ)− ψ) ≥ 0, we have

Kα,β,η,µ
t uKα,β,η,µ

t

(
u(x)(Φ− f(x))(f(x)− φ)

)
≥ 0, (2.31)

and

Kα,β,η,µ
t uKα,β,η,µ

t

(
u(x)(Ψ− g(x))(g(x)− ψ)

)
≥ 0. (2.32)

Thus, from (2.31), (2.32) and Lemma 2.9,we get

Kα,β,η,µ
t uKα,β,η,µ

t (uf2)−
(
Kα,β,η,µ
t (uf)

)2

≤
(

ΦKα,β,η,µ
t u−Kα,β,η,µ

t (uf)

)(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
,

(2.33)
and

Kα,β,η,µ
t uKα,β,η,µ

t (ug2)−
(
Kα,β,η,µ
t (ug)

)2

≤
(

ΨKα,β,η,µ
t u−Kα,β,η,µ

t (ug)

)(
Kα,β,η,µ
t (ug)− φKα,β,η,µ

t u

)
.

(2.34)
Combining (2.29), (2.30), (2.33) and (2.34), we deduce that(

Kα,β,η,µ
t uKα,β,η,µ

t (ufg)−Kα,β,η,µ
t (uf)Kα,β,η,µ

t (ug)

)2

≤
(

ΦKα,β,η,µ
t u−Kα,β,η,µ

t (uf)

)
×
(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)(
ΨKα,β,η,µ

t u−Kα,β,η,µ
t (ug)

)(
Kα,β,η,µ
t (ug)− φKα,β,η,µ

t u

)
. (2.35)

Now using the elementary inequality 4xy ≤ (x+ y)2, x, y ∈ R, we can state that

4

(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
≤
(

(Φ− φ)Kα,β,η,µ
t u

)2

, (2.36)

and

4

(
ΨKα,β,η,µ

t u−Kα,β,η,µ
t (ug)

)(
Kα,β,η,µ
t (ug)− φKα,β,η,µ

t u

)
≤
(

(Ψ− ψ)Kα,β,η,µ
t u

)2

. (2.37)

From (2.35)-(2.37), we abtain (2.26). This complete the proof of Theorem 2.10.
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Lemma 2.11. Let f and g be two functions defined on [0,∞) and let u and v be two nonnegative functions on
[0,∞). Then we have

(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfg) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (ufg)−Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vg)−Kγ,δ,ζ,ν
t (vf)Kα,β,η,µ

t (ug)

)2

≤
(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vf2) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (uf2)− 2Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vf)

)
×
(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vg2) +Kγ,δ,ζ,ν
t uKα,β,η,µ

t (ug2)− 2Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (vg)

)
, (2.38)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Multiplying (2.27) by u(τ)F (t, τ)v(ρ)G(t, ρ), where F (t, τ) is defined by (2.28), and

G(x, ρ) =
Γ(1− δ)Γ(γ + ν + ζ + 1)

Γ(ζ − δ + 1)Γ(ν + 1)
xγ+δ x

−γ−δ−2ν

Γ(γ)
ρν(x− ρ)γ−1

2F1(γ + ν + δ,−ζ; γ; 1− ρ

x
), (2.39)

where x > 0 and ρ ∈ (0, x), and integrating the resulting inequality obtained with respect to τ and ρ from 0 to
x, we have∫ x

0

∫ x

0

u(τ)F (x, τ)v(ρ)G(t, ρ)H(τ, ρ)dτdρ = Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfg) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (ufg)

−Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vg)−Kγ,δ,ζ,ν
t (vf)Kα,β,η,µ

t (ug). (2.40)

Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can obtain (2.38).

Lemma 2.12. Let f be a function defined on [0,∞) and let u and v be two nonnegative functions on [0,∞).
Then we have

Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vf2)+Kγ,δ,ζ,ν
t vKα,β,η,µ

t (uf2)−2Kγ,δ,ζ,ν
t (vf)Kα,β,η,µ

t (uf) =

(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)
×
(
Kγ,δ,ζ,ν
t (vf)− φKγ,δ,ζ,ν

t v

)
+

(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)(
ΦKγ,δ,ζ,ν

t v −Kγ,δ,ζ,ν
t (vf)

)
−Kα,β,η,µ

t uKγ,δ,ζ,ν
t

(
v(x)(Φ− f(x))(f(x)− φ)

)
−Kγ,δ,ζ,ν

t vKα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
, (2.41)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Multiplying both sides of (2.25) by v(τ)G(t, τ) (G(t, τ) defined by (2.39)), and integrating the resulting
inequality obtained with respect to τ from 0 to x, we have(

Kγ,δ,ζ,ν
t (vf)− φKγ,δ,ζ,ν

t v

)(
ΦKα,β,η,µ

t u−Kα,β,η,µ
t (uf)

)
+

(
ΦKγ,δ,ζ,ν

t v −Kγ,δ,ζ,ν
t (vf)

)(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
−Kγ,δ,ζ,ν

t

(
v(x)(Φ− f(x))(f(x)− φ)

)
Kα,β,η,µ
t u−Kγ,δ,ζ,ν

t vKα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
= Kγ,δ,ζ,ν

t (vf2)Kα,β,η,µ
t u+Kγ,δ,ζ,ν

t vKα,β,η,µ
t (uf2)− 2Kγ,δ,ζ,ν

t (vf)Kα,β,η,µ
t (uf), (2.42)

which gives (2.41) and proves the lemma.
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Theorem 2.13. Let f and g be two functions satisfying the condition (1.6) on [0,∞) and let u and v be two
nonnegative functions on [0,∞). Then we have

(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfg) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (ufg)−Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vg)−Kγ,δ,ζ,ν
t (vf)Kα,β,η,µ

t (ug)

)2

≤
[(

ΦKα,β,η,µ
t u−Kα,β,η,µ

t (uf)

)(
Kγ,δ,ζ,ν
t (vf)− φKγ,δ,ζ,ν

t v

)
+

(
Kα,β,η,µ
t (uf)− φKα,β,η,µ

t u

)
×
(

ΦKγ,δ,ζ,ν
t v −Kγ,δ,ζ,ν

t (vf)

)][(
ΨKα,β,η,µ

t u−Kα,β,η,µ
t (ug)

)(
Kγ,δ,ζ,ν
t (vg)− ψKγ,δ,ζ,ν

t v

)
+

(
Kα,β,η,µ
t (ug)− ψKα,β,η,µ

t u

)(
ΨKγ,δ,ζ,ν

t v −Kγ,δ,ζ,ν
t (vg)

)]
, (2.43)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Since (Φ− f(τ))(f(τ)− φ) ≥ 0 and (Ψ− g(τ))(g(τ)− ψ) ≥ 0, we have

−Kα,β,η,µ
t uKγ,δ,ζ,ν

t

(
v(x)(Φ− f(x))(f(x)− φ)

)
−Kγ,δ,ζ,ν

t vKα,β,η,µ
t

(
u(x)(Φ− f(x))(f(x)− φ)

)
≤ 0, (2.44)

and

−Kα,β,η,µ
t uKγ,δ,ζ,ν

t

(
v(x)(Φ− g(x))(g(x)− φ)

)
−Kγ,δ,ζ,ν

t vKα,β,η,µ
t

(
u(x)(Φ− g(x))(g(x)− φ)

)
≤ 0, (2.45)

Applying Lemma 2.12 to f and g, and using Lemma 2.11 and the formulas (2.44), (2.45), we obtain (2.43).

Theorem 2.14. Let u be a nonnegative function on [0,∞) and let f, g and h be three functions defined on
[0,∞), satisfying the following condition

φ ≤ f(x) ≤ Φ, ψ ≤ g(x) ≤ Ψ, ω ≤ h(x) ≤ Ω, φ,Φ, ψ,Ψ, ω,Ω ∈ R, x ∈ [0,∞). (2.46)

Then we have∣∣∣∣Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t u+Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (ufg) +Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (ufh)

+Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (ugh)−Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (uf)−Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (ug)

−Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (uh)−Kα,β,η,µ
t uKγ,δ,ζ,ν

t (ufgh)

∣∣∣∣ ≤ Kα,β,η,µ
t uKγ,δ,ζ,ν

t u(Φ− φ)(Ψ− ψ)(Ω− ω),

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. From the condition (2.46), we have

|f(τ)− f(ρ)| ≤ Φ− φ, |g(τ)− g(ρ)| ≤ Ψ− ψ, |h(τ)− h(ρ)| ≤ Ω− ω, τ, ρ ∈ [0,∞),

which implies that

|(f(τ)− f(ρ))(g(τ)− g(ρ))(h(τ)− h(ρ))| ≤ (Φ− φ)(Ψ− ψ)(Ω− ω). (2.47)

Let us define a function

A(τ, ρ) = (f(τ)− f(ρ))(g(τ)− g(ρ))(h(τ)− h(ρ)) = f(τ)g(τ)h(τ) + f(ρ)g(ρ)h(τ) + f(τ)g(ρ)h(ρ)

+ f(ρ)g(τ)h(ρ)− f(τ)g(ρ)h(τ)− f(ρ)g(ρ)h(ρ)− f(τ)g(τ)h(ρ)− f(ρ)g(τ)h(τ). (2.48)
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Multiplying (2.48) by u(τ)F (t, τ), where F (t, τ) is defined by (2.28), and integrating the resulting inequality
obtained with respect to τ from 0 to x, we have∫ x

0

u(τ)F (x, τ)A(τ, ρ)dτ = Kα,β,η,µ
t (ufgh) + f(ρ)g(ρ)Kα,β,η,µ

t (uh) + f(ρ)h(ρ)Kα,β,η,µ
t (ug)

+ g(ρ)h(ρ)Kα,β,η,µ
t (uf)− h(ρ)Kα,β,η,µ

t (ufg)− g(ρ)Kα,β,η,µ
t (ufh)

− f(ρ)Kα,β,η,µ
t (ugh)− f(ρ)g(ρ)h(ρ)Kα,β,η,µ

t u. (2.49)

Again, by multiplying (2.49) by u(ρ)G(t, ρ), where G(t, τ) is defined by (2.39), and integrating the resulting
inequality obtained with respect to ρ from 0 to x, we have∫ x

0

∫ x

0

u(τ)F (x, τ)u(ρ)G(t, ρ)A(τ, ρ)dτdρ = Kα,β,η,µ
t (ufgh)Kγ,δ,ζ,ν

t u+Kα,β,η,µ
t (uh)Kγ,δ,ζ,ν

t (ufg)

+Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (ufh) +Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (ugh)−Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (uf)

−Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (ug)−Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (uh)−Kα,β,η,µ
t uKγ,δ,ζ,ν

t (ufgh). (2.50)

Finally, by using (2.47) on to (2.50), we arrive at the desired result (??), involved in Theorem 2.14, after a little
simplification. This concludes the proof.

Theorem 2.15. Let u and v be two nonnegative functions on [0,∞) and let f, g and h be three functions defined
on [0,∞), satisfying the condition (2.46). Then we have∣∣∣∣Kα,β,η,µ

t (ufgh)Kγ,δ,ζ,ν
t v +Kα,β,η,µ

t (uh)Kγ,δ,ζ,ν
t (vfg) +Kα,β,η,µ

t (ug)Kγ,δ,ζ,ν
t (vfh)

+Kα,β,η,µ
t (uf)Kγ,δ,ζ,ν

t (vgh)−Kα,β,η,µ
t (ugh)Kγ,δ,ζ,ν

t (vf)−Kα,β,η,µ
t (ufh)Kγ,δ,ζ,ν

t (vg)

−Kα,β,η,µ
t (ufg)Kγ,δ,ζ,ν

t (vh)−Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vfgh)

∣∣∣∣ ≤ Kα,β,η,µ
t uKγ,δ,ζ,ν

t v(Φ− φ)(Ψ− ψ)(Ω− ω), (2.51)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Multiplying (2.49) by v(ρ)G(t, ρ), where G(t, τ) is defined by (2.39), and integrating the resulting in-
equality obtained with respect to ρ from 0 to x, and then applying (2.47) on the resulting inequality, we get
the desired result (2.51). This concludes the proof.

Remark 2.16. It is not difficult to notice that the spacial case u = v of (2.51) in Theorem 2.15 reduces to
Theorem 2.14.

Theorem 2.17. Let f and g be two integrable functions satisfying the condition M -g-Lipschitzian on [0,∞),
i.e., |f(x)− f(y)| ≤M |g(x)− g(y)|, M > 0, x, y ∈ R, and let u and v be two nonnegative continuous functions
on [0,∞). Then we have∣∣∣∣Kα,β,η,µ

t uKγ,δ,ζ,ν
t (vfg) +Kγ,δ,ζ,ν

t vKα,β,η,µ
t (ufg)−Kα,β,η,µ

t (uf)Kγ,δ,ζ,ν
t (yg)−Kγ,δ,ζ,ν

t (vf)Kα,β,η,µ
t (xg)

∣∣∣∣
≤M

(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (vg2) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (ug2)− 2Kα,β,η,µ
t (ug)Kγ,δ,ζ,ν

t (vg)

)
, (2.52)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. Let us define the following relations

|f(τ)− f(ρ)| ≤M |g(τ)− g(ρ)| τ, ρ ∈ [0,∞), (2.53)

which implies that
|H(τ, ρ)| = |f(τ)− f(ρ)||g(τ)− g(ρ)| ≤M(g(τ)− g(ρ))2. (2.54)
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Multiplying (2.27) by u(τ)F (t, τ)u(ρ)G(t, ρ), where F (t, τ) and G(t, ρ) are defined by (2.28) and (2.39), respec-
tively, and integrating the resulting inequality obtained with respect to τ and ρ from 0 to x, then applying
(2.40) and (2.54) on the resulting inequality, we get the desired result (2.52). This concludes the proof of the
theorem.

Theorem 2.18. Let u and v be two nonnegative functions on [0,∞) and let f and g be two Lipschitzian
functions defined on [0,∞) with the constants L1 and L2, respectively. Then we have∣∣∣∣Kα,β,η,µ

t uKγ,δ,ζ,ν
t (vfg) +Kγ,δ,ζ,ν

t vKα,β,η,µ
t (ufg)−Kα,β,η,µ

t (uf)Kγ,δ,ζ,ν
t (yg)−Kγ,δ,ζ,ν

t (vf)Kα,β,η,µ
t (xg)

∣∣∣∣
≤ L1L2

(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (x2v(x)) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (x2u(x))− 2Kα,β,η,µ
t (xu(x))Kγ,δ,ζ,ν

t (xv(x))

)
, (2.55)

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. From the conditions of Theorem 2.18, we have

|f(τ)− f(ρ)| ≤ L1|τ − ρ|, |g(τ)− g(ρ)| ≤ L2|τ − ρ|, τ, ρ ∈ [0,∞),

which implies that
|H(τ, ρ)| = |f(τ)− f(ρ)||g(τ)− g(ρ)| ≤ L1L2(τ − ρ)2. (2.56)

Multiplying (2.27) by u(τ)F (t, τ)v(ρ)G(t, ρ), where F (t, τ) and G(t, ρ) are defined by (2.28) and (2.39), respec-
tively, and integrating the resulting inequality obtained with respect to τ and ρ from 0 to x, then applying
(2.40) and (2.56), on the resulting inequality, we get the desired result (2.55). This completes the proof.

Corollary 2.19. Let u and v be two nonnegative functions on [0,∞) and let f and g be two differentiable
functions on [0,∞) with supt≥0 |f ′(t)|, supt≥0 |g′(t)| <∞. Then we have∣∣∣∣Kα,β,η,µ

t uKγ,δ,ζ,ν
t (vfg) +Kγ,δ,ζ,ν

t vKα,β,η,µ
t (ufg)−Kα,β,η,µ

t (uf)Kγ,δ,ζ,ν
t (yg)−Kγ,δ,ζ,ν

t (vf)Kα,β,η,µ
t (xg)

∣∣∣∣
≤ ‖f ′‖∞‖g′‖∞

(
Kα,β,η,µ
t uKγ,δ,ζ,ν

t (x2v(x)) +Kγ,δ,ζ,ν
t vKα,β,η,µ

t (x2u(x))− 2Kα,β,η,µ
t (xu(x))Kγ,δ,ζ,ν

t (xv(x))

)
,

for all x ∈ [0,∞), and real constants α, γ, β, δ, η, ζ, µ, ν satisfying α, γ > 0, µ, ν > −1, η, ζ ≤ 0 and α + β +
µ, γ + δ + ζ ≥ 0.

Proof. We have f(τ) − f(ρ) =
∫ τ
ρ
f ′(t)dt and g(τ) − g(ρ) =

∫ τ
ρ
g′(t)dt. That is, |f(τ) − f(ρ)| ≤ ‖f ′‖∞|τ − ρ|,

|g(τ)− g(ρ)| ≤ ‖g′‖∞|τ − ρ|, τ, ρ ∈ [0,∞), and the result follows from Theorem 2.18. This ends the proof.

3 An example

In this section we present a way for constructing the four bounding functions, and use them to give some
estimates of Chebyshev type inequalities involving the generalized fractional integral operator of two unknown
functions.

For 0 = x0 < x1 < x2 < · · · < xn < xn+1 = T , we define a notation of sub-integrals of generalized fractional
integral Iα,β,η,µx as

Iα,β,η,µxj ,xj+1
{f(T )} =

x−α−β−2µ

Γ(α)

∫ xj+1

xj

tµ(T−t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt, j = 0, 1, . . . , n. (3.1)
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Note that

Iα,β,η,µ0,T {f(T )} =
n∑
j=0

Iα,β,η,µxj ,xj+1
{f(T )} =

x−α−β−2µ

Γ(α)

∫ x1

0

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt

+
x−α−β−2µ

Γ(α)

∫ x2

x1

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt+ · · ·

+
x−α−β−2µ

Γ(α)

∫ T

xn

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt. (3.2)

So, from (3.2), we can rewrite (1.7) as

Kα,β,η,µ
0,T f(T ) =

Γ(1− β)Γ(α+ µ+ η + 1)

Γ(η − β + 1)Γ(µ+ 1)
T β+µ Iα,β,η,µ0,T {f(T )}

=
Γ(1− β)Γ(α+ µ+ η + 1)

Γ(η − β + 1)Γ(µ+ 1)
T β+µ

n∑
j=0

Iα,β,η,µxj ,xj+1
{f(T )} =

Γ(1− β)Γ(α+ µ+ η + 1)

Γ(η − β + 1)Γ(µ+ 1)
xβ+µ

×
{
T−α−β−2µ

Γ(α)

∫ x1

0

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt

x−α−β−2µ

Γ(α)

∫ x2

x1

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt

· · ·+ x−α−β−2µ

Γ(α)

∫ T

xn

tµ(T − t)α−1
2F1

(
α+ β + µ,−η;α; 1− t

T

)
f(t)dt

}
. (3.3)

Let ϕ be a unit step function defined by

ϕ(x) =

{
1, x > 0,

0, x ≤ 0,

and let ϕa(x) the Heaviside unit step function defined by

ϕa(x) = ϕ(x− a) =

{
1, x > a,

0, x ≤ a.

Let u be a piecewise continuous function on [0, T ] defined by

u(x) = U1(ϕ0(x)− ϕx1(x)) + U2(ϕx1(x)− ϕx2(x)) + U3(ϕx2(x)− ϕx3(x)) + · · ·+ Um+1ϕxm(x) = U1ϕ0(x)

+ (U2 − U1)ϕx1
(x) + (U3 − U2)ϕx2

(x) + · · ·+ (Um+1 − Um)ϕxm(x) =
m∑
j=0

(Uj+1 − Uj)ϕxj (x), (3.4)

where U0 ≡ 0 and 0 = x0 < x1 < x2 < · · · < xm < xm+1 = T . Similarly, we have

v(x) =
m∑
j=0

(Vj+1 − Vj)ϕxj (x). (3.5)

where constants U0 = V0 ≡ 0.

Proposition 3.1. Let f and g be two synchronous functions on [0, T ). Assume that let u and v defined by
(3.4) and (3.5), respectively. Then for α > 0, µ > −1, η ≤ 0 and α+ β + µ ≥ 0, the following inequality holds: m∑

j=0

Uj+1

 m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

(fg)(T )

+

 m∑
j=0

Vj+1

 m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

(fg)(T )


≥

 m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

g(T )

 m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

f(T )

+

 m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

g(T )

 m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

f(T )

 .

(3.6)
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Proof. By using the definition (3.1) and (3.3), we have

Kα,β,η,µ
0,T u(T ) =

m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

(1)(T ) =
m∑
j=0

Uj+1,

and

Kα,β,η,µ
0,T v(T ) =

m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

(1)(T ) =
m∑
j=0

Vj+1,

where Kα,β,η,µ
xj ,xj+1

(1)(T ) = 1. Similarly, we have

Kα,β,η,µ
0,T (ufg)(T ) =

m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

(fg)(T ), Kα,β,η,µ
0,T (vfg)(T ) =

m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

(fg)(T ),

Kα,β,η,µ
0,T (uf)(T ) =

m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

f(T ), Kα,β,η,µ
0,T (vf)(T ) =

m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

f(T ),

Kα,β,η,µ
0,T (ug)(T ) =

m∑
j=0

Uj+1K
α,β,η,µ
xj ,xj+1

g(T ), Kα,β,η,µ
0,T (vg)(T ) =

m∑
j=0

Vj+1K
α,β,η,µ
xj ,xj+1

g(T ),

By applying Lemma 2.1, the desired inequality (3.6) is established.

4 Concluding remarks

In this section, we consider some consequences of the main results derived in the previous section. Following
Curiel and Galue [33], the operator would reduce immediately to the extensively investigated Saigo, Erdélyi-
Kober, and Riemann-Liouville type fractional integral operators, respectively, given by the following relation-
ships (see also [32, 34]):

Iα,β,η0,x {f(x)} = Iα,β,η,0x {f(x)} =
x−α−β

Γ(α)

∫ x

0

(x− t)α−1
2F1

(
α+ β,−η;α; 1− t

x

)
f(τ)dt, (α > 0;β, η ∈ R),

(4.1)

Iα,η{f(x)} = Iα,0,η,0x {f(x)} =
x−α−η

Γ(α)

∫ x

0

(x− t)α−1tα−1f(t)dt, (α > 0; η ∈ R), (4.2)

and

Jα{f(x)} = Iα,−α,η,0x {f(x)} =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, (α > 0). (4.3)

By setting µ = 0, µ = β = 0, and µ = 0 and β = −α in (1.7), Definition 1.2 would immediately reduce to the
Saigo, Erdélyi-Kober, and Riemann-Liouville type fractional integral operators, respectively, given as follows:

Kα,β,η
x f(x) =

Γ(1− β)Γ(α+ η + 1)

Γ(η − β + 1)
xβIα,β,η0,x {f(x)}, (4.4)

Kα,η
x f(x) =

Γ(η + α+ 1)

Γ(1 + η)
Iα,η{f(x)}, (4.5)

and

Kα
x f(x) =

Γ(α+ 1)

xα
Jα{f(x)}, (4.6)

where Iα,β,η0,x {f(x)}, Iα,η{f(x)} and Jα{f(x)} are given by (4.1), (4.2), and (4.3), respectively.
Similar to main results in the preceding section, by using the fractional integral operators (4.1)-(4.6), we

obtain various fractional integral inequalities involving such relatively more familiar fractional integral operators
(4.1)-(4.6). Therefore, we omit the further details. For example, by (4.1), Theorem 2.2 and 2.4 yield the known
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results in [24, 25]. If we consider u = v = 1 and make use of fractional integral operator Iα,β,η,µx {f(x)}, Lemma
2.1 and 2.3 provides respectively, the known fractional integral inequalities due to Baleanu et al. [31].

Let u = 1, Theorem 2.10 corresponds to the known results due to Wang et al. [28]. Taking u = 1, µ = 0
and β = −α in Theorem 2.10 yields the known result due to Dahmani et al. [26]. Make use of fractional
integral operator (4.3), Lemma 2.1 and 2.3 provides respectively, the known fractional integral inequalities
due to Dahmani [17]. At the end of this paper, generalized fractional integral inequalities obtained in the
previous section are expected to find more applications, for example, applications for establishing the solutions
in fractional differential equations and fractional integral equations boundary value problems.

Authors’ contributions. ZL and WY equally participated in the design of the study and drafted the
manuscript. PA gave an example to show the applications. All authors read and approved the final manuscript.
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[14] H. Öğünmez, and U. Özkan, Fractional quantum integral inequalities, Journal of Inequalities and Applica-
tions, vol. 2011 Article ID 787939, 7 pages, 2011.

[15] V. Chinchane, and D. Pachpatte, A note on some fractional integral inequalities via Hadamard integral,
Journal Fractional Calculus and Applications, vol. 4, no. 1, pp. 125-129, 2013.

15

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1013 Zhen Liu et al 999-1014



[16] S. Purohit, and R. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-
analogues, Journal of Mathematical Inequalities, vol.7, no. 2, pp. 239-249, 2013.

[17] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Sciences, vol. 9,
no. 4, pp. 493-497, 2010.

[18] W. Yang, Some new fractional quantum integral inequalities, Applied Mathematics Letters, vol. 25, no. 6,
963-969, 2012.

[19] K. Brahim, and S. Taf, Some fractional integral inequalities in quantum calculus, Journal Fractional Cal-
culus and Applications, vol. 4, no. 2, pp. 245-250, 2013.

[20] V. Chinchane, and D. Pachpatte, On some integral inequalities using Hadamard fractional integral, Malaya
Journal of Matematik, vol. 1, no. 1, pp. 62-66, 2012.

[21] Agarwal, P, Salahshour, S, Ntouyas, and Tariboon, J: Certain inequalities involving generalized Erdélyi-
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Estimates for the Green’s Function of 3D Elliptic

Equations

Jinghong Liu∗and Yinsuo Jia†

This article will first introduce the definition of the Green’s function of 3D
elliptic equations, which plays important roles in local superconvergence esti-
mates for the finite element approximation. Then, using the weighted-norm
methods, we derive some estimates for the 3D Green’s function.

1 Introduction

It is well known that estimates for the Green’s function play very important roles
in the study of the superconvergence (especially, pointwise superconvergence)
of the finite element method (see [1–9]). For dimensions three and up, we have
obtained the estimates for discrete Green’s functions and discrete derivative
Green’s functions, which were used to the global superconvergence estimates
of the finite element approximation. However, the fact is that the high gen-
eralization conditions to the true solution is difficult to satisfy for the global
superconvergence estimates. Thus the global superconvergence results is only
theoretical. In order to study local superconvergence properties of the finite el-
ement approximation, we need to introduce a Green’s function, which will play
important roles in the study of local superconvergence properties.

we shall use the symbol C to denote a generic constant, which is independent
from the discretization parameter h and which may not be the same in each
occurrence and also use the standard notations for the Sobolev spaces and their
norms.

In this article, we consider the following elliptic equation:

Lu ≡ −
3∑

i,j=1

∂j(aij∂iu) + a0u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ R3 is a bounded polytopic domain. The weak formulation of (1.1)
reads, {

Find u ∈ H1
0 (Ω) satisfying

a(u , v) = (f , v) for all v ∈ H1
0 (Ω),

∗School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang
University, Ningbo 315100, China, email: jhliu1129@sina.com

†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: jiayinsuo2002@sohu.com
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where

a(u , v) ≡
∫
Ω

(

3∑
i,j=1

aij∂iu∂jv + a0uv) dxdydz, (f , v) ≡
∫
Ω

fv dxdydz.

We assume that the given functions aij ∈ W 1,∞(Ω), aij = aji, a0 ∈ L∞(Ω),
and f ∈ L2(Ω). In addition, we write ∂1u = ∂u

∂x , ∂2u = ∂u
∂y , and ∂3u = ∂u

∂z ,

which are usual partial derivatives. Let {T h} be a regular family of partitions
of Ω̄. Denote by Sh(Ω) a continuous finite elements space of degree m(m ≥ 1)
regarding this kind of partitions and let Sh

0 (Ω) = Sh(Ω) ∩H1
0 (Ω). Discretizing

the above weak formulation using Sh
0 (Ω) as approximating space means,{

Find uh ∈ Sh
0 (Ω) satisfying

a(uh , v) = (f , v) for all v ∈ Sh
0 (Ω).

For every Z ∈ Ω, we define the discrete δ function δhZ ∈ Sh
0 (Ω), the dis-

crete derivative δ function ∂Z,ℓδ
h
Z ∈ Sh

0 (Ω), the regularized Green’s function
G∗

Z ∈ H2(Ω) ∩ H1
0 (Ω), the regularized derivative Green’s function ∂Z,ℓG

∗
Z ∈

H2(Ω)∩H1
0 (Ω), the discrete Green’s function Gh

Z ∈ Sh
0 (Ω), the discrete deriva-

tive Green’s function ∂Z,ℓG
h
Z ∈ Sh

0 (Ω), and the L2-projection Phu ∈ Sh
0 (Ω) such

that (see [9])
(v, δhZ) = v(Z) ∀ v ∈ Sh

0 (Ω), (1.2)

(v, ∂Z,ℓδ
h
Z) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω), (1.3)

a(G∗
Z , v) = (δhZ , v) ∀ v ∈ H1

0 (Ω), (1.4)

a(∂Z,ℓG
∗
Z , v) = (∂Z,ℓδ

h
Z , v) ∀ v ∈ H1

0 (Ω), (1.5)

a(Gh
Z , v) = v(Z) ∀ v ∈ Sh

0 (Ω), (1.6)

a(∂Z,ℓG
h
Z , v) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω), (1.7)

(u− Phu, v) = 0 ∀ v ∈ Sh
0 (Ω). (1.8)

Here, for any direction ℓ ∈ R3, |ℓ| = 1, ∂Z,ℓδ
h
Z , ∂Z,ℓG

h
Z , and ∂ℓv(Z) stand for

the following onesided directional derivatives, respectively.

∂Z,ℓδ
h
Z = lim

|∆Z|→0

δhZ+∆Z − δhZ
|∆Z|

, ∂Z,ℓG
h
Z = lim

|∆Z|→0

Gh
Z+∆Z −Gh

Z

|∆Z|
,

∂ℓv(Z) = lim
|∆Z|→0

v(Z + ∆Z)− v(Z)

|∆Z|
, ∆Z = |∆Z|ℓ.

As for G∗
Z , ∂Z,ℓG

∗
Z , Gh

Z , and ∂Z,ℓG
h
Z , we have obtained some optimal estimates

(see [4–6]), which will be used in next section. From (1.4)–(1.7), we easily
find Gh

Z and ∂Z,ℓG
h
Z are the finite element approximations to G∗

Z and ∂Z,ℓG
∗
Z ,

respectively.
For the L2-projection operator Ph, we have (see [4])
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Lemma 1.1. For Phw the L2-projection of w ∈ Lp(Ω), we have the following
stability estimate:

∥Phw∥0, p,Ω ≤ Ct∥w∥0, p,Ω, (1.9)

where t =
∣∣∣1− 2

p

∣∣∣, and 1 ≤ p ≤ ∞.

Further, by Lemma 1.1, we easily obtain the following result:

∥w − Phw∥0, p,Ω ≤ (1 + Ct) infv∈Sh
0 Ω ∥w − v∥0, p,Ω

≤ C∥w −Πw∥0, p,Ω ≤ Chm+1∥w∥m+1, p,Ω,
(1.10)

where 1 ≤ p ≤ ∞.
In addition, we also assume the following a priori estimate holds.

Lemma 1.2. For the true solution u of (1.1), there exists a q0(1 < q0 ≤ ∞)
such that for every 1 < q < q0,

∥u∥2, q,Ω ≤ C(q)∥Lu∥0, q,Ω. (1.11)

2 Definition of the 3D Green’s Function

For Z ∈ Ω, we introduce the definition of the 3D Green’s function GZ as follows

a(GZ , v) = v(Z) ∀ v ∈ C∞
0 (Ω).

In the following, we will prove the existence and uniqueness of the Green’s
function.
Lemma 2.1. For G∗

Z and Gh
Z defined by (1.4) and (1.6), respectively, we have∥∥G∗
Z −Gh

Z

∥∥
1,1
≤ Ch |lnh|

2
3 . (2.1)

This result can be seen in [4].
Theorem 2.1. There exists a unique GZ ∈W 1,1

0 (Ω) such that

a(GZ , v) = v(Z) ∀ v ∈W 1,∞
0 (Ω). (2.2)

Proof. We first prove the uniqueness of GZ . Suppose there exists another
Green’s function HZ ∈W 1,1

0 (Ω) satisfying (2.2). Set EZ = GZ −HZ , thus

a(EZ , v) = 0 ∀ v ∈W 1,∞
0 (Ω). (2.3)

Let w ∈W 2,4(Ω) ∩W 1,4
0 (Ω) and Lw = sgnEZ |EZ |

1
4 . We have

∥EZ∥
5
4

0, 54
= (EZ , sgnEZ |EZ |

1
4 ) = a(EZ , w), (2.4)

By the Sobolev Embedding Theorem [10], W 2,4(Ω) ↪→ W 1,∞. Thus w ∈
W 1,∞

0 (Ω). From (2.3) and (2.4), EZ = 0, i.e., GZ = HZ . The proof of the
uniqueness is completed.
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Next, we prove the existence of GZ . We give a series of finite element spaces

Shi
0 (Ω), i = 0, 1, 2, · · · satisfying Shi

0 (Ω) ⊂ Shj

0 (Ω) when i < j, where h0 ≡ h and
1
4hi−1 ≤ hi ≤ 1

2hi−1. Let G∗
Z,i be the regularized Green’s function for the finite

element space Shi
0 (Ω), and Ghi

Z the discrete Green’s function. Their definitions
can be seen in Section 1. Obviously, we have

a(Ghi

Z , v) = v(Z), a(G∗
Z,i+1, v) = v(Z), ∀ v ∈ Shi

0 (Ω).

Thus,
a(G∗

Z,i+1 −G
hi

Z , v) = 0 ∀ v ∈ Shi
0 (Ω). (2.5)

Similar to the proof of Lemma 2.1, we have∥∥∥G∗
Z,i+1 −G

hi

Z

∥∥∥
1,1
≤ Chi |lnhi|

2
3 . (2.6)

In addition, from (2.1), ∥∥∥G∗
Z,i −G

hi

Z

∥∥∥
1,1
≤ Chi |lnhi|

2
3 . (2.7)

By (2.6), (2.7), and the triangular inequality, we immediately obtain∥∥G∗
Z,i+1 −G∗

Z,i

∥∥
1,1
≤ Chi |lnhi|

2
3 .

Thus,
∞∑
i=0

∥∥G∗
Z,i+1 −G∗

Z,i

∥∥
1,1
≤ C

∞∑
i=0

h

2i

∣∣∣∣ln h

2i

∣∣∣∣ 23 ≤ Ch |lnh| 23 . (2.8)

Set

GZ ≡ G∗
Z +

∞∑
i=0

(G∗
Z,i+1 −G∗

Z,i).

Thus we have GZ ∈W 1,1
0 (Ω). From (2.8),

∥GZ −G∗
Z∥1,1 ≤ Ch |lnh|

2
3 . (2.9)

Thus, we have
G∗

Z,i −→ GZ inW 1,1(Ω) when i→∞.

Hence, for v ∈W 1,∞
0 (Ω), we have

a(GZ , v) = lim
i→∞

a(G∗
Z,i, v) = lim

i→∞
Phiv(Z). (2.10)

From (1.10),
lim
i→∞

Phiv(Z) = v(Z). (2.11)

Combining (2.10) and (2.11) yields the result (2.2).
Finally, we show GZ is independent of h. Suppose there exists a Green’s

function G̃Z for the mesh-size h̃. In addition, 1
4 h̃i−1 ≤ h̃i ≤ 1

2 h̃i−1 and h̃0 = h̃.

Thus, for every f ∈ L∞(Ω), we choose v ∈W 2,∞(Ω)∩W 1,∞
0 (Ω) such that Lv =

f . Then we get (GZ , f) = a(GZ , v) = v(Z) and (G̃Z , f) = a(G̃Z , v) = v(Z).
Thus, (GZ , f) = (G̃Z , f), i.e., (GZ − G̃Z , f) = 0. So we get GZ = G̃Z . The
proof of Theorem 2.1 is completed.
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3 Estimates for the 3D Green’s Function

Lemma 3.1. Suppose 1 < p < min{2, q0} and 1
p + 1

q = 1. For G∗
Z , ∂Z,ℓG

∗
Z ,

Gh
Z , and ∂Z,ℓG

h
Z defined by (1.4)–(1.7), we have∥∥G∗

Z −Gh
Z

∥∥
0,q

+ h
∥∥∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∥∥
0,q
≤ Ch2−

3
p . (3.1)

Proof. Obviously, by the interpolation error estimate and the a priori estimate
(1.11), we have∥∥G∗

Z −Gh
Z

∥∥
1
≤ C infv∈Sh

0 (Ω) ∥G∗
Z − v∥1 ≤ ∥G

∗
Z −ΠG∗

Z∥1
≤ Ch2.5−

3
p ∥G∗

Z∥2,p ≤ Ch
2.5− 3

p

∥∥δhZ∥∥0,p . (3.2)

For φ ∈ Lp(Ω), we choose Φ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) such that LΦ = φ. Then we

have ∣∣(G∗
Z −Gh

Z , φ)
∣∣ =

∣∣a(G∗
Z −Gh

Z ,Φ)
∣∣ =

∣∣a(G∗
Z −Gh

Z ,Φ−ΠΦ)
∣∣

≤ C
∥∥G∗

Z −Gh
Z

∥∥
1
∥Φ−ΠΦ∥1 .

(3.3)

From (3.2), (3.3), and the interpolation error estimate, we get∣∣(G∗
Z −Gh

Z , φ)
∣∣ ≤ Ch5− 6

p

∥∥δhZ∥∥0,p ∥φ∥0,p . (3.4)

Thus ∥∥G∗
Z −Gh

Z

∥∥
0,q
≤ Ch5−

6
p

∥∥δhZ∥∥0,p . (3.5)

In addition, for 1 ≤ p ≤ ∞, we easily prove∥∥δhZ∥∥0,p + h
∥∥∂Z,ℓδ

h
Z

∥∥
0,p
≤ Ch−3+ 3

p . (3.6)

From (3.5) and (3.6), ∥∥G∗
Z −Gh

Z

∥∥
0,q
≤ Ch2−

3
p .

Similarly, we have ∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥
0,q
≤ Ch1−

3
p .

The result (3.1) is proved. We now introduce a weight function defined by

ϕ ≡ ϕ(X) =
(
|X − X̄|2 + θ2

)− 3
2 ∀X ∈ Ω̄,

where X̄ ∈ Ω̄ is a fixed point, θ = γh, and γ ∈ [3,+∞) is a suitable real number.
As for the function ϕ, it is easy to prove the following properties hold.∫

Ω

ϕk(X)dX ≤ C(k − 1)−1θ−3(k−1) ∀ k > 1, (3.7)

∫
Ω

ϕk(X)dX ≤ C

1− k
∀ 0 < k < 1, (3.8)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1019 Jinghong Liu et al 1015-1022



LIU, JIA: ESTIMATES FOR THE 3D GREEN’S FUNCTION

∫
Ω

ϕ(X)dX ≤ C(β)| ln θ|, θ ≤ β < 1. (3.9)

Similar to the arguments of Lemma 2.4 in [4], we can get the following Lemma
3.2.
Lemma 3.2. For δhZ and ∂Z,ℓδ

h
Z , the discrete δ function and the discrete deriva-

tive δ function defined by (1.2) and (1.3), respectively, we have the following
weighted-norm estimate:∥∥δhZ∥∥ϕ−α + h

∥∥∇δhZ∥∥ϕ−α + h
∥∥∂Z,ℓδ

h
Z

∥∥
ϕ−α ≤ Ch

3(α−1)
2 ∀α > 0. (3.10)

Lemma 3.3. For δhZ and G∗
Z , the discrete δ function and the regularized Green’s

function defined by (1.2) and (1.4), respectively, we have the following weighted-
norm estimate:

∥∇G∗
Z∥ϕ−α ≤ C

∥∥δhZ∥∥ϕ−α− 2
3

+ C ∥G∗
Z∥ϕ−α+2

3
∀α ∈ R. (3.11)

Proof. First, we find

∥∇G∗
Z∥

2
ϕ−α ≤ a(G∗

Z , ϕ
−αG∗

Z) + C ∥G∗
Z∥

2

ϕ−α+2
3
. (3.12)

Moreover,

a(G∗
Z , ϕ

−αG∗
Z) = (δhZ , ϕ

−αG∗
Z)

≤ ∥δhZ∥ϕ−α− 2
3
∥G∗

Z∥ϕ−α+2
3

≤ 1
2 (∥δhZ∥2

ϕ−α− 2
3

+ ∥G∗
Z∥2

ϕ−α+2
3

).
(3.13)

Combining (3.12) and (3.13) immediately yields the result (3.11).
Theorem 3.1. Suppose q0 >

3
2 ,

3
2 < p < min{2, q0}, and 1

p + 1
q = 1, then we

have
∥GZ −G∗

Z∥0,q ≤ Ch
2− 3

p = Ch
3−q
q . (3.14)

Remark 1. Similar to the arguments of (2.9) and with the result (3.1), we
easily obtain the result (3.14). Obviously, we have max{2, q′0} < q < 3 and
1
q0

+ 1
q′0

= 1.

Theorem 3.2. Suppose q0 >
3
2 . For GZ , the Green’s function defined by (2.2),

and the weight function τ = |X − Z|−3, we have

∥GZ∥0,q ≤ C(q), 1 ≤ q ≤ 3. (3.15)

∥GZ∥1,τ−ϵ ≤ C(ϵ),
1

3
< ϵ <∞. (3.16)

∥GZ∥1,q ≤ C(q), 1 ≤ q < 3

2
. (3.17)

Proof. Obviously, from (3.14), GZ ∈ Lq(Ω) and 1 ≤ q < 3. In addition, we have
proved ∥G∗

Z∥0,3 ≤ C in [4]. Moreover, L3(Ω) is a reflexive space. Thus, {G∗
Z,i}
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is weakly convergent to QZ ∈ L3(Ω) ⊂ Lq(Ω), where max{2, q′0} < q < 3. From
(3.14),

G∗
Z,i −→ GZ inLq(Ω) when i→∞.

Thus GZ = QZ ∈ L3(Ω). So we have GZ ∈ Lq(Ω)(1 ≤ q ≤ 3).
When max{2, q′0} < q < 3, we have 3

2 < p < min{2, q0}, where 1
p + 1

q = 1.

For every φ ∈ C∞
0 (Ω), we can find a function φ̃ ∈ C∞

0 (Ω) such that Lφ̃ = φ.
Moreover, by the Sobolev Embedding Theorem [10] and the a priori estimate
(1.11), we get

(GZ , φ) = a(GZ , φ̃) = φ̃(Z) ≤ ∥φ̃∥0,∞ ≤ C(q) ∥φ̃∥2,p ≤ C(q) ∥φ∥0,p .

Thus,
∥GZ∥0,q ≤ C(q).

Since
∥∥G∗

Z,i

∥∥
0,3
≤ C, and {G∗

Z,i} is weakly convergent to GZ ∈ L3(Ω), thus,

∥GZ∥0,3 ≤ C. In addition, when 1 ≤ q ≤ max{2, q′0}, we have ∥GZ∥0,q ≤
C(q) ∥GZ∥0,3 ≤ C(q). Thus we have finished the proof of the result (3.15).

Now we prove the result (3.16). We have obtained the result ∥G∗
Z∥ϕ 1

3
≤

C |lnh|
1
6 in [4]. When 0 < r < 1

3 , we have by (3.8) and ∥G∗
Z∥0,3 ≤ C,

∥G∗
Z∥

2
ϕr =

∫
Ω

ϕr |G∗
Z |

2
dX ≤

(∫
Ω

ϕ3r dX

) 1
3

∥G∗
Z∥

2
0, 3 ≤ C(r) ∥G∗

Z∥
2
0, 3 ≤ C(r).

Namely, ∥G∗
Z∥ϕr ≤ C(r) ∀ 0 < r < 1

3 . Obviously, when s < t, we have ϕs ≤
Cϕt. Thus, ∥G∗

Z∥ϕr ≤ C(r) ∀ r ≤ 0. So we have

∥G∗
Z∥ϕr ≤ C(r) ∀ r < 1

3
. (3.18)

From (3.10) and (3.11),

∥∇G∗
Z∥ϕ−ϵ ≤ C

∥∥δhZ∥∥ϕ−ϵ− 2
3

+ C ∥G∗
Z∥ϕ−ϵ+2

3

≤ Ch
3ϵ−1

2 + C ∥G∗
Z∥ϕ−ϵ+2

3
.

(3.19)

Combining (3.18) and (3.19) yields

∥G∗
Z∥1,ϕ−ϵ ≤ C(ϵ) ∀ ϵ > 1

3
. (3.20)

By the Hölder inequality, we have for 1 ≤ q < 3
2

∥∇G∗
Z∥

q
0,q =

∫
Ω

ϕ
qϵ
2 ϕ−

qϵ
2 |∇G∗

Z |q dX ≤
(∫

Ω

ϕ
qϵ

2−q dX

) 2−q
2

∥∇G∗
Z∥

q
ϕ−ϵ .

Choosing a suitable ϵ such that qϵ
2−q < 1, we have by (3.8) and (3.20),

∥∇G∗
Z∥0,q ≤ C(q). (3.21)
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Obviously,

∥G∗
Z∥1,τ−ϵ ≤ ∥G∗

Z∥1,ϕ−ϵ ≤ C(ϵ) ∀ ϵ > 1

3
. (3.22)

Since G∗
Z is bounded according to the weighted-norm ∥ · ∥1,τ−ϵ , thus, {G∗

Z,i}
is weakly convergent to a function FZ with ∥FZ∥1,τ−ϵ < ∞. Further, we have
∥FZ∥1,1,τ−ϵ <∞. From (2.9),

∥GZ −G∗
Z∥1,1,τ−ϵ ≤ C(ϵ) ∥GZ −G∗

Z∥1,1 ≤ C(ϵ)h |lnh|
2
3 ,

which shows {G∗
Z,i} is convergent to the function GZ with ∥GZ∥1,1,τ−ϵ < ∞.

Thus, FZ = GZ . Namely,

∥GZ∥1,τ−ϵ ≤ C(ϵ) ∀ ϵ > 1

3
.

