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Abstract

Multi-granulation dual hesitant fuzzy rough set is an extension of intuitionistic

fuzzy multi-granulation rough sets and multi-granulation fuzzy rough sets. For further

studying the theories and applications of multi-granulation dual hesitant fuzzy rough

sets, in this paper, we mainly investigate reduction approaches of the multi-granulation

dual hesitant fuzzy rough sets. We develop a reduction approach in multi-granulation

dual hesitant fuzzy decision information systems based on multi-granulation dual h-

esitant fuzzy rough sets to eliminate redundant dual hesitant fuzzy granulations. And

an example is provided to illustrate the validity of this approach.

Key words: Multi-granulation fuzzy rough set; Multi-granulation dual hesitant

fuzzy rough set; Reduction approach

1 Introduction

Rough set theory, introduced by Pawlak [19, 20], is a new mathematical approach to

cope with imprecision and uncertainty in data analysis, and can be regarded as a valid

means of granular computing [21]. In Pawlak’s rough set model, a key notion is equivalence

∗Corresponding author. Address: School of Mathematics and Computer Science Yunnan Minzu Uni-
versity, Kunming, Yunnan, 650500, China. E-mail:lianglin−5318@126.com

†Corresponding author. Address: School of Mathematics and Computer Science, Northwest University
for Nationalities, Lanzhou, Gansu, 730030, P.R.China. E-mail:lingdianstar@163.com
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relation. However, the equivalence relation is a very stringent condition which may limit

the application of rough sets. Therefore, by replacing the equivalence relation with other

binary relations, such as fuzzy, interval-valued fuzzy, intuitionistic fuzzy, hesitant fuzzy

and interval-valued hesitant fuzzy, and so on, lots of researchers have proposed many new

rough sets model. For example, Dubois and Prade [4] initiated two rough set models which

are called rough fuzzy sets and fuzzy rough sets. Furthermore, Wu et al. [31, 32] studied

various generalized fuzzy approximation operators which are characterized by different

sets of axioms. According to fuzzy rough sets in the sense of Nanda and Majumda [18],

Jena and Ghosh [8] presented the concept of intuitionistic fuzzy rough sets which are

not defined by an approximation space. By using a special type of intuitionistic fuzzy

triangular norm min, Zhou and Wu [48] discussed various relation-based intuitionistic

fuzzy rough approximation operators. Meanwhile, they [49] also investigated intuitionistic

fuzzy rough approximations on one universe based on intuitionistic fuzzy implicators.

In [46], Zhang et al. proposed a generalized interval-valued fuzzy rough set and applied

it to decision making. Very recently, rough set theory has been developed into hesitant

fuzzy environment and interval-valued hesitant fuzzy environment, and the results are,

respectively, called hesitant fuzzy rough sets [41] and interval-valued hesitant fuzzy rough

sets [45].

The generalization of Pawlak’s rough set model has become a new research hotspot

from the perspective of granular computing. Since Qian et al. [22] proposed multi-

granulation rough set (MGRS) theory, lots of fruitful results about MGRS theory have

been achieved. Qian et al. [23] proposed an incomplete multi-granulation rough set model

by using multiple tolerance relations on the universe, and studied decision-theoretic rough

sets based on multi-granulations [25]. She et al. [27] investigated topological structures of

MGRSs. Yang et al. [42] extended Qian’s MGRS model to fuzzy environment and explored

a MGRS based on fuzzy relations. Along the lines of Qian’s MGRSs, Xu et al. [36] ini-

tiated an ordered MGRS model. And they [34, 35] also proposed multi-granulation fuzzy

rough sets based on multiple classical equivalence relations and multi-granulation fuzzy

rough sets in a fuzzy tolerance approximation space. Through combining MGRSs and

intuitionistic fuzzy rough sets, Huang et al. [7] proposed intuitionistic fuzzy MGRSs and

gave a reduction approach of this model. Liu et al. [9, 10] presented covering fuzzy rough

sets based on MGRSs. To handle data sets in the context of hybrid attributes, Lin et

al. [11] introduced the neighborhood-based MGRSs, generalized the covering into multi-

granulation environment and proposed the covering based on optimistic and pessimistic

MGRSs [12]. More recently, Liang et al. [16] presented an efficient rough feature selection

algorithm through a multi-granulation view. Yang et al. [43] proposed a test cost sensitive

multi-granulation rough set model to take the test cost into consideration in both data

mining and machine learning.

As one of the extensions of Zadeh’s fuzzy set [50], hesitant fuzzy (HF) set theory,

initiated by Torra [28, 29], permits the membership degree of an element to a set having
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several possible values, and can express the hesitant information more comprehensively

than other extensions of fuzzy set. Since the appearance of hesitant fuzzy set, it has

attracted more and more scholars’ attention. For example, Xu and Xia [33,37,38] discussed

the aggregation operators, correlation measures, distance, and similarity measures for HF

sets. Meanwhile, Chen et al. [2] gave correlation coefficients of HF sets and applied

them to clustering analysis. Subsequently, Liao et al. [15] proposed novel correlation

coefficients between hesitant fuzzy sets and and applied them to decision making. In [5],

Farhadinia introduced information measures for HF sets. Rodrguez et al. [26] proposed

a HF linguistic term set providing a more powerful form to represent decision makers’

preferences in the decision making process. Liao and Xu [13,14] developed a hesitant fuzzy

VIKOR method based on some new measures, and proposed some new hybrid weighted

aggregation operators under hesitant fuzzy multi-criteria decision making environment.

Zhang and Wei [51] proposed an extension of VIKOR method based on hesitant fuzzy set

in decision making problem.

Dual hesitant fuzzy (DHF) set, introduced by Zhu et al. [44], is a comprehensive set en-

compassing fuzzy sets, intuitionistic fuzzy sets [1], hesitant fuzzy sets, and fuzzy multiset-

s [17] as special cases. By several possible values for the membership and nonmembership

degrees, dual hesitant fuzzy sets are more objective than hesitant fuzzy sets to describe

the vagueness of data or information. In recent years, many authors have investigated

multiple attribute decision-making theories and methods under the dual hesitant fuzzy en-

vironment [3,6,30,40]. Very recently, the combination of dual hesitant fuzzy sets and other

uncertainty theories is becoming a research hotspot. For example, by integrating rough

set theory with dual hesitant fuzzy sets, Zhang et al. [47] proposed a single-granulation

dual hesitant fuzzy rough set (SGDHFRS). Based on the SGDHFRSs, they presented the

concept of multi-granulation dual hesitant fuzzy rough sets (MGDHFRSs) in which two

types of this model are proposed: one is called the optimistic MGDHFRS; the other is

called the pessimistic MGDHFRS. The relationships among the optimistic MGDHFRS,

the pessimistic MGDHFRS and the SGDHFRS are then established. However, reduc-

tion approaches of the MGDHFRSs are not still be investigated. In order to develop

the application of the MGDHFRSs, topological properties and reduction approaches on

MGDHFRSs further need to be studied. The objective of this paper is mainly to focus on

the study of reduction approaches of the MGDHFRSs.

The rest of the paper is organized as follows. The next section reviews some basic

concepts considered in the study, such as HF sets, DHF sets and MGDHFRSs. In Section 3,

we propose a reduction approach of MGDHFRSs to eliminate redundant DHF granulations

by a numerical example. Finally, we conclude the paper in Section 4.
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2 Preliminaries

2.1 Dual hesitant fuzzy sets

As an extension of hesitant fuzzy sets, dual hesitant fuzzy sets are defined by Zhu et

al. [44] as follows:

Definition 2.1 ( [44]) Let U be a fixed set, a dual hesitant fuzzy set D on U is described

as:

D = {< x, hD(x), gD(x) > |x ∈ U},
in which hD(x) and gD(x) are two sets of some values in [0,1], denoting the possible

membership degrees and non-membership degrees of the element x ∈ U to the set D re-

spectively, with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+ + η+ ≤ 1, where for all x ∈ U ,

γ ∈ hD(x), η ∈ gD(x), γ
+ ∈ h+D (x) = ∪γ∈hD(x)max{γ}, η+ ∈ g+D (x) = ∪η∈gD(x)max{η}.

For convenience, the pair d(x) = (hD(x), gD(x)) is called a DHF element denoted by

d = (h, g). The set of all DHF sets on U is denoted by DHF (U).

2.2 Multi-granulation dual hesitant fuzzy rough sets

In [47], Zhang et al. proposed a SGDHFRS by integrating rough set theory with dual

hesitant fuzzy sets. First, they introduced a DHF relation as follows:

Definition 2.2 ( [47]) Let U, V be two nonempty and finite universes. A DHF subset R
of the universe U × V is called a DHF relation from U to V , namely, R is given by

R = {< (x, y), hR(x, y), gR(x, y) > |(x, y) ∈ U × V },
where hR, gR : U × V → [0, 1] are two sets of some values in [0,1], denoting the possible

membership degrees and non-membership degrees of the relationships between x and y

respectively, with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+ + η+ ≤ 1, where for all

(x, y) ∈ U × V , γ ∈ hR(x, y), η ∈ gR(x, y), γ+ ∈ h+R (x, y) = ∪γ∈hR(x,y)max{γ}, η+ ∈
g+R (x, y) = ∪η∈gR(x,y)max{η}.

In particular, if U = V , we call R a DHF relation on U . In what follows several special

DHF relations are introduced as follows:

Definition 2.3 ( [47]) The DHF relation R from U to V is said to be serial if for each

x ∈ U , there exists a y ∈ V such that hR(x, y) = {1} and gR(x, y) = {0}; R is said to

be reflexive on U if hR(x, x) = {1} and gR(x, x) = {0} for all x ∈ U ; R is referred to

as a symmetric DHF relation on U if hR(x, y) = hR(y, x) and gR(x, y) = gR(y, x) for all

x, y ∈ U .

If a DHF relation R on U is reflexive and symmetric, it is called a DHF tolerance

relation on U .
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Based on the above DHF relation, lower and upper DHF approximation operators are

defined as follows:

Definition 2.4 ( [47]) Let U be a nonempty and finite universes and R be a DHF tol-

erance relation on U . The pair (U,R) is called a DHF tolerance approximation space.

For any A ∈ DHF (U), the lower and upper approximations of A with respect to (U,R),
denoted by R(A) and R(A), are two DHF sets of U and are, respectively, defined as follows:

R(A) = {< x, hR(A)(x), gR(A)(x) > |x ∈ U}, (1)

R(A) = {< x, hR(A)(x), gR(A)(x) > |x ∈ U}, (2)

where

hR(A)(x) = Zyj∈U{gR(x, yj) Y hA(yj)}, gR(A)(x) = Yyj∈U{hR(x, yj) Z gA(yj)};

hR(A)(x) = Yyj∈U{hR(x, yj) Z hA(yj)}, gR(A)(x) = Zyj∈U{gR(x, yj) Y gA(yj)}.

R(A) and R(A) are, respectively, called the single-granulation lower and upper approxi-

mations of A with respect to (U,R). The pair (R(A),R(A)) is called a SGDHFRS of A with

respect to (U,R), and R,R : DHF (U) → DHF (U) are referred to as single granulation

lower and upper DHF rough approximation operators, respectively.

Based on the SGDHFRSs, Zhang et al. [47] presented two MGDHFRS models: one is

called the optimistic MGDHFRS; the other is called the pessimistic MGDHFRS.

Definition 2.5 ( [47]) Let U be a nonempty and finite universe of discourse and Ri(1 ≤
i ≤ m) be m DHF tolerance relations on U ; the pair (U, {Ri|1 ≤ i ≤ m}) is called the DHF

tolerance approximation space. For any A ∈ DHF (U), the optimistic multi-granulation

dual hesitant fuzzy lower and upper approximations of A with respect to (U, {Ri|1 ≤ i ≤
m}), denoted by

∑m
i=1Ri

O(A) and
∑m

i=1Ri
O
(A), are two DHF sets and are, respectively,

defined as follows:

m∑
i=1

Ri
O

(A) = {< x, h∑m
i=1 Ri

O(A)(x), g
∑m
i=1 Ri

O(A)(x) > |x ∈ U}, (3)

m∑
i=1

Ri

O

(A) = {< x, h∑m
i=1 Ri

O
(A)

(x), g∑m
i=1 Ri

O
(A)

(x) > |x ∈ U}, (4)

where
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h∑m
i=1 Ri

O(A)(x) = Ymi=1 Zyj∈U {gRi(x, yj) Y hA(yj)},
g∑m

i=1 Ri
O(A)(x) = Zmi=1 Yyj∈U {hRi(x, yj) Z gA(yj)},

h∑m
i=1 Ri

O
(A)

(x) = Zmi=1 Yyj∈U {hRi(x, yj) Z hA(yj)},
g∑m

i=1 Ri
O
(A)

(x) = Ymi=1 Zyj∈U {gRi(x, yj) Y gA(yj)}.

The pair (
∑m

i=1Ri
O(A),

∑m
i=1Ri

O
(A)) is called an optimistic MGDHFRS of A with

respect to (U, {Ri|1 ≤ i ≤ m}). If
∑m

i=1Ri
O(A) =

∑m
i=1Ri

O
(A), then A is referred to

as optimistic-definable in (U, {Ri|1 ≤ i ≤ m}); otherwise, A is referred to as optimistic-

undefinable in (U, {Ri|1 ≤ i ≤ m}).

Definition 2.6 ( [47]) Let (U, {Ri|1 ≤ i ≤ m}) be the DHF tolerance approximation

space. For any A ∈ DHF (U), the pessimistic multi-granulation dual hesitant fuzzy low-

er and upper approximations of A with respect to (U, {Ri|1 ≤ i ≤ m}), denoted by∑m
i=1Ri

P (A) and
∑m

i=1Ri
P
(A), are two DHF sets and are, respectively, defined as fol-

lows:

m∑
i=1

Ri
P

(A) = {< x, h∑m
i=1 Ri

P (A)(x), g
∑m
i=1 Ri

P (A)(x) > |x ∈ U}, (5)

m∑
i=1

Ri

P

(A) = {< x, h∑m
i=1 Ri

P
(A)

(x), g∑m
i=1 Ri

P
(A)

(x) > |x ∈ U}, (6)

where

h∑m
i=1 Ri

P (A)(x) = Zmi=1 Zyj∈U {gRi(x, yj) Y hA(yj)},
g∑m

i=1 Ri
P (A)(x) = Ymi=1 Yyj∈U {hRi(x, yj) Z gA(yj)},

h∑m
i=1 Ri

P
(A)

(x) = Ymi=1 Yyj∈U {hRi(x, yj) Z hA(yj)},
g∑m

i=1 Ri
P
(A)

(x) = Zmi=1 Zyj∈U {gRi(x, yj) Y gA(yj)}.

The pair (
∑m

i=1Ri
P (A),

∑m
i=1Ri

P
(A)) is called a pessimistic MGDHFRS of A with

respect to (U, {Ri|1 ≤ i ≤ m}). If
∑m

i=1Ri
P (A) =

∑m
i=1Ri

P
(A), then A is referred to as

pessimistic-definable in (U, {Ri|1 ≤ i ≤ m}); otherwise, A is referred to as pessimistic-

undefinable in (U, {Ri|1 ≤ i ≤ m}).

Then, Zhang et al. [47] established the relationships among the optimistic MGDHFRS,

the pessimistic MGDHFRS and the SGDHFRS.

Theorem 2.7 ( [47]) Let U be a nonempty and finite universe of discourse and Ri(1 ≤
i ≤ m) be m DHF tolerance relations on U . For any A ∈ DHF (U),

∑m
i=1Ri

O(A) and∑m
i=1Ri

O
(A) are the optimistic multi-granulation dual hesitant fuzzy lower and upper ap-

proximations of A with respect to (U, {Ri|1 ≤ i ≤ m}), respectively. Then,
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(1)
∑m

i=1Ri
O(A) = dmi=1Ri(A),

(2)
∑m

i=1Ri
O
(A) = emi=1Ri(A).

Theorem 2.8 ( [47]) Let U be a nonempty and finite universe of discourse and Ri(1 ≤
i ≤ m) be m DHF tolerance relations on U . For any A ∈ DHF (U),

∑m
i=1Ri

P (A) and∑m
i=1Ri

P
(A) are the pessimistic multi-granulation DHF lower and upper approximations

of A with respect to (U, {Ri|1 ≤ i ≤ m}), respectively. Then,

(1)
∑m

i=1Ri
P (A) = emi=1Ri(A),

(2)
∑m

i=1Ri
P
(A) = dmi=1Ri(A).

3 Approximation reduction approach in multi-granulation

DHF decision information system

In this section, we establish a practical reduction approach in multi-granulation DHF

decision information system (MGDHFDIS) based on the MGDHFRS model. The objective

of reduction is to obtain a smallest subset of DHF relations that may preserve consistence

of MGDHFDIS.

Definition 3.1 Let apr=(U,R = {Ri|1 ≤ i ≤ m}) be the DHF tolerance approximation

space, A be the DHF set and RO,RO,RP ,RP ⊆ R.
(1) If

∑
Ri∈RO RiO(A) =

∑m
i=1Ri

O(A), then RO is referred to as a consistent optimistic

lower approximation of apr. If RO is a consistent optimistic lower approximation, and no

proper subset of RO is a consistent optimistic lower approximation, then RO is called an

optimistic lower approximation reduct of apr.

(2) If
∑

Ri∈RP RiP (A) =
∑m

i=1Ri
P (A), then RP is referred to as a consistent pes-

simistic lower approximation of apr. If RP is a consistent pessimistic lower approxima-

tion, and no proper subset of RP is a consistent pessimistic lower approximation, then RP

is called a pessimistic lower approximation reduct of apr.

(3) If
∑

Ri∈R
O Ri

O
(A) =

∑m
i=1Ri

O
(A), then RO is referred to as a consistent optimistic

upper approximation of apr. If RO is a consistent optimistic upper approximation set, and

no proper subset of RO is a consistent optimistic upper approximation, then RO is called

an optimistic upper approximation reduct of apr.

(4) If
∑

Ri∈R
P Ri

P
(A) =

∑m
i=1Ri

P
(A), then RP is referred to as a consistent pes-

simistic upper approximation of apr. If RP is a consistent pessimistic upper approxima-

tion, and no proper subset of RP is a consistent pessimistic upper approximation, then RP

is called a pessimistic upper approximation reduct of apr.
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Table 1: DHF relation R1 in Example 3.3
U × U x1 x2 x3 x4

x1
({1,1},
{0,0})

({0.4,0.5},
{0.2,0.4})

({0.2,0.3},
{0.5,0.7})

({0.6,0.8},
{0.1,0.2})

x2
({0.1,0.2},
{0.7,0.8})

({1,1},
{0,0})

({0.2,0.3},
{0.6,0.7})

({0.4,0.5},
{0.5,0.5})

x3
({0.2,0.2},
{0.6,0.7})

({0.5,0.8},
{0.2,0.2})

({1,1},
{0,0})

({0.3,0.4},
{0.5,0.6})

x4
({0.3,0.5},
{0.4,0.5})

({0.4,0.5},
{0.2,0.4})

({0.2,0.3},
{0.5,0.7})

({1,1},
{0,0})

Table 2: DHF relation R2 in Example 3.3
U × U x1 x2 x3 x4

x1
({1,1},
{0,0})

({0.3,0.5},
{0.2,0.5})

({0.2,0.2},
{0.7,0.8})

({0.4,0.5},
{0.3,0.5})

x2
({0.2,0.2},
{0.6,0.8})

({1,1},
{0,0})

({0.4,0.6},
{0.3,0.4})

({0.2,0.5},
{0.3,0.5})

x3
({0.1,0.3},
{0.5,0.6})

({0.4,0.5},
{0.3,0.4})

({1,1},
{0,0})

({0.1,0.2},
{0.7,0.8})

x4
({0.2,0.5},
{0.3,0.5})

({0.1,0.1},
{0.8,0.9})

({0.5,0.6},
{0.3,0.4})

({1,1},
{0,0})

From Definition 3.1, we see that the lower approximation reduct is the smallest subset

of R = {Ri|1 ≤ i ≤ m} which preserves the lower approximations of all DHF sets in U .

And so is for the upper approximation reduct.

Definition 3.2 A multi-granulation DHF decision information system is a quads S =

(U, {Ri|1 ≤ i ≤ m}, D, V ), where U is a nonempty and finite universe; {Ri|1 ≤ i ≤ m}
is a set of m DHF relations on U ; D is a nonempty and finite set of decision attributes;

V = {g(x, d)|x ∈ U, d ∈ D} is a set of the relationships between U and D, and g(x, d) is a

DHF element denoted as g(x, d) = (hd(x), gd(x)). We call g(x, d) the decision DHF value

of x under decision attribute d.

Example 3.3 A MGDHFDIS can be described as follows: U = {x1, x2, x3, x4}; Ri(1 ≤
i ≤ 5) are DHF relations on U shown as Tables 1-5; D = {d1, d2}; V = {g(xi, dj)|xi ∈
U, dj ∈ D}, where g(x1, d1) = ({0.3, 0.4}, {0.2, 0.6}), g(x2, d1) = ({0.3, 0.5}, {0.4, 0.5}),
g(x3, d1) = ({0.3, 0.7}, {0.2, 0.3}), g(x4, d1) = ({0.2, 0.3}, {0.6, 0.7}), g(x1, d2) = ({0.5, 0.7},
{0.2, 0.3}), g(x2, d2) = ({0.5, 0.6}, {0.2, 0.4}), g(x3, d2) = ({0.2, 0.4}, {0.3, 0.6}) and g(x4, d2)

= ({0, 0.1}, {0.8, 0.9}).

On the basis of Definition 3.1, approximation reducts in MGDHFDIS based on the

MGDHFRS model are defined as follows.
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Definition 3.4 Let a MGDHFDIS = (U, {Ri|1 ≤ i ≤ m}, D, V ), where U = {x1, x2, · · · , xn}
and D = {d1, d2, · · · , dv}, Dj = {< xi, g(xi, dj) > |xi ∈ U, dj ∈ D} ∈ DHF (U).

(1) For all j(1 ≤ j ≤ v), if
∑

Ri∈RO RiO(Dj) =
∑m

i=1Ri
O(Dj), then RO is referred

to as a consistent optimistic lower approximation of MGDHFDIS. If RO is a consistent

optimistic lower approximation, and no proper subset of RO is a consistent optimistic lower

approximation, then RO is called an optimistic lower approximation reduct of MGDHFDIS.

(2) For all j(1 ≤ j ≤ v), if
∑

Ri∈RP RiP (Dj) =
∑m

i=1Ri
P (Dj), then RP is referred to

as a consistent pessimistic lower approximation of MGDHFDIS. If RP is a consistent pes-

simistic lower approximation, and no proper subset of RP is a consistent pessimistic lower

approximation, then RP is called a pessimistic lower approximation reduct of MGDHFDIS.

(3) For all j(1 ≤ j ≤ v), if
∑

Ri∈R
O Ri

O
(Dj) =

∑m
i=1Ri

O
(Dj), then RO is referred

to as a consistent optimistic upper approximation of MGDHFDIS. If RO is a consis-

tent optimistic upper approximation, and no proper subset of RO is a consistent opti-

mistic upper approximation, then RO is called an optimistic upper approximation reduct

of MGDHFDIS.

(4) For all j(1 ≤ j ≤ v), if
∑

Ri∈R
P Ri

P
(Dj) =

∑m
i=1Ri

P
(Dj), then RP is referred to

as a consistent pessimistic upper approximation of MGDHFDIS. If RP is a consistent pes-

simistic upper approximation, and no proper subset of RP is a consistent pessimistic upper

approximation, then RP is called a pessimistic upper approximation reduct of MGDHFDIS.

In order to obtain the optimistic and pessimistic approximation reducts of MGDHFDIS,

we introduce the concepts of DHF vectors and DHF matrices. In the text that follows,

without loss of generality, we suppose that the first HF elements in all the DHF elements

have the same length k, and the second HF elements in all the DHF elements have the

same length l.

Definition 3.5 Let n−dimensional vector α⃗ = (α1, α2, · · · , αn)T , where αi = (hi, gi)(1 ≤
i ≤ n) are n DHF elements. Then we call α⃗ a n−dimensional DHF vector. If Mnm =

(α⃗1, α⃗2, · · · , α⃗m), where α⃗j(1 ≤ j ≤ m) are m n−dimensional DHF vectors, then we call

Mnm a n ×m DHF matrix. Specially, a n−dimensional DHF vector can be viewed as a

n× 1 DHF matrix.

Based on Definition 3.5, a MGDHFDIS can be described as multiple DHF matrices
(DHF relation matrices) and vectors (called decision DHF vectors). For example, by using
DHF relation matrices and decision DHF vectors, the MGDHFDIS in Example 3.3 can be
described as follows:

MR1 =


({1,1},{0,0}) ({0.4,0.5},{0.2,0.4}) ({0.2,0.3},{0.5,0.7}) ({0.6,0.8},{0.1,0.2})

({0.1,0.2},{0.7,0.8}) ({1,1},{0,0}) ({0.2,0.3},{0.6,0.7}) ({0.4,0.5},{0.5,0.5})
({0.2,0.2},{0.6,0.7}) ({0.5,0.8},{0.2,0.2}) ({1,1},{0,0}) ({0.3,0.4},{0.5,0.6})
({0.3,0.5},{0.4,0.5}) ({0.4,0.5},{0.2,0.4}) ({0.2,0.3},{0.5,0.7}) ({1,1},{0,0})
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Table 3: DHF relation R3 in Example 3.3
U × U x1 x2 x3 x4

x1
({1,1},
{0,0})

({0.2,0.4},
{0.5,0.6})

({0.1,0.2},
{0.6,0.8})

({0.3,0.4},
{0.4,0.6})

x2
({0.1,0.2},
{0.7,0.8})

({1,1},
{0,0})

({0.5,0.6},
{0.2,0.3})

({0.3,0.5},
{0.4,0.4})

x3
({0.0,0.5},
{0.4,0.4})

({0.1,0.2},
{0.7,0.8})

({1,1},
{0,0})

({0.7,0.9},
{0.1,0.1})

x4
({0.3,0.4},
{0.5,0.6})

({0.2,0.3},
{0.5,0.7})

({0.3,0.6},
{0.3,0.4})

({1,1},
{0,0})

MR2 =


({1,1},{0,0}) ({0.3,0.5},{0.2,0.5}) ({0.2,0.2},{0.7,0.8}) ({0.4,0.5},{0.3,0.5})

({0.2,0.2},{0.6,0.8}) ({1,1},{0,0}) ({0.4,0.6},{0.3,0.4}) ({0.2,0.5},{0.3,0.5})
({0.1,0.3},{0.5,0.6}) ({0.4,0.5},{0.3,0.4}) ({1,1},{0,0}) ({0.1,0.2},{0.7,0.8})
({0.2,0.5},{0.3,0.5}) ({0.1,0.1},{0.8,0.9}) ({0.5,0.6},{0.3,0.4}) ({1,1},{0,0})



MR3 =


({1,1},{0,0}) ({0.2,0.4},{0.5,0.6}) ({0.1,0.2},{0.6,0.8}) ({0.3,0.4},{0.4,0.6})

({0.1,0.2},{0.7,0.8}) ({1,1},{0,0}) ({0.5,0.6},{0.2,0.3}) ({0.3,0.5},{0.4,0.4})
({0.0,0.5},{0.4,0.4}) ({0.1,0.2},{0.7,0.8}) ({1,1},{0,0}) ({0.7,0.9},{0.1,0.1})
({0.3,0.4},{0.5,0.6}) ({0.2,0.3},{0.5,0.7}) ({0.3,0.6},{0.3,0.4}) ({1,1},{0,0})



MR4 =


({1,1},{0,0}) ({0.4,0.6},{0.3,0.4}) ({0.6,0.7},{0.3,0.3}) ({0.8,0.9},{0.1,0.1})

({0.1,0.2},{0.7,0.7}) ({1,1},{0,0}) ({0.5,0.6},{0.2,0.3}) ({0.2,0.3},{0.6,0.7})
({0.3,0.4},{0.5,0.6}) ({0.5,0.5},{0.3,0.4}) ({1,1},{0,0}) ({0.3,0.4},{0.6,0.6})
({0.4,0.5},{0.3,0.5}) ({0.0,0.2},{0.7,0.8}) ({0.1,0.4},{0.5,0.5}) ({1,1},{0,0})



MR5 =


({1,1},{0,0}) ({0.5,0.5},{0.4,0.5}) ({0.1,0.2},{0.6,0.8}) ({0.2,0.3},{0.5,0.6})

({0.1,0.1},{0.8,0.9}) ({1,1},{0,0}) ({0.6,0.7},{0.2,0.3}) ({0.2,0.3},{0.6,0.7})
({0.0,0.3},{0.6,0.7}) ({0.2,0.5},{0.4,0.5}) ({1,1},{0,0}) ({0.2,0.2},{0.6,0.7})
({0.4,0.5},{0.3,0.4}) ({0.1,0.2},{0.6,0.8}) ({0.1,0.2},{0.6,0.8}) ({1,1},{0,0})


and decision DHF vectors:

D1 = (({0.3, 0.4}, {0.2, 0.6}), ({0.3, 0.5}, {0.4, 0.5}), ({0.3, 0.7}, {0.2, 0.3}), ({0.2, 0.3}, {0.6, 0.7}))T ,
D2 = (({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}), ({0.2, 0.4}, {0.3, 0.6}), ({0, 0.1}, {0.8, 0.9}))T .
Now, the union, intersection and complement of two DHF vectors and matrices can be

defined as follows:

Definition 3.6 Let α⃗1 = (α11, α12, · · · , α1n)
T and α⃗2 = (α21, α22, · · · , α2n)

T be two

n−dimensional DHF vectors, where α1i = (h1i, g1i) and α2i = (h2i, g2i)(1 ≤ i ≤ n) are

DHF elements. Assume that M1 = (α⃗11, α⃗12, · · · , α⃗1m) and M2 = (α⃗21, α⃗22, · · · , α⃗2m) be

two n×m DHF matrices, where α⃗1j and α⃗2j(1 ≤ j ≤ m) are n−dimensional DHF vectors;

then,

(1) α⃗1 d α⃗2 = (α11 Y α21, α12 Y α22, · · · , α1n Y α2n)
T ,

where α1i Y α2i = {({hσ(s)1i ∨ h
σ(s)
2i }, {gσ(t)1i ∧ g

σ(t)
2i })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ i ≤ n);
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(2) α⃗1 e α⃗2 = (α11 Z α21, α12 Z α22, · · · , α1n Z α2n)
T ,

where α1i Z α2i = {({hσ(s)1i ∧ h
σ(s)
2i }, {gσ(t)1i ∨ g

σ(t)
2i })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ i ≤ n);

(3) The complementary vector of α⃗1 is denoted as

(α⃗1)
c = (∼ α11,∼ α12, · · · ,∼ α1n)

T ,

where ∼ α1i = {({gσ(t)1i }, {hσ(s)1i })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ i ≤ n);

(4) M1 dM2 = (α⃗11 d α⃗21, α⃗12 d α⃗22, · · · , α⃗1m d α⃗2m);

(5) M1 eM2 = (α⃗11 e α⃗21, α⃗12 e α⃗22, · · · , α⃗1m e α⃗2m);

(6) The complementary matrix of M1 is denoted as

M1
c = ((α⃗11)

c, (α⃗12)
c, · · · , (α⃗1m)

c)T .

In the following we introduce the product operation of DHF matrices.

Definition 3.7 Let P and Q be two DHF matrices, and

P =


(p11, p11) (p12, p12) · · · (p1w, p1w)

(p21, p21) (p22, p22) · · · (p2w, p2w)
...

...
. . .

...

(pm1, pm1
) (pm2, pm2

) · · · (pmw, pmw)

 ,

Q =


(q11, q11) (q12, q12) · · · (q1n, q1n)

(q21, q21) (q22, q22) · · · (q2n, q2n)
...

...
. . .

...

(qw1, qw1) (qw2, qw2) · · · (qwn, qwn)

 .

Then, the product of P and Q is a m× n DHF matrix, denoted as follows:

M = P ◦Q =
(
(rij , rij)

)
1≤i≤m,1≤j≤n,

where

rij = Y1≤u≤w{piu Z quj} = {
∨

1≤u≤w
(p
σ(s)
iu ∧ q

σ(s)
uj )|1 ≤ s ≤ k},

rij = Z1≤u≤w{piu Y q
uj
} = {

∧
1≤u≤w

(p
σ(t)
iu ∨ q

σ(t)
uj )|1 ≤ t ≤ l}.

In the following discussions, for convenience, we don’t distinguish between DHF vectors

and DHF sets on U .

Theorem 3.8 Let R be the DHF relation on U , MR be DHF matrix of R and A ∈
DHF (U); then

(1) R(A) = (MR ◦ Ac)c,
(2) R(A) = MR ◦ A,

where R(A) and R(A) are the single-granulation lower and upper approximations defined

in Definition 2.4.

Proof. It can be easily verified from Definitions 3.7 and 2.4. 2

According to Theorems 3.8, 2.7 and 2.8, we conclude that the following theorem holds.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1197 Yanping He et al 1187-1206



Table 4: DHF relation R4 in Example 3.3
U × U x1 x2 x3 x4

x1
({1,1},
{0,0})

({0.4,0.6},
{0.3,0.4})

({0.6,0.7},
{0.3,0.3})

({0.8,0.9},
{0.1,0.1})

x2
({0.1,0.2},
{0.7,0.7})

({1,1},
{0,0})

({0.5,0.6},
{0.2,0.3})

({0.2,0.3},
{0.6,0.7})

x3
({0.3,0.4},
{0.5,0.6})

({0.5,0.5},
{0.3,0.4})

({1,1},
{0,0})

({0.3,0.4},
{0.6,0.6})

x4
({0.4,0.5},
{0.3,0.5})

({0.0,0.2},
{0.7,0.8})

({0.1,0.4},
{0.5,0.5})

({1,1},
{0,0})

Table 5: DHF relation R5 in Example 3.3
U × U x1 x2 x3 x4

x1
({1,1},
{0,0})

({0.5,0.5},
{0.4,0.5})

({0.1,0.2},
{0.6,0.8})

({0.2,0.3},
{0.5,0.6})

x2
({0.1,0.1},
{0.8,0.9})

({1,1},
{0,0})

({0.6,0.7},
{0.2,0.3})

({0.2,0.3},
{0.6,0.7})

x3
({0.0,0.3},
{0.6,0.7})

({0.2,0.5},
{0.4,0.5})

({1,1},
{0,0})

({0.2,0.2},
{0.6,0.7})

x4
({0.4,0.5},
{0.3,0.4})

({0.1,0.2},
{0.6,0.8})

({0.1,0.2},
{0.6,0.8})

({1,1},
{0,0})

Theorem 3.9 Let Ri(1 ≤ i ≤ m) be m DHF relations on U , MRi be the DHF relation

matrices of Ri(1 ≤ i ≤ m) and A ∈ DHF (U); then

(1)
∑m

i=1Ri
O(A) = dmi=1(MRi ◦ Ac)c,

(2)
∑m

i=1Ri
O
(A) = emi=1(MRi ◦ A);

(3)
∑m

i=1Ri
P (A) = emi=1(MRi ◦ Ac)c,

(4)
∑m

i=1Ri
P
(A) = dmi=1(MRi ◦ A).

Example 3.10 (Continued from Example 3.3) According to Theorem 3.8(2), we have

R1(D1) = MR1 ◦ D1 =(({0.3, 0.5}, {0.2, 0.5}), ({0.3, 0.5}, {0.4, 0.5}),
({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.5}, {0.4, 0.5}))T ,

R2(D1) = MR2 ◦ D1 =(({0.3, 0.5}, {0.2, 0.5}), ({0.3, 0.6}, {0.3, 0.4}),
({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.6}, {0.3, 0.4}))T ,

R3(D1) = MR3 ◦ D1 =(({0.3, 0.4}, {0.2, 0.6}), ({0.3, 0.6}, {0.2, 0.3}),
({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.6}, {0.3, 0.4}))T ,
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R4(D1) = MR4 ◦ D1 =(({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.6}, {0.2, 0.3}),
({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.4}, {0.3, 0.5}))T ,

R5(D1) = MR4 ◦ D1 =(({0.3, 0.5}, {0.2, 0.5}), ({0.3, 0.7}, {0.2, 0.3}),
({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.4}, {0.3, 0.6}))T .

Then by Theorem 3.9(2) and (4), we obtain

5∑
i=1

Ri

O

(D1) =(({0.3, 0.4}, {0.2, 0.6}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.4}, {0.4, 0.6}))T ,

and

5∑
i=1

Ri

P

(D1) =(({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.7}, {0.2, 0.3}),

({0.3, 0.7}, {0.2, 0.3}), ({0.3, 0.6}, {0.3, 0.4}))T .

Similarly, we have

R1(D2) = MR1 ◦ D2 =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),
({0.5, 0.6}, {0.2, 0.4}), ({0.4, 0.5}, {0.2, 0.4}))T ,

R2(D2) = MR2 ◦ D2 =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),
({0.4, 0.5}, {0.3, 0.4}), ({0.2, 0.5}, {0.3, 0.5}))T ,

R3(D2) = MR3 ◦ D2 =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),
({0.2, 0.5}, {0.3, 0.4}), ({0.3, 0.4}, {0.3, 0.6}))T ,

R4(D2) = MR4 ◦ D2 =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),
({0.5, 0.5}, {0.3, 0.4}), ({0.4, 0.5}, {0.3, 0.5}))T ,

R5(D2) = MR4 ◦ D2 =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),
({0.2, 0.5}, {0.3, 0.5}), ({0.4, 0.5}, {0.3, 0.4}))T .

Then

5∑
i=1

Ri

O

(D2) =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),

({0.2, 0.5}, {0.3, 0.5}), ({0.2, 0.4}, {0.3, 0.6}))T ,
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and

5∑
i=1

Ri

P

(D2) =(({0.5, 0.7}, {0.2, 0.3}), ({0.5, 0.6}, {0.2, 0.4}),

({0.5, 0.6}, {0.2, 0.4}), ({0.4, 0.5}, {0.2, 0.4}))T .

According to Theorem 3.8(1), we have

R1(D1) = (MR1 ◦ D1
c)c =(({0.2, 0.3}, {0.6, 0.7}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.5}, {0.4, 0.5}), ({0.2, 0.3}, {0.6, 0.7}))T ,

R2(D1) = (MR2 ◦ D1
c)c =(({0.3, 0.4}, {0.4, 0.6}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.5}, {0.4, 0.5}), ({0.2, 0.3}, {0.6, 0.7}))T ,

R3(D1) = (MR3 ◦ D1
c)c =(({0.3, 0.4}, {0.3, 0.6}), ({0.3, 0.4}, {0.4, 0.5}),

({0.2, 0.3}, {0.6, 0.7}), ({0.2, 0.3}, {0.6, 0.7}))T ,

R4(D1) = (MR4 ◦ D1
c)c =(({0.2, 0.3}, {0.6, 0.7}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.5}, {0.4, 0.5}), ({0.2, 0.3}, {0.6, 0.7}))T ,

R5(D1) = (MR5 ◦ D1
c)c =(({0.3, 0.4}, {0.4, 0.6}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.5}, {0.2, 0.5}), ({0.2, 0.3}, {0.6, 0.7}))T ,

Then according to Theorem 3.9(1) and (3), we obtain

5∑
i=1

Ri

O

(D1) =(({0.3, 0.4}, {0.3, 0.6}), ({0.3, 0.5}, {0.4, 0.5}),

({0.3, 0.5}, {0.2, 0.5}), ({0.2, 0.3}, {0.6, 0.7}))T ,

and

5∑
i=1

Ri

P

(D1) =(({0.2, 0.3}, {0.6, 0.7}), ({0.3, 0.4}, {0.4, 0.5}),

({0.2, 0.3}, {0.6, 0.7}), ({0.2, 0.3}, {0.6, 0.7})).

Similarly, we have

R1(D2) = (MR1 ◦ D2
c)c =(({0.1, 0.2}, {0.6, 0.8}), ({0.5, 0.5}, {0.4, 0.5}),

({0.2, 0.4}, {0.3, 0.6}), ({0.0, 0.1}, {0.8, 0.9}))T ,
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R2(D2) = (MR2 ◦ D2
c)c =(({0.3, 0.5}, {0.4, 0.5}), ({0.3, 0.4}, {0.3, 0.6}),

({0.2, 0.4}, {0.3, 0.6}), ({0.0, 0.1}, {0.8, 0.9}))T ,

R3(D2) = (MR3 ◦ D2
c)c =(({0.4, 0.6}, {0.3, 0.4}), ({0.2, 0.4}, {0.3, 0.6}),

({0.1, 0.1}, {0.7, 0.9}), ({0.0, 0.1}, {0.8, 0.9}))T ,

R4(D2) = (MR4 ◦ D2
c)c =(({0.1, 0.1}, {0.8, 0.9}), ({0.2, 0.4}, {0.3, 0.6}),

({0.2, 0.4}, {0.3, 0.6}), ({0.0, 0.1}, {0.8, 0.9}))T ,

R5(D2) = (MR5 ◦ D2
c)c =(({0.5, 0.6}, {0.2, 0.4}), ({0.2, 0.4}, {0.3, 0.6}),

({0.2, 0.4}, {0.3, 0.6}), ({0.0, 0.1}, {0.8, 0.9}))T .

Then

5∑
i=1

Ri

O

(D2) =(({0.5, 0.6}, {0.2, 0.4}), ({0.5, 0.5}, {0.3, 0.5}),

({0.2, 0.4}, {0.3, 0.6}), ({0.0, 0.1}, {0.8, 0.9}))T ,

and

5∑
i=1

Ri

P

(D2) =(({0.1, 0.1}, {0.8, 0.9}), ({0.2, 0.4}, {0.4, 0.6}),

({0.1, 0.1}, {0.7, 0.9}), ({0.0, 0.1}, {0.8, 0.9})).

It is well known that a discernibility function is a key notion to reduction algorithms

in rough set theory. Therefore, by constructing the discernibility functions, we present

a practical method to determine the optimistic and pessimistic approximation reducts of

MGDHFDIS.

Definition 3.11 Let MGDHFDIS = (U, {Rj |1 ≤ j ≤ m}, D = {di|1 ≤ i ≤ v}, V ),

|U | = n and Di(1 ≤ i ≤ v) be decision vectors. Denote

m∑
j=1

Rj
O

(Di) = (oi1, oi2, · · · , oin)(1 ≤ i ≤ v),

where oiu = {({oσ(s)iu }, {oσ(t)iu })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n);

m∑
j=1

Rj

O

(Di) = (oi1, oi2, · · · , oin)(1 ≤ i ≤ v),
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where oiu = {({oσ(s)iu }, {oσ(t)iu })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n);

m∑
j=1

Rj
P

(Di) = (p
i1
, p
i2
, · · · , p

in
)(1 ≤ i ≤ v),

where p
iu

= {({pσ(s)iu }, {pσ(t)iu })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n);

m∑
j=1

Rj

P

(Di) = (pi1, pi2, · · · , pin)(1 ≤ i ≤ v),

where piu = {({pσ(s)iu }, {pσ(t)iu })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n);

Rj(Di) = (rij1, rij2, · · · , rijn)(1 ≤ i ≤ v, 1 ≤ j ≤ m),

where riju = {({rσ(s)iju }, {rσ(t)iju })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n);

Rj(Di) = (rij1, rij2, · · · , rijn)(1 ≤ i ≤ v, 1 ≤ j ≤ m),

where riju = {({rσ(s)iju }, {rσ(t)iju })|1 ≤ s ≤ k, 1 ≤ t ≤ l}(1 ≤ u ≤ n).

Then, the optimistic lower approximation discernibility function of MGDHFDIS is

fO =
v∧
i=1

n∧
u=1

k∧
s=1

l∧
t=1

(
∨

r
σ(s)
iju =o

σ(s)
iu ,1≤j≤m

Rj
∧ ∨
r
σ(t)
iju =o

σ(t)
iu ,1≤j≤m

Rj);

the optimistic upper approximation discernibility function of MGDHFDIS is

f
O
=

v∧
i=1

n∧
u=1

k∧
s=1

l∧
t=1

(
∨

r
σ(s)
iju =o

σ(s)
iu ,1≤j≤m

Rj
∧ ∨
r
σ(t)
iju =o

σ(t)
iu ,1≤j≤m

Rj);

the pessimistic lower approximation discernibility function of MGDHFDIS is

fP =
v∧
i=1

n∧
u=1

k∧
s=1

l∧
t=1

(
∨

r
σ(s)
iju =p

σ(s)
iu ,1≤j≤m

Rj
∧ ∨
r
σ(t)
iju =p

σ(t)
iu ,1≤j≤m

Rj);

the pessimistic upper approximation discernibility function of MGDHFDIS is

f
P
=

v∧
i=1

n∧
u=1

k∧
s=1

l∧
t=1

(
∨

r
σ(s)
iju =p

σ(s)
iu ,1≤j≤m

Rj
∧ ∨
r
σ(t)
iju =p

σ(t)
iu ,1≤j≤m

Rj).

According to Definitions 3.11 and 3.4, we can easily obtain the following theorem.

Theorem 3.12 Let MGDHFDIS = (U, {Rj |1 ≤ j ≤ m}, D = {di|1 ≤ i ≤ v}, V ),

|U | = n. We can convert the approximation discernibility functions fO, f
O
, fP and

f
P
of MGDHFDIS into their disjunction forms fO =

α1∨
α=1

(
β1∧
β=1

Rαβ1), f
O
=

α2∨
α=1

(
β2∧
β=1

Rαβ2),

fP =
α3∨
α=1

(
β3∧
β=1

Rαβ3), and f
P

=
α4∨
α=1

(
β4∧
β=1

Rαβ4), respectively. Then, BO
α = {Rαβ1|β =
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1, 2, · · · , β1}(α = 1, 2, · · · , α1), B
O
α = {Rαβ2|β = 1, 2, · · · , β2}(α = 1, 2, · · · , α2), B

P
α =

{Rαβ3|β = 1, 2, · · · , β3}(α = 1, 2, · · · , α3), and B
P
α = {Rαβ4|β = 1, 2, · · · , β4}(α =

1, 2, · · · , α4) are the optimistic lower upper, and pessimistic lower and upper approximation

reducts of MGDHFDIS, respectively.

From Theorem 3.12, we see that all the approximation reducts of MGDHFDIS can be

obtained through using the discernibility functions defined in Definition 3.11.

Example 3.13 (Continued from Example 3.10) From Definition 3.11, we obtain

fO = ((R2 ∨ R3 ∨ R5) ∧ R3 ∧ R5) ∧ (R1 ∧ R5) = R1 ∧ R3 ∧ R5,

f
O
= (R3 ∧ R1 ∧ ((R4 ∨ R5) ∧ R1 ∧ R5)) ∧ (R2 ∧ R3 ∧ R5) = R1 ∧ R2 ∧ R3 ∧ R5,

fP = (R4 ∧R3)∧ (R4 ∧ (R3 ∨R4 ∨R5)∧R1 ∧ (R2 ∨R3 ∨R4 ∨R5)∧R3) = R1 ∧R3 ∧R4,

and

f
P
= (R4 ∧ R5 ∧ (R2 ∨ R3)) ∧ R1 = (R1 ∧ R2 ∧ R4 ∧ R5) ∨ (R1 ∧ R3 ∧ R4 ∧ R5).

Hence, by virtue of Theorem 3.12, we draw the conclusion that the optimistic lower

approximation reducts of MGDHFDIS are {R1,R3,R5};
The optimistic upper approximation reducts of MGDHFDIS are {R1,R2,R3,R5};
The pessimistic lower approximation reducts of MGDHFDIS are {R1,R3,R4};
The pessimistic upper approximation reducts of MGDHFDIS are {R1,R2,R4,R5} and

{R1,R3,R4,R5}.

4 Conclusion

As two new mathematical approaches to cope with imprecision and uncertainty in data

analysis, DHF sets and MGRS theory have their own advantages. Considering the facts,

Zhang et al. [47] proposed a MGDHFRS by combining DHF sets and MGRS theory which

includes many existing MGRS models as special types, such as MGRSs [22], MGFRSs

in a fuzzy tolerance approximation space [34] and IFMGRSs [7]. Since the MGDHFRS

includes both ingredients of DHF sets and MGRSs, it is more effective and flexible than

both DHF sets and MGRSs to handle imprecise and imperfect information. In this study,

in order to further investigate the applications of MGDHFRSs, we present a reduction

method in MGDHFDIS based on MGDHFRSs. An example is also provided to illustrate

the validity of this method. Generally, this reduction approach based on discernibility

functions can be extended to other various rough set models in the context of defining

discernibility functions.

In the future, topological structures of the MGDHFRSs are the main research direction

considered by our group. Moreover, it is important and interesting to further investigate

the applications of the MGDHFRSs.
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THE FEKETE-SZEGÖ PROBLEM FOR SOME CLASSES

OF ANALYTIC FUNCTIONS

ADAM LECKO, BOGUMI LA KOWALCZYK, OH SANG KWON AND NAK EUN CHO

Abstract. Given an analytic standardly normalized function g in D := {z ∈ C : |z| < 1},
by C(g) will be denoted the class of analytic standardly normalized function f such that

Re

{
eiδ

zf ′(z)

g(z)

}
> 0, z ∈ D,

for some δ ∈ (−π/2, π/2). For the class C(g) the Fekete-Szegö problem is examined.

1. Introduction

In [3] Fekete and Szegö found the maximum value of the coefficient functional

Φλ(f) :=
∣∣a3 − λa22

∣∣ , λ ∈ [0, 1],

over the class S of univalent functions f in the unit disk D := {z ∈ C : |z| < 1} of the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ D.(1.1)

By applying the Loewner method they proved that

max
f∈S

Φλ(f) =

{
1 + 2 exp (−2λ/(1− λ)) , λ ∈ [0, 1),
1, λ = 1.

