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Abstract

Fuzzy analytical hierarchy process(FAHP) is widely used in multi-criteria
decision making (MCDM) under uncertain environments. Many works have
been proposed. However, the existing methods are complex and time con-
suming. What’s more, the conflict management in AHP is still an open issue.
To solve these issues, a novel and simple FAHP method is proposed based
on the canonical representation of multiplication operation on fuzzy numbers
in this paper. We adopt the main idea of classical AHP, that is the weight
of each criterion can be determined by its relative ratio. The relative ratio
can be easily determined in the proposed method. In addition, the aver-
age method is adopted to handle conflicts in AHP. An example on supplier
selection is used to illustrate the efficiency of our proposed method.

Keywords: Analytical Hierarchical Process, fuzzy numbers, fuzzy AHP,
canonical representation of fuzzy numbers, supplier selection.

1. Introduction

Analytical Hierarchy Process(AHP) is a powerful tool for handling both
qualitative and quantitative multi-criteria factors in decision-making prob-
lems, developed by Saaty [1] in the 1970s. This method has been extensively

∗Corresponding author: Yong Deng, Department 801, School of Electronics and In-
formation, Northwestern Polytechnical University, Xian, Shaanxi, 710072, China. Email:
ydeng@nwpu.edu.cn; prof.deng@hotmail.com

Preprint submitted to JOCAAA February 3, 2016

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

201 Yong Deng 201-228



studied and refined since then. It provides a comprehensive and rational
framework for structuring a decision problem, for representing and quanti-
fying its elements, for relating those elements to overall goals, and for eval-
uating alternative solutions. With this method, a complicated problem can
be converted to an ordered hierarchical structure. AHP method has been
widely applied to multi-criteria decision making situations[2], such as: web
sites selection[3], tools’ evaluation[4], e-business [5], drugs selection[6], group
decision [7, 8]and so on[9, 10, 11, 12].

Multi-Criteria analysis problems require the decision maker to make qual-
itative assessments regarding the performance of the decision alternatives
with respect to each independent criterion and the relative importance of
each independent criterion with respect to the overall objective of the prob-
lem [13, 14]. As a result, uncertain subjective data are present which make
the decision making process complex. Many math tools are developed. For
example, evidence theory is heavily studied since it can fuse different data
which make it widely used in multi-criteria decision making [15, 16, 17]. Due
to the flexibility to handle linguistic information [18], the fuzzy sets theory is
also widely used in many uncertain decision makings [19, 20, 21, 22, 23]. As a
result, the classical AHP is extended to fuzzy AHP (FAHP) [24] and is applied
to many MCDM applications under uncertain environment,such as environ-
mental assessment and management[25, 26, 27], supplier management[28],
group decision making [29], fuzzy MCDM[30], fuzzy MADM [31], and so on
[32].

Two key issues should be solved in the application of fuzzy AHP. One
issue is that how to determine the weight of each criterion when the elements
of comparison matrix are fuzzy numbers. Unlike the classical AHP, the eigen-
vector of fuzzy comparison matrix cannot be obtained directly. Hence, some
other steps are inevitable to get the final weights in most existing fuzzy AHP
methods[24, 33],which makes the FAHP more completed to some degrees.

The other key problem when applying the AHP is to avoid rank reversal[34].
Due to the different preference and subjective and objective factors in deci-
sion making, evidence connected from different sources are often conflicting[35,
36, 37, 38]. How to deal with conflict and dependence in AHP is still an open
issue [39, 40, 41, 42]. In classical AHP, a well known coefficient, called as
Consistency index(CI), is used to measure the conflicting degree in decision
making. In some application systems, the AHP model should be adjusted
when the CI is higher than a certain threshold value. The problem stil-
l exists in fuzzy AHP. Many methods have been proposed to handle this
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problem[43, 44]. In order to construct decision matrices of pairwise compar-
isons based on additive transitivity, Herrera-Viedma et al. propose consistent
fuzzy preference relations[45]. In [43], the distance function between two lin-
guistic preference relations is defined, then a new CI is defined based on the
distance function. In [44, 46], a method is proposed to construct fuzzy lin-
guistic preference relations, called as fuzzy LinPreRa method. However, it
should be pointed out that is difficult to give a corresponding CI in fuzzy
AHP.

To handel these two issues mentioned above, we propose a novel and
simple FAHP in this paper. On the one hand, we use the canonical repre-
sentation of multiplication operation on fuzzy numbers, presented in [47], to
obtain the weigh of each criterion in a straight and easy manner. On the
other hand, we suggest to use average method to deal with conflicts in AHP
decision making. The numerical example on supplier selection shows the ef-
ficiency of our proposed method. The paper is organized as follows. Section
2 begins with a brief introduction to the basic theory used in the proposed
method,including AHP, fuzzy set theory and genetic algorithm. A typical
fuzzy AHP is also introduced in this section. The proposed methodology is
detailed in section 3. In section 4, our proposed method is applied to supplier
selection. Section 5 concludes the paper.

2. Preliminaries

2.1. Analytical Hierarchy Process[1]

The first step of AHP is to establish a hierarchical structure of the prob-
lem. Then, in each hierarchical level, use a nominal scale to construct pair-
wise comparison judgement matrix.

Definition 2.1. Assuming (E1, · · · , Ei, · · · , En) are n decision elements, the
pairwise comparison judgement matrix is denoted as Mn×n = [mij], which
satisfies:

mij =
1

mji

(1)

where each element mij represents the judgment concerning the relative
importance of decision element Ei over Ej.

With the matrix constructed, the third step is to calculate the eigenvector
of the matrix.

3
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Definition 2.2. Eigenvector of n×n pairwise comparison judgement matrix
can be denoted as: w⃗ = (w1, · · · , wi, · · · , wn)T , which is calculated as follows:

Aw⃗ = λmaxw⃗, λmax ≥ n (2)

where λmax is the maximum eigenvalue in the eigenvector w⃗ of matrix
Mn×n.

Before we transform the eigenvector into the weights of elements, the
consistency of the matrix should be checked.

Definition 2.3. Consistency index(CI)[1] is used to measure the inconsis-
tency within each pairwise comparison judgement matrix, which is formulated
as follows:

CI =
λmax − n
n− 1

(3)

Accordingly, the consistency ratio(CR) can be calculated by using the
following equation:

CR =
CI

RI
(4)

where RI is the random consistency index. The value of RI is related to
the dimension of the matrix, which is listed in Table 1.

Table 1: The value of RI(random consistency index)

dimension 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

If the result of CR is less than 0.1, the consistency of the pairwise com-
parison matrix M is acceptable. Moreover, the eigenvector of pairwise com-
parison judgement matrix can be normalized as final weights of decision
elements. Otherwise, the consistency is not passed and the elements in the
matrix should be revised.

4
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2.2. Fuzzy sets

In 1965, the notion of fuzzy sets was firstly introduced by Zadeh[18],
providing a natural way of dealing with problems in which the source of
imprecision is the absence of sharply defined criteria of class membership[48].

A brief introduction of Fuzzy sets are given as follows.

Definition 2.4. A fuzzy set A is defined on a universe X may be given as:

A = {⟨x, µA (x)⟩ |x ∈ X }

where µA : X → [0, 1] is the membership function A. The membership
value µA (x) describes the degree of belongingness of x ∈ X in A.

For a finite set A = {x1, . . . , xi, . . . , xn}, the fuzzy set (A,m) is often

denoted by
{
µA (x1)/x1, . . . ,

µA (xi)/xi, . . . ,
µA (xn)/xn

}
.

In real application, the domain experts may give their opinions by fuzzy
numbers. For example, in a new product price estimation, one expert may
give his opinion as: the lowest price is 2 dollars, the most possibility price of
the product may be 3 dollars, the highest price of this product will not be in
excess of 4 dollars. Hence, we can use a triangular fuzzy number (2,3,4) to
represent the expert’s opinion. The triangular fuzzy numbers can be defined
as follows.

Definition 2.5. A triangular fuzzy number Ã can be defined by a triplet (a,
b, c) , where the membership can be determined as follows

A triangular fuzzy number Ã = (a, b, c) can be shown in Fig.(1).

µÃ(x) =


0, x < a

x−a
b−a

, a 6 x 6 b
c−x
c−b

, b 6 x 6 c

0, x > c

(5)

In Fig2. N1, N3, N5, N7 and N9 are used to represent the pairwise
comparison of decision variables from Equalto Absolutely preferred, and TFNs
N2, N4, N6 and N8 represent the middle preference values between them.

5
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Figure 1: A triangular fuzzy number.
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Figure 2: Nine fuzzy numbers
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2.3. Canonical representation operation on fuzzy numbers

In this section, the canonical representation of operation on triangular
fuzzy numbers which are based on the graded mean integration representation
method [47], is used to obtain the weight of each criterion in a simple manner.
The canonical representation operation on fuzzy numbers is applied to many
decision makings [49, 50].

Definition 2.6. Given a triangular fuzzy number Ã = (a1, a2, a3), the graded
mean integration representation of triangular fuzzy number Ã is defined as:

P (Ã) =
1

6
(a1 + 4× a2 + a3) (6)

Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be two triangular fuzzy numbers.
By applying Eq.(6), the graded mean integration representation of triangular
fuzzy numbers Ã and B̃ can be obtained, respectively, as follows:

P (Ã) = 1
6
(a1 + 4× a2 + a3)

P (B̃) = 1
6
(b1 + 4× b2 + b3)

The representation of the addition operation ⊕ on triangular fuzzy numbers
Ã and B̃ can be defined as :

P (Ã⊕ B̃) = P (Ã) + P (B̃) =
1

6
(a1 + 4× a2 + a3) +

1

6
(b1 + 4× b2 + b3) (7)

The canonical representation of the multiplication operation on triangular
fuzzy numbers Ã and B̃ is defined as :

P (Ã⊗ B̃) = P (Ã)× P (B̃) =
1

6
(a1 + 4× a2 + a3)×

1

6
(b1 + 4× b2 + b3) (8)

2.4. FAHP

In this section, we briefly introduce a typical FAHP method . For detailed
information, please refer [51, 52].

In the first step,triangular fuzzy numbers are used for pair-wise compar-
isons. Then, by using extent analysis method the synthetic extent value Si of
the pair-wise comparison is introduced and by applying the principle of the
comparison of fuzzy numbers, the weight vectors with respect to each ele-
ment under a certain criterion is calculated. The details of the methodology
are presented in the following steps:

7
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Let X = {x1, x2, . . . , xn} be an object set,and U = {u1, u2, . . . , um} be
a goal set.According to the method of Changs extent analysis, each object
is taken and an extent analysis for each goal, gi, is performed.Therefore,m
extent analysis values for each object can be obtained, with the following
signs:
M1

gi,M
2
gi, . . . ,M

m
gi , i = 1, 2, . . . , n, where all the M j

gi(j = 1, 2, . . . ,m) are
TFN’s.

Step 1: The value of fuzzy synthetic extent with respect to the ith object is
defined as

Si =
m∑
j=1

M j
gi ⊗

{
n∑

i=1

m∑
j=1

M j
gi

}−1

(9)

In order to obtain
m∑
j=1

M j
gi, perform the fuzzy addition operation of m extent

analysis values for a particular matrix such that

m∑
j=1

M j
gi =

(
m∑
j=1

lj,
m∑
j=1

mj,
m∑
j=1

uj

)
(10)

To obtain

{
n∑

i=1

m∑
j=1

M j
gi

}−1

, perform the fuzzy addition operation of M j
gi(j =

1, 2, . . . ,m) values such that

n∑
i=1

m∑
j=1

M j
gi =

(
n∑

i=1

li,
n∑

i=1

mi,
n∑

i=1

ui

)
(11)

and then compute the inverse of the vector.

Step 2: The degree of possibility of M2 = (l2,m2, u2) ≥ M1 = (l1,m1, u1) is
expressed as:

V (M2 ≥M1)
= hgt(M1 ≥M2)

=


1, if m2 ≥ m1

(l1−u2)
((m2−u2)−(m1−l1))

otherwise

0, if l1 ≥ u2

(12)

8
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To compare M1 and M2 both V (M2 ≥M1) and V (M1 ≥M2) are required.

Step 3: The degree of possibility for a convex fuzzy number to be greater
than k convex fuzzy numbers Mi(i = 1, 2, . . . , k) can be defined as:
V (M ≥M1,M2, . . . ,Mk) = V [(M ≥M1) and (M ≥M2) and ... and

(M ≥Mk)] = minV (M ≥Mi), i = 1, 2, . . . , k (13)

Let d′(Ai) = minV (Si ≥ Sk), for k = 1, 2, . . . , n; k ̸= i. Then the weight
vector is given by:

W ′ = (d′(A1), d
′(A2), . . . , d

′(An))T (14)

Step 4: The weight vector obtained in step 3 is normalized to get the nor-
malized weights.

3. The proposed methodology

One of the most key issue in fuzzy AHP is how to determine the weights
given the fuzzy pairwise comparison judgement matrix. For example, given
the linguistic data in Table 2, how can we get the weight of each criterion?
In the following of this section, we solve the problem step by step.

Table 2: The Fuzzy evaluation of criteria with respect to the overall objective

C1 C2 C3 C4 C5 WC

C1 (1,1,1) (3/2,2,5/2) (3/2,2,5/2) (5/2,3,7/2) (5/2,3,7/2) 0.3283
C2 (2/5,1/2,2/3) (1,1,1) (3/2,2,5/2) (5/2,3,7/2) (5/2,3,7/2) 0.2839
C3 (2/5,1/2,2/3) (2/5,1/2,2/3) (1,1,1) (3/2,2,5/2) (3/2,2,5/2) 0.1798
C4 (2/7,1/3,2/5) (2/7,1/3,2/5) (2/5,1/2,2/3) (1,1,1) (3/2,2,5/2) 0.1262
C5 (2/7,1/3,2/5) (2/7,1/3,2/5) (2/5,1/2,2/3) (2/5,1/2,2/3) (1,1,1) 0.0818
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3.1. Transformation of fuzzy comparison matrix

Let’s consider the element in the comparison matrix classical AHP. The
rating in the matrix means the relative importance of the criterion. For
example, suppose only two criterion in a comparison matrix, listed as follows.

Example 3.1. The comparison matrix is given as follows

C1 C2

C1

C2

[
1 3

1/3 1

]
From the matrix, the element C12 = 3 means that weight of the second

criterion C2 is three times of that of the first criterion C1. In addition, the
eigenvector of comparison matrix can be easily obtained as follows:[

w1

w2

]
=

[
0.75
0.25

]
Two important points should be noticed: First point, the sum of the
eigenvector of comparison matrix should be ONE. For example,w1 + w2 =
0.75 + 0.25 = 1. Second point, the ratio of the weight should be coincide
with the corresponding element in comparison matrix. In Example 3.1, we
can get w1/w2 = 0.75/0.25 = 3 = C12.

This idea of AHP can be easily adopted in fuzzy AHP. For example, in the
Table 2, the element C12 = (3/2, 2, 5/2). According to the above analysis, we
understand that the weight of the second criterion C2 is (3/2,2,5/2) times
of that of the first criterion C1(Notice: for the sake of simplicity, we suppose
that (3/2, 2, 5/2) is not a linguistic variable N2 shown in Fig.2, but a simple
fuzzy number to model the fuzzy variable ”ABOUT 2”). The only difference
between this case with Example 3.1 is that one is a crisp number 3 while
the other is a fuzzy number (3/2, 2, 5/2). How to represent the weight of the
second criterion C2 is (3/2,2,5/2) times of that of the first criterion C1 in
the canonical representation of multiplication operation on fuzzy numbers?
According to the Eq.(8), we obtain the follow result.

P (Ã⊗ B̃)
= (1, 1, 1)⊗ (3/2, 2, 5/2)
= 1

6
(1 + 4× 1 + 1)× 1

6
(3/2 + 4× 2 + 5/2)

= 1× 2
= 2

(15)

10
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The Eq.(15) means that the the weight of the second criterion C2 is
(3/2,2,5/2) times of that of the first criterion C1 could also be stated
as ”the weight of the second criterion C2 is 2 times of that of the first
criterion C1 under the canonical representation of multiplication operation
on fuzzy numbers”. The other element of the canonical representation of
multiplication operation on fuzzy numbers can also be determined and shown
in Table3.

Table 3: Evaluation of criteria with respect to the overall objective based on canonical
representation of multiplication operation

C1 C2 C3 C4 C5

C1 1 2 2 3 3
C2 46/90 1 2 3 3
C3 46/90 46/90 1 2 2
C4 212/630 212/630 46/90 1 2
C5 212/630 212/630 46/90 46/90 1

We call the matrix in Table3 the comparison matrix with canonical
representation of multiplication operation (CMCRMO)

Let’s us see the first row of Table 3. If we suppose that the relative weight
of the first criterion is 1, then we get that: 1)both the the relative weight
of the second and the third criterion is 2; 2)both the the relative weight
of the fourth and the fifth criterion is 3. Then, a straight way to obtain
the corresponding weight is with the simple normalization of these relative
weights. The result can be shown as follows.

w1
C1

= 1
1+2+2+3+3

= 1
11

w2
C1

= 2
1+2+2+3+3

= 2
11

w3
C1

= 2
1+2+2+3+3

= 2
11

w4
C1

= 3
1+2+2+3+3

= 3
11

w5
C1

= 3
1+2+2+3+3

= 3
11

(16)
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In Eq.(16), the subscript C1 means that the weight is obtained according
to the criterion C1. The weight in Eq.(16) is not the final weight of each
criterion since that there exists conflict in this situation, also called rank
reversal[34, 43, 44, 46, 45]. This problem will be handled in the following
part.

3.2. Conflict management with average method

It should also be mentioned that the second point, namely ”the ratio of
the weight should be coincide with the corresponding element in comparison
matrix” can be satisfied on some ideal situations. However, the preference
order will not be always keep coincided in the whole AHP process. In real
application, the comparison matrix given by experts may not strictly obey
the preference order as shown in Example3.2.

Example 3.2. The comparison matrix is given as follows

C1 C2 C3 C4

C1

C2

C3

C4


1 3 5 7

1/3 1 1/3 3
1/5 3 1 2
1/7 1/3 1/2 1


From the first row of above comparison matrix, we can see that the im-

portance ranking corresponding to C1 is

C1 < C2 < C3 < C4

. However, from the second row of above comparison matrix, we can see that
the importance ranking corresponding to C2 is

C1 < C3 < C2 < C4

The consistency index index defined in Definition2.3 show the conflict in
preference. In classical AHP, the CI is used to determine how consistence of
the comparison matrix. If the value of CI is higher than a threshold, then
some adjustments to deal with rank reversal should be made. Though many
methods have been proposed on this filed, it is still an open issue. In decision
making with fuzzy AHP, it is also inevitable. For example, see the first line
of the Table 3, we get the following preference ranking order.

12
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Table 4: The Fuzzy evaluation of criteria with respect to the overall objective

Preference ranking order

C1 C1 < C2 = C3 < C4 = C5
C2 C1 < C2 < C3 < C4 = C5
C3 C1 = C2 < C3 < C4 = C5
C4 C1 = C2 < C3 < C4 < C5
C5 C1 = C2 < C3 = C4 < C5

As can be seen from Table4, for C1, the weight of C2 is equal to C3.
However, for C2,C3,C4 and C5, the weight of C2 is less than C3. There are
many other conflicts in the ranking order. In this paper, we use average
to decrease the conflict in the preference order. We average the weights
of all criteria to get the final weight of each criterion. That is, if we get
the the comparison matrix with canonical representation of multiplication
operation (CMCRMO) shown in Table3, we can obtain the final weight of
each criterion with the normalization of average weight of each criterion.

Example 3.3. Suppose we get the comparison matrix with canonical repre-
sentation of multiplication operation (CMCRMO) shown in Table3, we can
get the average weight of the five criteria, respectively as follows

wav
C1

= 1
5

5∑
i

wCR
C5

= 1
5

(3 + 3 + 2 + 2 + 1)

wav
C2

= 1
5

5∑
i

wCR
C4

= 1
5

(
3 + 3 + 2 + 1 + 46

90

)
wav

C3
= 1

5

5∑
i

wCR
C3

= 1
5

(
2 + 2 + 1 + 46

90
+ 46

90

)
wav

C4
= 1

5

5∑
i

wCR
C2

= 1
5

(
2 + 1 + 46

90
+ 212

630
+ 212

630

)
wav

C5
= 1

5

5∑
i

wCR
C1

= 1
5

(
1 + 46

90
+ 46

90
+ 212

630
+ 212

630

)
(17)

Here, wav
Ci

means the average weight of the ith’s criterion, the superscript
av denotes average. wCR

Ci
means the canonical representation of multiplica-

tion operation of the ith’s criterion, the superscript CR denotes canonical
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representation. The final weight of the ith’s criterion, wf
Ci
, can be obtained

with the normalization of average weight of each criterion wav
Ci

and listed as
follows

wf
C1

=
wav

C1

wav
C1

+wav
C2

+wav
C3

+wav
C4

+wav
C5

= 11
1698
630

+ 2636
630

+ 3794
630

+ 5992
630

+11
= 0.3283

wf
C2

=
wav

C2

wav
C1

+wav
C2

+wav
C3

+wav
C4

+wav
C5

=
5992
630

1698
630

+ 2636
630

+ 3794
630

+ 5992
630

+11
= 0.2839

wf
C3

=
wav

C3

wav
C1

+wav
C2

+wav
C3

+wav
C4

+wav
C5

=
3794
630

1698
630

+ 2636
630

+ 3794
630

+ 5992
630

+11
= 0.1798

wf
C4

=
wav

C4

wav
C1

+wav
C2

+wav
C3

+wav
C4

+wav
C5

=
2636
630

1698
630

+ 2636
630

+ 3794
630

+ 5992
630

+11
= 0.1262

wf
C5

=
wav

C5

wav
C1

+wav
C2

+wav
C3

+wav
C4

+wav
C5

=
1898
630

1698
630

+ 2636
630

+ 3794
630

+ 5992
630

+11
= 0.0818

(18)

Note that to detail our proposed method in a easily understood way, we
suppose that the fuzzy number C12 = (3/2, 2, 5/2) means that the the weight
of the second criterion C2 is (3/2, 2, 5/2)times of that of the first criterion
C1.

However, according to the Figure2, the case is verse, where C12 = (3/2, 2, 5/2)
means that the the weight of the second criterion C1 is (3/2, 2, 5/2)times of
that of the first criterion C2. As a result, if we use the linguistic variables
shown in Figure2, the final weight of each criterion are shown in the right
row in Table2.

3.3. The proposed fuzzy AHP algorithm

Here we detail the proposed fuzzy AHP algorithm to determine weight
vector under uncertain environment step by step.

Step1: Construct the analytical hierarchy structure by domain experts.
In this step, the experts will determine the objective of decision making, the
relative criteria. In addition, the rating of the comparison matrix, modelled
by fuzzy numbers can be given by experts through linguistic variables(for
example, shown in Figue2), listed in Table2.

Step2: For each criterion, using the canonical representation of multi-
plication operation on fuzzy numbers to obtain the comparison matrix with
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canonical representation of multiplication operation (CMCRMO), shown
in Table3.

Step3: Determine the average weight of the ith’s criterion wav
Ci

, respec-
tively by Eq.19.

wav
Ci

=
1

N

N∑
i

wCR
Ci

(19)

where wCR
Ci

means the canonical representation weight of multiplication
operation of the ith’s criterion, the superscript CR denotes canonical rep-
resentation. In this average process, the conflict in preference is handled to
achieve a consensus preference.

Step4: Determine the final weight of the ith’s criterion, wf
Ci

, with the
normalization of average weight of the ith’s criterion wav

Ci
, respectively by

Eq.20.

wf
Ci

=
wav

Ci

N∑
i

wav
Ci

(20)

4. Numerical Example

Decision making is widely used in supplier management and selection
[51, 53, 54, 55, 56, 57, 58]. In this section, a numerical example originated
from [51] is presented to illustrate the procedure of the proposed model.

Owing to the large number of factors affecting the supplier selection de-
cision, an orderly sequence of steps should be required to tackle it. The
problem taken here has four level of hierarchy, and the different decision cri-
teria, attributes and the decision alternatives, will be further discussed. The
main objective here is the selection of best global supplier for a manufac-
turing firm. Application of common criteria to all suppliers makes objective
comparisons possible. The criteria which are considered here in selection of
the global supplier are:
(C1)Overall cost of the product
(C2)Quality of the product
(C3)Service performance of supplier
(C4)Supplier profile
(C5)Risk factor
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The AHP model of supplier selection can be constructed as shown in Fig
3

Global supplier 
selection

Cost(C1’ Quality(C2’ Service 
performance(C’ 

Supplierಬs 
profile(C’

Risk 
factor(C’

A1 A2

A3

A4 A5

A6 A7 A15A14

A13A12

A11A10

A9A8

A19A18

A17A16

Supplier1(S1’ Supplier2(S2’ Supplier3(S3’

Level 1:Overall Objective(O’

Level 2:Criteria(c’

Level 3:Attributes(A’

Level 4:Decision Alternatives(S’

Figure 3: Hierarchy for the global supplier selection.

As been seen from Fig 3., the overall cost of the product (C1) has three
factors (attributes):
(A1) Product price ,
(A2) Freight cost
(A3) Tariff and custom duties .
The quality of the product (C2) has four factors:
(A4) Rejection rate of the product ,
(A5) Increased lead time ,
(A6) Quality assessment
(A7)Remedy for quality problems.
The service performance (C3) has four attributes:
(A8) Delivery schedule ,
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(A9)Technological and R&D support ,
(A10)Response to changes
(A11) Ease of communication .
The suppliers profile (C4) has four attributes:
(A12)Financial status ,
(A13)Customer base ,
(A14)Performance history
(A15)Production facility and capacity.
The Risk factor (C5) has four attributes:
(A16)Geographical location ,
(A17)Political stability ,
(A18) Economy
(A19) Terrorism.
Refer [51] for more detailed information about the attributes mentioned
above.

After the construction of the decision hierarchy of supplier selection, the
fuzzy evaluation matrix of the criteria is constructed by the pairwise compar-
ison of the different criterion relevant to the overall objective using triangular
fuzzy numbers, which is shown in Table 2.

The fuzzy evaluation of criteria with respect to the overall objective can
be listed in Table 2. The final weights of each criteria can be determined by
the GA method. The detailed calculation process is given in Section 3. The
results are listed in right side of Table 2.

In a similar way, the The fuzzy evaluation of the attributes with respect to
criterion C1 to C6 can be given by domain experts and there corresponding
results based on GA are listed in Table 5 to Table 9, respectively.

For the criterion C1, the summary combination of priority weights can be
listed in Table 10. Also, the others summary combination of priority weights
of C2 to C5 are shown in Table 11 to Table 14.

The Fuzzy evaluation of criteria with respect to the overall objective can
be shown in 15. As can be seen from Table 15 and Figure 4, the best supplier
is S1, which is the same to the works in [51] using the commonly used fuzzy
AHP method mentioned in Section 2.4.

5. Conclusions

In this paper, a novel and simple fuzzy AHP is proposed to handle M-
CDM. In our new method, the weight of each criterion can be determined by
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Table 5: The fuzzy evaluation of the attributes with respect to criterion C1

C1 A1 A2 A3 WC1

A1 (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) 0.4747
A2 (2/5, 1/2, 2/3) (1, 1, 1) (3/2, 2, 5/2) 0.3333
A3 (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) 0.1920

Table 6: The fuzzy evaluation of the attributes with respect to criterion C2

C2 A4 A5 A6 A7 WC2

A4 (1, 1, 1) (3/2, 2, 5/2) (2/3, 1, 3/2) (5/2, 3, 7/2) 0.3703
A5 (2/5, 1/2, 2/3) (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) 0.2391
A6 (2/3, 1, 3/2) (2/3, 1, 3/2) (1, 1, 1) (3/2, 2, 5/2) 0.2663
A7 (2/7, 1/3, 2/5) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) 0.1243

Table 7: The fuzzy evaluation of the attributes with respect to criterion C3

C3 A8 A9 A10 A11 WC3

A8 (1, 1, 1) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2) 0.4264
A9 (2/5, 1/2, 2/3) (1, 1, 1) (5/2, 3, 7/2) (5/2, 3, 7/2) 0.3274
A10 (2/7, 1/3, 2/5) (2/7, 1/3, 2/5) (1, 1, 1) (3/2, 2, 5/2) 0.1566
A11 (2/9, 1/4, 2/7) (2/7, 1/3, 2/5) (2/5, 1/2, 2/3) (1, 1, 1) 0.0895
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Table 8: The fuzzy evaluation of the attributes with respect to criterion C4

C4 A12 A13 A14 A15 WC4

A12 (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (7/2, 4, 9/2) 0.4880
A13 (2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) (3/2, 2, 5/2) 0.2030
A14 (2/5, 1/2, 2/3) (2/7, 1/3, 2/5) (1, 1, 1) (3/2, 2, 5/2) 0.1942
A15 (2/9, 1/4, 2/7) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) 0.1148

Table 9: The fuzzy evaluation of the attributes with respect to criterion C5

C5 A16 A17 A18 A19 WC5

A16 (1, 1, 1) (2/3,1,3/2) (2/3, 1, 3/2) (2/3, 1, 3/2) 0.2331
A17 (2/3, 1, 3/2) (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) 0.3438
A18 (2/3, 1, 3/2) (2/5, 1/2, 2/3) (1, 1, 1) (3/2, 2, 5/2) 0.2741
A19 (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1) 0.1489

Table 10: Summary combination of priority weights: attributes of criterion C1

A1 A2 A3 Alternative priority
Weight 0.4747 0.3333 0.1920 weight

Alternatives
S1 0.71 0.44 0.69 0.6217
S2 0.13 0.36 0.08 0.1920
S3 0.16 0.20 0.23 0.1862
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Table 11: Summary combination of priority weights: attributes of criterion C2

A4 A5 A6 A7 Alternative priority
Weight 0.3703 0.2391 0.2663 0.1243 weight

Alternatives
S1 0.51 0.51 0.69 0.87 0.6027
S2 0.23 0.23 0.08 0.00 0.1615
S3 0.26 0.26 0.23 0.13 0.2359

Table 12: Summary combination of priority weights: attributes of criterion C3

A8 A9 A10 A11 Alternative priority
Weight 0.4264 0.3274 0.1566 0.0895 weight

Alternatives
S1 0.27 0.69 0.05 0.49 0.3927
S2 0.18 0.08 0.64 0.32 0.2318
S3 0.55 0.23 0.31 0.19 0.3754

Table 13: Summary combination of priority weights: attributes of criterion C4

A11 A12 A13 A14 Alternative priority
Weight 0.4880 0.2030 0.1942 0.1148 weight

Alternatives
S1 0.83 0.45 0.69 0.33 0.6683
S2 0.17 0.45 0.08 0.33 0.2277
S3 0.00 0.10 0.23 0.34 0.1040
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Table 14: Summary combination of priority weights: attributes of criterion C5

A16 A17 A18 A19 Alternative priority
Weight 0.2331 0.3438 0.2741 0.1489 weight

Alternatives
S1 0.72 0.49 0.83 0.27 0.6040
S2 0.00 0.32 0.17 0.18 0.1834
S3 0.28 0.19 0.00 0.55 0.2125

Table 15: Summary combination of priority weights: main criteria of the overall objective

C1 C2 C3 C4 C5 Alternative priority
Weight 0.3542 0.2696 0.1692 0.1147 0.0923 weight

Alternatives
S1 0.6217 0.6027 0.3927 0.6683 0.6040 0.5815
S2 0.1920 0.1615 0.2318 0.2277 0.1834 0.1938
S3 0.1862 0.2359 0.3754 0.1040 0.2125 0.2246
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Figure 4: Comparison of proposed mthod with the previous work [21].

the the canonical representation of multiplication operation on fuzzy num-
bers. Instead of obtaining the eigenvector of the fuzzy comparison matrix,
we get the weight simply by the ratio of each criterion. In addition, we get
the final weight of each criterion by average method, which can deal with
conflicts in an efficient manner. The proposed method is applied to supplier
management under linguistic environment. The results show the efficiency of
the proposed method. The method can be easily used in other fuzzy decision
making problems.
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A QUADRATURE RULE FOR THE FINITE HILBERT TRANSFORM VIA

SIMPSON TYPE INEQUALITIES AND APPLICATIONS

SHUNFENG WANG, NA LU AND XINGYUE GAO

Abstract. In this paper, a quadrature rule on an equidistant partition of the interval [a, b] for the finite

Hilbert Transform of different classes of absolutely continuous functions via Simpson type inequalities
is given, which may have the better error bounds than those obtained via trapezoid type inequalities.
Some numerical experiments for different divisions of the interval [a, b] are also presented.

1. Introduction

The finite Hilbert transform plays an important role in scientific and engineering computing. Denote
by (Tf)(a, b, ·) the finite Hilbert transform of the function f : [a, b]→ R, i.e., we recall it

(Tf)(a, b; t) =
1

π
PV

∫ b

a

f(τ)

τ − t
dτ :=

1

π
lim
ε→0

[∫ t−ε

a

+

∫ b

t+ε

]
f(τ)

τ − t
dτ,(1.1)

where PV has the usual meaning of the Cauchy principle value.
There are some important approaches for evaluating finite Hilbert transforms, such as the Gaussian,

Chebyshev, TANH, Iri-Moriguti-Takasawa, and double exponential quadrature methods. And for classical
results on the finite Hilbert transform, see [4, 5, 6, 9, 11, 12, 13, 17].

In [5], by the use of trapezoid type rules taken on an equidistant partition of the interval [a, b], Dragomir
et al. proved the following inequalities for the finite Hilbert transform of different classes of absolutely
continuous functions.

Theorem 1.1. Let f : [a, b] → R be a differentiable function such that its derivative f ′ is absolutely
continuous on [a, b]. If

Tn(f ; t) =
f ′(t)(b− a) + f(b)− f(a)

2πn
+
b− a
πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]
,(1.2)

then we have the estimate∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(1.3)

≤



1

4πn

[
(b− a)2

4
+

(
t− a+ b

2

)2
]
∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

q

2πn(q + 1)1+
1
q

[
(t− a)1+

1
q + (b− t)1+

1
q

]
∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

2πn

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣
]
∥f ′′∥[a,b],1,

≤



1

8πn
(b− a)2∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

q

2πn(q + 1)1+
1
q

(b− a)1+
1
q ∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

2πn
(b− a)∥f ′′∥[a,b],1,

for all t ∈ (a, b), where [f ; c, d] denotes the divided difference [f ; c, d] := f(c)−f(d)
c−d .

Key words and phrases. Finite Hilbert transform, Simpson type inequalities.
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Theorem 1.2. Let f : [a, b]→ R be a twice differentiable function such that the second derivative f ′′ is
absolutely continuous on [a, b]. Then∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(1.4)

≤



1

12n2π
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1
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]
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q[B(q + 1, q + 1)]
1
q (b− a)2+

1
q

2π(2q + 1)n2
∥f ′′′∥[a,b],p, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

16πn2
(b− a)2∥f ′′′∥[a,b],1,

for all t ∈ (a, b), where Tn(f ; t) is defined by (1.2).

An extensive literature such as [1, 2, 3, 7, 8, 10, 14, 15, 16, 18, 19, 20, 21, 22] deal with Simpson type
inequalities.

In this paper, motivated by [5], by the use of Simpson type inequalities taken on an equidistant
partition of the interval [a, b], a quadrature formula for the Finite Hilbert transform of different classes
of absolutely continuous functions is obtained. Estimates for some error bounds and some numerical
examples for the obtained approximation will also be presented.

2. THE RESULTS

Lemma 2.1. Let u : [a, b] → R be an absolutely continuous function on [a, b]. Then one has the
inequalities: ∣∣∣∣∣

∫ b

a

u(s)ds−
u(a) + 4u

(
a+b
2

)
+ u(b)

6
(b− a)

∣∣∣∣∣(2.1)

≤



5(b− a)2

36
∥u′∥[a,b],∞ if u′ ∈ L∞[a, b];

2(b− a)1+
1
q
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q

∥u′∥[a,b],p, if u′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

b− a
3
∥u′∥[a,b],1.

A simple proof of this fact can be done by using the identity∫ b

a

u(s)ds−
u(a) + 4u

(
a+b
2

)
+ u(b)

6
(b− a) =−

[∫ a+b
2

a

(
s− 5a+ b

6

)
u′(s)ds(2.2)

+

∫ b

a+b
2

(
s− a+ 5b

6

)
u′(s)ds

]
,

and we omit the details.
The following lemma holds.

Lemma 2.2. Let u : [a, b] → R be an absolutely continuous function on [a, b]. Then for any t, τ ∈
(a, b), t ̸= τ and n ∈ N, n ≥ 1, we have the inequality:∣∣∣∣∣ 1

τ − t

∫ τ

t

u(s)ds− 1

6n

n−1∑
i=0

[
u

(
t+ i · τ − t

n

)
+ 4u

(
t+

(
i+

1

2

)
· τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]∣∣∣∣∣
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≤



5|τ − t|
36n

∥u′∥[t,τ ],∞ if u′ ∈ L∞[a, b];

2|τ − t|
1
q
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q n

∥u′∥[t,τ ],p, if u′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

1

3n
∥u′∥[t,τ ],1,

where

∥u′∥[t,τ ],∞ :=ess sup
s∈|t,τ |

|u′(s)|, and ∥u′∥[t,τ ],p :=

∣∣∣∣∫ τ

t

|u′(s)p|ds
∣∣∣∣ 1p , p ≥ 1.

Proof. Consider the equidistant division of [t, τ ] (if t < τ) given by

En : xi = t+ i · τ − t
n

, i =0, n.

If we apply the inequality (2.1) on the interval [xi, xi+1], we may write that:∣∣∣∣∣
∫ xi+1

xi

u(s)ds−
u
(
t+ i · τ−t

n

)
+ 4u

(
t+

(
i+ 1

2

)
· τ−t

n

)
+ u
(
t+ (i+ 1) · τ−t

n

)
6

· τ − t
n

∣∣∣∣∣

≤



5(τ − t)2

36n2
∥u′∥[xi,xi+1],∞, if u′ ∈ L∞[a, b];

2|τ − t|1+
1
q
(

1
6q+1 + 1

3q+1

) 1
q

n1+
1
q (q + 1)

1
q

∥u′∥[xi,xi+1],p, if u′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|
3n

∥u′∥[xi,xi+1],1,

from which we get∣∣∣∣∣ 1

τ − t

∫ xi+1

xi

u(s)ds− 1

6n

[
u

(
t+ i · τ − t

n

)
+ 4u

(
t+

(
i+

1

2

)
· τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]∣∣∣∣∣

≤



5|τ − t|
36n2

∥u′∥[xi,xi+1],∞, if u′ ∈ L∞[a, b];

2|τ − t|
1
q
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q n1+

1
q

∥u′∥[xi,xi+1],p, if u′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

1

3n
∥u′∥[xi,xi+1],1.

Summing over i from 0 to n− 1 and using the generalised triangle inequality, we may write∣∣∣∣∣ 1

τ − t

∫ τ

t

u(s)ds− 1

6n

n−1∑
i=0

[
u

(
t+ i · τ − t

n

)
+ 4u

(
t+

(
i+

1

2

)
· τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]∣∣∣∣∣

≤



5|τ − t|
36n2

n−1∑
i=0

∥u′∥[xi,xi+1],∞, if u′ ∈ L∞[a, b];

2|τ − t|
1
q
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q n1+

1
q

n−1∑
i=0

∥u′∥[xi,xi+1],p, if u′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

1

3n

n−1∑
i=0

∥u′∥[xi,xi+1],1.

However,

n−1∑
i=0

∥u′∥[xi,xi+1],∞ ≤ n∥u
′∥[t,τ ],∞,
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n−1∑
i=0

∥u′∥[xi,xi+1],p =

n−1∑
i=0

∣∣∣∣∫ xi+1

xi

|u′(s)|pds

∣∣∣∣ 1p ≤ n 1
q

[(
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

|u′(s)|pds

∣∣∣∣ 1p
)p ] 1

p

= n
1
q ∥u′∥[t,τ ],p,

and

n−1∑
i=0

∥u′∥[xi,xi+1],1 ≤

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

xi

|u′(s)|ds

∣∣∣∣∣ =

∣∣∣∣∫ τ

t

|u′(s)|ds
∣∣∣∣ = ∥u′∥[t,τ ],1,

and the lemma is proved. �

The following theorem in approximating the Hilbert transform of a differentiable function whose de-
rivative is absolutely continuous holds.

Theorem 2.1. Let f : [a, b] → R be a differentiable function such that its derivative f ′ is absolutely
continuous on [a, b]. If

Tn(f ; t) =
f ′(t)(b− a) + f(b)− f(a)

6πn
+
b− a
3πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]

(2.3)

+
2(b− a)

3πn

n−1∑
i=0

[
f ; t− t− a

n
·
(
i+

1

2

)
, t+

b− t
n
·
(
i+

1

2

)]
,

then we have the estimate∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(2.4)

≤



5

36πn

[
(b− a)2

4
+

(
t− a+ b

2

)2
]
∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

2q
(

1
6q+1 + 1

3q+1

) 1
q

π(q + 1)
1
q

[
(t− a)1+

1
q + (b− t)1+

1
q

]
∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

3πn

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣
]
∥f ′′∥[a,b],1,

≤



5

72πn
(b− a)2∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

2q
(

1
6q+1 + 1

3q+1

) 1
q

π(q + 1)
1
q

(b− a)1+
1
q ∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

3πn
(b− a)∥f ′′∥[a,b],1,

for all t ∈ (a, b).

Proof. Applying Lemma 2.2 for the function f ′, we may write that∣∣∣∣∣f(τ)− f(t)

τ − t
− 1

6n

[
f ′(t) +

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
+ 4

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)
(2.5)

+ f ′(τ) +

n−2∑
i=0

f ′
(
t+ (i+ 1) · τ − t

n

)]∣∣∣∣∣

≤



5|τ − t|
36n

∥f ′′∥[t,τ ],∞, if f ′′ ∈ L∞[a, b];

2|τ − t|
1
q ( 1

6q+1 + 1
3q+1 )

1
q

(q + 1)
1
q n

∥f ′′∥[t,τ ],p, if f ′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

1

3n
∥f ′′∥[t,τ ],1.
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However,

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
=

n−2∑
i=0

f ′
(
t+ (i+ 1) · τ − t

n

)
and then by (2.5), we may write:∣∣∣∣∣f(τ)− f(t)

τ − t
−

[
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
+

2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)]∣∣∣∣∣(2.6)

≤



5|τ − t|
36n

∥f ′′∥[t,τ ],∞,

2|τ − t|
1
q
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q n

∥f ′′∥[t,τ ],p,

1

3n
∥f ′′∥[t,τ ],1,

for any t, τ ∈ [a, b], t ̸= τ .
Consequently, we have∣∣∣∣∣ 1πPV

∫ b

a

f(τ)− f(t)

τ − t
dτ − 1

π
PV

∫ b

a

[
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
(2.7)

+
2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)]
dτ

∣∣∣∣∣

≤



5

36πn
PV

∫ b

a

|τ − t|∥f ′′∥[t,τ ],∞dτ,

2
(

1
6q+1 + 1

3q+1

) 1
q

(q + 1)
1
q πn

PV

∫ b

a

|τ − t|
1
q ∥f ′′∥[t,τ ],pdτ,

1

3πn
PV

∫ b

a

∥f ′′∥[t,τ ],1dτ.

Since

PV

∫ b

a

[
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
+

2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)]
dτ

= lim
ε→0+

(∫ t−ε

a

+

∫ b

t+ε

)(
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)

+
2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

))
dτ

=
f ′(t)(b− a) + f(b)− f(a)

6n
+

1

3n

n−1∑
i=1

[
lim

ε→0+

(∫ t−ε

a

+

∫ b

t+ε

)(
f ′
(
t+ i · τ − t

n

))]
dτ

+
2

3n

n−1∑
i=0

[
lim

ε→0+

(∫ t−ε

a

+

∫ b

t+ε

)(
f ′
(
t+

(
i+

1

2

)
· τ − t

n

))]
dτ

=
f ′(t)(b− a) + f(b)− f(a)

6n
+

1

3n

n−1∑
i=1

[
lim

ε→0+

[
n

i
· f
(
t+ i · τ − t

n

)(∣∣∣t−ε

a
+
∣∣∣b
t+ε

)]]

+
2

3n

n−1∑
i=0

[
lim

ε→0+

[
2n

2i+ 1
· f
(
t+

(
i+

1

2

)
· τ − t

n

)(∣∣∣t−ε

a
+
∣∣∣b
t+ε

)]]

=
f ′(t)(b− a) + f(b)− f(a)

6n
+

1

3n

n−1∑
i=1

n

i

[
f

(
t+ i · b− t

n

)
− f

(
t+ i · a− t

n

)]

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

233 SHUNFENG WANG et al 229-238



S. F. WANG, N. LU AND X. Y. GAO

+
2

3n

n−1∑
i=0

2n

2i+ 1

[
f

(
t+

(
i+

1

2

)
· b− t

n

)
− f

(
t+

(
i+

1

2

)
· a− t

n

)]

=
f ′(t)(b− a) + f(b)− f(a)

6n
+
b− a
3n

n−1∑
i=1

[
f ; t+ i · b− t

n
, t+ i · a− t

n

]

+
2(b− a)

3n

n−1∑
i=0

[
f ; t+

(
i+

1

2

)
· b− t

n
, t+

(
i+

1

2

)
· a− t

n

]
,

and

PV

∫ b

a

|τ − t|∥f ′′∥[t,τ ],∞dτ ≤∥f ′′∥[a,b],∞PV
∫ b

a

|τ − t|dτ = ∥f ′′∥[a,b],∞
[

1

4
(b− a)2 +

(
t− a+ b

2

)]
,

PV

∫ b

a

|τ − t|
1
q ∥f ′′∥[t,τ ],pdτ ≤∥f ′′∥[a,b],pPV

∫ b

a

|τ − t|
1
q dτ =

q∥f ′′∥[a,b],p
q + 1

[
(t− a)1+

1
q + (b− t)1+

1
q

]
,

PV

∫ b

a

∥f ′′∥[t,τ ],1dτ = PV

[∫ t

a

∥f ′′∥[τ,t],1dτ +

∫ b

t

∥f ′′∥[t,τ ],1dτ

]

≤∥f ′′∥[a,t],1(t− a) + ∥f ′′∥[t,b],1(b− t) ≤

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣
]
∥f ′′∥[a,b],1,

then, by (2.7) we get∣∣∣∣∣ 1πPV
∫ b

a

f(τ)− f(t)

τ − t
dτ − f ′(t)(b− a) + f(b)− f(a)

6πn
− b− a

3πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]

(2.8)

− 2(b− a)

3πn

n−1∑
i=0

[
f ; t− t− a

n
·
(
i+

1

2

)
, t+

b− t
n
·
(
i+

1

2

)] ∣∣∣∣∣

≤



5∥f ′′∥[a,b],∞
36πn

[
1

4
(b− a)2 +

(
t− a+ b

2

)]
, if f ′′ ∈ L∞[a, b];

2q
(

1
6q+1 + 1

3q+1

) 1
q ∥f ′′∥[a,b],p

π(q + 1)1+
1
q n

[
(t− a)1+

1
q + (b− t)1+

1
q

]
, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

∥f ′′∥[a,b],1
3πn

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣
]
.