Up to now, the result (3.16) is thoroughly proved. Similar to the arguments of
(3.16), from (3.21), we can obtain the result (3.17).
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1. Introduction

Mathematicians have studied various kinds of the Euler, Bernoulli, Tangent, and
Genocchi polynomials. Recently, many authors have studied the relations between these
polynomials and Stirling numbers of the second kind(see [1-24]). Numerical experiments of
Bernoulli, Euler, and Genocchi polynomials also have been made the subject of extensive
research.

The computing environment will be making more and more rapid advance and this
environment has been increasing the interest in solving mathematical problems with the
aid of computers. The zeros of Genocchi polynomials Gn(x) is very interesting a realistic
study by using computer(see [2,16-20,23]).

The Genocchi numbers Gn and Genocchi polynomials Gn(x) are usually defined by
the following generating functions.

Definition 1.1.[5,14,17] Let n ∈ N0. Then we define

∞∑
n=0

Gn
tn

n!
=

2t

et + 1
, |t| < π,

∞∑
n=0

Gn(x)
tn

n!
=

(
2t

et + 1

)
etx,

1
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where we use the notation by replacingG(x)
n

byGn(x) symbolically. Clearly, Gn = Gn(0).
In general, it satisfies G3 = G5 = G7 = G9 = · · · = 0, and even coefficients are given
Gn = 2nE2n−1 = 2(1−22n)B2n, where En are the Euler numbers and Bn are the Bernoulli
numbers(see [4-5, 6, 8, 12, 15]).

These polynomials and numbers play important roles in many different areas of mathe-
matics such as combinatorics, number theory, special function and analysis, and numerous
interesting results for them have been explored. The following elementary properties of
Genocchi polynomials Gn(x) are readily derived from the Definition 1.1. Therefore we
choose to omit the details involved. More studies and results in this subject we may see
references(see [5-6,14-20]).

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · }
denotes the set of natural numbers, N0 = {0, 1, 2, 3, · · · } denotes the set of nonnegative
integers, Z denotes the set of integers, R denotes the set of real numbers, and C denotes
the set of complex numbers, and C∞ = C ∪ {∞}.

Theorem 1.2.[5,6,17,19] For n ∈ N0, we know

Gn(x) =
n∑

k=0

(
n

k

)
Gkx

n−k.

Theorem 1.3.[5,6,15] Let x ∈ N0. Then we have

(G+ 1)n +Gn =

{
2 if n = 1
0 if n 6= 1

.

From the Theorem 1.2 and Theorem 1.3, it is easy to deduce that Gn(x) are polyno-
mials of degree n. The Genocchi polynomials are as follows.

G1(x) = 1,

G2(x) = 2x− 1,

G3(x) = 3x2 − 3x,

G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x,

G6(x) = 6x5 − 15x4 + 15x2 − 3,

G7(x) = 7x6 − 21x5 + 35x3 − 21x,

G8(x) = 8x7 − 28x6 + 70x4 − 84x2 + 17,

· · · .

Definition 1.4. Let f : D → D be a complex function, with D a subset of C. We
define the iterated maps of the complex function as the following:

fn : z0 7→ f(f(· · · (f︸ ︷︷ ︸
n−times

(z0) · · · ))

2
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The iterates of f are the functions f, f ◦ f, f ◦ f ◦ f, ..., which are denoted f1, f2, f3, .... If
z ∈ C, then the orbit of z0 under f is the sequence (z0, f(z0), f(f(z0)), · · · ).

We consider the Newton’s dynamical system as the follows:{
C∞ : R(x) = x− S(x)

S′(x)

}
.

R is called the Newton iteration function of S. It can be shown that the fixed points of
R are zeros of S and all fixed points of R are attracting. R may also have one or more
attracting cycles(see [2, 23-24]).

This paper is organized as follows. In Section 2, we study some properties of zeros
for Genocchi polynomials from Newtons’method. In section 3, we find some distributions
and properties of fixed point for Genocchi polynomials by using iterating map.

2. The observation for scattering of zeros of the Genocchi polynomials

In this section, we can see the several conjecture from the Tables. we also find the
approximate zeros of the Genocchi polynomials. Using the Mathematica software, we can
see the structure of the zeros of the Genocchi polynomials in various viewpoints.

From the Definition of Genocchi polynomials, we get

∞∑
n=0

Gn(1− x)
(−t)n

n!
=
−2t

e−t + 1
e−t(1−x) = − 2t

et − 1
etx = −

∞∑
n=0

Gn(x)
tn

n!
.

From the above equation, we find the following theorem.

Theorem 2.1.[14,-15,17,19-20]. For n ∈ N0, we have

Gn(x) = (−1)n+1Gn(1− x).

Conjecture 2.2. Gn(x) = 0 has n distinct solutions.

We find a counterexample of the conjecture 2.2. When n = 6, there exist five num-

bers, xi(i = 1, 2, 3, 4, 5) such that G6(xi) = 0. That is, we can find x1 =
1

2
, x2 =

1

2

(
1−
√

5
)
, x3 =

1

2

(
1−
√

5
)
, x4 =

1

2

(
1 +
√

5
)
, x5 =

1

2

(
1 +
√

5
)
. Therefore, the conjec-

ture 2.3 is not true for all n. Using computers, many more values of n have been checked.
It still remains unknown if the conjecture fails or holds for any value n 6= 6.

See Table 1 for tabulated values of RGn(x) and CGn(x), where RGn(x) denote the
numbers of real zeros and CGn(x) denotes the numbers of complex zeros. Our numerical
results, that is the numbers of real and complex zeros of Gn(x) for 29 ≤ n ≤ 60 are
displayed in the Table 1.

3
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Table 1. Numbers of real and complex zeros of Gn(x)

degree n RGn(x) CGn(x) degree n RGn(x) CGn(x)

29 8 20 45 12 32
30 9 20 46 13 32
31 10 20 47 14 32
32 11 20 48 15 32
33 8 24 49 12 36
34 9 24 50 13 36
35 10 24 51 14 36
36 11 24 52 15 36
37 12 24 53 16 36
38 9 28 54 13 40
39 10 28 55 14 40
40 11 28 56 15 40
41 12 28 57 16 40
42 13 28 58 17 40
43 11 32 59 14 44
44 11 32 60 15 44

If we consider Gn(x) for 2 ≤ n ≤ 100, we then find the Figure 1. The x-axis means the
numbers of real zeros and the y-axis means the numbers of complex zeros in the Genocchi
polynomials in Figure 1. From Table 1 and Figure 1, we can suggest a below conjecture.

5 10 15 20 25

10

20

30

40

50

60

70

Figure 1: Numbers of real and complex zeros of Gn(x) for 2 ≤ n ≤ 100

Conjecture 2.3. When Im(x) 6= 0, we find that
(1) the numbers of RGn(x) of Gn(x):

RGn(x) = n− 1− CGn(x).

(2) the numbers of CGn(x) of Gn(x):

CGn(x) = 4

[
n− 1− α

5

]
, α =

[
n+ 19

21

]
,

4
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where [x] is the greatest integer not exceeding x.

By using the Theorem 2.1, we also have the following theorem.

Theorem 2.4. For n ∈ N0, if n ≡ 0 (mod 2), then Gn

(
1

2

)
= 0.

By Theorem 2.4, we can know the center of the structure of zeros in Genocchi polynomials
is 1

2 (see the Figure2). The forms of 3D structure which is stacks of zeros of Gn(x) for
2 ≤ n ≤ 60 are presented in the top-left of Figure 2. We can draw the top-right figure
and bottom-left figure when we look at the top-left Figure 2 in the above position and left
orthographic viewpoint, respectively.

Figure 2: Stacks of zeros of Gn(x) for 2 ≤ n ≤ 60

From Definition of Genocchi polynomials, we get

∞∑
n=0

(Gn(x+ 1) +Gn(x))
tn

n!
=

2t

et + 1
et(x+1) +

2t

et + 1
etx

= 2tetx = 2
∞∑

n=0

(n+ 1)xn
tn

n!
.

By comparing the coefficients of
tn

n!
on both sides of the above equation, we find the the-

orem 2.5.

Theorem 2.5. For n ∈ N0 we find

Gn(x+ 1) +Gn(x) = 2nxn−1.

5
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Substituting x = 0 in the Theorem 2.5, we find the following corollary 2.6.

Corollary 2.6. For n ∈ N, one has

Gn = −Gn(1).

We consider the Newton’s dynamical system at numbers of roots in G10(x). We can
obtain roots in the G10(x), that is,

x1 = −1.31362− 0.876373i, x2 = −1.31362 + 0.876373i,

x3 = −1.21973, x4 = −0.50008,

x5 = 0.5, x6 = 1.50008,

x7 = 2.21973, x8 = 2.31362− 0.876373i,

x9 = 2.31362 + 0.876373i.

The orbit of x0 from the Newton method appears by calculating until 30 iterations or
the absolute difference value of the last two iterations is within 10−6. We hope to determine
whether the orbit of x0 under the action of Newton’s dynamical system converges to one
of roots when it is given a point x0 in the complex plane.

Figure 3: General structure of orbits for {−1.5 ≤ x ≤ 2.5}, {−1.5 ≤ y ≤ 2.5}

The output of Figure 3 is the orbit values by using the above method. We plot the blue,
brown, yellow, skyblue, green, ocher, navy blue, red, or gray to x0 in the Figure 3, when an

6
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orbit of x0 converge to−1.31362−0.876373i,−1.31362+0.876373i,−1.21973,−0.50008, 0.5,
1.50008, 2.21973, 2.31362− 0.876373i, 2.31362 + 0.876373i, respectively. From the top-left
figure, we can observe general structure for {−1.5 ≤ x ≤ 2.5}, {−1.5 ≤ y ≤ 2.5}. More-
over, we can observe property of complex conjugate from the top-right figure and bottom-
figures in the right part of general structure by narrowing range. The interesting result is
the fact that each boundaries of range parts have every colors and self-similarity.

3. The fixed points of Genocchi polynomials

In this section, we present distributions of fixed points and period points from iterat-
ing map. From definition and property of fixed point, we find it and construct structure of
this points in the complex plane. By expanding method of previous section we can discuss
the fixed points and period points of the Genocchi polynomials.

Definition 3.1. The orbit of the point z0 ∈ C under the action of the function f
is said to be bounded if there exists M ∈ R such that |fn(z0)| < M for all n ∈ N. If the
orbit is not bounded, it is said to be unbounded.

Definition 3.2. Let f : D → D be a transformation on a metric space. A point
z0 ∈ D such that f(z0) = z0 is called a fixed point of the transformation.

Suppose that the complex function f is analytic in a region D of C, and f has a fixed
point at z0 ∈ D. Then z0 is said to be:
an attracting fixed point if |f ′(z0)| < 1;
a repelling fixed point if |f ′(z0)| > 1;
a neutral fixed point if |f ′(z0)| = 1.

For example, G4(x)− 1.01− 0.1i have three points satisfying G4(x)− 1.01− 0.1i = x.
That is, x0 = −0.174314+0.0695883i, 0.0220059−0.0779681i, 1.65231+0.00837978i. Since∣∣∣∣ ddzG4(0.0220059− 0.0779681i)− 1.01− 0.1i

∣∣∣∣ = 0.953792 < 1,

we obtain the following theorem.

Theorem 3.3. The Genocchi polynomials G4(x) − 1.01 − 0.1i has the only one
attracting fixed point at

α = 0.0220059− 0.0779681i.

We can separate the numerical results for fixed point of Gn(x) by using Mathematica
software. In the Table 2, we can look for numbers of fixed points of Gn(x) for 3 ≤ n ≤ 10
and find property of their points.

7
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Table 2. Numbers of attracting, repelling, and neutral fixed points of Gn(x)

degree n attractor repellor neutral

3 0 2 0
4 0 3 0
5 0 4 0
6 0 5 0
7 0 6 0
8 0 7 0
9 0 8 0
10 0 9 0

Conjecture 3.4. The Genocchi polynomials Gn(x) has no attracting and neutral
fixed point except for infinity.

In the Table 3, we consider Gr
4(x) by using iterating map. We can know the numbers

of real roots of Gr
4(x) using iterated function are less than 3r. In addition, we observe the

numbers of real roots will be 2r+1−1 for r ≥ 1 and find there is no the real number which
is related to fixed point.

Table 3. Numbers of roots and fixed points of Gr
4(x) for 1 ≤ r ≤ 9

r numbers of real roots numbers of real numbers in fixed points

G1
4(x) 3 3

G2
4(x) 7 5

G3
4(x) 15 15

G4
4(x) 31 51

G5
4(x) 63 0

G6
4(x) 127 0

G7
4(x) 255 0

G8
4(x) 511 0

G9
4(x) 1023 0
· · · · · · · · ·

In the top-left Figure 4, we can see the forms of 3D structure which is related to stacks
of fixed points of iterated Gr

4(x) for 1 ≤ r ≤ 6. We can draw the top-right figure when we
look at the top-left Figure 4 in the below position. The bottom-left of Figure 4 represent
that image and n axes are exist but there is no real axis. The bottom-right of Figure 4 is
the right orthographic viewpoint for the top-left figure, that is, there exist real and n axes
but don’t exist image axis.

8
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Figure 4: Stacks of fixed points of Gr
4(x) for 1 ≤ n ≤ 6

We consider G2
4(x) for x ∈ C. This polynomial has nine distinct complex numbers,

ai(i = 1, 2, 3, 4, 5, 6, 7, 8, 9) such that G2
4(ai) = ai. We obtain a1 = −0.430403, a2 =

−0.244653, a3 = −0.0322871−0.240632i, a4 = −0.0322871+0.240632i, a5 = 0.372949, a6 =
0.582294, a7 = 1.36347− 0.0405081i, a8 = 1.36347 + 0.0405081i, a9 = 1.55745. By combin-
ing Newton’s method in the G2

4(x), we have{
C∞ : R̃(x) = x− G2

4(x)

(G2
4(x))′

}
.

The general expectation is a typical orbit {R̃(x)} will converge to one of the fixed points
of G2

4(x) for x0 ∈ C. If we choose x0 close enough to ai then it is readily proved that

lim
n→∞

R̃(x0) = ai, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9.

Given a point x0 in the complex plane, we want to find out if the orbit of x0 under the
action of R̃(x) does or does not converge to one of the fixed points, and if so, which one.

When R̃(x) is applied to x0, the orbit of x0 under the action of R̃(x) is calculated until
the absolute value of the last 2 iterations differs by an amount less than 10−6, or until 30
iteration have been carried out.

9
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The Figure 5 is the last orbit value calculated. We construct a function which as-
signs one of nine colors to each point in the plane, according to the outcome of R̃.
We allocate the red, violet, yellow, skyblue, green, ocher, blue, navy blue, or gray to
x0 if its orbit converges to −0.430403,−0.244653,−0.0322871 − 0.240632i,−0.0322871 +
0.240632i, 0.372949, 0.582294, 1.36347− 0.0405081i, 1.36347 + 0.0405081i, 1.55745, respec-
tively. We make the range which is {(x, y) : −4 ≤ x ≤ 4,−4 ≤ y ≤ 4}. For example, the
red region represents part of the attracting basin of a1 = −0.430403

Figure 5: Orbit of x0 under the action of R̃ for G2
4(x)

The Figure 6 express the coloring of the next Figure 7. Points which escape after 1 to
30 iterations are colored red to green.

0 5 10 15 20 25 30

Figure 6: Palette for escaping points

In the Figure 7, the above-mentioned rapid change can be illustrated by applying the
three-dimensional structure to the escape-time function. We consturct the range of left
figure which is {(x, y) : −3 ≤ x ≤ 3,−3 ≤ y ≤ 3} and the range of right figure which is
{(x, y) : −4 ≤ x ≤ 4,−4 ≤ y ≤ 4}. From this figure, we can see the same color regions
which are the orbit of point, z0, approached an one of fixed points at the equivalent iterated
step.

10
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Figure 7: Escape-time map of R̃(x) for G2
4(x)
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ADDITIVE ρ-FUNCTIONAL EQUATIONS

CHOONKIL PARK AND SUN YOUNG JANG∗

Abstract. In this paper, we solve the additive ρ-functional equations

f(x+ y)− f(x)− f(y) = ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, (0.1)

2f

(
x+ y

2

)
− f(x)− f(y) = ρ (f(x+ y)− f(x)− f(y)) , (0.2)

where ρ is a fixed non-Archimedean number or a fixed real or complex number with
ρ ̸= 1.

Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-
functional equations (0.1) and (0.2) in non-Archimedean Banach spaces and in Ba-
nach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique

element having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values of

R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called

a non-Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial

example of a non-Archimedean valuation is the function | · | taking everything except

for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field,

hence call it simply a field.

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; additive ρ-functional equation; non-Archimedean

normed space; Banach space.
∗Corresponding author: Sun Young Jang (email: jsym@ulsan.ac.kr).
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2 C. PARK AND S. Y. JANG

Definition 1.1. ([12]) Let X be a vector space over a field K with a non-Archimedean

valuation | · |. A function ∥ · ∥ : X → [0,∞) is said to be a non-Archimedean norm

if it satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥rx∥ = |r|∥x∥ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

∥x+ y∥ ≤ max{∥x∥, ∥y∥}, ∀x, y ∈ X

holds. Then (X, ∥ · ∥) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X.

Then the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer

N such that

∥xn − xm∥ ≤ ε

for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called convergent if for a given ε > 0 there are a positive integer N

and an x ∈ X such that

∥xn − x∥ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by

limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam

[17] concerning the stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In

particular, every solution of the Cauchy equation is said to be an additive mapping.

Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach

spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by

Rassias [15] for linear mappings by considering an unbounded Cauchy difference. A

generalization of the Rassias theorem was obtained by Găvruta [8] by replacing the

unbounded Cauchy difference by a general control function in the spirit of Rassias’

approach. The functional equation f
(
x+y
2

)
= 1

2
f(x) + 1

2
f(y) is called the Jensen

equation. See [2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18] for more information on functional

equations.

In Section 2, we solve the additive ρ-functional equation (0.1) in vector spaces and

prove the Hyers-Ulam stability of the additive ρ-functional equation (0.1) in non-

Archimedean Banach spaces.
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ADDITIVE ρ-FUNCTIONAL EQUATIONS 3

In Section 3, we solve the additive ρ-functional equation (0.2) in vector spaces and

prove the Hyers-Ulam stability of the additive ρ-functional equation (0.2) in non-

Archimedean Banach spaces.

In Section 4, we prove the Hyers-Ulam stability of the additive ρ-functional equation

(0.1) in Banach spaces.

In Section 5, we prove the Hyers-Ulam stability of the additive ρ-functional equation

(0.2) in Banach spaces.

2. Additive ρ-functional equation (0.1) in non-Archimedean Banach

spaces

Throughout Sections 2 and 3, assume that X is a non-Archimedean normed space

and that Y is a non-Archimedean Banach space. Let |2| ̸= 1 and let ρ be a fixed

non-Archimedean number with ρ ̸= 1.

We solve the additive ρ-functional equation (0.1) in vector spaces.

Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

f(x+ y)− f(x)− f(y) = ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)
(2.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).

Letting x = y = 0 in (2.1), we get −f(0) = 0. So f(0) = 0.

Letting y = x in (2.1), we get f(2x)−2f(x) = 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f
(
x

2

)
=

1

2
f(x) (2.2)

for all x ∈ X.

It follows from (2.1) and (2.2) that

f(x+ y)− f(x)− f(y) = ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)
= ρ(f(x+ y)− f(x)− f(y))

and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. □

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in

non-Archimedean Banach spaces.
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4 C. PARK AND S. Y. JANG

Theorem 2.2. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

such that

Ψ(x, y) :=
∞∑
j=1

|2|jφ
(
x

2j
,
y

2j

)
< ∞, (2.3)

∥∥∥∥f(x+ y)− f(x)− f(y)− ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ φ(x, y) (2.4)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 1

|2|
Ψ(x, x) (2.5)

for all x ∈ X.

Proof. Letting y = x in (2.4), we get

∥f(2x)− 2f(x)∥ ≤ φ(x, x) (2.6)

for all x ∈ X. So ∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ φ
(
x

2
,
y

2

)
for all x ∈ X. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ (2.7)

≤ max
{∥∥∥∥2lf

(
x

2l

)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f
(

x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

∥∥∥∥f ( x2l

)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1

∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤

∞∑
j=l

|2|jφ
(

x

2j+1
,
x

2j+1

)
for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7)

that the sequence {2kf( x
2k

)} is Cauchy for all x ∈ X. Since Y is a non-Archimedean

Banach space, the sequence {2kf( x
2k

)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.7), we get

(2.5).

Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

∥A(x)− T (x)∥ =
∥∥∥∥2qA

(
x

2q

)
− 2qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥2qA
(
x

2q

)
− 2qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥2qT
(
x

2q

)
− 2qf

(
x

2q

)∥∥∥∥}
≤ |2|q−1Ψ

(
x

2q
,
x

2q

)
,
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which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x)

for all x ∈ X. This proves the uniqueness of A.

It follows from (2.3) and (2.4) that∥∥∥∥A(x+ y)− A(x)− A(y)− ρ
(

2A
(
x+ y

2

)
− A(x)− A(y)

)∥∥∥∥
= lim

n→∞

∥∥∥∥2n
(
f
(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− ρ

(
2f
(
x+ y

2n+1

)
− f

(
x

2n

)
− f

(
y

2n

)))∥∥∥∥
≤ lim

n→∞
|2|nφ

(
x

2n
,
y

2n

)
= 0

for all x, y ∈ X. So

A(x+ y)− A(x)− A(y) = ρ
(

2A
(
x+ y

2

)
− A(x)− A(y)

)
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive. □

Corollary 2.3. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping such that∥∥∥∥f(x+ y)− f(x)− f(y)− ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ θ(∥x∥r + ∥y∥r) (2.8)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 2θ

|2|r − |2|
∥x∥r

for all x ∈ X.

Theorem 2.4. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying (2.4) and

Ψ(x, y) :=
∞∑
j=0

1

|2|j
φ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 1

|2|
Ψ(x, x) (2.9)

for all x ∈ X.

Proof. It follows from (2.6) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

|2|
φ(x, x)
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for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ (2.10)

≤ max
{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
≤ max

{
1

|2|l
∥∥∥∥f (2lx

)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥
}

≤
∞∑
j=l

1

|2|j+1
φ(2jx, 2jx)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.10)

that the sequence { 1
2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.10), we get

(2.9).

The rest of the proof is similar to the proof of Theorem 2.2. □

Corollary 2.5. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping satisfying (2.8). Then there exists a unique additive mapping h : X → Y

such that

∥f(x)− h(x)∥ ≤ 2θ

|2| − |2|r
∥x∥r

for all x ∈ X.

3. Additive ρ-functional equation (0.2) in non-Archimedean Banach

spaces

We solve the additive ρ-functional equation (0.2) in vector spaces.

Lemma 3.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfis f(0) = 0

and

2f
(
x+ y

2

)
− f(x)− f(y) = ρ (f(x+ y)− f(x)− f(y)) (3.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).

Letting y = 0 in (3.1), we get

2f
(
x

2

)
− f(x) = 0 (3.2)

and so f
(
x
2

)
= 1

2
f(x) for all x ∈ X.
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It follows from (3.1) and (3.2) that

f(x+ y)− f(x)− f(y) = 2f
(
x+ y

2

)
− f(x)− f(y)

= ρ(f(x+ y)− f(x)− f(y))

and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. □

Now, we prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1)

in non-Archimedean Banach spaces.

Theorem 3.2. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0 and

Ψ(x, y) :=
∞∑
j=0

|2|jφ
(
x

2j
,
y

2j

)
< ∞,

∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y))

∥∥∥∥ ≤ φ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ Ψ(x, 0) (3.4)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ =
∥∥∥∥2f (x2

)
− f(x)

∥∥∥∥ ≤ φ(x, 0) (3.5)

for all x ∈ X. So∥∥∥∥2lf
(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ (3.6)

≤ max
{∥∥∥∥2lf

(
x

2l

)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f
(

x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

∥∥∥∥f ( x2l

)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1

∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤

∞∑
j=l

|2|jφ
(
x

2j
, 0
)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6)

that the sequence {2kf( x
2k

)} is Cauchy for all x ∈ X. Since Y is a non-Archimedean

Banach space, the sequence {2kf( x
2k

)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
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for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.6), we get

(3.4).

The rest of the proof is similar to the proof of Theorem 2.2. □

Corollary 3.3. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping satisfying f(0) = 0 and∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)− ρ(f(x+ y)− f(x)− f(y))

∥∥∥∥ ≤ θ(∥x∥r + ∥y∥r) (3.7)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ |2|rθ
|2|r − |2|

∥x∥r

for all x ∈ X.

Theorem 3.4. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0, (3.3) and

Ψ(x, y) :=
∞∑
j=1

1

|2|j
φ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ Ψ(x, 0) (3.8)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

|2|
φ(2x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ (3.9)

≤ max
{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
≤ max

{
1

|2|l
∥∥∥∥f (2lx

)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥
}

≤
∞∑

j=l+1

1

|2|j
φ(2jx, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.10)

that the sequence { 1
2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1042 CHOONKIL PARK et al 1035-1048



ADDITIVE ρ-FUNCTIONAL EQUATIONS 9

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.10), we get

(3.9).

The rest of the proof is similar to the proof of Theorem 2.2. □

Corollary 3.5. Let r > 1 and θ be positive real numbers, and let f : X → Y be a

mapping satisfying f(0) = 0 and (3.7). Then there exists a unique additive mapping

A : X → Y such that

∥f(x)− A(x)∥ ≤ |2|rθ
|2| − |2|r

∥x∥r

for all x ∈ X.

4. Additive ρ-functional equation (0.1) in Banach spaces

Throughout Sections 4 and 5, assume that X is a normed space and that Y is a

Banach space. Let ρ be a fixed real or complex number with ρ ̸= 1.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in

Banach spaces.

Theorem 4.1. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

such that

Ψ(x, y) :=
∞∑
j=1

2jφ
(
x

2j
,
y

2j

)
< ∞, (4.1)

∥∥∥∥f(x+ y)− f(x)− f(y)− ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ φ(x, y) (4.2)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 1

2
Ψ(x, x) (4.3)

for all x ∈ X.

Proof. Letting y = x in (4.2), we get

∥f(2x)− 2f(x)∥ ≤ φ(x, x) (4.4)

for all x ∈ X. So ∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ φ
(
x

2
,
y

2

)
for all x ∈ X. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf
(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

2jφ
(

x

2j+1
,
x

2j+1

)
(4.5)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.5)

that the sequence {2kf( x
2k

)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf( x
2k

)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (4.5), we get

(4.3).

Now, let T : X → Y be another additive mapping satisfying (4.3). Then we have

∥A(x)− T (x)∥ =
∥∥∥∥2qA

(
x

2q

)
− 2qT

(
x

2q

)∥∥∥∥
≤
∥∥∥∥2qA

(
x

2q

)
− 2qf

(
x

2q

)∥∥∥∥+
∥∥∥∥2qT

(
x

2q

)
− 2qf

(
x

2q

)∥∥∥∥
≤ 2qΨ

(
x

2q
,
x

2q

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x)

for all x ∈ X. This proves the uniqueness of A.

It follows from (4.1) and (4.2) that∥∥∥∥A(x+ y)− A(x)− A(y)− ρ
(

2A
(
x+ y

2

)
− A(x)− A(y)

)∥∥∥∥
= lim

n→∞

∥∥∥∥2n
(
f
(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− ρ

(
2f
(
x+ y

2n+1

)
− f

(
x

2n

)
− f

(
y

2n

)))∥∥∥∥
≤ lim

n→∞
2nφ

(
x

2n
,
y

2n

)
= 0

for all x, y ∈ X. So

A(x+ y)− A(x)− A(y) = ρ
(

2A
(
x+ y

2

)
− A(x)− A(y)

)
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive. □

Corollary 4.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping such that∥∥∥∥f(x+ y)− f(x)− f(y)− ρ
(

2f
(
x+ y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ θ(∥x∥r + ∥y∥r) (4.6)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 2θ

2r − 2
∥x∥r

for all x ∈ X.
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Theorem 4.3. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying (4.2) and

Ψ(x, y) :=
∞∑
j=0

1

2j
φ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 1

2
Ψ(x, x) (4.7)

for all x ∈ X.

Proof. It follows from (4.4) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2
φ(x, x)

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

1

2j+1
φ(2jx, 2jx) (4.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.8)

that the sequence { 1
2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (4.8), we get

(4.7).

The rest of the proof is similar to the proof of Theorem 4.1. □

Corollary 4.4. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping satisfying (4.6). Then there exists a unique additive mapping A : X → Y

such that

∥f(x)− A(x)∥ ≤ 2θ

2− 2r
∥x∥r

for all x ∈ X.

5. Additive ρ-functional equation (0.2) in Banach spaces

In this section, we prove the Hyers-Ulam stability of the additive ρ-functional equa-

tion (3.1) in Banach spaces.
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Theorem 5.1. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0 and

Ψ(x, y) :=
∞∑
j=0

2jφ
(
x

2j
,
y

2j

)
< ∞,

∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y))

∥∥∥∥ ≤ φ(x, y) (5.1)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ Ψ(x, 0) (5.2)

for all x ∈ X.

Proof. Letting y = 0 in (5.1), we get∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ =
∥∥∥∥2f (x2

)
− f(x)

∥∥∥∥ ≤ φ(x, 0) (5.3)

for all x ∈ X. So∥∥∥∥2lf
(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf
(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

2jφ
(
x

2j
, 0
)

(5.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.4)

that the sequence {2kf( x
2k

)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf( x
2k

)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (5.4), we get

(5.2).

The rest of the proof is similar to the proof of Theorem 4.1. □

Corollary 5.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping satisfying f(0) = 0 and∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)− ρ(f(x+ y)− f(x)− f(y))

∥∥∥∥ ≤ θ(∥x∥r + ∥y∥r) (5.5)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ 2rθ

2r − 2
∥x∥r

for all x ∈ X.
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Theorem 5.3. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0, (5.1) and

Ψ(x, y) :=
∞∑
j=1

1

2j
φ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)− A(x)∥ ≤ Ψ(x, 0) (5.6)

for all x ∈ X.

Proof. It follows from (5.3) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2
φ(2x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m∑
j=l+1

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤

m∑
j=l+1

1

2j
φ(2jx, 0) (5.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.7)

that the sequence { 1
2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (5.7), we get

(5.6).

The rest of the proof is similar to the proof of Theorem 4.1. □

Corollary 5.4. Let r < 1 and θ be positive real numbers, and let f : X → Y be a

mapping satisfying f(0) = 0 and (5.5). Then there exists a unique additive mapping

A : X → Y such that

∥f(x)− A(x)∥ ≤ 2rθ

2− 2r
∥x∥r

for all x ∈ X.
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HYPERSTABILITY OF A GENERALIZED CAUCHY FUNCTIONAL

EQUATION

ABBAS NAJATI, DARYOUSH MOLAEE, AND CHOONKIL PARK

Abstract. The aim of this paper is to present some results concerning the hyperstability of
the generalized Cauchy functional equation

f(ax + by) = Af(x) + Bf(y) + C

Namely, we show, under some assumptions, that a function satisfying the equation approxi-
mately must be actually a solution to it.

1. Introduction and preliminaries

Throughout the paper F and K denote the fields of real or complex numbers. Let X and Y
be linear spaces over F and K, respectively. In this paper we give some hyperstability results
for the generalized Cauchy functional equation

f(ax+ by) = Af(x) +Bf(y) + C (1.1)

where f : X → Y and a, b ∈ F\{0}, A,B ∈ K, C ∈ Y . In [10], Piszczek proved the hyperstability
of the generalized Cauchy functional equation (1.1).

Theorem 1.1. [10] Let X be a normed space over a field F, Y be a Banach space over K,
a, b ∈ F \ {0}, A,B ∈ K, p < 0 and g : X → Y satisfy

‖g(ax+ by)−Ag(x)−Bg(y)‖ 6 ε(‖x‖p + ‖y‖p)

for all x, y ∈ X \ {0}. Then g satisfies

g(ax+ by) = Ag(x) +Bg(y)

for all x, y ∈ X \ {0}.

The method of the proof used in Theorem 1.1 is based on a fixed point theorem in [3].
Let us recall that the study of stability problems of functional equations was motivated by
a question of Ulam [15] asked in 1940. The first result of stability proved by Hyers [6] in
1941. For more details about various results concerning such problems the reader is referred
to [4, 5, 8, 9, 11, 12, 13, 14].

It seems the first hyperstability result was published in [1] and concerned ring homomor-
phisms. However the term hyperstability was used for the first time in [7].

2000 Mathematics Subject Classification. Primary 39B82, 39B62; Secondary 47H14, 47H10.
Key words and phrases. Hyperstability, generalized Cauchy functional equation.
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2. Hyperstability results

In this part, we will prove a general version of Theorem 1.1. Let us start with a result. A
version of the next result was proved in [2]. But we give another simple proof.

Proposition 2.1. Assume that X and Y are linear spaces over F and K, respectively. Let
a, b ∈ F \ {0}, A,B ∈ K, C ∈ Y and f : X → Y satisfy

f(ax+ by) = Af(x) +Bf(y) + C (2.1)

for all x, y ∈ X \ {0}. Then f satisfies f(ax+ by) = Af(x) +Bf(y) + C for all x, y ∈ X .

Proof. Let x ∈ X \ {0}. Then in view of (2.1), we get

f(0) = Af(bx) +Bf(−ax) + C

= A
[
Af(2a−1bx) +Bf(−x) + C

]
+B

[
Af(−2x) +Bf(ab−1x) + C

]
+ C

= A
[
Af(2a−1bx) +Bf(−2x) + C

]
+B

[
Af(−x) +Bf(ab−1x) + C

]
+ C

= Af(0) +Bf(0) + C.

Therefore we have
f(0) = Af(bx) +Bf(−ax) + C (2.2)

for all x ∈ X . Consequently, by (2.1) and (2.2), we get

f(2a2bx) = Af(abx+ b2y) +Bf(a2x− aby) + C

= A
[
Af(bx) +Bf(by) + C

]
+B

[
Af(ax) +Bf(−ay) + C

]
+ C

= A
[
Af(bx) +Bf(by) + C

]
+B

[
Af(ax) + f(0)−Af(by)

]
+ C

= A
[
Af(bx) +Bf(ax) + C

]
+Bf(0) + C

= Af(2abx) +Bf(0) + C

Hence f(2a2bx) = Af(2abx) + Bf(0) + C for all x ∈ X \ {0}. Replacing x by (2ab)−1x, we
infer that f(ax) = Af(x) + Bf(0) + C holds for x ∈ X by (2.2). Similarly, one can prove
that f(by) = Af(0) + Bf(y) + C holds for y ∈ X . Thus we have proved that f satisfies
f(ax+ by) = Af(x) +Bf(y) + C for all x, y ∈ X . �

In the following results we assume that X is a vector space over F and Y is a normed space
over K.

Theorem 2.2. Let a, b ∈ F \ {0} and ϕ : X ×X → [0,+∞) be a function such that

lim
m→∞

ϕ(a−1(m+ 1)x,−b−1mx) = 0, lim
m→∞

ϕ(mx,my) = 0 (2.3)

for all x, y ∈ X \ {0}. Let A,B ∈ K, C ∈ Y and f : X → Y satisfy

‖f(ax+ by)−Af(x)−Bf(y)− C‖ 6 ϕ(x, y) (2.4)

for all x, y ∈ X \ {0}. Then f satisfies

f(ax+ by) = Af(x) +Bf(y) + C, (2.5)

for all x, y ∈ X. Moreover,

(A+B)f(0) = Af(x) +Bf(−ab−1x) (2.6)
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for all x ∈ X.

Proof. Replacing x by a−1(m+ 1)x and y by −b−1mx in (2.4), we get∥∥∥f(x)−Af(a−1(m+ 1)x)−Bf(−b−1mx)− C
∥∥∥ 6 ϕ(a−1(m+ 1)x,−b−1mx), (2.7)

for all x ∈ X \ {0} and positive integers m. Letting m→∞ in (2.7) and using (2.3), we obtain

f(x) = lim
m→∞

[
Af(a−1(m+ 1)x) +Bf(−b−1mx) + C

]
(2.8)

for all x ∈ X \ {0}. If x ∈ X \ {0}, then we get from (2.3) and (2.8)∥∥∥(A+B)f(0)−Af(x)−Bf(−ab−1x)
∥∥∥

= lim
m→∞

∥∥∥(A+B)f(0)−A2f(a−1(m+ 1)x)−ABf(−b−1mx)−AC

−ABf(−b−1(m+ 1)x)−B2f(ab−2mx)−BC
∥∥∥

6 |A| lim
m→∞

∥∥∥f(0)−Af(a−1(m+ 1)x)−Bf(−b−1(m+ 1)x)− C
∥∥∥

+ |B| lim
m→∞

∥∥∥f(0)−Af(−b−1mx)−Bf(ab−2mx)− C
∥∥∥

6 |A| lim
m→∞

ϕ(a−1(m+ 1)x,−b−1(m+ 1)x) + |B| lim
m→∞

ϕ(−b−1mx, ab−2mx) = 0.

Hence we get

(A+B)f(0) = Af(x) +Bf(−ab−1x)

for all x ∈ X. If we replace x by bmx and y by −amx in (2.4), we get∥∥∥f(0)−Af(bmx)−Bf(−amx)− C‖ 6 ϕ(bmx,−amx), (2.9)

for all x ∈ X \ {0} and positive integers m. Thus

f(0) = lim
m→∞

[
Af(bmx) +Bf(−amx) + C

]
(2.10)

for all x ∈ X \ {0}. Replacing x by bmx in (2.9) and letting m→∞, we get from (2.10)

(1−A−B)f(0) = C.

Therefore (2.8) holds for all x ∈ X.
To prove (2.5), let x, y ∈ X \ {0}. Then

‖f(ax+ by)−Af(x)−Bf(y)− C‖

= lim
m→∞

∥∥∥Af(a−1(m+ 1)(ax+ by)) +Bf(−b−1m(ax+ by))

−A2f(a−1(m+ 1)x)−ABf(−b−1mx)−AC

−ABf(a−1(m+ 1)y)−B2f(−b−1my)−BC
∥∥∥

6 |A| lim
m→∞

∥∥∥f(a−1(m+ 1)(ax+ by))−Af(a−1(m+ 1)x)−Bf(a−1(m+ 1)y)− C
∥∥∥

+ |B| lim
m→∞

∥∥∥f(−b−1m(ax+ by))−Af(−b−1mx)−Bf(−b−1my)− C
∥∥∥

6 |A| lim
m→∞

ϕ(a−1(m+ 1)x,−a−1(m+ 1)y) + |B| lim
m→∞

ϕ(−b−1mx,−b−1my) = 0.
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Therefore f satisfies (2.5) for all x, y ∈ X \ {0}. Hence f satisfies (2.5) for all x, y ∈ X by
Proposition 2.1. �

Remark 2.3. If f satisfies (2.4) with A + B = 1, then C = 0 and f satisfies f(ax + by) =
Af(x) +Bf(y) for all x, y ∈ X.

When X is a normed linear space, Theorem 1.1 is a corollary of Theorem 2.2. In the following
results, we assume that X and Y are normed linear spaces.

Corollary 2.4. Let ε > 0 and p, q < 0. If a, b ∈ F \ {0}, A,B ∈ K, C ∈ Y and f : X → Y
satisfies

‖f(ax+ by)−Af(x)−Bf(y)− C‖ 6 ε(‖x‖p + ‖y‖q)
for all x, y ∈ X \ {0}. Then f satisfies (2.5) and (2.6) for all x, y ∈ X.

Corollary 2.5. Let ε > 0 and p, q be real numbers such that p+ q < 0. If a, b ∈ F\{0}, A,B ∈
K, C ∈ Y and f : X → Y satisfies

‖f(ax+ by)−Af(x)−Bf(y)− C‖ 6 ε‖x‖p‖y‖q

for all x, y ∈ X \ {0}. Then f satisfies (2.5) and (2.6) for all x, y ∈ X.

Corollary 2.6. Let δ, ε > 0, p, q < 0 and l, r, s be real numbers such that l > 0 and r + s < 0.
If a, b ∈ F \ {0}, A,B ∈ K, C ∈ Y and f : X → Y satisfies

‖f(ax+ by)−Af(x)−Bf(y)− C‖ 6 ε(‖x‖p + ‖y‖q)l + δ‖x‖r‖y‖s

for all x, y ∈ X \ {0}. Then f satisfies (2.5) and (2.6) for all x, y ∈ X.

Corollary 2.7. Let θ, δ, ε > 0, p, q < 0 and r, s be real numbers such that r + s < 0. If
a, b ∈ F \ {0}, A,B ∈ K, C ∈ Y and f : X → Y satisfies

‖f(ax+ by)−Af(x)−Bf(y)− C‖ 6 ε‖x+ y‖p + δ‖x− y‖q + θ‖x‖r‖y‖s (2.11)

for all x, y ∈ X \ {0} with x± y 6= 0. Then we have

(i) if a 6= ±b, then f satisfies (2.5) and (2.6) for all x, y ∈ X;
(ii) if a = ±b and A,B ∈ K\{0}, then f satisfies (2.5) for all x, y ∈ X \{0} with x±y 6= 0.

Proof. Let ϕ(x, y) = ‖x + y‖p + δ‖x − y‖q + θ‖x‖r‖y‖s. If a 6= ±b, then ϕ satisfies (2.3).
Therefore the result follows from Theorem 2.2. If a = ±b, then (2.11) implies that

Af(x) = lim
m→∞

[
f((a+ bm)x)−Bf(mx)− C

]
for all x ∈ X \ {0}. Therefore∥∥∥f(ax+ by)−Af(x)−Bf(y)− C

∥∥∥
= |A|−1 lim

m→∞

∥∥∥f((a+ bm)(ax+ by))−Bf(m(ax+ by))− C

−Af((a+ bm)x) +ABf(mx)−Bf((a+ bm)y) +B2f(my) +BC
∥∥∥

6 |A|−1 lim
m→∞

∥∥∥f((a+ bm)(ax+ by))−Af((a+ bm)x)−Bf((a+ bm)y)− C
∥∥∥

+ |B||A|−1 lim
m→∞

∥∥∥f(m(ax+ by))−Af(mx)−Bf(my)− C
∥∥∥

6 |A|−1 lim
m→∞

ϕ((a+ bm)x, (a+ bm)y) + |B||A|−1 lim
m→∞

ϕ(mx,my) = 0.

Hence f(ax+ by) = Af(x) +Bf(y) + C for all x, y ∈ X \ {0} with x± y 6= 0. �
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In the next result we will derive from Theorem 2.2 a hyperstability result for the inhomoge-
neous version of the generalized Cauchy functional equation.

Theorem 2.8. Let a, b ∈ F \ {0}, A,B ∈ K and ϕ : X ×X → [0,+∞) be a function satisfy
(2.3) for all x, y ∈ X \ {0}. Assume that d : X ×X → Y and f : X → Y satisfy the inequality

‖f(ax+ by)−Af(x)−Bf(y)− d(x, y)‖ 6 ϕ(x, y) (2.12)

for all x, y ∈ X \ {0}. If the functional equation

g(ax+ by) = Ag(x) +Bg(y) + d(x, y), x, y ∈ X (2.13)

has a solution f0 : X → Y , then f is a solution to (2.13).

Proof. It follows from (2.12) that h := f − f0 satisfies (2.4) with C = 0. Consequently,
Theorem 2.2 implies that h is a solution to (2.5) with C = 0, which means that f is a solution
to (2.13). �

In the following results, we assume that a, b ∈ F\{0}, A,B ∈ K, X and Y are normed linear
spaces.

Corollary 2.9. Let ε > 0 and p, q < 0. Assume that d : X ×X → Y and f : X → Y satisfy

‖f(ax+ by)−Af(x)−Bf(y)− d(x, y)‖ 6 ε(‖x‖p + ‖y‖q)

for all x, y ∈ X \ {0}. If the functional equation (2.13) has a solution f0 : X → Y , then f is a
solution to (2.13).

Corollary 2.10. Let ε > 0 and p, q be real numbers such that p + q < 0. Assume that
d : X ×X → Y and f : X → Y satisfy

‖f(ax+ by)−Af(x)−Bf(y)− d(x, y)‖ 6 ε‖x‖p‖y‖q

for all x, y ∈ X \ {0}. If the functional equation (2.13) has a solution f0 : X → Y , then f is a
solution to (2.13).

Corollary 2.11. Let δ, ε > 0, p, q < 0 and l, r, s be real numbers such that l > 0 and r+ s < 0.
Assume that d : X ×X → Y and f : X → Y satisfy

‖f(ax+ by)−Af(x)−Bf(y)− d(x, y)‖ 6 ε(‖x‖p + ‖y‖q)l + δ‖x‖r‖y‖s

for all x, y ∈ X \ {0}. If the functional equation (2.13) has a solution f0 : X → Y , then f is a
solution to (2.13).

Corollary 2.12. Let θ, δ, ε > 0, p, q < 0 and r, s be real numbers such that r+ s < 0. Assume
that the functional equation (2.13) has a solution f0 : X → Y . Let d : X × X → Y and
f : X → Y satisfy

‖f(ax+ by)−Af(x)−Bf(y)− d(x, y)‖ 6 ε‖x+ y‖p + δ‖x− y‖q + θ‖x‖r‖y‖s

for all x, y ∈ X \ {0} with x± y 6= 0. Then we have

(i) if a 6= ±b, then f satisfies (2.13) for all x, y ∈ X;
(ii) if a = ±b and A,B ∈ K\{0}, then f satisfies (2.13) for all x, y ∈ X\{0} with x±y 6= 0.
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Stability analysis and optimal control of a cholera
model with time delay

Shu Liao a Fang Fang a
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Abstract

An optimal control method for cholera epidemic with time delay is developed in this
paper. We first explore the local stability of both the disease-free and endemic equi-
libria of ODE model by analyzing the corresponding characteristic equations, whose
global stability is established by constructing two suitable Lyapunov functionals. Fur-
thermore, in order to, we use optimal control theory via the Pontryagin’s Maximum
Principle and genetic algorithm based on the forward and backward difference approx-
imation to minimize the infected populations and the costs. Numerical simulations
demonstrate that the time delay and multiple optimal controls can bring different
effects on the dynamics behaviors of the proposed cholera model.

