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1 Introduction and Preliminaries

In this paper we consider the difference equation

xn+1 = p+
x2
n

x2
n−1

, n = 0, 1, . . . , (1)

where the parameter a is positive number and the initial conditions x−1 and x0 are positive
numbers. Clearly equation (1) has the unique equilibrium point x̄ = p + 1. Linear fractional
version of equation (1)

xn+1 = p+
xn
xn−1

, n = 0, 1, . . . , (2)

was considered in [3], where we proved that the unique equilibrium x̄ = p+ 1 of equation (2) is
globally asymptotically stable. Introduction of quadratic terms into equation (2) changes local
stability analysis and consequently the global dynamics as well. In particular, quadratic terms
introduces the possibility of Naimark-Sacker bifurcation and the existence of locally stable
periodic solution, see [6] for several similar examples.

The linearized equation of equation (2) at the equilibrium point x̄ = p+ 1 is

zn+1 =
2

p+ 1
zn −

2

p+ 1
, n = 0, 1, . . . ,

with the characteristic equation

λ2 − 2

p+ 1
λ+

2

p+ 1
= 0,

and the characteristic roots

λ± =
1± i

√
2p+ 1

p+ 1
.

Since

|λ±| =
√

2

p+ 1

it is clear that that the equilibrium point x̄ = p + 1 is asymptotically stable if p > 1, non-
hyperbolic if p = 1 and unstable if p < 1. In all cases the eigenvalues are complex conjugate
numbers which indicates the presence of the Naimark-Sacker bifurcation at p = 1. We will
prove that indeed the equilibrium point x̄ = p + 1 is globally asymptotically stable if p >

√
2

and that the Naimark-Sacker bifurcation takes the place at p = 1. Our tool in proving global
asymptotic stability of equation (2) is the result in [3, 5]. We conjecture that the equilibrium
point x̄ = p+ 1 is globally asymptotically stable if a > 1. Furthermore, we give some numeric
values of parameter a with corresponding periodic solutions. Our bifurcation diagram indicates
a complicated behavior and possible chaos for the values p < 1.

Now, for the sake of completness we give the basic facts about the Naimark-Sacker bifur-
cation.

The Hopf bifurcation is well known phenomenon for a system of ordinary differential equa-
tions in two or more dimension, whereby, when some parameter is varied, a pair of complex
conjugate eigenvalues of the Jacobian matrix at a fixed point crosses the imaginary axis, so

2
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that the fixed point changes its behavior from stable to unstable and a limit cycle appears.
In the discrete setting, the Naimark-Sacker bifurcation is the discrete analogue of the Hopf
bifurcation.

The Naimark-Sacker bifurcation occurs for a discrete system depending on a parameter, λ
say, with a fixed point whose Jacobian has a pair of complex conjugate µ(λ), µ̄(λ) which cross
the unit transversally at λ = λ0.

The following result is referred as the Neimark-Sacker bifurcation Theorem [1, 4, 7, 8, 11].

Theorem 1 (Naimark-Sacker bifurcation) Let

F : R× R2 → R2; (λ, x)→ F(λ,x)

be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F (λ,0) = 0 for λ near some fixed λ0;

(ii) DF (λ,0) has two non-real eigenvalues µ(λ) and µ̄(λ) for λ near λ0 with |µ(λ0)| = 1;

(iii) d
dλ |µ(λ)| = d(λ0) < 0 at λ = λ0 (transversality condition);

(iv) µk(λ0) 6= 1 for k = 1, 2, 3, 4. (nonresonance condition).

Then there is a smooth λ-dependent change of coordinate bringing F into the form

F (λ,x) = F(λ,x) +O(‖ x ‖5)

and there are smooth function a(λ), b(λ), and ω(λ) so that in polar coordinates the function
F(λ, x) is given by (

r
θ

)
=

(
|µ(λ)|r + a(λ)r3

θ + ω(λ) + b(λ)r2

)
. (3)

If a(λ0) < 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ−λ0| < δ
and x0 ∈ U , then ω-limit set of x0 is the origin if λ > λ0 and belongs to a closed invariant C1

curve Γ(λ) encircling the origin if λ < λ0. Furthermore, Γ(λ0) = 0.
If a(λ0) > 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ−λ0| < δ
and x0 ∈ U , then α-limit set of x0 is the origin if λ < λ0 and belongs to a closed invariant C1

curve Γ(λ) encircling the origin if λ > λ0. Furthermore, Γ(λ0) = 0.

Consider a general map F(λ0,x) that has a fixed point at the origin with complex eigen-
values µ(λ0) = α(λ0) + iβ(λ0) and µ̄(λ0) = α(λ0)− iβ(λ0) satisfying α(λ0)2 + β(λ0)2 = 1 and
β(λ0) 6= 0. Assume that

F(λ0,x) = A(λ0)x + G(λ0,x) (4)

where A is Jacobian matrix of F evaluated at fixed point (0, 0), and

G(λ0,x) :=

(
g1(λ0, x1, x2)
g2(λ0, x1, x2)

)
.

Here we donate µ(λ0) = µ, A(λ0) = A and G(λ0, x) = G(x). We let p and q be eigenvectors
of A associated with µ satisfying

Aq = µq, pA = µp, pq = 1

3
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and Φ = (q, q̄). Assume that

G

(
Φ

(
z
z̄

))
=

1

2
(g20z

2 + 2g11zz̄ + g02z̄
2) +O(|z|3)

and

K20 = (µ2I −A)−1g20

K11 = (I −A)−1g11

K02 = (µ̄2I −A)−1g02

. (5)

Let

G

(
Φ

(
z
z̄

)
+

1

2
(K20ξ

2 + 2K11ξξ̄ + K02ξ̄
2)

)
=

1

2
(g20ξ

2 + 2g11ξξ̄ + g02ξ̄
2)

+
1

6
(g30ξ

3 + 3g21ξ
2ξ̄ + 3g12ξξ̄

2 + g03ξ̄
3) +O(|ξ|4), (6)

then

a(λ0) =
1

2
Re(pg21µ̄).

Corollary 1 ([9]) Assume a(λ0) 6= 0 and λ = λ0 + η where η is a sufficient small parameter.
If x̄ is fixed point of F then invariant curve Γ(λ) from Theorem 1 can be approximated by(

x1

x2

)
≈ x̄ + 2ρ0Re

(
qeiθ

)
+ ρ2

0

(
Re
(
K20e

2iθ
)

+ K11

)
,

where

d =
d

dη
|µ(λ)|

∣∣∣∣
λ=λ0

, ρ0 =

√
−d
a
η, θ ∈ R.

Here ”Re” represents the real parts of those complex numbers.
The second section of the paper gives global asymptotic stability result for the values of

parameter p >
√

2 and the third section gives the reduction to the normal form and compu-
tation of the coefficients of the Naimark-Sacker bifurcation and the asymptotic approximation
of the invariant curve. Our computational method is based on the computational algorithm
developed in [9] rather than more often used computational algorithm in [10]. The advantage
of the computational algorithm of [9] lies in the fact that this algorithm computes also the
approximate equation of the invariant curve in Naimark-Sacker theorem, which is not provided
by Wan’s algorithm. Here we give numeric and visual eveidence that the approximate equation
of the invariant curve is accurate. See Figure 4.

2 Global Asymptotic Stability

We use the method of embedding [2]. By substituting

xn = p+

(
xn−1

xn−2

)2

4
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in equation (1) we get:

xn+1 = p+

(
p

xn−1
+
xn−1

x2
n−2

)2

.

Now by substituting for xn−1 in the term xn−1

x2n−2
of the last equation we we obtain

xn+1 = p+

(
p

xn−1
+

p

x2
n−2

+
1

x2
n−3

)2

. (7)

From equation (7) we observe that p<xn<p+ (1 + 1
p + 1

p2
)2 for n ≥ 4.

Also from (1) and (7) we have:
xn+1 − p =

(
xn
xn−1

)2

xn+1 − p =
(

p
xn−1

+ p
x2n−2

+ 1
x2n−3

)2 .

Consequently (
xn
xn−1

)2

=

(
p

xn−1
+

p

x2
n−2

+
1

x2
n−3

)2

,

which implies:

xn+1 = p+
pxn
x2
n−1

+
xn
x2
n−2

. (8)

Replacing xn in (8) by p+
(
xn−1

xn−2

)2
we obtain the equation

xn+1 = p+
a2

x2
n−1

+
p+ xn
x2
n−2

. (9)

Observe now that every solution of equation (1) is also a solution of equation (9), with initial
values x−2, x−1 and x0 = p+ ( x0

x−1
)2.

Observe also that it is of the form xn+1 = f(xn, xn−1, xn−2) where :

f(u, v, w) = p+
p2

v2
+
p+ u

w2

.

Theorem 2 If p >
√

2 then the equilibrium of equation (1) is globally asymptotically stable.

Proof. First we show that every interval I of the form [p,U ] where U ≥ p(p2+p+1)
(p2−1)

with p > 1

is invariant for the function f .
Let U > p then I = [p,U ] is invariant if and only if for all u, v, w ∈ I, f(u, v, w) ∈ I that

is:

p ≤ p+
p2

v2
+
p+ u

w2
≤ U .

5
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As p ≤ u, v, w ≤ U we have that: p ≤ f(u, v, w) ≤ p + 1 + 1
p + U

p2
. We also know that if U

satisfies: p+ 1 + 1
p + U

p2
≤ U then we have

f(u, v, w) ≤ U .

It follows that given p > 1 such U exists and therefore I is invariant for f where U ≥ p(p2+p+1)
(p2−1)

.

In the following we may assume p > 1 and U = p(p2+p+1)
(p2−1)

, so I is invariant by f .

Next, we prove that I is an attracting interval, that is every solution of equation (8) must
enter the interval I. Observe that given the initial values x−2, x−1 and x0 for equation (8), we
have xn > p for n ≥ 1.

Now if x3 ≤ U then xn ∈ [p,U ] for all n ≥ 3. Otherwise, from equation (4) given that
xn−2 , xn−3 > p we have

xn < p+ 1 +
1

p
+
xn−1

p2
,

that is if we set A = p+ 1 + 1
p

xn<A+
xn−1

p2
.

Thus by induction we can conclude that

xn < A
1− ( 1

p2
)n−3

1− 1
p2

+
x3

(p2)n−3
. (10)

It is straightforward to check that when x3 > U the right hand side of (10) is a decreasing

sequence that converges to A ( 1
1− 1

p2
). This limit is in fact U = p(p2+p+1)

(p2−1)
. It follows that there

must exist k > 3 such that: a < xk < U Otherwise xn must converge to U which is impossible.
Thus we have xk−1, xk−2 > p and xk ≤ U , hence xk+1 ∈ [a,U ] it follows by induction that

xn ∈ [p,U ] for n ≥ k.
Consequently every solution of equation (8) must enter the interval [p,U ].

Now that we have an invariant and attracting interval we check the conditions of Theorem
A.0.5 [3]: {

f(M,m,m) = M
f(m,M,M) = m

⇔

{
M = p+ p2+p+M

m2

m = p+ p2+p+m
M2

.

From the second equation we get

M2 =
p2 + p+m

m− p
. (11)

On the other hand the system is equivalent to:{
(M − p)m2 = p2 + p+M
(m− p)M2 = p2 + p+m

⇔
{
Mm2 = pm2 + p2 + p+M
mM2 = pM2 + p2 + p+m

6
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By subtracting the second equation from the first we obtain:

Mm(m−M) = p(m−M)(m+M)− (m−M)

and given that m 6= M we have:

Mm = p(m+M)− 1

which implies:

M =
pm− 1

m− p
. (12)

Equations (11) and (12) yield

(pm− 1)2

(m− p)2
=
p2 + p+m

m− p
,

which implies:
(pm− 1)2 = (p2 + p+m)(m− p).

This leads to the following quadratic equation:

m2(p2 − 1)−m(p2 + 2p) + p2(p+ 1) + 1 = 0,

which discriminant is
∆ = (p2 + 2p)2 − 4(p2 − 1)(p2(p+ 1) + 1)

and

∆ = −4p5 − 3p4 + 8p3 + 4p2 + 4 = (
√

2− p)(4p4 + (3 + 4
√

2)p3 + 3
√

2p2 + 2p+ 2
√

2).

It is clear that when a >
√

2 there is no real solutions. and when p =
√

2 there is one unique
solution m = p + 1 = M . Consequently if a ≥

√
2 the conditions of Theorem A.0.5 [3] or

Theorem 1 [5] are fully satisfied and therefore every solution must converge to the unique
equilibrium (p+ 1) 2

Conjecture 1 The equilibrium point x̄ = p+1 of equation (2) is globally asymptotically stable
if p > 1.

Remark 1 It could have been easier to prove the fact if we restrict the set of solutions of
equation (4) to the ones satisfied by equation (1) as the solutions must oscillate about the
equilibrium (p+ 1) that is there exist k such that: p < xk < p+ 1 < U .

7

1341

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.8, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

T. Khyat et al 1335-1346



Figure 1: a) Phase diagrams when n = 10, 000 and a) p = 1.02 b) p = 1.12

Figure 2: Bifurcation diagrams in (p− x) plane.

Figure 3: Periodic orbit for a) p = 0.01 b) p = 0.15 c) p = 0.5901 (See Table 2).

3 Reduction to the normal form

If we make a change of variable yn = xn − x̄, then the transformed equation is given by

yn+1 =
(p+ yn + 1) 2

(p+ yn−1 + 1) 2
− 1, n = 0, 1, . . . . (13)

8

1342

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.8, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

T. Khyat et al 1335-1346



a Period of the sol. Solution

0.01 8 {0.877631, 0.01, 0.0101298, 1.03613, 10462.3, 1.01959× 108,
9.49713× 107, 0.877631}

0.15 20 {574.846, 2023.71, 12.5435, 0.150038, 0.150143, 1.1514,
58.9583, 2622.2, 1978.22, 0.719138, 0.15, 0.193507, 1.81422,
88.0493, 2355.59, 715.88, 0.242359, 0.15, 0.533058, 12.7789}

0.5901 19 {0.804816, 0.597988, 1.14217, 4.23826, 14.3595, 12.0691,
1.29653, 0.60164, 0.805431, 2.38228, 9.33854, 15.9565,

3.50965, 0.638479, 0.623195, 1.5428, 6.71883, 19.5558, 9.06166}

Table 1: Periodic solutions for some values of p.

Set
un = yn−1 and vn = yn for n = 0, 1, . . .

and write Eq.(1) in the equivalent form:

un+1 = vn (14)

vn+1 =
(p+ vn + 1)2

(p+ un + 1)2
− 1.

Let F be the corresponding map defined by:

F

(
u
v

)
=

(
v

(p+v+1)2

(p+u+1)2
− 1

)
. (15)

Then F has the unique fixed point (0, 0) and the Jacobian matrix of F at (0, 0) is given by

JacF(0, 0) =

(
0 1
− 2
p+1

2
p+1

)
It is easy to see that

F

(
u
v

)
=

(
0 1
− 2
p+1

2
p+1

)(
u
v

)
+ F1

(
u
v

)
, (16)

where

F1

(
u
v

)
=

(
0

(p+v+1)2

(p+u+1)2
+ 2u

p+1 −
2v
p+1 − 1

)
.

The eigenvalues of JacF(0, 0) are µ(p) and µ(p) where

µ(p) =
1 + i

√
2p+ 1

p+ 1
, |µ(p)| =

√
2

p+ 1
.

One can prove that for p = p0 = 1 we obtain µ(p0)| = 1 and

µ(p0) =
1

2
+
i
√

3

2
, µ2(p0) = −1

2
+
i
√

3

2
, µ3(p0) = −1, µ4(p0) = −1

2
− i
√

3

2
,

9
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from which follows that µk(p0) 6= 1 for k = 1, 2, 3, 4. Furthermore, we get

d

dp
|µ(p)| = − 1√

2

(
1

p+ 1

)3/2

,
d|µ(p)|
dp

∣∣∣∣
p=p0

= −1

4
< 0.

The eigenvectors of corresponding to µ(p) and µ(p) are q(p) and q(p), where

q(p) =

(
1− i

√
2p+ 1

p+ 1
, 1

)T
.

Substituting p = p0 = 1 into (16) we get

F

(
u
v

)
= A

(
u
v

)
+ G

(
u
v

)
, (17)

where

A = JacF(0, 0)|p=1 =

(
0 1
−1 1

)
and G

(
u
v

)
:=

(
0

(v+2)2

(u+2)2
+ u− v − 1

)
.

Hence, for p = p0 system (14) is equivalent to(
un+1

vn+1

)
= A

(
un
vn

)
+ G

(
un
vn

)
. (18)

Define the basis of R2 by Φ = (q, q̄), where q = q(p0), then we can represent (u, v) as(
u
v

)
= Φ

(
z
z̄

)
= (qz + q̄z̄) =

(
1
2

(
1 + i

√
3
)
z̄ + 1

2

(
1− i

√
3
)
z

z̄ + z

)
.

By using this, we have

G

(
Φ

(
z
z̄

))
=

 0
(z̄+z+2)2

( 1
2(1+i

√
3)z̄+ 1

2(1−i
√

3)z+2)
2 + 1

2

(
−1 + i

√
3
)
z̄ − 1

2

(
1 + i

√
3
)
z − 1

 (19)

Thus we obtain that

g20 =
∂2

∂z2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

1
4 i
(√

3 + 5i
))

g11 =
∂2

∂z∂z̄
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0
1

)
g02 =

∂2

∂z̄2
G

(
Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

−1
4 i
(√

3− 5i
)) ,

(20)

and

K20 = (µ2I −A)−1g20 =

(
−1

2 −
i
√

3
4

5
8 −

i
√

3
8

)

K11 = (I −A)−1g11 =

(
1
1

)
K02 = (µ̄2I −A)−1g02 = K20

(21)

10
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By using K20, K11 and K02 we have that

g21 =
∂3

∂z2∂z̄
G

(
Φ

(
z
z̄

)
+

1

2
K20z

2 + K11zz̄ +
1

2
K02z̄

2

)∣∣∣∣
z=0

=

(
0

− i
√

3
8

)
. (22)

It is easy to see that pA = µp and pq = 1 where

p =

(
i√
3
,
1

6

(
3− i

√
3
))

and

a(p0) =
1

2
Re(pg21µ̄) = − 1

16
< 0.

Figure 4: Trajectories and invariant curve for a) p = 0.999 b) p = 0.99.

Thus we prove the following result:

11
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Theorem 3 Let x̄ = p + 1. Then there is a neighborhood U of the equilibrium point x̄ and a
ρ > 0 such that for |p − 1| < ρ and x0, x−1 ∈ U , then ω-limit set of solution of Eq(1), with
initial condition x0, x−1 is equilibrium point x̄ if p > 1 and belongs to a closed invariant C1

curve Γ(p) encircling the equilibrium point x̄ if p < 1. Furthermore, Γ(1) = 0 and invariant
curve Γ(p) can be approximated by(

x1

x2

)
≈
(
p+ 1 + 2

√
1− p

(√
3 sin θ + cos θ

)
− (p− 1)

(√
3 sin 2θ − 2 cos 2θ + 4

)
p+ 1 + 4

√
1− p cos θ − 1

2(p− 1)
(√

3 sin 2θ + 5 cos 2θ + 8
) )

Proof. The proof follows from above discussion and Theorem 1 and Corollary 1. 2
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[3] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equa-
tions, with Open Problems and Conjectures, Chapman& Hall/CRC Press, 2001.
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Abstract

In this paper, we study the reverse order law for the Moore-Penrose inverse of an operator
product T1T2T3. In particular, using the matrix form of a bounded linear operator we derive
some necessary and sufficient conditions for the reverse order law (T1T2T3)† = T †

3 T †
2 T †

1 .
Moreover, some finite dimensional results are extended to infinite dimensional settings.

Keywords: Moore-Penrose inverse; Reverse order law; Bounded linear operator; Op-
erator product; Hilbert space.
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1 Introduction

Throughout this paper, “an operator” means “a bounded linear operator over Hilbert space”.
Let H, I, J and K denote arbitrary Hilbert spaces. We use L(H,K) to denote the set of all
bounded linear operators from H to K. Especially, L(H)=L(H,H). For an operator T ∈ L(H,K),
the symbols R(T ), N(T ) and T ∗ denote the range, the null-space and the adjoint of T , respec-
tively. I denotes the unit operator over Hilbert space and O is the zero operator over Hilbert
space. An operator T ∈ L(H) is a Hermitian operator if and only if T ∗ = T . An operator
T ∈ L(H) is an invertible operator if and only if there is a operator U ∈ L(H), such that
TU = UT = I. If such operator U exists, we denotes it by T−1.

Recall that an operator X ∈ L(K,H) is called the Moore-Penrose inverse of T ∈ L(H,K), if
X satisfies the following four operator equations [16],

(1) TXT = T, (2) XTX = X, (3) (TX)∗ = TX, (4) (XT )∗ = XT.

∗This work was supported by the NSFC (Grant No: 11301397) and the Guangdong Natural Science Fund
of China (Grant No: 2014A030313625) and the Training plan for the Outstanding Young Teachers in Higher
Education of Guangdong (Grant No: SYq2014002) and the Student Innovation Training Program of Guangdong
province, P.R.China (No. 201511349071).

