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Abstract. In this paper, we study the zeros of functions in weighted Dirichlet space
and a class of Carleson type measure.

MSC 2000: 30J99, 30H99

Keywords: Zero, weighted Dirichlet space, Carleson measure.

1 Introduction
Let D denote the open unit disk in the complex plane C, ∂D its boundary and H(D)
the space of all analytic functions in D. For a ∈ D, let σa be the automorphism of
D exchanging 0 for a, namely σa(z) = a−z

1−āz , z ∈ D. Let H∞ denote the space of
bounded analytic function.

Throughout this paper, we assume that K : [0,∞) → [0,∞) is a right-continuous
and nondecreasing function. An f ∈ H(D) is said to belong to the weighted Dirichlet
space, denoted by DK , if (see, e.g., [24])

∥f∥2DK
= |f(0)|2 +

∫
D
|f ′(z)|2K

(
1− |z|2

)
dA(z) < ∞,

where dA(z) is the normalized Lebesgue measure on D. Clearly, DK is a Hilbert
space. When K(t) = ts, 0 ≤ s < ∞, the space DK gives the usual Dirichlet type
space Ds. In particular, if s = 0, this gives the classical Dirichlet space D. We
refer to [16, 19, 20] for the space Ds. The space DK has been extensively studied.
For example, under some conditions on K, Kerman and Sawyer [11] characterized
Carleson measures and multipliers of DK in terms of a maximal operator. Aleman [1]
proved that each element of the space DK can be written as a quotient of two bounded
functions in the same space. See [2, 3, 8, 14, 18, 24] for more results on weighted
Dirichlet spaces.

We say that Z = {zn} ⊂ D is a zero set of an analytic function space X defined
on D if there is a f ∈ X that vanishes on Z and nowhere else. Describing the zero sets
for an analytic function space is a difficult problem. See [4, 5, 6, 13, 17, 21] for more
information about this topic.

Let µ denote a positive Borel measure on D. For a subarc I ⊆ ∂D, let S(I) be the
Carleson box based on I with

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1 and
z

|z|
∈ I}.

1
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If I = ∂D, let S(I) = D. Let 0 ≤ s < ∞. We say that µ is a (K, s)-Carleson measure
on D if

sup
I⊆∂D

µ(S(I))

K(|I|)|I|s
< ∞.

Here and henceforth supI⊆∂D indicates the supremum taken over all subarcs I of ∂D.
We say that µ is a vanishing (K, s)-Carleson measure, if

lim
|I|→0

µ(S(I))

K(|I|)|I|s
= 0.

If K(t)ts = t, then we get the classical Carleson measure and vanishing Carleson
measure, respectively. Carleson measure was firstly introduced in [4] by Carleson and it
has many applications, such as in the interpolating sequence, ∂-equations, composition
operators and integral operators. Hence Carleson measure is a very important tool
for the function theory, harmonic analysis and operator theory. For more results on
Carleson measure and its’ generalization, we refer to [7, 10, 12, 22, 23, 25].

Recently, Pau and Peláez [13, Theorem 1] gave a nice characterization of zero sets
of Dirichlet spaces Ds (0 < s < 1). Motivated by [13, Theorem 7], in this paper we
study the zero sets of the space DK . Moreover, we will characterize (K, s)-Carleson
measure and vanishing (K, s)-Carleson measure. In particular, we will characterize
vanishing (K, s)-Carleson measure by functions in the space DK .

Throughout this paper, we assume that K(0) = 0 such that∫ 1

0

φK(s)

s
ds < ∞ (1)

and ∫ ∞

1

φK(s)

s2
ds < ∞, (2)

where
φK(s) = sup

0≤t≤1
K(st)/K(t), 0 < s < ∞.

In this paper, the symbol f ≈ g means that f . g . f . We say that f . g if there
exists a constant C such that f ≤ Cg.

2 Zero sets
In order to study the zero sets of the DK space, we define the space SK , which consists
of those f ∈ H(D) such that

∥f∥2SK
= |f(0)|2 + sup

a∈D

∫
D
|f ′(z)|2

K
(
1− |z|2

)
K
(

|1−az|2
1−|a|2

)dA(z) < ∞.

2
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We say that a positive Borel measure µ on D is a Carleson measure for DK if there is
a positive constant C such that∫

D
|f(z)|2dµ(z) ≤ C∥f∥2DK

for all f ∈ DK .
We also need the following results.

Lemma 1. [11] Let K be increasing, concave and limx→0 x/K(x) = 0. Then, µ is a
Carleson measure for DK if and only if there exists a constant C > 0 such that∫

I

sup
θ∈J⊂I

µ(S(J))2

K(|J |)|J |
dθ ≤ Cµ(S(I)),

for all arcs I ⊂ ∂D. Here the supremum is taken over all closed arcs J ⊂ I .

Remark 1. From [9, Lemma 2.3], we known that if K satisfy (1) and (2), there ex-
ists K3, such that K3 is increasing, concave, limx→0 x/K3(x) = 0 and K3(t) ≈
K(t), 0 < t < ∞. As in [9], let c ∈ (0, 1) be a small constant such that K(t)

tc and t1−c

K(t)

are nondecreasing functions when 0 < t < 1, moreover

φK(s) . s1−c, s ≥ 1 (3)

and

φK(s) . sc, s ≤ 1. (4)

Lemma 2. Suppose that K satisfy (1) and (2). Then f ∈ SK if and only if

sup
I⊆∂D

∫
S(I)

|f ′(z)|2K(1− |z|2)
K(|I|)

dA(z) < ∞. (5)

Proof. Assume that f ∈ SK . For any I ⊆ ∂D, let b = (1− |I|)η ∈ D, where η is the
center of I . Then

1− |b| ≈ |1− bz| ≈ |I|, z ∈ S(I).

Thus,

K

(
|1− bz|2

1− |b|2

)
≈ K(|I|), z ∈ S(I).

Therefore,∫
S(I)

|f ′(z)|2K(1− |z|2)
K(|I|)

dA(z) .
∫

D
|f ′(z)|2

K
(
1− |z|2

)
K
(

|1−bz|2
1−|b|2

)dA(z)
. sup

a∈D

∫
D
|f ′(z)|2

K
(
1− |z|2

)
K
(

|1−az|2
1−|a|2

)dA(z) < ∞,

3
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which implies the desired result.
Conversely, assume that (5) holds. Without loss of generality, we can assume |a| >

1/2. Let I be a subarc of ∂D such that |In| = 2n|I|, n = 0, 1, 2..., N−1 and IN = ∂D.
Then we have

|1− aη|2

1− |a|2
≈ |I|, η ∈ I,

and
|1− aη|2

1− |a|2
≈ 22n|I|, η ∈ In+1/In, n = 0, 1, 2..., N − 1.

Since K satisfy (1) and (2), by Remark 1 we obtain∫
D
|f ′(z)|2

K
(
1− |z|2

)
K
(

|1−az|2
1−|a|2

)dA(z)
.

∞∑
n=1

1

K(22n|I|)

∫
S(2n+1I)\S(2nI)

|f ′(z)|2K(1− |z|2)dA(z)

+
1

K(|I|)

∫
S(2I)

|f ′(z)|2K(1− |z|2)dA(z)

.
∞∑

n=1

1

K(22n|I|)

∫
S(2n+1I)

|f ′(z)|2K(1− |z|2)dA(z) +
K(2|I|)
K(|I|)

.
∞∑

n=1

K(2n+1|I|)
K(22n|I|)

+ φK(2)

.
∞∑

n=1

2(1−n)c + 21−c < ∞.

Here c is defined in Remark 1. Hence f ∈ SK .

From Lemma 2, we can easily obtain the following corollary.

Corollary 1. Suppose that K satisfy the conditions (1) and (2). Then f ∈ SK if and
only if |f ′(z)|2K(1− |z|2)dA(z) is (K, 0)-Carleson measure.

Let M(DK) denote the space of multipliers of DK , that is,

M(DK) = {g ∈ H(D) : gf ∈ DK for all f ∈ DK}.

Theorem 1. Suppose that K satisfy the conditions (1) and (2). Then M(DK), SK ∩
H∞, SK and DK have the same zero sets.

Proof. Since M(DK) ⊆ DK , we have any zero sets in M(DK) is zero sets in DK .
Next we prove that any zero set in DK is zero set in M(DK).

Suppose that ∥f∥DK = 1. Let {zk} be the zeros of f . Fix z0 ∈ D such that
f(z0) ̸= 0. Set w0 = f(z0)

∥Rzo∥DK
and wj = 0 (j ≥ 1), where

Rzj (z) = 1 +

∞∑
n=1

1

nK( 1n )
zj

nzn, z ∈ D, j ≥ 0.

4
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From [3, Lemma 3.1], we know that Rzj (z) is the reproducing kernel of DK space at
zj . Then, for each n ≥ 1 and a0, a1, ..., an ∈ C, we have

n∑
i=0

n∑
j=0

aiaj(1− wiwj)⟨Rzi , Rzj ⟩

=

∥∥∥∥∥∥
n∑

j=0

ajRzj

∥∥∥∥∥∥
2

DK

− |a0|2|f(z0)|2

=

∥∥∥∥∥∥
n∑

j=0

ajRzj

∥∥∥∥∥∥
2

DK

−

∣∣∣∣∣∣⟨f,
n∑

j=0

ajRzj ⟩

∣∣∣∣∣∣
2

≥ 0.

Combine with Lemma 3.2 of [3], we know that DK has Pick property. Thus, there
exists Fn ∈ M(DK) with ∥Fn∥M(DK) ≤ 1 such that

Fn(z0) =
f(z0)

∥Rz0∥DK

and Fn(zj) = 0 (j = 1, ..., n).

Then, for all n, we have ∥Fn∥H∞ ≤ ∥Fn∥M(DK) ≤ 1. So {Fn}n≥1 is a normal
family, the limit function F is also a multiplier with ∥F∥M(DK) ≤ 1,

F (z0) =
f(z0)

∥Rz0∥DK

̸= 0 and F (zj) = 0 (j = 1, ..., n).

By f -property of DK space (see [15]), we have every function f ∈ DK , there exist
F ∈ M(DK) with the same zero set. That is, DK and M(DK) have the same zero
sets.

Note that SK ∩ H∞ ⊆ SK ⊆ DK . We only need to prove that M(DK) ⊆
SK ∩ H∞. Suppose that f ∈ M(DK). From [3, Theorem 4.6], we known that
|f ′(z)|2K(1 − |z|2)dA(z) is a Carleson measure for DK . Let |I| = |J | in Lemma 1,
that is, if µ is a Carleson measure for DK , we can deduce that µ(S(I)) . K3(|I|) ≈
K(|I|). Thus, ∫

S(I)

|f ′(z)|2K(1− |z|2)dA(z) . K(|I|).

Combine with Lemma 2, we deduce that f ∈ SK . Notice that M(DK) ⊆ H∞ (see [3,
Theorem 4.6]). That is, M(DK) ⊆ SK ∩H∞.

3 Carleson type measure
In this section, we give a characterization for (K, s)-Carleson measure and vanishing
(K, s)-Carleson measure.

Theorem 2. Suppose that K satisfy the conditions (1) and (2). Let µ be a positive
Borel measure on D, 0 ≤ s < ∞ such that s + c > 1. Then µ is a (K, s)-Carleson

5
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measure if and only if

sup
a∈D

1

K(1− |a|2)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) < ∞. (6)

Proof. Suppose that (6) holds. For any I ⊆ ∂D, let b = (1− |I|)ζ ∈ D, where ζ is the
center of I . Then, for any z ∈ S(I), we have

1− |b| ≈ |1− bz| ≈ |I| and K(1− |b|2) ≈ K(|I|).

Therefore,

µ(S(I))

K(|I|)|I|s
. 1

K(1− |b|2)

∫
S(I)

(1− |b|2)s

|1− bz|2s
dµ(z)

≤ 1

K(1− |b|2)

∫
D

(1− |b|2)s

|1− bz|2s
dµ(z)

≤ sup
a∈D

1

K(1− |a|2)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) < ∞,

which implies that µ is a (K, s)-Carleson measure by the arbitrary of I .
Conversely, assume that µ is a (K, s)-Carleson measure. Without loss of generality,

we assume |a| > 4
5 . Let In be the arc on ∂D such that a

|a| is the center of In and

|In| = A(n−1)(1− |a|), where 1 < A < 2
1
s , n = 1, 2, ..., N , where N is the smallest

integer such that A(N−1)(1− |a|) ≥ 1. Since

(1− |a|2)s

|1− az|2s
. 1

A2(n−1)s(1− |a|)s
. 1

A2ns(1− |a|)s
, z ∈ S(In) \ S(In−1),

and

|In|s

Ans(1− |a|)s
= A(n−1)s−ns < 1,

K
(
A(n−1)(1− |a|)

)
K(1− |a|2)

. A(n−1)(1−c),

we obtain

1

K(1− |a|2)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) ≤

N∑
n=1

|In|sK(|In|)
A2ns(1− |a|)sK(1− |a|2)

.
N∑

n=1

K
(
A(n−1)(1− |a|)

)
AnsK(1− |a|2)

.
N∑

n=1

A(n−1)(1−c)

Ans
<

∞∑
n=1

An(1−c)

Ans

<∞.

Here we used the fact that s+ c > 1.

6
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Theorem 3. Suppose that K satisfy the conditions (1) and (2). Let µ be a positive
Borel measure on D, 0 ≤ s < ∞ such that s + c > 1. Then µ is a vanishing (K, s)-
Carleson measure if and only if

lim
|a|→1

1

K(1− |a|2)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) = 0. (7)

Proof. First we assume that µ is a vanishing (K, s)-Carleson measure. For any ϵ > 0,
there is a η > 0 such that for all arcs I ⊆ ∂D with |I| ≤ η, such that

µ(S(I))

K(|I|)|I|s
< ϵ.

Assume a = reiθ and r > 1 − η. Let Iη ⊆ ∂D such that eiθ is the center of Iη and
|Iη| = η. Then ∫

D

(1− |a|2)s

|1− az|2s
dµ(z) =: M1 +M2,

where

M1 =:

∫
D\S(Iη)

(1− |a|2)s

|1− az|2s
dµ(z)

and

M2 =:

∫
S(Iη)

(1− |a|2)s

|1− az|2s
dµ(z).

Suppose that eiθ is also the center of {In}, |In| = An−1(1 − |a|), A > 1, n =
1, 2, ..., N − 1 and N is the smallest integer such that |IN | > η. Let I0 = ϕ. Note that

(1− |a|2)s

|1− az|2s
. 1

A2ns(1− |a|)s
, z ∈ S(In) \ S(In−1).

We have

M2 ≤
N∑

n=1

∫
S(In)\S(In−1)

(1− |a|2)s

|1− az|2s
dµ(z)

. 1

(1− |a|)s
N−1∑
n=1

µ(S(In)\S(In−1))

A2ns
+

µ(S(Iη) \ S(IN−1))

A2Ns(1− |a|)s

. 1

(1− |a|)s
N∑

n=1

µ(S(In))

A2ns
.

Note that µ(S(I))
K(|I|)|I|s < ϵ and |In| = An−1(1 − |a|), using the fact that φK(t) .

7
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t1−c, t ≥ 1, we deduce that

M2 . 1

(1− |a|)s
N∑

n=1

ϵK(|In|)|In|s

A2ns

.
N∑

n=1

ϵK(An−1(1− |a|))
K(1− |a|)Ans+s

K(1− |a|)

.
N∑

n=1

φK(An−1)
ϵK(1− |a|)

Ans+s

. ϵ

N∑
n=1

A(n−1)(1−c)−ns−sK(1− |a|) . ϵK(1− |a|). (8)

Now, we estimate M1. Since |1−az| ≥ η, z ∈ D\S(Iη), and notice the fact that t1−c

K(t)

is a nondecreasing function when 0 < t < 1, we obtain

M1 . µ(D)
η2s

(1− |a|)s

K(1− |a|)
K(1− |a|)

. (1− |a|)1−c+s−1+c

K(1− |a|)
K(1− |a|) . (1− |a|)s+c−1K(1− |a|). (9)

From (8) and (9) we see that (7) holds.
The proof for another side is similar to Theorem 2. Thus, we omit the details.

Finally, we give another characterization of vanishing (K, s)-Carleson measure by
using functions in DK .

Theorem 4. Suppose that K satisfy the conditions (1) and (2). Let µ be a positive
Borel measure on D, 0 ≤ s < ∞ such that s+ c > 1. Let {gn} be a bounded sequence
in DK such that gn → 0 uniformly on compact subset of D as n → ∞. Then µ is a
vanishing (K, s)-Carleson measure if and only if

lim
n→∞

sup
a∈D

∫
D
|gn(a)|2

(1− |a|2)s

|1− az|2s
dµ(z) = 0. (10)

Proof. First we assume that µ is a vanishing (K, s)-Carleson measure. Following the
proof of Theorem 3, for any given ϵ > 0, we may find κ > 0 such that

sup
a∈D\Dκ

1

K(1− |a|)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) < ϵ,

where Dκ = {z ∈ D : |z| < κ}. Since

|g(z)| . ∥g∥DK√
K(1− |z|)

, g ∈ DK ,

8
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we obtain

sup
a∈D\Dκ

∫
D
|gn(a)|2

(1− |a|2)s

|1− az|2s
dµ(z)

. sup
a∈D\Dκ

1

K(1− |a|)

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) < ϵ. (11)

Also, since gn → 0 uniformly on compact subsets of D, we see that for n sufficiently
large,

sup
a∈Dκ

∫
D
|gn(a)|2

(1− |a|2)s

|1− az|2s
dµ(z) ≤ ϵ sup

a∈Dκ

∫
D

(1− |a|2)s

|1− az|2s
dµ(z) . ϵ. (12)

From (11) and (12) we see that (10) holds.
Conversely, assume that (10) holds. For a ∈ D, it is easy to check that

ga(z) =
1− |a|

(1− az)
√

K(1− |a|)
∈ DK .

For any In ⊆ ∂D such that |In|1 as n → ∞, let an = (1− |In|)eiθn ∈ D, where eiθn

is the center of In. It is easy to check that {gan} is a bounded sequence in DK and
gan → 0 uniformly on compact subsets of D as n → ∞. By (10), we have

lim
n→∞

sup
a∈D

∫
D
|gan(z)|2

(1− |a|2)s

|1− az|2s
dµ(z) = 0.

Thus,

lim
n→∞

1

|In|s

∫
S(In)

|gan(z)|2dµ(z) = 0.

Notice the fact that |gan(z)|2 & 1
K(|In|) , we get

µ(S(In))

K(|In|)|In|s
→ 0, as n → ∞,

as desired.
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Smarandache fuzzy BCI-algebras
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Abstract. The notions of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache

fuzzy clean(fresh) ideal of a Smarandache BCI-algebra are introduced. Examples are given, and several related

properties are investigated.

1. Introduction

Generally, in any human field, a Smarandache structure on a set A means a weak structure W on A such that

there exists a proper subset B of A with a strong structure S which is embedded in A. In [4], R. Padilla showed

that Smarandache semigroups are very important for the study of congruences. Y. B. Jun ([1,2]) introduced the

notion of Smarandache BCI-algebras, Smarandache fresh and clean ideals of Smarandache BCI-algebras, and

obtained many interesting results about them.

In this paper, we discuss a Smarandache fuzzy structure on BCI-algebras and introduce the notions of a

Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of

a Smarandache BCI-algebra are introduced, and we investigate their properties.

2. Preliminaries

An algebra (X; ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀x, y, z ∈ X)(((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X)((x ∗ (x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X)((x ∗ x = 0),

(IV) (∀x, y ∈ X)(x ∗ y = 0 and y ∗ x = 0 imply x = y).

If a BCI-algebra X satisfies the following identity;

(V) (∀x ∈ X)(0 ∗ x = 0),

then X is said to be a BCK-algebra. We can define a partial order “ ≤ ” on X by x ≤ y if and only if x ∗ y = 0.

Every BCI-algebra X has the following properties:

(a1) (∀x ∈ X)(x ∗ 0 = x),

(a1) (∀x, y, z ∈ X)(x ≤ y implies x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).

A non-empty subset I of a BCI-algebra X is called an ideal of X if it satisfies the following conditions:

(i) 0 ∈ I,

(ii) (∀x ∈ X)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I).

0∗ Correspondence: Tel: +82 10 9247 6575 (Y. J. Seo).
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Definition 2.1. ([1]) A Smarandache BCI-algebra is defined to be a BCI-algebra X in which there exists a

proper subset Q of X such that

(i) 0 ∈ Q and |Q| ≥ 2,

(ii) Q is a BCK-algebra under the same operation of X.

By a Smarandache positive implicative (resp. commutative and implicative) BCI-algebra, we mean a BCI-

algebra X which has a proper subset Q of X such that

(i) 0 ∈ Q and |Q| ≥ 2,

(ii) Q is a positive implicative (resp. commutative and implicative) BCK-algebra under the same operation

of X.

Let (X; ∗, 0) be a Smarandache BCI-algebra and H be a subset of X such that 0 ∈ H and |H| ≥ 2. Then H

is called a Smarandache subalgebra of X if (H; ∗, 0) is a Smarandache BCI-algebra.

A non-empty subset I of X is called a Smarandache ideal of X related to Q if it satisfies:

(i) 0 ∈ I,

(ii) (∀x ∈ Q)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I),

where Q is a BCK-algebra contained in X. If I is a Smarandache ideal of X related to every BCK-algebra

contained in X, we simply say that I is a Smarandache ideal of X.

In what follows, let X and Q denote a Smarandache BCI-algebra and a BCK-algebra which is properly

contained in X, respectively.

Definition 2.2. ([2]) A non-empty subset I of X is called a Smarandache ideal of X related to Q (or briefly, a

Q-Smarandache ideal) of X if it satisfies:

(c1) 0 ∈ I,

(c2) (∀x ∈ Q)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I).

If I is a Smarandache ideal of X related to every BCK-algebra contained in X, we simply say that I is a

Smarandache ideal of X.

Definition 2.3. ([2]) A non-empty subset I of X is called a Smarandache fresh ideal of X related to Q (or briefly,

a Q-Smarandache fresh ideal of X) if it satisfies the conditions (c1) and

(c3) (∀x, y, z ∈ Q)(((x ∗ y) ∗ z) ∈ I and y ∗ z ∈ I imply x ∗ z ∈ I).

Theorem 2.4. ([2]) Every Q-Smarandache fresh ideal which is contained in Q is a Q-Smarandache ideal.

The converse of Theorem 2.4 need not be true in general.

Theorem 2.5. ([2]) Let I and J be Q-Smarandache ideals of X and I ⊂ J . If I is a Q-Smarandache fresh ideal

of X, then so is J .

Definition 2.6. ([2]) A non-empty subset I of X is called a Smarandache clean ideal of X related to Q (or briefly,

a Q-Smarandache clean ideal of X) if it satisfies the conditions (c1) and

(c4) (∀x, y ∈ Q)(z ∈ I)((x ∗ (y ∗ x)) ∗ z ∈ I implies x ∈ I).
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Theorem 2.7. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache ideal.

The converse of Theorem 2.7 need not be true in general.

Theorem 2.8. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache fresh ideal.

Theorem 2.9. ([2]) Let I and J be Q-Smarandache ideals of X and I ⊂ J . If I is a Q-Smarandache clean ideal

of X, then so is J .

A fuzzy set µ in X is called a fuzzy subalgebra of a BCI-algebra X if µ(x∗y) ≥ min{µ(x), µ(y)} for all x, y ∈ X.

A fuzzy set µ in X is called a fuzzy ideal of X if

(F1) µ(0) ≥ µ(x) for all x ∈ X,

(F2) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ X.

Let µ be a fuzzy set in a set X. For t ∈ [0, 1], the set µt := {x ∈ X|µ(x) ≥ t} is called a level subset of µ.

3. Smarandache fuzzy ideals

Definition 3.1. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

subalgebra of X if it satisfies

(SF1) µ(0) ≥ µ(x) for all x ∈ P ,

(SF2) µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ P ,

where P ( X, P is a BCK-algebra with |P | ≥ 2.

A map µ : X → [0, 1] is called a Smarandache fuzzy ideal of X if it satisfies (SF1) and

(SF2) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ P ,

where P ( X, P is a BCK-algebra with |P | ≥ 2. This Smarandache fuzzy subalgebra (ideal) is denoted by µP ,

i.e., µP : P → [0, 1] is a fuzzy subalgebra(ideal) of X.

Example 3.2. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([1]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 3 3 3

1 1 0 1 3 3 3

2 2 2 0 3 3 3

3 3 3 3 0 0 0

4 4 3 4 1 0 0

5 5 3 5 1 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2, 3},
0.7 otherwise

Clearly µ is a Samrandache fuzzy subalgebra of X. It is verified that µ restricted to a subset {0, 1, 2, 3} which is

a subalgebra of X is a fuzzy subalgebra of X, i.e., µ{0,1,2,3} : {0, 1, 2, 3} → [0, 1] is a fuzzy subalgebra of X. Thus

µ : X → [0, 1] is a Smarandache fuzzy subalgebra of X. Note that µ : X → [0, 1] is not a fuzzy subalgebra of X,

since µ(5 ∗ 4) = µ(0) = 0.5 ≯ min{µ(5), µ(4)} = 0.7.
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Example 3.3. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([1]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 4 4

1 1 0 0 1 4 4

2 2 2 0 2 4 4

3 3 3 3 0 4 4

4 4 44 4 0 0

5 5 4 4 5 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2}
0.7 otherwise

Clearly µ is a Samrandache fuzzy ideal of X. It is verified that µ restricted to a subset {0, 1, 2} which is an ideal of

X is a fuzzy ideal of X, i.e., µ{0,1,2} : {0, 1, 2} → [0, 1] is a fuzzy ideal of X. Thus µ : X → [0, 1] is a Smarandache

fuzzy ideal of X. Note that µ : X → [0, 1] is not a fuzzy ideal of X, since µ(2) = 0.5 ≯ min{µ(2∗4) = µ(4), µ(4)} =

µ(4) = 0.7.

Lemma 3.4. Every Smarandache fuzzy ideal µP of a Smarandache BCI-algebra X is order reversing.

Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. If x, y ∈ P with x ≤ y, then x ∗ y = 0. Hence we have

µ(x) ≥ min{µ(x ∗ y), µ(y)} = min{µ(0), µ(y)} = µ(y). �

Theorem 3.5. Any Smarandache fuzzy ideal µP of a Smarandache BCI-algebra X must be a Smarandache

fuzzy subalgebra of X.

Proof. Let P be a BCK-algebra with P ( X and |X| ≥ 2. Since x ∗ y ≤ x for any x, y ∈ P , it follows from

Lemma 3.4 that µ(x) ≤ µ(x ∗ y), so by (SF2) we obtain µ(x ∗ y) ≥ µ(x) ≥ min{µ(x ∗ y), µ(y)} ≥ min{µ(x), µ(y)}.
This shows that µ is a Smarandache fuzzy subalgebra of X, proving the theorem. �

Proposition 3.6. Let µP be a Smarandache fuzzy ideal of a Smarandache BCI-algebra X. If the inequality

x ∗ y ≤ z holds in P , then µ(x) ≥ min{µ(x), µ(z)} for all x, y, z ∈ P.

Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. If x ∗ y ≤ z in P , then (x ∗ y) ∗ z = 0. Hence we

have µ(x ∗ y) ≥ min{µ((x ∗ y) ∗ z), µ(z)} = min{µ(0), µ(z)} = µ(z). It follows that µ(x) ≥ min{µ(x ∗ y), µ(y)} ≥
min{µ(y), µ(z)}. �

Theorem 3.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy subalgebra µP of X is a Smaran-

dache fuzzy ideal of X if and only if for all x, y ∈ P , the inequality x ∗ y ≤ z implies µ(x) ≥ min{µ(y), µ(z)}.

Proof. Suppose that µP is a Smarandache fuzzy subalgebra of X satisfying the condition x ∗ y ≤ z implies

µ(x) ≥ min{µ(y), µ(z)}. Since x ∗ (x ∗ y) ≤ y for all x, y ∈ P , it follows that µ(x) ≥ min{µ(x ∗ y), µ(y)}. Hence

µP is a Smarandache fuzzy ideal of X. The converse follows from Proposition 3.6. �

Definition 3.8. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

clean ideal of X if it satisfies (SF1) and

(SF3) µ(x) ≥ min{µ(x ∗ (y ∗ x)) ∗ z), µ(z)} for all x, y, z ∈ P ,
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where P ( X and P is a BCK-algebra with |P | ≥ 2. This Smarandache fuzzy clean ideal is denoted by µP , i.e.,

µP : P → [0, 1] is a Smarandache fuzzy clean ideal of X.

Example 3.9. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 0 0 0 5

2 2 1 0 1 0 5

3 3 4 4 4 0 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.4 if x ∈ {0, 1, 2, 3}
0.8 otherwise

Clearly µ is a Samrandache fuzzy clean ideal of X, but µ is not a fuzzy clean ideal of X, since µ(3) = 0.4 ≯
min{µ((3 ∗ (0 ∗ 3)) ∗ 5), µ(5)} = min{µ(5), µ(5)} = µ(5) = 0.8.

Theorem 3.10. Let X be a Smarandache BCI-algebra. Any Smarandache fuzzy clean ideal µP of X must be a

Smarandache fuzzy ideal of X.

Proof. Let X be a BCK-algebra with P ( X and |P | ≥ 2. Let µP : P → [0, 1] be a Smarndache fuzzy clean

ideal of X. If we let y := x in (SF3), then µ(x) ≥ min{µ((x ∗ (x ∗ x)) ∗ z), µ(z)} = min{µ((x ∗ 0) ∗ z), µ(z)} =

min{µ(x ∗ z), µ(z)}, for all x, y, z ∈ P . This shows that µ satisfies (SF2). Combining (SF1), µP is a Smarandache

fuzzy ideal of X, proving the theorem. �

Corollary 3.11. Every Smarandache fuzzy clean ideal µP of a Smarndache BCI-algebra X must be a Smaran-

dache fuzzy subalgebra of X.

Proof. It follows from Theorem 3.5 and Theorem 3.10. �

The converse of Theorem 3.10 may not be true as shown in the following example.

Example 3.12. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 0 5

2 2 2 0 0 0 5

3 3 3 3 0 0 5

4 4 3 4 1 0 5

5 5 5 5 5 5 0

Let µP be a fuzzy set in P = {0, 1, 2, 3, 4} defined by µ(0) = µ(2) = 0.8 and µ(1) = µ(3) = µ(4) = 0.3. It is easy

to check that µP is a fuzzy ideal of X. Hence µ : X → [0, 1] is a Smarandache fuzzy ideal of X. But it is not a

Smarandache fuzzy clean ideal of X since µ(1) = 0.3 ≯ min{µ((1 ∗ (3 ∗ 1)) ∗ 2), µ(2)} = min{µ(0), µ(2)} = 0.8.

Theorem 3.13. Let X be a Smarandache implicative BCI-algebra. Every Smarandache fuzzy ideal µP of X is

a Smarandache fuzzy clean ideal of X.
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Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. Since X is a Smarandache implicative BCI-algebra,

we have x = x ∗ (y ∗ x) for all x, y ∈ P . Let µP be a Smarandache fuzzy ideal of X. It follows from (SF2) that

µ(x) ≥ min{µ(x ∗ z), µ(z)} ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}, for all x, y, z ∈ P . Hence µP is a Smarandache clean

ideal of X. The proof is complete. �

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 3.14. Let X be a Smarandache BCI-algebra. Suppose that µP is a Smarandache fuzzy ideal of X.

Then the following equivalent:

(i) µP is Smarandache fuzzy clean,

(ii) µ(x) ≥ µ(x ∗ (y ∗ x)) for all x, y ∈ P ,

(iii) µ(x) = µ(x ∗ (y ∗ x)) for all x, y ∈ P .

Proof. (i) ⇒ (ii): Let µP be a Smarandache fuzzy clean ideal of X. It follows from (SF3) that µ(x) ≥ min{µ((x ∗
(y ∗ x)) ∗ 0), µ(0)} = min{µ(x ∗ (y ∗ x)), µ(0)} = µ(x ∗ (y ∗ x)), ∀x, y ∈ P. Hence the condition (ii) holds.

(ii) ⇒ (iii): Since X is a Smarnadache BCI-algebra, we have x ∗ (y ∗ x) ≤ x for all x, y ∈ P . It follows from

Lemma 3.4 that µ(x) ≤ µ(x ∗ (y ∗ x)). By (ii), µ(x) ≥ µ(x ∗ (y ∗ x)). Thus the condition (iii) holds.

(iii) ⇒ (i): Suppose that the condition (iii) holds. Since µP is a Smarandache fuzzy ideal, by (SF2), we have

µ(x ∗ (y ∗ x)) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}. Combining (iii), we obtain µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}.
Hence µ satisfies the condition (SF3). Obviously, µ satisfies (SF1). Therefore µ is a fuzzy clean ideal of X. Hence

the condition (i) holds. The proof is complete. �

For any fuzzy sets µ and ν in X, we write µ ≤ ν if and only if µ(x) ≤ ν(x) for any x ∈ X.

Definition 3.15. Let X be a Smarandache BCI-algebra and let µP : P → [0, 1] be a Smarandache fuzzy

BCI-algebra of X. For t ≤ µ(0), the set µt := {x ∈ P |µ(x) ≥ t} is called a level subset of µP .

Theorem 3.16. A fuzzy set µ in P is a Smarandache fuzzy clean ideal of X if and only if, for all t ∈ [0, 1], µt is

either empty or a Smarandache clean ideal of X.

Proof. Suppose that µP is a Smarandache fuzzy clean ideal of X and µt 6= ∅ for any t ∈ [0, 1]. It is clear

that 0 ∈ µt since µ(0) ≥ t. Let µ((x ∗ (y ∗ x)) ∗ z) ≥ t and µ(z) ≥ t. It follows from (SF3) that µ(x) ≥
min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)} ≥ t, namely, x ∈ µt. This shows that µt is a Smarandache clean ideal of X.

Conversely, assume that for each t ∈ [0, 1], µt is either empty or a Smaranadche clean ideal of X. For any x ∈ P ,

let µ(x) = t. Then x ∈ µt. Since µt(6= ∅) is a Smarandache clean ideal of X, therefore 0 ∈ µt and hence µ(0) ≥
µ(x) = t. Thus µ(0) ≥ µ(x) for all x ∈ P . Now we show that µ satisfies (SF3). If not, then there exist x′, y′, z′ ∈ P
such that µ(x′) < min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}. Taking t0 := 1

2{µ(x′) + min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}}, we

have µ(x′) < t0 < min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}. Hence x′ /∈ µt0 , (x′ ∗ (y′ ∗ x′)) ∗ z ∈ µt0 , and z′ ∈ µt0 , i.e.,

µt0 is not a Smaraqndache clean of X, which is a contradiction. Therefore, µP is a Smarnadche fuzzy clean ideal,

completing the proof. �

Theorem 3.17. ([2]) (Extension Property) Let X be a Smarandache BCI-algebra. Let I and J be Q-

Smarandache ideals of X and I ⊆ J ⊆ Q. If I is a Q-Smarandache clean ideal of X, then so is J .

Next we give the extension theorem of Smarandache fuzzy clean ideals.
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Theorem 3.18. Let X be a Smarandache BCI-algebra. Let µ and ν be Smarandache fuzzy ideals of X such

that µ ≤ ν and µ(0) = ν(0). If µ is a Smarndache fuzzy clean ideal of X, then so is ν.

Proof. It suffices to show that for any t ∈ [0, 1], νt is either empty or a Smarandache clean ideal of X. If the level

subset νt is non-empty, then µt 6= ∅ and µt ⊆ νt. In fact, if x ∈ µt, then t ≤ µ(x); hence t ≤ ν(x), i.e, x ∈ νt. So

µt ⊆ νt. By the hypothesis, since µ is a Smarandache fuzzy clean ideal of X, µt is a Smarandache clean of X by

Theorem 3.16. It follows from Theorem 3.17 that νt is a Smarandache clean ideal of X. Hence ν is a Smarandache

fuzzy clean of X. The proof is complete. �

Definition 3.19. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

fresh ideal of X if it satisfies (SF1) and

(SF4) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)} for all x, y, z ∈ P ,

where P is a BCK-algebra with P ( X and |P | ≥ 2. This Smarandache fuzzy ideal is denoted by µP , i.e.,

µP : P → [0, 1] is a Smarandache fuzzy fresh ideal of X.

Example 3.20. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 1 5

2 2 2 0 2 0 5

3 3 1 3 0 3 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 3},
0.9 otherwise

Clearly µ is a Samrandache fuzzy fresh ideal of X. But it is not a fuzzy fresh ideal of X, since µ(2 ∗ 4) = µ(0) =

0.5 ≯ min{µ((2 ∗ 5) ∗ 4), µ(5 ∗ 4)} = µ(5) = 0.9.

Theorem 3.21. Any Smarandache fuzzy fresh ideal of a Smarandache BCI-algebra X must be a Smarandache

fuzzy ideal of X.

Proof. Taking z := 0 in (SF4) and x ∗ 0 = x, we have µ(x ∗ 0) ≥ min{µ((x ∗ y) ∗ 0), µ(y ∗ 0)}. Hence µ(x) ≥
min{µ(x ∗ y), µ(y)}. Thus (SF2) holds. �

The converse of Theorem 3.21 may not be true as show in the following example.

Example 3.22. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 0 0 1 5

2 2 1 0 1 2 5

3 3 1 1 0 3 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0
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Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 4},
0.4 otherwise

Clearly µ(x) is a Samrandache fuzzy ideal of X. But µ(x) is not a Samrandache fuzzy fresh ideal of X, since

µ(2 ∗ 3) = µ(1) = 0.4 ≯ min{µ((2 ∗ 1) ∗ 3), µ(1 ∗ 3)} = min{µ(1 ∗ 3), µ(0)} = µ(0) = 0.5.

Proposition 3.23. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal µP of X is a Smarandache

fuzzy fresh ideal of X if and only if it satisfies the condition µ(x ∗ y) ≥ µ((x ∗ y) ∗ y) for all x, y ∈ P .

Proof. Assume that µP is a Smarandache fuzzy fresh ideal of X. Putting z := y in (SF4), we have µ(x ∗ y) ≥
min{µ((x ∗ y) ∗ y), µ(y ∗ y)} = min{µ((x ∗ y) ∗ y), µ(0)} = µ((x ∗ y) ∗ y), ∀x, y ∈ P.

Conversely, let µP be Smarandache fuzzy ideal of X such that µ(x∗y) ≥ µ((x∗y)∗y). Since, for all x, y, z ∈ P ,

((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z, we have µ((x ∗ y) ∗ z) ≤ µ(((x ∗ z) ∗ z) ∗ (y ∗ z)). Hence

µ(x ∗ z) ≥ µ((x ∗ z) ∗ z) ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y ∗ z)} ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)}. This completes

the proof. �

Since (x ∗ y) ∗ y ≤ x ∗ y, it follows from Lemma 3.4 that µ(x ∗ y) ≤ µ((x ∗ y) ∗ y). Thus we have the following

theorem.

Theorem 3.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal µP of X is a Smarandache

fuzzy fresh if and only if it satisfies the identity

µ(x ∗ y) = µ((x ∗ y) ∗ y), textfor all x, y ∈ X.

We give an equivalent condition for which a Smarandache fuzzy subalgebra of a Smarandache BCI-algebra to

be a Smarandache fuzzy clean ideal of X.

Theorem 3.25. A Smarandache fuzzy subalghebra µP of X is a Smarandache fuzzy clean ideal of X if and only

if it satisfies

(x ∗ (y ∗ x)) ∗ z ≤ u implies µ(x) ≥ min{µ(z), µ(u)} for allx, y, z, u ∈ P. (∗)

Proof. Assume that µP is a Smarandache fuzzy clean ideal of X. Let x, y, z, u ∈ P be such that (x∗(y∗x))∗z ≤ u.

Since µ is a Smarandache fuzzy ideal of X, we have µ(x∗ (y ∗x)) ≥ min{µ(z), µ(u)} by Theorem 3.7. By Theorem

3.14-(iii), we obtain µ(x) ≥ min{µ(z), µ(u)}.
Conversely, suppose that µP satisfies (∗). Obviously, µP satisfies (SF1), since (x∗ (y ∗x))∗ ((x∗ (y ∗x))∗z) ≤ z,

by (∗), we obtain µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}, which shows that µP satisfies (SF3). Hence µP is a

Smarandache fuzzy clean ideal of X. The proof is complete. �
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Abstract. In this paper, we introduce the notions of Fibonacci (co-)derivative of real-valued functions. We find

general solutions of the equations 4(f(x)) = g(x) and (4+ I)(f(x)) = g(x).

1. Introduction

The theory of Fibonacci-numbers has been studied in many different forms for centuries and the literature on the

subject is consequently incredibly vast. The most amazing qualities of these numbers is the variety of mathematical

models where they play some sort of role and where their properties are of importance in elucidating the ability of

the model under discussion to explain whatever implications are inherent in it. Atanassov et al. [1] and Dunlap [2]

provided general and fundamental surveys on the theory of Fibonacci numbers. Hyers-Ulam studied the stability

of Fibonacci functional equations [5]. Han et al. [3] discussed Fibonacci sequences in both several groupoids and

groups. The present authors [6] introduced the notion of generalized Fibonacci sequences over a groupoid, and

investigated these in particular for the case of a groupoid containing idempotents and pre-idempotents.

Han et al. [4] studied Fibonacci functions on the real numbers R, i.e., functions f : R → R such that for all

x ∈ R, f(x + 2) = f(x + 1) + f(x), and they developed the notion of Fibonacci functions using the concept of

f -even and f -odd functions. The present authors [7] studied Fibonacci functions using the (ultimately) periodicity

and also discussed the exponential Fibonacci functions. Especially, given a non-negative real-valued function, the

present authors obtained several exponential Fibonacci functions.

In this paper, we introduce the notions of Fibonacci (co-)derivative of real-valued functions. We find general

solutions of the equations 4(f(x)) = g(x) and (4+ I)(f(x)) = g(x).

2. Preliminaries

A function f defined on the real numbers is said to be a Fibonacci function ([4]) if it satisfies the formula

f(x+ 2) = f(x+ 1) + f(x)

for any x ∈ R, where R (as usual) is the set of real numbers.

Example 2.1. ([4]) Let f(x) := ax be a Fibonacci function on R where a > 0. Then axa2 = f(x + 2) =

f(x+ 1) + f(x) = ax(a+ 1). Since a > 0, we have a2 = a+ 1 and a = 1+
√
5

2 . Hence f(x) = (1+
√
5

2 )x is a Fibonacci

function, and the unique Fibonacci function of this type on R.

If we let u0 = 0, u1 = 1, then we consider the full Fibonacci sequence: · · · , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, · · · , i.e.,

u−n = (−1)nun for n > 0, and un = Fn, the nth Fibonacci number.

0∗ Correspondence: Tel.: +82 33 248 2011, Fax: +82 33 256 2011 (K. S. So).
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Example 2.2. ([4]) Let {un}∞n=−∞ and {vn}∞n=−∞ be full Fibonacci sequences. We define a function f(x)

by f(x) := ubxc + vbxct, where t = x − bxc ∈ (0, 1). Then f(x + 2) = ubx+2c + vbx+2ct = u(bxc+2) + v(bxc+2)t =

(u(bxc+1) +ubxc) + (v(bxc+1) + vbxc)t = f(x+ 1) + f(x) for any x ∈ R. This proves that f is a Fibonacci function.

Note that if a Fibonacci function is differentiable on R, then its derivative is also a Fibonacci function.

Proposition 2.3. ([4]) Let f be a Fibonacci function. If we define g(x) := f(x+ t) where t ∈ R for any x ∈ R,

then g is also a Fibonacci function.

For example, since f(x) = (1+
√
5

2 )x is a Fibonacci function, g(x) = ( 1+
√
5

2 )x+t = ( 1+
√
5

2 )tf(x) is also a Fibonacci

function where t ∈ R.

3. Fibonacci derivatives

Let f : R→ R be a real-valued function. We shall consider the expression

(4f)(x) := f(x+ 2)− f(x+ 1)− f(x)

to be the Fibonacci derivative of f(x). For example, if Φ := 1+
√
5

2 , then f(x) = Φx yields (4f)(x) = Φx+2 −
Φx+1 −Φx = Φx(Φ2 −Φ− 1) = 0. If f is any Fibonacci function, then (4f)(x) = 0 for all x ∈ R and conversely.

Note that if 4f = 4g, then f − g is a Fibonacci function.

Example 3.1. If f(x) := ax+ b, then

4(ax+ b) = [a(x+ 2) + b]− [a(x+ 1) + b]− [ax+ b]

= −ax+ (a− b)

and 4(b) = −b, 4(x) = −x+ 1.

Simultaneously we shall also consider the Fibonacci co-derivative of f , denoted (4+ I)(f), by the formula

(4+ I)(f)(x) = 4(f) + f(x) = f(x+ 2)− f(x+ 1)

Thus for example, if f(x) = ax + b, then (4 + I)(ax + b) = [a(x + 2) + b] − [a(x + 1) + b] − [ax + b] = a, which

coincides with d
dx (ax+ b).

We pose a question: what is the “anti-derivative” of a function f : R → R, i.e., given f : R → R, find

g : R→ R such that 4g = f . For example, 4(−x− 1) = [−(x+ 2)− 1]− [−(x+ 1)− 1]− [−x− 1] = x. Hence

the Fibonacci anti-derivative of x is −x− 1 + ϕ where ϕ is a Fibonacci function.

Proposition 3.2. Fibonacci functions are fixed points for Fibonacci co-derivative operator 4+ I.

Proof. Let f(x) be a Fibonacci function. Then (4f)(x) = 0 and hence (4 + I)(f)(x) = (4f)(x) + f(x) =

f(x). �

Proposition 3.3. If (4+ I)(f)(x) = 0, then (42f)(x) = f(x).