The problem of calculating maxf∈F Φλ(f) for various compact subclasses F of the class
A of all analytic functions f in D of the form (1.1), as well as for λ being an arbitrary real
or complex number, was considered by many authors (see e.g., [8], [12], [23], [14], [10], [20],
[13], [2]).

Let S∗ denote the class of starlike functions, i.e., f ∈ S∗ if f ∈ A and

Re
zf ′(z)

f(z)
> 0, z ∈ D.

Let Sc denote the class of convex functions, i.e., f ∈ Sc if f ∈ A and

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D.

Given δ ∈ (−π/2, π/2) and g ∈ A, let Cδ(g) denote the class of all functions f ∈ A such
that

Re

{
eiδ

zf ′(z)

g(z)

}
> 0, z ∈ D.(1.2)

2010 Mathematics Subject Classification. 30C45, 30C80.
Key words and phrases. Fekete-Szegö problem, starlike functions, convex functions, close-to-convex func-

tions, close-to-convex functions with argument δ.
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2 A. LECKO, B. KOWALCZYK, O. S. KWON AND N. E. CHO

For g ∈ A let

C(g) :=
∪

δ∈(−π/2,π/2)

Cδ(g)

and for δ ∈ (−π/2, π/2) let

Cδ :=
∪
g∈A

Cδ(g).

Given δ ∈ (−π/2, π/2) and g ∈ S∗, functions in Cδ(g) and in C(g) are called close-to-
convex with argument δ with respect to g and close-to-convex with respect to g, respectively.
For δ ∈ (−π/2, π/2) let

C∗
δ :=

∪
g∈S∗

Cδ(g), Ccδ :=
∪
g∈Sc

Cδ(g).

Let

C∗ :=
∪

δ∈(−π/2,π/2)

∪
g∈S∗

Cδ(g)

denote the class of close-to-convex functions and let

Cc :=
∪

δ∈(−π/2,π/2)

∪
g∈Sc

Cδ(g).

For details on close-to-convex functions see [22, pp. 184-185], [11], [7] (cf. [6, Vol. II, pp.
1-11]). The class Cc0 was considered in [1].

For the whole class C∗ of close-to-convex functions, the sharp bound of the Fekete-Szegö
functional on R was calculated by Koepf in [14] who extended the earlier result for the class
C∗
0 due to Keogh and Merkes [12], namely, he proved that

max
f∈C∗

Φλ(f) = max
f∈C∗

0

Φλ(f) =

 |3− 4λ|, λ ∈ (−∞, 1/3] ∪ [1,+∞),
1/3 + 4/(9λ), λ ∈ [1/3, 2/3],
1, λ ∈ [2/3, 1].

(1.3)

For the class Cc of close-to-convex functions with respect to convex functions, the sharp
bound of the Fekete-Szegö functional on the interval [0, 1] was studied by Srivastava, Mishra
and Das in [25], who extended the earlier result for the class Cc0 due to Abdel-Gawad and
Thomas [1]. By Theorem 3 of [1], Theorems 1 to 4 of [25] and by observation in Section 2 of
the paper [18], the following result holds:

max
f∈Cc

Φλ(f) = max
f∈Cc0

Φλ(f) =

{
5/3− 9λ/4, λ ∈ [0, 2/9]
2/3 + 1/(9λ), λ ∈ [2/9, 2/3],

(1.4)

and

max
f∈Cc

Φλ(f) 5 5/6, λ ∈ (2/3, 1].(1.5)

Given α ∈ [0, 1], let

gα(z) :=
z

(1− αz)2
, z ∈ D,

and

hα(z) :=
z

1− αz
, z ∈ D.

The corresponding classes C(gα) and C(hα) are defined, respectively, by the following condi-
tions:

Re
{
eiδ(1− αz)2f ′(z)

}
> 0, z ∈ D,(1.6)
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THE FEKETE-SZEGÖ PROBLEM FOR ANALYTIC FUNCTIONS 3

and

Re
{
eiδ(1− αz)f ′(z)

}
> 0, z ∈ D,(1.7)

where δ ∈ (−π/2, π/2).
The upper bound on the Fekete-Szegö functional for the class C(gα) was obtained in [15],

where it was shown that

max
f∈C(gα)

Φλ(f)

≤


∣∣∣∣23 +

4

3
α+ α2 − (1 + α)2λ

∣∣∣∣ , λ ∈ R \ (τ1(α), τ2(α)),

2

3
+ α2

(
1

3
· (2− 3λ)2

2− |2− 3λ|
+ |1− λ|

)
, λ ∈ [τ1(α), τ2(α)],

(1.8)

where

τ1(α) :=
2α

3(1 + α)
, τ2(α) :=

2(2 + α)

3(1 + α)
.

As it is well known, the Koebe function k := g1 and the function h := h1 are extremal
for various computational problems in the class S∗ of starlike and in the class Sc of convex
functions, respectively. The Fekete-Szegö problem was separately considered for the class
C(k) in [16] and for the class C(h) in [17], i.e., when α := 1 in (1.6) and (1.7). Setting α := 1
into (1.8) we get the result for the class C(k).

For α := 0 the condition (1.6) as well as (1.7) is of the form

Re
{
eiδf ′(z)

}
> 0, z ∈ D.(1.9)

Functions f having such a property are called of bounded turning with argument δ and form
the class Cδ(h) denoted usually as P ′(δ), and further the class P ′ of functions called of bounded
turning (cf. [6, Vol. I, p. 101]). On the other hand, the condition (1.7) is known as a famous
criterium of univalence due to Noshiro [21] and Warschawski [27] (cf. [6, p. 88]). By setting
α := 0 into (1.8) we get the following result published, among other results, in [10, Theorem
2.3]:

max
f∈P ′

Φλ(f) =
2

3
.

In this paper we unify mentioned results proving the Fekete-Szegö inequality for the class
C(g) with g ∈ A such that

|g′′(0)| ≤ 4.

2. Main result

By P we denote the class of all analytic functions p in D of the form

p(z) = 1 +
∞∑
n=1

cnz
n, z ∈ D,(2.1)

having a positive real part in D. Let

L(z) :=
1 + z

1− z
, z ∈ D.

For each ε ∈ T := {z ∈ C : |z| = 1} let

Lε(z) := L(εz), z ∈ D.
Clearly Lε ∈ P for every ε ∈ T.
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4 A. LECKO, B. KOWALCZYK, O. S. KWON AND N. E. CHO

The inequalities (2.2) and (2.3) below are well known. They can be found in [24, pp. 41
and 166].

Lemma 2.1. If p ∈ P is of the form (2.1), then

|cn| ≤ 2, n ∈ N,(2.2)

and ∣∣∣∣c2 − c21
2

∣∣∣∣ ≤ 2− |c1|2

2
.(2.3)

Both inequalities are sharp. The equality in (2.2) holds for every function Lε ∈ P, ε ∈ T.
The equality in (2.3) holds for every function

pt,θ(z) := tL
(
eiθz

)
+ (1− t)L

(
e2iθz2

)
= 1 + 2teiθz + 2e2iθz2 + . . . , z ∈ D,

where t ∈ [0, 1] and θ ∈ R.

Now we prove the main theorem of this paper. The idea of the proof is based on the
Koepf’s method [14] of calculating Φλ for close-to-convex functions with λ restricted to the
interval (1/2, 2/3). However, we apply it homogenously for the class C(g) for all real λ in the
same manner as in [15] and [16]. Also the Laguerre’s rule of counting zeros of polynomials in
an interval is the key tool in the proof.

We recall shortly the Laguerre’s rule of counting zeros of polynomials in an interval (see
[19], [9], [26, pp. 19-20]). Given a real polynomial

Q(u) = a0u
n + a1u

n−1 + · · ·+ an−1u+ an(2.4)

consider a finite sequence (qk), k = 0, 1, . . . , n, of polynomials of the form

qk(u) =

k∑
j=0

aju
k−j .(2.5)

For each u0 ∈ R let N(Q;u0) denote the number of sign changes in the sequence (qk(u0)) , k =
0, 1, . . . , n. Given an interval I ⊂ R, denote by Z(Q; I) the number of zeros of Q in I counted
with their orders. Then the following theorem due to Laguerre holds.

Theorem 2.2. If a < b, Q(a) ̸= 0 and Q(b) ̸= 0, then Z(Q; [a, b]) = N(Q; a) − N(Q; b) or
N(Q; a)−N(Q; b)− Z(Q; [a, b]) is an even positive integer.

Note that qk(0) = ak and qk(1) =
∑k

j=0 aj . Thus in the case of the interval [0, 1] Theo-
rem 2.2 reduces to the following useful corollary.

Corollary 2.3. If Q(0) ̸= 0 and Q(1) ̸= 0, then Z(Q; [0, 1]) = N(Q; 0)−N(Q; 1) or N(Q; 0)−
N(Q; 1)−Z(Q; [0, 1]) is an even positive integer, where N(Q; 0) and N(Q; 1) are the numbers
of sign changes in the sequence of polynomial coefficients (ak) and in the sequence of sums(∑k

j=0 aj

)
, where k = 0, 1, . . . , n, respectively.

The main theorem of the paper is

Theorem 2.4. If g ∈ A is of the form

g(z) = z +
∞∑
n=2

bnz
n, z ∈ D,(2.6)
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THE FEKETE-SZEGÖ PROBLEM FOR ANALYTIC FUNCTIONS 5

with

|b2| ≤ 2,(2.7)

then

max
f∈C(g)

Φλ(f)

≤


∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (1 + |b2|)
∣∣∣∣23 − λ

∣∣∣∣ , λ ∈ R \ [τ1(|b2|), τ2(|b2|)] ,∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (2− 3λ)2|b2|2

12(2− |2− 3λ|)
+

2

3
, λ ∈ [τ1(|b2|), τ2(|b2|)] ,

(2.8)

where

τ1(|b2|) :=
2|b2|

3(|b2|+ 2)
, τ2(|b2|) :=

2(|b2|+ 4)

3(|b2|+ 2)
.(2.9)

Proof. Let g ∈ A be of the form (2.6) and f ∈ C(g) be of the form (1.1). Observe that
f ∈ C(g) if and only if

zf ′(z) = e−iδg(z) (p(z) cos δ + i sin δ) , z ∈ D,(2.10)

for some δ ∈ (−π/2, π/2) and p ∈ P. Setting the series (1.1), (1.3) and (2.1) into (2.10) by
comparing coefficients we get

a2 =
1

2

(
c1e

−iδ cos δ + b2

)
,

a3 =
1

3

(
c2e

−iδ cos δ + c1b2e
−iδ cos δ + b3

)
.(2.11)

Let λ ∈ R. Using (2.3) from the above we have

Φλ(f) =
∣∣a3 − λa22

∣∣
=

∣∣∣∣13c2e−iδ cos δ +
1

3
c1b2e

−iδ cos δ +
1

3
b3

−1

4
λ
(
c21e

−2iδ cos2 δ + 2c1b2e
−iδ cos δ + b22

)∣∣∣∣
=

∣∣∣∣13b3 − 1

4
λb22 +

1

3

(
c2 −

c21
2

)
e−iδ cos δ

+
1

6
c21

(
1− 3

2
λe−iδ cos δ

)
e−iδ cos δ +

(
1

3
− 1

2
λ

)
c1b2e

−iδ cos δ

∣∣∣∣
≤

∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ 1

3

(
2− |c1|2

2

)
cos δ +

|c1|2

6

∣∣∣∣1− 3

2
λe−iδ cos δ

∣∣∣∣ cos δ
+

∣∣∣∣13 − 1

2
λ

∣∣∣∣ |c1||b2| cos δ
=

∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+
(
2

3
+

|c1|2

6

(√
1−

(
3λ− 9

4
λ2

)
cos2 δ − 1

)

+

∣∣∣∣13 − 1

2
λ

∣∣∣∣ |c1||b2|) cos δ.(2.12)
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6 A. LECKO, B. KOWALCZYK, O. S. KWON AND N. E. CHO

Set x := |c1| and y := cos δ. Clearly, y ∈ (0, 1] and, in view of (2.2), x ∈ [0, 2]. It is
convenient to use in further computation γ := 2− 3λ instead of λ. For γ ∈ R let

sγ(y) :=

√
1−

(
1− 1

4
γ2
)
y2, y ∈ [0, 1].

By the assumption (2.7), set |b2| := 2α, where α ∈ [0, 1]. Set R := [0, 2]× [0, 1]. For α ∈ [0, 1]
and γ ∈ R define

Fα,γ(x, y) :=
(
4 + x2 (sγ(y)− 1) + 2α|γ|x

)
y, (x, y) ∈ R.

Hence and from (2.12) we have

max
f∈C(g)

Φλ(f) ≤
∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ 1

6
max

(x,y)∈R
Fα,γ(x, y).(2.13)

Now for α ∈ [0, 1] and γ ∈ R we find the maximum value of Fα,γ on the rectangle R.
1. In the corners of R we have

Fα,γ(0, 0) = Fα,γ(2, 0) = 0,

Fα,γ(0, 1) = 4,(2.14)

Fα,γ(2, 1) = 2(1 + 2α)|γ|.
2. For x = 0 and y ∈ (0, 1) we have a linear function and for x ∈ (0, 2) and y = 0 we

have a constant function.
3. For x ∈ (0, 2) and y = 1, let

Gα,γ(x) := Fα,γ(x, 1) =
1

2
(|γ| − 2)x2 + 2α|γ|x+ 4.

For |γ| = 2 we get the linear functions, so let |γ| ̸= 2. Then G′
α,γ(x) = 0 if and only if

x =
2α|γ|
2− |γ|

=: xα,γ .

Thus xα,γ ∈ (0, 2) if and only if

α ̸= 0 ∧ 0 <
α|γ|

2− |γ|
< 1.(2.15)

The left-hand inequality in (2.15) holds if and only if

α ̸= 0 ∧ 0 < |γ| < 2.(2.16)

We can write the right-hand inequality (2.15) as

(1 + α)|γ| − 2

2− |γ|
< 0

and, in view of (2.16), it holds when |γ| < 2/(1+α). But 2/(1+α) < 2 for α ∈ (0, 1], so this
with (2.16) yields that xα,γ ∈ (0, 2) if and only if

α ̸= 0 ∧ 0 < |γ| < 2

1 + α
.(2.17)

Thus the function Gα,γ has a critical point in (0, 2), namely, xα,γ as the unique one, if
and only if (2.17) holds. Moreover we have

Fα,γ(xα,γ , 1) = Gα,γ (xα,γ) =
2α2γ2

2− |γ|
+ 4.(2.18)
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4. For x = 2 and y ∈ (0, 1), let

Hα,γ(y) := Fα,γ(2, y) = 4 (ysγ(y) + α|γ|y) .
For |γ| = 2 we have the linear functions evidently, so let |γ| ̸= 2. Note first that

sγ(y) > 0, y ∈ (0, 1),(2.19)

since the equation sγ(y) = 0, y ∈ (0, 1), equivalently written as

(4− γ2)y2 = 4, y ∈ (0, 1),(2.20)

has no solution. Indeed, as y2 > 0, we have |γ| < 2. But from (2.20) we obtain

y2 =
4

4− γ2
> 1,

which is a contradiction. Thus (2.20) has no solution, so (2.19) holds. Taking into account
(2.19) we have

ys′γ(y) =

−
(
1− 1

4
γ2
)
y2√

1−
(
1− 1

4
γ2
)
y2

=
s2γ(y)− 1

sγ(y)
, y ∈ (0, 1).(2.21)

Using (2.21) we get

H ′
α,γ(y) = 4

(
sγ(y) +

s2γ(y)− 1

sγ(y)
+ α|γ|

)
, y ∈ (0, 1).

Hence

H ′
α,γ(y) = 0(2.22)

if and only if

2s2γ(y) + α|γ|sγ(y)− 1 = 0,

i.e., in view of (2.19) if and only if

sγ(y) =
−α|γ|+

√
8 + α2γ2

4
=: sα,γ .(2.23)

As |γ| ̸= 2, so from the above we get the equation

y2 =
4− α2γ2 + α|γ|

√
8 + α2γ2

2(4− γ2)
.(2.24)

Thus the solution of the equation (2.24), and hence of (2.22), exists if and only if

0 <
4− α2γ2 + α|γ|

√
8 + α2γ2

2(4− γ2)
< 1.(2.25)

Let |γ| < 2. The left-hand inequality in (2.25) is clearly true since 4 − α2γ2 > 0. Write
the right-hand inequality in (2.25) equivalently as

α|γ|
√
8 + α2γ2 < 4− (2− α2)γ2.(2.26)

The above inequality can hold only when

|γ| < 2√
2− α2

.(2.27)
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But 2/
√
2− α2 ≤ 2, so squaring (2.26) and reducing we equivalently have

(1− α2)γ4 − 4γ2 + 4 > 0.(2.28)

Let α = 1. Then, taking into account (2.27), the inequality (2.28) holds if and only if
|γ| < 1. Let α ∈ [0, 1). Then (2.28) holds if and only if

|γ| >
√

2

1− α
or |γ| <

√
2

1 + α
.

Hence, from (2.27) and by the fact that for α ∈ [0, 1),√
2

1 + α
≤ 2√

2− α2
≤
√

2

1− α
,

we see that (2.28) and, consequently, (2.25) holds if and only if

|γ| <
√

2

1 + α
.(2.29)

In this way, we proved that for α ∈ [0, 1], the inequality (2.28), so (2.25) holds if and
only if (2.29) holds.

Let |γ| > 2. Then the left-hand inequality in (2.25) holds if and only if

α|γ|
√

8 + α2γ2 < α2γ2 − 4.(2.30)

Note that α2γ2 − 4 ≤ 0 for |γ| ≤ 2/α, so then (2.30) is false. Assume that |γ| > 2/α.
Squaring (2.30), after reducing, we get |γ| < 1/α, which contradicts the assumption.

Thus we proved that the function Hα,γ has a critical point in (0, 1), namely,

y =

√
4− α2γ2 + α|γ|

√
α2γ2 + 8

2(4− γ2)
=: yα,γ ,

as the unique solution of (2.24), if and only if (2.29) holds. Moreover,

Fα,γ(2, yα,γ) = Hα,γ(yα,γ)

=

√
4− α2γ2 + α|γ|

√
8 + α2γ2

2(4− γ2)

(√
8 + α2γ2 + 3α|γ|

)
.(2.31)

5. We will prove that for each α ∈ [0, 1] and γ ∈ R the function Fα,γ has no critical point
in (0, 2)× (0, 1).

We have
∂Fα,γ
∂x

= 0

if and only if
y (x (sγ(y)− 1) + α|γ|) = 0,

and since y ̸= 0 and x ̸= 0, if and only if

sγ(y) = 1− α|γ|
x

, y ∈ (0, 1).(2.32)

Observe first that γ ̸= 0 because if γ = 0, then the equation (2.32) reduces to s0(y) =
1, y ∈ (0, 1), which has no solution in (0, 1).

If α = 0, then the equation (2.32) reduces to sγ(y) = 1, y ∈ (0, 1), which is satisfied if
and only if |γ| = 2 and y ∈ (0, 1) is any. On the other hand, if |γ| = 2, then the equation
(2.32) is satisfied for α = 0 only.

Since x > 0, by comparing (2.32) and (2.19), we additionally see that x > α|γ|.
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Thus the solution of (2.32) can exist only when

(α = 0 ∧ |γ| = 2) ∨ (α ̸= 0 ∧ γ ̸= 0 ∧ |γ| ̸= 2 ∧ x > α|γ|).(2.33)

Squaring then (2.32) we obtain

s2γ(y)− 1 = −2α|γ|
x

+
α2γ2

x2
.(2.34)

Since by (2.19), sγ(y) ̸= 0 for y ∈ (0, 1), taking into account (2.21) we have

∂Fα,γ
∂y

= 4 + x2 (sγ(y)− 1) + 2α|γ|x+
(s2γ(y)− 1)x2

sγ(y)
.

Thus, by using (2.32) and (2.34), we have

∂Fα,γ
∂y

= 0

if and only if

4 + x2
(
−α|γ|

x

)
+ 2α|γ|x+

(
−2α|γ|

x
+

α2γ2

x2

)
x2

1− α|γ|
x

= 0,

and after simplifying, if and only if

4 + α|γ|x+
−2α|γ|x2 + α2γ2x

x− α|γ|
= 0.

Thus

α|γ|x2 − 4x+ 4α|γ| = 0, x ∈ (0, 2).(2.35)

Note first that for α = 0 the equation (2.35) has no solution. Let α ̸= 0. From (2.33),
γ ̸= 0. Then the discriminant ∆ = 16(1 − α2γ2) ≥ 0 if and only if 0 < |γ| ≤ 1/α. Note
that ∆ = 0 if and only if |γ| = 1/α, and then the equation (2.35) has no solution. Thus the
equation (2.35) has no root when |γ| ≥ 1/α. Consequently, for α = 0 and γ ∈ R as well as
for α ∈ (0, 1] and |γ| ≥ 1/α the function Fα,γ has no critical point in (0, 2)× (0, 1).

Thus by (2.33) we consider

α ̸= 0 ∧ |γ| ̸= 2 ∧ 0 < |γ| < 1/α ∧ x > α|γ|.(2.36)

Solving now (2.35) we have

x =
2− 2

√
1− α2γ2

α|γ|
=: x1;α,γ , x =

2 + 2
√

1− α2γ2

α|γ|
=: x2;α,γ .

Since x2;α,γ > 0 and x1;α,γx2;α,γ = 4, so we immediately see that 0 < x1;α,γ < 2 < x2;α,γ .
Thus x2;α,γ /∈ (0, 2) and it remains to consider x1;α,γ .

Observe that x1;α,γ > α|γ|. Indeed, this follows from the fact that the inequality

2− 2
√

1− α2γ2

α|γ|
> α|γ|

is equivalent to

2− α2γ2 > 2
√

1− α2γ2,

which is evidently true for 0 < |γ| < 1/α.
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Setting x := x1;α,γ into (2.34) we have

s2γ(y)− 1 = − 2α|γ|
x1;α,γ

+
α2γ2

x21;α,γ
.

Hence

y2 =

2α|γ|
x1;α,γ

− α2γ2

x21;α,γ

1− 1

4
γ2

=
2α|γ|x1;α,γ − α2γ2

x21;α,γ

(
1− 1

4
γ2
)

=

(
4− α2γ2 − 4

√
1− α2γ2

)
α2γ2(

1−
√

1− α2γ2
)2

(4− γ2)
.(2.37)

A solution in (0, 1) of (2.37) exists if and only if

0 <

(
4− α2γ2 − 4

√
1− α2γ2

)
α2γ2(

1−
√

1− α2γ2
)2

(4− γ2)
< 1.(2.38)

By (2.36) consider

α ̸= 0 ∧ |γ| ̸= 2 ∧ 0 < |γ| < 1

α
.(2.39)

We will prove that then the condition (2.38) is false.
(A) Suppose that 2 < |γ| < 1/α. Since, as easy to check, the left-hand side of the

inequality

4− α2γ2 > 4
√

1− α2γ2(2.40)

is positive, by squaring and computing, we equivalently get the inequality

α2γ2 + 8 > 0,

which is true. Hence and by the fact that 4− γ2 < 0 we see that the left-hand inequality in
(2.38) is false.

(B) By (2.39) it remains to consider

α ̸= 0 ∧ 0 < |γ| < 1

α
≤ 2.

(a) As in Part (A), we prove that (2.40) holds. Hence and by the fact that 4 − γ2 > 0
we see that the left-hand inequality in (2.38) holds.

(b) Since 4− γ2 > 0, write the right-hand inequality in (2.38) as(
4− α2γ2 − 4

√
1− α2γ2

)
α2γ2 <

(
1−

√
1− α2γ2

)2
(4− γ2)

and, after computing, equivalently as(
8− 2(1 + 2α2)γ2

)√
1− α2γ2 < (α4 + α2)γ4 − 2(1 + 4α2)γ2 + 8.(2.41)

We will show that (2.41) is false. To verify it, we will prove that the inequality

sα(t) ≥ rα(t), t ∈
(
0, 1/α2

)
,(2.42)

holds, where

sα(t) :=
(
8− 2(1 + 2α2)t

)√
1− α2t, t ∈

[
0, 1/α2

]
,
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and
rα(t) := (α4 + α2)t2 − 2(1 + 4α2)t+ 8, t ∈

[
0, 1/α2

]
.

Then substituting t := γ2 into (2.42), we get the true inequality which shows that (2.41) is
false.

Let
wα(t) := s2α(t)− r2α(t), t ∈

[
0, 1/α2

]
.

Thus after computing we have

wα(t) = α4t3
(
4− (1 + α2)2t

)
, t ∈

[
0, 1/α2

]
.(2.43)

Note that wα(t) = 0 if and only if

t = 0 ∨ t =
4

(1 + α2)2
=: tα,

since, as easy to check, tα ∈
[
0, 1/α2

]
for α ∈ (0, 1].

Let α := 1. Then t1 = 1 and by (2.43),

w1(t) = (s1(t)− r1(t))(s1(t) + r1(t)) = 4t3(1− t) > 0, t ∈ (0, 1).

Hence and from the fact that
s1(0) + r1(0) = 16 > 0,

it follows that
s1(t)− r1(t) > 0, t ∈ (0, 1),

which confirms (2.42).
Let now α ∈ (0, 1). Then by (2.43),

wα(t) = (sα(t)− rα(t))(sα(t) + rα(t)) > 0, t ∈ (0, tα),(2.44)

and

wα(t) = (sα(t)− rα(t))(sα(t) + rα(t)) < 0, t ∈
(
tα, 1/α

2
)
.(2.45)

Since
sα(0) + rα(0) = 16 > 0,

from (2.44) it follows that

sα(t)− rα(t) > 0, t ∈ (0, tα).(2.46)

Similarly, since

sα

(
1

α2

)
+ rα

(
1

α2

)
= 1− 1

α2
< 0,

from (2.45) it follows that

sα(t)− rα(t) > 0, t ∈
(
tα, 1/α

2
)
.(2.47)

Thus from (2.46), (2.47) and by the continuity of the functions sα and rα at t := tα, we have

sα(t)− rα(t) ≥ 0, t ∈
(
0, 1/α2

)
,

which confirms (2.42).
Thus, taking into account Parts (A) and (B), we proved that (2.41) is false, so the

condition (2.38) does not hold and, therefore the equation (2.37) has no solution in (0, 1).
In this way, the proof that for α ∈ [0, 1] and γ ∈ R the function Fα,γ has no critical point

in (0, 2)× (0, 1) is finished.
6. Now we calculate the maximum value of Fα,γ in R, which, as was shown, is attained

on the boundary of R. Let α ∈ [0, 1].

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1217 ADAM LECKO et al 1207-1231



12 A. LECKO, B. KOWALCZYK, O. S. KWON AND N. E. CHO

(A) |γ| ≥ 2/(1 + α). Taking into account Part 3 with (2.17) and Part 4 with (2.29), we
see that the maximum value of Fα,γ is attained in a corner of R. Thus by (2.14) it suffices to
compare the following values:

0, 4, 2(1 + 2α)|γ|.(2.48)

Since, for |γ| ≥ 2/(1 + α),

2(1 + 2α)|γ| ≥ 4 + 8α

1 + α
≥ 4,

so from (2.48) we have

max
(x,y)∈R

Fα,γ(x, y) = Fα,γ(2, 1) = 2(1 + 2α)|γ|.(2.49)

(B)
√

2/(1 + α) ≤ |γ| < 2/(α + 1). Taking into account Part 4 with (2.17) and Part 5
with (2.29), we see that the maximum value of Fα,γ is attained in a corner of R or in (xα,γ , 1) .
Thus we compare all values (2.48) and, by (2.18), the value

Fα,γ (xα,γ , 1) =
2α2γ2

2− |γ|
+ 4.

Observe that
2α2γ2

2− |γ|
+ 4 ≥ 2(1 + 2α)|γ|.

Indeed, since |γ| < 2/(α+ 1) ≤ 2, the above after computing is equivalent to the inequality(
(1 + α)2|γ| − 2

)2 ≥ 0,

which clearly holds. Thus

max
(x,y)∈R

Fα,γ(x, y) = Fα,γ (xα,γ , 1) =
2α2γ2

2− |γ|
+ 4.(2.50)

(C) γ = 0. Taking into account Part 3 with (2.17) and Part 4 with (2.29), the maximum
value of Fα,0 is attained in a corner of R or in the point (2, yα,0) =

(
2, 1/

√
2
)
. Thus, by

comparing all values (2.48) for γ := 0 and, by (2.31), the value

Fα,0 (2, yα,0) = 2,

we have

max
(x,y)∈R

Fα,0(x, y) = Fα,0(0, 1) = 4.(2.51)

(D) 0 < |γ| <
√

2/(α+ 1). Then we compare all values (2.48) and, by (2.18) and (2.31),
Fα,γ (xα,γ , 1) and Fα,γ (2, yα,γ) . We will show that the value Fα,γ (xα,γ , 1) is the largest one.

(D1) Since |γ| <
√

2/(α+ 1) < 2 for α ∈ [0, 1], so α2γ2/(2− |γ|) ≥ 0 and therefore

Fα,γ (xα,γ , 1) ≥ 4.

Moreover, repeating arguments of Part (B), we see that

Fα,γ (xα,γ , 1) ≥ 2(1 + 2α)|γ|.

(D2) Thus it remains to prove that

Fα,γ (xα,γ , 1) ≥ Fα,γ (2, yα,γ)(2.52)
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i.e., in view of (2.18) and (2.31), that

2α2γ2

2− |γ|
+ 4

≥

√
4− α2γ2 + α|γ|

√
8 + α2γ2

2(4− γ2)

(√
8 + α2γ2 + 3α|γ|

)
.(2.53)

As |γ| < 2, so both sides of (2.53) are positive. Thus squaring (2.53) and computing we
equivalently have

α4|γ|5 +
(
6α4 − 8α2

)
γ4 +

(
20α2 + 8

)
|γ|3 −

(
8α2 + 16

)
γ2 − 24|γ|+ 48

≥ α|γ|(2− |γ|)
(
α2γ2 + 8

)3/2
.(2.54)

To verify that (2.54) holds, we will show that

Qα(u) ≥ Sα(u), u ∈ [0, uα],(2.55)

where uα :=
√

2/(α+ 1),

Qα(u) := α4u5 +
(
6α4 − 8α2

)
u4 +

(
20α2 + 8

)
u3

−
(
8α2 + 16

)
u2 − 24u+ 48, u ∈ [0, uα],

and
Sα(u) := αu(2− u)

(
α2u2 + 8

)3/2
, u ∈ [0, uα].

(1o) α = 0. Then u0 =
√
2 and the inequality (2.55) reduces to

Q0(u) = u3 − 2u2 − 3u+ 6 =
(
u2 − 3

)
(u− 2) > 0 = S0(u), u ∈

[
0,
√
2
]
,

which is true. Thus (2.55) holds, which confirms (2.54).
(2o) α = 1. Then u1 = 1 and the inequality (2.55) reduces to

u5 − 2u4 + 28u3 − 24u2 − 24u+ 48

≥ u(2− u)
(
u2 + 8

)3/2
, u ∈ [0, 1].(2.56)

Since

u5 − 2u4 + 28u3 − 24u2 − 24u+ 48 ≥ u5 − 2u3 + 28u3 − 24− 24 + 48

= u5 + 26u3 ≥ 0, u ∈ [0, 1],

so both sides of (2.56) are nonnegative. Thus squaring (2.56) and computing we equivalently
get the inequality

(u− 1)2
(
2u6 + 32u4 + 40u3 − 92u2 + 144u+ 144

)
≥ 0, u ∈ [0, 1],

which clearly holds. To see this, replace u2 by u. Thus (2.55) holds, which confirms (2.54).
(3o) α ∈ (0, 1). Define

Vα(u) := Q2
α(u)− S2

α(u), u ∈ [0, uα].

We will show that

Vα(u) > 0, u ∈ [0, uα],(2.57)

i.e., that

(Qα(u)− Sα(u))(Qα(u) + Sα(u)) > 0, u ∈ [0, uα].(2.58)

Further, taking into account that Qα and Sα are continuous functions with

Qα(0)− Sα(0) = 48 > 0,
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from (2.58) we deduce that

Qα(u)− Sα(u) > 0, u ∈ [0, uα],

i.e., that (2.55) holds.
Now we prove that (2.57) holds, i.e., that the following inequality holds:

Vα(u)

=
(
α4u5 +

(
6α4 − 8α2

)
u4 +

(
20α2 + 8

)
u3 −

(
8α2 + 16

)
u2 − 24u+ 48

)2
−α2u2(2− u)2

(
α2u2 + 8

)3
> 0, u ∈ [0, uα],

which after computation is equivalent to

Vα(u) = (α8 − α6)u9 + (2α8 − 5α6 + 5α4)u8

+ (20α6 − 16α4 − 8α2)u7 + (−12α6 + 6α4 + 36α2 + 4)u6

+ (16α4 − 24α2 − 16)u5 − (8α4 + 124α2 + 8)u4 + (272α2 + 96)u3

− (176α2 + 60)u2 − 144u+ 144 =:

9∑
j=0

aju
9−j > 0, u ∈ [0, uα].

As in (2.5), let (qk), k = 0, 1, . . . , 9, be a sequence of polynomials of the form

qk(u) =

k∑
j=0

aju
k−j , u ∈ [0, uα],

corresponding to the polynomial Q := Vα in (2.4) for Laguerre’s rule.
(a) Now we check the signs of the elements of the sequence (qk(0)), i.e., of the sequence

(ak) for k = 0, 1, . . . , 9. A simple computing shows that for α ∈ (0, 1) we have

q0(0) = α6(α2 − 1) < 0,

q1(0) = α4(2α4 − 5α2 + 5) > 0,

q2(0) = 4α2(5α4 − 4α2 − 2) < 0,

q3(0) = 2(−6α6 + 3α4 + 18α2 + 2) > 0,

q4(0) = 8(2α4 − 3α2 − 2) < 0,

q5(0) = −4(2α4 + 31α2 + 2) < 0,

q6(0) = 272α2 + 96 > 0,

q7(0) = −176α2 − 60 < 0,

q8(0) = −144 < 0,

q9(0) = 144 > 0.

Hence

N(Vα; 0) = 7, α ∈ (0, 1).(2.59)

(b) Now we check the signs of the elements of the sequence (qk(uα)) for k = 0, 1, . . . , 9.
(i) k = 0. We have

q0(u) = α6(α2 − 1), u ∈ [0, uα].

Thus

q0(uα) < 0, α ∈ (0, 1).(2.60)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1220 ADAM LECKO et al 1207-1231
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(ii) k = 1. We have

q1(u) = α4
(
(α4 − α2)u+ 2α4 − 5α2 + 5

)
, u ∈ [0, uα].

We will show that

q1(uα) > 0, α ∈ (0, 1),(2.61)

i.e., after computing that

−(2α4 − 5α2 + 5)
√
α+ 1 < (α4 − α2)

√
2, α ∈ (0, 1).(2.62)

Observe that since both sides of (2.62) are negative, after squaring and computing we equiv-
alently get

4α8 − 2α7 − 18α6 + 2α5 + 43α4 − 50α2 + 25 > 0, α ∈ (0, 1).(2.63)

To verify that (2.63) holds, we will show that

w(t) > 0, t ∈ [0, 1],(2.64)

where

w(t) := 4t8 − 2t7 − 18t6 + 2t5 + 43t4 − 50t2 + 25

=:
8∑
j=0

bjt
8−j , t ∈ [0, 1].

Note that the numbers of sign changes in the sequence of polynomial coefficients (bk), and in

the sequence of sums
(∑k

j=0 bj

)
, where k = 0, 1, . . . , 8, equal 4, i.e., N(w; 0) = N(w; 1) = 4.

Applying Corollary 2.3, we see that the polynomial w has no zero in the interval (0, 1) and,
since w(0) = 25 > 0, so (2.64) and, consequently, (2.63) holds. Thus (2.61) is confirmed.

(iii) k = 2. We have

q2(u) = (α8 − α6)u2 + (2α8 − 5α6 + 5α4)u+ 20α6 − 16α4 − 8α2, u ∈ [0, uα].

We will show that

q2(uα) < 0, α ∈ (0, 1),(2.65)

i.e., after computing that
√
2α2(2α4 − 5α2 + 5)

< (−2α5 − 18α4 + 16α2 + 8)
√
α+ 1, α ∈ (0, 1).(2.66)

It is easily seen that the left-hand side of (2.66) is positive and since

−2α5 − 18α4 + 16α2 + 8 ≥ −2α2 − 14α2 − 4α4 + 16α2 + 8

= −4α4 + 8 > 0, α ∈ (0, 1),(2.67)

so is the right-hand side of (2.66). Thus squaring (2.66) and computing we equivalently get

−4α12 + 2α11 + 58α10 + 198α9 + 85α8 − 320α7 − 254α6

−32α5 − 41α4 + 128α3 + 128α2 + 32α+ 32 > 0.(2.68)

To verify that (2.68) holds, we will show that

w(t) > 0, t ∈ [0, 1],(2.69)
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where

w(t) := −4t12 + 2t11 + 58t10 + 198t9 + 85t8 − 320t7 − 254t6

−32t5 − 41t4 + 128t3 + 128t2 + 32t+ 32 =:

12∑
j=0

bjt
12−j , t ∈ [0, 1].

Note that the numbers of sign changes in the sequence of polynomial coefficients (bk) and in

the sequence of sums
(∑k

j=0 bj

)
, where k = 0, 1, . . . , 12, equal 3, i.e., N(w; 0) = N(w; 1) = 3.

Applying Corollary 2.3, we see that the polynomial w has no zero in the interval (0, 1) and,
since w(0) = 32 > 0, so (2.69) and, consequently, (2.68) holds. Thus (2.65) is confirmed.

(iv) k = 3. We have

q3(u) = (α8 − α6)u3 + (2α8 − 5α6 + 5α4)u2 + (20α6 − 16α4 − 8α2)u

−12α6 + 6α4 + 36α2 + 4, u ∈ [0, uα].

(2.70)

We will show that

q3(uα) > 0, α ∈ (0, 1),(2.71)

i.e., after computing that

α2(α+ 1)(−α5 − 9α4 + 8α2 + 4)
√
2

<
(
2α8 − 6α7 − 11α6 + 3α5 + 8α4 + 18α3 + 18α2

+2α+ 2)
√
α+ 1, α ∈ (0, 1).(2.72)

Since for α ∈ (0, 1),
−α5 − 9α4 + 8α2 + 4 ≥ −2α4 + 4 > 0

and

−6α7 − 11α6 + 18α3 + 18α2 ≥ −6α3 − 11α2 + 18α3 + 18α2

= 12α3 + 7α2 > 0,

so both sides of (2.72) are positive. Thus squaring (2.72) and computing we get equivalently

4α17 − 22α16 − 72α15 − 100α14 − 67α13 + 217α12 + 223α11

−531α10 − 748α9 − 24α8 + 652α7 + 1112α6 + 1056α5

+540α4 + 220α3 + 84α2 + 12α+ 4 > 0.(2.73)

Observe now that the left-hand side of (2.73) is greater or equal to

4α17 − 22α12 − 72α12 − 100α12 − 67α11 + 217α12 + 223α11

−531α7 − 748α6 − 24α6 + 652α7 + 1112α6 + 1056α5

+540α4 + 220α3 + 84α2 + 12α+ 4

= 4α17 + 23α12 + 156α11 + 121α7 + 340α6 + 1056α5

+540α4 + 220α3 + 84α2 + 12α+ 4

which is clearly positive for α ∈ (0, 1). Thus (2.73) holds, which confirms (2.71).
(v) k = 4. We have

q4(u) = (α8 − α6)u4 + (2α8 − 5α6 + 5α4)u3 + (20α6 − 16α4 − 8α2)u2

+(−12α6 + 6α4 + 36α2 + 4)u

+16α4 − 24α2 − 16, u ∈ [0, uα].(2.74)
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We will show that there exists a unique α ∈ (0, 1) such that

q4(uα) = 0,(2.75)

i.e., after computing, a unique α ∈ (0, 1) such that(
2α8 − 6α7 − 11α6 + 3α5 + 8α4 + 18α3 + 18α2 + 2α+ 2

)√
2

=
(
−2α7 − 18α6 − 8α5 + 8α4 + 12α3 + 20α2 + 8α+ 8

)√
α+ 1.(2.76)

To verify that (2.76) holds, we will show that the equation

r(t) = s(t)(2.77)

has a unique solution in (0,1), where for t ∈ [0, 1],

r(t) :=
(
2t8 − 6t7 − 11t6 + 3t5 + 8t4 + 18t3 + 18t2 + 2t+ 2

)√
2,

s(t) :=
(
−2t7 − 18t6 − 8t5 + 8t4 + 12t3 + 20t2 + 8t+ 8

)√
t+ 1.

Define

w(t) := s2(t)− r2(t), t ∈ [0, 1].

Thus

w(t) = 4t16 − 26t15 − 46t14 − 70t13 − 189t12 − 82t11

+145t10 + 204t9 + 424t8 + 528t7 + 316t6 + 92t5

−188t4 − 304t3 − 180t2 − 88t− 28 =:

16∑
j=0

bjt
16−j , t ∈ [0, 1].

Note that the numbers of sign changes in the sequence of polynomial coefficients (bk) and

in the sequence of sums
(∑k

j=0 bj

)
, where k = 0, 1, . . . , 16, equal 3 and 2, respectively, i.e.,

N(w; 0) = 3 and N(w; 1) = 2. Thus applying Corollary 2.3, we see that the equation

w(t) = (s(t)− r(t)) (s(t) + r(t)) = 0(2.78)

has a unique zero t =: t0. Since w(0) = −28 and w(1) = 512, so t0 ∈ (0, 1). Observe that for
t ∈ [0, 1] we have

r(t)√
2

≥ 2t8 − 6t4 − 11t3 + 3t5 + 8t4 + 18t3 + 18t2 + 2t+ 2

= 2t8 + 3t5 + 2t4 + 7t3 + 18t2 + 2t+ 2 > 0

and

s(t)√
t+ 1

≥ −2t4 − 18t2 − 8t3 + 8t4 + 12t3 + 20t2 + 8t+ 8

= 6t4 + 4t3 + 2t2 + 8t+ 8 > 0.

Hence r(t) > 0 and s(t) > 0 for t ∈ [0, 1]. Thus from (2.78) it follows that r(t0) = s(t0).
Consequently, the equation (2.77) has a unique solution in (0, 1), namely, t = t0. Thus, (2.76)
so (2.75) holds with α := t0.

Moreover, since for α = 1 we have u1 = 1 and q4(u1) = q4(1) = 8 > 0, we deduce that

q4(uα) < 0, α ∈ (0, α0),(2.79)

and

q4(uα) > 0, α ∈ (α0, 1).(2.80)
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(vi) k = 5. We have

q5(u) = (α8 − α6)u5 + (2α8 − 5α6 + 5α4)u4 + (20α6 − 16α4 − 8α2)u3

+(−12α6 + 6α4 + 36α2 + 4)u2 + (16α4 − 24α2 − 16)u

−8α4 − 124α2 − 8, u ∈ [0, uα].

We will show that

q5(uα) < 0, α ∈ (0, 1),(2.81)

i.e., after computing that(
α8 + 10α7 + 13α6 − 10α4 − 16α3 − 14α2 − 8α− 4

)√
2

< α(−2α7 + 6α6 + 13α5 + α4 + 25α3 + 44α2

+15α+ 2)
√
α+ 1, α ∈ (0, 1).(2.82)

Clearly, for α ∈ (0, 1) we have

α8 + 10α7 + 13α6 − 10α4 − 16α3 − 14α2 − 8α− 4 < 0,

so the left-hand side of (2.82) is negative. But the right-hand side of (2.82) is clearly positive.
In this way, (2.82) holds, which confirms (2.81).

(vii) k = 6. We have

q6(u) = (α8 − α6)u6 + (2α8 − 5α6 + 5α4)u5 + (20α6 − 16α4 − 8α2)u4

+(−12α6 + 6α4 + 36α2 + 4)u3 + (16α4 − 24α2 − 16)u2

−(8α4 + 124α2 + 8)u+ 272α2 + 96, u ∈ [0, uα].

We will show that

q6(uα) > 0, α ∈ (0, 1),(2.83)

i.e., after computing that

α(−2α7 + 6α6 + 13α5 + α4 + 25α3 + 44α2 + 15α+ 2)
√
2

<
(
2α7 + 18α6 + 8α5 + 60α4 + 124α3 + 72α2

+40α+ 16)
√
α+ 1, α ∈ (0, 1).(2.84)

Both sides of (2.84) are positive evidently. Thus squaring (2.84) and computing we get
equivalently the inequality

4α16 − 26α15 − 54α14 − 62α13 − 361α12 − 1474α11

−3097α10 − 5658α9 − 11809α8 − 19102α7 − 21382α6

−18548α5 − 12975α4 − 6756α3 − 2588α2 − 768α− 128 < 0,

which is clearly true for α ∈ (0, 1). Thus (2.83) is confirmed.
(viii) k = 7. We have

q7(u) = (α8 − α6)u7 + (2α8 − 5α6 + 5α4)u6 + (20α6 − 16α4 − 8α2)u5

+(−12α6 + 6α4 + 36α2 + 4)u4 + (16α4 − 24α2 − 16)u3

−(8α4 + 124α2 + 8)u2 + (272α2 + 96)u− 176α2 − 60, u ∈ [0, uα].

We will show that

q7(uα) > 0, α ∈ (0, 1),(2.85)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1224 ADAM LECKO et al 1207-1231
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i.e., after computing that(
−4α8 + 12α7 + 26α6 + 46α5 + 182α4 + 235α3

+119α2 + 49α+ 15
)√

α+ 1

<
(
2α8 + 20α7 + 26α6 + 68α5 + 184α4 + 196α3

+112α2 + 56α+ 16
)√

2, α ∈ (0, 1).(2.86)

Both sides of (2.86) are positive evidently. Thus squaring (2.86) and computing we equiva-
lently get

(α2 − 1)(−16α15 + 88α14 + 304α13 + 904α12 + 2348α11 + 3964α10

+4560α9 + 1228α8 − 9016α7 − 22876α6 − 30417α5 − 25691α4

−14838α3 − 6286α2 − 1889α− 287) > 0, α ∈ (0, 1).(2.87)

Since for α ∈ (0, 1) we have

−16α15 + 88α14 + 304α13 + 904α12 + 2348α11 + 3964α10

+4560α9 + 1228α8 − 9016α7 − 22876α6 − 30417α5

−25691α4 − 14838α3 − 6286α2 − 1889α− 287

≤ −16α15 + 88α7 + 304α6 + 904α5 + 2348α4 + 3964α3

+4560α2 + 1228α− 9016α7 − 22876α6 − 30417α5

−25691α4 − 14838α3 − 6286α2 − 1889α− 287

= −16α15 − 8928α7 − 22572α6 − 29513α5 − 23343α4

−10874α3 − 1726α2 − 661α− 287 < 0,

so (2.87) holds. Thus (2.85) is confirmed.
(ix) k = 8. We have

q8(u) = (α8 − α6)u8 + (2α8 − 5α6 + 5α4)u7 + (20α6 − 16α4 − 8α2)u6

+(−12α6 + 6α4 + 36α2 + 4)u5 + (16α4 − 24α2 − 16)u4

−(8α4 + 124α2 + 8)u3 + (272α2 + 96)u2

−(176α2 + 60)u− 144, u ∈ [0, uα].

We will show that

q8(uα) < 0, α ∈ (0, 1),(2.88)

i.e., after computing that

r(α) < s(α), α ∈ (0, 1),(2.89)

where

r(α) :=
(
4α7 + 36α6 + 16α5 + 120α4 + 212α3 + 36α2

−28α− 4)
√
α+ 1, α ∈ (0, 1),

and

s(α) :=
(
−4α8 + 12α7 + 26α6 + 46α5 + 182α4 + 235α3 + 119α2

+49α+ 15)
√
2, α ∈ (0, 1).

We see at once that

s(α) > 0, α ∈ (0, 1).(2.90)
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It is easily seen that for α ∈ (0, 1),

s2(α)− r2(α) = (s(α)− r(α)) (s(α) + r(α))

= 16α16 − 104α15 − 216α14 − 600α13 − 1444α12 − 1472α11

+1276α10 + 9956α9 + 25220α8 + 48204α7 + 73421α6

+76706α5 + 50275α4 + 20320α3 + 5611α2 + 1350α+ 217 > 0.

Hence either

s(α)− r(α) > 0, s(α) + r(α) > 0, α ∈ (0, 1),(2.91)

or

s(α)− r(α) < 0, s(α) + r(α) < 0, α ∈ (0, 1).(2.92)

Supposing that (2.92) holds, we see that then s(α) < 0 for α ∈ (0, 1). However this contradicts
(2.90). Thus (2.91) holds so (2.88) is confirmed.

(x) k = 9. We have
q9(u) = Vα(u), u ∈ [0, uα].

We will show that

q9(uα) > 0, α ∈ (0, 1),(2.93)

i.e., after computing that(
−4α8 + 12α7 + 26α6 + 46α5 + 164α4 + 163α3 + 11α2

−23α− 3)
√
α+ 1

<
(
2α8 + 20α7 + 26α6 + 68α5 + 166α4 + 124α3 + 4α2

−16α− 2)
√
2, α ∈ (0, 1).(2.94)

To verify that (2.94) holds, we will show that

r(t) < s(t), t ∈ (0, 1),(2.95)

where

r(t) :=
(
−4t8 + 12t7 + 26t6 + 46t5 + 164t4 + 163t3 + 11t2

−23t− 3)
√
t+ 1, t ∈ [0, 1],

and

s(t) :=
(
2t8 + 20t7 + 26t6 + 68t5 + 166t4 + 124t3 + 4t2

−16t− 2)
√
2, t ∈ [0, 1].

Let
w(t) := s2(t)− r2(t), t ∈ [0, 1].

