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Some properties on non-admissible and admissible functions

sharing some sets in the unit disc ∗

Feng-Lin Zhou
Department of Informatics and Engineering, Jingdezhen Ceramic Institute,

Jingdezhen, Jiangxi, 333403, China

<e-mail: zhoufenglin@jci.edu.cn>

Abstract

In this paper, we deal with the uniqueness problem of two non-admissible functions sharing
some values and sets in the unit disc, and also investigate the problem on an admissible
function and a non-admissible function sharing some values and sets. Some theorems of this
paper improve the results given by Fang. In addition, the results in this paper analogous
version of the uniqueness theorems of meromorphic functions sharing some sets on the whole
complex plane which given by Yi and Cao.
Key words: uniqueness; meromorphic function; admissible; non-admissible.
Mathematical Subject Classification (2010): Primary 30D 35.

1 Introduction and main results

We should assume that reader is familiar with the basic results and the standard notations of the
Nevanlinna value distribution theory of meromorphic functions (see Hayman [6] , Yang [14] and
Yi and Yang [18]). For a meromorphic function f , we use S(r, f) to denote any quantity satisfying
S(r, f) = o(T (r, f)) for all r outside a possible exceptional set of finite logarithmic measure, and

use C to denote the open complex plane, Ĉ := C
⋃
{∞} to denote the extended complex plane,

and D = {z : |z| < 1} to denote the unit disc.
R. Nevanlinna [10] proved the following well-known theorems.

Theorem 1.1 (see [10]) If f and g are two non-constant meromorphic functions that share five
distinct values a1, a2, a3, a4, a5 IM in C, then f(z) ≡ g(z).

After this work, the uniqueness of meromorphic functions with shared sets and values attract-
ed many investigations (see [18]). Moreover, the uniqueness theory of meromorphic functions is
an important subject in the value distribution theory. In this paper, we mainly investigate the
uniqueness of meromorphic functions with slow growth sharing some sets in the unit disc.

We firstly introduce the following basic notations and definitions of meromorphic functions in
D(see [2, 4, 7, 12, 8, 13, 22]).

Definition 1.1 (see [12]). Let f be a meromorphic function in D and limr→1− T (r, f) =∞. Then

D(f) := lim sup
r→1−

T (r, f)

− log(1− r)

is called the (upper) index of inadmissibility of f . If D(f) =∞, f is called admissible.

∗This work was supported by the NSF of China (11561033), the Natural Science Foundation of Jiangxi Province
in China (20151BAB201008), and the Foundation of Education Department of Jiangxi of China (GJJ150902).
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Definition 1.2 (see [12]). Let f be a meromorphic function in D and limr→1− T (r, f) =∞. Then

ρ(f) := lim sup
r→1−

log+ T (r, f)

− log(1− r)

is called the order (of growth) of f .

The Second Main Theorem for admissible functions (see [12, Theorem 3]) is very important in
studying the uniqueness of two admissible functions in the unit disc D, which was proved by in
2005.

Theorem 1.2 (see [12, Theorem 3]). Let f be an admissible meromorphic function in D, q be a
positive integer and a1, a2, . . . , aq be pairwise distinct complex numbers. Then, for r → 1−, r 6∈ E,

(q − 2)T (r, f) ≤
q∑
j=1

N

(
r,

1

f − aj

)
+ S(r, f),

where E ⊂ (0, 1) is a possibly occurring exceptional set with
∫
E

dr
1−r < ∞. If the order of f is

finite, the remainder S(r, f) is a O
(

log 1
1−r

)
without any exceptional set.

In 2005, Titzhoff [12] also obtained the five values theorem for admissible functions in the unit
disc D as follows.

Theorem 1.3 (see [5, 12]). If two admissible functions f, g share five distinct values, then f ≡ g.

From Theorem 1.2(see [12, Theorem 3]), we can easily obtain a lot of theorems similar to
meromorphic functions in the complex plane. In 1999, Fang [5] investigated the uniqueness of
admissible functions sharing two sets and three sets and obtained a series of theorems. In 2015,
Xu, Yang and Cao [15] investigated the problem on shared values of admissible function and non-
admissible function, and obtained some interesting results. Inspired by Xu, Yang and Cao [15] and
Fang[5], we further study the problem on shared-sets of admissible function and non-admissible
function in the unit disc.

The following theorem also plays a very important role in studies non-admissible functions
sharing some sets in this paper.

Theorem 1.4 (see [12, Theorem 2]). Let f be a meromorphic function in D and limr→1− T (r, f) =
∞, q be a positive integer and a1, a2, . . . , aq be pairwise distinct complex numbers. Then, for
r → 1−, r 6∈ E,

(q − 2)T (r, f) ≤
q∑
j=1

N

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f).

Remark 1.1 In contrast to admissible functions, the term log 1
1−r in Theorem 1.4 does not nec-

essarily enter the remainder S(r, f) because the non-admissible function f may have T (r, f) =

O
(

log 1
1−r

)
.

Remark 1.2 We can see that S(r, f) = o
(

log 1
1−r

)
holds in Theorem 1.4 without a possible

exception set when 0 < D(f) <∞.

The following lemma for non-admissible functions in the unit disc is used in this paper.
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Lemma 1.1 (see [15]). Let f(z) be a meromorphic function in D and limr→1− T (r, f) = ∞,
aj(j = 1, 2, . . . , q) be q distinct complex numbers, and kj(j = 1, 2, . . . , q) be positive integers or ∞.
If f is a non-admissible function, then

(q − 2)T (r, f) <

q∑
j=1

kj
kj + 1

Nkj)

(
r,

1

f − aj

)
+

q∑
j=1

1

kj + 1
N

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f),

and q − 2−
q∑
j=1

1

kj + 1

T (r, f) ≤
q∑
j=1

kj
kj + 1

Nkj)

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f),

where nk)(r,
1

f−a ) is used to denote the zeros of f − a in |z| ≤ r, whose multiplicities are no

greater than k and are counted only once, Nk)(r,
1

f−a ) is the corresponding counting functions, and
kj
kj+1 = 1, Nkj)(r,

1
f−aj ) = N(r, 1

f−aj ) and 1
kj+1 = 0 if kj = ∞, S(r, f) is stated as in Theorem

1.2.

The main purpose of this paper is to deal with the problem of two non-admissible functions
sharing some sets, and an admissible function sharing some sets with an non-admissible function.
Section 2, the uniqueness of two non-admissible functions sharing some sets in D are investigated
and some results showed that the number and weight of sharing sets is related with the index of
inadmissibility of functions in D. In section 3, the problem of an admissible function and a non-
admissible function sharing some sets is studied, and one of those results shows that admissible
function and non-admissible function can share at most five distinct values with reduced weighted
1.

2 The uniqueness and sharing sets of non-admissible func-
tions in the unit disc

Let S be a set of distinct elements in Ĉ and X ⊆ C. Define

E(S,D, f) =
⋃
a∈S
{z ∈ D|fa(z) = 0, counting multiplicities},

E(S,D, f) =
⋃
a∈S
{z ∈ D|fa(z) = 0, ignoring multiplicities},

where fa(z) = f(z)− a if a ∈ C and f∞(z) = 1/f(z).
For two non-constant meromorphic functions f, g, we say f and g share the set S CM(counting

multiplicities) in D if E(S,D, f) = E(S,D, g); we say f and g share the set S IM(ignoring mul-

tiplicities) in D if E(S,D, f) = E(S,D, g). In particular, as S = {a} and a ∈ Ĉ, we say f and g
share the value a CM in D if E(a,D, f) = E(a,D, g), and we say f and g share the value a IM
in D if E(a,D, f) = E(a,D, g). We use Ek)(a,D, f) to denote the set of zeros of f − a in D, with
multiplicities no greater than k, in which each zero counted only once. We say that f(z) and g(z)
share the value a with reduced weight k in D, if Ek)(a,D, f) = Ek)(a,D, g). If D = C, we have the

simple notation as before, E(S, f), E(S, f), Ek)(a, f) and so on(see [18]).

The deficiency of a ∈ Ĉ with respect to a meromorphic function f on the unit disc D is defined
by

δ(a, f) = δ(0, f − a) = lim inf
r→1−

m(r, 1
f−a )

T (r, f)
= 1− lim sup

r→1−

N(r, 1
f−a )

T (r, f)
,
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and the reduced deficiency by

Θ(a, f) = Θ(0, f − a) = 1− lim sup
r→1−

N(r, 1
f−a )

T (r, f)
.

We now show our main theorems. The first theorem can be called five values theorem of
non-admissible functions.

Theorem 2.1 Let f1 and f2 be two non-admissible meromorphic functions in the unit disc D
satisfying 1 < D(f1), D(f2) <∞, and f1, f2 share aj(j = 1, 2, 3, 4, 5) IM . Then f1(z) ≡ f2(z).

Remark 2.1 From Theorem 2.1, we can get that f1(z) ≡ f2(z) if f1, f2 share five distinct values
and D(f1), D(f2) > 1. However, the conclusion holds in Theorem 1.3 under the condition which
f1, f2 are admissible functions, that is, D(f1) = ∞, and D(f2) = ∞. Thus, we can see that
Theorem 2.1 is a greatly improvement of Theorem 1.3.

In order to prove Theorem 2.1, we will prove the following general results of two non-admissible
functions sharing some sets.

Theorem 2.2 Let f1 and f2 be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) <∞. Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, Si ∩ Sj = ∅, (i 6= j) and q > 2 + max
{[

1
D(f1)

]
,
[

1
D(f2)

]}
, where [x] denotes the largest

integer less than or equal to x. Let kj (j = 1, 2, . . . , q) be positive integers or ∞ satisfying

k1 ≥ k2 ≥ · · · ≥ kq (1)

and
Ekj)(Sj ,D, f1) = Ekj)(Sj ,D, f2), (j = 1, 2, . . . , q). (2)

Furthermore, let

Θ(fi) =
∑
a

Θ(0, fi − a)−
q∑
j=1

l−1∑
s=0

Θ(0, fi − (aj + sb)), (i = 1, 2),

and

A1 =

∑m−1
j=1

∑l−1
s=0 δ(0, f1 − (aj + sb))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δ(0, f1 − (aj + sb))

kj + 1

+
(lm− 3l + 1)km

km + 1
− (2l − 1)kn

kn + 1
+ Θ(f1)− 2,

A2 =

∑n−1
j=1

∑l−1
s=0 δ(0, f2 − (aj + sb))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δ(0, f2 − (aj + sb))

kj + 1

+
(ln− 3l + 1)kn

kn + 1
− (2l − 1)km

km + 1
+ Θ(f2)− 2,

where m and n are positive integers in {1, 2, . . . , q} and a is an arbitrary complex number or ∞. If

min{A1, A2} ≥
2

D(f1) +D(f2)
, and max{A1, A2} >

2

D(f1) +D(f2)
. (3)

Then f1(z) ≡ f2(z).

998

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Feng-Lin Zhou 995-1007



By letting l = 1, q = 5 and k1 = k2 = · · · = k5 = ∞ in Theorem 2.2, we can get Theorem 2.1
easily. Now, we start to prove Theorem 2.2 as follows.
Proof of Theorem 2.2: Suppose that f1(z) 6≡ f2(z). From the second fundamental theorem in
the unit disc (Theorem 1.4) we have

(ql + p− 2)T (r, f1) <

q∑
j=1

l−1∑
s=0

N

(
r,

1

f1 − (aj + sb)

)
+

p∑
k=1

N

(
r,

1

f1 − dk

)
+ log

1

1− r
+ S(r, f1).

By definition we have

N

(
r,

1

f1 − dk

)
< (1−Θ(0, f1 − dk))T (r, f1) + S(r, f1).

From Lemma 1.1 and the definition of deficiency, it follows that for s ∈ {0, 1, . . . , l − 1}

N

(
r,

1

f1 − (aj + sb)

)
≤ kj

kj + 1
Nkj)

(
r,

1

f1 − (aj + sb)

)
+

1

kj + 1
N

(
r,

1

f1 − (aj + sb)

)
<

kj
kj + 1

Nkj)

(
r,

1

f1 − (aj + sb)

)
+

1

kj + 1
(1− δ(0, f1 − (aj + sb)))T (r, f1)

+S(r, f1).

Thus, we obtain

(ql + p− 2)T (r, f1)

<

{
p∑
k=1

(1−Θ(0, f1 − dk))

}
T (r, f1) +

q∑
j=1

l−1∑
s=0

kj
kj + 1

Nkj)(r,
1

f1 − (aj + sb)
)

+


q∑
j=1

l−1∑
s=0

1

kj + 1
(1− δ(0, f1 − (aj + sb)))

T (r, f1) + log
1

1− r
+ S(r, f1).

Since Θ(0, f − a) ≥ 0 for any meromorphic function f and any complex number a ∈ Ĉ.
Without loss of generality, we assume that there exist infinitely many d such that Θ(0, f1− d) > 0
and d 6∈ {aj + sb : j = 1, 2, . . . , q and s = 0, 1, . . . , l − 1}. We denote them by dk (k = 1, 2, . . . ,∞).
Obviously, Θ(f1) = Σ∞k=1Θ(0, f1−dk). Thus there exits a p such that Σpk=1Θ(0, f1−dk) > Θ(f1)−ε
holds for any given ε (> 0). Noting that

1 ≥ k1
k1 + 1

≥ k2
k2 + 1

≥ · · · ≥ kq
kq + 1

≥ 1

2
,

we can deduce that

(ql + p− 2)T (r, f1)

< (p−Θ(f1) + ε)T (r, f1) +
km

km + 1

q∑
j=1

l−1∑
s=0

Nkj)

(
r,

1

f1 − (aj + sb)

)

+


m−1∑
j=1

l−1∑
s=0

(
kj

kj + 1
− km
km + 1

)
(1− δ(0, f1 − (aj + sb)))

T (r, f1)

+


q∑
j=1

l−1∑
s=0

1− δ(0, f1 − (aj + sb))

kj + 1

T (r, f1) + log
1

1− r
,
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namely, (
l(m− 1)km
km + 1

+B1 − ε
)
T (r, f1) <

q∑
j=1

l−1∑
s=0

km
km + 1

Nkj)(r,
1

f1 − (aj + sb)
)

+ log
1

1− r
,

where

B1 =

∑m−1
j=1

∑l−1
s=0 δ(0, f1 − (aj + sb))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δ(0, f1 − (aj + sb))

kj + 1
+ Θ(f1)− 2.

By a similar discussion as above, we also have(
l(n− 1)kn
kn + 1

+B2 − ε
)
T (r, f2) <

q∑
j=1

l−1∑
s=0

kn
kn + 1

Nkj)

(
r,

1

f2 − (aj + sb)

)
+ log

1

1− r
,

where

B2 =

∑n−1
j=1

∑l−1
s=0 δ(0, f2 − (aj + sb))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δ(0, f2 − (aj + sb))

kj + 1
+ Θ(f2)− 2.

Hence (
l(m− 1)km
km + 1

+B1 − ε
)
T (r, f1) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T (r, f2)

<

q∑
j=1

l−1∑
s=0

km
km + 1

Nkj)(r,
1

f1 − (aj + sb)
) +

q∑
j=1

l−1∑
s=0

kn
kn + 1

Nkj)(r,
1

f2 − (aj + sb)
)

+2 log
1

1− r
.

We now assert that f1(z) − f2(z) 6≡ sb, s = 1, 2, . . . , l − 1. Otherwise, we get that aj (j =
1, 2, . . . , q) are the Picard exceptional values of f1, and that aj + (l − 1)b (j = 1, 2, . . . , q) are
the Picard exceptional values of f2. By q > 2 + 1

D(f1)
and Theorem 1.4, we get a contradiction.

Similarly, we have f2(z)− f1(z) 6≡ sb, s = 1, 2, . . . , l − 1.
By condition (2) and the first fundamental theorem, we have

q∑
j=1

l−1∑
s=0

Nkj)

(
r,

1

f1 − (aj + sb)

)

≤ N
(
r,

1

f1 − f2

)
+

l−1∑
s=1

N

(
r,

1

f1 − f2 − sb

)
+

l−1∑
s=1

N

(
r,

1

f2 − f1 − sb

)
≤ (2l − 1)(T (r, f1) + T (r, f2)) +O(1).

and

q∑
j=1

l−1∑
s=0

Nkj)

(
r,

1

f2 − (aj + sb)

)

≤ N
(
r,

1

f1 − f2

)
+

l−1∑
s=1

N

(
r,

1

f1 − f2 − sb

)
+

l−1∑
s=1

N

(
r,

1

f2 − f1 − sb

)
≤ (2l − 1)(T (r, f1) + T (r, f2)) +O(1).
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Therefore, from the above discussion we obtain(
l(m− 1)km
km + 1

+B1 − ε
)
T (r, f1) +

(
l(n− 1)kn
kn + 1

+B2 − ε
)
T (r, f2)

< (2l − 1)

(
km

km + 1
+

kn
kn + 1

)
(T (r, f1) + T (r, f2)) + 2 log

1

1− r
,

namely,

(A1 − ε)T (r, f1) + (A2 − ε)T (r, f2) ≤ 2 log
1

1− r
. (4)

Since 0 < D(f1), D(f2) < ∞, we have S(r, f1) = o
(

log 1
1−r

)
, S(r, f2) = o

(
log 1

1−r

)
. And from

the definition of index, for any ε satisfying

0 < 2ε < min

{
D(f1), D(f2),max{A1, A2} −

2

D(f1) +D(f2)

}
, (5)

there exists a sequence {rt} → 1− such that

T (rt, f1) > (D(f1)− ε) log
1

1− rt
, T (rt, f2) > (D(f2)− ε) log

1

1− rt
, (6)

for all t→∞. From (4)-(6), we have

[(D(f1)− ε)(A1 − ε) + (D(f2)− ε)(A2 − ε)− 2] log
1

1− rt
< o

(
log

1

1− rt

)
. (7)

From (7) and ε being arbitrary, the above inequality contradicts to (3). Therefore, the proof of
Theorem 2.2 is completed.

We can get the following corollaries from Theorem 2.2.

Corollary 2.1 Let kj (j = 1, 2, . . . , q) be positive integers or ∞ satisfying (1), and let f1 and f2
be two non-admissible meromorphic functions in the unit disc D satisfying 0 < D(f1), D(f2) <∞
and (2). Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, Si ∩ Sj = ∅, (i 6= j) and q > 2 + max
{[

1
D(f1)

]
,
[

1
D(f2)

]}
, where [x] denotes the largest

integer less than or equal to x. If

q∑
j=3

l−1∑
s=0

kj
kj + 1

+
(2− 2l)k3
k3 + 1

> 2 +
2

D(f1) +D(f2)
.

Then f1(z) ≡ f2(z).

Proof: Let m = n = 3. Noting that Θ(fi) ≥ 0 and δ(0, fi − (aj + sb)) ≥ 0 for j = 1, 2, . . . , q and
i = 1, 2, one can deduce from Theorem 2.2 that Corollary 2.1 follows. 2

The following corollary is an analog of a result due to H.-X. Yi (Theorem 10.7 in [18], see also
[21]) on C.

Corollary 2.2 Let f1 and f2 be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) <∞. Suppose that

Sj = {aj , aj + b, . . . , aj + (l − 1)b}, j = 1, 2, . . . , q,

with b 6= 0, Si ∩ Sj = ∅, (i 6= j) and

q > max

{
4 +

2

(D(f1) +D(f2))l
, 2 + max

{[
1

D(f1)

]
,

[
1

D(f2)

]}}
.

If E(Sj ,D, f1) = E(Sj ,D, f2), (j = 1, 2, . . . , q). Then f1(z) ≡ f2(z).
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Proof: Let k1 = k2 = . . . = kq =∞. One can deduce from Corollary 2.1 that Corollary 2.2 follows
immediately. 2

Let l = 1. Then it is easily derived the following corollary from Corollary 2.1, which is an analog
of the Corollary of Theorem 3.15 in [18].

Corollary 2.3 Let aj (j = 1, 2, . . . , q) be q distinct complex numbers in Ĉ, and kj (j = 1, 2, . . . , q)
be positive integers or ∞ satisfying (1), and let f1 and f2 be two non-admissible meromorphic
functions in the unit disc D satisfying 0 < D(f1), D(f2) <∞ and Ekj)(aj ,D, f1) = Ekj)(aj ,D, f2).
Set D := min{D(f1), D(f2)}. Then

(i) if D > 1, q = 7 and k7 ≥ 2, then f1(z) ≡ f2(z);
(ii) if D > 1, q = 6 and k6 ≥ 4, then f1(z) ≡ f2(z);
(iii) if D > 2 and q = 7, then f1(z) ≡ f2(z);
(iv) if D > 3, q = 6 and k3 ≥ 2, then f1(z) ≡ f2(z);
(v) if D > 6, q = 5, k3 ≥ 3 and k5 ≥ 2, then f1(z) ≡ f2(z);
(vi) if D > 10, q = 5 and k4 ≥ 4, then f1(z) ≡ f2(z);
(vii) if D > 12, q = 5, k3 ≥ 5 and k4 ≥ 3, then f1(z) ≡ f2(z);
(viii) if D > 42, q = 5, k3 ≥ 6 and k4 ≥ 2, then f1(z) ≡ f2(z).

We now state another main theorem.

Theorem 2.3 Let f1 and f2 be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) <∞. Suppose that

Sj = {c+ aj , c+ ajw, . . . , c+ ajw
l−1}, j = 1, 2, . . . , q,

with aj 6= 0, (j = 1, 2, . . . , q), w = exp(2πi
l ), Si∩Sj = ∅, (i 6= j) and q > 2+max

{[
1

D(f1)

]
,
[

1
D(f2)

]}
.

Let kj (j = 1, 2, . . . , q) be positive integers or ∞ satisfying (1), and

Ekj)(Sj ,D, f1) = Ekj)(Sj ,D, f2), (j = 1, 2, . . . , q). (8)

Furthermore, let

Θ(fi) =
∑
a

Θ(0, fi − a)−
q∑
j=1

l−1∑
s=0

Θ(0, fi − (c+ ajw
s)), (i = 1, 2),

and

A3 =

∑m−1
j=1

∑l−1
s=0 δ(0, f1 − (c+ ajw

s))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δ(0, f1 − (c+ ajw
s))

kj + 1

+
l(m− 2)km
km + 1

− lkn
kn + 1

+ Θ(f1)− 2,

A4 =

∑n−1
j=1

∑l−1
s=0 δ(0, f2 − (c+ ajw

s))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δ(0, f2 − (c+ ajw
s))

kj + 1

+
l(n− 2)kn
kn + 1

− lkm
km + 1

+ Θ(f2)− 2,

where m and n are positive integers in {1, 2, . . . , q} and a is an arbitrary complex number or ∞. If

min{A3, A4} ≥
2

D(f1) +D(f2)
, and max{A3, A4} >

2

D(f1) +D(f2)
. (9)

Then (f1(z)− c)l ≡ (f1(z)− c)l.
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Proof: We assume that (f1(z) − c)l 6≡ (f2(z) − c)l. Without loss of generality, we assume that
there exist infinitely many d such that Θ(0, f1 − d) > 0 and d 6∈ {c+ ajw

s : j = 1, 2, . . . , q and s =
0, 1, . . . , l − 1}. We denote them by dk (k = 1, 2, . . . ,∞). Obviously, Θ(f1) =

∑∞
k=1 Θ(0, f1 − dk).

Thus there exits a p such that
∑p
k=1 Θ(0, f1 − dk) > Θ(f1)− ε holds for any given ε (> 0).

Using a similar discussion as in the proof of Theorem 2.2, we obtain(
l(m− 1)km
km + 1

+B3 − ε
)
T (r, f1) +

(
l(n− 1)kn
kn + 1

+B4 − ε
)
T (r, f2)

<

q∑
j=1

l−1∑
s=0

km
km + 1

Nkj)(r,
1

f1 − (c+ ajws)
) +

q∑
j=1

l−1∑
s=0

kn
kn + 1

Nkj)(r,
1

f2 − (c+ ajws)
)

+2 log
1

1− r
,

where

B3 =

∑m−1
j=1

∑l−1
s=0 δ(0, f1 − (c+ ajw

s))

km + 1
+

q∑
j=m

l−1∑
s=0

kj + δ(0, f1 − (c+ ajw
s))

kj + 1
+ Θ(f1)− 2.

B4 =

∑n−1
j=1

∑l−1
s=0 δ(0, f2 − (c+ ajw

s))

kn + 1
+

q∑
j=n

l−1∑
s=0

kj + δ(0, f2 − (c+ ajw
s))

kj + 1
+ Θ(f2)− 2.

Furthermore, from condition (8) and the first fundamental theorem, we have

q∑
j=1

l−1∑
s=0

Nkj)(r,
1

f1 − (c+ ajws)
) < N(r,

1

(f1 − c)l − (f2 − c)l
)

≤ l(T (r, f1) + T (r, f2)) +O(1).

and

q∑
j=1

l−1∑
s=0

Nkj)(r,
1

f2 − (c+ ajws)
) < N(r,

1

(f1 − c)l − (f2 − c)l
)

≤ l(T (r, f1) + T (r, f2)) +O(1).

Therefore, from the above discussion we obtain(
l(m− 1)km
km + 1

+B3 − ε
)
T (r, f1) +

(
l(n− 1)kn
kn + 1

+B4 − ε
)
T (r, f2)

< l

(
km

km + 1
+

kn
kn + 1

)
(T (r, f1) + T (r, f2)) + 2 log

1

1− r
,

namely,

(A3 − ε)T (r, f1) + (A4 − ε)T (r, f2) < 2 log
1

1− r
. (10)

Since 0 < D(f1), D(f2) < ∞, we have S(r, f1) = o
(

log 1
1−r

)
, S(r, f2) = o

(
log 1

1−r

)
. And from

the definition of index, for any ε satisfying

0 < 2ε < min

{
D(f1), D(f2),max{A3, A4} −

2

D(f1) +D(f2)

}
, (11)
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there exists a sequence {rt} → 1− such that

T (rt, f1) > (D(f1)− ε) log
1

1− rt
, T (rt, f2) > (D(f2)− ε) log

1

1− rt
, (12)

for all t→∞. From (10)-(12), we have

[(D(f1)− ε)(A3 − ε) + (D(f2)− ε)(A4 − ε)− 2] log
1

1− rt
< o

(
log

1

1− rt

)
. (13)

From (13) and ε being arbitrary, the above inequality contradicts to (9).
Therefore, the proof of Theorem 2.3 is completed. 2

We have an analog of a result due to H.-X. Yi (Theorem 10.8 in [18], see also [21]).

Corollary 2.4 let f1 and f2 be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) <∞. Suppose that

Sj = {c+ aj , c+ ajw, . . . , c+ ajw
l−1}, j = 1, 2, . . . , q,

with aj 6= 0, (j = 1, 2, . . . , q), q > 2 + 2
l + 2

D(f1)+D(f2)
, w = exp( 2πi

l ), Si ∩ Sj = ∅, (i 6= j). If

E(Sj ,D, f1) = E(Sj ,D, f2) for j = 1, 2, . . . , q, then (f1(z)− c)l ≡ (f2(z)− c)l.

Proof: Let m = n = 1 and k1 = k2 = . . . =∞. Noting that Θ(fi) ≥ 0 and δ(0, fi − (aj + sb)) ≥ 0
for j = 1, 2, . . . , q and i = 1, 2, Then Corollary 2.4 follows immediately from Theorem 2.2. 2

3 The problem of sharing sets of admissible function and
non-admissible function in the unit disc

We now show that an admissible function can share sufficiently many sets concerning multiple
values with another non-admissible function as follows.

Theorem 3.1 If f1 is admissible and f2 is a non-admissible satisfying limr→1− T (r, f2) = ∞,
aj(j = 1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers or
∞ satisfying (1). Then

Ekj)(aj ,D, f1) = Ekj)(aj ,D, f2), (j = 1, 2, . . . , q).

and
q∑

j=m+1

kj
kj + 1

+
(m− 1)km
km + 1

− 2 > 0

do not hold at same time.

Theorem 3.2 If f1 is admissible and f2 is a non-admissible satisfying limr→1− T (r, f2) = ∞.
Suppose that

Sj = {c+ aj , c+ ajw, . . . , c+ ajw
l−1}, j = 1, 2, . . . , q,

with aj 6= 0, (j = 1, 2, . . . , q), w = exp(2πi
l ), Si ∩ Sj = ∅, (i 6= j). Then E(Sj ,D, f1) = E(Sj ,D, f2)

for j = 1, 2, . . . , q, and q > 1 + 2
l can not hold at the same time.

To prove the above theorems, we require the following lemmas.

Lemma 3.1 (see [12, Lemma 1]). Let f(z), g(z) satisfy limr→1− T (r, f) =∞ and limr→1− T (r, g) =
∞. If there is a K ∈ (0,∞) with

T (r, f) ≤ KT (r, g) + S(r, f) + S(r, g),

then each S(r, f) is also an S(r, g).
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Lemma 3.2 If f1 is admissible and f2 is a non-admissible satisfying limr→1− T (r, f2) =∞, aj(j =
1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers or ∞
satisfying (1). Set A5 = B1 + [(m−3)l+1]km

km+1 . Then (2) and A5 > 0 do not hold at same time, where
B1, Sj(j = 1, 2, . . . , q) are stated as in Theorem 2.1.

Proof: Suppose that (2) and A5 > 0 can hold at the same time. Since f1(z) is an admissible
function, using the same argument as in Theorem 2.2 and from Theorem 1.2 and Lemma 1.1, for
any ε(0 < 2ε < A5), we have(

(m− 1)lkm
km + 1

+B1 − ε
)
T (r, f1) <

q∑
j=1

l−1∑
s=0

km
km + 1

Nkj)(r,
1

f1 − (aj + sb)
) + S(r, f1),

where B1 is stated as in Section 2.
Since f1 is admissible and f2 is non-admissible, we can get that f1(z) 6≡ f2(z). Thus, by

condition (2) and the first fundamental theorem, we have

q∑
j=1

l−1∑
s=0

Nkj)

(
r,

1

f1 − (aj + sb)

)
≤N

(
r,

1

f1 − f2

)
+

l−1∑
s=1

N

(
r,

1

f1 − f2 − sb

)

+
l−1∑
s=1

N

(
r,

1

f2 − f1 − sb

)
≤(2l − 1)(T (r, f1) + T (r, f2)) +O(1).

From the two above inequality, we get(
[(m− 3)l + 1]km

km + 1
+B1 − ε

)
T (r, f1) ≤ (2l − 1)km

km + 1
T (r, f2). (14)

Since 0 < ε < A5, we have [(m−3)l+1]km
km+1 +B1 − ε > 0. From (14), we have

T (r, f1) ≤ 1

A5 − ε
(2l − 1)km
km + 1

T (r, f2). (15)

From Lemma 3.1, (15) and 1
A5−ε

(2l−1)km
km+1 > 0, we can get that each S(r, f1) is also an S(r, f2).

Since f1(z) is admissible and f2(z) is non-admissible, we can get T (r, f2) = S(r, f1). Thus, we
have

T (r, f2) = S(r, f1) = S(r, f2) = o(T (r, f2)).

This is a contradiction. Hence, we can get that (2) and A5 > 0 do not hold at the same time. 2

Lemma 3.3 If f1 is admissible and f2 is a non-admissible satisfying limr→1− T (r, f2) =∞, aj(j =
1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers or ∞
satisfying (1). Set A6 = B3 + (m−2)lkm

km+1 . Then (8) and A6 > 0 do not hold at same time, where
B3, Sj(j = 1, 2, . . . , q) are stated as in Theorem 2.3.

Proof: Suppose that (8) and A6 > 0 can hold at the same time. Since f1(z) is an admissible
function, using the same argument as in Theorem 2.3 and from Theorem 1.1 and Lemma 1.1, for
any ε(0 < ε < A6), we have(

(m− 1)lkm
km + 1

+B3 − ε
)
T (r, f1) <

q∑
j=1

l−1∑
s=0

km
km + 1

Nkj)(r,
1

f1 − (c+ ajws)
) + S(r, f1),

1005

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Feng-Lin Zhou 995-1007



where B3 is stated as in Section 2.
From the assumptions of Lemma 3.3, we can get that (f1(z) − c)l 6≡ (f2(z) − c)l. Thus, by

condition (8) and the first fundamental theorem, we have

q∑
j=1

l−1∑
s=0

Nkj)(r,
1

f1 − (c+ ajws)
) < N(r,

1

(f1 − c)l − (f2 − c)l
)

≤ l(T (r, f1) + T (r, f2)) +O(1).

From the two above inequality, we get(
(m− 2)lkm
km + 1

+B3 − ε
)
T (r, f1) ≤ lkm

km + 1
T (r, f2). (16)

Since 0 < ε < A6, we have (m−2)lkm
km+1 +B3 − ε > 0. From (16), we have

T (r, f1) ≤ 1

A5 − ε
(2l − 1)km
km + 1

T (r, f2). (17)

From Lemma 3.1, (17) and 1
A6−ε

lkm
km+1 > 0, we can get that each S(r, f1) is also an S(r, f2). Since

f1(z) is admissible and f2(z) is non-admissible, we can get T (r, f2) = S(r, f1). Thus, we have

T (r, f2) = S(r, f1) = S(r, f2) = o(T (r, f2)).

This is a contradiction. Hence, we can get that (8) and A6 > 0 do not hold at the same time.
Thus, the proof of Lemma 3.3 is completed. 2

Proof of Theorem 3.1: Let l = 1, and since Θ(fi) ≥ 0 (i = 1, 2) and δ(0, f1 − aj) ≥ 0
(j = 1, 2, . . . , q), the assertion follows from Lemma 3.2.
Proof of Theorem 3.2: Let k1 = k2 = · · · = kq = ∞, and since Θ(fi) ≥ 0 (i = 1, 2) and
δ(0, f1 − aj) ≥ 0 (j = 1, 2, . . . , q), the assertion follows from Lemma 3.3.

It is very interesting to consider distinct small functions instead of distinct complex numbers
(see [9, 11, 17],etc). Thus it may be interesting to consider the following questions:

Question 3.1 What condition on two non-admissible functions in the unit disc D sharing small
functions will guarantee that the two non-admissible functions are identical?

Question 3.2 How many small functions can an admissible function and non-admissible function
in the unit disc D share at most?
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THE FIXED POINT ALTERNATIVE TO THE STABILITY OF AN
ADDITIVE (α, β)-FUNCTIONAL EQUATION

SUNGSIK YUN1, CHOONKIL PARK2∗, AND HEE SIK KIMK3∗

Abstract. In this paper, we solve the additive (α, β)-functional equation

f(x) + f(y) + 2f(z) = αf(β(x+ y + 2z)), (0.1)

where α, β are fixed real or complex numbers with α 6= 4 and αβ = 1.
Using the fixed point method and the direct method, we prove the Hyers-Ulam

stability of the additive (α, β)-functional equation (0.1) in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[24] concerning the stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [18] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [8] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. See [5, 7, 14, 15, 20, 21, 19, 22, 23, 19, 25] for more information on functional
equations.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [2, 6] Let (X, d) be a complete generalized metric space and let J :
X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then for
each given element x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [10] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several

2010 Mathematics Subject Classification. Primary 39B52, 39B62, 47H10.
Key words and phrases. Hyers-Ulam stability; additive (α, β)-functional equation; fixed point

method; direct method; Banach space.
∗Corresponding authors.
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functional equations have been extensively investigated by a number of authors (see
[3, 4, 12, 13, 16, 17]).

In Section 2, we solve the additive (α, β)-functional equation (0.1) in vector spaces
and prove the Hyers-Ulam stability of the additive (α, β)-functional equation (0.1) in
Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive (α, β)-functional
equation (0.1) in Banach spaces by using the direct method.

Throughout this paper, assume that X is a normed space and that Y is a Banach
space. Let α, β be fixed real or complex numbers with α 6= 4 and αβ = 1.

2. Additive (α, β)-functional equation (0.1) in Banach spaces I

We solve the additive (α, β)-functional equation (0.1) in vector spaces.

Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

f(x) + f(y) + 2f(z) = αf(β(x+ y + 2z)) (2.1)

for all x, y, z ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = z = 0 in (2.1), we get 4f(0) = αf(0). So f(0) = 0.
Letting y = −x and z = 0 in (2.1), we get f(x) + f(−x) = 0 and so f(−x) = −f(x)

for all x ∈ X.
Letting x = −2z and y = 0 in (2.1), we get f(−2z)+2f(z) = 0 and so f(2z) = 2f(z)

for all z ∈ X. Thus

f
(
x

2

)
=

1

2
f(x)

for all x ∈ X.
Letting z = −x+y

2
in (2.1), we get

f(x) + f(y)− f(x+ y) = f(x) + f(y) + 2f
(
−x+ y

2

)
= 0

and so
f(x+ y) = f(x) + f(y)

for all x, y ∈ X. �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive
(α, β)-functional equation (2.1) in Banach spaces.

Theorem 2.2. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x

2
,
y

2
,
z

2

)
≤ L

2
ϕ (x, y, z) (2.2)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖f(x) + f(y) + 2f(z)− αf (β(x+ y + 2z))‖ ≤ ϕ(x, y, z) (2.3)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ L

2(1− L)
(ϕ (x, x,−x) + ϕ (2x, 0,−x)) (2.4)

for all x ∈ X.
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Proof. Letting y = x and z = −x in (2.3), we get

‖2f(x) + 2f(−x)‖ ≤ ϕ(x, x,−x) (2.5)

for all x ∈ X.
Replacing x by 2x and letting y = 0 and z = −x in (2.3), we get

‖f(2x) + 2f(−x)‖ ≤ ϕ(2x, 0,−x) (2.6)

for all x ∈ X.
It follows from (2.5) and (2.6) that

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x,−x) + ϕ(2x, 0,−x) (2.7)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µ(ϕ (x, x,−x) + ϕ (2x, 0,−x)), ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [11]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ ε(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥∥2g (x2

)
− 2h

(
x

2

)∥∥∥∥ ≤ 2ε
(
ϕ
(
x

2
,
x

2
,−x

2

)
+ ϕ

(
x, 0,−x

2

))
≤ 2ε

L

2
(ϕ (x, x,−x) + ϕ (2x, 0,−x)) = Lε(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.7) that∥∥∥∥f(x)− 2f

(
x

2

)∥∥∥∥ ≤ ϕ
(
x

2
,
x

2
,−x

2

)
+ ϕ

(
x, 0,−x

2

)
≤ L

2
(ϕ(x, x,−x) + ϕ(2x, 0,−x))

for all x ∈ X. So d(f, Jf) ≤ L
2
.

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (x) = 2A
(
x

2

)
(2.8)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
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This implies that A is a unique mapping satisfying (2.8) such that there exists a
µ ∈ (0,∞) satisfying

‖f(x)− A(x)‖ ≤ µ(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X;
(2) d(J lf, A)→ 0 as l→∞. This implies the equality

lim
l→∞

2nf
(
x

2n

)
= A(x)

for all x ∈ X;
(3) d(f, A) ≤ 1

1−Ld(f, Jf), which implies

‖f(x)− A(x)‖ ≤ L

2(1− L)
(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X.
It follows from (2.2) and (2.3) that

‖A(x) + A(y) + 2A(z)− αA (β(x+ y + 2z))‖

= lim
n→∞

2n
∥∥∥∥f ( x2n

)
+ f

(
y

2n

)
+ 2f

(
z

2n

)
− αf

(
β
(
x+ y + 2z

2n

))∥∥∥∥
≤ lim

n→∞
2nϕ

(
x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ X. So

A(x) + A(y) + 2A(z)− αA (β(x+ y + 2z)) = 0

for all x, y, z ∈ X. By Lemma 2.1, the mapping A : X → Y is additive. �

Corollary 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be
a mapping satisfying

‖f(x) + f(y) + 2f(z)− αf (β(x+ y + 2z))‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r) (2.9)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 2r + 4

2r − 2
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r)
for all x, y, z ∈ X. Then we can choose L = 21−r and we get the desired result. �

Theorem 2.4. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y, z) ≤ 2Lϕ
(
x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then
there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2(1− L)
(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X.
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Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2
(ϕ (x, x,−x) + ϕ (2x, 0,−x))

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (2.9). Then there exists a unique additive mapping A : X → Y
such that

‖f(x)− A(x)‖ ≤ 4 + 2r

2− 2r
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r)
for all x, y, z ∈ X. Then we can choose L = 2r−1 and we get desired result. �

3. Additive (α, β)-functional equation (0.1) in Banach spaces II

In this section, using the direct method, we prove the Hyers-Ulam stability of the
additive (α, β)-functional equation (2.1) in Banach spaces.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0 and

Ψ(x, y, z) :=
∞∑
j=1

2jϕ
(
x

2j
,
y

2j
,
z

2j

)
< ∞,

‖f(x) + f(y) + 2f(z)− αf (β(x+ y + 2z))‖ ≤ ϕ(x, y, z) (3.1)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2
(Ψ(x, x,−x) + Ψ(2x, 0,−x)) (3.2)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ ϕ
(
x

2
,
x

2
,−x

2

)
+ ϕ

(
x, 0,−x

2

)
for all x ∈ X. Hence∥∥∥∥2lf ( x2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

(
2jϕ

(
x

2j+1
,
x

2j+1
,− x

2j+1

)
+ 2jϕ

(
x

2j
, 0,− x

2j+1

))
(3.3)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.3)
that the sequence {2kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf( x
2k

)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.3), we get
(3.2).

Now, let T : X → Y be another additive mapping satisfying (3.2). Then we have

‖A(x)− T (x)‖ =
∥∥∥∥2qA( x2q

)
− 2qT

(
x

2q

)∥∥∥∥
≤
∥∥∥∥2qA( x2q

)
− 2qf

(
x

2q

)∥∥∥∥+
∥∥∥∥2qT ( x2q

)
− 2qf

(
x

2q

)∥∥∥∥
≤ 2qΨ

(
x

2q
,
x

2q
,− x

2q

)
+ 2qΨ

(
2x

2q
, 0,− x

2q

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x)
for all x ∈ X. This proves the uniqueness of A.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be
a mapping satisfying (2.9). Then there exists a unique additive mapping A : X → Y
such that

‖f(x)− A(x)‖ ≤ 2r + 4

2r − 2
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r)
for all x, y, z ∈ X. �

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0, (3.1) and

Ψ(x, y, z) :=
∞∑
j=0

1

2j
ϕ(2jx, 2jy, 2jz) <∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2
(Ψ(x, x,−x) + Ψ(2x, 0,−x)) (3.4)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2
(ϕ (x, x,−x) + ϕ (2x, 0,−x))
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for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

(
1

2j+1
ϕ(2jx, 2jx,−2jx) +

1

2j+1
ϕ(2j+1x, 0,−2jx)

)
(3.5)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.5)
that the sequence { 1

2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.5), we get
(3.4).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.1. �

Corollary 3.4. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (2.9). Then there exists a unique additive mapping A : X → Y
such that

‖f(x)− A(x)‖ ≤ 4 + 2r

2− 2r
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r)
for all x, y, z ∈ X. �
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Abstract

By introducing the concept of βU -order functions, we study the error in approximating
Dirichlet series of infinite order in the half plane by Dirichlet polynomials. Some necessary
and sufficient conditions on the error and regular growth of finite βU -order of these functions
have been obtained.
Key words: β-order, βU -order, Regular growth, Dirichlet series.
2010 Mathematics Subject Classification: 30B50, 30D15.

1 Introduction and basic notes

Consider Dirichlet series

f(s) =
∞∑
n=1

ane
λns, s = σ + it, (1)

where
0 ≤ λ1 < λ2 < · · · < λn < · · · , λn →∞ as n→∞; (2)

s = σ + it (σ, t are real variables); an are nonzero complex numbers and

lim sup
n→+∞

(λn+1 − λn) = h < +∞, (3)

lim sup
n→+∞

log+ |an|
λn

= 0, (4)

∗The first author was supported by The Natural Science Foundation of China(11561033, 11301233), the Natural
Science Foundation of Jiangxi Province in China (20151BAB201008), and the Foundation of Education Depart-
ment of Jiangxi of China (GJJ150902). The second author holds the Project Supported by Guangdong Natural
Science Foundation(2015A030313628) and The Training plan for Outstanding Young Teachers in Higher Education
of Guangdong(Yqgdufe1405).
†Corresponding author

1016

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Hong-Yan Xu et al 1016-1028



then from (2) and (3), by using the similar method in [19] or [15], we can get

lim sup
n→∞

n

λn
= E < +∞, lim sup

n→∞

log n

λn
= 0. (5)

Then the abscissas of convergence and absolutely convergence is 0, that is, f(s) is an analytic
function in the left half plane H = {s = σ + it : σ < 0, t ∈ R}.

We denote D to be the class of all functions f(s) satisfying (2)-(4) and analytic in Res < 0,
denote Dα to be the class of all functions f(s) satisfying (2)-(3) and analytic in Re ≤ α where
−∞ < α < +∞. Thus, if −∞ < α < 0 and f(s) ∈ D, then f(s) ∈ Dα; if 0 < α < +∞ and
f(s) ∈ Dα, then f(s) ∈ D. We denote Πk to be the class of all exponential polynomial of degree
almost k, that is,

Πk =


k∑
j=1

bje
λjs : (b1, b2, . . . , bk) ∈ Ck

 .

For f(s) ∈ D,

M(σ, f) = max
−∞<t<∞

|f(σ + it)|, m(σ, f) = max
n≥1
{|an|eσλn}

are called, respectively, the maximum modulus, the maximum term of f(s) for Res = σ < 0.

Definition 1.1 Let f(s) ∈ D, the order of f(s) can be defined by

ρ = lim sup
σ→0−

log log+M(σ, f)

− log(−σ)
,

where log+ x =

{
log x x ≥ 1
0 x < 1

For ρ = 0, 0 < ρ < ∞, ρ = ∞, f(s) can be called, respectively, zero order, finite order,
infinite order Dirichlet series. Considerable attention has been paid to the growth and the value
distribution of analytic functions defined by Dirichlet series; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 16, 17, 18] for some results.

For f(s) ∈ Dα,−∞ < α < +∞, we denote En(f, α) by the error in approximating the function
f(s) by exponential polynomials of degree n in uniform norm as

En(f, α) = inf
p∈Πn

‖ f − p ‖α, n = 1, 2, . . . ,

where
‖ f − p ‖α= max

−∞<t<+∞
|f(α+ it)− p(α+ it)|.

In 2010, the authors [17] investigated the relations between the error En(f, α) and the growth
order of f(s), and obtained some equivalence relation between En(f, α) and the regular growth of
f(s) with finite order as follows:

Theorem 1.1 (see [17]). Let f(s) ∈ D be of finite order ρ, then for any real number −∞ < α < 0,
we have

lim
σ→0−

log+M(σ, f)

U1(− 1
σ )

= 1⇐⇒ lim sup
n→+∞

log+
[
En(f, α)e−αλn+1

]
BU1

(
λn+1

log+[En(f,α)e−αλn+1 ]

) = 1;

and there exists a increasing, positive integer sequence {nν} satisfying

lim
ν→+∞

log+
[
Enν (f, α)e−αλnν+1

]
BU1

(
λnν+1

log+
[
Enν (f,α)e

−αλnν+1
]) = 1, lim

ν→+∞

λnν+1

λnν
= 1,
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where B = (1+ρ)1+ρ

ρρ and U1(r) = rρ(r), ρ(r) satisfies the following conditions:

(i) there exists a real number r0 > 0, ρ(r) is nonnegative, continuous, monotone on [r0,+∞),
and tends to ρ as r → +∞;

(ii) limr→+∞ ρ′(r)r log r = 0,;
(iii) U1(kr) = [kρ+o(1)]U1(r)(r → +∞) for every positive integer k, and U1(r) is an increasing

function on r ≥ r′0 > r0.

Recently, the authors [18] further investigated the relations between the error En(f, α) and the
growth order of f(s) when f(s) has infinite order, by introducing the concept of β-order.

Theorem 1.2 (see [18]). Let f(s) ∈ D be of finite β-order ρβ, then for any real number −∞ <
α < 0, we have

lim sup
n→∞

β(λn)

log λn − log log+(En−1(f, α)e−αλn)
= ρβ .

Remark 1.1 In Theorem 1.2, the definitions of β-order and the function β(x) will be introduced
in Section 2.

Thus, a question arises naturally: what will happen when ρβ =∞ in Theorem1.2?
In this paper, we will investigate the above question by using the type functions U2(x) to

enlarge the growth of the denominator − log(−σ) and obtain the main results as follows.

Theorem 1.3 If Dirichlet series f(s) ∈ D of infinite β-order, then we have

lim sup
σ→0−

β(log+M(σ, F ))

logU2

(
1
−σ

) = T ⇐⇒ lim sup
σ→0+

β(log+m(σ, F ))

logU2

(
1
−σ

) = T,

where 0 < T <∞ and U2(x) = xρ(x) satisfies the following conditions
(i) ρ(x) is monotone and limx→∞ ρ(x) =∞;

(ii) limx→∞
logU2(x′)
logU2(x) = 1, where x′ = x

(
1 + 1

logU2(x)

)
.

Remark 1.2 From Lemma 2.1 and Lemma 1.1 in Section 2, we can prove the conclusion of
Theorem 1.3 easily.

Remark 1.3 This type function U2(x) is different from the type function U1(x) in Theorem 1.1.

Remark 1.4 If Dirichlet series f(s) of infinite order has infinite β-order and satisfies

lim sup
σ→0−

β(log+M(σ, f))

logU2

(
1
−σ

) = T, (6)

then T is called the βU -order of Dirichlet series f(s).

Theorem 1.4 If Dirichlet series f(s) ∈ D with infinite β-order, then for any fixed real number
−∞ < α < 0, we have

lim sup
σ→0−

β(log+M(σ, f))

logU2

(
1
−σ

) = T ⇐⇒ lim sup
n→∞

Ψn(f, α, λn) = T ; (7)

where

Ψn(f, α, λn) =
β(λn)

logU2

(
λn

log+[En−1(f,α)e−αλn ]

) .
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Remark 1.5 From Theorem 1.4, we can see that the type function U2(x) is more simple then the
type function of Wang [16].

Theorem 1.5 Under the assumptions of Theorem 1.4, we have

lim
σ→0−

β(log+M(σ, f))

logU2

(
1
−σ

) = T ⇐⇒ the right hand of (7) is verified,

and there exists a subsequence {λn(p)} ⊆ {λn} satisfying

lim
p→∞

Ψn(p)(f, α, λn(p)) = T, and lim
p→∞

β(λn(p))

β(λn(p+1))
= 1, (8)

where

Ψn(p)(f, α, λn(p)) =
β(λn(p))

logU2

(
λn(p)

log+[En(p−1)(f,α)e
−αλn(p) ]

) .
Remark 1.6 From Theorem 1.5, we get the necessary and sufficient conditions for the limit about
the regular growth of f(s), however, Wang [16] only gave the necessary and sufficient conditions
for the superior limit. Thus, our results of this paper are more accurate than the previous form
[16].

2 Some Lemmas and the concept of β-order

According to observations, we find that to study the growth of Dirichlet series better, many
mathematicians proposed the type functions U(x) to enlarge the growth of the denominator log 1

−σ
or −σ (see [13, 4, 12]), or use some function to control the molecular M(σ, f) or m(σ, f) in the
definition of order. In this paper, we will deal with the growth of Dirichlet series of infinite order
by using a class of functions to reduce M(σ, f) or m(σ, f) which is better than the previous form.
So, we firstly give the definition of β-order of Dirichlet series as follows, which is an extension of
[10].

Let F be the class of all functions β(x) satisfies the following conditions:
(i) β(x) is defined on [a,+∞), a > 0, and positive, strictly increasing, differential and tends to

+∞ as x→ +∞;
(ii) xβ′(x) = o(1) as x→ +∞.

Definition 2.1 ([18]). If Dirichlet series f(s) of infinite order satisfies

lim sup
σ→0+

β(log+M(σ, f))

log 1
−σ

= ρ∗,

where β(x) ∈ F, then ρ∗ is called the β-order of f(s).

Remark 2.1 Obviously, the functions h(x) = logp x, p ≥ 2, p ∈ N+ satisfy the conditions (i) and
(ii), where p is a positive integer, and log1 x = log x and logp x = log(logp−1 x). Thus, p-order is
regard as a special case of β-order of Dirichlet series.

Remark 2.2 Furthermore, β-order is more precise than p-order to some extent. In fact, for p(≥ 2)
is a positive integer, we can find function β(x) ∈ F and a positive real function M(x) satisfying

lim sup
x→∞

β(logM(x))

log x
= t, (0 < t <∞),
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and

lim sup
x→∞

logp(logM(x))

log x
=∞, and lim sup

x→∞

logp+1(logM(x))

log x
= 0.

For example, let
M(x) = expp+1{(t log x)1/d}, β(x) = (logp+1 x)d,

where t is a finite positive real constant and 0 < d < 1, we can get that ρp(M) =∞, ρp+1(M) = 0
and ρβ(M) = t, where ρp(f) denote the p-order of f , and ρβ(f) the β-order of f .

Remark 2.3 If ρ∗ =∞ in Definition 2.1, then f(s) is called a Dirichlet series of infinite β-order.

Lemma 2.1 (see [16]). Let β(x) ∈ F and ϕ(x) be the function satisfying

lim sup
x→∞

log+ ϕ(x)

log x
= %, (0 ≤ % <∞),

if M(x) satisfies lim supx→∞
β(logM(x))

log x = ν(> 0). Then we have

lim sup
x→∞

β(ϕ(x) logM(x))

log x
= ν.

Proof: To prove this lemma, two cases will be considered as follows.
Case 1. If ϕ(x) is not a constant. From the assumptions of Lemma 2.1, we can get that

ϕ(x) → ∞ as x → ∞. Then, for sufficiently large x, we have ϕ(x) > 1. From β(x) ∈ F , we have
limx→∞ logM(x) = ∞. Then from the Cauchy mean value theorem, there exists ξ(logM(x) <
ξ < β(x) logM(x)) satisfying

β(ϕ(x) logM(x))− β(logM(x))

log(ϕ(x) logM(x))− log logM(x)
=

β′(ξ)

(log ξ)′
= ξβ′(ξ),

that is,
β(ϕ(x) logM(x)) = β(logM(x)) + logϕ(x)ξβ′(ξ). (9)

Since xβ′(x) = o(1) as x→ +∞ and lim supx→∞
logϕ(x)

log x = %, (0 ≤ % <∞), by (9), we can get the
conclusion of Lemma 2.1.

Case 2. If ϕ(x) is a constant. By using the same argument as in Case 1, we can prove that
Lemma 2.1 is true.

Thus, this completes the proof of Lemma 2.1. 2

The following lemma plays an important role to deal with the growth of Dirichlet series, which
shows the relation between M(σ, f) and m(σ, f) of such functions.

Lemma 2.2 ([19]). If Dirichlet series (1) satisfies (2) (3), then for any given ε ∈ (0, 1) and for
σ(< 0) sufficiently reaching 0, we have

m(σ, f) ≤M(σ, f) ≤ K(ε)
1

−σ
m((1− ε)σ, f),

where K(ε) is a constant depending on ε and (3).

Lemma 2.3 If f(s) ∈ Dα(−∞ < α < +∞), then for any positive integer n ∈ N+ := N\{0}, we
have

|an|eαλn ≤ K2En−1(f, α),

where K2 > 1 is a real constant.
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Proof: From the definition of En(f, α), there exists p(s) ∈ Πn−1 such that

||f − p||α ≤ K2En−1(f, α). (10)

Since f(s) ∈ Dα and from [19, P.16], for any real numbers t0, ϑ(6= 0), we have

lim
R→+∞

1

R

∫ R

t0

eϑitdt = 0 (11)

and

ane
αλn = lim

R→∞

1

R

∫ R

t0

f(α+ it)e−λnitdt. (12)

From (11), for any real number x 6= 0, we have

lim
R→∞

1

R

∫ R

t0

ex(α+it)dt = 0. (13)

Thus, from (12) and (13), for any p1(s) ∈ Πn−1, we have

ane
αλn = lim

R→∞

1

R

∫ R

t0

[f(α+ it)− p1(α+ it)]e−λnitdt,

that is,
|an|eαλn ≤ ||f − p1||α. (14)

From (10) and (14), we can prove the conclusion of Lemma 2.3. 2

3 The proof of Theorem 1.4

We prove the conclusions of Theorem 1.4 by using the properties of two functions β(x) and
U2(x), this method is different from the previous method to some extent.

We first prove ”⇐= ” of Theorem 1.4. Suppose that

lim sup
n→∞

Ψn(f, α, λn) = lim sup
n→∞

β(λn)

logU2

(
λn

log+[En−1(f,α)e−αλn ]

) = T. (15)

Let
An = En−1(f, α)e−αλn , n = 1, 2, . . . ,

then for any positive real number τ > 0, for sufficiently large n, we have

λn < γ

(
(T + τ) logU2

(
λn

log+An

))
,

where γ(x) is the inverse functions of β(x). Let V2(x) and U2(x) be two reciprocally inverse
functions, then we have

V2

(
exp

{
1

T + τ
β(λn)

})
<

λn

log+An
, log+An ≤ λn

(
V2

(
exp

{
1

T + τ
β(λn)

}))−1

.