Proof. If (4 + I)(f)(x) = 0, then (4f)(x) = −f(x). It follows that (42f)(x) = 4(−f(x)) = (−f)(x + 2) −
(−f)(x+ 1)− (−f)(x) = −(4f)(x) = −(−f(x)) = f(x). �
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Example 3.4. Suppose that4f = x2 and f(x) = ax2+bx+c. Since4(x2) = −x2+2x+3 and4(x) = −x+1,

we obtain

x2 = 4(ax2 + bx+ c)

= a4 (x2) + b4 (x) +4(c)

= −ax2 + (2a− b)x+ (3a+ b− c)

It follows that a = −1, b = −2 and c = −5, i.e., 4(−x2−2x−5) = x2. Thus, the general Fibonacci anti-derivative

of x2 is −x2 − 2x− 5 + ϕ where ϕ is a Fibonacci function.

Example 3.5. Suppose that 4f = x3 and f(x) = ax3 + bx2 + cx+ d. Since 4(x3) = −x3 + 3x2 + 9x+ 7, we

obtain 4(−x3 − 3x2 − 15x− 31) = x3 as in Example 3.4.

Theorem 3.6. Let 4fn = xn and let f0, f1, · · · , fn−1 be determined to yield particular solutions for 4fk = xk

(k = 0, 1, · · · , n− 1). Then

fn = −xn +
n−1∑
k=0

(
n

k

)
[2n−k − 1]fk + ϕ

where ϕ is a Fibonacci function.

Proof. Let 4fn = xn and let fn = −xn +Qn(x) where Qn(x) is a polynomial of x of degree n− 1. Then

xn = 4(fn)

= 4(−xn +Qn(x))

= −4 (xn) +4(Qn(x))

= −[(x+ 2)n − (x+ 1)n − xn] +4(Qn(x))

It follows that4(Qn(x)) = (x+2)n−(x+1)n =
∑n−1

k=0

(
n

k

)
[2n−k−1]xk. Assume f0, f1, · · · , fn−1 are determined

to have a particular solutions for 4fk = xk (k = 0, 1, · · · , n− 1). Then

4(Qn(x)) =
n−1∑
k=0

(
n

k

)
[2n−k − 1]4 fk

= 4(
n−1∑
k=0

(
n

k

)
[2n−k − 1]fk)

It follows that Qn(x) =
∑n−1

k=0

(
n

k

)
[2n−k−1]fk +ϕ for some Fibonacci function ϕ. Hence fn = −xn +Qn(x) =

∑n−1
k=0

(
n

k

)
[2n−k − 1]fk + ϕ. �
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Example 3.7. In the above examples it was known that f0 = −1 +ϕ, f1 = −x− 1 +ϕ, f2 = −x2− 2x− 5 +ϕ

and f3 = −x3 − 3x2 − 15x− 31 + ϕ where ϕ is a Fibonacci function. We compute Q4(x) as follows:

Q4(x) =
3∑

k=0

(
4

k

)
[24−k − 1]fk + ϕ

= 15f0 + 28f1 + 18f2 + 4f3 + ϕ

= 15(−1) + 28(−x− 1) + 18(−x2 − 2x− 5)

+4(−x3 − 3x2 − 15x− 31)

= −4x3 − 30x2 − 124x− 257 + ϕ

This shows that f4 = −x4 +Q4(x) + ϕ = −x4 − 4x3 − 30x2 − 124x− 257 + ϕ where ϕ is a Fibonacci function.

Theorem 3.8. Given a polynomial g(x) := a0 + a1x+ · · ·+ anx
n, we have a particular solution for 4(f(x)) =

g(x) as f(x) = a0f0 + a1f1 + · · · + anfn, where 4fk = xk (k = 0, 1, · · · , n) and a general solution f(x) + ϕ(x)

where 4(ϕ(x)) = 0.

Proof. It follows immediately from Theorem 3.6. �

4. Fibonacci co-derivatives

Let us consider the problem (4 + I)k(f(x)) = xn. We have (4 + I)(1) = 4(1) + I(1) = 0, (4 + I)(x) =

4(x) + I(x)(−x + 1) + x = 1 and (4 + I)(x2) = 4(x2) + I(x2) = 2x + 3. Using Theorem 3.6, we obtain the

following proposition.

Proposition 4.1. The Fibonacci co-derivative of xn is

(4+ I)(xn) =
n−1∑
k=0

(
n

k

)
[2n−k − 1]xk

Proof. Using Theorem 3.6, we obtain

(4+ I)(xn) = 4(xn) + I(xn)

= (x+ 2)n − (x+ 1)n

= 4(Qn(x))

=
n−1∑
k=0

(
n

k

)
[2n−k − 1]xk,

proving the proposition. �
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Example 4.2. If we let n := 4 in Proposition 4.1, then

(4+ I)(x4) =
3∑

k=0

(
4

k

)
[24−k − 1]xk

=

(
4

0

)
(24 − 1)x0 +

(
4

1

)
(23 − 1)x1 +

(
4

2

)
(22 − 1)x2

+

(
4

3

)
(23 − 1)x3

= 4x3 + 18x2 + 28x+ 15

It follows that 4(x4) = −x4 + 4x3 + 18x2 + 28x+ 15.

Consider now (4+ I)2(1) = (4+ I)[(4+ I)(1)] = (4+ I)(0) = 0 and (4+ I)2(x) = (4+ I)[(4+ I)(x2)] =

(4+ I)(2x+ 3) = 2. Similarly we obtain (4+ I)2(x3) = (4+ I)[3x2 + 9x+ 7] = 6x+ 18.

Using Proposition 4.1, we obtain the following formula.

Proposition 4.3. For any natural number n, we have

(4+ I)2(xn) =

n−1∑
k=0

k−1∑
j=0

(
n

k

)(
k

j

)
(2n−k − 1)(2k−j − 1)xj

Proof. Using Proposition 4.1, we obtain the following.

(4+ I)2(xn) = (4+ I)[
n−1∑
k=0

(
n

k

)
(2n−k − 1)xk]

=

n−1∑
k=0

(
n

k

)
(2n−k − 1)

k−1∑
j=0

(
k

j

)
(2k−j − 1)xj

=
n−1∑
k=0

k−1∑
j=0

(
n

k

)(
k

j

)
(2n−k − 1)(2k−j − 1)xj

�

Example 4.4. We compute (4+ I)2(x4) as follows.

(4+ I)2(x4) = (4+ I)[4x3 + 18x2 + 28x+ 15]

= 4(4+ I)(x3) + 18(4+ I)(x2) + 28(4+ I)(x)

+15(4+ I)(1)

= 12x2 + 72x+ 110
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Upon checking Proposition 4.3 when n = 4, we find that

(4+ I)2(x4) =
3∑

k=0

k−1∑
j=0

(
4

k

)(
k

j

)
(24−k − 1)(2k−j − 1)xj

=
0∑

j=0

(
4

1

)(
1

j

)
(23 − 1)(21−j − 1)xj

+
1∑

j=0

(
4

2

)(
2

j

)
(22 − 1)(22−j − 1)xj

+
2∑

j=0

(
4

3

)(
3

j

)
(21 − 1)(23−j − 1)xj

= 28x0 + 54x0 + 36x+ 28x0 + 36x+ 12x2

= 12x2 + 72x+ 110

Next, we want to obtain an exact analog of Theorem 3.6 for the Fibonacci co-derivative 4+ I.

Example 4.5. Let f1(x) := ax2 + bx + c be a polynomial satisfying (4 + I)(f1(x)) = x. Then x = (4 +

I)(ax2 + bx + c) = 2ax + 3a + b. It follows that 2a = 1, 3a + b = 0, i.e., a = 1
2 , b = − 3

2 and c is arbitrary.

Hence (4 + I)( 1
2x

2 − 3
2x + c) = x where c is a constant. Similarly, we may find a polynomial f2(x) satisfying

(4+ I)(f2(x)) = x2, i.e., (4+ I)( 1
3x

3 − 3
2x

2 + 13
6 x+ d) = x2 where d is a constant. In this fashion, we obtain a

polynomial fn(x) = 1
n+1x

n+1 + qn+1(x) which can be determined so that (4 + I)(fn(x)) = xn where qn+1(x) is

a polynomial of degree n.

Theorem 4.6. Given a polynomial g(x) := a0+a1x+ · · ·+anxn, a particular solution for (4+I)(f(x)) = g(x)

as f(x) = a0f0 + a1f1 + · · ·+ anfn is obtained, where fn(x) = 1
n+1x

n+1 + qn+1(x) where qn+1(x) is a polynomial

of degree n.

Proof. The proof is similar to the proof of Theorem 3.8. �

5. Solving the equation (4+ I)n(f(x)) = q(x)

Consider (4 + I)(f(x)) = (4 + I)(g(x)). It means that (4 + I)(f(x) − g(x)) = 0, i.e., (f − g)(x + 2) − (f −
g)(x+ 1) = 0 for all x ∈ R. This shows that there exists a map ψ : R→ R with ψ(x+ 2) = ψ(x+ 1) for all x ∈ R

such that f = g+ψ. If we let B1 := {ψ|(4+ I)(ψ(x)) = 0,∀x ∈ R}, then B1 consists of all functions ϕ : R→ R

such that ϕ is periodic of period 1. This means that

ϕ ∈ B1 ⇐⇒ ϕ(x+ 1)− ϕ(x) = 0, ∀x ∈ R

Hence general solution of (4+ I)n(f(x)) = q(x) is {p(x) +ψ(x) | 4 (p(x)) = q(x), ψ(x) ∈ B1} = {p(x) +ψ(x) | 4

(p(x)) = q(x), ψ(x+ 1) = ψ(x),∀x ∈ R}. Consider (4+ I)2(f(x)) = q(x). Let p(x) be a polynomial in R[x] such

that (4+ I)2(p(x)) = q(x). Then (4+ I)2(p(x)) = (4+ I)2(f(x)). It follows that (4+ I)2(f(x)−p(x)) = 0, i.e.,
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there exists a polynomial ψ(x) ∈ R[x] such that f(x) − p(x) = ψ(x) and (4 + I)2(ψ(x)) = 0. This means that

(4+ I)[(4+ I)(ψ(x))] = 0, i.e., (4+ I)(ψ(x)) ∈ B1. If we let B2 := {ϕ(x) ∈ R[x] | (4+ I)(ϕ(x)) ∈ B1}, then

ϕ(x) ∈ B2 ⇐⇒ (4+ I)(ϕ(x)) ∈ B1

⇐⇒ ∃h(x) ∈ B1 such that ϕ(x+ 2)− ϕ(x+ 1) = h(x)

⇐⇒ h(x+ 1)− h(x) = 0, ϕ(x+ 2)− ϕ(x+ 1) = h(x)

⇐⇒ ϕ(x+ 2)− 2ϕ(x+ 1) + ϕ(x) = 0

Hence the set of all general solutions of (4 + I)2(f(x)) = q(x) is {p(x) + ψ(x) | (4 + I)2(p(x)) = q(x), ψ(x) ∈
B2} = {p(x) + ψ(x) | (4 + I)2(p(x)) = q(x), ψ(x + 2) − 2ψ(x + 1) + ψ(x) = 0,∀x ∈ R}. Similarly, if we let

B3 := {ϕ(x) | (4 + I)(ϕ(x)) ∈ B2}, then B3 = {ϕ ∈ R[x] |ϕ(x + 3) − 3ϕ(x + 2) + 3ϕ(x + 1) − ϕ(x) = 0}. We

generalize this fact as follows:

Lemma 5.1. If we let Bn := {ϕ(x) | (4+I)(ϕ(x)) ∈ Bn−1}, then Bn = {ϕ ∈ R[x] |
∑n

r=0

(
n

r

)
ϕ(x+n−r) =

0,∀x ∈ R}.

Theorem 5.2. Given a polynomial p(x) ∈ R[x], there exists a polynomial qn(x) ∈ R[x] such that (4 +

I)n(qn(x)) = p(x), and its general solution f(x) is of the form qn(x) + ϕ(x) where ϕ(x) ∈ Bn.

Proof. It follows from Theorem 4.6 and Lemma 5.1. �

6. Concluding remark

Given Theorem 3.6 and the fact the ϕ(x) ≡ 0 is a Fibonacci function, a particular solution to the Fibonacci

derivative equation 4fn = xn, is given iteratively by the formula:

fn = −xn +
n−1∑
k=0

(
n

k

)
[2n−k − 1]fk

where if we set f0 = 1, we obtain a sequence of polynomials of degree n for fn, n = 0, 1, 2, · · · . From the

structure of the formula we may surmise the existence of many combinatorial properties of the sequence. Also

upon rewriting:

fn =
n∑

l=0

Alnx
l, Ann = −1,

the coefficients Aln, thought of as analogs of binomial numbers, should illustrate a great number of combinatorial

relations among themselves as well as with other families, including the binomial numbers (coefficients). Since

(4 + I)(xn) =
∑n−1

k=0

(
n

k

)
[2n−k − 1]xk exhibits a “similar” form, we expect there to be confirmation of the

claim made above in a multitude of ways, above and beyond what has already been illustrated.
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7. Future works

Given what has been done in this paper, it is clear that very much remains to be done. Thus, a much more

detailed study of functions of the F (x) type, as described above, remains to be done. Furthermore, as pointed

out in the concluding remarks, there is much to be done still in completing the combinatorial grammar which is

associated with the solution of a particular kind to the equation 4mfmn = xn, of which some cases have been

looked at above, but for which very significant gaps still remain to be explored. Also, as usual in this type of

research, the law of natural growth of problems prevails, i.e., as one problem is successfully resolved, novel gaps

noted present themselves for consideration and no finality is in sight (nor expected) for the area of study touched

upon in this case as well, to the benefit of those engaged in furthering knowledge of this (as well as any other)

subject.
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A NOTE ON SYMMETRIC IDENTITIES FOR TWISTED

DAEHEE POLYNOMIALS

JONGKYUM KWON1 AND JIN-WOO PARK2,∗

Abstract. In this paper, we consider the twisted Daehee numbers and poly-

nomials. We investigate some new and explicit symmetric identities for the

twisted Daehee polynomials arising from p-adic invariant integral on Zp.

1. Introduction

Throughout this paper, Zp, Qp, and Cp will respectively denote the ring of p-
adic rational integers, the field of p-adic rational numbers and the completions of
algebraic closure of Qp. The p-adic norm is defined |p|p = 1

p .

Let f(x) be a uniformly differentiable function on Zp. Then the p-adic invariant
integral on Zp is defined by

∫
Zp

f(x)dµ0(x) = lim
N→∞

pN−1∑
x=0

f(x)dµ0

(
x+ pNZp

)
= lim
N→∞

1

pN

pN−1∑
n=0

f(x).

(1.1)

Thus, by (1.1), we get∫
Zp

f1(x)du0(x)−
∫
Zp

f(x)du0(x) = f ′(0), (1.2)

where f1(x) = f(x+ 1) (see [1, 4, 9]).
From (1.2), we can derive∫

Zp

fn(x)du0(x)−
∫
Zp

f(x)du0(x) =
n−1∑
l=0

f ′(l), (n ∈ N), (1.3)

where fn(x) = f(x+ n) (see [1, 5, 6]).
As is well known, the Bernoulli polynomials are defined by the generating func-

tion to be (
t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
, (see [1, 2, 4]). (1.4)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers.

2010 Mathematics Subject Classification. 11B68, 11S40, 11S80.
Key words and phrases. Daehee polynomials, twisted Daehee polynomials, twisted λ-Daehee

polynomials.
∗ corresponding author.
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For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp = ∪∪∪
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn =
{
ω|ωpn = 1

}
is the cyclic group of order pn.

It is well known that for ξ ∈ Tp, the twisted Bernoulli polynomials are defined
as (

t

ξet − 1

)
ext =

∞∑
n=0

Bn,ξ(x)
tn

n!
, (see [1, 2]). (1.5)

When x = 0, Bn,ξ = Bn,ξ(0) are called the twisted Bernoulli numbers.

For t ∈ Cp with |t|p < p−
1

p−1 , the Daehee polynomials are defined by the gener-
ating function to be

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
, (see [1, 2, 4 - 14, 16,17]). (1.6)

When x = 0, Dn = Dn(0) are called the Daehee numbers.
From (1.4) and (1.6), we can derive the following equation:

∞∑
n=0

Bn(x)
tn

n!
=

∞∑
m=0

Dn(x)
1

m!
(et − 1)m

=
∞∑
n=0

(
n∑

m=0

Dm(x)S2(n,m)

)
tn

n!
,

(1.7)

where S2(n,m) is the Stirling number of the second kind which is given by the
generating function to be

1

m!
(et − 1)m =

∞∑
n=m

S2(n,m)
tn

n!
, (see [3, 15]).

By (1.7), we get

Bn(x) =

n∑
m=0

Dm(x)S2(n,m), (n ≥ 0). (1.8)

From (1.4), we have
∞∑
n=0

Dn(x)
tn

n!
=
∞∑
m=0

Bm(x)
1

m!
(log(1 + t))m

=
∞∑
n=0

(
n∑

m=0

Bm(x)S1(n,m)

)
tn

n!
,

(1.9)

where S1(n,m) is the Stirling number of the first kind which is defined by falling
factorials as follows:

(x)0 = 1, (x)n = x(x− 1) · · · (x− n+ 1) =
n∑
l=0

S1(n, l)xl, (n ∈ N),

Thus, by (1.9), we get

Dn(x) =
n∑

m=0

Bm(x)S1(n,m), (n ≥ 0). (1.10)
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From (1.2), we derive Witt’s formula for Daehee polynomials as follows:

∫
Zp

(1 + t)x+ydu0(y) =
log(1 + t)

t
(1 + t)x

=
∞∑
n=0

Dn(x)
tn

n!
.

(1.11)

Thus, by (1.11), we get

∫
Zp

(x+ y)ndu0(y) = Dn(x), (n ≥ 0), (see [8]). (1.12)

Now, we consider the twisted Daehee polynomials defined by the generating
function to be

log(1 + ξt)

ξt
(1 + ξt)x =

∞∑
n=0

Dn,ξ(x)
tn

n!
, (see [5, 13, 14]). (1.13)

When x = 0, Dn,ξ = Dn,ξ(0) are called the twisted Daehee numbers.
In [5], authers define twisted λ-Daehee polynomials which are given by the p-adic

invariant integral on Zp to be

∫
Zp

(1 + ξt)λ(x+y)dµ0(y) =
λ log(1 + ξt)

(1 + ξt)λ − 1
(1 + ξt)λx

=
∞∑
n=0

Dn,λ,ξ(x)
tn

n!
.

(1.14)

In the special case, λ = 1, ξ = 1, we note that Dn,1,1(x) = Dn(x). When x = 0,
then Dn,λ,ξ = Dn,λ,ξ(0) are called twisted λ - Daehee numbers.

Recently, several authors have researched twisted Daehee polynomials in the
several areas (see [5, 13, 14]). In this paper, we investigate some explicit and new
symmetric identities for the twisted Daehee polynomials which are derived from
the p-adic invariant integral on Zp.
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2. Symmetric identities for the twisted Daehee polynomials

Let t ∈ Cp with |t|p < p−
1

p−1 . Now, we consider the following p-adic integral on
Zp. From (1.3), we easily get

1

log(1 + ξt)

(∫
Zp

(1 + ξt)n+xdu0(x)−
∫
Zp

(1 + ξt)xdu0(x)

)

=
1

log(1 + ξt)

n−1∑
l=0

(1 + ξt)llog(1 + ξt)

=
n−1∑
l=0

(1 + ξt)l

=
n−1∑
i=0

∞∑
n=0

(
n−1∑
m=0

imS1(n,m)

)
ξntn

n!

=
∞∑
n=0

(
n∑

m=0

S1(n,m)
n−1∑
i=0

im

)
ξntn

n!
.

(2.1)

Then, by (2.1), we get

1

log(1 + ξt)

(∫
Zp

(1 + ξt)n+xdu0(x)−
∫
Zp

(1 + ξt)xdu0(x)

)

=
∞∑
n=0

(
n∑

m=0

S1(n,m)Sm(n− 1)

)
ξntn

n!
,

(2.2)

where for given positive integer k, Sk(n) = 0k + 1k + 2k + · · ·+ nk.
From (1.2) and (1.3), we have

1

log(1 + ξt)

(∫
Zp

(1 + ξt)n+xdu0(x)−
∫
Zp

(1 + ξt)xdu0(x)

)

=
n
∫
Zp

(1 + ξt)xdu0(x)∫
Zp

(1 + ξt)n+xdu0(x)

=

∞∑
k=0

(
k∑

m=0

S1(k,m)Sk(n− 1)

)
ξntk

k!
.

(2.3)

We recall that Cauchy numbers are defined by the generating function to be

t

log(1 + t)
=
∞∑
n=0

Cn
tn

n!
. (2.4)

By (2.3) and (2.4), we get

∞∑
k=0

(
k∑

m=0

(Dm,ξ(k)−Dm,ξ)Ck−m

(
k

m

))
tk

k!

=
∞∑
k=0

(
k−1∑
m=0

S1(k − 1,m)Sk−1(n− 1)

)
tk

k!
.

(2.5)
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From (2.5), we have

1

k

(
k∑

m=0

(Dm,ξ(k)−Dm,ξ)Ck−m

(
k

m

))

=
k−1∑
m=0

S1(k − 1,m)Sk−1(n− 1), (k ∈ N, n ∈ N).

(2.6)

Therefore, by (2.6), we obtain the following theorem.

Theorem 2.1. For k, n ∈ N, we have

1

k

(
k∑

m=0

(Dm,ξ(k)−Dm,ξ)Ck−m

(
k

m

))
=

k−1∑
m=0

S1(k − 1,m)Sk−1(n− 1). (2.7)

Now, we consider symmetric identities for the twisted Daehee polynomials. Let
w1, w2 ∈ N. Then, we easily see that∫

Zp

∫
Zp

(1 + ξt)w1x1+w2x2du0(x1)du0(x2)∫
Zp

(1 + ξt)w1w2xdu0(x)
=

w1 log(1+ξt)
((1+ξt)w1−1)

w2 log(1+ξt)
((1+ξt)w2−1)

w1w2 log(1+ξt)
((1+ξt)w1w2−1)

=
log(1 + ξt)((1 + ξt)w1w2 − 1)

((1 + ξt)w1 − 1)((1 + ξt)w2 − 1
.

(2.8)

We consider the following double p-adic invariant integral on Zp as follows:

I =

∫
Zp

∫
Zp

(1 + ξt)w1x1+w2x2+w1w2xdµ0(x1)dµ0(x2)∫
Zp

(1 + ξt)w1w2xdµ0(x)

=
log(1 + ξt)(1 + ξt)w1w2x((1 + ξt)w1w2 − 1)

((1 + ξt)w1 − 1)((1 + ξt)w2 − 1)
.

(2.9)

From (1.2) and (1.3), we have

w1

∫
Zp

(1 + ξt)xdu0(x)∫
Zp

(1 + ξt)w1xdu0(x)
=

w1−1∑
k=0

(1 + ξt)k

=
∞∑
l=0

(
l∑

m=0

S1(l,m)Sm(w1 − 1)

)
ξltl

l!

(2.10)

From (2.10), we get

I =

(
1

w1

∫
Zp

(1 + ξt)w1(x1+w2x)dµ0(x1)

)(
w1

∫
Zp

(1 + ξt)w2x2dµ0(x2)∫
Zp

(1 + ξt)w1w2xdµ0(x)

)

=
1

w1

( ∞∑
i=0

Di,w1,ξ(w2x)
ti

i!

)( ∞∑
k=0

(
k∑

m=0

wm2 S1(k,m)Sm(w1 − 1)

)
ξktk

k!

)

=
1

w1

∞∑
n=0

(
n∑
i=0

(
n

i

)
Di,w1,ξ(w2x)

n−i∑
m=0

wm2 S1(n− i,m)Sm(w1 − 1)

)
ξn−itn

n!
.

(2.11)
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On the other hand, by (2.10), we get

I =

(
1

w2

∫
Zp

(1 + ξt)w2(x2+w1x)dµ0(x2)

)(
w2

∫
Zp

(1 + ξt)w1x1dµ0(x1)∫
Zp

(1 + ξt)w1w2xdµ0(x)

)

=
1

w2

( ∞∑
i=0

Di,w2,ξ(w1x)
ti

i!

)( ∞∑
k=0

(
k∑

m=0

wm1 S1(k,m)Sm(w2 − 1))
ξktk

k!

)

=
1

w2

∞∑
n=0

(
n∑
i=0

(
n

i

)
Di,w2,ξ(w1x)

n−i∑
m=0

wm1 S1(n− i,m)Sm(w2 − 1)

)
ξn−itn

n!
.

(2.12)

Therefore, by (2.9), (2.11) and (2.12), we obtain the following theorem.

Theorem 2.2. For w1, w2 ∈ N and n ∈ N ∪ {0}, we have

1

w1

n∑
i=0

(
n

i

)
Di,w1,ξ(w2x) ξn−i

n−i∑
m=0

wm2 S1(n− i,m)Sm(w1 − 1)

=
1

w2

n∑
i=0

(
n

i

)
Di,w2,ξ(w1x) ξn−i

n−i∑
m=0

wm1 S1(n− i,m)Sm(w2 − 1).

Remark. By replacing t by 1
ξ (et − 1) in (1.14), we get

∞∑
n=0

Bn(x)λn
tn

n!
=
∞∑
n=0

Dn,λ,ξ(x)
1

n!

(
1

ξ

(
et − 1

))n
=

∞∑
n=0

(
n∑

m=0

ξ−nS2(n,m)Dm,λ,ξ(x)

)
tn

n!
.

(2.13)

Thus, by (2.13), we have

λnBn(x) =
n∑

m=0

ξ−nS2(n,m)Dm,λ,ξ(x), (n ≥ 0). (2.14)

By replacing t by log
(
t+ 1

ξ

)
in (1.5), we have

∞∑
n=0

Dn,ξ(x)
tn

n!
=
∞∑
n=0

Bn(x)
1

n!

(
log

(
t+

1

ξ

))n
=
∞∑
n=0

Bn(x)
∞∑
l=n

S1(l, n)
(ξt)n

n!

=
∞∑
n=0

(
ξn

n∑
m=0

Bm(x)S1(n,m)

)
tn

n!
.

(2.15)

Thus, by (2.15), we get

ξ−nDn,ξ(x) =
n∑

m=0

Bm(x)S1(n,m), (n ≥ 0). (2.16)
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From (2.9), we note that

I =

(
(1 + ξt)w1w2x

w1

∫
Zp

(1 + ξt)w1x1dµ0(x1)

)(
w1

∫
Zp

(1 + ξt)w2x2dµ0(x2)∫
Zp

(1 + ξt)w1w2xdµ0(x)

)

=

(
(1 + ξt)w1w2x

w1

∫
Zp

(1 + ξt)w1xdµ0(x1)

)(
w1−1∑
l=0

(1 + ξt)w2l

)

=

(
1

w1

∫
Zp

(1 + ξt)w1xdµ0(x1)

)(
w1−1∑
l=0

(1 + ξt)w1(w2x+
w2
w1
l

)

=
1

w1

w1−1∑
l=0

∫
Zp

(1 + ξt)w1(x1+w2x+
w2
w1
l)dµ0(x1)

=
∞∑
n=0

(
1

w1

w1−1∑
l=0

Dn,w1,ξ(w2x+
w2

w1
l)

)
ξntn

n!
.

(2.17)

On the other hand, we obtain the following equation by the symmetric property
of p-adic invariant integral on Zp as follows:

I =

(
(1 + ξt)w1w2x

w2

∫
Zp

(1 + ξt)w2x2dµ0(x2)

)(
w2

∫
Zp

(1 + ξt)w1x1dµ0(x1)∫
Zp

(1 + ξt)w1w2xdµ0(x)

)

=

(
1

w2

∫
Zp

(1 + ξt)w2x2dµ0(x2)

)(
w2−1∑
l=0

(1 + ξt)w1l

)
(1 + ξt)w1w2x

=

(
1

w2

∫
Zp

(1 + ξt)w2x2dµ0(x2)

)(
w2−1∑
l=0

(1 + ξt)w2(w1x+
w1
w2
l)

)

=
1

w2

w2−1∑
l=0

∫
Zp

(1 + ξt)w2(x2+w1x+
w1
w2
l)dµ0(x2)

=

∞∑
n=0

(
1

w2

w2−1∑
l=0

Dn,w2,ξ(w1x+
w1

w2
l)

)
ξntn

n!
.

(2.18)

Therefore, by comparing the coefficients on the both sides of (2.17) and (2.18),
we obtain the following theorem.

Theorem 2.3. For w1, w2 ∈ N and n ≥ 0, we have

1

w1

w1−1∑
l=0

Dn,w1,ξ

(
w2x+

w2

w1
l

)
=

1

w2

w2−1∑
l=0

Dn,w2,ξ

(
w1x+

w1

w2
l

)
.

Corollary 2.4. For w1, w2 ∈ N and n ≥ 0, we have

w1−1∑
l=0

n∑
m=0

wm−11 Bm

(
w2x+

w2

w1
l

)
S1(n,m)

=

w2−1∑
l=0

n∑
m=0

wm−12 Bm

(
w1x+

w1

w2
l

)
S1(n,m).
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ABSTRACT

The main objective of this paper is to study the local and the global stability of the solutions, the periodic
character and the boundedness of the di¤erence equation

+1 =  + ¡1 +
+ ¡2
 + ¡2



where the parameters      and  are positive real numbers and the initial conditions ¡2 ¡1 and
0 are positive real numbers. Some numerical examples will be given to illustrate our results.

Keywords: Di¤erence equations, Stability, Boundedness, Periodic solutions.

Mathematics Subject Classi…cation: 39A10

—————————————————

1. INTRODUCTION

Di¤erence equations or discrete dynamical systems are diverse …eld which impact almost every branch of pure and
applied mathematics. Every dynamical system +1 = () determines a di¤erence equation and vice versa.
Recently, there has been great interest in studying di¤erence equations systems. One of the reasons for this is
a necessity for some techniques which can be used in investigating equations arising in mathematical models
describing real life situations in many applied sciences. The theory of discrete dynamical systems and di¤erence
equations developed greatly during the last twenty-…ve years of the twentieth century. Applications of discrete
dynamical systems and di¤erence equations have appeared recently in many areas. The theory of di¤erence
equations occupies a central position in applicable analysis. There is no doubt that the theory of di¤erence
equations will continue to play an important role in mathematics as a whole. Nonlinear di¤erence equations of
order greater than one are of paramount importance in applications. Such equations also appear naturally as
discrete analogues and as numerical solutions of di¤erential and delay di¤erential equations which model various
diverse phenomena in biology, physiology, ecology, engineering, physics, economics, genetics, probability theory,
psychology and resource management. It is very interesting to investigate the behavior of solutions of a system
of higher-order rational di¤erence equations and to discuss the local asymptotic stability of their equilibrium
points. Systems of rational di¤erence equations have been studied by several authors. Especially there has been
a great interest in the study of the attractivity of the solutions of such systems [1-33].

Many research have been done to study the global attractivity, boundedness character, periodicity and the
solution form of nonlinear di¤erence equations. For example, Agarwal et al. [2] looked at the global stability,
periodicity character and found the solution form of some special cases of the di¤erence equation

+1 = + ¡¡
¡¡   = 0 1 
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where     and the initial conditions ¡ ¡+1  ¡1 0 are positive real numbers, while  6= 
for  = ¡ ¡  + 1  0 where  = maxf  g.

Hamza and Morsy in [3] investigated the global behavior of the di¤erence equation

+1 = + ¡1


  = 0 1 

where the parameters   2 (01) and the initial values ¡1 and 0 are arbitrary positive real numbers.

Elsayed et al. [4] studied the global stability character and the periodicity of solutions of the di¤erence
equation

+1 =  +
+¡1
+¡1

  = 0 1 

where the parameters     and  are positive real numbers and the initial conditions ¡1 and 0 are positive
real numbers.

Zayed et al. [5] studied the behavior of the following rational recursive sequence

+1 =



+

X

=0

 ¡





X

=0

 ¡

  = 0 1 2 

where the coe¢cients , ,  and the initial conditions ¡ ¡+1  ¡1 0 are positive real numbers,
while  is a positive integer number.

Also, in [6] Zayed et al. obtained the global behavior of the di¤erence equation

+1 =

X

=0

 ¡

+

X

=0

 ¡

  = 0 1 2 

where the coe¢cients , ,  and the initial conditions ¡ ¡+1  ¡1 0 are arbitrary positive real
numbers, while  is a positive integer number.

In [7] El-Moneam investigated the periodicity, the boundedness and the global stability of the positive solu-
tions of nonlinear di¤erence equation

+1 =  +¡ +¡ +¡ +
¡

¡¡¡   = 0 1 2 

where the coe¢cients     2 (01), while   and  are positive integers and the initial conditions
¡  ¡  ¡  ¡1 0 are arbitrary positive real numbers such that     .

Yalç¬nkaya [8] investigated the global behaviour of the di¤erence equation

+1 = + ¡


  = 0 1 

where the parametere   2 (01) and the initial values are arbitrary positive real numbers.

Elabbasy et al. [9] studied the dynamics, the global stability, periodicity character and the solution of special
case of the recursive sequence

+1 =  ¡ 
¡¡1   = 0 1 

where the initial conditions ¡1, 0 are arbitrary real numbers and     are positive constants.

El-Owaidy et al. [10] investigated local stability, oscillation and boundedness character of the di¤erence
equation

+1 = +
¡1


  = 0 1 
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under speci…ed conditions.

Elsayed [11] studied some qualitative behavior of the solutions of the di¤erence equation

+1 =  +


¡¡1   = 0 1 

where the initial conditions ¡1, 0 are arbitrary real numbers and     are positive constants with
0 ¡ ¡1 6= 0.

Elsayed and El-Dessoky [12] investigated the global convergence, boundedness, and periodicity of solutions
of the di¤erence equation

+1 = ¡ +
¡+¡
¡+¡

  = 0 1 

where the parameters     and  are positive real numbers and the initial conditions ¡ ¡+1  ¡1, 0
are positive real numbers where  = f  g.

This paper aims to study the global stability character and the periodicity of solutions of the di¤erence
equation

+1 =  + ¡1 +
+ ¡2
 + ¡2

  = 0 1  (1)

where the parameters      and  are positive real numbers and the initial conditions ¡2 ¡1 and 0
are positive real numbers.

2. SOME BASIC PROPERTIES AND DEFINITIONS

In this section, we state some basic de…nitions and theorems that we need in this paper.

Let  be some interval of real numbers and let

 : 3 ! 

be a continuously di¤erentiable function. Then for every set of initial conditions ¡2 ¡1 0 2  the di¤erence
equation

+1 =  ( ¡1  ¡2) (2)

has a unique solution fg1=¡2.
De…nition 1. (Equilibrium Point)

A point  2  is called an equilibrium point of Eq.(2) if

 =  (   ).

That is,  =  for  ¸ 0 is a solution of Eq.(2), or equivalently,  is a …xed point of 

Definition 2.1. (Stability)
(i) The equilibrium point  of Eq.(2) is locally stable if for every   0 there exists   0 such that for all
¡2 ¡1 0 2  with

j¡2 ¡ j+ j¡1 ¡ j+ j0 ¡ j  

we have
j ¡ j   for all  ¸ ¡

(ii) The equilibrium point  of Eq.(2) is locally asymptotically stable if  is locally stable solution of Eq.(2) and
there exists   0 such that for all ¡2 ¡1 0 2  with

j¡2 ¡ j+ j¡1 ¡ j+ j0 ¡ j  

we have
lim
!1

 = 
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(iii) The equilibrium point  of Eq.(2) is global attractor if for all ¡2 ¡1 0 2  we have

lim
!1

 = 

(iv) The equilibrium point  of Eq.(2) is globally asymptotically stable if  is locally stable, and  is also a global
attractor of Eq.(2).

(v) The equilibrium point  of Eq.(2) is unstable if  is not locally stable.

Definition 2.2. (Boundedness)
A sequence fg1=¡2 is said to be bounded and persists if there exist posiyive constants  and  such that

 ·  · for all  ¸ ¡2

Definition 2.3. (Periodicity)
A sequence fg1=¡2 is said to be periodic with period  if + =  for all  ¸ ¡1 A sequence fg1=¡2 is
said to be periodic with prime period  if  is the smallest positive integer having this property.

The linearized equation of Eq.(2) about the equilibrium  is the linear di¤erence equation

+1 =
 (   )


 +

 (   )

¡1
¡1 +

 (   )

¡2
¡2 (3)

Now, assume that the characteristic equation associated with (3) is

() = 0
2 + 1+ 2 = 0 (4)

where

0 =
 (   )


 1 =

 (   )

¡1
and 2 =

 (   )

¡2


Theorem A [18]: Assume that  2   = 1 2 3. Then

j1j+ j2j+ j3j  1

is a su¢cient condition for the asymptotic stability of the di¤erence equation

+3 + 1+2 + 2+1 + 3 = 0

Theorem B [19]: Let  : [ ]3 ! [ ] be a continuous function, where 3 is a positive integer, and [ ] is an
interval of real numbers and consider the di¤erence equation

+1 = ( ¡1 ¡2) (5)

Suppose that  satis…es the following conditions:

(i) For every integer  with 1 ·  · 3, the function (1 2 3) is weakly monotonic in , for …xed 1 2 3.

(ii) If  is a solution of the system

 = (1 2 3) and  = (1 2 3)

then  = , where for each  = 1 2 3, we set

 =

½
 if  is non-decreasing in 
 if  is non-increasing in 

and

 =

½
 if  is non-decreasing in 
 if  is non-increasing in 



Then, there exists exactly one equilibrium point  of the di¤erence equation (5), and every solution of (5)
converges to .
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3. LOCAL STABILITY OF THE EQUILIBRIUM POINT OF EQ.(1)

In his section, we study the local stability character of the equilibrium point of Eq.(1).

Eq.(1) has equilibrium point and is given by

 = + +
+ 

 + 


or
(1¡ ¡ )2 + ( ¡ ¡ ¡ )¡  = 0

Then if +   1 the only positive equilibrium point of Eq.(1) is given by

 =
(+ + ¡ ) +

p
( + + ¡ )2 + 4(1¡ ¡ )

2(1¡  ¡ )


Theorem 3.1. The equilibrium  of Eq. (1) is locally asymptotically stable if and only if

( + )2 
j ¡ j
(1¡ ¡ )

 (6)

Proof: Let  : (01)3 ¡! (01) be a continuous function de…ned by

( ) = + +
+ 

 + 
 (7)

Therefore,
( )


= 

(  )


= 

(  )


=
( ¡ )

( + )2
.

So, we can write

(  )


=  = 1

(  )


=  = 2

(  )


=
( ¡ )

( + )2
= 3

Then the linearized equation of Eq.(1) about  is

+1 ¡ 1¡1 ¡ 2 ¡ 3¡2 = 0 (8)

It follows by Theorem A that, Eq.(1) is asymptotically stable if and only if

j1j+ j2j+ j3j  1

Thus,

jj+
¯̄
¯̄ ( ¡ )

( + )2

¯̄
¯̄+ jj  1

and so
¯̄
¯̄ ( ¡ )

( + )2

¯̄
¯̄  1¡ ¡ 

j ¡ j  ( + )2(1¡ ¡ )

or
j ¡ j
(1¡ ¡ )

 ( + )2

The proof is complete.
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Example 1. The solution of the di¤erence equation (1) is global stability if  = 055  = 03  = 08  =
05  = 7 and  = 2 and the initial conditions ¡2 = 4 ¡1 = 9 and 0 = 03 (See Fig. 1).

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

n

x(
n)

 x(n+1)=ax(n)+bx(n-1)+(alfa+cx(n-2))/(beta+dx(n-2))

Figure 1. Plot the behavior of the solution of equation (1).

4. EXISTENCE OF BOUNDED AND UNBOUNDED SOLUTIONS OF EQ.(1)

Here we look at the boundedness nature of solutions of Eq.(1).

Theorem 4.1. Every solution of Eq.(1) is bounded if +   1

Proof: Let fg1=¡2 be a solution of Eq.(1). It follows from Eq.(1) that

+1 =

+1 =  + ¡1 +
+ ¡2
 + ¡2

=  + ¡1 +


 + ¡2
+

¡2
 + ¡2



Then
+1   + ¡1 +




+

¡2
¡2

=  + ¡1 +



+




for all  ¸ 0.

By using a comparison, the right hand side can be written as follows

+1 =  + ¡1 +



+






and this equation is locally asymptotically stable if  +   1 and converges to the equilibrium point  =
+ 

(1¡  ¡ )
.

Therefore

lim sup
!1

 ·
+ 

(1¡ ¡ )
.

Hence, the solution is bounded.

Theorem 4.2. Every solution of Eq.(1) is unbounded if   1 or   1

Proof: Let fg1=¡2 be a solution of Eq.(1). Then from Eq.(1) we see that

+1 =  + ¡1 +
+ ¡2
 + ¡2

  for all  ¸ 0.

The right hand side can be written as follows

+1 =  )  = 0
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and this equation is unbounded because   1 and lim
!1

 = 1. Then by using ratio test fg1=¡2 is

unbounded from above.

Similarly from Equation (1) we see that

+1 =  + ¡1 +
+ ¡2
 + ¡2

 ¡1 for all  ¸ 0.

We see that the right hand side can be written as follows

+1 = ¡1 ) 2¡1 = ¡1 and 2 = 0

and this equation is unbounded because   1 and lim
!1

2¡1 = lim
!1

2 = 1. Then by using ratio test

fg1=¡2 is unbounded from above.

Example 2. Figure (2) shows that behavior of the solution of the di¤erence equation (1) is boundedness if
we take  = 03  = 01  = 08  = 05  = 7 and  = 2 and the initial conditions ¡2 = 4 ¡1 = 9
and 0 = 03

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

n

x(
n)

 x(n+1)=ax(n)+bx(n-1)+(alfa+cx(n-2))/(beta+dx(n-2))

Figure 2. Show the boundedness of the solution of equation (1).

Example 3. Figure (3) shows the behavior of the solution of the di¤erence equation (1) is undounded when
we put  = 15  = 08  = 2  = 3  = 6 and  = 5 and the initial conditions ¡2 = 04 ¡1 = 09
and 0 = 03

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

13

n

x(
n)

 x(n+1)=ax(n)+bx(n-1)+(alfa+cx(n-2))/(beta+dx(n-2))

Figure 3. Show the unboundedness of the solution of equation (1).
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5. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQ.(1)
In this section, the global asymptotic stability of Eq.(1) is studied.

Theorem 5.1. The equilibrium point  is a global attractor of Eq.(1) if +   1.

Proof: Suppose that  and  are real numbers and assume that  : [ ]3 ¡! [ ] is a function de…ned by

( ) = +  +
+ 

 + 


Then
( )


= 

(  )


= 

( )


=
( ¡ )

( + )2
.

Now, two cases must be considered :

Case (1): Let  ¡   0, then we can easily see that the function ( ) increasing in   and
decreasing in 

Let () be a solution of the system  = () and  = (). Then from Eq.(1), we see
that

 =  +  +
+ 

 + 
  = + +

+ 

 + 


or
(1¡ ¡ ) =

+ 

 + 
 (1¡ ¡ ) =

+ 

 + 


then
(1¡ ¡ ) + (1¡ ¡ ) = +  (1¡ ¡ )+ (1¡ ¡ ) = + 

Subtracting we obtain
( ¡)f(1¡ ¡ ) + g = 0

under the condition +   1 we see that
 = 

It follows by Theorem B that  is a global attractor of Eq.(1). This completes the proof of the theorem.

Case (2): Assume that  ¡   0 is true, then we can easily see that the function (  ) increasing in
   and decreasing in 

Let () be a solution of the system  = () and  = (). Then from Eq.(1), we see
that

 =  +  +
+ 

 + 
  = +  +

+ 

 + 


or
(1¡ ¡ ) =

+ 

 + 
 (1¡ ¡ ) =

+ 

 + 


then

(1¡ ¡ ) + (1¡ ¡ )2 = + 

(1¡ ¡ )+ (1¡ ¡ )2 = + 

Subtracting we obtain

(1¡ ¡ )( ¡) + (1¡ ¡ )(2 ¡2) = ( ¡)

( ¡)f(1¡ ¡ )( +) + (1¡ ¡ )¡ g = 0

under the condition +   1 and (1¡ ¡ )   we see that

 = 

It follows by Theorem B that  is a global attractor of Eq.(1).
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6. EXISTENCE OF PERIODIC SOLUTIONS

In this section we investigate the existence of periodic solutions of Eq.(1). The following theorem states the
necessary and su¢cient conditions that this equation has periodic solutions of prime period two.

Theorem 6.1. Eq.(1) has positive prime period two solutions if and only if

() [(¡ 1)¡ (+ )]2 (¡  ¡ 1) + 4f(1¡ )[(¡ 1)¡ (+ )] + g  0

Proof: Firstly, suppose that there exists a prime period two solution

     

of Eq.(1). We will show that Condition (i) holds.

From Eq.(1), we get

 =  + +
+ 

 + 


and
 = +  +

+ 

 + 


Therefore,
+  =  + 2 + +  + +  (9)

and
 +  = + 2 +  +  + +  (10)

Subtracting (10) from (9) gives

(¡ ) + (2 ¡ 2) = (¡ )¡ (¡ )¡ (¡ ).