Thus after computing we have

w(t) = (t− 1)2(t+ 1) (2t+ 1) v(t),(2.96)

where

v(t) := −8t13 + 40t12 + 168t11 + 556t10 + 1464t9 +

+2776t8 + 4148t7 + 4220t6 + 2358t5 ++455t4

−176t3 − 106t2 − 18t− 1 =:

13∑
j=0

bjt
k−j , t ∈ [0, 1].(2.97)
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We use now Corollary 2.3 since v(0) = −1 ̸= 0 and v(1) = 15876 ̸= 0. Note that the
numbers of sign changes in the sequence of polynomial coefficients (bk) and in the sequence

of sums
(∑k

j=0 bj

)
, where k = 0, 1, . . . , 13, equal 2 and 1, respectively, i.e., N(v; 0) = 2

and N(v; 1) = 1. Applying Corollary 2.3, we see that the polynomial v has the unique zero
t =: t0 ∈ (0, 1). Moreover t0 is the zero of order 1. Hence and from (2.96) it follows that t0 is
the unique zero of order 1 of w in (0, 1), also. Since

w(0) = v(0) = −1 < 0,

so from (2.96) and by the continuity of the function w we have

w(t) = (s(t)− r(t))(s(t) + r(t)) < 0, t ∈ (0, t0)(2.98)

and

w(t) = (s(t)− r(t))(s(t) + r(t)) > 0, t ∈ (t0, 1).(2.99)

Since
s(0) + r(0) = −2

√
2− 3 < 0,

from (2.98) it follows that

s(t)− r(t) > 0, t ∈ (0, t0),(2.100)

and

s(t) + r(t) < 0, t ∈ (0, t0).(2.101)

Similarly, since

s(1) + r(1) = 784
√
2 > 0,

from (2.99) it follows that

s(t)− r(t) > 0, t ∈ (t0, 1),(2.102)

and

s(t) + r(t) > 0, t ∈ (t0, 1).(2.103)

Thus from (2.100) and (2.102) we have

s(t)− r(t) > 0, t ∈ (0, 1) \ {t0}.(2.104)

Moreover, from (2.101) and (2.103) is follows that

s(t0) + r(t0) = 0.(2.105)

The continuity of the function s− r and (2.104) yield

s(t0)− r(t0) ≥ 0.(2.106)

Suppose now that

s(t0)− r(t0) = 0.(2.107)

Hence and from (2.105) we have
s(t0) = r(t0) = 0.

Thus
r(t)√
t+ 1

= (t− t0)ϱ(t), t ∈ [0, 1],

and
s(t)√
2

= (t− t0)σ(t), t ∈ [0, 1],
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where ϱ and σ are some polynomials in [0, 1]. Hence

w(t) = s2(t)− r2(t) = (t− t0)
2
(
2σ2(t)− (t+ 1)ϱ2(t)

)
, t ∈ [0, 1],

which yields a contradiction since, as was shown, t0 is the unique zero of order 1 of w in
(0, 1). Thus the strong inequality in (2.106) holds, which together with (2.104) finishes the
proof of (2.95). In this way (2.93) is confirmed.

Summarizing, from (2.60), (2.61), (2.65), (2.71), (2.75), (2.79), (2.80), (2.81), (2.83),
(2.85), (2.88) and (2.93) it follows that for three cases, namely, for α ∈ (0, α0), α := α0 and
α ∈ (α0, 1), where α0 is the unique root of the equation (2.75), we have

N(Vα;uα) = 7.

Hence, by (2.59) and by Corollary 2.3 we conclude that for each α ∈ (0, 1) the polynomial Vα
has no zero in (0, uα), and since Vα(0) = 144 > 0, so (2.57) holds. Thus (2.55) is confirmed,
which finishes the proof of the inequality (2.52).

Summarizing, taking into account (2.49)-(2.52), we proved that

max
(x,y)∈R

Fα,γ(x, y) =


2(1 + 2α)|γ|, |γ| ≥ 2

1 + α
,

2α2γ2

2− |γ|
+ 4, |γ| ≤ 2

1 + α
.

Finally, substituting γ = 2− 3λ and α = |b2|/2, the above and (2.13) yield (2.8). �
Remark 2.5. Since the condition (2.7), i.e., the inequality |b2| ≤ 2 holds for g ∈ S, Theo-
rem 2.4 is true for the class C(g), where g is in S.

Now we recall the result for the class C(gα) proved in [15].

Theorem 2.6. Let α ∈ [0, 1]. Then

max
f∈C(gα)

Φλ(f)

≤


∣∣∣∣23 +

4

3
α+ α2 − (1 + α)2λ

∣∣∣∣ , λ ∈ R \ (τ ′(α), τ ′′(α)),

α2

(
|1− λ|+ 1

3
· (2− 3λ)2

2− |2− 3λ|

)
+

2

3
, λ ∈ [τ ′(α), τ ′′(α)],

(2.108)

where

τ ′(α) :=
2α

3(1 + α)
, τ ′′(α) :=

2(2 + α)

3(1 + α)
.

Proof. Let α ∈ [0, 1]. Since

gα(z) =
z

(1− αz)2
=

∞∑
n=1

nαn−1zn, z ∈ D,

so

b2 = 2α, b3 = 3α2.(2.109)

Then in view of (2.9) we have

τ1(|b2|) =
2|b2|

3(|b2|+ 2)
=

2α

3(1 + α)
=: τ ′(α)

and

τ2(|b2|) =
2(|b2|+ 4)

3(|b2|+ 2)
=

2(2 + α)

3(1 + α)
=: τ ′′(α).
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THE FEKETE-SZEGÖ PROBLEM FOR ANALYTIC FUNCTIONS 23

Now for λ ∈ R \ [τ ′(α), τ ′′(α)] by using (2.109) the inequality (2.8) is of the form

max
f∈C(gα)

Φλ(f) ≤
∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (1 + |b2|)
∣∣∣∣23 − λ

∣∣∣∣
= α2|1− λ|+ (1 + 2α)

∣∣∣∣23 − λ

∣∣∣∣
=

∣∣∣∣23 +
4

3
α+ α2 − (1 + α)2λ

∣∣∣∣
and for λ ∈ [τ ′(α), τ ′′(α)] of the form

max
f∈C(gα)

Φλ(f) ≤
∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (2− 3λ)2|b2|2

12(2− |2− 3λ|)
+

2

3

= α2

(
|1− λ|+ 1

3
· (2− 3λ)2

2− |2− 3λ|

)
+

2

3
.

�

For α := 1 we get the following result proved in [16].

Corollary 2.7.

max
f∈C(k)

Φλ(f)

≤


|3− 4λ|, λ ∈ (−∞, 1/3] ∪ [1,+∞),

1

3
· (2− 3λ)2

2− |2− 3λ|
+ |1− λ|+ 2

3
, λ ∈ [1/3, 1].

(2.110)

Let now formulate the result for the class C(hα).

Theorem 2.8. Let α ∈ [0, 1]. Then

max
f∈C(hα)

Φλ(f)

≤


α2

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ (1 + α)

∣∣∣∣23 − λ

∣∣∣∣ , λ ∈ R \ [τ ′(α), τ ′′(α)] ,

α2

(
1

12
· (2− 3λ)2

2− |2− 3λ|
+

∣∣∣∣13 − 1

4
λ

∣∣∣∣)+
2

3
, λ ∈ [τ ′(α), τ ′′(α)] ,

(2.111)

where

τ ′(α) :=
2α

3(2 + α)
, τ ′′(α) :=

2(4 + α)

3(2 + α)
.

Proof. Let α ∈ [0, 1]. Since

hα(z) =
z

1− αz
=

∞∑
n=1

αn−1zn, z ∈ D,

so

b2 = α, b3 = α2.(2.112)

Then in view of (2.9) we have

τ1(|b2|) =
2|b2|

3(|b2|+ 2)
=

2α

3(2 + α)
=: τ ′(α)
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and

τ2(|b2|) =
2(|b2|+ 4)

3(|b2|+ 2)
=

2(4 + α)

3(2 + α)
=: τ ′′(α).

Now for λ ∈ R \ [τ ′(α), τ ′′(α)] by using (2.112) the inequality (2.8) is of the form

max
f∈C(hα)

Φλ(f) ≤
∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (1 + |b2|)
∣∣∣∣23 − λ

∣∣∣∣
= α2

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ (1 + α)

∣∣∣∣23 − λ

∣∣∣∣
and for λ ∈ [τ ′(α), τ ′′(α)] of the form

max
f∈C(hα)

Φλ(f) ≤
∣∣∣∣13b3 − 1

4
λb22

∣∣∣∣+ (2− 3λ)2|b2|2

12(2− |2− 3λ|)
+

2

3

= α2

(∣∣∣∣13 − 1

4
λ

∣∣∣∣+ (2− 3λ)2

12(2− |2− 3λ|)

)
+

2

3
.

Thus (2.111) was proved. �
For α := 1 we get the following result proved in [17].

Theorem 2.9.

max
f∈C(h)

Φλ(f)

≤


∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
|2− 3λ|, λ ∈ (−∞, 2/9] ∪ [10/9,+∞),

1

12
· (2− 3λ)2

2− |2− 3λ|
+

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
, λ ∈ [2/9, 10/9].

(2.113)
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Abstract

We prove the existence and uniqueness of fractional neutral impulsive differential
equations with infinite delay via contraction mapping principle and fixed point technique
for condensing map. We use the resolvent operator technique for integral equations to
make the mild solution of the problem more appropriate.

Keywords: Fractional differential equations, Fractional order impulsive conditions,
Neutral differential equations, Infinite delay, Resolvent operators.
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1 Introduction

In recent years, a significant number of the investigates managed the possibility of the frac-
tional differential equations in different areas of engineering and science disciplines, for ex-
ample, rheology, viscoelasticity, biomedical, control theory, porous media. Fractional differ-
ential equations give an incredible mathematical model for real world phenomena, in which
the fractional rate of progress relies on upon the impact of the hereditary effects and describ-
ing the long memory of the systems. For detailed investication of the fractional differential
equations, we read [4, 13, 19, 23].

The hypothesis of partial neutral integro-differential equations with infinite delay have
been utilized for displaying the advancement of physical systems, in which the reaction

∗Corresponding author.E-mail:
angurajpsg@yahoo.com(A. Anguraj), kanjanadevimaths@gmail.com(S. Kanjanadevi) and du-
mitru@cankaya.edu.tr(D. Baleanu).
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depends on the present and previous history of the system. This sort of equations emerge in
the theory of heat conduction in material with fading memory [18]. Since we consider the
infinite delay, we use the notion is phase space which acts as an essential part in the study of
qualitative theory of delay equations. This idea was presented by Hale and Kato in [7].

Study of impulsive differential equations turn into an essential field of research because of
their various applications. The purpose behind this applicability emerges from the way that,
numerous real world processes and phenomena which are subjected amid their improvement
to short-term external impacts can be demostrated as impulsive differential equations with
non-integer order and which cannot be depicted by using classical differential equations [15].
For more subtle elements of fractional impulsive differential equations, see [5, 6, 16, 21].

Similar results for integer order derivative for abstract neutral functional differential
equations with impulsive condition was studied by [2, 8, 12]. The work on fractional neu-
tral impulsive differential equations with infinite delay are carried out by [3, 22]. In [14] N.
Kosmatov studied the fractional order initial value problems with fractional impulses by the
contribution of Caputo and Riemann-Liouville derivatives.

Hernández et al. [9], examined that the concepts of mild solutions utilized as a part of
a few late writing on abstract fractional differential equations are not suitable. In [9], he
consider the more appropriate mild solution of the abstract fractional differential equations
with time by means of resolvent operator for integral equations [20]. The same idea was used
by some authors to show the existence of fractional differential equations without impulse,
see [1, 10]. But in our best of knowledge this resolvent operator concept was not used in
the fractional impulsive differential equations of order lies in (1,2). Note that the order of
integration determines the shape of the memory function.

Impulsive fractional differential equations is constructed with either the lower bound as
the corresponding impulses or the lower bound as zero at each impulses. Here we construct
the solution of fractional order impulsive Cauchy problem involving Caputo derivative with
lower bound as zero. That is the different solutions keeping in each impulses the lower bound
as zero. This will improve the characterization of the memory property of the factional
derivative.

Motivations of the study in [9, 14] and the applications of fractional order derivative give
rise in this present article. Here we prove the existence and uniqueness theorems of mild
solutions for fractional neutral impulsive differential equations with infinite delay given by

cDα0+(u(t) + q(t, ut)) = A u(t) + p(t, ut), t , tk, t ∈ J := [0, a], (1.1)
cDβ0+u(t+k ) −

cDβ0+u(t−k ) = Ik(utk), k = 1, · · · ,m, (1.2)

u(0) = φ ∈ BA, u′(0) = z ∈ E , (1.3)

where 0< β < 1 andα ∈ (1, 2). HereA is the infinitesimal generator of a cosine operator
family {C(t)}t≥0 on a Banach spaceE . The memory functionut : (−∞, 0] → E , ut(σ) =
u(t + σ), σ ≤ 0, associated with some suitable abstract phase spaceBA, 0 = t0 < t1 < · · · <
tm+1 = a are pre-fixed values and the appropriate functionsp, q : J ×BA → E , Ik : BA →

E , k = 1, · · · ,m, which are defined later.
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We derive the mild solution of (1.1)-(1.3) by resolvent operator technique. The existence
results of fractional neutral impulsive differential equations with infinite delay via fixed point
technique for condensing map and the uniqueness of the problem is verified by using con-
traction mapping principle.

2 Preliminaries

Let the spaceL(E , E ′) is the set of all bounded linear operators from Banach spaceE into
Banach spaceE ′ provided with the norm‖ · ‖L(E ,E ′). Here the domainD(A ), takes the norm
‖u‖D(A ) = ‖u‖ + ‖A u‖. Further more,Br(u, E ) symbolizes the closed ball having center atu
and distancer in E .

The class of all continuous functions fromJ into E is referred byC(J ; E ) with the
sup-norm‖ · ‖C(J;E ). Likewise Cγ(J ; E ), 0 < γ < 1 is the set of allγ−Hölder E -valued
continuous functions fromJ into E provided with‖u‖Cγ(J;E ) = ‖u‖C(J;E )+ [|u|]Cγ(J;E ), where
[|u|]Cγ(J;E ) = supt,s,t,s∈J

‖u(t)−u(s)‖E
(t−s)γ .

Now, we present the piece-wise continuous spacePC(E ) which is framed by set of all the
functionsu : J → E such that the functionu(·) is continuous att , tk, u(t+

k
) andu(t−

k
) = u(tk)

exists for everyk = 1, 2, · · · ,m. We can easily seen that it is a Banach space concerning the
norm‖u‖PC(E ) = supt∈J ‖u(t)‖E .

We consider the phase space (BA, ‖ · ‖BA), is a linear space of functionut mapping from
(−∞, 0] into E with respect to the seminorm‖ · ‖BA, which is previously addressed in Hino et
al., [11] to examine the infinite delay problem. We assume the spaceBA meets the axioms
given below:

(1) If u : (−∞, ν+a] → E , ν ∈ �, a > 0 such thatuν ∈ BA, andu|[ν,ν+a] ∈ PC([ν, ν+a]; E ),
then the subsequent conditions hold for allt ∈ [ν, ν + a)

(i) ut ∈ BA.

(ii) ‖u(t)‖E ≤ H‖u‖BA

(iii) ‖ut‖BA ≤ K(t − ν) sup{‖u(s)‖E : ν ≤ s ≤ t} +M(t − ν)‖uν‖BA, whereM,K :
[0,∞) → [1,∞), is locally bounded and continuous respectively;H > 0 is a constant.
K,H,M are independent ofu(·).

(2) The phase spaceBA is complete.

We know that the Caputo fractional derivative of a functionu of orderα > 0 defined as
follows:

cDα0+u(t) = In−α
0+ Dnu(t), n = ⌈α⌉,

whereIα0+u(t) = 1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds. Also, in general the Caputo derivativecDα0+ is a left

inverse ofIα0+ but not a right inverse, i.e., we havecDα0+ I
α
0+u(t) = u(t), and Iα0+

cDα0+u(t) =
u(t) − u(0)− tu′(0), for 0 < α < 2.
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Next,we consider that the Volterra integral equation

u(t) =
1
Γ(α)

∫ t

0
(t − s)α−1

A u(s)ds+ p(t), t ∈ J , (2.1)

has a corresponding resolvent operator{S(t)}t≥0 on E , see [9] andp in C(J ; E ). More de-
tailed explanations about resolvent operator for integral equations one can refer [20]. The
definition of mild solution for the integral equation (2.1) by utilizing the concept presented
in [20] is given in [9].

Definition 2.1. [9, Definition 1.2] A function u in the space C(J ; E ) is called a mild solution
of (2.1) onJ , if 1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds in C(J ; D(A )) and

u(t) =
A

Γ(α)

∫ t

0
(t − s)α−1u(s)ds+ p(t), t ∈ J .

Definition 2.2. [20, Definition 1.4] A resolvent operator S(t) for equation (2.1) is said to be
differentiable, if S(·)u ∈ W1,1([0,∞); E ) for every u∈ D(A ) and there isϕ ∈ L1

loc([0,∞))
with ‖S′(t)u‖ ≤ ϕ(t)‖u‖D(A ), a.e. on[0,∞), for every u∈ D(A ).

Lemma 2.1. [9, Lemma 1.1] Suppose (2.1) admits a differentiable resolvent S(t) and if
p ∈ C(J ; D(A )), then

u(t) = p(t) +
∫ t

0
S′(t − s)p(s)ds, t ∈ J ,

is said to be a mild solution of (2.1).

Now, our point is to present the concept of mild solution for equation (1.1) to (1.3). In
this way, we first identify that ifu(·) is a solution of (1.1)-(1.3), then one can estimate the
corresponding integral equation given by

u(t) = φ(0)+ q(0, φ) + (z+ ξ)t − q(t, ut) + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)Ik(utk)

+
1
Γ(α)

∫ t

0
(t − s)α−1

A u(s)ds+
1
Γ(α)

∫ t

0
(t − s)α−1p(s, us)ds, t ∈ J , (2.2)

where d
dtq(t, ut)|t=0 = ξ, ξ is independent ofu.

Motivated by Definition 2.1 and the representation (2.2), we introduce the following
definition.

Definition 2.3. A function u : (−∞, a] → E is a mild solution of (1.1)-(1.3), if u(0) =
φ, u′(0) = z, u|J ∈ PC(E ), 1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds∈ D(A ), ∀ t ∈ J , and

u(t) = φ(0)+ q(0, φ) + (z+ ξ)t − q(t, ut) + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)Ik(utk)

+
A

Γ(α)

∫ t

0
(t − s)α−1u(s)ds+

1
Γ(α)

∫ t

0
(t − s)α−1p(s, us)ds, t ∈ J ,

where d
dtq(t, ut)|t=0 = ξ, ξ is independent of u.
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3 Existence and Uniqueness Results

Now, we will make the subsequent hypotheses:

(H1) p : J ×BA→ D(A ) is continuous function and letLp ∈ C(J ;�) such that
‖p(t, ̟1) − p(t, ̟2)‖D(A ) ≤ Lp(t)‖̟1 −̟2‖BA, t ∈ J , ̟1, ̟2 ∈ BA.

(H2) The functionmp belongs toC(J ;�) and a non-decreasing function
W : [0,+∞)→ (0,+∞) such that‖p(t, ̟)‖D(A ) ≤ mp(t)W(‖̟‖BA),
t ∈ J , ̟ ∈ BA.

(H3) q : J ×BA→ D(A ) is continuous function andLq ∈ C(J ;�) with
‖q(t, ̟1) − q(t, ̟2)‖D(A ) ≤ Lq(t)‖̟1 −̟2‖BA, t ∈ J , ̟1, ̟2 ∈ BA.

(H4) C1 > 0, andC2 > 0 such that‖q(t, ̟)‖BA ≤ C1‖̟‖BA + C2, t ∈ J , ̟ ∈ BA.

(H5) Ik : BA → D(A ) are continuous functions and let positive constantsLk such that
‖Ik(̟1) − Ik(̟2)‖D(A ) ≤ Lk‖̟1 −̟2‖BA, k = 1, 2, · · · ,m, ̟1, ̟2 ∈ BA.

(H6) Letd1
k
, > 0 andd1

k
> 0 such that‖Ik(̟)‖ ≤ d1

k
‖̟‖+ d2

k
for all k = 1, 2, · · · ,m, ̟ ∈ BA.

From Lemma 2.1 we note the subsequent Proposition,

Proposition 3.1. Suppose equation (2.2) admits a differential resolvent operator
{S(t)}t≥0 and if p, q ∈ C(J ×BA; D(A )), Ik ∈ C(BA; D(A )), then

u(t) = φ(0)+ q(0, φ) + (z+ ξ)t − q(t, ut) + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)Ik(utk)

+
1
Γ(α)

∫ t

0
(t − s)α−1p(s, us)ds+

∫ t

0
S′(t − s) (φ(0)+ q(0, φ) + (z+ ξ)s− q(s, us)

+Γ(2− β)
∑

0<tk<s

tβ−1
k

(s− tk)Ik(utk) +
1
Γ(α)

∫ s

0
(s− τ)α−1p(τ, uτ)dτ

















ds, t ∈ J ,

is called a mild solution of the problem (1.1)-(1.3).

Let a functionx : (−∞, a] → E be defined byx0 = φ andx(t) = φ(0)+
∫ t

0
S′(t − s)φ(0)ds

for all t ∈ J . It is easily say that‖xt‖ ≤ (KaH(1 + ‖ϕ‖L1(J;�)) + Ma)‖φ‖BA, whereMa =

supt∈J M(t), Ka = supt∈J K(t).

Theorem 3.1.Assume that(H1), (H3) and(H5) are satisfied, and if

Ka(‖Lq(t)‖ + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk +
aα

αΓ(α)
‖Lp(t)‖)(1+ ‖ϕ‖L1(J;�)) < 1.

Then (1.1)-(1.3) has a unique mild solution.
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Proof. Let the spaceZ (a) = {u : (−∞, a] → E : u0, u|J ∈ PC(E )} endowed with the
sup-norm. Now by Proposition 3.1, we consider the operatorT : Z (a)→ Z (a) by

Tu(t) =



























































0, t ∈ (−∞, 0],

q(0, φ) + (z+ ξ)t − q(t, ut + xt) + Γ(2− β)
∑

0<tk<t tβ−1
k

(t − tk)Ik(utk + xtk)

+
1
Γ(α)

∫ t

0
(t − s)α−1p(s, us+ xs)ds+

∫ t

0
S′(t − s) (q(0, φ) + (z+ ξ)s

−q(s, us+ xs) + Γ(2− β)
∑

0<tk<s tβ−1
k

(s− tk)Ik(utk + xtk)

+
1
Γ(α)

∫ s

0
(s− τ)α−1p(τ, uτ + xτ)dτ

)

ds, t ∈ J .

It is easily seen that‖ut + xt‖BA ≤ Ka‖u‖t + (KaH(1 + ‖ϕ‖L1(J;�)) + Ma)‖φ‖BA, where
‖u‖t = sup0≤s≤t ‖u(s)‖.

Let u ∈ Z (a) and from the assumption (H1), (H3) and (H5), we get that

∫ t

0
‖S′(t − s)(q(0, φ) + (z+ ξ)s− q(s, us+ xs) + Γ(2− β)

×
∑

0<tk<s

tβ−1
k

(s− tk)Ik(utk + xtk) +
1
Γ(α)

∫ s

0
(s− τ)α−1p(τ, uτ + xτ)dτ)

∥

∥

∥

∥

∥

∥

∥

ds

≤ (‖q(0, φ)‖ + a‖z+ ξ‖ + ‖q(s, us+ xs)‖ + Γ(2− β)a

×
∑

0<tk<a

tβ−1
k
‖Ik(utk + xtk)‖ +

aα

αΓ(α)
‖p(τ, uτ + xτ)‖

















‖ϕ‖L1(J;�)

which follows thats→ S′(t − s)(q(0, φ) + (z+ ξ)s− q(s, us + xs) + Γ(2− β)
∑

0<tk<s
tβ−1
k

(s−
tk)Ik(utk + xtk) +

1
Γ(α)

∫ s

0
(s− τ)α−1p(τ, uτ + xτ)dτ) is integrable on [0, t], ∀t ∈ J . Then, the

operatorT is well defined andT have the values inZ (a).
Now, for u andv in Z (a) andt ∈ J , we get

‖Tu(t) − Tv(t)‖ ≤ ‖q(t, ut + xt) − q(t, vt + xt)‖ + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)

×‖Ik(utk + xtk) − Ik(vtk + xtk)‖

+
1
Γ(α)

∫ t

0
(t − s)α−1‖p(s, us) − p(s, vs)‖ds

+

∫ t

0
ϕ(t − s) (‖q(s, us+ xs) − q(s, vs+ xs)‖

+Γ(2− β)
∑

0<tk<s

tβ−1
k

(s− tk))‖Ik(utk + xtk) − Ik(vtk + xtk)‖

+
1
Γ(α)

∫ s

0
(s− τ)α−1‖p(τ, uτ) − p(τ, vτ)‖dτ

)

ds
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≤

















‖Lq(t)‖C(J;�) + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk

+
aα

αΓ(α)
‖Lp(t)‖C(J;�)

)

(1+ ‖ϕ‖L1(J;�))‖ut − vt‖BA

≤

















Ka

















‖Lq(t)‖C(J;�) + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk

+
aα

αΓ(α)
‖Lp(t)‖C(J;�)

)

(1+ ‖ϕ‖L1(J;�))

]

‖u− v‖t.

ThenT is a contraction map and has a fixed pointu(·) of T. Thus, we determine thatu(·) is
a unique mild solution of (1.1)-(1.3). �

Theorem 3.2.Let S(t) be compact for all t≥ 0, (H2)− (H6) are satisfied and if

Ka

















C1 + Γ(2− β)a
∑

0<tk<a

tβ−1
k

d1
k +

aα

αΓ(α)
‖mp(t)‖ lim inf

r→∞

W(r)
r

















< 1,

Ka(‖Lq(t)‖ + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk)(1+ ‖ϕ‖) < 1.

Then (1.1)-(1.3) has a mild solution.

Proof. Taker > 0, such that
















C1‖φ‖BA + 2C2 +

















C1 + Γ(2− β)a
∑

0<tk<a

tβ−1
k

d1
k

















(Kar + (KaH(1+ ‖ϕ‖L1(J;�))

+Ma)‖φ‖BA) + Γ(2− β)a
∑

0<tk<a

tβ−1
k

d2
k + ‖z+ ξ‖a+

aα

αΓ(α)
‖mp(t)‖

×W(Kar + (KaH(1+ ‖ϕ‖L1(J;�)) +Ma)‖φ‖BA)
)

(1+ ‖ϕ‖) ≤ s,

for all s≥ r.
Let the operatorT : Br(0,Z (a))→ Z (a) be defined likewise considered in the previous

Theorem 3.1, and in a similar manner we can easy to see thatT is well defined. Now, our
aim to show thatT : Br(0,Z (a))→ Br(0,Z (a)) is a condensing map.

The subsequent steps shows the remaining proof.
Step 1.T has values inBr(0,Z (a)), i.e.,TBr(0,Z (a)) ⊂ Br(0,Z (a)).
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Let u ∈ Br(0,Z (a)) andt ∈ J , then

‖Tu(t)‖ ≤ ‖q(0, φ)‖ + ‖q(t, ut + xt)‖ + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)‖Ik(utk + xtk)‖

+‖z+ ξ‖t +
1
Γ(α)

∫ t

0
(t − s)α−1‖p(s, us+ xs)‖ds

+

∫ t

0
‖S′(t − s)‖ (‖q(0, φ)‖ + ‖q(s, us+ xs)‖ + ‖z+ ξ‖s

+Γ(2− β)
∑

0<tk<s

tβ−1
k

(s− tk)‖Ik(utk + xtk)‖

+
1
Γ(α)

∫ s

0
(s− τ)α−1‖p(τ, uτ + xτ)‖dτ

)

ds

≤

















C1‖φ‖BA + 2C2 + C1‖ut + xt‖BA + Γ(2− β)a
∑

0<tk<a

tβ−1
k

(d1
k ‖utk + xtk‖BA

+d2
k ) + ‖z+ ξ‖a+

aα

αΓ(α)
‖mp(t)‖W(‖ut + xt‖BA)

)

(1+ ‖ϕ‖)

≤

















C1‖φ‖BA + 2C2 +

















C1 + Γ(2− β)a
∑

0<tk<a

tβ−1
k

d1
k

















r∗

+Γ(2− β)a
∑

0<tk<a

tβ−1
k

d2
k + ‖z+ ξ‖a+

aα

αΓ(α)
‖mp(t)‖W(r∗)

















(1+ ‖ϕ‖)

where r∗ = Kar + (KaH(1+ ‖ϕ‖L1(J;�)) +Ma)‖φ‖BA.
This implies that‖Tu(t)‖ ≤ r, i.e.,Tu ∈ Br(0,Z (a)) andTBr(0,Z (a)) ⊂ Br(0,Z (a)).
The remainder of the proof continuing with the decomposition operatorT =

∑3
i=1Ti,

where

T1u(t) = q(0, φ) + (z+ ξ)t − q(t, ut + xt) + Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)Ik(utk + xtk)

+

∫ t

0
S′(t − s) (q(0, φ) + (z+ ξ)s− q(s, us+ xs)

+Γ(2− β)
∑

0<tk<s

tβ−1
k

(s− tk)Ik(utk + xtk)

















ds

T2u(t) =
1
Γ(α)

∫ t

0
(t − s)α−1p(s, us+ xs)ds

T3u(t) =
∫ t

0
S′(t − s)

1
Γ(α)

∫ s

0
(s− τ)α−1p(τ, uτ + xτ)dτds

Step 2. T1 is a contraction map onBr(0,Z (a)).
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Let u ∈ Br(0,Z (a)).

‖T1u(t) − T1v(t)‖ ≤ ‖q(t, ut + xt) − q(t, vt + xt)‖

+Γ(2− β)
∑

0<tk<t

tβ−1
k

(t − tk)‖Ik(utk + xtk) − Ik(vtk + xtk)‖

+

∫ t

0
‖S′(t − s)‖(‖q(s, us+ xs) − q(s, vs+ xs)‖

+Γ(2− β)
∑

0<tk<s

tβ−1
k

(s− tk)‖Ik(utk + xtk) − Ik(vtk + xtk)‖)

≤ (‖Lq(t)‖ + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk)‖ut − vt‖BA(1+ ‖ϕ‖)

≤ Ka(‖Lq(t)‖ + Γ(2− β)a
∑

0<tk<a

tβ−1
k

Lk)(1+ ‖ϕ‖)‖u− v‖t.

Hence,T1 is a contraction map onBr(0,Z (a)).
Step 3.T2 is a completely continuous map.
It is easy to see that the mapT2 is continuous, since the functionf is continuous.
Next, we only we need to prove thatT2 is a compact operator.
Let 0< ǫ < t ≤ a, u ∈ Z (a). From the mean value theorem for the Bochner integral (see

[17, Lemma II.1.3]), we have that

T2u(t) =
1
Γ(α)

∫ ǫ

0
(t − s)α−1p(s, us+ xs)ds+

1
Γ(α)

∫ t

ǫ

(t − s)α−1p(s, us+ xs)ds

∈ B Qǫα

αΓ(α)
(0, E ) +

(t − ǫ)
Γ(α)

co({(t − s)α−1p(s, us+ xs) : s ∈ [ǫ, t]})

where Q = ‖mp(t)‖W(r∗), and the notionco(U) refers the convex hull of the setU.
Since from [9, Lemma 2.2], the mapic is compact andp ∈ C(J ×BA; D(A )), from the

above inclusion we find thatT2Br(0,Z (a)) = {T2u(t) : u ∈ Br(0,Z (a))} ⊂ Cǫ + Kǫ , where
Kǫ is compact and diam(Cǫ) =

Qǫα

αΓ(α) → 0 asǫ → 0. This proves that the setT2Br(0,Z (a)) is
relatively compact in spaceE for all t in J .

Considerl > 0, 0 ≤ t < a such that 0≤ t + l ≤ a, and foru ∈ Br(0,Z (a)),

‖T2u(t + l) − T2u(t)‖ ≤
1
Γ(α)

∫ t

0
((t − s)α−1 − (t + l − s)α−1)‖p(s, us+ xs)‖D(A )ds

+
1
Γ(α)

∫ t+l

t
(t + l − s)α−1‖p(s, us+ xs)‖D(A )ds

≤
2lα

αΓ(α)
‖p(s, us+ xs)‖D(A )

≤
2Qlα

αΓ(α)

which implies thatT2Br(0,Z (a)) is equicontinuous.
Hence from the above resultsT2 is completely continuous.
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Step 4. The operatorT3 is completely continuous.
Let t ∈ [0, a) and considerP(s) = 1

Γ(α)

∫ t

0
(t − s)α−1p(s, us + xs)ds. For u ∈ Br(0,Z (a))

and there existǫ > 0, we takel ∈ (0, ǫ) such thatt + l ≤ a, and from [10, Lemma 2.2],

‖ T3u(t + l) − T3u(t) ‖

≤

∫ l

0
‖ S′(t + l − s)P(s) ‖ ds+

∫ t

0
‖ S′(s)(P(t − s+ l) −P(t − s)) ‖ ds

≤

∫ l

0
ϕ(t + l − s) ‖P(s) ‖D(A ) ds+

∫ t

0
ϕ(s)[|P |]Cα(J;D(A ))l

αds

≤
2Q
αΓ(α)

(

aα
∫ l

0
ϕ(t + l − s)ds+ lα ‖ ϕ ‖L1(J)

)

which proves thatT3Br(0,Z (a)) is right equicontinuous att in [0, a). The above discussion
allow us to show thatT3Br(0,Z (a)) is left equicontinuous att in the interval (0, a]. From
this argument we say thatT3Br(0,Z (a)) is equicontinuous.

In this sequel we finally prove that{T3u(t) : u ∈ Br(0,Z (a))} is relatively compact inE ,
∀ t ∈ (0, a].

Take 0< t ≤ a and Q1 = ‖mp(t)‖W(r∗)‖ϕ‖L1([0,ǫ]). The setV = {P(s) : s ∈ J , u ∈
Br(0,Z (a))} is relatively compact inE , since from the previous Step 2. Ifu belongs to
Br(0,Z (a)), by using the concept in [17, Lemma II.1.3], we get

T3u(t) =
∫ ǫ

0
S′(t − s)P(s)ds+

∫ t

ǫ

S′(t − s)P(s)ds

∈ BQ1aα

αΓ(α)
(0, E ) + (t − ǫ)co({S′(s)y : s ∈ [ǫ, t], y ∈ V̄})

and hence,{T3u(t) : u ∈ Br(0,Z (a))} ⊂ BQ1aα

αΓ(α)
(0, E )+Kǫ , whereKǫ is compact andQ1aα

αΓ(α) → 0

asǫ → 0. This proves that{T3u(t) : u ∈ Br(0,Z (a))} is relatively compact inE . Hence we
finally conclude thatT3 is completely continuous.

From the above steps we can say that the operatorT : Br(0,Z (a)) → Br(0,Z (a)) is a
condensing map. Then the existence results follows from [17, Theorem IV.3.2]. �
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4 Application

We look at the following partial fractional impulsive neutral differential equations with infi-
nite delay of the form

cDα0+

(

v(t, η) +
∫ t

−∞

∫ π

0
a(t − s, ζ, η)v(s, ζ)dζds

)

=
∂2

∂η2
v(t, η) +

∫ t

−∞

d(t, t − s, η, v(s, η))ds, (t, η) ∈ J × [0, π], (4.1)

v(t, 0) = v(t, π) = 0, t ∈ J , (4.2)

v(τ, η) = φ(τ, η), 0 ≤ η ≤ π, τ ≤ 0, (4.3)

cDβ0+v(t+k )(η) −
cDβ0+v(tk)(η) =

∫ tk

−∞

ek(tk − s)v(s, η)ds, (4.4)

where 0< β < 1, 1 < α < 2, andφ ∈ BA = PC0 × L2(g, E ). Assume thatd : �4 → �, ek :
� → �, a : �3 → � are continuous functions and∂

αa(s,ζ,η)
∂ηα

exists. 0< t1 < · · · < tm < a are
prefixed numbers.

Let the spaceE = L2([0, π]). Let A : D(A ) ⊂ E → E be defined byA u = u′′ with
D(A ) consist of set of allu andu′′ in E such thatu(0) = u(π) = 0. If {C(t)}t≥0 is a strongly
continuous cosine family onE , thenA is its infinitesimal generator. The well known result
that the associated sine operatorS(t) is compact for everyt ∈ � and hence (λ − A )−1 is
compact for everyλ belongs toρ(A ).

Consider

u(t) =
1
Γ(α)

∫ t

0
(t − s)α−1

A u(s)ds, s≥ 0,

havean analytic resolvent{S(t)}t≥0 onE given by

S(t) =



















1
2πi

∫

Γ̺,υ
eλtλα−1(λα −A )−1dλ, t > 0,

I , t = 0,

with Γ̺,υ consisting of the rays{̺eiυ : ̺ ≥ 0} and{̺e−iυ : ̺ ≥ 0}. HereΓ̺,υ, υ ∈ (π, π2), is a
contour, [20, Example II.2.1].

To represent the equations (4.1)-(4.4) in the form of (1.1)-(1.3) by

q(t, ς)(η) =
∫ 0

−∞

∫ π

0
a(s, ζ, η)ς(s, ζ)dζds,

p(t, ς)(η) =
∫ 0

−∞

d(t, s, η, ς(s, η))ds

Ik(ς)(η) =
∫ 0

−∞

ek(s)ς(s, η)ds

Therefore, under the appropriate conditions on the functionsa, d, ek, the mild solution ex-
ists for partial fractional impulsive problem (4.1)-(4.4) in view of Theorem 3.2 and unique-
ness results exists from Theorem 3.1.
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Conclusion

In this work we consider the fractional neutral infinite delay differential equations with frac-
tional impulsive conditions involving Caputo derivative of order lies in the interval (1,2). To
improve the characterization of the memory property of the fractional derivative, we con-
sider the lower bound at each impulse as zero. We use resolvent operator to derive the mild
solutions in order to make it as more appropriate.
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Abstract

In this paper, firstly, we study the solution to linear matrix inequality AXB + (AXB)∗ > C for
Hermitian matrix C. Furthermore, for the applications, we derive the representations for the common
Re-nnd solution to equations AX = C and XB = D, and the Re-nnd {1, 3, 4}-inverse for square matrix.

Keywords: Matrix inequality, Re-nnd solution, Re-nnd generalized inverse

AMS(2000) Subject Classification: 15A09, 15A24

1 Introduction

Let Cm×n denote the set of all m×n matrices over the complex field C, Cm
H denote the set of all m×m

Hermitian matrices, Un denote the set of all n× n unitary matrices. For A ∈ Cm×n, its range space, rank

and conjugate transpose will be denoted by R(A), r(A) and A∗ respectively. i+(A) and i−(A) denote

the numbers of the positive and negative eigenvalues of a Hermitian matrix A counted with multiplicities,

respectively. The identity matrix of order n is denoted by In.

For a matrix A ∈ Cm×n, the Moore-Penrose inverse A† is defined to be the unique solution of the four

Penrose equations [1]

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

For convenience, we denote EA = I −AA† and FA = I −A†A.

The Hermitian part of A ∈ Cm×m is defined by H(A) = 1
2 (A + A∗). We say that A is Re-nnd (Re-

nonnegative definite) if H(A) > 0 and A is Re-pd (Re-positive definite) if H(A) > 0. Let A
(i,j,··· ,k)
re be the

∗Corresponding author. E-mail addresses: liuxifu211@hotmail.com (X. Liu).
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Re-nnd {i, j, · · · , k}-inverse of square matrix A. Recently, some researches on Re-nnd solution and Re-nnd

generalized inverse were done by several authors [2-7].

The Löwner partial ordering is one of the most basic concepts for characterizing relations between

two Hermitian matrices. A challenging research topic on Hermitian matrices is to solve linear matrix

inequalities (LMIs) induced from the Löwner partial ordering, such as

AXB + (AXB)∗ > C, (1.1)

AXB + (AXB)∗ 6 (>,<)C, AX + (AX)∗ > (6, >,<)C, AXA∗ > (6, >,<)C.

In this article, we consider the matrix inequality (1.1), where A ∈ Cm×n, B ∈ Cp×m and C ∈ Cm
H are

given, X ∈ Cn×p is variable matrix.

Newly, some special cases of (1.1) were considered by several authors, such as: the case that C is

nonnegative definite matrix [8], the case B = Im [9], the case that block matrix
(
A B∗ ) is full row

rank [10]. Researches on other linear matrix inequalities can be found in [8, 11]. For the applications, (1.1)

can be used to establish the general forms of Re-nnd solution of matrix equation AXB = C [10], and the

solution of matrix equation AXA∗ = B (or AX = B) subject matrix inequality constraint CXC∗ > D

[12, 13], and the Re-nnd inverses A
(1,2,i)
re , A

(1,i)
re (i = 3, 4) of square matrix [3, 4, 10]. In [2, 6], the authors

provided some necessary and sufficient conditions for the existence of common Re-nnd and Re-pd solutions

to AX = C and XB = D, however, the general solutions are still unsolved.

We are, therefore, motivated to focus our research interest on (1.1) without any restrictions on matrices

A,B,C.

It is well known that (1.1) can equivalently be written as

AXB + (AXB)∗ = C + V V ∗ (1.2)

for some V . Tian and Rosen [8] shown that equation (1.2) is solvable for X if and only if V V ∗ satisfies

EGV V ∗ = −EGC, EAV V ∗EA = −EACEA, FBV V ∗FB = −FBCFB , (1.3)

where G =
(
A B∗ ) .

This paper is organized as follows. In section 2, firstly, we establish some necessary and sufficient

conditions for the solvability of matrix inequality (1.1), secondly, we derive a general form for V V ∗, finally,

we present a general solution of X to matrix inequality (1.1). Furthermore, for the applications, we provide

the explicit expressions for the common Re-nnd solution to equations AX = C and XB = D, and the

Re-nnd generalized inverse A(1,3,4) of square matrix A.
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Before proceeding to the next section, we list some useful results which will facilitate the proof of our

theorems.

Lemma 1.1. ([14]) Let A ∈ Cm
H , B ∈ Cm×n and C ∈ Cp×m be given. Then

max
X∈Cn×m

i±[A−BXC − (BXC)∗] = min {i±(M1), i±(M2)} ,

min
X∈Cn×m

i±[A−BXC − (BXC)∗] = r
(
A B C∗ )+max {i±(M1)− r(N1), i±(M2)− r(N2)} ,

where

M1 =

(
A B
B∗ 0

)
, M2 =

(
A C∗

C 0

)
, N1 =

(
A B C∗

B∗ 0 0

)
, N2 =

(
A B C∗

C 0 0

)
.

Lemma 1.2. ([14]) Let A ∈ Cm
H , B ∈ Cm×n, and denote M =

(
A B
B∗ 0

)
. Then

i±(M) = r(B) + i±(EBAEB).

Lemma 1.3. ([15]) Let A,B ∈ Cm×n be given. Then the matrix equation AXX∗ = B has a solution for

XX∗ if and only if R(B) ⊆ R(A), AB∗ > 0 and r(AB∗) = r(B). In this case, the general solution can be

written in the following parametric form

XX∗ = B∗(AB∗)†B + FAWW ∗FA,

where W ∈ Cn×n is arbitrary.

Lemma 1.4. ([16]) Given matrices A,B,C,D ∈ Cp×n. The matrix equations AXX∗A∗ = BB∗ and

CXX∗C∗ = DD∗ have a common Hermitian nonnegative-definite solution if and only if R(B) ⊆ R(A)

(or r
(
A B

)
= r(A)) and there exists T ∈ Un such that

ECFA(DT − CA†B) = 0. (1.4)

If a common Hermitian nonnegative-definite solution exists, then a representation of the general common

Hermitian nonnegative-definite solution is XX∗ with

X = A†B + FA(CFA)
†(DT − CA†B) + FAFCFA

Z,

where Z ∈ Cn×n is arbitrary and T ∈ Un is a parameter matrix satisfying (1.4).

Lemma 1.5. ([8]) Let A ∈ Cm×p and B ∈ Cq×m and C ∈ Cm
H are given. Then the matrix equation

AXB + (AXB)∗ = C has a solution X ∈ Cp×q if and only if

(
A B∗ ) ( A B∗ )† C = C, EACEA = 0, FBCFB = 0.
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In this case, the general solution can be written as

X =
1

2
(X1 +X∗

2 ),

where X1 and X2 are general solutions of the equation AX1B +B∗X2A
∗ = C.

Lemma 1.6. ([17]) Let A1 ∈ Cm×n, B1 ∈ Cp×k, A2 ∈ Cm×l, B2 ∈ Cq×k and C ∈ Cm×k be known and

X1 ∈ Cn×p, X2 ∈ Cl×q unknown; M = EA1
A2, N = B2FB1

, S = A2FM . Then the following statements

are equivalent:

(i) The system A1X1B1 +A2X2B2 = C is solvable;

(ii) The following rank equalities are satisfied,

r

(
A1 C
0 B2

)
= r

(
A1 0
0 B2

)
, r

(
A2 C
0 B1

)
= r

(
A2 0
0 B1

)
,

r
(
C A1 A2

)
= r

(
A1 A2

)
, r

 B1

B2

C

 = r

(
B1

B2

)
.

In this case, the general solution can be expressed as

X1 = A†
1CB†

1 −A†
1A2M

†EA1CB†
1 −A†

1SA
†
2CFB1N

†B2B
†
1 −A†

1SV ENB2B
†
1 + FA1U + ZEB1 ,

X2 = M†EA1CB†
2 + FMS†SA†

2CFB1N
† + FM (V − S†SV NN †) +WEB2 ,

where U , V , W and Z are arbitrary matrices over complex field with appropriate sizes.

Lemma 1.7. ([8]) Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then

r
(
A B

)
= r(A) + r(EAB), r

(
A
C

)
= r(A) + r(CFA),

r

(
A B
C 0

)
= r(B) + r(C) + r(EBAFC).

Lemma 1.8. ([9]) Let A,C ∈ Cn×m. There exists a Re-nnd solution to equation AX = C if and only

if R(C) ⊆ R(A), AC∗ is Re-nnd. There exists a Re-pd solution to equation AX = C if and only if

R(C) ⊆ R(A), i+(AC
∗ + CA∗) = r(A).

2 Main results

In this section, our purpose is to investigate the solution to the linear matrix inequality (1.1), and then

apply our result to establish the general expressions for the common Re-nnd solution to AX = C and

XB = D, and the Re-nnd {1, 3, 4}-inverse for square matrix A.
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First, we come to establish some necessary and sufficient conditions for the solvability of matrix in-

equality (1.1).

Theorem 2.1. Let A ∈ Cm×n, B ∈ Cp×m and C ∈ Cm
H be given, X ∈ Cn×p be variable matrix, denote

G =
(
A B∗ ). Then the following statements are equivalent:

(1) Matrix inequality (1.1) is solvable;

(2) EACEA 6 0, FBCFB 6 0, and

r
(
C A B∗ )+ r(A) = r

(
C A B∗

A∗ 0 0

)
, r

(
C A B∗ )+ r(B) = r

(
C A B∗

B 0 0

)
;

(3) r(EGCEA) = r(EGCFB) = r(EGC), EACEA 6 0 and FBCFB 6 0.

Proof. Note that (1.1) can be rewritten as C −AXB − (AXB)∗ 6 0. So, (1.1) is solvable if and only if

min
X

i+[C −AXB − (AXB)∗] = 0.

Applying Lemma 1.1, we get

min
X

i+[C −AXB − (AXB)∗]

= r
(
C A B∗ )+max

{
i+

(
C A
A∗ 0

)
− r

(
C A B∗

A∗ 0 0

)
, i+

(
C B∗

B 0

)
− r

(
C A B∗

B 0 0

)}
= r

(
C A B∗ )+max

{
r(A) + i+(EACEA)− r

(
C A B∗

A∗ 0 0

)
,

r(B) + i+(FBCFB)− r

(
C A B∗

B 0 0

)}
. (2.1)

Letting the right hand side of (2.1) be zero yields

r
(
C A B∗ )+ r(A) + i+(EACEA) = r

(
C A B∗

A∗ 0 0

)
,

r
(
C A B∗ )+ r(B) + i+(FBCFB) = r

(
C A B∗

B 0 0

)
,

which are equivalent to

r
(
C A B∗ )+ r(A) = r

(
C A B∗

A∗ 0 0

)
, (2.2)

r
(
C A B∗ )+ r(B) = r

(
C A B∗

B 0 0

)
, (2.3)

EACEA 6 0 and FBCFB 6 0.

Applying Lemma 1.7 to (2.2) and (2.3) yields r(EGCEA) = r(EGC) and r(EGCFB) = r(EGC) respec-

tively. Thus, the proof is complete. �

Next, we present some properties for matrices A, B and C which satisfy the conditions in Theorem

2.1.
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Corollary 2.1. Let A ∈ Cm×n, B ∈ Cp×m and C ∈ Cm
H be given, denote G =

(
A B∗ ). If the

conditions in the statement (2) or (3) of Theorem 2.1 are satisfied, then the following hold,

r(EGCEG) = r(EGC) or R(EGCEG) = R(EGC), EGCEG 6 0, (2.4)

R[EACEG(EGCEG)
†EGCEA − EACEA] ⊆ R(EAGG†), (2.5)

EACEG(EGCEG)
†EGCEA − EACEA > 0, (2.6)

R[FBCEG(EGCEG)
†EGCFB − FBCFB ] ⊆ R(FBGG†), (2.7)

FBCEG(EGCEG)
†EGCFB − FBCFB > 0. (2.8)

Proof. It follows from the two rank equalities of statement (2) in Theorem 2.1 that

R
((

C A B∗ )∗) ∩R
((

A∗ 0 0
)∗)

= ∅, R
((

C A B∗ )∗) ∩R
((

B 0 0
)∗)

= ∅.

