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Abstract
The purpose of the presented paper is to derive several properties and characteristics of analytic functions,

by applying the differential subordination techniques. Several consequences of the results stated here are also
pointed out.

Key words: analytic functions; univalent functions; starlike functions; convex functions; differential sub-
ordination; best dominant.

2010 Mathematics Subject Classifications: 30C45

1 Introduction

Let A be the class of analytic functions which are analytic in the open unit disk U = {z : |z| < 1}, of the form

f(z) = z +

∞∑
j=2

ajz
j , z ∈ U. (1.1)

By S we denote the subclass of A consisting of univalent functions.
Principle of Subordination (see [6]): If f and g are two analytic functions in U , we say that f is subordinate to g,
written as f ≺ g, if there exists a Schwarz function w analytic in U, with w(0) = 0 and |w(z)| < 1, such that
f(z) = g(w(z)), for all z ∈ U. In particular, if the function g is univalent in U , the above subordination is
equivalent to f(0) = g(0) and f(U) ⊂ g(U).
Important results in the theory of differential subordinations were elaborated by Miller and Mocanu in ([6]) and
([5]).

Definition 1.1 [6] Denote by Q the set of all functions q that are analytic and injective on U\E (q), where
E (q) = {ζ ∈ ∂U : lim

z→ζ
q (z) =∞}, and are such that q′ (ζ) 6= 0, for ζ ∈ ∂U\E (q).

If q ∈ Q, then ∆ = q (U) is a simply connected domain.

In 1915, J. Alexander (see [1]) introduced the class of starlike functions defined as:

S∗ =

{
f ∈ A : Re

[
zf
′
(z)

f(z)

]
> 0, z ∈ U

}
. (1.2)

Let S∗α denote the class of starlike univalent functions of order α, 0 ≤ α < 1, defined as:

S∗ (α) =

{
f ∈ A : Re

[
zf
′
(z)

f(z)

]
> α, z ∈ U, 0 ≤ α < 1

}
. (1.3)

A function f (z) ∈ A is said to be close-to-convex if there exists a function g(z) = z +
∑∞
j=2 bjz

j in S∗ such that

Re

[
zf
′
(z)

g(z)

]
> 0, for all z ∈ U. (1.4)

This class of functions f (z) ∈ A with the condition (1.4) is denoted by K and called the class of close-to-convex
functions. The class K was introduced by Kaplan [3], who showed that all close-to-convex functions are
univalent. A function f (z) ∈ A is said to belongs to the class K (α) of close-to-convex functions of order α in U ,
if g(z) ∈ S∗ (α) and satisfy

1
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Re

[
zf
′
(z)

g(z)

]
> α, for all z ∈ U, 0 ≤ α < 1. (1.5)

In the present investigation, we will obtain different properties of zf
′
(z)

g(z) , for f ∈ A, given by (1.1) and g(z) =

z+
∑∞
j=2 bjz

j in S∗, by using differential subordination. Many studies of the classes involving zf
′
(z)

g(z) were appeared
in the literature (see [2]). Several authors obtained several applications in the geometric functions theory by using
differential subordination (see [4], [8], [7], [11], [9], [10], [12]). Also, suffi cient conditions for close-to-convex and
close-to-convex of order α of a function f ∈ A are obtained. Some consequences of the main results are mentioned.
The following lemmas will be required in order to prove our main results.

Lemma 1.1 [6] Let the function q be univalent in the unit disk U and θ and φ be analytic in a domain D containing
q (U) with φ (w) 6= 0, when w ∈ q (U). Set Q (z) = zq′ (z)φ (q (z)) and h (z) = θ (q (z)) +Q (z). Suppose that
1. Q is starlike univalent in the unit disk U
and
2. Re

(
zh′(z)
Q(z)

)
= Re

[
θ′(q(z))
φ(q(z)) + zQ′(z)

Q(z)

]
> 0, for z ∈ U .

If p is analytic in U , with p (0) = q (0), p (U) ⊆ D and

θ (p (z)) + zp′ (z)φ (p (z)) ≺ θ (q (z)) + zq′ (z)φ (q (z)) = h (z) , (1.6)

then p (z) ≺ q (z) and q is the best dominant of (1.6).

Lemma 1.2 [6] Let the function q ∈ Q, with q (0) = a and let p (z) = a+anz
n+ ... be analytic in U with p (z) 6= a

and n ≥ 1. If p is not subordinate to q, then there exist points z0 = r0e
iθ0 ∈ U and ζ0 ∈ ∂U\E (q) and an m ≥

n ≥ 1, for which p (Ur0) ⊂ q (U),

(1) p (z0) = q (ζ0) , (1.7)

(2) z0p
′ (z0) = mζ0q

′ (ζ0) , (1.8)

(3) Re

[
z0p
′′ (z0)

p′ (z0)
+ 1

]
≥ mRe

[
ζ0q
′′ (ζ0)

q′ (ζ0)
+ 1

]
. (1.9)

2 Main results

Theorem 2.1 Let f(z) = z+a2z
2+ ... and g(z) = z+ b2z

2+ ... be analytic functions in U , with f (0) = g (0) = 0,
g(z) ∈ S∗, with g(z) 6= zf

′
(z) and

Re

[
2 (f ′ (z))

2

f ′(z)g′(z)− f ′′ (z) g (z)
− zf ′ (z)

g (z)

]
> 0, z ∈ U. (2.1)

Then f ∈ K.

Proof. At the begining let us note that f ∈ K is equivalent with the condition

Re

[
zf
′
(z)

g(z)

]
> 0, z ∈ U. (2.2)

Let

p (z) =
zf
′
(z)

g(z)
= 1 + p1z + p2z

2 + ..., z ∈ U, (2.3)

with p (z) 6= 1, and let

q (z) =
1 + z

1− z = 1 + q1z + q2z
2 + . . . , z ∈ U, (2.4)

with q (0) = 1.
So, ∆ = q (U) = {ω : Reω > 0} and E (q) = {1}, and q ∈ Q.
We have to prove that Re {p (z)} > 0, for all z ∈ U .
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This condition is equivalent with
p (z) ≺ q (z) , z ∈ U. (2.5)

From (2.3), perform calculations, we obtain:

2 (f ′ (z))
2

f ′(z)g′(z)− f ′′ (z) g (z)
− zf ′ (z)

g (z)
=
p (z)

[
p (z) + zp

′
(z)
]

p (z)− zp′ (z) . (2.6)

Let suppose that (2.5) does not hold, i.e.

p (z) ⊀ q (z) =
1 + z

1− z , z ∈ U. (2.7)

Hence from Lemma (1.2), there exists a point z0 ∈ U and a point ζ0 ∈ ∂U\ {1} , | ζ0 |= 1, such that

p (z0) = q (ζ0) ; z0p
′ (z0) = mζ0q

′ (ζ0) , for some m ≥ 1,

and

Re [ p(z)] ≥ 0, for all z ∈ U|z0| .

This implies that

Re [ p(z0)] = Re

[
1 + ζ0
1− ζ0

]
= 0, (2.8)

so, we can take p(z0) on the form
p(z0) := iy, y ∈ R. (2.9)

By (2.4) and (2.9), we have

ζ0 = q−1 (p(z0)) =
p(z0)− 1

p(z0) + 1
=
iy − 1

iy + 1
=
y2 + 2iy − 1

1 + y2
. (2.10)

From (2.4) and (2.10), we get

q′ (ζ0) =
2

(1− ζ0)
2 =

(
1 + y2

)2
4 (1− iy)

2 . (2.11)

We obtain
z0p
′ (z0) = mζ0q

′ (ζ0) = −m
2

(
1 + y2

)
, for some m ≥ 1.

Therefore, we have

Re

[
2 (f ′ (z0))

2

f ′(z0)g′(z0)− f ′′ (z0) g (z0)
− zf ′ (z0)

g (z0)

]
= Re

p (z0)
[
p (z0) + zp

′
(z0)

]
p (z0)− zp′ (z0)

 =

Re

[
iy
[
iy − m

2

(
1 + y2

)]
iy + m

2 (1 + y2)

]
= −

my2
(
1 + y2

)
m2

4 (1 + y2)
2

+ y2
< 0, for y ∈ R and m ≥ 1,

which contradicts the condition (2.1) from the hypothesis of the theorem, therefore p ≺ q, i.e.

Re

[
zf
′
(z)

g(z)

]
> 0, z ∈ U, (2.12)

and the proof is complete.

Theorem 2.2 Let f(z) = z+a2z
2+ ... and g(z) = z+ b2z

2+ ... be analytic functions in U , with f (0) = g (0) = 0,
g(z) ∈ S∗, with g(z) 6= zf

′
(z) and let 0 < µ ≤ 1. If

| 2 (f ′ (z))
2

f ′(z)g′(z)− f ′′ (z) g (z)
− zf ′ (z)

g (z)
− 1 |< µ, z ∈ U, (2.13)

then

| zf
′ (z)

g (z)
− 1 |< µ, z ∈ U. (2.14)

3
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Proof. Let

p (z) =
zf
′
(z)

g(z)
= 1 + p1z + p2z

2 + ..., z ∈ U. (2.15)

Taking account (2.15), the conditions (2.13) and (2.14) can be rewritten as

|
p (z)

[
p (z) + zp

′
(z)
]

p (z)− zp′ (z) − 1 |< µ⇒| p (z)− 1 |< µ, (2.16)

with p (z) 6= 1, and let

q (z) = 1 + µz, with q (0) = 1. (2.17)

We have ∆ = q (U) = {ω :| ω − 1 |< µ} , E (q) = ∅ and q ∈ Q.
The relation | p (z)− 1 |< µ is equivalent to

p (z) ≺ q (z) , z ∈ U. (2.18)

Let suppose that (2.18) does not hold, i.e.

p (z) ⊀ q (z) = 1 + µz, z ∈ U.
From Lemma (1.2), there exists a point z0 ∈ U and a point ζ0 ∈ ∂U , such that

p (z0) = q (ζ0) ; z0p
′ (z0) = mζ0q

′ (ζ0) , for some m ≥ 1,

and

| p (z)− 1 |< µ, for all z ∈ U|z0| .

This implies that
| p (z0)− 1 |=| q (ζ0)− 1 |= µ,

so, we can take p(z0) on the form
p(z0) := 1 + µeiθ, θ ∈ R. (2.19)

We have

ζ0 = q−1 (p(z0)) =
p(z0)− 1

µ
= eiθ. (2.20)

So,
z0p
′ (z0) = mζ0q

′ (ζ0) = mµeiθ, for some m ≥ 1.

Therefore, we have

|
p (z0)

[
p (z0) + zp

′
(z0)

]
p (z0)− zp′ (z0)

− 1 |=| µeiθ || 1 + µeiθ +mµeiθ + 2m

1 + µeiθ −mµeiθ |=

= µ | 1 + 2m+ (1 +m)µeiθ

1 + (1−m)µeiθ
| , for some m ≥ 1.

We will prove that the last expression is greater or equal to µ, that is equivalent with

| 1 + 2m+ (1 +m)µeiθ

1 + (1−m)µeiθ
|≥ 1, z ∈ U,

or
| 1 + 2m+ (1 +m)µeiθ |2≥| 1 + (1−m)µeiθ |2, z ∈ U.

The last inequality is equivalent to

µ2 + (m+ 2)µ cos θ +m+ 1 ≥ µ2 − (m+ 2)µ+m+ 1 ≥ 0, z ∈ U,

or
(µ− 1) [µ− (m+ 1)] ≥ 0, z ∈ U.

The above inequality holds for every m ≥ 1 and 0 < µ ≤ 1.
This contradicts with the condition (2.13) from the hypothesis of the theorem, therefore p ≺ q.
So, | p (z)− 1 |< µ and the proof of the theorem is complete.
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Theorem 2.3 Let the function q (z) be analytic and univalent in U such that q (0) = 1 and q (z) 6= 0, for all
z ∈ U and satisfies

Re

[
1 +

zq′′ (z)

q′ (z)
− zq′ (z)

q (z)

]
> 0, z ∈ U. (2.21)

If f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗ and

1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
≺ zq′ (z)

q (z)
= h (z) , (2.22)

then
zf ′ (z)

g (z)
≺ q (z) , z ∈ U, (2.23)

and q(z) is the best dominant of (2.22).

Proof. Let the function p be defined by

p (z) :=
zf ′ (z)

g (z)
, z ∈ U, (2.24)

where f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗. The function p is analytic in U and
p (0) = 1.
Differentiating this function with respect to g, we get
zp′ (z) = zf ′(z)

g(z) + z2f ′′(z)
g(z) −

z2f ′(z)g′(z)
g2(z) , z ∈ U .

By setting θ (w) := 0 and φ (w) := 1
w , it can be easily verified that φ is analytic in a domain D = C\{0}, which

contains q (U) and φ (w) 6= 0, where w ∈ q (U) .

Also, by letting Q (z) = zq′ (z)φ (q (z)) = zq′(z)
q(z) , we find that Q (z) is starlike in U , since

Re
[
zQ′(z)
Q(z)

]
= Re

[
1 + zq′′(z)

q′(z) −
zq′(z)
q(z)

]
> 0.

For the function h (z) = θ (q (z)) +Q (z) = zq′(z)
q(z) , we have Re

[
zh′(z)
Q(z)

]
= Re

[
zQ′(z)
Q(z)

]
> 0.

Therefore, the conditions of Lemma 1.1 are met and we find that, if

zp′ (z)

p (z)
= θ (p (z)) + zp′ (z)φ (p (z)) ≺ zq′ (z)

q (z)
, z ∈ U, (2.25)

then
zf ′ (z)

g (z)
= p (z) ≺ q (z) , z ∈ U , (2.26)

and q is the best dominant of (2.22). And the proof is complete.

Corollary 2.4 Let f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗ and 0 < µ ≤ 1. If

1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
≺ µz

1 + µz
= h1 (z) , (2.27)

then
zf ′ (z)

g (z)
≺ 1 + µz, z ∈ U , (2.28)

and 1 + µz is the best dominant of (2.27). Furthermore,

| zf
′ (z)

g (z)
− 1 |< µ, z ∈ U , (2.29)

and this result is sharp.

Proof. Let the function q (z) := 1 + µz, z ∈ U , 0 < µ ≤ 1, satisfies all the conditions of Theorem 2.3.
So,

h1 (z) = Q (z) = zq′ (z)φ (q (z)) =
zq′ (z)

q (z)
=

µz

1 + µz
. (2.30)
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From (2.30), we find that the subordinations (2.22) and (2.30) are equivalent.
Hence, it follows directly from Theorem 2.3 that

zf ′ (z)

g (z)
≺ 1 + µz, z ∈ U , (2.31)

and 1 + µz is the best dominant of (2.27).
Now, let us assume that the subordination (2.27) and inequality

| zf
′ (z)

g (z)
− 1 |< µ1, z ∈ U , 0 < µ1 ≤ 1, (2.32)

hold, i.e.
zf ′ (z)

g (z)
≺ 1 + µ1z, z ∈ U , 0 < µ1 ≤ 1. (2.33)

But the function 1 + µz is the best dominant of (2.27), meaning that 1 + µz ≺ 1 + µ1z, i.e. µ ≺ µ1.
Therefore the conclusion is sharp, i.e. in the inequality (2.29) µ cannot be replaced by a smaller number such
that the implication holds. This completes the proof of the corollary.

Remark 2.1 It is easy to verify that for 0 < µ ≤ 1, h1 (z) = µz
1+µz is an open disk with center c = h1(1)+h1(−1)

2 =
µ

1+µ−
µ

1−µ
2 = − µ2

1−µ2 , and radius r = h1 (1)− c = µ
1+µ + µ2

1−µ2 = µ
1−µ2 . For µ = 1, h1 (U) = {x+ iy : x < 1, y ∈ R}.

Therefore, the above corollary can be rewritten as:

Corollary 2.5 Let f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗ and 0 < µ ≤ 1.
(i) If 0 < µ < 1 and

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
+

µ2

1− µ2 |<
µ

1− µ2 , z ∈ U (2.34)

then

| zf
′ (z)

g (z)
− 1 |< µ, z ∈ U . (2.35)

This result is sharp, i.e. the radius of the open disk from the conclusion is the smallest possible so that the
corresponding implication holds.
(ii) If

Re

[
1 +

zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)

]
< 1, z ∈ U, (2.36)

then

| zf
′ (z)

g (z)
− 1 |< 1, (2.37)

and these conclusions are sharp.

From Corrolary 2.4 and Corrolary 2.5 we obtain the following result:

Corollary 2.6 Let f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗ and 0 < ζ ≤ 1
2 . If

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
|< ζ, for all z ∈ U, (2.38)

then

| zf
′ (z)

g (z)
− 1 |< ζ

1− ζ , z ∈ U . (2.39)

Proof. Let ζ
1−ζ = µ.

Then

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
|< ζ =

µ

1 + µ
, for all z ∈ U. (2.40)
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If 0 < ζ < 1
2 , then 0 < µ < 1. We have

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
+

µ2

1− µ2 −
µ2

1− µ2 |<
µ

1 + µ
, z ∈ U, (2.41)

i.e.

