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SOME PERTURBED VERSIONS OF THE GENERALIZED TRAPEZOID

INEQUALITY FOR FUNCTIONS OF BOUNDED VARIATION

WENJUN LIU AND JAEKEUN PARK

Abstract. In this paper, we establish some perturbed versions of the generalized Trapezoid inequality
for functions of bounded variation in terms of the cumulative variation function.

1. Introduction

In the past few years, many authors have considered various generalizations of some kinds of integral
inequalities, which give explicit error bounds for some known and some new quadrature formulae. For
example, in [6], Dragomir established the following generalized trapezoidal inequality for functions of
bounded variation:

Theorem 1.1. Let f : [a, b]→ R be a function of bounded variation. Then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a

∣∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f),(1.1)

where x ∈ [a, b] and
∨b

a(f) denotes the total variation of f on the interval [a, b]. The constant 1
2 cannot

be replaced by a smaller one. The best inequality one can derive from (1.1) is the trapezoid inequality

(1.2)

∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ 1

2

b∨
a

(f).

Here the constant 1
2 is also best possible.

For a function of bounded variation v : [a, b] → C, the Cumulative Variation Function (CVF) V :
[a, b]→ [0,∞) is defined by

V (t) :=
t∨
a

(v),

the total variation of v on the interval [a, t] with t ∈ [a, b]. Recently, Dragomir [7] considered the
refinement of (1.1) in terms of the cumulative variation function.

Theorem 1.2. Let f : [a, b]→ C be a function of bounded variation on [a, b]. Then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a

∣∣∣∣∣ ≤ 1

b− a

[∫ x

a

(
t∨
a

(f)

)
dt+

∫ b

x

(
b∨
t

(f)

)
dt

]
(1.3)

≤ 1

b− a

[
(x− a)

x∨
a

(f) + (b− x)
b∨
x

(f)

]

≤



[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f),[
1

2

b∨
a

(f) +
1

2

∣∣∣∣∣
x∨
a

(f)−
b∨
x

(f)

∣∣∣∣∣
]
,

for any x ∈ [a, b].

2010 Mathematics Subject Classification. 26D15, 26A45, 26A16, 26A48.
Key words and phrases. Generalized Trapezoid inequality, Cumulative variation, Function of bounded variation, Lips-
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In order to extend the classical Ostrowski’s inequality for differentiable functions with bounded deriva-
tives to the larger class of functions of bounded variation, Dragomir obtained the following result in [13]:

Theorem 1.3. Let f : [a, b]→ R be a function of bounded variation on [a, b]. Then, for all x ∈ [a, b], we
have the following inequality

(1.4)

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f).

The constant 1
2 is the best possible. The best inequality one can obtain from (1.4) is the midpoint inequality

(1.5)

∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

2

b∨
a

(f),

for which the constant 1
2 is also sharp.

Recently, Dragomir [8] considered the refinement of (1.4) in terms of the cumulative variation function.

Theorem 1.4. Let f : [a, b]→ C be a function of bounded variation on [a, b]. Then∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

b− a

[∫ x

a

(
t∨
a

(f)

)
dt+

∫ b

x

(
b∨
t

(f)

)
dt

]
(1.6)

≤ 1

b− a

[
(x− a)

x∨
a

(f) + (b− x)

b∨
x

(f)

]

≤



[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f),[
1

2

b∨
a

(f) +
1

2

∣∣∣∣∣
x∨
a

(f)−
b∨
x

(f)

∣∣∣∣∣
]
,

for any x ∈ [a, b].

Very recently, Dragomir [9] obtained the following perturbed Ostrowski type inequality for functions
of bounded variation, in which he denoted ℓ : [a, b]→ [a, b] the identity function:

Theorem 1.5. Let f : [a, b] → C be a function of bounded variation on [a, b], and x ∈ [a, b]. Then for
any λ1(x) and λ2(x) complex numbers, we have∣∣∣∣∣f(x) +

1

2(b− a)

[
(b− x)2λ2(x)− (x− a)2λ1(x)

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣(1.7)

≤ 1

b− a

[∫ x

a

(
x∨
t

(f − λ1(x)ℓ)

)
dt+

∫ b

x

(
t∨
x

(f − λ2(x)ℓ)

)
dt

]

≤ 1

b− a

[
(x− a)

x∨
a

(f − λ1(x)ℓ) + (b− x)
b∨
x

(f − λ2(x)ℓ)

]

≤


max

{
x∨
a

(f − λ1(x)ℓ),
b∨
x

(f − λ2(x)ℓ)

}
,[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
](

x∨
a

(f − λ1(x)ℓ) +
b∨
x

(f − λ2(x)ℓ)

)
,

where

d∨
c

(g) denotes the total variation of g on the interval [c, d].

For related results, see [1]-[5], [11]-[12], [14]-[32].
Motivated by the above works, the purpose of this paper is to establish some perturbed versions of

the generalized trapezoid inequality (1.3) for functions of bounded variation in terms of the cumulative
variation function.
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2. Inequalities for functions of bounded variation

As in [7], it is known that the CVF is monotonic nondecreasing on [a, b] and is continuous at a point
c ∈ [a, b] if and only if the generating function v is continuous at that point. If v is Lipschitzian with the
constant L > 0, i.e.,

|v(t)− v(s)| ≤ L|t− s| for any t, s ∈ [a, b],

then V is also Lipschitzian with the same constant.
The following lemma is of interest in itself as well, see also [10].

Lemma 2.1. Let f, u : [a, b] → C. If f is continuous on [a, b] and u is of bounded variation on [a, b],
then ∣∣∣∣∣

∫ b

a

f(t)du(t)

∣∣∣∣∣ ≤
∫ b

a

|f(t)|d

(
t∨
a

(u)

)
≤ max

t∈[a,b]
|f(t)|

b∨
a

(u).(2.1)

We have the following result:

Theorem 2.1. Let f : [a, b] → C be a function of bounded variation on [a, b] and x ∈ [a, b]. Then for
any λ(x) complex number, we have the inequalities∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(2.2)

≤ 1

b− a

[∫ x

a

(
t∨
a

(f − λ(x)ℓ)

)
dt+

∫ b

x

(
b∨
t

(f − λ(x)ℓ)

)
dt

]

≤ 1

b− a

[
(x− a)

x∨
a

(f − λ(x)ℓ) + (b− x)
b∨
x

(f − λ(x)ℓ)

]

≤



[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f − λ(x)ℓ)

1

2

b∨
a

(f − λ(x)ℓ) +
1

2

∣∣∣∣∣
x∨
a

(f − λ(x)ℓ)−
b∨
x

(f − λ(x)ℓ)

∣∣∣∣∣ ,
where

d∨
c

(g) denotes the total variation of g on the interval [c, d] and ℓ : [a, b] → [a, b] is the identity

function.

Proof. We shall start with the identity obtained in [6]

(2.3)

∫ b

a

f(t)dt− [(x− a)f(a) + (b− x)f(b)] =

∫ b

a

(x− t)df(t),

in which the integrals in the right hand side are taken in the Riemann-Stieltjes sense. If we replace f(t)
with f(t)− λ(x)t in (2.3), then we can get the following equation:

(2.4)

∫ b

a

f(t)dt− [(x− a)f(a) + (b− x)f(b)]− λ(x)(b− a)

(
x− a+ b

2

)
=

∫ b

a

(x− t)d [f(t)− λ(x)t] .

Taking the modulus in (2.4) and using the property (2.1), we have∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− [(x− a)f(a) + (b− x)f(b)]

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(2.5)

≤ 1

b− a

∣∣∣∣∣
∫ b

a

(x− t)d [f(t)− λ(x)t]

∣∣∣∣∣
≤ 1

b− a

∫ b

a

|x− t|d

(
t∨
a

(f − λ(x)ℓ)

)
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=
1

b− a

[∫ x

a

(x− t)d

(
t∨
a

(f − λ(x)ℓ)

)
+

∫ b

x

(t− x)d

(
t∨
a

(f − λ(x)ℓ)

)]
.

Integrating by parts in the Riemann-Stieltjes integral we have∫ x

a

(x− t)d

(
t∨
a

(f − λ(x)ℓ)

)
= (x− t)

t∨
a

(f − λ(x)ℓ)

∣∣∣∣∣
x

t=a

+

∫ x

a

(
t∨
a

(f − λ(x)ℓ)

)
dt(2.6)

=

∫ x

a

(
t∨
a

(f − λ(x)ℓ)

)
dt

and ∫ b

x

(t− x)d

(
t∨
a

(f − λ(x)ℓ)

)
= (t− x)

t∨
a

(f − λ(x)ℓ)

∣∣∣∣∣
b

t=x

−
∫ b

x

(
t∨
a

(f − λ(x)ℓ)

)
dt(2.7)

=(b− x)
b∨
a

(f − λ(x)ℓ)−
∫ b

x

(
t∨
a

(f − λ(x)ℓ)

)
dt

=

∫ b

x

(
b∨
t

(f − λ(x)ℓ)

)
dt.

Using (2.5)-(2.7), we deduce the first inequality in (2.2).
Since

t∨
a

(f − λ(x)ℓ) ≤
x∨
a

(f − λ(x)ℓ) for t ∈ [a, x]

and
b∨
t

(f − λ(x)ℓ) ≤
b∨
x

(f − λ(x)ℓ) for t ∈ [x, b],

then ∫ x

a

(
t∨
a

(f − λ(x)ℓ)

)
dt ≤ (x− a)

x∨
a

(f − λ(x)ℓ)

and ∫ b

x

(
b∨
t

(f − λ(x)ℓ)

)
dt ≤ (b− x)

b∨
x

(f − λ(x)ℓ),

which prove the second inequality in (2.2).
With the max properties we have

(x− a)
x∨
a

(f − λ(x)ℓ) + (b− x)
b∨
x

(f − λ(x)ℓ)

≤


max {x− a, b− x}

b∨
a

(f − λ(x)ℓ)

max

{
x∨
a

(f − λ(x)ℓ),
b∨
x

(f − λ(x)ℓ)

}
(b− a)

≤



[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f − λ(x)ℓ)[
1

2

b∨
a

(f − λ(x)ℓ) +
1

2

∣∣∣∣∣
x∨
a

(f − λ(x)ℓ)−
b∨
x

(f − λ(x)ℓ)

∣∣∣∣∣
]

(b− a),

which completes the proof. �
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The following trapezoid type inequality holds:

Corollary 2.1. Let f : [a, b] → C be a function of bounded variation on [a, b]. Then for any λ ∈ C, we
have the inequalities∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ 1

b− a

[∫ a+b
2

a

(
t∨
a

(f − λℓ)

)
dt+

∫ b

a+b
2

(
b∨
t

(f − λℓ)

)
dt

]
(2.8)

≤1

2

b∨
a

(f − λℓ),

which is equivalent to∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ 1

b− a
inf
λ∈C

[∫ a+b
2

a

(
t∨
a

(f − λℓ)

)
dt+

∫ b

a+b
2

(
b∨
t

(f − λℓ)

)
dt

]
(2.9)

≤1

2
inf
λ∈C

[
b∨
a

(f − λℓ)

]
.

3. Inequalities for Lipschitzian functions

We can state the following result:

Theorem 3.1. Let f : [a, b] → C be a function of bounded variation on [a, b] and x ∈ (a, b). If λ(x) is
a complex number and there exists the positive number L(x) such that f − λ(x)ℓ is Lipschitzian with the
constant L(x) on the interval [a, b], then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(3.1)

≤L(x)

b− a

[(
x− a+ b

2

)2

+
(b− a)2

4

]
.

Proof. It’s known that, if g : [c, d]→ C is Riemann integrable and u : [c, d]→ C is Lipschitzian with the

constant L > 0, then the Riemann-Stieltjes integral
∫ d

c
g(t)du(t) exists and∣∣∣∣∣

∫ d

c

g(t)du(t)

∣∣∣∣∣ ≤ L
∫ d

c

|g(t)|dt.(3.2)

Taking the modulus in (2.4) and using the property (3.2) we have∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(3.3)

≤ 1

b− a

∣∣∣∣∣
∫ b

a

(x− t)d [f(t)− λ(x)t]

∣∣∣∣∣
≤L(x)

b− a

[∫ x

a

(x− t)dt+

∫ b

x

(t− x)dt

]

=
L(x)

b− a

[(
x− a+ b

2

)2

+
(b− a)2

4

]
,

which proves the result. �

Corollary 3.1. Let f : [a, b]→ C be a function of bounded variation on [a, b]. If λ is a complex number
and there exists the positive number L such that f −λℓ is Lipschitzian with the constant L on the interval
[a, b], then ∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ 1

4
L(b− a).(3.4)
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4. Inequalities for Monotonic functions

Now, the case of monotonic integrators is as follows:

Theorem 4.1. Let f : [a, b]→ C be a function of bounded variation on [a, b] and x ∈ (a, b). If λ(x) is a
real number such that f − λ(x)ℓ is monotonic nondecreasing on the interval [a, b], then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− (x− a)f(a) + (b− x)f(b)

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(4.1)

≤ 1

b− a

[
(b− x)f(b)− (x− a)f(a)− 1

2
λ(x)[(b− x)2 + (x− a)2]−

∫ b

a

sgn(t− x)f(t)dt

]

≤ 1

b− a
{(x− a)[f(x)− f(a)− λ(x)(x− a)] + (b− x)[f(b)− f(x)− λ(x)(b− x)]}

Proof. It’s known that, if g : [c, d]→ C is continuous and u : [c, d]→ C is monotonic nondecreasing, then

the Riemann-Stieltjes integral
∫ d

c
g(t)du(t) exists and∣∣∣∣∣
∫ d

c

g(t)du(t)

∣∣∣∣∣ ≤
∫ d

c

|g(t)|du(t).(4.2)

Taking the modulus in (2.4) and using the property (4.2) we have∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− [(x− a)f(a) + (b− x)f(b)]

b− a
− λ(x)

(
x− a+ b

2

)∣∣∣∣∣(4.3)

≤ 1

b− a

∣∣∣∣∣
∫ b

a

(x− t)d [f(t)− λ(x)t]

∣∣∣∣∣
≤ 1

b− a

[∫ x

a

(x− t)d[f(t)− λ(x)t] +

∫ b

x

(t− x)d[f(t)− λ(x)t]

]
.

Integrating by parts in the Riemann-Stieltjes integral we have∫ x

a

(x− t)d[f(t)− λ(x)t]

=(x− t)[f(t)− λ(x)t]

∣∣∣∣x
t=a

+

∫ x

a

[f(t)− λ(x)t]dt

=− (x− a)[f(a)− λ(x)a] +

∫ x

a

f(t)dt− λ(x)
x2 − a2

2

=− (x− a)f(a) + λ(x)a(x− a) +

∫ x

a

f(t)dt− λ(x)
x2 − a2

2

=− (x− a)f(a)− 1

2
λ(x)(x− a)2 +

∫ x

a

f(t)dt

and ∫ b

x

(t− x)d[f(t)− λ(x)t]

=(t− x)[f(t)− λ(x)t]

∣∣∣∣b
t=x

−
∫ b

x

[f(t)− λ(x)t]dt

=(b− x)[f(b)− λ(x)b]−
∫ b

x

f(t)dt+ λ(x)
b2 − x2

2

=(b− x)f(b)− 1

2
λ(x)(b− x)2 −

∫ b

x

f(t)dt.

If we add these equalities, we get∫ x

a

(x− t)d[f(t)− λ(x)t] +

∫ b

x

(t− x)d[f(t)− λ(x)t]
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=(b− x)f(b)− (x− a)f(a)− 1

2
λ(x)[(b− x)2 + (x− a)2]−

∫ b

a

sgn(t− x)f(t)dt

and by (4.3) we get the first inequality in (4.1).
Now, since f − λ(x)ℓ is monotonic nondecreasing on the interval [a, b], then∫ x

a

(x− t)d[f(t)− λ(x)t]

≤(x− a)[f(x)− λ(x)x− f(a) + λ(x)a]

=(x− a)[f(x)− f(a)− λ(x)(x− a)]

and ∫ b

x

(t− x)d[f(t)− λ(x)t]

≤(b− x)[f(b)− λ(x)b− f(x) + λ(x)x]

=(b− x)[f(b)− f(x)− λ(x)(b− x)],

which completes the proof. �

Corollary 4.1. Let f : [a, b]→ C be a function of bounded variation on [a, b]. If λ is a real number such
that f − λℓ is monotonic nondecreasing on the interval [a, b], then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ 1

2
[f(b)− f(a)− λ(b− a)].(4.4)

5. Conclusions

Some explicit error bounds for known or new quadrature formulae are given recently through various
generalizations of some kinds of integral inequalities. In this paper, by using the ideas of Dragomir in
[9], we establish some perturbed versions of the generalized trapezoid inequality for functions of bounded
variation in terms of the cumulative variation function. These results can be regarded as further gener-
alizations of [6], in which the generalized trapezoidal inequality for functions of bounded variation are
established.
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A COMPANION OF OSTROWSKI LIKE INEQUALITY AND APPLICATIONS TO

COMPOSITE QUADRATURE RULES

WENJUN LIU AND JAEKEUN PARK

Abstract. A companion of Ostrowski like inequality for mappings whose second derivatives belong to
L∞ spaces is established. Applications to composite quadrature rules are also given.

1. Introduction

In 1938, Ostrowski established the following interesting integral inequality (see [24]) for differentiable
mappings with bounded derivatives:

Theorem 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative is bounded on
(a, b) and denote ∥f ′∥∞ = sup

t∈(a,b)

|f ′(t)| <∞. Then for all x ∈ [a, b] we have

(1.1)

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a)∥f ′∥∞.

The constant 1
4 is sharp in the sense that it can not be replaced by a smaller one.

This inequality has attracted considerable interest over the years, and many authors proved general-
izations, modifications and applications of it. For example, the early work of Milovanović and Pečarić
[21, 23] extended this inequality for differentiable mappings with bounded derivatives, to functions f that
are n times differentiable with |f (n)| ≤ M and gave an application to quadrature. In [8], motivated by
[12], Dragomir proved some companions of Ostrowski’s inequality, as follows:

Theorem 1.2. Let f : [a, b] → R be an absolutely continuous function on [a, b]. Then the following
inequalities ∣∣∣∣∣f(x) + f(a+ b− x)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣

≤



[
1
8 + 2

(
x− 3a+b

4

b−a

)2]
(b− a)∥f ′∥∞, f ′ ∈ L∞[a, b],

21/q

(q+1)1/q

[(
x−a
b−a

)q+1

+
( a+b

2 −x

b−a

)q+1
]1/q

(b− a)1/q∥f ′∥p,

p > 1, 1p + 1
q = 1 and f ′ ∈ Lp[a, b],[

1
4 +

∣∣∣x− 3a+b
4

b−a

∣∣∣] ∥f ′∥1, f ′ ∈ L1[a, b]

(1.2)

hold for all x ∈ [a, a+b
2 ].

Recently, Alomari [1] introduced a companion of Dragomir’s generalization of Ostrowsk’s inequality
for absolutely continuous mappings whose first derivatives are belong to L∞([a, b]).

Theorem 1.3. Let f : [a, b] → R be an absolutely continuous mappings on (a, b) whose derivative is
bounded on [a, b]. Then the inequality∣∣∣∣∣

[
(1− λ)

f(x) + f(a+ b− x)

2
+ λ

f(a) + f(b)

2

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
2010 Mathematics Subject Classification. 26D15, 41A55, 41A80.

Key words and phrases. Ostrowski like inequality; twice differentiable mapping; L∞ spaces; composite quadrature rule.
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≤

1

8
(2λ2 + (1− λ)2) + 2

(
x− (3−λ)a+(1+λ)b

4

)2
(b− a)2

 (b− a)∥f ′∥∞(1.3)

holds for all λ ∈ [0, 1] and x ∈ [a+ λ b−a
2 , a+b

2 ].

In (1.3), choose λ = 1
2 , one can get∣∣∣∣∣12
[
f(x) + f(a+ b− x)

2
+
f(a) + f(b)

2

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤

[
3

32
+ 2

(x− 5a+3b
8 )2

(b− a)2

]
(b− a)∥f ′∥∞.(1.4)

And if choose x = a+b
2 , then one has∣∣∣∣∣12
[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

8
(b− a)∥f ′∥∞.(1.5)

It’s shown in [1] that the constant 1
8 is the best possible.

In related work, Dragomir and Sofo [10] developed the following Ostrowski like integral inequality for
twice differentiable mapping.

Theorem 1.4. Let f : [a, b] → R be a mapping whose first derivative is absolutely continuous on [a, b]
and assume that the second derivative f ′′ ∈ L∞([a, b]). Then we have the inequality∣∣∣∣∣12

[
f(x) +

f(a) + f(b)

2

]
− 1

2

(
x− a+ b

2

)
f ′(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤

[
1

48
+

1

3

|x− a+b
2 |

3

(b− a)3

]
(b− a)2∥f ′′∥∞,(1.6)

for all x ∈ [a, b].

In (1.6), the authors pointed out that the midpoint x = a+b
2 gives the best estimator, i.e.,∣∣∣∣∣12

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

48
(b− a)2∥f ′′∥∞.(1.7)

In fact, we can choose f(t) = (t− a)2 in (1.7) to prove that the constant 1
48 in inequality (1.7) is sharp.

For other related results, the reader may be refer to [2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 18, 19,
20, 22, 25, 26, 27, 28, 29, 30] and the references therein. Motivated by previous works [1, 6, 8, 10],
we investigate in this paper a companion of the above mentioned Ostrowski like integral inequality for
twice differentiable mappings. Our result gives a smaller estimator than (1.7) (see (2.9) below). Some
applications to composite quadrature rules are also given.

2. A companion of Ostrowski like inequality

The following companion of Ostrowski like inequality holds:

Theorem 2.1. Let f : [a, b] → R be a mapping whose first derivative is absolutely continuous on [a, b]
and assume that the second derivative f ′′ ∈ L∞([a, b]). Then we have the inequality∣∣∣∣12

[
f(x) + f(a+ b− x)

2
+
f(a) + f(b)

2

]
−1

2

(
x− a+ b

2

)
f ′(x)− f ′(a+ b− x)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤

[
1

3

(a+3b
4 − x)(x− a)2

(b− a)3
+

1

3

(a+b
2 − x)3

(b− a)3

]
(b− a)2∥f ′′∥∞(2.1)

for all x ∈ [a, a+b
2 ]. The first constant 1

3 in the right hand side of (2.1) is sharp in the sense that it can

not be replaced by a smaller one provided that x ̸= a+3b
4 and x ̸= a.
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Proof. Define the kernel K(t) : [a, b]→ R by

K(t) :=


t− a, t ∈ [a, x],
t− a+b

2 , t ∈ (x, a+ b− x],
t− b, t ∈ (a+ b− x, b],

(2.2)

for all x ∈ [a, a+b
2 ]. Integrating by parts, we obtain (see [8])

1

b− a

∫ b

a

K(t)g′(t)dt =
g(x) + g(a+ b− x)

2
− 1

b− a

∫ b

a

g(t)dt.(2.3)

Now choose in (2.3), g(x) = (x− a+b
2 )f ′(x), to get

1

b− a

∫ b

a

K(t)

[
f ′(t) +

(
t− a+ b

2

)
f ′′(t)

]
dt

=
1

2

(
x− a+ b

2

)
[f ′(x)− f ′(a+ b− x)]− 1

b− a

∫ b

a

(
t− a+ b

2

)
f ′(t)dt.(2.4)

Integrating by parts, we have

1

b− a

∫ b

a

(
t− a+ b

2

)
f ′(t)dt =

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt.(2.5)

Also upon using (2.3), we get

1

b− a

∫ b

a

K(t)

[
f ′(t) +

(
t− a+ b

2

)
f ′′(t)

]
dt

=
1

b− a

∫ b

a

K(t)f ′(t)dt+
1

b− a

∫ b

a

K(t)

(
t− a+ b

2

)
f ′′(t)dt

=
f(x) + f(a+ b− x)

2
− 1

b− a

∫ b

a

f(t)dt+
1

b− a

∫ b

a

K(t)

(
t− a+ b

2

)
f ′′(t)dt.(2.6)

It follows from (2.4)–(2.6) that

1

2(b− a)

∫ b

a

K(t)

(
t− a+ b

2

)
f ′′(t)dt

=
1

b− a

∫ b

a

f(t)dt− 1

2

[
f(x) + f(a+ b− x)

2
+
f(a) + f(b)

2

]
+

1

2

(
x− a+ b

2

)
f ′(x)− f ′(a+ b− x)

2
.(2.7)

Now using (2.7) we obtain∣∣∣∣12
[
f(x) + f(a+ b− x)

2
+
f(a) + f(b)

2

]
−1

2

(
x− a+ b

2

)
f ′(x)− f ′(a+ b− x)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ ∥f

′′∥∞
2(b− a)

∫ b

a

|K(t)|
∣∣∣∣t− a+ b

2

∣∣∣∣ dt.(2.8)

Since x ∈ [a, a+b
2 ], we have

I :=

∫ b

a

|K(t)|
∣∣∣∣t− a+ b

2

∣∣∣∣ dt
=

∫ x

a

(t− a)

∣∣∣∣t− a+ b

2

∣∣∣∣ dt+

∫ a+b−x

x

(
t− a+ b

2

)2

dt+

∫ b

a+b−x

(b− t)
∣∣∣∣t− a+ b

2

∣∣∣∣ dt
=

∫ x

a

(t− a)

(
a+ b

2
− t
)
dt+

∫ a+b−x

x

(
t− a+ b

2

)2

dt+

∫ b

a+b−x

(b− t)
(
t− a+ b

2

)
dt

=
(a+ 3b− 4x)(x− a)2

12
+

2

3

(
a+ b

2
− x
)3

+
(a+ 3b− 4x)(x− a)2

12
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=
(a+ 3b− 4x)(x− a)2

6
+

2

3

(
a+ b

2
− x
)3

,

and referring to (2.8), we obtain the result (2.1).
The sharpness of the constant 1

3 can be proved in a special case for x = a+b
2 (see the line behind

(1.7)). �

Remark 1. If we take x = a+b
2 in (2.1), we recapture the sharp inequality (1.7). If we take x = a in

(2.1), we obtain the perturbed trapezoid type inequality∣∣∣∣∣f(a) + f(b)

2
− b− a

8
[f ′(b)− f ′(a)]− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)2

24
∥f ′′∥∞,

which has a smaller estimator than the sharp trapezoid inequality∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)2

8
∥f ′′∥∞

stated in [11, Proposition 2.7].

Remark 2. Consider

F (x) =

(
a+ 3b

4
− x
)

(x− a)2 +

(
a+ b

2
− x
)3

for x ∈ [a, a+b
2 ]. It’s easy to know that F (x) obtains its minimal value at x = 3a+b

4 . Therefore, in (2.1),

the point x = 3a+b
4 gives the best estimator, i.e.,∣∣∣∣∣12
[
f( 3a+b

4 ) + f(a+3b
4 )

2
+
f(a) + f(b)

2

]
+
b− a

8

f ′( 3a+b
4 )− f ′(a+3b

4 )

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

64
(b− a)2∥f ′′∥∞,(2.9)

the right hand side of which is smaller than that of (1.7).

3. Application to Composite Quadrature Rules

In [10], the authors utilized inequality (1.6) to give estimates of composite quadrature rules which was
pointed out have a markedly smaller error than that which may be obtained by the classical results. In
this section, we apply our previous inequality (2.1) to give us estimates of new composite quadrature
rules which have a further smaller error.

Theorem 3.1. Let In : a = x0 < x1 < · · · < xn−1 < xn = b be a partition of the interval [a, b],

hi = xi+1 − xi, ν(h) := max{hi : i = 1, · · ·, n}, ξi ∈ [xi,
xi+xi+1

2 ], and

S(f, In, ξ) =
1

4

n−1∑
i=0

[f(xi) + f(ξi) + f(xi + xi+1 − ξi) + f(xi+1)]hi

− 1

4

n−1∑
i=0

hi

(
ξi −

xi + xi+1

2

)
[f ′(ξi)− f ′(xi + xi+1 − ξi)] ,

then ∫ b

a

f(x)dx = S(f, In, ξ) +R(f, In, ξ)

and the remainder R(f, In, ξ) satisfies the estimate

|R(f, In, ξ)| ≤
1

3
∥f ′′∥∞

[
n−1∑
i=0

(
xi + 3xi+1

4
− ξi

)
(xi − ξi)2 +

n−1∑
i=0

(
xi + xi+1

2
− ξi

)3
]
.(3.1)
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Proof. Inequality (2.1) can be written as∣∣∣∣∣
∫ b

a

f(t)dt− 1

4
[f(a) + f(x) + f(a+ b− x) + f(b)] (b− a)

+
b− a

4

(
x− a+ b

2

)
[f ′(x)− f ′(a+ b− x)]

∣∣∣∣
≤1

3

[(
a+ 3b

4
− x
)

(x− a)2 +

(
a+ b

2
− x
)3
]
∥f ′′∥∞.(3.2)

Applying (3.2) on ξi ∈ [xi,
xi+xi+1

2 ], we have∣∣∣∣∫ xi+1

xi

f(t)dt− 1

4
[f(xi) + f(ξi) + f(xi + xi+1 − ξi) + f(xi+1)]hi

+
hi
4

(
ξi −

xi + xi+1

2

)
[f ′(ξi)− f ′(xi + xi+1 − ξi)]

∣∣∣∣
≤1

3

[(
xi + 3xi+1

4
− ξi

)
(xi − ξi)2 +

(
xi + xi+1

2
− ξi

)3
]
∥f ′′∥∞.

Now summing over i from 0 to n− 1 and utilizing the triangle inequality, we have∣∣∣∣∣
∫ b

a

f(t)dt− S(f, In, ξ)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

xi

f(t)dt− 1

4

n−1∑
i=0

[f(xi) + f(ξi) + f(xi + xi+1 − ξi) + f(xi+1)]hi

+
1

4

n−1∑
i=0

hi

(
ξi −

xi + xi+1

2

)
[f ′(ξi)− f ′(xi + xi+1 − ξi)]

∣∣∣∣∣
≤1

3
∥f ′′∥∞

n−1∑
i=0

[(
xi + 3xi+1

4
− ξi

)
(xi − ξi)2 +

(
xi + xi+1

2
− ξi

)3
]

and therefore (3.1) holds. �

Corollary 3.1. If we choose ξi = 3xi+xi+1

4 , then we have

S(f, In) =
1

4

n−1∑
i=0

[
f(xi) + f

(
3xi + xi+1

4

)
+ f

(
xi + 3xi+1

4

)
+ f(xi+1)

]
hi

+
1

16

n−1∑
i=0

[
f ′
(

3xi + xi+1

4

)
− f ′

(
xi + 3xi+1

4

)]
h2i

and

|R(f, In)| ≤ 1

64
∥f ′′∥∞

n−1∑
i=0

h3i .(3.3)

Remark 3. It is obvious that inequality (3.3) is better than [10, inequality (3.1)] due to a smaller error.
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[21] G. V. Milovanović, On some integral inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 498-541

(1975), 119–124.
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A modified shift-splitting preconditioner for saddle point
problems ∗
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Abstract
Recently, Cao, Du and Niu [Shift-splitting preconditioners for saddle point problems,

Journal of Computational and Applied Mathematics, 272 (2014) 239-250] introduced a shift-
splitting preconditioner for saddle point problems. In this paper, we establish a modified
shift-splitting preconditioner for solving the large sparse augmented systems of linear equa-
tions. Furthermore, the preconditioner is based on a modified shift-splitting of the saddle
point matrix, resulting in an unconditional convergent fixed-point iteration, which is a gen-
eralization of shift-splitting preconditioners. Finally, numerical examples show the spectrum
of the new preconditioned matrix for the different parameters.

Key words: Saddle point problem; Shift-splitting; Krylov subspace methods; Convergence; Pre-

conditioner.
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1 Introduction

For solving the large sparse augmented systems of linear equations

Au =

(
A BT

−B 0

)(
x
y

)
=

(
f
g

)
≡ b, (1)
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where A ∈ Rn×n is a symmetric and positive definite matrix and B ∈ Rm×n is a matrix of
full row rank and m < n, x, f ∈ Rn, y, g ∈ Rm. It appears in many different applications
of scientific computing, such as constrained optimization [32], the finite element method for
solving the Navier-Stokes equation [24, 25, 26], and constrained least squares problems and
generalized least squares problems [1, 29, 35, 36]. There have been several recent papers
[2-24,25-29,30,31,33,37-40] for solving the augmented system (1). Santos et al. [29] studied
preconditioned iterative methods for solving the singular augmented system with A = I.
Yuan et al. [35, 36] proposed several variants of SOR method and preconditioned conjugate
gradient methods for solving general augmented system (1) arising from generalized least
squares problems where A can be symmetric and positive semidefinite and B can be rank
deficient. The SOR-like method requires less arithmetic work per iteration step than oth-
er methods but it requires choosing an optimal iteration parameter in order to achieve a
comparable rate of convergence. Golub et al. [27] presented SOR-like algorithms for solving
system (1). Darvishi et al. [23] studied SSOR method for solving the augmented systems.
Bai et al. [2, 3, 22, 40] presented GSOR method, parameterized Uzawa (PU) and the inexact
parameterized Uzawa (PIU) methods for solving systems (1). Zhang and Lu [37] showed the
generalized symmetric SOR method for augmented systems. Peng and Li [28] studied unsym-
metric block overrelaxation-type methods for saddle point. Bai and Golub [4, 5, 6, 7, 11, 31]
presented splitting iteration methods such as Hermitian and skew-Hermitian splitting (HSS)
iteration scheme and its preconditioned variants, Krylov subspace methods such as precon-
ditioned conjugate gradient (PCG), preconditioned MINRES (PMINRES) and restrictively
preconditioned conjugate gradient (RPCG) iteration schemes, and preconditioning tech-
niques related to Krylov subspace methods such as HSS, block-diagonal, block-triangular
and constraint preconditioners and so on. Bai and Wang’s 2009 LAA paper [31] and Chen
and Jiang’s 2008 AMC paper [22] studied some general approaches about the relaxed s-
plitting iteration methods. Wu, Huang and Zhao [33] presented modified SSOR (MSSOR)
method for augmented systems. Recently, Cao, Du and Niu [19] introduced a shift-splitting
preconditioner and a local shift-splitting preconditioner for saddle point problems (1). More-
over, the authors studied some properties of the local shift-splitting preconditioned matrix
and numerical experiments of a model Stokes problem are presented to show the effectiveness
of the proposed preconditioners.

For large, sparse or structure matrices, iterative methods are an attractive option. In
particular, Krylov subspace methods apply techniques that involve orthogonal projections
onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and gen-
eralized minimal residual method (GMRES) are common Krylov subspace methods. The
CG method is used for symmetric, positive definite matrices, MINRES for symmetric and
possibly indefinite matrices and GMRES for unsymmetric matrices [30].

In this paper, based on shift-splitting preconditioners presented by Cao, Du and Niu
[19], we establish a modified shift-splitting preconditioner for saddle point problems. Fur-
thermore, the preconditioner is based on a modified shift-splitting of the saddle point matrix,
resulting in an unconditional convergent fixed-point iteration, which is a generalization of
shift-splitting preconditioners. Finally, numerical examples show the effectiveness of the
proposed preconditioners. However, the relaxed parameters of the modified shift-splitting
methods are not optimal and only lie in the convergence region of the method.
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2 Modified shift-splitting preconditioner

Recently, for the coefficient matrix of the augmented system (1), Cao, Du and Niu [19]
presented a shift-splitting precnditioner

PSS =
1

2
(αI +A),

where α is a positive constant and I is an identity matrix. This shift-splitting precoditioner
PSS is constructed by the shift-splitting of the matrix A

A = PSS −QSS =
1

2
(αI +A)− 1

2
(αI −A),

which naturally leads to the shift-splitting scheme

uk+1 = (αI +A)−1(αI −A)uk + 2(αI +A)−1b, k = 0, 1, 2, ...

Based on shift-splitting preconditioners presented by Cao, Du and Niu [19], we establish
a modified shift-splitting preconditione, which is as follows

A =
1

2
(Ω +A)− 1

2
(Ω−A) =

1

2

(
αI1 + A BT

−B βI2

)
− 1

2

(
αI1 − A −BT

B βI2

)
, (2)

where α ≥ 0, β > 0 is a constant, Ω =

(
αI1 0
0 βI2

)
and I1 ∈ Rn×n, I2 ∈ Rm×m are the

identity matrix. By this special splitting, the following shift-splitting iteration method can
be defined for the saddle point problems (1).

The modified shift-splitting iteration method(MSS): Given an initial vector u0, for
k = 0, 1, 2, ..., until {uk} converges, compute

1

2

(
αI1 + A BT

−B βI2

)
uk+1 =

1

2

(
αI1 − A −BT

B βI2

)
uk +

(
f
g

)
, (3)

where α ≥ 0, β > 0 is a constant and I1 ∈ Rn×n, I2 ∈ Rm×m are the identity matrix.

Remark 2.1. When the relaxed parameters α = β, the modified shift-splitting itera-
tion method (MSS) reduces to the shift-splitting iteration method (SS); When the relaxed
parameters α = 0, the modified shift-splitting iteration method (MSS) reduces to the local
shift-splitting iteration method (LSS). So, MSS iteration method is the generalization of SS
iteration method and LSS iteration method. Furthermore, when doing numerical examples,
we may choose appropriate parameters to improve the convergence speed.

Obviously, the modified shift-splitting iteration method can naturally induce a split-
ting preconditioner for the Krylov subspace method. The splitting preconditioner based on
iterative scheme (3) is as follows

PMSS =
1

2
(Ω +A) =

1

2

(
αI1 + A BT

−B βI2

)
. (4)
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On iterative scheme (3), at each step of applying the modified shift-splitting preconditioner
PMSS within a Krylov subspace method, we need to solve a linear system with PMSS as the
coefficient matrix, which is as follows:

1

2

(
αI1 + A BT

−B βI2

)
z = r

for a given vector r at each step. Moreover, the preconditioner PMSS can do the following
matrix factorization

PMSS =
1

2

(
I1

1
β
BT

0 I2

)(
αI1 + A+ 1

β
BTB 0

0 βI2

)(
I1 0
− 1

β
B I2

)
. (5)

Let r = [rT1 , r
T
2 ] and z = [zT1 , z

T
2 ], where r1, z1 ∈ Rn and r2, z2 ∈ Rm. So we can obtain(

z1
z2

)
= 2

(
I1 0
1
β
B I2

)(
αI1 + A+ 1

β
BTB 0

0 βI2

)−1(
I1 − 1

β
BT

0 I2

)(
r1
r2

)
. (6)

Hence, the algorithmic on the modified shift-splitting iteration method (MSS) is as follows:

Algorithm 2.1: For a given vector r = [rT1 , r
T
2 ], we can compute the vector z = [zT1 , z

T
2 ] by

(6) from the following steps:
(a) t1 = r1 − 1

β
BT r2;

(b) solve (αI1 + A+ 1
β
BTB)z1 = 2t1;

(c) z2 = 1
β
(Bz1 + 2r2).

Remark 2.2. From Algorithm 2.1 in this paper and Algorithm 2.1 in [19], we can see that
steps (a) ∼ (c) are different because of using different parameter β. In the second step of Al-
gorithm 2.1, we need to solve sub-linear system with the coefficient matrix αI1 +A+ 1

β
BTB.

Since the matrix αI1 +A+ 1
β
BTB is symmetric positive definite, we may employ the CG or

preconditioned CG method to solve step (b) in Algorithm 2.1.

3 Convergence of MSS method

Now, we will analyze the unconditional convergence property of the corresponding iterative
method for saddle point problems. At first, similar to the proving process in [19], we can
obtain the following Lemmas.

Lemma 3.1. Let A be a symmetric positive definite matrix, and B have full row rank.
If λ is an eigenvalue of TMSS, then λ ̸= ±1, where TMSS is the iteration matrix of the
modified shift-splitting iteration, which is as follows

TMSS =

(
αI1 + A BT

−B βI2

)−1(
αI1 − A −BT

B βI2

)
. (7)

Lemma 3.2. Assume that A is symmetric positive definite, B has full row rank. Let λ be
an eigenvalue of TMSS and [x∗, y∗] be the corresponding eigenvector with x ∈ Cn and y ∈ Cm.
Moreover, if y = 0, then |λ| < 1.

4
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Lemma 3.3. [34] Consider the quadratic equation x2 − bx + c = 0, where b and c are
real numbers. Both roots of the equation are less than one in modulus if and only if |c| < 1
and |b| < 1 + c.

Theorem 3.4. Let A ∈ Rn×n be a symmetric and positive definite matrix, B ∈ Rm×m

have full row rank and let α ≥ 0, β > 0 be constant numbers. Let ρ(TMSS) be the spectral
radius of the modified shift-splitting iteration matrix. Then it holds that

ρ(TMSS) < 1, ∀α ≥ 0, β > 0,

i.e., the modified shift-splitting iteration converges to the unique solution of the saddle point
problems (1).

Proof. Let λ be an eigenvalue of ρ(TMSS) and

(
x
y

)
be the corresponding eigenvector.

Then we have (
αI1 − A −BT

B βI2

)(
x
y

)
= λ

(
αI1 + A BT

−B βI2

)(
x
y

)
, (8)

Expanding out (8) we obtain{
(λ− 1)ξx+ (λ+ 1)Ax+ (λ+ 1)BTy = 0,
(λ+ 1)Bx+ (1− λ)βy.

(9)

By Lemma 3.1, we know that λ ̸= 1. So, we may get from the first equation of (9) that

y =
λ+ 1

β(λ− 1)
Bx. (10)

Substituting (10) into the first equation of (9) yields

α(λ− 1)x+ (λ+ 1)Ax+
(λ+ 1)2

β(λ− 1)
BTBx = 0. (11)

By Lemma 3.2, we know that x ̸= 0. Multiplying x∗

x∗x
on both sides of the equation (11), we

have

αβ(λ− 1)2 + β(λ2 − 1)
x∗Ax

x∗x
+ (λ+ 1)2

x∗BTBx

x∗x
= 0. (12)

Let

a =
x∗Ax

x∗x
> 0, b =

x∗BTBx

x∗x
≥ 0.

Then, from (12) we know that λ satisfies the following real quadratic equation

λ2 +
2b− 2αβ

αβ + βa+ b
λ+

αβ − βa+ b

αβ + βa+ b
. (13)

By Lemma 3.3, |λ| < 1 if and only if∣∣∣∣αβ − βa+ b

αβ + βa+ b

∣∣∣∣ < 1 (14)

5
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and ∣∣∣∣ 2b− 2αβ

αβ + βa+ b

∣∣∣∣ < 1 +
αβ − βa+ b

αβ + βa+ b
. (15)

Obviously, the equations (14) and (15) hold for any α ≥ 0, β > 0. Hence, we have

ρ(TMSS) < 1, ∀α ≥ 0, β > 0.

Remark 3.1. Obviously, from Theorem 3.4, we know that the modified shift-splitting iter-
ation method is converent unconditionally.

Remark 3.2. In actual operation, when using the Krylov subspace method like GMRES
or CG method, we may choose PMSS as the preconditioner to accelerate the convergence.
Actually, the left-preconditioned linear system based on the preconditioner PMSS is as follows

(I − TMSS)u = P−1
MSSAu = P−1

MSSb.

4 Numerical examples

In this section, to further assess the effectiveness of the modified shift-splitting preconditioned
matrix P−1

MSSA combined with Krylov subspace methods, we present a sample of numerical
examples which are based on a two-dimensional time-harmonic Maxwell equations in mixed
form in a square domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1). For the simplicity, we take the generic
source: f = 1 and a finite element subdivision such as Figure 1 based on uniform grids of
triangle elements. Three mesh sizes are considered: h =

√
2
8
,
√
2

12
,
√
2

18
. The solutions of the

preconditioned systems in each iteration are computed exactly. Information on the sparsity
of relevant matrices on the different meshes is given in Table 1, where nz(A) denote the
nonzero elements of matrix A.

Figure 1: A uniform mesh with h =
√
2
4

Since the modified shift-splitting preconditioners have two parameters, in numerical
experiments we will test different values. Numerical experiments show the spectrum of the
new preconditioned matrix P−1

MSSA for the different parameters.
In Figures 2, 3 and 4 we display the eigenvalues of the preconditioned matrix P−1

MSSA in

the case of h =
√
2
8

for different parameters. In Figures 5, 6 and 7 we display the eigenvalues

of the preconditioned matrix P−1
MSSA in the case of h =

√
2

12
for different parameters. In
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Figure 2: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
MSSA

when α = 0.01, β = 1(the first), α = 0.01, β = 0.1(the second) and α = 0.01, β = 0.01(the third),

respectively. Here, h =
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2
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Figure 3: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
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when α = 0.1, β = 1(the first), α = 0.1, β = 0.1(the second) and α = 0.1, β = 0.01(the third),

respectively. Here, h =
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Figure 4: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
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Figure 6: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
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√
2

12 .
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Figure 8: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
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respectively. Here, h =
√
2

18 .