On the other hand, as for the function f0 : (a, b)→ R, f0(t) = 1, we have

(T, f0)(a, b; t) =
1

π
ln

(
b− a
t− a

)
, t ∈ (a, b),

then obviously

(Tf)(a, b; t) =
1

π
PV

∫ b

a

f(τ)− f(t) + f(t)

τ − t
dτ =

1

π
PV

∫ b

a

f(τ)− f(t)

τ − t
dτ +

f(t)

π
PV

∫ b

a

dτ

τ − t
,

from which we get the equality:

(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
=

1

π
PV

∫ b

a

f(τ)− f(t)

τ − t
dτ.(2.9)

Finally, using (2.8) and (2.9), we deduce (2.4). �

Before we proceed with another estimate of the remainder in approximating the Hilbert Transform for
functions whose second derivatives are absolutely continuous, we need the following lemma.

Lemma 2.3. Let u : [a, b] → R be a function such that its derivative is absolutely continuous on [a, b].
Then one has the inequalities:∣∣∣∣∣

∫ b

a

u(s)ds−
u(a) + 4u

(
a+b
2

)
+ u(b)

6
(b− a)

∣∣∣∣∣(2.10)
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≤



(b− a)3

81
∥u′′∥[a,b],∞, if u′′ ∈ L∞[a, b];

(b− a)2+
1
q

2
Λ∥u′′∥[a,b],p, if u′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

(b− a)2

24
∥u′′∥[a,b],1,

where

Λ =

[(∫ 1
3

0

sq
(

1

3
− s
)q

ds+

∫ 1
2

1
3

sq
(
s− 1

3

)q

ds

) 1
q

(2.11)

+

(∫ 2
3

1
2

(1− s)q
(

2

3
− s
)q

ds+

∫ 1

2
3

(1− s)q
(
s− 2

3

)q

ds

) 1
q
]
.

A simple proof of the fact can be done by the use of the following identity:∫ b

a

u(s)ds−
u(a) + 4u

(
a+b
2

)
+ u(b)

6
(b− a) =− 1

2

∫ a+b
2

a

(s− a)

(
s− 2a+ b

3

)
u′′(s)ds(2.12)

− 1

2

∫ b

a+b
2

(s− b)
(
s− a+ 2b

3

)
u′′(s)ds,

and we omit the details.
The following lemma also holds.

Lemma 2.4. Let u : [a, b] → R be a differentiable function such that u′ : [a, b] → R is absolutely
continuous on [a, b]. Then for any t, τ ∈ (a, b), t ̸= τ and n ∈ N, n ≥ 1, we have the inequality:∣∣∣∣∣ 1

τ − t

∫ τ

t

u(s)ds− 1

6n

n−1∑
i=0

[
u

(
t+ i · τ − t

n

)
+ 4u

(
t+

(
i+

1

2

)
· τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]∣∣∣∣∣

≤



|τ − t|2

81n2
∥u′′∥[t,τ ],∞, if u′′ ∈ L∞[a, b];

|τ − t|1+
1
q

2n2
Λ∥u′′∥[t,τ ],p, if u′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

|τ − t|
24n2

∥u′′∥[t,τ ],1.

Proof. Consider the equidistant division of [t, τ ] (if t < τ)

En : xi = t+ i · τ − t
n

, i =0, n.

If we apply the inequality (2.10), we may state that∣∣∣∣∣
∫ xi+1

xi

u(s)ds−
u
(
t+ i · τ−t

n

)
+ 4u

(
t+

(
i+ 1

2

)
· τ−t

n

)
+ u
(
t+ (i+ 1) · τ−t

n

)
6

· τ − t
n

∣∣∣∣∣

≤



|τ − t|3

81n3
∥u′′∥[xi,xi+1],∞, if u′′ ∈ L∞[a, b];

|τ − t|2+
1
q

2n2+
1
q

Λ∥u′′∥[xi,xi+1],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|2

24n2
∥u′′∥[xi,xi+1],1.

Dividing by |τ − t| > 0 and using a similar argument to the one in Lemma 2.2, we conclude that the
desired inequality holds. �

The following theorem in approximating the Hilbert transform of a twice differentiable function whose
second derivative f ′′ is absolutely continuous also holds.
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Theorem 2.2. Let f : [a, b]→ R be a twice differentiable function such that the second derivative f ′′ is
absolutely continuous on [a, b]. Then∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(2.13)

≤



1

81n2π

[
(b− a)2

12
+

(
t− a+ b

2

)2
]

(b− a)∥f ′′′∥[a,b],∞, if f ′′′ ∈ L∞[a, b];

q[(t− a)2+
1
q + (b− t)2+

1
q ]Λ

2(2q + 1)n2π
∥f ′′′∥[a,b],p, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

24n2π

[
(b− a)2

4
+

(
t− a+ b

2

)2
]
∥f ′′′∥[a,b],1,

≤



(b− a)3

243n2π
∥f ′′′∥[a,b],∞, if f ′′′ ∈ L∞[a, b];

q(b− a)2+
1
q Λ

2π(2q + 1)n2
∥f ′′′∥[a,b],p, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

(b− a)2

48n2π
∥f ′′′∥[a,b],1,

for all t ∈ (a, b), where Tn(f ; t) is defined by (2.3) and Λ is defined by (2.11).

Proof. Applying Lemma 2.4 for the function f ′, we may write that (see also Theorem 2.1)∣∣∣∣∣f(τ)− f(t)

τ − t
−

[
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
+

2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)]∣∣∣∣∣(2.14)

≤



|τ − t|2

81n2
∥f ′′′∥[t,τ ],∞, if f ′′′ ∈ L∞[a, b];

|τ − t|1+
1
q

2n2
Λ∥f ′′′∥[t,τ ],p, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

|τ − t|
24n2

∥f ′′′∥[t,τ ],1,

for any t, τ ∈ [a, b], t ̸= τ . Consequently, we may write:∣∣∣∣∣ 1πPV
∫ b

a

f(τ)− f(t)

τ − t
dτ − 1

π
PV

∫ b

a

[
f ′(t) + f ′(τ)

6n
+

1

3n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
(2.15)

+
2

3n

n−1∑
i=0

f ′
(
t+

(
i+

1

2

)
· τ − t

n

)]
dτ

∣∣∣∣∣

≤



1

81n2π
PV

∫ b

a

|τ − t|2∥f ′′′∥[t,τ ],∞dτ,

Λ

2n2π
PV

∫ b

a

|τ − t|1+
1
q ∥f ′′′∥[t,τ ],pdτ,

1

24n2π
PV

∫ b

a

|τ − t|∥f ′′′∥[t,τ ],1dτ.

since

PV

∫ b

a

|τ − t|2∥f ′′′∥[t,τ ],∞dτ ≤ ∥f ′′′∥[a,b],∞PV
∫ b

a

|τ − t|2dτ

=∥f ′′′∥[a,b],∞
[

(t− a)3 + (b− t)3

3

]
= ∥f ′′′∥[a,b],∞

[
(b− a)2

12
+

(
t− a+ b

2

)2
]

(b− a),

PV

∫ b

a

|τ − t|1+
1
q ∥f ′′′∥[t,τ ],pdτ ≤ ∥f ′′′∥[a,b],pPV

∫ b

a

|τ − t|1+
1
q dτ
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=∥f ′′′∥[a,b],p
(b− t)2+

1
q + (t− a)2+

1
q

2 + 1
q

=
q∥f ′′′∥[a,b],p

2q + 1

[
(b− t)2+

1
q + (t− a)2+

1
q

]
and

PV

∫ b

a

|τ − t|∥f ′′′∥[t,τ ],1dτ ≤

[
(b− a)2

4
+

(
t− a+ b

2

)2
]
∥f ′′′∥[a,b],1.

Then by (2.15), we deduce the first part of (2.13). �

3. NUMERICAL EXPERIMENTS

For a function f : [a, b]→ R, we may consider the quadrature formula

En(f ; a, b, t) :=
f(t)

π
ln

(
b− t
t− a

)
+ Tn(f ; t), t ∈ [a, b].

As shown in the above section, En(f ; a, b, t) provides an approximation for the Finite Hilbert Transform
(Tf)(a, b; t) and the error estimate fulfils the bounds described in (2.4) and (2.15).

If we consider the function f : [1, 2]→ R, f(x) = exp(x), the exact value of the Hilbert transform is

(Tf)(a, b; t) =
exp(t)Ei(2− t)− exp(t)Ei(1− t)

π
, t ∈ [1, 2].

and the plot of this function is embodied in Figure 1.
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If we implement the quadrature formula provided by En(f ; a, b, t) using Matlab and chose the value
of n = 100, the error Er(f ; a, b, t) := (Tf)(a, b; t)−En(f ; a, b, t) has the variation described in Figure 2.
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Figure 4

For n = 200, the plot of Er(f ; a, b, t) is embodied in the following Figure 3, from which we can see
that the precision of the error gets higher when n gets bigger.

Now, if we consider another function f : [1, 2] → R, f(x) = sin(x), then the exact value of Hilbert
transform is

(Tf)(a, b; t) =
−Si(−2 + t) cos(t) + Ci(2− t) sin(t) + Si(t− 1) cos(t)− sin(t)Ci(t− 1)

π
, t ∈ [1, 2]

having the plot embodied in Figure 4.
If we choose the value of n = 50, then the error Er(f ; a, b, t) := (Tf)(a, b; t) − En(f ; a, b, t) for the

function f(x) = sinx, x ∈ [a, b] has the variation described in Figure 5. Moreover, for n = 100, the
behaviour of Er(f ; a, b, t) is plotted in Figure 6.
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Remark 1. When n = 100, for function f(x) = exp(x), the precision of the error is 10−06 in [5], while
the precision obtained here is 10−12. When n = 200, we also have the higher precision. For function
f(x) = sin(x), it’s the same situation. Therefore, our results may have the better error bounds.
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A QUADRATURE FORMULA IN APPROXIMATING THE FINITE HILBERT

TRANSFORM VIA PERTURBED TRAPEZOID TYPE INEQUALITIES

SHUNFENG WANG, XINGYUE GAO AND NA LU

Abstract. In this paper, we obtain the error estimation of a quadrature formula in approximating the
finite Hilbert transform on an equidistant partition of the interval [a, b]. Some numerical examples for

the obtained approximation are also presented.

1. Introduction

In the recent year, many authors tried to consider error inequalities for some known and some new
quadrature rules. For example, the well-known trapezoid and midpoint quadrature rules were considered
(see [1], [4], [6], [9], [11], [12], [14], [15], [18], [19] and [20]). In [5], the authors proved the following
theorem:

Theorem 1.1. Let f : [a, b]→ R be a mapping such the derivative f (n−1) (n ≥ 1) is absolutely continuous
on [a, b]. Then∫ b

a

f(t)dt =
n−1∑
k=0

1

(k + 1)!

[
(x− a)k+1f (k)(a) + (−1)k(b− x)k+1f (k)(b)

]
+

1

n!

∫ b

a

(x− t)nf (n)(t)dt(1.1)

for all x ∈ [a, b].

Specially, we can obtain the following identity from (1.1) with x = a+b
2 :∫ b

a

f(t)dt =
n−1∑
k=0

(b− a)k+1

2k+1(k + 1)!

[
f (k)(a) + (−1)kf (k)(b)

]
+

(−1)n

n!

∫ b

a

(
t− a+ b

2

)n

f (n)(t)dt.(1.2)

In (1.2), for n = 1, we obtain the trapezoid rule∫ b

a

f(t)dt =
f(b) + f(a)

2
(b− a) +

∫ b

a

(
a+ b

2
− t
)
f ′(t)dt.(1.3)

The finite Hilbert transform of the function f : (a, b)→ R is defined as

T (f)(a, b; t) =
1

π
PV

∫ b

a

f(τ)

τ − t
dτ = lim

ε→0

[∫ t−ε

a

+

∫ b

t+ε

]
f(τ)

π(τ − t)
dτ

where PV has the usual meaning of the Cauthy principle value (see [3]).
In [7], the authors used the inequality (1.3) to approximate the finite Hilbert transform and obtain

the following theorem:

Theorem 1.2. Let f : [a, b]→ R be such that f ′ : [a, b]→ R is absolutely continuous on [a, b]. Then we
have the bounds∣∣∣∣T (f)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− 1

2π
[f(b)− f(a) + f ′(t)(b− a)]

∣∣∣∣

≤



∥f ′′∥∞
4π

[
(b− a)2

4
+

(
t− b+ a

2

)]2
, f ′′ ∈ L∞[a, b];

q ∥f ′′∥p
2π(q + 1)1+

1
q

[
(t− a)1+

1
q + (b− t)1+

1
q

]
, p > 1,

1

p
+

1

q
= 1 and f ′′ ∈ Lp[a, b];

∥f ′′∥1
2π

(b− a), f ′′ ∈ L1[a, b],

(1.4)

for all t ∈ (a, b), where ∥ · ∥p are the usual Lebesgue norms in Lp[a, b] (1 ≤ p ≤ ∞).

Key words and phrases. perturbed trapezoid type inequality; numerical integration; finite Hilbert transform.
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In [8], by the use of trapezoid type rules taken on an equidistant partition of the interval [a, b], Dragomir
et al. proved the following inequalities for the finite Hilbert transform of different classes of absolutely
continuous functions.

Theorem 1.3. Let f : [a, b] → R be a differentiable function such that its derivative f ′ is absolutely
continuous on [a, b]. If

Tn(f ; t) =
f ′(t)(b− a) + f(b)− f(a)

2πn
+
b− a
πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]
,(1.5)

then we have the estimate∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(1.6)

≤



1

4πn

[
(b− a)2

4
+

(
t− a+ b

2

)2
]
∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

q

2πn(q + 1)1+
1
q

[
(t− a)1+

1
q + (b− t)1+

1
q

]
∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

2πn

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣
]
∥f ′′∥[a,b],1,

≤



1

8πn
(b− a)2∥f ′′∥[a,b],∞, if f ′′ ∈ L∞[a, b];

q

2πn(q + 1)1+
1
q

(b− a)1+
1
q ∥f ′′∥[a,b],p, if f ′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

2πn
(b− a)∥f ′′∥[a,b],1,

for all t ∈ (a, b), where [f ; c, d] denotes the divided difference [f ; c, d] := f(c)−f(d)
c−d .

If we put n = 2 in (1.2), we can get the perturbed trapezoid rule∫ b

a

f(t)dt =
f(b) + f(a)

2
(b− a)− (b− a)2

8
[f ′(b)− f ′(a)] +

1

2

∫ b

a

(
t− a+ b

2

)2

f ′′(t)dt,(1.7)

Recently, Liu and Pan [16] proved the following inequalities for the finite Hilbert transform of different
classes of absolutely continuous functions via the above rule (1.7) (see also [13] for other related results).

Theorem 1.4. Let f : [a, b]→ R be such that f ′′ : [a, b]→ R is absolutely continuous on [a, b]. Then we
have the bounds∣∣∣∣T (f)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− f ′(t)

2π
(b− a)− 5

8π
[f(b)− f(a)](1.8)

+
f ′(b)

8π
(b− t) +

f ′′(t)

16π
(a− b)(a+ b− 2t)− f ′(a)

8π
(t− a)

∣∣∣∣

≤



∥f ′′′∥∞
24π

[
(b− a)

(
t− b+ a

2

)2

+
(b− a)3

12

]
, f ′′′ ∈ L∞[a, b];

q ∥f ′′′∥p
8π(2q + 1)1+

1
q

[
(t− a)2+

1
q + (b− t)2+

1
q

]
, p > 1,

1

p
+

1

q
= 1 and f ′′′ ∈ Lp[a, b];

∥f ′′′∥1
8π

[(
t− a+ b

2

)2

+
(b− a)2

4

]
, f ′′′ ∈ L1[a, b];

for all t ∈ (a, b), where ∥ · ∥p (1 ≤ p ≤ ∞) are the usual Lebesgue norms in Lp[a, b].

In this paper, inspired by [8], we shall derive a quadrature formula in approximating the finite Hilbert
transform of different classes of absolutely continuous functions. Some numerical examples for the ob-
tained approximation will be presented in Section 3.
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2. A quadrature formula for equidistant divisions

Lemma 2.1. Let u : [a, b] → R be an absolutely continuous function on [a, b]. Then one has the
inequalities: ∣∣∣∣∣

∫ b

a

u(s)ds− u(a) + u(b)

2
(b− a) +

(b− a)2

8
[u′(b)− u′(a)]

∣∣∣∣∣(2.1)

≤



(b− a)3

24
∥u′′∥[a,b],∞ if u′′ ∈ L∞[a, b];

(b− a)2+
1
q

8(2q + 1)
1
q

∥u′′∥[a,b],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

(b− a)2

8
∥u′′∥[a,b],1.

A simple proof of this fact can be done by using the identity∫ b

a

u(s)ds− u(a) + u(b)

2
(b− a) +

(b− a)2

8
[u′(b)− u′(a)] =

1

2

∫ b

a

(
s− a+ b

2

)
u′′(s)ds(2.2)

and we omit the details.
The following lemma holds.

Lemma 2.2. Let u : [a, b] → R be an absolutely continuous function on [a, b]. Then for any t, τ ∈
(a, b), t ̸= τ and n ∈ N, n ≥ 1, we have the inequality:∣∣∣∣∣ 1

τ − t

∫ τ

t

u(s)ds− 1

2n

n−1∑
i=0

[
u

(
t+ i · τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]
(2.3)

+
τ − t
8n2

n−1∑
i=0

[
u′
(
t+ (i+ 1) · τ − t

n

)
− u′

(
t+ i · τ − t

n

)]∣∣∣∣∣

≤



|τ − t|2

24n2
∥u′′∥[t,τ ],∞ if u′′ ∈ L∞[a, b];

|τ − t|1+
1
q

8n2(2q + 1)
1
q

∥u′′∥[t,τ ],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|
8n2

∥u′′∥[t,τ ],1,

where

∥u′′∥[t,τ ],∞ := ess sup
s∈|t,τ |

|u′′(s)|, and ∥u′′∥[t,τ ],p :=

∣∣∣∣∫ τ

t

|u′′(s)p|ds
∣∣∣∣ 1p , p ≥ 1.

Proof. Consider the equidistant division of [t, τ ] (if t < τ) given by

En : xi = t+ i · τ − t
n

, i =0, n.

If we apply the inequality (2.1) on the interval [xi, xi+1], we may write that:∣∣∣∣∣
∫ xi+1

xi

u(s)ds−
u
(
t+ i · τ−t

n

)
+ u
(
t+ (i+ 1) · τ−t

n

)
2

· τ − t
n

+
(τ − t)2

8n2

[
u′
(
t+ (i+ 1) · τ − t

n

)
− u′

(
t+ i · τ − t

n

)]∣∣∣∣∣

≤



|τ − t|3

24n3
∥u′′∥[xi,xi+1],∞, if u′′ ∈ L∞[a, b];

|τ − t|2+
1
q

8n2+
1
q (2q + 1)

1
q

∥u′′∥[xi,xi+1],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|2

8n2
∥u′′∥[xi,xi+1],1,
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from which we get ∣∣∣∣∣ 1

τ − t

∫ xi+1

xi

u(s)ds− 1

2n

[
u
(
t+ i · τ − t

n

)
+ u
(
t+ (i+ 1) · τ − t

n

)]

+
(τ − t)

8n2

[
u′
(
t+ (i+ 1) · τ − t

n

)
− u′

(
t+ i · τ − t

n

)]∣∣∣∣∣

≤



|τ − t|2

24n3
∥u′′∥[xi,xi+1],∞, if u′′ ∈ L∞[a, b];

|τ − t|1+
1
q

8n2+
1
q (2q + 1)

1
q

∥u′′∥[xi,xi+1],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|
8n2

∥u′′∥[xi,xi+1],1,

Summing over i from 0 to n− 1 and using the generalised triangle inequality, we may write∣∣∣∣∣ 1

τ − t

∫ τ

t

u(s)ds− 1

2n

n−1∑
i=0

[
u
(
t+ i · τ − t

n

)
+ u
(
t+ (i+ 1) · τ − t

n

)]

+
(τ − t)

8n2

n−1∑
i=0

[
u′
(
t+ (i+ 1) · τ − t

n

)
− u′

(
t+ i · τ − t

n

)]∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣∣ 1

τ − t

∫ xi+1

xi

u(s)ds− 1

2n

[
u

(
t+ i · τ − t

n

)
+ u

(
t+ (i+ 1) · τ − t

n

)]

+
(τ − t)

8n2

[
u′
(
t+ (i+ 1) · τ − t

n

)
− u′

(
t+ i · τ − t

n

)]∣∣∣∣∣

≤



|τ − t|2

24n3

n−1∑
i=0

∥u′′∥[xi,xi+1],∞, if u′′ ∈ L∞[a, b];

|τ − t|1+
1
q

8n2+
1
q (2q + 1)

1
q

n−1∑
i=0

∥u′′∥[xi,xi+1],p, if u′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|
8n2

n−1∑
i=0

∥u′′∥[xi,xi+1],1,

However,

n−1∑
i=0

∥u′′∥[xi,xi+1],∞ ≤n∥u
′′∥[t,τ ],∞,

n−1∑
i=0

∥u′′∥[xi,xi+1],p =
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

|u′′(s)|pds

∣∣∣∣ 1p ≤ n 1
q

[(
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

|u′′(s)|pds

∣∣∣∣ 1p
)p ] 1

p

= n
1
q ∥u′′∥[t,τ ],p,

and
n−1∑
i=0

∥u′′∥[xi,xi+1],1 ≤

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

xi

|u′′(s)|ds

∣∣∣∣∣ =

∣∣∣∣∫ τ

t

|u′′(s)|ds
∣∣∣∣ = ∥u′′∥[t,τ ],1,

and the lemma is proved. �

The following theorem in approximating the Hilbert transform of a differentiable function whose second
derivative is absolutely continuous holds.

Theorem 2.1. Let f : [a, b] → R be a differentiable function such that its derivative f ′ is absolutely
continuous on [a, b]. If

Tn(f ; t) =
f ′(t)(b− a) + f(b)− f(a)

2πn
+
b− a
πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]

(2.4)
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− 1

8n2

[
1

2
f ′′(t)(a− b)(a+ b− 2t)− f(b) + f(a) + f ′(b)(b− t)− f ′(a)(a− t)

]
,

then we have the estimate∣∣∣∣∣(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
− Tn(f ; t)

∣∣∣∣∣(2.5)

≤



1

24πn2

[
(b− a)

(
t− a+ b

2

)2

+
4

3
(b− a)3

]
∥f ′′′∥[a,b],∞, if f ′′′ ∈ L∞[a, b];

q

8πn2(2q + 1)1+
1
q

[
(t− a)2+

1
q + (b− t)2+

1
q

]
∥f ′′′∥[a,b],p, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

1

8πn2

[
1

4
(b− a)2 +

(
t− a+ b

2

)]
∥f ′′′∥[a,b],1,

≤



1

18πn2
(b− a)3∥f ′′′∥[a,b],∞, if f ′′′ ∈ L∞[a, b];

q

4πn2(2q + 1)1+
1
q

(
b− a

2

)2+ 1
q

∥f ′′′∥[a,b],p, if f ′′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

1

32πn2
(b− a)2∥f ′′′∥[a,b],1,

for all t ∈ (a, b).

Proof. Applying Lemma 2.2 for the function f ′, we may write that∣∣∣∣∣f(τ)− f(t)

τ − t
− 1

2n

[
f ′(t) +

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
+

n−2∑
i=0

f ′
(
t+ (i+ 1) · τ − t

n

)
+ f ′(τ)

]
(2.6)

+
τ − t
8n2

[
f ′′(τ) +

n−2∑
i=0

f ′′
(
t+ (i+ 1) · τ − t

n

)
−

n−1∑
i=1

f ′′
(
t+ i · τ − t

n

)
− f ′′(t)

]∣∣∣∣∣

≤



|τ − t|2

24n2
∥f ′′′∥[t,τ ],∞ if f ′′′ ∈ L∞[a, b];

|τ − t|1+
1
q

8n2(2q + 1)
1
q

∥f ′′′∥[t,τ ],p, if f ′′′ ∈ Lp[a, b], p > 1,
1

p
+

1

q
= 1;

|τ − t|
8n2

∥f ′′′∥[t,τ ],1,

However,

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)
=

n−2∑
i=0

f ′
(
t+ (i+ 1) · τ − t

n

)
,
n−1∑
i=1

f ′′
(
t+ i · τ − t

n

)
=

n−2∑
i=0

f ′′
(
t+ (i+ 1) · τ − t

n

)
and then by (2.6), we may write:∣∣∣∣∣f(τ)− f(t)

τ − t
−

[
f ′(t) + f ′(τ)

2n
+

1

n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)]
+
τ − t
8n2

[
f ′′(τ)− f ′′(t)

]∣∣∣∣∣(2.7)

≤



|τ − t|2

24n2
∥f ′′′∥[t,τ ],∞

|τ − t|1+
1
q

8n2(2q + 1)
1
q

∥f ′′′∥[t,τ ],p,

|τ − t|
8n2

∥f ′′′∥[t,τ ],1,

for any t, τ ∈ [a, b], t ̸= τ . Consequently, we have∣∣∣∣∣ 1πPV
∫ b

a

f(τ)− f(t)

τ − t
dτ − 1

π
PV

∫ b

a

[
f ′(t) + f ′(τ)

2n
+

1

n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)]
dτ(2.8)
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+
1

π
PV

∫ b

a

τ − t
8n2

[f ′′(τ)− f ′′(t)]dτ

∣∣∣∣∣

≤



1

24πn2
PV

∫ b

a

|τ − t|2∥f ′′′∥[t,τ ],∞dτ,

1

8πn2(2q + 1)
1
q

PV

∫ b

a

|τ − t|1+
1
q ∥f ′′′∥[t,τ ],pdτ,

1

8πn2
PV

∫ b

a

|τ − t|∥f ′′′∥[t,τ ],1dτ,

Since

PV

∫ b

a

[
f ′(t) + f ′(τ)

2n
+

1

n

n−1∑
i=1

f ′
(
t+ i · τ − t

n

)]
dτ

=
f ′(t)(b− a) + f(b)− f(a)

n
+
b− a
n

n−1∑
i=1

[
f ; t+ i · b− t

n
, t+ i · a− t

n

]
,

PV

∫ b

a

τ − t
8n2

[f ′′(τ)− f ′′(t)]dτ =
1

8n2

[
1

2
f ′′(t)(a− b)(a+ b− 2t)− f(b) + f(a) + f ′(b)(b− t)− f ′(a)(a− t)

]
,

and

PV

∫ b

a

|τ − t|2∥f ′′′∥[t,τ ],∞dτ ≤ ∥f ′′′∥[a,b],∞PV
∫ b

a

|τ − t|2dτ

=∥f ′′′∥[a,b],∞
(b− t)3 − (a− t)3

3
= ∥f ′′′∥[a,b],∞

[
(b− a)

(
t− a+ b

2

)2

+
4

3
(b− a)3

]
,

PV

∫ b

a

|τ − t|1+
1
q ∥f ′′′∥[t,τ ],pdτ ≤ ∥f ′′′∥[a,b],pPV

∫ b

a

|τ − t|1+
1
q dτ

=∥f ′′′∥[a,b],p

[
(t− a)2+

1
q + (b− t)2+

1
q

2 + 1
q

]
=
q∥f ′′′∥[a,b],p

2q + 1

[
(t− a)2+

1
q + (b− t)2+

1
q

]
,

and

PV

∫ b

a

|τ − t|∥f ′′′∥[t,τ ],1dτ ≤ ∥f ′′′∥[t,τ ],1

[
1

4
(b− a)2 +

(
t− a+ b

2

)2
]
,

then, by (2.8) we get∣∣∣∣∣ 1πPV
∫ b

a

f(τ)− f(t)

τ − t
dτ − f ′(t)(b− a) + f(b)− f(a)

2πn
− b− a

πn

n−1∑
i=1

[
f ; t− t− a

n
· i, t+

b− t
n
· i
]

(2.9)

+
1

8n2

[
1

2
f ′′(t)(a− b)(a+ b− 2t)− f(b) + f(a) + f ′(b)(b− t)− f ′(a)(a− t)

] ∣∣∣∣∣

≤



∥f ′′′∥[a,b],∞
24πn2

[
(b− a)

(
t− a+ b

2

)2

+
4

3
(b− a)3

]
, if f ′′′ ∈ L∞[a, b];

q∥f ′′′∥[a,b],p
8πn2(2q + 1)1+

1
q

[
(t− a)2+

1
q + (b− t)2+

1
q

]
, if f ′′′ ∈ Lp[a, b], p > 1,

1

p
+

1

q
= 1;

∥f ′′′∥[a,b],1
8πn2

[
1

4
(b− a)2 +

(
t− a+ b

2

)2
]
,

On the other hand, as for the function f0 : (a, b)→ R, f0(t) = 1, we have

(T, f0)(a, b; t) =
1

π
ln

(
b− a
t− a

)
, t ∈ (a, b),
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then obviously

(Tf)(a, b; t) =
1

π
PV

∫ b

a

f(τ)− f(t) + f(t)

τ − t
dτ =

1

π
PV

∫ b

a

f(τ)− f(t)

τ − t
dτ +

f(t)

π
PV

∫ b

a

dτ

τ − t
,

from which we get

(Tf)(a, b; t)− f(t)

π
ln

(
b− t
t− a

)
=

1

π
PV

∫ b

a

f(τ)− f(t)

τ − t
dτ.(2.10)

Finally, using (2.9) and (2.10), we deduce (2.5). �

3. Some numerical examples

For a function f : [a, b]→ R, we may consider the quadrature formula

En(f ; a, b, t) :=
f(t)

π
ln

(
b− t
t− a

)
+ Tn(f ; t), t ∈ [a, b].

As shown in the above section, En(f ; a, b, t) provides an approximation for the Finite Hilbert Transform
(Tf)(a, b; t) and the error estimate fulfils the bounds described in (2.5).

If we consider the function f : [1, 2]→ R, f(x) = exp(x), the exact value of the Hilbert transform is

(Tf)(a, b; t) =
exp(t)Ei(2− t)− exp(t)Ei(1− t)

π
, t ∈ [1, 2].

and the plot of this function is embodied in Figure 1.
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If we implement the quadrature formula provided by En(f ; a, b, t) using Matlab and chose the value
of n = 200, the error Er(f ; a, b, t) := (Tf)(a, b; t)−En(f ; a, b, t) has the variation described in Figure 2.
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For n = 1000, the plot of Er(f ; a, b, t) is embodied in Figure 3, from which we can see that the precision
of the error gets higher when n gets bigger.

Now, if we consider another function f : [1, 2]→ R, f(x) = sin(x), then

(Tf)(a, b; t) =
−Si(−2 + t) cos(t) + Ci(2− t) sin(t) + Si(t− 1) cos(t)− sin(t)Ci(t− 1)

π
, t ∈ [1, 2]

having the plot embodied in Figure 4.
If we choose the value of n = 200, then the error Er(f ; a, b, t) := (Tf)(a, b; t) − En(f ; a, b, t) for the

function f(x) = sinx, x ∈ [a, b] has the variation described in Figure 5. Moreover, for n = 1000, the
behaviour of Er(f ; a, b, t) is plotted in Figure 6.
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Pointwise Superconvergence of the Displacement

of the Six-Dimensional Finite Element

Yinsuo Jia∗and Jinghong Liu†

In this article we first introduce definitions of the regularized Green’s func-
tion, the discrete Green’s function, the discrete δ function, and the L2-projection
operator in six dimensions. Then the W 2,1-seminorm estimates for the regu-
larized Green’s function and the discrete Green’s function are derived. Finally,
pointwise superconvergence of the displacement of the six-dimensional finite
element is obtained.

1 Introduction

There have been many studies concerned with superconvergence of the finite
element method for partial differential equations. Books and survey papers have
been published. For the literature, we refer to [1–17] and references therein. It
is well known that estimates for the Green’s function play very important roles
in the study of the superconvergence (especially, pointwise superconvergence)
of the finite element method (see [4, 5, 8, 12, 13, 14, 17]). For one- and two-
dimensional elliptic problems, one have obtained many optimal estimates for the
Green’s function (see [17]). Recently, for three-dimensional elliptic problems, the

W 2,1-seminorm optimal estimate with order O(| lnh| 23 ) for the discrete Green’s
function was derived (see [12]).

In this article, we will discuss estimate for the the discrete Green’s function
based on the 6D Poisson equation.

we shall use the symbol C to denote a generic constant, which is independent
from the discretization parameter h and which may not be the same in each
occurrence and also use the standard notations for the Sobolev spaces and their
norms.

We consider the following Poisson equation:

Lu ≡ −∆u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ R6 is a bounded polytopic domain. The weak formulation of (1.1)

∗School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: jiayinsuo2002@sohu.com

†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: ddliu1010@163.com
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reads, {
Find u ∈ H1

0 (Ω) satisfying
a(u , v) = (f , v) for all v ∈ H1

0 (Ω).

where

a(u , v) ≡
∫
Ω

∇u · ∇v dX,

and

(f , v) ≡
∫
Ω

fv dX.

Let {T h} be a regular family of partitions of Ω̄. Denote by Sh(Ω) a continuous
piecewise m(m ≥ 2)-degree (or tensor-product m-degree) polynomials space
regarding this kind of partitions and let Sh

0 (Ω) = Sh(Ω)
∩
H1

0 (Ω). Discretizing
the above weak formulation using Sh

0 (Ω) as approximating space means,{
Find uh ∈ Sh

0 (Ω) satisfying
a(uh , v) = (f , v) for all v ∈ Sh

0 (Ω).

Thus, the following Galerkin orthogonality relation holds.

a(u− uh , v) = 0 ∀ v ∈ Sh
0 (Ω). (1.2)

For every Z ∈ Ω, we define the discrete δ function δhZ ∈ Sh
0 (Ω), the reg-

ularized Green’s function G∗
Z ∈ H2(Ω)

∩
H1

0 (Ω), the discrete Green’s function
Gh

Z ∈ Sh
0 (Ω) and the L2-projection Phu ∈ Sh

0 (Ω) such that (see [17])

(v, δhZ) = v(Z) ∀ v ∈ Sh
0 (Ω), (1.3)

a(G∗
Z , v) = (δhZ , v) ∀ v ∈ H1

0 (Ω), (1.4)

a(G∗
Z −Gh

Z , v) = 0 ∀ v ∈ Sh
0 (Ω), (1.5)

(u− Phu, v) = 0 ∀ v ∈ Sh
0 (Ω), (1.6)

In this article, we will bound the terms |G∗
Z |2, 1 and

∣∣Gh
Z

∣∣h
2, 1

. Here
∣∣Gh

Z

∣∣h
2, 1

=∑
e∈T h

∣∣Gh
Z

∣∣
2, 1, e

.

2 Estimates for the Regularized Green’s Func-
tion

We first introduce the weight function defined by

ϕ ≡ ϕ(X) =
(
|X − X̄|2 + θ2

)−3 ∀X ∈ Ω̄, (2.1)

where X̄ ∈ Ω̄ is a fixed point, θ = γh, and γ ∈ [6,+∞) is a suitable real number.
For every α ∈ R, we give the following notations:

|∇nv|2 =
∑
|β|=n

∣∣Dβv
∣∣2 , |∇nv|ϕα =

(∫
Ω

ϕα |∇nv|2 dX
) 1

2

, ∥v∥2m,ϕα =
m∑

n=0

|∇nv|2ϕα ,
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where β = (β1, β2, β3, β4, β5, β6), |β| = β1 + β2 + β3 + β4 + β5 + β6, and βi ≥
0, i = 1, · · · , 6 are integers. In particular, for the case of m = 0, we write

∥v∥ϕα =

(∫
Ω

ϕα|v|2 dX
) 1

2

.

We assume there exists a real number q0 (1 < q0 ≤ ∞) such that

∥v∥2, q ≤ C(q)∥Lv∥0, q ∀ v ∈W 2, q(Ω)
∩
W 1, q

0 (Ω), 1 < q < q0, (2.2)

which is the so-called a priori estimate (see [17]). As in the two-dimensional
case (see [17]), we can obtain the following Lemma 2.1.
Lemma 2.1. For ϕ the weight function defined by (2.1), we have the following
estimates:

|∇nϕα| ≤ C(α, n)ϕα+
n
6 , α ∈ R, n = 1, 2, (2.3)

∫
Ω

ϕdX ≤ C(k)| ln θ|, θ ≤ k < 1, (2.4)∫
Ω

ϕα dX ≤ C(α− 1)−1θ−6(α−1) ∀α > 1. (2.5)

For the L2-projection operator Ph and the discrete δ function δhZ , similar to
the arguments in the two-dimensional setting (see [17]), we have the following
results (2.6)–(2.8).
Lemma 2.2. For Phw the L2-projection of w, we have the following stability
estimate:

∥Phw∥0, q ≤ C∥w∥0, q, 1 ≤ q ≤ ∞, (2.6)

∥Phw∥1, q ≤ C∥w∥1, q, 6 < q ≤ ∞. (2.7)

Lemma 2.3. For δhZ the discrete δ function defined by (1.3), we have the fol-
lowing estimate:

|δhZ(X)| ≤ Ch−6e−Ch−1|X−Z|, (2.8)

where X,Z ∈ Ω̄, and C is independent of h, X, and Z.
In additon, we have the following weighted-norm estimate for δhZ .

Lemma 2.4. For δhZ the discrete δ function defined by (1.3) and ϕ defined by
(2.1), we have the following estimate:∥∥δhZ∥∥ϕ−1 ≤ C. (2.9)

Proof. From (2.1) and (2.8),∥∥δhZ∥∥2ϕ−1 ≤ C

∫
Ω

(
|X − Z|2 + θ2

)3
h−12e−Ch−1|X−Z|dX

≤ C

∫ ∞

0

(
r2 + θ2

)3
h−12e−Ch−1rr5dr.
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Set h−1r = t, then∥∥δhZ∥∥2ϕ−1 ≤ C
∫ ∞

0

(
t2 + γ2

)3
e−Ctt5dt ≤ C,

which is the result (2.9).
Lemma 2.5. For G∗

Z the regularized Green’s function defined by (1.4) and ϕ
defined by (2.1), we have the following weighted-norm estimate:

∥G∗
Z∥ϕ− 1

3
≤ C |lnh|

5
6 . (2.10)

Proof. From (1.3), (1.4), (1.6), (2.2), (2.6), the inverse estimate, the Sobolev
Embedding Theorem (see [18]), and the Poincaré inequality, we have

∥G∗
Z∥

2

ϕ− 1
3

=
(
G∗

Z , ϕ
− 1

3G∗
Z

)
= a(G∗

Z , w) = (δhZ , w) = Phw(Z) ≤ |Phw|0,∞
≤ Ch−

6
q |Phw|0, q ≤ Ch

− 6
q |w|0, q ≤ Ch

− 6
q q

5
6 ∥w∥1, 6

≤ Ch−
6
q q

5
6 ∥w∥2, 3 ≤ Ch

− 6
q q

5
6

∥∥∥ϕ− 1
3G∗

Z

∥∥∥
0, 3

≤ Ch−
6
q q

5
6

∣∣∣ϕ− 1
3G∗

Z

∣∣∣
1
,

(2.11)

where w ∈W 2, 3(Ω)
∩
W 1, 6

0 (Ω) and Lw = ϕ−
1
3G∗

Z . Set q = | lnh| in (2.11), and
by the Young inequality, we get

∥G∗
Z∥

2

ϕ− 1
3
≤ C |lnh|

5
6

∣∣∣ϕ− 1
3G∗

Z

∣∣∣
1
≤ C(ε) |lnh|

5
3 + ε

∣∣∣ϕ− 1
3G∗

Z

∣∣∣2
1

(2.12)

In addition, from (1.4) and (2.3),∣∣∣ϕ− 1
3G∗

Z

∣∣∣2
1
≤ Ca

(
ϕ−

1
3G∗

Z , ϕ
− 1

3G∗
Z

)
≤ C

∣∣∣a(G∗
Z , ϕ

− 2
3G∗

Z)
∣∣∣+ C

∣∣∣((G∗
Z)2 , |∇(ϕ−

1
3 )|2

)∣∣∣
≤ C

∣∣∣a(G∗
Z , ϕ

− 2
3G∗

Z)
∣∣∣+ C ∥G∗

Z∥
2

ϕ− 1
3

≤ C̃
∥∥δhZ∥∥2ϕ−1 + C̃ ∥G∗

Z∥
2

ϕ− 1
3
.

(2.13)

Combining (2.9), (2.12), (2.13), and choosing ε such that εC̃ = 1
2 , we immedi-

ately obtain the result (2.10).
Theorem 2.1. For G∗

Z the regularized Green’s function defined by (1.4), we
have the following W 2, 1-seminorm estimate:

|G∗
Z |2, 1 ≤ C |lnh|

4
3 . (2.14)

Proof. Obviously,

|G∗
Z |

2
2, 1 ≤

∫
Ω

ϕdX ·
∥∥∇2G∗

Z

∥∥2
ϕ−1 . (2.15)
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Furthermore,∥∥∇2G∗
Z

∥∥2
ϕ−1 =

∫
Ω

ϕ−1
∣∣∇2G∗

Z

∣∣2 dX =

∫
Ω

(
ϕ−

1
2

∣∣∇2G∗
Z

∣∣)2 dX
≤ C

(∫
Ω

∣∣∣∇2
(
ϕ−

1
2G∗

Z

)∣∣∣2 dX +

∫
Ω

∣∣∣∇2ϕ−
1
2G∗

Z

∣∣∣2 dX
+

∫
Ω

∣∣∣∇ϕ− 1
2

∣∣∣2 |∇G∗
Z |

2
dx

)
≤ C

(∥∥∥∇2
(
ϕ−

1
2G∗

Z

)∥∥∥2
0

+ ∥G∗
Z∥

2

ϕ− 1
3

+ |G∗
Z |

2

1, ϕ− 2
3

)
≤ C

(∥∥∥L(ϕ− 1
2G∗

Z

)∥∥∥2
0

+ ∥G∗
Z∥

2

ϕ− 1
3

+ |G∗
Z |

2

1, ϕ− 2
3

)
≤ C

(
∥LG∗

Z∥
2
ϕ−1 + ∥G∗

Z∥
2

ϕ− 1
3

+ |G∗
Z |

2

1, ϕ− 2
3

)
≤ C

∥∥δhZ∥∥2ϕ−1 + C
∣∣∣a(G∗

Z , ϕ
− 2

3G∗
Z

)∣∣∣+ C ∥G∗
Z∥

2

ϕ− 1
3

≤ C
∥∥δhZ∥∥2ϕ−1 + C

∣∣∣(δhZ , ϕ− 2
3G∗

Z

)∣∣∣+ C ∥G∗
Z∥

2

ϕ− 1
3

≤ C
∥∥δhZ∥∥2ϕ−1 + C ∥G∗

Z∥
2

ϕ− 1
3
,

combined with (2.9) and (2.10), we have∥∥∇2G∗
Z

∥∥2
ϕ−1 ≤ C |lnh|

5
3 . (2.16)

By (2.4), (2.15), and (2.16), we immediately obtain the result (2.14).

3 Estimates for the Discrete Green’s Function

The definition (1.5) shows that Gh
Z is a finite element approximation to G∗

Z . In
this section, we give the W 2, 1-seminorm estimate for Gh

Z .
Lemma 3.1. For G∗

Z and Gh
Z , the regularized Green’s function and the discrete

Green’s function, respectively, we have the following estimate:∣∣G∗
Z −Gh

Z

∣∣
1, 1
≤ Ch |lnh|

4
3 . (3.1)

Proof. Obviously,∣∣G∗
Z −Gh

Z

∣∣2
1, 1
≤
∫
Ω

ϕdX ·
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−1 . (3.2)

Similar to the proof of (2.43) in [13], and using (2.16), we have∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−1 ≤ Ch2

∥∥∇2G∗
Z

∥∥2
ϕ−1 + Ĉ

∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3

≤ Ch2 |lnh|
5
3 + Ĉ

∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3
.

(3.3)
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In addition∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3
= (ϕ−

2
3 (G∗

Z −Gh
Z), G∗

Z −Gh
Z) = a(w, G∗

Z −Gh
Z)

= a(w −Πw, G∗
Z −Gh

Z) ≤ ε
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−1 + C(ε) |w −Πw|21, ϕ .