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
+

µ2

1− µ2 |<
µ

1 + µ
+

µ2

1− µ2 =
µ

1− µ2 , z ∈ U. (2.42)

From Corrolary 2.5, we get

| zf
′ (z)

g (z)
− 1 |< µ =

ζ

1− ζ , z ∈ U . (2.43)

If ζ = 1
2 , then µ = 1. We have

| 1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
|< 1, for all z ∈ U, (2.44)

i.e.

Re

[
1 +

zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)

]
< 1, z ∈ U . (2.45)

From Corrolary 2.5, we get

| zf
′ (z)

g (z)
− 1 |< 1, z ∈ U , (2.46)

and the proof is complete.

Corollary 2.7 If f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗. If

1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
≺ 2z

1− z2 = h (z) , (2.47)

then f ∈ K.

Proof. Let q (z) = 1+z
1−z = 1 + q1z + ..., with q (0) = 1 satisfies the conditions of Theorem 2.3.

We have

h (z) = θ (q (z)) +Q (z) =
zq′ (z)

q (z)
, z ∈ U . (2.48)

So,

h (z) =
2z

1− z2 , z ∈ U . (2.49)

From (2.49), we find that the subordinations (2.22) and (2.47) are equivalent. Therefore, it follows directly from
Theorem 2.3 that

zf ′ (z)

g (z)
≺ 1 + z

1− z , z ∈ U , (2.50)

and 1+z
1−z is the best dominant of (2.47).

Since the subordination (2.22) is equivalent with the condition

Re

[
zf
′
(z)

g(z)

]
> 0, z ∈ U,

we get that f ∈ K, which completes the proof.

Corollary 2.8 Let f, g ∈ A with f (0) = f ′ (0)− 1 = g (0) = g′ (0)− 1 = 0, g(z) ∈ S∗ and 0 ≤ α < 1. If

1 +
zf ′′ (z)

f ′ (z)
− zg′ (z)

g (z)
≺ 2z (1− α)

(1− z) [1 + (1− 2α) z]
, z ∈ U, (2.51)

then f ∈ K (α).
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Proof. For 0 ≤ α < 1 and z ∈ U , setting q (z) = 1+(1−2α)z
1−z = 1 + q1z + ..., with q (0) = 1 in Theorem 2.3, we

obtain

Re

[
1 +

zq′′ (z)

q′ (z)
− zq′ (z)

q (z)

]
= Re

[
1

1− z +
1

1 + (1− 2α) z
− 1

]
> 0, z ∈ U .

We have

h (z) =
zq′ (z)

q (z)
=

2z (1− α)

(1− z) [1 + (1− 2α) z]
, z ∈ U .

Hence, the hypotheses of Theorem 2.3 are satisfied. Therefore, it follows directly from Theorem 2.3 that

zf ′ (z)

g (z)
≺ 1 + (1− 2α) z

1− z , z ∈ U, 0 ≤ α < 1, (2.52)

i.e.

Re

[
zf
′
(z)

g(z)

]
> α, z ∈ U,

i.e. f ∈ K (α), and the proof is now complete.
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1

DUALISTIC CONTRACTIONS OF RATIONAL TYPE AND FIXED

POINT THEOREMS

MUHAMMAD NAZAM, MUHAMMAD ARSHAD, AND CHOONKIL PARK∗

Abstract. In this paper, we introduce a dualistic contraction of rational type and use it
to obtain some new fixed point results in dualistic partial metric spaces for dominating and
dominated mappings. These results extend various comparable results existing in literature
from set of positive real numbers to set of real numbers. Moreover, we give an example
that shows the usefulness and effectiveness of these results among corresponding fixed point
theorems established in partial metric spaces (nonnegative real numbers).

Keywords: fixed point; dualistic partial metric; dualistic contraction of rational type.
AMS 2010 Subject Classification: 47H10; 54H25.

1. Introduction and preliminaries

In [7], Matthews introduced the concept of partial metric space as a suitable mathemat-
ical tool for program verification and proved an analogue of Banach fixed point theorem in
complete partial metric spaces. Fixed point theorems in complete partial metric spaces have
been investigated in [3, 4, 11, 12, 14]. O’Neill [10] introduced the concept of dualistic partial
metric, which is more general than partial metric and established a robust relationship be-
tween dualistic partial metric and quasi metric. In [13], Oltra and Valero presented a Banach
fixed point theorem on complete dualistic partial metric spaces. Following Oltra and Valero,
Nazam et al. [2, 8] established some fixed point results in dualistic partial metric spaces.

In this paper, we shall extend the following two fixed point theorems from nonnegative
real numbers to real numbers to the theorems from partial metric spaces to dualistic partial
metric spaces.

Harjani et al. [5] extended Banach’s fixed point principle as follows:

Theorem 1. Let M be a complete ordered metric space and T : M →M be a continuous and
nondecreasing rational type contraction mapping. Then T has a unique fixed point m∗ ∈M.
Moreover, the Picard iterative sequence {Tn(j)}n∈N converges to m∗ for every j ∈M .

Isik and Tukroglu [6] established an ordered partial metric space version of Theorem 1,
stated below.

Theorem 2. Let M be a complete ordered partial metric space and T : M → M be a
continuous and nondecreasing rational type contraction mapping. Then T has a unique fixed
point m∗ ∈M. Moreover, the Picard iterative sequence {Tn(j)}n∈N converges to m∗ for every
j ∈M .

We need some mathematical concepts of dualistic partial metric space and results to make
this paper self sufficient.

Throughout, in this paper, the letters R+
0 , R and N will represent the set of nonnegative

real numbers, set of real numbers and set of natural numbers, respectively.

Definition 1. [1]

1∗Corresponding author.
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(1) Let M be a nonempty set and T : M → M be a self mapping. A point m∗ ∈ M is
called a fixed point of T if m∗ = T (m∗).

(2) Let (M,�) be an ordered set and T : M → M be a self mapping defined on M
satisfying the property j � T (j) for all j ∈ M . Then T is called a dominating
mapping.

(3) Let (M,�) be an ordered set and T : M → M be a self mapping defined on M
satisfying the property T (j) � j for all j ∈M . Then T is called a dominated mapping.

According to O’Neill, a dualistic partial metric can be defined as follow:

Definition 2. [10] Let M be a nonempty set. A function D : M×M → R is called a dualistic
partial metric if for any j, k, l ∈M, the following conditions hold:

(D1) j = k ⇔ D(j, j) = D(k, k) = D(j, k).
(D2) D(j, j) ≤ D(j, k).
(D3) D(j, k) = D(k, j).
(D4) D(j, l) ≤ D(j, k) +D(k, l)−D(k, k).

We observe that, as in the metric case, if D is a dualistic partial metric then D(j, k) = 0
implies j = k. In case D(j, k) ∈ R+

0 for all j, k ∈ M , then D is a partial metric on M. If
(M,D) is a dualistic partial metric space, then the function dD : M ×M → R+

0 defined by

dD(j, k) = D(j, k)−D(j, j),

is a quasi metric onM such that τ(D) = τ(dD). In this case, dsD(j, k) = max{dD(j, k), dD(k, j)}
defines a metric on M .

Remark 1. It is obvious that every partial metric is a dualistic partial metric but the converse
is not true. To support this comment, define D∨ : R× R→ R by

D∨(j, k) = j ∨ k = sup{j, k} ∀ j, k ∈ R.

It is easy to check that D∨ is a dualistic partial metric. Note that D∨ is not a partial metric,
since D∨(−1,−2) = −1 /∈ R+

0 . Nevertheless, the restriction of D∨ to R+
0 , D∨|R+

0
, is a partial

metric.

Definition 3. [2] Let M be a nonempty set. Then (M,�, D) is said to be an ordered dualistic
partial metric space if

(i) (M,�) is a partially ordered set.
(ii) (M,D) is a dualistic partial metric space.

Example 1. If (M,�, d) is an ordered metric space and c ∈ R is an arbitrary constant, then
Dc : M ×M → R given by

Dc(j, k) = d(j, k) + c,

defines an ordered dualistic partial metric on M and (M,�, Dc) is an ordered dualistic partial
metric space.

Following [10], each dualistic partial metric D on M generates a T0 topology τ(D) on M .
The elements of the topology τ(D) are open balls of the form {BD(j, ε) : j ∈ M, ε > 0},
where BD(j, ε) = {k ∈ M : D(j, k) < ε+D(j, j)}. A sequence {jn}n∈N in (M,D) converges
to a point j ∈M if and only if D(j, j) = limn→∞D(j, jn).

Definition 4. [8] Let (M,D) be a dualistic partial metric space.

(1) A sequence {jn}n∈N in (M,D) is called a Cauchy sequence if
limn,m→∞D(jn, jm) exists and is finite.
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(2) A dualistic partial metric space (M,D) is said to be complete if every Cauchy sequence
{jn}n∈N in M converges, with respect to τ(D), to a point j ∈M such that D(j, j) =
limn,m→∞D(jn, jm).

The following lemma will be helpful in the sequel.

Lemma 1. [8, 9]

(1) A dualistic partial metric (M,D) is complete if and only if the metric space (M,dsD)
is complete.

(2) A sequence {jn}n∈N in M converges to a point j ∈ M , with respect to τ(dsD) if and
only if limn→∞D(j, jn) = D(j, j) = limn→∞D(jn, jm).

(3) If limn→∞ jn = υ such that D(υ, υ) = 0, then limn→∞D(jn, k) = D(υ, k) for every
k ∈M .

Motivated by the results presented by Isik and Tukroglu [6] and Valero [9], we present a
new fixed point theorem in an ordered dualistic partial metric space for both dominating and
dominated mappings.

2. Main results

We begin with the following definition.

Definition 5. Let (M,�, D) be a complete ordered dualistic partial metric space. A mapping
T : M →M is said to be a dualistic contraction of rational type if

|D(T (j), T (k))| ≤ α
∣∣∣∣D(j, T (j)) ·D(k, T (k))

D(j, k)

∣∣∣∣+ β|D(j, k)| (2.1)

holds for all comparable elements j, k ∈M and 0 < α+ β < 1.

Theorem 3. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose that
T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type;
(2) T is a dominating mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Proof. Let j0 be an initial point in M and jn = T (jn−1) be an iterative sequence. If there
exists a positive integer r such that jr+1 = jr, then jr is the fixed point of T and it completes
the proof. If jn 6= jn+1 for any n ∈ N, then since T is dominating, jn � T (jn) for all n ∈ N.
Therefore,

j0 � j1 � j2 � j3 � · · · � jn � jn+1 · · · .
Now since jn � jn+1, by (2.1), we have

|D(jn, jn+1)| = |D(T (jn−1), T (jn))|

≤ α

∣∣∣∣D(jn−1, jn) ·D(jn, jn+1)

D(jn−1, jn)

∣∣∣∣+ β|D(jn−1, jn)|

≤ α|D(jn, jn+1)|+ β|D(jn−1, jn)|,
|D(jn, jn+1)| − α|D(jn, jn+1)| ≤ β|D(jn−1, jn)|,

(1− α)|D(jn, jn+1)| ≤ β|D(jn−1, jn)|,

|D(jn, jn+1)| ≤ (
β

1− α
)|D(jn−1, jn)|.
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If γ =
β

1− α
, then 0 < γ < 1 and we have

|D(jn, jn+1)| ≤ γ|D(jn−1, jn)|.
Thus

|D(jn, jn+1)| ≤ γ|D(jn−1, jn)| ≤ γ2|D(jn−2, jn−1)| ≤ · · · ≤ γn|D(j0, j1)|.
Since jn � jn, for each n ∈ N, by (2.1), we have

|D(jn, jn)| = |D(T (jn−1), T (jn−1))| ≤
α|D(jn−1, jn)|2

|D(jn−1, jn−1)|
+ β|D(jn−1, jn−1)|

≤ |D(jn−1, jn−1)|
{
α|D(jn−1, jn)|2

|D(jn−1, jn−1)|2
+ β

}
≤ (α+ β)|D(jn−1, jn−1)|.

Indeed,

∣∣∣∣ D(jn−1, jn)2

D(jn−1, jn−1)2

∣∣∣∣ = 1. Thus we obtain that

|D(jn, jn)| ≤ (α+ β)n|D(j0, j0)|. (2.2)

Now we show that {jn} is a Cauchy sequence in (M,dsD).Note that dD(jn, jn+1) = D(jn, jn+1)−
D(jn, jn), that is, dD(jn, jn+1) +D(jn, jn) = D(jn, jn+1) ≤ |D(jn, jn+1)|. Thus we have

dD(jn, jn+1) +D(jn, jn) ≤ γn|D(j0, j1)|,
dD(jn, jn+1) ≤ γn|D(j0, j1)|+ |D(jn, jn)|

≤ γn|D(j0, j1)|+ (α+ β)n|D(j0, j0)|.
Continuing this way, we obtain that

dD(jn+k−1, jn+k) ≤ γn+k−1|D(j0, j1)|+ (α+ β)n+k−1|D(j0, j0)|.
Now

dD(jn, jn+k) ≤ dD(jn, jn+1) + dD(jn+1, jn+2) + · · ·+ dD(jn+k−1, jn+k)

≤ {γn + γn+1 + · · ·+ γn+k−1}|D(j0, j1)|
+ {(α+ β)n + (α+ β)n+1 + · · ·+ (α+ β)n+k−1}|D(j0, j0)|.

Thus, for n+ k = m > n,

dD(jn, jm) ≤ γn

1− γ
|D(j0, j1)|+

(α+ β)n

1− (α+ β)
|D(j0, j0)|.

Similarly, we have

dD(jm, jn) ≤ γn

1− γ
|D(j1, j0)|+

(α+ β)n

1− (α+ β)
|D(j0, j0)|.

Taking limit as n,m→∞, we have

lim
n,m→∞

dD(jm, jn) = 0 = lim
n,m→∞

dD(jn, jm) and hence lim
n,m→∞

dsD(jm, jn) = 0.

Thus {jn} is a Cauchy sequence in (M,dsD). Since (M,D) is a complete dualistic partial
metric space, by Lemma 1, the metric space (M,dsD) is also complete. Therefore, there exists
m∗ ∈M such that limn→∞ d

s
D(jn,m

∗) = 0. Again from Lemma 1, we have

lim
n→∞

dsD(jn,m
∗) = 0 ⇐⇒ D(m∗,m∗) = lim

n→∞
D(jn,m

∗) = lim
n,m→∞

D(jm, jn).
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Now limn,m→∞ dD(jm, jn) = 0 implies that limn,m→∞[D(jm, jn)−D(jn, jn)] = 0 and hence
limn,m→∞D(jn, jm) = limn→∞D(jn, jn). By (2.2), we have limn→∞D(jn, jn) = 0. Conse-
quently, limn,m→∞D(jn, jm) = 0 and {jn} is a Cauchy sequence in (M,D). Thus

D(m∗,m∗) = lim
n→∞

D(jn,m
∗) = 0. (2.3)

Now dD(m∗, T (m∗)) = D(m∗, T (m∗))−D(m∗,m∗) = D(m∗, T (m∗)) implies that
D(m∗, T (m∗)) ≥ 0. Since T is continuous, for a given ε > 0, there exists a δ > 0 such that
T (BD(m∗, δ)) ⊆ BD(T (m∗), ε). Since limn→∞D(jn+1,m

∗) = D(m∗,m∗) = 0, there exists an
r ∈ N such that D(jn,m

∗) < D(m∗,m∗) + δ for all n ≥ r, and so {jn} ⊂ BD(m∗, δ) for all
n ≥ r. This implies that T (jn) ∈ T (BD(m∗, δ) ⊆ BD(T (m∗), ε) and so D(T (jn), T (m∗)) <
D(T (m∗), T (m∗)) + ε for all n ≥ r. Now for any ε > 0, we know that

−ε+D(T (m∗), T (m∗)) < D(T (m∗), T (m∗)) ≤ D(jn+1, T (m∗)),

which implies that

|D(jn+1, T (m∗))−D(T (m∗), T (m∗))| < ε.

That is, D(T (m∗), T (m∗)) = limn→∞D(jn+1, T (m∗)). The uniqueness of limit in R implies

lim
n→∞

D(jn+1, T (m∗)) = D(T (m∗), T (m∗)) = D(m∗, T (m∗)). (2.4)

Finally, we have D(T (m∗),m∗) = limn→∞D(T (jn), jn) = limn→∞D(jn+1, jn) = 0. This
shows that D(m∗, T (m∗)) = 0. So from (2.3) and (2.4) we deduce that

D(m∗, T (m∗)) = D(T (m∗), T (m∗)) = D(m∗,m∗).

This leads us to conclude that m∗ = T (m∗) and hence m∗ is a fixed point of T . �

In order to prove the uniqueness of fixed point of a mapping T in the above theorem, we
give the following theorem.

Theorem 4. Let (M,�, D) be a complete ordered dualistic partial metric space and T : M →
M be a mapping which satisfies all the conditions of Theorem 3. Then T has a unique fixed
point provided that for each fixed point m∗, n∗ of T, there exists ω ∈ M which is comparable
to both m∗ and n∗.

Proof. From Theorem 3, it follows that the set of fixed points of T is nonempty.
Assume that n∗ is another fixed point of T , that is, n∗ = T (n∗).

Case I: m∗ and n∗ are comparable.
In this case, we have

|D(m∗, n∗)| = |D(T (m∗), T (n∗))|

≤ α

∣∣∣∣D(m∗, T (m∗)) ·D(n∗, T (n∗))

D(m∗, n∗)

∣∣∣∣+ β|D(m∗, n∗)|

≤ α

∣∣∣∣D(m∗,m∗) ·D(n∗, n∗)

D(m∗, n∗)

∣∣∣∣+ β|D(m∗, n∗)|.