Thus, we have

log+(Ane
λnσ) ≤ λn

((
V2

(
exp

{
1

T + τ
β(λn)

}))−1

+ σ

)
. (16)
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For any fixed and sufficiently small σ < 0, set

G = γ

(T + τ) logU2

 1

−σ
+

1

−σ logU2

(
1
−σ

)
 ,

that is,
1

−σ
+

1

−σ logU2

(
1
−σ

) = V2

(
exp

{
1

T + τ
β(G)

})
. (17)

If λn ≤ G, for sufficiently large n, let V2

(
exp

{
1

T+τ β(λn)
})
≥ 1, from σ < 0,(16),(17) and the

definition of U2(x), we have

log+Ane
λnσ ≤ G

((
V2

(
exp

{
1

T + τ
β(λn)

}))−1

+ σ

)

≤ G = γ

(T + τ) logU2

 1

−σ
+

1

−σ logU2

(
1
−σ

)


≤ γ
(

(T + τ) log

[
(1 + o(1))U2

(
1

−σ

)])
. (18)

If λn > G, from (16) and (17), we have

log+Ane
λnσ ≤ λn

((
V2

(
exp

{
1

T + τ
β(G)

}))−1

+ σ

)

≤ λn


 1

−σ
+

1

−σ logU2

(
1
−σ

)
−1

+ σ

 < 0. (19)

For sufficiently large n, from (18) and (19), we have

log+Ane
λnσ ≤ γ

(
(T + τ) log

[
(1 + o(1))U2

(
1

−σ

)])
Since An = En−1e

−αλn and τ is arbitrary, by Lemma 2.1,Lemma 2.3 and Theorem 1.3, we can get

lim sup
σ→0−

β(log+M(σ, f))

logU2( 1
−σ )

≤ T.

Suppose that

lim sup
σ→0+

β(log+M(σ, f))

logU2( 1
−σ )

= η < T.

Thus, there exists any real number ε(0 < ε < η
2 ), for any positive integer n and any sufficient small

σ < 0, from Lemma 2.2, we have

log+ |an|eλnσ ≤ logM(σ, f) ≤ γ
(

(T − 2ε) logU2(
1

−σ
)

)
. (20)

From (15), there exists a subsequence {λn(p)}, for sufficiently large p, we have

β(λn(p)) > (T − ε) logU2

(
λn(p)

log+An(p)

)
. (21)
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Take a sequence {σp} satisfying

γ

(
(η − 2ε) logU2(

1

−σp
)

)
=

log+An(p)

1 + logU2(
λn(p)

log+ An(p)
)
. (22)

From (20) and (22), we get

log+An(p) + λn(p)σp ≤ γ
(

(η − 2ε) logU2(
1

−σp
)

)
=

log+An(p)

1 + logU2(
λn(p)

log+ An(p)
)
,

that is,

1

−σp
≤

λn(p)

log+An(p)

1 +
1

logU2(
λn(p)

log+ An(p)
)

 .

Thus, we have

U2(
1

−σp
) ≤ U2

 λn(p)

log+An(p)

1 +
1

logU2(
λn(p)

log+ An(p)
)

 ≤ U1+o(1)
2

(
λn(p)

log+An(p)

)
. (23)

From (22) and (23), we have

λn(p) =
λn(p)

log+An(p)

γ

(
(T − 2ε) logU2(

1

σp
)

)(
1 + logU2(

λn(p)

log+An(p)

)

)

=
λn(p)

log+An(p)

γ

(
(η − 2ε)(1 + o(1)) logU2(

λn(p)

log+An(p)

)

)(
1 + logU2(

λn(p)

log+An(p)

)

)
.

Thus, from the Cauchy mean value theorem, there exists a real number ξ between
λn(p)

log+ An(p)
(1 +

logU2(
λn(p)

log+ An(p)
)γ(η−2ε)(1+o(1)) logU2(

λn(p)

log+ An(p)
) and γ(η−2ε)(1+o(1)) logU2(

λn(p)

log+ An(p)
) such

that

β
(
λn(p)

)
= β

(
λn(p)

log+An(p)

(
1 + logU2(

λn(p)

log+An(p)

)

)
γ

(
(η − 2ε)(1 + o(1)) logU2(

λn(p)

log+An(p)

)

))

= β

(
γ

(
(T − 2ε)(1 + o(1)) logU2(

λn(p)

log+An(p)

)

))

+ log

(
λn(p)

log+An(p)

(
1 + logU2(

λn(p)

log+An(p)

)

))
ξβ′(ξ),

Since

lim
p→∞

log
(

λn(p)

log+ An(p)

(
1 + logU2(

λn(p)

log+ An(p)
)
))

logU2(
λn(p)

log+ An(p)
)

= 0,

then for sufficiently large p, we have

β
(
λn(p)

)
= (η − 2ε)(1 + o(1)) logU2(

λn(p)

log+An(p)

) +K2ξβ
′(ξ) logU2(

λn(p)

log+An(p)

), (24)

where K2 is a constant.
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From (21),(24) and η < T , we can get a contradiction. Thus, we can get

lim sup
σ→0−

β(log+M(σ, f))

logU2( 1
−σ )

= T.

Hence, the sufficiency of Theorem 1.4 is completed.
We can prove the necessity of Theorem 1.4 by using the similar argument as in the proof of the

sufficiency of Theorem 1.4.
Thus, the proof of Theorem 1.4 is completed.

4 The Proof of Theorem 1.5

We will consider two steps as follows:
Step one: We first prove the sufficiency of Theorem 1.5. From the conditions of Theorem 1.5,

for any ε(> 0), there exists a subsequence {λn(p)} such that

λn(p) ≥ γ

(
(T − ε) logU2

(
λn(p)

log+An(p)

))
, lim

p→∞

β(λn(p))

β(λn(p+1))
= 1, (25)

that is,

λn(p)

log+An(p)

≤ V2

(
exp

{
1

T − ε
β(λn(p))

})
, log+An(p) ≥ λn(p)V2

(
exp

{
1

T − ε
β(λn(p))

})−1

.

Take the sequence {σp} satisfying

λn(p) = γ

(
(T − ε) logU2

(
1

−σp
+

1

σp logU2( 1
−σp )

))
,

1

−σp
+

1

σp logU2( 1
−σp )

= V2

(
exp

{
1

T − ε
β(λn(p))

})
. (26)

For any sufficiently small σ < 0 and −∞ < α < σ < 0, we have

En−1(f, α) ≤ ||f − pn−1||α ≤
∞∑
k=n

|ak|eλkα ≤M(σ, f)
∞∑
k=n

eλn(α−σ), (27)

where pn−1(s) =
∑n−1
k=1 ake

λks. From (3), we take 0 < h′ < h satisfying λn+1 − λn ≥ h′ for any
integer n ≥ 1. Thus, for sufficiently small σ < 0 such that σ ≥ α

2 , from (27) we have

En−1(f, α) ≤M(σ, f)eλn(α−σ)
∞∑
k=n

e(λk−λn)(α−σ)

≤M(σ, f)eλn(α−σ)e−
α
2 h
′n
∞∑
k=n

e
α
2 h
′k

= M(σ, f)eλn(α−σ)
(

1− eα2 h
′
)−1

.

Then for sufficiently small σ < 0 and −∞ < α < σ < 0, we have

M(σ, f) ≥ K3En−1(f, α)e−λn(α−σ) = K3Ane
λnσ, (28)
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where K3 = 1 − eα2 h′ . For sufficiently small σ < 0, we take σp ≤ σ < σp+1, from (25),(26) and
(28), we have

log+M(σ, f) ≥ log+An(p) + λn(p)σp +O(1) (29)

≥ λn(p)

(
V2

(
exp

{
1

T − ε
β(λn(p))

})−1

+ σp

)
+O(1)

≥ γ

(
(T − ε) logU2

(
1

−σp
+

1

σp logU2( 1
−σp )

))
−σp

logU2( 1
−σp )− 1

+O(1)

≥ (1 + o(1))γ

(
(T − ε) logU2

(
1

−σp+1
+

1

σp+1 logU2( 1
−σp+1

)

))
−σp

logU2( 1
−σp )− 1

≥ (1 + o(1))γ

(
(T − ε) logU2

(
1

−σ
+

1

σ logU2( 1
−σ )

))
−σ

logU2( 1
−σ )− 1

.

Set
1

−σ
+

1

σ logU2( 1
−σ )

= r, r

(
1 +

1

logU2(r)

)
= R, R

(
1 +

1

logU2(R)

)
= R′,

by using a simple calculation, we can get R′ ≥ 1
−σ . Thus, from the definitions of U2(x) (ii), we

can get

lim sup
σ→0−

logU2(r)

logU2( 1
−σ )

= 1. (30)

Since

lim sup
σ→0−

log −σ
logU2( 1

−σ )−1

logU2( 1
−σ )

= 0,

and from Lemma 2.1, (29) and (30), we have

lim sup
σ→0−

β(log+M(σ, f))

logU2( 1
−σ )

= T.

Step two: The necessity of the Theorem 1.5 will be proved as follows. From Theorem 1.4, we
can get that the right hand of (7) is verified. Next, we will prove that (8) also holds. We take a
positive decreasing sequence {εi}(0 < εi < T ),εi → 0(i→∞).

Set

Fi =

n : Ψn(f, α, λn) =
β(λn)

logU2

(
λn

log+ An

) > T − εi

 , (31)

it follows that ∀i, Fi 6= Φ and Fi ⊂ Fi−1. For each i, we arrange the n(∈ Fi) in an increasing
sequence {n(i)(p)}∞p=1, then we consider the two cases in the following.

Case 1. Suppose that limν→+∞
β(λ

n(i)(p+1)
)

β(λ
n(i)(p)

) = 1 for any i. Then there exists Ni ∈ Fi(i ∈ N+),

when n(i)(p) ≥ Ni, we have
β
(
λn(i)(p+1)

)
β
(
λn(i)(p)

) ≤ 1 + εi. (32)

Note Fi+1 ⊂ Fi, take Ni+1 > Ni, denote F ′i the subset of Fi

F ′i = {n ∈ Fi : Ni ≤ n ≤ Ni+1},

thus the elements of F ′i satisfy (31) and (32).
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Therefore let F =
⋃∞
i=1 F

′
i and arrange the n(∈ E′i) in an increasing sequence {nν}. Thus, the

necessity of Theorem 1.5 is proved.

Case 2. If there exists i ∈ N+ satisfying limν→+∞
β
(
λ
n(i)(p+1)

)
β
(
λ
n(i)(p)

) 6= 1, then since λn(i)(p+1) >

λn(i)(p), we get limν→+∞
β(λ

n(i)(p+1)
)

β(λ
n(i)(p)

) > 1. Hence there exists {n(i)(pk)} ⊆ {n(i)(p)} (still marked

with {n(i)(p)}) and positive real constant τ > 0, it follows that

β
(
λn(i)(p+1)

)
β
(
λn(i)(p)

) ≥ 1 + τ.

Let
n′(1) = n(i)(1), n′(2) = n(i)(3), · · · , n′(p) = n(i)(2p− 1), · · ·

n′′(1) = n(i)(1), n′′(2) = n(i)(4), · · · , n′′(p) = n(i)(2p), · · ·

where {n′(p)}, {n′′(p)} are two increasing positive integer sequences, and

n′′(p) < n′(p+ 1), β(λn′′(p)) > (1 + τ)β(λn′(p)), ν = 1, 2, · · · .

From (31), for any sufficiently large p, when n 6∈ Fi satisfies n′(p) < n < n′′(p), there exists a
positive real number δ > 0 such that

λn ≤ γ
(

(T − δ) logU2(
λn

log+An
)

)
,

λn

log+An
≥ V2

(
exp{ 1

T − δ
β(λn)}

)
. (33)

Thus we have

log+Ane
σλn < λn

 1

V2

(
exp{ 1

T−δβ(λn)}
) + σ

 . (34)

Set

G = γ

(T − δ) logU2

 1

−σ
+

1

−σ logU2

(
1
−σ

)
 ,

that is,
1

−σ
+

1

−σ logU2

(
1
−σ

) = V2

(
exp

{
1

T − δ
β(G)

})
. (35)

If λn ≥ G, from (34) and (35), we have

log+Ane
σλn ≤ λn

 1

V2

(
exp{ 1

T−δβ(λn)}
) + σ

 < 0. (36)

If λn < G, from (34) and (35), we have

log+ |an|eσλn < G = γ

(T − δ) logU2

 1

−σ
+

1

−σ logU2

(
1
−σ

)
 . (37)

Choose the sequence {σp} satisfying

σp = −
[
V2

(
exp

{
1

T − δ
β(λn′′(p))

})]−1

, (38)
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from the assumptions of the necessity of Theorem 1.5, there exists an integer N2 ∈ N+ such that

V2

(
exp

{
1

T−δβ(λn)
})
≥ 1. Then for n ≥ N2, we have

log+Ane
σpλn < λn

(
V2

(
exp

{
1

T − δ
β(λn)

})−1

+ σp

)
.

When n ≥ n′′(p), it follows λn ≥ λn′′(p), and from (38), we have

log+Ane
σpλn < λn

(
V2

(
exp

{
1

T − δ
β(λn′′(p))

})−1

+ σp

)
= 0. (39)

For sufficiently large ν, we have λn′(p) ≥ λn as N2 ≤ n ≤ n′(p), and

log+Ane
σpλn ≤ λn′(p)

(
V2

(
exp{ 1

T − δ
β(λn)}

)−1

+ σp

)
.

Since λn′(p) < γ
(

1
1+τ β(λn′′(p))

)
and σp < 0, from the definition of σp, N2, we can get

log+Ane
σνλn ≤ γ

(
1

1 + τ
β(λn′′(p))

)
≤ γ

(
T − δ
1 + τ

logU2

(
1

−σp

))
. (40)

Thus, from (36), (37), (39) and (40), we have

log+Ane
σpλn ≤ γ

(T − δ) logU2

 1

−σ
+

1

−σ logU2

(
1
−σ

)
 , as n > N2.

By Lemma 2.2, we have

lim
σp→0−

β(log+m(σp, f))

logU2

(
1
−σp

) ≤ T − δ < T. (41)

From (41), Theorem 1.3, we can get a contradiction with the following equality

lim
σ→0−

β(log+M(σ, f))

logU2

(
1
−σ

) = T.

Thus, the proof of Theorem 1.5 is completed by Step one and Step two.
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Abstract

In the present paper we establish several fuzzy differential subordinations regardind the operator I (m,λ, l),

given by I (m,λ, l) : A → A, I (m,λ, l) f (z) = z +
∑∞
j=2

(
1+λ(j−1)+l

l+1

)m
ajz

j and A = {f ∈ H(U), f(z) =

z + a2z
2 + . . . , z ∈ U} is the class of normalized analytic functions. A certain fuzzy class, denoted by

SIδF (m,λ, l) , of analytic functions in the open unit disc is introduced by means of this operator. By making
use of the concept of fuzzy differential subordination we will derive various properties and characteristics of
the class SIδF (m,λ, l) . Also, several fuzzy differential subordinations are established regarding the operator
I (m,λ, l).

Keywords: fuzzy differential subordination, convex function, fuzzy best dominant, differential operator.
2000 Mathematical Subject Classification: 30C45, 30A20.

1 Introduction

S.S. Miller and P.T. Mocanu have introduced [10], [11] and developed [12] in the one complex variable
functions theory the admissible functions method known as ”the differential subordination method” . The
application of this method allows to one obtain some special results and to prove easily some classical results
from this domain.

G.I. Oros and Gh.Oros [13], [14] wanted to launch a new research direction in mathematics that combines
the notions from the complex functions domain with the fuzzy sets theory.

In the same way as mentioned, we can justify that by knowing the properties of a differential expression
on a fuzzy set for a function one can be determined the properties of that function on a given fuzzy set. We
have analyzed the case of one complex functions, leaving as ”open problem” the case of real functions. We are
aware that this new research alternative can be realized only through the joint effort of researchers from both
domains. The ”open problem” statement leaves open the interpretation of some notions from the fuzzy sets
theory such that each one interpret them personally according to their scientific concerns, making this theory
more attractive.

The notion of fuzzy subordination was introduced in [13]. In [14] the authors have defined the notion of
fuzzy differential subordination. In this paper we will study fuzzy differential subordinations obtained with the
differential operator studied in [3] using the methods from [4], [5].

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic
functions in U .

Let An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} with A1 = A and H[a, n] = {f ∈ H(U) : f(z) =

a+ anz
n + an+1z

n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N.

Denote by K =
{
f ∈ A : Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}
, the class of normalized convex functions in U .

In order to use the concept of fuzzy differential subordination, we remember the following definitions:

Definition 1.1 [9] A pair (A,FA), where FA : X → [0, 1] and A = {x ∈ X : 0 < FA(x) ≤ 1} is called fuzzy
subset of X. The set A is called the support of the fuzzy set (A,FA) and FA is called the membership function
of the fuzzy set (A,FA). One can also denote A = supp(A,FA).
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Remark 1.1 In the development work we use the following notations for fuzzy sets:
Ff(D) (f (z)) =supp

(
f (D) , Ff(D)·

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1},

Fg(D) (g (z)) =supp
(
g (D) , Fg(D)·

)
= {z ∈ D : 0 < Fg(D)g (z) ≤ 1},

p (U) =supp
(
p (U) , Fp(U)·

)
= {z ∈ U : 0 < Fp(U) (p (z)) ≤ 1},

q (U) =supp
(
q (U) , Fq(U)·

)
= {z ∈ U : 0 < Fq(U) (q (z)) ≤ 1},

h (U) =supp
(
h (U) , Fh(U)·

)
= {z ∈ U : 0 < Fh(U) (h (z)) ≤ 1}.

We give a new definition of membership function on complex numbers set using the module notion of a
complex number z = x+ iy, x, y ∈ R, |z| =

√
x2 + y2 ≥ 0.

Example 1.1 Let F : C → R+ a function such that FC (z) = |F (z)|, ∀ z ∈ C. Denote by FC (C) = {z ∈ C :
0 < F (z) ≤ 1} = {z ∈ C : 0 < |F (z)| ≤ 1} =supp(C, FC) the fuzzy subset of the complex numbers set.

Remark 1.2 We call the subset FC (C) = {z ∈ C : 0 < |F (z)| ≤ 1} = UF (0, 1) the fuzzy unit disk.

Example 1.2 Let F : C → R+, F (z) = 2−|z|
2+|z| , where |z| =

√
x2 + y2 ≥ 0. A fuzzy subset of the com-

plex numbers set is A = {z ∈ C : 0 < FA (z) ≤ 1} =supp(A,FA) = {z ∈ C : |z| < 2}, where FA (z) ={
F (z) , z ∈ {|z| ≤ 2}
0, z ∈ C− {|z| ≤ 2}.
We show that the fuzzy subset is nonempty. Indeed, for z = 0, FA (0) = F (0) = 1, so z = 0 ∈ A. More

we see that the fuzzy subset A contains all the complex numbers with the properties |z| < 2 and all the complex
numbers for which |z| > 2 not belong to A, i.e. supp(A,FA) = {z ∈ C : x2 + y2 < 4}.

Remark 1.3 The membership functions can be defined otherwise and we propose that each choose how to define
according to their research.

Definition 1.2 ([13]) Let D ⊂ C, z0 ∈ D be a fixed point and let the functions f, g ∈ H (D). The function f
is said to be fuzzy subordinate to g and write f ≺F g or f (z) ≺F g (z), if are satisfied the conditions:

1) f (z0) = g (z0) ,
2) Ff(D)f (z) ≤ Fg(D)g (z), z ∈ D.

Definition 1.3 ([14, Definition 2.2]) Let ψ : C3×U → C and h univalent in U , with ψ (a, 0; 0) = h (0) = a. If
p is analytic in U , with p (0) = a and satisfies the (second-order) fuzzy differential subordination

Fψ(C3×U)ψ(p(z), zp′ (z) , z2p′′(z); z) ≤ Fh(U)h(z), z ∈ U, (1.1)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a
fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simple a fuzzy dominant, if
Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U , for all p satisfying (1.1). A fuzzy dominant q̃ that satisfies Fq̃(U)q̃(z) ≤ Fq(U)q(z),
z ∈ U , for all fuzzy dominants q of (1.1) is said to be the fuzzy best dominant of (1.1).

Lemma 1.1 ([12, Corollary 2.6g.2, p. 66]) Let h ∈ A and L [f ] (z) = G (z) = 1
z

∫ z
0
h (t) dt, z ∈ U. If

Re
(
zh′′(z)
h′(z) + 1

)
> − 1

2 , z ∈ U, then L (f) = G ∈ K.

Lemma 1.2 ([15]) Let h be a convex function with h(0) = a, and let γ ∈ C∗ be a complex number with Re γ ≥ 0.
If p ∈ H[a, n] with p (0) = a, ψ : C2 × U → C, ψ (p (z) , zp′ (z) ; z) = p (z) + 1

γ zp
′ (z) an analytic function in U

and Fψ(C2×U)

(
p(z) + 1

γ zp
′(z)
)
≤ Fh(U)h(z), i.e. p(z) + 1

γ zp
′(z) ≺F h(z), z ∈ U, then Fp(U)p(z) ≤ Fg(U)g(z) ≤

Fh(U)h(z), i.e. p(z) ≺F g(z) ≺F h(z), z ∈ U, where g(z) = γ
nzγ/n

∫ z
0
h(t)tγ/n−1dt, z ∈ U. The function q is

convex and is the fuzzy best dominant.

Lemma 1.3 ([15]) Let g be a convex function in U and let h(z) = g(z)+nαzg′(z), z ∈ U, where α > 0 and n is a
positive integer. If p(z) = g(0)+pnz

n+pn+1z
n+1+. . . , z ∈ U, is holomorphic in U and Fp(U) (p(z) + αzp′(z)) ≤

Fh(U)h(z), i.e. p(z) + αzp′(z) ≺F h(z), z ∈ U, then Fp(U)p(z) ≤ Fg(U)g(z), i.e. p(z) ≺F g(z), z ∈ U, and this
result is sharp.

We will study the following differential operator, known as multiplier transformation.
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Definition 1.4 For f ∈ A = {f ∈ H(U) : f(z) = z + a2z
2 + . . . , z ∈ U}, m ∈ N∪{0}, λ, l ≥ 0, the operator

I (m,λ, l) f(z) is defined by the following infinite series I (m,λ, l) f(z) = z +
∑∞
j=n+1

(
λ(j−1)+l+1

l+1

)m
ajz

j .

Remark 1.4 It follows from the above definition that (l + 1) I (m+ 1, λ, l) f(z) = [l + 1− λ] I (m,λ, l) f(z) +
λz (I (m,λ, l) f(z))

′
, z ∈ U.

Remark 1.5 For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was introduced and studied by Al-Oboudi [2],

which is reduced to the Sălăgean differential operator [16] for λ = 1. The operator I (m, 1, l) was studied by Cho
and Srivastava [8] and Cho and Kim [7]. The operator I (m, 1, 1) was studied by Uralegaddi and Somanatha [17]
and the operator I (α, λ, 0) was introduced by Acu and Owa [1]. Cătaş [6] has studied the operator Ip (m,λ, l)
which generalizes the operator I (m,λ, l) .

2 Main results

Using the operator I (m,λ, l) we define the class SIδF (m,λ, l) and we study fuzzy subordinations.

Definition 2.1 Let f (D) =supp
(
f (D) , Ff(D)

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1}, where Ff(D)· is the member-

ship function of the fuzzy set f (D) asociated to the function f .
The membership function of the fuzzy set (µf) (D) asociated to the function µf coincide with the membership

function of the fuzzy set f (D) asociated to the fuction f , i.e. F(µf)(D) ((µf) (z)) = Ff(D)f (z), z ∈ D.
The membership function of the fuzzy set (f + g) (D) asociated to the function f + g coincide with the half

of the sum of the membership functions of the fuzzy sets f (D), respectively g (D), asociated to the function f ,

respectively g, i.e. F(f+g)(D) ((f + g) (z)) =
Ff(D)f(z)+Fg(D)g(z)

2 , z ∈ D.

Remark 2.1 F(f+g)(D) ((f + g) (z)) can be defined in other ways.

Remark 2.2 Since 0 < Ff(D)f (z) ≤ 1 and 0 < Fg(D)g (z) ≤ 1, it is evidently that 0 < F(f+g)(D) ((f + g) (z)) ≤
1, z ∈ D.

Definition 2.2 Let δ ∈ (0, 1], λ, l ≥ 0 and m ∈ N. A function f ∈ A is said to be in the class SIδF (m,λ, l) if
it satisfies the inequality F(I(m,λ,l)f)′(U) (I (m,λ, l) f (z))

′
> δ, z ∈ U.

Theorem 2.1 The set SIδF (m,λ, l) is convex.

Proof. Let the functions fj (z) = z+
∑∞
j=2 ajkz

j , k = 1, 2, z ∈ U, be in the class SIδF (m,λ, l). It is sufficient

to show that the function h (z) = η1f1 (z) + η2f2 (z) is in the class SIδF (m,λ, l) with η1 and η2 nonnegative
such that η1 + η2 = 1.

We have h′ (z) = (µ1f1 + µ2f2)
′
(z) = µ1f

′
1 (z) + µ2f

′
2 (z), z ∈ U , and

(I (m,λ, l)h (z))
′

= (I (m,λ, l) (µ1f1 + µ2f2) (z))
′

= µ1 (I (m,λ, l) f1 (z))
′
+ µ2 (I (m,λ, l) f2 (z))

′
.

From Definition 2.1 we obtain that
F(I(m,λ,l)h)′(U) (I (m,λ, l)h (z))

′
= F(I(m,λ,l)(µ1f1+µ2f2))

′(U) (I (m,λ, l) (µ1f1 + µ2f2) (z))
′

=

F(I(m,λ,l)(µ1f1+µ2f2))
′(U)

(
µ1 (I (m,λ, l) f1 (z))

′
+ µ2 (I (m,λ, l) f2 (z))

′)
=

F(µ1I(m,λ,l)f1)′(U)(µ1(I(m,λ,l)f1(z))
′)+F(µ2I(m,λ,l)f2)′(U)(µ2(I(m,λ,l)f2(z))

′)
2 =

F(I(m,λ,l)f1)′(U)(I(m,λ,l)f1(z))
′+F(I(m,λ,l)f2)′(U)(I(m,λ,l)f2(z))

′

2 .

Since f1, f2 ∈ SIδF (m,λ, l) we have δ < F(I(m,λ,l)f1)
′(U) (I (m,λ, l) f1 (z))

′ ≤ 1 and

δ < F(I(m,λ,l)f2)
′(U) (I (m,λ, l) f2 (z))

′ ≤ 1, z ∈ U .

Therefore δ <
F(I(m,λ,l)f1)′(U)(I(m,λ,l)f1(z))

′+F(I(m,λ,l)f2)′(U)(I(m,λ,l)f2(z))
′

2 ≤ 1 and we obtain that

δ < F(I(m,λ,l)h)′(U) (I (m,λ, l)h (z))
′ ≤ 1, which means that h ∈ SIδF (m,λ, l) and SIδF (m,λ, l) is convex.

We highlight a fuzzy subset obtained using a convex function. Let the function h (z) = 1+z
1−z , z ∈ U . After

a short calculation we obtain that Re
(
zh′′(z)
h′(z) + 1

)
= Re 1+z1−z > 0, so h ∈ K and h (U) = {z ∈ C : Rez >

0}. We define the membership function for the set h (U) as Fh(U) (h (z)) = Reh (z), z ∈ U and we have

Fh(U)h (z) =supp
(
h (U) , Fh(u)

)
= {z ∈ C : 0 < Fh(U) (h (z)) ≤ 1} = {z ∈ U : 0 < Rez ≤ 1}.

Remark 2.3 In this case the membership function can be defined otherwise too and we recommend that those
interested to make it in accordance with their scientific concern.
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Theorem 2.2 Let g be a convex function in U and let h (z) = g (z) + 1
c+2zg

′ (z) , where z ∈ U, c > 0. If

f ∈ SIδF (m,λ, l) and G (z) = Ic (f) (z) = c+2
zc+1

∫ z
0
tcf (t) dt, z ∈ U, then

F(I(m,λ,l)f)′(U) (I (m,λ, l) f (z))
′ ≤ Fh(U)h (z) , i.e. (I (m,λ, l) f (z))

′ ≺F h (z) , z ∈ U, (2.1)

implies F(I(m,λ,l)G)′(U) (I (m,λ, l)G (z))
′ ≤ Fg(U)g (z), i.e. (I (m,λ, l)G (z))

′ ≺F g (z), z ∈ U, and this result is
sharp.

Proof. We obtain that

zc+1G (z) = (c+ 2)

∫ z

0

tcf (t) dt. (2.2)

Differentiating (2.2), with respect to z, we have (c+ 1)G (z) + zG′ (z) = (c+ 2) f (z) and

(c+ 1) I (m,λ, l)G (z) + z (I (m,λ, l)G (z))
′

= (c+ 2) I (m,λ, l) f (z) , z ∈ U. (2.3)

Differentiating (2.3) we have

(I (m,λ, l)G (z))
′
+

1

c+ 2
z (I (m,λ, l)G (z))

′′
= (I (m,λ, l) f (z))

′
, z ∈ U. (2.4)

Using (2.4), the fuzzy differential subordination (2.1) becomes

FI(m,λ,l)G(U)

(
(I (m,λ, l)G (z))

′
+

1

c+ 2
z (I (m,λ, l)G (z))

′′
)
≤ Fg(U)

(
g (z) +

1

c+ 2
zg′ (z)

)
. (2.5)

If we denote
p (z) = (I (m,λ, l)G (z))

′
, z ∈ U, (2.6)

then p ∈ H [1, 1] .

Replacing (2.6) in (2.5) we obtain Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ Fg(U)

(
g (z) + 1

c+2zg
′ (z)

)
, z ∈ U.

Using Lemma 1.3 we have Fp(U)p (z) ≤ Fg(U)g (z) , z ∈ U, i.e. F(I(m,λ,l)G)′(U) (I (m,λ, l)G (z))
′ ≤ Fg(U)g (z),

z ∈ U, and g is the fuzzy best dominant. We have obtained that (Lmα G (z))
′ ≺F g (z), z ∈ U.

Example 2.1 If f ∈ SI1F
(
1, 12 ,

1
2

)
, then f ′ (z) + 1

3zf
′′ (z) ≺F 3−2z

3(1−z)2 implies G′ (z) + 1
3zG

′′ (z) ≺F 1
1−z , where

G (z) = 3
z2

∫ z
0
tf (t) dt.

Theorem 2.3 Let h (z) = 1+(2β−1)z
1+z , β ∈ [0, 1) and c > 0. If λ, l ≥ 0, m ∈ N and Ic (f) (z) = c+2

zc+1

∫ z
0
tcf (t) dt,

z ∈ U, then

Ic

[
SIβF (m,λ, l)

]
⊂ SIβ

∗

F (m,λ, l) , (2.7)

where β∗ = 2β − 1 + (c+ 2) (2− 2β)
∫ 1

0
tc+1

t+1 dt.

Proof. The function h is convex and using the same steps as in the proof of Theorem 2.2 we get from

the hypothesis of Theorem 2.3 that Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ fh(U)h (z) , where p (z) is defined in (2.6).

Using Lemma 1.2 we deduce that Fp(U)p (z) ≤ Fg(U)g (z) ≤ Fh(U)h (z) , i.e. F(I(m,λ,l)G)′(U) (I (m,λ, l)G (z))
′ ≤

Fg(U)g (z) ≤ Fh(U)h (z) , where g (z) = c+2
zc+2

∫ z
0
tc+1 1+(2β−1)t

1+t dt = 2β−1+ (c+2)(2−2β)
zc+2

∫ z
0
tc+1

t+1 dt. Since g is convex
and g (U) is symmetric with respect to the real axis, we deduce

FI(m,λ,l)G(U) (I (m,λ, l)G (z))
′ ≥ min

|z|=1
Fg(U)g (z) = Fg(U)g (1) (2.8)

and β∗ = g (1) = 2β − 1 + (c+ 2) (2− 2β)
∫ 1

0
tc+1

t+1 dt.
From (2.8) we deduce inclusion (2.7).

Theorem 2.4 Let g be a convex function, g(0) = 1 and let h be the function h(z) = g(z) + zg′(z), z ∈ U. If
λ, l ≥ 0, m ∈ N, f ∈ A and satisfies the fuzzy differential subordination

F(I(m,λ,l)f)′(U) (I (m,λ, l) f (z))
′ ≤ Fh(U)h (z) , i.e. (I (m,λ, l) f(z))

′ ≺F h(z), z ∈ U, (2.9)

then FI(m,λ,l)f(U)
I(m,λ,l)f(z)

z ≤ Fg(U)g(z), i.e. I(m,λ,l)f(z)
z ≺F g(z), z ∈ U, and this result is sharp.
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Proof. Consider p(z) = I(m,λ,l)f(z)
z =

z+
∑∞
j=2(

1+λ(j−1)+l
l+1 )

m
ajz

j

z = 1 + p1z + p2z
2 + ..., z ∈ U. We deduce

that p ∈ H[1, 1].
Let I (m,λ, l) f(z) = zp(z), for z ∈ U. Differentiating we obtain (I (m,λ, l) f(z))

′
= p(z) + zp′(z), z ∈ U.

Then (2.9) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) , z ∈ U.
By using Lemma 1.3, we have Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, i.e. F(I(m,λ,l)f)′(U)

I(m,λ,l)f(z)
z ≤ Fg(U)g(z),

z ∈ U.We obtain that I(m,λ,l)f(z)
z ≺F g(z), z ∈ U, and this result is sharp.

Theorem 2.5 Let h be an holomorphic function which satisfies the inequality Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U,
and h(0) = 1. If λ, l ≥ 0, m ∈ N, f ∈ A and satisfies the fuzzy differential subordination

F(I(m,λ,l)f)′(U) (I (m,λ, l) f (z))
′ ≤ Fh(U)h (z) , i.e. (I (m,λ, l) f(z))

′ ≺F h(z), z ∈ U, (2.10)

then FI(m,λ,l)f(U)
I(m,λ,l)f(z)

z ≤ Fq(U)q(z), i.e. I(m,λ,l)f(z)
z ≺F q(z), z ∈ U, where q(z) = 1

z

∫ z
0
h(t)dt. The

function q is convex and it is the fuzzy best dominant.

Proof. Let p(z) = I(m,λ,l)f(z)
z , z ∈ U, p ∈ H[1, 1]. Since Re

(
1 + zh′′(z)

h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1,

we obtain that q (z) = 1
z

∫ z
0
h(t)dt is a convex function and verifies the differential equation asscociated to the

fuzzy differential subordination (2.10) q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.
Differentiating, we obtain (I (m,λ, l) f(z))

′
= p(z)+zp′(z), z ∈ U and (2.10) becomes Fp(U) (p(z) + zp′(z)) ≤

Fh(U)h(z), z ∈ U.
Using Lemma 1.3, we have Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, i.e. FI(m,λ,l)f(U)

I(m,λ,l)f(z)
z ≤ Fq(U)q(z), z ∈ U.

We have obtained that I(m,λ,l)f(z)
z ≺F q(z), z ∈ U.

Corollary 2.6 Let h(z) = 1+(2β−1)z
1+z a convex function in U , 0 ≤ β < 1. If λ, l ≥ 0, m ∈ N, f ∈ A and verifies

the fuzzy differential subordination

F(I(m,λ,l)f)′(U) (I (m,λ, l) f(z))
′ ≤ Fh(U)h(z), i.e. (I (m,λ, l) f(z))

′ ≺F h(z), z ∈ U, (2.11)

then FI(m,λ,l)f(U)
I(m,λ,l)f(z)

z ≤ Fq(U)q(z), i.e. I(m,λ,l)f(z)
z ≺F q(z), z ∈ U, where q is given by q(z) = 2β − 1 +

2(1−β)
z ln (1 + z) , z ∈ U. The function q is convex and it is the fuzzy best dominant.

Proof. We have h (z) = 1+(2β−1)z
1+z with h (0) = 1, h′ (z) = −2(1−β)

(1+z)2
and h′′ (z) = 4(1−β)

(1+z)3
, therefore

Re
(
zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 .

Following the same steps as in the proof of Theorem 2.5 and considering p(z) = I(m,λ,l)f(z)
z , the fuzzy

differential subordination (2.11) becomes FI(m,λ,l)f(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.
By using Lemma 1.2 for γ = 1 and n = 1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e., FI(m,λ,l)f(U)

I(m,λ,l)f(z)
z ≤

Fq(U)q (z) and q (z) = 1
z

∫ z
0
h (t) dt = 1

z

∫ z
0

1+(2β−1)t
1+t dt = 2β − 1 + 2(1−β)

z ln (1 + z) , z ∈ U.

Example 2.2 Let h (z) = 1−z
1+z with h (0) = 1, h′ (z) = −2

(1+z)2
and h′′ (z) = 4

(1+z)3
.

Since Re
(
zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 , the function h is

convex in U .
Let f (z) = z + z2, z ∈ U . For n = 1, m = 1, l = 2, λ = 1, we obtain I (1, 1, 2) f (z) = 2

3f (z) + 1
3zf

′ (z) =

z+ 4
3z

2. Then (I (1, 1, 2) f (z))
′

= 1 + 8
3z and I(1,1,2)f(z)

z = 1 + 4
3z. We have q (z) = 1

z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.5 we obtain 1 + 8
3z ≺F

1−z
1+z , z ∈ U, induce 1 + 4

3z ≺F −1 + 2 ln(1+z)
z , z ∈ U.

Theorem 2.7 Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z) + zg′ (z),
z ∈ U . If λ, l ≥ 0, m ∈ N, f ∈ A and the fuzzy differential subordination

FI(m,λ,l)f(U)

(
zI (m+ 1, λ, l) f (z)

I (m,λ, l) f (z)

)′
≤ Fh(U)h (z) , i.e.

(
zI (m+ 1, λ, l) f (z)

I (m,λ, l) f (z)

)′
≺F h (z) , z ∈ U (2.12)

holds, then FI(m,λ,l)f(U)
I(m+1,λ,l)f(z)
I(m,λ,l)f(z) ≤ Fg(U)g (z), i.e. I(m+1,λ,l)f(z)

I(m,λ,l)f(z) ≺F g (z), z ∈ U, and this result is sharp.
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Proof. Consider p(z) = I(m+1,λ,l)f(z)
I(m,λ,l)f(z) . We have p′ (z) = (I(m+1,λ,l)f(z))′

I(m,λ,l)f(z) − p (z) · (I(m+1,λ,l)f(z))′

I(m,λ,l)f(z) and we

obtain p (z) + z · p′ (z) =
(
zI(m+1,λ,l)f(z)
I(m,λ,l)f(z)

)′
.

Relation (2.12) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) , z ∈ U. By using Lemma

1.3, we have Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, i.e. FI(m,λ,l)f(U)
I(m+1,λ,l)f(z)
I(m,λ,l)f(z) ≤ Fg(U)g(z), z ∈ U. We obtain that

I(m+1,λ,l)f(z)
I(m,λ,l)f(z) ≺F g (z), z ∈ U.

Theorem 2.8 Let g be a convex function such that g(0) = 1 and let h be the function h(z) = g(z) + zg′(z),
z ∈ U. If λ, l ≥ 0, m ∈ N, f ∈ A and the fuzzy differential subordination
FI(m,λ,l)f(U)

(
l+1
λ I (m+ 1, λ, l) f (z) +

(
2− l+1

λ

)
I (m,λ, l) f (z)

)
≤ Fh(U)h(z), i.e.

l + 1

λ
I (m+ 1, λ, l) f (z) +

(
2− l + 1

λ

)
I (m,λ, l) f (z) ≺F h(z), z ∈ U (2.13)

holds, then FI(m,λ,l)f(U)[I (m,λ, l) f(z)]′ ≤ Fg(U)g(z), i.e. [I (m,λ, l) f(z)]′ ≺F g(z), z ∈ U. This result is
sharp.

Proof. Let p(z) = (I (m,λ, l) f (z))
′
. We deduce that p ∈ H[1, 1]. We obtain p (z) + z · p′ (z) =

I (m,λ, l) f (z) + z (I (m,λ, l) f (z))
′

= I (m,λ, l) f (z) + (l+1)I(m+1,λ,l)f(z)−(l+1−λ)I(m,λ,l)f(z)
λ =

l+1
λ I (m+ 1, λ, l) f (z) +

(
2− l+1

λ

)
I (m,λ, l) f (z) .

The fuzzy differential subordination becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) . By

using Lemma 1.3, we have Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, i.e. FI(m,λ,l)f(U) (I (m,λ, l) f(z))
′ ≤ Fg(U)g(z), z ∈ U,

and this result is sharp.

Theorem 2.9 Let h be an holomorphic function which satisfies the inequality Re
[
1 + zh′′(z)

h′(z)

]
> − 1

2 , z ∈ U,
and h (0) = 1. If λ, l ≥ 0, m ∈ N, f ∈ A and satisfies the fuzzy differential subordination
FI(m,λ,l)f(U)

(
l+1
λ I (m+ 1, λ, l) f (z) +

(
2− l+1

λ

)
I (m,λ, l) f (z)

)
≤ Fh(U)h(z), i.e.

l + 1

λ
I (m+ 1, λ, l) f (z) +

(
2− l + 1

λ

)
I (m,λ, l) f (z) ≺F h(z), z ∈ U, (2.14)

then FI(m,λ,l)f(U) (I (m,λ, l) f(z))
′ ≤ Fq(U)q(z), i.e. (I (m,λ, l) f(z))

′ ≺F q(z), z ∈ U, where q is given by

q(z) = 1
z

∫ z
0
h(t)dt. The function q is convex and it is the fuzzy best dominant.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we obtain that q (z) = 1
z

∫ z
0
h(t)dt is a

convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.14)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.
Considering p (z) = (I (m,λ, l) f (z))

′
, we obtain p(z)+zp′(z) = l+1

λ I (m+ 1, λ, l) f (z)+
(
2− l+1

λ

)
I (m,λ, l) f (z) ,

z ∈ U. Then (2.14) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.
Since p ∈ H[1, 1], using Lemma 1.3, we deduce Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, i.e. FI(m,λ,l)f(U) (I (m,λ, l) f(z))

′ ≤
Fq(U)q(z), z ∈ U. We have obtained that (I (m,λ, l) f(z))

′ ≺F q(z), z ∈ U.

Corollary 2.10 Let h(z) = 1+(2β−1)z
1+z be a convex function in U , where 0 ≤ β < 1.If λ, l ≥ 0, m ∈ N, f ∈ A

and satisfies the differential subordination FI(m,λ,l)f(U)

(
l+1
λ I (m+ 1, λ, l) f (z) +

(
2− l+1

λ

)
I (m,λ, l) f (z)

)
≤

Fh(U)h(z), i.e.

l + 1

λ
I (m+ 1, λ, l) f (z) +

(
2− l + 1

λ

)
I (m,λ, l) f (z) ≺F h(z), z ∈ U, (2.15)

then FI(m,λ,l)f(U) (I (m,λ, l) f(z))
′ ≤ Fq(U)q(z), i.e. (I (m,λ, l) f(z))

′ ≺F q(z), z ∈ U, where q is given by

q(z) = 2β − 1 + 2(1− β) ln(1+z)
z , for z ∈ U. The function q is convex and it is the fuzzy best dominant.

Proof. Following the same steps as in the proof of Theorem 2.8 and considering p(z) = (I (m,λ, l) f (z))
′
,

the fuzzy differential subordination (2.15) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.
By using Lemma 1.2 for γ = 1 and n = 1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e., FI(m,λ,l)f(U) (I (m,λ, l) f(z))

′ ≤
Fq(U)q(z), i.e. (I (m,λ, l) f(z))

′ ≺F q(z), z ∈ U, and q(z) = 1
z

∫ z
0
h(t)dt = 1

z

∫ z
0

1+(2β−1)t
1+t dt = 2β − 1 + 2(1 −

β) 1
z ln(z + 1), z ∈ U.
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Example 2.3 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 (see Example

2.2).
Let f (z) = z + z2, z ∈ U . For n = 1, m = 1, l = 2, λ = 1, we obtain I (1, 1, 2) f (z) = 2

3f (z) + 1
3zf

′ (z) =

z + 4
3z

2 and (I (1, 1, 2) f (z))
′

= 1 + 8
3z. We obtain also l+1

λ I (m+ 1, λ, l) f (z) +
(
2− l+1

λ

)
I (m,λ, l) f (z) =

3I (2, 1, 2) f (z) − I (1, 1, 2) f (z) = 2z + 4z2, where I (2, 1, 2) f (z) = 2
3I (1, 1, 2) f (z) + z

3 (I (1, 1, 2) f (z))
′

=

3z + 16
3 z

2. We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.9 we obtain 2z + 4z2 ≺F 1−z
1+z , z ∈ U, induce 1 + 8

3z ≺F −1 + 2 ln(1+z)
z , z ∈ U.
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Abstract

In this paper we obtain some subordination and superordination results for the operator IRm,nλ.l and we
establish differential sandwich-type theorems. The operator IRm,nλ,l is defined as the Hadamard product of
the multiplier transformation I (m,λ, l) and Ruscheweyh derivative Rn.
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1 Introduction

ConsiderH (U) the class of analytic function in the open unit disc of the complex plane U = {z ∈ C : |z| < 1},
H (a, n) the subclass of H (U) consisting of functions of the form f(z) = a + anz

n + an+1z
n+1 + . . . and

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} with A = A1.

Next we remind the definition of differential subordination and superordination.
Let the functions f and g be analytic in U . The function f is subordinate to g, written f ≺ g, if there exists

a Schwarz function w, analytic in U , with w(0) = 0 and |w(z)| < 1, for all z ∈ U, such that f(z) = g(w(z)), for
all z ∈ U . In particular, if the function g is univalent in U , the above subordination is equivalent to f(0) = g(0)
and f(U) ⊂ g(U).

Let ψ : C3×U → C and h be an univalent function in U . If p is analytic in U and satisfies the second order
differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), for z ∈ U, (1.1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of
the solutions of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying (1.1). A
dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best dominant of (1.1). The best
dominant is unique up to a rotation of U .

Let ψ : C2×U → C and h analytic in U . If p and ψ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
are univalent and if p satisfies

the second order differential superordination

h(z) ≺ ψ(p(z), zp′(z), z2p′′ (z) ; z), z ∈ U, (1.2)

then p is a solution of the differential superordination (1.2) (if f is subordinate to F , then F is called to be
superordinate to f). An analytic function q is called a subordinant if q ≺ p for all p satisfying (1.2). An
univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (1.2) is said to be the best subordinant.

Miller and Mocanu [6] obtained conditions h, q and ψ for which the following implication holds h(z) ≺
ψ(p(z), zp′(z), z2p′′ (z) ; z)⇒ q (z) ≺ p (z) .

For two functions f(z) = z +
∑∞
j=2 ajz

j and g(z) = z +
∑∞
j=2 bjz

j analytic in the open unit disc U ,
the Hadamard product (or convolution) of f (z) and g (z), written as (f ∗ g) (z) is defined by f (z) ∗ g (z) =
(f ∗ g) (z) = z +

∑∞
j=2 ajbjz

j .
We need the following differential operators.

Definition 1.1 [5] For f ∈ A, m ∈ N∪{0}, λ, l ≥ 0, the multiplier transformation I (m,λ, l) f(z) is defined by

the following infinite series I (m,λ, l) f(z) := z +
∑∞
j=2

(
1+λ(j−1)+l

1+l

)m
ajz

j .
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Remark 1.1 We have (l + 1) I (m+ 1, λ, l) f(z) = (l + 1− λ) I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))
′
, z ∈ U.

Remark 1.2 For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was introduced and studied by Al-Oboudi , which

reduced to the Sălăgean differential operator Sm = I (m, 1, 0) for λ = 1.

Definition 1.2 (Ruscheweyh [8]) For f ∈ A and n ∈ N, the Ruscheweyh derivative Rn is defined by Rn : A →
A,

R0f (z) = f (z) , R1f (z) = zf ′ (z) , ...

(n+ 1)Rn+1f (z) = z (Rnf (z))
′
+ nRnf (z) , z ∈ U.

Remark 1.3 If f ∈ A, f(z) = z +
∑∞
j=2 ajz

j, then Rnf (z) = z +
∑∞
j=2

(n+j−1)!
n!(j−1)! ajz

j for z ∈ U .

Definition 1.3 ([2]) Let λ, l ≥ 0 and n,m ∈ N. Denote by IRm,nλ,l : A → A the operator given by the

Hadamard product of the multiplier transformation I (m,λ, l) and the Ruscheweyh derivative Rn, IRm,nλ,l f (z) =
(I (m,λ, l) ∗Rn) f (z) , for any z ∈ U and each nonnegative integers m,n.

Remark 1.4 If f ∈ A and f(z) = z +
∑∞
j=2 ajz

j, then IRm,nλ,l f (z) = z +
∑∞
j=2

(
1+λ(j−1)+l

l+1

)m
(n+j−1)!
n!(j−1)! a

2
jz
j,

z ∈ U .

Using simple computation we obtain the following relation.

Proposition 1.1 [1]For m,n ∈ N and λ ≥ 0 we have

IRm+1,n
λ,l f (z) =

1 + l − λ
l + 1

IRm,nλ,l f (z) +
λ

l + 1
z
(
IRm,nλ,l f (z)

)′
(1.3)

Definition 1.4 [7] Denote by Q the set of all functions f that are analytic and injective on U\E (f), where
E (f) = {ζ ∈ ∂U : lim

z→ζ
f (z) =∞}, and are such that f ′ (ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1.1 [7] Let the function q be univalent in the unit disc U and θ and φ be analytic in a domain D
containing q (U) with φ (w) 6= 0 when w ∈ q (U). Set Q (z) = zq′ (z)φ (q (z)) and h (z) = θ (q (z)) + Q (z).

Suppose that Q is starlike univalent in U and Re
(
zh′(z)
Q(z)

)
> 0 for z ∈ U . If p is analytic with p (0) = q (0),

p (U) ⊆ D and θ (p (z)) + zp′ (z)φ (p (z)) ≺ θ (q (z)) + zq′ (z)φ (q (z)) , then p (z) ≺ q (z) and q is the best
dominant.

Lemma 1.2 [4] Let the function q be convex univalent in the open unit disc U and ν and φ be analytic in a

domain D containing q (U). Suppose that Re
(
ν′(q(z))
φ(q(z))

)
> 0 for z ∈ U and 2. ψ (z) = zq′ (z)φ (q (z)) is starlike

univalent in U . If p (z) ∈ H [q (0) , 1] ∩Q, with p (U) ⊆ D and ν (p (z)) + zp′ (z)φ (p (z)) is univalent in U and
ν (q (z)) + zq′ (z)φ (q (z)) ≺ ν (p (z)) + zp′ (z)φ (p (z)) , then q (z) ≺ p (z) and q is the best subordinant.

2 Main results

We intend to find sufficient conditions for certain normalized analytic functions f such that q1 (z) ≺
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q2 (z) , z ∈ U, 0 < δ ≤ 1, where q1 and q2 are given univalent functions.

Theorem 2.1 Let
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H (U) and let the function q (z) be analytic and univalent in U such that

q (z) 6= 0, for all z ∈ U . Suppose that zq′(z)
q(z) is starlike univalent in U . Let

Re

(
ξ

β
q (z) +

2µ

β
q2 (z) + 1 + z

q′′ (z)

q′ (z)
− z q

′ (z)

q (z)

)
> 0, (2.1)

for α, ξ, β, µ ∈ C, β 6= 0, z ∈ U and

ψm,nλ,l (α, ξ, µ, β; z) := α+ β
(l + 1)

λ
+ β

(l + 1)

λ

IRm+2,n
λ,l f (z)

IRm+1,n
λ,l f (z)

− (2.2)
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β
(l + 1) (1 + δ)

λ

IRm+1,n
λ,l f (z)

IRm+1,n
λ,l f (z)

+ ξ
zδIRm+1,n

λ,l f (z)(
IRm,nλ,l f (z)

)1+δ + µ
z2δ
(
IRm+1,n

λ,l f (z)
)2

(
IRm,nλ,l f (z)

)2+2δ
.

If q satisfies the following subordination

ψm,nλ,l (α, β, µ; z) ≺ α+ ξq (z) + µ (q (z))
2

+ β
zq′ (z)

q (z)
, (2.3)

for α, ξ, β, µ ∈ C, β 6= 0, then
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q (z), and q is the best dominant.

Proof. Consider p (z) :=
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U , z 6= 0, f ∈ A. Differentiating we obtain p′ (z) =

δ(1+l)
λ

zδ−1IRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ + l+1

λ

zδ−1IRm+2,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ − (l+1)(1+δ)

λ

zδ−1(IRm+1,n
λ,l f(z))

2

(IRm,nλ,l f(z))
2+δ .

By using the identity (1.3), we obtain

zp′ (z)

p (z)
=
δ (l + 1)

λ
+
l + 1

λ

IRm+2,n
λ,l f (z)

IRm+1,n
λ,l f (z)

− (l + 1) (1 + δ)

λ

IRm+1,n
λ,l f (z)

IRm+1,n
λ,l f (z)

. (2.4)

By setting θ (w) := α + ξw + µw2 and φ (w) := β
w , it can be easily verified that θ is analytic in C, φ is

analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Also, by lettingQ (z) = zq′ (z)φ (q (z)) = β zq

′(z)
q(z) and h (z) = θ (q (z))+Q (z) = α+ξq (z)+µ (q (z))

2
+β zq

′(z)
q(z) ,

we find that Q (z) is starlike univalent in U .

We get h′ (z) = ξq′ (z) + 2µq (z) q′ (z) + β q
′(z)
q(z) + βz q

′′(z)
q(z) − βz

(
q′(z)
q(z)

)2
and zh′(z)

Q(z) = ξ
β q (z) + 2µ

β q
2 (z) + 1 +

z q
′′(z)
q(z) − z

q′(z)
q(z) .

So we deduce that Re
(
zh′(z)
Q(z)

)
= Re

(
ξ
β q (z) + 2µ

β q
2 (z) + 1 + z q

′′(z)
q(z) − z

q′(z)
q(z)

)
> 0.

By using (2.4), we obtain α+ ξp (z) + µ (p (z))
2

+ β zp
′(z)
p(z) =

α+ β (l+1)
λ + β (l+1)

λ

IRm+2,n
λ,l f(z)

IRm+1,n
λ,l f(z)

− β (l+1)(1+δ)
λ

IRm+1,n
λ,l f(z)

IRm+1,n
λ,l f(z)

+ ξ
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ + µ

z2δ(IRm+1,n
λ,l f(z))

2

(IRm,nλ,l f(z))
2+2δ .

By using (2.3), we have α+ ξp (z) + µ (p (z))
2

+ β zp
′(z)
p(z) ≺ α+ ξq (z) + µ (q (z))

2
+ β zq

′(z)
q(z) .

Appying Lemma 1.1, we obtain p (z) ≺ q (z), z ∈ U, i.e.
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q (z), z ∈ U and q is the best

dominant.

Corollary 2.2 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α, β, µ; z) ≺ α+ ξ 1+Az
1+Bz +

µ
(

1+Az
1+Bz

)2
+ β(A−B)z

(1+Az)(1+Bz) , for α, β, µ, ξ ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.2), then

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ 1+Az

1+Bz , and 1+Az
1+Bz is the best dominant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.1 we get the corollary.

Corollary 2.3 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α, β, µ; z) ≺ α +

ξ
(

1+z
1−z

)γ
+ µ

(
1+z
1−z

)2γ
+ 2βγz

1−z2 , for α, β, µ, ξ ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is defined in (2.2), then

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺

(
1+z
1−z

)γ
, and

(
1+z
1−z

)γ
is the best dominant.

Proof. Corollary follows by using Theorem 2.1 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Theorem 2.4 Let q be analytic and univalent in U such that q (z) 6= 0 and zq′(z)
q(z) be starlike univalent in U .

Assume that

Re

(
ξ

β
q (z) q′ (z) +

2µ

β
q2 (z) q′ (z)

)
> 0, for ξ, β, µ ∈ C, β 6= 0. (2.5)
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If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1] ∩ Q and ψm,nλ,l (α, β, µ; z) is univalent in U , where ψm,nλ,l (α, β, µ; z) is as

defined in (2.2), then

α+ ξq (z) + µ (q (z))
2

+
βzq′ (z)

q (z)
≺ ψm,nλ,l (α, β, µ; z) (2.6)

implies q (z) ≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U, and q is the best subordinant.

Proof. Consider p (z) :=
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U , z 6= 0, f ∈ A.

By setting ν (w) := α + ξw + µw2 and φ (w) := β
w it can be easily verified that ν is analytic in C, φ is

analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Since ν′(q(z))

φ(q(z)) = q′(z)q(z)[ξ+2µq(z)]
β , it follows that Re

(
ν′(q(z))
φ(q(z))

)
= Re

(
ξ
β q (z) q′ (z) + 2µ

β q
2 (z) q′ (z)

)
> 0, for

α, β, µ ∈ C, µ 6= 0.

By using (2.4) and (2.6) we get α+ ξq (z) + µ (q (z))
2

+ βzq′(z)
q(z) ≺ α+ ξp (z) + µ (p (z))

2
+ βzp′(z)

p(z) . Applying

Lemma 1.2, we obtain q (z) ≺ p (z) =
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U, and q is the best subordinant.

Corollary 2.5 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.5) holds. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1]∩Q and

α + ξ 1+Az
1+Bz + µ

(
1+Az
1+Bz

)2
+ β(A−B)z

(1+Az)(1+Bz) ≺ ψm,nλ,l (α, β, µ; z) , for α, β, ξ, µ ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where

ψm,nλ,l is defined in (2.2), then 1+Az
1+Bz ≺

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ , and 1+Az

1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.4 we get the corollary.

Corollary 2.6 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.5) holds. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1]∩Q and

α+ξ
(

1+z
1−z

)γ
+µ

(
1+z
1−z

)2γ
+ 2βγz

1−z2 ≺ ψ
m,n
λ,l (α, β, µ; z) , for α, β, µ, ξ ∈ C, β 6= 0, 0 < γ ≤ 1, where ψm,nλ,l is defined

in (2.2), then
(

1+z
1−z

)γ
≺ zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , and

(
1+z
1−z

)γ
is the best subordinant.

Proof. For q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1 in Theorem 2.4 we get the corollary.

Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich theorem.

Theorem 2.7 Let q1 and q2 be analytic and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all

z ∈ U , with
zq′1(z)
q1(z)

and
zq′2(z)
q2(z)

being starlike univalent. Suppose that q1 satisfies (2.1) and q2 satisfies (2.5).

If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1] ∩ Q and ψm,nλ,l (α, β, µ; z) is as defined in (2.2) univalent in U , then

α + ξq1 (z) + µ (q1 (z))
2

+
βzq′1(z)
q1(z)

≺ ψm,nλ,l (α, β, µ; z) ≺ α + ξq2 (z) + µ (q2 (z))
2

+
βzq′2(z)
q2(z)

, for α, β, µ, ξ ∈ C,

β 6= 0, implies q1 (z) ≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q2 (z), and q1 and q2 are respectively the best subordinant and the best

dominant.

For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.

Corollary 2.8 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.5) hold. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈

H [q (0) , 1]∩Q and α+ ξ 1+A1z
1+B1z

+µ
(

1+A1z
1+B1z

)2
+ β(A1−B1)z

(1+A1z)(1+B1z)
≺ ψm,nλ,l (α, β, µ; z) ≺ α+ ξ 1+A2z

1+B2z
+µ

(
1+A2z
1+B2z

)2
+

β(A2−B2)z
(1+A2z)(1+B2z)

, for α, β, µ, ξ ∈ C, β 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in (2.2),

then 1+A1z
1+B1z

≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ 1+A2z

1+B2z
, hence 1+A1z

1+B1z
and 1+A2z

1+B2z
are the best subordinant and the best dominant,

respectively.

1039

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Alina Alb Lupas 1036-1042



For q1 (z) =
(

1+z
1−z

)γ1
, q2 (z) =

(
1+z
1−z

)γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.

Corollary 2.9 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.5) hold. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1]∩

Q and α+ξ
(

1+z
1−z

)γ1
+µ
(

1+z
1−z

)2γ1
+ 2βγ1z

1−z2 ≺ ψ
m,n
λ,l (α, β, µ; z) ≺ α+ξ

(
1+z
1−z

)γ2
+µ
(

1+z
1−z

)2γ2
+ 2βγ2z

1−z2 , for α, β, µ, ξ ∈

C, β 6= 0, 0 < γ1 < γ2 ≤ 1, where ψm,nλ,l is defined in (2.2), then
(

1+z
1−z

)γ1
≺ zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺

(
1+z
1−z

)γ2
, hence(

1+z
1−z

)γ1
and

(
1+z
1−z

)γ2
are the best subordinant and the best dominant, respectively.

Changing the functions θ and φ we obtain the following results.

Theorem 2.10 Let
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H (U) , f ∈ A, z ∈ U , m,n ∈ N, λ, l ≥ 0 and let the function q (z) be

convex and univalent in U such that q (0) = 1, z ∈ U . Assume that

Re

(
α+ β

β
+ z

q′′ (z)

q′ (z)

)
> 0, (2.7)

for α, β ∈ C, β 6= 0, z ∈ U, and

ψm,nλ,l (α, β; z) :=
β (l + 1)

λ

zδIRm+2,n
λ,l f (z)(

IRm,nλ,l f (z)
)1+δ +

(
α+

βδ (l + 1)

λ

)
zδIRm+1,n

λ,l f (z)(
IRm,nλ,l f (z)

)1+δ (2.8)

−β (1 + δ) (l + 1)

λ

zδ
(
IRm+1,n

λ,l f (z)
)2

(
IRm,nλ,l f (z)

)2+δ .

If q satisfies the following subordination

ψm,nλ,l (α, β; z) ≺ αq (z) + βzq′ (z) , (2.9)

for α, β ∈ C, β 6= 0, z ∈ U, then
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q (z), z ∈ U, and q is the best dominant.

Proof. Consider p (z) :=
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U , z 6= 0, f ∈ A. The function p is analytic in U and p (0) = 1.

Differentiating we get p′ (z) = δ(1+l)
λ

zδ−1IRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ + l+1

λ

zδ−1IRm+2,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ − (l+1)(1+δ)

λ

zδ−1(IRm+1,n
λ,l f(z))

2

(IRm,nλ,l f(z))
2+δ .

By using the identity (1.3), we get

zp′ (z) =
l + 1

λ

zδIRm+2,n
λ,l f (z)(

IRm,nλ,l f (z)
)1+δ +

δ (1 + l)

λ

zδIRm+1,n
λ,l f (z)(

IRm,nλ,l f (z)
)1+δ − (l + 1) (1 + δ)

λ

zδ
(
IRm+1,n

λ,l f (z)
)2

(
IRm,nλ,l f (z)

)2+δ . (2.10)

By setting θ (w) := αw and φ (w) := β, it can be easily verified that θ is analytic in C, φ is analytic in C\{0}
and that φ (w) 6= 0, w ∈ C\{0}.

Also, by letting Q (z) = zq′ (z)φ (q (z)) = βzq′ (z) , we find that Q (z) is starlike univalent in U.

Let h (z) = θ (q (z)) +Q (z) = αq (z) + βzq′ (z). We have Re
(
zh′(z)
Q(z)

)
= Re

(
α+β
β + z q

′′(z)
q′(z)

)
> 0.

By using (2.10), we obtain αp (z) + βzp′ (z) = β(l+1)
λ

zδIRm+2,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ +

(
α+ βδ(l+1)

λ

)
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ−

β(1+δ)(l+1)
λ

zδ(IRm+1,n
λ,l f(z))

2

(IRm,nλ,l f(z))
2+δ . By using (2.9), we have αp (z) + βzp′ (z) ≺ αq (z) + βzq′ (z) . From Lemma 1.1, we

have p (z) ≺ q (z), z ∈ U, i.e.
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q (z), z ∈ U, and q is the best dominant.
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Corollary 2.11 Let q (z) = 1+Az
1+Bz , z ∈ U, −1 ≤ B < A ≤ 1, m, n ∈ N, λ, l ≥ 0. Assume that (2.7) holds. If

f ∈ A and ψm,nλ,l (α, β; z) ≺ α 1+Az
1+Bz + β(A−B)z

(1+Bz)2
, for α, β ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in

(2.8), then
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ 1+Az

1+Bz , and 1+Az
1+Bz is the best dominant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.10 we get the corollary.

Corollary 2.12 Let q (z) =
(

1+z
1−z

)γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.7) holds. If f ∈ A and ψm,nλ,l (α, β; z) ≺

α
(

1+z
1−z

)γ
+ 2βγz

1−z2

(
1+z
1−z

)γ
, for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is defined in (2.8), then

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺(

1+z
1−z

)γ
, and

(
1+z
1−z

)γ
is the best dominant.

Proof. Corollary follows by using Theorem 2.10 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Theorem 2.13 Let q be convex and univalent in U such that q (0) = 1. Assume that

Re

(
α

β
q′ (z)

)
> 0, for α, β ∈ C, β 6= 0. (2.11)

If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1]∩Q and ψm,nλ,l (α, β; z) is univalent in U , where ψm,nλ,l (α, β; z) is as defined

in (2.8), then
αq (z) + βzq′ (z) ≺ ψm,nλ,l (α, β; z) (2.12)

implies q (z) ≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ , δ ∈ C, δ 6= 0, z ∈ U, and q is the best subordinant.

Proof. Consider p (z) :=
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U , z 6= 0, f ∈ A. The function p is analytic in U and p (0) = 1.

By setting ν (w) := αw and φ (w) := β it can be easily verified that ν is analytic in C, φ is analytic in C\{0}
and that φ (w) 6= 0, w ∈ C\{0}.

Since ν′(q(z))
φ(q(z)) = α

β q
′ (z), it follows that Re

(
ν′(q(z))
φ(q(z))

)
= Re

(
α
β q
′ (z)

)
> 0, for α, β ∈ C, β 6= 0.

Now, by using (2.12) we obtain αq (z) + βzq′ (z) ≺ αp (z) + βzp′ (z) , z ∈ U. From Lemma 1.2, we have

q (z) ≺ p (z) =
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , z ∈ U, and q is the best subordinant.

Corollary 2.14 Let q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, z ∈ U, m, n ∈ N, λ, l ≥ 0. Assume that (2.11)

holds. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1] ∩Q, and α 1+Az

1+Bz + β(A−B)z

(1+Bz)2
≺ ψm,nλ,l (α, β; z) , for α, β ∈ C, β 6= 0,

−1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.8), then 1+Az
1+Bz ≺

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ , and 1+Az

1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.13 we get the corollary.

Corollary 2.15 Let q (z) =
(

1+z
1−z

)γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.11) holds. If f ∈ A,

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈

H [q (0) , 1] ∩Q and α
(

1+z
1−z

)γ
+ 2βγz

1−z2

(
1+z
1−z

)γ
≺ ψm,nλ,l (α, β; z) , for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is

defined in (2.8), then
(

1+z
1−z

)γ
≺ zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ , and

(
1+z
1−z

)γ
is the best subordinant.

Proof. Corollary follows by using Theorem 2.13 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Combining Theorem 2.10 and Theorem 2.13, we state the following sandwich theorem.
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Theorem 2.16 Let q1 and q2 be convex and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all

z ∈ U . Suppose that q1 satisfies (2.7) and q2 satisfies (2.11). If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1] ∩Q , and

ψm,nλ,l (α, β; z) is as defined in (2.8) univalent in U , then αq1 (z)+βzq′1 (z) ≺ ψm,nλ,l (α, β; z) ≺ αq2 (z)+βzq′2 (z) ,

for α, β ∈ C, β 6= 0, implies q1 (z) ≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ q2 (z), z ∈ U, and q1 and q2 are respectively the best

subordinant and the best dominant.

For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.

Corollary 2.17 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.7) and (2.11) hold for q1 (z) = 1+A1z
1+B1z

and q2 (z) =

1+A2z
1+B2z

, respectively. If f ∈ A,
zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1] ∩ Q and α 1+A1z

1+B1z
+ β(A1−B1)z

(1+B1z)
2 ≺ ψm,nλ,l (α, β; z)

≺ α 1+A2z
1+B2z

+ β(A2−B2)z

(1+B2z)
2 , z ∈ U, for α, β ∈ C, β 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in

(2.2), then 1+A1z
1+B1z

≺ zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺ 1+A2z

1+B2z
, z ∈ U, hence 1+A1z

1+B1z
and 1+A2z

1+B2z
are the best subordinant and the

best dominant, respectively.

For q1 (z) =
(

1+z
1−z

)γ1
, q2 (z) =

(
1+z
1−z

)γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.

Corollary 2.18 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.7) and (2.11) hold for q1 (z) =
(

1+z
1−z

)γ1
and q2 (z) =(

1+z
1−z

)γ2
, respectively. If f ∈ A,

zδIRm+1,n
λ,l f(z)

(IRm,nλ,l f(z))
1+δ ∈ H [q (0) , 1]∩Q and α

(
1+z
1−z

)γ1
+ 2βγ1z

1−z2

(
1+z
1−z

)γ1
≺ ψm,nλ,l (α, β; z)

≺ α
(

1+z
1−z

)γ2
+ 2βγ2z

1−z2

(
1+z
1−z

)γ2
, z ∈ U, for α, β ∈ C, β 6= 0, 0 < γ1 < γ2 ≤ 1, where ψm,nλ,l is defined in (2.2),

then
(

1+z
1−z

)γ1
≺ zδIRm+1,n

λ,l f(z)

(IRm,nλ,l f(z))
1+δ ≺

(
1+z
1−z

)γ2
, z ∈ U, hence

(
1+z
1−z

)γ1
and

(
1+z
1−z

)γ2
are the best subordinant and

the best dominant, respectively.
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Sci., 27 (2004), 1429-1436.
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FUZZY STABILITY OF A CLASS OF ADDITIVE-QUADRATIC

FUNCTIONAL EQUATIONS

CHANG IL KIM AND GILJUN HAN∗

Abstract. In this paper, we consider the following functional equation

af(x + y) + bf(x− y) + cf(y − x)

= (a + b)f(x) + cf(−x) + (a + c)f(y) + bf(−y)

for a fixed real numbers a, b, c with a = b + c and a 6= 0. We study the

fuzzy version of the generalized Hyers-Ulam stability for it in the sense of
Mirmostafaee and Moslehian.

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [20]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exists a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [11] gave a partial solution of Ulam,s problem for the case of
approximate additive mappings. Subsequently, his result was generalized by Aoki
[1] for additive mappings, and by Rassias [19] for linear mappings, to consider the
stability problem with unbounded Cauchy differences. During the last decades, the
stability problems of functional equations have been extensively investigated by a
number of mathematicians ([5], [6], [7], [10], [18]).

Recently, the stability in fuzzy spaces has been extensively studied ([3], [12], [15],
[16], [17]). The concept of fuzzy norm on a linear space was introduced by Katsaras
[14] in 1984. Later, Cheng and Mordeson [4] gave a new definition of a fuzzy norm
in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [13]. In 2008, for the first time, Mirmostafaee and Moslehian [16], [17] used
the definition of a fuzzy norm in [2] to obtain a fuzzy version of stability for the
Cauchy functional equation

(1.1) f(x+ y) = f(x) + f(y)

and the quadratic functional equation

(1.2) f(x+ y) + f(x− y) = 2f(x) + 2f(y).

2010 Mathematics Subject Classification. 39B52, 39B72, 46S40.
Key words and phrases. additive-quadratic mapping, fuzzy almost quadratic-additive map-

ping, fuzzy normed space.
* Corresponding author.
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2 CHANG IL KIM AND GILJUN HAN

We call a solution of (1.1) an additive mapping and a solution of (1.2) is called
a quadratic mapping. Also,

f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) = 0

is called Drygas functional equation(see [8], [9] for detail.). It is easy to see that
the function f(x) = px2 + qx is a solution of Drygas functional equation and so we
can expect that a solution of Drygas functional equation is an additive-quadratic
mapping.

Now, we consider the following functional equation

af(x+ y) + bf(x− y) + cf(y − x)

= (a+ b)f(x) + cf(−x) + (a+ c)f(y) + bf(−y)
(1.3)

for fixed real numbers a, b, c with a = b + c and a 6= 0 and show the generalized
Hyers-Ulam stability of (1.3) in a fuzzy sense [18].

Definition 1.1. Let X be a real vector space. A function N : X × R −→ [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;
(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.

Let (X,N) be a fuzzy normed space. A sequence {xn} in X is said to be con-
vergent in (X,N) if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for
all t > 0. In this case, x is called the limit of the sequence {xn} in (X,N) and one
denotes it by N − limn→∞ xn = x. A sequence {xn} in X is said to be Cauchy if
for any ε > 0, there is an m ∈ N such that for any n ≥ m and any positive integer
p, N(xn+p − xn, t) > 1− ε for all t > 0.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence in it
is convergent and a complete fuzzy normed space is called a fuzzy Banach space.

2. Solutions and the Generalized Hyers-Ulam stability of (1.3)

In this section, we investigate solutions of (1.3) and prove the generalized Hyers-
Ulam stability of (1.3) in fuzzy Banach spaces. Throughout this section, we assume
that (X,N) is a fuzzy normed space and (Y,N ′) is a fuzzy Banach space. In
Theorem 2.3, it can be concluded that any solution of (1.3) is additive-quadratic.
We start with the following lemma.

Lemma 2.1. Let f : X −→ Y be an odd mapping satisfying (1.3). Then f is an
additive mapping.

Proof. Since a 6= 0, f(0) = 0. Since f is an odd mapping, the functional equation
(1.3) can be written by

(2.1) af(x+ y) + (b− c)f(x− y) = (a+ b− c)f(x) + (a− b+ c)f(y)
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FUZZY STABILITY OF A CLASS OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS 3

for all x, y ∈ X. Interchanging x and y in (2.1), we have

(2.2) af(x+ y)− (b− c)f(x− y) = (a+ b− c)f(y) + (a− b+ c)f(x)

for all x, y ∈ X. By (2.1) and (2.2),

af(x+ y) = af(x) + af(y)

for all x, y ∈ X and since a 6= 0, f is additive. �

Lemma 2.2. Let f : X −→ Y be an even mapping satisfying (1.3). Then f is a
quadratic mapping.

Proof. Since a 6= 0, f(0) = 0. Since f is an even mapping, the functional equation
(1.3) can be written by

(2.3) af(x+ y) + (b+ c)f(x− y) = (a+ b+ c)f(x) + (a+ b+ c)f(y)

for all x, y ∈ X. Letting y = −y in (2.3), we have

(2.4) af(x− y) + (b+ c)f(x+ y) = (a+ b+ c)f(x) + (a+ b+ c)f(y)

for all x, y ∈ X. Since a = b+ c, by (2.3) and (2.4), we have

2af(x− y) + 2af(x+ y) = 4af(x) + 4af(y)

for all x, y ∈ X and since a 6= 0, f is a quadratic mapping. �

Combining Lemma 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. Let f : X −→ Y be a mapping. If f satisfies (1.3), then f is an
additive-quadratic mapping.

For any mapping f : X −→ Y , we define the difference operator Df : X2 −→ Y
by

Df(x, y) = af(x+y)+bf(x−y)+cf(y−x)−(a+b)f(x)−cf(−x)−(a+c)f(y)−bf(−y)

for all x, y ∈ X. For a given q > 0, the mapping f is said to be a fuzzy q-almost
additive-quadratic mapping if

(2.5) N ′(Df(x, y), t+ s) ≥ min{N(x, tq), N(y, sq)}

for all x, y ∈ X and all positive real numbers t, s.

Theorem 2.4. Let q be a positive real number with q 6= 1, 1
2 and f : X −→ Y

a fuzzy q-almost additive-quadratic mapping. Then there exists a unique additive-
quadratic mapping F : X −→ Y such that
(2.6)

N(F (x)−f(x), t) ≥


sups<t{N(x, (1− 2p−1)q|a|qsq)}, if q > 1

sups<t{N(x, (2p−1 − 1)q(2− 2(p−1))q|a|qsq)}, if 1
2 < q < 1

sups<t{N(x, (2p−1 − 2)q|a|qsq}, if 0 < q < 1
2

holds for all x ∈ X and all t > 0, where p = 1
q .
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4 CHANG IL KIM AND GILJUN HAN

Proof. By (2.5), (N2), and (N4), since a = b+ c, we have

N ′(Df(0, 0), t) = N ′(f(0),
t

2|a|
) ≥ N ′(0, tq) = 1

for all t > 0 and by (N2), f(0) = 0.
Case 1. Let q > 1 and define a mapping Jnf : X −→ Y by

Jnf(x) =
f(2nx) + f(−2nx)

2 · 4n
+
f(2nx)− f(−2nx)

2 · 2n

for all x ∈ X and all positive integer n. Then we have

Jnf(x)− Jn+1f(x)

=
2n+1 − 1

a · 2 · 4n+1
Df(−2nx,−2nx)− 2n+1 + 1

a · 2 · 4n+1
Df(2nx, 2nx)

(2.7)

for all x ∈ X and all positive integer n. By (2.5), (2.7), (N3), and (N4), we have

N ′(Jmf(x)− Jm+nf(x),
m+n−1∑
i=m

2pi

|a| · 2i
tp)

= N ′(
m+n−1∑
i=m

[Jif(x)− Ji+1f(x)],
m+n−1∑
i=m

2pi

|a| · 2i
tp)

≥ min{N ′(Jif(x)− Ji+1f(x),
2pi

|a| · 2i
tp) | m ≤ i ≤ m+ n− 1}

≥ min{N ′( 2i+1 − 1

a · 2 · 4i+1
Df(−2ix,−2ix)− 2i+1 + 1

a · 2 · 4i+1
Df(2ix, 2ix),

2pi

|a| · 2i
tp) |

m ≤ i ≤ m+ n− 1}

≥ min{min{N ′( 2i+1 + 1

a · 2 · 4i+1
Df(2ix, 2ix),

(2i+1 + 1)2pi

|a| · 4i+1
tp),

N ′(
2i+1 − 1

a · 2 · 4i+1
Df(−2ix,−2ix),

(2i+1 − 1)2pi

|a| · 4i+1
tp)} | m ≤ i ≤ m+ n− 1}

≥ min{min{N ′(Df(2ix, 2ix), 2pi+1tp), N ′(Df(−2ix,−2ix), 2pi+1tp)}|m ≤ i ≤ m+ n− 1}
≥ min{min{N(2ix, 2it), N(−2ix, 2it)} | m ≤ i ≤ m+ n− 1}
= N(x, t)

(2.8)

for all x ∈ X, all t > 0, and all positive integers m,n. Let ε > 0 be given. Since
limt−→∞N(x, t) = 1, there is a t1 such that N(x, t1) > 1 − ε. Let t2 > t1. Since

p < 1,
∑∞

n=0
2pn

|a|·2n t
p
2 is convergent. Let s > 0. Then there is a positive integer k

such that
∑m+n−1

i=m
2pi

|a|·2i t
p
2 < s for m,n > k and so by (2.8), we have
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N ′(Jmf(x)− Jm+nf(x), s)

≥ N ′(Jmf(x)− Jm+nf(x),
m+n−1∑
i=m

2pi

|a| · 2i
tp2)

≥ N(x, t2)

≥ 1− ε

for all x ∈ X. Hence {Jnf(x)} is a Cauchy sequence in (Y,N ′). Since (Y,N ′) is a
fuzzy Banach space, we can define a mapping F : X −→ Y by

F (x) = N ′ − lim
n→∞

Jnf(x)

for all x ∈ X. Letting m = 0 in (2.8), we have

(2.9) N ′(f(x)− Jnf(x), t) ≥ N(x,
tq

[
∑n−1

i=0
2pi

|a|·2i ]q
)

for all x ∈ X, all positive integer n, and all t > 0. By (N4), we have

N ′(DF (x, y), t)

≥ min{N ′(a[F − Jnf ](x+ y),
t

14
), N ′(b[F − Jnf ](x− y),

t

14
),

N ′(c[F − Jnf ](y − x),
t

14
), N ′((a+ b)[F − Jnf ](x),

t

14
)

−N ′(c[F − Jnf ](−x),
t

14
), N ′((a+ c)[F − Jnf ](y),

t

14
)

−N ′(b[F − Jnf ](−y),
t

14
), N ′(JnDf(x, y),

t

2
)}

(2.10)

for all x, y ∈ X and all positive integer n. The first seven terms on the right-hand
of (2.10) tend to 1 as n→∞ and by (N4), we have

N ′(JnDf(x, y),
t

2
)

≥ min{N ′(Df(−2nx,−2ny)

2 · 4n
,
t

8
), N ′(

Df(2nx, 2ny)

2 · 4n
,
t

8
),

N ′(
Df(−2nx,−2ny)

2 · 2n
,
t

8
), N ′(

Df(2nx, 2ny)

2 · 2n
,
t

8
)}

(2.11)

for all x, y ∈ X, all positive integer n and all t > 0. By (N3) and (2.5), we have

N ′(
Df(±2nx,±2ny)

2 · 4n
,
t

8
)

= N ′(Df(±2nx,±2ny, 4n−1t))

≥ min{N(2nx, 2q(2n−3)tq), N(2ny, 2q(2n−3)tq)}

≥ min{N(x, 2(2q−1)n−3qtq), N(y, 2(2q−1)n−3qtq)}

(2.12)

for all x, y ∈ X, all positive integer n, and all t > 0. Since q > 1, by (2.11) and
(2.12), we have

lim
n→∞

N ′(JnDf(x, y),
t

2
) = 1
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6 CHANG IL KIM AND GILJUN HAN

and so by (2.10), N ′(DF (x, y), t) = 0 for all x, y ∈ X and all t > 0. By (N2),
DF (x, y) = 0 for all x, y ∈ X and by Theorem 2.3, F is additive-quadraic.

Now we will show that (2.6) holds. Let x ∈ X, t > 0, s > 0 with 0 < s < t and
0 < ε < 1. Since F (x) = N ′ − limn→∞ Jnf(x), there is a positive integer n such
that

N ′(F (x)− Jnf(x), t− s) ≥ 1− ε

and so by (2.9),

N ′(F (x)− f(x), t)

≥ min{N ′(F (x)− Jnf(x), t− s), N ′(Jnf(x)− f(x), s)}

≥ min{1− ε,N(x,
sq

[
∑n−1

i=0
2pi

|a|·2i ]q
)}

≥ min{1− ε,N(x, (1− 2p−1)qsq|a|q)}.

and so we have (2.6).
To prove the uniqueness of F , let F1 : X −→ Y be another additive-quadratic

mapping satisfying (2.6). Then

F (x)− F1(x) = JnF (x)− JnF1(x)

for all x ∈ X and all positive integer n. Hence by (N4), (N5), and (2.6), we have

N ′(F (x)− F1(x), t)

= N ′(JnF (x)− JnF1(x), t)

≥ min{N ′(JnF (x)− Jnf(x),
t

2
), N ′(JnF1(x)− Jnf(x),

t

2
)}

≥ min{N ′(F (2nx)− f(2nx)

2 · 4n
,
t

8
), N ′(

F (−2nx)− f(−2nx)

2 · 4n
,
t

8
),

N ′(
F (2nx)− f(2nx)

2 · 2n
,
t

8
), N ′(

F (−2nx)− f(−2nx)

2 · 2n
,
t

8
),

N ′(
F1(2nx)− f(2nx)

2 · 4n
,
t

8
), N ′(

F1(−2nx)− f(−2nx)

2 · 4n
,
t

8
),

N ′(
F1(2nx)− f(2nx)

2 · 2n
,
t

8
), N ′(

F1(−2nx)− f(−2nx)

2 · 2n
,
t

8
)}

≥ sup
s<t
{N(2nx, (1− 2p−1)q2(n−3)qsq|a|q)}

≥ sup
s<t
{N(x, (1− 2p−1)q|a|qsq2(q−1)n−3q)}

for all x, y ∈ X, all positive integer n and all 0 < s < t. Since q > 1,

lim
n→∞

sup
s<t
{N(x, (1− 2p−1)q|a|qsq2(q−1)n−3q} = 1

and so N ′(F (x)− F1(x), t) = 1 for all t > 0. Hence F = F1.

Case 2. Let 1
2 < q < 1 and define a mapping Jnf : X −→ Y by

Jnf(x) =
f(2nx) + f(−2nx)

2 · 4n
+

2n

2
[f(2−nx)− f(−2−nx)]
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for all x ∈ X and all positive integer n. Then we have

Jnf(x)− Jn+1f(x)

=
2n

2 · a
Df(2−(n+1)x, 2−(n+1)x)− 2n

2 · a
Df(−2−(n+1)x,−2−(n+1)x)

− 1

a · 2 · 4n+1
Df(2nx, 2nx)− 1

a · 2 · 4n+1
Df(−2nx,−2nx)

(2.13)

for all x ∈ X and all positive integer n. By (2.5), (2.13), (N3), and (N4), we have

N ′(Jmf(x)− Jm+nf(x),
m+n−1∑
i=m

[
2pi+1

|a| · 4i+1
+

21−p(i+1)+i

|a|
]tp)

= N ′(
m+n−1∑
i=m

[Jif(x)− Ji+1f(x)],
m+n−1∑
i=m

[
2pi+1

|a| · 4i+1
+

21−p(i+1)+i

|a|
]tp)

≥ min{N ′(Jif(x)− Ji+1f(x), [
2pi+1

|a| · 4i+1
+

21−p(i+1)+i

|a|
]tp) | m ≤ i ≤ m+ n− 1}

≥ min{N ′( 1

a · 2 · 4i+1
Df(2ix, 2ix) +

1

a · 2 · 4i+1
Df(−2ix,−2ix)

− 2i

2 · a
Df(2−(i+1)x, 2−(i+1)x) +

2i

2 · a
Df(−2−(i+1)x,−2−(i+1)x),

2pi+1

|a| · 4i+1
tp +

21−p(i+1)+i

|a|
tp) | m ≤ i ≤ m+ n− 1}

≥ min{min{N ′( 1

a · 2 · 4i+1
Df(2ix, 2ix),

2pi+1

|a| · 2 · 4i+1
tp),

N ′(
1

a · 2 · 4i+1
Df(−2ix,−2ix),

2pi+1

|a| · 2 · 4i+1
tp),

N ′(
2i

2 · a
Df(2−(i+1)x, 2−(i+1)x),

21−p(i+1)+i

2 · |a|
tp),

N ′(
2i

2 · a
Df(−2−(i+1)x,−2−(i+1)x),

21−p(i+1)+i

2 · |a|
tp)} | m ≤ i ≤ m+ n− 1}

≥ min{min{N ′(Df(2ix, 2ix), 2pi+1tp), N ′(Df(−2ix,−2ix), 2pi+1tp),

N ′(Df(2−(i+1)x, 2−(i+1)x), 21−p(i+1)tp), N ′(Df(−2−(i+1)x,−2−(i+1)x), 21−p(i+1)tp)} |
m ≤ i ≤ m+ n− 1}]

≥ min{min{N(2ix, 2it), N(−2ix, 2it), N(2−(i+1)x, 2−(i+1)t),

N(−2−(i+1)x, 2−(i+1)t)} | m ≤ i ≤ m+ n− 1}
= N(x, t)

(2.14)

for all x ∈ X, all t > 0, and all positive integers m,n. Let ε > 0 be given. Since
limt−→∞N(x, t) = 1, there is a t1 such that N(x, t1) > 1 − ε. Let t2 > t1. Since

1 < p < 2,
∑∞

n=0[ 2pn+1

|a|·4n+1 + 21−p(n+1)+n

|a| ]tp2 is convergent. Let s > 0. Then there is a

positive integer n such that
∑m+n−1

i=m [ 2pi+1

|a|·4i+1 + 21−p(i+1)+i

|a| ]tp2 < s for m,n > k and
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so by (2.14), we have

N ′(Jmf(x)− Jm+nf(x), s)

≥ N ′(Jmf(x)− Jm+nf(x),
m+n−1∑
i=m

[
2pi+1

|a| · 4i+1
+

21−p(i+1)+i

|a|
]tp2)

≥ N(x, t2)

≥ 1− ε
for all x ∈ X. Hence {Jnf(x)} is a Cauchy sequence in (Y,N ′). Since (Y,N ′) is a
fuzzy Banach space, we can define a mapping F : X −→ Y by

F (x) = N ′ − lim
n→∞

Jnf(x)

for all x ∈ X. Letting m = 0 in (2.14), we have

(2.15) N ′(f(x)− Jnf(x), t) ≥ N(x,
tq

[
∑n−1

i=0 ( 2pi+1

|a|·4i+1 + 21−p(i+1)+i

|a| )]q
)

for all x ∈ X, all positive integer n, and all t > 0. By (N4), we have

N ′(DF (x, y), t)

≥ min{N ′(a[F − Jnf ](x+ y),
t

14
), N ′(b[F − Jnf ](x− y),

t

14
),

N ′(c[F − Jnf ](y − x),
t

14
), N ′((a+ b)[F − Jnf ](x),

t

14
)

−N ′(c[F − Jnf ](−x),
t

14
), N ′((a+ c)[F − Jnf ](y),

t

14
)

−N ′(b[F − Jnf ](−y),
t

14
), N ′(JnDf(x, y),

t

2
)}

(2.16)

for all x, y ∈ X and all positive integer n. The first seven terms on the right-hand
of (2.16) tend to 1 as n→∞ and by (N4), we have

N ′(JnDf(x, y),
t

2
)

≥ min{N ′(Df(−2nx,−2ny)

2 · 4n
,
t

8
), N ′(

Df(2nx, 2ny)

2 · 4n
,
t

8
),

N ′(2n−1Df(2−nx, 2−ny),
t

8
), N ′(2n−1Df(−2−nx,−2−ny),

t

8
)}

(2.17)

for all x, y ∈ X, all positive integer n and all t > 0. By (N3) and (2.5), we have

N ′(
Df(±2nx,±2ny)

2 · 4n
,
t

8
)

≥ min{N(x, 2(2q−1)n−3qtq), N(y, 2(2q−1)n−3qtq)}
(2.18)

and

N ′(2n−1Df(±2−nx,±2−ny),
t

8
)

≥ min{N(x, 2(1−q)n−3q)tq), N(y, 2(1−q)n−3q)tq)}
(2.19)

for all x, y ∈ X, all positive integer n, and all t > 0. Since 1
2 < q < 1, by (2.17),

(2.18), and (2.19), we have

lim
n→∞

N ′(JnDf(x, y),
t

2
) = 1

1050

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

CHANG IL KIM et al 1043-1055



FUZZY STABILITY OF A CLASS OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS 9

and so by (2.16), N ′(DF (x, y), t) = 0 for all x, y ∈ X and all t > 0. By (N2),
DF (x, y) = 0 for all x, y ∈ X and by Theorem 2.3, F is additive-quadratic.

Now we will show that (2.6) holds. Let x ∈ X, t > 0, s > 0 with 0 < s < t and
0 < ε < 1. Since F (x) = N ′ − limn→∞ Jnf(x), there is a positive integer n such
that

N ′(F (x)− Jnf(x), t− s) ≥ 1− ε
and so by (2.15),

N ′(F (x)− f(x), t)

≥ min{N ′(F (x)− Jnf(x), t− s), N ′(Jnf(x)− f(x), s)}

≥ min{1− ε,N(x,
sq

[
∑n−1

i=0 ( 2pi+1

|a|·4i+1 + 21−p(i+1)+i

|a| )]q
)}

≥ min{1− ε,N(x, (2p−1 − 1)q(2− 2p−1)q|a|qsq)}.

and so we have (2.6).
To prove the uniqueness of F , let F1 : X −→ Y be another additive-quadratic

mapping satisfying (2.6). Then

F (x)− JnF (x) = F1(x)− JnF1(x)

for all x ∈ X and all positive integer n. Hence by (N4), (N5), and (2.6), we have

N ′(F (x)− F1(x), t)

= N ′(JnF (x)− JnF1(x), t)

≥ min{N ′(JnF (x)− Jnf(x),
t

2
), N ′(JnF1(x)− Jnf(x),

t

2
)}

≥ min{N ′(F (2nx)− f(2nx)

2 · 4n
,
t

8
), N ′(

F (−2nx)− f(−2nx)

2 · 4n
,
t

8
),

N ′(2n−1[F (2−nx)− f(2−nx)],
t

8
), N ′(2n−1[F (−2−nx)− f(−2−nx)],

t

8
),

N ′(
F1(2nx)− f(2nx)

2 · 4n
,
t

8
), N ′(

F1(−2nx)− f(−2nx)

2 · 4n
,
t

8
),

N ′(2n−1[F1(2−nx)− f(2−nx)],
t

8
), N ′(2n−1[F1(−2−nx)− f(−2−nx)],

t

8
)}

≥ sup
s<t
{N(±2nx, (2p−1 − 1)q(2− 2p−1)q4(n−1)q|a|qsq)}

≥ sup
s<t
{N(x, (2p−1 − 1)q(2− 2p−1)q2(2q−1)n−2q|a|qsq)}

for all x, y ∈ X, all positive integer n and all t > 0. Since 1
2 < q < 1, N ′(F (x) −

F1(x), t) = 1 for all t > 0. Hence F = F1.

Case 3. Let 0 < q < 1
2 and define a mapping Jnf : X −→ Y by

Jnf(x) = 22n−1[f(2−nx) + f(−2−nx)] + 2n−1[f(2−nx)− f(−2−nx)]

for all x ∈ X and all positive integer n. Then we have

Jnf(x)− Jn+1f(x)

=
22n−1 + 2n−1

a
Df(2−(n+1)x, 2−(n+1)x) +

22n−1 − 2n−1

a
Df(−2−(n+1)x,−2−(n+1)x)

(2.20)
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for all x ∈ X and all positive integer n. By (2.5), (2.20), (N3), and (N4), we have

N ′(Jmf(x)− Jm+nf(x),
m+n−1∑
i=m

21−p(i+1)+2i

|a|
tp)

= N ′(
m+n−1∑
i=m

[Jif(x)− Ji+1f(x)],
m+n−1∑
i=m

21−p(i+1)+2i

|a|
tp)

≥ min{N ′(Jif(x)− Ji+1f(x),
21−p(i+1)+2i

|a|
tp) | m ≤ i ≤ m+ n− 1}

≥ min{N ′(22i−1 + 2i−1

a
Df(2−(i+1)x, 2−(i+1)x)

+
22i−1 − 2i−1

a
Df(−2−(i+1)x,−2−(i+1)x),

21−p(i+1)+2i

|a|
tp)} | m ≤ i ≤ m+ n− 1}

≥ min{min{N ′(22i−1 + 2i−1

a
Df(2−(i+1)x, 2−(i+1)x),

22i−1 + 2i−1

|a|
21−p(i+1)tp),

N ′(
22i−1 − 2i−1

a
Df(−2−(i+1)x,−2−(i+1)x),

22i−1 − 2i−1

|a|
21−p(i+1)tp)}

| m ≤ i ≤ m+ n− 1}

≥ min{min{N ′(Df(2−(i+1)x, 2−(i+1)x), 21−p(i+1)tp),

N ′(Df(−2−(i+1)x,−2−(i+1)x), 21−p(i+1)tp)} | m ≤ i ≤ m+ n− 1}

≥ min{min{N(2−(i+1)x, 2−(i+1)t), N(−2−(i+1)x, 2−(i+1)t)} | m ≤ i ≤ m+ n− 1}
= N(x, t)

for all x ∈ X, all t > 0, and all positive integers m,n. Similar to Case 1. and
Case 2., there is a unique cubic mapping C : X −→ Y with (2.6). �

We can use Theorem 2.4 to get a classical result in the framework of normed
spaces. For example, it is well known that for any normed space (X, || · ||), the
mapping NX : X × R −→ [0, 1], defined by

NX(x, t) =

{
0, if t < ‖x‖
1, if t ≥ ‖x‖

a fuzzy norm on X. In [15], [16] and [17], some examples are provided for the fuzzy
norm NX . Here using the fuzzy norm NX , we have the following corollary.

Corollary 2.5. Let f : X −→ Y be a mapping such that f(0) = 0 and

(2.21) ‖Df(x, y)‖ ≤ ‖x‖p + ‖y‖p

for a fixed positive number p such that p 6= 1, 2. Then there exists a unique additive-
quadratic mapping F : X −→ Y such that the inequality

‖F (x)− f(x)‖ ≤


1

(1−2p−1)|a|‖x‖
p, if 1 < p

1
(2p−1−1)(2−2(p−1))|a|‖x‖

p, if 1 < p < 2
1

(2p−1−2)|a|‖x‖
p, if 2 < p

holds for all x ∈ X.
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Proof. By the definition of NY , we have

NY (Df(x, y), s+ t) =

{
0, if s+ t ≤ ‖Df(x, y)‖
1, if s+ t ≥ ‖Df(x, y)‖.

for all x, y ∈ X and all s, t ∈ R. Now, we claim that

NY (Df(x, y), s+ t) ≥ min{NX(x, sq), NX(y, tq)}
for all x, y ∈ X and s, t > 0. If NY (Df(x, y), s+ t) = 1, then it is trivial. Suppose
that NY (Df(x, y), s + t) = 0. Then s + t ≤ ‖Df(x, y)‖ and by (2.21), either
s ≤ ‖x‖p or t ≤ ‖y‖p. Hence either NX(x, sq) = 0 or NX(y, tq) = 0 and thus
f is a fuzzy q-almost additive-quadratic mapping. By Theorem 2.4, we have the
results. �

The condition p 6= 1, 2 in Corollary 2.5 is indispensable. The following example
shows that the inequality (2.21) is not stable for p = 1, 2, especially in the case of
b = 2 and c = −1. We will give the proof when p = 1, and the proof when p = 2 is

similar. For any f : X −→ Y , let fo(x) = f(x)−f(−x)
2 and fe(x) = f(x)+f(−x)

2 .

Example 2.6. Define mappings t, s : R −→ R by

t(x) =


x, if |x| < 1

−1, if x ≤ −1

1, if 1 ≤ x,

s(x) =

{
x2, if |x| < 1

1, ortherwise

and a mapping f : R −→ R by

f(x) =
∞∑

n=0

[
t(2nx)

2n
+
s(2nx)

4n
]

We will show that there is a positive integer M such that

(2.22) |D2f(x, y)| ≤M(|x|+ |y|)
for all x, y ∈ R, where

D2g(x, y) = g(x+ y) + 2g(x− y)− g(y − x)− 3g(x) + g(−x)− 2g(−y).

But there do not exist an additive-quadratic mapping F : R −→ R and a non-
negative constant K such that

(2.23) |F (x)− f(x)| ≤ K|x|2

for all x ∈ R.

Proof. Note that so(x) = 0, to(x) = t(x), and |fo(x)| ≤ 2 for all x ∈ R. First,
suppose that 1

2 ≤ |x| + |y|. Then |D2fo(x, y)| ≤ 40(|x| + |y|). Now suppose that
1
2 > |x|+ |y|. Then there is a non-negative integer m such that

1

2m+2
≤ |x|+ |y| < 1

2m+1
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and so 2m|x| < 1
2 , 2m|y| < 1

2 . Hence {2m(x± y), 2mx, 2my} ⊆ (−1, 1) and so
for any n = 0, 1, 2, · · ·,m, D2t0(2nx, 2ny) = 0 for all x, y ∈ X. Thus

D2fo(x, y) =
∞∑

n=0

1

2n
D2t(2

nx, 2ny) =
∞∑

n=m+1

1

2n
D2t(2

nx, 2ny) ≤ 40

2m+2
≤ 40(|x|+|y|).

Note that te(x) = 0, se(x) = s(x), and |fe(x)| ≤ 4
3 for all x ∈ R. First, suppose

that 1
4 ≤ |x|+ |y|. Then |D2fe(x, y)| ≤ 128

3 (|x|+ |y|) for all x, y ∈ R. Now suppose

that 1
4 > |x|+ |y|. Then there is a non-negative integer k such that

1

2k+2
≤
(
|x|+ |y|

) 1
2

<
1

2k+1
.

Hence {2k(x ± y), 2kx, 2ky} ⊆ (−1, 1) and so for any n = 0, 1, 2, · · ·,m,
D2se(2

nx, 2ny) = 0. Hence

D2fe(x, y) =
∞∑

n=0

1

4n
D2se(2

nx, 2ny) =
∞∑

n=k+1

1

4n
D2se(2

nx, 2ny) ≤ 8

3
· 1

22k
.

and so we have (
D2fe(x, y)

) 1
2 ≤ 4

(8

3

) 1
2
(
|x|+ |y|

) 1
2

.

Thus we have

D2fe(x, y) ≤ 128

3
(|x|+ |y|).

and so we have (2.22).
Suppose that there exist an additive mapping A : R −→ R, a quadratic mapping

Q : R −→ R, and a non-negative constant K such that A+Q satisfies (2.23). Since
|f(x)| ≤ 10

3 , by (2.23), we have

10

3n
−K|x|2 ≤ A(x)

n
+Q(x) ≤ 10

3n
+K|x|2

for all x ∈ X and all positive integers n and so

|Q(x)| ≤ K|x|2

for all x ∈ X. Hence by (2.23), we have

|f −A(x)| ≤ 2K|x|2

for all x ∈ X.
Since fo, A are odd and fe is even,

(2.24) |fe(x)| ≤ 1

2

[
|fe(x) + fo(x)−A(x)|+ |fe(−x) + fo(−x)−A(−x)|

]
≤ 4K|x|2

for all x ∈ X. Take a positive integer l such that l > 4K, and pick x ∈ R with
0 < 2lx < 1. Then

fe(x) =
∞∑

n=0

s(2nx)

4n
≥

l−1∑
n=0

s(2nx)

4n
≥ lx2 > 4Kx2

which contradicts to (2.24). �
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Abstract

In this paper, we devoted study exact controllability for fuzzy differen-
tial equations with the control function in credibility spaces. Moreover we
study exact controllability for every solutions of fuzzy differential equa-
tions. The result is obtained by using extremal solutions.

1 Introduction

The theory of controlled processes is one of the most recent mathematical con-
cepts to enable very important applications in modern engineering. However,
actual systems subject to control do not admit a strictly deterministic analysis
in view of various random factors that influence their behavior. The theory of
controlled processes takes the random nature of a systems behavior into account.
Many researchers have studied controlled processes in a credibility space. Ara-
postathis et al. [1] studied the controllability properties of the class of stochastic
differential systems characterized by a linear controlled diffusion perturbed by a

∗This study was supported by research funds from Dong-A University.
†Corresponding author: jihpark@pknu.ac.kr (J.H. Park)
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smooth, bounded, and uniformly Lipschitz nonlinearity. Kwun et al. [8] proved
the approximate controllability for fuzzy differential equations driven by Liu
process. Lee et al. [10] examined the exact controllability for abstract fuzzy
differential equations in a credibility space.

Recently, Kwun et al. [14] studied the existence of extremal solutions for
fuzzy differential equations driven by Liu process. Kwun et al. [6, 7] have
studied the existence of extremal solutions for fuzzy differential equations in a
n-dimensional fuzzy vector space. In this paper, using the extremal solutions, we
study the exact controllability for every solutions of fuzzy differential equations
in credibility space. We consider the following fuzzy differential equation:{

dx(t, θ) = f(t, x(t, θ))dCt +Bu(t), t ∈ [0, T ],
x(0) = x0 ∈ EN ,

(1)

where the state function x(t, θ) takes values in X(⊂ EN ) and another bounded
space Y (⊂ EN ). EN is the set of all upper semi-continuously convex fuzzy
numbers on R, (Θ,P, Cr) is credibility space, the state function x : [0, T ] ×
(Θ,P, Cr) → X is a fuzzy process, f : [0, T ] × X → X is a regular fuzzy
function, u : [0, T ]× (Θ,P, Cr) → Y is a control function, B is a linear bounded
operator from Y to X. Ct is a standard Liu process, x0 ∈ EN is an initial value.

2 Preliminaries

In this section, we give basic definitions, terminologies, notations and lemmas
which are most relevant to our investigated and are needed in later section. All
undefined concepts and notions used here are standard.

A fuzzy set of Rn is a function u : Rn → [0, 1]. For each fuzzy set u, we
denote by [u]α = {x ∈ Rn : u(x) ≥ α} for any α ∈ [0, 1], its α-level set. Let u, v
be fuzzy sets of Rn. It is well known that [u]α = [v]α for each α ∈ [0, 1] implies
u = v. Let En denote the collection of all fuzzy sets of Rn that satisfies the
following conditions:

(1) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;
(2) u is fuzzy convex, i.e., u(λx + (1 − λ)y) ≥ min{u(x), u(y)} for any

x, y ∈ Rn, 0 ≤ λ ≤ 1;
(3) u(x) is upper semi-continuous, i.e., u(x0) ≥ limk→∞u(xk) for any xk ∈

Rn (k = 0, 1, 2, . . .), xk → x0;
(4) [u]0 is compact.

Definition 2.1. [17] The complete metric DL on EN is defined by

DL(u, v) = sup
0<α≤1

dL([u]α, [v]α)

= sup
0<α≤1

max{|uαl − vαl |, |uαr − vαr |},

for any u, v ∈ EN , which satisfies dL(u+ w, v + w) = dL(u, v).

2
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Definition 2.2. [5] Let u, v ∈ C([0, T ], EN ). The metricH1 on C([0, T ], EN )
is defined by

H1(u, v) = sup
0<t≤T

DL(u(t), v(t)).

Let Θ be a nonempty set, and let P the power set of Θ. Each element in
P is called an event. In order to present an axiomatic definition of credibility,
it is necessary to assign to each event A a number Cr{A} which indicates the
credibility that A will occur. In order to ensure that the number Cr{A} has
certain mathematical properties which we intuitively expect a credibility to
have, we accept the following four axioms:

1. (Normality) Cr{A} = 1.

2. (Monotonicity) Cr is increasing, i.e., Cr{A} ≤ Cr{B} whenever A ⊂ B.

3. (Self-Duality) Cr is self-dual, i.e., Cr{A}+Cr{Ac} = 1 for any A ∈ P(Θ).

4. (Maximality) Cr{∪iAi} = supi Cr{Ai} for any {Ai} with Cr{Ai} ≤ 0.5.

Definition 2.3. [11] Let ξ be a fuzzy variable with the possibility distri-
bution function µ : R → [0, 1]. A fuzzy variable ξ is said to be normal if there
exists a real number r such that µ(r) = 1. It is well known that the possibility
of {ξ ≤ r} is defined by

Pos{ξ ≤ r} = sup
u≤r

µ(u)

while the necessity of {ξ ≤ r} is defined by

Nec{ξ ≤ r} = 1 − Pos{ξ < r} = 1 − sup
u<r

µ(u).

Definition 2.4. [11] The set function Cr is called a credibility measure if
it satisfies above four axioms, and defined as follows:

Cr{A} =
1

2
(Pos{A} + Nec{A}),

where Pos{A} = 1 − Nec{Ac} with Ac is the complement of A.

Definition 2.5. [12] Let Θ be a nonempty set, P be the power set of Θ, and
let Cr be a credibility measure. Then the triplet (Θ,P, Cr) is called a credibility
space.

Definition 2.6. [13] A fuzzy variable is a function from a credibility space
(Θ,P, Cr) to the set of real numbers.

Definition 2.7. [13] Let T be an index set and let (Θ,P, Cr) be a credibility
space. A fuzzy process is a function from T × (Θ,P, Cr) to the set of real
numbers.

3

1058

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Jin Hee Jeong et al 1056-1069



That is, a fuzzy process x(t, θ) is a function of two variables such that the
function x(t∗, θ) is a fuzzy variable for each t∗. For each fixed θ∗, the function
x(t, θ∗) is called a sample path of the fuzzy process. A fuzzy process x(t, θ) is
said to be sample-continuous if the sample path is continuous for almost all θ.

Definition 2.8. Let (Θ,P, Cr) be a credibility space. For fuzzy ran-
dom variable x(t, θ) in a credibility space, for each α ∈ (0, 1], the α-level set
[x(t, θ)]α = [xαl (t, θ), xαr (t, θ)] is defined by

xαl (t, θ) = inf xα(t, θ) = inf{a ∈ R|x(t, θ)(a) ≥ α},
xαr (t, θ) = supxα(t, θ) = sup{a ∈ R|x(t, θ)(a) ≥ α}.

Definition 2.9. [11] Let ξ be a fuzzy variable and r is a real number. Then
the expected value of ξ is defined by

Eξ =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr

provided that at least one of the integrals is finite.

Definition 2.10. [13] A fuzzy process Ct is said to be a Liu process if
(1) C0 = 0;
(2) Ct has stationary and independent increments;
(3) every increment Ct+s −Cs is a normally distributed fuzzy variable with

expected value et and variance σ2t2, whose membership function is

µ(x) = 2
(

1 + exp
(π|x− et|√

6σt

))−1

, x ∈ R.

The parameters e and σ are called the drift and diffusion coefficients, respec-
tively. Liu process is said to be standard if e = 0 and σ = 1.

Definition 2.11. [3] Let x(t) be a fuzzy process and let Ct be a standard
Liu process. For any partition of closed interval [c, d] with c = t0 < · · · < tn = d,
the mesh is written as △ = max1≤i≤n(ti− ti−1). Then the fuzzy integral of x(t)
with respect to Ct is∫ d

c

x(t)dCt = lim
△→0

n∑
i=1

x(ti−1)(Cti − Cti−1)

provided that the limit exists almost surely and is a fuzzy variable.

Lemma 2.1. [3] Let Ct be a standard Liu process. For any given θ with
Cr{θ} > 0, the path Ct is Lipschitz continuous, that is, the following inequality
holds

|Ct1 − Ct2 | < K(θ)|t1 − t2|,

where K is a fuzzy variable called the Lipschitz constant of a Liu process with

K(θ) =

{
sup0≤s<t

|Ct−Cs|
t−s , Cr{θ} > 0,

∞, otherwise,

4
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and E[Kp] <∞, ∀p > 0.

Lemma 2.2. [3] Let Ct be a standard Liu process, and let h(t; c) be a
continuously differentiable function. Define xt = h(t;Ct). Then we have the
following chain rule

dxt =
∂h(t;Ct)

∂t
dt+

∂h(t;Ct)

∂C
dCt.

Lemma 2.3. [3] Let f(t) be continuous fuzzy process, the following inequal-
ity of fuzzy integral holds∣∣∣ ∫ d

c

f(t)dCt

∣∣∣ ≤ K

∫ d

c

|f(t)|dt,

where K = K(θ) is defined in Lemma 2.1.

Definition 2.12. [14] For the partial ordering ≤T , a function a ∈ C([0, T ]×
(Θ,P, Cr), EN ) is a ≤T -lower solution for equation (1)(u ≡ 0) if{

a(t, θ) ≤T U(t)x0 +
∫ t

0
U(t− s)G(s, a(s, θ))dC(s), t ∈ [0, T ],

a(0) ≤T x0 ∈ EN
(2)

and a function b ∈ C([0, T ]×(Θ,P, Cr), EN ) is a ≤T -upper solution for equation
(1)(u ≡ 0) if{

b(t, θ) ≥T S(t)x0 +
∫ t

0
S(t− s)F (s, b(s, θ))dC(s), t ∈ [0, T ],

b(0) ≥T x0 ∈ EN .
(3)

Theorem 2.1. [14] Let a, b ∈ C([0, T ] × (Θ,P, Cr), EN ) be, respectively,
≤T -lower and ≤T -upper solutions for equation (1)(u ≡ 0) on [0, T ]. Then, there
exist monotone sequences {an} ↑ ρ, {bn} ↓ γ in C([0, T ]×(Θ,P, Cr), EN ), where
ρ, γ are extremal solutions to equation (1) in the stochastic fuzzy functional
interval [a, b] := {x ∈ C([0, T ] × (Θ,P, Cr), EN )|a ≤T x ≤T b on [0, T ]}.

3 Exact controllability for fuzzy differential equa-
tion using extremal solutions

In this section, we study exact controllability for fuzzy differential equation using
extremal solutions (1). In [14], Park et al. proved the existence of extremal
solutions for the equation (1). Hence we consider extremal solutions for the
equation (1), for each u in Y .{

xt = U(t)x0 +
∫ t

0
U(t− s)G(s, xs)dCs +

∫ t

0
U(t− s)Busds,

x(0) = x0 ∈ EN ,
(4)

5
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where U(t) = e−Mt is continuous with U(0) = I, |U(t)| ≤ c, c > 0, for all
t ∈ [0, T ]. And{

xt = S(t)x0 +
∫ t

0
S(t− s)F (s, xs)dCs +

∫ t

0
S(t− s)Busds,

x(0) = x0 ∈ EN ,
(5)

where S(t) = eMt is continuous with S(0) = I, |S(t)| ≤ d, d > 0, for all
t ∈ [0, T ].

Now we assume the following hypotheses:
(H1) For L1, L2 > 0, x0 ∈ EN ,

dL

(
[U(t)x0]α, [x0]α

)
≤ L1, dL

(
[S(t)x0]α, [x0]α

)
≤ L2.

(H2) For x(·), y(·) ∈ C([0, T ]×(Θ,P, Cr), EN ), t ∈ [0, T ], there exist positive
numbers m1,m2 such that

dL

(
[G(t, x)]α, [G(t, y)]α

)
≤ m1dL([x]α, [y]α),

dL

(
[F (t, x)]α, [F (t, y)]α

)
≤ m2dL([x]α, [y]α)

and F (0,X{0}(0)) ≡ 0, G(0,X{0}(0)) ≡ 0.

(H3) For L3 > 0, x0 ∈ EN , dL

(
[x0]α, [X{0}(0)]α

)
≤ L3.

(H4) For ε > 0, (L1 + cm1KL3T )ecm1KT ≤ ε.
(H5) For ε > 0, (L2 + dm2KL3T )edm2KT ≤ ε.
(H6) Let a, b be, respectively, lower solution and upper solution of equation

(1)(u ≡ 0), then [a, b] is convex.

We define the controllability concept for a fuzzy differential equation.

Definition 3.1. The equation (1) is said to be controllable on [0,T], if for
every x0 ∈ EN there exists a control ut ∈ Y such that every solutions x(·) of
(1) satisfies a.s. θ, xT = x1 ∈ X (i.e., [xT ]α = [x1]α).

Definition 3.2. Define the fuzzy mappings P1 : P̃ (R) → X and P2 :

P̃ (R) → X by

Pα
1 (v) =

{ ∫ T

0
Uα(T − s)Bvsds, v ⊂ Γu,

0, otherwise,

Pα
2 (v) =

{ ∫ T

0
Sα(T − s)Bvsds, v ⊂ Γu,

0, otherwise,

where P̃ (R) is a nonempty fuzzy subset of R and Γu is the closure of support
u. Then there exist Pα

1i, P
α
2i(i = l, r) such that

Pα
1l(vl) =

∫ T

0

Uα
l (T − s)B(vs)lds, (vs)l ∈ [(us)

α
l , (us)

1],

Pα
1r(vr) =

∫ T

0

Uα
r (T − s)B(vs)rds, (vs)r ∈ [(us)

1, (us)
α
r ],

6
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Pα
2l(vl) =

∫ T

0

Sα
l (T − s)B(vs)lds, (vs)l ∈ [(us)

α
l , (us)

1],

Pα
2r(vr) =

∫ T

0

Sα
r (T − s)B(vs)rds, (vs)r ∈ [(us)

1, (us)
α
r ].

We assume that P̃α
1l, P̃

α
1r, P̃

α
2l and P̃α

2r are bijective mappings.

By Definition 3.2, we can introduce α-level set of us is

[us]
α = [(us)

α
l , (us)

α
r ]

=
1

2

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}
,

(P̃α
1r)−1

{
(x1)αr − Uα

r (T )(x0)αr −
∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]
.

Theorem 3.1. If Lemma 2.3 and hypotheses (H1)-(H5) are satisfied, then
the equation (4) is controllable on [0, T ].

Proof By Definition 3.2 and above us, substitute the control into the equation
(4) yields α-level of xT .