(3.4)

where Lw = ϕ−
2
3 (G∗

Z −Gh
Z) and Π is an interpolation operator. Using the

weighted interpolation error estimate in (3.4) (similar to pp.110 Lemma 4 in
[17]) yields ∥∥G∗

Z −Gh
Z

∥∥2
ϕ− 2

3
≤ ε

∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−1 + C(ε)h2

∣∣∇2w
∣∣2
ϕ
. (3.5)

Further, from the a priori estimate (2.2), (2.5), and the Sobolev Embedding
Theorem [19],∣∣∇2w

∣∣2
ϕ
≤ ∥ϕ∥0, 3

2

∣∣∇2w
∣∣2
0, 6
≤ Cθ−2 ∥w∥22, 6 ≤ Cθ−2

∥∥∥ϕ− 2
3 (G∗

Z −Gh
Z)
∥∥∥2
0, 6

≤ Cθ−2
∥∥∥ϕ− 2

3 (G∗
Z −Gh

Z)
∥∥∥2
2
≤ Cθ−2

∥∥∥L(ϕ− 2
3 (G∗

Z −Gh
Z)
)∥∥∥2

0

≤ Cθ−2

(∥∥∥ϕ− 2
3 δhZ

∥∥∥2
0

+
∣∣G∗

Z −Gh
Z

∣∣2
1, ϕ−1 +

∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3

)
.

(3.6)
Similar to the proof of (2.9), we can obtain∥∥∥ϕ− 2

3 δhZ

∥∥∥2
0
≤ Ch2. (3.7)

Combining (3.5)–(3.7) yields∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3
≤

(
ε+ C(ε)γ−2

) ∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−1

+C(ε)γ−2
∥∥G∗

Z −Gh
Z

∥∥2
ϕ− 2

3
+ C(ε)γ−2h2.

(3.8)

Choosing suitable ε and γ ∈ [6, +∞) such that 0 < (2ε + 1)Ĉ < 1 as well as
C(ε)γ−2 = 1

2 . From (3.8),∥∥G∗
Z −Gh

Z

∥∥2
ϕ− 2

3
≤ (2ε+ 1)

∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−1 + h2. (3.9)

From (3.3) and (3.9), ∣∣G∗
Z −Gh

Z

∣∣2
1, ϕ−1 ≤ Ch2 |lnh|

5
3 . (3.10)

The result (3.1) immediately follows the results (2.4), (3.2), and (3.10).
Theorem 3.1. For Gh

Z the discrete Green’s function, we have the following
estimate: ∣∣Gh

Z

∣∣h
2, 1
≤ C| lnh| 43 . (3.11)
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Proof. By the triangle inequality, the interpolation error estimate, and the
inverse property, we have∣∣Gh

Z

∣∣h
2, 1

≤
∣∣G∗

Z −Gh
Z

∣∣h
2, 1

+ |G∗
Z |2, 1

≤ |G∗
Z |2, 1 + |G∗

Z −ΠG∗
Z |

h
2, 1 +

∣∣ΠG∗
Z −Gh

Z

∣∣h
2, 1

≤ C |G∗
Z |2, 1 + Ch−1

∣∣ΠG∗
Z −Gh

Z

∣∣
1, 1

≤ C |G∗
Z |2, 1 + Ch−1 |G∗

Z −ΠG∗
Z |1, 1

+Ch−1
∣∣G∗

Z −Gh
Z

∣∣
1, 1

≤ C |G∗
Z |2, 1 + Ch−1

∣∣G∗
Z −Gh

Z

∣∣
1, 1

.

(3.12)

Combining (2.14), (3.1), and (3.12) yields the result (3.11).

4 Superconvergence of the Displacement of the
Finite Element

In this section, we give an application of the estimate for the discrete Green’s
function in finite element superconvergence.

Let Πu and uh be the interpolant and the finite element approximation to
u, the solution of (1.1), respectively. Similar to the proof of [13], we can obtain
the following lemma.
Lemma 4.1. Let Sh

0 (Ω) be the tensor-product m-degree finite element space.
Suppose v ∈ Sh

0 (Ω) and u ∈Wm+2,∞(Ω)
∩
H1

0 (Ω). Then we have the following
weak estimate of the second type:

|a(u−Πu, v)| ≤ Chm+2∥u∥m+2,∞|v|h2, 1, m ≥ 2, (4.1)

where |v|h2, 1 =
∑

e∈T h |v|2, 1, e.
Finally, we give the following superconvergent estimate.

Theorem 4.1. Let {T h} be a regular family of partitions of Ω̄ and u ∈
Wm+2,∞(Ω)

∩
H1

0 (Ω). For uh and Πu, the tensor-product m-degree finite ele-
ment approximation and the corresponding interpolant to u, respectively. Then
we have the following superconvergent estimates:

|uh −Πu|0,∞,Ω ≤ Ch
m+2 |lnh|

4
3 ∥u∥m+2,∞ , m ≥ 2. (4.2)

Proof. For every Z ∈ Ω, applying the definition of Gh
Z and the Galerkin orthog-

onality relation (1.2), we derive

(uh −Πu)(Z) = a(uh −Πu , Gh
Z) = a(u−Πu , Gh

Z). (4.3)

From (3.11), (4.1), and (4.3), we immediately obtain the result (4.2).
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Estimates for Discrete Derivative Green’s

Function for Elliptic Equations in Dimensions

Seven and Up

Jinghong Liu∗and Yinsuo Jia†

This article will discuss estimates for discrete derivative Green’s function for
elliptic equations in dimensions seven and up. First, the definitions of some
terms are given. Then the estimates for the regularized derivative Green’s func-
tion are derived. Finally, using the triangular inequality, we obtain the estimates
for discrete derivative Green’s function. The results of the article play important
roles in the research of superconvergence of finite element methods.

1 Introduction

It is well known that estimates for the Green’s function play very important roles
in the study of the superconvergence (especially, pointwise superconvergence)
of the finite element method (see [1–8]). For one- and two-dimensional elliptic
problems, one have obtained many optimal estimates for the Green’s function
(see [8]). Recently, for dimensions three to five, we have obtained some optimal
estimates for the discrete Green’s function (see [4–7]). At present, we also
consider the six-dimensional discrete Green’s function and its estimates, and
some results have been submitted to some Journals. In this article, we will
discuss estimates for the discrete derivative Green’s function in dimensions seven
and up.

we shall use the symbol C to denote a generic constant, which is independent
from the discretization parameter h and which may not be the same in each
occurrence and also use the standard notations for the Sobolev spaces and their
norms.

We consider the following Poisson equation:

Lu ≡ −∆u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ Rd(d ≥ 7) is a bounded polytopic domain. The weak formulation of

∗Department of Fundamental Courses, Ningbo Institute of Technology, Zhejiang University,
Ningbo 315100, China, email: jhliu1129@sina.com

†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: jiayinsuo2002@sohu.com
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(1.1) reads, {
Find u ∈ H1

0 (Ω) satisfying
a(u , v) = (f , v) for all v ∈ H1

0 (Ω).

where

a(u , v) ≡
∫
Ω

∇u · ∇v dX,

and

(f , v) ≡
∫
Ω

fv dX.

Let {T h} be a regular family of partitions of Ω̄. Denote by Sh(Ω) a contin-
uous finite elements space regarding this kind of partitions and let Sh

0 (Ω) =
Sh(Ω)

∩
H1

0 (Ω). Discretizing the above weak formulation using Sh
0 (Ω) as ap-

proximating space means,{
Find uh ∈ Sh

0 (Ω) satisfying
a(uh , v) = (f , v) for all v ∈ Sh

0 (Ω).

For every Z ∈ Ω, we define the discrete derivative δ function ∂Z,ℓδ
h
Z ∈ Sh

0 (Ω)
and the L2-projection Phu ∈ Sh

0 (Ω) such that

(v, ∂Z,ℓδ
h
Z) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω). (1.2)

(u− Phu, v) = 0 ∀ v ∈ Sh
0 (Ω). (1.3)

Here, for any direction ℓ ∈ Rd, |ℓ| = 1, ∂Z,ℓδ
h
Z and ∂ℓv(Z) stand for the following

onesided directional derivatives, respectively.

∂Z,ℓδ
h
Z = lim

|∆Z|→0

δhZ+∆Z − δhZ
|∆Z|

, ∂ℓv(Z) = lim
|∆Z|→0

v(Z + ∆Z)− v(Z)

|∆Z|
, ∆Z = |∆Z|ℓ.

Let ∂Z,ℓG
∗
Z ∈ H2(Ω)∩H1

0 (Ω) be the solution of the elliptic problem−∆∂Z,ℓG
∗
Z =

∂Z,ℓδ
h
Z . We may call ∂Z,ℓG

∗
Z the regularized derivative Green’s function. Fur-

ther, let the discrete derivative Green’s function ∂Z,ℓG
h
Z ∈ Sh

0 (Ω) be the finite
element approximation to ∂Z,ℓG

∗
Z . Thus,

a(∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z , v) = 0 ∀ v ∈ Sh

0 (Ω). (1.4)

In this article, we will bound the terms |∂Z,ℓG
∗
Z |1, 1 and

∣∣∂Z,ℓG
h
Z

∣∣
1, 1

.

2 Regularized Derivative Green’s Function and
Its Estimates

We first introduce the weight function defined by

ϕ ≡ ϕ(X) =
(
|X − X̄|2 + θ2

)− d
2 ∀X ∈ Ω̄, (2.1)
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where X̄ ∈ Ω̄ is a fixed point, θ = γh, and γ ∈ [d,+∞) is a suitable real number.
For every α ∈ R, we give the following notations:

|∇nv|2 =
∑
|β|=n

∣∣Dβv
∣∣2 , |∇nv|ϕα =

(∫
Ω

ϕα |∇nv|2 dX
) 1

2

, ∥v∥2m,ϕα =

m∑
n=0

|∇nv|2ϕα ,

where β = (β1, β2, · · · , βd), |β| = β1 +β2 + · · ·+βd, and βi ≥ 0, i = 1, · · · , d are
integers. In particular, for the case of m = 0, we write

∥v∥ϕα =

(∫
Ω

ϕα|v|2 dX
) 1

2

.

We assume there exists a real number q0 (1 < q0 ≤ ∞) such that

∥v∥2, q ≤ C(q)∥Lv∥0, q ∀ v ∈W 2, q(Ω) ∩W 1, q
0 (Ω), 1 < q < q0, (2.2)

which is the so-called a priori estimate (see [8]). As in the two-dimensional case
(see [8]), we can obtain the following Lemma 2.1.
Lemma 2.1. For ϕ the weight function defined by (2.1), we have the following
estimates:

|∇nϕα| ≤ C(α, n)ϕα+
n
d , α ∈ R, n = 1, 2, (2.3)

∫
Ω

ϕdX ≤ C(k)| ln θ|, θ ≤ k < 1, (2.4)∫
Ω

ϕα dX ≤ C(α− 1)−1θ−d(α−1) ∀α > 1. (2.5)∫
Ω

ϕα dX ≤ C(1− α)−1 ∀ 0 < α < 1. (2.6)

In addition, we also have the following Lemmas.
Lemma 2.2. For Phw the L2-projection of w, we have the following stability
estimate:

∥Phw∥0, q ≤ C∥w∥0, q, 1 ≤ q ≤ +∞. (2.7)

Lemma 2.3. For ∂Z,ℓδ
h
Z the discrete derivative δ function defined by (1.2), we

have the following estimate:

|∂Z,ℓδ
h
Z(X)| ≤ Ch−d−1e−Ch−1|X−Z|, (2.8)

where X,Z ∈ Ω̄, and C is independent of h, X, and Z.
As for ∂Z,ℓδ

h
Z , we have the following important estimate.

Lemma 2.4. For ∂Z,ℓδ
h
Z the discrete derivative δ function defined by (1.2) and

ϕ defined by (2.1), when α > 0, we have the following estimate:∥∥∂Z,ℓδ
h
Z

∥∥
ϕ−α ≤ Ch

d(α−1)−2
2 . (2.9)
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Proof. From (2.1) and (2.8),∥∥∂Z,ℓδ
h
Z

∥∥2
ϕ−α ≤ C

∫
Ω

(
|X − Z|2 + θ2

) dα
2 h−2d−2e−Ch−1|X−Z|dX

≤ C

∫ ∞

0

(
r2 + θ2

) dα
2 h−2d−2e−Ch−1rrd−1dr.

Set h−1r = t, then ∥∥∂Z,ℓδ
h
Z

∥∥2
ϕ−α ≤ Chd(α−1)−2

which is the result (2.9).
Lemma 2.5. Suppose q0 > 2 and 0 < ε < 1. For ∂Z,ℓG

∗
Z the regularized

derivative Green’s function defined by (1.4) and ϕ defined by (2.1), we have the
following weighted-norm estimate:

∥∂Z,ℓG
∗
Z∥ϕ1−ε ≤ Ch1−d+ εd

2 . (2.10)

Proof. Set r = 1+ε
1−ε , r

′ = 1+ε
2ε , thus 1

r + 1
r′ = 1. From (2.5),

∥∂Z,ℓG
∗
Z∥

2
ϕ1−ε =

∫
Ω

ϕ1−ε |∂Z,ℓG
∗
Z |

2
dX

≤
(∫

Ω

ϕ1+εdX

) 1−ε
1+ε

∥∂Z,ℓG
∗
Z∥

2
0, 1+ε

ε

≤ C
(
ε−1θ−dε

) 1−ε
1+ε ∥∂Z,ℓG

∗
Z∥

2
0, 1+ε

ε
.

Further,

∥∂Z,ℓG
∗
Z∥

1+ε
ε

0, 1+ε
ε

=
(
∂Z,ℓG

∗
Z , |∂Z,ℓG

∗
Z |

1
ε sgn∂Z,ℓG

∗
Z

)
= a(∂Z,ℓG

∗
Z , w) =

(
∂Z,ℓδ

h
Z , w

)
= ∂ℓPhw(Z)

≤ |Phw|1,∞ ≤ Ch
− d

q−1 ∥Phw∥0, q
≤ Ch−

d
q−1 ∥w∥0, q ,

where q ≥ 1, and w ∈ H1
0 (Ω) satisfies

a(v, w) =
(
v, |∂Z,ℓG

∗
Z |

1
ε sgn∂Z,ℓG

∗
Z

)
∀ v ∈ H1

0 (Ω).

Taking q = d(1+ε)
d−2(1+ε) > 1 and 1

p = 1
q + 2

d , we have p = 1 + ε < 2. By the a priori

estimate (2.2) and the Sobolev Embedding Theorem (see [9]), we get

∥w∥0, q ≤ C ∥w∥2, p ≤ C ∥∂Z,ℓG
∗
Z∥

1
ε

0, 1+ε
ε

.

Thus
∥∂Z,ℓG

∗
Z∥

2
0, 1+ε

ε
≤ Ch−

2d
q −2 = Ch2−

2d
1+ε ,
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which results in
∥∂Z,ℓG

∗
Z∥

2
ϕ1−ε ≤ Ch2−2d+εd.

The proof of the result (2.10) is completed.
Lemma 2.6. For ∂Z,ℓG

∗
Z the regularized derivative Green’s function defined by

(1.4) and ∂Z,ℓδ
h
Z the discrete derivative δ function defined by (1.2), we have the

following weighted-norm estimate:

∥∇(∂Z,ℓG
∗
Z)∥2ϕ−α ≤ C

∥∥∂Z,ℓδ
h
Z

∥∥2
ϕ
−α− 2

d
+ C ∥∂Z,ℓG

∗
Z∥

2

ϕ
−α+ 2

d
∀α ∈ R. (2.11)

Proof. Obviously,

∥∇(∂Z,ℓG
∗
Z)∥2ϕ−α ≤ a(∂Z,ℓG

∗
Z , ϕ

−α∂Z,ℓG
∗
Z) + C ∥∂Z,ℓG

∗
Z∥

2

ϕ
−α+ 2

d
. (2.12)

Further,

a(∂Z,ℓG
∗
Z , ϕ

−α∂Z,ℓG
∗
Z) = (∂Z,ℓδ

h
Z , ϕ

−α∂Z,ℓG
∗
Z)

≤ ∥∂Z,ℓδ
h
Z∥ϕ−α− 2

d
∥∂Z,ℓG

∗
Z∥ϕ−α+ 2

d

≤ 1
2 (∥∂Z,ℓδ

h
Z∥2

ϕ
−α− 2

d
+ ∥∂Z,ℓG

∗
Z∥2

ϕ
−α+ 2

d
).

(2.13)

Combining (2.12) and (2.13) immediately yields the result (2.11).
Lemma 2.7. Suppose − 2

d < α < 2
d and q0 > 2. For ∂Z,ℓG

∗
Z the regularized

derivative Green’s function defined by (1.4), we have the following weighted-
norm estimate:

∥∇(∂Z,ℓG
∗
Z)∥ϕ−α ≤ Ch

d(α−1)
2 (2.14)

Proof. From (2.9), ∥∥∂Z,ℓδ
h
Z

∥∥
ϕ
−α− 2

d
≤ Ch

d(α−1)
2 . (2.15)

From (2.10),

∥∂Z,ℓG
∗
Z∥ϕ−α+ 2

d
≤ Ch

d(α−1)
2 . (2.16)

Combining (2.11), (2.15) and (2.16) immediately yields the result (2.14).
Theorem 2.1. Suppose q0 > 2 and d ≥ 7. For ∂Z,ℓG

∗
Z the regularized derivative

Green’s function defined by (1.4), we have the following estimate:

|∂Z,ℓG
∗
Z |1,1 ≤ Ch

2−d
2 (2.17)

Proof. Obviously,

|∂Z,ℓG
∗
Z |1, 1 ≤

(∫
Ω

ϕαdX

) 1
2

∥∇(∂Z,ℓG
∗
Z)∥ϕ−α .

When 0 < α < 2
d , we have by (2.6) and (2.14)

|∂Z,ℓG
∗
Z |1, 1 ≤ C inf

α

h
d(α−1)

2

1− α
= Ch

2−d
2 ,

which is the result (2.17).
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3 Discrete Derivative Green’s Function and Its
Estimates

In this section, we will consider the estimates for discrete derivative Green’s
function. Similar to the two-dimensional setting (see [8]), the following result
holds.
Lemma 3.1. Suppose uh ∈ Sh

0 (Ω) is the finite element approximation to u, we
have the following estimate:

∥u− uh∥21, ϕ−α ≤ Ch2s
∥∥∇s+1u

∥∥2
ϕ−α + Cγ−2

∥∥u− uh∥∥2
ϕ
−α+ 2

d
, (3.1)

where γ = θ
h . From the result (3.1), we get the following result.

Lemma 3.2. Suppose q0 > 2 and 0 < α < min{ 4d , 1−
2
q0

+ 2
d}, then we have∥∥∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∥∥
1, ϕ−α ≤ Ch

d(α−1)
2 . (3.2)

Proof. From (3.1),∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
1, ϕ−α

≤ Ch2
∥∥∇2(∂Z,ℓG

∗
Z)
∥∥2
ϕ−α + C

∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
ϕ
−α+ 2

d

≤ Ĉ
(
h2
∥∥∇2(∂Z,ℓG

∗
Z)
∥∥2
ϕ−α +

∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
ϕ
−α+ 2

d

)
.

Similar to the Lemma 6 in [8, Chapter 3], we obtain∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
ϕ
−α+ 2

d
≤ 2

3Ĉ

∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
1, ϕ−α .

Then we have∥∥∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∥∥2
1, ϕ−α ≤ Ch2

∥∥∇2(∂Z,ℓG
∗
Z)
∥∥2
ϕ−α . (3.3)

Similar to the arguments of the result (2.14), when 0 < α < 4
d and q0 > 2, we

can get ∥∥∇2(∂Z,ℓG
∗
Z)
∥∥
ϕ−α ≤ Ch

d(α−1)−2
2 . (3.4)

Combining (3.3) and (3.4) immediately yields the result (3.2).
Lemma 3.3. Suppose q0 >

2d
d−2 . For ∂Z,ℓG

∗
Z and ∂Z,ℓG

h
Z , the regularized deriva-

tive Green’s function and the discrete derivative Green’s function, respectively,
we have the following estimate:∣∣∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∣∣
1, 1
≤ Ch

4−d
2 . (3.5)

Proof. Obviously,∣∣∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∣∣2
1, 1
≤
∫
Ω

ϕα dX ·
∣∣∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∣∣2
1, ϕ−α . (3.6)
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When d ≥ 7 and 0 < α < min{ 4d , 1−
2
q0

+ 2
d}, from (2.6), (3.2) and (3.6),∣∣∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∣∣2
1, 1
≤ C(1− α)−1hd(α−1).

Since q0 >
2d
d−2 , we have 4

d < 1− 2
q0

+ 2
d . Thus,∣∣∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∣∣2
1, 1
≤ C inf

0<α< 4
d

(1− α)−1hd(α−1) = Ch4−d,

which shows the result (3.5) holds.
In the following, we give the estimate for the discrete derivative Green’s

function.
Theorem 3.1. Suppose q0 >

2d
d−2 and d ≥ 7. For ∂Z,ℓG

h
Z the discrete derivative

Green’s function defined by (1.4), we have the following estimate:∣∣∂Z,ℓG
h
Z

∣∣
1, 1
≤ Ch

2−d
2 . (3.7)

Proof. By the triangular inequality,∣∣∂Z,ℓG
h
Z

∣∣
1, 1
≤ |∂Z,ℓG

∗
Z |1, 1 +

∣∣∂Z,ℓG
∗
Z − ∂Z,ℓG

h
Z

∣∣
1, 1

. (3.8)

From (2.17), (3.5) and (3.8), we immediately obtain the result (3.7).
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Abstract

In this paper, the authors study a coupled system of nonlinear fractional differential equations of order

α, β ∈ (4, 5), the differential operator is taken in the Caputo sense. By using the Schauder fixed point

theorem and the contraction mapping principle, the existence and uniqueness of solutions to the system

with anti-periodic boundary conditions are obtained. Two examples are given to demonstrate the feasibility

of the results.

Keywords: Coupled system; Fractional differential equations; Anti-periodic boundary conditions;

existence; uniqueness.

1. Introduction

Recently, fractional differential equations have proved to be valuable tools in various fields of science

and engineering. Indeed, we can find numerous applications in control, porous media, fluid flows, chemical

physics and many other branches of science, see[1–3]. As a result, there are many papers dealing with the

existence and uniqueness of solutions to nonlinear fractional differential equations, see[4–10].

Anti-periodic boundary value problems arise in the mathematical modeling of a variety of physical

process, many authors have paid much attention in such problems, for examples and details of anti-periodic

boundary conditions, the interested readers may refer to [11–17]. On the other hand, the coupled systems

of nonlinear fractional differential equations have been a subject of intensive studies [17–21].

It should be noted that in [18–21], the study objects are coupled systems, but not the case of Caputo frac-

tional derivatives. In [11–16], the authors only studied the existence of solutions for anti-periodic boundary

value problems of fractional differential equation but not the coupled system. Motivated by [17], we consider

a coupled system of nonlinear fractional differential equations in the sense of Caputo with a nonlinear term

containing the derivatives of unknown functions.

In this paper, we study the existence and uniqueness of solutions to the following coupled system of

∗Corresponding author: +86 431 85166425
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nonlinear fractional differential equations
cDαx(t) + f(t, y(t),cDpy(t)) = 0, t ∈ [0, T ],
cDβy(t) + g(t, x(t),cDqx(t)) = 0, t ∈ [0, T ],

x(k)(0) = −x(k)(T ), k = 0, 1, 2, 3, 4,

y(k)(0) = −y(k)(T ), k = 0, 1, 2, 3, 4,

(1.1)

where 4 < α, β < 5, α − q ≥ 1, β − p ≥ 1, cDα denotes the Caputo fractional derivative of order α,

f, g : [0, T ]× R× R→ R are given continuous functions.

This paper is organized as follows. In Section 2, we recall some basic definitions and preliminary results.

In Section 3, we prove the existence of solutions to (1.1) by means of the Schauder fixed point theorem.

Then, we obtain the uniqueness of solutions to the system by the contraction mapping principle. At the

end, two examples are given to illustrate the applicability of our results.

2. Background Materials

For the convenience of the readers, we present here the necessary definitions and lemmas [2], which are

used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function y : (0,∞) → R is

given by

Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided the right hand side is pointwise defined on (0,∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function y : (0,∞) → R
is given by

cDαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right side is pointwise defined

on (0,∞).

Lemma 2.3. For any y ∈ C[0, T ], the unique solution of the boundary value problem{
cDqx(t) = y(t), t ∈ [0, T ], 4 < q ≤ 5,

x(k)(0) = −x(k)(T ), k = 0, 1, 2, 3, 4
(2.1)

can be written as

x(t) =

∫ T

0

G(t, s)y(s)ds,

where G(t, s) is the Green’s function given by

G(t, s) =



2(t−s)q−1−(T−s)q−1

2Γ(q) + (T−2t)(T−s)q−2

4Γ(q−1) + t(T−t)(T−s)q−3

4Γ(q−2)

+ (6Tt2−4t3−T 3)(T−s)q−4

48Γ(q−3) + (2Tt3−tT 3−t4)(T−s)q−5

48Γ(q−4) , 0 < s < t < T,

− (T−s)q−1

2Γ(q) + (T−2t)(T−s)q−2

4Γ(q−1) + t(T−t)(T−s)q−3

4Γ(q−2)

+ (6Tt2−4t3−T 3)(T−s)q−4

48Γ(q−3) + (2Tt3−tT 3−t4)(T−s)q−5

48Γ(q−4) , 0 < t < s < T.

2
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Let

G1(t, s) =



(t−s)α−1− 1
2 (T−s)α−1

Γ(α) + (T−2t)(T−s)α−2

4Γ(α−1) + t(T−t)(T−s)α−3

4Γ(α−2)

+ (6Tt2−4t3−T 3)(T−s)α−4

48Γ(α−3) + (2Tt3−tT 3−t4)(T−s)α−5

48Γ(α−4) , 0 < s < t < T,

− 1
2Γ(α) (T − s)

α−1 + (T−2t)(T−s)α−2

4Γ(α−1) + t(T−t)(T−s)α−3

4Γ(α−2)

+ (6Tt2−4t3−T 3)(T−s)α−4

48Γ(α−3) + (2Tt3−tT 3−t4)(T−s)α−5

48Γ(α−4) , 0 < t < s < T.

G2(t, s) =



(t−s)β−1− 1
2 (T−s)β−1

Γ(β) + (T−2t)(T−s)β−2

4Γ(β−1) + t(T−t)(T−s)β−3

4Γ(β−2)

+ (6Tt2−4t3−T 3)(T−s)β−4

48Γ(β−3) + (2Tt3−tT 3−t4)(T−s)β−5

48Γ(β−4) , 0 < s < t < T,

− 1
2Γ(β) (T − s)

β−1 + (T−2t)(T−s)β−2

4Γ(β−1) + t(T−t)(T−s)β−3

4Γ(β−2)

+ (6Tt2−4t3−T 3)(T−s)β−4

48Γ(β−3) + (2Tt3−tT 3−t4)(T−s)β−5

48Γ(β−4) , 0 < t < s < T.

We call (G1, G2) Green’s function for Problem (1.1).

Define the space

C =
{
x(t) : x(t) ∈ C4[0, T ], x(k)(0) = −x(k)(T ), k = 0, 1, 2, 3, 4

}
,

and

X =
{
x(t) : x(t) ∈ C and (cDqx)(t) ∈ C[0, T ]

}
endowed with the norm

∥x∥X = max
0≤i≤4

max
t∈[0,T ]

| x(i)(t) | + max
t∈[0,T ]

| (cDqx)(t) |,

where i ∈ N.

Lemma 2.4. (X, ∥ · ∥X) is a Banach space.

Proof. Apparently X is a subspace of C4[0, T ], so we only need to prove that X is closed. Let xn(t) be

a sequence converging to some x(t) in (X, ∥ · ∥X), then it is clear that xn(t) is a converging sequence in the

space C4[0, T ] and hence x ∈ C. Furthermore, the uniform convergence of (cDqxn)(t) to (cDqx)(t) implies

that (cDqx)(t) ∈ C[0, T ] and therefore x(t) ∈ X. The proof is complete.

Similarly, we can define the Banach space

Y =
{
y(t) : y(t) ∈ C and (cDp)y(t) ∈ C[0, T ]

}
endowed with the norm

∥y∥Y = max
0≤i≤4

max
t∈[0,T ]

| y(i)(t) | + max
t∈[0,T ]

| (cDpy)(t) |,

where i ∈ N.

For (x, y) ∈ (X,Y ), let

∥(x, y)∥X×Y = max{∥x∥X , ∥y∥Y }.

Then clearly (X × Y, ∥ · ∥X×Y ) is a Banach space.

3
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Consider the following coupled system of integral equations:{
x(t) =

∫ T

0
G1(t, s)f(s, y(s),cDpy(t))ds,

y(t) =
∫ T

0
G2(t, s)g(s, x(s),cDqx(t))ds.

(2.2)

The following lemma states that Problem (1.1) is equivalent to Problem (2.2) and therefore the study of a

system of differential equations is turn into the study of a system of integral equations.

Lemma 2.5. Assume that f, g : [0, T ] × R × R → R are continuous functions. Then (x, y) ∈ (X,Y ) is a

solution of (1.1) if and only if (x, y) ∈ (X,Y ) is a solution of system (2.2).

Proof. The proof is immediate from the discussion above, we omit the details here.

Let F : X × Y → X × Y be an operator defined as F (x, y)(t) = (F1y(t), F2x(t)), where

F1y(t) =

∫ T

0

G1(t, s)f(s, y(s),cDpy(t))ds, F2x(t) =

∫ T

0

G2(t, s)g(s, x(s),cDqx(t))ds.

It is obvious that a fixed-point of the operator F is a solution of Problem (1.1).

Now we present the main results of this paper.

3. Main Results

In this section, we will discuss the existence and uniqueness of solutions to Problem (1.1).

Lemma 3.1. [17] The Green’s functions G1(t, s), G2(t, s) satisfy the following estimates:∫ T

0
| G1(t, s) | ds ≤ Tα

Γ(α+1) (
3
2 + 5α4−14α3+55α2+146α

768 ) = U1, t ∈ [0, T ], (3.1)

∫ T

0
| G2(t, s) | ds ≤ Tβ

Γ(β+1) (
3
2 + 5β4−14β3+55β2+146β

768 ) = U2, t ∈ [0, T ], (3.2)∫ T

0

∣∣∣∂G1(t,s)
∂t

∣∣∣ds ≤ Tα−1

Γ(α) ( 3
2 + α3−3α2+14α−12

48 ) = U3, t ∈ [0, T ], (3.3)∫ T

0

∣∣∣∂G2(t,s)
∂t

∣∣∣ds ≤ Tβ−1

Γ(β) ( 3
2 + β3−3β2+14β−12

48 ) = U4, t ∈ [0, T ]. (3.4)

Theorem 3.2. Assume that one of the following conditions is satisfied:

(H1) there exist positive constants A, B and constants bi, ci > 0, 0 < ρi, θi < 1 for i = 1, 2 such that

| f(t, x, y) |≤ A+ b1 | x |ρ1 +b2 | y |ρ2 , | g(t, x, y) |≤ B + c1 | x |θ1 +c2 | y |θ2 ;

(H2) there exist constants li, ki > 0, 0 < γi, φi < 1 for i = 1, 2 such that

| f(t, x, y) |≤ l1 | x |γ1 +l2 | y |γ2 , | g(t, x, y) |≤ k1 | x |φ1 +k2 | y |φ2 ;

(H3) there exist constants di, σi > 0, δi, εi > 1 for i = 1, 2 such that

| f(t, x, y) |≤ d1 | x |δ1 +d2 | y |δ2 , | g(t, x, y) |≤ σ1 | x |ε1 +σ2 | y |ε2 ;

then Problem (1.1) has a solution.

4
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Before proving Theorem 3.2, we define a ball B in the Banach space X × Y as

B = {(x(t), y(t))|(x(t), y(t)) ∈ X × Y, ∥(x, y)∥X×Y ≤ R, t ∈ [0, T ]},

where

R ≥ max
{

3UAλ1, (3Ub1λ1)
1

1−ρ1 , (3Ub2λ1)
1

1−ρ2 , 3KBλ2, (3Kc1λ2)
1

1−θ1 , (3Kc2λ2)
1

1−θ2

}
.

U = max{U1, U3, U5, U6, U7}, where U5 = Tα−2

Γ(α−1) (
3
2 + α2−α−2

16 ), U6 = Tα−3(α+3)
4Γ(α−2) , U7 = 3Tα−4

2Γ(α−3) , K is defined

by the expression of U by replacing the corresponding α with β in each case, λ1 = Γ([q]−q+2)+T [q]−q+1

Γ([q]−q+2) , λ2 =

Γ([p]−p+2)+T [p]−p+1

Γ([p]−p+2) .

Proof .

Part 1: Let (H1) be valid.

Step 1 : F : B → B.∣∣∣ ∫ T

0

∂G2
1(t, s)

∂t2
ds
∣∣∣ ≤ ∫ T

0

∣∣∣ (t− s)α−3

Γ(α− 2)
− (T − s)α−3

2Γ(α− 2)
+

(T − 2t)(T − s)α−4

4Γ(α− 3)
+
t(T − t)(T − s)α−5

4Γ(α− 4)

∣∣∣ds
≤ Tα−2

Γ(α− 1)
+

Tα−2

2Γ(α− 1)
+

Tα−2

4Γ(α− 2)
+

Tα−2

16Γ(α− 3)

=
Tα−2

Γ(α− 1)
(
3

2
+
α2 − α− 2

16
) = U5,

∣∣∣ ∫ T

0

∂G3
1(t, s)

∂t3
ds
∣∣∣ ≤ ∫ T

0

∣∣∣ (t− s)α−4

Γ(α− 3)
− (T − s)α−4

2Γ(α− 3)
+

(T − 2t)(T − s)α−5

4Γ(α− 4)

∣∣∣ds
≤ Tα−3

Γ(α− 2)
+

Tα−3

2Γ(α− 2)
+

Tα−3

4Γ(α− 3)

=
Tα−3(α+ 3)

4Γ(α− 2)
= U6,

∣∣∣ ∫ T

0

∂G4
1(t, s)

∂t4
ds
∣∣∣ ≤ ∫ T

0

∣∣∣ (t− s)α−5

Γ(α− 4)
− (T − s)α−5

2Γ(α− 4)

∣∣∣ds
≤ Tα−4

Γ(α− 3)
+

Tα−4

2Γ(α− 3)

=
3Tα−4

2Γ(α− 3)
= U7.

Let U = max{U1, U3, U5, U6, U7}, when k = 0, 1, 2, 3, 4, we have

| (F1y)(k)(t) | =|
∫ T

0

∂Gk
1(t, s)

∂tk
f(s, y(s),cDpy(t))ds |

≤
∫ T

0

| ∂G
k
1(t, s)

∂tk
| (A+ b1R

ρ1 + b2R
ρ2)ds

≤ U(A+ b1R
ρ1 + b2R

ρ2) = M.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

266 Huina Zhang et al 262-270



On the other hand, we can get

|cDqF1y(t)| = 1

Γ([q] + 1− q)

∫ t

0

(t− s)[q]−q|(F1y)([q]+1)(s)|ds

≤ M

Γ([q] + 1− q)

∫ t

0

(t− s)[q]−qds

≤ MT [q]−q+1

Γ([q] + 2− q)
.

As a result

∥F1y∥X = max
0≤i≤4

max
t∈[0,T ]

| (F1y)(i)(t) | + max
t∈[0,T ]

| (cDqF1y)(t) |

≤M +
MT [q]−q+1

Γ([q] + 2− q)
= Mλ1

= U(A+ b1R
ρ1 + b2R

ρ2)λ1

≤ R

3
+
R

3
+
R

3
= R.

Similarly

∥F2x∥Y = max
0≤i≤4

max
t∈[0,T ]

| (F2x)(i)(t) | + max
t∈[0,T ]

| (cDpF2x)(t) |

≤ K(B + c1R
θ1 + c2R

θ2)λ2 ≤ R.

Hence, we conclude that ∥F (x, y)∥X×Y = max{∥F1y∥X , ∥F2x∥Y } ≤ R, in consequence, F : B → B.

Step 2: F is continuous. This follows easily from the continuity of f, g, x(t), y(t) and G1(t, s), G2(t, s).

Step 3: F (B) is relatively compact. Let us set

M1 = max{| f(t, y(t),cDpy(t)) |: t ∈ [0, T ], ∥y∥Y ≤ R, ∥cDpy∥ ≤ R},

N1 = max{| g(t, x(t),cDqx) |: t ∈ [0, T ], ∥x∥X ≤ R, ∥cDqx∥ ≤ R}.

| (F1y)′(t) | =
∣∣∣ ∫ T

0

∂G1(t, s)

∂t
f(s, y(s),cDpy(s))ds

∣∣∣
≤M1

∫ T

0

∣∣∣∂G1(t, s)

∂t

∣∣∣ds ≤M1U3.

Hence, for t1, t2 ∈ [0, T ], we have

| (F1y)(t2)− (F1y)(t1) |≤
∫ t2

t1

| (F1y)′(s) | ds ≤M1U3 | t2 − t1 | .

Similarly, we can get

| (F2x)(t2)− (F2x)(t1) |≤
∫ t2

t1

| (F2x)′(s) | ds ≤ N1U4 | t2 − t1 | .

By the Arzelà-Ascoli theorem, we can obtain that F (B) is an equicontinuous set, the operator F : B → B

is completely continuous. Thus, Problem (1.1) has one solution by the Schauder fixed-point theorem.

6
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Part 2: Let (H2) be valid. In this part, let

R ≥ max
{

(2Ul1λ1)
1

1−γ1 , (2Ul2λ1)
1

1−γ2 , (2Kk1λ2)
1

1−φ1 , (2Kk2λ2)
1

1−φ2

}
.

We can also get the result by repeating arguments similar to part 1.

Part 3: Let (H3) be valid. In this part, let

0 ≤ R ≤ min
{

(2Ud1λ1)−
1

δ1−1 , (2Ud2λ1)−
1

δ2−1 , (2Kσ1λ2)−
1

ε1−1 , (2Kσ2λ2)−
1

ε2−1

}
.

We can also get the result by repeating arguments similar to part 1. Here we omit it. This completes

the proof.

Example 3.1. Consider the system
cD17/4x(t) + sin t+ (y(t))2/3 + (cD5/2y(t))

2/5
= 0, 0 < t < 1,

cD9/2y(t) + t1/2 + (x(t))1/3 + (cD11/4x(t))
4/7

= 0, 0 < t < 1,

x(k)(0) = −x(k)(1), k = 0, 1, 2, 3, 4,

y(k)(0) = −y(k)(1), k = 0, 1, 2, 3, 4.

(3.5)

The system satisfies (H1) and hence Theorem 3.2 implies the existence of the solution to system (3.5).

Theorem 3.3. Let fand g satisfy the following growth conditions :

(H1) there exist four positive constants L1, L2,H1, H2 such that

| f(t, x1, y1)− f(t, x2, y2) |≤ L1|x1 − x2|+ L2|y1 − y2|,

| g(t, x1, y1)− g(t, x2, y2) |≤ H1|x1 − x2|+H2|y1 − y2|,

t ∈ [0, T ], xi, yi ∈ R, i = 1, 2.

(H2)

max{L1, L2}U1 = Q1 < 1,max{H1,H2}U2 = Q2 < 1.

Then Problem (1.1) has a unique solution.

Proof. Let (x1, y1), (x2, y2) ∈ X × Y , then

| (F1y1 − F1y2)(t) | =
∣∣∣ ∫ T

0

G1(t, s)f(s, y1(s),cDpy1(s))ds−
∫ T

0

G1(t, s)f(s, y2(s),cDpy2(s))ds
∣∣∣

≤
∫ T

0

| G1(t, s) || f(s, y1(s),cDpy1(s))− f(s, y2(s),cDpy2(s)) | ds

≤ U1

(
L1|y1(s)− y2(s)|+ L2|cDpy1(s)−c Dpy2(s)|

)
≤ max{L1, L2}U1∥y1 − y2∥Y .

Analogously,

| (F2x1 − F2x2)(t) | ≤
∫ T

0

| G2(t, s) || g(s, x1(s),cDqx1(s))− g(s, x2(s),cDqx2(s)) | ds

≤ U2

(
H1|x1(s)− x2(s)|+H2|cDqx1(s)−c Dqx2(s)|

)
≤ max{H1,H2}U2∥x1 − x2∥X .

7
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Thus,

|| F (x1, y1)− F (x2, y2) ||X×Y =|| (F1y1 − F1y2, F2x1 − F2x2) ||X×Y

= max{|| F1y1 − F1y2 ||X , || F2x1 − F2x2 ||Y }

≤ max{Q1 || y1 − y2 ||Y , Q2 || x1 − x2 ||X}

≤ max{Q1, Q2}max{|| y1 − y2 ||Y , || x1 − x2 ||X}

= max{Q1, Q2} || (x1, y1)− (x2, y2) ||X×Y .

Hence, we conclude that Problem (1.1) has a unique solution by (H2) and the contraction mapping

principle, this ends the proof.

Example 3.2. Consider the system

cD17/4x(t) + L1 sin y(t) + L2

cD5/2y(t)
1+cD5/2y(t)

= 0, 0 < t < 1,

cD9/2y(t) +H1 arctanx(t) +H2

cD11/4x(t)
1+cD11/4x(t)

= 0, 0 < t < 1,

x(k)(0) = −x(k)(1), k = 0, 1, 2, 3, 4,

y(k)(0) = −y(k)(1), k = 0, 1, 2, 3, 4.

(3.6)

Where T = 1, f(t, y(t),cDpy(t)) = L1 sin y(t) + L2

cD5/2y(t)
1+cD5/2y(t)

, g(t, x(t),cDqx(t)) = H1 arctanx(t) +

H2

cD11/4x(t)
1+cD11/4x(t)

, α = 17
4 , β = 9

2 , p = 5/2, q = 11/4 and L1, L2,H1,H2 > 0.

Noting that

| (sin y)′ |=| cos y |≤ 1, | (arctanx)′ |= 1

1 + x2
≤ 1,

∣∣( v

1 + v
)′
∣∣ =

1

(1 + v)2
≤ 1,

we have

| f(t, y1(t),cDpy1(t))− f(t, y2(t),cDpy2(t)) |

≤ L1 | sin y1(t)− sin y2(t) | +L2

∣∣∣ cD5/2y1(t)

1 +c D5/2y1(t)
−

cD5/2y2(t)

1 +c D5/2y2(t)

∣∣∣
≤ L1 | y1(t)− y2(t) | +L2 |c D5/2y1(t)−c D5/2y2(t) |

≤ max{L1, L2} || y1 − y2 ||Y ,

| g(t, x1(t),cDqx1(t))− g(t, x2(t),cDqx2(t)) |

≤ H1 | arctanx1(t)− arctanx2(t) | +H2

∣∣∣ cD11/4x1(t)

1 +c D11/4x1(t)
−

cD11/4x2(t)

1 +c D11/4x2(t)

∣∣∣
≤ H1 | x1(t)− x2(t) | +H2 |c D11/4x1(t)−c D11/4x2(t) |

≤ max{H1,H2} || x1 − x2 ||X ,

U1 =
Tα

Γ(α+ 1)
(
3

2
+

5α4 − 14α3 + 55α2 + 146α

768
) ≈ 0.1229,

U2 =
T β

Γ(β + 1)
(
3

2
+

5β4 − 14β3 + 55β2 + 146β

768
) ≈ 0.0920.

as long as we let max{L1, L2} < 1
0.1229 ,max{H1,H2} < 1

0.0920 , it will have Q1 < 1, Q2 < 1, then we can

conclude from Theorem 3.3 that system (3.6)has a unique solution.

8
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Abstract

In this paper, we discuss the existence of fixed points for a class of Lipschitzian
type mappings and asymptotic pointwise Lipschitz type mappings in hyperbolic 2-
uniformly convex metric spaces. In the same space setting, we deal the problem
of approximation of fixed points via modified Mann iteration process. Our result
generalizes and extends the corresponding results of Dehaish et al. [7], Goebel and
Kirk [8], Kirk and Xu [18] and Sahu et al. [24] and many others in this direction.

2010 Mathematics Subject Classification: 47H09, 47H10.

Key words and phrases: Asymptotically nonexpansive mapping, nearly Lipschitzian
mapping, asymptotically pointwise nonexpansive mapping, pointwise contraction, hy-
perbolic 2-uniformly convex metric space, modified Mann iteration process.

1 Introduction

Let C be a nonempty subset of a metric space X and T : C → C be a mapping. Then T

is called

(1) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C;

(2) asymptotically nonexpansive [8] if for each n ∈ N, there exists a constant kn ≥ 1

with limn→∞ kn = 1 such that

d(T nx, T ny) ≤ knd(x, y)

for all x, y ∈ C;

∗Corresponding author
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2 D. R. Sahu, S. Dashputre and S. M. Kang

(3) a pointwise contraction [3] if there exists a function α : C → [0, 1) such that

d(Tx, Ty) ≤ α(x)d(x, y)

for all x, y ∈ C;

(4) an asymptotic pointwise contraction [17] if for each n ∈ N, there exists a function

αn : C → [0, 1) such that

d(T nx, T ny) ≤ αn(x)d(x, y)

for all x, y ∈ C, where αn → α : C → [0, 1) pointwise on C;

(5) pointwise asymptotically nonexpansive [18] if there exists a sequence {αn} for each

integer n ∈ N, a function exists a function αn : C → [1,∞)

d(T nx, T ny) ≤ αn(x)d(x, y)

for all x, y ∈ C, where αn(x) → 1 pointwise on C;

(6) asymptotically nonexpansive in the intermediate sense [5] provided T is uniformly
continuous and

lim sup
n→∞

sup
x,y∈C

d(T nx, T ny)− d(x, y)) ≤ 0; (1.1)

(7) asymptotically nonexpansive type [13, 16] if

lim sup
n→∞

sup
y∈C

(d(T nx, T ny) − d(x, y)) ≤ 0

for all x ∈ C.