Cholera; optimal control; time delay; global asymptotical stability; Pontryagin’s Maximum
Principle.

1 Introduction

Cholera, a waterborne gastroenteric infection, caused by a number of types of Vibrio cholerae,
remains a significant threat to public health for most of the developing countries in the past
few years. Since 1961, cholera has become an acute disease throughout the world, according
to the World Health Organization (WHO) report (2010), with an estimated 3-5 million cases
worldwide and causes 58,000-130,000 deaths a year, children and the senior are being most
affected. It was found in Congo (2008), in Iraq (2008), in Zimbabwe (2008-2009), in Viet-
nam (2009), in Kenya (2010), in Nigeria (2010), in Haiti (2010), in Mexico (2013), and most
recently in South Sudan (2014). In the last few decades, enormous attention is being paid to
the cholera disease and a number of mathematical models have been contributed to a better
understanding of the transmission of cholera. In 2001, Codeço [1] put an emphasis on the
decisive importance of the environmental component and proposed a SIRB epidemic model
in which B represents the V. cholerae concentration in water. Meanwhile, according to the
laboratory results, Hartley Morris and Smith [2] in 2006 discovered a representitive hyperin-
fectious state of the pathogen-the explosive infectivity of freshly shed V. cholerae. Tien and
Earn later [3] proposed a water-borne disease model with multiple transmission pathways,
accounting both direct human-to-human and indirect water-to-human transmissions, they
identified how these transmission routes influence disease dynamics. Mukandavire et al. [4]
in 2011 simplified Hartley’s model to understand transmission dynamics of cholera outbreak
in Zimbabwe. Liao and Wang [5] conducted a dynamical analysis of the Hartley’s model
to study the stability of both the disease-free and endemic equilibria so as to explore the
complex epidemic and endemic dynamics of the disease.
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These epidemiological models above often take the form of a system of ordinary differen-
tial equations and ignore the time delay by assuming that the infectious process is instanta-
neous. However, it may make these models more biologically reasonable and mathematically
challenging to consider incorporating suitable delay terms. Time delay plays an important
role to reflect the real dynamical behaviors of models, many researchers have proposed and
analyzed more realistic models including delays to model different mechanisms in the dynam-
ics of epidemics. Wei et al. [6] considered a differential delay model of a vector-borne disease
which has direct mode of transmission in addition to the vector-mediated transmission. The
delay in their model accounts for the incubation time the vectors need to become infectious.
They studied the effect of that delay on the stability of the equilibria and investigated that
the introduction of a time delay in the host-to-vector transmission term can destabilize the
system. McCluskey [7] in 2010 studied two SIRS models with distributed delay and with
discrete delay, respectively. They solved the global stability of the endemic equilibrium for
larger delay when R0 > 1. Misra et al. [8] in 2012 proposed a delay model to explore the
dynamics of water borne diseases like cholera by using disinfectants to control the disease.
Their analysis showed that under certain conditions, the cholera disease can be controlled by
using disinfectants but a longer delay in their use may destabilize the system. Misra et al. [9]
in 2013 analyzed a nonlinear delay mathematical model for the control of carrier-dependent
infectious diseases, they suggested that as delay in using insecticides exceeds some critical
value, the system loses its stability and Hopf-bifurcation occurs. Wang and Wei [10] inves-
tigated the global dynamics of a cholera model with delay to demonstrate the impact of the
time lag.

Optimal control method [11] as a powerful tool has been applied to control various kinds
of diseases [12–16]. Sunmi et al. [17] in 2010 studied a model for the transmission dynamics of
influenza to evaluate the impact of isolation and/or antiviral drug delivery measures. They
compared five control strategies to show the optimal control strategy involving antiviral
treatment and/or isolation measures can reduce significantly the number of clinical cases
of influenza. Ding et al. [18] studied the control problem of maximizing the total payoff in
the conservation of a single species with a fixed amount of resource. The existence of an
optimal control was established while its uniqueness and characterization was investigated
as well. Okosun et al. [19] in 2011 derived and analyzed a deterministic model for the
transmission of malaria disease with mass action form of infection. They obtained the
conditions under which it is optimal to eradicate the disease and examined the impact of a
possible combination of vaccination and treatment strategy on the disease transmission by
using optimal control theory and the Pontryagin’s Maximum Principle. Kar and Jana [20]
in 2013 proposed an epidemic model and used the optimal control strategy to minimize both
the infected populations and the associated costs. They compared the numerical results
with no controls, with only vaccination control, with only treatment control and with both
vaccination as well as treatment controls. It is observed that the best result comes out from
the application of both vaccination and treatment controls in this case that the number of
infected individuals would be the least in number. Wang and Modnak [21] presented a cholera
epidemiological model with three control measures. Equilibrium analysis was conducted in
the cases with constant controls and with optimal controls, respectively.

According to the above collection of works, an optimal control model including time delay
in the context has been not completely understood yet. There are only few papers that tackle
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this problem. In recent years, Laarabi et al. [22] studied an epidemic model with optimal
control strategies and time delay, the optimality system was numerically solved by using
an algorithm based on the forward and backward difference approximation in their work.
Mohamed et al. [23] investigated an optimally controlled SIR epidemic model with time
delay in state and control variables, they used optimal control approach via Pontryagin’s
Maximum Principle to minimize the number of susceptible and infected individuals and to
maximize the number of recovered individuals during the course of an epidemic.

In this paper, we will consider an optimally controlled cholera model with time delay
based on the model originally suggested by Wang and Modnak [21], which involves both
the environment-to-human and human-to-human transmission modes. Our main aim is to
explore the role of time delay and optimal control on the spread of cholera in the model. Note
most of the delay epidemic models mentioned above are only concerned with local stability
of equilibria, we will pay attention to global stability of our model in this paper. The rest
of the paper is organized as follows. In the next section, we formulate the mathematical
model and determine the basic reproductive number R0. Section 3 is devoted to the local
and global stability analysis of both the disease-free and endemic equilibria of our model.
The analysis of optimization problem is presented in Section 4. In Section 5 we present
genetic algorithm based on the forward and backward difference approximation and carry
out the numerical study of the model, which confirms our theoretical results. Finally, the
conclusions are summarized in Section 6.

2 The model formulation

Cholera has been found in multiple transmission pathways including both direct human-to-
human and indirect environment-to-human transmissions pathways, which distinct cholera
from many other infectious diseases. It is important to notice that, it takes a period for
the infected individual to affect the bacterial concentration of cholera, and its size may be
very influential in controlling the outbreak of cholera. Thus the delay τ is used to describe
the period during the person being infected to his pathogenic bacteria of V. cholera being
given off to the aquatic environment. Motivated by the works of Wang and Modnak [21],
the deterministic model is given by the following system of ODE:

dS

dt
= µN − βW

SW

κ+W
− βISI − µS − u1S, (1)

dI

dt
= βW

SW

κ+W
− βISI − (γ + µ)I − u2I, (2)

dW

dt
= ξI(t− τ)− δW − u3W, (3)

dR

dt
= γI − µR + u2I + u1S. (4)

In the equations above, let N be the total population which is divided into three epi-
demiological compartments, susceptible compartment S, infectious compartment I, recov-
ered compartment R. Let W be the density of V. cholerae in the aquatic environment.
The parameter κ is the concentration of vibrios in contaminated water in the environment,
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βW and βI are rates of ingesting vibrios from the contaminated environment and through
human-to-human interaction, respectively. µ represents the natural human birth/death rate,
ξ the shedding rate, γ the recovery rate, δ the bacterial death rate. All the parameters are
strictly positive constants. Intervention strategies are modeled by the control variables ui(t)
(i = 1, 2, 3), which are bounded, Lebesgue integrable functions. The control u1(t) rep-
resents the rate of vaccination, u2(t) represents the rate of therapeutic treatment, water
sanitation leads to the death of vibrios at a rate u3(t). Based on biological assumption, we
assume that for θ ∈ [−τ, 0], S(θ), I(θ) and R(θ) are non negative real valued functions. Let
C = C([−τ, 0], R3) be the Banach space of continuous functions mapping the interval [−τ, 0]
into R3 with the topology of uniform convergence. For ecological reasons, we assume that
the initial conditions for system (1-4) satisfies:

S0(θ) ≥ 0 , I0(θ) ≥ 0 , R0(θ) ≥ 0 , θ ∈ [−τ, 0]. (5)

In order to determine the dynamics of each class, we only need to study the first three
equations in model (1-4), thereby reducing the order of the system through eliminating R
to obtain the following system:

dS

dt
= µN − βW

SW

κ+W
− βISI − µS − u1S, (6)

dI

dt
= βW

SW

κ+W
− βISI − (γ + µ)I − u2I, (7)

dW

dt
= ξI(t− τ)− δW − u3W. (8)

As the study of model system (1-4) is equivalent to study model system (6-8), so we
study model system (6-8).

Based on the next-generation matrix approach [25], we define the basic reproduction
number R0, representing the average number of secondary infections that occurs when one
infective is introduced into a completely susceptible host population, as:

R0 =
µN [ξβW + (δ + u3)κβI ]

κ(µ+ u1)(δ + u3)(γ + µ+ u2)
. (9)

3 Mathematical analysis of the epidemic model

In particular, when the time delay is set to zero, i.e. τ = 0, the above system (6-8) is reduced
to the original model developed in Wang and Modnak [21]. Based on their work, the results
below directly follows:

Theorem 1 The disease-free equilibrium (DFE) of the model (6-8) E0 =
(

µN
µ+u1

, 0 , 0 , 0
)T

,
is both locally and globally asymptotically stable if R0 < 1 with τ = 0.

Theorem 2 The endemic equilibrium of the model (6-8) E∗ = (S∗, I∗,W ∗) is locally asymp-
totically stable and globally asymptotically stable if R0 > 1 with τ = 0.
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3.1 The stability of the disease-free equilibrium

Our primary focus is on the stability analysis of the model when τ ̸= 0 in this section. First,
we prove the local and global stability of the disease-free equilibrium E0 with τ > 0.

Theorem 3 The disease-free equilibrium (DFE) of the model (6-8) is locally asymptotically
stable if R0 < 1 with τ > 0.

Proof After linearizing the ODE system (6-8) around the disease-free equilibrium E0, we
obtain one negative characteristic solution λ = −µ − u1 and the following transcendental
characteristic equation is:

λ2 + a1λ+ a2 + b1e
−λτ = 0, (10)

where

a1 = δ + γ + µ+ u2 + u3 − βI
µN

µ+ u1
,

a2 = (δ + u3)(γ + µ+ u2 − βI
µN

µ+ u1
),

b1 = −ξβW
κ

µN

µ+ u1
.

We can rearrange equation (10) in the form:

λ2 + a1λ = (δ + u3)(γ + µ+ u2)[(
µNκβI

κ(µ+ u1)(γ + µ+ u2)
− 1)

+
µNξβW

κ(µ+ u1)(δ + u3)(γ + µ+ u2)
e−λτ ].

(11)

Let the left-hand side and right-hand side of equation (11) be F (λ) andH(λ), respectively.
It is easy to see that F (0) = 0 and limλ→∞F (λ) = ∞, therefore, F (λ) is an increasing
function of λ. On the other hand, H(λ) is a decreasing function of λ and H(0) = (δ +
u3)(γ + µ + u2)(R0 − 1) is less than zero when R0 < 1. Thus, equation (11) has no non-
negative real roots. If equation (10) has roots with non-negative real parts, they must be
complex and obtained from a pair of complex conjugate roots which cross the imaginary
axis. As a result, a pair of purely imaginary solution may come out from the equation (10)
for τ > 0. Assume that iω (ω > 0) is the root of equation (10) and ω satisfies the following
equation:

−ω2 + a1iω + a2 + b1(cos(ωτ)− isin(ωτ)) = 0. (12)

Separating the real and imaginary parts of equation (12) gives

−ω2 + a2 = −b1cos(ωτ) , −a1ω = −b1sin(ωτ). (13)

To eliminate the trigonometric functions, we add up the squares of equation (13) above, and
obtain the following forth order equation in ω:

ω4 + (a21 − 2a2)ω
2 + a22 − b21 = 0. (14)
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We can solve that

ω2 =
1

2
[−(a21 − 2a2)±

√
(a21 − 2a2)2 − 4(a22 − b22)]. (15)

This implies equation (14) has no positive roots, which leads to the conclusion that there is
no ω such that iω is a solution of equation (10) for time delay τ > 0. Based on Rouche’s
theorem [26], E0 is locally asymptotically stable if R0 < 1. Next, we will analyze the global
stability of the disease-free equilibrium of the model system (6-8) for time delay τ > 0.

Theorem 4 The disease-free equilibrium (DFE) of the model (6-8) is globally asymptotically
stable with time delay τ > 0 if R0 < 1.

Proof
Adding equations (1) and (2), we obtain

S
′
+ I

′
= µN − (µ+ u1)S − (γ + µ+ u2)I ≤ µN − η(S + I), (16)

and equation (3) yields

W
′

= ξI(t− τ)− (δ + u3)W ≤ ξ
µN

η
− (δ + u3)W, (17)

where η = min{(µ+ u1), (γ + µ+ u2)}. These imply

lim sup
t→∞

I(t) ≤ µN

η
. (18)

and

lim sup
t→∞

W (t) ≤ ξµN

η(δ + u3)
. (19)

We consider the following Lyapunov function:

V1(t) = ξ[S(t)− µN

µ+ u1
ln
S(t)
µN

µ+u1

] + ξIt(0) + (γ + µ+ u2)W (t) + ξ(γ + µ+ u2)

∫ 0

−τ

It(θ)dθ.

(20)

6
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Here, It(θ) = I(t+θ) for θ ∈ [−τ, 0], therefore, It(0) = I(t) in this equation (20). Calculating
the time derivative of V1(t) along solutions of system (6-8),

dV1(t)

dt
= ξ(S

′
(t)− µN

µ+ u1

S
′
(t)

S(t)
) + ξI

′
(t) + (γ + µ+ u2)W

′
(t) + ξ(γ + µ+ u2)[

∫ t

t−τ

I(t)dS]
′

= ξ[µN − βW
S(t)W (t)

κ+W (t)
− βIS(t)I(t)− (µ+ u1)S(t)

+
µN

µ+ u1
(
βWW (t)

κ+W (t)
+ βII(t) + µ+ u1 −

µN

S(t)
)] + ξβW

S(t)W (t)

κ+W (t)

+ξβIS(t)I(t)− ξ(γ + µ+ u2)I(t) + (γ + µ+ u2)ξI(t− τ)

−(γ + µ+ u2)(δ + u3)W (t) + ξ(γ + µ+ u2)I(t)− (γ + µ+ u2)ξI(t− τ)

= 2ξµN − ξ(µ+ u1)S(t) +
ξµN

µ+ u1
(
βWW (t)

κ+W (t)
+ βII(t)− µN

S(t)
)

−(γ + µ+ u2)(δ + u3)W (t)

= ξµN(2− µN

µ+ u1

1

S(t)
− µ+ u1

µN
S(t)) + [

ξµN

µ+ u1
(
βWW (t)

κ+W (t)
+ βII(t))

−(γ + µ+ u2)(δ + u3)W (t)].

(21)

Obviously, 2− µN
µ+u1

1
S(t)
− µ+u1

µN
S(t) ≤ 0, thus, dV1(t)

dt
= 0 if and only if S = µN

µ+u1
. In addition,

if R0 < 1, it is sufficient to verify that the second term of equation (21) is less than 0 by

combining equations (18) and (19). Therefore, dV1(t)
dt
≤ 0. This completes the proof.

3.2 The stability of the endemic equilibrium

To study the stability of the endemic equilibrium E∗(S∗, I∗,W ∗), we linearize the system
(6-8) at the point E∗ by Letting S = S∗ + s, I = I∗ + i, W = W ∗ + w, here s, i and w
are small perturbations around the equilibrium E∗. To make the algebraic manipulation
simpler, we set P ∗ = βWW ∗

κ+W ∗ + βII
∗. When τ > 0, the characteristic polynomial for linearized

equation is obtained as:

λ3 + a1λ
2 + a2λ+ a3 + (b1λ+ b2)e

−λτ = 0, (22)

where

a1 = −βIS∗ + P ∗ + γ + 2µ+ δ + u1 + u2 + u3,

a2 = (P ∗ + µ+ u1)(−βIS∗ + γ + µ+ u2) + P ∗S∗βI + (δ + u3)×
(−βIS∗ + P ∗ + γ + 2µ+ u1 + u2),

a3 = (δ + u3)(P
∗ + µ+ u1)(−βIS∗ + γ + µ+ u2) + βI(δ + u3)P

∗S∗,

b1 = −ξβWS∗ κ

(κ+W ∗)2
,

b2 = −ξ(µ+ u1)βWS
∗ κ

(κ+W ∗)2
.
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Now we suppose λ is a root of equation (22), and substitute λ = iω (ω > 0) into
equation (22), after separating real and imaginary parts, we finally obtain the following two
transcendental equations:

−a1ω2 + a3 = −b2cos(ωτ)− b1ωsin(ωτ), (23)

−ω3 + a2ω = −b1ωcos(ωτ) + b2sin(ωτ). (24)

By adding up the squares of both the equations (23) and (24), the following sixth degree
equation for ω is obtained:

ω6 + ω4(a21 − 2a2) + ω2(a22 − 2a1a3 − b21) + a23 − b22 = 0. (25)

Letting ω2 = x gives:

F (x) = x3 +B1x
2 +B2x+B3 = 0, (26)

where

B1 = a21 − 2a2 , B2 = a22 − 2a1a3 − b21 , B3 = a23 − b22.

Here, we establish the following theorem.

Theorem 5 When R0 > 1, the endemic equilibrium E∗ of ODE system (6-8) is locally
asymptotically stable for the delay τ > 0 if B1 ≥ 0, B3 ≥ 0 and B2 > 0.

Proof In order to show that the endemic equilibrium E∗ is locally stable, we have to show
that equation (26) does not have a positive real root. In fact, if we take the derivative of
F (x) with respect to x, F

′
(x) = 3x2 + 2B1x + B2. The roots of equation F

′
(x) = 0 can

be solved as x1,2 =
−B1±
√

B2
1−3B2

3
. If B2 > 0, then

√
B2

1 − 3B2 < B1. Hence, neither x1
nor x2 is positive, it follows that equation F

′
(x) = 0 has no positive roots. Also, a simple

assumption that F (0) = B3 ≥ 0, implies that equation (26) will have no positive real roots.
Therefore, there is no ω such that iω is an eigenvalue of the characteristic equation (22). By
Rouch’s theorem [26], the real parts of all the eigenvalues of (22) are negative for time delay
τ ≥ 0. This completes the proof.

Next, we turn our attention to the global stability of the ODE system (6-8) if R0 > 1 for
all values of the delay τ > 0.

Theorem 6 When R0 > 1, the positive endemic equilibrium E∗ of ODE system (6-8) is
globally asymptotically stable for all delay τ > 0.

Proof We consider the following Lyapunov function:

V2(t) = S∗(
S(t)

S∗ − 1− lnS(t)

S∗ ) + I∗(
It(0)

I∗
− 1− lnIt(0)

I∗
) +

γ + µ+ u2
ξ

W ∗ ×

(
W (t)

W ∗ − 1− lnW (t)

W ∗ ) + (γ + µ+ u2)I
∗
∫ 0

−τ

(
It(s)

I∗
− 1− lnIt(s)

I∗
)ds. (27)
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Differentiating V2(t) along solutions of (6-8), we can obtain:

dV2(t)

dt
= µN − µS(t)− u1S(t)− S∗ µN

S(t)
+ S∗P + 2µS∗ + 2u1S

∗ − βWS
∗S(t)W (t)

κ+W (t)

−βIS(t)I∗ + 2(γ + µ+ u2)I
∗ − (γ + µ+ u2)(δ + u3)W (t)

ξ

−(γ + µ+ u2)W
∗I(t− τ)

W (t)
+

(γ + µ+ u2)(δ + u3)W
∗

ξ

+(γ + µ+ u2)I
∗(ln

I(t− τ)

I∗
− lnI(t)

I∗
)

= µS∗(2− S(t)

S∗ −
S∗

S(t)
) + u1S

∗(2− S∗

S(t)
− S(t)

S∗ ) + (γ + µ+ u2)I
∗ ×

[(
P (t)

P ∗ − 1)(1− P ∗

P (t)

W (t)

W ∗ )]− (γ + µ+ u2)I
∗(
S∗

S(t)
− 1− ln S∗

S(t)
)

−(γ + µ+ u2)I
∗[
P (t)

P ∗
I∗

S∗
S(t)

I(t)
− 1− ln(

P (t)

P ∗
I∗

S∗
S(t)

I(t)
)]

−(γ + µ+ u2)I
∗[
W ∗

W (t)

I(t− τ)

I∗
− 1− ln(

W ∗

W (t)

I(t− τ)

I∗
)]. (28)

Clearly, 2− S(t)
S∗ − S∗

S(t)
≤ 0 for S(t) > 0. Furthermore, note that at the endemic equilibrium

E∗, the right-hand side of equation (8) becomes 0, which yields ξI∗ = (δ + u3)W
∗, and

combine the facts (18) and (19), we can get (P (t)
P ∗ − 1)(1− P ∗

P (t)
W (t)
W ∗ ) < 0 if R0 > 1. Also, for

all t ≥ 0, the function g(t) = t − 1 − lnt is always non-negative, and g(t) = 0 if and only
if t = 1, then the fourth term, the fifth term and the last term in (28) are non-negative.

Therefore, we can finally show dV2(t)
dt
≤ 0. This completes the proof.

4 Optimal control analysis

In this section, we seek to minimize the objective functional defined by decreasing the number
of infected and the costs of time-related controls,the method is described in [28]. We choose a
linear function for the cost on infection I, and quadratic forms for the cost on the controls u1,
u2 and u3. The objective function subject to the differential equations (1-4) is constructed
as follows:

J =

∫ tf

0

(A0I + A1u
2
1 + A2u

2
2 + A3u

2
3)dt.

We assume tf is the fixed final time, the parameters A0, A1, A2 and A3 are weight parameters
describing the comparative importance of the all terms on control cost. The optimal control
problem is that of finding optimal functions u∗1, u

∗
2 and u∗3 such that

J(u∗1, u
∗
2, u

∗
3) = min

u1,u2,u3∈Θ
J(u1, u2, u3), (29)

where Θ is measurable on [0, 1] and Θ = {ui|0 ≤ ui ≤ 1} for the controls.
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The Lagrangian of this object is given by

L(I, u1, u2, u3) = A0I + A1u
2
1 + A2u

2
2 + A3u

2
3, (30)

and the Hamiltonian H for the control problem is:

H(S, I,W,R, u1, u2, u3, λ1, λ2, λ3, λ4) = L+ λ1(t)
dS

dt
+ λ2(t)

dI

dt
+ λ3(t)

dW

dt
+ λ4(t)

dR

dt
,

(31)

where λi(t) for i = 1, 2, 3, 4 are the adjoint variables, which determine the adjoint system,
and can be solved by the following system:

λ̇1(t) = −∂H
∂S
− χ[0,tf−τ ]

∂H

∂Sτ

(t+ τ)

= λ1(
βWW

κ+W
+ βI + µ+ u1)− λ2(

βWW

κ+W
+ βI)− λ4µ, (32)

λ̇2(t) = −∂H
∂I
− χ[0,tf−τ ]

∂H

∂Iτ
(t+ τ)

= −A0 + λ1βIS − λ2[βIS − (γ + µ+ u2)]− λ4(γ + u2)− λ2(t+ h)ξ, (33)

λ̇3(t) = − ∂H
∂W
− χ[0,tf−τ ]

∂H

∂Wτ

(t+ τ)

= λ1
βWSκ

(κ+W )2
− λ2

βWSκ

(K +W )2
+ λ3(δ + u3), (34)

λ̇4(t) = −∂H
∂R
− χ[0,tf−τ ]

∂H

∂Rτ

(t+ τ)

= λ4µ. (35)

Satisfying the transversality conditions:

λi(tf ) = 0, i = 1, 2, 3, 4. (36)

The combination of the ODE system (1-4) and the state system (32-35) is the optimality
system, which describes how the system behaves minimize J under the control applications.
By applying Pontryagin’s Maximum theory and the existence result for the optimal control
[27], we thus establish the following theorem:

Theorem 7 There is a triplet of optimal control (u∗1, u
∗
2, u

∗
3) such that

J(u∗1, u
∗
2, u

∗
3) = minu1,u2,u3∈Θ J(u1, u2, u3) subject to the optimality control system.

Theorem 8 There is a triplet of optimal control (u∗1, u
∗
2, u

∗
3) which minimizes J over the

region Θ given by

u∗1 = min{max{0, u1}, 1} , u∗2 = min{max{0, u2}, 1} , u∗3 = min{max{0, u3}, 1},
(37)

where

u1 =
(λ1(t)− λ4(t))S∗

2A1

, u2 =
(λ2(t)− λ4(t))I∗

2A2

, u3 =
λ3(t)W

∗

2A3

. (38)
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Proof The optimal controls u∗1, u
∗
2 and u∗3 can be solved by setting the partial derivatives

of H equal to zero,

∂H

∂u1
= 2A1u1 − λ1(t)S∗ + λ4(t)S

∗ = 0, (39)

∂H

∂u2
= 2A2u2 − λ2(t)I∗ + λ4(t)I

∗ = 0, (40)

∂H

∂u3
= 2A3u3 − λ3(t)W ∗ = 0. (41)

After a simple manipulation, the optimal control pair (u∗1, u
∗
2, u

∗
3) is characterized as (37)

and (38).
By standard control arguments involving the bounds on the controls, we conclude

u∗1 =


(λ1(t)−λ4(t))S∗

2A1
if 0 < (λ1(t)−λ4(t))S∗

2A1
< 1,

0 if (λ1(t)−λ4(t))S∗

2A1
≤ 0,

1 if (λ1(t)−λ4(t))S∗

2A1
≥ 1.

u∗2 =


(λ2(t)−λ4(t))I∗

2A2
if 0 < (λ2(t)−λ4(t))I∗

2A2
< 1,

0 if (λ2(t)−λ4(t))I∗

2A2
≤ 0,

1 if (λ2(t)−λ4(t))I∗

2A2
≥ 1

u∗3 =


λ3(t)W ∗

2A3
if 0 < λ3(t)W ∗

2A3
< 1,

0 if λ3(t)W ∗

2A3
≤ 0,

1 if λ3(t)W ∗

2A3
≥ 1.

5 Numerical results

In this section, we work out the optimality system which is combined by the ODE system
(1-4) and the adjoint system (32-35) by using the data regarding the course of the cholera
in Zimbabwe (2008-2009). It began in August 2008, not only swept to all of Zimbabwe’s
ten provinces but also spread to Botswana, Mozambique, South Africa and Zambia quickly.
The principal cause of the outbreak was the collapse of Zimbabwe’s public health system.
By the end of November 2008, three of Zimbabwe’s four major hospitals had shut down,
and many places had no basic drugs, medicines and water supply for such a long enough
period during the outbreak period. On 4 December 2008, the Zimbabwe government declared
the outbreak to be a national emergency. By March 2009, the World Health Organization
(WHO) estimated that 4,011 people had succumbed to this waterborne disease and 91,164
cases were infected. The total population in Zimbabwe is 12,347,240, in order to make the
calculation simpler, we scale down all data numbers by a factor of 1,200. All epidemiological
parameter values for cholera in literature are given as N = 10000, µ = 0.000442, γ = 1.4,
ξ = 70, δ = 0.023, βW = 0.12, βI = 0.00075. We use the initial values as S0 = 9999, I0 = 1,
W0 = 0, R0 = 0. The weight constants are set as A0 = A1 = A2 = A3 = 10.

We note that the optimality system is a two-point boundary value problem, with sepa-
rated boundary conditions at initial time t = 0 and final time t = tf . Solving this optimality
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system requires an iterative scheme which is combination of forward and backward difference
approximation developed by [22, 24], we show this procedure in the following algorithm. In
the programming, let there exist a uniform step size h > 0 and (n,m) ∈ N2, τ = mh and
tf = nh. We can obtain the following partition by setting m knots to left of 0 and right of
tf .

∆ = (t−m = −τ < · · · < t−1 < 0 < t1 < · · · < tn = tf < · · · < tn+m).

Therefore, ti = ih(−m ≤ i ≤ n+m). The state and adjoint variables and control variables,
such as S(t), I(t), W (t), R(t), λi and ui in terms of nodal points Si, Ii, Wi, Ri, λ

i
i and ui.

Fig.1 (a) represents the number of infected individuals as a function of time when τ = 5,
epidemic outbreak increases rapidly and reaches the peak at t = 22 weeks with value 40, the
controls take some time to react with the infected individuals, it then starts to gradually drop
to almost zero, meaning the disease is gradually eradicated from the population. Fig.1 (b)
shows the susceptible population S vs. time (weeks), we observe that there is a significant
decrease in the number of susceptible after around 40 weeks.

In order to clearly see the effect of the time lag on the dynamical behavior of the system,
we take a smaller time delay as τ = 1 in Fig.2. By comparison with Fig.1, we can observe
the smaller the time delay, the shorter it takes the equilibrium points to settle to their state
value, which implies that the disease will be more serious if the delay lag is shorter.
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Figure 1: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 5.
(b)The plot shows the susceptible population S vs. time (weeks) for time delay τ = 5.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time(Weeks)

N
um

be
r I

nf
ec

tio
us

(a)

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time(Weeks)

S
us

ce
pt

ib
le

 N
um

be
rs

(b)

Figure 2: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 1.
(b)The plot shows the susceptible population S vs. time (weeks) for time delay τ = 1.

We have plotted the controls ui(t) (i = 1, 2, 3) as a function of time in Fig.3, representing
the optimal controls in blocking new infection and inhibiting viral production under two
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Algorithm

Step1

for i = −m, ..., 0, do

Si = S(0), Ii = I(0), Wi = W (0), Ri = R(0), ui1 = 0, ui2 = 0, ui3 = 0,

end for

for i = n, ..., n+m, do λi1 = 0, λi2 = 0, λi3 = 0,

end for

Step2

for i = 0, ..., n− 1, do

Si+1 = Si+hµN

1+h(
βWWi+1
κ+Wi+1

+βIIi+1+µ+u1)
,

Ii+1 =
Ii+hβW

Si+1Wi+1
κ+Wi+1

1+h(γ+µ+u2−βISi+1)
,

Wi+1 = Wi+hξIi−m

1+h(δ+u3)
,

Ri+1 = Ri+h(γIi+1+u2Ii+1+u1Si+1)
1+hµ

,

λn−i−1
1 =

λn−i
1 +h(

βWWi+1
κ+Wi+1

+βIIi+1)λ
n−i
2 +hµλn−i

4

1+h(
βWWi+1
κ+Wi+1

+βIIi+1+µ+u1)
,

λn−i−1
2 =

λn−i
2 +h−hλn−i−1

1 βISi+1+hλn−i
4 (γ+u2)+hλn−i+m

2 χ[0,tf−τ ](tn−i)ξ

1+h[βISi+1−(γ+µ+u2)]
,

λn−i−1
3 =

λn−i
3 −hλn−i−1

1

βWκSi+1
(κ+Wi+1)

2+hλn−i−1
2

βWκSi+1
(κ+Wi+1)

2

1+h(δ+u3)
,

λn−i−1
4 =

λn−i
4

1+hµ
,

T i+1
1 =

(λn−i
1 −λn−i

4 )Si+1

2A1
,

T i+1
2 =

(λn−i
2 −λn−i

4 )Ii+1

2A2
,

T i+1
3 =

λn−i
3 Wi+1

2A1
,

ui+1
1 = min(max(0, T i+1

1 ), 1),

ui+1
2 = min(max(0, T i+1

2 ), 1),

ui+1
2 = min(max(0, T i+1

3 ), 1),

Step3

for i = 0, ..., n, write

S∗(ti) = Si, I
∗(ti) = Ii,W

∗(ti) = Wi, R
∗(ti) = Ri, u

∗
1(ti) = ui1, u

∗
2(ti) = ui2, u

∗
3(ti) = ui3,

end for
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different cases: τ = 6 and τ = 3, respectively. From Fig.3, it is apparent that a larger value
of optimal control variables is necessary in case of smaller time delay. It is also clear to
see that the control u2 in both cases always needs to be the maximal while the other two
controls u1 and u3, which need not to be the maximal at very first, increase gradually and
reach the maximal until certain weeks. Hence, we can firstly apply more of the therapeutic
treatment in order to effectively reduce the number of infectious individuals.
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Figure 3: (a)The plot represents the controls u1, u2 and u3 vs. time (weeks) for time delay
τ = 6. (b)The plot represents the controls u1, u2 and u3 vs. time (weeks) for time delay
τ = 3 .

To verify the global asymptotic stability of the ODE system analyzed in Sections 3, we
pick five different initial conditions with I(0) = 1, 100, 500, 800, 1000, respectively, and plot
these five solution curves by the phase plane portrait of I vs. S in Fig. 4. We clearly see
that all these five orbits converge to the disease-free equilibrium E0 when R0 < 1 in Fig.
4(a) and converge to endemic equilibrium E∗ when R0 > 1 in Fig. 4(b), respectively.
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Figure 4: (a)The phase plane portrait of I vs. S for R0 < 1, all these orbits converge to
the disease-free equilibrium E0. (b)The phase plane portrait of I vs. S for R0 > 1, all these
orbits converge to the endemic equilibrium E∗.

In order to illustrate the impacts of the different optimal control strategies, we investigate
and compare numerical results in the following four strategies for the control of the disease:
(1)when the objective function J is optimized through the control u1, while u2 and u3 are set
to be zero; (2)when the objective function J is optimized through the control u2, while u1
and u3 are set to be zero; (3)when the objective function J is optimized through the control
u3, while u1 and u2 are set to be zero; (4)without any controls, while u1, u2 and u3 are all
set to be zero. We observe from Fig.5, as can be expected, there is a significant increase
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in the number of infected individuals and susceptible individuals controlled compared with
optimal controlled, so that the infected population is affected very much due to the lack of
all the three controls. Compared with Fig.6, Fig.7 and Fig.8, the number of infectious does
not differ significantly by applying either the strategies with control u1 only or with control
u3 only, but does make greater significance when only treatment control u2 is employed, thus
the application of therapeutic treatment control gives better result than the application of u1
or u3 only. This simulation indicates that therapeutic treatment is more effective in reducing
the infection level, which highlights the effectiveness of treatment measure in controlling the
diseases. In a word, the use of a single optimal control method does not make a significant
impact, while the use of multi-strategies is more efficient. However, if the budget is limited,
it is much better to apply the treatment well before the occurrence of the outbreak.
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Figure 5: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 5
if there are no controls. (b)The plot shows the susceptible population S vs. time (weeks)
for time delay τ = 5 if there are no controls.
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Figure 6: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 5
if there is only control u1. (b)The plot shows the susceptible population S vs. time (weeks)
for time delay τ = 5 if there is only control u1.

6 Conclusions and discussions

In this paper, we have presented a cholera epidemiological model by incorporating three types
of intervention strategies and time delay inspired by the work in Wang and Modnak [21].
We have mainly investigated that by applying both an optimal control and a time delay to a
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Figure 7: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 5
if there is only control u2. (b)The plot shows the susceptible population S vs. time (weeks)
for time delay τ = 5 if there is only control u2.
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Figure 8: (a)The plot shows the infected population I vs. time (weeks) for time delay τ = 5
if there is only control u3. (b)The plot shows the susceptible population S vs. time (weeks)
for time delay τ = 5 if there is only control u3.
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cholera model in order to eliminate the infectious disease. First of all, both the disease-free
equilibrium E0 and endemic equilibrium E∗ of the model were obtained. By analyzing the
corresponding characteristic equations, the local stability of E0 and E∗ was investigated. In
particular, we have established the global stability analysis of the disease-free and endemic
equilibria of ODE system by constructing two suitable Lyapunov functionals. Moreover, we
used the Pontryagins Maximum Principle with delay to characterize optimal controls and
derived the optimality system at the same time. Finally, we presented an efficient numerical
simulation based on a specific algorithm to show that the optimal control strategy is much
more effective for reducing the number of infected individuals than using of any single control,
which highlights the effectiveness of treatment measure in controlling the diseases. However,
if the budget is limited, it is much better to apply the therapeutic treatment well before the
occurrence of the outbreak.

Since the choice of the weights Ai reflects the different scales of the costs for different
controls, it is important to notice that the ideal weights are very difficult to obtain in the
real world. We only use theoretical weights to propose the simulations in this paper, thus
the appropriate data is a difficult problem and it still remains for our further work. We
also need to pay attention to that different choices of final time tf lead to different results,
because there is an opposite time orientations for the optimality system when we carry out
the simulations. Mathematically speaking, the control is very sensitive to the final time. In
the work of [19] in 2011, it was mentioned that the shorter the period of control programme
is, the smaller the marginal cost of control will be.
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Abstract

In this paper, we investigate the qualitative behaviors of three viral infection models with two types of

cocirculating target cells. The models take into account both antibodies and latently infected cells. The

incidence rate is represented by bilinear, saturation and general function. For the first two models, we

have derived two threshold parameters, R0 and R1 which completely determined the global properties of

the models. Lyapunov functions are constructed and LaSalle’s invariance principle is applied to prove the

global asymptotic stability of all equilibria of the models. For the third model, we have established a set of

conditions on the general incidence rate function which are sufficient for the global stability of the equilibria

of the model. Theoretical results have been checked by numerical simulations.

Keywords: Virus infection; Global stability; Latently infected cells; cocirculating target cells; Lyapunov

function.

1 Introduction

Mathematical modeling and model analysis of virus infection in vivo have attracted the interests of mathe-
maticians during the recent years. Such virus infection models can be very useful in the control of epidemic
diseases and provide insights into the dynamics of viral load in vivo. Therefore, mathematical analysis of the
virus infection models can play a significant role in the development of a better understanding of diseases and
various drug therapy strategies.Many authors have formulated mathematical models to describe the population
dynamics of several viruses such as, human immunodeficiency virus (HIV) (see e.g. [1]-[10]), hepatitis B virus
(HBV) [11]-[13], hepatitis C virus (HCV) [14]-[15], human T cell leukemia HTLV [16] and dengue virus [17], etc.
During viral infections, the host immune system reacts with antigen-specific immune response. The immune
system has two main responses to viral infections. The first is based on the Cytotoxic T Lymphocyte (CTL)
cells which are responsible to attack and kill the infected cells. The second immune response is based on the
antibodies that are produced by the B cells. The function of the antibodies is to attack the viruses [1]. In some
infections such as in malaria, the CTL immune response is less effective than the antibody immune response
[18]. Several mathematical models have been proposed to consider the antibody immune response into the
viral infection models ([19]-[24]). The basic model of viral infection with antibody immune response has been

Emails: ah moukh81@yahoo.com (A. M. Shehata), a m elaiw@yahoo.com (A.M.Elaiw),
e elnahary@yahoo.com (E. Kh. Elnahary).
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introduced by Murase et. al. [19] and Wang and Zou [21] as:

ẋ = λ− dx− β̄xv, (1)

ẏ = β̄xv − ay, (2)

v̇ = ky − cv − rzv, (3)

ż = gzv − µz, (4)

where x, y, v and z represent, respectively, the concentrations of uninfected cells, infected cells, free viruses and
the antibody immune cells. Parameters λ, k and g represent respectively, the rate of new uninfected cells that
are generated from sources within the body, the rate of free virus production and the proliferation rate constant
of the antibody immune cells. Parameters d, a, c and µ are the natural death rate constant of uninfected cells,
infected cells, free virus particles and the antibody immune cells respectively. Parameter β̄ is the infection rate
constant at which a target cell becomes infected via contacting with virus and r is the removal rate constant
of the virus due to the antibodies. Model (1)-(4) is based on the assumption that the infection could occur
and that the viruses are produced from infected cells instantaneously, once the uninfected cells are contacted
by the virus particles. Other accurate models incorporate the latently infected cells which are due to the delay
between the time of infection and the time when the infected cell becomes active to produce infectious viruses.
In [26], model (1)-(4) was extended to take into consideration both latently and actively infected cells as:

ẋ = λ− dx− β̄xv, (5)

ẇ = (1− α)β̄xv − (e + b)w, (6)

ẏ = αβ̄xv + bw − ay, (7)

v̇ = ky − cv − rvz, (8)

ż = gvz − µz, (9)

where w and y are the concentrations of latently infected and actively infected cells, respectively. Eq. (6)
describes the population dynamics of the latently infected cells and show that they are converted to actively
infected cells with rate constant b. The parameters e and a are the death rate constants of the latently and
actively infected cells, respectively. The fractions (1 − α) where, 0 < α < 1 are the probabilities that upon
infection, an uninfected cell will become either latently infected or actively infected. Model (5)-(9) it have been
assumed that, the HIV has one class of target cells, CD4+T cells. However, Perelson et al. in [25] have shown
that, HIV infects the macrophages in addition to the CD4+T cells. Recently, many efforts have been devoted
to study various mathematical models of HIV dynamics with two classes of target cells (see e.g. [3]).

Our primary goal of the present paper is to propose the global stability analysis of three viral infection
models with two types of target cells, CD4+T cells and macrophages taking into consideration the latently,
actively infected cells and antibody immune response. The infection rate is represented by bilinear incidence
and saturated incidence in the first and the second models, respectively, while it is given by a general function
in the third one. The global stability of the three models is established using Lyapunov functionals.

2 HIV model with bilinear incidence rate

In this section, we introduce an HIV dynamics model which describes two cocirculation populations of target
cells, CD4+ T cells and macrophages and takes into account the antibody immune response. We consider two
types of infected cells, the latently infected and actively infected cells.

ẋi = λi − dixi − βixiv, i = 1, 2, (10)

ẇi = (1− αi)βixiv − (ei + bi)wi, i = 1, 2, (11)

ẏi = αiβixiv + biwi − aiyi, i = 1, 2, (12)

v̇ =
2∑

i=1

kiyi − cv − rvz, (13)

ż = gvz − µz. (14)
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Here i = 1, 2 correspond to the CD4+ T cells and macrophages and β1 = (1 − ε)β̄1, β2 = (1 − εf)β̄2. The
model incorporates RTI drug therapy where in the CD4+T cells, the drug efficacy is ε and 0 6 ε < 1, while in
the macrophages the drug efficacy εf is reduced by a factor f and 0 < f < 1. All the parameters and variables
of the model have the same meanings as given in (5)-(9).

2.1 Properties of solutions

One can easily show that the non-negative orthant R8 ≥ 0 by model (10)-(14).
Proposition 1. There exist positive numbers Lj , j = 1, 2, 3, 4 such that the compact set Ω ={

(xi, wi, yi, v, z) ∈ R8 ≥ 0 : 0 ≤ xi, wi, yi ≤ Li, 0 ≤ v ≤ L3, 0 ≤ z ≤ L4, i = 1, 2
}

is positively invariant.
Proof. To show the boundedness of the solutions of system (10)-(14) we let Ti(t) = xi(t) + wi(t) + yi(t),

then
Ṫi(t) = λi − dixi(t)− eiwi(t)− aiyi(t) ≤ λi − ρiTi(t),

where ρi = min{di, ai, ei}, i = 1, 2. Hence Ti(t) ≤ Li, if Ti(0) ≤ Li, where Li =
λi

ρi
. Since xi(t), wi(t) and y(t)

are all non-negative, then 0 ≤ xi(t), wi(t), yi(t) ≤ Li, for all t ≥ 0, if 0 ≤ xi(0) + wi(0) + yi(0) ≤ Li, i = 1, 2.
On the other hand, let G(t) = v(t) +

r

g
z(t), then

Ġ(t) =
2∑

i=1

kiyi − cv − rµ

g
z ≤

2∑

i=1

kiLi − δ

(
v +

r

g
z

)
=

2∑

i=1

kiLi − δG(t),

where δ = min{c, µ}. Hence G(t) ≤ L3, if G(0) ≤ L3, where L3 =
1
δ

2∑
i=1

kiLi. Since v(t) ≥ 0 and z(t) ≥ 0, then

0 ≤ v(t) ≤ L3 and 0 ≤ z(t) ≤ L4 if 0 ≤ v(0) +
r

g
z(0) ≤ L3, where L4 =

gL3

r
.

2.2 Equilibria and biological thresholds

Let
◦
Ω be the interior of Ω.
Lemma 1. For system (10)-(14) we have (i) There exist only one uninfected equilibrium E0 =

(x0
1, x

0
2, 0, 0, 0, 0, 0, 0) ∈ Ω, when R0 ≤ 1.

(ii) There exist E0 and a chronic-infection equilibrium without antibody immune response E1 =
(x̃1, x̃2, w̃1, w̃2, ỹ1, ỹ2, ṽ, 0, ) ∈ Ω, when R1 ≤ 1 < R0.

(iii) There exist E0, E1 and a chronic-infection equilibrium with antibody immune response E2 =
(x̄1, x̄2, w̄1, w̄2, ȳ1, ȳ2, v̄, z̄) ∈ Ω̊, when R1 > 1.

Proof. The equilibria of (10)-(14) satisfy the following equations:

λi − dixi − βixiv = 0, (15)

(1− αi)βixiv − (ei + bi)wi = 0, (16)

αiβixiv + biwi − aiyi = 0, (17)
2∑

i=1

kiyi − cv − rvz = 0, (18)

gvz − µz = 0. (19)

Eq. (19) has two possible solutions z = 0 or v =
µ

g
. If z = 0, then from Eqs.(15)-(17) we get

xi =
x0

i

(1 + ηiv)
, wi =

(1− αi)βix
0
i

(ei + bi)(1 + ηiv)
v, yi =

(eiαi + bi)βix
0
i

ai(ei + bi)(1 + ηiv)
v, (20)

where x0
i =

λi

di
, ηi =

βi

di
, i = 1, 2. From Eq. (18) we obtain

(
2∑

i=1

(eiαi + bi)kiβix
0
i

aic(ei + bi)(1 + ηiv)
− 1

)
cv = 0. (21)
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We note that v = 0 is a solution for Eq. (21) which leads to the disease-free equilibrium E0 =
(x0

1, x
0
2, 0, 0, 0, 0, 0, 0). If v 6= 0, we have

2∑

i=1

Φi

1 + ηiv
= 1. (22)

where Φi =
(eiαi + bi)kiβix

0
i

aic(ei + bi)
. Equation (22) can be written as:

Av2 + Bv − C = 0, (23)

where
A = η1η2, B = η1Φ1 + η2Φ2 + (1− Φ1 − Φ2)(η1 + η2), C = Φ1 + Φ2 − 1

The solutions of Eq. (23) is given by

v± =
−B ±√B2 + 4AC

2A
.