†Corresponding author. E-mail: xzpwhere@163.com
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2 Z.P.Xiong and Y.Y.Qin

If such operator X exists then it is unique and is denoted by T †. It is well known that the
Moore-Penrose inverse of T exists if and only if R(T ) is closed [5, 8].

For a subset {i, j, · · · , k} of the set {1, 2, 3, 4}, the set of operators satisfying the equations
(i), (j), · · · , (k) from among equations (1)-(4) is denoted by T{i, j, · · · , k}. An operator in
T{i, j, · · · , k} is called an {i, j, · · · , k}-inverse of T and is denoted by T (i,j,··· ,k). For example, an
operator X of the set T{1} is called a {1}-inverse or a g-inverse of T and denoted by X = T (1).
One usually denotes any {1, 3}-inverse of the set T{1, 3} as T (1,3) which is also called a least
squares g-inverse of T . Any {1, 4}-inverse of the set T{1, 4} is denoted by T (1,4) which is also
called a minimum norm g-inverse of T . The unique {1, 2, 3, 4}-inverse of T is the Moore-Penrose
inverse of T . We refer the reader to [1, 14] for basic results on the generalized inverses of bounded
linear operators.

If s is a semigroup with the unit 1 and if ai ∈ s, i = 1, 2, 3, are invertible, then the equality
(a1a2a3)−1 = a−1

3 a−1
2 a−1

1 is called the reverse order law for the ordinary inverse. Let Ti, i =
1, 2, 3, be three operators over Hilbert space such that the product T1T2T3 is meaningful. If
each of the three operators is invertible, then the product T1T2T3 is invertible too, and the
ordinary inverse of T1T2T3 satisfies the reverse order law (T1T2T3)−1 = T−1

3 T−1
2 T−1

1 . However,
this so-called reverse order law is not necessarily true for other kind generalized inverses. An
interesting problem is, for given {i, j, · · · , k}-inverses and operators Ti, i = 1, 2, 3, with T1T2T3

is meaningful, when

(T1T2T3){i, j, · · · , k} = T3{i, j, · · · , k}T2{i, j, · · · , k}T1{i, j, · · · , k}?

The reverse order laws for generalized inverses of operator product yield a class of interesting
problems that are fundamental in the theory of generalized inverses of operator, see [1, 10, 21].
Theory and computations of the reverse order laws for generalized inverses of operator product
are important subjects in many branches of applied science, such as nonlinear control theory,
operator theory, operator algebra, global analysis and approximation theory, see [1, 6, 20, 21].
Suppose Ti, i = 1, 2, 3, and � are bounded linear operators over Hilbert space. The least squares
technique (LS):

min
Y

∥(T1T2T3)Y − �∥2,

is used in many practical scientific problems. Any solution Y of the above LS problem can
be expressed as Y = (T1T2T3)(1,3)�. If the LS problem is consistent, then the minimum norm
solution Y has the form Y = (T1T2T3)(1,4)�. The unique minimal norm least square solution Y
of the LS problem is Y = (T1T2T3)†�. One such problem concerned with the above LS problem
is, under what conditions, (T1T2T3)(i,j,··· ,k) = T

(i,j,··· ,k)
3 T

(i,j,··· ,k)
2 T

(i,j,··· ,k)
1 ?

Since the middle 1960s, the reverse order law for generalized inverses have attracted consid-
erable attention, and a significant number of paper treat the sufficient or equivalent conditions
such that the reverse order law holds in some sense. It is a classical result of Greville [10], that
(AB)† = B†A† if and only if R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗), in this case when A
and B are complex matrices. This result is extended to bounded linear operators on Hilbert
space, by Bouldin [2] and Izumino [12]. In [13] the reverse order law for the Moore-Penrose
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inverse is proved in rings with involutions. In [4] D.S.Cvetković-IIić studied this reverse order
law in C∗-algebra. Then, in [7], the reverse order law for the Moore-Penrose inverse is obtained
as a consequence of some set equalities. The reader can find some interesting and related results
in [7, 15, 17, 18, 19, 22].

In 1986, R.E.Hartwig [11] first discussed the reverse order law for Moore-Penrose inverse of
three matrices product. In the paper [9] D.S. Djordjević et al., extended the results of [11] to the
bounded linear operators on Hilbert space, using some algebraic method. In this paper, we revisit
this reverse order law by applying the technique of matrix form of bounded linear operators [3].
Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I) such that T1, T2, T3 and T1T2T3 have closed
ranges. Then using the technique of matrix form of a bounded linear operator [3] and the solving
operator equations, we will revisit the following reverse order law (T1T2T3)† = T †

3T †
2T †

1 . Some
new simpler equivalent conditions for this reverse order law are obtained.

We first mention the following results, which will be used in this paper.

Lemma 1.1. [3, 7, 8] Let T ∈ L(H,K) have a closed range. Let H1 and H2 be closed and mutu-
ally orthogonal subspace of H, such that H1

⊕
H2 = H. Let K1 and K2 be closed and mutually

orthogonal subspace of K, such that K = K1
⊕

K2. Then the operator T has the following matrix
representations with respect to the orthogonal sums of subspaces H = H1

⊕
H2 = R(T ∗)

⊕
N(T )

and K = K1
⊕

K2 = R(T )
⊕

N(T ∗):

(1) T =
(

T11 T12

O O

)
:
(

H1

H2

)
→
(

R(T )
N(T ∗)

)
and T † =

(
T ∗

11E
−1 O

T ∗
12E

−1 O

)
:
(

R(T )
N(T ∗)

)
→
(

H1

H2

)
,

where E = T11T
∗
11 + T12T

∗
12 is invertible on R(T );

(2) T =
(

T11 O
T21 O

)
:
(

R(T ∗)
N(T )

)
→
(

K1

K2

)
and T † =

(
F−1T ∗

11 F−1T ∗
12

O O

)
:
(

K1

K2

)
→
(

R(T ∗)
N(T )

)
,

where F = T ∗
11T11 + T ∗

21T21 is invertible on R(T ∗);

(3) T =
(

T11 O
O O

)
:
(

R(T ∗)
N(T )

)
→
(

R(T )
N(T ∗)

)
and T † =

(
T−1

11 O
O O

)
:
(

R(T )
N(T ∗)

)
→
(

R(T ∗)
N(T )

)
,

where T11 is invertible.

Lemma 1.2. [1] Let T ∈ L(H,K) and N ∈ L(K,H) have closed ranges. Then,

(1) TT †N = N ⇔ R(N) ⊆ R(T );

(2) NT †T = N ⇔ R(N∗) ⊆ R(T ∗).

2 The triple reverse order law for Moore-Penrose inverse of op-
erator product

Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T1, T2, T3 and T1T2T3 have closed
ranges. In this section, we will give necessary and sufficient conditions for the triple reverse
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order law of the Moore-Penrose inverse of the operator product T1T2T3. First of all let us define

E = T †
1T1, F = T3T

†
3 , P = ET2F, Q = FT †

2E, M = T1T2T3, G = T †
3T †

2T †
1 . (2.1)

In terms of these, we get the following results.

Theorem 2.1. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T1, T2, T3 and T1T2T3

have closed ranges. Then the following statements are equivalent:

(1) (T1T2T3)† = T †
3T †

2T †
1 ;

(2) Q ∈ P{1, 2}, and T ∗
1 T1PQ, QPT3T

∗
3 are two Hermitian operators;

(3) MGM = G, and GMG = G, and (MG)∗ = MG, and (GM)∗ = GM .

Proof. (1)⇔ (3): Obvious.

Next, we will prove (2)⇔ (3). From Lemma 1.1, we know that the operators T1, T2, T3, T1T2T3

and T †
3T †

2T †
1 have the following matrix form with respect to the orthogonal sum of subspaces:

T1 =
(

T 11
1 T 12

1

O O

)
:
(

R(T2)
N(T ∗

2 )

)
→
(

R(T1)
N(T ∗

1 )

)
, (2.2)

T †
1 =

(
(T 11

1 )∗D−1 O
(T 12

1 )∗D−1 O

)
:
(

R(T1)
N(T ∗

1 )

)
→
(

R(T2)
N(T ∗

2 )

)
, (2.3)

where D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗ is invertible on R(T1).

T2 =
(

T 11
2 O
O O

)
:
(

R(T ∗
2 )

N(T2)

)
→
(

R(T2)
N(T ∗

2 )

)
, (2.4)

T †
2 =

(
(T 11

2 )−1 O
O O

)
:
(

R(T2)
N(T ∗

2 )

)
→
(

R(T ∗
2 )

N(T2)

)
, (2.5)

where T 11
2 is invertible.

T3 =
(

T 11
3 O

T 21
3 O

)
:
(

R(T ∗
3 )

N(T3)

)
→
(

R(T ∗
2 )

N(T2)

)
, (2.6)

T †
3 =

(
S−1(T 11

3 )∗ S−1(T 21
3 )∗

O O

)
:
(

R(T ∗
2 )

N(T2)

)
→
(

R(T ∗
3 )

N(T3)

)
, (2.7)

where S = (T 11
3 )∗T 11

3 + (T 21
3 )∗T 21

3 is invertible on R(T ∗
3 ).

Let M = T1T2T3 and G = T †
3T †

2T †
1 , then form (2.2)∼(2.7), we have

M = T1T2T3 =
(

T 11
1 T 11

2 T 11
3 O

O O

)
:
(

R(T ∗
3 )

N(T3)

)
→
(

R(T1)
N(T ∗

1 )

)
(2.8)
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and

G = T †
3T †

2T †
1 =

(
S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1 O
O O

)
:
(

R(T1)
N(T ∗

1 )

)
→
(

R(T ∗
3 )

N(T3)

)
. (2.9)

According to the formulas (2.1)∼(2.7), we have

Q =
(

T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1

T 21
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 21

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1

)
(2.10)

and

P =
(

(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗ (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗

(T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗ (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗

)
. (2.11)

From (2.2), (2.6), (2.10) and (2.11), we get

T ∗
1 T1PQ =

(
�11 �12

�21 �22

)
,where (2.12)

�11 = (T 11
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 ,

�12 = (T 11
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1 ,

�21 = (T 12
1 )∗T 11

1 T 11
2 T 21

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 ,

�22 = (T 12
1 )∗T 11

1 T 11
2 T 21

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1 ,

and

QPT3T
∗
3 =

(
�11 �12

�21 �22

)
, where (2.13)

�11 = T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 (T 11

3 )∗,

�12 = T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 (T 21

3 )∗,

�21 = T 21
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 (T 11

3 )∗,

�22 = T 21
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 (T 21

3 )∗.

Combining (2.8) with (2.9), we know that G = M † (i.e. T †
3T †

2T †
1 = (T1T2T3)†), if and only if

(I) MGM = M, (II) GMG = G, (III) (MG)∗ = MG, (IV ) (GM)∗ = GM. (2.14)

From the formulas (2.10)∼(2.13), we know that the statement (2) of Theorem 2.1 can be
rewrited as

(a) PQP = P, (b) QPQ = Q, (c) (T ∗
1 T1PQ)∗ = T ∗

1 T1PQ, (d) (QPT3T
∗
3 )∗ = QPT3T

∗
3 . (2.15)
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In the rest of this section, we will prove (2.14) is equivalent to (2.15). That is the conditions
(2) in Theorem 2.1 is equal to the conditions (3) in Theorem 2.1.

(I)⇔(a): From (2.8) and (2.9), we have

MGM = (T1T2T3)(T
†
3T †

2T †
1 )(T1T2T3)

=
(

T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 O

O O

)
. (2.16)

Then from (2.8) and (2.16), we know that the inclusion MGM = M is equivalent to

T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 = T 11

1 T 11
2 T 11

3 . (2.17)

By the formulas (2.10) and (2.11), we have

PQP =
(

�11 �12

�21 �22

)
, where (2.18)

�11 = (T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗,

�12 = (T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗,

�21 = (T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗,

�22 = (T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗.

From (2.11) and (2.18), we know that the inclusion PQP = P is equivalent to

(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗

= (T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗, (2.19)

(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗

= (T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗, (2.20)

(T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗

= (T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗, (2.21)

(T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗

= (T 12
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 S−1(T 21
3 )∗. (2.22)

If the equation (2.17) holds, we have the equations (2.19)∼(2.22) hold too. That is (I)⇒(a).

On the other hand, if the equations (2.19)∼(2.22) hold, we have

T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗T 11
3

= T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗T 11
3 , (2.23)
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T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗T 21
3

= T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗T 21
3 , (2.24)

T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗T 11
3

= T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗T 11
3 , (2.25)

T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗T 21
3

= T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 21

3 )∗T 21
3 . (2.26)

Combining (2.23), (2.24) with the definition of S in (2.7), we have

T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3

= T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 . (2.27)

Combining (2.25), (2.26) with the definition of D in (2.3), we have

T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3

= T 12
1 (T 12

1 )∗D−1T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 T 11

2 T 11
3 . (2.28)

From the results in (2.27) and (2.28), we have

T 11
1 T 11

2 T 11
3 = T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1 T 11
2 T 11

3 . (2.29)

That is (a)⇒(I).

(II)⇔(b): With the same method of the proof of (I)⇔(a), the condition GMG = G is easily
seen to be equivalent to QPQ = Q.

(III)⇔(c): From (2.8) and (2.9), we have

MG = (T1T2T3)(T
†
3T †

2T †
1 ) =

(
T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1 O

O O

)
. (2.30)

Since S and D are Hermitian operators, then the inclusion (MG)∗ = MG is equivalent to

T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1 = D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗.(2.31)

By the formulas (2.12), we have that the inclusion (T ∗
1 T1PQ)∗ = T ∗

1 T1PQ is equivalent to

(T 11
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1

= (T 11
1 )∗D−1T 11

1 ((T 11
2 )−1)∗T 11

3 S−1(T 11
3 )∗(T 11

2 )∗(T 11
1 )∗T 11

1 , (2.32)

(T 11
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1

= (T 11
1 )∗D−1T 11

1 ((T 11
2 )−1)∗T 11

3 S−1(T 11
3 )∗(T 11

2 )∗(T 11
1 )∗T 12

1 , (2.33)
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(T 12
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 11

1

= (T 12
1 )∗D−1T 11

1 ((T 11
2 )−1)∗T 11

3 S−1(T 11
3 )∗(T 11

2 )∗(T 11
1 )∗T 11

1 , (2.34)

(T 12
1 )∗T 11

1 T 11
2 T 11

3 S−1(T 11
3 )∗(T 11

2 )−1(T 11
1 )∗D−1T 12

1

= (T 12
1 )∗D−1T 11

1 ((T 11
2 )−1)∗T 11

3 S−1(T 11
3 )∗(T 11

2 )∗(T 11
1 )∗T 12

1 . (2.35)

If the equation (2.31) holds, we have the equations (2.32)∼(2.35) hold too. That is (III)⇒(c).

On the other hand, if the equations (2.32)∼(2.35) hold, we have

T 11
1 (T 11

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 (T 11

1 )∗

= T 11
1 (T 11

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗T 11
1 (T 11

1 )∗, (2.36)

T 11
1 (T 11

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 12
1 (T 12

1 )∗

= T 11
1 (T 11

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗T 12
1 (T 12

1 )∗, (2.37)

T 12
1 (T 12

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 11
1 (T 11

1 )∗

= T 12
1 (T 12

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗T 11
1 (T 11

1 )∗, (2.38)

T 12
1 (T 12

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1T 12
1 (T 12

1 )∗

= T 12
1 (T 12

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗T 12
1 (T 12

1 )∗. (2.39)

Combining (2.36), (2.37) with the definition of D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗ in (2.3), we have

T 11
1 (T 11

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗

= T 11
1 (T 11

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗D. (2.40)

Combining (2.38), (2.39) with the definition of D, we have

T 12
1 (T 12

1 )∗T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗

= T 12
1 (T 12

1 )∗D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗D. (2.41)

Finally, from (3.40), (3.41) and the definition of D, we have

DT 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗ = T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗D. (2.42)

Since D = (T 11
1 )(T 11

1 )∗ + (T 12
1 )(T 12

1 )∗ is invertible on R(T1), then (2.42) can be rewrited as

T 11
1 T 11

2 T 11
3 S−1(T 11

3 )∗(T 11
2 )−1(T 11

1 )∗D−1 = D−1T 11
1 ((T 11

2 )−1)∗T 11
3 S−1(T 11

3 )∗(T 11
2 )∗(T 11

1 )∗.(2.43)

That is (c)⇒(III).

(IV)⇔(d): With the same method of the proof of (III)⇔(c), we can get the result that the
condition (GM)∗ = GM is equivalent to (QPT3T

∗
3 )∗ = QPT3T

∗
3 without the proof.
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From the above proof, the formulas (2.14) is equivalent to (2.15). We then complete the proof
of the theorem. �

Be the same as (2.1), Q = FT †
2E and P = ET2F , next we will derive some other equivalent

conditions for the triple reverse order law (T1T2T3)† = T †
3T †

2T †
1 .

Theorem 2.2. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T1, T2, T3 and T1T2T3

have closed ranges. Then the following statements are equivalent:

(1) (T1T2T3)† = T †
3T †

2T †
1 ;

(2) Q ∈ P{1, 2} and T ∗
1 T1PQ , QPT3T

∗
3 are two Hermitian operators;

(3) Q ∈ P{1} and R(T ∗
1 T1P ) = R(Q∗) and R(T3T

∗
3 P ∗) = R(Q);

(4) (PQ)2 = PQ and R(T ∗
1 T1P ) = R(Q∗) and R(T3T

∗
3 P ∗) = R(Q).

Proof. (1)⇔(2): By the results in Theorem 2.1, we know that (1)⇔(2).

(2)⇒(3): According to the definitions of the generalized inverses of operators, we have

Q ∈ P{1, 2} ⇒ Q ∈ P{1}. (2.44)

By the definitions of the ranges of operators and the formula (2.44), we have

R(T ∗
1 T1P ) = R(T ∗

1 T1PQP ) ⊆ R(T ∗
1 T1PQ) ⊆ R(T ∗

1 T1P ). (2.45)

That is

R(T ∗
1 T1P ) = R(T ∗

1 T1PQ). (2.46)

If T ∗
1 T1PQ is a Hermitian operator, then

R(T ∗
1 T1P ) = R(T ∗

1 T1PQ) = R(Q∗P ∗T ∗
1 T1) = R(Q∗P ∗T †

1T1). (2.47)

Since Q∗P ∗T †
1T1 = Q∗P ∗, then from (2.44) and (2.47), we have

R(T ∗
1 T1P ) = R(Q∗P ∗T †

1T1) = R(Q∗P ∗) = R(Q∗). (2.48)

Similarly, if QPT3T
∗
3 is a Hermitian operator, we have

R(T ∗
3 T3P

∗) = R(T ∗
3 T3P

∗Q∗) = R(QPT3T
∗
3 ) = R(QP ) = R(Q). (2.49)

Combining (2.44), (2.48) with (2.49), we have the result (2)⇒(3).

(3)⇒(4): Obvious.

(4)⇒(2): Firstly, we will prove that if the statement (4) in Theorem 2.2 is true, then PQP =
P . Since P = PT3T

†
3 and R(T3T

∗
3 P ∗) = R(Q), then we have

R(P ) = R(PT3) = R(PT3T
∗
3 P ∗) = R(PQ). (2.50)
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Combining (2.50) with (PQ)2 = PQ, we have

PQP = P and (QP )2 = QP. (2.51)

Secondly, we will prove that if the statement (4) in Theorem 2.2 is true, then QPQ = Q.
From the statement (4) in Theorem 2.2 and the definitions of Q and P , we have

R(Q∗) = R(T ∗
1 T1P ) = R(T ∗

1 T1PP ∗T ∗
1 T1) = R(T ∗

1 T1PP ∗T †
1T1)

= R(T ∗
1 T1PP ∗) = R(Q∗P ∗). (2.52)

Combining (2.52) with (Q∗P ∗)2 = Q∗P ∗, we have

Q∗P ∗Q∗ = Q∗ i.e. QPQ = Q. (2.53)

Thirdly, we will prove that if the statement (4) in Theorem 2.2 is true, then T ∗
1 T1PQ is a

Hermitian operator. Since R(T ∗
1 T1P ) = R(Q∗) and R(Q∗P ∗) = R(Q∗), then we have

Q∗P ∗T ∗
1 T1P = T ∗

1 T1P. (2.54)

From (2.54), we have

Q∗P ∗T ∗
1 T1PQ = T ∗

1 T1PQ = (T ∗
1 T1PQ)∗. (2.55)

Fourthly, we will prove that if the statement (4) in Theorem 2.2 is true, then QPT3T
∗
3 is a

Hermitian operator. Since R(T3T
∗
3 P ∗) = R(Q) and QPQ = Q, then we have

R(QP ) = R(Q) and QPT3T
∗
3 P ∗ = T3T

∗
3 P ∗. (2.56)

From (2.56), we have

QPT3T
∗
3 P ∗Q∗ = T3T

∗
3 P ∗Q∗ = (QPT3T

∗
3 )∗ = QPT3T

∗
3 . (2.57)

Combining the formulas (2.51), (2.53), (2.55) with (2.57), we immediately obtain the result
(4)⇒(2). We then complete the proof of the theorem. �

Let us now see how some of the special cases come out of the conditions of Theorem 2.2.