[xT ]α =
[
U(T )x0 +

∫ T

0

U(T − s)G(s, xs)dCs +

∫ T

0

U(T − s)Busds
]α

=
[
Uα
l (T )(x0)αl +

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs +

∫ T

0

Uα
l (T − s)B

×1

2

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
ds,

Uα
r (T )(x0)αr +

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs +

∫ T

0

Uα
r (T − s)B

×1

2

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]
ds
]

=
[
Uα
l (T )(x0)αl +

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

7
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+
1

2
Pα
1l

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
,

Uα
r (T )(x0)αr +

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

+
1

2
Pα
1r

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]]
= [(x1)αl , (x

1)αr ] = [x1]α.

Hence this control ut satisfy a.s. θ, xT = x1.
Also, using this control, we shall show that the nonlinear operator Φ1 defined

by

(Φ1x)t = U(t)x0 +

∫ t

0

U(t− s)G(s, xs)dCs +

∫ t

0

U(t− s)B

×1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds,

where the fuzzy mappings (P̃1)−1 satisfy above statements.
Form hypothesis (H2) and Lemma 2.3, for any given θ with Cr{θ} > 0,

x(·), y(·) ∈ C([0, T ] × (Θ,P, Cr), EN ), we have

dL

(
[(Φ1x)t]

α, [(Φ1y)t]
α
)

= dL

([
U(t)x0 +

∫ t

0

U(t− s)G(s, xs)dCs

+

∫ t

0

U(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds
]α
,[

U(t)x0 +

∫ t

0

U(t− s)G(s, ys)dCs

+

∫ t

0

U(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]
ds
]α)

≤ dL

([ ∫ t

0

U(t− s)G(s, xs)dCs

]α
,
[ ∫ t

0

U(t− s)G(s, ys)dCs

]α)
8
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+dL

([ ∫ t

0

U(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds
]α
,∫ t

0

U(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]
ds
]α)

≤ dL

([ ∫ t

0

U(t− s)G(s, xs)dCs

]α
,
[ ∫ t

0

U(t− s)G(s, ys)dCs

]α)
+dL

([1

2
P1P̃

−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+

1

2
P1P̃

−1
2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]α
,[1

2
P1P̃

−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
+

1

2
P1P̃

−1
2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]α)
≤ dL

([ ∫ t

0

U(t− s)G(s, xs)dCs

]α
,
[ ∫ T

0

U(t− s)G(s, ys)dCs

]α)
+dL

([ ∫ T

0

U(T − s)G(s, xs)dCs

]α
,
[ ∫ t

0

U(T − s)G(s, ys)dCs

]α)
≤ cm1K

∫ t

0

dL

(
[xs]

α, [ys]
α
)
ds+ cm1K

∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds.

Therefore, by Lemma 2.1, we get

E
(
H1(Φ1x,Φ1y)

)
= E

(
sup

t∈[0,T ]

DL

(
(Φ1x)t, (Φ1y)t

))
= E

(
sup

t∈[0,T ]

sup
0<α≤1

dL

(
[(Φ1x)t]

α, [(Φ1y)t]
α
))

≤ E
(

sup
t∈[0,T ]

sup
0<α≤1

cm1K
(∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds+

∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds
))

≤ E
(

sup
t∈[0,T ]

cm1K
(∫ t

0

DL(xs, ys)ds+

∫ T

0

DL(xs, ys)ds
))

≤ 2cm1KTE
(
H1(x, y)

)
.

We take sufficiently small T , 2cm1KT < 1. Hence Φ1 is contraction map-
ping. By the Banach fixed point theorem, (4) has a unique fixed point. Thus

9
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the equation (1) is controllable in [0, T ].

Theorem 3.2. If Lemma 2.3 and hypotheses (H1)-(H5) are satisfied, then
the equation (5) is controllable on [0, T ].

Proof By Definition 3.2 and above us, substitute the control into the equation
(5) yields α-level of xT .

[xT ]α =
[
S(T )x0 +

∫ T

0

S(T − s)F (s, xs)dCs +

∫ T

0

S(T − s)Busds
]α

=
[
Sα
l (T )(x0)αl +

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs +

∫ T

0

Sα
l (T − s)B

×1

2

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
ds,

Sα
r (T )(x0)αr +

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs +

∫ T

0

Sα
r (T − s)B

×1

2

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]
ds
]

=
[
Sα
l (T )(x0)αl +

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

+
1

2
Pα
2l

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
,

Sα
r (T )(x0)αr +

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

+
1

2
Pα
2r

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]]
= [(x1)αl , (x

1)αr ] = [x1]α.

Hence this control ut satisfy a.s. θ, xT = x1.
Also, using this control, we shall show that the nonlinear operator Φ2 defined

by

(Φ2x)t = S(t)x0 +

∫ t

0

S(t− s)F (s, xs)dCs +

∫ t

0

S(t− s)B

10
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×1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds,

where the fuzzy mappings (P̃2)−1 satisfy above statements.
Form hypothesis (H2) and Lemma 2.3, for any given θ with Cr{θ} > 0,

x(·), y(·) ∈ C([0, T ] × (Θ,P, Cr), EN ), we have

dL

(
[(Φ2x)t]

α, [(Φ2y)t]
α
)

= dL

([
S(t)x0 +

∫ t

0

S(t− s)F (s, xs)dCs

+

∫ t

0

S(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds
]α
,[

S(t)x0 +

∫ t

0

S(t− s)F (s, ys)dCs

+

∫ t

0

S(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]
ds
]α)

≤ dL

([ ∫ t

0

S(t− s)F (s, xs)dCs

]α
,
[ ∫ t

0

S(t− s)F (s, ys)dCs

]α)
+dL

([ ∫ t

0

S(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]
ds
]α
,∫ t

0

S(t− s)B
1

2

[
P̃−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
+P̃−1

2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]
ds
]α)

≤ dL

([ ∫ t

0

S(t− s)F (s, xs)dCs

]α
,
[ ∫ t

0

S(t− s)F (s, ys)dCs

]α)
+dL

([1

2
P2P̃

−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, xτ )dCτ

}
+

1

2
P2P̃

−1
2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, xτ )dCτ

}]α
,[1

2
P2P̃

−1
1

{
x1 − U(T )x0 −

∫ T

0

U(T − τ)G(τ, yτ )dCτ

}
11
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+
1

2
P2P̃

−1
2

{
x1 − S(T )x0 −

∫ T

0

S(T − τ)F (τ, yτ )dCτ

}]α)
≤ dL

([ ∫ t

0

S(t− s)F (s, xs)dCs

]α
,
[ ∫ T

0

S(t− s)F (s, ys)dCs

]α)
+dL

([ ∫ T

0

S(T − s)F (s, xs)dCs

]α
,
[ ∫ t

0

S(T − s)F (s, ys)dCs

]α)
≤ dm2K

∫ t

0

dL

(
[xs]

α, [ys]
α
)
ds+ dm2K

∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds.

Therefore, by Lemma 2.1, we get

E
(
H1(Φ2x,Φ2y)

)
= E

(
sup

t∈[0,T ]

DL

(
(Φ2x)t, (Φ2y)t

))
= E

(
sup

t∈[0,T ]

sup
0<α≤1

dL

(
[(Φ2x)t]

α, [(Φ2y)t]
α
))

≤ E
(

sup
t∈[0,T ]

sup
0<α≤1

dm2K
(∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds+

∫ T

0

dL

(
[xs]

α, [ys]
α
)
ds
))

≤ E
(

sup
t∈[0,T ]

3m2K
(∫ t

0

DL(xs, ys)ds+

∫ T

0

DL(xs, ys)ds
))

≤ 2dm2KTE
(
H1(x, y)

)
.

We take sufficiently small T and 2dm2KT < 1. Hence Φ2 is contraction map-
ping. By the Banach fixed point theorem, (5) has a unique fixed point. Thus
the equation (1) is controllable in [0, T ].

Theorem 3.3. If Theorems 3.1 and 3.2 and hypotheses (H1)-(H6) are
satisfied, then the equation (1) is controllable on [0, T ].

Proof For xT ∈ [xT , xT ], if [xT , xT ] is convex, then xT = λxT +(1−λ)xT , 0 ≤
λ ≤ 1, we can obtain the following result.

[xT ]α = [λxT + (1 − λ)xT ]α

=
[
λ
{
U(T )x0 +

∫ T

0

U(T − s)G(s, xs)dCs +

∫ T

0

U(T − s)Busds
}

+(1 − λ)
{
S(T )x0 +

∫ T

0

S(T − s)F (s, xs)dCs +

∫ T

0

S(T − s)Busds
}]α

= λ
[
U(T )x0 +

∫ T

0

U(T − s)G(s, xs)dCs +

∫ T

0

U(T − s)Busds
]α

+(1 − λ)
[
S(T )x0 +

∫ T

0

S(T − s)F (s, xs)dCs +

∫ T

0

S(T − s)Busds
]α

12
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= λ
[
Uα
l (T )(x0)αl +

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

+
1

2
Pα
1l

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
,

Uα
r (T )(x0)αr +

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

+
1

2
Pα
1r

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]]
+(1 − λ)

[
Sα
l (T )(x0)αl +

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

+
1

2
Pα
2l

[
(P̃α

1l)
−1
{

(x1)αl − Uα
l (T )(x0)αl −

∫ T

0

Uα
l (T − s)Gα

l (s, (xs)
α
l )dCs

}
+(P̃α

2l)
−1
{

(x1)αl − Sα
l (T )(x0)αl −

∫ T

0

Sα
l (T − s)Fα

l (s, (xs)
α
l )dCs

}]
,

Sα
r (T )(x0)αr +

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

+
1

2
Pα
2r

[
(P̃α

1r)−1
{

(x1)αr − Uα
r (T )(x0)αr −

∫ T

0

Uα
r (T − s)Gα

r (s, (xs)
α
r )dCs

}
+(P̃α

2r)−1
{

(x1)αr − Sα
r (T )(x0)αr −

∫ T

0

Sα
r (T − s)Fα

r (s, (xs)
α
r )dCs

}]]
= [(x1)αl , (x

1)αr ] = [x1]α.

Hence this control ut satisfy a.s. θ, xT = x1, xT ∈ [xT , xT ]. Therefore every
solutions of the equation (1) are controllable in [0, T ].
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Abstract

In this paper, by integrating interval-valued intuitionistic fuzzy soft set with rough

set theory, the concept of generalized interval-valued intuitionistic fuzzy soft rough

sets is proposed, which is an extension of generalized intuitionistic fuzzy soft rough

sets. Then the properties of this model are investigated. Furthermore, classical repre-

sentations of generalized interval-valued intuitionistic fuzzy soft rough approximation

operators are also introduced. Finally, an approach based on generalized interval-

valued intuitionistic fuzzy soft rough sets in decision making is developed, and we

provide a practical example to illustrate the validity of this approach.

Key words: Interval-valued intuitionistic fuzzy soft set; Rough set; Generalized

interval-valued intuitionistic fuzzy soft rough set; Decision making

1 Introduction

As a framework for the construction of approximations of concepts, rough sets proposed

by Pawlak [21,22], is a formal tool for modeling and processing insufficient and incomplete

information. In Pawlak’s rough set model, the equivalence relation plays an important

role, which seems very stringent in daily life. Therefore many researchers have generalized

the notion of Pawlak rough set by replacing the equivalence relation with other binary

relations. Since the appearance of Pawlak rough set, lots of fruitful results have been

achieved [5, 10–12,15,16,25,28,29,31–40,42,44–46].

∗Corresponding author. Address: School of Electrical Engineering Northwest University for Nationali-
ties, Lanzhou, Gansu, 730030, China. E-mail:he−yanping@126.com
†Corresponding author. Address: School of Mathematics and Computer Science Yunnan Minzu Uni-

versity, Kunming, Yunnan, 650500, China. E-mail:lianglin−5318@126.com
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Soft set theory is presented by Molodtsov [17], which is different from the existing

uncertainty theories, such as fuzzy set theory [43], intuitionistic fuzzy set theory [1, 2],

interval-valued fuzzy set theory [9, 13, 24], interval-valued intuitionistic fuzzy set theory

[3,4], rough set theory [21,22], and so on. In [17], the author pointed out that these theories

mentioned above have their inherent difficulties, but soft set has enough parameters so that

it is free from inherent difficulties. Therefore, in recent years more and more researchers

have joined the ranks of soft set research. For example, Maji et al. [18] initiated the study

on hybrid structures involving fuzzy sets and soft sets, and introduced the concept of fuzzy

soft sets, which can be viewed as a generalization of soft sets. Subsequently, Maji et al [19]

modified the concept of fuzzy soft sets, and proposed a generalized fuzzy soft set theory.

Furthermore, Yang et al. [30] extended soft sets to interval-valued fuzzy environment, and

first presented the concept of interval-valued fuzzy soft sets by combining interval-valued

fuzzy set and soft set. By integrating the intuitionistic fuzzy set with soft set theory, Maji

et al. [20] presented the concept of the intuitionistic fuzzy soft set theory. Jiang et al. [14]

initiated the concept of interval-valued intuitionistic fuzzy soft sets by the combination of

the interval-valued intuitionistic fuzzy sets and soft sets. On the basis of [14], Zhang [46]

presented an adjustable approach to interval-valued intuitionistic fuzzy soft sets based

decision making by mean of level soft sets of interval-valued intuitionistic fuzzy soft sets.

Recently, soft set theory has been developed into hesitant fuzzy environment, and the result

is called hesitant fuzzy soft sets [6,26,27]. Because it is unreasonable to use hesitant fuzzy

soft sets to handle some decision making problems, Zhang et al. [41] extended hesitant

fuzzy soft sets to interval-valued hesitant fuzzy environment, and introduced the concept

of interval-valued hesitant fuzzy soft sets by combining the interval-valued hesitant fuzzy

set and soft set theory. More recently, by combining intuitionistic fuzzy soft set and rough

set theory, Zhang et al. [38] introduced the concept of intuitionistic fuzzy soft rough sets,

and gave an approach to decision making based on this model. Furthermore, in [42], they

pointed out the drawback of the intuitionistic fuzzy soft rough sets, proposed a generalized

intuitionistic fuzzy soft rough set model, and then illustrated the validity of this model by

a practical example.

As a generalization of fuzzy soft sets, interval-valued fuzzy soft sets and intuitionistic

fuzzy soft sets, interval-valued intuitionistic fuzzy soft set is more flexible and effective than

other soft set theories to cope with imperfect and imprecise information. Meanwhile, we

can note that the final decision results for the decision approach presented by Zhang [46]

may be different based on different types of thresholds. That is to say, there actually does

not exist a unique or uniform criterion for the evaluation of decision alternatives. That is

its limitations and disadvantages. In order to overcome these limitations, we need to define

a new interval-valued intuitionistic fuzzy soft set model such that the decision approach

based on this model is less affected by subjective factors. In this paper, we mainly devote

to the generalization of intuitionistic fuzzy soft rough sets [42] and propose the concept

of generalized interval-valued intuitionistic fuzzy soft rough sets by integrating interval-
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valued intuitionistic fuzzy soft set with rough set. Also its decision making method is

given. The most advantage of the decision making method is that it will only use the data

information provided by the decision making problem without any additional available

information provided by decision makers. Thus it can avoid the effect of subjective factors

provided by different experts.

The rest of this paper is organized as follows. Section 2 briefly reviews some prelimi-

naries. In Section 3, an interval-valued intuitionistic fuzzy soft relation is first defined by

us. By combining the interval-valued intuitionistic fuzzy soft set and rough sets, then the

concept of generalized interval-valued intuitionistic fuzzy soft rough approximation oper-

ators is presented and the properties of generalized upper and lower interval-valued intu-

itionistic fuzzy soft rough approximation operators are examined. Furthermore, classical

representations of generalized interval-valued intuitionistic fuzzy soft rough approximation

operators are presented. Section 4 is devoted to studying the application of generalized

interval-valued intuitionistic fuzzy soft rough sets. Some conclusions and outlooks for

further research are given in Section 5.

2 Preliminaries

In this section, we shall briefly recall some basic notions being used in the study.

Before introducing the notion of interval-valued intuitionistic fuzzy soft relation, we

first give the concept of soft sets [17] and fuzzy soft sets [18].

Definition 2.1 ( [17]) Let U be an initial universe set and E be a universe set of pa-

rameters. A pair (F,E) is called a soft set over U if F : E → P (U), where P (U) is the

set of all subsets of U.

Definition 2.2 ( [18]) Let U be an initial universe set and E be a universe set of pa-

rameters. A pair (F,E) is called a fuzzy soft set over U if F : E → F (U), where F (U) is

the set of all fuzzy subsets of U.

By using the concepts of soft set and fuzzy soft set, Cagman et al. [7,8] introduced the

definitions of crisp soft relation and fuzzy soft relation, respectively.

Definition 2.3 ( [7]) Let (F,E) be a soft set over U . Then a subset of U × E called a

crisp soft relation from U to E is uniquely defined by

R = {< (u, x), µR(u, x) > |(u, x) ∈ U × E},

where µR : U × E → {0, 1}, µR(u, x) =

{
1, (u, x) ∈ R
0, (u, x) /∈ R.

Definition 2.4 ( [8]) Let (F,E) be a fuzzy soft set over U . Then a fuzzy subset of U ×E
called a fuzzy soft relation from U to E is uniquely defined by
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R = {< (u, x), µR(u, x) > |(u, x) ∈ U × E},
where µR : U × E → [0, 1], µR(u, x) = µF (x)(u).

Based on the crisp soft relation proposed by Cagman, Zhang et al. [42] constructed

the following crisp soft rough sets.

Definition 2.5 ( [42]) Let U be an initial universe set and E be a universe set of pa-

rameters. For an arbitrary crisp soft relation R over U × E, we can define a set-valued

function Rs : U → P (E) by Rs(u) = {x ∈ E|(u, x) ∈ R}, u ∈ U .

R is referred to as serial if for all u ∈ U,Rs(u) 6= ∅. The pair (U,E,R) is called a crisp

soft approximation space. For any A ⊆ E, the upper and lower soft approximations of A

with respect to (U,E,R), denoted by R(A) and R(A), are defined, respectively, as follows:

R(A) = {u ∈ U |Rs(u) ∩A 6= ∅}, R(A) = {u ∈ U |Rs(u) ⊆ A}.

The pair (R(A), R(A)) is referred to as a crisp soft rough set, and R,R : P (E)→ P (U)

are, referred to as upper and lower crisp soft rough approximation operators, respectively.

Definition 2.6 ( [3, 4]) Denote L = {(α, β)|α = [α1, α2] ∈ Int[0, 1], β = [β1, β2] ∈
Int[0, 1], α2 + β2 ≤ 1}, where Int[0, 1] denotes the set of all closed subintervals of [0, 1].

We define a relation ≤L on L as follows: ∀(α, β), (ξ, η) ∈ L,

(α, β) ≤L (ξ, η)⇔ [α1, α2] ≤LI [ξ1, ξ2] and [β1, β2] ≥LI [η1, η2]

⇔ α1 ≤ ξ1, α2 ≤ ξ2, β1 ≥ η1, and β2 ≥ η2.

Then the relation ≤L is a partial ordering on L and the pair (L,≤L) is a complete lattice

with the smallest element 0L = ([0, 0], [1, 1]) and the greatest element 1L = ([1, 1], [0, 0]).

The meet operator ∧ and the join operator ∨ on (L,≤L) which are linked to the ordering

≤L are, respectively, defined as follows: ∀(α, β), (ξ, η) ∈ L,

(α, β) ∧ (ξ, η) = ([α1 ∧ ξ1, α2 ∧ ξ2], [β1 ∨ η1, β2 ∨ η2]),
(α, β) ∨ (ξ, η) = ([α1 ∨ ξ1, α2 ∨ ξ2], [β1 ∧ η1, β2 ∧ η2]).

Definition 2.7 ( [3, 4]) Let a set U be fixed. The mapping A : U → L is called an

interval-valued intuitionistic fuzzy (IVIF, for short) set on U . An interval-valued intu-

itionistic fuzzy set A on U can also be denoted by

A = {< x, µA(x), γA(x) > |x ∈ U} = {< x, [µ−A(x), µ+A(x)], [γ−A (x), γ+A (x)] > |x ∈ U},
where µA(x) = [µ−A(x), µ+A(x)] and γA(x) = [γ−A (x), γ+A (x)] satisfy 0 ≤ µ+A(x) + γ+A (x) ≤ 1

for all x ∈ U, and are, respectively, called the degree of membership and the degree of

non-membership of the element x ∈ U to A.

Let IV IF (U) denotes the family of all interval-valued intuitionistic fuzzy sets on U .
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3 Construction of generalized interval-valued intuitionistic

fuzzy soft rough sets

In this section, we will present the concept of generalized IVIF soft rough sets by using

the IVIF soft relation defined by us.

Definition 3.1 ( [14]) Let U be an initial universe set and E be a universe set of pa-

rameters. A pair (F,E) is called an IVIF soft set over U if F : E → IV IF (U), where

IV IF (U) is the set of all IVIF subsets of U.

In the following, an IVIF soft relation will be presented, which is important for us to

construct generalized IVIF soft rough sets.

Definition 3.2 Let (F,E) be an IVIF soft set over U . Then an IVIF subset of U × E
called an IVIF soft relation from U to E is uniquely defined by

R = {< (u, x), µR(u, x), γR(u, x) > |(u, x) ∈ U × E},
where µR : U × E → Int[0, 1] and γR : U × E → Int[0, 1], for all (u, x) ∈ U × E such

that µR(u, x) = [µ−R(u, x), µ+R(u, x)] and γR(u, x) = [γ−R (u, x), γ+R (u, x)], which satisfy the

condition 0 ≤ µ+R(u, x) + γ+R (u, x) ≤ 1.

Remark 3.3 In Definition 3.2, if µ−R(u, x) = µ+R(u, x) and γ−R (u, x) = γ+R (u, x), namely,

µR : U × E → [0, 1] and γR : U × E → [0, 1], for all (u, x) ∈ U × E such that 0 ≤
µR(u, x) + γR(u, x) ≤ 1, then R is referred to as an intuitionistic fuzzy soft relation on

U ×E. If R is an intuitionistic fuzzy soft relation on U ×E and µR(u, x) + γR(u, x) = 1,

then R is degenerated to a fuzzy soft relation [8] in Definition 2.4. Hence, among fuzzy

soft relation, intuitionistic fuzzy soft relation [42] and IVIF soft relation, the IVIF soft

relation is the most generalized one. That is, the IVIF soft relation has included fuzzy soft

relation and intuitionistic fuzzy soft relation.

Let U = {u1, u2, · · · , um} and E = {x1, x2, · · · , xn}. Then the IVIF soft relation R

from U to E can be presented by a table as in the following form

R x1 x2 · · · xn

u1 (µR(u1, x1), γR(u1, x1)) (µR(u1, x2), γR(u1, x2)) · · · (µR(u1, xn), γR(u1, xn))

u2 (µR(u2, x1), γR(u2, x1)) (µR(u2, x2), γR(u2, x2)) · · · (µR(u2, xn), γR(u2, xn))
...

...
...

. . .
...

um (µR(um, x1), γR(um, x1)) (µR(um, x2), γR(um, x2)) · · · (µR(um, xn), γR(um, xn))

From the above form and the definition of IVIF soft set, we know that every IVIF

soft set (F,E) is uniquely characterized by the IVIF soft relation, namely they are mutual

determined. It means that an IVIF soft set (F,E) is formally equal to IVIF soft relation.
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Therefore, we shall identify any IVIF soft set with IVIF soft relation and view these

two concepts as interchangeable. Now, any discussion regard to IVIF soft set could be

converted into analysis about IVIF soft relation, which will bring great convenience for

our future researches.

In this case, according to the definition of IVIF soft relation, we can construct gener-

alized IVIF soft rough sets as follows.

Definition 3.4 Let U be an initial universe set and E be a universe set of parameters.

For an arbitrary IVIF soft relation R over U × E, the pair (U,E,R) is called an IVIF

soft approximation space. For any A ∈ IV IF (E), we define the upper and lower soft

approximations of A with respect to (U,E,R), denoted by R(A) and R(A), respectively, as

follows:

R(A) = {< u, µR(A)(u), γR(A)(u) > |u ∈ U}, (1)

R(A) = {< u, µR(A)(u), γR(A)(u) > |u ∈ U}. (2)

where

µR(A)(u) = [
∨
x∈E

(µ−R(u, x) ∧ µ−A(x)),
∨
x∈E

(µ+R(u, x) ∧ µ+A(x))],

γR(A)(u) = [
∧
x∈E

(γ−R (u, x) ∨ γ−A (x)),
∧
x∈E

(γ+R (u, x) ∨ γ+A (x))],

µR(A)(u) = [
∧
x∈E

(γ−R (u, x) ∨ µ−A(x)),
∧
x∈E

(γ+R (u, x) ∨ µ+A(x))],

γR(A)(u) = [
∨
x∈E

(µ−R(u, x) ∧ γ−A (x)),
∨
x∈E

(µ+R(u, x) ∧ γ+A (x))].

The pair (R(A), R(A)) is referred to as a generalized IVIF soft rough set of A with respect

to (U,E,R).

By µ+R(u, x) + γ+R (u, x) ≤ 1 and µ+A(x) + γ+A (x) ≤ 1, it can be easily verified that R(A)

and R(A) ∈ IV IF (U). So we call R,R : IV IF (E) → IV IF (U) generalized upper and

lower IVIF soft rough approximation operators, respectively.

Remark 3.5 If R is an intuitionistic fuzzy soft relation on U ×E, then generalized IVIF

soft rough approximation operators R(A) and R(A) in Definition 3.4 degenerate to the

following forms:

R(A) = {< u, µR(A)(u), γR(A)(u) > |u ∈ U},

R(A) = {< u, µR(A)(u), γR(A)(u) > |u ∈ U}.

where

µR(A)(u) =
∨
x∈E

(µR(u, x) ∧ µA(x)), γR(A)(u) =
∧
x∈E

(γR(u, x) ∨ γA(x)),
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µR(A)(u) =
∧
x∈E

(γR(u, x) ∨ µA(x)), γR(A)(u) =
∨
x∈E

(µR(u, x) ∧ γA(x)).

In that case, the pair (R(A), R(A)) is generated into a generalized IF soft rough set of

A with respect to (U,E,R) proposed by Zhang et al. [42]. That is, generalized IVIF soft

rough set in Definition 4.4 includes generalized IF soft rough set [42] as a special case.

Remark 3.6 If R is a fuzzy soft relation on U ×E and A ∈ F (E), then generalized IVIF

soft rough approximation operators R(A) and R(A) degenerate to the following forms:

R(A) = {< u, µR(A)(u) > |u ∈ U}, R(A) = {< u, µR(A)(u) > |u ∈ U}.

where µR(A)(u) =
∨
x∈E

[µR(u, x) ∧ µA(x)], µR(A)(u) =
∧
x∈E

[(1− µR(u, x)) ∨ µA(x)].

In that case, generalized IVIF soft rough approximation operators R(A) and R(A) are

identical with the soft fuzzy rough approximation operators defined by Sun [23]. That is,

generalized IVIF soft rough approximation operators in Definition 4.4 are an extension of

the soft fuzzy rough approximation operators defined by Sun [23].

In order to better understand the concept of generalized IVIF soft rough approximation

operators, let us consider the following example.

Example 3.7 Suppose that U = {u1, u2, u3, u4, u5} is the set of five houses under con-

sideration of a decision maker to purchase. Let E be a parameter set, where E =

{e1, e2, e3, e4}={expensive; beautiful; size; location}. Mr. X wants to buy the house which

qualifies with the parameters of E to the utmost extent from available houses in U . As-

sume that Mr. X describes the “attractiveness of the houses” by constructing an IVIF soft

relation R from U to E. And it is presented by a table as in the following form.

R e1 e2 e3 e4

u1 ([0.7, 0.8], [0.2, 0.2]) ([0.3, 0.4], [0.2, 0.5]) ([0.1, 0.1], [0.7, 0.8]) ([0.3, 0.4], [0.1, 0.3])

u2 ([0.1, 0.2], [0.4, 0.6]) ([0.6, 0.7], [0.1, 0.2]) ([0.2, 0.3], [0.5, 0.7]) ([0.3, 0.6], [0.2, 0.3])

u3 ([0.5, 0.6], [0.2, 0.4]) ([0.3, 0.6], [0.2, 0.3]) ([0.5, 0.7], [0.1, 0.3]) ([0.1, 0.8], [0.1, 0.2])

u4 ([0.1, 0.3], [0.2, 0.6]) ([0.5, 0.7], [0.1, 0.2]) ([0.1, 0.4], [0.3, 0.5]) ([0.2, 0.3], [0.5, 0.7])

u5 ([0.8, 0.9], [0.0, 0.1]) ([0.3, 0.5], [0.4, 0.5]) ([0.6, 0.8], [0.1, 0.2]) ([0.4, 0.6], [0.1, 0.4])

We can see that the precise evaluation for each object on each parameter is unknown

while the lower and upper limits of such an evaluation are given. For example, we can not

present the precise membership degree and non-membership degree of how beautiful house

u2 is, however, house u2 is at least beautiful on the membership degree of 0.6 and it is

at most beautiful on the membership degree of 0.7; house u2 is not at least beautiful on
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the non-membership degree of 0.1 and it is not at most beautiful on the non-membership

degree of 0.2.

Now give an IVIF subset A over the parameter set E as follows:

A = { < e1, [0.7, 0.8], [0.1, 0.2] >,< e2, [0.5, 0.7], [0.2, 0.3] >,

< e3, [0.4, 0.6], [0.1, 0.3] >,< e4, [0.2, 0.6], [0.3, 0.4] >}.

By Equations (1) and (2), we have

µR(A)(u1) = [0.7, 0.8], γR(A)(u1) = [0.2, 0.2], µR(A)(u2) = [0.5, 0.7],

γR(A)(u2) = [0.2, 0.3], µR(A)(u3) = [0.5, 0.6], γR(A)(u3) = [0.1, 0.3],

µR(A)(u4) = [0.5, 0.7], γR(A)(u4) = [0.2, 0.3], µR(A)(u5) = [0.7, 0.8],

γR(A)(u5) = [0.1, 0.2]; µR(A)(u1) = [0.2, 0.6], γR(A)(u1) = [0.3, 0.4],

µR(A)(u2) = [0.2, 0.6], γR(A)(u2) = [0.3, 0.4], µR(A)(u3) = [0.2, 0.6],

γR(A)(u3) = [0.2, 0.4], µR(A)(u4) = [0.4, 0.6], γR(A)(u4) = [0.2, 0.3],

µR(A)(u5) = [0.2, 0.6], γR(A)(u5) = [0.3, 0.4].

Thus

R(A) = { < u1, [0.7, 0.8], [0.2, 0.2] >,< u2, [0.5, 0.7], [0.2, 0.3] >,< u3, [0.5, 0.6], [0.1, 0.3] >,

< u4, [0.5, 0.7], [0.2, 0.3] >,< u5, [0.7, 0.8], [0.1, 0.2] >}

and

R(A) = { < u1, [0.2, 0.6], [0.3, 0.4] >,< u2, [0.2, 0.6], [0.3, 0.4] >,< u3, [0.2, 0.6], [0.2, 0.4] >,

< u4, [0.4, 0.6], [0.2, 0.3] >,< u5, [0.2, 0.6], [0.3, 0.4] >}.

In what follows, we investigate the properties of generalized IVIF soft rough approxi-

mation operators.

Theorem 3.8 Let (U,E,R) be an IVIF soft approximation space. Then the generalized

upper and lower IVIF soft rough approximation operators R(A) and R(A) satisfy the

following properties: ∀A,B ∈ IV IF (E),

(IVIFSL1) R(A) =∼ R(∼ A),

(IVIFSU1) R(A) =∼ R(∼ A);

(IVIFSL2) R(A ∩B) = R(A) ∩R(B),

(IVIFSU2) R(A ∪B) = R(A) ∪R(B);

(IVIFSL3) A ⊆ B ⇒ R(A) ⊆ R(B),

(IVIFSU3) A ⊆ B ⇒ R(A) ⊆ R(B);

(IVIFSL4) R(A ∪B) ⊇ R(A) ∪R(B),

(IVIFSU4) R(A ∩B) ⊆ R(A) ∩R(B);
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Proof. We only prove the properties of the lower IVIF soft rough approximation operator

R(A). The upper IVIF soft rough approximation operator R(A) can be proved similarly.

(IVIFSL1) By Definition 3.4, then we have

∼ R(∼ A) = {< u, γR(∼A)(u), µR(∼A)(u) > |u ∈ U}

= {< u, [
∨
x∈E

(µ−R(u, x) ∧ γ−∼A(x)),
∨
x∈E

(µ+R(u, x) ∧ γ+∼A(x))],

[
∧
x∈E

(γ−R (u, x) ∨ µ−∼A(x)),
∧
x∈E

(γ+R (u, x) ∨ µ+∼A(x))] > |u ∈ U}

= {< u, [
∨
x∈E

(µ−R(u, x) ∧ µ−A(x)),
∨
x∈E

(µ+R(u, x) ∧ µ+A(x))],

[
∧
x∈E

(γ−R (u, x) ∨ γ−A (x)),
∧
x∈E

(γ+R (u, x) ∨ γ+A (x))] > |u ∈ U}

= {< u, µR(A)(u), γR(A)(u) > |u ∈ U} = R(A).

(IVIFSL2) By virtue of Equation (2), we have

R(A ∩B) = {< u, µR(A∩B)(u), γR(A∩B)(u) > |u ∈ U}

= {< u,
∧
x∈E

(γR(u, x) ∨ µA∩B(x)),
∨
x∈E

(µR(u, x) ∧ γA∩B(x)) > |u ∈ U}

= {< u, [
∧
x∈E

(γ−R (u, x) ∨ (µ−A(x) ∧ µ−B(x))),
∧
x∈E

(γ+R (u, x) ∨ (µ+A(x) ∧ µ+B(x)))],

[
∨
x∈E

(µ−R(u, x) ∧ (γ−A (x) ∨ γ−B (x))),
∨
x∈E

(µ+R(u, x) ∧ (γ+A (x) ∨ γ+B (x)))] > |u ∈ U}

= {< u, [µ−R(A)(u) ∧ µ−R(B)(u), µ+R(A)(u) ∧ µ+R(B)(u)],

[γ−R(A)(u) ∨ γ−R(B)(u), γ+R(A)(u) ∨ γ+R(B)(u)] > |u ∈ U}

= {< u, µR(A)(u) ∧ µR(B)(u), γR(A)(u) ∨ γR(B)(u) > |u ∈ U} = R(A) ∩R(B).

(IVIFSL3) It can be easily verified by Definition 3.4.

(IVIFSL4) By (IVIFSL3), it is straightforward. 2

In Theorem 3.8, properties (IVIFSL1) and (IVIFSU1) show that the generalized upper

lower IVIF soft rough approximation operators R and R are dual to each other.

Inspired by the concept of cut sets of IF sets in [44,45], we first present the concept of

cut sets of IVIF sets before investigating the representing method of the generalized IVIF

soft rough approximation operators.

Definition 3.9 Let A = {< x, µA(x), γA(x) > |x ∈ U} ∈ IV IF (U), and (α, β) ∈ L,

where α = [α1, α2], β = [β1, β2] ∈ Int[0, 1] with α2 + β2 ≤ 1. The (α, β)-level cut set of A,
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denoted by Aβα , is defined as follows:

Aβα = {x ∈ U |µA(x) ≥LI α, γA(x) ≤LI β}
= {x ∈ U |µ−A(x) ≥ α1, µ

+
A(x) ≥ α2, γ

−
A (x) ≤ β1, γ+A (x) ≤ β2}.

Aα = {x ∈ U |µA(x) ≥LI α} = {x ∈ U |µ−A(x) ≥ α1, µ
+
A(x) ≥ α2},

and

Aα+ = {x ∈ U |µA(x) >LI α} = {x ∈ U |µ−A(x) > α1, µ
+
A(x) > α2}

are, respectively, called the α-level cut set and the strong α-level cut set of membership

generated by A. Meanwhile,

Aβ = {x ∈ U |γA(x) ≤LI β} = {x ∈ U |γ−A (x) ≤ β1, γ+A (x) ≤ β2}

and

Aβ+ = {x ∈ U |γA(x) <LI β} = {x ∈ U |γ−A (x) < β1, γ
+
A (x) < β2}

are, respectively, referred to as the β-level cut set and the strong β-level cut set of non-

membership generated by A.

At the same time, other types of cut sets of the IVIF set A are denoted as follows:

Aβα+ = {x ∈ U |µA(x) >LI α, γA(x) ≤LI β}
= {x ∈ U |µ−A(x) > α1, µ

+
A(x) > α2, γ

−
A (x) ≤ β1, γ+A (x) ≤ β2},

which is called the (α+, β)-level cut set of A;

Aβ+α = {x ∈ U |µA(x) ≥LI α, γA(x) <LI β}
= {x ∈ U |µ−A(x) ≥ α1, µ

+
A(x) ≥ α2, γ

−
A (x) < β1, γ

+
A (x) < β2},

which is called the (α, β+)-level cut set of A;

Aβ+α+ = {x ∈ U |µA(x) >LI α, γA(x) <LI β}
= {x ∈ U |µ−A(x) > α1, µ

+
A(x) > α2, γ

−
A (x) < β1, γ

+
A (x) < β2},

which is called the (α+, β+)-level cut set of A.

Theorem 3.10 The cut sets of IVIF sets satisfy the following properties: ∀A ∈ IV IF (U),

α = [α1, α2], β = [β1, β2] ∈ Int[0, 1] with α2 + β2 ≤ 1,

(1) Aβα = Aα ∩Aβ,
(2) A ⊆ B ⇒ Aβα ⊆ Bβ

α,

(3) (A ∩B)α = Aα ∩Bα, (A ∩B)β = Aβ ∩Bβ,

(4) α ≥LI β, ξ ≤LI η ⇒ Aα ⊆ Aβ, Aξ ⊆ Aη, Aξα ⊆ Aηβ.
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Proof. By Definition 3.9, (1), (2) and (4) are straightforward.

(3) Since

A ∩B = {< x, µA∩B(x), γA∩B(x) > |x ∈ U}
= {< x, [µ−A(x) ∧ µ−B(x), µ+A(x) ∧ µ+B(x)],

[γ−A (x) ∨ γ−B (x), γ+A (x) ∨ γ+B (x)] > |x ∈ U},

we have

(A ∩B)α = {x ∈ U |µ−A(x) ∧ µ−B(x) ≥ α1, µ
+
A(x) ∧ µ+B(x) ≥ α2}

= {x ∈ U |µ−A(x) ≥ α1, µ
−
B(x) ≥ α1, µ

+
A(x) ≥ α2, µ

+
B(x) ≥ α2}

= {x ∈ U |µA(x) ≥LI α, µB(x) ≥LI α} = Aα ∩Bα,

and

(A ∩B)β = {x ∈ U |γ−A (x) ∨ γ−B (x) ≤ β1, γ+A (x) ∨ γ+B (x) ≤ β2}
= {x ∈ U |γ−A (x) ≤ β1, γ−B (x) ≤ β1, γ+A (x) ≤ β2, γ+B (x) ≤ β2}
= {x ∈ U |γA(x) ≤LI β, γB(x) ≤LI β} = Aβ ∩Bβ.

Meanwhile, according to (1), we can obtain

(A ∩B)βα = (A ∩B)α ∩ (A ∩B)β

= (Aα ∩Aβ) ∩ (Bα ∩Bβ) = Aβα ∩Bβ
α.

2

Assume that R is an IVIF soft relation from U to E, denote

Rα = {(u, x) ∈ U × E|µR(u, x) ≥LI α} = {(u, x) ∈ U × E|µ−R(u, x) ≥ α1, µ
+
R(u, x) ≥ α2},

Rα(u) = {x ∈ E|µR(u, x) ≥LI α} = {x ∈ E|µ−R(u, x) ≥ α1, µ
+
R(u, x) ≥ α2}, α1, α2 ∈ [0, 1];

Rα+ = {(u, x) ∈ U ×E|µR(u, x) >LI α} = {(u, x) ∈ U ×E|µ−R(u, x) > α1, µ
+
R(u, x) > α2},

Rα+(u) = {x ∈ E|µR(u, x) >LI α} = {x ∈ E|µ−R(u, x) > α1, µ
+
R(u, x) > α2}, α1, α2 ∈ [0, 1);

Rβ = {(u, x) ∈ U × E|γR(u, x) ≤LI β} = {(u, x) ∈ U × E|γ−R (u, x) ≤ β1, γ+R (u, x) ≤ β2},

Rβ(u) = {x ∈ E|γR(u, x) ≤LI β} = {x ∈ E|γ−R (u, x) ≤ β1, γ+R (u, x) ≤ β2}, β1, β2 ∈ [0, 1];

Rβ+ = {(u, x) ∈ U × E|γR(u, x) <LI β} = {(u, x) ∈ U × E|γ−R (u, x) < β1, γ
+
R (u, x) < β2},

Rβ+(u) = {x ∈ E|γR(u, x) <LI β} = {x ∈ E|γ−R (u, x) < β1, γ
+
R (u, x) < β2}, β1, β2 ∈ (0, 1].

Then Rα, Rα+, Rβ and Rβ+ are crisp soft relations on U × E.

1080

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Yanping He et al 1070-1088



The following Theorems 3.12 and 3.13 show that the generalized IVIF soft rough

approximation operators can be represented by crisp soft rough approximation operators

proposed by Zhang et al. [42].

Theorem 3.11 Let (U,E,R) be an IVIF soft approximation space, and A ∈ IV IF (E).

Then the generalized upper IVIF soft rough approximation operator can be represented as

follows: ∀u ∈ U , a = [a, a] ∈ LI ,
(1)

µR(A)(u) =
∨
α∈LI

[α ∧Rα(Aα)(u)] =
∨
α∈LI

[α ∧Rα(Aα+)(u)]

=
∨
α∈LI

[α ∧Rα+(Aα)(u)] =
∨
α∈LI

[α ∧Rα+(Aα+)(u)],

(2)

γR(A)(u) =
∧
α∈LI

[α ∨Rα(Aα)(u)] =
∧
α∈LI

[α ∨Rα(Aα+)(u)]

=
∧
α∈LI

[α ∨Rα+(Aα)(u)] =
∧
α∈LI

[α ∨Rα+(Aα+)(u)]

and moreover, for any α ∈ LI ,
(3) [R(A)]α+ ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα) ⊆ [R(A)]α,

(4) [R(A)]α+ ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα) ⊆ [R(A)]α.

Proof. (1) For any u ∈ U , we have∨
α∈LI

[α ∧Rα(Aα)(u)] = sup{α ∈ LI |u ∈ Rα(Aα)} = sup{α ∈ LI |Rα(u) ∩Aα 6= ∅}

= sup{α ∈ LI |∃x ∈ E[x ∈ Rα(u), x ∈ Aα]}
= sup{α ∈ LI |∃x ∈ E[µR(u, x) ≥LI α, µA(x) ≥LI α]}
= sup{[α1, α2] ∈ LI |∃x ∈ E[µ−R(u, x) ≥ α1, µ

+
R(u, x) ≥ α2, µ

−
A(x) ≥ α1, µ

+
A(x) ≥ α2]}

= sup{[α1, α2] ∈ LI |∃x ∈ E[µ−R(u, x) ∧ µ−A(x) ≥ α1, µ
+
R(u, x) ∧ µ+A(x) ≥ α2]}

= [
∨
x∈E

(µ−R(u, x) ∧ µ−A(x)),
∨
x∈E

(µ+R(u, x) ∧ µ+A(x))] = µR(A)(u).

Likewise, we can conclude that

µR(A)(u) =
∨
α∈LI

[α ∧Rα(Aα+)(u)] =
∨
α∈LI

[α ∧Rα+(Aα)(u)]

=
∨
α∈LI

[α ∧Rα+(Aα+)(u)].
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(2) In terms of Definition 2.5 and notations above, we have∧
α∈LI

[α ∨Rα(Aα)(u)] = inf{α ∈ LI ]|u ∈ Rα(Aα)} = inf{α ∈ LI |Rα(u) ∩Aα 6= ∅}

= inf{α ∈ LI |∃x ∈ E[x ∈ Rα(u), x ∈ Aα]}
= inf{α ∈ LI |∃x ∈ E[γR(u, x) ≤LI α, γA(x) ≤LI α]}
= inf{[α1, α2] ∈ LI |∃x ∈ E[γ−R (u, x) ≤ α1, γ

+
R (u, x) ≤ α2, γ

−
A (x) ≤ α1, γ

+
A (x) ≤ α2]}

= inf{[α1, α2] ∈ LI |∃x ∈ E[γ−R (u, x) ∨ γ−A (x) ≤ α1, γ
+
R (u, x) ∨ γ+A (x) ≤ α2]}

= [
∧
x∈E

(γ−R (u, x) ∨ γ−A (x)),
∧
x∈E

(γ+R (u, x) ∨ γ+A (x))] = γR(A)(u).

Similarly, we can prove that

γR(A)(u) =
∧
α∈LI

[α ∨Rα(Aα+)(u)] =
∧
α∈LI

[α ∨Rα+(Aα)(u)]

=
∧
α∈LI

[α ∨Rα+(Aα+)(u)].

(3) It is easily verified that Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα). We only need to prove

that [R(A)]α+ ⊆ Rα+(Aα+) and Rα(Aα) ⊆ [R(A)]α.

In fact, ∀u ∈ [R(A)]α+, we have µR(A)(u) >LI α. According to Definition 3.4,∨
x∈E

[µ−R(u, x) ∧ µ−A(x)] > α1 and
∨
x∈E

[µ+R(u, x) ∧ µ+A(x)] > α2. Then ∃x0 ∈ E, such that

µ−R(u, x0) ∧ µ−A(x0) > α1 and µ+R(u, x0) ∧ µ+A(x0) > α2, that is, µ−R(u, x0) > α1, µ
−
A(x0) >

α1, µ
+
R(u, x0) > α2, and µ+A(x0) > α2. Thus µR(u, x0) >LI α and µA(x0) >LI α, which

imply that x0 ∈ Rα+(u) and x0 ∈ Aα+. Namely, Rα+(u) ∩ Aα+ 6= ∅. By Definition 2.5,

we have u ∈ Rα+(Aα+). Hence [R(A)]α+ ⊆ Rα+(Aα+).

On the other hand, for any u ∈ Rα(Aα), we have Rα(Aα)(u) = 1. Since µR(A)(u) =∨
β∈LI

[β ∧ Rβ(Aβ)(u)] ≥LI α ∧ Rα(Aα)(u) = α, we obtain u ∈ [R(A)]α. Hence, Rα(Aα) ⊆

[R(A)]α.

(4) Similar to the proof of (3), it can be easily verified. 2

Theorem 3.12 Let (U,E,R) be an IVIF soft approximation space, and A ∈ IV IF (E).

Then the generalized lower IVIF soft rough approximation operator can be represented as

follows: ∀u ∈ U
(1)

µR(A)(u) =
∧
α∈LI

[α ∨ (1−Rα(Aα+)(u)] =
∧
α∈LI

[α ∨ (1−Rα(Aα)(u)]

=
∧
α∈LI

[α ∨ (1−Rα+(Aα+)(u)] =
∧
α∈LI

[α ∨ (1−Rα+(Aα)(u)],
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(2)

γR(A)(u) =
∨
α∈LI

[α ∧ (1−Rα(Aα+)(u)] =
∨
α∈LI

[α ∧ (1−Rα(Aα)(u)]

=
∨
α∈LI

[α ∧ (1−Rα+(Aα+)(u)] =
∨
α∈LI

[α ∧ (1−Rα+(Aα)(u)]

and moreover, for any α ∈ LI ,
(3) [R(A)]α+ ⊆ Rα(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α,

(4) [R(A)]α+ ⊆ Rα(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α.

Proof. The proof is similar to Theorem 3.12. 2

4 Application of IVIF soft rough sets in decision making

In [46], Zhang et al. gave a decision method based on IVIF soft set theory. However,

we note that the decision method need to choose the thresholds in advance by decision

makers. Thus the decision results will be depend on the threshold values at some degree.

Since the thresholds have different kind of subjective preference information, different

experts can obtain the different decision results for the same decision problem. So, in

order to avoid the effect of the subjective information for the decision results, we only

use the data information provided by the decision making problem and don’t need any

additional available information provided by decision makers. Thus the decision results

are more objectively.

Next, we shall develop a new approach to decision making problem based on the

generalized IVIF soft rough sets proposed in this paper.

Let (U,E,R) be an IVIF soft approximation space, where U is the universe of the

discourse, E is the parameter set, and R is an IVIF soft relation on U ×E. Then we can

give this decision-making approach based on generalized IVIF soft rough sets with five

steps.

First, according to their own needs, the decision makers can construct an IVIF soft

relation R from U to E, or IVIF soft set (F,E) over U .

Second, for a ceratin decision evaluation problem, we suppose that one wants to find

out the decision alternative in universe with the evaluation value as larger as possible on

every evaluate index. On the basis of the assumption, we construct an optimum normal

decision object A which is an IVIF set on the evaluation universe E as follows:

A = {< ei, max
1≤j≤|U |

µR(uj , ei), min
1≤j≤|U |

γR(uj , ei) >},

where |U | denotes the cardinality of the universe set U.
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Third, by Equations (1) and (2), we can compute the generalized IVIF soft rough

approximation operators R(A) and R(A) of the optimum normal decision object A. Thus,

we obtain two most close values R(A) and R(A) to the decision alternative ui of the

universe set U .

Fourth, Atanassov and Gargov [3,4] introduced the notion of IVIF sets, and gave two

operations on two IVIF sets, shown as follows, for all F,G ∈ IV IF (U),

• Union operation:

F ∪G = {< u,[µ−F (u) ∨ µ−G(u), µ+F (u) ∨ µ+G(u)],

[γ−F (u) ∧ γ−G(u), γ+F (u) ∧ γ+G(u)] > |u ∈ U},

• Intersection operation:

F ∩G = {< u,[µ−F (u) ∧ µ−G(u), µ+F (u) ∧ µ+G(u)],

[γ−F (u) ∨ γ−G(u), γ+F (u) ∨ γ+G(u)] > |u ∈ U}.

In general, the union operation and intersection operation on IVIF sets may result

in loss of information in practical decision making problem which affects the accuracy of

decision making. Therefore, inspired by the concept of ⊕-union operation of intuitionistic

fuzzy subset, we also introduce the concept of ⊕-union operation of IVIF subset.

Definition 4.1 Let F,G ∈ IV IF (U). The ⊕-union operation about IVIF sets F and G

can be defined as follows:

F ⊕G = {< u,[µ−F (u) + µ−G(u)− µ−F (u) · µ−G(u), µ+F (u) + µ+G(u)− µ+F (u) · µ+G(u)],

[γ−F (u) · γ−G(u), γ+F (u) · γ+G(u)] > |u ∈ U}.

By using the ⊕-union operation rather than the union and intersection operations, we

can obtain the choice set as follows

H = R(A)⊕R(A) = {< u,[µ−
R(A)

(u) + µ−R(A)(u)− µ−
R(A)

(u) · µ−R(A)(u),

µ+
R(A)

(u) + µ+R(A)(u)− µ+
R(A)

(u) · µ+R(A)(u)],

[γ−
R(A)

(u) · γ−R(A)(u), γ+
R(A)

(u) · γ+R(A)(u)] > |u ∈ U}.

Denote H = {< u, µH(u), γH(u) >}.
Finally, define an IVIF value λ = (µ, γ) ∈ L, where µ = sup

1≤j≤|U |
[µ−H(uj), µ

+
H(uj)],

γ = inf
1≤j≤|U |

[γ−H(uj), γ
+
H(uj)]. Obviously, IVIF value λ = (µ, γ) is the maximum choice

value in the choice set H. Hence we take the object uj in universe U with the maximum

choice value as the optimum decision for the given decision making problem. That is to

say, if µH(uj) ≥LI µ and γH(uj) ≤LI γ, the optimum decision is uj .
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In general, if there exist two or more objects with the same maximum choice value

, then we can take one of them as the optimum decision for the given decision making

problem.

To illustrate the new method given above, let us consider the example as follows.

Example 4.2 Reconsider Example 3.7. Now all the available information on houses un-

der consideration can be formulated as an IVIF soft relation describing attractiveness of

house that Mr.X is going to buy. By using the second step of the algorithm for general-

ized IVIF soft rough sets in decision making presented in this section, we can obtain the

optimum normal decision object A as follows

A = { < e1, [0.8, 0.9], [0.0, 0.1] >,< e2, [0.6, 0.7], [0.1, 0.2] >,

< e3, [0.6, 0.8], [0.1, 0.2] >,< e4, [0.4, 0.8], [0.1, 0.2] >}.

According to Equations (1) and (2), we can conclude that

R(A) = { < u1, [0.7, 0.8], [0.1, 0.2] >,< u2, [0.6, 0.7], [0.1, 0.2] >,< u3, [0.5, 0.8], [0.1, 0.2] >,

< u4, [0.5, 0.7], [0.1, 0.2] >,< u5, [0.8, 0.9], [0.0, 0.1] >}

and

R(A) = { < u1, [0.4, 0.8], [0.1, 0.2] >,< u2, [0.4, 0.8], [0.1, 0.2] >,< u3, [0.4, 0.8], [0.1, 0.2] >,

< u4, [0.5, 0.7], [0.1, 0.2] >,< u5, [0.4, 0.8], [0.1, 0.2] >}.

Now by Definition 4.1, we have

H = R(A)⊕R(A) = { < u1, [0.82, 0.96], [0.01, 0.04] >,< u2, [0.76, 0.94], [0.01, 0.04] >,

< u3, [0.70, 0.96], [0.01, 0.04] >,< u4, [0.75, 0.91], [0.01, 0.04] >,

< u5, [0.88, 0.98], [0.00, 0.02] >}.

Obviously, IVIF value λ = ([0.88, 0.98], [0.00, 0.02]) is the maximum choice value in the

choice set H. Thus the optimal decision is u5. Hence, Mr X will buy the house u5.

5 Conclusion

Recently, there has been a growing interest in soft set theory. Some extensions of soft

sets have been obtained by combining soft set theory with other mathematical models,

including fuzzy soft sets, interval-valued fuzzy soft sets, intuitionistic fuzzy soft sets and

interval-valued intuitionistic fuzzy soft sets. Among them, the interval-valued intuitionistic

fuzzy soft set is the most generalized one. This paper is devoted to the discussion of the

combinations of interval-valued intuitionistic fuzzy soft set and rough set. By using an
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interval-valued intuitionistic fuzzy soft relation, we present a new soft rough set model,

called generalized IVIF soft rough sets. Furthermore, the generalized upper and lower IVIF

soft rough approximation operators are represented by crisp soft rough approximation

operators. Finally, a practical application is provided to illustrate the validity of the

generalized IVIF soft rough set.
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GENERALIZATIONS OF HEINZ MEAN OPERATOR INEQUALITIES
INVOLVING POSITIVE LINEAR MAP

CHANGSEN YANG AND YINGYA TAO

Abstract. In this paper, we study the Heinz mean inequalities of two positive operators
involving positive linear map. We obtain a generalized conclusion based on operator Diaz-
Metcalf type inequality. The conclusion is presented as follows: Let Φ be a unital positive
linear map, if 0 < m1

2 ≤ A ≤M1
2 and 0 < m2

2 ≤ B ≤M2
2 for some positive real numbers

m1 ≤M1, m2 ≤M2, then for α ∈ [0, 1] and p ≥ 2, the following inequality holds :

(
M2m2

M1m1
Φ(A) + Φ(B))p

≤2−(p+4)

[
M2m2(M1

2 +m1
2) +M1m1(M2

2 +m2
2)

min{(M1m1)
3−α
2 (M2m2)

1+α
2 , (M1m1)

2+α
2 (M2m2)

2−α
2 }

]2p
Φp(Hα(A,B)).

1. Introduction and preliminaries

We represent the set of all bounded operators on H by B(H). If an operator A satisfies
〈Ax, x〉 ≥ 0 for any x ∈ H, then A is called a positive operator. For two self-adjoint operators
A and B, A ≥ B means A − B ≥ 0. The notation A > 0 means A is an invertible positive
operator.

A linear map Φ: B(H) −→ B(H) is called positive (strictly positive ), if Φ(A) ≥ 0
(Φ(A) > 0) whenever A ≥ 0 (A > 0), and Φ is said to be unital if Φ(I) = I. Take A,B > 0
and α ∈ [0, 1], the weighted arithmetic operator mean A∇αB, geometric mean A]αB and
harmonic mean A!αB are defined as follows :

A∇αB = (1− α)A+ αB, A]αB = A
1
2 (A−

1
2BA−

1
2 )
α
A

1
2 , A!αB = [(1− α)A−1 + αB−1]−1

when α = 1
2
, we write A∇B, A]B and A!B for brevity, respectively. The Heniz mean is

defined by Hα(A,B) = A]αB+A]1−αB
2

, where A,B > 0 and α ∈ [0, 1]. Recently, M. S. Mosle-
hian, R. Nakamoto and Y. Seo [1, Theorem 2.1, part (ii)] showed that

Theorem 1.1 Let Φ be positive linear map, if 0 < m1
2 ≤ A ≤M1

2 and 0 < m2
2 ≤ B ≤M2

2

for some positive real numbers m1 ≤ M1 and m2 ≤ M2, we can get operator Diaz-Metcalf
type inequality:

M2m2

M1m1

Φ(A) + Φ(B) ≤ (
M2

m1

+
m2

M1

)Φ(A]B).

Thus A]B ≤ Hα(A,B) implies the following.

