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THE EXTENSION OF A MODIFIED INTEGRAL
OPERATOR TO A CLASS OF GENERALIZED

FUNCTIONS

S. K. Q. Al-Omari1 and Dumitru Baleanu2

Abstract. In this paper, we investigate a class of modi�ed G-transforms hav-
ing G-functions as kernels on a generalized space of sequences. We derive
certain spaces of generalized functions named as Boehmians to legitimate the
existence of the described integral. The modi�ed G-transform is partially shar-
ing the classical transform with some general properties. An inversion formula
is also discussed on the generalized sense.

1. Introduction

H-functions being related to most of known special functions are de�ned by inte-
grals of the Mellin-Barnes type with integrands involving products of Euler gamma
functions. Being an intemperate generalization of the generalized hypergeometric
functions pFq; H-functions are utilized for applications in a large variety of prob-
lems connected with statistical distributions, versatile integrals, reaction, di¤usion,
reaction di¤usion, engineering, communications, fractional di¤erential and integral
equations and many areas of theoretical physics and statistical distribution theory
as well.
Through a special case of H-integral transforms, the G-integral transform enfolds
various integrals related to Laplace, Hankel, Hilbert and Riemann-Liouville frac-
tional integral transforms and, that integrals of Gauss hypergeometric function
kernel type. However, despite a variety of integral transforms may not be reduced
to G-transform integral type they are indeed given in the form of H-transform
integral type.
With the interest to study integral, dual and tripple equations, integral transforms
of special kernel functions were motivated to include many mathematical problems
and engineering applications.
Integral transforms having kernels of H-function type were frequently presented as
[4]

(H') (�) =

Z 1

0

Hm;n
p;q

"
��

����� (ai; �i)1;p�
bj ; �j

�
1;q

#
' (�) d�; � > 0; (1)

1991 Mathematics Subject Classi�cation. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Fox�s H-function; modi�ed G-transform; generalized function;

Boehmians.
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where Hm;n
p;q are functions given in terms of the Mellin-Barnes type contour integral

[6]

Hm;n
p;q (w) =

1

2�i

Z
L
X (�)w�d�; (2)

where

X (�) =

Ym

1
�
�
bj ; �j�

�Yn

1
� (1� aj ; �j�)Yq

m+1
�
�
1� bj ; �j�

�Yp

n+1
� (aj ; �j�)

: (3)

The particular case of H-transforms where �1 = ::: = �p = 1 and �1 = ::: = �q = 1;
gives the G-transform integral

(G') (�) =

Z 1

0

Gm;np;q

�
��

���� (ai)1;p(bj)1;q

�
' (�) d�; (4)

and that the amendment

Gm;np;q

�
�

���� (ai)1;p(bj)1;q

�
(5)

of the H-function is the so-called G-function.
For a somehow much more detailed account of G and H-functions we refer to [1; 8].
The numbers a�;��; a�1; a

�
2; � and � when they appear are given as follows [4; (6:1:5)� (6:1:11)]

a� = 2m+ 2n� p� q;
�� = q � p;
a�1 = (m+ n)� p;
a�2 = (m+ n)� q;

� =

(
� min
1�j�m

Re (bj) ;m > 0

�1 ;m = 0

� =

(
1� max

1�i�n
Re (ai) ; n > 0

1 ; n = 0

� =
Pq

j=1 bj �
Pp

i=1 ai +
p� q
2

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

: (6)

By lv;r; v 2 R; 1 � r < 1; we denote the summable space of those Lebesgue
measurable complex valued functions such that

k'kv;r =

0@1Z
0

j�v' (�)jr d�
�

1A 1
r

<1

and
k'kv;1 = ess sup

�>0
(�v j' (�)j) ; v 2 R

9>>>>>=>>>>>;
: (7)

The modi�ed G-transform we consider in this note is given by the integral equation
[4; (6:2:4)] �

G1�;�'
�
(�) = ��

Z 1

0

Gm;np;q

�
�

�

���� (ai)1;p(bj)1;q

�
��' (�)

d�

�
: (8)

It is associated with the the radical integral transform (4) by the equation�
G1�;�'

�
(�) =M� (G (RM�')) (�) ;
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where R and M� are operators de�ned , respectively, by [4; (3:3:13) and (3:3:11)]

(R') (�) =
1

�
'

�
1

�

�
and (M�') (�) = ��' (�) ; � 2 C:

Parseval Formula 1 The Parseval�s formula for the modi�ed G-transform is
derived as Z 1

0

' (�)
�
G1�;�g

�
(�) d� =

Z 1

0

�
G2�;�'

�
(�) g (�) d�;

where G2�;�' is the modi�ed G-transform�
G2�;�'

�
(�) = ��

Z 1

0

Gm;np;q

�
�

�

���� (ai)1;p(bj)1;q

�
��' (�)

d�

�
:

The following remark is of great importance to our investigation .

Remark 2 ([4; Theorem 6.50 (i)]) Let � and � be real numbers and that numbers
a�; �; �, be de�ned as in (6). Suppose the following are satis�ed :

(i) � < v � � < �;
(ii) Either of (a) a� > 0 or (b) a� = 0 and �� [v � �] + Re� 5 0 holds. Then

the transform G1�;�' is a one-one mapping from lv;2 into lv����;2:
For a somehow much more detailed account of several signi�cant results on the
modi�ed G-transforms, we refer the reader to [4].
Boehmians are motivations of regular operators with algebraic character of Mikusin-
ski operators and do not have restriction on the support. With di¤erent function
spaces various spaces of Boehmians can be obtained. Distributions, ultradistrib-
utions, regular operators are indeed contained in some well established spaces of
Boehmians.
In a Boehmian context, various generalizations of various integral transforms were
given once the topic was started. A complete account of the theory of Boehmian
spaces was given in [2; 3; 5; 7] ; [10]-[17].
However, the existed results in this theory are classical and none were discussed
in the space of Boehmians. In this article, we develope the classical theory of the
modi�ed G1�;� transform to the theory of Boehmians. In the following section we
discuss the construction of the spaces of Boehmians. In Section 3, we give the
representative of the modi�ed G1�;� transform and its inverse in the de�ned spaces
of Boehmians. We further discuss certain results related to the proposed integrals.

2. Construction of Spaces of Boehmians

Let us �rst agree for the products we demand for our investigation.
The �rst product we should use here is the so-called Mellin type convolution product
of �rst kind de�ned as [9]

('g g) (�) =
Z 1

0

y�1'
�
�y�1

�
g (y) dy; (9)

provided the integral exists.
A number of the properties of this integral that we �nd it worthwhile to be described
here :

(i) g1 g g2 = g2 g g1;
(ii) (g1 g g2)g g3 = g1 g (g2 g g3) ;
(iii) (�g1)g g2 = � (g1 g g2) ;
(iv) g1 g (g2 + g3) = g1 g g2 + g1 g g3:
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It is of great importance to introduce the following convolution product that will
be worthy of attention

(' � g) (�) =
Z 1

0

'
�
�y�1

�
y��1��g (y) dy; (10)

where � and � are real numbers.

Properties of this integral are to be provided in the text of the paper.

The relation between the convolution products are given by the following theorem.

Theorem 3 Let ' and g be integrable functions on (0;1). Then, we have

G1�;� ('g g) (�) =
�
G1�;�' � g

�
(�) :

Proof Under the hypothesis of the theorem and by using (8) for (9) we get

G1�;� ('g g) (�) = ��
Z 1

0

Gm;np;q

�
�

�

���� (ai)1;p(bj)1;q

�
��
Z 1

0

y�1'
�
�y�1

�
g (y)

�dyd�
�

=

Z 1

0

g (y) y�1��
Z 1

0

Gm;np;q

�
�

�

���� (ai)1;p(bj)1;q

�
��'

�
�y�1

�
�d�
�
dy: (11)

On setting variables and using Fubini�s theorem, (11) produce

G1�;� ('g g) (�) =

Z 1

0

g (y) y�1��
Z 1

0

Gm;np;q

�
yw

�

���� (ai)1;p(bj)1;q

�
(yw)

�
' (w)

�ydw
yw

dy

=

Z 1

0

g (y) y�1��
Z 1

0

Gm;np;q

�
w

�y�1

���� (ai)1;p(bj)1;q

�
y�w�' (w)

�dw
w
dy

=

Z 1

0

g (y) y��1��
�
�y�1

�� Z 1

0

Gm;np;q

�
w

�y�1

���� (ai)1;p(bj)1;q

�
�w�' (w) dw

w
dy

=

Z 1

0

G1�;�'
�
�y�1

�
y��1��g (y) dy

The proof of the theorem is completely �nished.

Lemma 4 Let '; g and  be integrable functions on the open interval (0;1). We
get

' � (g g  ) = (' � g) �  :

Proof On account of (10) we write
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' � (g g  ) (�) =

Z 1

0

'
�
�y�1

�
y��1��

�Z 1

0

��1g
�
y��1

�
 (�) d�

�
dy

=

Z 1

0

 (�) ��1
�Z 1

0

'
�
�y�1

�
y��1��g

�
y��1

�
dy

�
d�: (12)

By change of variables, (12) yields

' � (g g  ) (�) =

Z 1

0

 (�)

Z 1

0

'
�
� (�w)

�1
�
(�w)

��1��
g (w) �dwd�

=

Z 1

0

 (�) ���1��
Z 1

0

'
�
���1w�1

�
�w��1��g (w) dwd�

=

Z 1

0

 (�) ���1�� (' � g)
�
���1

�
d�:

The proof is completely �nished.

Let D denote the standard notation of the space of test functions of compact sup-
ports in (0;1) : Then we have the following results:
Theorem 5 Let ' 2 lv����;2 and g 2 D be given. Then, we have

' � g 2 lv����;2:
Proof By appealing to (7) and the integral equation (10) ; we get

k' � gk2
v����;2

=

Z 1

0

�����v���� Z 1

0

'
�
�y�1

���1��
g (y) dy

����2 d�� :
Applying Jensen�s inquality yields

k' � gk2
v����;2

�
Z 1

0

���v������ Z 1

0

��' ��y�1���2 ��y��1��g (y)�� dyd�
�
:

Using the Fubini�s theorem implies

k' � gk2
v����;2

�
Z 1

0

��g (y) y��1���� �Z 1

0

���v����' ��y�1���2 d�
�

�
dy:

Now, let [a; b] ; 0 < a < b; be an interval containing the support of g: Then, the
hypothesis of the theorem ' 2 lv����;2; reveals

k' � gk2
v����;2

�M k'k2v����;2
Z b

a

��y��1��g (y)�� dy;
where M =

R b
a

��y��1��g (y)�� dy:
Thus, the above equation further reveals

k' � gk
v����;2

<1:

The proof is completely �nished.

Theorem 6 There hold the following identities.
(i) Let f'ng ; ' 2 lv����;2 be such that 'n ! ' as n!1: We have

'n � g ! ' � g as n!1
for every g 2 D:
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(ii) Let '1; '2 2 lv����;2 and g 2 D: Then we have the following identities
satisfy

('1 + '2) � g = '1 � g + '2 � g and � ('1 � g) = (�'1) � g;
for arbitrary complex number �:
The proof of this theorem can be followed by using simple integral calculus. Hence,
we avoid adding more details.

Definition 7 Let f�ng 2 D such that

(i)

Z 1

0

�n (�) d� = 1 (n 2 N) :

(ii)

Z 1

0

j�n (�)j d� < A (A 2 R being positive) :
(iii) supp �n = f� : �n (�) 6= 0g ! 0 as n!1:

The set of all sequences f�ng are denoted by �. Every f�ng in � is said to be a
delta sequence which corresponds to the delta distribution.

Theorem 8 Let f�ng 2 � and ' 2 lv����;2: Then, we have
' � �n ! ' in lv����;2 as n!1: (14)

Proof By the �rst part of De�nition 7 and Jensen�s inequality we have

k(' � �n) (�)� ' (�)k2v����;2 �
Z 1

0

���v������2 Z 1

0

��y��1��' ��y�1�� ' (�)��2
� j�n (y)j dy

d�

�
: (15)

Therefore, by making use of Fubini�s theorem, (15) gives

k(' � �n) (�)� ' (�)k2v����;2 �
Z bn

an

j�n (y)j �Z 1

0

���v���� � y (�)� ' (�)���2 d�� dy; (16)
where supp �n (y) � [an; bn] ; 0 < an < bn;8n 2 N:
Taking into account the fact that ' (�) ;  y (�) = '

�
�y�1

�
y��1�� 2 lv����;2; it

follows from (16) that

k(' � �n) (�)� ' (�)k2v����;2 �M�
Z bn

an

j�n (y)j dy:

for some positive constant M�:
Therefore,

k(' � �n) (�)� ' (�)k2v����;2 �M�M1 (an; bn) ;

M1 > 0:
The last inequality follows from the identity (iii) of De�nition 7:
The proof of the theorem is completely �nished.

The space B (lv����;2; (D;g) ; �;�) is therefore generated and regarded as a space
of Boehmians.

Construction of the space B (lv;2; (D;g) ;g;�) can be obtained by that technique
similar to that of B (lv����;2; (D;g) ; �;�) and the properties of g we have already
cited above.
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Sum of two Boehmians
�
'n
�n

�
and

�
gn
"n

�
in B (lv;2; (D;g) ;g;�) can be expressed

as �
'n
�n

�
+

�
gn
"n

�
=

�
'n g �n + gn g �n

�n g "n

�
:

Multiplication in B (lv;2; (D;g) ;g;�) by � 2 C is de�ned as 
�
'n
�n

�
=

�

'n
�n

�
=�

'n
�n

�
:

The extensions of g and D� to B (lv;2; (D;g) ;g;�) are introduced as�
'n
�n

�
g
�
gn
"n

�
=

�
'n g gn
�n g "n

�
and D�

�
'n
�n

�
=

�
D�'n
�n

�
; � 2 R:

Let
�
'n
�n

�
belong to B (lv;2; (D;g) ;g;�) and ! be in lv;2. The operation g can be

extended to B (lv;2; (D;g) ;g;�)� lv;2 by�
'n
�n

�
g ! =

�
'n g !
�n

�
:

Let the sequence f�ng be in B (lv;2; (D;g) ;g;�) : Then �n
�! � in B (lv;2; (D;g) ;g;�) ;

if there can be found a delta sequence f�ng such that for (�n g �k) and (� g �k) 2
lv;2, n; k 2 N; we have

lim
n!1

�n g �k ! � g �k in lv;2 for every k 2 N:

This can be expressed in B (lv;2; (D;g) ;g;�) as :
�n

�! � ( as n!1) if and only if there are 'n;k; 'k 2 lv;2 and f�kg 2 �,

�n =

�
'n;k
�k

�
; � =

�
'k
�k

�
and to every k 2 N we have limn!1 'n;k = 'k in lv;2:

�n
�! � ( as n!1) if there can be found a f�ng 2 � such that (�n � �)g�n 2

lv;2 (8n 2 N) and limn!1 (�n � �)g �n = 0 in lv;2:
On the other hand, addition of two Boehmians in B (lv����;2; (D;g) ; �;�) is de-
�ned as �

'n
�n

�
+

�
gn
"n

�
=

�
'n � �n + gn � �n

�n g "n

�
:

Multiplication and convergence in B (lv����;2; (D;g) ; �;�) can be de�ned similarly
as in B (lv����;2; (D;g) ; �;�).

3. G1�;� of Boehmians

In view of Remark 2 and Theorem 3, we extend the transform G1�;� to the space
B (lv;2; (D;g) ;g;�) as z}|{

G1�;�

�
'n
�n

�
=

"
G1�;�'n
�n

#
(17)

in B (lv����;2; (D;g) ; �;�) :

We recite some properties of the transform
z}|{
G1�;� in the course of the following

theorems.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

215 S. K. Q. Al-Omari et al 209-218



8 S. K. Q. AL-OMARI1 AND DUMITRU BALEANU2

Theorem 9 (i) The operator
z}|{
G1�;� is well - de�ned and linear .

(ii) The operator
z}|{
G1�;� is an isomorphism from B (lv;2; (D;g) ;g;�) onto the

space B (lv����;2; (D;g) ; �;�) :

(iii) The operator
z}|{
G1�;� is continuous with respect to � and � - convergence.

(iv) The operator
z}|{
G1�;� : B (lv;2; (D;g) ;g;�) ! B (lv����;2; (D;g) ; �;�)

transform is compatible with G1�;� : lv;2 ! lv����;2:
Proof We prove Part (iv) since similar proofs for Part(i) - Part(iii) are available
in many cited papers of the same author and of Roopkumar in [20].

To prove the last part of the theorem, let � 2 lv;2 and
�
� g �n
�n

�
be its representative

in B (lv;2; (D;g) ;g;�) where f�ng 2 � (8n 2 N) : Clearly, for all n 2 N; f�ng is
independent from the representative. Hence, from (17) and Theorem 3, we get

z}|{
G1�;�

��
� g �n
�n

��
=
z}|{
G1�;�

��
� g �n
�n

��
=

"
G1�;� (� g �n)

�n

#
=

"
G1�;�� � �n

�n

#
:

Thus

"
G1�;�� � �n

�n

#
is the representative of G1�;�� in the space lv����;2:

The proof is therefore �nished.

In view of Theorem 9, we introduce the inverse transform of
z}|{
G1�;� as follows.

Definition 10 Let

"
G1�;�'n
�n

#
2 B (lv;2; (D;g) ;g;�) :We de�ne the inverse

z}|{
G1�;�

integral operator of

"
G1�;�'n
�n

#
as

 z}|{
G1�;�

!�1 "
G1�;�'n
�n

#!
=

�
'n
�n

�
;

for each f�ng 2 �:

Theorem 11 Let

"
G1�;�'n
�n

#
2 B (lv����;2; (D;g) ; �;�) and ' 2 D: We have

 z}|{
G1�;�

!�1 "
G1�;�'n
�n

#
� '
!
=

�
'n
�n

�
g '

and z}|{
G1�;�

��
'n
�n

�
g '

�
=

"
G1�;�'n
�n

#
� ':
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Proof Assume

"
G1�;�'n
�n

#
2 B (lv����;2; (D;g) ; �;�). For every � 2 D, we have

 z}|{
G1�;�

!�1 "
G1�;�'n
�n

#
� '
!

=

 z}|{
G1�;�

!�1 "
G1�;�'n � '

�n

#!

i.e. =

"�
G1�;�

��1 �
G1�;�'n � '

�
�n

#
:

Using Theorem 3 and De�nition 10 we obtain z}|{
G1�;�

!�1 "
G1�;�'n
�n

#
� '
!

=

�
'n g '
�n

�
=

�
'n
�n

�
g ':

Proof of the part
z}|{
G1�;�

��
'n
�n

�
g '

�
=

"
G1�;�'n
�n

#
� ' is almost similar. We prefer

to omit the details of the proof.
This completely �nishes the proof of the theorem.
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HARMONIC QUASICONFORMAL MAPPINGS OF THE UNIT

DISK ONTO THE HORIZONTAL STRIP AND HALF PLANE

JIAN-FENG ZHU

Abstract. In this paper we consider two types of harmonic mappings w(z) ∈
SH(D,Ω1) and w(z) ∈ SH(D, R), where D is the unit disk and Ω1, R are the
domain defined by (2) and (3). Using the representation of harmonic mappings,
we find the sufficient and necessary conditions to make w(z) be a harmonic qua-
siconformal mapping. Furthermore, we obtain some estimates of w(z).

1. Introduction

A real-valued function u(x, y) on an open set D ⊆ C is harmonic if it is C2 on
D and satisfies Laplace’s equation: △u = uxx + uyy = 0. Assume that z = x + iy,
w(z) = u(x, y) + iv(x, y). Then a complex-valued function w(z) is harmonic if and
only if u(x, y) and v(x, y) are both harmonic. This has an equivalent form wzz̄ = 0.

Let w(z) be a harmonic mapping defined in the unit disk D = {z : |z| < 1}. Then
there exist two analytic functions h(z) and g(z) such that w(z) = h(z) + g(z).

For z = reiϕ ∈ D, denote by

P (r, t− ϕ) =
1

2π

1− r2

(1− 2r cos(t− ϕ) + r2)

the Poisson kernel. Then every bounded harmonic mapping w(z) defined on D has
the following representation

(1) w(z) = P [f ](z) =

2π
∫

0

P (r, t− ϕ)f(eit) dt,

where z = reiϕ ∈ D and f is a bounded integrable function defined on the unit circle
S1 = ∂D.

For z ∈ D, let

Λw(z) = max
0≤α≤2π

|wz(z) + e−2iαwz̄(z)| = |wz(z)| + |wz̄(z)|
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2 J. -F. Zhu

and

λw(z) = min
0≤α≤2π

|wz(z) + e−2iαwz̄(z)| = ||wz(z)| − |wz̄(z)||.

According to Lewy’s Theorem we know that w(z) is locally univalent and sense-
preserving in D if and only if its Jacobian satisfies

Jw(z) = |wz(z)|2 − |wz̄(z)|2 > 0 for every z ∈ D.

Suppose that w(z) is a sense-preserving univalent harmonic mapping of D onto a
domain Ω ⊆ C. Then w(z) is a harmonic K-quasiconformal mapping if and only if

K(w) := sup
z∈U

|wz(z)|+ |wz̄(z)|
|wz(z)| − |wz̄(z)|

≤ K.

It is interesting to consider such a question: under what conditions on f is w =
P [f ](z) a harmonic quasiconformal mapping? Several authors have studied such a
problem (see [5], [6], [8],[10], [11], [12], [13]). However, a univalent sense-preserving
harmonic mapping defined on D doesn’t determined by its image domain. In this
paper we consider two types of harmonic mappings of D onto a unbounded convex
domain. One maps the unit disk onto the horizontal strip and the other maps the
unit disk onto the half plane.

Let SH denote the class of all complex valued, sense-preserving univalent harmonic
mappings w(z) in D, with the normalization w(0) = wz(0)− 1 = 0. Let S0

H be the
subclass of SH with wz̄(0) = 0 and wz(0) > 0. For a domain Ω ⊆ C containing
the origin, SH(D,Ω) will denote the class of all sense-preserving univalent harmonic
mappings of D onto Ω normalized by w(0) = wz̄(0) = 0 and wz(0) > 0.

Considering the following domains: the horizontal strip

(2) Ω1 = {w : −1 < Imw < 1},
and the right half plane

(3) R = {w : Rew >
−1

2
}.

A conformal mapping ϕ from D onto Ω1 normalized by ϕ(0) = 0 < ϕ′(0) has the
form

(4) ϕ(z) =
2

π
ln

1 + z

1− z
.

For z ∈ D and |η| = 1, define the kernel

(5) k(z, η) =

z
∫

0

ϕ′(ζ)
1 + η̄ζ

1− η̄ζ
dζ =

4

π

z
∫

0

1 + η̄ζ

(1− η̄ζ)(1− ζ2)
dζ,

and the family

(6) ̥ = {w : w(z) = Re

∫

|η|=1

k(z, η)dµ(η) + iImϕ(z), µ ∈ P},

where P is the set of probability measures on the Borel sets of the unit circle S1.
According to [4] we have the following theorem.
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Harmonic quasiconformal mappings of the unit disk onto the horizontal strip and half plane 3

Theorem A. SH(D,Ω1) = ̥. Here SH(D,Ω1) is the closure of SH(D,Ω1).

Similarly, define the kernel

F (z, η) =











Re z
1−z

+ iIm z
(1−z)2

if η = 1

Re z
1−z

+ iIm
(

2η
(1−η)2

ln 1−z
1−ηz

+ 1+η

1−η
z

1−z

)

if η 6= 1.

According to [1], we have the following theorem.

Theorem B. Each harmonic mapping w(z) ∈ SH(D, R) if and only if there is a

probability measure µ on the unit circle such that

(7) w(z) =

∫

|η|=1

F (z, η)dµ(η).

In this paper, we find the sufficient and necessary conditions on the kernel k(z, η)
and F (z, η) which make harmonic mappings w(z) of SH(D,Ω1) and SH(D, R) to be
quasiconformal.

2. Necessary and sufficient conditions

Theorem 1. Suppose that w ∈ SH(D,Ω1), which has the representation (6). Then w

is a harmonic quasiconformal mapping if and only if it’s kernel satisfies the following

conditions:

(i) c := ess inf
z∈D

Re
∫

|η|=1
η+z

η−z
dµ(η) > 0,

(ii) M1 := ess sup
z∈D

∣

∣

∣

∫

|η|=1
η+z

η−z
dµ(η)

∣

∣

∣
< ∞,

where c and M1 are positive constant.

Proof. Let w(z) = h(z)+ g(z) be a sense-preserving univalent harmonic mapping of
D onto Ω1. According to Theorem A we have

w(z) = Re

∫

|η|=1

k(z, η)dµ(η) + iImϕ(z),

where k(z, η) and µ are defined by (5) and (6). This implies that

w(z) = h(z)+g(z) =
1

2

(
∫

|η|=1

k(z, η)dµ(η) + ϕ(z)

)

+
1

2

(
∫

|η|=1

k(z, η)dµ(η)− ϕ(z)

)

.

Then

(8) h′(z) =
ϕ′(z)

2

(
∫

|η|=1

η + z

η − z
dµ(η) + 1

)

and

(9) g′(z) =
ϕ′(z)

2

(
∫

|η|=1

η + z

η − z
dµ(η)− 1

)

.
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It follows from (8) and (9) that

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

|η|=1
η+z

η−z
dµ(η)− 1

∫

|η|=1
η+z

η−z
dµ(η) + 1

∣

∣

∣

∣

∣

.

Let A1 = Re
∫

|η|=1
η+z

η−z
dµ(η) and A2 = Im

∫

|η|=1
η+z

η−z
dµ(η).

The proof of ’if’ part: Since A1 ≥ c > 0 applying condition (ii) we see that

ess sup
z∈D

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

2

= ess sup
z∈D

(A1 − 1)2 + A2
2

(A1 + 1)2 + A2
2

= ess sup
z∈D

(

1− 4A1

(A1 + 1)2 + A2
2

)

< 1.

This shows that w(z) is a harmonic quasiconformal mapping.
The proof of ’only if’ part: Assume that w(z) ∈ SH(D,Ω1) is a harmonic quasi-

conformal mapping. Then the following inequality

ess sup
z∈D

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

= ess sup
z∈D

∣

∣

∣

∣

∣

∫

|η|=1
η+z

η−z
dµ(η)− 1

∫

|η|=1
η+z

η−z
dµ(η) + 1

∣

∣

∣

∣

∣

≤ k

holds for some constant k < 1. Hence

∣

∣

∣

∣

∣

∫

|η|=1

η+z

η−z
dµ(η)

∣

∣

∣

∣

∣

< ∞ and (A1 − 1)2 + A2
2 ≤

k2(A1+1)2+ k2A2
2. This implies that 2A1(1+ k2) ≥ 1− k2. Thus A1 ≥ 1−k2

2(1+k2)
> 0.

The proof is completed. �

Remark: For any z = reiθ ∈ D and η = eit ∈ ∂D, we haveReη+z

η−z
= 1−r2

1−2r cos(θ−t)+r2
>

0. If we additional assume that µ′(eit) > 0, then Re
∫

|η|=1
η+z

η−z
dµ(η) > 0. According

to (8) and (9) we see that

ess sup
z∈D

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

< 1,

which implies that w(z) is a harmonic quasiconformal mapping.

Theorem 2. Let w ∈ SH(D, R) be a sense-preserving harmonic mapping which has

the representation (7). Then w is a quasiconformal mapping if and only if its kernel

satisfies the following conditions:

(i) d := ess inf
z∈D

(

1 + 2Re
∫

|η|=1
ηz

1−ηz
dµ(η)

)

> 0,

(ii) M2 := ess sup
z∈D

∣

∣

∣

∫

|η|=1
ηz

1−ηz
dµ(η)

∣

∣

∣
< ∞,

where d and M2 are positive constant.
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Proof. According to [4] we know that w(z) has the following representation:

w(z) =

∫

|η|=1

F (z, η)dµ(η)

=
1

2

∫

|η|=1

(

z

1− z
+

2η

(1− η)2
ln

1− z

1− ηz
+

1 + η

1− η

z

1− z

)

dµ(η)

+
1

2

∫

|η|=1

(

z

1− z
− 2η

(1− η)2
ln

1− z

1− ηz
− 1 + η

1− η

z

1− z

)

dµ(η)

= h(z) + g(z).

Then

(10) h′(z) =
1

(1− z)2

∫

|η|=1

1

1− ηz
dµ(η)

and

(11) g′(z) =
1

(1− z)2

∫

|η|=1

−ηz

1− ηz
dµ(η).

This implies that

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

=

∣

∣

∣

∫

|η|=1
ηz

1−ηz
dµ(η)

∣

∣

∣

∣

∣

∣

∫

|η|=1

(

1 + ηz

1−ηz

)

dµ(η)
∣

∣

∣

=

∣

∣

∣

∫

|η|=1
ηz

1−ηz
dµ(η)

∣

∣

∣

∣

∣

∣
1 +

∫

|η|=1
ηz

1−ηz
dµ(η)

∣

∣

∣

.

The proof of ’if’ part: Let

(12) B =

∫

|η|=1

ηz

1− ηz
dµ(η).

Then
∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

2

=
|B|2

|1 +B|2 =
|B|2

1 + |B|2 + 2ReB
.

Applying condition(i) and (ii) we have

ess sup
z∈D

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

2

≤ |B|2
|B|2 + d

< 1.

The proof of ’only if’ part: Assume that w(z) is a harmonic quasiconformal map-
ping of D onto R. Then the following inequality

∣

∣

∣

∣

g′(z)

h′(z)

∣

∣

∣

∣

2

≤ k2

holds for some constant k < 1. This is equivalent to |B| < ∞ and |B|2 ≤ k2(|B|2 +
1 + 2ReB). Hence

∣

∣

∣

∣

∫

|η|=1

ηz

1− ηz
dµ(η)

∣

∣

∣

∣

< ∞,

and

1 + 2ReB ≥ (1− k2)|B|2
k2

,
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where B is defined by (12).
This completes the proof. �

Remark: According to (6) we know that µ ∈ P is a probability measure on the
Borel set of S1. This implies that

∫

|η|=1
dµ(η) = 1.

Theorem 3. Suppose that w(z) = h(z) + g(z) ∈ SH(D,Ω1) is a harmonic K-

quasiconformal mapping. Then its Jacobian satisfies

Jw ≥ c

π2
,

where c is a positive constant depends on K.

Proof. According to (8) and (9) we have h′(z) = ϕ′(z)
2

(

∫

|η|=1
η+z

η−z
dµ(η) + 1

)

and

g′(z) = ϕ′(z)
2

(

∫

|η|=1
η+z

η−z
dµ(η)− 1

)

, where ϕ(z) = 2
π
ln 1+z

1−z
. Let A1 = Re

∫

|η|=1
η+z

η−z
dµ(η)

and A2 = Im
∫

|η|=1
η+z

η−z
dµ(η). Since w(z) is a harmonic quasiconformal mapping, by

using condition (i) in Theorem 1 we see that

Jw(z) = |h′(z)|2 − |g′(z)|2 = A1|ϕ′(z)|2 ≥ 16c

π2(1 + |z|)4 ≥ c

π2
,

where c is a positive constant depends on K.
This completes the proof. �

Theorem 4. Suppose that w(z) = h(z) + g(z) ∈ SH(D, R) is a harmonic K-

quasiconformal mapping. Then its Jacobian satisfies

Jw(z) ≥
d

16
,

where d is is a positive constant depends on K.

Proof. According to (10) and (11) we have

h′(z) =
1

(1− z)2

∫

|η|=1

1

1− ηz
dµ(η) =

1

(1− z)2

(

1 +

∫

|η|=1

ηz

1− ηz
dµ(η)

)

and g′(z) = 1
(1−z)2

∫

|η|=1
−ηz

1−ηz
dµ(η). Using (12) and condition (i) of Theorem2 we

obtain that

Jw = |h′|2 − |g′|2 = 1

|1− z|4 (1 + 2ReB) ≥ d

(1 + |z|)4 ≥ d

16
,

where d is a positive constant depends on K.
This completes the proof. �
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3. co-Lipschitz condition of w(z)

A complex-valued mapping w(z) in D is said to be a co-Lipschitz (Lipschitz)
mapping if there exists a constant L > 0 such that the following inequality

|w(z1)− w(z2)| ≥
|z1 − z2|

L

(|w(z1)− w(z2)| ≤ L|z1 − z2|)
holds for any z1, z2 ∈ D. Suppose that w(z) is a harmonic quasiconformal mapping
of D onto a bounded convex domain. Many mathematicians have discussed about
the bi-Lipschitz property of w(z) (cf.[6],[9] and [11]). We point out that if w(z)
is a harmonic quasiconformal mapping defined by (6) and (7), then it would be a
co-Lipschitz mapping.

Theorem 5. Given K ≥ 1. Suppose that w(z) = h(z) + g(z) ∈ SH(D,Ω1) is a

harmonic K-quasiconformal mapping. Then the following inequalities

1 + c

2π
≤ |h′(z)| ≤ 2(M1 + 1)

π(1− |z|)2

hold for every z ∈ D, where c and M1 are positive constant depend on K. Further-

more, the inequality

|w(z1)− w(z2)| ≥
(1− k)(1 + c)

2π
|z1 − z2|,

holds for any z1, z2 ∈ D, where k = K−1
K+1

.

Proof. According to (8), we have

|h′(z)| =
∣

∣

∣

∣

ϕ′(z)

2

∣

∣

∣

∣

∣

∣

∣

∣

∫

|η|=1

η + z

η − z
dµ(η) + 1

∣

∣

∣

∣

≤ 2(1 +M1)

π(1− |z|2)

and

|h′(z)| =
∣

∣

∣

∣

ϕ′(z)

2

∣

∣

∣

∣

∣

∣

∣

∣

∫

|η|=1

η + z

η − z
dµ(η) + 1

∣

∣

∣

∣

≥ 2(1 + A1)

π(1 + |z|)2 ≥ (1 + c)

2π
,

where c and M1 are positive constant depend on K. Since w(z) = h(z) + g(z) is

a harmonic K-quasiconformal mapping, we see that ess sup
z∈D

∣

∣

∣

g′(z)
h′(z)

∣

∣

∣
≤ k < 1, where

k = K−1
K+1

. Then

Λw(z) = |h′(z)| + |g′(z)| ≤ |h′(z)|(1 + k) ≤ 2(1 + k)(1 +M1)

π(1− |z|2)
and

λw(z) = ||h′(z)| − |g′(z)|| ≥ 2(1− k)(1 + c)

π(1 + |z|)2 ≥ (1− k)(1 + c)

2π
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

225 JIAN-FENG ZHU 219-227



8 J. -F. Zhu

Take ζ1, ζ2 ∈ Ω1 satisfying z1 = w−1(ζ1), z2 = w−1(ζ2). Let ϕ(t) = w−1(ζ1+ t(ζ2−
ζ1)), t ∈ [0, 1]. Then d

dt
w(ϕ(t)) = ζ2 − ζ1. Since Ω1 is a convex domain, we see that

|ζ1 − ζ2| =

1
∫

0

∣

∣

∣

∣

d

dt
w(ϕ(t))

∣

∣

∣

∣

dt =

1
∫

0

∣

∣

∣
wz(ϕ(t))ϕ

′(t) + wz̄(ϕ(t))ϕ′(t)
∣

∣

∣
dt

≥
1

∫

0

(

|wz(ϕ(t))ϕ
′(t)| − |wz̄(ϕ(t))ϕ′(t)|

)

dt

≥ inf
u∈D

(|wz(u)| − |wz̄(u)|)
1

∫

0

|ϕ′(t)| dt(13)

≥ (1− k)(1 + c)

2π
|z1 − z2|.

This completes the proof. �

Theorem 6. Given K ≥ 1. Suppose that w(z) = h(z) + g(z) ∈ SH(D, R) is a

harmonic K-quasiconformal mapping. Then the following inequalities

d

4
≤ |h′(z)| ≤ (M2 + 1)

(1− |z|)2 ,

hold for any z ∈ D, where d andM2 are positive constant depend on K. Furthermore,

the following inequality

|w(z1)− w(z2)| ≥
(1− k)d

4
|z1 − z2|,

holds for any z1, z2 ∈ D, where k = K−1
K+1

.

Proof. According to (10) and (12), we have

|h′(z)| =
∣

∣

∣

∣

1

(1− z)2

∣

∣

∣

∣

∣

∣

∣

∣

1 +

∫

|η|=1

ηz

1− ηz
dµ(η)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

(1− z)2

∣

∣

∣

∣

√
1 + 2ReB +B2 ≥ d

4
,

and

|h′(z)| =
∣

∣

∣

∣

1

(1− z)2

∣

∣

∣

∣

∣

∣

∣

∣

1 +

∫

|η|=1

ηz

1− ηz
dµ(η)

∣

∣

∣

∣

≤ 1

(1− |z|)2 (M2 + 1),

where d and M2 are positive constant depend on K. Since w(z) = h(z) + g(z) is

a harmonic K-quasiconformal mapping, we see that k = ess sup
z∈D

∣

∣

∣

g′(z)
h′(z)

∣

∣

∣
< 1, where

k = K−1
K+1

. Hence

Λw(z) = |h′(z)|+ |g′(z)| ≤ |h′(z)|(1 + k) ≤ (1 + k)(1 +M2)

(1− |z|)2 ,

and

λw(z) = ||h′(z)| − |g′(z)|| ≥ |h′(z)|(1 − k) ≥ (1− k)d

4
.
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Harmonic quasiconformal mappings of the unit disk onto the horizontal strip and half plane 9

For each z1, z2 ∈ D, using (13) we have

|w(z1)− w(z2)| =

∣

∣

∣

∣

∣

∣

∣

∫

[z1,z2]

wzdz + wz̄dz̄

∣

∣

∣

∣

∣

∣

∣

≥ inf
z∈D

λw(z)|z1 − z2| ≥
(1− k)d

4
|z1 − z2|.

This completes the proof. �
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Abstract

In this paper, we study a boundary value problem consisting from a fractional differential in-
clusion of Riemann-Liouville Langevin type subject to Katugampola fractional integral conditions.
Some new existence results for convex as well as non-convex multivalued maps are obtained by
using standard fixed point theorems. Enlighten examples illustrating the obtained results are also
presented.

Key words and phrases: Fractional differential inclusions; generalized fractional integral; Katugam-
pola fractional integral; nonlocal boundary conditions; fixed point theorems
AMS (MOS) Subject Classifications: 34A60; 26A33; 34A08

1 Introduction

In this manuscript, we investigate the sufficient conditions of existence of solutions for the following
fractional Langevin inclusion subject to the generalized nonlocal fractional integral conditions of the
form 

Dp1(Dp2 + λ)x(t) ∈ F (t, x(t)), 0 < t < T,

x(0) = 0,

x(η) =
n∑

i=1

αi
ρ1−qi

i

Γ(qi)

∫ ξi

0

sρi−1x(s)
(tρi − sρi)1−qi

ds :=
n∑

i=1

αi
ρiIqix(ξi),

(1)

where Dpi denote the Riemann-Liouville fractional derivative of order pi, i = 1, 2, 0 < p1, p2 ≤ 1,
1 < p1 + p2 ≤ 2, λ is a given constant, ρiIqi are the generalized fractional integral of orders qi > 0,
ρi > 0, η, ξi arbitrary, with η, ξi ∈ (0, T ), αi ∈ R for all i = 1, 2, . . . , n and F : [0, T ] × R → P(R) is a
multivalued map, P(R) is the family of all nonempty subsets of R.

The search for the existence of solutions to nonlinear fractional boundary value problems has ex-
panded greatly over the past years. For examples and recent development of the topic, see [1]-[11] and
the references cited therein. In fractional calculus, the fractional derivatives are defined via fractional
integrals. There are several known forms of the fractional integrals which have been studied extensively
for their applications. The most known fractional integrals are the Caputo, Riemann-Liouville and the
Hadamard fractional integral.

A new fractional integral, called generalized Riemann-Liouville fractional integral, which generalizes
the Riemann-Liouville and the Hadamard integrals into a single form, was introduced in [12], [13]. See
Definition 2.5 below. This integral is now known as ”Katugampola fractional integral” see for example

1
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2 S.K. Ntouyas and J. Tariboon

[14, pp 15, 123]. The existence and uniqueness results for the Caputo-Katugampola derivative is given
in [15]. For some recent work with this new operator and similar operators, for example, see [16]-[18]
and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate description of
Brownian motion) is found to be an effective tool to describe the evolution of physical phenomena in
fluctuating environments [19]. For some new developments on the fractional Langevin equation, see,
for example, [20]-[24].

The present paper is motivated by a recent paper [25], where it is considered problem (1) with F
single valued. Existence and uniqueness results were proved in [25] by using a variety of fixed point
theorems, such as Banach contraction principle, Krasnoselskii fixed point theorem, Leray-Schauder
nonlinear alternative and Leray-Schauder degree theory. Here, we cover the multi-valued case. We
establish some existence results for the problem (1), when the right hand side is convex as well as
non-convex valued. In the first result, we use the nonlinear alternative of Leray-Schauder type while in
the second result, we shall combine the nonlinear alternative of Leray-Schauder type for single-valued
maps with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued maps
with nonempty closed and decomposable values. The third result relies on the fixed point theorem for
contraction multivalued maps due to Covitz and Nadler. Examples illustrating the obtained results
are also presented. The methods used are well known, however their exposition in the framework of
problem (1) is new.

2 Preliminaries

2.1 Basic material of fractional calculus

In this section, we introduce some notations and definitions of fractional calculus [1, 2] and present
preliminary results needed in our proofs later.

Definition 2.1 [2] The Riemann-Liouville fractional integral of order p > 0 of a continuous function
f : (0,∞) → R is defined by

Ipf(t) =
1

Γ(p)

∫ t

0

(t − s)p−1v(s)ds,

provided the right-hand side is point-wise defined on (0,∞), where Γ is the gamma function defined by
Γ(p) =

∫ ∞
0

e−ssp−1ds.

Definition 2.2 [2] The Riemann-Liouville fractional derivative of order p > 0 of a continuous function
f : (0,∞) → R is defined by

Dpf(t) =
1

Γ(n − p)

(
d

dt

)n ∫ t

0

(t − s)n−p−1v(s)ds, n − 1 ≤ p < n,

where n = [p]+1, [p] denotes the integer part of a real number p, provided the right-hand side is point-wise
defined on (0,∞).

Lemma 2.3 [2] Let p > 0 and x ∈ C(0, T )∩L(0, T ). Then the fractional differential equation Dpx(t) =
0 has a unique solution x(t) =

∑n
i=1 cit

p−i, and the following formula holds: IpDpx(t) = x(t) +∑n
i=1 cit

p−i, where ci ∈ R, i = 1, 2, . . . , n, and n − 1 ≤ p < n.

Lemma 2.4 ([2], page 71) Let α > 0 and β > 0. Then the following properties hold:

Iα(x − a)β−1(t) =
Γ(β)

Γ(β + α)
(t − a)β+α−1.
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Definition 2.5 ([13]) The Katugampola fractional integral of order q > 0 and ρ > 0, of a function
f(t), for all 0 < t < ∞, is defined as

ρIqf(t) =
ρ1−q

Γ(q)

∫ t

0

sρ−1v(s)
(tρ − sρ)1−q

ds,

provided the right-hand side is point-wise defined on (0,∞).

Lemma 2.6 ([25]) Let constants q > 0 and p > 0. Then the following formula holds

ρIqtp =
Γ

(
p+ρ

ρ

)
Γ

(
p+ρq+ρ

ρ

) tp+ρq

ρq
. (2)

Lemma 2.7 ([25]) Let 0 < p1, p2 ≤ 1, 1 < p1 + p2 ≤ 2, qi, ρi > 0, η, ξi ∈ (0, T ), αi ∈ R for all
i = 1, 2, . . . , n and h ∈ C([0, T ], R). Then x is a solution of the problem

Dp1(Dp2 + λ)x(t) = h(t), 0 < t < T, (3)

x(0) = 0, x(η) =
n∑

i=1

αi
ρiIqix(ξi), (4)

if and only if

x(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2h(η) − λ Ip2x(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2h(s) − λ Ip2x(s)

)
(ξi)

]
+ Ip1+p2h(t) − λ Ip2x(t), (5)

where

Ω =
n∑

i=1

αiΓ(p1)
Γ(p1 + p2)

Γ
(

p1 + p2 + ρi − 1
ρi

)
Γ

(
p1 + p2 + ρiqi + ρi − 1

ρi

) ξp1+p2+ρiqi+ρi−1
i

ρqi

i

− Γ(p1)
Γ(p1 + p2)

ηp1+p2−1 6= 0. (6)

2.2 Basic material for multivalued maps

Here, we outline some basic concepts of multivalued analysis [26, 27].
Let C([0, T ], R) denote the Banach space of all continuous functions from [0, T ] into R with the norm

‖x‖ = sup{|x(t)|, t ∈ [0, T ]}. Also by L1([0, T ], R), we denote the space of functions x : [0, T ] → R such
that ‖x‖L1 =

∫ T

0
|x(t)|dt.

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈ P(X) :
Y is bounded}, Pcl,b(X) = {Y ∈ P(X) : Y is closed and bounded}, Pcp(X) = {Y ∈ P(X) : Y is
compact}, and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X) :

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X.

(ii) is bounded on bounded sets if G(Y ) = ∪x∈Y G(x) is bounded in X for all Y ∈ Pb(X) (i.e.
supx∈Y {sup{|y| : y ∈ G(x)}} < ∞).