Since  6=  it follows that

 +  =
(¡ ¡ 1)¡ 


 (11)

Again adding (9) and (10) yields

(+ ) + 2 = ( + )(+ ) + (2 + 2) + 2 + 2+ (+ )

(2 + 2) = (+ ) + 2 ¡ ( + )(+ )¡ 2 ¡ 2¡ (+ )

(2 + 2) = ( ¡  ¡ ¡ )(+ ) + 2 ¡ 2 ¡ 2 (12)

By using (11) (12) and the relation

2 + 2 = (+ )2 ¡ 2 for all   2 

we obtain

((+ )2 ¡ 2) = ( ¡  ¡ ¡ )(+ ) + 2 ¡ 2 ¡ 2
(¡¡¡)2

 ¡ 2 = (¡¡¡)(¡¡¡)
 + 2 ¡ 2 ¡ 2

Then,

 = ¡
(¡ 1)[(¡ 1)¡ (+ )] + 

2(¡ ¡ 1)  (13)
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Now it is obvious from Eq.(11) and Eq.(13) that  and  are the two distinct roots of the quadratic equation

2 ¡ (¡ ¡ 1)¡ 


¡ (¡ 1)[(¡ 1)¡ (+ )] + 

2(¡ ¡ 1) = 0

 2 ¡ (¡ ¡  ¡ )¡ (¡ 1)[(¡ 1)¡ (+ )] + 

(¡ ¡ 1)
= 0 (14)

and so

[(¡ 1)¡ (+ )]
2 +
4f(¡ 1)[(¡ 1)¡ (+ )] + g

(¡ ¡ 1)  0

or
[(¡ 1)¡ ( + )]2 (¡ ¡ 1) + 4f( ¡ 1)[(¡ 1)¡ (+ )] + g  0

for + 1   then the inequalities (i) holds.

Conversely, suppose that inequality (i) is true. We will prove that Eq.(1) has a prime period two solution.

Suppose that

 =
+ 

2


and

 =
¡ 

2


where  =
q
2 + 4[(¡1)+](¡¡1) and  = (¡ 1)¡ (+ )

We see from the inequality (i) that

2(¡ ¡ 1) + 4 [(¡ 1) + ]  0

which equivalents to

2 +
4 [( ¡ 1) + ]

(¡ ¡ 1)
 0

Therefore  and  are distinct real numbers.

Set
¡2 =  ¡1 =  and 0 = 

We would like to show that
1 = ¡2 =  and 2 = ¡1 = 

It follows from Eq.(1) that

1 = +  + +
+ = 

µ
+ 

2

¶
+ 

µ
¡ 

2

¶
+

+ 
³
+
2

´

 + 
³
+
2

´ 

Dividing the denominator and numerator by 2 we get

1 = 

µ
+ 

2

¶
+ 

µ
¡ 

2

¶
+
2+  (+ )

2 +  (+ )


Multiplying the denominator and numerator of the right side by 2+ (¡ ) and by computation we obtain

1 = 

Similarly as before, it is easy to show that
2 = 
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Then by induction we get
2 =  and 2+1 =  for all  ¸ ¡2.

Thus Eq.(1) has the prime period two solution



where  and  are the distinct roots of the quadratic equation (14) and the proof is complete.

Example 4. Figure (4) shows the period two solution of equation (1) when  = 02  = 5  = 04  = 5  =
07 and  = 02 and the initial conditions ¡2 =  ¡1 =  and 0 =  since  and  as in the previous theorem.
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n

x(
n)

 x(n+1)=ax(n)+bx(n-1)+(alfa+cx(n-2))/(beta+dx(n-2))

Figure 4. Plot the periodicity of the solution of equation (1).
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Abstract

We generalize the tensor product for operators to the Tracy-Singh
product for operator matrices acting on the direct sum of Hilbert spaces.
This kind of operator product is compatible with algebraic operations and
order relations for operators. It follows that this product preserves many
structure properties of operators.

Keywords: tensor product, Tracy-Singh product, operator matrix, Moore-
Penrose inverse
Mathematics Subject Classifications 2010: 15A69, 47A05, 47A80.

1 Introduction

In scientific computing, we consider a matrix to be a two-dimensional array
for stacking data. A processing of such data can be performed using matrix
products. One of extremely useful matrix products is the Kronecker product.
For any complex matrices A ∈ Mm,n(C) and B ∈ Mp,q(C), the Kronecker
product of A and B is given by the block matrix

A ⊗̂B = [aijB]ij ∈ Mmp,nq(C).

Equivalently, A ⊗̂B is the unique complex matrix of order mp× nq satisfying

(A ⊗̂B)(x ⊗̂ y) = Ax ⊗̂By (1)

for all x ∈ Cn and y ∈ Cq. This matrix product has wide applications in math-
ematics, computer science, statistics, physics, system theory, signal processing,
and related fields. See [2, 5, 6, 12] for more information.

∗Corresponding author. Email: pattrawut.ch@kmitl.ac.th
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Kronecker product was generalized to the Tracy-Singh product of partitioned
matrices by Tracy and Singh [10]. Let A = [Aij ] ∈ Mm,n(C) be a partitioned
matrix with Aij of order mi × nj as the (i, j)th submatrix where

∑
i mi = m

and
∑

j nj = n. Let B = [Bkl] ∈ Mp,q(C) be a partitioned matrix with Bkl of
order pk × ql as the (k, l)th submatrix where

∑
k pk = p and

∑
l ql = q. The

Tracy-Singh product of A and B is defined by

A �̂B =
[[
Aij ⊗̂Bkl

]
kl

]
ij
∈ Mmp,nq(C),

where each block Aij ⊗̂Bkl is of order mipk × njql. This kind of matrix prod-
uct has several attractive properties in algebraic, order, and analytic points of
views; see, e.g., [3, 8, 9, 10]. The Tracy-Singh product can be applied widely in
statistics, econometrics and related fields; see, e.g., [9, 10].

As a natural generalization of a complex matrix, we consider a bounded
linear operator between complex Hilbert spaces. The tensor product of Hilbert
space operators can be viewed as an extension of the Kronecker product of com-
plex matrices. Using the universal mapping property in the monoidal category
of Hilbert spaces, the tensor product of A ∈ B(H,H′) and B ∈ B(K,K′) is the
unique bounded linear operator from H⊗K into H′⊗K′ such that for all x ∈ H
and y ∈ K,

(A⊗B)(x⊗ y) = Ax⊗By. (2)

A fundamental property of tensor product is the mixed product property:

(A⊗B)(C ⊗D) = AC ⊗BD. (3)

The theory of tensor product of operators has been continuously developed in
the literature; see, e.g., [4, 11].

From the previous discussion, it is natural to extend the notion of tensor
product for operators to the “Tracy-Singh product”of operators. We shall pro-
pose a natural definition of such operator product. It turns out that this product
is compatible with algebraic operations and order relations for operators. One
of the most attractive properties, the mixed product property, also holds for
Tracy-Singh products. It follows that this product preserves attractive prop-
erties of operators, such as being invertible, Hermitian, unitary, positive, and
normal. Our results generalize the results known so far in the literature for both
Tracy-Singh products of matrices and tensor products of operators.

This paper is organized as follows. In section 2, we introduce the Tracy-
Singh product for operator matrices and deduce its algebraic properties. In
section 3, we show that the Tracy-Singh product is compatible with various
kinds of operator inverses. We investigate the relationship between Tracy-Singh
products and operator orderings in Section 4.
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2 Tracy-Singh products and algebraic operations
for operators

In this section, we introduce the Tracy-Singh product of operators on a Hilbert
space. Then we will show that this product is compatible with addition, scalar
multiplication, adjoint operation, usual multiplication, power, and direct sum
of operator inverses.

Throughout this paper, let H, H′, K and K′ be complex Hilbert spaces.
When X and Y are Hilbert spaces, denote by B(X ,Y) the Banach space of
bounded linear operators from X into Y, and abbreviate B(X ,X ) to B(X ).

The projection theorem for Hilbert spaces allows us to decompose

H =
n⊕

j=1

Hj , H′ =
m⊕
i=1

H′
i, K =

q⊕
l=1

Kl, K′ =

p⊕
k=1

K′
k

where each Hj ,H′
i,Kl,K′

k are Hilbert spaces. Such decompositions are fixed
throughout the paper. For each j = 1, . . . , n, let Ej be the canonical embedding
from Hj into H, defined by

xj 7→ (0, . . . , 0, xj , 0, . . . , 0).

Similarly, let Fl be the canonical embedding from Kl into K for each l = 1, . . . , q.
For each i = 1, . . . ,m and k = 1, . . . , p, let P ′

i : H′ → H′
i and Q′

k : K′ → K′
k be

the orthogonal projections. Thus, each operator A ∈ B(H,H′) and B ∈ B(K,K′)
can be expressed uniquely as operator matrices

A = [Aij ]
m,n
i,j=1 and B = [Bkl]

p,q
k,l=1

where Aij = P ′
iAEj and Bkl = Q′

kBFl for each i, j, k, l.

Definition 1. Let A = [Aij ]
m,n
i,j=1 ∈ B(H,H′) and B = [Bkl]

p,q
k,l=1 ∈ B(K,K′)

be operator matrices defined as above. We define the Tracy-Singh product of A
and B to be the operator matrix

A�B =
[
[Aij ⊗Bkl]kl

]
ij

(4)

which is a bounded linear operator from
n⊕

j=1

q⊕
l=1

Hj ⊗Kl to
m⊕
i=1

p⊕
k=1

H′
i ⊗K′

k.

Note that if both A and B are 1 × 1 block operator matrices i.e. m = n =
p = q = 1, then their Tracy-Singh product A � B is just the tensor product
A⊗B.

Next, we shall show that the Tracy-Singh product of two linear maps induced
by two matrices is just the linear map induced by the Tracy-Singh product of
these matrices. Recall that for each A ∈ Mm,n(C) and B ∈ Mp,q(C), the induced
maps

LA : Cn → Cm, x 7→ Ax and LB : Cq → Cp, y 7→ By
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are bounded linear operators. Using the universal mapping property, we identify
Cn⊗Cq with Cnq ∼= Mn,q(C) together with the canonical bilinear map (x, y) 7→
x ⊗̂ y for each (x, y) ∈ Cn × Cq. It is similar for Cm ⊗ Cp.

Lemma 2. For each A ∈ Mm,n(C) and B ∈ Mp,q(C), we have

LA ⊗ LB = LA ⊗̂B . (5)

Proof. For any x⊗ y ∈ Cn ⊗Cq, we obtain from the mixed product property of
the Kronecker product (1) that

(LA ⊗ LB)(x⊗ y) = LA(x)⊗ LB(y) = LA(x) ⊗̂LB(y)

= Ax ⊗̂By = (A ⊗̂B)(x ⊗̂ y)

= (A ⊗̂B)(x⊗ y) = LA ⊗̂B(x⊗ y).

Thus, by the uniqueness of tensor product, LA ⊗ LB = LA ⊗̂B .

Proposition 3. For any complex matrices A = [Aij ] and B = [Bkl] partitioned
in block-matrix forms, we have

LA � LB = L
A �̂B

. (6)

Proof. Recall that the (i, j)th block of the matrix representation of LA is the
matrix Aij . It follows from Lemma 2 that

LA � LB =
[[
LAij ⊗ LBkl

]
kl

]
ij

=
[[
LAij ⊗̂Bkl

]
kl

]
ij

= L
A �̂B

.

The next proposition shows that the Tracy-Singh product is compatible with
the addition, the scalar multiplication and the adjoint operation of operators.

Proposition 4. Let A ∈ B(H,H′) and B,C ∈ B(K,K′) be operator matrices,
and let α ∈ C. Then

(αA)�B = α(A�B) = A� (αB), (7)

(A�B)∗ = A∗ �B∗, (8)

A� (B + C) = A�B +A� C, (9)

(B + C)�A = B �A+ C �A. (10)

Proof. Since each (i, j)th block of αA is given by (αA)ij = αAij , we get

(αA)�B =
[
[(αAij)⊗Bkl]kl

]
ij

=
[
[α(Aij ⊗Bkl)]kl

]
ij

= α(A�B).

Similarly, A � (αB) = α(A � B). Since A∗ = [A∗
ji]ij and B∗ = [B∗

lk]kl for all
i, j, k, l, we obtain

(A�B)∗ =
[
[Aji ⊗Bkl]

∗
kl

]
ij

=
[[
A∗

ji ⊗B∗
lk

]
kl

]
ij

= A∗ �B∗.

The proofs of (9) and (10) are done by using the fact that (B+C)kl = Bkl+Ckl

for all k, l together with the left/right distributivity of the tensor product over
the addition.
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Properties (7), (9) and (10) say that the map (A,B) 7→ A�B is bilinear.

Proposition 5. Let A = [Aij ] ∈ B(H,H′) and let B ∈ B(K,K′) be operator
matrices. Then

A�B = [Aij �B]ij =

A11 �B · · · A1n �B
...

. . .
...

Am1 �B · · · Amn �B

 .

That is, the (i, j)th block of A�B is just Aij �B, regardless of how to partition
B.

Proof. It follows directly from the definition of the Tracy-Singh product.

Remark 6. It is not true in general that the (k, l)th block of A�B is A�Bkl.

When H = H1 ⊕ H2 and K = K1 ⊕ K2, the direct sum of A1 ∈ B(H1,K1)
and A2 ∈ B(H2,K2) is defined to be the operator

A1 ⊕A2 =

[
A1 0
0 A2

]
∈ B(H,K).

The next result gives a relation between the direct sum and the Tracy-Singh
product.

Proposition 7. The Tracy-Singh product is right distributive over the direct
sum of operators. That is, for any operator matrices A,B and C, we have

(A⊕B)� C = (A� C)⊕ (B � C). (11)

Proof. It follows from Proposition 5 that

(A⊕B)� C =

[
A� C 0� C
0� C B � C

]
=

[
A� C 0

0 B � C

]
= (A� C)⊕ (B � C).

It is not true in general that the Tracy-Singh product is left distributive over
the direct sum of operators.

The next theorem shows that the Tracy-Singh product is compatible with
the ordinary product of operators. This fundamental property, called the mixed
product property, will be used many times in later discussions.

Theorem 8. Let H,H′,H′′,K,K′ and K′′ be complex Hilbert spaces. Let A =
[Aij ]

m,n
i,j=1 ∈ B(H′,H′′), C = [Cij ]

n,r
i,j=1 ∈ B(H,H′), B = [Bkl]

p,q
k,l=1 ∈ B(K′,K′′)

and D = [Dkl]
q,s
k,l=1 ∈ B(K,K′) be operator matrices partitioned so that they are

compatible with the decompositions of the corresponding Hilbert spaces. Then

(A�B)(C �D) = AC �BD. (12)
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Proof. Using block multiplication of operators and the mixed product property
of the tensor product (3), we have

(A�B)(C �D) =
[
[Aij ⊗Bkl]kl

]
ij

[
[Cij ⊗Dkl]kl

]
ij

=

 n∑
α=1

q∑
β=1

(Aiα ⊗Bkβ)(Cαj ⊗Dβl)


kl


ij

=

 n∑
α=1

q∑
β=1

(AiαCαj ⊗BkβDβl)


kl


ij

=

[
n∑

α=1

AiαCαj

]
ij

�

 q∑
β=1

BkβDβl


kl

= AC �BD.

Corollary 9. For any operator matrices A ∈ B(H) and B ∈ B(K), we have

(A�B)r = Ar �Br (13)

for any r ∈ N.

In the rest of section, we investigate structure properties of operators under
taking Tracy-Singh products. Recall that an operator T ∈ B(H) is said to
be involutary if T 2 = I, idempotent if T 2 = T , an isometry if T ∗T = I, a
partial isometry if the restriction of T to a closed subspace is an isometry, or
equivalently, TT ∗T = T .

Corollary 10. Let A ∈ B(H) and B ∈ B(K). If both A and B satisfy one of the
following properties, then the same property holds for A�B: Hermitian, unitary,
isometry, co-isometry, partial isometry, idempotent, involutary, projection.

Proof. Applying Theorem 8 and Proposition 4, we get the results.

If A and B are skew-Hermitian operators, then A�B is Hermitian. Recall
that an operator T ∈ B(H) is said to be nilpotent if there is a positive integer k
such that T k = 0. The smallest such integer k is called the degree of nilpotency
of T . If A ∈ B(H) and B ∈ B(K) are nilpotent operators with degrees of
nilpotency r and s, respectively, then A � B is also nilpotent with degree of
nilpotency not exceed min{r, s}.

3 Tracy-Singh products and operator inverses

Next, we discuss the invertibility of the Tracy-Singh product of operators. Recall
that an operator A ∈ B(H,K) is said to be regular if there is an operator
A− ∈ B(K,H) such that AA−A = A. The operator A− is called an inner
inverse of A. An operator X ∈ B(K,H) is said to be an outer inverse of A if
XAX = X.
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Proposition 11. Let A ∈ B(H,H′) and B ∈ B(K,K′).

(i) If A and B are left invertible with left inverses Â and B̂ respectively, then
A�B is left invertible and Â� B̂ is its left inverse.

(ii) If A and B are right invertible with right inverses Â and B̂ respectively,
then A�B is right invertible and Â� B̂ is its right inverse.

(iii) If A and B are regular with inner inverses A− and B− respectively, then
A�B is regular with A− �B− as its inner inverse.

(iv) If A and B have A− and B− as their outer inverses respectively, then
A�B has A− �B− as its outer inverse.

Proof. It follows from Theorem 8 and the facts that IX � IY = IX⊗Y for any
Hilbert spaces X and Y.

As a consequence of (i) and (ii) in Proposition 11, we obtain the following
result.

Corollary 12. Let A ∈ B(H) and B ∈ B(K). If A and B are invertible, then
A�B is invertible and

(A�B)−1 = A−1 �B−1. (14)

Next, we consider a kind of operator inverse, called Moore-Penrose inverse.
Recall that a Moore-Penrose inverse of A ∈ B(H,K) is an operator A† ∈
B(K,H) satisfying the following Penrose conditions ([7])

(i) A† is an inner inverse of A ;

(ii) A† is an outer inverse of A ;

(iii) AA† is Hermitian ;

(iv) A†A is Hermitian.

It is well known that the following statements are equivalent for A ∈ B(H,K)
(see e.g. [1]):

(i) a Moore-Penrose inverse of A exists ;

(ii) a Moore-Penrose inverse of A is unique ;

(iii) the range of A is closed.

Theorem 13. Let A ∈ B(H,H′) and B ∈ B(K,K′). If A and B have closed
ranges, then

1. the range of A�B is closed ;

2. (A�B)† = A† �B†.
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Proof. Since the ranges of A and B are closed, the Moore-Penrose inverses A†

and B† exist and are unique. Making use of Theorem 8 and Proposition 4, we
can verify that A† �B† satisfies the following Penrose equations:

(i) (A�B)(A† �B†)(A�B) = A�B

(ii) (A† �B†)(A�B)(A† �B†) = A† �B†

(iii)
(
(A�B)(A† �B†)

)∗
= (A�B)(A† �B†)

(iv)
(
(A† �B†)(A�B)

)∗
= (A† �B†)(A�B).

Hence, a Moore-Penrose inverse of A � B exists and it is uniquely determined
by A† �B†. It follows that A�B has a closed range.

The results in this section indicate that the Tracy-Singh product is compat-
ible with various kinds of operator inverses.

4 Tracy-Singh products and operator orderings

Now, we focus on order properties of Tracy-Singh products related to algebraic
properties.

Theorem 14. Let A ∈ B(H) and B ∈ B(K).

(i) If A,B > 0, then A�B > 0.

(ii) If A,B > 0, then A�B > 0.

Proof. Assume A,B > 0. Using Theorem 8 and property (8), we obtain

A�B = A
1
2A

1
2 �B

1
2B

1
2 =

(
A

1
2 �B

1
2

)(
A

1
2 �B

1
2

)
=
(
A

1
2 �B

1
2

)∗ (
A

1
2 �B

1
2

)
> 0.

Consider the case A,B > 0. We have immediately by (i) that A � B > 0. By
Corollary 12, A�B is invertible. This implies that A�B > 0.

The next result provides the monotonicity of Tracy-Singh product.

Corollary 15. Let A1, A2 ∈ B(H) and B1, B2 ∈ B(K).

(i) If A1 > A2 > 0 and B1 > B2 > 0, then A1 �B1 > A2 �B2.

(ii) If A1 > A2 > 0 and B1 > B2 > 0, then A1 �B1 > A2 �B2.

Proof. Suppose that A1 > A2 > 0 and B1 > B2 > 0. Applying Proposition 4
and Theorem 14 yields

A1 �B1 −A2 �B2 = A1 �B1 −A2 �B1 +A2 �B1 −A2 �B2

= (A1 −A2)�B1 +A2 � (B1 −B2)

> 0.

The proof of (ii) is similar to that of (i).
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Abstract

We show that the Tracy-Singh product of Hilbert space operators is
continuous with respect to the operator-norm topology. The Tracy-Singh
product of two nonzero operators is compact if and only if both factors
are compact. We provide upper and lower bounds for certain Schatten
p-norms of the Tracy-Singh product of operators. It turns out that this
product is continuous with respect to the topologies on norm ideals of
compact operators, trace class operators, and Hilbert-Schmidt class oper-
ators. Thus the Tracy-Singh product preserves such classes of operators.

Keywords: tensor product, Tracy-Singh product, operator matrix, compact
operator, Schatten p-class operator
Mathematics Subject Classifications 2010: 47A80, 47A30, 47B10.

1 Introduction

In matrix theory, one of useful matrix products is the Kronecker product. Recall
that the Kronecker product of two complex matrices A ∈ Mm,n(C) and B ∈
Mp,q(C) is given by the block matrix

A ⊗̂B = [aijB]ij ∈ Mmp,nq(C).

This matrix product was generalized to the Tracy-Singh product by Tracy and
Singh [3]. Let A = [Aij ] ∈ Mm,n(C) be a partitioned matrix with Aij as the
(i, j)th submatrix. Let B = [Bkl] ∈ Mp,q(C) be a partitioned matrix with Bkl

as the (k, l)th submatrix. The Tracy-Singh product of A and B is defined by

A �̂B =
[[
Aij ⊗̂Bkl

]
kl

]
ij
∈ Mmp,nq(C).
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This kind of matrix product has several attractive properties and can be applied
widely in statistics, econometrics and related fields; see e.g., [3, 5, 7, 8, 9].

The tensor product of Hilbert space operators is a natural extension of the
Kronecker product to infinite-dimensional setting. Theory of Hilbert tensor
product has been continuously investigated in the literature; see, e.g., [2, 4, 10].
It is well known that the tensor product is continuous with respect to the
operator-norm topology. Moreover, on the norm ideals of compact operators
generated by Schatten p-norm for p = 1, 2,∞, the tensor product are also
continuous. Recently, the tensor product for operators was generalized to the
Tracy-Singh product for operator matrices acting on the direct sum of Hilbert
spaces in [6]. This kind of operator product satisfies certain pleasing algebraic
and order properties.

In this paper, we discuss continuity, convergence, and compactness of the
Tracy-Singh product for operators in the operator-norm topology. Then we ob-
tain relations between Tracy-Singh product and certain analytic functions. We
also investigate the Tracy-Singh product on norm ideals of compact operators
generated by certain Schatten p-norms. In fact, this product is continuous with
respect to the Schatten p-norm for p = 1, 2,∞. Estimations by such norms for
Tracy-Singh products are provided. It follows that trace class operators and
Hilbert-Schmidt class operators are preserved under this product.

This paper is organized as follows. In section 2, we give preliminaries on
Tracy-Singh products for operators on a Hilbert space. In section 3, we establish
analytic properties of the Tracy-Singh product in the operator-norm topology.
We investigate the Tracy-Singh product on the norm ideals of compact operators
generated by certain Schatten p-norms in Section 4.

2 Preliminaries on Tracy-Singh products for op-
erator matrices

Throughout, let H, H′, K and K′ be complex Hilbert spaces . When X and
Y are Hilbert spaces, denote by B(X,Y ) the Banach space of bounded linear
operators from X into Y , and abbreviate B(X,X) to B(X).

In order to define the Tracy-Singh product, we have to fix the decompositions
of Hilbert spaces, namely,

H =
n⊕

j=1

Hj , H′ =
m⊕
i=1

H′
i, K =

q⊕
l=1

Kl, K′ =

p⊕
k=1

K′
k

where each Hj ,H′
i,Kl,K′

k are Hilbert spaces. For each j = 1, . . . , n and l =
1, . . . , q, let Ej : Hj → H and Fl : Kl → K be the canonical embeddings. For
each i = 1, . . . ,m and k = 1, . . . , p, let P ′

i and Q′
k be the orthogonal projections.

Thus, each operator A ∈ B(H,H′) and B in B(K,K′) can be expressed uniquely
as operator matrices

A = [Aij ]
m,n
i,j=1 and B = [Bkl]

p,q
k,l=1
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where Aij = P ′
iAEj : Hj → H′

i and Bkl = Q′
kBFl : Kl → K′

k for each i, j, k, l.
We define the Tracy-Singh product of A and B to be a bounded linear operator
from

⊕n,q
j,l=1 Hj ⊗Kl to

⊕m,p
i,k=1 H′

i ⊗K′
k represented in the block-matrix form

as follows:
A�B =

[
[Aij ⊗Bkl]kl

]
ij
.

When m = n = p = q = 1, the Tracy-Singh product A�B becomes the tensor
product A⊗B.

Lemma 1 ([6]). Fundamental properties of the Tracy-Singh product for opera-
tors are listed below (provided that each term is well-defined):

1. The map (A,B) 7→ A�B is bilinear.

2. Compatibility with adjoints: (A�B)∗ = A∗ �B∗.

3. Mixed-product property: (A�B)(C �D) = AC �BD.

4. Compatibility with powers: (A�B)r = Ar �Br for any r ∈ N.

5. Compatibility with inverses: if A and B are invertible, then A � B is
invertible with (A�B)−1 = A−1 �B−1.

6. Positivity: if A > 0 and B > 0, then A�B > 0.

7. Strictly positivity: if A > 0 and B > 0, then A�B > 0.

8. If A and B are partial isometries, then so is A�B. Recall that an operator
T is a partial isometry if and only if the restriction of T to a closed
subspace is an isometry.

3 Analytic properties of the Tracy-Singh prod-
uct

In this section, we establish some analytic properties of the Tracy-Singh product
involving operator norms. These properties involve continuity, convergence,
norm estimates, and certain analytic functions. We denote the operator norm
by ∥ · ∥∞.

In order to discuss the continuity of the Tracy-Singh product, recall the
following bounds for the operator norm of operator matrices.

Lemma 2 ([1]). Let A = [Aij ]
n,n
i,j=1 ∈ B(H) be an operator matrix. Then

n−2
n∑

i,j=1

∥Aij∥2∞ 6 ∥A∥2∞ 6
n∑

i,j=1

∥Aij∥2∞. (1)

Lemma 3. Let A = [Aij ]
n,n
i,j=1 ∈ B(H) be an operator matrix and let (Ar)

∞
r=1

be a sequence in B(H) where Ar = [A
(r)
ij ]n,ni,j=1 for each r ∈ N. Then Ar → A if

and only if A
(r)
ij → Aij for all i, j = 1, . . . , n.
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Proof. It is a direct consequence of Lemma 2.

The next theorem explains that the Tracy-Singh product is (jointly) contin-
uous with respect to the topology induced by the operator norm.

Theorem 4. Let A = [Aij ] ∈ B(H) and B = [Bkl] ∈ B(K) be operator matrices,
and let (Ar)

∞
r=1 and (Br)

∞
r=1 be sequences in B(H) and B(K), respectively. If

Ar → A and Br → B, then Ar �Br → A�B.

Proof. Suppose that Ar → A and Br → B. By Lemma 3, we have A
(r)
ij → Aij

and B
(r)
kl → Bkl for each i, j, k, l. Since the tensor product is continuous, we

have
A

(r)
ij ⊗B

(r)
kl → Aij ⊗Bkl

for each i, j, k, l. It follows that Ar �Br → A�B by Lemma 3.

The next theorem provides upper/lower bounds for the operator norm of the
Tracy-Singh product.

Theorem 5. For any operator matrices A = [Aij ]
n,n
i,j=1 ∈ B(H) and B =

[Akl]
q,q
k,l=1 ∈ B(K), we have

1

nq
∥A∥∞∥B∥∞ 6 ∥A�B∥∞ 6 nq∥A∥∞∥B∥∞. (2)

Proof. It follows from Lemma 2 that

∥A�B∥2∞ 6
∑
k,l

∑
i,j

∥Aij ⊗Bkl∥2∞ =
∑
k,l

∑
i,j

∥Aij∥2∞∥Bkl∥2∞

=
(∑

i,j

∥Aij∥2∞
)(∑

k,l

∥Bkl∥2∞
)

6 (nq)2∥A∥2∞∥B∥2∞.

We also have

∥A�B∥2∞ > (nq)−2
∑
k,l

∑
i,j

∥Aij ⊗Bkl∥2∞ = (nq)−2
∑
k,l

∑
i,j

∥Aij∥2∞∥Bkl∥2∞

= (nq)−2
(∑

i,j

∥Aij∥2∞
)(∑

k,l

∥Bkl∥2∞
)

> (nq)−2∥A∥2∞∥B∥2∞.

Hence, we obtain the bound (2).

Theorem 6. Let A ∈ B(H).

(i) If f is an analytic function on a region containing the spectra of A and
I �A, then

f(I �A) = I � f(A). (3)

(ii) If f is an analytic function on a region containing the spectra of A and
A� I, then

f(A� I) = f(A)� I. (4)
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Proof. (i) Since f is analytic on spectra of A and I � A, we have the Taylor
series expansion

f(z) =
∞∑
r=0

αrz
r.

It follows that

f(A) =
∞∑
r=0

αrA
r and f(I �A) =

∞∑
r=0

αr(I �A)r.

Making use of the bilinearity of Tracy-Singh product and Theorem 4 yields

f(I �A) =
∞∑
r=0

αr (I �Ar) =
∞∑
r=0

(I � αrA
r)

= I �
∞∑
r=0

αrA
r = I � f(A).

Similarly, we obtain the assertion (ii).

Theorem 7. Let A ∈ B(H) and B ∈ B(K) be positive operators. For any α > 0,
we have

(A�B)α = Aα �Bα. (5)

Proof. First, note that A�B is positive by property (6) of Lemma 1. It follows
from the property (4) in Lemma 1 that for any r, s ∈ N,(

A
r
s �B

r
s

)s
= Ar �Br = (A�B)r,

and thus (A � B)
r
s = A

r
s � B

r
s . Now, for α > 0, there is a sequence (qn) of

positive rational numbers such that qn → α. It follows from the previous claim
and the continuity of Tracy-Singh product (Theorem 4) that

(A�B)α = lim
n→∞

(A�B)qn = lim
n→∞

Aqn �Bqn

= lim
n→∞

Aqn � lim
n→∞

Bqn = Aα �Bα.

Corollary 8. Let A ∈ B(H) and B ∈ B(K) be strictly positive operators. For
any real number α, we have

(A�B)α = Aα �Bα. (6)

Proof. Note that A � B is strictly positive by property (7) of Lemma 1. For
α < 0, it follows from Theorem 7 and the property (5) in Lemma 1 that

(A�B)α = [(A�B)−1]−α = (A−1 �B−1)−α

= (A−1)−α � (B−1)−α = Aα �Bα.
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Corollary 9. Let A ∈ B(H,H′) and B ∈ B(K,K′). Then

|A�B| = |A|� |B|. (7)

Proof. Applying Lemma 1 and property (5), we get

|A�B| = [(A�B)∗(A�B)]
1
2 = [(A∗ �B∗)(A�B)]

1
2

= (A∗A�B∗B)
1
2 = (A∗A)

1
2 � (B∗B)

1
2 = |A|� |B|.

Recall the polar decomposition theorem: for any A ∈ B(H,K), there exists a
partial isometry U such that A = U |A|. The next result is a polar decomposition
for the Tracy-Singh product of operators.

Corollary 10. Let A ∈ B(H,H′) and B ∈ B(K,K′). If A = U |A| and B = V |B|
are polar decompositions of A and B, respectively, then a polar decomposition
of A�B is given by

A�B = (U � V )|A�B|. (8)

Proof. Let U and V be partial isometries such that A = U |A| and B = V |B|.
It follows from Lemma 1(3) and Corollary 9 that

A�B = U |A|� V |B| = (U � V )(|A|� |B|) = (U � V )|A�B|.

Note that U �V is also a partial isometry, according to property (8) in Lemma
1. Hence, the decomposition (8) is a polar one.

4 Tracy-Singh products on norm ideals of com-
pact operators

In this section, we investigate the Tracy-Singh product on norm ideals of B(H).
Recall that any proper ideal of B(H) is contained in the ideal S∞ of compact
operators. For any compact operator A ∈ B(H), let (si(A))∞i=1 be the sequence
of decreasingly-ordered singular values of A (i.e. eigenvalues of |A|). For each
1 6 p < ∞, the Schatten p-norm of A is defined by

∥A∥p =

( ∞∑
i=1

spi (A)

)1/p

.

If ∥A∥p is finite, we say that A is a Schatten p-class operator. The Schatten
∞-norm is just the operator norm. For each 1 6 p 6 ∞, let Sp be the Schatten
p-class operators . In particular, S1 and S2 are the trace class and the Hilbert-
Schmidt class, respectively. Each Schatten p-norm induces a norm ideal of B(H)
and this ideal is closed under the topology generated by this norm.

Lemma 11. Let A = [Aij ] ∈ B(H) be an operator matrix. Then A is compact
if and only if Aij is compact for all i, j.
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Proof. If A is compact, then Aij = P ′
iAEj is also compact for each i, j due to

the fact that S∞ is an ideal of B(H). Conversely, suppose that Aij is compact for
all i, j. Recall that a bounded linear operator is compact if and only if it maps a
bounded sequence into a sequence having a convergent subsequence. Let (xr)

∞
r=1

be a bounded sequence in H =
⊕n

i=1 Hi. Write xr = [x
(1)
r x

(2)
r . . . x

(n)
r ]T ∈⊕n

i=1 Hi for each r ∈ N. Consider

Axr =

A11 · · · A1n

...
. . .

...
An1 · · · Ann



x
(1)
r

...

x
(n)
r

 =


A11x

(1)
r + · · ·+A1nx

(n)
r

...

An1x
(1)
r + · · ·+Annx

(n)
r

 .

For each l = 1, 2, . . . , n, since (x
(l)
r )∞r=1 is bounded, the sequence (Aijx

(l)
r )∞r=1

has a convergent subsequence, namely, (Aijx
(l)
rk )

∞
k=1. Hence,

A11x
(1)
rk + · · ·+A1nx

(n)
rk

...

An1x
(1)
rk + · · ·+Annx

(n)
rk


is a desired convergent subsequence of (Axr)

∞
r=1.

Lemma 12 ([1]). Let A = [Aij ]
n,n
i,j=1 be an operator matrix in the Schatten

p-class.

(i) For 1 6 p 6 2, we have

n∑
i,j=1

∥Aij∥2p 6 ∥A∥2p 6 n4/p−2
n∑

i,j=1

∥Aij∥2p. (9)

(ii) For 2 6 p < ∞, we have

n4/p−2
n∑

i,j=1

∥Aij∥2p 6 ∥A∥2p 6
n∑

i,j=1

∥Aij∥2p. (10)

Lemma 13. Let 1 6 p < ∞. An operator matrix A = [Aij ] ∈ B(H) is a
Schatten p-class operator if and only if Aij is a Schatten p-class operator for all
i, j.

Proof. This is a direct consequence of the norm estimations in Lemma 12.

Lemma 14. Let 1 6 p 6 ∞. Let A = [Aij ]
n,n
i,j=1 be an operator matrix in

the class Sp and let (Ar)
∞
r=1 be a sequence in Sp where Ar =

[
A

(r)
ij

]n,n
i,j=1

for

each r ∈ N. Then Ar → A in Sp if and only if A
(r)
ij → Aij in Sp for all

i, j = 1, . . . , n.
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Proof. Lemma 13 assures that Aij and A
(r)
ij belong to Sp for any i, j = 1, . . . , n

and r ∈ N. Consider the case 1 6 p 6 2. Suppose that Ar → A in Sp. For any
fixed i, j ∈ {1, ..., n}, we have from the estimation (9) that

∥A(r)
ij −Aij∥2p 6

n∑
i,j=1

∥A(r)
ij −Aij∥2p 6 ∥Ar −A∥2p.

Hence, A
(r)
ij → Aij in Sp. Conversely, suppose A

(r)
ij → Aij in Sp for each i, j.

Lemma 12 implies that

∥Ar −A∥2p 6 n4/p−2
n∑

i,j=1

∥A(r)
ij −Aij∥2p.

Hence, Ar → A in Sp. The case 2 < p < ∞ and the case p = ∞ are done by
using the norm estimations (10) and (1), respectively.

Next, we discuss compactness of Tracy-Singh product of operators.

Lemma 15 ([10]). Let A ∈ B(H) and B ∈ B(K) be nonzero operators. Then
A⊗B is compact if and only if both A and B are compact.

Theorem 16. Let A ∈ B(H) and B ∈ B(K) be nonzero operator matrices.
Then A�B is compact if and only if both A and B are compact.

Proof. Write A = [Aij ] and B = [Bkl]. For sufficiency, suppose that A and B
are compact. By Lemma 11, we deduce that Aij and Bkl are compact for all
i, j, k, l. It follows from Lemma 15 that Aij ⊗ Bkl is compact for all i, j, k, l.
Lemma 11 ensures the compactness of A � B. For necessity part, reverse the
previous procedure.

The following theorem supplies bounds for Schatten 1-norm of the Tracy-
Singh product of operators.

Theorem 17. For any nonzero compact operator A = [Aij ]
n,n
i,j=1 ∈ B(H) and

B = [Akl]
q,q
k,l=1 ∈ B(K), we have

1

nq
∥A∥1∥B∥1 6 ∥A�B∥1 6 nq∥A∥1∥B∥1. (11)

Hence, A�B is trace-class if and only if both A and B are trace-class.

Proof. Suppose that both A and B are nonzero and compact. Then the operator
A�B is compact by Theorem 16. It follows from the norm bound (9) that

∥A�B∥21 6 (nq)2
∑
k,l

∑
i,j

∥Aij ⊗Bkl∥21 = (nq)2
∑
k,l

∑
i,j

∥Aij∥21∥Bkl∥21

= (nq)2
(∑

i,j

∥Aij∥21
)(∑

k,l

∥Bkl∥21
)

6 (nq)2∥A∥21∥B∥21.
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We also have

∥A�B∥21 >
∑
k,l

∑
i,j

∥Aij ⊗Bkl∥21 =
∑
k,l

∑
i,j

∥Aij∥21∥Bkl∥21

=
(∑

i,j

∥Aij∥21
)(∑

k,l

∥Bkl∥21
)

> (nq)−2∥A∥21∥B∥21.

Hence, we obtain the bound (11).

Theorem 18. For any nonzero compact operator matrices A ∈ B(H) and B ∈
B(K), we have

∥A�B∥2 = ∥A∥2 ∥B∥2. (12)

Hence, A � B is a Hilbert-Schmidt operator if and only if both A and B are
Hilbert-Schmidt operators.

Proof. Since both A and B are nonzero and compact, the operator A � B is
compact by Theorem 16. Write A = [Aij ] and B = [Bkl]. Then by Lemma
12(ii), we have

∥A�B∥22 =
∑
k,l

∑
i,j

∥Aij ⊗Bkl∥22 =
∑
k,l

∑
i,j

∥Aij∥22 ∥Bkl∥22

=
(∑

i,j

∥Aij∥22
)(∑

k,l

∥Bkl∥22
)

= ∥A∥22 ∥B∥22.

Hence, we get the multiplicative property (12).

The final result asserts that the Tracy-Singh product is continuous with
respect to the topology induced by the Schatten p-norm for each p ∈ {1, 2,∞}.

Theorem 19. Let p ∈ {1, 2,∞}. If a sequence (Ar)
∞
r=1 converges to A and a

sequence (Br)
∞
r=1 converges to B in the norm ideal Sp, then Ar �Br converges

to A�B in Sp.

Proof. Write A = [Aij ] and B = [Bkl]. In the viewpoint of Lemma 14, it suffices

to show that A
(r)
ij ⊗ B

(r)
kl → Aij ⊗ Bkl in Sp for all i, j, k, l. Since Ar → A and

Br → B in Sp, we have by Lemma 14 that A
(r)
ij → Aij and B

(r)
kl → Bkl for all

i, j, k, l. It follows that

∥A(r)
ij ⊗B

(r)
kl −Aij ⊗Bkl∥p = ∥A(r)

ij ⊗B
(r)
kl −A

(r)
ij ⊗Bkl +A

(r)
ij ⊗Bkl −Aij ⊗Bkl∥p

6 ∥A(r)
ij ⊗ (B

(r)
kl −Bkl)∥p + ∥(A(r)

ij −Aij)⊗Bkl∥p

= ∥A(r)
ij ∥p ∥B(r)

kl −Bkl∥p + ∥A(r)
ij −Aij∥p ∥Bkl∥p

→ ∥Aij∥p · 0 + 0 · ∥Bkl∥p = 0.

Hence, A
(r)
ij ⊗B

(r)
kl → Aij ⊗Bkl in Sp for all i, j, k, l.
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ON THE RADIAL DISTRIBUTION OF JULIA SET OF
SOLUTIONS OF f ′′ + Af ′ +Bf = 0

JIANREN LONG

Abstract. The paper is devoted to study the dynamical properties of
solutions of f ′′ +A(z)f ′ +B(z)f = 0, where A(z) is nontrivial solution
of w′′+P (z)w = 0, P (z) is a polynomial, B(z) is a transcendental entire
function of lower order less than 1

2 . The lower bound of the size of the
radial distribution of Julia sets of infinite order solutions of the equation
are obtained. Another proof of the result in [9] is discussed in which the
modified Phragmén-Lindelöf principle is needed.

1. Introduction and main results

For a function meromorphic f in the complex plane C, the order of

growth, lower order of growth and the convergence exponent of zero-sequence

of f are given respectively by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
,

µ(f) = lim inf
r→∞

log+ T (r, f)

log r

and

λ(f) = lim sup
r→∞

log+N(r, 1
f
)

log r
.

In what follows, we assume that the reader is familiar with standard notation

and basic results in Nevanlinna theory of meromorphic functions, such as

T (r, f), m(r, f) and N(r, f), see [10, 12, 23] for more details.

We define the nth iterate of meromorphic function f as follows:

f0(z) = z, f 1(z) = f(z), . . . , fn(z) = f(fn−1(z)), n ∈ N, n ≥ 2.

The Fatou set F (f) of transcendental meromorphic function f is the sub-

set of C where the iterates {fn(z)}∞n=1 of f form a normal family, and its

complement J(f) = C\F (f) is called the Julia set of f . It is well known

that F (f) is open and completely invariant under f , and J(f) is closed and

2010 Mathematics Subject Classification. 34M10; 37F10; 30D35.
Key words and phrases. Complex differential equation, Entire function, Infinite order,

Radial distribution, Julia set.
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non-empty, see [4]. We also need the following notations and definitions. For

α < β and r ∈ (0,∞), set

S(α, β) = {z : α < arg z < β},

S(α, β, r) = {z : |z| < r, α < arg z < β},

S(r, α, β) = {z : |z| > r, α < arg z < β}.

Let F denotes the closure of F ⊂ C. Given θ ∈ [0, 2π), if S(θ−ε, θ+ε)∩J(f)
is unbounded for any small ε > 0, then the ray arg z = θ from the origin is

called the radial distribution of J(f). Define

∆(f) = {θ ∈ [0, 2π) : arg z = θ is the radial distribution of J(f)}.

Obviously, ∆(f) is closed and so measurable. Let m(∆(f)) denotes the

linear measure of ∆(f). What can we say according to m(∆(f)) of any

meromorphic function f in C? It is interesting topic, many results have been

obtained by several authors. Baker [1] considered the radial distribution of

the Julia set and constructed an entire function with infinite lower order

whose Julia set lies in a horizontal trip. Qiao [16] proved that if f is a

transcendental entire function of finite lower order, then

m(∆(f))

{
= 2π, µ(f) < 1/2,
≥ π/µ(f), µ(f) ≥ 1/2.

Later, some observations on radial distribution of the Julia sets of transcen-

dental meromorphic functions with finite lower order were made; see, for

example, [25] and [17]. It seems that there are few work done on the case

of meromorphic functions of infinite order. Recently, Huang-Wang [8, 9]

studied the radial distribution of the Julia sets of entire functions of in-

finite lower order by using the tool of differential equations, i.e., for any

nontrivial solutions f of (1.2) below, a lower bound of m(∆(f)) is obtained.

Zhang-Wang-Yang [24] also studied the radial distribution of the Julia sets

of entire soutions f of (1.2), a lower bound of m(∆(f)) is obtained when

the coefficient A(z) and B(z) satisfy different conditions with [8, 9]. Our

idea of this paper comes from [24], a new lower bound of m(∆(f)) is found

when A(z) and B(z) satisfy new conditions which are different with the

conditions of [24].

Our starting point is a result which is related to the growth of solutions

of (1.2).

Theorem 1.1 ([14]). Let A(z) be a nontrivial solution of the equation

w′′ + P (z)w = 0,(1.1)
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where P (z) = anz
n + · · · + a0, an ̸= 0, and let λ(A) < ρ(A). Let B(z)

be a transcendental entire function with µ(B) < 1
2
. Then every nontrivial

solution of the equation

f ′′ + A(z)f ′ +B(z)f = 0(1.2)

is of infinite order.

The following result shows that m(∆(f)) has a lower bound when A(z)

and B(z) satisfy the conditions of Theorem 1.1.

Theorem 1.2. Let A(z) and B(z) be given as in Theorem 1.1. Then every

nontrivial solution f of (1.2) satisfies m(∆(f)) ≥ 2π
n+2

.

To state the following results, the definition of accumulation lines of

zero-sequence is needed, which can be found in [13, 18, 21, 22].

Definition 1.3. Let f be a meromorphic function in C, and let arg z = θ ∈
[0, 2π) be a ray from the origin. We denote, for each ε > 0, the convergence

exponent of zero-sequence of f in the region S(θ− ε, θ+ ε, r) by λθ,ε(f) and

by λθ(f) = lim
ε→0+

λθ,ε(f). That is,

λθ(f) = lim
ε→0+

lim sup
r→∞

log+ nθ−ε,θ+ε(r, 0, f)

log r
,

where nθ−ε,θ+ε(r, 0, f) is the number of zeros of f , counting multiplicity in

S(θ − ε, θ + ε, r).