Hence,

R
((

C A B∗ )∗) ∩R

((
A∗ 0 0
B 0 0

)∗)
= ∅,

which means that

r

 C A B∗

A∗ 0 0
B 0 0

 = r
(
C A B∗ )+ r

(
A B∗ ) .

By Lemma 1.7, we have

r(EGCEG) + 2r(G) = r

 C A B∗

A∗ 0 0
B 0 0

 = r
(
C A B∗ )+ r

(
A B∗ ) = r(EGC) + 2r(G),

so,

r(EGCEG) = r(EGC) or R(EGCEG) = R(EGC).

On the other hand, it follows from Lemma 1.2 that

i+(EGCEG) + r(G) = i+

 C A B∗

A∗ 0 0
B 0 0

 = i+

(
FBCFB FBA
A∗FB 0

)
+ r(B)

= r(B) + r(FBA) + i+(EFBAFBCFBEFBA)

= r(B) + r(FBA) = r(G), (FBCFB 6 0 is used)

means that i+(EGCEG) = 0 or EGCEG 6 0. Then (2.4) holds.

Furthermore, applying Lemma 1.7, and elementary block matrix operations, we get

r(EAGG†) = r(EAG) = r
(
A G

)
− r(A) = r(G)− r(A),
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and

r
(
EAGG† EACEG(EGCEG)

†EGCEA − EACEA

)
= r

(
EAG EACEG(EGCEG)

†EGCEA − EACEA

)
= r

(
A G CEG(EGCEG)

†EGCEA − CEA

)
− r(A)

= r
(
G CEG(EGCEG)

†EGCEA − CEA

)
− r(A)

= r[EGCEG(EGCEG)
†EGCEA − EGCEA] + r(G)− r(A)

= r(G)− r(A) = r(EAGG†). (R(EGCEG) = R(EGC) is used)

Thus, (2.5) is evident.

By Lemma 1.2 and (2.4), one can compute that

i−[EACEG(EGCEG)
†EGCEA − EACEA]

= i+[EACEA − EACEG(EGCEG)
†EGCEA] = i+

(
EGCEG EGCEA

EACEG EACEA

)
− i+(EGCEG)

= i+

{(
EG 0
0 EA

)(
C C
C C

)(
EG 0
0 EA

)}
= i+


C C G 0
C C 0 A
G∗ 0 0 0
0 A∗ 0 0

− r(G)− r(A)

= i+


C 0 G 0
0 0 −G A
G∗ −G∗ 0 0
0 A∗ 0 0

− r(G)− r(A) = i+


C 0 0 A
0 0 −G A
0 −G∗ 0 0
A∗ A∗ 0 0

− r(G)− r(A)

= i+


C 0 0 0 A
0 0 −A −B∗ A
0 −A∗ 0 0 0
0 −B 0 0 0
A∗ A∗ 0 0 0

− r(G)− r(A)

= i+


C 0 0 0 A
0 0 −A −B∗ 0
0 −A∗ 0 0 0
0 −B 0 0 0
A∗ 0 0 0 0

− r(G)− r(A)

= i+


C 0 0 A
0 0 −G 0
0 −G∗ 0 0
A∗ 0 0 0

− r(G)− r(A) = i+(EACEA) = 0,

which is equivalent to (2.6).

Similarly, (2.7) and (2.8) can be proved. �

When the matrices A, B and C satisfy the conditions in Theorem 2.1, then, by Lemma 1.3 and Lemma

1.4, we get the solution of V V ∗ to (1.3).
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Lemma 2.1. Let A ∈ Cm×n, B ∈ Cp×m and C ∈ Cm
H be given, X ∈ Cn×p be variable matrix. Denote

G =
(
A B∗ ), P = EAGG†, Q = FBGG†FP , and

H1 = EACEG(EGCEG)
†EGCEA − EACEA, H2 = FBCEG(EGCEG)

†EGCFB − FBCFB .

Suppose that the conditions in the statement (2) or (3) of Theorem 2.1 are satisfied, then equations in

(1.3) have a common solution for V V ∗, which can be written as

V V ∗ = −CEG(EGCEG)
†EGC +GG†WW ∗GG†, (2.9)

where

W = P †H
1
2
1 +Q†(H

1
2
2 T − FBP

†H
1
2
1 ) + FPFQZ, (2.10)

with T ∈ Um and Z ∈ Cm×m are arbitrary.

Proof. In view of Lemma 1.3 and Corollary 2.1, we know that EGV V ∗ = −EGC is solvable, and the

solution of V V ∗ can be formed by

V V ∗ = −CEG(EGCEG)
†EGC +GG†WW ∗GG†, (2.11)

where W ∈ Cm×m is arbitrary. Substituting V V ∗ into the last two equations in (1.3) produces

EAGG†WW ∗GG†EA = EACEG(EGCEG)
†EGCEA − EACEA , H1, (2.12)

FBGG†WW ∗GG†FB = FBCEG(EGCEG)
†EGCFB − FBCFB , H2. (2.13)

Corollary 2.1 shows that both (2.12) and (2.13) are consistent. Next, we come to prove that (2.12) and

(2.13) have a common Hermitian nonnegative-definite solution WW ∗.

By Lemma 1.4, the matrix equations (2.12) and (2.13) have a common Hermitian nonnegative-definite

solution if and only if there exists T ∈ Um such that

EFBGG†F
EAGG† (H

1
2
2 T − FBGG†(EAGG†)†H

1
2
1 ) = 0. (2.14)

It follows from Lemma 1.7 that

r
(
FBGG†FEAGG†

)
= r

(
FBGG†

EAGG†

)
− r(EAGG†) = r

(
FBG
EAG

)
− r(EAG)

= r

(
B∗ 0 G
0 A G

)
− r(A)− r(B)− [r

(
A G

)
− r(A)]

= r(G)− r(B) = r(FBGG†),

i.e., R
(
FBGG†FEAGG†

)
= R(FBGG†), therefore EFBGG†F

EAGG† = EFBGG† and

EFBGG†F
EAGG†FBGG†(EAGG†)†H

1
2
1 = 0.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1252 Xifu Liu et al 1245-1257



X. Liu, G. Wu: THE SOLUTION TO MATRIX INEQUALITY AND ITS APPLICATIONS 9

Applying Lemma 1.7 again and (2.4), we have

r[EFBGG†H2] = r
(
FBGG† H2

)
− r(FBGG†) = r

(
FBG H2

)
− r(FBG)

= r
(
B∗ G CEG(EGCEG)

†EGCFB − CFB

)
− r(B)− r(FBG)

= r
(
G CEG(EGCEG)

†EGCFB − CFB

)
− r(G)

= r[EGCEG(EGCEG)
†EGCFB − EGCFB ] = 0,

means that EFBGG†H2 = 0, i.e., EFBGG†F
EAGG†H

1
2
2 = 0. Hence, (2.14) holds for any T ∈ Um, and there

exists a common Hermitian nonnegative-definite solution to (2.12) and (2.13). By Lemma 1.4, the common

Hermitian nonnegative-definite solution is WW ∗ with

W = P †H
1
2
1 + FPQ

†(H
1
2
2 T − FBGG†P †H

1
2
1 ) + FPFQZ

= P †H
1
2
1 +Q†(H

1
2
2 T − FBP

†H
1
2
1 ) + FPFQZ, (2.15)

where T ∈ Um and Z ∈ Cm×m are arbitrary.

Substituting (2.15) into (2.14) yields (2.9). �

Combining Theorem 2.1 and Lemma 2.1, we can deduce the following result.

Theorem 2.2. Let A ∈ Cm×n, B ∈ Cp×m, C ∈ Cm
H be given, X ∈ Cn×p be variable matrix, and suppose

that matrix inequality (1.1) is solvable. Then, a general solution to (1.1) can be expressed as

X =
1

2
(X1 +X∗

2 ), (2.16)

where

X1 = A†(C + V V ∗)B† −A†B∗M†(C + V V ∗)B† −A†S(B∗)†(C + V V ∗)N†A∗B†

−A†SY1ENA∗B† + FAY2 + Y3EB , (2.17)

X2 = M†(C + V V ∗)(A∗)† + S†S(B∗)†(C + V V ∗)N† + FM (Y1 − S†SY1NN †) + Y4FA, (2.18)

with V V ∗ is given by (2.9), M = EAB
∗, N = A∗FB , S = B∗FM , and Yi (i = 1, 2, 3, 4) are arbitrary

matrices over complex field with appropriate sizes.

Proof. Since the matrix inequality (1.1) is equivalent to (1.2), where V V ∗ is given by (2.9). In view of

Lemma 1.5, the general solution to (1.2) can be written as

X =
1

2
(X1 +X∗

2 ),

where X1 and X2 are general solutions of the equation

AX1B +B∗X2A
∗ = C + V V ∗. (2.19)
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It follows from (1.3) and Lemma 1.6 that (2.19) is solvable, and

X1 = A†(C + V V ∗)B† −A†B∗M†EA(C + V V ∗)B† −A†S(B∗)†(C + V V ∗)FBN
†A∗B†

−A†SY1ENA∗B† + FAY2 + Y3EB ,

X2 = M†EA(C + V V ∗)(A∗)† + FMS†S(B∗)†(C + V V ∗)FBN
† + FM (Y1 − S†SY1NN †) + Y4FA,

where M = EAB
∗, N = A∗FB , S = B∗FM , and Yi, (i = 1, 2, 3, 4) are arbitrary matrices over complex

field with appropriate sizes. Together with M†EA = M†, FBN
† = N† and FMS† = S†, then (2.17) and

(2.18) are followed. �

In [2], the author presented some sufficient and necessary conditions for the existence of common Re-

nnd solution to AX = C and XB = D, however, the general solution has not been established by now.

Next, we restudy this problem, and derive its general solution.

Theorem 2.3. Let A,C ∈ Cn×m, and B,D ∈ Cm×n, suppose that both AX = C and XB = D have a

a Re-nnd solution. If the pair of equations have a common solution (i.e., AD = CB), then there exists a

common Re-nnd solution if and only if

r

(
A C
B∗ −D∗

)
= r

(
A CA∗

B∗ −D∗A∗

)
= r

(
A CB
B∗ −D∗B

)
. (2.20)

In this case, a general common Re-nnd solution can be written as

X = A†C + FADB† +
1

2
(Ỹ1 + Ỹ ∗

2 ), (2.21)

where,

Ỹ1 = FA(C̃ + V V ∗)EB − FAM
†(C̃ + V V ∗)EB − EBFM (C̃ + V V ∗)N†EB − EBFMZ1ENFA,

Ỹ2 = M†(C̃ + V V ∗)FA + S†S(C̃ + V V ∗)N† + EBFM (Z1 − S†SZ1NN †)FA,

V V ∗ = −C̃EG(EGC̃EG)
†EGC̃ +GG†WW ∗GG†,

W = P †H
1
2
1 +Q†(H

1
2
2 T −BB†P †H

1
2
1 ) + FPFQZ,

H1 = A†AC̃EG(EGC̃EG)
†EGC̃A†A−A†AC̃A†A,

H2 = BB†C̃EG(EGC̃EG)
†EGC̃BB† −BB†C̃BB†.

with C̃ = −[(A†C + FADB†) + (A†C + FADB†)∗], G =
(
FA EB

)
, M = A†AEB , N = FABB†,

S = EBFM , P = A†AGG†, Q = BB†GG†FP , T ∈ Um and Z,Z1 ∈ Cm×m are arbitrary.

Proof. The rank equality (2.20) was obtained by [Theorem 2.1, 2]. Furthermore, by [Lemma 1.1, 2], a
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general common solution to AX = C and XB = D can be expressed as

X = A†C + FADB† + FAY EB , (2.22)

where Y ∈ Cm×m is arbitrary. Therefore, there exists a common Re-nnd solution X if and only if

X +X∗ > 0 for some Y , i.e.,

FAY EB + (FAY EB)
∗ > −[(A†C + FADB†) + (A†C + FADB†)∗] , C̃ (2.23)

is solvable. Applying Theorem 2.2 to (2.23) yields

Y =
1

2
(Y1 + Y ∗

2 ), (2.24)

where

Y1 = FA(C̃ + V V ∗)EB − FAEBM
†(C̃ + V V ∗)EB − FASEB(C̃ + V V ∗)N†FAEB

−FASZ1ENFAEB +A†AZ2 + Z3BB†,

Y2 = M†(C̃ + V V ∗)FA + S†SEB(C̃ + V V ∗)N† + FM (Z1 − S†SZ1NN †) + Z4A
†A,

with M = A†AEB , N = FABB†, S = EBFM , and Zi, (i = 1, 2, 3, 4) are arbitrary matrices over complex

field with appropriate sizes. Together with FAS = EBFM , FMEB = EBFM , we have

FAY1EB = FA(C̃ + V V ∗)EB − FAEBM
†(C̃ + V V ∗)EB − FASEB(C̃ + V V ∗)N †FAEB − FASZ1ENFAEB

= FA(C̃ + V V ∗)EB − FAM
†(C̃ + V V ∗)EB − EBFM (C̃ + V V ∗)N†EB − EBFMZ1ENFA,

EBY2FA = EBM
†(C̃ + V V ∗)FA + EBS

†SEB(C̃ + V V ∗)N†FA + EBFM (Z1 − S†SZ1NN †)FA

= M†(C̃ + V V ∗)FA + S†S(C̃ + V V ∗)N † + EBFM (Z1 − S†SZ1NN †)FA.

Denote Ỹ1 = FAY1EB and Ỹ2 = EBY2FA. Combining (2.22) and (2.24) produces (2.21). �

Since the Re-nnd generalized inverse A(1,3,4) can be regarded as the common Re-nnd solution of

A∗AX = A∗ and XAA∗ = A∗, where A ∈ Cm×m, therefore, by Theorem 2.3, we have the following

result.

Theorem 2.4. Let A ∈ Cm×m. Then there exists a Re-nnd generalized inverse A(1,3,4) if and only if

A∗A2, A2A∗ are Re-nnd, and

r

(
A∗A A∗

AA∗ −A

)
= r

(
A∗A (A∗)2

AA∗ −AA∗

)
= r

(
A∗A A∗A
AA∗ −A2

)
. (2.25)

In this case, a general Re-nnd generalized inverse A(1,3,4) can be written as

A(1,3,4)
re = A† +

1

2
(Ỹ1 + Ỹ ∗

2 ),
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where,

Ỹ1 = FA(C̃ + V V ∗)EA − FAM
†(C̃ + V V ∗)EA − EAFM (C̃ + V V ∗)N †EA − EAFMZ1ENFA,

Ỹ2 = M†(C̃ + V V ∗)FA + S†S(C̃ + V V ∗)N† + EAFM (Z1 − S†SZ1NN†)FA,

V V ∗ = −C̃EG(EGC̃EG)
†EGC̃ +GG†WW ∗GG†,

W = P †H
1
2
1 +Q†(H

1
2
2 T −AA†P †H

1
2
1 ) + FPFQZ,

H1 = A†AC̃EG(EGC̃EG)
†EGC̃A†A−A†AC̃A†A,

H2 = AA†C̃EG(EGC̃EG)
†EGC̃AA† −AA†C̃AA†.

with C̃ = −[A† + (A†)∗], G =
(
FA EA

)
, M = A†AEA, N = FAAA†, S = EAFM , P = A†AGG†,

Q = AA†GG†FP , T ∈ Um and Z,Z1 ∈ Cm×m are arbitrary.

Proof. In view of Lemma 1.8, A∗AX = A∗ and XAA∗ = A∗ have Re-nnd solution if and only if A∗A2 and

A2A∗ are Re-nnd respectively. Moreover, by Theorem 2.3, these two equations have a common Re-nnd

solution if and only if

r

(
A∗A A∗

AA∗ −A

)
= r

(
A∗A (A∗)2A
AA∗ −AA∗A

)
= r

(
A∗A A∗AA∗

AA∗ −A2A∗

)
,

which is equivalent to (2.25). The formula of A
(1,3,4)
re follows directly by (2.21). The proof is complete.
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[5] J. Nikolov, D. S. Cvetković-Ilić, Re-nnd generalized inverses, Linear Algebra Appl. 439 (2013) 2999-

3007.

[6] Z. Xiong, Y. Qin, The common Re-nnd and Re-pd solutions to the matrix equations AX = C and

XB = D, Appl. Math. Comput. 218 (2011) 3330-3337.

[7] Y. Yuan, K. Zuo, The Re-nonnegative definite and Re-positive definite solutions to the matrix equation

AXB = D, Appl. Math. Comput. 256 (2015) 905-912.

[8] Y. Tian, D. Rosen, Solving the matirx inequality AXB+(AXB)∗ > C, Math. Inequal. Appl. 12 (2012)

537-548.

[9] Y. Tian, Maximization and minimization of the rank and inertia of the Hermitian matrix expression

A−BX − (BX)∗ with applications, Linear Algebra Appl. 434 (2011) 2109-2139.

[10] X. Liu, On solutions to matrix inequalities with applications, Taiwanese J Math. 19 (2015) 1643-1659.

[11] Y. Tian, How to solve three fundamental linear matrix inequalities in the Löwner partial ordering, J.
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Existence and Stability Results for Quaternion Fuzzy

Fractional Differential Equations

Zhanpeng Yang∗, Wenjuan Ren

Institute of Electronics, Chinese Academy of Sciences, Beijing 100080,PR China

Abstract

We consider the initial value problem of quaternion fuzzy fractional differential equations

in the generalized regular fuzzy function space. And we propose a notion of the disturbed

fuzzy Dirac operator. By using the associate space method and fixed point theorem, a sufficient

condition for the existence and stability of the solution of the initial value problem is given.

Keywords: quaternion-valued grades of membership, quaternion fuzzy fractional differential

equation, associate space, generalized regular function, Hyers–Ulam stability

1 Introduction

The notion of fuzzy complex number was first proposed by Buckley in [1]. In [2], Tamir et al.

pointed out the limitations of the mixed fuzzy and crisp definition of [3] and generalized it by

allowing a fuzzy phase term. As illustrated with examples in [2], the advantage of this augmented

definition of complex fuzzy sets is its ability to accommodate fuzzy cycles. In order to extent fuzzy

complex number, the concept of the fuzzy quaternion number was introduced by Moura et al., who

in [4] discuss some concepts such as their arithmetic properties, infimum, supremum, distance, and

so on. The quaternion membership function was given by a mapping u : H→ [0, 1] such that

u(a+ bi+ cj + dk) = min{Ā(a), B̄(b), C̄(c), D̄(d)},

where Ā, B̄, C̄, D̄ are all real fuzzy numbers. Yang et al. proposed a different definition of quaternion

fuzzy sets and discussed entailed results which parallel those of regular fuzzy numbers in [5].

The study on fractional differential equations has been rapidly advancing in recent years. Frac-

tional equations have received increasing attentions [6, 7, 8, 9, 10, 11]. Recently, Agarwal et al.

considered a differential equation of fractional order with uncertainty and presented the concept

of solution [12]. They considered the Riemann-Liouville differentiability which was a combina-

tion of Hukuhara difference and Riemann-Liouville derivative. The shortcomings of applications

of Hukuhara difference was discussed in [13] by Bede and Gal. The results on existence and u-

niqueness of the solution were later established in [14, 15, 16, 17], and in [18, 19]. Salahshour et

∗Corresponding author. Email: zhanpengyang@mail.ie.ac.cn(Z.P. Yang), iecasrwj@163.com(W.J. Ren).
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al. applied fuzzy Laplace transforms to solve fuzzy differential equations [20, 21]. The numerical

solution of the fuzzy differential equation was obtained in [22, 23, 24]. Furthermore, Malinowski

introduced random fuzzy fractional integral equations-theoretical [25].

The study of stability problems for functional equations is related to a question of Ulam [26]

concerning the stability of group homomorphisms and affirmatively answered for Banach spaces

by Hyers [27]. Some authors then considered the stability of the fuzzy difference and functional

equations [28, 29, 30, 31]. In this paper, we consider existence and stability of the solution for

quaternion fuzzy fractional differential equations. By the associate space method and fixed point

theorem, we given a sufficient condition of the Hyers–Ulam stability for quaternion fuzzy fractional

differential equations. Moreover, We provide a way of incorporating such the theory of fuzzy

fractional differential equations into quaternionic analysis.

2 Notation and Basic results

Let PK(R3) denote the set of all nonempty convex compact subsets of R3. The Hausdorff metric

for A, B ∈ PK(R3) is defines by

d(A,B) = inf{ε | A ⊂ N(B, ε) and B ⊂ N(A, ε)},

where N(A, ε) = {x ∈ R3 | ‖x− y‖ < ε for some y ∈ A}.
Throughout this paper, we put Λ := {0, 1, 2, 3} and denote by e0 = 1, e1 = i, e2 = j, e3 = k,

where i, j, k are units of the real quaternion algebra H.

In [5], Yang et al. considered quaternion fuzzy sets on R3, i.e., quaternion grades of membership.

Definition 1. [5] The quaternion membership function f is defined by

f(V, x) = e0f0(V ) + e1f1(x) + e2f2(x) + e3f3(x),

where V is to be interpreted as a set in a fuzzy set of sets and x as an element of V .

In particluar, for x ∈ R3, we have

f(x) = f0(x)e0 + f1(x)e1 + f2(x)e2 + f3(x)e3,

where f0, f1, f2, f3 : R3 → [0, 1]. Denote f by (f0, f1, f2, f3). The r = (r0, r1, r2, r3)-level sets for

f = (f0, f1, f2, f3) is defined by

[f ]r = [f0]r0 ∩ [f1]r1 ∩ [f2]r2 ∩ [f3]r3 . (2.1)

Denote Fn the set of all ν : Rn → [0, 1] satisfying all of the following conditions:

(i) ν is normal, i.e., there exists x0 ∈ Rn such that ν(x0) = 1;

(ii) ν is fuzzy convex, i.e., for all t1, t2 ∈ Rn, λ ∈ [0, 1]:

ν (λt1 + (1− λ)t2) ≥ min{ν(t1), ν(t2)};
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(iii) ν is upper semi-continuous;

(iv) [ν]0 is compact.

Moreover, we define F̂4n as follows:

F̂4n = {(ν0, ν1, ν2, ν3) ∈ Fn ×Fn ×Fn ×Fn|
∃t0, s.t., vl(t0) = 1, l ∈ Λ}.

Then, for ν = (ν0, ν1, ν2, ν3) ∈ F̂4n, [f ]ᾱ = ∩l∈Λ[νl]
αl ∈ PK(R3) for all αl ∈ [0, 1], l ∈ Λ.

For f, g ∈ F̂4n, where f = (f0, f1, f2, f3) and g = (g0, g1, g2, g3), and λ is a scalar, let

f + g = (f0 + g0, f1 + g1, f2 + g2, f3 + g3),

λf = (λf0, λf1, λf2, λf3).

Let us define D : Fn ×Fn → [0,∞) by

D(ν1, ν2) = sup{d([ν1]r, [ν2]r) | r ∈ [0, 1]}, (2.2)

where d is the Hausdorff metric. (Fn, D) is a metric space which can be embedded isomorphically

as a cone in a Banach space [32]. However, D is not a suitable metric for our space of interest,

F̂4n, as we quickly see that linearity is violated. Instead, let us consider the product metric D′ on

F4n = Fn × Fn × Fn × Fn. For f = (f0, f1, f2, f3) ∈ F4n and g = (g0, g1, g2, g3) ∈ F4n, we define

D′ : F4n ×F4n → [0,∞) by the relation

D′(f, g) = D′((f0, f1, f2, f3), (g0, g1, g2, g3))

= max
l∈Λ
{D(fl, gl)}.

(2.3)

Then, D′ is a linearity preserving metric for F4n. Since F̂4n ⊂ F4n, D′ is also a metric for F̂4n.

Hence, (F̂4n, D′) is a complete metric space. Now, as (F̂4n, D′) is a metric space and D′ preserves

linearity, by the Arens-Eells theorem [33] there exists an embedding F̂4n ↪→ B where B is a Banach

space. The zero element on F̂4n then reads 0̂4(x) = (0̂(x), 0̂(x), 0̂(x), 0̂(x)) ∈ F4n.

We define strongly generalized differentiability as in [13] in terms of the generalize Hukuhara

difference. For x, y ∈ F̂4n, if there exists z ∈ F̂4n such that x = z + y or y = x+ (−1)z, we write

x	 y = z and call z the difference of x and y.

A fuzzy-valued function f defined in the bounded, simply connected domain Ω ⊂ R3 is a

mapping f : Ω → F̂4n, and f can be represented in a form f =
∑3

j=0 ejfj(x). Its conjugate f̄ is

defined by

f̄ = e0f0(x)	
3∑
j=1

ejfj(x),

where fj(x) are continuous fuzzy-valued functions in x = (x1, x2, x3) ∈ Ω.

Definition 2. Let Ω ⊂ R3 be a bounded, simply connected domain. We call a mapping F : Ω→ F̂4n

strongly generalized partial derivative at x = (x1, x2, x3) ∈ Ω if there exists some ∂F
∂xi
∈ F̂4n such

that
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(i) there exists the differences F (·, xi + h, ·)	 F (·, xi, ·),
F (·, xi, ·)	 F (·, xi − h, ·) and

∂F

∂xi
= lim

h→0+

F (·, xi + h, ·)	 F (·, xi, ·)
h

= lim
h→0+

F (·, xi, ·)	 F (·, xi − h, ·)
h

, (2.4)

or

(ii) there exists the differences F (·, xi, ·)	 F (·, xi + h, ·), F (·, xi − h, ·)	 F (·, xi, ·) and

∂F

∂xi
= lim

h→0+

F (·, xi, ·)	 F (·, xi + h, ·)
−h

= lim
h→0+

F (·, xi − h, ·)	 F (·, xi, ·)
−h

, (2.5)

or

(iii) there exists the differences F (·, xi + h, ·)	 F (·, xi, ·), F (·, xi − h, ·)	 F (·, xi, ·) and

∂F

∂xi
= lim

h→0+

F (·, xi + h, ·)	 F (·, xi, ·)
h

= lim
h→0+

F (·, xi − h, ·)	 F (·, xi, ·)
−h

, (2.6)

or

(iv) there exists the differences F (·, xi, ·)	 F (·, xi + h, ·), F (·, xi, ·)	 F (·, xi − h, ·) and

∂F

∂xi
= lim

h→0+

F (·, xi, ·)	 F (·, xi + h, ·)
−h

= lim
h→0+

F (·, xi, ·)	 F (·, xi − h, ·)
h

. (2.7)

In general, we have the following results on the connection between the strongly generalized

partial derivative of F and its endpoint function Fαl and Fαr .

Let F : Ω→ F̂4n be a quaternion fuzzy function. If F is strongly generalized partial derivative

at x ∈ Ω, then we have the following case:

If F is strongly generalized partial derivative at x ∈ Ω in (i), then, for each αi ∈ [0, 1], Fil and

Fir are strongly generalized partial derivative functions at x and[
∂F

∂xi

]α
=

[(
∂F

∂xi

)α
l

,

(
∂F

∂xi

)α
r

]
,

where (
∂F

∂xi

)α
l

=

[(
∂F

∂xi

)α0

0l

,

(
∂F

∂xi

)α1

1l

,

(
∂F

∂xi

)α2

2l

,

(
∂F

∂xi

)α3

3l

]
(2.8)

and (
∂F

∂xi

)α
r

=

[(
∂F

∂xi

)α0

0r

,

(
∂F

∂xi

)α1

1r

,

(
∂F

∂xi

)α2

2r

,

(
∂F

∂xi

)α3

3r

]
. (2.9)

Definition 3. Let F : Ω → F̂4n be a continuous mapping. The fuzzy Riemann-Liouville integral

of F is defined by

(Iβ
0+
F )(x) =

1

Γ(β)

∫ xi

0
(xi − τ)β−1F (·, τ, ·)dτ, (2.10)

where x ∈ Ω, xi > 0, 0 < β < 1.

Then, the Riemann-Liouville integral of a quaternion fuzzy-valued function F can be expressed

as follow:

(Iβ
0+
Fα)(x) = [(Iβ

0+
Fαl )(x), (Iβ

0+
Fαr )(x)],
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where

(Iβ
0+
Fαl )(x) =

1

Γ(β)

∫ xi

0
(xi − τ)β−1Fαl (·, τ, ·)dτ

and

(Iβ
0+
Fαr )(x) =

1

Γ(β)

∫ xi

0
(xi − τ)β−1Fαr (·, τ, ·)dτ.

Definition 4. The fuzzy Riemann-Liouville fractional derivatives of order n − 1 < β < n for

fuzzy-valued function F is defined by (provided it exists)

(RLDβ
0+
F )(x) =

1

Γ(n− β)

∂n

∂xni

∫ xi

0
(xi − τ)n−β−1F (·, τ, ·)dτ. (2.11)

Similarly, we have

(RLDβ
0+
Fα)(x) = [(RLDβ

0+
Fαl )(x), (RLDβ

0+
Fαr )(x)],

where (RLDβ
0+
Fαl )(x) =

1

Γ(n− β)

∂n

∂xni

∫ xi

0
(xi − τ)n−β−1Fαl (·, τ, ·)dτ

and (RLDβ
0+
Fαr )(x) =

1

Γ(n− β)

∂n

∂xni

∫ xi

0
(xi − τ)n−β−1Fαr (·, τ, ·)dτ.

Definition 5. The fuzzy Caputo derivative of F for n − 1 < β < n and x ∈ Ω is denoted by

(CDβ
0+F )(x) (provided it exists) and defined by

(CDβ
0+
F )(x) =

1

Γ(n− β)

∫ xi

0
(xi − τ)n−β−1 ∂

n

∂τn
F (·, τ, ·)dτ. (2.12)

Then,

(CDβ
0+
Fα)(x) = [(CDβ

0+
Fαl )(x), (CDβ

0+
Fαr )(x)],

where

(CDβ
0+
Fαl )(x) =

1

Γ(n− β)

∫ xi

0
(xi − τ)n−β−1 ∂

n

∂τn
Fαl (·, τ, ·)dτ

and

(CDβ
0+
Fαr )(x) =

1

Γ(n− β)

∫ xi

0
(xi − τ)n−β−1 ∂

n

∂τn
Fαr (·, τ, ·)dτ.

Now let us introduce the fuzzy Dirac operator as

D =
3∑

k=1

ek
∂

∂xk
.

The fuzzy Dirac operator acts on f as follows

Df =

3∑
k=1,j=0

ekej
∂fj
∂xk

.
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Definition 6. The disturbed fuzzy Dirac operator is the operator which is defined by

Dβu = Du+ βD,

where β is a real number.

Definition 7. A fuzzy function u : Ω → F̂4n is called a generalized regular fuzzy function if it

satisfies Dβu = 0̂4.

Definition 8. Let L(t, x, u) be a first order differential operator depending on t, x, u and the

first order derivative ∂u
∂xj

, while l(t, x, u) is a differential operator on the time t. Then L is called

“associated” to l if L transforms solutions of lu = 0̂4 into solutions of the same equation for fixed

t, i.e. lu = 0̂4 implies l[Lu] = 0̂4.

If A : Y → X is an operator, let us consider the fixed point equation

x = A(x), x ∈ Y (2.13)

and the inequation

d(y,A(y)) ≤ ε. (2.14)

Definition 9. The equation (2.13) is called generalized Hyers–Ulam stable if there exists ψ : R+ →
R+ increasing, continuous at 0 and ψ(0) = 0 such that for each ε > 0 and for each solution y∗ of

(2.14) there exists a solution x∗ of the fixed point equation (2.13) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, the equation (2.13) is said to be

Hyers–Ulam stable.

3 Main results

In this section, we consider the initial value problem
CDα

0+tu =
3∑
j=1

A(j) ∂u

∂xj
+Bu+ C := L(u),

u(0, x) = ϕ(x),

(3.1)

where x = (x1, x2, x3) ∈ Ω and Ω is a bounded, simply connected domain in R3; t ∈ [0, T ] is the

time variable; CDα
0+t is the Caputo fractional derivative of t; u = u(t, x) is quaternion fuzzy-valued

functions defined in [0, T ]×Ω. A(j) = A(j)(t, x); B = B(t, x) and C = C(t, x) are quaternion-valued

functions defined in [0, T ]× Ω. The initial function ϕ(x) is a generalized regular fuzzy function.

It is easy to show that solutions of the initial value problem are fixed points of the operator

B(u) := u(t, x) = ϕ(x) +
1

Γ(α)

∫ t

0
(t− τ)α−1L(u)dτ. (3.2)
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In order to use fixed points theorem, we have to estimate the integro-differential operator on the

right-hand side of (3.2). That is a little bit difficult because the integrand contains derivative with

the spacelike variables xj . But we can estimation it by using the following two properties of the

associated function space:

(i) The operator maps the space into itself. Here we use the concept “associated pair” [34, 35,

36].

(ii) For the element of the associated space one has an “interior estimate” [36], that is, the norm

(metric) of the derivative with respect to spacelike variables of the element of the associated space

can be estimated by the norm of the element.

For our subsequent results, we need the following hypotheses.

(H1) A
(1)
0 = A

(2)
3 = −A(3)

2 ,

A
(1)
1 = A

(2)
2 = −A(3)

3 ,

A
(1)
2 = −A(2)

1 = A
(3)
0 ,

A
(1)
3 = −A(2)

0 = −A(3)
1 ;

(H2) (DA(1) + βA(1) − 2B1e0)e1 = (DA(2) + βA(2) − 2B2e0)e2 =

(DA(3) + βA(3) − 2B3e0)e3;

(H3) βDA(1)e1 + 2β2
∑3

j=1A
(1)
j eje1 + 2β2A

(1)
1 e0 +DB + 2β(B2e2 +B3e3) = 0;

(H4) DβC = DC + βC = 0 for each t ∈ [0, T ].

Theorem 1. Assume that A(j)(t, x)(j = 1, 2, 3), B(t, x) and C(t, x) are all quaternion-valued func-

tion for t ∈ [0, T ]. The operator L is associated with the operator Dβ if hypotheses (H1)–(H4) are

satisfied.

According to Definition 8, we can obtain that the operator L is associated with the operator

Dβ, if Dβu = 0̂4 implies Dβ(Lu) = 0̂4. Here, we omit the proof.

To solve the initial value problem (3.1) we need the interior estimate of generalized fuzzy regular

functions.

Theorem 2. Let Ωs1 ⊂ Ωs2 and Ωs2 ⊂ Ω. Let mΩ denote the finite measure of Ω ⊂ Rn and u be a

generalized fuzzy regular function. We obtain the interior estimate of generalized regular functions

D
′
(
∂u

∂xi
, 0̂4

)
≤
β2(3mΩ

4π )
1
3 [3 + 1

2(3mΩ
4π )

1
3 ]

dist(Ωs1 , ∂Ωs2)
D
′
(u, 0̂4)

= ηD
′
(u, 0̂4).

(3.3)

Proof. Assume that u is a quaternion-valued function. By Theorem 5 in [37], we have∥∥∥∥ ∂u∂xi
∥∥∥∥
s1

≤
β2(3mΩ

4π )
1
3 [3 + 1

2(3mΩ
4π )

1
3 ]

dist(Ωs1 , ∂Ωs2)
‖u‖s2 = η‖u‖s2 . (3.4)
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Now, for a generalized fuzzy regular function u, we consider its endpoint function uαl and uαr . It

easy to see that uαl and uαr are also generalized regular functions. Then, we obtain their interior

estimate as follows: ∥∥∥∥∂uαl∂xi

∥∥∥∥
s1

≤
β2(3mΩ

4π )
1
3 [3 + 1

2(3mΩ
4π )

1
3 ]

dist(Ωs1 , ∂Ωs2)
‖uαl ‖s2 (3.5)

and ∥∥∥∥∂uαr∂xi

∥∥∥∥
s1

≤
β2(3mΩ

4π )
1
3 [3 + 1

2(3mΩ
4π )

1
3 ]

dist(Ωs1 , ∂Ωs2)
‖uαr ‖s2 . (3.6)

Moreover, we can obtain

D
′
(
∂u

∂xi
, 0̂4

)
= sup

0≤α≤1

{
d

([
∂u

∂xi

]α
, (̂0)4

)}
= sup

0≤α≤1

{
d

([(
∂u

∂xi

)α
l

,

(
∂u

∂xi

)α
r

]
, (̂0)4

)}
≤
β2(3mΩ

4π )
1
3 [3 + 1

2(3mΩ
4π )

1
3 ]

dist(Ωs1 , ∂Ωs2)

sup
0≤α≤1

{
d([uαl , u

α
r ], (̂0)4)

}
= ηD

′
(u, 0̂4).

(3.7)

This concludes the proof.

Theorem 3. Assume that L satisfies the hypotheses of Theorem 1 and assume that ϕ is an arbitrary

generalized fuzzy regular function. The initial value problem (3.1) is solvable in the conical domain

Mσ = {(t, x) : x ∈ Ω, 0 ≤ t ≤ σ · dist(x, ∂Ω)}(σ is small enough). The solution u(t, x) is also

generalized fuzzy regular function for each t. Moreover, the fixed point equation u = B(u) is Hyers–

Ulam stable.

Proof. To prove this, we know that the solution of the differential equation (3.1) must satisfy the

Volterra equation

B(u) := u(t, x) = ϕ(x) +
1

Γ(α)

∫ t

0
(t− τ)α−1L(u)dτ. (3.8)

We then proof that the operator B has a fixed point. It is easy to see that B maps C([0, T ]×Ω, E∗)

to itself. Moreover, we have

D
′
(B(u)	B(v), 0̂4) = D

′
(

1

Γ(α)

∫ t

0
(t− τ)α−1L(u)dτ,

1

Γ(α)

∫ t

0
(t− τ)α−1L(v)dτ)

=
1

Γ(α)

∫ t

0
(t− τ)α−1(

3∑
j=1

A(j) ∂

∂xj
D
′
(u	 v, 0̂4) +BD

′
(u	 v, 0̂4)dτ

≤ 1

Γ(α)
(M + 3ηN)D

′
(u	 v, 0̂4)

∫ t

0
(t− τ)α−1dτ

=
1

Γ(α+ 1)
(M + 3ηN)tαD

′
(u	 v, 0̂4)

:= γD
′
(u	 v, 0̂4),

(3.9)
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where M = ‖B‖, N = maxj=1,2,3{‖A(j)‖}.
We may then choose a number τ > 0 such that

γ =
1

Γ(α+ 1)
(M + 3ηN)τα < 1.

Then in the domain Mσ = {(t, x) : x ∈ Ω, 0 ≤ t ≤ σ · dist(x, ∂Ω) ≤ τ}, B is a contraction mapping.

Thus, by the Banach’s fixed point theorem, we obtain the desired uniqueness of the solution of

the differential equation. Theorem 2.10 in [38] implies that the operator B is a c-weakly Picard

operator with the positive constant c = 1
1−γ and the fixed point equation u = B(u) is Hyers–Ulam

stable.

Moreover, the solution u(t, x) belongs to the associated space for each t. The solution u(t, x) is

also generalized regular.
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Set-valued quadratic ρ-functional inequalities

Choonkil Park and Jung Rye Lee∗

Abstract. In this paper, we introduce set-valued quadratic ρ-functional inequalities and prove the

Hyers-Ulam stability of the set-valued quadratic ρ-functional inequalities by using the fixed point

method.

1. Introduction and preliminaries

Set-valued functions in Banach spaces have been developed in the last decades. The pioneering paper

by Aumann [5] and Debreu [14] were inspired by problems arising in Control Theory and Mathematical

Economics. We can refer to the papers by Arrow and Debreu [3], McKenzie [27], the momographs by

Hindenbrand [20], Aubin and Frankowska [4], Castaing and Valadier [8], Klein and Thompson [25] and

the survey by Hess [19].

The stability problem of functional equations originated from a question of Ulam [53] concerning the

stability of group homomorphisms. Hyers [21] gave a first affirmative partial answer to the question of

Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by

Rassias [42] for linear mappings by considering an unbounded Cauchy difference. A generalization of

the Rassias theorem was obtained by Găvruta [18] by replacing the unbounded Cauchy difference by a

general control function in the spirit of Rassias’ approach

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional

equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic functional

equation was proved by Skof [52] for mappings f : X → Y , where X is a normed space and Y is a

Banach space. Cholewa [12] noticed that the theorem of Skof is still true if the relevant domain X is

replaced by an Abelian group. Czerwik [13] proved the Hyers-Ulam stability of the quadratic functional

equation. The functional equation

2f(x+ y) + 2f(x− y) = f(2x) + f(2y)

is called a Jensen quadratic functional equation. In particular, every solution of the Jensen quadratic

functional equation is said to be a Jensen quadratic mapping. The stability problems of several functional

equations have been extensively investigated by a number of authors and there are many interesting

results concerning this problem (see [1, 17, 18, 22, 23], [39]–[41], [43]–[51], [54, 55]).

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

02010 Mathematics Subject Classification: 47H10, 54C60, 39B52, 47H04, 91B44.
0Keywords: Hyers-Ulam stability, set-valued quadratic ρ-functional inequality, fixed point.
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Set-valued quadratic ρ-functional inequalities

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz condition with

Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X.
If the Lipschitz constant L is less than 1, then the operator T is called a strictly contractive operator.

Note that the distinction between the generalized metric and the usual metric is that the range of the

former is permitted to include the infinity. We recall the following theorem by Margolis and Diaz.

Theorem 1.1. [9, 15] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly

contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [24] were the first to provide applications of stability theory of functional

equations for the proof of new fixed point theorems with applications. By using fixed point methods,

the stability problems of several functional equations have been extensively investigated by a number

of authors (see [10, 11, 29, 34, 35, 38]).

Let Y be a Banach space. We define the following:

2Y : the set of all subsets of Y ;

Cb(Y ) : the set of all closed bounded subsets of Y ;

Cc(Y ) : the set of all closed convex subsets of Y ;

Ccb(Y ) : the set of all closed convex bounded subsets of Y .

On 2Y we consider the addition and the scalar multiplication as follows:

C + C ′ = {x+ x′ : x ∈ C, x′ ∈ C ′}, λC = {λx : x ∈ C},
where C,C ′ ∈ 2Y and λ ∈ R. Further, if C,C ′ ∈ Cc(Y ), then we denote by C ⊕ C ′ = C + C ′.

It is easy to check that

λC + λC ′ = λ(C + C ′), (λ+ µ)C ⊆ λC + µC.

Furthermore, when C is convex, we obtain (λ+ µ)C = λC + µC for all λ, µ ∈ R+.

For a given set C ∈ 2Y , the distance function d(·, C) and the support function s(·, C) are respectively

defined by

d(x,C) = inf{‖x− y‖ : y ∈ C}, x ∈ Y,

s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, x∗ ∈ Y ∗.

For every pair C,C ′ ∈ Cb(Y ), we define the Hausdorff distance between C and C ′ by

h(C,C ′) = inf{λ > 0 : C ⊆ C ′ + λBY , C ′ ⊆ C + λBY },

where BY is the closed unit ball in Y .
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The following proposition reveals some properties of the Hausdorff distance.

Proposition 1.2. For every C,C ′,K,K ′ ∈ Ccb(Y ) and λ > 0, the following properties hold

(a) h(C ⊕ C ′,K ⊕K ′) ≤ h(C,K) + h(C ′,K ′);

(b) h(λC, λK) = λh(C,K).

Let (Ccb(Y ),⊕, h) be endowed with the Hausdorff distance h. Since Y is a Banach space, (Ccb(Y ),⊕, h)

is a complete metric semigroup (see [8]). Debreu [14] proved that (Ccb(Y ),⊕, h) is isometrically em-

bedded in a Banach space as follows.

Lemma 1.3. [14] Let C(BY ∗) be the Banach space of continuous real-valued functions on BY ∗ endowed

with the uniform norm ‖ · ‖u. Then the mapping j : (Ccb(Y ),⊕, h)→ C(BY ∗), given by j(A) = s(·, A),

satisfies the following properties:

(a) j(A⊕B) = j(A) + j(B);

(b) j(λA) = λj(A);

(c) h(A,B) = ‖j(A)− j(B)‖u;

(d) j(Ccb(Y )) is closed in C(BY ∗)

for all A,B ∈ Ccb(Y ) and all λ ≥ 0.

Let f : Ω→ (Ccb(Y ), h) be a set-valued function from a complete finite measure space (Ω,Σ, ν) into

Ccb(Y ). Then f is Debreu integrable if the composition j ◦ f is Bochner integrable (see [7]). In this

case, the Debreu integral of f in Ω is the unique element (D)
∫

Ω
fdν ∈ Ccb(Y ) such tha j((D)

∫
Ω
fdν)

is the Bochner integral of j ◦ f . The set of Debreu integrable functions from Ω to Ccb(Y ) will be

denoted by D(Ω, Ccb(Y )). Furthermore, on D(Ω, Ccb(Y )), we define (f + g)(ω) = f(ω) ⊕ g(ω) for all

f, g ∈ D(Ω, Ccb(Y )). Then we obtain that ((Ω, Ccb(Y )),+) is an abelian semigroup.

Set-valued functional equations have been extensively investigated by a number of authors and there

are many interesting results concerning this problem (see [6], [30]–[33], [36, 37]).

Using the fixed point method, we prove the Hyers-Ulam stability of the following set-valued quadratic

ρ-functional inequalities

h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) ≤ ρ · h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) (1.1)

and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ ρ · h (f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) . (1.2)

Throughout this paper, let X be a real vector space and Y a real Banach space.

2. Stability of the set-valued quadratic ρ-functional inequality (1.1)

Throughout this section, assume that ρ is a positive real number less than 1
2 .

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued quadratic ρ-

functional inequality (1.1).

Definition 2.1. Let f : X → Ccb(Y ). The quadratic set-valued functional equation is defined by

f(x+ y)⊕ f(x− y) = 2f(x)⊕ 2f(y)

for all x, y ∈ X. Every solution of the quadratic set-valued functional equation is called a quadratic

set-valued mapping.
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Definition 2.2. [26] Let f : X → Ccb(Y ). The Jensen quadratic set-valued functional equation is

defined by

2f(x+ y)⊕ 2f(x− y) = f(2x)⊕ f(2y)

for all x, y ∈ X. Every solution of the Jensen quadratic set-valued functional equation is called a Jensen

quadratic set-valued mapping.

Lemma 2.3. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) ≤ ρ · h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) (2.1)

for all x, y ∈ X. Then f : X → (Ccb(Y ), h) is a quadratic set-valued mapping.

Proof. Letting y = x in (2.1), we get h(f(2x), 4f(x)) = 0 for all x ∈ X. Thus f(2x) = 4f(x) and so

h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) ≤ ρ · h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y))

= ρ · h (2f(x+ y)⊕ 2f(x− y), 4f(x)⊕ 4f(y))

= 2ρ · h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y))

for all x, y ∈ X. Since ρ < 1
2 , h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) = 0 and so

f(x+ y)⊕ f(x− y) = 2f(x)⊕ 2f(y)

for all x, y ∈ X. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) ≤ ρ · h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) + ϕ(x, y) (2.2)

for all x, y ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → (Ccb(Y ), h) such

that

h(f(x), Q(x)) ≤ L

4− 4L
ϕ(x, x) (2.3)

for all x ∈ X.

Proof. Let y = x in (2.2). Since f(x) is convex, we get

h(f(2x), 4f(x)) ≤ ϕ(x, x) (2.4)

and so

h
(
f(x), 4f

(x
2

))
≤ ϕ

(x
2
,
x

2

)
≤ L

4
ϕ (x, x) (2.5)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, x), x ∈ X},
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where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [28,

Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

Let g, f ∈ S be given such that d(g, f) = ε. Then

h(g(x), f(x)) ≤ εϕ(x, x)

for all x ∈ X. Hence

h(Jg(x), Jf(x)) = h
(

4g
(x

2

)
, 4f

(x
2

))
= 4h

(
g
(x

2

)
, f
(x

2

))
≤ Lϕ(x, x)

for all x ∈ X. So d(g, f) = ε implies that d(Jg, Jf) ≤ Lε. This means that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.

It follows from (2.5) that d(f, Jf) ≤ L
4 .

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q
(x

2

)
=

1

4
Q(x) (2.6)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.6) such that there exists a µ ∈ (0,∞) satisfying

h(f(x), Q(x)) ≤ µϕ(x, x)

for all x ∈ X;

(2) d(Jnf,Q)→ 0 as n→∞. This implies the equality

lim
n→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

4− 4L
.

This implies that the inequality (2.3) holds.

By (2.2),

h

(
4nf

(
x+ y

2n

)
⊕ 4nf

(
x− y

2n

)
, 2 · 4nf

( x
2n

)
⊕ 2 · 4nf

( y
2n

))
≤ ρ · h

(
2 · 4nf

(
x+ y

2n

)
⊕ 2 · 4nf

(
x− y

2n

)
, 4nf

( x

2n−1

)
⊕ 4nf

( y

2n−1

))
+ 4nϕ

( x
2n
,
y

2n

)
≤ ρ · h

(
2 · 4nf

(
x+ y

2n

)
⊕ 2 · 4nf

(
x− y

2n

)
, 4nf

( x

2n−1

)
⊕ 4nf

( y

2n−1

))
+ Lnϕ(x, y)
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and so

h(Q(x+ y)⊕Q(x− y), 2Q(x)⊕ 2Q(y)) ≤ ρ · h (2Q(x+ y)⊕ 2Q(x− y), Q(2x)⊕Q(2y))

for all x, y ∈ X. By Lemma 2.3, Q(x+ y)⊕Q(x− y) = 2Q(x)⊕ 2Q(y), as desired. �

Corollary 2.5. Let p > 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) ≤ ρ · h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y))

+ θ(||x||p + ||y||p) (2.7)

for all x, y ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ 2θ

2p − 4
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result. �

Theorem 2.6. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (2.2). Then

there exists a unique quadratic set-valued mapping Q : X → (Ccb(Y ), h) such that

h(f(x), Q(x)) ≤ 1

4− 4L
ϕ(x, x)

for all x ∈ X.