There is a class of mappings which lies strictly between the class of contraction map-
pings and the class of nonexpansive mappings. The class of pointwise contractions was

introduced in Belluce and Kirk [3] and later it was called generalized contraction in [12].
Banach’s celebrated contraction principle was extended to this larger class of mappings as

follows:

Theorem 1.1. ([3, 12]) Let C be a nonempty weakly compact convex subset of a Banach

space and T : C → C a pointwise contraction. Then T has a unique fixed point, x∗, and
{T nx} converges strongly to x∗ for each x ∈ C.

Kirk [17] combined ideas of pointwise contraction [3] and asymptotic contraction [15]
and introduced the concept of an asymptotic pointwise contraction. He announced that
an asymptotic pointwise contraction defined on closed convex and bounded subset of a

super-reflexive Banach space has a fixed point.

In [18], Kirk and Xu introduced the concept of asymptotically pointwise and proved
that every pointwise asymptotically nonexpansive mapping defined on a closed convex

Banach space has a fixed point.

The class of asymptotically nonexpansive mappings in the intermediate sense which
is essentially wider than that of asymptotically nonexpansive was introduced by Bruck

et al. [5]. It is known that [16] if C is a nonempty closed convex bounded subset of a
uniformly convex Banach space X and T is a self mapping of C which is asymptotically

nonexpansive in the intermediate sense, then T has fixed point.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

272 D. R. Sahu et al 271-285



Iteration Process for Pointwise Lipschitzian Type Mappings 3

On the other hand, if cn = max{supx∈C(d(T nx, T ny) − d(x, y), 0}, then (1.1) reduces

to relation

d(T nx, T ny) ≤ d(x, y) + cn (1.2)

for all x, y ∈ C and n ∈ N. The classes of mappings more general than the class of

mapping satisfying (1.2) were studied in Alber et al. [2] as the class of total asymptotically
nonexpansive mappings and in Sahu [22] as the class of nearly Lipschitzian mappings.

Fix a sequence {an} in [0,∞) with an → 0. A mapping T : C → C is said to be nearly
Lipschitzian with respect to {an} ([22]) if for each n ∈ N, there exists a constants kn > 0

such that

d(T nx, T ny) ≤ kn(d(x, y)+ an) (1.3)

for all x, y ∈ C. The infimum of the constants kn in (1.3) is called nearly Lipschitz constant

and is denoted by η(T n). A nearly Lipschitzian mapping T with the sequence {an, η(T n)}
is said to be

(1) nearly contraction if η(T n) < 1 for all n ∈ N,

(2) nearly uniformly L-Lipschitzian if η(T n) ≤ L for all n ∈ N,

(3) nearly uniformly k-contraction if η(T n) ≤ k < 1 for all n ∈ N,

(4) nearly nonexpansive if η(T n) = 1 for all n ∈ N,

(5) nearly asymptotically nonexpansive if η(T n) ≥ 1 for all n ∈ N with limn→∞ η(T n) =
1.

The corresponding Lipschitzian type mappings (for instance, contraction type map-
pings) concerning asymptotically nonexpansive mappings in the intermediate sense and

total asymptotically nonexpansive mappings are not defined in Bruck et al. [5] and Alber
et al. [2]. The notion of nearly Lipschitzian mappings allows to define different classes
of Lipschitzian types mappings, for example, nearly contraction, nearly nonexpansive,

nearly asymptotically nonexpansive, nearly uniformly L- Lipschitzian etc. Therefore, the
fixed point theory of nearly Lipschitzian mappings is of fundamental importance. Some

properties and existence and convergence results for nearly Lipschitzian mappings are
studied in [22, 23]. The perturbation of a nonexpansive mapping as a sequence of nearly

nonexpansive mappings is studied and its applications are given in [26, 25].

Recently, Sahu et al. [24] introduced some new classes of pointwise nearly Lipschitz

type mappings in Banach spaces and studied some existence theorems in Banach spaces.
Inspired by the work of Kirk and Xu [18] and Sahu et al. [24] studied the existence of
fixed points of pointwise nearly Lipschitzian mappings in Banach spaces. In [24], it is

shown that the asymptotic center of every bounded orbit of a pointwise asymptotically
nonexpansive mapping is fixed point of the mapping in a uniformly convex Banach space.

In [27], Schu considered modified Mann iterations for asymptotically nonexpansive
mappings on a convex subset of a Banach space. Recently, Khan et al. [11] have in-

troduced and studied the convergence of a general iteration scheme of asymptotically
quasi-nonexpansive mappings in convex metric spaces and CAT(0) spaces.

Recently, Dehaish et al. [7] studied the existence of a fixed point of a single and a family

of asymptotic pointwise nonexpansive mappings defined on uniformly convex hyperbolic
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spaces. They also discussed the behavior of the following modified Mann iteration process

associated with asymptotic pointwise nonexpansive mapping T :

xn+1 = tnT n(xn)⊕ (1− tn)xn, n ∈ N, (1.4)

where {tn} ⊂ [0, 1] be bounded away from 0 and 1 and x1 ∈ C is an arbitrary point.

The purpose of this paper is to extend the notion of the pointwise Lipschitzian type
mappings introduced in [24] and establish existence and convergence theorems for fixed

points for the class of pointwise nearly asymptotically nonexpansive mappings in the frame-
work of hyperbolic 2-uniformly convex metric spaces. Our results generalize, extend and

unify the corresponding results of Dehaish et al. [7], Goebel and Kirk [8], Kirk and Xu
[18] and Sahu et al. [24] and many others in this direction..

2 Preliminaries

2.1 Uniformly convexity in metric spaces

Let (X, d) be a metric space. Suppose that there exists a family F of metric space segments
such that any two points x, y ∈ X are end points of a unique metric segment [x, y] ∈ F .

Here [x, y] is an isometric image of the real line interval [0, d(x, y)]. We shall denote by
tx ⊕ (1− t)y the unique point z of [x, y] which satisfies

d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y),

where t ∈ [0, 1]. Such metric spaces are usually called convex metric spaces [20]. Moreover,

if

d(αp ⊕ (1− α)x, αq ⊕ (1− α)y) ≤ αd(p, q) + (1− α)d(x, y),

for all p, q, x, y ∈ X , and α ∈ [0, 1], then X is said to be a hyperbolic metric space (see
[21]).

It is easy to see that normed linear spaces are hyperbolic spaces. As nonlinear examples,

one can consider the Hadamard manifolds [6], the Hilbert open unit ball equipped with
the hyperbolic metric [9], and the CAT(0) spaces [14, 16, 19] (see Example 2.8).

Definition 2.1. ([10]) A subset C of a hyperbolic metric space X is convex if [x, y] ⊂ C

whenever x, y ∈ C.

Definition 2.2. ([10]) Let (X, d) be a hyperbolic metric space. We say that X is uniformly
convex if for any a ∈ X , for every r > 0, and for each ε > 0,

δ(r, ε) = inf

{

1 −
1

r
d

(

1

2
x ⊕

1

2
y, a

)

: d(x, a) ≤ r, d(y, a)≤ r, d(x, y)≥ rε

}

> 0.

From now onward we assume that X is a hyperbolic metric space and if (X, d) is
uniformly convex, then for every s ≥ 0, ε > 0, there exists η(s, ε) > 0 depending on s and

ε such that

δ(r, ε) > η(s, ε) > 0 for any r > s.
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Remark 2.3. If (X, d) is uniformly convex, then we have the following:

(1) δ(r, 0) = 0 and δ(r, ε) is an increasing function of ε for every fixed r.

(2) For r1 ≤ r2, the following holds:

1 −
r2

r1

(

1 − δ

(

r2, ε
r1

r2

))

≤ δ(r1, ε).

(3) If (X, d) is uniformly convex, then (X, d) is strictly convex, that is, whenever

d(x, a) = d(y, a) = d

(

1

2
x ⊕

1

2
y, a

)

,

for any x, y, a ∈ X , then we must have x = y.

Recall that a hyperbolic metric space X is said to have property (R) [10] if any non-
increasing sequence of nonempty, convex, bounded, and closed sets has a nonempty inter-

section.

The following theorem was proved by Khamsi and Khan [10].

Theorem 2.4. ([10]) Assume that (X, d) is complete and uniformly convex. Let C be
nonempty, convex, and closed. Then for any x ∈ X , there exists a unique best approximant
of x in C, that is, a unique x0 ∈ C such that

d(x, x0) = d(x, C).

Note that any complete and uniformly convex metric space has the property (R) (see

[10]).

We need the following results for our main results.

Lemma 2.5. ([10] Lemma 2.2) Let (X, d) be uniformly convex. Assume that there exists
r ≥ 0 such that

lim sup
n→∞

d(xn, a) ≤ r, lim sup
n→∞

d(yn, a) ≤ r and lim
n→∞

d

(

a,
1

2
xn ⊕

1

2
yn

)

= r.

Then limn→∞ d(xn, yn) = 0.

The following metric version of the parallelogram identity, also known as the inequality

of Bruhat and Tits, has been established in [10].

Theorem 2.6. ([10]) Let (X, d) be uniformly convex. Fix a ∈ X . For each r > 0 and
for each ε > 0, denote

Ψ(r, ε) = inf

{

1

2
d2(a, x) +

1

2
d2(a, y)− d2

(

a,
1

2
x ⊕

1

2
y

)}

,

where the infimum is taken over all x, y ∈ X such that d(a, x) ≤ r, d(a, y) ≤ r and
d(x, y) ≥ rε. Then Ψ(r, ε) > 0 for any r > 0 and each ε > 0. Moreover, for a fixed r > 0,

we have
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(i) Ψ(r, 0) = 0;

(ii) Ψ(r, ε) is non-decreasing function of ε;

(iii) if limn→∞ Ψ(r, tn) = 0, then limn→∞ tn = 0.

The notion of p-uniform convexity was studied extensively by Xu [28], its nonlinear
version for p = 2 has been introduced by Khamsi and Khan [10] using the above function

Ψ as follows.

Definition 2.7. ([10]) We say that (X, d) is 2-uniformly convex if

CX = inf

{

Ψ(r, ε)

r2ε2
: r > 0, ε > 0

}

> 0.

From the definition of CX , we obtain the following inequality:

d2

(

a,
1

2
x ⊕

1

2
y

)

+ CXd2(x, y) ≤
1

2
d2(a, x) +

1

2
d2(a, y)

for any a ∈ X and x, y ∈ X.

Example 2.8. Let (X, d) be a metric space. A geodesic from x to y in X is a mapping c

from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t−t′|

for all t, t′ ∈ [0, l].

In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or
metric) segment joining x and y. The space (X, d) is said to be a geodesic space if every

two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X, which will be denoted by [x, y], and

called the segment joining x to y. A geodesic triangle ∆(x1, x2, x3) in a geodesic metric
space (X, d) consists of three points x1, x2, x3 in X (the vertices of ∆) and a geodesic

segment between each pair of vertices (the edges of ∆).

A comparison triangle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle
∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3, ) in R

2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}

such triangle exists (see [4]).

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate
size satisfy the following comparison axiom.

Let ∆ be a geodesic triangle in X and let ∆̄ ⊂ R2 be a comparison triangle for ∆.

Then ∆ is said to satisfy the CAT(0) inequality if

d(x, y) ≤ d(x̄, ȳ).

for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄.

Complete CAT(0) spaces are often called Hadamard spaces (see [16]). If x, y1, y2 are

points of a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], which will be
denoted by y1⊕y2

2
, then the CAT(0) inequality implies

d2

(

x,
1

2
y1 ⊕

1

2
y2

)

≤
1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (CN )
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This inequality is the (CN) inequality of Bruhat and Tits [4]. As for the Hilbert space,

the (CN) inequality implies the CAT(0) spaces are uniformly convex with

δ(r, ε) = 1 −

√

1 −
ε2

4
.

The (CN) inequality also implies that

Ψ(r, ε) =
r2ε2

4
.

Thus, a CAT(0) space is 2-uniformly convex with CX = 1

4
.

We need the following more general inequality for convergence of Mann iterations.

Theorem 2.9. ([7]) Let (X, d) be 2-uniformly convex. Then, for any α ∈ (0, 1), there
exists CX > 0 such that

d2(a, αx⊕ (1− α)y) + CX min{α2, (1− α)2}d2(x, y) ≤ αd2(a, x) + (1− α)d2(a, y)

for any a, x, y ∈ X .

Recall that Φ : X → R
+ is called a type if there exists {xn} in X such that

Φ(x) = lim sup
n→∞

d(x, xn).

Theorem 2.10. ([10, Theorem 2.4]) Assume that (X, d) is a complete and uniformly

convex. Let C be a nonempty closed bounded and convex subset of X . Let Φ be a type
defined on C. Then any minimizing sequence of Φ is convergent. Its limit is independent
of the minimizing sequence.

In fact, if X is 2-uniformly convex, and Φ is a type defined on a nonempty closed

convex bounded subset C of X , then there exists a unique x0 ∈ C such that

Φ2(x0) + 2CXd2(x0, x) ≤ Φ2(x) (2.1)

for any x ∈ C. In this inequality, one may find an analogy with Opial property used in

the study of the fixed point property in Banach and metric spaces.

2.2 Pointwise Lipschitzian type mappings and fixed points

First, we extend some wider classes of nonlinear mappings studied by Sahu et al. [24] in

a metric space setting.

Definition 2.11. ([24]) Let C be a nonempty subset of a metric space (X, d). A mapping
T : C → C is said to be

(1) pointwise nearly Lipschitzian with sequence {(αn(·), an)} if, there exists a sequence
{an} in [0,∞) with an → 0 and for each n ∈ N, there exists a function αn(.) : C → (0,∞)

such that

d(T nx, T ny) ≤ αn(x)(d(x, y)+ an)
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for all x,y ∈ C;

(2) pointwise nearly uniformly α(·)-Lipschitzian with sequence {an} if, there exists a
sequence {an} in [0,∞) with an → 0 and there exists a function α(·) : C → (0,∞) such
that

d(T nx, T ny) ≤ α(x)(d(x, y)+ an)

for all x,y ∈ C;

(3) asymptotic pointwise nearly Lipschitzian with sequence {(αn(·), an)} if, there exists
a sequence {an} in [0,∞) with an → 0 and for each n ∈ N, there exists a function
αn(.) : C → (0,∞) and with αn → α : C → (0,∞) pointwise such that

d(T nx, T ny) ≤ αn(x)(d(x, y)+ an)

for all x,y ∈ C.

We say that, an asymptotic pointwise nearly Lipschitzian mapping is
(1) pointwise nearly asymptotic nonexpansive if αn(x) ≥ 1 for all n ∈ N and αn(x) → 1

pointwise,

(2) pointwise asymptotically nonexpansive [18] an = 0 and αn(x) ≥ 1 for all n ∈ N and
αn(x) → 1 pointwise.

(3) a asymptotic pointwise nearly contraction if αn → α pointwise and α(x) ≤ k < 1
for all x ∈ C.

A point x ∈ C is called a fixed point of T if T (x) = x. The fixed point set of T is

denoted by Fix(T ).

3 Existence theorem

First, we prove the existence of fixed point for a pointwise nearly asymptotically nonex-

pansive mapping in a 2-uniformly convex metric space.

Theorem 3.1. Let C be nonempty closed convex and bounded subset of a complete hy-

perbolic 2-uniformly convex metric space (X, d). Let T : C → C be a continuous pointwise
nearly asymptotically nonexpansive mapping. Then T has a fixed point in C. Moreover,

the set of fixed points is closed and convex.

Proof. Fix x ∈ C. Define the function Φ(y) = lim supn→∞ d(T n(x), y) on C. By (2.1),
there exists a unique ω ∈ C such that

Φ2(ω) + 2CXd2(ω, y) ≤ Φ2(y)

for all y ∈ C. In particular, we have

Φ2(ω) + 2CXd2(ω, T n(ω)) ≤ Φ2(T n(ω)) (3.1)

for all n ≥ 1. Observe that

Φ(T n(ω)) = lim sup
m→∞

d(Tm(x), T n(ω))

≤ lim sup
m→∞

d(T n(Tm−n(x)), T n(ω))

≤ lim sup
m→∞

[

αn(ω)(d(Tm−n(x), ω) + an)
]

≤ αn(ω)(Φ(ω) + an) (3.2)
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for all n ≥ 1. Hence, from (3.1) and (3.2), we have

Φ2(ω) + 2CXd2(ω, T n(ω)) ≤ Φ2(T n(ω))

≤
(

αn(ω)(Φ(ω) + an)
)2

= α2
n(ω)[Φ2(ω) + a2

n + 2Φ(ω)an]

for all n ≥ 1. By the definition of T, αn(ω) → 1 pointwise and an → 0 as n → ∞. Thus,

limn→∞ d(ω, T n(ω)) = 0, i.e., T n(ω) → ω as n → ∞. By the continuity of T , we have

T (ω) = T
(

lim
n→∞

T n(ω)
)

= lim
n→∞

T n+1(ω) = ω.

Closedness of Fix(T ): Let {xn} be a sequence in Fix(T ) such that limn→∞ xn = x

for some x ∈ C. Now it remains to show that x ∈ Fix(T ). Note that

d(T n(xn), T n(x)) ≤ αn(x)(d(xn, x) + an),

which implies that
lim

n→∞
d(T n(x), xn) = 0.

Since

d(x, T n(x)) ≤ d(x, xn) + d(xn, T n(x),

we have, limn→∞ d(x, T n(x)) = 0. By continuity of T , we have Tx = x.

Convexity of Fix(T ): Let x, y ∈ Fix(T ). We only need to prove that z = x⊕y
2

∈
Fix(T ). Without loss of generality, we assume that x 6= y. Note that

d(x, T n(z)) = d(T n(x), T n(z))

≤ αn(x)(d(x, z) + an)

≤ αn(x)

(

d

(

x,
x ⊕ y

2

)

+ an

)

= αn(x)

(

1

2
d(x, y) + an

)

for all n ≥ 1. Similarly, we have

d(y, T n(z)) ≤ αn(y)

(

1

2
d(x, y) + an

)

for all n ≥ 1. By triangular inequality, we have

d(x, y) ≤ d(x, T n(z)) + d(T n(z), y)

≤ αn(x)

(

1

2
d(x, y) + an

)

+ αn(y)

(

1

2
d(x, y) + an

)

= (αn(x) + αn(y))

(

1

2
d(x, y) + an

)

,

it follows that

lim
n→∞

d(x, T n(z)) = lim
n→∞

d(T n(z), y) = d(x, y).
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Note

d

(

x,
z ⊕ T n(z)

2

)

≤
1

2
d(x, z) +

1

2
d(x, T n(z))

≤
1

2
d(x, z) +

1

2
αn(x)

(

1

2
d(x, z) + an

)

,

=

(

1 + αn(x)

2

)

d(x, z) +
αn(x)an

2
.

Similarly, we have

d

(

y,
z ⊕ T n(z)

2

)

≤
1

2
d(y, z) +

1

2
d(y, T n(z))

≤
1

2
d(y, z) +

1

2
αn(y)

(

1

2
d(y, z) + an

)

=

(

1 + αn(y)

2

)

d(y, z) +
αn(y)an

2
.

Thus,

d(x, y) ≤ d

(

x,
z ⊕ T n(z)

2

)

+ d

(

z ⊕ T n(z)

2
, y

)

≤
1 + αn(x)

2

d(x, y)

2
+

1 + αn(y)

2

d(x, y)

2
+

αn(x) + αn(y)

2
an.

Taking limit as n → ∞ both the sides, Hence, we have

lim
n→∞

d

(

x,
z ⊕ T n(z)

2

)

= lim
n→∞

d

(

y,
z ⊕ T n(z)

2

)

=
d(x, y)

2
.

Using Lemma 2.5, we conclude that limn→∞ d(z, T n(z)) = 0. Therefore, we must have
T (z) = z, i.e., x⊕y

2
∈ Fix(T ). This completes the proof.

Remark 3.2. Theorem 3.1 is a natural generalization of Proposition 3.4 and Theorem
3.8 of Sahu et al. [24] in the framework of a hyperbolic 2-uniformly convex metric space.

Theorem 3.1 extends the results of Dehaish et al. [7, Theorem 3.1], Goebel and Kirk
[8, Theorem 1], and Kirk and Xu [18, Theorem 3.4] to the class of pointwise nearly

Lipschitzian mappings which essentially wider than the class of mappings appearing in
[7], [8] and [18].

4 Convergence of Mann iteration process

Lemma 4.1. Let C be nonempty, closed, convex, and bounded subset of a complete hy-
perbolic 2-uniformly convex metric space (X, d). Let T : C → C be a pointwise nearly

asymptotically nonexpansive with sequence {(αn(·), an)} such that T is uniformly contin-
uous. Assume that

∑∞

n=1
an < ∞ and

∑∞

n=1
(αn(p) − 1) < ∞ for all p ∈ Fix(T ). Let

{tn} ⊂ [0, 1] be bounded away from 0 and 1, i.e., there exist two real numbers a, b such
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that 0 < a ≤ tn ≤ b < 1. The modified Mann iteration process is defined by (1.4). Then we

have the following:
(a) limn→∞ d(xn, p) exists for all p ∈ Fix(T ).
(b) limn→∞ d(xn, T n(xn)) = 0 and limn→∞ d(xn, Tm(xn)) = 0 for all m ≥ 1, provided

that L = supn∈N supx∈C αn(x) < ∞.

Proof. (a) Let δ(C) = supx,y∈C d(x, y) be the diameter of C. Let ω ∈ Fix(T ). Set
δn := d(xn, ω), βn = αn(ω) and γn = anL. From (1.4), we have

δn+1 = d(xn+1, ω)

= d(tnT n(xn)⊕ (1− tn)xn, ω)

≤ tnd(T n(xn), ω) + (1− tn)d(xn, ω)

≤ tnd(T n(xn), T n(ω)) + (1 − tn)d(xn, ω)

≤ tnαn(ω)(d(xn, ω) + an) + (1 − tn)d(xn, ω)

≤ tnαn(ω)d(xn, ω) + antnαn(ω) + (1 − tn)d(xn, ω)

≤ αn(ω)d(xn, ω) + αn(ω)an

≤ βnδn + γn

for all n ≥ 1. Noticing that
∑∞

n=1
(βn−1) < ∞ and

∑∞

n=1
γn < ∞.for all n ≥ 1. Therefore,

from [1, Lemma 6.1.5], we conclude that limn→∞ d(xn, ω) exists.
(b) First, we prove that limn→∞ d(xn, T n(xn)) = 0. By Theorem 3.1, T has a fixed

point ω ∈ C. Lemma 4.1 implies that limn→∞ d(xn, ω) exists. Set r = limn→∞ d(xn, ω).
Without loss of generality, we may assume r > 0. Note

lim sup
n→∞

d(T n(xn), ω) = lim sup
n→∞

d(T n(xn), T n(ω))

≤ lim sup
n→∞

(αn(ω)(d(xn, ω) + an)) = r.

On the other hand, from (1.4), we have

d(xn+1, ω) ≤ tnd(T n(xn), ω) + (1− tn)d(xn, ω)

for all n ≥ 1. Let U be a non-trivial ultrafilter over N. Then limU tn = t ∈ [a, b]. Hence

r = lim
U

d(xn+1, ω) ≤ t lim
U

d(T n(xn), ω) + (1− t)r.

Since t 6= 0, we get limU d(T n(xn), ω) ≥ r. Hence

r ≤ lim inf
n→∞

d(T n(xn), ω) ≤ lim sup
n→∞

d(T n(xn), ω) ≤ r.

So limn→∞ d(T n(xn, ω) = r. Since X is 2-uniformly convex, Theorem 2.9 implies

CX min{t2n, (1− tn)2}d2(xn, T n(xn)) ≤ tnd2(xn, ω) + (1− tn)d2(T n(xn), ω)

−d2(xn+1, ω),

where CX > 0 depends only on X . Since

CX min{t2n, (1− tn)2} ≥ min{a2, (1− b)2} > 0,
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and

lim
n→∞

{

tnd2(xn, ω) + (1 − tn)d2(T n(xn), ω)− d2(xn+1, ω)

}

= 0,

we get

lim
n→∞

d(xn, T n(xn)) = 0,

which finish the prove of our claim.

Next, we prove that limn→∞ d(xn, Tm(xn) = 0, for all m ≥ 1. The uniform continuity

of T implies that

lim
n→∞

d(Txn, T n+1(xn)) = 0.

From (1.4), we have

d(xn+1, xn) ≤ d(xn, T n(xn)) → 0 as n → ∞.

Note that

d(xn, T (xn)) ≤ d(xn, xn+1) + d(xn+1, T
n+1(xn+1)) + d(T n+1(xn+1), T

n+1(xn))

+d(T n+1(xn), T (xn))

≤ d(xn, xn+1) + d(xn+1, T
n+1(xn+1)) + αn+1(xn)(d(xn+1, xn)

+an+1) + d(T n+1(xn), T (xn))

≤ d(xn, xn+1) + d(xn+1, T
n+1(xn+1)) + L(d(xn+1, xn) + an+1)

+d(T n+1(xn), T (xn))

for all n ≥ 1. Hence, we get limn→∞ d(xnT (xn)) = 0. Again, from the uniform continuity
of T, we have

lim
n→∞

d(T (xn), T 2(xn)) = 0,

it follows that

d(xn, T 2(xn) ≤ d(xn, T (xn)) + d(T (xn), T 2(xn)) → 0 as n → ∞.

Inductively, we have

lim
n→∞

d(xn, Tm(xn) = 0

for all m ≥ 1. This completes the proof.

We now establish main result of this section.

Theorem 4.2. Let C be nonempty, closed, convex, and bounded subset of a complete

hyperbolic 2-uniformly convex metric space (X, d). Let T : C → C be a pointwise nearly
asymptotically nonexpansive with sequence {(αn(·), an)} such that T is uniformly continu-

ous and supn∈N supx∈C αn(x) < ∞. Assume that
∑∞

n=1
an < ∞ and

∑∞

n=1
(αn(p)−1) < ∞

for all p ∈ Fix(T ). Let {tn} ⊂ [0, 1] be bounded away from 0 and 1, i.e., there exist two

real numbers a, b such that 0 < a ≤ tn ≤ b < 1. The modified Mann iteration process is
defined by (1.4). Consider the type Φ(x) = lim supn→∞ d(xn, x) on C. If ω is the minimum
point of Φ, that is, Φ(ω) = inf{Φ(x) : x ∈ C}, then T (ω) = ω.
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Proof. Suppose that ω is the minimum point of Φ. For any m, n ≥ 1, we have

d2

(

xn,
ω ⊕ Tm(ω)

2

)

+ CXd2(ω, Tm(ω)) ≤
1

2
d2(xn, ω) +

1

2
d2(xn, Tm(ω)).

Letting limit as n → ∞, we get

Φ2

(

ω ⊕ Tm(ω)

2

)

+ CXd2(ω, Tm(ω)) ≤
1

2
Φ2(ω) +

1

2
Φ2(Tm(ω)) (4.1)

for any m ≥ 1. Using Lemma 4.1, we get

Φ(Tm(ω)) = lim sup
n→∞

d(xn, Tm(ω))

≤ lim sup
n→∞

[

d(xn, Tm(xn) + d(Tm(xn), Tm(ω))

]

,

≤ lim sup
n→∞

d(Tm(xn), Tm(ω))

≤ lim sup
n→∞

(αm(ω)(d(xn, ω) + am))

= αm(ω)(Φ(ω) + am)

for any m ≥ 1. Since ω is the minimum point of Φ,we have

Φ(ω) ≤ Φ

(

ω ⊕ Tm(ω)

2

)

for any m ≥ 1. From (4.1), we have

Φ2(ω) + CXd2(ω, Tm(ω)) ≤ Φ2

(

ω ⊕ Tm(ω)

2

)

+ CXd2(ω, Tm(ω))

≤
1

2
Φ2(ω) +

1

2
Φ2(Tm(ω))

≤
1

2
Φ2(ω) +

1

2
[αm(ω)(Φ(ω) + am)]2

for m ≥ 1. Taking limit superior as m → ∞, we get

Φ2(ω) + CX lim sup
m→∞

d2(ω, Tm(ω)) ≤ Φ2(ω).

This implies that limm→∞ d(ω, Tm(ω)) = 0. Therefore, T (ω) = ω, i.e., ω ∈ Fix(T ). This

completes the proof.

Remark 4.3. Theorem 4.2 extends the result of Dehaish et al. [7, Theorem 4.1] to
pointwise nearly Lipschitzian mapping which essentially wider than the mapping appearing
in [7].
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Abstract

This work is devoted to the regularity properties of the American
options value function, when there are brusque variations in prices.
We assume that there are finite number of jumps in each finite time
interval and the asset price jumps in the proportions which are in-
dependent and identically distributed. These properties can be used
to investigate the optimal hedging strategies, optimal exercise bound-
aries etc. for the options in jump-diffusion process.
Keywords: American Option, Jump-Diffusion Model, Poisson Pro-
cess, Lipschitz Continuity, Weak Derivatives.

1 Introduction

The pricing of options and the corporate liabilities have been developed significantly after
the classical paper by Black and Scholes (1973). Although several techniques for the
calculation of the value of the European option have been proposed in closed-form, the
American options are still open for further research and consideration, causing an extensive
literature on numerical methods.

Recently, in Israel and Rincon (2008), the American options problem using inequality
variational systems, and numerical methods based on finite elements and finite difference
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techniques is solved properly. Indeed, as it has been proposed also in Jaillet et. al. (1990),
the problem to find the value of a put American option can be equivalent to getting the
solution of a system of variational inequalities provided that this formulation respects some
necessary hypotheses, see also Isreal and Rincon (2008). Jaillet, Lamberon and Lapeyre
(1990) rely on the link between the optimal stopping and variational inequality in order
to exploit the theory of American options. Pham (1997) investigated the regularity of the
value function of the put American option in jump-diffusion process using the properties
of the optimal exercise boundary. For more detailed discussion on the value function of
the American options we refer the readers to the papers by Chiarella and Kang (2011), El-
Karoui, et. al. (1998), ellot and Kopp (1990), Hussain and Shashiashvili (2010), Hussain
and Rehman (2012), and books Glowinski, et. al. (1981), Karatzas and Shereve (1998),
Lamberton and Lapeyre (1997), Shreve (2004) etc.

We assume the interest rate and volatility are Lipschitz functions of time, payoff is
arbitrary bounded from below convex function, and use purely probabilistic approach to
obtained rigorous estimates for the first and second order derivatives of the value function
of the put American options in order to use these results in our next work to construct uni-
form approximations for the discrete time hedging strategies as well as for the investigation
of the optimal exercise boundary of the put American options.

In Section 2, we set the basic notation and we formulate our model. Thus, we consider
a financial market with two assets, i.e. the value of a money market account and the share
of a stock whose price jumps proportionally at some times τj following the Poisson process,
similarly as in Pham (1997). Note that in order to deal with this problem, following also the
existing literature, we recall that the American options value function can be considered
as the value of a function of an equivalent optimal stopping time problem. Thus, some
preliminary results are presented here. Finally, in Section 3, the regularity properties of a
put American option are derived solving a system of variational inequalities.

2 Notation - Preliminary Results

Let (Ω,F ,P) be a probability space on which we define a standard Wiener process
W = (Wt)0≤t≤T , a Poisson process N = (Nt)0≤t≤T with intensity λ and a sequence
(Uj)j≥1 of independent, identically distributed random variables taking values in (−1,∞).
Assume that the time horizon T < ∞ is finite and the σ-algebras generated respectively
by (Wt)0≤t≤T , (Nt)0≤t≤T , and (Uj)j≥1 are independent. Denote by (Ft)0≤t≤T the P-
completion of the natural filtration of (Wt), (Nt) and (Uj)Ij≤Nt , j ≥ 1, 0 ≤ t ≤ T .

On a filtered probability space (Ω,F ,Ft,P)0≤t≤T consider a financial market with
two assets mt, 0 ≤ t ≤ T , the price of a unit of a money market account at time t, and
St, 0 ≤ t ≤ T, the value at time t of the share of a stock whose price jumps in the propor-
tions U1, U2, ..., at some times τ1, τ2, . . ., see also Pham (1997). We assume that the τj ’s
correspond to the jump times of a Poisson process.

The evolution of the assets mt and St obeys the following ordinary and stochastic
differential equations respectively,

dmt = r(t)mtdt, m0 = 1, 0 ≤ t ≤ T,

2
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dSt = St−

b(t)dt+ σ(t)dWt + d

 Nt∑
j=1

Uj

 .

We assume that (b(t),Ft)0≤t≤T is a certain, progressively measurable process; the deter-
ministic time-varying interest rate r(t) and the volatility σ(t) are continuously differen-
tiable functions of time, and the following requirements are satisfied:

0 ≤ r(t) ≤ r̄, 0 < σ ≤ σ(t) ≤ σ̄, |b(t)| ≤ r̄,

|r(t)− r(s)|+ |σ(t)− σ(s)| ≤ K|t− s|, (1)

where s, t ∈ [0, T ] and r̄, σ, σ̄ and K are some positive constants.
From the above stochastic differential equation, the dynamics of St can be described

by:

St = S0

 Nt∏
j=1

(1 + Uj)

 exp

[∫ t

0

(
b(u)− σ2(u)

2

)
du+

∫ t

0

σ(u)dWu

]
.

It is known, see for instance Lamberton and Lapeyre (1997), that the discounted stock

price S̃t = e−
∫ t
0
r(u)duSt is a martingale if and only if∫ t

0

b(u)du =

∫ t

0

r(u)du− λtE(U1). (2)

In this brief paper, we investigate the regularity properties of the American option
value function with a nonnegative, non-increasing convex payoff function g(x), x ≥ 0. We
assume that g(0) = g(0+). Of course, a typical example of this family of functions is the
put American option with payoffs g(x) = (L− x)+ where L is the exercise price.

In the next paragraphs of this section, we present some necessary and preliminary
results for the better understanding, and evaluation of our main outputs.

First, it is necessary to recall that the American option value function v(t, x), x ≥
0, 0 ≤ t ≤ T, can be considered as the value function of a relevant optimal stopping
problem (see, for instance Karatzas and Shereve (1998), Section 2.5). In particular

v(t, x) = sup
τ∈Tt,T

E

[
exp

(
−
∫ τ

t

r(v)dv

)
g(Sτ (t, x))

]
, x ≥ 0, 0 ≤ t ≤ T, (3)

where Tt,T denotes the set of all stopping times τ such that t ≤ τ ≤ T , and the stochastic
process Su(t, x), t ≤ u ≤ T satisfies the same stochastic differential equation as above, i.e.

dSu(t, x) = Su−(t, x)

b(u)du+ σ(u)dWu + d

 Nu∑
j=1+Nt

Uj

 , t ≤ u ≤ T, (4)

with the initial condition St(t, x) = x, x ≥ 0.
The unique solution (Su(t, x),Fu)t≤u≤T of (4) is given by the exponential

Su(t, x) = x

 Nu∏
j=1+Nt

(1 + Uj)

 exp

[∫ u

t

(
b(u)− σ2(u)

2

)
du+

∫ u

t

σ(u)dWu

]
.
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Condition (2) leads to

Su(t, x) = exp

[
lnx+

∫ u
t

(
r(u)− λE(U1)− σ2(u)

2

)
du+

∫ u
t
σ(u)dWu +

Nu∑
j=Nt+1

ln(1 + Uj)

]
.

Now, we can introduce the new stochastic process (Xu(t, x),Fu)t≤u≤T

Xu(t, y) = y +

∫ u

t

(
r(u)− λE(U1)− σ2(v)

2

)
dv +

∫ u

t

σ(v)dWv +

Nu∑
j=Nt+1

ln(1 + Uj),

t ≤ u ≤ T, −∞ < y <∞, Uj ∈ (−1,∞), j = 1, 2, . . ..

Remark 2.1. Profoundly,

Su(t, x) = exp [Xu(t, lnx)] , t ≤ u ≤ T x > 0, (5)

and for an arbitrary stopping time τ , t ≤ τ ≤ T , we obtain

g(Sτ (t, x)) = ψ(Xτ (t, lnx)),

where ψ(y) = g(ey), −∞ < y <∞ is the new payoff function.

Now, it is clear that the corresponding optimal stopping time problem is derived
straightforwardly by just substituting (5) into (3), having now

u(t, y) = sup
τ∈Tt,T

E

[
exp

(
−
∫ τ

t

r(v)dv

)
ψ(Xτ (t, y))

]
, (6)

with 0 ≤ t ≤ T and −∞ < y <∞, then we obtain

v(t, x) = u(t, lnx), x > 0, 0 ≤ t ≤ T.

In what follows, the next known result, from Hussain and Shashiashvili (2010), is
needed

Lemma 2.2. Let g(x), x ≥ 0 be a nonnegative, non-increasing convex function. Then the
new payoff function defined by ψ(y) = g(ey),−∞ < y < ∞ is Lipschitz continuous, that
is,

|ψ(y2)− ψ(y1)| ≤ g(0)|y2 − y1|, y1, y2 ∈ R.

Thus, using the scaling property of the Brownian motion we can express the value
function u(t, y) of the optimal stopping time problem (6), see Jaillet, et. al. (1990), as
follows

u(t, y) = sup
τ∈T0,1

E

[
exp

(
−
∫ t+τ(T−t)
t

r(v)dv
)
ψ

(
y +

∫ t+τ(T−t)
t

(
r(v)− λE(U1)− σ2(v)

2

)
dv

+

∫ τ

0

√
T − t σ(t+ v(T − t))dWv +

Nt+τ(T−t)∑
j=1

ln(1 + Uj)

)]
, (7)

where T0,1 denotes the set of all stopping times τ with respect to the filtration (Fu)0≤u≤1
taking values in [0, 1].

Finally, we conclude the preliminary results of this section by proving the following
theorem.
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Theorem 2.3. The value function u(t, y), 0 ≤ t ≤ T,−∞ < y <∞ of the optimal stopping
problem (6) is Lipschitz continuous in the argument y and locally Lipschitz continuous in
t i.e.

|u(t, y)− u(t, z)| ≤ g(0) |y − z|, y, z ∈ R, 0 ≤ t ≤ T, (8)

|u(t, y)− u(s, y)| ≤ A√
T − t

|t− s|, (9)

where A is some nonnegative constant depending on parameters r̄, σ̄, g(0), λ, E(U1), K
and T .

Proof. Fixing any τ in Tt,T and y, z ∈ R, and using Lemma 2.2, we take∣∣∣∣E exp

(
−
∫ τ

t

r(v)dv

)
ψ(Xτ (t, y))− E exp

(
−
∫ τ

t

r(v)dv

)
ψ(Xτ (t, z))

∣∣∣∣
≤ E|Xτ (t, y)−Xτ (t, z)|
≤ g(0) |y − z|.

Benefiting ourselves by the well-known property that the difference between supre-
mums is less or equal than the supremum of difference leads to the result (8). To show the
second part of the theorem, i.e. (9), we shall use the expression (7) for the value function
u(t, y).

Take any τ ∈ T0,1 we can write∣∣∣∣∣Ee− ∫ t+τ(T−t)
t

r(v)dvψ

(
y +

∫ t+τ(T−t)

t

(
r(v)− λEU1 −

σ2(v)

2

)
dv +

√
T − t

∫ τ

0

σ(t+ v(T − t))dWv

+

Nt+τ(T−t)∑
j=1

ln(1 + Uj)

)
− Ee−

∫ s+τ(T−s)
s

r(v)dvψ

(
y +

∫ s+τ(T−s)

s

(
r(v)− λEU1 −

σ2(v)

2

)
dv

+
√
T − s

∫ τ

0

σ(s+ v(T − s))dWv +

Ns+τ(T−s)∑
j=1

ln(1 + Uj)

)∣∣∣∣∣
≤ E

[ ∣∣∣e− ∫ t+τ(T−t)
t

r(v)dv − e−
∫ s+τ(T−s)
s

r(v)dv
∣∣∣ψ(y+

∫ t+τ(T−t)

t

(
r(v)− λEU1 −

σ2(v)

2

)
dv

+
√
T − t

∫ τ

0

σ(t+ v(T − t))dWv +

Nt+τ(T−t)∑
j=1

ln(1 + Uj)

)
+ e−

∫ s+τ(T−s)
s

r(v)dv×

5
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∣∣∣∣∣ψ
(
y +

∫ t+τ(T−t)

t

(
r(v)− λEU1 −

σ2(v)

2

)
dv +

√
T − t

∫ τ

0

σ(t+ v(T − t))dWv

+

Nt+τ(T−t)∑
j=1

ln(1 + Uj)

)

−ψ
(
y +

∫ s+τ(T−s)

s

(
r(v)− λEU1 −

σ2(v)

2

)
dv +

√
T − s

∫ τ

0

σ(s+ v(T − s))dWv

+

Ns+τ(T−s)∑
j=1

ln(1 + Uj)

)∣∣∣∣∣
]

≤ g(0)E

[ ∣∣∣e− ∫ t+τ(T−t)
t

r(v)dv − e−
∫ s+τ(T−s)
s

r(v)dv
∣∣∣+

∣∣∣∣ ∫ t+τ(T−t)

t

(
r(v)− λEU1 −

σ2(v)

2

)
dv

−
∫ s+τ(T−s)

s

(
r(v)− λEU1 −

σ2(v)

2

)
dv

∣∣∣∣
+

∣∣∣∣∫ τ

0

(√
T − tσ(t+ v(T − t))−

√
T − sσ(s+ v(T − s))

)
dWv

∣∣∣∣
+

∣∣∣∣ Nt+τ(T−t)∑
j=Ns+τ(T−s)+1

ln(1 + Uj)

∣∣∣∣
]
. (10)

Let us denote R(u) =
∫ u
0
r(v)dv, 0 ≤ u ≤ T, and using the mean value theorem, we

can write∣∣∣e− ∫ t+τ(T−t)
t

r(v)dv − e−
∫ s+τ(T−s)
s

r(v)dv
∣∣∣ ≤ ∣∣∣∣∣

∫ t+τ(T−t)

t

r(v)dv −
∫ s+τ(T−s)

s

r(v)dv

∣∣∣∣∣
≤ |(R(t+ τ(T − t))−R(t))− (R(s+ τ(T − s))−R(s))|
≤ 2 r̄|t− s|.

(11)

Similarly, we use the same arguments and obtain∣∣∣∣∣
∫ t+τ(T−t)

t

(
r(v)− λE(U1)− σ2(v)

2

)
dv −

∫ s+τ(T−s)

s

(
r(v)− λE(U1)− σ2(v)

2

)
dv

∣∣∣∣∣
≤ 2

(
r̄ + λE|U1|+

σ̄2

2

)
|t− s|.

(12)

Moreover, we fix τ, 0 ≤ τ ≤ 1, and 0 ≤ s ≤ t < T, using the requirement (1), on σ(t) we

6
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write

E

∣∣∣∣∫ τ

0

(√
T − t σ(t+ v(T − t))−

√
T − s σ(s+ v(T − s))

)
dWv

∣∣∣∣2
≤ E

∫ τ

0

(√
T − t σ(t+ v(T − t))−

√
T − s σ(s+ v(T − s))

)2
dv

≤
∫ 1

0

(√
T − t σ(t+ v(T − t))−

√
T − s σ(s+ v(T − s))

)2
dv

≤ 2

∫ 1

0

(T − t) (σ(t+ v(T − t))− σ(s+ v(T − s)))2 dv

+2

∫ 1

0

(√
T − t−

√
T − s

)2
σ2(t+ v(T − t))dv.

From here we obtain

E

∣∣∣∣∫ τ

0

(√
T − t σ(t+ v(T − t))−

√
T − s σ(s+ v(T − s))

)
dWv

∣∣∣∣2
≤ 2K2T 2 + σ̄2

T − t
(t− s)2. (13)

Since (Uj)j≥1 be a sequence of independent, identically distributed, integrable random
variables, therefore we can find

E

∣∣∣∣∣∣
Nt+τ(T−t)∑

j=Ns+τ(T−s)+1

ln(1 + Uj)

∣∣∣∣∣∣ = E

Nt+τ(T−t)∑
j=Ns+τ(T−s)+1

|ln(1 + Uj)|

= E

Nt+τ(T−t)−Ns+τ(T−s)∑
j=1

|ln(1 + Uj)|

= E

N(t−s)(1−τ)∑
j=1

|ln(1 + Uj)| .

Since Nt is an increasing function of time and τ ≤ 1 so we can write

E

∣∣∣∣∣∣
Nt+τ(T−t)∑

j=Ns+τ(T−s)+1

ln(1 + Uj)

∣∣∣∣∣∣ ≤ E

N(t−s)∑
j=1

|ln(1 + Uj)|

= E (Nt−s)E| ln(1 + U1)|
= λ E |ln(1 + U1)| (t− s), (14)

Substituting (11)-(14) in (10) and using the fact that the difference between supremums
is less or equal than difference supremum of the difference, we complete the proof.

In the next section, the main results of the paper are presented.