The ray arg z = θ is called an accumulation line of the zero-sequence

of f if λθ(f) = ρ(f). By Lemma 2.1 below, we know that the number of

accumulation lines of zero-sequence of nontrivial solutions of (1.1) less than

or equal to n + 2 and the set of the accumulation lines of zero-sequence of

nontrivial solutions of (1.1) is the subset of {arg z = θj, 0 ≤ j ≤ n + 1},
where θj =

2jπ−arg(an)
n+2

. Let w be a nontrivial solution of (1.1), where P (z) =

anz
n+ · · ·+a0 is a polynomial of degree n ≥ 1, let p(w) denotes the number

of the rays arg z = θj, j = 0, 1, . . . , n+ 1, which are not accumulation lines

of zero-sequence of w.

Remark 1.4. It follows from Lemma 2.1 that p(w) must be an even number

for every nontrivial solution w of (1.1).

Theorem 1.5. Let A(z) be a nontrivial solution of (1.1), and the number of

accumulation lines of zero-sequence of A(z) strictly less than n+2. Let B(z)

be a transcendental entire function with µ(B) < 1
2
. Then every nontrivial

solution f of (1.2) satisfies ρ(f) = ∞ and m(∆(f)) ≥ 2π
n+2

.
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Furthermore, we study the radial distribution of Julia set of the deriva-

tives of nontrivial solutions of (1.2).

Theorem 1.6. Let A(z) and B(z) be given as in Theorem 1.1. Then every

nontrivial solution f of (1.2) satisfies m
(
∆(f) ∩∆(f (k))

)
≥ 2π

n+2
, where

k ≥ 1 is an integer.

By using similar reasoning in proving Theorems 1.5 and 1.6, we have the

following result.

Theorem 1.7. Let A(z) and B(z) be given as in Theorem 1.5. Then every

nontrivial solution f of (1.2) satisfies m
(
∆(f) ∩∆(f (k))

)
≥ 2π

n+2
, where

k ≥ 1 is an integer.

Applying Theorems 1.6 and 1.7, we immediately obtain the following

corollaries.

Corollary 1.8. Let A(z) and B(z) be given as in Theorem 1.6. Then

m
(
∆(f (k))

)
≥ 2π

n+2
for every nontrivial solution f of (1.2), where k ≥ 1

is an integer.

Corollary 1.9. Let A(z) and B(z) be given as in Theorem 1.7. Then

m
(
∆(f (k))

)
≥ 2π

n+2
for every nontrivial solution f of (1.2), where k ≥ 1

is an integer.

Obviously, we can obtain Theorems 1.2 and 1.5 from Theorems 1.6 and

1.7, however, we need the results of Theorems 1.2 and 1.5 in proving The-

orems 1.6 and 1.7. So we will give the proofs of Theorems 1.2 and 1.5 in

Sections 3 and 4, respectively.

2. Auxiliary results

In this section, we will give some auxiliary results for proving our theo-

rems. To this end, we introduce following notations. Let f be an entire func-

tion of order ρ(f) ∈ (0,∞). For simplicity, set ρ(f) = ρ and S = S(α, β). If

for any θ ∈ (α, β),

lim
r→∞

log log |f(reiθ)|
log r

= ρ,

then we say that f blows up exponentially in S. If for any θ ∈ (α, β),

lim
r→∞

log log |f(reiθ)|−1

log r
= ρ,

then we say that f decays to zero exponentially in S.

The following lemma, originally due to Hille [11, Chapter 7.4], which also

be found in [6, 19], plays an important role in proving our results.
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Lemma 2.1. Let w be a nontrivial solution of (1.1), where P (z) = anz
n+

· · · + a0, an ̸= 0. Set θj = 2jπ−arg(an)
n+2

and Sj = S(θj, θj+1), where j =

0, 1, 2, . . . , n+ 1 and θn+2 = θ0 + 2π. Then w has the following properties.

(i) In each sector Sj, w either blows up or decays to zero exponentially.

(ii) If, for some j, w decays to zero in Sj, then it must blow up in Sj−1

and Sj+1. However, it is possible for w to blow up in many adjacent

sectors.

(iii) If w decays to zero in Sj, then w has at most finitely many zeros in

any closed subsector within Sj−1 ∪ Sj ∪ Sj+1.

(iv) If w blows up in Sj−1 and Sj, then for each ε > 0, w has infinitely

many zeros in each sector S(θj − ε, θj + ε), and furthermore, as

r → ∞,

n
(
S(θj − ε, θj + ε, r), 0, w

)
= (1 + o(1))

2
√

|an|
π(n+ 2)

r
n+2
2 ,

where n(S(θj−ε, θj+ε, r), 0, w) is the number of zeros of w, counting

multiplicity in S(θj − ε, θj + ε, r).

Before stating the next lemma, for E ⊂ [0,∞), we define the Lebesgue

linear measure of E by m(E) =
∫
E
dt, and the logarithmic measure of

F ⊂ [1,∞) is ml(F ) =
∫
F
dt
t
. The upper and lower logarithmic density of

F ⊂ [1,∞) are given by

log dens(F ) = lim sup
r→∞

ml(F ∩ [1, r])

log r

and

log dens(F ) = lim inf
r→∞

ml(F ∩ [1, r])

log r
,

respectively.

The following result is due to Barry [3].

Lemma 2.2. Let f be an entire function with 0 ≤ µ(f) < 1, and denote

m(r) = inf
|z|=r

log |f(z)| and M(r) = sup
|z|=r

log |f(z)|. Then, for every α ∈

(µ(f), 1),

log dens ({r ∈ [1,∞) : m(r) > M(r) cos πα}) ≥ 1− µ(f)

α
.

We say that an open set is hyperbolic if it has at least three boundary

points in C = C ∪ {∞}. Let W be a hyperbolic open set in C. For an

a ∈ C\W , define

CW (a) = inf{λW (z)|z − a| : z ∈ W},
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where λW (z) is the hyperbolic density on W . We know that if every compo-

nent of W is simply connected, then CW (a) ≥ 1
2
. The following result was

proved in [25, Lemma 2.2].

Lemma 2.3. Let f be an analytic in S(r0, θ1, θ2), let U be a hyperbolic

domain and f : S(r0, θ1, θ2) → U . If there exists a point a ∈ ∂U\{∞} such

that CU(a) > 0, then there exists a constant l > 0 such that, for sufficiently

small ε > 0, one has

|f(z)| = O(|z|l), z ∈ S(r0, θ1 + ε, θ2 − ε), |z| → ∞.

The following lemma is related to the Nevanlinna theory in an angular

domain. To the end, we recall some notations and properties of Nevanlinna

theory in an angular domain, see [5] for more details. Let f be meromorphic

in S(α, β), where 0 < α < β ≤ 2π. Then we have

Aα,β(r, f) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω
){log+ |f(teiα)|+ log+ |f(teiβ)|}dt

t
,

Bα,β(r, f) =
2ω

πrω

∫ β

α

log+ |f(teiφ)| sinω(φ− α)dφ,

Cα,β(r, f) = 2
∑

1<|bn|<r

(
1

|bn|ω
− |bn|ω

r2ω
) sinω(θn − α),

where ω = π
β−α and bn = |bn|eiθn are poles of f in S(α, β) appearing accord-

ing to their multiplicities. The sectorial Nevanlinna characteristic is defined

by

Sα,β(r, f) = Aα,β(r, f) +Bα,β(r, f) + Cα,β(r, f).

We denote the order of f in an angular domain S(α, β) by

σα,β(f) = lim sup
r→∞

log+ Sα,β(r, f)

log r
.

The definition of an R−set is needed, which can be found in [12]. Set

B(zn, rn) = {z : |z−zn| < rn}. If
∞∑
n=1

rn <∞ and zn → ∞, then
∞∪
n=1

B(zn, rn)

is called an R−set. Clearly, the {|z| : z ∈
∞∪
n=1

B(zn, rn)} is of finite linear

measure.

The next lemma shows an estimation for the logarithmic derivative of

analytic functions in an angular domain. It is a combination of results in

[15, 21] and [8, Lemma 7], which can be found in [9, Lemma 2.2].

Lemma 2.4. Let z = reiψ, r0 + 1 < r, and α ≤ ψ ≤ β, where 0 < β − α ≤
2π. Suppose that n ≥ 2 is an integer and that f is analytic in S(r0, α, β)
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with σα,β(f) <∞. Choose α < α1 < β1 < β. Then, for every εj ∈ (0,
βj−αj

2
),

j = 1, 2, . . . , n− 1, outside a set of linear measure zero with

αj = α+

j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs, j = 2, 3, . . . , n− 1,

there exist K > 0 and M > 0 only depending on f, ε1, . . . , εn−1 and S(αn−1,

βn−1), and not depending on z, such that∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤ KrM (sin k(ψ − α))−2

and ∣∣∣∣f (n)(z)

f(z)

∣∣∣∣ ≤ KrM

(
sin k(ψ − α)

n−1∏
j=1

sin kεj(ψ − αj)

)−2

for all z ∈ S(αn−1, βn−1) outside an R−set H, where k = π
β−α and kεj =

π
βj−αj , j = 1, 2, . . . , n− 1.

3. Proof of Theorem 1.2

Set d = 2π
n+2

. Suppose on the contrary to the assertion that there exists a

nontrivial solution f of (1.2) with m(∆(f)) < d. We aim for a contradiction.

Set η = d−m(∆(f)). Since ∆(f) is closed, then S = [0, 2π)\∆(f) consists

of at most countable many open intervals. Therefore, we choose finite many

open intervals Ii = (αi, βi), i = 1, 2, . . . ,m, which satisfy [αi, βi] ⊂ S and

m(S\∪mi=1 Ii) <
η
4
. For the sector domain S(αi, βi), and for sufficiently large

ri, we have

(αi, βi) ∩∆(f) = ∅, S(ri, αi, βi) ∩ J(f) = ∅.

This shows that, for each i = 1, 2, · · · ,m, there exist the corresponding ri

and unbounded Fatou component Ui of F (f), such that S(ri, αi, βi) ⊂ Ui

(see [2]). In boundary of Ui, we take an unbounded and connected section

γi ⊂ ∂Ui, then the mapping f : S(ri, αi, βi) → C\γi is analytic. According
to the choose of γi, we know that C\γi is simply connected, thus for any

a ∈ γi\{∞}, CC\γi(a) ≥ 1
2
. In every S(ri, αi, βi), applying Lemma 2.3 to f ,

there exists a positive constant l1 such that

|f(z)| = O(|z|l1), z ∈ ∪mi=1S(ri, αi + ε, βi − ε), |z| → ∞,

where 0 < ε < min{ η
16m

, βi−αi
8

}, i = 1, 2, . . . ,m. Hence we immediately get

Sαi+ε,βi−ε(r, f) = O(1), i = 1, 2, . . . ,m,
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and then σαi+ε,βi−ε(f) is finite. Applying Lemma 2.4, there exist two con-

stants M > 0 and K > 0 such that∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ KrM , k = 1, 2,(3.1)

for all z ∈ ∪mi=1S(ri, αi + 2ε, βi − 2ε), outside a R−set H.

Set θj =
2jπ−arg(an)

n+2
and Sj = {z : θj < arg z < θj+1}, j = 0, 1, 2, . . . , n+

1, if j = n+1, set θj+1 = θ0 +2π. Since λ(A) < ρ(A), by Lemma 2.1, there

exists at least one sector of the n+2 sectors, such that A(z) decays to zero

exponentially, say Sj0 = {z : θj0 < arg z < θj0+1}, 0 ≤ j0 ≤ n + 1. This

implies that for any θ ∈ (θj0 + ε, θj0+1 − ε),

lim
r→∞

log log 1
|A(reiθ)|

log r
=
n+ 2

2
.(3.2)

Set S ′
j0
= {θ ∈ [0, 2π) : reiθ ∈ Sj0(ε)}, where Sj0(ε) = {z : θj0 + ε < arg z <

θj0+1 − ε}, then m(S ′
j0
) = θj0+1 − ε− (θj0 + ε) ≥ d− η

4
. Thus

m(S ′
j0
∩ S) = m

(
S ′
j0
\(S ′

j0
∩∆(f))

)
≥ m(S ′

j0
)−m(∆(f))) >

3η

4
> 0.

So,

m
(
S ′
j0
∩ (∪mi=1Ii)

)
= m(S ′

j0
∩ S)−m(S ′

j0
∩ (S\ ∪mi=1 Ii))

>
3η

4
−m(S\ ∪mi=1 Ii)

>
η

2
> 0.

Thus, there exists an open interval Ii0 = (α, β) ⊂
m∪
i=1

Ii ⊂ S, such that

m
(
S ′
j0
∩ Ii0

)
>

η

2m
> 0.(3.3)

By equation (1.2), we get

|B(z)| ≤
∣∣∣∣f ′′(z)

f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣ .(3.4)

We divide into two cases to B(z) for finishing the proof.

Case 1. 0 < µ(B) < 1
2
. By Lemma 2.2, there exists a set E∗

1 ⊂ [1,∞)

with log dens(E∗
1) ≥ 1− µ(B)

α0
, where α0 =

µ(B)+ 1
2

2
, E∗

1 = {r ∈ [1,∞) : m(r) >

M(r) cos πα0}, m(r) = inf
|z|=r

log |B(z)|, M(r) = sup
|z|=r

log |B(z)|. Hence there

exists a constant R0 > 1, such that

|B(z)| > exp(rµ(B)−ε)(3.5)
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for all |z| = r ∈ E1 = E∗
1\[0, R0). Then there exists a sequence of points

{rseiθ} outside H, θ ∈ Ii0 , rs ∈ E1 satisfying rs → ∞ as s → ∞, such that

(3.1), (3.5) hold for z = rse
iθ, and

lim
s→∞

log log 1
|A(rseiθ)|

log rs
=
n+ 2

2
.(3.6)

It follows from (3.1), (3.4), (3.5) and (3.6) that

exp(rµ(B)−ε
s ) < KrMs (1 + o(1))

for sufficiently large s. Obviously, this is a contradiction.

Case 2. µ(B) = 0. By Lemma 2.2, there exists a set E2 ⊂ [1,∞) with

log dens(E2) = 1, such that for all z satisfying |z| = r ∈ E2, we have

log |B(z)| >
√
2

2
logM(r, B),(3.7)

where M(r, B) = max
|z|=r

|B(z)|. It follows from (3.3) and (3.7), there exists a

sequence of points {rseiθ} outside H, θ ∈ Ii0 , rs ∈ E2 satisfying rs → ∞ as

s→ ∞, such that (3.1), (3.6) and (3.7) hold for z = rse
iθ. We deduce from

(3.1), (3.4), (3.6) and (3.7) that

M(rs, B)
√

2
2 ≤ KrMs (1 + o(1))(3.8)

for sufficiently large s. However B(z) is a transcendental entire function, we

have

lim inf
r→∞

logM(r, B)

log r
= ∞.(3.9)

We get a contradiction from (3.8) and (3.9). This completes the proof.

4. Proof of Theorem 1.5

We begin by recalling a lemma on logarithmic derivative due to Gun-

dersen plays an important role in proving Theorem 1.5, it can be found in

[7].

Lemma 4.1. Let f be a transcendental meromorphic function of finite order

ρ(f). Let ε > 0 be a given real constant, and let k and j be integers such

that k > j ≥ 0. Then there exists a set E1 ⊂ [0, 2π) of linear measure zero,

such that if ψ0 ∈ [0, 2π)\E1, then there is a constant R0 = R0(ψ0) > 1 such

that for all z satisfying arg z = ψ0 and |z| ≥ R0, we have∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε).
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Firstly, we prove that every nontrivial solution of (1.2) is of infinite

order. To the end, suppose on the contrary to the assertion that there exists

a nontrivial solution f of (1.2) with ρ(f) <∞. We aim for a contradiction.

Set θj =
2jπ−arg(an)

n+2
and Sj = {z : θj < arg z < θj+1}, j = 0, 1, 2, . . . , n + 1,

if j = n + 1, set θj+1 = θ0 + 2π. Since p(A) ≥ 2, by Lemma 2.1, there

exists at least one sector of the n+2 sectors, such that A(z) decays to zero

exponentially, say Sj0 = {z : θj0 < arg z < θj0+1}, 0 ≤ j0 ≤ n + 1. That is,

for any θ ∈ (θj0 , θj0+1), we have (3.2) holds.

In the following, we divide into two cases to B(z).

Case 1. 0 < µ(B) < 1
2
. By using the similar reasoning as in the case 1

of proof of Theorem 1.2, we have (3.5) holds for all |z| = r ∈ E1, where

log dens(E1) ≥ 1− µ(B)
α0

, α0 =
µ(B)+ 1

2

2
.

Applying Lemma 4.1, there exists a set E2 ⊂ [0, 2π) of linear measure

zero, such that if ψ0 ∈ [0, 2π)\E2, then there is a constant R0 = R0(ψ0) > 1

such that for all z satisfying arg z = ψ0 and |z| ≥ R0,∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2.(4.1)

Thus, there exists a sequence of points zs = rse
iθ with rs → ∞ as s → ∞,

rs ∈ E1 and θ ∈ (θj0 , θj0+1)\E2, such that (3.2), (3.5) and (4.1) hold. It

follows from (1.2), (3.2), (3.5) and (4.1) that

exp(rµ(B)−ε
s ) ≤ |B(rse

iθ)|

≤
∣∣∣∣f ′′(rse

iθ)

f(rseiθ)

∣∣∣∣+ |A(rseiθ)|
∣∣∣∣f ′(rse

iθ)

f(rseiθ)

∣∣∣∣
≤ r2ρ(f)s (1 + o(1))(4.2)

for sufficiently large s. Obviously, this is a contradiction for arbitrary small

ε. Hence we have ρ(f) = ∞ for every nontrivial solutions f of (1.2).

Case 2. µ(B) = 0. By Lemma 2.2, there exists a set E3 ⊂ [0,∞) with

log dens(E3) = 1, such that for all z satisfying |z| = r ∈ E3, we have (3.7)

holds. Thus, there exists a sequence of points zs = rse
iθ with rs → ∞ as

s → ∞, rs ∈ E3 and θ ∈ (θj0 , θj0+1)\E2, such that (3.2), (3.7) and (4.1)

hold. Therefore, we deduce from (1.2), (3.2), (3.7) and (4.1) that

M(rs, B)
√

2
2 ≤ r2ρ(f)s (1 + o(1))(4.3)

for sufficiently large s. But B(z) is a transcendental entire function, we have

(3.9) holds. We obtain a contradiction from (3.9) and (4.3). So, ρ(f) = ∞
for every nontrivial solutions f of (1.2).

Secondly, we can prove m(∆(f)) ≥ 2π
n+2

by using the similar reasoning

in proving Theorem 1.2, we omit the details. This completes the proof.
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5. Proof of Theorem 1.6

Set d = 2π
n+2

. Suppose on the contrary to the assertion that there exists

a nontrivial solution f of (1.2) with m(∆(f) ∩ ∆(f (k))) < d. We aim for

a contradiction. Set η = d − m(∆(f) ∩ ∆(f (k))). By using the idea as in

proving Theorem 1.2, in order to finish the proof, we need find an open

interval I = (α, β) ⊂ ∆(f (k))c, 0 < β − α < d, such that

m
(
∆(f) ∩ S ′

j0
∩ I
)
> 0,(5.1)

where ∆(f (k))c = [0, 2π)\∆(f (k)), S ′
j0

is defined as in the proof of Theo-

rem 1.2. First, we claim that

m
(
S ′
j0
\∆(f)

)
= 0.(5.2)

If it is not true, then there exist ϕ0 ∈ ∆(f)c and ζ > 0 satisfying

m
(
(ϕ0 − ζ, ϕ0 + ζ) ∩ (S ′

j0
\∆(f))

)
> 0.(5.3)

Since arg z = ϕ0 is not the radial distribution of J(f), there exists a constant

r0 > 0 such that

S(r0, ϕ0 − ζ, ϕ0 + ζ) ∩ J(f) = ∅.

It follows that there exists an unbounded component U of Fatou set F (f),

such that S(r0, ϕ0−ζ, ϕ0+ζ) ⊂ U . In boundary of U , we take an unbounded

and connected set γ ⊂ ∂U , then the mapping f : S(r0, ϕ0 − ζ, ϕ0 + ζ) →
C\γ is analytic. Since C\γ is simply connected, then, for any a ∈ γ\{∞},
we get CC\γ(a) ≥ 1

2
. For any 0 < ξ < ζ

4
, applying Lemma 2.3 to f in

S(r0, ϕ0 − ζ, ϕ0 + ζ), we get

|f(z)| = O(|z|l1), z ∈ S(r0, ϕ0 − ζ + ξ, ϕ0 + ζ − ξ), |z| → ∞,(5.4)

where l1 is a positive constant. Hence we get

Sϕ0−ζ+ξ,ϕ0+ζ−ξ(r, f) = O(1),

and then σϕ0−ζ+ξ,ϕ0+ζ−ξ(f) is finite. Applying Lemma 2.4, there exist two

constants M > 0 and K > 0 such that (3.1) holds for all z ∈ S(r0, ϕ0 − ζ +

2ξ, ϕ0 + ζ − 2ξ), outside a R−set H. Since ξ is arbitrary small, from (5.3),

we have

m
(
(ϕ0 − ζ + 2ξ, ϕ0 + ζ − 2ξ) ∩ S ′

j0

)
> 0.

By the similar reasoning as in the cases 1 and 2 of the proof of Theorem 1.2,

then there exists a sequence of points {rseiϕ}, where ϕ ∈ (ϕ0 − ζ + 2ξ, ϕ0 +

ζ− 2ξ) and rs → ∞ as s→ ∞, such that (3.5), (3.6) and (3.7) hold for z =

rse
iϕ. Combining (1.2), (3.1), (3.5), (3.6) and (3.7), we get a contradiction.

Therefore, (5.2) is valid.
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We know that m(∆(f)) ≥ d from Theorem 1.2. It follows from the

definition of S ′
j0

and Lemma 2.1 that m(S ′
j0
) ≥ d− 2ε for any small ε > 0.

From this and (5.2), we have

m
(
∆(f) ∩ S ′

j0

)
≥ d− η

4
.(5.5)

Since ∆(f (k)) is closed, then ∆(f (k))c consists of at most countable many

open intervals. We can choose finite many open intervals Ii such that

Ii ⊂ ∆(f (k))c, m

(
∆(f (k))c\

m∪
i=1

Ii

)
<
η

4
, i = 1, 2, . . . ,m.

Since

m(∆(f) ∩ S ′
j0
∩ (

m∪
i=1

Ii)) + m(∆(f) ∩ S ′
j0
∩∆(f (k)))

= m

(
∆(f) ∩ S ′

j0
∩ (∆(f (k)) ∪ (

m∪
i=1

Ii))

)
≥ d− η

2
,

then

m

(
∆(f) ∩ S ′

j0
∩ (

m∪
i=1

Ii)

)
≥ d− η

2
−m(∆(f) ∩ S ′

j0
∩∆(f (k)))

≥ d− η

2
−m(∆(f) ∩∆(f (k))) =

η

2
> 0.

Thus, there exists an open interval Ij0 = (α, β) ⊂
m∪
i=1

Ii ⊂ ∆(f (k))c, such

that

m
(
∆(f) ∩ S ′

j0
∩ Ij0

)
≥ η

2m
> 0.

Thus (5.1) is valid. From (5.1), we know that there are ϕ̃0 and ζ̃ > 0, such

that (ϕ̃0 − ζ̃ , ϕ̃0 + ζ̃) ⊂ Ij0 , and m(∆(f) ∩ S ′
j0
∩ (ϕ̃0 − ζ̃ , ϕ̃0 + ζ̃)) > 0. Then

there exists r̃0 > 0, such that S(r̃0, ϕ̃0 − ζ̃ , ϕ̃0 + ζ̃) ∩ J(f (k)) = ∅. By using

similar reasoning as in proving (5.4), for any 0 < ξ̃ < ζ̃
6
, we have

|f (k)(z)| = O(|z|l2), z ∈ S(r̃0, ϕ̃0 − ζ̃ + ξ̃, ϕ̃0 + ζ̃ − ξ̃), |z| → ∞,(5.6)

where l2 is a positive constant.

Fix r∗e
iϕ∗ , where r∗ > r̃0 and ϕ∗ ∈ (ϕ̃0 − ζ̃ + ξ̃, ϕ̃0 + ζ̃ − ξ̃), and for any

z = reiϕ ∈ S(r̃0, ϕ̃0 − ζ̃ + ξ̃, ϕ̃0 + ζ̃ − ξ̃). Take a simple Jordan arc γz in

S(r̃0, ϕ̃0 − ζ̃ + ξ̃, ϕ̃0 + ζ̃ − ξ̃) which connects r∗e
iϕ∗ to r∗e

iϕ along |z| = r∗

and connects r∗e
iϕ to reiϕ along arg z = ϕ. It follows from (5.6) and Cauchy
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integral formula that

|f (k−1)(z)| ≤
∫
γz

|f (k)(z)||dz|+ ck ≤ O(|z|l2+1), |z| → ∞.

Similarly,

|f (k−2)(z)| ≤
∫
γz

|f (k−1)(z)||dz|+ ck−1 ≤ O(|z|l2+2), |z| → ∞.

By induction, we have

|f(z)| ≤
∫
γz

|f ′(z)||dz|+ c1 ≤ O(|z|l2+k), |z| → ∞,

where ci, i = 1, 2, . . . , k, are positive constants. Therefore,

Sϕ̃0−ζ̃+ξ̃,ϕ̃0+ζ̃−ξ̃(r, f) = O(1),

and then σϕ̃0−ζ̃+ξ̃,ϕ̃0+ζ̃−ξ̃(f) <∞. Applying Lemma 2.3, we know that (3.1)

holds for all z ∈ S(r̃0, ϕ̃0−ζ̃+2ξ̃, ϕ̃0+ζ̃−2ξ̃), outside a R−setH. By applying

similar reasoning as in the cases 1 and 2 of the proof of Theorem 1.2, we

can get a contradiction. Therefore, we have

m
(
∆(f) ∩∆(f (k))

)
≥ d.

This completes the proof.

6. Annex remarks

In [9], Huang and Wang proved the following result by using the spread

relation and Pólya peaks of meromorphic functions.

Theorem 6.1. Suppose that Ai(z), i = 0, 1, . . . , k − 1, are entire functions

satisfying ρ(Aj) < µ(A0) < ∞, j = 1, 2, . . . , k − 1. Then every nontrivial

solution f of the equation

f (k) + Ak−1(z)f
(k−1) + · · ·+ A0(z)f = 0(6.1)

satisfies m(∆(f)) ≥ min{2π, π
µ(A0)

}.

In this section, we will give a simple proof of Theorem 6.1 than origi-

nal way which is given in [9], which rely heavily on the following modified

Phragmén-Lindelöf principle.

Lemma 6.2 ([20]). Let f be an entire function of lower order µ(f) ∈ [1
2
,∞).

Then there exists a sector domain S(α, β) = {z : α < arg z < β} with

β − α ≥ π
µ(f)

, where 0 ≤ α < β ≤ 2π, such that

lim sup
r→∞

log log |f(reiθ)|
log r

≥ µ(f)

for all the ray arg z = θ ∈ (α, β).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

687 JIANREN LONG 675-691



14 J. R. LONG

Another proof of Theorem 6.1. We divide into two cases to finish our

proof.

Case 1. µ(A0) ≥ 1
2
. We need prove that m(∆(f)) ≥ π

µ(A0)
for every

nontrivial solution f of (6.1). To the end, suppose on the contrary to the

assertion that there exists a nontrivial solution f of (6.1) with m(∆(f)) <
π

µ(A0)
. Set S = (0, 2π)\∆(f). By Lemma 6.2 to A0(z), there exists a sector

domain S(α, β) with β − α ≥ π
µ(A0)

, such that

lim sup
r→∞

log log |A0(re
iθ)|

log r
≥ µ(A0)(6.2)

for any θ ∈ (α, β).

Since m(∆(f)) < π
µ(A0)

and β − α ≥ π
µ(A0)

, then there exists a sector

domain S(α′, β′), such that α < α′ < β′ < β and (α′, β′) ⊂ S. Then for any

α′ < θ < β′, we have (6.2) holds. For the sector domain S(α′, β′), it is easy

to see that

(α′, β′) ∩∆(f) = ∅, S(r, α′, β′) ∩ J(f) = ∅

for sufficiently large r. This implies that there exists r0 > 0 and unbounded

Fatou component U of F (f) such that S(r0, α
′, β′) ⊂ U . We take a un-

bounded and connected section γ of ∂U , then the mapping f : S(r0, α
′, β′) →

C\γ is analytic. Since we have chosen γ such that C\γ is simply connected,

for any a ∈ γ\{∞}, we have CC\γ(a) ≥ 1
2
. Applying Lemma 2.3 to f , there

exists a positive constant l such that

|f(z)| = O(|z|l), z ∈ S(r0, α
′ + ε, β′ − ε), |z| → ∞,(6.3)

where 0 < ε < β′−α′

8
. Thus we immediately obtain Sα′+ε,β′−ε(r, f) = O(1),

and then σα′+ε,β′−ε(f) <∞. Applying Lemma 2.4, there exist two constants

M > 0 and K > 0, such that∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ KrM , j = 1, 2, . . . , k,(6.4)

for all z ∈ S(α′ + 2ε, β′ − 2ε), outside a R−set H.

Let max
1≤j≤k−1

{ρ(Aj)} = η, and δ ∈ (η + ε, µ(A0)− 2ε) be a constant. Since

ρ(Aj) < µ(A0), j = 1, 2, . . . , k−1, then there exists a constant r1 > r0, such

that for any |z| = r > r1, we have

|Aj(z)| ≤ exp(rδ), j = 1, 2, . . . , k − 1.(6.5)

Thus there exists a sequence of points zn = rne
iθ outside H, rn → ∞ as

n → ∞, α′ < θ < β′, such that (6.2), (6.4) and (6.5) hold. It follows from
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(6.1), (6.2), (6.4) and (6.5) that

exp(rµ(A0)−ε
n ) ≤ |A0(rne

iθ)|

≤
∣∣∣∣f (k)(rne

iθ)

f(rneiθ)

∣∣∣∣+ · · ·+ |A1(rne
iθ)|
∣∣∣∣f ′(rne

iθ)

f(rneiθ)

∣∣∣∣
≤ KrMn (k − 1) exp(rδn).(6.6)

Obviously, this is a contradiction for sufficiently large n.

Case 2. µ(A0) <
1
2
. We need prove that m(∆(f)) = 2π for every nontriv-

ial solution f of (6.1). Suppose on the contrary to the assertion that there

exists a nontrivial solution f of (6.1) with m(∆(f)) < 2π. Then, by similar

reasoning as in case 1 above, there exist (α, β) ⊂ [0, 2π)\∆(f) and constant

r0 > 1 such that S(r0, α, β) ⊂ F (f), and (6.3) holds for z ∈ S(r, α+ε, β−ε).
Hence we have Sα+ε,β−ε(r, f) = O(1), and then σα+ε,β−ε(f) <∞. Applying

Lemma 2.4, we see that (6.4) holds for all z ∈ S(r, α + 2ε, β − 2ε) outside

a R−set H.

Since µ(A0) <
1
2
, applying Lemma 2.2 to A0(z), there exists a set E∗

1 ⊂
[1,∞) with log dens(E∗

1) ≥ 1− µ(A0)
α0

, where α0 =
µ(A0)+

1
2

2
, E∗

1 = {r ∈ [1,∞) :

m(r) > M(r) cos πα0}, m(r) = inf
|z|=r

log |A0(z)|, andM(r) = sup
|z|=r

log |A0(z)|.

Thus, there exists a constant R0 > 1 such that

|A0(z)| > exp(rµ(A0)−ε)(6.7)

for all |z| = r ∈ E1 = E∗
1\[0, R0]. Thus, there exists a sequence of points

zn = rne
iθ outside H, rn → ∞ as n→ ∞, α < θ < β, such that (6.4), (6.5)

and (6.7) hold. It follows from (6.1), (6.4), (6.5) and (6.7) that

exp(rµ(A0)−ε
n ) ≤ KrMn (k − 1) exp(rδn).

Obviously, this is a contradiction for sufficiently large n. This completes the

proof.
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Common Fixed Point Results for the Family of Multivalued
Mappings Satisfying Contractions on a Sequence in Hausdor¤

Fuzzy Metric Space

Abdullah Shoaib1, Akbar Azam2, and Aqeel Shahzad3

Abstract: The aim of this paper is to establish common �xed point results
on a sequence contained in a closed ball for family of multivalued mapping in
complete fuzzy metric space. Simple and di¤erent technique has been used.
Example has been constructed to demonstrate the novelty of our results. Our
results unify, extend and generalize several results in the existing literature.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2010 Mathematics Subject Classi�cation: 46S40; 47H10; 54H25.
Keywords and Phrases: common �xed point; complete fuzzy metric space; closed
ball; family of multivalued mappings; Hausdor¤ fuzzy metric space.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 Introduction and Preliminaries

The notion of fuzzy sets was �rst introduced by Zadeh [5]. Kramosil et al. [10]
introduced the concept of fuzzy metric space and obtained many �xed point
results. Later on many authors [7, 8, 9, 11] used this concept and prove many
�xed point results using the di¤erent contractive conditions. Lopez et al. [11]
discuss the method for constructing a Hausdor¤ fuzzy metric on nonempty com-
pact subsets of a given fuzzy metric space.
Sometimes, it happens that the �xed point of a mapping exists, but the con-
traction does not hold. Recently, Shoaib et al. [1, 2, 3, 4, 6, 13] obtained the
necessary and su¢ cient conditions for the existence of a �xed point of such
self mapping. In this paper, we prove the existence of a common �xed point
of a family of such multivalued mappings which are contractive on a sequence
contained in a closed ball instead of the whole space, by using the concept of
Hausdor¤ fuzzy metric space. We also present an example to support our re-
sults.
De�nition 1.1 [7] A binary operation � : [0; 1]� [0; 1] ! [0; 1] is said to be a
continuous t-norm if it is satis�es the following conditions:
i) � is associative and commutative;
ii) � is continuous;
iii) a � 1 = a for all a 2 [0; 1];
iv) a � b � c � d whenever a � c and b � d for each a; b; c; d 2 [0; 1].
De�nition 1.2 [10] The 3-tuple (X;M; �) is said to be a fuzzy metric space
if X is an arbitrary set, � is a continuous t-norm, and F is a fuzzy set on
X2 � [0;1), satisfying the following conditions for all x; y; z 2 X and t; s > 0:

1
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F1) F (x; y; 0) = 0;
F2) F (x; y; t) = 1 if and only if x = y;
F3) F (x; y; t) = F (y; x; t);
F4) F (x; z; t+ s) � F (x; y; t) � F (y; z; s);
F5) F (x; y; :) : (0;1)! [0; 1] is left-continuous.
Example 1.3 [7] Let (X; d) be a metric space. De�ne a � b = ab and

F (x; y; t) =
ktn

ktn +md(x; y)
;

for all x; y 2 X and k;m; n 2 R+. Then (X;F; �) is a fuzzy metric space.
De�nition 1.4 [9] Let (X;F; �) be a fuzzy metric space. Then, we have
i) A sequence fxng in X is said to be convergent to a point x 2 X denoted
xn ! x; if lim

n!1
F (xn; x; t) = 1 for each t > 0.

ii) A sequence fxng inX is said to be a Cauchy sequence, if lim
n!1

F (xn; xn+p; t) =

1 for each t > 0, p > 0.
iii) A fuzzy metric space (X;F; �) in which every Cauchy sequence is convergent
is called a complete fuzzy metric space.
De�nition 1.5 [11] Let (X;F; �) be a fuzzy metric space. De�ne a function
HFM on Ĉ0(X)� Ĉ0(X)� (0;1) by

HFM (A;B; t) = min

�
inf
a2A

F (a;B; t); inf
b2B

F (A; b; t)

�
;

for all A;B 2 Ĉ0(X) and t > 0, where Ĉ0(X) is the collection of all nonempty
compact subsets of X.
De�nition 1.6 [7] Let (X;F; �) be a fuzzy metric space. Then,

BF (x; r; t) = fy 2 X : F (x; y; t) > 1� rg

and
BF (x; r; t) = fy 2 X : F (x; y; t) � 1� rg

are called open and closed balls respectively, with centre x 2 X and radius r for
0 < r < 1, t > 0.
Lemma 1.7 [11] Let (X;F; �) be a complete fuzzy metric space. Then, for
each a 2 X, B 2 Ĉ0(X) and for all t > 0 there is bo 2 B such that

F (a; bo; t) = F (a;B; t):

Lemma 1.8 [12] Let (X;F; �) be a complete fuzzy metric space. (Ĉ0(X);HFM ; �)
is a hausdor¤ fuzzy metric space on Ĉ0(X). Then, for all A;B 2 Ĉ0(X), for
each a 2 A and for all t > 0 there exists ba 2 B; satis�es F (a;B; t) = F (a; ba; t);
then

HFM (A;B; t) � F (a; ba; t):

2
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2 Main Results

Let (X;F; �) be a fuzzy metric space, x0 2 X and let fS� : � 2 
g be a family
of multivalued mappings from X to Ĉ0(X). Then, there exists x1 2 Sax0
for some a 2 
, such that F (x0; Sax0; t) = F (x0; x1; t); for all t > 0: Let
x2 2 Sbx1 be such that F (x1; Sbx1; t) = F (x1; x2; t): Continuing this process, we
construct a sequence xn of points in X such that xn+1 2 Sxn, F (xn; Sxn; t) =
F (xn; xn+1; t); for all t > 0: We denote this iterative sequence fXS�(xn) : � 2

g and say that fXS�(xn) : � 2 
g is a sequence in X generated by x0.
Theorem 2.1 Let (X;F; �) be a complete fuzzy metric space, where � be a
continuous t-norm, de�ned as a�a � a or a�b = minfa; bg. Let (Ĉ0(X);HFM ; �)
be a Hausdor¤ fuzzy metric space on Ĉ0(X), fS� : � 2 
g be a family of
multivalued mappings from X to Ĉ0(X) and fXS�(xn) : � 2 
g be a sequence
in X generated by x0. Assume that, for some 0 < �i;j � k < 1; for all t > 0,
x0 2 X, for all x; y 2 BF (x0; r; t) \ fXS�(xn) : � 2 
g; with x 6= y and for all
i; j 2 
 with i 6= j; we have

HFM (Six; Sjy; �i;jt) � F (x; y; t) (2.1)

and, for some t > 0
F (x0; x1; (1� k)t)) � 1� r: (2.2)

Then, fXS�(xn) : � 2 
g is a sequence in BF (x0; r; t) and fXS�(xn) : � 2

g ! z 2 BF (x0; r; t): Also, if (2.1) holds for z; then there exists a common
�xed point for the family of multivalued mappings fS� : � 2 
g in BF (x0; r; t).
Proof: Let fXS�(xn) : � 2 
g be a sequence in X generated by x0. If x0 = x1,
then x0 is a common �xed point of Sa for all a 2 
. Let x0 6= x1 and by Lemma
1:8; we have

F (x1; x2; t) � HFM (Sax0; Sbx1; t):

By induction, we have by Lemma 1:8; we have

F (xn; xn+1; t) � HFM (Sixn�1; Sxn; t): (2.3)

First, we will show that xn 2 BF (x0; r; t). By (2:2); we get

F (x0; x1; t) = F (x0; Sax0; t) > F (x0; x1; (1� k)t) � 1� r
F (x0; x1; t) > 1� r:

3
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This shows that x1 2 BF (x0; r; t): Let x2; � � � ; xj 2 BF (x0; r; t): Now, we have

F (xj ; xj+1; t) � HFM (S�xj�1; S�xj ; t) � F (xj�1; xj ;
t

��;�
)

� HFM (S�xj�2; S�xj�1;
t

��;�
) (by Lemma 1:8)

� F (xj�2; xj�1;
t

��;m; ��;�
)

� F (xj�2; xj�1;
t

k2
) � :::: � F (x0; x1;

t

kj
)

F (xj ; xj+1; t) � F (x0; x1;
t

kj
) (2.4)

Now,

F (x0; xj+1; t) � F (x0; xj+1; (1� kj+1)t)
� F (x0; x1; (1� k)t) � F (x1; x2; (1� k)kt) � ::::

�F (xj ; xj+1; (1� k)kjt)
� F (x0; x1; (1� k)t) � F (x0; x1; (1� k)t) � ::::

�F (x0; x1; (1� k)t) (by (2.4))

� 1� r � 1� r � :: � 1� r = 1� r
F (x0; xj+1; t) � 1� r:

This implies that xj+1 2 BF (x0; r; t): Now, inequality (2.4) can be written as

F (xn; xn+1; t) � F (x0; x1;
t

kn
): (2.5)

Let n;m 2 N with m > n: Assume that m = n+ p; we have

F (xn; xn+p; t) � F (xn; xn+1; (1� k)t) � F (xn+1; xn+p; kt)
� F (xn; xn+1; (1� k)t) �HFM (Sjxn; Skxn+p�1; kt)

� F (xn; xn+1; (1� k)t) � F (xn; xn+p�1;
kt

�j;k
)

� F (xn; xn+1; (1� k)t) � F (xn; xn+p�1; t)
� F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t)

�F (xn+1; xn+p�1; (1� k)t)
� F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t)

�HFM (Sjxn; Slxn+p�2; kt)
� F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t)

�F (xn; xn+p�2;
kt

�j;l
)

F (xn; xn+p; t) � F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t)
�F (xn; xn+p�2; t):

4
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Using the above, we have

F (xn; xn+p; t) � F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t) � ::: �
F (xn; xn+1; t)

F (xn; xn+p; t) � F (xn; xn+1; (1� k)t) � F (xn; xn+1; (1� k)t) � ::: �
F (xn; xn+1; (1� k)t)

� F (x0; x1;
(1� k)t
kn

) � F (x0; x1;
(1� k)t
kn

) � ::: �

F (x0; x1;
(1� k)t
kn

) (by (2.5))

F (xn; xn+p; t) � F (x0; x1;
(1� k)t
kn

):

As, we have
lim
t!1

F (x; y; t) = 1 for all x; y 2 X:

In particular

F (x0; x1;
(1� k)t
kn

) = 1 as n!1:

By using above, we get

F (xn; xm; t) = 1 as n!1:

Hence, fXS�(xn)g is a Cauchy sequence in BF (x0; r; t): As every closed ball in
a complete fuzzy metric space is complete. So, BF (x0; r; t) is complete. Then,
there exists z 2 BF (x0; r; t), such that xn ! z as n!1: Now, for some q 2 
;
we have

F (z; Sqz; t) � F (z; xn; (1� k)t) � F (xn; Sqz; kt):

By Lemma 1:8, we have

F (z; Sqz; t) � F (z; xn; (1� k)t) �HFM (Srxn�1; Sqz; kt)

� F (z; xn; (1� k)t) � F (xn�1; z;
kt

�r;q
)

� F (z; xn; (1� k)t) � F (xn�1; z; t):

Letting n!1; we have

F (z; Sqz; t) � 1 � 1 = 1:

This implies that z 2 Sqz: Hence, z 2 \
q2


Sqz. This completes the proof.