That is, (1 − β)|D(m∗, n∗)| ≤ 0 which implies that |D(m∗, n∗)| ≤ 0 and hence D(m∗, n∗) =
0 = D(m∗,m∗) = D(n∗, n∗). So m∗ is a unique fixed point of T .

Case II: m∗ and n∗ are incomparable.
In this case, there exists ω which is comparable to both m∗, n∗. Without any loss of generality,
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we assume that m∗ � ω and n∗ � ω. Since T is dominating, m∗ � T (ω) and n∗ � T (ω) imply
that m∗ � Tn−1(ω) and n∗ � Tn−1(ω). Thus

|D(m∗, Tn(ω))| ≤ α

∣∣∣∣D(Tn−1(m∗), Tn(m∗)) ·D(Tn−1(ω), Tn(ω))

D(Tn−1(m∗), Tn−1(ω))

∣∣∣∣
+ β|D(Tn−1(m∗), Tn−1(ω))|,

which implies that |D(m∗, Tn(ω))| ≤ β|D(m∗, Tn−1(ω))|. Thus limn→∞D(m∗, Tn(ω)) = 0.
Similarly, limn→∞D(n∗, Tn(ω)) = 0. Moreover, by D4,

D(n∗,m∗) ≤ D(n∗, Tn(ω)) +D(Tn(ω),m∗)−D(Tn(ω), Tn(ω))

≤ D(n∗, Tn(ω)) +D(Tn(ω),m∗)−D(Tn(ω),m∗)−D(m∗, Tn(ω)) +D(m∗,m∗).

Letting n → ∞, we obtain that D(n∗,m∗) ≤ 0 but dD(m∗,m∗) = D(n∗,m∗) − D(n∗, n∗)
implies that D(n∗,m∗) ≥ 0. Hence D(n∗,m∗) = 0 which gives that n∗ = m∗. �

We provide an example to explain the above result.

Example 2. Let M = R2. Define D∨ : M ×M → R by D∨(j, k) = j1 ∨ k1, where j = (j1, j2)
and k = (k1, k2). Note that (M,D∨) is a complete dualistic partial metric space. Let T : M →
M be given by

T (j) = e|D∨(j,j)| for all j ∈M.

In M , we define the relation � in the following way:

j � k if and only if j1 ≥ k1, where j = (j1, j2) and k = (k1, k2).

Clearly, � is a partial order on M and T is a continuous, dominating mapping with respect
to � and satisfies the contractive condition (2.1).

Remark 2. Since every partial metric is a dualistic partial metric D with D(j, k) ∈ R+
0 for

all j, k ∈M, Theorem 3 is an extension of Theorem 2.
There arises the following natural question:
Whether the contractive condition (2.1) in the statement of Theorem 3 can be replaced by

the contractive condition in Theorem 2?

The following example provides a negative answer to the above question.

Example 3. Define the mapping T0 : R→ R by

T0(j) =

{
0 if j > 1
−1

2 if j = −5
.

Clearly, for any j, k ∈ R and α = 0.1 and β = 0.09, the following contractive condition is
satisfied

D∨(T0(j), T0(k)) ≤ αD∨(j, T0(j)) ·D∨(k, T0(k))

D∨(j, k)
+ βD∨(j, k),

where D∨ is a complete dualistic partial metric on R. Here T has no fixed point. Thus a fixed
point free mapping satisfies the contractive condition of Theorem 2. On the other hand, for
α = 0.1 and β = 0.09, we have

0.5 = |D∨(−1

2
,−1

2
)| = |D∨(T0(−5), T0(−5))|

> 0.455 =

∣∣∣∣αD∨(−5, T0(−5)) ·D(−5, T0(−5))

D∨(−5,−5)

∣∣∣∣+ β|D∨(−5,−5)|.

Thus the contractive condition (2.1) of Theorem 3 does not hold.
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In next theorem, we show that the conclusion of Theorem 3 remains the same if the conti-
nuity of the mapping T is replaced with the following condition:

(H): If {jn} is a nondecreasing sequence in M such that jn → υ, then jn � υ for all n ∈ N.
For dominated mappings, the following condition will be needed:
(Q): If {jn} is a nonincreasing sequence in M such that jn → υ, then jn � υ for all n ∈ N.

Theorem 5. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose that
T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type;
(2) T is a dominating mapping;
(3) (H) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Proof. By the arguments similar to those in the proof of Theorem 3, we obtain that {jn} is
a nondecreasing sequence in M such that jn → m∗. By (H), we have jn � m∗. Since T is a
dominating mapping, we have jn � T (m∗) and

m∗ � T (m∗). (2.5)

From the proof of Theorem 3, we deduce that {Tn(m∗)} is a nondecreasing sequence. Suppose
that limn→+∞ T

n(m∗) = µ for some µ ∈M . Now jn � m∗ implies jn � Tn(m∗) for all n ≥ 1.
Thus we have

jn � m∗ � T (m∗) � Tn(m∗) n ≥ 1.

From (2.1), we have

|D(jn+1, T
n+1(m∗))| = |D(T (jn), T (Tn(m∗)))|

≤
∣∣∣∣αD(jn, jn+1) ·D(Tn(m∗), Tn+1(m∗))

D(jn, Tn(m∗))

∣∣∣∣+ β|D(jn, T
n(m∗))|.

Taking limit as n→ +∞, we obtain that

|D(m∗, µ)| ≤ β|D(m∗, µ)|,
which implies that m∗ = µ. Thus limn→+∞ T

n(m∗) = µ implies that limn→+∞ T
n(m∗) = m∗.

Hence
T (m∗) � m∗. (2.6)

From (2.5) and (2.6), it follows that m∗ = T (m∗). �

Now we present some important consequences of our results.

Corollary 1. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with β = 0;
(2) T is a dominating mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Corollary 2. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with β = 0;
(2) T is a dominating mapping;
(3) (H) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.
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Corollary 3. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with α = 0;
(2) T is a dominating mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Corollary 4. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with α = 0;
(2) T is a dominating mapping;
(3) (H) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

For dominated mappings, we present the following results.

Theorem 6. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose that
T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type;
(2) T is a dominated mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Proof. Let j0 ∈ M be an initial element and jn = T (jn−1) for all n ≥ 1. If there exists a
positive integer r such that jr+1 = jr then jr = T (jr), and so we are done. Suppose that
jn 6= jn+1 for all n ∈ N. Since T is a dominated mapping, j0 � T (j0) = j1, and j1 � T (j1)
implies j1 � j2, and j2 � T (j2) implies j2 � j3. Continuing in the similar way, we get

j0 � j1 � j2 � j3 � · · · � jn � jn+1 � jn+2 � · · · .
The remaining part of the proof follows from the proof of Theorem 3. �

The following example shall illustrate Theorem 6.

Example 4. Let M = R2. Define D∨ : M ×M → R by D∨(j, k) = j1 ∨ k1, where j = (j1, j2)
and k = (k1, k2). Note that (M,D∨) is a complete dualistic partial metric space. Let T : M →
M be given by

T (j) =
j

2
for all j ∈M.

In M , we define the relation � in the following way:

j � k if and only if j1 ≥ k1, where j = (j1, j2) and k = (k1, k2).

Clearly, � is a partial order on M and T is a continuous, dominated mapping with respect
to �. Moreover, T (−1, 0) � (−1, 0). We shall show that for all j, k ∈ M, the contractive
condition (2.1) is satisfied. For this, note that

|D∨(T (j), T (k))| =
∣∣∣∣D∨( j2 , k2

)∣∣∣∣ =

∣∣∣∣j12
∣∣∣∣ for all j1 ≥ k1,

|D∨(j, T (j))| =
∣∣∣∣D∨(j, j2

)∣∣∣∣ =

{ ∣∣∣ j12 ∣∣∣ if j1 ≤ 0

|j1| if j1 ≥ 0,

|D∨(k, T (k))| =
∣∣∣∣D∨(k, k2

)∣∣∣∣ =

{ ∣∣∣k12 ∣∣∣ if k1 ≤ 0

|k1| if k1 ≥ 0,

and |D∨(j, k)| = |j1| for all j1 ≥ k1.
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Now for α =
1

3
, β =

1

2
. If j1 ≤ 0, k1 ≤ 0, then

|D∨(T (j), T (k))| ≤ α
∣∣∣∣D∨(j, T (j)) ·D∨(k, T (k))

D∨(j, k)

∣∣∣∣+ β|D∨(j, k)|

holds for all j � k if and only if 6|j1| ≤ |k1|+ 6|j1|.

If j1 ≥ 0, k1 ≥ 0, then the contractive condition

|D∨(T (j), T (k))| ≤ α
∣∣∣∣D∨(j, T (j)) ·D∨(k, T (k))

D∨(j, k)

∣∣∣∣+ β|D∨(j, k)|

holds for all j � k if and only if j1 ≤ 2
3k1 + j1.

Finally, if j1 ≥ 0, k1 ≤ 0, then

|D∨(T (j), T (k))| ≤ α
∣∣∣∣D∨(j, T (j)) ·D∨(k, T (k))

D∨(j, k)

∣∣∣∣+ β|D∨(j, k)|

holds for all j � k if and only if 3j1 ≤ |k1| + 3j1. Thus all the conditions of Theorem 5 are
satisfied. Moreover, (0, 0) is a fixed point of T .

Theorem 7. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose that
T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type;
(2) T is a dominated mapping;
(3) (Q) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

The proof can be obtained by the proofs of Theorems 5 and 6. Some consequences of
Theorems 6 and 7 are given below.

Corollary 5. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with β = 0;
(2) T is a dominated mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Corollary 6. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with β = 0;
(2) T is a dominated mapping;
(3) (Q) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

Corollary 7. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with α = 0;
(2) T is a dominated mapping;
(3) T is a continuous mapping.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.
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Corollary 8. Let (M,�, D) be a complete ordered dualistic partial metric space. Suppose
that T : M →M is a mapping such that

(1) T is a dualistic contraction of rational type with α = 0;
(2) T is a dominated mapping;
(3) (Q) holds.

Then T has a fixed point m∗. Moreover, D(m∗,m∗) = 0.

References

[1] M. Arshad, A. Azam, M. Abbas, A. Shoaib, Fixed point results of dominated mappings on a closed ball in
ordered partial metric spaces without continuity, U.P.B. Sci. Bull. Series A 76 (2014), 123–134.

[2] M. Arshad, M. Nazam, I. Beg, Fixed point theorems in ordered dualistic partial metric spaces, Korean J.
Math. 24 (2016), 169–179.

[3] X. Fan, Z. Wang, Some fixed point theorems in generalized quasi-partial metric spaces, J. Nonlinear Sci.
Appl. 9 (2016), 1658–1674.

[4] A. Farajzadeh, P. Chuadchawna, A. Kaewcharoen, Fixed point theorems for (α, η, ψ, ξ)-contractive multi-
valued mappings on α-η-complete partial metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1977–1990.

[5] J. Harjani, B. Lopez, K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition
of rational type on a partially ordered metric space, Abstr. Appl. Anal. 2010, Art. ID 190701 (2010).

[6] H. Isik, D. Tukroglu Some fixed point theorems in ordered partial metric spaces, J. Inequal. Spec. Funct.
4 (2013), No. 2, 13–18.

[7] S.G. Matthews, Partial metric topology, in Proceedings of the 11th Summer Conference on General Topol-
ogy and Applications 728, pp. 183–197, New York Acad. Sci., New York, 1994.

[8] M. Nazam, M. Arshad, On a fixed point theorem with application to integral equations, Int. J. Anal. 2016,
Art. ID 9843207 (2016).

[9] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste
36 (2004),17–26.

[10] S.J. O’Neill, Partial metric, valuations and domain theory, Ann. New York Acad. Sci. 806 (1996), 304–
315.

[11] A. Shoaib, α-η dominated mappings and related common fixed point results in closed ball, J. Concrete
Appl. Math. 13 (2015), 152–170.

[12] A. Shoaib, M. Arshad, M. A. Kutbi, Common fixed points of a pair of Hardy Rogers type mappings on a
closed ball in ordered partial metric spaces, J. Comput. Anal. Appl. 17 (2014), 255–264.

[13] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2005), 229–240.
[14] H-H. Zheng, F. Gu, Some results of common fixed point for four self-maps satisfying a new Ψ-contractive

condition in partial metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 2258–2272.

Department of Mathematics and Statistics, International Islamic University Islamabad, Pak-
istan

E-mail address: nazim.phdma47@iiu.edu.pk

Department of Mathematics and Statistics, International Islamic University Islamabad, Pak-
istan

E-mail address: marshadzia@iiu.edu.pk

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Ko-
rea

E-mail address: baak@hanyang.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1208 MUHAMMAD NAZAM et al 1199-1208



HOMOMORPHISMS AND DERIVATIONS IN PROPER LIE

CQ∗-ALGEBRAS

CHOONKIL PARK, G. ZAMANI ESKANDANI∗, GEORGE A. ANASTASSIOU AND DONG YUN SHIN∗

Abstract. In this paper, we investigate homomorphisms in proper Lie CQ∗-algebras and
derivations on proper Lie CQ∗-algebras associated with the following Pexiderized functional
equation

f(x + y) = f0(x) + f1(y).

Moreover, we prove the Hyers-Ulam stability of homomorphisms in proper Lie CQ∗-algebras
and of derivations on proper Lie CQ∗-algebras.

1. Introduction and preliminaries

Ulam [24] gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(·, ·). Given
ε > 0, does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
Hyers [10] considered the case of approximately additive mappings f : E → E′, where E

and E′ are Banach spaces and f satisfies Hyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.
Rassias [16] provided a generalization of Hyers’ Theorem which allows the Cauchy differ-

ence to be unbounded. See [18, 19, 20, 21, 22] for more information on functional equations
and their stability.

Let A be a linear space and A0 is a ∗-algebra contained in A as a subspace.We say that
A is a quasi ∗-algebra over A0 if

(i) the right and left multiplications of an element of A and an element of A0 are defined
and linear;

2010 Mathematics Subject Classification. Primary 17B40, 39B52, 47N50, 47L60, 46B03.
Key words and phrases. Hyers-Ulam stability, proper Lie CQ∗-algebra homomorphism, Lie derivation.
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(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2 for all x1, x2 ∈ A0 and
all a ∈ A;

(iii) an involution ∗, which extends the involution of A0, is defined in A with the property
(ab)∗ = b∗a∗ whenever the multiplication is defined.

A quasi ∗-algebra (A,A0) is said to be a locally convex quasi ∗-algebra if in A a locally
convex topology τ is defined such that

(i) the involution is continuous and the multiplications are separately continuous;
(ii) A0 is dense in A[τ ].
Throughout this paper, we suppose that a locally convex quasi ∗-algebra (A,A0) is com-

plete. For an overview on partial ∗-algebra and related topics we refer to [1].
In a series of papers [2, 4, 5, 6] many authors have considered a special class of quasi

∗-algebras, called proper CQ∗-algebras, which arise as completions of C∗-algebras. They can
be introduced in the following way:

Let A be a Banach module over the C
∗
-algebra A0 with involution ∗ and C∗-norm ‖ . ‖0

such that A0 ⊂ A. We say that (A,A0) is a proper CQ∗-algebra if
(i) A0 is dense in A with respect to its norm ‖ . ‖;
(ii) (ab)∗ = b∗a∗ whenever the multiplication is defined;
(iii) ‖ y ‖0= supa∈A,‖a‖≤1 ‖ ay ‖ for all y ∈ A0.

Definition 1.1. A proper CQ∗-algebra (A,A0), endowed with the Lie product

[z, x] =
zx− xz

2

for all x ∈ A and all z ∈ A0, is called a proper Lie CQ∗-algebra.

Definition 1.2. Let (A,A0) and (B,B0) be proper Lie CQ∗-algebras.
(i) A C-linear mapping H : A −→ B is called a proper Lie CQ∗-algebra homomorphism

if H(z) ∈ B0 and H([z, x]) = [H(z), H(x)] for all z ∈ A0 and all x ∈ A.
(ii) A C-linear mapping δ : A0 → A is called a Lie derivation if

δ([z, x]) = [δ(z), x] + [z, δ(x)]

for all x, z ∈ A0 (see [12]).

Park and Rassias [14] investigated homomorphisms in proper JCQ∗-triples and derivations
on proper JCQ∗-triples. Park [15] investigated homomorphisms in proper CQ∗-ternary
algebras and derivations on proper CQ∗-ternary algebras. Najati and Park [11] investigated
homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy function
equation.

In this paper, we investigate homomorphisms in proper Lie CQ∗-algebras and derivations
on proper Lie CQ∗-algebras associated with the following Pexiderized functional equation

f(x+ y) = f0(x) + f1(y).