(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty
closed subset of X, and if for each open set N of X containing G(x0), there exists an open
neighborhood N0 of x0 such that G(N0) ⊆ N.
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(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ Y 6= ∅} is open for any open set Y
in X.

(v) is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X); If the
multi-valued map G is completely continuous with nonempty compact values, then G is u.s.c. if
and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

(vi) is said to be measurable if for every y ∈ X, the function t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable.

(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued
operator G will be denoted by FixG.

3 Existence results

Let C = C([0, T ], R) denotes the Banach space of all continuous functions from [0, T ] to R endowed with
the norm defined by ‖x‖ = supt∈[0,T ] |x(t)|. Throughout of this paper, for convenience of proving, we
let the notations Izv(s)(y) and ρIzv(s)(y) defined by

Izv(s)(y) =
1

Γ(z)

∫ y

0

(y − s)z−1v(s)ds and ρIzv(s)(y) =
ρ1−z

Γ(z)

∫ y

0

sρ−1v(s)
(yρ − sρ)1−z

ds,

where z > 0 and y ∈ [0, T ].

To simplify the notations, we use the following constants:

Λ1 =
Γ(p1)

Γ(p1 + p2)
T p1+p2−1

|Ω|
, (7)

Λ2 =
T p2

Γ(1 + p2)
+ Λ1

(
ηp2

Γ(1 + p2)
+

n∑
i=1

|αi|
[

1
Γ(1 + p2)

ξp2+ρiqi

i

ρqi

i

Γ
(

p2+ρi

ρi

)
Γ

(
p2+ρiqi+ρi

ρi

)])
. (8)

Definition 3.1 A function x ∈ AC2([0, T ], R) is a solution of the problem (1) if x(0) = 0, x(η) =
n∑

i=1

αi
ρiIqix(ξi), and there exists a function v ∈ L1([0, T ], R) such that f(t) ∈ F (t, x(t)) a.e. on [0, T ]

and

x(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v(η) − λ Ip2x(η) −

n∑
i=1

αi
ρiIqi

(
Ip1+p2v(s) − λ Ip2x(s)

)
(ξi)

]
+Ip1+p2v(t) − λ Ip2x(t).

3.1 The Carathéodory case

In this subsection, we consider the case when F has convex values and prove an existence result based
on nonlinear alternative of Leray-Schauder type, assuming that F is Carathéodory.

Definition 3.2 A multivalued map F : [0, T ] × R → P(R) is said to be Carathéodory if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;

(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ];

Further a Carathéodory function F is called L1−Carathéodory if
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(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, T ], R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [0, T ].

For each y ∈ C, define the set of selections of F by

SF,y := {v ∈ L1([0, T ], R) : v(t) ∈ F (t, y(t)) on [0, T ]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and recall a result for
closed graphs and upper-semicontinuity.

Lemma 3.3 ([26, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed subset of
X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗
and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph,
then it is upper semi-continuous.

The following lemma will be used in the sequel.

Lemma 3.4 ([28]) Let X be a Banach space. Let F : J × R → Pcp,c(X) be an L1− Carathéodory
multivalued map and let Θ be a linear continuous mapping from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X) → Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C(J,X) × C(J,X).

We recall the well-known nonlinear alternative of Leray-Schauder for multivalued maps.

Lemma 3.5 (Nonlinear alternative for Kakutani maps)[29]. Let E be a Banach space, C a closed
convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → Pcp,c(C) is a upper
semicontinuous compact map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U and ν ∈ (0, 1) with u ∈ νF (u).

Theorem 3.6 Assume that:

(H1) F : [0, T ] × R → Pcp,c(R) is L1-Carathéodory;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈ L1([0, T ],
R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, T ] × R;

(H3) there exists a constant M > 0 such that

M

ψ(M)
>

Λ1

(1 − |λ|Λ2)

{[
Ip1+p2p(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]

+Ip1+p2p(s)(T )

}
:= Ω1, |λ|Λ2 < 1,

where Λ1 and Λ2 are defined by (7) and (8) respectively.

Then the boundary value problem (1) has at least one solution on [0, T ].
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Proof. Define the operator F : C → P(C) by

F(x) =



h ∈ C :

h(t) =



Γ(p1)

Γ(p1 + p2)

tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+Ip1+p2v(s)(t) − λ Ip2x(s)(t)


(9)

for v ∈ SF,x. It is obvious that the fixed points of F are solutions of the boundary value problem (1).
We will show that F satisfies the assumptions of Leray-Schauder Nonlinear alternative (Lemma 3.5).

The proof consists of several steps.

Step 1. F(x) is convex for each x ∈ C.

This step is obvious since SF,x is convex (F has convex values), and therefore, we omit the proof.

Step 2. F maps bounded sets (balls) into bounded sets in C.

For a positive number ρ, let Bρ = {x ∈ C : ‖x‖ ≤ ρ} be a bounded ball in C. Then, for each
h ∈ F(x), x ∈ Bρ, there exists v ∈ SF,x such that

h(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v(s)(t) − λ Ip2x(s)(t).

Then, we have

|h(x)| ≤

∣∣∣∣∣ Γ(p1)
Γ(p1 + p2)

tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v(s)(t) − λ Ip2x(s)(t)

∣∣∣∣∣
≤ Γ(p1)

Γ(p1 + p2)
tp1+p2−1

|Ω|

[
Ip1+p2p(s)ψ(‖x‖)(η) + |λ| Ip2‖x‖(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2p(s)ψ(‖x‖)(τ) + |λ| Ip2‖x‖(τ)

)
(ξi)

]
+Ip1+p2p(s)ψ(‖x‖)(t) + |λ| Ip2‖x‖(t)

≤ Γ(p1)
Γ(p1 + p2)

T p1+p2−1

|Ω|
ψ(‖x‖)

[
Ip1+p2p(s)(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ ψ(‖x‖)Ip1+p2p(s)(T )

+
Γ(p1)

Γ(p1 + p2)
T p1+p2−1

|Ω|
|λ|‖x‖

[
Ip2(η) +

n∑
i=1

|αi| ρiIqi

(
Ip2‖x‖(τ)

)
(ξi)

]
+ |λ|‖x‖Ip2(T )

≤ ψ(‖x‖)

{
Γ(p1)

Γ(p1 + p2)
T p1+p2−1

|Ω|

[
Ip1+p2p(s)(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ Ip1+p2p(s)(T )

}
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+|λ|‖x‖

{
T p2

Γ(1 + p2)
+

Γ(p1)
Γ(p1 + p2)

T p1+p2−1

|Ω|

(
ηp2

Γ(1 + p2)

+
n∑

i=1

|αi|
[

1
Γ(1 + p2)

ξp2+ρiqi

i

ρqi

i

Γ
(

p2+ρi

ρi

)
Γ

(
p2+ρiqi+ρi

ρi

)])}

= ψ(‖x‖)Λ1

[
Ip1+p2p(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ |λ|‖x‖Λ2,

and consequently,

‖h‖ ≤ ψ(ρ)Λ1

[
Ip1+p2p(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ |λ|ρΛ2.

Step 3. F maps bounded sets into equicontinuous sets of C.

Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Bρ. For each h ∈ F(x), we obtain

|h(τ2) − h(τ1)| ≤

∣∣∣∣∣ Γ(p1)
Γ(p1 + p2)

tp1+p2−1
2 − tp1+p2−1

1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]∣∣∣∣∣
+

∣∣Ip1+p2v(s)(t2) − Ip1+p2v(s)(t1)
∣∣ +

∣∣λ Ip2x(s)(t2) − λ Ip2x(s)(t1)
∣∣

≤ Γ(p1)
Γ(p1 + p2)

|tp1+p2−1
2 − tp1+p2−1

1 |
|Ω|

[
Ip1+p2p(s)ψ(‖x‖)(η) + |λ| Ip2‖x‖(η)

+
n∑

i=1

αi
ρiIqi

(
Ip1+p2p(s)ψ(‖x‖)(τ) + |λ| Ip2‖x‖(τ)

)
(ξi)

]
+

∣∣Ip1+p2p(s)ψ(‖x‖)(t2) − Ip1+p2p(s)ψ(‖x‖)(t1)
∣∣

+
∣∣λ Ip2x(s)(t2) − λ Ip2x(s)(t1)

∣∣
≤ Γ(p1)

Γ(p1 + p2)
|tp1+p2−1

2 − tp1+p2−1
1 |

|Ω|

[
Ip1+p2p(s)ψ(ρ)(η) + |λ| ρIp2(η)

+
n∑

i=1

αi
ρiIqi

(
Ip1+p2p(s)ψ(ρ)(τ) + |λ| ρIp2(τ)

)
(ξi)

]
+

∣∣ (
Ip1+p2p(s)ψ(ρ)

)
(t2) −

(
Ip1+p2p(s)ψ(ρ)

)
(t1)

∣∣
+|λ|ρ

∣∣ (Ip2) (t2) − (Ip2) (t1)
∣∣.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Bρ as
τ2 − τ1 → 0. As F satisfies the above three assumptions, therefore it follows by the Ascoli-Arzelá
theorem that F : C → P(C) is completely continuous.

Since F is completely continuous, in order to prove that it is u.s.c. it is enough to prove that it has
a closed graph (Lemma 3.3). Thus, in our next step, we show that

Step 4. F has a closed graph.

Let xn → x∗, hn ∈ F(xn) and hn → h∗. Then, we need to show that h∗ ∈ F(x∗). Associated with
hn ∈ F(xn), there exists vn ∈ SF,xn such that for each t ∈ [0, T ],

hn(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2vn(s)(η) − λ Ip2x(s)(η)
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−
n∑

i=1

αi
ρiIqi

(
Ip1+p2vn(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2vn(s)(t) − λ Ip2x(s)(t).

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ [0, T ],

h∗(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v∗(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v∗(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v∗(s)(t) − λ Ip2x(s)(t).

Let us consider the linear operator Θ : L1([0, T ], R) → C given by

v 7→ Θ(v)(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v(s)(t) − λ Ip2x(s)(t).

Observe that

‖hn(t) − h∗(t)‖ =

∥∥∥∥∥ Γ(p1)
Γ(p1 + p2)

tp1+p2−1

Ω

[
Ip1+p2(vn(s) − v∗(s))(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2(vn(s) − v∗(s))(τ)

)
(ξi)

]
+ Ip1+p2(vn(s) − v∗(s))(t)

∥∥∥∥∥ → 0,

as n → ∞. Thus, it follows by Lemma 3.4 that Θ ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v∗(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v∗(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v∗(s)(t) − λ Ip2x(s)(t)

for some v∗ ∈ SF,x∗ .

Step 5. We show there exists an open set U ⊆ C with x /∈ θF(x) for any θ ∈ (0, 1) and all
x ∈ ∂U.

Let θ ∈ (0, 1) and x ∈ θF(x). Then there exists v ∈ L1([0, T ], R) with v ∈ SF,x such that, for
t ∈ [0, T ], we have

x(t) = θ
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ θIp1+p2v(s)(t) − θλ Ip2x(s)(t).

Using the computations of the second step above, we have

‖x‖ ≤ Γ(p1)
Γ(p1 + p2)

tp1+p2−1

|Ω|

[
Ip1+p2p(s)ψ(‖x‖)(η) + |λ| Ip2‖x‖(η)
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+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2p(s)ψ(‖x‖)(τ) + |λ| Ip2‖x‖(τ)

)
(ξi)

]
+Ip1+p2p(s)ψ(‖x‖)(T ) + |λ| Ip2‖x‖(T )

≤ ψ(‖x‖)

{
Γ(p1)

Γ(p1 + p2)
T p1+p2−1

|Ω|

[
Ip1+p2p(s)(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ Ip1+p2p(s)(T )

}

+|λ|‖x‖

{
T p2

Γ(1 + p2)
+

Γ(p1)
Γ(p1 + p2)

T p1+p2−1

|Ω|

(
ηp2

Γ(1 + p2)

+
n∑

i=1

|αi|
[

1
Γ(1 + p2)

ξp2+ρiqi

i

ρqi

i

Γ
(

p2+ρi

ρi

)
Γ

(
p2+ρiqi+ρi

ρi

)])}

= ψ(‖x‖)

{
Λ1

[
Ip1+p2p(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]

+Ip1+p2p(s)(T )

}
+ |λ|‖x‖Λ2,

which implies that

‖x‖
ψ(‖x‖)

≤ Λ1

(1 − |λ|Λ2)

{[
Ip1+p2p(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2p(s)(τ)

)
(ξi)

]
+ Ip1+p2p(s)(T )

}
.

In view of (H3), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C : ‖x‖ < M}.

Note that the operator F : U → P(C) is a compact multi-valued map, u.s.c. with convex closed values.
From the choice of U , there is no x ∈ ∂U such that x ∈ θF(x) for some θ ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray-Schauder type (Lemma 3.5), we deduce that F has a fixed point x ∈ U
which is a solution of the problem (1). This completes the proof. ¤

3.2 The lower semicontinuous case

In the next result, F is not necessarily convex valued. Our strategy to deal with this problem is based
on the nonlinear alternative of Leray Schauder type together with the selection theorem of Bressan and
Colombo [30] for lower semi-continuous maps with decomposable values.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E) be a multivalued
operator with nonempty closed values. G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y)∩B 6=
∅} is open for any open set B in E. Let A be a subset of [0, T ]×R. A is L⊗B measurable if A belongs
to the σ−algebra generated by all sets of the form J × D, where J is Lebesgue measurable in [0, T ]
and D is Borel measurable in R. A subset A of L1([0, T ], R) is decomposable if for all u, v ∈ A and
measurable J ⊂ [0, T ] = J , the function uχJ + vχJ−J ∈ A, where χJ stands for the characteristic
function of J .

Definition 3.7 Let Y be a separable metric space and let N : Y → P(L1([0, T ], R)) be a multivalued
operator. We say N has a property (BC) if N is lower semi-continuous (l.s.c.) and has nonempty
closed and decomposable values.

Let F : [0, T ]×R → P(R) be a multivalued map with nonempty compact values. Define a multivalued
operator F : C([0, T ] × R) → P(L1([0, T ], R)) associated with F as

F(x) = {w ∈ L1([0, T ], R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]},
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which is called the Nemytskii operator associated with F.

Definition 3.8 Let F : [0, T ] × R → P(R) be a multivalued function with nonempty compact values.
We say F is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator F is lower
semi-continuous and has nonempty closed and decomposable values.

Lemma 3.9 ([31]) Let Y be a separable metric space and let N : Y → P(L1([0, T ], R)) be a multival-
ued operator satisfying the property (BC). Then N has a continuous selection, that is, there exists a
continuous function (single-valued) g : Y → L1([0, T ], R) such that g(x) ∈ N(x) for every x ∈ Y .

Theorem 3.10 Assume that (H2), (H3) and the following condition holds:

(H4) F : [0, T ] × R → P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, T ];

Then the boundary value problem (1) has at least one solution on [0, T ].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type. Then from Lemma 3.9, there exists a
continuous function f : AC2([0, T ], R) → L1([0, T ], R) such that f(x) ∈ F(x) for all x ∈ C([0, T ], R).

Consider the problem 
RLDqx(t) = f(x(t)), 0 < t < T, 1 < α ≤ 2,

x(0) = 0, x(η) =
n∑

i=1

αi
ρiIqix(ξi).

(10)

Observe that if x ∈ AC2([0, T ], R) is a solution of (10), then x is a solution to the problem (1). In
order to transform the problem (10) into a fixed point problem, we define the operator F as

Fx(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2f(x(s))(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2f(x(s))(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2f(x(s))(t) − λ Ip2x(s)(t).

It can easily be shown that F is continuous and completely continuous. The remaining part of the
proof is similar to that of Theorem 3.6. So, we omit it. This completes the proof. ¤

3.3 The Lipschitz case

In this subsection, we prove the existence of solutions for the problem (1) with a not necessary nonconvex
valued right hand side, by applying a fixed point theorem for multivalued maps due to Covitz and Nadler
[32].

Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider Hd : P(X)×P(X) →
R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pcl,b(X),Hd) is a metric space (see
[33]).

Definition 3.11 A multivalued operator N : X → Pcl(X) is called

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;
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(b) a contraction if and only if it is γ−Lipschitz with γ < 1.

Lemma 3.12 ([32]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction, then
FixN 6= ∅.

Theorem 3.13 Assume that:

(A1) F : [0, T ] × R → Pcp(R) is such that F (·, x) : [0, T ] → Pcp(R) is measurable for each x ∈ R.

(A2) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x − x̄| for almost all t ∈ [0, T ] and x, x̄ ∈ R with m ∈ L1([0, T ], R+)
and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, T ].

Then the boundary value problem (1) has at least one solution on [0, T ] if

Ω2 := Λ1

[
Ip1+p2m(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2m(s)(τ)

)]
+ Ip1+p2m(s)(T ) < 1.

Proof. Consider the operator F defined by (9). Observe that the set SF,x is nonempty for each x ∈ C
by the assumption (A1), so F has a measurable selection (see Theorem III.6 [34]). Now, we show that
the operator F satisfies the assumptions of Lemma 3.12. We show that F(x) ∈ Pcl(C) for each x ∈ C.
Let {un}n≥0 ∈ F(x) be such that un → u (n → ∞) in C. Then u ∈ C and there exists vn ∈ SF,xn such
that, for each t ∈ [0, T ],

un(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2vn(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2vn(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2vn(s)(t) − λ Ip2x(s)(t).

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn converges to
v in L1([0, T ], R). Thus, v ∈ SF,x and for each t ∈ [0, T ], we have

un(t) → v(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v(s)(t) − λ Ip2x(s)(t).

Hence, u ∈ F(x).
Next, we show that there exists δ < 1 such that

Hd(F(x),F(x̄)) ≤ δ‖x − x̄‖ for each x, x̄ ∈ AC2([0, T ], R).

Let x, x̄ ∈ AC2([0, T ], R) and h1 ∈ F(x). Then there exists v1(t) ∈ F (t, x(t)) such that, for each
t ∈ [0, T ],

h1(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v1(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v1(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v1(s)(t) − λ Ip2x(s)(t).

By (A2), we have
Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t) − x̄(t)|.

So, there exists w ∈ F (t, x̄(t)) such that

|v1(t) − w| ≤ m(t)|x(t) − x̄(t)|, t ∈ [0, T ].
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Define U : [0, T ] → P(R) by

U(t) = {w ∈ R : |v1(t) − w| ≤ m(t)|x(t) − x̄(t)|}.

Since the multivalued operator U(t) ∩ F (t, x̄(t)) is measurable (Proposition III.4 [34]), there exists a
function v2(t) which is a measurable selection for U . So v2(t) ∈ F (t, x̄(t)) and for each t ∈ [0, T ], we
have |v1(t) − v2(t)| ≤ m(t)|x(t) − x̄(t)|.

For each t ∈ [0, T ], let us define

h2(t) =
Γ(p1)

Γ(p1 + p2)
tp1+p2−1

Ω

[
Ip1+p2v2(s)(η) − λ Ip2x(s)(η)

−
n∑

i=1

αi
ρiIqi

(
Ip1+p2v2(s)(τ) − λ Ip2x(s)(τ)

)
(ξi)

]
+ Ip1+p2v2(s)(t) − λ Ip2x(s)(t).

Thus,

|h1(t) − h2(t)| ≤ Γ(p1)
Γ(p1 + p2)

T p1+p2−1

|Ω|

[
Ip1+p2 |v1(s) − v2(s)|(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2 |v1(s) − v2(s)|(τ)

]
+ Ip1+p2 |v1(s) − v2(s)|(t)

≤ Γ(p1)
Γ(p1 + p2)

T p1+p2−1

|Ω|

[
Ip1+p2m(s)‖x − x̄‖(η)

+
n∑

i=1

|αi| ρiIqi

(
Ip1+p2m(s)‖x − x̄‖(τ)

)]
+ Ip1+p2m(s)‖x − x̄‖(T )

=

{
Λ1

[
Ip1+p2m(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2m(s)(τ)

)]

+Ip1+p2m(s)(T )

}
‖x − x̄‖.

Hence,

‖h1 − h2‖ ≤

{
Λ1

[
Ip1+p2m(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2m(s)(τ)

)]
+ Ip1+p2m(s)(T )

}
‖x − x̄‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(F(x),F(x̄)) ≤

{
Λ1

[
Ip1+p2m(s)(η) +

n∑
i=1

|αi| ρiIqi

(
Ip1+p2m(s)(τ)

)]

+Ip1+p2m(s)(T )

}
‖x − x̄‖.

So F is a contraction. Therefore, it follows by Lemma 3.12 that F has a fixed point x which is a solution
of (1). This completes the proof. ¤

3.4 Examples

In this section, we will illustrate our main results with the help of some examples.
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Example 3.14 Let us consider the following Langevin fractional differential inclusions with nonlocal
Katugampola fractional integral boundary conditions

D2/3

(
D4/5 +

1
8

)
x(t) ∈ F1(t, x(t)), t ∈

(
0,

2
3

)
,

x(0) = 0,

x

(
2
9

)
=

3
4

√
2

5 I
1
3 x

(
1
9

)
+

1√
7

√
3

8 I
1
π x

(
1
3

)
+

√
2

5
4

e2 I
2
3 x

(
4
9

)
+

11
15

2√
5 I

6
13 x

(
5
9

)
,

(11)

where

F1(t, x) =
[
(t1/2 + 1)

20

(
|x| sin |x|

5(3 + 2|x|)
+

e−2t

3

)
,
(t1/2 + 1)

15

(
x2

3(1 + |x|)
+

e−t

2

)]
. (12)

Here p1 = 2/3, p2 = 4/5, λ = 1/8, T = 2/3, η = 2/9, n = 4, α1 = 3/4, ρ1 =
√

2/5, q1 = 1/3,
ξ1 = 1/9, α2 = 1/

√
7, ρ2 =

√
3/8, q2 = 1/π, ξ2 = 1/3, α3 =

√
2/5, ρ3 = 4/e2, q3 = 2/3, ξ3 = 4/9,

α4 = 11/15, ρ4 = 2/
√

5, q4 = 6/13, ξ4 = 5/9. From these constants, we can find that Ω = 0.2660602470,
Λ1 = 4.756155970, Λ2 = 5.624515148 and also |λ|Λ2 = 0.7030643935 < 1. It is obvious that the condition
(H1) is satisfied.

For f ∈ F1, we have

|f | ≤ max

(
(t1/2 + 1)

20

(
|x| sin |x|

5(3 + 2|x|)
+

e−2t

3

)
,
(t

1
2 + 1)
15

(
x2

3(1 + |x|)
+

e−t

2

))

≤ (t1/2 + 1)
15

(
1
3
|x| + 1

2

)
, t ∈ (0, 2/3), x ∈ R.

Therefore, we have

‖F1(t, x)‖P = sup{|y| : y ∈ F1(t, x)} ≤ p(t)ψ(|x|), t ∈ (0, 2/3) x ∈ R,

where p(t) = (t1/2 + 1)/15, ψ(|x|) = (1/3)|x| + (1/2). This means that the condition (H2) is fulfilled.
By direct computation, we have Ω1 = 1.123809144 and also there exists a constant M > 0.8984766718
satisfying condition (H3).

Therefore, all the conditions of Theorem 3.6 are satisfied. So, the problem (11) with F1(t, x) given
by (12) has at least one solution on [0, 2/3].

Example 3.15 Let us consider the following Langevin fractional differential inclusions with nonlocal
Katugampola fractional integral boundary conditions

D6/7

(
D8/9 +

1
12

)
x(t) ∈ F2(t, x(t)), t ∈

(
0,

3
2

)
,

x(0) = 0,

x

(
2
3

)
=

2√
11

3
4 I

5
8 x

(
1
3

)
+

4
7

√
3

5 I
1√
6 x

(
1
2

)
+

π

e2

2
13 I

3√
8 x

(
5
6

)
+

5
4

2
9 I

3
π2 x

(
7
6

)
+

√
3

9

√
11

15 I
13
17 x

(
4
3

)
,

(13)

where

F2(t, x) =
[
0,

(t1/3 + 1)
24

(
x2 + 2|x|
(1 + |x|)

)
+

t

2

]
. (14)
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14 S.K. Ntouyas and J. Tariboon

Here p1 = 6/7, p2 = 8/9, λ = 1/12, T = 3/2, η = 2/3, n = 5, α1 = 2/
√

11, ρ1 = 3/4, q1 = 5/8,
ξ1 = 1/3, α2 = 4/7, ρ2 =

√
3/5, q2 = 1/

√
6, ξ2 = 1/2, α3 = π/e2, ρ3 = 2/13, q3 = 3/

√
8, ξ3 = 5/6,

α4 = 5/4, ρ4 = 2/9, q4 = 3/π2, ξ4 = 7/6, α5 =
√

3/9, ρ5 =
√

11/15, q5 = 13/17, ξ5 = 4/3. From given
constants, we can find that Ω = 2.105868955, Λ1 = 0.7738927855. In addition, we have

sup{|x| : x ∈ F2(t, x)} ≤ (t1/3 + 1)
24

(
x2 + 2|x|
(1 + |x|)

)
+

t

2
,

which yields

Hd(F2(t, x), F2(t, y)) ≤ (t1/3 + 1)
12

|x − y|.

Choosing m(t) = (t1/3 + 1)/12, we obtain Hd(F2(t, x), F2(t, y)) ≤ m(t)|x− y| such that d(0, F2(t, 0)) ≤
m(t). By the previous setting, we find that Ω2 = 0.3397697571 < 1.

Thus all assumptions of Theorem 3.13 are fulfilled. Therefore, by the conclusion of Theorem 3.13,
we deduce that the problem (13) with F2(t, x) given by (14) has at least one solution on [0, 3/2].
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In the paper, by discovering a Riemann-Liouville fractional integral identity
involving twice differentiable preinvex mappings, the authors establish the right-
sided new Hermite-Hadamard type inequalities via Riemann-Liouville fractional
integrals for α-preinvex functions. The new fractional integral inequalities are
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1 Introduction

Let f : I ⊂ R → R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

referred to as Hermite-Hadamard inequality, is one of the most famous results
for convex functions. A number of papers have been written on this inequality
providing new proofs, noteworthy extensions, generalizations, refinements and

1
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new inequalities connected with the Hermite-Hadamard inequality. The reader
may refer to [7, 12, 14, 16, 20, 21, 26, 27, 34] and the references therein.

Let us recall some necessary definitions and preliminary results which are
used for further discussion.

Definition 1.1 ([3, 32]) A set S ⊆ Rn is said to be invex set with respect to
the mapping η : S×S → Rn if x+ tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].
The invex set S is also called an η-connected set.

Notice that every convex set is invex with respect to the mapping η(y, x) =
y − x, but the converse is not necessarily true. See [3, 33], for example.

Definition 1.2 ([3]) Let S ⊆ Rn be an invex set with respect to η : S×S → Rn.
For every x, y ∈ S, the η-path Pxv joining the points x and v = x + η(y, x) is
defined by

Pxv = {z|z = x+ tη(y, x), t ∈ [0, 1]}.

A significant generalization of convex mappings is that of preinvex mappings
introduced by Weir and Mond in [32].

Definition 1.3 ([32]) The function f defined on the invex set K ⊆ Rn is said
to be preinvex with respect to η if for every x, y ∈ K and t ∈ [0, 1] we have

f
(
x+ tη(y, x)

)
≤ (1− t)f(x) + tf(y).

The function f is said to be preincave if and only if −f is preinvex.

The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping η(y, x) = y−x. Further, there
exist preinvex functions which are not convex.

Moreover, Wang et al. gave the so-called α-preinvex function in [29] as
follows.

Definition 1.4 ([29]) Let S ⊆ Rn be an invex set with respect to η : S × S →
Rn. A function f : S → R is said to be α-preinvex with respect to η for α ∈ (0, 1],
if every x, y ∈ S and t ∈ [0, 1],

f
(
x+ tη(y, x)

)
≤ (1− tα)f(x) + tαf(y).

Certainly, α-preinvex mapping means just preinvex mapping when α = 1.
For recent results on some new generalizations, refinements of integral in-

equalities involved with the preinvex functions, one can see [4, 13, 17–19, 23]
and the references therein.

We also need the following fractional calculus background.

Definition 1.5 ([25]) Let f ∈ L1[a, b]. The left-sided and right-sided Riemann-
Liouville fractional integrals of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a < x

2
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and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively, where Γ(.) is Gamma function and its definition is
Γ(α) =

∫∞
0
e−uuα−1du. It is to be noted that J0

a+f(x) = J0
b−f(x) = f(x).

In the case α = 1, the Riemann-Liouville fractional integral reduces to the
classical and usual integral.

In [28], Sarikaya et al. established the following interesting inequalities of
Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.1 Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is convex function on [a, b], then the following inequalities for
fractional integrals hold:

f
(a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ f(a) + f(b)

2
(1.2)

Observe that for α = 1, the inequalities (1.2) reduces to the classical Hermite-
Hadamard inequality (1.1).

For some recent results associated with the fractional integral inequalities,
one can consult [1, 2, 5, 8–10, 15, 28, 30].

In the recently published article [25] by Qaisar et al., they obtained Riemann-
Liouville fractional Hadamard-type integral inequalities for mappings whose ab-
solute value of first derivatives are preinvex, and in the paper [11] Dragomir et al.
also found some Hadamard-type fractional integral inequalities for differentiable
mappings whose absolute value of second derivatives are convex. Motivated and
inspired by this idea, in the present paper, by discovering a Riemann-Liouville
fractional integral identity involving twice differentiable preinvex mappings, the
authors establish the right-sided new Hermite-Hadamard type inequalities via
Riemann-Liouville fractional integrals for α-preinvex functions. The new frac-
tional integral inequalities are then applied to some special means.

2 Main Results

To derive main results in this section, we prove the following Lemma.

Lemma 2.1 Let A ⊆ R be an open invex subset with respect to η : A×A→ R
and Let a, b ∈ A with a < a + η(b, a). Assume that f : A → R be a twice
differentiable mapping. If f ′′ is preinvex on A and f ′′ is integrable on the η-
path Pac : c = a + η(b, a), then the following identity for Riemann-Liouville
fractional integral with α > 0 holds:

f(a) + f
(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
=
η2(b, a)

2

∫ 1

0

1− tα+1 − (1− t)α+1

α+ 1
f ′′
(
a+ tη(b, a)

)
dt,

(2.1)

3
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where Γ(α) =
∫∞
0
e−tuα−1du.

Proof. Set

I =
η2(b, a)

2

∫ 1

0

1− tα+1 − (1− t)α+1

α+ 1
f ′′
(
a+ tη(b, a)

)
dt.

Since a, b ∈ A and A is an invex set with respect to η, for every t ∈ [0, 1], we
have a+ tη(b, a) ∈ A. Integrating by part yields that

I =
η2(b, a)

2

[
1− tα+1 − (1− t)α+1

(α+ 1)η(b, a)
f ′
(
a+ tη(b, a)

)∣∣∣1
0

−
∫ 1

0

−(α+ 1)tα + (α+ 1)(1− t)α

(α+ 1)η(b, a)
f ′
(
a+ tη(b, a)

)
dt

]
=
η2(b, a)

2

[
tα − (1− t)α

η2(b, a)
f
(
a+ tη(b, a)

)∣∣∣1
0

−
∫ 1

0

αtα−1 + α(1− t)α−1

η2(b, a)
f
(
a+ tη(b, a)

)
dt

]
=
f(a) + f

(
a+ η(b, a)

)
2

− α

2

[ ∫ 1

0

(
tα−1 + (1− t)α−1

)
f
(
a+ tη(b, a)

)
dt

]
.

Let u = a + tη(b, a), then du = η(b, a)dt, and using the reduction formula
Γ(α+ 1) = αΓ(α)(α > 0) for Euler gamma function, we have

α

2

∫ 1

0

tα−1f
(
a+ tη(b, a)

)
dt =

Γ(α+ 1)

2ηα(b, a)
Jα(a+η(b,a))−f(a)

and similarly we get

α

2

∫ 1

0

(1− t)α−1f
(
a+ tη(b, a)

)
dt =

Γ(α+ 1)

2ηα(b, a)
Jαa+f

(
a+ η(b, a)

)
.

Thus, we have conclusion (2.1).

Remark 2.1 Applying Lemma 2.1 for η(b, a) = b−a, we can obtain the Lemma
2.1 in [31], which may be discovered also in [22]. Furthermore, let α = 1, we
can get lemma 1 in [24].

With the help of Lemma 2.1, new upper bound for the right-hand side of
(1.2) for α-preinvex functions via the Riemann-Liouville fractional integral is
presented in the following theorem.

Theorem 2.1 Let A ⊆ R be an open invex subset with respect to η : A× A→
R and a, b ∈ A with a < a + η(b, a). Suppose that f : A → R be a twice
differentiable mapping and f ′′ is integrable on the η-path Pac : c = a + η(b, a).

4
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If |f ′′| is α-preinvex on A then the following inequality for fractional integrals
with 0 < α ≤ 1 holds:∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2(α+ 1)

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|

]
.

(2.2)

Proof. Since a + tη(b, a) ∈ A for every t ∈ [0, 1], by using the properties of
modulus on Lemma 2.1, we can obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2

∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt.

Using the α-preinvexity of |f ′′|, we have∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt

≤ 1

α+ 1

∫ 1

0

(
1− tα+1 − (1− t)α+1

)(
(1− tα)|f ′′(a)|+ tα|f ′′(b)|

)
dt

≤ 1

α+ 1

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|

]
.

To prove the second inequality, we used the following fact that∫ 1

0

(
1− tα+1 − (1− t)α+1 − tα + t2α+1

)
dt =

2α2 + α− 2

(α+ 2)(2α+ 2)
,∫ 1

0

(tα − t2α+1)dt =
1

2α+ 2
,

and ∫ 1

0

tα(1− t)α+1dt = β(α+ 1, α+ 2),

where the Beta function,

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, ∀x, y > 0,

5
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which completes the proof.
Another Riemann-Liouville fractional Hermit-Hadamard-type inequality for

powers in terms of the second derivatives is obtained below.

Theorem 2.2 Let A ⊆ R be an open invex subset with respect to η : A×A→ R
and a, b ∈ A with a < a+η(b, a). Suppose that f : A→ R be a twice differentiable
mapping and f ′′ is integrable on the η-path Pac : c = a + η(b, a). Assume that
q ∈ R, q ≥ 1 such that |f ′′|q is α-preinvex on A, then the following inequality
for fractional integrals with 0 < α ≤ 1 holds:∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2(α+ 1)

(
1− 1

2qα

) 1
q
( α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q

) 1
q

.

(2.3)

Proof. Since a+ tη(b, a) ∈ A for every t ∈ [0, 1], by using the properties of mod-
ulus on Lemma 2.1 and using the well-known power-mean integral inequality
for q ≥ 1, we can obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2

∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt

≤ η2(b, a)

2(α+ 1)

(∫ 1

0

1dt

)1− 1
q
[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)q∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

≤ η2(b, a)

2(α+ 1)

[ ∫ 1

0

(
1− 1

2qα

)
|f ′′
(
a+ tη(b, a)

)∣∣qdt] 1
q

.

To prove the third inequality above, we used the following inequality(
1− (1− t)α+1 − tα+1

)q ≤ 1− [(1− t)α+1 + tα+1]q

≤ 1− (2−α)q

≤ 1− 1

2qα

for any t ∈ [0, 1] with q ≥ 1, and also using the α-preinvexity of |f ′′|q, that is∫ 1

0

|f ′′
(
a+ tη(b, a)

)∣∣qdt ≤ ∫ 1

0

[
(1− tα)|f ′′(a)|q + tα|f ′′(b)|q

]
dt

=
α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q.

(2.4)

Therefore, we can get the required results (2.3).

6
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Corollary 2.1 With the same assumptions given in Theorem 2.2, if |f ′′(x)| ≤
M on [a, a+ η(b, a)], we can deduce that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ Mη2(b, a)

2(α+ 1)

(
1− 1

2qα

) 1
q

.

Another similar result may be presented in the following theorem.

Theorem 2.3 Let A ⊆ R be an open invex subset with respect to η : A×A→ R
and a, b ∈ A with a < a+η(b, a). Suppose that f : A→ R be a twice differentiable
mapping and f ′′ is integrable on the η-path Pac : c = a + η(b, a). Assume that
p ∈ R, p > 1 with q = p

p−1 such that |f ′′|q is α-preinvex on A, then the following
inequality for fractional integrals with 0 < α ≤ 1 holds:∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2(α+ 1)

(pα+ p− 1

pα+ p+ 1

) 1
p
( α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q

) 1
q

.

(2.5)

Proof. Since a + tη(b, a) ∈ A for every t ∈ [0, 1], by using the properties of
modulus on Lemma 2.1 and making use of the well-known Hölder’s integral in-
equality for q > 1, we can obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2

∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt

≤ η2(b, a)

2(α+ 1)

(∫ 1

0

|1− tα+1 − (1− t)α+1|pdt
) 1

p
(∫ 1

0

|f ′′
(
a+ tη(b, a)

)
|qdt

) 1
q

≤ η2(b, a)

2(α+ 1)

(pα+ p− 1

pα+ p+ 1

) 1
p
(∫ 1

0

|f ′′
(
a+ tη(b, a)

)
|qdt

) 1
q

,

where we use the following inequality(
1− (1− t)α+1 − tα+1

)p ≤ 1− (1− t)p(α+1) − tp(α+1) (2.6)

for any t ∈ [0, 1], which follows from

(A−B)p ≤ Ap −Bp (2.7)

for any A > B ≥ 0 and p > 1.
By applying (2.4) and (2.6), we can get (2.5). Hence the proof is completed.
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Corollary 2.2 With the same assumptions given in Theorem 2.3, if |f ′′(x)| ≤
M on [a, a+ η(b, a)], we obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ Mη2(b, a)

2(α+ 1)

(pα+ p− 1

pα+ p+ 1

) 1
p

.

A different approach leads to the following result.

Theorem 2.4 Let A ⊆ R be an open invex subset with respect to η : A×A→ R
and a, b ∈ A with a < a+η(b, a). Suppose that f : A→ R be a twice differentiable
mapping and f ′′ is integrable on the η-path Pac : c = a + η(b, a). Assume that
p ∈ R, p > 1 with q = p

p−1 such that |f ′′|q is α-preinvex on A, then the following
inequality for fractional integrals with 0 < α ≤ 1 holds:∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2(α+ 1)

( α

α+ 2

)1− 1
q

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|q

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|q

] 1
q

.

(2.8)

Proof. Since a + tη(b, a) ∈ A for every t ∈ [0, 1], by utilizing the properties of
modulus on Lemma 2.1 and using the Hölder’s integral inequality for q > 1 , we
can obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤η

2(b, a)

2

∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt

≤ η2(b, a)

2(α+ 1)

[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)
dt

]1− 1
q

×
[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)
|f ′′
(
a+ tη(b, a)

)
|qdt

] 1
q

=
η2(b, a)

2(α+ 1)

( α

α+ 2

)1− 1
q

[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)
|f ′′
(
a+ tη(b, a)

)
|qdt

] 1
q

.
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Using the α-preinvexity of |f ′′|q, i.e. the inequality (2.4), we have∫ 1

0

(
1− tα+1 − (1− t)α+1

)
|f ′′
(
a+ tη(b, a)

)
|qdt

≤
∫ 1

0

(
1− tα+1 − (1− t)α+1

)(
(1− tα)|f ′′(a)|q + tα|f ′′(b)|q

)
dt

=
( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|q

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|q.

Thus, we get the desired inequality (2.8).

Corollary 2.3 With the same assumptions given in Theorem 2.4, if |f ′′(x)| ≤
M on [a, a+ η(b, a)], we obtain that∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ Mαη2(b, a)

2(α+ 1)(α+ 2)
.

Finally we shall prove the following result.

Theorem 2.5 Suppose that all the assumptions of Theorem 2.4 are satisfied.
Then the following inequalities hold:∣∣∣∣f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ η2(b, a)

2(α+ 1)

[ (q − p)α− p+ 1

(q − p)α+ 2q − p− 1

] q−1
q

×
{[

αp+ α+ 1

(α+ 1)(p+ 1)
− 2

p(α+ 1) + 1
+ β(α+ 1, p(α+ 1) + 1)

]
|f ′′(a)|q

+
[ p

(α+ 1)(p+ 1)
− β(α+ 1, p(α+ 1) + 1)

]
|f ′′(b)|q

}
.

(2.9)

Proof. Since a + tη(b, a) ∈ A for every t ∈ [0, 1], by using the properties of
modulus on Lemma 2.1 and making use of the well-known Hölder’s integral in-
equality for q > 1, we can obtain that
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∣∣∣∣f(a) + f
(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤η

2(b, a)

2

∫ 1

0

∣∣∣1− tα+1 − (1− t)α+1

α+ 1

∣∣∣|f ′′(a+ tη(b, a)
)
|dt

≤ η2(b, a)

2(α+ 1)

[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

) q−p
q−1

dt
] q−1

q

×
[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
|f ′′
(
a+ tη(b, a)

)
|qdt

] 1
q

≤ η2(b, a)

2(α+ 1)

[ (q − p)α− p+ 1

(q − p)α+ 2q − p− 1

] q−1
q

×
[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
|f ′′
(
a+ tη(b, a)

)
|qdt

] 1
q

Using the α-preinvexity of |f ′′|q, we have

∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
|f ′′
(
a+ tη(b, a)

)
|qdt

≤
∫ 1

0

(
1− tα+1 − (1− t)α+1

)p(
(1− tα)|f ′′(a)|q + tα|f ′′(b)|q

)
dt

≤
∫ 1

0

(
1− t(α+1)p − (1− t)(α+1)p

)(
(1− tα)|f ′′(a)|q + tα|f ′′(b)|q

)
dt

≤
∫ 1

0

(
1− (1− t)(α+1)p − t(α+1)p − tα + tα(1− t)(α+1)p + tα+(α+1)p

)
|f ′′(a)|qdt

+

∫ 1

0

(
tα − tα(1− t)(α+1)p − tα+(α+1)p

)
|f ′′(b)|qdt

=

[
αp+ α+ 1

(α+ 1)(p+ 1)
− 2

p(α+ 1) + 1
+ β(α+ 1, p(α+ 1) + 1)

]
|f ′′(a)|q

+
[ p

(α+ 1)(p+ 1)
− β(α+ 1, p(α+ 1) + 1)

]
|f ′′(b)|q.

Here, we use

(1− (1− t)α+1 − tα+1)q ≤ 1− (1− t)q(α+1) − tq(α+1) (2.10)

for any t ∈ [0, 1], which follows from

(A−B)q ≤ Aq −Bq (2.11)

for any A > B ≥ 0 and q ≥ 1.
Thus, we get the desired inequality (2.9).
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Corollary 2.4 From Theorems (2.2),(2.3),(2.4) and (2.5), we have∣∣∣∣f(a) + f
(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]∣∣∣∣
≤ min{K1,K2,K3,K4},

where

K1 =
η2(b, a)

2(α+ 1)

(
1− 1

2qα

) 1
q
( α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q

) 1
q

,

K2 =
η2(b, a)

2(α+ 1)

(pα+ p− 1

pα+ p+ 1

) 1
p
( α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q

) 1
q

,

K3 =
η2(b, a)

2(α+ 1)

( α

α+ 2

)1− 1
q

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|q

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|q

] 1
q

,

K4 =
η2(b, a)

2(α+ 1)

[ (q − p)α− p+ 1

(q − p)α+ 2q − p− 1

] q−1
q

×
{[

αp+ α+ 1

(α+ 1)(p+ 1)
− 2

p(α+ 1) + 1
+ β(α+ 1, p(α+ 1) + 1)

]
|f ′′(a)|q

+
[ p

(α+ 1)(p+ 1)
− β(α+ 1, p(α+ 1) + 1)

]
|f ′′(b)|q

}
.

3 Applications to special means

In the following we give certain generalizations of some notions for a positive
valued function of a positive variable.

Definition 3.1 [6] A function M : R2
+ → R+, is called a Mean function if it

has the following properties:
(1) Homogeneity: M(ax, ay)=aM(x, y), for all a>0,
(2) Symmetry: M(x, y) = M(y, x),
(3) Reflexivity: M(x, x) = x,
(4) Monotonicity: If x ≤ x′ and y ≤ y′ , then M(x, y) ≤M(x′, y′),
(5) Internality: min{x, y} ≤M(x, y) ≤ max{x, y}.

We consider some means for arbitrary positive real numbers a > 0 and b > 0,
define A := A(a, b) = a+b

2 , G := G(a, b) =
√
ab, H := H(a, b) = 2ab

a+b ,

Pr := Pr(a, b) =
(
ar+br

2

) 1
r

, r ≥ 1

I := I(a, b) =

 1
e

(
bb

aa

) 1
b−a

, a 6= b,

a, a = b,
L := L(a, b) =

{
b−a

ln b−ln a , a 6= b,

a, a = b,
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and

Lp := Lp(a, b) =


[
bp+1−ap+1

(p+1)(b−a)

] 1
p

, p 6= 0,−1, and a 6= b,

L(a, b), p = −1 and a 6= b,
I(a, b), p = 0 and a 6= b,
a, a = b.

It is well known that Lp is monotonic nondecreasing over p ∈ R, with L−1 :=
L and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤
I ≤ A.