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 9: The eigenvalue distribution for the modified shift-splitting preconditioned matrix P−1
MSSA

when α = 0.1, β = 1(the first), α = 0.1, β = 0.1(the second) and α = 0.1, β = 0.01(the third),

respectively. Here, h =
√
2
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Figure 10: The eigenvalue distribution for the modified shift-splitting preconditioned matrix
P−1
MSSA when α = 1, β = 1(the first), α = 1, β = 0.1(the second) and α = 1, β = 0.01(the

third), respectively. Here, h =
√
2
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Table 1: datasheet for different grids
Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225

16× 16 736 225 3556 2190 1065 961
32× 32 3008 961 14788 9486 4681 3969
64× 64 12160 3969 60292 39438 19593 16129

Table 2: Iteration counts and relative residual about the modified shift-splitting precondi-
tioned matrix P−1

MSSA when choosing different parameters, where the number of iterations
and relative residual of unpreconditioned BICGSTAB and GMRES are − and −, 171(1) and

7.4545× 10−7, respectively. Here, h =
√
2
8

denotes the size of the corresponding grid.
α β ItBICGSTAB(P−1

MSSA) ResBICGSTAB(P−1
MSSA) ItGMRES(P−1

MSSA) ResGMRES(P−1
MSSA)

0.01 1 6 7.6716× 10−7 10(1) 7.4779× 10−7

0.01 0.1 3 5.4416× 10−7 6(1) 7.4225× 10−7

0.01 0.01 2 8.7718× 10−7 5(1) 1.8299× 10−7

0.1 1 21.5 5.4960× 10−7 24(1) 9.6647× 10−7

0.1 0.1 6.5 6.2392× 10−7 12(1) 9.3667× 10−7

0.1 0.01 5 3.8958× 10−7 8(1) 7.3712× 10−7

1 1 82.5 4.2920× 10−7 65(1) 6.5701× 10−7

1 0.1 31 6.0454× 10−7 33(1) 8.5683× 10−7

1 0.01 13 6.3508× 10−7 20(1) 5.1740× 10−7

Figures 8, 9 and 10 we display the eigenvalues of the preconditioned matrix P−1
MSSA in the

case of h =
√
2

18
for different parameters. Figures 2 ∼ 10 show that the distribution of eigen-

values of the preconditioned matrix confirms our above theoretical analysis. In Tables 2 ∼ 4
we show iteration counts and relative residual about preconditioned matrices P−1

MSSA when
choosing different parameters and applying to BICGSTAB and GMRES Krylov subspace
iterative methods on three meshes, where ItBICGSTAB(P−1

MSSA) and ResBICGSTAB(P−1
MSSA) are

the iteration numbers and relative residual of the preconditioned matrices P−1
MSSA when

applying to BICGSTAB Krylov subspace iterative methods, respectively. ItGMRES(P−1
MSSA)

and ResGMRES(P−1
MSSA) are the iteration numbers and relative residual of the preconditioned

matrices P−1
MSSA when applying to GMRES Krylov subspace iterative methods, respectively.

Remark 4.1. From the above figures and tables, we know that the smaller the param-
eter β is, the gather the eigenvalues are and the fewer the iteration counts are.

Remark 4.2. From Tables 2, 3 and 4, it is very easy to see that the preconditioner P−1
MSSA

will improve the convergence of BICGSTAB and GMRES iteration efficiently when they are
applied to the preconditioned BICGSTAB and GMRES to solove the Stokes equation and
two-dimensional time-harmonic Maxwell equations by choosing different parameters.

5 Conclusions

In this paper, we establish the modified shift-splitting preconditioner for solving the large
sparse augmented systems of linear equations. Furthermore, the preconditioner is based on
a modified shift-splitting of the saddle point matrix, resulting in an unconditional conver-

10
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Table 3: Iteration counts and relative residual about the modified shift-splitting precondi-
tioned matrix P−1

MSSA when choosing different parameters, where the number of iterations
and relative residual of unpreconditioned BICGSTAB and GMRES are − and −, 362(1) and

9.4148× 10−7, respectively. Here, h =
√
2

12
denotes the size of the corresponding grid.

α β ItBICGSTAB(P−1
MSSA) ResBICGSTAB(P−1

MSSA) ItGMRES(P−1
MSSA) ResGMRES(P−1

MSSA)

0.01 1 14.5 4.1689× 10−7 19(1) 5.2459× 10−7

0.01 0.1 5.5 9.0310× 10−7 9(1) 7.4043× 10−7

0.01 0.01 3 5.2030× 10−7 6(1) 9.3857× 10−7

0.1 1 63.5 5.2347× 10−7 50(1) 6.7889× 10−7

0.1 0.1 13.5 6.1091× 10−7 23(1) 4.9215× 10−7

0.1 0.01 7.5 4.5380× 10−7 12(1) 8.6233× 10−7

1 1 216.5 4.7653× 10−7 123(1) 8.0138× 10−7

1 0.1 88 9.6032× 10−7 65(1) 7.5718× 10−7

1 0.01 27.5 1.1257× 10−7 34(1) 8.5489× 10−7

Table 4: Iteration counts and relative residual about the modified shift-splitting precondi-
tioned matrix P−1

MSSA when choosing different parameters, where the number of iterations
and relative residual of unpreconditioned BICGSTAB and GMRES are 742 and 8.0810×10−7,
1− and −, respectively. Here, h =

√
2

18
denotes the size of the corresponding grid.

α β ItBICGSTAB(P−1
MSSA) ResBICGSTAB(P−1

MSSA) ItGMRES(P−1
MSSA) ResGMRES(P−1

MSSA)

0.01 1 58 6.7835× 10−7 34(1) 8.5510× 10−7

0.01 0.1 7.5 7.7089× 10−7 16(1) 3.1469× 10−7

0.01 0.01 4 6.1349× 10−7 9(1) 2.6837× 10−7

0.1 1 2644.5 4.2297× 10−7 94(1) 9.9981× 10−7

0.1 0.1 34.5 8.1807× 10−7 43(1) 7.0956× 10−7

0.1 0.01 13 9.4646× 10−7 21(1) 5.0204× 10−7

1 1 8517.5 9.3710× 10−7 229(1) 9.1052× 10−7

1 0.1 116 7.8164× 10−7 132(1) 9.2308× 10−7

1 0.01 93 6.9354× 10−7 66(1) 8.8886× 10−7

gent fixed-point iteration, which is a generalization of shift-splitting preconditioners. Fi-
nally, numerical examples show the preconditioner P−1

MSSA will improve the convergence of
BICGSTAB and GMRES iteration efficiently when they are applied to the preconditioned
BICGSTAB and GMRES to solove the Stokes equation and two-dimensional time-harmonic
Maxwell equations by choosing different parameters.
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CLOSED-RANGE GENERALIZED COMPOSITION OPERATORS
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Abstract. Let ϕ denote a nonconstant analytic self-map of the open unit disk D, g
be an analytic function on D. In this paper, we characterize the necessary or sufficient

conditions for generalized composition operators

Cg
ϕf(z) =

∫ z

0
f ′(ϕ(ξ))g(ξ)dξ,

on the Bloch-type spaces to have a closed range. Moreover, if g ∈ H∞, according to

relationship between α and β, we show several conclusions.

1. Introduction

Let H(D) be the class of all holomorphic functions on D, where D is the open unit disk
in the complex plane C. Denote by H∞ = H∞(D) the space of all bounded holomorphic
functions on D with the supremum norm ‖f‖∞ = supz∈D |f(z)|.

For 0 < α < ∞, a holomorphic function f is said to be in the Bloch-type space Bα or
α−Bloch space, if

‖f‖α = sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

The little Bloch-type space Bα0 , consists of all f ∈ Bα, such that

lim
|z|→1

(1− |z|2)α|f ′(z)| = 0.

It is well-known that both Bα and Bα0 are Banach spaces under the norm

‖f‖Bα = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|.

Moreover, Bα0 is the closure of polynomials in Bα. When 0 < α < 1, Bα is the analytic
Lipschitz space Lip1−α, which consists of all f ∈ H(D) satisfying

|f(z)− f(w)| ≤ C|z − w|1−α,

for some constant C > 0 and all z, w ∈ D. When α = 1, Bα becomes the classical Bloch
space B. When α > 1, Bα is equivalent to the weighted Banach space H∞α−1. Let H∞α be
the weighted Banach space of holomorphic functions f on D satisfying

sup
z∈D

(1− |z|2)α|f(z)| <∞.

We refer the readers to the book [13] by K. Zhu, which is an excellent resource for the
development of the theory of function spaces.

∗Corresponding author.
This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276;
11301373; 11401426).
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We say that a subset H of D is called a sampling set for the Bloch-type space Bα, if there
is k > 0 such that

sup{(1− |z|2)α|f ′(z)|, z ∈ D} ≤ k sup{(1− |z|2)α|f ′(z)|, z ∈ H}.

The pseudo-hyperbolic metric is given by

ρ(z, a) = |σa(z)|, where σa(z) =
a− z
1− āz

, z, a ∈ D.

σa(z) is the automorphism of D which changes 0 and a. It is well-known that the pseudo-

hyperbolic metric is Möbius-invariant. Moreover, we have that σ′a(z) = 1−|a|2
(1−az)2 .

A subset G of D is an r-net for some r ∈ (0, 1), if for every w ∈ D, there exists a z ∈ G
such that ρ(z, w) < r. If we define ρ(z, E) = inf{ρ(z, w) : w ∈ E} for a set E ⊂ D, then a
relatively closed subset E of D is an r-net if and only if ρ(z, E) ≤ r.

For every analytic self-map ϕ of D and g ∈ H(D), the generalized composition operator
Cgϕ is defined by

Cgϕf(z) =

∫ z

0

f ′(ϕ(ξ))g(ξ)dξ, z ∈ D,

which was firstly introduced by Li and Stević [9]. For further references and details about
the generalized composition operator, we refer the readers to [10, 11] and their references.
S. Li and S. Stević [9] gave the boundedness and compactness of Cgϕ : Bα → Bβ , which will
play a central roll in our paper, so we use the notation τα,β(z) to state the results. For α > 0
and β > 0, let

τα,β(z) =
(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)α

, z ∈ D.

Theorem A. Let α, β > 0, g ∈ H(D) and ϕ be an analytic self-map of D. Then
Cgϕ : Bα → Bβ is bounded if and only if

sup
z∈D

τα,β(z) <∞.

Theorem B. Let α, β > 0, g ∈ H(D) and ϕ be an analytic self-map of D. Then
Cgϕ : Bα → Bβ is compact if and only if Cgϕ : Bα → Bβ is bounded and

lim
|ϕ(z)|→1

τα,β(z) = 0.

The composition operator is defined by Cϕ(f)(z) = f(ϕ(z)) on the spaces of analytic
functions on D. In 2000, Gathage, Yan and Zheng [7] characterized closed-range composition
operators on Bloch spaces firstly. Chen [5] not only added a sufficient condition for [7], but
also studied a sufficient and necessary condition of the boundedness from below for Cϕ on
the Bloch space of the unit ball. Then Gathatage, Zheng and Zorboska [8] introduced the
notion of sampling sets for the bloch space and gave a necessary and sufficient condition
for Cϕ on the Bloch space to have closed-range. This result has been extended by Chen
and Gauthire [4] to α−Bloch spaces with α ≥ 1. Soon after Zorboska [14] added new
and general results on the closed-range determination of Cϕ on Bloch-type spaces. There
are also many articles on various other holomorphic function spaces. G. R. Chacón [3]
provided a geometric characterization for those composition operators having closed-range
on Dirichlet-type spaces. Recently, necessary and sufficient conditions for a closed-range
composition operator on Besov spaces and more generally on Besov type spaces were given
by M. Tjani [12]. Akeroyd and Fulmer [1, 2] characterized the closed range composition
operators on weighted Bergman spaces.

In this paper, we give some results to determine when the generalized composition oper-
ator Cgϕ has closed-range. To some extent, our results generalize some existing results. For
example, the results obtained in this paper also hold for the classical composition operator
Cϕ : Bα → Bβ , which we get by choosing g = ϕ′, so some results of [14] can be got easily by
this paper. In section 2, we show several necessary and sufficient conditions for the general-
ized composition operator Cgϕ between Bloch-type spaces to have closed-range; apart from
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these, we use a set to describe when Cgϕ : Bα/C → Bβ is bounded below. In section 3, if
g ∈ H∞, according to relationship between α and β, we show several conclusions.

In order to state our main results conveniently, from now on we note Ωε,α,β = {z ∈
D, τα,β(z) ≥ ε} and Gε,α,β = ϕ(Ωε,α,β).

Throughout the remainder of this paper, C will denote a positive constant, the exact value
of which will vary from one appearance to the next. The notations A � B, A � B, A � B
mean that there exist different positive constants C such that B/C ≤ A ≤ CB, A ≤
CB, CB ≤ A.

2. Sampling sets and r-net

A bounded generalized composition operator Cgϕ : Bα → Bβ is said to be bounded below,
if there exists a constant k > 0 such that ‖Cgϕf‖Bβ ≥ k‖f‖Bα . Meanwhile, we know that Cgϕ
maps any constant function to 0 function, so it is only useful to consider spaces of analytic
functions modulo the constants. It follows that we can replace the norm ‖f‖Bα with the
seminorm ‖f‖α in the definition of boundedness below. Therefore, in this paper, we just
show some results on X/C, which means that a Banach space X of analytic functions on D
modulo the constants.

Lemma 1. Let X be Banach spaces of analytic functions. If ϕ is a nonconstant analytic
self-map of D, then Cgϕ is one-to-one on X/C.

Proof. If Cgϕf1 = Cgϕf2, we obtain f ′1(ϕ(z))g(z) = f ′2(ϕ(z))g(z). Excluding the isolated
points where g vanishes, since f1 and f2 are analytic, ϕ is a nonconstant analytic self-map
of D, the open mapping theorem for analytic functions ensures that f ′1(z) = f ′2(z) for every
z ∈ D, and hence Cgϕ is one-to-one on X/C. �

A basic operator theory result asserts that a one-to-one operator has a closed range if
and only if it is bounded below. Therefore, Lemma 1 implies the following theorem. The
detailed proof is similar to Proposition 3.30 of [6], and so we omit it.

Theorem 1. Let 0 < α, β < ∞, ϕ be a nonconstant analytic self-map of D. Then Cgϕ :

Bα/C→ Bβ has a closed range if and only if it is bounded below from Bα/C to Bβ. This is
equivalent to the condition that there exists M > 0 such that

‖Cgϕf‖β ≥M‖f‖α, ∀f ∈ Bα/C.

Remark 1. Since ϕ is an open map, a generalized composition operator Cgϕ never has a
finite rank. However, the closed subspaces of the range of a compact operator are only the
finite dimensional ones, so a compact generalized composition operator can never have a
closed range.

Theorem 2. Let 0 < α, β < ∞, ϕ be a nonconstant analytic self-map of D. Suppose that
Cgϕ : Bα → Bβ is bounded. Then Cgϕ : Bα/C → Bβ has a closed range if and only if there
exists ε > 0 such that the set Gε,α,β is a sampling set on Bα/C.

Proof. Suppose that there exists ε > 0 such that the set Gε,α,β is a sampling set on Bα/C.
In this case, we can find a constant k > 0 such that

‖f‖α ≤ k sup{(1− |ϕ(z)|2)α|f ′(ϕ(z))|, z ∈ Ωε,α,β}

≤ k sup{ (1− |ϕ(z)|2)α

(1− |z|2)β |g(z)|
(1− |z|2)β |f ′(ϕ(z))g(z)|, z ∈ Ωε,α,β}

= k sup{ 1

τα,β(z)
(1− |z|2)β |f ′(ϕ(z))g(z)|, z ∈ Ωε,α,β}

≤ k

ε
sup{(1− |z|2)β |f ′(ϕ(z))g(z)|, z ∈ D}

≤ k

ε
‖Cgϕf‖β
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and because Cgϕ : Bα → Bβ is bounded, it is bounded below. By Theorem 1, we obtain that

Cgϕ : Bα/C→ Bβ has a closed range.

Conversely, assume that Cgϕ : Bα/C → Bβ has a closed range. Then there exists k >

0, such that for ∀f ∈ Bα/C, supz∈D(1 − |z|2)β |f ′(ϕ(z))g(z)| ≥ k‖f‖α. Without loss of
generality, we suppose that ‖f‖α = 1. Thus, by the definition of supremum, we can choose
ω ∈ D, such that (1− |ω|2)β |f ′(ϕ(ω))g(ω)| ≥ k/2, that is to say,

(1− |ω|2)β |f ′(ϕ(ω))g(ω)| =
(1− |ω|2)β |g(ω)|
(1− |ϕ(ω)|2)α

(1− |ϕ(ω)|2)α|f ′(ϕ(ω))|

= τα,β(w)(1− |ϕ(ω)|2)α|f ′(ϕ(ω))|

≥ k

2
. (2.1)

Since (1− |ϕ(ω)|2)α|f ′(ϕ(ω))| ≤ 1, τα,β(w) ≥ k/2. If ε = k
2 , then Ωε,α,β contains the point

ω, and so ϕ(ω) ∈ Gε,α,β . On the other hand, Cgϕ : Bα → Bβ is bounded, Theorem A implies
that there exists a constant M > 0, such that

τα,β(w) ≤ M.

Combining the above inequality with (1), we conclude that

M(1− |ϕ(ω)|2)α|f ′(ϕ(ω))| ≥ τα,β(w)(1− |ϕ(ω)|2)α|f ′(ϕ(ω))| ≥ k

2
.

Thus

(1− |ϕ(ω)|2)α|f ′(ϕ(ω))| ≥ k

2M
.

Since ϕ(ω) ∈ Gε,α,β ,

sup{(1− |z|2)α|f ′(z)|, z ∈ Gε,α,β} ≥ (1− |ϕ(ω)|2)α|f ′(ϕ(ω))| ≥ k

2M
.

Hence Gε,α,β is a sampling set on Bα/C. �

Theorem 3. Let 0 < α, β < ∞, and ϕ be a nonconstant analytic self-map of D. Suppose
that Cgϕ : Bα → Bβ is bounded. If Cgϕ : Bα/C → Bβ has a closed range, then there exist
c > 0 and 0 < r < 1, such that Gc,α,β is an r-net for D.

Proof. We assume that Cgϕ is bounded and has a closed-range. By Theorem A, there exists
K > 0 such that sup τα,β(z) = K for z ∈ D. Meanwhile, there exists M > 0 such that
‖Cgϕf‖β ≥M‖f‖α for all f ∈ Bα/C.
Let ω ∈ D and consider the function ϕω(z) with ϕω(0) = 0 and ϕ′ω(z) = (σ′ω(z))α, where
σω(z) = ω−z

1−ωz . We have that ϕω(z) ∈ Bα/C and

‖ϕω‖α = sup
z∈D

(1− |z|2)α|ϕ′ω(z)|

= sup
z∈D

(1− |σ′ω(z)|2)α

= 1.

In the above equation we use the fact that

1− |σω(z)|2 =
(1− |ω|2)(1− |z|2)

|1− ωz|2
= |σ′ω(z)|(1− |z|2).

Thus,

‖Cgϕϕω‖β = sup
z∈D

(1− |z|2)β |ϕ′ω(ϕ(z))g(z)|

= sup
z∈D

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)α

(1− |ϕ(z)|2)α|σ′ω(ϕ(z))|α

= sup
z∈D

τα,β(z)(1− |σω(ϕ(z))|2)α.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

41 CUI WANG et al 38-44



Wang and Zhou: Closed-range generalized composition operators

We shall frequently get that

K ≥ sup
z∈D

τα,β(z)(1− |σω(ϕ(z))|2)α ≥M(1− |σω(ϕ(z))|2)α ≥M,

which reveals that there exists z0 ∈ D such that

τα,β(z0) ≥M/2, (1− |σω(ϕ(z0))|2)α ≥M/2K.

Thus let ε = M/2, r =
√

1− (M/2K)1/α, we have for all ω ∈ D, there exists z0 ∈ Ωε,α,β
such that ρ(ω, ϕ(z0)) < r, and so Gc,α,β is an r-net for D. �

Theorem 4. Let 0 < α, β < ∞, and ϕ be a nonconstant analytic self-map of D. Suppose
that Cgϕ : Bα → Bβ is bounded. If there exist ε > 0 and 0 < r < 1, such that Gε,α,β contains

the annulus A = {z : r < |z| < 1}, then Cgϕ : Bα/C→ Bβ has a closed range.

Proof. Suppose that Cgϕ : Bα/C→ Bβ is not bounded below. Then there exists a sequence
of functions {fn} with ‖fn‖α = 1 and ‖Cgϕfn‖β → 0. It follows that for ∀ε > 0, there exists
Nε when n > Nε, we have ‖Cgϕfn‖β < ε. Then

sup
ω∈Gε,α,β

(1− |ω|2)α|f ′n(ω)| = sup
ω∈Ωε,α,β

(1− |ϕ(z)|2)α|f ′n(ϕ(z))|

= sup
ω∈Ωε,α,β

(1− |ϕ(z)|2)α

(1− |z|2)β |g(z)|
(1− |z|2)β |f ′n(ϕ(z))g(z)|

= sup
ω∈Ωε,α,β

1

τα,β(z)
(1− |z|2)β |f ′n(ϕ(z))g(z)|

≤ 1

ε
sup

z∈Ωε,α,β

(1− |z|2)β |f ′n(ϕ(z))g(z)|

=
1

ε
‖Cgϕfn‖β

< ε. (2.2)

Since ‖fn‖α = 1, there exists a sequence {zn}n∈N ⊆ D, such that

(1− |zn|2)α|f ′n(zn)| ≥ 1/2 (2.3)

for all n ≥ 1. If we choose ε < 1/2, by (2) and (3), zn ∈ D/Gε,α,β when n > Nε. Because
Gε,α,β contains the annulus A = {z : r < |z| < 1}, there exists r0 < r such that |zn| ≤ r0 ≤ 1
and zn → z0 with |z0| < r0.

Since ‖fn‖α = 1, by Montel’s theorem, there exists a subsequence fnk → f uniformly
on every compact subsets of D, where f ∈ Bα/C. Cauchy’s estimate gives that f ′nk → f ′

uniformly on every compact subsets of D. By (2), supω∈Gε,α,β (1 − |ω|2)α|f ′n(ω)| → 0 as
n → ∞. On the other hand, Gε,α,β contains an infinite compact subset of D, we get that
f ′ ≡ 0. This contradicts the fact that |(1 − |z0|2)αf ′n(z0)| ≥ 1/2. Hence, Cgϕ : Bα/C → Bβ
has a closed range. �

3. the case of g ∈ H∞

In this section we will give a special case g ∈ H∞. Combine α and β, we get several
results.

Theorem 5. Let ϕ be a nonconstant analytic self-map of D, ϕ(0) = 0, g ∈ H∞ and
Cgϕ : Bα → Bβ is bounded.

(i) If 0 < α < β <∞ then Cgϕ : Bα/C→ Bβ can not have a closed range.

(ii) If α > β > 0 and β < 1 then Cgϕ : Bα/C→ Bβ can not have a closed range.

Proof. (i) Since g ∈ H∞, there exists a constant k > 0, such that |g(z)| ≤ k, for every z ∈ D.
For ϕ(0) = 0, by Schwarz-Pick Theorem in [6], we know

1− |z|2

1− |ϕ(z)|2
≤ 1, z ∈ D.
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So we have

τα,β(z) =
(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)α

≤ k(1− |z|2)β

(1− |ϕ(z)|2)α

=
k(1− |z|2)α

(1− |ϕ(z)|2)α
(1− |z|2)β−α

≤ k(1− |ϕ(z)|2)β−α.

Since 0 < α < β <∞, as |ϕ(z)| → 1, τα,β(z) converges to 0. By Theorem B, Cgϕ : Bα → Bβ
is compact. Hence Cgϕ : Bα/C→ Bβ can not have a closed range.

(ii) Replacing φ by ϕ, φ′ by g in the proof of (i) of Theorem 3.6 in [14], we can get this
result easily, so we omit the details here. �

Remark 2. (i) Let ϕ be a nonconstant analytic self-map of D, ϕ(0) = 0, g ∈ H∞. If
α = β, then

τα,β(z) =
(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)α

≤ k(1− |z|2)β

(1− |ϕ(z)|2)α

≤ k.

By Theorem A, we obtain Cgϕ : Bα → Bβ is bounded. While apart from this, we can not get

whether Cgϕ : Bα/C→ Bβ has a closed range or not.

(ii) Under the conditions of Theorem 5, if α > β ≥ 1, whether Cgϕ : Bα/C → Bβ has a

closed range or not is uncertain. We just give an example
(
(ii) of Example 1

)
showing that

this operator sometimes do not have a closed range. While, we fail to give the concrete proof
that this operator do not have a closed range always or an example to show this operator has
a closed range sometimes. So this can be an open problem.

Example 1. Let ϕ(z) = z, g(z) = 1.
(i) If α = β = 2, then

τα,β(z) =
(1− |z|2)2|g(z)|
(1− |ϕ(z)|2)2

= 1

and so Ωε,α,β = D for every 0 < ε < 1. In addition, ϕ(z) = z is a one-to-one analytic map
of the disk onto itself, therefore, Gε,α,β = ϕ(Ωε,α,β) = D. Then Gε,α,β is a sampling set on
Bα/C, and by Theorem 2, Cgϕ : Bα/C→ Bβ has a closed range.

(ii) If α = 3, β = 2, then

τα,β(z) =
(1− |z|2)β

(1− |ϕ(z)|2)α

= (1− |z|2)β−α →∞
as ϕ(z) → 1. By Theorem A, Cgϕ : Bα → Bβ is not bounded. Hence Cgϕ : Bα/C → Bβ can
not have a closed range.

Example 2. Let g(z) = z + 1, ϕ(z) = z−1
2 . If α = β, then

τα,β(z) =
(1− |z|2)α|g(z)|
(1− |ϕ(z)|2)α

≤ 4(1− |z|2)α|z + 1|
(1− |z|)α(3 + |z|)α

=
4(1 + |z|)α|z + 1|

(3 + |z|)α
→ 0
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as z → −1. By Theorem B, Cgϕ : Bα → Bβ is compact. Hence Cgϕ : Bα/C → Bβ can not
have a closed range.
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Abstract. We prove the Hyers-Ulam stability of ternary Jordan bi-derivations on Banach Lie triple systems associated

to the Cauchy functional equation.

1. Introduction and preliminaries

We say that a functional equation (Q) is stable if any function g satisfying the equation (Q) approximately is near to

true solution of (Q).

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists. Cayley [8]

introduced the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii [6]. As an

application in physics, the quark model inspired a particular brand of ternary algebraic systems. The so-called Nambu

mechanics which has been proposed by Nambu [11], is based on such structures. There are also some applications, although

still hypothetical, in the fractional quantum Hall effect, the non-standard statistics (the anyons), supersymmetric theories,

Yang-Baxter equation, etc, (cf. [15, 27]).

The comments on physical applications of ternary structures can be found in [1, 5, 10, 14, 17, 23, 24, 29].

A normed (Banach) Lie triple system is a normed (Banach) space (A, ‖ · ‖) with a trilinear mapping (x, y, z) 7→ [x, y, z]

from A×A×A to A satisfying the following axioms:

[x, y, z] = − [y, x, z] ,

[x, y, z] = − [y, z, x]− [z, x, y] ,

[u, v, [x, y, z]] = [[u, v, x] , y, z] + [x, [u, v, y] , z] + [x, y, [u, v, z]] ,

‖ [x, y, z] ‖ ≤ ‖x‖‖y‖‖z‖

for all u, v, x, y, z ∈ A (see [12, 16]).

Definition 1.1. Let A be a normed Lie triple system with involution ∗. A C-bilinear mapping D : A× A→ A is called

a ternary Jordan bi-derivation if it satisfies

D([x, x, x], w) = [D(x,w), x, x] + [x,D(x,w∗), x] + [x, x,D(x,w)],

D(x, [w,w,w]) = [D(x,w), w, w] + [w,D(x∗, w), w] + [w,w,D(x,w)]

for all x,w ∈ A.

02010 Mathematics Subject Classification. Primary 39B52; 39B82; 46B99; 17A40.
0Keywords: Hyers-Ulam stability; bi-additive mapping; Lie triple system; ternary Jordan bi-derivation.
0∗Corresponding author.
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The stability problem of functional equations originated from a question of Ulam [28] concerning the stability of group

homomorphisms. Hyers [13] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’

Theorem was generalized by Aoki [3] for additive mappings and by Th.M. Rassias [21] for linear mappings by considering an

unbounded Cauchy difference. J.M. Rassias [20] followed the innovative approach of the Th.M. Rassias theorem in which

he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p‖y‖p for p, q ∈ R with p+ q 6= 1. The stability problems of various functional

equations have been extensively investigated by a number of authors (see [2, 7, 9, 10, 18, 19, 22, 23, 24, 25, 26, 30, 31]).

2. Hyers-Ulam stability of ternary Jordan bi-derivations on Banach Lie triple systems

Throughout this section, assume that A is a normed Lie triple system.

For a given mapping f : A×A→ A, we define

Dλ,µf(x, y, z, w) = f(λx+ λy, µz + µw) + f(λx+ λy, µz − µw)

+f(λx− λy, µz + µw) + f(λx− λy, µz − µw)− 4λµf(x, z)

for all x, y, z, w ∈ A and all λ, µ ∈ T1 := {ν ∈ C : |ν| = 1}.

From now on, assume that f(0, z) = f(x, 0) = 0 for all x, z ∈ A.

We need the following lemma to obtain the main results.

Lemma 2.1. ([4]) Let f : A×A→ B be a mapping satisfying Dλ,µf(x, y, z, w) = 0 for all x, y, z, w ∈ A and all λ, µ ∈T1.

Then the mapping f : A×A→ A is C-bilinear.

Lemma 2.2. Let f : A×A→ A be a bi-additive mapping. Then the following assertions are equivalent:

f([a, a, a], [w,w,w]) = [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)],

f([a, a, a], [w,w,w]) = [f(a,w), a, a] + [a, f(a∗, w), a] + [a, a, f(a,w)]
(2.1)

for all a,w ∈ A, and
f([a, b, c] + [b, c, a] + [c, a, b], [w,w,w]) = [f(a,w), b, c] + [a, f(b, w∗), c] + [a, b, f(c, w)]

+ [f(b, w), c, a] + [b, f(c, w∗), a] + [b, c, f(a,w)] + [f(c, w), a, b] + [c, f(a,w∗), b] + [c, a, f(b, w)],

f([a, a, a], [b, c, w] + [c, w, b] + [w, b, c]) = [f(a, b), c, w] + [b, f(a∗, c), w] + [b, c, f(a,w)]

+ [f(a, c), w, b] + [c, f(a∗, w), b] + [c, w, f(a, b)] + [f(a,w), b, c] + [w, f(a∗, b), c] + [w, b, f(a,w)]

(2.2)

for all a, b, c, w ∈ A.

Proof. Replacing a by a+ b+ c in the first equation of (2.1), we have

f([a+ b+ c, a+ b+ c, a+ b+ c], [w,w,w]) = [f(a+ b+ c, w), a+ b+ c, a+ b+ c]

+ [a+ b+ c, f(a+ b+ c, w∗), a+ b+ c] + [a+ b+ c, a+ b+ c, f(a+ b+ c, w)].

Then we have

f([a+ b+ c, a+ b+ c, a+ b+ c], [w,w,w])

= f([a, a, a], [w,w,w]) + f([a, b, a], [w,w,w]) + f([a, c, a], [w,w,w]) + f([b, a, a], [w,w,w]) + f([b, b, a], [w,w,w])

+ f([b, c, a], [w,w,w]) + f([c, a, a], [w,w,w]) + f([c, b, a], [w,w,w]) + f([c, c, a], [w,w,w]) + f([a, a, b], [w,w,w])

+ f([a, b, b], [w,w,w]) + f([a, c, b], [w,w,w]) + f([b, a, b], [w,w,w]) + f([b, b, b], [w,w,w]) + f([b, c, b], [w,w,w])
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+ f([c, a, b], [w,w,w]) + f([c, b, b], [w,w,w]) + f([c, c, b], [w,w,w]) + f([a, a, c], [w,w,w]) + f([a, b, c], [w,w,w])

+ f([a, c, c], [w,w,w]) + f([b, a, c], [w,w,w]) + f([b, b, c], [w,w,w]) + f([b, c, c], [w,w,w]) + f([c, a, c], [w,w,w])

+ f([c, b, c], [w,w,w]) + f([c, c, c], [w,w,w])

= [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)] + [f(a,w), b, a] + [a, f(b, w∗), a] + [a, b, f(a,w)] + [f(a,w), c, a]

+ [a, f(c, w∗), a] + [a, c, f(a,w)] + [f(b, w), a, a] + [b, f(a,w∗), a] + [b, a, f(a,w)] + [f(b, w), b, a] + [b, f(b, w∗), a]

+ [b, b, f(a,w)] + [f(b, w), c, a] + [b, f(c, w∗), a] + [b, c, f(a,w)] + [f(c, w), a, a] + [c, f(a,w∗), a] + [c, a, f(a,w)]

+ [f(c, w), b, a] + [c, f(b, w∗), a] + [c, b, f(a,w)] + [f(c, w), c, a] + [c, f(c, w∗), a] + [c, c, f(a,w)] + [f(a,w), a, b]

+ [a, f(a,w∗), b] + [a, a, f(b, w)] + [f(a,w), b, b] + [a, f(b, w∗), b] + [a, b, f(b, w)] + [f(a,w), c, b] + [a, f(c, w∗), b]

+ [a, c, f(b, w)] + [f(b, w), a, b] + [b, f(a,w∗), b] + [b, a, f(b, w)] + [f(b, w), b, b] + [b, f(b, w∗), b] + [b, b, f(b, w)]

+ [f(b, w), c, b] + [b, f(c, w∗), b] + [b, c, f(b, w)] + [f(c), a, b] + [c, f(a∗), b] + [c, a, f(b)] + [f(c), b, b] + [c, f(b∗), b]

+ [c, b, f(b)] + [f(c, w), c, b] + [c, f(c, w∗), b] + [c, c, f(b, w)] + [f(a,w), a, c] + [a, f(a,w∗), c] + [a, a, f(c, w)]

+ [f(a,w), b, c] + [a, f(b, w∗), c] + [a, b, f(c, w)] + [f(a,w), c, c] + [a, f(c, w∗), c] + [a, c, f(c, w)] + [f(b, w), a, c]

+ [b, f(a,w∗), c] + [b, a, f(c, w)] + [f(b, w), b, c] + [b, f(b, w∗), c] + [b, b, f(c, w)] + [f(b, w), c, c] + [b, f(c, w∗), c]

+ [b, c, f(c, w)] + [f(c, w), a, c] + [c, f(a,w∗), c] + [c, a, f(c, w)] + [f(c, w), b, c] + [c, f(b, w∗), c] + [c, b, f(c, w)]

+ [f(c, w), c, c] + [c, f(c, w∗), c] + [c, c, f(c, w)]

for all a, b, c, w ∈ A.

On the other hand, for the right side of equation, we have

[f(a+ b+ c, w), a+ b+ c, a+ b+ c] + [a+ b+ c, f(a+ b+ c, w∗), a+ b+ c] + [a+ b+ c, a+ b+ c, f(a+ b+ c, w)]

= [f(a,w), a, a] + [f(a,w), a, b] + [f(a,w), a, c] + [f(a,w), b, a] + [f(a,w), b, b] + [f(a,w), b, c] + [f(a,w), c, a]

+ [f(a,w), c, b] + [f(a,w), c, c] + [f(b, w), a, a] + [f(b, w), a, b] + [f(b, w), a, c] + [f(b, w), b, a] + [f(b, w), b, b]

+ [f(b, w), b, c] + [f(b, w), c, a] + [f(b, w), c, b] + [f(b, w), c, c] + [f(c, w), a, a] + [f(c, w), a, b] + [f(c, w), a, c]

+ [f(c, w), b, a] + [f(c, w), b, b] + [f(c, w), b, c] + [f(c, w), c, a] + [f(c, w), c, b] + [f(c, w), c, c] + [a, f(a,w∗), a]

+ [a, f(a,w∗), b] + [a, f(a,w∗), c] + [b, f(a,w∗), a] + [b, f(a,w∗), b] + [b, f(a,w∗), c] + [c, f(a,w∗), a] + [c, f(a,w∗), b]

+ [c, f(a,w∗), c] + [a, f(b, w∗), a] + [a, f(b, w∗), b] + [a, f(b, w∗), c] + [b, f(b, w∗), a] + [b, f(b, w∗), b] + [b, f(b, w∗), c]

+ [c, f(b, w∗), a] + [c, f(b, w∗), b] + [c, f(b, w∗), c] + [a, f(c, w∗), a] + [a, f(c, w∗), b] + [a, f(c, w∗), c] + [b, f(c, w∗), a]

+ [b, f(c, w∗), b] + [b, f(c, w∗), c] + [c, f(c, w∗), a] + [c, f(c, w∗), b] + [c, f(c, w∗), c] + [a, a, f(a,w)] + [a, b, f(a,w)]

+ [a, c, f(a,w)] + [b, a, f(a,w)] + [b, b, f(a,w)] + [b, c, f(, w)] + [c, a, f(a,w)] + [c, b, f(a,w)] + [c, c, f(a,w)]

+ [a, a, f(b, w)] + [a, b, f(b, w)] + [a, c, f(b, w)] + [b, a, f(b, w)] + [b, b, f(b, w)] + [b, c, f(b, w)] + [c, a, f(b, w)]

+ [c, b, f(b, w)] + [c, c, f(b, w)] + [a, a, f(c, w)] + [a, b, f(c, w)] + [a, c, f(c, w)] + [b, a, f(c, w)] + [b, b, f(c, w)]

+ [b, c, f(c, w)] + [c, a, f(c, w)] + [c, b, f(c, w)] + [c, c, f(c, w)]

for all a, b, c, w ∈ A. It follows that

f([a, b, c] + [b, c, a] + [c, a, b], [w,w,w]) = [f(a,w), b, c] + [a, f(b, w∗), c] + [a, b, f(c, w)]

+ [f(b, w), c, a] + [b, f(c, w∗), a] + [b, c, f(a,w)] + [f(c, w), a, b] + [c, f(a,w∗), b] + [c, a, f(b, w)]
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for all a, b, c, w ∈ A. Hence (2.2) holds.

Similarly, we can show that

f([a, a, a], [b, c, w] + [c, w, b] + [w, b, c]) = [f(a, b), c, w] + [b, f(a∗, c), w] + [b, c, f(a,w)]

+ [f(a, c), w, b] + [c, f(a∗, w), b] + [c, w, f(a, b)] + [f(a,w), b, c] + [w, f(a∗, b), c] + [w, b, f(a,w)]

for all a, b, c, w ∈ A.

For the converse, replacing b and c by a in the first equation of (2.2), we have

f([a, a, a] + [a, a, a] + [a, a, a], [w,w,w]) = [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)] + [f(a,w), a, a]

+ [a, f(a,w∗), a] + [a, a, f(a,w)] + [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)],

and so

f
(

([a, a, a], [w,w,w]) + ([a, a, a], [w,w,w]) + ([a, a, a], [w,w,w])
)

= 3([f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)]).

Thus

f
(

3([a, a, a], [w,w,w])
)

= 3([f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)])

and so

f([a, a, a], [w,w,w]) = [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)]

for all a,w ∈ A.

Similarly, we can show that

f([a, a, a], [w,w,w]) = [f(a,w), a, a] + [a, f(a∗, w), a] + [a, a, f(a,w)]

for all a,w ∈ A. This completes the proof. �

Now we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on Banach Lie triple systems.

Theorem 2.3. Let p and θ be positive real numbers with p < 2, and let f : A×A→ A be a mapping such that

‖Dλ,µf(x, y, z, w)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p), (2.3)

‖f
(

([x, y, z] + [y, z, x] + [z, x, y]), w
)
− [f(x,w), y, z] + [x, f(y, w∗), z]− [x, y, f(z, w)]− [f(y, w), z, x]

− [y, f(z, w∗), x]− [y, z, f(x,w)]− [f(z, w), x, y]− [z, f(x,w∗), y]− [z, x, f(y, w)]‖

+ ‖f
(
x, ([y, z, w] + [z, w, y] + [w, y, z])

)
− [f(x, y), z, w]− [y, f(x∗, z), w]− [y, z, f(x∗, w)]− [f(x, z), w, y]

− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]‖

≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

(2.4)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique ternary Jordan bi-derivations D : A×A→ A such that

‖f(x, y)−D(x, y)‖B ≤
2θ

4− 2p
(‖x‖p + ‖y‖p) (2.5)

for all x, y ∈ A.

Proof. By the same reasoning as in the proof of [4, Theorem 2.3], there exists a unique C-bilinear mapping D : A×A→ A

satisfying (2.5). The C-bilinear mapping D : A×A→ A is given by

D(x, y) := lim
n→∞

1

4n
f(2nx, 2ny),
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for all x, y ∈ A. It is easy to show that

D(x, y) = lim
n→∞

1

16n
f(8nx, 2ny) = lim

n→∞

1

16n
f(2nx, 8ny)

for all x, y ∈ A, since f is bi-additive. It follows from (2.4) that

‖D
(

([x, y, z] + [y, z, x] + [z, x, y]), w)
)
− [D(x,w), y, z]− [x,D(y, w∗), z]− [x, y,D(z, w)]− [D(y, w), z, x]

−[y,D(z, w∗), x]− [y, z,D(x,w)]− [D(z, w), x, y]− [z,D(x,w∗), y]− [z, x,D(y, w)]‖

+ ‖D
(
x, ([y, z, w] + [z, w, y] + [w, y, z])

)
− [D(x, y), z, w]− [y,D(x∗, z), w]− [y, z,D(x∗, w)]− [D(x, z), w, y]

− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]‖

= lim
n→∞

(
‖ 1

16n
f
(

23n[x, y, z] + 23n[y, z, x] + 23n[z, x, y], 2nw
)
− [

1

4n
f(2nx, 2nw), y, z]− [x,

1

4n
f(2ny, 2nw∗), z]

− [x, y,
1

4n
f(2nz, 2nw)]− [

1

4n
f(2ny, 2nw), z, x]− [y,

1

4n
f(2nz, 2nw∗), x]− [y, z,

1

4n
f(2nx, 2nw)]

− [
1

4n
f(2nz, 2nw), x, y]− [z,

1

4n
f(2nx, 2nw∗), y]− [z, x,

1

4n
f(2ny, 2nw)]‖

+
(
‖ 1

16n
f
(

2nx, 23n[y, z, w] + 23n[z, w, y] + 23n[z, w, y]
)
− [

1

4n
f(2nx, 2ny), z, w] + [y,

1

4n
f(2nx∗, 2nz), w]

− [y, z,
1

4n
f(2nx, 2nw)]− [

1

4n
f(2nx, 2nz), w, y]− [z,

1

4n
f(2nx∗, 2nw), y]− [z, w,

1

4n
f(2nx, 2ny)]

− [
1

4n
f(2nx, 2nw), y, z]− [w,

1

4n
f(2nx∗, 2ny), z]− [w, y,

1

4n
f(2nx, 2nz)]‖

≤ lim
n→∞

2np

16n
θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) = 0

for all x, y, z, w ∈ A. So

‖D
(

([x, y, z] + [y, z, x] + [z, x, y]), w)
)
− [D(x,w), y, z]− [x,D(y, w∗), z]− [x, y,D(z, w)]− [D(y, w), z, x]

− [y,D(z, w∗), x]− [y, z,D(x,w)]− [D(z, w), x, y]− [z,D(x,w∗), y]− [z, x,D(y, w)]‖

and

+ ‖D
(
x, ([y, z, w] + [z, w, y] + [w, y, z])

)
− [D(x, y), z, w]− [y,D(x∗, z), w]− [y, z,D(x∗, w)]− [D(x, z), w, y]

− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]‖

for all x, y, z, w ∈ A. By Lemma 2.2, the mapping D is a unique ternary Jordan bi-derivation satisfying (2.5). �

For the case p > 4, one can obtain a similar result.

Theorem 2.4. Let p and θ be positive real numbers with p > 4, and let f : A×A→ A be a mapping satisfying (2.3) and

(2.4). Then there exists a unique ternary Jordan bi-derivation D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤ 6θ

2p − 4
(‖x‖p + ‖y‖p)

for all x, y ∈ A.

Proof. The proof is similar to the proof of Theorem 2.3. �

Theorem 2.5. Let p and θ be positive real numbers with p < 1
2
, and let f : A×A→ A be a mapping such that

‖Dλ,µf(x, y, z, w)‖ ≤ θ · ‖x‖p · ‖y‖p · ‖z‖p · ‖w‖p,
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‖f
(

([x, y, z] + [y, z, x] + [z, x, y]), w
)
− [f(x,w), y, z] + [x, f(y, w∗), z]− [x, y, f(z, w)]− [f(y, w), z, x]

− [y, f(z, w∗), x]− [y, z, f(x,w)]− [f(z, w), x, y]− [z, f(x,w∗), y]− [z, x, f(y, w)]‖

+ ‖f
(
x, ([y, z, w] + [z, w, y] + [w, y, z])

)
− [f(x, y), z, w]− [y, f(x∗, z), w]− [y, z, f(x∗, w)]− [f(x, z), w, y]

− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]‖

≤ θ · ‖x‖pA · ‖y‖
p
A · ‖z‖

p
A · ‖w‖

p
A

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique ternary Jordan bi-derivations D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤ 2θ

4− 24p
‖x‖2p‖y‖2p (2.6)

for all x, y ∈ A.