Corollary 2.1. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T1, T2, T3 and
T1T2T3 have closed ranges. If R(T2) ⊆ R(T ∗

1 ) and R(T ∗
2 ) ⊆ R(T3), then

(T1T2T3)† = T †
3T †

2T †
1 ⇔ R(T ∗

1 T1T2) ⊆ R(T2) and R(T3T
∗
3 T ∗

2 ) ⊆ R(T ∗
2 ).

Proof. According to the hypothesis R(T2) ⊆ R(T ∗
1 ) and R(T ∗

2 ) ⊆ R(T3) and the results in
Lemma 1.2, we have

Q = FT †
2E = T †

2 , P = ET2F = T2. (2.58)
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⇒: If (T1T2T3)† = T †
3T †

2T †
1 , then from Theorem 2.1 and Theorem 2.2 , we have (PQ)2 = PQ

and R(T ∗
1 T1P ) = R(Q∗) and R(T3T

∗
3 P ∗) = R(Q). So, we get

R(T ∗
1 T1T2) = R((T †

2 )∗) ⊆ R(T2) and R(T3T
∗
3 T ∗

2 ) = R(T †
2 ) ⊆ R(T ∗

2 ). (2.59)

⇐: From (2.58), we have PQP = P and QPQ = Q. That is

Q ∈ P{1, 2}. (2.60)

By (2.58), we also have

T ∗
1 T1PQ = T ∗

1 T1T2T
†
2 and QPT3T

∗
3 = T †

2T2T3T
∗
3 . (2.61)

Combining the hypothesis R(T ∗
1 T1T2) ⊆ R(T2) with results in Lemma 1.2, we have

T2T
†
2T1T

∗
1 T2T

†
2 = T1T1T

∗
2 T †

2 = (T1T1T
∗
2 T †

2 )∗. (2.62)

Combining the hypothesis R(T3T
∗
3 T2) ⊆ R(T ∗

2 ) with results in Lemma 1.2, we have

T †
2T2T3T

∗
3 T ∗

2 (T ∗
2 )† = T3T

∗
3 T ∗

2 (T ∗
2 )† = (T3T

∗
3 T ∗

2 (T ∗
2 )†)∗ = T †

2T2T3T
∗
3 = (T †

2T2T3T
∗
3 )∗. (2.63)

According to the formulas (2.59), (2.60), (2.62), (2.63) and the statement (2) in Theorem 2.2,
we immediately obtain the results of Corollary 2.1. �

Corollary 2.2. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T2 and T1T2T3 have
closed ranges. If T †

1T1 = I and T3T
†
3 = I (i.e. T1 and T3 are invertible operators), then

(T1T2T3)† = T−1
3 T †

2T−1
1 ⇔ R(T ∗

1 T1T2) ⊆ R(T2) and R(T3T
∗
3 T ∗

2 ) ⊆ R(T ∗
2 ).

Corollary 2.3. Let T1 ∈ L(J,K), T2 ∈ L(I, J) and T3 ∈ L(H, I), such that T1, T2, T3, T1T2T3

and T †
1T1T2T3T

†
3 have closed ranges. If T †

1T1 = T1 and T3T
†
3 = T3, then

(T1T2T3)† = T †
3T †

2T †
1 ⇔ T3T

†
3T †

2T †
1T1 = (T †

1T1T2T3T
†
3 )†.
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DIFFERENTIAL EQUATIONS ARISING FROM CERTAIN

SHEFFER SEQUENCE

T. KIM, D. V. DOLGY, D. S. KIM, H. I. KWON, J. J. SEO

Abstract. In this paper, we study some differential equations arising from
certain Sheffer sequence and investigate some identities for the Sheffer se-
quence of polynomials which is related to the theory of hyperbolic differ-

ential equations.

1. Introduction

A partial differential equation of the second-order

Auxx + 2Buxy + Cuyy +Dux + Euy + F = 0,

is called hyperbolic if the matrix is∣∣∣∣ A B
C D

∣∣∣∣ = 0, (see [6]).

The wave equation is an example of a hyperbolic partial differential equation.
A sequence Sn(x) is called a Sheffer sequence if the generating function has the
form

∞∑
k=0

Sk(x)
tk

k!
= A(t)exB(t),

where

A(t) =A0 +A1t+A2t
2 + · · ·

B(t) =B1t+B2t
2 + · · · , with A0 ̸= 0, B0 ̸= 0 (see [12]).

If f(t) is a delta series and g(t) is an invertible series, there exists a uniquen
sequence Sn(x) of Sheffer polynomials such that the orthogonality condition
< g(t)f(t)k|Sn(x) >= δn,k holds, where δn,k is the Kronecker delta (see [8-11]).

2010 Mathematics Subject Classification. 05A19; 11B83; 34A30.

Key words and phrases. Sheffer sequence, differential equations.
.
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In this paper, we consider the Sheffer sequence given by the pair
(

1
1+t , 1 − (1 + t)−2

)
,

namely

F (t, x) =
1√

1 − t
e
x
(

1√
1−t

−1
)

=

∞∑
n=0

hn(x)
tn

n!
. (1.1)

In [5], Erdélyi also considered a Sheffer sequence which is related to hn(x).
Indeed, his sequence is given by gn(x) = 1

n!hn(x). Also, we note that

hn(x) = xe−x

[
d

dx2

]n
(x2n−1ex), (see [5]). (1.2)

The polynomials hn(x) have applications to the theory of hyperbolic differential
equations (see [1-4]). From (1.1), by replacing t by 1 − e−2t, we can derive the
following equation:

etex(e
t−1) =

∞∑
n=0

(−1)nhn(x)
1

n!
(e−2t − 1)n

=

∞∑
m=0

(
m∑

n=0

(−1)n+mhn(x)2mS2(n,m)

)
tm

m!
,

(1.3)

where S2(n,m) is the Stirling number of the second kind.
As is well known, the Bell polynomials are defined by the generating function

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
, (see [7]). (1.4)

By (1.3), we get

etex(e
t−1) =

( ∞∑
l=0

tl

l!

)( ∞∑
n=0

Beln(x)
tn

n!

)

=

∞∑
m=0

(
m∑

n=0

(
m

n

)
Beln(x)

)
tm

m!
.

(1.5)

From (1.3) and (1.5), we have

m∑
n=0

(
m

n

)
Beln(x) =

m∑
n=0

(−1)n+mhn(x)2mS2(n,m), (m ≥ 0). (1.6)

In this paper, we study some differential equations arising from certain sheffer
sequence and investigate some identities for the Sheffer sequence of polynomials
which is related to the theory of hyperbolic differential equations.
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Differential equations arising from certain Sheffer sequence 3

2. Differential equations arising from certain Sheffer sequence

Let

F = F (t, x) = (1 − t)−
1
2 e

x
(
(1−t)−

1
2 −1

)
(2.1)

Then, we have

F (1) =
dF (t, x)

dt
= (1 − t)−

1
2 e

x
(
(1−t)−

1
2 −1

)(
1
2 (1 − t)−1 +

1

2
x(1 − t)−

3
2

)
=

(
1

2
(1 − t)−1 +

1

2
x(1 − t)−

3
2

)
F,

(2.2)

F (2) =
dF (1)

dt
=

(
3

4
(1 − t)−2 +

5

4
x(1 − t)−

5
2 +

1

4
x2(1 − t)−3

)
F, (2.3)

and

F (3) =

(
15

8
(1 − t)−3 +

33

8
x(1 − t)−

7
2 +

12

8
x2(1 − t)−4 +

1

8
x3(1 − t)−

9
2

)
F.

Thus, we are let to put

F (N) =

(
d

dt

)N

F (t, x) =

(
N∑
i=0

ai(N)xi(1 − t)−N− 1
2 i

)
F, (2.4)

where N = 0, 1, 2, · · · .
Taking the derivative of (2.4) with respect to t, we have

F (N+1) =
dF (N)

dt
=

(
N∑
i=0

(N + 1
2 i)ai(N)xi(1 − t)−N−1− 1

2 i

)
F

+

(
N∑
i=0

ai(N)xi(1 − t)−N− 1
2 i

)
F (1)

=

(
N∑
i=0

(N + 1
2 i)ai(N)xi(1 − t)−N−1− 1

2 i

)
F

+

(
N∑
i=0

ai(N)xi(1 − t)−N− 1
2 i

)(
1

2
(1 − t)−1 +

1

2
x(1 − t)−

3
2

)
F

(2.5)

=

(
N∑
i=0

(
N + 1

2 i+ 1
2

)
ai(N)xi(1 − t)−N−1− 1

2 i +
N∑
i=0

1

2
ai(N)xi+1(1 − t)−N− 3

2−
1
2 i

)
F

=

(
N∑
i=0

(
N + 1

2 i+ 1
2

)
ai(N)xi(1 − t)−N−1− 1

2 i +
N+1∑
i=1

1

2
ai−1(N)xi(1 − t)−N−1− 1

2 i

)
F.
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On the other hand, by replacing N by N + 1 in (2.4), we get

F (N+1) =

(
N+1∑
i=0

ai(N + 1)xi(1 − t)−N−1− 1
2 i

)
F. (2.6)

Comparing the coefficients on both sides of (2.5) and (2.6), we obtain the fol-
lowing recurrence relations:

a0(N + 1) = (N + 1
2 )a0(N), aN+1(N + 1) =

1

2
aN (N), (2.7)

and

ai(N + 1) =
1

2
ai−1(N) +

(
N + 1

2 i+ 1
2

)
ai(N), (1 ≤ i ≤ N). (2.8)

In addition, we note that

F = F (0) = a0(0)F. (2.9)

Thus, by (2.9), we easily get

a0(0) = 1. (2.10)

For N = 1 in (1.5) and (1.2), it is not difficult to show that(
1

2
(1 − t)−1 +

1

2
x(1 − t)−3/2

)
F = F (1)

=
(
a0(1)(1 − t)−1 + a1(x)x(1 − t)−3/2

)
F.

(2.11)

By comparing the coefficients on both sides of (2.11), we easily get

a0(1) =
1

2
, a1(1) =

1

2
. (2.12)

From (2.7), we can easily derive the following equations:

aN+1(N + 1) =
1

2
aN (N) =

(
1

2

)2

aN−1(N − 1) = · · · =

(
1

2

)N+1

,

a0(0) =

(
1

2

)N+1

,

(2.13)

and

a0(N + 1) =(N + 1
2 )a0(N) = (N + 1

2 )(N − 1
2 )a0(N − 1) = · · ·

=(N + 1
2 )(N − 1

2 ) · · · 3
2 · 1

2a0(0) = (N + 1
2 )N+1,

(2.14)

where

(x)n = x(x− 1) · · · (x− n+ 1), (n ≥ 1), (x)0 = 1.
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The matrix (ai(j)) (0 ≤ i, j ≤ N) is given by

(
ai(j)

)
=



1 1
2

(
3
2

)
2

(
5
2

)
3

· · ·
(
N − 1

2

)
N

0 1
2 · · · · · · · · · ·

0 0
(
1
2

)2 · · · · · · ·
0 0 0

(
1
2

)3 · · · ·
...

...
... 0

. . .
...

0 0 0 0 · · ·
(
1
2

)N


For i = 1, 2, 3 in (2.8), we have

a1(N + 1) =
1

2
a0(N) + (N + 1)a1(N)

=
1

2

(
a0(N) + (N + 1)a0(N − 1)

)
+ (N + 1)Na1(N − 1)

=
1

2

(
a0(N) + (N + 1)a0(N − 1) + (N + 1)Na0(N − 2)

)
+ (N + 1)N(N − 1)a1(N − 2)

= · · ·

=
1

2

N−1∑
k=0

(N + 1)ka0(N − k) + (N + 1)Na1(1)

=
1

2

N∑
k=0

(N + 1)ka0(N − k),

(2.15)

a2(N + 1) =
1

2

N−2∑
k=0

(
N + 3

2

)
k
a1(N − k) +

(
N + 3

2

)
N−1

a2(2)

=
1

2

N−1∑
k=0

(
N + 3

2

)
k
a1(N − k),

and

a3(N + 1) =
1

2

N−3∑
k=0

(N + 2)ka2(N − k) + (N + 2)N−2a3(3)

=
1

2

N−2∑
k=0

(N + 2)ka2(N − k).
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Continuing this process, we have

ai(N + 1) =
1

2

N−i+1∑
k=0

(
N + 1

2 i+ 1
2

)
k
ai−1(N − k), (1 ≤ i ≤ N). (2.16)

Now, we give explicit expressions for ai(N + 1), (1 ≤ i ≤ N). From (2.16), we
note that

a1(N + 1) =
1

2

N∑
k1=0

(N + 1)k1a0(N − k1) =
1

2

N∑
k1=0

(N + 1)k1(N − k1 − 1
2 )N−k1 ,

(2.17)

a2(N + 1) =
1

2

N−1∑
k2=0

(
N + 3

2

)
k2
a1(N − k2)

=

(
1

2

)2 N−1∑
k2=0

N−k2−1∑
k1=0

(
N + 3

2

)
k2

(N − k2)k1(N − k2 − k1 − 3
2 )N−k2−k1−1,

(2.18)

a3(N + 1) =

(
1

2

)3 N−2∑
k3=0

N−2−k3∑
k2=0

N−2−k3−k2∑
k1=0

(N + 2)k3
(N − k3 + 1

2 )k2

× (N − k3 − k2 − 1)k1(N − k3 − k2 − k1 − 5
2 )N−k3−k2−k1−2,

(2.19)

and

a4(N + 1) =

(
1

2

)4 N−3∑
k4=0

N−3−k4∑
k3=0

N−3−k4−k3∑
k2=0

N−3−k4−k3−k2∑
k1=0

(N + 5
2 )k4

× (N − k4 + 1)k3(N − k4 − k3 − 1
2 )k2(N − k4 − k3 − k2 − 2)k1

× (N − k4 − k3 − k2 − k1 − 7
2 )N−k4−k3−k2−k1−3.

(2.20)

So, we can deduce that, for 1 ≤ i ≤ N ,

ai(N + 1)

=

(
1

2

)i N−i+1∑
ki=0

N−i+1−ki∑
ki−1=0

· · ·
N−i+1−ki−···−k2∑

k1=0

i∏
l=1

(
N + 3

2 l + 1
2 − i−

i∑
j=l+1

kj

)
kl

×
(
N + 1

2 − i−
i∑

j=1

kj
)
N+1−i−

∑i
j=1 kj

.

(2.21)
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Differential equations arising from certain Sheffer sequence 7

Therefore, by (2.21), we obtain the following theorem.

Theorem 1. For N = 0, 1, 2 · · · , the following family of differential equations

F (N) =

(
d

dt

)N

F (t, x) =

(
N∑
i=0

ai(N)xi(1 − t)−N− 1
2 i

)
F

have a solution

F = F (t, x) = (1 − t)−1/2ex((1−t)−1/2−1),

where

a0(N) =
(
N − 1

2

)
N
,

ai(N) =

(
1

2

)i N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

i∏
l=1

(
N + 3

2 l −
1
2 − i−

i∑
j=l+1

kj

)
kl

×
(
N − 1

2 − i−
i∑

j=1

kj
)
N−i−

∑i
j=1 kj

.

From (1.1), we note that

∞∑
k=0

hk+N (x)
tk

k!
= F (N) =

(
N∑
i=0

ai(N)xi(1 − t)−N− 1
2 i

)
F

=
N∑
i=0

ai(N)xi
∞∑
l=0

(
N + 1

2 i+ l − 1
)
l

tl

l!

∞∑
m=0

hm(x)
tm

m!

=

N∑
i=0

ai(N)xi
∞∑
k=0

(
k∑

l=0

(
k

l

)(
N + 1

2 i+ l − 1
)
l
hk−l(x)

)
tk

k!

=
∞∑
k=0

(
N∑
i=0

k∑
l=0

(
k

l

)(
N + 1

2 i+ l − 1
)
l
ai(N)xihk−l(x)

)
tk

k!
.

(2.22)

Thus, by comparing the coefficients on both sides of (2.22), we obtain the fol-
lowing theorem.

Theorem 2. For k,N = 0, 1, 2, · · · , we have

hk+N (x) =

N∑
i=0

k∑
l=0

(
k

l

)(
N + 1

2 i+ l − 1
)
l
ai(N)xihk−l(x) (2.23)

Letting k = 0 in (2.23), we obtain the following corollary.
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Corollary 3. For N = 0, 1, 2, · · · , we have

hN (x) =
N∑
i=0

ai(N)xi. (2.24)
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5. A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions.
Vol. III Based on notes left by Harry Bateman. Reprint of the 1955 original. Robert E.

Krieger Publishing Co., Inc., Melbourne, Fla., 1981. xvii+292 pp. ISBN:0-89874-069-X.
6. M. Hazewinkel, Michiel, Hyperbolic partial differential equation, numerical methods, En-

cyclopedia of Mathematics, Springer, 2001. ISBN 978-1-55608-010-4.
7. D. S. Kim, T. Kim, Some identities of Bell polynomials, Sci. China Math. 58 (2015), no.

10, 2095-2104.
8. D. S. Kim, T. Kim, S.-H. Rim, Some identities arising from Sheffer sequences of special

polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013) no. 4, 681-693.

9. D. S. Kim, T. Kim, C. S. Ryoo, Sheffer squences for the powers of Sheffer pairs under
umbral composition, Adv. Stud. Contemp. Math (Kyungshang) 23 (2013), no. 2, 275-285.

10. T. Kim, Identities involving Laguerre polynomials derived from umbral calculus, Russ. J.
Math. Phys. 21 (2014), no. 1, 36-45.

11. S. Roman, The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York, 1984. x+193 pp. ISBN: 0-12-594380-6.

12. A. K. Shukla, S. J. Rapeli, An extension of Sheffer polynomials, Proyecciones 30 (2011),
no. 2, 265-275.

Department of Mathematics, College of Science, Tianjin Polytechnic University,

Tianjin City, 300387, China, Department of Mathematics, Kwangwoon University,
Seoul 139-701, Republic of Korea

E-mail address: tkkim@kw.ac.kr

Institute of Mathematics and Computer Science, Far Eastern Federal University,
690950 Vladivostok, Russia

E-mail address: dvdolgy@gmail.com

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Ko-

rea
E-mail address: dskim@sogang.ac.kr

1366

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.8, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

T. KIM et al 1359-1367



Differential equations arising from certain Sheffer sequence 9

Department of Mathematics, Kwangwoon University,Seoul 139-701, Republic of
Korea

E-mail address: sura@kw.ac.kr

Department of Applied Mathematics, Pukyong National University, Busan 608-
737, Republic of Korea.

E-mail address: seo2011@pknu.ac.kr

1367

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.8, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

T. KIM et al 1359-1367
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Abstract

We prove Hyers-Ulam stability of the first order linear inhomogeneous matrix differ-
ence equation x⃗i+1 = A(i)x⃗i + g⃗(i) for all integers i ∈ Z. Moreover, we show Hyers-Ulam
stability of the nth order linear difference equation as a corollary.

1 Introduction

Throughout this paper, we denote by C, N, N0, and Z the set of all complex numbers, of all
positive integers, of all nonnegative integers, and the set of all integers, respectively. Given a
fixed positive integer n, let (Cn, ∥ · ∥n) be a complex normed space, each of whose elements is
a column vector, and let Cn×n be a vector space consisting of all (n× n) complex matrices.
We choose a norm ∥ · ∥n×n on Cn×n which is compatible with ∥ · ∥n, i.e., both norms obey

∥AB∥n×n ≤ ∥A∥n×n∥B∥n×n and ∥Ax⃗∥n ≤ ∥A∥n×n∥x⃗∥n (1.1)

for all A,B ∈ Cn×n and x⃗ ∈ Cn.
A matrix difference equation is a difference equation with matrix coefficients in which the

value of vector at one point depends on the values of preceding (succeeding) points.
In this paper, we prove Hyers-Ulam stability of the first order linear inhomogeneous matrix

difference equation

x⃗i+1 = A(i)x⃗i + g⃗(i) (1.2)

for all integers i ∈ Z, where the transition matrices A(i) are nonsingular. More precisely, we
prove that if a vector sequence {y⃗i}i∈Z of Cn satisfies the inequality

∥y⃗i+1 −A(i)y⃗i − g⃗(i)∥n ≤ εi+1

for all i ∈ Z, then there exists a solution {x⃗i}i∈Z to the first order matrix difference equation
(1.2) such that the bound for ∥y⃗i − x⃗i∥n depends on the sequence {εi}i∈Z and the transition

0Key words and phrases: difference equation; matrix difference equation; Hyers-Ulam stability; Fibonacci
difference equation; extended Fibonacci number; approximation.