This is applied to investigate homomorphisms in proper Lie CQ∗-algebras.
Throughout this paper, assume that k is a fixed positive integer.
This paper is organized as follows: In Sections 2 and 3, we investigate homomorphisms in

proper Lie CQ∗-algebras and derivations in proper Lie CQ∗-algebras.
In Sections 4 and 5, we prove the Hyers-Ulam stability of homomorphisms in proper Lie

CQ∗-algebras and stability of derivations on proper Lie CQ∗-algebras.
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2. Homomorphism in proper Lie CQ∗-algebra

Throughout this section, assume that (A,A0) is a proper Lie CQ∗-algebra with C∗-norm
‖ . ‖A0 and norm ‖ . ‖A, and that (B,B0) is a proper Lie CQ∗-algebras with C∗-norm ‖ . ‖B0

and norm ‖ . ‖B.

Theorem 2.1. Let ϕ : A0 ×A −→ [0,+∞) be a mapping such that

lim
n→∞

1

2n
ϕ(2nw, x) = 0 (2.1)

for all w ∈ A0 and all x ∈ A, and let f, f0, f1 : A −→ B be mappings with f(0) = 0 and
f(w), f0(0) ∈ B0 for all w ∈ A0 and

‖µf(x)− f0(y)− f1(z)‖B ≤‖ kf(
µx+ y + z

k
) ‖B, (2.2)

‖f([w, x])− [f0(w), f1(x)]‖B ≤ ϕ(w, x) (2.3)

for all µ ∈ T1 := {µ ∈ C : |µ| = 1}, all w ∈ A0 and all x, y, z ∈ A. Then the mapping
f : A −→ B is a proper Lie CQ∗-algebra homomorphism. Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A.

Proof. Letting µ = 1, y = −x and z = 0 in (2.2), we get

f(x) = f0(−x)− f0(0)

for all x ∈ A. So f0(w) ∈ B0 for all w ∈ A0. Similarly, we have

f(x) = f1(−x)− f1(0)

for all x ∈ A. By (2.2), we have

‖f(x+ y)− f(x)− f(y)‖B ≤ ‖f(x+ y)− f0(−x)− f1(−y)‖B = 0

for all x, y ∈ A. So the mapping f : A −→ B is additive. Letting y = −µx, and z = 0 in
(2.2), we get

µf(x) = f0(−µx) + f1(0) = f(µx)

for all x ∈ A. By the same reasoning as in the proof of [13, Theorem 2.1], the mapping
f : A −→ B is C-linear. By (2.1) and (2.3), we have

‖f([w, x])− [f(w), f(x)]‖B = lim
n→∞

1

2n
‖f(2n[w, x])− [f0(2

nw), f1(x)]‖B

≤ lim
n→∞

ϕ(2nw, x)

2n
= 0

for all w ∈ A0 and all x ∈ A. So

f([w, x]) = [f(w), f(x)]

for all w ∈ A0 and all x ∈ A.
Therefore, the mapping f : A −→ B is a proper Lie CQ∗-algebra homomorphism, as

desired. �

Remark 2.2. We can formulate a similar theorem if we replace the condition (2.1) by

lim
n→∞

1

2n
ϕ(w, 2nx) = 0

for all w ∈ A0 and all x ∈ A.
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Corollary 2.3. Let θ, r0, r1 be non-negative real numbers such that rj ∈ [0, 1) for some
0 ≤ j ≤ 1 and let f, f0, f1 : A −→ B be mappings with f(0) = 0 and f(w), f0(0) ∈ B0 for all
w ∈ A0 and satisfying (2.2) and

‖f([w, x])− [f0(w), f1(x)]‖B ≤ θ‖w‖r0A ‖x‖
r1
A

for all w ∈ A0 and all x ∈ A (by putting ‖.‖0A = 1). Then the mapping f : A −→ B is a
proper Lie CQ∗-algebra homomorphism. Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1. �

Corollary 2.4. Let θ, r0, r1 be non-negative real numbers such that rj ∈ [0, 1) for some
0 ≤ j ≤ 1 and let f, f0, f1 : A −→ B be mappings with f(0) = 0 and f(w), f0(0) ∈ B0 for all
w ∈ A0 and satisfying (2.2) and

‖f([w, x])− [f0(w), f1(x)]‖B ≤ θ
(
‖w‖r0A0

+ ‖x‖r1A
)

for all w ∈ A0 and all x ∈ A (by putting ‖.‖0A = 1). Then the mapping f : A −→ B is a
proper Lie CQ∗-algebra homomorphism. Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1. �

3. Derivations on proper Lie CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper Lie CQ∗-algebra with C∗-norm
‖ . ‖A0 and norm ‖ . ‖A.

Theorem 3.1. Let ϕ : A0 ×A0 → [0,+∞) be a mapping such that

lim
n→∞

1

2n
ϕ(2nw0, w1) = 0 (3.1)

for all w0, w1 ∈ A0 and let f, f0, f1 : A0 −→ A be mappings with f(0) = 0 and f(w), f0(0) ∈
A0 for all w ∈ A0 and

‖µf(w)− f0(w0)− f1(w1)‖A ≤‖ kf(
µw + w0 + w1

k
) ‖A,

‖f([w0, w1]) + [f0(w0), w1] + [w0, f1(w1)] ‖A ≤ ϕ(w0, w1) (3.2)

for all µ ∈ T1 and all w,w0, w1 ∈ A0. Then the mapping f : A0 −→ A is a Lie derivation.
Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A0.
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Proof. By the same reasoning as in the proof of Theorem 2.1, the mapping f : A0 −→ A is
C-linear and f(x) = f0(0)−f0(x) = f1(0)−f1(x) for all x ∈ A0. By (3.1) and (3.2), we have

‖f([w0, w1])− [f(w0), w1]− [w0, f(w1)]‖A

= lim
n→∞

1

2n
‖f(2n[w0, w1]) + [f0(2

nw0), w1] + [2nw0, f1(w1)]‖A

≤ lim
n→∞

1

2n
ϕ(2nw0, w1) = 0

for all w0, w1 ∈ A0. So

f([w0, w1]) = [f(w0), w1] + [w0, f(w1)]

for all w0, w1 ∈ A0. Therefore, the mapping f : A0 −→ A is a Lie derivation, as desired. �

Remark 3.2. We can formulate a similar theorem if we replace the condition (3.1) by

lim
n→∞

1

2n
ϕ(w0, 2

nw1) = 0

for all w0, w1 ∈ A0.

Corollary 3.3. Let θ, r0, r1 be non-negative real numbers such that rj ∈ [0, 1) for some
0 ≤ j ≤ 1 and let f, f0, f1 : A −→ B be mappings with f(0) = 0,f(w), f0(0) ∈ A0 for all
w ∈ A0 and satisfying (3.2) such that∥∥f([w0, w1]) + [f0(w0), w1] + [w0, f1(w1)]

∥∥
A
≤ θ(‖w0‖r0A0

+ ‖w1‖r1A0
)

for all w0, w1 ∈ A0 (by putting ‖.‖0A = 1). Then the mapping f : A0 −→ A is a Lie derivation.
Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A0.

Proof. The proof follows from Theorem 3.1. �

Corollary 3.4. Let θ, r0, r1 be non-negative real numbers such that rj ∈ [0, 1) for some
0 ≤ j ≤ 1 and let f, f0, f1 : A −→ B be mappings with f(0) = 0 and satisfying (3.2) such
that ∥∥f([w0, w1]) + [f0(w0), w1] + [w0, f1(w1)]

∥∥
A
≤ θ‖w0‖r0A0

‖w1‖r1A0

for all w0, w1 ∈ A0 (by putting ‖.‖0A = 1). Then the mapping f : A0 −→ A is a Lie derivation.
Moreover,

f(x) = f0(0)− f0(x) = f1(0)− f1(x)

for all x ∈ A0.

Proof. The proof follows from Theorem 3.1. �

4. Stability of homomorphism in proper Lie CQ∗-algebras

Using an idea of Găvruta [7], we prove the Hyers-Ulam stability of homomorphisms in
proper Lie CQ∗-algebras.

Theorem 4.1. Let ϕ : A×A→ [0,+∞) be a mapping such that ϕ(0, 0) = 0 and

lim
n→∞

1

2n
ϕ(2nx, 2ny) = 0, (4.1)
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ϕ̃(x) :=
∞∑
i=0

1

2i

[
ϕ(2ix, 2ix) + ϕ(2ix, 0) + ϕ(0, 2ix)

]
<∞ (4.2)

for all x, y ∈ A and let f, f0, f1 : A→ B be mappings with f(0) = 0 and f(w), f0(w), f1(w) ∈
B0 for all w ∈ A0 such that

‖f(µx+ µy)− µf0(x)− µf1(y)‖B ≤ ϕ(x, y), (4.3)

‖f(w0 + w1)− f0(w0)− f1(w1)‖B0 ≤ ϕ(w0, w1), (4.4)

‖f([w0, x])− [f0(w0), f1(x)]‖B ≤ ϕ(w0, x) (4.5)

for all µ ∈ T1, all w0, w1 ∈ A0 and all x, y ∈ A. Then there exists a unique proper Lie
CQ∗-algebra homomorphism H : A −→ B such that

‖f(x)−H(x)‖B ≤
1

2
ϕ̃(x),

‖f0(x)−f0(0)−H(x)‖B ≤
1

2
ϕ̃(x) + ϕ(x, 0),

‖f1(x)−f1(0)−H(x)‖B ≤
1

2
ϕ̃(x) + ϕ(0, x)

(4.6)

for all x ∈ A.

Proof. Letting y = 0 and µ = 1 in (4.3), we get

‖f(x)− f0(x)− f1(0)‖B ≤ ϕ(x, 0) (4.7)

Similarly, we get

‖f(y)− f1(y)− f0(0)‖B ≤ ϕ(0, y) (4.8)

for all x, y ∈ A. Using (4.7) and (4.8), we get

‖f(µx+ µy)− µf(x)− µf(y)‖B ≤ ψ(x, y) (4.9)

where
ψ(x, y) := ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)

for all µ ∈ T1 and all x, y ∈ A. Letting x = y and µ = 1 in (4.9), we get

‖f(2x)− 2f(x)‖B ≤ ψ(x, x) (4.10)

Replacing x by 2nx in (4.10) and dividing both sides of (4.10) by 2n+1, we get∥∥∥f(2n+1x)

2n+1
− f(2nx)

2n

∥∥∥
B
≤ ψ(2nx, 2nx)

2n+1
(4.11)

for all x ∈ A and all non-negative integers n. By (4.11), we have∥∥∥f(2n+1x)

2n+1
− f(2mx)

2m

∥∥∥
B
≤ 1

2

n∑
i=m

ψ(2ix, 2ix)

2i
(4.12)

for all x ∈ A and all non-negative integers n and m with n ≥ m. Thus we conclude from
(4.2) and (4.12) that the sequence { 1

2n f(2nx)} is Cauchy in B for all x ∈ A. Since B is

complete, the sequence { 1
2n f(2nx)} converges in B for all x ∈ A. So one can define the

mapping H : A→ B by

H(x) := lim
n→∞

1

2n
f(2nx) = lim

n→∞
1

2n
fi(2

nx) (i = 0, 1) (4.13)
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for all x ∈ A. Letting m = 0 and passing the limit when n → ∞ in (4.12), we get (4.6). It
follows from (4.1), (4.3) and (4.13) that∥∥∥H(µx+ µy)− µH(x)− µH(y)

∥∥∥
B

= lim
n→∞

1

2n

∥∥∥f(2nµx+ 2nµy)− µf0(2nx)− µf1(2ny)
∥∥∥
B

≤ lim
n→∞

ϕ(2nx, 2ny)

2n
= 0

for all µ ∈ T1 and all x, y ∈ A. Hence

H(µx+ µy) = µH(x) + µH(y)

for all µ ∈ T1 and all x, y ∈ A. By the same reasoning as in the proof of [13, Theorem 2.1],
the mapping H : A→ B is C-linear. It follows from (4.4) and (4.13) that H(w) ∈ B0 for all
w ∈ A0. It follows from (4.1), (4.5) and (4.13) that∥∥H([w, x])− [H(w), H(x)]

∥∥
B
≤ lim

n→∞
1

4n

∥∥∥f(4n[w, x])− [f0(2
nw), f1(2

nx)]
∥∥∥
B

≤ lim
n→∞

ϕ(2nw, 2nx)

4n
= 0

for all w ∈ A0 and all x ∈ A. Hence

H([w, x]) = [H(w), H(x)]

for all w ∈ A0 and all x ∈ A. So H : A −→ B is a proper Lie CQ∗-algebra homomorphism.
Now, we show that H : A −→ B is unique. Let T : A → B be another proper Lie CQ∗-
algebra homomorphism satisfying (4.6). It follows from (4.2), (4.6) and (4.13) that

‖H(x)− T (x)‖B = lim
n→∞

1

2n
∥∥f(2nx)− T (2nx)

∥∥
B

≤ 1

2
lim
n→∞

1

2n
ϕ̃(2nx) = 0

for all x ∈ A. So H = T. �

Corollary 4.2. Let θ, r0, r1 be non-negative real numbers such that 0 ≤ r0, r1 < 1 and let
f, f0, f1 : A −→ B be mappings with f(0) = 0 and f(w), f0(w), f1(w) ∈ B0 for all w ∈ A0

and

‖f(µx+ µy)− µf0(x)− µf1(y)‖B ≤ θ(‖x‖r0A + ‖y‖r1A ),

‖f(w0 + w1)− f0(w0)− f1(w1)‖B0 ≤ θ(‖w0‖r0A + ‖w1‖r1A ),

‖f([w0, x])− [f0(w0), f1(x)]‖B ≤ θ(‖w0‖r0A + ‖x‖r1A )

for all µ ∈ T1, all w0, w1 ∈ A0 and all x, y ∈ A (by putting ‖.‖0A = 1). Then there exists a
unique proper Lie CQ∗-algebra homomorphism H : A −→ B such that

‖f(x)−H(x)‖B ≤ 2
( ‖x‖r0A
2− 2r0

+
‖x‖r1A

2− 2r1

)
θ

‖fi(x)−fi(0)−H(x)‖B ≤ 2
( ‖x‖r0A
2− 2r0

+
‖x‖r1A

2− 2r1

)
θ + θ‖x‖riA (i = 0, 1)

for all x ∈ A.

Proof. The proof follows from Theorem 4.1. �
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Corollary 4.3. Let θ, r0, r1 be non-negative real numbers such that λ := r0 + r1 < 1 and let
f, f0, f1 : A −→ B be mappings with f(0) = 0 and f(w), f0(w), f1(w) ∈ B0 for all w ∈ A0

and

‖f(µx+ µy)− µf0(x)− µf1(y)‖B ≤ θ‖x‖r0A ‖y‖
r1
A ,

‖f(w0 + w1)− f0(w0)− f1(w1)‖B0 ≤ θ‖w0‖r0A ‖w1‖r1A ,

‖f([w0, x])− [f0(w0), f1(x)]‖B ≤ θ‖w0‖r0A ‖x‖
r1
A

for all µ ∈ T1, all w0, w1 ∈ A0 and all x, y ∈ A (by putting ‖.‖0A = 1). Then there exists a
unique proper Lie CQ∗-algebra homomorphism H : A −→ B such that

‖f(x)−H(x)‖B ≤
θ

2− 2λ
‖x‖λA,

‖fi(x)− fi(0)−H(x)‖B ≤
θ

2− 2λ
‖x‖λA (i = 0, 1)

for all x ∈ A.

Proof. The proof follows from Theorem 4.1. �

For r0 = r1 = 0, we have the following theorem:

Theorem 4.4. Let θ be non-negative real number and let f, f0, f1 : A −→ B be mappings
such that f(w), f0(w), f1(w) ∈ B0 for all w ∈ A0 and

‖f(µx+ µy)− µf0(x)− µf1(y)‖B ≤ θ,

‖f(w0 + w1)− f0(w0)− f1(w1)‖B0 ≤ θ,

‖f([w0, x])− [f0(w0), f1(x)]‖B ≤ θ

for all µ ∈ T1, all w0, w1 ∈ A0 and all x, y ∈ A. Then there exists a unique proper Lie
CQ∗-algebra homomorphism H : A −→ B such that

‖f(x)−H(x)‖B ≤ 3θ +M,

‖f0(x) + f1(0)−H(x)‖B ≤ 4θ +M,

‖f1(x) + f0(0)−H(x)‖B ≤ 4θ +M

for all x ∈ A, where M = ‖f0(0) + f1(0)‖B.

Proof. The proof is similar to the proof of Theorem 4.1. �
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5. Stability of derivation on proper Lie CQ∗-algebras

We prove the Hyers-Ulam stability of derivations on proper Lie CQ∗-algebras.

Theorem 5.1. Let ϕ : A0 ×A0 −→ [0,+∞) be a mapping satisfying (4.1) and (4.2) for all
x, y ∈ A0 such that ϕ(0, 0) = 0 and let f, f0, f1 : A0 −→ A be mappings with f(0) = 0 and
f(w), f0(w), f1(w) ∈ A0 for all w ∈ A0 such that

‖f(µw0 + µw1)− µf0(w0)− µf1(w1)‖A0 ≤ ϕ(w0, w1),∥∥f([w0, w1])− [f0(w0), w1]− [w0, f1(w1)]
∥∥
A
≤ ϕ(w0, w1) (5.1)

for all µ ∈ T1 and all w0, w1 ∈ A0. Then there exists a unique Lie derivation δ : A0 −→ A
such that

‖f(x)− δ(x)‖A ≤
1

2
ϕ̃(x),

‖f0(x)−f0(0)− δ(x)‖A ≤
1

2
ϕ̃(x) + ϕ(x, 0),

‖f1(x)−f1(0)− δ(x)‖A ≤
1

2
ϕ̃(x) + ϕ(0, x)

(5.2)

for all x ∈ A0.