Now, let a and b be positive real numbers such that a < b. Consider the
function M := M(a, b) : [a+ η(b, a)]× [a, a+ η(b, a)]→ R+, which is one of the
above mentioned means, therefore one can obtain various inequalities for these
means below:

Setting η(b, a) = M(b, a) in (2.2), (2.3), (2.5), (2.8) and (2.9), one can derive
the following interesting inequalities concerning means:

(1)

∣∣∣∣f(a) + f
(
a+M(b, a)

)
2

− Γ(α+ 1)

2Mα(b, a)

[
Jαa+f

(
a+M(b, a)

)
+ Jα(a+M(b,a))−f(a)

]∣∣∣∣
≤M

2(b, a)

2(α+ 1)

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|

]
,

(2)

∣∣∣∣f(a) + f
(
a+M(b, a)

)
2

− Γ(α+ 1)

2Mα(b, a)

[
Jαa+f

(
a+M(b, a)

)
+ Jα(a+M(b,a))−f(a)

]∣∣∣∣
≤ M2(b, a)

2(α+ 1)

(
1− 1

2qα

) 1
q
( α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|q

) 1
q

,

(3)

∣∣∣∣f(a) + f
(
a+M(b, a)

)
2

− Γ(α+ 1)

2Mα(b, a)

[
Jαa+f

(
a+M(b, a)

)
+ Jα(a+M(b,a))−f(a)

]∣∣∣∣
≤ M2(b, a)

2(α+ 1)

(pα+ p− 1

pα+ p+ 1

) 1
p

[
α

α+ 1
|f ′′(a)|q +

1

α+ 1
|f ′′(b)|qdt

] 1
q

,

(4)

∣∣∣∣f(a) + f
(
a+M(b, a)

)
2

− Γ(α+ 1)

2Mα(b, a)

[
Jαa+f

(
a+M(b, a)

)
+ Jα(a+M(b,a))−f(a)

]∣∣∣∣
≤M

2(b, a)

2(α+ 1)

( α

α+ 2

)1− 1
q

[( 2α2 + α− 2

(α+ 2)(2α+ 2)
+ β(α+ 1, α+ 2)

)
|f ′′(a)|q

+
( 1

2α+ 2
− β(α+ 1, α+ 2)

)
|f ′′(b)|q

] 1
q

,
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and

(5)

∣∣∣∣f(a) + f
(
a+M(b, a)

)
2

− Γ(α+ 1)

2Mα(b, a)

[
Jαa+f

(
a+M(b, a)

)
+ Jα(a+M(b,a))−f(a)

]∣∣∣∣
≤M

2(b, a)

2(α+ 1)

[ (q − p)α− p+ 1

(q − p)α+ 2q − p− 1

] q−1
q

×
{[

αp+ α+ 1

(α+ 1)(p+ 1)
− 2

p(α+ 1) + 1
+ β(α+ 1, p(α+ 1) + 1)

]
|f ′′(a)|q

+
[ p

(α+ 1)(p+ 1)
− β(α+ 1, p(α+ 1) + 1)

]
|f ′′(b)|q

}
.

Letting M = A, G, H, Pr, I, L, Lp in (1), (2), (3), (4) and (5), we get
the inequalities involving means for a particular choice of a twice differentiable
α-preinvex function f , and the details are left to the interested reader.
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CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF
MEROMORPHIC BOUNDED FUNCTIONS

HANAN DARWISH, ABD EL-MONEIM LASHIN, AND SULIMAN SOWILEH

Abstract. By making use of the Hadamard product, we derive necessary
and suffi cient conditions for certain meromorphic function to be in the class
S∗(λ, γ,M)(γ ∈ C∗ = C\{0},M ≥ 1, λ ∈ C) which unifies the classes of
bounded starlike and convex functions of complex order. By using Al-Oboudi
operator a more general class S∗(n, λ, γ,M) related to S∗(λ, γ,M) is also
considered. Several properties of the class S∗(n, λ, γ,M) are also obtained.

AMS (2010) Subject Classification: 30C45, 30C50.
Key Words. Univalent meromorphic functions, bounded starlike functions of

complex order, bounded convex functions of complex order, λ-starlike functions,
Hadamard product, subordination.

1. Introduction

Let C be the complex plane and let Σ denote the class of all meromorphic
functions having the form:

(1.1) f(z) = z−1 +

∞∑
k=0

akz
k,

which are analytic in the punctured unit disc

E∗ = {z : z ∈ C, 0 < |z| < 1} =: E\{0}.
The familiar Hadamard product (or convolution) of two functions f(z) given by
(1.1 and g(z) is given by

(1.2) g(z) = z−1 +
∞∑
k=0

bkz
k,

is defined by

(1.3) (f ∗ g)(z) = z−1 +
∞∑
k=0

akbkz
k = (g ∗ f)(z).

An analytic function f is said to be subordinate to another analytic function
g, written symbolically as follows:

f(z) ≺ g(z) (z ∈ E),

if there exists a function ω(z), analytic in E with
ω(0) = 0 and |ω(z)| < 1 (z ∈ E),

such that
f(z) = g(w(z)) (z ∈ E).

1
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2 HANAN DARWISH , ABD EL-MONEIM LASHIN , AND SULIMAN SOWILEH

Furthermore, if the function g(z) is univalent in E, then we have the following
equivalence, (cf., e.g., [5], [9], [10] ):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(E) ⊂ g(E).

Making use of the principal of subordination between analytic functions, Aouf [2]
defined the subclasses S∗(γ,M) and C(γ,M) of the class Σ as follows:
(1.4)

S∗(γ,M) =

{
f ∈ Σ : −zf

′(z)

f(z)
≺ [γ(1 +m)−m] z + 1

1−mz

(
γ ∈ C∗, m = 1− 1

M
; M ≥ 1; z ∈ E

)}
or, equivalently,

(1.5)

∣∣∣∣∣∣∣∣
γ − 1− zf ′(z)

f(z)

γ
−M

∣∣∣∣∣∣∣∣ < M

(
m = 1− 1

M
; M ≥ 1; z ∈ E

)
,

and
(1.6)

C(γ,M) =

{
f ∈ Σ : −zf

′′(z)

f ′(z)
≺ 2 +

γ(1 +m)z

1−mz ,

(
γ ∈ C∗, m = 1− 1

M
; M ≥ 1; z ∈ E

)}
or, equivalently,

(1.7)

∣∣∣∣∣∣∣∣
γ − 2− zf ′′(z)

f ′(z)

γ
−M

∣∣∣∣∣∣∣∣ < M

(
m = 1− 1

M
; M ≥ 1; z ∈ E

)
.

From inequalities (1.4) and (1.6), we get

(1.8) f(z) ∈ C(γ,M)⇔ −zf ′(z) ∈ S∗(γ,M).

First let us define the class S∗(λ, γ,M) which unifies the classes of bounded
meromorphic starlike and convex functions of complex order.

Definition 1. A function f ∈ Σ is said to be in the class S∗(λ, γ,M)(λ ∈ C, γ ∈
C∗,M ≥ 1) of bounded meromorphic λ−starlike functions of complex order, if and
only if for fixed M, f(z)f

′(z)
z 6= 0 and

(1.9)

∣∣∣∣∣∣∣1−
1

γ

1 +
λz
(
zf
′
(z)
)′

+ (1 + λ)zf
′
(z)

λzf ′(z) + (1 + λ)f(z)

−M
∣∣∣∣∣∣∣ < M (z ∈ E) ,

or, equivalently,
(1.10)

S∗(λ, γ,M) =

f ∈ Σ : −
λz
(
zf
′
(z)
)′

+ (1 + λ)zf
′
(z)

λzf ′(z) + (1 + λ)f(z)
≺ [γ(1 +m)−m] z + 1

1−mz

(
λ ∈ C, γ ∈ C∗, m = 1− 1

M
; M ≥ 1; z ∈ E

)
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One can easily show that f ∈ S∗(λ, γ,M) if and only if there is a function
g ∈ S∗(1,M) such that

(1.11) λzf
′
(z) + (1 + λ)f(z) =

(zg(z))
γ

z

It was shown in [8] g ∈ S∗(1,M) if and only if for z ∈ E

(1.12) − zg
′
(z)

g(z)
=

1 + ω(z)

1−mω(z)
, ω(0) = 0, |ω(z)| < 1 and m = 1− 1

M
.

Thus from (1.11) and (1.12) follows that f ∈ S∗(λ, γ,M) if and only if for M ≥
1, λ ∈ C and z ∈ E

(1.13)
λz
(
zf
′
(z)
)′

+ (1 + λ)zf
′
(z)

λzf ′(z) + (1 + λ)f(z)
= − [γ(1 +m)−m]ω(z) + 1

1−mω(z)
.

By specializing λ, γ and M , we get the following subclasses studied by earlier
authors:

Remark 1.

(i) S∗(0, γ,∞) =: S∗(γ), with γ ∈ C∗, (see Aouf [2]);
(ii) S∗(−1, γ,∞) =: C(γ), with γ ∈ C∗, (see Aouf [2]);
(iii) S∗(0, 1− a,M) =: S∗M (a), with 0 ≤ a < 1, (see Kaczmarski [8]);
(iv)S∗(−1, 1− a,M) =: CM (a), with 0 ≤ a < 1, (see Aouf [2]);
(v) S∗(0, 1,∞) =: S∗(1), with 0 ≤ a < 1, (see Clunie [7]);
(vi) S∗(−1, 1,∞) =: C(1), with 0 ≤ a < 1, (see Aouf [2]);
(vii) S∗(0, 1 − a,∞) =: S∗(1 − a), with 0 ≤ a < 1, (see Kaczmarski [8] and Pom-
merenke [11]);
(viii) S∗(−1, 1− a,∞) =: C(1− a),with 0 ≤ a < 1, (see Aouf [2]);
(ix) S∗(0, (1 − a)e−iβ cosβ,M) =: S∗M (a, β), with 0 ≤ a < 1, |β| ≤ π

2 ), (see
Kaczmarski [8]);
(x) S∗(−1, (1 − a)e−iβ cosβ,M) =: CM (a, β),with 0 ≤ a < 1, |β| ≤ π

2 ), (see Aouf
[2]);
(xi) S∗(0, (1 − a)e−iβ cosβ,∞) =: S∗(a, β), with 0 ≤ a < 1, |β| ≤ π

2 ), (see Kacz-
marski [8]);
(xii) S∗(−1, (1 − a)e−iβ cosβ,∞) =: C(a, β),with 0 ≤ a < 1, |β| ≤ π

2 ), (see Aouf
[2]).
For f(z) ∈ Σ, Al-Oboudi and Al-Zkeri [1] defined the following operatorDnf(n ∈

N0 = N ∪ {0} = {0, 1, 2, 3, . . .}) which is called the Al-Oboudi operator:
D0f(z) = f(z),

D1f(z) = (1− µ)f(z) + µ
(z2f(z))′

z
, µ ≥ 0

= (1 + µ)f(z) + µzf ′(z) = Dµf(z),

D2f(z) = DµD
1f(z).

Dnf(z) = Dµ

(
Dn−1f(z)

)
, n ∈ N(1.14)

From (1.1) and (1.14) we get

(1.15) Dnf(z) = z−1 +
∞∑
k=0

[µ(k + 1) + 1]
n
akz

k (z ∈ E∗) .
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With the aid of Al-Oboudi operator, we introduce the class S∗(n, λ, γ,M) as follows:

Definition 2. Let the function f(z) defined by (1.1) be in the class S∗(n, λ, γ,M)
if and only if for fixed M,∣∣∣∣∣1− 1

γ

(
1 +

λz
[
z (Dnf(z))

′]′
+ (1 + λ)z (Dnf(z))

′

λz (Dnf(z))
′
+ (1 + λ)Dnf(z)

)
−M

∣∣∣∣∣ < M (z ∈ E)

where, M ≥ 1, γ ∈ C∗, λ ∈ C and n ∈ N0.

We note that S∗(0, λ, γ,M) ≡ S∗(λ, γ,M).
In this paper we will investigate some convolution properties of the class S∗(λ, γ,M).

Using these properties, we find the necessary and suffi cient condition, and contain-
ment property for the subclass S∗(n, λ, γ,M). The results obtained here extend
some known results in [3], [4] and [6].

2. Convolution properties

Unless otherwise mentioned, we assume throughout this article that γ ∈ C∗,M ≥
1, λ ∈ C and n ∈ N0.
Theorem 1. The function f(z) defined by (1.1) be in the class S∗(λ, γ,M) if and
only if

(2.1) z

[
f(z) ∗

{
(1 + λ)

(C − 1) z + 1
z(1− z)2 + λ

2(C − 1)z2 + 3z − 1
z(1− z)3

}]
6= 0 (z ∈ E)

where C = Cθ = e−iθ−m
γ(1+m) , θ ∈ [0, 2π).

Proof. First suppose f(z) defined by (1.1) is in the class S∗(λ, γ,M), we have

(2.2) −
λz
(
zf
′
(z)
)′

+ (1 + λ)zf
′
(z)

λzf ′(z) + (1 + λ)f(z)
≺ [γ(1 +m)−m] z + 1

1−mz (z ∈ E),

since the left-hand side of (2.2) is analytic in E, it follows λzf ′(z) + (1 + λ)f(z) 6=
0 for all z ∈ E∗, i.e. λz2f ′(z) + (1 + λ)zf(z) 6= 0, z ∈ E, so (2.1) holds for C = 0.
By using the principle of subordination, we can write (2.2) as

−
λz
(
zf
′
(z)
)′

+ (1 + λ)zf
′
(z)

λzf ′(z) + (1 + λ)f(z)
=

[γ(1 +m)−m]ω(z) + 1

1−mω(z)
(z ∈ E),

which is equivalent to

−
z
[
λ
(
zf
′
(z)
)

+ (1 + λ)f(z)
]′

λzf ′(z) + (1 + λ)f(z)
6= [γ(1 +m)−m]eiθ + 1

1−meiθ , ( z ∈ E, θ ∈ [0, 2π)).

or
(2.3)

−z
[
λ
(
zf
′
(z)
)

+ (1 + λ)f(z)
]′ (

1−meiθ
)
−
[
λzf

′
(z) + (1 + λ)f(z)

] [
[γ(1 +m)−m] eiθ + 1

]
6= 0.

Since

(2.4) f(z) = f(z) ∗ 1

z(1− z) and − zf
′(z) = f(z) ∗

[
1

z(1− z)2 −
2

(1− z)2

]
.
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Applying (2.4) it is not diffi cult to verify that

(2.5) λzf
′
(z) + (1 + λ)f(z) = f(z) ∗ (λ− 1)z + 1

z(1− z)2 .

Since z(f ∗ g)
′

= f ∗ zg′ , we can write

(2.6) z
[
λ
(
zf
′
(z)
)
+ (1 + λ)f(z)

]′
= f(z) ∗ 2(λ− 1)z

2 + 3z − 1
z(1− z)3 .

Using (2.5) and (2.6) in (2.3), we get

(2.7) z[f(z) ∗ {−(1 + λ)(1− z)[γ(1 +m)eiθ +
(
[γ(1 +m)−m]eiθ + 1

)
z]

+λ(1− z)γ(1 +m)eiθ − 2λ(1−meiθ)z2 + 2(1− z)γ(1 +m)eiθz}/z(1− z)3] 6= 0.

The left hand side of (2.7) may be written as

z[f(z) ∗ {−(1 + λ)(1− z)[γ(1 +m)eiθ +
(
1−meiθ − γ(1 +m)eiθ

)
z]

+λγ(1 +m)eiθ − 3λγ(1 +m)eiθz − 2λ
(
1−meiθ

)
z2 + 2λγ(1 +m)eiθz2]}/z(1− z)3 ].

Equation (2.7) can be rewritten in the form

z

f(z) ∗
(1 + λ)

(
e−iθ−m
γ(1+m)

− 1
)
z + 1

z(1− z)2 + λ
2( e
−iθ−m
γ(1+m)

− 1)z2 + 3z − 1
z(1− z)3


 6= 0

where z ∈ E, θ ∈ [0, 2π). Thus we have the first part of the proof.
(ii) Conversely, since (2.1) holds for C = 0, then λz2f

′
(z) + (1 + λ)zf(z) 6= 0 for

all z ∈ E, hence the function ϕ(z) = −
z
[
λzf
′
(z)+(1+λ)f(z)

]′
λzf ′ (z)+(1+λ)f(z)

is analytic in E (i.e. it
is regular at z0 = 0, with ϕ(0) = 1). Since (2.7) is equivalent to (2.1), we have

(2.8) −
z
[
λzf

′
(z) + (1 + λ)f(z)

]′
λzf ′(z) + (1 + λ)f(z)

6= [γ(1 +m)−m]eiθ + 1

1−meiθ (z ∈ E, θ ∈ [0, 2π)).

Assume that

ϕ(z) = −
z
[
λzf

′
(z) + (1 + λ)f(z)

]′
λzf ′(z) + (1 + λ)f(z)

, ψ(z) =
[γ(1 +m)−m]eiθ + 1

1−meiθ .

The relation (2.8) means that ϕ(E) ∩ ψ(∂E) = ∅. Thus, the simply connected
domain ϕ(E) is included in a connected component of C\ψ(∂E). From this, using
the fact that ϕ(0) = ψ(0) and the univalence of the function ψ, it follows that
ϕ(z) ≺ ψ(z), this implies that f(z) ∈ S∗(λ, γ,M). Thus the proof of Theorem 1 is
completed. �

Remark 2.

(i) Taking λ = 0 in Theorem 1, we obtain the result obtained by Aouf [4, Theorem
2.1].
(ii) Taking λ = −1 in Theorem 1, we obtain the result obtained by Aouf [4,

Theorem 2.3].
(iii) Taking λ = 0 and m = 1 in Theorem 1, we obtain the result obtained

by Bulboacă et al. [6, Theorem 1, with A = 1 and B = −1] and Aouf et al. [3,
Theorem 4, with λ = 0, A = 1 and B = −1].
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(iv) Taking λ = 0, γ = m = 1 and eiθ = x in Theorem 1, we obtain the result
obtained by Ponnusamy [12, Theorem 4, with λ = 0, A = 1 and B = −1].
(iiv) Taking λ = 0, m = 1, γ = (1−α)e−iµ cosµ (µ ∈ R, |µ| ≤ π

2 , 0 ≤ α < 1) and
eiθ = x in Theorem 1, we obtain the result obtained by Ravichandran et al. [13,
Theorem 1.2 with p = 1].

Theorem 2. A necessary and suffi cient condition for the function f(z) defined by
(1.1) to be in the class S∗(n, λ, γ,M) is that

(2.9) 1 +
∞∑
k=0

[µ(k + 1) + 1]
n

[λ(k + 1) + 1]akz
k+1 6= 0

and

(2.10) 1 +

∞∑
k=0

[µ(k + 1) + 1]n
[
(k+1)[e−iθ−m]+γ(1+m)

γ(1+m)

]
[(1 + λ+ λk]akz

k+1 6= 0

for all θ ∈ [0, 2π) and z ∈ E.

Proof. From Theorem 1, we have f(z) ∈S∗(n, λ, γ,M) if and only if
(2.11)

z

[
Dnf(z) ∗

{
(1 + λ)

(C − 1) z + 1

z(1− z)2 + λ
2(C − 1)z2 + 3z − 1

z(1− z)3

}]
6= 0 (z ∈ E)

for all C = Cθ = e−iθ−m
γ(1+m) , (0 ≤ θ < 2π) , and also for C = 0. From (1.15) and the

equations

(2.12)
1

z (1− z) = z−1 +

∞∑
k=0

zk,
1

z(1− z)2 = z−1 +

∞∑
k=0

(k + 2) zk,

it is not diffi cult to show that (2.10) holds for C = 0 iff (2.9) satisfied. The left
hand side of (2.11) may be written as
(2.13)

z

[
Dnf(z) ∗

{
(1 + λ)

[
1− C
z (1− z) +

C

z(1− z)2

]
+ λ

[
2C

z(1− z)3 −
4C − 1

z(1− z)2 +
2(C − 1)

z (1− z)

]}]
.

Using (1.15), (2.12) and the formula

1

z(1− z)3 = z−1 +
∞∑
k=0

(k + 2) (k + 3)

2
zk

Equation (2.13) can be written as

1 +
∞∑
k=0

[µ(k + 1) + 1]
n
[
(k+1)[e−iθ−m]+γ(1+m)

γ(1+m)

]
[1 + λ+ λk]akz

k+1.

Thus, the proof of Theorem 2 is completed. �

Theorem 3. If the function f(z) given by (1.1) and satisfy the inequality

(2.14)
∞∑
k=0

(k + 1 + |γ|)[λ(k + 1) + 1][µ(k + 1) + 1]n |ak| ≤ |γ|

then f(z) ∈ S∗(n, λ, γ,M).
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Proof. Since ∣∣∣ (k+1)[e−iθ−m]+γ(1+m)γ(1+m)

∣∣∣ ≤ (k+1+|γ|)
|γ|

then ∣∣∣∣∣1 +
∞∑
k=0

[µ(k + 1) + 1]n
[
(k+1)[e−iθ−m]+γ(1+m)

γ(1+m)

]
[λ(k + 1) + 1]akz

k+1

∣∣∣∣∣
≥ 1−

∞∑
k=0

[µ(k + 1) + 1]n
∣∣∣ (k+1)[e−iθ−m]+γ(1+m)γ(1+m)

∣∣∣ [λ(k + 1) + 1] |ak| |z|k+1
≥ 1−

∞∑
k=0

(k+1+|γ|)
|γ| [λ(k + 1) + 1] [µ(k + 1) + 1]n |ak| > 0 (z ∈ E) .

Which implies that inequality (2.14). Thus this completes the proof of Theorem 3. �

Theorem 4. For λ ∈ C, we have S∗(n+ 1, λ, γ,M) ⊂ S∗(n, λ, γ,M).

Proof. If f(z) ∈ S∗(n+ 1, λ, γ,M), then Theorem 2 gives

1 +
∞∑
k=0

[µ(k + 1) + 1]
n+1

[λ(k + 1) + 1]akz
k+1 6= 0

and

(2.15) 1 +

∞∑
k=0

[µ(k + 1) + 1]n+1
[
(k+1)[e−iθ−m]+γ(1+m)

γ(1+m)

]
[λ(k + 1) + 1] akz

k+1 6= 0

we can write (2.15) as
(2.16)[
1 +

∞∑
k=0

[µ(k + 1) + 1] zk+1
]
∗
[
1 +

∞∑
k=0

(k+1)[e−iθ−m]+γ(1+m)
γ(1+m)

[µ(k + 1) + 1]n [λ(k + 1) + 1] akz
k+1

]
6= 0.

But

(2.17)

[
1 +

∞∑
k=0

[µ(k + 1) + 1] zk+1
]
∗
[
1 +

∞∑
k=0

1

[µ(k + 1) + 1]
zk+1

]
= 1 +

∞∑
k=0

zk+1.

By using the property, if f 6= 0 and g ∗h 6= 0, then f ∗ (g ∗h) 6= 0, (2.16) can be written as

(2.18) 1 +

∞∑
k=0

[µ(k + 1) + 1]n
[
(k+1)[e−iθ−m]+γ(1+m)

γ(1+m)

]
[λ(k + 1) + 1] akz

k+1 6= 0.

In view of Theorem 2, we conclude that f(z) ∈ S∗(n, λ, γ,M). �
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ON A GENERALIZED DEGENERATE λ-q-DAEHEE NUMBERS

AND POLYNOMIALS

JIN-WOO PARK

Abstract. In [4], Daehee numbers and polynomials are introduced by T.
Kim et al. In this paper, we consider the generalized λ-q-Daehee polynomials

by using the bosonic p-adic q-integral and give some relations between the

generalized λ-q-Daehee polynomials and special polynomials.

1. Introduction

Let d be fixed positive integer and let p be a fixed odd prime number. Throughout
this paper, Zp, Qp, and Cp will respectively denote the ring of p-adic rational
integers, the field of p-adic rational numbers and the completions of algebraic closure
of Qp. The p-adic norm is defined |p|p = 1

p .

We set

X = Xd = lim←−
N

Z�dpNZ, X∗ =
⋃

0<a<dp
(a,p)=1

(a+ dpZp) ,

a+ dpNZp =
{
x ∈ X|x ≡ a (mod dpN )

}
,

where a ∈ Z and 0 ≤ a < dpn.
When one talks of q-extension, q is various considered as an indeterminate, a

complex q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that

|q| < 1. If q ∈ Cp, then we assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q)
for each x ∈ Zp.

Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈
UD(Zp), the p-adic bosonic integral on Zp is defined by Kim to be

Iq(f) =

∫
Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx, (see [8, 9, 10]). (1.1)

If we put fn(x) = f(x + n), then, by (1.1), we can derive the following very
useful integral identity;

qnIq(fn)− Iq(f) = (q − 1)
n−1∑
j=0

qjf(j) +
q − 1

log q

n−1∑
j=0

f
′
(j)qj , (1.2)

where f ′(0) = df(x)
dx

∣∣∣
x=0

.

2010 Mathematics Subject Classification. 11B68, 11S40, 11S80.
Key words and phrases. the generalized q-Daehee numbers attached to χ, the generalized q-

Bernoulli numbers attached to χ, the p-adic q-integral on Zp, λ-q-Daehee polynomials.
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2 JIN-WOO PARK

As is well known, the generalized q-Bernoulli numbers Bn,χ,q attached to χ are
defined by the generating function to be

q − 1 + q−1
log q t

qdedt − 1

d−1∑
a=0

χ(a)qaeat =
∞∑
n=0

Bn,χ,q
tn

n!
, (see [3, 7, 11, 12, 17, 18]).

The Stirling numbers of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑
l=0

S1(n, l)xl (x ≥ 0),

and the Stirling numbers of the second kind is defined by the generating function
to be

(et − 1)n = n!
∞∑
l=n

S2(l, n)
tl

l!

(see [18, 16]). Note that

(log(x+ 1))
n

= n!
∞∑
l=n

S1(l, n)
xl

l!
, (n ≥ 0),

(see [18, 16]).
Recently, q-Daehee numbers and polynomials are introduced by Kim et. al. in

[8], and have been studied by many mathematicians, and possess many interesting
properties (see [1, 4-6, 13-15]). In this paper, we consider the generalized λ-q-
Daehee polynomials and numbers by using the bosonic p-adic q-integral, and give
some relations between the generalized λ-q-Daehee numbers and polynomials and
special numbers and polynomials.

2. The generalized degenerate λ-q-Daehee polynomials attached to χ

From now on, we assume that t ∈ C with |t|p < p−
1

p−1 and u, λ ∈ Zp. Let χ be
the Dirichlet character with conductor d ∈ N = {1, 2, . . .} with d ≡ 1 (mod 2).

The generalized degenerate λ-q-Daehee polynomials Dn,χ,λ,q(x) attached to χ are
defined by the generating function to be

q − 1 + q−1
log qλ log

(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λj+x

=
∞∑
n=0

Dn,χ,λ,q(x|u)
tn

n!
,

(2.1)

where t ∈ Cp and |ut|p < p−
1

p−1 . In the special case x = 0, Dn,χ,λ,q(0|u) =
Dn,χ,λ,q(u) are called generalized degenerate λ-q-Daehee numbers attached to χ.

By replacing t by 1
u

(
eu(e

t−1) − 1
)

in (2.1), we have

∞∑
n=0

Dn,χ,λ,q(u)

(
1
u

(
eu(e

t−1) − 1
))n

n!
=
q − 1 + q−1

log qλt

qdeλdt − 1

d−1∑
j=0

χ(j)qjeλjt

=
∞∑
m=0

λmB(r)
m,χ,q

tm

m!
,

(2.2)
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GENERALIZED DEGENERATE λ-q-DAEHEE POLYNOMIALS 3

and

∞∑
n=0

Dn,χ,λ,q(u)

(
1
u

(
eu(e

t−1) − 1
))n

n!

=
∞∑
n=0

Dn,χ,λ,q(u)

n!
n!
∞∑
m=n

S2(m,n)
1

m!

(
1

u

(
eu(e

t−1) − 1
))m

=
∞∑
n=0

(
k∑

m=0

m∑
k=0

m∑
n=0

Dk,χ,λ,q(u)un−l−kS2(m, k)S2(n,m)

)
tn

n!
.

(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For m ≥ 0, we have

λnBn,χ,q =
k∑

m=0

m∑
k=0

m∑
n=0

Dk,χ,λ,q(u)un−l−kS2(m, k)S2(n,m).

If taking f(x) = χ(x)
(
1 + 1

u log (1 + ut)
)x

in (1.2), we can have

qd
∫
X

χ(x)

(
1 +

1

u
log (1 + ut)

)λ(x+d)
dµq(x) +

∫
X

χ(x)

(
1 +

1

u
log (1 + ut)

)λx
dµq(x)

=

(
q − 1 +

q − 1

log q
λ log

(
1 +

1

u
log (1 + ut)

)) d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λj
.

(2.4)

By (2.4), we can easily have∫
X

χ(x)

(
1 +

1

u
log (1 + ut)

)λx
dµq(x)

=
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λj

=
∞∑
n=0

Dn,χ,λ,q(u)
tn

n!
,

(2.5)

and ∫
X

χ(x)

(
1 +

1

u
log (1 + ut)

)λx
dµq(x)

=
∞∑
n=0

(
n∑

m=0

un−mS1(n,m)

∫
X

χ(x)(λx)mdµq(x)

)
tn

n!
.

(2.6)

Therefore, by (2.5) and (2.6), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

Dn,χ,λ,q(u) =
n∑

m=0

un−mS1(n,m)

∫
X

χ(x)(λx)mdµq(x).
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By (2.1), we note that

∞∑
n=0

Dn,χ,λ,q(x|u)
tn

n!

=
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λj+x

=

( ∞∑
m=0

Dm,χ,λ,q(u)
tm

m!

)( ∞∑
n=0

n∑
l=0

(
x

l

)
un−ll!S1(n, l)

tn

n!

)

=
∞∑
n=0

n∑
m=0

n−m∑
l=0

(
x

l

)(
n

m

)
un−m−ll!S1(n−m, l)Dm,χ,λ,q(u)

tn

n!
.

(2.7)

So, by (2.7), we can have

Dn,χ,λ,q(x|u) =
n∑

m=0

n−m∑
l=0

(
x

l

)(
n

m

)
un−m−ll!S1(n−m, l)Dm,χ,λ,q(u). (2.8)

For r ∈ N, let us consider the generalized degenerate λ-q-Daehee numbers of
order r attached to χ as follows:q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λjr

=

(
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

)r

×
d−1∑

a1,...,ar=0

χ(a1) · · ·χ(ar)q
a1+···+ar

(
1 +

1

u
log (1 + ut)

)λ(a1+···+ar)
=
∞∑
n=0

D
(r)
n,χ,λ,q(u)

tn

n!
.

(2.9)

By (2.5), we can see that

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)

(
1 +

1

u
log (1 + ut)

)λ(x1+···+xr)

dµq(x1) · · · dµq(xr)

=

(
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

)r

×
d−1∑

a1,...,ar=0

χ(a1) · · ·χ(ar)q
a1+···+ar

(
1 +

1

u
log (1 + ut)

)λ(a1+···+ar)
.

(2.10)
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Thus, by (2.9) and (2.10), we get

D
(r)
n,χ,λ,q(u)

=
n∑

m=0

un−mS1(n,m)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(λx1 + · · ·+ λxr)mdµq(x1) · · · dµq(xr)

=
n∑

m=0

un−mS1(n,m)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)
m∑
l=0

S1(l,m)λl(x1 + · · ·+ xr)
ldµq(x1) · · · dµq(xr)

=
n∑

m=0

m∑
l=0

un−mλlS1(n,m)S1(l,m)B
(r)
l,χ,q,

(2.11)

where B
(r)
l,χ,q are the l-th generalized q-Bernoulli numbers of order r attached to χ,

given by

(
d−1∑
a=0

1− q + 1−q
log q t

1− qdetd
χ(a)qaeat

)r
=

∞∑
n=0

B(r)
n,χ,q

tn

n!
(see [11]).

Therefore, by (2.11), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have

D
(r)
n,χ,λ,q(u) =

n∑
m=0

m∑
l=0

un−mλlS1(n,m)S1(l,m)B
(r)
l,χ,q.

By replacing t by 1
u

(
eu(e

t−1) − 1
)

in (2.9), we can get

∞∑
n=0

D
(r)
n,χ,λ,q(u)

(
1
u

(
eu(e

t−1) − 1
))n

n!

=
d−1∑

a1,...,ar=0

(
q − 1 + q−1

log qλt

qdeλdt − 1

)r
χ(a1) · · ·χ(ar)q

a1+···+areλ(a1+···+ar)t

=
∞∑
m=0

λmB(r)
m,χ,q

tm

m!
,

(2.12)

and

∞∑
n=0

D
(r)
n,χ,λ,q(u)

(
1
u

(
eu(e

t−1) − 1
))n

n!

=
∞∑
n=0

D
(r)
n,χ,λ,q(u)

n!
u−nn!

∞∑
m=n

S2(m,n)
1

m!

(
u(et − 1)

)m
=
∞∑
n=0

(
n∑

m=0

m∑
s=0

D
(r)
n,χ,λ,q(u)um−sS2(m, s)S2(n,m)

)
tn

n!
.

(2.13)

Therefore, by (2.12) and (2.13), we obtain the following theorem.
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Theorem 2.4. For n ≥ 0, we have

λmB(r)
m,χ,q =

n∑
m=0

m∑
s=0

D
(r)
n,χ,λ,q(u)um−sS2(m, s)S2(n,m).

From (2.9), we can consider the generalized λ-q-Daehee polynomials of order r
attached to χ as follows:q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

d−1∑
j=0

χ(j)qj
(

1 +
1

u
log (1 + ut)

)λjr

×
(

1 +
1

u
log (1 + ut)

)x
=

(
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

)r

×
d−1∑

a1,...,ar=0

χ(a1) · · ·χ(ar)q
a1+···+ar

(
1 +

1

u
log (1 + ut)

)λ(a1+···+ar)+x
=
∞∑
n=0

D
(r)
n,χ,λ,q(x|u)

tn

n!

(2.14)

By (2.14),∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)

(
1 +

1

u
log (1 + ut)

)λx1+···+λxr+x

dµq(x1) · · · dµq(xr)

=
d−1∑

a1,...,ar=0

(
q − 1 + q−1

log qλ log
(
1 + 1

u log (1 + ut)
)

qd
(
1 + 1

u log (1 + ut)
)λd − 1

)r

× χ(a1) · · ·χ(ar)q
a1+···+ar

(
1 +

1

u
log (1 + ut)

)λ(a1+···+ar)+x
,

(2.15)

and so, from (2.14) and (2.15)

D
(r)
n,χ,λ,q(x|u)

=
n∑

m=0

un−mS1(n,m)

∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)(λx1 + · · ·+ λxr + x)mdµq(x1) · · · dµq(xr)

=

n∑
m=0

un−mS1(n,m)

×
∫
X

· · ·
∫
X

χ(x1) · · ·χ(xr)
m∑
l=0

S1(l,m)λl(λx1 + · · ·+ λxr + x)ldµq(x1) · · · dµq(xr)

=
n∑

m=0

m∑
l=0

un−mλlS1(n,m)S1(l,m)B
(r)
l,χ,q

(x
λ

)
.

(2.16)

Therefore, by (2.16), we obtain the following theorem.
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Theorem 2.5. For n ≥ 0, we have

D
(r)
n,χ,λ,q(x|u) =

n∑
m=0

m∑
l=0

un−mλlS1(n,m)S1(l,m)B
(r)
l,χ,q

(x
λ

)
.

In (2.14), by replacing t by 1
u

(
eu(e

t−1) − 1
)

, we can get

∞∑
n=0

D
(r)
n,χ,λ,q(x|u)

(
1
u

(
eu(e

t−1) − 1
))n

n!

=
d−1∑

a1,...,ar=0

(
q − 1 + q−1

log qλt

qdeλdt − 1

)r
χ(a1) · · ·χ(ar)q

a1+···+areλ(a1+···+ar)t+xt

=
∞∑
m=0

λmB(r)
m,χ,q

(x
λ

) tm
m!
,

(2.17)

and

∞∑
n=0

D
(r)
n,χ,λ,q(x|u)

(
1
u

(
eu(e

t−1) − 1
))n

n!

=

∞∑
n=0

D
(r)
n,χ,λ,q(x|u)

n!
u−nn!

∞∑
m=n

S2(m,n)
1

m!

(
u(et − 1)

)m
=
∞∑
n=0

(
n∑

m=0

m∑
s=0

D
(r)
n,χ,λ,q(x|u)um−sS2(m, s)S2(n,m)

)
tn

n!
.

(2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

λmB(r)
m,χ,q

(x
λ

)
=

n∑
m=0

m∑
s=0

D
(r)
n,χ,λ,q(x|u)um−sS2(m, s)S2(n,m).
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On the m−extension of Fibonacci p−functions with period k
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Abstract

Let fp,m be a real valued function on R, p be nonnegative integer, k be a positive integer and m be a

nonnegative real number. For all x ∈ R, fp,m(x + (p + 1)k) = mfp,m(x + pk) + fp,m(x), we call this

function m−extension of Fibonacci p−function with period k. In this paper, we present basic properties of

m−extension of Fibonacci p−functions with period k. Specifying p and m, we obtain Fibonacci (p = 1, m =

1) and Pell (p = 1, m = 2) functions. Furthermore, we define m−extension of odd Fibonacci p−functions

with period k. Moreover, we analyze some properties by using notion of f−even and f−odd functions with

period k. We also demonstrate the products and quotients of these functions and provide new results in the

development of Fibonacci functions with period k.

Keywords: m−extension of Fibonacci p−function with period k, m−extension of odd Fibonacci

p−function with period k, f−even function with period k, f−odd functions with period k.

2010 MSC: 11B37, 11B39, 54C30.

1. Introduction

Fibonacci numbers is one of the most popular and fascinating linear sequences in mathematics and related

fields. The classical Fibonacci sequence is defined by Fn+2 = Fn+1 + Fn, for n ∈ N, with initial conditions

F0 = 0, F1 = 1. Up until now, many authors have studied the sums, representations, properties, relations

with another mathematical topics, applications and generalizations of the Fibonacci sequence extensively

(see [1–15]). Falcon introduced kth Fibonacci numbers {Fk,n}∞n=0 that arises in the study of the recursive

application of two geometrical transformations used in the well known four triangle longest edge (4TLE)

partition[2]. In [7], Yazlik and Taskara defined generalized k−Horadam sequence and proved the properties

of this sequence by means of determinant. Stakhov and Rozin presented, one of the important mathematical

discoveries of the modern Golden Section and Fibonacci numbers theory, Fibonacci p−numbers and some

properties of this sequence, Fp(n) = Fp(n − 1) + Fp(n − p − 1), in [10]. Later on, the authors defined the

∗Corresponding Author

Email addresses: yyazlik@nevsehir.edu.tr (Yasin YAZLIK), cahitkome@gmail.com (Cahit KÖME)
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m−extension of the Fibonacci p−numbers as

Fp,m(n+ p+ 1) = mFp,m(n+ p) + Fp,m(n) (1)

with initial conditions Fp,m(0) = 0, Fp,m(1) = 1, Fp,m(2) = m,Fp,m(3) = m2, . . . , Fp,m(p + 1) = mp, where

p, n ∈ N and m is positive real number. For different values of p and m in equation (1), it can be reduced

into different numerical sequences. For example, if (p,m) = (1, 1), the Fibonacci sequence is obtained as

Fn+2 = Fn+1 + Fn. If (p,m) = (1, 2), the Pell sequence is obtained as Pn+2 = 2Pn+1 + Pn. If p = 1 and

m = k, the k-Fibonacci sequence is obtained as Fk,n+2 = kFk,n+1 +Fk,n [9]. Recently, one of the important

application of these integer sequences is continuous functions. Han et al.,[16], considered Fibonacci functions

on the real numbers R, i.e., functions f : R→ R such that for all x ∈ R, f(x+2) = f(x+1)+f(x). Also they

presented some properties of these functions by using the concept of f−even and f−odd functions. Moreover,

they showed that if f is Fibonacci function then lim
x→∞

f(x+1)
f(x) = 1+

√
5

2 . Afterwards, Sroysang extended

Fibonacci functions to Fibonacci functions with period k as f(x+2k) = f(x+k)+f(x) for all x ∈ R in [17]. In

[18], Rabago defined the second order linear recurrent function with period k, w(x+2k) = rw(x+k)+sw(x),

where r, s are nonnegative real numbers, which is generalization of the Fibonacci function with period k.

Up until now, authors investigated some properties of the continuous functions of the second order linear

recursive integer sequences. In this paper, we extend these properties to the continuous function in terms

of m−extension of Fibonacci p−numbers which is defined by the (p + 1)th order linear recursive relation.

We present some properties of the m−extension of Fibonacci p−functions with period k using the concept

of f−even and f−odd functions with period k. We also define m−extension of odd Fibonacci p−functions

with period k, investigate the product and the limit of m−extension of Fibonacci p−functions with period

k.

2. m−extension of Fibonacci p−functions with period k

In this section we definem−extension of Fibonacci p−functions with period k and present some properties

of these functions.

Definition 2.1. Let k be a positive integer, p be nonnegative integer and m be a nonnegative real number.

A function fp,m : R → R is called an m−extension of Fibonacci p−function with period k if it satisfies the

equation

fp,m(x+ (p+ 1)k) = mfp,m(x+ pk) + fp,m(x), ∀x ∈ R. (2)

Taking (p,m) = (1, 1) and (p,m) = (1, 2) in (2), we obtain Fibonacci and Pell function with period k,

respectively (see [17, 18]).

2
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Example 2.1. Let α be the positive real number that satisfies the equation αp+1 = mαp+1, k be a positive

integer, p be a nonnegative integer. Then, fp,m(x) = α
x
k is an m−extension of Fibonacci p−function with

period k.

The following are special cases of the previous example:

1. If (p,m) = (1, 1) then the function f1,1(x) = φ
x
k , where φ = 1+

√
5

2 is known as golden ratio, is an

example of m−extension of Fibonacci p−function with period k in [17].

2. If (p,m) = (1, 2) then the function f1,2(x) = σ
x
k , where σ = 1 +

√
2 is known as silver ratio, is an

example of m−extension of Pell p−function with period k in [18].

Proposition 2.1. Let p be a nonnegative integer, k be positive integer and fp,m : R→ R be an m−extension

of Fibonacci p−function with period k. Assume that fp,m is s times differentiable. Then {f ′p,m, f ′′p,m, . . . , f
(s)
p,m}

are also m−extension of odd Fibonacci p−functions with period k.

Proposition 2.2. Let p be a nonnegative integer, k be positive integer and fp,m : R→ R be an m−extension

of Fibonacci p−function with period k. Define gt(x) = fp,m(x+ t), for all x ∈ R, where t ∈ R. Then, gt(x)

is also an m−extension of Fibonacci p−function with period k.

Proof. Let x ∈ R. Then,

gt(x+ (p+ 1)k) = fp,m(x+ (p+ 1)k + t)

= mfp,m(x+ pk + t) + fp,m(x+ t)

= mgt(x+ pk) + gt(x)

is an m−extension of Fibonacci p−function with period k.

Example 2.2. Let p be a nonnegative integer, k be positive integer and t ∈ R. Define gt : R→ R by

gt(x) = α
x+t
k , ∀x ∈ R, (3)

then gt(x) is an m−extension of Fibonacci p−function with period k.

As special cases of the previous example, we have

1. If (p,m) = (1, 1), then the function gt(x) = f1,1(x + t) = φ
x+t
k is an example of m−extension of

Fibonacci p−function with period k in [17].

2. If (p,m) = (1, 2), then the function gt(x) = f1,2(x + t) = σ
x
k is an example of m−extension of Pell

p−function with period k in [18].

3
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Theorem 2.1. Let fp,m be an m−extension of Fibonacci p−function with period k and Fp,m be an m−extension

of Fibonacci p−sequence with the initial conditions Fp,m(0) = 0, Fp,m(1) = 1, Fp,m(2) = m, . . . , Fp,m(p) =

mp−1. Then, for n ≥ 2p and ∀x ∈ R,

fp,m(x+ nk) = Fp,m(n− p+ 1)f(x+ pk) +

p−1∑
i=0

Fp,m(n− p− i)f(x+ ik). (4)

Proof. We prove the theorem by induction on n. For n = 2p, we get

fp,m(x+ 2pk) = mfp,m(x+ (2p− 1)k) + fp,m(x+ (p− 1)k)

= m
[
mfp,m(x+ (2p− 2)k) + fp,m(x+ (p− 2)k)

]
+fp,m(x+ (p− 1)k)

= m2fp,m(x+ (2p− 2)k) + fp,m(x+ (p− 1)k)

+mfp,m(x+ (p− 2)k)

= m3fp,m(x+ (2p− 3)k) + fp,m(x+ (p− 1)k)

+mfp,m(x+ (p− 2)k) +m2fp,m(x+ (p− 3)k).

Continuing this process (p− 3) times, we have

fp,m(x+ 2pk) = mpfp,m(x+ pk) + fp,m(x+ (p− 1)k)

+mfp,m(x+ (p− 2)k) + · · ·+mp−1fp,m(x).

By considering the initial conditions of the m−extension of Fibonacci p−sequence, we obtain

fp,m(x+ 2pk) = Fp,m(p+ 1)fp,m(x+ pk) + Fp,m(1)fp,m(x+ (p− 1)k)

+Fp,m(2)fp,m(x+ (p− 2)k) + · · ·+ Fp,m(p− 1)fp,m(x+ k)

+Fp,m(p)fp,m(x).