02010 Mathematics Subject Classification: Primary 39A45, 39B82; Secondary 39A06, 39B42.
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2 Hyers-Ulam stability of matrix difference equation

matrices A(i) only. Moreover, we investigate Hyers-Ulam stability of the nth order linear
inhomogeneous difference equation of the form

a(i+ 1) = p1(i)a(i) + p2(i)a(i− 1) + · · · + pn(i)a(i− n+ 1) + r(i), (1.3)

where pj , r : Z → C are given functions with pn(i) ̸= 0 for all i ∈ Z. We refer the reader to
[7, 8, 9, 12, 20] for the exact definition of Hyers-Ulam stability.

2 Preliminaries

In this section, we investigate the general solution to the first order linear inhomogeneous
matrix difference equation (1.2) for all integers i ∈ Z, where

x⃗i =


xi1
xi2
...
xin

 ∈ Cn and A(i) =


a11(i) a12(i) · · · a1n(i)
a21(i) a22(i) · · · a2n(i)

...
...

. . .
...

an1(i) an2(i) · · · ann(i)

 ∈ Cn×n.

Throughout this paper, we use the following abbreviation.

Φ(n,m) :=


n−1∏
k=m

A(k) = A(n− 1)A(n− 2) · · ·A(m) (for n > m),

I (for n = m),

(2.1)

where we set Φ(n,m) :=
(
Φ(m,n)

)−1
= A(n)−1A(n+ 1)−1 · · ·A(m− 1)−1 for n < m and I

denotes the identity matrix. Sometimes, we use Φ(n) and Φ−1(m,n) instead of Φ(n, 0) and(
Φ(m,n)

)−1
, respectively.

In the following lemma, we introduce some properties of Φ(n,m) without proof.

Lemma 2.1 Given a fixed positive integer n, assume that every transition matrix A(i) ∈
Cn×n is nonsingular. It holds that

(i) Φ(i+ 1, k) = A(i)Φ(i, k);

(ii) Φ−1(i, k + 1) = A(k)Φ−1(i, k);

(iii) A(k − 1)−1Φ−1(i, k) = Φ−1(i, k − 1)

for all integers i, k ∈ Z.

In the following lemma, we give the general solution to the first order linear inhomogeneous
matrix difference equation (1.2).

Lemma 2.2 Given a fixed positive integer n, assume that every transition matrix A(i) ∈
Cn×n is nonsingular and the vectors g⃗(i) ∈ Cn are given. A vector sequence {x⃗i}i∈Z of Cn
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Soon-Mo Jung and Young Woo Nam 3

is a solution to the first order linear inhomogeneous matrix difference equation (1.2) if and
only if the sequence {x⃗i}i∈Z is given in the form of

x⃗i :=


Φ(i, 0)x⃗0 +

i−1∑
k=0

Φ(i, k + 1)g⃗(k) (for i ≥ 0),

Φ−1(0, i)x⃗0 −
−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1) (for i < 0),

(2.2)

where x⃗0 ∈ Cn is an arbitrarily given vector.

Proof. First, we assume that the sequence {x⃗i}i∈Z is given in the form of (2.2) and we
prove that the sequence {x⃗i}i∈Z is a solution to the first order linear inhomogeneous matrix
difference equation (1.2).

If i is a nonnegative integer, then it follows from the first formula of (2.2) and Lemma 2.1
(i) that

x⃗i+1 = Φ(i+ 1, 0)x⃗0 +

i∑
k=0

Φ(i+ 1, k + 1)g⃗(k)

= A(i)Φ(i, 0)x⃗0 +

i∑
k=0

A(i)Φ(i, k + 1)g⃗(k)

= A(i)

(
Φ(i, 0)x⃗0 +

i−1∑
k=0

Φ(i, k + 1)g⃗(k)

)
+ g⃗(i)

= A(i)x⃗i + g⃗(i)

for any integer i ≥ 0.

If i = −1, then we use (2.2) to get

x⃗i+1 = x⃗0

and

x⃗i = x⃗−1 = Φ−1(0,−1)x⃗0 − Φ−1(0,−1)g⃗(−1) = A(−1)−1x⃗0 −A(−1)−1g⃗(−1).

Hence, we have

x⃗i+1 = A(i)x⃗i + g⃗(i)

for i = −1.

If i is an integer less than −1, then it follows from the second formula of (2.2) and Lemma
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4 Hyers-Ulam stability of matrix difference equation

2.1 (ii) that

x⃗i+1 = Φ−1(0, i+ 1)x⃗0 −
−i−1∑
k=1

Φ−1(i+ 1 + k, i+ 1)g⃗(i+ k)

= A(i)Φ−1(0, i)x⃗0 −
−i−1∑
k=1

A(i)Φ−1(i+ k + 1, i)g⃗(i+ k)

= A(i)Φ−1(0, i)x⃗0 −
−i∑
j=2

A(i)Φ−1(i+ j, i)g⃗(i+ j − 1)

= A(i)Φ−1(0, i)x⃗0 −
−i∑
k=1

A(i)Φ−1(i+ k, i)g⃗(i+ k − 1) + A(i)Φ−1(i+ 1, i)g⃗(i)

= A(i)x⃗i + g⃗(i)

for all integers i < −1.

Now, we assume that the sequence {x⃗i}i∈Z is a solution to the first order linear inhomoge-
neous matrix difference equation (1.2) and we prove that the sequence {x⃗i}i∈Z has the form
of (2.2). We can easily show that the first formula of (2.2) holds for i = 0. We now assume
that the first formula of (2.2) holds for some nonnegative integer i. Then, by using Lemma
2.1 (i), we obtain

x⃗i+1 = A(i)x⃗i + g⃗(i)

= A(i)

(
Φ(i, 0)x⃗0 +

i−1∑
k=0

Φ(i, k + 1)g⃗(k)

)
+ g⃗(i)

= Φ(i+ 1, 0)x⃗0 +
i−1∑
k=0

Φ(i+ 1, k + 1)g⃗(k) + g⃗(i)

= Φ(i+ 1, 0)x⃗0 +

i∑
k=0

Φ(i+ 1, k + 1)g⃗(k)

by replacing i with i+ 1 in the first formula of (2.2).

Finally, we assume that the sequence {x⃗i} is a solution to (1.2) and we will prove that x⃗i
is expressed by the second formula of (2.2) for every negative integer i. If we set i = −1 in
(1.2), then we get

x⃗0 = A(−1)x⃗−1 + g⃗(−1) or x⃗−1 = A(−1)−1x⃗0 −A(−1)−1g⃗(−1),

which we obtain from the second formula of (2.2) by setting i = −1. We now assume that x⃗i
is expressed as the second formula of (2.2) for some negative integer i. Then, it follows from
(1.2), the second formula of (2.2), and Lemma 2.1 (iii) that

x⃗i = A(i− 1)x⃗i−1 + g⃗(i− 1)
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or

x⃗i−1 = A(i− 1)−1x⃗i −A(i− 1)−1g⃗(i− 1)

= A(i− 1)−1

(
Φ−1(0, i)x⃗0 −

−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1)

)
−A(i− 1)−1g⃗(i− 1)

= Φ−1(0, i− 1)x⃗0 −
−i∑
k=0

Φ−1(i+ k, i− 1)g⃗(i+ k − 1)

= Φ−1(0, i− 1)x⃗0 −
−i+1∑
k=1

Φ−1(i+ k − 1, i− 1)g⃗(i+ k − 2),

which is a consequence of the second formula of (2.2) provided we replace i with i− 1. �

Remark 2.3 Given a fixed positive integer n, assume that every transition matrix A(i) ∈
Cn×n is nonsingular and the vectors g⃗(i) ∈ Cn are given. If vector sequences {x⃗i,h}i∈Z and
{x⃗i,p}i∈Z of Cn are defined by

x⃗i,h :=

{
Φ(i, 0)x⃗0 (for i ≥ 0),

Φ−1(0, i)x⃗0 (for i < 0)

resp.

x⃗i,p :=



i−1∑
k=0

Φ(i, k + 1)g⃗(k) (for i ≥ 0),

−
−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1) (for i < 0),

then then the sequence {x⃗i,h}i∈Z is a solution to the homogeneous difference equation x⃗i+1 =
A(i)x⃗i corresponding to (1.2) and the sequence {x⃗i,p}i∈Z is a particular solution to the first
order linear inhomogeneous matrix difference equation (1.2).

3 Hyers-Ulam stability of x⃗i+1 = A(i)x⃗i + g⃗(i)

We now prove our main theorem concerning the Hyers-Ulam stability of the first order linear
inhomogeneous matrix difference equation (1.2). Obviously, our theorem is a generalization
and an improvement of [13, Theorem 2.1].

Theorem 3.1 Given a fixed positive integer n, let (Cn, ∥·∥n) and (Cn×n, ∥·∥n×n) be complex
normed spaces, whose elements are column vectors resp. (n× n) complex matrices, with the
property (1.1). Assume that every transition matrix A(i) ∈ Cn×n is nonsingular, the vectors
g⃗(i) ∈ Cn are given, and that {εi}i∈Z is a sequence of nonnegative real numbers. If a vector
sequence {y⃗i}i∈Z of Cn satisfies the inequality

∥y⃗i+1 −A(i)y⃗i − g⃗(i)∥n ≤ εi+1 (3.1)
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6 Hyers-Ulam stability of matrix difference equation

for all i ∈ Z, then there exists a solution {x⃗i}i∈Z to the first order linear inhomogeneous
matrix difference equation (1.2) such that

∥y⃗i − x⃗i∥n ≤



i∑
k=1

εk∥Φ(i, k)∥n×n + ∥Φ(i, 0)∥n×n∥y⃗0 − x⃗0∥n (for i ≥ 0),

−i∑
k=1

εi+k

∥∥Φ−1(i+ k, i)
∥∥
n×n

+
∥∥Φ−1(0, i)

∥∥
n×n

∥y⃗0 − x⃗0∥n (for i < 0).

Proof. First, we assume that i ≥ 0. In view of Lemma 2.2, the vector sequence {x⃗i}i=0,1,...

defined by

x⃗i = Φ(i, 0)x⃗0 +

i−1∑
k=0

Φ(i, k + 1)g⃗(k) (3.2)

satisfies the first order linear inhomogeneous matrix difference equation (1.2) for i ≥ 0.

We now apply the mathematical induction to prove that

y⃗i − Φ(i, 0)y⃗0 −
i−1∑
k=0

Φ(i, k + 1)g⃗(k) =

i∑
k=1

Φ(i, k)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
(3.3)

for all integers i ≥ 0. It is obvious that the equality (3.3) holds for i = 0. We assume that
the equality (3.3) holds for some integer i ≥ 0. Then, it follows from Lemma 2.1 (i) and (3.3)
that

y⃗i+1 − Φ(i+ 1, 0)y⃗0 −
i∑

k=0

Φ(i+ 1, k + 1)g⃗(k)

= y⃗i+1 −A(i)Φ(i, 0)y⃗0 −
i∑

k=0

A(i)Φ(i, k + 1)g⃗(k)

= y⃗i+1 −A(i)y⃗i − g⃗(i) + A(i)

(
y⃗i − Φ(i, 0)y⃗0 −

i−1∑
k=0

Φ(i, k + 1)g⃗(k)

)

=

i∑
k=1

A(i)Φ(i, k)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
+ y⃗i+1 −A(i)y⃗i − g⃗(i)

=

i+1∑
k=1

Φ(i+ 1, k)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
,

which can be obtained from the equality (3.3) by replacing i with i + 1. Thus, we conclude
by induction that the equality (3.3) holds for all integers i ≥ 0.
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Hence, it follows from (3.1) and (3.3) that∥∥∥∥∥y⃗i − Φ(i, 0)y⃗0 −
i−1∑
k=0

Φ(i, k + 1)g⃗(k)

∥∥∥∥∥
n

≤
i∑

k=1

∥Φ(i, k)∥n×n

∥∥y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)
∥∥
n

(3.4)

≤
i∑

k=1

εk∥Φ(i, k)∥n×n

for i ≥ 0. In view of (3.2) and (3.4), we have

∥y⃗i − Φ(i, 0)y⃗0 + Φ(i, 0)x⃗0 − x⃗i∥n ≤
i∑

k=1

εk∥Φ(i, k)∥n×n

or

∥y⃗i − x⃗i∥n ≤
i∑

k=1

εk∥Φ(i, k)∥n×n + ∥Φ(i, 0)∥n×n∥y⃗0 − x⃗0∥n

for all integers i ≥ 0.
Now, assume that i < 0. By Lemma 2.2, the sequence {x⃗i}i=−1,−2,... defined by

x⃗i = Φ−1(0, i)x⃗0 −
−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1) (3.5)

satisfies the first order linear inhomogeneous matrix difference equation (1.2) for i < 0. Using
the mathematical induction, we prove that

y⃗i − Φ−1(0, i)y⃗0 +
−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1)

= −
0∑

k=i+1

Φ−1(k, i)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
(3.6)

for all integers i < 0. It is obvious that the equality (3.6) holds for i = −1. We assume that
the equality (3.6) holds for some integer i < 0. Then, it follows from Lemma 2.1 (ii), (iii),
and (3.6) that

y⃗i−1 − Φ−1(0, i− 1)y⃗0 +

−i+1∑
k=1

Φ−1(i+ k − 1, i− 1)g⃗(i+ k − 2)

= y⃗i−1 −A(i− 1)−1Φ−1(0, i)y⃗0 +
−i+1∑
k=1

A(i− 1)−1Φ−1(i+ k − 1, i)g⃗(i+ k − 2)

= A(i− 1)−1

(
A(i− 1)y⃗i−1 − Φ−1(0, i)y⃗0 +

−i+1∑
k=1

Φ−1(i+ k − 1, i)g⃗(i+ k − 2)

)
= −A(i− 1)−1

(
y⃗i −A(i− 1)y⃗i−1 − g⃗(i− 1)

)
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8 Hyers-Ulam stability of matrix difference equation

+ A(i− 1)−1

(
y⃗i − Φ−1(0, i)y⃗0 +

−i+1∑
k=2

Φ−1(i+ k − 1, i)g⃗(i+ k − 2)

)
= −A(i− 1)−1

(
y⃗i −A(i− 1)y⃗i−1 − g⃗(i− 1)

)
− A(i− 1)−1

0∑
k=i+1

Φ−1(k, i)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
= −

0∑
k=i

A(i− 1)−1Φ−1(k, i)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
= −

0∑
k=i

Φ−1(k, i− 1)
(
y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)

)
,

which can be obtained from the equality (3.6) by replacing i with i − 1. By induction, we
conclude that the equality (3.6) holds for any integer i < 0.

Therefore, by (3.1) and (3.6), we get∥∥∥∥∥y⃗i − Φ−1(0, i)y⃗0 +

−i∑
k=1

Φ−1(i+ k, i)g⃗(i+ k − 1)

∥∥∥∥∥
n

≤
0∑

k=i+1

∥Φ−1(k, i)∥n×n

∥∥y⃗k −A(k − 1)y⃗k−1 − g⃗(k − 1)
∥∥
n

(3.7)

≤
0∑

k=i+1

εk∥Φ−1(k, i)∥n×n

for any integer i < 0. Taking (3.5) and (3.7) into account, we get

∥y⃗i − Φ−1(0, i)y⃗0 + Φ−1(0, i)x⃗0 − x⃗i∥n ≤
0∑

k=i+1

εk∥Φ−1(k, i)∥n×n

or

∥y⃗i − x⃗i∥n ≤
0∑

k=i+1

εk
∥∥Φ−1(k, i)

∥∥
n×n

+
∥∥Φ−1(0, i)

∥∥
n×n

∥y⃗0 − x⃗0∥n

=

−i∑
k=1

εi+k

∥∥Φ−1(i+ k, i)
∥∥
n×n

+
∥∥Φ−1(0, i)

∥∥
n×n

∥y⃗0 − x⃗0∥n

for all integers i < 0. �

4 Applications

In this section, let n be a fixed positive integer. We assume that the nth order linear inhomo-
geneous difference equation of the form (1.3) is given, where pj , r : Z → C are given functions
with pn(i) ̸= 0 for all i ∈ Z.

If we set

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij | and ∥x⃗∥∞ = max
1≤j≤n

|xj |
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for all A ∈ Cn×n and x⃗ ∈ Cn, then these norms satisfy the conditions in (1.1).

We now prove Hyers-Ulam stability of the nth order linear inhomogeneous difference
equation (1.3).

Theorem 4.1 Let n be a fixed positive integer and p1, . . . , pn, r : Z → C be given functions
with pn(i) ̸= 0 for all i ∈ Z. Assume that a sequence {εi}i∈Z of nonnegative numbers is given.
If a sequence {a(i)}i∈Z of complex numbers satisfies the inequality∣∣a(i+ 1) − p1(i)a(i) − p2(i)a(i− 1) − · · · − pn(i)a(i− n+ 1) − r(i)

∣∣ ≤ εi+1 (4.1)

for all i ∈ Z, then there exists a sequence {c(i)}i∈Z of complex numbers which is a solution
to the nth order linear inhomogeneous difference equation (1.3) such that

|a(i) − c(i)| ≤



i∑
k=1

εk∥Φ(i, k)∥∞ + ∥Φ(i, 0)∥∞∥y⃗0 − x⃗0∥∞ (for i ≥ 0),

−i∑
k=1

εi+k

∥∥Φ−1(i+ k, i)
∥∥
∞ +

∥∥Φ−1(0, i)
∥∥
∞∥y⃗0 − x⃗0∥∞ (for i < 0),

where Φ(i, k) and Φ−1(i, k) are defined in (2.1) and (4.2), and where y⃗0 and x⃗0 are defined
in (4.7).

Proof. For any k ∈ {1, 2, . . . , n− 1}, we define the complex numbers bk(i) by

b1(i) = a(i− 1),

b2(i) = b1(i− 1),

b3(i) = b2(i− 1),

...

bn−1(i) = bn−2(i− 1)

for all i ∈ Z. We further define

A(i) :=



p1(i) p2(i) p3(i) · · · pn−1(i) pn(i)
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


, (4.2)

y⃗i :=


a(i)
b1(i)
b2(i)

...
bn−1(i)

 and g⃗(i) :=


r(i)
0
0
...
0

 (4.3)
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10 Hyers-Ulam stability of matrix difference equation

for all i ∈ Z, where A(i) is an n× n matrix and y⃗i, g⃗(i) are n× 1 vectors.
Using these notations and considering (4.1), the sequence {y⃗i}i∈Z satisfies the inequality

∥y⃗i+1 −A(i)y⃗i − g⃗(i)∥∞ ≤ εi+1

for all i ∈ Z. Moreover, by the assumption that pn(i) ̸= 0 for all i ∈ Z, we can see that every
A(i) is nonsingular.

According to Theorem 3.1, there exists a solution {x⃗i}i∈Z to the first order linear inho-
mogeneous matrix difference equation (1.2) such that

∥y⃗i − x⃗i∥∞ ≤



i∑
k=1

εk∥Φ(i, k)∥∞ + ∥Φ(i, 0)∥∞∥y⃗0 − x⃗0∥∞ (for i ≥ 0),

−i∑
k=1

εi+k

∥∥Φ−1(i+ k, i)
∥∥
∞ +

∥∥Φ−1(0, i)
∥∥
∞∥y⃗0 − x⃗0∥∞ (for i < 0).

(4.4)

If we set

x⃗i :=


x1(i)
x2(i)

...
xn(i)

 , (4.5)

then it follows from (1.2) that

x1(i+ 1) = p1(i)x1(i) + p2(i)x2(i) + p3(i)x3(i) + · · · + pn(i)xn(i) + r(i), (4.6)

x2(i+ 1) = x1(i),

x3(i+ 1) = x2(i),

...

xn(i+ 1) = xn−1(i)

for all i ∈ Z. Moreover, if we define c(i) := x1(i) for all integers i, then we have

x1(i+ 1) = c(i+ 1),

x1(i) = c(i),

x2(i) = x1(i− 1) = c(i− 1),

...

xn(i) = xn−1(i− 1) = · · · = x1(i− n+ 1) = c(i− n+ 1).

Hence, by (4.6), the sequence {c(i)}i∈Z is a solution to the nth order linear inhomogeneous
difference equation (1.3).

Since

y⃗i =


a(i)

a(i− 1)
a(i− 2)

...
a(i− n+ 1)

 and x⃗i =


c(i)

c(i− 1)
c(i− 2)

...
c(i− n+ 1)

 (4.7)
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for all i ∈ Z, we get

|a(i) − c(i)| ≤ ∥y⃗i − x⃗i∥∞

for all i ∈ Z. In view of (4.4), we complete the proof of this theorem. �

We now consider the second order linear homogeneous difference equation of the form

a(i+ 1) = p1(i)a(i) + p2(i)a(i− 1) (4.8)

for all i ∈ Z. The solution of (4.8) is called the (extended) Fibonacci numbers when p1(i) =
p2(i) ≡ 1, a(0) = 1, and a(1) = 1.

If we substitute n = 2, p1(i) = 1, p2(i) = 1, and r(i) = 0 for all i ∈ Z in Theorem 4.1, then
we prove the following corollary concerning Hyers-Ulam stability of the Fibonacci difference
equation. However, this corollary shows that Theorem 4.1 is not efficient when the transition
matrices A(i) are constant, i.e., A(i) = A for all i ∈ Z. Nevertheless, we introduce this
corollary because its proof includes some new properties of the extended Fibonacci numbers.
(In general, it is reasonable to apply [21, Theorem 5] when the transition matrices A(i) are
constant.)