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a unique C-linear
mapping δ : A0 −→ A satisfying (5.2). The mapping δ : A0 −→ A is defined by

δ(w) := lim
n→∞

1

2n
f(2nw) = lim

n→∞
1

2n
fi(2

nw) (i = 0, 1) (5.3)

for all w ∈ A0 and δ(w) ∈ A0 for all w ∈ A0. It follows from (4.1), (5.1) and (5.3) that∥∥δ([w0, w1])− [δ(w0), w1]− [w0, δ(w1)]
∥∥
A

= lim
n→∞

1

4n
∥∥f(4n[w0, w1])− [f0(2

nw0), 2
nw1]− [2nw0, f1(2

nw1)]
∥∥
A

≤ lim
n→∞

ϕ(2nw0, 2
nw1)

4n
= 0

for all w0, w1 ∈ A0. So
δ([w0, w1]) = [δ(w0), w1] + [w0, δ(w1)]

for all w0, w1 ∈ A0. Hence the mapping δ : A0 → A is a unique Lie derivation satisfying
(5.2). �

Corollary 5.2. Let θ, r0, r1 be non-negative real numbers such that 0 ≤ r0, r1 < 1 and let
f, f0, f1 : A0 → A be mappings with f(0) = 0 and f(w), f0(w), f1(w) ∈ A0 for all w ∈ A0

such that

‖f(µw0 + µw1)− µf0(w0)− µf1(w1)‖A0 ≤ θ(‖w0‖r0A0
+ ‖w1‖r1A0

),∥∥f([w0, w1])− [f0(w0), w1]− [w0, f1(w1)]
∥∥
A
≤ θ(‖w0‖r0A0

+ ‖w1‖r1A0
)

for all µ ∈ T1 and all w0, w1 ∈ A0 (by putting ‖.‖0A = 1). Then there exists a unique Lie
derivation δ : A0 → A such that

‖f(x)− δ(x)‖A ≤ 2
( ‖x‖r0A0

2− 2r0
+
‖x‖r1A0

2− 2r1

)
θ,

‖fi(x)−fi(0)− δ(x)‖A ≤ 2
( ‖x‖r0A0

2− 2r0
+
‖x‖r1A0

2− 2r1

)
θ + θ‖x‖riA0

(i = 0, 1)
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for all x ∈ A0.

Proof. The proof follows from Theorem 5.1. �

Corollary 5.3. Let θ, r0, r1 be non-negative real numbers such that 0 ≤ λ < 1 and let
f, f0, f1 : A0 −→ A be mappings with f(0) = 0 and f(w), f0(w), f1(w) ∈ A0 for all w ∈ A0

such that

‖f(µw0 + µw1)− µf0(w0)− µf1(w1)‖A0 ≤ θ‖w0‖r0A0
‖w1‖r1A0

,∥∥f([w0, w1])− [f0(w0), w1]− [w0, f1(w1)]
∥∥
A
≤ θ‖w0‖r0A0

‖w1‖r1A0

for all µ ∈ T1 and all w0, w1 ∈ A0(by putting ‖.‖0A = 1). Then there exists a unique Lie
derivation δ : A0 −→ A such that

‖f(x)− δ(x)‖A ≤
θ

2− 2λ
‖x‖λA0

,

‖fi(x)− fi(0)− δ(x)‖A ≤
θ

2− 2λ
‖x‖λA0

(i = 0, 1)

for all x ∈ A0.

Proof. The proof follows from Theorem 5.1. �

For r0 = r1 = 0, we have the following theorem:

Theorem 5.4. Let θ be non-negative real number and let f, f0, f1 : A0 −→ A be mappings
and f(w), f0(w), f1(w) ∈ A0 for all w ∈ A0 and

‖f(µw0 + µw1)− µf0(w0)− µf1(w1)‖A0 ≤ θ,

‖f([w0, w1])− [f0(w0), f1(w1)]‖A ≤ θ

for all µ ∈ T1 and all w0, w1 ∈ A0. Then there exists a unique Lie derivation δ : A −→ B
such that

‖f(x)− δ(x)‖A ≤ 3θ +M,

‖f0(x) + f1(0)− δ(x)‖A ≤ 4θ +M,

‖f1(x) + f0(0)− δ(x)‖A ≤ 4θ +M

for all x ∈ A0, where M = ‖f0(0) + f1(0)‖A.

Proof. The proof is similar to Theorem 5.1. �
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WOVEN FRAMES IN HILBERT C∗-MODULES

FATEMEH GHOBADZADEH, ABBAS NAJATI, GEORGE A. ANASTASSIOU AND CHOONKIL PARK∗

Abstract. In this paper we introduce woven frames in Hilbert C∗-modules. We then investigate
some properties of woven frames and prove some results. For a given frame {ϕi}i∈I in a Hilbert C∗-
module U , we obtain some conditions on a perturbed family {ψi}i∈I of U which imply that {ϕi}i∈I
and {ψi}i∈I are woven.

1. Introduction

1.1. Hilbert C∗-modules. Let A be a C∗-algebra. A pre-Hilbert A-module is a complex vector
space U which is also a left A-module equipped with an A-valued inner product 〈., .〉 : U × U → A
such that

(1) 〈x, x〉 > 0, x ∈ U ,
(2) 〈x, x〉 = 0⇔ x = 0, x ∈ U ,
(3) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, α, β ∈ C and x, y, z ∈ U ,
(4) 〈ax, y〉 = a〈x, y〉, x, y ∈ U, a ∈ A,
(5) 〈x, y〉 = 〈y, x〉∗, x, y ∈ U .

It is easy to see that scalar multiplication and the left A-module structure of a pre-Hilbert A-module
U are compatible in the sense that

(λa)x = a(λx) = λ(ax), λ ∈ C, a ∈ A, x ∈ U.

For x ∈ U , we set ‖x‖ = ‖〈x, x〉‖
1
2 . It is well known that U is a normed space with ‖.‖ (see [10]).

If U is complete with norm ‖.‖, it is called a Hilbert A-module or a Hilbert C∗-module over A. We
are especially interested in finitely and countably generated C∗-modules over unital C∗-algebras A.
A Hilbert A-module U is called countably generated if there exists a countable set {xi : i ∈ I} ⊆ U
such that U equals the closed linear span of the set {aixi : i ∈ I, ai ∈ A}. A Hilbert A-module U
is finitely generated if there exists a finite set {x1, x2, · · · , xm} ⊆ U such that each x ∈ U can be
expressed as an A-linear combination of {x1, x2, · · · , xm}.

For a unital C∗-algebra A, let `2(A) = {{ai}∞i=1 ⊆ A :
∑∞

i=1 aia
∗
i converges in norm in A}. The

pointwise operations

{ai}∞i=1 + {bi}∞i=1 := {ai + bi}∞i=1, a{ai}∞i=1 := {aai}∞i=1

and the inner product

〈{ai}∞i=1, {bi}∞i=1〉 :=

∞∑
i=1

aib
∗
i

turn `2(A) into a Hilbert A-module. The sequence {ei}∞i=1, where ei takes value 1A at i and 0A
everywhere else, is an orthonormal basis for `2(A) and it is called the standard orthonormal basis.

2010 Mathematics Subject Classification. Primary: 41A58; Secondry: 42C15.
Key words and phrases. weaving frame, perturbation, Hilbert C∗-module, woven frame.
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For Hilbert A-modules U and V , a map T : U → V is called bounded A-linear if

T (λx+ y) = λT (x) + T (y), T (ax) = aT (x), λ ∈ C, x, y ∈ U, a ∈ A,
and if

‖T‖ := sup
{
‖T (x)‖ : x ∈ U, ‖x‖ 6 1

}
<∞.

For Hilbert C∗-modules U and V , a map T : U → V is called adjointable if there is a map
T ∗ : V → U such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ U, y ∈ V.
We denote by L(U, V ) the set of all adjointable maps from U to V . It is easy to show that every
T ∈ L(U, V ) is A-linear and bounded. In fact L(U, V ) is a Banach space with respect to the operator
norm. Moreover, L(U,U) is a C∗-algebra and we will denote it by L(U) [10]. In spite of the fact that
every (linear) bounded operator in Hilbert space is adjointable, not all bounded linear operators on
Hilbert C∗-modules are adjointable, since Riesz representation theorem for continuous functionals in
Hilbert spaces does not hold for general Hilbert C∗-modules (see [7]).

Proposition 1.1. [10] Let U be a Hilbert A-module and let T be a bounded A-linear operator on U .
Then the following conditions are equivalent:

(1) T is a positive element of L(U).
(2) 〈Tx, x〉 > 0 for all x ∈ U .

Proposition 1.2. Let {ei}∞i=1 be the standard orthonormal basis of `2(A). For σ ⊂ N, we define
Pσ : `2(A) → `2(A) by Pσ(

∑∞
i=1 aiei) =

∑
i∈σ aiei. Then Pσ is an adjointable projection onto

span{ei}i∈σ.

Proof. We have P 2
σ = Pσ, and so Pσ is a projection. We show that Pσ is adjointable and P ∗σ = Pσ.

For this, let a =
∑∞

i=1 aiei, b =
∑∞

i=1 biei ∈ `2(A). Then

〈Pσa, b〉 = 〈
∑
i∈σ

aiei,
∞∑
j=1

bjej〉 =
∑
i∈σ
〈aiei,

∞∑
j=1

bjej〉

=
∑
i∈σ
〈aiei, biei〉 =

∑
i∈σ
〈
∞∑
j=1

ajej , biei〉

= 〈
∞∑
j=1

ajej ,
∑
i∈σ

biei〉 = 〈a, Pσb〉.

This completes the proof. �

1.2. Frames in Hilbert C∗-modules. The concept of frame for a separable Hilbert space H was
introduced by Duffin and Schaeffer [4], and it was defined as a finite or countable sequence {ϕi}i∈I
in H such that there exist constants A,B > 0 satisfying

A‖x‖2 6
∑
i∈I
‖〈x, ϕi〉‖2 6 B‖x‖2, x ∈ H.

Frames for Hilbert spaces have natural analogues for Hilbert C∗-modules. Frames for Hilbert C∗-
modules were introduced by Frank and Larson [7]. Hilbert C∗-module frames are generalization of
Hilbert space frames. A frame for a countably (or finitely) generated Hilbert C∗-module U is a
sequence {ϕi}i∈I (I is a finite or countable subset of N) in U for which there are constants A,B > 0
such that

A〈x, x〉 6
∑
i∈I
〈x, ϕi〉〈ϕi, x〉 6 B〈x, x〉, x ∈ U. (1.1)
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We consider standard frames for which
∑

i∈I〈x, ϕi〉〈ϕi, x〉 converges in norm for every x ∈ U . The
constants A,B are called the lower and upper frame bounds, respectively. If only the second inequality
in (1.1) is satisfied, we say that {ϕi}i∈I is a Bessel sequence with a Bessel bound B. A frame {ϕi}i∈I
is called a tight frame if we can choose A = B and a Parseval frame (or normalized tight frame) if
A = B = 1.

Frank and Larson [7] showed that standard frames always exist in a countably (or finitely) gen-
erated Hilbert C∗-module over a unital C∗-algebra. Li [11] showed that every infinite-dimensional
commutative unital C∗-algebra has a Hilbert C∗-module admitting no frames. Many related concepts
of frames in Hilbert spaces such as g-frame, perturbation of frames and Riesz bases and stability of
g-frames were introduced and investigated in Hilbert C∗-module spaces [5, 6, 8, 9, 14, 15].

In this paper we introduce the concept of woven frames and investigate whose relation with per-
turbation of frames in Hilbert C∗-modules.

Arambašić proved the following result which states that the condition (1.1) from the definition of
standard frames can be replaced with a weaker one.

Theorem 1.3. [1] Let A be a C∗-algebra, U a countably generated Hilbert A-module, and {ϕi}i∈I
a sequence in U such that

∑
i∈I〈x, ϕi〉〈ϕi, x〉 converges in norm for every x ∈ U . Then {ϕi}i∈I is a

standard frame for U if and only if there are constants C,D > 0 such that

C‖x‖2 6
∥∥∥∑
i∈I
〈x, ϕi〉〈ϕi, x〉

∥∥∥ 6 D‖x‖2, x ∈ U.

Let {ϕi}i∈I be a standard frame for a Hilbert C∗-module U . We define the synthesis operator
T : `2(A) → U by T ({ai}i∈I) =

∑
i∈I aiϕi. It is well known that T is adjointable and its adjoint

T ∗ : U → `2(A) which is called the analysis operator fulfills T ∗x = {〈x, ϕi〉}i∈I . By composing T
and T ∗, we obtain the frame operator S : U → U which is given by

Sx = TT ∗x =
∑
i∈I
〈x, ϕi〉ϕi, x ∈ U.

The frame operator is positive, invertible, and is the unique operator in L(U) such that the recon-
struction formula

x =
∑
i∈I
〈x, S−1ϕi〉ϕi =

∑
i∈I
〈x, ϕi〉S−1ϕi,

holds for all x ∈ U . It is easy to see that the sequences {S−1ϕi}i∈I and {S−
1
2ϕi}i∈I are frames for U .

The frame {S−1ϕi}i∈I is said to be the canonical dual frame of {ϕi}i∈I and the frame {S−
1
2ϕi}i∈I is

said to be the canonical Parseval frame of {ϕi}i∈I [7].

Theorem 1.4. [1] Let A be a C∗-algebra, U a countably generated Hilbert A-module, {ϕi}i∈I a
sequence in U , and θx = {〈x, ϕi〉}i∈I for x ∈ U . The following statements are mutually equivalent:

(1) {ϕi}i∈I is a standard frame for U .
(2) θ ∈ L(U, `2(A)) and θ is bounded below with respect to norm, i.e., there is m > 0 such that
‖θx‖ > m‖x‖ for all x ∈ U .

(3) θ ∈ L(U, `2(A)) and θ is bounded below with respect to the inner product, i.e., there is m′ > 0
such that 〈θx, θx〉 > m′〈x, x〉 for all x ∈ U .

(4) θ ∈ L(U, `2(A)) and θ∗ is surjective.

Theorem 1.5. [1] Let A be a C∗-algebra, V and W countably generated Hilbert A-modules, and
T ∈ L(V,W ) surjective. If {ϕi : i ∈ I} is a standard frame for V with frame bounds C and D, then
{Tϕi : i ∈ I} is a standard frame for W with frame bounds C

‖(TT ∗)−1‖ and D‖T‖2.

For the converse, we have the following.
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Proposition 1.6. Let {ϕi}i∈I be a frame for U and P be an adjointable operator on U such that
{Pϕi}i∈I is a frame for U . Then P is a surjective operator.

Proof. Let S be the frame operator of {ϕi}i∈I . Then∑
i∈I
〈x, Pϕi〉Pϕi = P

(∑
i∈I
〈P ∗x, ϕi〉ϕi

)
= PSP ∗(x), x ∈ U.

So PSP ∗ is the frame operator of {Pϕi}i∈I . Since PSP ∗ is invertible, we infer that P is surjective. �

Definition 1.7. A frame {ϕi}i∈I for a Hilbert A-module U is said to be a (standard) Riesz basis for
U if it satisfies

(i) ϕi 6= 0 for all i ∈ I;
(ii) if

∑
j∈J ajϕj = 0 for {aj : j ∈ J} ⊂ A and J ⊂ I, then every summand ajxj is equal to zero.

We need the following lemmas to obtain optimal frame bounds.

Lemma 1.8. [12] Let a, b be positive elements of a unital C∗-algebra A. If a 6 b, then 0 6 b−1 6 a−1.

Lemma 1.9. [13] Let T be a bounded and A-linear map on Hilbert A-module U . Then

‖T‖ = inf{K
1
2 : 〈Tx, Tx〉 6 K〈x, x〉, x ∈ U}.

In the rest of paper we suppose that A is a unital C∗-algebra and U is a countably or finitely
generated Hilbert A-module.

Theorem 1.10. Let {ϕi}i∈I be a frame for U with lower and upper frame bounds A and B, respec-
tively. Let S be the frame operator of {ϕi}i∈I . Then

(1) {S−1ϕi}i∈I is a frame with lower and upper frame bounds B−1 and A−1, respectively.
(2) The optimal frame bounds A,B for {ϕi}i∈I are given by

A = ‖S−1‖−1, B = ‖S‖.
Proof. (1) Since S−1 is an adjointable and invertible operator, by Theorem 1.5, {S−1ϕi}i∈I is a

frame for U . We show that B−1 and A−1 are frame bounds of {S−1ϕi}i∈I . Since AId 6 S 6
BId, we have B−1Id 6 S−1 6 A−1Id by Lemma 1.8. This means B−1〈x, x〉 6 〈S−1x, x〉 6
A−1〈x, x〉 for all x ∈ U .

On the other hand, for every x ∈ U we have∑
i∈I
〈x, S−1ϕi〉〈S−1ϕi, x〉 =

∑
i∈I
〈S−1x, ϕi〉〈ϕi, S−1x〉 = 〈SS−1x, S−1x〉 = 〈S−1x, x〉.