Proof. It follows from (2.4) that

h

(
f(x),

1

2
f (2x)

)
≤ 1

4
ϕ (x, x)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.4. �

Corollary 2.7. Let 2 > p > 0 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose

that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (2.7). Then there exists a unique

quadratic set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ 2θ

4− 2p
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 2.6 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result. �
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3. Stability of the set-valued quadratic ρ-functional inequality (1.2)

Throughout this section, assume that ρ is a positive real number less than 2.

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued quadratic ρ-

functional inequality (1.2).

Lemma 3.1. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ ρ · h (f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) (3.1)

for all x, y ∈ X. Then f : X → (Ccb(Y ), h) is a Jensen quadratic set-valued mapping.

Proof. Letting y = 0 in (3.1), we get h(4f(x), f(2x)) = 0 for all x ∈ X. Thus f(2x) = 4f(x) and so

2h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) = h(2f(x+ y)⊕ 2f(x− y), 4f(x)⊕ 4f(y))

= h (2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y))

≤ ρ · h (f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y))

for all x, y ∈ X. Since ρ < 2, h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) = 0 and so

2f(x+ y)⊕ 2f(x− y) = f(2x)⊕ f(2y)

for all x, y ∈ X. �

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ ρ · h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y)) + ϕ(x, y) (3.2)

for all x, y ∈ X. Then there exists a unique Jensen quadratic set-valued mapping Q : X → (Ccb(Y ), h)

such that

h(f(x), Q(x)) ≤ L

4− 4L
ϕ(x, 0)

for all x ∈ X.

Proof. Let y = 0 in (3.2). Since f(x) is convex, we get

h(f(2x), 4f(x)) ≤ ϕ(x, 0) (3.3)

and

h
(
f(x), 4f

(x
2

))
≤ ϕ

(x
2
, 0
)
≤ L

4
ϕ(x, 0) (3.4)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}
and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [28,

Lemma 2.1]).
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Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.4, one can show that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.

It follows from (3.4) that d(f, Jf) ≤ L
4 .

The rest of the proof is similar to the proof of Theorem 2.4. �

Corollary 3.3. Let p > 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ ρ · h(f(x+ y)⊕ f(x− y), 2f(x)⊕ 2f(y))

+ θ(||x||p + ||y||p) (3.5)

for all x, y ∈ X. Then there exists a unique Jensen quadratic set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ θ

2p − 4
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (3.2). Then

there exists a unique Jensen quadratic set-valued mapping Q : X → (Ccb(Y ), h) such that

h(f(x), Q(x)) ≤ 1

4− 4L
ϕ(x, 0)

for all x ∈ X.

Proof. It follows from (3.3) that

h

(
f(x),

1

4
f (2x)

)
≤ 1

4
ϕ (x, 0)

for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.4 and 3.2. �

Corollary 3.5. Let 0 < p < 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose

that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (3.5). Then there exists a unique

Jensen quadratic set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ θ

4− 2p
||x||p

for all x ∈ X.
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Proof. The proof follows from Theorem 3.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result. �
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APPROXIMATE TERNARY QUADRATIC 3-DERIVATIONS ON TERNARY

BANACH ALGEBRAS AND C∗-TERNARY RINGS

HOSSEIN PIRI∗, SHAGHAYEGH ASLANI, VAHID KESHAVARZ, THEMISTOCLES M. RASSIAS,

CHOONKIL PARK∗ AND YOUNG SUN PARK∗

Abstract. In the current article, we use a fixed point alternative theorem to establish the

Hyers-Ulam stability and also the superstability of a ternary quadratic 3-derivation on ternary

Banach algebras and C∗-ternary rings.

1. Introduction and preliminaries

Ternary algebraic operations were considered in the 19th century by several mathematicians
and physicists such as Cayley [5] who introduced the notion of cubic matrix which in turn was
generalized by Kapranov, Gelfand and Zelevinskii in 1990 [22]. As an application in physics,
the quark model inspired a particular brand of ternary algebraic systems. The so-called Nambu
mechanics which has been proposed by Nambu [25] in 1973, is based on such structures. There
are also some applications, although still hypothetical, in the fractional quantum Hall effect,
the non-standard statistics (the anyons), supersymmetric theories, Yang-Baxter equation, etc,
(see [1, 35]). The comments on physical applications of ternary structures can be found in
([6, 12, 17, 18, 26, 27, 31]).

We say that a functional equation (Q) is stable if any function g satisfying the equation
(Q) approximately is near to true solution of (Q). A basic question in the theory of functional
equations is as follows: when is it true that a function, which approximately satisfies a func-
tional equation, must be close to an exact solution of the equation? If the problem accepts a
unique solution, we say the equation is stable. Also, if every approximately solution is an exact
solution of it, we say the functional equation is superstable (see [3]). The first stability problem
concerning group homomorphisms was raised by Ulam [34] and partially solved by Hyers [20].
In [29], Rassias [16] generalized the result of Hyers for approximately linear mappings. Gajda
[15] answered the question for another case of linear mapping, which was rased by Rassias.
The stability problems of various functional equations have been extensively investigated by a
number of authors (see [13, 14, 21]).

The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called quadratic functional
equation. In addition, every solution of the above equation is said to be a quadratic mapping.
A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [33]
for mappings f : X → Y , where X is a normed space and Y is a Banach space. Later,
Czerwik [7] proved the Cauchy-Rassias stability of the quadratic functional equation. Since
then, the stability problems of various functional equation have been extensively investigated
by a number of authors (see [4, 9, 11, 23, 28]). As it is extensively discussed in [30], the full
description of a physical system S implies the knowledge of three basic ingredients: the set of
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Key words and phrases. quadratic functional equation; Hyers-Ulam stability; superstability; ternary qua-

dratic 3-derivation; ternary Banach algebra; C∗-ternary ring.
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the observables, the set of the states and the dynamics that describes the time evolution of
the system by means of the time dependence of the expectation value of a given observable
on a given statue. Originally the set of the observables were considered to be a C∗-algebra
[19]. In many applications, however, this was shown not to be the most convenient choice, and
so the C∗-algebra was replaced by a von Neumann algebra. This is because the role of the
representation turns out to be crucial, mainly when long range interactions are involved. Here
we used a different algebraic structure.

A ternary algebra is a complex Banach space, equipped with a ternary product (x, y, z) →
[x, y, z] of A3 into A, which is linear in the outer variables, conjugate linear in the middle

variable, and associative in the sense that
[
x, y, [z, u, v]

]
=
[
x, [y, z, u]v

]
=
[
[x, y, z], u, v

]
, and

satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖. A C∗-ternary ring is a complex Banach space, A equipped
with a ternary product which is associative and linear in the outer variables, conjugate linear
in the middle variable, and ‖[x, x, x]‖ = ‖x‖3 (see [37]).

If a C∗-ternary algebra (A, [·, ·, ·]) has an identity, that is, an element e ∈ A such that
x = [x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with the
operation xoy := [x, e, y], x∗ := [e, x, e] is a unital C∗-algebra. Conversely, if (A, o) is a
unital C∗-algebra, then [x, y, z] := xoy∗oz makes A into a C∗-ternary ring.

Recently, Shagholi et al. [32] proved the stability of ternary quadratic derivations on ternary
Banach algebras. Moslehian investigated the stability and the superstability of ternary deriva-
tions on C∗-ternary rings [24]. Xu et al. [36] used the fixed point alternative (Theorem 4.2
of current article) to establish the Hyers-Ulam stability of the general mixed additive-cubic
functional equation, where functions map a linear space into a complete quasi fuzzy p-normed
space. The Hyers-Ulam stability of an additive-cubic-quartic functional equation in NAN
-spaces was also proved by using the mentioned theorem in [2].

In this article, we prove the Hyers-Ulam stability and the superstability of ternary quadratic
3-derivations on ternary Banach algebras and C∗-ternary rings associated with the quadratic
functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) using the fixed point theorem.

2. Stability of ternary quadratic 3-derivations

Throughout this article, for a ternary Banach algebra (or C∗-ternary ring) A , we denote

n−times︷ ︸︸ ︷
A×A× · · · ×A

by An.

Definition 2.1. Let A be a ternary Banach algebra or C∗-ternary ring. Then a mapping
D : A→ A is called a ternary quadratic 3-derivation if it is a quadratic mapping that satisfies

D
([

[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]
])

=
[
D([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
D([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], D([z1, z2, z3])

]]
for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A.
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It was proved in [10] that for the vector spaces X and Y and a fixed positive integer k, the
mapping f : X → Y is quadratic if and only if the following equality holds:

2f

(
kx+ ky

2

)
+ 2f

(
kx− ky

2

)
= k2f(x) + k2f(y)

for all x, y ∈ X. Also, we can show that f is quadratic if and only if for a fixed positive integer
k, we have

f(kx+ ky) + f(kx− ky) = 2k2f(x) + 2k2f(y)

for all x, y ∈ X. Before proceeding to the main results, to achieve our aim, we need the
following known fixed point theorem which has been proved in [8].

Theorem 2.2. Suppose that (Ω, d) is a complete generalized metric space and J : Ω→ Ω is a
strictly contractive mapping with the Lipschitz constant L. Then, for any x ∈ Ω, either

d(Jnx, Jn+1x) =∞, ∀n ≥ 0,

or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Λ = {y ∈ Ω : d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Λ.

In the following theorem, we prove the Hyers-Ulam stability of ternary quadratic 3-derivation
on C∗-ternary rings.

Theorem 2.3. Let A be a C∗-ternary ring, f : A→ A be a mapping with f(0) = 0, and also
let ϕ : A11 → [0,∞) be a function such that

(1)
∥∥∥2f

(
µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2(f(a) + f(b))

∥∥∥ ≤ ϕ(a, b, 0, 0, 0, 0, 0, 0, 0, 0, 0),∥∥∥f ([[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]])
−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ ϕ(0, 0, x1, x2, x3, y1, y2, y3, z1, z2, z3)

(2)

for all µ ∈ T = {λ ∈ C : |λ| = 1} and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. If there exists
a constant M ∈ (0, 1) such that

ϕ(2a, 2b, 2x1, 2x2, 2x3, 2y1, 2y2, 2y3, 2z1, 2z2, 2z3)(3)

≤ 4Mϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3)

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A, then there exists a unique ternary quadratic 3-
derivation D : A→ A such that

(4) ‖f(a)−D(a)‖ ≤ M

1−M
ψ(a)

for all a ∈ A, where ψ(a) = ϕ(a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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Proof. It follows from (3) that

(5) lim
j→∞

ϕ(2ja, 2jb, 2jx1, 2
jx2, 2

jx3, 2
jy1, 2

jy2, 2
jy3, 2

jz1, 2
jz2, 2

jz3)

4j
= 0

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Putting µ = 1, b = 0 and replacing a by 2a in (1),
we have ∥∥∥4f(a)− f(2a)

∥∥∥ ≤ ψ(2a) ≤ ψ(2a) ≤ 4Mψ(a)

and so

(6)

∥∥∥∥f(a)− 1

4
f(2a)

∥∥∥∥ ≤Mψ(a)

for all a ∈ A. We consider the set Ω := {h : A → A |h(0) = 0} and introduce the generalized
metric on X as follows:

d(h1, h2) := inf{K ∈ (0,∞) : ‖h1(a)− h2(a)‖ ≤ Kψ(a),∀a ∈ A},

if there exists such a constant K, and d(h1, h2) = ∞, otherwise. One can show that (Ω, d) is
a complete metric space. We now show that J : Ω→ Ω by

(7) J(h)(a) =
1

4
h(2a)

for all a ∈ A. Given h1, h2 ∈ Ω, let K ∈ R+ an arbitrary constant with d(h1, h2) ≤ K, that is,

(8) d(h1(a), h2(a)) ≤ Kψ(a)

for all a ∈ A. Substituting a by 2a in (8) and using (3) and (7), we have

‖(Jh1)(a)− (Jh2)(a)‖ =
1

4
‖h1(2a)− h2(2a)‖ ≤ 1

4
Kψ(2a) ≤ KMψ(a)

for all a ∈ A and thus d(Jh1, Jh2) ≤ KM . Therefore, we conclude that d(Jh1, Jh2) ≤
Md(h1, h2) for all h1, h2 ∈ Ω. It follows from (6) that

(9) d(Jf, f) ≤M.

By Theorem 2.2, the sequence {Jnf} converges to a unique fixed point D : A→ A in the set
Ω1 = {h ∈ Ω, d(f, h) <∞}, i.e.,

(10) lim
n→∞

2na

4n
= D(a),

for all a ∈ A. By Theorem 2.2 and (9), we have

d(f,D) ≤ d(Jf, f)

1−M
≤ M

1−M
.

The last inequality shows that (4) holds for all a ∈ A. Replace 2na and 2nb by a and b,
respectively. Now, dividing both sides of the resulting inequality by 2n, and letting n goes to
infinity, we obtain

(11) 2D

(
µa+ µb

2

)
+ 2D

(
µa− µb

2

)
= µ2(D(a) +D(b))
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for all a, b ∈ A and µ ∈ T . Putting µ = 1 in (11), we have

2D

(
a+ b

2

)
+ 2D

(
a− b

2

)
= D(a) +D(b)

for all a, b ∈ A. Hence D is a quadratic mapping by [33, Proposition 1]. So it follows from the
definition of D, (2), (5) and (10) that

D
([

[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]
])

−
[
D([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
D([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], D([z1, z2, z3])

]]
= lim

n→∞

(
1

49n
f
([

[2nx1, 2
nx2, 2

nx3], [2
ny1, 2

ny2, 2
ny3], [2

nz1, 2
nz2, 2

nz3]
])

−
[ 1

43n
f ([2nx1, 2

nx2, 2
nx3]) , [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[ 1

43n
f([2ny∗1, 2

ny∗2, 2
ny∗3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3],

1

43n
f([2nz1, 2

nz2, 2
nz3])

]])
≤ lim

n→∞

1

49n
ϕ(0, 0, 2nx1, 2

nx2, 2
nx3, 2

ny1, 2
ny2, 2

ny3, 2
nz1, 2

nz2, 2
nz3) = 0

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A and so

D
([

[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]
])

=
[
D([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
D([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], D([z1, z2, z3])

]]
,

which means that D is a ternary quadratic 3-derivation. �

Corollary 2.4. Let p, θ be nonnegative real numbers such that p < 2 and let f be a mapping
on a C∗-ternary ring A with f(0) = 0 and

∥∥∥2f

(
µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2(f(a) + f(b))

∥∥∥ ≤ θ(‖a‖p + ‖b‖‖p),
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−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ θ(‖x1‖p + ‖x2‖p + ‖x3‖p + ‖y1‖p + ‖y2‖p + ‖y3‖p + ‖z1‖p + ‖z2‖p + ‖z3‖p)

for all µ ∈ T and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then there exists a unique ternary
quadratic 3-derivation D : A→ A satisfying

‖f(a)−D(a)‖ ≤ 2pθ

4− 2p
‖a‖p

for all a ∈ A.

Proof. The result follows from Theorem 2.3 by putting

ϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3) := θ(‖a‖p + ‖b‖‖p + ‖x1‖p + ‖x2‖p + ‖x3‖p

+ ‖y1‖p + ‖y2‖p + ‖y3‖p + ‖z1‖p + ‖z2‖p + ‖z3‖p)

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. �

Now, we establish the superstability of ternary quadratic 3-derivations on C∗-ternary rings
as follows:

Corollary 2.5. Let p, θ be nonnegative real numbers such that 11p < 2 and let f be a mapping
on a C∗-ternary ring A with f(0) = 0 and

(12)
∥∥∥2f

(
µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2(f(a) + f(b))

∥∥∥ ≤ θ · ‖a‖p · ‖b‖p,
∥∥∥f ([[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]])
−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ θ · ‖x1‖p · ‖x2‖p · ‖x3‖p · ‖y1‖p · ‖y2‖p · ‖y3‖p · ‖z1‖p · ‖z2‖p · ‖z3‖p

for all µ ∈ T and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then f is a ternary quadratic
3-derivation on A.

Proof. Putting a = b = 0 in (12), we get f(0) = 0. Now, if we put b = 0, µ = 1 and replace a
by 2a in (12), then we have f(2a) = 4f(a) for all a ∈ A . It is easy to see by induction that

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1285 HOSSEIN PIRI et al 1280-1291



APPROXIMATE TERNARY QUADRATIC 3-DERIVATION

f(2na) = 4nf(a), and so f(a) = f(2na)
4n for all a ∈ A and n ∈ N . It follows from Theorem 2.3

that f is a quadratic mapping. Putting

ϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3)

:= θ · ‖a‖p · ‖b‖p · ‖x1‖p · ‖x2‖p · ‖x3‖p · ‖y1‖p · ‖y2‖p · ‖y3‖p · ‖z1‖p · ‖z2‖p · ‖z3‖p

in Theorem 2.3, we can obtain the desired result. �

Theorem 2.6. Let A be a ternary Banach algebra, and let f : A → A be a mapping with
f(0) = 0, and also let ϕ : A5 → [0,∞) be a function such that

(13)
∥∥∥f(µa+ µb) + f(µa− µb)− 2µ2(f(a) + f(b))

∥∥∥ ≤ ϕ(a, b, 0, 0, 0, 0, 0, 0, 0, 0, 0)∥∥∥f ([[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]])
−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ ϕ(0, 0, x1, x2, x3, y1, y2, y3, z1, z2, z3)

(14)

for all µ ∈ T and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. If there exists a constant m ∈ (0, 1)
such that

ϕ(2a, 2b, 2x1, 2x2, 2x3, 2y1, 2y2, 2y3, 2z1, 2z2, 2z3)(15)

≤ 4mϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3)

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A, then there exists a unique ternary quadratic 3-
derivation D : A→ A satisfying

(16) ‖f(a)−D(a)‖ ≤ 4m

1−m
ψ(a)

for all a ∈ A, where ψ(a) = ϕ(a, a, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Proof. Using (15), we obtain

(17) lim
n→∞

ϕ(2na, 2nb, 2nx1, 2
nx2, 2

nx3, 2
ny1, 2

ny2, 2
ny3, 2

nz1, 2
nz2, 2

nz3)

4n
= 0

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Putting µ = 1, a = b and replacing a by 2a in
(13), we get ∥∥∥f(2a)− 4f(a)

∥∥∥ ≤ ψ(a)

for all a ∈ A. By the last inequality, we have

(18)
∥∥∥1

4
f(2a)− f(a)

∥∥∥ ≤ 1

4
ψ(a)

for all a ∈ A. Similar to the proof of Theorem 2.3, we consider the set Ω := {h : A→ A|h(0) =
0} and introduce a generalized metric on Ω by

d(g, h) := inf{C ∈ (0,∞) : ‖g(a)− h(a)‖ ≤ Cψ(a),∀a ∈ A},
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if there exists such constant C, and d(g, h) =∞, otherwise. Again, it is easy to check the fact
that (Ω, d) is a complete metric space. We now define the linear mapping T : Ω→ Ω by

(19) T (h)(a) =
1

4
h(2a)

for all a ∈ A. For arbitrary elements g, h ∈ Ω and C ∈ (0,∞) with d(g, h) ≤ C, we have

(20) ‖g(a)− h(a)‖ ≤ Cψ(a)

for all a ∈ A. Replacing a by 2a in the inequality (20) and using (15) and (19), we we have

‖(Tg)(a)− (Th)(a)‖ =
1

4
‖G(2a)− h(2a)‖ ≤ 1

4
Cψ(2a) ≤ Cmψ(a)

for all a ∈ A. Thus d(Tg, Th) ≤ Cm. Therefore, we conclude that d(Tg, Th) ≤ md(g, h) for
all g, h ∈ Ω. It follows from (18) that

(21) d(Tf, f) ≤ 1

4
.

Hence T is a strictly contractive mapping on Ω. Now, Theorem 2.2 shows that T has a unique
fixed point D : A→ A in the set Ω1 = {h ∈ Ω, d(f, h) <∞}. On the other hand,

(22) lim
n→∞

2na

4n
= D(a)

for all a ∈ A. By Theorem 2.2 and (21), we obtain

d(f,D) ≤ d(Tf, f)

1−m
≤ m

4(1−m)
,

i.e., the inequality (16) is true for all a ∈ A. Let us replace a and b in (13) by 2na and 2nb
respectively, and then divide both sides by 2n. Passing to the limit as n→∞, we get

(23) D(µa+ µb) +D(µa− µb) = 2µ2D(a) + 2µ2D(b)

for all a, b ∈ A and λ ∈ T . Putting µ = 1 in (23), we have

(24) D(a+ b) +D(a− b) = 2D(a) + 2D(b)

for all a, b ∈ A. Hence D is a quadratic mapping.
It follows from (14) that∥∥∥∥ 1

49n
f
([

[2nx1, 2
nx2, 2

nx3], [2
ny1, 2

ny2, 2
ny3], [2

nz1, 2
nz2, 2

nz3]
])

−
[ 1

43n
f([2nx1, 2

nx2, 2
nx3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[ 1

43n
f([2ny∗1, 2

ny∗2, 2
ny∗3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3],

1

43n
f([2nz1, 2

nz2, 2
nz3])

]]∥∥∥∥
≤ 1

49n
ϕ(0, 0, 2nx1, 2

nx2, 2
nx3, 2

ny1, 2
ny2, 2

ny3, 2
nz1, 2

nz2, 2
nz3)

(25)

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1287 HOSSEIN PIRI et al 1280-1291



APPROXIMATE TERNARY QUADRATIC 3-DERIVATION

Taking the limit in the equality (25) and using (17), one obtains that

D
([

[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]
])

=
[
D([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
D([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
+
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], D([z1, z2, z3])

]]
for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Therefore, D is a ternary quadratic 3-derivation.
This completes the proof. �

The following corollaries are some applications to show the stability and superstability of
ternary quadratic 3-derivations under some conditions.

Corollary 2.7. Let A be a ternary Banach algebra. Let p, θ be nonnegative real numbers such
that p < 2 and let f be a mapping on a C∗-ternary ring A with f(0) = 0 and∥∥∥f(µa+ µb) + f(µa− µb)− 2µ2(f(a) + f(b))

∥∥∥ ≤ θ(‖a‖p + ‖b‖‖p),

∥∥∥f ([[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]])
−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ θ(‖x1‖p + ‖x2‖p + ‖x3‖p + ‖y1‖p + ‖y2‖p + ‖y3‖p + ‖z1‖p + ‖z2‖p + ‖z3‖p)

for all µ ∈ T and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then there exists a unique ternary
quadratic 3-derivation D : A→ A satisfying

‖f(a)−D(a)‖ ≤ 2pθ

4− 2p
‖a‖p

for all a ∈ A.

Proof. The result follows from Theorem 2.6 by putting

ϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3) := θ(‖a‖p + ‖b‖‖p + ‖x1‖p + ‖x2‖p + ‖x3‖p

+ ‖y1‖p + ‖y2‖p + ‖y3‖p + ‖z1‖p + ‖z2‖p + ‖z3‖p)

for all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. �

Corollary 2.8. Let p, θ be nonnegative real numbers such that 11p < 2 and let f be a mapping
on a C∗-ternary ring A with f(0) = 0 and

(26)
∥∥∥f(µa+ µb) + f(µa− µb)− 2µ2(f(a) + f(b))

∥∥∥ ≤ θ(‖a‖p‖b‖p),
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−
[
f([x1, x2, x3]), [y1, y2, y3],

[
[y∗1, y

∗
2, y
∗
3], [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
f([y∗1, y

∗
2, y
∗
3]), [z∗1 , z

∗
2 , z
∗
3 ], [z1, z2, z3]

]]
−
[
[x1, x2, x3], [x

∗
1, x
∗
2, x
∗
3],
[
[y∗1, y

∗
2, y
∗
3], [y1, y2, y3], f([z1, z2, z3])

]]∥∥∥
≤ θ · ‖x1‖p · ‖x2‖p · ‖x3‖p · ‖y1‖p · ‖y2‖p · ‖y3‖p · ‖z1‖p · ‖z2‖p · ‖z3‖p

for all µ ∈ T and all a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then f is a ternary quadratic
3-derivation on A.

Proof. If we put a = b = 0 in (26), then we have f(0) = 0. Moreover, letting b = 0, µ = 1
and replacing a by 2a in (26), we obtain f(2a) = 4f(a) for all a ∈ A. Similar to the proof of
Corollary 2.5, we can show that f is a quadratic mapping. Putting

ϕ(a, b, x1, x2, x3, y1, y2, y3, z1, z2, z3)

:= θ · ‖a‖p · ‖b‖p · ‖x1‖p · ‖x2‖p · ‖x3‖p · ‖y1‖p · ‖y2‖p · ‖y3‖p · ‖z1‖p · ‖z2‖p · ‖z3‖p

in Theorem 2.6, we can obtain the desired result. �
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Abstract

In this paper, we introduce a new class of coupled systems of boundary value problems for
fractional differential equations which contains multiple orders of fractional derivatives and integrals,
and discuss the existence and uniqueness of solutions. We apply Leray-Schauder’s alternative and
Banach’s contraction mapping principle to obtain the desired results. Illustrative examples is also
included.

Key words and phrases: Fractional differential systems; nonlocal boundary conditions; integral
boundary conditions; fixed point theorem.
AMS (MOS) Subject Classifications: 34A08, 34B15.

1 Introduction

Differential equations of fractional order have played a significant role in engineering, science, and pure
and applied mathematics in recent years. Fractional differential equations arise in the mathematical
modeling of systems and processes occurring in many engineering and scientific disciplines such as
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, economics,
control theory, signal and image processing, biophysics, blood flow phenomena, etc. [1]-[4]. Fractional-
order boundary value problems involving a variety of classical, nonlocal and integral boundary conditions
have been addressed by many authors, for instance, see [5]-[13] and the references cited therein.

Coupled systems of fractional-order differential equations also constitute an interesting and impor-
tant field of research in view of their applications in many real world problems such as anomalous
diffusion [14], disease models [15]-[18], ecological models [19], synchronization of chaotic systems [20]-
[22], etc. For some theoretical works on coupled systems of fractional-order differential equations, we
refer the reader to a series of papers [23]-[28].

Recently in [29] a new class of fractional boundary valued problems was introduced, which contains
four orders of Riemann-Liouville fractional derivatives, two in fractional differential equation and two

∗Corresponding author
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in boundary conditions of the form
(
λDα + (1 − λ)Dβ

)
x(t) = f(t, x(t)), t ∈ (0, T ),

x(0) = 0, µDγ1x(T ) + (1 − µ)Dγ2x(T ) = γ3,
(1)

where Dφ is the Riemann-Liouville fractional derivative of order φ ∈ {α, β, γ1, γ2} such that 1 < α, β ≤ 2
and 0 < γ1, γ2 < α − β, γ3 ∈ R, the given constants 0 < λ ≤ 1, 0 ≤ µ ≤ 1 and f ∈ C([0, T ] × R, R) is a
continuous function. Existence and uniqueness results were obtained by means of Banach’s contraction
mapping principle, Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative.

In this paper, we study a coupled system of fractional differential equations{ (
λDα + (1 − λ)Dβ

)
x(t) = f(t, x(t), y(t)), t ∈ (0, T ), 1 < α, β ≤ 2(

λ1D
α1 + (1 − λ1)Dβ1

)
y(t) = g(t, x(t), y(t)), t ∈ (0, T ), 1 < α1, β1 ≤ 2,

(2)

subject to the following type of boundary conditions{
x(0) = 0, µDγ1x(T ) + (1 − µ)Dγ2x(T ) = γ3,

y(0) = 0, µ1I
δ1y(T ) + (1 − µ1)Iδ2y(T ) = δ3,

(3)

where Dφ denotes the Caputo fractional derivatives of order φ ∈ {α, β, α1, β1, γ1, γ2}, Iχ denotes the
Riemann-Liouville fractional integral of order χ ∈ {δ1, δ2}, γ3, δ3 ∈ R, 0 < λ, λ1 ≤ 1, 0 ≤ µ, µ1 ≤ 1 and
f, g : [0, T ] × R2 → R are appropriately chosen functions.

The paper is organized as follows. In Section 2, we recall some basic definitions of fractional calculus
and present two auxiliary lemmas. The main results are presented in Section 3. We give two results:
the first one derives the existence of solutions via Leray-Schauder’s alternative, whereas the second one
concerning existence and uniqueness of solutions is established by Banach’s contraction principle. We
also discuss two examples for illustration of the existence-uniqueness results.

2 Preliminaries

Before presenting two auxiliary lemmas, we recall some basic definitions of fractional calculus [1, 2].

Definition 2.1 For (n−1)−times absolutely continuous function y : [0,∞) → R, the Caputo derivative
of fractional order q is defined as

cDqy(t) =
1

Γ(n − q)

∫ t

0

(t − s)n−q−1y(n)(s)ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

Iqy(t) =
1

Γ(q)

∫ t

0

y(s)
(t − s)1−q

ds, q > 0,

provided the integral exists.

Lemma 2.3 The boundary value problem
(
λDα + (1 − λ)Dβ

)
x(t) = ω(t), t ∈ (0, T ),

x(0) = 0, µDγ1x(T ) + (1 − µ)Dγ2x(T ) = γ3,
(4)

is equivalent to the following integral equation

x(t) =
λ − 1

λΓ(α − β)

∫ t

0

(t − s)α−β−1x(s)ds +
1

λΓ(α)

∫ t

0

(t − s)α−1ω(s)ds
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+
t

Λ1

(
γ3 −

µ(λ − 1)
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds

− (1 − µ)(λ − 1)
λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds

)
, t ∈ J := [0, T ], (5)

where the non zero constant Λ1 is defined by

Λ1 =
µT 1−γ1

Γ(2 − γ1)
+

(1 − µ)T 1−γ2

Γ(2 − γ2)
. (6)

Proof. The first equation of (4) can be rewritten as

Dαx(t) =
λ − 1

λ
Dβx(t) +

1
λ

ω(t), t ∈ J. (7)

Applying the Riemann-Liouville fractional integral of order α to both sides of (7), we obtain

x(t) =
λ − 1

λΓ(α − β)

∫ t

0

(t − s)α−β−1x(s)ds +
1

λΓ(α)

∫ t

0

(t − s)α−1ω(s)ds + C1 + C2t,

where constants C1, C2 ∈ R. The first boundary condition of (4) implies that C1 = 0. Hence

x(t) =
λ − 1

λΓ(α − β)

∫ t

0

(t − s)α−β−1x(s)ds +
1

λΓ(α)

∫ t

0

(t − s)α−1ω(s)ds + C2t. (8)

Taking the Caputo fractional derivative of order ψ ∈ {γ1, γ2} such that 0 < ψ < α−β to (8), we deduce
that

Dψx(t) =
λ − 1

λΓ(α − β − ψ)

∫ t

0

(t − s)α−β−ψ−1x(s)ds

+
1

λΓ(α − ψ)

∫ t

0

(t − s)α−ψ−1ω(s)ds + C2
1

Γ(2 − ψ)
t1−ψ.

Substituting the values ψ = γ1 and ψ = γ2 to the above relation and using the second condition of (4),
we obtain a constant γ3 as

γ3 =
µ(λ − 1)

λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

+
µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds +
µT 1−γ1

Γ(2 − γ1)
C2

+
(1 − µ)(λ − 1)
λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

+
1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds +
(1 − µ)T 1−γ2

Γ(2 − γ2)
C2,

which yields

C2 =
1
Λ1

[
γ3 −

µ(λ − 1)
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds − µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds
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− (1 − µ)(λ − 1)
λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds − 1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds

]
.

Substituting the value of the constant C2 into (8), we deduce the integral equation (5). The converse
follows by direct computation. This completes the proof. ¤

In the same way, we obtain the following result with the Riemann-Liouville fractional integal bound-
ary conditions.

Lemma 2.4 The boundary value problem
(
λ1D

α1 + (1 − λ1)Dβ1
)
y(t) = ω1(t), t ∈ (0, T ),

y(0) = 0, µ1I
δ1y(T ) + (1 − µ1)Iδ2y(T ) = δ3,

(9)

is equivalent to the following integral equation

y(t) =
λ1 − 1

λ1Γ(α1 − β1)

∫ t

0

(t − s)α1−β1−1y(s)ds +
1

λ1Γ(α1)

∫ t

0

(t − s)α1−1ω1(s)ds

+
t

Λ2

(
δ3 −

µ1(λ1 − 1)
λ1Γ(δ1 + α1 − β1)

∫ T

0

(T − s)δ1+α1−β1−1y(s)ds

− µ1

λ1Γ(δ1 + α1)

∫ T

0

(T − s)δ1+α1−1ω1(s)ds

− (1 − µ1)(λ1 − 1)
λ1Γ(δ2 + α1 − β1)

∫ T

0

(T − s)δ2+α1−β1−1y(s)ds

− 1 − µ1

λ1Γ(δ2 + α1)

∫ T

0

(T − s)δ2+α1−1ω1(s)ds

)
, t ∈ J, (10)

where the non zero constant Λ2 is defined by

Λ2 =
µ1T

1+δ1

Γ(2 + δ1)
+

(1 − µ1)T 1+δ2

Γ(2 + δ2)
. (11)

3 Main Results

Let us introduce the space X = {u(t) |u(t) ∈ C(J, R)} endowed with the norm ‖u‖ = sup{|u(t)|, t ∈ J}.
Obviously (X, ‖ · ‖) is a Banach space. Also Y = {v(t)|v(t) ∈ C(J, R)} endowed with the norm
‖v‖ = sup{|v(t)|, t ∈ J} is a Banach space. Then the product space (X × Y, ‖(u, v)‖) is also a Banach
space equipped with norm ‖(u, v)‖ = ‖u‖ + ‖v‖.

In view of Lemmas 2.3 and 2.4, we define the operator T : X × Y → X × Y by

T (u, v)(t) =
(

T1(u, v)(t)
T2(u, v)(t)

)
,

where

T1(u, v)(t) =
λ − 1

λΓ(α − β)

∫ t

0

(t − s)α−β−1u(s)ds +
1

λΓ(α)

∫ t

0

(t − s)α−1f(s, u(s), v(s))ds

+
t

Λ1

(
γ3 −

µ(λ − 1)
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1u(s)ds

− µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1f(s, u(s), v(s))ds

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1295 Suthep Suantai et al 1292-1303



A COUPLED SYSTEMS WITH MULTIPLE ORDERS

− (1 − µ)(λ − 1)
λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1u(s)ds

− 1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1f(s, u(s), v(s))ds

)
,

and

T2(u, v)(t) =
λ1 − 1

λ1Γ(α1 − β1)

∫ t

0

(t − s)α1−β1−1v(s)ds +
1

λ1Γ(α1)

∫ t

0

(t − s)α1−1g(s, u(s), v(s))ds

+
t

Λ2

(
δ3 −

µ1(λ1 − 1)
λ1Γ(δ1 + α1 − β1)

∫ T

0

(T − s)δ1+α1−β1−1v(s)ds

− µ1

λ1Γ(δ1 + α1)

∫ T

0

(T − s)δ1+α1−1g(s, u(s), v(s))ds

− (1 − µ1)(λ1 − 1)
λ1Γ(δ2 + α1 − β1)

∫ T

0

(T − s)δ2+α1−β1−1v(s)ds

− 1 − µ1

λ1Γ(δ2 + α1)

∫ T

0

(T − s)δ2+α1−1g(s, u(s), v(s))ds

)
.

Let us introduce the following hypotheses which are used hereafter.

(H1) Assume that there exist real constants ki, νi ≥ 0 (i = 1, 2) and k0 > 0, ν0 > 0 such that ∀xi ∈ R,
(i = 1, 2) we have

|f(t, x1, x2)| ≤ k0 + k1|x1| + k2|x2|,

|g(t, x1, x2)| ≤ ν0 + ν1|x1| + ν2|x2|.

(H2) Assume that f, h : J ×R2 → R are continuous functions and there exist constants mi, ni, i = 1, 2
such that for all t ∈ J and ui, vi ∈ R, i = 1, 2,

|f(t, u1, u2) − f(t, v1, v2)| ≤ m1|u1 − v1| + m2|u2 − v2|

and
|g(t, u1, u2) − g(t, v1, v2)| ≤ n1|u1 − v1| + n2|u2 − v2|.

For the sake of convenience, we set constants

M1 =
Tα

λΓ(α + 1)
+

Tα−γ1+1µ

λΛ1Γ(α − γ1 + 1)
+

Tα−γ2+1(1 − µ)
λΛ1Γ(α − γ2 + 1)

, (12)

N1 =
Tα−β |λ − 1|

λΓ(α − β + 1)
+

Tα−β−γ1+1µ|λ − 1|
λΛ1Γ(α − β − γ1 + 1)

+
Tα−β−γ2+1(1 − µ)|λ − 1|
λΛ1Γ(α − β − γ2 + 1)

, (13)

M2 =
Tα1

λ1Γ(α1 + 1)
+

T δ1+α1+1µ1

λ1Λ2Γ(δ1 + α1 + 1)
+

T δ2+α1+1(1 − µ1)
λ1Λ2Γ(δ2 + α1 + 1)

, (14)

N2 =
Tα1−β1 |λ1 − 1|

λ1Γ(α1 − β1 + 1)
+

T δ1+α1−β1+1µ1|λ1 − 1|
λ1Λ2Γ(δ1 + α1 − β1 + 1)

+
T δ2+α1−β1+1(1 − µ1)|λ1 − 1|

λ1Λ2Γ(δ2 + α1 − β1 + 1)
(15)

and

M0 = min{1 − (M1k1 + N1 + M2ν1), 1 − (M1k2 + M2ν2 + N2)}, ki, νi ≥ 0 (i = 1, 2). (16)

The first result is based on Leray-Schauder alternative.
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Lemma 3.1 (Leray-Schauder alternative) ([30] p. 4.) Let F : E → E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.

Then either the set E(F ) is unbounded, or F has at least one fixed point.

Theorem 3.2 Assume that (H1) holds. In addition, it is assumed that

M1k1 + N1 + M2ν1 < 1 and M1k2 + M2ν2 + N2 < 1,

where M1 and M2 are given by (13) and (15) respectively. Then the system (2)-(3) has at least one
solution.

Proof. First we show that the operator T : X × Y → X × Y is completely continuous. By continuity
of functions f and g, the operator T is continuous.

Let Ω = {(u, v) ∈ X × Y : ‖(u, v)‖ ≤ r} ⊂ X × Y be a bounded set. Then there exist positive
constants L1 and L2 such that

|f(t, u(t), v(t))| ≤ L1, |g(t, u(t), v(t))| ≤ L2, ∀(u, v) ∈ Ω.

Then for any (u, v) ∈ Ω, we have

|T1(u, v)(t)| ≤ |λ − 1|
λΓ(α − β)

∫ t

0

(t − s)α−β−1|u(s)|ds +
1

λΓ(α)

∫ t

0

(t − s)α−1|f(s, u(s), v(s))|ds

+
t

Λ1

(
|γ3| +

µ(λ − 1)
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1|u(s)|ds

+
µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1|f(s, u(s), v(s))|ds

+
(1 − µ)|λ − 1|

λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1|u(s)|ds

+
1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1|f(s, u(s), v(s))|ds

)

≤ L1

[
Tα

λΓ(α + 1)
+

Tα−γ1+1µ

λΛ1Γ(α − γ1 + 1)
+

Tα−γ2+1(1 − µ)
λΛ1Γ(α − γ2 + 1)

]

+‖u‖
[

Tα−β |λ − 1|
λΓ(α − β + 1)

+
Tα−β−γ1+1µ|λ − 1|

λΛ1Γ(α − β − γ1 + 1)

+
Tα−β−γ2+1(1 − µ)|λ − 1|
λΛ1Γ(α − β − γ2 + 1)

]
+

|γ3|T
Λ1

= L1M1 + N1r + |γ3|T/Λ1

and consequently,
‖T1(u, v)‖ ≤ L1M1 + N1r + |γ3|T/Λ1.

Similarly, we get
‖T2(u, v)‖ ≤ L2M2 + N2r + |δ3|T/Λ2.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then we have

|T1(u(t2), v(t2)) − T1(u(t1), v(t1))|
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≤ |λ − 1|
λΓ(α − β)

[ ∫ t2

0

(t2 − s)α−β−1u(s)ds −
∫ t1

0

(t1 − s)α−β−1u(s)ds

]

+
1

λΓ(α)

[ ∫ t2

0

(t2 − s)α−1f(s, u(s), v(s))ds −
∫ t1

0

(t1 − s)α−1f(s, u(s), v(s))ds

]

+
|t2 − t1|

Λ1

(
|γ3| +

µ|λ − 1|
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1u(s)ds

+
µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1f(s, u(s), v(s))ds

+
(1 − µ)|λ − 1|

λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1u(s)ds

+
1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1f(s, u(s), v(s))ds

)

≤ r

[
[2(t2 − t1)α−β + |tα−β

2 − tα−β
1 ]|λ − 1|

λΓ(α − β + 1)
+

|t2 − t1|
Λ1

(
|λ − 1|µTα−β−γ1

λΓ(α − β − γ1 + 1)

+
|λ − 1|(1 − µ)Tα−β−γ2

λΓ(α − β − γ2 + 1)

)]
+

|t2 − t1||γ3|
Λ1

+ L1

[
2(t2 − t1)α−1 + |tα−1

2 − tα−1
1 |

λΓ(α + 1)
+

|t2 − t1|
Λ1

(
µTα−γ1

λΓ(α − γ1 + 1)
+

(1 − µ)Tα−γ2

λΓ(α − γ2 + 1)

)]
.

Analogously, we can obtain

|T2(u(t2), v(t2)) − T2(u(t1), v(t1))|

≤ r

[
[2(t2 − t1)α1−β1 + |tα1−β1

2 − tα1−β1
1 ]|λ1 − 1|

λ1Γ(α1 − β1 + 1)
+

|t2 − t1|
Λ2

(
|λ1 − 1|µ1T

δ1+α1−β1

λ1Γ(δ1 + α1 − β1 + 1)

+
|λ1 − 1|(1 − µ)T δ2+α1−β1

λ1Γ(δ2 + α1 − β1 + 1)

)]
+

|t2 − t1||δ3|
Λ2

+ L2

[
2(t2 − t1)α1−1 + |tα1−1

2 − tα1−1
1 |

λ1Γ(α1 + 1)
+

|t2 − t1|
Λ2

(
µ1T

δ1+α1

λ1Γ(δ1 + α1 + 1)
+

(1 − µ1)T δ2+α1

λ1Γ(δ2 + α1 + 1)

)]
.

As t2 − t1 → 0, the right-hand sides of the above inequalities tends to zero independently of (u, v) ∈ Ω.
Therefore, by the Arzelá-Ascoli theorem, the operator T (u, v) is equicontinuous, and thus the operator
T (u, v) is completely continuous.

Finally, it will be verified that the set E = {(u, v) ∈ X ×Y |(u, v) = θT (u, v), 0 ≤ θ ≤ 1} is bounded.
Let (u, v) ∈ E , with (u, v) = θT (u, v). For any t ∈ [0, T ], we have

u(t) = θT1(u, v)(t), v(t) = θT2(u, v)(t).

Then

|u(t)| ≤ (k0 + k1‖u‖ + k2‖v‖)

[
Tα

λΓ(α + 1)
+

Tα−γ1+1µ

λΛ1Γ(α − γ1 + 1)
+

Tα−γ2+1(1 − µ)
λΛ1Γ(α − γ2 + 1)

]

+‖u‖
[

Tα−β |λ − 1|
λΓ(α − β + 1)

+
Tα−β−γ1+1µ|λ − 1|

λΛ1Γ(α − β − γ1 + 1)

+
Tα−β−γ2+1(1 − µ)|λ − 1|
λΛ1Γ(α − β − γ2 + 1)

]
+

|γ3|T
Λ1
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and

|v(t)| ≤ (ν0 + ν1‖u‖ + ν2‖v‖)

[
Tα1

λ1Γ(α1 + 1)
+

T δ1+α1+1µ1

λ1Λ2Γ(δ1 + α1 + 1)

+
T δ2+α1+1(1 − µ1)

λ1Λ2Γ(δ2 + α1 + 1)

]
+ ‖v‖

[
Tα1−β1 |λ1 − 1|

λ1Γ(α1 − β1 + 1)
.

+
T δ1+α1−β1+1µ1|λ1 − 1|

λ1Λ2Γ(δ1 + α1 − β1 + 1)
+

T δ2+α1−β1+1(1 − µ1)|λ1 − 1|
λ1Λ2Γ(δ2 + α1 − β1 + 1)

]
+

|δ3|T
Λ2

.

Hence we have
‖u‖ ≤ M1(k0 + k1‖u‖ + k2‖v‖) + N1‖u‖ + |γ3|T/Λ1

and
‖v‖ ≤ M2(ν0 + ν1‖u‖ + ν2‖v‖) + N2‖v‖ + |δ3|T/Λ2,

which imply that

‖u‖ + ‖v‖ =
(
M1k0 + M2ν0 + |γ3|T/Λ1 + |δ3|T/Λ2

)
+(M1k1 + N1 + M2ν1)‖u‖ + (M1k2 + M2ν2 + N2)‖v‖.

Consequently,

‖(u, v)‖ ≤ M1k0 + M2ν0 + |γ3|T/Λ1 + |δ3|T/Λ2

M0
,

for any t ∈ [0, T ], where M0 is defined by (16), which proves that E is bounded. Thus, by Lemma 3.1,
the operator T has at least one fixed point. Hence the boundary value problem (2)-(3) has at least one
solution. The proof is complete. ¤

In the second result, we prove existence and uniqueness of solutions of the boundary value problem
(2)-(3) via Banach’s contraction principle.

Theorem 3.3 Assume that (H2) holds. In addition, assume that

M1(m1 + m2) + N1 + M2(n1 + n2) + N2 < 1,

where M1, N1, M2 and N2 are given by (12) and (15), respectively. Then the system (2)-(3) has a
unique solution on J .

Proof. Define supt∈J f(t, 0, 0) = F0 < ∞ and supt∈J g(t, 0, 0) = G0 < ∞ such that

r ≥ N1M1 + N2M2 + |γ3|T/Λ1 + |δ3|T/Λ2

1 − M1(m1 + m2) − M2(n1 + n2) − (N1 + N2)
.

We show that T Br ⊂ Br, where Br = {(u, v) ∈ X × Y : ‖(u, v)‖ ≤ r}.
For (u, v) ∈ Br, we have

|T1(u, v)(t)| ≤ |λ − 1|
λΓ(α − β)

∫ T

0

(T − s)α−β−1|u(s)|ds

+
1

λΓ(α)

∫ T

0

(T − s)α−1[|f(s, u(s), v(s)) − f(s, 0, 0)| + |f(s, 0, 0)|]ds

+
T

Λ1

(
|γ3| +

µ|λ − 1|
λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1|u(s)|ds

+
µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1[|f(s, u(s), v(s)) − f(s, 0, 0)| + |f(s, 0, 0)|]ds
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+
(1 − µ)|λ − 1|

λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1|u(s)|ds

+
1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1[|f(s, u(s), v(s)) − f(s, 0)| + |f(s, 0, 0)|]ds

)

≤ (m1‖u‖ + m2‖v‖ + F0)

[
Tα

λΓ(α + 1)
+

Tα−γ1+1µ

λΛ1Γ(α − γ1 + 1)
+

Tα−γ2+1(1 − µ)
λΛ1Γ(α − γ2 + 1)

]

+‖x‖
[

Tα−β |λ − 1|
λΓ(α − β + 1)

+
Tα−β−γ1+1µ|λ − 1|

λΛ1Γ(α − β − γ1 + 1)

+
Tα−β−γ2+1(1 − µ)|λ − 1|
λΛ1Γ(α − β − γ2 + 1)

]
+

|γ3|Tα−1

Λ1

≤ M1[(m1 + m2)r + F0] + N1r + |γ3|T/Λ1.

Hence
‖T1(u, v)‖ ≤ M1[(m1 + m2)r + F0] + N1r + |γ3|T/Λ1.

In the same way, we can obtain that

‖T2(u, v)‖ ≤ M2[(n1 + n2)r + G0] + N2r + |δ3|T/Λ2.

Consequently, ‖T (u, v)‖ ≤ r.
Now for (u2, v2), (u1, v1) ∈ X × Y, and for any t ∈ [0, e], we get

|T1(u2, v2)(t) − T1(u1, v1)(t)|

≤ |λ − 1|
λΓ(α − β)

∫ T

0

(T − s)α−β−1|u2(s) − u1(s)|ds

+
1

λΓ(α)

∫ T

0

(T − s)α−1|f(s, u2(s), v2(s)) − f(s, u1(s), v1(s))|ds

+
Tα−1

Λ1

(
µ|λ − 1|

λΓ(α − β − γ1)

∫ T

0

(T − s)α−β−γ1−1|u2(s) − u1(s)|ds

+
µ

λΓ(α − γ1)

∫ T

0

(T − s)α−γ1−1|f(s, u2(s), v2(s)) − f(s, u1(s), v1(s))|ds

+
(1 − µ)|λ − 1|

λΓ(α − β − γ2)

∫ T

0

(T − s)α−β−γ2−1|u2(s) − u1(s)|ds

+
1 − µ

λΓ(α − γ2)

∫ T

0

(T − s)α−γ2−1|f(s, u2(s), v2(s)) − f(s, u1(s), v1(s))|ds

)

≤ (m1‖u2 − u1‖ + m2‖v2 − v1‖)

[
Tα

λΓ(α + 1)
+

Tα−γ1+1µ

λΛ1Γ(α − γ1 + 1)

+
Tα−γ2+1(1 − µ)

λΛ1Γ(α − γ2 + 1)

]
+ ‖u2 − u1‖

[
Tα−β |λ − 1|

λΓ(α − β + 1)
+

Tα−β−γ1+1µ|λ − 1|
λΛ1Γ(α − β − γ1 + 1)

+
Tα−β−γ2+1(1 − µ)|λ − 1|
λΛ1Γ(α − β − γ2 + 1)

]
≤ M1[(m1‖u2 − u1‖ + m2‖v2 − v1‖) + N1‖u2 − u1‖
≤ M1(m1 + m2)[‖u2 − u1‖ + ‖v2 − v1‖)] + N1[‖u2 − u1‖ + ‖v2 − v1‖]
≤ [M1(m1 + m2) + N1][‖u2 − u1‖ + ‖v2 − v1‖],

and consequently we obtain

‖T1(u2, v2) − T1(u1, v1)‖ ≤ [M1(m1 + m2) + N1][‖u2 − u1‖ + ‖v2 − v1‖]. (17)
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Similarly,
‖T2(u2, v2) − T2(u1, v1)‖ ≤ [M2(n1 + n2) + N2][‖u2 − u1‖ + ‖v2 − v1‖]. (18)

It follows from (17) and (18) that

‖T (u2, v2) − T (u1, v1)‖ ≤ [M1(m1 + m2) + N1 + M2(n1 + n2) + N2](‖u2 − u1‖ + ‖v2 − v1‖).