Corollary 4.2 Assume that a sequence {εi}i∈Z of nonnegative numbers is given. If a se-
quence {a(i)}i∈Z of complex numbers satisfies the inequality

|a(i+ 1) − a(i) − a(i− 1)| ≤ εi+1 (4.9)

for all i ∈ Z, then there exists a sequence {c(i)}i∈Z of complex numbers which is a solution
to the Fibonacci difference equation, i.e., the difference equation (4.8) with p1(i) = p2(i) ≡ 1
such that

|a(i) − c(i)| ≤



i∑
k=1

εkF (i− k + 1) + F (i+ 1)∥y⃗0 − x⃗0∥∞ (for i ≥ 0),

−i∑
k=1

εi+kF (k + 1) + F (−i+ 1)∥y⃗0 − x⃗0∥∞ (for i < 0),

where F (i) denotes the ith extended Fibonacci number and

∥y⃗0 − x⃗0∥∞ = max
{
|a(0) − c(0)|, |a(−1) − c(−1)|

}
.

Proof. If we set

A :=

(
1 1
1 0

)
and y⃗i :=

(
a(i)

a(i− 1)

)
,

then it follows from (4.9) that

∥y⃗i+1 −Ay⃗i∥∞ ≤ εi+1

for all i ∈ Z.
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12 Hyers-Ulam stability of matrix difference equation

According to Theorem 4.1, there exists a sequence {c(i)}i∈Z of complex numbers which
is a solution to the Fibonacci difference equation (4.8) with p1(i) = p2(i) ≡ 1 such that

|a(i) − c(i)| ≤



i∑
k=1

εk
∥∥Ai−k

∥∥
∞ +

∥∥Ai
∥∥
∞∥y⃗0 − x⃗0∥∞ (for i ≥ 0),

−i∑
k=1

εi+k

∥∥A−k
∥∥
∞ +

∥∥Ai
∥∥
∞∥y⃗0 − x⃗0∥∞ (for i < 0),

(4.10)

where y⃗i and x⃗i are defined in (4.7) for all i ∈ Z.
Here, we introduce some (extended) Fibonacci numbers explicitly.

. . . , F (−4) = 2, F (−3) = −1, F (−2) = 1, F (−1) = 0,

F (0) = 1, F (1) = 1, F (2) = 2, F (3) = 3, F (4) = 5, . . .
(4.11)

and we prove that

F (i)F (i− 1) < 0 (4.12)

for any integer i ≤ −2. If the relation (4.12) were not true, then there would exist an integer
i0 ≤ −2 such that F (i0)F (i0 − 1) ≥ 0. Then we would have

−1 = F (−2)F (−3)

= F (−3)2 + F (−3)F (−4)

= F (−3)2 + F (−4)2 + F (−4)F (−5)

...

= F (−3)2 + F (−4)2 + · · · + F (i0)
2 + F (i0)F (i0 − 1)

≥ 0,

which is a contradiction.
We now prove that

|F (i)| = |F (−i− 2)| (4.13)

for any i ∈ Z. First, we apply the induction to prove that the equality (4.13) holds for all
integers i ≥ 0. In view of (4.11), it is obvious that the equality (4.13) holds for i ∈ {0, 1, 2}.
Assume that (4.13) holds for all integers 1 ≤ i ≤ i0, where i0 is an integer not less than 2. In
view of (4.11) and (4.12), we further have

|F (i0 + 1)| = |F (i0) + F (i0 − 1)|
= |F (i0)| + |F (i0 − 1)|
= |F (−i0 − 2)| + |F (−i0 − 1)|
= | − F (−i0 − 2) + F (−i0 − 1)|
= |F (−i0 − 3)|,

which can be obtained from (4.13) by replacing i with i0 + 1. Hence, we conclude that the
equality (4.13) holds for all integers i ≥ 0.
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Now, we apply an induction to prove that the equality (4.13) holds for all integers i < 0.
In view of (4.11), we easily see that the equality (4.13) holds for i ∈ {−1,−2}. Assume that
(4.13) holds for all integers i0 ≤ i ≤ −3, where i0 is an integer less than −2. Then, by (4.12)
and (4.13), we have

|F (i0 − 1)| = |F (i0 + 1) − F (i0)|
= |F (i0 + 1)| + |F (i0)|
= |F (−i0 − 3)| + |F (−i0 − 2)|
= |F (−i0 − 3) + F (−i0 − 2)|
= |F (−i0 − 1)|,

which we can obtain from (4.13) by replacing i with i0 − 1. Thus, the equality (4.13) holds
for all integers i < 0.

Moreover, we apply the mathematical induction to prove

Ai =

(
F (i) F (i− 1)

F (i− 1) F (i− 2)

)
(4.14)

for any i ∈ Z. Obviously, the equality (4.14) holds for i ∈ {0, 1}. Assume that (4.14) holds
for some integer i ≥ 0. Then, we get

Ai+1 = AiA =

(
F (i) F (i− 1)

F (i− 1) F (i− 2)

)(
1 1
1 0

)
=

(
F (i) + F (i− 1) F (i)

F (i− 1) + F (i− 2) F (i− 1)

)
=

(
F (i+ 1) F (i)
F (i) F (i− 1)

)
,

which can be obtained from (4.14) by replacing i with i + 1. Similarly, we prove that the
equality (4.14) holds for all negative integers i.

Using (4.13) and (4.14), we prove that

∥∥Ai
∥∥
∞ =

{
F (i+ 1) (for i ≥ 0),

F (−i+ 1) (for i < 0).
(4.15)

It is obvious that the first equality of (4.15) is true for i ∈ {0, 1}. Assume that i ≥ 2. Then,
considering (4.14) and the fact that i− 2 ≥ 0, we have∥∥Ai

∥∥
∞ = max

{
|F (i)| + |F (i− 1)|, |F (i− 1)| + |F (i− 2)|

}
= max

{
F (i) + F (i− 1), F (i− 1) + F (i− 2)

}
= max

{
F (i+ 1), F (i)

}
= F (i+ 1)

for any integer i ≥ 2.
Now, we prove the equality (4.15) for i < 0. It follows from (4.13) and (4.14) that∥∥Ai

∥∥
∞ = max

{
|F (i)| + |F (i− 1)|, |F (i− 1)| + |F (i− 2)|

}
= max

{
|F (−i− 2)| + |F (−i− 1)|, |F (−i− 1)| + |F (−i)|

}
= max

{
F (−i− 2) + F (−i− 1), F (−i− 1) + F (−i)

}
= max

{
F (−i), F (−i+ 1)

}
= F (−i+ 1)
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14 Hyers-Ulam stability of matrix difference equation

for any integer i < 0.

Finally, by (4.10) and (4.15), we have

|a(i) − c(i)| ≤



i∑
k=1

εkF (i− k + 1) + F (i+ 1)∥y⃗0 − x⃗0∥∞ (for i ≥ 0),

−i∑
k=1

εi+kF (k + 1) + F (−i+ 1)∥y⃗0 − x⃗0∥∞ (for i < 0),

which completes our proof. �

According to [16, Theorem 5.1], the following formula is true:

i∑
k=1

F (k) = F (i+ 2) − 2 (4.16)

for all i ∈ N0, where F (i) denotes the ith extended Fibonacci number with the initial values,
F (−1) = 0, F (0) = 1, and F (1) = 1.

Remark 4.3 Let ε be an arbitrarily given positive number. Assume that a sequence {a(i)}i∈Z
of complex numbers satisfies the inequality

|a(i+ 1) − a(i) − a(i− 1)| ≤ ε

for all i ∈ Z. According to Corollary 4.2 and (4.16), there exists a sequence {c(i)}i∈Z of
complex numbers which is a solution to the Fibonacci difference equation such that

|a(i) − c(i)| ≤


F (i+ 2)ε− 2ε+ F (i+ 1)∥y⃗0 − x⃗0∥∞ (for i > 0),

∥y⃗0 − x⃗0∥∞ (for i = 0),

F (−i+ 3)ε− 3ε+ F (−i+ 1)∥y⃗0 − x⃗0∥∞ (for i < 0),

where F (i) denotes the ith extended Fibonacci number with the initial values, F (−1) = 0,
F (0) = 1, and F (1) = 1, and

∥y⃗0 − x⃗0∥∞ = max
{
|a(0) − c(0)|, |a(−1) − c(−1)|

}
.

In particular, under strong additional conditions that a(−1) = c(−1) and a(0) = c(0),
the last inequality reduces into

|a(i) − c(i)| ≤


F (i+ 2)ε− 2ε (for i > 0),

0 (for i = 0),

F (−i+ 3)ε− 3ε (for i < 0).
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Soon-Mo Jung and Young Woo Nam 15

Remark 4.4 The Hyers-Ulam stability of the Fibonacci functional equation has been inves-
tigated in [1, 10, 11, 14, 15], while Hyers-Ulam stability of the linear difference equations has
been investigated in [1, 2, 3, 5, 17, 18, 19]. It should be remarked that many interesting the-
orems have been proved in [4, 6] concerning the linear (or nonlinear) recurrences. Especially,
Hyers-Ulam stability of the first order matrix difference equations with constant matrix has
been proved in [21] in the domain N0.
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Abstract

We present here several self adjoint operator Ostrowski type inequali-
ties to all directions. These are based in the operator order over a Hilbert
space.

2010 AMS Subject Classi�cation: 26D10, 26D20, 47A60, 47A67.
Key Words and Phrases: Self adjoint operator, Hilbert space, Ostrowski

inequality.

1 Motivation

In 1938, A. Ostrowski [12] proved the following important inequality:
Let f : [a; b] ! R be continuous on [a; b] and di¤erentiable on (a; b) whose

derivative f 0 : (a; b) ! R is bounded on (a; b), i.e., kf 0k1 := sup
t2(a;b)

jf 0 (t)j <

+1. Then����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for any x 2 [a; b]. The constant 14 is the best possible.
In this article we present self adjoint operator Ostrowski type inequalities

on a Hilbert space in the operator order.

2 Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h�; �i).
The Gelfand map establishes a ��isometrically isomorphism � between the set

1
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C (Sp (A)) of all continuous functions de�nd on the spectrum of A, denoted
Sp (A), and the C�-algebra C� (A) generated by A and the identity operator
1H on H as follows (see e.g. [10, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) (the operation composition is on the right) and

�
�
f
�
= (� (f))

�
;

(iii) k� (f)k = kfk := sup
t2Sp(A)

jf (t)j ;

(iv) � (f0) = 1H and � (f1) = A, where f0 (t) = 1 and f1 (t) = t; for
t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) , for all f 2 C (Sp (A)) ;

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0, i.e. f (A) is a
positive operator on H. Moreover, if both f and g are real valued continuous
functions on Sp (A) then the following important property holds:
(P) f (t) � g (t) for any t 2 Sp (A), implies that f (A) � g (A) in the operator

order of B (H) (the Banach algebra of all bounded linear operators from H into
itself).
Equivalently, we use (see [8], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H; h�; �i) with

the spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and fE�g� be its spectral family.
Then for any continuous function f : [m;M ] ! C, it is well known that

we have the following spectral representation in terms of the Riemann-Stieljes
integral:

hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

for any x; y 2 H. The function gx;y (�) := hE�x; yi is of bounded variation on
the interval [m;M ], and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi ;

for any x; y 2 H. Furthermore, it is known that gx (�) := hE�x; xi is increasing
and right continuous on [m;M ] :
We have also the formula

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; 8 x 2 H:

2
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As a symbol we can write

f (U) =

Z M

m�0
f (�) dE�:

Above, m = min f�j� 2 Sp (U)g := minSp (U), M = max f�j� 2 Sp (U)g :=
maxSp (U). The projections fE�g�2R ; are called the spectral family of A, with
the properties:
(a) E� � E�0 for � � �0;
(b) Em�0 = 0H (zero operator), EM = 1H (identity operator) and E�+0 =

E� for all � 2 R.
Furthermore

E� := '� (U) , 8 � 2 R;

is a projection which reduces U , with

'� (s) :=

�
1, for �1 < s � �;
0; for � < s < +1:

The spectral family fE�g�2R determines uniquely the self-adjoint operator U
and vice versa.
For more on the topic see [11], pp. 256-266, and for more detalis see there

pp. 157-266. See also [7].
Some more basics are given (we follow [8], pp. 1-5):
Let (H; h�; �i) be a Hilbert space over C. A bounded linear operator A de�ned

on H is selfjoint, i.e., A = A�, i¤ hAx; xi 2 R, 8 x 2 H, and if A is selfadjoint,
then

kAk = sup
x2H:kxk=1

jhAx; xij :

Let A;B be selfadjoint operators on H. Then A � B i¤ hAx; xi � hBx; xi, 8
x 2 H.
In particular, A is called positive if A � 0:
Denote by

P :=
(
' (s) :=

nX
k=0

�ks
kjn � 0, �k 2 C, 0 � k � n

)
:

If A 2 B (H) is selfadjoint, and ' (s) 2 P has real coe¢ cients, then ' (A) is
selfadjoint, and

k' (A)k = max fj' (�)j ; � 2 Sp (A)g :

If ' is any function de�ned on R we de�ne

k'kA := sup fj' (�)j ; � 2 Sp (A)g :

3
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If A is selfadjoint operator on Hilbert space H and ' is continuous and given
that ' (A) is selfadjoint, then k' (A)k = k'kA. And if ' is a continuous real
valued function so it is j'j, then ' (A) and j'j (A) = j' (A)j are selfadjoint
operators (by [8], p. 4, Theorem 7).
Hence it holds

kj' (A)jk = kj'jkA = sup fjj' (�)jj ; � 2 Sp (A)g

= sup fj' (�)j ; � 2 Sp (A)g = k'kA = k' (A)k ;

that is
kj' (A)jk = k' (A)k :

For a selfadjoint operator A 2 B (H) which is positive, there exists a unique
positive selfadjoint operator B :=

p
A 2 B (H) such that B2 = A, that is�p

A
�2
= A: We call B the square root of A.

Let A 2 B (H), then A�A is selfadjoint and positive. De�ne the �operator
absolute value� jAj :=

p
A�A. If A = A�, then jAj =

p
A2:

For a continuous real valued function ' we observe the following:

j' (A)j (the functional absolute value) =
Z M

m�0
j' (�)j dE� =

Z M

m�0

q
(' (�))

2
dE� =

q
(' (A))

2
= j' (A)j (operator absolute value),

where A is a selfadjoint operator.
That is we have

j' (A)j (functional absolute value) = j' (A)j (operator absolute value).

3 Main Results

Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) � [m;M ], m < M ; m;M 2 R.
In the next we obtain Ostrowski type inequalities in the operator order of

B (H) (the Banach algebra of all bounded linear operators from H into itself).
We mention

Theorem 1 ([2], p. 498) Let f 2 C1 ([m;M ]), m < M , s 2 [m;M ]. Then����� 1

M �m

Z M

m

f (t) dt� f (x)
����� �

 
(s�m)2 + (M � s)2

2 (M �m)

!
kf 0k1 : (1)

4
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By applying property (P) to (1), we obtain in the operator order the following
inequality:

Theorem 2 Let f 2 C1 ([m;M ]). Then�����
 

1

M �m

Z M

m

f (t) dt

!
1H � f (A)

����� �
 
(A�m1H)2 + (M1H �A)2

2 (M �m)

!
kf 0k1 :

(2)

We mention

Theorem 3 ([1], p. 191, Cerone-Dragomir) Let f : [m;M ] ! R be a con-
tinuous on [m;M ] and twice di¤erentiable function on (m;M), whose second
derivative f 00 : (m;M)! R is bounded on (m;M). Then�����f (s)� 1

M �m

Z M

m

f (t) dt�
�
f (M)� f (m)

M �m

��
s� m+M

2

������ � (3)

1

2

8<:
"�
s� m+M

2

�2
(M �m)2

+
1

4

#2
+
1

12

9=; (M �m)2 kf 00k1 � kf 00k1
6

(M �m)2 ;

8 s 2 [m;M ] :

By applying property (P) to (3), we obtain in the operator order the following
inequality:

Theorem 4 All as in Theorem 3. Then�����f (A)�
 

1

M �m

Z M

m

f (t) dt

!
1H �

�
f (M)� f (m)

M �m

��
A�

�
m+M

2

�
1H

������
(4)

� 1

2

8<:
"�
A�

�
m+M
2

�
1H
�2

(M �m)2
+
1

4
1H

#2
+
1

12
1H

9=; (M �m)2 kf 00k1

�
�
kf 00k1
6

(M �m)2
�
1H :

We mention

Theorem 5 ([3], p. 14) Let f : [m;M ] ! R be 3-times di¤erentiable on
[m;M ]. Assume that f 000 is bounded on [m;M ]. Let any s 2 [m;M ]. Then�����f (s)� 1

M �m

Z M

m

f (t) dt�
�
f (M)� f (m)

M �m

��
s�

�
m+M

2

��
�

5
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�
f 0 (M)� f 0 (m)
2 (M �m)

��
s2 � (m+M) s+

�
m2 +M2 + 4mM

6

������ (5)

� kf 000k1
(M �m)3

Z (s) ;

where

Z (s) =

�
mMs4 � 1

3
m2M3s+

1

3
m3Ms2 �mM2s3 � 1

3
m3M2s+

1

3
mM3s2

+m2M2s2 �m2Ms3 � 1
2
ms5 � 1

2
Ms5 +

1

6
s6 +

3

4
m2s4 +

3

4
M2s4 +

1

3
M2m4�

2

3
m3s3 � 2

3
M3s3 � 1

3
M3m3 +

5

12
m4s2 +

5

12
M4s2 +

1

3
M4m2�

2

15
Mm5 � 2

15
mM5 � 1

6
m5s� 1

6
M5s+

m6

20
+
M6

20

�
: (6)

Using (P) property and (5), (6) we derive

Theorem 6 Let f : [m;M ] ! R be 3-times di¤erentiable on [m;M ]. Assume
that f 000 is bounded on [m;M ]. Then�����f (A)�

 
1

M �m

Z M

m

f (t) dt

!
1H �

�
f (M)� f (m)

M �m

��
A�

�
m+M

2

�
1H

�

�
�
f 0 (M)� f 0 (m)
2 (M �m)

��
A2 � (m+M)A+

�
m2 +M2 + 4mM

6

�
1H

����� (7)

� kf 000k1
(M �m)3

Z (A) ;

where

Z (A) =

�
mMA4 � 1

3
m2M3A+

1

3
m3MA2 �mM2A3 � 1

3
m3M2A+

1

3
mM3A2 +m2M2A2 �m2MA3 � 1

2
mA5 � 1

2
MA5 +

1

6
A6 +

3

4
m2A4+

3

4
M2A4 +

�
1

3
M2m4

�
1H �

2

3
m3A3 � 2

3
M3A3 �

�
1

3
M3m3

�
1H+

5

12
m4A2 +

5

12
M4A2 +

�
1

3
M4m2

�
1H��

2

15
Mm5

�
1H �

�
2

15
mM5

�
1H �

1

6
m5A� 1

6
M5A+

�
m6 +M6

20

�
1H

�
: (8)

6
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Let f 2 AC ([m;M ]) (absolutely continuous functions on [m;M ]); 0 < � < 1.
Denote the right Caputo fractional derivative by D�

t�f (see [4], p. 22) and the
left Caputo fractional derivative by D�

�tf (see [4], p. 78), 8 t 2 [m;M ].
We need

Theorem 7 ([4], p. 44) Let 0 < � < 1, f 2 AC ([m;M ]), and
D�

t�f

1;[m;t]

;

kD�
�tfk1;[t;M ] <1, 8 t 2 [m;M ]. Then����� 1

M �m

Z M

m

f (z) dz � f (t)
����� �

1

(M �m) � (�+ 2)

nD�
t�f

1;[m;t]

(t�m)�+1 + kD�
�tfk1;[t;M ] (M � t)�+1

o
�

(9)
1

� (�+ 2)
max

nD�
t�f

1;[m;t]

; kD�
�tfk1;[t;M ]

o
(M �m)� ; (10)

8 t 2 [m;M ].

By property (P) and Theorem 7 we derive

Theorem 8 Let 0 < � < 1, f 2 AC ([m;M ]), and there exists K > 0, such
that D�

t�f

1;[m;t]

; kD�
�tfk1;[t;M ] � K; 8 t 2 [m;M ] : (11)

Then �����
 

1

M �m

Z M

m

f (z) dz

!
1H � f (A)

����� �
K

(M �m) � (�+ 2)

n
(A�m1H)�+1 + (M1H �A)�+1

o
� (12)�

K

� (�+ 2)
(M �m)�

�
1H : (13)

We mention the Fink ([9]) inequality

Theorem 9 Let f (n�1) be absolutely continuous on [m;M ] and f (n) 2 L1 (m;M),
n 2 N. Then �����f (s) +

n�1X
k=1

Fk (s)�
n

M �m

Z M

m

f (t) dt

����� �f (n)1
(n+ 1)! (M �m)

h
(M � s)n+1 + (s�m)n+1

i
; 8 s 2 [m;M ] ; (14)

where

Fk (s) :=

�
n� k
k!