2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B20.
Key words and phrases. Heinz mean; Heinz operator inequality; positive linear map.
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Remark 1.2 Let Φ be positive linear map, if 0 < m1
2 ≤ A ≤M1

2 and 0 < m2
2 ≤ B ≤M2

2

for some positive real numbers m1 ≤ M1 and m2 ≤ M2, then for α ∈ [0, 1], the following
inequality holds:

M2m2

M1m1

Φ(A) + Φ(B) ≤ (
M2

m1

+
m2

M1

)Φ(Hα(A,B)).

In 2015, Mohammad Sal Moslehian and Xiaohui Fu obtained a second powering of the
operator Diaz-Metcalf type inequality:

Theorem 1.3 [9] Let Φ be positive linear map, if 0 < m1
2 ≤ A ≤M1

2 and 0 < m2
2 ≤ B ≤

M2
2 for some positive real numbers m1 ≤ M1 and m2 ≤ M2, then the following inequality

holds:

(
M2m2

M1m1

Φ(A) + Φ(B))2 ≤
(

(M1m1(M2
2 +m2

2) +M2m2(M1
2 +m1

2))2

8
√
M1m1M2m2M2

1m
2
1M2m2

)2

(Φ(A]B))2.

In the paper we shall give further generalizations of Remark 1.2 in the following section, along
with presenting p-th powering of some inequality for Heniz mean based on Remark 1.2 and
the following consideration: It is easy to see that the Heniz operator mean interpolates the
arithmetic-geometric operator mean inequality: A!B ≤ A]B ≤ Hα(A,B) ≤ A∇B, and the

geometric mean has so-called maximal characterization [2], which says that

[
A A]B
A]B B

]
is positive, and moreover, if the operator matrix

[
A X
X B

]
is positive with X being self-

adjoint, then A]B ≥ X.

2. Results and Proofs

In order to prove the first main theorem of the paper, first we give the following lemmas.

lemma 2.1. [3] Let Φ be a unital strictly positive linear map and A > 0, then Φ(A)−1 ≤
Φ(A−1).

lemma 2.2. [5] Let A,B ≥ 0, then the following norm inequality holds : ‖AB‖ ≤
1
4
‖A+B‖2.

lemma 2.3. [4] Let A,B ≥ 0, then for 1 ≤ r < +∞, ‖Ar +Br‖ ≤ ‖(A+B)r‖.

lemma 2.4. [7] (L-H inequality) If 0 ≤ α ≤ 1, A ≥ B ≥ 0, then Aα ≥ Bα.

Theorem 2.5. Let Φ be a unital positive linear map, if 0 < m1
2 ≤ A ≤ M1

2 and
0 < m2

2 ≤ B ≤ M2
2 for some positive real numbers m1 ≤ M1, m2 ≤ M2, then for α ∈ [0, 1]

and p ≥ 2, the following inequality holds :
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(
M2m2

M1m1

Φ(A) + Φ(B))p

≤2−(p+4)

[
M2m2(M1

2 +m1
2) +M1m1(M2

2 +m2
2)

min{(M1m1)
3−α
2 (M2m2)

1+α
2 , (M1m1)

2+α
2 (M2m2)

2−α
2 }

]2p
Φp(Hα(A,B)).

(2.1)

Proof. Obviously (2.1) is equivalent to

‖(M2m2

M1m1

Φ(A) + Φ(B))
p
2 Φ−

p
2 (Hα(A,B))‖

≤2−(
p
2
+2)

[
M2m2(M1

2 +m1
2) +M1m1(M2

2 +m2
2)

min{(M1m1)
3−α
2 (M2m2)

1+α
2 , (M1m1)

2+α
2 (M2m2)

2−α
2 }

]p
.

Note that

(M1
2 − A)(m1

2 − A)A−1 ≤ 0,

implies

M1
2m1

2A−1 −M1
2 −m1

2 + A ≤ 0,

therefore

M1
2m1

2Φ(A−1) + Φ(A) ≤M1
2 +m1

2,

which equals to

M1m1M2m2Φ(A−1) + M2m2

M1m1
Φ(A) ≤ M2m2

M1m1
(M1

2 +m1
2). (2.2)

Similarly, we have

M2
2m2

2Φ(B−1) + Φ(B) ≤M2
2 +m2

2. (2.3)

Since

H−1α (A,B) ≤ (A!B)−1 =
A−1 +B−1

2
,

therefore

Hα(
A

M2m2M1m1

,
B

M2
2m2

2
)

=
( 1
M2m2M1m1

)
1−α

( 1
M2

2m2
2 )α(A]αB) + ( 1

M2m2M1m1
)
α
( 1
M2

2m2
2 )1−α(A]1−αB)

2

≤max{( 1

M2m2M1m1

)
1−α

(
1

M2m2

)2α, (
1

M2m2M1m1

)
α

(
1

M2m2

)2−2α}Hα(A,B)

=
Hα(A,B)

min{(M1m1)1−α(M2m2)1+α, (M1m1)α(M2m2)2−α}
. (2.4)

If we put

β = min{(M1m1)
1−α(M2m2)

1+α, (M1m1)
α(M2m2)

2−α},
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then
βΦ−1(Hα(A,B))

≤Φ−1(Hα(
A

M2m2M1m1

,
B

M2
2m2

2
))

≤Φ(H−1α(
A

M2m2M1m1

,
B

M2
2m2

2
))

≤1

2
Φ(M2m2M1m1A

−1 +M2
2m2

2B−1)

=
1

2
(M2m2M1m1Φ(A−1) +M2

2m2
2Φ(B−1)).

By (2.2) and (2.3), we have

‖(1

2
(
M2m2

M1m1

Φ(A) + Φ(B)))
p
2β

p
2 Φ−

p
2 (Hα(A,B))‖

≤1

4
‖(1

2
(
M2m2

M1m1

Φ(A) + Φ(B)))
p
2 + β

p
2 Φ−

p
2 (Hα(A,B))‖2

≤1

4
‖(1

2
(
M2m2

M1m1

Φ(A) + Φ(B)) + βΦ−1(Hα(A,B)))
p
2‖2

=
1

4
‖1

2
(
M2m2

M1m1

Φ(A) + Φ(B)) + βΦ−1(Hα(A,B))‖p

≤1

4
‖1

2
(
M2m2

M1m1

Φ(A) + Φ(B) +M2m2M1m1Φ(A−1) +M2
2m2

2Φ(B−1))‖p

≤2−(p+2)(M2
2 +m2

2 +
M2m2

M1m1

(M1
2 +m1

2))p.

Therefore

‖(M2m2

M1m1

Φ(A) + Φ(B))
p
2 Φ−

p
2 (Hα(A,B))‖

≤2−(
p
2
+2)

[
M2m2(M1

2 +m1
2) +M1m1(M2

2 +m2
2)

min{(M1m1)
3−α
2 (M2m2)

1+α
2 , (M1m1)

2+α
2 (M2m2)

2−α
2 }

]p
.

Corollary 2.6. In Theorem 2.5, if 1 ≤ p ≤ 2, we get

(
M2m2

M1m1

Φ(A) + Φ(B))p

≤2−3p

[
M2m2(M1

2 +m1
2) +M1m1(M2

2 +m2
2)

min{(M1m1)
3−α
2 (M2m2)

1+α
2 , (M1m1)

2+α
2 (M2m2)

2−α
2 }

]2p
Φp(Hα(A,B)).

Theorem 2.7. Let Φ be a unital positive linear map, if 0 < m1
2 ≤ A ≤ M1

2 and
0 < m2

2 ≤ B ≤ M2
2 for some positive real numbers m1 ≤ M1, m2 ≤ M2, then for α ∈ [0, 1]

and p ≥ 2, the following inequality holds :

(Φ(A)∇αΦ(B))p ≤ 2−(p+4)
[

M1
2+(1−α)m1

2+M2
2+αm2

2

min{(M1m1)1−α(M2m2)α,(M1m1)α(M2m2)1−α}

]2p
Φp(Hα(A,B)). (2.5)
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Proof. Obviously (2.5) is equivalent to

‖(Φ(A)∇αΦ(B))
p
2 Φ−

p
2 (Hα(A,B))‖

≤2−(
p
2
+2)

[
M1

2 + (1− α)m1
2 +M2

2 + αm2
2

min{(M1m1)1−α(M2m2)α, (M1m1)α(M2m2)1−α}

]p
.

Note that

(M1
2 − (1− α)A)(m1

2 − A)A−1 ≤ 0,

implies

M1
2m1

2A−1 −M1
2 − (1− α)m1

2 + (1− α)A ≤ 0.

Therefore

M1
2m1

2Φ(A−1) + (1− α)Φ(A) ≤M1
2 + (1− α)m1

2. (2.6)

Similarly, we have

M2
2m2

2Φ(B−1) + αΦ(B) ≤M2
2 + αm2

2. (2.7)

Since

H−1α (A,B) ≤ (A!B)−1 =
A−1 +B−1

2
,

and by analogy to (2.4)

Hα(
A

M1
2m1

2
,

B

M2
2m2

2
)

=
Hα(A,B)

min{(M1m1)2−2α(M2m2)2α, (M1m1)
2α(M2m2)2−2α}

.

By puting

h = min{(M1m1)
2−2α(M2m2)

2α, (M1m1)
2α(M2m2)

2−2α},

we have

hΦ−1(Hα(A,B))

≤hΦ−1(Hα(
A

M2
1m

2
1

,
B

M2
2m2

2
))

≤hΦ(H−1α(
A

M2
1m

2
1

,
B

M2
2m2

2
))

≤1

2
Φ(M2

1m
2
1A
−1 +M2

2m2
2B−1)

=
1

2
(M2

1m
2
1Φ(A−1) +M2

2m2
2Φ(B−1)).

By (2.6) and (2.7), we have
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‖(1

2
Φ(A)∇αΦ(B))

p
2h

p
2 Φ−

p
2 (Hα(A,B))‖

≤1

4
‖(1

2
Φ(A)∇αΦ(B))

p
2 + h

p
2 Φ−

p
2 (Hα(A,B))‖2

≤1

4
‖(1

2
Φ(A)∇αΦ(B) + hΦ−1(Hα(A,B)))

p
2‖2

=
1

4
‖1

2
Φ(A)∇αΦ(B) + hΦ−1(Hα(A,B))‖p

≤1

4
‖1

2
((1− α)Φ(A) + αΦ(B) +M2

1m
2
1Φ(A−1) +M2

2m2
2Φ(B−1))‖p

≤2−(p+2)(M1
2 + (1− α)m1

2 +M2
2 + αm2

2)p.

Therefore

‖(Φ(A)∇αΦ(B))
p
2 Φ−

p
2 (Hα(A,B))‖

≤2−(
p
2
+2)

[
M1

2 + (1− α)m1
2 +M2

2 + αm2
2

min{(M1m1)1−α(M2m2)α, (M1m1)α(M2m2)1−α}

]p
.

Theorem 2.8. Let Φ be a unital positive linear map, if 0 < m1
2 ≤ A ≤ M1

2 and
0 < m2

2 ≤ B ≤ M2
2 for some positive real numbers m1 ≤ M1, m2 ≤ M2, δ is a ar-

bitrary mean less than or equal to arithmetic mean, then for α ∈ [0, 1] and p ≥ 2, the
following inequality holds :

(Φ(A)δΦ(B))p ≤ 2−(2p+4)

[
M1

2 +M2
2 +m1

2 +m2
2

min{(M1m1)1−α(M2m2)α, (M1m1)α(M2m2)1−α}

]2p
Φp(Hα(A,B)).

Proof. By the similar method of proofing Theorem 2.7.

Corollary 2.9. In Theorem 2.8, we easily get

Hα
p(Φ(A),Φ(B)) ≤ 2−(2p+4)

[
M1

2 +M2
2 +m1

2 +m2
2

min{(M1m1)1−α(M2m2)α, (M1m1)α(M2m2)1−α}

]2p
Φp(Hα(A,B)).

Theorem 2.10. [8] Let 0 < m ≤ A, B ≤ M , with the scalars m,M > 0 and σ, τ two
arbitrary means beween harmonic and arithmetic means, then for every positive unital linear
map Φ, 2 ≤ p <∞,

Φp(AσB) ≤ (
(M +m)2

4
2
pMm

)p(Φ(A)τΦ(B))p.

By A!B ≤ Hα(A,B) ≤ A∇B, we obtain the following inequality.
Remark 2.11. Let 0 < m ≤ A,B ≤ M , then for every positive unital linear map Φ and

0 < α < 1, K(h) = (h+1)2

4h
, h = M

m
, p ≥ 2, the following inequality holds :

Φp(Hα(A,B)) ≤ 22p−4Kp(h)Hα
p(Φ(A),Φ(B)). (2.8)
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lemma 2.12. [6] For any bounded operator X,

|X| ≤ tI ⇐⇒ ‖X‖ ≤ t⇐⇒
[
tI X
X∗ tI

]
≥ 0 (t ≥ 0).

Theorem 2.13. Let 0 < m ≤ A,B ≤ M , then for every positive unital linear map Φ and

0 < α < 1, K(h) = (h+1)2

4h
, h = M

m
, p ≥ 2, the following inequality holds :

Φ
p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B)) +Hα

− p
2 (Φ(A),Φ(B))Φ

p
2 (Hα(A,B)) ≤ 2p−1K

p
2 (h). (2.9)

Proof. By (2.8) we get

‖Φ
p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B))‖ ≤ 2p−2K

p
2 (h). (2.10)

By (2.10) and Lemma 2.12, we obtain[
2p−2K

p
2 (h)I Φ

p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B))

Hα
− p

2 (Φ(A),Φ(B))Φ
p
2 (Hα(A,B)) 2p−2K

p
2 (h)I

]
≥ 0,

and [
2p−2K

p
2 (h)I Hα

− p
2 (Φ(A),Φ(B))Φ

p
2 (Hα(A,B))

Φ
p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B)) 2p−2K

p
2 (h)I

]
≥ 0.

Summing up these two operator matrices above, put

2p−2K
p
2 (h) = t,

Φ
p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B)) +Hα

− p
2 (Φ(A),Φ(B))Φ

p
2 (Hα(A,B)) = X.

We have [
2tI X
X∗ 2tI

]
≥ 0.

Since Φ
p
2 (Hα(A,B))Hα

− p
2 (Φ(A),Φ(B)) + Hα

− p
2 (Φ(A),Φ(B))Φ

p
2 (Hα(A,B)) is self-adioint,

(2.9) follows from the maximal characterization of geometric mean.

Corollary 2.14. Let Φ be a unital positive linear map, if 0 < m1
2 ≤ A ≤ M1

2 and
0 < m2

2 ≤ B ≤ M2
2 for some positive real numbers m1 ≤ M1, m2 ≤ M2, then for α ∈ [0, 1]

and p ≥ 2, the following inequality holds :

Hα

p
2 (Φ(A),Φ(B))Φ−

p
2 (Hα(A,B)) + Φ−

p
2 (Hα(A,B))Hα

p
2 (Φ(A),Φ(B))

≤2−(p+1)

[
M1

2 +M2
2 +m1

2 +m2
2

min{(M1m1)1−α(M2m2)α, (M1m1)α(M2m2)1−α}

]2p
Φp(Hα(A,B)).

Proof. By Corollary 2.9 and the similar method of proofing Theorem 2.13, we can easily get.
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sum-difference boundary value problems for fractional

difference equations involving sequential fractional difference
operators.
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Abstract

In this article, we study some new existence results for a nonlinear fractional
difference equation with fractional sum-difference boundary conditions. Our
problem containing sequential fractional difference operators that have different
orders. The existence and uniqueness results are based on Banach contraction
mapping principle and Schaefer’s fixed point theorem. Finally, we present some
examples to show the importance of these results.

Keywords: Fractional difference equations; boundary value problems; existence.
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1 Introduction

In this paper we consider a fractional sum-difference boundary value problem of a

fractional difference equation of the form
∆αu(t) = f(t+ α− 1, u(t+ α− 1),∆µ∆νu(t+ α− µ− ν + 1)),

u(α− 2) = ∆θu(α− θ − 2) = p y(u),

u(T + α) = q∆−βu(η + β),

(1.1)

where t ∈ N0,T := {0, 1, ..., T}, p, q > 0, 2 < α ≤ 3, 0 < β, θ, µ, ν ≤ 1, 1 <

µ + ν ≤ 2, η ∈ Nα−1,T+α−1, f ∈ (Nα−3,T+α × R× R,R) is a given function, and

y : C (Nα−3,T+α,R)→ R is a given functional.

Mathematicians have used this fractional calculus in recent years to model and

solve various related problems. In particular, fractional calculus is a powerful tool for

the processes which appears in nature, e.g. biology, ecology and other areas.

Fractional difference equations have been interested many researchers since can use

for describing many problems in the real-world phenomena such as physics, chemistry,

1Corresponding author
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2 S. Laoprasittichok , T. Sitthiwirattham

mechanics, control systems, flow in porous media, and electrical networks can be found

in [1] and [2] and the references therein. An excellent papers dealing with discrete

fractional boundary value problems, which has helped to establish some of the basic

theory of this field, one may see the papers [3]-[17], and references cited therein.

For example, Kang et al. [3] obtained sufficient conditions for the existence of

solutions for the nonlocal boundary value problem as follows,{
−∆µy(t) = λh(t+ µ− 1) f(y(t+ µ− 1)), t ∈ N0,b := {0, 1, ..., b},
y(µ− 2) = Ψ(y), y(µ+ b) = Φ(y),

(1.2)

where 1 < µ ≤ 2, f ∈ C([0,∞), [0,∞)) and h ∈ C(Nµ−1,µ+b−1, [0,∞)) are given

functions, and Ψ,Φ : Rb+3 → R are given functionals.

Presently, Chasreechai et al. [15] examined a Caputo fractional sum-difference

equation with nonlocal fractional sum boundary value conditions of the form
∆α
Cu(t) = f(t+ α− 1, u(t+ α− 1), (Ψβu)(t+ α− 2)), t ∈ N0,T ,

u(α− 2) = y(u),

u(T + α) = ∆−γg(T + α + γ − 3)u(T + α + γ − 3),

(1.3)

where 1 < α ≤ 2, 0 < β ≤ 1, 2 < γ ≤ 3. For U ⊆ R, g ∈ C(Nα−2,T+α,R+ ∩ U),

f ∈ C(Nα−2,T+α × U × U,U) are given functions, y : C(Nα−2,T+α, U)→ U is a given

functional, and for ϕ : Nα−2,T+α × Nα−2,T+α → [0,∞),

(Ψβu)(t) := [∆−βϕu](t+ β) =
1

Γ(β)

t−β∑
s=α−β−2

(t− σ(s))β−1ϕ(t, s+ β)u(s+ β).

The plan of this paper is as follows. In Section 2, we recall some definitions and

basic lemmas. Also, we derive a representation of the solution to (1.1) by converting

the problem to an equivalent fractional sum equation. In Section 3, the existence and

uniqueness results of the boundary value problem (1.1) are established by Banach

contraction mapping principle and Schaefer’s fixed point theorem. An illustrative

example is presented in Section 4.

2 Preliminaries

In this section, we introduce notations, definitions, and lemmas that are used in the

main results.

Definition 2.1. We define the generalized falling function by tα :=
Γ(t+ 1)

Γ(t+ 1− α)
, for

any t and α for which the right-hand side is defined. If t + 1 − α is a pole of the

Gamma function and t+ 1 is not a pole, then tα = 0.
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Existence and uniqueness results of a nonlocal fractional sum-difference BVP. ... 3

Lemma 2.1. [10] If t ≤ r, then tα ≤ rα for any α > 0.

Definition 2.2. For α > 0 and f defined on Na, the α-order fractional sum of f is

defined by

∆−αf(t) :=
1

Γ(α)

t−α∑
s=a

(t− σ(s))α−1f(s),

for t ∈ Na+α and σ(s) = s+ 1.

Definition 2.3. For α > 0 and f defined on Na, the α-order Riemann-Liouville

fractional difference of f is defined by

∆αf(t) := ∆N∆−(N−α)f(t) =
1

Γ(−α)

t+α∑
s=a

(t− σ(s))−α−1 f(s),

where t ∈ Na+N−α and N ∈ N is chosen so that 0 ≤ N − 1 < α ≤ N .

Lemma 2.2. [10] Let 0 ≤ N − 1 < α ≤ N. Then

∆−α∆αy(t) = y(t) + C1t
α−1 + C2t

α−2 + . . .+ CN t
α−N ,

for some Ci ∈ R, with 1 ≤ i ≤ N.

To define the solution of the boundary value problem (1.1) we need the following

lemma that deals with a linear variant of the boundary value problem (1.1) and gives

a representation of the solution.

Lemma 2.3. Let Λ 6= 0, p, q > 0, 2 < α ≤ 3, 0 < β, θ ≤ 1, η ∈ Nα−1,α+T−1,

functions h : Nα−1,α+T−1 → R and y : R→ R be given. Then the problem
∆αu(t) = h(t+ α− 1), t ∈ N0,T ,
u(α− 2) = ∆θu(α− θ − 2) = p y(u),
u(T + α) = q∆−βu(η + β),

(2.1)

has the unique solution

u(t) = − tα−1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1 h(ξ + α− 1)

−
T∑
s=0

(T + α− σ(s))α−1 h(s+ α− 1)

]
+

p y(u)

Γ(α− 1)

[
tα−2 − tα−1Θ

Λ

]

+
1

Γ(α)

t−α∑
s=0

(t− σ(s))α−1 h(s+ α− 1), (2.2)
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4 S. Laoprasittichok , T. Sitthiwirattham

where

Λ =
q

Γ(β)

η−α+1∑
s=0

(η + β − s− α)β−1 (s+ α− 1)α−1 − Γ(T + α + 1)

Γ(T + 2)
, (2.3)

Θ =
q

Γ(β)

η−α+2∑
s=0

(η + β − α− s+ 1)β−1 (s+ α− 2)α−2 − Γ(T + α + 1)

Γ(T + 3)
. (2.4)

Proof. From Lemma 2.2, we find that a general solution for (2.1) can be written as

u(t) = C1t
α−1 + C2t

α−2 + C3t
α−3 + ∆−αh(t+ α− 1), (2.5)

for t ∈ Nα−3,T+α.

Using the fractional difference of order 0 < θ ≤ 1 for (2.5), we obtain

∆θu(t) =
C1

Γ(−θ)

t+θ∑
s=α−1

(t− σ(s))−θ−1 sα−1 +
C2

Γ(−θ)

t+θ∑
s=α−2

(t− σ(s))−θ−1 sα−2

+
C3

Γ(−θ)

t+θ∑
s=α−3

(t− σ(s))−θ−1 sα−3

+
1

Γ(−θ)Γ(α)

t+θ∑
s=α

s−α∑
ξ=0

(t− σ(s))−θ(s− σ(ξ))α−1 h(ξ + α− 1),

for t ∈ Nα−θ−2,T+α−θ+1.

Applying the condition of (2.1): u(α− 2) = ∆θu(α− θ − 2), we have C3 = 0.

So,

u(t) = C1t
α−1 + C2t

α−2 + ∆−αh(t+ α− 1). (2.6)

From (2.6) and the second condition of (2.1): u(α− 2) = p y(u), we have

C2 =
p y(u)

Γ(α− 1)
. (2.7)

Hence,

u(t) = C1t
α−1 +

py(u)

Γ(α− 1)
tα−2 + ∆−αh(t+ α− 1), (2.8)

for t ∈ Nα−3,T+α.

Using the fractional sum of order 0 < β ≤ 1 for (2.8), we obtain

∆−βu(t) =
C1

Γ(β)

t−β∑
s=α−1

(t− σ(s))β−1 sα−1 +
py(u)

Γ(β)Γ(α− 1)

t−β∑
s=α−2

(t− σ(s))β−1 sα−2
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+
1

Γ(β)Γ(α)

t−β∑
s=α

s−α∑
ξ=0

(t− σ(s))β−1(s− σ(ξ))α−1h(ξ + α− 1), (2.9)

for t ∈ Nα+β−3,T+α+β.

The third condition of (2.1) implies

q∆−βu(η + β)

=
qC1

Γ(β)

η∑
s=α−1

(η + β − σ(s))β−1 sα−1 +
p q y(u)

Γ(β)Γ(α− 1)

η∑
s=α−2

(η + β − σ(s))β−1 sα−2

+
q

Γ(β)Γ(α)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1 h(ξ + α− 1)

= C1(T + α)α−1 +
p y(u)

Γ(α− 1)
(T + α)α−2 +

1

Γ(α)

T∑
s=0

(T + α− σ(s))α−1 h(s+ α− 1).

Solving the above equation for the constant C1, we get

C1 =
−p q y(u)

ΛΓ(β)Γ(α− 1)

η∑
s=α−2

(η + β − σ(s))β−1 sα−2 +
p y(u)

ΛΓ(α− 1)
(T + α)α−2

+
1

ΛΓ(α)

T∑
s=0

(T + α− σ(s))α−1 h(s+ α− 1) (2.10)

− q

ΛΓ(β)Γ(α)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1 h(ξ + α− 1),

where Λ is defined as (2.3). Substituting C1 into (2.8), we obtain (2.2). �

3 Main Results

In this section, we wish to establish the existence results for problem (1.1). To

accomplish this, let C = C(Nα−3,α+T ,R) be a Banach space of all function u with the

norm defined by

‖u‖C = max{‖u‖, ‖∆µ∆νu‖},

where ‖u‖ = max
t∈Nα−3,α+T

|u(t)| and ‖∆µ∆νu‖ = max
t∈Nα−3,α+T

|∆µ∆νu(t − µ − ν + 2)|.

Also define an operator F : C → C by

Fu(t)

1101

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Laoprasittichok et al 1097-1111



6 S. Laoprasittichok , T. Sitthiwirattham

= − tα−1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1 f(ξ + α− 1, u(ξ + α− 1),

∆µ∆νu(ξ + α− µ− ν + 1))−
T∑
s=0

(T + α− σ(s))α−1 f(s+ α− 1, u(s+ α− 1),

∆µ∆νu(s+ α− µ− ν + 1))

]
+

p y(u)

Γ(α− 1)

[
tα−2 − tα−1Θ

Λ

]
(3.1)

+
1

Γ(α)

t−α∑
s=0

(t− σ(s))α−1 f(s+ α− 1, u(s+ α− 1),∆µ∆νu(s+ α− µ− ν + 1)),

for t ∈ Nα−3,α+T , where Λ 6= 0, Θ are defined as (2.3),(2.4), respectively. The problem

(1.1) has solutions if and only if the operator F has fixed points.

Our first result is based on Banach contraction mapping principle.

Theorem 3.1. Assume that

(H1) There exist constants γ1, γ2 > 0 such that, for each t ∈ Nα−3,α+T and for all

u, v ∈ C,

|f(t, u(t),∆µ∆νu(t− µ− ν + 2))− f(t, v(t),∆µ∆νv(t− µ− ν + 2))|
≤ γ1 |u(t)− v(t)|+ γ2 |∆µ∆νu(t− µ− ν + 2)−∆µ∆νv(t− µ− ν + 2)|.

(H2) There exists a constant ω > 0 such that, for all u, v ∈ C,

|y(u)− y(v)| ≤ ω|u− v|.

(H3) γΩ + ωΦ < (T+2)(T+1)
(T+α+2)(T+α+1)

,

where

γ = max{γ1 + γ2} (3.2)

Ω =
(T + α + 2)α−1

|Λ|

∣∣∣∣∣ q Γ(T + α + β)

Γ(α + β + 1)Γ(T )
− (T + α + 2)α

Γ(α + 1)

∣∣∣∣∣+
(T + α + 2)α

Γ(α + 1)
(3.3)

Φ =
p(T + α + 2)α−2

Γ(α− 1)

[
1 + (T + 4)

∣∣∣∣ΘΛ
∣∣∣∣
]
. (3.4)

Then the boundary value problem (1.1) has at least one solution on Nα−3,α+T .

Proof. Denote that,

H|u− v|(t) =
∣∣f(t, u(t),∆µ∆νu(t− µ− ν + 2))− f(t, v(t),∆µ∆νv(t− µ− ν + 2))

∣∣.
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For all u, v ∈ C, by computing directly, we have

‖Fu− Fv‖

= max
t∈Nα−3,α+T

∣∣∣∣∣− tα−1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1H|u− v|(ξ)

−
T∑
s=0

(T + α− σ(s))α−1H|u− v|(s)

]
+

[
tα−2 − tα−1Θ

Λ

]
p |y(u)− y(v)|

Γ(α− 1)

+
1

Γ(α)

t−α∑
s=0

(t− σ(s))α−1H|u− v|(s)

∣∣∣∣∣
≤ (γ‖u− v‖C)

[
(T + α + 2)α

Γ(α + 1)
+

(T + α + 2)α−1

|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
]

+

[
1 + (T + 4)

∣∣∣∣ΘΛ
∣∣∣∣
]

(ω‖u− v‖C) p (T + α + 2)α−2

Γ(α− 1)

= (γ‖u− v‖C) Ω + (ω‖u− v‖C) Φ,

and ∥∥∆µ∆νFu−∆µ∆νFv
∥∥

= max
t∈Nα−3,α+T

∣∣ (∆µ∆νFu) (t− µ− ν + 2)− (∆µ∆νFv) (t− µ− ν + 2)
∣∣

<

(
1

|Γ(−µ)Γ(−ν)|

T+α−ν+2∑
s=α−ν

s+ν∑
ξ=α−1

(T + α− µ− ν + 2− σ(s))−µ−1(s− σ(ξ))−ν−1

)
×

(T + α + 2)α−1

[
(γ‖u− v‖C)
|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
+
p (ω‖u− v‖C)

Γ(α− 1)

∣∣∣∣ΘΛ
∣∣∣∣
]

+ p (ω‖u− v‖C)
(T + α + 2)α−2

Γ(α− 1)
×(

1

|Γ(−µ)Γ(−ν)|

T+α−ν+2∑
s=α−ν

s+ν∑
ξ=α−2

(T + α− µ− ν + 2− σ(s))−µ−1(s− σ(ξ))−ν−1

)

+

(
1

|Γ(−µ)Γ(−ν)|

T+α−ν+2∑
s=α−ν

s+ν∑
r=α

(T + α− µ− ν + 2− σ(s))−µ−1(s− σ(r))−ν−1

)
×

(γ‖u− v‖C)
Γ(α)

T+2∑
ξ=0

(T + α + 2− σ(ξ))α−1

<
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)
[γΩ + ωΦ] ‖u− v‖C.

Thus, ‖Fu− Fv‖C ≤
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)
[γΩ + ωΦ] ‖u− v‖C.
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By (H3), we get that F is a contraction mapping, and then Theorem 3.1 implies that

boundary value problem (1.1) has unique solution on Nα−3,α+T . This completes the

proof. �

The second result is based on Schaefer’s fixed point theorem.

Theorem 3.2. (Arzelá-Ascoli Theorem) [18] A set of function in C[a, b] with the sup

norm, is relatively compact if and only it is uniformly bounded and equicontinuous on

[a, b].

Theorem 3.3. [18] If a set is closed and relatively compact then it is compact.

Theorem 3.4. [Schaefer’s fixed point theorem] [19] Let X be a Banach space

and T : X → X be a continuous and compact mapping. If the set

{x ∈ X : x = λT (x), for some λ ∈ (0, 1)}

is bounded, then T has a fixed point.

We shall use Schaefer’s fixed point theorem to prove that the operator F defined

as (3.1), has a fixed point.

Theorem 3.5. Suppose that there exist constants L1, L2 > 0 such that, for each

t ∈ Nα−3,α+T and u ∈ C,

|f(t, u(t),∆µ∆νu(t− µ− ν + 2))| ≤ L1 max{‖u‖, ‖∆µ∆νu‖},
|y(u)| ≤ L2.

Then the problem (1.1) has at least one solution on Nα−3,α+T .

Proof. We divide the proof into four steps.

Step I. Verify F map bounded sets into bounded sets in C(Nα−3,α+T ).

Let u ∈ BL = {u ∈ C(Nα−3,α+T ) : ‖u‖C ≤ L}, and choosing a constant

L ≥ L2Φ(T + α + 2)(T + α + 1)

(T + 2)(T + 1)− L1Ω (T + α + 2)(T + α + 1)
.

Denote that

H|u− v|(t) := |f(t, u(t),∆µ∆νu(t− µ− ν + 2))− f(t, v(t),∆µ∆νv(t− µ− ν + 2))|
≤ ‖f(t, u(t),∆µ∆νu(t− µ− ν + 2))− f(t, v(t),∆µ∆νv(t− µ− ν + 2))‖
=: H‖u− v‖(t).
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For each u ∈ BL, we obtain

‖Fu‖

= max
t∈Nα−3,α+T

∣∣∣∣∣− tα−1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1H|u− v|(ξ)

−
T∑
s=0

(T + α− σ(s))α−1H|u− v|(s)

]
+

[
tα−2 − tα−1Θ

Λ

]
p |y(u)|

Γ(α− 1)

+
1

Γ(α)

t−α∑
s=0

(t− σ(s))α−1H|u− v|(s)

∣∣∣∣∣
≤ L1‖u‖C

[
(T + α + 2)α

Γ(α + 1)
+

(T + α + 2)α−1

|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
]

+

[
1 + (T + 4)

∣∣∣∣ΘΛ
∣∣∣∣
]
pL2 (T + α + 2)α−2

Γ(α− 1)

≤ L1LΩ + L2 Φ.

and

‖∆µ∆νFu‖ = max
t∈Nα−3,α+T

∣∣ (∆µ∆νFu) (t− µ− ν + 2)
∣∣

= max
t∈Nα−3,α+T

{
1

|Γ(−µ)Γ(−ν)|

t−ν+2∑
s=α−ν

s+ν∑
ξ=α−1

(t− µ− ν + 2− σ(s))−µ−1(s− σ(ξ))−ν−1 ×

ξα−1

[
(L1‖u‖C)
|Λ|Γ(α)

∣∣∣∣ q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1

−
T∑
s=0

(T + α− σ(s))α−1

∣∣∣∣+
pL2

Γ(α− 1)

∣∣∣∣ΘΛ
∣∣∣∣
]

+
1

|Γ(−µ)Γ(−ν)|

t−ν+2∑
s=α−ν

s+ν∑
ξ=α−2

(t− µ− ν + 2− σ(s))−µ−1(s− σ(ξ))−ν−1ξα−2 ×[
pL2

Γ(α− 1)
(T − α + 2)α−2

]
+

(L1‖u‖C)
|Γ(−µ)Γ(−ν)|

t−ν+2∑
s=α−ν

s+ν∑
r=α

(t− µ− ν + 2− σ(s))−µ−1 ×

(s− σ(r))−ν−1

[
1

Γ(α)

r−α∑
ξ=0

(r − σ(ξ))α−1

]}

<

{
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)

}
L1L

[
(T + α + 2)α

Γ(α + 1)
+

(T + α + 2)α−1

|Λ|
×

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
]

+

{
(T + α + 2)(T + α + 1)

(T + 3)(T + 2)

}
×
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pL2

Γ(α− 1)
(T + α + 2)α−2

[
1 + (T + 4)

∣∣∣∣ΘΛ
∣∣∣∣
]

<
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)

[
L1LΩ + L2Φ

]
.

Hence, ‖Fu‖C ≤ L where Ω and Φ are defined on 3.3 and 3.4, respectively. Thus

F is uniformly bounded.

Step II. Show that F is continuous on BL.

Let ε > 0 there exists δ = max{δ1, δ2} > 0 such that, for each t ∈ Nα−3,α+T and

for all u, v ∈ BL with

max{|u(t)− v(t)|, |∆µ∆νu(t− µ− ν + 2)−∆µ∆νv(t− µ− ν + 2)|} < δ1,

we have

H|u− v| < ε (T + 2)(T + 1)

2Ω (T + α + 2)(T + α + 1)
,

and for all u, v ∈ BL with |u− v| < δ2, we have

|y(u)− y(v)| < ε (T + 2)(T + 1)

2Φ (T + α + 2)(T + α + 1)
.

Then, we have

‖Fu(t)− Fv(t)‖

= max
t∈Nα−3,α+T

∣∣∣∣∣− tα−1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1H|u− v|(ξ)

−
T∑
s=0

(T + α− σ(s))α−1H|u− v|(s)

]
+

[
tα−2 − tα−1Θ

Λ

]
p |y(u)− y(v)|

Γ(α− 1)

+
1

Γ(α)

t−α∑
s=0

(t− σ(s))α−1H|u− v|(s)

∣∣∣∣∣
≤ H‖u− v‖

[
(T + α + 2)α

Γ(α + 1)
+

(T + α + 2)α−1

|Λ|
·
∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
]

+‖y(u)− y(v)‖ p (T + α + 2)α−2

Γ(α− 1)

[
1 + (T + 4)

∣∣∣∣ΘΛ
∣∣∣∣
]

= ΩH‖u− v‖+ Φ ‖y(u)− y(v)‖.

Similarly to the proof above and Theorem 3.1, we obtain∥∥ (∆µ∆νFu) (t− µ− ν + 2)− (∆µ∆νFv) (t− µ− ν + 2)
∥∥
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<
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)

[
ΩH‖u− v‖+ Φ ‖y(u)− y(v)‖

]
<

ε

2
+
ε

2
= ε.

Hence, ‖Fu− Fv‖C ≤ ε. This means that F is continuous on BL.

Step III. Examine F (BL) is equicontinuous with BL. For any ε > 0, there exists

δ = max{δ1, δ2, δ3} > 0 such that, for t1, t2 ∈ Nα−3,α+T

∣∣tα2 − tα1 ∣∣ < εΓ(α + 1) (T + 2)(T + 1)

3L1(T + α + 2)(T + α + 1)
whenever |t2 − t1| < δ1,

∣∣tα−1
2 −tα−1

1

∣∣ < ε |Λ| (T + 2)(T + 1)

3(T + α + 2)(T + α + 1)
[
L1

∣∣∣ q Γ(T+α+β)
Γ(T )Γ(α+β+1)

− (T+α)α

Γ(α−1)

∣∣∣+ pL2 |Θ|
Γ(α−1)

]
whenever |t2 − t1| < δ2,∣∣tα−2

2 − tα−2
1

∣∣ < εΓ(α− 1)(T + 2)(T + 1)

3pL2(T + α + 2)(T + α + 1)
whenever |t2 − t1| < δ3.

Then, we have

|Fu(t2)− Fu(t1)|

=

∣∣∣∣∣− t
α−1
2 − tα−1

1

ΛΓ(α)

[
q

Γ(β)

η∑
s=α

s−α∑
ξ=0

(η + β − σ(s))β−1(s− σ(ξ))α−1 ×

f(ξ + α− 1, u(ξ + α− 1),∆µ∆nu(ξ + α− µ− ν + 1))−
T∑
s=0

(T + α− σ(s))α−1 ×

f(s+ α− 1, u(s+ α− 1),∆µ∆nu(s+ α− µ− ν + 1))

]

+
p y(u)

Γ(α− 1)

[(
t
α−2
2 − tα−2

1

)
−
(
t
α−1
2 − tα−1

1

) Θ

Λ

]

+
1

Γ(α)

[
t2−α∑
s=0

(t2 − σ(s))α−1 f(s+ α− 1, u(s+ α− 1),∆µ∆nu(s+ α− µ− ν + 1))

−
t1−α∑
s=0

(t1 − σ(s))α−1 f(s+ α− 1, u(s+ α− 1),∆µ∆nu(s+ α− µ− ν + 1))

] ∣∣∣∣∣
≤

∣∣∣tα−1
2 − tα−1

1

∣∣∣ [ L1

|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣+
pL2

Γ(α− 1)

∣∣∣∣ΘΛ
∣∣∣∣
]

+
L1

Γ(α)

[
t2−α∑
s=0

(t2 − σ(s))α−1 +

t1−α∑
s=0

(t1 − σ(s))α−1

]
+
∣∣∣tα−2

2 − tα−2
1

∣∣∣ pL2

Γ(α− 1)

=
∣∣tα−1

2 − tα−1
1

∣∣ [ L1

|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣+
pL2

Γ(α− 1)

∣∣∣∣ΘΛ
∣∣∣∣
]
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+
L1

Γ(α + 1)

∣∣tα2 − tα1 ∣∣+
pL2

Γ(α− 1)

∣∣tα−2
2 − tα−2

1

∣∣.
So
∥∥Fu− Fv∥∥ < ε.

Similarly to the proof above and Theorem 3.1, we obtain∥∥∆µ∆νFu−∆µ∆νFu
∥∥

<
(T + α + 2)(T + α + 1)

(T + 2)(T + 1)

{∣∣tα−1
2 − tα−1

1

∣∣ [ L1

|Λ|

∣∣∣∣ q Γ(T + α + β)

Γ(T )Γ(α + β + 1)
− (T + α)α

Γ(α + 1)

∣∣∣∣
+

pL2

Γ(α− 1)

∣∣∣∣ΘΛ
∣∣∣∣
]

+
L1

Γ(α + 1)

∣∣tα2 − tα1 ∣∣+
pL2

Γ(α− 1)

∣∣tα−2
2 − tα−2

1

∣∣}
<

ε

3
+
ε

3
+
ε

3
= ε.

Thus, ‖Fu(t2)− Fu(t1)‖C ≤ ε. This means that F (BL) is an equicontinuous set.

As a consequence of Steps I to III together with the Arzelá-Ascoli theorem, its imply

that F : C(Nα−3,α+T )→ C(Nα−3,α+T ) is completely continuous.

Step IV. A priori bounds. We show that the set

E = {u ∈ C(Nα−3,α+T ) : u = λFu for some 0 < λ < 1} is bounded.

Let u ∈ E. Then u(t) = λ(Fu)(t) for some 0 < λ < 1. Thus, for each t ∈ Nα−3,α+T ,

we have

|λFu(t)| < |Fu(t)| < L1LΩ + L2 Φ := =.

So, we have
∥∥λFu∥∥ < =. Similarly to the proof above and Theorem 3.1, we obtain

∥∥λ∆µ∆νFu
∥∥ <

(T + α + 2)(T + α + 1)

(T + 2)(T + 1)
= =: =̃.

Hence, ‖λFu‖C ≤ =̃. This shows that E is bounded.

By of the Schaefer’s fixed point theorem, we conclude that F has a fixed point which

is a solution of the problem (1.1). �

4 Some examples

In this section, in order to illustrate our results, we consider some examples.
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Example 4.1. Consider the following boundary value problem

∆
5
2u(t) =

e− sin2(t+ 3
2

)(
t+ 15

2

)2 ·
∣∣u (t+ 3

2

)∣∣+ |∆ 2
3 ∆

3
4u
(
t+ 25

12

)
|∣∣u (t+ 3

2

)∣∣+ 1
, t ∈ N0,4, (4.1)

u

(
1

2

)
= ∆

1
4u

(
1

4

)
=

1

2

7∑
i=0

Ciu(ti), ti = i− 1

2
, (4.2)

u

(
13

2

)
=

1

3
∆−

1
3u

(
29

6

)
. (4.3)

where Ci are given positive constants with
∑7

i=0 Ci <
1

10 e20
.

Here p = 1
2
, q = 1

3
, θ = 1

4
, α = 5

2
, β = 1

3
, µ = 2

3
, ν = 3

4
, η = 9

2
, T = 4,

f (t, u(t),∆µ∆νu (t− µ− ν + 2)) = e− sin2 t

(t+6)2
· |u(t)|+|∆

2
3 ∆

3
4 u(t+ 7

12)|
|u(t)|+1

and y(u) =
∑7

i=0 Ciu(ti), ti =

i− 1
2
.

Let t ∈ N− 1
2
, 13
2

and u, v ∈ R, then

|Λ| = 7.781 6= 0, Θ = 1.278, Ω ≈ 106.039, Φ ≈ 3.119.

Since |f (t, u(t),∆µ∆νu (t− µ− ν + 2))− f (t, v(t),∆µ∆νv (t− µ− ν + 2))|
≤ 4

1849
|u(t)− v(t)|+ 4

1849

∣∣∆µ∆νu
(
t+ 7

12

)
−∆µ∆νv

(
t+ 7

12

)∣∣
is satisfied with γ = max{γ1 + γ2} = 8

1849
.

Also, we get |y(u)−y(v)| =
∣∣∑7

i=0 Ciu(ti)−
∑7

i=0Civ(ti)
∣∣ ≤∑7

i=0 Ci|u(ti)−v(ti)|,
so (H2) holds with ω =

∑7
i=0 Ci <

1
10 e20

.

We can show that

(T + α + 2)(T + α + 1)

(T + 2)(T + 1)
[γΩ + ωΦ] ≈ 0.975 < 1.

Hence, by Theorem 3.1, the problem (4.1)-(4.3) has unique solution. �

Example 4.2. Consider the following boundary value problem

∆
5
2u(t) =

t+ 3
2

10π

[
2 sin

∣∣∣∣u(t+
3

2

)∣∣∣∣+ cos

∣∣∣∣∆ 2
3 ∆

3
4u

(
t+

25

12

)∣∣∣∣
]
, t ∈ N0,4, (4.4)

u

(
1

2

)
= ∆

1
4u

(
1

4

)
=

1

4

7∑
i=0

Ci
|u(ti)|

1 + |u(ti)|
, ti = i− 1

2
, (4.5)

u

(
13

2

)
=

1

5
∆−

1
3u

(
29

6

)
, (4.6)

where Ci are given positive constants with
∑7

i=0 Ci <
1
e
.
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Here p = 1
4
, q = 1

5
, α = 5

2
, β = 1

3
, θ = 1

4
, µ = 2

3
, ν = 3

4
, η = 9

2
, T = 4,

f (t, u(t),∆µ∆νu (t− µ− ν + 2)) = t
10π

[
2 sin |u(t)|+ cos

∣∣∣∆ 2
3 ∆

3
4u
(
t+ 7

12

)∣∣∣ ] and

y(u) =
∑7

i=0 Ci
|u(ti)|

1+|u(ti)| , ti = i− 1
2
. Clearly for t ∈ N− 1

2
, 13
2

, we have

|f(t, u(t),∆µ∆νu (t− µ− ν + 2))| ≤ 13

20π
max{2, 1} ≈ 0.414

(
L1 =

13

20π

)
|y(u)| ≤

7∑
i=0

Ci
|u(ti)|

1 + |u(ti)|
<

1

e
= L2.

Hence, by Theorem 3.5, the problem (4.4)-(4.6) has at least one solution. �
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Hesitant fuzzy mighty filters of BE-algebras
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Abstract. The notion of hesitant fuzzy mighty filter of a BE-algebra is introduced and related properties are

investigated. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy mighty filter. We construct

a new quotient structure of a transitive BE-algebra using a hesitant fuzzy filter and study some properties of it.

1. Introduction

In 2007, Kim and Kim [5] introduced the notion of a BE-algebra, and investigated several

properties. In [1], Ahn and So introduced the notion of ideals in BE-algebras. They gave several

descriptions of ideals in BE-algebras. Song et al. [8] considered the fuzzification of ideals in BE-

algebras. They introduced the notion of fuzzy ideals in BE-algebras, and investigated related

properties. They gave characterizations of a fuzzy ideal in BE-algebras.

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.

are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra [9] introduced

the notion of hesitant fuzzy sets which are a very useful to express peoples hesitancy in daily life.

The hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and

perfectly described in terms of the opinions of decision makers. Also, hesitant fuzzy set theory

is used in decision making problem etc. (see [3, 7, 11, 12, 13, 14, 15]). In [4], Y. B. Jun and

S. S. Ahn introduced the notion of a hesitant fuzzy filter and investigated some properties of it.

The authors [2] defined a hesitant fuzzy implicative filter in a BE-algebra and discussed some

properties of it.

In this paper, we introduce the notion of hesitant fuzzy mighty filter of a BE-algebra, and

investigate some properties of it. We consider characterizations of a hesitant fuzzy mighty filter

of a BE-algebra. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy mighty

filter. We construct a new quotient structure of a transitive BE-algebra using a hesitant fuzzy

filter and study some properties of it.

2. Preliminaries

02010 Mathematics Subject Classification: 06F35; 03G25; 06D72.
0Keywords: BE-algebra; (mighty) filter; hesitant (mighty) filter.

∗ The corresponding author. Tel: +82 2 2260 3410, Fax: +82 2 2266 3409
0E-mail: han@hanyang.ac.kr (J. S. Han); sunshine@dongguk.edu (S. S. Ahn)
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By a BE-algebra ([5]) we mean a system (X; ∗, 1) of type (2, 0) which the following axioms

hold:

(2.1) (∀x ∈ X) (x ∗ x = 1),

(2.2) (∀x ∈ X) (x ∗ 1 = 1),

(2.3) (∀x ∈ X) (1 ∗ x = x),

(2.4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z) (exchange).

We introduce a relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies: for any x, y, z ∈ X, y ∗ z ≤
(x ∗ y) ∗ (x ∗ z). A BE-algebra (X; ∗, 1) is said to be self distributive if it satisfies: for any

x, y, z ∈ X, x∗ (y ∗z) = (x∗y)∗ (x∗z). Note that every self distributive BE-algebra is transitive,

but the converse is not true in general (see [5]).

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(2.5) (∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z),

(2.6) (∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y),

(2.7) (∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)),

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F

is a filter of X ([5]) if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

F is a mighty filter ([6]) of X if it satisfies (F1) and

(F3) (∀x, y, z ∈ X)(z ∗ (y ∗ x), z ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Theorem 2.2. ([6]) A filter F of a BE-algebra X is mighty if and only if

(2.8) (∀x, y ∈ X)(y ∗ x ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Definition 2.3. ([9]) Let E be a reference set. A hesitant fuzzy set on E is defined in terms of a

function that when applied to E returns a subset of [0, 1], which can be viewed as the following

mathematical representation:

HE := {(e, hE(e))|e ∈ E}
where hE : E → P([0, 1]).

Definition 2.4. Given a non-empty subset A of a BE-algebra X, a hesitant fuzzy set

HX := {(x, hX(x))|x ∈ X}

on satisfying the following condition:

hX(x) = ∅ for all x /∈ A
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is called a hesitant fuzzy set related to A (briefly, A-hesitant fuzzy set) on X, and is represented

by HA := {(x, hA(x)) | x ∈ X}, where hA is a mapping from X to P([0, 1]) with hA(x) = ∅ for

all x /∈ A.

For a hesitant set HX := {(x, hX(x)) | x ∈ X} of a BE-algebra X and a subset γ of [0, 1], the

hesitant fuzzy γ-inclusive set of HX , denoted by HX(γ), is defined to be the set

HX(γ) := {x ∈ X|γ ⊆ hX(x)}.

For any hesitant fuzzy set HX = {(x, hX(x)|x ∈ X} and GX = {(x, gX(x))|x ∈ X}, we call HX

a hesitant fuzzy subset of GX , denoted by HX⊆̃GX , if hX(x) ⊆ gX(x) for all x ∈ X.

3. Hesitant fuzzy mighty filters

Definition 3.1. Given a non-empty subset (subalgebra as much as possible) A of a BE-algebra

X, let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) |
x ∈ X} is called a hesitant fuzzy subalgebra of X related to A (briefly, A-hesitant fuzzy subalgebra

of X) ([4]) if it satisfies the following condition: hA(x) ∩ hA(y) ⊆ hA(x ∗ y) for any x, y ∈ A.

An A-hesitant fuzzy subalgebra of X with A = X is called a hesitant fuzzy subalgebra of X. An

A-hesitant fuzzy set HA := {(x, hA(x)) | x ∈ X} on X is called a hesitant fuzzy filter of X related

to A (briefly, A-hesitant fuzzy filter of X) ([4]) if it satisfies the following condition:

(3.1) (∀x ∈ A)(hA(x) ⊆ hA(1)),

(3.2) (∀x, y ∈ A)(hA(x ∗ y) ∩ hA(x) ⊆ hA(y)).

An A-hesitant fuzzy filter of X with A = X is called a hesitant fuzzy filter of X.

Proposition 3.2. ([4]) Let HA := {(x, hA(x))|x ∈ X} be an A-hesitant fuzzy filter of a BE-

algebra X where A is a subalgebra of X. Then the following assertions are valid.

(i) (∀x, y ∈ A)(x ≤ y ⇒ hA(x) ⊆ hA(y)),

(ii) (∀x, y, z ∈ A)(z ≤ x ∗ y ⇒ hA(y) ⊇ hA(x) ∩ hA(z)),

(iii) (∀x, y, z ∈ A)(hA(x ∗ (y ∗ z)) ∩ hA(y) ⊆ hA(x ∗ z)),

(iv) (∀a, x ∈ A)(hA(a) ⊆ hA((a ∗ x) ∗ x).

Proposition 3.3. Every hesitant fuzzy filter of a BE-algebra X is a hesitant fuzzy subalgebra

of X.

Proof. Let HX = {(x, hX(x))|x ∈ X} be a hesitant fuzzy filter of X. For any x, y ∈ X, we have

hX(x) ∩ hX(y) ⊆ hX(1) ∩ hX(y) = hX(y ∗ (x ∗ y)) ∩ hX(y) ⊆ hX(x ∗ y). Hence HX is a hesitant

fuzzy subalgebra of X. □

The converse of Proposition 3.3 may not be true in general (see Example 3.4).
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Example 3.4. Let X = {0, 1, a, b, c} be a BE-algebra ([4]) with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

Let HX := {(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined by

HX =
{

(1, [0, 1]), (a, (0, 1
8
)), (b, (1

4
, 3
4
])), (c, (0, 1

2
))
}

Then HX is a hesitant fuzzy subalgebra of X, but not a hesitant fuzzy filter of X since hX(b ∗
a) ∩ hX(b) = hX(1) ∩ hX(b) = [0, 1] ∩ (1

4
, 3
4
] ⊈ hX(a) = (0, 1

8
).

Definition 3.5. Given a non-empty subset (subalgebra as much as possible) A of a BE-algebra

X, let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) |
x ∈ X} is called a hesitant fuzzy mighty filter of X related to A (briefly, A-hesitant fuzzy mighty

filter of X) if it satisfies (3.1) and

(3.3) (∀x, y, z ∈ A)(hA(z ∗ (y ∗ x)) ∩ hA(z) ⊆ hA(((x ∗ y) ∗ y) ∗ x).

An A-hesitant fuzzy mighty filter of X with A = X is called a hesitant fuzzy mighty filter of X.

Example 3.6. Let X = {1, a, b, c, d, 0} be a BE-algebra ([6]) with the following Cayley table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 b c d c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

0 1 1 1 1 1 1

Let HX := {(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined by

HX = {(1, [0, 1]), (a, [3
4
, 1]), (b, [1

2
, 1]), (c, [1

2
, 1]), (d, {3

4
, 1}), (0, {1

2
, 1})}

It is easy to check that HX is a hesitant fuzzy fuzzy mighty filter of X.

Proposition 3.7. Every hesitant fuzzy mighty filter of a BE-algebra X is a hesitant fuzzy filter

of X.

Proof. Let HX = {(x, hX(x))|x ∈ X} be a hesitant fuzzy mighty filter of X. Putting y := 1 in

(3.3), we have hX(z ∗ (1 ∗ x))∩ hX(z) = hX(z ∗ x)∩ hX(z) ⊆ hX(((x ∗ 1) ∗ 1) ∗ x) = hX(x). Hence

HX is a hesitant fuzzy filter of X. □

The converse of Proposition 3.7 may not be true in general (see Example 3.8).
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Example 3.8. Let X = {1, a, b, c, d} be a BE-algebra ([5]) with the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Let HX := {(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined by

HX = {(1, [0, 1]), (a, [1
2
, 1]), (b, [1

4
, 1]), (c, [1

5
, 1]), (d, {3

4
, 1})}.

It is easy to check that HX is a hesitant fuzzy fuzzy filter of X, but not a hesitant fuzzy mighty

filter of X since hX(1 ∗ (c ∗ a)) ∩ hX(1) = hX(1) = [0, 1] ⊈ hX(((a ∗ c) ∗ c) ∗ a) = hX(a) = [1
2
, 1].

Theorem 3.9. Any hesitant fuzzy filter HX = {(x, hX(x))|x ∈ X} of a BE-algebra X is mighty

if and only if it satisfies

(3.4) (∀x, y ∈ X)(hX(y ∗ x) ⊆ hX(((x ∗ y) ∗ y) ∗ x)).

Proof. Assume that a hesitant fuzzy filter HX is mighty. Setting z := 1 in (3.3), we have

hX(1 ∗ (y ∗ x)) ∩ hX(1) = hX(y ∗ x) ⊆ hX(((x ∗ y) ∗ y) ∗ x). Hence (3.4) holds.

Conversely, suppose that the hesitant fuzzy filter HX = {(x, hX(x))|x ∈ X} satisfies the

condition (3.4). Using (3.2) and (3.4), we have hX(z ∗ (y ∗ x)) ∩ hX(z) ⊆ hX(y ∗ x) ⊆ hX(((x ∗
y) ∗ y) ∗ x), for any x, y ∈ X. Hence HX is a hesitant fuzzy mighty filter of X. □

Proposition 3.10. Let HX = {(x, hX(x))|x ∈ X} be a hesitant fuzzy mighty filter of a BE-

algebra X. Then XHX
:= {x ∈ X|hX(x) = hX(1)} is a mighty filter of X.

Proof. Clearly, 1 ∈ XHX
. Let z∗(y∗x), z ∈ XHX

. Then hX(z∗(y∗x)) = hX(1) and hX(z) = hX(1).

It follows from (3.3) that hX(z ∗ (y ∗ x))∩hX(z) = hX(1) ⊆ hX(((x ∗ y) ∗ y) ∗ x). By (3.1), we get

hX(((x ∗ y) ∗ y) ∗ x) = hX(1). Hence ((x ∗ y) ∗ y) ∗ x ∈ XHX
. Therefore XHX

is a mighty filter of

X. □

Theorem 3.11. Let HX = {(x, hX(x))|x ∈ X} and GX = {(x, gX(x))|x ∈ X} be hesitant fuzzy

filters of a transitive BE-algebra such that HX⊆̃GX and hX(1) = gX(1). If HX is mighty, then

so is GX .