4
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Assume that equation (4) is true for n ≥ 2p+ 1. Then we write

fp,m(x+ (n+ 1)k) = mfp,m(x+ nk) + fp,m(x+ (n− p)k)

= m
[
Fp,m(n− p+ 1)fp,m(x+ pk)

+Fp,m(n− 2p+ 1)fp,m(x+ (p− 1)k)

+ · · ·+ Fp,m(n− p)fp,m(x)
]

+Fp,m(n− 2p+ 1)fp,m(x+ pk)

+Fp,m(n− 3p+ 1)fp,m(x+ (p− 1)k)

+ · · ·+ Fp,m(n− 2p)fp,m(x)

= (mFp,m(n− p+ 1) + Fp,m(n− 2p+ 1))fp,m(x+ pk)

+(mFp,m(n− 2p+ 1) + Fp,m(n− 3p+ 1))fp,m(x+ (p− 1)k)

+ · · ·+ (mFp,m(n− p) + Fp,m(n− 2p))fp,m(x)

= Fp,m(n− p+ 2)f(x+ pk) +

p−1∑
i=0

Fp,m(n+ 1− p− i)f(x+ ik),

which completes the proof.

Corollary 2.1. Let fp,m be an m−extension of Fibonacci p−function with period k and Fp,m be the sequence

of m−extension of Fibonacci p−numbers. Then, for any x ∈ R and n ≥ 2p,

αn = Fp,m(n− p+ 1)αp +

p−1∑
i=0

Fp,m(n− p− i)αi. (5)

Proof. From example (2.1), we say that fp,m(x) = α
x
k , k is a positive integer, is an m−extension of Fibonacci

p−function with period k, so it satisfies the Equation(2), for all x ∈ R, i.e.

α
x+nk

k = fp,m(x+ nk)

= Fp,m(n− p+ 1)f(x+ pk) +

p−1∑
i=0

Fp,m(n− p− i)f(x+ ik)

= α
x
k+pFp,m(n− p+ 1) + α

x
kFp,m(n− p) + α

x
k+1Fp,m(n− p− 1)

+ α
x
k+2Fp,m(n− p− 2) + · · ·+ α

x
k+p−1Fp,m(n− 2p+ 1).

Upon simplifying, we get

αn = Fp,m(n− p+ 1)αp +

p−1∑
i=0

Fp,m(n− p− i)αi, (6)

which is desired.

5
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3. m−extension of odd Fibonacci p−functions with period k

In this section, we present the m−extension of odd Fibonacci p−function with period k and analyze

some properties of these functions.

Definition 3.1. Let p be a nonnegative integer, m be a nonnegative real number and k be a positive integer.

A function fp,m : R → R is said to be m−extension of odd Fibonacci p−function with period k, if fp,m

satisfies

fp,m(x+ (p+ 1)k) = −mfp,m(x+ pk) + fp,m(x), ∀x ∈ R. (7)

Example 3.1. Let α be the positive real number that satisfies the equation αp+1 = mαp + 1, k be a

positive integer, p be a nonnegative integer. Therefore fp,m(x) = α
x
k , for all x ∈ R, is an m−extension of

odd Fibonacci p−function with period k.

Proposition 3.1. Let p be a nonnegative integer, k be positive integer and fp,m : R→ R be an m−extension

of odd Fibonacci p−function with period k. Assume that fp,m is s times differentiable. Then {f ′p,m, f ′′p,m, . . . , f
(s)
p,m}

are also m−extension of odd Fibonacci p−functions with period k.

Proposition 3.2. Let p be a nonnegative integer, k be positive integer and fp,m : R→ R be an m−extension

of odd Fibonacci p−function with period k. Define gt(x) = fp,m(x + t), for all x ∈ R, where t ∈ R. Then,

gt is also an m−extension of odd Fibonacci p−function with period k.

Proof. Let x ∈ R. Then,

gt(x+ (p+ 1)k) = fp,m(x+ (p+ 1)k + t)

= −mfp,m(x+ pk + t) + fp,m(x+ t)

= −mgt(x+ pk) + gt(x).

Therefore, gt(x) is an m−extension of odd Fibonacci p−function with period k.

4. Products of m−extension of Fibonacci p−functions with period k

In this section, we present the product of m−extension of Fibonacci p−functions with period k by using

the concept of f−even and f−odd functions with period k which are defined in [16].

Definition 4.1 ([16]). Let k ∈ N and ϕ : R → R be such that if ϕh ≡ 0 where h : R → R is continuous,

then h ≡ 0. The map ϕ is said to be an f−even and f−odd function with period k if ϕ(x+ k) = ϕ(x) and

if ϕ(x+ k) = −ϕ(x), respectively, for any x ∈ R.

6
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Theorem 4.1. Let k be a positive integer, ϕ : R→ R be an f−even function with period k and fp,m : R→ R

be a continuous function.Then, fp,m is an m−extension of Fibonacci p−function with period k if and only

if (ϕfp,m) is an m−extension of Fibonacci p−function with period k.

Proof. First, we assume that fp,m is an m−extension of Fibonacci p−function with period k. For any x ∈ R,

(ϕfp,m)(x+ (p+ 1)k) = ϕ(x+ (p+ 1)k)fp,m(x+ (p+ 1)k)

= ϕ(x+ (p+ 1)k)
[
mfp,m(x+ pk) + fp,m(x)

]
= mϕ(x+ pk)fp,m(x+ pk) + ϕ(x)fp,m(x)

= m(ϕfp,m)(x+ pk) + (ϕfp,m)(x).

Therefore, (ϕfp,m) is an m−extension of Fibonacci p−function with period k. Next, assume that (ϕfp,m)

is an m−extension of Fibonacci p−function with period k, then

ϕ(x+ k)fp,m(x+ (p+ 1)k) = ϕ(x+ (p+ 1)k)fp,m(x+ (p+ 1)k)

= (ϕfp,m)(x+ (p+ 1)k)

= m(ϕfp,m)(x+ pk) + (ϕfp,m)(x)

= mϕ(x+ pk)fp,m(x+ pk) + ϕ(x)fp,m(x)

= ϕ(x+ k)
[
mfp,m(x+ pk) + fp,m(x)

]
.

Thus, fp,m is an m−extension of Fibonacci p−function with period k. This completes the proof.

Example 4.1. Let k be a positive integer and define γ(x) = x−bxc which is an example of f−even function.

Moreover, recall that the function fp,m(x) = α
x
k , where α is positive real root of the characteristic equation

αp+1 −mαp − 1 = 0, is an m−extension of Fibonacci p−function with period k. By using Theorem 4.1, for

all x ∈ R

(γfp,m)(x) = (x− bxc)α x
k (8)

is an example of an m−extension of Fibonacci p−function with period k.

Theorem 4.2. Let k be a positive integer, ϕ : R→ R be an f−even function with period k and fp,m : R→ R

be a continuous function. Then, fp,m is an m−extension of odd Fibonacci p−function with period k if and

only if (ϕfp,m) is an m−extension of odd Fibonacci p−function with period k.

Proof. First, assume that fp,m is an m−extension of odd Fibonacci p−function with period k, for any x ∈ R

(ϕfp,m)(x+ (p+ 1)k) = ϕ(x+ (p+ 1)k)fp,m(x+ (p+ 1)k)

= ϕ(x+ (p+ 1)k) [−mfp,m(x+ pk) + fp,m(x)]

= −mϕ(x+ pk)fp,m(x+ pk) + ϕ(x)fp,m(x)

= −m(ϕfp,m)(x+ pk) + (ϕfp,m)(x).

7
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Therefore, (ϕfp,m) is an m−extension of odd Fibonacci p−function with period k. Next, assume that

(ϕfp,m) is an m−extension of odd Fibonacci p−function with period k, for any x ∈ R, then

ϕ(x+ k)fp,m(x+ (p+ 1)k) = ϕ(x+ (p+ 1)k)fp,m(x+ (p+ 1)k)

= (ϕfp,m)(x+ (p+ 1)k)

= −m(ϕfp,m)(x+ pk) + (ϕfp,m)(x)

= −mϕ(x+ pk)fp,m(x+ pk) + ϕ(x)fp,m(x)

= ϕ(x+ k) [−mfp,m(x+ pk) + fp,m(x)] .

Thus, fp,m is an m−extension of odd Fibonacci p−function with period k. This completes the proof.

Example 4.2. Let k be a positive integer and define γ(x) = x−bxc which is an example of f−even function

[16]. Moreover, recall that the function fp,m(x) = α
x
k , where α is positive real root of the characteristic

equation αp+1 + mαp − 1 = 0, is an m−extension of odd Fibonacci p−function with period k. By using

Theorem (4.2), for all x ∈ R

(γfp,m)(x) = (x− bxc)α x
k (9)

is an example of an m−extension of odd Fibonacci p−function with period k.

Theorem 4.3. Let k be a positive integer, fp,m1
and fp,m2

be two m−extension of Fibonacci p−functions

with period k satisfying

fp,m1(x+ (p+ 1)k) = m1fp,m1(x+ pk) + fp,m1(x), ∀x ∈ R

fp,m2
(x+ (p+ 1)k) = m2fp,m2

(x+ pk) + fp,m2
(x), ∀x ∈ R,

where m1,m2 are nonnegative real numbers. Suppose that the following conditions are satisfied:

(C1) fp,m1
is an f−even function,

(C2) fp,m2
is an f−odd function,

(C3) if p is odd then m1 = m2,

(C4) if p is even then m1 = −m2,

(C5) µ = m1.m2.

Then (fp,m1fp,m2)(x) is also an m−extension of Fibonacci p−function with period k.

Proof. Assume that fp,m1 and fp,m2 be two m−extension of Fibonacci p−functions with period k and the

8
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conditions (C1),(C2),(C3),(C4) and (C5) are satisfied. Then,

(fp,m1
fp,m2

)(x+ (p+ 1)k) = fp,m1
(x+ (p+ 1)k)fp,m2

(x+ (p+ 1)k)

= [m1fp,m1(x+ pk) + fp,m1(x)]

[m2fp,m2
(x+ pk) + fp,m2

(x)]

= m1m2fp,m1(x+ pk)fp,m2(x+ pk)

+fp,m1
(x)fp,m2

(x) +m1fp,m1
(x+ pk)fp,m2

(x)

+m2fp,m2
(x+ pk)fp,m1

(x)

= m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1
(x)fp,m2

(x)

= µ(fp,m1fp,m2)(x+ pk) + (fp,m1fp,m2)(x), ∀x ∈ R.

Thus, (fp,m1
fp,m2

) is an m−extension of Fibonacci p−function with period k.

Theorem 4.4. Let k be a positive integer, fp,m1 be an m−extension of Fibonacci p−function with period k

and fp,m2
be an m−extension of odd Fibonacci p−function with period k satisfying

fp,m1(x+ (p+ 1)k) = m1fp,m1(x+ pk) + fp,m1(x), ∀x ∈ R

fp,m2
(x+ (p+ 1)k) = −m2fp,m2

(x+ pk) + fp,m2
(x), ∀x ∈ R,

where m1,m2 are nonnegative real numbers. Suppose that (C6), (C9) and one the following conditions (C7)

and (C8) are satisfied:

(C6) if p is odd or even then m1 = m2,

(C7) fp,m1
and fp,m2

are both f−even functions,

(C8) fp,m1 and fp,m2 are both f−odd functions,

(C9) µ = m1m2

Then, (fp,m1
fp,m2

) is also an m−extension of odd Fibonacci p−function with period k.

Proof. First assume that fp,m1
is an m−extension of Fibonacci p−function with period k and fp,m2

is

an m−extension of odd Fibonacci p−function with period k and the conditions (C6), (C9) and (C7) are
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satisfied. Then,

(fp,m1
fp,m2

)(x+ (p+ 1)k) = fp,m1
(x+ (p+ 1)k)fp,m2

(x+ (p+ 1)k)

=
[
m1fp,m1(x+ pk) + fp,m1(x)

][
−m2fp,m2(x+ pk) + fp,m2(x)

]
= −m1m2fp,m1

(x+ pk)fp,m2
(x+ pk)

+fp,m1
(x)fp,m2

(x) +m1fp,m1
(x+ pk)fp,m2

(x)

−m2fp,m2(x+ pk)fp,m1(x)

= −m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1(x)fp,m2(x)

= −µ(fp,m1
fp,m2

)(x+ pk) + (fp,m1
fp,m2

)(x),

∀x ∈ R. Therefore, (fp,m1fp,m2) is an m−extension of odd Fibonacci p−function with period k. Next,

assume that fp,m1 is an m−extension of Fibonacci p−function with period k and fp,m2 is an m−extension

of odd Fibonacci p−function with period k and the conditions (C6), (C9) and (C8) are satisfied. Then,

(fp,m1fp,m2)(x+ (p+ 1)k) = fp,m1(x+ (p+ 1)k)fp,m2(x+ (p+ 1)k)

=
[
m1fp,m1

(x+ pk) + fp,m1
(x)
][
−m2fp,m2

(x+ pk) + fp,m2
(x)
]

= −m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1
(x)fp,m2

(x)−m1fp,m1
(x+ pk)fp,m2

(x)

+m2fp,m2
(x+ pk)fp,m1

(x)

= −m1m2fp,m1(x+ pk)fp,m2(x+ pk)

+fp,m1
(x)fp,m2

(x)

= −µ(fp,m1fp,m2)(x+ pk) + (fp,m1fp,m2)(x),

∀x ∈ R. Thus, (fp,m1
fp,m2

) is an m−extension of odd Fibonacci p−function with period k. This proves the

theorem.

Theorem 4.5. Let k be a positive integer, fp,m1
and fp,m2

be two m−extension of Fibonacci p−functions

with period k satisfying

fp,m1
(x+ (p+ 1)k) = m1fp,m1

(x+ pk) + fp,m1
(x), ∀x ∈ R

fp,m2(x+ (p+ 1)k) = m2fp,m2(x+ pk) + fp,m2(x), ∀x ∈ R,

where m1,m2 are nonnegative real numbers. Suppose that (C10),(C11) and one the conditions (C7) and

(C8) are satisfied:

(C10) if p is odd or even then m1 = −m2,
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(C11) µ = −m1.m2.

Then, (fp,m1
fp,m2

) is an m−extension of odd Fibonacci p−function with period k.

Proof. First assume that fp,m1
and fp,m2

are m−extension of Fibonacci p−functions with period k and the

conditions (C7), (C10) and (C11) are satisfied. Then,

(fp,m1
fp,m2

)(x+ (p+ 1)k) = fp,m1
(x+ (p+ 1)k)fp,m2

(x+ (p+ 1)k)

=
[
m1fp,m1(x+ pk) + fp,m1(x)

][
m2fp,m2(x+ pk) + fp,m2(x)

]
= m1m2fp,m1

(x+ pk)fp,m2
(x+ pk)

+fp,m1(x)fp,m2(x) +m1fp,m1(x+ pk)fp,m2(x)

+m2fp,m2
(x+ pk)fp,m1

(x)

= m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1
(x)fp,m2

(x)

= −µ(fp,m1
fp,m2

)(x+ pk) + (fp,m1
fp,m2

)(x),

∀x ∈ R. Therefore, (fp,m1
fp,m2

) is an m−extension of odd Fibonacci p−function with period k. Next,

assume that fp,m1
and fp,m2

are m−extension of Fibonacci p−functions with period k and the conditions

(C8), (C10) and (C11) are satisfied. Then the same result can be obtained. Therefore, (fp,m1
fp,m2

) is an

m−extension of odd Fibonacci p−function with period k.

Theorem 4.6. Let k be a positive integer, fp,m1
and fp,m2

be two m−extension of odd Fibonacci p−functions

with period k satisfying

fp,m1
(x+ (p+ 1)k) = −m1fp,m1

(x+ pk) + fp,m1
(x), ∀x ∈ R

fp,m2
(x+ (p+ 1)k) = −m2fp,m2

(x+ pk) + fp,m2
(x), ∀x ∈ R,

where m1,m2 are nonnegative real numbers. Suppose that the conditions (C1),(C2),(C3),(C4) and (C5) are

satisfied. Then (fp,m1
fp,m2

)(x) is an m−extension of Fibonacci p−function with period k.

Proof. Assume that fp,m1
and fp,m2

be two m−extension of odd Fibonacci p−functions with period k and
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the conditions (C1),(C2),(C3),(C4) and (C5) are satisfied. Then,

(fp,m1
fp,m2

)(x+ (p+ 1)k) = fp,m1
(x+ (p+ 1)k)fp,m2

(x+ (p+ 1)k)

=
[
−m1fp,m1(x+ pk) + fp,m1(x)

][
−m2fp,m2(x+ pk) + fp,m2(x)

]
= m1m2fp,m1

(x+ pk)fp,m2
(x+ pk)

+fp,m1(x)fp,m2(x)−m1fp,m1(x+ pk)fp,m2(x)

−m2fp,m2
(x+ pk)fp,m1

(x)

= m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1
(x)fp,m2

(x)

= µ(fp,m1
fp,m2

)(x+ pk) + (fp,m1
fp,m2

)(x), ∀x ∈ R.

Thus, (fp,m1
fp,m2

) is an m−extension of Fibonacci p−function with period k.

Theorem 4.7. Let k be a positive integer, fp,m1 and fp,m2 be two m−extension of odd Fibonacci p−functions

with period k satisfying

fp,m1(x+ (p+ 1)k) = −m1fp,m1(x+ pk) + fp,m1(x), ∀x ∈ R

fp,m2
(x+ (p+ 1)k) = −m2fp,m2

(x+ pk) + fp,m2
(x), ∀x ∈ R,

where m1,m2 are nonnegative real numbers. Suppose that (C10),(C11) and one the conditions (C7) and

(C8) are satisfied. Then, (fp,m1
fp,m2

) is an m−extension of odd Fibonacci p−function with period k.

Proof. First assume that fp,m1 and fp,m2 are m−extension of odd Fibonacci p−functions with period k and

the conditions (C7), (C10) and (C11) are satisfied. Then,

(fp,m1fp,m2)(x+ (p+ 1)k) = fp,m1(x+ (p+ 1)k)fp,m2(x+ (p+ 1)k)

=
[
−m1fp,m1

(x+ pk) + fp,m1
(x)
][
−m2fp,m2

(x+ pk) + fp,m2
(x)
]

= m1m2fp,m1
(x+ pk)fp,m2

(x+ pk)

+fp,m1(x)fp,m2(x)−m1fp,m1(x+ pk)fp,m2(x)

−m2fp,m2
(x+ pk)fp,m1

(x)

= m1m2fp,m1(x+ pk)fp,m2(x+ pk)

+fp,m1
(x)fp,m2

(x)

= −µ(fp,m1fp,m2)(x+ pk) + (fp,m1fp,m2)(x),

∀x ∈ R. Therefore, (fp,m1
fp,m2

) is an m−extension of odd Fibonacci p−function with period k. Next,

assume that fp,m1
and fp,m2

are m−extension of odd Fibonacci p−functions with period k and the conditions

(C8), (C10) and (C11) are satisfied. Then the same result can be obtained. Therefore, (fp,m1fp,m2) is an

m−extension of odd Fibonacci p−function with period k.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

285 Yasin YAZLIK et al 274-289



5. Quotients of m−extension of Fibonacci p−functions with period k

In this section, we discuss the limit of quotients of m−extension of Fibonacci p−functions with period

k.

Theorem 5.1. If fp,m is an m−extension of Fibonacci p−functions with period k, then the limit of the

quotient
fp,m(x+k)
fp,m(x) exists.

Proof. Let k ∈ N, m ∈ R+, p be a nonnegative integer and n ≥ 2p. Consider the quotient Q(x) =
fp,m(x+k)
fp,m(x) ,

where fp,m is an m−extension of Fibonacci p−function with period k. We have two possibilities such that

either Q(x) < 0 or Q(x) > 0. First, suppose that Q(x) < 0 then without loss of generality, fp,m(x) > 0 and

fp,m(x+ k) < 0. Therefore,

fp,m(x+ 2pk) = mfp,m(x+ (2p− 1)k) + fp,m(x+ (p− 1)k)

= m2fp,m(x+ (2p− 2)k) + fp,m(x+ (p− 1)k)

+mfp,m(x+ (p− 2)k)

= m3fp,m(x+ (2p− 3)k) + fp,m(x+ (p− 1)k)

+mfp,m(x+ (p− 2)k) +m2fp,m(x+ (p− 3)k)

...

= mpfp,m(x+ pk) + fp,m(x+ (p− 1)k)

+ · · · −mp−2fp,m(x+ k) +mp−1fp,m(x)

= Fp,m(p+ 1)fp,m(x+ pk) + Fp,m(1)fp,m(x+ (p− 1)k)

+ · · · − Fp,m(p− 1)fp,m(x+ k) + Fp,m(p)fp,m(x),

fp,m(x+ (2p+ 1)k) = mfp,m(x+ 2pk) + fp,m(x+ pk)

= m
[
mpfp,m(x+ pk) + fp,m(x+ (p− 1)k)

+ · · · −mp−2fp,m(x+ k) +mp−1fp,m(x)
]

+ f(x+ pk)

= (mp+1 + 1)fp,m(x+ pk) +mfp,m(x+ (p− 1)k)

+ · · · −mp−1fp,m(x+ k) +mpfp,m(x)

= Fp,m(p+ 2)fp,m(x+ pk) + Fp,m(2)fp,m(x+ (p− 1)k)

+ · · · − Fp,m(p)fp,m(x+ k) + Fp,m(p+ 1)fp,m(x).
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fp,m(x+ (2p+ 2)k) = mfp,m(x+ (2p+ 1)k) + fp,m(x+ (p+ 1)k)

= m
[
(mp+1 + 1)fp,m(x+ pk) +mfp,m(x+ (p− 1)k)

+ · · · −mp−1fp,m(x+ k) +mpfp,m(x)
]

+mf(x+ pk) + f(x)

= (mp+2 + 2m)fp,m(x+ pk) +m2fp,m(x+ (p− 1)k)

+ · · · −mpfp,m(x+ k) + (mp+1 + 1)fp,m(x)

= Fp,m(p+ 3)fp,m(x+ pk) + Fp,m(3)fp,m(x+ (p− 1)k)

+ · · · − Fp,m(p+ 1)fp,m(x+ k) + Fp,m(p+ 2)fp,m(x).

Continuing this process, we have

fp,m(x+ nk) = Fp,m(n− p+ 1)fp,m(x+ pk)

= +Fp,m(n− 2p+ 1)fp,m(x+ (p− 1)k)

= + · · · − Fp,m(n− p− 1)fp,m(x+ k) + Fp,m(n− p)fp,m(x)

and

fp,m(x+ (n+ 1)k) = Fp,m(n− p+ 2)fp,m(x+ pk)

= +Fp,m(n− 2p+ 2)fp,m(x+ (p− 1)k)

= + · · · − Fp,m(n− p)fp,m(x+ k) + Fp,m(n− p+ 1)fp,m(x),

where Fp,m is an m−extension of Fibonacci p−sequence with the initial conditions, Fp,m(0) = 0, Fp,m(1) = 1,

Fp,m(2) = m, . . ., Fp,m(p) = mp−1. Given x′ ∈ R, there exists x ∈ R such that x′ = x+ nk . Therefore,

fp,m(x′ + k)

fp,m(x′)
=

fp,m(x+ (n+ 1)k)

fp,m(x+ nk)

=



Fp,m(n− p+ 2)fp,m(x+ pk) + · · · − Fp,m(n− p)fp,m(x+ k)+

Fp,m(n− p+ 1)fp,m(x)

Fp,m(n− p+ 1)fp,m(x+ pk) + · · · − Fp,m(n− p− 1)fp,m(x+ k)+

Fp,m(n− p)fp,m(x)



=



Fp,m(n− p+ 2)

[
fp,m(x+ pk) + · · · − Fp,m(n− p)

Fp,m(n− p+ 2)
fp,m(x+ k)+

Fp,m(n− p+ 1)

Fp,m(n− p+ 2)
fp,m(x)

]
Fp,m(n− p+ 1)

[
fp,m(x+ pk) + · · · − Fp,m(n− p− 1)

Fp,m(n− p+ 1)
fp,m(x+ k)+

Fp,m(n− p)
Fp,m(n− p+ 1)

fp,m(x)

]


.
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lim
n→∞

(
fp,m(x′ + k)

fp,m(x′)

)
= lim

n→∞

(
Fp,m(n− p+ 2)

Fp,m(n− p+ 1)

)


fp,m(x+ pk) + · · · − Fp,m(n− p)
Fp,m(n− p+ 2)

fp,m(x+ k)+

Fp,m(n− p+ 1)

Fp,m(n− p+ 2)
fp,m(x)

fp,m(x+ pk) + · · · − Fp,m(n− p− 1)

Fp,m(n− p+ 1)
fp,m(x+ k)+

Fp,m(n− p)
Fp,m(n− p+ 1)

fp,m(x)



=

(
lim
n→∞

Fp,m(n− p+ 2)

Fp,m(n− p+ 1)

)


fp,m(x+ pk) + · · · − lim
n→∞

Fp,m(n− p)
Fp,m(n− p+ 2)

fp,m(x+ k)+

lim
n→∞

Fp,m(n− p+ 1)

Fp,m(n− p+ 2)
fp,m(x)

fp,m(x+ pk) + · · · − Fp,m(n− p− 1)

Fp,m(n− p+ 1)
fp,m(x+ k)+

Fp,m(n− p)
Fp,m(n− p+ 1)

fp,m(x)


.

Let N = n+ 1. If n→∞ then N →∞. So, we can write the above expression as

(
lim
n→∞

fp,m(x′ + k)

fp,m(x′)

)
= lim

n→∞

(
Fp,m(n− p+ 2)

Fp,m(n− p+ 1)

)


fp,m(x+ pk) + · · · − lim
N→∞

Fp,m(N − p− 1)

Fp,m(N − p+ 1)
fp,m(x+ k)+

lim
N→∞

Fp,m(N − p)
Fp,m(N − p+ 1)

fp,m(x)

fp,m(x+ pk) + · · · − lim
n→∞

Fp,m(n− p− 1)

Fp,m(n− p+ 1)
fp,m(x+ k)+

lim
n→∞

Fp,m(n− p)
Fp,m(n− p+ 1)

fp,m(x)



= αm



fp,m(x+ pk) + · · · − lim
N→∞

Fp,m(N − p− 1)

Fp,m(N − p+ 1)
fp,m(x+ k)+

lim
N→∞

Fp,m(N − p)
Fp,m(N − p+ 1)

fp,m(x)

fp,m(x+ pk) + · · · − lim
n→∞

Fp,m(n− p− 1)

Fp,m(n− p+ 1)
fp,m(x+ k)+

lim
n→∞

Fp,m(n− p)
Fp,m(n− p+ 1)

fp,m(x)


= αm.

Here αm is the unique positive real root of the characteristic equation ofm−extension of Fibonacci p−sequence.

Next, suppose that Q(x) > 0, without loss of generality we assume fp,m(x) > 0, fp,m(x+k) > 0. Identically,

we can easily obtain that limn→∞

(
fp,m(x+(n+1)k)

fp,m(x+nk)

)
= αm. Hence we omit the proof.
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FOURIER SPECTRAL METHODS FOR STOCHASTIC SPACE
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS DRIVEN BY

SPECIAL ADDITIVE NOISES

FANG LIU, MONZORUL KHAN AND YUBIN YAN ∗

Abstract. Fourier spectral methods for solving stochastic space fractional partial differential
equations driven by special additive noises in one-dimensional case are introduced and analyzed. The
space fractional derivative is defined by using the eigenvalues and eigenfunctions of Laplacian subject
to some boundary conditions. The space-time noise is approximated by the piecewise constant
functions in the time direction and by some appropriate approximations in the space direction.
The approximated stochastic space fractional partial differential equations are then solved by using
Fourier spectral methods. For the linear problem, we obtain the precise error estimates in the L2

norm and find the relations between the error bounds and the fractional powers. For the nonlinear
problem, we introduce the numerical algorithms and MATLAB codes based on the FFT transforms.
Our numerical algorithms can be adapted easily to solve other stochastic space fractional partial
differential equations with multiplicative noises. Numerical examples for the semilinear stochastic
space fractional partial differential equations are given.

Key words. Space fractional partial differential equations, stochastic partial differential equa-
tions, Fourier spectral method, error estimates

AMS subject classifications. 65M12; 65M06; Secondary 65M70;35S10

1. Introduction. Fourier spectral methods for solving the following stochastic
space fractional partial differential equation are considered in this work, with 1/2 <
α ≤ 1,

du(t)

dt
+Aαu(t) = f(u(t)) +

dW (t)

dt
, 0 < t < T,(1.1)

u(0) = u0.(1.2)

Here A is an unbounded positive self-adjoint operator, u0 is an initial value and f(u)
is a nonlinear term. The space-time white noise W (t) will be defined below.

Let H be a separable Hilbert space and ∥ · ∥, (·, ·) denote the norm and inner
product in H. Let A : D(A) ⊂ H → H be a positive definite self-adjoint operator
such that A−1 is compact on H. From this we infer the existence of a complete
orthonormal basis {ek}k≥0 for H of eigenfunctions of A such that the associated
sequence of eigenvalues {λk} form an increasing unbounded sequence.

Using the basis {ek} we may also define the fractional powers of A. Given 1/2 <
α ≤ 1 define

H2α := D(Aα) = {v ∈ H :
∑
k

λ2α
k |(v, ek)|2 < ∞},

and

(1.3) Aαv :=
∑
k

λα
k (v, ek)ek, v ∈ D(Aα),
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2 FOURIER SPECTRAL METHODS FOR SPDEs

with the associated Hilbert norm defined by

∥Aαv∥2 =
∑
k

λ2α
k |(v, ek)|2.

The special space-time noise considered in this work is

(1.4)
dW (t)

dt
=

∞∑
k=1

σk(t)β̇k(t)ek,

where β̇k(t) =
dβk(t)

dt , k = 1, 2, . . . is the derivative of the standard Brownian motions
βk(t), k = 1, 2, . . . and σk(t), k = 1, 2, . . . are some appropriate functions of t. In

particular, when σk(t) = γ̄
1/2
k , γ̄k > 0, the noise (1.4) reduces to

dW (t)

dt
=

∞∑
k=1

γ̄
1/2
k β̇k(t)ek,

which is a so-called H-valued Wiener process with the covariance operator Q and the
linear operator Q : H → H is a trace class operator, that is Tr(Q) =

∑∞
k=1 γ̄k < ∞

where Qek = γ̄kek, k = 1, 2, . . . .
Let us here give two possible operators in (1.1)-(1.2). One is A = −∆ with

the homogeneous Dirichlet boundary condition, D(A) = H1
0 (0, 1) ∩ H2(0, 1), where

∆ = ∂2/∂x2 denotes the Laplacian. In this case, A has the eigenvalues λk = k2π2

and eigenfunctions ek =
√
2 sin kπx, k = 1, 2, . . . . Our error estimates in this work are

based on these eigenvalues and eigenfunctions. Another one is A = I−∆ with periodic
boundary conditions, D(A) = H2

per(−π, π). Here H2
per(−π, π) denotes the completion

with respect to the H2(−π, π) norm of the set of u ∈ C∞([−π, π]) such that the
pth derivative u(p)(−π) = u(p)(π) for p = 0, 1, . . . . It is a Hilbert space with the
H2(−π, π) inner product, see [24, Definition 1.47]. In this case, A has the eigenvalues
λ1 = 1, λ2k = 1 + k2, λ2k+1 = 1 + k2 and eigenfunctions e1(x) = 1√

2π
, e2k(x) =

1√
π
sin kx, e2k+1(x) =

1√
π
cos kx, k = 1, 2, . . . , see [24, Example 1.84].

We obtain the detailed error estimates, i.e., Theorems 2.1, 3.1, 3.3 below for the
linear stochastic space fractional partial differential equation subject to the Dirichlet
boundary conditions. More precisely, we shall consider the error estimates for the
following linear problem, with 1/2 < α ≤ 1,

∂u(t, x)

∂t
+ (−∆)αu(t, x) =

∂2W (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1,(1.5)

u(t, 0) = u(t, 1) = 0, 0 < t < T,(1.6)

u(0, x) = u0(x), 0 < x < 1.(1.7)

Here the space-time noise ∂2W (t,x)
∂t∂x = dW (t)

dt is define by (1.4).
For the linear stochastic space fractional partial differential equation subject to

the periodic boundary conditions, we may obtain the similar error estimates as in
Theorems 2.1, 3.1, 3.3. For the length of the paper, we will not give the detailed
proofs for the error estimates in this case. However, in the numerical examples in
Section 4, we shall consider the spectral method for the semilinear stochastic space
fractional partial differential equations subject to the periodic boundary conditions
to illustrate the experimentally determined convergence orders.
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The stochastic partial differential equations driven by the white noise ( the covari-
ance operator Q = I) often have poor regularity estimates. In the physical world, to
take into account the short and long range correlations of the stochastic effects, both
white noise and colored noises may be considered. There are many situations where
colored noises model the reality more closely, and there are also instances where the
important stochastic effects are the noises acting on a few selected frequencies. For
example one may choose σk(t) =

cos t
k3 . [12]

Space-fractional partial differential equations are widely used to model complex
phenomena, for example, quasi-geostrophic flows, fast rotating fluids, dynamic of
the frontogenesis in meteorology, diffusion in fractal or disordered medium, pollution
problems, mathematical finance and the transport problems, see, e.g., [3], [7], [21],
[36], [2].

Let us here consider two examples which apply the fractional Laplacian in the
physical models. The first example is about the surface quasi-geostrophic (SQG)
equation,

∂tθ + u⃗ · ∇θ + κ(−∆)αθ = 0,

where κ ≥ 0 and α > 0, θ = θ(x1, x2, t) denotes the potential temperature, u⃗ =
(u1, u2) is the velocity field determined by θ. When κ > 0, the SQG equation takes
into account the dissipation generated by a fractional Laplacian. The SQG equation
with κ > 0 and α = 1/2 arises in geophysical studies of strongly rotating fluids.
For the dissipative SQG equation, α = 1/2 appears to be a critical index. In the
subcritical case when α > 1/2, the dissipation is sufficient to control the nonlinearity
and the global regularity is a consequence of global a priori bound. In the critical
case when α = 1/2, the global regularity issue is more delicate. The mystery in the
supercritical case α < 1/2 is only partially uncovered at the moment. [9]

The second example is about the wave propagation in complex solids, especially
viscoelastic materials (for example Polymers).[4]. In this case, the relaxation function
has the form k(t) = ct−ν , 0 < ν < 1, c ∈ R, instead of the exponential form known
in the standard models. This polynomial relaxation is due to the non uniformity of
the material. The far field is then described by a Burgers equation with the leading

operator (−∆)
1+ν
2 instead of the Laplacian

∂tu = −(−∆)
1+ν
2 u+ ∂x(u

2).

This equation also describes the far-field evolution of acoustic waves propagating in
a gas-filled tube with a boundary layer.

Frequently, the initial value or the coefficients of the equation are random, there-
fore it is natural to consider the stochastic space-fractional partial differential equa-
tions. The existence, uniqueness and regularities of the solutions of stochastic space-
fractional partial differential equations have been extensively studied, see, e.g., [3],
[7], [10], [28]. In this work, we will focus on the case 1/2 < α ≤ 1 since the exis-
tence and uniqueness and regularity of the solution in this case is well understood in
literature, see [11, Theorem 1.3]. However the numerical methods for solving space-
fractional stochastic partial differential equations are quite restricted even for the case
1/2 < α ≤ 1. Debbi and Dozzi [11] introduced a discretization of the fractional Lapla-
cian and used it to elaborate an approximation scheme for fractional heat equation
perturbed by a multiplicative cylindrical white noise. As far as we know [11] is the
only existing paper in the literature of dealing with the numerical approach of this
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4 FOURIER SPECTRAL METHODS FOR SPDEs

kind of problems. In this work, we will use the ideas developed in [1] and [12], to con-
sider the numerical methods for solving stochastic space fractional partial differential
equations, see also [19], [8], [20]. We first approximate the noise by using piecewise
constant functions and then obtain the approximate solution û(t) of the exact solution
u(t). Finally we provide error estimates in L2-norm for u(t)− û(t).

For the deterministic space fractional partial differential equations, many nu-
merical methods are available in literature. There are two approaches to define the
fractional Laplacian. One approach is by using the eigenvalues and eigenfunctions of
the Laplacian −∆ subject to the boundary conditions as in (1.3). Another approach is
by using the left-handed and right-handed Riemann-Liouville fractional derivatives.
For the deterministic space fractional partial differential equations defined by the
Riemann-Liouville fractional derivatives, many numerical methods are available, e.g.,
finite difference methods [14]-[15], [26], [31]-[32], finite element methods [13], [18] and
the spectral methods [22]-[23]. For the deterministic space fractional partial differen-
tial equations defined by (1.3), some numerical methods are also available, see, e.g.,
matric transfer technique (MTT) [14], [15], [6], Fourier spectral method [5]. In this
work, we will use Fourier spectral method to solve the stochastic space fractional
partial differential equations. The main advantage of this approach is that it gives a
full diagonal representation of the fractional operator, being able to achieve spectral
convergence regardless of the fractional power in the problem.

Let Nt ∈ N and let 0 = t0 < t1 < t2 < · · · < tNt = T be the time partition
of [0, T ] and ∆t the time step size. To find the approximate solution of (1.5)-(1.7),

we approximate the noise ∂2W (t,x)
∂t∂x by the piecewise constant functions in the time

direction defined by, with l = 1, 2, ..., Nt, [12]

(1.8)
∂2Ŵ (t, x)

∂t∂x
=

∞∑
k=1

σM
k (t)ek(x)

( Nt∑
l=1

1√
∆t

ηk,lχl(t)
)
,

where

(1.9) ηk,l =
1√
∆t

∫ tl

tl−1

d βk(t) =
1√
∆t

(
βk(tl)− βk(tl−1)

)
∈ N (0, 1),

and

χl(t) =

{
1, t ∈ [tl−1, tl], l = 1, 2, . . . , Nt,

0, otherwise.

Here σM
k (t) is the approximation of σk(t) in the space direction. For example, we can

choose, with some positive integer M > 0,

σk(t) =
cos t

k3
, σM

k (t) =

{
σk(t), k ≤ M,

0, k > M.

More precisely, replacing σk(t) by σM
k (t), we get the noise approximation in space,

and replacing β̇k(t) by
∑Nt

j=1
1√
∆t

ηk,jχj(t), we get the noise approximation in time.

Substituting ∂2W (t,x)
∂t∂x with ∂2Ŵ (t,x)

∂t∂x in (1.5)-(1.7), we get
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∂û(t, x)

∂t
+ (−∆)αû(t, x) =

∂2Ŵ (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1,(1.10)

û(t, 0) = û(t, 1) = 0, 0 < t < T,(1.11)

û(0, x) = u0(x), 0 < x < 1.(1.12)

Note that ∂2Ŵ (t,x)
∂t∂x now is a function in L2((0, T ) × (0, 1)) and therefore we can

solve (1.10)-(1.12) by using any numerical methods for deterministic space fractional
partial differential equations. Assume that {σk(t)} and its derivative are uniformly
bounded, [12]

(1.13) |σk(t)| ≤ βk, |σ′
k(t)| ≤ γk, ∀ t ∈ [0, T ],

and the coefficients {σM
k } are constructed such that

(1.14) |σk(t)− σM
k (t)| ≤ αM

k , |σM
k (t)| ≤ βM

k , |(σM
k )′(t)| ≤ γM

k , ∀ t ∈ [0, T ],

with positive sequences {αM
k } being arbitrarily chosen, {βM

k } and {γM
k } being related

to {βk} and {γk}. Further we assume that

(1.15) βM
k ≤ k−α̃, for some 0 ≤ α̃ < 1/2.

Let E denote the expectation, in Theorem 2.1, we prove that, with 1/2 < α ≤ 1 and
0 ≤ α̃ < 1/2,

E
∫ T

0

∫ 1

0

(
u(t, x)− û(t, x)

)2
dxdt(1.16)

≤ C
( ∞∑

k=1

(αM
k )2

2λα
k

+∆t2
∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
.

Let J ∈ N, we denote

SJ = span{e1, e2, . . . , eJ},

and define by PJ : H → SJ the projection from H to SJ ,

(1.17) PJv =
J∑

j=1

(v, ej)ej .

The Fourier spectral method of (1.10)-(1.12) is to find ûJ(t) ∈ SJ such that, with

ĝ(t, x) := ∂2Ŵ (t,x)
∂t∂x .

∂ûJ(t, x)

∂t
+ (−∆)αûJ(t, x) = PJ ĝ(t, x), 0 < t < T, 0 < x < 1,(1.18)

ûJ(t, 0) = ûJ (t, 1) = 0, 0 < t < T,(1.19)

ûJ(0, x) = PJu0(x), 0 < x < 1,(1.20)

In Theorem 3.1, we prove that, with 1/2 < α ≤ 1 and 0 ≤ α̃ < 1/2,

(1.21) ∥û(t)− ûJ (t)∥2 ≤ C∥u0 − PJu0∥2 + C
1

(J + 1)2α

∫ t

0

∥ĝ(s)∥2 ds.
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6 FOURIER SPECTRAL METHODS FOR SPDEs

Combining Theorem 2.1 with Theorem 3.1, we have, with u0 ∈ D(Aα), 1/2 < α ≤ 1,

E
∫ T

0

∫ 1

0

(
u(t, x)− ûJ (t, x)

)2
dxdt

≤ C
( ∞∑

k=1

(αM
k )2

2λα
k

+∆t2
∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
+ CE∥u0 − PJu0∥2 + C

1

(J + 1)2α

(
∆tE∥Aαu0∥2 +∆t

∞∑
k=1

λα
k (β

M
k )2 +

∞∑
k=1

(βM
k )2

)
.

The paper is organized as follows. In Section 2, we consider the approximation
of noise. In Section 3, we introduce the Fourier spectral methods for solving the
approximated space fractional partial differential equations and the error estimates
for the linear stochastic space fractional partial differential equations are proved. In
Section 4, we consider the numerical examples for solving the semilinear stochastic
space fractional partial differential equations subject to the periodic boundary condi-
tions. From now on we denote by C a generic constant, which may not be the same
at different occurrences.

2. Approximate the noise and regularity. It is well known that the mild
solution of (1.5)-(1.7) has the following form

(2.1) u(t, x) =

∫ 1

0

Gα(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y),

where

Gα(t, x, y) =

∞∑
j=1

e−λα
j tej(x)ej(y),

and the stochastic integral
∫ t

0

∫ 1

0
Gα(t−s, x, y) dW (s, y) is well-defined. The existence

and uniqueness of the solutions of (1.5)-(1.7) are discussed in, e.g., [10], [11], [28] and
the references cited therein.

Similarly the mild solution of (1.10)-(1.12) has the form of, see, e.g., [12]

(2.2) û(t, x) =

∫ 1

0

Gα(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y) dŴ (s, y),

Theorem 2.1. Let u and û be the solutions of (1.5)-(1.7) and (1.10)-(1.12),
respectively. Assume that the assumptions (1.13)-(1.15) hold. Then we have

E
∫ T

0

∫ 1

0

(
u(t, x)− û(t, x)

)2
dxdt(2.3)

≤ C
( ∞∑

k=1

(αM
k )2

2λα
k

+∆t2
∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
.

Proof. See the Appendix.
Remark 2.2. When α = 1, Theorem 2.1 should reduce to the Theorem 3.3 in

[12]. However one term ∆t1/2+α̃, 0 ≤ α̃ < 1/2 of the bounds in (3.20) in Theorem 3.3
[12] is missing. The term ∆t1/2+α̃, 0 ≤ α̃ < 1/2 comes from the estimates II1 and
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II3 of the estimate for II = E
∫ T

0

∫ 1

0
F2(t, x) dxdt in (4.12). The authors in [12] only

considered the estimate II2 and neglected the terms II1 and II3 which would produce
the term ∆t1/2+α̃, 0 ≤ α̃ < 1/2. (See the estimates for the term II in [12, p.1441]).

In Theorem 2.1, we include the terms O(∆t1+
α̃
α− 1

2α ).
Theorem 2.3. Let û be the solution of (1.10)-(1.12). Assume that the as-

sumptions (1.13)-(1.15) hold. Further assume that u0 ∈ D(Aα), 1/2 < α ≤ 1 and
E∥Aαu0∥2 < ∞. Then

(2.4) E
∫ tj+1

tj

∫ 1

0

∣∣∣∂û(t, x)
∂t

∣∣∣2 dxdt ≤ C
(
∆tE∥Aαu0∥2+∆t

∞∑
k=1

λα
k (β

M
k )2+

∞∑
k=1

(βM
k )2

)
,

and

(2.5) E
∫ tj+1

tj

∫ 1

0

∣∣Aαû(t, x)
∣∣2 dxdt ≤ C

(
∆tE∥Aαu0∥2 +∆t

∞∑
k=1

λα
k (β

M
k )2

)
.

Proof. Assume that, with 0 < t ≤ tj+1,

(2.6) û(t, x) =
∞∑
k=1

ûk(t)ek(x),

and, with ûk(0) = (u0, ek), k = 1, 2, . . . ,

û(0, x) = u0(x) =
∞∑
k=1

ûk(0)ek(x).

Substituting (2.6) into (1.10), we get, with 0 < t ≤ tj+1,

(2.7)
dûk(t)

dt
+ λα

k ûk(t) = σM
k (t)

( j+1∑
l=1

1√
∆t

ηk,lχl(t)
)
,

which implies that, with 0 < t ≤ tj+1,

(2.8) ûk(t) = e−λα
k tûk(0) +

∫ t

0

e−λα
k (t−s)σM

k (s)
( j+1∑

l=1

1√
∆t

ηk,lχl(s)
)
ds.