We have A > 0, therefore if C > 0, then v+ > 0 and v− < 0. Let ṽ = v+, then from Eq. (20) we get

x̃i =
x0

i

1 + ηiṽ
, w̃i =

(1− αi)βix
0
i

(ei + bi)(1 + ηiṽ)
ṽ, ỹi =

(eiαi + bi)βix
0
i

ai(ei + bi)(1 + ηiṽ)
ṽ, i = 1, 2. (24)

Therefore, a chronic-infection equilibrium without antibody immune response E1 = (x̃1, x̃2, w̃1, w̃2, ỹ1, ỹ2, ṽ, 0)
exists when C > 0 or (Φ1 + Φ2 > 1). Now we are ready to define the basic infection reproduction number R0

as

R0 = Φ1 + Φ2 =
2∑

i=1

R0i =
2∑

i=1

kiβix
0
i (eiαi + bi)

aic(ei + bi)
.

If v =
µ

g
, then we obtain the chronic-infection equilibrium with antibody immune response E2 =

(x̄1, x̄2, w̄1, w̄2, ȳ1, ȳ2, v̄, z̄), where

x̄i =
gλi

gdi + µβi
, w̄i =

(1− αi)λiβiµ

(ei + bi)(gdi + µβi)
, ȳi =

(eiαi + bi)λiβiµ

ai(ei + bi)(gdi + µβi)
, i = 1, 2,

v̄ =
µ

g
, z̄ =

c

r

(
2∑

i=1

gkiβiλi(eiαi + bi)
aic(ei + bi)(gdi + µβi)

− 1

)
.

We note that E2 exists when
2∑

i=1

gkiβiλi(eiαi + bi)
aic(ei + bi)(gdi + µβi)

> 1. Let us define the antibody immune response

activation number as

R1 =
2∑

i=1

gkiβiλi(eiαi + bi)
aic(ei + bi)(gdi + µβi)

=
2∑

i=1

R0i

1 +
µβi

gdi

,

which determines whether or not a persistent antibody immune response can be established. Then we can write
z̄ =

c

r
(R1 − 1). Clearly R1 < R0.

Now, we show that E0, E1 ∈ Ω and E2 ∈ Ω̊. Clearly, E0 ∈ Ω. Let R0 > 1, then from Eq. (20) we have
x̃i < x0

i , then

0 < x̃i <
λi

di
≤ λi

ρi
= Li.

From Eqs. (10)-(12), we get
λi = dix̃i + eiw̃i + aiỹi.

Thus,

0 < w̃i <
λi

ei
≤ λi

ρi
= Li, 0 < ỹi <

λi

ai
≤ λi

ρi
= Li.
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Also, ṽ =
1
c

2∑
i=1

kiỹi <
1
c

2∑
i=1

kiLi ≤ 1
δ

2∑
i=1

kiLi = L3. Moreover, z̃ = 0, and then, E1 ∈ Ω. Let R1 > 1, then one

can show that 0 < x̄i < Li, 0 < w̄i < Li and 0 < ȳi < Li. Now we show that 0 < v̄ < L3 and 0 < z̄ < L4.

From Eq. (13), we have cv̄ + rv̄z̄ =
2∑

i=1

kiȳi. Then

cv̄ <
2∑

i=1

kiȳi ⇒ 0 < v̄ <
1
c

2∑

i=1

kiLi 6 1
δ

2∑

i=1

kiLi = L3,

rv̄z̄ <
2∑

i=1

kiȳi ⇒ 0 < z̄ <
g

rµ

2∑

i=1

kiȳi <
g

rδ

2∑

i=1

kiLi =
gL3

r
= L4.

It follows that, E2 ∈ Ω̊.

2.3 Global stability

Let us define the function F (s) = s− 1− ln s.
Theorem 1. The infection-free equilibrium E0 of system (10)-(14) is GAS when R0 ≤ 1.
Proof. Define a Lyapunov function W0 as follows:

W0 =
2∑

i=1

γi

[
x0

i F

(
xi

x0
i

)
+

bi

eiαi + bi
wi +

ei + bi

eiαi + bi
yi

]
+ v +

r

g
z, (25)

where γi =
ki(eiαi + bi)
ai(ei + bi)

, i = 1, 2. The time derivative of W0 along the trajectories of (10)-(14) satisfies

dW0

dt
=

2∑

i=1

γi

[(
1− x0

i

xi

)
(λi − dixi − βixiv) +

bi

eiαi + bi
((1− αi)βixiv − (ei + bi)wi)

+
ei + bi

eiαi + bi
(αiβixiv + biwi − aiyi)

]
+

2∑

i=1

kiyi − cv − rvz +
r

g
(gvz − µz). (26)

Collecting terms of Eq. (26) we get

dW0

dt
=

2∑

i=1

γi

[
di

(
1− x0

i

xi

)
(x0

i − xi) + βix
0
i v

]
−cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+

2∑

i=1

ki(eiαi + bi)
ai(ei + bi)

βix
0
i v − cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+

(
2∑

i=1

kiβix
0
i (eiαi + bi)

aic(ei + bi)
− 1

)
cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+ (R0 − 1)cv − rµ

g
z. (27)

If R0 ≤ 1 then dW0
dt ≤ 0 for all xi, v, z > 0. Thus, the solutions of system (10)-(14) converge to Ω, the largest

invariant subset of
{

dW0
dt = 0

}
[27]. Clearly, it follows from Eq. (26) that dW0

dt = 0 if and only if xi = x0
i , v = 0

and z = 0. The set Ω is invariant and for any element belongs to Ω satisfies v = 0 and z = 0, then v̇ = 0. We

can see from Eq. (13) that 0 = v̇ =
2∑

i=1

kiyi, and thus yi = 0. Moreover, from Eq. (12) we get wi = 0. Hence

dW0
dt = 0 occurs at E0. From LaSalle’s invariance principle, E0 is GAS.

Theorem 2. The chronic-infection equilibrium without antibody immune response E1 of system (10)-(14)
is GAS when R1 ≤ 1 < R0.
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Proof. We construct the following Lyapunov function

W1 =
2∑

i=1

γi

[
x̃iF (

xi

x̃i
) +

bi

eiαi + bi
w̃iF

(
wi

w̃i

)
+

ei + bi

eiαi + bi
ỹiF

(
yi

ỹi

) ]
+ṽF

(v

ṽ

)
+

r

g
z.

Calculating
dW1

dt
along the trajectories of (10)-(14) we get

dW1

dt
=

2∑

i=1

γi

[ (
1− x̃i

xi

)
(λi − dixi − βixiv) +

bi

eiαi + bi

(
1− w̃i

wi

)
((1− αi)βixiv − (ei + bi)wi)

+
ei + bi

eiαi + bi

(
1− ỹi

yi

)
(αiβixiv + biwi − aiyi)

]
+

(
1− ṽ

v

) (
2∑

i=1

kiyi − cv − rvz

)
+

r

g
(gvz − µz) . (28)

Collecting terms of Eq. (28) we get

dW1

dt
=

2∑

i=1

γi

[ (
1− x̃i

xi

)
(λi − dixi) + βix̃iv − bi(1− αi)

eiαi + bi

βixivw̃i

wi
+

ei + bi

eiαi + bi
biw̃i − αi (ei + bi)

eiαi + bi

βixivỹi

yi

− bi (ei + bi)
eiαi + bi

wiỹi

yi
+

ei + bi

eiαi + bi
aiỹi

]
− cv − ṽ

v

2∑

i=1

kiyi + cṽ + rṽz − rµ

g
z. (29)

Using the value of x̃i given in Eq. (24) we get
(

2∑
i=1

γiβix̃i − c

)
v = 0. Applying λi = dix̃i + βix̃iṽ, we obtain

dW1

dt
=

2∑

i=1

γi

[ (
1− x̃i

xi

)
(dix̃i − dixi) + βix̃iṽ

(
1− x̃i

xi

)
− bi(1− αi)

eiαi + bi

βixivw̃i

wi
+

ei + bi

eiαi + bi
biw̃i

− αi (ei + bi)
eiαi + bi

βixivỹi

yi
− bi (ei + bi)

eiαi + bi

wiỹi

yi
+

ei + bi

eiαi + bi
aiỹi

]
− ṽ

v

2∑

i=1

kiyi + cṽ + rṽz − rµ

g
z. (30)

Using the equilibrium condition for E1

(1− αi)βix̃iṽ = (ei + bi)w̃i, αiβix̃iṽ + biw̃i = aiỹi, cṽ =
2∑

i=1

kiỹi =
2∑

i=1

γiβix̃iṽ,

ei + bi

eiαi + bi
aiỹi = βix̃iṽ =

bi(1− αi)
eiαi + bi

βix̃iṽ +
(ei + bi)αi

eiαi + bi
βix̃iṽ.

we have

dW1

dt
=

2∑

i=1

γi

[
− di

(xi − x̃i)2

xi
+ βix̃iṽ

(
1− x̃i

xi

)(
bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
− bi(1− αi)

eiαi + bi
βix̃iṽ

xiw̃iv

x̃iwiṽ

+
bi(1− αi)
eiαi + bi

βix̃iṽ − (ei + bi)αi

eiαi + bi
βix̃iṽ

xiỹiv

x̃iyiṽ
− bi(1− αi)

eiαi + bi
βix̃iṽ

wiỹi

w̃iyi
+

bi(1− αi)
eiαi + bi

βix̃iṽ +
(ei + bi)αi

eiαi + bi
βix̃iṽ

−
(

bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
βix̃iṽ

yiṽ

ỹiv
+

(
bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
βix̃iṽ

]
+ (ṽ − v̄) rz.

=
2∑

i=1

γi

[
− di

(xi − x̃i)2

xi
+

bi(1− αi)
eiαi + bi

βix̃iṽ

(
4− x̃i

xi
− xiw̃iv

x̃iwiṽ
− yiṽ

ỹiv
− wiỹi

w̃iyi

)

+
(ei + bi)αi

eiαi + bi
βix̃iṽ

(
3− x̃i

xi
− yiṽ

ỹiv
− xiỹiv

x̃iyiṽ

) ]
+ (ṽ − v̄) rz. (31)

We have xi, wi, yi, v > 0 when R0 > 1. Since the geometrical mean is less than or equal to the arithmetical
mean, the second and the third terms are less than or equal to zero. Now we show that if R1 ≤ 1 then ṽ ≤ µ

g = v̄.
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Using the steady state conditions for E1 we have
2∑

i=1

kiβiλi(eiαi + bi)
aicdi(ei + bi)(1 + ηiṽ)

= 1, then

R1 − 1 =
2∑

i=1

gkiβiλi(eiαi + bi)
aic(ei + bi)(gdi + µβi)

−
2∑

i=1

kiβiλi(eiαi + bi)
aidic(ei + bi)(1 + ηiṽ)

=
2∑

i=1

kiβiλi(eiαi + bi)
aidic(ei + bi)(1 + ηiv̄)

−
2∑

i=1

kiβiλi(eiαi + bi)
aidic(ei + bi)(1 + ηiṽ)

= (ṽ − v̄)χ, (32)

where χ =
2∑

i=1

kiβiλiηi(eiαi + bi)
aidic(ei + bi)(1 + ηiv̄)(1 + ηiṽ)

. It follows that, if R1 ≤ 1 then dW1
dt ≤ 0 for all xi, wi, yi, v, z > 0.

Thus, the solutions of system (10)-(14) limit to Ω, the largest invariant subset of
{

dW1
dt = 0

}
[27]. It can be

seen that, dW1
dt = 0 occurs at E1. Applying LaSalle’s invariance principle we obtain that E1 is GAS.

Theorem 3. The chronic-infection equilibrium with antibody immune response E2 of system (10)-(14) is
GAS when R1 > 1.

Proof. Consider the following Lyapunov function

W2 =
2∑

i=1

γi

[
x̄iF (

xi

x̄i
) +

bi

eiαi + bi
w̄iF

(
wi

w̄i

)
+

ei + bi

eiαi + bi
ȳiF

(
yi

ȳi

) ]
+v̄F

(v

v̄

)
+

r

g
z̄F

(z

z̄

)
.

Calculating the derivative of W2 along the trajectories of (10)-(14) we get

dW2

dt
=

2∑

i=1

γi

[ (
1− x̄i

xi

)
(λi − dixi − βixiv) +

bi

eiαi + bi

(
1− w̄ı̄

wi

)
((1− αi)βixiv − (ei + bi)wi)

+
ei + bi

eiαi + bi

(
1− ȳi

yi

)
(αiβixiv + bwi − aiyi)

]
+

(
1− v̄

v

)
(

2∑

i=1

kiyi − cv − rvz) +
r

g

(
1− z̄

z

)
(gvz − µz) .

(33)

Collecting terms of Eq. (33) we get

dW2

dt
=

2∑

i=1

γi

[ (
1− x̄i

xi

)
(λi − dixi) + βix̄iv − bi(1− αi)

eiαi + bi

βixivw̄ı̄

wi
+

ei + bi

eiαi + bi
biw̄ı̄

− αi (ei + bi)
eiαi + bi

βixivȳi

yi
− bi (ei + bi)

eiαi + bi

wiȳi

yi
+

ei + bi

eiαi + bi
aiȳi

]
− cv − v̄

v

2∑

i=1

kiyi + cv̄ − rvz̄ +
rµ

g
z̄. (34)

Applying λi = dix̄i + βx̄iv̄ , we get

dW2

dt
=

2∑

i=1

γi

[ (
1− x̄i

xi

)
(dix̄i − dixi) + βix̄iv̄

(
1− x̄i

xi

)
+ βix̄iv − bi(1− αi)

eiαi + bi

βixivw̄ı̄

wi
+

ei + bi

eiαi + bi
biw̄ı̄

− αi (ei + bi)
eiαi + bi

βixivȳi

yi
− bi (ei + bi)

eiαi + bi

wiȳi

yi
+

ei + bi

eiαi + bi
aiȳi

]
− cv − v̄

v

2∑

i=1

kiyi + cv̄ − rvz̄ +
rµ

g
z̄. (35)

Using the equilibrium conditions for E2

(1− αi)βix̄iv̄ = (ei + bi)w̄i, αiβix̄iv̄ + biw̄i = aiȳi, cv̄ + rv̄z̄ =
2∑

i=1

kiȳi =
2∑

i=1

γiβix̄iv̄,

ei + bi

eiαi + bi
aiȳi = βix̄iv̄ =

bi(1− αi)
eiαi + bi

βix̄iv̄ +
(ei + bi)αi

(eiαi + bi)
βix̄iv̄,

2∑

i=1

γiβix̄iv̄ − cv̄ − rv̄z̄ = 0,
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we have

dW2

dt
=

2∑

i=1

γi

[
− di

(xi − x̄i)2

xi
+ βix̄iv̄

(
1− x̄i

xi

)(
bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
− bi(1− αi)

eiαi + bi
βix̄iv̄

xiw̄iv

x̄iwiv̄

+
bi(1− αi)
eiαi + bi

βix̄iv̄ − (ei + bi)αi

eiαi + bi
βix̄iv̄

xiȳiv

x̄iyiv̄
− bi(1− αi)

eiαi + bi
βix̄iv̄

wiȳi

w̄iyi
+

bi(1− αi)
eiαi + bi

βix̄iv̄ +
(ei + bi)αi

eiαi + bi
βix̄iv̄

−
(

bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
βix̄iv̄

yiv̄

ȳiv
+

(
bi(1− αi)
eiαi + bi

+
(ei + bi)αi

eiαi + bi

)
βix̄iv̄

]

=
2∑

i=1

γi

[
− di

(xi − x̄i)2

xi
+

bi(1− αi)
eiαi + bi

βix̄iv̄

[
4− x̄i

xi
− xiw̄iv

x̄iwiv̄
− yiv̄

ȳiv
− wiȳi

w̄iyi

]

+
(ei + bi)αi

(eiαi + bi)
βix̄iv̄

[
3− x̄i

xi
− yiv̄

ȳiv
− xiȳiv

x̄iyiv̄

] ]
.

Thus, if R1 > 1, then x̄i, w̄i, ȳi, v̄, z̄ > 0. Using the relation between arithmetical and geometrical means, we

get
dW2

dt
≤ 0. Clearly,

dW2

dt
= 0 if and only if xi = x̄i, wi = w̄i, yi = ȳi and v = v̄. If v = v̄, then v̇ = 0 and

from Eq. (13) we have 0 =
2∑

i=1

kiȳi − cv̄ − rv̄z̄, which give z = z̄. Therefore,
dW2

dt
equal to zero at E2. The

global stability of E2 follows from LaSalle’s invariance principle.

3 Model with saturation functional response

In this section, we modify model (10)-(14) by taking into account the saturation functional response as:

ẋi = λi − dixi − βixiv

1 + σiv
, i = 1, 2, (36)

ẇi =
(1− αi)βixiv

1 + σiv
− (ei + bi)wi, i = 1, 2, (37)

ẏi =
αiβixiv

1 + σiv
+ biwi − aiyi, i = 1, 2, (38)

v̇ =
2∑

i=1

kiyi − cv − rvz, (39)

ż = gvz − µz, (40)

where σi > 0, i = 1, 2, is the saturation constant, and all the variables and parameters of the model have the
same definition as given in (10)-(14). We mention that the compact set Ω given in Section 2 is also positively
invariant with respect to system (36)-(40).

3.1 Equilibria

Lemma 2. For system (36)-(40) we have (i) There exist only one uninfected equilibrium E0 =
(x0

1, x
0
2, 0, 0, 0, 0, 0, 0) ∈ Ω, when R0 ≤ 1.

(ii) There exist E0 and a chronic-infection equilibrium without antibody immune response E1 =
(x̃1, x̃2, w̃1, w̃2, ỹ1, ỹ2, ṽ, 0, ) ∈ Ω, when R1 ≤ 1 < R0.

(iii) There exist E0, E1 and a chronic-infection equilibrium with antibody immune response E2 =
(x̄1, x̄2, w̄1, w̄2, ȳ1, ȳ2, v̄, z̄) ∈ Ω̊, when R1 > 1.

Proof. We let the right-hand side of Eqs.(36)-(40) equal zero, then we obtain the following:
Eq. (40) has two possible solutions z = 0 or v =

µ

g
.

If z = 0, then from Eqs.(36)-(38) we have

xi =
x0

i (1 + σiv)
(1 + ξiv)

, wi =
(1− αi)βix

0
i

(ei + bi)(1 + ξiv)
v, yi =

(eiαi + bi)βix
0
i

ai(ei + bi)(1 + ξiv)
v, (41)
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where x0
i =

λi

di
, ξi = σi +

βi

di
, i = 1, 2. From Eq. (39) we find

(
2∑

i=1

(eiαi + bi)kiβix
0
i

aic(ei + bi)(1 + ξiv)
− 1

)
cv = 0. (42)

Eq. (42) has also two possible solutions v = 0 or
2∑

i=1

(eiαi + bi)kiβix
0
i

aic(ei + bi)(1 + ξiv)
− 1 = 0.

If v = 0, then substituting it in Eq. (41) we get the disease-free equilibrium E0 = (x0
1, x

0
2, 0, 0, 0, 0, 0, 0).

If v 6= 0, we have
2∑

i=1

Ψi

(1 + ξiv)
= 1. (43)

where Ψi =
(eiαi + bi)kiβix

0
i

aic(ei + bi)
. Eq. (43) can be written as:

A1v
2 + B1v − C1 = 0 (44)

where
A1 = ξ1ξ2, B1 = ξ1Ψ1 + ξ2Ψ2 + (1−Ψ1 −Ψ2)(ξ1 + ξ2), C1 = Ψ1 + Ψ2 − 1

The solutions of Eq. (23) is given by:

v± =
−B1 ±

√
B2

1 + 4A1C1

2A
.

We have A1 > 0, therefore v+ > 0 and v− < 0 when C1 > 0. Let ṽ = v+, then from Eq. (41) we get

x̃i =
x0

i (1 + σiṽ)
(1 + ξiṽ)

> 0, w̃i =
(1− αi)βix

0
i

(ei + bi)(1 + ξiṽ)
ṽ > 0, ỹi =

(eiαi + bi)βix
0
i

ai(ei + bi)(1 + ξiṽ)
ṽ > 0, i = 1, 2.

Therefore, an endemic equilibrium E1 = (x̃1, x̃2, w̃1, w̃2, ỹ1, ỹ2, ṽ, 0, ) exists when C1 > 0 or (Ψ1 + Ψ2 > 1).
Now we are ready to define the basic reproduction number R0 as

R0 =
2∑

i=1

R0i =
2∑

i=1

Ψi =
2∑

i=1

(eiαi + bi)kiβix
0
i

aic(ei + bi)
.

If v =
µ

g
, then we obtain the chronic-infection equilibrium with antibody immune response E2 =

(x̄1, x̄2, w̄1, w̄2, ȳ1, ȳ2, v̄, z̄), where

x̄i =
(g + µσi)x0

i

g + µξi
, w̄i =

(1− αi)βiµx0
i

(ei + bi)(g + µξi)
, ȳi =

(eiαi + bi)βiµx0
i

ai(ei + bi)(g + µξi)
, i = 1, 2,

v̄ =
µ

g
, z̄ =

c

r

(
2∑

i=1

(eiαi + bi)kiβigx0
i

aic(ei + bi)(g + µξi)
− 1

)
.

We note that E2 exists when
2∑

i=1

(eiαi + bi)kiβigx0
i

aic(ei + bi)(g + µξi)
> 1. This equilibrium represents the state that both the

viruses and antibodies are present. Let us define the antibody immune response activation number as

R1 =
2∑

i=1

(eiαi + bi)kiβigx0
i

aic(ei + bi)(g + µξi)
=

2∑

i=1

R0i(
1 +

µ

g
ξi

) ,

which determines whether a persistent antibody immune response can be established. Then we can write
z̄ =

c

r
(R1 − 1). Clearly R1 < R0. Similar to Section 2.2, one can show that, E0, E1 ∈ Ω and E2 ∈ Ω̊
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3.2 Global stability

Theorem 4. The disease-free equilibrium E0 of system (36)-(40) is GAS when R0 ≤ 1.
Proof. We define a Lyapunov function W0 as:

W0 =
2∑

i=1

γi

[
x0

i F

(
xi

x0
i

)
+

bi

eiαi + bi
wi +

ei + bi

eiαi + bi
yi

]
+ v +

r

g
z. (45)

We calculate
dW0

dt
along the trajectories of (36)-(40)

dW0

dt
=

2∑

i=1

γi

[ (
1− x0

i

xi

)(
λi − dixi − βixiv

1 + σiv

)
+

bi

eiαi + bi

(
(1− αi)βixiv

1 + σiv
− (ei + bi)wi

)

+
ei + bi

eiαi + bi

(
αiβixiv

1 + σiv
+ biwi − aiyi

)]
+

2∑

i=1

kiyi − cv − rvz +
r

g
(gvz − µz). (46)

Collecting terms of Eq. (46) we get

dW0

dt
=

2∑

i=1

γi

[
di

(
1− x0

i

xi

)
(x0

i − xi) +
βix

0
i v

1 + σiv

]
− cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+

2∑

i=1

(eiαi + bi)kiβix
0
i

ai(ei + bi)(1 + σiv)
v − cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+

(
2∑

i=1

R0i

(1 + σiv)
− 1

)
cv − rµ

g
z

= −
2∑

i=1

γidi
(xi − x0

i )
2

xi
+ (R0 − 1)cv −

2∑

i=1

cσiR0iv
2

(1 + σiv)
− rµ

g
z. (47)

If R0 ≤ 1 then dW0
dt ≤ 0 for all xi, v, z > 0. Similar to the proof of Theorem 1, one can easily show that dW0

dt = 0
at E0. Then using LaSalle’s invariance principle, we can show the global stability of E0.

Next, we show that the endemic equilibrium E1 is GAS.
Theorem 5. The chronic-infection equilibrium without antibody immune response E1 of system (36)-(40)

is GAS when R1 ≤ 1 < R0.
Proof. We consider the following Lyapunov function

W1 =
2∑

i=1

γi

[
x̃iF

(
xi

x̃i

)
+

bi

eiαi + bi
w̃iF

(
wi

w̃i

)
+

ei + bi

eiαi + bi
ỹiF

(
yi

ỹi

) ]
+ṽF

(v

ṽ

)
+

r

g
z.

Calculating
dW1

dt
along the solutions of (36)-(40) we get

dW1

dt
=

2∑

i=1

γi

[(
1− x̃i

xi

)(
λi − dixi − βixiv

1 + σiv

)
+

bi

eiαi + bi

(
1− w̃i

wi

) (
(1− αi)βixiv

1 + σiv
− (ei + bi)wi

)

+
ei + bi

eiαi + bi

(
1− ỹi

yi

)(
αiβixiv

1 + σiv
+ biwi − aiyi

) ]
+

(
1− ṽ

v

)
(

2∑

i=1

kiyi − cv − rvz) +
r

g
(gvz − µz) . (48)

Collecting terms of Eq. (48) we have:

dW1

dt
=

2∑

i=1

γi

[ (
1− x̃i

xi

)
(λi − dixi) +

βix̃iv

1 + σiv
+

bi

eiαi + bi

(
− (1− αi)βixivw̃i

(1 + σiv)wi
+ (ei + bi)w̃i

)

+
ei + bi

eiαi + bi

(
− αiβixivỹi

(1 + σiv)yi
+

biwiỹi

yi
+ aiỹi

) ]
− cv − ṽ

v

2∑

i=1

kiyi + cṽ + rṽz − µr

g
z.
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Using the equilibrium condition for E1:

λi = dix̃i +
βx̃iṽ

1 + σiṽ
,

(1− αi)βix̃iṽ

1 + σiṽ
= (ei + bi)w̃i, aiỹi =

αiβix̃iṽ

1 + σiṽ
+ biw̃i =

eiαi + bi

ei + bi

βix̃iṽ

1 + σiṽ
,

cṽ =
2∑

i=1

kiỹi =
2∑

i=1

γi
βix̃iṽ

1 + σiṽ
,

ṽ

v

2∑

i=1

kiyi =
2∑

i=1

γi
βix̃iṽ

1 + σiṽ

yiṽ

ỹiv
, cv =

v

ṽ

2∑

i=1

γi
βix̃iṽ

1 + σiṽ
,

βix̃iṽ

1 + σiṽ
=

bi(1− αi)
(eiαi + bi)

βix̃iṽ

(1 + σiṽ)
+

(ei + bi)αi

(eiαi + bi)
βix̃iṽ

(1 + σiṽ)
,

we obtain

dW1

dt
=

2∑

i=1

γi

[ (
1− x̃i

xi

)(
dix̃i +

βix̃iṽ

1 + σiṽ
− dixi

)
+

βix̃iv

1 + σiv
+

bi

eiαi + bi

(
− (1− αi)βixivw̃i

(1 + σiv)wi
+

(1− αi)βix̃iṽ

1 + σiṽ

)

+
ei + bi

eiαi + bi

(
− αiβixivỹi

(1 + σiv)yi
+

biwiỹiw̃i

yiw̃i
+

eiαi + bi

ei + bi

βix̃iṽ

1 + σiṽ

)
− yiv

ỹiṽ

βix̃iṽ

1 + σiṽ
− v

ṽ

βix̃iṽ

1 + σiṽ
+

βix̃iṽ

1 + σiṽ

]
+ rṽz − µr

g
z.

=
2∑

i=1

γi

[
− di

(xi − x̃i)2

xi
+

βix̃iṽ

1 + σiṽ

(
−1 +

v(1 + σiṽ)
ṽ(1 + σiv)

− v

ṽ
+

1 + σiv

1 + σiṽ

)

+
bi(1− αi)
(eiαi + bi)

βix̃iṽ

(1 + σiṽ)

(
5− x̃i

xi
− xiw̃iv(1 + σiṽ)

x̃iwiṽ(1 + σiv)
− yiṽ

ỹiv
− wiỹi

w̃iyi
− 1 + σiv

1 + σiṽ

)

+
(ei + bi)αi

(eiαi + bi)
βix̃iṽ

(1 + σiṽ)

(
4− x̃i

xi
− xiỹiv(1 + σiṽ)

x̃iyiṽ(1 + σiv)
− yiṽ

ỹiv
− 1 + σiv

1 + σiṽ

) ]
+

(
ṽ − µ

g

)
rz

=
2∑

i=1

γi

[
−di

(xi − x̃i)2

xi
− βix̃iṽ

(1 + σiṽ)
σi(v − ṽ)2

(1 + σiv)(1 + σiṽ)ṽ

+
bi(1− αi)
(eiαi + bi)

βix̃iṽ

(1 + σiṽ)

(
5− x̃i

xi
− xiw̃iv(1 + σiṽ)

x̃iwiṽ(1 + σiv)
− yiṽ

ỹiv
− wiỹi

w̃iyi
− 1 + σiv

1 + σiṽ

)

+
(ei + bi)αi

(eiαi + bi)
βix̃iṽ

(1 + σiṽ)

(
4− x̃i

xi
− xiỹiv(1 + σiṽ)

x̃iyiṽ(1 + σiv)
− yiṽ

ỹiv
− 1 + σiv

1 + σiṽ

)]
+

(
ṽ − µ

g

)
rz. (49)

As the same proof of Eq. (32) we can show that (ṽ − v̄) = 1
ω (R1 − 1), where ω =

2∑
i=1

kiβiλiξi(eiαi + bi)
aidic(ei + bi)(1 + ξiv̄)(1 + ξiṽ)

. So, if R1 ≤ 1 then ṽ ≤ µ
g = v̄. We have xi, wi, yi, v > 0 when R0 > 1.

Since the geometrical mean is less than or equal to the arithmetical mean, then the third and fourth terms of
Eq. (49) are less than or equal zero, then if R1 ≤ 1 then dW1

dt ≤ 0 for all xi, wi, yi, v, z > 0. Clearly, dW1
dt = 0

occurs at E1. LaSalle’s invariance principle implies global stability of E1.
Theorem 6. The chronic-infection equilibrium with antibody immune response E2 of system (36)-(40) is

GAS when R1 > 1.
Proof. Define Lyapunov function W2 as:

W2 =
2∑

i=1

γi

[
x̄iF

(
xi

x̄i

)
+

bi

eiαi + bi
w̄iF

(
wi

w̄i

)
+

ei + bi

eiαi + bi
ȳiF

(
yi

ȳi

) ]
+ v̄F

(v

v̄

)
+

r

g
z̄F

(z

z̄

)
.

The time derivative of W2 along the trajectories of (36)-(40) is given by

dW2

dt
=

2∑

i=1

γi

[ (
1− x̄i

xi

)(
λi − dixi − βixiv

1 + σiv

)
+

bi

eiαi + bi

(
1− w̄ı̄

wi

) (
(1− αi)βixiv

1 + σiv
− (ei + bi)wi

)

+
ei + bi

eiαi + bi

(
1− ȳi

yi

)(
αiβixiv

1 + σiv
+ bwi − aiyi

) ]
+

(
1− v̄

v

) (
2∑

i=1

kiyi − cv − rvz

)
+

r

g

(
1− z̄

z

)
(gvz − µz) .

(50)

Collecting terms of Eq. (50) and using the equilibrium condition for E2

λi = dix̄i +
βx̄iv̄

1 + σiv̄
,

(1− αi)βix̄iv̄

1 + σiv̄
= (ei + bi)w̄i,

αiβix̄iv̄

1 + σiv̄
+ biw̄i = aiȳi, cv̄ + rv̄z̄ =

2∑

i=1

kiȳi,
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ei + bi

eiαi + bi
aiȳi =

βix̄iv̄

1 + σiv̄
=

bi(1− αi)
(eiαi + bi)

βix̄iv̄

(1 + σiv̄)
+

(ei + bi)αi

(eiαi + bi)
βix̄iv̄

(1 + σiv̄)
Eq. (50) becomes

dW2

dt
=

2∑

i=1

γi

[
− di

(xi − x̄i)2

xi
− βix̄iv̄

(1 + σiv̄)
σi(v − v̄)2

v̄(1 + σiv)(1 + σiv̄)

+
bi(1− αi)
(eiαi + bi)

βix̄iv̄

(1 + σiv̄)

(
5− x̄i

xi
− xiw̄iv(1 + σiv̄)

x̄iwiv̄(1 + σiv)
− yiv̄

ȳiv
− wiȳi

w̄iyi
− 1 + σiv

1 + σiv̄

)

+
(ei + bi)αi

(eiαi + bi)
βix̄iv̄

(1 + σiv̄)

(
4− x̄i

xi
− xiȳiv(1 + σiv̄)

x̄iyiv̄(1 + σiv)
− yiv̄

ȳiv
− 1 + σiv

1 + σiv̄

) ]

Thus, if R1 > 1 then xi, wi, yi, v and z > 0. Similar to the proof of Theorem 3, one can show that E2 is GAS.

4 Model with general incidence rate

In this section, we propose a viral infection model with latently infected cells and antibody immune response.
The incidence rate of infection is represented by a general function of the populations of the uninfected target
cells and free viruses.

ẋi = λi − dixi − fi(xi, v), i = 1, 2, (51)

ẇi = (1− αi)fi(xi, v)− (ei + bi)wi, i = 1, 2, (52)

ẏi = αifi(xi, v) + biwi − aiyi, i = 1, 2, (53)

v̇ =
2∑

i=1

kiyi − cv − rvz, (54)

ż = gvz − µz, (55)

where the function fi(xi, v) represents the rate of the uninfected target cells to be infected by the viruses.
Assumption A1 For i = 1, 2, function fi satisfies:
(i) fi(xi, v) is positive, continuous, and differentiable,

(ii)
∂fi(xi, v)

∂v
> 0 and

∂fi(xi, v)
∂xi

> 0 for any xi,v > 0. Furthermore,
∂fi(xi, 0)

∂v
> 0 for any xi > 0,

(iii) fi(xi, 0) = fi(0, v) = 0, for all xi > 0 and v > 0.
Assumption A2 For i = 1, 2, function fi satisfies:

(i) fi(xi, v) ≤ v
∂fi(xi, 0)

∂v
, for all v > 0.

(ii) d
dxi

(
∂fi(xi, 0)

∂v

)
> 0

4.1 Equilibria and biological thresholds

We define the basic infection reproduction number of system (51)-(55) as:

R0 =
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

∂fi(x0
i , 0)

∂v
.

The equilibria of (51)-(55) satisfy the following equations:

λi − dixi − fi(xi, v) = 0, (56)

(1− αi)fi(xi, v)− (ei + bi)wi = 0, (57)

αifi(xi, v) + biwi − aiyi = 0, (58)
2∑

i=1

kiyi − cv − rvz = 0, (59)

(gv − µ)z = 0. (60)
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Equation (60) has two possible solutions, z = 0 or v = µ/g. When z = 0, we obtain two equilibria, the infection-

free equilibrium E0 = (x0
1, x

0
2, 0, 0, 0, 0, 0, 0), where x0

i =
λi

di
, i = 1, 2 and the infected steady state without

antibody immune response E1 = (x̃1, x̃2, w̃1, w̃2, ỹ1, ỹ2, ṽ, 0, ), where the coordinates satisfy the equalities:

λi = dix̃i + fi(x̃i, ṽ), (1− αi)fi(x̃i, ṽ) = (ei + bi)w̃i, αifi(x̃i, ṽ) + biw̃i = aiỹi,
2∑

i=1

kiỹi = cṽ. (61)

The other possibility of Eq. (60) z 6= 0 leads to v̄ =
µ

g
. Substitute the value of v̄ in Eq. (56) and let

Π(xi) = λi − dixi − fi(xi, v̄) = 0.

According to Assumptions A1, Π is a strictly decreasing function of xi. Besides, Π(0) = λi > 0 and Π(x0
i ) =

−fi(x0
i , v̄) < 0. Thus, there exists a unique x̄i ∈ (0, x0

i ) such that Π(x̄i) = 0. From Eqs. (57)-(59) we have

w̄i =
(1− αi)fi(x̄i, v̄)

(ei + bi)
, ȳi =

(eiαi + bi)fi(x̄i, v̄)
ai(ei + bi)

, z̄ =
c

r

[
2∑

i=1

ki(eiαi + bi)fi(x̄i, v̄)
aic(ei + bi)v̄

− 1

]
.

Thus w̄i > 0 and ȳi > 0, moreover, z̄ > 0 when
2∑

i=1

ki(eiαi + bi)fi(x̄i, v̄)
aic(ei + bi)v̄

> 1. Now we define the antibody

immune response activation number as:

R1 =
2∑

i=1

ki(eiαi + bi)fi(x̄i, v̄)
aic(ei + bi)v̄

.

Hence, z̄ can be rewritten as z̄ = c
r (R1 − 1). It follows that, there exists a chronic-infection equilibrium with

antibody immune response E2 = (x̄1, w̄1, ȳ1, x̄2, w̄2, ȳ2, v̄, z̄) when R1 > 1. Clearly from Assumptions A1 and
A2, we have

R1 =
2∑

i=1

ki(eiαi + bi)fi(x̄i, v̄)
aic(ei + bi)v̄

<
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)v̄

∂fi(x̄i, 0)
∂v̄

v̄ <
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

∂fi(x0
i , 0)

∂v
= R0.

5 Global stability analysis

Theorem 7. Let Assumptions A1-A2 be hold true and R0 ≤ 1, then the infection-free equilibrium E0 for
system (51)-(55) is GAS.

Proof. Define a Lyapunov functional W0 as follows:

W0 =
2∑

i=1

γi


xi − x0

i −
xi∫

x0
i

lim
v→0+

fi(x0
i , v)

fi(si, v)
dsi +

bi

eiαi + bi
wi +

ei + bi

eiαi + bi
yi


 + v +

r

g
z.

Calculating
dW0

dt
along the trajectories of (51)-(55) as:

dW0

dt
=

2∑

i=1

γi

[ (
1− lim

v→0+

fi(x0
i , v)

fi(xi, v)

)
(λi − dixi − fi(xi, v)) +

bi

eiαi + bi
((1− αi)fi(xi, v)− (ei + bi)wi)

+
ei + bi

eiαi + bi
(αifi(xi, v) + biwi − aiyi)

]
+

2∑

i=1

kiyi − cv − rvz +
r

g
(gvz − µz)

=
2∑

i=1

γiλi

(
1− ∂fi(x0

i , 0)/∂v

∂fi(xi, 0)/∂v

)(
1− xi

x0
i

)
+ (R0 − 1) cv − rµ

g
z. (62)

Based on Assumption A2, the first term of Eq. (62) is less than or equal zero. Therefore if R0 ≤ 1, then
dW0
dt ≤ 0 for all xi, v, z > 0. Similar to the previous sections, one can show that E0 is GAS.
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Now we need to the following Assumption to proof that, E1 and E2 for the system (51)-(55) are GAS.
Assumption A3 Function fi(xi, v) satisfies the following:

(
fi(xi, v)
fi(xi, ṽ)

− v

ṽ

)(
1− fi(xi, ṽ)

fi(xi, v)

)
≤ 0,

(
fi(xi, v)
fi(xi, v̄)

− v

v̄

) (
1− fi(xi, v̄)

fi(xi, v)

)
≤ 0, xi, v > 0,

Theorem 8. Suppose that Assumptions A1-A3 are satisfied, E1 exists and R1 ≤ 1, then E1 for system (51)-(55)
is GAS.

Proof. We construct the following Lyapunov functional

W1 =
2∑

i=1

γi

[
xi − x̃i −

xi∫

x̃i

fi(x̃i, ṽ)
fi(si, ṽ)

dsi +
bi

eiαi + bi
w̃iF

(
wi

w̃i

)
+

ei + bi

eiαi + bi
ỹiF

(
yi

ỹi

) ]
+ṽF

(v

ṽ

)
+

r

g
z.

The time derivative of W1 along the trajectories of (51)-(55) is given by

dW1

dt
=

2∑

i=1

γi

[ (
1− fi(x̃i, ṽ)

fi(xi, ṽ)

)
(λi − dixi − fi(xi, v)) +

bi

eiαi + bi

(
1− w̃i

wi

)
((1− αi)fi(xi, v)− (ei + bi)wi)

+
ei + bi

eiαi + bi

(
1− ỹi

yi

)
(αifi(xi, v) + biwi − aiyi)

]
+

(
1− ṽ

v

)
(

(
2∑

i=1

kiyi − cv − rvz

)
+

r

g
(gvz − µz) .

(63)

Collecting terms of Eq. (63) we get

dW1

dt
=

2∑

i=1

γi

[ (
1− fi(x̃i, ṽ)

fi(xi, ṽ)

)
(λi − dixi) + fi(xi, v)

fi(x̃i, ṽ)
fi(xi, ṽ)

− bi(1− αi)
eiαi + bi

fi(xi, v)
w̃i

wi

+
(ei + bi)
eiαi + bi

biw̃i − (ei + bi)αi

eiαi + bi
fi(xi, v)

ỹi

yi
− (ei + bi)biwi

eiαi + bi

ỹi

yi
− ei + bi

eiαi + bi
aiỹi

]

− cv −
2∑

i=1

kiyi
ṽ

v
+ cṽ + rṽz − rµ

g
z.

Using the equilibrium condition for E1:

λi = dix̃i + fi(x̃i, ṽ), (1− αi)fi(x̃i, ṽ) = (ei + bi)w̃i, aiỹi = αifi(x̃i, ṽ) + biw̃i, cv =
v

ṽ

2∑

i=1

γifi(x̃i, ṽ),

cṽ =
2∑

i=1

kiỹi =
2∑

i=1

γifi(x̃i, ṽ),
ei + bi

eiαi + bi
aiỹi = fi(x̃i, ṽ) =

bi(1− αi)
(eiαi + bi)

fi(x̃i, ṽ) +
(ei + bi)αi

(eiαi + bi)
fi(x̃i, ṽ),

we obtain

dW1

dt
=

2∑

i=1

γi

[
dix̃i

(
1− fi(x̃i, ṽ)

fi(xi, ṽ)

) (
1− xi

x̃i

)
+

(
1− fi(xi, ṽ)

fi(xi, v)

)(
fi(xi, v)
fi(xi, ṽ)

− v

ṽ

)

+
bi(1− αi)
(eiαi + bi)

fi(x̃i, ṽ)
(

5− fi(x̃i, ṽ)
fi(xi, ṽ)

− w̃ifi(xi, v)
wifi(x̃i, ṽ)

− wiỹi

w̃iyi
− yiṽ

ỹiv
− vfi(xi, ṽ)

ṽfi(xi, v)

)

+
(ei + bi)αi

(eiαi + bi)
fi(x̃i, ṽ)

(
4− fi(x̃i, ṽ)

fi(xi, ṽ)
− ỹifi(xi, v)

yifi(x̃i, ṽ)
− yiṽ

ỹiv
− vfi(xi, ṽ)

ṽfi(xi, v)

) ]
+ r

(
ṽ − µ

g

)
z. (64)

From Assumptions A1 and A3, we get that the first and second terms of Eq. (64) are less than or equal
zero. Because the geometrical mean is less than or equal to the arithmetical mean, then the third and fourth
terms of Eq. (64) are less than or equal zero. Now we show that if R1 ≤ 1 then ṽ ≤ µ

r = v̄. This can be
achieved if we show that

sgn (x̄i − x̃i) = sgn (ṽ − v̄) = sgn (R1 − 1) .
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Applying Assumptions A1-A2, we have

(fi(x̄i, ṽ)− fi(x̃i, ṽ)) (x̄i − x̃i) > 0, (65)

(fi(x̃i, v̄)− fi(x̃i, ṽ)) (v̄ − ṽ) > 0, (fi(x̄i, v̄)− fi(x̄i, ṽ)) (v̄ − ṽ) > 0. (66)

Using Assumption A3 with xi = x̃i and v = v̄, we get

(fi(x̃i, v̄)ṽ − fi(x̃i, ṽ)v̄) (fi(x̃i, v̄)− fi(x̃i, ṽ)) ≤ 0

It follows from inequality (66) that

((fi(x̃i, v̄)ṽ − fi(x̃i, ṽ)v̄)) (ṽ − v̄) > 0. (67)

Suppose that, sgn (x̄i − x̃i) = sgn (v̄ − ṽ). Using the conditions of the equilibria E1 and E2 we have

(λi − dix̄i)− (λi − dix̃i) = fi(x̄i, v̄)− fi(x̃i, ṽ) = fi(x̄i, v̄)− fi(x̄i, ṽ) + fi(x̄i, ṽ)− fi(x̃i, ṽ),

and from inequalities (65) and (66) we get sgn (x̃i − x̄i) = sgn (x̄i − x̃i), which leads to contradiction. Thus,

sgn (x̄i − x̃i) = sgn (ṽ − v̄) . Using the equilibrium conditions for E1 we have
2∑

i=1

ki(eiαi+bi)fi(x̃i,ṽ)
aic(ei+bi)ṽ

= 1, then

R1 − 1 =
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

(
fi(x̄i, v̄)

v̄
− fi(x̃i, ṽ)

ṽ

)

=
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

(
1
v̄

(fi(x̄i, v̄)− fi(x̃i, v̄)) +
1
ṽv̄

(fi(x̃i, v̄)ṽ − fi(x̃i, ṽ)v̄)
)

.

From inequalities (65) and (67) we get sgn (R1 − 1) = sgn (ṽ − v̄). It follows that, if R1 ≤ 1 then ṽ ≤ µ
r = v̄.

Therefore, if R1 ≤ 1 then dW1
dt ≤ 0 for all xi, wi, yi, v, z > 0, where the equality occurs at the equilibrium E1.