Since M1(m1 + m2) + N1 + M2(n1 + n2) + N2 < 1, therefore, T is a contraction operator. So, By
Banach’s fixed point theorem, the operator T has a unique fixed point, which is the unique solution of
problem (2)-(3). This completes the proof. ¤
Example 3.4 Consider the following coupled system of fractional differential equations with multiple
orders of fractional derivatives and integrals boundary conditions of the form

(
33
38

D29/15 +
5
38

D16/15

)
x(t) =

t

t + 1
+

1
3

sin
(
|x(t)|

4

)
+

y2(t)
10(1 + |y(t)|)

, t ∈ [0, 3/2],(
24
27

D19/13 +
3
27

D15/13

)
y(t) =

√
t + 3 +

x(t)
10

e−|x(t)| +
t

3
tan−1

(
|y(t)|

6

)
, t ∈ [0, 3/2],

x(0) = 0,
9
16

D8/15x

(
3
2

)
+

7
16

D11/15x

(
3
2

)
=

1
3
,

y(0) = 0,
2
5
I1/2y

(
3
2

)
+

3
5
I3/2y

(
3
2

)
=

2
7
.

(19)

Here λ = 33/38, α = 29/15, β = 16/15, T = 3/2, λ1 = 24/27, α1 = 19/13, β1 = 15/13, µ = 9/16,
γ1 = 8/15, γ2 = 11/15, γ3 = 1/3, µ1 = 2/5, δ1 = 1/2, δ2 = 3/2, δ3 = 2/7. From all constants,
we can compute that Λ1 = 1.307202573, Λ2 = 1.050302214. M1 = 3.248792650, N1 = 0.4373542422,
M2 = 2.869543745 and N2 = 0.3962406719. Clearly,

|f(t, x, y)| =
∣∣∣∣ t

t + 1
+

1
3

sin
(
|x|
4

)
+

y2

10(1 + |y|)

∣∣∣∣
≤ 3

5
+

1
12

|x| + 1
10

|y|,

and

|g(t, x, y)| =
∣∣∣∣√t + 3 +

x

10
e−|x| +

t

3
tan−1

(
|y|
6

)∣∣∣∣
≤ 3√

2
+

1
10

|x| + 1
12

|y|.

Setting k0 = 3/5, k1 = 1/12, k2 = 1/10, ν0 = 3/
√

2, ν1 = 1/10 and ν2 = 1/12, we have

M1k1 + M2ν1 + N1 = 0.9950413375 < 1 and M1k2 + M2ν2 + N2 = 0.9602485823 < 1.

Therefore, by applying Theorem 3.2, the boundary value problem (19) has at least one solution on
[0, 3/2].

Example 3.5 Consider the following coupled system of fractional differential equations with multiple
orders of fractional derivatives and integrals boundary conditions of the form

(
49
53

D17/9 +
4
53

D10/9

)
x(t) =

t + 1
2

+
|x(t)|e−t2

2(1 + |x(t)|)
+

1
3

sin |y(t)| cos 2πt, t ∈ [0, 1/2],(
41
46

D13/7 +
5
46

D8/7

)
y(t) =

t

4
+ tan−1

(
|x(t)|

3

)
+

1
8

(
y2(t) + 2|y(t)|

1 + |y(t)|

)
, t ∈ [0, 1/2],

x(0) = 0,
13
31

D5/9x

(
1
2

)
+

18
31

D4/9x

(
1
2

)
=

3
4
,

y(0) = 0,
6
11

I5/2y

(
1
2

)
+

5
11

I7/2y

(
1
2

)
=

2
3
.

(20)
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Here λ = 49/53, α = 17/9, β = 10/9, T = 1/2, λ1 = 41/46, α1 = 13/7, β1 = 8/7, µ = 13/31, γ1 = 5/9,
γ2 = 4/9, γ3 = 3/4, µ1 = 6/11, δ1 = 5/2, δ2 = 7/2, δ3 = 2/3, f(t, x, y) = ((t + 1)/2) + ((|x|e−t2)/(2(1 +
|x|)))+((sin |y| cos 2πt)/(3)) and g(t, x, y) = (t/4)+tan−1(|x|/3)+((y2+2|y|)/(8(1+ |y|))). From above
information, we can calculate that Λ1 = 0.7921804090, Λ2 = 0.004528637717. M1 = 0.3706636539,
N1 = 0.09832444532, M2 = 0.4209829845 and N2 = 0.1927580748. It is easy to see that

|f(t, x, y) − f(t, u, v)| ≤ 1
2
|x − u| + 1

3
|y − v|,

and
|g(t, x, y) − g(t, u, v)| ≤ 1

3
|x − u| + 1

4
|y − v|.

Putting m1 = 1/2, m2 = 1/3, n1 = 1/3 and n2 = 1/4, we deduce that

M1(m1 + m2) + N1 + M2(n1 + n2) + N2 = 0.8455423059 < 1.

Hence, by using Theorem 3.3, the boundary value problem (20) has a unique solution on [0, 1/2].
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Abstract

In this paper, we introduce a new kind of nonlocal nonlinear flux type integral boundary con-
ditions and discuss the existence and uniqueness of solutions for a coupled system of fractional
differential equations supplemented with these conditions. We apply Leray-Schauder’s alternative
and Banach’s contraction mapping principle to obtain the desired results. An illustrative example is
also included. Our results are new and enrich the existing material on coupled systems of fractional
differential equations equipped with integral boundary conditions.

Key words and phrases: Fractional differential systems; nonlocal boundary conditions; integral
boundary conditions; fixed point theorem
AMS (MOS) Subject Classifications: 34A08, 34B15.

1 Introduction

Fractional differential equations appear in the mathematical modeling of several systems and processes
occurring in many branches of applied sciences such as blood flow phenomena, control theory, signal and
image processing, reaction-diffusion models, aerodynamics, electrodynamics of complex medium, poly-
mer rheology, etc. [1]-[4]. Fractional order differential equations are also found to be of great support in
describing the hereditary properties of various materials and processes. With this advantage, fractional-
order models have become more realistic and practical than the corresponding classical integer-order
models. Fractional-order boundary value problems involving a variety of classical, nonlocal and integral
boundary conditions have been addressed by many authors, for instance, see [5]-[10] and the references
cited therein.

Coupled systems of fractional-order differential equations also constitute an interesting and impor-
tant field of research in view of their applications in many real world problems such as anomalous
diffusion [11], disease models [12]-[15], ecological models [16], synchronization of chaotic systems [17]-
[19], etc. For some theoretical works on coupled systems of fractional-order differential equations, we
refer the reader to a series of papers [20]-[24].

The integral boundary conditions provide a descent approach to relax the limitation of circular
cross-section of blood vessels with an arbitrary shaped cross-section of such vessels in the study of
blood flow problems [25] and model the problem of bacterial self-organization [26]. Recently, in [27, 28],
the authors investigated fractional-order differential inclusions and equations with nonlocal nonlinear
flux type integral boundary conditions.

In this paper, we consider a more generalized version of flux type integral boundary conditions
and develop the existence criteria for a coupled system of Caputo type fractional differential equations
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equipped with these new conditions. Precisely, we investigate the following coupled system of Caputo
type fractional differential equations{ cDqx(t) = f(t, x(t), y(t)), t ∈ [0, 1], 1 < q ≤ 2,

cDpy(t) = h(t, x(t), y(t)), t ∈ [0, 1], 1 < p ≤ 2,
(1)

supplemented with the nonlocal nonlinear flux type integral boundary conditions:
x′(0) = α

∫ ξ

0

x′(s)ds, x(1) = β

∫ 1

0

g(x′(s))ds, 0 ≤ ξ ≤ 1,

y′(0) = α1

∫ θ

0

y′(s)ds, y(1) = β1

∫ 1

0

g(y′(s))ds, 0 ≤ θ ≤ 1,

(2)

where cDq,cDp denote the Caputo fractional derivatives of order q and p respectively, f, h : [0, 1]×R×
R→ R, g : R→ R are appropriately chosen functions, and α, β, α1, β1 are real constants.

The objective of the present paper is to enhance the theoretical treatment of coupled systems
further by considering a new boundary value problem of coupled fractional-order differential equations
supplemented with nonlocal nonlinear flux type integral boundary conditions. The paper is organized
as follows. In Section 2, we recall some basic definitions of fractional calculus and present an auxiliary
lemma. The main results are presented in Section 3. We give two results: the first one derives the
existence of solutions via Leray-Schauder’s alternative, whereas the second one concerning existence and
uniqueness of solutions is established by Banach’s contraction principle. We also discuss an example
for illustration of the existence-uniqueness result.

2 Preliminaries

Before presenting an auxiliary lemma, we recall some basic definitions of fractional calculus [3, 2].

Definition 2.1 For (n−1)−times absolutely continuous function y : [0,∞)→ R, the Caputo derivative
of fractional order q is defined as

cDqy(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1y(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

Iqy(t) =
1

Γ(q)

∫ t

0

y(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

To define the solution for the problem (1)-(2), we use the following lemma.

Lemma 2.3 Let αξ 6= 1. For φ ∈ C([0, 1],R), the linear problem consisting by the equation

cDqx(t) = φ(t), t ∈ [0, 1], 1 < q ≤ 2, (3)

supplemented with the boundary conditions

x′(0) = α

∫ ξ

0

x′(s)ds, x(1) = β

∫ 1

0

g(x′(s))ds, 0 ≤ ξ ≤ 1, (4)

is equivalent to the integral equation

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
φ(s)ds+

α(t− 1)

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτds−

∫ 1

0

(1− s)q−1

Γ(q)
φ(s)ds

+β

∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτ +

α

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτds

)
ds.

(5)
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Proof. It is well known that the general solution of the fractional differential equation (3) can be
written as

x(t) = c0 + c1t+

∫ t

0

(t− s)q−1

Γ(q)
φ(s)ds, (6)

where c0, c1 ∈ R are arbitrary constants. Using the boundary conditions (4) in (6), we find that

c0 = β

∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτ +

α

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτds

)
ds

−
∫ 1

0

(1− s)q−2

Γ(q − 1)
φ(s)ds− α

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτds

and

c1 =
α

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
φ(τ)dτds.

Substituting the values of c0, c1 in (6), we get (5). The converse follows by direct computation. This
completes the proof. �

3 Main Results

Let us introduce the space X = {u(t)|u(t) ∈ C([0, 1],R)} endowed with the norm ‖u‖ = sup{|u(t)|, t ∈
[0, 1]}. Obviously (X, ‖ · ‖) is a Banach space. Also Y = {v(t)|v(t) ∈ C([0, 1],R)} endowed with the
norm ‖v‖ = sup{|v(t)|, t ∈ [0, 1]} is a Banach space. Then the product space (X × Y, ‖(u, v)‖) is also a
Banach space equipped with norm ‖(u, v)‖ = ‖u‖+ ‖v‖.

In view of Lemma 2.3, we define the operator T : X ×Y → X ×Y by T (u, v)(t) =

(
T1(u, v)(t)
T2(u, v)(t)

)
,

where

T1(u, v)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s), v(s))ds+

α(t− 1)

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ, u(τ), v(τ))dτds

−
∫ 1

0

(1− s)q−1

Γ(q)
f(s, u(s), v(s))ds+ β

∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ, u(τ), v(τ))dτ

+
α

1− αξ

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ, u(τ), v(τ))dτds

)
ds,

and

T2(u, v)(t) =

∫ t

0

(t− s)p−1

Γ(p)
h(s, u(s), v(s))ds+

α1(t− 1)

1− α1θ

∫ θ

0

∫ s

0

(s− τ)p−2

Γ(p− 1)
h(τ, u(τ), v(τ))dτds

−
∫ 1

0

(1− s)p−1

Γ(p)
h(s, u(s), v(s))ds+ β1

∫ 1

0

g

(∫ s

0

(s− τ)p−2

Γ(p− 1)
h(τ, u(τ), v(τ))dτ

+
α1

1− α1θ

∫ θ

0

∫ s

0

(s− τ)p−2

Γ(p− 1)
h(τ, u(τ), v(τ))dτds

)
ds, α1θ 6= 1.

Let us introduce the following hypotheses which are used hereafter.

(H1) Assume that there exist real constants ki, λi ≥ 0 (i = 1, 2) and k0 > 0, λ0 > 0 such that
∀xi ∈ R, (i = 1, 2) we have

|f(t, x1, x2)| ≤ k0 + k1|x1|+ k2|x2|, |h(t, x1, x2)| ≤ λ0 + λ1|x1|+ λ2|x2|.

(H2) |g(v)| ≤ |v|, ∀v ∈ R.
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(H3) Assume that f, h : [0, 1]×R2 → R are continuous functions and there exist constants mi, ni, i = 1, 2
such that for all t ∈ [0, 1] and ui, vi ∈ R, i = 1, 2,

|f(t, u1, u2)− f(t, v1, v2)| ≤ m1|u1 − v1|+m2|u2 − v2|

and
|h(t, u1, u2)− h(t, v1, v2)| ≤ n1|u1 − v1|+ n2|u2 − v2|.

For the sake of convenience, we set

M1 =
1

Γ(q + 1)

(
2 +

|α|ξq

|1− αξ|

)
+

|β|
Γ(q + 2)

(
q + 1 +

|α|
|1− αξ|

)
, (7)

M2 =
1

Γ(p+ 1)

(
2 +

|α1|θp

|1− α1θ|

)
+

|β1|
Γ(p+ 2)

(
p+ 1 +

|α1|
|1− α1θ|

)
, (8)

and
M0 = min{1− (M1k1 +M2λ1), 1− (M1k2 +M2λ2)}, ki, λi ≥ 0 (i = 1, 2). (9)

The first result is based on Leray-Schauder alternative.

Lemma 3.1 (Leray-Schauder alternative) ([29] p. 4.) Let F : E → E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.

Then either the set E(F ) is unbounded, or F has at least one fixed point.

Theorem 3.2 Assume that (H1), (H2) hold. In addition it is assumed that

M1k1 +M2λ1 < 1 and M1k2 +M2λ2 < 1,

where M1 and M2 are given by (7) and (8) respectively. Then the system (1)-(2) has at least one
solution.

Proof. First we show that the operator T : X × Y → X × Y is completely continuous. By continuity
of functions f, h and g, the operator T is continuous.

Let Ω ⊂ X × Y be bounded. Then there exist positive constants L1 and L2 such that

|f(t, u(t), v(t)| ≤ L1, |h(t, u(t), v(t)| ≤ L2, ∀(u, v) ∈ Ω.

Then for any (u, v) ∈ Ω, we have

|T1(u, v)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, u(s), v(s))|ds+

|α(t− 1)|
|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ, u(τ), v(τ))|dτds

+

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, u(s), v(s))|ds+ β

∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ, u(τ), v(τ))|dτ

+
|α|

|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ, u(τ), v(τ))|dτds

)
ds

≤ L1

{
1

Γ(q + 1)

(
2 +

|α|ξq

|1− αξ|

)
+

|β|
Γ(q + 2)

(
q + 1 +

|α|
|1− αξ|

)}
,

which implies that

‖T1(u, v)‖ ≤ L1

{
1

Γ(q + 1)

(
2 +

|α|ξq

|1− αξ|

)
+

|β|
Γ(q + 2)

(
q + 1 +

|α|
|1− αξ|

)}
= L1M1.
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Similarly, we get

‖T2(u, v)‖ ≤ L2

{
1

Γ(p+ 1)

(
2 +

|α1|θp

|1− α1θ|

)
+

|β1|
Γ(p+ 2)

(
p+ 1 +

|α1|
|1− α1θ|

)}
= L2M2.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

|T1(u(t2), v(t2))− T1(u(t1), v(t1))|

≤ L1

{∣∣∣∣ 1

Γ(q)

∫ t2

0

(t2 − s)q−1ds−
1

Γ(q)

∫ t1

0

(t1 − s)q−1vds
∣∣∣∣

+
|α||t2 − t1|
|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
dτds

}

≤ L1

{
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]ds+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1ds+
|α||t2 − t1|
|1− αξ|

ξq

Γ(q + 1)

}

≤ L1

Γ(q + 1)
[2(t2 − t1)q + |tq2 − t

q
1|] + L1

|α||t2 − t1|
|1− αξ|

ξq

Γ(q + 1)
.

Analogously, we can obtain

|T2(u(t2), v(t2))− T2(u(t1), v(t1))| ≤ L2

Γ(p+ 1)
[2(t2 − t1)p + |tp2 − t

p
1|] + L2

|α1||t2 − t1|
|1− α1θ|

θp

Γ(p+ 1)
.

Therefore, the operator T (u, v) is equicontinuous, and thus the operator T (u, v) is completely continu-
ous.

Finally, it will be verified that the set E = {(u, v) ∈ X×Y |(u, v) = λT (u, v), 0 ≤ λ ≤ 1} is bounded.
Let (u, v) ∈ E , with (u, v) = λT (u, v). For any t ∈ [0, 1], we have

u(t) = λT1(u, v)(t), v(t) = λT2(u, v)(t).

Then

|u(t)| ≤

{
1

Γ(q + 1)

(
2 +

|α|ξq

|1− αξ|

)
+

|β|
Γ(q + 2)

(
q + 1 +

|α|
|1− αξ|

)}
(k0 + k1‖u‖+ k2‖v‖),

and

|v(t)| ≤

{
1

Γ(p+ 1)

(
2 +

|α1|θp

|1− α1θ|

)
+

|β1|
Γ(p+ 2)

(
p+ 1 +

|α1|
|1− α1θ|

)}
(λ0 + λ1‖u‖+ λ2‖v‖).

Hence we have

‖u‖ ≤M1(k0 + k1‖u‖+ k2‖v‖), ‖v‖ ≤M2(λ0 + λ1‖u‖+ λ2‖v‖),

which imply that

‖u‖+ ‖v‖ = (M1k0 +M2λ0) + (M1k1 +M2λ1)‖u‖+ (M1k2 +M2λ2)‖v‖.

Consequently,

‖(u, v)‖ ≤ M1k0 +M2λ0
M0

,

for any t ∈ [0, 1], where M0 is defined by (9), which proves that E is bounded. Thus, by Lemma 3.1,
the operator T has at least one fixed point. Hence the boundary value problem (1)-(2) has at least one
solution. The proof is complete. �

In the second result, we prove existence and uniqueness of solutions of the boundary value problem
(1)-(2) via Banach’s contraction principle.
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Theorem 3.3 Assume that (H2), (H3) hold. In addition, assume that

M1(m1 +m2) +M2(n1 + n2) < 1,

where M1 and M2 are given by (7) and (8) respectively. Then the system (1)-(2) has a unique solution.

Proof. Define supt∈[0,1] f(t, 0, 0) = N1 <∞ and supt∈[0,1] g(t, 0, 0) = N2 <∞ such that

r ≥ N1M1 +N2M2

1−M1(m1 +m2)−M2(n1 + n2)
.

We show that TBr ⊂ Br, where Br = {(u, v) ∈ X × Y : ‖(u, v)‖ ≤ r}. For (u, v) ∈ Br, we have

|T1(u, v)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
(|f(s, u(s), v(s))− f(t, 0, 0)|+ |f(t, 0, 0)|)ds

+
|α|

|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
(|f(τ, u(τ), v(τ))− f(t, 0, 0)|+ |f(t, 0, 0)|)dτds

+

∫ 1

0

(1− s)q−1

Γ(q)
(|f(s, u(s), v(s))− f(t, 0, 0)|+ |f(t, 0, 0)|)ds

+|β|
∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
(|f(τ, u(τ), v(τ))− f(t, 0, 0)|+ |f(t, 0, 0)|)dτ

+
|α|

|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
(|f(τ, u(τ), v(τ))− f(t, 0, 0)|+ |f(t, 0, 0)|)dτds

)
ds

≤

{
1

Γ(q + 1)
+

|α|ξq

|1− αξ|Γ(q + 1)
+

1

Γ(q + 1)

+|β|

(
1

Γ(q + 1)
+

|α|
|1− αξ|Γ(q + 2)

)}
(m1‖u‖+m2‖v‖+N1)

= M1[(m1 +m2)r +N1].

Hence
‖T1(u, v)(t)‖ ≤M1[(m1 +m2)r +N1].

In the same way, we can obtain that

‖T2(u, v)(t)‖ ≤M2[(n1 + n2)r +N2].

Consequently, ‖T (u, v)(t)‖ ≤ r.
Now for (u2, v2), (u1, v1) ∈ X × Y, and for any t ∈ [0, e], we get

|T1(u2, v2)(t)− T1(u1, v1)(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

+
|α|

|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ, u2(τ), v2(τ))− |f(τ, u1(τ), v1(τ))|dτds

+

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|ds

+|β|
∫ 1

0

g

(∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|dτ

+
|α|

|1− αξ|

∫ ξ

0

∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))|dτds

)
ds
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≤

{
1

Γ(q + 1)
+

|α|ξq

|1− αξ|Γ(q + 1)
+

1

Γ(q + 1)

+|β|

(
1

Γ(q + 1)
+

|α|
|1− αξ|Γ(q + 2)

)}
(m1‖u2 − u1‖+m2‖v2 − v1‖)

= M1(m1‖u2 − u1‖+m2‖v2 − v1‖)
≤ M1(m1 +m2)(‖u2 − u1‖+ ‖v2 − v1‖),

and consequently we obtain

‖T1(u2, v2)(t)− T1(u1, v1)‖ ≤M1(m1 +m2)(‖u2 − u1‖+ ‖v2 − v1‖). (10)

Similarly,

‖T2(u2, v2)(t)− T2(u1, v1)‖ ≤M2(n1 + n2)(‖u2 − u1‖+ ‖v2 − v1‖). (11)

It follows from (10) and (11) that

‖T (u2, v2)(t)− T (u1, v1)(t)‖ ≤ [M1(m1 +m2) +M2(n1 + n2)](‖u2 − u1‖+ ‖v2 − v1‖).

Since M1(m1 + m2) + M2(n1 + n2) < 1, therefore, T is a contraction operator. So, By Banach’s fixed
point theorem, the operator T has a unique fixed point, which is the unique solution of problem (1)-(2).
This completes the proof. �

Example. Consider the following system of fractional boundary value problem

cD3/2x(t) =
1

4(t+ 2)2
|x(t)|

1 + |x(t)|
+ 1 +

1

32
sin2 y(t), t ∈ [0, 1],

cD3/2y(t) =
1

32π
sin(2πx(t)) +

|y(t)|
16(1 + |y(t)|)

+
1

2
, t ∈ [0, 1],

x′(0) =
1

2

∫ 1/3

0

x′(s)ds, x(1) =
1

3

∫ 1

0

g(x′(s))ds,

y′(0) =
4

5

∫ 1/4

0

y′(s)ds, y(1) =
3

4

∫ 1

0

g(y′(s))ds.

(12)

Here q = p = 3/2, α = 1/2, α1 = 4/5, ξ = 1/3, θ = 1/4, β = 1/3, β1 = 3/4, g(v) =

{ √
v, |v| ≥ 1,

v2, |v| < 1.

f(t, u, v) =
1

4(t+ 2)2
|u|

1 + |u|
+ 1 +

1

32
sin2 v, and h(t, u, v) =

1

32π
sin(2πu) +

|v|
16(1 + |v|)

+
1

2
. With the

given data, we find that M1 ≈ 1.9027815, M2 ≈ 1.6365646. Note that |f(t, u1, u2) − f(t, v1, v2)| ≤
1

16
|u1 − u2|+

1

16
|v1 − v2|, |g(t, u1, u2)− g(t, v1, v2)| ≤ 1

16
|u1 − u2|+

1

16
|v1 − v2|, and M1(m1 +m2) +

M2(n1 + n2) ≈ 0.4424181 < 1. Thus all the conditions of Theorem 3.3 are satisfied and consequently,
its conclusion applies to the problem (12).

4 Conclusions

We have obtained the existence criteria for the solutions of a coupled system of nonlinear Caputo
type fractional differential equations equipped with a new kind of nonlocal nonlinear flux type integral
boundary conditions. Our results are new in the sense of introduced integral boundary conditions (2)
and contribute to the theory of coupled systems of fractional differential equations.
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The aim of this paper is to introduce a new non-convex hybrid algorithm for a

family of countable quasi-Lipschitz mappings. We establish strong convergence theo-

rems of common fixed points for a uniformly closed asymptotically family of countable

quasi-Lipschitz mappings in a Hilbert space.

2010 Mathematics Subject Classification: 47H05, 47H09, 47H10

Key words and phrases: Hybrid algorithm, quasi-Lipschitz mapping, nonexpansive

mapping, quasi-nonexpansive mapping, asmptotically quasi-nonexpansive mapping

1 Introduction

Fixed point theory of special mappings like nonexpansive, asymptotically nonexpansive,

contractive and other mappings is an active area of interest and finds applications in many

related fields like image recovery, signal processing and geometry of objects [13]. From time

to time, some versions of theorems relating to fixed points of functions of special nature

keep on appearing in almost in all branches of mathematics. Consequently, we apply them

in industry, toy making, finance, aircrafts and manufacturing of new model cars. For

example, a fixed-point iteration scheme has been applied in intensity modulated radiation

therapy optimization to pre-compute dose-deposition coefficient matrix, see [12]. Because

of its vast range of applications almost in all directions, the research in it is moving rapidly

∗Corresponding author
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and an immense literature is present currently. The construction of fixed point theorems

(for example, Banach fixed point theorem) which not only claim the existence of a fixed

point but yield an algorithm, too (in the Banach case fixed point iteration xn+1 = f(xn)).

Any equation that can be written as x = f(x) for some mapping f that is contracting

with respect to some (complete) metric will provide such a fixed point iteration. Mann’s

iteration method was the stepping stone in this regard and is invariably used in most of

the occasions, see [4]. But it only ensures weak convergence, see [2] but more often then

not, we require strong convergence in many real world problems relating to Hilbert spaces,

see [1]. So mathematician are in search for the modifications of the Mann’s process to

control and ensure the strong convergence (see [2, 3, 5–9, 11] and references therein).

Most probably the first noticeable modification of Mann’s Iteration process was pro-

posed by Nakajo and Takahashi [9] in 2003. They introduced this modification for only

one nonexpansive mapping in a Hilbert space, where Kim and Xu [5] introduced a mod-

ification for asymptotically nonexpansive mappings in the Hilbert space in 2006. In the

same year Martinez-Yanes ad Xu [7] introduced a modification of the Ishikawa iteration

process for a nonexpansive mapping for a Hilbert space. They also gave modification of

the Halpern iteration method in a Hilbert space. Su and Qin [11] gave a monotone hybrid

iteration process for nonexpansive mappings in a Hilbert space. Liu et al. [6] gave a novel

iteration method for a finite family of quasi-asymptotically pseudo-contractive mappings

in a Hilbert space.

Let H be a Hilbert space and C be a nonempty closed and convex subset of H . Let

Pc(·) be the metric projection onto C. A mapping T : C → C is said to be nonexpensive if

‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. Denote by F (T ) the set of fixed points of T . It is well

known that F (T ) is closed and convex. A mapping T : C → C is said to be quasi-Lipschitz

if F (T ) 6= ∅ and ‖Tx − p‖ ≤ L‖x − p‖ for all x ∈ C, p ∈ F (T ), where 1 ≤ L < ∞ is a

constant. If L = 1, then T is known as quasi-nonexpansive. It is well-known that T is said

to be closed if xn → x and ‖Txn − xn‖ → 0 as n → ∞ implies Tx = x. T is said to be

weak closed if xn ⇀ x and ‖Txn − xn‖ → 0 as for n → ∞ implies Tx = x. It is admitted

fact that a mapping which is weak closed should be closed but converse is no longer true.

Let {Tn} be a sequence of mappings from C into itself with a nonempty common fixed

points set F . Then {Tn} is said to be uniformly closed if for any convergent sequences

{zn} ⊂ C with conditions ‖Tnzn − zn‖ → 0 as n → ∞, the limit of {zn} belongs to F.

In 1953 Mann [4] proposed an iterative scheme given as

xn+1 = (1− αn)xn + αnT (xn), n = 0, 1, 2, . . . .

Guan et al. [3] established the following non-convex hybrid iteration algorithm corre-

sponding to Mann iterative scheme:






























x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn)xn + αnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ (1 + (Ln − 1)αn)‖xn − z‖ ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0.

They also established non-convex hybrid iteration algorithms and proved some strong

convergence results relating to common fixed points for a uniformly closed asymptotically
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family of countable quasi-Lipschitz mappings in a Hilbert space. They applied their results

for the finite case to obtain fixed points. In this article we established a kind of non-

convex hybrid iteration algorithm concerning SP -iterative process [10] and proves strong

convergence theorems of common fixed points for a uniformly closed asymptotically family

of countable quasi-Lipschitz mappings in a Hilbert space. We also present an application

of our algorithm.

2 Main results

In this section we formulate our main results.

Definition 2.1. Let C be a closed convex subset of a Hilbert space H , and Let {Tn} be

a family of countable quasi-Ln-Lipschitz mappings from C into itself. {Tn} is said to be

asymptotically if limn→∞ Ln = 1.

The following lemmas is well known.

Proposition 2.2. Let C be a closed convex subset of a Hilbert space H . For x ∈ H and

z ∈ C, z = PCx if and only if we have 〈x− z, z − y〉 ≥ 0 for all y ∈ C.

Proposition 2.3. Let C be a closed convex subset of a Hilbert space H . For any given

x0 ∈ H , we have p = PCx0 if and only if 〈p − z, x0 − p〉 ≥ 0 for all z ∈ C.

Proposition 2.4. ([3]) Let C be a closed convex subset of a Hilbert space H and let {Tn}
be a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from

C into itself. Then the common fixed point set F is closed and convex.

Theorem 2.5. Let C be a closed convex subset of a Hilbert space H , and let {Tn} : C → C

be a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from

C into itself. Assume that αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N . Then {xn}
generated by



















































































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1− αn)zn + αnTnzn, n ≥ 0,

zn = (1− βn)tn + βnTntn, n ≥ 0,

tn = (1− γn)xn + γnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + Ln(αn + βn + γn − 2αnβn

−2αnγn − 2βnγn + 3αnβnγn) + L2
n(αnβn + αnγn

+βnγn − 3αnβnγn) + αnβnγnL3
n − αn − βn − γn

+αnβn + αnγn + βnγn − αnβnγn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

3
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Proof. We give our proof in following steps.

Step 1. We know that coCn and Qn are closed and convex for all n ≥ 0. Next, we

show that F ∩ A ⊂ coCn for all n ≥ 0. Indeed, for each p ∈ F ∩ A, we have

‖yn − p‖ = ‖(1 − αn)zn + αnTnzn − p‖

= ‖(1 − αn)((1− βn)tn + βnTntn) + αnTn((1 − βn)tn + βnTntn) − p‖

= ‖(1 − αn)((1− βn)[(1− γn)xn + γnTnxn] + βnTn[(1− γn)xn + γnTnxn])

+ αnTn((1− βn)[(1− γn)xn + γnTnxn] + βnTn[(1− γn)xn + γnTnxn])− p‖

= ‖(1 − αn − βn − γn + αnβn + αnγn + βnγn − αnβnγn)(xn − p)

+ (αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)(Tnxn − p)

+ (αnβn + αnγn + βnγn − 3αnβnγn)(T 2
nxn − p) + αnβnγn(T 3

nxn − p)‖

≤ (1 − αn − βn − γn + αnβn + αnγn + βnγn − αnβnγn)‖xn − p‖

+ (αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)Ln‖xn − p‖

+ (αnβn + αnγn + βnγn − 3αnβnγn)L2
n‖xn − p‖ + αnβnγnL3

n‖xn − p‖

= [1 + Ln(αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)

+ L2
n(αnβn + αnγn + βnγn − 3αnβnγn) + αnβnγnL3

n

− αn − βn − γn + αnβn + αnγn + βnγn − αnβnγn]‖xn − p‖

and p ∈ A, so p ∈ Cn which implies that F ∩A ⊂ Cn for all n ≥ 0. therefore, F ∩A ⊂ coCn

for all n ≥ 0.

Step 2. We show that F ∩ A ⊂ coCn ∩ Qn for all n ≥ 0. it suffices to show that

F ∩ A ⊂ Qn for all n ≥ 0. We prove this by mathematical induction. For n = 0 we have

F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since xn+1 is the projection of x0 onto

coCn ∩ Qn, from Proposition 2.2, we have

〈xn+1 − z, xn+1 − x0〉 ≤ 0, ∀z ∈ coCn ∩ Qn

as F ∩ A ⊂ coCn ∩ Qn, the last inequality holds, in particular, for all z ∈ F ∩ A. This

together with the definition of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence the F ∩ A ⊂
coCn ∩ Qn holds for all n ≥ 0.

Step3. We prove {xn} is bounded. Since F is a nonempty closed and convex subset of

C, there exists a unique element z0 ∈ F such that z0 = PF x0. From xn+1 = PcoCn∩Qn
x0,

we have

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ coCn ∩ Qn. As z0 ∈ F ∩ A ⊂ coCn ∩ Qn, we get

‖xn+1 − x0‖ ≤ ‖z0 − x0‖

for each n ≥ 0. This implies that {xn} is bounded.

Step 4. We show that {xn} converges strongly to a point of C (we show that {xn} is

a Cauchy sequence). As xn+1 = PcoCn∩Qn
x0 ⊂ Qn and xn = PQn

x0 (Proposition 2.3), we

have

‖xn+1 − x0‖ ≥ ‖xn − x0‖

4
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for every n ≥ 0, which together with the boundedness of ‖xn−x0‖ implies that there exists

the limit of ‖xn−x0‖. On the other hand, from xn+m ∈ Qn, we have 〈xn−xn+m, xn−x0〉 ≤
0 and hence

‖xn+m − xn‖
2 = ‖(xn+m − x0) − (xn − x0)‖

2

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+m − xn, xn − x0〉

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2

→ 0, n → ∞

for any m ≥ 1. Therefore {xn} is a cauchy sequence in C, then there exists a point q ∈ C

such that limn→∞ xn = q.

Step 5. We show that yn → q as n → ∞. Let

Dn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)}.

From the definition of Dn, we have

Dn = {z ∈ C : 〈yn − z, yn − z〉 ≤ 〈xn − z, xn − z〉 + (L3
n − 1)(L3

n + 1)}

= {z ∈ C : ‖yn‖
2 − 2〈yn, z〉+ ‖z‖2 ≤ ‖xn‖

2 − 2〈xn, z〉+ ‖z‖2 + (L3
n − 1)(L3

n + 1)}

= {z ∈ C : 2〈xn − yn, z〉 ≤ ‖xn‖
2 − ‖yn‖

2 + (L3
n − 1)(L3

n + 1)}

This shows that Dn is convex and closed, n ∈ Z+ ∪ {0}. Next, we want to prove that

Cn ⊂ Dn, n ≥ 0.

In fact, for any z ∈ Cn, we have

‖yn − z‖2 ≤ [1 + Ln(αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)

+ L2
n(αnβn + αnγn + βnγn − 3αnβnγn) + αnβnγnL3

n − αn − βn − γn

+ αnβn + αnγn + βnγn − αnβnγn]2‖xn − z‖2

= ‖xn − z‖2 + [2(Ln(αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)

+ L2
n(αnβn + αnγn + βnγn − 3αnβnγn) + αnβnγnL3

n − αn − βn − γn

+ αnβn + αnγn + βnγn − αnβnγn)αn + (Ln(αn + βn + γn − 2αnβn

− 2αnγn − 2βnγn + 3αnβnγn) + L2
n(αnβn + αnγn + βnγn − 3αnβnγn)

+ αnβnγnL3
n − αn − βn − γn + αnβn + αnγn + βnγn − αnβnγn)2]‖xn − z‖2

≤ ‖xn − z‖2 + [2(L3
n − 1) + (L3

n − 1)2]‖xn − z‖2

= ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)‖xn − z‖2.

From

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + Ln(αn + βn + γn − 2αnβn − 2αnγn − 2βnγn + 3αnβnγn)

+ L2
n(αnβn + αnγn + βnγn − 3αnβnγn) + αnβnγnL3

n − αn − βn − γn + αnβn

+ αnγn + βnγn − αnβnγn]‖xn − z‖} ∩ A, n ≥ 0,

We have Cn ⊂ A, n ≥ 0. Since A is convex, we also have coCn ⊂ A, n ≥ 0. Consider

xn ∈ coCn−1 , we know that

‖yn − z‖ ≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)‖xn − z‖2

≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1).
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This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Sinnce Dn is convex, we have

co(Cn) ⊂ Dn, n ≥ 0. Therefore

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + (L3
n − 1)(L3

n + 1) → 0

as n → ∞. That is, yn → q as n → ∞.

Step 6. We show that q ∈ F . From the definition of yn, we have

(αn + βn + γn − αnγn − βnγn − αnβn + αnβnγn)

+ (αnγn + βnγn + αnβn − 2αnβnγn)Tn + αnβnγnT 2
n‖Tnxn − xn‖

= ‖yn − xn‖ → 0

as n → ∞. Since αn ∈ (a, 1] ⊂ [0, 1], from the above limit we have

lim
n

→ ∞‖Tnxn − xn‖ = 0.

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .

Step 7. We claim that q = z0 = PF x0, if not, we have that ‖x0 − p‖ > ‖x0 − z0‖.
There must exist a positive integer N , if n > N, then ‖x0−xn‖ > ‖x0−z0‖, which leads to

‖z0 − xn‖
2 = ‖z0 − xn + xn − x0‖

2

= ‖z0 − xn‖
2 + ‖xn − x0‖

2 + 2〈z0 − xn, xn − x0〉.

It follows that 〈z0 − xn, xn − x0〉 < 0 which implies that z0∈Qn, so that z0∈F , this is a

contradiction. This completes the proof.

In [3], we show an example of Cn which does not involve a convex subset.

Corollary 2.6. Let C be a closed convex subset of a Hilbert space H , and let T be a closed

quasi-nonexpansive mapping from C into itself. Assume that αn ∈ (0, 1] and βn, γn ∈ [0, 1]

for all n ∈ N . Then {xn} generated by



















































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn)zn + αnTzn, n ≥ 0,

zn = (1 − βn)tn + βnT tn, n ≥ 0,

tn = (1 − γn)xn + γnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0,

converges strongly to PF (T )x0, where A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. Take Tn ≡ T , Ln ≡ 1 in Theorem 2.5, in this case, Cn is convex and closed and ,

for all n ≥ 0, by using Theorem 2.5, we obtain Corollary 2.6.

6
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Corollary 2.7. Let C be a closed convex subset of a Hilbert space H , and let T be a

nonexpansive mapping from C into itself. Assume that αn ∈ (0, 1] and βn, γn ∈ [0, 1] for

all n ∈ N . Then {xn} generated by



















































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn)zn + αnTzn, n ≥ 0,

zn = (1 − βn)tn + βnT tn, n ≥ 0,

tn = (1 − γn)xn + γnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0,

converges strongly to PF (T )x0, where A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

3 Applications

Here, we give an application of our result for the following case of finite family of asymp-

totically quasi-nonexpansive mappings {Tn}
N−1
n=0 . Let

‖T j
i x − p‖ ≤ ki,j‖x − p‖, ∀x ∈ C, p ∈ F,

where F is the common fixed point set of {Tn}
N−1
n=0 and limj→∞ ki,j = 1 for all 0 ≤ i ≤

N − 1. The finite family of asymptotically quasi-nonexpansive mappings {Tn}
N−1
n=0 is said

to be uniformly L-Lipschitz if

‖T j
i x − T

j
i y‖ ≤ Li,j‖x − y‖, ∀x, y ∈ C

for all i ∈ {0, 1, 2, ...,N − 1}, j ≥ 1, where L ≥ 1.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H , and let {Tn}
N−1
n=0 :

C → C be a uniformly L-Lipschitz finite family of asymptotically quasi-nonexpansive

mappings with a nonempty common fixed point set F . Assume that αn ∈ (0, 1] and βn, γn ∈
[0, 1] for all n ∈ N . Then {xn} generated by























































































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1− αn)zn + αnT
j(n)
i(n)

zn, n ≥ 0,

zn = (1− βn)tn + βnT
j(n)
i(n)

tn, n ≥ 0,

tn = (1− γn)xn + γnT
j(n)
i(n) xn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + ki(n),j(n)(αn + βn + γn − 2αnβn

−2αnγn − 2βnγn + 3αnβnγn) + k2
i(n),j(n)(αnβn + αnγn

+βnγn − 3αnβnγn) + αnβnγnk3
i(n),j(n) − αn − βn − γn

+αnβn + αnγn + βnγn − αnβnγn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,
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converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1, n = (j(n)− 1)N + i(n) for all n ≥ 0 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. We can drive the prove from the following two conclusions.

Conclusion 1. {TN−1
n=0 }∞n=0 is a uniformly closed asymptotically family of countable

quasi-Ln-Lipschitz mappings from C into itself.

Conclusion 2. F =
⋂N

n=0 F (Tn) =
⋂

∞

n=0 F (T
j(n)
i(n) ), where F (Tn) denotes the fixed point

set of the mappings Tn.

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H , and let T : C → C be

a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common fixed

point set F . Assume that αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N . Then {xn}
generated by



















































































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1− αn)zn + αnT nzn, n ≥ 0,

zn = (1− βn)tn + βnT ntn, n ≥ 0,

tn = (1− γn)xn + γnT nxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + kn(αn + βn + γn − 2αnβn

−2αnγn − 2βnγn + 3αnβnγn) + k2
n(αnβn + αnγn

+βnγn − 3αnβnγn) + αnβnγnk3
n − αn − βn − γn

+αnβn + αnγn + βnγn − αnβnγn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. Take Tn ≡ T in Theorem 3.1, we get the desired result.
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Abstract

We generalize an intermixed algorithm to three and m-strict pseudo-contractions

in Hilbert spaces and show that this algorithm converges strongly to the fixed points

of three and m-strict pseudo-contractions in Hilbert spaces, independently. Conse-

quently, we can find the common fixed points of these mappings.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with its inner product

〈·, ·〉 and norm ‖ · ‖. A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖

for all x, y ∈ C. We use Fix(T ) to denote the set of fixed points of T . A mapping

T : C → C is said to be strictly pseudo-contractive if there exists a constant 0 ≤ λ < 1

such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + λ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C.

It is well known that every strictly pseudo-contractive mapping is also nonexpansive

mapping but a nonexpansive mapping may not be pseudo-contractive mapping. For the

∗Corresponding author
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rest of this article, we reserve C to be a nonempty closed convex subset of a Hilbert space

H .

Iterative construction of fixed points is a celebrated idea in these days in the realm

of nonlinear mappings. T : C → C be a nonlinear mapping and {αn} be a real number

sequence in (0, 1). For fixed x0 ∈ C arbitrarily, define a sequence {xn} by the following

manner

xn+1 = αnxn + (1− αn)Txn, n ≥ 0. (1.1)

which is the Mann’s iteration scheme ([11]). If T is a nonexpansive mapping with Fix(T ) 6=
∅ and {αn} satisfies the condition

∑

∞

n=0 αn(1−αn) = ∞, then the sequence {xn} generated

by Mann’s algorithm converges weakly to a fixed point of T ([14]). Now, it is a common fact

that, in infinite-dimensional Hilbert spaces, Mann’s algorithm fails to converge strongly

. An active area of research today is to develop Iterative methods for nonexpansive

mappings; see [1–4, 7–10, 14–19] . But for strict pseudo-contraction mappings, iterative

methods are far less developed though Browder and Petryshyn [1] started this work in

1967. Because of some powerful applications, (see Scherzer [15]), we desired to create

algorithms for computation of the fixed points of strict pseudo-contraction mappings. As

Mann’s algorithm is too strong enough to approximate fixed points of pseudo-contractions,

we need to find other type of iterative algorithms, see [6, 12, 21]. The first attempt was

made by Ishikawa [9] with the following Ishikawa algorithm which can be viewed as a

double-step Mann’s algorithm.

{

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 0,

where {αn} and {βn} are sequences in the interval [0, 1], T is a (nonlinear) self-mapping

of C, where x0 ∈ C arbitrarily. Ishikawa proved that his algorithm converges in norm to a

fixed point of a Lipschitz pseudo-contraction T if {αn} and {βn} satisfy certain conditions

and if T is compact.

In 2000, Noor [13] gave following three step Noor iterative scheme











zn = (1− γn)xn + γnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0,

In [20], the following algorithm for two strict pseudo-contraction mappings S and T is

given which converges strongly.

Algorithm 1.1. For given x0 ∈ C, y0 ∈ C arbitrarily, let the sequences {xn} and {yn}
be generated iteratively by

{

xn+1 = (1 − βn)xn + βnPC [αnf(yn) + (1 − k − αn)xn + kTxn], n ≥ 0,

yn+1 = (1− βn)yn + βnPC [αng(xn) + (1− k − αn)yn + kSyn], n ≥ 0,

where {αn} and {βn} are two real number sequences in (0, 1).
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The quest for the answer of the question, can we develop an iterative algorithm which

strongly converges to fixed points of finite many strict pseudo-contractions ? However

the answer of this problem is still not known. In this paper, Our main purpose is to

give a redundant intermixed algorithms for three and m-strict pseudo-contractions. It is

shown that the above said algorithm converges strongly to the fixed points of three and

m-strict pseudo-contractions, independently. As applications, we can find these common

fixed points in the settings of Hilbert spaces.

2 Preliminaries

The metric projection from H onto C is defined as: for each point x ∈ H, PCx is the

unique point in C with the property:

‖x− PCx‖ ≤ ‖x − y‖, y ∈ C,

where PC is given by

PCx ∈ C, 〈x − PCx, y − PCx〉 ≤ 0, y ∈ C.

Consequently, PC is nonexpansive. Following well-known lemmas will be important for

our results.

Lemma 2.1. ([12]) Let T : C → C be a λ-strictly pseudo-contractive mapping. Then

I − T is demi-closed at 0, that is, if xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

Lemma 2.2. ([10]) Let {xn} and {yn} be bounded sequences in a Banach space E and

{βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞
βn < 1. Suppose that

xn+1 = (1− βn)xn + βnzn for all n ≥ 0 and lim supn→∞
(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.3. ([16]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−γn)an +γnδn, n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a sequence

in R such that

(i)
∑

∞

n=0 γn = ∞;

(ii) lim supn→∞
δn ≤ 0 or

∑

∞

n=0 |δnγn| < ∞.

Then limn→∞ an = 0.

3 Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C

be a λ-strict pseudo-contraction. Let f : C → H be a ρ1-contraction, g : C → H be a

ρ2-contraction and h : C → H be a ρ3-contraction. Let k ∈ (0, 1− λ) be a constant.

Now we give the following redundant intermixed algorithm for three strict pseudo-

contractions T1, T2 and T3.
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Algorithm 3.1. For given x0 ∈ C, y0 ∈ C and z0 ∈ C arbitrarily, let the sequences {xn},
{yn} and {zn}be generated iteratively by











xn+1 = (1− βn)xn + βnPC [αnf(yn) + (1− k − αn)xn + kT1xn], n ≥ 0,

yn+1 = (1 − βn)yn + βnPC [αng(zn) + (1 − k − αn)yn + kT2yn], n ≥ 0,

zn+1 = (1 − βn)zn + βnPC [αnh(xn) + (1− k − αn)zn + kT3zn], n ≥ 0,

(3.1)

where {αn} and {βn} are two real number sequences in (0, 1).

Remark 3.2. Note that this algorithm is said to be the redundant intermixed algorithm

as {xn} in {zn} and {zn} is in {yn} and {yn} is in {xn}. So we can use this algorithm to

find the fixed points of T1, T2 and T3, independently.

Theorem 3.3. Suppose that Fix(T1) 6= ∅, F ix(T2) 6= ∅ and Fix(T3) 6= ∅. Assume the

following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑

∞

n=0 αn = ∞;

(C2) βn ∈ [ξ1, ξ2] ⊂ (0, 1) for all n ≥ 0.

Then the sequences {xn}, {yn} and {zn} generated by (3.1) converge strongly to the

fixed points PFix(T1)f(y∗), PFix(T2)g(x∗) and PFix(T3)h(x∗) of T1, T2 and T3, respectively,

where x∗ ∈ Fix(T1), y∗ ∈ Fix(T2) and z∗ ∈ Fix(T3).

Note that, PC [αf + (1− k − α)I + kT ] is contractive for small enough α, see [20].

First, we give the following propositions.

Proposition 3.4. The sequences {xn}, {yn} and {zn}are bounded.