Let us first show (2.4). Note that {ek} is an orthonormal basis in H = L2(0, 1),
we have, by (2.7),

E
∫ tj+1

tj

∫ 1

0

∣∣∣∂û(t, x)
∂t

∣∣∣2 dxdt = E
∞∑
k=1

∫ tj+1

tj

∣∣∣dûk(t)

dt

∣∣∣2 dt
≤ 2E

∞∑
k=1

(∫ tj+1

tj

|λα
k ûk(t)|2 dt+

∫ tj+1

tj

∣∣∣σM
k (t)√
∆t

j+1∑
l=1

ηk,lχl(t)
∣∣∣2 dt)

= 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

|ûk(t)|2 dt+ 2E
∞∑
k=1

∫ tj+1

tj

∣∣∣σM
k (t)√
∆t

ηk,j+1χj+1(t)
∣∣∣2 dt

= 2(I + II).
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8 FOURIER SPECTRAL METHODS FOR SPDEs

For I, we have, by (2.8), with t∗l = tl, 1 ≤ l ≤ j and t∗l = t, l = j + 1,

I ≤ 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

∣∣∣e−λα
k tûk(0)

∣∣∣2 dt+ 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

∣∣∣ j+1∑
l=1

ηk,l√
∆t

∫ t∗l

tl−1

e−λα
k (t−s)σM

k (s) ds
∣∣∣2 dt

(2.9)

= 2E
∞∑
k=1

∫ tj+1

tj

e−2λα
k t
(
Aαu0, ek

)2
dt+ 2

∞∑
k=1

λ2α
k

∫ tj+1

tj

j+1∑
l=1

1

∆t

(∫ t∗l

tl−1

e−λα
k (t−s)σM

k (s) ds
)2

dt

≤ 2E
∞∑
k=1

(
Aαu0, ek

)2
∆t+ 2

∞∑
k=1

λ2α
k

∫ tj+1

tj

j+1∑
l=1

1

∆t

(∫ t∗l

tl−1

e−2λα
k (t−s)

(
σM
k (s)

)2
ds
)(∫ t∗l

tl−1

12 ds
)
dt

≤ 2E
∞∑
k=1

(
Aαu0, ek

)2
∆t+ 2

∞∑
k=1

λ2α
k

∫ tj+1

tj

(∫ t

0

e−2λα
k (t−s)

(
σM
k (s)

)2
ds
)
dt

≤ 2E
∞∑
k=1

(
Aαu0, ek

)2
∆t+ 2

∞∑
k=1

λ2α
k

(
βM
k

)2 ∫ tj+1

tj

1− e−2λα
k t

2λα
k

dt

≤ 2E∥Aαu0∥2∆t+∆t
∞∑
k=1

λα
k

(
βM
k

)2
,

where in the last inequality, we use the fact 1− e−2λα
k t ≤ 1.

For II, we have

II = E
∞∑
k=1

∫ tj+1

tj

∣∣∣σM
k (t)√
∆t

ηk,j+1χj+1(t)
∣∣∣2 dt = ∞∑

k=1

∫ tj+1

tj

(σM
k (t)√
∆t

)2
dt ≤

∞∑
k=1

(
βM
k

)2
.

Combining I with II we get (2.4). Similarly we have,

E
∫ tj+1

tj

∫ 1

0

|Aαû(t)|2 dxdt = E
∫ tj+1

tj

∥Aαû(t, x)∥2 dt

= E
∫ tj+1

tj

( ∞∑
k=1

λ2α
k û2

k(t)
)
dt = E

∞∑
k=1

λ2α
k

∫ tj+1

tj

|ûk(t)|2 dt = I,

which implies (2.5) also holds. Together these estimates complete the proof of Theo-
rem 2.3.

3. Fourier spectral method. Denote Eα(t) = e−tAα

, 1/2 < α ≤ 1, where
Aα is defined by (1.3). The mild solution of (1.10)-(1.12) has the form of, with

ĝ(t) = ∂2Ŵ (t,x)
∂t∂x ,

(3.1) û(t) = Eα(t)û0 +

∫ t

0

Eα(t− s)ĝ(s) ds, û(0) = u0.

Similarly the solution of (1.18)-(1.20) has the form of

(3.2) ûJ(t) = Eα(t)PJ û0 +

∫ t

0

Eα(t− s)PJ ĝ(s) ds, û(0) = PJu0.
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Theorem 3.1. Assume that û and ûJ are the solutions of (1.10)-(1.12) and
(1.18)-(1.20), respectively. Let 0 ≤ r < 1/2 and let u0 ∈ H. Then we have

(3.3)
∥∥Ar/2

(
û(t)− ûJ(t)

)∥∥2 ≤ C
∥∥u0 − PJu0

∥∥2 + C
1

(J + 1)2α(1−r/α)

∫ t

0

∥ĝ(s)∥2 ds.

In particular, with r = 0,

(3.4) ∥û(t)− ûJ (t)∥2 ≤ C∥u0 − PJu0∥2 + C
1

(J + 1)2α

∫ t

0

∥ĝ(s)∥2 ds.

To prove Theorem 3.1, we need the following smoothing property for the solution
operator Eα(t).

Lemma 3.2.
1. Let s > 0. We have, with 1/2 < α ≤ 1,

∥AsEα(t)∥ ≤ Ct−
s
α e−δt, t > 0,

for some constants C = C(s, α) > 0 and δ = δ(α) > 0.
2. Let PJ : H → SJ be defined by (1.17). We have

∥Eα(t)(I − PJ)v∥ ≤ e−tλα
J+1∥v∥, t > 0.

Proof. Recall that A is positive definite and A has the eigenvalues 0 < λ1 < λ2 <
λ3 < . . . . For any function h(·), we have

∥h(A)∥ = sup
λ∈σ(A)

|h(λ)|,

where σ(A) denotes the set of eigenvalues of A. Thus, with δ = 1
2λ

α
1 ,

∥AsEα(t)∥ = ∥AsEα(t/2)Eα(t/2)∥ ≤ ∥AsEα(t/2)∥∥Eα(t/2)∥

= sup
λ∈σ(A)

(
λse−

t
2λ

α)
· sup
λ∈σ(A)

(
e−

t
2λ

α)
= sup

λ∈σ(A)

(( t
2λ

α
)s/α

e
t
2λ

α

( t
2

)−s/α)
e−

t
2λ

α
1

≤ C(t/2)−s/αe−δt ≤ Ct−s/αe−δt,

which shows (1). Further (2) follows from

∥Eα(t)(I − PJ )v∥ =
( ∞∑

j=J+1

e−2tλα
j (v, ej)

2
)1/2

≤ e−tλα
J+1∥v∥.

Together these estimates complete the proof of Lemma 3.2.

Proof. [Proof of Theorem 3.1] Subtracting (3.2) from (3.1), we get

(3.5) û(t)− ûJ (t) = Eα(t)(u0 − PJu0) +

∫ t

0

Eα(t− s)
(
ĝ(s)− PJ ĝ(s)

)
ds = I + II.

For I, we have, with 0 ≤ r < 1/2,

∥Ar/2I∥ = ∥A r
2Eα(t)

(
u0 − PJu0

)
∥

=
( ∞∑

j=J+1

e−2tλα
j λr

j(u0, ej)
2
)1/2

≤ e−tλα
J+1∥Ar/2(u0 − PJu0)∥.
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For II, we have, by Lemma 3.2, for some γ ∈ (0, 1),

∥Ar/2II∥ =
∥∥∥∫ t

0

Ar/2Eα(t− s)
(
I − PJ

)
ĝ(s) ds

∥∥∥
=
∥∥∥∫ t

0

[
Ar/2Eα

(
(1− γ)(t− s)

)][
Eα

(
γ(t− s)

)
(I − PJ)

]
ĝ(s) ds

∥∥∥
≤ C

∫ t

0

(t− s)−
r
2α e−κα(t−s)∥ĝ(s)∥ ds,

where κα = δ(1− γ) + λα
J+1γ.

By Cauchy- Schwarz inequality, we have

∥Ar/2II∥ ≤ C
(∫ t

0

(
(t− s)−

r
2α e−κα(t−s)

)2
ds
)1/2(∫ t

0

∥ĝ(s)∥2 ds
)1/2

.

Note that r < α, we have, with λJ+1 = (J + 1)2π2,∫ t

0

e−2καs

sr/α
ds ≤

∫ ∞

0

e−2καs

sr/α
ds ≤

∫∞
0

s−r/αe−2s ds

κ
1−r/α
α

≤ C
1

κ
1−r/α
α

≤ C
1

(λα
J+1)

1−r/α
≤ C

1

(J + 1)2α(1−r/α)
.

Thus

∥Ar/2II∥ ≤ C
1

(J + 1)2α(1−r/α)

(∫ t

0

∥ĝ(s)∥2 ds
)1/2

.

Together these estimates complete the proof of Theorem 3.1.
Combining Theorem 2.1 with Theorem 3.1, we have
Theorem 3.3. Let u and ûJ be the solutions of (1.5)-(1.7) and (1.18)-(1.20),

respectively. Assume that the assumptions (1.13)-(1.15) hold. Further assume that
u0 ∈ D(Aα), 1/2 < α ≤ 1 and E∥Aαu0∥2 < ∞. Then we have

E
∫ T

0

∫ 1

0

(
u(t, x)− ûJ (t, x)

)2
dxdt

≤ C
( ∞∑

k=1

(αM
k )2

2λα
k

+∆t2
∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
+ CE∥u0 − PJu0∥2 + C

1

(J + 1)2α

(
∆tE∥Aαu0∥2 +∆t

∞∑
k=1

λα
k (β

M
k )2 +

∞∑
k=1

(βM
k )2

)
.

Proof. Note that

E
∫ T

0

∫ 1

0

(
u(t, x)− ûJ(t, x)

)2
dxdt

≤ 2E
∫ T

0

∫ 1

0

(
u(t, x)− û(t, x)

)2
dxdt+ 2E

∫ T

0

∫ 1

0

(
û(t, x)− ûJ(t, x)

)2
dxdt

= 2I + 2II.
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For I, we have, by Theorem 2.1,

I ≤ C
( ∞∑

k=1

(αM
k )2

2λα
k

+∆t2
∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
.

For II, we have

II = E
∫ T

0

∥û(t)− ûJ(t)∥2 dt ≤ CE∥u0−PJu0∥2+C
1

(J + 1)2α
E
∫ T

0

∫ t

0

∥ĝ(s)∥2 dsdt.

Note that ĝ(s) = dû(s)
ds + (−∆)αû(s), we have, by Theorem 2.3,

E
∫ T

0

∫ t

0

∥ĝ(s)∥2 dsdt ≤ E
∫ T

0

∫ t

0

∥∥∥dû(s)
ds

+ (−∆)αû(s)
∥∥∥2 dsdt

≤ CE
∫ T

0

∫ T

0

∫ 1

0

(∣∣∣∂û(s, x)
∂s

∣∣∣2 + |(−∆)αû(s, x)|2
)
dxdsdt

≤ C
(
∆tE∥Aαu0∥2 +∆t

∞∑
k=1

λα
k (β

M
k )2 +

∞∑
k=1

(βM
k )2

)
.

Together these estimates complete the proof of Theorem 3.3.

4. Numerical simulations. In this section, we will consider the numerical sim-
ulation of the Fourier spectral methods for solving the following semilinear stochastic
space fractional partial differential equations subject to the periodic boundary condi-
tions, with 1/2 < α ≤ 1, 0 < x < 1, 0 < t ≤ T ,

∂u(t, x)

∂t
+ ϵ(−∆)αu(t, x) = f(u(t, x)) +

∂2W (t, x)

∂t∂x
,(4.1)

u(t, 0) = u(t, 1), u′
x(t, 0) = u′

x(t, 1),(4.2)

u(0, x) = u0(x),(4.3)

where (−∆)α is the fractional Laplacian defined by using the eigenvalues and eigen-
functions of the Laplacian −∆ subject to the periodic boundary conditions. Here
f : R → R is a smooth function and ϵ > 0 denotes the diffusion coefficient. Here
we consider the problems with the periodic boundary conditions because we want to
compare our numerical results with the results in [24, Example 10.39] where the al-
gorithms of the spectral methods for stochastic semilinear parabolic equation subject
to the periodic boundary conditions are given and discussed. One may also consider
the algorithms and MATLAB codes for stochastic space fractional partial differen-
tial equations with the homogeneous boundary conditions following the approaches
in, e.g., [16], [17]. Although the Laplacian is singular in (4.1)-(4.2) due to the peri-
odic boundary conditions, we expect the errors to behave as in Theorem 3.3, see the
comments in [24, Corollary 10.38].

Denote A = − ∂2

∂x2 with D(A) = H2
per(0, 1), where D(A) = H2

per(0, 1) is defined in
the Introduction section. Then the eigenvalues and eigenfunctions of A can also be
expressed by

λk = (2πk)2, ek = ei2πkx, k ∈ Z.
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The noise has the form of

(4.4)
∂2W (t, x)

∂t∂x
=
∑
k∈Z

σk(t)β̇k(t)ek(x),

where β̇k(t) = dβk(t)
dt , k ∈ Z are the derivatives of the standard Brownian motions

βk(t), k ∈ Z and σk(t), k ∈ Z are some appropriate functions of t. Here k ∈ Z since

we consider the periodic boundary conditions. When σk(t) = γ̄
1/2
k , γ̄k > 0, k ∈ Z, the

noise (4.4) reduces to

(4.5)
∂2W (t, x)

∂t∂x
=
∑
k∈Z

γ̄
1/2
k β̇k(t)ek(x).

The approximate noise ∂2Ŵ (t,x)
∂t∂x is, with some positive integer M > 0,

(4.6)
∂2Ŵ (t, x)

∂t∂x
=

∑
k∈Z,|k|≤M

γ̄
1/2
k ek(x)

Nt∑
l=1

ηk,l
∆t

χl(t).

In our numerical example below, we assume that, [24, Example 10.8],

(4.7) γ̄0 = 0, γ̄k = |k|−(2r1+1+ϵ̃), k ∈ Z, k ̸= 0.

where ϵ̃ > 0 is a very small positive number. When r1 = −1/2, we obtain so-called
space-time white noise. When r1 = 1, we obtain the smooth noise.

Let SJ := span{e0, e1, . . . , eJ/2, e−J/2+1 . . . , e−1}. We assume J ≤ M where M is
determined in (4.5). Here the ordering 0, 1, 2, . . . , J/2,−J/2 + 1, . . . ,−1 is consistent
with the ordering in the MATLAB functions fft and ifft [33]. Let 0 = t0 < t1 < t2 <
· · · < tNt = T, Nt ∈ N be the time partition of [0, T ] and ∆t the time step size with
T = Nt∆t. We use the semi-implicit Euler method to consider the time discretization.

We will consider the convergence rate against the different time steps. Choose J =
64. The reference solution is obtained by using the time step size ∆tref = T/Nref
with Nref = 104. Let kappa = [5, 10, 20, 50, 100, 200, 500], we will consider the
approximate solutions with the different time step sizes ∆ti = ∆tref ∗ kappa(i), i =
1, 2, . . . , 7. By Theorem 2.1, we have

E
∫ T

0

∫ 1

0

(
u(t, x)− û(t, x)

)2
dxdt(4.8)

≤ C
(∑

k∈Z

(αM
k )2

2λα
k

+∆t2
∑
k∈Z

(
λα
kβ

M
k + γM

k

)2
+∆t1+

α̃
α− 1

2α

)
.

We remark that here we choose k ∈ Z since we consider the periodic boundary con-
ditions. In our numerical example, we will choose, with γ̄k given by (4.7),

σk(t) = γ̄
1/2
k , γ̄k > 0, k ∈ Z,

σM
k (t) =

{
σk(t) = γ̄

1/2
k , |k| ≤ M,

0, |k| > M,

which implies that

|σM
k (t)| ≤ βM

k , where βM
k = γ̄

1/2
k , |k| ≤ M,
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and

|σk(t)− σM
k (t)| ≤ αM

k , where αM
k = γ̄

1/2
k , |k| > M.

We first observe that for sufficiently large M the convergence order of the L2

norm of the error in (4.8) is dominated by O
(
∆t

1
2 (1+

α̃
α− 1

2α )
)
. In fact, we will choose

M = J where J is sufficiently large. Then the first term of the right side of (4.8)
satisfies, with λk = (2πk)2, k ∈ Z,∑

k∈Z

(αM
k )2

2λα
k

=
∑

|k|>M

(αM
k )2

2λα
k

≤ C
( 1

λα
M+1

+
1

λα
M+2

+ . . .
)

≤ C
( 1

(M + 1)2α
+

1

(M + 2)2α
+ . . .

)
= C

( 1

(J + 1)2α
+

1

(J + 2)2α
+ . . .

)
.

The second term of the right side of the error in (4.8) is O(∆t2). Hence for sufficiently

large J , the convergence order of the L2 norm of the error in (4.8) is O
(
∆t

1
2 (1+

α̃
α− 1

2α )
)
.

We now consider two cases r1 = −1/2 and r1 = 1 in (4.7). For r1 = −1/2, we
may choose α̃ = 0 which implies that the convergence order of the L2 norm in (4.8)

is O
(
∆t

1
2 (1+

α̃
α− 1

2α )
)
= O

(
∆t

1
2 (1−

1
2α )
)
. Indeed, α̃ = 0 satisfies (1.15), that is,

βM
k = γ̄

1/2
k = |k|−

2r1+1+ϵ̃
2 = |k|−ϵ̃/2 ≤ |k|−α̃.

For r1 = 1, we may choose α̃ = 1/2− ϵ̄ ( since 0 ≤ α̃ < 1/2 ) with arbitrarily small
positive number ϵ̄ which implies that the convergence order of the L2 norm in (4.8)

is O
(
∆t

1
2 (1+

α̃
α− 1

2α )
)
= O

(
∆t

1
2 (1−

ϵ̄
α )
)
≈ O(∆t1/2). Indeed, in this case, α̃ = 1/2 − ϵ̄

satisfies (1.15), that is,

βM
k = γ̄

1/2
k = |k|−

2r1+1+ϵ̃
2 = |k|−

3+ϵ̃
2 ≤ |k|−α̃.

Thus we have, by Theorem 2.1, the following error estimates, with 1/2 < α ≤ 1 and
r1 = −1/2,

(4.9) ∥û− u∥L2(Ω,L2((0,T ),H)) ≤ C(∆t
1
2 (1−

1
2α )),

and, with 1/2 < α ≤ 1 and r1 = 1

(4.10) ∥û− u∥L2(Ω,L2((0,T ),H)) ≤ C(∆t1/2),

where the norm is measured in L2 both for time and space. In particular, when
α = 1, r1 = −1/2, we have

∥û− u∥L2(Ω,L2((0,T ),H)) ≤ C(∆t1/4),

which is consistent with the standard time discretization error for the stochastic heat
equation driven by space-time white noise, see, e.g., [35].

In our numerical experiment below, we choose f(u) = u − u3, u0(x) = sin(2πx),
and ϵ = 1. See the simulation of this problem for α = 1 in [30]. We will consider
the error estimates ∥û(tn) − u(tn)∥L2(Ω,H) at time tn. We hope to observe the same
convergence order as in (4.9) and (4.10).
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)

A plot of the error at T=1 against log2 (∆ t), with r=−1/2

←  reference line of slope 3/16

Fig. 1. A plot of the error at T = 1 against log2(∆t) with α = 0.8, r1 = −1/2

To do this, we consider M = 100 simulations. For each simulation ωm,m =
1, 2, . . . ,M , we generate J independent Brownian motions βl, l = 0, 1, . . . , J/2,−J/2+
1, . . . ,−1 and compute ûJ (tn) ≈ û(tn) at time tn = 1 by using the different time step
sizes. We then compute the following L2 norm of the error at tn = 1 for the simulation
ωm,m = 1, 2, . . . ,M ,

ϵ(∆ti, ωm) = ϵ(∆ti, ωm, tn) = ∥ûJ(tn, ωm)− uref(tn, ωm)∥2,

where the reference (“true ”) solution uref(tn, ωm) is approximated by using the time
step ∆tref = T/Nref and Jref = J . We then average ϵ(∆ti, ωm) with respect to ωm

to obtain the following approximation of ∥ûJ (tn) − uref(tn)∥L2(Ω,H) for the different
time step size ∆ti,

S(∆ti) =
( 1

M

M∑
m=1

ϵ(∆ti, ωm)
)1/2

=
( 1

M

M∑
m=1

∥ûJ (tn, ωm)− uref(tn, ωm)∥2
)1/2

.

For example, in the case α = 0.8, r1 = −1/2, the convergence rate against the time

step size is O(∆t
1
2 (1−

1
2α )) = O(∆t3/16), i.e., with some positive constant C,

S(∆ti) ≈ C∆t
3/16
i ,

which implies that

log(S(∆ti)) ≈ log(C) +
3

16
log(∆ti), i = 1, 2, . . . , 7.

In Figure 1, we consider the case α = 0.8, r1 = −1/2 and plot the points(
log(∆ti), log(S(∆ti))

)
, i = 1, 2, . . . , 7 and we observe that the experimentally de-

termined convergence order is higher than the theoretical order in this case. Here the
reference line has the slope 3

16 .
In Figure 2, we consider the case α = 0.8, r1 = 1 and in this case the theoretical

convergence order with respect to the time step size is O(∆t1/2). We plot the points(
log(∆ti), log(S(∆ti))

)
, i = 1, 2, . . . , 7 and we observe that the experimentally deter-

mined convergence order is also higher than the theoretical order in this case. Here
the reference line has the slope 1/2 .

In Figure 3, we consider the convergence rate against the different J . Choose
fixed time step ∆t = T/Nt with Nt = 104. We then consider the different J =
Jref ∗ ( 1

21 ,
1
22 ,

1
23 , . . . ,

1
28 ) where Jref = 210.

We will first generate the reference Brownian motions

(4.11) βj(t), j = 0, 1, 2, . . . , Jref/2,−Jref/2 + 1, · · · − 1
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Fig. 2. A plot of the error at T = 1 against log2(∆t) with α = 0.8, r1 = 1
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lo
g2

(e
rr

or
)

A plot of the error at T=1 against J

Fig. 3. A plot of the error at T = 1 against the J with α = 0.8, r1 = 1

for computing the reference (“true”) solution uref. When we consider the approximate
solution u with J truncated terms, we will use the Brownian motions βj(t), j =
0, 1, 2, . . . , J/2,−J/2 + 1, · · · − 1 from (4.11).

In Figure 3, we consider the case α = 0.8, r1 = 1 and plot the L2 norm error
against the different J where the L2 norm error are approximated by using M = 100
simulations. We indeed observe the spectral convergence with respect to the different
J .

Appendix In the Appendix, we shall provide the proof of Theorem 2.1. To do
this, we need the following lemma.

Lemma 4.1. Let 1/2 < α ≤ 1 and 0 ≤ α̃ < 1/2. We have∫ ∞

0

x−2(α̃+α)
(
1− e−x2α∆t

)
dx ≤ C∆t1+

α̃
α− 1

2α .

Proof. With the variable change y = x2α∆t, we have∫ ∞

0

x−2(α̃+α)
(
1− e−x2α∆t

)
dx = C∆t1+

α̃
α− 1

2α

(∫ 1

0

+

∫ ∞

1

) 1− e−y

y2+
α̃
α− 1

2α

dy

It is easy to see that, with α ∈ (1/2, 1],∫ ∞

1

1− e−y

y2+
α̃
α− 1

2α

dy ≤ C.

Further, we have∣∣∣ ∫ 1

0

1− e−y

y2+
α̃
α− 1

2α

dy
∣∣∣ ≤ C

∫ 1

0

y

y2+
α̃
α− 1

2α

dy ≤ C

∫ 1

0

1

y1+
α̃
α− 1

2α

dy < ∞.
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if 1 + α̃
α − 1

2α < 1, i.e., 0 ≤ α̃ < 1/2.

Together these estimates complete the proof of Lemma 4.1.

Proof. [Proof of Theorem 2.1]

Subtracting (2.2) from (2.1), we have

u(t, x)− û(t, x)

=

∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y) dŴ (s, y)

=
[ ∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)
]

+
[ ∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y) dŴ (s, y)
]

= F1(t, x) + F2(t, x),

where, with ηk,l and χl(t) defined as in (1.9),

dW (s, y) =
∂2W (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σk(s)ek(y)
]
dβk(s)dy,

dW (s, y) =
∂2W (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σM
k (s)ek(y)

]
dβk(s)dy,

d Ŵ (s, y) =
∂2Ŵ (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σM
k (s)

( Nt∑
l=1

ηk,l√
∆t

χl(s)
)
ek(y)

]
dsdy.

Thus

E
∫ T

0

∫ 1

0

|u(t, x)− û(t, x)|2 dxdt ≤ CE
∫ T

0

∫ 1

0

F 2
1 (t, x) dxdt

+ CE
∫ T

0

∫ 1

0

F 2
2 (t, x) dxdt = C(I + II).

For I, we have, by using isometry property and (1.14), with Gα(t − s, x, y) =∑∞
j=1 e

−(t−s)λα
j ej(x)ej(y),

I = E
∫ T

0

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)
]2

dxdt

=

∫ T

0

∫ 1

0

∫ t

0

[ ∫ 1

0

Gα(t− s, x, y)
( ∞∑

k=1

(
σk(s)− σM

k (s)
)
ek(y)

)
dy
]2

dsdxdt.

=

∫ T

0

∫ t

0

∞∑
k=1

e−2(t−s)λα
k
(
αM
k

)2
dsdt =

∫ T

0

∞∑
k=1

1− e−2tλα
k

2λα
k

(
αM
k

)2
dt ≤ C

∞∑
k=1

1

2λα
k

(
αM
k

)2
.
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For II, we have

II = E
∫ T

0

∫ 1

0

{[∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y) dŴ (s, y)
]2 }

dxdt

≤ 3E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

{[∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y) dW (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y) dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y) dŴ (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y) dŴ (s, y)−
∫ t

0

∫ 1

0

Gα(tj − s, x, y) dŴ (s, y)
]2}

dxdt

≤ 3
(
II1 + II2 + II3

)
.

(4.12)

For II2, we have, by isometry property,

II2 = E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ j−1∑
l=0

∫ tl+1

tl

∫ 1

0

Gα(tj − s, x, y)
( ∞∑

k=1

σM
k (s)ek(y) dy

)
dβk(s)

−
j−1∑
l=0

∫ tl+1

tl

∫ 1

0

Gα(tj − s̃, x, y)
∞∑
k=1

σM
k (s̃)ek(y) dyds̃

( 1

∆t

∫ tl+1

tl

dβk(s)
)]2

dxdt

=

Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

∫ tl+1

tl

{∫ 1

0

Gα(tj − s, x, y)
( ∞∑

k=1

σM
k (s)ek(y)

)
dy

− 1

∆t

∫ tl+1

tl

∫ 1

0

Gα(tj − s̃, x, y)
( ∞∑

k=1

σM
k (s̃)ek(y)

)
dyds̃

}2

dsdxdt

=

Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

∫ tl+1

tl

{ 1

∆t

∫ tl+1

tl

[ ∫ 1

0

Gα(tj − s, x, y)
( ∞∑

k=1

σM
k (s)ek(y)

)
dy

−
∫ 1

0

Gα(tj − s̃, x, y)
( ∞∑

k=1

σM
k (s̃)ek(y)

)
dy
]
ds̃
}2

dsdxdt

=

Nt−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
k=1

{ 1

∆t

∫ tl+1

tl

[
e−λα

k (tj−s)σM
k (s)− e−λα

k (tj−s̃)σM
k (s̃)

]
ds̃
}2

dsdt

=

Nt−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
k=1

e−2λα
k tj

∆t2

{∫ tl+1

tl

[
eλ

α
k sσM

k (s)− eλ
α
k s̃σM

k (s̃)
]
ds̃
}2

dsdt.

By (1.14), we have, with some ξ1l , ξ
2
l which lie between s and s̃,∣∣∣eλα

k sσM
k (s)− eλ

α
k s̃σM

k (s̃)
∣∣∣ = ∣∣∣(eλα

k s − eλ
α
k s̃
)
σM
k (s) + eλ

α
k s̃(σM

k (s)− σM
k (s̃)

∣∣∣
≤
∣∣∣(λα

k e
λα
k ξ1l ∆t

)
σM
k (s) + eλ

α
k s̃
(
(σM

k )′(ξ2l )
)
∆t
∣∣∣

≤
∣∣∣λα

k e
λα
k tl+1βM

k ∆t+ eλ
α
k tl+1γM

k ∆t
∣∣∣ ≤ eλ

α
k tl+1

(
λα
kβ

M
k + γM

k

)
∆t.
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Hence

II2 ≤
Nt−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
k=1

e−2λα
k tj

∆t2

[
e2λ

α
k tl+1

(
λα
kβ

M
k + γM

k

)2
∆t4

]
dsdt

≤ ∆t2
Nt−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
dsdt ≤ C∆t2

∞∑
k=1

(
λα
kβ

M
k + γM

k

)2
,

where we use the inequality e−2λα
k (tj−tl+1) ≤ 1 for l = 0, 1, 2, . . . , j − 1.

For II1, we have

II1 = E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)−
∫ tj

0

∫ 1

0

Gα(t− s, x, y) dW (s, y)
]2

dxdt

≤ 2E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

(
Gα(t− s, x, y)−Gα(tj − s, x, y)

)
dW (s, y)

]2
dxdt

+ 2E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y) dW (s, y)
]2

dxdt = 2(II11 + II21 ).

For II11 , we have, by the isometry property and (1.14),

II11 =

Nt−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
k=1

(
e−λα

k (t−s) − e−λα
k (tj−s)

)2
(σM

k (s))2 dsdt

≤
Nt−1∑
j=0

∫ tj+1

tj

∞∑
k=1

(βM
k )2

∫ tj

0

(
e−λα

k (t−s) − e−λα
k (tj−s)

)2
dsdt

Note that∫ tj

0

(
e−λα

k (t−s) − e−λα
k (tj−s)

)2
ds =

∫ tj

0

e−2λα
k (t−s)

(
1− e−λα

k (tj−t)
)2

ds

=
(
1− e−λα

k (tj−t)
)2 e−2λα

k (t−tj) − e−2λα
k t

2λα
k

≤

(
1− e−λα

k (t−tj)
)2

2λα
k

.

Hence, we have

II11 ≤
Nt−1∑
j=0

∫ tj+1

tj

( ∞∑
k=1

(βM
k )2

)(1− e−λα
k (t−tj)

)2
2λα

k

dt ≤ C
∞∑
k=1

(βM
k )2

(
1− e−λα

k∆t
)2

2λα
k

.

By (1.15) and Lemma 4.1, we have

II11 ≤ C
∞∑
k=1

k−2α̃

(
1− e−λα

k∆t
)2

2λα
k

≤ C

∫ ∞

1

x−2(α̃+α)
(
1− e−x2α∆t

)
dx ≤ C∆t1+

α̃
α− 1

2α .

For II21 , we have, by isometry property and (1.14) and (1.15),
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II21 = E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y) dW (s, y)
]2

dxdt

=

Nt−1∑
j=0

∫ tj+1

tj

∫ t

tj

∞∑
k=1

e−2λα
k (t−s)

(
σM
k (s)

)2
dsdt ≤

Nt−1∑
j=0

∫ tj+1

tj

∫ t

tj

∞∑
k=1

(
k−2α̃e−2λα

k (t−s)
)
dsdt

≤ C

Nt−1∑
j=0

∫ tj+1

tj

∞∑
k=1

[
k−2α̃

(1− e−2λα
k∆t

λα
k

)]
dt = C

∞∑
k=1

[
k−2α̃

(1− e−2λα
k∆t

λα
k

)]
≤ C

∫ ∞

0

1− e−2x2α∆t

x2α+2α̃
dx ≤ C

∫ ∞

0

x−2(α̃+α)
(
1− e−x2α∆t

)
dx.

By Lemma 4.1, we have

(4.13) II21 ≤ C∆t1+
α̃
α− 1

2α .

Similarly we may show, with 0 ≤ α̃ < 1/2,

II3 ≤ C∆t1+
α̃
α− 1

2α .

Together these estimates complete the proof of Theorem 2.1.
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Abstract

We investigate a new kind of anti-periodic type boundary value problems of sequential fractional
di�erential equation of order q 2 (2; 3]. We make use of Banach's contraction mapping principle
to obtain the uniqueness result while the existence of solutions is established via Krasnoselskii's
�xed point theorem and Leray-Schauder nonlinear alternative. The paper concludes with some
illustrative examples.

Key words and phrases: Fractional di�erential equations; sequential; antiperiodic; existence; �xed
point
AMS (MOS) Subject Classi�cations: 34A08; 34A12; 34A37

1 Introduction

Boundary value problems constitute an important �eld of research and arise in several disciplines such
as applied mathematics, control theory, mechanical structures and physics. The literature on the topic
ranges from theoretical aspects of existence and uniqueness of solutions to analytic and numerical
methods for �nding solutions of the problems. Linear and nonlinear, singular and nonsingular, well-
posed and ill-posed, local and nonlocal, free and �xed problems are well known types of boundary value
problems. In relation to the boundary conditions, considerable attention has been given to two-point,
multi-point, periodic/anti-periodic and integral boundary value problems. In particular, anti-periodic
boundary conditions are found to be quite signi�cant and important in the mathematical modeling of
certain physical processes and phenomena, for example, wavelets, physics, trigonometric polynomials
in the study of interpolation problems, etc., for example, see [1] and the references cited therein.

Di�erential and integral operators of fractional-order appear in the mathematical modelling of several
phenomena occurring in engineering and scienti�c disciplines such as biological sciences, ecology, control
theory, aerodynamics, uid dynamics, polymer rheology, regular variation in thermodynamics, etc. For
more details and explanation, for instance, see [2, 3, 4]. The interest in the study of fractional-order
operators is mainly due to nonlocal nature of such operators which takes into account memory and
hereditary properties of some important and useful materials and processes.

In recent years, fractional-order boundary value problems involving a variety of boundary conditions
have been studied by several researchers. For details and examples, we refer the reader to a series of
papers ([5]-[10]). For some works on sequential fractional di�erential equations, for example, see ([11]-
[15]).

Anti-periodic boundary value problems of fractional-order have also been investigated in the lit-
erature ([16]-[19]). However, the study of sequential fractional di�erential equations equipped with
anti-periodic boundary conditions has not been investigated yet.

In this paper, we consider a nonlinear anti-periodic boundary value problem of sequential fractional
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di�erential equations given by

(
(cDq + k cDq�1)u(t) = f(t; u(t)); 2 < q � 3; 0 < t < T;

�1u(0) + 1u(T ) = a; �2u
0(0) + 2u

0(T ) = b; �3u
00(0) + 3u

00(T ) = c;
(1)

where cDq denotes the Caputo fractional derivative of order q, �i; i; (i = 1; 2; 3); a; b; c 2 R, k 2 R+

and f is a given continuous function.

2 Preliminaries and an auxiliary lemma

First of all, let us recall some basic de�nitions [2, 3].

De�nition 2.1 The fractional integral of order r with the lower limit zero for a function f is de�ned
as

Irf(t) =
1

�(r)

Z t

0

f(s)

(t� s)1�r
ds; t > 0; r > 0;

provided the right hand-side is point-wise de�ned on [0;1), where �(�) is the gamma function, which is
de�ned by �(r) =

R
1

0
tr�1e�tdt.

De�nition 2.2 The Riemann-Liouville fractional derivative of order r > 0; n� 1 < r < n; n 2 N , is
de�ned as

Dr
0+f(t) =

1

�(n� r)

�
d

dt

�n Z t

0

(t� s)n�r�1f(s)ds;

where the function f(t) has absolutely continuous derivative up to order (n� 1).

De�nition 2.3 The Caputo derivative of order r for a function f : [0;1)! R can be written as

cDrf(t) = Dr
0+

 
f(t)�

n�1X
k=0

tk

k!
f (k)(0)

!
; t > 0; n� 1 < r < n:

Remark 2.4 If f(t) 2 Cn[0;1); then

cDrf(t) =
1

�(n� r)

Z t

0

f (n)(s)

(t� s)r+1�n
ds = In�rf (n)(t); t > 0; n� 1 < q < n:

The following lemma plays a pivotal role in de�ning the solution for problem (1).

Lemma 2.5 Let h 2 AC([0; T ]);R). Then the following linear boundary value problem

(
(cDq + k cDq�1)u(t) = h(t); 2 < q � 3; 0 < t < T;

�1u(0) + 1u(T ) = a; �2u
0(0) + 2u

0(T ) = b; �3u
00(0) + 3u

00(T ) = c
(2)

is equivalent to the fractional integral equation

u(t) = �1(t) +

Z t

0

e�k(t�s)
�Z s

0

(s� x)q�2

�(q � 1)
h(x)dx

�
ds+ �2(t)

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
h(x)dx

�
ds

+�3(t)

Z T

0

(T � s)q�2

�(q � 1)
h(s)ds+ �4(t)

Z T

0

(T � s)q�3

�(q � 2)
h(s)ds;

(3)
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where

�1(t) =
a

�1
�
1Tb

�1�2
�

c

k2�1�2�3

�
�2�1 + k�21T

�
+
ce�kt

k2�3
+

t

�2

�
b+

c�2
k�3

�
;

�2(t) =
3
�3�1

�
�1 �

�31
3

�
�
k1T

�1�2

�
2 �

�23
�3

�
�
3e

�kt

�3
+

kt

�2

�
2 �

�23
�3

�
;

�3(t) =
��13
k�1�3

�
1T

�1�2

��23
�3

� 2

�
+
3e

�kt

k�3
+

t

�2

��23
�3

� 2

�

�4(t) =
3

k2�3�1�2

�
�2�1 + �2k1T

�
�
3e

�kt

k2�3
�

3�2t

k�3�2
;

(4)

�i = �i + ie
�kT ; i = 1; 2; 3; �3 6= 0; �1 = �1 + 1 6= 0; �2 = �2 + 2 6= 0: (5)

Proof. Rewrite the equation (cDq + k cDq�1)u(t) = h(t) as

cDq�1(D + k)u(t) = h(t): (6)

Applying the operator Iq�1 on both sides of (6), and solving the resulting equation, we get

u(t) = A0e
�kt +A1 +A2t+

Z t

0

e�k(t�s)Iq�1h(s)ds; (7)

where A0; A1 and A2 are arbitrary constants and

Iq�1h(t) =

Z t

0

(t� x)q�2

�(q � 1)
h(x)dx:

Di�erentiating (7) with respect to t; we obtain

u0(t) = �kA0e
�kt +A2 � k

Z t

0

e�k(t�s)Iq�1h(s)ds+ Iq�1h(t); (8)

u00(t) = k2A0e
�kt + k2

Z t

0

e�k(t�s)Iq�1h(s)ds� kIq�1h(t) + Iq�2h(t): (9)

Using the boundary conditions of (2) in (7)-(9), we get

�1A0 + �1A1 +A21T + 1

Z T

0

e�k(T�s)Iq�1h(s)ds = a; (10)

�k�2A0 + �2A2 + 2

�
� k

Z T

0

e�k(T�s)Iq�1h(s)ds+ Iq�1h(T )
�
= b; (11)

A0k
2�3 + 3

�
k2
Z T

0

e�k(T�s)Iq�1h(s)ds� kIq�1h(T ) + Iq�2h(T )
�
= c: (12)

Solving the system (10)-(12) for A0; A1 and A2; we �nd that

A0 =
1

k2�3

n
c� 3

�
k2
Z T

0

e�k(T�s)Iq�1h(s)ds� kIq�1h(T ) + Iq�2h(T )
�o

;

A1 =
a

�1
�
�1Tb
�1�2

�
�
� �1
k2�3�1

+
�21T )

k�3�1�2

�
c

+
� �13
�3�1

�
1T

�1

�2k
�2

�
k�23
�3�2

�
�

1
�1

�Z T

0

e�k(T�s)Iq�1h(s)ds

�
� �13
k�3�1

+
1T

�1

� �23
�3�2

�
2
�2

��
Iq�1h(T ) +

� �13
k2�3�1

+
�231T

k�3�1�2

�
Iq�2h(T );
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A2 =
b

�2
+

�2c

k�3�2
+
�2k
�2

�
k�23
�3�2

�Z T

0

e�k(T�s)Iq�1h(s)ds

+
� �23
�3�2

�
2
�2

�
Iq�1h(T )�

�23
k�3�2

Iq�2h(T );

where we have used (5). Substituting the values of A0; A1 and A2 in (7) and using the notations (4),
we obtain the solution (3). By direct computation, it is easy to show that (3) satis�es the problem (2).
This completes the proof. �

3 Main Result

Let C = C([0; T ];R) denotes the Banach space of all continuous functions from [0; T ] ! R endowed
with the norm de�ned by kuk = supfju(t)j; t 2 [0; T ]g.
Via Lemma 2.5, we transform the problem (1) to an equivalent �xed point problem as

u = Hu; (13)

where H : C ! C is de�ned by

(Hu)(t) = �1(t) +

Z t

0

e�k(t�s)
�Z s

0

(s� x)q�2

�(q � 1)
f(x; u(x))dx

�
ds

+�2(t)

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
f(x; u(x))dx

�
ds

+�3(t)

Z T

0

(T � s)q�2

�(q � 1)
f(s; u(s))ds+ �4(t)

Z T

0

(T � s)q�3

�(q � 2)
f(s; u(s))ds:

(14)

Notice that the problem (1) has solutions if the operator equation (13) has �xed points.
For computational convenience, we set

Q = sup
t2[0;T ]

n tq�1(1� e�kt)

k�(q)
+
j�2(t)jT

q�1(1� e�kT )

k�(q)
+
j�3(t)jT

q�1

�(q)
+
j�4(t)jT

q�2

�(q � 1)

o
: (15)

Now we are in a position to present our �rst result which deals with the existence of a unique solution
of the problem (1) and is based on Banach's contraction mapping principle.

Theorem 3.1 Assume that f : [0; T ] � R ! R is a continuous functions satisfying the Lipschitz
condition:

(A1) there exists a positive number ` such that jf(t; u)� f(t; v)j � `ju� vj; 8t 2 [0; T ]; u; v 2 R:

Then the problem (1) has a unique solution on [0; T ] if ` < 1=Q; where Q is given by (15).

Proof. Let us �x r �
QM + k�1k

1� `Q
; where supt2[0;T ] jf(t; 0)j = M and Q is given by (15), and de�ne

a set Br = fu 2 C : kuk � rg: In the �rst step, we show that HBr � Br; where the operator H is
de�ned by (14). For any u 2 Br; t 2 [0; T ]; we have

jf(t; u(t))j = jf(t; u(t))� f(t; 0) + f(t; 0)j � jf(t; u(t))� f(t; 0)j+ jf(t; 0)j

� `kuk+M � `r +M:

Then, for u 2 Br; we obtain

k(Hu)k � sup
t2[0;T ]

n
j�1(t)j+

Z t

0

e�k(t�s)
�Z s

0

(s� x)��2

�(�� 1)
jf(x; u(x))jdx

�
ds
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+ j�2(t)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+ j�3(t)j

Z T

0

(T � s)��2

�(�� 1)
jf(s; u(s))jds+ j�4(t)j

Z T

0

(T � s)q�3

�(q � 2)
jf(s; u(s))jds:

o

� (`r +M) sup
t2[0;T ]

nZ t

0

e�k(t�s)
�Z s

0

(s� x)��2

�(�� 1)
dx
�
ds

+ j�2(t)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
dx
�
ds

+ j�3(t)j

Z T

0

(T � s)��2

�(�� 1)
ds+ j�4(t)j

Z T

0

(T � s)q�3

�(q � 2)
ds:
o
+ k�1k

� (`r +M)Q+ k�1k � r:

This shows that HBr � Br: Next we show that the operator H is a contraction. Let u; v 2 C: Then

kHu�Hvk � sup
t2[0;T ]

nZ t

0

e�k(t�s)
�Z s

0

(s� x)��2

�(�� 1)
jf(x; u(x))� f(x; v(x))jdx

�
ds

+ j�2(t)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)

���f(x; u(x))� f(x; v(x))
���dx�ds

+ j�3(t)j

Z T

0

(T � s)q�2

�(q � 1)

���f(s; u(s))� f(s; v(s))
���ds

+ j�4(t)j

Z T

0

(T � s)q�3

�(q � 2)

���f(s; u(s))� f(s; v(s))
���dso

� `Q k u� v k;

where we have used (15). By the given assumption: ` < 1=Q; it follows that the operator H is a
contraction. Thus, by Banach's contraction mapping principle, we deduce that the operator H has a
�xed point, which equivalently means that the problem (1) has a unique solution on [0; T ]: �

Now we show the existence of solutions for the problem (1) by means of Krasnoselskiis �xed point
theorem, which is stated below for the reader's convenience.