Let (X;F; �) be a fuzzy metric space, x0 2 X and let S be a multivalued map-
ping from X to Ĉ0(X). Then, there exists x1 2 Sx0, such that F (x0; Sx0; t) =
F (x0; x1; t); for all t > 0: Let x2 2 Sx1 be such that F (x1; Sx1; t) = F (x1; x2; t):

5
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Continuing this process, we construct a sequence xn of points in X such that
xn+1 2 Sxn, F (xn; Sxn; t) = F (xn; xn+1; t); for all t > 0: We denote this itera-
tive sequence fXS(xn)g and say that fXS(xn)g is a sequence in X generated
by x0.
Corollary 2.2 Let (X;F; �) be a complete fuzzy metric space, where � be a
continuous t-norm, de�ned as a�a � a or a�a = minfa; bg. Let (Ĉ0(X);HFM ; �)
is Hausdor¤ fuzzy metric space on Ĉ0(X), x0 2 X, S : X ! Ĉ0(X) be a mul-
tivalued mapping and fXS(xn)g be a sequence in X generated by xo. Assume
that for some k 2 (0; 1) t > 0, and xo 2 X, we have

HFM (Sx; Sy; kt) � F (x; y; t) for all x; y 2 BF (x0; r; t) \ fXS(xn)g (2.6)

and
F (x0; Sx0; (1� k)t)) � 1� r

Then, fXS(xn)g is a sequence in BF (x0; r; t) and fXS(xn)g ! z 2 BF (x0; r; t):
Also, if (2.6) holds for z; then there exists a �xed point for S in BF (x0; r; t).
Proof: By using the similar steps as we have used in Theorem 2.1, it can be
proved easily.
Corollary 2.3 Let (X;F; �) be a complete fuzzy metric space, where � be a
continuous t-norm, de�ned as a � a � a or a � a = minfa; bg. Let x0 2 X and
S : X ! X be a self mapping. Assume that for some k 2 (0; 1), t > 0 and
xo 2 X, we have

F (Sx; Sy; kt) � F (x; y; t) for all x; y 2 BF (x0; r; t)

and
F (x0; Sx0; (1� k)t)) � 1� r:

Then S has a �xed point in BF (x0; r; t).
Example 2.4 Let X = [0; 5] and d : X �X ! R be a complete metric space
de�ned by,

d(x; y) = jx� yj for all x; y 2 X

Denote a�b = ab or a�b = minfa; bg for all a; b 2 [0; 1] and F (x; y; t) = t
t+d(x;y)

for all x; y 2 X and t > 0. Then, we can �nd that (X;F; �) is a complete
fuzzy metric space. Consider the multivalued mappings S� : X ! Ĉ0(X) where
� = a; 1; 2; 3; � � � : de�ned as,

Snx =

8<: [ x3n ;
x
2n ] if x 2 [0; 72 ]

[2nx; 3nx] if x 2 ( 72 ; 5]
; where n = 1; 2; � � � ;

and

Sax =

8<: [x3 ;
5x
12 ] if x 2 [0; 72 ]

[2x; 3x] if x 2 ( 72 ; 5]
:

6
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Considering, x0 = 1
2 and r =

3
4 . then, BF (x0; r; t) = [0;

7
2 ]. Now,

F (x0; Sax0; t) = F (
1

2
; Sa

1

2
; t) = F (

1

2
;
5

24
; t)

F (x1; S1x1; t) = F (
5

24
; S1

5

24
; t) = F (

5

24
;
5

48
; t)

So, we obtain a sequence fXS�(xn)g = f 12 ;
5
24 ;

5
48 ;

5
192 ; :::g in X generated by

x0: Now, for x = 4, y = 5, k = �1;a = 5
6 and t = 1; we have

HFM (S14; Sa5;
5

6
) = min

�
inf
a2S14

F (a; Sa5;
5

6
); inf
b2Sa5

F (S14; b;
5

6
)

�
= 0:22

F (4; 5; 1) =
1

1 + j4� 5j =
1

2
= 0:5

So, we have

HFM (S14; Sa5;
5

6
) � F (4; 5; 1)

So, the contractive condition does not hold onX. Now, for all x; y 2 BF (x0; r; t)\
fXS�(xn)g, we have

HFM (Snx; Say; kt) = min

�
inf

a2Snx
F (a; Say; kt); inf

b2Say
F (Snx; b; kt)

�
= min

�
inf

a2Snx
F (a; [

y

3
;
5y

12
];
5

6
t); inf

b2Say
F ([

x

3n
;
x

2n
]; b;

5

6
t)

�
= min

�
F (

x

2n
;
5y

12
;
5

6
t); F (

x

3n
;
y

3
;
5

6
t)

�
= min

�
(5=6)t

(5=6)t+ jx=3� y=3j ;
(5=6)t

(5=6)t+ jy=3� x=3j

�
HFM (Sx; Sy; kt) =

(5=6)t

(5=6)t+ jx=3� y=3j �
t

t+ jx� yj = F (x; y; t)

So, the contractive condition holds on BF (x0; r; t)\fXS�(xn)g. Also, for t = 1;
we have

F (x0; x1; (1� k)t)) = F (
1

2
;
5

24
;
1

6
)

=
4

11
>
1

4
= 1� r

Hence, all the conditions of above theorem are satis�ed. Now, we have fXS�(xn)g
is a sequence in BF (x0; r; t), and fXS�(xn)g ! 0 2 BF (x0; r; t). Moreover,
fS� : � = a; 1; 2 � � � g has a common �xed point 0.
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ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN

NON-ARCHIMEDEAN BANACH SPACES

CHOONKIL PARK1, JUNG RYE LEE2, AND DONG YUN SHIN3∗

Abstract. Let

M1f(x, y) : =
3

4
f(x+ y)− 1

4
f(−x− y)

+
1

4
f(x− y) +

1

4
f(y − x)− f(x)− f(y),

M2f(x, y) : = 2f
(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y).

We solve the additive-quadratic ρ-functional inequalities

‖M1f(x, y)‖ ≤ ‖ρM2f(x, y)‖, (0.1)

where ρ is a fixed non-Archimedean number with |ρ| < 1, and

‖M2f(x, y)‖ ≤ ‖ρM1f(x, y)‖, (0.2)

where ρ is a fixed non-Archimedean number with |ρ| < |2|.
Furthermore, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities

(0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element having

the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are

examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If

the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-

Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of a

non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it

simply a field.

Definition 1.1. ([8]) Let X be a vector space over a field K with a non-Archimedean valuation

| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the following

conditions:

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; additive-quadratic ρ-functional

inequality.
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(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X

holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence {xn} is

called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is

called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [19] concerning

the stability of group homomorphisms. The functional equation f(x + y) = f(x) + f(y) is called

the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive

mapping. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces.

Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias [12] for linear

mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem

was obtained by Găvruta [6] by replacing the unbounded Cauchy difference by a general control

function in the spirit of Rassias’ approach. The functional equation f
(
x+y
2

)
= 1

2f(x) + 1
2f(y) is

called the Jensen equation.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the quadratic functional

equation. In particular, every solution of the quadratic functional equation is said to be a quadratic

mapping. The stability of quadratic functional equation was proved by Skof [18] for mappings

f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [5] noticed that

the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian group. The

functional equation 2f
(
x+y
2

)
+2

(
x−y
2

)
= f(x)+f(y) is called a Jensen type quadratic equation. The

stability problems of various functional equations have been extensively investigated by a number

of authors (see [1, 3, 4, 10, 11, 13, 14, 15, 16, 17, 20, 21]).

In Section 2, we solve the additive-quadratic ρ-functional inequality (0.1) and prove the Hyers-

Ulam stability of the additive-quadratic ρ-functional inequality (0.1) in non-Archimedean Banach

spaces.

In Section 3, we solve the additive-quadratic ρ-functional inequality (0.2) and prove the Hyers-

Ulam stability of the additive-quadratic ρ-functional inequality (0.2) in non-Archimedean Banach

spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a

non-Archimedean Banach space. Let |2| 6= 1.
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2. Additive-quadratic ρ-functional inequality (0.1) in non-Archimedean normed

spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1.

In this section, we solve the additive-quadratic ρ-functional inequality (0.1) in non-Archimedean

normed spaces.

Lemma 2.1.

(i) If an odd mapping f : X → Y satisfies

‖M1f(x, y)‖ ≤ ‖ρM2f(x, y)‖ (2.1)

for all x, y ∈ X, then f : X → Y is additive.

(ii) If an even mapping f : X → Y satisfies (2.1), then f : X → Y is quadratic.

Proof. (i) Assume that f : X → Y satisfies (2.1).

Since f is an odd mapping, f(0) = 0.

Letting y = x in (2.1), we get

‖f(2x)− 2f(x)‖ ≤ 0

and so f(2x) = 2f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

2
f(x) (2.2)

for all x ∈ X.

It follows from (2.1) and (2.2) that

‖f(x+ y)− f(x)− f(y)‖ ≤
∥∥∥∥ρ(2f

(
x+ y

2

)
− f(x)− f(y)

)∥∥∥∥
= |ρ|‖f(x+ y)− f(x)− f(y)‖

and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X.

(ii) Assume that f : X → Y satisfies (2.1).

Letting x = y = 0 in (2.1), we get

‖f(0)‖ ≤ ‖2ρf(0)‖ = |2| · |ρ| · ‖f(0)‖.

So f(0) = 0.

Letting y = x in (2.1), we get ∥∥∥∥1

2
f(2x)− 2f(x)

∥∥∥∥ ≤ 0

and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.3)

for all x ∈ X.
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It follows from (2.1) and (2.3) that∥∥∥∥1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

∥∥∥∥
≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
= |ρ|

∥∥∥∥1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

∥∥∥∥
and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. �

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (2.1) in non-

Archimedean Banach spaces for an odd mapping case.

Theorem 2.2. Let r < 1 and θ be nonnegative real numbers and let f : X → Y be an odd mapping

such that

‖M1f(x, y)‖ ≤ ‖ρM2f(x, y)‖+ θ(‖x‖r + ‖y‖r) (2.4)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

|2|r
‖x‖r (2.5)

for all x ∈ X.

Proof. Since f is an odd mapping, f(0) = 0.

Letting y = x in (2.4), we get

‖f(2x)− 2f(x)‖ ≤ 2θ‖x‖r (2.6)

for all x ∈ X. So
∥∥f(x)− 2f

(
x
2

)∥∥ ≤ 2
|2|r θ‖x‖

r for all x ∈ X. Hence∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ (2.7)

≤ max

{∥∥∥∥2lf ( x2l
)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f ( x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
= max

{
|2|l

∥∥∥∥f ( x2l
)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1 ∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

|2|rl+r
, · · · , |2|m−1

|2|r(m−1)+r

}
2θ‖x‖r =

2θ

|2|(r−1)l+r
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the

sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {2nf( x

2n )}
converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.7), we get (2.5).
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It follows from (2.4) that

‖M1A(x, y)‖ = lim
n→∞

|2|n
∥∥∥∥M1f

(
x

2n
,
y

2n

)∥∥∥∥
≤ lim

n→∞
|2|n|ρ|

∥∥∥∥M2f

(
x

2n
,
y

2n

)∥∥∥∥+ lim
n→∞

|2|nθ
|2|nr

(‖x‖r + ‖y‖r)

= |ρ| ‖M2A(x, y)‖ = ‖ρM2A(x, y)‖

for all x, y ∈ X. So

‖M1A(x, y)‖ ≤ ‖ρM2A(x, y)‖

for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive .

Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖A(x)− T (x)‖ =

∥∥∥∥2qA( x2q
)
− 2qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥2qA( x2q
)
− 2qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥2qT ( x2q
)
− 2qf

(
x

2q

)∥∥∥∥} ≤ 2θ

|2|(r−1)q+r
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.

This proves the uniqueness of h. Thus the mapping A : X → Y is a unique additive mapping

satisfying (2.5). �

Theorem 2.3. Let r > 1 and θ be nonnegative real numbers and let f : X → Y be an odd mapping

satisfying (2.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

|2|
‖x‖r (2.8)

for all x ∈ X.

Proof. It follows from (2.6) that ∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 2

|2|
θ‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2m
f (2mx)

∥∥∥∥
≤ max

{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx
)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|lr

|2|l+1
, · · · , |2|

r(m−1)

|2|(m−1)+1

}
2θ‖x‖r =

2θ

|2|(1−r)l+1
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Now, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (2.1) in

non-Archimedean Banach spaces for an even mapping case.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

704 CHOONKIL PARK et al 700-710



C. PARK, J. LEE, AND D. SHIN

Theorem 2.4. Let r < 2 and θ be nonnegative real numbers and let f : X → Y be an even mapping

satisfying (2.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|
|2|r

2θ‖x‖r (2.9)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.4), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.

Letting y = x in (2.4), we get ∥∥∥∥1

2
f(2x)− 2f(x)

∥∥∥∥ ≤ 2θ‖x‖r (2.10)

for all x ∈ X. So
∥∥f(x)− 4f

(
x
2

)∥∥ ≤ |2|
|2|r 2θ‖x‖r for all x ∈ X. Hence∥∥∥∥4lf ( x2l

)
− 4mf

(
x

2m

)∥∥∥∥ (2.11)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
|2|
|2|r

2θ‖x‖r =
2θ

|2|(r−2)l
|2|
|2|r
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.11) that the

sequence {4nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {4nf( x

2n )}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.11), we get (2.9).

It follows from (2.4) that

‖M1Q(x, y)‖ = lim
n→∞

|4|n
∥∥∥∥M1f

(
x

2n
,
y

2n

)∥∥∥∥
≤ lim

n→∞
|4|n|ρ|

∥∥∥∥M2f

(
x

2n
,
y

2n

)∥∥∥∥+ lim
n→∞

|4|nθ
|2|nr

(‖x‖r + ‖y‖r)

= |ρ| ‖M2Q(x, y)‖

for all x, y ∈ X. So

‖M1Q(x, y)‖ ≤ ‖ρM2Q(x, y)‖
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.9). Then we have

‖Q(x)− T (x)‖ =

∥∥∥∥4qQ( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qQ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥} ≤ |2|
|2|(r−2)q+r

2θ‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all x ∈ X.

This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique quadratic mapping

satisfying (2.9). �
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Theorem 2.5. Let r > 2 and θ be positive real numbers, and let f : X → Y be an even mapping

satisfying (2.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|2|
‖x‖r

for all x ∈ X.

Proof. It follows from (2.10) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2θ

|2|
‖x‖r

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.4. �

3. Additive-quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < |2|.
In this section, we solve the additive-quadratic ρ-functional inequality (0.2) in non-Archimedean

normed spaces.

Lemma 3.1.

(i) If an odd mapping f : X → Y satisfies

‖M2f(x, y)‖ ≤ ‖ρM1f(x, y)‖ (3.1)

for all x, y ∈ X, then f : X → Y is additive.

(ii) If an even mapping f : X → Y satisfies f(0) = 0 and (3.1), then f : X → Y is quadratic.

Proof. (i) Assume that f : X → Y satisfies (3.1).

Letting y = 0 in (3.1), we get ∥∥∥∥2f (x2
)
− f(x)

∥∥∥∥ ≤ 0 (3.2)

and so f
(
x
2

)
= 1

2f(x) for all x ∈ X.

It follows from (3.1) and (3.2) that

‖f(x+ y)− f(x)− f(y)‖ =

∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)

∥∥∥∥
≤ |ρ|‖f(x+ y)− f(x)− f(y)‖

and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X.

(ii) Assume that f : X → Y satisfies (3.1).

Letting y = 0 in (3.1), we get ∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ 0 (3.3)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.
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It follows from (3.1) and (3.3) that∥∥∥∥1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

∥∥∥∥
=

∥∥∥∥2f (x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥∥
≤ |ρ|

∥∥∥∥1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

∥∥∥∥
and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. �

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (3.1) in non-

Archimedean Banach spaces for an odd mapping case.

Theorem 3.2. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be an odd mapping

such that

‖M2f(x, y)‖ ≤ ‖ρM1f(x, y)‖+ θ(‖x‖r + ‖y‖r) (3.4)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ θ‖x‖r (3.5)

for all x ∈ X.

Proof. Since f is an odd mapping, f(0) = 0.

Letting y = 0 in (3.4), we get ∥∥∥∥2f (x2
)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.6)

for all x ∈ X. So∥∥∥∥2lf ( x2l
)
− 2mf

(
x

2m

)∥∥∥∥ (3.7)

≤ max

{∥∥∥∥2lf ( x2l
)
− 2l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥2m−1f ( x

2m−1

)
− 2mf

(
x

2m

)∥∥∥∥}
= max

{
|2|l

∥∥∥∥f ( x2l
)
− 2f

(
x

2l+1

)∥∥∥∥ , · · · , |2|m−1 ∥∥∥∥f ( x

2m−1

)
− 2f

(
x

2m

)∥∥∥∥}
≤ max

{
|2|l

|2|rl
, · · · , |2|

m−1

|2|r(m−1)

}
θ‖x‖r =

θ

|2|(r−1)l
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.7) that the

sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {2nf( x

2n )}
converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.7), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.2. �
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Theorem 3.3. Let r > 1 and θ be positive real numbers, and let f : X → Y be an odd mapping

satisfying (3.4). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ |2|
rθ

|2|
‖x‖r (3.8)

for all x ∈ X.

Proof. It follows from (3.6) that ∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ |2|rθ|2| ‖x‖r
for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ (3.9)

≤ max

{∥∥∥∥ 1

2l
f
(
2lx
)
− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx
)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|2|l+1
, · · · , |2|

r(m−1)

|2|(m−1)+1

}
|2|rθ‖x‖r =

|2|rθ
|2|(1−r)l+1

‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.9) that the

sequence { 1
2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.9), we get (3.8).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �

Now, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequality (3.1) in

non-Archimedean Banach spaces for an even mapping case.

Theorem 3.4. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be an even mapping

satisfying (3.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ‖x‖r (3.10)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.

Letting y = 0 in (3.4), we get ∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.11)
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for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ (3.12)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
θ‖x‖r =

θ

|2|(r−2)l
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.12) that the

sequence {4nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {4nf( x

2n )}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.12), we get (3.10).

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 3.5. Let r > 2 and θ be positive real numbers, and let f : X → Y be an even mapping

satisfying (3.4). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|
rθ

|4|
‖x‖r (3.13)

for all x ∈ X.

Proof. It follows from (3.11) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ |2|rθ|4| ‖x‖r
for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (3.14)

≤ max

{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1
f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
= max

{
1

|4|l

∥∥∥∥f (2lx
)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1

∥∥∥∥f (2m−1x
)
− 1

4
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|4|l+1
, · · · , |2|

r(m−1)

|4|(m−1)+1

}
|2|rθ‖x‖r =

|2|rθ
|2|(2−r)l+2

‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.14) that the

sequence { 1
4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.14), we get (3.13).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.4. �
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[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math.

Anal. Appl. 184 (1994), 431–43.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
[8] M.S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.–

TMA 69 (2008), 3405–3408.
[9] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional

equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
[10] C. Park, K. Ghasemi, S. G. Ghaleh and S. Jang, Approximate n-Jordan ∗-homomorphisms in C∗-algebras, J.

Comput. Anal. Appl. 15 (2013), 365-368.
[11] C. Park, A. Najati and S. Jang, Fixed points and fuzzy stability of an additive-quadratic functional equation, J.

Comput. Anal. Appl. 15 (2013), 452–462.
[12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),

297–300.
[13] S. Schin, D. Ki, J. Chang and M. Kim, Random stability of quadratic functional equations: a fixed point approach,

J. Nonlinear Sci. Appl. 4 (2011), 37–49.
[14] S. Shagholi, M. Bavand Savadkouhi and M. Eshaghi Gordji, Nearly ternary cubic homomorphism in ternary

Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106–1114.
[15] S. Shagholi, M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of ternary quadratic derivation on ternary

Banach algebras, J. Comput. Anal. Appl. 13 (2011), 1097–1105.
[16] D. Shin, C. Park and Sh. Farhadabadi, On the superstability of ternary Jordan C∗-homomorphisms, J. Comput.

Anal. Appl. 16 (2014), 964–973.
[17] D. Shin, C. Park and Sh. Farhadabadi, Stability and superstability of J∗-homomorphisms and J∗-derivations for

a generalized Cauchy-Jensen equation, J. Comput. Anal. Appl. 17 (2014), 125–134.
[18] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
[19] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[20] C. Zaharia, On the probabilistic stability of the monomial functional equation, J. Nonlinear Sci. Appl. 6 (2013),

51–59.
[21] S. Zolfaghari, Approximation of mixed type functional equations in p-Banach spaces, J. Nonlinear Sci. Appl. 3

(2010), 110–122.

1Research Institute for Natural Sciences,
Hanyang University, Seoul 04763,
Republic of Korea
E-mail address: baak@hanyang.ac.kr

2Department of Mathematics,
Daejin University, Kyunggi 11159,
Republic of Korea
E-mail address: jrlee@hdaejin.ac.kr

3Department of Mathematics,
University of Seoul, Seoul 02504,
Republic of Korea
E-mail address: dyshin@uos.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

710 CHOONKIL PARK et al 700-710



Differential equations associated with the generalized Euler
polynomials of the second kind
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Abstract : In this paper, we study linear differential equations arising from the generating functions

of the generalized Euler polynomials of the second kind. We give explicit identities for the second

kind Euler polynomials.

Key words : linear differential equations, the second kind Euler numbers, generalized Euler poly-

nomials of the second kind.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler num-

bers, Genocchi numbers, and the second kind Euler numbers(see [1, 2, 3, 4, 6, 7]). The generalized

Euler polynomials En(x)(n ≥ 0) of the second kind, were introduced by Ryoo(see [5, 6]). The

generalized Euler polynomials En(x) of the second kind are defined by the generating function:

F = F (t, x) =

(
2et

e2t + 1

)x

=
∞∑

n=0

En(x)
tn

n!
. (1.1)

We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined by

the relations(see [8])

(x)n =

n∑
k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k, (1.2)

respectively. Here (x)n = x(x− 1) · · · (x− n+1) denotes the falling factorial polynomial of order n.

The numbers S2(n,m) also admit a representation in terms of a generating function

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (1.3)

We also have
∞∑

n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.4)

If x is a variable, we use the following notation:

< x >k= x(x+ 1) · · · (x+ k − 1),

(
x

k

)
=

(x)k
k!

, (1 + t)x =
∞∑
k=0

(
x

k

)
tk. (1.5)

Nonlinear differential equations arising from the generating functions of special polynomials are

studied by many authors in order to give explicit identities for special polynomials(see [3, 4]).

In this paper, we study linear differential equations arising from the generating functions of the

generalized Euler polynomials of the second kind. We give explicit identities for the generalized

Euler polynomials of the second kind.
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2. Differential equations associated with the generalized Euler polynomials of the

second kind

In this section, we study linear differential equations arising from the generating functions of

the generalized Euler polynomials En(x) of the second kind.

Let

F = F (t, x) =

(
2et

e2t + 1

)x

. (2.1)

Then, by (2.1), we have

F (1) =
d

dt
F (t, x) =

d

dt

(
2et

e2t + 1

)x

= x

(
2et

e2t + 1

)x−1
(

2et

e2t + 1
−
(

2et

e2t + 1

)2

et

)
= xF (t, x)− xF (t, x+ 1)et,

F (2) =
d

dt
F (1) = xF (t, x)(1) − xF (1)(t, x+ 1)et − xF (t, x+ 1)et

= x
(
xF (t, x)− xF (t, x+ 1)et

)
− x

(
(x+ 1)F (t, x+ 1)− (x+ 1)F (t, x+ 2)et

)
et − xF (t, x+ 1)et,

= x2F (t, x)− (2x2 + 2x)F (t, x+ 1)et + x(x+ 1)F (t, x+ 2)e2t,

(2.2)

and

F (3) =
d

dt
F (2) = x2F (1)(t, x)− (2x2 + 2x)F (1)(t, x+ 1)et − (2x2 + 2x)(t, x+ 1)et

+ x(x+ 1)F (1)(t, x+ 2)e2t + 2x(x+ 1)F (t, x+ 2)e2t

= x3F (t, x)− (3x3 + 6x2 + 4x)F (t, x+ 1)et

− (3x3 + 9x2 + 6x)F (t, x+ 2)e2t − (x3 + 3x2 + 2x)F (t, x+ 3)e3t.

(2.3)

Continuing this process, we can guess that

F (N) =

(
d

dt

)N

F (t, x)

=

N∑
i=0

ai(N, x)F (t, x+ i)eit, (N = 0, 1, 2, . . .).

(2.4)

Taking the derivative with respect to t in (2.4), we have

F (N+1) =
dF (N)

dt

=

N∑
i=0

ai(N,x)ieitF (t, x+ i) +

N∑
i=0

ai(N, x)eitF (1)(t, x+ i)

=

N∑
i=0

ai(N,x)(x+ 2i)eitF (t, x+ i)−
N+1∑
i=1

ai−1(N, x)(x+ i− 1)eitF (t, x+ i).

(2.5)

On the other hand, by replacing N by N + 1 in (2.4), we get

F (N+1) =
N+1∑
i=0

ai(N + 1, x)eitF (t, x+ i) (2.6)

By (2.5) and (2.6), we have

N∑
i=0

ai(N, x)(x+ 2i)eitF (t, x+ i)−
N+1∑
i=1

ai−1(N, x)(x+ i− 1)eitF (t, x+ i)

=
N+1∑
i=0

ai(N + 1, x)eitF (t, x+ i).

(2.7)
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Comparing the coefficients on both sides of (2.7), we obtain

a0(N + 1, x) = xa0(N, x), aN+1(N + 1, x) = −(x+N)aN (N,x), (2.8)

and

ai(N + 1, x) = (x+ 2i)ai(N,x)− (x+ i− 1)ai−1(N, x), (1 ≤ i ≤ N). (2.9)

In addition, by (2.2) and (2.4), we get

F (0) = F (0)(t, x) = a0(0, x) = F (t, x). (2.10)

Thus, by (2.10), we obtain

a0(0, x) = 1. (2.11)

It is not difficult to show that

xF (t, x)− xF (t, x+ 1)et =
1∑

i=0

ai(1, x)e
itF (t, x+ i)

= a0(1, x)F (t, x) + a1(1, x)F (t, x+ 1)et.

(2.12)

Thus, by (2.12), we also get

a0(1, x) = x, a1(1, x) = −x. (2.13)

From (2.8), we note that

a0(N + 1, x) = xa0(N, x) = · · · = xN+1a0(0, x) = xN+1,

and
aN+1(N + 1, x) = −(x+N)aN (N, x) = · · ·

= (−1)N+1(x+N)(x+N − 1) · · · (x+ 1)x.
(2.14)

For i = 1, 2, 3 in (2.9), we get

a1(N + 1, x) = −x

N∑
k=0

(x+ 2 · 1)ka0(N − k, x),

a2(N + 1, x) = −(x+ 1)

N−1∑
k=0

(x+ 2 · 2)ka1(N − k, x),

and

a3(N + 1, x) = −(x+ 2)
N−2∑
k=0

(x+ 2 · 3)ka2(N − k, x).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, x) = −(x+ i− 1)
N+1−i∑
k=0

(x+ 2 · i)kai−1(N − k, x). (2.15)

Here, we note that the matrix ai(j, x)0≤i,j≤N is given by

1 x x2 x3 · · · xN

0 (−1) < x >1 · · · · · ·
0 0 (−1)2 < x >2 · · · · ·
0 0 0 (−1)3 < x >3 · · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · (−1)N < x >N
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Now, we give explicit expressions for ai(N + 1, x). By (2.14) and (2.15), we get

a1(N + 1, x) = −x

N∑
k1=0

(x+ 2)k1a0(N − k1, x)

= −x
N−1∑
k1=0

(x+ 2)k1xN−k1

a2(N + 1, x) = −(x+ 1)
N−1∑
k2=0

(x+ 2 · 2)k2a1(N − k2, x)

= (−1)2x(x+ 1)

N−1∑
k2=0

(x+ 2 · 2)k2(x+ 2)k1xN−k2−k1−1,

and
a3(N + 1)

= −(x+ 2)

N−2∑
k3=0

(x+ 4)k3a2(N − k3, x)

= (−1)3x(x+ 1)(x+ 2)

×
N−2∑
k3=0

N−k3−2∑
k2=0

N−k3−k2−2∑
k1=0

(x+ 2 · 3)k3(x+ 2 · 2)k2(x+ 2)k1xN−k3−k2−k1−2.

Continuing this process, we have

ai(N + 1)

= (−1)i < x >i

N−i+1∑
ki=0

N−ki−i+1∑
ki−1=0

· · ·
N−ki−···−k2−i+1∑

k1=0

i∏
l=1

(x+ 2l)klxN−ki−ki−1−···−k2−k1−i+1.
(2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 1. For N = 0, 1, 2, . . . , the linear functional equations

F (N) =

(
N∑
i=0

ai(N, x)

(
2et

e2t + 1

)i

eit

)
F

have a solution

F = F (t, x) =

(
2et

e2t + 1

)x

,

where

a0(N, x) = xN ,

aN (N, x) = (−1)N < x >N ,

ai(N) = (−1)i < x >i

N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

i∏
l=1

(x+ 2l)klxN−ki−ki−1−···−k2−k1−i,

(1 ≤ i ≤ N − 1).

From (1.1), we note that

F (N) =

(
d

dt

)N

F (t, x) =

∞∑
k=0

Ek+N (x)
tk

k!
. (2.17)
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From Theorem 1 and (2.17), we can derive the following equation:

∞∑
k=0

Ek+N (x)
tk

k!
= F (N)

=
N∑
i=0

ai(N, x)eit
(

2et

e2t + 1

)x+i

=
N∑
i=0

ai(N, x)

( ∞∑
k=0

ik
tk

k!

)( ∞∑
k=0

Ek(x+ i)
tk

k!

)

=
∞∑
k=0

(
N∑
i=0

k∑
l=0

(
k

l

)
ai(N, x)ik−lEl(x+ i)

)
tk

k!
.

(2.18)

By comparing the coefficients on both sides of (2.18), we obtain the following theorem.

Theorem 2. For k = 0, 1, . . . , and N = 0, 1, 2, . . . , we have

Ek+N (x) =

N∑
i=0

k∑
l=0

(
k

l

)
ai(N, x)ik−lEl(x+ i), (1.19)

a0(N, x) = xN ,

aN (N, x) = (−1)N < x >N ,

ai(N) = (−1)i < x >i

N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

i∏
l=1

(x+ 2l)klxN−ki−ki−1−···−k2−k1−i,

(1 ≤ i ≤ N − 1).

Let us take k = 0 in (2.19). Then, we have the following corollary.

Corollary 3. For N = 0, 1, 2, . . . , we have

EN (x) =
N∑
i=0

ai(N, x).

The first few of them are

E0(x) = 1,

E1(x) = 0, E(x)
2 = −x,

E3(x) = 0, E4(x) = 2x+ 3x2,

E5(x) = 0, E6(x) = −16x− 30x2 − 15x3,

E7(x) = 0, E8(x) = 272x+ 588x2 + 420x3 + 105x4,

E9(x) = 0, E10(x) = −7936x− 18960x2 − 16380x3 − 6300x4 − 945x5.

For N = 0, 1, 2, . . . , the linear functional equations

F (N) =

(
N∑
i=0

ai(N, x)

(
2et

e2t + 1

)i

eit

)
F

have a solution

F = F (t, x) =

(
2et

e2t + 1

)x

.
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Figure 1: The surface for the solution F (t, x)

Here is a plot of the surface for this solution. In Figure 1(left), we plot of the surface for this solution.

In Figure 1(right), we shows a higher-resolution density plot of the solution.

The author has no doubt that investigations along this line will lead to a new approach em-

ploying numerical method in the research field of the generalized Euler polynomials of the second

kind to appear in mathematics and physics(see [5, 6, 7]).
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Chlodowsky Variant of Bernstein-Schurer Operators Based on
(p,q)-Integers

Eser Gemikonakli · Tuba Vedi-Dilek

Abstract In this paper, we introduce the Chlodowsky variant of Bernstein-Schurer opera-
tors based on (p,q)-integers. By obtaining first few moments of these operators, we prove
well-known Korovkin-type approximation theorems in different function spaces. We also
compute the error of approximation by using modulus of continuity and Lipschitz-type
functionals. Moreover, we study the generalization of the Chlodowsky variant of Bernstein-
Schurer operators based on (p,q)-integers and investigate their approximations. Finally, nu-
merical results are presented in detail.

Keywords (p,q)-integers, q-Bernstein operators, q-Bernstein-Schurer operators.

1 Introduction

The classical Bernstein-Chlodowsky operators were defined by Chlodowsky [4] as

Cn ( f ;x) =
n

∑
r=0

f
( r

n
bn

)(n
r

)(
x
bn

)r(
1− x

bn

)n−r

,

where the function f is defined on [0,∞) and (bn) is a positive increasing sequence with

bn→ ∞ and
bn

n
→ 0 as n→ ∞.

In 2008, Karsh and Gupta [9] defined q-analogue of Chlodowsky operators as follows:

Cn ( f ;q;x) =
n

∑
k=0

f

(
[k]q
[n]q

bn

)[
n
k

]
q

(
x
bn

)k n−k−1

∏
s=0

(
1−qs x

bn

)
, 0≤ x≤ bn

where (bn) has the same properties of Bernstein-Chlodowsky operators.
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In 1987, Lupaş [11] defined the q-based Bernstein operators and obtained the Korovkin-
type approximation theorem. Over the past several years, there has been a considerable
amount of research on the q-based operators (see [2], [3], [7], [12], [13],[16],[17], [20], [21],
[22], [24]). To date, the focus of published work has been largely on (p,q) based operators.

In 2015, (p,q)-analogue of Bernstein operators were introduced by Mursaleen et al [14]
as

Bn,p,q ( f ;x) =
1

p
n(n−1)

2

n

∑
k=0

[
n
k

]
p,q

p
k(k−1)

2 xk
n−k−1

∏
s=0

(ps−qsx) f

(
[k]p,q

pk−n [n]p,q

)
, x ∈ [0,1] .

(1.1)
For 0 < q≤ p < 1, the (p,q)-numbers are given as [6]

[k]p,q =
pk−qk

p−q
.

For each k ∈ N0 the (p,q)-factorial is represented by

[k]p,q! =
{
[k] [k−1] ... [1] , k = 1,2,3, ...,
1 , k = 0

and (p,q)-binomial coefficients are defined as[
n
k

]
p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!

where n ≥ k ≥ 0. Note that, as it is introduced in [18], the operators are reduced to the
q-Bernstein operators for p = 1 in Eq.(1.1).

Recently, the (p,q)-analogue of Berntein-Schurer operators have been introduced by
Sidharth and Agrawal [1] as

B̄n,s ( f ; p,q;x) =
n+s

∑
k=0

p
k(k−1)

2 − (n+s)(n+s−1)
2

[
n+ s

k

]
p,q

xk (1− x)n+s−k
p,q f

(
pn−k [k]p,q

[n]p,q

)
where f ∈C [0,1+ s] ,s ∈ N0 and n ∈ N.

Corollary 1 If we use the properties of (p,q) integers, we have

[n]p,q = pn−1 [n]q/p

and [
n
k

]
p,q

= pk(n−k)
[

n
k

]
q/p

.

This paper is structured in the following way;
The next section introduces the Chlodowsky variant of Bernstein-Schurer operators based
on (p,q)-integers and investigate the moments of the operator. Section 3 discusses sev-
eral Korovkin-type theorems in different function spaces. In section 4, we obtain the order
of convergence of the Chlodowsky variant of Bernstein-Schurer operators based on (p,q)-
integers by means of Lipschitz class functions and the first modulus of continuity. Section 5
provides the generalization of the Chlodowsky variant of Bernstein-Schurer operators based
on (p,q)-integers and investigate their approximations. Finally, in section 6, numerical re-
sults to illustrate the contribution of the Chlodowsky Variant of Bernstein-Schurer Operators
based on (p; q)-integers are presented.
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2 Construction of the Operators

We construct the Chlodowsky variant of Bernstein-Schurer operators based on (p,q)-integers
as

C̄n,s ( f ; p,q;x) (2.1)

:=
n+s

∑
k=0

f

(
pn−k [k]p,q

[n]p,q
bn

)
p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
,

where n, s∈N, 0≤ x≤ bn and 0< q< p≤ 1. Note that, in case p=1 in Eq.(2.1), Chlodowsky
variant of Bernstein-Schurer reduces to the Chlodowsky variant of q-Bernstein-Schurer op-
erators.
First of all, we obtained the following lemma and used it throughout the paper.

Lemma 1 Let C̄n,s ( f ; p,q;x) be given in Eq.(2.1). Then we get,

(i) C̄n,s (1; p,q;x) = 1,

(ii) C̄n,s (t; p,q;x) =
[n+ s]p,q
ps [n]p,q

x,

(iii) C̄n,s
(
t2; p,q;x

)
=

p1−2sq[n+s−1]p,q[n+s]p,q

[n]2p,q
x2 +

pn−s−1[n+s]p,q
[n]2p,q

bnx,

(iv)C̄n,s ((t− x) ; p,q;x) =

(
[n+ s]p,q
ps [n]p,q

−1

)
x,

(v) C̄n,s
(
(t− x)2; p,q;x

)
=

(
p1−2sq [n+ s−1]p,q [n+ s]p,q

[n]2p,q
−2

[n+ s]p,q
[n]p,q

+1

)
x2+

pn−s−1 [n+ s]p,q
[n]2p,q

bnx.

Proof Applying the Corollary 1, we have

C̄n,s (1; p,q;x) =
n+s

∑
k=0

p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k

(1− x)n+s−k
p,q

=
n+s

∑
k=0

p
k(k−1)

2 − (n+s−1)(n+s)
2 pk(n+s−k)

[
n+ s

k

]
q/p

(
x
bn

)k(
1− x

bn

)n+s−k

q/p

= 1

when 0 <
q
p
≤ 1.

Using the linearity of the operators and Corollary 1 with some basic calculations, we
can obtain the assertions (ii), (iii). Then, from (i) and (ii), we have

C̄n,s ((t− x) ; p,q;x) = C̄n,s (t; p,q;x)− xC̄n,s (t; p,q;x)

=

(
[n+ s]p,q
ps [n]p,q

−1

)
x.

It is known that

C̄n,s
(
(t− x)2; p,q;x

)
= C̄n,s(x2; p,q;x)−2xC̄n,s(x; p,q;x)+ x2C̄n,s(1; p,q;x).

Hence, the result proposed is acquired.

3
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Lemma 2 For the second central moment we obtain the following estimate

sup
0≤x≤bn

C̄n,s
(
(t− x)2; p,q;x

)
≤

(
p1−2sq [n+ s−1]p,q [n+ s]p,q + pn−s−1 [n+ s]p,q

[n]2p,q
−2

[n+ s]p,q
[n]p,q

+1

)
b2

n.

3 Korovkin Type Approximation Theorem

In this section, we give Korovkin-type approximation theorem for the Chlodowsky variant
of Bernstein-Schurer operators based on (p,q)-integers. Let us denote Cρ as the space of all
continuous functions f, which satisfies the following condition.

| f (x)| ≤M f ρ (x) , −∞ < x < ∞.

Therefore, Cρ is a linear normed space with the norm

‖ f‖
ρ
= sup
−∞<x<∞

| f (x)|
ρ (x)

.

Theorem 1 (See [10] ) There exists a sequence of positive linear operators Qn, acting from
Cρ to Cρ , satisfying the conditions.

lim
n→∞
‖Qn (1;x)−1‖

ρ
= 0 (3.1)

lim
n→∞
‖Qn (φ ;x)−φ‖

ρ
= 0 (3.2)

lim
n→∞

∥∥Qn
(
φ

2;x
)
−φ

2∥∥
ρ
= 0 (3.3)

where φ (x) is continuous and increasing function on (−∞,∞) such that lim
x→±∞

φ (x) = ±∞

and ρ (x) = 1+φ 2 and there exists a function f ∗ ∈Cρ for which lim
n→∞
‖Qn f ∗− f ∗‖

ρ
> 0.

The following theorem has been given in [10] and can be used in the investigation of ap-
proximation properties of C̄n,s ( f ;q;x) in weighted spaces.

Theorem 2 ( See [10] ) The conditions Eqs.(3.1),(3.2) and (3.3) imply lim
n→∞
‖Qn f − f‖

ρ
= 0

for any function f belonging to the subset C0
ρ of Cρ for which

lim
|x|→∞

f (x)
ρ (x)

exists finitely.

Particularly, choosing ρ (x) = 1+ x2 and performing Theorem 2 to the operators

Qn ( f ; p,q;x) =
{

C̄n,s ( f ; p,q;x) if 0≤ x≤ bn
f (x) if x /∈ [0,bn]

,

we can state the following theorem.

4
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Theorem 3 For all f ∈C0
1+x2 we have

lim
n→∞

sup
0≤x≤bn

|Qn ( f ;qn;x)− f (x)|
1+ x2 = 0

provided that q := (qn), p := (pn) with 0 < qn < pn ≤ 1, lim
n→∞

qn = 1, lim
n→∞

pn = 1 and

lim
n→∞

bn

[n]
= 0 as n→ ∞.

Proof In view of Theorem 2, by using Lemma 1 (i), (ii) and (iii) we get the following
inequalities, respectively,

sup
0≤x≤bn

|Qn (t; pn,qn;x)− x|
1+ x2 ≤ sup

0≤x≤bn

(
[n+s]p,q
ps[n]p,q

−1
)

x

(1+ x2)

≤

∣∣∣∣∣ [n+ s]p,q
ps [n]p,q

−1

∣∣∣∣∣→ 0

and

sup
0≤x≤bn

∣∣Qn
(
t2; pn,qn;x

)
− x2

∣∣
1+ x2

≤ sup
0≤x≤bn

∣∣∣∣( [n+s]p,q
[n]p,q

−1
)2

x2 +
pn−s−1[n+s]p,q

[n]2p,q
bnx
∣∣∣∣

(1+ x2)

≤

∣∣∣∣∣∣
(
[n+ s]p,q
[n]p,q

−1

)2

+
pn−s−1 [n+ s]p,q

[n]2p,q
bn

∣∣∣∣∣∣→ 0

is satisfied since lim
n→∞

qn = 1, lim
n→∞

pn = 1 and
bn

[n]
→ 0 as n→ ∞.

Lemma 3 Let B be a positive real number independent of n and f be a continuous function
which vanishes on [B,∞]. Assume that q := (qn), p := (pn) with 0 < qn < pn ≤ 1, lim

n→∞
pn

n =

N < ∞, lim
n→∞

qn
n = K < ∞ and lim

n→∞

b2
n

[n]
= 0. Then we have

lim
n→∞

sup
0≤x≤bn

∣∣C̄n,s ( f ; pn,qn;x)− f (x)
∣∣= 0.

Proof From the hypothesis on f , one can write | f (x)| ≤ M (M > 0). For arbitrary small
ε > 0, we have∣∣∣∣∣ f

(
pn−k [k]p,q

[n]p,q
bn

)
− f (x)

∣∣∣∣∣< ε +
2M
δ 2

(
pn−k [k]p,q

[n]p,q
bn− x

)2

,

where x ∈ [0,bn] and δ = δ (ε) are independent of n. With the help of the following equality

n+s

∑
k=0

(
pn−k [k]p,q

[n]p,q
bn− x

)2

p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
= C̄n,s ( f ; p,q;x) ,

5
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we get by Theorem 3 and Lemma 1 that

sup
0≤x≤bn

∣∣C̄n,s ( f ; p,q;x)− f (x)
∣∣

≤ ε +
2M
δ 2

[(
p1−2sq [n+ s−1]p,q [n+ s]p,q

[n]2p,q
−2

[n+ s]p,q
[n]p,q

+1

)
b2

n +
pn−s−1 [n+ s]p,q

[n]2p,q
b2

n

]
.

Since
b2

n

[n]
→ 0 as n→ ∞, we have the desired result.

4 Order of Convergence

In this section, we compute the rate of convergence of the operators in terms of the elements
of Lipschitz classes and the modulus of continuity of the function. Now, we give the rate of
convergence of the operators C̄n,s in terms of the Lipschitz class LipM (γ) , for 0 < γ ≤ 1.
Let CB[0,∞) denotes the space of bounded continuous functions on [0,∞). A function f ∈
CB[0,∞) belongs to LipM (γ) if

| f (t)− f (x)| ≤M |t− x|γ (t,x ∈ [0,∞))

is satisfied.

Theorem 4 Let f ∈ LipM(γ)

|C̄n,s ( f ; p,q;x)− f (x)| ≤M (λn (x))
γ/2

where λn,q (x)=

(
p1−2sq [n+ s−1]p,q [n+ s]p,q

[n]2p,q
−2

[n+ s]p,q
[n]p,q

+1

)
x2+

pn−s−1 [n+ s]p,q
[n]2p,q

bnx.

Proof Considering the monotonicity and the linearity of the operators, and taking into ac-
count that f ∈ LipM(γ)

|C̄n,s ( f ; p,q;x)− f (x)|

= |
n+s

∑
k=0

( f (pn−k [k]p,q
[n]p,q

bn)− f (x)p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
|

≤
n+s

∑
k=0

∣∣∣∣∣ f (pn−k [k]p,q
[n]p,q

bn)− f (x)

∣∣∣∣∣ p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)

≤ M
n+s

∑
k=0
|pn−k [k]p,q

[n]p,q
bn− x|γ p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
.

Using Hölder’s inequality with p =
2
γ

and q =
2

2− γ
, we get by the statement (Lemma 2)

|C̄n,s ( f ; p,q;x)− f (x)|

≤M
n+s

∑
k=0

{
[(pn−k [k]p,q

[n]p,q
bn− x)2 p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
]

γ

2

× [p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
]

2−γ

2

}

6
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≤M

[
{

n+s

∑
k=0

[(pn−k [k]p,q
[n]p,q

bn− x)2 p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
]}

γ

2

× {
n+s

∑
k=0

[p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
]}

2−γ

γ

]

= M[C̄n,s

(
(t− x)2 ; p,q;x

)
]

γ

2

≤M(λn,q (x))
γ

2 .

Now we give the rate of convergence of the operators by means of the modulus of
continuity which is denoted by ω( f ;δ ). Let f ∈CB[0,∞) and x ≥ 0. Then the definition of
the modulus of continuity of f is given by

ω( f ;δ ) = max
|t−x|≤δ

t,x∈[0,∞)

| f (t)− f (x)|. (4.1)

It is following that for any δ > 0 the following inequality

| f (x)− f (y)| ≤ ω ( f ;δ )

(
|x− y|

δ
+1
)

(4.2)

is satisfied ([5]).

Theorem 5 If f ∈CB [0,∞), we have∣∣C̄n,s ( f ; p,q;x)− f (x)
∣∣≤ 2ω

(
f ;
√

λn,p,q (x)
)

where ω ( f ; ·) is modulus of continuity of f which is defined in Eq.(4.1) and λn,q (x) be the
same as in Theorem 4.

Proof By triangular inequality, we get∣∣C̄n,s ( f ; p,q;x)− f (x)
∣∣

=

∣∣∣∣∣n+s

∑
k=0

f (pn−k [k]p,q
[n]p,q

bn)p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
− f (x)

∣∣∣∣∣
≤

n+s

∑
k=0

∣∣∣∣∣( f (pn−k [k]p,q
[n]p,q

bn)− f (x)

∣∣∣∣∣ p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
.

Now, using Eq.(4.2) and Hölder inequality, we can write∣∣C̄n,s ( f ; p,q;x)− f (x)
∣∣

≤
n+s

∑
k=0


∣∣∣pn−k [k]p,q

[n]p,q
bn− x

∣∣∣
λ

+1

ω ( f ;λ ) p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)

= ω ( f ;λ )
n+s

∑
k=0

p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)

+
ω ( f ;λ )

λ

n+s

∑
k=0

∣∣∣∣∣pn−k [k]p,q
[n]p,q

bn− x

∣∣∣∣∣ p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)

7
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= ω ( f ;λ )

+
ω ( f ;λ )

λ

n+s

∑
k=0

(
pn−k [k]p,q

[n]p,q
bn− x

)2

p
k(k−1)

2 − (n+s−1)(n+s)
2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
1/2

= ω ( f ;λ )+
ω ( f ;λ )

λ

{
C̄n,s

(
(t− x)2

)
; p,q;x

}1/2
.

Now, choosing λn,q(x) same as in Theorem 4, then we have

∣∣C̄n,s ( f ; p,q;x)− f (x)
∣∣≤ 2ω

(
f ;
√

λn,p,q (x)
)
.