Proof. By the same reasoning as in the proof of [4, Theorem 2.6], there exists a unique C-bilinear mapping D : A×A→ A

satisfying (2.6). The C-bilinear mapping D : A×A→ A is given by

D(x, y) := lim
n→∞

1

4n
f(2nx, 2ny),

for all x, y ∈ A.

The rest of the proof is similar to the proof of Theorem 2.3. �
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SOME GENERALIZED DIFFERENCE SEQUENCE SPACES OF IDEAL

CONVERGENCE AND ORLICZ FUNCTIONS

KULDIP RAJ1, AZIMHAN ABZHAPBAROV2 AND ASHIRBAYEV KHASSYMKHAN3

Abstract. In this paper we shall introduce some generalized difference sequence

spaces by using Musielak-Orlicz function, ideal convergence and an infinite matrix

defined on n-normed spaces. We shall study these spaces for some linear toplogical

structures and algebraic properties. We also prove some inclusion relations between

these spaces

1. Introduction and Preliminaries

The notion of statistical convergence was introduced by Fast [5] and Schoenberg [31]

independently. Over the years and under different names, statistical convergence has been

discussed in the theory of Fourier analysis, ergodic theory and number theory. Later on, it

was further investigated from the sequence space point of view and linked with summabil-

ity theory by Fridy [6], Connor [1], Salat [29], Isik [14], Savaş [30], Malkowsky and Savaş

[19], Kolk [16], Tripathy and Sen [32] and many others. In recent years, generalizations of

statistical convergence have appeared in the study of strong integral summability and the

structure of ideals of bounded continuous functions on locally compact spaces. Statisti-

cal convergence and its generalizations are also connected with subsets of the Stone-Cech

compactification of natural numbers. Moreover, statistical convergence is closely related

to the concept of convergence in probability. The notion depends on the density of subsets

of the set N of natural numbers.

A subset E of N is said to have the natural density δ(E) if the following limit exists:

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k), where χE is the characteristic function of E. It is clear that

any finite subset of N has zero natural density and δ(Ec) = 1− δ(E).

The notion of ideal convergence was first introduced by P.Kostyrko et.al [13] as a general-

ization of statistical convergence which was further studied in topological spaces by Das,

Kostyrko, Wilczynski and Malik (see [2]). More applications of ideals can be seen in ([2],

[3]). We continue in this direction and introduce I-convergence of generalized sequences

in more general setting.

A family I ⊂ 2Y of subsets of a non empty set Y is said to be an ideal in Y if

(1) φ ∈ I;

2000 Mathematics Subject Classification. 40A05, 40B50, 46A19, 46A45.

Key words and phrases. Orlicz function,Musielak-Orlicz function, statistical convergence, ideal con-

vergence, solid, infinite matrix, n-normed space.
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(2) A,B ∈ I imply A ∪B ∈ I;

(3) A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y further satisfies

{x} ∈ I for each x ∈ Y (see [11]).

Given I ⊂ 2N be a non trivial ideal in N. A sequence (xn)n∈N in X is said to be I-

convergent to x ∈ X, if for each ε > 0 the set A(ε) =
{
n ∈ N : ||xn − x|| ≥ ε

}
belongs to

I (see [10]).

The notion of difference sequence spaces was introduced by Kızmaz [15], who studied the

difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized

by Et and Çolak [4] by introducing the spaces l∞(∆n), c(∆n) and c0(∆n). Let w be the

space of all complex or real sequences x = (xk) and let m, n be non-negative integers,

then for Z = l∞, c, c0 we have sequence spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},

where ∆m
n x = (∆m

n xk) = (∆m−1
n xk −∆m−1

n xk+1) and ∆0
nxk = xk for all k ∈ N, which is

equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v

(
m

v

)
xk+nv.

Taking n = 1, we get the spaces which were studied by Et and Çolak [4]. Taking

m = n = 1, we get the spaces which were introduced and studied by Kızmaz [15].

The concept of 2-normed spaces was initially developed by Gähler [7] in the mid of 1960’s,

while that of n-normed spaces one can see in Misiak[19]. Since then, many others have

studied this concept and obtained various results, see Gunawan ([8], [9]) and Gunawan

and Mashadi [10] and many others. Let n ∈ N and X be a linear space over the field K,

where K is field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real

valued function ||·, · · · , ·|| on Xn satisfying the following four conditions:

(1) ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in X;

(2) ||x1, x2, · · · , xn|| is invariant under permutation;

(3) ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and

(4) ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called a n-norm on X, and the pair (X, ||·, · · · , ·||) is called a n-normed space over the

field K.

For example, we may take X = Rn being equipped with the n-norm ||x1, x2, · · · , xn||E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1, x2, · · · , xn
which may be given explicitly by the formula

||x1, x2, · · · , xn||E = |det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n, where script E denotes

Euclidean space. Let (X, ||·, · · · , ·||) be an n-normed space of dimension d ≥ n ≥ 2 and
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{a1, a2, · · · , an} be linearly independent set in X. Then the following function ||·, · · · , ·||∞
on Xn−1 defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k,i→∞

||xk − xi, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete

with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and convex

function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following

sequence space,

`M =
{

(xk) ∈ w :
∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. Also `M is a Banach space with the norm

||(xk)|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

Also, it was shown in [17] that every Orlicz sequence space `M contains a subspace iso-

morphic to `p(p ≥ 1). An Orlicz function M satisfies ∆2−condition if and only if for any

constant L > 1 there exists a constant K(L) such that M(Lu) ≤ K(L)M(u) for all values

of u ≥ 0. An Orlicz function M can always be represented in the following integral form

M(x) =

∫ x

0

η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η

is non-decreasing and η(t)→∞ as t→∞.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function see ([18],

[25]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a given

Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its subspace

hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,
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hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

A Musielak-Orlicz function (Mk) is said to satisfy ∆2-condition if there exist constants

a,K > 0 and a sequence c = (ck)∞k=1 ∈ `1+ (the positive cone of `1) such that the inequality

Mk(2u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+ whenever Mk(u) ≤ a.

Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,

(2) p(−x) = p(x) for all x ∈ X,

(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of

vectors with p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair

(X, p) is called a total paranormed space. It is well known that the metric of any linear

metric space is given by some total paranorm (see [33], Theorem 10.4.2, pp. 183). For

more details about sequence spaces (see [21], [22], [23], [24], [26], [27], [28]) and reference

therein.

A sequence space E is said to be solid(or normal) if (xk) ∈ E implies (αkxk) ∈ E for all

sequences of scalars (αk) with |αk| ≤ 1 and for all k ∈ N.

Let I be an admissible ideal of N, let p = (pk) be a bounded sequence of positive real

numbers for all k ∈ N and A = (ank) be an infinite matrix. LetM = (Mk) be a Musielak-

Orlicz function, u = (uk) be a sequence of strictly positive real numbers and (X, ||., ..., .||)
be a n-normed space. Further w(n− x) denotes the space of all X-valued sequences. For

every z1, z2, ..., zn−1 ∈ X, for each ε > 0 and for some ρ > 0 we define the following

sequence spaces:

W I
[
A,∆m

n ,M, u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk − L
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,
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W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I
}

and

W I
∞
[
A,∆m

n ,M, u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ K
}
∈ I
}
.

Some special cases of the above defined sequence spaces are arises:

If m = n = 0, then we obtain the spaces as follows

W I
[
A,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||ukxk − L

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,

W I
0

[
A,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||ukxk

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}
∈ I
}

and

W I
∞
[
A,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||ukxk

ρ
, z1, z2, ..., zn−1||

)]pk
≥ K

}
∈ I
}
.

If m = n = 1, then the above spaces are as follows

W I
[
A,∆,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆xk − L

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,

W I
0

[
A,∆,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆xk

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}
∈ I
}

and

W I
∞
[
A,∆,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆xk

ρ
, z1, z2, ..., zn−1||

)]pk
≥ K

}
∈ I
}
.
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If M(x) = x for all x ∈ [0,∞), then we have

W I
[
A,∆m

n , u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

(
||uk∆m

n xk − L
ρ

, z1, z2, ..., zn−1||
)pk
≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,

W I
0

[
A,∆m

n , u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ank

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)pk
≥ ε
}
∈ I
}

and

W I
∞
[
A,∆m

n , u, p, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

ank

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)pk
≥ K

}
∈ I
}
.

If p = (pk) = 1 for all k, then the above spaces are as follows

W I
[
A,∆m

n ,M, u, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ankMk

(
||uk∆m

n xk − L
ρ

, z1, z2, ..., zn−1||
)
≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,

W I
0

[
A,∆m

n ,M, u, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

ankMk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)
≥ ε
}
∈ I
}

and

W I
∞
[
A,∆m

n ,M, u, ||., ..., .||
]

=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

ankMk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)
≥ K

}
∈ I
}
.

If A = (C, 1), the Cesàro matrix, then the above spaces are as follows

W I
[
∆m
n ,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

[
Mk

(
||uk∆m

n xk − L
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I, for L ∈ X and n ∈ N

}
,

W I
0

[
∆m
n ,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : for given ε > 0,

{
n ∈ N :

∞∑
k=1

[
Mk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I
}
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and

W I
∞
[
∆m
n ,M, u, p, ||., ..., .||

]
=
{
x = (xk) ∈ w(n− x) : ∃ k > 0,

{
n ∈ N :

∞∑
k=1

[
Mk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ K
}
∈ I
}
.

If we take A = (ank) is a de La Valee Poussin mean i.e.

ank =

{
1
λn
, if k ∈ In = [n− λn + 1, n]

0, otherwise

where (λn) is a non-decreasing sequence of positive numbers tending to ∞ and λn+1 ≤
λn+1, λ1 = 1, then the above sequence spaces are denoted byW I

[
λ,∆m

n ,M, u, p, ||., ..., .||
]
,

W I
0

[
λ,∆m

n ,M, u, p, ||., ..., .||
]

and W I
∞
[
λ,∆m

n ,M, u, p, ||., ..., .||
]
.

By a lacunary sequence θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an increasing

sequence of non-negative integers with kr−kr−1 →∞ as r →∞. The intervals determined

by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. We finally arrived, let

ank =

{
1
hr
, if kr−1 < k < kr

0, otherwise.

Then the above classes of sequences are denoted byW I
[
θ,∆m

n ,M, p, ||., ..., .||
]
, W I

0

[
θ,∆m

n ,M,

p, ||., ..., .||
]

and W I
∞
[
θ,∆m

n ,M, p, ||., ..., .||
]
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = G,

D = max(1, 2G−1) then

(1.1) |ak + bk|pk ≤ D{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|G) for all a ∈ C.

The main aim of this paper is to introduce some generalized difference sequence spaces

defined by ideal convergence, a Musielak-Orlicz function M = (Mk) and an infinite ma-

trix A = (ank). I have also make an effort to study some inclusion relations and their

topological properties.

2. Main Results

Theorem 2.1 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded se-

quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.

Then W I
[
A,∆m

n ,M, u, p, ||., ..., .||
]
,W I

0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

and W I
∞
[
A,∆m

n ,M,

u, p, ||., ..., .||
]

are linear spaces over the field of complex numbers C.

Proof. We shall prove the result for the space W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]
. Let x = (xk)
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and y = (yk) be two elements of W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]
. Then there exists ρ1 > 0

and ρ2 > 0 and for z1, z2, ..., zn−1 ∈ X such that

A ε
2

=
{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ1

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
∈ I

and

B ε
2

=
{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n yk
ρ2

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
∈ I.

Let α, β ∈ C. Since ||., ..., .|| is a n-norm, ∆m
n is linear and the contributing ofM = (Mk),

the following inequality holds:
∞∑
k=1

ank

[
Mk

(
||uk∆m

n (αxk + βyk)

|α|ρ1 + |β|ρ2
, z1, z2, ..., zn−1||

)]pk

≤ D
∞∑
k=1

ank

[ |α|
|α|ρ1 + |β|ρ2

Mk

(
||uk∆m

n xk
ρ1

, z1, z2, ..., zn−1||
)]pk

+ D

∞∑
k=1

ank

[ |β|
|α|ρ1 + |β|ρ2

Mk

(
||uk∆m

n yk
ρ2

, z1, z2, ..., zn−1||
)]pk

≤ DK
∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ1

, z1, z2, ..., zn−1||
)]pk

+ DK
∞∑
k=1

ank

[
Mk

(
||uk∆m

n yk
ρ2

, z1, z2, ..., zn−1||
)]pk

where K = max
{

1, |α|
|α|ρ1+|β|ρ2 ,

|β|
|α|ρ1+|β|ρ2

}
.

From the above relation , we get{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n (αxk + βyk)

|α|ρ1 + |β|ρ2
, z1, z2, ..., zn−1||

)]pk
≥ ε
}

⊆
{
n ∈ N : DK

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ1

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
∪

{
n ∈ N : DK

∞∑
k=1

ank

[
Mk

(
||uk∆m

n yk
ρ2

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
.

Since both the sets on the R.H.S of above relation are belongs to I, so the set on the L.H.S

of the inclusion relation belongs to I. Similarly we can prove other cases. This completes

the proof of the theorem.

Theorem 2.2 LetM′ = (M ′k) andM′′ = (M ′′k ) be two Musielak-orlicz functions. Then we

have W I
0

[
A,∆m

n ,M′, u, p, ||., ..., .||
]
∩W I

0

[
A,∆m

n ,M′′, u, p, ||., ..., .||
]
⊆ W I

0

[
A,∆m

n ,M′ +

M′′, u, p, ||., ..., .||
]
.

Proof. Let x = (xk) ∈ W I
0

[
A,∆m

n ,M′, u, p, ||., ..., .||
]
∩ W I

0

[
A,∆m

n ,M′′, u, p, ||., ..., .||
]
.
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Then we get the result by the following inequality:
∞∑
k=1

ank

[
(M ′k +M ′′k )

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≤ D
∞∑
k=1

ank

[
M ′k

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

+ D
∞∑
k=1

ank

[
M ′′k

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

.

Hence{
n ∈ N :

∞∑
k=1

ank

[
(M ′k +M ′′k )

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}

⊆
{
n ∈ N : D

∞∑
k=1

ank

[
M ′k

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
∪

{
n ∈ N : D

∞∑
k=1

ank

[
M ′′k

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}

Since both the sets on the R.H.S of above relation are belongs to I, so the set on the L.H.S

of the inclusion relation belongs to I. This completes the proof of the theorem.

Theorem 2.3 The inclusions Z
[
∆m−1
n ,M, u, p, ||., ..., .||

]
⊆ Z

[
A,∆m

n ,M, u, p, ||., ..., .||
]

are strict for m ≥ 1. In general Z
[
∆m−1
n ,M, u, p, ||., ..., .||

]
⊆ Z

[
A,∆m

n ,M, u, p, ||., ..., .||
]
,

for m = 0, 1, 2, ... where Z = W I ,W I
0 ,W

I
∞.

Proof. We give the proof for W I
0

[
A,∆m−1

n ,M, u, p, ||., ..., .||
]

only. The others can be

proved by similar argument. Let x = (xk) be any element in the spaceW I
0

[
A,∆m−1

n ,M, u, p, ||., ..., .||
]
.

Let ε > 0 be given. Then there exists ρ > 0 such that the set

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I.
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Since M = (Mk) is non-decreasing and convex for every k, it follows that
∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
2ρ

, z1, z2, ..., zn−1||
)]pk

=
∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk+1 − uk∆m−1
n xk

2ρ
, z1, z2, ..., zn−1||

)]pk
≤ D

∞∑
k=1

ank

[1

2
Mk

(
||uk∆m−1

n xk+1

ρ
, z1, z2, ..., zn−1||

)]pk
+ D

∞∑
k=1

ank

[1

2
Mk

(
||uk∆m−1

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≤ DH
∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk+1

ρ
, z1, z2, ..., zn−1||

)]pk
+ DH

∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

,

where H = max
{

1, ( 1
2 )G
}
. Thus we have{

n ∈ N :
∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
2ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}

⊆
{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk+1

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε

2

}
∪

{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m−1

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε

2

}
Since both the sets in right hand side of the above relation belongs to I, therefore we get

the set {
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n xk
ρ

, z1, z2, ..., zn−1||
)]pk

≥ ε
}
∈ I.

This inclusion is strict follows from the following example.

Example. Let Mk(x) = x, for all k ∈ N, uk = pk = 1 for all k ∈ N and A = (C, 1), the

Cesaro matrix. Now consider a sequence x = (xk) = (ks). Then for n = 1, x = (xk) be-

longs to W I
0

[
∆m
n ,M, u, p, ||., ..., .||

]
but does not belongs to W I

0

[
∆m−1
n ,M, u, p, ||., ..., .||

]
,

because ∆m
n xk = 0 and ∆m−1

n xk = (−1)m−1(m− 1)!.

Theorem 2.4 For any two sequences p = (pk) and q = (qk) of positive real numbers

and for any two n-norms ||., ..., .||1 and ||., ..., .||2 on X, we have the following

Z
[
A,∆m

n ,M, u, p, ||., ..., .||1
]
∩Z
[
A,∆m

n ,M, u, q, ||., ..., .||2
]
6= φ where Z = W I ,W I

0 and W I
∞.

Proof. Since the zero element belongs to both the classes of sequences, so the intersection

is non-empty.
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Theorem 2.5 The sequence spaces W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

and W I
∞
[
A,∆m

n ,M, u, p, ||., ..., .||
]

are normal as well as monotone.

Proof. We shall prove the theorem for W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]
. Let x = (xk) ∈

W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

and α = (αk) be a sequence of scalars such that |αk| ≤ 1 for

all k ∈ N. Then for given ε > 0, we have{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n (αkxk)

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}

⊆
{
n ∈ N :

∞∑
k=1

ank

[
Mk

(
||uk∆m

n (xk)

ρ
, z1, z2, ..., zn−1||

)]pk
≥ ε
}
∈ I.

Hence αkxk ∈W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]
. Thus the space W I

0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

is normal. Therefore W I
0

[
A,∆m

n ,M, u, p, ||., ..., .||
]

is monotone also (see [12]). Similarly

we can prove the theorem for other case. This completes the proof of the theorem.
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Abstract. We prove a general stability theorem of an n-dimensional quadratic-additive
type functional equation

Df(x1, x2, . . . , xn) =

m∑
i=1

cif
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
= 0

by using the direct method.

AMS Subject Classification: 39B82, 39B52

Key Words: generalized Hyers-Ulam stability; functional equation; n-dimensional quadratic-

additive type functional equation; quadratic-additive mapping; direct method.

1 Introduction

Let G1 and G2 be abelian groups. For any mapping f : G1 → G2, let us define

Af(x, y) := f(x+ y)− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y)

for all x, y ∈ G1. A mapping f : G1 → G2 is called an additive mapping (or a
quadratic mapping) if f satisfies the functional equation Af(x, y) = 0 (or Qf(x, y) =
0) for all x, y ∈ G1. We notice that the mappings g, h : R → R given by g(x) = ax
and h(x) = ax2 are solutions of Ag(x, y) = 0 and Qh(x, y) = 0, respectively.

A mapping f : G1 → G2 is called a quadratic-additive mapping if and only if
f is represented by the sum of an additive mapping and a quadratic mapping. A
functional equation is called a quadratic-additive type functional equation if and
only if each of its solutions is a quadratic-additive mapping (see [9]). For example,

1
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2

the mapping f(x) = ax2 + bx is a solution of the quadratic-additive type functional
equation.

In the study of stability problems of quadratic-additive type functional equations,
we have followed out a routine and monotonous procedure for proving the stability of
the quadratic-additive type functional equations under various conditions. We can
find in the books [2, 3, 7, 8] a lot of references concerning the Hyers-Ulam stability
of functional equations (see also [1, 4, 5, 6, 14, 15]).

Throughout this paper, let V and W be real vector spaces, let X and Y be a real
normed space resp. a real Banach space, and let N0 denote the set of all nonnegative
integers.

In this paper, we prove a general stability theorem that can be easily applied
to the (generalized) Hyers-Ulam stability of a large class of functional equations of
the form Df(x1, x2, . . . , xn) = 0, which includes quadratic-additive type functional
equations. In practice, given a mapping f : V →W , Df : V n →W is defined by

Df(x1, x2, . . . , xn) :=

m∑
i=1

cif
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
(1.1)

for all x1, x2, . . . , xn ∈ V , where m is a positive integer and ci, aij are real constants.
Indeed, this stability theorem can save us much trouble of proving the stabil-

ity of relevant solutions repeatedly appearing in the stability problems for various
functional equations (see [11, 12, 13]).

2 Preliminaries

Let V and W be real vector spaces and let X and Y be a real normed space resp.
a real Banach space. For a given mapping f : V → W , we use the following
abbreviations

fo(x) :=
f(x)− f(−x)

2
and fe(x) :=

f(x) + f(−x)

2

for all x ∈ V .
We now introduce a lemma from the paper [10, Corollary 2].

Lemma 2.1 Let k > 1 be a real constant, let ϕ : V \{0} → [0,∞) be a function
satisfying either

Φ(x) :=

∞∑
i=0

1

ki
ϕ(kix) <∞ (2.1)

for all x ∈ V \{0} or

Φ(x) :=
∞∑
i=0

k2iϕ

(
x

ki

)
<∞ (2.2)

for all x ∈ V \{0}, and let f : V → Y be an arbitrarily given mapping. If there exists
a mapping F : V → Y satisfying

∥f(x)− F (x)∥ ≤ Φ(x) (2.3)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

65 Yang-Hi Lee et al 64-78



3

for all x ∈ V \{0} and

Fe(kx) = k2Fe(x), Fo(kx) = kFo(x) (2.4)

for all x ∈ V , then F is a unique mapping satisfying (2.3) and (2.4).

We introduce a lemma that is the same as [10, Corollary 3].

Lemma 2.2 Let k > 1 be a real number, let ϕ, ψ : V \{0} → [0,∞) be functions
satisfying each of the following conditions

∞∑
i=0

kiψ

(
x

ki

)
<∞,

∞∑
i=0

1

k2i
ϕ(kix) <∞,

Φ̃(x) :=

∞∑
i=0

kiϕ

(
x

ki

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

k2i
ψ(kix) <∞

for all x ∈ V \{0}, and let f : V → Y be an arbitrarily given mapping. If there exists
a mapping F : V → Y satisfying the inequality

∥f(x)− F (x)∥ ≤ Φ̃(x) + Ψ̃(x) (2.5)

for all x ∈ V \{0} and the conditions in (2.4) for all x ∈ V , then F is a unique
mapping satisfying (2.4) and (2.5).

3 Main results

In this section, let a be a real constant with a ̸∈ {−1, 0, 1}. Lemma 2.1 plays an
important role in the proofs of the following two main theorems.

Theorem 3.1 Let n be a fixed integer greater than 1, let µ : V \{0} → [0,∞) be a
function satisfying the condition

∞∑
i=0

µ(aix)

a2i
<∞ when |a| < 1,

∞∑
i=0

µ(aix)

|a|i
<∞ when |a| > 1

(3.1)

for all x ∈ V \{0}, and let φ : (V \{0})n → [0,∞) be a function satisfying the
condition 

∞∑
i=0

φ(aix1, a
ix2, . . . , a

ixn)

a2i
<∞ when |a| < 1,

∞∑
i=0

φ(aix1, a
ix2, . . . , a

ixn)

|a|i
<∞ when |a| > 1

(3.2)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

66 Yang-Hi Lee et al 64-78



4

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0,∥∥∥∥f(ax)− a2 + a

2
f(x)− a2 − a

2
f(−x)

∥∥∥∥ ≤ µ(x) (3.3)

for all x ∈ V \{0}, and

∥Df(x1, x2, . . . , xn)∥ ≤ φ(x1, x2, . . . , xn) (3.4)

for all x1, x2, . . . , xn ∈ V \{0}, then there exists a unique mapping F : V → Y such
that

DF (x1, x2, . . . , xn) = 0 (3.5)

for all x1, x2, . . . , xn ∈ V \{0},

Fe(ax) = a2Fe(x) and Fo(ax) = aFo(x) (3.6)

for all x ∈ V , and

∥f(x)− F (x)∥ ≤
∞∑
i=0

(
µ(aix) + µ(−aix)

2a2i+2
+
µ(aix) + µ(−aix)

2|a|i+1

)
(3.7)

for all x ∈ V \{0}.

Proof. First, we define A := {f : V → Y | f(0) = 0} and a mapping Jm : A→ A by

Jmf(x) :=
f(amx) + f(−amx)

2a2m
+
f(amx)− f(−amx)

2am

for x ∈ V and m ∈ N0. It follows from (3.3) that

∥Jmf(x)− Jm+lf(x)∥

≤
m+l−1∑
i=m

∥Jif(x)− Ji+1f(x)∥

=

m+l−1∑
i=m

∥∥∥∥f(aix) + f(−aix)

2a2i
+
f(aix)− f(−aix)

2ai

− f(ai+1x) + f(−ai+1x)

2a2i+2
− f(ai+1x)− f(−ai+1x)

2ai+1

∥∥∥∥
=

m+l−1∑
i=m

∥∥∥∥− 1

2ai+1

(
f(a · aix)− a2 + a

2
f(aix)− a2 − a

2
f(−aix)

)
(3.8)

+
1

2ai+1

(
f(−a · aix)− a2 + a

2
f(−aix)− a2 − a

2
f(aix)

)
− 1

2a2i+2

(
f(a · aix)− a2 + a

2
f(aix)− a2 − a

2
f(−aix)

)
− 1

2a2i+2

(
f(−a · aix)− a2 + a

2
f(−aix)− a2 − a

2
f(aix)

)∥∥∥∥
≤

m+l−1∑
i=m

(
µ(aix) + µ(−aix)

2a2i+2
+
µ(aix) + µ(−aix)

2|a|i+1

)
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for all x ∈ V \{0}. In view of (3.1) and (3.8), the sequence {Jmf(x)} is a Cauchy
sequence for all x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence
{Jmf(x)} converges for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f(amx) + f(−amx)

2a2m
+
f(amx)− f(−amx)

2am

)
for all x ∈ V .

We easily obtain from the definition of F and (3.4) that

Fe(ax) =
F (ax) + F (−ax)

2

= lim
m→∞

f(am+1x) + f(−am+1x)

2a2m

= a2 lim
m→∞

f(am+1x) + f(−am+1x)

2a2m+2

= a2Fe(x),

Fo(ax) =
F (ax)− F (−ax)

2

= lim
m→∞

f(am+1x)− f(−am+1x)

2am

= a lim
m→∞

f(am+1x)− f(−am+1x)

2am+1

= aFo(x)

for all x ∈ V , and by (1.1) and (3.2), we get

∥DF (x1, x2, . . . , xn)∥

= lim
m→∞

∥∥∥∥Df
(
amx1, a

mx2, . . . , a
mxn

)
+Df

(
− amx1,−amx2, . . . ,−amxn

)
2a2m

+
Df
(
amx1, a

mx2, . . . , a
mxn

)
−Df

(
− amx1,−amx2, . . . ,−amxn

)
2am

∥∥∥∥
≤ lim

m→∞

(
φ
(
amx1, a

mx2, . . . , a
mxn

)
+ φ

(
− amx1,−amx2, . . . ,−amxn

)
2a2m

+
φ
(
amx1, a

mx2, . . . , a
mxn

)
+ φ

(
− amx1,−amx2, . . . ,−amxn

)
2|a|m

)
= 0

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈
V \{0}. Moreover, if we put m = 0 and let l → ∞ in (3.8), then we obtain the
inequality (3.7).

Notice that the equalities

Fe(|a|x) = |a|2Fe(x), Fe

(
x

|a|

)
=
Fe(x)

|a|2
,

Fo(|a|x) = |a|Fo(x), Fo

(
x

|a|

)
=
Fo(x)

|a|
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are true in view of (3.6).
When |a| > 1, in view of Lemma 2.1, there exists a unique mapping F : V → Y

satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

(
µ(aix) + µ(−aix)

2a2i+2
+
µ(aix) + µ(−aix)

2|a|i+1

)

≤
∞∑
i=0

ϕ(|a|ix)

|a|i

≤
∞∑
i=0

ϕ(kix)

ki

holds for all x ∈ V \{0}, where we set k := |a| and ϕ(x) := µ(x)+µ(−x)
2a2

+ µ(x)+µ(−x)
2|a| .

When |a| < 1, in view of Lemma 2.1, there exists a unique mapping F : V → Y
satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

(
µ(aix) + µ(−aix)

2a2i+2
+
µ(aix) + µ(−aix)

2|a|i+1

)

≤
∞∑
i=0

ϕ(|a|ix)

|a|2i

=
∞∑
i=0

k2iϕ

(
x

ki

)

holds for all x ∈ V \{0}, where k := 1
|a| and ϕ(x) := µ(x)+µ(−x)

2a2
+ µ(x)+µ(−x)

2|a| . �

The proof of the following theorem runs analogously to that of the previous
theorem.

Theorem 3.2 Let n be a fixed integer greater than 1, let µ : V \{0} → [0,∞) be a
function satisfying the condition

∞∑
i=0

|a|iµ
(
x

ai

)
<∞ when |a| < 1,

∞∑
i=0

a2iµ

(
x

ai

)
<∞ when |a| > 1

(3.9)

for all x ∈ V \{0}, and let φ : (V \{0})n → [0,∞) be a function satisfying the
condition 

∞∑
i=0

|a|iφ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ when |a| < 1,

∞∑
i=0

a2iφ

(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞ when |a| > 1

(3.10)
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for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0, (3.3)
for all x ∈ V \{0}, and (3.4) for all x1, x2, . . . , xn ∈ V \{0}, then there exists a
unique mapping F : V → Y satisfying (3.5) for all x1, x2, . . . , xn ∈ V \{0} and the
conditions in (3.6) for all x ∈ V , and such that

∥f(x)− F (x)∥ ≤
∞∑
i=0

a2i + |a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
(3.11)

for all x ∈ V \{0}.

Proof. First, we define A := {f : V → Y | f(0) = 0} and a mapping Jm : A→ A by

Jmf(x) :=
a2m

2

(
f

(
x

am

)
+ f

(
−x
am

))
+
am

2

(
f

(
x

am

)
− f

(
−x
am

))
for all x ∈ V and m ∈ N0. It follows from (3.3) that

∥Jmf(x)− Jm+lf(x)∥

≤
m+l−1∑
i=m

∥Jif(x)− Ji+1f(x)∥

=

m+l−1∑
i=m

∥∥∥∥a2i2

(
f

(
x

ai

)
+ f

(
−x
ai

))
+
ai

2

(
f

(
x

ai

)
− f

(
−x
ai

))
− a2i+2

2

(
f

(
x

ai+1

)
+ f

(
−x
ai+1

))
− ai+1

2

(
f

(
x

ai+1

)
− f

(
−x
ai+1

))∥∥∥∥
=

m+l−1∑
i=m

∥∥∥∥a2i2

(
f

(
a
x

ai+1

)
− a2 + a

2
f

(
x

ai+1

)
− a2 − a

2
f

(
−x
ai+1

))
(3.12)

+
a2i

2

(
f

(
a
−x
ai+1

)
− a2 + a

2
f

(
−x
ai+1

)
− a2 − a

2
f

(
x

ai+1

))
+
ai

2

(
f

(
a
x

ai+1

)
− a2 + a

2
f

(
x

ai+1

)
− a2 − a

2
f

(
−x
ai+1

)
− ai

2

(
f

(
a
−x
ai+1

)
− a2 + a

2
f

(
−x
ai+1

)
− a2 − a

2
f

(
x

ai+1

))∥∥∥∥
≤

m+l−1∑
i=m

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]
for all x ∈ V \{0}.

On account of (3.9) and (3.12), the sequence {Jmf(x)} is a Cauchy sequence for
all x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges
for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

[
a2m

2

(
f

(
x

am

)
+ f

(
−x
am

))
+
am

2

(
f

(
x

am

)
− f

(
−x
am

))]
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.12), we obtain the
inequality (3.11).
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In view of the definition of F and (3.4), we get the equalities in (3.6) for all
x ∈ V and

∥DF (x1, x2, . . . , xn)∥

= lim
m→∞

∥∥∥∥a2m2
(
Df

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+Df

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))
+
am

2

(
Df

(
x1
am

,
x2
am

, . . . ,
xn
am

)
−Df

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))∥∥∥∥
≤ lim

m→∞

[
a2m

2

(
φ

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+ φ

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))
+
|a|m

2

(
φ

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+ φ

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))]
= 0

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈
V \{0}. We notice that the equalities

Fe(|a|x) = |a|2Fe(x), Fe

(
x

|a|

)
=
Fe(x)

|a|2
,

Fo(|a|x) = |a|Fo(x), Fo

(
x

|a|

)
=
Fo(x)

|a|

hold in view of (3.6).
When |a| > 1, according to Lemma 2.1, there exists a unique mapping F : V → Y

satisfying the equalities in (3.6) and the inequality (3.11), since the inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]

≤
∞∑
i=0

|a|2iϕ
(
x

|a|i

)

=
∞∑
i=0

k2iϕ

(
x

ki

)
holds for all x ∈ V \{0}, where k := |a| and ϕ(x) := µ

(
x
a

)
+ µ

(−x
a

)
.

When |a| < 1, according to Lemma 2.1, there exists a unique mapping F : V → Y
satisfying the equalities in (3.6) and the inequality (3.11), since the inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]

≤
∞∑
i=0

|a|iϕ
(
x

|a|i

)

≤
∞∑
i=0

ϕ(kix)

ki

holds for all x ∈ V \{0}, where k := 1
|a| and ϕ(x) := µ

(
x
a

)
+ µ

(−x
a

)
. �
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Lemma 2.2 is necessary for the proof of the following main theorem.

Theorem 3.3 Let n be a fixed integer greater than 1, let µ : V \{0} → [0,∞) be a
function satisfying the condition

∞∑
i=0

µ(aix)

a2i
<∞ and

∞∑
i=0

|a|iµ
(
x

ai

)
<∞ when |a| > 1,

∞∑
i=0

µ(aix)

|a|i
<∞ and

∞∑
i=0

a2iµ

(
x

ai

)
<∞ when |a| < 1

(3.13)

for all x ∈ V \{0}, and let φ : (V \{0})n → [0,∞) be a function satisfying the
conditions

∞∑
i=0

φ(aix1, a
ix2, . . . , a

ixn)

a2i
<∞ and

∞∑
i=0

|a|iφ
(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞

when |a| > 1,

∞∑
i=0

φ(aix1, a
ix2, . . . , a

ixn)

|a|i
<∞ and

∞∑
i=0

a2iφ

(
x1
ai
,
x2
ai
, . . . ,

xn
ai

)
<∞

when |a| < 1

(3.14)

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y satisfies f(0) = 0 and
the inequality (3.3) for all x ∈ V \{0} and (3.4) for all x1, x2, . . . , xn ∈ V \{0},
then there exists a unique mapping F : V → Y satisfying the equality (3.5) for all
x1, x2, . . . , xn ∈ V \{0}, the equalities in (3.6) for all x ∈ V , and

∥f(x)− F (x)∥ ≤



∞∑
i=0

[
µ(aix) + µ(−aix)

2a2i+2
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]
when |a| > 1,

∞∑
i=0

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
µ(aix) + µ(−aix)

2|a|i+1

]
when |a| < 1

(3.15)

for all x ∈ V \{0}.

Proof. We will divide the proof of this theorem into two cases, one is for |a| > 1
and the other is for |a| < 1.

Case 1. Assume that |a| > 1. We define a set A := {f : V → Y | f(0) = 0} and
a mapping Jm : A→ A by

Jmf(x) :=
f(amx) + f(−amx)

2a2m
+
am

2

(
f

(
x

am

)
− f

(
−x
am

))
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for all x ∈ V and m ∈ N0. It follows from (3.3) that

∥Jmf(x)− Jm+lf(x)∥

≤
m+l−1∑
i=m

∥Jif(x)− Ji+1f(x)∥

=
m+l−1∑
i=m

∥∥∥∥f(aix) + f(−aix)

2a2i
+
ai

2

(
f

(
x

ai

)
− f

(
−x
ai

))
− f(ai+1x) + f(−ai+1x)

2a2i+2
− ai+1

2

(
f

(
x

ai+1

)
− f

(
−x
ai+1

))∥∥∥∥
=

m+l−1∑
i=m

∥∥∥∥− 1

2a2i+2

(
f(a · aix)− a2 + a

2
f(aix)− a2 − a

2
f(−aix)

)
(3.16)

− 1

2a2i+2

(
f(−a · aix)− a2 + a

2
f(−aix)− a2 − a

2
f(aix)

)
+
ai

2

(
f

(
a
x

ai+1

)
− a2 + a

2
f

(
x

ai+1

)
− a2 − a

2
f

(
−x
ai+1

)
− ai

2

(
f

(
a
−x
ai+1

)
− a2 + a

2
f

(
−x
ai+1

)
− a2 − a

2
f

(
x

ai+1

))∥∥∥∥
≤

m+l−1∑
i=m

[
µ(aix) + µ(−aix)

2a2i+2
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]
for all x ∈ V \{0}.

In view of (3.13) and (3.16), the sequence {Jmf(x)} is a Cauchy sequence for all
x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges for
all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

[
f(amx) + f(−amx)

2a2m
+
am

2

(
f

(
x

am

)
− f

(
−x
am

))]
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.16), we obtain the
first inequality of (3.15).

Using the definition of F , (3.4), and (3.14), we get the equalities in (3.6) for all
x ∈ V and

∥DF (x1, x2, . . . , xn)∥

= lim
m→∞

∥∥∥∥Df
(
amx1, a

mx2, . . . , a
mxn

)
+Df

(
− amx1,−amx2, . . . ,−amxn

)
2a2m

+
am

2

(
Df

(
x1
am

,
x2
am

, . . . ,
xn
am

)
−Df

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))∥∥∥∥
≤ lim

m→∞

[
φ
(
amx1, a

mx2, . . . , a
mxn

)
+ φ

(
− amx1,−amx2, . . . ,−amxn

)
2a2m

+
|a|m

2

(
φ

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+ φ

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))]
= 0

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

73 Yang-Hi Lee et al 64-78



11

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈
V \{0}. We notice that the equalities

Fe(|a|x) = |a|2Fe(x) and Fo(|a|x) = |a|Fo(x)

are true in view of (3.6).

Using Lemma 2.2, we conclude that there exists a unique mapping F : V → Y
satisfying the equalities in (3.6) and the first inequality in (3.15), since the inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

[
µ(aix) + µ(−aix)

2a2i+2
+
|a|i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))]

≤
∞∑
i=0

(
ψ(kix)

k2i
+ kiϕ

(
x

ki

))

holds for all x ∈ V \{0}, where k := |a|, ϕ(x) :=
µ
(

x
a

)
+µ
(

−x
a

)
2 , and ψ(x) :=

µ(x)+µ(−x)
2a2

.

Case 2. We now consider the case of |a| < 1 and define a mapping Jm : A→ A
by

Jmf(x) :=
a2m

2

(
f

(
x

am

)
+ f

(
−x
am

))
+
f(amx)− f(−amx)

2am

for all x ∈ V and n ∈ N0. It follows from (3.3) that

∥Jmf(x)− Jm+lf(x)∥

≤
m+l−1∑
i=m

∥Jif(x)− Ji+1f(x)∥

=

m+l−1∑
i=m

∥∥∥∥a2i2

(
f

(
x

ai

)
+ f

(
−x
ai

))
+
f(aix)− f(−aix)

2ai

− a2i+2

2

(
f

(
x

ai+1

)
+ f

(
−x
ai+1

))
− f(ai+1x)− f(−ai+1x)

2ai+1

∥∥∥∥
=

m+l−1∑
i=m

∥∥∥∥a2i2

(
f

(
a
x

ai+1

)
− a2 + a

2
f

(
x

ai+1

)
− a2 − a

2
f

(
−x
ai+1

))
(3.17)

+
a2i

2

(
f

(
a
−x
ai+1

)
− a2 + a

2
f

(
−x
ai+1

)
− a2 − a

2
f

(
x

ai+1

))
− 1

2ai+1

(
f(a · aix)− a2 + a

2
f(aix)− a2 − a

2
f(−aix)

)
+

1

2ai+1

(
f(−a · aix)− a2 + a

2
f(−aix)− a2 − a

2
f(aix)

)∥∥∥∥
≤

m+l−1∑
i=m

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
µ(aix) + µ(−aix)

2|a|i+1

]
for all x ∈ V \{0}.
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On account of (3.13) and (3.17), the sequence {Jmf(x)} is a Cauchy sequence for
all x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges
for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

[
a2m

2

(
f

(
x

am

)
+ f

(
−x
am

))
+
f(amx)− f(−amx)

2am

]
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (3.17), we obtain the
second inequality in (3.15).

By the definition of F , (3.4), and (3.14), we get the equalities in (3.6) for all
x ∈ V and

∥DF (x1, x2, . . . , xn)∥

= lim
m→∞

∥∥∥∥a2m2
(
Df

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+Df

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))
+
Df
(
amx1, a

mx2, . . . , a
mxn

)
−Df

(
− amx1,−amx2, . . . ,−amxn

)
2am

∥∥∥∥
≤ lim

m→∞

[
a2m

2

(
φ

(
x1
am

,
x2
am

, . . . ,
xn
am

)
+ φ

(
−x1
am

,
−x2
am

, . . . ,
−xn
am

))
+
φ
(
amx1, a

mx2, . . . , a
mxn

)
+ φ

(
− amx1,−amx2, . . . ,−amxn

)
2|a|m

]
= 0

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈
V \{0}. We remark that the equalities

Fe

(
x

|a|

)
=
Fe(x)

|a|2
and Fo

(
x

|a|

)
=
Fo(x)

|a|

hold by considering (3.6).
Using Lemma 2.2, we conclude that there exists a unique mapping F : V →

Y satisfying the equalities in (3.6) and the second inequality in (3.15), since the
inequality

∥f(x)− F (x)∥ ≤
∞∑
i=0

[
a2i

2

(
µ

(
x

ai+1

)
+ µ

(
−x
ai+1

))
+
µ(aix) + µ(−aix)

2|a|i+1

]

=
∞∑
i=0

[
µ(ki+1x) + µ(−ki+1x)

2k2i
+
ki+1

2

(
µ

(
x

ki

)
+ µ

(
−x
ki

))]

≤
∞∑
i=0

(
ψ(kix)

k2i
+ kiϕ

(
x

ki

))
holds for all x ∈ V \{0}, where k := 1

|a| , ϕ(x) := k
2

(
µ(x) + µ(−x)

)
, and ψ(x) :=

µ(kx)+µ(−kx)
2 . �

In the following corollary, we investigate the Hyers-Ulam-Rassias stability version
of Theorems 3.1, 3.2, and 3.3.
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Corollary 3.4 Let X and Y be a real normed space and a real Banach space, re-
spectively. Let p, θ, ξ be real constants such that p ̸∈ {1, 2}, a ̸∈ {−1, 0, 1}, ξ > 0,
and θ > 0. If a mapping f : X → Y satisfies f(0) = 0 and∥∥∥∥f(ax)− a2 + a

2
f(x)− a2 − a

2
f(−x)

∥∥∥∥ ≤ ξ∥x∥p (3.18)

for all x ∈ X\{0}, as well as if f satisfies the inequality

∥Df(x1, x2, . . . , xn)∥ ≤ θ
(
∥x1∥p + · · ·+ ∥xn∥p

)
(3.19)

for all x1, x2, . . . , xn ∈ X\{0}, then there exists a unique mapping F : X → Y
satisfying (3.5) for all x1, x2, . . . , xn ∈ X\{0}, and the equalities in (3.6) for all
x ∈ X, as well as

∥f(x)− F (x)∥ ≤ ξ∥x∥p

|a2 − |a|p|
+

ξ∥x∥p

||a| − |a|p|
(3.20)

for all x ∈ X\{0}.

Proof. If we put φ(x1, x2, . . . , xn) := θ
(
∥x1∥p + · · ·+ ∥xn∥p

)
for all x1, x2, . . . , xn ∈

X\{0}, then φ satisfies (3.2) when either |a| > 1 and p < 1 or |a| < 1 and p > 2, and
φ satisfies (3.10) when either |a| > 1 and p > 2 or |a| < 1 and p < 1. Moreover, φ
satisfies (3.14) when 1 < p < 2. Therefore, by Theorems 3.1, 3.2, and 3.3, there exists
a unique mapping F : X → Y such that (3.5) holds for all x1, x2, . . . , xn ∈ X\{0},
and (3.6) holds for all x ∈ X, and such that (3.20) holds for all x ∈ X\{0}. �

4 Quadratic-additive type functional equations

In this section, let a be a rational constant such that a ̸∈ {−1, 0, 1}. Assume
that the functional equation Df(x1, x2, . . . , xn) = 0 is a quadratic-additive type
functional equation. Then F : V → Y is a solution of the functional equation
Df(x1, x2, . . . , xn) = 0 if and only if F : V → Y is a quadratic-additive mapping. If
F : V → Y is a quadratic-additive mapping, then Fe(x) and Fo(x) are a quadratic
mapping and an additive mapping, respectively. Hence, Fe(ax) = a2Fe(x) and
Fo(ax) = aFo(x) for all x ∈ V , i.e., F satisfies the conditions in (3.6).

Therefore, the following theorems are direct consequences of Theorems 3.1, 3.2,
and 3.3.