LaSalle’s invariance principle implies the global stability of E1.
Theorem 9. Let Assumptions A1-A3 be hold true and R1 > 1, then chronic-infection equilibrium with

antibody immune response E2 for system (51)-(55) is GAS.
Proof. We construct the following Lyapunov functional

W2 =
2∑

i=1

γi

[
xi − x̄i −

xi∫

x̄i

fi(x̄i, v̄)
fi(si, v̄)

dsi +
bi

eiαi + bi
w̄iF

(
wi

w̄i

)
+

ei + bi

eiαi + bi
ȳiF

(
yi

ȳi

) ]
+v̄F

(v

v̄

)
+

r

g
z̄F

(z

z̄

)
.

We calculate the time derivative of W2 along the trajectories of (51)-(55) as:

dW2

dt
=

2∑

i=1

γi

[ (
1− fi(x̄i, v̄)

fi(xi, v̄)

)
(λi − dixi − fi(xi, v)) +

bi

eiαi + bi

(
1− w̄i

w

)
((1− αi)fi(xi, v)− (ei + bi)wi)

+
ei + bi

eiαi + bi

(
1− ȳi

y

)
(αifi(xi, v) + biwi − aiyi)

]
+

(
1− v̄

v

)
(

2∑

i=1

kiyi − cv − rvz) +
r

g

(
1− z̄

z

)
(gvz − µz) .

(68)

Collecting terms of Eq. (68) and using the equilibrium conditions for E2

λi = dix̄i + fi(x̄i, v̄), (1− αi)fi(x̄i, v̄) = (ei + bi)w̄i, aiȳi = αifi(x̄i, v̄) + biw̄i, cv̄ =
2∑

i=1

γifi(x̄i, v̄)− rv̄z̄,

cv =
v

v̄

2∑

i=1

γifi(x̄i, v̄)− rvz̄,
ei + bi

eiαi + bi
aiȳi = fi(x̄i, v̄) =

bi(1− αi)
(eiαi + bi)

fi(x̄i, v̄) +
(ei + bi)αi

(eiαi + bi)
fi(x̄i, v̄),
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we get

dW2

dt
=

2∑

i=1

γi

[
dix̄i

(
1− fi(x̄i, v̄)

fi(xi, v̄)

)
(1− xi

x̄i
) + fi(x̄i, v̄)

(
1− fi(xi, v̄)

fi(xi, v)

)(
fi(xi, v)
fi(xi, v̄)

− v

v̄

)

+
bi(1− αi)
(eiαi + bi)

fi(x̄i, v̄)
(

5− fi(x̄i, v̄)
fi(xi, v̄)

− w̄ifi(xi, v)
wifi(x̄i, v̄)

− ȳiwi

yiw̄i
− yiv̄

ȳiv
− vfi(xi, v̄)

v̄fi(xi, v)

)

+
(ei + bi)αi

(eiαi + bi)
fi(x̄i, v̄)

(
4− fi(x̄i, v̄)

fi(xi, v̄)
− ȳifi(xi, v)

yifi(x̄i, v̄)
− yiv̄

ȳiv
− vfi(xi, v̄)

v̄fi(xi, v)

) ]
(69)

Thus, if R1 > 1 then x̄i, w̄i, ȳi, v̄ and z̄ > 0. From Assumptions A1 and A3, we get that the first and second
terms of Eq. (69) are less than or equal zero. Since the arithmetical mean is greater than or equal to the

geometrical mean, then
dW2

dt
≤ 0. It can be seen that,

dW2

dt
= 0 if and only if xi = x̄i, wi = w̄i and v = v̄.

From Eq. (54), if v = v̄ and yi = ȳi then v̇ = 0 and 0 =
2∑

i=1

kȳi − cv̄ − rv̄z̄ = 0, which yields z = z̄ and hence

dW2

dt
equal to zero at E2. LaSalle’s invariance principle implies global stability of E2.

5.1 Special forms of the incidence rate

By using the Lyapunov direct method, we have established a set of conditions on fi(xi, v), i = 1, 2 ensuring the
global asymptotic stability of the equilibria of model (51)-(55). Now we introduce some forms of the incidence
rate and verify A1-A3.

(1) Bilinear incidence rate: fi(xi, v) = βixiv,

(2) Saturation functional response: fi(xi, v) = βixiv
1+ηiv

,

(3) Beddington-DeAngelis functional response: fi(xi, v) = βixiv
1+γixi+ηiv

,

(4) Crowley-Martin functional response: fi(xi, v) = βixiv
(1+γixi)(1+ηiv) ,

(5) Hill type incidence rate: fi(xi, v) = βix
n
i v

γn
i +xn

i
, where βi, γi, n > 0.

One can easily show that A1-A3 for the functions fi, i = 1, 2 given above.
Now we verify Assumptions A1-A3 for the function fi(xi, v) = βix

n
i v

γn
i +xn

i
, i = 1, 2. We have fi(xi, v) > 0 for all

xi > 0, v > 0, fi(0, v) = fi(xi, 0) = 0 and

∂fi(xi, v)
∂xi

=
nβiγ

n
i xn−1

i v

(γn
i + xn

i )2
,

∂fi(xi, v)
∂v

=
βix

n
i

γn
i + xn

i

=
∂fi(xi, 0)

∂v
.

Then, for all xi > 0, v > 0, we have ∂fi(xi,v)
∂xi

> 0, ∂fi(xi,v)
∂v > 0 and ∂fi(xi,0)

∂v > 0 if n > 0. Therefore Assumptions
A1 is satisfied. We have also

fi(xi, v) =
βix

n
i v

γn
i + xn

i

= v
βix

n
i

γn
i + xn

i

= v
∂fi(xi, 0)

∂v
,

d

dxi

(
∂fi(x0

i , 0)/∂v

∂fi(xi, 0)/∂v

)
= − nγn

i (x0
i )

n

(γn
i + (x0

i )n)xn+1
i

< 0,

then, Assumptions A2 is satisfied. Moreover,
(

fi(xi, v)
fi(xi, ṽ)

− v

ṽ

)(
1− fi(xi, ṽ)

fi(xi, v)

)
=

(v

ṽ
− v

ṽ

) (
1− ṽ

v

)
= 0.

Thus, Assumptions A3 is satisfied. In this case, R0 and R1 are given by

R0 =
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

∂fi(x0
i , 0)

∂v
=

2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

βi(x0
i )

n

γn
i + (x0

i )n
,

R1 =
2∑

i=1

ki(eiαi + bi)fi(x̄i, v̄)
aic(ei + bi)v̄

=
2∑

i=1

ki(eiαi + bi)
aic(ei + bi)

βix̄
n
i

γn
i + x̄n

i

.
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6 Numerical simulations

In this section, we will perform some numerical simulations to confirm our theoretical results. Let us consider
model (51)-(55) with the incidence rate fi(xi, v) = βix

n
i v

γn
i +xn

i
, i = 1, 2. In Table 1, we provide the values of some

parameters of model (51)-(55) with the incidence rate given by the function fi. The effect of the parameter ε on
the dynamical behavior of the system will be discussed below in details.In order to investigate the theoretical

Table 1: The values of the parameters of model (51)-(55).
Parameter λ1 λ2 β̄1 β̄2 d1 d2 α1 α2 e1 e2 b1 b2 γ1

V alue 6.03198 0.03198 0.05 0.08 0.01 0.01 0.5 0.5 0.02 0.02 0.2 0.2 0.1

Parameter γ2 k1 k2 a1 a2 f r c µ g n ε

V alue 0.5 10 5 0.3 0.1 0.3 0.5 3 0.07 0.1 1 Varied

results involved in Theorems 7-9, we shall study the following cases:
Case (I): R0 ≤ 1. Choosing ε = 0.85 and using the data in Table 1, we have R0 = 0.899 and R1 = 0.641.

Since R0 < 1, then according to Theorem 7, the infection-free equilibrium E0 is GAS. Evidently, Figures 1-8
show that, the numerical results are consistent with the theoretical results of Theorem 7. We can see that, the
concentration of uninfected target cells tends to its normal value λ1

d1
= 603.198, λ2

d2
= 3.198, respectively, while

the concentrations of latently infected cells, actively infected cells, free virus particles and antibody immune
cells are decreasing and tend to zero. In this case, the treatment succeeded to eliminate the HIV viruses from
the blood.

Case (II): R1 ≤ 1. By taking ε = 0.40, we have R1 = 0.915 < 1 and E1 exists where E1 =
(601.504, 0.780, 0.038, 0.055, 0.054, 0.231, 0.565, 0.000). Based on Theorem 8, E1 is GAS. Figures 1-8 show that
the numerical simulations confirm our theoretical result presented in Theorem 8. We observe that, the trajec-
tory of the system will converge to the chronic-infection equilibrium without antibody immune response E1. In
such situation, the infection becomes chronic but without antibody immune response.

Case (III): R1 > 1.We choose, ε = 0.0. Then, we calculate R0 = 1.631 and R1 = 1.149 > 1, this means
that, E2 exists and it is GAS. From Figures 1-8, we can see that, our simulation results are consistent with the
theoretical results of Theorem 9. We observe that, the trajectory of the system tend to the chronic-infection
equilibrium with antibody immune response E2 = (599.699, 0.474, 0.079, 0.062, 0.111, 0.260, 0.700, 0.896). In this
case, the infection becomes chronic but with persistent antibody immune response. Figures 1 and 7 demonstrate
that, when R1 > 1, the antibody immune response is activated and it reduces the concentration of free virus
particles and increases the concentration of uninfected cells. In case (i) we calculate the critical drug efficacy
(i.e, the efficacy needed in order stabilize the system around the disease-free equilibrium). For system (51)-(55),
E0 is GAS when R0 ≤ 1 i.e.

εcrit
1 ≤ ε < 1, εcrit

1 = max
{

0,
R̄0 − 1

R̄01 + fR̄02

}
,

where, R̄0 = R0 |ε=0 and R̄0i = R0i |ε=0 , i = 1, 2. Using the data in Table 1, we have εcrit
1 = 0.7332. Also, in

case (ii) we can calculate the critical drug efficacy εcrit
2 = 0.2566.
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Figure 1: The evolution of uninfected CD4+T cells
for model (51)-(55).
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Figure 2: The evolution of uninfected macrophage
cells for model (51)-(55).
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Figure 3: The evolution of actively infected CD4+T
cells for model (51)-(55).
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Figure 4: The evolution of uninfected macrophage
cells for model (51)-(55).
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Figure 5: The evolution of latently infected
macrophage cells for model (51)-(55).
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Figure 6: The evolution of actively infected
macrophage cells for model (51)-(55).
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Figure 7: The evolution of free virus particles for
model (51)-(55).
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Figure 8: The evolution of antibody immune cells
for model (51)-(55).
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Abstract

We establish the convergence properties of the implicit midpoint iterative scheme

for solving the nonlinear equation T% = % for asymptotically nonexpansive mappings

in Hilbert and more general uniformly convex Banach spaces.
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1 Introduction

In 2001, Xu and Ori [7] introduced the following implicit iteration process for a finite

family of nonexpansive mappings {Ti : i ∈ I} (here I = {1, 2, . . . , N}), with {tn} a real

∗Corresponding author
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sequence in (0, 1), and an initial point %0 ∈ K ⊂ X, where X is an arbitrary Banach space:

%1 = (1 − t1)%0 + t1T1%1,

%2 = (1 − t2)%1 + t2T2%2,

...

%N = (1 − tN )%N−1 + tNTN%N ,

%N+1 = (1 − tN+1)%N + tN+1TN+1%N+1,

...,

which can be written in the following compact form:

%n = (1− tn)%n−1 + tnTn%n, n ≥ 1,

where Tn = Tn (mod N) (here the mod N function takes values in I). Xu and Ori [7] proved

the weak convergence of this process to a common fixed point of the finite family defined

in a Hilbert space.

Let H be the Hilbert space and T is, in general, a nonlinear operator. Recently

Alghamdi et al. [1] defined the following algorithm:

Algorithm 1.1. Initialize %0 ∈ H arbitrarily and define

%n+1 = (1− tn)%n + tnT

(

%n + %n+1

2

)

, n ≥ 0,

where tn ∈ (0, 1) for all n.

For the approximation of fixed points of nonexpansive mappings under the setting of

Hilbert spaces. They proved the following results:

Lemma 1.2. ([1]) Let {%n} be the sequence generated by Algorithm 1.1. Then

(i) ‖%n+1 − p‖ ≤ ‖%n − p‖ for all n ≥ 0 and p ∈ Fi%(T ),

(ii)
∑

∞

n=1
tn‖%n − %n+1‖

2 < ∞,

(iii)
∑

∞

n=1
tn(1− tn)‖%n − T (

%n+%n+1

2
)‖2 < ∞.

Lemma 1.3. ([1]) Let {%n} be the sequence generated by Algorithm I. Suppose that t2n+1 ≤

atn for all n ≥ 0 and a > 0. Then

lim
n→∞

‖%n+1 − %n‖ = 0.

Lemma 1.4. ([1]) Assume that,

(i) t2n+1 ≤ atn for all n ≥ 0 and a > 0,

(ii) lim infn→∞ tn > 0.

Then the sequence {%n} generated by Algorithm 1.1 satisfies the property

lim
n→∞

‖%n − T%n‖ = 0.

2
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Theorem 1.5. ([1]) Let H be a Hilbert space and T : H → H be a nonexpansive mapping

with Fix(T ) 6= ∅. Assume that {%n} is generated by Algorithm 1.1, where the sequence

{tn} of parameters satisfies the conditions:

(i) t2n+1 ≤ atn for all n ≥ 0 and a > 0,

(ii) lim supn→∞
tn > 0.

Then {%n} converges weakly to a fixed point of T .

We establish the convergence properties of the implicit midpoint iterative scheme

for solving the nonlinear equation T% = % for asymptotically nonexpansive mappings

in Hilbert and more general uniformly convex Banach, spaces.

2 Preliminaries

Throughout this section we always assume that H is a Hilbert space with the inner product

〈·, ·〉 and the norm ‖·‖ and that T : H → H is a nonexpansive mapping with a fixed point.

We use Fix(T ) to denote the set of fixed points of T .

We establish the strong convergence of a new implicit midpoint iterative scheme for

nonexpansive mappings under the setting of Hilbert and more general uniformly convex

Banach spaces.

We need the following well known results:

Lemma 2.1. ([5]) Let {σn} and {βn} be sequences of nonnegative real numbers satisfying

the following inequality

βn+1 ≤ (1 + σn)βn, n ≥ 0.

If
∑

∞

n=1
σn < ∞, then limn→∞ βn exists.

Lemma 2.2. ([3]) For all %, ς ∈ H and λ ∈ [0, 1], the following well-known identity holds:

‖(1− λ)% + λς‖2 = (1− λ)‖%‖2 + λ‖ς‖2 − λ(1− λ)‖%− ς‖2.

For every ε with 0 ≤ ε ≤ 2, we define the modulus δ(ε) of convexity of E by

δ(ε) = inf

{

1−
‖% + ς‖

2
: ‖%‖ ≤ 1, ‖ς‖ ≤ 1, ‖% − ς‖ ≥ ε, %, ς ∈ E

}

.

The space E is said to be uniformly convex if

δ(ε) > 0

for every ε > 0.

If E is uniformly convex, then for each r, ε with r ≥ ε > 0, we have δ( ε
r
) > 0 and

∥

∥

∥

∥

% + ς

2

∥

∥

∥

∥

≤ r
(

1 − δ
(ε

r

))

for every %, ς ∈ E with ‖%‖ ≤ r, ‖ς‖ ≤ r and ‖% − ς‖ ≥ ε.

The space E is said to be strictly convex if
∥

∥

∥

∥

% + ς

2

∥

∥

∥

∥

< 1

for every %, ς ∈ E with ‖%‖ = ‖ς‖ = 1 and % 6= ς.

3
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Lemma 2.3. ([6]) Let X be the arbitrary Banach space and p > 1, r > 0 be two fixed

numbers. Then X is uniformly convex if and only if there exists a continuous, strictly

increasing and convex function g : [0,∞) → [0,∞), g(0) = 0, such that

‖λ% + (1− λ)ς‖p ≤ λ ‖%‖p + (1− λ) ‖ς‖p − wp(λ)g (‖% − ς‖)

for all %, ς in Br = {% ∈ X : ‖%‖ ≤ r}, λ ∈ [0, 1], where wp(λ) = λ(1− λ)p + λp(1− λ).

3 Main results

Algorithm 3.1. Initialize %0 ∈ H arbitrarily and define

%n = (1 − tn)
%n−1 + %n

2
+ tnT n

(

%n−1 + %n

2

)

, n ≥ 0,

where tn ∈ (0, 1) for all n,

and T is asymptotically nonexpansive, that is,

‖T n% − T nς‖ ≤ kn‖% − ς‖, %, ς ∈ H ;

{kn} ∈ [0,∞) satisfying
∑

∞

n=1
(kn − 1) < ∞.

Remark 3.2. The Algorithm 3.1 can be rewritten as

%n = en%n−1 + (1 − en)T n

(

%n−1 + %n

2

)

, n ≥ 0,

where en = 1−tn
1+tn

.

Remark 3.3. The Algorithm 3.1 is well defined.

Indeed, for each fixed u ∈ H and t ∈ (0, 1), the mapping

% 7→ Tu% = tu + (1 − t)T n

(

u + %

2

)

, n ≥ 0,

is asymptotically nonexpansive with coefficient 1−t
2

kn ∈ [0,∞). That is,

‖Tu% − Tuς‖ = (1 − t)

∥

∥

∥

∥

T n

(

u + %

2

)

− T n

(

u + ς

2

)
∥

∥

∥

∥

≤
1 − t

2
kn‖% − ς‖, %, ς ∈ H.

Remark 3.4. Since kn ≥ 1, it is obvious that for any q > 0,
∑

∞

n=1
(kq

n − 1) < ∞ implies
∑

∞

n=1
(kn − 1) < ∞.

Now we prove our main results.

Lemma 3.5. The sequence {%n} defined by the Algorithm 3.1, where {tn} ∈ (0, 1) satis-

fying {tn} ∈ [δ, 1− δ] , is bounded.

4
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Proof. For %∗ ∈ Fix(T ), consider

‖%n − %∗‖ =

∥

∥

∥

∥

(1− tn)
%n−1 + %n

2
+ tnT n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

=

∥

∥

∥

∥

(1− tn)

(

%n−1 + %n

2
− %∗

)

+ tn

(

T n

(

%n−1 + %n

2

)

− %∗
)

∥

∥

∥

∥

≤ (1 − tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

+ tn

∥

∥

∥

∥

T n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

≤ (1 − tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

+ tnkn

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

= (1 − tn + tnkn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

= (1 − tn + tnkn)

∥

∥

∥

∥

1

2
(%n−1 − %∗) +

1

2
(%n − %∗)

∥

∥

∥

∥

≤ (1 − tn + tnkn)

(

1

2
‖%n−1 − %∗‖ +

1

2
‖%n − %∗‖

)

,

which implies that

‖%n − %∗‖ ≤
1

2
(1 − tn + tnkn)

1 − 1

2
(1 − tn + tnkn)

‖%n−1 − %∗‖ .

Let
1

2
(1− tn + tnkn)

1 − 1

2
(1− tn + tnkn)

= 1 +
tn(kn − 1)

1 − 1

2
(1− tn + tnkn)

= 1 +
2tn(kn − 1)

1 − tn(kn − 1)
.

By
∑

∞

n=1
(kn − 1) < ∞, there exists n0 ∈ N such that for all n ≥ n0, kn − 1 ≤ 1 and

1 − tn(kn − 1) ≥ δ,

which implies that
1

1 − tn(kn − 1)
≤

1

δ
.

Thus

‖%n − %∗‖ ≤

(

1 + 2
δ

1− δ
(kn − 1)

)

‖%n−1 − %∗‖ .

Hence according to Lemma 2.1, the sequence {%n} is bounded. This completes the proof.

Lemma 3.6. Let {%n} be the sequence generated by Algorithm 3.1 where {tn} ∈ (0, 1)

satisfying {tn} ∈ [δ, 1 − δ]. Then

(i) limn→∞ ‖%n−1 − %n‖ = 0,

(ii) limn→∞

∥

∥

%n−1+%n

2
− T n(%n−1+%n

2
)
∥

∥ = 0.
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Proof. According to Lemma 2.2,

‖%n − %∗‖2 =

∥

∥

∥

∥

(1− tn)
%n−1 + %n

2
+ tnT n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

2

=

∥

∥

∥

∥

(1− tn)

(

%n−1 + %n

2
− %∗

)

+ tn

(

T n

(

%n−1 + %n

2

)

− %∗
)∥

∥

∥

∥

2

= (1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

2

+ tn

∥

∥

∥

∥

T n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

2

− tn(1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

≤ (1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

2

+ tnk2
n

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

2

− tn(1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

= (1− tn + tnk2
n)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

2

− tn(1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

≤ (1− tn + tnk2
n)

(

1

2
‖%n−1 − %∗‖2 +

1

2
‖%n − %∗‖2 −

1

4
‖%n−1 − %n‖

2

)

− tn(1− tn)

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

,

which implies that

‖%n − %∗‖2 ≤
1

2
(1− tn + tnk2

n)

1 − 1

2
(1 − tn + tnk2

n)
‖%n−1 − %∗‖2

−
1

4

(1 − tn + tnk2
n)

1 − 1

2
(1 − tn + tnk2

n)
‖%n−1 − %n‖

2

−
tn(1− tn)

1− 1

2
(1 − tn + tnk2

n)

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

.

Let us assume that
1

2
(1− tn + tnk2

n)

1 − 1

2
(1− tn + tnk2

n)
= 1 +

tn(k2
n − 1)

1 − 1

2
(1− tn + tnk2

n)

= 1 +
2tn(k2

n − 1)

1 − tn(k2
n − 1)

.

By
∑

∞

n=1
(k2

n − 1) < ∞, there exists n0 ∈ N such that for all n ≥ n0, k2
n − 1 ≤ 1 and

1 − tn(k2
n − 1) ≥ δ,

which implies that
1

1 − tn(k2
n − 1)

≤
1

δ
.
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Also

1 − tn + tnk2
n = 1 + tn(k2

n − 1) ≥ 1

and

1 −
1

2
(1− tn + tnk2

n) = 1−
1

2

(

1 + tn(k2
n − 1)

)

=
1

2

(

1 − tn(k2
n − 1)

)

≤
1

2
,

which yields that
1

1− 1

2
(1 − tn + tnk2

n)
≥ 2.

Thus for M > 0,

‖%n − %∗‖2 ≤

(

1 + 2
δ

1− δ
(k2

n − 1)

)

‖%n−1 − %∗‖2 −
1

2
‖%n−1 − %n‖

2

− 2δ2

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

≤ ‖%n−1 − %∗‖2 + 2M2 δ

1 − δ
(k2

n − 1)−
1

2
‖%n−1 − %n‖

2

− 2δ2

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

,

which implies that

1

2
‖%n−1 − %n‖

2 + 2δ2

∥

∥

∥

∥

%n−1 + %n

2
− T (

%n−1 + %n

2
)

∥

∥

∥

∥

2

≤ ‖%n−1 − %∗‖2 − ‖%n − %∗‖2 + 2M2 δ

1 − δ
(k2

n − 1).

Thus
1

2

m
∑

j=1

‖%j−1 − %j‖
2 + 2δ2

m
∑

j=1

∥

∥

∥

∥

%j−1 + %j

2
− T n

(

%j−1 + %j

2

)
∥

∥

∥

∥

2

≤
m

∑

j=1

(

‖%j−1 − %∗‖2 − ‖%j − %∗‖2 + 2M2 δ

1− δ
(k2

j − 1)

)

.

Hence
∞

∑

j=1

‖%n−1 − %n‖
2

< +∞

and
∞
∑

j=1

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

2

< +∞.

It implies that

lim
n→∞

‖%n−1 − %n‖ = 0

7
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and

lim
n→∞

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

= 0.

This completes the proof.

Lemma 3.7. Let {%n} be the sequence generated by Algorithm 3.1, where {tn} ∈ (0, 1)

satisfying {tn} ∈ [δ, 1 − δ] . Then limn→∞ ‖%n − T%n‖ = 0.

Proof. Consider

‖%n − T n%n‖ ≤

∥

∥

∥

∥

%n −
%n−1 + %n

2

∥

∥

∥

∥

+

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)∥

∥

∥

∥

+

∥

∥

∥

∥

T n

(

%n−1 + %n

2

)

− T n%n

∥

∥

∥

∥

≤

∥

∥

∥

∥

%n −
%n−1 + %n

2

∥

∥

∥

∥

+

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

+ kn

∥

∥

∥

∥

%n −
%n−1 + %n

2

∥

∥

∥

∥

= (1 + kn)

∥

∥

∥

∥

%n −
%n−1 + %n

2

∥

∥

∥

∥

+

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

=
1 + kn

2
‖%n−1 − %n‖ +

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

→ 0 as n → ∞

and
‖%n − T%n‖ ≤ ‖%n − T n%n‖ + ‖T n%n − T n%n−1‖ + ‖T n%n−1 − T%n‖

≤ ‖%n − T n%n‖ + kn‖%n − %n−1‖ + k1‖T
n−1%n−1 − %n‖

≤ ‖%n − T n%n‖ + kn‖%n − %n−1‖

+ k1

(

‖T n−1%n−1 − %n−1‖ + ‖%n−1 − %n‖
)

→ 0 as n → ∞.

This completes the proof.

Theorem 3.8. Let T : H → H be asymptotically nonexpansive. For arbitrary %0 ∈ K,

generate the sequence {%n} by the Algorithm 3.1. If T is completely continuos, then {%n}

converges strongly to some fixed point of T in H .

Proof. From Lemma 3.7, lim
n→∞

‖%n − T%n‖ = 0. Therefore, there exists a subsequence

{%nj
} of {%n} such that limj→∞

∥

∥%nj
− T%nj

∥

∥ = 0. Since {%nj
} is bounded and T is

completely continuous, then {T%nj
} has a subsequence {T%njk

} which converges strongly.

Hence {%njk
} converges strongly. Let limj→∞ %njk

= p. Then limj→∞ T%njk
= Tp. Thus

we have limj→∞

∥

∥%njk
− T%njk

∥

∥ = ‖p − Tp‖ = 0. Hence p ∈ F (T ). From Lemma 2.1 and

Lemma 3.7 it follows that limn→∞ ‖%n − p‖ = 0. This completes the proof.
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Lemma 3.9. Let E be the uniformly convex Banach space and T : E → E be asymptot-

ically nonexpansive mapping. Let {%n} ∈ E be the sequence generated by Algorithm 3.1

and {tn} ∈ (0, 1) satisfying {tn} ∈ [δ, 1− δ] . Then

(i) limn→∞ ‖%n−1 − %n‖ = 0,

(ii) limn→∞

∥

∥

%n−1+%n

2
− T n(%n−1+%n

2
)
∥

∥ = 0.

Proof. According to Lemma 2.3,

‖%n − %∗‖p =

∥

∥

∥

∥

(1− tn)
%n−1 + %n

2
+ tnT n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

p

=

∥

∥

∥

∥

(1− tn)

(

%n−1 + %n

2
− %∗

)

+ tn

(

T n

(

%n−1 + %n

2

)

− %∗
)

∥

∥

∥

∥

p

≤ (1 − tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

p

+ tn

∥

∥

∥

∥

T n

(

%n−1 + %n

2

)

− %∗
∥

∥

∥

∥

p

− wp(tn)g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

≤ (1 − tn)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

p

+ tnkp
n

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

p

− wp(tn)g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

= (1 − tn + tnkp
n)

∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

p

− wp(tn)g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

,

where
∥

∥

∥

∥

%n−1 + %n

2
− %∗

∥

∥

∥

∥

p

=

∥

∥

∥

∥

1

2
(%n−1 − %∗) +

1

2
(%n − %∗)

∥

∥

∥

∥

p

≤

[

1

2
‖%n−1 − %∗‖+

1

2
‖%n − %∗‖

]p

≤
1

2
‖%n−1 − %∗‖p +

1

2
‖%n − %∗‖p

.

Thus

‖%n − %∗‖p ≤ (1 − tn + tnkp
n)

(

1

2
‖%n−1 − %∗‖p +

1

2
‖%n − %∗‖p

)

− wp(tn)g

(∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)∥

∥

∥

∥

)

,

which implies that

‖%n − %∗‖p ≤
1

2
(1− tn + tnk

p
n)

1 − 1

2
(1− tn + tnk

p
n)

‖%n−1 − %∗‖p

−
wp(tn)

1 − 1

2
(1 − tn + tnk

p
n)

g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

.
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Let us assume that

1

2
(1− tn + tnk

p
n)

1 − 1

2
(1− tn + tnk

p
n)

= 1 +
tn(kp

n − 1)

1 − 1

2
(1− tn + tnk

p
n)

= 1 +
2tn(kp

n − 1)

1 − tn(kp
n − 1)

.

By
∑

∞

n=1
(kp

n − 1) < ∞, there exists n0 ∈ N such that for all n ≥ n0, k
p
n − 1 ≤ 1, and

1 − tn(kp
n − 1) ≥ δ,

which implies that
1

1 − tn(kp
n − 1)

≤
1

δ
.

Also

1 −
1

2
(1 − tn + tnkp

n) = 1 −
1

2
(1 + tn(kp

n − 1))

=
1

2
(1 − tn(kp

n − 1))

≤
1

2
,

which yields that
1

1− 1

2
(1 − tn + tnk

p
n)

≥ 2.

Hence

‖%n − %∗‖p ≤

(

1 + 2
δ

1− δ
(kp

n − 1)

)

‖%n−1 − %∗‖p

− 4δp+1g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

.

For M > 0,

‖%n − %∗‖p ≤ ‖%n−1 − %∗‖p + 2Mp δ

1 − δ
(kp

n − 1)

− 4δp+1g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

)

,

which implies that

4δp+1g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n(

%n−1 + %n

2
)

∥

∥

∥

∥

)

≤ ‖%n−1 − %∗‖p − ‖%n − %∗‖p + 2Mp δ

1 − δ
(kp

n − 1).

Thus

4δp+1

m
∑

j=1

g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n(

%n−1 + %n

2
)

∥

∥

∥

∥

)

≤
m

∑

j=1

(

‖%j−1 − %∗‖p − ‖%j − %∗‖p + 2Mp δ

1 − δ
(kp

n − 1)

)

.
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Hence
∞
∑

j=1

g

(
∥

∥

∥

∥

%n−1 + %n

2
− T n(

%n−1 + %n

2
)

∥

∥

∥

∥

)

< +∞.

It implies that

lim
n→∞

∥

∥

∥

∥

%n−1 + %n

2
− T n

(

%n−1 + %n

2

)
∥

∥

∥

∥

= 0.

From this, it can be easily see that

lim
n→∞

‖%n−1 − %n‖ = 0.

This completes the proof.

Lemma 3.10. Let E and T as in Lemma 3.9. Let {%n} be the sequence generated by

Algorithm 3.1, where {tn} ∈ (0, 1) satisfying {tn} ∈ [δ, 1 − δ] . Then limn→∞ ‖%n−T%n‖ =

0.

Theorem 3.11. Let E and T as in Lemma 3.9. For arbitrary %0 ∈ K, generate the

sequence {%n} by the Algorithm 3.1. If T is completely continuos, then {%n} converges

strongly to some fixed point of T in E.
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Abstract. The notion of hesitant fuzzy filters in lattice implication algebras is introduced, and several properties

are investigated. Characterizations of hesitant fuzzy filters are discussed.

1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role for two aspects:

One is that it extends the chain-type truth-value field of some well-known presented logic [1]

to some relatively general lattices. The other is that the incompletely comparable property of

truth value characterized by general lattice can more efficiently reflect the uncertainty of people’s

thinking, judging and decision. Hence, lattice-valued logic is becoming a research field which

strongly influences the development of Algebraic Logic, Computer Science and Artificial Intelli-

gence Technology. Therefore Goguen, Novak and Pavelka researched on this lattice-valued logic

formal systems (see [2, 10, 11]). In order to research the logical system whose propositional value

is given in a lattice, Xu [12] proposed the concept of lattice implication algebras, and discussed

their some properties. For the general development of lattice implication algebras, filter theory

and its fuzzification play an important role. Xu and Qin [14] introduced the notion of (implica-

tive) filters in a lattice implication algebra, and investigated their properties. Jun (together with

Xu and Qin) [3, 9] discussed positive implicative and associative filters of a lattice implication

algebra, and Jun [4] considered the fuzzification of positive implicative and associative filters of

a lattice implication algebra. In [13], Xu and Qin considered the fuzzification of (implicative)

filters.

Torra [16] introduced the hesitant fuzzy set which is a useful generalization of the fuzzy set

that is designed for situations in which it is difficult to determine the membership of an element

to a set owing to ambiguity between a few different values. The hesitant fuzzy set permits the

0 2010 Mathematics Subject Classification: 03G10; 06B10; 06D72.
0Keywords: hesitant fuzzy filter; hesitant level set.
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0E-mail: chishtygm@gmail.com (G. Muhiuddin); ehroh9988@gmail.com (E. H. Roh);
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membership degree of an element to a set to be represented by a set of possible values between

0 and 1 (see [16] and [17]). Jun et al. applied the notion of hesitant fuzzy sets to semigroups,

MTL-algebras and EQ-algebras (see [5, 6, 7, 8]).

In this paper, we apply the notion of hesitant fuzzy sets to the filter theory in lattice implication

algebras. We introduce the concept of hesitant fuzzy filters in lattice implication algebras, and

investigate several properties. We discuss characterizations of hesitant fuzzy filters.

2. Preliminaries

By a lattice implication algebra we mean a bounded lattice L := (L,∨,∧, 0, 1) with order-

reversing involution “ ′ ” and a binary operation “ → ” satisfying the following axioms:

(I1) x→ (y → z) = y → (x→ z),

(I2) x→ x = 1,

(I3) x→ y = y′ → x′,

(I4) x→ y = y → x = 1⇒ x = y,

(I5) (x→ y)→ y = (y → x)→ x,

(L1) (x ∨ y)→ z = (x→ z) ∧ (y → z),

(L2) (x ∧ y)→ z = (x→ z) ∨ (y → z),

for all x, y, z ∈ L. We define a relation ≤ on a lattice implication algebra L by x ≤ y if and only

if x→ y = 1.

In a lattice implication algebra L, the following hold (see [12]):

(a1) 0→ x = 1, 1→ x = x and x→ 1 = 1.

(a2) x→ y ≤ (y → z)→ (x→ z).

(a3) x ≤ y implies y → z ≤ x→ z and z → x ≤ z → y.

(a4) x′ = x→ 0.

(a5) x ∨ y = (x→ y)→ y.

(a6) ((y → x)→ y′)′ = x ∧ y = ((x→ y)→ x′)′.

(a7) x ≤ (x→ y)→ y

where x ≤ y means x→ y = 1.

A subset F of a lattice implication algebra L is called a filter of L (see [14]) if it satisfies:

(F1) 1 ∈ F ,

(F2) x ∈ F and x→ y ∈ F imply y ∈ F
for all x, y ∈ L.

Let L be a reference set. Then we define hesitant fuzzy set on L in terms of a function H that

when applied to X returns a subset of [0, 1] (see [16]).
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For a hesitant fuzzy set H on L and x, y, z ∈ L, we use the notations Hx := H(x), Hy
x :=

H(x) ∩ H(y), Hx(ε) := H(x) ∩ ε and Hy
x(ε) := H(x) ∩ H(y) ∩ ε where ε ∈ P([0, 1]). It is clear

that Hy
x = Hx

y , Hy
x(ε) ⊆ Hx(ε) and

Hx = Hy ⇔ Hx ⊆ Hy, Hy ⊆ Hx

for all x, y ∈ L.

For a hesitant fuzzy set H on L and a subset ε of [0, 1], the set

L(H; ε) := {x ∈ L | ε ⊆ Hx},

is called the hesitant level set of H.

3. Hesitant fuzzy filters

In what follows, we take a lattice implication algebra L as a reference set unless otherwise

specified.

Definition 3.1. A hesitant fuzzy set H on L is a hesitant fuzzy filter of L if it satisfies the

following assertions.

(∀x ∈ L) (H1 ⊇ Hx) , (3.1)

(∀x, y ∈ L)
(
Hy ⊇ Hx

x→y)
)
. (3.2)

Example 3.2. Let L = {0, a, b, c, d, 1} be a set with the following Hasse diagram and Cayley

tables:

r
0

r
d

r
arc rb r1

�
�
�

�
�

�
�
�

@
@

@
@

@
@

x x′

0 1

a c

b d

c a

d b

1 0

→ 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

Then L is a lattice implication algebra (see [15]). Let H be a hesitant fuzzy set on L which is

given as follows:

H : L→P([0, 1]), x 7→
{

[0.2, 0.8] if x ∈ {a, 1},
[0.3, 0.7] otherwise.

Then H is a hesitant fuzzy filter of L.

Theorem 3.3. A hesitant fuzzy set H on L is a hesitant fuzzy filter of L if and only if the

hesitant level set L(H; ε) of H is a filter of L for all ε ∈P([0, 1]) with L(H; ε) ̸= ∅.
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Proof. Assume that H is a hesitant fuzzy filter of L. Let ε ∈P([0, 1]) be such that L(H; ε) ̸= ∅.
Then there exists a ∈ L(H; ε), and so Ha ⊇ ε. It follows from (3.1) that H1 ⊇ Ha ⊇ ε and so

that 1 ∈ L(H; ε). Let x, y ∈ L be such that x ∈ L(H; ε) and x→ y ∈ L(H; ε). Then ε ⊆ Hx and

ε ⊆ Hx→y. Using (3.2), we get Hy ⊇ Hx
x→y ⊇ ε. Thus y ∈ L(H; ε), and hence L(H; ε) is a filter

of L for all ε ∈P([0, 1]) with L(H; ε) ̸= ∅.
Conversely, suppose that the nonempty hesitant level set L(H; ε) of H is a filter of L for all

ε ∈ P([0, 1]). For any x ∈ L, let Hx = εx. Then x ∈ L(H; εx), and so L(H; εx) ̸= ∅. Hence

1 ∈ L(H; εx), and thus H1 ⊇ εx = Hx for all x ∈ L. For any x, y ∈ L, let Hx
x→y = δ. Then

Hx ⊇ δ and Hx→y ⊇ δ, that is, x ∈ L(H; δ) and x → y ∈ L(H; δ). It follows from (F2) that

y ∈ L(H; δ) and so that Hy ⊇ δ = Hx
x→y for all x, y ∈ L. Therefore H is a hesitant fuzzy filter of

L. □

Proposition 3.4. Every hesitant fuzzy filter H of L satisfies:

(∀x, y ∈ L) (x ≤ y ⇒ Hx ⊆ Hy) . (3.3)

Proof. Let x, y ∈ L satisfy x ≤ y. Then x→ y = 1, and so

Hy ⊇ Hx
x→y = Hx

1 = Hx

by (3.2) and (3.1). □

Theorem 3.5. A hesitant fuzzy set H on L is a hesitant fuzzy filter of L if and only if it satisfies

(3.1) and

(∀x, y, z ∈ L)
(
Hx→z ⊇ Hx→y

y→z

)
. (3.4)

Proof. Assume that H is a hesitant fuzzy filter of L. Since x → y ≤ (y → z) → (x → z) for all

x, y, z ∈ L, it follows from (3.3) that Hx→y ⊆ H(y→z)→(x→z) and so from (3.2) that

Hx→z ⊇ Hy→z
(y→z)→(x→z) ⊇ H

y→z
x→y

for all x, y, z ∈ L.

Conversely, let H satisfy (3.1) and (3.4). Taking x = 1 in (3.4) and using (a1), we have

Hz = H1→z ⊇ H1→y
y→z = Hy

y→z

for all y, z ∈ L. Therefore H is a hesitant fuzzy filter of L. □

Theorem 3.6. For any hesitant fuzzy set H on L, the following assertions are equivalent.

(1) H is a hesitant fuzzy filter of L.

(2) (∀x, y, z ∈ L)
(
x ≤ y → z ⇒ Hz ⊇ Hx

y

)
.
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Proof. Suppose that H is a hesitant fuzzy filter of L. Let x, y, z ∈ L satisfy x ≤ y → z. Using

(3.2) and (3.3) implies that Hz ⊇ Hy
y→z ⊇ Hy

x.

Assume that the second condition is valid. Since x ≤ x→ 1 for all x ∈ L, we have H1 ⊇ Hx
x =

Hx for all x ∈ L. Note that y ≤ (y → x)→ x for all x, y ∈ L. Hence Hx ⊇ Hy
y→x for all x, y ∈ L.

Therefore H is a hesitant fuzzy filter of L. □

Theorem 3.7. A hesitant fuzzy set H on L is a hesitant fuzzy filter of L if and only if it satisfies

(3.1), (3.3) and

(∀x, y ∈ L)
(
H(x→y′)′ ⊇ Hx

y

)
. (3.5)

Proof. Assume that H is a hesitant fuzzy filter of L. Then the conditions (3.1) and (3.3) are valid

by Definition 3.1 and Proposition 3.4. Using (3.1), (3.2) and (I2), we have

H(x→y′)′ ⊇ Hy
y→(x→y′)′ ⊇ H

y
x(x→ (y → (x→ y′)′))

= Hy
x((x→ y′)′ → (x→ y′)′)

= Hx
y(1) = Hx

y

for all x, y ∈ L. Hence (3.5) is valid.

Conversely, let H satisfy conditions (3.1), (3.3) and (3.5). Note that

(x→ (x→ y)′)′ ≤ y

for all x, y ∈ L. It follows from (3.3) and (3.5) that

Hy ⊇ H(x→(x→y)′)′ ⊇ Hx
x→y

for all x, y ∈ L. Therefore H is a hesitant fuzzy filter of L by Theorem 3.3. □

Theorem 3.8. A hesitant fuzzy set H on L is a hesitant fuzzy filter of L if and only if it satisfies

(3.1) and

(∀x, y, z ∈ L)
(
Hz→x ⊇ Hy

(z→y)→x

)
. (3.6)

Proof. Suppose that H is a hesitant fuzzy filter of L. Let x, y, z ∈ L. Since x ≤ z → x and

y ≤ z → y, we have

(z → y)→ x ≤ (z → y)→ (z → x) ≤ y → (z → x).

It follows from (3.2) and (3.3) that

Hz→x ⊇ Hy
y→(z→x) ⊇ H

y
(z→y)→x.

Hence (3.6) is valid.
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Conversely, let H satisfy conditions (3.1) and (3.6). If we take z = 1 in (3.6) and use (a1),

then

Hx = H1→x ⊇ Hy
(1→y)→x = Hy

y→x

for all x, y ∈ L. Therefore H is a hesitant fuzzy filter of L. □

Let H be a hesitant fuzzy set on L and a ∈ L. We consider the set

H→
a := {x ∈ L | Ha ⊆ Hx} .

Obviously, a ∈ H→
a . If H is a hesitant fuzzy filter of L , then 1 ∈ H→

a since H1 ⊇ Hx for all x ∈ L.

Let H satisfy the condition (3.1). Then there exists a ∈ L such that H→
a is not a filter of L as

seen in the following example.

Example 3.9. Consider the set L = {ai | i = 1, 2, · · · , n}. For any 1 ≤ j, k ≤ n, define

aj ∨ ak = amax{j,k},

aj ∧ ak = amin{j,k},

(aj)
′ = an−j+1,

aj → ak = amin{n−j+k,n}.

Then (L,∨,∧,′ ,→) is a lattice implication algebra which is called the  Lukasiewicz implication

algebra (of order n) (see [15]). The  Lukasiewicz implication algebra L = {0, a, b, c, 1} of order 5

is represented by

r 0
r a
r b
r c
r 1 x x′

0 1

a c

b b

c a

1 0

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b c 1 1 1

c a b c 1 1

1 0 a b c 1

Let H be a hesitant fuzzy set on L defined by

H : L→P([0, 1]), x 7→


(0.2, 0.3) ∪ (0.6, 0.8] if x ∈ {0, c},
[0.1, 0.3) ∪ (0.5, 0.9) if x = a,

[0.2, 0.3) ∪ [0.6, 0.9) if x = b,

[0.1, 0.3] ∪ [0.5, 0.9] if x = 1.

Then H→
b = {a, b, 1} is not a filter of L since a→ c = 1 ∈ H→

b and a ∈ H→
b , but c /∈ H→

b .

We provide conditions for the set H→
a to be a filter of L for a ∈ L.

Theorem 3.10. Let a ∈ L. If H is a hesitant fuzzy filter of L , then H→
a is a filter of L.
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Proof. Obviously 1 ∈ H→
a by (3.1). Let x, y ∈ L satisfy x → y ∈ H→

a and x ∈ H→
a . Then

Hx→y ⊇ Ha and Hx ⊇ Ha. It follows from (3.2) that

Hy ⊇ Hx
x→y ⊇ Ha.

Thus y ∈ H→
a and H→

a is a filter of L. □
Theorem 3.11. For any a ∈ L and a hesitant fuzzy set H on L, we have the following assertions:

(1) If H→
a is a filter of L, then H satisfies the following implication.

(∀x, y ∈ L)
(
Ha ⊆ Hx

x→y ⇒ Ha ⊆ Hy

)
. (3.7)

(2) If H satisfies (3.1) and (3.7), then H→
a is a filter of L.

Proof. (1) Assume that H→
a is a filter of L for a ∈ L. Let x, y ∈ L be such that

Ha ⊆ Hx
x→y.

Then x → y ∈ H→
a and x ∈ H→

a . Since H→
a is a filter of L, it follows that y ∈ H→

a , that is,

Ha ⊆ Hy.

(2) Suppose that H satisfies (3.1) and (3.7). Let x, y ∈ L be such that x → y ∈ H→
a and

x ∈ H→
a . Then Ha ⊆ Hx→y and Ha ⊆ Hx, which implies that Ha ⊆ Hx

x→y. It follows from (3.7)

that Ha ⊆ Hy, i.e., y ∈ H→
a . Since H satisfies (3.1), we have 1 ∈ H→

a . Therefore H→
a is a filter of

L. □

For a fixed element a ∈ L and a hesitant fuzzy set H on L, let [aH] be a hesitant fuzzy set on

L given as follows:

[aH] : L→P([0, 1]), x 7→
{
ε1 if a ≤ x,

ε2 otherwise

where ε1, ε2 ∈P([0, 1]) with ε1 ⊋ ε2.