� 
f (k�1) (m) (s�m)k � f (k�1) (M) (s�M)k

M �m

!
: (15)

7
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If n = 1, then
n�1P
k=1

= 0.

Inequality (14) is sharp, in the sense that is attained by an optimal f for
any s 2 [m;M ] :

By property (P) and Theorem 9 we obtain

Theorem 10 Let f (n�1) be absolutely continuous on [m;M ] and f (n) 2 L1 (m;M),
n 2 N. Then �����f (A) +

n�1X
k=1

Fk (A)�
 

n

M �m

Z M

m

f (t) dt

!
1H

����� � (16)

f (n)1
(n+ 1)! (M �m)

h
(M1H �A)n+1 + (A�m1H)n+1

i
;

where

Fk (A) :=

�
n� k
k!

� 
f (k�1) (m) (A�m1H)k � f (k�1) (M) (A�M1H)k

M �m

!
:

(17)

If n = 1, then
n�1P
k=1

Fk (A) = 0H .

We use here the sequence fBk (t) , k � 0g of Bernoulli polynomials which is
uniquely determined by the following identities:

B0k (t) = kBk�1 (t) , k � 1, B0 (t) = 1
and
Bk (t+ 1)�Bk (t) = ktk�1, k � 0:

(18)

The values Bk = Bk (0), k � 0 are the known Bernoulli numbers.
We mention

Theorem 11 ([3], p. 23) (see also [5]) Let f : [m;M ] ! R be such that
f (n�1), n 2 N, is a continuous function and f (n) (t) exists and is �nite for all
but a countable set of t in (m;M) and that f (n) 2 L1 ([m;M ]).
Dentote by

�n (s) := f (s)�
1

M �m

Z M

m

f (t) dt�

n�1X
k=1

(M �m)k�1

k!
Bk

�
s�m
M �m

�h
f (k�1) (M)� f (k�1) (m)

i
; (19)

8 s 2 [m;M ] :

8
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Then

j�n (s)j �
(M �m)n

n!

0@s (n!)
2

(2n)!
jB2nj+B2n

�
s�m
M �m

�1Af (n)
1
; (20)

8 n 2 N; 8 s 2 [m;M ] :

Using the (P) property and Theorem 11 we derive:

Theorem 12 All terms and assumptions as in Theorem 11. Denote by

�n (A) := f (A)�
 

1

M �m

Z M

m

f (t) dt

!
1H�

n�1X
k=1

(M �m)k�1

k!
Bk

�
A�m1H
M �m

�h
f (k�1) (M)� f (k�1) (m)

i
: (21)

Then

j�n (A)j �
(M �m)n

n!

0@
vuut (n!)2

(2n)!
jB2nj

!
1H +B2n

�
A�m1H
M �m

�1Af (n)
1
;

(22)
8 n 2 N:

Denote by (see [3], p. 24)

I4 (�) :=

(
16�5

5 � 7�4 + 14
3 �

3 � �2 + 1
30 , 0 � � �

1
2 ;

� 16�5

5 + 9�4 � 26�3

3 + 3�2 � 1
10 ;

1
2 � � � 1;

(23)

which is continuous in � 2 [0; 1].
Also denote by

B :=

�
A�m1H
M �m

�
and

I4

�
A�m1H
M �m

�
= I4 (B) =(

16
5 B

5 � 7B4 + 14
3 B

3 �B2 + 1
301H , 0H � B �

1
21H ;

� 16
5 B

5 + 9B4 � 26B3

3 + 3B2 � 1
101H ;

1
21H � B � 1H :

(24)

We mention

Theorem 13 ([3], p. 25) All terms and assumptions as in Theorem 11, case
of n = 4. For every s 2 [m;M ] it holds

j�4 (s)j �
(M �m)4

24
I4 (�)

f (4)
1
;

9
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where I4 (�) is given by (23) with

� =
s�m
M �m: (25)

Furthermore we have that

j�4 (s)j �
(M �m)4

720

f (4)
1
; (26)

8 s 2 [m;M ] :

Using property (P) and Theorem 13 we �nd

Theorem 14 All terms and assumptions are according to Theorem 11-13. Then

j�4 (A)j �
(M �m)4

24
I4

�
A�m1H
M �m

�f (4)
1
; (27)

where I4
�
A�m1H
M�m

�
is given by (24).

Furthermore we have that

j�4 (A)j �
 
(M �m)4

720

f (4)
1

!
1H : (28)

Next we follow [6].
Let (Pn)n2N be a harmonic sequence of polynomials, that is P

0
n = Pn�1,

P0 = 1. Let f : [m;M ] ! R be such that f (n�1) is absolutely continuous for
some n 2 N. Setting

Fk =
(�1)k (n� k)
M �m

h
Pk (m) f

(k�1) (m)� Pk (M) f (k�1) (M)
i
; k = 1; :::; n�1;

(29)
and

k (t; s) =

�
t�m, if t 2 [m; s]
t�M , if t 2 (s;M ]; (30)

we get that

1

n

"
f (s) +

n�1X
k=1

(�1)k Pk (s) f (k) (s) +
n�1X
k=1

Fk

#
� 1

M �m

Z M

m

f (t) dt = (31)

(�1)n�1

n (M �m)

Z M

m

Pn�1 (t) k (t; s) f
(n) (t) dt;

8 s 2 [m;M ]. The above sums are de�ned to be zero for n = 1.
For the harmonic sequence of polynomials

Pk (t) =
(t� s)k

k!
, k � 0 (32)

10
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identity (31) collapses to the Fink identity, see [9].
We may rewrite generalized Fink identity (31) as follows:

f (s) =
n�1X
k=1

(�1)k+1 Pk (s) f (k) (s)+ (33)

n�1X
k=1

(�1)k (n� k)
M �m

h
Pk (M) f

(k�1) (M)� Pk (m) f (k�1) (m)
i
+

n

M �m

Z M

m

f (t) dt+
(�1)n+1

M �m

Z M

m

Pn�1 (t) k (t; s) f
(n) (t) dt;

8 s 2 [m;M ], n 2 N, when n = 1 the above sums are zero.
Next we integrate the representation formula (33) against projections Es to

derive the operator representation formula:

f (A) =
n�1X
k=1

(�1)k+1 Pk (A) f (k) (A)+ (34)

"
n�1X
k=1

(�1)k (n� k)
M �m

h
Pk (M) f

(k�1) (M)� Pk (m) f (k�1) (m)
i
+

n

M �m

Z M

m

f (t) dt

#
1H+

(�1)n+1

M �m

Z M

m�0

 Z M

m

Pn�1 (t) k (t; s) f
(n) (t) dt

!
dEs:

The sequence of polynomials

Pk (t) =
1

k!

�
t� m+M

2

�k
, k � 0; (35)

is also harmonic.
We mention

Theorem 15 ([6]) Let f : [m;M ] ! R be such that f (n�1) is absolutely con-
tinuous for some n 2 N and f (n) 2 Lp ([m;M ]), 1 � p � 1. Then�����

"
f (s) +

n�1X
k=1

(�1)k Pk (s) f (k) (s) +
n�1X
k=1

Fk

#
� n

M �m

Z M

m

f (t) dt

����� � (36)

1

M �m kPn�1 (�) k (�; s)kp0;[m;M ]

f (n)
p
;

where 1
p +

1
p0 = 1:

We observe thatZ M

m

jPn�1 (t) k (t; s)jp
0
dt � kPn�1kp

0

1;[m;M ]

Z M

m

jk (t; s)jp
0
dt = (37)

11
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kPn�1kp
0

1;[m;M ]

"Z s

m

(t�m)p
0
dt+

Z M

s

(M � t)p
0
dt

#
=

kPn�1kp
0

1;[m;M ]

"
(s�m)p

0+1
+ (M � s)p

0+1

p0 + 1

#
:

Therefore we obtain

kPn�1 (�) k (�; s)kp0;[m;M ] � kPn�1k1;[m;M ]

"
(M � s)p

0+1
+ (s�m)p

0+1

p0 + 1

# 1
p0

:

(38)

Hence we have

Theorem 16 Let f : [m;M ] ! R be such that f (n�1) is absolutely continuous
for some n 2 N and f (n) 2 Lp ([m;M ]), 1 � p � 1. Then�����
 
f (s) +

n�1X
k=1

(�1)k Pk (s) f (k) (s)
!
+

 
n�1X
k=1

Fk

!
�
 

n

M �m

Z M

m

f (t) dt

!����� �
 f (n)

p

M �m kPn�1k1;[m;M ]

!"
(M � s)p

0+1
+ (s�m)p

0+1

p0 + 1

# 1
p0

; (39)

8 s 2 [m;M ], where 1
p +

1
p0 = 1:

We get the following operator inequality:

Theorem 17 Let f : [m;M ] ! R be such that f (n�1) is absolutely continuous
for some n 2 N and f (n) 2 Lp ([m;M ]), 1 � p � 1. Then�����

 
f (A) +

n�1X
k=1

(�1)k Pk (A) f (k) (A)
!
+

 
n�1X
k=1

Fk

!
1H�

 
n

M �m

Z M

m

f (t) dt

!
1H

����� � f (n)
p

M �m kPn�1k1;[m;M ]

!"
(M1H �A)p

0+1
+ (A�m1H)p

0+1

p0 + 1

# 1
p0

; (40)

where 1
p +

1
p0 = 1:

Proof. By (P) property and (39).
We give

12
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Corollary 18 (to Theorem 16) (see also [6]) We have�����
"
f (s) +

n�1X
k=1

(�1)k

k!

�
s� m+M

2

�k
f (k) (s)+

n�1X
k=1

(M �m)k�1 (n� k)
k!2k

h
f (k�1) (m)� (�1)k f (k�1) (M)

i#

� n

M �m

Z M

m

f (t) dt

����� � f (n)
p
(M �m)n�2

2n�1 (n� 1)!

!"
(M � s)p

0+1
+ (s�m)p

0+1

p0 + 1

# 1
p0

; (41)

8 s 2 [m;M ], where 1
p +

1
p0 = 1:

Proof. Set Pk (t) = 1
k!

�
t� m+M

2

�k
, k � 0, in Theorem 16.

We �nish with the operator inequality:

Corollary 19 (to Theorem 17) We have�����
"
f (A) +

n�1X
k=1

(�1)k

k!

�
A�

�
m+M

2

�
1H

�k
f (k) (A)+

 
n�1X
k=1

(M �m)k�1 (n� k)
k!2k

h
f (k�1) (m)� (�1)k f (k�1) (M)

i!
1H

#

�
 

n

M �m

Z M

m

f (t) dt

!
1H

����� � f (n)
p
(M �m)n�2

2n�1 (n� 1)!

!"
(M1H �A)p

0+1
+ (A�m1H)p

0+1

p0 + 1

# 1
p0

; (42)

where 1
p +

1
p0 = 1:

Proof. By Corollary 18 and (P) property.
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Abstract

We present here several integer and fractional self adjoint operator
Opial type inequalities to many directions. These are based in the oper-
ator order over a Hilbert space.
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Key Words and Phrases: Self adjoint operator, Hilbert space, Opial

inequality, fractional derivative.

1 Motivation

In 1960, Z. Opial ([9]) proved the following famous inequality that motivates
our work here.
Let f 2 C1 ([0; h]) be such that f (0) = f (h) = 0, and f (t) > 0 in (0; h).

Then Z h

0

jf (t) f 0 (t)j dt � h

4

Z h

0

(f 0 (t))
2
dt:

The constant h4 is the best.
In this article we present integer and fractional self adjoint operator Opial

type inequalities on a Hilbert space in the operator order.

2 Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h�; �i).
The Gelfand map establishes a ��isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�ned on the spectrum of A, denoted

1
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Sp (A), and the C�-algebra C� (A) generated by A and the identity operator
1H on H as follows (see e.g. [6, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) (the operation composition is on the right) and

�
�
f
�
= (� (f))

�
;

(iii) k� (f)k = kfk := sup
t2Sp(A)

jf (t)j ;

(iv) � (f0) = 1H and � (f1) = A, where f0 (t) = 1 and f1 (t) = t; for
t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) , for all f 2 C (Sp (A)) ;

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0, i.e. f (A) is a
positive operator on H. Moreover, if both f and g are real valued continuous
functions on Sp (A) then the following important property holds:
(P) f (t) � g (t) for any t 2 Sp (A), implies that f (A) � g (A) in the operator

order of B (H) : (the Banach algebra of all bounded linear operators from H into
itself).
Equivalently, we use (see [5], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H; h�; �i) with

the spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and fE�g� be its spectral family.
Then for any continuous function f : [m;M ] ! C, it is well known that

we have the following spectral representation in terms of the Riemann-Stieljes
integral:

hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

for any x; y 2 H. The function gx;y (�) := hE�x; yi is of bounded variation on
the interval [m;M ], and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi ;

for any x; y 2 H. Furthermore, it is known that gx (�) := hE�x; xi is increasing
and right continuous on [m;M ] :
We have also the formula

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; 8 x 2 H:

2
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As a symbol we can write

f (U) =

Z M

m�0
f (�) dE�:

Above, m = min f�j� 2 Sp (U)g := minSp (U), M = max f�j� 2 Sp (U)g :=
maxSp (U). The projections fE�g�2R ; are called the spectral family of A, with
the properties:
(a) E� � E�0 for � � �0;
(b) Em�0 = 0H (zero operator), EM = 1H (identity operator) and E�+0 =

E� for all � 2 R.
Furthermore

E� := '� (U) , 8 � 2 R;

is a projection which reduces U , with

'� (s) :=

�
1, for �1 < s � �;
0; for � < s < +1:

The spectral family fE�g�2R determines uniquely the self-adjoint operator U
and vice versa.
For more on the topic see [8], pp. 256-266, and for more detalis see there

pp. 157-266. See also [4].
Some more basics are given (we follow [5], pp. 1-5):
Let (H; h�; �i) be a Hilbert space over C. A bounded linear operator A de�ned

on H is selfjoint, i.e., A = A�, i¤ hAx; xi 2 R, 8 x 2 H, and if A is selfadjoint,
then

kAk = sup
x2H:kxk=1

jhAx; xij :

Let A;B be selfadjoint operators on H. Then A � B i¤ hAx; xi � hBx; xi, 8
x 2 H.
In particular, A is called positive if A � 0:
Denote by

P :=
(
' (s) :=

nX
k=0

�ks
kjn � 0, �k 2 C, 0 � k � n

)
:

If A 2 B (H) is selfadjoint, and ' (s) 2 P has real coe¢ cients, then ' (A) is
selfadjoint, and

k' (A)k = max fj' (�)j ; � 2 Sp (A)g :

If ' is any function de�ned on R we de�ne

k'kA := sup fj' (�)j ; � 2 Sp (A)g :

3

1400

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.8, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Anastassiou 1398-1411



If A is selfadjoint operator on Hilbert space H and ' is continuous and given
that ' (A) is selfadjoint, then k' (A)k = k'kA. And if ' is a continuous real
valued function so it is j'j, then ' (A) and j'j (A) = j' (A)j are selfadjoint
operators (by [5], p. 4, Theorem 7).
Hence it holds

kj' (A)jk = kj'jkA = sup fjj' (�)jj ; � 2 Sp (A)g

= sup fj' (�)j ; � 2 Sp (A)g = k'kA = k' (A)k ;

that is
kj' (A)jk = k' (A)k :

For a selfadjoint operator A 2 B (H) which is positive, there exists a unique
positive selfadjoint operator B :=

p
A 2 B (H) such that B2 = A, that is�p

A
�2
= A: We call B the square root of A.

Let A 2 B (H), then A�A is selfadjoint and positive. De�ne the �operator
absolute value� jAj :=

p
A�A. If A = A�, then jAj =

p
A2:

For a continuous real valued function ' we observe the following:

j' (A)j (the functional absolute value) =
Z M

m�0
j' (�)j dE� =

Z M

m�0

q
(' (�))

2
dE� =

q
(' (A))

2
= j' (A)j (operator absolute value),

where A is a selfadjoint operator.
That is we have

j' (A)j (functional absolute value) = j' (A)j (operator absolute value).

3 Main Results

Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) � [m;M ], m < M ; m;M 2 R.
In the next we obtain Opial type inequalities, both integer and fractional

cases, in the operator order of B (H) (the Banach algebra of all bounded linear
operators from H into itself).
Let the real valued function f 2 C ([m;M ]), and we consider

g (t) =

Z t

m

f (z) dz, 8 t 2 [m;M ] ; (1)

then g 2 C ([m;M ]) :

4
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We denote by Z A

m1H

f := � (g) = g (A) : (2)

We understand and write that (r > 0)

gr (A) = � (gr) =:

 Z A

m1H

f

!r
:

Clearly
�R A

m1H
f
�r
is a self adjoint operator on H, for any r > 0:

All of our functions in this article will be real valued. From [3] we mention
the following basic version of Opial inequality:

Theorem 1 Let f 2 C1 ([m;M ]) with f (m) = 0. ThenZ �

m

jf (t)j jf 0 (t)j dt �
�
��m
2

�Z �

m

(f 0 (t))
2
dt; 8 � 2 [m;M ] : (3)

When f (t) = t�m, t 2 [m;M ], inequality (3) becomes equality.

By applying properties (P) and (ii) to (3) we obtain

Theorem 2 Let f 2 C1 ([m;M ]) with f (m) = 0. ThenZ A

m1H

jff 0j � 1

2
(A�m1H)

 Z A

m1H

(f 0)
2

!
: (4)

We mention

Theorem 3 ([3]) Let f 2 C1 ([m;M ]) with f (m) = 0, and 1 � p � 2. ThenZ �

m

jf (t)jp jf 0 (t)jp dt � K (p) (��m)
 Z �

m

(f 0 (t))
2
dt

!p
; 8 � 2 [m;M ] ;

(5)
where

K (p) =

8><>:
1
2 , p = 1;
4
�2 , p = 2;
2�p
2p

�
1
p

�2p�2
I�p, 1 < p < 2;

(6)

with

I =

Z 1

0

�
1 +

2 (p� 1)
2� p z

��2
f1 + (p� 1) zg

1
p�1 dz:

For p = 1, equality holds in (5) only for f linear.

By applying properties (P) and (ii) to (5) we derive

5
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Theorem 4 Here all are as in Theorem 3. It holdsZ A

m1H

jff 0jp � K (p) (A�m1H)
 Z A

m1H

(f 0)
2

!p
: (7)

We mention

Theorem 5 ([7]) Let f 2 C1 ([m;M ]) with f (m) = 0, and p; q � 1. ThenZ �

m

jf (t)jp jf 0 (t)jq dt �
�

q

p+ q

�
(��m)p

Z �

m

jf 0 (t)jp+q dt; 8 � 2 [m;M ] :

(8)

By applying properties (P) and (ii) to (8) we �nd

Theorem 6 Let f 2 C1 ([m;M ]) with f (m) = 0, and p; q � 1. ThenZ A

m1H

jf jp jf 0jq �
�

q

p+ q

�
(A�m1H)p

 Z A

m1H

jf 0jp+q
!
: (9)

We mention

Theorem 7 ([11]) Let p > �1. Let f 2 C1 ([m;M ]) ; and f (m) = 0. ThenZ �

m

tp jf (t) f 0 (t)j dt � 1

2
p
p+ 1

Z �

m

�
�p+1 �mtp

�
(f 0 (t))

2
dt (10)

� 1

2
p
p+ 1

Z �

m

�
Mp+1 �mtp

�
(f 0 (t))

2
dt; 8 � 2 [m;M ] : (11)

(inequality (11) is our derivation).

By applying properties (P) and (ii) to (10), (11) we obtain

Theorem 8 Let p > �1. Let f 2 C1 ([m;M ]) and f (m) = 0. ThenZ A

m1H

(id)
p jff 0j � 1

2
p
p+ 1

 Z A

m1H

�
Mp+1 �m (id)p

�
(f 0)

2

!
: (12)

We mention

Theorem 9 ([1], p. 20) Let q (t) be positive continuous and non-increasing
function on [m;M ]. Further, let f 2 C1 ([m;M ]), and f (m) = 0. Let l � 0,
w � 1. ThenZ �

m

q (t) jf (t)jl jf 0 (t)jw dt �
�

w

l + w

�
(��m)l

Z �

m

q (t) jf 0 (t)jl+w dt; (13)

8 � 2 [m;M ] :

6
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By applying property (P) and (ii) to (13) we obtain

Theorem 10 All as in Theorem 9. ThenZ A

m1H

q jf jl jf 0jw �
�

w

l + w

�
(A�m1H)l

Z A

m1H

q jf 0jl+w : (14)

We mention

Theorem 11 (see [1], p. 68) Let q (t) positive, continuous and non-increasing
on [m;M ]. Further let f1; f2 2 C1 ([m;M ]) with f1 (m) = f2 (m) = 0. Let
l � 0, w � 1. ThenZ �

m

q (t) jf1 (t) f2 (t)jl
�
jf1 (t) f 02 (t)j

w
+ jf 01 (t) f2 (t)j

w�
dt �

w

2 (l + w)
(��m)2l+w

Z �

m

q (t)
h
(f 01 (t))

2(l+w)
+ (f 02 (t))

2(l+w)
i
dt; (15)

8 � 2 [m;M ] :

By applying property (P) and (ii) to (15) we obtain

Theorem 12 All as in Theorem 11. ThenZ A

m1H

q jf1f2jl
�
jf1f 02j

w
+ jf 01f2j

w� � (16)

w

2 (l + w)
(A�m1H)2l+w

Z A

m1H

q
h
(f 01)

2(l+w)
+ (f 02)

2(l+w)
i
:

We mention

Theorem 13 ([10], p. 308) Let f 2 Cn ([m;M ]), n 2 N, f (i) (m) = 0, for
i = 0; 1; 2; :::; n� 1. ThenZ �

m

���f (t) f (n) (t)��� dt � (��m)n

2

Z �

m

�
f (n) (t)

�2
dt; 8 � 2 [m;M ] : (17)

Using properties (P) and (ii) on (17) we derive

Theorem 14 All as in Theorem 13. ThenZ A

m1H

���f � f (n)��� � (A�m1H)n

2

 Z A

m1H

�
f (n)

�2!
: (18)

We mention from [10], p. 309

7
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Theorem 15 Let f1; f2 2 Cn ([m;M ]) such that f (k)1 (m) = f
(k)
2 (m) = 0, for

k = 0; 1; :::; n� 1; n 2 N. ThenZ �

m

h���f1 (t) f (n)2 (t)
���+ ���f2 (t) f (n)1 (t)

���i dt �
B (��m)n

Z �

m

��
f
(n)
1 (t)

�2
+
�
f
(n)
2 (t)

�2�
dt; 8 � 2 [m;M ] ; (19)

where

B =
1

2n!