Theorem 4.1 Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a
function satisfying the condition (3.1) for all x ∈ V , and let φ : V n → [0,∞)
be a function satisfying the condition (3.2) for all x1, x2, . . . , xn ∈ V . If a mapping
f : V → Y satisfies f(0) = 0, (3.3) for all x ∈ V , and (3.4) for all x1, x2, . . . , xn ∈ V ,
then there exists a unique quadratic-additive mapping F : V → Y such that (3.7)
holds for all x ∈ V .
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Theorem 4.2 Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a
function satisfying the condition (3.9) for all x ∈ V , and let φ : V n → [0,∞) be
a function satisfying the condition (3.10) for all x1, x2, . . . , xn ∈ V . If a mapping
f : V → Y satisfies f(0) = 0, (3.3) for all x ∈ V , and (3.4) for all x1, x2, . . . , xn ∈ V ,
then there exists a unique quadratic-additive mapping F : V → Y such that (3.11)
holds for all x ∈ V .

Theorem 4.3 Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a
function satisfying the condition (3.13) for all x ∈ V , and let φ : V n → [0,∞) be
a function satisfying the condition (3.14) for all x1, x2, . . . , xn ∈ V . If a mapping
f : V → Y satisfies f(0) = 0, (3.3) for all x ∈ V , and (3.4) for all x1, x2, . . . , xn ∈ V ,
then there exists a unique quadratic-additive mapping F : V → Y satisfying the
inequality (3.15) for all x ∈ V .

Corollary 4.4 Let X and Y be a real normed space and a real Banach space, respec-
tively. Let p, θ, ξ be real constants such that p ̸∈ {1, 2}, a ̸∈ {−1, 0, 1}, p > 0, ξ > 0,
and θ > 0. If a mapping f : X → Y satisfies (3.18) for all x ∈ X and the inequal-
ity (3.19) for all x1, x2, . . . , xn ∈ X, then there exists a unique quadratic-additive
mapping F : X → Y such that (3.20) holds for all x ∈ X.

Corollary 4.5 Let X and Y be a real normed space and a real Banach space, re-
spectively. Let θ and ξ be real constants such that a ̸∈ {−1, 0, 1}, ξ > 0, and θ > 0.
If a mapping f : X → Y satisfies f(0) = 0, and∥∥∥∥f(ax)− a2 + a

2
f(x)− a2 − a

2
f(−x)

∥∥∥∥ ≤ ξ
for all x ∈ X, as well as if f satisfies the inequality

∥Df(x1, x2, . . . , xn)∥ ≤ θ

for all x1, x2, . . . , xn ∈ X, then there exists a unique quadratic-additive mapping
F : X → Y such that

∥f(x)− F (x)∥ ≤ ξ∥x∥p

|a2 − 1|
+

ξ∥x∥p

||a| − 1|

for all x ∈ X.
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of an infinitely-lived economic agent with a constant relative risk aversion

(CRRA) utility function who faces subsistence consumption constraints. We

provide the closed form solutions for the optimal consumption and invest-

ment policies by using the dynamic programming method and compare the

solutions with those obtained by the martingale method. We show that they

coincide with each other. Comparison of optimal policies with and without

subsistence consumption constraints shows that the constraints have effect

on the optimal consumption and portfolio policies even when the constraints

do not bind.
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Keywords : Consumption, portfolio selection, subsistence consumption

constraints, dynamic programming method, CRRA utility.

1 Introduction

Following the seminal contributions of Merton [6, 7] on continuous-time

optimal consumption and portfolio selection problems, there have been a

number of research works on the optimization problems under various eco-

nomic constraints. One of the most interesting topics is optimal consump-

tion and portfolio selection with subsistence consumption constraints (see

[1, 4, 5, 8, 10, 11, 12]). Subsistence consumption constraints mean that there

exists a positive minimum consumption level (that can be a constant or a

deterministic/stochastic process) such that the agent can live with.

We consider the optimal consumption and investment problem with

subsistence consumption constraints and a constant relative risk aversion

(CRRA) utility function. We derive the optimal solutions in closed form

by using the dynamic programming approach based on Karatzas et al. [2].

We also compare the solutions with those of Shin et al. [11] by using the

martingale duality approach for the same optimization problem. We show

that they agree with each other.

Besides the methodological contribution through the dynamic program-

ming method, we quantitatively compare our results to those of the agent

without subsistence consumption constraints. The comparison shows that

the existence of the subsistence consumption constraints affects the optimal

consumption and portfolio policies even when the constraints do not bind.

2
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The prospect that the subsistence consumption constraints become binding

later compels the agent to consume less and to invest in the risky asset more

conservatively.

The rest of this paper is organized as follows. The financial market is in-

troduced in Section 2. In Section 3 the optimal consumption and investment

problem is considered with subsistence consumption constraints. Section 4

demonstrates the impact of the subsistence consumption constraints on the

optimal policies. Section 5 summarizes the paper.

2 The Economy

In a financial market, we assume that an economic agent has investment

opportunities given by a riskless asset with a constant rate of return r > 0

and one risky asset St which follows a geometric Brownian motion with

a constant mean rate of return µ and a constant volatility σ, dSt/St =

µdt+σdBt, where Bt is a standard Brownian motion on a probability space

(Ω,F ,P) and {Ft}t≥0 is the P-augmentation of the filtration generated by

the standard Brownian motion {Bt}t≥0 .

A portfolio process π := {πt}t≥0 meaning amounts of money invested

in the risky asset at time t is a measurable process adapted to {Ft}t≥0 and

satisfies ∫ t

0
π2sds <∞, for all t ≥ 0 a.s. (1)

A consumption process c := {ct}t≥0 is a measurable nonnegative process

adapted to {Ft}t≥0 and satisfies∫ t

0
csds <∞, for all t ≥ 0 a.s.

3
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Then, with a given initial endowment X0 = x > 0, the agent’s wealth process

Xt at time t evolves according to

dXt = [rXt + πt(µ− r)− ct] dt+ πtσdBt. (2)

3 The Optimization Problem

Now we investigate the agent’s optimization problem with subsistence con-

sumption constraints. Given a positive subsistence level of consumption

R > 0, the agent’s problem is to maximize the total expected discounted

utility from consumption with the constraint

ct ≥ R, for all t ≥ 0. (3)

In this paper, we assume that the utility function u(·) is of the CRRA type

u(c) :=
c1−γ

1− γ
, γ > 0 (γ 6= 1),

where γ is the agent’s coefficient of relative risk aversion. A pair (c,π) of

the optimal consumption/investment processes is called admissible at ini-

tial capital x > 0, if the wealth process Xt in (2) is strictly positive and

it satisfies the constraint (3). Let A(x) denote the set of all admissible

consumption/investment pair at x > 0.

Then, the agent’s optimization problem is given by

V (x) := max
(c,π)∈A(x)

J(x; c,π), (4)

where

J(x; c,π) := E

[∫ ∞
0

e−ρt
c1−γt

1− γ
dt

]
, (5)

4
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subject to the budget constraint (2) and the subsistence consumption con-

straint (3). Here ρ > 0 is the subjective discount factor. In addition, we

should impose a lower bound on initial wealth x as follows:

x >
R

r

such that a pair (c,π) corresponding to the wealth dynamics (2) should be

admissible (see Lemma 3.1 of Gong and Li [1]).

By the dynamic programming principle, the value function V (x) in the

optimization problem (4) satisfies the following Bellman equation

max
c≥R,π

[
{rx+ π(µ− r)− c}V ′(x) +

1

2
σ2π2V ′′(x)− ρV (x) +

c1−γ

1− γ

]
= 0.

(6)

We assume that the wealth process Xt satisfies a transversality condition

lim
t→∞

e−ρtV (Xt) = 0, (7)

if V (·) is the solution to the Bellman equation (6).

The first order conditions (FOCs) of the Bellman equation (6) for the

optimal consumption/portfolio (c∗, π∗) imply

c∗ =
(
(V ′(x)

)− 1
γ

and

π∗ = −µ− r
σ2

V ′(x)

V ′′(x)
. (8)

The subsistence consumption constraint (3) forces us to impose a threshold

wealth level x̃ > 0 such that

c∗ =

 R, for R/r < x < x̃,

(V ′(x))
− 1
γ , for x ≥ x̃.

(9)

5
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Substituting the FOCs (8) and (9) into the equation (6) yields

(rx−R)V ′(x)− 1

2
θ2

(V ′(x))2

V ′′(x)
− ρV (x) +

R1−γ

1− γ
= 0, for R/r < x < x̃ (10)

and

rxV ′(x)− 1

2
θ2

(V ′(x))2

V ′′(x)
− ρV (x) +

γ

1− γ
V ′(x)

− 1−γ
γ = 0, for x ≥ x̃, (11)

where θ := (µ − r)/σ is the market price of risk. Moreover, we define a

Merton constant K such that

K := r +
ρ− r
γ

+
γ − 1

2γ2
θ2 (12)

and assume that K > 0 to guarantee the well-definedness of the optimization

problem (4).

Lemma 3.1. The value function V(x) in (4) is strictly concave and strictly

increasing for x > R/r.

Proof. The proof follows a similar line to that of Proposition 2.1 in Za-

riphopoulou [14].

Remark 3.1. For later use, we define two quadratic algebraic equations as

follows:

f(m) := rm2 −
(
ρ+ r +

1

2
θ2
)
m+ ρ = 0 (13)

and

g(n) :=
1

2
θ2n2 +

(
ρ− r +

1

2
θ2
)
n− r = 0. (14)

f(m) = 0 has two real roots m1 and m2 satisfying m1 > 1 > m2 > 0 and

g(n) = 0 has two real roots n1 and n2 satisfying n1 > 0 and n2 < −1. Also

6
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we have the following relationships between roots of two quadratic equations

(13) and (14):

n1 =
1

m1 − 1
, n2 =

1

m2 − 1
. (15)

Theorem 3.1. Assume that a strictly increasing and strictly concave func-

tion v(·) such that v(·) ∈ C2(R/r,∞) solves the Bellman equation (6) for

x > R/r. Then v(x) ≥ J(x; c,π) for all admissible pair (c,π). If (c∗t , π
∗
t ) is

the maximizer of the Bellman equation (6), then we derive

v(x) = V (x) = max
(c,π)∈A(x)

J(x; c,π) = J(x; c∗,π∗).

Proof. Let us define a function U(·, ·) as follows:

U(t,Xt) := e−ρtv(Xt). (16)

The Itô’s formula implies

dU(t,Xt) = e−ρt
[
{rXt + πt(µ− r)− ct} v′(Xt) +

1

2
σ2π2t v

′′(Xt)− ρv(Xt)

]
dt+ e−ρtσπtv

′(Xt)dBt

≤ −e−ρt c
1−γ
t

1− γ
dt+ e−ρtσπtv

′(Xt)dBt (17)

for any admissible pair (ct, πt) of consumption/portfolio processes. For any

t ≥ 0, we obtain

v(X0) ≥
∫ t

0
e−ρs

c1−γs

1− γ
ds+ e−ρtv(Xt)−

∫ t

0
e−ρsσπsv

′(Xs)dBs. (18)

From (1), the second integral of the right-hand side of (18) is a bounded

local martingale and hence a martingale, so we have

v(x) ≥ E

[∫ t

0
e−ρs

c1−γs

1− γ
ds+ e−ρtv(Xt)

]
. (19)

7
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Letting t ↑ ∞ and using the monotone convergence theorem, the Lebesgue

dominated convergence theorem and the transversality condition in (7), we

derive

v(x) ≥ E

[∫ ∞
0

e−ρs
c1−γs

1− γ
ds

]
= J(x; c,π). (20)

If (ct, πt) is the maximizer of the Bellman equation (6), the inequality in

(20) becomes the equality and consequently we obtain v(x) = V (x).

Theorem 3.2. The value function V (x) of the optimization problem (4) is

given by

V (x) =

 C2

(
x− R

r

)m2
+ R1−γ

ρ(1−γ) , for R/r < x < x̃,

r− 1
2
θ2n1

ρ D1ξ
−γ(n1+1) + ξ1−γ

K(1−γ) , for x ≥ x̃,
(21)

where

D1 =

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
Rγn1+1, x̃ = D1R

−γn1 +
R

K
(22)

and

C2 =
1

m2

(
x̃− R

r

)1−m2

R−γ .

For x ≥ x̃, ξ is determined from the following algebraic equation

x = D1ξ
−γn1 +

ξ

K
.

Proof. ForR/r < x < x̃, trying a homogeneous solution of the form
(
x− R

r

)m
to the equation (10), then we obtain the algebraic equation f(m) = 0 in (13).

Thus we can find the homogeneous solution Ṽ (x) to the equation (10) as

follows:

Ṽ (x) = C1

(
x− R

r

)m1

+ C2

(
x− R

r

)m2

,

8
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for some constants C1 and C2. The particular solution R1−γ

ρ(1−γ) to the equation

(10) can be easily derived. Thus V (x) is given by

V (x) = Ṽ (x) +
R1−γ

ρ(1− γ)
= C1

(
x− R

r

)m1

+ C2

(
x− R

r

)m2

+
R1−γ

ρ(1− γ)
.

If C1 = 0 and C2 > 0, then V (x) is a concave function. Thus in order

to guarantee the existence of the well-defined value function V (x) we set

C1 = 0 and we will prove that C2 > 0 in Proposition 3.1 later. Therefore

V (x) is given by

V (x) = C2

(
x− R

r

)m2

+
R1−γ

ρ(1− γ)
. (23)

For x ≥ x̃, we set the optimal consumption c = C(x) and X(·) = C−1(·),

that is, X(c) = X(C(x)) = x. Then, from the FOCs (9), we obtain

V ′(x) = C(x)−γ , V ′′(x) = −γC(x)−γ−1

X ′(c)
. (24)

Plugging the conditions (24) into the equation (11), we have

rc−γX(c) +
1

2γ
θ2c1−γX ′(c)− ρV (X(c)) +

γ

1− γ
c1−γ = 0. (25)

Taking the derivative of (25) with respect to c implies

1

2γ
θ2c2X ′′(c) +

(
r − ρ+

1− γ
2γ

θ2
)
cX ′(c)− rγX(c) + γc = 0. (26)

Trying a homogeneous solution of the form c−γn to the equation (26), then

we obtain the algebraic equation g(n) = 0. Thus the homogeneous solution

X̃(c) is given by

X̃(c) = D1c
−γn1 +D2c

−γn2 ,

for some constants D1 and D2. The particular solution c
K to the equation

(26) can be easily derived. Thus X(c) is given by

X(c) = X̃(c) +
c

K
= D1c

−γn1 +D2c
−γn2 +

c

K
.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

87 Ho-Seok Lee et al 79-99



Now we should discard the rapidly growing term by setting D2 = 0. There-

fore X(c) is given by

X(c) = D1c
−γn1 +

c

K
. (27)

We will prove that X ′(c) > 0 in Proposition 3.1 later. Thus, from (24), we

obtain

V ′′(x) = −γC(x)−γ−1

X ′(c)
< 0

and hence V (x) is a concave function for x ≥ x̃. From (25), we have

V (x) = V (X(ξ)) =
r − 1

2θ
2n1

ρ
D1ξ

−γ(n1+1) +
ξ1−γ

K(1− γ)
,

where ξ is determined from the algebraic equation

x = D1ξ
−γn1 +

ξ

K
. (28)

From (27), we see that

x̃ = X(R) = D1R
−γn1 +

R

K
(29)

and

X ′(R) = −γn1D1R
−γn1−1 +

1

K
. (30)

From (23) and (24), we use C1 and C2 conditions at x = x̃ to obtain

V ′(x̃) = m2C2

(
x̃− R

r

)m2−1
= R−γ (31)

and

V ′′(x̃) = m2(m2 − 1)C2

(
x̃− R

r

)m2−2
= −γR

−γ−1

X ′(R)
. (32)

From (30), (31) and (32) we have

x̃ = −m2 − 1

γ
RX ′(R) +

R

r
= (m2 − 1)n1D1R

−γn1 − m2 − 1

γ

R

K
+
R

r
. (33)

10
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From (29) and (33), we derive

D1 =

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
Rγn1+1 (34)

and

C2 =
1

m2

(
x̃− R

r

)1−m2

R−γ . (35)

Proposition 3.1. x̃ is an increasing function with respect to R, X ′(c) > 0

and x̃ > R/r. Also C2 > 0 as promised before.

Proof. From (29) and (34) we have

x̃ =


(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
+

1

K

R
=

(m2 − 1)
(

1
γ + n1

)
1
K −

1
r

(m2 − 1)n1 − 1
R.

Thus x̃ is a linear function of R and is an increasing function with respect

to R since
(m2 − 1)

(
1
γ + n1

)
1
K −

1
r

(m2 − 1)n1 − 1
> 0,

because of m2 − 1 < 0.

Now we use the Merton constant K in (12) and the quadratic equation

(14) to obtain the inequality

γn1
r
− γn1

K
− 1

K
=
γn1K − rγn1 − r

rK
=
n1(ρ− r) + n1

γ−1
2γ θ

2 − r
rK

=

(
ρ− r + 1

2θ
2
)
n1 − n1

2γ θ
2 − r

rK
=
−1

2θ
2n21 − n1

2γ θ
2

rK
< 0.

11
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Thus we have

X ′(R) = −γn1D1R
−γn1−1 +

1

K
= −γn1

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
+

1

K

=
γn1

r −
γn1

K −
1
K

(m2 − 1)n1 − 1
> 0. (36)

From the fact c > R, we have

1 >

(
R

c

)γn1+1

and
1

K
>

1

K

(
R

c

)γn1+1

. (37)

Thus we have

X ′(c) = −γn1

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1

(
R

c

)γn1+1

+
1

K

> −γn1

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1

(
R

c

)γn1+1

+
1

K

(
R

c

)γn1+1

=

(
R

c

)γn1+1

X ′(R)

> 0,

where the first inequality is obtained from (37) and the second inequality

is obtained from (36). Consequently, from (33), we see that x̃ > R/r and

C2 > 0 from (35).

Remark 3.2. For R/r < x < x̃, V ′′(x) has a lower bound. From Proposi-

tion 3.1 and (24), V ′′(x) has a lower bound for x̃ ≤ x. From Lemma 3.1,

V ′(x) is bounded away from zero. Hence, π∗ in (8) is bounded away from

zero and the Bellman equation (6) is uniformly elliptic. Therefore the solu-

tion in Theorem 3.2 is the unique solution to the Bellman equation (6) by

Krylov [3]. Vila and Zariphopoulou [13] provided an alternative proof by a

similar argument.
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Now we will describe the related results of Shin et al. [11] in the following

remark. They also pay their attention to the optimal consumption and

portfolio selection problem with a subsistence consumption constraint, but

they use the martingale method with Lagrangian duality to derive their

solutions.

Remark 3.3. With the notations in this paper, the value function V S(x)

and the threshold wealth level x̃S based on Section 4 of Shin et al. [11] are

given as follows:

V S(x) =


d2

(
R
r
−x

d2p2

) p2
p2−1

+
(
x− R

r

)( R
r
−x

d2p2

) 1
p2−1

+ R1−γ

ρ(1−γ) , for R/r < x < x̃S,

c1 (λ∗)p1 + γ
K(1−γ) (λ∗)

− 1−γ
γ + (λ∗)x, for x ≥ x̃S

(38)

and

x̃S = −c1p1R−γ(p1−1) +
R

K
,

where

c1 =

1
K

(
γp2
1−γ + 1

)
+ p2−1

r − p2
ρ(1−γ)

p1 − p2
R1−γ+γp1 (39)

and

d2 =

1
K

(
γp1
1−γ + 1

)
+ p1−1

r − p1
ρ(1−γ)

p1 − p2
R1−γ+γp2 . (40)

p1 > 1 and p2 < 0 are two real roots of the following quadratic algebraic

equation

h(p) :=
1

2
θ2p2 +

(
ρ− r − 1

2
θ2
)
p− ρ = 0, (41)

and λ∗ is determined by the following algebraic equation

x = −c1p1 (λ∗)p1−1 +
1

K
(λ∗)

− 1
γ . (42)

13
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Lemma 3.2.

m2C2 = (−d2p2)
1

1−p2 and D1 = −c1p1. (43)

Proof. From (29), (34) and (15), we have

x̃ = D1R
−γn1 +

R

K
=

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
R+

R

K

=

(
1
γ + n2

)
1
K −

n2
r

n1 − n2
R+

R

K
.

It can be easily shown that

p1 = n1 + 1, p2 = n2 + 1. (44)

Thus we obtain

x̃ =

(
1
γ + p2 − 1

)
1
K −

p2−1
r

p1 − p2
R+

R

K
.

From (35), we have

m2C2 =

(
x̃− R

r

)1−m2

R−γ

=

(
x̃Rγ(p2−1) − R1+γ(p2−1)

r

)1−m2

=



(

1
γ + p1 − 1

)
1
K + 1−p1

r

p1 − p2

R1+γ(p2−1)


1−m2

= (−d2p2)1−m2 ,

where the last equality is obtained from the following relationships between

roots and coefficients of the quadratic equation h(p) = 0 in (41)

p1 + p2 =
θ2 − 2ρ+ 2r

θ2
, p1p2 = −2ρ

θ2
(45)
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and (40). Therefore we obtain

m2C2 = (−d2p2)
1

1−p2 .

From (34), we have

D1 =

(
m2−1
γ + 1

)
1
K −

1
r

(m2 − 1)n1 − 1
Rγn1+1

=

(
1
γ + p2 − 1

)
1
K −

p2−1
r

p1 − p2
R1+γ(p1−1) (46)

= −c1p1,

where the last equality is also obtained from the relationships (45) and

(39).

Corollary 3.1. D1 in (22) is positive.

Proof. For p2 < x < p1, we define a decreasing function F (x) as follows:

F (x) := − h(x)

x− p2
= −1

2
θ2(x− p1) > 0.

Since 0 < F (1) < F

(
γ − 1

γ

)
, we have

1

F
(
γ−1
γ

) < 1

F (1)
and

(
1

γ
+ p2 − 1

)
1

K
− p2 − 1

r
> 0

(see also Shim and Shin [9]). From (46), we have D1 > 0.

Proposition 3.2. The value function V (x) and the threshold wealth level x̃

in our optimization problem coincide with V S(x) and x̃S of Shin et al. [11],

respectively.
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Proof. From (43) and (44), we can easily show that x̃ = x̃S.

For R/r < x < x̃, we have

d2

(
R
r − x
d2p2

) p2
p2−1

+

(
x− R

r

)( R
r − x
d2p2

) 1
p2−1

=
p2 − 1

p2
(−d2p2)

1
1−p2

(
x− R

r

) p2
p2−1

=
p2 − 1

p2
m2C2

(
x− R

r

) p2
p2−1

= C2

(
x− R

r

)m2

,

where the second equality is obtained from (43) and the third equality is

obtained from (15) and (44). This equality means V (x) = V S(x) for R/r <

x < x̃.

For x ≥ x̃, if we set ξ = (λ∗)−1/γ , then the algebraic equation (28)

coincides with the algebraic equation (42). From (38) and (42), we obtain

V S(x) = c1 (λ∗)p1 +
γ

K(1− γ)
(λ∗)

− 1−γ
γ + (λ∗)x

=
p1 − 1

p1
(−c1p1) (λ∗)p1 +

(λ∗)
γ−1
γ

K(1− γ)

=
n1

n1 + 1
D1ξ

−γ(n1+1) +
ξ1−γ

K(1− γ)

=
r − 1

2θ
2n1

ρ
D1ξ

−γ(n1+1) +
ξ1−γ

K(1− γ)

= V (x),

where the third equality is obtained from (43) and (44) and the fourth

equality is obtained from (14).

Finally we use the FOCs (8), (9) and (24) with the derived value function

V (x) in (21) to obtain the optimal consumption and investment strategies

of this optimization problem.
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Theorem 3.3. The optimal consumption and portfolio pair (c∗, π∗) is given

by

c∗t =

 R, for R/r < Xt < x̃

ξt, for Xt ≥ x̃

and

π∗t =


θ
σ

1
1−m2

(
Xt − R

r

)
, for R/r < Xt < x̃

θ
σγ

(
−γn1D1ξ

−γn1
t + ξt

K

)
, for Xt ≥ x̃,

where ξt is determined by the following algebraic equation

Xt = D1ξ
−γn1
t +

ξt
K
. (47)

Proof. The proof directly follows from the FOCs (8) and (9).

Remark 3.4. It is easily seen that the optimal consumption and portfolio

pair (c∗, π∗) in our optimization problem coincides with that of Shin et al.

[11].

4 Implications

In this section, we compare the agent’s optimal consumption and portfo-

lio policies with subsistence consumption constraints to those without sub-

sistence consumption constraints. Without subsistence consumption con-

straints, the optimal consumption and portfolio policies are those of the

well-known Merton’s problems. Let us denote by (cM ,πM ) the optimal con-

sumption and portfolio pair without subsistence consumption constraints.

17
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Then

cMt = KXt, (48)

πMt =
θ

σγ
Xt, (49)

for Xt > 0. If we let R → 0 to the consumption and portfolio pair (c∗, π∗)

in Theorem 3.3, we also arrive at (cMt , π
M
t ). Due to the subsistence con-

sumption constraints, it is natural to consider the myopic strategies defined

by

cmyopict := max{R, cMt }.

But the myopic strategies are not optimal and the existence of the subsis-

tence consumption constraints affect the consumption and portfolio policies

even at the wealth level where the subsistence consumption constraints do

not bind. This is because it is possible that the constraints will become

binding later. The following proposition demonstrates quantitatively the

impact of the subsistence consumption constraints on the consumption and

portfolio policies when the constraints are not binding.

Proposition 4.1. For Xt ≥ x̃, c∗t < cMt and π∗t < πMt .

Proof. From (47) and (48), the optimal wealth process is given by

Xt = D1c
∗−γn1
t +

c∗t
K

=
cMt
K
.

Since D1 > 0 and X(c) := D1c
−γn1 +

c

K
is an increasing function from

Proposition 3.1, we obtain

c∗t < cMt = KXt. (50)
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Also we derive

π∗t =
θ

σγ

(
−γn1D1c

∗−γn1
t +

c∗t
K

)
<

θ

σγ

c∗t
K

<
θ

σγ
Xt = πMt ,

where the first inequality follows from D1 > 0 and the second one from

(50).

5 Concluding Remarks

In this paper we study an optimal consumption and investment problem with

subsistence consumption constraints. We use the dynamic programming

method to derive the closed form solutions with a CRRA utility function.

We also compare our solutions with those of Shin et al. [11] derived by

the martingale approach. We show that they coincide with each other. In

addition, we point out that the optimal consumption and portfolio policies

may alter even when the constraints do not bind. This is attributed to

the prospect that the subsistence consumption constraints become binding

later. In this case, the agent consume less and invest in the risky asset more

conservatively.

References

[1] N. Gong and T. Li, Role of index bonds in an optimal dynamic as-

set allocation model with real subsistence consumption, Appl. Math.

Comput., 174, 710–731 (2006).

19

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

97 Ho-Seok Lee et al 79-99



[2] I. Karatzas, J.P. Lehoczky, S.P. Sethi, and S.E. Shreve, Explicit solution

of a general consumption/investment problem, Math. Oper. Res., 11,

261–294 (1986).

[3] N.V. Krylov, Nonlinear elliptic and parabolic equations of the second

order, Reidel, Dordrecht, 1987.

[4] P. Lakner and L.M. Nygren, Portfolio optimization with downside con-

straints, Math. Finance, 16, 283–299 (2006).

[5] B.H. Lim, Y.H. Shin, and U.J. Choi, Optimal investment, consumption

and retirement choice problem with disutility and subsistence consump-

tion constraints, J. Math. Anal. Appl., 345, 109–122 (2008).

[6] R.C. Merton, Lifetime portfolio selection under uncertainty: The

continuous-time case, Rev. Econom. Stat., 51, 247–257 (1969).

[7] R.C. Merton, Optimum consumption and portfolio rules in a

continuous-time model, J. Econom. Theory, 3, 373–413 (1971).

[8] G. Shim and Y.H. Shin, Portfolio selection with subsistence consump-

tion constraints and CARA utility, Math. Probl. Eng., 2014, Article ID

153793, 6 pages (2014).

[9] G. Shim and Y.H. Shin, An optimal job, consumption/leisure, and in-

vestment policy, Oper. Res. Lett., 42, 145–149 (2014).

[10] Y.H. Shin and B.H. Lim, Comparison of optimal portfolios with and

without subsistence consumption constraints, Nonlinear Anal. TMA,

74, 50–58 (2011).

20

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

98 Ho-Seok Lee et al 79-99



[11] Y.H. Shin, B.H. Lim, and U.J. Choi, Optimal consumption and port-

folio selection problem with downside consumption constraints, Appl.

Math. Comput., 188, 1801–1811 (2007).

[12] H. Yuan and Y. Hu, Optimal consumption and portfolio policies with

the consumption habit constraints and the terminal wealth downside

constraints, Insurance Math. Econom., 45, 405–409 (2009).

[13] J.-L. Vila and T. Zariphopoulou, Optimal consumption and portfolio

choice with borrowing constraints, J. Econom. Theory, 77, 402–431

(1997).

[14] T. Zariphopoulou, Consumptioninvestment models with constraints,

SIAM J. Control Optim., 32, 59–85 (1994).

21

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

99 Ho-Seok Lee et al 79-99



THE STABILITY OF CUBIC FUNCTIONAL EQUATION WITH

INVOLUTION IN NON-ARCHIMEDEAN SPACES

CHANG IL KIM AND CHANG HYEOB SHIN*

Abstract. In this paper, using fixed point method, we prove the Hyers-Ulam stability of the

following functional equation

f(2x+ y) + f(2x+ σ(y)) − 2f(x+ y) − 2f(x+ σ(y)) − 12f(x) = 0

with involution.

1. Introduction and Preliminaries

In 1940, Ulam [18] proposed the following problem concerning the stability of group homomor-
phism: Let G1 be a group and let G2 a meric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a mapping h : G1 −→ G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 −→ G2 with d(h(x), H(x)) < ε for all
x ∈ G1?

Hyers [7] solved the Ulam’s problem for the case of approximately additive functions in Banach
spaces. Since then, the stability of several functional equations have been extensively investigated
by several mathematicians [2, 3, 5, 8, 9, 13, 14, 15, 16]. Jun and Kim [11] introduced the following
functional equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

and they established the general solution and generalized Hyers-Ulam-Rassias stability problem
for this functional equation. It is easy to see that the function f(x) = cx3 is a solution of the
functional equation (1.1). Thus, it is natural that (1.1) is called a cubic functional equation and
every solution of the cubic functional equation is said to be a cubic function.

Let X and Y be real vector spaces. For an additive mapping σ : X −→ X with σ(σ(x)) = x
for all x ∈ X, then σ is called an involution of X [1, 17]. Stetkær [17] introduced the following
quadratic functional equation with involution

(1.2) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(σ(y))

and solved the general solution, Belaid et al. [1] established generalized Hyers-Ulam stability in
Banach space for this functional equation. Jung and Lee [12] investigated the Hyers-Ulam-Rassias
stability of (1.2) in a complete β-normed space, using fixed point method.

For a given involution σ : X −→ X, the functional equation

(1.3) f(2x+ y) + f(2x+ σ(y)) = 2f(x+ y) + 2f(x+ σ(y)) + 12f(x)

for all x, y ∈ X is called the cubic functional equation with involution and a solution of (1.3) is
called a cubic mapping with involution.

In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of the
following functional equation

(1.4) f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x) = 0.

2010 Mathematics Subject Classification. 39B82, 39B52.
Key words and phrases. cubic functional equation, involution, fixed point method, non-Archimedean space.
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2 CHANG IL KIM AND CHANG HYEOB SHIN

A valuation is a function | · | from a field K into [0,∞) such that for any r, s ∈ K, the following
conditions hold: (i) |r| = 0 if and only if r = 0, (ii) |rs| = |r||s|, and (iii) |r + s| ≤ |r|+ |s|.

A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations. If the triangle inequality is replaced by |r + s| ≤ max{|r|, |s|} for
all r, s ∈ K, then the valuation | · | is called a non-Archimedean valuation and the field with a
non-Archimedean valuation is called non-Archimedean field. If | · | is a non-Archimedean valuation
on K, then clearly, |1| = | − 1| and |n| ≤ 1 for all n ∈ N.

Definition 1.1. Let X be a vector space over a scalar field K with a non-Archimedean nontrivial
valuation | · |. A function ‖·‖ : X −→ R is called a non-Archimedean norm if satisfies the following
conditions:
(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖rx‖ = |r|‖x‖, and
(c) the strong triangle inequality (ultrametric) holds, that is,

||x+ y|| ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X and all r ∈ K.

If ‖ · ‖ is a non-Archimedean norm, then (X, ‖ · ‖) is called a non-Archimedean normed space.
Let (X, ‖ · ‖) be a non-Archimedean normed space. Let {xn} be a sequence in X. Then {xn} is
said to be convergent if there exists x ∈ X such that limn−→∞ ‖xn − x‖ = 0. In that case, x is
called the limit of the sequence {xn}, and one denotes it by limn−→∞ xn = x. A sequence {xn} is
said to be a Cauchy sequence if limn−→∞ ‖xn+p − xn‖ = 0 for all p ∈ N. Since

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ | m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy in (X, ‖ · ‖) if and only if {xn+1−xn} converges to zero in (X, ‖ · ‖). By
a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

In 1897, Hensel [6] discovered the p-adic numbers as a number theoretical analogue of power
series in complex analysis. Fix a prime number p. For any nonzero rational number x, there
exists a unique integer nx ∈ Z such that x = a

b p
nx , where a and b are integers not divisible by

p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The completion of Q with respect
to the metric d(x, y) = |x − y|p is denoted by Qp, which is called the p-adic number field. In
fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k, where |ak| ≤ p − 1 are integers. The

addition and multiplication between any two elements of Qp are defined naturally. The norm∣∣∑∞
k≥nx

akp
k
∣∣
p

= p−nx is a non-Archimedean norm on Qp and it makes Qp a locally compact field.

Let (X, d) be a generalized metric space. An operator T : X −→ X satisfies a Lipschitz condition
with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤ Ld(x, y) for all
x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called a strictly contractive
operator. Note that the distinction between the generalized metric and the usual metric is that
the range of the former is permitted to include the infinity.

Theorem 1.2. [4] Let (X, d) be a complete generalized metric space and let J : X −→ X be a
strictly contractive mapping with some Lipschitz constant L with 0 < L < 1. Then for each given
element x ∈ X, either d(Jnx, Jn+1x) =∞ for all nonnegative integers n or there exists a positive
integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point x∗ of J ;
(3) x∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞} and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

In 1996, Issac and Rassias [10] were the first to provide applications of stability theory of
functional equations for the proof of new fixed point theorem with applications. By using fixed point
methods, the stability problems of several functional equations have been extensively investigated
by a number of authors.
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STABILITY OF CUBIC FUNCTIONAL EQUATION WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES 3

Throughout this paper, we assume that X is a non-Archimedean normed space and Y is a
complete non-Archimedean normed space.

2. The generalized Hyers-Ulam stability for (1.4)

Using the fixed point methods, we will prove the generalized Hyers-Ulam stability of the cu-
bic functional equation (1.4) with involution σ in non-Archimedean normed spaces. For a given
mapping f : X −→ Y , we define the difference operator Df : X2 −→ Y by

Df(x, y) = f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x)

for all x, y ∈ X.

Theorem 2.1. Assume that φ : X2 −→ [0,∞) is a mapping and there exists a real number L with
0 < L < 1 such that

(2.1) φ(2x, 2y) ≤ |8|Lφ(x, y), φ(x+ σ(x), y + σ(y)) ≤ |8|Lφ(x, y)

for all x, y ∈ X. Let f : X −→ Y be a mapping such that f(0) = 0 and

(2.2) ‖Df(x, y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X −→ Y with involution such that

(2.3) ‖f(x)− C(x)‖ ≤ 1

|2|4(1− L)
Φ(x)

for all x ∈ X, where Φ(x) = max{φ(x, 0), φ(0, x)}.

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d in S defined by
d(g, h) = inf{c ∈ [0,∞)| ‖g(x)− h(x)‖ ≤ c Φ(x) for all x ∈ X}. Then (S, d) is a complete metric
space(See [12]). Define a mapping J : S −→ S by

Jg(x) =
1

8
{g(2x) + g(x+ σ(x))}

for all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some non-negative real number c.
Then by (2.1), we have

‖Jg(x)− Jh(x)‖ =
1

|8|
‖g(2x) + g(x+ σ(x))− h(2x)− h(x+ σ(x))‖

≤ 1

|8|
max{‖g(2x)− h(2x)‖, ‖g(x+ σ(x))− h(x+ σ(x))‖}

≤ cLΦ(x)

for all x ∈ X. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S and so J is a strictly contractive
mapping.

Next, we claim that d(Jf, f) <∞. Putting y = 0 in (2.2), we get

(2.4) ‖f(2x)− 8f(x)‖ ≤ 1

|2|
φ(x, 0)

for all x ∈ X and putting x = 0 in (2.2), we get

(2.5) ‖f(y) + f(σ(y))‖ ≤ φ(0, y)

for all y ∈ X and putting y = x+ σ(x) in (2.5), we get

(2.6) ‖f(x+ σ(x))‖ ≤ 1

|2|
φ(0, x+ σ(x))
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for all x ∈ X. By (2.4) and (2.6), we have

‖Jf(x)− f(x)‖ =
1

|8|

∥∥∥f(2x)− 8f(x) + f(x+ σ(x))
∥∥∥

≤ 1

|8|
max

{
‖f(2x)− 8f(x)‖, ‖f(x+ σ(x))‖

}
≤ 1

|2|4
Φ(x)

for all x ∈ X. Hence

(2.7) d(Jf, f) ≤ 1

|2|4
<∞.

By Theorem 1.2, there exists a mapping C : X −→ Y which is a fixed point of J such that
d(Jnf, C)→ 0 as n→∞. By induction, we can easily show that

(Jnf)(x) =
1

23n

{
f(2nx) + (2n − 1)f

(
2n−1

(
x+ σ(x)

))}
for all x ∈ X and n ∈ N. Since d(Jnf, C) → 0 as n → ∞, there exists a sequence {cn} in R such
that cn → 0 as n → ∞ and d(Jnf, C) ≤ cn for every n ∈ N. Hence, it follows from the definition
of d that

‖(Jnf)(x)− C(x)‖ ≤ cnΦ(x)

for all x ∈ X. Thus for each fixed x ∈ X, we have

lim
n−→∞

||(Jnf)(x)− C(x)|| = 0

and so

(2.8) C(x) = lim
n−→∞

1

23n

{
f(2nx) + (2n − 1)f

(
2n−1

(
x+ σ(x)

))}
.

It follows from (2.2) and (2.8) that

‖C(2x+ y) + C(2x+ σ(y))− 2C(x+ y)− 2C(x+ σ(y))− 12C(x)‖

≤ lim
n−→∞

1

|8|n
max{φ(2nx, 2ny), |2n − 1|φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))}

≤ lim
n−→∞

Ln max{φ(x, y), |2n − 1|φ(x, y)} = lim
n−→∞

Lnφ(x, y) = 0

for all x, y ∈ X, because |2n − 1| ≤ 1 for all n ∈ N. Hence C satisfies (1.4), C is a cubic mapping
with involution. By (4) in Theorem 1.2 and (2.4), f satisfies (2.3).

Assume that C1 : X −→ Y is another solution of (1.4) satisfying (2.3). We know that C1 is a
fixed point of J . Due to (3) in Theorem 1.2, we get C = C1. This proves the uniqueness of C.

�

Theorem 2.2. Assume that φ : X2 −→ [0,∞) is a mapping and there exists a real number L with
0 < L < 1 such that

(2.9) φ(x, y) ≤ L

|8|
φ(2x, 2y), φ(x+ σ(x), y + σ(y)) ≤ φ(2x, 2y)

for all x, y ∈ X. Let f : X −→ Y be a mapping satisfying (2.2) and f(0) = 0. Then there exists a
unique cubic mapping C : X −→ Y with involution such that

(2.10) ‖f(x)− C(x)‖ ≤ L

|2|4(1− L)
Φ(x)

for all x ∈ X, where Φ(x) = max{φ(x, 0), φ(0, x)}.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

103 CHANG IL KIM et al 100-106



STABILITY OF CUBIC FUNCTIONAL EQUATION WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES 5

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d in S defined by
d(g, h) = inf{c ∈ [0,∞)| ‖g(x)− h(x)‖ ≤ c Φ(x) for all x ∈ X}. Then (S, d) is a complete metric
space. Define a mapping J : S −→ S by

Jg(x) = 8
{
g
(x

2

)
− g
(x+ σ(x)

4

)}
for all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some non-negative real number c.
Then by (2.9), we have

‖Jg(x)− Jh(x)‖ = |8|
∥∥∥g(x

2

)
− g
(x+ σ(x)

4

)
− h
(x

2

)
+ h
(x+ σ(x)

4

)∥∥∥
≤ |8|max

{∥∥∥g(x
2

)
− h
(x

2

)∥∥∥,∥∥∥g(x+ σ(x)

4

)
− h
(x+ σ(x)

4

)∥∥∥}
≤ cLΦ(x)

for all x ∈ X. Hence d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S and so J is a strictly contractive
mapping.

Next, we claim that d(Jf, f) <∞. By (2.4), (2.5) and (2.6), we have

‖Jf(x)− f(x)‖ =
∥∥∥8f

(x
2

)
− 8f

(x+ σ(x)

4

)
− f(x)

∥∥∥ ≤ L

|2|4
Φ(x)

for all x ∈ X and hence

d(Jf, f) ≤ L

|2|4
<∞.

By Theorem 1.2, there exists a mapping C : X −→ Y which is a fixed point of J such that
d(Jnf, C)→ 0 as n→∞. By induction, we can easily show that

(Jnf)(x) = 23n
{
f
( x

2n

)
− f

(x+ σ(x)

2n+1

)}
for each n ∈ N. Since d(Jnf, C)→ 0 as n→∞, there exists a sequence {cn} in R such that cn → 0
as n→∞ and d(Jnf, C) ≤ cn for every n ∈ N. Hence, it follows from the definition of d that

‖(Jnf)(x)− C(x)‖ ≤ cnΦ(x)

for all x ∈ X. Thus for each fixed x ∈ X, we have

lim
n−→∞

‖(Jnf)(x)− C(x)‖ = 0

and

C(x) = 23n
{
f
( x

2n

)
− f

(x+ σ(x)

2n+1

)}
.

Analogously to the proof of Theorem 2.2, we can show that C is a unique cubic mapping with
involution satisfying (2.10)

�

We can use Theorem 2.1 and Theorem 2.2 to get a classical result in the framework of non-
Archimedean normed spaces. Taking φ(x, y) = θ(‖x‖p + ‖y‖p) or φ(x, y) = θ(‖x‖p‖y‖p + ‖x‖2p +
‖y‖2p), we have the following examples.

Example 2.3. Let θ ≥ 0 and p be a positive real number with p 6= 3. Let f : X −→ Y be a
mapping satisfying

(2.11) ‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Suppose that ‖x + σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there exists a unique
mapping C : X −→ Y with involution such that the inequality
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||f(x)− C(x)|| ≤


θ||x||p

|2|(|2|3 − |2|p)
, if p > 3,

θ||x||p

|2|(|2|p − |2|3)
, if 0 < p < 3

holds for all x ∈ X.

Proof. Let φ(x, y) = θ(‖x‖p + ‖y‖p) for all x, y ∈ X and L = |2|p−3. Then φ(2x, 2y) =
|8||2|p−3φ(x, y) for all x, y ∈ X. Since ‖x+ σ(x)‖ ≤ |2|‖x‖ for all x ∈ X, φ(x+ σ(x), y + σ(y)) ≤
|8||2|p−3φ(x, y) for all x, y ∈ X. Hence if p > 3, then we have the results of Theorem 2.1.

Suppose that L = |2|3−p. Then φ(x, y) = |2|3−p

|8| φ(2x, 2y) for all x, y ∈ X and φ(x + σ(x), y +

σ(y)) ≤ |2|pφ(x, y) = |2|3−p

|8| φ(x, y) for all x, y ∈ X. Hence if 0 < p < 3, then we have the results of

Theorem 2.2. Thus the proof is complete. �

Example 2.4. Let θ ≥ 0 and p be a positive real number with p 6= 3
2 . Let f : X −→ Y be a

mapping satisfying

(2.12) ‖Df(x, y)‖ ≤ θ(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p)

for all x, y ∈ X. Suppose that ‖x + σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there exists a unique
mapping C : X −→ Y with involution such that C is a solution of the functional equation (1.4)
and the inequality

||f(x)− C(x)|| ≤


θ||x||p

|2|(|2|3 − |2|2p)
, if p > 3

2 ,

θ||x||p

|2|(|2|2p − |2|3)
, if 0 < p < 3

2

holds for all x ∈ X.

Using Theorem 2.1 and Theorem 2.2, we obtain the following corollary concerning the stability
of (1.4).

Corollary 2.5. Let αi : [0,∞) −→ [0,∞) (i = 1, 2, 3) be increasing mappings satisfying
(i) 0 < αi(|2|) < 1 and αi(0) = 0,
(ii) αi(|2|t) ≤ αi(|2|)αi(t) for all t ≥ 0.