Proof. Since Fix(T1) 6= ∅, F ix(T2) 6= ∅ and Fix(T3) 6= ∅, we can choose x∗ ∈ Fix(T1),

y∗ ∈ Fix(T2) and z∗ ∈ Fix(T3). From (3.1), we have

‖xn+1 − x∗‖ = ‖(1− βn)xn + βnPC [αnf(yn) + (1− k − αn)xn + kT1xn] − x∗‖

≤ βn‖PC [αnf(yn) + (1− k − αn)xn + kT1xn] − x∗‖

+ (1 − βn)‖xn − x∗‖

≤ βnαn‖f(yn) − x∗‖ + βn‖(1− k − αn)(xn − x∗) + k(T1xn − T1x
∗)‖

+ (1 − βn)‖xn − x∗‖

≤ βnαn‖f(yn) − f(y∗)‖+ βnαn‖f(y∗)− x∗‖+ (1− βn)‖xn − x∗‖

+ βn(1− αn)‖xn − x∗‖

≤ ρ1βnαn‖yn − y∗‖ + βnαn‖f(y∗) − x∗‖ + (1 − αnβn)‖xn − x∗‖

≤ ρβnαn‖yn − y∗‖ + βnαn‖f(y∗) − x∗‖ + (1 − αnβn)‖xn − x∗‖,

(3.2)

where ρ = max{ρ1, ρ2, ρ3}.
Similarly, we have

‖yn+1 − y∗‖ ≤ ρ2βnαn‖zn − z∗‖ + βnαn‖g(z∗) − y∗‖ + (1 − αnβn)‖yn − y∗‖

≤ ρβnαn‖zn − z∗‖+ βnαn‖g(z∗) − y∗‖ + (1 − αnβn)‖yn − y∗‖
(3.3)

and

‖zn+1 − z∗‖ ≤ ρ3βnαn‖xn − x∗‖ + βnαn‖h(x∗) − z∗‖ + (1 − αnβn)‖zn − z∗‖

≤ ρβnαn‖xn − x∗‖ + βnαn‖h(x∗) − z∗‖ + (1− αnβn)‖zn − z∗‖.
(3.4)
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By adding (3.2), (3.3) and (3.4), we obtain

‖xn+1 − x∗‖ + ‖yn+1 − y∗‖ + ‖zn+1 − z∗‖

≤ [1− (1− ρ)αnβn](‖xn − x∗‖ + ‖yn − y∗‖ + ‖zn − z∗‖) + αnβn(‖f(y∗) − x∗‖

+ ‖g(x∗)− y∗‖ + ‖h(z∗) − z∗‖)

≤ max

{

‖xn − x∗‖ + ‖yn − y∗‖ + ‖zn − z∗‖,

‖f(y∗) − x∗‖ + ‖g(x∗) − y∗‖+ ‖g(x∗) − z∗‖

1 − ρ

}

.

By induction, we have

‖xn − x∗‖ + ‖yn − y∗‖ + ‖zn − z∗‖

≤ max

{

‖x0 − x∗‖ + ‖y0 − y∗‖ + ‖z0 − z∗‖,

‖f(y∗)− x∗‖ + ‖g(z∗) − y∗‖ + ‖h(x∗) − z∗‖

1 − α

}

.

So, {xn}, {yn} and {zn} are bounded. This completes the proof.

Proposition 3.5. ‖xn − T1xn‖ → 0, ‖yn − T2yn‖ → 0 and ‖zn − T3zn‖ → 0.

Proof. We will prove it for {xn} and {zn}, for {yn} it is similar. We first estimate ‖xn+1−
xn‖. Set un = PC [αnf(yn) + (1− k − αn)xn + kT1xn], n ≥ 0. It follows that

‖un+1 − un‖ ≤ ‖αn+1f(yn+1) + (1 − k − αn+1)xn+1 + kT1xn+1

− αnf(yn) − (1− k − αn)xn + kT1xn‖

≤ ‖(1− k − αn+1)(xn+1 − xn) + k(T1xn+1 − T1xn)‖

+ αn+1(‖f(yn+1)‖ + ‖xn‖) + αn(‖f(yn)‖+ ‖xn‖)

≤ (1 − αn+1)‖xn+1 − xn‖ + αn+1(‖f(yn+1)‖+ ‖xn‖)

+ αn(‖f(yn)‖ + ‖xn‖).

Since αn → 0, we deduce that

lim sup
n→∞

(‖un+1 − un‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 2.2, we get

limn→∞ ‖un − xn‖ = 0 and limn→∞ ‖xn+1 − xn‖ = 0.

From (3.1), we derive

‖xn+1 − T1xn‖ ≤ (1 − βn)‖xn − T1xn‖ + βnαn‖f(yn) − T1xn‖

+ βn(1− k − αn)‖xn − T1xn‖

= [1 − (k + αn)βn]‖xn − T1xn‖ + βnαn‖f(yn) − T1xn‖.
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Thus
‖xn − T1xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − T1xn‖

≤ [1− (k + αn)βn]‖xn − T1xn‖+ βnαn‖f(yn) − T1xn‖

+ ‖xn − xn+1‖.

It follows that

‖xn − T1xn‖ ≤
1

(k + αn)βn

(‖xn − xn+1‖ + βnαn‖f(yn)− T1xn‖)

→ 0.

Similarly, we can obtain

lim
n→∞

‖yn − T2yn‖ = 0.

Now, we will prove

lim
n→∞

‖zn − T3zn‖ = 0.

Set wn = PC [αnh(zn) + (1 − k − αn)zn + kT3zn], n ≥ 0. It follows that

‖wn+1 − wn‖ ≤ ‖αn+1h(xn+1) + (1− k − αn+1)zn+1 + kT3zn+1

− αnh(xn) − (1 − k − αn)zn + kT3zn‖

≤ ‖(1− k − αn+1)(zn+1 − zn) + k(T3zn+1 − T3zn)‖

+ αn+1(‖h(xn+1)‖ + ‖zn‖) + αn(‖h(xn)‖ + ‖zn‖)

≤ (1− αn+1)‖zn+1 − zn‖ + αn+1(‖h(xn+1)‖ + ‖zn‖)

+ αn(‖h(xn)‖ + ‖zn‖).

Since αn → 0, we deduce that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖zn+1 − zn‖) ≤ 0.

From Lemma 2.2, we get

limn→∞ ‖wn − zn‖ = 0 and limn→∞ ‖zn+1 − zn‖ = 0.

From (3.1), we derive

‖zn+1 − T3zn‖ ≤ (1 − βn)‖zn − T3zn‖ + βnαn‖h(xn) − T3zn‖

+ βn(1− k − αn)‖zn − T3zn‖

= [1 − (k + αn)βn]‖zn − T3zn‖ + βnαn‖h(xn) − T3zn‖.

Thus
‖zn − T3zn‖ ≤ ‖zn − zn+1‖+ ‖zn+1 − T3zn‖

≤ [1− (k + αn)βn]‖zn − T3zn‖ + βnαn‖h(xn) − T3zn‖

+ ‖zn − zn+1‖.

It follows that

‖zn − T3zn‖ ≤
1

(k + αn)βn

(‖zn − zn+1‖+ βnαn‖h(xn) − T3zn‖)

→ 0.

This completes the proof.
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Note that the mapping PC [αf + (1− k−α)I + kT1] is contractive for small enough α.

Thus, the equation x = PC [tf(x) + (1− k − t)x + kT1x] has a unique fixed point, denoted

by xt, that is,

xt = PC [tf(xt) + (1− k − t)xt + kT1xt] (3.5)

for small enough t.

In order to prove Theorem 3.3, we need the following lemma.

Lemma 3.6. Suppose Fix(Ti) 6= ∅, i = 1, 2, 3. Then as t → 0, the net {xt} defined by

(3.5) converges strongly to a fixed point of Ti.

Proof. Let z∗ ∈ Fix(T3). From (3.5), we have

‖zt − z∗‖ = ‖PC [th(zt) + (1 − k − t)zt + kT3zt] − z∗‖

≤ t‖h(zt)− z∗‖ + ‖(1− k − t)(zt − z∗) + k(T3zt − z∗)‖

≤ tρ1‖zt − z∗‖ + t‖h(z∗)− z∗‖+ (1− t)‖zt − z∗‖,

hence

‖zt − z∗‖ ≤
1

1 − ρ1
‖h(z∗) − z∗‖.

Thus, {zt} is bounded. Again, from (3.5), we get

‖zt − T3zt‖ ≤ t‖h(zt) − T3zt‖ + (1 − k − t)‖zt − T3zt‖.

It follows that

‖zt − T3zt‖ ≤
t

k + t
‖h(zt) − T3zt‖ → 0.

Let {tn} ⊂ (0, 1). Assume that tn → 0 as n → ∞. Put zn := ztn . We have limn→∞ ‖zn −
T3zn‖ = 0. Set mt = th(zt) + (1 − k − t)zt + kT3zt, for all t. Then, we have zt = PCmt,

and for any z∗ ∈ Fix(T3),

zt − z∗ = zt − mt + mt − z∗

= zt − mt + t(h(zt) − z∗) + (1− k − t)(zt − z∗) + k(T3zt − z∗).

From the property of the metric projection, we deduce

〈zt − mt, zt − z∗〉 ≤ 0.

So

‖zt − z∗‖2 = 〈zt − mt, zt − z∗〉+ 〈(1− k − t)(zt − z∗) + k(T3zt − z∗), zt − z∗〉

+ t〈h(zt) − z∗, zt − z∗〉

≤ ‖(1− k − t)(zt − z∗) + k(T3zt − z∗)‖‖zt − z∗‖

+ t〈h(zt) − h(z∗), zt − z∗〉+ t〈h(z∗)− z∗, zt − z∗〉

≤ [1 − (1 − ρ1)t]‖zt − z∗‖2 + t〈h(z∗) − z∗, zt − z∗〉.

Hence

‖zt − z∗‖2 ≤
1

(1− ρ1)
〈h(z∗) − z∗, zt − z∗〉, ∀z∗ ∈ Fix(T ).

By the similar arguments as that in [12], we can obtain that the net {zt} converges strongly

to z∗ ∈ Fix(T3). This completes the proof.
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From Lemma 3.6, we know that the net {zt} defined by zt = PC [tu+(1−k−t)zt+kT3zt],

where u ∈ H converges to PFix(T3)u. Let z∗ ∈ Fix(T3) and y∗ ∈ Fix(T2) and x∗ ∈
Fix(T1). If we take u = h(z∗), then the net {zt} defined by zt = PC [th(z∗) + (1 − k −
t)zt + kT3zt] converges to PFix(T3)h(y∗).

Finally, we prove Theorem 3.3.

Proof. Now, we prove that xn → PFix(T1)f(y∗), yn → PFix(T2)g(z∗) and zn → PFix(T3)h(x∗),

where x∗ ∈ Fix(T1), y∗ ∈ Fix(T2) and z∗ ∈ Fix(T3). First we observe that, if the sequence

{wn} is bounded and ‖wn − Twn‖ → 0, we easily deduce that

lim sup
n→∞

〈f(PFix(T2)g(z∗)) − PFix(T1)f(y∗), wn − PFix(T1)f(y∗)〉 ≤ 0,

lim sup
n→∞

〈g(PFix(T3)h(x∗)) − PFix(T2)g(z∗), wn − PFix(T2)g(z∗)〉 ≤ 0

and

lim sup
n→∞

〈h(PFix(T1)f(y∗))− PFix(T3)h(x∗), wn − PFix(T3)h(x∗)〉 ≤ 0.

We set










un = PC [αnf(yn) + (1− k − αn)xn + kT1xn], n ≥ 0,

vn = PC [αng(zn) + (1− k − αn)yn + kT2yn], n ≥ 0,

mn = PC [αnh(xn) + (1− k − αn)zn + kT3zn], n ≥ 0.

Thus, we deduce that the sequences {un}, {vn} and {mn} are bounded; and ‖un−T1un‖ →
0, ‖vn − T2vn‖ → 0 and ‖mn − T3mn‖ → 0. Therefore,

lim sup
n→∞

〈f(PFix(T2)g(z∗)) − PFix(T1)f(y∗), un − PFix(T1)f(y∗)〉 ≤ 0,

lim sup
n→∞

〈g(PFix(T3)h(x∗)) − PFix(T2)g(z∗), vn − PFix(T2)g(z∗)〉 ≤ 0

and

lim sup
n→∞

〈h(PFix(T1)f(y∗)) − PFix(T3)h(x∗), mn − PFix(T3)h(x∗)〉 ≤ 0.

Next, we estimate ‖un − PFix(T1)f(y∗)‖. Set ũn = αnf(yn) + (1− k − αn)xn + kT1xn,

ṽn = αng(zn) + (1 − k − αn)yn + kT2yn and m̃n = αnh(xn) + (1 − k − αn)zn + kT3zn for

all n.

‖Un − PFix(T1)f(y∗)‖2

= ‖PC [Ũn] − PFix(T1)f(y∗)‖2

≤ 〈Ũn − PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

= 〈αnf(yn) + (1− k − αn)xn + kT1xn − PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

≤ αn〈f(yn)− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

+ (1 − αn)‖xn − PFix(T1)f(y∗)‖‖Un − PFix(T1)f(y∗)‖

8
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≤
1− αn

2
‖xn − PFix(T1)f(y∗)‖2 +

1

2
‖Un − PFix(T1)f(y∗)‖2

+ αn〈f(yn) − f(PFix(T2)g(z∗)), Un − PFix(T1)f(y∗)〉

+ αn〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

≤
1− αn

2
‖xn − PFix(T1)f(y∗)‖2 +

1

2
‖Un − PFix(T1)f(y∗)‖2

+ αnρ‖yn − PFix(T2)g(z∗)‖‖Un − PFix(T1)f(y∗)‖

+ αn〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

≤
1− αn

2
‖xn − PFix(T1)f(y∗)‖2 +

1

2
‖Un − PFix(T1)f(y∗)‖2

+
αnρ

2
(‖yn − PFix(T2)g(z∗)‖2 + ‖Un − PFix(T1)f(y∗)‖2)

+ αn〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉,

so, we have

‖Un − PFix(T1)f(y∗)‖2

≤
1− αn

1 − αnρ
‖xn − PFix(T1)f(y∗)‖2 +

αnρ

1− αnρ
‖yn − PFix(T2)g(z∗)‖2

+
2αn

1 − αnρ
〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉.

Thus

‖xn+1 − PFix(T1)f(y∗)‖2

≤ (1 − βn)‖xn − PFix(T1)f(y∗)‖2 + βn‖Un − PFix(T1)f(y∗)‖2

≤ (1 −
1 − ρ

1 − αnρ
αnβn)‖xn − PFix(T1)f(y∗)‖2 +

αnβnρ

1 − αnρ
‖yn − PFix(T2)g(z∗)‖2

+
2αnβn

1 − αnρ
〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉.

Similarly

‖yn+1 − PFix(T2)g(z∗)‖2

≤

(

1−
1 − ρ

1 − αnρ
αnβn

)

‖yn − PFix(T2)g(z∗)‖2 +
αnβnρ

1 − αnρ
‖zn − PFix(T3)h(y∗)‖2

+
2αnβn

1− αnρ
〈g(PFix(T3)h(y∗))− PFix(T2)g(z∗), Vn − PFix(T2)g(z∗)〉

and

‖zn+1 − PFix(T3)h(x∗)‖2

≤

(

1 −
1 − ρ

1 − αnρ
αnβn

)

‖zn − PFix(T3)h(x∗)‖2 +
αnβnρ

1 − αnρ
‖xn − PFix(T1)f(y∗)‖2

+
2αnβn

1 − αnρ
〈h(PFix(T1)f(y∗)) − PFix(T3)h(x∗), Mn − PFix(T3)h(x∗)〉.

9
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Combing all above, we have

‖xn+1 − PFix(T1)f(y∗)‖2 + ‖yn+1 − PFix(T2)g(z∗)‖2 + ‖zn+1 − PFix(T3)h(x∗)‖2

≤

(

1 −
1 − ρ

1− αnρ
αnβn

)

(‖xn − PFix(T1)f(y∗)‖2 + ‖yn − PFix(T2)g(z∗)‖2)

+ ‖zn − PFix(T3)h(x∗)‖2)

+
2αnβn

1 − αnρ
〈f(PFix(T2)g(z∗))− PFix(T1)f(y∗), Un − PFix(T1)f(y∗)〉

+
2αnβn

1 − αnρ
〈g(PFix(T3)h(x∗)) − PFix(T2)g(z∗), Vn − PFix(T2)g(z∗)〉

+
2αnβn

1 − αnρ
〈h(PFix(T1)f(y∗)) − PFix(T3)h(x∗), Mn − PFix(T3)h(x∗)〉.

Therefore, xn → PFix(T1)f(y∗), yn → PFix(T2)g(z∗) and zn → PFix(T3)h(x∗). This

completes the proof.

4 An redundant intermixed algorithm for m-strict pseudo-

contractions

Let Ti : C → C be λ-strict pseudo-contractions, fi : C → H be ρi-contractions for

i = 1, 2, 3, ...,m and k ∈ (0, 1− λ) be a constant.

We propose the following redundant intermixed algorithm for m-strict pseudo-contra-

ction mappings Ti for i = 1, 2, 3, ...,m.

Algorithm 4.1.



































x1
n+1 = (1 − βn)x1

n + βnPC [αnf1(x
2
n) + (1 − k − αn)x1

n + kT1x
1
n], n ≥ 0,

x2
n+1 = (1 − βn)x2

n + βnPC [αnf2(x
3
n) + (1 − k − αn)x2

n + kT2x
2
n], n ≥ 0,

x3
n+1 = (1 − βn)x3

n + βnPC [αnf3(x
4
n) + (1 − k − αn)x3

n + kT3x
3
n], n ≥ 0,

...

xm
n+1 = (1 − βn)xm

n + βnPC [αnf4(x
1
n) + (1 − k − αn)xm

n + kTmxm
n ], n ≥ 0,

(4.1)

where {αn} and {βn} are two real number sequences in (0, 1).

Theorem 4.2. Suppose that Fix(Ti) 6= ∅. Assume the following conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑

∞

n=0 αn = ∞;

(C2) βn ∈ [ξ1, ξ2] ⊂ (0, 1) for all n ≥ 0.

Then the sequences {xi
n} generated by (4.1) converge strongly to the fixed points

PFix(Ti)fi(x
∗) of Ti, where xi∗ ∈ Fix(Ti) for all i = 1, 2, 3, ...,m.

5 Conclusions

In this article, we presented an intermixed algorithm for three and m-strict pseudo-

contractions in Hilbert spaces which are extensions of the results in [20]. We also proved

10
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that, the above algorithm converges strongly to the fixed points for three and m-strict

pseudo-contractions in Hilbert spaces, independently. Consequently, we can find the com-

mon fixed points of three and m-strict pseudo-contractions in Hilbert spaces.
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ON FIXED POINT THEOREMS IN DUALISTIC PARTIAL METRIC

SPACES

MUHAMMAD NAZAM1, MUHAMMAD ARSHAD2, CHOONKIL PARK3∗ AND DONG YUN SHIN4∗

Abstract. In this paper, we introduce dualistic contractive mappings and use such map-

pings to prove some fixed point theorems. The results extend various comparable results

existing in the literature. Moreover, we give examples that show the superiority and effec-

tiveness of our results among corresponding fixed point theorems in partial metric spaces.

Keywords: Fixed point, dualistic partial metric, monotone mapping.

AMS 2010 Subject Classification: 46S40; 47H10; 54H25.

1. Introduction and preliminaries

In [6], Matthews introduced the concept of partial metric space as a suitable mathemat-

ical tool for program verification and proved an analogue of Banach fixed point theorem in

complete partial metric spaces. O’Neill [7] introduced the concept of dualistic partial met-

ric, which is more general than partial metric and established a robust relationship between

dualistic partial metric and quasi metric. In [10], Oltra and Valero presented a Banach

fixed point theorem on complete dualistic partial metric spaces. They also showed that the

contractive condition in Banach fixed point theorem in complete dualistic partial metric

spaces cannot be replaced by the contractive condition of Banach fixed point theorem for

complete partial metric spaces. Later, Valero [10] generalized the main theorem of [9] using

nonlinear contractive condition instead of Banach contractive condition.

Alghamdi et. al.[1], presented the following theorems in partial metric spaces, which are

stated below:

Theorem 1. Let (X, p) be a complete partial metric space and let T : X → X be a weakly

contractive mapping. Then T has a unique fixed point x∗ ∈ X and the Picard iterative

sequence {Tn(x)}n∈N converges to x∗ with respect to τ(ps), for every x ∈ X. Moreover,

p(x∗, x∗) = 0.

Theorem 2. Let (X, p) be a complete partial metric space and let T : X → X be a

Kannan mapping. Then T has a unique fixed point x ∈ X and the Picard iterative sequence

{Tn(x)}n∈N converges to x∗ with respect to τ(ps), for every x ∈ X. Moreover, p(x∗, x∗) = 0.
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We shall prove new fixed point theorems that generalize fixed point theorems provided

by Alghamdi, Shahzad and Valero in [1]. We will show, with the help of examples, that the

new results allow us to find fixed points of mappings in some cases in which the results in

partial metric spaces cannot be applied. The key feature in these fixed point theorems is

that the contractivity condition on the nonlinear map is only assumed to hold on elements

that are comparable in the partial order. However, the map is assumed to be monotone.

Throughout, in this paper, the letters R+, R and N will represent the set of nonnegative

real numbers, real numbers and positive integers, respectively.

Let us recall some mathematical basics of dualistic partial metric space to make this paper

self-sufficient.

Definition 1. [7] A dualistic partial metric on a nonempty setX is a functionD : X×X −→
R satisfying the following properties, for all x, y, z,∈ X:

(D1) x = y ⇔ D(x, x) = D(y, y) = D(x, y).

(D2) D(x, x) ≤ D(x, y).

(D3) D(x, y) = D(y, x).

(D4) D(x, z) ≤ D(x, y) +D(y, z)−D(y, y).

And the pair (X,D) represents a dualistic partial metric space.

If (X,D) is a dualistic partial metric space, then the function dD : X ×X → R+ defined

by

dD(x, y) = D(x, y)−D(x, x)

is a quasi metric on X such that τ(D) = τ(dD) for all x, y ∈ X.

Remark 1. It is obvious that every partial metric is a dualistic partial metric but the

converse is not true. To support this comment, define D∨ : R× R→ R by

D∨(x, y) = x ∨ y = sup{x, y}

for all x, y ∈ R. It is clear that D∨ is a dualistic partial metric. Note that D∨ is not a

partial metric, since D∨(−1,−2) = −1 /∈ R+. However, the restriction of D∨ to R+, D∨|R+ ,

is a partial metric.

Example 1. If (X, d) is a metric space and c ∈ R is arbitrary constant, then

D(x, y) = d(x, y) + c.

defines a dualistic partial metric on X.

Example 2. Let X = R and define the function D : X ×X → R by

D(x, y) = x+ y − xy

for all x ≤ y ∧ 1. Then (X,D) is a dualistic partial metric space.

Following [7], each dualistic partial metric D on X generates a T0 topology τ(D) on X

which has, as a base, the family of D-balls {BD(x, ε) : x ∈ X, ε > 0} and BD(x, ε) = {y ∈
X : D(x, y) < ε+D(x, x)}.

Definition 2. [7] Let (X,D) be a dualistic partial metric space.
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(1) A sequence {xn}n∈N in (X,D) converges to a point x ∈ X if and only if D(x, x) =

limn→∞D(x, xn).

(2) A sequence {xn}n∈N in (X,D) is called a Cauchy sequence if

limn,m→∞D(xn, xm) exists and is finite.

(3) A dualistic partial metric space (X,D) is said to be complete if every Cauchy se-

quence {xn}n∈N in X converges, with respect to τ(D), to a point x ∈ X such that

D(x, x) = limn,m→∞D(xn, xm).

Following lemma will be helpful in the sequel.

Lemma 1. [7, 10]

(1) A dualistic partial metric (X,D) is complete if and only if the metric space (X, dsD)

is complete.

(2) A sequence {xn}n∈N in X converges to a point x ∈ X, with respect to τ(dsD) if and

only if limn→∞D(x, xn) = D(x, x) = limn,m→∞D(xn, xm).

(3) If limn→∞ xn = υ such that D(υ, υ) = 0 then limn→∞D(xn, y) = D(υ, y) for every

y ∈ X.

Later on, Oltra and Valero [9] established a Banach fixed point theorem for dualistic

partial metric spaces in such a way that the Matthews fixed point theorem is obtained as a

particular case. The aforesaid result can be stated as follows:

Theorem 3. Let (X,D) be a complete dualistic partial metric space and let T : X → X be

a mapping such that there exists α ∈ [0, 1[ satisfying

|D(T (x), T (y))| ≤ α|D(x, y)|,

for all x, y ∈ X. Then T has a unique fixed point x∗ ∈ X. Moreover, D(x∗, x∗) = 0 and

the Picard iterative sequence {Tn(x0)}n∈N converges to x∗ with respect to τ(dsD), for every

x ∈ X.

2. Main results

In this section, we shall prove the dualistic partial metric versions of Theorems 1 and 2.

Definition 3. Let (X,�, D) be an ordered dualistic partial metric space. A self map T

defined on X is said to be a Kannan type dualistic contractive mapping if there exists

k ∈ [0, 1[ such that

|D(T (x), T (y))| ≤ k

2
[|D(x, T (x))|+ |D(y, T (y))|] (2.1)

for all comparable x, y ∈ X.

Our first main result is given below.

Theorem 4. Let (X,�) be a partially ordered set and (X,D) be a complete dualistic par-

tial metric space. Let T : X → X be a nondecreasing mapping. If T satisfies following

conditions;

(1) T is a Kannan type dualistic contractive mapping.
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(2) there exists x0 ∈ X such that x0 � T (x0).

(3) if {xn} is a nondecreasing sequence in X such that {xn} → x ∈ X, then xn � x.

Then T has a fixed point x∗ such that D(x∗, x∗) = 0.

Proof. Let us consider the Picard iterative sequence {xn}n∈N with initial point x0 ∈ X (i.e.,

xn = T (xn−1) for all n ∈ N). Of course, if there exists n ∈ N such that xn = xn+1 = T (xn),

then xn is a fixed point of T . On the other hand, if xn 6= xn+1 for all n ∈ N, then

xn � xn+1. Indeed by x0 � T (x0), we obtain x0 � x1. Since T is nondecreasing, x0 � x1
implies T (x0) � T (x1) and so x1 � x2. Continuing in this way, we get

x0 � x1 � x2 � x3 � · · · � xn � xn+1 � · · ·

Since xn � xn+1 for each n ∈ N, using contractive condition (2.1), we have

|D(x1, x2)| = |D(T (x0), T (x1))|

≤ k

2
[|D(x0, T (x0))|+ |D(x1, T (x1))|]

=
k

2
[|D(x0, x1)|+ |D(x1, x2)|],

which implies

(1− k

2
)|D(x1, x2)| ≤

k

2
|D(x0, x1)|

and so

|D(x1, x2)| ≤ λ|D(x0, x1)|,

where λ = k
2−k and 0 < λ < 1.

Similarly,

|D(x2, x3)| = |D(T (x1), T (x2))|

≤ k

2
[|D(x1, T (x1))|+ |D(x2, T (x2))|].

Thus,

|D(x2, x3)| ≤ λ|D(x1, T (x1))| ≤ λ2|D(x0, x1)|.

Continuing in this way, we have

|D(xn, xn+1)| ≤ λn|D(x0, x1)|. (2.2)

Since xn � xn, from the contractive condition (2.1), we get

|D(xn, xn)| ≤ kλn−1|D(x0, x1)|. (2.3)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1337 MUHAMMAD NAZAM et al 1334-1343



FIXED POINT THEOREMS IN DPMS

In order to prove that {xn} is a Cauchy sequence in (X,D), we shall prove that {xn} is a

Cauchy sequence in (X, dsD). Clearly,

D(xn, xn+1)−D(xn, xn) ≤ |D(xn, xn+1)|+ |D(xn, xn)|

≤ λn|D(x0, x1)|+ kλn−1|D(x0, x1)|

≤ λn(3− k)|D(x0, x1)|

for all n ∈ N. Thus for a fixed p ∈ N,

D(xn+p−1, xn+p)−D(xn+p−1, xn+p−1) ≤ λn+p−1(3− k)|D(x0, x1)| (2.4)

for all n ∈ N.

Now using (D4) and (2.4), we have

D(xn, xn+p)−D(xn, xn) ≤ D(xn, xn+1) +D(xn+1xn+2) + . . .

+ D(xn+p−1, xn+p)−
η−1∑
i=0

D(xn+i, xn+i)

≤ (λn + λn+1 + . . .+ λn+p−1)(3− k)|D(x0, x1)|

≤ λn

1− λ
(3− k)|D(x0, x1)|.

Similarly,

D(xn+p, xn)−D(xn+p, xn+p) ≤
λn

1− λ
(1 + k)|D(x0, x1)|.

Consequently,

dsD(xn, xm) ≤ 4
λn

1− λ
|D(x0, x1)|

for all n+ p = m > n ∈ N
This leads to limn,m→∞ d

s
D(xn, xm) = 0. Thus, {xn} is a Cauchy sequence in (X, dsD).

Since (X,D) is a complete dualistic partial metric space, by Lemma 1, (X, dsD) is also

complete and there exists x∗ ∈ (X, dsD) such that xn → x∗ as n→∞, i.e.,

lim
n→∞

dsD(xn, x
∗) = 0.

By Lemma 1, we have

lim
n→∞

D(x∗, xn) = D(x∗, x∗) = lim
n,m→∞

D(xn, xm). (2.5)

Since limn,m→∞ dD(xn, xm) = 0, the inequality (2.3) implies that limn,m→∞D(xn, xm) = 0,

which shows that {xn} is a Cauchy sequence in (X,D). From (2.5), we get

D(x∗, x∗) = lim
n→∞

D(xn, x
∗) = 0. (2.6)

Now, it follows from the hypotheses (3), (2.1) and (D4) that
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D(x∗, T (x∗)) ≤ D(x∗, xn) +D(xn, T (x∗))−D(xn, xn),

≤ D(x∗, xn) + |D(xn, T (x∗))|+ |D(xn, xn)|,

≤ D(x∗, xn) +
k

2
[|D(xn−1, xn)|+D(x∗, T (x∗))] + |D(xn, xn)|.

Hence we obtain

(1− k

2
)D(x∗, T (x∗)) ≤ D(x∗, xn) +

k

2
|D(xn−1, xn)|+ |D(xn, xn)|.

Letting n→∞ and using (2.3) and (2.2), we obtain

(1− k

2
)D(x∗, T (x∗)) ≤ 0.

and so D(x∗, T (x∗)) ≤ 0, but also 0 = D(x∗, x∗) ≤ D(x∗, T (x∗)). We deduce that

D(x∗, Tx∗) = D(x∗, x∗) = D(T (x∗), T (x∗)) = 0.

This implies that x∗ = T (x∗). Hence x∗ is a fixed point of T with D(x∗, x∗) = 0 and

{Tn(x)}n∈N converges to x∗ with respect to τ(dsD) for any x ∈ X. �

Remark 2. In case when D(x, y) ∈ R+ for all x, y ∈ X, Theorem 4 reduces to Theorem 2.

A natural question that can be raised is whether the contractive condition in the state-

ment of Theorem 4 can be replaced by the contractive condition in the statement of Theorem

2. The following easy example provides a negative answer to this question.

Example 3. Consider the complete ordered dualistic partial metric (R,≤, D∨). Define the

self-mapping T0 : R→ R by

T0(x) =

{
0 if x 6= 0

−1 if x = 0
.

It is easy to check that T0 is nondecreasing with respect to usual order on R and for all

comparable x, y ∈ R, contractive condition

D∨(T0(x), T0(y)) ≤ 1

2
[D∨(x, T0(x)) +D∨(y, T0(y))]

holds. However, T0 does not have a fixed point. Observe that T0 does not satisfy the

contractive condition in the statement of Theorem 4. Indeed, note that for all k ∈ [0, 1[, we

have

1 = |D∨(−1,−1)| = |D∨(T0(0), T0(0))| >
k

2
[|D∨(0, T0(0))|+ |D∨(0, T0(0))|]

= k|(0 ∨ (−1)| = 0.

For next result, we begin with following definition.
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Definition 4. Let (X,�, D) be an ordered dualistic partial metric space. A mapping T :

X → X is said to be a weakly dualistic contractive if there exists α : X ×X → [0, 1[ such

that for all 0 ≤ a ≤ b

θ(a, b) = sup{α(x, y) : a ≤ |D(x, y)| ≤ b} < 1,

and for all comparable x, y ∈ X

|D(T (x), T (y))| ≤ α(x, y)|D(x, y)|. (2.7)

Example 4. Consider ([−1, 1],≤, D∨) an ordered dualistic partial metric space. Define the

mapping T3 : X → X by

T3(x) =
x3

x2 + 1

for all x ∈ X. We define α : [−1, 1]× [−1, 1]→ [0, 1] by

α(x, y) =


D∨(T3x, T3y)

D∨(x, y)
if D∨(x, y) 6= 0

0 if D∨(x, y) = 0

.

Observe that
D∨(T3x, T3y)

D∨(x, y)
> 0 provided that D∨(x, y) 6= 0. It is easy to check that α(x, y) ≤

1
2 for all comparable x, y ∈ [−1, 1] and that θ(a, b) < 1 for all a, b ∈ R with 0 ≤ a ≤ b.

Moreover,

|D∨(T3x, T3y)| ≤ α(x, y)|D∨(x, y)|

for all comparable x, y ∈ [−1, 1].

Theorem 5. Let (X,�) be a partially ordered set and (X,D) be a complete dualistic partial

metric space. Let T : X → X be a nondecreasing mapping. Assume that T satisfies following

conditions;

(1) T is a weakly dualistic contractive mapping.

(2) there exists x0 ∈ X such that x0 � T (x0).

(3) either T is continuous or if {xn} is a nondecreasing sequence in X such that {xn} →
x ∈ X, then xn � x.

Then T has a fixed point x∗ with D(x∗, x∗) = 0.

Proof. Consider the Picard iterative sequence {xn}n∈N with an initial point x0 ∈ X (i.e.,

xn = Txn−1 for all n ∈ N). It is clear that if there exists n ∈ N such that xn = xn+1, then

xn is a fixed point of T . On the other hand, if xn 6= xn+1 for each n ∈ N, then xn � xn+1.

Indeed by x0 � T (x0), we obtain x0 � x1. Since T is nondecreasing, x0 � x1 implies

T (x0) � T (x1), and so x1 � x2. Continuing in this way, we get

x0 � x1 � x2 � x3 � · · · � xn � xn+1 � · · ·

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1340 MUHAMMAD NAZAM et al 1334-1343



M. NAZAM, M. ARSHAD, C. PARK, D. SHIN

Since xn � xn+1 for each n ∈ N, using contractive condition (2.7), we have

|D(xn, xn+1)| = |D(T (xn−1), T (xn))|
≤ α(xn−1, xn)|D(xn−1, xn)|
≤ |D(xn−1, xn)|.

This implies that the sequence {|D(xn, xn+1)|}n∈N is decreasing and bounded below. So it

converges to r ∈ R with

r = inf
n∈N
|D(xn−1, xn)| ≥ 0.

We claim that r = 0. For the purpose of contradiction, assume r > 0.

0 < r ≤ |D(xn, xn+1)| ≤ |D(xn−1, xn)| ≤ · · · ≤ |D(x0, x1)|.

It implies 0 < r ≤ |D(x0, x1)| and so we deduce that

θ = θ(r, |D(x0, x1)|) = sup{α(x, y) : r ≤ |D(x, y)| ≤ |D(x0, x1)|} < 1.

Now from contractive conition (2.7), we get

r ≤ |D(xn, xn+1)|
≤ α(xn−1, xn)|D(xn−1, xn)|
≤ θ(r, |D(x0, x1)|)|D(xn−1, xn)|
≤ θ2(r, |D(x0, x1)|)|D(xn−2, xn−1)| ≤ . . .
≤ θn(r, |D(x0, x1)|)|D(x0, x1)|.

Therefore,

r ≤ lim
n→∞

θn(r, |D(x0, x1)|)|D(x0, x1)|.

This implies that r ≤ 0, which is a contradiction. Consequently, r = 0 and hence

lim
n→∞

|D(xn, xn+1)| = 0 = lim
n→∞

D(xn, xn+1) = 0. (2.8)

Now since xn � xn, by arguing like above, we can show that limn→∞ |D(xn, xn)| =

limn→∞D(xn, xn) = 0, since

|D(xn, xn)| ≤ α(xn−1, xn−1)|D(xn−1, xn−1)|

for all n ∈ N and thus the sequence {|D(xn, xn)|}n∈N is decreasing and bounded below.

Next we show that {xn} is a Cauchy sequence in the metric space (X, dsD). It is clear

that

D(xn, xn+1)−D(xn, xn) ≤ θn(0, |D(x0, x1)|)|D(x0, x1)|+ θn(0, |D(x0, x0)|)|D(x0, x0)|

≤ θn [|D(x0, x1)|+ |D(x0, x0)|]

for all n ∈ N, where θn = (θn(0, |D(x0, x1)|)∨ θn(0, |D(x0, x0)|)) for all n ∈ N. This implies

that, for a fixed p ∈ N, we have

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1341 MUHAMMAD NAZAM et al 1334-1343



FIXED POINT THEOREMS IN DPMS

D(xn, xn+p)−D(xn, xn) ≤ D(xn, xn+1) +D(xn+1xn+2) + . . .

+ D(xn+p−1, xn+p)−
p−1∑
i=0

D(xn+i, xn+i)

≤ (θn + θn+1 + . . .+ θn+p−1)[|D(x0, x1)|+ |D(x0, x0)|]

≤ θn

1− θ
[|D(x0, x1)|+ |D(x0, x0)|]

for all n ∈ N. Similarly, we can calculate that

D(xn+p, xn)−D(xn+p, xn+p) ≤
θn

1− θ
[|D(x0, x1)|+ |D(x0, x0)|],

which implies that limn→∞ d
s
D(xn, xn+p) = 0. Hence {xn} is a Cauchy sequence in (X, dsD).

Since (X,D) is a complete dualistic partial metric space, by Lemma 1, (X, dsD) is also com-

plete and there exists x∗ ∈ (X, dsD) such that xn → x∗ as n→∞, i.e., limn→∞ d
s
D(xn, x

∗) =

0. Now again from Lemma 1, we get

D(x∗, x∗) = lim
n→∞

D(xn, x
∗) = lim

n,m→∞
D(xn, xm); m = n+ p. (2.9)

Now since limn,m→∞ dD(xn, xm) = 0, limn,m→∞[D(xn, xm)−D(xn, xn)] = 0 and

lim
n,m→∞

D(xn, xm) = lim
n→∞

D(xn, xn)

but (2.8) implies that

lim
n→∞

D(xn, xn) = 0.

It follows directly that

D(x∗, x∗) = lim
n→∞

D(xn, x
∗) = 0. (2.10)

Now if T is continuous, then

x∗ = lim
n→∞

xn = lim
n→∞

Tn(x0) = lim
n→∞

Tn+1(x0) = T ( lim
n→∞

Tn(x0)) = T (x∗).

Now if T is discontinuous, then by the hypotheses (3), we have

D(x∗, T (x∗)) ≤ D(x∗, xn) +D(xn, T (x∗))−D(xn, xn)

≤ D(x∗, xn) + |D(xn, T (x∗))|+ |D(xn, xn)|
≤ D(x∗, xn) + α(xn−1, x

∗)|D(xn−1, x
∗)|+ |D(xn, xn)|

≤ D(x∗, xn) + |D(xn−1, x
∗)|+ |D(xn, xn)|.

Since limn→∞D(xn, xn) = limn→∞D(xn, x
∗) = 0, D(x∗, T (x∗)) ≤ 0, but also

0 = D(x∗, x∗) ≤ D(x∗, T (x∗)).

We deduce that

D(x∗, Tx∗) = D(x∗, x∗) = D(T (x∗), T (x∗)) = 0.

This implies that x∗ = T (x∗). Hence x∗ is a fixed point of T with D(x∗, x∗). �
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Remark 3. Since every dualistic partial metric is an extension of partial metric, Theorem

5 is an extension of Theorem 1.

There arises the following natural question:

Whether the contractive condition in the statement of Theorem 5 can be replaced by the

contractive condition in Theorem 1?

The following example provides a negative answer to the above question.

Example 5. Consider the complete ordered dualistic partial metric (R,≤, D∨) and the self-

mapping T0 defined as in Example 3. Then, for fixed k ∈ [0, 1[, it is easy to verify that for

all comparable x, y ∈ R, the contractive condition

D∨(T0(x), T0(y)) ≤ α(x, y)D∨(x, y)

holds with α(x, y) = k. However, T0 does not have a fixed point. Observe that T0 does not

satisfy the contractive condition of Theorem 5. Indeed, there is no mapping α : R×R→ [0, 1[

such that

1 = |D∨(−1,−1)| = |D∨(T0(0), T0(0))| > α(0, 0)|D∨(0, 0)| = 0.

Remark 4. Significance of the above results lies in the fact that these results are true

for all real numbers whereas such results proved in partial metric spaces are only true for

positive real numbers.
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1. Introduction

In 2012, Ren [6] introduced Bernstein type operators as follows:

Ln(f ;x) = f(0)Pn,0(x) +
n−1∑
k=1

Pn,k(x)Bn,k(f) + f(1)Pn,n(x), (1)

where f ∈ C[0, 1], x ∈ [0, 1], Pn,k(x) =

(
n
k

)
xk(1 − x)n−k (k = 0, 1, ..., n),

and Bn,k(f) = 1
B(nk,n(n−k))

∫ 1

0
tnk−1(1 − t)n(n−k)−1f(t)dt (k = 1, ..., n − 1),

B(., .) is the beta function.
The moments of the operators Ln(f ;x) were obtained as follows (see [6]):

Remark 1. For Ln(t
m;x), m = 0, 1, 2, we have

(i) Ln(1 ; x ) = 1 ;

(ii) Ln(t ; x ) = x ;

(iii) Ln(t
2 ; x ) =

n(n − 1 )

n2 + 1
x2 +

n + 1

n2 + 1
x .

In 2015, Inspired by [1], Ren and Zeng [7] introduced new type Bézier oper-
ators, which is the Bézier variant of the Bernstein type operators Ln(f ;x), as
follows:

Ln,α(f ;x) = f(0)Q
(α)
n,0(x) +

n−1∑
k=1

Q
(α)
n,k(x)Bn,k(f) + f(1)Q(α)

n,n(x), (2)

∗Corresponding authors: Mei-Ying Ren and Xiao-Ming Zeng.
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where f ∈ C[0, 1], x ∈ [0, 1], α > 0, Q
(α)
n,k(x) = Jα

n,k(x)− Jα
n,k+1(x), Jn,n+1(x) =

0, Jn,k(x) =
n∑

i=k

Pn,i(x), Pn,k(x) (k = 0, 1, ...n), Bn,k(f) (k = 1, ..., n − 1) and

B(., .) are as stated in (1).
In the present paper, we will study the Stancu variant of the new type

Bézier operators Ln,α(f ;x), which have been given by (2). We introduce new
Stancu-Bézier type operators as follows:

L(β,γ)
n,α (f ;x) = f(

β

n+ γ
)Q

(α)
n,0(x) +

n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k (f) + f(

n+ β

n+ γ
)Q(α)

n,n(x), (3)

where f, x, α, Q
(α)
n,k(x)(k = 0, 1, ..., n) are as stated in (2), β, γ are two given real

parameters satisfying the condition 0 ≤ β ≤ γ, B(., .) is the beta function, and

B
(β,γ)
n,k (f) = 1

B(nk,n(n−k))

∫ 1

0
tnk−1(1− t)n(n−k)−1f(nt+β

n+γ )dt, k = 1, ..., n− 1, .

It is clear that L
(β,γ)
n,α (f ;x) are bounded and positive on C[0,1]. When β =

γ = 0, L
(β,γ)
n,α (f ;x) become the operators Ln,α(f ;x).

The goal of this paper is to study the approximation properties of these
operators with the help of the Korovkin type approximation theorem. We also
estimate the rates of convergence of these operators by using a modulus of con-
tinuity. Then, we obtain the direct theorem concerned with an approximation
for these operators by means of the Ditzian-Totik modulus of smoothness.

In the paper, for f ∈ C[0, 1], we denote ∥f∥ = max{|f(x)| : x ∈ [0, 1]}.
ω(f, δ) (δ > 0) denotes the usual modulus of continuity of f ∈ C[0, 1].

2. Auxiliary results

Now, we give some lemmas, which are necessary to prove our results.
Lemma 1. Let α > 0, x ∈ [0, 1], 0 ≤ β ≤ γ. We have

(i) L(β,γ)
n,α (1 ; x ) = 1 ;

(ii) lim
n→∞

L(β,γ)
n,α (t ; x ) = x uniformly on [0, 1];

(iii) lim
n→∞

L(β,γ)
n,α (t2 ; x ) = x2 uniformly on [0, 1].

Proof (i) Since
∑n

k=0 Q
(α)
n,k(x) = 1, so, by (3), we get L

(β,γ)
n,α (1;x) = 1.

(ii) by (2) and (3), we have

L(β,γ)
n,α (t;x) =

n

n+ γ
Ln,α(t;x) +

β

n+ γ
,

thus, by Lemma 2 (ii) in [7], we have lim
n→∞

L
(β,γ)
n,α (t ; x ) = x uniformly on [0,1].

(iii) by (2) and (3), we have

L(β,γ)
n,α (t2;x) = (

n

n+ γ
)2Ln,α(t

2;x) +
2nβ

(n+ γ)2
Ln,α(t;x) + (

β

n+ γ
)2,

thus, by Lemma 2 (iii) in [7], we have lim
n→∞

L
(β,γ)
n,α (t2 ; x ) = x2 uniformly on [0,1].

Lemma 2.(see [4]) For x ∈ [0, 1], k = 0, 1, ..., n, we have

0 ≤ Q
(α)
n,k(x) ≤

{
αPn,k(x), α ≥ 1;
Pα
n,k(x), 0 < α < 1.

Lemma 3.(see [5]) For 0 < α < 1, ν > 0, we have

n∑
k=0

|k − nx|νPα
n,k(x) ≤ (n+ 1)1−α(A ν

α
)αn

ν
2 ,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1345 Mei-Ying Ren et al 1344-1352



where the constant As only depends on s.
Lemma 4. Let α > 0, 0 ≤ β ≤ γ, We have

(i) B
(β,γ)
n,k (1 ) = 1 ;

(ii) B
(β,γ)
n,k (t) =

k + β

n + γ
;

(iii) B
(β,γ)
n,k (t2 ) =

n2

(n + γ)2 (n2 + 1 )
(k2 +

k

n
) +

2kβ

(n + γ)2
+

β2

(n + γ)2
.

Proof By [7], we have Bn,k(1) = 1, Bn,k(t) =
k
n , Bn,k(t

2) = 1
n2+1 (k

2 + k
n ),

so, by simple calculation, we obtain

(i)B
(β,γ)
n,k (1 ) = 1 ;

(ii)B
(β,γ)
n,k (t) =

n

n + γ
Bn,k (t) +

β

n + γ
Bn,k (1 ) =

k + β

n + γ
;

(iii)B
(β,γ)
n,k (t2 ) =

n2

(n + γ)2
Bn,k (t

2 ) +
2nβ

(n + γ)2
Bn,k (t) +

β2

(n + γ)2
Bn,k (1 )

=
n2

(n+ γ)2(n2 + 1)
(k2 +

k

n
) +

2kβ

(n+ γ)2
+

β2

(n+ γ)2
.

Lemma 5. For α ≥ 1, x ∈ [0, 1], 0 ≤ β ≤ γ, we have

(i)L(β,γ)
n,α ((t − x )2 ; x ) ≤ 2α(1 + γ)

n + γ
;

(ii)L(β,γ)
n,α (|t − x |; x ) ≤

√
2α(1 + γ)

n + γ
.

Proof (i) For α ≥ 1, x ∈ [0, 1], 0 ≤ β ≤ γ, by (3), Lemma 2, (1) and Remark
1, we obtain

L(β,γ)
n,α ((t− x)2;x)

= (
β

n+ γ
− x)2Q

(α)
n,0(x) +

n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k ((t− x)2) + (

n+ β

n+ γ
− x)2Q(α)

n,n(x)

≤ α[(
β

n+ γ
− x)2Pn,0(x) +

n−1∑
k=1

Pn,k(x)B
(β,γ)
n,k ((t− x)2) + (

n+ β

n+ γ
− x)2Pn,n(x)]

= α[
n2

(n+ γ)2
Ln(t

2;x) +
2nβ

(n+ γ)2
Ln(t;x) +

β2

(n+ γ)2
Ln(1;x)]

−2αx(
n

n+ γ
Ln(t;x) +

β

n+ γ
Ln(1;x)) + αx2Ln(1;x)

= α{ n2

(n+ γ)2
[
n(n− 1)

n2 + 1
x2 +

n+ 1

n2 + 1
x] +

2nβx

(n+ γ)2
+

β2

(n+ γ)2
} − 2αx(

nx+ β

n+ γ
)

+αx2

= α[
n3 + n2 − 2βγn2 − 2βγ

(n+ γ)2(n2 + 1)
x(1− x) +

−2βγn2 − 2βγ + γ2n2 + γ2

(n+ γ)2(n2 + 1)
x2 +

β2

(n+ γ)2
]

≤ α[
n+ 1

(n+ γ)2
x(1− x) +

β2 + γ2

(n+ γ)2
]

≤ α(n+ 1 + β2 + γ2)

(n+ γ)2

≤ 2α(1 + γ)

n+ γ
.
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(ii) In view of L
(β,γ)
n,α (1;x) = 1, by the Cauchy-Schwarz inequality, we have

L(β,γ)
n,α (|t− x|;x) ≤

√
L
(β,γ)
n,α (1;x)

√
L
(β,γ)
n,α ((t− x)2;x),

thus, we get

L(β,γ)
n,α (|t− x|;x) ≤

√
2α(1 + γ)

n+ γ
.