�
n

2n� 1

� 1
2

: (20)

Using (19) and properties (P) and (ii) we obtain

Theorem 16 All as in Theorem 15. ThenZ A

m1H

h���f1f (n)2

���+ ���f2f (n)1

���i �
B (A�m1H)n

 Z A

m1H

��
f
(n)
1

�2
+
�
f
(n)
2

�2�!
: (21)

Here we follow [2], p. 8.

De�nition 17 Let � > 0, n := [�] (integral part), and � := � � n (0 < � < 1).
Let f 2 C ([m;M ]) and de�ne

(Jm� f) (z) =
1

� (�)

Z z

m

(z � t)��1 f (t) dt; (22)

all m � z � M , where � is the gamma function, the generalized Riemann-
Liouville integral. We de�ne the subspace C�m ([m;M ]) of C

n ([m;M ]):

C�m ([m;M ]) :=
n
f 2 Cn ([m;M ]) : Jm1��f (n) 2 C1 ([m;M ])

o
: (23)

So let f 2 C�m ([m;M ]); we de�ne the generalized �-fractional derivative (of
Canavati type) of f over [m;M ] as

D�
mf :=

�
Jm1��f

(n)
�0
: (24)

Notice that �
Jm1��f

(n)
�
(z) =

1

� (1� �)

Z z

m

(z � t)�� f (n) (t) dt (25)

exists for f 2 C�m ([m;M ]), all m � z �M:
Also notice that D�

mf 2 C ([m;M ]) :

8
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We need

Theorem 18 ([2], p. 15) Let f 2 C�m ([m;M ]), � � 1 and f (i) (m) = 0,
i = 0; 1; :::; n� 1, n := [�]. Here � 2 [m;M ], and l = 1; :::; n� 1. Let p; q > 1 :
1
p +

1
q = 1. Then Z �

m

���f (l) (w)��� j(D�
mf) (w)j dw �

2�
1
q (��m)

(�p�lp�p+2)
p

� (� � l) ((�p� lp� p+ 1) (�p� lp� p+ 2))
1
p

 Z �

m

j(D�
mf) (w)j

q
dw

! 2
q

:

(26)

Using (26), properties (P) and (ii) we get

Theorem 19 All as in Theorem 18. ThenZ A

m1H

���f (l)��� j(D�
mf)j �

2�
1
q (A�m1H)

(�p�lp�p+2)
p

� (� � l) ((�p� lp� p+ 1) (�p� lp� p+ 2))
1
p

 Z A

m1H

j(D�
mf)j

q

! 2
q

: (27)

We need

Theorem 20 ([2], p. 26) Let 1; 2 � 0, � � 1 be such that � � 1; � � 2 � 1
and f 2 C�m ([m;M ]) with f

(i) (m) = 0, i = 0; 1; :::; n � 1; n := [�]. Here
� 2 [m;M ]. Let q be a nonnegative continuous functions on [m;M ]. Denote

Q (�) :=

 Z �

m

(q (w))
2
dw

! 1
2

; 8 � 2 [m;M ] : (28)

Then Z �

m

q (w) jD1
m (f) (w)j jD2

m (f) (w)j dw �

K (q; 1; 2; �; �;m)

 Z �

m

(D�
mf (w))

2
dw

!
; (29)

where

K (q; 1; 2; �; �;m) :=
Q (�)
3
p
6

1

� (� � 1) � (� � 2)
�

(��m)2��1�2�
1
2�

� � 1 � 5
6

� 1
6
�
� � 2 � 5

6

� 1
6
�
4� � 21 � 22 � 7

3

� 1
2

: (30)

Using (30) and Remark 3.4 of [2], p. 26, and properties (P) and (ii) to obtain

9
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Theorem 21 All terms and assumptions as in Theorem 20. ThenZ A

m1H

q jD1
m (f)j jD2

m (f)j �

K (q; 1; 2; �; A;m)

 Z A

m1H

(D�
mf)

2

!
; (31)

where

K (q; 1; 2; �; A;m) :=
Q (A)

3
p
6

1

� (� � 1) � (� � 2)
�

(A�m1H)2��1�2�
1
2�

� � 1 � 5
6

� 1
6
�
� � 2 � 5

6

� 1
6
�
4� � 21 � 22 � 7

3

� 1
2

: (32)

We need

Theorem 22 ([2], p. 30) Let  � 0, � � 1, � �  � 1, let q be a nonnegative
continuous function on [m;M ]. Let f 2 C�m ([m;M ]) with f (i) (m) = 0, i =
0; 1; :::; n� 1, n := [�]. Let � 2 [m;M ]. Call

Q (�) :=

 Z �

m

(q (w))
2
(w �m)2��2�1 dw

! 1
2

; (33)

and

K (q; ; �; �;m) :=
Q (�)p

2 (2� � 2 � 1)� (� � )
: (34)

ThenZ �

m

q (w) jD
mf (w)j jD�

mf (w)j dw � K (q; ; �; �;m)
 Z �

m

((D�
mf) (w))

2
dw

!
:

(35)

Using (33)-(35) and properties (P) and (ii) we derive

Theorem 23 All as in Theorem 22. Denote by

K (q; ; �; A;m) :=
Q (A)p

2 (2� � 2 � 1)� (� � )
: (36)

Then Z A

m1H

q jD
mf j jD�

mf j � K (q; ; �; A;m)
 Z A

m1H

((D�
mf))

2

!
: (37)

We need

10
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Theorem 24 ([2], p. 92) Let � � 1, 1; 2 � 0, such that ��1 � 1; ��2 � 1,
and f1; f2 2 C�m ([m;M ]) with f

(i)
1 (m) = f

(i)
2 (m) = 0, i = 0; 1; :::; n�1; n := [�].

Here � 2 [m;M ]. Let ��; �� ; �� � 0. Set

� (�) :=
(��m)(����1��+����2��+1)

(��� � 1�� + ��� � 2�� + 1) (� (� � 1 + 1))
�� (� (� � 2 + 1))

��
:

(38)
Then Z �

m

h
j(D1

m f1) (w)j
�� j(D2

m f2) (w)j
�� j(D�

mf1) (w)j
�� +

j(D2
m f1) (w)j

�� j(D1
m f2) (w)j

�� j(D�
mf2) (w)j

��
i
dw �

� (�)

2

h
kD�

mf1k
2(��+��)
1 + kD�

mf1k
2��
1 + kD�

mf2k
2��
1 + kD�

mf2k
2(��+��)
1

i
; (39)

all m � � �M:

Using (39) and properties (P) and (ii) we derive

Theorem 25 All here as in Theorem 24. Set

� (A) :=
(A�m1H)(����1��+����2��+1)

(��� � 1�� + ��� � 2�� + 1) (� (� � 1 + 1))
�� (� (� � 2 + 1))

��
:

(40)
Then Z A

m1H

h
j(D1

m f1)j
�� j(D2

m f2)j
�� j(D�

mf1)j
�� +

j(D2
m f1)j

�� j(D1
m f2)j

�� j(D�
mf2)j

��
i
�

� (A)

2

h
kD�

mf1k
2(��+��)
1 + kD�

mf1k
2��
1 + kD�

mf2k
2��
1 + kD�

mf2k
2(��+��)
1

i
:

(41)

We give

De�nition 26 ([2], p. 270) Let � > 0, n := d�e (ceiling of �), f 2 ACn ([m;M ])
(i.e. f (n�1) is absolutely continuous on [m;M ], that is in AC ([m;M ])). We
de�ne the Caputo fractional derivative

(D�
�mf) (z) :=

1

� (n� �)

Z z

m

(z � t)n���1 f (n) (t) dt; (42)

which exists almost everywhere for z 2 [m;M ].
Notice that D0

�mf = f , and D
n
�mf = f

(n).

We mention

11
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Theorem 27 ([2], p. 397) Let � � +1,  � 0. Call n := d�e and assume f 2
Cn ([m;M ]) such that f (k) (m) = 0, k = 0; 1; :::; n� 1. Let p; q > 1 : 1p +

1
q = 1,

m � � �M . Then Z �

m

j(D
�mf) (w)j j(D�

�mf) (w)j dw �

(��m)
(p��p�p+2)

p�
q
p
2
�
� (� � ) ((p� � p � p+ 1) (p� � p � p+ 2))

1
p

 Z �

m

jD�
�mf (w)j

q
dw

! 2
q

:

(43)

Note: By Proposition 15.114 ([2], p. 388) we have that D�
�mf;D


�mf 2

C ([m;M ]).
Using (43) and Properties (P) and (ii) we give

Theorem 28 All as in Theorem 27. ThenZ A

m1H

j(D
�mf)j j(D�

�mf)j �

(A�m1H)
(p��p�p+2)

p�
q
p
2
�
� (� � ) ((p� � p � p+ 1) (p� � p � p+ 2))

1
p

 Z A

m1H

jD�
�mf j

q

! 2
q

:

(44)

We need

Theorem 29 ([2], p. 398) Let � � 2, k � 0, � � k + 2. Call n := d�e and
f 2 Cn ([m;M ]) : f (j) (m) = 0, j = 0; 1; :::; n � 1. Let p; q > 1 : 1p +

1
q = 1,

m� � �M . Then Z �

m

���Dk
�mf

�
(w)
�� ���Dk+1

�m f
�
(w)
�� dw �

(��m)
2(p��pk�p+1)

p

2 (� (� � k))2 (p� � pk � p+ 1)
2
p

 Z �

m

jD�
�mf (w)j

q
dw

! 2
q

: (45)

Using (45) and Properties (P) and (ii) we �nd

Theorem 30 All as in Theorem 29. ThenZ A

m1H

���Dk
�mf

��� ���Dk+1
�m f

��� �
(A�m1H)

2(p��pk�p+1)
p

2 (� (� � k))2 (p� � pk � p+ 1)
2
p

 Z A

m1H

jD�
�mf j

q

! 2
q

: (46)
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We need

Theorem 31 ([2], p. 399) Let i � 0, � � 1, � � i � 1; i = 1; :::; l; n :=

d�e, and f 2 Cn ([m;M ]) such that f (k) (m) = 0, k = 0; 1; :::; n � 1. Here
m � � �M ; q1 (�) ; q2 (�) continuous functions on [m;M ] such that q1 (�) � 0,
q2 (�) > 0 on [m;M ] ; and ri > 0 :

Pl
i=1 ri = r. Let s1; s

0
1 > 1 :

1
s1
+ 1

s01
= 1 and

s2; s
0
2 > 1 :

1
s2
+ 1

s02
= 1, and p > s2:

Denote by

Q1 (�) :=

 Z �

m

(q1 (w))
s01 dw

! 1
s01

(47)

and

Q2 (�) :=

 Z �

m

(q2 (w))
�s02
p dw

! r
s02

; (48)

� :=
p� s2
ps2

: (49)

Then Z �

m

q1 (w)

lY
i=1

��Di�mf (w)
��ri dw �

Q1 (�)Q2 (�)
lY
i=1

�
�ri�

(� (� � i))
ri (� � i � 1 + �)

ri�

�
�

(��m)(
Pl

i=1(��i�1)ri+�r)+ 1
s1��Pl

i=1 (� � i � 1) ris1
�
+ rs1� + 1

� 1
s1

 Z �

m

q2 (w) jD�
�mf (w)j

p
dw

! r
p

:

(50)

Using (50) and properties (P) and (ii) we obtain

Theorem 32 All here as in Theorem 31. Set

Q1 (A) :=

 Z A

m1H

(q1)
s01

! 1
s01

(51)

and

Q2 (A) :=

 Z A

m1H

(q2)
�s02
p

! r
s02

: (52)

Then Z A

m1H

q1

lY
i=1

��Di�mf
��ri �

13
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Q1 (A)Q2 (A)
lY
i=1

�
�ri�

(� (� � i))
ri (� � i � 1 + �)

ri�

�
�

(A�m1H)(
Pl

i=1(��i�1)ri+�r)+ 1
s1��Pl

i=1 (� � i � 1) ris1
�
+ rs1� + 1

� 1
s1

 Z A

m1H

q2 jD�
�mf j

p

! r
p

: (53)

One can give many more operator Opial type (both integer and fractional)
inequalities.
We choose to stop here.
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Numerical solution of the generalized Hirota-Satsuma coupled

Korteweg-de Vries equation by Fourier Pseudospectral method

Abdur Rashid∗†, Dianchen Lu‡, Ahmad Izani Md.Ismail§ and Muhammad Abbas¶

Abstract

In this paper, an approximate solution of the generalized Hirota-Satsuma (HS) coupled Korteweg-
de Vries (KdV) equation by the use of Fourier pseudospectral method is presented. A time discrete
scheme is constructed by approximating the time derivative using forward difference formula, while
the pseudospectral method is used in the space direction. The stability and convergence of the scheme
are investigated using the energy method. The numerical results reveal that the Fourier pseudospec-
tral method is a convenient, effective and accurate method to solve the generalized HS coupled KdV
equation.

Key words: Generalized Hirota-Satsuma coupled Korteweg-de Vries equation, Fourier pseudospec-
tral method, Stability, Convergence.

1 Introduction

The generalized HS coupled KdV equations are as follows [1, 2]:

∂u

∂t
=

1
2

∂3u

∂x3
− 3u

∂u

∂x
+ 3

∂

∂x
(vw), x ∈ Ω, t ∈ [0, T ], (1.1)

∂v

∂t
= −∂3v

∂x3
+ 3u

∂v

∂x
, x ∈ Ω, t ∈ [0, T ], (1.2)

∂w

∂t
= −∂3w

∂x3
+ 3u

∂w

∂x
, x ∈ Ω, t ∈ [0, T ] (1.3)

with initial conditions

u(x, 0) = f(x), v(x, 0) = g(x), w(x, 0) = h(x), x ∈ Ω, (1.4)

and boundary conditions

u(−L, t) = u(L, t) = 0, v(−L, t) = v(L, t) = 0, w(−L, t) = w(L, t) = 0, t ∈ [0, T ], (1.5)

where Ω = [−L,L]. Hirota-Satsuma [1] introduced generalized the HS coupled KdV equations in 1976
and these equations are models of shallow water waves. The equations (1.1)–(1.5) have travelling wave
solutions and multiple soliton solutions.

The equations (1.1)–(1.5) have attracted the attention of many researchers and a lot of work has
already been carried out on solution methods. For example, the homotopy perturbation method (HPM)
by Ganji and Rafei [3], homotopy analysis method (HAM) and Adomian’s decomposition method (ADM)
by Abbasbandy [4], modified extended tanh function method by Ali [5], direct algebraic method by Zhang
Huiqun [6]. Rong Jihong et al. [7] used bifurcation theory technique. The auxiliary function method
was used by Yang Feng and Hong-Qing [8], analytical technique by Ganji et al. [9], homogenous balance
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method by Adel Raly et al. [10]. Jacobi elliptic functions expansion method by Baojin Hong [11].
Travelling wave solutions of the above equations investigated by Zuo and Zhang [12], Xie and Ding [13],
Feng and Li [14]. A differential transform method (DTM) and reduced differential transform method
(RDTM) was used by Reze and Malek [15], Hirota’s bilinear method and pfaffian techniques by Junchao
Chen et al. [16], while the Lie group method was applied by Mina B. et al. [17].

1.1 A brief review of Fourier pseudospectral method

In the last two decades spectral methods have been extensively used in the field of numerical solution
of nonlinear partial differential equations. The use of spectral methods for solving partial differential
and integro-differential equations have the advantage that its accuracy is higher than other standard
numerical methods. Spectral methods retain the exponential rate of convergence when the solutions of
the problems is sufficiently smooth. Spectral methods have three different categories namely Galerkin
method, collocation method and tau method. The pseudospectral method is a type of spectral method
which is easy to apply for nonlinear partial differential equations with periodic boundary value problems.
For a more detailed discussion of spectral methods, please see ([18, 19, 20, 21, 22]).

The Fourier pseudospectral method involves two steps. First, the discrete representation of the
solution is constructed by using trigonometric polynomial to interpolate the solution at collocation points.
Second, the equations for the discrete values of the solution are obtained from the original equations.
This second step involves finding an approximation for the differential operator in terms of the discrete
values of the solution at collocation points. For detailed, please see ([18, 19, 23, 26]).

1.2 The main aim of the paper

In this paper, a Fourier pseudospectral method is applied to solve the generalized HS coupled KdV
equation. A finite difference method is used in the time direction and Fourier pseudospectral method in
the space direction. The stability of the time discrete scheme and convergence of the approximate solution
is investigated by the energy method [29]. Numerical results are shown to demonstrate the efficiency of
the method. It should be noted that Darvishi et al. [27] solved the same equation by pseudospectral
method and transformed the partial differential equation to ordinary differential equations. They found
the numerical solution by using classical fourth-order Runge-Kutta method. There is no proof of stability
and convergence. In our paper, we follow the approach of [23, 28].

The outline of the paper is as follows. In section 2 we present some preliminaries which will be used
in next two sections. Section 3 is related to stability of the scheme for generalized Hirota-Satsuma (HS)
coupled Korteweg-de Vries (KdV) equation. Convergence of the approximate solution is proved in section
4. Numerical results are presented for the applicability of the method section 5. Finally the conclusion
is given in section 6.

2 Preliminaries

The inner product and norm are defined by (u, v) =
∫
Ω

u(x)v(x)dx and ‖u‖2 = (u, u) respectively. The
maximum norm is denoted by ‖u‖∞. The periodic Sobolev space is defined by [23]:

H1 =
{

u ∈ L2(R) :
du

dx
∈ L2(R)

}
, H1

p = {u ∈ H1(R) : u(x− L) = u(x + L)}.

The Sobolev norm and semi-norms are defined by [23]:

‖u‖ = (u, u)1/2, ‖u‖H1 = (‖u‖2 + ‖∂u

∂x
‖2)1/2, |u|k = |u|Hk =

∑

|β|=k

(
∫

Ω

(
Dβu)2dx

)1/2
.

We define tn = nτ, n = 0, 1, ..., N , where τ = T/N is the step size in time direction. The equation
(1.1)–(1.3) is evaluated at the point (x, tn), n = 0, 1, . . . , N . We denote un = u(x, tn), vn = v(x, tn) and
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wn = w(x, tn), then equation (1.1), (1.2) and (1.3) can be written as:

un+1 = un + τ

(
1
2

∂3

∂x3
un − 3un ∂un

∂x
+ 3

∂

∂x
(vnwn)

)
+ τRn

1 , (2.1)

vn+1 = vn + τ

(
− ∂3

∂x3
vn + 3un ∂vn

∂x

)
+ τRn

2 , (2.2)

wn+1 = wn + τ

(
− ∂3

∂x3
wn + 3un ∂wn

∂x

)
+ τRn

3 , (2.3)

where Rn
1 , Rn

2 , and Rn
3 are residual of the equation (2.1), (2.2) and (2.3) respectively. Furthermore

|Rn
1 | < C1τ , |Rn

2 | < C2τ and |Rn
3 | < C3τ for some positive constants C1, C2 and C3. By ignoring the

small terms Rn
1 , Rn

2 and Rn
3 in the above equations, the time discrete scheme for the equation (2.1), (2.2)

and (2.3) can be obtained as:

Un+1 = Un + τ

(
1
2

∂3

∂x3
Un − 3Un ∂Un

∂x
+ 3

∂

∂x
(V nWn)

)
, (2.4)

V n+1 = V n + τ

(
− ∂3

∂x3
V n + 3Un ∂V n

∂x

)
, (2.5)

Wn+1 = Wn + τ

(
− ∂3

∂x3
Wn + 3Un ∂Wn

∂x

)
, (2.6)

where Un = U(x, tn), V n = V (x, tn) and Wn = W (x, tn). We present a lemma, which will be useful for
the proof of stability and convergence.