Let f : X −→ Y be a mapping such that for some δ ≥ 0

(2.13) ‖Df(x, y)‖ ≤ δ[α1(‖x‖)α1(‖y‖) + α2(‖x‖) + α3(‖y‖)]
for all x, y ∈ X. Suppose that ‖x+ σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there exists a unique cubic
mapping C : X −→ Y with involution such that

||f(x)− C(x)|| ≤


1

|2|(|2|3 −M)
Φ̃(x), if 0 < M < |2|3,

1

|2|(N − |2|3)
Φ̃(x), if N > |2|3

holds for all x ∈ X, where M = max{(α1(|2|))2, α2(|2|), α3(|2|)}, N = min{(α1(|2|))2, α2(|2|), α3(|2|)}
and Φ̃(x) = δ max{α2(‖x‖), α3(‖x‖)}.

As examle of Corollary 2.5, we can take α1(t) = α2(t) = α3(t) = tp for all t ≥ 0. Then we have
the following example.

Example 2.6. Let δ ≥ 0 and p be a positive real number with p 6= 3
2 . Let f : X −→ Y be a

mapping satisfying

(2.14) ‖Df(x, y)‖ ≤ δ(‖x‖p‖y‖p + ‖x‖p + ‖y‖p)

and ‖x + σ(x)‖ ≤ |2|‖x‖ for all x, y ∈ X. Then there exists a unique mapping C : X −→ Y with
involution such that the inequality
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||f(x)− C(x)|| ≤


δ||x||p

|2|(|2|3 − |2|p)
, if p > 3,

δ||x||p

|2|(|2|2p − |2|3)
, if 0 < p < 3

2

holds for all x ∈ X.
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VALUE SHARING RESULTS FOR MEROMORPHIC
FUNCTIONS WITH THEIR Q-SHIFTS

XIAOGUANG QI, JIA DOU AND LIANZHONG YANG

Abstract. This research is a continuation of a recent paper [16, 17].
Shared value problems related to a meromorphic function f(z) and its
q-shift f(qz + c) are studied. Moreover, we also consider uniqueness
problems on meromorphic functions f(z) share sets with f(qz + c).

1. Introduction

We assume that the reader is familiar with the elementary Nevanlinna The-
ory, see, e.g. [8, 18]. Meromorphic functions are always non-constant, unless
otherwise specified. As usual, by S(r, f) we denote any quantity satisfying
S(r, f) = o(T (r, f)) for all r outside of a possible exceptional set of finite
linear measure. In particular, we denote by S1(r, f) any quality satisfying
S1(r, f) = o(T (r, f)) for all r on a set of logarithmic density 1.

For a meromorphic function f and a set S of complex numbers, we define the
set E(S, f) =

⋃
a∈S{z|f(z)− a = 0}, where a zero of f − a with multiplicity

m counts m times in E(S, f). As a special case, when S = {a} contains
only one element a, if E(a, f) = E(a, g), then we say f(z) and g(z) share a
CM ; if E(a, f) = E(a, g), then we say f(z) and g(z) share a IM , see [18].

The classical results due to Nevanlinna [14] in the uniqueness theory of
meromorphic functions are the five-point, resp. four-point, theorems:

Theorem A. If two meromorphic functions f(z) and g(z) share five distinct
values a1, a2, a3, a4, a5 ∈ C ∪ {∞} IM, then f(z) ≡ g(z).

Theorem B. If two meromorphic functions f(z) and g(z) share four distinct
values a1, a2, a3, a4 ∈ C ∪ {∞} CM, then f(z) ≡ g(z) or f(z) ≡ T ◦ g(z),
where T is a Möbius transformation.

It is well-known that 4 CM can not be improved to 4 IM, see [6]. Further,
Gundersen [7, Theorem 1] has improved the assumption 4 CM to 2 CM+2
IM, while 1 CM+3 IM is still an open problem.

Heittokangas et al. [9, 10] considered the uniqueness of a finite order mero-
morphic function sharing values with its shift. They proved the following
theorem:

Theorem C. Let f(z) be a meromorphic function of finite order, let c ∈ C,
and let a1, a2, a3 ∈ S(f)∪{∞} be three distinct periodic functions with period

2010 Mathematics Subject Classification. 30D35, 39A05.
Key words and phrases. Q-shift; Meromorphic functions; Value sharing, Nevanlinna

theory.
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c. If f(z) and f(z + c) share a1, a2 CM and a3 IM, then f(z) = f(z + c) for
all z ∈ C.

Here, denote by S(f) the family of all meromorphic functions a(z) that
satisfy T (r, a) = o(T (r, f)), for r →∞ outside a possible exceptional set of
finite logarithmic measure.

Some improvements of Theorem C can be found in [1, 11, 12, 15]. A natural
question is: what is the uniqueness result in the case when f(z) shares values
with f(qz + c) for a zero-order meromorphic function f(z). Corresponding
to this question, we got the following result in [16]:

Theorem D. Let f(z) be a zero-order meromorphic function, and q ∈ C \
{0}, c ∈ C, and let a1, a2, a3 ∈ C∪{∞} be three distinct values. If f(z) and
f(qz + c) share a1, a2 CM and a3 IM, then f(z) = f(qz + c) and |q| = 1.

Theorem E. Let f(z) be a zero-order entire function, q ∈ C \ {0}, c ∈ C,
and let a1, a2 ∈ C be two distinct values. If f(z) and f(qz + c) share a1 and
a2 IM, then f(z) = f(qz + c) and |q| = 1.

It seems natural to ask whether the assumption ”constants ai” can be re-
placed by ”small functions ai” in Theorem E. We will give a positive answer
in this paper. The reminder of this paper is organized as follows: Firstly,
Section 2 contains some auxiliary results. We consider the value sharing
problem for f(z) and f(qz + c) in Section 3. Section 4 is devoted to prov-
ing some uniqueness results for meromorphic functions f(z) share sets with
f(qz + c).

2. Some Lemmas

Lemma 2.1. [13, Theorem 2.1] Let f(z) be a zero-order meromorphic func-
tion, and q ∈ C \ {0}, c ∈ C. Then

m

(
r,

f(qz + c)
f(z)

)
= S1(r, f).

Lemma 2.2. [16, Theorem 3.2] Let f(z) be a zero-order meromorphic func-
tion, and q ∈ C \ {0}, c ∈ C. Then

m

(
r,

f(z)
f(qz + c)

)
= S1(r, f) (2.1)

and
T (r, f(qz + c)) = T (r, f(z)) + S1(r, f). (2.2)

Lemma 2.3. [13, Theorem 2.4] Let f(z) be a zero-order meromorphic so-
lution of

f(z)nP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are q-shift difference polynomials in f(z). If the
degree of Q(z, f) as a polynomial in f(z) and its q-shifts is at most n, then

m(r, P (z, f)) = S1(r, f).
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3. Improvement of Theorem E

Next we show that ”constants ai” in Theorems E can be replaced by ”small
functions ai”.

Theorem 3.1. Let f(z) be a zero-order entire function, q ∈ C \ {0}, c ∈ C,
and let a1, a2 ∈ S(f). If f(z) and f(qz + c) share a1 and a2 IM, then
f(z) = f(qz + c) and |q| = 1.

Remarks. (1). Theorem E and Theorem 3.1 seem to be so similar. How-
ever, our proof is different to the one in Theorem E.

(2). We tried to improve Theorem D, unfortunately, we cannot get any
improvement in this paper.

Proof of Theorem 3.1. From the fact that a non-constant meromorphic
function of zero-order can have at most one Picard exceptional value (see, e.
g., [3, p. 114]), it can be concluded that N(r, 1

f−a1
) 6= 0 and N(r, 1

f−a2
) 6= 0.

Define

H(z) =
H1(z)(f(z)− f(qz + c))

(f(z)− a(z))(f(z)− b(z))
, (3.1)

where

H1(z) = (f(z)− a(z))(f ′(z)− b′(z))− (f ′(z)− a′(z))(f(z)− b(z)).

And

G(z) =
G1(z)(f(z)− f(qz + c))

(f(qz + c)− a(z))(f(qz + c)− b(z))
, (3.2)

where

G1(z) = (f(qz+c)−a(z))(f ′(qz+c)−b′(z))−(f ′(qz+c)−a′(z))(f(qz+c)−b(z)).

Equation (3.1) can be rewritten as

H(z) =
(

f ′(z)− b′(z)
f(z)− b(z)

− f ′(z)− a′(z)
f(z)− a(z)

)
(f(z)− f(qz + c))

=
H1(z)(f(z)− a(z) + a(z))
(f(z)− a(z))(f(z)− b(z))

(
1− f(qz + c)

f(z)

)
.

(3.3)

Note

H1(z) = (f(z)− a(z))(f ′(z)− b′(z))− (f ′(z)− a′(z))(f(z)− b(z))

= (f(z)− b(z))(a′(z)− b′(z))− (f ′(z)− b′(z))(a(z)− b(z)),

hence equation (3.3) can be expressed as

H(z) =
(

1− f(qz + c)
f(z)

)(
H1(z)

f(z)− b(z)
+ a(z)

H1(z)
(f(z)− a(z))(f(z)− b(z))

)

=
(

1− f(qz + c)
f(z)

)(
(f(z)− b(z))(a′(z)− b′(z))− (f ′(z)− b′(z))(a(z)− b(z))

f(z)− b(z)

+ a(z)
(f(z)− a(z))(f ′(z)− b′(z))− (f ′(z)− a′(z))(f(z)− b(z))

(f(z)− a(z))(f(z)− b(z))

)
.

(3.4)
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By the assumption f(z) and f(qz + c) share a(z), b(z) IM and equation
(3.3), we get

N(r,H(z)) ≤ N(r, a(z)) + N(r, b(z)) = S(r, f). (3.5)

From equation (3.4), Lemma 2.1 and the lemma of logarithmic derivative,
we know

m(r,H(z)) = S1(r, f).
Hence,

T (r,H(z)) = S1(r, f). (3.6)
Similarly as above, we know

G(z) =
(

f ′(qz + c)− b′(z)
f(qz + c)− b(z)

− f ′(qz + c)− a′(z)
f(qz + c)− a(z)

)
(f(z)− f(qz + c)). (3.7)

Using a similar way, we obtain that

T (r,G(z)) = S1(r, f). (3.8)

Denote
U(z) = mH(z)− nG(z). (3.9)

Next, suppose on the contrary that f(z) 6= f(qz + c), and head for a con-
tradiction.

Case 1. Assume that there exists two integers m,n such that U(z) = 0.
Then from (3.3) and (3.7), we deduce that

m

(
f ′(z)− b′(z)
f(z)− b(z)

− f ′(z)− a′(z)
f(z)− a(z)

)
= n

(
f ′(qz + c)− b′(z)
f(qz + c)− b(z)

− f ′(qz + c)− a′(z)
f(qz + c)− a(z)

)
,

which implies that(
f(z)− b(z)
f(z)− a(z)

)m

= A

(
f(qz + c)− b(z)
f(qz + c)− a(z)

)n

,

where A is a non-zero constant. If m 6= n, then we get from above equality
and (2.2) that

mT (r, f(z)) = nT (r, f(qz + c)) + S1(r, f) = nT (r, f(z)) + S1(r, f),

which is a contradiction. If m = n, then we get
f(z)− b(z)
f(z)− a(z)

= B
f(qz + c)− b(z)
f(qz + c)− a(z)

, (3.10)

where B satisfies Bm = A.

If B = 1, then we obtain f(z) = f(qz+c), which contradicts the assumption
f(z) 6= f(qz + c). It remains to consider the case that B 6= 1. The equation
(3.10) gives

f(z)((B−1)f(qz+c)+a(z)−Bb(z)) = (Ba(z)−b(z))f(qz+c)+(1−B)a(z)b(z).

Apply Lemma 2.3 to the above equation, resulting in

m(r, ((B − 1)f(qz + c) + a(z)−Bb(z))) = S1(r, f).

Consequently,

T (r, f(qz + c)) = T (r, f) + S1(r, f) = S1(r, f),

which is impossible.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

110 XIAOGUANG QI et al 107-116



VALUE SHARING RESULTS FOR MEROMORPHIC FUNCTIONS WITH THEIR Q-SHIFTS5

Case 2. There does not exist two positive integers m,n such that U(z) = 0.
In what follows, we denote Sf∼g(n,m)(a) for the set of those points z ∈
C such that z is an a-point of f with multiplicity n and an a-point of g
with multiplicity m such that a(z) 6= ∞, b(z) 6= ∞, a(z) − b(z) 6= 0. Let
N(n,m)(r, 1

f−a) and N (n,m)(r, 1
f−a) denote the counting function and reduced

counting function of f(z) with respect to the set Sf∼g(n,m)(a), respectively.

Take z0 such that z0 ∈ Sf(z)∼f(qz+c)(n,m)(a(z)), we have mn 6= 0, since a(z)
is not a Picard exceptional value of f(z) as we discuss above. Combining
(3.3), (3.7) with (3.9), by calculating carefully, it follows that U(z0) = 0.
From (3.6), (3.8) and (3.9), we have

N (n,m)

(
r,

1
f(z)− a(z)

)
≤ N

(
r,

1
U(z)

)
= N

(
r,

1
mH(z)− nG(z)

)
= S1(r, f).

Using the same reason, we get

N (n,m)

(
r,

1
f(z)− b(z)

)
≤ N

(
r,

1
U(z)

)
= N

(
r,

1
nH(z)−mG(z)

)
= S1(r, f).

Consequently,

N (n,m)

(
r,

1
f(z)− a(z)

)
+ N (n,m)

(
r,

1
f(z)− b(z)

)
= S1(r, f). (3.11)

Combining (2.2) with (3.11), it follows that

T (r, f(z)) ≤ N
(
r,

1
f(z)− a(z)

)
+ N

(
r,

1
f(z)− b(z)

)
+ S1(r, f)

=
∑
n,n

(
N (n,m)(r,

1
f(z)− a(z)

) + N (n,m)(r,
1

f(z)− b(z)
)
)

+ S1(r, f)

=
∑

m+n≥5

(
N (n,n)(r,

1
f(z)− a(z)

) + N (n,m)(r,
1

f(z)− b(z)
)
)

+ S1(r, f)

≤ 1
5

∑

m+n≥5

(
N(n,m)(r,

1
f(z)− a(z)

) + N(n,m)(r,
1

f(z)− b(z)
)

+ N(n,m)(r,
1

f(qz + c)− a(z)
) + N(n,m)(r,

1
f(qz + c)− b(z)

)
)

+ S1(r, f)

≤ 2
5
T (r, f) +

2
5
T (r, f(qz + c)) + S1(r, f)

=
4
5
T (r, f) + S1(r, f),

which is a contradiction. Therefore, we get f(z) = f(qz + c).

The rest of proof consists of the conclusion that |q| = 1. The proof is similar
as [10, Theorem 1.5]. In fact, we have given the proof in [16]. The proof is
stated explicitly for the convenience of the reader. If f(z) is transcendental
and suppose first |q| < 1. It can be assumed that there exists one point
z0 such that f(z0) = a1 and that z0 is not a fixed point of qz + c. By the
sharing assumptions of Theorem 3.1, we get f(qz0 + c) = a1 as well. By
calculation, we know f(qnz0 + c(1 + · · ·+ qn−1)) = a1 for all n ∈ N. Letting
n → ∞, it is concluded that a1-points of f accumulate to z = c

1−q , which
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is a contradiction. If |q| > 1, then set g(z) = f(qz + c). Assume that g
has at least one a1 point, say at z0. From the sharing assumptions, we get
g( 1

qn z − c(1
q + · · ·+ 1

qn )) = a1 for all all n ∈ N. Using the same way above,
we get a1-point of g accumulate to z = c

1−q , which is a contradiction. Hence
|q| = 1.

If f is a rational function, then set f(z) =
∑m

i=1 aiz
i

∑n
j=1 bizj and f(qz + c) =

∑m
i=1 ai(qz+c)i

∑n
j=1 bi(qz+c)j . By simply calculations, it follow that |q| = 1. This com-

pletes the proof of Theorem 3.1.

4. Sharing sets results

Gross [4, Question 6] asked the following question:

Question. Can one find (even one set) finite sets Sj (j = 1, 2) such that any
two entire functions f(z) and g(z) satisfying E(Sj , f) = E(Sj , g) (j = 1, 2)
must be identical?

Since then, many results have been obtained for this and related topics (see
[2, 19, 20, 21]). Here, we just recall the following two results only.

Theorem F [5]. Let S1 = {1,−1}, S2 = {0}. If f(z) and g(z) are entire
functions of finite order such that E(Sj , f) = E(Sj , g) for j = 1, 2, then
f(z) = ±g(z) or f(z)g(z) = 1.

Theorem G [22]. Let S1 = {1, ω, . . . ωn−1} and S2 = {∞}, where ω =
cos(2π/n) + i sin(2π/n) and n ≥ 6 be a positive integer. Suppose that f(z)
and g(z) are meromorphic functions such that E(Sj , f) = E(Sj , g) for j =
1, 2, then f(z) = tg(z) or f(z)g(z) = t, where tn = 1.

It is natural to ask what will happen if g(z) is replaced by q-shift of f(z)
in Theorems F and G. In the following, we answer this problem, and get
shared sets results for f(z) and its q-shift f(qz + c).

Theorem 4.1. Let S1, S2 be given as in Theorem G, and let f(z) be a
zero-order meromorphic function satisfying E(Sj , f(z)) = E(Sj , f(qz + c))
for j = 1, 2, c ∈ C and q ∈ C \ {0}. If n ≥ 4, then f(z) = tf(qz + c), tn = 1
and |q| = 1.

By the same reasoning as in the proof of Theorem 4.1, we obtain the follow-
ing result. We omit the proof here.

Corollary 4.2. Theorem 4.1 still holds if f is a zero-order entire function
and n ≥ 3.

In the following, we give a partial answer as to what may happen if n = 2
in Corollary 4.2, which can be seen an analogue for q-shift of Theorem F.

Theorem 4.3. Suppose f(z) is a zero-order entire function and q ∈ C\{0},
c ∈ C. If f(z) and f(qz + c) share the set {a(z),−a(z)} CM , where a(z) is
a non-vanishing small function of f(z), then one of the following statements
hold:
(1). C2f(z) = f(q2z + qc + c), where C is a constant such that C2 6= 1;
(2). f(z) = ±f(qz + c), and |q| = 1.
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Corollary 4.4. Suppose a is a non-zero constant in Theorem 4.3, then we
get f(z) = ±f(qz + c), where |q| = 1.

Corollary 4.5. Under the assumptions of Theorem 4.3, if f(z) and f(qz+c)
share sets {a(z),−a(z)}, {0} CM , then f(z) = ±f(qz + c), where |q| = 1.

Proof of Theorem 4.1. By the sharing assumption, we get f(z)n and
f(qz + c)n share 1 and ∞ CM . This implies,

f(qz + c)n − 1
f(z)n − 1

= γ, (4.1)

where γ is a non-zero constant. This gives

f(qz + c)n = γ(f(z)n − 1 +
1
γ

). (4.2)

Denote

G(z) =
f(z)n

1− 1
γ

.

Suppose γ 6≡ 1, then by the second main theorem and Lemma 2.2 to G(z),
it follows that

nT (r, f) + S(r, f) = T (r,G) ≤ N

(
r,

1
G

)
+ N(r,G) + N

(
r,

1
G− 1

)
+ S(r,G)

≤ N

(
r,

1
f

)
+ N(r, f) + N

(
r,

1
f(z)n − 1 + 1

γ

)
+ S(r, f)

≤ N

(
r,

1
f

)
+ N(r, f) + N

(
r,

1
f(qz + c)

)
+ S(r, f)

≤ 2T (r, f) + T (r, f(qz + c)) + S(r, f) ≤ 3T (r, f) + S1(r, f).

This together with the assumption n ≥ 4 results in a contradiction. Hence,
γ ≡ 1, that is, f(z)n = f(qz + c)n. This yields f(z) = tf(qz + c) for a
constant t with tn = 1. Let F (z) = f(z)n and F (qz + c) = f(qz + c)n, then
we get F (z) = F (qz + c). Similarly as Theorem 3.1, we have |q| = 1. The
conclusion follows.

Proof of Theorem 4.3. It follows by the assumptions that

(f(qz + c)− a(z))(f(qz + c) + a(z)) = C2(f(z)− a(z))(f(z) + a(z)), (4.3)

where C is a non-zero constant.

Case 1. Suppose first that C2 6≡ 1. Denote

h1(z) = f(z)− 1
C

f(qz + c), h2(z) = f(z) +
1
C

f(qz + c).

Then

f(z) =
1
2
(h1(z) + h2(z)), f(qz + c) =

C

2
(h2(z)− h1(z)). (4.4)

Moreover, we have

h1(z)h2(z) = (1− 1
C2

)a2(z). (4.5)
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From above equation, we get

N

(
r,

1
h1

)
= S(r, f), N

(
r,

1
h2

)
= S(r, f). (4.6)

By definitions of h1(z) and h2(z), Lemma 2.2 yields

T (r, hi) ≤ 2T (r, f) + S1(r, f),

which means S1(r, hi) = o(T (r, f)) for all r on a set of logarithmic density
1, i = 1, 2.
Denote

α(z) =
h1(qz + c)

h1(z)
, β(z) =

h2(qz + c)
h2(z)

.

From (4.6) and Lemma 2.1, we obtain that

T (r, α) = m(r, α) + N

(
r,

1
h1

)
= S1(r, f),

T (r, β) = m(r, β) + N

(
r,

1
h2

)
= S1(r, f).

(4.7)

From definitions of h1(z), h2(z) and equation (4.4), we conclude that

Ch2(z)− Ch1(z) = h1(qz + c) + h2(qz + c).

Dividing above equation with h1(z)h2(z), we obtain

(α + C)h1(z) = (C − β)h2(z). (4.8)

By combining (4.5) and (4.8), it follows that

(α + C)h2
1(z)− (C − β)(1− 1

C2
)a2(z) = 0. (4.9)

From (4.7) and (4.9), we get α = −C and β = C. Otherwise, we know
T (r, h1) = S1(r, f), which means T (r, f) = S1(r, f) from (4.4) and (4.5), a
contradiction. Hence, we have

h1(qz + c) = −Ch1(z), h2(qz + c) = Ch2(z),

from definitions of α(z) and β(z), that is{−C(f(z)− 1
C f(qz)) = f(qz)− 1

C f(q(qz + c) + c),
C(f(z) + 1

C f(qz)) = f(qz) + 1
C f(q(qz + c) + c).

The above equations give C2f(z) = f(q2z + qc + c).

Case 2. C2 ≡ 1. The equation (4.3) implies that f(z) = ±f(qz + c). Using
a similar way as Theorem 3.1, we get |q| = 1 in Case 2.

Proof of Corollary 4.4. Similarly as Theorem 4.3, we obtain equations
(4.4) and (4.5) hold as well. Equation (4.5) and the assumption that a is
non-zero constant give

N

(
r,

1
h1

)
= 0, N

(
r,

1
h2

)
= 0. (4.10)

Combining (4.10) with the definitions of h1(z) and h2(z), we conclude that
h1(z) and h2(z) are constants. From (4.4), we get f(z) is a constant, which
contradicts the assumption. Hence, only Case 2 of Theorem 4.3 holds, the
conclusion follows.
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Proof of Corollary 4.5. It suffices to prove the case C2f(z) = f(q2z +
qc + c) in Theorem 4.3 cannot hold. Suppose that f(z0) = 0, then by the
sharing assumption and (4.4), it follows that

h1(z0) + h2(z0) = 0, h1(qz0 + c) + h2(qz0 + c) = 0.

Hence,
h1(qz0 + c)

h1(z0)
h2(z0)

h2(qz0 + c)
= 1.

From the proof of Theorem 4.3, we know

α =
h1(qz0 + c)

h1(z0)
= −C, β =

h2(qz0 + c)
h2(z0)

= C,

which means that
h1(qz0 + c)

h1(z0)
h2(z0)

h2(qz0 + c)
= −1.

which is impossible. This contradiction is only avoided when 0 is the Picard
exceptional value of f(z) and f(qz + c). Since f(z) is a zero-order entire
function, we conclude that f(z) must be a constant, which contradicts the
assumption. Hence, f(z) = ±f(qz + c), where |q| = 1.
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RANDOM NORMED SPACE AND MIXED TYPE

AQ–FUNCTIONAL EQUATION

ICK-SOON CHANG* AND YANG-HI LEE

Abstract. We investigate the stability problems for the following functional equation

f(x+ ay) + f(x− ay) − 2f(x) +
a− a2

2
f(y) − a+ a2

2
f(−y) − f(ay) = 0

in random normed spaces.

1. Introduction and Preliminaries

We first demonstrate the usual terminology, notations and conventions of the theory of
random normed spaces [7, 8]. The space of all probability distribution functions is denoted
by

∆+ : = {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous and nondecreasing on R,

where F (0) = 0 and F (+∞) = 1}.

And let D+ := {F ∈ ∆+ | l−F (+∞) = 1}, where l−f(x) denotes the left limit of the
function f at the point x. The space ∆+ is partially ordered by the usual pointwise
ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The maximal
element for ∆+ in this order is the distribution function ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =

{
0, if t ≤ 0,
1, if t > 0.

Definition 1.1. ([7]) A mapping τ : [0, 1]× [0, 1]→ [0, 1] is called a continuous triangular
norm (briefly, a continuous t-norm) if τ satisfies the following conditions :

(TN1) τ is commutative and associative ;
(TN2) τ is continuous ;
(TN3) τ(a, 1) = a for all a ∈ [0, 1] ;
(TN4) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) = min(a, b) and
τL(a, b) = max(a+ b− 1, 0).

Definition 1.2. ([8]) A random normed space (briefly, RN-space) is a triple (X,µ, τ),
where X is a vector space, τ is a continuous t-norm and µ is a mapping from X into D+

such that the following conditions hold :
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2 I. CHANG AND Y. LEE

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) µαx(t) = µx(t/|α|) for all x ∈ X, α ̸= 0 and all t ≥ 0,
(RN3) µx+y(t+ s) ≥ τ(µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ∥ · ∥) is a normed space, we can define a mapping µ : X → D+ by µx(t) = t
t+∥x∥

for all x ∈ X and all t > 0. Then (X,µ, τM ) is a random normed space, which is called
the induced random normed space.

Definition 1.3. Let (X,µ, τ) be an RN -space.

(A1) A sequence {xn} in X is said to be convergent to a point x ∈ X if for every t > 0
and ε > 0, there exists a positive integer N such that µxn−x(t) > 1− ε whenever
n ≥ N .

(A2) A sequence {xn} in X is called a Cauchy sequence if for every t > 0 and ε > 0,
there exists a positive integer N such that µxn−xm(t) > 1−ε whenever n ≥ m ≥ N .

(A3) An RN-space (X,µ, τ) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X.

Theorem 1.4. ([7]) If (X,µ, τ) is an RN-space and {xn} is a sequence such that xn → x,
then limn→∞ µxn(t) = µx(t).

The concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. The stability
problem for functional equations originated from questions of Ulam [9] concerning the
stability of group homomorphisms. Hyers [2] had answered affirmatively the question
of Ulam for Banach spaces. A generalized version of the theorem of Hyers for additive
mappings was given by Aoki [1] and for linear mappings was presented by Rassias [6].
Since then, many interesting results of the stability of various functional equation have
been extensively investigated.

Now we take into account the following mixed type additive-quadratic functional equation
(briefly, AQ-functional equation)

f(x+ ay) + f(x− ay)− 2f(x) +
a− a2

2
f(y)− a+ a2

2
f(−y)− f(ay) = 0. (1.1)

Here we promise that each solution of equation (1.1) is said to be an additive-quadratic
mapping. Quite recently, the stability of functional equation (1.1) in the case when a = 1
was investigated in [3, 4, 5].

The main aim of this work is to establish the stability for the functional equation (1.1)
in random normed spaces.

2. Main results

Let E1 and E2 be vector spaces. For convenience, we use the following abbreviations
for a given mapping f : E1 → E2,

Af(x, y) := f(x+ y)− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Df(x, y) := f(x+ ay) + f(x− ay)− 2f(x) +
a− a2

2
f(y)− a+ a2

2
f(−y)− f(ay)

for all x, y ∈ E1, where a > 1
2 is a rational number.
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A solution of Af = 0 is said to be an additive mapping and a solution of Qf = 0 is
called a quadratic mapping. If a mapping f is represented by sum of additive mapping
and quadratic mapping, we say that f is an additive-quadratic mapping.

Lemma 2.1. A mapping f : E1 → E2 satisfies the functional equation Df(x, y) = 0 for
all x, y ∈ E1 if and only if there exist a quadratic mapping g : E1 → E2 and an additive
mapping h : E1 → E2 such that f(x) = g(x) + h(x) for all x ∈ E1.

Proof. (Necessity) We decompose f into the even part and the odd part by considering

g(x) =
f(x) + f(−x)

2
, h(x) =

f(x)− f(−x)

2

for all x ∈ E1. It is note that f(0) = −Df(0,0)
a2+1

= 0. The following functional equalities

Qg(x, y) =Dg(x, y/a)−Dg(0, y/a) = 0,

Ah(x, y) =−Dh
(x+ y

2
,
x− y

2a

)
+Dh

(x+ y

2
,
x+ y

2a

)
+Dh

(
0,
x− y

2a

)
−Dh

(
0,
x+ y

2a

)
= 0

give that g is a quadratic mapping and h is an additive mapping.
(Sufficiency) Assume that there exist a quadratic mapping g : E1 → E2 and an additive

mapping h : E1 → E2 such that f(x) = g(x) + h(x) for all x ∈ E1. Then we see that

Df(x, y) = Dg(x, y) +Dh(x, y)

= Qg(x, ay) + g(ay)− a2g(y)−Ah(x+ ay, x− ay) +Ah(x, x) + ah(y)− h(ay)

= 0

for all x, y ∈ E1. Therefore we arrive at the desired conclusion. �
In the following theorem, we establish the stability of the functional equation (1.1) in

random normed spaces.

Theorem 2.2. Let (Y, µ, τM ) and (Z, µ′, τM ) be a complete RN-space and an RN-space,
respectively. Suppose that V is a vector space and f : V → Y is a mapping with f(0) = 0
for which there exists a mapping φ : V 2 → Z such that

µDf(x,y)(t) ≥ µ′φ(x,y)(t) (2.1)

for all x, y ∈ V and all t > 0. If a mapping φ satisfies one of the following conditions :

(i) µ′αφ(x,y)(t) ≤ µ
′
φ(2ax,2ay)(t) for some 0 < α < 2a,

(ii) µ′φ(2ax,2ay)(t) ≤ µ
′
αφ(x,y)(t) ≤ µ

′
φ((2a)2x,(2a)2y)(t) for some 2a < α < (2a)2,

(iii) µ′φ((2a)2x,(2a)2y)(t) ≤ µ
′
αφ(x,y)(t) for some (2a)2 < α

for all x, y ∈ V and all t > 0, then there exists a unique additive-quadratic mapping
F : V → Y such that

µf(x)−F (x)(t) ≥


supt′<t{M (x, (2a− α)t′)} if φ satisfies (i),

supt′<t{M(x, ((2a)
2−α)(2a−α)t′

4((2a)2−2a)
)} if φ satisfies (ii),

supt′<t{M(x, (α− (2a)2)t′)} if φ satisfies (iii)

(2.2)

for all x ∈ V and all t > 0, where

M(x, t) := τM
{
µ′φ(ax,x)(t), µ

′
φ(−ax,−x)(t), µ

′
φ(0,x)(t), µ

′
φ(0,−x)(t)

}
.
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Proof. We will take into account three different cases for the assumption of φ.

Case 1. Let φ satisfy the condition (i) for some α with 0 < α < 2a and let Jnf : V → Y
be a mapping defined by

Jnf(x) :=
f((2a)nx)− f(−(2a)nx)

2(2a)n
+
f((2a)nx) + f(−(2a)nx)

2(2a)2n

for all x ∈ V and all n ∈ N. Then J0f(x) = f(x), Jjf(0) = f(0) and

Jjf(x)− Jj+1f(x) =
(2a)j+1 − 1

2(2a)2j+2

[
Df(−(2a)jax,−(2a)jx)− 3Df(0, (2a)jx)

]
(2.3)

− (2a)j+1 + 1

2(2a)2j+2

[
Df((2a)jax, (2a)jx)− 3Df(0,−(2a)jx)

]
for all x ∈ V and all j ≥ 0. It implies that if n + m > n ≥ 0, then we get by (RN2),
(RN3), (2.1) and (2.2)

µJnf(x)−Jn+mf(x)

( n+m−1∑
j=n

4αjt

(2a)j+1

)

≥ µ∑n+m−1
j=n (Jjf(x)−Jj+1f(x))

( n+m−1∑
j=n

4αjt

(2a)j+1

)
≥ τMn+m−1

j=n

{
µJjf(x)−Jj+1f(x)

( 4αjt

(2a)j+1

)}
(2.4)

≥ τMn+m−1
j=n

{
τ
{
µ
− ((2a)j+1+1)Df((2a)j ·ax,(2a)jx)

2(2a)2j+2

(((2a)j+1 + 1)αjt

2(2a)2j+2

)
,

µ ((2a)j+1−1)Df(−(2a)j ·ax,−(2a)jx)

2(2a)2j+2

(((2a)j+1 − 1)αjt

2(2a)2j+2

)
,

µ 3((2a)j+1+1)Df(0,−(2a)jx)

2(2a)2j+2

(3((2a)j+1 + 1)αjt

2(2a)2j+2

)
,

µ
− 3((2a)j+1−1)Df(0,(2a)jx)

2(2a)2j+2

(3((2a)j+1 − 1)αjt

2(2a)2j+2

)}
≥M(x, t)

for all x ∈ V and all t > 0. Let c > 0 and ε > 0 be given. Since limt→∞ µ′z(t) = 1 for all
z ∈ Z, there is some t0 > 0 such that M(x, t0) ≥ 1− ε. Fix some t > t0. Since α < 2a, we

know that the series
∑∞

j=0
4αjt

(2a)j+1 converges. It guarantees that there exists some n0 ≥ 0

such that
∑n+m−1

j=n
4αjt

(2a)j+1 < c for all n ≥ n0 and all m > 0. Together with (RN3) and

(2.4), this implies that

µJnf(x)−Jn+mf(x)(c) ≥ µJnf(x)−Jn+mf(x)

( n+m−1∑
j=n

4αjt

(2a)j+1

)
≥M(x, t) ≥M(x, t0) ≥ 1− ε
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for all x ∈ V. Hence {Jnf(x)} is a Cauchy sequence in the complete RN-space (Y, µ, τM )
and so we can define a mapping F : X → Y by F (x) := limn→∞ Jnf(x). Moreover, if we
put m = 0 in (2.4), we have

µf(x)−Jnf(x)(t) ≥M

x, t∑n−1
j=0

4αjt
(2a)j+1

 (2.5)

for all x ∈ V.
Next we are in the position to show that F is an additive-quadratic mapping. In view

of (RN3), we figure out the relation

µDF (x,y)(t) ≥ τM
{
µ(F−Jnf)(x+ay)

( t

12

)
, µ(F−Jnf)(x−ay)

( t

12

)
, µ2(Jn−Ff)(x)

( t

12

)
,

µa−a2

2
(F−Jnf)(y)

( t

12

)
, µ−a+a2

2
(F−Jnf)(−y)

( t

12

)
, µ−(F−Jnf)(ay)

( t

12

)
, (2.6)

µDJnf(x,y)

( t
2

)}
for all x, y ∈ V and all n ∈ N. The first six terms on the right hand side of the previous
inequality tend to 1 as n→∞ by the definition of F. Also we consider that

µDJnf(x,y)

( t
2

)
≥ τM

{
µDf((2a)nx,(2a)ny)

2·(2a)2n

( t
8

)
, µDf(−(2a)nx,−(2a)ny)

2·(2a)2n

( t
8

)
,

µDf((2a)nx,(2a)ny)
2·(2a)n

( t
8

)
, µDf(−(2a)nx,−(2a)ny)

2·(2a)n

( t
8

)}
≥ τM

{
µφ((2a)nx,(2a)ny)

2·(2a)2n

( t
8

)
, µφ(−(2a)nx,−(2a)ny)

2·(2a)2n

( t
8

)
,

µφ((2a)nx,(2a)ny)
2·(2a)n

( t
8

)
, µφ(−(2a)nx,−(2a)ny)

2·(2a)n

( t
8

)}
≥ τM

{
µφ(x,y)

((2a)2nt

4αn

)
, µφ(−x,−y)

((2a)2nt

4αn

)
,

µφ(x,y)

((2a)nt

4αn

)
, µφ(−x,−y)

((2a)nt

4αn

)}
,

which tends to 1 as n → ∞ by (RN3). It follows from (2.6) that µDF (x,y)(t) = 1 for all
x, y ∈ V and all t > 0. By (RN1), this means that DF (x, y) = 0 for all x, y ∈ V.

We now approximate the difference between f and F. Fix x ∈ V, t > 0 and choose
t′ < t. For arbitrary ε > 0, by F (x) := limn→∞ Jnf(x), there is a n ∈ N such that

µF (x)−Jnf(x)(t− t
′) ≥ 1− ε.

It follows by (2.5) that

µF (x)−f(x)(t) ≥ τM{µF (x)−Jnf(x)(t− t
′), µJnf(x)−f(x)(t

′)}

≥ τM
{

1− ε,M
(
x,

t′∑n−1
j=0

4αjt
(2a)j+1

)}
≥ τM

{
1− ε,M

(
x,

(2a− α)t′

4

)}
.
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Because ε > 0 is arbitrary, we find that

µF (x)−f(x)(t) ≥M(x, (2a− α)t′)

for all x ∈ V and t′ < t. The first inequality in (2.2) follows from the previous inequality.
In order to prove the uniqueness of F, we assume that F ′ is another additive-quadratic

mapping from V to Y satisfying the first inequality in (2.2) with F ′(0) = f(0). Note that
if F ′ is an additive-quadratic mapping, then we have by (2.3)

F ′(x)− JnF ′(x) =

n−1∑
j=0

(JjF
′(x)− Jj+1F

′(x)) = 0

for all x ∈ V and all n ∈ N. With the help of (RN3) and the first inequality in (2.2), this
result yields that for all x ∈ V and all n ∈ N,
µF ′(x)−Jnf(x)(t) = µJnF ′(x)−Jnf(x)(t)

≥ τM
{
µ (F ′−f)((2a)nx)

2·(2a)2n

( t
4

)
, µ (F ′−f)(−(2a)nx)

2·(2a)2n

( t
4

)
, µ (F ′−f)((2a)nx)

2·(2a)n

( t
4

)
,

µ (F ′−f)(−(2a)nx)
2·(2a)n

( t
4

)}
≥ τM

{
sup
t′<t

{
M
(
x,
(2a

α

)n (2a− α)t′

4

)
, sup
t′<t

{
M
(
x,
(4a2

α

)n (2a− α)t′

4

)}
.

Observe that

lim
n→∞

(2a

α

)n (2a− α)t′

4
=∞,

which gives that
lim
n→∞

µF ′(x)−Jnf(x)(t) = 1

and then we have by (RN1)

F ′(x) = lim
n→∞

Jnf(x) = F (x)

for all x ∈ V.
Case 2. Assume that φ satisfies the condition (ii) for some α with 2a < α < 4a2 and

Jnf : V → Y is a mapping defined by

Jnf(x) :=
f((2a)nx) + f(−(2a)nx)

2 · (2a)2n
+

(2a)n

2

[
f
( x

(2a)n

)
− f

( −x
(2a)n

)]
for all x ∈ V. Then we have J0f(x) = f(x), Jjf(0) = f(0) and

Jjf(x)− Jj+1f(x) = −Df(−(2a)jax,−(2a)jx)− 3Df(0, (2a)jx)

2(2a)2j+2

− Df((2a)jax, (2a)jx)− 3Df(0,−(2a)jx)

2(2a)2j+2
(2.7)

+
(2a)j

2

[
Df
( x

2(2a)j
,

x

(2a)j+1

)
− 3Df

(
0,
−x

(2a)j+1

)]
− (2a)j

2

[
Df
( −x

2(2a)j
,
−x

(2a)j+1

)
− 3Df

(
0,

x

(2a)j+1

)]
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for all x ∈ V and all j ≥ 0. If n+m > n ≥ 0, then we deduce that

µJnf(x)−Jn+mf(x)

n+m−1∑
j=n

( 4

(2a)2

( α

(2a)2

)j
+

4

α

((2a)

α

)j)
t


= µ∑l+m−1

j=m (Jjf(x)−Jj+1f(x))

n+m−1∑
j=n

( 4

(2a)2

( α

(2a)2

)j
+

4

α

((2a)

α

)j)
t


≥ τMn+m−1

j=n

{
µJjf(x)−Jj+1f(x)

(( 4

(2a)2

( α

(2a)2

)j
+

4

α

((2a)

α

)j)
t
)}

(2.8)

≥ τMn+m−1
j=n

{
τM

{
µ
−Df((2a)jax,(2a)jx)

2(2a)2j+2

( αjt

2(2a)2j+2

)
, µ−Df(−(2a)jax,−(2a)jx)

2(2a)2j+2

( αjt

2(2a)2j+2

)
,

µ 3Df(0,−(2a)jx)

2(2a)2j+2

( 3αjt

2(2a)2j+2

)
, µ 3Df(0,(2a)jx)

2(2a)2j+2

( 3αjt

2(2a)2j+2

)
, µ (2a)j

2
Df
(

x

2(2a)j
, x

(2a)j+1

)((2a)jt

2αj+1

)
,

µ−3(2a)j

2
Df
(
0, −x

(2a)j+1

)(3(2a)jt

2αj+1

)
, µ−(2a)j

2
Df
(

−x

2(2a)j
, −x

(2a)j+1

)((2a)jt

2αj+1

)
,

µ 3(2a)j

2
Df
(
0, x

(2a)j+1

)(3(2a)jt

2αj+1

)}}
≥M(x, t)

for all x ∈ V and all t > 0. Therefore the Cauchy sequence {Jnf(x)} has the limit
F (x) := limn→∞ Jnf(x) for all x ∈ V and

µf(x)−Jnf(x)(t) ≥M

x, t∑n−1
j=0

(
4

(2a)2

(
α

(2a)2

)j
+ 4

α

( (2a)
α

)j)
 (2.9)

for all x ∈ V.
Now, to prove that DF (x, y) = 0 for all x, y ∈ V, we consider (2.6) in case 1. By virtue

of (RN3) and (2.1), we see that

µDJnf(x,y)

( t
2

)
≥ τM

{
µDf((2a)nx,(2a)ny)

2·(2a)2n

( t
8

)
, µDf(−(2a)nx,−(2a)ny)

2·(2a)2n

( t
8

)
,

µ (2a)n

2
Df
(

x
(2a)n

, y
(2a)n

)( t
8

)
, µ

− (2a)n

2
Df
(

−x
(2a)n

, −y
(2a)n

)( t
8

)}
≥ τM

{
µφ(x,y)

((2a)2nt

4αn

)
, µφ(−x,−y)

((2a)2nt

4αn

)
,

µφ(x,y)

( αnt

4(2a)n

)
, µφ(−x,−y)

( αnt

4(2a)n

)}
for all x, y ∈ V and all t > 0, which tends to 1 as n→∞. It implies that all the terms of
(2.6) are equal to 1 as n→∞ and then we know that F is an additive-quadratic mapping.

Employing the same argument as in the proof of case 1, the second inequality in (2.2)
follows from (2.9).
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Finally, it remains to prove the uniqueness of F. Let us assume that F ′ : V → Y
is another additive-quadratic mapping satisfying (2.2). Note that if F ′ is an additive-
quadratic mapping then by (2.7)

F ′(x)− JnF ′(x) =

n−1∑
j=0

(
JjF

′(x)− Jj+1F
′(x)

)
= 0

for all x ∈ V and all n ∈ N. This relation with (RN3) and (2.2) imply that

µF ′(x)−Jnf(x)(t) = µJnF ′(x)−Jnf(x)(t)

≥ τM
{
µ (F ′−f)((2a)nx)

2·(2a)2n

( t
4

)
, µ (F ′−f)(−(2a)nx)

2·(2a)2n

( t
4

)
,

µ (2a)n

2
(F ′−f)

(
x

(2a)n

)( t
4

)
, µ (2a)n

2
(F ′−f)

(
−x

(2a)n

)( t
4

)}
≥ τM

{
sup
t′<t

{
M
(
x,

((2a)2 − α)(2a− α)t′

2((2a)2 − 2a)

( α
2a

)n)
,

sup
t′<t

{
M
(
x,

((2a)2 − α)(2a− α)t′

2((2a)2 − 2a)

)n)}
for all x ∈ V and all n ∈ N. Due to the fact that

lim
n→∞

((2a)2 − α)(2a− α)t′

2((2a)2 − 2a)

((2a)2

α

)n
=∞, lim

n→∞

((2a)2 − α)(2a− α)t′

2((2a)2 − 2a)

( α
2a

)n
=∞

for 2a < α < 4a2, we have

lim
n→∞

µF ′(x)−Jnf(x)(t) = 1.

Of course, by virtue of (RN1), we see that

F ′(x) = lim
n→∞

Jnf(x) = F (x)

for all x ∈ V.