Proof. Let x, y ∈ X. Note that y ∗ ((y ∗x)∗x) = (y ∗x)∗ (y ∗x) = 1. Since HX is a hesitant fuzzy

mighty filter of a BE-algebra X, by (3.4) and HX⊆̃GX we have hX(1) = hX(y ∗ ((y ∗ x) ∗ x)) ⊆
hX(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)) ⊆ gX(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)). Since hX(1) = gX(1),

we get gX((y ∗ x) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)) = gX(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗x) ∗ x)) = gX(1).
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It follows from (3.1) and (3.2) that

gX(y ∗ x) =g(1) ∩ gX(y ∗ x)

=gX((y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)) ∩ gX(y ∗ x)

⊆gX(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x).

(3.5)

Since X is transitive, we get

[((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x]∗[((x ∗ y) ∗ y) ∗ x]

≥ ((x ∗ y) ∗ y) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y)

≥ (((y ∗ x) ∗ x) ∗ y) ∗ (x ∗ y)

≥ x ∗ ((y ∗ x) ∗ x)

= (y ∗ x) ∗ (x ∗ x)

= (y ∗ x) ∗ 1 = 1.

It follows from Proposition 3.2 that gX(((((y ∗x)∗x)∗y)∗y)∗x)∩gX(1) = gX(((((y ∗x)∗x)∗y)∗
y) ∗ x) ⊆ gX(((x ∗ y) ∗ y) ∗ x). Using (3.5), we have gX(y ∗ x) ⊆ gX(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x) ⊆
gX(((x ∗ y) ∗ y) ∗x). Therefore gX(y ∗x) ⊆ gX(((x ∗ y) ∗ y) ∗x). By Theorem 3.9, GX is a hesitant

fuzzy mighty filter of X. □

Corollary 3.12. Every hesitant fuzzy filter HX of a transitive BE-algebra X is mighty if and

only if the hesitant fuzzy filter H{1} is mighty.

Proof. Straightforward. □

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy filter of a transitive BE-algebra X. Define

a binary relation “ ∼hX
” on X by putting x ∼hX

y if and only if hX(x ∗ y) = hX(y ∗ x) = hX(1)

for any x, y ∈ X.

Lemma 3.13. The relation “ ∼hX
” is an equivalence relation on a transitive BE-algebra X.

Proof. For any x ∈ X, x ∗ x = 1 by (2.1). So hX(x ∗ x) = hX(1), hence x ∼hX
x, which ∼hX

is

reflexive. Suppose that x ∼hX
y for any x, y ∈ X. Then hX(x ∗ y) = hX(y ∗ x) = hX(1). Hence

∼hX
is symmetric. Assume that x ∼hX

y and y ∼hX
z for any x, y, z ∈ X. Then hX(x ∗ y) =

hX(y∗x) = hX(1) and hX(y∗z) = hX(z∗y) = hX(1). By transitivity, (x∗y)∗[(y∗z)∗(x∗z)] = 1 and

(z∗y)∗ [(y∗x)∗(z∗x)] = 1. By Proposition 3.2, we have hX(x∗y)∩hX(y∗z) = hX(1) ⊆ hX(x∗z)

and hX(z ∗ y) ∩ hX(y ∗ x) = hX(1) ⊆ hX(z ∗ x). Hence hX(z ∗ x) = hX(z ∗ x) = hX(1), i.e.,

x ∼hX
z. Thus ∼hX

is an equivalence relation on X. □

Lemma 3.14. The relation “ ∼hX
” is a congruence relation on a transitive BE-algebra X.

Proof. If x ∼hX
y and u ∼hX

v for any x, y, u, v ∈ X, then hX(x ∗ y) = hX(y ∗ x) = hX(1)

and hX(u ∗ v) = hX(v ∗ u) = hX(1). By transitivity, (u ∗ v) ∗ [(x ∗ u) ∗ (x ∗ v)] = 1 and
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(v ∗ u) ∗ [(x ∗ v) ∗ (x ∗ u)] = 1, it follows from Proposition 3.2 that hX(1) = hX(u ∗ v) ⊆
hX((x∗u)∗((x∗v)) and hX(1) = hX(v∗u) ⊆ hX((x∗v)∗(x∗u)). Hence hX((x∗u)∗(x∗v)) = hX(1)

and hX((x ∗ v) ∗ (x ∗u)) = hX(1). Therefore x ∗u ∼hX
x ∗ v. By a similar way, we can prove that

x ∗ v ∼hX
y ∗ v. Therefore ∼hX

is a congruence relation on X. □

X is decomposed by the congruence relation ∼hX
. The class containing x is denoted by [x]hX

.

Denote X/hX := {[x]hX
|x ∈ X}. We define a binary relation ∗′ on X/hX by [x]hX

∗′ [y]hX
:=

[x ∗ y]hX
. This definition is well defined since ∼hX

is a congruence relation on X.

Lemma 3.15. [1]hX
= XHX

.

Proof. [1]hX
= {x ∈ X|1 ∼hX

x} = {x ∈ X|hX(1 ∗ x) = hX(x ∗ 1) = hX(1)} = {x ∈ X|hX(x) =

hX(1)} = XHX
. □

Theorem 3.16. Let X be a transitive BE-algebra X. Then (X/hX ; ∗′, [1]hX
) is a transitive

BE-algebra.

Proof. Straightforward. □

Theorem 3.17. A hesitant fuzzy filter of a transitive BE-algebra X is mighty if and only if

every filter of the quotient algebra X/hX is mighty.

Proof. Assume that a hesitant fuzzy filter HX is mighty and let x, y ∈ X be such that [y]hX
∗′

[x]hX
∈ [1]hX

. Then hX(y ∗ x) = hX(1). It follows from (2.3) and (3.3) that hX(1 ∗ (y ∗ x)) ∩
hX(1) = hX(y ∗ x) = hX(1) ⊆ hX(((x ∗ y) ∗ y) ∗ x). Hence hX(((x ∗ y) ∗ y) ∗ x) = hX(1). So

((([x]hX
∗′ [y]hX

) ∗′ [y]hX
)) ∗′ [x]hX

= [((x ∗ y) ∗ y) ∗ x]hX
∈ [1]hX

which proves that {[1]hX
} is a

mighty filter of X/hX . By Corollary 3.13, every filter of X/hX is mighty.

Conversely, suppose that every filter of the quotient algebra X/hX is mighty and let x, y ∈ X

be such that y ∗ x ∈ [1]hX
. Then hX(y ∗ x) = hX(1) and so [y]hX

∗′ [x]hX
∈ [1]hX

. Since

{[1]hX
} is a mighty filter of X/hX , it follows from Theorem 2.2 that [((x ∗ y) ∗ y) ∗ x]hX

=

(([x]hX
∗′ [y]hX

) ∗′ [y]hX
) ∗′ [x]hX

∈ [1]hX
. Hence hX((((x ∗ y) ∗ y)∗) ∗ x) = hX(1). Therefore

hX(y ∗ x) = hX(((x ∗ y) ∗ y)) ∗ x). Thus HX is a hesitant fuzzy filter of Theorem 3.9. □

Theorem 3.18. A hesitant fuzzy set HX := {(x, hX(x)|x ∈ X} of a BE-algebra X is a hesitant

fuzzy mighty filter of X if and only if the set HX(γ) := {x ∈ X|γ ⊆ hX(x)} is a mighty filter of

X for all γ ∈ P([0, 1]) whenever it is nonempty.

Proof. Suppose that HX is a hesitant fuzzy mighty filter of X. Let x, y, z ∈ X and γ ∈ P([0, 1])

be such that z ∗ (y ∗ x) ∈ HX(γ) and z ∈ HX(γ). Then hX(z ∗ (y ∗ x)) ⊇ γ and hX(z) ⊇ γ. It

follows from (3.1) and (3.3) that hX(1) ⊇ hX(((x ∗ y) ∗ y) ∗ x) ⊇ hX(z ∗ (y ∗ x)) ∩ hX(z) ⊇ γ.

Hence 1 ∈ HX(γ) and ((x ∗ y) ∗ y) ∗ x ∈ HX(γ), and therefore HX(γ) is a mighty filter of X.

Conversely, assume that HX(γ) is a mighty filter of X for all γ ∈ P([0, 1]) with HX(γ) ̸= ∅.

For any x ∈ X, let hX(x) = γ. Then x ∈ HX(γ). Since HX(γ) is a mighty filter of X, we have
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1 ∈ hX(γ) and so hX(x) = γ ⊆ hX(1). For any x, y, z ∈ X, let hX(z ∗ (y ∗ x)) = γz∗(y∗x) and

hX(z) = γz. Let γ := γz∗(y∗x) ∩ γz. Then z ∗ (y ∗ x) ∈ HX(γ) and z ∈ HX(γ) which imply that

((x ∗ y) ∗ y) ∗ x ∈ HX(γ). Hence hX(((x ∗ y) ∗ y) ∗ x) ⊇ γ = γz∗(y∗x) ∩ γz = hX(z ∗ (y ∗ x))∩hX(z).

Thus HX is a hesitant fuzzy mighty filter of X. □
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Abstract. In this paper, we introduce and study a class of new general iteration
processes for two finite families of total asymptotically nonexpansive mappings in
hyperbolic spaces, which includes asymptotically nonexpansive mapping, (general-
ized) nonexpansive mapping of all normed linear spaces, Hadamard manifolds and
CAT(0) spaces as special cases. Some important related properties to the new gen-
eral iterative processes are also given and analyzed, and ∆-convergence and strong
convergence of the iteration in hyperbolic spaces are proved. Furthermore, some
meaningful illustrations for clarifying our results and two open questions are pro-
posed. The results presented in this paper extend and improve the corresponding
results announced in the current literature.

Key Words and Phrases: common fixed point, new general iterative approxi-
mation, ∆-convergence and strong convergence, total asymptotically nonexpansive
mapping, hyperbolic space.

AMS Subject Classification: 47H09, 47H10, 54E70.

1 Introduction and preliminaries

Let (H, d) be a metric space, {Ti}ri=1 and {Si}ri=1 be two finite families of nonlinear mappings on
nonempty set K ⊂ H. Suppose that {αin} and {βin} are two real sequences in [a, b] for some
a, b ∈ (0, 1) and θin := βin

1−αin
. For r ≥ 2 and n ≥ 1, in this paper, we consider the following general

iterative sequence {xn}:

xn+1 = W (Tn
1 yn+r−2,W (yn+r−2, S

n
1 yn+r−2, θ1n), α1n),

yn+r−2 = W (Tn
2 yn+r−3,W (yn+r−3, S

n
2 yn+r−3, θ2n), α2n),

yn+r−3 = W (Tn
3 yn+r−4,W (yn+r−4, S

n
3 yn+r−4, θ3n), α3n),

...

yn+1 = W (Tn
r−1yn,W (yn, S

n
r−1yn, θ(r−1)n), α(r−1)n),

yn = W (Tn
r xn,W (xn, S

n
r xn, θrn), αrn).

(1.1)

Remark 1.1 For appropriate and suitable choices of the nonlinear mappings {Ti}ri=1 and {Si}ri=1,
the positive integer r and the underlying spaces, the iteration (1.1) includes a number of known
iterative processes, which were studied previously by many authors. For more details, see [1–20] and
the references therein, and the following examples:

∗The corresponding author: hengyoulan@163.com (H.Y. Lan)
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Example 1.1 If βin = 0 for i = 1, 2, 3, · · · , r and all n ≥ 1, and {αin} is a real sequence in
[ε, 1 − ε] for some ε ∈ (0, 1), then the sequence {xn} in (1.1) reduces to

xn+1 = α1nyn+r−2 + (1 − α1n)Tn
1 yn+r−2,

yn+r−2 = α2nyn+r−3 + (1 − α2n)Tn
2 yn+r−3,

yn+r−3 = α3nyn+r−4 + (1 − α3n)Tn
3 yn+r−4,

...

yn+1 = α(r−1)nyn + (1 − α(r−1)n)Tn
r−1yn,

yn = αrnxn + (1 − αrn)Tn
r xn,

(1.2)

which was considered by Yildirim and Ozdemir [1] when {Ti}ri=1 is a family of asymptotically quasi-
nonexpansive self-mappings on K ⊂ H and H is a Banach space. Further, the iteration process (1.2)
was introduced and studied by Basarir and Sahin [2] for a generalized nonexpansive mapping of the
CAT(0) spaces.

Example 1.2 For r = 3 and αin = 0, then (1.1) changes into the iterative process introduced
by Noor [3], which was dealt for variational inequalities of the Hilbert spaces. Moreover, a unified
treatment regarding the iterative process for nonexpansive mapping in hyperbolic spaces was con-
sidered by Akbulut and Gündüz [4]. For many more, see, for example, the research works of Sahin
and Basarir [5], Suantai [6] and many others in the literature.

Example 1.3 Let r = 2, and α1n = 1, and α2n = 0, and T2 = S2, then (1.1) becomes to the
following iteration:

xn+1 = Tn
1 yn, yn = W (xn, T

n
2 xn, θ2n). (1.3)

The iteration (1.3) is called a modified hybrid Picard-Mann iteration process, which was introduced
and studied by Thakur et al. [7] in CAT(0) space. This process (1.3) is independent of Picard
and Mann iterative process and the convergence process is faster than Picard and Mann iteration
process. For more on (hybrid) Picard-Mann iteration process and a comparison between different
process of modified hybrid Picard-Mann iteration process, see, for example, [7, 8] and the references
therein.

Example 1.4 Let r = 2, and α1n = 0, and β1n = 1, α2n = 1, then (1.1) is equivalent to

xn+1 = W (xn, S
nxn, θn),

which is well-known modified Mann iteration process, and was studied by Schu [9] in Banach spaces.
In 2013, Fukhar-ud-din and Khan [21] pointed out “structural properties of the space under

consideration are very important in establishing the fixed point property of the space, for example,
strict convexity, uniform convexity and uniform smoothness etc”. In fact, in recent decades, moti-
vated and governed by questions in most of science problems about hyperbolic groups, the study
on hyperbolic spaces has been developed unremittingly in geometric group theory and metric fixed
point theory in normed linear spaces or Banach spaces. Especially, the concept of hyperbolic spaces
introduced by Kohlenbach [22] and defined below, is more restrictive and more general than that
of being considered in [23] and in [24], respectively (see also [25]). Furthermore, all normed linear
spaces, convex subsets wherein Hadamard manifolds and CAT(0) spaces are the special cases of the
class of hyperbolic spaces due to Kohlenbach [22].

Definition 1.1 A hyperbolic spaces is a metric space (H, d) together with a mapping W : H2

×[0, 1] → H satisfying
(i) d (u,W (x, y, α)) ≤ αd(u, x) + (1 − α)d(u, y),
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),
(iii) W (x, y, α) = W (y, x, (1 − α)),
(iv) d(W (x, z, α),W (y, w, α)) ≤ αd(x, y)+(1−α)d(z, w) for all u, x, y, z, w ∈ H and α, β ∈ [0, 1].
Remark 1.1 (1) The class of hyperbolic spaces is general in nature and its important example

is the open unit ball B in a complex domain C with respect to the Poincare metric (also called

2
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“Poincare distance”)

dB(x, y) := arg tanh

∣∣∣∣ x− y

1 − xy

∣∣∣∣ = arg tanh(1 − σ(x, y))
1
2 ,

where σ(x, y) := (1−|x|2)(1−|y|2)
|1−xy|2 for all x, y ∈ B. Further, the above example can be extended from

C to general complex Hilbert spaces (H, ⟨·⟩) (see [21, 22]).
(2) A metric space (H, d) satisfying only (i) in Definition 1.1 is a convex metric space introduced

by Takahashi [26]. A nonempty subset K of a hyperbolic space H is convex if W (x, y, α) ∈ K for all
x, y ∈ K and α ∈ [0, 1]. For more on hyperbolic spaces and a comparison between different notions
of hyperbolic space, see, for example, [27] and the references therein.

(3) A hyperbolic space is uniformly convex if for any r > 0 and ϵ ∈ (0, 2], and all u, x, y ∈ H,
there exists δ ∈ (0, 1] such that

d(W (x, y,
1

2
), u) ≤ (1 − δ)r,

provided max{d(x, u), d(y, u)} ≤ r and d(x, y) ≥ rϵ (see [28, 29]). A map η : (0,+∞)×(0, 2] → (0, 1],
which provides such δ = η(r, ϵ) for given r > 0 and ϵ ∈ (0, 2], is known as a modulus of uniform
convexity of H. We call η monotone if it decreases with r (for fixed ϵ), i.e., for all ϵ > 0, r2 ≥
r1 > 0(η(r2, ϵ) ≤ η(r1, ϵ)). CAT(0) spaces are uniformly convex hyperbolic spaces with modulus of

uniform convexity η(r, ε) = ε2

8 (see [28, 30]). Thus, the class of uniformly convex hyperbolic spaces
includes both uniformly convex normed spaces and CAT(0) spaces as special cases.

In the sequel, let (H, d) be a metric space, and let K be a nonempty subset of H. We shall
denote the fixed point set of a self-mapping on K of T by F (T ) = {x ∈ K : Tx = x}.

Definition 1.2 A mapping T : K → K is said to be
(i) semi-compact if every bounded sequence {xn} ⊂ K, satisfying d(xn, Txn) → 0 as n → ∞,

has a convergent subsequence;
(ii) nonexpansive if d(Tx, Ty) ≤ d(x, y) for any x, y ∈ K;
(iii) quasi-nonexpansive if d(Tx, p) ≤ d(x, p) for all x ∈ K and p ∈ F (T ) ̸= ∅;
(iv) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [0,+∞) and limn→∞ kn = 0

such that
d(Tnx, Tny) ≤ (1 + kn)d(x, y), ∀x, y ∈ K,n ≥ 1;

(v) asymptotically quasi-nonexpansive if there exists a sequence {kn} ⊂ [0,+∞) and limn→∞ kn =
0 such that

d(Tnx, p) ≤ (1 + kn)d(x, p), ∀x ∈ K, p ∈ F (T ), n ≥ 1;

(vi) ({µn}, {ξn}, ρ)-total asymptotically nonexpansive, if there exist nonnegative sequences {µn},
{ξn} with µn → 0, ξn → 0 and a strictly increasing continuous function ρ : [0,+∞) → [0,+∞) with
ρ(0) = 0 such that

d(Tnx, Tny) ≤ d(x, y) + µnρ
(
d(x, y)

)
+ ξn, ∀x, y ∈ K,n ≥ 1;

(vii)({µn}, {ξn}, ρ)-total asymptotically quasi-nonexpansive, if there exist nonnegative sequences
{µn}, {ξn} with µn → 0, ξn → 0 and a strictly increasing continuous function ρ : [0,+∞) → [0,+∞)
with ρ(0) = 0 such that

d(Tnx, p) ≤ d(x, p) + µnρ
(
d(x, p)

)
+ ξn, ∀x ∈ K, p ∈ F, n ≥ 1;

(viii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ Ld(x, y), ∀x, y ∈ K,n ≥ 1.

Remark 1.2 From Definition 1.2, it follows that a (quasi-)nonexpansive mapping is an asymp-
totically (quasi-)nonexpansive mapping with kn ≡ 0 for n ≥ 1, and each asymptotically (quasi-
)nonexpansive mapping is a ({µn}, {ξn}, ρ)-total asymptotically (quasi-)nonexpansive mapping with
ξn = 0, and ρ(t) = t ≥ 0. However, in general, the converse of these statement is not true.

3
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As all we know, the study of such types of problems on the iterative approximation of (common)
fixed points for generalizations of nonexpansive mappings in hyperbolic spaces, is motivated by an
increasing interest in the problems of finding a common fixed point of some nonlinear mappings,
which is the only main tool for analysis of generalized nonexpansive mappings and provides us a
general and unified framework for studying the existence of fixed points of various nonlinear mappings
arising in many branches of nonlinear analysis, topology and applied mathematics, etc.

Inspired and motivated and by the above recent works, in this paper, we shall study some
important related properties to the new general iterative process (1.1) for two finite families of total
asymptotically nonexpansive mappings as well as two finite families of total asymptotically quasi-
nonexpansive mappings in hyperbolic spaces. Results concerning ∆-convergence as well as strong
convergence of this iteration are proved. The results presented in the paper extend and improve
some recent results given in [1, 2, 4–7, 9, 21].

In order to define the concept of ∆-convergence in the general setup of hyperbolic spaces, in the
next moment, we first give some basic concepts.

In 1976, Lim [31] introduced the notion of asymptotic center and, consequently, coined the
concept of ∆-convergence in a general setting of a metric space. Kirk and Panyanak [32] proposed
an analogous version of convergence in geodesic spaces, namely ∆-convergence, which was originally
introduced by Lim [31]. Further, Kirk and Panyanak [32] showed that ∆-convergence coincides with
the usual weak convergence in Banach spaces and both concepts share many useful properties.

Let {xn} be a bounded sequence in a hyperbolic space H. For x ∈ H, we define a continuous
functional r(·, {xn}) : H → [0,+∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r̂({xn}) of {xn} is given by

r̂({xn}) = inf{r(x, {xn}) : x ∈ H}.

The asymptotic center of a bounded sequence {xn} with respect to K ⊂ H is defined as follows:

AK({xn}) = {x ∈ H : r(x, {xn}) ≤ r(y, {xn}), ∀y ∈ K},

which is the set of minimizers for r(·, {xn}). Further, it is simply denoted by A({xn}) when the
asymptotic center is taken with respect to H, and a sequence {xn} in H is said to ∆-converge to
x ∈ H if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case,
we write ∆-limn→∞ xn = x and call x the ∆-limit of {xn}.

It is well known that uniformly convex Banach spaces and even CAT(0) spaces enjoy the property
that “bounded sequences have unique asymptotic centers with respect to closed convex subsets”.
The following lemma ensures that this property also holds in a complete uniformly convex hyperbolic
space.

Lemma 1.1 ([30]) Let (H, d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then every bounded sequence {xn} in H has a unique asymptotic
center with respect to any nonempty closed convex subset K of H.

In the sequel, we need the following lemmas.
Lemma 1.2 ([10]) Let (H, d,W ) be a uniformly convex hyperbolic space with monotone modulus

of uniform convexity η. Let x ∈ H and {αn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xn}
and {yn} are sequences in H such that for some c ≥ 0,

lim sup
n→∞

d(xn, x) ≤ c, lim sup
n→∞

d(yn, x) ≤ c, lim
n→∞

d(W (xn, yn, αn), x) = c,

Then limn→∞ d(xn, yn) = 0.
Lemma 1.3 ([10]) Let K be a nonempty closed convex subset of uniformly convex hyperbolic

space, and let {xn} be a bounded sequence in K such that A({xn}) = {y} and r({xn}) = ζ. If {ym}
is another sequence in K such that limm→∞ r(ym, {xn}) = ζ, then limm→∞ ym = y.

4
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Lemma 1.4 ([33]) Let {an}, {bn} and {ωn} be nonnegative real sequences satisfying

an+1 ≤ (1 + ωn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 ωn < ∞ and
∑∞

n=1 bn < ∞, then the limit limn→∞ an exist. If there exists a subseqence
{ani} ⊂ {an} such that ani → 0, then limn→∞ an = 0.

2 Some important related properties

Throughout in this paper, we assume that I = {1, 2, · · · , r}, {Ti}ri=1 and {Si}ri=1 are two finite
families of total asymptotically nonexpansive mappings on a nonempty subset K of the hyperbolic
space H defined by Definition 1.2, for each i ∈ I and all n ≥ 1, {αin}, {βin} and {θin} are the same
as in (1.1). We start with the following important related property of the general iterative process
(1.1) for two finite families of total asymptotically nonexpansive mappings in a hyperbolic space.

Theorem 2.1 Let K be a nonempty closed and convex subset of a hyperbolic space H. For i ∈ I,
let Ti : K → K be a ({µi

n}, {ξin}, ρi)-total asymptotically nonexpansive mapping with limn→∞ µi
n =

0 and limn→∞ ξin = 0, and a strictly increasing continuous function ρi : [0,+∞) → [0,+∞) satisfying

ρi(0) = 0, and let Si : K → K, be a ({µ̂i
n}, {ξ̂in}, ρ̂i)-total asymptotically nonexpansive mapping with

limn→∞ µ̂i
n = 0 and limn→∞ ξ̂in = 0, and a strictly increasing continuous function ρ̂i : [0,+∞) →

[0,+∞) satisfying ρ̂i(0) = 0. Assume that F =
∩r

i=1(F (Ti) ∩ F (Si)) ̸= ∅, and for each i ∈ I, the
following conditions hold:

(i)
∑∞

n=1 µ
i
n < +∞,

∑∞
n=1 µ̂

i
n < +∞,

∑∞
n=1 ξ

i
n < +∞,

∑∞
n=1 ξ̂

i
n < +∞;

(ii) there exists a constant M∗ > 0 such that

ρi(r) ≤M∗r, ρ̂i(r) ≤M∗r, ∀r > 0.

Then, for the sequence {xn} in (1.1), limn→∞ d(xn, p) exists for all p ∈ F .

Proof. Set µn = maxi∈I{µi
n, µ̂

i
n}, and ξn = maxi∈I{ξin, ξ̂in}, ρ = maxi∈I{ρi, ρ̂i}. By condition

(i), we know that
∑∞

n=1 µn < +∞,
∑∞

n=1 ξn < +∞. For any p ∈ F and all n ≥ 1, it follows from
(1.1) that

d(yn, p) ≤ αrnd(Tn
r xn, p) + (1 − αrn)d(W (xn, S

n
r xn, θrn), p)

≤ αrnd(Tn
r xn, p) + βrnd(xn, p) + (1 − αrn − βrn)d(Sn

r xn, p)

≤ αrn[d(xn, p) + µr
nρ

r
(
d(xn, p)

)
+ ξrn] + βrnd(xn, p)

+(1 − αrn − βrn)[d(xn, p) + µ̂r
nρ̂

r
(
d(xn, p)

)
+ ξ̂rn]

≤ αrn[d(xn, p) + µnρ
(
d(xn, p)

)
+ ξn] + βrnd(xn, p)

+(1 − αrn − βrn)[d(xn, p) + µnρ
(
d(xn, p)

)
+ ξn]

≤ αrn[(1 + µnM
∗)d(xn, p) + ξn] + βrnd(xn, p)

+(1 − αrn − βrn)[(1 + µnM
∗)d(xn, p) + ξn]

≤ (1 + µnM
∗)d(xn, p) + ξn (2.1)

and

d(yn+1, p) ≤ α(r−1)nd(Tn
r−1yn, p) + (1 − α(r−1)n)d(W (yn, S

n
r−1yn, θ(r−1)n), p)

≤ α(r−1)nd(Tn
r−1yn, p) + β(r−1)nd(yn, p)

+(1 − α(r−1)n − β(r−1)n)d(Sn
r−1yn, p)

≤ α(r−1)n[d(yn, p) + µnρ
(
d(yn, p)

)
+ ξn] + β(r−1)nd(yn, p)

+(1 − α(r−1)n − β(r−1)n)[d(yn, p) + µnρ
(
d(yn, p)

)
+ ξn]

≤ α(r−1)n[(1 + µnM
∗)d(yn, p) + ξn] + β(r−1)nd(yn, p)

+(1 − α(r−1)n − β(r−1)n)[(1 + µnM
∗)d(yn, p) + ξn]

≤ (1 + µnM
∗)d(yn, p) + ξn. (2.2)

5
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Similarly, we have

d(yn+r−2, p) ≤ (1 + µnM
∗)d(yn+r−3, p) + ξn,

d(xn+1, p) ≤ (1 + µnM
∗)d(yn+r−2, p) + ξn.

Thus,

d(xn+1, p) ≤ (1 + µnM
∗)rd(xn, p) +

r−1∑
j=1

(1 + µnM
∗)jξn

≤ d(xn, p)
[
1 +

(r
1

)
µnM

∗ +
(r
2

)
(µnM

∗)2 +
(r
3

)
(µnM

∗)3

+ · · · +
(r
r

)
(µnM

∗)r
]

+
r−1∑
j=1

(1 + µnM
∗)jξn

≤ (1 + arnµn)d(xn, p) +

r−1∑
j=1

(1 + µnM
∗)jξn

≤ (1 +M1µn)d(xn, p) +M2ξn,

where arn =
(r
1

)
M∗ +

(r
2

)
(M∗)2µn +

(r
3

)
(M∗)3(µn)2 + · · · +

(r
r

)
(M∗)r(µn)r−1, and by virtue of

condition(i), there exist positive constants M1 and M2 such that arn ≤M1,
∑r−1

j=1(1 +µnM
∗)j ≤M2

for each n ≥ 1. Applying Lemma 1.4 to the above inequality, we have limn→∞ d(xn, p) exists for
each p ∈ F . 2

In 1993, Bruck et al. [34] introduced a notion of asymptotically nonexpansive mapping in
the intermediate sense. More accurately, a mapping T : K → K is said to be asymptotical-
ly nonexpansive mapping in the intermediate sense, provided that T is uniformly continuous and
lim supn→∞ supx,y∈K{d(Tnx, Tny)−d(x, y)} ≤ 0. Put ξn = max{0, supx,y∈K{d(Tnx, Tny)−d(x, y)}}
and

∑∞
n=1 ξ

i
n < +∞, then d(Tnx, Tny) ≤ d(x, y) + ξn for any n ≥ 1 and x, y ∈ K. In more detail,

see, for example, [20] and the references therein.
The following result can be obtained from Theorem 2.1 immediately.
Corollary 2.1 Let K be a nonempty closed and convex subset of a hyperbolic space H. For

i ∈ I, let Ti : K → K be a {ξin}-asymptotically nonexpansive mapping in the intermediate sense

and let Si : K → K be a {ξ̂in}-asymptotically nonexpansive mapping in the intermediate sense. If∑∞
n=1 ξ

i
n < +∞,

∑∞
n=1 ξ̂

i
n < +∞ for i ∈ I and F =

∩r
i=1(F (Ti)∩F (Si)) ̸= ∅, then, for the sequence

{xn} in (1.1), limn→∞ d(xn, p) exists for all p ∈ F .

Proof. Let ξn = maxi∈I{ξin, ξ̂in}, then
∑∞

n=1 ξn < +∞. The rest of the proof is trivial. 2

Corollary 2.2 Let K be a nonempty closed and convex subset of a hyperbolic space H. Let
Ti : K → K be a {kin}-asymptotically nonexpansive mapping with

∑∞
n=1 k

i
n < +∞ and Si : K → K

be a {k̂in}-asymptotically nonexpansive mapping with
∑∞

n=1 k̂
i
n < +∞ for i ∈ I. Assume that

F =
∩r

i=1(F (Ti) ∩ F (Si)) ̸= ∅. Then, for the sequence {xn} in (1.1), limn→∞ d(xn, p) exists for all
p ∈ F .

Proof. Taking kn = maxi∈I{kin, k̂in}, then
∑∞

n=1 kn < +∞. Let ρi(t) = ρ̂i(t) = t, ξin = ξ̂in = 0,
µi
n = kin in Theorem 2.1 for i ∈ I. Then all the conditions in Theorem 2.1 are satisfied and so the

result holds. 2

Theorem 2.2 Let K be a nonempty closed and convex subset of a uniformly convex hyperbolic
space H with monotone modulus of uniform convexity η. For i ∈ I, let Ti : K → K be a uniformly Li-
Lipschitzian and ({µi

n}, {ξin}, ρi)-total asymptotically nonexpansive mapping with limn→∞ µi
n = 0

and limn→∞ ξin = 0, and a strictly increasing continuous function ρi : [0,+∞) → [0,+∞) satisfying

ρi(0) = 0, and let Si : K → K be a uniformly L̂i-Lipschitzian and ({µ̂i
n}, {ξ̂in}, ρ̂i)-total asymptotical-

ly nonexpansive mapping with limn→∞ µ̂i
n = 0 and limn→∞ ξ̂in = 0, and a strictly increasing continu-

ous function ρ̂i : [0,+∞) → [0,+∞) satisfying ρ̂i(0) = 0. Suppose that F =
∩r

i=1(F (Ti)∩F (Si)) ̸= ∅
and the conditions (i) and (ii) in Theorem 2.1 hold. Then, for i ∈ I and the sequence {xn} generated
by (1.1), we have

lim
n→∞

d(xn, Tixn) = lim
n→∞

d(xn, Sixn) = 0.

6
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Proof. It follows from Theorem 2.1 that limn→∞ d(xn, p) exists for each p ∈ F . Assume that
limn→∞ d(xn, p) = c > 0. Otherwise the proof is trivial.

Take lim sup on both sides of inequalities (2.1) and (2.2). Since µn → 0 and ξn → 0 as
n → ∞, we have lim supn→∞ d(yn, p) ≤ c and lim supn→∞ d(yn+1, p) ≤ c. Similarly, we get
lim supn→∞ d(yn+r−2, p) ≤ c, and so in total

lim sup
n→∞

d(yn+k−1, p) ≤ c, ∀k = 1, 2, · · · , r − 1. (2.3)

Carry lim inf on both side of (2.4). Since

d(xn+1, p) ≤ (1 + µnM
∗)r−1d(yn, p) +

r−2∑
j=1

(1 + µnM
∗)jξn (2.4)

we have

lim inf
n→∞

d(yn, p) ≥ c,

d(xn+1, p) ≤ (1 + µnM
∗)r−kd(yn+k−1, p) +

r−k−1∑
j=1

(1 + µnM
∗)jξn, ∀k = 2, 3, · · · , r − 1.

Also taking lim inf on both side of the above estimate, then we get

lim inf
n→∞

d(yn+k−1, p) ≥ c, ∀k = 2, 3, · · · , r − 1.

Thus, in total,

lim inf
n→∞

d(yn+k−1, p) ≥ c, ∀k = 1, 2, · · · , r − 1. (2.5)

Combining (2.3) and (2.5), we have

lim
n→∞

d(yn+k−1, p) = c, ∀k = 1, 2, · · · , r − 1. (2.6)

For k = 1 in (2.6), we get

lim
n→∞

d(W (Tn
r xn,W (xn, S

n
r xn, θrn), αrn), p) = c. (2.7)

Moreover,

d(W (xn, S
n
r xn, θrn), p) ≤ θrnd(xn, p) + (1 − θrn)d(Sn

r xn, p)

≤ θrnd(xn, p) + (1 − θrn)[(1 + µnM
∗)d(xn, p) + ξn]

≤ (1 + µnM
∗)d(xn, p) + ξn

implies that

lim sup
n→∞

d(W (xn, S
n
r xn, θrn), p) ≤ c. (2.8)

Obviously,

lim sup
n→∞

d(Tn
r xn, p) ≤ c. (2.9)

It follows from (2.7)-(2.9) and Lemma 1.2 that

lim
n→∞

d(Tn
r xn,W (xn, S

n
r xn, θrn)) = 0. (2.10)
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Again, for k = 2, 3, · · · , r − 1, (2.6) can be expressed as

lim
n→∞

d(W (Tn
r−(k−1)yn+k−2,W (yn+k−2, S

n
r−(k−1)yn+k−2, θ(r−k+1)n), α(r−k+1)n), p) = c. (2.11)

By (2.3) and the inequality

d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), p)

≤ θ(r−k+1)nd(yn+k−2, p) + (1 − θ(r−k+1)n)d(Sn
r−(k−1)yn+k−2, p)

≤ θ(r−k+1)nd(yn+k−2, p) + (1 − θ(r−k+1)n)[(1 + µnM
∗)d(yn+k−2, p) + ξn]

≤ (1 + µnM
∗)d(yn+k−2, p) + ξn,

now we know that

lim sup
n→∞

d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), p) ≤ c. (2.12)

Further,

lim sup
n→∞

d(Tn
r−(k−1)yn+k−2, p) ≤ c, ∀k = 2, 3, · · · , r − 1. (2.13)

From (2.11)-(2.13) and Lemma 1.2, it follows that

lim
n→∞

d(Tn
r−(k−1)yn+k−2,W (yn+k−2, S

n
r−(k−1)yn+k−2, θ(r−k+1)n)) = 0 (2.14)

for k = 2, 3, · · · , r − 1 and for k = r, we have

lim
n→∞

d(xn+1, p) = lim
n→∞

d(W (Tn
1 yn+r−2,W (yn+r−2, S

n
1 yn+r−2, θ1n), α1n), p) = c. (2.15)

Applying (2.3), the following estimate

d(W (yn+r−2, S
n
1 yn+r−2, θ1n), p)

≤ θ1nd(yn+r−2, p) + (1 − θ1n)d(Sn
1 yn+r−2, p)

≤ θ1nd(yn+r−2, p) + (1 − θ1n)[(1 + µnM
∗)d(yn+r−2, p) + ξn]

≤ (1 + µnM
∗)d(yn+r−2, p) + ξn

implies that

lim sup
n→∞

d(W (yn+r−2, S
n
1 yn+r−2, θ1n), p) ≤ c. (2.16)

Also,

lim sup
n→∞

d(Tn
1 yn+r−2, p) ≤ c. (2.17)

Hence, (2.15)-(2.17) and Lemma 1.2 imply that

lim
n→∞

d(Tn
1 yn+r−2,W (yn+r−2, S

n
1 yn+r−2, θ1n)) = 0. (2.18)

Observe that

d(xn+1, T
n
1 yn+r−2) = d(W (Tn

1 yn+r−2,W (yn+r−2, S
n
1 yn+r−2, θ1n), α1n), Tn

1 yn+r−2)

≤ (1 − α1n)d(W (yn+r−2, S
n
1 yn+r−2, θ1n), Tn

1 yn+r−2)

+α1nd(Tn
1 yn+r−2, T

n
1 yn+r−2).

Based on (2.18), this implies

lim
n→∞

d(xn+1, T
n
1 yn+r−2) = 0. (2.19)
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Similarly, since a ≤ αin, βin ≤ b for all i ∈ I, we have

d(xn+1, p) ≤ α1nd(Tn
1 yn+r−2, p) + (1 − α1n)d(W (yn+r−2, S

n
1 yn+r−2, θ1n), p)

≤ α1nd(xn+1, p) + α1nd(xn+1, T
n
1 yn+r−2)

+(1 − α1n)d(W (yn+r−2, S
n
1 yn+r−2, θ1n), p)

≤ α1n

1 − α1n
d(xn+1, T

n
1 yn+r−2) + d(W (yn+r−2, S

n
1 yn+r−2, θ1n), p)

≤ b

1 − b
d(xn+1, T

n
1 yn+r−2) + d(W (yn+r−2, S

n
1 yn+r−2, θ1n), p). (2.20)

Taking lim inf on both side of the estimate (2.20) and using (2.19), we have

lim inf
n→∞

d(W (yn+r−2, S
n
1 yn+r−2, θ1n), p) ≥ c. (2.21)

Combining (2.16) and (2.21), we get

lim
n→∞

d(W (yn+r−2, , S
n
1 yn+r−2, θ1n), p) = c. (2.22)

By Lemma 1.2 and (2.22), we have

lim
n→∞

d(yn+r−2, S
n
1 yn+r−2) = 0.

In a similar way, for k = 2, 3, · · · , r − 1, we compute

d(yn+k−1, T
n
r−(k−1)yn+k−2)

= d(W (Tn
r−(k−1)yn+k−2,W (yn+k−2, S

n
r−(k−1)yn+k−2, θ(r−k+1)n), α(r−k+1)n),

Tn
r−(k−1)yn+k−2)

≤ (1 − α(r−k+1)n)d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), Tn

r−(k−1)yn+k−2)

+α(r−k+1)nd(Tn
r−(k−1)yn+k−2, T

n
r−(k−1)yn+k−2).

Utilizing (2.14), we have

lim
n→∞

d(yn+k−1, T
n
r−(k−1)yn+k−2) = 0, ∀k = 2, 3, · · · , r − 1. (2.23)

For k = 1, we calculate

d(yn, T
n
r xn) = d(W (Tn

r xn,W (xn, S
n
r xn, θrn), αrn), Tn

r xn)

≤ αrnd(Tn
r xn, T

n
r xn) + (1 − αrn)d(W (xn, S

n
r xn, θrn), Tn

r xn).

Now, using (2.10), we have

lim
n→∞

d(yn, T
n
r xn) = 0. (2.24)

Reasoning as above, we get that

d(yn, p) ≤
b

1 − b
d(Tn

r xn, yn) + d(W (xn, S
n
r xn, θrn), p). (2.25)

Setting lim inf on both sides of the estimate (2.25) and utilizing (2.6) and (2.24), we know

lim inf
n→∞

d(W (xn, S
n
r xn, θrn), p) ≥ c. (2.26)

Inequalities (2.8) and (2.26) collectively imply that

lim
n→∞

d(W (xn, S
n
r xn, θrn), p) = c. (2.27)
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Consequently, Lemma 1.2 and (2.27) imply that

lim
n→∞

d(xn, S
n
r xn) = 0. (2.28)

Note that

d(xn, T
n
r xn) ≤ d(xn, yn) + d(yn, T

n
r xn)

≤ αrnd(xn, T
n
r xn) + (1 − αrn)d(W (xn, S

n
r xn, θrn), xn) + d(yn, T

n
r xn)

≤ (1 − θrn)d(xn, S
n
r xn) +

1

1 − αrn
d(yn, T

n
r xn)

≤ 1 − 2a

1 − b
d(xn, S

n
r xn) +

1

1 − b
d(yn, T

n
r xn).

From (2.24) and (2.28), we have

lim
n→∞

d(xn, T
n
r xn) = 0. (2.29)

Moreover

d(xn, yn) ≤ αrnd(xn, T
n
r xn) + (1 − αrn)d(xn,W (xn, S

n
r xn, θrn))

≤ αrnd(xn, T
n
r xn) + (1 − αrn − βrn)d(xn, S

n
r xn)

≤ bd(xn, T
n
r xn) + (1 − 2a)d(xn, S

n
r xn).

By (2.28) and (2.29), we have

lim
n→∞

d(xn, yn) = 0. (2.30)

Again, reasoning as above, we have

d(yn+k−1, p) ≤ d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), p)

+
b

1 − b
d(Tn

r−(k−1)yn+k−2, yn+k−1).

Now, Utilizing (2.6) and (2.23), we get

lim inf
n→∞

d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), p) ≥ c. (2.31)

Thus, (2.12) and (2.31) imply in total

lim
n→∞

d(W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n), p) = c,

and by Lemma 1.2, we conclude that

lim
n→∞

d(yn+k−2, S
n
r−(k−1)yn+k−2) = 0, ∀k = 2, 3, · · · , r − 1. (2.32)

Also,

d(yn+k−2, T
n
r−(k−1)yn+k−2)

≤ d(yn+k−2, yn+k−1) + d(yn+k−1, T
n
r−(k−1)yn+k−2),

Sn
r−(k−1)yn+k−2, θ(r−k+1)n), α(r−k+1)n)) + d(yn+k−1, T

n
r−(k−1)yn+k−2)

≤ d(yn+k−1, T
n
r−(k−1)yn+k−2) + α(r−k+1)nd(yn+k−2, T

n
r−(k−1)yn+k−2)

+(1 − α(r−k+1)n)d(yn+k−2,W (yn+k−2, S
n
r−(k−1)yn+k−2, θ(r−k+1)n))

≤ d(yn+k−1, T
n
r−(k−1)yn+k−2) + α(r−k+1)nd(yn+k−2, T

n
r−(k−1)yn+k−2)

+(1 − α(r−k+1)n − β(r−k+1)n)d(yn+k−2, S
n
r−(k−1)yn+k−2)

≤ 1

1 − b
d(yn+k−1, T

n
r−(k−1)yn+k−2) +

1 − 2a

1 − b
d(yn+k−2, S

n
r−(k−1)yn+k−2).
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Now, it follows from (2.23) and (2.32) that

lim
n→∞

d(yn+k−2, T
n
r−(k−1)yn+k−2) = 0, ∀k = 2, 3, · · · , r − 1. (2.33)

For k = 2, 3, · · · , r − 1, we have

d(yn+k−2, yn+k−1) ≤ d(yn+k−2, T
n
r−(k−1)yn+k−2) + d(Tn

r−(k−1)yn+k−2, yn+k−1).

Hence, (2.23) and (2.33) imply that

lim
n→∞

d(yn+k−2, yn+k−1) = 0. (2.34)

Additionally,

d(xn, yn+k−1) ≤ d(xn, yn) + d(yn, yn+1) + · · · + d(yn+k−2, yn+k−1).

By (2.30) and (2.34), we have

lim
n→∞

d(xn, yn+k−1) = 0, ∀k = 1, 2, · · · , r − 1. (2.35)

Let L = maxi∈I{Li, L̂i}, where Li and L̂i are Lipschitz constants for Ti and Si for i ∈ I,
respectively. Since each Ti is uniformly L-Lipschitzian for i ∈ I, we have

d(xn, T
n
i xn) ≤ d(xn, yn+r−i−1) + d(yn+r−i−1, T

n
i xn)

≤ d(xn, yn+r−i−1) + d(yn+r−i−1, T
n
i yn+r−i−1) + d(Tn

i yn+r−i−1, T
n
i xn)

≤ (1 + L)d(xn, yn+r−i−1) + d(yn+r−i−1, T
n
i yn+r−i−1)

for 1 ≤ i ≤ r − 1.
It follows from (2.33) and (2.35) that

lim
n→∞

d(xn, T
n
i xn) = 0, ∀1 ≤ i ≤ r − 1. (2.36)

Moreover,

d(xn, Tixn) ≤ d(xn, T
n
i xn) + d(Tn

i xn, T
n
i yn+r−i−1) + d(Tn

i yn+r−i−1, Tixn)

≤ d(xn, T
n
i xn) + Ld(xn, yn+r−i−1) + Ld(Tn−1

i yn+r−i−1, xn)

≤ d(xn, T
n
i xn) + 2Ld(xn, yn+r−i−1) + Ld(Tn−1

i yn+r−i−1, yn+r−i−1).

Thus, (2.33), (2.35) and (2.36) (or (2.29)) imply that d(xn, Tixn) → 0 as n→ ∞ and so

lim
n→∞

d(xn, Tixn) = 0, ∀1 ≤ i ≤ r.

Similarly, we have

lim
n→∞

d(xn, Sixn) = 0, ∀1 ≤ i ≤ r.

This completes the proof. 2

The following results can be obtained from Theorem 2.2 immediately. The proof is similar to
Corollaries 2.1 and 2.2, respectively, and so they are omitted.

Corollary 2.3 Assume that K and F are the same as in Theorem 2.2. For i ∈ I, let Ti : K → K
be a uniformly Li-Lipschitzian and {ξin}-asymptotically nonexpansive mapping in the intermediate

sense and Si : K → K be a uniformly L̂i-Lipschitzian and {ξ̂in}-asymptotically nonexpansive map-

ping in the intermediate sense. If
∑∞

n=1 ξ
i
n < +∞ and

∑∞
n=1 ξ̂

i
n < +∞ for i ∈ I, then, for the

sequence {xn} in (1.1),

lim
n→∞

d(xn, Tixn) = lim
n→∞

d(xn, Sixn) = 0, ∀i ∈ I.
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Corollary 2.4 Suppose that K and F are the same as in Theorem 2.2. For i ∈ I, let
Ti : K → K be a uniformly Li-Lipschitzian and {kin}-asymptotically nonexpansive mapping with∑∞

n=1 k
i
n < +∞, and Si : K → K be a uniformly L̂i-Lipschitzian and {k̂in}-asymptotically nonex-

pansive mapping with
∑∞

n=1 k̂
i
n < +∞. Then,

lim
n→∞

d(xn, Tixn) = lim
n→∞

d(xn, Sixn) = 0, i ∈ I,

where {xn} is the sequence defined by (1.1).
Remark 2.1 (1) It is worth mentioning that Theorems 2.1-2.2 can easily be extended to a more

general class of total asymptotically quasi-nonexpansive mappings for the iteration process (1.1).
And the proofs of Theorems 2.1-2.2 are greatly differ from those of Lemmas 2.1 and 2.2 in [21].
Further, Corollaries 2.1 and 2.3 (Corollaries 2.2 and 2.4, respectively) are so.

(2) Moreover, conclusion of the Theorem 2.2 (Corollaries 2.3 and 2.4, respectively) can be ex-
tended to a more general class of weakly total-asymptotically quasi-nonexpansive mappings (weakly
asymptotically quasi-nonexpansive mappings asymptoticallyin in the intermediate sense and weakly
quasi-nonexpansive mappings). For concepts of the weakly properly, see, for example, Fukhar-ud-din
and Khan [21].

3 Approximation of common fixed points

In this section, we approximate common fixed points of two finite families of total asymptotically
nonexpansive mappings in a hyperbolic space. More briefly, we establish ∆-convergence and strong
convergence of the iteration process (1.1) for two finite families of total asymptotically nonexpansive
mappings in a hyperbolic space.

Theorem 3.1 Let K be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space H with monotone modulus of uniform convexity η. For i ∈ I, let Ti : K → K,
i ∈ I = {1, 2, 3, · · · , r} be a uniformly Li-Lipschitzian and ({µi

n}, {ξin}, ρi)-total asymptotically
nonexpansive mapping with limn→∞ µi

n = 0 and limn→∞ ξin = 0, and a strictly increasing continuous
function ρi : [0,+∞) → [0,+∞) satisfying ρi(0) = 0, and let Si : K → K be a uniformly L̂i-

Lipschitzian and ({µ̂i
n}, {ξ̂in}, ρ̂i)-total asymptotically nonexpansive mapping with limn→∞ µ̂i

n = 0

and limn→∞ ξ̂in = 0, and with a strictly increasing continuous function ρ̂i : [0,+∞) → [0,+∞)
satisfying ρ̂i(0) = 0. Assume that F =

∩r
i=1(F (Ti) ∩ F (Si)) ̸= ∅ and for i ∈ I, the following

conditions hold:
(i)
∑∞

n=1 µ
i
n < +∞,

∑∞
n=1 µ̂

i
n < +∞,

∑∞
n=1 ξ

i
n < +∞,

∑∞
n=1 ξ̂

i
n < +∞.

(ii)There exists a constant M∗ > 0 such that ρi(r) ≤M∗r and ρ̂i(r) ≤M∗r for all r > 0.
Then the sequence {xn} defined in (1.1) ∆-converges to a common fixed point p ∈ F .

Proof. Since the sequence {xn} is bounded (by Theorem 2.1), therefore Lemma 1.1 asserts that
{xn} has a unique asymptotic center in K. That is, A({xn}) = {x}. Let {vn} be any subsequence
of {xn} such that A({vn}) = {v}. Then, by Theorem 2.2, we have

lim
n→∞

d(vn, Tivn) = lim
n→∞

d(vn, Sivn) = 0, ∀i ∈ I. (3.1)

We claim that v is the common fixed point of {Ti}ri=1 and {Si}ri=1.
For each i ∈ I, define a sequence {zm} in K by zm = Tm

i v. Then, we calculate

d(zm, vn) ≤ d(Tm
i v, T

m
i vn) + d(Tm

i vn, T
m−1
i vn) + · · · + d(Tivn, vn)

≤ [d(v, vn) + µi
mρ

i(d(v, vn)) + ξim] +

m−1∑
j=0

d(T j+1
i vn, T

j
i vn).

Since each Ti is uniformly Li-Lipschitzian with the Lipschitz constant Li for i ∈ I, the above
estimate yields

d(zm, vn) ≤ [(1 + µmM
∗)d(v, vn) + ξm] +mLd(Tivn, vn), (3.2)
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where L = maxi∈I{Li, L̂i}.
Taking lim sup on both sides of (3.2) and using (3.1), we have

r(zm, {vn}) = lim sup
n→∞

d(zm, vn) ≤ lim sup
n→∞

d(v, vn) = r(v, {vn}),

which implies that |r(zm, {vn})−r(v, {vn})| → 0 asm→ ∞. It follows Lemma 1.3 that limm→∞ Tm
i v =

v. by the uniform continuity of Ti, we know that

Ti(v) = T ( lim
m→∞

Tm
i v) = limm→ ∞Tm+1

i v = v.

From the arbitrariness of i ∈ I, we conclude that v is the common fixed point of {Ti}ri=1. Similarly,
we can show that v is the common fixed point of {Si}ri=1. Hence, v ∈ F .

Next, we claim that the common fixed point v is the unique asymptotic center for each subse-
quence {vn} of {xn}.

Contrarily, v ̸= x. It follows Theorem 2.1 that limn→∞ d(xn, v) exists, and by the uniqueness of
asymptotic centers, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

a contradiction. Therefore v = x. Since {vn} is an arbitrary subsequence of {xn}, A({vn}) = {x}
for all subsequence {vn} of {xn}, this proves that {xn} ∆-converges to a common fixed point x of
{Ti}ri=1 and {Si}ri=1. 2

From Theorem 3.1, we have the following result.
Corollary 3.1 Let K be a nonempty closed and convex subset of a complete uniformly convex

hyperbolic space H with monotone modulus of uniform convexity η. For i ∈ I, let Ti : K → K be a
uniformly Li-Lipschitzian and {ξin}-asymptotically nonexpansive mapping in the intermediate sense

and Si : K → K be a uniformly L̂i-Lipschitzian and {ξ̂in}-asymptotically nonexpansive mapping in

the intermediate sense. If for all i ∈ I,
∑∞

n=1 ξ
i
n < +∞ and

∑∞
n=1 ξ̂

i
n < +∞, and F =

∩r
i=1(F (Ti)∩

F (Si)) ̸= ∅, then the sequence {xn} defined in (1.1) ∆-converges to a common fixed point p ∈ F .
Corollary 3.2 Let K be a nonempty closed and convex subset of a complete uniformly convex

hyperbolic space H with monotone modulus of uniform convexity η. For i ∈ I, let Ti : K → K be
a uniformly Li-Lipschitzian and {kin}-asymptotically nonexpansive mapping with

∑∞
n=1 k

i
n < +∞,

and Si : K → K be a uniformly L̂i-Lipschitzian and {k̂in}-asymptotically nonexpansive mapping

with
∑∞

n=1 k̂
i
n < +∞. Assume that F =

∩r
i=1(F (Ti)∩F (Si)) ̸= ∅. Then the sequence {xn} defined

in (1.1) ∆-converges to a common fixed point p ∈ F .
Proof. Based on Corollaries 2.2 and 2.4, and the proof of Theorem 3.1 in [21], the result holds.

2

In order to prove strong convergence of the iteration (1.1) for two finite families of total asymp-
totically nonexpansive mappings in a hyperbolic space, we first give the following conditions:

(H) There exists a nondecreasing self-mapping on [0,+∞) with f(0) = 0 and f(t) > 0 for all
t ∈ (0,+∞) such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ K, where T : K → K is a nonlinear
mapping with F (T ) ̸= ∅ and d(x, F (T )) = inf{d(x, y) : y ∈ F (T )}.

The condition (H) was introduced by Senter and Dotson [35]. Further, based on works of [21, 36, 37],
for two finite families of total asymptotically nonexpansive mappings {Ti, i ∈ I}ri=1 and {Si, i ∈ I}ri=1

on K ⊂ H with F =
∩n

i=1(F (Ti) ∩ F (Si)) ̸= ∅, condition (H) becomes as follows:

(A) d(x, Tx) ≥ f(d(x, F )) or d(x, Sx) ≥ f(d(x, F )) holds for x ∈ K and for at least one T ∈ {Ti}ri=1

or S ∈ {Si}ri=1, where d(x, F ) = inf{d(x, y) : y ∈ F}.

(B) d(x, Tix) + d(x, Six) ≥ f(d(x, F )) for x ∈ K and i ∈ I.

(C1) 1
2r

(∑r
i=1 d(x, Tix) +

∑r
i=1 d(x, Six)

)
≥ f(d(x, F )) for x ∈ K.
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(C2) 1
2

(
max1≤i≤r d(x, Tix) + max1≤i≤r d(x, Six)

)
≥ f(d(x, F )) for x ∈ K.

(C3) max
{

max1≤i≤r d(x, Tix),max1≤i≤r d(x, Six)
}
≥ f(d(x, F )) for x ∈ K.

Note that the conditions (A), (B) and (C1)-(C3) are equivalent to the condition (H), if Ti = Si

for i ∈ I. We shall use condition (C1) or (C2) or (C3) to study strong convergence of the iteration
(1.1).

Now we give the following lemma for proving the strong convergence.
Lemma 3.1 Let K, H, {Ti}ri=1, {Si}ri=1 and {xn} be as in Theorem 3.1. Then {xn} converges

strongly to some p ∈ F if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. If {xn} converges strongly to p ∈ F , then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F ) ≤
d(xn, p), we have lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. It follows from Theorem 2.1 that limn→∞ d(xn, F )
exists. Now lim infn→∞ d(xn, F ) = 0 reveals that limn→∞ d(xn, F ) = 0.

Next, we show that {xn} is a Cauchy sequence. By last inequalities in the proof of Theorem 2.1

d(xn+1, p) ≤ (1 +M1µn)d(xn, p) +M2ξn,

taking infimum on p ∈ F on both sides in the above inequality, we have

d(xn+1, F ) ≤ (1 +M1µn)d(xn, F ) +M2ξn.

On account of
∑∞

n=1 µn < ∞,
∑∞

n=1 ξn < ∞, set eM1
∑∞

n=1 µn = M . Let ∀ε > 0. Since
limn→∞ d(xn, F ) = 0, for any given ε > 0, there exists a positive integer n0 such that

d(xn0 , F ) <
ε

4(M + 1)
and

∞∑
n=n0

ξn <
ε

2MM2
(3.3)

The first inequality in (3.3) implies that there exists p0 ∈ F such that d(xn0 , p0) < ε
2(M+1) .