Lemma 2.1 ([24]). If m ≥ 1, and u, v ∈ Hm(Ω), there exists a constant C independent of u, v and N ,
such that

‖uv‖m ≤ C ‖u‖m ‖v‖m .

3 Stability

Assume Un(x, t) to be the approximate solution of un(x, t), V n(x, t) to be the approximate solution of
vn(x, t) and Wn(x, t) be the approximate solution of wn(x, t). For simplicity we denote un = un(x, t)
and similarly for other variables. Let

ũn = un − Un, ṽn = vn − V n, w̃n = wn −Wn.

Subtracting (2.4) from (2.1), (2.5) from (2.2) and (2.6) from (2.3) results in

ũn+1 = ũn +
τ

2
∂3

∂x3
ũn − 3τ

(
un ∂un

∂x
− Un ∂Un

∂x

)
+ 3τ

∂

∂x
(vnwn − V nWn) , (3.1)

ṽn+1 = ṽn + τ

(
− ∂3

∂x3
ṽn

)
+ 3τ

(
un ∂vn

∂x
− Un ∂V n

∂x

)
, (3.2)

w̃n+1 = w̃n + τ

(
− ∂3

∂x3
w̃n

)
+ 3τ

(
un ∂wn

∂x
− Un ∂Wn

∂x

)
. (3.3)

Taking the inner product of (3.1), (3.2) and (3.3) with ũn+1, ṽn+1 and w̃n+1 respectively. By applying
Cauchy-Schwartz inequality, algebraic and Young’s inequalities, we have

(1 + 3τ)‖ũn+1‖2 + τ

∥∥∥∥
∂ũn+1

∂x

∥∥∥∥
2

≤ ‖ũn‖2 + τ

∥∥∥∥
∂2ũn

∂x2

∥∥∥∥
2

− 3τ

∥∥∥∥un ∂un

∂x
− Un ∂Un

∂x

∥∥∥∥
2

+ 3τ ‖vnwn − V nWn‖2 ,

(3.4)

(1 + 3τ)‖ṽn+1‖2 + τ

∥∥∥∥
∂ṽn+1

∂x

∥∥∥∥
2

≤ ‖ṽn‖2 + τ

∥∥∥∥
∂2ṽn

∂x2

∥∥∥∥
2

+ 3τ

∥∥∥∥un ∂vn

∂x
− Un ∂V n

∂x

∥∥∥∥
2

, (3.5)
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(1 + 3τ)‖w̃n+1‖2 + τ

∥∥∥∥
∂w̃n+1

∂x

∥∥∥∥
2

≤ ‖w̃n‖2 + τ

∥∥∥∥
∂2w̃n

∂x2

∥∥∥∥
2

+ 3τ

∥∥∥∥un ∂wn

∂x
− Un ∂Wn

∂x

∥∥∥∥
2

, (3.6)

Now we are going to estimate nonlinear terms of (3.4), (3.5) and (3.6). Again we apply Cauchy-Schwartz
inequality and lemma 2.1, we get

∥∥∥∥un ∂un

∂x
− Un ∂Un

∂x

∥∥∥∥ =
∥∥∥∥un ∂un

∂x
− un ∂Un

∂x
+ un ∂Un

∂x
− Un ∂Un

∂x

∥∥∥∥

=
∥∥∥∥un

(
∂un

∂x
− ∂Un

∂x

)
+

∂Un

∂x
(un − Un)

∥∥∥∥

≤ ‖un‖∞
∥∥∥∥

∂un

∂x
− ∂Un

∂x

∥∥∥∥ +
∥∥∥∥

∂Un

∂x

∥∥∥∥
∞
‖un − Un‖

≤ C4

(∥∥∥∥
∂un

∂x
− ∂Un

∂x

∥∥∥∥ + ‖un − Un‖
)

where C4 =
(‖∂Un

∂x ‖∞, ‖un‖∞
)
, we obtain

∥∥∥∥un ∂un

∂x
− Un ∂Un

∂x

∥∥∥∥
2

≤ C4

(∥∥∥∥
∂ũn

∂x

∥∥∥∥
2

+ ‖ũn‖2
)

Similarly we can apply Cauchy-Schwartz inequality and lemma 2.1, we get the estimation of nonlinear
terms of (3.4), (3.5) and (3.6), we have

‖vnwn − V nWn‖2 ≤ C5

(‖ṽn‖2 + ‖w̃n‖2)
∥∥∥∥un ∂vn

∂x
− Un ∂Un

∂x

∥∥∥∥
2

≤ C6

(
‖ũn‖2 +

∥∥∥∥
∂ṽn

∂x

∥∥∥∥
2
)

,

∥∥∥∥un ∂wn

∂x
− Un ∂Wn

∂x

∥∥∥∥
2

≤ C7

(
‖ũn‖2 +

∥∥∥∥
∂w̃n

∂x

∥∥∥∥
2
)

.

where C5 =
(‖∂V n

∂x ‖∞, ‖un‖∞
)
, C6 =

(‖∂W n

∂x ‖∞, ‖un‖∞
)
, where C7 = (‖vn‖∞, ‖Wn‖∞). Substituting

the value of above values into (3.4), (3.5) and (3.6). Further more C̃ = max(C4, C5, C6, C8). We get

(1− 3τ)

(
‖ũn+1‖2 +

∥∥∥∥
∂ũn+1

∂x

∥∥∥∥
2

+ ‖ṽn+1‖2 +
∥∥∥∥

∂ṽn+1

∂x

∥∥∥∥
2

+ ‖w̃n+1‖2 +
∥∥∥∥

∂w̃n+1

∂x

∥∥∥∥
2
)

≤ (1 + 3τ)C̃

(
‖ũn‖2 +

∥∥∥∥
∂ũn

∂x

∥∥∥∥
2

+ ‖ṽn‖2 +
∥∥∥∥

∂ṽn

∂x

∥∥∥∥
2

+ ‖w̃n‖2 +
∥∥∥∥

∂w̃n

∂x

∥∥∥∥
2
) (3.7)

‖ũn+1‖2H1 + ‖ṽn+1‖2H1 + ‖w̃n+1‖2H1 ≤
(

(1 + 3τ)C̃
1− 3τ

)
(‖ũn‖2H1 + ‖ṽn‖2H1 + ‖w̃n‖2H1

)

≤
(

(1 + 3τ)C̃
1− 3τ

)2 (‖ũn−1‖2H1 + ‖ṽn−1‖2H1 + ‖w̃n−1‖2H1

)

...

≤
(

(1 + 3τ)C̃
1− 3τ

)n+1 (‖ũ0‖2H1 + ‖ṽ0‖2H1 + ‖w̃0‖2H1

)

Let

lim
n−→∞

(
C̃(1 + 3τ)

1− 3τ

)n+1

= lim
n−→∞

(
C̃(1 + 3τ

n+1 )

1− 3τ
n+1

)n+1

=
C̃e3τ

e−3τ
= e6C̃τ (3.8)
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Therefore
‖ũn+1‖2H1 + ‖ṽn+1‖2H1 + ‖w̃n+1‖2H1 ≤

√
e6C̃τ

(‖ũ0‖2H1 + ‖ṽ0‖2H1 + ‖w̃0‖2H1

)

Theorem 1. Let u0, v0 and w0 belong to H1(Ω). Further, let un, vn and wn be the solution for initial
boundary value problem (1.1)–(1.5) and Un, V n and Wn be the solution of the time discrete scheme
(2.4)–(2.6). If τ < 1/3 then solution of the discrete scheme is stable in H1 norm

4 Convergence

In this section we consider the convergence of of approximate solution of generalized HS coupled KdV
equation. Define

Ũn = un − Un, Ṽ n = vn − V n, W̃n = wn −Wn.

From equations (2.1)–(2.3) and (2.4)–(2.6), we obtain

Ũn+1 = Ũn +
τ

2
∂3Ũn

∂x3
+ 3τ

(
un ∂un

∂x
− Un ∂Un

∂x

)
− 3τ

∂

∂x
(vnwn − V nWn) + τRn

1 , (4.1)

Ṽ n+1 = Ṽ n + τ

(
−∂3Ṽ n

∂x3

)
+ 3τ

(
un ∂vn

∂x
− Un ∂V n

∂x

)
+ τRn

2 , (4.2)

W̃n+1 = W̃n + τ

(
−∂3W̃n

∂x3

)
+ 3τ

(
un ∂wn

∂x
− Un ∂Wn

∂x

)
+ τRn

3 . (4.3)

Taking the inner product of (4.1), (4.2) and (4.3) with Ũn+1, Ṽ n+1 and W̃n+1 respectively, yields

‖Ũn+1‖2 ≤ 1
2
‖Ũn‖2 − τ

2




∥∥∥∥∥
∂2Ũn

∂x2

∥∥∥∥∥

2

+

∥∥∥∥∥
∂Ũn+1

∂x

∥∥∥∥∥

2

 + τ |Rn

1 |‖Ũn+1‖+ G1 + G2, (4.4)

‖Ṽ n+1‖2 ≤ 1
2
‖Ṽ n‖2 +

τ

2




∥∥∥∥∥
∂2Ṽ n

∂x2

∥∥∥∥∥

2

+

∥∥∥∥∥
∂Ṽ n+1

∂x

∥∥∥∥∥

2

 + τ |Rn

2 |‖Ṽ n+1‖+ G3, (4.5)

‖W̃n+1‖2 ≤ 1
2
‖W̃n‖2 +

τ

2




∥∥∥∥∥
∂2W̃n

∂x2

∥∥∥∥∥

2

+

∥∥∥∥∥
∂W̃n+1

∂x

∥∥∥∥∥

2

 + τ |Rn

3 |‖W̃n+1‖+ G4, (4.6)

where

G1 = −3τ

(
un ∂un

∂x
− Un ∂Un

∂x
, Ũn+1

)
, G2 = 3τ

∂

∂x

(
vnwn − V nWn, Ũn+1

)
,

G3 = τ

(
un ∂vn

∂x
− Un ∂V n

∂x
, Ṽ n+1

)
, G4 = 3τ

(
un ∂wn

∂x
− Un ∂Wn

∂x
, W̃n+1

)
.

By using the algebraic inequality and lemma 2.1, we get

|G1| ≤ 3τ

∥∥∥∥un ∂un

∂x
− Un ∂Un

∂x

∥∥∥∥
2

+ ‖Ũn+1‖2 ≤ C8

(∥∥∥∥
∂ũn

∂x

∥∥∥∥
2

+ ‖ũn‖2
)

+ ‖Ũn+1‖2, (4.7)

|G2| ≤ 3τ ‖vnwn − V nWn‖2 + ‖Ũn+1‖2 ≤ C9

(‖ṽn‖2 + ‖w̃n‖2) + ‖Ũn+1‖2, (4.8)

|G3| ≤ 3τ

∥∥∥∥un ∂vn

∂x
− Un ∂Un

∂x

∥∥∥∥
2

+ ‖Ṽ n+1‖2 ≤ C10

(
‖ũn‖2 +

∥∥∥∥
∂ṽn

∂x

∥∥∥∥
2
)

+ ‖Ṽ n+1‖2, (4.9)

|G4| ≤ 3τ

∥∥∥∥un ∂wn

∂x
− Un ∂Wn

∂x

∥∥∥∥
2

+ ‖W̃n+1‖2 ≤ C11

(
‖ũn‖2 +

∥∥∥∥
∂w̃n

∂x

∥∥∥∥
2
)

+ ‖W̃n+1‖2, (4.10)

where C8, C9, C10 and C11 are constants independent of τ and N . Let M̃ = max(C8, C9, C10, C11)
Putting the values of (4.7) and (4.8) in to (4.4). Also substituting the values of (4.9) and (4.10) in to
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(4.5) and (4.6) respectively. By using the same technique as in the previous section, we can obtain a
equation similar to (3.7).

(1−3τ)


‖Ũn+1‖2 +

∥∥∥∥∥
∂Ũn+1

∂x

∥∥∥∥∥

2

+ ‖Ṽ n+1‖2 +

∥∥∥∥∥
∂Ṽ n+1

∂x

∥∥∥∥∥

2

+ ‖W̃n+1‖2 +

∥∥∥∥∥
∂W̃n+1

∂x

∥∥∥∥∥

2



≤ (1 + 3τ)M̃


‖Ũn‖2 +

∥∥∥∥∥
∂Ũn

∂x

∥∥∥∥∥

2

+ ‖Ṽ n‖2 +

∥∥∥∥∥
∂Ṽ n

∂x

∥∥∥∥∥

2

+ ‖W̃n‖2 +

∥∥∥∥∥
∂W̃n

∂x

∥∥∥∥∥

2



+ τϑ2|Rn
1 |2 + τϑ2|Rn

2 |2 + τϑ2|Rn
3 |2.

(4.11)

‖Ũn+1‖2H1 + ‖Ṽ n+1‖2H1 + ‖W̃n+1‖2H1 ≤
(

(1 + 3τ)M̃
1− 3τ

)[(
‖Ũn‖2H1 + ‖Ṽ n‖2H1 + ‖W̃n‖2H1

)

+ (τϑ2|Rn
1 |2 + τϑ2|Rn

2 |2 + τϑ2|Rn
3 |2)

]

Let

Ẽn+1 = ‖Ũn+1‖2H1 + ‖Ṽ n+1‖2H1 + ‖W̃n+1‖2H1

R̃n = τϑ2(|Rn
1 |2 + |Rn

2 |2 + |Rn
3 |2)

Then equation (4.11) is written as

Ẽn+1 ≤
(

(1 + 3τ)M̃
1− 3τ

)[
Ẽn + τϑ2R̃n

]

≤
(

(1 + 3τ)M̃
1− 3τ

)2

Ẽn−1 +

(
(1 + 3τ)M̃

1− 3τ

)
τϑ2R̃n−1 + τϑ2R̃n

...

≤
(

(1 + 3τ)M̃
1− 3τ

)n

Ẽ0 + τϑ2
n∑

j=0

(
(1 + 3τ)M̃

1− 3τ

)j

R̃n−j

Since Ẽ0 = 0, we obtain

Ẽn+1 ≤ (n + 1)τϑ2
n∑

j=0

(
(1 + 3τ)M̃

1− 3τ

)j

R̃n−j

Finally, using the result of (3.8) we get

‖un − Un‖+ ‖vn − V n‖+ ‖wn −Wn‖ ≤ (n + 1)τϑ2e6M̃t|Rn| ≤ M̃
√

ϑ2e6M̃tτ

Theorem 2. Let un, vn and wn be the solution for initial boundary value problem for (1.1)–(1.5) and
let Un, V n and Wn be the solution of (2.4)–(2.6) time discrete scheme. If the conditions of Theorem 1
holds. Then the time discrete solution is convergent in H1 and the convergence rate is O(τ).

5 Numerical Results

In this section, we present numerical results to show the efficiency and accuracy of the method, mentioned
in previous section. We define maximum error ‖E(u)‖∞, ‖E(v)‖∞ and ‖E(w)‖∞ as follows

‖E(u)‖∞ = max
0≤j≤N

|u(xj , t)− U(xj , t)|,
‖E(v)‖∞ = max

0≤j≤N
|v(xj , t)− V (xj , t)|,

‖E(w)‖∞ = max
0≤j≤N

|w(xj , t)−W (xj , t)|,

where u, v, w are the exact solutions of (1.1)–(1.5) and U, V,W are the approximate solutions.
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5.1 Example 1

Consider the generalized HS coupled KdV equations (1.1)–(1.5) with the initial conditions [25]:

u(x, 0) =
β − 2α2

3
+ 2α2tanh2(αx),

v(x, 0) =
4α2(β + α2)

3c1

(
c0

c1
− tanh(αx)

)
,

w(x, 0) = c0 + c1tanh(αx)

where c0, c1, α and β are arbitrary constants. For practical computation we choose the parameters as
c0 = 1.5, c1 = 0.1, α = 0.1, β = 1.5 and N = 64.

The absolute error of the U , V and W are given in Table-1, Table-2 and Table-3 respectively. The
results of the present method are compared with the results of methods already available in the literature
i.e., Reza and Malik [15], Xie and Ding [13] for the variable U , V and W at different values of t. We
observe that the absolute error is less than 0.2× 10−6. The numerical results of the present method are
better than the results obtained by Reza and Malik [15], Xie and Ding [13]. The space-time graphs of U ,
V and W are given in Figure-1, Figure-2 and Figure-3 respectively. The graph of exact and approximate
solution are plotted in Figure-1 to Figure-3 at different values of t.

Table 1: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable U at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 3.290e-06 6.719e-10 6.739e-10 2.541e-06
0.4 5.252e-05 1.711e-07 1.719e-07 3.345e-07
0.7 1.597e-04 1.593e-06 1.603e-06 6.144e-07
1.0 3.227e-04 6.574e-06 6.625e-06 8.363e-07

Table 2: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable V at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 8.559e-11 3.320e-13 8.828e-11 1.430e-08
0.4 1.698e-10 8.490e-11 3.818e-08 2.234e-08
0.7 8.793e-10 7.951e-10 5.028e-07 5.933e-08
1.0 3.389e-09 3.306e-09 2.689e-06 7.474e-08

Table 3: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable W at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 5.349e-08 2.075e-10 4.385e-11 6.095e-08
0.4 1.061e-07 5.306e-08 1.896e-08 7.780e-08
0.7 5.496e-07 4.969e-07 2.497e-07 9.188e-08
1.0 2.118e-06 2.066e-06 1.335e-06 8.989e-08
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Figure 1: The left figure shows the space-time graphs of U , while the right figure shows the graph of U
for different values of t.
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Figure 2: The left figure shows the space-time graphs of V , while the right figure shows the graph of V
for different values of t.
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Figure 3: The left figure shows the space-time graphs of W , while the right figure shows the graph of W
for different values of t.
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5.2 Example 2

We consider the generalized HS coupled KdV equations (1.1)–(1.5) with the initial conditions [25]:

u(x, 0) =
β − 8α2

3
+ 4α2tanh2(αx),

v(x, 0) = −4
3

α2(3α2c0 − 2βc2 + 4α2c2)
c2
2

+
(

4α2

c2
tanh2(αx)

)
,

w(x, 0) = c0 + c2tanh2(αx)

where c0, c1, c2, α and β are arbitrary constants. We choose the arbitrary constants for practical
computation as, c0 = 1.5, c1 = 0.1, c2 = 0.5, α = 0.1, β = 1.5 and N = 64.

The absolute error of U , V and W are given in Table-4, Table-5 and Table-6 respectively. we compare
the results of the present method with Reza and Malik [15], Xie and Ding [13] for the variable U , V and
W at different value of t. The results are already available in the literature. We observe that the absolute
error is less than 0.2× 10−6. The numerical results of the present method are comparatively better than
the results obtained from Reza and Malik [15], Xie and Ding [13]. The space-time graphs of U , V and W
are given in Figure-4, Figure-5 and Figure-6 respectively. The graph of exact and approximate solution
are shown in Figure-4 to Figure-6 at different value of t.

Table 4: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable U at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 4.279e-09 1.660e-11 2.495e-05 3.762e-09
0.4 8.490e-09 4.245e-09 1.146e-04 4.677e-09
0.7 4.396e-08 3.975e-08 2.293e-04 5.366e-09
1.0 1.694e-07 1.653e-07 3.744e-04 7.595e-09

Table 5: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable V at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 8.559e-11 3.320e-13 8.828e-11 1.430e-08
0.4 1.698e-10 8.490e-11 3.818e-08 2.234e-08
0.7 8.793e-10 7.951e-10 5.028e-07 5.933e-08
1.0 3.389e-09 3.306e-09 2.689e-06 7.474e-08

Table 6: Comparison of numerical results of pseudospectral (present) method for Example-1 with the
results obtained from Reza and Malik [15], Xie and Ding [13] for the variable W at different values of t.

t DTM ([15]) RDTM ([15]) DTM ([13]) Present Method
0.1 5.349e-08 2.075e-10 4.385e-11 6.095e-08
0.4 1.061e-07 5.306e-08 1.896e-08 7.780e-08
0.7 5.496e-07 4.969e-07 2.497e-07 9.188e-08
1.0 2.118e-06 2.066e-06 1.335e-06 8.989e-08
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Figure 4: The left figure shows the space-time graphs of U , while the right figure shows the graph of U
for different values of t.
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Figure 5: The left figure shows the space-time graphs of V , while the right figure shows the graph of V
for different values of t.
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Figure 6: The left figure shows the space-time graphs of W , while the right figure shows the graph of W
for different values of t.
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6 Conclusion

In this paper, the generalized Hirota-Satsuma (HS) coupled Korteweg-de Vries (KdV) equation is solved
numerically using the Fourier pseudospectral method. The time derivative of discrete scheme is approx-
imated by the forward finite difference formula while the pseudospectral method is used in the space
direction. The stability and convergence of the discrete scheme are proved by energy estimation method.
The obtained solution is presented graphically at various time levels. The numerical results reveal that the
Fourier pseudospectral method is convenient, effective and accurate to solve the generalized HS coupled
KdV equations.
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