Case 3. Suppose that φ satisfies the condition (iii) for some α with α > (2a)2 and
and Jnf : V → Y is a mapping defined by

Jnf(x) =
(2a)2n + (2a)n

2
f
( x

(2a)n

)
+

(2a)2n − (2a)n

2
f
( −x

(2a)n

)
for all x ∈ V. Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =
(2a)2j + (2a)j

2

[
Df
( x

2 · (2a)j
,

x

(2a)j+1

)
− 3Df

(
0,
−x

(2a)j+1

)]
(2.10)

+
(2a)2j − (2a)j

2

[
Df
( −x

2 · (2a)j
,
−x

(2a)j+1

)
− 3Df

(
0,

x

(2a)j+1

)]
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for all x ∈ V and all j ≥ 0. Moreover, if n+m > n ≥ 0, then we get the inequality

µJnf(x)−Jn+mf(x)

( n+m−1∑
j=n

(((2a)2

α

)j 4t

α

))

≥ µ∑n+m−1
j=n (Jjf(x)−Jj+1f(x))

( n+m−1∑
j=n

(((2a)2

α

)j 4t

α

))
≥ τMn+m−1

j=n

{
µJjf(x)−Jj+1f(x)

(((2a)2

α

)j 4t

α

)}
≥ τMn+m−1

j=n

{
τM

{
µ (2a)j((2a)j+1)

2
Df
(

x

2(2a)j
, x

(2a)j+1

)((2a)j((2a)j + 1)t

2αj+1

)
,

µ−3(2a)j((2a)j+1)
2

Df
(
0, −x

(2a)j+1

)(3(2a)j((2a)j + 1)t

2αj+1

)
,

µ (2a)j((2a)j−1)
2

Df
(

−x

2(2a)j
, −x

(2a)j+1

)((2a)j((2a)j − 1)t

2αj+1

)
µ 3(2a)j((2a)j−1)

2
Df
(
0, x

(2a)j+1

)(3(2a)j((2a)j − 1)t

2αj+1

)}}
≥M(x, t)

for all x ∈ V and all t > 0. And so we can define a mapping F : V → Y by F (x) :=
limn→∞ Jnf(x) for all x ∈ V and

µf(x)−Jnf(x)(t) ≥M

x, t∑n−1
j=0

(
(2a)2

α

)j
4
α

 (2.11)

for all x ∈ V. Note that for all x, y ∈ V and all t > 0,

µDJnf(x,y)

( t
2

)
≥ τM

{
µ (2a)2n

2
Df
(

x
(2a)n

, y
(2a)n

)( t
8

)
, µ (2a)2n

2
Df
(

−x
(2a)n

, −y
(2a)n

)( t
8

)
,

µ (2a)n

2
Df
(

x
(2a)n

, y
(2a)n

)( t
8

)
, µ

− (2a)n

2
Df
(

−x
(2a)n

, −y
(2a)n

)( t
8

)}
≥ τM

{
µφ(x,y)

( αnt

4(2a)2n

)
, µφ(−x,−y)

( αnt

4(2a)2n

)
,

µφ(x,y)

( αnt

4(2a)n

)
, µφ(−x,−y)

( αnt

4(2a)n

)}
,

which tends to 1 as n → ∞. Therefore we can show that F is an additive-quadratic
mapping by using the similar fashion after (2.6).

By the same reasoning as in the proof of case 1, the relation (2.2) yields the third
inequality in (2.11).

To complete the proof of the theorem, we are enough to show the uniqueness of F.
Suppose that F ′ : V → Y is another mapping satisfying the third inequality in (2.2). If
g is an additive-quadratic mapping, then, by (2.9), we have g(x) = Jng(x) for all x ∈ V
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and all n ∈ N. Observe that

µF (x)−F ′(x)(t) = µJnF (x)−JnF ′(x)(t)

≥ τM
{
µJnF (x)−Jnf(x)

( t
2

)
, µJnf(x)−JnF ′(x)

( t
2

)}
≥ τM

{
µ (2a)2n

2
(F−f)

(
x

(2a)n

)( t
8

)
, µ (2a)2n

2
(f−F ′)

(
x

(2a)n

)( t
8

)
,

µ (2a)2n

2
(F−f)

(
−x

(2a)n

)( t
8

)
, µ (2a)2n

2
(f−F ′)

(
−x

(2a)n

)( t
8

)
,

µ (2a)n

2
(F−f)

(
x

(2a)n

)( t
8

)
, µ (2a)n

2
(f−F ′)

(
x

(2a)n

)( t
8

)
,

µ (2a)n

2
(F−f)

(
−x

(2a)n

)( t
8

)
, µ (2a)n

2
(f−F ′)

(
−x

(2a)n

)( t
8

)}
≥ τM

{
sup
t′<t

{
M
(
x,

(α− n2)t′

4

(α
n

)m)
, sup
t′<t

{
M
(
x,

(α− n2)t′

4

( α

(2a)2

)n)}}
for all x ∈ V and all n ∈ N. Since α > (2a)2, the last term in (2.6) tends to 1 as n → ∞
by (RN3) and F (0) = F ′(0). Therefore F = F ′. �

Corollary 2.3. Let X and Y be a vector space and a complete normed space, respectively.
Suppose that f : X → Y is a mapping with f(0) = 0 for which there is φ : X2 → R such
that

∥Df(x, y)∥ ≤ φ(x, y) (2.12)

for all x, y ∈ X. If φ satisfies one of the following conditions :

(i) αφ(x, y) ≥ φ(2ax, 2ay) for some 0 < α < 2a,
(ii) φ(2ax, 2ay) ≥ αφ(x, y) ≥ φ(4a2x, 4a2y) for some 2a < α < 4a2,

(iii) φ(4a2x, 4a2y) ≥ αφ(x, y) for some 4a2 < α

for all x, y ∈ X, then there exists a unique additive-quadratic mapping F : X → Y such
that

∥f(x)− F (x)∥ ≤


Φ(x)
2a−α if φ satisfies (i),
(4a2−2a)Φ(x)
(4a2−α)(α−2a)

if φ satisfies (ii),
Φ(x)
α−4a2

if φ satisfies (iii)

(2.13)

for all x, y ∈ X, where

Φ(x) = max{φ(ax, x), φ(−ax,−x), φ(0, x), φ(0,−x)}.

Proof. Let (Y, µ, τM ) and (R, µ′, τM ) be the induced random normed RN-spaces. Then
the inequality

µDf(x,y)(t) ≥ µ′φ(x,y)(t)

follows from the inequality (2.12) and φ satisfies one of the conditions in Theorem 2.2. So
there exists a unique additive-quadratic mapping F : X → Y satisfying (2.13). �

From Corollary 2.3, we can obtain the following result.
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Corollary 2.4. Let X be a normed space and let p ̸= 1, 2 be a positive real number. If a
mapping f : X → Y satisfies the inequality

∥Df(x, y)∥ ≤ θ
(
∥x∥p + ∥y∥p

)
for all x, y ∈ X and for some θ ≥ 0, then there exists a unique additive-quadratic mapping
F : X → Y such that

∥f(x)− F (x)∥ ≤


2θ∥x∥p

2a−(2a)p if p < 1,

2θ∥x∥p
(2a)p−2a + 2θ∥x∥p

4a2−(2a)p
if 1 < p < 2,

2θ∥x∥p
(2a)p−4a2

if p > 2

for all x ∈ X.
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Abstract: In this paper we consider a vibrating riser equation with dissipative term

and the homogeneous Dirichlet boundary condition. By developing the method in [9]

and [16], we establish a blow-up result for certain solutions with non-positive initial

energy as well as positive initial energy. Estimates of the lifespan of solutions are

also given.
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1 Introduction and main result

In this paper we consider the problem

utt + put + 2quxxxx − 2[(ax+ b)ux]x +
q

3
(u3x)xxx

−[(ax+ b)u3x]x − q(u2xxux)x = f(u), (x, t) ∈ [0, 1]× (0, T ),

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1],

(1.1)

where a, b, p, q are nonnegative constant, f(u) is a C(R) function satisfying some conditions to

be special later.

Problem (1.1) models the behavior of a riser vibrating due to effects of waves and current [14].

In 1997, Bayrack and Can [1] studied problem (1.1) and proved that, under suitable conditions

on f and the initial data, all solutions of (1.1) blow up in finite time in the L2 space. To establish

their result, the authors used the standard concavity method due to [7]. Gmira and Guedda

[4] extended the result of [1] to the multi-dimensional version of the problem (1.1) by using the

modified concavity method introduced in [6].

More recently, Hao et al. [5] discussed (1.1) and showed that, under suitable conditions,

the solution blows up in finite time with a negative initial energy while exists globally with

a nonnegative initial energy for the case p = 0. Precisely, the following blow-up result was

established.

Theorem 1 Let u(x, t) be a classical solution of the system (1.1). Assume that there exists a

positive constant A such that the function f(s) satisfies

sf(s) ≥ (4 +A)

∫ s

0
f(υ)dυ for s ∈ R, (1.2)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

128 Junping Zhao 128-137



and the initial values satisfy

E(0) =
1

2
∥u1∥22 + q∥u0xx∥22 +

∫ 1

0
(ax+ b)u20xdx+

q

2
∥u0xu0xx∥22

+
1

4

∫ 1

0
(ax+ b)u40xdx−

∫ 1

0

∫ u0

0
f(υ)dυdx < 0 (1.3)

and ∫ 1

0
u0u1dx > 0. (1.4)

Then the solution u(x, t) of the system (1.1) blows up in a finite time.

In the present paper, we shall improve the results of [5] and derive the blow-up properties

of solutions of problem (1.1) with non-positive initial energy as well as positive initial energy by

developing the method in [9] and [16] (see Remark 2). Estimates of the lifespan of solutions will

also be given. For the convenience of our computation, we set p = q = 1 and f(s) = |s|r−1s.

Then the condition (1.2) holds when r > 4.

We define the energy function for the solution u of (1.1) by

E(t) =
1

2
∥ut∥22 + ∥uxx∥22 +

∫ 1

0
(ax+ b)u2xdx+

1

2
∥uxuxx∥22 +

1

4

∫ 1

0
(ax+ b)u4xdx− 1

r
∥u∥rr. (1.5)

Then

E′(t) = −∥ut∥22 ≤ 0, for t ≥ 0, (1.6)

and

E(t) = E(0)−
∫ t

0
∥uτ (τ)∥22dτ, t ≥ 0. (1.7)

We also set

α1 =

(
2

Br

) 1
r−2

, E1 =
r − 2

r
α2
1 =

(
1

2
− 1

r

)
Brαr

1. (1.8)

where B is the optimal constant of the embedding inequality

∥u∥r ≤ B∥uxx∥2, u ∈ H2([0, 1]) ∩H1
0 ([0, 1]), (1.9)

for 2 < r < +∞, that is

B−1 = inf
u∈H2([0,1])∩H1

0 ([0,1]),u̸=0

∥uxx∥2
∥u∥r

.

We introduce the functionals

a(t) =

∫ 1

0
u2dx+

∫ t

0

∫ 1

0
u2dxdt, t ≥ 0 (1.10)

and

G(t) = [a(t) + (T1 − t)∥u0∥22]−δ, t ∈ [0, T1], (1.11)

where δ = r−2
4 and T1 > 0 is a certain constant to be specified later.

Our main result reads as follows.
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Theorem 2 Let u(x, t) be a classical solution of the system (1.1). Assume that r > 4 and either

one of the following four conditions is satisfied:

1. E(0) < 0,

2. E(0) = 0 and
∫ 1
0 u0u1dx > 0,

3. 0 < E(0) < E1 and ∥u0xx∥2 > α1,

4. E1 ≤ E(0) < min

{
r+2
2r

[(
1 +

√
r−2
r+2

) ∫ 1
0 u0u1dx− 2∥u0∥22

]
,

(
∫ 1
0 u0u1dx)

2

2(1+T1)∥u0∥22

}
.

Then the solution u of the problem (1.1) blows up in a finite time T ∗ in the sense of (2.25).

Moreover, the upper bounds for T ∗ can be estimated according to the sign of E(0):

For the case 1,

T ∗ ≤ t0 −
G(t0)

G′(t0)
.

Furthermore, if G(t0) < min{1,
√

α
−β}, then

T ∗ ≤ t0 +
1√
−β

ln

√
α
−β√

α
−β −G(t0)

.

For the case 2,

T ∗ ≤ − G(0)

G′(0)
=

2(T1 − t+ 1)∥u0∥22
(r − 2)

∫ 1
0 u0u1dx

or T ∗ ≤ G(0)√
α
.

For the case 3,

T ∗ ≤ t0 −
G(t0)

G′(t0)
.

Furthermore, if G(t0) < min{1,
√

α′

−β′ }, then

T ∗ ≤ t0 +
1√
−β′

ln

√
α′

−β′√
α′

−β′ −G(t0)
.

For the case 4,

T ∗ ≤ 2(3δ+1)/2δ δc√
α
{1− [1 + cG(0)]−1/2δ}.

where c = (α/β)2+1/δ. Here α, β, α′ and β′ are given in (2.23), (2.24), (2.27) and (2.28),

respectively. And t0 = t∗ is given by (2.12) for the case 1 and t0 = t∗1 is given by (2.13) for the

case 3.

Remark 1 Compared with Theorem 1, we have no the restriction
∫ 1
0 u0u1dx > 0 in Theorem 2

when E(0) < 0.

Remark 2 E1 defined in (1.8) is exactly the potential well depth obtained by Payne and Sat-

tinger (see [13]). In [16], a global nonexistence theorem for abstract evolution equations with
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nonlinear damping terms was proved by combining the arguments in [3] and [8], where positive

initial energy less than E1 was demanded while we allow here a larger positive initial energy (see

the case 4). In this work, we divide the case E(0) > 0 into two cases: the case 3 and 4. Unlike

[9], we discuss cautiously the case 3 by combining the method of [16] (see Lemma 7). We also

note that the case 4 is allowed here since the damping term involved in problem (1.1) is linear.

There are many related works on the existence and non-existence of global solutions to the

hyperbolic equations with dissipative terms and damping terms, please see [2, 11, 12, 15] and

the references therein.

2 Blow-up of the solutions

In this section, we shall prove Theorem 2. We start with a series of Lemmas.

Lemma 3 Suppose u(x, t) is a classical solution of the system (1.1). Assume that E(0) < E1

and ∥u0xx∥2 > α1. Then there exists a positive constant α2 > α1, such that

∥uxx(·, t)∥2 ≥ α2, ∀ t ≥ 0, (2.1)

and

∥u(·, t)∥r ≥ Bα2, ∀ t ≥ 0. (2.2)

Proof. The idea follows from [16] where different type of equations were discussed. We first

note that, by (1.5) and (1.9),

E(t) ≥ ∥uxx∥22 −
1

r
∥u∥rr ≥ ∥uxx∥22 −

1

r
Br∥uxx∥r2 = α2 − 1

r
Brαr := g(α), (2.3)

where α = ∥uxx∥2. It is easy to verify that g is increasing for 0 < α < α1, decreasing for

α > α1; g(α)→ −∞ as α→ +∞ and g(α1) = E1, where α1 is given in (1.8). Since E(0) < E1,

there exists α2 > α1 such that g(α2) = E(0). Let α0 = ∥u0xx∥2, then by (2.3) we have

g(α0) ≤ E(0) = g(α2), which implies that α0 ≥ α2.

To establish (2.1), we suppose by contradiction that ∥uxx(t0)∥2 < α2 for some t0 > 0. By

the continuity of ∥uxx(·, t)∥2 we can choose t0 such that ∥uxx(t0)∥2 > α1. It follows from (2.3)

that

E(t0) ≥ g(∥uxx(t0)∥2) > g(α2) = E(0).

This is impossible since E(t) ≤ E(0) for all t ≥ 0. Hence (2.1) is established.

To prove (2.2), we exploit (1.5) to see that

∥uxx∥22 ≤ E(0) +
1

r
∥u∥rr.

Consequently,

1

r
∥u∥rr ≥ ∥uxx∥22 − E(0) ≥ α2

2 − E(0) ≥ α2
2 − g(α2) =

1

r
Brαr

2. (2.4)

Therefore (2.2) is concluded.
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Lemma 4 [9] Let δ > 0 and B(t) ∈ C2(0,∞) be a nonnegative function satisfying

B′′(t)− 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2.5)

If

B′(0) > r2B(0) + k0, (2.6)

then B′(t) > k0 for t > 0, where r2 = 2(δ + 1)− 2
√

(δ + 1)δ is the smallest root of the equation

r2 − 4(δ + 1)r + 4(δ + 1) = 0.

Lemma 5 [9] If G(t) is a non-increasing function on [t0,+∞), t0 ≥ 0 and satisfies the differ-

ential inequality

G′(t)2 ≥ a+ bG(t)2+
1
δ , for t ≥ 0, (2.7)

where a > 0, δ > 0 and b ∈ R, then there exists a finite time T ∗ such that

lim
t→T ∗−

G(t) = 0

and the upper bound of T ∗ is estimated respectively by the following cases:

(i) If b < 0 and G(t0) < min{1,
√

a
−b}, then

T ∗ ≤ t0 +
1√
−b

ln

√
a
−b√

a
−b −G(t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
G(t0)√

a
.

(iii) If b > 0, then

T ∗ ≤ t0 + 2(3δ+1)/2δ δc√
a
{1− [1 + cG(t0)]

−1/2δ},

where c = (a/b)2+1/δ.

Lemma 6 Assume that r > 4, a(t) is defined by (1.10) and let u be a solution of (1.1), then

we have

a′′(t)− 4(δ + 1)∥ut∥22 ≥ Q1(t), (2.8)

where

Q1(t) = (−4− 8δ)E(0) + 2r

∫ t

0
∥uτ∥22dτ + 2(r − 2)∥uxx∥22.

Proof. By the definition of a(t), we have

a′(t) = 2

∫ 1

0
uutdx+

∫ 1

0
u2dx, (2.9)
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and by (1.1) and the divergence theorem we get

a′′(t) = 2

∫ 1

0
u2tdx+ 2

∫ 1

0
uuttdx+ 2

∫ 1

0
uutdxdx

= 2

∫ 1

0
u2tdx+ 2

∫ 1

0
u
(
|u|r−2u+ 2[(ax+ b)ux]x + [(ax+ b)u3x]x

+(u2xxux)x − 2uxxxx −
1

3
(u3x)xxx

)
dx

= 2∥ut∥22 + 2∥u∥rr − 4

∫ 1

0
(ax+ b)u2xdx− 2

∫ 1

0
(ax+ b)u4xdx− 4∥uxuxx∥22 − 4∥uxx∥22.(2.10)

Using (1.5) and (1.7) we get

a′′(t)− 4(δ + 1)∥ut∥22
= a′′(t)− 2∥ut∥22 −

1

2
(8δ + 4)∥ut∥22

= 2∥u∥rr − 4

∫ 1

0
(ax+ b)u2xdx− 2

∫ 1

0
(ax+ b)u4xdx− 4∥uxuxx∥22 − 4∥uxx∥22

−2r

(
E(0)−

∫ t

0
∥uτ∥22dτ − ∥uxx∥22 −

∫ 1

0
(ax+ b)u2xdx− 1

2
∥uxuxx∥22

−1

4

∫ 1

0
(ax+ b)u4xdx+

1

r
∥u∥rr

)
≥ (−4− 8δ)E(0) + 2r

∫ t

0
∥uτ∥22dτ + 2(r − 2)∥uxx∥22 + 2(r − 2)

∫ 1

0
(ax+ b)u2xdx

+
1

2
(r − 4)

∫ 1

0
(ax+ b)u4xdx+ (r − 4)∥uxuxx∥22

≥ (−4− 8δ)E(0) + 2r

∫ t

0
∥uτ∥22dτ + 2(r − 2)∥uxx∥22 (2.11)

since r > 4.

Lemma 7 Assume that r > 4 and that either one of the following is satisfied:

1. E(0) < 0,

2. E(0) = 0 and
∫ 1
0 u0u1dx > 0,

3. 0 < E(0) < E1 and ∥u0xx∥2 > α1,

4. E1 ≤ E(0) < r+2
2r

[(
1 +

√
r−2
r+2

) ∫ 1
0 u0u1dx− 2∥u0∥22

]
.

Then a′(t) > ∥u0∥22 for t > t0, where t0 = t∗ is given by (2.12) for the case 1, t0 = 0 for the

cases 2 and 4, and t0 = t∗1 is given by (2.14) for the case 3.

Proof. We consider different cases on the sign of the initial energy E(0).

1. If E(0) < 0, then from (2.8), we have

a′(t) ≥ a′(0)− 4(1 + 2δ)E(0)t, t ≥ 0.

Thus a′(t) > ∥u0∥22 for t > t∗, where

t∗ = max

{
a′(0)− ∥u0∥22
4(1 + 2δ)E(0)

, 0

}
= max

{ ∫ 1
0 u0u1dx

2(1 + 2δ)E(0)
, 0

}
. (2.12)
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2. If E(0) = 0, then a′′(t) ≥ 0 for t ≥ 0. Furthermore, if a′(0) > ∥u0∥22 (i.e.,
∫ 1
0 u0u1dx > 0),

then a′(t) > ∥u0∥22, t ≥ 0.

3. If 0 < E(0) < E1, then using Lemma 3 and (1.8) we see that

Q1(t) ≥ −(4 + 8δ)E(0) + 2(r − 2)α2
2

> (4 + 8δ)(−E(0) + E1) := C1 > 0, t > 0. (2.13)

Thus, from (2.8), we have

a′′(t) ≥ Q1(t) > C1 > 0, t > 0.

Hence a′(t) > ∥u0∥22 for t > t∗1, where

t∗1 = max

{
∥u0∥22 − a′(0)

C1
, 0

}
= max

{
−2
∫ 1
0 u0u1dx

C1
, 0

}
. (2.14)

4. If E(0) ≥ E1, we first note∫ 1

0
u2dx−

∫ 1

0
u20dx = 2

∫ t

0

∫ 1

0
uutdxdt. (2.15)

By the Hölder inequality and Young inequality, we have∫ 1

0
u2dx ≤

∫ 1

0
u20dx+

∫ t

0
∥u∥22dt+

∫ t

0
∥uτ∥22dτ.

By the Hölder inequality, Young inequality again, and (2.15), it follows from (2.9) that

a′(t) ≤ a(t) +

∫ 1

0
u20dx+

∫ 1

0
u2tdx+

∫ t

0
∥uτ∥22dτ. (2.16)

In view of (2.8) and (2.16), we obtain

a′′(t)− 4(δ + 1)a′(t) + 4(δ + 1)a(t) +K1

≥ a′′(t) + 4(δ + 1)

(
−∥u0∥22 − ∥ut∥22 −

∫ t

0
∥uτ∥22dτ

)
+K1

≥ (−4− 8δ)E(0) + 2r

∫ t

0
∥uτ∥22dτ + 2(r − 2)∥uxx∥22 − 4(δ + 1)∥u0∥22 − 4(δ + 1)

∫ t

0
∥uτ∥22dτ +K1

≥ 4δ

∫ t

0
∥uτ∥22dτ + 2(r − 2)∥uxx∥22 ≥ 0,

where

K1 = (4 + 8δ)E(0) + 4(δ + 1)∥u0∥22.

Let

b(t) = a(t) +
K1

4(1 + δ)
, t > 0.

Then b(t) satisfies (2.5). By (2.6), we see that if

a′(0) > r2

(
a(0) +

K1

4(1 + δ)

)
+ ∥u0∥22, (2.17)
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i.e.,

E(0) <
r + 2

2r

[(
1 +

√
r − 2

r + 2

)∫ 1

0
u0u1dx− 2∥u0∥22

]
,

then a′(t) > ∥u0∥22, t > 0. The proof is completed.

Hereafter, we will find an estimate for the life span of a(t) and prove Theorem 2.

Proof of Theorem 2. By the definition of G(t), we have

G′(t) = −δG(t)1+1/δ(a′(t)− ∥u0∥22)

G′′(t) = −δG1+2/δ(t)V (t), (2.18)

where

V (t) = a′′(t)[a(t) + (T1 − t)∥u0∥22]− (1 + δ)(a′(t)− ∥u0∥22)2. (2.19)

For simplicity of calculation, we denote

P = ∥u∥22, Q =

∫ t

0
∥u∥22dt, R = ∥ut∥22, S =

∫ t

0
∥uτ∥22dτ.

From (2.9), (2.15) and the Hölder inequality, we get

a′(t) ≤ 2
(√

PR+
√
QS
)

+

∫ 1

0
u20dx. (2.20)

For the case 1 and 2, it follows from (2.8) that

a′′(t) ≥ (−4− 8δ)E(0) + 4(1 + δ)(R+ S). (2.21)

Applying (2.20) and (2.21), it yields

V (t) ≥ [(−4− 8δ)E(0) + 4(1 + δ)(R+ S)][a(t) + (T1 − t)∥u0∥22]− 4(1 + δ)
(√

PR+
√
QS
)2
.

Applying (1.11) and (1.10), it follows

V (t) ≥ (−4− 8δ)E(0)G−1/δ(t) + 4(1 + δ)(R+ S)(T1 − t)∥u0∥22

+4(1 + δ)

[
(R+ S)(P +Q)−

(√
PR+

√
QS
)2]

≥ (−4− 8δ)E(0)G−1/δ(t).

In view of (2.18) we have

G′′(t) ≤ δ(4 + 8δ)E(0)G1+1/δ(t), t ≥ t0. (2.22)

Note that by Lemma 7, G′(t) < 0 for t > t0. Multiplying (2.22) by G′(t) and integrating it from

t0 to t, we obtain

G′(t)2 ≥ α+ βG2+1/δ(t), for t ≥ t0,
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where

α = δ2G(t0)
2+2/δ

[
(a′(t0)− ∥u0∥22)2 − 8E(0)G−1/δ(t0)

]
> 0 (2.23)

and

β = 8δ2E(0). (2.24)

Then by Lemma 5, there exists a finite time T ∗ such that limt↗T ∗− G(t) = 0. Therefore

lim
t↗T ∗−

(∫ 1

0
u2dx+

∫ t

0

∫ 1

0
u2dxdt

)
=∞. (2.25)

For the case 3: 0 < E(0) < E1, it follows from (2.8) and (2.13) that

a′′(t) ≥ (−4− 8δ)E(0) + 2(r − 2)∥uxx∥22 + 4(1 + δ)(R+ S) > C1 + 4(1 + δ)(R+ S).(2.26)

Then using the same arguments as in (1), we have

G′′(t) ≤ −δC1G
1+1/δ(t), G′(t)2 ≥ α′ + β′G2+1/δ(t), t ≥ t0,

where

α′ = δ2G2+2/δ(t0)

[
(a′(t0)− ∥u0∥22)2 +

2C1

1 + 2δ
G−1/δ(t0)

]
> 0 (2.27)

and

β′ = − 2C1δ
2

1 + 2δ
. (2.28)

Then by Lemma 5, there exists a finite time T ∗ such that (2.25) holds.

For the case 4: E(0) ≥ E1, applying the same discussion as in the case 1, we may get the

equalities (2.23) and (2.24) under the condition

E(0) <
(a′(t0)− ∥u0∥22)2

8a(t0) + 8(T1 − t0)∥u0∥22
=

(∫ 1
0 u0u1dx

)2
2(1 + T1)∥u0∥22

.

Then by Lemma 5, there exists a finite time T ∗ such that (2.25) holds.

Remark 3 The choice of T1 in (1.11) is possible provided that T1 ≥ T ∗.
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Abstract: In this paper, we consider an initial-boundary value problem for a fourth

order degenerate pseudo-parabolic equation with p(x)-growth conditions. Under
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by the time-discrete method. The uniqueness and asymptotic behavior of solutions

are also discussed.
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1 INTRODUCTION

This paper is concerned with a fourth order degenerate pseudo-parabolic equation with p(x)-

growth conditions

∂u

∂t
− k∂∆u

∂t
+△(|△u|p(x)−2△u) = 0, x ∈ Ω, t > 0, (1.1)

with boundary condition

u = △u = 0, x ∈ ∂Ω, t > 0, (1.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω. (1.3)

Here Ω ⊂ RN is a bounded domain with smooth boundary, p(x) is a function defined on Ω̄

and k > 0 is the viscosity coefficient. The term k ∂∆u
∂t in (1.1) is interpreted as due to viscous

relaxation effects, or viscosity.

Equation (1.1) arises as a regularization of the pseudo-parabolic equation

∂u

∂t
− k∂∆u

∂t
= ∆u, (1.4)

which arises in various physical phenomena. (1.4) can be assumed as a model for diffusion

of fluids in fractured porous media [1, 5, 6], or as a model for heat conduction involving a

thermodynamic temperature θ = u−k∆u and a conductive temperature u [4, 13]. In [2], Bernis

investigates a class of higher order parabolic with degeneracy depending on both the unknown

functions and its derivatives, the fourth order case of which is the equation

∂

∂t
(|u|q−1sgnu) +D2(|D2u|p−1sgnD2u) = f (1.5)

where p > 1, q > 1 are constants. Some existence result of energy solutions was proved by

energy method (see also [12, 17]).
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Motivated by (1.4) and (1.5), we study the problem (1.1)-(1.3) in this paper. Under some

assumptions on the initial value, we will establish the existence, uniqueness and asymptotic

behavior of weak solutions by the time-discrete method as used in [10, 11].

Equation (1.1) is something like the p-Laplacian equation, but many methods which are use-

ful for the p-Laplacian equation are no longer valid for this equation. Because of the degeneracy,

problem (1.1)-(1.3) does not admit classical solutions in general. So, we study weak solutions

in the sense of following

Definition A function u is said to be a weak solution of (1.1)-(1.3), if the following conditions

are satisfied:

1. u ∈ L∞(0, T ;W
2,p(x)
0 (Ω))∩C(0, T ;H1(Ω)), ∂u

∂t ∈ L
∞(0, T ; (W 2,p(x))′(Ω)), where (W 2,p(x))′(Ω)

is the conjugate space of W 2,p(x)(Ω).

2. For any φ ∈ C∞
0 (QT ) and QT = Ω× (0, T ), the following integral equality holds∫∫

QT

u
∂φ

∂t
dx dt+ k

∫∫
QT

∇u∂∇φ
∂t

dx dt−
∫∫

QT

|△u|p(x)−2△u△φdx dt = 0 .

3. u(x, 0) = u0(x).

We need some theories on spaces Wm,p(x) which we call generalized Lebesgue-Sobolev spaces.

We refer the reader to [8] (see also [7, 9]) for some basic properties of spaces Wm,p(x) which will

be used later. For simplicity we set k = 1 in this paper.

This paper is arranged as following. We first discuss the existence of weak solutions in

Section 2. Our method for investigating the existence of weak solutions is based on the time

discrete method to construct an approximate solutions. By means of the uniform estimates

on solutions of the time difference equations, we prove the existence of weak solutions of the

problem (1.1)-(1.3). We also prove the uniqueness and asymptotic behavior in Section 3 and

Section 4 subsequently.

2 EXISTENCE OF WEAK SOLUTIONS

In this section, we are going to prove the existence of weak solutions.

Theorem 1 If u0 ∈W 2,p(x)
0 (Ω), p(x) ∈ C(Ω̄), p(x) satisfies for some constant L

−|p(x)− p(y)| ln |x− y| ≤ L, for any x, y ∈ Ω̄

and p = min
Ω̄
p(x) > 2. Then the problem (1.1)-(1.3) has at least one solution.

We use the a discrete method for constructing an approximate solution. First, divide the

interval (0, T ) in N equal segments and set h = T
N . Then consider the problem

1

h
(uk+1 − uk)− 1

h
(∆uk+1 −∆uk) +△(|△uk+1|p(x)−2△uk+1) = 0, (2.1)

uk+1|∂Ω = △uk+1|∂Ω = 0, k = 0, 1, . . . , N − 1, (2.2)

where u0 is the initial value.
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Lemma 2 For a fixed k, if uk ∈ H1
0 (Ω), problem (2.1)-(2.2) admits a weak solution uk+1 ∈

W
2,p(x)
0 (Ω), such that for any φ ∈ C∞

0 (Ω), have

1

h

∫
Ω

(uk+1 − uk)φdx+
1

h

∫
Ω

(∇uk+1 −∇uk)∇φdx+

∫
Ω
|△uk+1|p(x)−2△uk+1△φdx = 0. (2.3)

Proof. Let us consider the following functionals on the space W
2,p(x)
0 (Ω)

F1[u] =

∫
Ω

1

p(x)
|△u|p(x)dx, F2[u] =

1

2

∫
Ω
|u|2dx, F3[u] =

1

2

∫
Ω
|∇u|2dx,

H[u] = F1[u] +
1

h
F2[u] +

1

h
F3[u]−

∫
Ω
fudx,

where f ∈ H−1(Ω) is a known function. Using Young’s inequality, there exist constants C1 > 0,

such that

H[u] =

∫
Ω

1

p(x)
|△u|p(x)dx+

1

2h

∫
Ω
|u|2dx+

1

2h

∫
Ω
|∇u|2dx−

∫
Ω
fu dx

≥ 1

p+

∫
Ω
|△u|p(x)dx− C1∥f∥−1.

We need to check that H[u] satisfies the coercive condition. For this purpose, we notice that

by u|∂Ω = △u|∂Ω = 0 and using the Lp theory for elliptic equation ([4]),

∥u∥W 2,p(x) ≤ C|△u|p(x).

Therefore, we have H[u]→∞, as ∥u∥W 2,p(x) → +∞.

Since the norm is lower semi-continuous and
∫
Ω fudx is a continuous functional, H[u] is

weakly lower semi-continuous on W
2,p(x)
0 (Ω) and satisfying the coercive condition. From [3] we

conclude that there exists u∗ ∈W 2,p(x)
0 (Ω), such that

H[u∗] = inf H[u],

and u∗ is the weak solutions of the Euler equation corresponding to H[u],

1

h
u− 1

h
∆u+△(|△u|p−2△u) = f.

Taking f = (uk−∆uk)/h, we obtain a weak solutions uk+1 of (2.1)–(2.2). The proof is complete.

Now, we construct an approximate solution uh of the problem (1.1)-(1.3) by defining

uh(x, t) = uk(x), kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1,

uh(x, 0) = u0(x).

The desired solution of the problem (1.1)-(1.3) will be obtained as the limit of some subsequence

of {uh}. To this purpose, we need some uniform estimates on uh.

Lemma 3 The weak solutions uk of (2.1)–(2.2) satisfy

h
N∑
k=1

∫
Ω
|△uk|p(x)dx ≤ C, (2.4)

sup
0<t<T

∫
Ω
|△uh(x, t)|p(x)dx ≤ C, (2.5)

where C is a constant independent of h and k.
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Proof. i) We take φ = uk+1 in the integral equality (2.3) (we can easily prove that for φ ∈
W

2,p(x)
0 (Ω), (2.3) also holds) and obtain

1

h

∫
Ω
|uk+1|2dx+

1

h

∫
Ω
|∇uk+1|2dx+

∫
Ω
|△uk+1|p(x)dx

=
1

h

∫
Ω
ukuk+1dx+

1

h

∫
Ω
∇uk+1∇ukdx.

By Young’s inequality,

1

h

∫
Ω
|uk+1|2dx+

1

h

∫
Ω
|∇uk+1|2dx+

∫
Ω
|△uk+1|p(x)dx

≤ 1

2h

∫
Ω
|uk|2dx+

1

2h

∫
Ω
|uk+1|2dx+

1

2h

∫
Ω
|∇uk|2dx+

1

2h

∫
Ω
|∇uk+1|2dx;

that is,
1

2

∫
Ω
|uk+1|2dx+

1

2

∫
Ω
|∇uk+1|2dx+ h

∫
Ω
|△uk+1|p(x)dx

≤ 1

2

∫
Ω
|uk|2dx+

1

2

∫
Ω
|∇uk|2dx.

(2.6)

Adding these inequalities for k from 0 to N − 1, we have

h

N∑
k=1

∫
Ω
|△uk|p(x)dx ≤

1

2

∫
Ω
|u0|2dx+

1

2

∫
Ω
|∇u0|2dx.

Therefore, (2.4) holds.

ii) We take φ = uk+1 − uk in the integral equality (2.3) and integrating by parts, we have

1

h

∫
Ω
|uk+1 − uk|2dx+

1

h

∫
Ω
|∇uk+1 −∇uk|2dx

+

∫
Ω
|△uk+1|p(x)−2△uk+1△(uk+1 − uk)dx = 0 .

Since the first term and the second term of the left hand side of the above equality are nonneg-

ative, it follows that∫
Ω
|△uk+1|p(x)dx ≤

∫
Ω
|△uk+1|p(x)−2△uk+1△uk dx

≤
∫
Ω

p(x)− 1

p(x)
|△uk+1|p(x)dx+

∫
Ω

1

p(x)
|△uk|p(x)dx;

thus, ∫
Ω

1

p(x)
|△uk+1|p(x)dx ≤

∫
Ω

1

p(x)
|△uk|p(x)dx.

For any m, with 1 ≤ m ≤ N − 1, adding the above inequality for k from 0 to m− 1, we have∫
Ω

1

p(x)
|△um|p(x)dx ≤

∫
Ω

1

p(x)
|△u0|p(x)dx,

that is
1

p+

∫
Ω
|△um|p(x)dx ≤

1

p

∫
Ω
|△u0|p(x)dx.

Therefore, (2.5) holds.
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Lemma 4 For a weak solutions uk+1 of (2.1)–(2.2), we have

−Ch ≤
∫
Ω
|uk+1|2dx+

∫
Ω
|∇uk+1|2dx−

∫
Ω
|uk|2dx−

∫
Ω
|∇uk|2dx ≤ 0, (2.7)

where C is a constant independently of h.

Proof. The second inequality in (2.7) is an immediate consequence of (2.6). To prove the first

inequality, we choose φ = uk in (2.3) and obtain∫
Ω
|uk|2dx+

∫
Ω
|∇uk|2dx−

∫
Ω
uk+1ukdx−

∫
Ω
∇uk+1∇ukdx

= h

∫
Ω
|△uk+1|p(x)−2△uk+1△ukdx

≤ h
∫
Ω

p(x)− 1

p(x)
|△uk+1|p(x)dx+ h

∫
Ω

1

p(x)
|△uk|p(x)dx.

Here we have used Hölder inequality. By (2.5) again, we obtain∫
Ω
|uk|2dx+

∫
Ω
|∇uk|2dx−

∫
Ω
uk+1ukdx−

∫
Ω
∇uk+1∇ukdx ≤ Ch.

Therefore, ∫
Ω
|uk|2dx+

∫
Ω
|∇uk|2dx−

∫
Ω
|uk+1|2dx−

∫
Ω
|∇uk+1|2dx ≤ Ch,

which completes the proof.

Proof of Theorem 2.1. First, we define the operator At, At(△uh) = |△uk|p(x)−2△uk, ∆huh =

uk+1 − uk, where kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1. By the discrete equation (2.1) and the

(2.4) in Lemma 2.2, we know that

1

h
∆huh in L∞(0, T ; (W 2,p(x)(Ω))′) is bounded. (2.9)

By (2.5), (2.7), (2.9) and (2.4) we known that exists a subsequence of {uh} (which we denote as

the original sequence) such that

uh → u in L∞(0, T ;W 2,p(x)(Ω)) weak-⋆,

∇uh → ∇u in L∞(0, T ;L2(Ω)) weak-⋆,

1

h
(uk+1 − uk)→ ∂u

∂t
in L∞(0, T ; (W 2,p(x)(Ω))′) weak-⋆,

At(△uh)→ w in L∞(0, T ;Lp′(x)(Ω)) weak-⋆,

where p′(x) is conjugate exponent of p(x). From (2.3), we known, for any φ ∈ C∞
0 (QT ),∫∫

QT

(
1

h
∆huhφ− 1

h
∆huh△φ+At(△uh)△φ

)
dx dt = 0.

Letting h→ 0, we obtain, in the sense of distributions,

∂u

∂t
− ∂∆u

∂t
+△w = 0. (2.10)

Similar as in [10], we can easily prove w = |△u|p(x)−2△u a.e. in QT . The strong convergence

of uh in C(0, T ;H1(Ω)) and the fact that uh(x, 0) = u0(x) completes the proof.
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3 UNIQUENESS OF SOLUTIONS

In this section, we prove that the weak solution is unique. To this end we need the following

lemma.

Lemma 5 For φ ∈ L∞(t1, t2;W
2,p(x)
0 (Ω)) with φt ∈ L2(t1, t2;H

1(Ω)), the weak solutions u of

the problem (1.1)-(1.3) on QT satisfies∫
Ω
u(x, t1)φ(x, t1)dx+

∫
Ω
∇u(x, t1)∇φ(x, t1)dx

+

∫ t2

t1

∫
Ω

(
u
∂φ

∂t
+∇u∂∇φ

∂t
+ |△u|p(x)−2△u△φ

)
dx dt

=

∫
Ω
u(x, t2)φ(x, t2)dx+

∫
Ω
∇u(x, t2)∇φ(x, t2)dx.

In particular, for φ ∈W 2,p(x)
0 (Ω), we have∫

Ω
(u(x, t1)− u(x, t2))φdx+

∫
Ω
∇(u(x, t1)− u(x, t2))∇φdx

−
∫ t2

t1

∫
Ω
|△u|p(x)−2△u△φdx dt = 0 .

(3.1)

Proof. From φ ∈ L∞(t1, t2;W
2,p(x)
0 (Ω)) and φt ∈ L2(t1, t2;H

1(Ω)), it follows that there exists

a sequence of functions {φk}, for fixed t ∈ (t1, t2), φk(·, t) ∈ C∞
0 (Ω), and as k →∞

∥φkt − φt∥L2(t1,t2;H1(Ω)) → 0, ∥φk − φ∥L∞(t1,t2;W
2,p(x)
0 (Ω))

→ 0.

Choose a function j(s) ∈ C∞
0 (R) such that j(s) ≥ 0, for s ∈ R; j(s) = 0, for ∀|s| > 1;∫

R j(s)ds = 1. For h > 0, define jh(s) = 1
hj(

s
h) and

ηh(t) =

∫ t−t1−2h

t−t2+2h
jh(s)ds.

Clearly ηh(t) ∈ C∞
0 (t1, t2), limh→0+ ηh(t) = 1, for all t ∈ (t1, t2). In the definition of weak

solutions, choose φ = φk(x, t)ηh(t), we have∫ t2

t1

∫
Ω
uφkjh(t− t1 − 2h)dx dt−

∫ t2

t1

∫
Ω
uφkjh(t− t2 + 2h)dx dt

+

∫ t2

t1

∫
Ω
∇u∇φkjh(t− t1 − 2h)dx dt−

∫ t2

t1

∫
Ω
∇u∇φkjh(t− t2 + 2h) dx dt

+

∫ t2

t1

∫
Ω
uφktηhdx dt+

∫ t2

t1

∫
Ω
∇u∇φktηh dx dt

+

∫ t2

t1

∫
Ω
|△u|p(x)−2△u△φkηh dx dt = 0.
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Observe that∣∣∣∣∫ t2

t1

∫
Ω
uφkjh(t− t1 − 2h)dx dt−

∫
Ω

(uφk)|t=t1dx

∣∣∣∣
=

∣∣∣∣∫ t1+3h

t1+h

∫
Ω
uφkjh(t− t1 − 2h)dx dt−

∫ t1+3h

t1+h

∫
Ω

(uφk)|t=t2jh(t− t1 − 2h)dx dt

∣∣∣∣
≤ sup

t1+h<t<t1+3h

∫
Ω

∣∣(uφk)|t − (uφk)|t1
∣∣dx,

and u ∈ C(0, T ;L2(Ω)). We see that the right hand side tends to zero as h→ 0. Similarly,∣∣∣ ∫ t2

t1

∫
Ω
uφkjh(t− t2 + 2h)dx dt−

∫
Ω

(uφk)|t=t2dx
∣∣∣→ 0, as h→ 0,∣∣∣ ∫ t2

t1

∫
Ω
∇u∇φkjh(t− t1 − 2h)dx dt−

∫
Ω

(∇u∇φk)|t=t1dx
∣∣∣→ 0, as h→ 0,∣∣∣ ∫ t2

t1

∫
Ω
∇u∇φkjh(t− t2 + 2h)dx dt−

∫
Ω

(∇u∇φk)|t=t2dx
∣∣∣→ 0, as h→ 0.

Letting h→ 0 and k →∞, we obtain∫
Ω
u(x, t1)φ(x, t1)dx+

∫
Ω
∇u(x, t1)∇φ(x, t1)dx

+

∫ t2

t1

∫
Ω

(
u
∂φ

∂t
+∇u∂∇φ

∂t
+ |△u|p(x)−2△u△φ

)
dx dt

=

∫
Ω
u(x, t2)φ(x, t2)dx+

∫
Ω
∇u(x, t2)∇φ(x, t2)dx.

In particular for φ ∈W 2,p(x)
0 (Ω), we have∫

Ω
(u(x, t1)− u(x, t2))φdx+

∫
Ω

(∇u(x, t1)−∇u(x, t2))∇φdx

−
∫ t2

t1

∫
Ω
|△u|p(x)−2△u△φdx dt = 0

which completes the proof.