Let L = {0, a, b, c, 1} be the lattice implication algebra in Example 3.9. For b ∈ L, the hesitant

fuzzy set [bH] on L which is given by

[bH] : L→P([0, 1]), x 7→
{

[0.2, 0.7] if b ≤ x,

[0.3, 0.6] otherwise

is not a hesitant fuzzy filter of L since [bH]a = [0.3, 0.6] ⊉ [0.2, 0.7] = [bH]cc→a.

Given a ∈ L, we provide conditions for the hesitant fuzzy set [aH] to be a hesitant fuzzy filter

of L.

Theorem 3.12. Given a ∈ L, the hesitant fuzzy set [aH] is a hesitant fuzzy filter of L if and

only if the following assertion is valid.

(∀x, y ∈ L) (a ≤ y → x, a ≤ y ⇒ a ≤ x) . (3.8)
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Proof. Suppose that [aH] is a hesitant fuzzy filter of L and let x, y ∈ L satisfy a ≤ y → x and

a ≤ y. Then [aH]y→x = ε1 = [aH]y, and so [aH]x ⊇ [aH]yy→x = ε1. Thus a ≤ x, which satisfies

the condition (3.8).

Conversely, assume that the condition (3.8) is valid. Note that

L([aH]; ε) =


L if ε ⊆ ε2,

{x ∈ L | a ≤ x} if ε2 ⊊ ε ⊆ ε1,

∅ otherwise

For the case of ε2 ⊊ ε ⊆ ε1, obviously 1 ∈ L([aH]; ε). Let x, y ∈ L be such that x ∈ L([aH]; ε)

and x → y ∈ L([aH]; ε). Then a ≤ x and a ≤ x → y, which imply from the hypothesis that

a ≤ y, that is, y ∈ L([aH]; ε). Hence L([aH]; ε) is a filter of L whenever it is nonempty. Therefore

[aH] is a hesitant fuzzy filter of L. □

Theorem 3.13. For a subset J of L, let G be a hesitant fuzzy set on L given as follows:

G : L→P([0, 1]), x 7→
{
ε1 if x ∈ J,
ε2 otherwise

where ε1, ε2 ∈ P([0, 1]) with ε1 ⊋ ε2. Then G is a hesitant fuzzy filter of L if and only if the

following assertion is valid.

(∀x, y ∈ J)(∀z ∈ L) (x, y ∈ J, y ≤ x→ z ⇒ z ∈ J) . (3.9)

Proof. Note that

L(G; ε) =


L if ε ⊆ ε2,

J if ε2 ⊊ ε ⊆ ε1,

∅ otherwise

Assume that G is a hesitant fuzzy filter of L. Then J = L(G; ε) for ε2 ⊊ ε ⊆ ε1, and J is a filter

of L. Let x, y, z ∈ L be such that x, y ∈ J and y ≤ x → z. Then y → (x → z) = 1 ∈ J , and so

z ∈ J .

Conversely, let G be a hesitant fuzzy set on L and suppose that (3.9) is valid. Since y ≤ 1 =

x → 1 for all x, y ∈ L, we have 1 ∈ J by (3.9), and so 1 ∈ L(G; ε) for ε2 ⊊ ε ⊆ ε1. Let x, y ∈ L
be such that y ∈ J = L(G; ε) and y → x ∈ J = L(G; ε) for ε2 ⊊ ε ⊆ ε1. Since y ≤ (y → x)→ x,

it follows from (3.9) that x ∈ J = L(G; ε). Hence L(G; ε) is a filter of L for all ε ∈P([0, 1]) with

L(G; ε) ̸= ∅. Therefore G is a hesitant fuzzy filter of L. □
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3D Green’s Function and Its Finite Element

Error Estimates

Jinghong Liu∗and Yinsuo Jia†

In our previous article, we introduced the definition of the 3D Green’s func-
tion, and gave some estimates for this function. In this article, we will give the
finite element approximation to the 3D Green’s function. Moreover, some error
estimates between 3D Green’s function and its finite element approximation are
derived, which will be used to the local superconvergence analysis.

1 Introduction

Superconvergence study is still an important topic in the finite element method,
and the Green’s function plays very important roles in the study of the su-
perconvergence (especially, pointwise superconvergence) of the finite element
method (see [1–9]). As for the global superconvergence, we know that the dis-
crete Green’s function and the discrete derivative Green’s function are usually
used. However, as for the local superconvergence, we need to use the Green’s
function which is independent of the mesh-size h. In our recent articles, we
have introduced the definition of the 3D Green’s function and its some esti-
mates. This article will focus on the finite element approximation to the 3D
Green’s function.

we shall use the symbol C to denote a generic constant, which is independent
of the mesh-size h and which may not be the same in each occurrence and also
use the standard notations for the Sobolev spaces and their norms.

In this article, we consider the following Poisson equation:

Lu ≡ −∆u = f in Ω, u = 0 on ∂Ω,

where Ω ⊂ R3 is a bounded polytopic domain. The weak formulation of the
above equation reads,{

Find u ∈ H1
0 (Ω) satisfying

a(u , v) = (f , v) for all v ∈ H1
0 (Ω),

(1.1)

∗School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang
University, Ningbo 315100, China, email: jhliu1129@sina.com

†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: jiayinsuo2002@sohu.com
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where

a(u , v) ≡
∫
Ω

∇u · ∇v dX, (f , v) ≡
∫
Ω

fv dX.

Let {T h} be a regular family of partitions of Ω̄. Denote by Sh(Ω) a contin-
uous finite elements space of degree m(m ≥ 1) regarding this kind of partitions
and let Sh

0 (Ω) = Sh(Ω) ∩H1
0 (Ω).

For every Z ∈ Ω̄, we define the discrete δ function δhZ ∈ Sh
0 (Ω), the dis-

crete derivative δ function ∂Z,ℓδ
h
Z ∈ Sh

0 (Ω), the regularized Green’s function
G∗

Z ∈ H2(Ω) ∩ H1
0 (Ω), the regularized derivative Green’s function ∂Z,ℓG

∗
Z ∈

H2(Ω)∩H1
0 (Ω), the discrete Green’s function Gh

Z ∈ Sh
0 (Ω), the discrete deriva-

tive Green’s function ∂Z,ℓG
h
Z ∈ Sh

0 (Ω), and the L2-projection Phu ∈ Sh
0 (Ω) such

that (see [9])
(v, δhZ) = v(Z) ∀ v ∈ Sh

0 (Ω), (1.2)

(v, ∂Z,ℓδ
h
Z) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω), (1.3)

a(G∗
Z , v) = (δhZ , v) ∀ v ∈ H1

0 (Ω), (1.4)

a(∂Z,ℓG
∗
Z , v) = (∂Z,ℓδ

h
Z , v) ∀ v ∈ H1

0 (Ω), (1.5)

a(Gh
Z , v) = v(Z) ∀ v ∈ Sh

0 (Ω), (1.6)

a(∂Z,ℓG
h
Z , v) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω), (1.7)

(u− Phu, v) = 0 ∀ v ∈ Sh
0 (Ω). (1.8)

Here, for any direction ℓ ∈ R3, |ℓ| = 1, ∂Z,ℓδ
h
Z , ∂Z,ℓG

h
Z , and ∂ℓv(Z) stand for

the following onesided directional derivatives, respectively.

∂Z,ℓδ
h
Z = lim

|∆Z|→0

δhZ+∆Z − δhZ
|∆Z|

, ∂Z,ℓG
h
Z = lim

|∆Z|→0

Gh
Z+∆Z −Gh

Z

|∆Z|
,

∂ℓv(Z) = lim
|∆Z|→0

v(Z + ∆Z)− v(Z)

|∆Z|
, ∆Z = |∆Z|ℓ.

As for G∗
Z , ∂Z,ℓG

∗
Z , Gh

Z , and ∂Z,ℓG
h
Z , we have obtained some optimal estimates

(see [4–6]), which will be used in next section. From (1.4)–(1.7), we easily
find Gh

Z and ∂Z,ℓG
h
Z are the finite element approximations to G∗

Z and ∂Z,ℓG
∗
Z ,

respectively.
For the L2-projection operator Ph, we have (see [4])

Lemma 1.1. For Phw the L2-projection of w ∈ Lp(Ω), we have the following
stability estimate:

∥Phw∥0, p,Ω ≤ Ct∥w∥0, p,Ω, (1.9)

where t =
∣∣∣1− 2

p

∣∣∣, and 1 ≤ p ≤ ∞.

Further, by Lemma 1.1, we easily obtain the following result:

∥w − Phw∥0, p,Ω ≤ (1 + Ct) inf
v∈Sh

0 Ω
∥w − v∥0, p,Ω, (1.10)
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where 1 ≤ p ≤ ∞. Using the result (1.10), we easily obtain

∥Phw∥1, p,Ω ≤ C∥w∥1, p,Ω, for 3 < p ≤ ∞. (1.11)

In addition, we also assume the following a priori estimate holds.
Lemma 1.2. For the true solution u of (1.1), there exists a q0(1 < q0 ≤ ∞)
such that for every 1 < q < q0,

∥u∥2, q,Ω ≤ C(q)∥Lu∥0, q,Ω. (1.12)

2 Regularized Green’s Function and Its Finite
Element Approximation

We introduce two weight functions defined by

ϕ =
(
|X − Z|2 + θ2

)− 3
2 and τ = |X − Z|−3 ∀X ∈ Ω̄,

where Z ∈ Ω̄ is a fixed point, θ = γh, and γ ∈ [3,+∞) is a suitable real number.
They will be used in this section and next section.

In [4], we derived the following Lemma 2.1 (see (2.62) and (2.63) in [4]).
Lemma 2.1. Suppose q0 > 3. For G∗

Z and Gh
Z defined by (1.4) and (1.6),

respectively, we have∥∥G∗
Z −Gh

Z

∥∥
1,ϕ−1 ≤ Ch

∣∣∇2G∗
Z

∣∣
ϕ−1 ≤ Ch |lnh|

1
6 . (2.1)

Lemma 2.2. For G∗
Z and Gh

Z defined by (1.4) and (1.6), respectively, we have

∥∥G∗
Z −Gh

Z

∥∥
1,ϕ−α ≤ C(α)h

{
∀ 1 < α < 5

3 −
2
q0

when 3 < q0 < 6,

∀ 1 < α < 4
3 when q0 ≥ 6.

(2.2)

Proof. Similar to the proof of the result (2.43) in [4], we have∥∥G∗
Z −Gh

Z

∥∥2
1, ϕ−α ≤ Ch2

∥∥∇2G∗
Z

∥∥2
ϕ−α + C

∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3
. (2.3)

We easily obtain∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3
=
(
ϕ−α+ 2

3 (G∗
Z −Gh

Z), G∗
Z −Gh

Z

)
= a(v, G∗

Z −Gh
Z) = a(v −Πv, G∗

Z −Gh
Z)

≤
∣∣G∗

Z −Gh
Z

∣∣
1, ϕ−α · |v −Πv|1, ϕα

≤ ε
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α + C(ε) |v −Πv|21, ϕα

≤ ε
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α + C(ε)h2

∣∣∇2v
∣∣2
ϕα

≤ ε
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α + C(ε)h2θ−2

∣∣∣∇(ϕ−α+ 2
3 (G∗

Z −Gh
Z))
∣∣∣2
ϕα− 4

3

,

(2.4)

where Lv = ϕ−α+ 2
3 (G∗

Z −Gh
Z).
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Note that the result
∣∣∇2v

∣∣2
ϕα ≤ Cθ−2

∣∣∣∇(ϕ−α+ 2
3 (G∗

Z −Gh
Z))
∣∣∣2
ϕα− 4

3
in (2.4)

should satisfy one of the following two conditions: (1) 1 < α < 5
3 −

2
q0

when

3 < q0 < 6; (2) 1 < α < 4
3 when q0 ≥ 6. In addition,∣∣∣∇(ϕ−α+ 2

3 (G∗
Z −Gh

Z))
∣∣∣2
ϕα− 4

3

=

∫
Ω

ϕα−
4
3

∣∣∣∇ϕ−α+ 2
3 · (G∗

Z −Gh
Z) + ϕ−α+ 2

3 · ∇(G∗
Z −Gh

Z)
∣∣∣2 dX

≤ C

∫
Ω

ϕα−
4
3

(
|∇ϕ−α+ 2

3 |2|G∗
Z −Gh

Z |2 + (ϕ−α+ 2
3 )2|∇(G∗

Z −Gh
Z)|2

)
dX

≤ C
(∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α +

∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3

)
.

Combining (2.4) and the above result, we have∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3
≤ ε

∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−α

+C(ε)h2θ−2
(∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α +

∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3

)
= ε

∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−α

+C(ε)γ−2
(∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−α +

∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3

)
.

(2.5)
Choosing γ ∈ [3, +∞) in (2.5) such that 0 < C(ε)γ−2 < min(ε, 1

2 ), we have∥∥G∗
Z −Gh

Z

∥∥2
ϕ−α+2

3
≤ 4ε

∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−α . (2.6)

Taking a suitable ε ∈ (0, +∞), from (2.3) and (2.6), we obtain∥∥G∗
Z −Gh

Z

∥∥
1, ϕ−α ≤ Ch

∥∥∇2G∗
Z

∥∥
ϕ−α . (2.7)

We can prove∥∥∇2G∗
Z

∥∥
ϕ−α ≤ C

∥∥δhZ∥∥ϕ−α +C ∥G∗
Z∥ϕ−α+4

3
≤ Ch

3(α−1)
2 +C ∥G∗

Z∥ϕ−α+4
3
. (2.8)

Further, from (1.4), (1.8), (1.9), (1.12), and the Sobolev Embedding Theorem
[10], we have

∥G∗
Z∥

2

ϕ−α+4
3

= (G∗
Z , ϕ

−α+ 4
3G∗

Z) = a(G∗
Z , w)

= Phw(Z) ≤ ∥Phw∥0,∞ ≤ C ∥w∥0,∞ ≤ C ∥w∥2,p ≤ C
∥∥∥ϕ−α+ 4

3G∗
Z

∥∥∥
0,p

= C

(∫
Ω

ϕ(
4
3−α)p|G∗

Z |p dX
) 1

p

≤ C
(∫

Ω

ϕ
( 4
3
−α)p

2−p dX

) 2−p
2p

∥G∗
Z∥ϕ−α+4

3
.

Here we choose p such that 3
2 < p < 6

7−3α < 2 and 0 <
( 4
3−α)p

2−p < 1. It is easy
to prove ∫

Ω

ϕ
( 4
3
−α)p

2−p dX ≤ C(α).
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Thus we have
∥G∗

Z∥ϕ−α+4
3
≤ C(α). (2.9)

From (2.7)–(2.9), the result (2.2) is obtained.
Lemma 2.3. For ∂Z,ℓG

∗
Z and ∂Z,ℓG

h
Z defined by (1.5) and (1.7), respectively,

we have ∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥
1,ϕ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 , (2.10)

where 1 < α < 5
3 −

2
q0

when 3 < q0 < 6 and 1 < α < 4
3 when q0 ≥ 6.

Proof. Similar to the result (2.7), we have∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥
1, ϕ−α ≤ Ch

∥∥∇2∂Z,ℓG
∗
Z

∥∥
ϕ−α . (2.11)

In addition∥∥∇2∂Z,ℓG
∗
Z

∥∥
ϕ−α ≤ C

∥∥∂Z,ℓδ
h
Z

∥∥
ϕ−α + C ∥∂Z,ℓG

∗
Z∥ϕ−α+4

3

≤ Ch
3α−5

2 + C ∥∂Z,ℓG
∗
Z∥ϕ−α+4

3
.

(2.12)

Further, from (1.5), (1.8), (1.11), (1.12), the inverse inequality, the Sobolev
Embedding Theorem [10], and the Hölder inequality, we have

∥∂Z,ℓG
∗
Z∥

2

ϕ−α+4
3

= (∂Z,ℓG
∗
Z , ϕ

−α+ 4
3 ∂Z,ℓG

∗
Z) = a(∂Z,ℓG

∗
Z , w) = ∂Z,ℓPhw(Z)

≤ |Phw|1,∞ ≤ Ch
− 3

q |Phw|1,q ≤ Ch
− 3

q |w|1,q ≤ Ch
− 3

q ∥w∥2,s

≤ Ch−
3
q

∥∥∥ϕ 4
3−α∂Z,ℓG

∗
Z

∥∥∥
0,s

= Ch−
3
q

(∫
Ω

ϕ(
4
3−α)s|∂Z,ℓG

∗
Z |s dX

) 1
s

≤ Ch−
3
q

(∫
Ω

ϕ
( 4
3
−α)s

2−s dX

) 2−s
2s

∥∂Z,ℓG
∗
Z∥ϕ−α+4

3
.

Here we choose s = 6
7−3α and 1

q = 1
s −

1
3 . Obviously,

(A) 3
2 < s < 3q0

3+q0
and 3 < q < q0 when 3 < q0 < 6.

(B) 3
2 < s < 2 and 3 < q < 6 when q0 ≥ 6.

In the meantime, we have
( 4
3−α)s

2−s = 1. By the result (2.14) in [4], we then
get (∫

Ω

ϕ
( 4
3
−α)s

2−s dX

) 2−s
2s

≤ C |lnh|
4−3α

6 .

Thus we have
∥∂Z,ℓG

∗
Z∥ϕ−α+4

3
≤ Ch

3α−5
2 |lnh|

4−3α
6 . (2.13)

From (2.11)–(2.13),
∥∥∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∥∥
1, ϕ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 . The proof

of the result (2.10) is completed.
Lemma 2.4. For G∗

Z and Gh
Z defined by (1.4) and (1.6), respectively, we have

∥∥G∗
Z −Gh

Z

∥∥
1,p
≤

{
Ch

3−2p
p |lnh|

1
6 , 1 < p < 3

2 ,

Ch |lnh|
2
3 , p = 1.

(2.14)
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Proof. When p = 1, the result can be seen in [4]. Thus we only need to prove
the case of 1 < p < 3

2 . By the Hölder inequality, we have

∥∥G∗
Z −Gh

Z

∥∥
1,p
≤
(∫

Ω

ϕ
p

2−p dX

) 2−p
2p ∥∥G∗

Z −Gh
Z

∥∥
1,ϕ−1 . (2.15)

From (2.13) in [4], ∫
Ω

ϕ
p

2−p dX ≤ Ch
6−6p
2−p . (2.16)

Combining (2.1), (2.15), and (2.16) yields
∥∥G∗

Z −Gh
Z

∥∥
1,p
≤ Ch

3−2p
p |lnh|

1
6 . The

proof of the result (2.14) is completed.

3 Finite Element Approximation to the 3D Green’s
Function

In this section, we discuss the 3D Green’s function and its finite element ap-
proximation. We call GZ Green’s function which satisfies the following Theorem
3.1.
Theorem 3.1. There exists a unique GZ ∈W 1,p

0 (Ω) (1 ≤ p < 3
2 ) such that

a(GZ , v) = v(Z) ∀ v ∈W 1,p′

0 (Ω),
1

p
+

1

p′
= 1. (3.1)

Proof. We first prove the uniqueness of GZ . Suppose there exists another
Green’s function G′

Z ∈W
1,p
0 (Ω) satisfying (3.1). Set EZ = GZ −G′

Z , thus

a(EZ , v) = 0 ∀ v ∈W 1,p′

0 (Ω). (3.2)

When 1 < p < 3
2 , for each φ ∈ Lp′

(Ω), there exists a w ∈ W 2,p′ ∩W 1,p′

0 (Ω)

such that Lw = φ. Obviously, sgnEZ |EZ |p−1 ∈ Lp′
(Ω), thus we can find

w ∈W 2,p′ ∩W 1,p′

0 (Ω) such that Lw = v. Then we have

∥EZ∥p0,p = (EZ , sgnEZ |EZ |p−1) = a(EZ , w), (3.3)

From (3.2) and (3.3), ∥EZ∥0,p = 0, i.e., GZ = G′
Z . Similarly, when p = 1, we

can also prove GZ = G′
Z . Thus we have completed the proof of the uniqueness.

Next, we prove the existence of GZ . We give a series of finite element spaces

Shi
0 (Ω), i = 0, 1, 2, · · · satisfying Shi

0 (Ω) ⊂ Shj

0 (Ω) when i < j, where h0 ≡ h and
1
4hi−1 ≤ hi ≤ 1

2hi−1. Let G∗
Z,i be the regularized Green’s function for the finite

element space Shi
0 (Ω), and Ghi

Z the discrete Green’s function. Their definitions

can be seen in Section 1. Obviously, we have a(G∗
Z,i+1 − Ghi

Z , v) = 0 ∀ v ∈
Shi
0 (Ω). Similar to the proof of the result (2.14), we have for 1 < p < 3

2∥∥∥G∗
Z,i+1 −G

hi

Z

∥∥∥
1,p
≤ Ch

3−2p
p

i |lnhi|
1
6 ,
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which combined with (2.14), we get∥∥G∗
Z,i+1 −G∗

Z,i

∥∥
1,p
≤ Ch

3−2p
p

i |lnhi|
1
6 . (3.4)

Thus

∞∑
i=0

∥∥G∗
Z,i+1 −G∗

Z,i

∥∥
1,p
≤ C

∞∑
i=0

(
h

2i

) 3−2p
p
∣∣∣∣ln h

2i

∣∣∣∣ 16 ≤ Ch 3−2p
p |lnh|

1
6 . (3.5)

Set

GZ ≡ G∗
Z +

∞∑
i=0

(G∗
Z,i+1 −G∗

Z,i).

Thus we have GZ ∈W 1,p
0 (Ω). From (3.5),

∥GZ −G∗
Z∥1,p ≤ Ch

3−2p
p |lnh|

1
6 . (3.6)

Similarly, when p = 1, we have

∥GZ −G∗
Z∥1,1 ≤ Ch |lnh|

2
3 . (3.7)

Therefore, for 1 ≤ p < 3
2 , we have G∗

Z,i −→ GZ inW 1,p(Ω) when i→∞. Using
(1.10) and the interpolation error estimate, we obtain

∥v − Phv∥0,∞,Ω ≤ C∥v −Πv∥0,∞,Ω ≤ Ch1−
3
p′ ∥v∥1,p′,Ω, (3.8)

where 3 < p′ ≤ ∞. Thus, for every v ∈W 1,p′

0 (Ω), we have by (3.6)–(3.8)

a(GZ , v) = lim
i→∞

a(G∗
Z,i, v) = lim

i→∞
Phiv(Z) = v(Z).

The proof of Theorem 3.1 is completed. Now we show GZ is independent of h.
Suppose there exists a Green’s function G̃Z for the mesh-size h̃. In addition,
1
4 h̃i−1 ≤ h̃i ≤ 1

2 h̃i−1 and h̃0 = h̃. Thus, for every f ∈ Lp′
(Ω), we choose v ∈

W 2,p′
(Ω)∩W 1,p′

0 (Ω) such that Lv = f . Then we get (GZ , f) = a(GZ , v) = v(Z)
and (G̃Z , f) = a(G̃Z , v) = v(Z). Thus, (GZ , f) = (G̃Z , f), i.e., (GZ − G̃Z , f) =
0. So we get GZ = G̃Z . Namely, GZ is independent of h.

In addition, we find

a(GZ , v) = v(Z) ∀ v ∈ Sh
0 (Ω) ⊂W 1,p′

(Ω). (3.9)

Combining (1.6) and (3.9), we have a(GZ −Gh
Z , v) = 0 ∀ v ∈ Sh

0 (Ω). Thus Gh
Z

is the finite element approximation to GZ . Further, we have the following error
estimates.
Theorem 3.2. For GZ and Gh

Z defined by (3.1) and (1.6), respectively, we have

∥∥GZ −Gh
Z

∥∥
1,p
≤

{
Ch

3−2p
p |lnh|

1
6 , 1 < p < 3

2 ,

Ch |lnh|
2
3 , p = 1,

(3.10)
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where C is independent of h and Z.
Proof. From (2.14), (3.6), (3.7), and the triangular inequality, we immediately
obtain the result (3.10).
Theorem 3.3. Suppose q0 = ∞, for GZ and Gh

Z defined by (3.1) and (1.6),
respectively, we have ∥∥GZ −Gh

Z

∥∥
0,1
≤ Ch2 |lnh|

5
3 , (3.11)

where C is independent of h and Z.
Proof. For every φ ∈ L∞(Ω), there exists a unique v ∈W 2,∞(Ω)∩H1

0 (Ω) such
that Lv = φ and

(GZ −Gh
Z , φ) = a(GZ −Gh

Z , v) = a(GZ , v − vh) = v(Z)− vh(Z), (3.12)

where vh is the finite element approximation to v. From (1.10),

|v(Z)− Phv(Z)| ≤ ∥v − Phv∥0,∞ ≤ C ∥v −Πv∥0,∞ ≤ Ch
2− 3

q ∥v∥2,q , (3.13)

where 1 < q < q0. In addition, by (2.14), the Hölder inequality, and the
interpolation error estimate, we have

|Phv(Z)− vh(Z)| = |a(v − vh, G∗
Z)| = |a(v − vh, G∗

Z −Gh
Z)|

= |a(v −Πv,G∗
Z −Gh

Z)| ≤ C
∥∥G∗

Z −Gh
Z

∥∥
1,1
∥v −Πv∥1,∞

≤ Ch2−
3
q |lnh|

2
3 ∥v∥2,q .

(3.14)

From (3.12)–(3.14), and the triangular inequality,

|(GZ −Gh
Z , φ)| = |v(Z)− vh(Z)| ≤ Ch2−

3
q |lnh|

2
3 ∥v∥2,q .

From (1.12),

|(GZ −Gh
Z , φ)| ≤ C(q)h2−

3
q |lnh|

2
3 ∥φ∥0,q . (3.15)

Because of q0 = ∞, we can take q = | lnh| < q0 in (3.15), and we have C(q) ≤
Cq. Thus,

|(GZ −Gh
Z , φ)| ≤ Ch2 |lnh|

5
3 ∥φ∥0,∞ . (3.16)

From (3.16), we know the result (3.11) holds. So, the proof of the result (3.11)
is completed.
Theorem 3.4. For GZ and Gh

Z defined by (3.1) and (1.6), respectively, we have∥∥GZ −Gh
Z

∥∥
1,τ−1 ≤ Ch |lnh|

1
6 , (3.17)

∥∥GZ −Gh
Z

∥∥
1,τ−α ≤ C(α)h

{
∀ 1 < α < 5

3 −
2
q0

when 3 < q0 < 6,

∀ 1 < α < 4
3 when q0 ≥ 6,

(3.18)

where C is independent of h and Z.
Proof. Obviously, τ−k < ϕ−k when k > 0. Thus from (2.1) and (2.2),∥∥G∗

Z −Gh
Z

∥∥
1,τ−1 ≤ Ch |lnh|

1
6 , (3.19)
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∥∥G∗
Z −Gh

Z

∥∥
1,τ−α ≤ C(α)h

{
∀ 1 < α < 5

3 −
2
q0

when 3 < q0 < 6,

∀ 1 < α < 4
3 when q0 ≥ 6,

(3.20)

Similar to the arguments of Theorem 3.1, we can obtain the results (3.17) and
(3.18). Obviously,∥∥∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∥∥
1,τ−α ≤

∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥
1,ϕ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 ,

(3.21)
where 1 < α < 5

3 −
2
q0

when 3 < q0 < 6 and 1 < α < 4
3 when q0 ≥ 6. Adopting

the techniques in the proof of Theorem 3.1, we can derive by (3.21)

∞∑
i=0

∥∥∂Z,ℓG
∗
Z,i+1 − ∂Z,ℓG

∗
Z,i

∥∥
1,τ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 .

Set

F ≡ ∂Z,ℓG
∗
Z +

∞∑
i=0

(∂Z,ℓG
∗
Z,i+1 − ∂Z,ℓG

∗
Z,i).

Here, ∥F∥1,τ−α <∞ and ∂Z,ℓG
∗
Z,i = lim|∆Z|→0

G∗
Z+∆Z,i−G∗

Z,i

|∆Z| , ∆Z = |∆Z|ℓ. By

the arguments of Theorem 3.1,

GZ+∆Z ≡ G∗
Z+∆Z +

∞∑
i=0

(G∗
Z+∆Z,i+1 −G∗

Z+∆Z,i),

GZ ≡ G∗
Z +

∞∑
i=0

(G∗
Z,i+1 −G∗

Z,i).

Thus we have F = lim|∆Z|→0
GZ+∆Z−GZ

|∆Z| = ∂Z,ℓGZ . Namely,

∂Z,ℓGZ = ∂Z,ℓG
∗
Z +

∞∑
i=0

(∂Z,ℓG
∗
Z,i+1 − ∂Z,ℓG

∗
Z,i), ∥∂Z,ℓGZ∥1,τ−α <∞. (3.22)

We write Wβ(Ω) = {v : v|∂Ω = 0, ∥v∥1,τβ < ∞}. From (3.22), ∂Z,ℓGZ ∈
W−α(Ω). Further, we can obtain the following Theorem 3.5.
Theorem 3.5. There exists a unique ∂Z,ℓGZ ∈W−α(Ω) such that

a(∂Z,ℓGZ , v) = ∂ℓv(Z) ∀ v ∈Wα(Ω) ∩ C∞
0 (Ω), (3.23)

where 1 < α < 5
3 −

2
q0

when 3 < q0 < 6 and 1 < α < 4
3 when q0 ≥ 6.

Proof. From (3.22),

∥∂Z,ℓGZ − ∂Z,ℓG
∗
Z∥1,τ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 . (3.24)

Namely, ∂Z,ℓG
∗
Z −→ ∂Z,ℓGZ inW−α(Ω) whenh → 0. Then we have by (1.3),

(1.5), and (1.8)

a(∂Z,ℓGZ , v) = lim
h→0

a(∂Z,ℓG
∗
Z , v) = lim

h→0
∂ℓPhv(Z). (3.25)
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From (1.11), ∥v − Phv∥1,∞ ≤ C ∥v −Πv∥1,∞ ≤ Ch ∥v∥2,∞ . That is

∥v − Phv∥1,∞ −→ 0 whenh→ 0. (3.26)

Combining (3.25) and (3.26) yields

a(∂Z,ℓGZ , v) = ∂ℓv(Z). (3.27)

The uniqueness of ∂Z,ℓGZ satisfying (3.27) can be similarly proved as that of
GZ in (3.1).

By (3.21), (3.24), and the triangular inequality, we immediately obtain the
following result (3.28).
Theorem 3.6. For ∂Z,ℓGZ and ∂Z,ℓG

h
Z defined by (3.23) and (1.7), respectively,

we have ∥∥∂Z,ℓGZ − ∂Z,ℓG
h
Z

∥∥
1,τ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 , (3.28)

where 1 < α < 5
3 −

2
q0

when 3 < q0 < 6 and 1 < α < 4
3 when q0 ≥ 6.
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Abstract

In the paper, by establishing a Riemann–Liouville fractional integral identity involving an
n-times differentiable function, the authors present some Hermite–Hadamard type inequalities
involving Riemann–Liouville fractional integrals for s-convex functions.
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1 Introduction

Throughout this paper, let R = (−∞,∞) and R0 = [0,∞), use I ⊆ R and I◦ to denote an interval
and the interior of I respectively, and utilize N to denote the set of all positive integers.

The following definition is well known in the literature.

Definition 1.1. A function f : I ⊆ R→ R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for x, y ∈ I and λ ∈ [0, 1]. If this inequality reverses, then f is said to be concave on I.

The most important inequality in the theory of convex functions, Hermite–Hadamard’s inequal-
ity, may be stated as follows. If f is a convex function on [a, b], then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
. (1.1)

1
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If f is concave on [a, b], then the inequality (1.1) is reversed. See [6], for example.
The inequality (1.1) has been generalized in many articles. Some of them may be recited as

follows.

Theorem 1.1 ([2, Theorem 2.2]). Let f : I◦ ⊆ R → R be a differentiable mapping on I◦ and
a, b ∈ I◦ with a < b. If |f ′(x)| is convex on [a, b], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ (b− a)(|f ′(a)|+|f ′(b)|)
8

.

Theorem 1.2 ([7, Theorem 1]). If f is differentiable on [a, b] such that |f ′(x)|q is a convex function
on [a, b] for q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

)1/q

.

Theorem 1.3 ([5, Theorem 2.3]). Let f : I → R be differentiable on I◦, a, b ∈ I◦ with a < b, and
p > 1. If |f ′(x)|p/(p−1) is convex on [a, b], then

∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ b− a
16

(
4

p+ 1

)1/p

×
{[
|f ′(a)|p/(p−1)+3|f ′(b)|p/(p−1)

]1−1/p
+
[
3|f ′(a)|p/(p−1)+|f ′(b)|p/(p−1)

]1−1/p}
.

For more information, please refer to [2, 5, 6, 7] and references therein.
In addition to the classical convex functions, the class of functions which are s-convex has been

introduced in [4] as follows.

Definition 1.2 ([4, p. 100]). A function f : R0 → R is said to be s-convex for some fixed s ∈ (0, 1]
if f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y) holds for all x, y ∈ R0 and t ∈ [0, 1].

It is obvious that when s = 1, the so-called s-convexity reduces to the ordinary convexity of
functions defined on R0.

Some inequalities of Hermite–Hadamard type for s-convex functions may be narrated as follows.

Theorem 1.4 ([3]). Suppose that f : R0 → R0 is a s-convex function for s ∈ (0, 1) and let a, b ∈ R0

and a < b. If f ′ ∈ L1([a, b]), then

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

s+ 1
. (1.2)

The constant 1
s+1 is the best possible in the right hand side inequality in (1.2).

Theorem 1.5 ([1]). Let f : I ⊆ R0 → R be a differentiable mapping on I◦ such that f ′ ∈ L1([a, b]),
where a, b ∈ I and a < b. If |f ′|q is s-convex on [a, b] for some fixed s ∈ (0, 1], q > 1, and p = q

q−1 ,

and if |f ′(x)|≤M , then∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) d t

∣∣∣∣≤ M

(1 + p)1/p

(
2

s+ 1

)1/q[
(x− a)2 + (b− x)2

b− a

]
, x ∈ [a, b].

2
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For more results about s-convex functions, one can see [1, 3, 4, 8] and references therein.

Definition 1.3 ([9]). Let f ∈ L1([a, b]). The Riemann–Liouville integrals Jαa+f and Jαb−f of order
α > 0 with b > a > 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) d t and Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t) d t

for x ∈ (a, b) respectively, where Γ is the classical Euler gamma function defined for Re(z) > 0 by
Γ(z) =

∫∞
0
e−uuz−1 du. Moreover, define J0

b−f(x) = J0
a+f(x) = f(x).

In the case α = 1, the fractional integral reduces to the classical and usual integral.
Very recently, Hermite–Hadamard’s inequality was extended in [9] to the case of Riemann–

Liouville fractional integrals.

Theorem 1.6 ([9, Theorem 2]). Let f : [a, b] → R be a positive function with 0 ≤ a < b and
x ∈ [a, b]. If f is a convex function on [a, b], then

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
, α > 0.

Theorem 1.7 ([9, Theorem 3]). Let f : [a, b]→ R be a differentiable mapping on (a, b) and a < b.
If |f ′| is convex on [a, b], then∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣ ≤ b− a
2(α+ 1)

(
1− 1

2α

)[
|f ′(a)|+|f ′(b)|

]
, α > 0.

Theorem 1.8 ([10, Theorem 7]). Let f : [a, b] ⊆ R0 → R be a differentiable mapping on (a, b) with
a < b such that f ′ ∈ L1([a, b]). If |f ′| is s-convex on [a, b] for some fixed s ∈ (0, 1] and |f ′(x)|≤M ,
then∣∣∣∣ (x− a)α + (b− x)α

b− a
f(x)− Γ(α+ 1)

(b− a)α
[
Jαx+f(b) + Jαx−f(a)

]∣∣∣∣
≤ M

b− a

[
1 +

Γ(α+ 1)Γ(s+ 1)

Γ(α+ s+ 1)

]
(x− a)α+1 + (b− x)α+1

α+ s+ 1
, α > 0, x ∈ [a, b].

For recent development on fractional calculus, one can see the monographs [9, 10, 11] and the
references therein.

Motivated by the above results, we establish a Riemann–Liouville fractional integral identity
involving a n-times differentiable mapping and give some new Hermite–Hadamard type inequalities
involving Riemann–Liouville fractional integrals for s-convex functions.

2 A lemma

In order to obtain our main results, we need the following lemma.

Lemma 2.1. For n ∈ N and a < b, let f : [a, b] ⊆ R0 → R be an n-times differentiable mapping
on (a, b) and α > 0. If f (n) ∈ L1([a, b]), then

3
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Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
=
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]
− (b− a)n

2

∫ 1

0

[
(−1)n−1(1− t)α+n−1 − tα+n−1

]
f (n)(ta+ (1− t)b) d t.

Proof. When n = 1, by integrating by part in the right-hand side of (2.1), we have

b− a
2

∫ 1

0

[
(1− t)α − tα

]
f ′(ta+ (1− t)b) d t

=
f(a) + f(b)

2
− α

2

∫ 1

0

[
(1− t)α−1 + tα−1

]
f(ta+ (1− t)b) d t, (2.1)

where

α

∫ 1

0

(1 − t)α−1f(ta + (1 − t)b) d t =
α

b− a

∫ b

a

(
x− a
b− a

)α−1
f(x) dx =

Γ(α+ 1)

(b− a)α
Jαb−f(a) (2.2)

and

α

∫ 1

0

tα−1f(ta + (1 − t)b) d t =
α

b− a

∫ b

a

(
b− x
b− a

)α−1
f(x) dx =

Γ(α+ 1)

(b− a)α
Jαa+f(b). (2.3)

Substituting (2.2) and (2.3) into (2.1) yields the identity (2.1) for n = 1.
When n = m − 1 and m ≥ 2, suppose that the identity (2.1) is valid. When n = m, by the

hypothesis, we have

(b− a)m

2

∫ 1

0

[
(−1)m−1(1− t)α+m−1 − tα+m−1

]
f (m)(ta+ (1− t)b) d t

=
(b− a)m−1

2

{[
f (m−1)(a) + (−1)m−1f (m−1)(b)

]
+ (α+m− 1)

∫ 1

0

[
(−1)m−2(1− t)α+m−2 − tα+m−2

]
f (m−1)(ta+ (1− t)b) d t

}
=

(b− a)m−1

2

[
f (m−1)(a) + (−1)m−1f (m−1)(b)

]
+

(α+m− 1)(b− a)m−1

2

∫ 1

0

[
(−1)m−2(1− t)α+m−2 − tα+m−2

]
f (m−1)(ta+ (1− t)b) d t

=
(b− a)m−1

2

[
f (m−1)(a) + (−1)m−1f (m−1)(b)

]
+
m−2∑
k=0

(α+m− 1)Γ(α+m− 1)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]
− (α+m− 1)Γ(α+m− 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
=
m−1∑
k=0

Γ(α+m)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]
−Γ(α+m)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
.

4
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Therefore, when n = m, the identity (2.1) holds. By induction, the proof of Lemma 2.1 is
complete.

Remark 2.1. When n = 1 in (2.1), we obtain the identity

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
=
b− a

2

∫ 1

0

[
(1− t)α − tα

]
f ′(ta+ (1− t)b) d t,

which is the identity established in [9].

3 Hermite–Hadamard type inequalities involving Riemann–
Liouville fractional integrals

Now we start out to establish some new Hermite–Hadamard type inequalities involving Riemann–
Liouville fractional integrals for s-convex functions.

Theorem 3.1. For n ∈ N and a, b ∈ R0 with a < b, let f : R0 → R be an n-times differentiable
function on R0 such that f (n) ∈ L1([a, b]). If |f (n)|q is s-convex on [a, b] for q ≥ 1 and some fixed
s ∈ (0, 1], then∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2(α+ n)1−1/q

{[
B(s+ 1, α+ n)

∣∣f (n)(a)
∣∣q+ 1

α+ n+ s

∣∣f (n)(b)∣∣q]1/q
+

[
1

α+ n+ s

∣∣f (n)(a)
∣∣q+B(s+ 1, α+ n)

∣∣f (n)(b)∣∣q]1/q},
where α > 0 and B is the classical Beta function which may be defined for Re(x) > 0 and Re(y) > 0

by B(x, y) =
∫ 1

0
tx−1(1− t)y−1 d t.

Proof. By Lemma 2.1, s-convexity of |f (n)|q, and Hölder’s inequality, we obtain∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[∫ 1

0

(1− t)α+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t+

∫ 1

0

tα+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t]
≤ (b− a)n

2

{[∫ 1

0

(1− t)α+n−1 d t

]1−1/q[∫ 1

0

(1− t)α+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣qd t]1/q
+

[∫ 1

0

tα+n−1 d t

]1−1/q[∫ 1

0

tα+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣qd t]1/q}
≤ (b− a)n

2(α+ n)1−1/q

{[∫ 1

0

(
(1− t)α+n−1ts

∣∣f (n)(a)
∣∣q+(1− t)α+n+s−1

∣∣f (n)(b)∣∣q)d t

]1/q
5
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+

[∫ 1

0

(
tα+n+s−1

∣∣f (n)(a)
∣∣q+tα+n−1(1− t)s

∣∣f (n)(b)∣∣q)d t]1/q}
=

(b− a)n

2(α+ n)1−1/q

{[
B(s+ 1, α+ n)

∣∣f (n)(a)
∣∣q+ 1

α+ n+ s

∣∣f (n)(b)∣∣q]1/q
+

[
1

α+ n+ s

∣∣f (n)(a)
∣∣q+B(s+ 1, α+ n)

∣∣f (n)(b)∣∣q]1/q}.
Theorem 3.1 is proved.

Corollary 3.1.1. Under the assumptions of Theorem 3.1,

1. when s = 1, we have∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2(α+ n)(α+ n+ 1)1/q

{[∣∣f (n)(a)
∣∣q + (α+ n)

∣∣f (n)(b)∣∣q]1/q
+
[
(α+ n)

∣∣f (n)(a)
∣∣q +

∣∣f (n)(b)∣∣q]1/q};

2. when n = 1, we have∣∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣∣ ≤ b− a
2(α+ 1)1−1/q

{[
B(s+ 1, α+ 1)

∣∣f ′(a)
∣∣q

+
1

α+ s+ 1

∣∣f ′(b)∣∣q]1/q +

[
1

α+ s+ 1

∣∣f ′(a)
∣∣q +B(s+ 1, α+ 1)

∣∣f ′(b)∣∣q]1/q};

3. when q = 1, we have∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[
B(s+ 1, α+ n) +

1

α+ n+ s

][∣∣f (n)(a)
∣∣+
∣∣f (n)(b)∣∣];

4. when s = n = q = 1, we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2(α+ 1)

[∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣].

Theorem 3.2. For n ∈ N and a, b ∈ R0 with a < b, let f : R0 → R be an n-times differentiable
function on R0 such that f (n) ∈ L1([a, b]). If |f (n)|q is s-convex on [a, b] for q > 1 and some fixed

6
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s ∈ (0, 1], then∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[
q − 1

q(α+ n)− r − 1

]1−1/q{[
B(s+ 1, r + 1)

∣∣f (n)(a)
∣∣q +

1

r + s+ 1

∣∣f (n)(b)∣∣q]1/q
+

[
1

r + s+ 1

∣∣f (n)(a)
∣∣q +B(s+ 1, r + 1)

∣∣f (n)(b)∣∣q]1/q}
for α > 0 and 0 ≤ r ≤ q(α+ n− 1).

Proof. From Lemma 2.1, s-convexity of |f (n)|q, and the Hölder’s inequality, it follows that∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[∫ 1

0

(1− t)α+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t+

∫ 1

0

tα+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t]
≤ (b− a)n

2

{[∫ 1

0

(1− t)[q(α+n−1)−r]/(q−1) d t

]1−1/q[∫ 1

0

(1− t)r
∣∣f (n)(ta+ (1− t)b)

∣∣q d t

]1/q
+

[∫ 1

0

t[q(α+n−1)−r]/(q−1) d t

]1−1/q[∫ 1

0

tr
∣∣f (n)(ta+ (1− t)b)

∣∣q d t

]1/q}
≤ (b− a)n

2

[
q − 1

q(α+ n)− r − 1

]1−1/q{[∫ 1

0

(
(1− t)rts

∣∣f (n)(a)
∣∣q + (1− t)r+s

∣∣f (n)(b)∣∣q)d t

]1/q
+

[∫ 1

0

(
tr+s

∣∣f (n)(a)
∣∣q + tr(1− t)s

∣∣f (n)(b)∣∣q)d t

]1/q}
=

(b− a)n

2

[
q − 1

q(α+ n)− r − 1

]1−1/q{[
B(s+ 1, r + 1)

∣∣f (n)(a)
∣∣q +

1

r + s+ 1

∣∣f (n)(b)∣∣q]1/q
+

[
B(1, r + s+ 1)

∣∣f (n)(a)
∣∣q +

1

r + s+ 1

∣∣f (n)(b)∣∣q]1/q}.
Theorem 3.2 is proved.

Corollary 3.2.1. Under the assumptions of Theorem 3.2,

1. if s = 1, then∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2
(
(r + 1)(r + 2)

)1/q [ q − 1

q(α+ n)− r − 1

]1−1/q
×
{[∣∣f (n)(a)

∣∣q + (r + 1)
∣∣f (n)(b)∣∣q]1/q+[(r + 1)

∣∣f (n)(a)
∣∣q +

∣∣f (n)(b)∣∣q]1/q};

7
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2. if n = 1, then∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2

[
q − 1

q(α+ 1)− r − 1

]1−1/q
×

{[
B(s+ 1, r + 1)

∣∣f ′(a)
∣∣q +

1

r + s+ 1

∣∣f ′(b)∣∣q]1/q
+

[
1

r + s+ 1

∣∣f ′(a)
∣∣q +B(s+ 1, r + 1)

∣∣f ′(b)∣∣q]1/q};

3. is s = n = 1, then∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2
[
(r + 1)(r + 2)

]1/q
×
[

q − 1

q(α+ 1)− r − 1

]1−1/q{[∣∣f ′(a)
∣∣q + (r+ 1)

∣∣f ′(b)∣∣q]1/q+[(r+ 1)
∣∣f ′(a)

∣∣q +
∣∣f ′(b)∣∣q]1/q}.