Lemma 3.2 (Krasnoselskii's �xed point theorem [20]) Let Y be a closed bounded, convex and nonempty
subset of a Banach space X : Let '1; '2 be the operators such that (i) '1y1 + '2y2 2 Y whenever
y1; y2 2 Y ; (ii) '1 is compact and continuous and (iii) '2 is a contraction mapping. Then there exists
y 2 Y such that y = '1y + '2y:

Theorem 3.3 Let f : [0; T ] � R ! R be a continuous function such that jf(t; x)j � g(t); 8(t; x) 2
[0; T ]�R; where g 2 C([0; T ];R+); with supt2[0;T ] jg(t)j = kgk: In addition, it is assumed that `Q1 < 1;
where

Q1 = sup
t2[0;T ]

n j�2(t)jT q�1(1� e�kT )

k�(q)
+
j�3(t)jT

q�1

�(q)
+
j�4(t)jT

q�2

�(q � 1)

o
: (16)

Then the problem (1) has at least one solution on [0; T ]:

Proof. With �r � Qkgk+ k�1k (Q is given by (15)), we de�ne operators H1 and H2 on B�r = fu 2 C :
kuk � �rg as follows

(H1u)(t) =

Z t

0

e�k(t�s)
�Z s

0

(s� x)��2

�(�� 1)
f(x; u(x))dx

�
ds;
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(H2u)(t) = �1(t) + �2(t)

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
f(x; u(x))dx

�
ds

+�3(t)

Z T

0

(T � s)q�2

�(q � 1)
f(s; u(s))ds+ �4(t)

Z T

0

(T � s)q�3

�(q � 2)
f(s; u(s))ds:

For u; v 2 B�r; it is easy to verify that kH1u + H2vk � Qkgk + k�1k: Thus, H1u + H2v 2 B�r: Using the
assumption (A1) and (3.3),one can get kH2u�H2vk � `Q1 k u� v k; which implies that the operator H2 is a
contraction in view of the given condition: `Q1 < 1:
Continuity of f implies that the operator H1 is continuous. Also, H1 is uniformly bounded on B�r as

kH1uk �
(1� e�kT )T q�1kgk

k�(q)
:

Finally, we establish that the operator H1 is compact. Letting sup(t;u)2[0;T ]�B�r
jf(t; u)j = f�r, for t1; t2 2 [0; T ];

we have

k(H1u)(t2)� (H1u)(t1)k

� f�r

�
je�kt2 � e�kt1 j

Z t1

0

eks
�Z s

0

(s� x)q�2

�(q � 1)
dx
�
ds+

Z t2

t1

e�k(t2�s)
�Z s

0

(s� x)q�2

�(q � 1)
dx
�
ds

�

! 0 as t2 � t1 ! 0;

independent of u: Thus the operator H1 is relatively compact on B�r: Hence, by the Arzel�a-Ascoli Theorem, the
operator H1 is compact on B�r: Thus all the assumptions of Lemma 3.2 are satis�ed. In consequence, by the
conclusion of Lemma 3.2, the problem (1) has at least one solution on [0; T ]: �

In our last result, we prove the existence of solutions the problem(1) by applying Leray-Schauder nonlinear
alternative.

Lemma 3.4 (Nonlinear alternative for single valued maps [20]). Let S be a closed, convex subset of a Banach
space E, and V be an open subset of S with 0 2 V: Suppose that A : V ! S is continuous and compact (that is,
A(V) is a relatively compact subset of S) map. Then either

(i) A has a �xed point in V; or

(ii) there is a v 2 @V (the boundary of V in S) and � 2 (0; 1) with v = �A(v):

Theorem 3.5 Let f : [0; T ]� R! R be a continuous function. Assume that

(A3) there exist a function p 2 C([0; T ];R+); and a nondecreasing function  : R+ ! R
+ such that jf(t; x)j �

p(t) (kuk); 8(t; u) 2 [0; T ]� R;

(A4) there exists a constant M > 0 such that M=Q > 1; where

Q = k�1k+ kpk (kMk)Q: (17)

Then the boundary value problem (1) has at least one solution on [0; T ]:

Proof. We complete the proof in several steps. Firstly we show that the operator H : C ! C de�ned by
(14) maps bounded sets into bounded sets in C. For the positive number r, let Br = fu 2 C : kuk � rg be a
bounded set in C: Then, for u 2 Br; we have

j(Hu)(t)j � j�1(t)j+

Z t

0

e�k(t�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+ j�2(t)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+ j�3(t)j

Z T

0

(T � s)��2

�(�� 1)
jf(s; u(s))jds+ j�4(t)j

Z T

0

(T � s)q�3

�(q � 2)
jf(s; u(s))jds:

� j�1(t)j+ kpk (kuk)
n tq�1(1� e�kt)

k�(q)
+ j�2(t)j

T q�1(1� e�kT )

k�(q)
+ j�3(t)j

T q�1

k�(q)
+ j�4(t)j

T q�2

k�(q � 1)

o
;
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which implies that k(Hu)k � k�1(t)k+ kpk (r)Q; where Q is given by (15).
Next we show that H maps bounded sets into equicontinuous sets of C. Let t1; t2 2 [0; T ] with t1 < t2 and
u 2 Br, where Br is a bounded set in C. Then we obtain

j(Hu)(t2)� (Hu)(t1)j � j�1(t2)� �1(t1)j

+
���
Z t2

0

e�k(t2�s)
�Z s

0

(s� x)q�2

�(q � 1)
f(x; u(x))dx

�
ds�

Z t1

0

e�k(t1�s)
�Z s

0

(s� x)q�2

�(q � 1)
f(x; u(x))dx

�
ds
���

+j�2(t2)� �2(t1)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+j�3(t2)� �3(t1))j

Z T

0

(T � s)��2

�(�� 1)
jf(s; u(s))jds+ j�4(t2)� �4(t1)j

Z T

0

(T � s)q�3

�(q � 2)
jf(s; u(s))jds

�
���( b
�2

+
�2c

k�2�3
)(t2 � t1) +

c

k2�2
(e�kt2 � e�kt1)

���+ kpk (r)
h (1� e�k(t2�t1))

k�(q)

�
tq�1
1 (1� e�kt1) + tq�1

2

�

+
T q�2e�kt1

�(q)

���3
�3

���nT
k

�
2� e�kT

�
+
q � 1

k2

o�
1� e�k(t2�t1)

�

+
T q�2

�(q)

n��� (2�3 � 3�2)T

�2�3

��� �2� e�kT
�
+
q � 1

k

����23
�32

���o(t2 � t1)
i
:

Obviously the right hand side of the above inequality tends to zero independently of u 2 Br as t2�t1 ! 0: As H
satis�es the above assumptions, therefore it follows by the Arzel�a-Ascoli theorem that H : C ! C is completely
continuous. The conclusion will follow form the Leray-Schauder nonlinear alternative (Lemma 3.4) once we
have proved the boundedness of the set of all solutions to equations u = �Hu for � 2 [0; 1]: Let u be a solution.
Then, for t 2 [0; T ]; and using the computations in proving that H is bounded, we have

ju(t)j = j�(Hu)(t)j � j�1(t)j+

Z t

0

e�k(t�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+ j�2(t)j

Z T

0

e�k(T�s)
�Z s

0

(s� x)q�2

�(q � 1)
jf(x; u(x))jdx

�
ds

+ j�3(t)j

Z T

0

(T � s)��2

�(�� 1)
jf(s; u(s))jds+ j�4(t)j

Z T

0

(T � s)q�3

�(q � 2)
jf(s; u(s))jds

� j�1(t)j+ kpk (kuk)
n tq�1(1� e�kt)

k�(q)
+ j�2(t)j

T q�1(1� e�kT )

k�(q)
+ j�3(t)j

T q�1

k�(q)
+ j�4(t)j

T q�2

k�(q � 1)

o
:

In consequence, we get

kuk=
h
k�1k+ kpk (kuk)Q

i
� 1:

In view of (A4), there exists M such that kuk 6=M . Let us set U = fu 2 C : kuk < Mg: Note that the operator
H : U ! C([0; T ];R) is continuous and completely continuous. From the choice of U , there is no u 2 @U such
that u = �H(u) for some � 2 (0; 1). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma
3.4), we deduce that H has a �xed point u 2 U which is a solution of the problem (1). �

Example 3.6 Consider the following anti-periodic fractional boundary value problem:

8<
:

(cD5=2 + 2cD3=2)u(t) =
sinu

25
+ e�t cos t; t 2 [0; 2];

u(0) + u(2) = 1; u0(0)� (1=2)u0(2) = 2; u00(0) + (1=4)u00(2) = 1;

(18)

where f(t; u(t)) = sinu
25

+ e�t cos t; T = 2; k = 2; �1 = 1; 1 = 1; �2 = 1; 2 = �1=2; �3 = 1; 3 = 1=4; a =
1; b = 2; c = 1: With the given data, we �nd that the values of Q and Q1 respectively given by (15) and (16) are
Q ' 7:557935, Q1 ' 6:513574:
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(a) For the applicability of Theorem 3.1, we have that `and = 1=25 as jf(t; u) � f(t; v)j � 1
25
ju � vj and

`Q ' 0:302317 < 1: Thus all the conditions of Theorem 3.1 are satis�ed. Hence the conclusion of
Theorem 3.1 implies that there exists a unique solution for problem (18)on [0; 2]:

(b) Observe that jf(t; u)j � g(t) = 1
25
+e�t cos t with kgk = 26

25
and `Q1 ' 0:260543 < 1: Thus all the conditions

of Theorem (3.3) are satis�ed. Hence, by the conclusion of Theorem (3.3), the problem (18) has at least
one solution on [0; 2]:

(c) Obviously jf(t; u)j � 1=25 + e�t cos t: Taking  (kuk) = 1; p(t) = 1=25 + e�t cos t; we have Q = k�1k +
kpk (kMk)Q ' 13:224428 (Q is given by (17)) so that M > 13:224428. Thus all the conditions of
Theorem 3.5 are satis�ed. Hence it follows by the conclusion of Theorem 3.5 that the problem (18) has at
least one solution on [0; 2]:
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ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY

NORMED SPACES

JUNG RYE LEE1, CHOONKIL PARK2∗, DONG YUN SHIN3∗, AND SUNGSIK YUN4

Abstract. Let

M1f(x, y) : =
3

4
f(x+ y)− 1

4
f(−x− y) +

1

4
f(x− y) +

1

4
f(y − x)− f(x)− f(y),

M2f(x, y) : = 2f
(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y).

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic
ρ-functional inequalities

N(M1f(x, y), t) ≥ N (ρM2f(x, y), t) (0.1)

where ρ is a fixed real number with |ρ| < 1, and

N (M2f(x, y), t) ≥ N (ρM1f(x, y), t) (0.2)

where ρ is a fixed real number with |ρ| < 1
2
.

1. Introduction and preliminaries

Katsaras [19] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space from
various points of view [15, 21, 48]. In particular, Bag and Samanta [3], following Cheng and
Mordeson [11], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [20]. They established a decomposition theorem of
a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed
spaces [4].

We use the definition of fuzzy normed spaces given in [3, 25, 26] to investigate the Hyers-Ulam
stability of additive ρ-functional inequalities in fuzzy Banach spaces.

Definition 1.1. [3, 25, 26, 27] Let X be a real vector space. A function N : X ×R→ [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in

[25, 28].

Definition 1.2. [3, 28, 26, 27] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn−x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N -
limn→∞ xn = x.

2010 Mathematics Subject Classification. Primary 46S40, 39B52, 47H10, 39B62, 26E50, 47S40.
Key words and phrases. fuzzy Banach space; fixed point method; additive-quadratic ρ-functional inequality;

Hyers-Ulam stability.
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Definition 1.3. [3, 28, 26, 27] Let (X,N) be a fuzzy normed vector space. A sequence {xn}
in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all
n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If
each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy
normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is
continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then
f : X → Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [47]
concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [17] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [2] for additive mappings and by Rassias [39] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Găvruta [16] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called the quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be a
quadratic mapping. The stability of quadratic functional equation was proved by Skof [46] for
mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [12]
noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian
group. The stability problems of various functional equations have been extensively investigated
by a number of authors (see [1, 5, 9, 10, 14, 22, 24, 29, 34, 35, 36, 40, 41, 42, 43, 44, 45, 49, 50]).

We recall a fundamental result in fixed point theory.

Theorem 1.4. [6, 13] Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant α < 1. Then for each given element
x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [18] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [7, 8, 30, 31, 38]).

Park [32, 33] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability
of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional in-
equality (0.1) in fuzzy Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional in-
equality (0.2) in fuzzy Banach spaces by using the fixed point method.

2. Additive-quadratic ρ-functional inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional
inequality (0.1) in fuzzy Banach spaces. Let ρ be a real number with |ρ| < 1.

We need the following lemma to prove the main results.
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Lemma 2.1.
(i) If an odd mapping f : X → Y satisfies

N(M1f(x, y), t) ≥ N(ρM2f(x, y), t) (2.1)

for all x, y ∈ X and all t > 0, then f is the Cauchy additive mapping.
(ii) If an even mapping f : X → Y satisfies f(0) = 0 and (2.1), then f is the quadratic
mapping.

Proof. (i) Letting y = x in (2.1), we get N(f(2x)− 2f(x), t) = 1 for all t > 0 and so f(2x) =
2f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

2
f(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

N(f(x+ y)− f(x)− f(y), t) = N(ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t)

= N(ρ(f(x+ y)− f(x)− f(y)), t)

for all t > 0 and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X by (N5).

(ii) Letting y = x in (2.1), we get N
(
1
2f(2x)− 2f(x), t

)
= 1 for all t > 0 and so f(2x) =

4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.3)

for all x ∈ X.
It follows from (2.1) and (2.3) that

N

(
1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y), t

)
= N

(
ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
, t

)
= N

(
ρ

(
1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

)
, t

)
for all t > 0 and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X by (N5). �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic
ρ-functional inequality (0.1) in fuzzy Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y) ≤ L

2
ϕ (2x, 2y) (2.4)

for all x, y ∈ X.
(i) Let f : X → Y be an odd mapping satisfying

N (M1f(x, y), t) ≥ min

{
N (ρM2f(x, y), t) ,

t

t+ ϕ(x, y)

}
(2.5)
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for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n
)

exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ Lϕ(x, x)
(2.6)

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then Q(x) := N -
limn→∞ 4nf

(
x
2n
)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (2− 2L)t

(2− 2L)t+ Lϕ(x, x)
(2.7)

for all x ∈ X and all t > 0.

Proof. (i) Letting y = x in (2.5), we get

N (f (2x)− 2f(x), t) ≥ t

t+ ϕ(x, x)
(2.8)

and so

N

(
f (x)− 2f

(
x

2

)
, t

)
≥ t

t+ ϕ
(
x
2 ,

x
2

) (2.9)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ ϕ(x, x)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [23, Lemma 2.1]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
2g

(
x

2

)
− 2h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 ,

x
2

) ≥ Lt
2

Lt
2 + L

2ϕ(x, x)
=

t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.9) that N
(
f(x)− 2f

(
x
2

)
, L2 t

)
≥ t

t+ϕ(x,x) for all x ∈ X and all t > 0. So

d(f, Jf) ≤ L
2 .

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:
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(1) A is a fixed point of J , i.e.,

A

(
x

2

)
=

1

2
A(x) (2.10)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that A is a unique mapping satisfying (2.10) such that there exists a µ ∈ (0,∞)
satisfying

N(f(x)−A(x), µt) ≥ t

t+ ϕ(x, x)

for all x ∈ X;
(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

N - lim
n→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (2.6) holds.
By (2.5),

N

(
2nM1f

(
x

2n
,
y

2n

)
, 2nt

)
≥ min

{
N

(
2nM2f

(
x

2n
,
y

2n

)
, 2nt

)
,

t

t+ ϕ
(
x
2n ,

y
2n
)}

and so

N

(
2nM1f

(
x

2n
,
y

2n

)
, t

)
≥ min

{
N

(
2nM2f

(
x

2n
,
y

2n

)
, t

)
,

t
2n

t
2n + Ln

2n ϕ (x, y)

}

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
ϕ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

N (M1A(x, y), t) ≥ N (ρM2A(x, y), t)

for all x, y ∈ X and all t > 0. By Lemma 2.1, the mapping A : X → Y is Cauchy additive.
(ii) Letting y = x in (2.5), we get

N

(
1

2
f (2x)− 2f(x), t

)
≥ t

t+ ϕ(x, x)
(2.11)

and so

N

(
f (x)− 4f

(
x

2

)
, t

)
≥

t
2

t
2 + ϕ

(
x
2 ,

x
2

) =
t

t+ 2ϕ
(
x
2 ,

x
2

) (2.12)

for all x ∈ X.
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ϕ(x, x)
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for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
4g

(
x

2

)
− 4h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

4
εt

)
≥

Lt
4

Lt
4 + ϕ

(
x
2 ,

x
2

) ≥ Lt
4

Lt
4 + L

4ϕ(x, x)
=

t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.12) that N
(
f(x)− 4f

(
x
2

)
, L2 t

)
≥ t

t+ϕ(x,x) for all x ∈ X and all t > 0. So

d(f, Jf) ≤ L
2 .

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q

(
x

2

)
=

1

4
Q(x) (2.13)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is a even mapping. The mapping Q is a
unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that Q is a unique mapping satisfying (2.13) such that there exists a µ ∈ (0,∞)
satisfying

N(f(x)−Q(x), µt) ≥ t

t+ ϕ(x, x)

for all x ∈ X;
(2) d(Jnf,Q)→ 0 as n→∞. This implies the equality

N - lim
n→∞

4nf

(
x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

2− 2L
.

This implies that the inequality (2.7) holds.
By (2.5),

N

(
4nM1f

(
x

2n
,
y

2n

)
, 4nt

)
≥ min

{
N

(
4nM2f

(
x

2n
,
y

2n

)
, 4nt

)
,

t

t+ ϕ
(
x
2n ,

y
2n
)}

and so

N

(
4nM1f

(
x

2n
,
y

2n

)
, t

)
≥ min

{
N

(
4nM2f

(
x

2n
,
y

2n

)
, t

)
,

t
4n

t
4n + Ln

4n ϕ (x, y)

}

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
4n

t
4n

+Ln

4n
ϕ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

N (M1Q(x, y), t) ≥ N (ρM2Q(x, y), t)

for all x, y ∈ X and all t > 0. By Lemma 2.1, the mapping Q : X → Y is quadratic. �

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector
space with norm ‖ · ‖.
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(i) Let f : X → Y be an odd mapping satisfying

N(M1f(x, y), t) ≥ min

{
N (ρM2f(x, y), t) ,

t

t+ θ(‖x‖p + ‖y‖p)

}
(2.14)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.14). Then Q(x) := N -
limn→∞ 4nf( x

2n ) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (2p − 4)t

(2p − 4)t+ 4θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.
Choosing L = 21−p for an odd mapping case and L = 22−p for an even mapping case, then we
obtain the desired results. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 2Lϕ

(
x

2
,
y

2

)
≤ 4Lϕ

(
x

2
,
y

2

)
(2.15)

for all x, y ∈ X..
(i) Let f : X → Y be an odd mapping satisfying (2.5). Then A(x) := N -limn→∞

1
2n f (2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ ϕ(x, x)

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then Q(x) := N -
limn→∞

1
4n f (2nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (2− 2L)t

(2− 2L)t+ ϕ(x, x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
(i) It follows from (2.8) that

N

(
f(x)− 1

2
f(2x),

1

2
t

)
≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0.
(ii) It follows from (2.11) that

N

(
f(x)− 1

4
f(2x),

1

2
t

)
≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed
vector space with norm ‖ · ‖.
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(i) Let f : X → Y be an odd mapping satisfying (2.14). Then A(x) := N -limn→∞
1
2n f(2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.14). Then Q(x) := N -
limn→∞

1
4n f(2nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (4− 2p)t

(4− 2p)t+ 4θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.
Choosing L = 2p−1 for an odd mapping case and L = 2p−2 for an even mapping case, then we
obtain the desired results. �

3. Additive-quadratic ρ-functional inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional
inequality (0.2) in fuzzy Banach spaces. Let ρ be a real number with |ρ| < 1

2 .

Lemma 3.1.
(i) If an odd mapping f : X → Y satisfies

N(M2f(x, y), t) ≥ N(ρM1f(x, y), t) (3.1)

for all x, y ∈ X and all t > 0, then f is the Cauchy additive mapping.
(ii) If an even mapping f : X → Y satisfies f(0) = 0 and (3.1), then f is the quadratic
mapping.

Proof. (i) Letting y = 0 in (3.1), we get N
(
2f
(
x
2

)
− f(x), t

)
= 1 for all t > 0. So

f

(
x

2

)
=

1

2
f(x) (3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

N(f(x+ y)− f(x)− f(y), t) ≥ N

(
2f

(
x+ y

2

)
− f(x)− f(y), t

)
= N(ρ(f(x+ y)− f(x)− f(y)), t)

for all t > 0 and so
f(x+ y) = f(x) + f(y)

for all x, y ∈ X by (N5).
(ii) Letting y = 0 in (3.1), we get N

(
4f
(
x
2

)
− f(x), t

)
for all t > 0. So

f

(
x

2

)
=

1

4
f(x) (3.3)

for all x ∈ X.
It follows from (3.1) and (3.3) that

N

(
1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y), t

)
≥ N

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y), t

)
= N

(
ρ

(
1

2
f(x+ y) +

1

2
f(x− y)− f(x)− f(y)

)
, t

)
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for all t > 0 and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X by (N5). �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic
ρ-functional inequality (0.2) in fuzzy Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function satisfying (2.4).
(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y), t) ≥ min

{
N (ρM1f(x, y), t) ,

t

t+ ϕ(x, y)

}
(3.4)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n
)

exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ ϕ(x, x)

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.4). Then Q(x) := N -
limn→∞ 4nf

(
x
2n
)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (1− L)t

(1− L)t+ ϕ(x, x)

for all x ∈ X and all t > 0.

Proof. (i) Letting y = 0 in (3.4), we get

N

(
f(x)− 2f

(
x

2

)
, t

)
= N

(
2f

(
x

2

)
− f(x), t

)
≥ t

t+ ϕ(x, 0)
(3.5)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ ϕ(x, 0)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [23, Lemma 2.1]).
The rest of the proof is similar to the proof of Theorem 2.2 (i).
(ii) Letting y = 0 in (3.4), we get

N

(
f(x)− 4f

(
x

2

)
, t

)
= N

(
4f

(
x

2

)
− f(x), t

)
≥ t

t+ ϕ(x, 0)
(3.6)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2 (ii). �

Corollary 3.3. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector
space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y)− ρM1f(x, y), t) ≥ t

t+ θ(‖x‖p + ‖y‖p)
(3.7)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2pθ‖x‖p
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for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7). Then Q(x) := N -
limn→∞ 4nf( x

2n ) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (2p − 4)t

(2p − 4)t+ 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.
Choosing L = 21−p for an odd mapping case and L = 22−p for an even mapping case, then we
obtain the desired results. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function satisfying (2.15).
(i) Let f : X → Y be an odd mapping satisfying (3.4). Then A(x) := N -limn→∞

1
2n f (2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ Lϕ(x, x)

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.4). Then Q(x) := N -
limn→∞

1
4n f (2nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (1− L)t

(1− L)t+ Lϕ(x, x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.2.
(i) It follows from (3.5) that

N

(
f(x)− 1

2
f(2x),

t

2

)
≥ t

t+ ϕ(2x, 0)

and so

N

(
f(x)− 1

2
f(2x), Lt

)
≥ 2Lt

2Lt+ ϕ(2x, 0)
=

t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0.
(ii) It follows from (3.6) that

N

(
f(x)− 1

4
f(2x),

t

4

)
≥ t

t+ ϕ(2x, 0)

and so

N

(
f(x)− 1

4
f(2x), Lt

)
≥ 4Lt

4Lt+ ϕ(2x, 0)
=

t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed
vector space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying (3.7). Then A(x) := N -limn→∞

1
2n f(2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2pθ‖x‖p

for all x ∈ X.
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(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7). Then Q(x) := N -
limn→∞

1
4n f(2nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (4− 2p)t

(4− 2p)t+ 2pθ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.
Choosing L = 2p−1 for an odd mapping case and L = 2p−2 for an even mapping case, then we
obtain the desired results. �
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Hyers-Ulam stability of set-valued functional equations: a fixed point
approach

Sungsik Yun, Choonkil Park∗ and Hassan Azadi Kenary∗

Abstract. In [36], Park proved the Hyers-Ulam stability of set-valued functional equations by using the direct

method.

In this paper, we prove the Hyers-Ulam stability of set-valued functional equations by using the fixed point

method.

1. Introduction and preliminaries

Set-valued functions in Banach spaces have been developed in the last decades. The pioneering paper by

Aumann [5] and Debreu [14] were inspired by problems arising in Control Theory and Mathematical Economics.

We can refer to the papers by Arrow and Debreu [3], McKenzie [29], the momographs by Hindenbrand [20],

Aubin and Frankowska [4], Castaing and Valadier [8], Klein and Thompson [26] and the survey by Hess [19].

The stability problem of functional equations originated from a question of Ulam [50] concerning the stability

of group homomorphisms. Hyers [21] gave a first affirmative partial answer to the question of Ulam for Banach

spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias [40] for linear

mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained

by Găvruta [18] by replacing the unbounded Cauchy difference by a general control function in the spirit of

Rassias’ approach

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called a quadratic functional equation. In

particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A Hyers-Ulam

stability problem for the quadratic functional equation was proved by Skof [49] for mappings f : X → Y ,

where X is a normed space and Y is a Banach space. Cholewa [12] noticed that the theorem of Skof is

still true if the relevant domain X is replaced by an Abelian group. Czerwik [13] proved the Hyers-Ulam

stability of the quadratic functional equation. The stability problems of several functional equations have been

extensively investigated by a number of authors and there are many interesting results concerning this problem

(see [1, 17, 18, 22, 23], [41]–[48]).

In [25], Jun and Kim considered the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1), which is called a cubic

functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [28], Lee et al. considered the following quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2), which is called a quartic

functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

02010 Mathematics Subject Classification: 47H10, 54C60, 39B52, 47H04, 91B44.
0Keywords: Hyers-Ulam stability, set-valued functional equation, fixed point.
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Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz condition with

Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X. If the

Lipschitz constant L is less than 1, then the operator T is called a strictly contractive operator. Note that the

distinction between the generalized metric and the usual metric is that the range of the former is permitted to

include the infinity. We recall the following theorem by Margolis and Diaz.

Theorem 1.1. [9, 15] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly

contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [24] were the first to provide applications of stability theory of functional equations

for the proof of new fixed point theorems with applications. By using fixed point methods, the stability problems

of several functional equations have been extensively investigated by a number of authors (see [10, 11, 31, 39]).

Let Y be a Banach space. We define the following:

2Y : the set of all subsets of Y ;

Cb(Y ) : the set of all closed bounded subsets of Y ;

Cc(Y ) : the set of all closed convex subsets of Y ;

Ccb(Y ) : the set of all closed convex bounded subsets of Y .

On 2Y we consider the addition and the scalar multiplication as follows:

C + C′ = {x+ x′ : x ∈ C, x′ ∈ C′}, λC = {λx : x ∈ C},

where C,C′ ∈ 2Y and λ ∈ R. Further, if C,C′ ∈ Cc(Y ), then we denote by C ⊕ C′ = C + C′.

It is easy to check that

λC + λC′ = λ(C + C′), (λ+ µ)C ⊆ λC + µC.

Furthermore, when C is convex, we obtain (λ+ µ)C = λC + µC for all λ, µ ∈ R+.

For a given set C ∈ 2Y , the distance function d(·, C) and the support function s(·, C) are respectively defined

by

d(x,C) = inf{‖x− y‖ : y ∈ C}, x ∈ Y,

s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, x∗ ∈ Y ∗.

For every pair C,C′ ∈ Cb(Y ), we define the Hausdorff distance between C and C′ by

h(C,C′) = inf{λ > 0 : C ⊆ C′ + λBY , C′ ⊆ C + λBY },

where BY is the closed unit ball in Y .

The following proposition reveals some properties of the Hausdorff distance.
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Proposition 1.2. For every C,C′,K,K′ ∈ Ccb(Y ) and λ > 0, the following properties hold

(a) h(C ⊕ C′,K ⊕K′) ≤ h(C,K) + h(C′,K′);

(b) h(λC, λK) = λh(C,K).

Let (Ccb(Y ),⊕, h) be endowed with the Hausdorff distance h. Since Y is a Banach space, (Ccb(Y ),⊕, h) is

a complete metric semigroup (see [8]). Debreu [14] proved that (Ccb(Y ),⊕, h) is isometrically embedded in a

Banach space as follows.

Lemma 1.3. [14] Let C(BY ∗) be the Banach space of continuous real-valued functions on BY ∗ endowed with

the uniform norm ‖ · ‖u. Then the mapping j : (Ccb(Y ),⊕, h)→ C(BY ∗), given by j(A) = s(·, A), satisfies the

following properties:

(a) j(A⊕B) = j(A) + j(B);

(b) j(λA) = λj(A);

(c) h(A,B) = ‖j(A)− j(B)‖u;

(d) j(Ccb(Y )) is closed in C(BY ∗)

for all A,B ∈ Ccb(Y ) and all λ ≥ 0.

Let f : Ω→ (Ccb(Y ), h) be a set-valued function from a complete finite measure space (Ω,Σ, ν) into Ccb(Y ).

Then f is Debreu integrable if the composition j ◦ f is Bochner integrable (see [7]). In this case, the Debreu

integral of f in Ω is the unique element (D)
∫

Ω
fdν ∈ Ccb(Y ) such tha j((D)

∫
Ω
fdν) is the Bochner integral of

j ◦ f . The set of Debreu integrable functions from Ω to Ccb(Y ) will be denoted by D(Ω, Ccb(Y )). Furthermore,

on D(Ω, Ccb(Y )), we define (f + g)(ω) = f(ω) ⊕ g(ω) for all f, g ∈ D(Ω, Ccb(Y )). Then we obtain that

((Ω, Ccb(Y )),+) is an abelian semigroup.

Set-valued functional equations have been extensively investigated by a number of authors and there are

many interesting results concerning this problem (see [6], [32]–[35], [37, 38]).

Using the fixed point method, we prove the additive set-valued functional equation, the quadratic set-valued

functional equation, the cubic set-valued functional equation and the quartic set-valued functional equation.

Throughout this paper, let X be a real vector space and Y a Banach space.

2. Stability of the additive set-valued functional equation

Using the fixed point method, we prove the Hyers-Ulam stability of the additive set-valued functional equa-

tion.

Definition 2.1. [27] Let f : X → Ccb(Y ). The additive set-valued functional equation is defined by

f(x+ y) = f(x)⊕ f(y)

for all x, y ∈ X. Every solution of the additive set-valued functional equation is called an additive set-valued

mapping.

Note that there are some examples in [27].

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying

h(f(x+ y), f(x)⊕ f(y)) ≤ ϕ(x, y) (2.1)
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for all x, y ∈ X. Then there exists a unique additive set-valued mapping A : X → (Ccb(Y ), h) such that

h(f(x), A(x)) ≤ L

2− 2L
ϕ(x, x) (2.2)

for all x ∈ X.

Proof. Let y = x in (2.1). Since f(x) is convex, we get

h(f(2x), 2f(x)) ≤ ϕ(x, x) (2.3)

and so

h
(
f(x), 2f

(x
2

))
≤ ϕ

(x
2
,
x

2

)
≤ L

2
ϕ (x, x) (2.4)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, x), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [30, Lemma

2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)
for all x ∈ X.

Let g, f ∈ S be given such that d(g, f) = ε. Then

h(g(x), f(x)) ≤ εϕ(x, x)

for all x ∈ X. Hence

h(Jg(x), Jf(x)) = h
(

2g
(x

2

)
, 2f

(x
2

))
= 2h

(
g
(x

2

)
, f
(x

2

))
≤ Lϕ(x, x)

for all x ∈ X. So d(g, f) = ε implies that d(Jg, Jf) ≤ Lε. This means that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.

It follows from (2.4) that d(f, Jf) ≤ L
2

.

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1

2
A(x) (2.5)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.5) such that there exists a µ ∈ (0,∞) satisfying

h(f(x), A(x)) ≤ µϕ(x, x)

for all x ∈ X;

(2) d(Jnf,A)→ 0 as n→∞. This implies the equality
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lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−L

d(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (2.2) holds.

By (2.1),

h
(

2nf
(x+ y

2n

)
, 2nf

( x
2n

)
⊕ 2nf

( y
2n

))
≤ 2nϕ

( x
2n
,
y

2n

)
≤ Lnϕ(x, y),

which tends to zero as n→∞ for all x, y ∈ X. Thus A(x+ y) = A(x)⊕A(y), as desired. �

Corollary 2.3. Let p > 1 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying

h(f(x+ y), f(x)⊕ f(y)) ≤ θ(||x||p + ||y||p) (2.6)

for all x, y ∈ X. Then there exists a unique additive set-valued mapping A : X → Y satisfying

h(f(x), A(x)) ≤ 2θ

2p − 2
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 21−p and we get the desired result. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying (2.1). Then there exists a unique

additive set-valued mapping A : X → (Ccb(Y ), h) such that

h(f(x), A(x)) ≤ 1

2− 2L
ϕ(x, x)

for all x ∈ X.

Proof. It follows from (2.3) that

h

(
f(x),

1

2
f (2x)

)
≤ 1

2
ϕ (x, x)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let 1 > p > 0 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying (2.6). Then there exists a unique additive set-valued mapping

A : X → Y satisfying

h(f(x), A(x)) ≤ 2θ

2− 2p
||x||p

for all x ∈ X.
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Proof. The proof follows from Theorem 2.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−1 and we get the desired result. �

3. Stability of the quadratic set-valued functional equation

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic set-valued functional

equation.

Definition 3.1. [27] Let f : X → Ccb(Y ). The quadratic set-valued functional equation is defined by

2f(x+ y)⊕ 2f(x− y) = f(2x)⊕ f(2y)

for all x, y ∈ X. Every solution of the quadratic set-valued functional equation is called a quadratic set-valued

mapping.

Note that there are some examples in [27].

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ ϕ(x, y) (3.1)

for all x, y ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → (Ccb(Y ), h) such that

h(f(x), Q(x)) ≤ L

4− 4L
ϕ(x, 0)

for all x ∈ X.

Proof. Let y = 0 in (3.1). Since f(x) is convex, we get

h(f(2x), 4f(x)) ≤ ϕ(x, 0) (3.2)

and

h
(
f(x), 4f

(x
2

))
≤ ϕ

(x
2
, 0
)
≤ L

4
ϕ(x, 0) (3.3)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [30, Lemma

2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.2, one can show that

d(Jg, Jf) ≤ Ld(g, f)
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for all g, f ∈ S.

It follows from (3.3) that d(f, Jf) ≤ L
4

.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.3. Let p > 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(2f(x+ y)⊕ 2f(x− y), f(2x)⊕ f(2y)) ≤ θ(||x||p + ||y||p) (3.4)

for all x, y ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ θ

2p − 4
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (3.1). Then there

exists a unique quadratic set-valued mapping Q : X → (Ccb(Y ), h) such that

h(f(x), Q(x)) ≤ 1

4− 4L
ϕ(x, 0)

for all x ∈ X.

Proof. It follows from (3.2) that

h

(
f(x),

1

4
f (2x)

)
≤ 1

4
ϕ (x, 0)

for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �

Corollary 3.5. Let 0 < p < 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and (3.4). Then there exists a unique quadratic

set-valued mapping Q : X → Y satisfying

h(f(x), Q(x)) ≤ θ

4− 2p
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result. �
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4. Stability of the cubic set-valued functional equation

Using the fixed point method, we define a cubic set-valued functional equation and prove the Hyers-Ulam

stability of the cubic set-valued functional equation.

Definition 4.1. [36] Let f : X → Ccb(Y ). The cubic set-valued functional equation is defined by

f(2x+ y)⊕ f(2x− y) = 2f(x+ y)⊕ 2f(x− y)⊕ 12f(x)

for all x, y ∈ X. Every solution of the cubic set-valued functional equation is called a cubic set-valued mapping.

Theorem 4.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(f(2x+ y)⊕ f(2x− y), 2f(x+ y)⊕ 2f(x− y)⊕ 12f(x)) ≤ ϕ(x, y) (4.1)

for all x, y ∈ X. Then there exists a unique cubic set-valued mapping C : X → (Ccb(Y ), h) such that

h(f(x), C(x)) ≤ L

16− 16L
ϕ(x, 0)

for all x ∈ X.

Proof. Let y = 0 in (4.1). Since f(x) is convex, we get

h(2f(2x), 16f(x)) ≤ ϕ(x, 0) (4.2)

and

h
(
f(x), 8f

(x
2

))
≤ 1

2
ϕ
(x

2
, 0
)
≤ L

16
ϕ(x, 0) (4.3)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [30, Lemma

2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.2, one can show that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.

It follows from (4.3) that d(f, Jf) ≤ L
16

.

The rest of the proof is similar to the proof of Theorem 2.2. �
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Corollary 4.3. Let p > 3 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying

h(f(2x+ y)⊕ f(2x− y), 2f(x+ y)⊕ 2f(x− y)⊕ 12f(x)) ≤ θ(||x||p + ||y||p) (4.4)

for all x, y ∈ X. Then there exists a unique cubic set-valued mapping C : X → Y satisfying

h(f(x), C(x)) ≤ θ

2(2p − 8)
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 4.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result. �

Theorem 4.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying (4.1). Then there exists a unique

cubic set-valued mapping C : X → (Ccb(Y ), h) such that

h(f(x), C(x)) ≤ 1

16− 16L
ϕ(x, 0)

for all x ∈ X.

Proof. It follows from (4.2) that

h

(
f(x),

1

8
f (2x)

)
≤ 1

16
ϕ (x, 0)

for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.2 and 4.2. �

Corollary 4.5. Let 3 > p > 0 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose

that f : X → (Ccb(Y ), h) is a mapping satisfying (4.4). Then there exists a unique cubic set-valued mapping

C : X → Y satisfying

h(f(x), C(x)) ≤ θ

2(8− 2p)
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 4.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result. �

5. Stability of the quartic set-valued functional equation

Using the fixed point method, we define a quartic set-valued functional equation and prove the Hyers-Ulam

stability of the quartic set-valued functional equation.

Definition 5.1. [36] Let f : X → Ccb(Y ). The quartic set-valued functional equation is defined by

f(2x+ y)⊕ f(2x− y)⊕ 6f(y) = 4f(x+ y)⊕ 4f(x− y)⊕ 24f(x)

for all x, y ∈ X. Every solution of the quartic set-valued functional equation is called a quartic set-valued

mapping.
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Theorem 5.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y)

for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying f(0) = {0} and

h(f(2x+ y)⊕ f(2x− y)⊕ 6f(y), 4f(x+ y)⊕ 4f(x− y)⊕ 24f(x)) ≤ ϕ(x, y) (5.1)

for all x, y ∈ X. Then there exists a unique quartic set-valued mapping T : X → (Ccb(Y ), h) such that

h(f(x), T (x)) ≤ L

32− 32L
ϕ(x, 0)

for all x ∈ X.

Proof. Let y = 0 in (5.1). Since f(x) is convex, we get

h(2f(2x), 32f(x)) ≤ ϕ(x, 0) (5.2)

and

h
(
f(x), 16f

(x
2

))
≤ 1

2
ϕ
(x

2
, 0
)
≤ L

32
ϕ(x, 0) (5.3)

for all x ∈ X.

Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}

and introduce the generalized metric on X,

d(g, f) = inf{µ ∈ (0,∞) : h(g(x), f(x)) ≤ µϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [30, Lemma

2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(x

2

)
for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.2, one can show that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.

It follows from (5.3) that d(f, Jf) ≤ L
32

.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 5.3. Let p > 4 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying

h(f(2x+ y)⊕ f(2x− y)⊕ 6f(y), 4f(x+ y)⊕ 4f(x− y)⊕ 24f(x)) ≤ θ(||x||p + ||y||p) (5.4)

for all x, y ∈ X. Then there exists a unique quartic set-valued mapping T : X → Y satisfying

h(f(x), T (x)) ≤ θ

2(2p − 16)
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 5.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 24−p and we get the desired result. �
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Theorem 5.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 16Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Suppose that f : X → (Ccb(Y ), h) is a mapping satisfying (5.1). Then there exists a unique

quartic set-valued mapping T : X → (Ccb(Y ), h) such that

h(f(x), T (x)) ≤ 1

32− 32L
ϕ(x, 0)

for all x ∈ X.

Proof. It follows from (5.2) that

h

(
f(x),

1

16
f (2x)

)
≤ 1

32
ϕ (x, 0)

for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 2.2 and 5.2. �

Corollary 5.5. Let 4 > p > 0 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → (Ccb(Y ), h) is a mapping satisfying (5.4). Then there exists a unique quartic set-valued mapping

T : X → Y satisfying

h(f(x), T (x)) ≤ θ

2(2p − 16)
||x||p

for all x ∈ X.

Proof. The proof follows from Theorem 5.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−4 and we get the desired result. �

Acknowledgments

S. Yun was supported by Hanshin University Research Grant.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge,

1989.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950),

64–66.

[3] K.J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954),

265–290.

[4] J.P. Aubin and H. Frankow, Set-Valued Analysis, Birkhäuser, Boston, 1990.
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[11] L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single

variable, Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).

[12] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.

[13] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg

62 (1992), 59–64.

[14] G. Debreu, Integration of correspondences, Proceedings of Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Vol. II, Part I (1966), 351–372.

[15] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete

metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.

[16] M. Eshaghi Gordji, C. Park and M.B. Savadkouhi, The stability of a quartic type functional equation with

the fixed point alternative, Fixed Point Theory 11 (2010), 265–272.

[17] M. Eshaghi Gordji and M.B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in

non-Archimedean spaces, Appl. Math. Letters 23 (2010), 1198–1202.
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In the paper, we construct a Hausdorff fuzzy metric on the family of nonempty
closed subsets of a stationary and F-bounded fuzzy metric space. Using the
construction of the Hausdorff fuzzy metric, we prove three equivalent charac-
terizations for the given fuzzy metric space to be precompact. Furthermore,
several examples are given.

Keywords: Fuzzy metric, Continuous t-norm, The Hausdorff fuzzy metric,
Closed subset, Precompact.

AMS Subject Classifications: 54A40, 54B20, 54E35

1 Introduction

Fuzzy metric is an important notion in Fuzzy Topology. Many authors have
introduced the concept of fuzzy metric from different points of view [2, 3, 12, 13].
In particular, George and Veeramani [3] obtained the concept of fuzzy metric
with the help of continuous t-norms in 1994. Later, it was proved that the
topological space induced by the fuzzy metric space is metrizable in [8]. This
version of fuzzy metric determines the class of spaces that are tightly connected
with the class of metrizable topological spaces. Hence it is interesting to study
the version of fuzzy metric. Some contributions to the study of fuzzy metric
spaces can be found in [4, 5, 6, 14, 15, 16, 19, 20].

In order to study the hyperspaces in a fuzzy metric space, Rodŕıguez-López
and Romaguera [17] gave a definition of Hausdorff fuzzy metric on the family

∗Corresponding author.
This work was supported by Grants from the National Natural Science Foundation of China
(Nos. 11526109, 11471153, 11571158, 61379021), Natural Science Foundation of Fujian (Nos.
2016J01671, 2015J05011, JK2014028), and the outstanding youth foundation of the Education
Department of Fujiang Province. .
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of nonempty compact sets. Unfortunately, the Hausdorff fuzzy metric defined
by the authors does not provide a fuzzy metric when one consider the family of
nonempty closed and F-bounded subsets of a given fuzzy metric space. In [17],
Rodŕıguez-López and Romaguera illustrated the result above with the help of
a example. It is a nature problem to explore under what condition the Haus-
dorff fuzzy metric defined by Rodŕıguez-López and Romaguera on the family
of nonempty closed and F-bounded subsets of a given fuzzy metric space can
provide a fuzzy metric. This is done in the present paper.

We construct a Hausdorff fuzzy metric on the family of nonempty closed
subsets of a stationary and F-bounded fuzzy metric space. Also, we prove
three necessary and sufficient conditions for the given fuzzy metric space to be
precompact. Moreover, we give some illustrative examples.

2 Preliminaries

Throughout the paper the letter N shall denote the set of all nature numbers.
Our basic reference for general topology is [1].

Definition 2.1 [3] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

The following are examples of t-norms: a ∗ b = min{a, b}; a ∗ b = a · b; a ∗ b =
max{a+ b− 1, 0}.

Definition 2.2 [3] A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is
an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X×X×(0,∞)
satisfying the following conditions for all x, y, z ∈ X and s, t ∈ (0,∞):

(i) M(x, y, t) > 0;
(ii) M(x, y, t) = 1 if and only if x = y;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);
(v) the function M(x, y, ·) : (0,∞) → [0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy metric
on X.

Definition 2.3 [3] Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0
and x ∈ X. The set

BM (x, r, t) = {y ∈ X|M(x, y, t) > 1− r}

is called the open ball with center x and radius r with respect to t.

Obviously, {BM (x, r, t)|x ∈ X, t > 0, r ∈ (0, 1)} forms a base of a topology
in X. The topology is denoted by τM and is known to be metrizable (see [8]).

2
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Lemma 2.4 [3] Let (X,M, ∗) be a fuzzy metric space. Then, for each x ∈ X,
{BM (x, 1

n ,
1
n )|n ∈ N} is a neighborhood base at x for the topology τM .

Definition 2.5 [3] Let (X, d) be a metric space. Define a ∗ b = ab for all
a, b ∈ [0, 1], and let Md be the function on X ×X × (0,∞) defined by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ·) is a fuzzy metric space and (Md, ·) is called the standard fuzzy
metric induced by d.

Definition 2.6 [3] Let (X,M, ∗) be a fuzzy metric space. A subset A of X is
said to be F-bounded if there exist t > 0 and 0 < r < 1 such that M(x, y, t) >
1− r for all x, y ∈ A.

We call (X,M, ∗) a F-bounded fuzzy metric space provided that X is F-
bounded. Clearly, a subset of an F-bounded fuzzy metric space is F-bounded.

Definition 2.7 [10] A fuzzy metric space (X,M, ∗) is said to be stationary
if M does not depend on t, i.e. if for each x, y ∈ X, the function M(x, y, ·) is
constant. In the case we write M(x, y) and BM (x, r) instead of M(x, y, t) and
BM (x, r, t), respectively.