5 Generalization of the Chlodowsky Variant of q-Bernstein-Schurer-Stancu
Operators

In this section, we introduce generalization of Chlodowsky variant of Bernstein-Schurer
operators based on (p,q)-integers and this provides us to obtain approximate continuous
functions on more general weighted spaces. For x ≥ 0, consider any continuous function
ω (x)≥ 1 and define

G f (t) = f (t)
1+ t2

ω (t)
.

Let us consider the generalization of the C̄n,s ( f ; p,q;x) as follows

Ln ( f ; p,q;x)

=
ω (x)
1+ x2

n+s

∑
k=0

G f

(
pn−k [k]p,q

[n]p,q
bn

)
p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]
p,q

(
x
bn

)k n+s−k−1

∏
j=0

(
p j−q j x

bn

)
,

where 0 ≤ x ≤ bn and (bn) has the same properties of Chlodowsky variant of q-Bernstein-
Schurer-Stancu operators.

Theorem 6 For the continuous functions satisfying

lim
x→∞

f (x)
ω (x)

= K f < ∞,

we have

lim
n→∞

sup
0≤x≤bn

|Ln ( f ; p,q;x)− f (x)|
ω (x)

= 0.

Proof Clearly,

Ln ( f ; p,q;x)− f (x)

=
ω (x)
1+ x2

(
n+p

∑
k=0

G f

(
pn−k [k]p,q

[n]p,q
bn

)
p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]
p,q

(
x
bn

)k

×
n+s−k−1

∏
j=0

(
p j−q j x

bn

)
−G f (x)

)
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thus

sup
0≤x≤bn

|Ln ( f ; p,q;x)− f (x)|
ω (x)

= sup
0≤x≤bn

∣∣C̄n,s
(
G f ; p,q;x

)
−G f (x)

∣∣
1+ x2 .

By using | f (x)| ≤M f ω (x) and continuity of the function f , we get that
∣∣G f (x)

∣∣≤M f
(
1+ x2

)
for x≥ 0 and G f (x) is continuous function on [0,∞). Thus, from the Theorem 1 we get the
result.

Finally note that, the operators Ln ( f ; p,q;x) reduces to C̄n,s
(
G f ; p,q;x

)
by taking ω(x) =

1+ x2.

6 Numerical Results and Discussions

In order to show the effectiveness and accuracy of C̄n,s ( f ; p,q;x) to f(x) with different values
of parameters, numerical results are presented in this section. Sensitivity analysis is carried
out to minimise the error of approximation of C̄n,s ( f ; p,q;x) to the function f (x) = 1−
cos(4ex) for minimum n and s values by taken into account different p and q values.

In Figure 1, C̄n,s ( f ; p,q;x) results are given as a function of x for different n values. To
minimise the error of the approximation of C̄n,s ( f ; p,q;x) to f (x), two different sequences

bn = 1+ log(
n

n+12
) and bn =

n2 +4
n2 +18n

are considered respectively. It is evident that the

C̄n,s( f ; p;q;x) converges to f (x) for both sequences as the value of q and p approaches to-

wards 1, while s = 2. However, using bn = 1+ log(
n

n+12
) for C̄n,s ( f ; p,q;x) rather than

bn =
n2 +4

n2 +18n
results better approximation results. Therefore, the effect of increasing n

further than 20 is less evident for x < 0.5 for the convergence of C̄n,s ( f ; p,q;x) to the func-
tion f (x). On the other hand, it is required to increase the value of n further than 50 for
x > 0.5 in order to have more accurate results for each sequences. Comparative results are
given in Table 1 and Table 2, for the errors of the approximation of C̄n,s ( f ; p,q;x) to f (x),
considering each sequences for different n values.

x f (x)
∣∣ f (x)−C̄20,2 ( f ; p,q;x)

∣∣ ∣∣ f (x)−C̄30,2 ( f ; p,q;x)
∣∣ ∣∣ f (x)−C̄50,2 ( f ; p,q;x)

∣∣ ∣∣ f (x)−C̄80,2 ( f ; p,q;x)
∣∣

0.1 1.2876 0.0460 0.0310 0.0190 0.0125
0.2 0.8276 0.0720 0.0432 0.0207 0.0090
0.3 0.3657 0.0543 0.0200 0.0049 0.0172
0.4 0.0494 0.0180 0.0411 0.0544 0.0595
0.5 0.0482 0.1369 0.1224 0.1050 0.0933
0.6 0.4642 0.2913 0.1998 0.1280 0.0898
0.7 1.1997 0.4942 0.2723 0.1210 0.0489
0.8 1.8665 0.7628 0.3627 0.1242 0.0224
0.9 1.9157 0.9275 0.3925 0.1406 0.0521

Table 1 Errors of approximation C̄n,s ( f ; p,q;x) to f (x)
(

s = 2,bn =
n2 +4

n2 +18n
, p = 1,q = 0.98

)

Figure 2 demonstrates the convergence of C̄n,s ( f ; p,q;x) to f (x) but this time consid-

ering different p and q values, when n = 50 for bn = 1+ log(
n

n+12
). In Figures 2(a), and

2(b), as q values are increased, the errors of the approximation of C̄n,s ( f ; p,q;x) to f (x) is

9
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(a) n = 20 (b) n = 30

(c) n = 50 (d) n = 80

Fig. 1 Convergence of C̄n,s ( f ; p,q;x)for different n values

x f (x)
∣∣ f (x)−C̄20,2 ( f ; p,q;x)

∣∣ ∣∣ f (x)−C̄30,2 ( f ; p,q;x)
∣∣ ∣∣ f (x)−C̄50,2 ( f ; p,q;x)

∣∣ ∣∣ f (x)−C̄80,2 ( f ; p,q;x)
∣∣

0.1 1.2876 0.0459 0.0317 0.0196 0.0130
0.2 0.8276 0.0721 0.0427 0.0204 0.0089
0.3 0.3657 0.0546 0.0156 0.0088 0.0198
0.4 0.0494 0.0173 0.0520 0.0644 0.0663
0.5 0.0482 0.1358 0.1390 0.1203 0.1040
0.6 0.4642 0.2903 0.2187 0.1412 0.0993
0.7 1.1997 0.4947 0.2650 0.1157 0.0461
0.8 1.8665 0.7665 0.3110 0.0825 0.0045
0.9 1.9157 0.9361 0.2897 0.0640 0.0038

Table 2 Errors of approximation C̄n,s ( f ; p,q;x) to f (x)
(

s = 2,bn = 1+ log(
n

n+12
), p = 1,q = 0.98

)

minimised for x< 0.5 and x> 0.8 for any given p values. On the other hand, the results show
that decreasing q values has an effect on the convergence of C̄n,s ( f ; p,q;x) which provide
better approximate results for x > 0.6 and x < 0.8 (See Table 2).

(a) p = 1 (b) p = 0.8

Fig. 2 Convergence of C̄n,s ( f ; p,q;x) for different p and q values

10
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Abstract

This paper study the dynamical behavior of a general HIV-1 infection model under the effect of Highly

active antiretroviral therapies (HAART). The model includes three types of infected cells (i) long-lived

productively infected cells which live for long time and creat small amount of HIV-1 particles, (ii) latently

infected cells which do not creat HIV-1 until they have been activated (iii) short-lived productively infected

cells which live for long time and creat large amount of HIV-1. The model incorporates humoral immune

response and general nonlinear forms for the incidence rate of infection, the generation and removal rates

of all compartments. The nonnegativity and boundedness of the solutions of the model as well as global

stability of the steady states are studied. The global stability are established using Lyapunov method. Using

MATLAB we conduct some numerical simulations to confirm our results.

Keywords: HIV-1 infection; HAART; global stability; humoral immune response; latency; viral reservoirs

1 Introduction

Human immunodeficiency virus type 1 (HIV-1) infects the CD4+ T cells which play the central role in the

immune system of the human body. HIV-1 causes gradual depletion in the concentration of the uninfected CD4+

T cells which decreases the efficiency of the immune system against other infections. During the last decades,

substantial efforts have been paid to propose treatment strategies for HIV-1 [1], [2]. Highly active antiretroviral

therapies (HAART) which combines two classes of antiviral drugs, reverse transcriptase inhibitor (RTI) and

protease inhibitor (PI), can rapidly decrease the concentration of the HIV-1 and increase the concentration of

the healthy CD4+ T cells in the plasma. However, HAART can not eradicate the HIV-1 completely due to the

presence of viral reservoirs such as latently infected cells. Mathematical modeling and analysis of the dynamics

of HIV-1 are helpful in understanding the virus dynamics and improving diagnosis and treatment strategies

[3]-[23]. Modeling the HIV-1 dynamics with latent infection has been studied by several researchers [24]-[29].

The HIV-1 dynamics model with latently infected cells consists of four compartments: uninfected CD4+ T cells,

latently infected cells, actively infected cells and free HIV-1 particles [24].

ẋ = ρ− dx− (1− εr)βxv, (1)

ẇ = h(1− εr)βxv − (a1 + δ1)w, (2)

ẏ = (1− h)(1− εr)βxv + a1w − δ2y, (3)

v̇ = Nδ2y − δ4v, (4)

where x, w, y, v represent the concentrations of the uninfected CD4+ T cells, latently infected cells, actively

infected cells and free HIV-1 particles, respectively. ρ > 0 is the replenished rate of uninfected CD4+ T cells from
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body’s sources such as bone marrow and thymus. The parameters d, δ1, δ2 and δ4 are the death rate constants

of the uninfected CD4+ T cells, latently infected cells, actively infected cells and HIV-1 particles, respectively.

The uninfected CD4+ T cells become infected by viruses with infectivity β. The efficacy of the RTI drugs is

given by εr, where εr ∈ [0, 1]. The latently infected cells are activated at rate a1w. The parameter N is the

average number of HIV-1 particles generated in the lifetime of the actively infected. A fraction h ∈ (0, 1) of

infection events result in latent infection. The global stability analysis of model (1)-(4) has been studied by

Wang et al. in [26].

As reported in [24], [2] and [30] three are two types of productively infected cells, the first is short-lived

productively infected cells which live for short time and produce hight numbers of HIV-1 particles, and the

second is the long-lived productively infected cells which live for long time and produce small numbers of HIV-

1 particles. Long-lived productively infected cells can be seen as another reservoirs which a major obstacle

to eliminate the HIV-1 completely by HAART. Model (1)-(4) has been modified by including: (i) mitotic

proliferation of the uninfected CD4+ T cells, (ii) three types of infected cells, latently infected cells (w), short-

lived productively infected cells (y), and long-lived productively infected cells (u) [30].

ẋ = ρ− dx+ px

(
1− x

xmax

)
− (1− εr)(β1 + β2 + β3)xv, (5)

ẇ = (1− εr)β1xv − (a1 + δ1)w, (6)

ẏ = (1− εr)β2xv + a1w − δ2y, (7)

u̇ = (1− εr)β3xv − δ3u, (8)

v̇ = (1− εp)Nδ2y + (1− εp)Mδ3u− δ4v. (9)

Uninfected CD4+ T cells can be produced by proliferation of existing healthy cells in the body. The parameter

p > 0 is the maximum proliferation rate of uninfected cells. The parameter xmax > 0 is the maximum level

of uninfected cell concentration in the body. If the concentration arrives at xmax, it should decreases. The

parameters δ2 and δ3 are the death rate constants of the short-lived productively infected cells and long-lived

productively infected cells, respectively. The uninfected CD4+ T cells become infected by viruses with infectivity

β1 + β2 + β3. The efficacy of the PI drugs is given by εp, where εp ∈ [0, 1]. The parameter M is the average

number of HIV-1 particles generated in the lifetime of the long-lived productively infected cells.

In model (5)-(9) we note the following (i) the infection rate is given by bilinear incidence which may not

describe the virus dynamics accurately, (ii) the death rate of all compartments, the production rate of viruses

and the latent-to-active transmission rate are given by linear functions, however, these rates are generally not

known, (iii) the effect of immune response has been neglecting. The aim of this paper is to propose an HIV-

1 infection model which improves model (5)-(9) by taking into account the humoral immune response and

by assuming that the intrinsic growth rate of uninfected CD4+ T cells as well as the death rate of HIV-1 and

infected cells are given by general nonlinear functions. We study the qualitative behavior of the proposed model.

The existence and global stability of all the steady states of the model is established. Lyapunov functionals and

LaSalle’s invariance principle are used to prove the global stability of the model.
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2 Mathematical HIV-1 dynamics model

Based on the above discussion we formulate a general nonlinear HIV dynamics model with humoral immunity.

The model can be considered as a generalization of several existing HIV-1 models.

ẋ = π(x)− (1− εr)(β1 + β2 + β3)ξ(x, v), (10)

ẇ = (1− εr)β1ξ(x, v)− (a1 + δ1)g1(w), (11)

ẏ = (1− εr)β2ξ(x, v) + a1g1(w)− δ2g2(y), (12)

u̇ = (1− εr)β3ξ(x, v)− δ3g3(u), (13)

v̇ = (1− εp)Nδ2g2(y) + (1− εp)Mδ3g3(u)− δ4g4(v)− qg4(v)g5(z), (14)

ż = rg4(v)g5(z)− δ5g5(z), (15)

where z represents the concentration of the B cells. Function π(x) represents the intrinsic growth rate of

uninfected CD4+ T cells accounting for both production and natular mortality. The viruses are neutralized at

rate qg5(z)g4(v) and die at rate δ4g4(v), where q and δ4 are positive constants. The B cells are activated at rate

rg5(z)g4(v) and die at rate δ5g5(z). All the parameters are positive. Let us define βi = (1 − εr)βi, i = 1, 2, 3,

N = (1 − εp)N and M = (1 − εp)M . Functions π, ξ, gi, i = 1, ..., 5 are continuously differentiable, moreover,

they satisfy some hypotheses:

(H1). (i) there exists x0 such that π(x0) = 0, π(x) > 0 for x ∈ [0, x0),

(ii) π′(x) < 0 for x ∈ (0,∞),

(iii) there are b > 0 and b > 0 such that π(x) ≤ b− bx for x ∈ [0,∞).

(H2). (i) ξ(x, v) > 0 and ξ(0, v) = ξ(x, 0) = 0 for x, v ∈ (0,∞),

(ii) ∂ξ(x,v)
∂x > 0, ∂ξ(x,v)∂v > 0 and ∂ξ(x,0)

∂v > 0 for all x, v ∈ (0,∞),

(iii)

(
∂ξ(x, 0)

∂v

)′
> 0 for x ∈ (0,∞).

(H3). (i) gj(η) > 0 for η ∈ (0,∞), gj(0) = 0, j = 1, ..., 5

(ii) g′j(η) > 0 for η ∈ (0,∞), j = 1, 2, 3, 5, g′4(η) > 0, for η ∈ [0,∞),

(iii) there are αj > 0, j = 1, ..., 5 such that gj(η) ≥ αjη for η ∈ [0,∞).

(H4). ∂
∂v

(
ξ(x, v)

g4(v)

)
≤ 0 for v ∈ (0,∞).

3 Basic properties

In this section we study the basic properties of model (10)-(15). The non-negativity and boundedness of the

solutions of the model will be established in the next theorem:

Theorem 1. Let Hypotheses (H1)-(H3) be hold true, then there exist a set

∆ =
{

(x,w, y, u, v, z) ∈ R6
≥0 : 0 ≤ x,w, y, u ≤ κ1, 0 ≤ v ≤ κ2, 0 ≤ z ≤ κ3

}
which is positively invariant with respect to system (10)-(15), where κ1, κ2 and κ3 are positive numbers.

Proof. First, we show that R6
≥0 is positively invariant for system (10)-(15) as:

ẋ |x=0= π(0) > 0,

ẇ |w=0= β1ξ(x, v) ≥ 0 for x, v ∈ [0,∞),

ẏ |y=0= β2ξ(x, v) + a1g1(w) ≥ 0 for x,w, v ∈ [0,∞),

u̇ |u=0= β3ξ(x, v) ≥ 0 for x, v ∈ [0,∞),

v̇ |v=0= Nδ2g2(y) +Mδ3g3(u) ≥ 0 for y, u ∈ [0,∞),

ż |z=0= 0.
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Hence, all the state variables of system (10)-(15) are non-negative.

Let T1(t) = x(t) + w(t) + y(t) + u(t), then

Ṫ1 = π(x)− δ1g1(w)− δ2g2(y)− δ3g3(u)

≤ b− bx− δ1α1w − δ2α2y − δ3α3u.

≤ b− σ1 (x+ w + y + u) = b− σ1T1,

where σ1 = min{b, δ1α1, δ2α2, δ3α3}. Hence, T1(t) ≤ κ1, if T1(0) ≤ κ1, where κ1 =
b

σ1
. The non-negativity of

x(t), w(t), y(t) and u(t) implies 0 ≤ x(t), w(t), y(t), u(t) ≤ κ1, if 0 ≤ x(0) +w(0) + y(0) +u(0) ≤ κ1. Moreover,

we let T2(t) = v(t) + q
r z(t). Then

Ṫ2 = Nδ2g2(y) +Mδ3g3(u)− δ4g4(v)− qδ5
r
g5(z)

≤ Nδ2g2(κ1) +Mδ3g3(κ1)− δ4α4v −
qδ5
r
α5z

≤ Nδ2g2(κ1) +Mδ3g3(κ1)− σ2T2,

where σ2 = min{δ4α4, δ5α5}. Hence, T2(t) ≤ κ2 if T2(0) ≤ κ2, where κ2 =
Nδ2g2(κ1) +Mδ3g3(κ1)

σ2
. The

non-negativity of v(t) and z(t) implies 0 ≤ v(t) ≤ κ2 and 0 ≤ z(t) ≤ κ3 if 0 ≤ v(0) + q
r z(0) ≤ κ2, where

κ3 =
rκ2
q
.

Theorem 2. Suppose that Hypotheses (H1)-(H4) are valid, then there exist two bifurcation parameters R0

and R1 with R0 > R1 > 0 such that

(i) if R0 ≤ 1, then the system has only one positive steady state S0 ∈ ∆,

(ii) if R1 ≤ 1 < R0, then the system has only two positive steady states S0 ∈ ∆ and S1 ∈ ∆,

(iii) if R1 > 1, then the system has three positive steady states S0 ∈ ∆, S1 ∈ ∆ and S2 ∈
◦
∆.

Proof. Let S(x,w, y, u, v, z) be any steady state of (10)-(15) satisfying the following equations:

0 = π(x)− (β1 + β2 + β3)ξ(x, v), (16)

0 = β1ξ(x, v)− (a1 + δ1)g1(w), (17)

0 = β2ξ(x, v) + a1g1(w)− δ2g2(y), (18)

0 = β3ξ(x, v)− δ3g3(u), (19)

0 = Nδ2g2(y) +Mδ3g3(u)− δ4g4(v)− qg4(v)g5(z), (20)

0 = rg4(v)g5(z)− δ5g5(z). (21)

From Eq. (21) we have two possible solutions, g5(z) = 0 and g4(v) = δ5/r. Let us consider the case g5(z) = 0,

then from Hypothese (H3) we get z = 0. Hypothese (H3) implies that g−1i , i = 1, ..., 5 exist, strictly increasing

and g−1i (0) = 0. Let us define

θ(x) = g−11

(
β1

β(a1 + δ1)
π(x)

)
, ψ(x) = g−12

(
a1β1 + (a1 + δ1)β2

δ2β(a1 + δ1)
π(x)

)
,

µ(x) = g−13

(
β3

δ3β
π(x)

)
, `(x) = g−14

(
γ

β
π(x)

)
, (22)

where β = β1 + β2 + β3 and γ = N(a1β1+(a1+δ1)β2)+Mβ3(a1+δ1)
δ4(a1+δ1)

. It follows from Eqs. (16)-(21) that:

w = θ(x), y = ψ(x), u = µ(x), v = `(x). (23)

Obviousely, θ(x), ψ(x), µ(x), `(x) > 0 for x ∈ [0, x0) and θ(x0) = ψ(x0) = µ(x0) = `(x0) = 0. From Eqs. (16),

(22) and (23) we obtain

γξ(x, `(x))− g4(`(x)) = 0. (24)
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Eq. (24) admits a solution x = x0 which gives the infection-free steady state S0(x0, 0, 0, 0, 0, 0). Let

Ψ1(x) = γξ(x, `(x))− g4(`(x)) = 0.

It is clear from Hypotheses (H1) and (H2) that, Ψ1(0) = −g4(`(0)) < 0 and Ψ1(x0) = 0. Moreover,

Ψ′1 (x0) = γ

[
∂ξ(x0, 0)

∂x
+ `′(x0)

∂ξ(x0, 0)

∂v

]
− g′4(0)`′(x0).

We note from Hypothese (H2) that ∂ξ(x0,0)
∂x = 0. Then,

Ψ′1 (x0) = `′(x0)g′4(0)

(
γ

g′4(0)

∂ξ(x0, 0)

∂v
− 1

)
.

From Eq. (22), we get

Ψ′1 (x0) =
γ

β
π′(x0)

(
γ

g′4(0)

∂ξ(x0, 0)

∂v
− 1

)
.

Therefore, from Hypothese (H1), we have π′(x0) < 0. Therefore, if γ
g′4(0)

∂ξ(x0,0)
∂v > 1, then Ψ′1(x0) < 0 and there

exists x1 ∈ (0, x0) such that Ψ1(x1) = 0. Hypotheses (H1)-(H3) imply that

w1 = θ(x1) > 0, y1 = ψ(x1) > 0, u1 = µ(x1) > 0, v1 = `(x1) > 0. (25)

It means that, a humoral-inactivated infection steady state S1(x1, w1, y1, u1, v1, 0) exists when γ
g′4(0)

∂ξ(x0,0)
∂v > 1.

Let us define

R0 =
γ

g′4(0)

∂ξ(x0, 0)

∂v
,

The other solution of Eq. (21) is g4(v2) =
δ5
r

which yields v2 = g−14

(
δ5
r

)
> 0. Substituting v = v2 in Eq. (16)

and letting Ψ2(x) = π(x) − βξ(x, v2) = 0. According to Hypotheses (H1) and (H2), Ψ2 is strictly decreasing,

Ψ2(0) = π(0) > 0 and Ψ2(x0) = −βξ(x0, v2) < 0. Thus, there exists a unique x2 ∈ (0, x0) such that Ψ2(x2) = 0.

It follows from Eqs. (20) and (23) that,

w2 = θ(x2) > 0, y2 = ψ(x2) > 0, u2 = µ(x2) > 0, v2 = g−14

(
δ5
r

)
> 0,

z2 = g−15

(
δ4
q

(
γ
ξ(x2, v2)

g4(v2)
− 1

))
.

Thus, z2 > 0 when γ ξ(x2,v2)
g4(v2)

> 1. Now we define the paramater R1 as:

R1 = γ
ξ(x2, v2)

g4(v2)
.

If R1 > 1, then z2 = g−15

(
δ4
q (R1 − 1)

)
> 0 and exists a humoral-activated infection steady state

S2(x2, w2, y2, u2, v2, z2).

Now we show that S0 ∈ ∆, S1 ∈ ∆ and S2 ∈
◦
∆. Clearly, S0 ∈ ∆. Now we show that S1 ∈ ∆. We have

x1 ∈ (0, x0), then from Hypothese (H1) we obtain

0 = π(x0) < π(x1) ≤ b− bx1.

It follows that

0 < x1 <
b

b
≤ b

σ1
= κ1.
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From Hypothese (H3) and Eqs. (22)-(23), we get the following:

α1w1 ≤ g1(w1) =
β1

β(a1 + δ1)
π(x1) <

β1

β(a1 + δ1)
π(0) <

β1b

β(a1 + δ1)

⇒ 0 < w1 <
β1b

βα1(a1 + δ1)
<

β1b

βα1δ1
<

b

α1δ1
≤ κ1,

α2y1 ≤ g2(y1) =
a1β1 + (a1 + δ1)β2

δ2β(a1 + δ1)
π(x1) <

a1β1 + (a1 + δ1)β2

δ2β(a1 + δ1)
π(0)

≤ (a1β1 + (a1 + δ1)β2)b

δ2β(a1 + δ1)
<

(a1 + δ1)(β1 + β2)b

δ2β(a1 + δ1)
<

b

δ2

⇒ 0 < y1 <
b

α2δ2
≤ κ1,

α3u1 ≤ g3(u1) =
β3

δ3β
π(x1) <

β3

δ3β
π(0) <

β3b

δ3β
<

b

δ3

⇒ 0 < u1 <
b

α3δ3
≤ κ1,

Eq. (20) implies that

δ4α4v1 ≤ δ4g4(v1) = Nδ2g2(y1) +Mδ3g3(u1) < Nδ2g2(κ1) +Mδ3g3(κ1)

⇒ 0 < v1 <
Nδ2g2(κ1) +Mδ3g3(κ1)

δ4α4
≤ κ2.

We have z1 = 0 then, S1 ∈ ∆.

It is clear that 0 < x2, w2, y2, u2 < κ1. Next we show that 0 < v2 < κ2 and 0 < z2 < κ3 when R1 > 1. From

the steady state conditions of S2 we have,

δ4g4(v2) + qg4(v2)g5(z2) = Nδ2g2(y2) +Mδ3g3(u2).

Then if R1 > 1 we get

δ4g4(v2) < Nδ2g2(y2) +Mδ3g3(u2)

⇒ δ4α4v2 < Nδ2g2(κ1) +Mδ3g3(κ1)

⇒ 0 < v2 <
Nδ2g2(κ1) +Mδ3g3(κ1)

δ4α4
≤ κ2,

and

qg4(v2)g5(z2) ≤ Nδ2g2(y2) +Mδ3g3(u2)

⇒ qδ5
r
α5z2 ≤ Nδ2g2(κ1) +Mδ3g3(κ1)

⇒ 0 < z2 <
r [Nδ2g2(κ1) +Mδ3g3(κ1)]

qδ5α5
≤ κ3.

Then, S2 ∈
◦
∆. Clearly from Hypotheses (H2) and (H4), we have

R1 = γ
ξ(x2, v2)

g4(v2)
≤ γ lim

v→0+

ξ(x2, v)

g4(v)
=

γ

g′4(0)

∂ξ(x2, 0)

∂v
<

γ

g′4(0)

∂ξ(x0, 0)

∂v
= R0. �

4 Global properties

In this section, we established the global stability of the three steady states by of system (10)-(15) by constructing

suitable Lyapunov functions.
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Theorem 3. Suppose that Hypotheses (H1)-(H4) are valid and R0 ≤ 1, then S0 is globally asymptotically

stable in ∆.

Proof. Define

W0 = x− x0 −
x∫

x0

lim
v→0+

ξ(x0, v)

ξ(η, v)
dη + k1w + k2y + k3u+ k4v + k5z, (26)

where

β1k1 + β2k2 + β3k3 = β, (a1 + δ1)k1 = a1k2,

k2 = Nk4, k3 = Mk4, qk4 = rk5. (27)

The solution of Eqs. (27) is given by

k1 =
a1Nβ

γδ4(a1 + δ1)
, k2 =

Nβ

γδ4
, k3 =

Mβ

γδ4
, k4 =

β

γδ4
, k5 =

qβ

rγδ4
. (28)

We evaluate dW0

dt along the solutions of (10)-(15) as:

dW0

dt
=

(
1− lim

v→0+

ξ(x0, v)

ξ(x, v)

)
(π(x)− βξ(x, v))

+ k1 (β1ξ(x, v)− (a1 + δ1)g1(w)) + k2 (β2ξ(x, v) + a1g1(w)− δ2g2(y))

+ k3 (β3ξ(x, v)− δ3g3(u)) + k4 (Nδ2g2(y) +Mδ3g3(u)− δ4g4(v)− qg4(v)g5(z))

+ k5(rg4(v)g5(z)− δ5g5(z)). (29)

Collecting terms of Eq. (29) and using π(x0) = 0, we obtian

dW0

dt
= (π(x)− π(x0))

(
1− lim

v→0+

ξ(x0, v)

ξ(x, v)

)
+

(
βξ(x, v)

g4(v)
lim
v→0+

ξ(x0, v)

ξ(x, v)
− k4δ4

)
g4(v)− k5δ5g5(z)

≤ (π(x)− π(x0))

(
1− lim

v→0+

ξ(x0, v)

ξ(x, v)

)
+

(
lim
v→0+

βξ(x, v)

g4(v)
lim
v→0+

ξ(x0, v)

ξ(x, v)
− k4δ4

)
g4(v)− k5δ5g5(z)

= (π(x)− π(x0))

(
1− ∂ξ(x0, 0)/∂v

∂ξ(x, 0)/∂v

)
+ k4δ4

(
β

k4δ4g′4(0)

∂ξ(x0, 0)

∂v
− 1

)
g4(v)− k5δ5g5(z)

= (π(x)− π(x0))

(
1− ∂ξ(x0, 0)/∂v

∂ξ(x, 0)/∂v

)
+ k4δ4(R0 − 1)g4(v)− k5δ5g5(z). (30)

From Hypotheses (H1) and (H2), we have

(π(x)− π(x0))

(
1− ∂ξ(x0, 0, 0)/∂v

∂ξ(x, 0, 0)/∂v

)
≤ 0.

Therefore, if R0 ≤ 1, then dW0

dt ≤ 0 for x, v, z ∈ (0,∞). Moreover, dW0

dt = 0 if and only if x(t) = x0, v(t) = 0

and z(t) = 0 for all t. It easy to show that, the largest invariant set Γ0 ⊆ Γ =
{

(x,w, y, u, v, z) : dW0

dt = 0
}

is

the singlton {S0} [31]. LaSalle’s invariance principle provide that S0 is globally asymptotically stable. �

Lemma 1. Let R0 > 1 and Hypotheses (H1)-(H4) are satisfied, then

sgn(R1 − 1) = sgn(v1 − v2) = sgn(x2 − x1).

Proof. Using Hypotheses (H1) and (H2), that for x1, x2, v1, v2 > 0, we get

(x1 − x2) (π(x2)− π(x1)) > 0, (31)

(x2 − x1)(ξ(x2, v2)− ξ(x1, v2)) > 0, (32)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

734 Ahmed M. Elaiw et al 728-743



(v2 − v1) (ξ(x1, v2)− ξ(x1, v1)) > 0, (33)

and from Hypothese (H4), we obtain

(v1 − v2)

(
ξ(x1, v2)

g2(v2)
− ξ(x1, v1)

g2(v1)

)
> 0. (34)

First, we show that sgn(v1 − v2) = sgn(x2 − x1). Suppose that sgn(v2 − v1) = sgn(x2 − x1). Using the steady

states conditions of S1 and S2 we obtain

π(x2)− π(x1) = β [ξ(x2, v2)− ξ(x1, v1)] = β [(ξ(x2, v2)− ξ(x1, v2)) + (ξ(x1, v2)− ξ(x1, v1))] .

Therefore, from inequalities (31)-(33) we obtain sgn (x2 − x1) = sgn (x1 − x2), which is a contradiction, hence,

sgn (v1 − v2) = sgn (x2 − x1) . Using Eq. (25) and the definition of R1 we get

R1 − 1 = γ

(
ξ(x2, v2)

g4(v2)
− ξ(x1, v1)

g4(v1)

)
= γ

[
1

g4(v2)
(ξ(x2, v2)− ξ(x1, v2)) +

ξ(x1, v2)

g4(v2)
− ξ(x1, v1)

g4(v1)

]
.

Thus, from Eqs. (32) and (34) we obtain sgn(R1 − 1) = sgn(v1 − v2).

Theorem 4. Suppose that Hypotheses (H1)-(H4) are satisfied and R1 ≤ 1 < R0, then S1 is globally

asymptotically stable in ∆.

Proof. We introduce Lyapunov function

W1 = x− x1 −
x∫

x1

ξ(x1, v1)

ξ(η, v1)
dη + k1

w − w1 −
w∫

w1

g1(w1)

g1(η)
dη

+ k2

y − y1 − y∫
y1

g2(y1)

g2(η)
dη


+ k3

u− u1 − u∫
u1

g3(u1)

g3(η)
dη

+ k4

v − v1 − v∫
v1

g4(v1)

g4(η)
dη

+ k5z,

and evaluate dW1

dt along the trajectories of (10)-(15):

dW1

dt
=

(
1− ξ(x1, v1)

ξ(x, v1)

)
(π(x)− βξ(x, v)) + k1

(
1− g1(w1)

g1(w)

)
(β1ξ(x, v)− (a1 + δ1)g1(w))

+ k2

(
1− g2(y1)

g2(y)

)
(β2ξ(x, v) + a1g1(w)− δ2g2(y)) + k3

(
1− g3(u1)

g3(u)

)
(β3ξ(x, v)− δ3g3(u))

+ k4

(
1− g4(v1)

g4(v)

)
(Nδ2g2(y) +Mδ3g3(u)− δ4g4(v)− qg4(v)g5(z))

+ k5 (rg4(v)g5(z)− δ5g5(z)) . (35)

Collecting terms of Eq. (35) and applying π(x1) = βξ(x1, v1) we get

dW1

dt
= (π(x)− π(x1))

(
1− ξ(x1, v1)

ξ(x, v1)

)
+ βξ(x1, v1)

(
1− ξ(x1, v1)

ξ(x, v1)

)
+ βξ(x, v)

ξ(x1, v1)

ξ(x, v1)
− k1β1ξ(x, v)

g1(w1)

g1(w)
+ k1(a1 + δ1)g1(w1)− k2β2ξ(x, v)

g2(y1)

g2(y)

− k2a1
g2(y1)g1(w)

g2(y)
+ k2δ2g2(y1)− k3β3ξ(x, v)

g3(u1)

g3(u)
+ k3δ3g3(u1)− k4Nδ2g2(y)

g4(v1)

g4(v)

− k4Mδ3g3(u)
g4(v1)

g4(v)
− k4δ4g4(v) + k4δ4g4(v1) + k4qg4(v1)g5(z)− k5δ5g5(z). (36)

Utilizing conditions of the steady state S1, we obtain

(a1 + δ1)g1(w1) = β1ξ(x1, v1), k2δ2g2(y1) = (k1β1 + k2β2)ξ(x1, v1),

δ3g3(u1) = β3ξ(x1, v1), k4δ4g4(v1) = βξ(x1, v1),
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then, we have

dW1

dt
= (π(x)− π(x1))

(
1− ξ(x1, v1)

ξ(x, v1)

)
+ βξ(x1, v1)

(
1− ξ(x1, v1)

ξ(x, v1)

)
+ βξ(x1, v1)

(
ξ(x, v)

ξ(x, v1)
− g4(v)

g4(v1)

)
− k1β1ξ(x1, v1)

ξ(x, v)g1(w1)

ξ(x1, v1)g1(w)
+ k1β1ξ(x1, v1)

− k2β2ξ(x1, v1)
ξ(x, v)g2(y1)

ξ(x1, v1)g2(y)
− k1β1ξ(x1, v1)

g2(y1)g1(w)

g2(y)g1(w1)
+ (k1β1 + k2β2)ξ(x1, v1)

− k3β3ξ(x1, v1)
ξ(x, v)g3(u1)

ξ(x1, v1)g3(u)
+ k3β3ξ(x1, v1)− (k1β1 + k2β2)ξ(x1, v1)

g2(y)g4(v1)

g2(y1)g4(v)

− k3β3ξ(x1, v1)
g3(u)g4(v1)

g3(u1)g4(v)
+ βξ(x1, v1) + k5r

(
g4(v1)− δ5

r

)
g5(z). (37)

Equation (37) can be simplified as:

dW1

dt
= (π(x)− π(x1))

(
1− ξ(x1, v1)

ξ(x, v1)

)
+
βξ(x1, v1)g4(v)

ξ(x, v)ξ(x, v1))

(
ξ(x, v)

g4(v)
− ξ(x, v1)

g4(v1)

)
(ξ(x, v)− ξ(x, v1))

+ k1β1ξ(x1, v1)

[
5− ξ(x1, v1)

ξ(x, v1)
− ξ(x, v)g1(w1)

ξ(x1, v1)g1(w)
− g2(y1)g1(w)

g2(y)g1(w1)
− g2(y)g4(v1)

g2(y1)g4(v)
− g4(v)ξ(x, v1)

g4(v1)ξ(x, v)

]
+ k2β2ξ(x1, v1)

[
4− ξ(x1, v1)

ξ(x, v1)
− ξ(x, v)g2(y1)

ξ(x1, v1)g2(y)
− g2(y)g4(v1)

g2(y1)g4(v)
− g4(v)ξ(x, v1)

g4(v1)ξ(x, v)

]
+ k3β3ξ(x1, v1)

[
4− ξ(x1, v1)

ξ(x, v1)
− ξ(x, v)g3(u1)

ξ(x1, v1)g3(u)
− g3(u)g4(v1)

g3(u1)g4(v)
− g4(v)ξ(x, v1)

g4(v1)ξ(x, v)

]
+ k5r (g4(v1)− g4(v2)) g5(z). (38)

Hypotheses (H1), (H2), (H4), Lemma 1 and the condition R1 ≤ 1 imply that

(π(x)− π(x1))

(
1− ξ(x1, v1)

ξ(x, v1)

)
≤ 0,(

ξ(x, v)

g4(v)
− ξ(x, v1)

g4(v1)

)
(ξ(x, v)− ξ(x, v1)) ≤ 0,

g4(v1)− g4(v2) ≤ 0.

It is known that the arithmetical mean is greater than or equal to the geometrical mean. It follows that for all

x, y, v, z > 0 we have dW1

dt ≤ 0 . Clearly, the largest invariant set Γ0 ⊆ Γ =
{

(x,w, y, u, v, z) : dW1

dt = 0
}

is the

singlton {S1}. By LaSalle’s invariance principle, S1 is globally asymptotically stable. �

Theorem 5. Let R1 > 1 and Hypotheses (H1)-(H4) are satisfied, then S2 is globally asymptotically stable

in
◦
∆.

Proof. Define a Lyapunov functional

W2 = x− x2 −
x∫

x2

ξ(x2, v2)

ξ(η, v2)
dη + k1

w − w2 −
w∫

w2

g1(w2)

g1(η)
dη

+ k2

y − y2 − y∫
y2

g2(y2)

g2(η)
dη


+ k3

u− u2 − u∫
u2

g3(u2)

g3(η)
dη

+ k4

v − v2 − v∫
v2

g4(v2)

g4(η)
dη

+ k5

z − z2 − z∫
z2

g5(z2)

g5(η)
dη

 .
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Calculating dW2

dt along the solutions of model (10)-(15), we get

dW2

dt
=

(
1− ξ(x2, v2)

ξ(x, v2)

)
(π(x)− βξ(x, v)) + k1

(
1− g1(w2)

g1(w)

)
(β1ξ(x, v)− (a1 + δ1)g1(w))

+ k2

(
1− g2(y2)

g2(y)

)
(β2ξ(x, v) + a1g1(w)− δ2g2(y)) + k3

(
1− g3(u2)

g3(u)

)
(β3ξ(x, v)− δ3g3(u))

+ k4

(
1− g4(v2)

g4(v)

)
(Nδ2g2(y) +Mδ3g3(u)− δ4g4(v)− qg4(v)g5(z))

+ k5

(
1− g5(z2)

g5(z)

)
(rg4(v)g5(z)− δ5g5(z)) . (39)

Collecting terms of Eq. (39) and applying π(x2) = βξ(x2, v2) we get

dW1

dt
= (π(x)− π(x2))

(
1− ξ(x2, v2)

ξ(x, v2)

)
+ βξ(x2, v2)

(
1− ξ(x2, v2)

ξ(x, v2)

)
+ βξ(x, v)

ξ(x2, v2)

ξ(x, v2)
− k1β1ξ(x, v)

g1(w2)

g1(w)
+ k1(a1 + δ1)g1(w2)

− k2β2ξ(x, v)
g2(y2)

g2(y)
− k2a1

g2(y2)g1(w)

g2(y)
+ k2δ2g2(y2)− k3β3ξ(x, v)

g3(u2)

g3(u)

+ k3δ3g3(u2)− k4Nδ2g2(y)
g4(v2)

g4(v)
− k4Mδ3g3(u)

g4(v2)

g4(v)
− k4δ4g4(v) + k4δ4g4(v2)

+ k4qg4(v2)g5(z)− k5δ5g5(z)− k5rg5(z2)g4(v) + k5δ5g5(z2)

Using the following steady state conditions for S1:

(a1 + δ1)g1(w2) = β1ξ(x2, v2), k2δ2g2(y2) = (k1β1 + k2β2)ξ(x2, v2),

δ3g3(u2) = β3ξ(x2, v2), k4δ4g4(v2) = βξ(x2, v2)− k4qg5(z2)g4(v2),

we obtain

dW2

dt
= (π(x)− π(x2))

(
1− ξ(x2, v2)

ξ(x, v2)

)
+ βξ(x2, v2)

(
1− ξ(x2, v2)

ξ(x, v2)

)
+ βξ(x2, v2)

(
ξ(x, v)

ξ(x, v2)
− g4(v)

g4(v2)

)
− k1β1ξ(x2, v2)

ξ(x, v)g1(w2)

ξ(x2, v2)g1(w)
+ k1β1ξ(x2, v2)

− k2β2ξ(x2, v2)
ξ(x, v)g2(y2)

ξ(x2, v2)g2(y)
− k1β1ξ(x2, v2)

g2(y2)g1(w)

g2(y)g1(w2)
+ (k1β1 + k2β2)ξ(x2, v2)

− k3β3ξ(x2, v2)
ξ(x, v)g3(u2)

ξ(x2, v2)g3(u)
+ k3β3ξ(x2, v2)

− (k1β1 + k2β2)ξ(x2, v2)
g2(y)g4(v2)

g2(y2)g4(v)
− k3β3ξ(x2, v2)

g3(u)g4(v2)

g3(u2)g4(v)
+ βξ(x2, v2). (40)

Equation (40) can be simplified as:

dW2

dt
= (π(x)− π(x2))

(
1− ξ(x2, v2)

ξ(x, v2)

)
+
βξ(x2, v2)g4(v)

ξ(x, v)ξ(x, v2))

(
ξ(x, v)

g4(v)
− ξ(x, v2)

g4(v2)

)
(ξ(x, v)− ξ(x, v2))

+ k1β1ξ(x2, v2)

[
5− ξ(x2, v2)

ξ(x, v2)
− ξ(x, v)g1(w2)

ξ(x2, v2)g1(w)
− g2(y2)g1(w)

g2(y)g1(w2)
− g2(y)g4(v2)

g2(y2)g4(v)
− g4(v)ξ(x, v2)

g4(v2)ξ(x, v)

]
+ k2β2ξ(x2, v2)

[
4− ξ(x2, v2)

ξ(x, v2)
− ξ(x, v)g2(y2)

ξ(x2, v2)g2(y)
− g2(y)g4(v2)

g2(y2)g4(v)
− g4(v)ξ(x, v2)

g4(v2)ξ(x, v)

]
+ k3β3ξ(x2, v2)

[
4− ξ(x2, v2)

ξ(x, v2)
− ξ(x, v)g3(u2)

ξ(x2, v2)g3(u)
− g3(u)g4(v2)

g3(u2)g4(v)
− g4(v)ξ(x, v2)

g4(v2)ξ(x, v)

]
. (41)

According to Hypotheses (H1), (H2) and (H4) and the relation between the geometrical and arithmetical means

we get dW2

dt ≤ 0. Clearly, the largest invariant set Γ0 ⊆ Γ =
{

(x,w, y, u, v, z) : dW2

dt = 0
}

is the singlton {S2}.
By LaSalle’s invariance principle S2 is globally asymptotically stable. �
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5 Numerical simulations

We now perform some computer simulations on the following application:

ẋ = ρ− dx+ px

(
1− x

xmax

)
− (1− εr)βxv

1 + η1x+ η2v
, (42)

ẇ =
(1− εr)β1xv

1 + η1x+ η2v
− (a1 + δ1)w, (43)

ẏ =
(1− εr)β2xv

1 + η1x+ η2v
+ a1w − δ2y, (44)

u̇ =
(1− εr)β3xv

1 + η1x+ η2v
− δ3u, (45)

v̇ = (1− εp)Nδ2y + (1− εp)Mδ3u− δ4v − qvz, (46)

ż = rvz − δ5z. (47)

We assume that p < d. In this application, we consider the following specific forms of the general functions:

π(x) = ρ− dx+ px

(
1− x

xmax

)
, ξ(x, v) =

xv

1 + η1x+ η2v
, gi(θ) = θ, i = 1, ..., 5.

First we verify Hypotheses (H1)-(H4) for the chosen forms, then we solve the system using MATLAB. Clearly,

π(0) = ρ > 0 and π(x0) = 0, where

x0 =
xmax

2p

(
p− d+

√
(p− d)2 +

4ρp

xmax

)
.

We have

π′(x) = −d+ p− 2px

xmax
< 0. (48)

Clearly, π(x) > 0, for x ∈ [0, x0) and

π(x) = ρ− (d− p)x− p x2

xmax
≤ ρ− (d− p)x

Then Hypothese (H1) is satisfied. We also have ξ(x, v) > 0, ξ(0, v) = ξ(x, 0) = 0 for x,v ∈ (0,∞), and

∂ξ(x, v)

∂x
=

v (1 + δv)

(1 + η1x+ η2v)2
,

∂ξ(x, v)

∂v
=

x(1 + η1x)

(1 + η1x+ η2v)
2 ,

∂ξ(x, 0)

∂v
=

x

1 + η1x
.

Then, ∂ξ(x,v)
∂x > 0, ∂ξ(x,v)∂v > 0 and ∂ξ(x,0)

∂v > 0 for x, v ∈ (0,∞). Therefore, Hypothese (H1) is satisfied. In

addition

ξ(x, v) =
xv

1 + η1x+ η2v
≤ xv

1 + η1x
= v

∂ξ(x, 0)

∂v
,(

∂ξ(x, 0)

∂v

)′
=

1

(1 + η1x)2
> 0 for all x > 0.

It follows that, (H2) is satisfied. Clearly Hypothese (H3) holds true. Moreover,

∂

∂v

(
ξ(x, v)

g4(v)

)
=

−η2x
(1 + η1x+ η2v)

< 0.