3 Variational Inequalities

In this section, the variational inequalities of the value function are developed in order to
investigate the regularity results of the value function (3). Let S̃t = e−

∫ t
0
r(u)duSt is the

7
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discounted stock price, then the discounted price function

ṽ(t, x) = e−
∫ t
0
r(u)duv(t, xe

∫ t
0
r(u)du), 0 ≤ t ≤ T, x > 0 (15)

of the option at time t is C2 on [0, T ) × R+ (see, Laberton and Lapeyre (1997)) and
between the jump times, satisfies

ṽ(t, S̃t) = v(0, S0) +

∫ t

0

∂ṽ

∂u
(u, S̃u)du+

∫ t

0

∂ṽ

∂x
(u, S̃u)S̃u (−λE(U1)du+ σ(u)dWu)

+
1

2

∫ t

0

∂2ṽ

∂x2
(u, S̃u)σ2(u)S̃2

udu+

Nt∑
j=1

(
ṽ(τj , S̃τj )− ṽ(τj , S̃τj−)

)
. (16)

The function ṽ(t, x) is Lipschitz of order 1 with respect to x and with Sτj− = Sτj (1 +Uj),
j = 1, 2, . . ..
The process

Mt =

Nt∑
j=1

(
ṽ(τj , S̃τj )− ṽ(τj , S̃τj−)

)
− λ

∫ t

0

∫ (
ṽ(u, S̃u(1 + z))− ṽ(u, S̃u)

)
dν(z)du (17)

is a square integrable martingale, where ν(z) is the law of the process U .
Combining (16) and (17) we obtain that

ṽ(t, S̃t) −
∫ t

0

[
∂ṽ

∂u
(u, S̃u)− λEU1S̃u

∂ṽ

∂x
(u, S̃u) +

1

2
σ2(u)S̃2

u

∂2ṽ

∂x2
(u, S̃u)

−λ
∫ (

ṽ(u, S̃u(1 + z))− ṽ(u, S̃u)
)
dν(z)

]
du

is a martingale, see Israel and Rincon (2008), and therefore

∂ṽ

∂u
(u, S̃u)− λEU1S̃u

∂ṽ

∂x
(u, S̃u)

+
1

2
σ2(u)S̃2

u

∂2ṽ

∂x2
(u, S̃u)− λ

∫ (
ṽ(u, S̃u(1 + z))− ṽ(u, S̃u)

)
dν(z) ≤ 0 (18)

a.e. in [0, T )× R.

From Pham (1997), we know that if the payoff function is convex and non-increasing
then the price function of the put American contingent claim is a convex function of the
stock.

Therefore, we can write
∂2v(t, x)

∂x2
≥ 0 (19)

a.e. in [0, T )× R.

Theorem 3.1. The mapping ς(t, x) = x v(t, x) is Lipschitz continuous in x and locally
Lipschitz continuous in the argument of t, i.e.

|ς(t, x)− ς(t, y)| ≤ 2 g(0)|x− y|, 0 ≤ t ≤ T, 0 < x ≤ y <∞, (20)

|ς(t, x)− ς(s, x)| ≤ C x√
T − t

|t− s|, 0 ≤ s ≤ t < T, x > 0, (21)

where the constant C is the function of r̄, σ̄, g(0), λ, E(U1), K and T .
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Proof. Consider that v(t, x) = u(t, lnx), x > 0, 0 ≤ t ≤ T , we can write

|ς(t, x)− ς(t, y)| = |x u(t, lnx)− y u(t, ln y)|
≤ |x u(t, lnx)− x u(t, ln y)|+ |x u(t, ln y)− y u(t, ln y)|.

Using the bound (8) and the mean value theorem we arrive to (20).
The expression (21) derives using the same arguments as previously, and the bound (9).

Proposition 3.2. The second order weak partial derivative ∂2v(t,x)
∂x2 of the value function

(3) satisfies with respect to x the local Holder estimate

x2
∣∣∣∣∂2v(t, x)

∂x2

∣∣∣∣ ≤ D√
T − t

, x > 0, 0 ≤ t < T,

where D is a nonnegative constant depends on the parameters r, σ, σ, g(0), λ, E|U1|,
E
(
|U1|
1+U1

)
, K, T .

Proof. Using the expression (15), and from (18) and (19), we obtain the system of in-
equalities

−r(t)v(t, x) + ∂v(t,x)
∂t − λxEU1e

−
∫ t
0
r(u)du ∂v(t,x)

∂x + x2

2 σ
2(t)e−2

∫ t
0
r(u)du ∂

2v(t,x)
∂x2

−λ
∫

(v(t, x(1 + z))− v(t, x)) dν(z) ≤ 0 a.e. in [0, T )× R,
∂2v(t,x)
∂x2 ≥ 0, x > 0.

(22)
Also since v(t, x) = u(t, lnx), x > 0, 0 ≤ t ≤ T , we have{

∂v(t,x)
∂t = ∂u(t,ln x)

∂t , ∂v(t,x)
∂x = 1

x
∂u(t,ln x)

∂y ,
∂2v(t,x)
∂x2 = 1

x2

∂2u(t,ln x)
∂y2 − 1

x2

∂u(t,ln x)
∂y , 0 ≤ t < T, x > 0.

(23)

Substituting the latter relations and using the results of the Theorem 2.3 in the system of
inequalities (22), we have∣∣∣∣∂2v(t, x)

∂x2

∣∣∣∣
≤ 2 e2

∫ t
0
r(v)dv

x2σ2

[
r(t)v(t, x) +

∣∣∣∣∂v(t, x)

∂t

∣∣∣∣+ λxE|U1|
∣∣∣∣∂v(t, x)

∂x

∣∣∣∣+ λ

∣∣∣∣∫ (v(t, x(1 + z))− v(t, x)) dν(z)

∣∣∣∣]
≤ 2 e2rT

x2σ2

[
rg(0) +

A√
T − t

+ λg(0)E|U1|+ λg(0)E

(
|U1|

1 + U1

)]
≤ D

x2
√
T − t

.

Thus, the required result is derived.

Before, we proceed with the main result of this section, we need to state and prove
the following result.

9
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Lemma 3.3. For the function γ(t, y) = y ∂v(t,y)
∂y , 0 ≤ t1 ≤ t2 < T, y > 0, of the value

function (3) we have the following bound

|γ(t2, y)− γ(t1, y)| ≤ 1

h

[ ∫ y+h

y

|γ(t2, y)− γ(t2, z)|dz +

∫ y+h

y

|γ(t1, y)− γ(t1, z)|dz

+ (y + h)|v(t2, y + h)− v(t1, y + h)|+ y|v(t2, y)− v(t1y)|

+

∫ y+h

y

|v(t2, z)− v(t1, z)|dz
]
,

where h > 0.

Proof. We can express the difference

γ(t2, y)− γ(t1, y) = γ(t2, y)− γ(t2, z) + γ(t2, z)− γ(t1, z) + γ(t1, z)− γ(t1, y),

for any positive real number z.
Integrating both sides with respect to z over the interval [y, y + h], we obtain

γ(t2, y)− γ(t1, y) =
1

h

[ ∫ y+h

y

(γ(t2, y)− γ(t2, z))dz +

∫ y+h

y

(γ(t2, z)− γ(t1, z))dz

+

∫ y+h

y

(γ(t1, z)− γ(t1, y))dz

]
. (24)

Simplifying the second integral, we have∫ y+h

y

(γ(t2, z)− γ(t1, z))dz =

∫ y+h

y

z

(
∂v(t2, z)

∂z
− v(t1, z)

∂z

)
dz

= (y + h)(v(t2, y + h)− v(t1, y + h))− y(v(t2, y)− v(t1, y))

−
∫ y+h

y

(v(t2, z)− v(t1, z))dz.

Combining the latter expression with (24), the proof is complete.

In the next, a very interesting result for the value of a put American option is derived.

Theorem 3.4. The mapping γ(t, x) = x∂v(t,x)∂x satisfies with respect to time argument
local Hölder estimate with exponent 1

2 , i.e.,

|γ(t, x)− γ(s, x)| ≤ G+ x H√
T − t

|t− s| 12 , 0 ≤ s ≤ t < T, x > 0, (25)

where G and H are positive constants depend on the parameters r̄, σ̄, σ, g(0), λ, E(U1),

E
(
|U1|
1+U1

)
, K and T .

Proof. From the continuity of ∂v(t,x)
∂x and the relations (23), using Proposition 3.2 we can

write

|γ(t, x)−γ(t, y)| =
∣∣∣∣x ∂v(t, x)

∂x
− y ∂v(t, y)

∂y

∣∣∣∣ ≤ D√
T − t

|x−y|, 0 ≤ t < T, 0 < x ≤ y <∞.

(26)

10
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Application of the bounds (21) and (26) in Lemma 3.3 gives

|γ(t2, y)− γ(t1, y)| ≤ 1

h

[ ∫ y+h

y

D√
T − t2

(z − y)dz +

∫ y+h

y

D√
T − t1

(z − y)dz

+
C(y + h)√
T − t2

|t2 − t1|+
C y√
T − t2

|t2 − t1|+
∫ y+h

y

C√
T − t2

|t2 − t1|dz
]

=
1

h

[
2 D√
T − t2

h2 +
2 C y√
T − t2

|t2 − t1|+
C h√
T − t2

|t2 − t1|+
C h√
T − t2

|t2 − t1|
]
.

Let us choose h = C∗|t2 − t1|
1
2 from the latter estimate we get

|γ(t2, y)− γ(t1, y)| ≤ 1√
T − t2

[(
2 D C∗ +

2C y

C∗

)
|t2 − t1|

1
2 + 2 C|t2 − t1|

]
≤ 2√

T − t2

(
2 D C∗ +

2 C y

C∗
+ 2 T C

)
|t2 − t1|

1
2 ,

the minimum of which is attained at the point C∗ =
√

C y
D .

From here, the required result is derived.
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Abstract

In this paper, we obtain a sufficient condition for the existence of the solution

for a second-order difference equation with summation boundary value problem

at resonance, by using some properties of the Green’s function, the Schaefer’s

fixed point theorem and intermediate value theorem. Finally, we present an

example to show the importance of these result.

Keywords: boundary value problem; resonance; fixed point theorem; existence.

(2010) Mathematics Subject Classifications: 39A05; 39A12.

1 Introduction

The study of the existence of solutions of boundary value problems for linear second-

order ordinary differential and difference equations was initiated by Ilin and Moi-

seev [1]. Then Gupta [2] studied three-point boundary value problems for nonlinear

second-order ordinary differential equations. Since then, nonlinear second-order three-

point boundary value problems have also been studied by many authors, one may see

[3-6] and references therein. Also, there are a lot of papers dealing with the resonant

case for multi-point boundary value problems, see [7-11].

In [8], J.Liu, S.Wang and J.Zhang studied the existence of multiple solutions for

boundary value problems of second-order difference equations with resonance:

∆2u(t− 1) = g(t, u), t ∈ {1, 2, ..., T}, (1.1)

u(0) = 0, u(T + 1) = 0. (1.2)

Using Morse theory, critical point theory, minimax methods and bifurcation theory.

1Corresponding author
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2 S. Chasreechai and T. Sitthiwirattham

In this paper, we study the existence of solutions of a second-order difference

equation with summation boundary value problem at resonance

∆2u(t− 1) + f(t, u(t)) = 0, t ∈ {1, 2, ..., T}, (1.3)

u(0) = 0, u(T + 1) = α

η∑
s=1

u(s), (1.4)

where
2(T + 1)

αη(η + 1)
= 1, T ≥ 3, η ∈ {1, 2, ..., T − 1} and f is continuous function.

In this paper, we are interested in the existence of the solution for problem (1.3)-

(1.4) under the condition 2(T+1)
αη(η+1)

= 1, which is a resonant case. Using some properties

of the Green’s function G(t, s), intermediate value theorems and Schaefer’s fixed point

theorem, we establish a sufficient condition for the existence of positive solutions of

problem 2(T+1)
αη(η+1)

= 1.

Let N be a nonnegative integer, Ni,j = {k ∈ N| i ≤ k ≤ j} and Np = N0,p.

Throughout this paper, we suppose the following conditions hold:

(H) f(t, u) ∈ C(NT+1 ×R,R) and there exist two positive continuous functions

p(t), q(t) ∈ C(NT+1, R
+) such that

|f(t, tu)| ≤ p(t) + q(t)|u|m, t ∈ NT+1, (1.5)

where 0 ≤ m ≤ 1. Furthermore, lim
u→±∞

f(t, tu) =∞, for any t ∈ N1,T .

To accomplish this, we denote C(NT+1, R),the Banach space of all function u with

the norm defined by ∥u∥ = max{u(t) | t ∈ NT+1}.

The proof of the main result is based upon an application of the following theorem.

Theorem 1.1. ([12]). Let X be a Banach space and T : X → X be a continuous and

compact mapping. If the set

{x ∈ X : x = λT (x), for some λ ∈ (0, 1)}

is bounded, then T has a fixed point.

The plan of the paper is follows. In Section 2, we recall some lemmas. In Section

3, we prove our main result. Illustrate example is presented in Section 4.

2 Preliminaries

We now state and prove several lemmas before stating our main results.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

299 Saowaluk Chasreechai et al 298-309



On a summation boundary value problem for a second-order difference equations...3

Lemma 2.1. The problem (1.3)-(1.4) is equivalent to the following

u(t) =
T∑

s=1

G(t, s)f(s, u(s)) +
u(T + 1)

T + 1
t, (2.1)

where

G(t, s) =
1

(T + 1)(α− 1)



αt(T + 1− s)− 1
2
αt(η − s)(η − s+ 1)

− (T + 1)(α− 1)(t− s), s ∈ N1,t−1 ∩ N1,η−1

αt(T + 1− s)− 1
2
αt(η − s)(η − s+ 1), s ∈ Nt,η−1

αt(T + 1− s)− (T + 1)(α− 1)(t− s), s ∈ Nη,t−1

αt(T + 1− s), s ∈ Nt,T ∩ Nη,T

(2.2)

Proof. Assume that u(t) is a solution of problem (1.3)-(1.4), then it satisfies the

following equation:

u(t) = C1 + C2t−
t−1∑
s=1

(t− s)f(s, u(s)),

where C1, C2 are constants. By the boundary value condition (1.3), we obtain C1 = 0.

So,

u(t) = C2t−
t−1∑
s=1

(t− s)f(s, u(s)). (2.3)

From (2.3),

η∑
s=1

u(s) =
η(η + 1)

2
C2 −

η−1∑
s=1

η−s∑
l=1

ly(s)

=
η(η + 1)

2
C2 −

1

2

η−1∑
s=1

(η − s)(η − s+ 1)y(s).

From the second boundary condition, we have

(2T +2−αη(η+1))C2 = 2
T∑

s=1

(T +1−s)f(s, u(s))+α

η−1∑
s=1

(η−s)(η−s+1)f(s, u(s)).

(2.4)

Since 2(T+1)
αη(η+1)

= 1, then (2.4) is solvable if and only if

T∑
s=1

(T + 1− s)f(s, u(s)) =
α

2

η−1∑
s=1

(η − s)(η − s+ 1)f(s, u(s)).
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4 S. Chasreechai and T. Sitthiwirattham

Note that

u(T + 1)−
η∑

s=1

u(s) = (T + 1)C2 −
T∑

s=1

(T + 1− s)f(s, u(s))

− η(η + 1)

2
C2 +

1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s)),

and then

C2 =
2

2T + 2− η(η + 1)

[
u(T + 1)−

η∑
s=1

u(s) +
T∑

s=1

(T + 1− s)f(s, u(s))

− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]

=
α

(T + 1)(α− 1)

[
u(T + 1)−

η∑
s=1

u(s) +
T∑

s=1

(T + 1− s)f(s, u(s))

− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]
.

We now use that u(T + 1) =
2(T + 1)

η(η + 1)

η∑
s=1

u(s) to get

α

(T + 1)(α− 1)

[
u(T + 1)−

η∑
s=1

u(s)

]
=
u(T + 1)

T + 1
,

and

C2 =
α

(T + 1)(α− 1)

[ T∑
s=1

(T + 1− s)f(s, u(s))− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]
+
u(T + 1)

T + 1
.

Hence the solution of (1.3)-(1.4) is given, implicity as

u(t) =
αt

(T + 1)(α− 1)

[ T∑
s=1

(T + 1− s)f(s, u(s))− 1

2

η−1∑
s=1

(η − s)(η + 1− s)f(s, u(s))

]

−
t−1∑
s=1

(t− s)f(s, u(s)) +
u(T + 1)

T + 1
t. (2.5)

According to (2.5) it is easy to show that (2.1) holds. Therefore, problem (1.3)-

(1.4) is equivalent to the equation (2.1) with the function G(t, s) defined in (2.2). The

proof is completed. �
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On a summation boundary value problem for a second-order difference equations...5

Lemma 2.2. For any (t, s) ∈ NT+1×NT+1, G(t, s) is continuous, and G(t, s) > 0 for

any (t, s) ∈ N1,T × N1,T .

Proof. The continuity of G(t, s) for any (t, s) ∈ NT+1 × NT+1, is obvious. Let

g1(t, s) = αt(T + 1− s)− 1

2
αt(η − s)(η − s+ 1)− (T + 1)(α− 1)(t− s),

where s ∈ N1,t−1 ∩ N1,η−1.

Here we only need to prove that g1(t, s) > 0 for s ∈ N1,t−1 ∩ N1,η−1, the rest of

the proof is similar. So, from the definition of g1(t, s), η ∈ N1,T−1 and the resonant

condition 2(T+1)
αη(η+1)

= 1, we have

g1(t, s) = αt(T + 1− s)− 1

2
αt(η − s)(η − s+ 1)− (T + 1)(α− 1)(t− s)

= (T + 1)(t− s) + αs(T + 1− t)− 1

2
αt(η − s)(η − s+ 1)

> (T + 1)(t− s)− α

2
[tη(η + 1)− 2s(T + 1− t)]

> (T + 1)(t− s)− α

2

> (T + 1)(t− s)− T + 1

η(η + 1)

> (T + 1)(t− s− 1)

≥ 0,

for s ∈ N1,t−1 ∩ N1,η−1. Since t > s and η(η + 1) ≥ 2(T + 1 − t) where T ≥ 3. The

proof is completed. �

Let

G∗(t, s) =
1

t
G(t, s). (2.6)

Then

G∗(t, s) =
1

(T + 1)(α− 1)



α(T + 1− s)− 1
2
α(η − s)(η − s+ 1)

− 1
t
(T + 1)(α− 1)(t− s), s ∈ N1,t−1 ∩ N1,η−1

α(T + 1− s)− 1
2
α(η − s)(η − s+ 1), s ∈ Nt,η−1

α(T + 1− s)− 1
t
(T + 1)(α− 1)(t− s), s ∈ Nη,t−1

α(T + 1− s), s ∈ Nt,T ∩ Nη,T .

(2.7)

Thus, problem (1.3)-(1.4) is equivalent to the following equation:

u(t) =
T∑

s=1

tG∗(t, s)f(s, u(s)) +
u(T + 1)

T + 1
t. (2.8)
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6 S. Chasreechai and T. Sitthiwirattham

By a simple computation, the new Green’s function G∗(t, s) has the following

properties.

Lemma 2.3. For any (t, s) ∈ NT+1 × NT+1, G
∗(t, s) is continuous, and G∗(t, s) > 0

for any (t, s) ∈ N1,T × N1,T . Furthermore,

lim
t→0

G∗(t, s) := G∗(0, s)

=
1

(T + 1)(α− 1)

{
α(T + 1− s)− 1

2
α(η − s)(η − s+ 1), s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T .

(2.9)

Lemma 2.4. For any s ∈ N1,T , G
∗(t, s) is nonincreasing with respect to t ∈ NT+1, and

for any s ∈ NT+1,
△tG∗(t,s)

△t
< 0, and △tG∗(t,s)

△t
= 0 for t ∈ Ns. That is, G

∗(T + 1, s) ≤
G∗(t, s) ≤ G∗(s, s) where

G∗(t, s) ≤ G∗(s, s)

=
1

(T + 1)(α− 1)

{
α(T + 1− s)− 1

2
α(η − s)(η − s+ 1), s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T

(2.10)

G∗(t, s) ≥ G∗(T + 1, s)

=
1

(T + 1)(α− 1)

{
(T + 1)(T + 1− s)− 1

2
α(η − s)(η − s+ 1), s ∈ N1,η−1

(T + 1)(T + 1− s), s ∈ Nη,T .

(2.11)

Let

u(t) = tw(t). (2.12)

Then u(T + 1) = (T + 1)w(T + 1), and equation (2.8) gives

w(t) =
T∑

s=1

G∗(t, s)f(s, sw(s)) + w(T + 1). (2.13)

Now we have

y(t) = w(t)− w(T + 1). (2.14)

Then y(T + 1) = w(T + 1)− w(T + 1) = 0, and equation (2.13) gives

y(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + w(T + 1))). (2.15)

We replace w(T + 1) by any real number λ, then (2.15) can be rewritten as

y(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ)). (2.16)
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On a summation boundary value problem for a second-order difference equations...7

The following result is based on the Schaefer’s fixed point theorem. We define an

operator T on the set Ω = C(NT+1) as follows:

Ty(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ)). (2.17)

Lemma 2.5. Assume that f ∈ C(NT+1×R,R),
∑T

s=1G
∗(t, s)q(s) < T + 1 and (1.5)

holds. Then the equation (2.16) has at least one solution for any real number λ.

Proof. We divide the proof into four steps.

Step I. T maps bounded sets into bounded sets in Ω. Let us prove that for any R > 0,

there exists a positive constant L such that for each y ∈ BR = {y ∈ C(NT+1 × R) :

∥y∥ ≤ R}, we have ∥(Ty)(t)∥ ≤ L. Indeed, for any y ∈ BR, we obtain

| (Ty)(t)| =

∣∣∣∣∣ 1

T + 1

T∑
s=1

G∗(t, s)f(s, s(y(s) + λ))

∣∣∣∣∣
≤ 1

T + 1

T∑
s=1

G∗(t, s)p(s) +
1

T + 1

T∑
s=1

G∗(t, s)|q(s) + λ|m

≤ 1

T + 1

T∑
s=1

G∗(t, s)p(s) +
1

T + 1

T∑
s=1

G∗(t, s)q(s)(∥y(s)∥+ ∥λ∥)m

≤ 1

T + 1

T∑
s=1

G∗(s, s)p(s) +
(R + ∥λ∥)m

T + 1

T∑
s=1

G∗(s, s)q(s)

:= L. (2.18)

Step II. Continuity of T . Let ϵ > 0, there exists δ > 0 such that for all t ∈ NT+1

and for all x, y ∈ BR with |(t, t(x(t) + λ)− (t, t(y(t) + λ)| < δ, we have∣∣f(t, t(x(t) + λ)− f(t, t(y(t) + λ)
∣∣ < ϵ.

Then, we obtain

| (Tx)(t)− (Ty)(t)| ≤

∣∣∣∣∣ 1

T + 1

T∑
s=1

G∗(t, s)[f(s, s(x(s) + λ))− f(s, s(y(s) + λ))]

∣∣∣∣∣
≤ ϵ

T + 1

∣∣∣∣∣
T∑

s=1

G∗(t, s)

∣∣∣∣∣ = ϵ.

This means that T is continuous in Ω.

Step III. T (BR) is equicontinuous with BR defined as in Step II. Since BR is

bounded, then there exists M > 0 such that |f | ≤M .
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8 S. Chasreechai and T. Sitthiwirattham

For any ε > 0, there exists δ > 0 such that for t1, t2 ∈ NT+1

|G∗(t2, s)−G∗(t1, s)| ≤
ϵ

M
.

Then we have

| (Ty)(t2)− (Ty)(t1)| ≤

∣∣∣∣∣ 1

T + 1

T∑
s=1

|G∗(t2, s)−G∗(t1, s)||f(s, s(y(s) + λ))

∣∣∣∣∣
≤ M

T + 1

T∑
s=1

|G∗(t2, s)−G∗(t1, s)|

= M · ϵ
M
≤ ϵ.

This means that the set T (BR) is an equicontinuous set. As a consequence of

Steps I to III together with the Arzela’-Ascoli theorem, we get that T is completely

continuous in Ω.

Step IV. A priori bounds. We show that the set

E = {y ∈ C(NT+1,R) / y = µTy for some µ ∈ (0, 1)} is bounded.

By Lemma 2.1, assume that there exist y ∈ ∂BR with ∥y(t)∥ = R and µ ∈ (0, 1) such

that y = µTy. It follows that

| y(t)| =
µ

T + 1

∣∣∣∣∣
T∑

s=1

G∗(t, s)f(s, s(y(s) + λ))

∣∣∣∣∣
≤ µ

T + 1

T∑
s=1

G∗(s, s) |f(s, s(y(s) + λ))|

<
1

T + 1

[
T∑

s=1

G∗(s, s)p(s) +
T∑

s=1

G∗(s, s)q(s) (∥y(s)∥+ ∥λ∥)m
]

≤ 1

T + 1

T∑
s=1

G∗(s, s)p(s) +
(R + ∥λ∥)m

T + 1

T∑
s=1

G∗(s, s)q(s)

:= L. (2.19)

This shows that the set E is bounded. By the Schaefer’s fixed point theorem, we

conclude that T has a fixed point which is a solution of problem (1.1). �

3 Main Results

In this section, we prove our result by using Lemmas 2.5-2.7 and the intermediate

value theorem.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

305 Saowaluk Chasreechai et al 298-309



On a summation boundary value problem for a second-order difference equations...9

Theorem 3.1. Assume that (H1) holds. If
∑T

s=1G
∗(s, s)q(s) < 1, then the problem

(1.3)-(1.4) has at least one solution, where

G∗(s, s) =
1

(T + 1)(α− 1)

{
α(T + 1− s)− 1

2
α(η − s)(η − s+ 1), s ∈ N1,η−1

α(T + 1− s), s ∈ Nη,T

Proof. Since (2.19) is continuously dependent on the parameter λ. So, we should

only investigate λ such that y(T + 1) = 0 in order that u(T + 1) = λ.

Equation (2.16) is rewrite as

yλ(t) =
1

T + 1

T∑
s=1

G∗(t, s)f(s, s(yλ(s) + λ)), t ∈ NT+1. (3.1)

where λ is any given real number.

Equation(3.1) show that there exists λ such that

L(λ) := yλ(T + 1) =
1

T + 1

T∑
s=1

G∗(T + 1, s)f(s, s(yλ(s) + λ)) (3.2)

and we can observe that, yλ(T + 1) is continuously dependent on the parameter λ.

To prove that there exists λ∗ such that yλ∗(T + 1) = 0, we must to show that

lim
λ→∞

L(λ) =∞ and lim
λ→−∞

L(λ) = −∞.

Firstly, we prove that lim
λ→∞

L(λ) = ∞ by supposing that lim
λ→∞

L(λ) < ∞ as acon-

tradiction. Therefore there exists a sequence {λn} with lim
n→∞

L(λ) = ∞ such that

lim
λn→∞

L(λn) < ∞. This implies that the sequence {L(λn)} is bounded. Since the

function f(t, ty) is continuous with respect to t ∈ NT+1 and y ∈ R, we have

f(t, t(yλn(t) + λn)) ≥ 0 , t ∈ NT+1 (3.3)

where λn is large enough, Assuminh that (3.3) is true and using (3.1), we have

yλ ≥ 0 , t ∈ NT+1. (3.4)

Therefore,

lim
λn→∞

f(t, t(yλn(t) + λn)) =∞ , t ∈ NT+1. (3.5)

From (H), we get

lim
λ→∞

f(t, tu) =∞ , t ∈ NT+1. (3.6)

From (3.2),(3.5) and (3.6), we have

lim
λn→∞

yλn(T + 1) = lim
λn→∞

T∑
s=1

G∗(T + 1, s)f(s, s(yλn(s) + λn)) (3.7)
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≥ lim
λn→∞

3
4
(T−1)∑

s= 1
4
(T−1)

G∗(T + 1, s)f(s, s(yλn(s) + λn))

= ∞, (3.8)

we find that this result contradicts our assumption.

We define

Sn = {t ∈ NT+1 | f(t, t(yλn(t) + λn)) < 0}.

where λn is large. Note that Sn is not empty.

Secondly, we divide the set Sn into set S̃n and set Ŝn as follows:

S̃n = {t ∈ Sn | yλn + λn > 0} and Ŝn = {t ∈ Sn | yλn + λn ≤ 0}

where S̃n ∩ Ŝn = ∅, S̃n ∪ Ŝn = Sn. So, we have from (H) that Ŝn is not empty.

In addition, we find from (H) that the function f(t, tu) is bounded below by a

constant for t ∈ NT+1 and λ ∈ [0,∞). Thus, there exists a constant M(< 0) which is

independent of t and λn, such that

f(t, t(yλn(t) + λn)) ≥M , t ∈ S̃n, (3.9)

Let h(λn) = mint∈Sn yλn(t) and using the definitions of S̃n and set Ŝn, we have

h(λn) = min
t∈Ŝn

yλn(t) = −∥yλn(t)∥Ŝn
.

It follows that h(λn)→ −∞ as λn →∞ since if h(λn) is bounded below by a constant

as λn →∞, then (3.7) holds. Therefore, we can choose largeλn1 such that

h(λn) <
1

T + 1
max

{
−1,

M
∑T

s=1G
∗(s, s)−

∑T
s=1G

∗(s, s)p(s)

1−
∑T

s=1G
∗(s, s)q(s)

}
(3.10)

for n > n1. Employing (H), (3.1), (3.8), (3.9), the definitions of S̃n, and set Ŝn, for

any λn > λn1 , we have

yλn(t) ≥ 1

T + 1

∑
s∈Sn

G∗(s, s)f(s, s(yλn(s) + λn))

≥ 1

T + 1

∑
s∈S̃n

G∗(s, s)f(s, s(yλn(s) + λn))

+
1

T + 1

∑
s∈Ŝn

G∗(s, s) (−p(s)− q(s)|yλn(s) + λn|m)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

307 Saowaluk Chasreechai et al 298-309



On a summation boundary value problem for a second-order difference equations...11

≥ 1

T + 1

M ∑
s∈S̃n

G∗(s, s)−
∑
s∈Ŝn

G∗(s, s)p(s)−
∑
s∈Ŝn

G∗(s, s)q(s)∥yλn(s) + λn∥m
 .

It follows that

yλn(t) ≥ 1

T + 1

[
M

T∑
s=1

G∗(s, s)−
T∑

s=1

G∗(s, s)p(s)−
T∑

s=1

G∗(s, s)q(s)∥yλn(s) + λn∥mSn

]
,

≥ 1

T + 1

[
M

T∑
s=1

G∗(s, s)−
T∑

s=1

G∗(s, s)p(s)−
T∑

s=1

G∗(s, s)q(s)h(λn)

]
, t ∈ Sn,

which implies that

h(λn) ≥ 1

T + 1

[
M
∑T

s=1G
∗(s, s)−

∑T
s=1G

∗(s, s)p(s)

1−
∑T

s=1G
∗(s, s)q(s)

]
.

This result contradicts (3.9). Thus, the proof that lim
λ→∞

L(λ) = ∞ is done. using a

similar method, we can prove that lim
λ→−∞

L(λ) = −∞.

Notice that L(λ) is continuous with respect to λ ∈ (−∞,∞). From the inter-

mediate value theorem, there exists λ∗ ∈ (−∞,∞) such that L(λ∗) = 0 , that is,

y(T + 1) = yλ∗(T + 1) = 0, which satisfies the second boundary value condition of

(1.2). The proof is completed. �

4 Example

In this section, we give an example to illustrate our result.

Example Consider the BVP

∆2u(t− 1) + t2 +
1

2
u(t) = 0, t ∈ N1,4, (4.1)

u(0) = 0, u(5) =
5

6

2∑
s=1

u(s). (4.2)

Set α = 5
6
, η = 2, T = 4, f(t, u) = t2 + 1

2
u(t). So we have

αη(η + 1)

2(T + 1)
= 1 and f(t, tu) = t2 + t

2
u(t).

Now we take q(t) = t
5
. It is easy to check that

lim
u→±∞

f(t, tu) = ±∞ and
4∑

s=1

G∗(s, s)q(s) ≤ 1

25

4∑
s=1

(5− s)s =
4

5
< 1.

Thus the conditions of Theorem 3.1 are satisfied. Therefore problem (4.1)-(4.2)

has at least a nontrivial solution. �
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Abstract

Quadratic mean in statistics is a statistical measure defined as the
square root of the mean of the squares of a sample. In this paper, we inves-
tigate the situations in which the input data are expressed in fuzzy values
and develop some fuzzy quadratic mean operators, such as fuzzy weighted
quadratic mean operator, fuzzy ordered weighted quadratic mean oper-
ator, and fuzzy hybrid quadratic mean operator. Especially, all these
operators can reduce to aggregate interval or real numbers. Then based
on the developed operators, we present an approach to group decision
making and illustrate it with a practical example.

1 Introduction

Information aggregation is an essential process of gathering relevant informa-
tion from multiple sources by using a proper aggregation technique. Many tech-
niques, such as the weighted average operator [5], the weighted geometric mean
operator [1], harmonic mean operator [2], weighted harmonic mean (WHM)
operator [2], ordered weighted average (OWA) operator [17], ordered weighted
geometric operator [3, 13], weighted OWA operator [8], induced OWA operator
[21], induced ordered weighted geometric operator [15], uncertain OWA operator
[14], hybrid aggregation operator [10] and so on, have been developed to aggre-
gate data information. However, yet most of existing aggregation operators do
not take into account the information about the relationship between the val-
ues being fused. Yager [18] introduced a tool to provide more versatility in the

∗Corresponding author: yckwun@dau.ac.kr
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information aggregation process, i.e., developed a power-average (PA) operator
and a power OWA (POWA) operator. In some situations, however, these two
operators are unsuitable to deal with the arguments taking the forms of multi-
plicative variables because of lack of knowledge, or data, and decision makers’
limited expertise related to the problem domain. Based on this tool, Xu and
Yager [16] developed additional new geometric aggregation operators, including
the power-geometric (PG) operator, weighted PG operator and power-ordered
weighted geometric (POWG) operator, whose weighting vectors depend upon
the input arguments and allow values being aggregated to support and reinforce
each other.

Quadratic mean in statistics is a statistical measure defined as the square
root of the mean of the squares of a sample, which is a conservative average
to be used to provide for aggregation lying between the max and min opera-
tors. Consider that, in the existing literature, the quadratic mean is generally
considered as a fusion technique of numerical data, in the real-life situations,
the input data sometimes cannot be obtained exactly, but fuzzy data can be
given. Therefore, how to aggregate fuzzy data by using the quadratic mean?
is an interesting research topic and is worth paying attention to. In this pa-
per, we develop some fuzzy quadratic mean (FQM) operators. To do so, the
remainder of this paper is arranged in the following sections. Section 2 reviews
some basic aggregation operators. Section 3 develops some FQM operators, such
as fuzzy weighted quadratic mean (FWQM) operator, fuzzy ordered weighted
quadratic mean (FOWQM) operator, fuzzy hybrid quadratic mean (FHQM)
operator, and so on. Section 4 presents an approach to multiple attribute group
decision making based on the developed operators. Section 5 illustrates the pre-
sented approach with a practical example. Section 6 ends the paper with some
concluding remarks.

2 Basic aggregation operators

We review some basic aggregation techniques and some of their fundamental
characteristics.

Definition 2.1 [5] Let WAA : Rn → R, if

WAA(a1, a2, . . . , an) =

n∑
j=1

wjaj , (1)

where R is the set of real numbers, aj (j = 1, 2, . . . , n) is a collection of
positive real numbers, and w = (w1, w2, . . . , wn)T is the weight vector of aj
(j = 1, 2, . . . , n), with wj ≥ 0 and

∑n
j=1 wj = 1, then WAA is called the

weighted arithmetic averaging (WAA) operator. Especially, if wi = 1, wj = 0,
j ̸= i, then WAA(a1, a2 . . . , an) = ai; if w = ( 1

n ,
1
n , . . . ,

1
n )T , then the WAA

2
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operator is reduced to the arithmetic averaging (AA) operator, i.e.,

AA(a1, a2, . . . , an) =
1

n

n∑
j=1

aj . (2)

Definition 2.2 [2] Let WQM : (R+)n → R+, if

WQM(a1, a2, . . . , an) =

 n∑
j=1

wja
2
j

 1
2

, (3)

where R+ is the set of all positive real numbers, aj (j = 1, 2, . . . , n) is a collection
of positive real numbers, and w = (w1, w2, . . . , wn)T is the weight vector of aj
(j = 1, 2, . . . , n), with wj ≥ 0 and

∑n
j=1 wj = 1, then WQM is called the

weighted quadratic mean (WQM) operator. Especially, if wi = 1, wj = 0, j ̸= i,
then WQM(a1, a2 . . . , an) = ai; if w = ( 1

n ,
1
n , . . . ,

1
n )T , then the WQM operator

is reduced to the quadratic mean (QM) operator, i.e.,

QM(a1, a2, . . . , an) =

(∑n
j=1 a

2
j

n

) 1
2

. (4)

The WAA and WQM operators first weight all the given data, and then
aggregate all these weighted data into a collective one. Yager [17] introduced
and studied the OWA operator that weights the ordered positions of the data
instead of weighting the data themselves.

Definition 2.3 [17] An OWA operator of dimension n is a mapping OWA :
Rn → R that has an associated vector ω = (ω1, ω2, . . . , ωn)T such that ωj ≥ 0
and

∑n
j=1 ωj = 1. Furthermore,

OWA(a1, a2, . . . , an) =

n∑
j=1

wjbj , (5)

where bj is the jth largest of ai (i = 1, 2, . . . , n). Especially, if wi = 1, wj = 0,
j ̸= i, then bn ≤ OWA(a1, a2, . . . , an) = bi ≤ b1; if w = ( 1

n ,
1
n , . . . ,

1
n )T , then

OWA(a1, a2, . . . , an) =
1

n

n∑
j=1

bj =
1

n

n∑
j=1

aj = AA(a1, a2, . . . , an). (6)

3 Fuzzy quadratic mean operators

The above aggregation techniques can only deal with the situation that the
arguments are represented by the exact numerical values, but are invalid if the
aggregation information is given in other forms, such as triangular fuzzy number
[9], which is a widely used tool to deal with uncertainty and fuzzyness, described
as follows:

3
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Definition 3.1 [9] A triangular fuzzy number â can be defined by a triplet
[aL, aM , aU ]. The membership function µâ(x) is defined as:

µâ(x) =


0, x < aL;

x−aL

aM−aL , aL ≤ x ≤ aM ;
x−aU

aM−aU , aM ≤ x ≤ aU ;

0, x > aU ,

where aU ≥ aM ≥ aL ≥ 0, aL and aU stand for the lower and upper values of
â, respectively, and aM stands for the modal value [9]. Especially, if and two of
aL, aM and aU are equal,then â is reduced to an interval number; if all aL, aM

and aU are equal, then â is reduced to a real number. For convenience, we let
Ω be the set of all triangular fuzzy numbers.

Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] be two triangular fuzzy numbers,
then some operational laws defined as follows [9]:

(1) â+ b̂ = [aL, aM , aU ] + [bL, bM , bU ] = [aL + bL, aM + bM , aU + bU ];
(2) λâ = λ[aL, aM , aU ] = [λaL, λaM , λaU ];

(3) â× b̂ = [aL, aM , aU ]× [bL, bM , bU ] = [aLbL, aMbM , aUbU ]
(4) 1

â = 1
[aL,aM ,aU ]

= [ 1
aU ,

1
aM ,

1
aL ].

In order to compare two triangular fuzzy numbers, Xu [12] provided the
following definition:

Definition 3.2 [12] Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] be two triangular

fuzzy numbers, then the degree of possibility of â ≥ b̂ is defined as follows:

p(â ≥ b̂) = δmax

{
1−max

(
bM − aL

aM − aL + bM − bL
, 0

)
, 0

}
+(1− δ) max

{
1−max

(
bU − aM

aU − aM + bU − bM
, 0

)
, 0

}
, δ ∈ [0, 1] (7)

which satisfies the following properties:

0 ≤ p(â ≥ b̂) ≤ 1, p(â ≥ â) = 0.5, p(â ≥ b̂) + p(b̂ ≥ â) = 1. (8)

Here, δ reflects the decision maker’s risk-bearing attitude. If δ > 0.5, then the
decision maker is risk lover; If δ = 0.5, then the decision maker is neutral to
risk; If δ < 0.5, then the decision maker is risk avertor.

In the following, we shall give a simple procedure for ranking of the triangular
fuzzy numbers âi (i = 1, 2, . . . , n). First, by using Eq. (7), we compare each
âi with all the âj (j = 1, 2, . . . , n), for simplicity, let pij = p(âi ≥ âj), then we
develop a possibility matrix [14] as

P =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
pn1 pn2 . . . pnn

 , (9)

4
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where pij ≥ 0, pij + pji = 1, pii = 1
2 , i, j = 1, 2, . . . , n.

Summing all elements in each line of matrix P, we have pi =
∑n

j=1 pij ,
i = 1, 2, . . . , n. Then, in accordance with the values of pi (i = 1, 2, . . . , n), we
rank the âi (i = 1, 2, . . . , n) in descending order.

Now, based on operational laws, we extend the WQM operator (3) to fuzzy
environment:

Definition 3.3 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers, and let FWQM : Ωn → Ω, if

FWQM(â1, â2, . . . , ân) =

 n∑
j=1

wj â
2
j

 1
2

, (10)

where w = (w1, w2, . . . , wn)T be the weight vector of âj (j = 1, 2, . . . , n), with
wj ≥ 0 and

∑n
j=1 wj = 1, then FWQM is called a fuzzy weighted quadratic

mean (FWQM) operator.

Especially, if wi = 1, wj = 0, j ̸= i, then FWQM(â1, â2, . . . , ân) = âi; if
w = ( 1

n ,
1
n , . . . ,

1
n )T , then the FWQM operator is reduced to the fuzzy quadratic

mean (FQM) operator:

FQM(â1, â2, . . . , ân) =

(∑n
j=1 â

2
j

n

) 1
2

. (11)

By the operational laws and Eq. (10), we have

FWQM(â1, â2, . . . , ân) =

 n∑
j=1

wj â
2
j

 1
2

=

 n∑
j=1

wj [a
L
j , a

M
j , a

U
j ]2

 1
2

=


 n∑

j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
M
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2

 (12)

and then by Eq. (12), we have

FQM(â1, â2, . . . , ân)

=

(∑n
j=1(aLj )2

n

) 1
2

,

(∑n
j=1(aMj )2

n

) 1
2

,

(∑n
j=1(aUj )2

n

) 1
2

 . (13)

Especially, if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

5
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FWQM operator is reduced to the uncertain weighted quadratic mean(UWQM)
operator:

UWQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

wj ã
2
j

 1
2

=


 n∑

j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2

 . (14)

If w = ( 1
n ,

1
n , . . . ,

1
n )T , then the UWQM operator is reduced to the uncertain

quadratic mean(UQM) operator:

UQM(ã1, ã2, . . . , ãn) =

(∑n
j=1(ã2j )

n

) 1
2

=

(∑n
j=1(aLj )2

n

) 1
2

,

(∑n
j=1(aUj )2

n

) 1
2

 . (15)

If aLj = aUj = aj , for all j = 1, 2, . . . , n, then Eqs. (14) and (15) are,
respectively, reduced to the WQM operator (3) and the QM operator (4).

Example 3.4 Given a collection of triangular fuzzy numbers: â1 = [2, 3, 4], â2 =
[1, 2, 4], â3 = [2, 4, 6], â4 = [1, 3, 5], let w = (0.3, 0.1, 0.2, 0.4)T be the weight vec-
tor of âi (i = 1, 2, 3, 4), then by Eq. (12), we have

FWQM(â1, â2, â3, â4) =


 n∑

j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
M
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2


= [1.5811, 3.1464, 4.8580].

Based on the OWA and FQM operators and Definition 3.2, we define a fuzzy
ordered weighted quadratic mean (FOWQM) operator as below:

Definition 3.5 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A FOWQM operator of dimension n is a mapping
FOWQM : Ωn → Ω, that has an associated vector ω = (ω1, ω2, . . . , ωn)T such
that ωj ≥ 0 and

∑n
j=1 ωj = 1. Furthermore,

FOWQM(â1, â2, . . . , ân) =

 n∑
j=1

ωj â
2
σ(j)

 1
2

=


 n∑

j=1

ωj(a
L
σ(j))

2

 1
2

,

 n∑
j=1

wj(a
M
σ(j))

2

 1
2

,

 n∑
j=1

wj(a
U
σ(j))

2

 1
2

 , (16)

6
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where aσ(j) =
[
aLσ(j), a

M
σ(j), a

U
σ(j)

]
(j = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is

a permutation of (1, 2, . . . , n) such that âσ(j−1) ≥ âσ(j) for all j.

However, if there is a tie between âi and âj by their average (âi + âj)/2 in
process of aggregation. If k items are tied, then we replace these by k replicas of
their average. The weighting vector w = (w1, w2, . . . , wn)T can be determined
by using some weight determining methods like the normal distribution based
method, see Refs [11, 20] for more details.

Similarly to the OWA operator, the FOWQM operator has the following
properties:

Theorem 3.6 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers, the following are valid:
(1) Idempotency: If all âj (j = 1, 2, . . . , n) are equal, i.e., âj = â, for all i,

then

FOWQM(â1, â2, . . . , ân) = â.

(2) Boundedness: Let â− = [minj(a
L
j ),minj(a

M
j ),minj(a

U
j )] and â+ =

[maxj(a
L
j ),maxj(a

M
j ),maxj(a

U
j )], then

â− ≤ FOWQM(â1, â2, . . . , ân) ≤ â+.

(3) Monotonicity: Let â∗j = [aL∗
j , aM∗

j , aU∗
j ] (j = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then if aLj ≤ aL∗
j , aMj ≤ aM∗

j and aUj ≤ aU∗
j for all

j, then

FOWQM(â1, â2, . . . , ân) ≤ FOWQM(â∗1, â
∗
2, . . . , â

∗
n).