Therefore,

B−1〈x, x〉 6
∑
i∈I
〈x, S−1ϕi〉〈S−1ϕi, x〉 6 A−1〈x, x〉, x ∈ U.

(2) It is clear that 〈S
1
2x, S

1
2x〉 6 B〈x, x〉 for all x ∈ U . By Lemma 1.9, we have

‖S
1
2 ‖ = inf{K

1
2 : 〈S

1
2x, S

1
2 〉 6 K〈x, x〉 , x ∈ U}.

So ‖S‖ = ‖S
1
2S

1
2 ‖ = ‖S

1
2 ‖2 is the optimal upper frame bound for {ϕi}i∈I
‖S‖ = ‖S

1
2S

1
2 ‖ = ‖S

1
2 ‖2 = B.

For the optimal lower frame bound, since the frame operator of {S−1ϕi}i∈I is S−1, we get
‖S−1‖ is the optimal upper frame bound for {S−1ϕi}i∈I . Thus ‖S−1‖−1 is the optimal lower
frame bound for {ϕi}i∈I .

This completes the proof. �
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Proposition 1.11. Let {ϕi}i∈I be a Bessel sequence in U and S : U → U be given by

Sx =
∑
i∈I
〈x, ϕi〉ϕi, x ∈ U.

If there exists a constant A > 0 such that

‖Sx‖ > A‖x‖, x ∈ U, (1.2)

then {ϕi}i∈I is a frame for U with lower frame bound A.

Proof. We define the operator T : `2(A) → U by T ({ai}i∈I) =
∑

i∈I aiϕi. Since {ϕi}i∈I is a Bessel
sequence in U , T is well defined, adjointable, and S = TT ∗. By (1.2), we have

‖T ∗x‖ > A

‖T‖
‖x‖, x ∈ U.

Hence by Theorem 1.4, {ϕi}i∈I is a frame for U . Therefore S is invertible and ‖S−1‖ 6 A−1.
Since the optimal lower frame bound for {ϕi}i∈I is ‖S−1‖−1, we get A is a lower frame bound for
{ϕi}i∈I . �

If {ϕi}i∈I is a frame for U with lower bound A and frame operator S, then

‖Sx‖ = sup
‖y‖=1

‖〈Sx, y〉‖ > 1

‖x‖
‖〈Sx, x〉‖ > A‖x‖, x ∈ U \ {0}.

Therefore, ‖Sx‖ > A‖x‖ for all x ∈ U .

2. Woven frames

The concept of woven frames for Hilbert spaces was introduced in [2].
In this section we introduce woven frames for finitely or countably generated Hilbert C∗-modules.
We use the notation [m] = {1, ...,m} in the rest of the paper for m ∈ N.

Definition 2.1. A family
{
{ϕij}i∈I

}
j∈[M ]

of frames for U is called woven if there exist universal

constants 0 < A < B <∞ such that for every partition {σj}j∈[M ] of I, the family {ϕij}i∈σj ,j∈[M ] is a

frame for U with lower and upper frame bounds A and B, respectively. Each family {ϕij}i∈σj ,j∈[M ]

is called a weaving.

To verify that a family of frames is woven, it is enough to check that there exists a universal lower
frame bound, since every weaving automatically has a universal upper frame bound.

Proposition 2.2. If
{
{ϕij}i∈I

}
j∈[M ]

is a family of Bessel sequences with bounds Bj for j ∈ [M ],

then every weaving is a Bessel sequence with Bessel bound
∑M

j=1Bj.

Proof. For every partition {σj}j∈[M ] of I and every x ∈ U , we have

M∑
j=1

∑
i∈σj

〈x, ϕij〉〈ϕij , x〉 6
M∑
j=1

∑
i∈I
〈x, ϕij〉〈ϕij , x〉 6

M∑
j=1

Bj〈x, x〉.

So
∑M

j=1Bj is a Bessel bound for every weaving. �

By Theorem 1.5 and Proposition 1.6, we get the following.

Proposition 2.3. Let
{
{ϕij}i∈I

}
j∈[M ]

be a woven family of frames for U and P : U → U be an

adjointable operator. Then
{
{Pϕij}i∈I

}
j∈[M ]

are woven frames if and only if P is surjective.
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Corollary 2.4. Let {ϕi}i∈I and {ψi}i∈I be two woven frames. We can always assume that one of
this two woven frames is Parseval.

Proof. Let S be the frame operator of {ϕi}i∈I . Then by Proposition 2.3, {S−
1
2ϕi}i∈I and {S−

1
2ψi}i∈I

are woven frames, where {S−
1
2ϕi}i∈I is a Parseval frame. �

In the following proposition, we assume that Z(A) = {a ∈ A : ab = ba,∀b ∈ A}.

Proposition 2.5. Let {ϕi}i∈I and {ψi}i∈I be woven frames for Hilbert A-module U with universal
lower and upper bounds A,B, respectively. Assume that {ai}i∈I and {bi}i∈I are sequences in Z(A)
such that 0 < C1A 6 a∗i ai 6 D1A and 0 < C1A 6 b∗i bi 6 D1A for all i ∈ I. Then {aiϕi}i∈I and
{biψi}i∈I are woven frames for U with universal lower and upper bounds AC and BD, respectively.

Proof. Let σ ⊂ I and x ∈ U . Then∑
i∈σ
〈x, aiϕi〉〈aiϕi, x〉+

∑
i∈σc
〈x, biψi〉〈biψi, x〉

=
∑
i∈σ

a∗i 〈x, ϕi〉ai〈ϕi, x〉+
∑
i∈σc

b∗i 〈x, ψi〉bi〈ψi, x〉

=
∑
i∈σ

a∗i ai〈x, ϕi〉〈ϕi, x〉+
∑
i∈σc

b∗i bi〈x, ψi〉〈ψi, x〉.

The last equality implies that

AC〈x, x〉 6
∑
i∈σ
〈x, aiϕi〉〈aiϕi, x〉+

∑
i∈σc
〈x, biψi〉〈biψi, x〉 6 BD〈x, x〉.

Thus two frames {aiϕi}i∈I and {biψi}i∈I are woven. �

In the following result the commutativity of coefficients is not necessary.

Corollary 2.6. Let {ϕi}i∈I and {ψi}i∈I be woven frames for U with universal lower and upper
bounds A,B, respectively. Assume that {λi}i∈I and {µi}i∈I are sequences in C such that 0 < C 6
|λi|2 6 D < ∞ and 0 < C 6 |µi|2 6 D < ∞ for all i ∈ I. Then {λiϕi}i∈I and {µiψi}i∈I are woven
frames for U with universal lower and upper bounds AC and BD, respectively.

Proposition 2.7. Assume that {ϕi}i∈J and {ψi}i∈J are woven frames. If J ⊂ I such that {ϕi}i∈I
and {ψi}i∈I are Bessel sequences, then {ϕi}i∈I and {ψi}i∈I are woven.

Proof. By Proposition 2.2, it is enough to show that there is a universal lower bound. Let σ ⊂ I and
x ∈ U . Then

A〈x, x〉 6
∑
i∈σ∩J

〈x, ϕi〉〈ϕi, x〉+
∑

i∈σc∩J
〈x, ψi〉〈ψi, x〉 6

∑
i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈σc
〈x, ψi〉〈ψi, x〉.

This completes the proof. �

The next result shows that we can remove some vectors from woven frames.

Proposition 2.8. Let {ϕi}i∈I and {ψi}i∈I be woven frames for U with universal lower and upper
frame bounds A and B, respectively. If J ⊂ I and there exists 0 < D < A such that∑

i∈J
〈x, ϕi〉〈ϕi, x〉 6 D〈x, x〉, x ∈ U,

then {ϕi}i∈(I\J) and {ψi}i∈(I\J) are woven frames for U with universal lower and upper frame bounds
A−D and B, respectively.
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Proof. Suppose that σ ⊂ (I \ J). Then∑
i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈(I\J)\σ

〈x, ψi〉〈ψi, x〉 6
∑
i∈σ∪J

〈x, ϕi〉〈ϕi, x〉+
∑

i∈(I\J)\σ

〈x, ψi〉〈ψi, x〉

6 B〈x, x〉,

and ∑
i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈(I\J)\σ

〈x, ψi〉〈ψi, x〉

=

( ∑
i∈σ∪J

〈x, ϕi〉〈ϕi, x〉 −
∑
i∈J
〈x, ϕi〉〈ϕi, x〉

)
+

∑
i∈(I\J)\σ

〈x, ψi〉〈ψi, x〉

> (A−D)〈x, x〉
for all x ∈ U . So A − D and B are lower and upper weaving bounds as desired. If we set σ = Jc

(respectively σ = ∅), then {ϕi}i∈(I\J) (respectively {ψi}i∈(I\J)) is a frame for U . �

Since every frame is woven with itself, we have the following.

Corollary 2.9. Let {ϕi}i∈I be a frame with lower frame bound A for U . If J ⊂ I and there exists
0 < D < A such that ∑

i∈J
〈x, ϕi〉〈ϕi, x〉 6 D〈x, x〉, x ∈ U,

then {ϕi}i∈I\J is a frame with lower frame bound A−D.

In the next example, we show that if a frame is woven with a Riesz basis, it may be not a Riesz
basis. However in Hilbert spaces a Riesz basis only is woven with a Riesz basis and it cannot be
woven with a frame which is not a Riesz basis [2].

Example 2.10. Let l∞ be the set of all bounded complex-valued sequences. If the multiplication is
defined pointwise and the involution is defined by conjugate, then A = l∞ will be a C∗-algebra with
supremum norm. Let U = c0 be the set of all sequences converging to zero. For any u = {ui}∞i=1, v =
{vi}∞i=1 ∈ U and {ci}∞i=1 ∈ A, we define

〈u, v〉 = uv∗ = {uivi}∞i=1, {ci}∞i=1{ui}∞i=1 = {ciui}∞i=1.

Then U is a Hilbert A-module. Obviously, {ei}i∈N, where ei takes value 1 at i and 0 everywhere else,
is an orthonormal basis of U . Now let xi = ei for each i, and

yi =

{
e1 + e2 if i = 1, 2

ei if i 6= 1, 2.

Then {xi}i∈N is a Riesz basis that is woven with {yi}i∈N, but {yi}i∈N is not a Riesz basis.

3. Perturbation and woven frames

In this section we show that under some conditions frames that are perturbation of each other are
woven.

Theorem 3.1. [8] Let U be a finitely or countably generated Hilbert A-module over a unital C∗-
algebra A, and {ϕi}i∈I be a frame for U with frame bounds A and B. Suppose that {ψi}i∈I is a

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1226 GHOBADZADEH et al 1220-1232



F. GHOBADZADEH, A. NAJATI, G. A. ANASTASSIOU, C. PARK

sequence of U and that there exist λ1, λ2, µ > 0 such that max{λ1 + µ√
A
, λ2} < 1. Then {ψi}i∈I is

also a frame for U with frame bounds(
(1− λ1)

√
A− µ

1 + λ2

)2

and

(
(1 + λ1)

√
B + µ

1− λ2

)2

,

if one of the following conditions is fulfilled for any finite sequence {ai}ni=1 ⊆ A and all x ∈ U :∥∥∥∥∥
n∑
i=1

〈x, ϕi − ψi〉〈ϕi − ψi, x〉

∥∥∥∥∥
1
2

6 λ1

∥∥∥∥∥
n∑
i=1

〈x, ϕi〉〈ϕi, x〉

∥∥∥∥∥
1
2

+ λ2

∥∥∥∥∥
n∑
i=1

〈x, ψi〉〈ψi, x〉

∥∥∥∥∥
1
2

+ µ‖x‖;

or ∥∥∥∥∥
n∑
i=1

ai(ϕi − ψi)

∥∥∥∥∥ 6 λ1
∥∥∥∥∥

n∑
i=1

aiϕi

∥∥∥∥∥+ λ2

∥∥∥∥∥
n∑
i=1

aiψi

∥∥∥∥∥+ µ

∥∥∥∥∥
n∑
i=1

aia
∗
i

∥∥∥∥∥
1
2

.

We show that if {ϕi}i∈I and {ψi}i∈I have the above perturbations, then they may be woven frames.

Theorem 3.2. Let {ϕi}i∈I be a frame for U with frame bounds A,B and {ψi}i∈I be a sequence in
U . If for all sequences {ai}i∈I ∈ `2(A)∥∥∥∥∥∑

i∈I
ai(ϕi − ψi)

∥∥∥∥∥ 6 λ1
∥∥∥∥∥∑
i∈I

aiϕi

∥∥∥∥∥+ λ2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥+ µ

∥∥∥∥∥∑
i∈I

aia
∗
i

∥∥∥∥∥
1
2

, (3.1)

or ∥∥∥∥∥∑
i∈I
〈x, ϕi − ψi〉〈ϕi − ψi, x〉

∥∥∥∥∥
1
2

6 λ1

∥∥∥∥∥∑
i∈I
〈x, ϕi〉〈ϕi, x〉

∥∥∥∥∥
1
2

+ λ2

∥∥∥∥∥∑
i∈I
〈x, ψi〉〈ψi, x〉

∥∥∥∥∥
1
2

+ µ‖x‖

(3.2)

for some λ1, λ2, µ > 0 such that max{λ1 + µ√
A
, λ2} < 1 and(

λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)(
√
B +

(1 + λ1)
√
B + µ

1− λ2

)
6 α < A,

then {ψi}i∈I is a frame for U , and two frames {ψi}i∈I and {ϕi}i∈I are woven.

Proof. By Theorem 3.1, {ψi}i∈I is a frame for U with bounds(
(1− λ1)

√
A− µ

1 + λ2

)2

and

(
(1 + λ1)

√
B + µ

1− λ2

)2

.

Suppose that σ ⊂ I and Pσ : `2(A) → `2(A) denotes the projection described in Proposition 1.2.
Let T,R be the synthesis operators for the frames {ϕi}i∈I and {ψi}i∈I , respectively. We define
Tσ, Rσ : `2(A)→ U by Tσ = TPσ and Rσ = RPσ. It is clear that

Tσ({ai}i∈I) = TPσ({ai}i∈I) =
∑
i∈σ

aiϕi,
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and

Rσ({ai}i∈I) = RPσ({ai}i∈I) =
∑
i∈σ

aiψi.

Since ‖Pσ‖ 6 1, we have ‖Tσ −Rσ‖ 6 ‖T −R‖, ‖Tσ‖ 6 ‖T‖ and ‖Rσ‖ 6 ‖R‖. Also the inequalities
in (3.1) and (3.2) become

‖T −R‖ 6 λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ,

and

‖T ∗ −R∗‖ 6 λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ.

For every x ∈ U , we have∥∥∥∥∥∑
i∈σ
〈x, ϕi〉ϕi −

∑
i∈σ
〈x, ψi〉ψi

∥∥∥∥∥
= ‖TσT ∗σx−RσR∗σx‖
6 ‖(TσT ∗σ − TσR∗σ)x‖+ ‖(TσR∗σ −RσR∗σ)x‖
6 ‖Tσ‖‖T ∗σ −R∗σ‖‖x‖+ ‖Tσ −Rσ‖‖R∗σ‖‖x‖
6 ‖T‖‖T −R‖‖x‖+ ‖T −R‖‖R‖‖x‖
= ‖T −R‖(‖T‖+ ‖R‖)‖x‖

6

(
λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)
(‖T‖+ ‖R‖)‖x‖

6

(
λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)(
√
B +

(1 + λ1)
√
B + µ

1− λ2

)
‖x‖

6 α‖x‖.
Therefore,∥∥∥∥∥∑

i∈σ
〈x, ψi〉ψi +

∑
i∈σc
〈x, ϕi〉ϕi

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈I
〈x, ϕi〉ϕi +

(∑
i∈σ
〈x, ψi〉ψi −

∑
i∈σ
〈x, ϕi〉ϕi

)∥∥∥∥∥
>

∥∥∥∥∥∑
i∈I
〈x, ϕi〉ϕi

∥∥∥∥∥−
∥∥∥∥∥∑
i∈σ
〈x, ψi〉ψi −

∑
i∈σ

〈x, ϕi〉ϕi

∥∥∥∥∥
> A‖x‖ −

∥∥∥∥∥∑
i∈σ
〈x, ψi〉ψi −

∑
i∈σ
〈x, ϕi〉ϕi

∥∥∥∥∥
> A‖x‖ − α‖x‖ = (A− α)‖x‖

for all x ∈ U . So by Proposition 1.11, {ϕi}i∈I and {ψi}i∈I are woven under the perturbations (3.1)
and (3.2). �

Theorem 3.3. Let {ϕi}i∈I and {ψij}i∈I be frames with bounds A,B and Aj , Bj for j = 1, ..., n− 1,

respectively. Suppose that λ ∈ (0, 1) such that λ(
√
B +

√
Bj) 6 α for all j = 1, . . . , n − 1, where

(n− 1)α < A . If ∥∥∥∑
i∈I

ai(ϕi − ψij)
∥∥∥ 6 λ‖{ai}i∈I‖, j = 1, . . . , n− 1 (3.3)
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for all {ai}i∈I ∈ `2(A), then {ϕi}i∈I and {ψij}i∈I for j = 1, ..., n− 1 are woven frames with bounds

A− (n− 1)α and B +
∑n−1

j=1 Bj.