Hence, for any n ≥ n0 and m ≥ 1, we have

d(xn0+m, xn0) ≤ d(xn0+m, p0) + d(xn0 , p0)

≤ [eM1

∑n0+m−1

k=n0
µk + 1]d(xn0 , p0) +M2[ξn0+m−1

+ξn0+m−2e
M1µn0+m−1 + ξn0+m−3e

M1

∑n0+m−1

k=n0+m−2 µk

+ · · · + ξn0e
M1

∑n0+m−1

k=n0+1 µk ]

≤ (M + 1)d(xn0 , p0) +MM2

∞∑
n=n0

ξn

< (M + 1)
ε

2(M + 1)
+MM2

ε

2MM2
= ε.

This implies that {xn} is a Cauchy sequence in H. Sine K is a closed subset of a complete
hyperbolic space H, it is complete. We can assume that limn→∞ xn = q, and q ∈ K. It is easy to
see that F (T ) is a close subset in K, so is F (T ). Since limn→∞ d(xn, F ) = 0, we obtain q ∈ F (T ).
This completes the proof. 2

We now establish strong convergence of the iteration process (1.1) based on Theorem 2.2.
Theorem 3.2 Suppose that K, H, {Ti}ri=1, {Si}ri=1 and F be the same as in Theorem 3.1, and

{Ti}ri=1, and {Si}ri=1, satisfies condition (C1) (or (C2), or (C3)). Then the sequence {xn} defined
in (1.1) converges strongly to some p ∈ F .

Proof. It follows from Theorem 2.1 that limn→∞ d(xn, F ) exists. Moreover, Theorem 2.2 implies
that limn→∞ d(xn, Tixn) = limn→∞ d(xn, Sixn) = 0 for each i ∈ I. Thus, the condition (C1) (or
(C2), or (C3)) guarantees that limn→∞ f(d(xn, F )) = 0. Since f is nondecreasing with f(0) = 0,
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it follows that limn→∞ d(xn, F ) = 0. Then, Lemma 3.1 implies that {xn} converges strongly to a
common fixed point p ∈ F . 2

From Theorem 3.2, we have the following results.
Corollary 3.3 Let K, H, {Ti}ri=1, {Si}ri=1 and F be the same as in Corollary 3.1. Suppose that

{Ti}ri=1, and {Si}ri=1, satisfies condition (C1) (or (C2), or (C3)). Then the sequence {xn} defined
in (1.1) converges strongly to some p ∈ F .

Corollary 3.4 Assume that K, H, {Ti}ri=1, {Si}ri=1 and F are the same as in Corollary 3.2, and
{Ti}ri=1, and {Si}ri=1, satisfies condition (C1) (or (C2), or (C3)). Then the sequence {xn} defined
in (1.1) converges strongly to some p ∈ F .

Theorem 3.3 Let K, H, {Ti}ri=1, {Si}ri=1 and F be the same as in Theorem 3.1. Suppose
that either Tl ∈ {Ti}ri=1 or Sl ∈ {Si}ri=1 is semi-compact. Then the sequence {xn} defined in (1.1)
converges strongly to p ∈ F .

Proof. Let Tl ∈ {Ti}ri=1 is semi-compact. By Theorem 2.2, we know that limn→∞ d(Tixn, xn) = 0
for all i ∈ I. By Theorem 2.1, {xn} is bounded and Tl is semi-compact, there exists a subsequence
{xnj} of {xn} such that xnj → q as j → ∞. By continuity of Ti and Theorem 2.2, we obtain

d(q, Tiq) = lim
j→∞

d(xnj
, Tixnj

) = 0, i ∈ I.

This implies that q is the common fixed point of {Ti}ri=1. Similarly, we can show that q is the
common fixed point of {Si}ri=1. Hence, q ∈ F . Again, by Theorem 2.1, limn→∞ d(xn, q) exists.
Therefore, q is the strong limit of the sequence {xn}. As a result, {xn} converges strongly to a point
q. 2

From Theorem 3.3, we have the following results.
Corollary 3.5 Let K, H, {Ti}ri=1, {Si}ri=1 and F be the same as in Corollary 3.1. Suppose

that either Tl ∈ {Ti}ri=1 or Sl ∈ {Si}ri=1 is semi-compact. Then the sequence {xn} defined in (1.1)
converges strongly to p ∈ F .

Corollary 3.6 Suppose that K, H, {Ti}ri=1, {Si}ri=1 and {xn} be the same as in Corollary 3.2,
and either Tl ∈ {Ti}ri=1 or Sl ∈ {Si}ri=1 is semi-compact. Then the sequence {xn} defined in (1.1)
converges strongly to p ∈ F .

Remark 3.1 (1) If the uniformly convex hyperbolic spaces with modulus of uniform convexity
reduce to CAT(0) spaces, and iterative process (1.1) reduce to iterative process (1.3), Theorem 3.1,
Lemma 3.1, Theorem 3.2 reduce to Theorems 3.1-3.3 proved by Thakur et al. [7], respectively.

(2) If r = 3 and αin = 0 and S1 = S2 = · · · = Sr = T , Theorem 3.1, Lemma 3.1, Theorem 3.2
and Theorem 3.3 become to Theorems 1-4 in [5], respectively.

(3) If the uniformly convex hyperbolic spaces with modulus of uniform convexity reduce to
CAT(0) spaces, and r = 3 and αin = 0 and Sn

1 = Sn
2 = · · · = Sn

r = T , where T is a nonexpansive
mappings on K ⊂ H, Theorem 3.1, Lemma 3.1, Theorem 3.2 are equivalent to Theorems 1-3 of [6],
respectively.

4 Concluding remarks

In this paper, we introduced and studied the following new general iteration for two finite families
of total asymptotically nonexpansive mappings in hyperbolic spaces H:

xn+1 = W (Tn
1 yn+r−2,W (yn+r−2, S

n
1 yn+r−2, θ1n), α1n),

yn+r−2 = W (Tn
2 yn+r−3,W (yn+r−3, S

n
2 yn+r−3, θ2n), α2n),

yn+r−3 = W (Tn
3 yn+r−4,W (yn+r−4, S

n
3 yn+r−4, θ3n), α3n),

...

yn+1 = W (Tn
r−1yn,W (yn, S

n
r−1yn, θ(r−1)n), α(r−1)n),

yn = W (Tn
r xn,W (xn, S

n
r xn, θrn), αrn),

(4.1)
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where {Ti}ri=1 and {Si}ri=1 be two finite families of total asymptotically nonexpansive mappings on
nonempty closed and convex subset K ⊂ H, {αin} and {βin} are two double real sequences in [0, 1],
and for each i ∈ I = {1, 2, · · · , r}, r ≥ 2 and n ≥ 1, θin := βin

1−αin
.

In order to prove ∆-convergence and strong convergence of the iteration (4.1) in hyperbolic spaces,
we gave and analyzed some important related properties to the new general iterative processes (4.1),
and proposed some meaningful illustrations for clarifying the results presented in this paper, which
show that our results extend and improve the corresponding results of iterative approximation for
asymptotically (quasi-)nonexpansive mapping, (generalized) (quasi-)nonexpansive mapping of all
normed linear spaces, Hadamard manifolds and CAT(0) spaces as special cases. Our results extended
and improved the corresponding results of [1, 2, 4–7, 9, 21].

It is well known that iterative processes as ubiquitous in the area of abstract nonlinear analysis
and still remain as a main tool for approximation of fixed points of generalizations of nonexpansive
maps. Furthermore, the analysis of general iterative processes, in a more general setup, is a problem
of interest in theoretical numerical analysis. Therefore, on two finite families of total asymptoti-
cally nonexpansive mappings in the setting of the general iteration (4.1), the following two open
questions will be worth further studying:.

(1) If some errors are added in the iteration (4.1), such as the iterative approximating scheme (3.1)
in [11], can the ∆-convergence and strong convergence presented in this paper be proved?

(2) When Ti and Si (i ∈ I) in (4.1) become total asymptotically quasi-nonexpansive mappings,
whether do the results of Theorems 3.1-3.3 hold?
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Abstract

In the present article, we establish an integral identity for Riemann-
Liouville fractional integrals. Some Simpson type integral inequalities
utilizing this integral identity are obtained. It is worth mentioning that
the presented results have close connection with those in [M. Z Sarikaya,
E. Set, M. E Ozdemir, On new inequalities of Simpson’s type for s-convex
functions, Computers and Mathematics with Applications, 60 (2010),
2191–2199)].
Subject class: [2000] 26A15, 26A51, 26D10.
keywords: Simpson’s Inequality, Convex Functions, Power-mean Inequal-
ity, Riemann-Liouville Fractional Integral.

1. Introduction

The following definition for convex functions is well known in the mathe-
matical literature:

A function f : Φ 6= I ⊆ R → R. is said to be convex on I, if inequality

f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y), for all x, y ∈ I, t ∈ [0, 1]

Many inequalities have been established for convex functions but the most
famous is the Simpson’s inequality, due to its rich geometrical significance and
applications, which is stated as [9]:
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Theorem 1 Let f : [a, b] → R be a four times continuously differentiable
mapping on (a, b) and

∥∥f (4)
∥∥
∞ = supx∈(a,b)

∣∣f (4) (x)
∣∣ < ∞, then we have the

following inequality:

∣∣∣∣∣
[
1
6
f (a) +

2
3
f

(
a + b

2

)
+

1
6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
1

2880

∥∥∥f (4)
∥∥∥
∞

(b− a)4 .

(1)
For recent refinements, counterparts, generalizations and new Simpson’s type

inequalities, see [[9]-[11]].
In [10], Dragomir et. al proved the following recent developments on Simp-

son’s inequality for which the remainder is expressed in terms of derivatives
lower than the fourth.

Theorem 2 Let f : [a, b] → R is a differentiable mapping whose derivative is
continuous on (a, b) and f ′ ∈ L[a, b]. Then we have the following inequality:

∣∣∣∣∣
[
1
6
f (a) +

2
3
f

(
a + b

2

)
+

1
6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
(b− a)

3
‖f ′‖1 , (2)

where ‖f ′‖1 =
∫ b

a
|f ′(x) dx| .

The bound of (2) for L-Lipschitzian mapping was given in [8] by 5
36 (b− a) .

In [8], Sarikaya et. al presented inequalities for differentiable convex func-
tions which are linked with Simpson’s inequality, and the main inequality in [8],
pointed out, is as follows.

Theorem 3 Let f : I ⊂ [0,∞) → R be a differentiable mapping on I0(interior
of I) such that f ′ ∈ L1 [a, b] where a, b ∈ I with a < b. If |f ′| is s−convex on
[a, b], for some fixed s ∈ (0, 1] , then the following inequality holds:

∣∣∣∣∣
[
1
6
f (a) +

2
3
f

(
a + b

2

)
+

1
6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣∣

≤ (b− a)
(s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+1(s + 1)(s + 2)
( |f ′(a)|+ |f ′(b)| ). (3)

Proposition 1 Under the assumptions of Theorem 3 with s = 1, we have the
following inequality,
∣∣∣∣
[
1

6
f (a)+

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤
5 (b− a)

72
( |f ′(a)|+ |f ′(b)| ).

(4)

Proposition 2 Under the assumptions of Theorem 3 with f (a) = f
(

a+b
2

)
=

f (b), we have the following inequality,

2
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∣∣∣∣∣
1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)∣∣∣∣∣ ≤
5 (b− a)

72
( |f ′(a)|+ |f ′(b)| ). (5)

Theorem 4 Let f : I ⊂ [0,∞) → R be a differentiable mapping on I0 such
that f ′ ∈ L1 [a, b] where a, b ∈ I with a < b. If |f ′|q is s−convex on [a, b], for
some fixed s ∈ (0, 1] and q ≥ 1, then the following inequality holds:

∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤
b− a

2

(
5

36

)1−1/q

×
{([

2× 5s+2 + (s− 4)6s+1 − (2s + 7)3s+1

3× 6s+1(s + 1)(s + 2)

] ∣∣f ′(b)∣∣q +

[
(2s + 1)3s+1 + 2

3× 6s+1(s + 1)(s + 2)

] ∣∣f ′(a)
∣∣q

)1/q

+

([
(2s + 1)3s+1 + 2

3× 6s+1(s + 1)(s + 2)

] ∣∣f ′(b)
∣∣q +

[
2× 5s+2 + (s− 4)6s+1 − (2s + 7)3s+1

3× 6s+1(s + 1)(s + 2)

] ∣∣f ′(a)
∣∣q

)1/q
}

.

Proposition 3 Under the assumptions of Theorem 4 with s = 1, we have the following
inequality,

∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤
b− a

2

(
5

36

)1−1/q

×
{(

61

648

∣∣f ′(b)
∣∣q +

29

648

∣∣f ′(a)
∣∣q

)1/q

+

(
61

648

∣∣f ′(b)
∣∣q +

29

648

∣∣f ′(a)
∣∣q

)1/q
}

.

Proposition 4 Under the assumptions of Theorem 4 with f (a) = f
(

a+b
2

)
= f (b),

we have the following inequality,

∣∣∣∣
1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)∣∣∣∣ ≤
b− a

72
(5)1−1/q ×

{(
61

648

∣∣f ′(b)∣∣q +
29

648

∣∣f ′(a)
∣∣q

)1/q

+

(
61

648

∣∣f ′(b)∣∣q +
29

648

∣∣f ′(a)
∣∣q

)1/q
}

Definition 1 Let f ∈ L1[a, b]. The left−sided and right−sided Riemann−Liouville
fractional integrals of order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a < x

and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively, where Γ(.) is Gamma function and its definition is Γ(α) =
∫∞
0

e−uuα−1du.
It is to be noted that J0

a+f(x) = J0
b−f(x) = f(x).

3
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In the case of α = 1, the fractional integral reduces to the classical integral.

Properties relating to this operator can be found in [5] and for useful details on Simp-
son’s type inequalities connected with fractional integral inequalities, the interested
readers are directed to [1]

The main aim of this paper is to establish new Simpson’s type inequalities for
Riemann−Liouville fractional integral using the convexity as well as concavity, for the
class of functions whose derivatives in absolute value at certain powers are convex
functions. we will derive a general integral identity for convex functions.

2. Main Results

In order to prove our main results we need the following integral identity:

Lemma 1 Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R be a
differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with a < b.
If |f ′| is convex on [a, b], then the following identity for Riemann−Liouville fractional
integrals holds:

[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− Γ(α + 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

=
b− a

2α+1
[I1 + I2 + (2α − 1) (I3 + I4)] ,

where
I1 =

∫ 1

0

(
1
6
− 1

2
(1− t)α)

f ′(tb + (1− t)a+b
2

)dt,

I2 =
∫ 1

0

(
1
2

(1− t)α − 1
6

)
f ′(ta + (1− t)a+b

2
)dt,

I3 =
∫ 1

0

(
1

2(2α−1)
(1 + t)α − 1

2(2α−1)
− 1

3

)
f ′(tb + (1− t)a+b

2
)dt,

I4 =
∫ 1

0

(
1

2(2α−1)
− 1

2(2α−1)
(1 + t)α + 1

3

)
f ′(ta + (1− t)a+b

2
)dt.

Proof. Integrating by parts, we have

I1 =

∫ 1

0

(
1

6
− 1

2
(1− t)α

)
f ′(tb + (1− t)

a + b

2
)dt

=
2

(
1
6
− 1

2
(1− t)α)

f ′(tb + (1− t)a+b
2

)dt

b− a

∣∣∣∣
1

0

− 2α

b− a

∫ 1

0

(1− t)α+1 f(tb + (1− t)
a + b

2
)dt

=
2

b− a

[
1

6
f (b) +

1

3
f

(
a + b

2

)]
− 2α

b− a

∫ 1

0

(1− t)α+1 f(tb + (1− t)
a + b

2
)dt

=
2

b− a

[
1

6
f (b) +

1

3
f

(
a + b

2

)]
− 2αα

(b− a)α J3.
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I3 =

∫ 1

0

(
1

2 (2α − 1)
(1 + t)α − 1

2 (2α − 1)
− 1

3
)f ′(tb + (1− t)

a + b

2
)dt

=
2

[
1

2(2α−1)
(1 + t)α − 1

2(2α−1)
− 1

3

]
f(tb + (1− t)a+b

2
)dt)

b− a

∣∣∣∣
1

0

− 2α

(b− a) (2α − 1)

∫ 1

0

(1 + t)α+1 f(tb + (1− t)
a + b

2
)dt)

(2α − 1) I3 =
2

b− a

[
1

6
f (b) +

1

3
f

(
a + b

2

)]
+

2 (α + 1)

b− a

∫ 1

0

(1 + t)α+1 f(tb + (1− t)
a + b

2
)dt)

=
2

b− a

[
1

6
f (b) +

1

3
f

(
a + b

2

)]
− 2αα

(b− a)α+1 J2.

Analogously:
I2 = 2

b−a

[
1
6
f (b) + 1

3
f

(
a+b
2

)]− 2αα
(b−a)α J1.

(2α − 1) I4 = 2
b−a

[
1
6
f (b) + 1

3
f

(
a+b
2

)]− 2αα
(b−a)α+1 J4.

Adding above equalities, we get

2

b− a

[
1

6
f (a) +

1

3
f

(
a + b

2

)
+

1

6
f (b)

]
− α

2 (b− a)α [J1 + J2 + J3 + J4]

= I1 + I2 + (2α − 1) (I3 + I4) .

Now making suitable substitutions, we have

J1 =
∫ 1

0
(1− t)α+1 f ′(ta + (1− t)a+b

2
)dt = 2α

(b−a)α

∫ a+b/2

a
(u− a)α−1 f(u)du

J2 =
∫ 1

0
(1 + t)α+1 f ′(tb + (1− t)a+b

2
)dt = 2α

(b−a)α

∫ b

a+b/2
(u− a)α−1 f(u)du

J1 + J2 = 2α

(b−a)α

∫ b

a
(u− a)α−1f(u)du = 2αΓ(α)

(b−a)α Jα
b−f(a),

likewise
J3 =

∫ 1

0
(1− t)α+1 f ′(tb + (1− t)a+b

2
)dt = 2α

(b−a)α

∫ b

a+b/2
(b− u)α−1 f(u)du

J4 =
∫ 1

0
(1 + t)α+1 f ′(ta + (1− t)a+b

2
)dt = 2α

(b−a)α

∫ a+b/2

a
(b− u)α−1 f(u)du

J3 + J4 = 2α

(b−a)α

∫ b

a
(b− u)α−1f(u)du = 2αΓ(α)

(b−a)α Jα
a+f(b),

which completes our proof.

Theorem 5 Let f and f ′ be defined as in Theorem 4 and if |f ′| is convex on [a, b],
then the following identity for Riemann−Liouville fractional integrals holds:

[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− Γ(α + 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

≤ (b− a)

2α
(ψ1 + ψ2)( |f ′(a)|+ |f ′(b)| ). (6)

where ψ1 = K1 + K2, ψ2 = K3 + K4

Proof. By using the properties of modulus on Lemma 1, we have

∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− Γ(α + 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ ≤
b− a

2α+1
×

[
2c− α + 2

6 (α + 1)
+

{(
2α − 1

3
+

1

2

)
(2d− 3)− 1

α + 1

(
5d

3
− 2α+1 + 1

2

)}]
( |f ′(a)|+|f ′(b)|,
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where c =
(

1
3

) 1
α and dα = 2(2α−1)

3
+ 1.

Using convexity of |f ′|, we have

|I1| ≤
∫ 1

0

(
1

6
− 1

2
(1− t)α

)
|f ′(tb + (1− t)

a + b

2
)|dt

=

∫ 1

0

(
1

6
− 1

2
(1− t)α

)
|f ′(1 + t

2
b +

1− t

2
a)|dt

≤
∫ 1

0

(
1

6
− 1

2
(1− t)α

) {(
1 + t

2

) ∣∣f ′(b)
∣∣ +

(
1− t

2

) ∣∣f ′(a)
∣∣
}

dt

=
K1

2

∣∣f ′(b)∣∣ +
K2

2

∣∣f ′(a)
∣∣ .

Analogously:

|I2| ≤ K1

2

∣∣f ′(a)
∣∣ +

K2

2

∣∣f ′(b)∣∣ .

Using the convexity on |f ′| and the fact that for α ∈ (0, 1] and ∀ t ∈ [0, 1],

|I3| ≤
∫ 1

0

(
1

2 (2α − 1)
(1 + t)α − 1

2 (2α − 1)
− 1

3

)
|f ′(ta + (1− t)

a + b

2
)|dt

=

∫ 1

0

(
1

2 (2α − 1)
(1 + t)α − 1

2 (2α − 1)
− 1

3

)
|f ′(1 + t

2
a +

1− t

2
b)|dt

≤
∫ 1

0

(
1

2 (2α − 1)
(1 + t)α − 1

2 (2α − 1)
− 1

3

) {(
1 + t

2

) ∣∣f ′(a)
∣∣ +

(
1− t

2

) ∣∣f ′(b)
∣∣
}

dt

=
K3

2

∣∣f ′(a)
∣∣ +

K4

2

∣∣f ′(b)
∣∣ .

Similarly

|I4| ≤ K3

2

∣∣f ′(b)
∣∣ +

K4

2

∣∣f ′(a)
∣∣ .

To get desired result, adding above inequalities and it is very easy to check

K1 =

∫ 1−c

0

(
1

2
(1− t)α − 1

6

)
dt = −1

6
(1− c)− 1

2 (α + 1)
cα+1 +

1

2 (α + 1)
,

K2 =

∫ 1

1−c

(
1

6
− 1

2
(1− t)α

)
dt =

1

6
− 1

6
(1− c)− 1

2 (α + 1)
cα+1,

K3 =

∫ d−1

0

(
1

2 (2α − 1)
− 1

2 (2α − 1)
(1 + t)α +

1

3

)
dt

=

[
1

3
+

1

2 (2α − 1)

]
(d− 1)− dα+1

2 (2α − 1) (α + 1)
+

1

2 (2α − 1) (α + 1)
,

K4 =

∫ 1

d−1

(
1

2 (2α − 1)
(1 + t)α − 1

2 (2α − 1)
− 1

3

)
dt

=
2α+1

2 (2α − 1) (α + 1)
−

[
1

3
+

1

2 (2α − 1)

]
− dα+1

2 (2α − 1) (α + 1)
+

[
1

3
+

1

2 (2α − 1)

]
(d− 1) .

This completes the proof.
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Remark 1 If we take α = 1 in Theorem 5 then inequality (6) reduces to inequality
(4).

The corresponding version for powers of the absolute value of the derivative is
incorporated in the following theorem.

Theorem 6 Let f and f ′ be defined as in Theorem 4 and if |f ′|q is a convex on [a, b],
with q ≥ 1, then the following inequality holds:
∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− Γ(α + 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ ≤
(b− a)

2α

[
ψ1

1−1/q

{(
K5 |f ′ (a)|q + K6 |f ′ (b)|q

2

)1/q

+

(
K5 |f ′ (a)|q + K6 |f ′ (b)|q

2

)1/q
}

+

ψ2
1−1/q

{(
K7 |f ′ (a)|q +K8 |f ′ (b)|q

2

)1/q

+

(
K7 |f ′ (a)|q+K8 |f ′ (b)|q

2

)1/q
}]

. (7)

Proof. Using the well-known power-mean integral inequality for q > 1 , we have

|I1| ≤
(∫ 1

0

∣∣∣∣
(

1

6
− 1

2
(1− t)α

)∣∣∣∣ dt

)1−1/q (∫ 1

0

∣∣∣∣
(

1

6
− 1

2
(1− t)α

)∣∣∣∣
∣∣∣∣f ′

(
ta + (1− t)

a + b

2

)∣∣∣∣
q

dt

)1/q

Using the convexity of |f ′|q, we have

|I1| ≤ ψ1
1−1/q

(
K5

|f ′ (a)|q
2

+ K6
|f ′ (b)|q

2

)1/q

.

Analogously:

|I2| ≤ ψ1
1−1/q

(
K5

|f ′ (b)|q
2

+ K6
|f ′ (a)|q

2

)1/q

.

|I2| ≤ ψ2
1−1/q

(∫ 1

0
((1 + t)α+1 − 2α (1 + t) + α2α (1− t))

∣∣f ′ (tb + (1− t)a+b
2

)∣∣q dt
)1/q

.

By the convexity of |f ′|q, we have

|I3| ≤ ψ2
1−1/q

(
K7

|f ′ (a)|q
2

+ K8
|f ′ (b)|q

2

)1/q

.

Analogously:

|I4| ≤ ψ2
1−1/q

(
K7

|f ′ (b)|q
2

+ K8
|f ′ (a)|q

2

)1/q

.

It is very easy to check that

K5 =
∫ 1

0

∣∣( 1
6
− 1

2
(1− t)α)∣∣ (1 + t) dt = 3(α+1)+4α(α+2)c−α(α+1)c2

12(α+1)(α+2)
− 1

8
,

K6 =
∫ 1

0

∣∣( 1
6
− 1

2
(1− t)α)∣∣ (1− t) dt = 2αc2−α+4

24(α+2)
,

K7 =
∫ 1

0

∣∣∣ 1
2(2α−1)

− 1
2(2α−1)

(1 + t)α + 1
3

∣∣∣ (1 + t) dt,

= 1
2(2α−1)

[(
d2 − 5

2

) (
2α−1

3
+ 1

2

)
− 1

(α+2)

(
5
3
d2 − 2α+1+1

2

)
1
3

+ 1
2(2α−1)

]

K8 =
∫ 1

0

∣∣∣ 1
2(2α−1)

− 1
2(2α−1)

(1 + t)α + 1
3

∣∣∣ (1− t))dt

= 1
2(2α−1)

[(
1
2
− (2− d)2

) (
2α−1

3
+ 1

2

)
+ 1

(α+1)

(
1
2
− 5d

3
(2− d)

)
+

1
(α+1)(α+2)

(
2α+2+1

2
− 5

3
d2

)]
.

This completes the proof.
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Remark 2 If we take α = 1 in Theorem 6, then inequality (7) reduces to inequality
as obtained in Proposition 3.

In the following theorem, we obtain estimate of Simpson’s inequality (1) for concave
functions.

Theorem 7 Let f : [a, b] → R be a differentiable function on (a, b) such that f ′ ∈
L1[a, b]. If |f ′|q is concave on [a, b], for some fixed p > 1 with q = p

p−1
, then the

following inequality for fractional integrals holds for α > 0 :
∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− Γ(α + 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣∣∣∣ ≤
(b− a)

2α+1
×

[
ψ1

{∣∣∣∣f ′
(

K5b + K6a

ψ1

)∣∣∣∣ +

∣∣∣∣f ′
(

K5a + K6b

ψ1

)∣∣∣∣
}

+ψ2 (2α − 1)

∣∣∣∣f ′
(

K7b + K8a

ψ2

)∣∣∣∣ +

∣∣∣∣f ′
(

K7a + K8b

ψ2

)∣∣∣∣
]

. (8)

Proof. Using the concavity of |f ′|q and the power-mean inequality, we obtain

|f ′|q > t|f ′|q + (1− t)|f ′|q
≥ t|f ′|q + (1− t)|f ′|q.

Hence
|f ′(tx + (1− t)y)| ≥ t|f ′(x)|+ (1− t)|f ′(y)|.

So |f ′| is also concave. By the Jensen integral inequality, we have

|I1| ≤
(∫ 1

0

∣∣∣∣
(

1

6
− 1

2
(1− t)α

)∣∣∣∣ dt

) ∣∣∣∣∣f
′′

(∫ 1

0

∣∣( 1
6
− 1

2
(1− t)α)∣∣ ( 1+t

2
a + 1−t

2
b)dt∫ 1

0

∣∣( 1
6
− 1

2
(1− t)α)∣∣ dt

)∣∣∣∣∣

= ψ1

∣∣∣∣f ′
(

K5b + K6a

ψ1

)∣∣∣∣ .

Analogously:

|I2| ≤ ψ1

∣∣∣∣f ′
(

K5a + K6b

ψ1

)∣∣∣∣ ,

|I3| ≤ ψ2

∣∣∣∣f ′
(

K7b + K8a

ψ2

)∣∣∣∣ ,

|I4| ≤ ψ2

∣∣∣∣f ′
(

K7a + K8b

ψ2

)∣∣∣∣ .

This completes the proof.

Corollary 1 If we take α = 1 in Theorem 7, then inequality (8) becomes as:

∣∣∣∣
[
1

6
f (a) +

2

3
f

(
a + b

2

)
+

1

6
f (b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣

≤ 5 (b− a)

72

[∣∣∣∣f ′
(

29a + 61b

90

)∣∣∣∣ +

∣∣∣∣f ′
(

61a + 29b

90

)∣∣∣∣
]

. (9)
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Remark 3 Inequality (9) is an generalization of obtained inequality as in [9,
Theorem 8]
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Abstract: In this paper, a nonautonomous delayed Gilpin-Ayala competition system with-

out instantaneous negative feedbacks (i.e., pure-delay-type system) is investigated. By the

techniques of comparison arguments and constructing Lyapunov functionals something dif-

ferent to usual case, several results to guarantee the permanence of the system are derived by

means of Ahmad and Lazer’s definitions of lower and upper averages of a function. Moreover,

the sufficient conditions for the global attractivity of the positive solution are also obtained,

in which it is not necessarily to require the exponent of nonlinear intraspecific interference to

exceed that of nonlinear interspecific interactions. These results are more general and prac-

tical, and possess a wide range of applications. Obviously, they are basically an extension of

many existing conclusions for nonlinear competitive systems.

Keywords: Permanence; Global attractivity; Nonlinear competition; Lyapunov function-

als; Pure-delays

1 Introduction
The permanence and global stability of ecological systems are always the most important

and ubiquitous problems in mathematical biology. As pointed out by Li and Kuang [1], more

realistic and interesting models of single or multiple species growth should take into account

both the seasonality of the changing environment and the effects of time delays. Moreover, in

view of the fact that in real-life species interactions, instantaneous responses are rare or weak

relatively to delayed responses, more realistic models should consist of delay differential systems

instead of the ones with instantaneous feedbacks. Recently, some model with discrete delay and

distributed delay was studied [2–5]. In the meantime, some scholars [6,7] argue that continuously

distributed delays as ecologically and biologically are more realistic than discrete delays to species

interactions, which is proved true by Caperon [8]. Therefore, a reasonable alternative way is

to study the pure-delay-type systems with both discrete delays and continuously distributed

delays.

One the other hand, it is well know that for Lotka-Volterra model with delays, the stability

is ordinarily delineated in two ways: the one that contain delay independent terms which dom-

inate other intra-specific and inter-specific interaction effects with and without delays, called a

”no-pure-delay-type”, and the other with only delay feedbacks, is named as ”pure-delay-type”.

For no-pure-delay-type system, one can use the no-delay terms to control the delay terms. Var-

ious results have been obtained recently under so-called diagonally dominant conditions and

the conditions are often independent of delays (see [9–13]). However, for the pure-delay-type

∗Corresponding author E-mail address: xiaomei−0529@126.com

Author Email: linlin418@163.com
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systems, the analysis of the permanence and the global asymptotic stability of the system is

very difficult, let along the nonlinear type system.

Motivated by the works on Gilpin-Ayala competition systems with delays (see [12, 14–16]),

in particular, strongly stimulated by the works [1, 17–19], which all contain several time delay,

we consider the following Gilpin-Ayala competitive system with several discrete arguments and

continuous time delays

ẋi(t) = xi(t)
[
ri(t) −

n∑
j=1

kij∑
k=1

aijk(t)x
αijk

j (t− τijk(t))

−
n∑

j=1

lij∑
l=1

∫ 0

−σijl

bijl(t, s)x
βijl

j (t+ s)ds
]
. (1.1)

The aim of this paper is, by developing the analytic technique the analytic technique of the

literatures [10, 11, 14–16, 21, 22], to obtain conditions which guarantee the permanence of the

system (1.1); after that, by constructing a suitable Lyapunov functional, sufficient conditions

about the global attractivity of the positive solution of system (1.1) are gained.

For convenience, we will use following notations in the rest of this paper, let τijk = sup{τijk(t) |
t ∈ R} and τ = max{τijk, σijl}, then we have 0 < τijk, σijl ≤ τ . Denote by Ψijk(t) = t−τijk(t),

and the functions Ψ−1
ijk(t) is the inverse functions of Ψijk(t), respectively. In this paper, for

system (1.1) we always assume that

(H1) αijk > 0, βijl > 0.

(H2) ri(t), aijk(t), τijk(t), are positively continuous and bounded functions on [c,+∞).

(H3) Functions bijl(t, s) are defined on [c,+∞) × [−τ, 0] such that they are integrable with

respect to s, and
∫ 0
−σijl

bijl(t, s)ds are positive, continuous and bounded above with respect to t

on [c,+∞).

(H4) τijk(t) are nonnegative, continuous and bounded, Ψijk(t) = t − τijk(t) are all invertible.

Furthermore, it is differentiable and satisfy 1 − τ ′ijk(t) > 0 (t ≥ c).

Stimulated by the application of system (1.1) to population dynamics, we assume that solu-

tions of system (1.1) satisfy the following initial condition

xi(θ) = ϕi(θ) ≥ 0, θ ∈ [−τ, 0], ϕi(0) > 0, sup
θ∈[−τ,0]

ϕi(θ) < +∞. (1.2)

2 Basic results
Let g(t) be a continuous function define on [c,+∞). Denote

gu = sup{g(t) | c ≤ t < +∞}, gl = sup{g(t) | c ≤ t < +∞}.

According to Ahmad and Lazer [10], we define the lower and upper averages of a function g(t).

If c ≤ t1 < t2, set

A[g, t1, t2] =
1

t2 − t1

∫ t2

t1

g(s)ds.

The lower and upper averages of g(t) denoted by m[g] and M [f ] are follows

m[g] = lim
s→+∞

inf{A[g, t1, t2] | t2 − t1 ≥ s},

and

M [g] = lim
s→+∞

sup{A[g, t1, t2] | t2 − t1 ≥ s}.

Since the set {A[g, t1, t2] | t2 − t1 ≥ s} decreases as s increases, the limits exist; and since

gl ≤ A[g, t1, t2] ≤ gu, it follows that gl ≤ m[g] ≤ A[g, t1, t2] ≤M [g] ≤ gu.

Definition 2.1. The system of differential equation

ẋ(t) = F (t, x(t)), x ∈ Rn

2
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is said to be permanent if there exits a compact set D in Rn
+ = {(x1, x2, ..., xn) ∈ Rn | xi >

0 (i = 1, 2, ..., n)}, such that all solutions starting in the interior of Rn
+ ultimately enter D.

Now we consider following single species Logistic type equation

ẋ(t) = x(t)
[
r(t) −

n∑
k=1

ak(t)xαk(t)
]
. (2.1)

Where r(t) and ak(t) (k = 1, 2, ..., n) are all continuous functions on [0,+∞), r(t) may be

negative, ak(t) (k = 1, 2, ..., n) are nonnegative and there exists at least one k ∈ 1, 2, ..., n such

that m[ak] > 0, and αk (k = 1, 2, ..., n) are positive constants.

From the Lemma of [11], we have

Lemma 2.1. Suppose that m[r] > 0, ak(t) (k = 1, 2, ..., n) are nonnegative and there exists

at least one k ∈ {1, 2, ..., n} such that m[ak] > 0, then any solution x(t) of (2.1) with initial

value x(t0) > 0 is bounded above and below on [t0,+∞) and globally attractive. Specially, if

r(t), ak(t) (k = 1, 2, ..., n) are continuous T -periodic functions, then (2.1) has a unique positive,

global attractive T -periodic solution x∗(t).

As a matter of fact, according to Lemma 2.2 of [11], if r(t) may be negative but M [r] > 0,

ak(t) (k = 1, 2, ..., n) are nonnegative and there exists at least one k ∈ {1, 2, ..., n} such that

m[ak] > 0, then we have Lemma 2.2 below corresponding to Lemma 2.1:

Lemma 2.2. Assume that M [r] > 0 and ak(t) (k = 1, 2, ..., n) are nonnegative and there

exists at least one k ∈ {1, 2, ..., n} such that m[ak] > 0, then any solution x(t) of (2.1) with

initial value x(t0) > 0 is bounded above and below by strictly positive real numbers on [t0,+∞)

and globally attractive. Specially, if r(t), ak(t) (k = 1, 2, ..., n) are all continuous T -periodic

functions, then system (2.1) has a unique positive, globally asymptotically stable T -periodic

solution x∗(t).

By developing the analytic technique of [11, 16], it is not difficult to verify the following

results

Lemma 2.3. If (H2) − (H4) are hold, then we have

M
[
aijk(t)X

αijk

j (t− τijk(t))
]

= M
[ aijk

(
Ψ−1

ijk(t)
)

1 − τ ′ijk
(
Φ−1
ijk(t)

)Xαijk

j (t)
]
.

m
[
aijk(t)X

αijk

j (t− τijk(t))
]

= m
[ aijk

(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)
]
.

where Xi(t) is the unique solution of the Logistic system corresponding to Eqs. (1.1) with initial

condition Xi(t0) > 0.

Proof. From (H2)− (H4) and Lemma 2.1, 2.2, we infer that τijk(t),
aijk

(
Φ−1

ijk(t)
)

1−τ ′ijk

(
Φ−1

ijk(t)
) and X

αijk

j (t)

are all bounded, we claim that∫ t1

t1−τijk(t1)

aijk
(
Φ−1
ijk(s)

)
1 − τ ′ijk

(
Φ−1
ijk(s)

)Xαijk

j (s)ds,

∫ t2−τijk(t2)

t2

aijk
(
Φ−1
ijk(s)

)
1 − τ ′ijk

(
Φ−1
ijk(s)

)Xαijk

j (s)ds

are all bounded above and below. Then from the definition of lower and upper averages of a

function, we obtain that for t2 > t1 ≥ t0

M
[
aijk(t)X

αijk

j (t−τijk(t))
]

= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

aijk(t)X
αijk

j (t−τijk(t))ds | t2−t1 ≥ s
}

= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2−τijk(t2)

t1−τijk(t1)

aijk
(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)ds | t2 − t1 ≥ s
}

= lim
s→+∞

sup
{ 1

t2 − t1

(∫ t1

t1−τijk(t1)
+

∫ t2

t1

+

∫ t2−τijk(t2)

t2

)aijk(Φ−1
ijk(t)

)
X

αijk

j (t)

1 − τ ′ijk
(
Ψ−1

ijk(t)
) dt | t2 − t1 ≥ s

}

3
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= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

aijk
(
Φ−1
ijk(t)

)
X

αijk

j (t)

1 − τ ′ijk
(
Φ−1
ijk(t)

) dt | t2 − t1 ≥ s
}

= M
[aijk(Φ−1

ijk(t)
)
X

αijk

j (t)

1 − τ ′ijk
(
Φ−1
ijk(t)

) ]
.

Similarly, we can testify that the equality for the case of m
[
aijk(t)X

αijk

j (t− τijk(t))
]

is also true.

Lemma 2.4. If (H2) − (H4) hold, then

M
[ ∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
]

= M
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
,

m
[ ∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
]

= m
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
.

where Xi(t) is the unique solution of the Logistic system corresponding to Eqs. (1.1) with initial

condition Xi(t0) > 0.

Proof. From (H2) − (H4) and Lemma 2.1, 2.2, it follows that bijl(t, .) and
∫ 0
−σijl

bijl(t −

s, s)ds, X
βijl

j (t) are all bounded functions, we conclude that∫ 0

−σijl

∫ t1

t1+s
bijl(t− s, s)X

βijl

j (s)ds,

∫ 0

−σijl

∫ t2+s

t2

bijl(t− s, s)X
βijl

j (s)ds

are all bounded. Therefore, according to the definition of lower and upper averages of a function,

we find that for t2 > t1 ≥ t0

M
[ ∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
]

= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

(∫ 0

−σijl

bijl(t, s)X
βij

j (t+ s)ds
)
dt | t2 − t1 ≥ s

}
= lim

s→+∞
sup

{ 1

t2 − t1

∫ 0

−σijl

∫ t2+s

t1+s
bijl(t− s, s)X

βijl

j (t)dt | t2 − t1 ≥ s
}
ds

= lim
s→+∞

sup
{ 1

t2 − t1

∫ 0

−σijl

(∫ t1

t1+s
+

∫ t2

t1

+

∫ t2+s

t2

)
bijl(t− s, s)X

βijl

j (t)dt | t2 − t1 ≥ s
}
ds

= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

(∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
)
dt | t2 − t1 ≥ s

}
= M

[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
.

In a similar way, we can show that the equality for the case of m
[ ∫ 0

−σijl
bijl(t, s)X

βijl

j (t+ s)ds
]

is also hold.

3 Permanence
In this section, we are mainly concerned with the permanence of the system (1.1)-(1.2).

Firstly, for the sake of the permanence with regarding to the system (1.1), we introduce the

following notations

a∗ijk(t) = aijk(t) exp
{
αijk

∫ t−τijk(t)

t
ri(s)ds

}
,

b∗ijl(t) =

∫ 0

−σijl

bijl(t, s) exp
{
βijl

∫ t+s

t
ri(u)du

}
ds.

Then, let us consider the following logistic type equation corresponding to Eqs. (1.1)

ẋi(t) = xi(t)
[
ri(t) −

kii∑
k=1

a∗iik(t)xαiik
i (t) −

lii∑
l=1

∫ 0

−σiil

b∗iil(t, s)dsx
βiil
i (t)

]
. (3.1)

Theorem 3.1. In addition to (H1) − (H4), assume further that

(H5) M
[
ri(t) −

n∑
j=1, j ̸=i

( kij∑
k=1

aijk(t)X
αijk

j (t− τijk(t)) +

lij∑
l=1

∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
)]

> 0.
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Where Xi(t) is the unique globally attractive positive solution of the (3.1) with initial condition

Xi(t0) > 0. Then Eqs. (1.1)-(1.2) is permanent.

Proof. Firstly, we show that any positive solution of system (1.1) is ultimately bounded above

by some positive constant. Let x(t) =
(
x1(t), ..., xn(t)

)
be any positive solution of system (1.1),

then it follows from (1.1) that for all t ≥ 0

ẋi(t) ≤ ri(t)xi(t). (3.2)

Thus for any t ≥ 0, s ≤ 0 and t+ s ≥ 0, by integrating (2.11) over interval [t+ s, t] we derive

xi(t+ s) ≥ xi(t) exp
{∫ t+s

t
ri(s)ds

}
for, t ≥ τ. (3.3)

Integrate with (3.3), we obtain directly from the system (1.3) that

ẋi(t) = xi(t)
[
ri(t) −

n∑
j=1

kij∑
k=1

aijk(t)x
αijk

j (t− τijk(t)) −
n∑

j=1

lij∑
l=1

∫ 0

−σijl

bijl(t, s)x
βijl

j (t+ s)ds
]

≤ xi(t)
[
ri(t) −

kii∑
k=1

aiik(t)xαiik
i (t− τiik(t)) −

lii∑
l=1

∫ 0

−σiil

biil(t, s)x
βiil
i (t+ s)ds

]
≤ xi(t)

[
ri(t) −

kii∑
k=1

a∗iik(t)xαiik
i (t) −

lii∑
l=1

∫ 0

−σiil

b∗iil(t, s)dsx
βiil
i (t)

]
. (3.4)

By using the comparison theorem, we find

xi(t) ≤ Xi(t), for all t ≥ t0. (3.5)

Where Xi(t) is the positive solution of system (3.1) with initial condition Xi(0) which satisfies

xi(0) ≤ Xi(0). From Lemma 2.1, Lemma 2.2 and (3.5), it is not difficult to obtain that

lim sup
t→+∞

xi(t) ≤ Xi(t), for all t ≥ t0.

Hence, for a sufficiently small ε > 0, there exists a Ti1(ε) > 0 such that for t ≥ Ti1(ε)

xi(t) ≤ Xi(t) ≤ Xi(t) + ε. (3.6)

Now choose M0 = sup{Xi(t) + ε | t ≥ 0, i = 1, 2, ..., n}, then M0 does not depend on any

solution of system (3.1), also xi(t) ≤M0, for all t ≥ T1, where T1 = max1≤i≤n{Ti1}.

Secondly, we shall show that any positive solution of system (1.1) is ultimately bounded

below by some positive constant. To this end, we proceed with following two steps.

Step 1: We show that there exists ϵ0 > 0 such that lim supt→+∞ xi(t) ≥ ϵ0, for all i =

1, 2, ..., n. For the convenience of the following discuss, for any constant ε > 0, we denote by

Ri(t, ε) = ri(t) −
n∑

j=1, j ̸=i

kij∑
k=1

aijk(t)
(
X

αijk

j (t− τijk(t)) + ε
)

−
n∑

j=1, j ̸=i

lij∑
l=1

∫ 0

−σijl

bijl(t, s)
(
X

βijl

j (t+ s) + ε
)
ds
]

On the one hand, according to (H5) in Theorem 3.1, one finds that for any given small

number ε > 0, there is M [Ri(t, ε)] > 0 (i = 1, 2, ..., n). Therefore, we can choose a sufficiently

small number ϵ0 > 0, δ > 0 such that

M
[
Ri(t, ε) −

kii∑
k=1

aiik(t)ϵαiik
0 −

lii∑
l=1

∫ 0

−σiil

biil(t, s)dsϵ
βiil
0

]
≥ δ,

for all i = 1, 2, ..., n, i.e.,

lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

[
Ri(t, ε)−

kii∑
k=1

aiik(t)ϵαiik
0 −

lii∑
l=1

∫ 0

−σiil

biil(t, s)dsϵ
βiil
0

]
dt | t2 − t1 ≥ s

}
≥ δ.

Which implies that

5
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lim
s→+∞

sup
{∫ t2

t1

[
Ri(t, ε) −

kii∑
k=1

aiik(t)ϵαiik
0

−
lii∑
l=1

∫ 0

−σiil

biil(t, s)ϵ
βiil
0 ds

]
dt | t2 − t1 ≥ s

}
= +∞.

Therefore, there must exist λ > 0 and a positive number γ0 > 0 such that∫ t+λ

t

[
Ri(t, ε) −

kii∑
k=1

aiik(t)ϵαiik
0 −

lii∑
l=1

∫ 0

−σiil

biil(t, s)dsϵ
βiil
0

]
dt ≥ γ0, for all t ≥ T2. (3.7)

Now we claim that the following inequality holds

lim sup
t→+∞

xi(t) ≥ ϵ0, for all i = 1, 2, ..., n. (3.8)

By way of contradiction, suppose that lim supt→+∞ xi(t) < ϵ0 for a certain p ∈ {1, 2, ..., n},

then there exists T2 > T1 such that xp(t) < δ, for all t ≥ T2. This, together with the (3.6), gives

out that for all t ≥ T2

ẋp(t) = xp(t)
[
rp(t) −

n∑
j=1

( kpj∑
k=1

apjk(t)x
αpjk

j (t− τpjk(t)) +

lpj∑
l=1

∫ 0

−σpjl

bpjl(t, s)x
βpjl

j (t+ s)ds
)]

≥ xp(t)
[
rp(t) −

n∑
j=1, j ̸=p

kpj∑
k=1

apjk(t)
(
X

αpjk

j (t− τpjk(t)) + ε
)

−
n∑

j=1, j ̸=p

lpj∑
l=1

∫ 0

−σpjl

bpjl(t, s)
(
X

βpjl

j (t+ s) + ε
)
ds
]

−
kpp∑
k=1

appk(t)ϵ
αppk

0 −
lpp∑
l=1

∫ 0

−σppl

bppl(t, s)dsϵ
βppl

0

]
≥ xp(t)

[
Rp(t, ε) −

kpp∑
k=1

appk(t)ϵ
αppk

0 −
lpp∑
l=1

∫ 0

−σppl

bppl(t, s)dsϵ
βppl

0

]
. (3.9)

An integration of (3.9) over time interval [T2, t] leads to

xp(t) ≥ xp(T2) exp
{∫ t

T2

[
Rp(t, ε) −

kpp∑
k=1

appk(t)ϵ
αppk

0 −
lpp∑
l=1

∫ 0

−σppl

bppl(t, s)dsϵ
βppl

0

]}
. (3.10)

Obviously, which, together with (3.7) result into the conclusion that xp(t) → +∞ as t → +∞,

which contradicts to the boundedness of xi(t), for all t ≥ Ti1 in (3.6). Hence, the inequality

(3.8) is true.

Step 2: We shall prove that there exists a constant m0 > 0, m0 is independent of any

solution of system (1.1), i.e., there is a positive constant m0 > 0 such that for any solution

x(t) = (x1(t), ..., xn(t)), one has

lim inf
t→+∞

xi(t) ≥ m0, for all i = 1, 2, ..., n. (3.11)

Assume that it is not true, then there exist a certain integer q ∈ {1, 2, ..., n} and a sequence of

initial functions {ϕ(k)q (t)}+∞
k=1 for system (1.1) such that x

(k)
q (t) = xq(t, ϕ

(k)
q ), k = 1, 2, ... satisfy

lim inf
t→+∞

x(k)q (t) ≤ ϵ0
(k + 1)2

, for all k = 1, 2, ... (3.12)

For each k = 1, 2, . . ., from (3.8) we claim that lim supt→+∞ x
(k)
q (t) ≥ 1

(k+1)ϵ0. Hence, by

(3.12) one can infer that there exists two time sequences {s(k)n } and {t(k)n } such that for each

k = 1, 2, ...

0 < s
(k)
1 < t

(k)
1 < s

(k)
2 < t

(k)
2 < . . . < s(k)n < t(k)n < . . . , for all n = 1, 2, ...,

6
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s(k)n → +∞, t(k)n → +∞, as n→ +∞, x(k)q (t(k)n ) =
ϵ0

(k + 1)2
, x(k)q (s(k)n ) =

ϵ0
(k + 1)

. (3.13)

ϵ0
(k + 1)2

< x(k)q (t) <
ϵ0

(k + 1)
, for all t ∈ (s(k)n , t(k)n ). (3.14)

It follows from (3.6) that for a given small number ϵ0, there exists T
(k)
2 > T1 such that x

(k)
i (t) ≤

Xi(t) + ϵ0, t ≥ T
(k)
2 .

Obviously, by (3.13) there exists a large enough integer N
(k)
1 > 0 such that s

(k)
n > T

(k)
2 + τ

for all n ≥ N
(k)
1 for each k = 1, 2, . . . . Hence, for any t ∈ [s

(k)
n , t

(k)
n ] and n ≥ N

(k)
1 , we have

ẋ(k)q (t) = x(k)q (t)
[
rq(t) −

n∑
j=1

νqj∑
ν=1

aqjν(t)
(
x
(k)
j (t− τqjν(t))

)αqjν

−
n∑

j=1

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
x
(k)
j (t+ s)

)βqjl

ds
]

≥ x(k)q (t)
[
rq(t) −

n∑
j=1

νqj∑
ν=1

aqjν(t)
(
X

(k)
j (t− τqjν(t)) + ε

)αqjν

−
n∑

j=1

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
X

(k)
j (t+ s) + ε

)βqjl

ds
]
≥ −γx(k)q (t). (3.15)

Where

γ = sup
t∈R

{ n∑
j=1

[ νqj∑
ν=1

aqjν(t)
(
X

(k)
j (t−τqjν(t))+ε

)αqjν

+

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
X

(k)
j (t+s)+ε

)βqjl

ds
]}
.

Therefore, for any n ≥ N
(k)
1 and k = 1, 2, . . ., an integration of (3.15) over [s

(k)
n , t

(k)
n ] makes

one lead to
ϵ0

(k + 1)2
= x(k)q (t(k)n ) ≥ x(k)q (s(k)n ) exp

{
− γ(t(k)n − s(k)n )

}
=

ϵ0
(k + 1)

exp
{
− γ(t(k)n − s(k)n )

}
.

Which means

t(k)n − s(k)n ≥ ln(k + 1)

γ
, for all n ≥ N

(k)
1 , k = 1, 2, . . . (3.16)

It follows from (3.16) that there exists a sufficient large integer K0 such that

t(k)n − s(k)n ≥ λ, for all k ≥ K0, n ≥ N
(k)
1 . (3.17)

Hence, for any k ≥ K0, n ≥ N
(k)
1 and t ∈ [s

(k)
n , t

(k)
n ], it follows from (3.13) and (3.14) that

ẋ(k)q (t) = x(k)q (t)
[
rq(t) −

n∑
j=1

νqj∑
ν=1

aqjν(t)
(
x
(k)
j (t− τqjν(t))

)αqjν

−
n∑

j=1

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
x
(k)
j (t+ s)

)βqjlds
]

≥ x(k)q (t)
[
rq(t) −

νqq∑
ν=1

aqqν(t)
( ϵ0
k + 1

)αqqν −
lqq∑
l=1

∫ 0

−σqql

bqql(t, s)ds
( ϵ0
k + 1

)βqql

−
n∑

j=1, j ̸=q

νqj∑
ν=1

aqjν(t)
(
X

(k)
j (t− τqjν(t)) + ε

)αqjν

−
n∑

j=1, j ̸=p

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
X

(k)
j (t+ s) + ε

)βqjlds
]

≥ x(k)q (t)
[
rq(t) −

νqq∑
ν=1

aqqν(t)ϵ
αqqν

0 −
lqq∑
l=1

∫ 0

−σqql

bqql(t, s)dsϵ
βqql

0
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−
n∑

j=1, j ̸=q

νqj∑
ν=1

aqjν(t)
(
X

(k)
j (t− τqjν(t)) + ε

)αqjν

−
n∑

j=1, j ̸=p

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
X

(k)
j (t+ s) + ε

)βqjlds
]
. (3.18)

According to (3.7), (3.13) and (3.14), an integration of (3.18) over time interval [t
(k)
n − λ, t

(k)
n ]

makes it reach

ϵ0
(k + 1)2

= x(k)q (t(k)n ) ≥ x(k)q (t(k)n − λ) exp
{∫ t

(k)
n

t
(k)
n −λ

[
Bq(t, ϵ0) −

n∑
j=1, j ̸=q

( νqj∑
ν=1

aqjν(t)

×
(
X

(k)
j (t− τqjν(t)) + ε

)αqjν +

lqj∑
l=1

∫ 0

−σqjl

bqjl(t, s)
(
X

(k)
j (t+ s) + ε

)βqjlds
)]
dt
}

>
ϵ0

(k + 1)2
exp ϵ0 >

ϵ0
(k + 1)2

. (3.19)

Where

Bq(t, ϵ0) = rq(t) −
νqq∑
ν=1

aqqν(t)ϵ
αqqν

0 −
lqq∑
l=1

∫ 0

−σqql

bqql(t, s)dsϵ
βqql

0 .

Which is contradiction. This shows that there exists a constant m0 > 0 (m0 > 0 is independent

of any initial function) such that the inequality (2.15) is correct. That is to say, any positive

solution x(t) of the initial value problem (1.1)-(1.2) is ultimately bounded below by a positive

constant m0 > 0. From Definition 2.1, the proof of Theorem 3.1 is complete.

Theorem 3.2. In addition to (H1) − (H4), assume further that

(H5)
′ M

[
ri(t)

]
−

n∑
j=1, j≠i

kij∑
k=1

m
[ aijk

(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)
]

−
n∑

j=1, j ̸=i

lij∑
l=1

m
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
> 0.

Where Xi(t) is the unique globally attractive positive solution of the (3.1) with initial condition

Xi(t0) > 0. Then the system (1.1)-(1.2) is permanent.

Proof. In order to prove the correct of Theorem 3.2, We only need to show that (H5)
′ implies

the assumption (H5). Actually, if take into account the fact that

M [Xi0(t) + c] = M [Xi0(t)] + c, m[fi(t)] ≤ A[fi(t), t1, t2].

Then we may obtain that

M
[
ri(t)

]
−

n∑
j=1, j ̸=i

( kij∑
k=1

m
[aijk(Φ−1

ijk(t)
)
X

αijk

j (t)

1 − τ ′ijk
(
Φ−1
ijk(t)

) ]
+

lij∑
l=1

m
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
])

−M
[
ri(t) −

n∑
j=1, j ̸=i

( kij∑
k=1

aijk(t)X
αijk

j (t− τijk(t)) +

lij∑
l=1

∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
)]

= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

[
ri(t)−

n∑
j=1, j ̸=i

( kij∑
k=1

m
[aijk(Φ−1

ijk(t)
)
X

αijk

j (t)

1 − τ ′ijk
(
Φ−1
ijk(t)

) ]
+

lij∑
l=1

m
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
])]

dt | t2 − t1 ≥ s
}
− lim

s→+∞
sup

{ 1

t2 − t1

∫ t2

t1

[
ri(t)

−
n∑

j=1, j ̸=i

( kij∑
k=1

aijk(t)X
αijk

j (t− τijk(t)) +

lij∑
l=1

∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
)]
dt | t2 − t1 ≥ s

}
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= lim
s→+∞

sup
{ 1

t2 − t1

∫ t2

t1

[
ri(t)−

n∑
j=1, j ̸=i

( kij∑
k=1

m
[
aijk(t)X

αijk

j (t−τijk(t))
]

+

lij∑
l=1

m
[ ∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
])]

dt | t2 − t1 ≥ s
}
− lim

s→+∞
sup

{ 1

t2 − t1

∫ t2

t1

[
ri(t)

−
n∑

j=1, j ̸=i

( kij∑
k=1

aijk(t)X
αijk

j (t− τijk(t)) +

lij∑
l=1

∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
)]
dt | t2 − t1 ≥ s

}
≥ lim

s→+∞
sup

{ 1

t2 − t1

∫ t2

t1

ri(t)dt−
n∑

j=1, j ̸=i

( kij∑
k=1

1

t2 − t1

∫ t2

t1

[
aijk(t)X

αijk

j (t−τijk(t))
]
dt

+

lij∑
l=1

1

t2 − t1

∫ t2

t1

[ ∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
])
dt | t2 − t1 ≥ s

}
− lim

s→+∞
sup

{ 1

t2 − t1

∫ t2

t1

[
ri(t)

−
n∑

j=1, j ̸=i

( kij∑
k=1

aijk(t)X
αijk

j (t− τijk(t)) +

lij∑
l=1

∫ 0

−σijl

bijl(t, s)X
βijl

j (t+ s)ds
)]
dt | t2 − t1 ≥ s

}
= 0.