(4) Commutativity: Let â′j = [aL
′

j , a
M ′

j , aU
′

j ] (j = 1, 2, . . . , n) be a collec-
tion of triangular fuzzy numbers, then

FOWQM(â1, â2, . . . , ân) = FOWQM(â′1, â
′
2, . . . , â

′
n),

where (â′1, â
′
2, . . . , â

′
n) is any permutation of (â1, â2, . . . , ân).

Especially, if w = ( 1
n ,

1
n , . . . ,

1
n )T , then the FOWQM operator is reduced

to the FQM operator; if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j =

1, 2, . . . , n) are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n),

then the FOWQM operator is reduced to the uncertain ordered weighted quadratic
mean (UOWQM) operator:

UOWQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

ωj ã
2
σ(j)

 1
2

=


 n∑

j=1

ωj(a
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
U
σ(j))

2

 1
2

 ,(17)
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where ãσ(j) = [aLσ(j), a
U
σ(j)], (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n)

such that ãσ(j−1) ≥ ãσ(j) for all j. If there is a tie between ãi and ãj , then we
replace each of ãi and ãj by their average (ãi + ãj)/2 in process of aggregation.
If k items are tied, then we replace these by k replicas of their average.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UOWQM operator is reduced
to the ordered weighted quadratic mean (OWQM)operator:

OWQM(a1, a2, . . . , an) =

 n∑
j=1

ωjb
2
j

 1
2

, (18)

where bj is the jth largest of aj(j = 1, 2, . . . , n). The OWQM operator (18) has
some special cases:

(1) If ω = (1, 0, . . . , 0)T , then

OWQM(a1, a2, . . . , an) = max{ai} = b1. (19)

(2) If ω = (0, 0, . . . , 1)T , then

OWQM(a1, a2, . . . , an) = min{ai} = bn. (20)

(3) If ωj = 1, wi = 0, i ̸= j, then

bn ≤ OWQM(a1, a2, . . . , an) = bj ≤ b1. (21)

(4) If ω = ( 1
n ,

1
n , . . . ,

1
n )T , then

OWQM(a1, a2, . . . , an) =

(∑n
j=1 b

2
j

n

) 1
2

=

(∑n
j=1 a

2
j

n

) 1
2

= QM(a1, a2, . . . , an). (22)

Clearly, the fundamental characteristic of the FWQM operator is that it
considers the importance of each given triangular fuzzy number, whereas the
fundamental characteristic of the FOWQM operator is the reordering step, and
it weights all the ordered positions of the triangular fuzzy numbers instead of
weighing the given triangular fuzzy numbers themselves. By combining the
advantages of the FWQM and FOWQM operators, in the following, we develop
a fuzzy hybrid quadratic mean (FHQM) operator that weights both the given
triangular fuzzy numbers and their ordered positions.

Definition 3.7 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers. A FHQM operator of dimension n is a mapping FHQM :
Ωn → Ω, which has an associated vector ω = (ω1, ω2, . . . , ωn)T with ωj ≥ 0 and∑n

j=1 ωj = 1, such that

FHQM(â1, â2, . . . , ân) =

 n∑
j=1

ωj
˙̂a
2

σ(j)

 1
2

8
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=


 n∑

j=1

ωj(ȧ
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
U
σ(j))

2

 1
2

 , (23)

where ˙̂aσ(j) =
[
ȧLσ(j), ȧ

M
σ(j), ȧ

U
σ(j)

]
is the jth largest of the weighted triangular

fuzzy numbers ˙̂aj ( ˙̂aj = nwj âj , j = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the
weight vector of âj (j = 1, 2, . . . , n) with wj ≥ 0 and

∑n
j=1 wj = 1, and n is the

balancing coefficient.
Especially, if w = ( 1

n ,
1
n , . . . ,

1
n )T , then ˙̂aj = âj , j = 1, 2, . . . , n, in this case,

the FHQM operator is reduced to the FOWQM operator; if ω = ( 1
n ,

1
n , . . . ,

1
n )T ,

then

FHQM(â1, â2, . . . , ân) =

 n∑
j=1

wj
˙̂a
2

σ(j)

 1
2

=


 n∑

j=1

nw2
j (aLσ(j))

2

 1
2

,

 n∑
j=1

nw2
j (aMσ(j))

2

 1
2

,

 n∑
j=1

nw2
j (aUσ(j))

2

 1
2

 (24)

which we call the generalized fuzzy weighted quadratic mean (GFWQM) oper-
ator.

Moreover, if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

FHQM operator is reduced to the uncertain hybrid quadratic mean (UHQM)
operator:

UHQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

ωj
˙̃a
2

σ(j)

 1
2

=


 n∑

j=1

nw2
j (aLσ(j))

2

 1
2

,

 n∑
j=1

nw2
j (aUσ(j))

2

 1
2

 , (25)

where ˙̃aσ(j) is the jth largest of the weighted interval numbers ˙̃aj ( ˙̃aj = nwj ãj , j =
1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of ãj (j = 1, 2, . . . , n)
with wj ≥ 0 and

∑n
j=1 wj = 1, and n is the balancing coefficient. Especially,

if w = ( 1
n ,

1
n , . . . ,

1
n )T , then ˙̃aj = ãj , j = 1, 2, . . . , n, in this case, the UHQM

operator is reduced to the UOWQM operator.
If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UHQM operator is reduced

to the hybrid quadratic mean (HQM) operator:

HQM(a1, a2, . . . , an) =

 n∑
j=1

ωj ȧ
2
σ(j)

 1
2

, (26)

9
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where ȧσ(j) is the jth largest of the weighted interval numbers ȧj (ȧj = nwj ãj , j =
1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of aj (j = 1, 2, . . . , n)
with wj ≥ 0 and

∑n
j=1 wj = 1, and n is the balancing coefficient. Especially,

if w = ( 1
n ,

1
n , . . . ,

1
n )T , then ȧj = aj , j = 1, 2, . . . , n, in this case, the HQM

operator is reduced to the OWQM operator.

Example 3.8 Given a collection of triangular fuzzy numbers: â1 = [2, 4, 5],
â2 = [1, 3, 4], â3 = [2, 3, 5], â4 = [3, 4, 5], and â5 = [2, 5, 8], and w = (0.20, 0.25,
0.15, 0.25, 0.15)T be the weight vector of âj (j = 1, 2, 3, 4, 5). Then we get the
weighted triangular fuzzy numbers:

˙̃a1 = [2, 4, 5], ˙̃a2 = [1.25, 3.75, 5], ˙̃a3 = [1.5, 2.25, 3.75],

˙̃a4 = [3.75, 5, 6.25], ˙̃a5 = [1.5, 3.75, 6].

By using Eq. (9) (without loss of generality, set δ = 0.5), we construct the
following matrix:

P =


0.5000 0.5833 0.9545 0.0385 0.4864
0.4167 0.5000 0.8462 0 0.4154
0.0455 0.1538 0.5000 0 0.1250
0.9615 1 1 0.5000 0.8571
0.5136 0.5846 0.8750 0.1429 0.5000

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5628, p2 = 2.1782, p3 = 0.8243, p4 = 4.3187, p5 = 2.6160

and then we rank the triangular fuzzy number âi (i = 1, 2, 3, 4, 5) in descending
order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

˙̂aσ(1) = ˙̂a4, ˙̂aσ(2) = ˙̂a5, ˙̂aσ(3) = ˙̂a1, ˙̂aσ(4) = ˙̂a2, ˙̂aσ(5) = ˙̂a3.

Suppose that ω = (0.1117, 0.2365, 0.3036, 0.3265, 0.1117)T is the weighting vec-
tor of the FHQM operator (derived by the normal distribution based method
[11]), then by Eq. (23), we get

FHQM(â1, â2, â3, â4, â5) =

 n∑
j=1

ωj
˙̂a
2

σ(j)

 1
2

=


 n∑

j=1

ωj(ȧ
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
U
σ(j))

2

 1
2


= [2.0196, 4.0166, 5.4955].

4 Approaches to multiple attribute group deci-
sion making with triangular fuzzy information

For a group decision making with triangular fuzzy information, let X={x1, x2, . . . ,
xn} be a discrete set of n alternatives, and G = {G1, G2, . . . , Gm} be the set of

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

319 Jin Han Park et al 310-326



m attributes, whose weight vector is w = (w1, w2, . . . , wm)T with wi ≥ 0 and∑m
i=1 wi = 1, and let D = {d1, d2, . . . , ds} be the set of decision makers, whose

weight vector is v = (v1, v2, . . . , vs)
T , where vk ≥ 0 and

∑s
k=1 vk = 1. Suppose

that A(k) = (â
(k)
ij )m×n is the decision matrix, where â

(k)
ij =

[
a
L(k)
ij , a

M(k)
ij , a

U(k)
ij

]
is an attribute value, which takes the form of triangular fuzzy number, of the
alternative xj ∈ X with respect to the attribute Gi ∈ G.

Then, we utilize the FWQM and FHQM operators to propose an approach
to multiple attribute group decision making with triangular fuzzy information,
which involves the following steps:

Step 1. Normalize each attribute value â
(k)
ij in the matrix A(k) into a corre-

sponding element in the matrixR(k) = (r̂
(k)
ij )m×n (r̂

(k)
ij =

[
rij

L(k), rij
M(k), rij

U(k)
]
)

using the following formulas:

r̂
(k)
ij =

â
(k)
ij∑n

j=1 â
(k)
ij

=

[
aij

L(k)∑n
j=1 aij

U(k)
,

aij
M(k)∑n

j=1 aij
M(k)

,
aij

U(k)∑n
j=1 aij

L(k)

]
,

for benefit attribute Gi, (27)

r̂
(k)
ij =

1/â
(k)
ij∑n

j=1(1/â
(k)
ij )

=

[
1/aij

U(k)∑n
j=1(1/aijL(k))

,
1/aij

M(k)∑n
j=1(1/aijM(k))

,
1/aij

L(k)∑n
j=1(1/aijU(k))

]
,

for cost attribute Gi, (28)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s.
Step 2. Utilize the FWQM operator:

r̂
(k)
j = FWQM(r̂

(k)
1j , r̂

(k)
2j , . . . , r̂

(k)
mj) =

(
m∑
i=1

wi(r̂
(k)
ij )2

) 1
2

=

( m∑
i=1

wi(r̂
L(k)
ij )2

) 1
2

,

(
m∑
i=1

wi(r̂
M(k)
ij )2

) 1
2

,

(
m∑
i=1

wi(r̂
U(k)
ij )2

) 1
2

(29)

to aggregate all the elements in the jth column of R(k) and get the overall

attribute value r̂
(k)
j of the alternative xj corresponding to the decision maker

dk.
Step 3. Utilize the FHQM operator:

r̂j = FHQM(r̂
(1)
j , r̂

(2)
j , . . . , r̂

(s)
j ) =

(
s∑

k=1

ωk( ˙̂rj
(σ(k))

)2

) 1
2

=

( s∑
k=1

ωk(ṙ
L(σ(k))
j )2

) 1
2

,

(
s∑

k=1

ωk(ṙ
M(σ(k))
j )2

) 1
2

,

(
s∑

k=1

ωk(ṙ
U(σ(k))
j )2

) 1
2

 (30)
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to aggregate the overall attribute values r̂
(k)
j (k = 1, 2, . . . , s) corresponding to

the decision maker dk (k = 1, 2, . . . , s) and get the collective overall attribute

value r̂j , where ˙̂rj
(σ(k))

= [ṙ
L(σ(k))
j , ṙ

M(σ(k))
j , ṙ

U(σ(k))
j ] is the kth largest of the

weighted data ˙̂rj
(k)

( ˙̂rj
(k)

= svkr̂
(k)
j , k = 1, 2, . . . , s), ω = (ω1, ω2, . . . , ωs)

T is

the weighting vector of the FHQM operator, with ωk ≥ 0 and
∑s

k=1 ωk = 1.
Step 4. Compare each r̂j with all r̂i (i = 1, 2, . . . , n) by using Eq. (9),

and let pij = p(r̂i ≥ r̂j), and then construct a possibility matrix P = (pij)n×n,
where pij ≥ 0, pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all elements
in each line of matrix P , we have pi =

∑n
j=1 pij , i = 1, 2, . . . , n, and then

reorder r̂j (j = 1, 2, . . . , n) in descending order in accordance with the values of
pj (j = 1, 2, . . . , n).

Step 5. Rank all the alternatives xj (j = 1, 2, . . . , n) by the ranking of r̂j
(j = 1, 2, . . . , n), and then select the most desirable one.

Step 6. End.

5 Illustrative example

In this section, we use a multiple attribute group decision making problem
of determining what kind of air-conditioning systems should be installed in a
library(adopted from [6, 7, 12, 22]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of the problems facing
the city development commissioner is to determine what kind of air-conditioning
systems should be installed in the library. The contractor offers five feasible al-
ternatives, which might be adapted to the physical structure of the library.
The alternatives xj (j = 1, 2, 3, 4, 5) are to be evaluated using triangular fuzzy
numbers by the three decision makers dk (k = 1, 2, 3) (whose weight vector
is v = (0.4, 0.3, 0.3)T ) under three major impacts: economic, functional, and
operational. Two monetary attributes and six nonmonetary attributes (that
is, G1: owning cost ($/ft2), G2: operating cost ($/ft2), G3: performance (∗),
G4: noise level (Db), G5: maintainability (∗), G6: reliability (%), G7: flex-

Table 1: Triangular fuzzy number decision matrix A(1)

x1 x2 x3 x4 x5
G1 [3.5, 4.0, 4.7] [1.7, 2.0, 2.3] [3.5, 3.8, 4.2] [3.5, 3.8, 4.5] [3.3, 3.8, 4.0]
G2 [5.5, 6.0, 6.5] [4.8, 5.1, 5.5] [4.5, 5.2, 5.5] [4.5, 4.7, 5.0] [5.5, 5.7, 6.0]
G3 [0.7, 0.8, 0.9] [0.5, 0.56, 0.6] [0.5, 0.6, 0.7] [0.7, 0.85, 0.9] [0.6, 0.7, 0.8]
G4 [35, 40, 45] [70, 73, 75] [65, 68, 70] [40, 42, 45] [50, 55, 60]
G5 [0.4, 0.45, 0.5] [0.4, 0.44, 0.6] [0.7, 0.76, 0.8] [0.9, 0.97, 1.0] [0.5, 0.54, 0.6]
G6 [95, 98, 100] [70, 73, 75] [80, 83, 90] [90, 93, 95] [85, 90, 95]
G7 [0.3, 0.35, 0.5] [0.7, 0.75, 0.8] [0.8, 0.9, 1.0] [0.6, 0.75, 0.8] [0.4, 0.5, 0.6]
G8 [0.7, 0.74, 0.8] [0.5, 0.53, 0.6] [0.6, .68, 0.7] [0.7, 0.8, 0.9] [0.8, .85, 0.9]
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ibility (∗), G8: safety (∗), where ∗ unit is from 0 − 1 scale, three attributes
G1, G2, and G4 are cost attributes, and the other five attributes are benefit
attributes, suppose that the weight vector of the attributes Gi (i = 1, 2, . . . , 8)
is w = (0.05, 0.08, 0.14, 0.12, 0.18, 0.21, 0.05, 0.17)T ) emerged from three impacts
is Tables 1-3.

Table 2: Triangular fuzzy number decision matrix A(2)

x1 x2 x3 x4 x5
G1 [4.0, 4.3, 4.5] [2.1, 2.2, 2.4] [5.0, 5.1, 5.2] [4.3, 4.4, 4.5] [3.0, 3.3, 3.5]
G2 [6.0, 6.3, 6.5] [5.0, 5.1, 5.2] [4.5, 4.7, 5.0] [5.0, 5.1, 5.3] [7.0, 7.5, 8.0]
G3 [0.7, 0.8, 0.9] [0.4, 0.5, 0.6] [0.5, .55, 0.6] [0.7, 0.75, 0.8] [0.7, 0.8, 0.9]
G4 [37, 38, 39] [70, 73, 75] [65, 66, 67] [40, 42, 45] [50, 52, 55]
G5 [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.8, 0.85, 0.9] [0.8, 0.95, 1.0] [0.4, 0.44, 0.5]
G6 [92, 93, 95] [70, 75, 80] [83, 84, 85] [90, 91, 92] [90, 93, 95]
G7 [0.4, 0.45, 0.5] [0.8, 0.85, 0.9] [0.7, 0.73, 0.8] [0.7, 0.85, 0.9] [0.4, 0.45, 0.5]
G8 [0.6, 0.7, 0.8] [0.6, 0.65, 0.7] [0.5, 0.6, 0.7] [0.7, 0.76, 0.8] [0.7, 0.8, 0.9]

Table 3: Triangular fuzzy number decision matrix A(3)

x1 x2 x3 x4 x5
G1 [4.3, 4.4, 4.6] [2.2, 2.4, 2.5] [4.5, 4.8, 5.0] [4.7, 4.9, 5.0] [3.1, 3.2, 3.4]
G2 [6.4, 6.7, 7.0] [5.0, 5.2, 5.5] [4.7, 4.8, 4.9] [5.5, 5.7, 6.0] [6.0, 6.5, 7.0]
G3 [0.8, 0.85, 0.9] [0.5, 0.6, 0.7] [0.6, 0.7, 0.8] [0.7, 0.8, 0.9] [0.7, 0.75, 0.8]
G4 [36, 38, 40] [72, 73, 75] [67, 68, 70] [45, 48, 50] [55, 57, 60]
G5 [0.4, 0.46, 0.5] [0.4, 0.45, 0.6] [0.8, 0.95, 1.0] [0.8, 0.85, 0.9] [0.5, 0.55, 0.6]
G6 [93, 94, 95] [77, 78, 80] [85, 87, 90] [90, 94, 95] [90, 96, 100]
G7 [0.4, 0.5, 0.6] [0.8, 0.9, 1.0] [0.8, 0.86, 0.9] [0.6, 0.7, 0.8] [0.5, 0.57, 0.6]
G8 [0.7, 0.78, 0.8] [0.5, 0.55, 0.6] [0.6, 0.68, 0.7] [0.8, 0.85, 0.9] [0.8, 0.85, 0.9]

To select the best air-conditioning system, we first utilize the approach based
on the FWQM and FHQM operators, the main steps are as follows:

Step 1. By using Eqs. (27) and (28), we normalize each attribute value â
(k)
ij

in the matrices A(k) (k = 1, 2, 3) into the corresponding element in the matrices
R(k) = (r̂ij)8×5 (k = 1, 2, 3) (Tables 4-6):

Step 2. Utilize the FWQM operator (29) to aggregate all elements in the

jth column R(K) and get the overall attribute value r̂
(k)
j :

r̂
(1)
1 = [0.1736, 0.2029, 0.2436] , r̂

(1)
2 = [0.1473, 0.1751, 0.2167] ,

r̂
(1)
3 = [0.1689, 0.1985, 0.2354] , r̂

(1)
4 = [0.2043, 0.2422, 0.2759] ,

r̂
(1)
5 = [0.1687, 0.1991, 0.2370] ,

r̂
(2)
1 = [0.1770, 0.2044, 0.2417] , r̂

(2)
2 = [0.1622, 0.1878, 0.2191] ,

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

322 Jin Han Park et al 310-326



Table 4: Normalized triangular fuzzy number decision matrix R(1)

x1 x2 x3 x4 x5

G1 [0.12, 0.16, 0.21] [0.25, 0.32, 0.43] [0.14, 0.17, 0.21] [0.13, 0.17, 0.21] [0.14, 0.17, 0.22]
G2 [0.15, 0.18, 0.21] [0.18, 0.21, 0.24] [0.18, 0.20, 0.25] [0.20, 0.23, 0.25] [0.16, 0.19, 0.21]
G3 [0.18, 0.23, 0.30] [0.13, 0.16, 0.20] [0.13, 0.17, 0.23] [0.18, 0.24, 0.30] [0.15, 0.20, 0.27]
G4 [0.22, 0.26, 0.32] [0.13, 0.14, 0.16] [0.14, 0.15, 0.17] [0.22, 0.25, 0.28] [0.16, 0.19, 0.23]
G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]
G6 [0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]
G7 [0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]
G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

Table 5: Normalized triangular fuzzy number decision matrix R(2)

x1 x2 x3 x4 x5

G1 [0.15, 0.16, 0.19] [0.28, 0.32, 0.36] [0.13, 0.14, 0.15] [0.15, 0.16, 0.17] [0.19, 0.21, 0.25]
G2 [0.17, 0.18, 0.19] [0.21, 0.22, 0.23] [0.21, 0.24, 0.26] [0.20, 0.22, 0.23] [0.13, 0.15, 0.17]
G3 [0.18, 0.24, 0.30] [0.11, 0.15, 0.20] [0.13, 0.16, 0.20] [0.18, 0.22, 0.27] [0.18, 0.24, 0.30]
G4 [0.25, 0.27, 0.29] [0.13, 0.14, 0.15] [0.15, 0.15, 0.16] [0.22, 0.24, 0.27] [0.18, 0.20, 0.21]
G5 [0.11, 0.15, 0.21] [0.14, 0.17, 0.21] [0.22, 0.26, 0.31] [0.22, 0.29, 0.34] [0.11, 0.13, 0.17]
G6 [0.21, 0.21, 0.22] [0.16, 0.17, 0.19] [0.19, 0.19, 0.20] [0.20, 0.21, 0.22] [0.20, 0.21, 0.22]
G7 [0.11, 0.14, 0.17] [0.22, 0.26, 0.30] [0.19, 0.22, 0.27] [0.19, 0.26, 0.30] [0.19, 0.14, 0.17]
G8 [0.15, 0.20, 0.26] [0.15, 0.19, 0.23] [0.13, 0.17, 0.23] [0.18, 0.22, 0.26] [0.18, 0.23, 0.29]

Table 6: Normalized triangular fuzzy number decision matrix R(3)

x1 x2 x3 x4 x5

G1 [0.15, 0.17, 0.18] [0.28, 0.30, 0.35] [0.14, 0.15, 0.17] [0.14, 0.15, 0.16] [0.20, 0.23, 0.25]
G2 [0.16, 0.17, 0.19] [0.20, 0.22, 0.24] [0.22, 0.24, 0.25] [0.18, 0.20, 0.22] [0.16, 0.17, 0.20]
G3 [0.20, 0.23, 0.27] [0.12, 0.16, 0.21] [0.15, 0.19, 0.24] [0.17, 0.22, 0.27] [0.17, 0.20, 0.24]
G4 [0.26, 0.28, 0.31] [0.14, 0.15, 0.16] [0.15, 0.16, 0.17] [0.21, 0.22, 0.25] [0.17, 0.19, 0.20]
G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]
G6 [0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]
G7 [0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]
G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

r̂
(2)
3 = [0.1744, 0.1974, 0.2314] , r̂

(2)
4 = [0.1977, 0.2342, 0.2676] ,

r̂
(2)
5 = [0.1717, 0.1979, 0.2333] ,

r̂
(3)
1 = [0.0714, 0.0795, 0.0892] , r̂

(3)
2 = [0.0573, 0.0638, 0.0772] ,

r̂
(3)
3 = [0.0699, 0.0831, 0.0959] , r̂

(3)
4 = [0.0782, 0.0879, 0.1004] ,

r̂
(3)
5 = [0.0704, 0.0781, 0.0890] .

Step 3. Utilize the FHQM operator (30) (suppose that its weight vector
is w = (0.243, 0514, 0.243)T determined by using the normal distribution based

method [11], let σ = 0.5) to aggregate the overall attribute value r̂
(k)
j (k = 1, 2, 3)

corresponding to the decision maker dk (k = 1, 2, 3), and get the collective overall
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attribute value r̂j :

r̂1 = [0.1568, 0.1818, 0.2160] , r̂2 = [0.1385, 0.1619, 0.1939] ,

r̂3 = [0.1536, 0.1771, 0.2086] , r̂4 = [0.1791, 0.2119, 0.2417] ,

r̂5 = [0.1523, 0.1771, 0.2095] .

Step 4. Compare each r̂j with all r̂i (i = 1, 2, 3, 4, 5) by using Eq. (9)
(without loss of generality, set δ = 0.5), and let pij = p(r̂i ≥ r̂j), and then
construct a possibility matrix:

P =


0.5 0.8558 0.5869 0.0553 0.5882

0.1442 0.5 0.2209 0 0.2301
0.4131 0.7791 0.5 0 0.5031
0.9447 1 1 0.5 1
0.4118 0.7699 0.4969 0 0.5

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5861, p2 = 1.0952, p3 = 2.1953, p4 = 4.4447, p5 = 2.1786

and then we reorder r̂j (j = 1, 2, 3, 4, 5) in descending order in accordance with
the values of pj (j = 1, 2, 3, 4, 5):

r̂4 > r̂1 > r̂3 > r̂5 > r̂2.

Step 5. Rank all the alternatives xj (j = 1, 2, 3, 4, 5) by the ranking of r̂j
(j = 1, 2, 3, 4, 5):

x4 ≻ x1 ≻ x3 ≻ x5 ≻ x2

and thus the most desirable alternative is x4.

Table 7: Comparison of the proposed approach with other approaches

Xu’s approach [12] Park et al.’s approach [7] Proposed approach

Solution method

Aggregation stage FWHM operator FWCHM operator FWQM operator
Exploitation stage FHHM operator FHCHM operator FHQM operator

Ranking of x4 ≻ x5 ≻ x3 ≻ x1 ≻ x2 x4 ≻ x1 ≻ x3 ≻ x5 ≻ x2 x4 ≻ x1 ≻ x3 ≻ x5 ≻ x2
alternatives

From the above analysis, the results obtained by the proposed approach are
slightly different to the ones obtained Xu’s [12] approach but the same with Park
et al. [7] approach (see Table 7). It perfectly depends on how we look at things,
and not on how they are themselves. Therefore, depending on aggregation
operators used, the results may lead to different decisions. However, the best
alternative is x4.
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6 Conclusions

In this paper, we have extended the traditional quadratic mean to fuzzy envi-
ronments and introduced the FWQM operator. Based on the FWQM operator
and Yager’s OWA operator [17], we have developed the FOWQM operator and
the FHQM operator. It has been shown that both the FOWQM and FWQM
operators are the special cases of the FHQM operator. It has also been pointed
out that if all the input fuzzy data are reduced to the interval or numerical data,
then the FHQM operator is reduced to the UHQM operator and the HQM op-
erator, respectively. In these situations, the WQM operator and the OWQM
operator are the two special cases of the HQM operator; the UWQM operator
and the UOWQM operator are the two special cases of the UHQM operator.
Then, based on the FWQM and FHQM operators, we present an approach to
multiple attribute group decision making with triangular fuzzy information and
illustrate it with a practical example.
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Abstract. In this paper, we show that the parametric general nonlinear nonconvex set-valued
variational inequality is equivalent to the parametric general Wiener-Hopf equations. We used the
equivalence formulation to study the sensitivity analysis for general nonlinear nonconvex set-valued
variational inequalities without assuming the differentiability of the given data.
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1 Introduction

Variational inequality theory has become a very effective and powerful tools for study-
ing a wide range of problems arising in pure and applied sciences which include the
work on differential equations, mechanics, control problems in elasticity, general equi-
librium problems in economics and transportation, obstacle, moving, and free bound-
ary problems (see [1,3,5,8-10]).

Sensitivity analysis for the solutions of variational inequalities with single-valued
mappings has been studied by many authors by quite different techniques. By using
the projection methods, Anastassiou et al. [2], Agarwal et al. [4], Dafermos [6],
Faraj and Salahuddin [7], Kim et al. [11], Kyparisis [12], Khan and Salahuddin
[13], Liu [14], Lee and Salahuddin [15], Noor and Noor [16], Qiu and Magnanti [18],
Salahuddin [19,20], Yen and Lee [23], and Verma [24] studied the sensitivity analysis
for the solutions of some variational inequalities with single-valued mappings in finite
dimensional spaces, Hilbert spaces and Banach spaces.

Noor and Noor [16] introduced and considered a new class of variational inequal-
ities on the uniformly prox regular sets which are called the general nonlinear non-
convex variational inequalities. We note that the uniformly prox regular sets are
nonconvex and include the convex sets as a special cases (see [5,17]).

In this paper, we developed the general framework of sensitivity analysis for the
general nonlinear nonconvex set-valued variational inequalities. For this, we estab-
lished the equivalence between the parametric general nonlinear nonconvex set-valued
variational inequalities and parametric general Wiener-Hopf equations by using the

0This work was supported by the Kyungnam University Research Fund, 2015.
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projection techniques (see [11,21]). This fixed point formulation is obtained by a suit-
able and approximate rearrangement of the parametric general Wiener-Hopf equa-
tions. We would like to point out that the Wiener-Hopf equations technique is quite
general unified flexible and provides us with new approach to study the sensitivity
analysis of general nonlinear nonconvex set-valued variational inequalities and related
optimization problems. We used this equivalence to develop the sensitivity analysis
for general nonlinear nonconvex set-valued variational inequalities without assuming
the differentiability of the given data.

2 Preliminaries

Let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pairing between
X and X∗, and CB(X) denotes the family of all nonempty closed bounded subsets
of X. The generalized duality mapping Jq : X → 2X

∗
is defined by

Jq(u) = {f∗ ∈ X∗ : 〈u, f∗〉 = ‖u‖q, ‖f∗‖ = ‖u‖q−1}, ∀u ∈ X,

where q > 1 is a constant. In particular J2 is a usual normalized duality mapping. It
is known that in general Jq(u) = ‖u‖q−2J2(u) for all u 6= 0 and Jq is single-valued if
X∗ is strictly convex. In the sequel, we always assume that X is a real Banach space
such that Jq is a single-valued. If X is a Hilbert space then Jq becomes the identity
mapping on . The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞)
is defined by

ρX(t) = sup

{
1

2
(‖u+ v‖+ ‖u− v‖)− 1 : ‖u‖ ≤ 1, ‖v‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) < ctq, q > 1.

It is well known that the Hilbert spaces, Lp( or lp) spaces, 1 < p <∞ and the Sobolev
spaces Wm,p, 1 < p <∞ are all q-uniformly smooth. Note that Jq is single-valued if
X is uniformly smooth. Concerned with the characteristic inequalities in q-uniformly
smooth Banach spaces. Xu [22] proved the following results.

Lemma 2.1. [22] The real Banach space X is q-uniformly smooth if and only if there
exists a constant cq > 0 such that for all u, v ∈ X,

‖u+ v‖q ≤ ‖u‖q + q〈v, Jq(u)〉+ cq‖v‖q.

Let K be a nonempty closed subsets of X and we denote dK(·) or d(·,K) the usual
distance function to the subset K, that is,

dK(u) = inf
v∈K
‖u− v‖.

The set of all projections of u onto K is given by

PK(u) =
{
v ∈ K : dK(u) = ‖u− v‖

}
.

2
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Definition 2.2. The proximal normal cone of K at a point u ∈ X is given by

NP
K (u) = {ζ ∈ X : u ∈ PK(u+ αζ) for some α > 0}.

Lemma 2.3. [5] Let K be a nonempty closed subset of X. Then ζ ∈ NP
K (u) if and

only if there exists a constant α = α(ζ, u) > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Lemma 2.4. [5] Let K be a nonempty closed and convex subset in X. Then ζ ∈
NP
K (u) if and only if

〈ζ, v − u〉 ≤ 0, ∀v ∈ K.

Definition 2.5. Let f : X → R be a locally Lipschitz continuous mapping with
constant τ near a given point u ∈ X, i.e., for some ε > 0,

| f(v)− f(w) |≤ τ‖v − w‖, ∀ v, w ∈ B(u; ε),

where B(u; ε) denotes the open ball of radius r > 0 and centered at u. The generalized
directional derivative of f at u in the direction z, denoted by fo(u; z) is defined as
follows:

fo(u; z) = lim sup
v→ut↓0

f(v + tz)− f(v)

t
,

where v is a vector in X and t is a positive scalar.

Definition 2.6. The tangent cone TK(u) to K at a point u ∈ K is defined as follows:

TK(u) = {v ∈ X : doK(u; v) = 0}.

The normal cone of K at u by polarity with TK(u) is defined as follows:

NK(u) = {ζ : 〈ζ, v〉 ≤ 0, ∀v ∈ TK(u)}.

The Clarke normal cone NC
K (u) is given by

NC
K (u) = co

{
NP
K (u)

}
,

where co(S) is the closure of the convex hull of S.

It is clear that NP
K (u) ⊆ NC

K (u). The converse is not true in general. Note that
NC
K (u) is always closed and convex, where as NP

K (u) is always convex but may not
be closed (see [5,17]).

Definition 2.7. [17] For any r ∈ (0,+∞], a subset Kr of X is said to be normalized
uniformly r-prox regular (or uniformly r-prox regular) if every nonzero proximal nor-
mal to Kr can be realized by an r-ball, that is, for all u ∈ Kr and all 0 6= ζ ∈ NP

Kr
(u)

with ‖ζ‖ = 1,

〈ζ, v − u〉 ≤ 1

2r
‖v − u‖2, ∀ v ∈ Kr.

3
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Proposition 2.8. [17] Let r > 0 and Kr be a nonempty closed and uniformly r-prox
regular subset of X. Set

U(r) =
{
u ∈ X : 0 ≤ dKr

(u) < r
}
.

Then we have the following statements:

(i) For all u ∈ U(r), we have PKr
(u) 6= ∅;

(ii) For all r′ ∈ (0, r), PKr
is Lipschitz continuous with constant δ = r

r−r′ on U(r′);

(iii) The proximal normal cone is closed as a set-valued mapping.

Assume that T : X → 2X
∗

is a set-valued mapping and h : X → X is a nonlinear
single-valued mapping. For any constant ρ > 0, we consider the problem of finding
u ∈ X,x ∈ T (u) such that h(u) ∈ Kr and

〈ρx+ h(u)− u, v − h(u)〉+
1

2r
‖v − h(u)‖2 ≥ 0, ∀v ∈ Kr. (2.1)

The equation (2.1) is called a general nonlinear nonconvex set-valued variational in-
equality.

Now we consider the problem of solving general Wiener-Hopf equations. To be
more precise, let QKr

= I − h−1PKr
where PKr

is the projection operator, h−1 is
the inverse of nonlinear operator h and I is an identity operator. For given nonlinear
operators, z, u ∈ X,x ∈ T (u) such that

TPKr
z + ρ−1QKr

z = 0 (2.2)

is a called general Wiener-Hopf equation.

Lemma 2.9. [17] u ∈ X,x ∈ T (u), h(u) ∈ Kr is a solution of (2.1) if and only if
u ∈ X,x ∈ T (u), h(u) ∈ Kr satisfies the relation

h(u) = PKr [u− ρx], (2.3)

where PKr
is the projection of X onto the uniformly r-prox regular set Kr.

Lemma 2.9 implies that the general nonlinear nonconvex set-valued variational
inequality (2.1) is equivalent to the fixed point problem (2.3).

Now, we consider the parametric version of equations (2.1) and (2.2). To formulate
the problem, let Γ be an open subset of X in which parameter λ takes values. Let
xλ(u) ∈ Tλ(u) be a given operator defined on X ×Γ and takes values in X ×X.From
now, we denote xλ(u) ∈ Tλ(u) unless otherwise specified. The parametric general
nonlinear nonconvex set-valued variational inequality problem is to find (u, λ) ∈ X ×
Γ, xλ(u) ∈ Tλ(u) such that

〈ρxλ(u) + hλ(u)− u, v − hλ(u)〉 ≥ 0, ∀v ∈ Kr. (2.4)

We also assume that for some λ ∈ B, problem (2.4) has a unique solution u. Related
to parametric general nonlinear nonconvex set-valued variational inequality problem
(2.4), we consider the parametric general Wiener-Hopf equation. We consider the
problem of finding (z, λ) ∈ X × Γ, xλ(u) ∈ Tλ(u) such that

TλPKr
z + ρ−1QKr

z = 0, (2.5)

4
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where ρ > 0 is a constant and QKr
z is defined on the set (z, λ) with λ ∈ Γ and takes

values in B. Equation (2.5) is called a parametric general Wiener-Hopf equation.

Lemma 2.10. Let X be a real Banach space. Than the following two statements are
equivalent:

(i) An element u ∈ X,xλ(u) ∈ Tλ(u) is a solution of (2.4),

(ii) The mapping
Fλ(u) = u− hλ(u) + PKr [u− ρxλ(u)]

has a fixed point.

One can established the equivalence relation between inequality (2.4) and equation
(2.5) by using the projection techniques.

Lemma 2.11. Parametric general nonlinear nonconvex set-valued variational in-
equality (2.4) has a solution (u, λ) ∈ X × Γ, xλ(u) ∈ Tλ(u) if and only if parametric
general Wiener-Hopf equation (2.5) has a solution (z, λ) ∈ X × Γ, xλ(u) ∈ Tλ(u),
where

hλ(u) = PKr
z (2.6)

and
z = u− ρxλ(u). (2.7)

From Lemma 2.11, we know that Parametric general nonlinear nonconvex set-
valued variational inequality (2.4) and parametric general Wiener-Hopf equation (2.5)
are equivalent.

We used these equivalence to study the sensitivity analysis of general nonlinear
nonconvex set-valued variational inequalities. We assume that for some λ ∈ Γ, prob-
lem (2.5) has a solution z and B is a closure of a ball in X centered at z. We want
to investigate those condition under which for each λ in a neighbourhood of λ, then
(2.5) has a unique solution z(λ) near z and the function z(λ) is (Lipschitz) continuous
and differentiable.

Definition 2.12. Let T : X ×Γ→ 2X
∗

be a set-valued mapping. Then the operator
Tλ(·) is said to be locally relaxed ϕ-accretive if there exists a constant ϕ > 0 such
that

〈xλ(u)− xλ(v), jq(u− v)〉 ≥ −ϕ‖u− v‖q, ∀u, v ∈ X,λ ∈ Γ,

and locally D-Lipschitz continuous if there exists a constant β > 0 such that

‖xλ(u)− xλ(v)‖ ≤ D(Tλ(u), Tλ(v)) ≤ β‖u− v‖,

where D : 2X
∗ × 2X

∗ → (−∞,∞)
⋃
{+∞} is the Hausdorff metric i.e.,

D(A,B) =

{
sup
u∈A

inf
v∈B
‖u− v‖, sup

u∈B
inf
v∈A
‖u− v‖

}
, ∀A,B ∈ 2X

∗
.

Definition 2.13. A single-valued mapping h : X × Ω → X is said to be locally
Lipschitz continuous if there exists a constant γ > 0 such that

‖hλ(u)− hλ(v)‖ ≤ γ‖u− v‖,∀u, v ∈ X,

and locally strongly accretive if there exists a constant ξ > 0 such that

〈hλ(u)− hλ(v), jq(u− v)〉 ≥ ξ‖u− v‖q,∀u, v ∈ X,λ ∈ Γ.

5
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3 Main Results

In this section, we derive the main results of this paper. We consider the case when
the solutions of the parametric general Wiener-Hopf equation (2.5) lies in the interior
of B.

We consider the map: for all (z, λ) ∈ X × Γ, xλ(u) ∈ Tλ(u),

Fλ(z) = PKr
z − ρxλ(u) = u− ρxλ(u), (3.1)

where
hλ(u) = PKr

z. (3.2)

We have to show that the map Fλ(z) has a fixed point, which is a solution of paramet-
ric general Wiener-Hopf equation (2.5). First of all we prove the map Fλ(z) defined
by (3.1) is contractive with respect to z uniformly in λ ∈ Γ.

Lemma 3.1. Let PKr be a locally Lipschitz continuous operator with constant δ =
r

r−r′ . Let h : X × Γ → X be a locally Lipschitz continuous with constant γ > 0
and locally strongly accretive mapping with respect to the constant ξ > 0. Let T :
Γ×X → 2X

∗
be a locally D-Lipschitz continuous with respect to the constant β > 0

and locally relaxed ϕ-accretive mapping with respect to the constant ϕ > 0. Then for
all z1, z2 ∈ X and λ ∈ Γ, we have

‖Fλ(z1)− Fλ(z2)‖ ≤ θ‖z1 − z2‖, (3.3)

where

θ =
δ q
√

1 + qρϕ+ cqρqβq

1− κ
, κ = q

√
1− qξ + cqγq (3.4)

for
q
√
ρqcqβq + ρqϕ+ 1 <

1− κ
δ

. (3.5)

Proof. For all z1, z2 ∈ B, λ ∈ Γ, from (3.1) we have

‖Fλ(z1)− Fλ(z2)‖ = ‖u− v − ρ(xλ(u)− xλ(v))‖. (3.6)

Since Tλ(·) is a locally D-Lipschitz continuous mapping, we have

‖xλ(u)− xλ(v)‖ ≤ D(Tλ(u), Tλ(v)) ≤ β‖u− v‖. (3.7)

Using the locally relaxed ϕ-accretivity and locally D-Lipschitz continuity of Tλ(·), we
have

‖u− v − ρ(xλ(u)− xλ(v))‖q ≤ ‖u− v‖q − qρ〈xλ(u)− xλ(v), jq(u− v)〉
+cqρ

q‖xλ(u)− xλ(v)‖q (3.8)

≤ ‖u− v‖q − qρ(−ϕ‖u− v‖q) + cqρ
qβq‖u− v‖q

≤ (1 + qρϕ+ cqρ
qβq)‖u− v‖q.

From (3.6) and (3.8), we have

‖Fλ(z1)− Fλ(z2)‖ ≤ q
√

1 + qρϕ+ cqρqβq‖u− v‖. (3.9)

6
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Also from (3.2) and locally Lipschitz continuity of projection operator PKr
with con-

stant δ, we have

‖u− v‖ ≤ ‖u− v − (hλ(u)− hλ(v))‖+ ‖PKr
(z1)− PKr

(z2)‖ (3.10)

≤ ‖u− v − (hλ(u)− hλ(v))‖+ δ‖z1 − z2‖.

Since hλ is a locally Lipschitz continuous with constant γ > 0 and locally strongly
accretive mapping with constant ξ > 0, we have

‖u− v − (hλ(u)− hλ(v))‖q ≤ ‖u− v‖q − q〈hλ(u)− hλ(v), jq(u− v)〉
+cq‖hλ(u)− hλ(v)‖q

≤ ‖u− v‖q − qξ‖u− v‖q + cqγ
q‖u− v‖q

≤ (1− qξ + cqγ
q)‖u− v‖q.

It implies that

‖u− v − (hλ(u)− hλ(v))‖ ≤ q
√

1− qξ + cqγq‖u− v‖. (3.11)

From (3.10) and (3.11), we have

‖u− v‖ ≤ κ‖u− v‖+ δ‖z1 − z2‖,

where κ = q
√

1− qξ + cqγq. From which we have

‖u− v‖ ≤ δ

1− κ
‖z1 − z2‖. (3.12)

Combining (3.9),(3.12) and (3.3), we have

‖Fλ(z1)− Fλ(z2)‖ ≤ (1− α)‖z1 − z2‖+ αδ
q
√

1 + qρϕ+ cqρqβq

1− κ
‖z1 − z2‖ (3.13)

= (1− α)‖z1 − z2‖+ αθ‖z1 − z2‖.

It follows from (3.4) that θ < 1. Hence the mapping Fλ(z) defined by (3.1) is contrac-
tive and has a fixed point z(λ) which is the solution of parametric general Wiener-Hopf
equation (2.5).

Remark 3.2. From Lemma 3.1, we see that the map Fλ(z) defined by (2.4) has a
unique fixed point z(λ), that is, z(λ) = Fλ(z). Also by assumptions, the function z
for λ = λ is a solutions of parametric general Wiener-Hopf equation (2.5). Again by
Lemma 3.1, we know that z for λ = λ is a fixed point of Fλ(z) and it is also a fixed
point of Fλ(z). Consequently, we conclude that

z(λ) = z = Fλ(z(λ)).

Using Lemma 3.1, we can prove the continuity of the solution z(λ) of parametric
general Wiener-Hopf equation (2.5). However for the sake of completeness and to
convey the idea of the technique involved, we give the proof.

Lemma 3.3. Assume that the operator Tλ(·) is locally D-Lipschitz continuous with
respect to the parameter λ and hλ(·) is a locally Lipschitz continuous mapping. If Tλ(·)
is a locally Lipschitz continuous mapping and the mapps λ→ PKrλz, λ→ hλ(u), λ→
Tλ(u) are continuous (or Lipschitz continuous), then the function z(λ) satisfying (3.3)
is (Lipschitz) continuous at λ = λ.

7
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Proof. For all λ ∈ Γ invoking Lemma 3.1 and the triangle inequality, we have

‖z(λ)− z(λ)‖ ≤ ‖Fλ(z(λ))− Fλ(z(λ))‖+ ‖Fλ(z(λ))− Fλ(z(λ))‖ (3.14)

≤ θ‖z(λ)− z(λ)‖+ ‖Fλ(z(λ))− Fλ(z(λ))‖.

From (3.1) and the fact that the operator Tλ(·) is locally D-Lipschitz continuous with
respect to the parameter λ, we have

‖Fλ(z(λ))− Fλ(z(λ))‖ = ‖u(λ)− u(λ)− ρ(Tλ(u(λ))− Tλ(u(λ)))‖ (3.15)

≤ ρβ‖λ− λ‖.

Combining (3.14) and (3.15), we obtain

‖z(λ)− z(λ)‖ ≤ ρβ

1− θ
‖λ− λ‖, ∀λ, λ ∈ Γ.

This completes the proof.

Now, we are in a position to state and prove the main result of this paper.

Theorem 3.4. Let u be a solution of parametric general nonlinear nonconvex set-
valued variational inequality (2.4) and z be a solution of parametric general Wiener-
Hopf equation (2.5) for λ = λ. Let hλ(u) be a locally strongly accretive and locally
Lipschitz continuous mapping. Let Tλ(u) be a locally D-Lipschitz continuous and
locally relaxed ϕ-accretive mapping with respect to ϕ > 0 for all u ∈ B. If the mapps
λ→ PKr , λ→ hλ(u), λ→ Tλ(u) are Lipschitz (continuous) at λ = λ, then there exists
a neighbourhood M of Γ of λ such that for λ ∈ M, parametric general Wiener-Hopf
equation (2.5) has a unique solution z(λ) in the interior of B, z(λ) = z and z(λ) is
(Lipschitz) continuous at λ = λ.