Lemma 2.8 [17] Let (X,M, ∗) be a fuzzy metric space. ThenM is a continuous
function on X ×X × (0,∞).

3 The Hausdorff fuzzy metric on Cld(X)

Given a fuzzy metric space (X,M, ∗), we will denote by P(X), Cld(X) and
Fin(X), the set of nonempty subsets, the set of nonempty closed subsets and
the set of nonempty finite subsets of (X, τM ), respectively. For every C ∈ P(X),
a ∈ X and t > 0, let M(a,C, t) := sup

c∈C
M(a, c, t), M(C, a, t) := sup

c∈C
M(c, a, t)

(see Definition 2.4 of [20]). It is clear that M(a,C, t) = M(C, a, t).

Lemma 3.1 Let (X,M, ∗) be a fuzzy metric space, a, c ∈ X, D ∈ P(X) and
t, s ∈ (0,∞). Then M(a,D, t+ s) ≥ M(a, c, t) ∗M(c,D, s).

Proof Note that, for each d ∈ D,

M(a,D, t+ s) ≥ M(a, d, t+ s) ≥ M(a, c, t) ∗M(c, d, s).

It follows from continuity of ∗ that

M(a,D, t+ s) ≥ M(a, c, t) ∗M(c,D, s).

Let (X,M, ∗) be a fuzzy metric space, A,C ∈ Cld(X) and t > 0, define HM :
Cld(X)× Cld(X)× (0,∞) → [0, 1] by

HM (A,C, t) = min{ inf
a∈A

M(a,C, t), inf
c∈C

M(A, c, t)}.

3
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If (X,M, ∗) is a stationary fuzzy metric space, then we writeHM (A,C), M(a,C)
and M(A, c) instead of HM (A,C, t), M(a,C, t) and M(A, c, t), respectively.

Theorem 3.2 Let (X,M, ∗) be a stationary and F-bounded fuzzy metric space.
Then (Cld(X),HM , ∗) is a fuzzy metric space.

Proof Let A,C,D ∈ Cld(X).
Obviously, (i), (ii), (iii) and (v) in Definition 2.2 hold.
Now, we are going to prove that (iv) in Definition 2.2 is satisfied, i.e.,

HM (A,D) ≥ HM (A,C) ∗ HM (C,D). Let a ∈ A. Then we can choose a se-
quence {can}n∈N in C such that

lim
n→+∞

M(a, can) = M(a,C).

Since {M(can, D)}n∈N is a sequence in [0,1], there is a subsequence {canl
}l∈N

of {can}n∈N such that the sequence {M(canl
, D)}l∈N converges to some point of

[0,1]. It follows from Lemma 3.1 that

M(a,D) ≥ M(a, cank
) ∗M(cank

, D)

for every cank
∈ {canl

|l ∈ N}. Therefore, by continuity of ∗, we have

M(a,D) ≥ lim
k→+∞

M(a, cank
) ∗ lim

k→+∞
M(cank

, D)

= M(a,C) ∗ lim
k→+∞

M(cank
, D).

According to continuity of ∗, we deduce that

inf
a∈A

M(a,D) ≥ inf
a∈A

M(a,C) ∗ inf
a∈A

lim
k→+∞

M(cank
, D)

≥ inf
a∈A

M(a,C) ∗ inf
a∈A

{M(cank
, D) | k ∈ N}

≥ inf
a∈A

M(a,C) ∗ inf
c∈C

M(c,D)

≥ HM (A,C) ∗HM (C,D).

Analogously, we get

inf
d∈D

M(A, d) ≥ HM (A,C) ∗HM (C,D).

Hence
HM (A,D) ≥ HM (A,C) ∗HM (C,D).

(HM , ∗) will be called the Hausdorff fuzzy metric on Cld(X).

Next we will give two examples.

Example 3.3 Let X = (1, 10]. Denote a ∗ b = a · b for all a, b ∈ [0, 1]. Define
M by

M(x, y, t) =
min{x, y}
max{x, y}

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a stationary and F-bounded fuzzy
metric space (see [7]). So, by Theorem 3.2, (Cld(X),HM , ∗) is a fuzzy metric
space.

4
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Example 3.4 Let X = [3, 5]. Denote a∗b = max{a+b−1, 0} for all a, b ∈ [0, 1]
and let M be a fuzzy set on X ×X × (0,∞) defined as follows:

M(x, y, t) =

{
1 x = y,
1
x + 1

y x ̸= y,

for all x, y ∈ X and t > 0. Then (X,M, ∗) is a stationary and F-bounded fuzzy
metric space (see [18]). Thus, according to Theorem 3.2, (Cld(X),HM , ∗) is a
fuzzy metric space.

More examples of stationary and F-bounded fuzzy metric spaces may be
found in [7, 11, 18].

4 Precompactness of the Hausdorff fuzzy metric

We start this section by recalling the concept of precompact.

Definition 4.1 [8] A fuzzy metric space (X,M, ∗) is called precompact if for
each r ∈ (0, 1) and t > 0, there is a finite subset A of X such that X =∪
a∈A

BM (a, r, t).

Theorem 4.2 Let Y be a dense subspace of a stationary and F-bounded fuzzy
metric space (X,M, ∗). Then Fin(Y ) is dense in (Cld(X),HM , ∗) if and only if
(X,M, ∗) is precompact.

Proof Assume that Fin(Y ) is dense in (Cld(X), HM , ∗). Let r ∈ (0, 1). Since
Fin(Y ) ⊆ Fin(X), we get

Fin(X) ∩BHM (X, r) ̸= Ø.

Take A ∈ Fin(X) ∩ BHM
(X, r). Then A ∈ Fin(X) and HM (X,A) > 1 − r.

Hence
inf
x∈X

M(x,A) > 1− r.

Let x ∈ X. Then M(x,A) > 1 − r. Since A ∈ Fin(X), there exists an a ∈ A
such that

M(x, a) = M(x,A) > 1− r.

We have
x ∈ BM (a, r).

So
X ⊂

∪
a∈A

BM (a, r).

It follows that (X,M, ∗) is precompact.
Conversely, assume that (X,M, ∗) is precompact. Let D ∈ Cld(X) and

ε ∈ (0, 1). Then, by the continuity of ∗, there exists a δ ∈ (0, ε) such that

(1− δ) ∗ (1− δ) > 1− ε.

5
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We only need to verify that Fin(Y ) ∩ BHM
(D, ε) ̸= Ø. Since (X,M, ∗) is pre-

compact, there exists a C = {c1, c2, · · · , cn} ∈ Fin(X) such that

X =
n∪

i=1

BM (ci, δ).

Now, we can find C ′ = {cn1 , cn2 , · · · , cnk
} ⊂ C such that

D ⊂
k∪

i=1

BM (cni , δ)

and
D ∩BM (cni , δ) ̸= Ø(i = 1, 2, · · · , k).

Take ani ∈ D ∩ BM (cni , δ) (i = 1, 2, · · · , k). Denote A = {an1 , an2 , · · · , ank
}.

Since Y is a dense subspace of X, we can find an eni ∈ BM (cni , δ) ∩ Y for
every i ∈ {1, 2, · · · , k}. So E = {en1 , en2 , · · · , enk

} ∈ Fin(Y ). For eni ∈ E
(i = 1, 2, · · · , k), we have

M(D, eni) ≥ M(ani , eni) ≥ M(ani , cni) ∗M(cni , eni) ≥ (1− δ) ∗ (1− δ) > 1− ε.

Hence

inf
e∈E

M(D, e) = min{M(D, eni)|i = 1, 2, · · · , k} > 1− ε.

On the other hand, let d ∈ D. Then there exists a cni ∈ C ′ such that

d ∈ BM (cni , δ).

Hence

M(d,E) ≥ M(d, eni) ≥ M(d, cni) ∗M(cni , eni) ≥ (1− δ) ∗ (1− δ).

So

inf
d∈D

M(d,E) ≥ (1− δ) ∗ (1− δ) > 1− ε.

Hence
HM (D,E) = min{ inf

d∈D
M(d,E), inf

e∈E
M(D, e)} > 1− ε,

that is, E ∈ BHM
(D, ε). Consequently,

E ∈ Fin(Y ) ∩BHM
(D, ε).

We complete the proof.

Let (X,M, ∗) be a fuzzy metric space and A ⊂ X. We will denote by
M |A×A×(0,∞) the restriction of M on A × A × (0,∞). It is easy to see that
M |A×A×(0,∞) is a fuzzy metric on A. We will simply write M |A instead of
M |A×A×(0,∞) when confusion is not possible.

6
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Lemma 4.3 Let (X,M, ∗) be a precompact fuzzy metric space and A ⊂ X.
Then (A,M |A, ∗) is precompact.

Proof Let ε ∈ (0, 1) and t > 0. Then there exists a δ ∈ (0, ε) such that
(1− δ) ∗ (1− δ) > 1− ε. Because of precompactness of (X,M, ∗) , we can find
finite points x1, x2, · · · , xn in X such that

X =
n∪

i=1

BM (xi, δ,
t

2
).

Since A ⊂ X, there exists {xn1 , xn2 , · · · , xnk
} ⊂ {x1, x2, · · · , xn} such that

A ⊂
k∪

j=1

BM (xnj
, δ,

t

2
)

and

A ∩BM (xnj , δ,
t

2
) ̸= Ø(j = 1, 2, · · · , k).

Choose ynj ∈ A∩BM (xnj , δ,
t
2 ) (j = 1, 2, · · · , k). Then, for each z ∈ BM (xnj , δ,

t
2 ),

we have

M(z, ynj , t) ≥ M(z, xnj ,
t

2
) ∗M(xnj , ynj ,

t

2
) ≥ (1− δ) ∗ (1− δ) > 1− ε.

So

BM (xnj , δ,
t

2
) ⊂ BM (ynj , ε, t).

Hence

A ⊂
k∪

j=1

BM (xnj , δ,
t

2
) ⊂

k∪
j=1

BM (ynj , ε, t).

Whence

A = (
k∪

j=1

BM (ynj , ε, t)) ∩A =
k∪

j=1

(BM (ynj , ε, t) ∩A) =
k∪

j=1

BM |A(ynj , ε, t).

We are done.

Theorem 4.4 Let (X,M, ∗) be a stationary and F-bounded fuzzy metric space.
Then (Cld(X),HM , ∗) is precompact if and only if (X,M, ∗) is precompact.

Proof Suppose that (Cld(X),HM , ∗) is precompact. For each x, y ∈ X, we
have HM ({x}, {y}) = M(x, y). So we can regard X as a subset of Cld(X) and
M as HM |{{x}|x∈X}. It follows from Lemma 4.3 that (X,M, ∗) is precompact.

Conversely, suppose that (X,M, ∗) is precompact. Let ε ∈ (0, 1) and D ∈
Cld(X). Then, by precompactness of (X,M, ∗), we can find an F ∈ Fin(X)
such that

X =
∪
x∈F

BM (x,
ε

2
).
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Therefore, there exists an FD ⊂ F such that

D ⊂
∪

x∈FD

BM (x,
ε

2
).

Also, we can find xD ∈ BM (x, ε
2 ) ∩D for every x ∈ FD. Note that there exists

an xy ∈ FD such that

y ∈ BM (xy,
ε

2
)

for every y ∈ D. It follows that

M(y, FD) ≥ M(y, xy) > 1− ε

2
.

Hence

inf
y∈D

M(y, FD) ≥ 1− ε
2 > 1− ε.

On the other hand, for each x ∈ FD, we get

M(D,x) ≥ M(xD, x) > 1− ε

2
.

Hence
inf

x∈FD

M(D,x) ≥ 1− ε

2
> 1− ε.

So
HM (D,FD) > 1− ε,

i.e., D ∈ BHM (FD, ε). Since F is a finite set, we see that F = {FD|D ∈ Cld(X)}
is a finite family. Observe that

Cld(X)=
∪

FD∈F
BHM (FD, ε).

It follows that (Cld(X), HM , ∗) is precompact.

Definition 4.5 Let (X,M, ∗) be a fuzzy metric space, Y ⊂ X, r ∈ (0, 1) and
t > 0. Y is said to be fuzzy r discrete with respect to t if M(x, y, t) < 1 − r
whenever x, y ∈ Y and x ̸= y.

Definition 4.6 Let (X,M, ∗) be a fuzzy metric space and Y ⊂ X. Y is called
a fuzzy uniformly discrete set provided that there exist r ∈ (0, 1) and t > 0 such
that Y is fuzzy r discrete with respect to t.

According to Zorn’s lemma, it is straightforward to show that, by the inclu-
sion relationship of the sets, X has a maximal subset which is fuzzy r discrete
with respect to t for all r ∈ (0, 1) and t > 0.

Lemma 4.7 Let (X,M, ∗) be a fuzzy metric space and Y be a fuzzy uniformly
discrete subset of X. Then Y is a closed set in (X, τM ).
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Proof By assumption, we can find some r0 ∈ (0, 1) and t0 > 0 such that Y
is fuzzy r0 discrete with respect to t0. According to the continuity of ∗, there
exists a ε ∈ (0, r0) such that

(1− ε) ∗ (1− ε) > 1− r0.

Let x /∈ Y . To complete our proof, it suffices to prove that there exists a open
set U of x in X such that U ∩ Y = Ø. For every y, z ∈ BM (x, ε, t0

2 ), we have

M(y, z, t0) ≥ M(x, y,
t0
2
) ∗M(x, z,

t0
2
) ≥ (1− ε) ∗ (1− ε) > 1− r0.

So BM (x, ε, t0
2 ) contains at most one point of Y . If BM (x, ε, t0

2 ) ∩ Y = Ø, then
BM (x, ε, t0

2 ) is the required open set. If BM (x, ε, t0
2 ) ∩ Y = {a}, then, by the

Hausdorffness of (X,M, ∗), we can choose an n ∈ N such that

a /∈ BM (x,
1

n
,
1

n
).

So we get

x ∈ BM (x, ε,
t0
2
) ∩BM (x,

1

n
,
1

n
),

with

BM (x, ε,
t0
2
) ∩BM (x,

1

n
,
1

n
) ∩ Y = Ø,

which implies that BM (x, ε, t0
2 ) ∩BM (x, 1

n ,
1
n ) is the required open set. We are

done.

Lemma 4.8 Let (X,M, ∗) be a fuzzy metric space and Y be an uncountable
fuzzy uniformly discrete subset of X. Then X is not separable.

Proof Suppose that X is separable. Then we take a countable and dense
subset A in X. According to assumption, we can find some r0 ∈ (0, 1) and
t0 > 0 such that M(x, y, t0) < 1 − r0 for all x, y ∈ Y and x ̸= y. According to
continuity of ∗, there exists a ε ∈ (0, r0) such that

(1− ε) ∗ (1− ε) > 1− r0.

Pick a, b ∈ Y , with a ̸= b. We conclude that

BM (a, ε,
t0
2
) ∩BM (b, ε,

t0
2
) = Ø.

Indeed, otherwise, we can take a c ∈ BM (a, ε, t0
2 ) ∩BM (b, ε, t0

2 ). Then

M(a, b, t0) ≥ M(a, c,
t0
2
) ∗M(c, b,

t0
2
) ≥ (1− ε) ∗ (1− ε) > 1− r0,

which contradicts M(a, b, t0) < 1− r0. So {BM (y, ε, t0
2 )|y ∈ Y } is an uncount-

able and pair-wise disjoint open family. Since A is dense in X, we see that

9
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BM (y, ε, t0
2 ) ∩A ̸= Ø for all y ∈ Y . This shows that A is uncountable, which is

a contradiction. We complete the proof.

Lemma 4.9 [8] Let (X,M, ∗) be a precompact fuzzy metric space. Then it is
separable.

Theorem 4.10 Let (X,M, ∗) be a stationary and F-bounded fuzzy metric
space. Then (X,M, ∗) is precompact if and only if (Cld(X),HM , ∗) is separable.

Proof Suppose that (X,M, ∗) is precompact. then, according to Theorem 4.4,
we deduce that (Cld(X),HM , ∗) is precompact. So, by Lemma 4.9, we see that
(Cld(X),HM , ∗) is separable.

Conversely, Let (Cld(X),HM , ∗) be separable. Suppose that (X,M, ∗) fails
to be precompact. Then there exists an infinite fuzzy uniformly discrete subset
Y of X. Observe that P(Y ) is the set of nonempty subsets of Y . Then P(Y )
is uncountable. Take A,C ∈ P(Y ). Then, by Lemma 4.7, we see that A,C ∈
Cld(X). Now, for each a ∈ A and c ∈ C, we can find r0 ∈ (0, 1) such that

M(a, c) < 1− r0.

So
M(a,C) ≤ 1− r0.

It follows that
inf
a∈A

M(a,C) ≤ 1− r0.

Similarly, we obtain
inf
c∈C

M(A, c) ≤ 1− r0.

Hence
HM (A,C) ≤ 1− r0 < 1− r0

2
,

which implies that P(Y ) is a fuzzy uniformly discrete subset of Cld(X). Thus,
by Lemma 4.8, Cld(X) fails to be separable, which is a contradiction. Conse-
quently, (X,M, ∗) is precompact.

From Theorem 4.2, Theorem 4.4 and Theorem 4.10 we immediately deduce
the next corollary.

Corollary 4.11 Let Y be a dense subspace of a stationary and F-bounded
fuzzy metric space (X,M, ∗). Then the following are equivalent.

(i) (X,M, ∗) is precompact.

(ii) Fin(Y ) is dense in (Cld(X),HM , ∗).

(iii) (Cld(X),HM , ∗) is precompact.

(iv) (Cld(X),HM , ∗) is separable.
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Semilocal convergence of a modified Chebyshev-like’s

method for solving nonlinear equations under

generalized weak condition ∗

Lin Zheng † 1, 2

1. School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China;

2. Department of Mathematics, Shanghai University, Shanghai 200444, China

Abstract: In this paper, the semilocal convergence of the modified Chebyshev-like’s method
is established by using recurrence relations under generalized weak condition. We prove an
existence-uniqueness theorem and give a priori error bound which demonstrates the R-order
convergence of the method. Moreover, the dynamical behavior of this method is also studied.
Finally, numerical examples are presented to demonstrate our approach.

Keywords: Nonlinear equations; Chebyshev-like’s method; Recurrence relations; Semilocal con-
vergence; A priori error bounds; Dynamics.

1 Introduction

A number of problems arisen from scientific and engineering areas often needs to find the
solution of nonlinear equations in Banach spaces

F (x) = 0, (1.1)

where F is a third-order Fréchet-differentiable operator defined on a convex subset Ω of a Banach
space X with values in a Banach space Y .

Generally, iterative methods are often used to solve this problem [1]. Newton’s method being
a second-order method is one of best known of these methods. The convergence of Newton’s
method in Banach spaces was established by Kantorovich in [2]. The convergence of the sequence
obtained by the iterative expression is derived from the convergence of majorizing sequences.
This technique has been used by many authors in order to establish the order of convergence of
the variants of Newton’s methods [3-9]. An alternative approach is developed to establish this
convergence by using recurrence relations. The approach is also a very popular technique to
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establish the convergence of iterative methods. For example, it has been successfully applied to
the convergence analysis of Newton’s method and some high-order methods [10-23].

In [9], we introduce a modified Chebyshev-like’s method given by

xn+1 = xn −
[
I +

1
2
KF (xn) +

1
2
K2

F (xn)
]
ΓnF (xn), (1.2)

where Γn = [F ′(xn)]−1, KF (xn) = ΓnF ′′(un)ΓnF (xn) and un = xn − 1
3ΓnF (xn).

By assuming that
(A1) Γ0 exist and ‖Γ0F (x0)‖ ≤ η,
(A2) ‖Γ0‖ ≤ β,
(A3) ‖F ′′

(x)‖ ≤ M, x ∈ Ω,
(A4) ‖F ′′′(x)‖ ≤ N, x ∈ Ω,
(A5) ‖F ′′′

(x)− F
′′′

(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω,
we have analyzed the semilocal convergence of the method given by (1.2) by majorizing sequences
and proved the R-order is improved to four, the computation efficiency and error estimate were
also given. Numerical applications shows this method can solve some equations successfully.

But under assumptions (A1)-(A5), we can not study the solution of some equations. Such
as the nonlinear integral equation of mixed Hammerstein type, which is given by

x(s) +
m∑

i=1

∫ b

a
Gi(s, t)Hi(x(t))dt = u(s), s ∈ [a, b], (1.3)

where −∞ < a < b < ∞, u,Hi and Gi, for i = 1, 2, · · · ,m, are known functions and x is
a solution to be determined. The problem is from the dynamic model of a chemical reactor
[24]. On the condition that H ′′′

i (x(t)) is (Li, qi)-Hölder continuous in Ω, i = 1, 2, . . . , m, then
corresponding operator F : Ω ⊆ C[0, 1] → C[0, 1],

[F (x)](s) = x(s) +
m∑

i=1

∫ b

a
Gi(s, t)Hi(x(t))dt− u(s), s ∈ [a, b], (1.4)

is such that its third Fréchet derivative is neither Lipschitz continuous nor Hölder continuous in
Ω while, for an example, we consider the max-norm. For this case,

‖F ′′′(x)− F ′′′(y)‖ ≤
m∑

i=1

Li‖x− y‖qi , Li ≥ 0, qi ∈ [0, 1], x, y ∈ Ω. (1.5)

Because of the importance of nonlinear integral equation of mixed Hammerstein type, several
authors [18-20] have considered a mild condition

‖F ′′′(x)− F ′′′‖ ≤ ω(‖x− y‖), x, y ∈ Ω, (1.6)

where ω(z) is nondecreasing continuous real valued function for z > 0, such that ω(0) ≥ 0, on
F ′′′ to study the semilocal convergence of some iterative methods.

In the paper, the semilocal convergence of the modified Chebyshev-like’s method is estab-
lished by using recurrence relations under the assumption that F ′′′ satisfies the ω-continuity
condition (1.6), An existence-uniqueness theorem is also established for the solution along with
its a priori error bounds. Moreover, the dynamical behavior of modified Chebyshev-like’s method
is also studied. Finally numerical examples are presented to demonstrate our approach.
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2 Recurrence relations

Let x0 ∈ Ω and the nonlinear operator F : Ω ⊂ X → Y be continuously third-order Fréchet
differentiable where Ω is an open set and X and Y are Banach spaces. We assume that

(C1) Γ0 exist and ‖Γ0F (x0)‖ ≤ η,
(C2) ‖Γ0‖ ≤ β,
(C3) ‖F ′′

(x)‖ ≤ M, x ∈ Ω,
(C4) ‖F ′′′(x)‖ ≤ N, x ∈ Ω,
(C5) ‖F ′′′

(x)−F
′′′

(y)‖ ≤ ω(‖x− y‖), ∀ x, y ∈ Ω, where ω(z) is non-decreasing continuous
real function for z > 0 and satisfy ω(0) ≥ 0,

(C6) there exists a non-negative real function ϕ(t) ≤ 1, such that ω(tz) ≤ ϕ(t)ω(z), for
t ∈ [0, 1], z ∈ (0,+∞).

Notice that condition (C6) is not restrictive, since we can always consider ϕ(t) = 1, as a
consequence of ω is non-decreasing function, but its interest is to sharp the priori error bounds.

Firstly we give the following lemma to show an approximation of operator F , which will be
used in the latter developments.

Lemma 1 Assume that the nonlinear operator F : Ω ⊂ X → Y is continuously third-order
Fréchet differentiable where Ω is an open set and X and Y are Banach spaces. Then we have

F (xn+1) =− 1
2
[
F ′′(un)− F ′′(xn)

]
(yn − xn)KF (xn)(yn − xn)

+
1
2
F ′′(xn)(yn − xn)K2

F (xn)(yn − xn)

+
∫ 1

0
F ′′(yn + t(xn+1 − yn)

)
(1− t)dt(xn+1 − yn)2

− 1
6

∫ 1

0

[
F ′′′

(
xn +

1
3
t(yn − xn)

)
− F ′′′(xn)

]
dt(yn − xn)3

+
1
2

∫ 1

0

[
F ′′′(xn + t(yn − xn)

)− F ′′′(xn)
]
(1− t)2dt(yn − xn)3

+
∫ 1

0
F ′′′(xn + t(yn − xn)

)
(1− t)dt(yn − xn)2(xn+1 − yn).

(2.1)

Now we consider the following scalar functions

g(t) = 1 +
1
2
t +

1
2
t2, (2.2)

h(t) =
1

1− tg(t)
, (2.3)

`(t, u, v) =
1
8
t
3
(t2 + 2t + 5) +

1
12

(3t + 5)tu +
I1 + 3I2

6
v, (2.4)

where I1 =
∫ 1
0 ϕ(1

3 t)dt and I2 =
∫ 1
0 ϕ(t)(1− t)2dt.

Let Φ(t) = g(t)t − 1. Since Φ(0) = −1 and Φ(1) = 1 > 0, then Φ(t) has at least a zero in
(0, 1). Let s is the smallest positive zero of the scalar function g(t)t− 1.

Denote a0 = Mβη, b0 = Nβη2, c0 = w(η)βη2 and d0 = h(a0)`(a0, b0, c0). Next, some
properties of the functions g, h, ` defined in (2.2)-(2.4) are given in the following lemma.
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Lemma 2 Let the real functions g, h and ` be given in (2.2)-(2.4). Then
(i) g(t) and h(t) are increasing and g(t) > 1, h(t) > 1 for t ∈ (0, s),
(ii) `(t, u, v) is increasing for t ∈ (0, s), u > 0, v > 0.

For n = 0, the existence of Γ0 implies the existence of y0, u0. This gives us

‖y0 − x0‖ = ‖Γ0F (x0)‖ ≤ η,

and
‖u0 − x0‖ =

1
3

∥∥∥Γ0F (x0)
∥∥∥ ≤ 1

3
η.

This means that y0, u0 ∈ B(x0, Rη), where R = g(a0)/
(
1− d0

)
. Furthermore, we have

‖KF (x0)‖ = ‖Γ0F
′′(u0)Γ0F (x0)‖

≤ ‖Γ0‖‖F ′′(u0)‖‖Γ0F (x0)‖
≤ Mβη = a0.

We can obtain

‖x1 − x0‖ =
∥∥∥I +

1
2
KF (x0) +

1
2
K2

F (x0)
∥∥∥‖Γ0F (x0)‖

≤
[
1 +

1
2
a0 +

1
2
a2

0

]
‖y0 − x0‖ = g(a0)‖y0 − x0‖. (2.5)

From the assumption d0 < 1/h(a0) < 1, it follows that x1 ∈ B(x0, Rη). We also have

‖x1 − y0‖ ≤
∥∥∥1
2
KF (x0) +

1
2
K2

F (x0)
∥∥∥‖Γ0F (x0)‖

≤ a0(1 + a0)
2

‖y0 − x0‖. (2.6)

By a0 < s and g(a0) < g(s), we have

‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F ′(x0)− F ′(x1)‖

≤ Mβ‖x1 − x0‖ ≤ a0g(a0) < 1.

It follows by the Banach lemma that Γ1 = [F ′(x1)]−1 exists and

‖Γ1‖ ≤ 1
1− a0g(a0)

‖Γ0‖ = h(a0)‖Γ0‖. (2.7)

By Lemma 1, we can get

‖F (x1)‖ ≤ a2
0

2
Mη2 +

a0

6
Nη3 +

1
2
M‖x1 − y0‖2

+
1
6
I1w(η)η3 +

1
2
I2w(η)η3 +

1
2
Nη2‖x1 − y0‖. (2.8)

Then from (2.7) and (2.8), we have

‖y1 − x1‖ = ‖Γ1F (x1)‖ ≤ ‖Γ1‖‖F (x1)‖
≤ d0‖y0 − x0‖. (2.9)
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Because of g(a0) > 1, we obtain

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖
≤

(
g(a0) + d0

)
η

< g(a0)
(
1 + d0

)
η < Rη, (2.10)

which shows y1 ∈ B(x0, Rη).
In addition, we have

M‖Γ1‖‖Γ1F (x1)‖ ≤ Mh(a0)‖Γ0‖d0‖y0 − x0‖ = a0h(a0)d0, (2.11)

N‖Γ1‖‖Γ1F (x1)‖2 ≤ Nh(a0)‖Γ0‖d2
0‖y0 − x0‖2 = b0h(a0)d2

0, (2.12)

ω(‖y1 − x1‖)‖Γ1‖‖y1 − x1‖2 ≤ h(a0)‖Γ0‖ω(d0‖y0 − x0‖)d2
0‖y0 − x0‖2

≤ c0h(a0)d2
0ϕ(d0), (2.13)

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖
≤ g(a1)‖y1 − x1‖+ g(a0)‖y0 − x0‖
≤ (1 + d0)g(a0)‖y0 − x0‖ < Rη.

(2.14)

Since
‖I − Γ1F

′(x2)‖ ≤ ‖Γ1‖‖F ′(x1)− F ′(x2)‖
≤ M‖Γ1‖‖x2 − x1‖ ≤ a0h(a0)d0g(a0h(a0)d0) < 1,

and by the Banach lemma, Γ2 = [F ′(x2)]−1 exists and

‖Γ2‖ ≤ h(a0h(a0)d0)‖Γ1‖. (2.15)

Hence x2 is well defined.

We now write a0h(a0)d0 = a1, b0h(a0)d2
0 = b1, c0h(a0)d2

0ϕ(d0) = c1 and define for n ≥ 0

an+1 = anh(an)dn,

bn+1 = bnh(an)d2
n,

cn+1 = cnh(an)d2
nϕ(dn),

dn+1 = h(an+1)`(an+1, bn+1, cn+1).

(2.16)

Later developments will require the following lemma, where some properties of the previous
scalar sequences are given.

Lemma 3 Let the real functions g, h and ` be given in (2.2)-(2.4). If

0 < a0 < s and h(a0)d0 < 1, (2.17)

then we have
(i) h(an) > 1 and h(an)dn < 1 for n ≥ 0,
(ii) the sequences {an}, {bn}, {cn} and {dn} are decreasing,
(iii) g(an)an < 1 and h(an)dn < 1 for n ≥ 0.
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Our next goal is to guarantee that (1.2) is well defined. To do this, the system of recurrence
relations given in the next lemma must be satisfied. The proof follows by using a similar way
that the above-mentioned and invoking the induction hypothesis.

Lemma 4 Let the assumptions of Lemma 3 and the conditions (C1)-(C6) hold. Then the
following items are true for all n ≥ 1:

(i) There exists Γn = [F ′(xn)]−1 and ‖Γn‖ ≤ h(an−1)‖Γn−1‖,
(ii) ‖yn − xn‖ = ‖ΓnF (xn)‖ ≤ dn−1‖yn−1 − xn−1‖ ≤ dn

0‖y0 − x0‖ < η,
(iii) M‖Γn‖‖ΓnF (xn)‖ ≤ an,
(iv) N‖Γn‖‖ΓnF (xn)‖2 ≤ bn,
(v) ω(‖yn − xn‖)‖Γn‖‖yn − xn‖2 ≤ cn,
(vi) ‖xn+1 − xn‖ ≤ g(an)‖yn − xn‖,
(vii) ‖yn − x0‖ ≤ Rη and ‖xn+1 − x0‖ ≤ g(a0)

1−dn+1
0

1−d0
‖y0 − x0‖ < Rη, where R = g(a0)

1−d0
.

3 Semilocal convergence

We are now interested in proving that sequence (1.2) is convergent. To do this, we will see
that (1.2) is a Cauchy sequence. We will give some properties of the scalar sequence {an}, {bn},
{cn} and {dn} in the following lemma.

Lemma 5 Let the real functions g, h and ` be given in (2.2)-(2.4). Let τ ∈ (0, 1), then
g(τt) < g(t), h(τt) < h(t) and `(τt, τ2u, τ2v) < τ2`(t, u, v) for t ∈ (0, s).

Lemma 6 Under the assumptions of Lemma 3. Let γ = h(a0)d0, δ = 1/h(a0). For n ≥ 0,
we have

an+1 ≤ γ3n
an ≤ γ

3n+1−1
2 a0, (3.1)

bn+1 <
(
γ3n

)2
bn < γ3n+1−1b0, (3.2)

cn+1 <
(
γ3n

)2
cn < γ3n+1−1c0, (3.3)

dn+1 = h(an+1)`(an+1, bn+1, cn+1) ≤ δγ3n+1
. (3.4)

Proof The Lemma will be proved by induction. Since a1 = γa0, by the above-mentioned
assumption, we get γ < 1. We also get

b1 = b0h(a0)d2
0 < γ2b0,

and
c1 = c0h(a0)d2

0ϕ(d0) < γ2c0,

as ϕ(d0) ≤ 1.
Suppose (3.1)-(3.3) hold for n = k, then

ak+1 = akh(ak)dk = akh
2(ak)`(ak, bk, ck)

≤ γ3k−1
ak−1h

2
(
γ3k−1

ak−1

)
`
(
γ3k−1

ak−1,
(
γ3k−1

bk−1

)2
,
(
γ3k−1

ck−1

)2
)

≤ γ3k−1
ak−1h

2(ak−1)
(
γ3k−1)2

`(ak−1, bk−1, ck−1) = γ3k
ak.
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We also have
bk+1 = bkh(ak)d2

k <
(ak+1

ak

)2
bk <

(
γ3k

)2
bk,

and
ck+1 = ckh(ak)d2

kϕ(dk) <
(ak+1

ak

)2
ckϕ(dk) ≤

(
γ3k

)2
ck,

as ϕ(dk) ≤ 1. Hence

ak+1 ≤ γ3k
ak ≤ γ3k

γ3k−1 · · · γ30
a0 = γ

3k+1−1
2 a0,

bk+1 <
(
γ3k

)2
bk <

(
γ3k

)2(
γ3k−1

)2
· · ·

(
γ30

)2
b0 = γ3k+1−1b0,

ck+1 <
(
γ3k

)2
ck <

(
γ3k

)2(
γ3k−1

)2
· · ·

(
γ30

)2
c0 = γ3k+1−1c0.

Thus (3.1)-(3.3) hold by induction. Furthermore

dn+1 = h(an+1)`(an+1, bn+1, cn+1) ≤ h
(
γ

3n+1−1
2 a0

)
`
(
γ

3n+1−1
2 a0, γ

3n+1−1b0, γ
3n+1−1c0

)

= γ3n+1 h(a0)`(a0, b0, c0)
γ

= δγ3n+1
.

The proof is completed.

3.1 Convergence theorem

Now we give a theorem to show the existence and uniqueness of the solution and the domain
in which it is located, along with a priori error bounds, which lead to the R-order of convergence
of iteration (1.2).

Theorem 1 Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a third-order
Fréchet differentiable on a non-empty open convex subset Ω. g, h, ` are defined by (2.2)-(2.4).
Let a0 = Mβη, b0 = Nβη2 and c0 = w(η)βη2 satisfy 0 < a0 < s and h(a0)d0 < 1, B(x0, Rη) ∈ Ω
where R = g(a0)/

(
1−d0

)
. Assume that x0 ∈ Ω and all conditions (C1)-(C6) hold. Then starting

from x0, the sequence {xn} generated by the modified Chebyshev-like’s method (1.2) converges
to a solution x∗ of F (x) = 0 with xn, x∗ belong to B(x0, Rη) and x∗ is the unique solution of
F (x) in B(x0,

2
Mβ −Rη) ∩ Ω. Moreover, a priori error estimate is given by

‖xn − x∗‖ ≤ g(a0)ηδnγ
3n−1

2
1

1− δγ3n , (3.5)

where γ = h(a0)d0 and δ = 1/h(a0).

Proof It is sufficient to show that {xn} is a Cauchy sequence in order to establish the
convergence of {xn}.

From Lemma 4 and Lemma 6, we have

‖xn+1 − xn‖ ≤ g(an)‖yn − xn‖ ≤ g(an)dn−1‖yn−1 − xn−1‖

≤ · · · ≤ g(an)‖y0 − x0‖
n−1∏

j=0

dj

≤ g(an)η
n−1∏

j=0

(δγ3j
) = g(an)ηδnγ

3n−1
2 ,

7
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where γ = h(a0)d0 < 1 and δ = 1/h(a0) < 1. Hence,

‖xm+n − xn‖ ≤ ‖xm+n − xm+n−1‖+ · · ·+ ‖xn+1 − xn‖
≤ g(am+n−1)‖ym+n−1 − xm+n−1‖+ · · ·+ g(an)‖yn − xn‖
≤ g(am+n−1)γ

3m+n−1−1
2 δm+n−1η + · · ·+ g(an)γ

3n−1
2 δnη

≤ g(an)δn
[
γ

3m+n−1−1
2 δm−1 + · · ·+ γ

3n−1
2

]
η

= g(an)δnγ
3n−1

2

[
γ

3n[3m−1−1]
2 δm−1 + · · ·+ γ

3n[3−1]
2 δ + 1

]
η.

By Bernoulli’s inequality, for every real number x > −1 and every integer k ≥ 0, we have
(1 + x)k − 1 ≥ kx. Thus,

‖xm+n − xn‖ ≤ g(a0)δnγ
3n−1

2
1− γm·3n

δm

1− γ3nδ
η. (3.6)

It follows that {xn} is a Cauchy sequence. So there exists a x∗ such that lim
n→∞xn = x∗.

For m ≥ 1 and n = 0, we get

‖xm − x0‖ ≤ g(a0)
1− γmδm

1− γδ
η < Rη.

Hence, xm ∈ B(x0, Rη), for all m ≥ 0. By letting n = 0, m →∞ in (3.6), we obtain

‖x∗ − x0‖ ≤ Rη. (3.7)

This shows x∗ ∈ B(x0, Rη).

Now we prove that x∗ is a solution of F (x) = 0. Since

‖F ′(xn)‖ ≤ ‖F ′(x0)‖+ ‖F ′(xn)− F ′(x0)‖
≤ ‖F ′(x0)‖+ M‖xn − x0‖
≤ ‖F ′(x0)‖+ MRη,

we can obtain

‖F (xn)‖ ≤ ‖F ′(xn)‖‖ΓnF (xn)‖ ≤ (‖F ′(x0)‖+ MRη)‖ΓnF (xn)‖. (3.8)

Since

‖ΓnF (xn)‖ ≤ dn−1‖yn−1 − xn−1‖ = · · · = η
( n−1∏

i=0

di

)
≤ ηδnγ

3n−1
2 ,

by letting n → ∞, we obtain ‖ΓnF (xn)‖ → 0, and ‖F (xn)‖ → 0 in (3.8). Hence, by the
continuity of F in Ω, we obtain F (x∗) = 0.

Now we prove the uniqueness of x∗ in B(x0,
2

Mβ − Rη) ∩ Ω. Firstly we can obtain x∗ ∈
B(x0,

2
Mβ −Rη) ∩ Ω. Since R = g(a0)/

(
1− d0

)
< 1/a0, then we have

2
Mβ

−Rη =
( 2

a0
−R

)
η >

1
a0

η > Rη,

and then B(x0, Rη) ⊆ B(x0,
2

Mβ −Rη) ∩ Ω.
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Let x∗∗ be another zero of F (x) in B(x0,
2

Mβ −Rη) ∩ Ω. By Taylor theorem, we have

0 = F (x∗∗)− F (x∗) =
∫ 1

0
F
′(

(1− t)x∗ + tx∗∗
)
dt(x∗∗ − x∗). (3.9)

Since

‖Γ0‖
∥∥∥∥

∫ 1

0

[
F ′((1− t)x∗ + tx∗∗

)− F ′(x0)
]
dt

∥∥∥∥

≤ Mβ

∫ 1

0

[
(1− t)‖x∗ − x0‖+ t‖x∗∗ − x0‖

]
dt

<
Mβ

2

[
Rη +

2
Mβ

−Rη
]

= 1,

it follows by the Banach lemma that
∫ 1
0 F ′((1− t)x∗+ tx∗∗

)
dt is invertible and hence x∗∗ = x∗.

By letting m →∞ in (3.6), we obtain (3.5) and furthermore

‖xn − x∗‖ ≤ g(a0)η
γ1/3(1− d0)

(
γ1/3

)3n

. (3.10)

This means that the modified Chebyshev-like’s method given by (1.2) is of R-order of convergence
at least three.

3.2 R-order of convergence

Now we consider the following mixed condition

‖F ′′′(x)− F ′′′(y)‖ ≤
m∑

i=1

Li‖x− y‖qi , Li ≥ 0, qi ∈ [0, 1], x, y ∈ Ω.

By choosing w(µ) =
∑m

i=1(Liµ
qi), we have w(tµ) =

∑m
i=1(Lit

qiµqi), since t ∈ [0, 1], qi ∈ [0, 1],
then ϕ(t) = tp, where p = min{q1, q2, · · · , qm}.

Now we consider that ϕ(t) = tp, where p ∈ (0, 1]. In this situation

I1 =
∫ 1

0
ϕ
(1
3
t
)
dt =

1
3p
· 1
1 + p

, (3.11)

and

I2 =
∫ 1

0
ϕ(t)(1− t)2dt =

1
(1 + p)(2 + p)(3 + p)

. (3.12)

The sequence {cn} is reduced to

cn+1 = cnh(an)d2+p
n , n ≥ 1.

Moveover
`(τt, τ2u, τ2+pv) < τ3+p`(t, u, v), for τ ∈ (0, 1), p ∈ [0, 1].

Then

an+1 ≤ γ(3+p)n
an ≤ γ

(3+p)n+1−1
2+p a0, n ≥ 0,

bn+1 < γ2(3+p)n
bn < γ

2[(3+p)n+1−1]
2+p b0, n ≥ 0,

cn+1 < γ(2+p)(3+p)n
cn < γ(3+p)n+1−1c0, n ≥ 0.
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Consequently, the new a prior error estimates for iteration (1.2) are:

‖x∗ − xn‖ ≤ g(a0)ηγ
(3+p)n−1

2+p
δn

1− γ(3+p)nδ
, n ≥ 0,

so that
‖x∗ − xn‖ ≤ g(a0)η

γ
1

2+p (1− γδ)

(
γ

1
2+p

)(3+p)n

, n ≥ 0,

and the R-order of convergence is then at least 3 + p.

Remark Notice that w(z) = Lz, L ≥ 0, if F ′′′ is Lipschitz continuous in Ω and the R-order
of convergence of iteration (1.2) is now at least four. And if F ′′′ is (L, p)-Hölder continuous in
Ω, then w(z) = Lzp, L ≥ 0, so that (1.2) is of R-order of convergence at least 3 + p.

4 Application

We illustrate the previous study with an application to the following nonlinear integral
equations.

Example 1. Consider the mixed Hammerstein type integral equation [24]:

x(s) = 1 +
1
3

∫ 1

0
G(s, t)

(
x(t)10/3 + x(t)4

)
dt, s, t ∈ [0, 1], (4.1)

where x ∈ X. Here X = C[0, 1] is the space of continuous functions on [0, 1] with the max-norm

‖x‖ = max
s∈[0,1]

|x(s)| .

And the kernel G is the Green function

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

The analysis and computation of these types of equations are justified by the dynamic model of
a chemical reactor.

Solving (4.1) is equivalent to solve F (x) = 0, where F : Ω ⊆ C[0, 1] → C[0, 1],

[F (x)](s) = x(s)− 1− 1
3

∫ 1

0
G(s, t)

(
x(t)10/3 + x(t)4

)
dt, s ∈ [0, 1], (4.2)

and Ω is a suitable non-empty open convex domain. Note that the first, second and third Fréchet
derivatives of the operator F are given by

[F ′(x)y](s) = y(s)− 1
3

∫ 1

0
G(s, t)

(10
3

x(t)7/3 + 4x(t)3
)
y(t)dt, (4.3)

[F ′′(x)yz](s) = −1
3

∫ 1

0
G(s, t)

(70
9

x(t)4/3 + 12x(t)2
)
z(t)y(t)dt, (4.4)

[F ′′′(x)yzu](s) = −1
3

∫ 1

0
G(s, t)

(280
27

x(t)1/3 + 24x(t)
)
u(t)z(t)y(t)dt. (4.5)

10
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Observe that F ′′′ is neither Lipschitz continuous nor Hölder continuous in Ω, but the operator
F satisfies the assumptions of Theorem 1, so that a solution of (4.1) can be approximated by
(1.2).

Now we consider Ω = B(0, 3/2) ⊆ X as an open convex nonempty domain and choose
x0(s) = 1 as an initial approximation solution. One can easily obtain

‖Γ0‖ ≤ 36/25 = β, ‖Γ0F (x0)‖ ≤ 3/25 = η,

‖F ′′(x)‖ ≤ 1.6815 = M, ‖F ′′′(x)‖ ≤ 1.9946 = N,

ω(z) =
35
81

3
√

z + z, ϕ(t) = 3
√

t, I1 = 0.5200, I2 = 0.0964.

Hence, a0 = Mβη = 0.2906, b0 = Nβη2 = 0.0414 and c0 = ω(η)βη2 = 0.0069, so that

Φ(a0) = a0g(a0)− 1 ' −0.6550 < 0, and h(a0)d0 ' 0.0564 < 1.

Besides, the solution x∗ belongs to B(x0, Rη) = B(1, 0.1480 · · · ) ⊆ Ω and it is unique in
B(1, 0.6780 · · · ) ∩ Ω.