Corollary 3.2.2. Under the assumptions of Theorem 3.2,

1. when r = 0, we have∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

(s+ 1)1/q

[
q − 1

q(α+ n)− 1

]1−1/q[∣∣f (n)(a)
∣∣q +

∣∣f (n)(b)∣∣q]1/q;
2. when r = 0 and s = n = 1, we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ (b− a)

[
q − 1

q(α+ 1)− 1

]1−1/q[∣∣f ′(a)
∣∣q +

∣∣f ′(b)∣∣q
2

]1/q
;

3. when r = q, we have∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[
q − 1

q(α+ n− 1)− 1

]1−1/q{[
B(s+ 1, q + 1)

∣∣f (n)(a)
∣∣q +

1

q + s+ 1

∣∣f (n)(b)∣∣q]1/q
+

[
1

q + s+ 1

∣∣f (n)(a)
∣∣q +B(s+ 1, q + 1)

∣∣f (n)(b)∣∣q]1/q};

8
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4. when r = q and s = n = 1, we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2
[
(q + 1)(q + 2)

]1/q( q − 1

qα− 1

)1−1/q

×
{[∣∣f ′(a)

∣∣q + (q + 1)
∣∣f ′(b)∣∣q]1/q+[(q + 1)

∣∣f ′(a)
∣∣q +

∣∣f ′(b)∣∣q]1/q};

5. when r = q(α+ n− 1), we have∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

{[
B(s+ 1, q(α+ n− 1) + 1)

∣∣f (n)(a)
∣∣q +

1

q(α+ n− 1) + s+ 1

∣∣f (n)(b)∣∣q]1/q
+

[
1

q(α+ n− 1) + s+ 1

∣∣f (n)(a)
∣∣q +B(s+ 1, q(α+ n− 1) + 1)

∣∣f (n)(b)∣∣q]1/q};

6. when r = q(α+ n− 1) and s = n = 1, we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2
[
(qα+ 1)(qα+ 2)

]1/q
×
{[∣∣f ′(a)

∣∣q + (qα+ 1)
∣∣f ′(b)∣∣q]1/q+[(qα+ 1)

∣∣f ′(a)
∣∣q +

∣∣f ′(b)∣∣q]1/q}.
Theorem 3.3. For n ∈ N and a, b ∈ R0 with a < b, let f : R0 → R be an n-times differentiable
function on R0 such that f (n) ∈ L1([a, b]). If |f (n)|q is s-concave on [a, b] for q > 1 and some fixed
s ∈ (0, 1], then∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2(1−s)/q

[
q − 1

q(α+ n)− 1

]1−1/q∣∣∣∣f (n)(a+ b

2

)∣∣∣∣, α > 0.

Proof. Using Lemma 2.1 and the well-known Hölder’s inequality yields∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

2

[∫ 1

0

(1− t)α+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t+

∫ 1

0

tα+n−1
∣∣f (n)(ta+ (1− t)b)

∣∣d t]
≤ (b− a)n

2

{[∫ 1

0

(1− t)q(α+n−1)/(q−1) d t

]1−1/q[∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t

]1/q
9
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+

[∫ 1

0

tq(α+n−1)/(q−1) d t

]1−1/q[∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t

]1/q}
= (b− a)n

[
q − 1

q(α+ n)− 1

]1−1/q[∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t

]1/q
.

Since |f (n)|q is s-concave, we have∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t ≤ 2s−1

∣∣∣∣f (n)(a+ b

2

)∣∣∣∣q.
Combining the above two inequalities yields (3.3). The proof of Theorem 3.3 is complete.

Corollary 3.3.1. Under the assumptions of Theorem 3.3,

1. if s = 1, then∣∣∣∣∣ Γ(α+ n)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
−
n−1∑
k=0

Γ(α+ n)(b− a)k

2Γ(α+ k + 1)

[
f (k)(a) + (−1)kf (k)(b)

]∣∣∣∣∣
≤ (b− a)n

[
q − 1

q(α+ n)− 1

]1−1/q∣∣∣∣f (n)(a+ b

2

)∣∣∣∣;
2. if n = 1, then∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ b− a
2(1−s)/q

[
q − 1

q(α+ 1)− 1

]1−1/q∣∣∣∣f ′(a+ b

2

)∣∣∣∣;
3. if s = n = 1, then∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣≤ (b− a)

[
q − 1

q(α+ 1)− 1

]1−1/q∣∣∣∣f ′(a+ b

2

)∣∣∣∣.
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Abstract. In this paper, an uncountable infinite family of nonlinear mappings
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the Kadec-Klee property. The results obtained in this paper unify and improve

many corresponding results announced recently.
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1 Introduction

Recently, common solution problems have been intensively investigated based

on iterative methods. The so called common solution problems which capture

lots of applications in multi-disciplines such as image restoration, and radiation

therapy treatment planning are to find a special point in the intersection of a

family of convex sets, which are usually considered as solution sets of nonlinear

problems; see [1]-[15] and the references therein. Mean-valued iterative pro-

cesses, in particular, Mann iterative process and Ishikawa iterative process, are

efficient and powerful for studying fixed points of Lipschitz continuous nonlin-

ear operators. However, in the framework of infinite-dimensional Hilbert spaces,

∗Corresponding author.
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they are only weakly convergent; see [16], [17] and the references therein. In

many modern disciplines, including image recovery, economics, control theory,

and quantum physics, problems arises in the framework of infinite dimension

spaces. In such nonlinear problems, strong convergence is often much more

desirable than the weak convergence; see [18] and the references therein. To

guarantee the strong convergence of mean-valued iteration processes, many au-

thors use different regularization methods. The projection method which was

first introduced by Haugazeau [19] has been considered for the approximation

of fixed points of nonexpansive mappings. The advantage of projection meth-

ods is that strong convergence of iterative sequences can be guaranteed without

compact restrictions imposed on operators.

In this paper, we study a common solution problem via projection methods.

Strong convergence theorems of common solutions are established with the aid

of a generalized projection in a Banach space. The results obtained in this paper

mainly unify and improve the corresponding results in [20]-[30].

2 Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let BE be

the unit sphere of E. Recall that E is said to be a strictly convex space if for

all x, y ∈ BE and x 6= y, ‖x + y‖ < 2. It is said to be uniformly convex if for

any ε ∈ (0, 2] there exists δ > 0 such that for any x, y ∈ BE ,

‖x− y‖ ≥ ε implies ‖x+ y‖ ≤ 2− 2δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex;

see [31] and the references therein.

Recall that E is said to have a Gâteaux differentiable norm if for all x, y ∈
BE . limt→0(‖xt + y‖ − ‖xt ‖). In this case, we also say that E is a smooth space.

E is said to have a uniformly Gâteaux differentiable norm if for each y ∈ BE ,

the limit is attained uniformly for all x ∈ BE . E is also said to have a uniformly

Fréchet differentiable norm if the above limit is attained uniformly for x, y ∈ BE .

In this case, we say that E is uniformly smooth. It is known that a uniformly

smooth Banach space is reflexive and smooth.

Recall that normalized duality mapping J from E to 2E
∗

is defined by

Jx = {y ∈ E∗ : ‖x‖2 = 〈x, y〉 = ‖y‖2}.

It is known if E is uniformly smooth, then J is uniformly norm-to-norm contin-

uous on every bounded subset of E; if E is a strictly convex Banach space, then

2
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J is strictly monotone; if E is a smooth Banach space, then J is single-valued

and demicontinuous, i.e.,continuous from the strong topology of E to the weak

star topology of E; if E is a reflexive and strictly convex Banach space with a

strictly convex dual E∗ and J∗ : E∗ → E is the normalized duality mapping

in E∗, then J−1 = J∗; if E is a smooth, strictly convex and reflexive Banach

space, then J is single-valued, one-to-one and onto.

Recall that E has the Kadec-Klee Property (KKP) if limm→∞ ‖xm−x‖ = 0,

for any sequence {xm} ⊂ E, and x ∈ E with {xn} converges weakly to x, and

{‖xn‖} converges strongly to ‖x‖. It is known that every uniformly convex

Banach space has the KKP; see [31] and the references therein.

Let C be a nonempty closed and convex subset of E and let B : C ×C → R
be a function. Recall that the following equilibrium problem in the terminology

of Blum and Oettli [32]. Find x̄ ∈ C such that B(x̄ y) ≥ 0, ∀y ∈ C. We

use Sol(B) to denote the solution set of the equilibrium problem. That is,

Sol(B) = {x ∈ C : B(x, y) ≥ 0, ∀y ∈ C}.
The following restrictions are essential for solving the equilibrium problem

in this paper.

(R-1) B(a, a) ≡ 0,∀a ∈ C;

(R-2) B(b, a) +B(a, b) ≤ 0,∀a, b ∈ C;

(R-3) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(R-4) b 7→ B(a, b) is convex and weakly lower semi-continuous, ∀a ∈ C.

Let T be a self mapping on C. T is said to be closed if for any sequence

{xn} ⊂ C such that limn→∞ xn = x̄ and limm→∞ Txn = ȳ, then ȳ = T x̄. Let B

be a bounded subset of C. Recall that T is said to be uniformly asymptotically

regular on C if and only if lim supn→∞ supx∈B{‖Tnx−Tn+1x‖} = 0. From now

on, we use→ and ⇀ to stand for the strong convergence and weak convergence,

respectively. and use Fix(T ) to denote the fixed point set of mapping T .

Recall that a point p is said to be an asymptotic fixed point of mapping T if

and only if subset C contains a sequence {xm} which converges weakly to p such

that limm→∞ ‖Txm − xm‖ = 0. We use F̃ ix(T ) to stand for the asymptotic

fixed point set in this paper.

Next, we assume that E is a smooth Banach space which means duality

mapping J is single-valued. Study the functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

3
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In [33], Alber studied a generalized projection ProjC : E → C, which is a

mapping assigning to an arbitrary point x ∈ E the minimum point of φ(x, y),

which implies from the definition of φ φ(x, y)+2‖x‖‖y‖ ≥ ‖x‖2+‖y‖2, ∀x, y ∈ E.
T is said to be relatively nonexpansive iff

φ(p, x) ≥ φ(p, Tx), ∀x ∈ C,∀p ∈ F̃ ix(T ) = Fix(T ) 6= ∅.

T is said to be relatively asymptotically nonexpansive iff

φ(p, x) + ξnφ(p, x) ≥ φ(p, Tnx), ∀x ∈ C,∀p ∈ Fix(T ) = F̃ ix(T ) 6= ∅,∀n ≥ 1,

where {ξn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.

Remark 2.1. The class of relatively asymptotically nonexpansive mappings,

which was first considered in [34], covers the class of relatively nonexpansive

mappings [35].

T is said to be quasi-φ-nonexpansive iff

φ(p, x) ≥ φ(p, Tx), ∀x ∈ C,∀p ∈ Fix(T ) 6= ∅.

T is said to be asymptotically quasi-φ-nonexpansive if and only if there exists

a sequence {ξn} ⊂ [0,∞) with µn → 0 as n→∞ such that

φ(p, x) + ξnφ(p, x) ≥ φ(p, Tnx), ∀x ∈ C,∀p ∈ Fix(T ) 6= ∅,∀n ≥ 1.

Remark 2.2. The class of quasi-φ-nonexpansive mappings [26] and the class

of asymptotically quasi-φ-nonexpansive mappings [27] cover the class of rela-

tively nonexpansive mappings and the class of relatively asymptotically nonex-

pansive mappings. Quasi-φ-nonexpansive mappings and asymptotically quasi-

φ-nonexpansive mappings do not require the strong restriction that the fixed

point set equals the asymptotic fixed point set.

Remark 2.3. The class of quasi-φ-nonexpansive mappings and the class of

asymptotically quasi-φ-nonexpansive mappings are generalizations of the class of

quasi-nonexpansive mappings and the class of asymptotically quasi-nonexpansive

mappings in Banach spaces because of
√
φ(x, y) = ‖x− y‖.

The following lemmas also play an important role in this paper.

Lemma 2.4. [33] Let E be a strictly convex, reflexive, and smooth Banach

space and let C be a nonempty, closed, and convex subset of E. Let x ∈ E.

Then

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x), ∀y ∈ C,

4
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〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C if and only if x0 = ΠCx.

Lemma 2.5. ([26], [32]) Let E be a strictly convex, smooth, and reflexive

Banach space and let C be a closed convex subset of E. Let B be a function

with the restrictions (R-1), (R-2), (R-3) and (R-4), from C×C to R. Let x ∈ E
and let r > 0. Then there exists z ∈ C such that rB(z, y)+ 〈z−y, Jz−Jx〉 ≤ 0,

∀y ∈ C Define a mapping KB,r by

KB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

The following conclusions hold:

(1) KB,r is single-valued quasi-φ-nonexpansive;

(2) Sol(B) = Fix(KB,r) is closed and convex.

Lemma 2.6 [36] Let E be a strictly convex and uniformly smooth Banach space

which also has the KKP. Let C be a convex and closed subset of E and let T be

an asymptotically quasi-φ-nonexpansive mapping on C. Fix(T ) is convex.

Lemma 2.7 [37] Let r be a positive real number and let E be uniformly convex.

Then there exists a convex, strictly increasing and continuous function cof :

[0, 2r]→ R such that cof(0) = 0 and

t‖a‖2 + (1− t)‖b‖2 ≥ ‖(1− t)b+ ta‖2 + t(1− t)cof(‖b− a‖)

for all t ∈ [0, 1] and a, b ∈ Br := {a ∈ E : ‖a‖ ≤ r}.

3 Main results

Theorem 3.1. Let E be a strictly convex and uniformly smooth Banach space

which also has the KKP. Let C be a convex and closed subset of E and let Λ be

an arbitrary index set. Let Bi be a bifunction with (R-1), (R-2), (R-3) and (R-

4). Let Ti be an asymptotically quasi-φ-nonexpansive mapping on C for every

i ∈ Λ. Assume that Ti is uniformly asymptotically regular and closed for every

i ∈ Λ and ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) is nonempty and bounded. Let {xj} be a

5
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sequence generated by

x0 ∈ E chosen arbitrarily,

C(1,i) = C,∀i ∈ Λ,

C1 = ∩i∈ΛC(1,i), x1 = ProjC1
x0,

Jy(j,i) = α(j,i)JT
j
i xj + (1− α(j,i))Ju(j,i),

C(j+1,i) = {z ∈ C(j,i) : φ(z, y(j,i))− φ(z, xj) ≤ α(j,i)ξ(j,i)D(j,i)},

Cj+1 = ∩i∈ΛC(j+1,i), xj+1 = ProjCj+1
x1,

where u(j,i) is such that r(j,i)Bi(u(j,i), µ) ≥ 〈u(j,i) − µ, Ju(j,i) − Jxj〉, ∀µ ∈
Cj , D(j,i) = sup{φ(z, xj) : z ∈ ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi)}, {α(j,i)} is a real

sequence in (0, 1) such that lim infj→∞ α(j,i)(1−α(j,i)) > 0 and {r(j,i)} ⊂ [r,∞)

is a real sequence, where r is some positive real number. Then {xj} converges

strongly to Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

Proof. First, we prove ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) is convex and closed. Using

Lemma 2.5 and 2.6, we find that Sol(Bi) is convex and closed and Fix(Ti) is

convex for every i ∈ Λ. Since Ti is closed, we find that Fix(Ti) is also closed.

So, Proj∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti)x is well defined, for any element x in E.

Next, we prove that Cj is convex and closed. It is obvious that C(1,i) =

C is convex and closed. Assume that C(m,i) is convex and closed for some

m ≥ 1. Let p1, p2 ∈ C(m+1,i). It follows that p = sp1 + (1 − s)p2 ∈ C(m,i),

where s ∈ (0, 1). Notice that φ(p1, y(m,i))− φ(p1, xm) ≤ α(m,i)ξ(m,i)D(m,i), and

φ(p2, y(m,i))− φ(p2, xm) ≤ α(m,i)ξ(m,i)D(m,i). Hence, one has

2〈p1, Jxm − Jy(m,i)〉 − ‖xm‖2 + ‖y(m,i)‖2 ≤ α(m,i)ξ(m,i)D(m,i),

and

2〈p2, Jxm − Jy(m,i)〉 − ‖xm‖2 + ‖y(m,i)‖2 ≤ α(m,i)ξ(m,i)D(m,i).

Using the above two inequalities, one has φ(p, y(m,i))−φ(p, xm) ≤ α(m,i)ξ(m,i)D(m,i).

This shows that C(m+1,i) is closed and convex. Hence, Cj = ∩i∈ΛC(j,i) is a con-

vex and closed set. This proves that ProjCj+1
x1 is well defined.

On the other hand, we find that ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) ⊂ C1 = C

is clear. Suppose that ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) ⊂ C(m,i) for some positive

6
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integer m. For any w ∈ ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) ⊂ C(m,i), we see that

φ(z, y(m,i)) = ‖z‖2 + ‖α(m,i)JT
m
i xm + (1− α(m,i))Ju(m,i)‖2

− 2〈z, α(m,i)JT
m
i xm + (1− α(m,i))Ju(m,i)〉

≤ ‖z‖2 + α(m,i)‖Tm
i xm‖2 + (1− α(m,i))‖u(m,i)‖2

− 2α(m,i)〈z, JTm
i xm〉 − 2(1− α(m,i))〈z, Ju(m,i)〉

≤ φ(z, xm) + α(m,i)ξ(m,i)D(m,i),

where D(m,i) = sup{φ(z, xm) : z ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)}. This shows

that z ∈ C(m+1,i). This implies that ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) ⊂ ∩i∈ΛC(j,i) =

Cj . Using Lemma 2.4, one has 〈z−xj , Jx1−Jxj〉 ≤ 0, for any z ∈ Cj . It follows

that

〈z − xj , Jx1 − Jxj〉 ≤ 0, ∀z ∈ ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) ⊂ Cj . (3.1)

Using Lemma 2.4 yields that

φ(xj , x1) ≤ φ(Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1, x1)

− φ(Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1, xj),

which shows that {φ(xj , x1)} is bounded. Hence, {xj} is also bounded. Without

loss of generality, we assume xj ⇀ x̄ ∈ Cj . Hence φ(xj , x1) ≤ φ(x̄, x1). This

implies that

φ(x̄, x1) ≤ lim inf
j→∞

(‖xj‖2 + ‖x1‖2 − 2〈xj , Jx1〉) = lim sup
j→∞

φ(xj , x1) ≤ φ(x̄, x1).

It follows that limj→∞ φ(xj , x1) = φ(x̄, x1). Hence, we have limj→∞ ‖xj‖ = ‖x̄‖.
Using the KKP, one obtains that {xj} converges strongly to x̄ as j → ∞.
On the other hand, we find that φ(xj+1, x1) ≥ φ(xj , x1), which shows that

{φ(xj , x1)} is nondecreasing. It follows that limj→∞ φ(xj , x1) exists. Since

φ(xj+1, x1) − φ(xj , x1) ≥ φ(xj+1, xj), one has limj→∞ φ(xj+1, xj) = 0. Since

xj+1 ∈ Cj+1, one sees that φ(xj+1, y(j,i))−φ(xj+1, xj) ≤ α(j,i)ξ(j,i)D(j,i). It fol-

lows that limj→∞ φ(xj+1, y(j,i)) = 0.Hence, one has limj→∞(‖y(j,i)‖−‖xj+1‖) =

0. This implies that limj→∞ ‖Jy(j,i)‖ = limj→∞ ‖y(j,i)‖ = ‖x̄‖ = ‖Jx̄‖. This

implies that {Jy(j,i)} is bounded. Without loss of generality, we assume that

{Jy(j,i)} converges weakly to y(∗,i) ∈ E∗. In view of the reflexivity of E, we see

that J(E) = E∗. This shows that there exists an element yi ∈ E such that Jyi =

y(∗,i). It follows that φ(xj+1, y(j,i))+2〈xj+1, Jy(j,i)〉 = ‖xj+1‖2+‖Jy(j,i)‖2. Tak-

ing lim infj→∞, one has 0 ≥ ‖x̄‖2 − 2〈x̄, y(∗,i)〉 + ‖y(∗,i)‖2 = ‖x̄‖2 + ‖Jyi‖2 −
2〈x̄, Jyi〉 = φ(x̄, yi) ≥ 0. That is, x̄ = yi, which in turn implies that Jx̄ = y(∗,i).

7
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Hence, Jy(j,i) ⇀ Jx̄ ∈ E∗. Since E∗ is uniformly convex. Hence, it has the

KKP, we obtain limi→∞ Jy(j,i) = Jx̄. Since J−1 : E∗ → E is demi-continuous

and E has the KKP, one gets that y(j,i) → x̄, as j →∞. Using the fact

φ(z, xj)− φ(z, y(j,i)) ≤ (‖xj‖+ ‖y(j,i)‖)‖y(j,i) − xj‖+ 2〈z, Jy(j,i) − Jxj〉,

we find

lim
j→∞

(
φ(z, xj)− φ(z, y(j,i))

)
= 0. (3.2)

On the other hand, one sees from Lemma 2.7

φ(z, y(j,i)) = ‖z‖2 + ‖α(j,i)JT
j
i xj + (1− α(j,i))Ju(j,i)‖2

− 2〈z, α(j,i)JT
j
i xj + (1− α(j,i))Ju(j,i)〉

≤ ‖z‖2 + α(j,i)‖T j
i xj‖

2 + (1− α(j,i))‖u(j,i)‖2

− α(j,i)(1− α(j,i))cof(‖|Ju(j,i) − JT j
i xj‖)

− 2α(j,i)〈z, JT j
i xj〉 − 2(1− α(j,i))〈z, Ju(j,i)〉

≤ φ(z, xj) + α(j,i)ξ(j,i)D(j,i) − α(j,i)(1− α(j,i))cof(‖|Ju(j,i) − JT j
i xj‖).

This implies

α(j,i)(1− α(j,i))cof(‖|Ju(j,i) − JT j
i xj‖)

≤ φ(z, xj)− φ(z, y(j,i)) + α(j,i)ξ(j,i)D(j,i).

Using the restriction imposed on the sequence {α(j,i)} and (3.2), one has

lim
j→∞

‖|Ju(j,i) − JT j
i xj‖ = 0.

It follows that JT j
i xj → Jx̄ as j →∞. Since J−1 : E∗ → E is demi-continuous,

one has T j
i xj ⇀ x̄. Using the fact |‖T j

i xj‖ − ‖x̄‖| = |‖JT j
i xj‖ − ‖Jx̄‖| ≤

‖JT j
i xj − Jx̄‖, one has ‖T j

i xj‖ → ‖x̄‖ as j → ∞. Since E has the KKP, one

has limj→∞ ‖|x̄− T j
i xj‖ = 0. Since Ti is also uniformly asymptotically regular,

one has limj→∞ ‖x̄−T j+1
i xj‖ = 0. That is, Ti(T

j
i xj)→ x̄. Using the closedness

of Ti, we find Tix̄ = x̄. This proves x̄ ∈ Fix(Ti), that is, x̄ ∈ ∩i∈ΛFix(Ti).

Next, we show that x̄ ∈ ∩i∈ΛSol(Bi). Since Bi is monotone, we find that

r(j,i)Bi(µ, u(j,i)) ≤ ‖µ− u(j,i)‖‖Ju(j,i) − Jxj‖.

Therefore, one sees Bi(µ, x̄) ≤ 0. For 0 < ti < 1, define µ(t,i) = (1− ti)x̄+ tiµ.

This implies that 0 ≥ Bi(µ(t,i), x̄). Hence, we have 0 = Bi(µ(t,i), µ(t,i)) ≤
tiBi(µ(t,i), µ). It follows that Bi(x̄, µ) ≥ 0, ∀µ ∈ C. This implies that x̄ ∈
Sol(Bi) for every i ∈ Λ.

8
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Finally, we prove x̄ = Proj∩i∈Λ(Fix(Ti)∩Sol(Bi))x1. Using (3.1), one has 〈x̄−
z, Jx1 − Jx̄〉 ≥ 0 z ∈ ∩i∈Λ(Fix(Ti) ∩ Sol(Bi)). Using Lemma 2.4, we find that

x̄ = Proj∩i∈Λ(Fix(Ti)∩Sol(Bi))x1. This completes the proof.

For the class of quasi-φ-nonexpansive mappings, the boundedness of the

common solution set is not required. Indeed, we have the following result.

Corollary 3.2. Let E be a strictly convex and uniformly smooth Banach space

which also has the KKP. Let C be a convex and closed subset of E and let Λ

be an arbitrary index set. Let Bi be a bifunction with (R-1), (R-2), (R-3) and

(R-4). Let Ti be a quasi-φ-nonexpansive mapping on C for every i ∈ Λ. Assume

that Ti is closed for every i ∈ Λ and ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) is nonempty.

Let {xj} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C(1,i) = C,∀i ∈ Λ,

C1 = ∩i∈ΛC(1,i), x1 = ProjC1x0,

Jy(j,i) = α(j,i)JTixj + (1− α(j,i))Ju(j,i),

C(j+1,i) = {z ∈ C(j,i) : φ(z, y(j,i)) ≤ φ(z, xj)},

Cj+1 = ∩i∈ΛC(j+1,i), xj+1 = ProjCj+1x1,

where u(j,i) is such that r(j,i)Bi(u(j,i), µ) ≥ 〈u(j,i) − µ, Ju(j,i) − Jxj〉, ∀µ ∈
Cj , D(j,i) = sup{φ(z, xj) : z ∈ ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi)}, {α(j,i)} is a real

sequence in (0, 1) such that lim infj→∞ α(j,i)(1−α(j,i)) > 0 and {r(j,i)} ⊂ [r,∞)

is a real sequence, where r is some positive real number. Then {xj} converges

strongly to Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

From Theorem 3.1, we also have the following result.

Corollary 3.3. Let E be a strictly convex and uniformly smooth Banach space

which also has the KKP. Let C be a convex and closed subset of E and let B

be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let T be an asymptotically

quasi-φ-nonexpansive mapping on C. Assume that T is uniformly asymptotically

regular and closed and Sol(B) ∩ Fix(T ) is nonempty and bounded. Let {xj} be

9
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a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1
x0,

Jyj = αjJT
jxj + (1− αj)Juj ,

Cj+1 = {z ∈ Cj : φ(z, yj)− φ(z, xj) ≤ αjξjDj},

xj+1 = ProjCj+1
x1,

where uj is such that rjB(uj , µ) ≥ 〈uj − µ, Juj − Jxj〉, ∀µ ∈ Cj , Dj =

sup{φ(z, xj) : z ∈ Fix(T ) ∩ Sol(B)}, {αj} is a real sequence in (0, 1) such that

lim infj→∞ αj(1−αj) > 0 and {rj} ⊂ [r,∞) is a real sequence, where r is some

positive real number. Then {xj} converges strongly to ProjFix(T )∩Sol(B)x1.

4 Applications

In this section, we consider common solutions of a family of variational inequal-

ities in the framework Banach spaces. we give some deduced results of our main

results in the framework of Hilbert spaces.

Let A : C → E∗ be a single valued monotone operator which is continuous

along each line segment in C with respect to the weak∗ topology of E∗ (hemicon-

tinuous). Recall the the following variational inequality. Finding a point x ∈ C
such that 〈x−y,Ax〉 ≤ 0, ∀y ∈ C. The symbol Nc(x) stand for the normal cone

for C at a point x ∈ C; that is, Nc(x) = {x∗ ∈ E∗ : 〈x − y, x∗〉 ≥ 0, ∀y ∈ C}.
From now on, we use V I(C,A) to denote the solution set of the variational

inequality.

Theorem 4.1. Let E be a strictly convex and uniformly smooth Banach space

which also has the KKP. Let C be a convex and closed subset of E. Let Λ be an

index set and let Ai : C → E∗ be a single valued, monotone and hemicontinuous

operator. Let Bi be a bifunction with (R-1), (R-2), (R-3) and (R-4). Assume

that ∩i∈ΛV I(C,Ai) is not empty. Let {xn} be a sequence generated in the

10
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following process.

x0 ∈ E chosen arbitrarily,

C(1,i) = C,∀i ∈ Λ,

C1 = ∩i∈ΛC(1,i), x1 = ProjC1
x0,

u(n,i) = V I(C,Ai + 1
ri

(J − Jxn)),

Jy(j,i) = α(j,i)Jxj + (1− α(j,i))Ju(j,i),

C(j+1,i) = {z ∈ C(j,i) : φ(z, y(j,i)) ≤ φ(z, xj)},

Cj+1 = ∩i∈ΛC(j+1,i), xj+1 = ProjCj+1
x1,

where {α(j,i)} is a real sequence in (0, 1) such that lim infj→∞ α(j,i)(1−α(j,i)) >

0. Then {xj} converges strongly to Proj∩i∈ΛV I(C,Ai)x1.

Proof. Define a new operator Mi by Mix = Aix+Nc(x), x ∈ C, Mix = ∅, x /∈
C. Hence, Mi is maximal monotone and M−1

i (0) = V I(C,Ai), where M−1
i (0)

stand for the zero point set of Mi. For each ri > 0, and x ∈ E, we see that

there exists a unique xri in the domain of Mi such that Jx ∈ Jxri + riMi(xri),

where xri = (J + riMi)
−1Jx. Notice that uj,i = V I(C, 1

ri
(J − Jxj) + Ai),

which is equivalent to 〈uj,i − y,Aizj,i + 1
ri

(Jzj,i − Jxj)〉 ≤ 0, ∀y ∈ C, that is,
1
ri

(
Jxj − Juj,i

)
∈ Nc(uj,i) + Aizj,i. This implies that uj,i = (J + riMi)

−1Jxj .

From [26], we find that (J + riMi)
−1J is closed quasi-φ-nonexpansive with

Fix((J + riMi)
−1J) = M−1

i (0). Using Theorem 3.1, we find the desired con-

clusion immediately.

Theorem 4.2. Let E be a Hilbert. Let C be a convex and closed subset of E

and let Λ be an arbitrary index set. Let Bi be a function with (R-1), (R-2),

(R-3) and (R-4). Let Ti be an asymptotically quasi-nonexpansive mapping on C

for every i ∈ Λ. Assume that Ti is uniformly asymptotically regular and closed

for every i ∈ Λ and ∩i∈ΛSol(Bi)
⋂
∩i∈ΛFix(Ti) is nonempty and bounded. Let

{xj} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C(1,i) = C,∀i ∈ Λ,

C1 = ∩i∈ΛC(1,i), x1 = PC1
x0,

y(j,i) = α(j,i)T
j
i xj + (1− α(j,i))u(j,i),

C(j+1,i) = {z ∈ C(j,i) : ‖z − y(j,i)‖2 − ‖z − xj‖2 ≤ α(j,i)ξ(j,i)D(j,i)},

Cj+1 = ∩i∈ΛC(j+1,i), xj+1 = PCj+1
x1,

where u(j,i) is such that r(j,i)Bi(u(j,i), µ) ≥ 〈u(j,i) − µ, u(j,i) − xj〉, ∀µ ∈ Cj ,

D(j,i) = sup{‖z − xj‖2 : z ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)}, {α(j,i)} is a real

11
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sequence in (0, 1) such that lim infj→∞ α(j,i)(1−α(j,i)) > 0 and {r(j,i)} ⊂ [r,∞)

is a real sequence, where r is some positive real number. Then {xj} converges

strongly to P∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

Proof. In the framework of Hilbert spaces, we see that
√
φ(x, y) = ‖x − y‖,

∀x, y ∈ E. The generalized projection is reduced to the metric projection and

the asymptotically-φ-nonexpansive mapping is reduced to the asymptotically

quasi-nonexpansive mapping. Using Theorem 3.1, we find the desired conclusion

immediately.
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Abstract. In this paper, motivated by some results of Dyakonov, we give
an inner-outer factorization on Besov-type spaces.
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1 Introduction

We denote the unit disc {z ∈ C : |z| < 1} by D and its boundary by ∂D. Let
H(D) be the space of all analytic functions in D. For 0 < p < ∞, the Hardy
space Hp is the set of f ∈ H(D) for which

∥f∥pHp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

As usual, H∞ is the set of f ∈ H(D) with ∥f∥∞ = supz∈D |f(z)| <∞ (see [5]).
For 0 < p, q < ∞ and 0 < s < 1, the Besov-type space, denoted by Bs

pq, is
the set of functions f ∈ Lp(∂D) such that∫ ∞

0

ωp(t, f)qdt

|t|sq+1
<∞,

where

ωp(t, f)p := sup
−t≤h≤t

∫
∂D
|f(eihζ)− f(ζ)|pdm(ζ), 0 ≤ t ≤ π

and
ωp(t, f) := ωp(π, f) when π < t <∞.

Here dm is the normalized Lebesgue measure on ∂D.
The analytic Besov space, denoted by ABs

pq = Bs
pq ∩ Hp, is the space of

functions f ∈ Hp such that∫ 1

0

(1− r)(1−s)q−1

(∫
∂D
|f ′(rζ)|pdm(ζ)

) q
p

dr <∞.
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We refer the reader to [2], [3], [4] and [10]. For the simplicity of notation, we
denote Bs

pp and ABs
pp by Bs

p and ABs
p, respectively.

Let 0 < p, s <∞, −2 < q <∞. An f ∈ H(D) is said to belong to F (p, q, s)
if (see [24])

∥f∥pp,q,s = sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) <∞,

where g(z, a) = log 1
|φa(z)| , z, a ∈ D, z ̸= a, φa(z) = a−z

1−az , dA(z) = 1
πdxdy.

F (p, q, s) is called general function space because it can get many function
spaces if it takes special parameters of p, q, s. For example, when s > 1,

F (p, q, s) = B
q+2
p , which is called the Bloch-type space; F (2, 0, s) = Qs (see

[23]); F (2, 0, 1) = BMOA, the space of analytic functions in the Hardy s-
pace H1(D) whose boundary functions have bounded mean oscillation (see
[13, 14, 19]). It is easy to see that F (p, p−2, s) is a Möbius invariant Besov-type
space. In fact, from [17], we know that f ∈ F (p, p− 2, s) if and only if

sup
a∈D
∥f ◦ φa − f(a)∥

AB
1−s
p

p

<∞

when 0 < p, s <∞ and F (p, p−2, s) ⊆ BMOA when 1 ≤ p <∞ and 0 < s < 1.
For a sequence {zn} in D with

∑∞
n=1(1 − |zn|) < ∞, the Blaschke product

is defined by

B(z) =
∞∏

n=1

−zn
|zn|

z − zn
1− zzn

.

If for every bounded sequence of complex numbers {an}, there exists an f ∈ H∞

such that f(zn) = an for every n, then both the sequence {zn} and the Blaschke
product B are called interpolating. A Blaschke product B is called Carleson-
Newman if B is a product of finitely many interpolating Blaschke products.
Products of finitely many interpolating Blaschke products is an important tool
in the study of H∞, see [13].

An f ∈ H(D) is called an inner function if it is bounded and has boundary
values of modulus 1 almost everywhere on ∂D. It is obvious that every Blaschke
product is an inner function. For an inner function θ and ϵ ∈ (0, 1), define the
level set of order ϵ of θ as

Ω(θ, ϵ) = {z ∈ D : |θ(z)| < ϵ}.

We refer to [1, 12, 15, 16, 20] for more information about inner function.
A function g ∈ H(D) is said to be an outer function if there exists a positive

function h with log h ∈ L1(∂D) and a complex number C with |C| = 1 such
that

g(z) := C exp

(
1

2π

∫ 2π

0

log h(eit)
eit + z

eit − z
dt

)
.

Moreover, for almost all ζ ∈ ∂D, h(ζ) = |g(ζ)|.
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It is well known that each f ∈ Hp has a unique factorization θg, where θ is
an inner function and g is an outer function. Hence if we fix a function f ∈ Hp,
there must have some relationship between θ and g. Dyakonov obtained many
results on inner-outer factorization and characterized the moduli of analytic
functions in D whose boundary values belong to certain smoothness classes. For
many nice results about this topic, we refer to [6, 7, 9, 11, 22]. The following
result can be found in [7, Theorem 1].

Theorem A. If f ∈ BMOA and θ is an inner function, then the following
conditions are equivalent:

(1) fθ ∈ BMOA;

(2) supz∈D |f(z)|2(1− |θ(z)|2) <∞;

(3) supz∈Ω(θ, ϵ) |f(z)| <∞, for every ϵ, 0 < ϵ < 1;

(4) supz∈Ω(θ, ϵ) |f(z)| <∞, for some ϵ, 0 < ϵ < 1.

In this paper, we extend Theorem A from BMOA to a more general spaces
F (p, p− 2, s) and give the similar theorem as Theorem A.

Theorem 1. Let 1 ≤ p < ∞ and 0 < s < 1. If f ∈ F (p, p − 2, s) and θ ∈
F (p, p− 2, s) is an inner function, then the following statements are equivalent:

(1) fθ ∈ F (p, p− 2, s);

(2) supz∈D |f(z)|2(1− |θ(z)|2) <∞;

(3) supz∈Ω(θ, ϵ) |f(z)| <∞, for every ϵ, 0 < ϵ < 1;

(4) supz∈Ω(θ, ϵ) |f(z)| <∞, for some ϵ, 0 < ϵ < 1.

For more general Besov space, we have the following result.

Theorem 2. Suppose that 2 ≤ p < ∞, 0 < q < ∞ and 0 < s < 1
2 . If

f ∈ ABs
pq ∩ BMOA and θ ∈ ABs

pq is an inner function, then the following
statements are equivalent:

(1) fθ ∈ ABs
pq ∩BMOA;

(2) supz∈D |f(z)|2(1− |θ(z)|2) <∞;

(3) supz∈Ω(θ, ϵ) |f(z)| <∞, for every ϵ, 0 < ϵ < 1;

(4) supz∈Ω(θ, ϵ) |f(z)| <∞, for some ϵ, 0 < ϵ < 1.

Throughout this paper, for two functions f and g, f ≍ g means that g . f .
g, that is, there are positive constants C1 and C2, such that C1g ≤ f ≤ C2g.
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2 Proof of main results

In this section, we will give the proof of main results in this paper. To prove
Theorem 1, we need the following lemmas.

Lemma 1. ([21, Theorem 1.4]) Let 0 < s < 1. Then an inner function belongs
to the Möbius invariant Besov-type space F (p, p−2, s) for all p > max{s, 1− s}
if and only if it is the Blaschke product associated with a sequence {ak}∞k=1 which
satisfies

sup
a∈D

∞∑
k=1

(1− |φa(ak)|2)s <∞.

Lemma 2. ([18, Lemma 21]) Let {ak}∞k=1 be a sequence in D. Then the measure
dµak

=
∑∞

k=1(1− |ak|2)δak
is a Carleson measure, i.e.

sup
a∈D

∞∑
k=1

(1− |φa(ak)|2) <∞,

if and only if {ak}∞k=1 is a finite union of uniformly separated sequences.

Lemma 3. Let 1 ≤ p < ∞, 0 < s < 1, f ∈ F (p, p − 2, s) and B be a
Carleson-Newman Blaschke product with a sequence of zeros {ak}∞k=1. Then
fB ∈ F (p, p− 2, s) if and only if

sup
a∈D

∞∑
k=1

|f(ak)|p(1− |φa(ak)|2)s <∞.

Proof. Necessity. The proof is similar to the proof of [17, Lemma 2.6].
Sufficiency. Let B be a Carleson-Newman Blaschke products with zeros

{ak}∞k=1. Suppose that B =
∏n

i=1Bi, Bi is an interpolating Blaschke products
with zeros {ai,k}∞k=1 and

{ak}∞k=1 =
n∪

i=1

{ai,k}∞k=1.

It is easy to see that

sup
a∈D

∞∑
k=1

|f(ai,k)|p(1− |φa(ai,k)|2)s ≤ sup
a∈D

∞∑
k=1

|f(ak)|p(1− |φa(ak)|2)s <∞.

Since f ∈ F (p, p − 2, s), ρ(w, z) = ρ(φa(w), φa(z)), Bi ◦ φa is an interpolat-
ing Blachke products with zeros {φa(ai,k)}∞k=1. By [8, Theorem 8] and its
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remark (1), we have

sup
a∈D
∥P−

(
(f ◦ φa) ·Bi ◦ φa

)
∥p
B

1−s
p

p

. sup
a∈D

∑ |f ◦ φa(φa(ai,k))|p

(1− |φa(ai,k)|2)
1−s
p p−1

= sup
a∈D

∞∑
k=1

|f(ai,k)|p(1− |φa(ai,k)|2)s.

Combine with [20, Theorem 5], we get

sup
a∈D
∥f ◦ φa − f(a)∥p

AB
1−s
p

p

+ sup
a∈D
∥(fBi) ◦ φa − f(a)Bi(a)∥p

AB
1−s
p

p

≈ sup
a∈D
∥f ◦ φa − f(a)∥p

B
1−s
p

p

+ sup
a∈D
∥(fBi) ◦ φa − f(a)Bi(a)∥p

B
1−s
p

p

≈ sup
a∈D
∥f ◦ φa − f(a)∥p

B
1−s
p

p

+ sup
a∈D
∥P−

(
(f ◦ φa) ·Bi ◦ φa

)
∥p
B

1−s
p

p

. sup
a∈D
∥f ◦ φa − f(a)∥p

B
1−s
p

p

+ sup
a∈D

∞∑
k=1

|f(ai,k)|p(1− |φa(ai,k)|2)s

≈ sup
a∈D
∥f ◦ φa − f(a)∥p

AB
1−s
p

p

+ sup
a∈D

∞∑
k=1

|f(ai,k)|p(1− |φa(ai,k)|2)s.

Thus,

sup
a∈D
∥(fBi) ◦ φa − f(a)Bi(a)∥p

AB
1−s
p

p

. sup
a∈D

∞∑
k=1

|f(ai,k)|p(1− |φa(ai,k)|2)s + sup
a∈D
∥f ◦ φa − f(a)∥p

AB
1−s
p

p

.

Since f ∈ F (p, p− 2, s), by Lemma 2.1 in [17], we have

fBi ∈ F (p, p− 2, s), i = 1, ..., n.

By inductive, we have

(fB)′(z) =

n∑
j=1

(fBj)
′(z)

n∏
i=1,i̸=j

Bi(z)− (n− 1)f ′(z)

n∏
i=1

Bi(z).

Hence,

|(fB)′(z)| ≤
n∑

j=1

|(fBj)
′(z)|+ (n− 1)|f ′(z)|, z ∈ D.

Notice that f ∈ F (p, p−2, s), fBi ∈ F (p, p−2, s), combine with p-inequality, we
obtain fB ∈ F (p, p− 2, s). The proof is complete.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1154 Ruishen Qian et al 1150-1157



Proof of Theorem 1. (1) ⇒ (3) ⇒ (4) ⇒ (2). Since f ∈ F (p, p − 2, s) ⊆
BMOA, fθ ∈ F (p, p − 2, s) ⊆ BMOA. From Theorem A, we easily get our
result.

(2)⇒ (1). Assume that (2) holds. Since θ ∈ F (p, p− 2, s), by Lemma 1, we
see that θ is a Blaschke product with zeros {ak}∞k=1, and

sup
a∈D

∞∑
k=1

(1− |φa(ak)|2)s <∞, 0 < s < 1,

which implies that

sup
a∈D

∞∑
k=1

(1− |φa(ak)|2) <∞.

From Lemma 2, we get that θ is a Carleson-Newman Blaschke product. Since
f ∈ F (p, p−2, s) ⊆ BMOA, by the assumption that supz∈D |f(z)|2(1−|θ(z)|2) <
∞ and Theorem A, we see that fθ ∈ BMOA. Theorem A gives

sup
z∈Ω(θ, ϵ)

|f(z)| <∞, 0 < ϵ < 1,

which implies that supk |f(ak)| <∞. Thus,

sup
a∈D

∞∑
k=1

|f(ak)|p(1− |φa(ak)|2)s

≤ sup
k
|f(ak)|p sup

a∈D

∞∑
k=1

(1− |φa(ak)|2)s <∞.

Applying Lemma 3, we see that fθ ∈ F (p, p− 2, s). The proof is complete.

Proof of Theorem 2. (1) ⇒ (3) ⇒ (4) ⇒ (2). The proof is similar to
Theorem 1 and hence we omit the details.

(2) ⇒ (1). Suppose that f ∈ ABs
pq ∩ BMOA and θ ∈ ABs

pq. Since θ is
bounded, if we want to prove fθ ∈ ABs

pq, we only need to prove∫ 1

0

(1− r)(1−s)q−1

(∫
∂D
|f(rζ)θ′(rζ)|pdm(ζ)

) q
p

dr <∞.

Using the well known Schwarz’s Lemma, we have

|θ′(z)| ≤ 1− |θ(z)|2

1− |z|2
.

Therefore ∫ 1

0

(1− r)(1−s)q−1

(∫
∂D
|f(rζ)θ′(rζ)|pdm(ζ)

) q
p

dr

.
∫ 1

0

(1− r)(1−s)q−1

(∫
∂D
|f(rζ)|p

∣∣∣∣1− |θ(rζ)|2

1− r2

∣∣∣∣p dm(ζ)

) q
p

dr.
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From [10, Theorem 3.2], we known that θ ∈ ABs
pq if and only if∫ 1

0

(∫
∂D

(1− |θ(rζ)|)
p
2 dm(ζ)

) q
p dr

(1− r)sq+1
<∞.

Thus, combine with the assumption that supz∈D |f(z)|2(1 − |θ(z)|2) < ∞, we
deduce that∫ 1

0

(1− r)(1−s)q−1

(∫
∂D
|f(rζ)θ′(rζ)|pdm(ζ)

) q
p

dr <∞,

which implies that fθ ∈ ABs
pq. In addition, by Theorem A, we see that fθ ∈

BMOA. Hence fθ ∈ ABs
pq ∩BMOA. The proof is complete.
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GENERALIZED RATIONAL CONTRACTIONS ENDOWED WITH
A GRAPH AND AN APPLICATION TO A SYSTEM OF

INTEGRAL EQUATIONS

HUSEYIN ISIKy, NAWAB HUSSAIN, AND MARWAN A. KUTBI

Abstract. In the present paper, we introduce the notion of generalized ratio-
nal contraction including admissible mappings and establish coincidence point
and common �xed point results for this class of mappings de�ned on ordinary
as well as ordered metric spaces. Our results extend, generalize and unify com-
parable results in the existing literature. Applying these results, we deduce
�xed point results on metric spaces endowed with graph. An example and
application to obtain the existence of common solution for a system of integral
equations are also given in order to illustrate the e¤ectiveness of the o¤ered
results.