Therefore, Hypothese (H4) hold true and Theorems 3-5 are applicable. The parameters R0 and R1 for this

application are given by:

R0 =
(1− εr)(1− εp)

{
N(a1β1 + (a1 + δ1)β2) +Mβ3(a1 + δ1)

}
δ4(a1 + δ1)

x0
1 + η1x0

,

R1 =
(1− εr)(1− εp)

{
N(a1β1 + (a1 + δ1)β2) +Mβ3(a1 + δ1)

}
δ4(a1 + δ1)

x2
1 + η1x2 + η2v2

.
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Now we are ready to perform some numerical simulations for system (42)-(47). The data of system (42)-(47)

are provided in Table 1.

• Effect of the drug efficacy on the stability of the steady states

Now we verify our theoretical results given in Theorems 3-5 by numerical simulation. To discuss our global

results we choose three different initial conditions:

IC1: (x(0), w(0), y(0), u(0), v(0), z(0)) = (900, 10, 12, 60, 40, 1.6).

IC2: (x(0), w(0), y(0), u(0), v(0), z(0)) = (700, 7, 8, 30, 25, 1.0).

IC3: (x(0), w(0), y(0), u(0), v(0), z(0)) = (500, 4, 5, 10, 15, 0.6).

Let us address three scenarios for three different groups of the parameters εr, εp and r.

Scenario (I): In this case we choose εr = 0.6, εp = 0.6 and r = 0.001 which gives R0 = 0.4941 < 1 and

R1 = 0.4430 < 1. Therefore, based on Theorems 2 and 3, the system has unique steady state, that is S0 and it

is globally asymptotically stable. As we can see from Figures 1-6 that the concentration of the uninfected CD4+

T cells is increased and approached its normal value before infection that is x0 = 1083.9, while concentrations

of the other compartments converge to zero for all the three initial conditions. This case corresponds to the

uninfected state where the HIV-1 is removed from the plasma.

Scenario (II): By taking εr = 0.2, εp = 0.5 and r = 0.001. With such choice we get, R1 = 0.9351 <

1 < R0 = 1.2352. Consequently, based on Theorems 2 and 4, the humoral-inactivated infection steady state

S1 is positive and is globally asymptotically stable. Figures 1-6 confirm that the numerical results support

the theoretical results presented in Theorem 4. It can be observed that, the variables of the model eventually

converge to S1 = (309.165, 13.2492, 15.4574, 94.0263, 72.0754, 0.0) for all the three initial conditions. This case

corresponds to a chronic HIV-1 infection in the absense of immune response.

Scenario (III): εr = 0.2, εp = 0.5 and r = 0.003. Then, we calculate R0 = 1.2352 > 1 and

R1 = 1.19604 > 1. According to Lemma 1 and Theorem 3, the humoral-activated infection steady state S2

is positive and is globally asymptotically stable. We can see from Figures 1-6 that, there is a consistency

between the numerical results and theoretical results of Theorem 5. The states of the system converge to

S2 = {820.603, 5.8629, 6.8401, 41.6079, 26.6667, 1.1762) for all the three initial conditions, in the same time

frame. In this case the humoral immune response is activated and can control the disease.

• Effect of the HAART on the basic reproduction number:

Let us define the overall HAART effect as εe = εr + εp − εrεp [9]. If εe = 0, then the HAART has no effect,

if εe = 1, the HIV-1 growth is completely halted. Consequently, the parameter R0 is given by

R0(εe) =
(1− εe)

{
N(a1β1 + (a1 + δ1)β2) +Mβ3(a1 + δ1)

}
δ4(a1 + δ1)

x0
1 + η1x0

.

We note that, the value of R0(εe) does not depend on the values of the parameters q, r and δ5. This means

that, humoral immune response can play a significant role in reducing the infection progress but do not play a

role in clearing the HIV-1 from the body. Since the goal is to clear the HIV-1 from the body, then we have to

determine the drug efficacies that make R0(εe) ≤ 1 for system (42)-(47). Now, we calculate the critical overall

treatment effect εcrite (i.e, the minimum overall treatment effect required to stabilize the system around the

infection-free steady state). Let R0(εe) ≤ 1 , then

εcrite ≤ εe < 1, εcrite = max

{
0,
R0(0)− 1

R0(0)

}
,

Figure 15 shows the effect of the HAART on the basic reproduction number R0(ε). We note that, if εcrite ≤ εe <
1, then R0(εe) ≤ 1 and S0 is globally asymptotically stable. Moreover, if 0 ≤ εe < εcrite , then S0 is unstable.
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Table 1: The values of the parameters of example (42)-(47).

Parameter Value Parameter Value Parameter Value Parameter Value

ρ 10 δ1 0.02 β2 0.0625 µ 0.08

d 0.01 δ2 0.36 β3 0.0625 N 62

p 0.008 δ3 0.031 a1 0.2 M 30

xmax 1200 δ4 3.0 η1 1 εr, εp Varied

q 0.5 β1 0.0625 η2 1 r Varied
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Figure 1: The concentration of uninfected CD4+ T

cells for system (42)-(47).
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Figure 2: The concentration of latently infected

cells for system (42)-(47).
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Figure 3: The concentration of short-lived produc-

tively infected cells for system (42)-(47).
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tively infected cells for system (42)-(47).
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Figure 5: The concentration of free virus particles

for system (42)-(47).
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Ideal theory of pre-logics based on the theory of falling shadows
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Abstract. Based on the theory of a falling shadow which was first formulated by Wang [8], a theoretical approach

of the ideal structure in pre-logics is established. The notions of a falling subalgebra, a falling and a positive

implicative falling ideal of a pre-logic are introduced. Some fundamental properties are investigated. Relations

among a falling subalgebra, a falling ideal and a positive implicative falling ideal are stated. Characterizations of

falling deals and positive implicative falling ideals are discussed.

1. Introduction

In the study of a unified treatment of uncertainty modelled by means of combining probability

and fuzzy set theory, Goodman [3] pointed out the equivalence of a fuzzy set and a class of random

sets. Wang and Sanchez [7] introduced the theory of falling shadows which directly relates

probability concepts to the membership function of fuzzy sets. Falling shadow representation

theory shows us a method of selection relied on the joint degree distributions. It is a reasonable

and convenient approach for the theoretical development and the practical applications of fuzzy

sets and fuzzy logics. The mathematical structure of the theory of falling shadows is formulated

in [8]. Y. B. Jun and C. H. Park [5] discussed the notion of a falling fuzzy subalgebra/ideal

of a BCK/BCI-algebra. Y. B. Jun and M. S. Kang [4] established a theoretical approach

for defining a fuzzy positive implicative ideal in a BCK-algebra based on the theory of falling

shadows. I. Chajda and R. Halas [2] introduced the concept of a pre-logic which is an algebra

weaker than a Hilbert algebra (an algebraic counterpart of intuitionistic logic) but strong enough

to have deductive systems. Y. B. Jun and S. S. Ahn [1] defined the notion of pseudo-valuations

(valuation) on pre-logics and induced a pseudo-metric by using a pseudo-valuation on pre-logics.

In this paper, we introduce the notions of a falling subalgebra, a falling ideal and a positive

implicative falling ideal of a pre-logic. We investigate some fundamental properties. Also we give

relations among a falling subalgebra, a falling ideal and a positive implicative falling ideal. We

establish characterizations of falling ideals and positive implicative falling ideals.

2. Preliminaries
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0Keywords: falling shadow; falling subalgebra; falling ideal; positive implicative falling ideal.
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We recall some definitions and results (see [1, 2, 6]).

Definition 2.1. ([2]) By a pre-logic, we mean a triple (X; ∗, 1) where X is a non-empty set, ∗ is

a binary operation on X and 1 ∈ X is a constant such that the following identities hold:

(P1) (∀x ∈ X) (x ∗ x = 1),

(P2) (∀x ∈ X) (1 ∗ x = x),

(P3) (∀x ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)),
(P4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)).

In what follows, let X denote a pre-logic unless otherwise specified.

Lemma 2.2. ([2]) Let X be a pre-logic. Then the following hold:

(a) (∀x ∈ X) (x ∗ 1 = 1);

(b) (∀x, y ∈ X) (x ∗ (y ∗ x) = 1);

(c) an order relation ≤ on X defined by

(∀x, y ∈ X) (x ≤ y if and only if x ∗ y = 1)

is a quasiorder on X (i.e., a reflexive and transitive order relation on X);

(d) 1 ≤ x for all x ∈ X implies x = 1.

Remark 2.3. ([2]) The quasiorder ≤ of Lemma 2.2(c) is called the induced quasiorder of a

pre-logic X.

Lemma 2.4. ([2]) Let ≤ be the induced quasiorder of a pre-logic X and let x, y, z ∈ X. If x ≤ y,

then z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z.

Definition 2.5. ([2]) Let X = (X; ∗, 1) be a pre-logic. A non-empty subset D of X is called a

deductive system of X if the following conditions hold:

(d1) 1 ∈ D,

(d2) if x ∈ D and x ∗ y ∈ D, then y ∈ D.

Definition 2.6. ([2]) Let X be a pre-logic. A non-empty subset I of X is called an ideal of X if

the following conditions are satisfied:

(I1) x ∈ X and y ∈ I imply x ∗ y ∈ I;

(I2) x ∈ X and y1, y2 ∈ I imply (y2 ∗ (y1 ∗ x)) ∗ x ∈ I.

Lemma 2.7. ([2]) Let X be a pre-logic and ≤ its induced quasiorder. The the following hold:

(a) (∀x, y ∈ X) (x ∗ ((x ∗ y) ∗ y) = 1),

(b) (∀x, y, z ∈ X) ((y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1),

(c) if D is a deductive system of X, a ∈ D, and a ≤ b, then b ∈ D.
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Theorem 2.8. ([1]) A non-empty subset I of a pre-logic X is an ideal of X if and only if it

satisfies the following two conditions:

(I1′) (1 ∈ I);

(I2′) (∀x, z ∈ X)(∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Definition 2.9. ([6]) A non-empty subset I of a pre-logic X is a positive implicative ideal of X

if it satisfies (I1′) and

(I3) (∀y, z ∈ X)(∀x ∈ I) (x ∗ ((y ∗ z) ∗ y) ∈ I ⇒ y ∈ I).

Theorem 2.10. ([6]) Every positive implicative ideal of a pre-logic X is an ideal of X.

We now display the basic theory on falling shadows. We refer the reader to the papers [3, 4,

5, 7, 8] for further information regarding the theory of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U. For each u ∈ U, let

u̇ := {E | u ∈ E and E ⊆ U}, (2.1)

and for each E ∈ P(U), let

Ė := {u̇ | u ∈ E}. (2.2)

An ordered pair (P(U),B) is said to be a hyper-measurable structure on U if B is a σ-field

in P(U) and U̇ ⊆ B. Given a probability space (Ω,A , P ) and a hyper-measurable structure

(P(U),B) on U, a random set on U is defined to be a mapping ξ : Ω → P(U) which is A -B

measurable, that is,

(∀C ∈ B) (ξ−1(C) = {ω | ω ∈ Ω and ξ(ω) ∈ C} ∈ A ). (2.3)

Suppose that ξ is a random set on U. Let H̃(u) := P (ω | u ∈ ξ(ω)) for each u ∈ U. Then H̃ is a

kind of fuzzy set in U. We call H̃ a falling shadow of the random set ξ, and ξ is called a cloud of

H̃.

For example, (Ω,A , P ) = ([0, 1],A ,m), where A is a Borel field on [0, 1] and m is the usual

Lebesgue measure. Let H̃ be a fuzzy set in U and H̃t := {u ∈ U | H̃(u) ≥ t} be a t-cut of H̃.

Then ξ : [0, 1] → P(U), t 7→ H̃t is a random set and ξ is a cloud of H̃. We shall call ξ defined

above as the cut-cloud of H̃ (see [3]).

3. Falling subalgebras and falling ideals

Definition 3.1. Let (Ω,A , P ) be a probability space, and let ξ : Ω → P(X) be a random set,

where X is a pre-logic. If ξ(ω) is a subalgebra (resp. ideal) of X for any ω ∈ Ω with ξ(ω) ̸= ∅,
then the falling shadow H̃ of the random set ξ, i.e., H̃(x) = P (ω | x ∈ ξ(ω)) is called a falling

subalgebra (resp. falling ideal) of X.

In what follows, let H̃ denote a falling shadow of the random set ξ : Ω → P(X).
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Example 3.2. (1) Let X := {1, a, b, c, d} be a set with the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Then (X; ∗, 1) is a pre-logic (see [6]). Let (Ω,A , P ) = ([0, 1],A ,m) and define a random set

ξ : Ω → P(X) as follows:

ξ(ω) :=


{1, a, b} ifω ∈ [0, 0.6)

∅ if ω ∈ [0.6, 0.7),

X if ω ∈ [0.7, 1].

Then the falling shadow H̃ of ξ is both a falling subalgebra of X and a falling ideal of X.

Define a random set η : Ω → P(X) as follows:

η(ω) :=


∅ if ω ∈ [0, 0.3),

{1, b, c} ifω ∈ [0.3, 0.8),

X if ω ∈ [0.8, 1].

Then η(ω) is a subalgebra of X for all ω ∈ Ω with η(ω) ̸= ∅, but not an ideal of X, since

(b ∗ (a ∗ a)) ∗ a = (b ∗ 1) ∗ a = 1 ∗ a = a /∈ {1, b, c}. Hence the falling shadow H̃ of ξ is a falling

subalgebra of X, but not a falling ideal of X.

For a probability space (Ω,A , P ) and any element x of a BCC-algebra X, let

Ω(x; ξ) := {ω ∈ Ω | x ∈ ξ(ω)}. (3.1)

Then Ω(x; ξ) ∈ A .

Lemma 3.3. If H̃ is a falling subalgebra of a pre-logic X, then (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(1; ξ)) .

Proof. If Ω(x; ξ) = ∅, then it is clear. Assume that Ω(x; ξ) ̸= ∅ and let ω ∈ Ω be such that

ω ∈ Ω(x; ξ). Then x ∈ ξ(ω), and so 1 = x ∗ x ∈ ξ(ω) since ξ(ω) is a subalgebra of X. Hence

ω ∈ Ω(1; ξ), and therefore Ω(x; ξ) ⊆ Ω(1; ξ) for all x ∈ X. □

Proposition 3.4. Every falling ideal of a pre-logic X is a falling subalgebra of X.

Proof. Let H̃ be a falling ideal of X. Then ξ(ω) is an ideal of X for any ω ∈ Ω with ξ(ω) ̸= ∅.
Let x, y ∈ ξ(ω). Using (I1), we have x ∗ y ∈ ξ(ω). Hence ξ(ω) is a subalgebra of X. Thus H̃ is a

falling subalgebra of X. □
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The converse of Proposition 3.4 is not true in general (see Example 3.2). We provide a char-

acterization of a falling ideal.

Theorem 3.5. Let X be a pre-logic. Then H̃ is a falling ideal of X if and only if the following

conditions are valid:

(i) (∀x, y ∈ X) (Ω(x ∗ (y ∗ z); ξ) ∩ Ω(y; ξ) ⊆ Ω(x ∗ z; ξ)) ,
(ii) (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(1; ξ)) .

Proof. Assume that H̃ is a falling ideal of X. For any x, y, z ∈ X, if ω ∈ Ω(x∗ (y ∗ z); ξ)∩Ω(y; ξ),

then x ∗ (y ∗ z) ∈ ξ(ω) and y ∈ ξ(ω). It follows from (I2′) that x ∗ z ∈ ξ(ω) since ξ(ω) is an ideal

of X. Hence ω ∈ Ω(x∗ z; ξ). Therefore Ω(x∗ (y ∗ z); ξ)∩Ω(y; ξ) ⊆ Ω(x∗ z; ξ), for any x, y, z ∈ X.

Thus (i) is valid. The second condition (ii) follows from Lemma 3.3 and Proposition 3.4.

Conversely, suppose that two conditions (i) and (ii) are valid. Let x, y, z ∈ X and ω ∈ Ω be

such that x ∗ (y ∗ z) ∈ ξ(ω) and y ∈ ξ(ω). Then ω ∈ Ω(x ∗ (y ∗ z); ξ) and ω ∈ Ω(y; ξ). If follows

from (i) that ω ∈ Ω(x ∗ z; ξ). Hence x ∗ z ∈ ξ(ω). Now, assume that x ∈ ξ(ω) for every x ∈ X

and for all ω ∈ Ω. Then ω ∈ Ω(x; ξ) ⊆ Ω(1; ξ) and so 1 ∈ ξ(ω) for all ω ∈ Ω. Therefore ξ(ω) is

an ideal of X for all ω ∈ Ω with ξ(ω) ̸= ∅. Hence H̃ is a falling ideal of X. □

Theorem 3.6. Let X be a pre-logic. Then H̃ is a falling ideal of X if and only if the following

conditions are valid:

(i) (∀x, y ∈ X) (Ω(y; ξ) ⊆ Ω(x ∗ y; ξ) ,
(ii) (∀x, y, z ∈ X) (Ω(x; ξ) ∩ Ω(y; ξ) ⊆ Ω((x ∗ (y ∗ z)) ∗ z; ξ)) .

Proof. Assume H̃ satisfies two conditions (i) and (ii). Let x, y ∈ X and ω ∈ Ω such that y ∈ ξ(ω).

Then ω ∈ Ω(y; ξ). Using (i), we have ω ∈ Ω(x ∗ y; ξ). Hence x ∗ y ∈ ξ(ω). Now, let x, y, z ∈ X

and ω ∈ Ω such that x, y ∈ ξ(ω). Then ω ∈ Ω(x; ξ) and ω ∈ Ω(y; ξ) and so ω ∈ Ω(x; ξ)∩Ω(y; ξ).

It follows from (ii) that ω ∈ Ω((x ∗ (y ∗ z)) ∗ z; ξ). Hence (x ∗ (y ∗ z)) ∗ z ∈ ξ(ω) and so ξ(ω) is

an ideal of X. Therefore H̃ is a falling ideal of X.

Conversely, suppose that H̃ is a falling ideal of X. Let x, y ∈ X and ω ∈ Ω be such that

ω ∈ Ω(y; ξ). Then y ∈ ξ(ω). Since ξ(ω) is an ideal of X, we have x ∗ y ∈ ξ(ω). Hence

ω ∈ Ω(x ∗ y; ξ). Therefore (i) is valid. For any x, y, z ∈ X, if ω ∈ Ω(x; ξ) ∩ Ω(y; ξ), then

x ∈ ξ(ω) and y ∈ ξ(ω). Since ξ(ω) is an ideal of X, we get (x ∗ (y ∗ z)) ∗ z ∈ ξ(ω). Therefore

ω ∈ Ω((x ∗ (y ∗ z)) ∗ z; ξ). Thus (ii) is true. □

Proposition 3.7. Every falling ideal of a pre-logic satisfies the following assertions:

(i) (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(1; ξ)),

(ii) (∀x, y ∈ X) (Ω(x; ξ) ⊆ Ω((x ∗ y) ∗ y; ξ)) ,
(iii) (∀x, y ∈ X) (x ≤ y ⇒ Ω(x; ξ) ⊆ Ω(y; ξ)) .

Proof. (i) Using (P1) and Theorem 3.6(i), we have Ω(x; ξ) ⊆ Ω(1; ξ).
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(ii) Taking x := x, y := 1, and z := y in Theorem 3.6(ii) and using (P2) and (i), we get

Ω(x; ξ) = Ω(x; ξ) ∩ Ω(1; ξ) ⊆ Ω((x ∗ (1 ∗ y)) ∗ y; ξ) = Ω((x ∗ y) ∗ y; ξ).
(iii) Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1. Using (P2), we have Ω(x; ξ) ⊆
Ω((x ∗ y) ∗ y; ξ) = Ω(1 ∗ y; ξ) = Ω(y; ξ). □
Lemma 3.8. Every falling ideal of H̃ of a pre-logic X satisfies the following property:

(∀x, y ∈ X)(Ω(x ∗ y; ξ) ∩ Ω(x; ξ) ⊆ Ω(y; ξ)). (3.2)

Proof. Using (P1), (P2), and Theorem 3.6(ii), we have Ω(x ∗ y; ξ) ∩ Ω(x; ξ) ⊆ Ω(((x ∗ y) ∗ (x ∗
y)) ∗ y; ξ) = Ω(1 ∗ y; ξ) = Ω(y; ξ) for all x, y ∈ X. □
Corollary 3.9. Let X be a pre-logic. Then H̃ is a falling ideal of X if and only if it satisfies the

condition (3.2) and

(i) (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(1; ξ)).

Proof. Assume that H̃ is a falling ideal of X. Using Proposition 3.7, (i) holds. By Lemma 3.8,

the condition (3.2) holds.

Conversely, suppose that H̃ satisfies two conditions (3.2) and (i). Using (3.2), we have Ω(y ∗
(x ∗ z); ξ)∩Ω(y; ξ) ⊆ Ω(x ∗ z; ξ). Using (P4), we have Ω(x ∗ (y ∗ z); ξ)∩Ω(y; ξ) ⊆ Ω(x ∗ z; ξ). By
Theorem 3.5, H̃ is a falling ideal of X. □
Lemma 3.10. For any falling ideal H̃ of a pre-logic X, the following are equivalent:

(i) (∀x, y ∈ X) (Ω(x ∗ y; ξ) ∩ Ω(x; ξ) ⊆ Ω(y; ξ)) .

(ii) (∀x, y, z ∈ X) (Ω(x ∗ (y ∗ z); ξ) ∩ Ω(x ∗ y; ξ) ⊆ Ω(x ∗ z; ξ)) .

Proof. Assume that H̃ satisfies (i). For any x, y, z ∈ X, using (P3), we have Ω(x ∗ (y ∗ z); ξ) ∩
Ω(x ∗ y; ξ) = Ω((x ∗ y) ∗ (x ∗ z); ξ) ∩ Ω(x ∗ y; ξ)) ⊆ Ω(x ∗ z; ξ). Thus (ii) is valid.

Conversely, suppose that H̃ satisfies (ii). Putting x := 1 in (ii) and using (P2), we have

Ω(y ∗ z; ξ) ∩Ω(y; ξ) = Ω(1 ∗ (y ∗ z)); ξ) ∩Ω(1 ∗ y; ξ)) ⊆ Ω(1 ∗ z; ξ) = Ω(z; ξ). Thus (i) is true. □
Proposition 3.11. Let X be a pre-logic. Then H̃ is a falling ideal of X if and only if the

following conditions are valid:

(i) (∀x ∈ X) (Ω(x; ξ) ⊆ Ω(1; ξ)).

(ii) (∀x, y, z ∈ X) (Ω(x ∗ (y ∗ z); ξ) ∩ Ω(x ∗ y; ξ) ⊆ Ω(x ∗ z; ξ)) .

Proof. It follows from Corollary 3.9 and Lemma 3.10. □
Corollary 3.12. Every falling ideal H̃ of a pre-logic X satisfies the following property:

(∀x, y ∈ X)(Ω(x ∗ (x ∗ y); ξ) ⊆ Ω(x ∗ y; ξ)).
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Proof. Putting x := x, z := y and y := x in Proposition 3.11(ii), we have Ω(x ∗ (x ∗ y); ξ) =

Ω(x ∗ (x ∗ y); ξ) ∩ Ω(1; ξ) = Ω(x ∗ (x ∗ y); ξ) ∩ Ω(x ∗ x; ξ) ⊆ Ω(x ∗ y; ξ), for all x, y ∈ X. □

4. Positive implicative falling ideals

Definition 4.1. Let (Ω,A , P ) be a probability space, and let ξ : Ω → P(X) be a random set,

where X is a pre-logic. If ξ(ω) is a positive implicative ideal of X for any ω ∈ Ω with ξ(ω) ̸= ∅,
then the falling shadow H̃ of the random set ξ, i.e., H̃(x) = P (ω | x ∈ ξ(ω)) is called a positive

implicative falling ideal of X.

Example 4.2. Let X = {1, a, b, c, d} be a pre-logic as in Example 3.2.

(1) Consider a random set ξ as in Example 3.2. Then the falling shadow H̃ of ξ is a positive

implicative falling ideal of X, since {1, a, b} is a positive implicative ideal of X.

(2) Define a random set η : Ω → P(X) as follows:

η(ω) :=


∅ if ω ∈ [0, 0.3),

{1, b} ifω ∈ [0.3, 0.7),

X if ω ∈ [0.7, 1].

Note that J := {1, b} is an ideal ofX but not a positive implicative ideal ofX since b∗((a∗d)∗a) =
b∗ (d ∗a) = b∗ 1 = 1 ∈ J and b ∈ J but a /∈ J . Hence H̃ is a falling ideal of X, but not a positive

implicative falling ideal of X.

Proposition 4.3. Every positive implicative falling ideal of a pre-logic X is a falling ideal of X.

Proof. Straightforward by Definition 4.1 and Theorem 2.10. □

The converse of Proposition 4.3 is not true in general (see Example 4.2(2)).

Theorem 4.4. Let X be a pre-logic. Then H̃ is a positive implicative falling ideal of X if and

only if H̃ satisfies the following two conditions:

(i) (∀x ∈ X)(Ω(x; ξ) ⊆ Ω(1; ξ)),

(ii) (∀x, y, z ∈ X)(Ω(x ∗ ((y ∗ z) ∗ y); ξ) ∩ Ω(x; ξ) ⊆ Ω(y; ξ)).

Proof. Assume that H̃ satisfies two conditions (i) and (ii). Let x ∈ ξ(ω) for every x ∈ X and for

all ω ∈ Ω. Then ω ∈ Ω(x; ξ) ⊆ Ω(1; ξ) and so 1 ∈ ξ(ω). Let x, y, z ∈ X be such that x ∈ ξ(ω)

and x ∗ ((y ∗ z) ∗ y) ∈ ξ(ω). Then ω ∈ Ω(x; ξ) and ω ∈ Ω(x ∗ ((y ∗ z) ∗ y); ξ). Using (ii), we have

ω ∈ Ω(y; ξ). Hence y ∈ ξ(ω) and so ξ(ω) is a positive implicative ideal of X. Therefore H̃ is a

positive implicative falling ideal of X.

Conversely, suppose that H̃ is a positive implicative falling ideal of X. The first condition (i)

follows from Proposition 3.7(i) and Proposition 4.3. For any x, y, z ∈ X, if ω ∈ Ω(x ∗ ((y ∗ z) ∗
y); ξ)∩Ω(x; ξ), then x∗ ((y ∗z)∗y) ∈ ξ(ω) and x ∈ ξ(ω). Since ξ(ω) is a positive implicative ideal
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of X, we have ω ∈ Ω(y; ξ). Therefore Ω(x ∗ ((y ∗ z) ∗ y); ξ)∩Ω(x; ξ) ⊆ Ω(y; ξ) for any x, y, z ∈ X.

Thus (ii) holds. □
Theorem 4.5. Let H̃ be a falling ideal of a pre-logic X. Then the following are equivalent:

(i) H̃ is a positive implicative falling ideal of X.

(ii) (∀x, y ∈ X)(Ω((x ∗ y) ∗ x; ξ) ⊆ Ω(x; ξ)).

Proof. Assume that H̃ is a positive implicative ideal of X. Putting x := 1, y := x, and z := y in

Theorem 4.4(ii), we have Ω(1∗((x∗y)∗x); ξ)∩Ω(1; ξ) = Ω((x∗y)∗x; ξ)∩Ω(1; ξ) = Ω((x∗y)∗x; ξ) ⊆
Ω(x; ξ). Hence (ii) holds.

Conversely, suppose that a falling ideal H̃ satisfies (ii). By Lemma 3.8, for any x, y, z ∈ X, we

have Ω(x ∗ ((y ∗ z) ∗ y); ξ)∩Ω(x; ξ) ⊆ Ω((y ∗ z) ∗ y; ξ) ⊆ Ω(y; ξ). By Theorem 4.4, H̃ is a positive

implicative falling ideal of X. Thus (i) is true. □
Corollary 4.6. Any positive implicative falling ideal of a pre-logic X satisfies the following

property:

(∀x, y ∈ X)(Ω((x ∗ y) ∗ y; ξ) ⊆ Ω((y ∗ x) ∗ x; ξ)).

Proof. Since x ≤ (y ∗x)∗x for all x, y ∈ X, it follows from Lemma 2.4 that ((y ∗x)∗x)∗y ≤ x∗y.
Then (x ∗ y) ∗ y ≤ (y ∗ x) ∗ ((x ∗ y) ∗ x) = (x ∗ y) ∗ ((y ∗ x) ∗ x) ≤ (((y ∗ x) ∗ x) ∗ y) ∗ ((y ∗ x) ∗ x).
By Proposition 3.7(iii) and Proposition 4.5, we have Ω((x ∗ y) ∗ y; ξ) ⊆ Ω((((y ∗ x) ∗ x) ∗ y) ∗ ((y ∗
x) ∗ x); ξ) ⊆ Ω((y ∗ x) ∗ x; ξ), for any x, y ∈ X. This completes the proof. □
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QUADRATIC ρ-FUNCTIONAL EQUATIONS IN
NON-ARCHIMEDEAN BANACH SPACES

CHOONKIL PARK, GANG LU, YINHUA CUI, AND MING FANG∗

Abstract. In this paper, we solve the quadratic ρ-functional equations

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = ρ

(
4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)
,(0.1)

where ρ is a fixed non-Archimedean number with |ρ| < |2|, and

4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y) = ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)),(0.2)

where ρ is a fixed non-Archimedean number with |ρ| < |2|.
Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional

equations (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique
element having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of
R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called
a non-Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial
example of a non-Archimedean valuation is the function | · | taking everything except
for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field,
hence call it simply a field.

Definition 1.1. ([8]) Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm
if it satisfies the following conditions:

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; quadratic ρ-

functional equation.
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(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X
holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X.
Then the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer
N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called convergent if for a given ε > 0 there are a positive integer N
and an x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by
limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of U-
lam [18] concerning the stability of group homomorphisms. The functional equation
f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular, every solution of
the Cauchy equation is said to be an additive mapping. Hyers [7] gave a first affirma-
tive partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was
generalized by Aoki [2] for additive mappings and by Rassias [11] for linear mappings
by considering an unbounded Cauchy difference. A generalization of the Rassias the-
orem was obtained by Găvruta [6] by replacing the unbounded Cauchy difference by
a general control function in the spirit of Rassias’ approach.

The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called the quadratic
functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The stability of quadratic functional equation was
proved by Skof [17] for mappings f : E1 → E2, where E1 is a normed space and
E2 is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if
the relevant domain E1 is replaced by an Abelian group. The functional equation

4f
(
x+y
2

)
+ (x− y) = f(x) + f(y) is called a Jensen type quadratic equation. The

stability problems of various functional equations have been extensively investigated
by a number of authors (see [1, 3, 4, 9, 10, 12, 13, 14, 15, 16, 19, 20]).

In Section 2, we solve the quadratic ρ-functional equation (0.1) and prove the Hyers-
Ulam stability of the quadratic ρ-functional equation (0.1) in non-Archimedean Banach
spaces.

In Section 3, we solve the quadratic ρ-functional equation (0.2) and prove the Hyers-
Ulam stability of the quadratic ρ-functional equation (0.2) in non-Archimedean Banach
spaces.
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Throughout this paper, assume that X is a non-Archimedean normed space and
that Y is a non-Archimedean Banach space. Let |2| 6= 1.

2. Quadratic ρ-functional equation (0.1) in non-Archimedean normed
spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with
|ρ| < |2|.

In this section, we solve the quadratic ρ-functional equation (0.1) in non-Archimedean
normed spaces.

Lemma 2.1. If a mapping f : G→ Y satisfies f(0) = 0 and

f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.1)

= ρ
(

4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)
for all x, y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting y = x in (2.1), we get f(2x)− 4f(x) = 0 for all x ∈ G. Thus

f
(
x

2

)
=

1

4
f(x) (2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

f(x+ y) + f(x− y)− 2f(x)− 2f(y)

= ρ
(

4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)
= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. �

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.1)
in non-Archimedean Banach spaces.

Theorem 2.2. Let r < 2 and θ be nonnegative real numbers and let f : X → Y be a
mapping satisfying∥∥∥∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)− ρ

(
4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
≤ θ(‖x‖r + ‖y‖r) (2.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2

|2|r
θ‖x‖r (2.4)

for all x ∈ X.
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Proof. Letting x = y = 0 in (2.3), we get −2f(0) = ρf(0). Since |ρ| < |2|, f(0) = 0.
Letting y = x in (2.3), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.5)

for all x ∈ X. So
∥∥∥f(x)− 4f

(
x
2

)∥∥∥ ≤ 2
|2|r θ‖x‖

r for all x ∈ X. Hence∥∥∥∥4lf
(
x

2l

)
− 4mf

(
x

2m

)∥∥∥∥ (2.6)

≤ max
{∥∥∥∥4lf

(
x

2l

)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f
(

x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l

)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
2

|2|r
θ‖x‖r =

2θ

|2|(r−2)l
1

|2|r
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6)
that the sequence {4nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {4nf( x
2n

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.6), we get
(2.4).

It follows from (2.3) that∥∥∥∥Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)− ρ
(

4Q
(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
= lim

n→∞
|4|n

∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)
−ρ

(
4f
(
x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

))∥∥∥∥ ≤ lim
n→∞

|4|nθ
|2|nr

(‖x‖r + ‖y‖r) = 0

for all x, y ∈ X. So

Q(x+y)+Q(x−y)−2Q(x)−2Q(y) = ρ
(

4Q
(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.4). Then we have

‖Q(x)− T (x)‖ =
∥∥∥∥4qQ

(
x

2q

)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qQ
(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT
(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥} ≤ 2

|2|(r−2)q+r
θ‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x)
for all x ∈ X. This proves the uniqueness of Q. Thus the mapping Q : X → Y is a
unique quadratic mapping satisfying (2.4). �
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Theorem 2.3. Let r > 2 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (2.3). Then there exists a unique quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ 2θ

|4|
‖x‖r

for all x ∈ X.

Proof. It follows from (2.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2θ

|4|
‖x‖r

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

3. Quadratic ρ-functional equation (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with
|ρ| < |2|.

In this section, we solve the quadratic ρ-functional equation (0.2) in non-Archimedean
normed spaces.

Lemma 3.1. If a mapping f : G→ Y satisfies f(0) = 0 and

4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y) (3.1)

= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

for all x, y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (3.1).
Letting y = 0 in (3.1), we get

4f
(
x

2

)
= f(x) (3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

f(x+ y) + f(x− y)− 2f(x)− 2f(y)

= 4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. �

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (3.1)
in non-Archimedean Banach spaces.
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Theorem 3.2. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a
mapping satisfying∥∥∥∥4f (x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)− ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥
≤ θ(‖x‖r + ‖y‖r) (3.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ‖x‖r (3.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.3), we get f(0) = 2ρf(0). Since |ρ| < |2|, f(0) = 0.
Letting y = 0 in (3.3), we get∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.5)

for all x ∈ X. So∥∥∥∥4lf
(
x

2l

)
− 4mf

(
x

2m

)∥∥∥∥ (3.6)

≤ max
{∥∥∥∥4lf

(
x

2l

)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f
(

x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l

)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
θ‖x‖r =

θ

|2|(r−2)l
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6)
that the sequence {4nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {4nf( x
2n

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.6), we get
(3.4).

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 3.3. Let r > 2 and θ be positive real numbers, and let f : X → Y be an even
mapping satisfying (3.3). Then there exists a unique quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ |2|
rθ

|4|
‖x‖r (3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ |2|rθ|4| ‖x‖r
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for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (3.8)

≤ max
{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
= max

{
1

|4|l
∥∥∥∥f (2lx

)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1
∥∥∥∥f (2m−1x

)
− 1

4
f (2mx)

∥∥∥∥
}

≤ max

{
|2|rl

|4|l+1
, · · · , |2|

r(m−1)

|4|(m−1)+1

}
|2|rθ‖x‖r =

|2|rθ
|2|(2−r)l+2

‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8)
that the sequence { 1

4n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
4n
f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.8), we get
(3.7).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �
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Abstract

To reduce the computational cost and storage requirement of global general-
ized minimal error(GLGMERR) method, in this paper, we propose a truncated
version of GLGMERR method, which is termed as incomplete global generalized
minimal error method. The proposed approach uses only a few rather than all of
the prior computed matrices in recurrences to generate the next matrix. More-
over a quasi-minimum error solution is obtained as well. Finally, we present the
numerical results by comparing with the traditional global GMERR method in
CPU time and storage requirements to show the effectiveness and advantages of
our method.

Key words:matrix equation; incomplete global generalized minimal error.
AMSC(2000): 65F10, 49M15, 65H10, 15A24

1 Introduction

Consider the following problem:

Ax(i) = b(i), i = 1, 2, · · · s, (1.1)

∗This research was supported by National Natural Science Foundation of Chi-
na(11501200,11601152,11501525) and National Natural Science Tianyuan Foundation of Chi-
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the Key Scientific Research Project of colleges and universities in Henan Province(No.15A110045),
Growth Funds for Scientific Research team of NCWU(320009-00200), Youth Science and Technology
Innovation talents of NCWU(70491), Doctoral Research Project of NCWU(201119).

†Corresponding author. E-mail:zhuoer2008@sohu.com.
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where A is a n×n unsymmetric matrix, x(i), b(i) are all n×1 real vectors, s ≤ n. In our
daily life, sometimes we have to solve this problem. Therefore, it is of importance that
researchers are interested in the study of the numerical solutions, algorithms design
and software development for solving problem (1.1).

Krylov subspace method, as one of the effective method for solving Ax = b, can be
used to solve s linear systems one by one. However, when the order of A is large, it is
not enough to use this method to solve this problem. Therefore, we have to find the
other new method to solve it. It should be noticed that when all b(i) do impact on the
whole system, the problem (1.1) can be rewritten as

AX = B, (1.2)

where X = [x(1), x(2), · · · x(s)]T , B = [b(1), b(2), · · · b(s)]T .
In the past decades, some related works have been achieved to solve the problem

(1.2). In 1999, Jbilou [1] et al proposed the global Arnoldi method and moreover, they
proposed global FOM and GMRES methods based on global Arnoldi method, which
extended the Krylov subspace method. Among all Krylov subspace methods, GMERR
method is one of the most effective methods, because it can minimize the error norm
of this method on Krylov subspace. The literature [2] presented the global GMRES
method for solving unsymmetric linear systems, which maps the initial residual matrix
to the Krylov subspace. In some sense, global GMERR and global GMERS [1] methods
have similar structures.

The global generalized minimal error(GMERR) algorithm is an effective Krylov
subspace method to solve the linear equations with multiple right-hand sides. As the
global GMERR method and the GMERR method have the long recurrence, which
result in the dramatic increase of the calculation and storage along with the increase
of the step numbers. At present, there are many truncation strategies. For example,
Young [3] presented the truncated forms of the orthogonal direction method and the
orthogonal residual method. In [4, 5], a truncated forms of FOM method has been
given. The truncated forms of IGMRES method or QGMRES method are presented
in [6–10]. In this paper, we use the truncation strategy to improve the global GMERR
algorithm, and propose a incomplete global GMERR algorithm, which use a few of the
previously generated matrix to construct the new basis matrix, and we also give the
quasi global minimum error solution on the Krylov subspace.

The remainder of this paper is organized as follows. In Section 2, we present the
incomplete global GMERR algorithm. Section 3 and 4 give some numerical experiments
to test the effectiveness of the incomplete global GMERR algorithm and conclusions,
respectively
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2 Incomplete global GMERR algorithm

The incomplete global GMERR algorithm, which is based on the incomplete orthogo-
nality of the Krylov subspace matrix, is to seek the quasi global minimum error solution.
The basis matrices {Vi}(i = 1, 2, ...,m) of the Krylov subspace Km(A

T , R0) can be ob-
tained through the incomplete orthogonal process. ATVi(i = 1, 2, ...,m) is carried out in
the orthogonal process with the first q(q < m) matrices Vi0 , ...Vi(i0 = max{1, i−q+1}),
The incomplete global GMERR algorithm is to seek the approximate solution Xm =
X0 + Zm, Zm ∈ ATKm(A

T , R0). Moreover Rm = B − AXm ⊥ Km(A
T , R0), i.e.,

R0 − AZm ⊥ Km(A
T , R0). (2.1)

Note that Um = [V1, V2, ..., Vm]. let Zm = ATUm ∗ ym, then we can have

Xm = X0 + ATUm ∗ ym, Rm = R0 − AATUm ∗ ym.

Since R0 − AZm is orthogonal to Km(A
T , R0) from equation (2.1). Therefore, for

i = 1, 2, ...,m, we can obtain

< Vi, R0 >=< Vi, AA
TUm ∗ ym > . (2.2)

Let V1 = R0/ ∥ R0 ∥F , then for the formula (2.2), when i = 1, it means tr(V T
1 R0) =

tr(V T
1 AA

TUm ∗ ym), i.e.,

∥ R0 ∥F= (tr(V T
1 AA

TV1), tr(V
T
1 AA

TV2), ...tr(V
T
1 AA

TVm))ym;

when i = q + 2, ...,m, (tr(V T
i AA

TV1), tr(V
T
i AA

TV2), ...tr(V
T
i AA

TVm))ym = 0;
when i = 2, ..., q + 1, tr(V T

i R0) = (tr(V T
i AA

TV1), tr(V
T
i AA

TV2), ...tr(V
T
i AA

TVm))ym.
Therefore, through the above discussion, we can obtain ym by solving the following

linear system:


tr(V T

1 AA
TV1) tr(V T

1 AA
TV2) · · · tr(V T

1 AA
TV2)

tr(V T
2 AA

TV1) tr(V T
2 AA

TV2) · · · tr(V T
2 AA

TV2)
...

...
. . .

...
tr(V T

mAA
TV1) tr(V T

mAA
TV2) · · · tr(V T

mAA
TV2)

 ym =



∥ R0 ∥F
0
...
0

tr(V T
q+2R0)
...

tr(V T
mR0)


(2.3)

To sum up, we obtain the following restarting incomplete GMERR Algorithm.
Algorithm 1 (The restarting in complete GMERR Algorithm)

Step 1. Choose the restarting step number m, let 2 ≤ q ≤ m, set the precision
tol and initial estimation n × s moment X0. Then calculate R0 = B − AX0, Let
V1 = R0/ ∥ R0 ∥F ;
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Step 2. For i = 1, 2, ...,m , do the following incomplete orthogonal process
2.1 W = ATVi,
2.2 For j = max(1, i− q + 1), ..., i, calculate

hj,i = tr(V T
j A

TVi), W =W − hj,iVj,

2.3 hi+1,i =∥ W ∥F , Vi+1 =W/hi+1,i;
Step 3. Solve the linear system (2.3) to get ym;
Step 4. Calculate Xm = X0 + ATUm ∗ ym;
Step 5. If ∥ Rm ∥F=∥ B − AX0 ∥F≤ tol, stop; otherwise, let Xm = X0, calculate

R0 = B − AX0, V1 = R0/ ∥ R0 ∥F , go to step 2.
It is not difficult to find that the matrices and Hessenberg matrix Hm produced by

the above incomplete orthogonal process satisfy the following theorem.
Theorem 1 If the incomplete global GMERR algorithm doesnt interrupt before the mth
step, i.e., hi+1,i ̸= 0, (i = 1, 2, · · · ,m), then {Vi}(i = 1, 2, · · · ,m), which are produced
by the incomplete orthogonal process, constitute a basis of the Krylov subspace. In
addition, we have

ATUm = Um ∗Hm + Sm+1,

tr(V T
i Vj) = 0(i ̸= j, | i− j |≤ q), tr(V T

i Vi) = 1, (i, j = 1, 2, · · · ,m),

where Sm+1 = hm+1,m[0n×s, 0n×s...Vk+1].

By analyzing the above theorem, we can achieve Hm and Bm = (tr(V T
i Vj))m×m,

(i, j = 1, 2, · · · ,m) in detail

Hm =



tr(V T
1 AV1) · · · tr(V T

1 AVq)

tr(V T
2 AV1)

. . .
0

. . .

tr(V T
m−q+1AVm)

0
. . .

...
tr(V T

mAVm−1) tr(V T
mAVm)


,

Bm =



1 0 · · · 0 ∗
0 1

. . . . . .
...

. . . . . . . . . 0

0
. . . . . . . . .

...
. . . . . . . . . 0

∗
0 · · · 0 1


,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.4, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

763 Yu-Hui Zheng et al 760-772



Yu-Hui Zheng etal: The incomplete global GMERR algorithm to Solve AX = B

Now, let us state some results which are indispensable for our subsequent discus-
sions.
Lemma 1 For inner product < X, Y >, we have < X, Y >≤∥ X ∥F∥ Y ∥F , where
X, Y ∈ Zn×s, Zn×s represents the n× s matrix space over R

Proof. Obviously, < X, Y >= tr(XTY ) =
n∑
i=1

s∑
j=1

xijyij, By Cauchy-Schwarz in-

equality, we have

n∑
i=1

s∑
j=1

xijyij ≤
n∑
i=1

( s∑
j=1

x2ij

) 1
2

·

(
s∑
j=1

y2ij

) 1
2


≤

(
n∑
i=1

s∑
j=1

x2ij

) 1
2

·

(
n∑
i=1

s∑
j=1

y2ij

) 1
2

=∥ X ∥F∥ Y ∥F .

Hence, the proof of the theorem is completed. �

Lemma 2 If j + 2 ≤ i ≤ m+ 1, then tr(V T
i A

TVj) =
min{i−q−1,j+1}∑

k=j−q+1

hk,jtr(V
T
i Vk).

Proof. By analyzing the algorithm and components of Hm, we have ATVj =
m+1∑
k=1

hk,jVk, where j = 1, 2, · · · ,m. Multiplying V T
i left to the two sides of the above

formula, we have V T
i A

TVj =
min{i−q−1,j+1}∑

k=1

hk,jV
T
i Vk.