For a fixed τ ∈ (0, T ), set h satisfying 0 < τ < τ + h < T . Letting t1 = τ , t2 = τ + h, then

multiply (3.1) by 1
h , for φ ∈W 2,p(x)

0 (Ω), we obtain∫
Ω

(uh(x, τ))τφ(x)dx+

∫
Ω

((∇u)h(x, τ))τφ(x)dx+

∫
Ω

(|△u|p(x)−2△u)h(x, τ)△φdx = 0, (3.2)

where

uh(x, t) =

{
1
h

∫ t+h
t u(·, τ)dτ, t ∈ (0, T − h),

0, t > T − h.

Theorem 6 Problem (1.1)-(1.3) admits only one weak solution.

Proof. Suppose u1, u2 are two solutions of (1.1)-(1.3), then∫
Ω

(u1(x, τ)− u2(x, τ))hτφ(x)dx+

∫
Ω

((∇u1 −∇u2)h(x, τ))τφ(x)dx

−
∫
Ω

(|△u1|p(x)−2△u1 − |△u2|p(x)−2△u2)h(x, τ)△φdx = 0.
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For a fixed τ , we take φ(x) = [u1 − u2]h ∈W
2,p(x)
0 (Ω), and hence∫

Ω
(u1(x, τ)− u2(x, τ))hτ (u1 − u2)hdx+

∫
Ω
∇(u1(x, τ)− u2(x, τ))hτ∇(u1 − u2)hdx

= −
∫
Ω

[(|△u1|p(x)−2△u1 − |△u2|p(x)−2△u2)h](x, τ)△(u1 − u2)hdx.

Integrating the above equality with respect to τ over (0, t),∫
Ω
|(u1 − u2)h|2(x, t)dx+

∫
Ω
|∇(u1 − u2)h|2(x, t)dx ≤ 0,

we have
∫
Ω |(u1 − u2)h|

2dx = 0; therefore, u1 = u2.

4 ASYMPTOTIC BEHAVIOR

This section is devoted to the asymptotic behavior of solutions. To this purpose, we first show

that:

Theorem 7 The weak solution u obtained in Theorem 3.1, satisfies

1

2

∫
Ω
|∇u(x, t)|2dx+

1

2

∫
Ω
|u(x, t)|2dx− 1

2

∫
Ω
|∇u0(x)|2dx− 1

2

∫
Ω
|u0(x)|2

= −
∫∫

Qt

|△u|p(x)dx dτ,
(4.1)

where Qt = Ω× (0, t).

Proof. In the proof of Theorem 2.1, we have

f(t) =
1

2

∫
Ω
|∇u(x, t)|2dx+

1

2

∫
Ω
|u(x, t)|2dx ∈ C([0, T ]). (4.2)

Consider the functional

K[v] =
1

2

∫
Ω
|∇v(x)|2dx+

1

2

∫
Ω
|v(x)|2dx.

It is easy to see that K[v] is a convex functional on H1
0 (Ω).

For any τ ∈ (0, T ) and h > 0, we have

K[u(τ + h)]−K[u(τ)] ≥ ⟨u(τ + h)− u(τ), u(x, τ)−△u(x, τ)⟩.

By δK[v]
δv = v − △v, for any fixed t1, t2 ∈ [0, T ], t1 < t2, integrating the above inequality with

respect to τ over (t1, t2), we have∫ t2+h

t2

K[u(τ)]dτ −
∫ t1+h

t1

K[u(τ)]dτ ≥
∫ t2

t1

⟨u(τ + h)− u(τ), u−△u⟩dτ.

Multiplying the both side of the above inequality by 1/h, and letting h→ 0, we obtain

K[u(t2)]−K[u(t1)] ≥
∫ t2

t1

⟨
∂u

∂t
, u−△u

⟩
dτ.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

145 Junping Zhao 138-147



Similarly, we have

K[u(τ)]−K[u(τ − h)] ≤ ⟨u(τ)− u(τ − h), u−△u⟩.

Thus

K[u(t2)]−K[u(t1)] ≤
∫ t2

t1

⟨
∂u

∂t
, u−△u

⟩
dτ,

and hence

K[u(t2)]−K[u(t1)] =

∫ t2

t1

⟨
∂u

∂t
, u−△u

⟩
dτ.

Taking t1 = 0, t2 = t, we get from the definition of solutions that

K[u(t)]−K[u(0)] =

∫ t

0

⟨
∂u

∂t
− ∂∆u

∂t
, u(τ)

⟩
dτ.

= −
∫ t

0

⟨
△(|△u|p(x)−2△u), u(τ)

⟩
dτ

= −
∫∫

Qt

|△u|p(x)dx dτ.

Theorem 8 Let u be the weak solution of the problem (1.1)-(1.3), p > 2. Then∫
Ω
|∇u(x, t)|2dx+

∫
Ω
|u(x, t)|2dx ≤ C3

(C1t+ C2)α
, Ci > 0 (i = 1, 2, 3), α =

2

p − 2
.

Proof. By (4.2), we have

f ′(t) = −
∫
Ω
|△u|p(x)dx ≤ 0.

By u ∈W 2,p(x)
0 (Ω), we see that∫
Ω
|∇u(x, t)|2dx+

∫
Ω
|u(x, t)|2dx ≤ C

∫
Ω
|△u|2dx ≤ C

(∫
Ω
|△u|p(x)dx

)2/p

,

that is f(t) ≤ C|f ′(t)|2/p . Again by f ′(t) ≤ 0, we have f ′(t) ≤ −Cf(t)p /2, and hence we

complete the proof.
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Abstract

In this paper, we define a general spherical derivative. Making use of this general deriva-
tive, we introduce some new classes of meromorphic functions in the unit disk. Also, we
introduce some new classes of meromorphic functions which are defined by means of a
general chordal distance.

1 Introduction

Let ∆ be the unit disk in the complex plane C, and let dA(z) be the Euclidean area element on ∆. Let H(∆)
(resp. M(∆)) denote the class of functions that are analytic (resp.meromorphic) in ∆. The Green’s function in
∆ with singularity at a ∈ ∆ is given by g(z, a) = log 1

|ϕa(z)| , where ϕa(z) = a−z
1−az is the Möbius transformation

of ∆. For 0 < r < 1, let ∆(a, r) = {z ∈ ∆ : |ϕa(z)| < r} be the pseudohyperbolic disk with center a ∈ ∆ and
radius r.
For 0 < p < ∞, the spaces Qp and Mp are defined by (see [1]):

Qp = {f ∈ H(∆) : sup
a∈∆

∫ ∫

∆

|f ′(z)|2(g(z, a))pdA(z) < ∞},

Mp = {f ∈ H(∆) : sup
a∈∆

∫ ∫

∆

|f ′(z)|2(1− |ϕa(z)|)pdA(z) < ∞}.

The Bloch space B (cf. [1] and [16]), is the space of all analytic functions belonging to H(∆), for which

B = {f ∈ H(∆) : ‖f‖B = sup
z∈∆

(1− |z|2)|f ′(z)| < ∞}.

When we study meromorphic functions in ∆, it is natural to replace |f ′(z)| in these expressions by the spherical
derivative f#(z) = |f ′(z)|/(1 + |f(z)|2) and obtain the classes Q#

p , M#
p and N , the class of normal function in

∆, respectively (see, for example, Aulaskari, Xiao and Zhao [4] and Wulan [19]).

2010 AMS: Primary 46 E 15, Secondary 30D45 .
Key words and phrases: meromorphic functions, QK,ω spaces, chordal distance.
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2

The meromorphic counterpart of BMOA is the set UBC of meromorphic functions of uniformly bounded char-
acteristic introduced by Yamashita [21]. It turns out that we have Qp = Mp ([3]), Q#

p $M#
p ([5] and [19]).

Now, let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing function, then the spaces QK and Q#
K

are defined as follows (see [10, 20]):

Definition 1.1 f ∈ H(∆) belongs to the space QK if

‖f‖2K = ‖f‖2QK
= sup

a∈∆

∫ ∫

∆

|f ′(z)|2K(g(z, a)) dA(z) < ∞. (1)

Definition 1.2 f ∈ M(∆) belongs to the class Q#
K if

sup
a∈∆

∫ ∫

∆

(f#(z))2K(g(z, a)) dA(z) < ∞. (2)

Remark 1.1 It should be remarked that the space Q#
K is not a linear space. It is clear that QK and Q#

K are
Möbius invariant.

Remark 1.2 For 0 < p < ∞, K(t) = tp gives the space Qp and the class Q#
p . Choosing K(t) = (1 − e−2t)p,

we obtain Mp and M#
p .

Remark 1.3 Choosing K(t) = 1, we get the Dirichlet space D and the spherical Dirichlet class D#. For a
fixed r, 0 < r < 1, we choose

K0(t) =





1, t ≥ log(1/r),

0, 0 < t < log(1/r).

Then, we obtain ∫ ∫

∆

|f ′(z)|2K0(g(z, a)) dA(z) =
∫ ∫

∆(a,r)

|f ′(z)|2 dA(z)

and ∫ ∫

∆

(f#(z))2K0(g(z, a)) dA(z) =
∫ ∫

∆(a,r)

(f#(z))2 dA(z).

We conclude that QK0 = B (cf. Axler [6]) and Q#
K0

= B# , where B# is the class of spherical Bloch functions
(cf. Section 3 in [10] ). It is easy to see that N ⊂ B# (cf. Lappan [14] and the discussion after Definition 2.1
in Wulan [19]).
Now, let us introduce the following notation general spherical derivative

f#
n (z) =

|f (n)(z)|
1 + |f(z)|n+1

; n ∈ N.

This general derivative gives a plethora of new results on the meromorphic function spaces.
Note that if n = 1, we obtain the usual spherical derivative as defined above.
let ω : (0, 1] → (0,∞) be a nondecreasing function. Let Nα

n,ω be the class of all normal functions in ∆. We
recall that a function f meromorphic in ∆ is said to be ω−normal if and only if

sup
z∈∆

(1− |z|2)α

ω(1− |ϕa(z)|)f#
n (z) < ∞.

Now, we define some general meromorphic classes as follows:
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Definition 1.3 Let K : [0,∞) → [0,∞) be a nondecreasing function. For n ∈ N, a function f meromorphic in
∆ is said to belong to the class Q#

K,n,ω if

sup
a∈∆

∫

∆

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z) < ∞. (3)

Definition 1.4 A function f meromorphic in ∆ is said to be a general spherical Bloch function, denoted by
f ∈ B#

n,ω, if there exists an r, 0 < r < 1, such that

sup
a∈∆

∫

∆

(f#
n (z))2

ω(1− |ϕa(z)|) dA(z) < ∞. (4)

It is easy to see that a normal function is a spherical Bloch function, that is, Nn,ω ⊂ B#
n,ω, but the converse is

not true .
For more information of some related meromorphic function spaces, we refer to [1, 2, 7, 8, 9, 10, 11, 18] and
others.
For a nondecreasing function K : [0,∞) → [0,∞), we say that the space QK is trivial if QK contains only
constant functions. Whether our space QK is trivial or not depends on the integral

∫ 1/e

0

K(log(1/ρ))ρ dρ =
∫ ∞

1

K(t)e−2t dt. (5)

The notation A . B means that there exists a positive constant C such that A ≤ CB. The symbol & is
understood in a similar fashion.

2 General meromorphic classes

It is necessary to know for which functions K the classes Q#
K,n will be trivial. Here, the square of the general

spherical derivative (f#
n (z))2 is not necessarily subharmonic, where f#

n (z) = |f(n)(z)|
1+|f(z)|n+1 ; n ∈ N.

Theorem 2.1 If the integral ∫ r

0

K(log(1/R))
ω(1−R)

R dR

is divergent, then the space Q#
K,n,ω contains only constant functions.

∫ ∫

∆

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z) ≥

∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z)

=
∫ ∫

∆(a,r)

( |f (n)(z)|
1 + |f(z)|n+1

)2
K(g(z, a))

ω(1− |ϕa(z)|) dA(z)

=
∫ ∫

|ϕa(z)|<r

( |f (n)ϕa(z)|
1 + |f(ϕa(z))|n+1

)2

|ϕ′a(z)|2 K(log(1/|z|))
ω(1− |z|) dA(z)

≥ π

2

(
(1− |a|2)|f (n)(a)|

1 + |f(a)|n+1

)2 ∫ r

0

R
K(log(1/R))

ω(1−R)
dR = ∞.

This is a contradiction, and the proof is complete.

Again, we assume from now on that the functions K and ω are right-continuous and nondecreasing, and that
the integral (5) is convergent.
As in [21], we can give the following result.
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Theorem 2.2 For some r ∈ (0, 1), a meromorphic function f belongs to Nn,ω if and only if

sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2

ω(1− |ϕa(z)|)dA(z) < π.

Proof: The proof is very similar to the corresponding result in [21] with simple modifications, so it will be
omitted.

Now, we consider the following question:
Question 1
Is the condition that there exists r ∈ (0, 1) such that:

sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z) < ∞ (6)

necessary and sufficient for f ∈ B#
n,ω?

Answer
If (6) holds, we can conclude that, f ∈ B#

n,ω. In particular, it follows that Q#
K,n,ω ⊂ B#

n,ω. Conversely, if we
assume that f ∈ B#

n,ω and that K is bounded, it is easy to see that (6) will hold. If K is unbounded and
f ∈ B#

n,ω \ Nn,ω , we claim that the supremum in (6) will be infinite for all r ∈ (0, 1). To prove the claim , we
note that it follows from Theorem 2.1 that if f ∈ B#

n,ω \ Nn,ω, then

sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2dA(z)

ω(1− |ϕa(z)|) ≥ π for all r ∈ (0, 1).

if 0 < ρ < r , we see that
∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z) ≥ K(log(1/ρ))

∫ ∫

∆(a,ρ)

(f#
n (z))2

ω(1− |ϕa(z)|) dA(z).

Using the observation above, we deduce that

sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω(1− |ϕa(z)|) dA(z) ≥ π K(log(1/ρ)), 0 < ρ < r

Letting ρ → 0 , we conclude that (6) cannot hold for any r ∈ (0, 1) which completes the proof.
We conclude that (6) is a sufficient condition for f ∈ B#

n,ω. It is also a necessary condition when K is bounded,
but not when K is unbounded. Finally, if we assume that f ∈ Nn,ω, it is easy to prove that (7) will hold (see
the proof of Theorem 2.3(ii) below).
For the weights, there are some questions, which can be stated as follows:

Question 2
Which additional conditions on K are required for the inclusion Q#

K,n,ω ⊂ Nn,ω?
When are the classes Q#

K1,n and Q#
K2,n,ω identical for K1 6= K2 ?

Answers of the above questions can be given by the next results. First, as in [17, 18, 19], we can give the
following proposition.

Proposition 2.1 Assume that K(r) →∞ as r →∞ . Then Q#
K,n,ω ⊂ Nn,ω.

Next, we prove the following result:

Theorem 2.3 Assume that K(∞) = 1. Then f ∈ Nn,ω if and only if

sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω2(1− |ϕa(z)|)dA(z) < π (7)

for some r ∈ (0, 1).
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Proof: Suppose that f is a general normal function. Then for 0 < r < 1 ,
∫ ∫

∆(a,r)

(f#
n (z))2

K(g(z, a))
ω2(1− |ϕa(z)|) dA(z) ≤ ‖f‖2Nn,ω

∫ ∫

∆(a,r)

(1− |z|2)−2K(g(a, z)) dA(z)

≤ 2π‖f‖2Nn,ω
(1− r2)−2

∫ r

0

K(log1/ρ)ρ dρ. (8)

Since ∫ r

0

K(log1/ρ)ρ dρ → 0, r → 0,

we may choose r small enough such that the left hand member in the first inequality in (8) is less than π/2.
Thus (7) holds.
Conversely, let λ(< π) be the supremum in (7) assumed for some r0 ∈ (0, 1). Now consider r ∈ (0, r0). Since
∆(a, r) = {z ∈ ∆ : g(z, a) > log(1/r)},

∫ ∫

∆(a,r)

(f#
n (z))2dA(z)

≤ ω2(1− r)
K(log(1/r))

∫ ∫

∆(a,r0)

(f#
n (z))2

K(g(z, a))
ω2(1− |ϕa(z)|) dA(z) ≤ λ

ω2(1− r)
K(log(1/r))

< π

here λ is a constant. Hereafter, λ stands for absolute constants, which may indicate different constants from one
occurrence to the next. If r is small enough. Hence f ∈ Nn,ω according to Theorem 2.1, the proof is established.

Corollary 2.1 Assume that K(∞) = 1 . if f ∈ Q#
K,n,ω and

sup
a∈∆

∫ ∫

∆

(f#
n (z))2

K(g(z, a))dA(z)
ω(1− |ϕa(z)| < π,

then f ∈ Nn,ω.

Another important result on the weights of some meromorphic functions can be given by the following result:

Theorem 2.4 Assume that K(1) > 0 and set K1(r) = inf(K(r), K(1)).
(i) If K is bounded, then Q#

K,n,ω = Q#
K1,n,ω.

(ii) If K is unbounded, then Q#
K,n,ω = Nn,ω ∩Q#

K1,n,ω.

Proof: (i) If K is bounded , we have

K1(r) ≤ K(r) ≤ K(∞)
K(1)

K1(r)

and it is clear that Q#
K,n,ω = Q#

K1,n,ω.

(ii) By Proposition 2.1, we have Q#
K,n,ω ⊂ Nn,ω ∩ Q#

K1,n,ω. Now assume that f ∈ Nn,ω ∩ Q#
K1,n,ω. We note

that K(g(z, a)) = K1(g(z, a)) in ∆/∆(a, 1/e). (In this domain, we have g(z, a) ≤ 1 ) . To compare the two
suprema in the integrals defining Q#

K,n,ω and Q#
K1,n,ω, it suffices to deal with integrals over ∆(a, 1/e). Using

our assumption that f ∈ Nn,ω, we see that
∫ ∫

∆(a,1/e)

(f#
n (z))2

K(g(z, a))
ω2(1− |ϕa(z)|) dA(z) ≤ ‖f‖2Nn,ω

∫ ∫

∆(a,1/e)

(1− |z|2)−2K(g(z, a)) dA(z)

= ‖f‖2Nn,ω

∫ ∫

∆(0,1/e)<r

(1− |z1|2)−2K(log
1
r
) dA(z1)

= 2π‖f‖2Nn,ω

∫ 1/e

0

r(1− |r|2)−2K(log(1/r)) dr.
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the right hand member gives a bound for the supremum over a ∈ ∆ of the first term in this chain of inequalities.
Hence f ∈ Q#

K,n,ω and Theorem 2.3 is proved.

Next, we state conditions on K1 and K2 which imply that Q#
K1,n,ω = Q#

K2,n,ω.

Theorem 2.5 Assume that K1 and K2 are either both bounded or both unbounded and that K1(r) ≈ K2(r) as
r → 0. Then Q#

K1,n,ω = Q#
K2,n,ω.

Proof: We define Ki,1(r) = inf(Ki(r),Ki(1)) , i = 1, 2. If K1 and K2 are bounded, it follows from our
assumptions that 0 < c ≤ K1(r)/K2(r) ≤ c′ < ∞, 0 < r < ∞ and it is clear that we have Q#

K1,n,ω = Q#
K2,n,ω. If

K1 and K2 are unbounded, we use Theorem 2.4 to deduce that

Q#
K1,n,ω = Nn,ω ∩Q#

K1,1,n,ω = Nn,ω ∩Q#
K2,1,n,ω = Q#

K2,n,ω.

This completes the proof of Theorem 2.5.

Theorem 2.6 (i) If K is unbounded and (5) holds, then Q#
K,n,ω = Nn,ω .

(ii) If K is bounded and (5) holds, then Q#
K,n,ω = B#

n,ω.

(iii) In (i) (resp. (ii)), (5) is a necessary condition for Q#
K,n,ω = Nn,ω (resp. Q#

K,n,ω = B#
n,ω) .

Proof: (i) By Proposition 2.1 we have Q#
K,n,ω ⊂ Nn,ω . Conversely, if f ∈ Nn,ω, we know that f#

n (z) ≤
λ(1− |z|2)−1 and we can use the argument in the proof of (Theorem 2.3 in [10] ) to prove that f ∈ Q#

K,n,ω.

(ii) By question 1, we have Q#
K,n,ω ⊂ B#

n,,ω. It suffices to prove that B#
n,,ω ⊂ Q#

K,n,ω. If f ∈ B#
n,ω, there exists

r ∈ (0, 1) such that
∫ ∫

∆(a,r)

(f#
n (z))2

ω2(1− |ϕa(z))
dA(z) ≤ λ < ∞ for all a ∈ ∆. (9)

Let us first prove that there exists a constant C1 depending on r and K (see below) such that
∫ ∫

∆

(f#
n (z))2

K(log(1/|z|))
ω2(1− |z|) dA(z) ≤ λ‖K‖∞ + C1. (10)

Our first observation in the proof of this estimate is that
∫ ∫

|z|<r

(f#
n (z))2

K(log(1/|z|))
ω2(1− |z|) dA(z) ≤ B‖K‖∞.

Let Ωk = {z− (1− r)k ≤ |z| ≤ 1− (1− r)k+1}. We wish to cover Ωk with disks ∆(a, r) with |a| = 1− (1− r)k+1,
it suffices to use roughly C(r(1− r)k+1)−1 such disks, where C is an absolute constant, k = 1, 2. Hence .

∫ ∫

Ωk

(f#
n (z))2

K(log(1/|z|))
ω2(1− |z|) dA(z) ≤ K(log

1
1− (1− r)k

)−1BC(r(1− r)k+1)−1,

≤ K((1− r)kγ(r))BC(r(1− r)k+1)−1,

where γ(r) = (1− r)−1 log( 1
r )

ω(1−r) . It follows that

∫ ∫

r<|z|<1

(f#
n (z))2

K(log(1/|z|))
ω2(1− |z|) dA(z) ≤ λ r−1

∞∑
1

(1− r)−k−1K((1− r)kγ(r))

≤ λ r−2(1− r)−2

∫ 1

0

t−2K(tγ(r)) dt.

= λγ(r)r−2(1− r)−2

∫ γ(r)

0

s−2K(s) ds = C1 < ∞.
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The convergence of the integral follows from (5). We have proved that (10) holds for all f ∈ B#
n,ω satisfying

(10). Since for all b ∈ ∆,

sup
a∈∆

∫ ∫

∆(a,r)

((f ◦ ϕb)#n (z))2

ω2(1− |ϕa(z)|)dA(z) = sup
a∈∆

∫ ∫

∆(a,r)

(f#
n (z))2

ω2(1− |ϕa(z)|) dA(z) = λ.

It follows from (9) and (10) with f#
n replaced by (f ◦ ϕb)#n that

sup
b∈∆

∫ ∫

∆

(f#
n (z))2

K(log 1
|ϕb(z)| )

ω2(1− |ϕb(z)|)dA(z) = sup
b∈∆

∫ ∫

∆

((f ◦ ϕb)#n (z))2
K(log(1/|z|))
ω2(1− |z|) dA(z) ≤ C1 + λ‖K‖∞

this proves Theorem 2.5(ii).
(iii) As given by Lappan and Xiao [15], there exist functions f1 and f2 in Nn,ω such that

c0 = inf
z∈∆

(1− |z|2)(f#
n,1(z) + f#

n,2(z)) > 0 (11)

If Q#
K,n,ω = Nn,ω or Q#

K,n,ω = B#
n,ω ⊃ Nn,ω, we have

∞ > sup
a∈∆

∫ ∫

∆

(f#
n,1(z))2 + (f#

n,2(z))2
K(g(z, a))

ω2(1− |ϕa(z)|) dA(z).

≥ 1
2

∫ ∫

∆

(f#
n,1(z) + f#

n,2(z))2
K(g(z, 0))

ω2(1− |ϕ0(z)|) dA(z).

≥ (c2
0/2)

∫ ∫

∆

(1− |z|2)−2 K(g(z, 0))
ω2(1− |ϕ0(z)|) dA(z).

= πc2
0

∫ 1

0

(1− r2)−2 K(log(1/r))
ω2(1− r)

r dr.

Hence (5) holds which finishes the proof of Theorem 2.5(iii).

Remark 2.1 There is an analogue of (11) for Bloch functions with the general spherical derivatives f#
n,1 and

f#
n,2 replaced by |f (n)

1 | and |f (n)
2 |.

Finally we consider the classes

B#
n,ω,0 =

{
f ∈ M(∆) : lim

|a|→1

∫ ∫

∆(a,r)

(f#
n (z))2 dA(z) = 0 for some r ∈ (0, 1)

}
,

Q#
K,n,ω,0 =

{
f ∈ M(∆) : lim

|a|→1

∫ ∫

∆

(f#
n (z))2

K(g(z, a))
ω2(1− |ϕa(z)|) dA(z) = 0

}
,

Nn,ω,0 =
{
f ∈ M(∆) :

(1− |z|2)
ω2(1− |ϕa(z)|)f#

n (z) → 0 , |z| → 1
}

.

and the weighted general spherical Dirichlet class can be defined by

D#
n,ω =

{
f ∈ M(∆) :

∫ ∫

∆

(f#
n (z))2

ω2(1− |ϕa(z)|) dA(z) < ∞}

Arguing as in the proof of (Theorem 2.4 in [10]), we deduce:

Theorem 2.7 Q#
K,n,ω,0 ⊂ B#

n,ω,0 = Nn,ω,0.

Theorem 2.8 If (5) holds, then Q#
K,n,ω,0 = Nn,ω,0.
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Remark 2.2 It suffices to prove that Nn,ω,0 ⊂ Q#
K,n,ω,0. We deduce this using the same argument as in the

first part of the proof of (Theorem 2.5 in [10]). We note that in this argument, the growth of K at infinity is
unimportant since we have Nn,ω,0 = B#

n,ω,0 .

Theorem 2.9 .
(i) If K(0) > 0, then D#

n,ω = Q#
K,n,ω .

(ii) D#
n,ω ⊂ Q#

K,n,ω,0 if and only if K(0) = 0.

(iii) Assume that Q#
K,n,ω 6= Q#

K,n,ω,0. If D#
n,ω = Q#

K,n,ω, then K(0) > 0 .
(iv) If D#

n,ω = Q#
K,n,ω = Q#

K,n,ω,0 , then K(0) = 0 .

Proof:
To prove (i), we assume that K(0) > 0 and note that D#

n ⊂ B#
n,ω,o = Nn,ω,0 ⊂ Nn,ω. If K is bounded, it is

clear that Q#
K,n,ω = D#

n,ω. If K is unbounded, we use Theorem 2.3 and the fact that Q#
K1,n,ω = D#

n,ω (we use
the notation of Theorem 2.3) to obtain that Q#

K,n,ω = Nn,ω ∩Q#
K1,n,ω = Nn,ω ∩ D#

n,ω = D#
n,ω

the proof of (i) is completely established.
The proof of (ii) uses the same argument as the proof of Theorem 2.7 in [10] with some simple modifications
except that we again use the fact that D#

n,ω ⊂ B#
ω,0 = Nn,ω,0.

To prove (iii), we remark that assumptions imply that D#
n,ω * Q#

K,n,ω,0 and use (ii).
If the assumptions of (iv) hold, we have D#

n,ω ⊂ Q#
K,n,ω,0 and the conclusion follows from (ii).

Corollary 2.2 D#
n,ω ⊂ Q#

p,n,ω,0 for all p ,0 < p < ∞.

3 General chordal distance

In this section, we introduce and study some certain new scales of meromorphic functions in the unit disk and
solve some problems connected with a general Chordal distance in these scales of spaces.
The chordal distance between the points z and w in the extended complex plane Ĉ = C ∪ {∞} is

χn(z, w) =





|z−w|n

(1+|z|2)
1

n+1 (1+|w|2)
1

n+1
if z, w 6= ∞; n ∈ N.

1

(1+|z|2)
1

n+1
if w = ∞.

Remark 3.1 If, we put n = 1 in the general chordal distance, we obtain the usual chordal distance see [2].

The meromorphic Bergman class MP
α is defined as the set of those f ∈ M(∆) for which

‖f‖p
Mp

α,ω
=

∫

∆

χn(f(z), 0)p (1− |z|2)α

ω(1− |z|) dA(z) < ∞.

Now, we give the following result:

Theorem 3.1 Let 1 ≤ p < ∞ , and −1 < α < ∞ and let f ∈ M(∆). Suppose that

∫ 1

|w|

(
1− |w|

t

)α

ω
(
1− |w|

t

) dt

t3
< ∞.

Then there exists a positive constant C, depending only on p and α, such that
∫

∆

χn(f(z), f(0))p (1− |z|2)α

ω(1− |z|) dA(z) ≤ C

∫

∆

(f#
n (z))p (1− |z|2)p+α

ω(1− |z|)
dA(z)
|z| .
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Proof: First let p = 1 and let 0 < t < 1. Since

χn(f(z), f(0)) ≤
∫ 1

0

f#
n (tz)|z| dt,

Fubini’s theorem and integration by parts yield
∫

∆

χn(f(z), f(0))
(1− |z|2)α

ω(1− |z|) dA(z) .
∫

∆

∫ 1

0

f#
n (tz) dt|z| (1− |z|

2)α

ω(1− |z|) dA(z)

=
∫ 1

0

∫

D(0,t)

f#
n (w)|w|

(
1− |w|

t

)α

ω
(
1− |w|

t

) dt

t3
dA(w)

=
∫

∆

f#
n (w)|w|

∫ 1

|w|

(
1− |w|

t

)α

ω
(
1− |w|

t

) dt

t3
dA(w)

.
∫

∆

(f#
n (w))|w|dA(w),

which is the desired asymptotic inequality for p = 1. If p > 1, choose q > ((p− 1)/p) such that α− pq + p > 0.
By Hölder’s inequality, we obtain

χn(f(z), f(0)) ≤
∫ 1

0

f#
n (tz)|z| dt =

∫ 1

0

f#
n (1− t|z|)q |z| dt

(1− t|z|)q

≤ (∫ 1

0

f#
n (tz)p (1− t|z|)pq

ωp(1− t|z|) dt
)1/p(∫ 1

0

|z|(p−1)/p dt

ω
−p

p−1 (1− t|z|)(1− t|z|)pq/(p−1)

)(p−1)/p

.
(∫ 1

0

f#
n (tz)p(1− t|z|)pq dt|z|(1− |z|)p−1−pq

)1/p

from which Fubinis theorem yields
∫

∆

χn(f(z), f(0))p (1− |z|2)α

ω(1− t|z|) dA(z) .
∫

∆

∫ 1

0

(
f#

n (tz)
)p(1− t|z|)pq dt|z| (1− |z|)

α+p−1−pq

ω(1− t|z|) dA(z)

=
∫ 1

0

∫

D(0,t)

(
f#

n (w)
)p(1− |w|)pq|w|

(
1− |w|

t

)α−pq+p−1

ω(1− |w|
t )

dt

t3
dA(w)

=
∫

∆

(
f#

n (w)
)p|w|

∫ 1

|w|

(
1− |w|

t

)α+p−1

ω(1− |w|
t )

dt

t3
dA(w)

.
∫

∆

f#
n (w)p|w|dA(w).

Theorem 3.2 Let 1 ≤ p < ∞ and −1 < α < ∞, and let f ∈ M(∆). Suppose that
∫

∆

|ϕ′w(z)|α+2 dA(w)
ω(1− |ϕw(z)|)|ϕw(z)|(1− |w|2)2 < C

where C is a positive constant. Then,
∫ ∫

∆

(χn(f(z), f(w))p

|1− wz|4
(1− |ϕw(z)|2)α

ω(1− |ϕw(z)|) dA(w) ≤ λ

∫

∆

|ϕ′w(z)|α+2 dA(w)
ω(1− |ϕw(z)|)|ϕw(z)|(1− |w|2)2 .

Proof: By the change of variable z = ϕw(u), Theorem 3.1 and Fubini’s theorem,

I(f) =
∫ ∫

∆

(χn(f(z), f(w)))p

|1− wz|4
(1− |ϕw(z)|2)α

ω(1− |ϕw(z)|) dA(z) dA(w)
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=
∫ ∫

∆

(χn((f ◦ ϕw)(u), (f ◦ ϕw)(0)))p (1− |u|2)α

ω(1− |u|) dA(u)
dA(w)

(1− |w|2)2

.
∫ ∫

∆

((f ◦ ϕw)#n (u))p (1− |u|2)p+α

ω(1− |u|)
dA(u)
|u|

dA(w)
(1− |w|2)2

=
∫ ∫

∆

(f#
n (ϕw(u)))p(1− |ϕw(u)|2)p (1− |u|2)α

ω(1− |u|)
dA(u)
|u|

dA(w)
(1− |w|2)2

=
∫

∆

(f#
n (z))p(1− |z|2)p+α

∫

∆

|ϕ′w(z)|α+2 dA(w)
ω(1− |ϕw(z)|)|ϕw(z)|(1− |w|2)2 dA(z).

But since
∫

∆

|ϕ′w(z)|α+2 dA(w)
ω(1− |ϕw(z)|)|ϕw(z)|(1− |w|2)2 < C.

Then,

I(f) ≤ λ

∫

∆

(f#
n (z))p(1− |z|2)p+αdA(z).

Remark 3.2 In Theorem 3.2, if we put n = 1, we obtain theorem 1.2 in [2].

Corollary 3.1 Let 2 < p < ∞ and f ∈ M(∆). Then there exists a positive constant C, depending only on p,
such that

∫ ∫

∆

χn(f(z)− f(w))
|1− wz|

p( (1− |z|2)(p/2)−2

ω(1− |z|)
)( (1− |w|2)(p/2)−2

ω(1− |w|)
)

dA(z) dA(w) ≤ C‖f‖p

B#
p,n

.

An application of Theorem 3.1 with α = 0 to the function .(foϕw)(rz) yields

∫

∆(w,r)

χn(f(z), f(w))p
dA(z) .

∫

∆(w,r)

(f#
n (z))

p( (1− |z|2)p

ω(1− |z|)
) dA(z)
|ϕw(z)| , (12)

where ∆(w, r) = {z : |ϕw(z)| < r} is the pseudohyperbolic disc of (pseudohyperbolic) center w ∈ ∆ and radius
r ∈ (0, 1), and the constant of comparison depends only on r . This fact can be used to prove Theorem 3.3.
The class M#

n,ω(p, q, s) consists of those f ∈ M(∆) for which

‖f‖p

M#
n,ω(p,q,s)

= sup
a∈∆

∫

∆

(f#
n (z))

p( (1− |z|2)q

ω(1− |z|)
)( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z) < ∞.

For the next result, let |D(z, r)| denote the Euclidean area of D(z, r), so by [[12], p. 3], we have that

|D(z, r)| = πr
(1− |a|2)2

(1− |a|2r2)2
(13)

Theorem 3.3 Let 1 ≤ p < ∞, −2 < q < ∞, 0 ≤ s < ∞ and o < r < 1. Let α, β, γ, δ ∈ R such that
α + β = q − p, and γ + δ = s, and let f ∈ M(∆). Then

sup
a∈∆

∫

∆

( 1
|D(z, r)|

∫

D(z,r)

χn(f(z), f(w))p
( (1− |z|2)α

ω(1− |z|)
)( (1− |w|2)β

ω(1− |w|)
)

.
( (1− |ϕa(z)|2)γ

ω(1− |ϕa(z)|)
)( (1− |ϕa(w)|2)δ

ω(1− |ϕa(w)|)
)
dA(w)

)
dA(z) ≤ ‖f‖p

M#
n,ω(p,q,s)

.
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Proof: Routine calculations and (15) show that for w ∈ D(z, r) and a ∈ ∆,

1− |z|2 ' 1− |w|2 ' 1− |wz|2 ' |D(z, r)|1/2, (14)

and

1− |ϕa(z)|2 ' 1− |ϕa(w)|2, (15)

where the constants of comparison depend only on r . By (16), (17) and (14),

I = sup
a∈∆

∫

∆

( 1
|D(z, r)|

∫

D(z,r)

(
χn(f(z), f(w))

)p( (1− |z|2)α

ω(1− |z|)
)( (1− |w|2)β

ω(1− |w|)
)

.
( (1− |ϕa(z)|2)γ

ω(1− |ϕa(z)|)
)( (1− |ϕa(w)|2)δ

ω(1− |ϕa(w)|)
)
dA(w)

)
dA(z)

. sup
a∈∆

∫

∆

(∫

D(z,r)

(f#
n (w))p

( (1− |w|2)p

ω(1− |w|)
) dA(w)
|ϕz(w)|

)( (1− |z|2)q−p−2

ω(1− |z|)
)
.
( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z)

from which (16), (17) and Fubini’s theorem yield

I . sup
a∈∆

∫

∆

(∫

D(z,r)

(f#
n (w))p

( (1− |w|2)q−2

ω(1− |w|)
)( (1− |ϕa(w)|2)s

ω(1− |ϕa(w)|)
) dA(w)
|ϕz(w)|

)
dA(z)

= sup
a∈∆

∫

∆

(∫

D(z,r)

dA(z)
|ϕz(w)|

)
(f#

n (w))p
( (1− |w|2)q−2

ω(1− |w|)
)( (1− |ϕa(w)|2)s

ω(1− |ϕa(w)|)
)

dA(w)

' sup
a∈∆

∫

∆

(f#
n (w))p

( (1− |w|2)q

ω(1− |w|)
)( (1− |ϕa(w)|2)s

ω(1− |ϕa(w)|)
)

dA(w).

The class N of normal functions consists of those f ∈ M(∆) for which the family {foϕ}, where ϕ is a
Möbius transformation of ∆, is normal in ∆ in the sense of Montel. It is known that f ∈ M(∆) is all normal
if and only if

‖f‖Nn,ω = sup
z∈∆

f#
n (z)

(1− |z|2)
ω(1− |z|) < ∞.

The following result establishes a sufficient condition for the general normal meromorphic functions to belong
to M#

n,ω(p, q, s).

Theorem 3.4 Let 1 ≤ p < ∞, −2 < q < ∞, 0 ≤ s < ∞ and 0 < r < 1,and let f ∈ Nn,ω. Let α, β, γ, δ ∈ R
such that α + β = q − p, and γ + δ = s. Then

‖f‖P
M#

n,ω(p,q,s)
. sup

a∈∆

∫

∆

( 1
|D(z, r)|

∫

D(z,r)

χn(f(z), f(w))
( (1− |w|2)α/p

ω(1− |w|)
)( (1− |z|2)β/p

ω(1− |z|)
)

.
( (1− |ϕa(w)|2)γ/p

ω(1− |ϕa(w)|)
)( (1− |ϕa(z)|2)δ/p

ω(1− |ϕa(z)|)
)
dA(w)

)p
dA(z).

Proof: Let z, w ∈ Ĉ, and define

Fn(z, w) =





w−z
1+wz if w ∈ C.

1
z if w = ∞.

A direct calculation shows that |Fn(z, w)|2 = χ2
n(z, w)/(1 − χ2

n(z, w)) for all z, w ∈ Ĉ. Denote the pseudohy-
perbolic distance between the points z and w in ∆ by ρ(z, w) = |ϕz(w)|. By the uniform (ρ, χ)-continuity of f,
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there is an r1 ∈ (0, 1) such that χn(f(z), f(w)) < C, for ρ(z, w) < r1 [13], where C is a positive constant. Then,
it follows that

|Fn(f(z), f(w))| = χn(f(z), f(w))√
1− χ2

n(f(z), f(w))
< Cχn(f(z), f(w)) (16)

for ρ(z, w) < r1. Since f ∈ M(∆), there is an r2 ∈ (0, 1) such that the function gz(w) = Fn((foϕz)(w), f(z))is
analytic in D(0, r2) = {w : ρ(0, w) = |w| < r2} for all z ∈ ∆, and hence its Maclaurin series is of the form
∞∑

k=1

ak(z)wk in D(0, r2).Therefore

f#
n (z)(1− |z|2) = |a1| = 2

r4

∣∣
∫

D(0,r)

wgz(w) dA(w)
∣∣

≤ 2
r3

∫

D(0,r)

∣∣Fn((foϕz)(w), f(z))
∣∣ dA(w) (17)

for any r ∈ (0, r2). Now let r < min{r1, r2}. Then, we obtain that

I(f) =
∫

∆

(f#
n (z)

( (1− |z|2)p

ω(1− |z|)
)( (1− |z|)q−p

ω(1− |z|)
)( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z)

≤
∫

∆

( 2
r3

∫

D(0,r)

∣∣Fn((foϕz)(w), f(z))
∣∣ dA(u)

)p( (1− |z|)q−p

ω(1− |z|)
)( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z)

=
∫

∆

( 2
r3

∫

D(z,r)

∣∣Fn((f(u), f(z))
∣∣|ϕ′z(u)|2 dA(u)

)p( (1− |z|)q−p

ω(1− |z|)
)( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z)

≤
∫

∆

( C

r3

∫

D(z,r)

χn(f(u), f(z))|ϕ′z(u)|2 dA(u)
)p( (1− |z|)q−p

ω(1− |z|)
)( (1− |ϕa(z)|2)s

ω(1− |ϕa(z)|)
)

dA(z). (18)

from which the assertion for r < min{r1, r2} follows by (16) and (17). If r ≥ min{r1, r2} , choose c > 1 such
that r∗ = r/c < min{r1, r2}. Then, we easily obtain the assertion for r∗. To obtain the assertion for r , it
remains to make the set of integration larger by replacing D(z, r∗) by D(z, r) and note that there is a constant
C, depending only on c, such that |D(z, r∗)| ≥ C|D(z, r)| for all z ∈ ∆.
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Maximum Norm Superconvergence of the

Trilinear Block Finite Element

Jinghong Liu∗and Yinsuo Jia†

In this article we discuss a pointwise superconvergence post-processing tech-
nique for the gradient of the trilinear block finite element for the Poisson equa-
tion with homogeneous Dirichlet boundary conditions over a fully uniform mesh
of the three-dimensional domain Ω. First, the supercloseness of the gradients
between the piecewise trilinear finite element solution uh and the trilinear in-
terpolant Πu is given. Secondly, we analyze a superconvergence post-processing
scheme for the gradient of the finite element solution by using the Z-Z recovery
technique, which shows that the recovered gradient of uh is superconvergent
to the gradient of the true solution u in the pointwise sense of the L∞-norm.
Finally, a numerical example is given.

1 Introduction

Superconvergence of the gradient for the finite element approximation is a phe-
nomenon whereby the convergent order of the derivatives of the finite element
solutions exceeds the optimal global rate. Up to now, superconvergence is still
an active research topic; see, for example, Babus̆ka and Strouboulis [1], Chen
[2], Chen and Huang [3], Lin and Yan [4], Wahlbin [5] and Zhu and Lin [6] for
overviews of this field. Nevertheless, how to obtain the superconvergent numeri-
cal solution is an issue to researchers. In general, it needs to use post-processing
techniques to get recovered gradients with high order accuracy from the finite
element solution. Usual post-processing techniques include interpolation tech-
nique, projection technique, average technique, extrapolation technique, super-
convergence patch recovery (SPR) technique introduced by Zienkiewicz and Zhu
[7–9] and polynomial patch recovery (PPR) technique raised by Zhang and Na-
ga [10]. In previous works, for the linear tetrahedral element, Chen and Wang
[11] obtained the recovered gradient with O(h2) order accuracy in the average
sense of the L2-norm by using the SPR technique. Using the L2-projection tech-
nique, in the average sense of the L2-norm, Chen [12] got the recovered gradient

with O(h1+min(σ, 12 )) order accuracy. Goodsell [13] derived by using the average

∗Department of Fundamental Courses, Ningbo Institute of Technology, Zhejiang University,
Ningbo 315100, China, email: jhliu1129@sina.com

†School of Mathematics and Computer Science, Shangrao Normal University, Shangrao
334001, China, email: 550897472@qq.com
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technique the pointwise superconvergence estimate of the recovered gradient
with O(h2−ε) order accuracy. Brandts and Kř́ıžek [14] obtained by using the
interpolation technique the recovered gradient with O(h2) order accuracy in the
average sense of the L2-norm. Zhang [15, 16] gave the theoretical analysis for
the SPR technique for the one-dimensional two points boundary value problem
and two-dimensional Laplacian equations, which proved two orders higher than
the optimal convergence rate of the finite element solution at the internal nodal
points over uniform meshes. Zhang and Victory [17] presented the theoretical
justification for superconvergence of the SPR technique for a general second-
order elliptic equation over the quadrilateral meshes. Zhang and Zhu [18, 19]
also analyzed the SPR technique in details as well as its applications to a pos-
teriori error estimation. In this article, we consider a SPR recovery scheme by
using the Z-Z technique, by which the pointwise superconvergence recovered
gradient from the trilinear finite element approximation can be obtained. We
shall use the letter C to denote a generic constant which may not be the same
in each occurrence and also use the standard notations for the Sobolev spaces
and their norms.

2 Maximum Norm Supercloseness

Suppose Ω ⊂ R3 is a rectangular block with boundary, ∂Ω, consisting of faces
parallel to the x-, y-, and z-axes. Moreover, Ω is partitioned into a uniform
rectangulation T h with mesh size h ∈ (0, 1) such that Ω̄ =

∪
e∈T h ē. We

consider the following Poisson equation with homogeneous Dirichlet boundary
value conditions {

−∆u = f, in Ω
u = 0, on ∂Ω.

(2.1)

The corresponding weak form is

a(u , v) = (f , v), ∀ v ∈ H1
0 (Ω), (2.2)

where

a(u , v) ≡ (∇u , ∇v) =

∫
Ω

∇u · ∇v dxdydz.