1. Introduction and Preliminaries

Fixed point theory is one of the most powerful and e¤ective tools in mathematics
which has enormous applications within as well as outside mathematics. One of
the most fundamental �xed point theorems is the Banach contraction principle [8]
which gives an answer on the existence and uniqueness of a solution of an operator
equation Fx = x. Since then, there is a great number of generalizations of this
fundamental principle (for example, see [1]-[7], [9]-[29]).
Recently, Samet et al. [28] �rst introduced �-admissible mappings and then �-

 -contractive type mappings to obtain some interesting generalizations of Banach
contraction principle. For more results in this direction, we refer to [3, 5, 6, 11, 15,
17, 21, 23, 25, 27, 22] and references mentioned therein.

De�nition 1 ([28]). Let X be a nonempty set and � : X � X �! [0;+1). A
self-mapping T on X is called �-admissible mapping if

x; y 2 X; � (x; y) � 1 implies � (Tx; Ty) � 1:
Afterward, Patel et al. [25] extended the de�nition of �-admissible mapping to

a pair of two mappings to obtain common �xed point results as follows:

De�nition 2 ([25]). Let f; g; S and T be four self-mappings of a non-empty set X,
and let � : S(X) [ T (X)� S(X) [ T (X)! [0;+1). Then the pair (f; g) is called
�-admissible with respect to S and T (in short, �ST -admissible) if for all x; y 2 X,

�(Sx; Ty) � 1 or �(Tx; Sy) � 1 =) �(fx; gy) � 1 and �(gx; fy) � 1:
If we take S = T = IX (identity mapping on X) in above de�nition, then we

have:

2000 Mathematics Subject Classi�cation. Primary 47H10, Secondary 54H25.
Key words and phrases. Point of coincidence, common �xed point, admissible mappings, ra-

tional contractions, weakly compatible mappings, integral equations.
yCorresponding author.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1158 HUSEYIN ISIK et al 1158-1175



2 HUSEYIN ISIKy, NAWAB HUSSAIN, AND MARWAN A. KUTBI

De�nition 3 ([3]). Let f and g be self-mappings of a non-empty set X and � :
X �X ! [0;+1). Then the pair (f; g) is called �-admissible if for all x; y 2 X,

�(x; y) � 1 =) �(fx; gy) � 1 and �(gx; fy) � 1:

De�nition 4 ([19]). A pair (f; T ) of self-mappings on a set X is said to be weakly
compatible if f and T commute at their coincidence point (i.e. fTx = Tfx; x 2 X
whenever fx = Tx).

A point y 2 X is called a point of coincidence of two self-mappings f and T on
X if there exists a point x 2 X such that y = fx = Tx. Also, x 2 X is called a
common �xed point of mappings f and T if x = fx = Tx:
The notations F(f; T ) and C (f; T ) stand for the set of all common �xed point

and the set of all coincidence points of f and T , respectively. In the sequel, we will
indicate the set of all real numbers, the set of all non-negative real numbers and
the set of all natural numbers by the letters R; R+ and N; respectively.
On the other side, Khan et al. [20] introduced and employed the notion of

altering distance function to obtain some interesting �xed point results in metric
spaces. Note that altering distance functions are continuous whereas Su [29] de�ned
generalized altering distance function, not necessarily continuous, as follows:

De�nition 5 ([29]). A mapping  : R+ ! R+ is called generalized altering distance
function if

(a)  is non-decreasing,
(b)  (t) = 0 i¤ t = 0.

We set 	 = f : R+ ! R+ :  is a generalized altering distance functiong and
� = f' : R+ ! R+ : ' is a nondecreasing and right upper semi-continuous function
and we have  (t) > '(t) for all t > 0 where  2 	g.
We now introduce generalized rational contraction mappings as follows:

De�nition 6. Let f; g; S and T be selfmaps of a metric space (X; d), and (f; g) be
an �ST -admissible pair: We say that (f; g) is a generalized (�;  ; ')(S;T )-rational
contraction if

� (Sx; Ty) � 1 implies  (d (fx; gy)) � ' (M (x; y)) (1.1)

for all x; y 2 X; where  2 	; ' 2 � and

M (x; y) = max

�
d (Sx; Ty) ; d (Sx; fx) ; d (Ty; gy) ;

d (Sx; gy) + d (fx; Ty)

2
;

d (Ty; gy) [1 + d (Sx; fx)]

1 + d (Sx; Ty)
;
d (fx; Ty) [1 + d (Sx; gy)]

1 + d (Sx; Ty)

�
:

In this paper, we prove some common �xed point results of generalized (�;  ; ')(S;T )-
rational contractions for a quadruple of self-mappings de�ned on ordinary as well as
ordered metric spaces. Our results extend, generalize and unify comparable results
in the existing literature. Applying these results, we deduce �xed point results on
metric spaces endowed with graph. An example is presented to support the results
obtained herein. As an application of o¤ered results, the existence of the common
solution for a system of integral equations are also investigated.
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2. Main Results

We start with the following �rst result.

Theorem 1. Let f; g; S and T be selfmaps of a complete metric space (X; d) with
f(X) � T (X), g(X) � S(X) and (f; g) be a generalized (�;  ; ')(S;T )-rational
contraction pair. Suppose that:

(a) there exists x0 2 X such that � (Sx0; fx0) � 1;
(b) � (Sxn; Txn+1) � 1 for all n even implies that � (Sxn; Txj) � 1 for all n

even and j > n odd;
(c) � (Sxn; Txn+1) � 1 for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that � (Sxn; x) � 1 and � (x; Txn+1) � 1 for all
n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible,
(ii) � (Su; Tv) � 1 whenever u 2 C (f; S) and v 2 C (g; T ) :

Then f; g; S and T have a common �xed point.

Proof. Let x0 2 X such that � (Sx0; fx0) � 1: Since fX � TX; there exists an
x1 2 X such that fx0 = Tx1: Again since gX � SX; there exists an x2 2 X such
that gx1 = Tx2: Continuing this process, we can construct the sequences fxng and
fyng in X de�ned by

y2n = fx2n = Tx2n+1; y2n+1 = gx2n+1 = Sx2n+2; n 2 N0; (2.1)

where N0 = N [ f0g : As (f; g) is an �ST -admissible pair and � (Sx0; fx0) =
� (Sx0; Tx1) � 1, we have � (fx0; gx1) � 1 and � (gx0; fx1) � 1 which implies
that � (Tx1; Sx2) � 1: Again, since � (Tx1; Sx2) � 1; we have � (fx1; gx2) � 1 and
� (gx1; fx2) � 1 which gives that � (Sx2; Tx3) � 1: Continuing this way, we obtain

� (Sx2n; Tx2n+1) � 1 and � (Tx2n+1; Sx2n+2) � 1 for all n 2 N0: (2.2)

Suppose that y2n 6= y2n+1 for all n 2 N0: Now we show that

lim
n!1

d (yn; yn+1) = 0: (2.3)

Putting x = x2n and y = x2n+1 in (1.1) and using (2.1) and (2.2), we get

 (d (y2n; y2n+1)) =  (d (fx2n; gx2n+1))

� ' (M (x2n; x2n+1)) ; (2.4)
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where

M (x2n; x2n+1) = max

�
d (Sx2n; Tx2n+1) ; d (Sx2n; fx2n) ; d (Tx2n+1; gx2n+1) ;

d (Sx2n; gx2n+1) + d (fx2n; Tx2n+1)

2
;

d (Tx2n+1; gx2n+1) [1 + d (Sx2n; fx2n)]

1 + d (Sx2n; Tx2n+1)
;

d (fx2n; Tx2n+1) [1 + d (Sx2n; gx2n+1)]

1 + d (Sx2n; Tx2n+1)

�
= max

�
d (y2n�1; y2n) ; d (y2n�1; y2n) ; d (y2n; y2n+1) ;

d (y2n�1; y2n+1) + d (y2n; y2n)

2
;

d (y2n; y2n+1) [1 + d (y2n�1; y2n)]

1 + d (y2n�1; y2n)
;

d (y2n; y2n) [1 + d (y2n�1; y2n+1)]

1 + d (y2n�1; y2n)

�
� max

�
d (y2n�1; y2n) ; d (y2n; y2n+1) ;

d (y2n�1; y2n) + d (y2n; y2n+1)

2

�
= max (d (y2n�1; y2n) ; d (y2n; y2n+1)) :

If d (y2n�1; y2n) � d (y2n; y2n+1) for some n 2 N; then by (2.4); we have

 (d (y2n; y2n+1)) � ' (d (y2n; y2n+1)) ;

a contradiction to the fact that y2n 6= y2n+1: So for all n 2 N; we have d (y2n; y2n+1) <
d (y2n�1; y2n) :
From (2.4); we also obtain

 (d (y2n; y2n+1)) � ' (d (y2n�1; y2n)) : (2.5)

Again, putting x = x2n�1 and y = x2n in (1.1) and following arguing similar to
those given above, we get

 (d (y2n�1; y2n)) � ' (d (y2n�2; y2n�1)) : (2.6)

From (2.5) and (2.6), we conclude

 (d (yn; yn+1)) � ' (d (yn�1; yn)) : (2.7)

It follows that the sequence fd (yn; yn+1)g is decreasing and bounded below.
Hence, there exists r � 0 such that limn!1 d (yn; yn+1) = r: If r > 0, then taking
limit as n!1 on both sides of (2.7), we have

 (r) � lim
n!1

 (d (yn; yn+1))

� lim
n!1

' (d (yn�1; yn)) � ' (r) ;

a contradiction and hence r = 0; that is, the equation (2.3) holds.
Now, we prove that fyng is a Cauchy sequence. To this end, it is su¢ cient to

verify that fy2ng is a Cauchy sequence. Suppose, to the contrary, that fy2ng is
not a Cauchy sequence. Then, there exists an " > 0 for which we can �nd two

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1161 HUSEYIN ISIK et al 1158-1175



GENERALIZED RATIONAL CONTRACTIONS ENDOWED WITH A GRAPH 5

subsequences fy2mk
g and fy2nkg of fy2ng such that mk is the smallest index for

which mk > nk > k and

d (y2mk
; y2nk) � " and d (y2mk�1; y2nk) < ": (2.8)

Using the triangular inequality and (2.8), we have

" � d (y2mk
; y2nk) � d (y2mk

; y2mk�1) + d (y2mk�1; y2nk)

< d (y2mk
; y2mk�1) + ":

Taking k !1 on both sides of above inequality and using (2.3), we obtain

lim
k!1

d (y2mk
; y2nk) = ": (2.9)

Again, using the triangular inequality, we get

jd (y2nk ; y2mk+1)� d (y2nk ; y2mk
)j � d (y2mk

; y2mk+1) :

Letting k !1 in the above inequality and using (2.3) and (2.9), we have

lim
k!1

d (y2nk ; y2mk+1) = ": (2.10)

Similarly, one can easily show that

lim
k!1

d (y2nk�1; y2mk
) = lim

k!1
d (y2nk�1; y2mk+1) = ": (2.11)

Since � (Sx2nk ; Tx2mk+1) � 1 from (2.2) and the hypothesis (b) ; putting x =
x2nk and y = x2mk+1 in (1.1); we get

 (d (y2nk ; y2mk+1)) =  (d (fx2nk ; gx2mk+1))

� ' (M (x2nk ; x2mk+1)) ; (2.12)

where

M (x2nk ; x2mk+1) = max

�
d (Sx2nk ; Tx2mk+1) ; d (Sx2nk ; fx2nk) ; d (Tx2mk+1; gx2mk+1) ;

d (Sx2nk ; gx2mk+1) + d (fx2nk ; Tx2mk+1)

2
;

d (Tx2mk+1; gx2mk+1) [1 + d (Sx2nk ; fx2nk)]

1 + d (Sx2nk ; Tx2mk+1)
;

d (fx2nk ; Tx2mk+1) [1 + d (Sx2nk ; gx2mk+1)]

1 + d (Sx2nk ; Tx2mk+1)

�
= max

�
d (y2nk�1; y2mk

) ; d (y2nk�1; y2nk) ; d (y2mk
; y2mk+1) ;

d (y2nk�1; y2mk+1) + d (y2nk ; y2mk
)

2
;

d (y2mk
; y2mk+1) [1 + d (y2nk�1; y2nk)]

1 + d (y2nk�1; y2mk
)

;

d (y2nk ; y2mk
) [1 + d (y2nk�1; y2mk+1)]

1 + d (y2nk�1; y2mk
)

�
:
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Now, from the properties of  and ' and using (2.3), (2.9), (2.10) and (2.11) as
k !1 in (2.12); we obtain

 (") � lim
k!1

 (d (y2nk ; y2mk+1))

� lim
k!1

' (M (x2nk ; x2mk+1))

� ' (max ("; 0; 0; "; 0; ")) = ' (") ;

which implies that " = 0; a contradiction with " > 0: Thus fy2ng is a Cauchy
sequence in X and hence fyng is a Cauchy sequence. From the completeness of
(X; d) ; there exists z 2 X such that

lim
n!1

yn = z: (2.13)

From (2.1) and (2.13), we get

fx2n ! z; Tx2n+1 ! z; gx2n+1 ! z; Sx2n+2 ! z as n!1: (2.14)

Now we shall prove that z is a common �xed point of f; g; S and T .
Since g(X) � S(X), we can choose a point u in X such that z = Su. Suppose

that d(z; fu) 6= 0.
By (2.2), (2.14) and the condition (c) ; we have � (Su; Tx2n+1) � 1: Then, sub-

stituting x = u and y = x2n+1 in (1.1), we deduce

 (d (fu; gx2n+1)) � ' (M (u; x2n+1)) ; (2.15)

where

M (u; x2n+1) = max

�
d (Su; Tx2n+1) ; d (Su; fu) ; d (Tx2n+1; gx2n+1) ;

d (Su; gx2n+1) + d (fu; Tx2n+1)

2
;

d (Tx2n+1; gx2n+1) [1 + d (Su; fu)]

1 + d (Su; Tx2n+1)
;

d (fu; Tx2n+1) [1 + d (Su; gx2n+1)]

1 + d (Su; Tx2n+1)

�
:

Letting k !1 in (2.15), we have

 (d (fu; z)) � lim
n!1

 (d (fu; gx2n+1))

� lim
n!1

' (M (u; x2n+1))

� '

�
max

�
0; d (z; fu) ; 0;

d (fu; z)

2
; 0; d (fu; z)

��
= ' (d (fu; z)) ;

a contradiction and hence d (fu; z) = 0; that is fu = z; and so u 2 C (f; S) :
Similarly, since f(X) � T (X), we can choose a point v in X such that z = Tv.

Suppose that d(z; gv) 6= 0.
By (2.2), (2.14) and the condition (c) ; we have � (Sx2n; T v) � 1: Then, putting

x = x2n and y = v in (1.1), we obtain

 (d (fx2n; gv)) � ' (M (x2n; v)) ; (2.16)
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where

M (x2n; v) = max

�
d (Sx2n; T v) ; d (Sx2n; fx2n) ; d (Tv; gv) ;

d (Sx2n; gv) + d (fx2n; T v)

2
;

d (Tv; gv) [1 + d (Sx2n; fx2n)]

1 + d (Sx2n; T v)
;

d (fx2n; T v) [1 + d (Sx2n; gv)]

1 + d (Sx2n; T v)

�
:

Taking limit on (2.16), we get

 (d (z; gv)) � lim
n!1

 (d (fx2n; gv))

� lim
n!1

' (M (x2n; v))

� '

�
max

�
0; 0; d (z; gv) ;

d (z; gv)

2
; d (z; gv) ; 0

��
= ' (d (z; gv)) ;

a contradiction and hence d (z; gv) = 0; that is z = gv; and so v 2 C (g; T ) :
Thus, z = fu = Su = gv = Tv: By the weak compatibility of the pairs (f; S)

and (g; T ), we deduce that fz = Sz and gz = Tz:
Since z 2 C (f; S) and v 2 C (g; T ) ; by (ii) ; we have � (Sz; Tv) � 1 and so, from

(1.1)
 (d (fz; z)) =  (d (fz; gv)) � ' (M (z; v)) ; (2.17)

where

M (z; v) = max

�
d (Sz; Tv) ; d (Sz; fz) ; d (Tv; gv) ;

d (Sz; gv) + d (fz; Tv)

2
;
d (Tv; gv) [1 + d (Sz; fz)]

1 + d (Sz; Tv)
;

d (fz; Tv) [1 + d (Sz; gv)]

1 + d (Sz; Tv)

�
= max (d (fz; z) ; 0; 0; d (fz; z) ; 0; d (fz; z)) = d (fz; z)

By (2.17), we get
 (d (fz; z)) � ' (d (fz; z)) ;

which implies that z = fz; and so z = fz = Sz: Similarly, it can be shown that
z = gz = Tz: This completes the proof. �

Corollary 1. Let f; g; S and T be selfmaps of a complete metric space (X; d) with
f(X) � T (X), g(X) � S(X) and (f; g) be an �ST -admissible pair such that

� (Sx; Ty) (d (fx; gy)) � ' (M (x; y)) ; (2.18)

for all x; y 2 X; where  2 	 and ' 2 �: Assume that the following conditions are
satis�ed:

(a) there exists x0 2 X such that � (Sx0; fx0) � 1;
(b) � (Sxn; Txn+1) � 1 for all n even implies that � (Sxn; Txj) � 1 for all n

even and j > n odd;
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(c) � (Sxn; Txn+1) � 1 for all n even and, Sxn and Txn+1 converge to an
x 2 X as n ! 1 implies that � (Sxn; x) � 1 and � (x; Txn+1) � 1 for all
n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if
(i) ff; Sg and fg; Tg are weakly compatible,
(ii) � (Su; Tv) � 1 whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have a common �xed point.

Proof. Let � (Sx; Ty) � 1 for x; y 2 X: Then by (2.18), we have
 (d (fx; gy)) � ' (M (x; y)) :

This implies that the inequality (1.1) holds. Therefore, the proof follows from
Theorem 1. �
If we take � (Sx; Ty) = 1 in Corollary 1, we have a generalized version of Theo-

rem 2.3 in [29]:

Theorem 2. Let f; g; S and T be selfmaps of a complete metric space (X; d) with
f(X) � T (X) and g(X) � S(X). Suppose that

 (d (fx; gy)) � ' (M (x; y)) ; (2.19)

for all x; y 2 X; where  2 	 and ' 2 �: Then the pairs (f; S) and (g; T ) have a
point of coincidence in X. Moreover, if ff; Sg and fg; Tg are weakly compatible,
then f; g; S and T have a common �xed point.

If we take  (t) = t in Corollary 1, we have a generalized version of Theorem 2.2
in [28]:

Theorem 3. Let f; g; S and T be selfmaps of a complete metric space (X; d) with
f(X) � T (X), g(X) � S(X) and (f; g) be an �ST -admissible pair such that

� (Sx; Ty) d (fx; gy) � ' (M (x; y)) ; (2.20)

for all x; y 2 X; where ' 2 �: Assume that the following conditions are satis�ed:
(a) there exists x0 2 X such that � (Sx0; fx0) � 1;
(b) � (Sxn; Txn+1) � 1 for all n even implies that � (Sxn; Txj) � 1 for all n

even and j > n odd;
(c) � (Sxn; Txn+1) � 1 for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that � (Sxn; x) � 1 and � (x; Txn+1) � 1 for all
n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if
(i) ff; Sg and fg; Tg are weakly compatible,
(ii) � (Su; Tv) � 1 whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have a common �xed point.

If we take ' (t) =  (t)� � (t) in Corollary 1, we have the following result.

Corollary 2. Let f; g; S and T be selfmaps of a complete metric space (X; d) with
f(X) � T (X), g(X) � S(X) and (f; g) be an �ST -admissible pair such that

� (Sx; Ty) (d (fx; gy)) �  (M (x; y))� � (M (x; y)) ; (2.21)

for all x; y 2 X; where  2 	 and � 2 �: Assume that the following conditions
are satis�ed:
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(a) there exists x0 2 X such that � (Sx0; fx0) � 1;
(b) � (Sxn; Txn+1) � 1 for all n even implies that � (Sxn; Txj) � 1 for all n

even and j > n odd;
(c) � (Sxn; Txn+1) � 1 for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that � (Sxn; x) � 1 and � (x; Txn+1) � 1 for all
n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if
(i) ff; Sg and fg; Tg are weakly compatible,
(ii) � (Su; Tv) � 1 whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have a common �xed point.

Let us give the following hypothesis for the uniqueness of the common �xed point
in Theorem 1.
(H) For all x; y 2 F(f; g; S; T ); we have � (Sx; Ty) � 1:

Theorem 4. Adding condition (H) to the hypotheses of Theorem 1, we obtain the
uniqueness of the common �xed point of f; g; S and T:

Proof. Suppose that x = fx = gx = Sx = Tx and y = fy = gy = Sy = Ty: Then,
from (H) ; we have � (Sx; Ty) � 1: Then, applying (1.1), we obtain

 (d (x; y)) =  (d (fx; gy)) � ' (M (x; y)) ; (2.22)

where

M (x; y) = max

�
d (Sx; Ty) ; d (Sx; fx) ; d (Ty; gy) ;

d (Sx; gy) + d (fx; Ty)

2
;
d (Ty; gy) [1 + d (Sx; fx)]

1 + d (Sx; Ty)
;

d (fx; Ty) [1 + d (Sx; gy)]

1 + d (Sx; Ty)

�
= max (d (x; y) ; 0; 0; d (x; y) ; 0; d (x; y)) = d (x; y) :

From (2.22), we have
 (d (x; y)) � ' (d (x; y)) ;

which implies that d (x; y) = 0; that is, x = y: �
Remark 1. Adding condition (H) to the hypotheses of Corollaries 1 and 2, we
obtain the uniqueness of the common �xed point:

If we choose S = T = IX in Corollary 1, we have the following corollary.

Corollary 3. Let f and g be selfmaps of a complete metric space (X; d) and (f; g)
be an �-admissible pair such that

� (x; y) (d (fx; gy)) � ' (Mfg (x; y)) ; (2.23)

for all x; y 2 X; where  2 	, ' 2 � and

Mfg (x; y) = max

�
d (x; y) ; d (x; fx) ; d (y; gy) ;

d (x; gy) + d (fx; y)

2
;

d (y; gy) [1 + d (x; fx)]

1 + d (x; y)
;
d (fx; y) [1 + d (x; gy)]

1 + d (x; y)

�
:

Assume that the following conditions are satis�ed:
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(a) there exists x0 2 X such that � (x0; fx0) � 1;
(b) � (xn; xn+1) � 1 for all n implies that � (xn; xj) � 1 for all j > n;
(c) � (xn; xn+1) � 1 for all n and, xn ! x 2 X as n ! 1 implies that

� (xn; x) � 1 for all n:
Then f and g have a common �xed point. Moreover, if � (x; y) � 1 whenever

x; y 2 F (f; g) ; then f and g have a unique common �xed point.

Now, we furnish the following example which illustrates Theorem 1 as well as
Theorem 4.

Example 1. Let X = R+ with the usual metric d (x; y) = jx� yj for all x; y 2 X
and  ;' : R+ ! R+ be de�ned by  (t) = t and ' (t) = t

2 . De�ne the mappings
f; g; S and T on X by

fx =

(
x
6 if x 2 [0; 1] ;
3x if x > 1;

and gx =

(
x
4 if x 2 [0; 1] ;
6x if x > 1;

Sx =

(
x
2 if x 2 [0; 1] ;
3x if x > 1;

and Tx =

(
x
3 if x 2 [0; 1] ;
2x if x > 1:

Note that f(X) � T (X) and g(X) � S(X), ff; Sg and fg; Tg are weakly com-
patible.
Also, we de�ne the mapping � : S(X) [ T (X)� S(X) [ T (X)! R+ by

� (x; y) =

(
1 if x; y 2

�
0; 12
�
;

0 otherwise.

Now, let x; y 2 X such that � (Sx; Ty) � 1: Then Sx; Ty 2
�
0; 12
�
and this implies

that x; y 2 [0; 1] : By the de�nitions of f; g and �; we have fx; gy 2
�
0; 12
�
and

gx; fy 2
�
0; 12
�
which implies that � (fx; gy) � 1 and � (gx; fy) � 1:

In case of � (Tx; Sy) � 1; analogously to the above proof, one can easily obtain
that � (fx; gy) � 1 and � (gx; fy) � 1:
Then (f; g) is �ST -admissible. Moreover, the condition � (Sx0; fx0) � 1 is sat-

is�ed with x0 = 0:
Let fxng be a sequence in X such that � (Sxn; Txn+1) � 1 for all n even: Then,

by the de�nition of �; we get xn 2 [0; 1] for all n even: Thus, xj 2 [0; 1] for all
j > n odd; and so � (Sxn; Txj) � 1:
Similarly, if fxng is any sequence in X such that � (Sxn; Txn+1) � 1 for all

n even and, Sxn and Txn+1 converge to an x 2 X as n!1; then by the de�nition
of �; we have Sxn 2

�
0; 12
�
and Txn+1 2

�
0; 12
�
for all n even and so x 2

�
0; 12
�

which implies that � (Sxn; x) � 1 and � (x; Txn+1) � 1:
Now, we prove that (f; g) is a generalized (�;  ; ')(S;T )-rational contraction. Let

� (Sx; Ty) � 1: Then, x; y 2 [0; 1] ; and so

 (d (fx; gy)) = jfx� gyj =
���x
6
� y

4

���
� x

6
=
1

2
jSx� fxj

� 1

2
M (x; y) = ' (M (x; y)) :
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Obviously, assumption (ii) of Theorem 1 and condition (H) are satis�ed. Con-
sequently, by Theorems 1 and 4, f; g; S and T have a unique common �xed point
which is 0:

3. Fixed Point Results on Partially Ordered Metric Spaces

The existence of �xed points of nonlinear contraction mappings in metric spaces
endowed with a partial ordering has been considered recently by Ran and Reurings
[26] in order to obtain a solution of a matrix equation in 2004. Nieto and Lopez [24]
extended the results in [26] by removing the continuity condition of the mapping.
They applied their result to get a solution of a boundary value problem (see also
[4, 13, 14] and references mentioned therein).
Let X be a non-empty set. If d is a complete metric on X and � is a partial

order on the set X; then (X; d;�) is called complete partially ordered metric space.
Let (X;�) be a partially ordered set and f; g; S and T be self-mappings on X.
Then, (f; g) is called a (S; T )-nondecreasing mapping pair if fx � gy and gx � fy
whenever Sx � Ty or Tx � Sy for all x; y 2 X.
From Theorem 1, in the setting of complete partially ordered metric spaces, we

obtain the following theorem.

Theorem 5. Let (X; d;�) be a complete partially ordered metric space and let
f; g; S and T be self-mappings on X such that f(X) � T (X), g(X) � S(X): Let
(f; g) be a (S; T )-nondecreasing pair such that

 (d (fx; gy)) � ' (M (x; y)) ; (3.1)

for all x; y 2 X such that Sx � Ty; where  2  and ' 2 �:
Assume that the following conditions are satis�ed:

(a) there exists x0 2 X such that Sx0 � fx0;
(b) Sxn � Txn+1 for all n even implies that Sxn � Txj for all n even and

j > n odd;
(c) Sxn � Txn+1 for all n even and, Sxn and Txn+1 converge to an x 2 X as

n!1 implies that Sxn � x and x � Txn+1 for all n even.

Then the pairs (f; S) and (g; T ) have point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible,
(ii) Su � Tv whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if Sx � Ty whenever

x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.

Proof. De�ne the function � : X �X ! R+ by

� (x; y) =

(
1 if x � y;

0 otherwise.

Let � (Sx; Ty) � 1: Then
Sx � Ty: (3.2)

From (3.1), we obtain that

 (d (fx; gy)) � ' (M (x; y)) :

Also, since (f; g) is (S; T )-nondecreasing, by (3.2) we have fx � gy and gx � fy;
which gives us that �(fx; gy) � 1 and �(gx; fy) � 1: Then (f; g) is �ST -admissible.
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On the other hand, one can easily show that the hypotheses (a) ; (b) ; (c) and (ii)
imply the conditions (a) ; (b) ; (c) and (ii) of Theorem 1.
Now, let x; y 2 F(f; g; S; T ): Then, Sx � Ty and so � (Sx; Ty) � 1: Therefore,

the uniqueness of the common �xed point follows from condition (H). �

If we take ' (t) =  (t)� � (t) in Theorem 5, we have the following result.

Corollary 4. Let (X; d;�) be a complete partially ordered metric space and let
f; g; S and T be self-mappings on X such that f(X) � T (X), g(X) � S(X): Let
(f; g) be a (S; T )-nondecreasing pair such that

 (d (fx; gy)) �  (M (x; y))� � (M (x; y)) ; (3.3)

for all x; y 2 X such that Sx � Ty; where  2  and ' 2 �:
Assume that the following conditions are satis�ed:

(a) there exists x0 2 X such that Sx0 � fx0;
(b) Sxn � Txn+1 for all n even implies that Sxn � Txj for all n even and

j > n odd;
(c) Sxn � Txn+1 for all n even and, Sxn and Txn+1 converge to an x 2 X as

n!1 implies that Sxn � x and x � Txn+1 for all n even.

Then the pairs (f; S) and (g; T ) have point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible,
(ii) Su � Tv whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if Sx � Ty whenever

x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.

If we take  (t) = t and � (t) = (1� k) t in Corollary 4, we have the following
result.

Corollary 5. Let (X; d;�) be a complete partially ordered metric space and let
f; g; S and T be self-mappings on X such that f(X) � T (X), g(X) � S(X): Let
(f; g) be a (S; T )-nondecreasing pair such that

d (fx; gy) � kM (x; y) ; (3.4)

for all x; y 2 X such that Sx � Ty; where k 2 [0; 1):
Assume that the following conditions are satis�ed:

(a) there exists x0 2 X such that Sx0 � fx0;
(b) Sxn � Txn+1 for all n even implies that Sxn � Txj for all n even and

j > n odd;
(c) Sxn � Txn+1 for all n even and, Sxn and Txn+1 converge to an x 2 X as

n!1 implies that Sxn � x and x � Txn+1 for all n even.

Then the pairs (f; S) and (g; T ) have point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible,
(ii) Su � Tv whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if Sx � Ty whenever

x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.
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4. Some Results for Graphic Contractions

Consistent with Jachymski [18], let (X; d) be a metric space and let � :=
f(x; x) : x 2 Xg be a diagonal of the Cartesian product X �X. Consider a graph
G such that the set V (G) of its vertices coincides with X and the set E (G) of its
edges contains all loops; that is, E (G) � �. We assume G has no parallel edges,
so we can identify G with the pair (V (G) ; E (G)). Moreover, we may treat G as a
weighted graph by assigning to each edge the distance between its vertices. If x and
y are vertices in a graph G, then a path in G from x to y of length N (N 2 N) is a
sequence fxigNi=0 of N+1 vertices such that x0 = x, xN = y and (xi�1; xi) 2 E (G)
for i = 1; : : : ; N . A graph G is connected if there is a path between any two vertices.

G is weakly connected if
�
G is connected (see for more details [2, 9, 10]).

In this section, we give the existence and uniqueness of �xed point theorems
on a metric space endowed with graph. Before presenting our results, we give the
following notions and de�nitions.

De�nition 7 ([18]). Let (X; d) be a metric space endowed with a graph G and
T : X ! X be a mapping. One says that T preserves edges of G if

8x; y 2 X; (x; y) 2 E (G)) (Tx; Ty) 2 E (G) : (4.1)

De�nition 8. Let f; g; S and T be selfmaps of a metric space (X; d) endowed with
a graph G: One says that (f; g) preserves edges of G with respect to (S; T ) if for
all x; y 2 X;

(Sx; Ty) 2 E (G)) (fx; gy) 2 E (G) and (gx; fy) 2 E (G) : (4.2)

De�nition 9. Let (X; d) be a metric space endowed with a graph G and f; g; S and
T be selfmaps on X such that (f; g) preserves edges of G with respect to (S; T ) : We
say that (f; g) is a generalized (�;  ; ')(S;T )-graphic contraction involving rational
expressions if

 (d (fx; gy)) � ' (M (x; y)) ; (4.3)

for all x; y 2 X for which (Sx; Ty) 2 E (G) ; where  2 	, ' 2 � and

M (x; y) = max

�
d (Sx; Ty) ; d (Sx; fx) ; d (Ty; gy) ;

d (Sx; gy) + d (fx; Ty)

2
;

d (Ty; gy) [1 + d (Sx; fx)]

1 + d (Sx; Ty)
;
d (fx; Ty) [1 + d (Sx; gy)]

1 + d (Sx; Ty)

�
:

Theorem 6. Let f; g; S and T be selfmaps of a metric space (X; d) endowed with a
graph G, and f(X) � T (X), g(X) � S(X) and (f; g) be a generalized (�;  ; ')(S;T )-
graphic contraction involving rational expressions. Assume that the following con-
ditions are satis�ed:

(a) there exists x0 2 X such that (Sx0; fx0) 2 E (G);
(b) (Sxn; Txn+1) 2 E (G) for all n even implies that (Sxn; Txj) 2 E (G) for

all n even and j > n odd;
(c) (Sxn; Txn+1) 2 E (G) for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that (Sxn; x) 2 E (G) and (x; Txn+1) 2 E (G)
for all n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible,
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(ii) (Su; Tv) 2 E (G) whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if (Sx; Ty) 2 E (G)

whenever x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.
Proof. De�ne the function � : X �X ! R+ by

� (x; y) =

(
1 if (x; y) 2 E (G) ;
0 otherwise.

Let � (Sx; Ty) � 1: Then
(Sx; Ty) 2 E (G) : (4.4)

From (4.3), we obtain that

 (d (fx; gy)) � ' (M (x; y)) :

Also, since (f; g) preserves edges of G with respect to (S; T ), by (4.4) we have
(fx; gy) 2 E (G) and (gx; fy) 2 E (G) ; which gives us that �(fx; gy) � 1 and
�(gx; fy) � 1: Then (f; g) is �ST -admissible.
On the other hand, it is easy to see that the hypotheses (a) ; (b) ; (c) and (ii)

imply the conditions (a) ; (b) ; (c) and (ii) of Theorem 1.
Now, let x; y 2 F(f; g; S; T ): Then, (Sx; Ty) 2 E (G) and so � (Sx; Ty) � 1:

Therefore, the uniqueness of the common �xed point follows from condition (H).
�

If we take ' (t) =  (t)� � (t) in Theorem 6, we have the following result.

Corollary 6. Let f; g; S and T be selfmaps of a metric space (X; d) endowed with
a graph G, and f(X) � T (X), g(X) � S(X). Assume that (f; g) preserves edges
of G with respect to (S; T ) such that

 (d (fx; gy)) �  (M (x; y))� � (M (x; y)) ; (4.5)

for all x; y 2 X for which (Sx; Ty) 2 E (G) ; where  2 	 and � 2 �.
Suppose also that the following conditions are satis�ed:
(a) there exists x0 2 X such that (Sx0; fx0) 2 E (G);
(b) (Sxn; Txn+1) 2 E (G) for all n even implies that (Sxn; Txj) 2 E (G) for

all n even and j > n odd;
(c) (Sxn; Txn+1) 2 E (G) for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that (Sxn; x) 2 E (G) and (x; Txn+1) 2 E (G)
for all n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if
(i) ff; Sg and fg; Tg are weakly compatible and,
(ii) (Su; Tv) 2 E (G) whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if (Sx; Ty) 2 E (G)

whenever x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.
If we take  (t) = t and � (t) = (1� k) t in Corollary 6, we have the following

result.

Corollary 7. Let f; g; S and T be selfmaps of a metric space (X; d) endowed with
a graph G, and f(X) � T (X), g(X) � S(X). Assume that (f; g) preserves edges
of G with respect to (S; T ) such that

d (fx; gy) � kM (x; y) ; (4.6)
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for all x; y 2 X for which (Sx; Ty) 2 E (G) ; where  2 	 and � 2 �.
Suppose also that the following conditions are satis�ed:

(a) there exists x0 2 X such that (Sx0; fx0) 2 E (G);
(b) (Sxn; Txn+1) 2 E (G) for all n even implies that (Sxn; Txj) 2 E (G) for

all n even and j > n odd;
(c) (Sxn; Txn+1) 2 E (G) for all n even and, Sxn and Txn+1 converge to an

x 2 X as n ! 1 implies that (Sxn; x) 2 E (G) and (x; Txn+1) 2 E (G)
for all n even.

Then the pairs (f; S) and (g; T ) have a point of coincidence in X. Moreover, if

(i) ff; Sg and fg; Tg are weakly compatible and,
(ii) (Su; Tv) 2 E (G) whenever u 2 C (f; S) and v 2 C (g; T ) :
Then f; g; S and T have common �xed point. Moreover, if (Sx; Ty) 2 E (G)

whenever x; y 2 F(f; g; S; T ); then f; g; S and T have a unique common �xed point.

5. An Application

Consider the following integral equations:

x (s) =

Z b

a

H1 (s; r; x (r)) dr; (5.1)

and

x (s) =

Z b

a

H2 (s; r; x (r)) dr; (5.2)

where s; r 2 I = [a; b] ; H1;H2 : I � I � R! R and b > a � 0.
In this section, we present an existence and uniqueness theorem for a common

solution to (5.1) and (5.2) that belongs to X := C(I;R) (the set of continuous
functions de�ned on I) by using the obtained result in Corollary 3.
We consider the operators f; g : X ! X given by for all x 2 X

fx(s) =

Z b

a

H1 (s; r; x (r)) dr; s 2 I;

and

gx(s) =

Z b

a

H2 (s; r; x (r)) dr; s 2 I:

Then the existence of a common solution to (5.1) and (5.2) are equivalent to the
existence of a common �xed point of f and g.
Meanwhile, X endowed with the metric d de�ned by

d(x; y) = sup
s2I

jx (s)� y (s) j

for all x; y 2 X; is a complete metric space.
Suppose that the following conditions hold.

(A1) H1;H2 : I � I � R! R are continuous;
(A2) there exist � : X �X ! R such that if � (x; y) � 0 for all x; y 2 X; then for

every s; r 2 I, we have

jH1 (s; r; x (r))�H2 (s; r; y (r))j2 �  (s; r) ln
�
1 + jx (r)� y (r)j2

�
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where  : I�I ! R+ is a continuous function satisfying sups2I
R b
a
 (s; r) �

1= (b� a) ;
(A3) for every s 2 I there exist x0 2 X such that � (x0 (s) ; fx0 (s)) � 0;
(A4) for all s 2 I and x; y 2 X;

� (x(s); y(s)) � 0 ) � (fx(s); gy(s)) � 0 and � (gx(s); fy(s)) � 0;

(A5) � (xn (s) ; xn+1 (s)) � 0 for all n and s 2 I implies that � (xn (s) ; xj (s)) � 0
for all j > n;

(A6) � (xn (s) ; xn+1 (s)) � 0 for all n and s 2 I and, xn ! x 2 X as n ! 1
implies that � (xn (s) ; x (s)) � 0 for all n.

Theorem 7. Assume that the conditions (A1)� (A6) are satis�ed. Then, integral
equations (5.1) and (5.2) have a common solution in X.

Proof. Let x; y 2 X such that � (x; y) � 0: Then, by (A2), for all s; r 2 I, we deduce

jfx(s)� gy (s)j2 �
 Z b

a

jH1 (s; r; x (r))�H2 (s; r; y (r))j dr
!2

�
Z b

a

12dr

Z b

a

jH1 (s; r; x (r))�H2 (s; r; y (r))j2 dr

� (b� a)
Z b

a

 (s; r) ln
�
1 + jx (r)� y (r)j2

�
dr

� (b� a)
Z b

a

 (s; r) ln
�
1 + d (x; y)

2
�
dr

= (b� a)
 Z b

a

 (s; r) dr

!
ln
�
1 + d (x; y)

2
�

� ln
�
1 + d (x; y)

2
�
� ln

�
1 +Mfg (x; y)

2
�
;

where

Mfg (x; y) = max

�
d (x (s) ; y (s)) ; d (x (s) ; fx (s)) ; d (y (s) ; gy (s)) ;

d (x (s) ; gy (s)) + d (fx (s) ; y (s))

2
;

d (y (s) ; gy (s)) [1 + d (x (s) ; fx (s))]

1 + d (x (s) ; y (s))
;

d (fx (s) ; y (s)) [1 + d (x (s) ; gy (s))]

1 + d (x (s) ; y (s))

�
:

Therefore, we obtain�
sup
s2I

jfx(s)� gy (s)j
�2
� ln

�
1 +Mfg (x; y)

2
�
:

Now, de�ne � : X �X ! R+ by

� (x; y) =

(
1 if � (x; y) � 0 where x; y 2 X;
0 otherwise.
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Also, de�ne  ;' : R+ ! R+ by  (t) = t2 and ' (t) = ln
�
1 + t2

�
: Therefore,

using the last inequality, we have

� (x; y) (d (fx; gy)) � ' (Mfg (x; y)) :

It easily shows that all the hypotheses of Corollary 3 are satis�ed. Therefore f
and g have a common �xed point, that is, integral equations (5.1) and (5.2) have a
common solution. �

References

[1] M. Abbas, D. Doric, Common �xed point theorem for four mappings satisfying generalized
weak contractive condition, Filomat, 24 (2) (2010) 1-10.

[2] M. Abbas, T. Nazir, Common �xed point of a power graphic contraction pair in partial metric
spaces endowed with a graph, Fixed Point Theory Appl., (2013) 2013:20.

[3] T. Abdeljawad, Meir-Keeler �-contractive �xed and common �xed point theorems, Fixed
Point Theory Appl., 2013, (2013) 2013:19.

[4] R.P. Agarwal, N. Hussain, M.A. Taoudi, Fixed point theorems in ordered Banach spaces
and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), Article ID
245872, 15 pp.

[5] S. Alizadeh, F. Moradlou, P. Salimi, Some �xed point results for (�; �)-( ; ')-contractive
mappings, Filomat, 28 (3) (2014) 635-647.

[6] A.H. Ansari, H. Isik, S. Radenovíc, Coupled �xed point theorems for contractive mappings
involving new function classes and applications, Filomat, to appear.

[7] H. Aydi, M. Abbas, C. Vetro, Common �xed points for multivalued generalized contractions
on partial metric spaces, RACSAM, 108 (2) (2014) 483-501.

[8] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales, Fundam. Math., 3 (1922) 133-181.

[9] I. Beg, A.R. Butt, S. Radojevic, The contraction principle for set valued mappings on a metric
space with a graph, Comput. Math. Appl., 60 (5) (2010) 1214�1219.

[10] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph,
Nonlinear Anal., 75 (9) (2012) 3895�3901.

[11] B.S. Choudhury, N. Metiya, C. Bandyopadhyay, Fixed points of multivalued �-admissible
mappings and stability of �xed point sets in metric spaces, Rend. Circ. Mat. Palermo, (2015)
64:43�55.

[12] J. Esmaily, S.M. Vaezpour, B.E. Rhoades, Coincidence point theorem for generalized weakly
contractions in ordered metric spaces, Appl. Math. Comput., 219 (4) (2012) 1536�1548.

[13] N. Hussain, S. Al-Mezel and P. Salimi, Fixed points for  -graphic contractions with applica-
tion to integral equations, Abstr. Appl. Anal., Vol. 2013, Article ID 575869.

[14] N. Hussain, M.A. Taoudi, Krasnosel�skii-type �xed point theorems with applications to
Volterra integral equations, Fixed Point Theory Appl., 2013, 2013:196.

[15] H. Isik, B. Samet, C. Vetro, Cyclic admissible contraction and applications to functional
equations in dynamic programming, Fixed Point Theory Appl., 2015 (2015), 19 pages.

[16] H. Isik, D. Turkoglu, Fixed point theorems for weakly contractive mappings in partially
ordered metric-like spaces, Fixed Point Theory Appl., 2013 (2013), 12 pages.

[17] H. Isik, D. Turkoglu, Generalized weakly �-contractive mappings and applications to ordinary
di¤erential equations, Miskolc Mathematical Notes, to appear.

[18] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc.
Amer. Math. Soc., 136 (4) (2008) 1359�1373.

[19] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J.
Pure Appl. Math., 29 (1998) 227�238.

[20] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the
points, Bulletin of the Australian Mathematical Society, 30 (1) (1984) 1�9.

[21] P. Kumam, C. Vetro, F. Vetro, Fixed points for weak �- -contractions in partial metric
spaces, Abstr. Appl. Anal., 2013, 986028, 9 pp., 2013.

[22] V. La Rosa, P. Vetro, Common �xed points for �- -'-contractions in generalized metric
spaces, Nonlinear Anal. Model. Control, 19 (1) (2014) 43-54.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

1174 HUSEYIN ISIK et al 1158-1175



18 HUSEYIN ISIKy, NAWAB HUSSAIN, AND MARWAN A. KUTBI

[23] A. Latif, H. Isik, A.H. Ansari, Fixed points and functional equation problems via cyclic
admissible generalized contractive type mappings, J. Nonlinear Sci. Appl., 9 (2016), 1129-
1142.

[24] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and
applications to ordinary di¤erential equations, Order 22 (2005) 223�239.

[25] D.K. Patel, T. Abdeljawad, D. Gopal, Common �xed points of generalized Meir-Keeler �-
contractions, Fixed Point Theory Appl., (2013) 2013:260.

[26] A.C.M. Ran, M.C.B. Reurings, A �xed point theorem in partially ordered sets and some
applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004) 1435�1443.

[27] P. Salimi, C. Vetro, P. Vetro, Fixed point theorems for twisted (�; �)- -contractive type
mappings and applications, Filomat, 27(4) (2013) 605-615.

[28] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for �- -contractive type mappings,
Nonlinear Anal., 75 (2012) 2154�2165.

[29] Y. Su, Contraction mapping principle with generalized altering distance function in ordered
metric spaces and applications to ordinary di¤erential equations, Fixed Point Theory Appl.,
(2014) 2014:227.

Huseyin Isik, Department of Mathematics, Faculty of Science, Gazi University, 06500-
Teknikokullar, Ankara, Turkey, Department of Mathematics, Faculty of Science and
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