Proof. Suppose that Pσ : `2(A) → `2(A) denotes the projection (with respect to σ ⊂ I) described
in Proposition 1.2. Let T and Tj be the synthesis operators for the frames {ϕi}i∈I and {ψij}i∈I ,
respectively. Let σ ∪ {σj}n−1j=1 be an arbitrary partition of I. We define

Tσ = TPσ, Tjσj = TjPσj , j = 1, . . . , n− 1.

It follows from (3.3) that

‖T − Tj‖ 6 λ.
For every x ∈ U , we have∥∥∥∥∥∥

n−1∑
j=1

∑
i∈σj

〈x, ψij〉ψij −
∑
i∈σj

〈x, ϕi〉ϕi

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n−1∑
j=1

(
TjσjT

∗
jσj

(x)− TσjT ∗σj (x)
)∥∥∥∥∥∥

6
n−1∑
j=1

‖TjσjT
∗
jσj

(x)− TσjT ∗σj (x)‖,

and
n−1∑
j=1

‖TjσjT
∗
jσj

(x)− TσjT ∗σj (x)‖

6
n−1∑
j=1

‖TjσjT
∗
jσj

(x)− TjσjT
∗
σj (x)‖+

n−1∑
j=1

‖TjσjT
∗
σj (x)− TσjT ∗σj (x)‖

6
n−1∑
j=1

‖Tj‖‖T − Tj‖‖x‖+

n−1∑
j=1

‖T‖‖T − Tj‖‖x‖

6
n−1∑
j=1

λ(
√
B +

√
Bj)‖x‖

6 (n− 1)α‖x‖.
Hence ∥∥∥∥∥∥

n−1∑
j=1

∑
i∈σj

〈x, ψij〉ψij −
∑
i∈σj

〈x, ϕi〉ϕi

∥∥∥∥∥∥ 6 (n− 1)α‖x‖.

Therefore, ∥∥∥∥∥∥
n−1∑
j=1

∑
i∈σj

〈x, ψij〉ψij +
∑
i∈σ
〈x, ϕi〉ϕi

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
i∈I
〈x, ϕi〉ϕi +

n−1∑
j=1

∑
i∈σj

〈x, ψij〉ψij −
∑
i∈σj

〈x, ϕi〉ϕi

∥∥∥∥∥∥
>

∥∥∥∥∥∑
i∈I
〈x, ϕi〉ϕi

∥∥∥∥∥−
∥∥∥∥∥∥
n−1∑
j=1

∑
i∈σj

〈x, ψij〉ψij −
∑
i∈σj

〈x, ϕi〉ϕi

∥∥∥∥∥∥
> A‖x‖ − (n− 1)α‖x‖ = [A− (n− 1)α]‖x‖
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for all x ∈ U . So by Proposition 1.11, we get the result. �

Proposition 3.4. Let {ϕi}i∈I be a frame for U with frame bounds A,B and {ψi}i∈I be a sequence
in U . Let λ1, λ2, µ > 0 such that max{λ1 + µ√

A
, λ2} < 1 and

λ1
√
B + λ2

(
(1 + λ1)

√
B + µ

1− λ2

)
+ µ <

√
A.

If ∥∥∥∥∥∑
i∈I
〈x, ϕi − ψi〉〈ϕi − ψi, x〉

∥∥∥∥∥
1
2

6 λ1

∥∥∥∥∥∑
i∈I
〈x, ϕi〉〈ϕi, x〉

∥∥∥∥∥
1
2

+ λ2

∥∥∥∥∥∑
i∈I
〈x, ψi〉〈ψi, x〉

∥∥∥∥∥
1
2

+ µ‖x‖,

(3.4)

or ∥∥∥∥∥∑
i∈I

ai(ϕi − ψi)

∥∥∥∥∥ 6 λ1
∥∥∥∥∥∑
i∈I

aiϕi

∥∥∥∥∥+ λ2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥+ µ

∥∥∥∥∥∑
i∈I

aia
∗
i

∥∥∥∥∥
1
2

(3.5)

for all x ∈ U and all {ai}i ∈ `2(A), then {ψi}i∈I is a frame and it is woven with {ϕi}i∈I .

Proof. It follows from Theorem 3.2 that {ψi}i∈I is a frame for U . We only show that {ψi}i∈I is woven
with {ϕi}i∈I . Suppose that σ ⊂ I. If the inequality (3.4) holds, then we have

∥∥∥∥∥∑
i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈σc
〈x, ψi〉〈ψi, x〉

∥∥∥∥∥
1
2

= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, ψi〉}i∈σc‖
= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, ϕi〉 − 〈x, ϕi − ψi〉}i∈σc‖
= ‖{〈x, ϕi〉}i∈I − {〈x, ϕi − ψi〉}i∈σc‖
> ‖{〈x, ϕi〉}i∈I‖ − ‖{〈x, ϕi − ψi〉}i∈σc‖

>
√
A‖x‖ −

(
λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)
‖x‖

=

[
√
A−

(
λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)]
‖x‖

for all x ∈ U.
If the inequality (3.5) holds, then T : `2(A)→ U given by T ({ai}i) =

∑
i∈I ai(ϕi−ψi) is well defined

and bounded with ‖T‖ 6 λ1
√
B + λ2

(
(1+λ1)

√
B+µ

1−λ2

)
+ µ. It is easy to see T ∗(x) = {〈x, ϕi − ψi〉}i∈I
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for all x ∈ U . Therefore,∥∥∥∥∥∑
i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈σc
〈x, ψi〉〈ψi, x〉

∥∥∥∥∥
1
2

= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, ψi〉}i∈σc‖
= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, ϕi〉 − 〈x, ϕi − ψi〉}i∈σc‖
= ‖{〈x, ϕi〉}i∈I − {〈x, ϕi − ψi〉}i∈σc‖
> ‖{〈x, ϕi〉}i∈I‖ − ‖{〈x, ϕi − ψi〉}i∈σc‖

>
√
A‖x‖ − ‖T ∗‖‖x‖

=

[
√
A−

(
λ1
√
B + λ2

(1 + λ1)
√
B + µ

1− λ2
+ µ

)]
‖x‖

for all x ∈ U. Hence {ϕi}i∈I and {ψi}i∈I are woven by Proposition 1.11. �

Corollary 3.5. Let {ϕi}i∈I be a frame for U with bounds A,B, and let {ψi}i∈I be a sequence in U .
If there exists a constant R < A such that∥∥∥∥∥∑

i∈I
〈x, ϕi − ψi〉〈ϕi − ψi, x〉

∥∥∥∥∥ 6 R‖x‖2, x ∈ U,

then {ψi}i∈I is a frame for U and {ψi}i∈I is woven with {ϕi}i∈I .

Lemma 3.6. [3] Let X be a Banach space and let T : X → X be a linear operator. Assume that
there exist constants λ1, λ2 ∈ [0, 1) such that

‖Tx− x‖ 6 λ1‖x‖+ λ2‖Tx‖, x ∈ X.
Then T is a bounded and invertible operator on X, and

1− λ1
1 + λ2

‖x‖ 6 ‖Tx‖ 6 1 + λ1
1− λ2

‖x‖, 1− λ2
1 + λ1

‖x‖ 6 ‖T−1x‖ 6 1 + λ2
1− λ1

‖x‖, x ∈ X.

Theorem 3.7. Let {ϕi}i∈I be a frame for U with frame bounds A,B and let T : U → U be an

adjointable operator. Assume that λ1, λ2 ∈ [0, 1) such that
√
B(λ1 + λ2‖T‖) <

√
A. If ‖T − Id‖ <

λ1 + λ2‖T‖, then {ϕi}i∈I and {Tϕi}i∈I are woven.

Proof. By Lemma 3.6, T is invertible and we get that {Tϕi}i∈I is a frame for U . For every σ ⊂ I
and for every x ∈ U , we have∥∥∥∥∥∑

i∈σ
〈x, ϕi〉〈ϕi, x〉+

∑
i∈σc
〈x, Tϕi〉〈Tϕi, x〉

∥∥∥∥∥
1
2

= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, Tϕi〉}i∈σc‖

= ‖{〈x, ϕi〉}i∈σ ∪ {〈x, ϕi〉 − 〈(Id− T ∗)x, ϕi〉}i∈σc‖
= ‖{〈x, ϕi〉}i∈I − {〈(Id− T ∗)x, ϕi〉}i∈σc‖
> ‖{〈x, ϕi〉}i∈I‖ − ‖{〈(Id− T ∗)x, ϕi〉}i∈σc‖

>
√
A‖x‖ −

√
B‖(Id− T ∗)x‖

> (
√
A−
√
B‖Id− T ∗‖)‖x‖

> (
√
A−
√
B(λ1 + λ2‖T‖))‖x‖.

So by Theorem 1.3, we get the result. �
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Corollary 3.8. Let {ϕi}i∈I be a frame for U with frame bounds A,B and let T : U → U be an
adjointable operator. If ‖Id− T‖2 ≤ α with α < A

B , then {ϕi}i∈I and {Tϕi}i∈I are woven.

Remark 3.9. Corollary 3.8 can be generalized to a finite number of invertible operators, and in this

case we assume that the sum over all j of ‖Id− Tj‖ is less than
√

A
B .

Corollary 3.10. Let {ϕi}i∈I be a frame with frame bounds A,B and frame operator S. If B
A < 2,

then {ϕi}i∈I is woven with { 2AB
A+BS

−1ϕi}i∈I and if B
A 6 (

√
2 + 1)2, then {ϕi}i∈I is woven with

{ 2
√
AB√

A+
√
B
S−

1
2ϕi}i∈I .
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[1] L. Arambašić, On frames for countably generated Hilbert C∗-modules, Proc. Am. Math. Soc. 135 (2007), 469–478.
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Abstract

In this paper we investigate the asymptotic behavior of the solutions and the
global attractivity of the equilibrium point of the following rational difference
equation which was conjectured in ([6], Conjecture 5.170.1 ),

xn+1 =
α+ βxn + γxn−1
Cxn−1 +Dxn−2

, n = 0, 1, · · · , (1)

with positive parametres α, β, γ, C, D and with arbitrary positive initial con-
ditions x−2, x−1, x0.

Key Words : Difference equation, equilibrium point, locally asymptotically
stable, global attractor.

Mathematics Subject Classification : 39A10

1 Introduction and Preliminaries

Recently it is very interesting to investigate the asymptotic behavior of solu-
tions of a rational difference equations and there has been a lot of interest in
studying the global attractivity of their equilibrium points. One of the reasons
is that difference equations have been applied in several mathematical models in
biology, economics, genetics, physiology, ecology, physics etc. See, for example,
[1], [2], [3], [4] , [5], [8].

We begin by introducing some basic definitions and some theorems needed in
the sequel. For details, see [7], [9]. Firstly, we investigate the local asymptotic
stability of the equilibrium of the normalized form of Eq.(1) and then we study
the global attractor of the equilibrium point of this rational difference equation.
Finally, some numerical examples are presented to verify our theoretical results
and graphed by Mathematica.

Let I be some interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. A difference equation of order (k + 1) is an equation of
the form

xn+1 = f(xn, xn−1, · · · , xn−k), n = 0, 1, · · · . (2)

A solution of Eq.(2) is a sequence {xn}∞n=−k that satisfies Eq.(2) for all n ≥
−k. As a special case of Eq.(2), for every set of initial conditions x0, x−1, x−2 ∈
I, the third order difference equation

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, · · · , (3)

has a unique solution {xn}∞n=−2.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1233 Gocen et al 1233-1243



Definition 1 A solution of Eq.(2) that is constant for all n ≥ −k is called an
equilibrium solution of Eq.(2). If

xn = x, for all n ≥ −k

is an equilibrium solution of Eq.(2), then x is called an equilibrium point, or
simply an equilibrium of Eq.(2).

So a point x ∈ I is called an equilibrium point of Eq.(2) if

x = f (x, x, · · · , x) ,

that is,
xn = x for n ≥ −k

is a solution of Eq.(2).

Definition 2 (Stability) Let x an equilibrium point of Eq.(2).

(a) An equilibrium point x of Eq.(2) is called locally stable if, for every ε > 0;
there exists δ > 0 such that if {xn}∞n=−k is a solution of Eq.(2) with

|x−k − x|+ |x1−k − x|+ · · ·+ |x0 − x| < δ,

then
|xn − x| < ε, for all n ≥ −k.

(b) An equilibrium point x of Eq.(2) is called locally asymptotically stable if, it
is locally stable, and if in addition there exists γ > 0 such that if {xn}∞n=−k
is a solution of Eq.(2) with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

then we have
lim
n→∞

xn = x.

(c) An equilibrium point x of Eq.(2) is called a global attractor if, for every
solution {xn}∞n=−k of Eq.(2), we have

lim
n→∞

xn = x.

(d) An equilibrium point x of Eq.(2) is called globally asymptotically stable if it
is locally stable, and a global attractor.

(e) An equilibrium point x of Eq.(2) is called unstable if it is not locally stable.

2
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Now we present some important results and definitions which will be useful
for our investigation.

Suppose that the function f is continuously differentiable in some open
neighborhood of an equilibrium point x. Let

qi =
∂f

∂ui
(x, x, · · · , x), for i = 0, 1, · · · , k

denote the partial derivative of f(u0, u1, · · · , uk) with respect to ui evaluated
at the equilibrium point x of Eq.(2)

Definition 3 The equation

zn+1 = q0zn + q1zn−1 + · · ·+ qkzn−k, n = 0, 1, · · · , (4)

is called the linearized equation of Eq.(2) about the equilibrium point x, and the
equation

λk+1 − q0λk − · · · − qk−1λ− qk = 0 (5)

is called the characteristic equation of Eq.(4) about x.

Theorem 4 (Clark Theorem) ([6], p.6) Assume that q0, q1, ..., qk are real
numbers such that

|q0|+ |q1|+ · · ·+ |qk| < 1.

Then all roots of Eq.(5) lie inside the unit disk.

We give the following theorems without proofs. The Linearized Stability
Theorem, is very useful in determining the local stability character of the equi-
librium point x of Eq.(2)

Theorem 5 (The Linearized Stability Theorem) ([6], p.5) Assume that
the function f is a continuously differentiable function defined on some open
neighborhood of an equilibrium point x. Then the following statements are true:

(a) When all the roots of Eq.(5) have absolute value less than one, then the
equilibrium point x of Eq.(2) is locally asymptotically stable.

(b) If at least one root of Eq.(5) has absolute value greater than one, then the
equilibrium point x of Eq.(2) is unstable.

2 Local Stability Analysis

In this section we investigate the local asymptotic stability of the positive equi-
librium x of the normalized form of Eq.(1).

Lemma 6

3
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(a) Eq.(1) can be written in the normalized form

xn+1 =
α+ βxn + xn−1
xn−1 +Dxn−2

, n = 0, 1, · · · , (6)

with positive parameters α, β,D and with arbitrary positive initial condi-
tions x−2,x−1,x0.

(b) Positive equilibrium point of Eq.(6) is

x =
(β + 1) +

√
(β + 1)2 + 4α(1 +D)

2(1 +D)
.

(c) The linearized equation of Eq.(6) about its positive equilibrium x is

zn+1 −
β

(1 +D)x
zn +

x− 1

(1 +D)x
zn−1 +

D

1 +D
zn−2 = 0.

Proof.

(a) The Eq.(1) which by the change of variables

xn =
γ

C
yn

reduces to the difference equation

xn+1 =
α+ βxn + xn−1
xn−1 +Dxn−2

, n = 0, 1, · · · ,

where

α :=
αC

γ2
, β :=

β

γ
, D :=

D

C
.

(b) The positive equilibrium points of Eq.(6) are the non-negative solutions of
the equation

x =
α+ βx+ x

x+Dx

or equivalently
(1 +D)x2 − (1 + β)x− α = 0. (7)

Hence, one can easily obtain the solutions of Eq.(7) are

x =
1 + β +

√
(1 + β)2 + 4α(1 +D)

2(1 +D)
(8)

and

x =
1 + β −

√
(1 + β)2 + 4α(1 +D)

2(1 +D)

So, the positive equilibrium point of Eq.(6) is unique and is given by (8).

4
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(c) Now, let I be some interval of real numbers and let

f : I × I × I → I

be a continuously differentiable function such that f is defined by

f(xn, xn−1, xn−2) =
α+ βxn + xn−1
xn−1 +Dxn−2

.

Thus, we obtain that

q0 =
∂f

∂xn
(x, x, x) =

[
β.(xn−1 +Dxn−2)

(xn−1 +Dxn−2)2

]
(x, x, x)

=
β.(x+Dx)

x2(1 +D)2
=

βx(1 +D)

x2(1 +D)2
=

β

x(1 +D)

q1 =
∂f

∂xn−1
(x, x, x) =

[
(xn−1 +Dxn−2)− (α+ βxn + xn−1)

(xn−1 +Dxn−2)2

]
(x, x, x)

=
x+Dx− x.(x+Dx)

x2(1 +D)2
=

(x+Dx)(1− x)

x2(1 +D)2
=

1− x
x(1 +D)

.

and

q2 =
∂f

∂xn−2
(x, x, x) =

[
−(α+ βxn + xn−1).D

(xn−1 +Dxn−2)2

]
(x, x, x)

=
−(α+ βx+ x).D

(x+Dx)2
=
−x.(x+Dx).D

(x+Dx)2
=
−D

1 +D

If x denotes an equilibrium point of Eq.(6), then the linearized equation
associated with Eq.(6) about the equilibrium point x is

zn+1 = q0zn + q1zn−1+q2zn−2

or

zn+1 −
β

(1 +D)x
zn +

x− 1

(1 +D)x
zn−1 +

D

1 +D
zn−2 = 0. (9)

Lemma 7 The positive equilibirium x of Eq.(6) is locally asymptotically stable
when

(1 + β)
2

(D − 1)

4
< α and β < 1.