Finally, we discretize (4.1) to transform it into a finite dimensional problem and we apply
(1.2) to approximate a solution. This procedure consists of approximating the integral appearing
in (4.1) by a numerical quadrature formula. We consider the following Gauss-Legendre formula

∫ 1

0
v(t)dt '

m∑

i=1

wiv(ti),

where the nodes ti and the weights wi can be easily computed.
If we denote xj = x(tj), (j = 1, 2, · · · ,m), (4.1) becomes the following nonlinear system of

equations

xj = 1 +
1
3

m∑

k=1

αjk(x
10/3
k + x4

k), j = 1, 2, · · · ,m, (4.6)

where

αjk =

{
wktk(1− tj) if k ≤ j,

wktj(1− tk) if k < j.

Now we apply the method given by (1.2) to compute (4.6) and compare it with the Chebyshev-
like’s method in [30]. Taking into account that we have previously considered the starting
function x0(s) = 1, we now choose the vector x0 = (1, 1, · · · , 1)T as the initial iterate. All
computations are carried out with double arithmetic precision. In the tests, we take m = 10, 20
in (4.6) respectively. Displayed in Tables 1 and 2 is the max-norm of vector functions at each
iterative step. The stopping criterion that we consider is ‖F (xn)‖∞ ≤ 10−15.

From the numerical results, we can see that the performance of the method (1.2) is better.
This means that our method can be of practical interest.
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Table 1: Results of system (4.6) with m = 10

n Chebyshev-like method the method (1.2)
1 3.098738e-004 6.359533e-005
2 1.645750e-011 6.661338e-016
3 6.661338e-016

Table 2: Results of system (4.6) with m = 20

n Chebyshev-like method the method (1.2)
1 2.956476e-004 5.838933e-005
2 1.313716e-011 9.992007e-016
3 1.443290e-015
4 4.440892e-016

5 Dynamics

The dynamical analysis of a method is becoming a trend in recent publications [25-28] on
iterative methods because it allows us to classify the various iterative formulas, not only from
the point of view of its order of convergence, but also analyzing how these formulas behave
as function of the initial estimate that is taken. Let us first recall some dynamical concepts.
Consider a Fréchet differential function G : Rn −→ Rn. The orbit of x ∈ Rn is defined as:

x,G(x), G2(x), · · · , Gp(x), · · · .

A point xf is a fixed point of G if G(xf ) = xf . The basin of attraction of xf is the set of
points whose orbits tend to this fixed point

A(xf ) = {x ∈ Rn : Gp(x) −→ xf for p →∞}.
In this section we study the dynamics of the method (1.2) when applied to the solution of

a 2× 2 nonlinear system and compare it with the dynamics of Chebyshev-like’s method in [30].
We show that the method is generally convergent and depict the attraction basins.

Example 2. Consider the following system [29]




f1(x) =
1
2
sin(x1x2)− 1

4π
x2 − 1

2
x1 = 0

f2(x) =
(
1− 1

4π

)(
e2x1 − e

)
+

e

π
x2 − 2ex1 = 0

where 0.25 ≤ x1 ≤ 1 and 1.5 ≤ x2 ≤ 2π. The exact solutions are x∗ = (1
2 , π)T and x∗ =

(0.29945, 2.83693)T .
For the comparisons, we have run the methods with tolerance 10−5, performing a maximum

of 20 iterations. The starting points form a uniform grid of size 600× 600 in a rectangle of the
real plane. The attraction basins have been colored according to the corresponding fixed point.
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Figure 1: Attraction basins for Chebyshev-like’s method

Figures 1 and 2 show the attraction basins of the method (1.2) and Chebyshev-like’s method
in [30], respectively. According to the figure, for any starting point that arise from the red or
blue regions, the methods are converge to the solution in that region, while starting points from
other region failed to convergence. The presented basin of attraction show the good performance
of the method (1.2) as compared to Chebyshev-like’s method in [30].

6 Conclusion

In this paper, the semilocal convergence of the modified Chebyshev-like’s method for solving
nonlinear equations in Banach spaces is established by using recurrence relations under the
assumption that F ′′′ satisfies ω-continuity condition. An existence-uniqueness theorem is given
to show the R-order convergence of the method. Also a priori error bounds is given. From the
numerical results, we can observe that the performance of our method in this paper is better.

The dynamical behavior of the method (1.2) has been compared with that of Chebyshev-
like’s method in [30]. The presented basin of attraction have also confirmed better performance
of the method (1.2).
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Abstract

By using the direct and fixed point methods, we establish the general solution and generalized Hyers–Ulam

stability of the following sextic functional equation

f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny) = (n4 + n2)[f(x+ y) + f(x− y)]

+ 2(n6 − n4 − n2 + 1)[f(x) + f(y)]

in random normed spaces. Also, we present an illustrative example with the Lukasiewicz t-norm that can

be a suitable approximation using this sextic function.

1. Introduction

If the values of norms are probability distribution functions, then we have a generalized notion of

normed space named random normed space, that was introduced by Sherstnev in [31] and extended by

Alsina, Schweizer and Sklar in [1]. The theory of random normed spaces have significant applications

in quantum particle physics (see [20]). Also, it has very useful applications in many fields like popula-

tion dynamics, chaos control, computer programming, nonlinear dynamical system, nonlinear operators,

statistical convergence, etc.

On the other hand, one of the most important issues in the theory of functional equations, concerning

the famous Ulam stability problem is: when a mapping satisfying a functional equation approximately,

must be close to an exact solution of a given functional equation?

Ulam [35] in 1940 raised the first stability problem concerning group homomorphisms. Hyers [12] was

the first mathematician to present an affirmative partial answer to the question of Ulam for Banach spaces.

Subsequently, Hyers’ theorem was generalized by Aoki [2] for additive mappings and by Rassias [28] for

linear mappings by considering an unbounded Cauchy difference. Gavruta [10] obtained a generalization

of Rassias’ theorem, which allows the Cauchy difference to be controlled by a general unbounded function.
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The stability problems of a wide class of functional equations have been investigated by a number of

authors, and there are many interesting results concerning those problem (see, e.g., [3, 11, 13, 15, 25, 28,

32–34, 36]). Also by using fixed point methods, the stability problems of several functional equations have

been extensively investigated by a number of authors (see, e.g., [5–7, 19, 26]).

The generalized Hyers–Ulam stability of different functional equations in random normed spaces,

paranormed spaces, quasi-normed spaces and quasi-β-normed spaces has been studied by many authors

(see , e.g., [8, 14, 18, 22–24]). Park and Lee [23] proved the Hyers–Ulam stability of the following additive-

quadratic-cubic-quatric functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) (1.1)

in paranormed spaces. The general solution of quintic and sextic functional equations

f(x+ 3y)− 5f(x+ 2y) + 10f(x+ y)− 10f(x) + 5f(x− y)− f(x− 2y) = 120y (1.2)

and

f(x+ 3y)− 6f(x+ 2y) + 15f(x+ y)− 20f(x) + 15f(x− y)− 6f(x− 2y) + f(x− 3y) = 720f(y) (1.3)

was introduced and investigated on the generalized Hyers–Ulam stability in quasi-β-normed spaces via

fixed point method by Xu et al. [37].

The general solution and the generalized Hyers–Ulam stability of the sextic functional equation

f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny) = (n4 + n2)[f(x+ y) + f(x− y)]

+ 2(n6 − n4 − n2 + 1)[f(x) + f(y)] (1.4)

in paranormed spaces was discussed by Ravi and Sabarinathan [29].

In this paper, we present the general solution and generalized Hyers–Ulam stability of the sextic

functional equation (1.4) under arbitrary t-norms by direct method and under Min t-norm by fixed point

method in random normed spaces and provide an example for random normed spaces with the Lukasiewicz

t-norm, by direct method.

2. Preliminaries

Before giving the main result, we present some basic facts related to random normed spaces and

some preliminary results. We say that f : R −→ [0, 1] is a distribution function if and only if it is a

monotone, nondecreasing, left continuous, inff(x) = 0 and supf(x) = 1. By 4+ we denote a collection of

all distribution functions and by D+ the set of all distribution functions such that f(x) = 0. If a ∈ R0,

then Ha ∈ D+ where

Ha(t) :=

0 if t ≤ a,

1 if t > a.

2
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It is obvious that H0 ≥ f for all f ∈ D+.

Definition 2.1 ([8, 30]). A mapping T : [0, 1]× [0, 1] → [0, 1] is a continuous triangular norm (briefly a
t-norm) if T satisfies the following conditions:

1. T is commutative and associative;
2. T is continuous;
3. T (a, 1) = a for all a ∈ [0, 1];
4. T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d.

Typical examples of continuous t-norms are Tp(a, b) = ab, TM (a, b) = min(a, b) and TL(a, b) = max(a+

b− 1, 0) (the Lukasiewicz t-norm).

Recall (see [8, 11]) that if T is a t-norm and xn is a given sequence of numbers in [0, 1], Tni=1xi is

defined recurrently by T 1
i=1xi = x1 and Tni=1xi = T (Tn−1i=1 xi, xn) for n ≥ 2.

It is known [11] that for the Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1⇐⇒
∞∑
n=1

(1− xn) <∞.

Definition 2.2 ([31]). A random normed space (briefly RN-space) is a triple (X,µ, T ) where X is a vector
space, T is a continuous t-norm, and µ is a mapping from X into D+ such that the following conditions
hold:

1. µx(t) = H0(t) for all t > 0 iff x = 0;
2. µαx(t) = µx( t

|α| ) for all x ∈ X, t > 0 and α 6= 0;

3. µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.3 ([18]). Let (X,µ, T ) be an RN-space. Then

1. A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists
a positive integer N such that µxn−x(ε) > 1− λ, whenever n ≥ N .

2. A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there exists a
positive integer N such that µxn−xm(ε) > 1− λ, whenever n ≥ m ≥ N .

3. An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy sequence in X is convergent
to a point in X.

Theorem 2.4 ([30]). If (X,µ, T ) is an RN-space and xn is a sequence such that xn −→ x, then
limn→∞ µxn(t) = µx(t) almost everywhere.

Definition 2.5 ([16]). Let X be a set. A function d : X ×X −→ [0,∞] is called a generalized metric on
X if it satisfies

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 2.6 ([4, 9]). Let (X, d) be a complete generalized metric space and let J : X −→ X be a strictly
contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n, or there exists a positive integer n0 such that

1. d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
2. the sequence {Jnx} converges to a fixed point y∗ of J ;
3. y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
4. d(y, y∗) 6 1

1−αd(y, Jy) for all y ∈ Y .
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3. Hyers–Ulam stability of the sextic functional equation (1.4) by direct method

In this section, using the direct method, we prove the generalized Hyers–Ulam stability of the sextic

functional equation (1.4) in complete RN-spaces. Also, we present an illustrative example with the

Lukasiewicz t-norm that can be suitable approximation using this sextic function.

Theorem 3.1. Let X be a real liner space, (Y, µ, T ) a complete RN-space and f : X −→ Y be a mapping
with f(0) = 0 for which there is φ : X2 −→ D+ (φ(x, y) is denoted by φx,y) such that

µDsf(x,y)(t) > φx,y(t), (3.1)

where

Dsf(x, y) := f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]

for all x, y ∈ X and t > 0. If

lim
m→∞

T∞i=1(φni+m−1x,0(n6m+5it)) = 1, (3.2)

and

lim
m→∞

φnmx,nmy(n6mt) = 1 (3.3)

for all x, y ∈ X and t > 0, then there exists a unique sextic mapping S : X −→ Y satisfying (1.4) and the
inequality

µf(x)−s(x)(t) ≥ T∞i=1(φni−1x,0(n5it) (3.4)

for all x ∈ X and t > 0.

Proof. Letting y = 0 in (3.1), we get

µf(nx)−n6f(x)(t) ≥ φx,0(2t) ≥ φx,0(t) (3.5)

for all x ∈ X. Then we get
µ f(nx)

n6 −f(x)
(t) ≥ φx,0(n6t), (3.6)

therefore,
µ f(nk+1x)

n6k+6 −
f(nkx)

n6k

(t) ≥ φnkx,0(n6k+6t), (3.7)

that is,

µ f(nk+1x)

n6k+6 −
f(nkx)

n6k

(
t

nk+1
) ≥ φnkx,0(n5(k+1)t) (3.8)

for every k ∈ N , t > 0, n positive integer, n > 1. As

1 >
1

n
+

1

n2
+

1

n3
+ ...+

1

nk
,

by the triangle inequality it follows:

µ f(nmx)
n6m −f(x)(t) ≥ µ f(nmx)

n6m −f(x)(
m−1∑
k=0

1

nk+1
t)

≥ Tm−1k=0

(
µ f(nk+1x)

n6k+6 −
f(nkx)

n6k

(
1

nk+1
t)

)
> Tm−1k=0 (φnkx,0(n5k+5t)

= Tmi=1

(
φni−1x,0(n5it)

)
,

(3.9)

4
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x ∈ X, t > 0, and n > 1. In order to prove the convergence of the sequence { f(n
jx)

n6j }, we replace x by

njx, and multiplying the left-hand side of (3.9) by n6j

n6j , we get

µ f(nm+jx)

n6m+6j −
f(njx)

n6j

(t) ≥ Tmi=1

(
φnj+i−1x,0(n6j+5it)

)
. (3.10)

Since the right-hand side of the inequality (3.10) tends to 1 as m and j tend to infinity, the sequence

{ f(n
jx)

n6j } is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(njx)

n6j

for all x ∈ X.
Replacing x, y by nmx and nmy, respectively, in (3.1), then multiplying the right hand-side by n6m

n6m ,
it follows that

µ 1
n6mDsf(nmx,nmy)(t) ≥ φnmx,nmy(n6mt)

for all x, y ∈ X, and positive integer n, n > 1. Taking the limit as m→∞ we find that S satisfies (1.4),
that is, S is a sextic map. To prove (3.4) take the limit as m→∞ in (3.9).

Finally, to prove the uniqueness of the sextic function S, let us assume that there exists a sextic
function r which satisfies (3.4) and equation (1.4). Therefore

µr(x)−s(x)(t) = µ
r(x)− f(n

jx)

n6j +
f(nj)

n6j −s(x)
(t)

≥ T (µ
r(x)− f(n

jx)

n6j

(
t

2
), µ f(njx)

n6j −s(x)
(
t

2
)).

Taking the limit as j →∞, we find µr(x)−s(x)(t) = 1. Therefore r = s.

Corollary 3.2. Let X be a real liner space and (Y, µ, T ) a complete RN-space such that (T = TM , Tp or
TL) and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) > 1− ‖x‖
t+ ‖x‖

(3.11)

for all x ∈ X, t > 0. Then there exists a unique sextic mapping S : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) > T∞i=1(1− ‖x‖
n4i+1t+ ‖x‖

)

for every x ∈ X, and t > 0.

Proof. It is enough to put,

φx,y(t) = 1− ‖x‖
t+ ‖x‖

for all x, y ∈ X and t > 0, in Theorem 3.1.

Corollary 3.3. Let X be a real liner space and (Y, µ, T ) a complete RN-space such that (T = TM , Tp or
TL) and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) >
t

t+ ε‖x0‖
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique sextic mapping S : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) > T∞i=1(
n5it

n5it+ ε‖x0‖
).

5
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Proof. It is enough to put,

φx,y(t) =
t

t+ ε‖x0‖
for all x, y ∈ X and t > 0, in Theorem 3.1.

Corollary 3.4. Let X be a real linear space and (Y, µ, T ) a complete RN-space such that (T = TM , Tp
or TL) and let L ≥ 0 and p be a real number with 0 < p < 5 and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) >
t

t+ L(‖ x ‖p + ‖ y ‖p)

for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping S : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) ≥ T∞i=1(
t

t+ Lni(p−5)−p ‖ x ‖p
)

for every x ∈ X and t > 0.

Proof. It is enough to put

φx,y(t) =
t

t+ L(‖ x ‖p + ‖ y ‖p)
for all x, y ∈ X and t > 0, in Theorem 3.1.

Example 3.5. Let (X, ‖.‖) be a Banach algebra and

µx(t) =

{
max{1− ‖x‖t , 0} if t > 0,

0 if t ≤ 0,

for all x, y ∈ X and t > 0. Let

ϕx,y(t) =

{
max{1− (8n6)(‖x‖+‖y‖)

t , 0} if t > 0,

0 if t ≤ 0.

We note that ϕx,y(t) is a distribution function and limj→∞ ϕnjx,njy(n6jt) = 1 for all x, y ∈ X and
t > 0.

It is easy to show that (X,µ, TL) is an RN-space (this was essentially proved by Mushtari in [21], see

also [27]). Indeed, µx(t) = 1, ∀t > 0 implies ‖x‖t = 0 and hence x = 0 for all x ∈ X and t > 0. Obviously,
µλx(t) = µx( tλ ) for all x ∈ X and t > 0. Next, for all x, y ∈ X and t, s > 0, we have

µx+y(t+ s) = max{1− ‖x+ y‖
t+ s

, 0}

= max{1− ‖x+ y

t+ s
‖, 0}

= max{1− ‖ x

t+ s
+

y

t+ s
‖, 0}

≥ max{1− ‖x
t
‖ − ‖y

s
‖, 0}

= TL(µx(t), µy(s)).

It is easy to see that (X,µ, TL) is complete, for

µx−y(t) ≥ 1− ‖x− y‖
t

, ∀x, y ∈ X,

6
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and t > 0 and (X, ‖.‖) is complete. Define a mapping f : X −→ X by f(x) = x6 + ‖x‖x0 for all x ∈ X,
where x0 is a unit vector in X. A simple computation shows that

‖f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]‖
= | ‖ nx+ y ‖ + ‖ nx− y ‖ + ‖ x+ ny ‖ + ‖ x− ny ‖
− (n2 + n4)[‖ x+ y ‖ + ‖ x− y ‖]
− 2(n6 − n4 − n2 + 1)[‖ x ‖ + ‖ y ‖]|
≤ 2(n6 + n+ 2)(‖ x ‖ + ‖ y ‖) ≤ 8n6(‖ x ‖ + ‖ y ‖)

for all x, y ∈ X. Hence µDsf(x,y)(t) ≥ φx,y(t) for all x, y ∈ X and t > 0. Fix x ∈ X and t > 0. Then it
follows that,

(TL)∞i=1

(
φni+j−1x,0(n6j+5i)t)

)
= max

{ ∞∑
i=1

(
φni+j−1x,0(n6j+5i)t)− 1

)
+ 1, 0

}

= max

{
1− 8n5‖x‖

n5j(n4 − 1)t
, 0

}
for all x ∈ X, n ∈ N and t > 0. Hence

lim
j→∞

(TL)∞i=1

(
ϕni+j−1x,0(n6j+5i)t)

)
= 1

for all x ∈ X and t > 0. Thus, all the conditions of Theorem 3.1 hold. Since

(TL)∞i=1

(
φni−1x,0(n5it)

)
= max{1− 8n5‖x‖

(n4 − 1)t
, 0}

for all x ∈ X and t > 0, we can deduce that S(x) = x6 is the unique sextic mapping S : X −→ X such
that

µf(x)−s(x)(t) ≥ max{1− 8n5‖x‖
(n4 − 1)t

, 0}

for all x ∈ X and t > 0.

4. Hyers–Ulam stability of the sextic functional equation (1.4) by fixed point method

In this section, using the fixed point method, we prove the generalized Hyers–Ulam stability of the

sextic functional equation (1.4) in complete RN-spaces.

Theorem 4.1. Let X be a real liner space and (Y, µ, TM ) be a complete RN-space and f : X −→ Y be a
mapping with f(0) = 0 for which there is φ : X2 −→ D+ (φ(x, y) is denoted by φx,y) such that

φnx,ny(αt) ≥ φx,y(t), 0 < α < n6,

and

µDsf(x,y)(t) > φx,y(t) (4.1)

for all x, y ∈ X, and t > 0, where

Dsf(x, y) := f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

7
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− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]

for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping g : X −→ Y such that

µf(x)−g(x)(t) > φx,0(2(n6 − α)t) (4.2)

for all x ∈ X and t > 0. Moreover, we have

g(x) = limm−→∞
f(nmx)

n6m
.

Proof. Let y = 0 in (4.1); we get
µ2f(nx)−2n6f(x)(t) ≥ φx,0(t) (4.3)

for all x ∈ X and t > 0 and hence
µ f(nx)

n6 −f(x)
(t) ≥ φx,0(2n6t). (4.4)

Consider the set
E := {g : X → Y : g(0) = 0},

and the mapping dG defined on E × E by

dG(g, h) = inf{ε > 0 : µg(x)−h(x)(εt) ≥ φx,0(2n6t)},

for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the proof of [17, Lemma
2.1]). Now, let us consider the linear mapping J : E → E defined by

Jg(x) =
g(nx)

n6
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz constant k = α
n6 .

Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ε. Then we have

µg(x)−h(x)(εt) ≥ φx,0(2n6t)

for all x ∈ X and t > 0 and hence

µJg(x)−Jh(x)(
εαt

n6
) = µ g(nx)

n6 −
h(nx)

n6
(
εαt

n6
)

= µg(nx)−h(nx)(αεt)

≥ φnx,0(2αn6t)

for all x ∈ X and t > 0. Since
φnx,ny(αt) ≥ φx,y(t), 0 < α < n6,

we have

µJg(x)−Jh(x)(
εαt

n6
) ≥ φx,0(2n6t),

that is,

dG(g, h) < ε =⇒ dG(Jg, Jh) <
α

n6
ε.

This means that
dG(Jg, Jh) <

α

n6
dG(g, h),

for all g, h ∈ E. Next, from
µ f(nx)

n6 −f(x)
(t) ≥ φx,0(2n6t),

8
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it follows that dG(f, Jf) ≤ 1. Using Theorem 2.6, we show the existence of a fixed point of J , that is,
the existence of a mapping g : X −→ Y such that g(nx) = n6g(x) for all x ∈ X. Since, for all x ∈ X and
t > 0,

dG(u, v) < ε =⇒ µu(x)−v(x)(t) ≥ φx,0(
2n6t

ε
),

it follows from dG(Jnf, g) −→ 0 that limm−→∞
f(nmx)
n6m = g(x) for all x ∈ X. Also from

dG(f, g) ≤ 1

1− L
d(f, Jf)

for all g, h ∈ E, we have dG(f, g) ≤ 1
1− α

n6
, and it immediately follows that

µg(x)−f(x)(
n6

n6 − α
t) > φx,0(2n6t)

for all x ∈ X and t > 0. This means that

µg(x)−f(x)(t) > φx,0(2(n6 − α)t)

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is the unique fixed point
of J such that there exists C ∈ (0,∞) satisfying

µg(x)−f(x)(Ct) > φx,0(2n6t)

for all x ∈ X and t > 0. This completes the proof.

Corollary 4.2. Let X be a real liner space, (Y, µ, TM ) a complete RN-space, and f : X −→ Y a mapping
satisfying

µDsf(x,y)(t) > 1− ‖x‖
t+ ‖x‖

(4.5)

for all x ∈ X, t > 0. Then there exists a unique sextic mapping s : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) > 1− ‖x‖
2(n6 − α)t+ ‖x‖

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. It is enough to put,

φx,y(t) = 1− ‖x‖
t+ ‖x‖

for all x ∈ X and t > 0 in Theorem 4.1. Then we can choose n < α < n6 and so we get the desired
result.

Corollary 4.3. Let X be a real liner space, (Y, µ, TM ) a complete RN-space and f : X −→ Y a mapping
satisfying

µDsf(x,y)(t) >
t

t+ ε‖x0‖
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique sextic mapping s : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) >
2(n6 − α)t

2(n6 − α)t+ ε‖x0‖
for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(nmx)

n6m
.

9
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Proof. It is enough to put

φx,y(t) =
t

t+ ε‖x0‖

for all x ∈ X, and t > 0 in Theorem 4.1. Then we can choose n < α < n6 and so we get the desired
result.

Corollary 4.4. Let X be a real liner space, (Y, µ, TM ) a complete RN-space and f : X −→ Y a mapping
satisfying

µDsf(x,y)(t) >
t

t+ θ(‖ x ‖p + ‖ y ‖p)

for all x, y ∈ X, t > 0, θ > 0, and 0 < p < 6. Then there exists a unique sextic mapping s : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) ≥
2(n6 − α)t

2(n6 − α)t+ θ ‖ x ‖p

for every x ∈ X and t > 0. Moreover, we have

s(x) = limm−→∞
f(nmx)

n6m
.

Proof. It is enough to put

φx,y(t) =
t

t+ θ(‖ x ‖p + ‖ y ‖p)

for all x, y ∈ X and t > 0 in Theorem 4.1. Then we can choose np < α < n6 and so we get the desired
result.
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Abstract

In this paper, we introduce the S−mapping generated by a finite family
of nonexpansive mapping and real numbers in convex metric space by using
concept of the S−mapping defined by Kangtunyakarn and Suantai [1]. Then,
we prove convergence of Ishikawa iteration generated by the S−mapping to a
common fixed point of a finite family of nonexpansive mappings in uniformly
convex metric space.
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1 Introduction

Throughout this paper, we assume that (X, d) is a complete metric space and C is
a nonempty closed convex subset of (X, d). A point x is called a fixed point of T if
Tx = x. We use F (T ) to denote the set of fixed point of T . Recalled the following
definitions;

Definition 1.1. The mapping T : C → C is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.

In 1970, Takahashi [9] introduce the following definition as follows:

Definition 1.2. Let (X, d) be a metric space. A mapping W : X ×X × [0, 1]→ X
is said to be a convex structure on X if for each (x, y, λ) ∈ X ×X × [0, 1] and for
all u ∈ X,

d
(
u,W (x, y, λ)

)
≤ λd(u, x) + (1− λ)d(u, y).

∗E-mail: beawrock@hotmail.com
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2 Ishikawa iteration for a common fixed point of a finite...

We observe that W (x, y, λ) = λx+ (1− λ)y is a convex structure on a normed
linear space. A metric space (X, d) together with a convex structure W is called a
convex metric space denoted by (X, d,W ). A nonempty subset C of X is said to
be convex if W (x, y, λ) ∈ C for all x, y ∈ C and λ ∈ [0, 1].

Two classical iteration processes are often used to approximate a fixed point of
a nonexpansive mapping. The first one is introduced by Mann [10] and is defined
as follows:

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 1,

where x1 ∈ C, {αn} ⊆ [0, 1].
The second iteration process is referred to as Ishikawa,s iteration process [5]

which is defined recursively by

{
xn+1 = αnxn + (1− αn)Tyn

yn = βnxn + (1− βn)Txn, ∀n ≥ 1,
(1.1)

where x1 ∈ C, {αn}, {βn} ⊆ [0, 1].
In 2009, Kangtunyakarn and Suantai [1] introduced the mapping generated by

a finite family of nonexpansive mapping and family of real numbers as follows:

Definition 1.3. Let C be a nonempty convex subset of real Banach space. Let
{Ti}Ni=1 be a finite family of nonexpanxive mappings of C into itself. For each

j = 1, 2, ..., N, let αj = (αj
1, α

j
2, α

j
3) ∈ I×I×I where I ∈ [0, 1] and αj

1 +αj
2 +αj

3 = 1.
They define the mapping S : C → C as follows:

U0 = I,

U1 = α1
1T1U0 + α1

2U0 + α1
3I,

U2 = α2
1T2U1 + α2

2U1 + α2
3I,

U3 = α3
1T3U2 + α3

2U2 + α3
3I,

.

.

.

UN−1 = αN−1
1 TN−1UN−2 + αN−1

2 UN−2 + αN−1
3 I,

S = UN = αN
1 TNUN−1 + αN

2 UN−1 + αN
3 I. (1.2)

This mapping is called S-mapping generated by T1, ...., TN and α1, α2, ..., αN .
In this paper, by using the concept of the S−mapping in Definition 1.3, we

define the S−mapping generated by a finite family of nonexpansive mappings and
real numbers in convex metric space. Then, we prove convergence of Ishikawa it-
eration generated by the S−mapping to a common fixed point of a finite family of
nonexpansive mappings in uniformly convex metric space.
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2 Preliminaries

In this section, we recall some lemmas and definitions to prove our main result
as follows:

Definition 2.1. (See [7]) A convex metric space (X, d,W ) is said to be uniformly
convex if for any ε > 0, there exists δ = δ(ε) > 0 such that for all r > 0 and
x, y, z ∈ X with d(z, x) < r, d(z, y) < r and d(x, y) ≥ rε,

d
(
z,W (x, y,

1

2
)
)
≤ (1− δ)r.

Lemma 2.1. (See [11], [3]) Let (X, d,W ) be a convex metric space. For each
x, y ∈ X and λ, λ1, λ2 ∈ [0, 1], we have the following.

(i) W (x, x, λ) = x, W (x, y, 0) = y and W (x, y, 1) = x.
(ii) d

(
x,W (x, y, λ)

)
= (1− λ)d(x, y) and d

(
y,W (x, y, λ)

)
= λd(x, y).

(iii) d(x, y) = d
(
x,W (x, y, λ)

)
+ d
(
W (x, y, λ), y

)
.

(iv) |λ1 − λ2|d(x, y) ≤ d
(
W (x, y, λ1),W (x, y, λ2)

)
.

We say that a convex metric space (X, d,W ) has the property:
(C) if W (x, y, λ) = W (y, x, 1− λ) for all x, y ∈ X and λ ∈ [0, 1],
(I) if d

(
W (x, y, λ1),W (x, y, λ2)

)
≤ |λ1−λ2|d(x, y) for all x, y ∈ X and λ1, λ2 ∈

[0, 1],
(H) if d

(
W (x, y, λ),W (x, z, λ)

)
≤ (1−λ)d(y, z) for all x, y, z ∈ X and λ ∈ [0, 1],

(S) if d
(
W (x, y, λ),W (z, w, λ)

)
≤ λd(x, z) + (1−λ)d(y, w) for all x, y, z, w ∈ X

and λ ∈ [0, 1].

Remark 2.2. It is easy to see that the property (C) and (H) imply continuity of a
convex structure W : X×X× [0, 1]→ X and the property (S) implies the property
(H). In 2005, Aoyama et al. [3] proved that a convex metric space with property
(C) and (H) has the property (S).

In 2011, Phuengrattana and Suantai [8] proved the following lemma as follows;

Lemma 2.3. (See [8]) Property (C) holds in uniformly convex metric space.

Remark 2.4. (See [8]) From Lemma 2.3, a uniformly convex metric space (X, d,W )
with the property (H) has the property S and the convex structure W is also
continuous.

Lemma 2.5. (See [6]) Let (X, d,W ) be a uniformly convex metric space with
continuous convex structure. Then for arbitrary positive number ε, there exists
η = η(ε) > 0 such that

d
(
z,W (x, y, λ)

)
≤ (1− 2 min{λ, 1− λ}η)r

for all r > 0 and x, y, z ∈ X, d(z, x) ≤ r, d(z, y) ≤ r, d(x, y) ≥ rε and λ ∈ [0, 1].
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4 Ishikawa iteration for a common fixed point of a finite...

Lemma 2.6. (See [2],[4]) Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∞∑
n=1

δn <∞, and

∞∑
n=1

bn <∞,

then limn→∞ an exists.

We introduce the following definition to use in the next section.

Definition 2.2. Let (X, d,W ) be a complete convex metric space and C be a
nonempty closed convex subset of (X, d,W ). Let {Ti}Ni=1 be a finite family of map-

pings of C into C. For each j = 1, 2, · · · , N , let αj = (αj
1, α

j
2, α

j
3) where αj

1, α
j
2, α

j
3 ∈

[0, 1] and αj
1 + αj

2 + αj
3 = 1. For every x ∈ C, we define the mapping S :

C × C × [0, 1]→ C as follows:

U0x = x,

U1x = W
(
T1U0x,W (U0x, x,

α1
2

1− α1
1

), α1
1

)
,

U2x = W
(
T2U1x,W (U1x, x,

α2
2

1− α2
1

), α2
1

)
,

...

UN−1x = W
(
TN−1UN−2x,W (UN−2x, x,

αN−1
2

1− αN−1
1

), αN−1
1

)
,

Sx = UNx = W
(
TNUN−1x,W (UN−1x, x,

αN
2

1− αN
1

), αN
1

)
.

This mapping is called S−mapping generated by T1, T2, . . . , TN and α1, α2, . . . , αN .

Lemma 2.7. Let C be a nonempty closed convex subset of a complete uniformly con-
vex metric space (X, d,W ) with property (H). Let {Ti}Ni=1 be a finite family of non-

expanxive mappings of C into itself with
⋂N

i=1 F (Ti) 6= ∅ and let αj = (αj
1, α

j
2, α

j
3) ∈

I×I×I, j = 1, 2, 3, ..., N , where I = [0, 1] , αj
1+αj

2+αj
3 = 1, αj

1 ∈ (0, 1) for all j =

1, 2, ..., N−1, αN
1 ∈ (0, 1] αj

2, α
j
3 ∈ [0, 1) for all j = 1, 2, ..., N. Let S be the mapping

generated by T1, ...., TN and α1, α2, ..., αN . Then F (S) =
⋂N

i=1 F (Ti).

Proof. From Lemma 2.1 and definition of S−mapping, it is easy to see that
⋂N

i=1 F (Ti) ⊆
F (S). Next, we show that F (S) ⊆

⋂N
i=1 F (Ti). To show this let x0 ∈ F (S) and

q ∈
⋂N

i=1 F (Ti), we have

d(q, Sx0) = d

(
q,W

(
TNUN−1x0,W (UN−1x0, x0,

αN
2

1− αN
1

), αN
1

))
≤ αN

1 d(q, TNUN−1x0) + (1− αN
1 )d

(
q,W (UN−1x0, x0,

αN
2

1− αN
1

)

)
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≤ αN
1 d(q, TNUN−1x0) + (1− αN

1 )

(
αN
2

1− αN
1

d(q, UN−1x0)

+ (1− αN
2

1− αN
1

)d(q, x0)

)
= αN

1 d(q, TNUN−1x0) + αN
2 d(q, UN−1x0) + αN

3 d(q, x0)

≤ (1− αN
3 )d(q, UN−1x0) + αN

3 d(q, x0)

≤ (1− αN
3 )

(
(1− αN−1

3 )d(q, UN−2x0) + αN−1
3 d(q, x0)

)
+αN

3 d(q, x0)

= (1− αN
3 )(1− αN−1

3 )d(q, UN−2x0) + αN−1
3 (1− αN

3 )d(q, x0)

+αN
3 d(q, x0)

= ΠN
j=N−1(1− α

j
3)d(q, UN−2x0) +

(
1−ΠN

j=N−1(1− α
j
3)
)
d(q, x0)

≤
...

≤ ΠN
j=3(1− α

j
3)d(q, U2x0) +

(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

= ΠN
j=3(1− α

j
3)d
(
q,W

(
T2U1x0,W (U1x0, x0,

α2
2

1− α2
1

), α2
1

))
+
(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

≤ ΠN
j=3(1− α

j
3)

(
α2
1d(q, T2U1x0) + (1− α2

1)d
(
q,W (U1x0, x0,

α2
2

1− α2
1

)
))

+
(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

≤ ΠN
j=3(1− α

j
3)

(
α2
1d(q, T2U1x0) + (1− α2

1)
( α2

2

1− α2
1

d(q, U1x0)

+(1− α2
2

1− α2
1

)d(q, x0)
))

+
(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

= ΠN
j=3(1− α

j
3)

(
α2
1d(q, T2U1x0) + α2

2d(q, U1x0) + α2
3d(q, x0)

)
+
(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

≤ ΠN
j=3(1− α

j
3)

(
(1− α2

3)d(q, U1x0) + α2
3d(q, x0)

))
+
(
1−ΠN

j=3(1− α
j
3)
)
d(q, x0)

= ΠN
j=2(1− α

j
3)d(q, U1x0) +

(
1−ΠN

j=2(1− α
j
3)
)
d(q, x0)

= ΠN
j=2(1− α

j
3)d
(
q,W

(
T1U0x0,W (U0x0, x0,

α1
2

1− α1
1

), α1
1

))
+
(
1−ΠN

j=2(1− α
j
3)
)
d(q, x0)
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= ΠN
j=2(1− α

j
3)d
(
q,W

(
T1x0, x0, α

1
1

))
+
(
1−ΠN

j=2(1− α
j
3)
)
d(q, x0)

≤ ΠN
j=2(1− α

j
3)
(
α1
1d(q, T1x0) + (1− α1

1)d(q, x0)
)

+
(
1−ΠN

j=2(1− α
j
3)
)
d(q, x0)

≤ ΠN
j=2(1− α

j
3)d(q, x0) +

(
1−ΠN

j=2(1− α
j
3)
)
d(q, x0)

= d(q, x0). (2.1)

From (2.1), we have

d(q, U1x0) = d
(
q,W (T1x0, x0, α

1
1)
)

= d(q, x0) and d(q, T1x0) = d(q, x0).

Suppose x0 6= T1x0, then we have d(x0, T1x0) > 0. Choose r = d(q, x0) > 0 and ε =
d(x0, T1x0)

r
, we have d(q, T1x0) ≤ d(q, x0) = r, d(q, x0) ≤ r and d(x0, T1x0) ≥ rε.

From Lemma 2.5, we have

d
(
q,W (T1x0, x0, α

1
1)
)
< d(q, x0) for α1

1 ∈ (0, 1).

This is a contradiction, we have x0 ∈ T1x0, that is, x0 ∈ F (T1). Since x0 = T1x0
definition of U1 and Lemma 2.1, we have U1x0 = x0, that is, x0 ∈ F (U1). From
(2.1) and x0 = U1x0, we have

d(q, U2x0) = d
(
q,W

(
T2x0, x0, α

2
1

))
= d(q, x0) and d(q, T2x0) = d(q, x0).

Suppose x0 6= T2x0, then we have d(x0, T2x0) > 0. Choose r1 = d(q, x0) > 0 and

ε =
d(x0, T2x0)

r1
, we have d(q, T2x0) ≤ d(q, x0) = r1, d(q, x0) ≤ r1 and d(x0, T2x0) ≥

r1ε. From Lemma 2.5, we have

d
(
q,W (T2x0, x0, α

2
1)
)
< d(q, x0) for α2

1 ∈ (0, 1).

This is a contradiction, we have x0 = T2x0, that is, x0 ∈ F (T2). Since x0 = T2x0
definition of U2 and Lemma 2.1, we have U2x0 = x0, that is, x0 ∈ F (U2).
By continuing on this way we can conclude that x0 ∈ F (Ti) and x0 ∈ F (Ui) for all
i = 1, 2, . . . , N − 1.
Finally, we show that x0 ∈ F (TN ). From definition of S and Lemma 2.1, we have

Sx0 = W
(
TNUN−1x0,W (UN−1x0, x0,

αN
2

1− αN
1

), αN
1

)
= W (TNx0, x0, α

N
1 ).

Since

0 = d(x0, Sx0) = d(x0,W (TNx0, x0, α
N
1 )) = αN

1 d(TNx0, x0),

we have x0 = TNx0, that is, x0 ∈ F (TN ). Hence F (S) ⊆
⋂N

i=1 F (Ti).
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Remark 2.8. From Theorem 2.7, we have the mapping S is nonexpansive. To show
this, let x, y ∈ C. By remark 2.4, we have

d(Sx, Sy) = d

(
W
(
TNUN−1x,W (UN−1x, x,

αN
2

1− αN
1

), αN
1

)
,

W
(
TNUN−1y,W (UN−1y, y,

αN
2

1− αN
1

), αN
1

))
≤ αN

1 d(TNUN−1x, TNUN−1y)

+(1− αN
1 )d

(
W (UN−1x, x,

αN
2

1− αN
1

),W (UN−1y, y,
αN
2

1− αN
1

)
)

≤ αN
1 d(TNUN−1x, TNUN−1y)

+(1− αN
1 )

(
αN
2

1− αN
1

d(UN−1x, UN−1y) +
(
1− αN

2

1− αN
1

)
d(x, y)

)
≤ αN

1 d(UN−1x, UN−1y) + αN
2 d(UN−1x, UN−1y) + αN

3 d(x, y)

= (1− αN
3 )d(UN−1x, UN−1y) + αN

3 d(x, y)

≤ (1− αN
3 )
(
(1− αN−1

3 )d(UN−2x, UN−2y) + αN−1
3 d(x, y)

)
+ αN

3 d(x, y)

= ΠN
j=n−1(1− α

j
3)d(UN−2x, UN−2y) +

(
1−ΠN

j=N−1(1− α
j
3)
)
d(x, y)

≤
...

= ΠN
j=1(1− α

j
3)d(U0x, U0y) +

(
1−ΠN

j=1(1− α
j
3)
)
d(x, y)

= d(x, y).

3 Main results

Theorem 3.1. Let C be a nonempty compact closed convex subset of a complete
uniformly convex metric space (X, d,W ) with property (H). Let {Ti}Ni=1 be a finite
family of nonexpansive mappings of C into itself with

⋂N
i=1 F (Ti) 6= ∅ and let αj =

(αj
1, α

j
2, α

j
3) ∈ I × I × I, j = 1, 2, 3, ..., N , where I = [0, 1] , αj

1 + αj
2 + αj

3 = 1, αj
1 ∈

(0, 1) for all j = 1, 2, ..., N − 1, αN
1 ∈ (0, 1] αj

2, α
j
3 ∈ [0, 1) for all j = 1, 2, ..., N.

Let S be the mapping generated by T1, ...., TN and α1, α2, ..., αN . Let x1 ∈ C and let
{xn}, {yn} be sequences generated by{

xn+1 = W (xn, Syn, γn),

yn = W (xn, Sxn, βn)
(3.1)

for all n ≥ 1 where {γn}, {βn} are sequences in [0, 1] satisfying 0 < a ≤ γn ≤ b < 1
and

∑∞
n=1 βn(1− βn) =∞. Then the sequence {xn} converges to z ∈

⋂N
i=1 F (Ti).

Proof. First, we show that infn∈N d(xn, Sxn) = 0. Assume that infn∈N d(xn, Sxn) =
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r′ > 0. Let p ∈
⋂N

i=1 F (Ti), by nonexpansiveness of S−mapping, we have

d(p, xn+1) = d
(
p,W (xn, Syn, γn)

)
≤ γnd(p, xn) + (1− γn)d(p, Syn)

≤ γnd(p, xn) + (1− γn)d(p, yn)

= γnd(p, xn) + (1− γn)

(
d
(
p,W (xn, Sxn, βn)

))
≤ γnd(p, xn) + (1− γn)

(
βnd(p, xn) + (1− βn)d(p, Sxn)

)
≤ d(p, xn).

It implies by Lemma 2.6 that limn→∞ d(p, xn) exists. Then, we have limn→∞ d(p, xn) =
r′′ > 0. By nonexpansiveness of S, we have d(p, Sxn) ≤ d(p, xn). Since {d(p, xn)}
is a nonincreasing and infn∈N d(xn, Sxn) = r′ > 0, we have

d(xn, Sxn) ≥ r′

≥ r′

d(p, xn)
d(p, xn)

≥ r′

d(p, x1)
d(p, xn)

> 0, ∀n ∈ N.

By Lemma 2.5, there exists η = η
(

r′

d(p,x1)

)
> 0 such that

d(p, xn+1) ≤ γnd(p, xn) + (1− γn)d
(
p,W (xn, Sxn, βn)

≤ γnd(p, xn) + (1− γn)

((
1− 2 min{βn, 1− βn}η

)
d(p, xn)

)
= γnd(p, xn) + (1− γn)d(p, xn)− 2(1− γn) min{βn, 1− βn}ηd(p, xn)

≤ γnd(p, xn) + (1− γn)d(p, xn)− 2(1− γn)βn(1− βn)ηd(p, xn)

= d(p, xn)− 2(1− γn)βn(1− βn)ηd(p, xn),

which follows that

2(1− b)βn(1−βn)ηr′′ ≤ 2(1−γn)βn(1−βn)ηd(p, xn) ≤ d(p, xn)−d(p, xn+1). (3.2)

From (3.2), it implies that

2(1− b)η
k∑

n=1

βn(1− βn)r′′ ≤ d(p, x1)− d(p, xk+1) (3.3)

for all k ≥ 1. Letting k → ∞ in (3.3) and , we have ∞ ≤ d(p, x1) − r′′ < ∞.
This is a contradiction, then we have infn∈N d(xn, Sxn) = 0. Then, there exists a
subsequence {xnj} of {xn} such that limj→∞ d(xnj , Sxnj ) = 0. Since C is compact,
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then there exists a subsequence {xnjl
} of {xnj} and p such that liml→∞ xnjl

= p.
From nonexpansiveness of S, we have

d(p, Sp) ≤ d(p, xnjl
) + d(xnjl

, Sxnjl
) + d(Sxnjl

, Sp)

≤ 2d(p, xnjl
) + d(xnjl

, Sxnjl
).

Taking l→∞, it implies that p ∈ F (S). From Lemma 2.7, we have p ∈
⋂N

i=1 F (Ti).

Since limn→∞ d(p, xn) exists, we can conclude that {xn} converges to p ∈
⋂N

i=1 F (Ti).

We can prove the following results by using Theorem 3.1.

Corollary 3.2. Let C be a nonempty compact closed convex subset of a complete
uniformly convex metric space (X, d,W ) with property (H). Let T : C → C be a
nonexpansive mappings with F (T ) 6= ∅. Let x1 ∈ C and let {xn}, {yn} be sequences
generated by {

xn+1 = W (xn, Tyn, γn),

yn = W (xn, Txn, βn)
(3.4)

for all n ≥ 1 where {γn}, {βn} are sequences in [0, 1] satisfying 0 < a ≤ γn ≤ b < 1
and

∑∞
n=1 βn(1− βn) =∞. Then the sequence {xn} converges to z ∈ F (T ).

Proof. Put N = 1 in Theorem 3.1, we obtain the desired result.
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