Poof. The proof follows from Lemma 3.1, 3.3 and Remark 3.2.
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1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since then,
to use this concept in topology and analysis, many authors have expansively devel-
oped the theory of fuzzy sets and applications. George and Veeramani [5], Kramosil
and Michalek [7] have introduced the concept of fuzzy topological spaces induced by
fuzzy metric which have very important applications in quantum particle physics,
particularly in connections with both string and E-infinity theory which were given
and studied by El Naschie [1-4]. Many authors [6,9,10,13-15] have proved fixed point
theorems in fuzzy (probabilistic) metric spaces.

Definition 1.1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm
if it satisfies the following conditions:

(1) ∗ is associative and commutative,

(2) ∗ is continuous,

(3) a ∗ 1 = a, for all a ∈ [0, 1],

0Corresponding author: Jong Kyu Kim(jongkyuk@kyungnam.ac.kr)
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(4) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b = min(a, b).

Definition 1.2. [11] A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an
arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X2 ×
(0,∞), satisfying the following conditions for each x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) > 0,

(2) M(x, y, t) = 1 if and only if x = y,

(3) M(x, y, t) = M(y, x, t),

(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

Definition 1.3. [11] A 3-tuple (X,M, ∗) is called a b-fuzzy metric space for b ≥ 1
if X is an arbitrary nonempty set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) > 0,

(2) M(x, y, t) = 1 if and only if x = y,

(3) M(x, y, t) = M(y, x, t),

(4) M(x, y, tb ) ∗M(y, z, sb ) ≤M(x, z, t+ s),

(5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

It should be noted that, the class of b-fuzzy metric spaces is effectively larger than
that of fuzzy metric spaces, since a b-fuzzy metric is a fuzzy metric when b = 1.

We present an example shows that a b-fuzzy metric on X need not be a fuzzy
metric on X.

Example 1.4. Let M(x, y, t) = e
−|x−y|p

t , where p > 1 is a real number. We show
that M is a b-fuzzy metric with b = 2p−1. In fact, obviously conditions (1),(2),(3) and
(5) of definition 1.3 are satisfied. Let f(x) = xp (x > 0). Then we know that it is a
convex function, for 1 < p <∞. So, we have(

a+ c

2

)p

≤ 1

2
(ap + cp) ,

it implies that (a+ c)
p ≤ 2p−1(ap + cp). Therefore, we have

|x− y|p

t+ s
≤ 2p−1

|x− z|p

t+ s
+ 2p−1

|z − y|p

t+ s

≤ 2p−1
|x− z|p

t
+ 2p−1

|z − y|p

s

=
|x− z|p

t/2p−1
+
|z − y|p

s/2p−1
.

2
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Thus, for each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−|x−y|p

t+s

≥ M(x, z,
t

2p−1
) ∗M(z, y,

s

2p−1
),

where a ∗ c = ac for all a, c ∈ [0, 1]. So condition (4) of definition 1.3 is hold and M
is a b-fuzzy metric.

It should be noted that in preceding example, for p = 2 it is easy to see that
(X,M, ∗) is not a fuzzy metric space.

Example 1.5. Let M(x, y, t) = e
−d(x,y)

t or M(x, y, t) = t
t+d(x,y) , where d is a b-metric

on X and a ∗ c = ac for all a, c ∈ [0, 1]. Then it is easy to show that M is a b-fuzzy
metric. In fact, obviously conditions (1),(2),(3) and (5) of definition 1.3 are satisfied.
Since d is a b-metric, for each x, y, z ∈ X we have

d(x, y) ≤ b
[
d(x, z) + d(z, y)

]
.

Therefore, we obtain

M(x, y, t+ s) = e
−d(x,y)

t+s

≥ e−b
d(x,z)+d(z,y)

t+s

=

(
e−b

d(x,z)
t+s

)(
e−b

d(z,y)
t+s

)
≥

(
e
−d(x,z)

t/b

)(
e
−d(z,y)

s/b

)
= M(x, z,

t

b
) ∗M(z, y,

s

b
).

So condition (4) of definition 1.3 is hold and M is a b-fuzzy metric. Similarly, we can
show that M(x, y, t) = t

t+d(x,y) is also a b-fuzzy metric.

Next, we need the following definitions and propositions in b-metric spaces for our
main theorems.

Definition 1.6. Let f : R → R be a function. Then f is called b-nondecreasing, if
x > by implies that f(x) ≥ f(y) for each x, y ∈ R.

Lemma 1.7. [11] Let (X,M, ∗) be a b-fuzzy metric space. Then M(x, y, t) is b-
nondecreasing with respect to t, for all x, y in X. Also,

M(x, y, bnt) ≥M(x, y, t),∀n ∈ N.

Let (X,M, ∗) be a b-fuzzy metric space. For t > 0, the open ball B(x, r, t) with
center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) =
{
y ∈ X : M(x, y, t) > 1− r

}
.

We recall the notions of convergence and completeness in a b−fuzzy metric space.
Let (X,M, ∗) be a b-fuzzy metric space. Let τ be the set of all A ⊂ X with

x ∈ A if and only if there exists t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then

3
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τ is a topology on X (induced by the b-fuzzy metric M). A sequence {xn} in X
converges to x if and only if M(xn, x, t) → 1 as n → ∞, for each t > 0. It is called
a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exists n0 ∈ N such that
M(xn, xm, t) > 1− ε, for each n,m ≥ n0. The b-fuzzy metric space (X,M, ∗) is said
to be complete if every Cauchy sequence is convergent. A subset A of X is said to
be F-bounded if there exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1− r, for all
x, y ∈ A.

Lemma 1.8. [11] Let (X,M, ∗) be a b-fuzzy metric space. Then the following asser-
tions hold:

(i) If sequence {xn} ⊂ X converges to x, then x is unique,
(ii) The convergent sequence {xn} ⊂ X is Cauchy.

We have the following propositions in a b-fuzzy metric space.

Proposition 1.9. [11] Let (X,M, ∗) be a b-fuzzy metric space and suppose that {xn}
and {yn} are convergent to x, y respectively. Then we have

M(x, y,
t

b2
) ≤ lim supn→∞M(xn, yn, t) ≤M(x, y, b2t)

and

M(x, y,
t

b2
) ≤ lim infn→∞M(xn, yn, t) ≤M(x, y, b2t).

Proposition 1.10. [12] Let (X,M, ∗) be a b-fuzzy metric space and suppose that
{xn} is convergent to x. Then, for all y ∈ X we have

M(x, y,
t

b
) ≤ lim supn→∞M(xn, y, t) ≤M(x, y, bt)

and

M(x, y,
t

b
) ≤ lim infn→∞M(xn, y, t) ≤M(x, y, bt).

Lemma 1.11. A b-fuzzy metric is not continuous in general.

Throughout, in this paper we assume that limt→∞M(x, y, t) = 1.

Lemma 1.12. Let (X,M, ∗) be a b-fuzzy metric space and suppose that M(x, y, kt) ≥
M(x, y, t), for all x, y ∈ X, 0 < k < 1 and t > 0. Then x = y.

Proof. Since, M(x, y, kt) ≥M(x, y, t), it follows that

M(x, y, t) ≥M(x, y,
t

k
) ≥ · · · ≥M(x, y,

t

kn
).

Hence, we can get M(x, y, t) ≥ limn→∞M(x, y, t
kn ) = 1, therefore, x = y.

In 2010, Vats et al. [16] introduced the concept of weakly compatible. Also,
in 2010, Manro et al. [8] introduced the concepts of weakly commuting, R-weakly
commuting mappings, and R-weakly commuting mappings of type (P ), (Af ), and
(Ag) in a G-metric space.

We will introduce these concepts in a b-fuzzy metric space.

4
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Definition 1.13. The self-mappings f and g of a b-fuzzy metric space (X,M, ∗) are
said to be compatible if

lim
n→∞

M(fgxn, gfxn, t) = 1

and
lim
n→∞

M(gfxn, fgxn, t) = 1,

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = z, for
some z ∈ X.

Definition 1.14. A pair of self-mappings (f, g) of a b-fuzzy metric space (X,M, ∗)
is said to be

(1) weakly commuting if M(fgx, gfx, t) ≥M(fx, gx, t), for all x ∈ X.

(2) R-weakly commuting if there exists some positive real number R such that
M(fgx, gfx, t) ≥M(fx, gx, t

R ), ∀x ∈ X.

Remark 1.15. If R ≤ 1, then R-weakly commuting mappings are weakly commuting.

Definition 1.16. A pair of self-mappings (f, g) of a b-fuzzy metric space (X,M, ∗)
are said to be

(1) R-weakly commuting mappings of type (Af ) if there exists some positive real
number R such that M(fgx, ggx, t) ≥M(fx, gx, t

R ), for all x ∈ X.

(2) R-weakly commuting mappings of type (Ag) if there exists some positive real
number R such that M(gfx, ffx, t) ≥M(gx, fx, t

R ), for all x ∈ X.

(3) R-weakly commuting mappings of type (P ) if there exists some positive real
number R such that M(ffx, ggx, t) ≥M(fx, gx, t

R ), for all x ∈ X.

Remark 1.17. The self-mapping f of a b-fuzzy metric space (X,M, ∗) is said to
be b-continuous at x ∈ X if and only if it is b-sequentially continuous at x, that is,
whenever {xn} is b-convergent to x, {f(xn)} is b-convergent to f(x).

Example 1.18. Let M(x, y, t) = e
−|x−y|2

t , fx = 1 and

gx =

{
1, x ∈ Q,
−1, otherwise,

for each x, y ∈ R, where a ∗ c = ac. Then it is easy to see that a pair of self-mappings
(f, g) of a b-fuzzy metric space is weakly commuting, R-weakly commuting, and R-
weakly commuting of type (P ), (Af ), and (Ag).

2 The Main Results

Now we are in a position to introduce the main results of this paper.

Theorem 2.1. Let (X,M, ∗) be a b-fuzzy metric space and (f, g) be a pair of non-
compatible self-mappings with fX ⊆ gX (fX denotes the closure of fX). Assume

5
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that the following condition is satisfied:

M(fx, fy, kt) ≥ min{M(gx, gy, b2t),M(fx, gx, b2t),M(fy, gy, b2t)}, (2.1)

for all x, y ∈ X and 0 < k < 1. If (f, g) is a pair of R-weakly commuting mappings
of type (Ag), then f and g have a unique common fixed point (say z) and both f and
g are not b-continuous at z.

Proof. Since f and g are non-compatible mappings, there exists a sequence {xn} ⊂
X, such that

lim
n→∞

fxn = lim
n→∞

gxn = z, z ∈ X,

but either limn→∞M(fgxn, gfxn, t) or limn→∞M(gfxn, fgxn, t) does not exist or
exists and is different from 1. Since z ∈ fX ⊂ gX, there must exist a u ∈ X satisfying
z = gu. We can assert that fu = gu. If not, from condition (2.1) and Propsition 1.10,
we obtain

M(fu, gu, bkt)

≥ lim supn→∞M(fu, fxn, kt)

≥ lim supn→∞min
{
M(gu, gxn, b

2t),M(fu, gxn, b
2t),M(fxn, gu, b

2t)
}

≥ min
{
M(gu, gu, bt),M(fu, gu, bt),M(fu, gu, bt)

}
= M(fu, gu, bt),

that is, M(fu, gu, kt) ≥M(fu, gu, t). Hence, by Lemma 1.12, we get fu = gu. Since
(f, g) is a pair of R-weakly commuting mappings of type (Ag), we have

M(gfu, ffu, t) ≥M(gu, fu,
t

R
) = 1.

It means that ffu = gfu. Next, we prove ffu = fu. From condition (2.1), fu = gu
and ffu = gfu, we have

M(fu, ffu, kt) ≥ min{M(gu, gfu, b2t),M(fu, gfu, b2t),M(gu, ffu, b2t)}
= M(fu, ffu, b2t)

≥ M(fu, ffu, t).

From Lemma 1.12, we have fu = ffu, which implies that fu = ffu = gfu, and so
z = fu is a common fixed point of f and g.

Next we prove that the common fixed point z is unique. Actually, suppose that
w is also a common fixed point of f and g. Then using the condition (2.1), we have

M(z, w, kt) = M(fz, fw, kt)

≥ min{M(gz, gw, b2t),M(fz, gw, b2t),M(fw, gz, b2t)}
= M(z, w, b2t)

≥ M(z, w, t),

which implies that z = w, so that uniqueness is proved.
Now, we prove that f and g are not b-continuous at z. In fact, if f is b-continuous

at z, then for the b-convergent sequence {xn} to x, we have

lim
n→∞

ffxn = fz = z and lim
n→∞

fgxn = fz = z.

6
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Since f and g are R-weakly commuting mappings of type (Ag), we get

M(gfxn, ffxn, t) ≥M
(
gxn, fxn,

t

R

)
.

Hence, by Proposition 1.9, we have

M( lim
n→∞

gfxn, z, b
2t) ≥ lim supn→∞M(gfxn, ffxn, t)

≥ lim supn→∞M
(
gxn, fxn,

t

R

)
≥ M

(
z, z,

t

Rb2
)

= 1,

it follows that limn→∞ gfxn = z. Hence, we can get

lim
n→∞

M(fgxn, gfxn, t) ≥M(z, z,
t

b2
) = 1.

Therefore, we have
lim
n→∞

M(fgxn, gfxn, t) = 1.

This contradicts with f and g being non-compatible. So f is not b-continuous at z.
If g is b-continuous at z, then for the b-convergent sequence {xn} to x, we have

lim
n→∞

gfxn = gz = z and lim
n→∞

ggxn = gz = z.

Since f and g are R-weakly commuting mappings of type (Ag), we get

M(gfxn, ffxn, t) ≥M
(
gxn, fxn,

t

R

)
.

Hence, we have

M(z, lim
n→∞

ffxn, b
2t) ≥ lim supn→∞M(gfxn, ffxn, t)

≥ lim supn→∞M
(
gxn, fxn,

t

R

)
≥ M

(
z, z,

t

Rb2
)

= 1,

it implies that
lim
n→∞

ffxn = z = fz.

This contradicts with f being not b-continuous at z, which implies that g is not
b-continuous at z. This completes the proof.

For the case b = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let (X,M, ∗) be a fuzzy metric space and (f, g) be a pair of non-
compatible selfmappings with fX ⊆ gX. Assume that the following condition is sat-
isfied:

M(fx, fy, kt) ≥ min
{
M(gx, gy, t),M(fx, gx, t),M(fy, gy, t)

}
, (2.2)

for all x, y ∈ X and 0 < k < 1. If (f, g) is a pair of R-weakly commuting mappings
of type (Ag), then f and g have a unique common fixed point (say z) and both f and
g are not b-continuous at z.

7
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3 Example

Next, we give an example to support for the main Theorem 2.1.

Example 3.1. Let X = [2, 20] and a∗ c = ac, for all a, c ∈ [0, 1] and let M be a fuzzy
set on X ×X × (0,+∞) defined as follows:

M(x, y, t) = e
−|x−y|

t ,

for all t ∈ R+. Then (X,M, ∗) is a fuzzy metric space. We define mappings f and g
on X by

fx =

{
2, x = 2 or x ∈ (5, 20],
6, x ∈ (2, 5]

and

gx =

 2, x = 2,
18, x ∈ (2, 5],
x+1
3 , x ∈ (5, 20].

Clearly, from the above definitions, we know that f(X) ⊆ g(X), and (f, g) is a pair
of non-compatible self-mappings. To see that f and g are non-compatible, consider
a sequence {xn} = {5 + 1

n}. Then we have fxn → 2, gxn → 2, fgxn → 6 and
gfxn → 2. Thus

lim
n→∞

M(gfxn, fgxn, t) = e−
4
t 6= 1.

On the other hand, there exists R = 1 such that

M(gfx, ffx, t) =


e−

(2−2)
t , x = 2,

e−
( 7
3
−2)

t , x ∈ (2, 5],

e−
(2−2)

t , x ∈ (5, 20]

and

M(fx, gx, t) =


e−

(2−2)
t , x = 2,

e−
(18−6)

t , x ∈ (2, 5],

e−
(
x+1
3
−2)

t , x ∈ (5, 20],

for all x ∈ X. Hence, it is easy to see that in every cases, we have

M(gfx, ffx, t) ≥M(gx, fx, t).

That is, (f, g) is a pair of R-weakly commuting mappings of type (Ag).
Now we prove that the mappings f and g satisfy the condition (2.1) of Theorem

2.1 with k = 1
2 . To do this, we consider the following cases:

Case (1) If x, y ∈ {2} ∪ (5, 20], then we have

M(fx, fy, kt) = M(2, 2, kt) = 1

≥ min
{
M(gx, gy, t),M(fx, gx, t),M(fy, gy, t)

}
,

and hence (2.1) is obviously satisfied.
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Case (2) If x, y ∈ (2, 5], then we have

M(fx, fy, kt) = M(6, 6, kt) = 1

≥ min
{
M(gx, gy, t),M(fx, gx, t),M(fy, gy, t)

}
,

and hence (2.1) is obviously satisfied.
Case (3) If x ∈ {2} ∪ (5, 20] and y ∈ (2, 5], then we have

M(fx, fy, kt) = M(2, 6, kt) = e−
4
kt

and

M(gx, gy, t) =

{
e−
|2−18|

t , x = 2,

e−
| x+1

3
−18|

t , x ∈ (5, 20].
.

Thus we obtain

M(fx, fy, t) ≥ min
{
M(gx, gy, t),M(fx, gx, t),M(fy, gy, t)

}
,

for all x, y in X. Thus all the conditions of Theorem 2.1 are satisfied and 2 is a
uniquecommon fixed point of f and g.
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On hesitant fuzzy filters in BE-algebras
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Abstract. The notions of hesitant fuzzy subalgebras and hesitant fuzzy filters are introduced and related prop-

erties are investigated. Relations between a hesitant fuzzy subalgebras and a hesitant fuzzy filters are discussed.

The problem of classifying hesitant fuzzy filters by their γ-inclusive filter will be solved. Given a special set, we

provide conditions for this set to be a hesitant fuzzy filter.

1. Introduction

In 2007, Kim and Kim [4] introduced the notion of a BE-algebra, and investigated several

properties. In [1], Ahn and So introduced the notion of ideals in BE-algebras. They gave several

descriptions of ideals in BE-algebras. Song et al. [7] considered the fuzzification of ideals in BE-

algebras. They introduced the notion of fuzzy ideals in BE-algebras, and investigated related

properties. They gave characterizations of a fuzzy ideal in BE-algebras.

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.

are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra [8] introduced

the notion of hesitant fuzzy sets which are a very useful to express peoples hesitancy in daily life.

The hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and

perfectly described in terms of the opinions of decision makers. Also, hesitant fuzzy set theory

is used in decision making problem etc. (see [6, 10, 11, 12, 13, 14]), and is applied to residuated

lattices and MTL-algebras (see [3, 5]).

In this paper, we introduce the notions of hesitant fuzzy subalgebras and hesitant fuzzy filters

of BE-algebras, and investigate their relations and properties. We consider characterizations of

hesitant fuzzy fuzzy subalgebras and hesitant fuzzy filters of BE-algebras. Given a special set,

we provide conditions for this set to be a hesitant fuzzy filter. Given a special set, we provide

conditions for this set to be a hesitant fuzzy filter.
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2. Preliminaries

Let K(τ) be the class of all algebras of type τ = (2, 0). By a BE-algebra we mean a system

(X; ∗, 1) ∈ K(τ) in which the following axioms hold (see [4]):

(∀x ∈ X) (x ∗ x = 1), (2.1)

(∀x ∈ X) (x ∗ 1 = 1), (2.2)

(∀x ∈ X) (1 ∗ x = x), (2.3)

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)). (exchange) (2.4)

A relation “≤” on a BE-algebra X is defined by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 1). (2.5)

A BE-algebra (X; ∗, 1) is said to be transitive (see [1]) if it satisfies:

(∀x, y, z ∈ X) (y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)). (2.6)

A BE-algebra (X; ∗, 1) is said to be self distributive (see [4]) if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)). (2.7)

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z) , (2.8)

(∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y) , (2.9)

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) . (2.10)

Note that every self distributive BE-algebra is transitive, but the converse is not true in general

(see [1]).

Definition 2.1. ([4]) Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then

F is a filter of X if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

3. Hesitant fuzzy filters

Definition 3.1. ([8]) Let E be a reference set. A hesitant fuzzy set on E is defined in terms of a

function that when applied to E returns a subset of [0, 1], which can be viewed as the following

mathematical representation:

HE := {(e, hE(e))|e ∈ E}
where hE : E →P([0, 1]).
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Definition 3.2. Given a non-empty subset A of X, a hesitant fuzzy set

HX := {(x, hX(x))|x ∈ X}

on satisfying the following condition:

hX(x) = ∅ for all x /∈ A (3.1)

is called a hesitant fuzzy set related to A (briefly, A-hesitant fuzzy set) on X, and is represented

by HA := {(x, hA(x)) | x ∈ X}, where hA is a mapping from X to P([0, 1]) with hA(x) = ∅ for

all x /∈ A.

Definition 3.3. Given a non-empty subset (subalgebra as much as possible) A of X, let HA :=

{(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) | x ∈ X} is

called a hesitant fuzzy subalgebra of X related to A (briefly, A-hesitant fuzzy subalgebra of X) if

it satisfies the following condition:

(∀x, y ∈ A) (hA(x ∗ y) ⊇ hA(x) ∩ hA(y)) . (3.2)

An A-hesitant fuzzy subalgebra of X with A = X is called a hesitant fuzzy subalgebra of X.

Example 3.4. Let X = {0, 1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

For a subalgebra A = {1, a, b} of X, let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set

on X defined by

HA =
{

(1, [0, 1]), (a, (0, 1
2
]), (b, (1

4
, 3
4
]), (c, ∅)

}
Then HA is an A-hesitant fuzzy subalgebra of X.

Definition 3.5. Given a non-empty subset (subalgebra as much as possible) A of X, let HA :=

{(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) | x ∈ X} is

called a hesitant fuzzy filter of X related to A (briefly, A-hesitant fuzzy filter of X) if it satisfies

the following condition:

(∀x ∈ A) (hA(x) ⊆ hA(1)) , (3.3)

(∀x, y ∈ A) (hA(x ∗ y) ∩ hA(x) ⊆ hA(y)) . (3.4)

An A-hesitant fuzzy filter of X with A = X is called a hesitant fuzzy filter of X.
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Example 3.6. (1) Consider a BE-algebra X = {1, a, b, c} as in Example 3.4. Let HX :=

{(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined by

HX =
{

(1, [0, 1]), (a, (0, 1
8
)), (b, (1

4
, 3
4
])), (c, (0, 1

4
))
}

Then HX is a hesitant fuzzy subalgebra of X, but not a hesitant fuzzy filter of X since hA(b ∗
a) ∩ hA(b) = hA(1) ∩ hA(b) = [0, 1] ∩ (1

4
, 3
4
] ⊈ hA(a) = (0, 1

8
).

(2) Let X = {0, 1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set defined by

HX =
{

(1, [0, 1]), (a, (0, 1
4
)), (b, (0, 1

4
)), (c, (0, 1

2
))
}

It is routine to verify that HX := {(x, hX(x))|x ∈ X} is a hesitant fuzzy filter of X.

Proposition 3.7. Let HA := {(x, hA(x))|x ∈ X} be an A-hesitant fuzzy filter of X where A is

a subalgebra of X. Then the following assertions are valid.

(i) (∀x, y ∈ A)(x ≤ y ⇒ hA(x) ⊆ hA(y)),

(ii) (∀x, y, z ∈ A)(hA(x ∗ (y ∗ z)) ∩ hA(y) ⊆ hA(x ∗ z)),

(iii) (∀a, x ∈ A)(hA(a) ⊆ hA((a ∗ x) ∗ x).

Proof. Let x, y ∈ A be such that x ≤ y. Then x ∗ y = 1. It follows from (3.3) and (3.4) that

hA(x) = hA(1) ∩ hA(x) = hA(x ∗ y) ∩ hA(x) ⊆ hA(y).

(ii) Using (3.4) and (2.4), we have hA(x ∗ z) ⊇ hA(y ∗ (x ∗ z)) ∩ hA(y) = hA(x ∗ (y ∗ z)) ∩ hA(y)

for all x, y, z ∈ A.

(iii) Take y := (a ∗ x) ∗ x and x := a in (3.4). Then we have

hA((a ∗ x) ∗ x)) ⊇hA(a ∗ ((a ∗ x) ∗ x)) ∩ hA(a)

=hA((a ∗ x) ∗ (a ∗ x)) ∩ hA(a)

=hA(1) ∩ hA(a) = hA(a)

by using (2.4), (2.1) and (3.3). □
Corollary 3.8. Every hesitant fuzzy filter HX := {(x, hX(x))|x ∈ X} of X satisfies the following

properties:

(i) (∀x, y ∈ X)(x ≤ y ⇒ hX(x) ⊆ hX(y)),

(ii) (∀x, y, z ∈ X)(hX(x ∗ (y ∗ z)) ∩ hX(y) ⊆ hX(x ∗ z)),
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(iii) (∀a, x ∈ X)(hA(a) ⊆ hA((a ∗ x) ∗ x).

We provide conditions for a hesitant fuzzy set to be a hesitant filter.

Theorem 3.9. Let A be a subalgebra of a BE-algebra X. Every A-hesitant fuzzy set satisfies

(3.3) and Proposition 3.7(ii). Then it is an A-hesitant fuzzy filter of X.

Proof. Taking x := 1 in Proposition 3.7(ii) and using (2.3), we obtain hA(z) = hA(1 ∗ z) ⊇
hA(1 ∗ (y ∗ z))∩ hA(y) = hA(y ∗ z)∩ hA(y) for all y, z ∈ A. Hence HA = {(x, hA(x))|x ∈ X} is an

A-hesitant fuzzy filter of X. □

Corollary 3.10. Let HA := {(x, hA(x))|x ∈ X} be an A-hesitant fuzzy set for a subalgebra A

of X. Then hA is an A-hesitant fuzzy filter of X if and only if it satisfies (3.3) and Proposition

3.7(ii).

Theorem 3.11. An hesitant fuzzy set HA of X, where A is a subalgebra of X, is an A-hesitant

fuzzy filter of X if and only if it satisfies the following conditions:

(i) (∀x, y ∈ A)(hA(y ∗ x) ⊇ hA(x)),

(ii) (∀x, a, b ∈ A)(hA((a ∗ (b ∗ x)) ∗ x) ⊇ hA(a) ∩ hA(b)).

Proof. Assume that HA := {(x, hA(x))|x ∈ X} is an A-hesitant fuzzy filter of X. Using (3.3),

(3.4), (2.4),(2.1) and (2.2), we get hA(y∗x) ⊇ hA(x∗(y∗x))∩hA(x) = hA(1)∩hA(x) = hA(x) for all

x, y ∈ A. It follows from Proposition 3.7 that hA((a∗(b∗x))∗x) ⊇ hA((a∗(b∗x))∗(b∗x))∩hA(b) ⊇
hA(a) ∩ ha(b) for all x, a, b ∈ X.

Conversely, let HA(X) = {(x, hA(x))|x ∈ A} be an A-hesitant fuzzy set of X satisfying condi-

tions (i) and (ii). If we take y := x in (i), then hA(1) = hA(x ∗ x) ⊇ hA(x) for all x ∈ A. Using

(ii), we obtain hA(y) = hA(1 ∗ y) = hA(((x ∗ y) ∗ (x ∗ y)) ∗ y) ⊇ hA(x ∗ y)∩ hA(x) for all x, y ∈ A.

Hence HA is an A-hesitant fuzzy filter of X. □

Proposition 3.12. Let HX := {(x, hX(x)|x ∈ X} be a hesitant fuzzy set on X. Then HX is a

hesitant fuzzy filter of X if and only if

(∀x, y, z ∈ X)(z ≤ x ∗ y ⇒ hX(y) ⊇ hX(x) ∩ hX(z)). (3.5)

Proof. Assume that HX is a hesitant fuzzy filter of X. Let x, y, z ∈ X be such that z ≤ x ∗ y.

By Proposition 3.7 and Definition 3.5, we have hX(y) ⊇ hX(x ∗ y) ∩ hX(x) ⊇ hX(z) ∩ hX(x).

Conversely, suppose that HX satisfies (3.5). By (2.2), we have x ≤ x ∗ 1 = 1. Using (3.5), we

have hX(1) ⊇ hX(x) for all x ∈ X. It follows from (2.1) and (2.4) that x ≤ (x ∗ y) ∗ y for all

x, y ∈ X. Using (3.5), we have hX(y) ⊇ hX(x ∗ y) ∩ hX(x). Therefore HX is a hesitant fuzzy

filter of X. □

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

350 Young Bae Jun et al 346-358



As a generalization of Proposition 3.12, we have the following results.

Theorem 3.13. Let HX := {(x, hX(x)|x ∈ X} be a hesitant fuzzy filter of X. Then

n∏
i=1

wi ∗ x = 1⇒ hX(x) ⊇ ∩n
i=1hX(wi) (3.6)

for all x,w1, · · · , wn ∈ X, where
∏n

i=1wi ∗ x = wn ∗ (wn−1 ∗ (· · ·w1 ∗ x) · · · )).

Proof. The proof is by induction on n. Let HX be a hesitant fuzzy filter of X. By Proposition

3.7(i) and (3.6), we know that the condition (3.6) is true for n = 1, 2. Assume that HX satisfies

the condition (3.6) for n = k, i.e.,
∏k

i=1wi ∗ x = 1 ⇒ ∩k
i=1hX(wi) for all x,w1, · · · , wk ∈ X.

Suppose that
∏k+1

i=1 wi ∗ x = 1 for all x,w1, · · · , wk, wk+1 ∈ X. Then

hX(w1 ∗ x) ⊇ ∩k+1
i=2 hX(wi).

Since HX is a hesitant fuzzy filter of X, it follows form (3.4) that

hX(x) ⊇hX(w1 ∗ x) ∩ hX(w1)

⊇ (∩k+1
i=2 hX(wi)) ∩ hX(w1)

= ∩k+1
i=1 hX(wi).

This completes the proof. □

Theorem 3.14. Let HX = {(x, hX(x))|x ∈ X} be a hesitant fuzzy set of a BE-algebra satisfying

(3.6). Then HX is a hesitant fuzzy filter of X.

Proof. Let x, y, z ∈ X be such that z ≤ x ∗ y. Then z ∗ (x ∗ y) = 1 and so hX(y) ⊇ hX(x)∩hX(z)

by (3.6). Using Proposition 3.12, HX is a hesitant fuzzy filter of X. □

Theorem 3.15. A hesitant fuzzy set HX := {(x, hX(x)|x ∈ X} of a BE-algebra X is a hesitant

fuzzy filter of X if and only if the set HX(γ) := {x ∈ X|hX(x) ⊇ γ} is a filter of X for all

γ ∈P([0, 1]) whenever it is nonempty.

Proof. Suppose that HX is a hesitant fuzzy filter of X. Let x, y ∈ X and γ ∈ P([0, 1]) be such

that x ∗ y ∈ HX(γ) and x ∈ HX(γ). Then hX(x ∗ y) ⊇ γ and hX(x) ⊇ γ. It follows from (3.3)

and (3.4) that hX(1) ⊇ hX(y) ⊇ hX(x ∗ y) ∩ hX(x) ⊇ γ. Hence 1 ∈ HX(γ) and y ∈ HX(γ), and

therefore HX(γ) is a filter of X.

Conversely, assume that HX(γ) is a filter of X for all γ ∈P([0, 1]) with HX(γ) ̸= ∅. For any

x ∈ X, let hX(x) = γ. Then x ∈ HX(γ). Since HX(γ) is a filter of X, we have 1 ∈ hX(γ) and so

hX(x) = γ ⊆ hX(1). For any x, y ∈ X, let hX(x ∗ y) = γx∗y and hX(x) = γx. Take x ∗ y ∈ HX(γ)

and x ∈ HX(γ) which imply that y ∈ HX(γ). Hence hX(y) ⊇ γ = γx∗y ∩ γx = hX(x ∗ y)∩ hX(x).

Thus HX is a hesitant fuzzy filter of X. □
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The filter HX(γ) in Theorem 3.15 is called the hesitant γ-inclusive set of HX := {(x, hX(x))|x ∈
X}.

We make a new hesitant fuzzy filter from old one.

Theorem 3.16. Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on a BE-algebra X.

Define a hesitant fuzzy set H∗
X on X by

h∗X : X →P([0, 1]), x 7→
{
hX(x) if x ∈ HX(γ)

δ otherwise

where γ is any subset of [0, 1] and δ is a subset of [0, 1] satisfying δ ⊊ ∩x/∈HX(γ)hX(x). If HX is a

hesitant fuzzy filter of X, then so is H∗
X .

Proof. Assume that HX is a hesitant fuzzy filter of X. Then HX(γ) is a filter of X for all

γ ∈ P([0, 1]) by Theorem 3.15. Hence 1 ∈ HX(γ) and so h∗X(1) = hX(1) ⊇ hX(x) ⊇ h∗X(x)

for all x ∈ X. Let x, y ∈ X. If x ∗ y ∈ HX(γ) and x ∈ HX(γ), then y ∈ HX(γ). Hence

h∗X(y) = hX(y) ⊇ hX(x ∗ y) ∩ hX(x) = h∗X(x ∗ y) ∩ h∗X(x). If x ∗ y /∈ HX(γ) or x /∈ HX(γ), then

h∗X(x ∗ y) = δ or h∗X(x) = δ. Thus h∗X(y) ⊇ δ = h∗X(x ∗ y) ∩ h∗X(x). Therefore H∗
X is a hesitant

fuzzy filter of X. □

For two elements a and B of X, consider a hesitant fuzzy set Ha,b
X = {(x, hX(x))|x ∈ X} where

ha,bX : X →P([0, 1]), x 7→
{
γ1 if a ∗ (b ∗ x) = 1

γ2 otherwise

where γ1 and γ2 are subsets of [0, 1] with γ2 ⊊ γ1. In the following example, we know that there

exist a, b ∈ X such that Ha,b
X is not a hesitant fuzzy filter of X.

Example 3.17. Let X = {0, 1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a c

b 1 1 1 c

c 1 a b 1

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set defined by

HX =
{

(1, [0, 1]), (a, (0, 1
4
)), (b, (1

4
, 3
4
)), (c, (6

8
, 7
8
))
}

Then H1,a
X is not a hesitant fuzzy filter of X since h1,aX (a ∗ b) ∩ h1,aX (a) = [0, 1] ⊈ h1,aX (b) = (0, 1

4
).

Now we provide a condition for the hesitant fuzzy set Ha,b
X to be a hesitant fuzzy filter of X

for all a, b ∈ X.
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Theorem 3.18. If X is a self distributive BE-algebra, then the hesitant fuzzy set Ha,b
X is a

hesitant fuzzy filter of X for all a, b ∈ X.

Proof. Let a, b ∈ X. Obviously, ha,bX (1) ⊇ ha,bX (x) for all x ∈ X. Let x, y ∈ X be such

that a ∗ (b ∗ (x ∗ y)) ̸= 1 or a ∗ (b ∗ x) ̸= 1. Then ha,bX (x ∗ y) = γ2 or ha,bX (x) = γ2. Hence

ha,bX (x ∗ y) ∩ ha,bX (x) = γ2 ⊆ ha,bX (y). Assume that a ∗ (b ∗ (x ∗ y)) = 1 and a ∗ (b ∗ x) = 1. Then

1 = a ∗ (b ∗ (x ∗ y))

= a ∗ ((b ∗ x) ∗ (b ∗ y))

= (a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ y))

= 1 ∗ (a ∗ (b ∗ y))

= a ∗ (b ∗ y)

and so ha,bX (x ∗ y) ∩ ha,bX (x) = γ1 = ha,bX (y). Therefore Ha,b
X is a hesitant fuzzy filter of X for all

a, b ∈ X. □

Theorem 3.19. Every filter of a BE-algebra can be represented as γ-inclusive set of a hesitant

fuzzy filter.

Proof. Let F be a filter of a BE-algebra X. For a subset γ of [0, 1], define a hesitant set HX by

hX : X →P([0, 1]), x 7→
{
γ if x ∈ F
∅ if x /∈ F

Obviously, F = HX(γ). We now prove that HX is a hesitant fuzzy filter of X. Since 1 ∈ HX(γ),

we have HX(1) = γ ⊇ hX(x) for all x ∈ X. Let x, y ∈ X. If x ∗ y, x ∈ F , then y ∈ F since F

is a filter of X. Hence hX(x ∗ y) = hX(x) = hX(y) = γ and so hX(x ∗ y) ∩ hX(x) ⊆ hX(y). If

x ∗ y ∈ F and x /∈ F , then hX(x ∗ y) = γ and hX(x) = ∅ which imply that hX(x ∗ y) ∩ hX(x) =

γ∩∅ = ∅ ⊆ hX(y). Similarly, if x∗y /∈ F and x ∈ F , then hX(x∗y)∩hX(x) ⊆ hX(y). Obviously,

if x ∗ y /∈ F and x /∈ F , then hX(x ∗ y) ∩ hX(x) ⊆ hX(y). Therefore HX is a hesitant fuzzy filter

of X. □

Let HX = {(x, h(x))|x ∈ X} be a hesitant fuzzy set on X. For any a, b ∈ X and k ∈ N,

consider the set

hX [ak; b] := {x ∈ X|hX(ak ∗ (b ∗ x)) = hX(1)}
where hX(a∗ (a∗ (· · · ∗ (a∗ (a∗x)) · · · ))) in which a appears k-times. Note that 1, a, b ∈ HX [ak; b]

for all a, b ∈ X and k ∈ N.

Proposition 3.20. Let HX := {(x, hx(x))|x ∈ X} be a hesitant fuzzy set on X satisfying (3.3)

and hX(x ∗ y) = hX(x) ∪ hX(y) for all x, y ∈ X. For any a, b ∈ X and k ∈ N, if x ∈ hX [ak; b],

then y ∗ x ∈ hX [ak; b] for all y ∈ X.
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Proof. Assume that x ∈ hX [ak; b]. Then hX(ak ∗ (b ∗ x)) = hX(1) and so

hX(ak ∗ (b ∗ (y ∗ x))) =hX(ak ∗ (y ∗ b ∗ x))

=hX(y ∗ (ak ∗ (b ∗ x)))

=hX(y) ∪ hX(ak ∗ (b ∗ x))

=hX(y) ∪ hX(1) = hX(1)

for all y ∈ X by (2.4). Hence y ∗ x ∈ hX [ak; b] for all y ∈ X. □

Proposition 3.21. Let HX := {(x, hX))|x ∈ X} be a hesitant fuzzy set on a BE-algebra X. If

an element a ∈ X satisfies a ∗ x = 1 for all x ∈ X, then hX [ak; b] = X = [bk; a] for all b ∈ X and

k ∈ N.

Proof. For any x ∈ X, we have

hX(ak ∗ (b ∗ x)) =hX(ak−1 ∗ (a ∗ (b ∗ x)))

=hX(ak−1 ∗ (b ∗ (a ∗ x)))

=hX(ak−1 ∗ (b ∗ 1))

=hX(1),

and so x ∈ hX [ak; b]. Similarly, x ∈ hX [bk; a]. □

Proposition 3.22. Let X be a self distributive BE-algebra and let HX := {(x, hX(x))|x ∈ X}
be a order reversing hesitant fuzzy set of X with the property (3.3). If b ≤ c in X, then

hX [ak; c] ⊆ hX [ak; b] for all a ∈ X and k ∈ N.

Proof. Let a, b, c ∈ X be such that b ≤ c. For any k ∈ N, if x ∈ hX [ak; c], then

hX(1) =hX(ak ∗ (c ∗ x))

=hX(c ∗ (ak ∗ x))

⊆hX(b ∗ (ak ∗ x))

=hX(ak ∗ (b ∗ x))

by (2.4) and (2.8). Hence hX(ak ∗ (b ∗ x)) = hX(1). Thus x ∈ hX [ak; b], which completes the

proof. □

The following example shows that there exists a hesitant fuzzy set HX of X, a, b ∈ X and

k ∈ N such that hX [ak; b] is not a filter of X.
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Example 3.23. Let X = {0, 1, a, b, c} be a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set defined by

HX =
{

(1, [0, 1]), (a, (1
4
, 3
4
)), (b, (3

4
, 1
2
)), (c, (6

8
, 7
8
))
}

Then hX [c; b] = {x ∈ X|hX(c∗(b∗x)) = hX(1)} = {1, a, b} is not a filter, since a∗c = a ∈ hX [c; b]

and c /∈ hX [c; b].

Theorem 3.24. HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on a self distributive BE-

algebra X in which hX is injective. Then hX [ak; b] is a filter of X for all a, b ∈ X and k ∈ N.

Proof. Assume that X is a self distributive BE-algebra and hX is injective. Obviously, 1 ∈
hX [ak; b]. Let a, b, x, y ∈ X and k ∈ N be such that x ∗ y ∈ hX [ak; b] and x ∈ hX [ak; b]. Then

hX(ak ∗ (b ∗ x)) = hX(1) which implies that ak ∗ (b ∗ x) = 1, since hX is injective. Using (2.7), we

have

hX(1) =hX(ak ∗ (b ∗ (x ∗ y)))

=hX(ak−1 ∗ (a ∗ (b ∗ (x ∗ y))))

=hX(ak−1 ∗ (a ∗ ((b ∗ x) ∗ (b ∗ y))))

= · · ·
=hX((ak ∗ (b ∗ x)) ∗ (ak ∗ (b ∗ y)))

=hX(1 ∗ (ak ∗ (b ∗ y))

=hX(ak ∗ (b ∗ y))

which imply that y ∈ hX [ak; b]. Therefore hX [ak; b] is a filter of X for all a, b ∈ X and k ∈ N. □

Theorem 3.25. HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set of a self distributive BE-

algebra X satisfying the condition (3.3) and hX(x ∗ y) = hX(x) ∩ hX(y), for all x, y ∈ X. Then

hX [ak; b] is a filter of X for all a, b ∈ X and k ∈ N.

Proof. Let a, b ∈ X and k ∈ N. Obviously, 1 ∈ hX [ak; b]. Let x, y ∈ X be such that x∗y ∈ hX [ak; b]

and x ∈ hX [ak; b]. Then hX(ak ∗ (b∗ (x∗ y))) = hX(1) and hX(ak ∗ (b∗x)) = hX(1), which implies
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from the hypothesis that

hX(1) =hX(ak ∗ (b ∗ (x ∗ y)))

=hX(ak−1 ∗ (a ∗ (b ∗ (x ∗ y))))

=hX(ak−1 ∗ (a ∗ ((b ∗ x) ∗ (b ∗ y))))

= · · ·
=hX((ak ∗ (b ∗ x)) ∗ (ak ∗ (b ∗ y)))

=hX(ak ∗ (b ∗ x)) ∩ hX(ak ∗ (b ∗ y))

=hX(1) ∩ hX(ak ∗ (b ∗ y))

=hX(ak ∗ (b ∗ y)).

Hence y ∈ hX [ak; b] and therefore hX [ak; b] is a filter of X for all a, b ∈ X and k ∈ N. □
Proposition 3.26. HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set of a BE-algebra X in

which hX is injective. If F is a filter of X, then the following holds.

(∀a, b ∈ F )(∀k ∈ N)(hX [ak; b] ⊆ F ). (3.7)

Proof. Assume that F is a filter of X and let a, b ∈ F and k ∈ N. If x ∈ hX [ak; b], then

hX(a ∗ (ak−1 ∗ (b ∗ x))) = hX(ak ∗ (b ∗ x)) = hX(1) and so a ∗ (ak−1 ∗ (b ∗ x)) = 1 ∈ F since hX is

injective. Since F is a filter of X, it follows from (F2) that ak−1 ∗ (b ∗ x) ∈ F . Continuing this

process, we obtain b ∗ x ∈ F and so x ∈ F . Therefore hX [ak; b] ⊆ F for all a, b ∈ F and k ∈ N.
□

Theorem 2.27. HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set of a BE-algebra X. For any

subset F of X, if the condition (3.7) holds, then F is a filter of X.

Proof. Suppose that the condition (3.7) holds. Obviously, 1 ∈ hX [ak; b] ⊆ F . Let x, y ∈ X be

such that x ∗ y ∈ F and x ∈ F . Then
hX(xk ∗ ((x ∗ y) ∗ y)) =hX(xk−1 ∗ (x ∗ ((x ∗ y) ∗ y)))

=hX(xk−1 ∗ ((x ∗ y) ∗ (x ∗ y)))

=hX(xk−1 ∗ 1) = hX(1)

and hence y ∈ hX [ak; b] ⊆ F , where b = x ∗ y. Therefore F is a filter of X. □
Theorem 3.28. HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set of a BE-algebra X. If F is

a filter of X, then

(∀k ∈ N)(F = ∪{hX [ak; b]|a, b ∈ F}).
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Proof. Let F is a filter of X. By Proposition 3.26, the inclusion ∪{hX [ak; b]|a, b ∈ F} ⊆ F holds.

Let x ∈ F . Since x ∈ hX [1k;x] for all k ∈ N, it follows that

F ⊆ ∪ {hX [1k;x]|x ∈ F}
⊆ ∪ {hX [ak; b]|a, b ∈ F}.

This completes the proof. □
Theorem 3.29. If HX := {(x, hX(x))|x ∈ X} is a hesitant filter of X, then the set

Ha := {x ∈ X|hX(a) ⊆ hX(x)}

is a filter of X for all a ∈ X.