We introduce a trilinear polynomial space Q1, namely

q(x, y, z) =
∑

(i,j,k)∈I

aijkx
iyjzk, q ∈ Q1,

where the indexing set I is as follows:

I = {(i, j, k)|0 ≤ i, j, k ≤ 1}.

Denote the trilinear finite element space by

Sh
0 (Ω) =

{
v ∈ C(Ω̄)

∩
H1

0 (Ω) : v|e ∈ Q1(e), ∀ e ∈ T h
}
. (2.3)
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Thus the finite element method is to find uh ∈ Sh
0 (Ω) such that

a(uh , v) = (f , v), ∀ v ∈ Sh
0 (Ω).

Obviously, there is the following Galerkin orthogonality relation

a(u− uh , v) = 0, ∀ v ∈ Sh
0 (Ω). (2.4)

Let the element

e = (xe − he, xe + he)× (ye − ke, ye + ke)× (ze − de, ze + de) ≡ I1 × I2 × I3,

and let {lj(x)}∞j=0, {l̃j(y)}∞j=0, {l̄j(z)}∞j=0 be the normalized orthogonal Legen-

dre polynomial systems on L2(I1), L2(I2), and L2(I3), respectively. It is easy to
see that {li(x)l̃j(y)l̄k(z)}∞i,j,k=0 is the normalized orthogonal polynomial system

on L2(e). Set

ω0(x) = ω̃0(y) = ω̄0(z) = 1, ωj+1(x) =

∫ x

xe−he

lj(ξ) dξ,

ω̃j+1(y) =

∫ y

ye−ke

l̃j(ξ) dξ, ω̄j+1(z) =

∫ z

ze−de

l̄j(ξ) dξ, j ≥ 0.

Define the trilinear interpolation operator of projection type by Πe: H3(e) →
Q1(e) such that

Πeu(x, y, z) =
∑

(i,j,k)∈I

βijkωi(x)ω̃j(y)ω̄k(z). (2.5)

where β000 = u(xe−he, ye−ke, ze−de), βi00 =
∫
I1
∂xu(x, ye−ke, ze−de)li−1(x) dx,

β0j0 =
∫
I2
∂yu(xe−he, y, ze−de)l̃j−1(y) dy, β00k =

∫
I3
∂zu(xe−he, ye−ke, z)l̄k−1(z) dz,

βij0 =
∫
I1×I2

∂x∂yu(x, y, ze − de)li−1(x)l̃j−1(y) dxdy, β0jk =
∫
I2×I3

∂y∂zu(xe −
he, y, z)l̃j−1(y)l̄k−1(z) dydz, βi0k =

∫
I1×I3

∂x∂zu(x, ye−ke, z)li−1(x)l̄k−1(z) dxdz,

βijk =
∫
e
∂x∂y∂zu li−1(x)l̃j−1(y)l̄k−1(z) dxdydz, i, j, k ≥ 1.

In addition, we define (Πu)|e = Πeu. Thus we have the global interpolation
operator of projection type Π: H3(Ω) → Sh

0 (Ω). In [20], we obtained the
following supercloseness estimate
Lemma 2.1. Let {T h} be a regular family of rectangular partitions of Ω,
and u ∈ W 3,∞(Ω)

∩
H1

0 (Ω). For uh and Πu, the trilinear block finite element
approximation and the corresponding interpolant of projection type to u, re-
spectively. Then we have the following supercloseness estimate

|uh −Πu|1,∞,Ω ≤ Ch2 |lnh|
4
3 ∥u∥3,∞,Ω. (2.6)
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3 Maximum Norm Superconvergence

SPR is a gradient recovery method introduced by Zienkiewicz and Zhu. This
method is now widely used in engineering practices for its robustness in a pos-
terior error estimation and its efficiency in computer implementation.

For v ∈ Sh
0 (Ω), we denote by Rx the SPR-recovery operator (or Z-Z recovery

operator) with respect to the x-derivative, and begin by defining the point values
of Rxv at the element nodes. After the recovered derivative values at all nodes
are obtained, we construct a piecewise trilinear interpolant by using these values
to obtain a global recovered derivative, namely SPR-recovery derivative Rxv.
Obviously Rxv ∈ Sh

0 (Ω). Similarly, we can define by Ry and Rz the recovered
derivatives with respect to the y-derivative and the z-derivative, respectively.
Consequently, we get a recovered gradient operator Rh = (Rx, Ry, Rz). In the
following, we mainly discuss the recovery operator Rx and its superconvergence
properties. The superconvergence properties of Ry and Rz can be similarly
derived.

Let us first assume N is an interior node of the partition T h, and de-
note by ω the element patch around N containing eight elements (see Fig.1).

t
c c c c

c
c

c
c

FIG. 1. Element Patch Containing Eight Elements

N

S1

S2S3

S4

S5

S6S7

S8

Under the local coordinate system centered N , we let Sj be the barycenter
of an element ej ⊂ ω, j = 1, 2, · · · , 8. SPR uses the discrete least-squares fitting
to seek linear function p ∈ P1(ω), such that

|∥p− ∂xv|∥ = min
g∈P1(ω)

|∥g − ∂xv|∥, (3.1)

where |∥w|∥ = (
∑8

j=1 |w(Sj)|2)
1
2 . Obviously, for w ∈ P1(ω), we have

|∥w|∥ = 0⇐⇒ w = 0
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. It is easy to verify that the problem (3.1) is equivalent to the following problem

8∑
j=1

[p(Sj)− ∂xv(Sj)]g(Sj) = 0, ∀g ∈ P1(ω). (3.2)

Then we define Rxv(N) = p(0, 0, 0). If N is a node on the boundary, ∂Ω, of
Ω, we can calculate Rxv(N) by the linear extrapolation from the values of Rxv
already obtained at two neighboring interior nodes, N1 and N2, namely

Rxv(N) = 2Rxv(N1)−Rxv(N2). (3.3)

Lemma 3.1. Let ω be the element patch around an interior node N , Sj the
barycenter of the element ej ⊂ ω, j = 1. · · · .8, and Π the trilinear interpolation
operator of projection type. For every u ∈ P2(ω), we have

∂x(u−Πu)(Sj) = 0. (3.4)

Proof. Obviously, Sj is a Gauss point of the element ej ⊂ ω. From the
definition of the operator Π,

u−Πu =

 1∑
i=0

1∑
j=0

∞∑
k=2

+

1∑
i=0

∞∑
j=2

∞∑
k=0

+

∞∑
i=2

∞∑
j=0

∞∑
k=0

βijkωi(x)ω̃j(y)ω̄k(z).

By the representation of the coefficient βijk and the orthogonality of the Legendre
polynomial system, we obtain for u ∈ P2(ω),

∂x(u−Πu)(Sj) = 0,

which is the desired result (3.4).
Lemma 3.2. Let ω be the element patch around an interior node N and Π
the trilinear interpolation operator of projection type. For every u ∈ P2(ω), we
have

∂xu−RxΠu = 0 in ω. (3.5)

Proof. From (3.4) and the definition (3.1) of the recovery operator Rx, we
have for u ∈ P2(ω),

Rxu = RxΠu. (3.6)

Since u ∈ P2(ω), thus ∂xu ∈ P1(ω). So we obtain

Rxu = ∂xu. (3.7)

Combining (3.6) and (3.7) yields the desired result (3.5).
Lemma 3.3. For Πu ∈ Sh

0 (Ω) the trilinear interpolant of projection type to
u, the solution of (2.2), and Rx the x-derivative recovered operator by SPR, we
have the superconvergent estimate

|∂xu−RxΠu|0,∞,Ω ≤ Ch
2∥u∥3,∞,Ω. (3.8)
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Proof. By the triangle inequality, the norms equivalence of the finite-
dimensional space, and the inverse property, we have

|∂xu−RxΠu|0,∞,Ω = |∂xu−RxΠu|0,∞, e ≤ |∂xu|0,∞, e + |RxΠu|0,∞, e

≤ C
(
|∂xu|0,∞, e + |∥RxΠu|∥

)
≤ C

(
|∂xu|0,∞, e + |∥∂xΠu|∥

)
≤ C

(
|∂xu|0,∞, ω + |∂xΠu|0,∞, ω

)
≤ C

(
|∂xu|0,∞, ω + h−1 |u|0,∞, ω

)
,

(3.9)
where ω is an element patch containing the element e. Let uI ∈ P2(ω) be
a quadratic interpolant to u. From (3.5) and (3.9), we obtain by using the
interpolation error estimate,

|∂xu−RxΠu|0,∞,Ω = |∂x(u− uI)−RxΠ(u− uI)|0,∞, e

≤ C
(
|∂x(u− uI)|0,∞, ω + h−1 |u− uI |0,∞, ω

)
,

≤ Ch2 ∥u∥3,∞,Ω .

This proves the statement.
As for the y-derivative recovery operator Ry and the z-derivative recovery

operator Rz, we have the following results similar to (3.8).

|∂yu−RyΠu|0,∞,Ω ≤ Ch
2∥u∥3,∞,Ω. (3.10)

|∂zu−RzΠu|0,∞,Ω ≤ Ch
2∥u∥3,∞,Ω. (3.11)

Set Rh = (Rx, Ry, Rz). Combining (3.8), (3.10) and (3.11) yields

|∇u−RhΠu|0,∞,Ω ≤ Ch
2∥u∥3,∞,Ω. (3.12)

In the following, we give the main result of this article.
Theorem 3.1. For uh ∈ Sh

0 (Ω) the trilinear block finite element approximation
to u, the solution of (2.2), and Rh the gradient recovered operator by SPR, we
have the superconvergent estimate

|∇u−Rhuh|0,∞,Ω ≤ Ch
2| lnh| 43 ∥u∥3,∞,Ω.

Proof. Using the triangle inequality and the norms equivalence of the finite-
dimensional space, we have

|∇u−Rhuh|0,∞,Ω ≤ |Rh(uh −Πu)|0,∞,Ω + |∇u−RhΠu|0,∞,Ω

= |Rh(uh −Πu)|0,∞, e + |∇u−RhΠu|0,∞,Ω

≤ C
(
|∥Rh(uh −Πu)|∥+ |∇u−RhΠu|0,∞,Ω

)
≤ C

(
|∥∇(uh −Πu)|∥+ |∇u−RhΠu|0,∞,Ω

)
≤ C

(
|uh −Πu|1,∞,Ω + |∇u−RhΠu|0,∞,Ω

)
.

(3.13)

Combining (2.6), (3.12) and (3.13) yields

|∇u−Rhuh|0,∞,Ω ≤ Ch
2| lnh| 43 ∥u∥3,∞,Ω.

This proves the statement.
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4 A Numerical Example

Example 1. Consider the following Poisson’s equation:{
−∆u = f in Ω = [0, 1]× [0, 1]× [0, 1],
u = 0 on ∂Ω,

where

f = (−ex(ey − (e− 1)y − 1)− ey(ex − (e− 1)x− 1)

+π2(ex − (e− 1)x− 1)(ey − (e− 1)y − 1)) sin(πz).

The exact solution is

u = (ex − (e− 1)x− 1)(ey − (e− 1)y − 1) sin(πz).

Let uh be the trilinear block finite element approximation to the exact solution u
and N0 = (0.5, 0.5, 0.5). We solve Example 1 and obtain the following numerical
results:

Table 4.1 Results of the derivatives post-processing at the interior vertex N0

h |∂xu(N0)−Rxuh(N0)|
0.25 1.8364e-003
0.125 4.0003e-004
0.0625 9.6873e-005

Acknowledgments This work is supported by the National Natural Science
Foundation of China (Grant 11161039).
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HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL
INEQUALITY

MING FANG AND DONGHE PEI∗

Abstract. In this paper, we prove that the generalized Hyers-Ulam stability of the
additive functional inequality

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖ ≤ ‖8f(x+ y + z)‖
in β-homogeneous F -spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [32]

concerning the stability of group homomorphisms. Hyers [11] gave a first affirmative

partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was gener-

alized by Aoki [1] for additive mappings and by Th.M. Rassias [22] for linear mappings

by considering an unbounded Cauchy difference. The paper of Rassias [22] has provided

a lot of influence in the development of what we call generalized Hyers-Ulam stability of

functional equations. A generalization of the Th.M. Rassias theorem was obtained by

Găvruta [9] by replacing the unbounded Cauchy difference by a general control function

in the spirit of Th.M. Rassias’ approach. The stability problems for several function-

al equations or inequations have been extensively investigated by a number of authors

and there are many interesting results concerning this problem (see [2]–[8],[10], [12]–[15],

[21]–[24],[25]-[30],[34]).

We recall a fundamental result in fixed point theory.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if

d satisfies

(1) d(x,y)=0 if and only if x=y;

(2) d(x,y)=d(y,x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see[6],[7]). Let (X, d) be a complete generalized metric space and let

J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then for

2010 Mathematics Subject Classification. Primary 39B62, 39B52, 46B25.
Key words and phrases. additive functional equation; Hyers-Ulam stability; fixed point; β-

homogeneous F -spaces.
∗Corresponding author:peidh340@nenu.edu.cn (D.Pei).
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2 M.FANG AND D.PEI

each given element x ∈ X, either

d(Jnx, Jn+1x) =∞ (1.1)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

By the using fixed point method, the stability problems of several functional inequa-

tions have been extensively investigated by a number of authors(see[5][6][14][17]-[18]).

We recall some basic facts concerning β-homogeneous F -spaces.

Definition 1.2. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an

F -norm if it satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;

(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;

(FN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;

(FN4) ‖λnx‖ → 0 provided λn → 0;

(FN5) ‖λxn‖ → 0 provided ‖xn‖ → 0.

Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

A F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all

t ∈ R (see [31]).

2. HYers-Ulam Stability In β-homogeneous F -spaces

From now on , Let X be a normed linear space and Y a β-homogeneous F -spaces.

This paper,we prove that the generalized Hyers-Ulam stability of the additive func-

tional inequality

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖ ≤ ‖8f(x+ y + z)‖

in β-homogeneous F -spaces.

Lemma 2.1. Let f : X → Y be a mapping with f(0) = 0. Then it is additive if and

only if it satisfies

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖ ≤ ‖8f(x+ y + z)‖ (2.1)

for all x, y, z ∈ X .

Proof. If f is additive, then clearly

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖ = ‖8f(x+ y + z)‖
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for all x, y, z ∈ X .

Assume that f satisfies (2.1). Suppose that f(0) = 0. putting z = 0 and replacing y

by −x in (2.1), we get

‖f(x) + f(−x)‖ ≤ ‖8f(0)‖ = 8β‖f(0)‖ = 0

and so f(−x) = −f(x) for all x ∈ X . Replacing y by −x− z in (2.1), we have

‖f(−y) + f(−x) + f(x+ y)‖ ≤ 0

for all x, y ∈ X . We obtain

f(x+ y) = f(x) + f(y)

for all x, y ∈ X . �

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0. If there is a function

ϕ : X3 → [0,∞) such that

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖
≤ ‖8f(x+ y + z)‖+ ϕ(x, y, z)

(2.2)

and

ϕ̃(x, y, z) :=
∞∑
i=0

1

2βj
ϕ
(
(−2)jx, (−2)jy, (−2)jz

)
<∞ (2.3)

for all x, y, z ∈ X , then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ ϕ̃(−x,−x, 2x) (2.4)

for all x ∈ X .

Proof. Letting y = x and z = −2x in (2.2), we get

‖2f(−x) + f(2x)‖ ≤ ϕ(x, x,−2x)

for all x ∈ X . Thus ∥∥∥∥f(x)− f(−2x)

−2

∥∥∥∥ ≤ 1

2β
ϕ(−x,−x, 2x)

for all x ∈ X .

Hence one may have the following formula for positive integers m, l with m > l,∥∥∥∥ 1

(−2)l
f
(
(−2)lx

)
− 1

(−2)m
f ((−2)mx)

∥∥∥∥ (2.5)

≤
m−1∑
i=l

1

2βi
ϕ
(
−(−2)ix,−(−2)ix, (−2)i2x

)
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for all x ∈ X . It follows from (2.5) that the sequence
{
f((−2)kx)

(−2)k

}
is a Cauchy sequence

for all x ∈ X . Since Y is an F -space, the sequence
{
f((−2)kx)

(−2)k

}
converges. So one may

define the mapping A : X → Y by

A(x) := lim
k→∞

{
f((−2)kx)

(−2)k

}
, ∀x ∈ X .

Taking m = 0 and letting l tend to ∞ in (2.5), we have the inequality (2.4).

It follows from (2.2) that

‖A(2x+ y + 2z) + A(2x+ 3y + 3z) + A(4x+ 4y + 3z)‖

= lim
k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ ∥∥f((−2)k(2x+ y + 2z)) + f((−2)k(2x+ 3y + 3z))

+f((−2)k(4x+ 4y + 3z))
∥∥

≤ lim
k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ ∥∥8f((−2)k(x+ y + z))
∥∥+ lim

k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ϕ((−2)kx, (−2)ky, (−2)kz)

≤ ‖8A(x+ y + z)‖

(2.6)

for all x, y, z ∈ X . One see that A satisfies the inequality (2.1) and so it is additive by

Lemma (2.1).

Now, we show that the uniqueness of A. Let T : X → Y be another additive mapping

satisfying (2.4). Then one has

‖A(x)− T (x)‖ =

∥∥∥∥ 1

(−2)k
A
(
(−2)kx

)
− 1

(−2)k
T
(
(−2)kx

)∥∥∥∥
≤ 1

2kβ
(∥∥A ((−2)kx

)
− f

(
(−2)kx

)∥∥
+
∥∥T ((−2)kx

)
− f

(
(−2)kx

)∥∥)
≤ 2

1

2kβ
ϕ̃
(
−(−2)kx,−(−2)kx, (−2)k2x

)
which tends to zero as k →∞ for all x ∈ X. So we can conclude that A(x) = T (x) for

all x ∈ X. �

Theorem 2.3. Let f : X → Y be a mapping with f(0) = 0. If there is a function

ϕ : X3 → [0,∞) satisfying (2.2) such that

ϕ̃(x, y, z) :=
∞∑
j=1

2βjϕ

(
x

(−2)j
,

y

(−2)j
,

z

(−2)j

)
<∞ (2.7)

for all x, y, z ∈ X , then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ ϕ̃(x, x,−2x) (2.8)

for all x ∈ X .
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Proof. Letting y = x and z = −2x in (2.2), we get

‖2f(−x) + f(2x)‖ ≤ ϕ
(x

2
,
x

2
,−x

)
for all x ∈ X . Thus ∥∥∥∥f(x)− (−2)f

(
x

−2

)∥∥∥∥ ≤ ϕ
(x

2
,
x

2
,−x

)
for all x ∈ X .

Next, we can prove that the sequence {(−2)nf
(

x
(−2)n

)
is a Cauchy sequence for all

x ∈ X ,and define a mapping A : X → Y by

A(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ X that is similar to the corresponding part of the proof of Theorem (2.2). �

3. Hyers-Ulam Stability for Fixed Point Methods

Now, using fixed point theorem, we investigate the Hyers-Ulam stability of the func-

tional inequality (2.1) in β-homogeneous F -spaces.

Theorem 3.1. Let f : X → Y be a mapping for which there exists a function ϕ : X 3 →
[0,∞) such that

‖f(2x+ y + 2z) + f(2x+ 3y + 3z) + f(4x+ 4y + 3z)‖
≤ ‖8f(x+ y + z)‖+ ϕ(x, y, z)

(3.1)

for all x, y, z ∈ X. If there exists L ∈ (0, 1) such that

ϕ(x, y, z) ≤ 2Lϕ
(x

2
,
y

2
,
z

2

)
(3.2)

for all x, y, z ∈ X . Then there exists a unique additive mapping H : X → Y such that

‖f(x)−H(x)‖ ≤ 1

2β(1− L)
ϕ(−x,−x, 2x) (3.3)

for all x ∈ X.

Proof. It follows from ϕ(x, y, z) ≤ 2Lϕ
(
x
2
, y
2
, z
2

)
that

lim
j→∞

1

2j
ϕ(2jx, 2jy, 2jz) = 0

for all x, y, z ∈ X .

Consider the set

A := {g : X → Y}
and introduce the generalized metric on A:

d(g, h) = inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cϕ(−x,−x, 2x),∀x ∈ X}.

It is easy to show that (A, d) is complete.
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Now we consider the linear mapping J : A→ A such that

Jg(x) :=
1

−2
g(−2x)

for all x ∈ X .

By [6, Theorem 3.1]

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ A.

Letting y = x and z = −2x in (3.1), we get∥∥∥∥f(x)− 1

−2
f(−2x)

∥∥∥∥ ≤ 1

2β
ϕ(−x,−x, 2x)

for all x ∈ X .

Hence d(f, Jf) ≤ 1
2β

.

By the Theorem (1.1), there exists a mapping H : X → Y such that

(1) H is a fixed point of J , that is

1

−2
H(−2x) = H(x) (3.4)

for all x ∈ X . The mapping H is a unique fixed point of J in the set

B = {g ∈ A : d(f, g) <∞}.

This implies that H is a unique mapping satisfying (3.4) such that there exists

C ∈ (0,∞) satisfying

‖H(x)− f(x)‖ ≤ Cϕ(−x,−x, 2x)

for all x ∈ X .

(2) d(Jnf,H)→ 0 as n→∞. This implies the inequality

lim
n→∞

1

(−2)n
f((−2)nx) = H(x)

for all x ∈ X .

(3) d(f,H) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,H) ≤ 1

2β(1− L)
.

This implies that the inequality (3.3)holds.

Next, we show that H(x) is an additive mapping.
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‖H(2x+ y + 2z) +H(2x+ 3y + 3z) +H(4x+ 4y + 3z)‖

= lim
k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ ∥∥f((−2)k(2x+ y + 2z)) + f((−2)k(2x+ 3y + 3z))

+f((−2)k(4x+ 4y + 3z))
∥∥

≤ lim
k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ ∥∥8f((−2)k(x+ y + z))
∥∥+ lim

k→∞

∣∣∣∣ 1

(−2)kβ

∣∣∣∣ϕ((−2)kx, (−2)ky, (−2)kz)

≤ ‖8H(x+ y + z)‖

(3.5)

for all x, y, z ∈ X . �

Theorem 3.2. Let f : X → Y be a mapping for which there exists a function ϕ : X 3 →
[0,∞) satisfying (3.1) If there exists an L ∈ (0, 1) such that

ϕ(x, y, z) ≤ 1

2
Lϕ (2x, 2y, 2z) (3.6)

for all x, y, z ∈ X . Then there exists a unique additive mapping H : X → Y such that

‖f(x)−H(x)‖ ≤ L

2(1− L)
ϕ(−x,−x, 2x) (3.7)

for all x ∈ X.

Proof. It follows from ϕ(x, y, z) ≤ 2Lϕ
(
x
2
, y
2
, z
2

)
that

lim
j→∞

2jϕ

(
1

2j
x,

1

2j
y,

1

2j
z

)
= 0

for all x, y, z ∈ X .

Consider the set

A := {g : X → Y}
and introduce the generalized metric on A:

d(g, h) = inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cϕ (x, x,−2x) ,∀x ∈ X}.

It is easy to show that (A, d) is complete.

Now we consider the linear mapping J : A→ A such that

Jg(x) := −2g
(
−x

2

)
for all x ∈ X .

By [6, Theorem 3.1]

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ A.

Letting y = x and z = x+ y in (3.1), we get∥∥∥∥f(x)− (−2)f

(
−1

2
x

)∥∥∥∥ ≤ ϕ
(x

2
,
x

2
,−x

)
≤ L

2
ϕ (x, x,−2x)
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for all x ∈ X .

Hence d(f, Jf) ≤ L
2
. The rest of the proof is similar to the corresponding part of the

proof of Theorem 3.1.

�
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Abstract

This paper deals with a characterization of nonlinear systems of the
form ẋγ(t) = f (xγ(t), u(t/γ)) when the parameter γ → ∞. In particular,
we are interested in the uniform convergence of the sequence of functions
xγ (γt). Necessary conditions and sufficient ones are derived for this uni-
form convergence to happen.

Keywords: nonlinear systems, consistent operator, uniform conver-
gence

1 Introduction

Hysteresis is a nonlinear behavior encountered in a wide variety of processes
including biology, optics, electronics, ferroelectricity, magnetism, mechanics,
structures, among other areas. The detailed modeling of hysteresis systems
using the laws of Physics is an arduous task, and the obtained models are often
too complex to be used in applications. For this reason, alternative models of
these complex systems have been proposed [15, 1, 8, 6, 9]. These models do
not come, in general, from the detailed analysis of the physical behavior of the
systems with hysteresis. Instead, they combine some physical understanding of
the system along with some kind of black-box modeling.

This way of describing hysteresis systems led to the proliferation of hysteresis
models in the last two decades. A search in the Web of Knowledge database
gives more than 2000 publications. The question that arises naturally is: do
these research works describe really hysteresis phenomena? In other words,
does the researcher who proposes a new hysteresis model have a mathematical
rule to decide whether the model they propose is indeed a hysteresis one?

Surprisingly enough, such a rule exists only for a limited number of hysteresis
processes: those that possess the so-called rate-independence property. This
property states that, under a time-scale change, the relationship output versus
input is unchanged. Hysteresis systems that are rate-independent are listed in
the survey paper [10]. However, in the last two decades, researchers have ac-
knowledged the importance of rate-dependent processes in applications [4, 3, 2].
For this reason, a recent effort [5] proposed a mathematical framework that

1E-mail addresses: mohammad.naser@bau.edu.jo (Mohammad Fuad Mohammad Naser),
bdairmb@yahoo.com (Omar M. Bdair), faycal.ikhouane@upc.edu (Fayçal Ikhouane).
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proposes a rule to decide whether or not a system may be hysteretic. The
rule proposed in [5] shows that, for an input/output system with input u(t/γ)
and output xγ(t), the convergence of the sequence of functions t → xγ (γt) as
γ →∞ is a necessary condition for the hysteresis. The previous formulation is
used to study the hysteresis behavior of the generalized Duhem model [11] and
the LuGre friction model [12].

In the present paper, we consider the differential equation ẋ = f(x, u). Our ob-
jective is to derive necessary conditions and also sufficient ones for the uniform
convergence of the sequence of functions t→ xγ (γt).

This paper is organized as follows. Section 2 presents the system of study and
the assumptions under which the study is performed. Sections 3 and 4 present;
respectively, necessary conditions and sufficient ones for the uniform convergence
of the sequence of functions xγ (γt) as γ →∞. Conclusions are given in Section
5.

2 Problem Statement

The class of systems under study is

ẋ(t) = f
(
x(t), u(t)

)
, t ≥ 0, (1)

x(0) = x0, (2)

where initial condition x0 and state x(t) take value in Rm, and input u ∈
L∞ (R+,Rn) for some strictly positive integers n and m. The mapping f :
Rm×Rn → Rm is a well-defined continuous function. Because of the continuity
of the right-hand side of (1), the system (1)-(2) has a maximal solution which
is defined on an interval of the form [0, ω), ω > 0 [14, p. 67–70]. In this paper,
we assume that the system (1)-(2) has a unique Carathéodory solution for all
(u, x0) ∈ L∞ (R+,Rn)× Rm.

Consider the time scale change sγ(t) = t/γ,∀γ > 0,∀t ≥ 0. When the input
u ◦ sγ is used instead of u, system (1)-(2) becomes

ẋγ(t) = f
(
xγ(t), u ◦ sγ(t)

)
, t ≥ 0, (3)

xγ(0) = x0, (4)

which can be written for all γ > 0 as

σγ (t) = x0 + γ

t∫
0

f
(
σγ (τ) , u (τ)

)
dτ, ∀t ∈ [0, ωγ), (5)

where σγ = xγ ◦ s1/γ and [0, ωγ) is the maximal interval for the existence of
solutions σγ .

We seek necessary conditions and also sufficient conditions for the uniform con-
vergence of the sequence of functions σγ .

3 Necessary Conditions

Our aim in this section is to derive necessary conditions for the uniform cover-
gence of the sequence of functions σγ .

2
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Lemma 3.1. Assume that the maximal solution of system (1)-(2) is defined on
R+ for all (u, x0) ∈ L∞ (R+,Rn) × Rm. Suppose that there exists a function
h : R+ × R+ → R+ such that

|x (t)| ≤ h
(
|x0| , ‖u‖∞

)
,∀t ≥ 0, (6)

for each initial state x0 ∈ Rn and each input u ∈ L∞ (R+,Rn). Assume that
there exists a function qu ∈ L∞ (R+,Rm)∩C0 (R+,Rm) such that limγ→∞ ‖σγ−
qu‖∞ = 0. Then, we have f

(
x0, u(0)

)
= 0, qu(0) = x0, and f

(
qu (t) , u (t)

)
=

0, ∀t ≥ 0.

Proof. From the fact that ‖u‖∞ = ‖u ◦ sγ‖ ,∀γ > 0 and Inequality (6) it comes
that

‖xγ‖∞ ≤ h (|x0| , ‖u‖∞) = a. ∀γ > 0,

Thus, we get from the continuity of σγ that

|σγ (t)| ≤ a, ∀t ≥ 0, ∀γ > 0. (7)

Inequality (7) along with the continuity of function f and the boundedness of
the input u imply that there exists a constant r > 0 independent of γ, such
that |f (σγ (τ) , u (τ))| ≤ r, ∀τ ≥ 0, ∀γ > 0. This means that we can apply the
Dominated Lebesgue Theorem in Equation (5) and get

lim
γ→∞

∫ t

0

f (σγ (τ) , u (τ)) dτ =

∫ t

0

f (qu (τ) , u (τ)) dτ, ∀t ≥ 0, (8)

where the continuity of f and the fact that limγ→∞ ‖σγ − qu‖∞ = 0 are used.
By Equation (7) we have ‖σγ − x0‖∞ /γ → 0 as γ →∞. Thus, we obtain from
(5) and (8) that ∫ t

0

f (qu (τ) , u (τ)) dτ = 0, ∀t ≥ 0,

which gives f
(
qu (t) , u (t)

)
= 0 for almost all t ≥ 0. From the continuity of

functions f , qu, and u it comes that

f
(
qu (t) , u (t)

)
= 0, for all t ≥ 0. (9)

Since σγ(0) = x0, ∀γ > 0 it comes that

qu (0) = x0. (10)

Finally, taking t = 0 in (9) and using (10) provides the necessary condition

f
(
x0, u(0)

)
= 0, (11)

which completes the proof.

Remark 1. Once chosen an input u, the term u(0) is given so that any
initial condition x0 for which we have limγ→∞ ‖σγ − qu‖∞ = 0 should satisfy
(11).

3
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4 Sufficient Conditions

In this section, we derive sufficient conditions to ensure that the sequence of
functions σγ converges uniformly as γ →∞.

Definition 4.1. [7] A continuous function β : R+ → R+ is said to belong to
class K∞ if it is strictly increasing, satisfies β (0) = 0, and limt→∞ β (t) =∞.

Lemma 4.1. [11] Consider a function z : [0, ω) ⊂ R+ → R+, where ω may be
infinite. Assume the following

(i) The function z is absolutely continuous on each compact subset of [0, ω).

(ii) There exist z1, z2 ≥ such that z1, z (0) < z2 and ż (t) ≤ 0 for almost all t ∈
[0, ω) that satisfy z1 < z (t) < z2.

Then, z(t) ≤ max
(
z (0) , z1

)
, ∀t ∈ [0, ω).

Corollary 4.1. Consider a function z : [0, ω) ⊂ R+ → R+, where ω may be
infinite. Assume the following

(i) The function z is absolutely continuous on each compact subset of [0, ω).

(ii) There exist a class K∞ function β : R+ → R+ and z1, z2, z3 ≥ 0 such that
max

(
β−1 (z3) , z1, z (0)

)
< z2, and ż (t) ≤ −β (z (t))+z3 for almost all t ∈

[0, ω) that satisfy z1 < z (t) < z2.

Then, z (t) ≤ max
(
z (0) , z1, β

−1 (z3)
)
, ∀t ∈ [0, ω).

Proof. We have ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy max
(
β−1 (z3) , z1

)
<

z (t) < z2, and hence the result follows directly from Lemma 4.1.

Lemma 4.2. Assume that there exists qu ∈W 1,∞ (R+,Rn) such that

f
(
qu (t) , u (t)

)
= 0, ∀t ≥ 0, (12)

qu(0) = x0. (13)

Define yγ : R+ → Rm as

yγ (t) = σγ (t)− qu (t) = xγ (γt)− qu (t) ,∀γ > 0, (14)

for all t ∈ [0, ωγ). Suppose that we can find a continuously differentiable function
V : Rm → R+ that satisfies the following:

(i) V is positive definite, that is V (0) = 0 and V (α) > 0,∀ 0 6= α ∈ Rm.

(ii) V is proper, that is V (α)→∞ as |α| → 0.

(iii) There exist δ > 0 and β ∈ K∞ satisfying:
dV (α)
dα

∣∣∣∣
α=yγ(t)

· f
(
yγ (t) + qu (t) , u (t)

)
≤ −β

(
|yγ (t)|

)
,

for all t ∈ [0, ωγ) and ∀γ > 0 that satisfy |yγ (t)| < δ.

(15)

Then,

• ωγ = +∞,∀γ > 0. Furthermore, there exist E, γ∗ > 0 such that ‖xγ‖∞ ≤
E,∀γ > γ∗, for any solution xγ of the system (3)-(4).

4
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• limγ→∞ ‖σγ − qu‖∞ = 0.

Proof. Since V is positive definite and proper, there exists β1, β2 ∈ K∞ such
that (see [7, p. 145])

β1 (|α|) ≤ V (α) ≤ β2 (|α|) ,∀α ∈ Rm. (16)

From (5), we get for almost all t ∈ [0, ωγ), ∀γ > 0 that

ẏγ (t) = γ f
(
yγ(t) + qu(t), u(t)

)
− q̇u(t), (17)

yγ (0) = 0. (18)

For any γ > 0, define Vγ : R+ → R+ as Vγ(t) = V
(
yγ(t)

)
,∀t ∈ [0, ωγ). Note

that the function Vγ is absolutely continuous on each compact subset of [0, ωγ)
as a composition of a continuously differentiable function V and an absolutely
continuous function yγ . Then, we get for almost all t ∈ [0, ωγ) and all γ > 0
that

V̇γ (t) =
dV (α)

dα

∣∣∣∣
α=yγ(t)

·ẏγ (t) =
dV (α)

dα

∣∣∣∣
α=yγ(t)

·
[
γf
(
yγ (t)+qu (t) , u (t)

)
−q̇u (t)

]
.

(19)
Let Ω =

(
0, β1 (δ)

)
. By (16) we have for any γ > 0, and for almost all t ∈ [0, ωγ)

that
Vγ (t) ∈ Ω⇒ |yγ (t)| < δ. (20)

We conclude from (15), (19), and (20) that

V̇γ (t) ≤ −γ β (|yγ (t)|)+‖q̇u‖∞

∣∣∣∣dV (α)

dα

∣∣∣
α=yγ(t)

∣∣∣∣, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Thus, we deduce from the continuity of dV (α)
dα , the boundedness of q̇u, and (20)

there exists some b > 0 independent of γ such that

V̇γ (t) ≤ −γ β (|yγ (t)|)+b, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Hence, (16) implies

V̇γ (t) ≤ −γ β◦β−12

(
Vγ (t)

)
+b, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Thus, Corollary 4.1 and the fact that Vγ (0) = 0,∀γ > 0, imply that Vγ (t) ≤
β2 ◦ β−1

(
b
γ

)
, ∀γ > γ0,∀t ∈ [0, ωγ) where γ0 = b

β◦β−1
2 ◦β1(δ)

. Therefore, (16)

implies that

|yγ (t)| ≤ β1 ◦ β2 ◦ β−1
(
b

γ

)
, ∀γ > γ0,∀t ∈ [0, ωγ). (21)

Thus, ωγ = +∞,∀γ > γ1 for some γ1 > 0, and limγ→∞ ‖yγ‖∞ = 0, which is
equivalent to limγ→∞ ‖σγ − qu‖∞ = 0. On the other hand, (21) and the fact
that σγ = yγ + qu imply that there exists some E, γ∗ > 0 such that ‖σγ‖∞ ≤
E,∀γ > γ∗, and hence ‖xγ‖∞ ≤ E,∀γ > γ∗.

Lemma 4.3. Consider the nonlinear system [13]

ẋ = f (x, u) = Ax+ Φ (x) +R (u) , (22)

x (0) = x0, (23)

y = Dx, (24)
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where x0 ∈ Rm, A is an m×m Hurwitz matrix2, D is an m×m matrix,
input u ∈ L∞ (R+,Rn), state x, output y take values in Rm, function R ∈
C0 (Rn,Rm), and a locally Lipshitz function Φ ∈ C0 (Rm,Rm). Assume the
following:

(i) The exists qu ∈W 1,∞ (R+,Rm) such that qu (0) = x0 and

Aqu (t) + Φ
(
qu (t)

)
+R

(
u (t)

)
= 0,∀t ≥ 0.

(ii) There exist c1 > 0, c2 > 0, ξ > 0 and r > 2 such that∣∣α·[Φ(α+qu(t)
)
−Φ
(
qu (t)

)]∣∣ ≤ c1 |α|2+c2 |α|r , for almost all t ≥ 0,∀α ∈ Rm that satisfy |α| < ξ.

(iii) One has c1 <
1

2 λmax
, where λmax is the largest eigenvalue for the m ×m

positive-definite symmetric matrix P that satisfies3

PA+ATP = −Im×m. (25)

Let xγ , yγ be respectively the state and the output of (22)-(24) when we use the
input u ◦ sγ instead of u.

Then,

• All solutions of (22)-(24) are bounded. Furthermore, there exist E, γ∗ > 0
such that ‖xγ‖∞ ≤ E,∀γ > γ∗, for any solution xγ of the system (3)-(4).

• limγ→∞ ‖Fγ −Dqu‖∞ = 0, where Fγ : R+ → Rm is defined as Fγ (t) =
yγ (γt) ,∀t ≥ 0,∀γ > 0.

Proof. Since Φ is locally Lipschitz, the right-hand side of (22) is locally Lipschitz
relative to x and hence the system (22) has a unique solution. The function qu
satisfies (12)-(13) in Lemma 4.2 because of (i).

Consider the continuously differentiable quadratic Lyapunov function candidate
V : Rm → R such that V (α) = αTPα, ∀α ∈ Rm. Since P is symmetric, we
have ∀α ∈ Rm that

λmin |α|2 ≤ V (α) = αTPα ≤ λmax |α|2 ,

where λmin is the smallest eigenvalue of the matrix P . Thus V is positive definite
and proper. Since P is symmetric we have∣∣∣∣dV (α)

dα

∣∣∣∣ = 2 |P α| ≤ 2λmax |α| ,∀α ∈ Rm. (26)

We have by (25) that

dV (α)

dα
·Aα = 2Pα ·Aα = αT

(
PA+ATP

)
α = − |α|2 ,∀α ∈ Rm. (27)

From Condition (i) we get for all γ > 0 that

dV (α)

dα

∣∣∣
α= yγ

· f (yγ + qu, u) =
dV (α)

dα

∣∣∣
α=yγ

·
[
Ayγ +Aqu + Φ (yγ + qu) +R (u)

]
=
dV (α)

dα

∣∣∣
α=yγ

·
[
Ayγ + Φ (yγ + qu)− Φ (qu)

]
.

(28)

2that is each eigenvalue of A has a strictly negative real part.
3the existence of the matrix P in (25) is guaranteed because A is Hurwitz [7, p.136].
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where yγ is defined in (14).

We get from (28), (27), (26) and Condition (ii) that

dV (α)

dα

∣∣∣∣
α=yγ(t)

·f
(
yγ (t) + qu (t) , u (t)

)
≤ (−1 + 2c1 λmax) |yγ (t)|2 + 2c2 λmax |yγ (t)|r ,

∀γ > 0 for almost all t ∈ [0, ωγ) that satisfy |yγ (t)| < ξ,

(29)

where [0, ωγ) is the maximal interval of existence of σγ and yγ . This leads to

dV (α)

dα

∣∣∣∣
α=yγ(t)

· f
(
yγ (t) + qu (t) , u (t)

)
≤ −1− 2c1 λmax

2
|yγ (t)|2 ,

∀γ > 0, for almost all t ∈ [0, ωγ) that satisfy |yγ (t)| < min

(
r−2

√
1− 2c1 λmax

4c2 λmax
, ξ

)
.

(30)

Thus, (15) in is satisfied with β (v) = 1−2c1 λmax

2 v2,∀v ≥ 0 and δ = min
(
r−2

√
1−2c1 λmax

4c2 λmax
, ξ
)

.

Hence all conditions of Lemma 4.2 are satisfied so that the solution of (22) is
bounded. Morover, there exist E, γ∗ > 0 such that ‖xγ‖∞ ≤ E,∀γ > γ∗.
Futhermore, we have limγ→∞ ‖σγ − qu‖∞ = 0. Thus, we deduce from (24) that
limγ→∞ ‖Fγ −Dqu‖∞ = 0.

Example. Consider the system

ẋ = −x+ x3 − u, (31)

x (0) = 0. (32)

where state x takes values in R and input u ∈ W 1,∞ (R+,R) is defined as
u(t) = 0.1 sin (t),∀t ≥ 0. The system (31)-(32) has the form (22)-(24), with
x = y, m = n = 1, A = −1, Φ (α) = α3, R(α) = −α, ∀α ∈ R, and D = 1.
Observe that P in (25) equals 1/2 which mean that λmin = λmax = 1/2. We
have u (0) = 0 and u is bounded with

u(·) ∈ [umin, umax] = [−0.1, 0.1] . (33)

Define the function χ :
[
− 1√

3
, 1√

3

]
→
[
− 2

3
√
3
, 2
3
√
3

]
as χ (v) = −v + v3,∀v ∈[

− 1√
3
, 1√

3

]
. The function χ is strictly decreasing, bijective and its inverse func-

tion is continuous. Hence, there exists a function qu ∈ C0 (R+,R)∩L∞ (R+,R)

such that qu(·) ∈
[
− 1√

3
, 1√

3

]
, qu(0) = 0 and

χ
(
qu (t)

)
= −qu (t) + q3u (t) = u (t) ,∀t ≥ 0. (34)

It can be checked using (33) that ‖qu‖∞ < 0.11 (see Figure (1b)). Thus
qu (·) 6= 1√

3
. This fact and (34) implies that the function q̇u = u̇/

(
1− 3q2u

)
is bounded so that qu ∈ W 1,∞ (R+,R). Hence Condition (i) of Lemma 4.3 is
satisfied.

On the other hand, we have for all α ∈ R that

α (Φ (α+ q
u
)− Φ (q

u
)) = 3q2

u
α2 + 3q

u
α3 + α4. (35)
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Since ‖qu‖∞ < 0.11, one has
∥∥3q2u

∥∥
∞ < 0.0363 = c1. Hence it follows from (35)

that for any ξ > 0 we have

α
[
Φ
(
α+ q

u
(t)
)
− Φ

(
q
u

(t)
)]
≤ c1α2 + (3 ‖q

u
‖∞ + ξ)α3

∀α ∈ Rm that satisfy |α| < ξ, for almost all t ≥ 0.

(36)

Thus, Condition (ii) in Lemma 4.3 is satisfied with c2 = 3 ‖qu‖∞+ ξ. Moreover,
we have c1 < 1 = 1

2 λmax
which implies that Condition (ii) in Lemma 4.3 is

also satisfied. Therefore, the solution of (31)-(32) is bounded, that there exist
E, γ∗ > 0 such that ‖xγ‖∞ ≤ E,∀γ > γ∗, and that limγ→∞ ‖σγ − qu‖∞ =
limγ→∞ ‖Fγ − qu‖∞ = 0 (observe that σγ(·) = Fγ(·) because x (·) = y (·)).
This is illustrated in Figure 1a.

0 1 2 3 4 5 6 7 8
−0.2

−0.1

0

0.1

0.2

t

σ
γ(

t)
 =

 F
γ(

t)

 

 

 γ = 1 
 γ = 3 
 γ = 6 
  q

u
(t)

(a) Fγ (t) versus t for system (31).

−0.1 −0.05 0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

u(t)

q
u
(t

)

(b) qu(t) versus u(t) for system (31).

Figure 1: Simulations.

5 Conclusion

In [5] a rule for deciding whether a process may or may not be a hysteresis
is proposed for causal operators such that a constant input leads to a constant
output. That rule involves checking whether the so-called consistency and strong
consistency properties hold. In this paper we derived necessary conditions and
sufficient ones for the uniform convergence of the shifted solutions σγ : t →
xγ (γt) of the system ẋ = f(x, u ◦ sγ). This uniform convergence is related to
consistency. Does this mean that the concept of consistency can be extended to
study operators for which the property that a constant input leads to a constant
output, that property does not hold?

This paper explores this issue for systems of the form ẋ = f(x, u), however,
no clear cut answer may be drawn for the obtained results.

Indeed, the necessary conditions alone cannot guarantee whether the uniform
convergence of σγ when γ → ∞ happens or not. The sufficient conditions do
imply that convergence but do not guarantee that the hysteresis loop of the
operator is not trivial. In the example, we have seen that qu is a function of u
so that the hysteresis loop is a curve and we cannot acertain from this whether
system (31) is a hysteresis or not. This is a future research line.
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