Therefore, we claim from Theorem 3.1 that Theorem 3.2 is correct. The proof is complete.

Theorem 3.3. In addition to (H1) − (H4), assume further that

(H5)
′′ M

[
ri(t)

]
−

n∑
j=1, j ̸=i

kij∑
k=1

M
[ aijk

(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)
]

−
n∑

j=1, j ̸=i

lij∑
l=1

M
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
> 0.

Where Xi(t) is the unique globally attractive positive solution of the (3.1) with initial condition

Xi(t0) > 0. Then Eqs. (1.1)-(1.2) is permanent.

Proof. Noticing the following facts that

M [Xi0(t) + c] = M [Xi0(t)] + c, m[fi(t)] ≤M [fi(t)] and

n∑
i=1

m[fi(t)] ≤
n∑

i=1

M [fi(t)].

We find that the condition (H5)
′′ means the hypothesis (H5)

′, and so it does the assumption

(H5). Hence, one can confirm that the result of Theorem 3.3 is also true.

Theorem 3.4. In addition to (H1) − (H4), assume further that

(H5)
′′′ m

[
ri(t)

]
−

n∑
j=1, j ̸=i

kij∑
k=1

M
[ aijk

(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)
]

−
n∑

j=1, j ̸=i

lij∑
l=1

M
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
> 0.

Where Xi(t) is the unique globally attractive positive solution of the (3.1) with initial condition

Xi(t0) > 0. Then Eqs. (1.1)-(1.2) is permanent.

Proof. Taking into account the facts that

M [Xi0(t) + c] = M [Xi0(t)] + c, m[fi(t)] ≤M [fi(t)].

We declare that the assumption (H5)
′′ can be deduced from the hypothesis (H5)

′′′, so it is evident

that Theorem 3.3 implies the Theorem 3.4.

Theorem 3.5. In addition to (H1) − (H4), assume further that

(H5)
′′′′ m

[
ri(t)

]
−

n∑
j=1, j ̸=i

kij∑
k=1

m
[ aijk

(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

)Xαijk

j (t)
]
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−
n∑

j=1, j ̸=i

lij∑
l=1

m
[ ∫ 0

−σijl

bijl(t− s, s)dsX
βijl

j (t)
]
> 0.

Where Xi(t) is the unique globally attractive positive solution of the (3.1) with initial condition

Xi(t0) > 0. Then Eqs. (1.1)-(1.2) is permanent.

Proof. As a matter of fact, m[fi(t)] ≤M [fi(t)] and assumption (H5)
′′′′ means that the hypoth-

esis (H5) is true, so it follows from Theorem 3.1 that the conclusion of Theorem 3.5 is right.

Remark. 3.1 It is easy to verify that M [g] = m[g] = 1
T

∫ T
0 g(t)dt for a T -periodic function

g(t). So if system (1.1) is a periodic system, i.e., ri(t), aijk(t), bijl(t, ·) are the continuous

T -periodic functions, then Xi(t) in above mentioned Theorems can be replaced by the unique

positive T -periodic solution X∗
i (t) of (3.1), and the assumptions of Theorem 3.1-Theorem 3.5

are equivalent to each other.

Remark. 3.2 Theorems 3.1-3.5 generalize the main results of Zhao et al. [11], Chen et al. [14,15]

and Xia et al. [16]. We mention here that for general nonautonomous Lotka-Volterra system

(1.1), Teng et al. [21, 22] also obtained some similar results as that of Zhao [11]. It is in this

sense, our results can also be seen as the generalization of Theorems of [21,22].

4 Global attractivity
A very basic and important problem accompanying with the ecological dynamics systems

is the global stability of the positive solution for the system. In this section, we will devote

ourselves to give some new criteria to guarantee global attractivity of the positive solution.

Definition 4.1. The bounded solution X∗(t) = (x∗1(t), x
∗
2(t), ..., x

∗
n(t)) of system (1.1) with

X∗(t0) > 0 is said to be globally attractive, if for any other solutionX(t) = (x1(t), x2(t), ..., xn(t))T

with X(0) > 0, there is

lim
t→+∞

| xi(t) − x∗i (t) |= 0, i = 1, 2, ..., n.

Before we state the main result of this section, we first introduce some notations which will

be used in the following discussion. Let Φ−1
ijk(t) be the inverse function of Φijk(t) = t − τijk(t),

and

A
(1)
ijk(t) =

aijk
(
Φ−1
ijk(t)

)
1 − τ ′ijk

(
Φ−1
ijk(t)

) , A(2)
ijk(t) =

aijk

(
Φ−1
ijk

(
Φ−1
ijk(t)

))(
1 − τ ′ijk

(
Φ−1
ijk

(
Φ−1
ijk(t)

)))(
1 − τ ′ijk

(
Φ−1
ijk(t)

)) ,
B

(1)
ijl (t) =

∫ 0

−σijl

bijl(t− s, s)ds, B
(2)
ijl (t) =

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)dθds,(

B
(2)
ijl ·A

(1)

ij̃k̃

)
(t) =

∫ 0

−σijl

∫ t

t+s
A

(1)

ij̃k̃

(
θ − s

)
bijl(t− s, s)dθds,

(
B

(2)
ijl ·B

(1)

ij̃l̃

)
(t) =

∫ 0

−σijl

∫ t

t+s
B

(1)

ij̃l̃
(θ − s)bijl(t− s, s)dθds.

Let ui(t) = lnxi(t), then Eqs. (1.1) can be reformulated as

u̇i(t) = ri(t) −
n∑

j=1

kij∑
k=1

aijk(t) exp
{
αijkuj

(
t− τijk(t)

)}
−

n∑
j=1

lij∑
l=1

∫ 0

−σijl

bijl(t, s) exp
{
βijluj(t+ s)

}
ds. (4.1)

Now we are in the position of stating the sufficient conditions which guarantee the global

attractivity of system (1.1).

Theorem 4.1. In addition to (H1) − (H5), we assume further that

(H6) There exist positive constants λi > 0 (i = 1, 2, ..., n), ζ > 0 such that
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lim inf
t→+∞

{
Λi(t)

}
> ζ, lim inf

t→+∞

{
∆i(t)

}
> ζ.

Where Λi(t) = 2

kii∑
k=1

λiA
(1)
iik(t) −

n∑
j=1,j ̸=i

[ kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t) +

kij∑
k=1

λi
αiikm

αiik
i0

A
(1)
ijk(t)

]
−

n∑
j=1

n∑
j̃=1

[ kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t)

( k̃ij̃∑
k̃=1

∫ t

t−τij̃k̃(t)
A

(1)

ij̃k̃
(s)ds+

k̃ij̃∑
k̃=1

∫ t

t−τjik(t)
A

(2)

ij̃k̃
(s)ds

)

+

kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t)

( l̃ij̃∑
l̃=1

∫ t

t−τjik(t)
B

(1)

ij̃l̃

(
Φ−1
jik(θ)

)
dθ +

lij̃∑
l=1

B
(2)

ij̃l
(t)
)]
,

∆i(t) = 2

lii∑
l=1

λiB
(1)
iil (t) −

n∑
j=1,j ̸=i

[ lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil
B

(1)
jil (t) +

lij∑
l=1

λi

βiilm
βiil
i0

B
(1)
ijl (t)

]

−
n∑

j=1

n∑
j̃=1

[ lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil
B

(1)
jil (t)

( kij̃∑
k=1

∫ t

t−τij̃k(t)
A

(1)

ij̃k
(s)ds+

l̃ij̃∑
l̃=1

B
(1)
jil (t)B

(2)

ij̃l̃
(t)
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil

( k̃ij̃∑
k̃=1

(
B

(2)
jil ·A

(1)

ij̃k̃

)
(t) +

l̃ij̃∑
l̃=1

(
B

(2)
jil ·B

(1)

ij̃l̃

)
(t)
)]
.

Then the solution X∗(t) = (x∗1(t), x
∗
2(t), ..., x

∗
n(t)) of (1.1) − (1.2) is globally attractive.

Proof. Let X∗(t) =
(
x∗1(t), ..., x

∗
n(t)

)
with x∗i (t0) > 0 be a positive solution of (1.1), and X(t) =(

x1(t), ..., xn(t)
)

with xi(t0) > 0 be an any given solution of system (1.1). In order to show the

global attractivity of the bounded solution X∗(t) of system (1.1), we shall show that the solution

U∗(t) = (u∗1(t), ..., u
∗
n(t) of system (4.1) is globally attractive. Let U(t) = (u1(t) , ..., un(t))

be any other positive solution of system (4.1). According to Theorem 3.1, there exist positive

constants mi0, Mi0 (i = 1, 2, ..., n) and enough large T > 0 such that for all t ≥ T , there are

mi0 ≤ ui(t), u∗i (t) ≤Mi0 (i = 1, 2, ..., n). (4.2)

Obviously, So to prove the global attractivty of the system (1.1), it is suffices to verify that

system (4.1) is globally attractive. Firstly, construct a Lyapunov functional as follows

V1(t) =
n∑

i=1

λi

[(
ui(t) − u∗i (t)

)
−

n∑
j=1

kij∑
k=1

∫ t

t−τijk(t)
A

(1)
ijk(t)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})
ds

−
n∑

j=1

lij∑
l=1

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(θ)

}
− exp

{
βijlu

∗
j (θ)

})
dθds

]2
.

By calculating the right upper derivative of V1(t), we find

V̇1(t) = −2

n∑
i=1

λi

[(
ui(t)−u∗i (t)

)
−

n∑
j=1

kij∑
k=1

∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
−exp

{
αijku

∗
j (s)

})
ds

−
n∑

j=1

lij∑
l=1

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(θ)

}
− exp

{
βijlu

∗
j (θ)

})
dθds

]
×
[ n∑
j=1

kij∑
k=1

A
(1)
ijk(t)

(
exp

{
αijkuj(t)

}
− exp

{
αijku

∗
j (t)
})

+

n∑
j=1

lij∑
l=1

B
(1)
ijl (t)

(
exp

{
βijluj(t)

}
− exp

{
βijlu

∗
j (t)
})]

≤ −2
n∑

i=1

kii∑
k=1

λiA
(1)
iik(t)

(
exp

{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)
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−2
n∑

i=1

lii∑
l=1

λiB
(1)
iil (t)

(
exp

{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)

+2
n∑

i=1

n∑
j=1,j ̸=i

kji∑
k=1

λjA
(1)
jik(t)

(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})(

uj(t) − u∗j (t)
)

+2
n∑

i=1

n∑
j=1,j ̸=i

lji∑
l=1

λjB
(1)
jil (t)

(
exp

{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})(

uj(t) − u∗j (t)
)

+2

n∑
i=1

λi

[ n∑
j̃=1

k̃ij̃∑
k̃=1

A
(1)

ij̃k̃
(t)
(

exp
{
αij̃k̃uj(t)

}
− exp

{
αij̃k̃u

∗
j (t)
})]

×
[ n∑
j=1

kij∑
k=1

∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})
ds
]

+2

n∑
i=1

λi

[ n∑
j̃=1

k̃ij̃∑
k̃=1

A
(1)

ij̃k̃
(t)
(

exp
{
αij̃k̃uj(t)

}
− exp

{
αij̃k̃u

∗
j (t)
})]

×
[ n∑
j=1

lij∑
l=1

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})
dθds

]
+2

n∑
i=1

λi

[ n∑
j̃=1

l̃ij̃∑
l̃=1

B
(1)

ij̃l̃
(t)
(

exp
{
βij̃l̃uj(t)

}
− exp

{
βij̃l̃u

∗
j (t)
})]

×
[ n∑
j=1,j ̸=j̃

kij∑
k=1

∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})
ds
]

+2
n∑

i=1

λi

[ n∑
j̃=1

l̃ij̃∑
l̃=1

B
(1)

ij̃l̃
(t)
(

exp
{
βij̃l̃uj(t)

}
− exp

{
βij̃l̃u

∗
j (t)
})]

×
[ n∑
j=1

lij∑
l=1

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})
dθds

]
. (4.3)

That is

V̇1(t) ≤ −2

n∑
i=1

kii∑
k=1

λiA
(1)
iik(t)

(
exp

{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)

−2
n∑

i=1

lii∑
l=1

λiB
(1)
iil (t)

(
exp

{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)

+2

n∑
i=1

n∑
j=1,j ̸=i

kji∑
k=1

λjA
(1)
jik(t)

(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})(

uj(t) − u∗j (t)
)

+2
n∑

i=1

n∑
j=1,j ̸=i

lji∑
l=1

λjB
(1)
jil (t)

(
exp

{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})(

uj(t) − u∗j (t)
)

+2

n∑
i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kij∑
k=1

λiA
(1)

ij̃k̃
(t)
(

exp
{
αij̃k̃uj̃(t)

}
− exp

{
αij̃k̃u

∗
j̃
(t)
})

×
∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})
ds

+2
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lij∑
l=1

λiA
(1)

ij̃k̃
(t)
(

exp
{
αij̃k̃uj̃(t)

}
− exp

{
αij̃k̃u

∗
j̃
(t)
})]

×
[ ∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})
dθds
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+2

n∑
i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kij∑
k=1

λiB
(1)

ij̃l̃
(t)
(

exp
{
βij̃l̃uj̃(t)

}
− exp

{
βij̃l̃u

∗
j̃
(t)
})

×
∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})
ds

+2
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lij∑
l=1

λiB
(1)

ij̃l̃
(t)
(

exp
{
βij̃l̃uj̃(t)

}
− exp

{
βij̃l̃u

∗
j̃
(t)
})

×
∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})
dθds. (4.4)

By further using the inequality a2 + b2 ≥ 2ab, it follows from (4.4) that

V̇1(t) ≤ −2

n∑
i=1

kii∑
k=1

λiA
(1)
iik(t)

(
exp

{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)

−2
n∑

i=1

lii∑
l=1

λiB
(1)
iil (t)

(
exp

{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)

+

n∑
i=1

n∑
j=1,j ̸=i

kji∑
k=1

λjA
(1)
jik(t)

[(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})2

+
(
uj(t) − u∗j (t)

)2]
+

n∑
i=1

n∑
j=1,j ̸=i

lji∑
l=1

λjB
(1)
jil (t)

[(
exp

{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})2

+
(
uj(t) − u∗j (t)

)2]

+
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kij∑
k=1

λiA
(1)

ij̃k̃
(t)
[ ∫ t

t−τijk(t)
A

(1)
ijk(s)ds

(
exp

{
αij̃k̃uj̃(t)

}
− exp

{
αij̃k̃u

∗
j̃
(t)
})2

+

∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})2
ds
]

+

n∑
i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lij∑
l=1

λiA
(1)

ij̃k̃
(t)
[
B

(2)
ijl (t)

(
exp

{
αij̃k̃uj̃(t)

}
− exp

{
αij̃k̃u

∗
j̃
(t)
})2

+

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})2
dθds

]
+

n∑
i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kij∑
k=1

λiB
(1)

ij̃l̃
(t)
[ ∫ t

t−τijk(t)
A

(1)
ijk(s)ds

(
exp

{
βij̃l̃uj̃(t)

}
− exp

{
βij̃l̃u

∗
j̃
(t)
})2

+

∫ t

t−τijk(t)
A

(1)
ijk(s)

(
exp

{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})2
ds
]

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lij∑
l=1

λiB
(1)

ij̃l̃
(t)
[
B

(2)
ijl (t)

(
exp

{
βij̃l̃uj̃(t)

}
− exp

{
βij̃l̃u

∗
j̃
(t)
})2

+

∫ 0

−σijl

∫ t

t+s
bijl(θ − s, s)

(
exp

{
βijluj(s)

}
− exp

{
βijlu

∗
j (s)

})2
dθds

]
Now let us define the Lyapunov functional V2(t) as follows

V2(t) =
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kij∑
k=1

λi

∫ t

t−τijk(t)
A

(2)

ij̃k̃
(s)
(
Φ−1
ijk

) ∫ t

s
A

(1)
ijk(r)

×
(

exp
{
αijkuj(r)

}
− exp

{
αijku

∗
j (r)

})2
drds
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+

n∑
i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lij∑
l=1

λi

∫ 0

−σijl

∫ t

t+s
A

(1)

ij̃k̃

(
θ − s

) ∫ t

θ
bijl(r − s, s)

×
(

exp
{
βijluj(r)

}
− exp

{
βijlu

∗
j (r)

})2
drdθds

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kij∑
k=1

λi

∫ t

t−τijk(t)
B

(1)

ij̃l̃

(
Φ−1
ijk(θ)

) ∫ t

θ
A

(1)
ijk(r)

×
(

exp
{
αijkuj(r)

}
− exp

{
αijku

∗
j (r)

})2
drdθ

+

n∑
i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lij∑
l=1

λi

∫ 0

−σijl

∫ t

t+s
B

(1)

ij̃l̃
(θ − s)

∫ t

θ
bijl(r − s, s)

×
(

exp
{
βijluj(r)

}
− exp

{
βijlu

∗
j (r)

})2
drdθds.

Calculating the derivative of V2(t) along the positive solution of system (1.1), it follows:

V̇2(t) =
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kij∑
k=1

λi

∫ t

t−τijk(t)
A

(2)

ij̃k̃
(s)dsA

(1)
ijk(t)

×
(

exp
{
αijkuj(t)

}
− exp

{
αijku

∗
j (t)
})2

−
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kij∑
k=1

λiA
(1)

ij̃k̃
(t)

∫ t

t−τijk(t)
A

(1)
ijk(s)

×
(

exp
{
αijkuj(s)

}
− exp

{
αijku

∗
j (s)

})2
ds

+
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lij∑
l=1

λi
(
B

(2)
ijl ·A

(1)

ij̃k̃

)
(t)
(

exp
{
βijluj(t)

}
− exp

{
βijlu

∗
j (t)
})2

−
n∑

i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lij∑
l=1

λiA
(1)

ij̃k̃

(
t
) ∫ 0

−σijl

∫ t

t+s
bijl(r − s, s)

×
(

exp
{
βijluj(r)

}
− exp

{
βijlu

∗
j (r)

})2
drds

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kij∑
k=1

λi

∫ t

t−τijk(t)
B

(1)

ij̃l̃

(
Φ−1
ijk(θ)

)
dθA

(1)
ijk(t)

×
(

exp
{
αijkuj(t)

}
− exp

{
αijku

∗
j (t)
})2

−
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kij∑
k=1

λiB
(1)

ij̃l̃
(t)

∫ t

t−τijk(t)
A

(1)
ijk(r)

×
(

exp
{
αijkuj(r)

}
− exp

{
αijku

∗
j (r)

})2
dr

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lij∑
l=1

λi
(
B

(2)
ijl ·B

(1)

ij̃l̃

)
(t)
(

exp
{
βijluj(t)

}
− exp

{
βijlu

∗
j (t)
})2

−
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lij∑
l=1

λiB
(1)

ij̃l̃
(t)

∫ 0

−σijl

∫ t

t+s
bijl(r − s, s)

×
(

exp
{
βijluj(r)

}
− exp

{
βijlu

∗
j (r)

})2
drds. (4.5)
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Finally, we consider the following Lyapunov functional V (t)

V (t) = V1(t) + V2(t). (4.6)

Calculating the upper right derivative of V (t) along the solution of system (1.2), and integrating

with the above-mentioned analysis, one claims that

D+V (t) ≤ −2

n∑
i=1

kii∑
k=1

λiA
(1)
iik(t)

(
exp

{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t)−u∗i (t)
)

−2

n∑
i=1

lii∑
l=1

λiB
(1)
iil (t)

(
exp

{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)

+

n∑
i=1

n∑
j=1,j ̸=i

kji∑
k=1

λjA
(1)
jik(t)

(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})2

+

n∑
i=1

n∑
j=1,j ̸=i

lji∑
l=1

λjB
(1)
jil (t)

(
exp

{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})2

+

n∑
i=1

n∑
j=1,j ̸=i

[ kij∑
k=1

λiA
(1)
ijk(t)

(
ui(t) − u∗i (t)

)2
+

lij∑
l=1

λiB
(1)
ijl (t)

(
ui(t) − u∗i (t)

)2]
+

n∑
i=1

n∑
j̃=1

k̃j̃i∑
k̃=1

n∑
j=1

kij∑
k=1

λj̃A
(1)

j̃ik̃
(t)

∫ t

t−τijk(t)
A

(1)
ijk(s)ds

(
exp

{
αj̃ik̃ui(t)

}
− exp

{
αj̃ik̃u

∗
i (t)
})2

+
n∑

i=1

n∑
j̃=1

k̃j̃i∑
k̃=1

n∑
j=1

lij∑
l=1

λj̃A
(1)

j̃ik̃
(t)B

(2)
ijl (t)

(
exp

{
αj̃ik̃ui(t)

}
− exp

{
αj̃ik̃u

∗
i (t)
})2

+

n∑
i=1

n∑
j̃=1

l̃j̃i∑
l̃=1

n∑
j=1

kij∑
k=1

λj̃B
(1)

j̃il̃
(t)

∫ t

t−τijk(t)
A

(1)
ijk(s)ds

(
exp

{
βj̃il̃ui(t)

}
− exp

{
βj̃il̃u

∗
i (t)
})2

+
n∑

i=1

n∑
j̃=1

l̃j̃i∑
l̃=1

n∑
j=1

lij∑
l=1

λj̃B
(1)

j̃il̃
(t)B

(2)
ijl (t)

(
exp

{
βj̃il̃ui(t)

}
− exp

{
βj̃il̃u

∗
i (t)
})2

+

n∑
i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

kji∑
k=1

λj

∫ t

t−τjik(t)
A

(2)

ij̃k̃
(s)dsA

(1)
jik(t)

(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})2

+

n∑
i=1

n∑
j̃=1

k̃ij̃∑
k̃=1

n∑
j=1

lji∑
l=1

λj
(
B

(2)
jil ·A

(1)

ij̃k̃

)
(t)
(

exp
{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})2

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

kji∑
k=1

λj

∫ t

t−τjik(t)
B

(1)

ij̃l̃

(
Φ−1
jik(θ)

)
dθA

(1)
jik(t)

(
exp

{
αjikui(t)

}
− exp

{
αjiku

∗
i (t)
})2

+
n∑

i=1

n∑
j̃=1

l̃ij̃∑
l̃=1

n∑
j=1

lji∑
l=1

λj
(
B

(2)
jil ·B

(1)

ij̃l̃

)
(t)
(

exp
{
βjilui(t)

}
− exp

{
βjilu

∗
i (t)
})2

. (4.7)

Meanwhile, by making use of mean value theorem, we can obtain that for any given positive

number ϵ > 0, there are

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)(t)

}
= ϵ exp{ϵϑ(1)i (t)}

(
ui(t) − u∗i (t)

)
,

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
=

ϵ

αiik
exp{ϵϑ(2)i (t)}

×
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})
,

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
=

ϵ

βiil
exp{ϵϑ(3)i (t)}
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×
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})
. (4.8)

Where ϑ
(1)
i (t), ϑ

(2)
i (t), ϑ

(3)
i (t) are all lie between ui(t) and u∗i (t). Thus, it follows from (4.2) and

(4.8) that for any given positive number ϵ > 0, we have

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)(t)

}
≥ ϵmϵ

i0

(
ui(t) − u∗i (t)

)
,

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)(t)

}
≤ ϵM ϵ

i0

(
ui(t) − u∗i (t)

)
. (4.9)

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
≥ ϵ

αiik
mϵ

i0

×
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})
,

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
≤ ϵ

αiik
M ϵ

i0

×
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})
. (4.10)

and
exp

{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
≥ ϵ

βiil
mϵ

i0

×
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})
,

exp
{
ϵui(t)

}
− exp

{
ϵu∗i (t)

}
≤ ϵ

βiil
M ϵ

i0

×
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})
. (4.11)

Inequality (4.7), (4.9), (4.10) and (4.11) implies that for t ≥ T1

D+V (t) ≤
n∑

i=1

{ kii∑
k=1

−2λiA
(1)
iik(t) +

n∑
j=1,j ̸=i

[ kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t) +

kij∑
k=1

λi
αiikm

αiik
i0

A
(1)
ijk(t)

]

+

n∑
j=1

n∑
j̃=1

[ kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t)

( k̃ij̃∑
k̃=1

∫ t

t−τij̃k̃(t)
A

(1)

ij̃k̃
(s)ds+

k̃ij̃∑
k̃=1

∫ t

t−τjik(t)
A

(2)

ij̃k̃
(s)ds

)

+

kji∑
k=1

λjα
2
jikM

2αjik

i0

αiik
A

(1)
jik(t)

( l̃ij̃∑
l̃=1

∫ t

t−τjik(t)
B

(1)

ij̃l̃

(
Φ−1
jik(θ)

)
dθ +

lij̃∑
l=1

B
(2)

ij̃l
(t)
)]}

×
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)

+
n∑

i=1

{
− 2

lii∑
l=1

λiB
(1)
iil (t) +

n∑
j=1,j ̸=i

[ lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil
B

(1)
jil (t) +

lij∑
l=1

λi

βiilm
βiil
i0

B
(1)
ijl (t)

]

+

n∑
j=1

n∑
j̃=1

[ lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil
B

(1)
jil (t)

( kij̃∑
k=1

∫ t

t−τij̃k(t)
A

(1)

ij̃k
(s)ds+

l̃ij̃∑
l̃=1

B
(1)
jil (t)B

(2)

ij̃l̃
(t)
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0

βiil

( k̃ij̃∑
k̃=1

(
B

(2)
jil ·A

(1)

ij̃k̃

)
(t) +

l̃ij̃∑
l̃=1

(
B

(2)
jil ·B

(1)

ij̃l̃

)
(t)
)]}

×
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)
.

=: −
n∑

i=1

Λi(t) |
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)
|

−
n∑

i=1

∆i(t) |
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)
| . (4.12)

At the same time, according to hypotheses (H6) of Theorem 4.1, we declare that there exists a

constant ζ > 0 such that Λi(t), ∆i(t) > ζ, so it follows from (4.12) that V (t) is nonincreasing,

and it not difficult to see that u̇i(t) are bounded for t ≥ T1. Hence, one can further infer that

| ui(t) − u∗i (t) |, | exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
}
|, | exp

{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
}
| are
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uniformly continuous on [T1,+∞). An integration on both sides of (4.10) over time interval

[T1, t) leads to

V (t) + ζ

n∑
i=1

∫ t

T1

[
|
(

exp
{
αiikui(s)

}
− exp

{
αiiku

∗
i (s)

})(
ui(s) − u∗i (s)

)
|

+ |
(

exp
{
βiilui(s)

}
− exp

{
βiilu

∗
i (s)

})(
ui(s) − u∗i (s)

)
|
]
ds ≤ V (T1) < +∞.

Thus

lim sup
t→+∞

n∑
i=1

∫ t

T1

[
|
(

exp
{
αiikui(s)

}
− exp

{
αiiku

∗
i (s)

})(
ui(s) − u∗i (s)

)
|

+ |
(

exp
{
βiilui(s)

}
− exp

{
βiilu

∗
i (s)

})(
ui(s) − u∗i (s)

)
|
]
ds ≤ V (T1)

ζ
< +∞. (4.13)

It follows from (4.13) that

|
(

exp
{
αiikui(s)

}
− exp

{
αiiku

∗
i (s)

})(
ui(s) − u∗i (s)

)
|∈ L[T1,+∞),

|
(

exp
{
βiilui(s)

}
− exp

{
βiilu

∗
i (s)

})(
ui(s) − u∗i (s)

)
|∈ L[T1,+∞).

According to Barbalat’s lemma, we conclude that

lim
t→+∞

|
(

exp
{
αiikui(t)

}
− exp

{
αiiku

∗
i (t)
})(

ui(t) − u∗i (t)
)
|= 0. (4.14)

lim
t→+∞

|
(

exp
{
βiilui(t)

}
− exp

{
βiilu

∗
i (t)
})(

ui(t) − u∗i (t)
)
|= 0. (4.15)

By way of contradiction, it easy to obtain from (4.14) and (4.15) that

lim
t→+∞

| ui(t) − u∗i (t) |= 0. (4.16)

Therefore, the positive solution X∗(t) of the system (1.1) is also globally attractive. This

completes the proof.

Theorem 4.2. In addition to (H1) − (H5), we assume further that

(H6)
′ There exist positive constants λi > 0 (i = 1, 2, ..., n), ζ > 0 such that

lim inf
t→+∞

{
Λi(t)

}
> ζ.

Where Λi(t) = 2

kii∑
k=1

λiαiikm
αiik
i0 A

(1)
iik(t)−

n∑
j=1,j ̸=i

[ kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t)+

kij∑
k=1

λiA
(1)
ijk(t)

]
+2

lii∑
l=1

λiβiilm
βiil
i0 B

(1)
iil (t) −

n∑
j=1,j ̸=i

[ lji∑
l=1

λjB
(1)
jil (t)β2jilM

2βjil

i0 +

lij∑
l=1

λiB
(1)
ijl (t)

]

−
n∑

j=1

n∑
j̃=1

[ kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t)

( k̃ij̃∑
k̃=1

∫ t

t−τij̃k̃(t)
A

(1)

ij̃k̃
(s)ds+

lij̃∑
l=1

B
(2)

ij̃l
(t)
)

+

kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t)

( k̃j̃i∑
k̃=1

∫ t

t−τjik(t)
A

(2)

ij̃k̃
(s)ds+

l̃ij̃∑
l̃=1

∫ t

t−τjik(t)
B

(1)

ij̃l̃

(
Φ−1
jik(θ)

)
dθ
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0 B
(1)
jil (t)

( kij̃∑
k=1

∫ t

t−τij̃k(t)
A

(1)

ij̃k
(s)ds+

l̃ij̃∑
l̃=1

B
(2)

ij̃l̃
(t)
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0

( k̃ij̃∑
k̃=1

(B
(2)
jil ·A

(1)

ij̃k̃
)(t) +

l̃ij̃∑
l̃=1

(B
(2)
jil ·B

(1)

ij̃l̃
)(t)
)]
.

Then the solution X∗(t) = (x∗1(t), x
∗
2(t), ..., x

∗
n(t)) of (1.1) − (1.2) is globally attractive.

Proof. Let U∗(t) = (u∗1(t), ..., u
∗
n(t) be the solution of system (4.1), and U(t) = (u1(t) , ..., un(t))
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be any other positive solution of system (4.1). Then for the Lyapunov functional V (t) as defined

in (4.6), similarly to the discuss of Theorem 4.1, one can obtain that the inequality (4.7) is true.

By further making use of (4.9), (4.10) and (4.11), it follows that (4.7) implies

D+V (t) ≤
n∑

i=1

{
− 2

kii∑
k=1

λiαiikm
αiik
i0 A

(1)
iik(t) +

n∑
j=1,j ̸=i

[ kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t) +

kij∑
k=1

λiA
(1)
ijk(t)

]
−2

lii∑
l=1

λiβiilm
βiil
i0 B

(1)
iil (t) +

n∑
j=1,j ̸=i

[ lji∑
l=1

λjB
(1)
jil (t)β2jilM

2βjil

i0 +

lij∑
l=1

λiB
(1)
ijl (t)

]

+

n∑
j=1

n∑
j̃=1

[ kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t)

( k̃ij̃∑
k̃=1

∫ t

t−τij̃k̃(t)
A

(1)

ij̃k̃
(s)ds+

lij̃∑
l=1

B
(2)

ij̃l
(t)
)

+

kji∑
k=1

λjα
2
jikM

2αjik

i0 A
(1)
jik(t)

( k̃j̃i∑
k̃=1

∫ t

t−τjik(t)
A

(2)

ij̃k̃
(s)ds+

l̃ij̃∑
l̃=1

∫ t

t−τjik(t)
B

(1)

ij̃l̃

(
Φ−1
jik(θ)

)
dθ
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0 B
(1)
jil (t)

( kij̃∑
k=1

∫ t

t−τij̃k(t)
A

(1)

ij̃k
(s)ds+

l̃ij̃∑
l̃=1

B
(2)

ij̃l̃
(t)
)

+

lji∑
l=1

λjβ
2
jilM

2βjil

i0

( k̃ij̃∑
k̃=1

(B
(2)
jil ·A

(1)

ij̃k̃
)(t) +

l̃ij̃∑
l̃=1

(B
(2)
jil ·B

(1)

ij̃l̃
)(t)
)]}(

ui(t) − u∗i (t)
)2
.

=: −
n∑

i=1

Λi(t)
(
ui(t) − u∗i (t)

)2
(4.17)

An integration on both sides of (4.17) over time interval [T1, t) leads to

V (t) + ζ

n∑
i=1

∫ t

T1

(
ui(s) − u∗i (s)

)|
2ds ≤ V (T1) < +∞.

Thus
lim sup
t→+∞

n∑
i=1

∫ t

T1

(
ui(s) − u∗i (s)

)|
2ds ≤ V (T1)

ζ
< +∞. (4.18)

It follows from (4.18) that(
ui(s) − u∗i (s)

)2 ∈ L[T1,+∞),

According to Barbalat’s lemma, we conclude that

lim
t→+∞

(
ui(t) − u∗i (t)

)2
= 0. (4.19)

Taking into account the fact that for t ≥ T1(
xi(t) − x∗i (t)

)
= exp

{
ui(t)

}
− exp

{
u∗i (t)

}
One infers that

(mi0) | ui(t) − u∗i (t) |≤| xi(t) − x∗i (t) |≤ (Mi0) | ui(t) − u∗i (t) |

So it follows that

lim
t→+∞

| xi(t) − x∗i (t) |= 0. (4.20)

Thus, we have verified that the positive solution X∗(t) of the system (1.1) is globally attractive.
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Abstract

In the paper, we presented a family M(µ, x) of approximations of the Bateman function
G(x). The family M(µ, x) = G(x) for a certain µ whenever x is fixed and it presented
asymptotical approximation of the Bateman’s G−function as x → ∞. We studied the or-
der of convergence of the approximations M(µ, x) of the function G(x). Some properties
and bounds of the error are deduced. We presented new sharp double inequality of G(x)
with the upper and lower bounds M(1, x) and M( 4

e2−4
, x) (resp.). Also, we show that the

approximations M(µ, x) are better than the approximation 1
x + 1

2x2 for any µ in an open

subinterval of
[
1, 4

e2−4

]
.

2010 Mathematics Subject Classification: 33B15, 26D15.

Key Words: Bateman function, digamma function, monotonicity, sharp inequality, ap-
proximation, error.

1 Introduction.

In 1953, Erdélyi [6] defined the Bateman’s G−function as

G(x) = ψ

(
x+ 1

2

)
− ψ

(x
2

)
, x ̸= 0,−1,−2, ... (1)

where the digamma function ψ(x) is given by

ψ(x) =
d

dx
log Γ(x)

1
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and Γ(x) is the ordinary gamma function defined by [3]

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0.

The function G(x) is very useful in estimating and summing certain numerical and algebraic se-
ries [18]. For more details on bounding the function Γ(x) and its logarithmic derivatives ψ(n)(x),
please refer to the papers [2]-[5], [7]-[23] and plenty of references therein.

The function G(x) can be also defined by

G(x) =
2

x
2F1(1, x; 1 + x;−1),

where

rFs(a1, ..., ar; b1, ..., bs;x) =
∞∑
k=0

(a1)k...(ar)k
(b1)k...(bs)k

xk

k!

is the generalized hypergeometric series [1] defined for r, s ∈ N, aj ∈ C, bj ∈ C− {0,−1,−2, ...}
and the Pochhammer symbol (a)n is defined by

(a)0 = 1 and (a)n =
n−1∏
i=0

(a+ i) =
Γ(a+ n)

Γ(a)
, n ≥ 1.

The function G(x) satisfies the functional equation [6]:

G(1 + x) = −G(x) +
2

x
(2)

and it has the integral representation

G(x) = 2

∫ ∞

0

e−xt

1 + e−t
dt, x > 0 (3)

which can be deduced from the following known integral representation of the digamma [3]

ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1 − e−t

)
dt, x > 0.

Qiu and Vuorinen [24] deduced the inequality

1

x
+

4(1.5 − log 4)

x2
< G(x) <

1

x
+

1

2x2
, x > 1/2. (4)

Mahmoud and Agarwal [9] presented the following asymptotic formula for Bateman’s G-function

G(x) ∼ 1

x
+

∞∑
k=1

(22k − 1)B2k

kx2k
, x→ ∞ (5)

2
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and they deduced the double inequality

1

2x2 + 1.5
< G(x) − 1

x
<

1

2x2
, x > 0 (6)

which improve the lower bound of the inequality (4). Also, Mahmoud and Almuashi [11] proved
that the Bateman’s G−function satisfies the double inequality

2m∑
n=1

(2n − 1)B2n

nx2n
< G(x) − 1

x
<

2m−1∑
n=1

(2n − 1)B2n

nx2n
, m ∈ N (7)

with best bounds, where Br
′s are the Bernoulli numbers and they presented some estimates for

the error term of a class of the alternating series, which improve and generalize some recent
results. Mortici [13] established the inequality

0 < ψ(x+ v) − ψ(x) ≤ ψ(v) + γ +
1

v
− v x ≥ 1; 0 < v < 1, (8)

where γ is the Euler constant, which also improves the inequality (4) of Qiu and Vuorinen. Also,
Alzer presented the double inequality [2]

1

x
− Tn(v; x) − ρn(v;x) < ψ(x+ v) − ψ(x) <

1

x
− Tn(v; x),

where n ≥ 0 be an integer, x > 0, 0 < v < 1,

Tn(v; x) = (1 − v)

[
1

v + n+ 1
+

n−1∑
i=0

1

(x+ i+ 1)(x+ i+ v)

]
and

ρn(v;x) =
1

x+ n+ v
log

(x+ n)(x+n)(1−v)(x+ n+ 1)(x+n+1)v

(x+ n+ v)x+n+v
.

In 2006, Muqattash and Yahdi [17] presented an infinite family of functions Ia(x) = ψ(x)
for a certain a when x is fixed. Local and global bounding error functions are found and new
inequalities for the Digamma function are introduced. These functions are shown to approximate
ψ locally and asymptotically. The approximations are compared to another approximations of
the Digamma function. The technique of construct of Muqattash and Yahdi is very useful and
can be updated to another functions as we will see in this paper.

In 2014, Guo and Qi improved the results of [8] and presented the two sharp inequalities

ln

(
x+

1

2

)
< ψ(x) +

1

x
< ln

(
x+ e−γ

)
, x > 0

where the constants 1
2

and e−γ are the best possible, and

ln

(
n+

1

2

)
+ γ < Hn(n) < ln

(
n+ e1−γ − 1

)
+ γ, n ∈ N

3
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where the n-th harmonic numbers are defined by

Hn =
n∑

i=1

1

i
, n ∈ N

and is related to the Psi function by the relation

Hn = γ + ψ(n+ 1).

In this paper, we presented a family of functions M(µ, x) satisfies that for all x > 0 there
exists µ ∈ [1, 2] such that M(µ, x) = G(x) and is asymptotically equivalent to G(x) as x → ∞.
We proved that the approximations M(µ, x) of the function G(x) are of an order of convergence

of O
(

ln (x+2)[(e2−4)x+4]
(x+1)[(e2−4)x+e2]

)
for x > 2 and µ ∈

(
1, 4

e2−4

)
. Some properties and bounds of the error

are deduced. Also, we presented a new sharp double inequality of the function G(x) between
the lower bound M( 4

e2−4
, x) and the upper bound M(1, x). We proved that the approximations

M(µ, x) are better than the approximation 1
x

+ 1
2x2 for any µ in an open subinterval of

[
1, 4

e2−4

]
.

2 Main Results

Lemma 2.1. For x > 0, we have

ln

(
1 +

1

x+ 2

)
+

2

x(x+ 1)
≤ G(x) ≤ ln

(
1 +

1

x+ 1

)
+

2

x(x+ 1)
. (9)

Proof. Consider the function

Hµ(x) = ln

(
1 +

1

x+ µ

)
+

2

x(x+ 1)
−G(x), x > 0; µ > 0

which can be represented using (3) by the integral formula

Hµ(x) =

∫ ∞

0

e−(µ+1)t[e2t − 1 − 2teµt]

t(1 + et)
e−xtdt.

The function m1(t) = e2t−1−2tet is strictly increasing pass through the origin, then H1(x) > 0,
that is

ln

(
1 +

1

x+ 1

)
+

2

x(x+ 1)
> G(x).

Also, m2(t) = e2t−1−2te2t is strictly decreasing function pass through the origin, then H2(x) < 0,
that is

ln

(
1 +

1

x+ 2

)
+

2

x(x+ 1)
< G(x).

4
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The double inequality (9) show that the function G(x) lies between two functions of the
following family of functions

M(µ, x) = ln

(
1 +

1

x+ µ

)
+

2

x(x+ 1)
x > 0; µ > 0. (10)

and hence we can conclude the following result:

Theorem 1. For every x > 0, there exists µ ∈ [1, 2] such that

M(µ, x) = G(x).

Proof. For a positive fixed x, consider the function M2(µ) = M(µ, x) with 1 ≤ µ ≤ 2 and
G(x) = λ. M2(µ) is a continuous on [1, 2] and using the inequality (9), we obtain

M2(2) ≤ λ ≤M2(1).

Then by the Intermediate Value Theorem, there exists µ ∈ [1, 2] such that M2(µ) = λ.

Also, by using the relations

∂M(µ, x)

∂x
= −2µ+ 2µ2 + 2x+ 8µx+ 4µ2x+ 7x2 + 8µx2 + 6x3 + x4

x2(1 + x)2(µ+ µ2 + x+ 2µx+ x2)
< 0

and
∂M(µ, x)

∂µ
=

−1

(x+ µ+ 1)(x+ µ)
< 0,

we obtain the following properties of the family M(µ, x).

Lemma 2.2.

1. M1(x) = M(µ, x) is a positive and strictly decreasing as a function of x, x > 0.

2. M2(µ) = M(µ, x) is strictly decreasing as a function of µ, 1 ≤ µ ≤ 2

and hence
0 < M(2, x) ≤M(µ, x) ≤M(1, x), x > 0; µ ∈ [1, 2]. (11)

Now, we will show that the family M(µ, x) presented asymptotical approximation of the
Bateman’s G−function for all µ ∈ [1, 2].

Theorem 2. For all µ ∈ [1, 2], the Bateman’s G−function and the family M(µ, x) are asymp-
totically equivalent as x→ ∞, that is

lim
x→∞

G(x)

M(µ, x)
= 1

and this is written symbolically as G(x) ∼M(µ, x).

5
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Proof. Using the inequality (9), we get

M(2, x) ≤ G(x) ≤M(1, x) (12)

and hence
M(2, x)

M(1, x)
≤ G(x)

M(1, x)
≤ 1.

But

lim
x→∞

M(2, x)

M(1, x)
=

12 + 34x+ 23x2 + 6x3 + x4

(3 + x)(4 + 10x+ 5x2 + x3)
= 1

and then

lim
x→∞

G(x)

M(1, x)
= 1. (13)

Similarly, we have

lim
x→∞

G(x)

M(2, x)
= 1. (14)

Using the inequality (11), we obtain

G(x)

M(1, x)
≤ G(x)

M(µ, x)
≤ G(x)

M(2, x)
. (15)

From (13), (14) and (15), we get

1 ≤ lim
x→∞

G(x)

M(µ, x)
≤ 1.

Now, we will study the error of the approximation M(µ, x) of the function G(x).

Theorem 3. For any µ ∈ [1, 2], the error

eµ(x) = G(x) −M(µ, x)

approaches zero as x→ ∞ and

G(x) = ln

(
1 +

1

x+ µ

)
+

2

x(x+ 1)
+ O

(
ln

(
1 +

1

(x+ 1)(x+ 3)

))
. (16)

Proof. From inequality (12), we have

M(2, x) −M(µ, x) ≤ G(x) −M(µ, x) ≤M(1, x) −M(µ, x)

and using (11), we get
M(2, x) −M(1, x) ≤M(2, x) −M(µ, x).

Hence
0 ≤ |G(x) −M(µ, x)| ≤M(1, x) −M(2, x) (17)

6
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or

0 ≤ |eµ(x)| ≤ ln

(
1 +

1

(x+ 1)(x+ 3)

)
. (18)

Then

G(x) = M(µ, x) + O

(
ln

(
1 +

1

(x+ 1)(x+ 3)

))
and

lim
x→∞

eµ(x) = 0.

As a consequence of the above result, we obtain some bounds of the error eµ(x).

Corollary 2.3. The error eµ(x) is uniformly bounded by ± ln
(

1 + 1
(ε+1)(ε+3)

)
∀ x > ε > 0 and

∀ µ ∈ [1, 2].

Proof. Using the inequality (18), we obtain

sup
0<x<∞

|eµ(x)| ≤ ln

(
1 +

1

(x+ 1)(x+ 3)

)
.

Also, the function g(x) = ln
(

1 + 1
(x+1)(x+3)

)
for x > 0 is decreasing. Then the errors eµ(x) are

uniformly bounded between − ln
(

1 + 1
(ε+1)(ε+3)

)
and ln

(
1 + 1

(ε+1)(ε+3)

)
.

3 The best bounds of the double inequality (9).

Firstly, we will prove the following auxiliary results:

Lemma 3.1.

lim
x→∞

(
1

eG(x+2) − 1
− x

)
= 1 (19)

and

lim
x→∞

G′(x+ 2)eG(x+2)

(eG(x+2) − 1)2
= −1. (20)

Proof. Using the double inequality (6) with

β(x) =
1

x
+

1

2x2 + 3/2
and α(x) =

1

x
+

1

2x2
,

we get

lim
x→∞

(
1

eα(x+2) − 1
− x

)
≤ lim

x→∞

(
1

eG(x+2) − 1
− x

)
≤ lim

x→∞

(
1

eβ(x+2) − 1
− x

)
.

But

lim
x→∞

(
1

eα(x+2) − 1
− x

)
= lim

x→∞

(
1[

1 + 1
x
− 1

x2 + 2
3x3 + 5

12x4 −O
(

1
x5

)]
− 1

− x

)
= 1

7
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and

lim
x→∞

(
1

eβ(x+2) − 1
− x

)
= lim

x→∞

(
1[

1 + 1
x
− 1

x2 + 2
3x3 + 1

24x4 −O
(

1
x5

)]
− 1

− x

)
= 1.

Also, using the double inequality (6), we have

lim
x→∞

G′(x+ 2)eα(x+2)

(eβ(x+2) − 1)2
≤ lim

x→∞

G′(x+ 2)eG(x+2)

(eG(x+2) − 1)2
≤ lim

x→∞

G′(x+ 2)eβ(x+2)

(eα(x+2) − 1)2
.

Now, using the asymptotic formula for Bateman’s G-function (5), we obtain

G′(x) =
−1

x2
−O

(
1

x3

)
.

Then

lim
x→∞

G′(x+ 2)eα(x+2)

(eβ(x+2) − 1)2
= lim

x→∞

[
−1

(x+2)2
−O

(
1
x3

)] [
1 + 1

x
− 1

x2 + 2
3x3 + 5

12x4 −O
(

1
x5

)]
(
[
1 + 1

x
− 1

x2 + 2
3x3 + 1

24x4 −O
(

1
x5

)]
− 1)2

= −1

and

lim
x→∞

G′(x+ 2)eβ(x+2)

(eα(x+2) − 1)2
= lim

x→∞

[
−1

(x+2)2
−O

(
1
x3

)] [
1 + 1

x
− 1

x2 + 2
3x3 + 1

24x4 −O
(

1
x5

)]
(
[
1 + 1

x
− 1

x2 + 2
3x3 + 5

12x4 −O
(

1
x5

)]
− 1)2

= −1

Now, we will present the sharp bounds of the double inequality (9).

Theorem 4. For all x ∈ (0,∞)

ln

(
1 +

1

x+ 4
e2−4

)
+

2

x(x+ 1)
< G(x) < ln

(
1 +

1

x+ 1

)
+

2

x(x+ 1)
, (21)

where the constants 1 and 4
e2−4

are the best possible.

Proof. Using the inequality (9) and functional equation (2), we get

0 <
1

eG(x+2) − 1
− x < 2.

Now consider the two functions

f(x) = eG(x+2) − 1, x > 0

and

q(x) =
1

f(x)
− x, x > 0.

8
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Then f ′(x) = G′(x+ 2)eG(x+2) < 0 and f(x) is strictly decreasing function. Hence 1
f(x)

is strictly

increasing function. Since d
dx

1
f(x)

|x=0 ≃ 0.91, and d
dx

1
f(x)

|x=1 ≃ 0.96. Then the function 1
f(x)

is

convex and d
dx

1
f(x)

is increasing function. Thus we get

d

dx

1

f(x)
< lim

x→∞

d

dx

1

f(x)
= − lim

x→∞

G′(x+ 2)eG(x+2)

(eG(x+2) − 1)2
.

Using the limit (20), we obtain

d

dx

1

f(x)
< 1, x > 0.

Then q(x) is strictly decreasing function for all x > 0, where dq(x)
dx

= d
dx

1
f(x)

− 1 < 0. Hence

lim
x→∞

q(x) < q(x) < lim
x→0+

q(x)

and using the limit (19) and G(2) = 2 − ln 4, we have

1 < q(x) <
4

e2 − 4
. (22)

with best bounds.

In the proof of theorem (4), we proved that the function 1
f(x)

is convex. Also, the second

derivatives of the functions q(x) and 1
f(x)

have the same sign, then we get the following resuts:

Corollary 3.2. The function q(x) is strictly decreasing and convex for all x > 0.

Corollary 3.3. For every x > 0 there exists a unique number µ ∈
(
1, 4

e2−4

)
such that G(x) =

M(µ, x). Conversely for every µ ∈
(
1, 4

e2−4

)
there exists a unique number x > 0 such that

M(µ, x) = G(x).

Proof. The function q(x) is strictly decreasing from (0,∞) onto
(
1, 4

e2−4

)
then the mapping

q(x) : (0,∞) →
(
1, 4

e2−4

)
is bijective and the proof is easy consequence of this result.

Corollary 3.4. For x > 2 and µ ∈
(
1, 4

e2−4

)
we have

1) the errors eµ(x) are uniformly bounded by ± ln
(

4(2e2−4)
3(3e2−8)

)
.

2) G(x) = M(µ, x) +O
(

ln (x+2)[(e2−4)x+4]
(x+1)[(e2−4)x+e2]

)
.

Proof. Analogues to inequality (17), we can deduce for all x > 2 and µ ∈
(
1, 4

e2−4

)
that

0 ≤ |G(x) −M(µ, x)| ≤
∣∣∣∣M(1, x) −M

(
4

e2 − 4
, x

)∣∣∣∣
which is equivalent to

0 ≤ |eµ(x)| ≤
∣∣∣∣ln (x+ 2)[(e2 − 4)x+ 4]

(x+ 1)[(e2 − 4)x+ e2]

∣∣∣∣ ≤ ∣∣∣∣ln(4(2e2 − 4)

3(3e2 − 8)

)∣∣∣∣ .

9
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4 Comparing approximations

Firstly, we will prove the following one side inequality the function G(x) which proves a special
case of a conjecture posed in [9] and proved in [11] about the best bounds of the Bateman’s
function but with different proof.

Lemma 4.1. For all x > 0, we have

G(x) − 1

x
>

1

2x2
− 1

4x4
. (23)

Proof. Consider the function

K(x) = G(x) − 1

x
− 1

2x2
+

1

4x4
, x > 0.

Using the integral representation (3) of G(x) and the formula

1

xr
=

1

(r − 1)!

∫ ∞

0

tr−1e−xtdt, r ∈ N

we get

K(x) =

∫ ∞

0

φ(t)
e−xt

1 + et
dt,

where

φ(t) = et − 1 − 1

2
t(1 + et) +

1

24
t3(1 + et).

But

φ(t) =
∞∑
k=4

tk

k!
− 1

2

∞∑
k=3

tk+1

k!
+

1

24

∞∑
k=1

tk+3

k!

=
∞∑
k=0

t(k+4)

(k + 4)!
(1 +

1

24
(k + 4)[(k + 3)(k + 2) − 12])

=
∞∑
k=0

t(k+5)

(k + 5)!
(1 +

1

24
k(k + 5)(k + 7)) > 0.

Hence φ(x) > 0 and then K(x) > 0.

As by-product of the the inequalities (6) and (23), we obtain the following double inequality.

Corollary 4.2. For all x > 1, we have

0 <
(2x+ 1)(x− 1)(x2 + 1)

2x4(x+ 1)
< 2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
<

2x2 − x+ 1

2x2(x+ 1)
. (24)

Now, we will prove the following auxiliary results:

Lemma 4.3. For all x > x0 ≈ 2.5315129, we have

1

e2G(x)− 2
x(x+1)

− 1
x
− 1

2x2 − 1
− x >

1

e
2x2−x+1

2x2(x+1) − 1
− x > 1. (25)

10
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Proof. Using the inequality (24), we have

2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
− ln

(
x+ 2

x+ 1

)
< u(x)

where

u(x) =
2x2 − x+ 1

2x2(x+ 1)
− ln

(
x+ 2

x+ 1

)
, x > 0.

Then

u′(x) =
(x− 3+

√
17

2
)(x− 3−

√
17

2
)

x3(x+ 1)2
,

and the function u(x) has only one positive critical point at xm = 3+
√
17

2
. Now,

u(xm) =
10

(3 +
√

17)2
− ln

7 +
√

17

5 +
√

17
≈ −0.00113 < 0,

lim
x→∞

u(x) = 0

and
lim
x→0−

u(x) = ∞.

Hence u(x) has only one positive root x0 ≈ 2.5315129 and

u(x) < 0, ∀x > x0.

Then

2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
< ln

(
x+ 2

x+ 1

)
, ∀x > x0.

Lemma 4.4. For all x > x1 ≈ 2.6925094, we have

1

e2G(x)− 2
x(x+1)

− 1
x
− 1

2x2 − 1
− x <

4

e2 − 4
. (26)

Proof. Using the inequality (24), we have

2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
− ln

(
e2 + (e2 − 4)x)

4 + (e2 − 4)x

)
> v(x),

where

v(x) =
(2x+ 1)(x− 1)(x2 + 1)

2x4(x+ 1)
− ln

(
e2 + (e2 − 4)x)

4 + (e2 − 4)x

)
, x > 1.

Hence

v′(x) =
L(x)

S(x)
,

11
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where

L(x) = 8e2 + (−32 + 16e2 + 2e4)x+ (−32 − 12e2 + 6e4)x2 + (48 − 36e2 + 5e4)x3 + (32 − 4e2)x4

+(−16 − 4e2 + e4)x5 + (64 − 24e2 + 2e4)x6

and
S(x) = x5(x+ 1)2(4e2 + (e4 − 16)x+ (16 − 8e2 + e4)x2 > 0, x > 0.

The function L′′(x) is a polynomial of fourth degree has one positive root at xI ≈ 2.31866 with
L′′(3) < 0, then L(x) is concave function on (xI ,∞). Also, L(xI) > 0 and limx→∞ L(x) = −∞.
Hence, the function L(x) has only one root on (xI ,∞) at x3 ≈ 4.0635204, where L(4.063) > 0
and L(4.064) < 0. Then L(x) > 0 on [xI , x3) and L(x) < 0 for all x > x3. Hence v(x) is
increasing on (xI , x3) and decreasing function on (x3,∞) and it has a maximum point at x3.
But v(2.69) < 0 and v(2.7) > 0 and then v(x) has a root x1 ≈ 2.6925094 ∈ (xI , x3). Also,
limx→∞ v(x) = 0, then we have

v(x) > 0, x > x1

and hence

2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
− ln

(
e2 + (e2 − 4)x)

4 + (e2 − 4)x

)
> 0, x > x1.

Theorem 5. For a fixed x > x1, consider Ix be the nonempty open interval of
[
1, 4

e2−4

]
defined

by

Ix =

(
1

e−
2

x(x+1)
+ 1

x
+ 1

2x2 − 1
− x,

1

e2G(x)− 2
x(x+1)

− 1
x
− 1

2x2 − 1
− x

)
.

For any µ ∈ Ix, we have

|eµ(x)| <
∣∣∣∣G(x) −

(
1

x
+

1

2x2

)∣∣∣∣ .
Proof. Using the inequalities (25) and (26), we obtain

Ix ⊂
[
1,

4

e2 − 4

]
.

For any positive real number µ,

1

e−
2

x(x+1)
+ 1

x
+ 1

2x2 − 1
− x < µ iff −M(µ, x) > −1

x
− 1

2x2

and hence

1

e−
2

x(x+1)
+ 1

x
+ 1

2x2 − 1
− x < µ iff G(x) −M(µ, x) > G(x) − 1

x
− 1

2x2
. (27)

Also,

1

e2G(x)− 2
x(x+1)

− 1
x
− 1

2x2 − 1
− x > µ iff 2G(x) − 2

x(x+ 1)
− 1

x
− 1

2x2
< ln

(
1 +

1

x+ µ

)
12
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and hence

1

e2G(x)− 2
x(x+1)

− 1
x
− 1

2x2 − 1
− x > µ iff G(x) −M(µ, x) < −G(x) +

1

x
+

1

2x2
. (28)

From the inequalities (27) and (28) we have

G(x) − 1

x
− 1

2x2
< G(x) −M(µ, x) < −G(x) +

1

x
+

1

2x2
, ∀µ ∈ Ix.

Thus

|G(x) −M(µ, x)| <
∣∣∣∣G(x) −

(
1

x
+

1

2x2

)∣∣∣∣ , ∀µ ∈ Ix. (29)
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