Taking the trace, we can have

tr(V T
i A

TVj) =

i−q−1∑
k=1

hk,jtr(V
T
i Vk) + hi,j +

m+1∑
k=i+q+1

hk,jtr(V
T
i Vk)

=

i−q−1∑
k=1

hk,jtr(V
T
i Vk) + hi,j +

j+1∑
k=i+q+1

hk,jtr(V
T
i Vk) (k > 1, hk,j = 0)

=

min{i−q−1,j+1}∑
k=1

tr(hk,jV
T
i Vk)

=

min{i−q−1,j+1}∑
k=j−q+1

hk,jtr(V
T
i Vk)

If k ≤ 0, let tr(V T
i Vk), we have hk,j = 0. �

Theorem 2 Suppose q ≥ 2, i ≤ m + 1 and i − j ≥ q + 1, if the incomplete global
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GMERR algorithm doesnt interrupt before the step, we have

| tr(V T
j Vi) |≤ ci ∥ AT − A ∥F /hi,i−1, (2.4)

where ci+1 = max
1≤j≤i−q

γi+1,j,

γi+1,j = 1 + ci

min{i−q−1,j+1}∑
k=j−q+1

| hk,j |

 /hi,i−1 +

(
i∑

k=j+q+1

ck | hk,i |

)
/hk,k−1

and if k ≤ 0, then γi+1,j = 1.

Proof. Let Um+1 = [V1, V2, . . . , Vm+1], Bm+1 = (tr(V T
i Vj))(m+1)×(m+1). From Al-

gorithm 1 and Lemma 2, when i + 1 ≤ m + 1 and i + 1 − j ≥ q + 1, we obtain
that

hi+1,iVi+1 = ATVi −
i∑

k=i0

hk,iVk, (2.5)

Left-multiplying V T
j to both sides of equation (2.5) and taking trace, we can get

tr(V T
j Vi+1hi+1,i) = tr

(
V T
j

(
ATVi −

i∑
k=i0

hk,iVk

))

= tr
(
V T
j

(
AT − A

)
Vi
)
+

min{i−q−1,j+1}∑
k=j−q+1

hk,jtr(V
T
k Vi)−

i∑
k=i0

hk,itr(V
T
j Vk),

(2.6)

where i0 = max{1, i − q + 1}. In the following part, the inductive method is used to
prove our theorem.

When i + 1 = q + 2 ≤ m + 1, j = 1, from equation (2.2) and Lemma 2, we can
obtain

hq+2,q+1tr(V
T
1 Vq+2) = tr

(
V T
1

(
AT − A

)
Vq+1

)
.

Assume that the incomplete global GMERR algorithm doesnt interrupt, and then
we can have ∣∣tr(V T

1 Vq+2)
∣∣ = ∣∣tr (V T

1

(
AT − A

)
Vq+1

)∣∣ /hq+2,q+1

=
∣∣< V T

1 ,
(
AT − A

)
Vq+1 >

∣∣ /hq+2,q+1

≤∥ V1 ∥F∥ AT − A ∥F∥ Vq+1 ∥F /hq+2,q+1

=∥ AT − A ∥F /hq+2,q+1,

which shows that it satisfies formula (2.5), where cq+2 = 1.
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Assume the first i columns in the upper right corner of matrix Bm+1 satisfy equation
(2.5). In the following we process the (i+1)th column, where 1 ≤ j ≤ j−q, i.e. i−j ≥ q.
For formula (2.6), we can separately get the following inequations∣∣∣∣∣∣

min{i−q−1,j+1}∑
k=j−q+1

hk,jtr(V
T
k Vi)

∣∣∣∣∣∣ ≤
min{i−q−1,j+1}∑

k=j−q+1

∣∣hk,jtr(V T
k Vi)

∣∣
≤ ci

min{i−q−1,j+1}∑
k=j−q+1

|hk,j| ∥ AT − A ∥F /hi,i−1,

and ∣∣∣∣∣
i∑

k=i0

hk,itr(V
T
j Vk)

∣∣∣∣∣ ≤
i∑

k=i0

∣∣hk,itr(V T
j Vk)

∣∣ = i∑
k=j+q+1

∣∣hk,itr(V T
j Vk)

∣∣
≤

i∑
k=j+q+1

ck |hk,i| ∥ AT − A ∥F /hk,k−1.

Then, we can conclude that

∣∣tr(V T
j Vi+1)

∣∣ ≤
(
∥ Vj ∥F∥ AT − A ∥F∥ Vi ∥F +

∣∣∣∣∣min{i−q−1,j+1}∑
k=j−q+1

hk,jtr(V
T
k Vi)

∣∣∣∣∣+
∣∣∣∣ i∑
k=i0

hk,itr(V
T
j Vk)

∣∣∣∣
)

hi+1,i

≤

[
1 +

(
ci
min{i−q−1,j+1}∑

k=j−q+1

|hk,j|

)
/hi,i−1 +

(
i∑

k=j+q+1

ck |hk,i| /hk,k−1

)]
∥ AT − A ∥F

hi+1,i

= γi+1,j ∥ AT − A ∥F /hi+1,i,

where ci+1 = max
1≤j≤i−q

γi+1,j. The proof the theorem is completed. �
Theorem 3 Any singular value σ(Bm) of Bm =

(
tr(V T

I Vj)
)
m×m satisfies

max
{
0, 1− (m− q − 1)c ∥ AT − A ∥F

}
≤ σ(Bm) ≤ 1 + (m− q − 1)c ∥ AT − A ∥F

where c is a function generated by Hm.

Proof. By Gerschgorin Circular disc Theorem and Theorem 1, for any singular
value σ(Bm) of Bm, there must exist i, satisfying

|σ(Bm)− 1| ≤
∑
j ̸=i

|tr(V T
i Vj)| =

∑
|i−j|≥q+1

|tr(V T
i Vj)|.
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Therefore, we can get that

1−
∑

|i−j|≥q+1

|tr(V T
i Vj)| ≤ σ(Bm) ≤ 1 +

∑
|i−j|≥q+1

|tr(V T
i Vj)|.

By analying the algorithm and the structure of Bm, we have

∑
|i−j|≥q+1

|tr(V T
i Vj)| =

i−q−1∑
j=1

|tr(V T
i Vj)|+

m∑
j=i+q+1

|tr(V T
i Vj)|

If i ≤ q + 1,
i−q−1∑
j=1

|tr(V T
i Vj)| = 0, then

∑
|i−j|≥q+1

|tr(V T
i Vj)| ≤ (m− i− q) max

i+q+1≤j≤m
|tr(V T

i Vj)|

≤ (m− q − 1) max
q+2≤j≤m

|tr(V T
i Vj)|

≤ (m− q − 1)c ∥ AT − A ∥F ,

where c = max
q+2≤j≤m

cj/hj,j−1.

If i ≥ m− q,
m∑

j=i+q+1

|tr(V T
i Vj)| = 0, then

∑
|i−j|≥q+1

|tr(V T
i Vj)| ≤ (i− q − 1) max

1≤j≤i−q−1
|tr(V T

i Vj)|

≤ (m− q − 1) max
1≤j≤m−q−1

|tr(V T
j Vi)|

≤ (m− q − 1)c ∥ AT − A ∥F ,

where c = max
m−q≤i≤m

ci/hi,i−1.

If q + 2 ≤ i ≤ m− q − 1, based on Lemma 2, we have∑
|i−j|≥q+1

|tr(V T
i Vj)| ≤ (i− q − 1) max

1≤j≤i−q−1
|tr(V T

i Vj)|+ (m− i− q) max
i+q+1≤j≤m

|tr(V T
i Vj)|

≤ (i− q − 1) ∥ AT − A ∥F max
q+2≤i≤m−q−1

ci/hi,i−1

+ (m− i− q) ∥ AT − A ∥F max
i+q+1≤j≤m

cj/hj,j−1

≤ (m− 2q − 1)c ∥ AT − A ∥F≤ (m− q − 1)c ∥ AT − A ∥F ,

where c = max

{
max

q+2≤i≤m−q−1
ci/hi,i−1, max

i+q+1≤j≤m
cj/hj,j−1

}
. Based the above disscus-

sion, the proof the theorem is completed. �
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Theorem 3 presents that the orthogonal degree of basis matrices is determined
by the symmetry degree of the coefficient matrix. By the above theorems, we can
obtain the conclusion on the algorithm convergence. If the algorithm is interrupted,
which means h1+i,i = 0(1 ≤ i ≤ m) at ith step, the invariant subspace of AT could
be generated, moreover the approximate solution Xi generated by incomplete global
GMERR algorithm is the exact solution of AX = B. Meanwhile, the error Ri = 0.

During the incomplete orthogonal process, the generated basis matrix may lose
the orthogonality to some extent. From theorem 2 and theorem 3, we can find that
the incomplete global GMERR algorithm can not control the orthogonal degree of the
generated basis matrix when the coefficient matrix is far away from the symmetric
property. And so, the algorithm may not converge.

3 Numerical experiments

In this section, we give numerical experiments to test the effectiveness of the incomplete
global GMERR algorithm. Moreover we compare it with the global GMERR algorithm
and find that our proposed method is more effective than the traditional method when
they are set in the same accuracy.

Example Consider the two-dimension Convection-Diffusion Equation which is de-
fined on the domain Ω = [0, 1]× [0, 1] −∆u(x, y) + α

∂

∂x
u(x, y) = f(x, y),

u(x, y) = 0.

In this paper, we use the central difference method with grid length h = 1/(l + 1)
to discrete the above equation, and then we obtain the n = l2 order non-symmetric
matrix A(α)

A(α) =


B(α) −I
−I . . . . . .

. . . . . . −I
−I B(α)

 ,

where B(α) =


4 a

b
. . . . . .
. . . . . . a

b 4

 is l order matrix, a = −1 + α
2(l+1)

, b = −1− α
2(l+1)

,

I is l order identity matrix, parameter α control the A(α) and deviation of symmetry.
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Table 1: The incomplete global GMERR(m) algorithm with n = 2500, α = 0.25, ∥ A(0.25)T−
A(0.25) ∥F= 0.3431

m q CPU ratio IT ∥ R ∥F

40

2 43.8590 0.7221 28 9.2951e-7
5 45.7030 0.7725 28 9.2951e-7
10 50.7810 0.8361 28 9.2951e-7
20 55.6400 0.9161 28 9.2951e-7
30 57.4530 0.9459 28 9.2951e-7
40 60.7350 1 28 9.2951e-7

50

2 34.4850 0.6876 15 7.3342e-7
5 37.0470 0.7386 15 7.3342e-7
10 39.9530 0.7966 15 7.3342e-7
20 43.9370 0.8760 15 7.3342e-7
30 47.7030 0.9511 15 7.3342e-7
40 49.4220 0.9854 15 7.3342e-7
50 50.1560 1 15 7.3342e-7

Table 2: The incomplete global GMERR(m) algorithm with n = 2500, α = 2.5, ∥ A(2.5)T −
A(2.5) ∥F= 3.4314

m q CPU ratio IT ∥ R ∥F

40

2 44.6410 0.7431 24 9.1938e-7
5 47.2960 0.7872 24 9.1938e-7
10 48.1100 0.8008 24 9.1938e-7
20 58.7340 0.9778 24 9.1938e-7
30 59.6250 0.9812 24 9.1938e-7
40 60.0780 1 24 9.1938e-7

50

2 34.4690 0.7204 13 6.5037e-7
5 33.4690 0.6995 13 6.5037e-7
10 38.4060 0.8027 13 6.5037e-7
20 39.2660 0.8207 13 6.5037e-7
30 42.0780 0.8795 13 6.5037e-7
40 44.0630 0.9209 13 6.5037e-7
50 47.8440 1 13 6.5037e-7
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Table 3: The incomplete global GMERR(m) algorithm with n = 2500, α = 25, ∥ A(25)T −
A(25) ∥F= 34.3137

m q CPU ratio IT ∥ R ∥F

40

2 393.7810 0.7567 208 8.2432e-7
5 381.4370 0.7330 208 9.6001e-7
10 420.1400 0.8074 208 8.4919e-7
20 461.5940 0.8871 208 9.3441e-7
30 489.7580 0.9412 208 9.6380e-7
40 520.3590 1 209 8.2174e-7

50

2 431.6090 0.8871 192 7.7878e-7
5 324.9540 0.6679 137 8.8358e-7
10 352.1880 0.7238 137 8.4919e-7
20 392.1410 0.8059 137 9.1390e-7
30 427.0160 0.8776 137 9.0901e-7
40 442.0160 0.9084 136 9.7113e-7
50 486.5620 1 136 9.1955e-7

Table 4: The incomplete global GMERR(m) algorithm with n = 2500, α = 2500, ∥ A(α)T −
A(α) ∥F= 3.4314e+ 3

m q CPU ratio IT ∥ R ∥F

40

2 153.0620 0.7777 90 9.6087e-7
5 145.2810 0.7382 92 9.8770e-7
10 162.4370 0.8253 92 9.8773e-7
20 180.1560 0.9154 92 9.8773e-7
30 191.8900 0.9750 92 9.8773e-7
40 196.8130 1 92 9.8773e-7

50

2 196.8280 0.7695 71 9.5397e-7
5 183.8900 0.7189 71 9.3412e-7
10 205.8750 0.8049 71 9.5319e-7
20 228.0320 0.8915 71 9.5319e-7
30 256.4370 1.0026 71 9.5319e-7
40 244.1870 0.9547 71 9.5319e-7
50 255.7810 1 71 9.5319e-7
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The purpose of this section is to demonstrate that, with the same accuracy, the
incomplete global GMERR algorithm is more effective than the global GMERR algo-
rithm when we solve the large linear equations with multiple right-hand sides. With-
out loss of generality, we set s = 2, which means the two right-hand sides. Assuming
B = rand(n, s), X0 = 0, l = 50, n = 2500, tol = 10−6, we test the incomplete global
GMERR algorithm for numerical analysis for m = 40, 50, Moreover, we find that the
incomplete global GMERR algorithm degenerate to global GMERR algorithm when
q = m, Table 1-4 show us the numerical results, where CPU is denoted as the algorithm
running time (in seconds), IT represents the iterate times, Ratio means the running
time ratio of the incomplete global GMERR algorithm to the GMERR algorithm with
the same accuracy requirements.

For α = 0.25, A(α) is approximatly symmetric. Thus, the loss of the orthogonality
of the basis matrices is not serious. The CPU time of incomplete global GMERR
algorithm is shorter than the global GMERR algorithm, which shows effective of our
proposed method.

For α = 2.5, we can see the incomplete global GMERR algorithm is more effective
than the global GMERR algorithm from table 2 and table 3. For α = 2500, although
A(α) is far away from the symmetric property and the loss of the orthogonality of the
basis matrices is serious, we can find that the incomplete global GMERR algorithm is
still effective than the global GMERR algorithm from table 4.

The experimental results show that, with the same accuracy, the incomplete global
GMERR algorithm is more effective than the global GMERR algorithm. With the
same computational cost, operation time and storage of our method is less than these
of traditional method.

4 Conclusion

The incomplete global GMERR algorithm can overcome the long recurrence of the
global GMERR algorithm by truncation strategy, which can save the computation
and storage requirements effectively. In this paper, we present the incomplete global
GMERR algorithm theoretically. Finally, the experimental results show effectiveness
of the incomplete global GMERR algorithm by comparing with the traditional global
GMERR algorithm.
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DOUBLE DIFFERENCE SPACES OF ALMOST NULL AND ALMOST

CONVERGENT SEQUENCES FOR ORLICZ FUNCTION

KULDIP RAJ AND RENU ANAND

Abstract. The objective of this paper is to introduce and study some double differ-

ence spaces of almost null and almost convergent sequences defined by a Musielak-
Orlicz function. We prove that these spaces are Banach, Barreled and Bornological

spaces. An attempt is also made to prove that these spaces are BDK spaces and prove

some interrelationship between these spaces.

1. Introduction and Preliminaries

The initial work on double sequences is found in Bromwich [4]. Later on, it was studied
by Hardy [10], Móricz [15], Móricz and Rhoades [16], Tripathy ([27],[28]), Başarır and
Sonalcan [2] and many others. Hardy [10] introduced the notion of regular convergence
for double sequences. Quite recently, Zeltser [30] in her Ph.D thesis has essentially stud-
ied both the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely [17] have recently introduced the statistical
convergence and Cauchy convergence for double sequences and given the relation between
statistical convergent and strongly Cesàro summable double sequences. Next, Mursaleen
[21] and Mursaleen and Edely [18] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and intro-
duced the M -core for double sequences and determined those four dimensional matrices
transforming every bounded double sequences x = (xkl) into one whose core is a subset
of the M -core of x. The set of all complex valued double sequences is a vector space with
coordinatewise addition and scalar multiplication which is denoted by Ω.
By the convergence of a double sequence we mean the convergence in the Pringsheim
sense i.e. a double sequence x = (xkl) has Pringsheim limit L (denoted by P − limx = L)
provided that given ε > 0 there exists n0 ∈ N such that |xkl − L| < ε whenever k, l > n0.
We shall write more briefly as P -convergent. The space of all convergent double sequences
in Pringsheim’s sense is denoted by Cp.
A double sequence x = (xkl) of complex numbers is said to be bounded if ||x||∞ =
sup
k,l∈N

|xkl| < ∞, where N = {0, 1, 2, ...}. The space of all bounded double sequences is

denoted by Mu , which is a Banach space with the norm ||.||∞.
It is well known that there are such sequences in the space Cp but not in the space Mu.
Indeed, if we define the sequence x = (xkl) by

xkl =

 k, k ∈ N
l, l ∈ N
0, k, l ∈ N \ {0},

2010 Mathematics Subject Classification. 46A45, 40C05.
Key words and phrases. Orlicz function, Musielak-Orlicz function, sequence space, double sequence,
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for all k, l ∈ N, then, it is trivial that x ∈ Cp\Mu, since P− lim
k,l→∞

xkl = 0 but ||x||∞ =∞.
Therefore, we can consider the space Cbp of the double sequences that are both convergent
in Pringsheim’s sense and bounded which we write Cbp = Cp ∩Mu.
A sequence in the space Cp is said to be regularly convergent if it is a single convergent
sequence with respect to each index and denote the space of all such sequences by Cr. Also
by Cbp0 and Cr0, we denote the spaces of all double sequences converging to 0 contained
in the sequence spaces Cbp and Cr, respectively. Moricz [15] proved that Cbp, Cbp0, Cr and
Cr0 are Banach spaces with the norm ||.||∞.
The concept of almost convergence for single sequences was introduced by Lorentz [13]
and for double sequences by Móricz and Rhoades [16]. A double sequence x = (xkl) of
complex numbers is said to be almost convergent to a generalized limit α if

P − lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

(xkl − α)
∣∣∣ = 0. (see [29])

Here, α is called the f2- limit of x. The space of all almost convergent double sequences
is denoted by Cf . A P− convergent double sequence need not to be almost convergent.
However, every bounded convergent double sequence is almost convergent and every almost
convergent double sequence is also bounded.

Definition 1.1. [6] A bounded double sequence x = (xkl) of real numbers is said to σ−
convergent to a limit L if

P − lim
q,r

τqrst(x) = L uniformly in s, t ∈ N,

where

τqrst(x) =
1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

xσk(s),σl(t).

In this case, we write σ2 − limx = L. The set of all bounded σ− convergent double
sequences is denoted by V 2

σ . Clearly, Cbp ⊂ V 2
σ .

Definition 1.2. [26] A topological vector space λ over R or C is called locally convex
if it is a Hausdorff space such that every neighbourhood of any x ∈ λ contains a convex
neighbourhood of x.

Definition 1.3. [30] A locally convex double sequence space λ is called a DK− space
if all of the seminorms rkl : λ → R, x = (xkl) → |xkl| for all k, l ∈ N are continuous. A
DK− space with a Frechet topology is called an FDK− space. A normed FDK− space
is called a BDK− space.

Definition 1.4. [26] Let λ be a vector space over the field C and let A,B be subsets of
λ. Then A absorbs B if there exists α0 ∈ C such that B ⊂ αA whenever |α| > |α0|. A
subset C of λ is circled if αC ⊂ C whenever |α| ≤ 1.

Definition 1.5. [26] A locally convex space λ is bornological if every circled, convex
subset A ⊂ λ that absorbs every bounded set in λ is a neighbourhood of 0 in λ.

Definition 1.6. [5] Let λ be a locally convex space. Then a subset is called barrel if it
is absolutely convex, absorbing and closed in λ. Moreover, λ is called a barreled space if
each barrel is a neighbourhood of zero.

Lemma 1.7. [26] Every Banach space and every Fréchet space is a barreled space.
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Lemma 1.8. [26] Every Fréchet space and hence every Banach space is a bornological.

Lemma 1.9. [5] Let (X, p) be a seminormed space and q be a seminorm on X. Then the
following are equivalent:
(a) q is continuous.
(b) q is continuous at zero.
(c) There exists M > 0 such that q(x) ≤Mp(x) for all x ∈ X.

Altay and Başar [1] introduced the space BS of bounded series as follows:

BS =
{
x = (xkl) ∈ Ω : ||x||BS = sup

m,n∈N

∣∣∣ m,n∑
k,l=0

xkl

∣∣∣ <∞}.
The space is also a Banach space with the norm ‖.‖BS .
One can refer to Mursaleen and Mohiuddine [19] for relevant terminology and required
details on the spaces of double sequences and related topics.

The notion of difference sequence spaces was introduced by Kızmaz [11], who studied
the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further general-
ized by Et and Çolak [7] by introducing the spaces l∞(∆m), c(∆m) and c0(∆m). Later
the concept have been studied by Bektaş et al. [3] and Et et al. [8]. Another type of
generalization of the difference sequence spaces is due to Tripathy and Esi [27] who stud-
ied the spaces l∞(∆v), c(∆v) and c0(∆v) where m, v are non-negative integers. Now, for
Z = c, c0 and l∞, we have sequence spaces

Z(∆m) = {x = (xk) ∈ Ω : (∆mxk) ∈ Z},
where ∆mx = (∆mxk) = (∆m−1xk −∆m−1xk+1) and ∆0xk = xk for all k ∈ N, which is
equivalent to the following binomial representation

∆mxk =
m∑
v=0

(−1)v
(
m
v

)
xk+v.

Taking m = 1, we get the spaces studied by Et and Çolak [7].

An Orlicz function M is a function, which is continuous, non-decreasing and convex with
M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.
Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (xk), then

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space with the
norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

It is shown in [12] that every Orlicz sequence space `M contains a subspace isomorphic to
`p(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all values of x ≥ 0
and for L > 1. For more details about sequence spaces (see [9], [20], [23], [24], [25]) and
references therein .
A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see
[14],[22]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u− (Mk) : u ≥ 0}, k = 1, 2, · · ·
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is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its subspace
hM are defined as follows:

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded sequence of pos-
itive real numbers and u = (ukl) be a double sequence of strictly positive real numbers.
In the present paper we define the following classes of sequences:

Cf (M, u,∆m, p) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

Mkl

(ukl∆mxkl − α
%

)∣∣∣pkl

= 0,

for some % > 0
}

and

Cf0(M, u,∆m, p) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

=

0, for some % > 0
}
.

Remark 1.10. Let us consider a few special cases of the above sequence spaces:
(i) If we takeM(x) = x, then the above classes of sequences reduces to following sequence
spaces:

Cf (u,∆m, p) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

(ukl∆mxkl − α
%

)∣∣∣pkl

= 0,

for some % > 0
}

and

Cf0(u,∆m, p) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

= 0,

for some % > 0
}
.

(ii) If we take p = (pkl) = 1, then the above sequence space becomes
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Cf (M, u,∆m) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

Mkl

(ukl∆mxkl − α
%

)∣∣∣ = 0,

for some % > 0
}

and

Cf0(M, u,∆m) ={
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣ = 0,

for some % > 0
}
.

(iii) If we take M(x) = x, p = (pkl) = 1, u = (ukl) = 1 m = 0 and % = 1, then we have

Cf =
{
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

(
xkl − α

)∣∣∣ = 0 and

Cf0 =
{
x = (xkl) ∈ Ω : P − lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

(
xk+s,l+t

)∣∣∣ = 0
}
.

which were introduced and studied by Yeşilkayagiil and Başar [29].

The main purpose of the present paper is to show that the sequence spaces Cf (M, u,∆m, p)
and Cf0(M, u,∆m, p) are BDK-spaces, Barreled and Bornological. Furthermore, we also
studied some inclusion relations between these spaces.

2. Main Results

Theorem 2.1. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded
sequence of positive real numbers and u = (ukl) be a double sequence of strictly positive real
numbers. Then the sequence spaces Cf (M, u,∆m, p) and Cf0(M, u,∆m, p) are Banach
spaces with the supremum norm.

Proof. We are going to prove this for the space Cf (M, u,∆m, p) and the other can be
proved in the similar way. Define norm ||.|| on Cf (M, u,∆m, p) as:

||x||M,u,∆m,p
Cf

= sup
q,r,s,t∈N

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

.

Clearly, Cf (M, u,∆m, p) is a normed linear space by the above defined norm. Now, we

have to prove that Cf (M, u,∆m, p) is complete. For this, let (∆mx(b)) be a Cauchy

sequence in Cf (M, u,∆m, p). Then (∆mx
(b)
kl ) is a Cauchy sequence in C, for each k, l.

Therefore, ∆mx
(b)
kl → ∆mxkl (say). Put ∆mx = (∆mxkl). For given ε, there exists an

integer N(ε) = N (say) such that for each b, n > N

||∆mx(b) −∆mx(n)|| < ε

2
.

Hence,

sup
q,r,s,t

|τqrst(∆mx(b) −∆mx(n))| < ε

2
.

Then, for each q, r, s, t and b, n > N, we have

|τqrst(∆mx(b) −∆mx(n))| <
ε

2
.(2.1)

Now, for fixed b, the above inequality holds. Since for fixed b,∆mx(b) ∈ Cf (M, u,∆m, p),
we get
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lim
q,r→∞

τqrst(∆
mx(b)) = L,

uniformly in s, t.
For given ε > 0, there exists positive integers q0, r0 such that

|τqrst(∆mx(b))− L| <
ε

2
,(2.2)

for q ≥ q0, r ≥ r0 and for all s, t. Here q0, r0 are independent of s, t but depend upon ε.
Now, by using (2.1) and (2.2), we obtain

|τqrst(∆mx)− L| = |τqrst(∆mx)− τqrst(∆mx(b)) + τqrst(∆
mx(b))− L|

≤ |τqrst(∆mx)− τqrst(∆mx(b))|+ |τqrst(∆mx(b))− L|

<
ε

2
+
ε

2
= ε,

for q ≥ q0, r ≥ r0 and for all s, t.
Hence, ∆mx = (∆mxkl) ∈ Cf (M, u,∆m, p) and so Cf (M, u,∆m, p) is complete. This
completes the proof. �

Corollary 2.2. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded
sequence of positive real numbers and u = (ukl) be a double sequence of strictly positive real
numbers. Then the sequence spaces Cf (M, u,∆m, p) and Cf0(M, u,∆m, p) are barreled
spaces.

Proof. Since Cf (M, u,∆m, p) and Cf0(M, u,∆m, p) are Banach spaces with the supremum
norm and every Banach space is a barreled space, it follows that Cf (M, u,∆m, p) and
Cf0(M, u,∆m, p) are also barreled spaces. �

Corollary 2.3. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded
sequence of positive real numbers and u = (ukl) be a double sequence of strictly posi-
tive real numbers. Then the sequence spaces Cf (M, u,∆m, p) and Cf0(M, u,∆m, p) are
bornological spaces.

Proof. By the same arguement given in the above corollary, the above spaces are bornolog-
ical spaces. �

Theorem 2.4. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded se-
quence of positive real numbers and u = (ukl) be a double sequence of strictly positive real
numbers. Then the sequence spaces Cf (M, u,∆m, p) and Cf0(M, u,∆m, p) are BDK−
spaces with the norm defined as:

||x||M,u,∆m,p
Cf

= sup
q,r,s,t∈N

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

.

Proof. We will prove it for the space Cf (M, u,∆m, p) and rest can be proved in a similar
way. Since every normed space is a seminormed space, it follows that Cf (M, u,∆m, p)
is also a seminormed space with respect to the given norm. Now for x = (xkl) in
Cf (M, u,∆m, p), we define some new seminorm rkl : Cf (M, u,∆m, p) → R as rkl(xkl) =
|xkl| for all k, l ∈ N. We have to show that the each one is continuous. By Lemma (1.9),
there exists T > 0 for all x ∈ Cf (M, u,∆m, p) such that

rkl(x) = |xkl| ≤ T ||x||M,u,∆m,p
Cf

∀ k, l ∈ N.
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So, the seminorm is continuous. Therefore, Cf (M, u,∆m, p) is a DK− space and so is Ba-
nach space, it follows that Cf (M, u,∆m, p) has Frechet topology. Thus, it is BDK−space
with the above given norm. Hence, the proof is complete. �

Theorem 2.5. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded
sequence of positive real numbers and u = (ukl) be a double sequence of strictly positive real

numbers. Suppose that β = lim
w→∞

Mkl(w)

w
<∞. Then, Cf0(u,∆m, p) = Cf0(M, u,∆m, p).

Proof. In order to prove that Cf0(u,∆m, p) = Cf0(M, u,∆m, p), it is sufficient to show
that Cf0(M, u,∆m, p) ⊂ Cf0(u,∆m, p). Now, let β > 0. By definition of β, we have
w ≤ 1

βMkl(w), ∀ w ≥ 0. Let x = (xkl) ∈ Cf0(M, u,∆m, p). Thus, we have

lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

≤ 1

β
lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

which implies that x = (xkl) ∈ Cf0(u,∆m, p). �

Theorem 2.6. Let M = (Mkl) be Musielak-Orlicz function and u = (ukl) be a double
sequence of strictly positive real numbers. If p = (pkl) and v = (vkl) are bounded sequences
of positive real numbers with 0 ≤ pkl ≤ vkl <∞ ∀ k, l; then

Cf0(M, u,∆m, p) ⊂ Cf0(M, u,∆m, v).

Proof. Let x = (xkl) ∈ Cf0(M, u,∆m, p). Then

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

→ 0 as q, r →∞.

This implies that∣∣∣Mkl

(
ukl∆

mxk+s,l+t

%

)∣∣∣pkl

≤ 1, for sufficiently large values of k and l. Since (Mkl) is in-

creasing and pkl ≤ vkl, we have

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣vkl

≤ sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

.

Thus, x = (xkl) ∈ Cf0(M, u,∆m, v). This completes the proof. �

Theorem 2.7. Let M = (Mkl) be Musielak-Orlicz function, p = (pkl) be a bounded
sequence of positive real numbers and u = (ukl) be a double sequence of strictly positive
real numbers. Then the following inclusions hold:
(i) If 0 < inf pkl < pkl ≤ 1 then Cf0(M, u,∆m, p) ⊂ Cf0(M, u,∆m);
(ii) If 1 ≤ pkl ≤ sup pkl <∞ then Cf0(M, u,∆m) ⊂ Cf0(M, u,∆m, p).

Proof. (i) Let x = (xkl) ∈ Cf0(M, u,∆m, p). Then, since 0 < inf pkl < pkl ≤ 1, we obtain
the following:

lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣
≤ lim

q,r→∞
sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

.
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Thus, x = (xkl) ∈ Cf0(M, u,∆m).
(ii) Let p = (pkl) ≥ 1 for each k and l and sup pkl < ∞. Let x = (xkl) ∈ Cf0(M, u,∆m).
Then for each 0 < ε < 1, there exists a positive integer N such that

lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣ ≤ ε < 1 ∀ q, r ≥ N.

This implies that

lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

≤ lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣.
Therefore, x = (xkl) ∈ Cf0(M, u,∆m, p). This concludes the proof. �

Theorem 2.8. Let M = (Mkl) and M′ = (M ′kl) be two Musielak-Orlicz functions, p =
(pkl) be a bounded sequence of positive real numbers and u = (ukl) be a double sequence of
strictly positive real numbers. Then,

Cf0(M, u,∆m, p) ∩ Cf0(M′, u,∆m, p) ⊂ Cf0(M+M′, u,∆m, p).

Proof. Let x = (xkl) ∈ Cf0(M, u,∆m, p) ∩ Cf0(M′, u,∆m, p). Then

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

→ 0 as q, r →∞

and

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

M ′kl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

→ 0 as q, r →∞.

Then, we have

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

(Mkl +M ′kl)
(ukl∆mxk+s,l+t

%

)∣∣∣pkl

≤ K
[

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

Mkl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl
]

+ K
[

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

M ′kl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl
]
→ 0 as q, r →∞.

Thus, sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

(Mkl +M ′kl)
(ukl∆mxk+s,l+t

%

)∣∣∣pkl

→ 0 as q, r →∞.

Therefore, x = (xkl) ∈ Cf0(M+M′, u,∆m, p). This completes the proof. �

Theorem 2.9. Let M = (Mkl) and M′ = (M ′kl) be two Musielak-Orlicz functions, p =
(pkl) be a bounded sequence of positive real numbers and u = (ukl) be a double sequence of
strictly positive real numbers. Then,

Cf0(M′, u,∆m, p) ⊂ Cf0(M◦M′, u,∆m, p).

Proof. Let x = (xkl) ∈ Cf0(M′, u,∆m, p). Then, we have

lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q∑
k=0

r∑
l=0

M ′kl

(ukl∆mxk+s,l+t

%

)∣∣∣pkl

= 0.

Let ε > 0 and choose δ > 0 with 0 < δ < 1 such that Mkl(n) < ε for 0 ≤ n ≤ δ.
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Write ykl =
[
M ′kl

(
ukl∆

mxk+s,l+t

%

)]
and consider

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q,r∑
k,l=0,0

Mkl(ykl)
∣∣∣pkl

= sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

∑
1

Mkl(ykl)
∣∣∣pkl

+ sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

∑
2

Mkl(ykl)
∣∣∣pkl

where the first summation is over ykl ≤ δ and second summation is over ykl > δ. Since
Mkl is continuous, we have

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

∑
1

Mkl(ykl)
∣∣∣pkl

< εH(2.3)

where H = sup pkl and for ykl > δ, we use the fact that

ykl <
ykl
δ
< 1 +

ykl
δ

By the definition, we have for ykl > δ,Mkl(ykl) < 2Mkl(1)ykl

δ . Hence,

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

∑
2

Mkl(ykl)
∣∣∣pkl

≤ max
(

1, (2Fk(1)δ−1)H
)

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

q,r∑
k,l=0,0

ykl

∣∣∣pkl

(2.4)

Therefore, from equations (2.3) and (2.4), we have

Cf0(M′, u,∆m, p) ⊂ Cf0(M◦M′, u,∆m, p).

This completes the proof. �

Theorem 2.10. Let BS be the space of bounded series of double sequences and Cf0(M, u,∆m, p)
be the space of all almost null double sequences. Then the inclusion relation BS ⊂
Cf0(M, u,∆m, p) holds.

Proof. Let x = (xkl) ∈ BS. Then T = sup
s,t∈N

∣∣∣ s,t∑
k,l=0,0

xkl

∣∣∣ <∞.
Therefore, for all q, r, s, t ∈ N, we have

∣∣∣ s+q∑
k=s

t+r∑
l=t

xkl

∣∣∣ =
∣∣∣ s+q∑
k=0

t+r∑
l=0

xkl −
s−1∑
k=0

t+r∑
l=0

xkl −
s+q∑
k=s

t−1∑
l=0

xkl

∣∣∣
≤

∣∣∣ s+q∑
k=0

t+r∑
l=0

xkl

∣∣∣+
∣∣∣ s+q∑
k=s

t+r∑
l=0

xkl

∣∣∣+
∣∣∣ s+q∑
k=s

t−1∑
l=0

xkl

∣∣∣
≤ 2T +

∣∣∣ s+q∑
k=s

t−1∑
l=0

xkl

∣∣∣
= 2T +

∣∣∣ s+q∑
k=0

t−1∑
l=0

xkl −
s∑

k=0

t−1∑
l=0

xkl

∣∣∣
≤ 2T +

∣∣∣ s+q∑
k=0

t−1∑
l=0

xkl

∣∣∣+
∣∣∣ s∑
k=0

t−1∑
l=0

xkl

∣∣∣ ≤ 4T,
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which implies that

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

Mkl

(ukl∆mxkl
%

)∣∣∣pkl

≤
∣∣∣ 4T

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

Mkl

(ukl∆mxkl
%

)∣∣∣pkl

Further, if we take supremum over s, t ∈ N in the above relation and also apply the P-limit
as q, r →∞, then, we have

P − lim
q,r→∞

sup
s,t>0

∣∣∣ 1

(q + 1)(r + 1)

s+q∑
k=s

t+r∑
l=t

Mkl

(ukl∆mxkl
%

)∣∣∣pkl

= 0,

therefore, x ∈ Cf0(M, u,∆m, p). Hence, the result holds. �
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ADDITIVE ρ-FUNCTIONAL INEQUALITIES

HARIN LEE, JAE YOUNG CHA, MIN WOO CHO, MYUNGJUN KWON AND CHOONKIL
PARK∗

Abstract. In this paper, we solve the additive ρ-functional inequalities

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x+ y)− f(x)− f(y))‖ , (0.1)

where ρ is a fixed complex number with |ρ| < 1, and

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖, (0.2)

where ρ is a fixed complex number with |ρ| < 1
2 .

Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional in-
equalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [17]
concerning the stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The stability of quadratic functional equation was proved by Skof [16] for mappings
f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [3]
noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by
an Abelian group. See [2, 4, 7, 8, 9, 11, 12, 13, 14, 15, 18] for more information on the
stability problems of functional equations.

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive ρ-functional inequality (0.1) in complex Banach spaces.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-
Ulam stability of the additive ρ-functional inequality (0.2) in complex Banach spaces.

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52.
Key words and phrases. Hyers-Ulam stability; additive ρ-functional inequality.
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Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real
or complex normed space with norm ‖ · ‖ and that Y is a complex Banach space with
norm ‖ · ‖.

2. Additive ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we solve and investigate the additive ρ-functional inequality (0.1) in

complex Banach spaces.

Lemma 2.1. If a mapping f : G→ Y satisfies

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x+ y)− f(x)− f(y))‖ (2.1)

for all x, y ∈ G, then f : G→ Y is additive.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting x = 0 and y = 0 in (2.1), we get ‖f(0)‖ ≤ ‖ρ (f(0))‖ and so f(0) = 0 with
|ρ| < 1.

Letting x = 0 in (2.1), we get ‖f(−y) + f(y)‖ ≤ 0 and so f is an odd mapping.
Letting x = z and y = z − w in (2.1), we get

‖f(z + w)− f(z)− f(w)‖ ≤ ‖ρ (f(2z − w) + f(w − z)− f(z))‖ (2.2)

for all z, w ∈ G.
It follows from (2.1) and (2.2) that

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x+ y)− f(x)− f(y))‖
≤ |ρ|2‖f(2x− y) + f(y − x)− f(x)‖

and so f(2x − y) + f(y − x) = f(x) for all x, y ∈ G. It is easy to show that f is
additive. �

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in
complex Banach spaces.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a
mapping such that

‖f(2x− y) + f(y − x)− f(x)‖ (2.3)

≤ ‖ρ (f(x+ y)− f(x)− f(y))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2r − 2
‖x‖r (2.4)

for all x ∈ X.
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Proof. Letting x = y = 0, in (2.3), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = 0 in (2.3), we get

‖f(2x) + f(−x)− f(x)‖ ≤ θ‖x‖r (2.5)

for all x ∈ X.
Letting x = 0 in (2.3), we get

‖f(y) + f(−y)‖ ≤ θ‖y‖r (2.6)

for all y ∈ X.
From (2.5) and (2.6), we get

‖f(2x)− 2f(x)‖ ≤ ‖f(2x) + f(−x)− f(x)‖+ ‖f(x) + f(−x)‖
≤ 2θ‖x‖r (2.7)

for all x ∈ X. So, ∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ 2

2r
θ‖x‖r

for all x ∈ X. Hence∥∥∥∥2lf
(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf
(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
≤ 2

2r

m−1∑
j=l

2j

2rj
θ‖x‖r (2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.8)
that the sequence {2nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {2nf( x
2n

)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.8), we get
(2.4).

It follows from (2.3) that

‖h(2x− y) + h(y − x)− h(x)‖

= lim
n→∞

2n

∥∥∥∥f (2x− y
2n

)
+ f

(
y − x

2n

)
− f

(
x

2n

)∥∥∥∥
≤ lim

n→∞
2n|ρ|

∥∥∥∥f (x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)∥∥∥∥+ lim
n→∞

2nθ

2nr
(‖x‖r + ‖y‖r)

= |ρ|‖h(x+ y)− h(x)− h(y)‖

for all x, y ∈ X. So

‖h(2x− y) + h(y − x)− h(x)‖ ≤ |ρ|‖h(x+ y)− h(x)− h(y)‖

for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is additive.
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Now, let T : X → Y be another additive mapping satisfying (2.4). Then we have

‖h(x)− T (x)‖ = 2n

∥∥∥∥h( x2n

)
− T

(
x

2n

)∥∥∥∥
≤ 2n

(∥∥∥∥h( x2n

)
− f

(
x

2n

)∥∥∥∥+
∥∥∥∥T ( x2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 4 · 2n

(2r − 2)2nr
θ‖x‖r,

which tends to zero as n→∞ for all x ∈ X. So we can conclude that h(x) = T (x) for
all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique
additive mapping satisfying (2.4). �

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying f(0) = 0 and (2.3). Then there exists a unique additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2− 2r
‖x‖r (2.9)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ θ‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
≤

m−1∑
j=l

2rj

2j
θ‖x‖r (2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.10)
that the sequence { 1

2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.10), we get
(2.9).

The rest of the proof is similar to the proof of Theorem 2.2. �

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.
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3. Additive ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1
2
.

In this section, we solve and investigate the additive ρ-functional inequality (0.2) in
complex Banach spaces.

Lemma 3.1. If a mapping f : G→ Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖ (3.1)

for all x, y ∈ G, then f : G→ Y is additive.

Proof. Assume that f : G→ Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = x in (3.1), we get ‖f(2x)− 2f(x)‖ ≤ 0 and so

2f(x) = f(2x) (3.2)

for all x ∈ G.
Letting y = 2x in (3.1), we get ‖f(3x)− f(x)− f(2x)‖ ≤ 0 and from (3.2),

3f(x) = f(3x) (3.3)

for all x ∈ G.
Letting y = −x in (3.1), we get ‖f(x) + f(−x)‖ ≤ ‖ρ(f(3x)+f(−2x)−f(x))‖. From

(3.2) and (3.3), f(3x) + f(−2x)− f(x) = 2f(x) + 2f(−x), so ‖f(x) + f(−x)‖ ≤ 0, and
we get

f(x) + f(−x) = 0 (3.4)

for all x ∈ G. So f is an odd mapping.
Letting x = z, y = z − w in (3.1), we get

‖f(2z − w)− f(z)− f(z − w)‖ ≤ ‖ρ(f(z + w) + f(−w)− f(z))‖
and from (3.4),

‖f(2z − w) + f(w − z)− f(z)‖ ≤ ‖ρ(f(z + w)− f(z)− f(w))‖ (3.5)

for all z, w ∈ G.
It follows from (3.1) and (3.5) that

‖f(x+ y)− f(x)− (y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖
≤ |ρ|2‖f(x+ y)− f(x)− f(y)‖

and so f(x+ y) = f(x) + f(y) for all x, y ∈ G. So f is additive. �

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in
complex Banach spaces.

Theorem 3.2. Let r > 1 and θ be positive real numbers, and let f : X → Y be a
mapping such that

‖f (x+ y)− f (x)− f (y) ‖ (3.6)

≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖+ θ(‖x‖r + ‖y‖r)
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for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2r − 2
‖x‖r (3.7)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = x in (3.4), we get

‖f (2x)− 2f(x)‖ ≤ 2θ‖x‖r (3.8)

for all x ∈ X. So∥∥∥∥2lf
(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf
(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
≤ 2

2r

m−1∑
j=l

2j

2rj
θ‖x‖r (3.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.9)
that the sequence {2nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {2nf( x
2n

)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.9), we get
(3.7).

It follows from (3.6) that

‖h (x+ y)− h (x)− h(y)‖

= lim
n→∞

2n

∥∥∥∥f (x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)∥∥∥∥
≤ lim

n→∞
2n

∥∥∥∥ρ(f (2x− y
2n

)
+ f

(
y − x

2n

)
− f

(
x

2n

))∥∥∥∥+ lim
n→∞

2nθ

2nr
(‖x‖r + ‖y‖r)

= ‖ρ(h(2x− y) + h(y − x)− h(x))‖

for all x, y ∈ X. So

‖h (x+ y)− h (x)− h(y)‖ ≤ ‖ρ(h(2x− y) + h(y − x)− h(x))‖

for all x, y ∈ X. By Lemma 3.1, the mapping h : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (3.7). Then we have

‖h(x)− T (x)‖ = 2n

∥∥∥∥h( x2n

)
− T

(
x

2n

)∥∥∥∥
≤ 2n

(∥∥∥∥h( x2n

)
− f

(
x

2n

)∥∥∥∥+
∥∥∥∥T ( x2n

)
− f

(
x

2n

)∥∥∥∥)
≤ 2 · 2n · 2

(2r − 2)2nr
θ‖x‖r,
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which tends to zero as n→∞ for all x ∈ X. So we can conclude that h(x) = T (x) for
all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique
additive mapping satisfying (3.7). �

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (3.4). Then there exists a unique additive mapping h : X → Y such
that

‖f(x)− h(x)‖ ≤ 2θ

2− 2r
‖x‖r (3.10)

for all x ∈ X.

Proof. It follows from (3.8) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ θ‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
≤

m−1∑
j=l

2rj

2j
‖x‖r (3.11)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.11)
that the sequence { 1

2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.11), we get
(3.10).

The rest of the proof is similar to the proof of Theorem 3.2. �

Remark 3.4. If ρ is a real number such that −1
2
< ρ < 1

2
and Y is a real Banach

space, then all the assertions in this section remain valid.
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