Lemma 6. For 0 < α < 1, x ∈ [0, 1], 0 ≤ β ≤ γ, we have

(i) L(β,γ)
n,α ((t − x )2 ; x ) ≤ M (β,γ)

α n−α;

(ii) L(β,γ)
n,α (|t − x |; x ) ≤

√
M

(β,γ)
α · n−α

2 .

where the constant M
(β,γ)
α only depends on α, β, γ.

Proof (i) For 0 < α < 1, x ∈ [0, 1], 0 ≤ β ≤ γ, by (3), Lemma 2 and
Lemma 4, we obtain

L(β,γ)
n,α ((t− x)2;x)

= (
β

n+ γ
− x)2Q

(α)
n,0(x) +

n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k ((t− x)2) + (

n+ β

n+ γ
− x)2Q(α)

n,n(x)

≤ (
β

n+ γ
− x)2Pα

n,0(x) +
n−1∑
k=1

Pα
n,k(x)B

(β,γ)
n,k ((t− x)2) + (

n+ β

n+ γ
− x)2Pα

n,n(x)

≤
n∑

k=0

Pα
n,k(x)[

1

(n+ γ)2
(k2 +

k

n
) +

2kβ

(n+ γ)2
+

β2

(n+ γ)2
− 2x

k + β

n+ γ
+ x2]

=
1

(n+ γ)2

n∑
k=0

(k − nx)2Pα
n,k(x) +

2(β − γx)

(n+ γ)2

n∑
k=0

(k − nx)Pα
n,k(x)

+
1

(n+ γ)2

n∑
k=0

(
k

n
+ β2 − 2βγx+ γ2x2)Pα

n,k(x)

=: I1 + I2 + I3.

By Lemma 3, we get I1 ≤ n(n+1)
(n+γ)2 (n + 1)−α(A 2

α
)α ≤ 2(A 2

α
)αn−α, I2 ≤

2(β+γ)
(n+γ)2

n∑
k=0

|k−nx|Pα
n,k(x) ≤

2(β+γ)
√
n(n+1)

(n+γ)2 (n+1)−α(A 1
α
)α ≤ 4(β+γ)(A 1

α
)αn−α,

here the constant A i
α
(i = 1, 2) only depends on α.

Using the Hölder inequality, we have
n∑

k=0

Pα
n,k(x) ≤ (n+1)1−α[

n∑
k=0

Pn,k(x)]
α,

and | kn + β2 − 2βγx+ γ2x2| ≤ 1 + (β + γ)2, so, we have

I3 ≤ 1 + (β + γ)2

(n+ γ)2
(n+ 1)1−α[

n∑
k=0

Pn,k(x)]
α ≤ 2[1 + (β + γ)2]n−α.

Denote M
(β,γ)
α = 2(A 2

α
)α+4(β+γ)(A 1

α
)α+2[1+(β+γ)2], then we can get

L(β,γ)
n,α ((t− x)2;x) ≤ M (β,γ)

α n−α.

(ii) Since

L(β,γ)
n,α (|t− x|;x) ≤

√
L
(β,γ)
n,α (1;x)

√
L
(β,γ)
n,α ((t− x)2;x),
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thus, we get

L(β,γ)
n,α (|t− x|;x) ≤

√
M

(β,γ)
α · n−α

2 .

Lemma 7. For f ∈ C[0, 1], x ∈ [0, 1], α ≥ 0, and 0 ≤ β ≤ γ, we have

| L(β,γ)
n,α (f ;x) |≤∥ f ∥ .

Proof By (3) and Lemma 1 (i), we have

| L(β,γ)
n,α (f ;x) |≤ ∥f∥L(β,γ)

n,α (1;x) = ∥f∥.

3. Main results

First of all we give the following convergence theorem for the sequence

{L(β,γ)
n,α (f ;x)}.

Theorem 1. Let α > 0, x ∈ [0, 1], 0 ≤ β ≤ γ. Then the sequence {L(β,γ)
n,α (f ;x)}

converges to f uniformly on [0, 1] for any f ∈ C[0, 1].

Proof Since L
(β,γ)
n,α (f ;x) is bounded and positive on C[0, 1], and by Lemma 1,

we have lim
n→∞

∥L(β,γ)
n,α (em; ·)− em∥ = 0 for em(t) = tm, m = 0, 1, 2. So, accord-

ing to the well-known Bohman-korovkin theorem ([2, P.40, Theorem 1.9]), we

see that the sequence {L(β,γ)
n,α (f ;x)} converges to f uniformly on [0,1] for any

f ∈ C[0, 1].

Next we estimate the rates of convergence of the sequence {L(β,γ)
n,α } by means

of modulus of continuity.
Theorem 2. Let f ∈ C[0, 1], x ∈ [0, 1], 0 ≤ β ≤ γ. Then

(i) when α ≥ 1, we have

|L(β,γ)
n,α (f ; ·)− f∥ ≤ [1 +

√
2α(1 + γ)]ω(f,

1√
n+ γ

);

(ii) when 0 < α < 1, we have

|L(β,γ)
n,α (f ;x)− f(x)| ≤ (1 +

√
M

(β,γ)
α )ω(f, n−α

2 ).

Here the constant M
(β,γ)
α only depends on α, β, γ.

Proof (i) When α ≥ 1, by Lemma 1 (i), we have

|L(β,γ)
n,α (f ;x)− f(x)|

≤ |f( β

n+ γ
)− f(x)|Q(α)

n,0(x) +
n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k (|f(t)− f(x)|)

+|f(n+ β

n+ γ
)− f(x)|Q(α)

n,n(x)

≤ ω(f, | β

n+ γ
− x|)Q(α)

n,0(x) +
n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k (ω(f, |t− x|))

+ω(f, |n+ β

n+ γ
− x|)Q(α)

n,n(x)

≤ (1 +
√
n+ γ| β

n+ γ
− x|)ω(f, 1√

n+ γ
)Q

(α)
n,0(x)
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+

n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k ((1 +

√
n+ γ|t− x|)ω(f, 1√

n+ γ
))

+(1 +
√
n+ γ|n+ β

n+ γ
− x|)ω(f, 1√

n+ γ
)Q(α)

n,n(x)

≤ ω(f,
1√

n+ γ
) +

√
n+ γω(f,

1√
n+ γ

)L(β,γ)
n,α (|t− x|;x),

so, by Lemma 5 (ii), we obtain

|L(β,γ)
n,α (f ;x)− f(x)| ≤ [1 +

√
2α(1 + γ)]ω(f,

1√
n+ γ

).

The desired result follows immediately.
(ii) When 0 < α < 1, by Lemma 1 (i), we have

|L(β,γ)
n,α (f ;x)− f(x)|

≤ ω(f, | β

n+ γ
− x|)Q(α)

n,0(x) +
n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k (ω(f, |t− x|))

+ω(f, |n+ β

n+ γ
− x|)Q(α)

n,n(x)

≤ (1 + n
α
2 | β

n+ γ
− x|)ω(f, n−α

2 )Q
(α)
n,0(x)

+
n−1∑
k=1

Q
(α)
n,k(x)B

(β,γ)
n,k ((1 + n

α
2 |t− x|)ω(f, n−α

2 ))

+(1 + n
α
2 |n+ β

n+ γ
− x|)ω(f, n−α

2 )Q(α)
n,n(x)

≤ ω(f, n−α
2 ) + n

α
2 ω(f, n−α

2 )L(β,γ)
n,α (|t− x|;x),

so, by Lemma 6 (ii), we obtain |L(β,γ)
n,α (f ;x)−f(x)| ≤ (1+

√
M

(β,γ)
α )ω(f, n−α

2 ).
The desired result follows immediately.
Theorem 3. Let f ∈ C1[0, 1], x ∈ [0, 1], 0 ≤ β ≤ γ. Then

(i) when α ≥ 1, we have

|L(β,γ)
n,α (f ;x)− f(x)|

≤ [∥f ′∥+ ω(f ′,
1√

n+ γ
)(1 +

√
2α(1 + γ))]

√
2α(1 + γ)

n+ γ
;

(ii) when 0 < α < 1, we have

|L(β,γ)
n,α (f ;x)− f(x)| ≤ [∥f ′∥+ ω(f ′, n−α

2 )(1 +

√
M

(β,γ)
α )]

√
M

(β,γ)
α n−α.

Here the constant M
(β,γ)
α only depends on α, β, γ.

Proof Let f ∈ C1[0, 1]. For any t, x ∈ [0, 1], δ > 0, we have

|f(t)− f(x)− f ′(x)(t− x)| ≤ |
∫ t

x

|f ′(u)− f ′(x)|du|

≤ ω(f ′, |t− x|)|t− x|
≤ ω(f ′, δ)(|t− x|+ δ−1(t− x)2),
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hence, by the Cauchy-Schwarz inequality, we have

|L(β,γ)
n,α (f(t)− f(x)− f ′(x)(t− x);x)|

≤ ω(f ′, δ)
(
L(β,γ)
n,α (|t− x|;x) + δ−1L(β,γ)

n,α ((t− x)2;x)
)

≤ ω(f ′, δ)(

√
L
(β,γ)
n,α (1;x) + δ−1

√
L
(β,γ)
n,α ((t− x)2;x))

√
L
(β,γ)
n,α ((t− x)2;x).

So, we get

|L(β,γ)
n,α (f ;x)− f(x)|

≤ ∥f ′∥L(β,γ)
n,α (|t− x|;x)

+ω(f ′, δ)(1 + δ−1

√
L
(β,γ)
n,α ((t− x)2;x))

√
Ln,α((t− x)2;x). (4)

(i) When α ≥ 1, taking δ = 1√
n+γ

in (4), by Lemma 5 and inequality (4),

we obtain the desired result.
(ii)When 0 < α < 1, taking δ = n−α

2 in (4), by Lemma 6 and inequality (4),
we obtain the desired result.

Finally we study the direct theorem concerned with an approximation for

the sequence {L(β,γ)
n,α } by means of the Ditzian-Totik modulus of smoothness.

For the next theorem we shall use some notations.
For f ∈ C[0, 1], φ(x) =

√
x(1− x), 0 ≤ λ ≤ 1, x ∈ [0, 1], let

ωφλ(f, t) = sup
0<h≤t

sup
x±hφλ(x)

2 ∈[0,1]

|f(x+
hφλ(x)

2
)− f(x− hφλ(x)

2
)|

be the Ditzian-Totik modulus of first order, and let

Kφλ(f, t) = inf
g∈Wλ

{∥ f − g ∥ +t∥φλg′∥+ t
1

1−λ
2 ∥g′∥} (5)

be the corresponding K-functional, where Wλ = {f |f ∈ ACloc[0, 1], ∥φλf ′∥ <
∞, ∥f ′∥ < ∞}.

It is well known that (see [3])

Kφλ(f, t) ≤ Cωφλ(f, t), (6)

for some absolute constant C > 0.

Now we state our next main result.
Theorem 4. Let f ∈ C[0, 1], α ≥ 1, x ∈ [0, 1], 0 ≤ β ≤ γ, φ(x) =

√
x(1− x),

δn(x) = φ(x)+ 1√
n+γ

, 0 ≤ λ ≤ 1. Then there exists an absolute constant C > 0

such that

|L(β,γ)
n,α (f ;x)− f(x)| ≤ Cωφλ(f,

δ1−λ
n (x)√
n+ γ

).

Proof Let g ∈ Wλ, by Lemma 1 (i) and Lemma 7, we have

|L(β,γ)
n,α (f ;x)− f(x)|

≤ |L(β,γ)
n,α (f − g;x)|+ |f(x)− g(x)|+ |L(β,γ)

n,α (g;x)− g(x)|

≤ 2∥f − g∥+ |L(β,γ)
n,α (g;x)− g(x)|. (7)
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Since g(t) =
∫ t

x
g′(u)du+ g(x), L

(β,γ)
n,α (1;x) = 1, so, we have

|L(β,γ)
n,α (g;x)− g(x)| ≤ |L(β,γ)

n,α (

∫ t

x

|g′(u)|du;x)|

≤ ∥δλng′∥L(β,γ)
n,α (|

∫ t

x

δ−λ
n (u)du|;x). (8)

By the Hölder inequality, we get

|
∫ t

x

δ−λ
n (u)du| ≤ |

∫ t

x

δ−1
n (u)du|λ|t− x|1−λ. (9)

Since

δ−1
n (x) ∼ min(φ−1(x),

√
n+ γ), (10)

here a ∼ b means that there exists some constant C > 0, such that C−1b ≤ a ≤
Cb.

Also, by (11) in [7] , we have

|
∫ t

x

φ−1(u)du| ≤ 4|t− x|φ−1(x), (11)

thus, by (9), (10) and (11), we obtain

|
∫ t

x

δ−λ
n (u)du| ≤ Cδ−λ

n (x)|t− x|, (12)

also, by (8) and (12), we have

|L(β,γ)
n,α (g;x)− g(x)| ≤ C∥δλng′∥L(β,γ)

n,α (δ−λ
n (x)|t− x|;x)

= C∥δλng′∥δ−λ
n (x)L(β,γ)

n,α (|t− x|;x). (13)

In view of the proof of Lemma 5 (i), we have

L(β,γ)
n,α ((t− x)2;x) ≤ α[

n+ 1

(n+ γ)2
x(1− x) +

β2 + γ2

(n+ γ)2
],

so, by the Cauchy-Schwarz inequality and Lemma 1 (i), we have

L(β,γ)
n,α (|t− x|;x) ≤

√
L
(β,γ)
n,α (1;x)

√
L
(β,γ)
n,α ((t− x)2;x)

≤

√
α[

n+ 1

(n+ γ)2
x(1− x) +

β2 + γ2

(n+ γ)2
]

≤ C
δn(x)√
n+ γ

, (14)

so, by (13) and (14), we obtain

|L(β,γ)
n,α (g;x)− g(x)| ≤ C

δ1−λ
n (x)√
n+ γ

∥δλng′∥, (15)

thus, by (7), (15) and δn(x) = φ(x) + 1√
n+γ

, we have

|L(β,γ)
n,α (f ;x)− f(x)|

≤ C[∥f − g∥+ δ1−λ
n (x)√
n+ γ

∥δλng′∥]

≤ C[∥f − g∥+ δ1−λ
n (x)√
n+ γ

∥φλg′∥+ δ1−λ
n (x)√
n+ γ

(
1√

n+ γ
)λ∥g′∥]

≤ C[∥f − g∥+ δ1−λ
n (x)√
n+ γ

∥φλg′∥+ (
δ1−λ
n (x)√
n+ γ

)
1

1−λ
2 ∥g′∥]. (16)
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Then, in view of (16), (5) and (6), we obtain

|L(β,γ)
n,α (f ;x)− f(x)| ≤ CKφλ(f,

δ1−λ
n (x)√
n+ γ

) ≤ Cωφλ(f,
δ1−λ
n (x)√
n+ γ

),

where C is a positive constant, in different places, the value of C may be differ-
ent.
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ABSTRACT

The main objective of this paper is to study the global stability of the positive solutions and the periodic character
of the di¤erence equation

+1 =  + ¡ + ¡ +
¡ + ¡
¡ + ¡

  = 0 1 

where the parameters        2 (0 1) and the initial conditions ¡ ¡+1  ¡1 and 0 are
positive real numbers where  = f g. Examples to illustrate the importance of our results.

Keywords: di¤erence equations, stability, global stability, boundedness, periodic solutions.

Mathematics Subject Classi…cation: 39A10

—————————————————

1. INTRODUCTION

Di¤erence equations have always played an important role in the construction and analysis of mathematical
models of economic process, biology, ecology, physics and so forth. The study of nonlinear rational di¤erence
equations of higher order is of paramount importance, since we still know so little about such equations.

In [1] Papaschinopoulos et al. studied the asymptotic behavior and the periodicity of the positive solutions
of the nonautonomous di¤erence equation

+1 =  +
¡1


Kalabušíc et al. [2] investigated the global character of the solution of the nonlinear rational di¤erence
equation

+1 =
¡+¡
¡+¡



Elsayed et al. [3] studied the global stability character and the periodicity of solutions of the recursive
sequence

+1 = ¡ +
¡+¡
¡+¡



Zayed et al. [4] investigated the behavior of the following rational recursive sequences

+1 =  ¡ 
¡¡ 
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El-Moneam et al. [5] obtained the boundedness, the periodicity and the global stability of the positive solution
of the di¤erence equation,

+1 =  +
¡1+¡2+¡3+¡4
¡1+¡2+¡3+¡4



El-Dessoky [6] studied the global stability, the boundedness and the periodicity of the nonlinear di¤erence
equation

+1 =  + ¡ + ¡ ¡ ¡
¡¡¡   = 0 1 

For other related results, see [1 - 30].

Our aim in this paper is to obtain some qualitative behavior of the positive solutions of the di¤erence equation

+1 =  + ¡ + ¡ +
¡+¡
¡+¡

  = 0 1  (1)

where the parameters        2 (0 1) and the initial conditions ¡ ¡+1  ¡1 and 0 are
positive real numbers where  = f g.

2. LOCAL STABILITY OF THE EQUILIBRIUM POINT

In this section, we study the local stability character of the equilibrium point of Eq. (1).

Eq. (1) has equilibrium point and is given by

¤ = ¤ + ¤ + ¤ + ¤+¤

¤+¤ 

If +  +   1, then the only positive equilibrium point ¤ of Eq. (1) is given by ¤ = +
[1¡¡¡](+) 

Theorem 2.1. (i) Let     +  +   1 and  
(¡)(1¡¡¡))

(+)(+) then equilibrium ¤ of Eq. (1) is
locally asymptotically stable.

(ii) Let     +  +   1 and   (¡)(1¡¡¡))
(+)(+) then equilibrium ¤ of Eq. (1) is locally

asymptotically stable.

Proof: Suppose that  : (0 1)3 ¡! (0 1) be a continuous function de…ned by

(0 1 2) = 0 + 1 + 2 +
1+2
1+2

 (2)

Therefore, it follows that

(0 1 2)
0

=  (0 1 2)
1

=  + (¡)2
(1+2)

2 
(0 1 2)

2
=  ¡ (¡)0

(1+2)
2 

Then, we see that

(¤ ¤ ¤)
0

=  (¤ ¤ ¤)
1

=  + (¡)(1¡¡¡)
(+)(+)  (¤ ¤ ¤)

2
=  ¡ (¡)(1¡¡¡)(+)(+) 

Under the conditions of part (i), we get

jj+
¯̄
¯ + (¡)(1¡¡¡)

(+)(+)

¯̄
¯+

¯̄
¯ ¡ (¡)(1¡¡¡)(+)(+)

¯̄
¯  1

+  + (¡)(1¡¡¡)
(+)(+)

+  ¡ (¡)(1¡¡¡)
(+)(+)

 1

and so
+  +   1

Then the equilibrium ¤ of Eq. (1) is locally asymptotically stable, the proof of part (i) is complete.
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Under the conditions of part (ii), we get

jj+
¯̄
¯ ¡ (¡)(1¡¡¡)(+)(+)

¯̄
¯+

¯̄
¯ + (¡)(1¡¡¡)

(+)(+)

¯̄
¯  1

+  ¡ (¡)(1¡¡¡)(+)(+) +  + (¡)(1¡¡¡)(+)(+)  1

and so
+  +   1

Then the equilibrium ¤ of Eq. (1) is locally asymptotically stable, the proof of part (ii) is complete.

Example 1. See Figure (1) when we take the Eq. (1) with  = 4  = 3  = 02  = 01  = 05  = 04
 = 03  = 06 and  = 1 and the initial conditions ¡4 = 06 ¡3 = 7 ¡2 = 2 ¡1 = 3 and 0 = 5
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 1. sketch the behavior of the solution of Eq. (1).

Example 2. The solution of Eq. (1) is local stability if  = 4  = 3  = 02  = 01  = 02  = 04
 = 03  = 06 and  = 1 and the initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2 and 0 = 02 (See
Fig. 2).
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 2. Plot the behavior of the solution of equation (1) under the conditions (i).
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Example 3. Figure (3) shows that if  = 4  = 3  = 02  = 03  = 02  = 04  = 2  = 16
and  = 1, then the solution of Eq. (1) is local stability with the initial conditions ¡4 = 6 ¡3 = 11
¡2 = 08 ¡1 = 2 and 0 = 02.
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 3. Plot the behavior of the solution of equation (1) under the conditions (ii).

Example 4. See Figure (4) when we take Eq. (1) with  = 4  = 3  = 02  = 028  = 082  = 04
 = 03  = 06 and  = 1 and the initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2 and 0 = 02.
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 4. Draw the behavior of the solution of Eq. (1).

3. GLOBAL STABILITY OF THE EQUILIBRIUM POINT
Theorem 3.1. The equilibrium point ¤ is a global attractor of Eq. (1) if one of the following conditions holds:

() ¡  > 0  > 

() ¡  > 0  > 

Proof. Let   be nonnegative real numbers and assume that  : [ ]3 ! [ ] be a function de…ned by

(0 1 1) = 0 + 1 + 2 +
1+2
1+2
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Then
(0 1 1)

0
=  (0 1 1)

1
=  + (¡)1

(0+1)
2 and

(0 1 1)
2

=  ¡ (¡)0
(0+1)

2 

We consider two cases:

Case1: Assume that ¡   0  +  +   1 and   (¡)(1¡¡¡))
(+)(+) is true, then we can easily see

that the function (0 1 2) is increasing in 0 1 and decreasing in 2. Suppose that () is a solution
of the system

 =(  ) and  = (  )

Then from Eq. (1), we see that

 =  +  + + +
+ and  = + +  + +

+ 

then

(1¡ ¡ )2 + (1¡ ¡ ) ¡  ¡ 2 =  + 

(1¡ ¡ )2 + (1¡ ¡ ) ¡  ¡ 2 = + 

Subtracting this two equations, we obtain

( ¡) f((1¡ ¡ ) + ) ( +)] + (¡ )g = 0

under the condition +   1  >  we see that  =  Then ¤ is a global attractor of Eq. (1).

Case 2: Assume that     +   1 and   (¡)(1¡¡¡)
(+)(+) is true, then we can easily see that the

function (0 1 2) is decreasing in 0 1 and increasing in 2. Suppose that () is a solution of the
system

 = (  )   = (  )

Then from Eq. (1), we see that

 = + +  + +
+   and  =  +  + + +

+ 

then

(1¡ )2 + (1¡ ) ¡  (+ )2 ¡  (+ ) = + 

(1¡ )2 + (1¡ ) ¡  (+ )2 ¡  (+ ) =  + 

Subtracting this two equations, we obtain

( ¡) f((1¡ ) +  (+ )) ( +)] + ( ¡ )g = 0

under the condition  6= 1  6=  we see that  =  Then ¤ is a global attractor of Eq. (1).

Example 5. The solution of Eq. (1) is global stability if  = 4  = 3  = 002  = 001  = 003  = 04
 = 1  = 02 and  = 1 and the initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2 and 0 = 02 (See
Fig. 5).

Example 6. Figure (6) shows the global stability of the solution of Eq. (1) when  = 4  = 3  = 002
 = 02  = 01  = 11  = 03  = 1 and  = 03 and the initial conditions ¡4 = 6 ¡3 = 11
¡2 = 08 ¡1 = 2 and 0 = 02.
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 5. sketch the behavior of the solution of Eq. (1) when  >  and  > .
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 6. Shows the behavior of the solution of Eq. (1) when  >   > .

4. BOUNDEDNESS OF THE SOLUTIONS

Theorem 4.1. Every solution of Eq. (1) is bounded if  +   1

Proof. Let fg1=¡ be a solution of Eq. (1). It follows from Eq. (1) that

+1 =  + ¡ + ¡ +
¡+¡
¡+¡

=  + ¡ + ¡ +
¡

¡+¡
+ ¡

¡+¡


Then

+1 6  + ¡ + ¡ +
¡
¡

+ ¡
¡

=  + ¡ + ¡ +


+ 


for all  ¸ 0

By using a comparison, we can right hand side as follows

+1 =  + ¡ + ¡ +



+






and this equation is locally asymptotically stable if  +  +   1 and converges to the equilibrium point
¤ = +

(1¡¡¡)  Therefore

lim
!1

sup  6 +
(1¡¡¡) 

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1358 M. M. El-Dessoky et al 1353-1365



Thus the solution is bounded.

Theorem 4.2. Every solution of Eq. (1) is unbounded if   1 or   1or   1

Proof. Let fg1=¡ be a solution of Eq. (1).Then from Eq. (1) we see that

+1 =  + ¡ + ¡ +
¡+¡
¡+¡

  for all  ¸ 0

We see that the right hand side can be written as follows +1 =  Then

+1 =  + 

and this equation is unstable because   1, and lim
!1

 =1Then by using ratio test fg1=¡ is unbounded.
Using the same technique, we can prove the other cases.

Example 7. When  = 4  = 3  = 13  = 05  = 02  = 04  = 03  = 06 and  = 1, the solution
of Eq. (1) with initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2 and 0 = 02 the solution of the
di¤erence equation is unbounded (See Fig. 7).

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10 14

n

x(
n)

 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 7. Plot the behavior of the solution of equation (1) when   1.

Example 8. Figure (8) shows that  = 4  = 3  = 02  = 15  = 05  = 04  = 03  = 06 and
 = 1, the solution of Eq. (1) with initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2 and 0 = 02 is
unbounded.
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 8. Draw the behavior of the solution of equation (1) when   1.
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Example 9. Figure (9) shows the solution of Eq. (1) is unbounded if  = 4  = 3  = 02  = 04  = 12
 = 04  = 03  = 06 and  = 1 and the initial conditions ¡4 = 6 ¡3 = 11 ¡2 = 08 ¡1 = 2
and 0 = 02.
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 9. Shows the behavior of the solution of equation (1) when   1.

5. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 5.1. If  is an even and  is an odd, then Eq. (1) has a prime period two solutions if

(¡ ) (¡ ) (1 + +  ¡ )  4 ( (+ ) +  (1¡ ))  (3)

where         1 and   1 + + .

Proof. Suppose that there exists a prime period two solution      of Eq. (1). We see from
Eq. (1) when  is even, and  is odd that

 = + +  + +
+ and  =  +  + + +

+ 

Then

 (1¡ )+  (1¡ ) 2 =  (+ )2 +  (+ )+ +  (4)

 (1¡ ) +  (1¡ )2 =  (+ ) 2 +  (+ )+  +  (5)

Subtracting (4) from (5) gives

 (1¡ ) ( 2 ¡2) =  (+ ) (2 ¡  2)¡ ( ¡) + ( ¡)

( (1¡ ) +  (+ )) ( ¡)( +) = ( ¡ ) ( ¡)

Since  6=  , it follows that
( (1¡ ) +  (+ )) ( +) = ¡ 

 + = ¡
(1¡)+(+)  (6)

Again, adding (4) and (5) yields

2 ( (1¡ )¡  (+ )) = ( (+ )¡  (1¡ )) ( 2 +2) + (+ )( +) (7)
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It follows by (6), (7) and the relation

 2 +2 = ( +)2 ¡ 2    2 

that
2 ( (1¡ )¡  (+ )) = ( (+ )¡  (1¡ ))

¡
( +)2 ¡ 2

¢
+ (+ )( +)

2 (¡ ) (1 + +  ¡ ) = ( +) [( (+ )¡  (1¡ )) ( +) + ( + )] 

2 (¡ ) (1 + +  ¡ ) =
³

¡
(1¡)+(+)

´³
((+)¡(1¡))(¡)+(+)((1¡)+(+))

(1¡)+(+)

´


2 (¡ ) (1 + +  ¡ ) = 2
³

¡
(1¡)+(+)

´³
(+)+(1¡)
(1¡)+(+)

´

 = (¡)((+)+(1¡))
(¡)(1++¡)((1¡)+(+))2  (8)

Now it is clear from equations (6) and (8) that  and  are the two distinct roots of the quadratic equation

( (1¡ ) +  (+ )) 2 ¡ (¡ ) + (¡)(¡+)
(¡)(1++¡)((1¡)+(+)) = 0 (9)

and so
³

¡
(1¡)+(+)

´2
 4(¡)((+)+(1¡))

(¡)(1++¡)((1¡)+(+))2 

(¡ )  4((+)+(1¡))
(¡)(1++¡)((1¡)+(+))2 

For       and   1   1 + +  then

(¡ ) (¡ ) (1 + +  ¡ )  4 ( (+ ) +  (1¡ )) 

Therefore Inequality (3) holds and the proof is complete.

Example 10. Figure (10) shows the Eq. (1) has a prime period two solution when  = 4  = 3  =
0001  = 003  = 006  = 01  = 09  = 08 and  = 006 and the initial conditions ¡4 = 
¡3 =  ¡2 =  ¡1 =  and 0 =  such that  = ¡+

2((1¡)+(+)) and  = ¡¡
2((1¡)+(+)) where

 =
q
(¡ )2 ¡ 4(¡)((+)+(1¡))(¡)(1++¡) .
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 X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 9. Plot the solution of Eq. (1) has a periodic solution.
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Theorem 5.2. If  is an odd and  is an even, then Eq. (1) has a prime period two solutions if

(¡ ) (¡ ) (¡ ) (1 + +  ¡ )  4 ( (+ ) +  (1¡ ))  (10)

where       and   +  + 1.

Proof. Suppose that there exists a prime period two solution      of Eq. (1). We see from
Eq. (1) when  is odd, and  is even that

 = +  + + +
+ and  =  + +  + +

+ 

Then

 (1¡ ) 2 +  (1¡ ) =  (+ )+  (+ )2 +  +  (11)

 (1¡ )2 +  (1¡ ) =  (+ )+  (+ ) 2 + +  (12)

Subtracting (11) from (12) gives

 (1¡ ) ( 2 ¡2) = ¡ (+ ) ( 2 ¡2) + ( ¡)¡ ( ¡)

( (1¡ ) +  (+ )) ( ¡)( +) = ( ¡ ) ( ¡)

Since  6=  , it follows that
( (1¡ ) +  (+ )) ( +) = ¡ 

 + = ¡
(1¡)+(+)  (13)

Again, adding (11) and (12) yields

2 (1¡ )+  (1¡ ) ( 2 +2) = 2 (+ )+  (+ ) ( 2 +2) + ( + )( +)

2 ( (1¡ )¡  (+ )) = ( (+ )¡  (1¡ )) ( 2 +2) + (+ )( +) (14)

It follows by (13), (14) and the relation

 2 +2 = ( +)2 ¡ 2    2 

that
2 ( (1¡ )¡  (+ )) = ( (+ )¡  (1¡ ))

¡
( +)2 ¡ 2

¢
+ (+ )( +)

2 (¡ ) (1 + +  ¡ ) = ( +) [( (+ )¡  (1¡ )) ( +) + (+ )] 

=
³

¡
(1¡)+(+)

´ h
((+)¡(1¡))(¡)+((1¡)+(+))(+)

(1¡)+(+)

i

= 2
³

¡
(1¡)+(+)

´³
(+)+(1¡)
(1¡)+(+)

´

 = (¡)((+)+(1¡))
(¡)(1++¡)((1¡)+(+))2  (15)

Now it is clear from equations (13) and (15) that  and  are the two distinct roots of the quadratic equation

( (1¡ ) +  (+ )) 2 ¡ ( ¡ ) + (¡)((+)+(1¡))
(¡)(1++¡)((1¡)+(+)) = 0 (16)

and so
³

¡
(1¡)+(+)

´2
 4(¡)((+)+(1¡))

(¡)(1++¡)((1¡)+(+))2 

(¡ )  4((+)+(1¡))
(¡)(1++¡) 
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For       and   1 + +  then

(¡ ) (¡ ) (¡ ) (1 + +  ¡ )  4 ( (+ ) +  (1¡ )) 

Therefore Inequality (10) holds and the proof is complete.

Example 11. Figure (11) shows the Eq. (1) has a prime two solution when  = 1  = 4  = 0001
 = 06  = 002  = 09  = 02  = 005 and  = 055 and the initial conditions ¡4 =  ¡3 =
 ¡2 =  ¡1 =  and 0 = , such that  = ¡+

2((1¡)+(+)) and  = ¡¡
2((1¡)+(+)) where  =q

(¡ )2 ¡ 4(¡)((+)+(1¡))(¡)(1++¡)
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 X(n+1)=beta X(n-l)+gamma X(n-k)+((a X(n-l)+b X(n-k))/(c X(n-l)+d X(n-k)))

Fig. 11. sketch the solution of Eq. (1) has a periodic solution.

Theorem 5.3. Equation (1) has no prime period two solutions if  and  are even and  +  + 1 6= 0.
Proof. Suppose that there exists a prime period two solution      of Equation (1). We see

from Equation (1) when  and  are even that

 = + + + +
+  (17)

 =  +  +  + +
+  (18)

Subtracting (17) from (18) gives
(+  +  + 1) ( ¡) = 0

Since +  +  + 1 6= 0, then  = . This is a contradiction. Thus, the proof is completed.

Example 12. Figure (12) shows the Eq. (1) has no period two solution when  = 4  = 4  = 02  =
07  = 04  = 08  = 03  = 06 and  = 09 and the initial conditions ¡4 = 6 ¡3 = 7 ¡2 = 2 ¡1 = 3
and 0 = 5.
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Fig. 12. Draw the solution of Eq. (1) has no periodic when  and  are even.

Theorem 5.4. Equation (1) has no prime period two solutions if  and  are odd and 1¡  ¡  6= 0.
Proof. Suppose that there exists a prime period two solution      of Eq. (1). We see from

Eq. (1) when  and  are odd that

 = +  +  + +
+  (10)

 =  + + + +
+  (20)

Subtracting (19) from (20) gives
(1¡ ¡  ¡ ) ( ¡) = 0

Since 1¡ ¡  ¡  6= 0, then  = . This is a contradiction. Thus, the proof is completed.
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OSCILLATION OF SOLUTIONS
OF CERTAIN LINEAR

DIFFERENTIAL EQUATIONS

YONG LIU AND XIAOGUANG QI

ABSTRACT. In this article, we mainly investigate the growth of solutions of certain
higher order linear differential equations. The results we obtain generalize some previous
results of P. C. Wu and J. Zhu.

1 INTRODUCTION

In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna theory(e.g.see [8, 14, 15]). In addition, we will use
the notations σ(f), µ(f), λ(f), λ( 1

f ) to denote the order, the lower order, the exponents of
the convergence of the zero-sequence and the exponents of convergence of pole-sequence of
a meromorphic function f(z), respectively.

For a set E ⊂ R+, let m(H), respectively ml(H), denote the linear measure, respectively
the logarithmic measure, of H. By χH(t), we denote the characteristic function of H.
Moreover, the upper logarithmic density and the lower logarithmic density of H are defined
by

log densH = lim sup
r→∞

(
∫ r

1
(χH(t)/t)dt)/ log r

log densH = lim inf
r→∞ (

∫ r

1
(χH(t)/t)dt)/ log r,
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where χH(t) is the characteristic function of the set H.

For the second order linear differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1.1)

many authors have investigated the growth of solutions of (1.1), where A(z) and B(z) are
entire functions. It is well known that if B(z) is transcendental and f1, f2 are two linearly
independent solutions of equation (1.1), then at least one of f1, f2 must have infinite order.
On the other hand, there exist some equations of the form (1.1) that possess a solution f 6≡ 0
of finite order; for example, f(z) = e2z satisfies f ′′+ e−2zf ′− (2e−2z +4)f = 0. Thus a nat-
ural question is: what conditions on A(z) and B(z) can guarantee that every solution f 6≡ 0
of (1.1) has infinite order? Many authors have focused on this subject, such that ([1-3, 9-13])

Recently, P. C. Wu and J. Zhu [12] proved the following result:

Theorem A. [12] Let A(z) be a meromorphic function with finite order having a finite
deficient value. Suppose that B(z) is a meromorphic function satisfying the following con-
dition:

λ(
1
B

) < µ(B) <
1
2
.

Then every solution f 6≡ 0 of equation (1.1) is of infinite order.

Thus a natural question arises: whether does the conclusion hold when µ(B) = 1
2 ?

We give an affirmative answer, and get the following interesting result:

Theorem 1.1. Let A0(z) be a meromorphic function with λ( 1
A0

) < µ(A0) ≤ 1
2 . And

let Aj(z)(j = 1, 2, · · · , k − 1) be meromorphic functions with finite order having a finite
deficient value. Then every solution f 6≡ 0 of

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′(z) + A0(z)f = 0 (1.2)

satisfies σ(f) = ∞.

2 SOME LEMMAS

Lemma 2.1. [7] Let f(z) be a transcendental meromorphic function of finite-order σ, and
let ε > 0 be a given constant. Then there exists a set H ⊂ (1,∞) that has finite logarithmic
measure, such that for all z satisfying |z| 6∈ H ∪ [0, 1] and for all k, j, 0 ≤ j < k, one has

∣∣∣f
(k)(z)

f (j)(z)

∣∣∣ ≤ |z|(k−j)(σ−1+ε) (2.1)

Similarly, there exists a set E ⊂ [0, 2π) of linear measure zero such that for all z = reiθ

with |z| sufficiently large and θ ∈ [0, 2π) \E, and for all k, j, 0 ≤ j < k, the inequality (2.1)
holds.
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Lemma 2.2. [5] Let f(z) be a meromorphic function of finite order σ. Given ζ > 0 and
l, 0 < l < 1

2 , there exist a constant K(σ, ζ) and a set Eζ ⊂ [0,∞) of lower logarithmic
density greater than 1− ζ such that for all r ∈ Eζ and for every interval J of length l

r

∫

J

∣∣∣f
′(reiθ)

f(reiθ)

∣∣∣dθ < K(σ, ζ)
(
l log

1
l

)
T (r, f).

By the remarks following Theorem 8.1 in [4] and ref [9], we can obtain that

Lemma 2.3. Suppose that g(z) is an entire function of µ(f) = 1
2 , and satisfies

log L(r, g) = o(log M(r, g))

where L(r, g) = min|z|=r |g(z)|,M(r, g) = max|z|=r |g(z)|. There exists a set G of logarithmic
density 1, a set H of density 0, a real-valued function ϕ(r), and a positive function Ψ(r)
varying slowing in the sense that

lim
r→∞

Ψ(σ(r))
Ψ(r)

= 1, r ∈ G (2.1)

for all σ > 0, such that for r ∈ G−H

log |g(rei(ϕ+ϕ(r)))| = (cos(
ϕ

2
) + o(1))r

1
2 Ψ(r), r →∞, (2.2)

uniformly for ϕ ∈ [−π, π].

Lemma 2.4. [6] Suppose that g(z) is transcendental and meromorphic in the plane, of
lower order µ < α < 1, and define L(r, g) = min{|g(z)| : |z| = r} and

Y1 = {r > 1 : log L(r, g) > γ(cos πα + δ(∞, g)− 1)T (r, g)}, .
where γ = πα

sin πα . Then Y1 has upper logarithmic density at least 1− µ
α .

Lemma 2.5. Suppose f(z) is meromorphic and λ
(

1
f

)
< µ(f) ≤ 1

2 . Then either, for every
δ < µ(f), there exists rm →∞ such that

log |f(z)| > rδ
m (2.3)

for all z satisfying |z| = rm. Or, for every δ < µ(f), if

kr = {θ ∈ [0, 2π) : log |f(reiθ)| < rδ}
there exists a set E1 ⊂ [1,∞) of upper logarithmic density 1 such that for r ∈ E1,

m(Kr) → 0, r →∞.

Proof. Let f(z) = g(z)
l(z) , where l(z) is canonical products(or polynomial) formed by the poles

of f(z), and g(z) is entire. From λ( 1
f ) < µ(f), we have

λ
( 1

f

)
= λ(l) = σ(l) < µ(f), µ(f) = µ(g).
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We divide our proof into two cases:

Case 1: µ(f) < 1
2 . Since λ( 1

f ) < µ(f), we have δ(∞, f) = 1. Let λ
(

1
f

)
< δ < α1 <

µ(f) < α < 1
2 . By Lemma 2.4, then there exists a set E1 of (1,∞), having lower logarithmic

density 1− µ(f)
α , such that for all r ∈ E1 we have

log L(r, f) > γ cos παT (r, f) ≥ rα1 > rδ,

where γ = πα
sin πα . Hence, for every δ < µ(f), there exists rm →∞ such that

log |f(z)| > rδ
m

for all z satisfying |z| = rm. So (i) holds.

Case 2: µ(f) = 1
2 . There exist the following two subcases:

Subcase 2.1. If there exists rn →∞ with

log L(rn, g) > α log M(rn, g) as rn →∞ (2.4)

for some α > 0. Hence for given 0 < ε < min{ δ−σ(l)
2 , µ(g)−δ

2 }, by (2.4) we have

log L(rn, f) ≥ log L(rn, g)− log M(rn, l)
≥ αrδ+ε

n − rσ(l)+ε
n > rδ

n. (2.5)

So (i) also hold.

Subcase 2.2. Otherwise
log L(r, g) = o(log M(r, g)). (2.6)

We choose max{δ, λ( 1
f )} < ξ < α < µ(g). We note that E∗ = G − H has logarithmic

density 1, where G,H are defined as in Lemma 2.3. By Lemma 2.3, (2.1), (2.2), (2.6) and
the fact that E∗ has logarithmic density 1, we obtain

Ψ(r)r
1
2
−ξ →∞, (2.7)

as r →∞. Defining
K∗r = {θ ∈ [0, 2π] : log |g(reiθ)| < rξ}.

By (2.2) and (2.7), for all r ∈ E∗ we have that

m(K∗r) → 0.

Set F = {z|f(z) = ∞}, since λ( 1
f ) < 1

2 , we have ml(F ) < ∞. Obviously, E∗∗ = E∗ −F has
logarithmic density 1. If θ ∈ Kr for all r ∈ E∗∗, we have

log |g(reiθ)| < log |f(z)|+ log M(r, d) < rδ + rξ < rα.

So, Kr ⊂ K∗
r . Thus Lemma 2.5 holds.
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Lemma 2.6. Suppose f(z) is a nonconstant meromorphic function of order σ < σ1 < ∞.
For a positive number α, there exists a set E(α) ⊂ [1,∞) with finite linear measure such
that

m(E(α) ∩ [
r

e
, er]) < exp(−rα), r > r0(f),

and that, for |z| = r 6∈ E(α), we have

∣∣∣f
(j)(z)
f(z)

∣∣∣ < exp(r3α), r > r0(f), j = 1, 2, · · · , k.

Proof. Let ∆(a, δ) = {z : |z − a| < δ} and let {lµ}, {mν} denote all the zeros and poles
of f(z), respectively. Let A = A1 ∪ A2, where A1 = ∪µ∆(lµ, 1

k exp(−3|lµ|2α)), A2 =
∪ν∆(mν ,

1
k exp(−3|mν |2α)).

Suppose E1 = {t ≥ 1 : A ∩ {|z| = t} 6= ∅}. Obviously

m(E1(α) ∩ [
r

e
, er])

<
1
k
{n(3r, f) + n(3r,

1
f

)} exp(−r2α)

<
2
k
(3r)σ1 exp(−r2α) <

1
k

exp(−rα), r > r1(α)

for |z| = r 6∈ E1(α). We consider the differentiated Poisson-Jensen formula, for |z| = r and
R = 3r, we have

zf ′(z)
f(z)

=
1
2π

∫ 2π

0
log |f(3reiθ)| 2z(3reiθ)

(3reiθ − z)2
dθ

+
∑

|lµ|<3r

(
z

z − lµ
+

lµz

(3r)2 − lµz
)

+
∑

|mν |<3r

(
z

z −mν
+

mνz

(3r)2 −mνz
).

We use the method of ref [9], we also obtain

∣∣∣zf ′(z)
f(z)

∣∣∣ ≤ 3
2
{m(3r, f) + m(3r,

1
f

)}

+4r(n(3r, f) + n(3r,
1
f

))e(9r)2α
+ O(1)

≤ (8r + 3)rσ1e(9r)2α
.

Hence ∣∣∣f
′(z)

f(z)

∣∣∣ < (8r + 3)rσ1−1e(9r)2α
< er3α

.

We use the same method to each of the functions f ′, · · · , f (k), we get there exists a set E(α)
such that

m(E(α) ∩ [
r

e
, er]) < exp(−rα),

5
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and if |z| = r 6∈ E(α), we obtain

∣∣∣f
(j)(z)
f(z)

∣∣∣ < er3α
, 1 ≤ j ≤ k

Evidently

ml(E(α) ∩ [
r

e
, er]) ≤ em(E ∩ [ r

e , er])
r

= o(1).

Since ml([ re , er]) = 2, we obtain that the logarithmic density of E is 0.

By the remarks following Theorem 8.1 in [4] and ref [9], we can easily get that

Lemma 2.7. Suppose f(z) is meromorphic of λ( 1
f ) < µ(f) < 1 and 0 < ε < min(

µ(f)−λ( 1
f
)

2 , 1−
µ(f)). Suppose there exists an unbounded set of r-valued such that

log |f(reiθ)| > rµ(f)−ε

for all θ ∈ [0, 2π]. Suppose also that E3 ⊂ [1,∞) satisfies

m(E3 ∩ [
r

e
, er]) < exp(−r6ε), r > R0.

Then there is an unbounded set of s-values with s 6∈ E3 such that

log |f(seiθ)| > sµ(f)−2ε

for all θ ∈ [0, 2π].

3 Proof of Theorem 1.1

Suppose that Aj(z) (j = 1, 2, · · · , k−1) has a finite deficiency δ(aj , f) = 2αj > 0 at aj ∈ C.
By the definition of deficiency, for all sufficiently r, we get

m(r,
1

Aj − aj
) ≥ αjT (r,Aj).

Hence, for all sufficiently r, there exists a point zr satisfying |zr| = r and

log |Aj(zr)− aj | ≤ −αjT (r,Aj). (3.1)

By Lemma 2.2, we choose l > 0 so small that

K(ρ, ϕ)(l, log
1
l
) <

αj

2
.

Then for all r ∈ Eϕ and for every interval J , we obtain that

r

∫

J

∣∣∣
A′j(re

iθ)
Aj(reiθ)

∣∣∣dθ <
αj

2
T (r,Aj),

6
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where Eϕ is a set with lower logarithmic density greater than 1 − ϕ. Suppose zr = reiθr

and ϕ > 0 be a sufficiently small number, we choose a number θ0 > 0, |θr − θ0| ≤ l, and a
set Eϕ ⊂ [0,∞) with lower logarithmic density greater than 1 − ϕ. For all given r ∈ Eϕ

and for all θ ∈ [θr − β, θr + β], we have

log |Aj(reiθ)− aj |

= log |Aj(reiθr)− aj |+
∫ θ

θr

d

dt
log |Aj(eit)− aj |dt

≤ −αT (r,Aj) + r

∫ θ

θr

∣∣∣
A′j(re

it)
Aj(reit)

∣∣∣|dt|

≤ −α

2
T (r,Aj) ≤ 0.

Thus for |zr| = r ∈ E(ϕ) \ [0, r1] and θ ∈ [θr − θ0, θr + θ0], we obtain

|Aj(reiθ)| ≤ |aj |+ 1. (3.2)

Let transcendental f 6≡ 0 be a finite order solution of (1.2), and suppose λ( 1
A0

) < µ(A0).
We divide the proof into two cases depending on the growth property of A0(z) by Lemma 2.5.

Case 1. For given ε, 0 < ε < min{µ(f)−λ( 1
f
)

2 , 1 − µ(f), µ(A0)
20 }. there exists a sequence

rm →∞ such that

log |A0(z)| > rµ(A0)−ε
m . (3.3)

From (1.2), we get

|A0(z)| ≤
∣∣∣f

(k)(z)
f(z)

∣∣∣ + |Ak−1|
∣∣∣f

(k−1)(z)
f(z)

∣∣∣ + · · ·+ |A1(z)|
∣∣∣f
′(z)

f(z)

∣∣∣. (3.4)

By Lemma 2.6, set α = 7ε, there exists a set Eα ⊂ [1,∞) with finite linear measure
satisfying

m(Eα ∩ [
r

e
, er]) < e−r6ε

, r > R0 (3.5)

and if |z| = r 6∈ Eα, we get

∣∣∣f
(j)(z)
f(z)

∣∣∣ < er15ε
, 1 ≤ j ≤ k, r > R0 (3.6)

By Lemma 2.7, there exists a sequence sm →∞, sm 6∈ Eα such that for all θ ∈ [0, 2π],

log |A0(smeiθ)| > sµ(A0)−2ε
m . (3.7)

With (3.1), (3.4), (3.6), (3.7), as sm →∞, we have

exp(sµ(A0)−2ε
m ) ≤ (|a1|+ · · ·+ |ak−1|+ k) exp(s16ε

m ). (3.8)

Thus, (3.8) is impossible.
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Case 2. For given ε, 0 < ε < µ(A0)
2 , If

Kr = {θ ∈ [0, 2π) : log |g(riθ)| < rµ(A0)−ε},

there exists a set E2 ⊂ [0,∞) having logarithmic density 1 such that m(Kr) → 0, as r →∞
in E2.
By Lemma 2.1, there exists a set E3 ⊂ [0,∞) with linear measure zero such that for all
|z| = r 6∈ E3, we get ∣∣∣f

(k)(z)
f(z)

∣∣∣ ≤ |z|kσ(f)−1+ε. (3.9)

Note that E4 = E(ϕ)∩E2\E3 has a positive lower logarithmic density, and for all sufficiently
large r ∈ E4, we have [θr−φ, θr +φ]−Kr 6= ∅. Hence, there exist unbounded points z = reiθ

such that (3.2), (3.9) and log |A0(reiθ)| ≥ rµ(A0)−ε, we obtain that

exp{rµ(A0)−ε} ≤ (k + |a|)rkσ(f)+1. (3.10)

Obviously, (3.10) is impossible. By case 1, and case 2, we obtain that σ(f) = ∞.
If rational function f 6≡ 0 be a solution of (1.2), using the above similar method, we can

get a contradiction. Hence, Theorem 1.1 hold.
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