Proof. Let x, y ∈ X be such that x ∗ y ∈ Ha and x ∈ Ha. Then hX(a) ⊆ hX(x ∗ y) and

hX(a) ⊆ hX(y). By (3.3) and (3.4), we have hX(a) ⊆ hX(x ∗ y) ∩ hX(x) ⊆ HX(y) ⊆ hX(1) and

so 1 ∈ Ha and y ∈ Ha. Therefore Ha is a filter of X. □
Theorem 3.30. Let a ∈ X and HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on X. Then

the following properties are valid:

(i) if Ha is a filter of X, then HX := {(x, hX(x))|x ∈ X} satisfies:
(∀x, y ∈ X)(hX(a) ⊆ hX(x ∗ y) ∩ hX(x)⇒ hX(a) ⊆ hX(y)). (3.8)

(ii) if HX := {(x, hX(x))|x ∈ X} satisfies the condition (3.3) and (3.8), then Ha is a filter of

X.

Proof. (i) Assume thatHa is a filter ofX and let x, y ∈ X be such that hX(a) ⊆ HX(x∗y)∩HX(x).

Then x ∗ y ∈ Ha and y ∈ Ha. Since Ha is a filter of X, we obtain x ∈ Ha. Therefore hX(a) ⊆
hX(y).

(ii) Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on X in which the conditions (3.3)

and (3.8) hold. Then 1 ∈ Ha. Let x, y ∈ X be such that x ∗ y ∈ Ha and x ∈ Ha. Then

hX(a) ⊆ hX(x ∗ y) and hX(a) ⊆ hX(x). Hence HX(a) ⊆ hX(x ∗ y)∩ hX(x). Using (3.8), we have

hX(a) ⊆ hX(y), i.e., y ∈ Ha. Thus Ha is a filter of X. □
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Abstract In this paper, a new nonic functional equation is introduced. The solution of this func-

tional equation can also be determined in certain type of groups using two important results due to

Székelyhidi. Using the fixed point theorems due to Brzdȩk and Ciepliński, we give some Ulam–Hyers

stability results for the nonic functional equation in non-Archimedean spaces.

Keywords Ulam–Hyers stability; nonic functional equation; non-Archimedean space; fixed point

method.

Mathematics Subject Classification(2010) 39B82; 39B52; 46H25.

1 Introduction and preliminaries

In this paper R and N denote the sets of reals and positive integers, respectively. Moreover, R+ := [0,∞)

and N0 := N ∪ {0}.

A valuation is a function | · | from a field K into R+ such that 0 is the unique element having the 0 valuation,

|rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are examples of

valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.

Let K be a field. A non-Archimedean valuation on K is a function | · | : K→ R such that

(1) |r| ≥ 0 and equality holds if and only if r = 0.

(2) |rs| = |r||s|, r, s ∈ K.

(3) |r + s| ≤ max{|r|, |s|}, r, s ∈ K.

Any field endowed with a non-Archimedean valuation is said to be a non-Archimedean field. In any such field

we have |1| = | − 1| = 1 and |n × 1| ≤ 1 for all n ∈ N, where 1 is the neutral element of the semigroup (K, ·),
1× 1 = 1 and (n+ 1)× 1 = (n× 1) + 1 for n ∈ N.

Let X be a linear space over a field K with a non-Archimedean valuation | · |. A function ∥ · ∥ : X → R+ is a

non-Archimedean norm if it satisfies the following conditions:

∗The first author was supported by the National Natural Science Foundation of China (Grant No. 11171022).
†Corresponding author.
E-mail addresses: xutianzhou@bit.edu.cn (T.Z. Xu), dingyaliding@126.com (Y. Ding), jrassias@primedu.uoa.gr (J.M. Rassias).
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(1) ∥x∥ = 0 if and only if x = 0;

(2) ∥rx∥ = |r|∥x∥ for all r ∈ K and x ∈ X;

(3) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for all x, y ∈ X. If ∥ · ∥ : X → R+ is a non-Archimedean norm in X, then the

pair (X, ∥ · ∥) is called a non-Archimedean normed space. Then (X, ∥ · ∥) is called a non-Archimedean normed

space.

Let X be a non-Archimedean normed space. Let {xn} be a sequence in X. Then {xn} is said to be convergent

if there exists x ∈ X such that lim
n→∞

∥xn − x∥ = 0. In that case, x is called the limit of the sequence {xn} and

we denote it by lim
n→∞

xn = x. A sequence {xn} in X is said to be a Cauchy sequence if lim
n→∞

∥xn+p− xn∥ = 0 for

all p = 1, 2, . . .. Due to the fact that

∥xn − xm∥ ≤ max{∥xj+1 − xj∥ : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean normed space.

The most important examples of non-Archimedean spaces are p-adic numbers. The p-adic numbers have

gained the interest of physicists because of their connections with some problems coming from quantum physics,

p-adic strings and superstrings (see [15]).

In this paper, we first introduce the following new nonic functional equation

f(x+ 5y)− 9f(x+ 4y) + 36f(x+ 3y)− 84f(x+ 2y) + 126f(x+ y)− 126f(x)+

84f(x− y)− 36f(x− 2y) + 9f(x− 3y)− f(x− 4y) = 9!f(y).
(1)

It is easy to see that the function f(x) = ax9 is a solution of the functional equation (1). Every solution of the

functional equation (1) is said to be a nonic mapping.

The study of stability problems for functional equations is related to a question of Ulam [20] concerning the

stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [10]. The result of

Hyers was generalized by Aoki [2] for approximate additive mappings and by Rassias [17] for approximate linear

mappings by allowing the Cauchy difference operator CDf(x, y) = f(x + y)− [f(x) + f(y)] to be controlled by

ϵ(∥x∥p + ∥y∥p). In 1994, a further generalization was obtained by Găvruţa [7], who replaced ϵ(∥x∥p + ∥y∥p) by

a general control function φ(x, y). We refer the reader to (see for instance [1, 3–6, 8, 11–14, 16, 18, 21, 22]) and

references therein for more information on Ulam’s problem during the last seventy years.

From now on S denotes a nonempty set and X stands for a complete non-Archimedean normed space. Given

a set Z ̸= ∅ and functions φ : S → S and F : S × Z → Z, we define an operator LF
φ : ZS → ZS (ZS denotes the

family of all functions mapping a set S into a set Z) by

LF
φ (α)(t) := F (t, α(φ(t))), α ∈ ZS , t ∈ S.

Moreover, if Λ : S × R+ → R+, then we write Λt := Λ(t, ·), t ∈ S.

For explicitly later use, we recall the following results by Brzdȩk and Ciepliński [4].

Theorem 1 Let Λ : S × R+ → R+, f : S → X, T : XS → XS , φ : S → S, ε : S → R+ and

∥T (α)(t)− T (β)(t)∥ ≤ Λ(t, ∥α(φ(t))− β(φ(t))∥), α, β ∈ XS , t ∈ S. (2)

Assume also that Λt is nondecreasing for every t ∈ S, lim
n→∞

(LΛ
φ)n(ε)(t) = 0(t ∈ S) holds and

∥T (f)(t)− f(t)∥ ≤ ε(t), t ∈ S. (3)

Then for each t ∈ S the limit

lim
n→∞

T n(f)(t) =: A(t) (4)
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exists and the function A ∈ XS is the unique fixed point of T with

∥f(t)−A(t)∥ ≤ sup
n∈N0

(LΛ
φ)n(ε)(t) =: h(t), t ∈ S. (5)

Corollary 1 Let F : S ×X → X, φ : S → S, Λ : S × R+ → R+, f : S → X, ε : S → R+ and

∥F (t, x)− F (t, y)∥ ≤ Λ(t, ∥x− y∥), t ∈ S, x, y ∈ X. (6)

Assume also that, for every t ∈ S, Λt is nondecreasing, lim
n→∞

(LΛ
φ)n(ε)(t) = 0(t ∈ S) holds and

∥f(t)− F (t, f(φ(t)))∥ ≤ ε(t), t ∈ S. (7)

Then for each t ∈ S the limit

lim
n→∞

(LF
φ )n(f)(t) =: A(t) (8)

exists and the function A ∈ XS is the unique solution of the functional equation

A(t) = F (t, A(φ(t))) (9)

such that (5) holds.

We end this section with two corollaries, which are immediate consequences of Corollary 1.

Corollary 2 Let a : S → K\{0}, φ : S → S, f : S → X, δ : S → R+,

∥f(φ(t))− a(t)f(t)∥ ≤ δ(t), t ∈ S (10)

and

lim
n→∞

δ(φn(t))

|
∏n

i=0 a(φi(t))|
= 0, t ∈ S. (11)

Then there exists a unique solution A ∈ XS of the functional equation

A(φ(t)) = a(t)A(t) (12)

such that

∥f(t)−A(t)∥ ≤ sup
n∈N0

δ(φn(t))

|
∏n

i=0 a(φi(t))|
, t ∈ S. (13)

Corollary 3 Let b : S → K, ψ : S → S, f : S → X, ε : S → R+,

∥f(t)− b(t)f(ψ(t))∥ ≤ ε(t), t ∈ S (14)

and

lim
n→∞

∣∣∣∣∣
n∏

i=0

b(ψi(t))

∣∣∣∣∣ ε(ψn+1(t)) = 0, t ∈ S. (15)

Then there exists a unique solution B ∈ XS of the functional equation

B(t) = b(t)B(ψ(t)) (16)

such that

∥f(t)−B(t)∥ ≤ max

{
ε(t), sup

n∈N0

∣∣∣∣∣
n∏

i=0

b(ψi(t))

∣∣∣∣∣ ε(ψn+1(t))

}
, t ∈ S. (17)
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2 Solution of the nonic functional equation on commutative groups

In this section, we solve the functional equation (1) on commutative groups with some additional requirements.

A group S is said to be divisible if for every element b ∈ S and every n ∈ N, there exists an element a ∈ S
such that na = b. If this element a is unique, then S is said to be uniquely divisible. In a uniquely divisible

group, this unique element a is denoted by b
n . That the equation na = b has a solution is equivalent to saying

that the multiplication by n is surjective. Similarly, that the equation na = b has a unique solution is equivalent

to saying that the multiplication by n is bijective.

The following two important results due to Székelyhidi (see [19] for the details).

Theorem 2 Let G be a commutative semigroup with identity, S a commutative group and n a nonnegative

integer. Let the multiplication by n! be bijective in S. The function f : G→ S is a solution of Fréchet functional

equation

△x1,...,xn+1f(x0) = 0 (18)

for all x0, x1, . . . , xn+1 ∈ G if and only if f is a polynomial of degree at most n, i.e., f is given by

f(x) = An(x) + · · ·+A1(x) +A0(x), x ∈ G, (19)

where A0(x) = A0 is an arbitrary element of S and An(x) is the diagonal of an n-additive symmetric function

An : Gn → S.

Theorem 3 Let G and S be commutative groups, n a nonnegative integer, φi, ψi additive functions from G into

G and φi(G) ⊆ ψi(G)(i = 1, 2, . . . , n+ 1). If the functions f, fi : G→ S(i = 1, 2, . . . , n+ 1) satisfy

f(x) +
n+1∑
i=1

fi(φi(x) + ψi(y)) = 0, (20)

then f satisfies Fréchet functional equation △x1,...,xn+1f(x0) = 0.

Using the results, we have the following theorem.

Theorem 4 Let S be a commutative group and V be a linear space. Then the function f : S → V satisfies the

functional equation (1) for all x, y ∈ S, if and only if f is of the form

f(x) = A9(x), x ∈ S,

where A9(x) is the diagonal of the 9-additive symmetric map A9 : S9 → V .

Proof. Assume that f satisfies the functional equation (1). We can rewrite the functional equation (1) in the

form

f(x)− 1

126
f(x+ 5y) +

1

14
f(x+ 4y)− 2

7
f(x+ 3y) +

2

3
f(x+ 2y)− f(x+ y)

−2

3
f(x− y) +

2

7
f(x− 2y)− 1

14
f(x− 3y) +

1

126
f(x− 4y) + 2880f(y) = 0.

(21)

Thus by Theorems 2 and 3, f is of the form

f(x) =
9∑

i=0

Ai(x), x ∈ S, (22)

where A0(x) = A0 is an arbitrary element of V , and Ai(x) is the diagonal of the i-additive symmetric map

Ai : Si → V for i = 1, 2, . . . , 9. Replacing x = 0, y = 0 in (1), one finds f(0) = 0. Hence A0(x) = A0 = 0.
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Replacing x = 0, y = x and x = x, y = −x in (1) and adding the two resulting equations, we get f(−x) = −f(x)

for all x ∈ S. So the function f is odd. Thus we have A8(x) = A6(x) = A4(x) = A2(x) = 0 for all x ∈ S. It

follows that f(x) = A9(x) +A7(x) +A5(x) +A3(x) +A1(x). Replacing (x, y) with (0, 2x) in (1), one obtains

f(10x)− 8f(8x) + 27f(6x)− 48f(4x)− (9!− 42)f(2x) = 0. (23)

Replacing (x, y) with (5x, x), one gets

f(10x)− 9f(9x) + 36f(8x)− 84f(7x) + 126f(6x)− 126f(5x) + 84f(4x)

−36f(3x) + 9f(2x)− (9! + 1)f(x) = 0.
(24)

Subtracting equations (23) and (24), we find

9f(9x)− 44f(8x) + 84f(7x)− 99f(6x) + 126f(5x)− 132f(4x)

+36f(3x)− (9!− 33)f(2x) + (9! + 1)f(x) = 0.
(25)

Replacing (x, y) with (4x, x), and multiplying the resulting equation by 9, one obtains

9f(9x)− 81f(8x) + 324f(7x)− 756f(6x) + 1134f(5x)− 1134f(4x)

+756f(3x)− 324f(2x)− 9(9!− 9)f(x) = 0.
(26)

Subtracting equations (25) and (26), we get

37f(8x)− 240f(7x) + 657f(6x)− 1008f(5x) + 1002f(4x)− 720f(3x)

−(9!− 357)f(2x) + (10!− 80)f(x) = 0.
(27)

Replacing (x, y) with (3x, x), and multiplying the resulting equation by 37, one finds

37f(8x)− 333f(7x) + 1332f(6x)− 3108f(5x) + 4662f(4x)− 4662f(3x)

+3108f(2x)− 37(9! + 35)f(x) = 0.
(28)

Subtracting equations (27) and (28), we arrive at

93f(7x)− 675f(8x) + 2100f(5x)− 3660f(4x) + 3942f(3x)− (9! + 2751)f(2x)

+(47 · 9! + 1215)f(x) = 0.
(29)

Replacing (x, y) with (2x, x), and multiplying the resulting equation by 93, one finds

93f(7x)− 837f(6x) + 3348f(5x)− 7812f(4x) + 11718f(3x)− 11625f(2x)

−93(9!− 75)f(x) = 0.
(30)

Subtracting equations (29) and (30) and then dividing by 2, we arrive at

81f(6x)− 624f(5x) + 2076f(4x)− 3888f(3x)− 1

2
(9!− 8874)f(2x)

+(70 · 9!− 2880)f(x) = 0.
(31)

Replacing (x, y) with (x, x), and multiplying the resulting equation by 81, one finds

81f(6x)− 729f(5x) + 2916f(4x)− 6723f(3x) + 9477f(2x)− 81(9! + 90)f(x) = 0. (32)

Subtracting equations (31) and (32), we arrive at

105f(5x)− 840f(4x) + 2835f(3x)− 1

2
(9! + 10080)f(2x) + (151 · 9! + 4410)f(x) = 0. (33)

Replacing (x, y) with (0, x), and multiplying the resulting equation by 105, one finds

105(5x)− 840f(4x) + 2835f(3x)− 5040f(2x)− 105(9!− 42)f(x) = 0. (34)

Subtracting equations (33) and (34), we arrive at

f(2x) = 29f(x). (35)

By (35) and An(rx) = rnAn(x) whenever x ∈ S and r ∈ Q, we obtain 29(A9(x)+A7(x)+A5(x)+A3(x)+A1(x)) =

29A9(x) + 27A7(x) + 25A5(x) + 23A3(x) + 2A1(x). It follows that A7(x) = A5(x) = A3(x) = A1(x) = 0 for all

x ∈ S. Hence f(x) = A9(x). The converse is easily verified. �
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3 Stability results

Throughout this section, we assume that S is a commutative group and X is a complete non-Archimedean

normed space. For a given mapping f : S → X, we define the difference operators

Df(x, y) := f(x+ 5y)− 9f(x+ 4y) + 36f(x+ 3y)− 84f(x+ 2y) + 126f(x+ y)

−126f(x) + 84f(x− y)− 36f(x− 2y) + 9f(x− 3y)− f(x− 4y)− 9!f(y)

for all x, y ∈ S.

Theorem 5 Let φ : S2 → R+ be a function such that

lim
n→∞

|2|−9n φ (2nx, 2ny) = 0, x, y ∈ S. (36)

Assume also that f : S → X be a mapping such that

∥Df(x, y)∥ ≤ φ(x, y), x, y ∈ S. (37)

Then there exists a unique nonic mapping T : S → X such that

∥f(x)− T (x)∥ ≤ sup
n∈N0

|2|−9(n+1)δ(2nx), x ∈ S, (38)

where

δ(x) :=
1

|9!|
max

{
|210|φ(0, x),

|210|
|8!|

φ(0, 3x),
|210|
|8!|

φ(3x,−3x),
|15|
|6!|

φ(2x,−2x),

|35|
|6!|

φ(x,−x),
|2940|
|8!|

φ(0, 0),
|210|
|9!|

φ(0, 4x),
|210|
|9!|

φ(4x,−4x), |162|φ(x, x),

|18|
|8!|

φ(3x,−3x), |93|φ(2x, x), |37|φ(3x, x), |9|φ(4x, x), φ(5x, x), φ(0, 2x),

1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x)

}
.

Proof. Replacing x = y = 0 in (37), we get

∥f(0)∥ ≤ 1

|9!|
φ(0, 0). (39)

Replacing x and y by 0 and x in (37), respectively, we get

∥f(5x)− 9f(4x) + 36f(3x)− 84f(2x) + 126f(x)− 126f(0) + 84f(−x)

−36f(−2x) + 9f(−3x)− f(−4x)− 9!f(x)∥ ≤ φ(0, x)
(40)

for all x ∈ S. Replacing x and y by x and −x in (37), respectively, we have

∥f(−4x)− 9f(−3x) + 36f(−2x)− 84f(−x) + 126f(0)− 126f(x) + 84f(2x)

−36f(3x) + 9f(4x)− f(5x)− 9!f(−x)∥ ≤ φ(−x, x)
(41)

for all x ∈ S. By (40) and (41), we obtain

∥f(x) + f(−x)∥ ≤ 1

|9!|
max{φ(0, x), φ(x,−x)} (42)

for all x ∈ S. Replacing x and y by 0 and 2x in (37), respectively, and using (39) and (42), we find

∥f(10x)− 8f(8x) + 27f(6x)− 48f(4x)− (9!− 42)f(2x)∥

≤ max

{
φ(0, 2x),

1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x),

|4|
|8!|

φ(0, 4x),
|4|
|8!|

φ(4x,−4x),
|84|
|9!|

φ(2x,−2x)

} (43)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

364 Tian-Zhou Xu et al 359-368



for all x ∈ S. Replacing x and y by 5x and x in (37), respectively, we get

∥f(10x)− 9f(9x) + 36f(8x)− 84f(7x) + 126f(6x)− 126f(5x) + 84f(4x)

−36f(3x) + 9f(2x)− (9! + 1)f(x)∥ ≤ φ(5x, x)
(44)

for all x ∈ S. By (43) and (44), we obtain

∥9f(9x)− 44f(8x) + 84f(7x)− 99f(6x) + 126f(5x)− 132f(4x)

+36f(3x)− (9!− 33)f(2x) + (9! + 1)f(x)∥

≤ max

{
φ(5x, x), φ(0, 2x),

1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x),

|4|
|8!|

φ(0, 4x),
|4|
|8!|

φ(4x,−4x),
|84|
|9!|

φ(2x,−2x)

} (45)

for all x ∈ S. Replacing x and y by 4x and x in (37), respectively, and using (39) we have

∥f(9x)− 9f(8x) + 36f(7x)− 84f(6x) + 126f(5x)− 126f(4x)

+84f(3x)− 36f(2x)− (9!− 9)f(x)∥ ≤ max

{
φ(4x, x),

1

|9!|
φ(0, 0)

}
(46)

for all x ∈ S. By (45) and (46), we get

∥37f(8x)− 240f(7x) + 657f(6x)− 1008f(5x) + 1002f(4x)

−720f(3x)− (9!− 357)f(2x) + (10!− 80)f(x)∥

≤ max

{
|9|φ(4x, x),

1

|8!|
φ(0, 0), φ(5x, x), φ(0, 2x),

1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x),

|4|
|8!|

φ(0, 4x),
|4|
|8!|

φ(4x,−4x),
|84|
|9!|

φ(2x,−2x)

} (47)

for all x ∈ S. Replacing x and y by 3x and x in (37), respectively, then using (39) and (42), we have

∥f(8x)− 9f(7x) + 36f(6x)− 84f(5x) + 126f(4x)− 126f(3x) + 84f(2x)

−(9! + 35)f(x)∥ ≤ max

{
φ(3x, x),

1

|8!|
φ(0, 0),

1

|9!|
φ(0, x),

1

|9!|
φ(x,−x)

}
(48)

for all x ∈ S. By (47) and (48), we get

∥93f(7x)− 675f(6x) + 2100f(5x)− 3660f(4x)

+3942f(3x)− (9! + 2751)f(2x) + (47 · 9! + 1215)f(x)∥

≤ max

{
|37|φ(3x, x),

|37|
|8!|

φ(0, 0),
|37|
|9!|

φ(0, x),
|37|
|9!|

φ(x,−x), |9|φ(4x, x),

φ(5x, x), φ(0, 2x),
1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x),

|4|
|8!|

φ(0, 4x),
|4|
|8!|

φ(4x,−4x),
|84|
|9!|

φ(2x,−2x)

}
(49)

for all x ∈ S. Replacing x and y by 2x and x in (37), respectively, then using (39) and (42), we have

∥f(7x)− 9f(6x) + 36f(5x)− 84f(4x) + 126f(3x)− 125f(2x)− (9!− 75)f(x)∥

≤ max

{
φ(2x, x),

1

|9!|
φ(0, 2x),

1

|9!|
φ(2x,−2x),

1

|8!|
φ(0, x),

1

|8!|
φ(x,−x),

|4|
|8!|

φ(0, 0)

}
(50)

for all x ∈ S. By (49) and (50), we get

∥81f(6x)− 624f(5x) + 2076f(4x)− 3888f(3x)− 1

2
(9!− 8874)f(2x)

+(70 · 9!− 2880)f(x)∥

≤ 1

|2|
max

{
|93|φ(2x, x),

|93|
|9!|

φ(2x,−2x),
|93|
|8!|

φ(0, x),
|93|
|8!|

φ(x,−x),
|372|
|8!|

φ(0, 0),

|37|φ(3x, x), |9|φ(4x, x), φ(5x, x), φ(0, 2x),
1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x),

|4|
|8!|

φ(0, 4x),
|4|
|8!|

φ(4x,−4x)

}
(51)
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for all x ∈ S. Replacing x and y by x and x in (37), respectively, then using (39) and (42), we have

∥f(6x)− 9f(5x) + 36f(4x)− 83f(3x) + 117f(2x)− (9! + 90)f(x)∥

≤ max

{
φ(x, x),

|84|
|9!|

φ(0, 0),
|4|
|8!|

φ(0, x),
|4|
|8!|

φ(x,−x),
1

|8!|
φ(0, 2x),

1

|8!|
φ(2x,−2x),

1

|9!|
φ(0, 3x),

1

|9!|
φ(3x,−3x)

} (52)

for all x ∈ S. By (51) and (52), we get

∥105f(5x)− 840f(4x) + 2835f(3x)− (
9!

2
+ 5040)f(2x) + (151 · 9! + 4410)f(x)∥

≤ max

{
|81|φ(x, x),

|756|
|8!|

φ(0, 0),
|324|
|8!|

φ(0, x),
|324|
|8!|

φ(x,−x),
|81|
|8!|

φ(2x,−2x),

|9|
|8!|

φ(0, 3x),
|9|
|8!|

φ(3x,−3x),
|93|
|2|

φ(2x, x),
|37|
|2|

φ(3x, x),
|9|
|2|
φ(4x, x),

1

|2|
φ(5x, x),

1

|2|
φ(0, 2x),

1

|2 · 9!|
φ(0, 8x),

1

|2 · 9!|
φ(8x,−8x),

1

|2 · 8!|
φ(0, 6x),

1

|2 · 8!|
φ(6x,−6x),

|2|
|8!|

φ(0, 4x),
|2|
|8!|

φ(4x,−4x)

}
(53)

for all x ∈ S. Replacing x and y by 0 and x in (37), respectively, then using (39) and (42), we have

∥f(5x)− 8f(4x) + 27f(3x)− 48f(2x)− (9!− 42)f(x)∥

≤ max

{
φ(0, x),

1

|8!|
φ(0, 3x),

1

|8!|
φ(3x,−3x),

|4|
|8!|

φ(0, 2x),
|4|
|8!|

φ(2x,−2x),

|84|
|9!|

φ(x,−x),
|14|
|8!|

φ(0, 0),
1

|9!|
φ(0, 4x),

1

|9!|
φ(4x,−4x)

} (54)

for all x ∈ S. By (53) and (54), we get

∥f(2x)− 29f(x)∥ ≤ 1

|9!|
max

{
|210|φ(0, x),

|210|
|8!|

φ(0, 3x),
|210|
|8!|

φ(3x,−3x),

|15|
|6!|

φ(2x,−2x),
|35|
|6!|

φ(x,−x),
|2940|
|8!|

φ(0, 0),
|210|
|9!|

φ(0, 4x),

|210|
|9!|

φ(4x,−4x), |162|φ(x, x),
|18|
|8!|

φ(3x,−3x), |93|φ(2x, x),

|37|φ(3x, x), |9|φ(4x, x), φ(5x, x), φ(0, 2x),
1

|9!|
φ(0, 8x),

1

|9!|
φ(8x,−8x),

1

|8!|
φ(0, 6x),

1

|8!|
φ(6x,−6x)

}
=: δ(x), x ∈ S.

(55)

By Corollary 2, there exists a unique mapping T : S → X such that T (2x) = 29T (x) and (38) holds. By (8) in

Corollary 1,

T (x) := lim
n→∞

(LF
φ )n(f)(x) = lim

n→∞
2−9nf(2nx), x ∈ S. (56)

It remains to show that T is a nonic map. By (37), we have

∥Df(2nx, 2ny)/29n∥ ≤ |2|−9nφ(2nx, 2ny) (57)

for all x, y ∈ S and n ∈ N. So, by (36), (54) and (55), ∥DT (x, y)∥ = 0 for all x, y ∈ S. Thus the mapping

T : S → X is nonic. �

Similar to Theorem 5, one can prove the following result.

Theorem 6 Assume that the multiplication by 2n(n ∈ N) be bijective in S. Let φ : S2 → R+ be a function such

that

lim
n→∞

|2|9nφ
( x

2n
,
y

2n

)
= 0, x, y ∈ S. (58)
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Assume also that f : S → X be a mapping such that

∥Df(x, y)∥ ≤ φ(x, y), x, y ∈ S. (59)

Then there exists a unique nonic mapping T : S → X such that

∥f(x)− T (x)∥ ≤ max

{
δ
(x

2

)
, sup
n∈N0

|2|9(n+1)δ
( x

2n+2

)}
, x ∈ S, (60)

where δ(x) is defined as in Theorem 5.

Proof. From (55), we have ∥∥∥f(x)− 29f
(x

2

)∥∥∥ ≤ δ (x
2

)
, x ∈ S. (61)

By Corollary 3, there exists a unique mapping T : S → X such that T (x) = 29T (x
2 ) and (60) holds. By (8) in

Corollary 1,

T (x) := lim
n→∞

(LF
φ )n(f)(t) = lim

n→∞
29nf

(
t

2n

)
, x ∈ S. (62)

The rest of the proof is similar to the proof of Theorem 5. �

Corollary 4 Let S be a non-Archimedean normed space and X be a complete non-Archimedean normed space

with |2| < 1. Let ϵ, λ be positive numbers with λ ̸= 9, and f : S → X be a mapping satisfying

∥Df(x, y)∥ ≤ ϵ(∥x∥λ + ∥y∥λ), x, y ∈ S.

Then there exists a unique nonic mapping T : S → X such that

∥f(x)− T (x)∥ ≤


2ϵ∥x∥λ

|9!|2 · |2|9
, λ > 9, x ∈ S;

2ϵ∥x∥λ

|9!|2 · |2|λ
, λ < 9, x ∈ S.

Proof. Let φ : S2 → R+ be defined by φ(x, y) = ϵ(∥x∥λ + ∥y∥λ) for all x, y ∈ S. Then the corollary is followed

from Theorems 5 and 6. �

Similar to Corollary 4, one can obtain the following corollary.

Corollary 5 Let S be a non-Archimedean normed space and X be a complete non-Archimedean normed space

with |2| < 1. Let ϵ, λ, µ be positive numbers with λ+ µ ̸= 9, and f : S → X be a mapping satisfying

∥Df(x, y)∥ ≤ ϵ∥x∥λ · ∥y∥µ, x, y ∈ S.

Then there exists a unique nonic mapping T : S → X such that

∥f(x)− T (x)∥ ≤


ϵ∥x∥λ+µ

|9!|2 · |2|9
, λ+ µ > 9, x ∈ S;

ϵ∥x∥λ+µ

|9!|2 · |2|λ+µ
, λ+ µ < 9, x ∈ S.
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[6] L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single

variable, Fixed Point Theory Appl., 2008(2008), Art ID 749392, 1–15.
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ABSTRACT

Our aim in this paper is to study the global stability character and the periodic nature of the solutions of the
difference equation

xn+1 = axn−l +
bxn−k + cxn−s
d+ exn−t

, n = 0, 1, ...,

where the initial conditions x−r, x−r+1, x−r+2, ..., x0 are arbitrary positive real numbers, r = max{l, k, s, t} is
nonnegative integer and a, b, c, d, e are positive constants.

Keywords: stability, periodic solutions, global attractor, difference equations.
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1. INTRODUCTION

Our goal in this paper is to investigate the global stability character and the periodicity of the solutions of the
difference equation

xn+1 = axn−l +
bxn−k + cxn−s
d+ exn−t

, n = 0, 1, ..., (1)

where the initial conditions x−r, x−r+1, x−r+2, ..., x0 are arbitrary positive real numbers, r = max{l, k, s, t} is
nonnegative integer and a, b, c, d, e are positive constants.

Recently there has been a lot of interest in studying the global attractivity, the boundedness character and
the periodicity nature of nonlinear difference equations see for example [1-20].

The study of the nonlinear rational difference equations is interesting and attractive to many researchers
working in this field It is quite challenging and rewarding, many real life phenomena are modelling using these
equations. Examples from economy, biology,etc. may be obtained in [3,7,11,12] The study of some properties
of these equations via the global attractivity, the boundedness and the periodicity of these equations is of great
interest. For examples in the articles [11,12,15]. Recently, many researchers have investigated the behavior of
the solution of difference equations for example: In [1] Ahmed investigated the behavior of the solutions of the
difference equation

xn+1 =
xn−2k+1

±1±
Qk

i=1 xn−2i+1
.

Elabbasy et al. [8] studied the boundedness, global stability, periodicity character and gave the solution of some
special cases of the difference equation

xn+1 =
αxn−k

β + γ
Qk

i=0 xn−i
.
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Elabbasy et al. [9] investigated the global stability, periodicity character and gave the solution of some special
cases of the difference equation

xn+1 = a+
dxn−lxn−k
cxn−s − b

.

Yalçınkaya [32] has studied the following difference equation

xn+1 = α+
xn−m
xkn

.

For some related work see [21—35].

Here, we recall some basic definitions and some theorems that we need in the sequel.

Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, ...,x0 ∈ I, the
difference equation

xn+1 = F (xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k.
A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed point of f .
Definition 1.1. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.
Definition 1.2. (Stability)

(i) The equilibrium point x of Eq.(2) is locally stable if for every � > 0, there exists δ > 0 such that for all
x−k, x−k+1, ..., x−1,x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < � for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is locally stable solution of Eq.(2)
and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq.(2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is locally stable, and x is also a
global attractor of Eq.(2).

(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

370 E. M. Elsayed et al 369-379



The linearized equation of Eq.(2) about the equilibrium x is the linear difference equation

yn+1 =
kP
i=0

∂F (x,x,...,x)
∂xn−i

yn−i. (3)

Theorem A [26] Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark 1. Theorem A can be easily extended to a general linear equations of the form

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ..., (4)

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then Eq.(4) is asymptotically stable provided that

kP
i=1
|pi| < 1.

Consider the following equation

xn+1 = g(xn, xn−1, ...xn−K) n = 0, 1, 2... (5)

The following theorem will be useful for the proof of our results in this paper.

Theorem B [27]: Let [α, β] be an interval of real numbers and assume that

g : [α, β]k+1 → [α, β],

is a continuous function satisfying the following properties :

(a) g(x1, x2, ..., xk+1) is non-increasing in one component (for example xσ) for each xr(r 6= σ) in [α, β], and
is non-increasing in the remaining components for each xσ ∈ [α, β];
(b) If (m,M) ∈ [α, β]× [α, β] is a solution of the system

M = g(m,m, ...,m,M,m, ...m,m) and m = g(M,M, ...,M,m,M, ...,M,M ),

then
m =M.

Then Eq.(5) has a unique equilibrium x ∈ [α, β] and every solution of Eq.(5) converges to x.

2. LOCAL STABILITY OF THE EQUILIBRIUM POINT OF EQ.(1)

In this section we study the local stability character of the solutions of Eq.(1). The equilibrium points of Eq.(1)
are given by the relation

x = ax+
bx+ cx

cd+ dex
.

If a 6= 1, then the equilibrium points of Eq.(1) is given by

x = 0 and x =
b+ c+ d(a− 1)

e(1− a)
.
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Let f : (0,∞)4 −→ (0,∞) be a function defined by

f(u0, u1, u2, u3) = au0 +
bu1 + cu2
d+ eu3

.

Therefore at x = b+c+d(a−1)
e(1−a)

∂f(x, x, x, x)

∂u0
= a = −c0,

∂f(x, x, x, x)

∂u1
= −b(a− 1)

(b+ c)
= −c1,

∂f(x, x, x, x)

∂u2
= −c(a− 1)

(b+ c)
= −c2,

∂f(x, x, x, x)

∂u3
= (a−1)(b+c−d+ad)

(b+c) = −c3

Then we see that at x = 0

∂f(x, x, x, x)

∂u0
= a = −c0,

∂f(x, x, x, x)

∂u1
=

b

d
= −c1

∂f(x, x, x, x)

∂u1
=

c

d
= −c2,

∂f(x, x, x, x)

∂u1
= 0 = −c3

Then the linearized equation of Eq.(1) about x is

yn+1 + c0yn−l + c1yn−k + c2yn−s + c3yn−t = 0. (6)

Theorem 2.1. Assume that

1 <
d(1− a)

(b+ c)
.

Then the positive equilibrium point x = 0 of Eq.(1) is locally asymptotically stable.

Proof: It is follows by Theorem A that, Eq.(6) is asymptotically stable if

|c3|+ |c2|+ |c1|+ |c0| < 1.

|0|+
¯̄̄ c
d

¯̄̄
+

¯̄̄̄
b

d

¯̄̄̄
+ |a| < 1,

and so

1 <
d(1− a)

(b+ c)
.

This completes the proof.

Theorem 2.2. Assume that

3 <
d(1− a)

(b+ c)
, a < 1

Then the positive equilibrium point x = b+c+d(a−1)
e(1−a) of Eq.(1) is locally asymptotically stable.

Proof: It is follows by Theorem A that, Eq.(6) is asymptotically stable if¯̄̄
(a−1)(b+c−d+ad)

(b+c)

¯̄̄
+
¯̄̄
− c(a−1)

(b+c)

¯̄̄
+
¯̄̄
− b(a−1)

(b+c)

¯̄̄
+ |a| < 1.

3a− d(a− 1)2
(b+ c)

< 3,

and so

1 <
d(1− a)

(b+ c)
.

This completes the proof.
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3. EXISTENCE OF PERIODIC SOLUTIONS

In this section we study the existence of periodic solutions of Eq.(1.1).

Theorem 3.1. Eq.(1) has a prime period two solutions if and only if

e2(b+ c+ d+ ad)2(a+ 1)2 − 4ade2(a+ 1)(b+ c+ d+ ad) > 0 , , k, l, s, t− even. (7)

Proof: First suppose that there exists a prime period two solution

..., p, q, p, q, ...,

of Eq.(1). We will prove that Condition (7) holds.

We see from Eq.(1) ( when k, l, s, t−even ) that

p = aq +
bq + cq

d+ eq
, q = ap+

bp+ cp

d+ ep
.

Then
dp+ epq = adq + aeq2 + bq + cq, (8)

and
dq + epq = adp+ aep2 + bp+ cp. (9)

Subtracting (8) from (9) gives

d(p− q) = ad(q − p) + ae(q2 − p2) + b(q − p) + c(q − p).

Since p 6= q, it follows that

p+ q = −(b+ c+ d+ ad)

ae
. (10)

Again, adding (8) and (9) yields

2epq + d(p+ q) = ad(p+ q) + ad(p+ q)2 + 2aepq + b(p+ q) + c(p+ q). (11)

It follows by (10), (11) and the relation p2 + q2 = (p+ q)2 − 2pq for all p, q ∈ R, that

pq =
d(a+ b+ c+ d+ ad)

ae2(a+ 1)
. (12)

Now it is clear from Eq.(10) and Eq.(12) that p and q are the two positive distinct roots of the quadratic
equation

t2 +
³
(b+c+d+ad)

ae

´
t+

³
d(a+b+c+d+ad)

ae2(a+1)

´
= 0, (13)

ae2(a+ 1)t2 + e(a+ 1)(b+ c+ d+ ad)t+ d(a+ b+ c+ d+ ad) = 0,

and so
((a+ 1)(b+ c+ d+ ad))2 > 4ad(a+ 1)(b+ c+ d+ ad),

thus
(a+ 1)(b+ c+ d+ ad) > 4ad.

Therefore Inequality (7) holds.

Second suppose that Inequality (7) is true. We will show that Eq.(1) has a prime period two solution. Assume
that

p = −e(a+1)(b+c+d+ad)+
√
ξ

2ae2(a+1) =
−eAB +

√
ξ

2ae2A
,
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and
q = −eAB−

√
ξ

2ae2A ,where A = (a+ 1), B = (a+ b+ c+ d+ ad)

where ξ = e2(a+ 1)2(b+ c+ d+ ad)2 − 4ade2(a+ 1)(b+ c+ d+ ad).

We see from Inequality (7) that

e2(a+ 1)2(b+ c+ d+ ad)2 − 4ade2(a+ 1)(b+ c+ d+ ad) > 0,

then after dividing by e2(a+ 1)(b+ c+ d+ ad) we see that

⇒ (a+ 1)(b+ c+ d+ ad) > 4ad,

Therefore p and q are distinct real numbers.

Set

x−l = p, x−l+1 = q, , x−k = q, x−k+1 = p,

x−s = p, x−s+1 = q, x−t = p, x−t+1 = q, and x0 = q.

We wish to show that
x1 = x−1 = p and x2 = x0 = q.

It follows from Eq.(1.1) that

x1 = ax−l +
bx−k + cx−s
d+ ex−t

= ap+
bp+ cp

d+ ep
= ap+

(b+ c)p

d+ ep

= ap+
(b+ c)

³
−eAB+

√
ξ

2ae2A

´
d+ e

³
−eAB+

√
ξ

2ae2A

´ .

Multiplying the denominator and numerator of the right side by 2ae2A gives

x1 = ap+
(b+c)(−eAB+

√
ξ)

2ae2Ad−e2AB+e
√
ξ
,

Multiplying the denominator and numerator of the right side by {2ae2Ad− e2AB − e
√
ξ}

x1 = ap+
(b+c)(−eAB+

√
ξ)(2ae2Ad−e2AB−e

√
ξ)

(2ae2Ad−e2AB+e
√
ξ)(2ae2Ad−e2AB−e

√
ξ)
,

= ap+
(b+c)[−2ade3A2B+e3A2B2−e(e2A2B2−4ade2AB)+2ade2A

√
ξ]

(2ade2A−e2AB)2−(e
√
ξ)

2 ,

= ap+
(b+c)[2ade3AB(2−A)+2ade2A

√
ξ]

e4A2(4a2d2+B2−4adB)−e4A2B2+4ade4AB ,

Replacing A = (a+ 1) and B = (b+ c+ d+ ad) in denominator of above equation gives

x1 = ap+
(b+c)[2ade3AB(1−a)+2ade2A

√
ξ]

4a2d2e4(a+1)2−4ade4(a+1)2(b+c+d+ad)+4ade4(1+a)(b+c+d+ad)

= ap+
(b+c)[2ade3AB(1−a)+2ade2A

√
ξ]

4a2d2e4(a+1)2−4ade4(a+1)2(b+c+d+ad)+4ade4(1+a)(b+c+d+ad)

= ap− (b+c)[2ade3AB(1−a)+2ade2A
√
ξ]

4a2de2(a+1)(b+c)
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Dividing numerator and denominator by(b+ c) we get

x1 = ap− 2ade3AB(1−a)+2ade2A
√
ξ

4a2de2(a+1) = ap− eB(1− a) +
√
ξ

2ae2

Now inserting the value of p we get

x1 =
−eAB +

√
ξ

2e2A
− eB(1− a) +

√
ξ

2ae2

=
1

2e2

³
−eAB+

√
ξ

A − eB(1−a)+
√
ξ

a

´
= −eAB+a

√
ξ−eB(1−a)(1+a)−(a+1)

√
ξ

2ae2(a+1)

=
−eaB(a+ 1)− eB + eBa2 −

√
ξ

2ae2(a+ 1)

putting the value of B = (b+ c+ d+ ad) we get

x1 =
−e(b+c+d+ad)(a+1)−

√
ξ

2ae2(a+1) = q

Similarly as before one can easily show that
x2 = p.

Then it follows by induction that

x2n = p and x2n+1 = q for all n ≥ −1.

Thus Eq.(1) has the positive prime period two solution

...,p,q,p,q,...,

where p and q are the distinct roots of the quadratic equation (13) and the proof is complete.

The following Theorems can be proved similarly.

Theorem 3.2. Eq.(1) has a prime period two solutions if and only if

e2(a+ 1)2(d+ ad+ b+ c)2 − 4e2(ad+ b+ c)(a+ 1)(d+ ad+ b+ c) > 0, t− odd , l, k, s− even.

Theorem 3.3. Eq.(1) has a prime period two solutions if and only if

e2(a+ 1)2(d+ ad− b− c)2 − 4e2ad(a+ 1)(d+ ad− b− c) > 0 , l − even , s, k, t− odd.

Theorem 3.4. Eq.(1) has a prime period two solutions if and only if

e2(d− ad+ b+ c)2(a− 1)2 − 4e2(a− 1)2(b+ c)(d− ad+ b+ c) > 0, l, t− odd, s, k − even.

Theorem 3.5. Eq.(1) has a prime period two solutions if and only if

e2(a+ 1)2(b+ c− d− ad)2 + 4ae2(a+ 1)(b+ c− d− ad)(d− b− c) > 0, l, t− even, s, k − odd.
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4. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQ.(1)

In this section we investigate the global attractivity character of solutions of Eq.(1).

Theorem 4.1. The equilibrium point x of Eq.(1) is global attractor.

Proof: Let p, q are a real numbers and assume that f : [p, q]4 −→ [p, q] be a function defined by

f(u0, u1, u2, u3) = au0 +
bu1 + cu2
d+ eu3

.

We can easily see that the function f(u0, u1, u2, u3) increasing in u0, u1, u2 and decreasing in u3.

Suppose that (m,M) is a solution of the system

m = f(m,m,m,M) and M = f(M,M,M,m).

Then from Eq.(1), we see that

m = am+
(b+ c)m

d+ eM
, M = aM +

(b+ c)M

d+ em
,

That is

1− a =
b+ c

d+ eM
, 1− a =

b+ c

d+ em
,

or,
b+ c

d+ eM
=

b+ c

d+ em
,

then d+ eM = d+ em. Thus M = m. It follows by the Theorem B that x is a global attractor of Eq.(1) and
then the proof is complete.

5. NUMERICAL EXAMPLES
For confirming the results of this paper, we consider numerical examples which represent different types of
solutions to Eq. (1).

Example 1. We assume l = 3, k = 2, s = 3, t = 2 x−3 = 7, x−2 = 2, x−1 = 1, x0 = 9, a = 0.1, b = 0.2, c =
0.9, d = 0.6 e = 0.3. See Fig. 1.

Example 2. See Fig. 2, since l = 4, k = 3, x−4 = 12, x−3 = 7, x−2 = 9, x−1 = 10, x0 = 5, a = 0.9, b =
2, c = 7, d = 3.
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0 200 400 600 800 1000
5

10

15

20

n

x(
n)

plot of x(n+1)=  a.X(n−l)+((b.X(n−k)+c.X(n−s))/((d+e.X(n−t))))

Figure 2.
Example 3. We consider l = 3, k = 2, x−3 = 12, x−2 = 7, x−1 = 9, x0 = 10, a = 0.3, b = 1.5, c = 11, d = 8.
See Fig. 3.
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Example 4. See Fig. 4, since l = 3, k = 4, x−4 = 12, x−3 = 7, x−2 = 9, x−1 = 10, x0 = 5, a = 0.6, b =
2, c = 7, d = 4.
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Figure 3.
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