Proof. From Theorem 4 it follows that all roots of the characteristic equa-
tion of Eq.(9) lie in an open disc |λ| < 1, if

|q0|+ |q1|+ |q2| < 1.

5
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This implies that∣∣∣∣ β

(1 +D)x

∣∣∣∣+

∣∣∣∣ 1− x
(1 +D)x

∣∣∣∣+

∣∣∣∣ −D1 +D

∣∣∣∣ < 1.

Hence

β

(1 +D)x
+
|1− x|

(1 +D)x
+

Dx

(1 +D)x
< 1 (10)

β +Dx+ |1− x| < (1 +D)x (11)

|1− x| < x+Dx− β −Dx (12)

|1− x| < x− β (13)

and so we have two following two cases to consider.
Case I : Since

1− x < x− β

we have
1 + β

2
< x.

1 + β

2
<

(β + 1) +
√

(β + 1)2 + 4α(1 +D)

2(1 +D)

(1 + β)
2

(D − 1)

4
< α.

Case II : Since

−x+ β < 1− x

it follows that
β < 1.

3 Main Result

In this section we are concerned with the global attractor of Eq.(6). The fol-
lowing two theorems will be needed in the main result of this paper.

Theorem 8 ([10], p.205) Let [a, b] be an interval of real numbers and assume
that

f : [a, b]× [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y, z) is non-decreasing in x for each y and z ∈ [a, b] and is non-
increasing in y and z for each x ∈ [a, b] of its arguments;

6
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(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = f (M,m,m) and m = f (m,M,M) ,

then m = M .

Then Eq.(3) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(3)
converges to x.

Theorem 9 ([10], p.202) Let [a, b] be an interval of real numbers and assume
that

f : [a, b]× [a, b]× [a, b] −→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y, z) is non-decreasing in x and y ∈ [a, b] for each z ∈ [a, b], and is
non-increasing in z ∈ [a, b] for each x and y ∈ [a, b]

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f (m,m,M) and M = f (M,M,m) ,

then m = M .

Then Eq.(3) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(3)
converges to x.

We are now in a position to give the main result of this work.

Lemma 10 The equilibrium point x is a global attractor of Eq.(6) if one of the
following statements holds:

(i) Dw < α+ βu and β 6= 1, (14)

(ii) Dw > α+ βu and D > 1,
(β + 1)

2
(D − 1)

4
< α. (15)

Proof. Let α and β be real numbers and assume that g : [α, β]
3 → [α, β] is a

function defined by

g (u, v, w) =
α+ βu+ v

v +Dw
.

Then it follows that

∂g (u, v, w)

∂u
=

β

v +Dw
,

∂g (u, v, w)

∂v
=

Dw − α− βu
(v +Dw)

2 ,

∂g (u, v, w)

∂w
=
−(α+ βu+ v)D

(v +Dw)
2 .

7
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We consider two cases :
Case I : If Dw < α+βu then we can easily see that the function g (u, v, w)

is increasing in u and decreasing in v, w.
Suppose that (m,M) is a solution of the system M = g(M,m,m) and m =

g(m,M,M) then from (6),we see that

M =
α+ βM +m

m+Dm
, m =

α+ βm+M

M +DM
.

Since
Mm+DMm− βM −m− α = 0

Mm+DMm− βm−M − α = 0

we have
(m−M)(β − 1) = 0

When β 6= 1, we have
M = m

which the result follows.
It follows from Theorem 8 that x is global attractor of Eq.(6) and then the

proof is complete.
Case II : If Dw > α+βu, then we can easily see that the function g (u, v, w)

is increasing in u, v and decreasing in w.
Suppose that (m,M) is a solution of the system M = g(M,M,m) and m =

g(m,m,M). Then from (6), we see that

M =
α+ βM +M

M +Dm
, m =

α+ βm+m

m+DM
.

Since
M2 +DMm−M(β + 1)− α = 0

m2 +DMm−m(β + 1)− α = 0

we have
(m−M)((m+M)− (β + 1)) = 0

with simple calculations. Now if m + M 6= β + 1, then M = m. On the other
hand if m+M = β + 1 then m and M satisfy the equation

m2 +Dm (β + 1−m) = α+ βm+m

and so
m2 (1−D) + (β + 1) (D − 1)m− α = 0. (16)

The discriminant of the Eq.(16)

∆ = [(β + 1) (D − 1)]
2

+ 4 (1−D)α

= (D − 1)
[
(β + 1)

2
(D − 1)− 4α

]
8
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is negative when
D > 1 and (β + 1)

2
(D − 1) < 4α

then we have
M = m

which the result follows.
It follows from Theorem 9 that x is global attractor of Eq.(6) and then the

proof is complete.

4 Numerical Examples

In this section we give some numerical examples to support our theoretical
discussion which was mentioned in the previous section.

Example 11 Consider the equation xn+1 =
1 + 3xn + 2xn−1

2xn−1 + xn−2
with initial con-

ditions x−2 = 0.1 , x−1 = 0.2, x0 = 0.4 to verify our theoretical results. (See
Fig. 1)

Figure 1: Plot of the difference equation xn+1 = 1+3xn+2xn−1

2xn−1+xn−2
.

Example 12 Consider the equation xn+1 =
0.5 + 2xn + xn−1
xn−1 + (0.1)xn−2

with initial con-

ditions x−2 = 20 , x−1 = 1/3, x0 = 0.1 to verify our theoretical results. (See
Fig. 2)

9
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Figure 2: Plot of the difference equation xn+1 = 0.5+2xn+xn−1

xn−1+(0.1)xn−2
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Abstract: In this paper, we introduce a notion of hybrid pair (f, T ), which is α∗-admissible with
respect to η for generalized multivalued Geraghty F -contraction mappings and obtain coincidence and
common fixed point results for such mappings. We provide some examples to support our results and
give applications to dynamic programming and integral equations. Our results provide extension as well
as substantial generalizations and improvements of several well known results in the existing comparable
literature.

————————————————————————————————————————–

1 Introduction and preliminaries

Let (X, d) be a metric space. Let CB(X) (CL(X)) be the family of all nonempty closed and bounded
(nonempty closed) subsets of X. For A,B ∈ CL(X), define

EA,B = {ε > 0 : A ⊆ Nε(B), B ⊆ Nε(A)}.

The Hausdorff metric H on CL(X) induced by metric d is given as:

H(A,B) =

{
inf EA,B if EA,B 6= ∅
∞ if EA,B = ∅ .

Let f : X → X and T : X → CL(X). A hybrid pair {f, T} is said to satisfy a range inclusion
condition if f(X) ⊆ T (X).

A point x in X is called a fixed point of T if x ∈ Tx. The set of all fixed points of T is denoted by
F (T ). Furthermore, a point x in X is called a coincidence point of f and T if fx ∈ Tx. The set of all
such points is denoted by C(f, T ). If for some point x in X, we have x = fx ∈ Tx, then a point x is
called a common fixed point of f and T. We denote the set of all common fixed points of f and T by
F (f, T ). A mapping T : X → CL(X) is said to be continuous at p ∈ X if for any sequence {xn} in X
with lim

n→∞
d(xn, p) = 0, we have lim

n→∞
H(Txn, Tp) = 0.

Definition 1.1 [28] Let α : X ×X → [0,∞). A self mapping T on X is said to be α-admissible if for
any x, y ∈ X, α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1.

Hussain et al. [17] introduced the notion of α∗-admissible mappings as follows:

Definition 1.2 [17] Let α, η : X × X → [0,∞) be two functions where η is bounded. A mapping
T : X → 2X is called α∗-admissible with respect to η if α(x, y) ≥ η(x, y) implies α∗(Tx, Ty) ≥ η∗(Tx, Ty),
x, y ∈ X, where α∗(A,B) = inf {α(x, y) : x ∈ A, y ∈ B} and η∗(A,B) = sup {η(x, y) : x ∈ A, y ∈ B}.

02010 Mathematics Subject Classification: 46S40; 47H10; 54H25.
0Keywords: α-admissible; coincidence point; Geraghty F -contraction; integral equation, dynamic programming.
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If η(x, y) = 1 for all x, y ∈ X, then the above definition reduces to [17, Definition 4.1].
In Definition 1.2, if α(x, y) = 1 for all x, y ∈ X, then T is called an η∗-subadmissible mapping.
We extend Definition 1.2 to hybrid pair of mappings as follows:

Definition 1.3 Let f : X → X, T : X → CL(X), and α, η : X ×X → [0,∞) be two functions where η
is bounded. We say that the hybrid pair (f, T ) is α∗-admissible with respect to η if α(fx, fy) ≥ η(fx, fy)
implies α∗(Tx, Ty) ≥ η∗(Tx, Ty), x, y ∈ X, where

α∗(A,B) = inf {α(fx, fy) : fx ∈ A, fy ∈ B} and η∗(A,B) = sup {η(fx, fy) : fx ∈ A, fy ∈ B} .

Definition 1.4 Let f, T : X → X and α, η : X × X → [0,+∞). We say that the pair (f, T ) is an
α-admissible mapping with respect to η if α(fx, fy) ≥ (fx, fy) implies α(Tx, Ty) ≥ η(Tx, Ty), x, y ∈ X.

In 1973, Geraghty [14] studied most interesting generalization of Banach contraction principle.

Theorem 1.5 [14] Let (X, d) be a metric space. Let T : X → X be a self mapping. Suppose that there
exists β ∈ Ω such that for all x, y ∈ X,

d(Tx, Ty) ≤ β (d(x, y)) d(x, y),

then S has a fixed unique point p ∈ X and {Tnx} converges to p for each x ∈ X.

We denote by Ω the family of all functions β : [0,+∞)→ [0, 1) such that, for any bounded sequence
{tn} of positive reals, β(tn)→ 1 implies tn → 0.

For more discussion on Geraghty contraction mappings, we refer to [22, 23] and references therein.
Berinde and Berinde [12] extended the notion of weak contraction mappings as follows:

Definition 1.6 [12, 13] A mapping T : X → CL(X) is called a multivalued weak contraction if there
exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx)

holds for all x, y in X.

The following definition of a generalized multivalued (θ, L)-strict almost contraction mapping is due
to Berinde and Păcurar [13].

Definition 1.7 [13] A mapping T : X → CL(X) is called a generalized multivalued (θ, L)-strict almost
contraction mapping if there exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Lmin{d(y, Tx), d(x, Ty), d(x, Tx), d(y, Ty)}

holds for all x, y in X.

We have the following fixed point theorem given in [13].

Theorem 1.8 Let (X, d) be a complete metric space and T : X → CL(X) a generalized multivalued
(θ, L)-strict almost contraction mapping. Then F (T ) 6= ∅. Moreover, for any p ∈ F (T ), T is continuous
at p.

Kamran [21] extended the notion of a multivalued weak contraction mapping to a hybrid pair {f, T}
of single valued mapping f and multivalued mapping T. For more discussion on multivalued mappings,
we refer to [4, 15] and references therein.

Definition 1.9 Let (X, d) be a metric space and f a self map on X. A multivalued mapping T : X →
CL(X) is called a generalized multivalued (f, θ, L)-weak contraction mapping if there exist two constants
θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(fx, fy) + Ld(fy, Tx)

holds for all x, y in X.
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Abbas [1] extended the above definition as follows.

Definition 1.10 [1] Let (X, d) be a metric space and f a self mapping on X. A multivalued mapping
T : X → CL(X) is called a generalized multivalued (f, θ, L)-almost contraction mapping if there exist two
constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θM(x, y) + LN(x, y)

holds for all x, y in X, where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}.

Let z be the collection of all mappings F : R+ → R which satisfy the following conditions:
(C1) F is strictly increasing, that is, for all α, β ∈ R+ such that α < β ⇒ F (α) < F (β);
(C2) For every sequence {αn}n∈N of positive numbers lim

n→∞
αn = 0 if and only if lim

n→∞
F (αn) = −∞;

(C3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Wardowski [32] introduced the following concept of F -contraction mappings.

Definition 1.11 [32] Let (X, d) be a metric space. A self mapping f on X is said to be an F -contraction
on X if there exists τ > 0 such that

d(fx, fy) > 0⇒ τ + F (d(fx, fy)) ≤ F (d(x, y))

for all x, y ∈ X, where F ∈ z.

Remark 1.12 [32] Every F -contraction mapping is continuous.

Abbas et al. [2] extended the concept of F -contraction mapping and obtained common fixed point
results. They employed their results to obtain fixed points of a generalized nonexpansive mappings on
star shaped subsets of normed linear spaces. Recently, Minak [24] proved some fixed point results for
Ćirić type generalized F -contractions on complete metric spaces.

Sgroi and Vetro [29] proved the following result to obtain fixed point of multivalued mappings as a
generalization of Nadler’s Theorem [25].

Theorem 1.13 [29] Let (X, d) be a complete metric space and T : X → CL(X) a multivalued mapping.
Assume that there exist F ∈ z and τ ∈ R+ such that

2τ + F (H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx))

for all x, y ∈ X, with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α+ β + γ + 2δ = 1 and γ 6= 1. Then T has a fixed
point.

Acar et al. [3] proved the following result.

Theorem 1.14 [3] Let (X, d) be a complete metric space and T : X → K(X) (i.e., compact subsets of
X). Assume that there exist an F ∈ z and τ ∈ R+ such that for any x, y ∈ X, we have

H(Tx, Ty) > 0 =⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}.

Then T has a fixed point if T or F is continuous,

Recently, Altun et al. [6] proved the following result.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1246 Aftab Hussain et al 1244-1257



Theorem 1.15 [6] Let (X, d) be a complete metric space and T : X → CB(X). Assume that there exist
an F ∈ z and τ, λ ∈ R+ such that for any x, y ∈ X, we have

H(Tx, Ty) > 0 implies that τ + F (H(Tx, Ty)) ≤ F (d(x, y) + λd(y, Tx)).

Then the mapping T is a multivalued weakly Picard operator.

For the definition of multivalued weakly Picard operator and the related results, we refer to [12].

Definition 1.16 Let f be a self mapping on a metric space X and T : X → CL(X) a multivalued
mapping. Then T is called a generalized multivalued (f, L)-almost F -contraction mapping if there exist
F ∈ z and τ ∈ R+ and L ≥ 0 such that

2τ + F (H(Tx, Ty)) ≤ F (M(x, y) + LN(x, y)) (1)

for all x, y in X with Tx 6= Ty and

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}).

Remark 1.17 Take F (x) = lnx in Definition 1.16. Then (1) becomes

2τ + ln(H(Tx, Ty)) ≤ ln(M(x, y) + LN(x, y),

that is,

H(Tx, Ty)) ≤ e−2τM(x, y) + e−2τLN(x, y)

= θ1M(x, y) + L1N(x, y),

where θ1 = e−2τ ∈ (0, 1) and L1 = e−2τL ≥ 0. Thus we obtain the generalized multivalued (f, θ1, L1)-
almost contraction mapping [1].

Remark 1.18 Take α = β = γ =
1

4
, δ =

1

8
= L. Note that α + β + γ + 2δ = 1. Then the contraction

condition in Theorem 1.13 becomes

2τ + F (H(Tx, Ty)) ≤ F

(
1

4

(
d(x, y) + (d(x, Tx) + d(y, Ty)) +

d(x, Ty) + d(y, Tx)

2

))
≤ F

(
1

4
(4M(x, y))

)
= F ((M(x, y) + 0N(x, y)))

for all x, y ∈ X with Tx 6= Ty. Thus, for L = 0 and f = IX ,

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, fy), d(fx, Tx), d(fy, Ty)},

and the contraction condition in Theorem 1.14 is an (f, 0)-almost F -contraction, a special case of gener-
alized multivalued (f, L)-almost F -contraction (for L = 0 and τ = 2τ1).

Now, we give the following definition.

Definition 1.19 Let f and T be a pair of self mappings on a metric space X. Suppose that α, η : X×X →
[0,∞) and β : [0,+∞)→ [0, 1) be three functions. Then T is called a Geraghty F -contraction with respect
to η if for any x, y ∈ X with α(Tx, Ty) ≥ η(Tx, Ty), Tx 6= Ty, we have

2τ + F (d(Tx, Ty)) ≤ F (β (M(x, y))M(x, y)),

where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

for F ∈ z, β ∈ Ω and τ ∈ R+.
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Definition 1.20 Let f be a self mapping on a metric space X and T : X → CL(X) a multivalued
mapping. Suppose that α, η : X × X → [0,∞) and β : [0,+∞) → [0, 1) be three functions. Then T
is called a generalized multivalued Geraghty F -contraction with respect to η if for any x, y ∈ X with
η∗(Tx, Ty) ≤ α∗(Tx, Ty) and Tx 6= Ty, we have

2τ + F (H(Tx, Ty)) ≤ F (β (M(x, y))M(x, y)),

where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
}

for F ∈ z, β ∈ Ω and τ ∈ R+.

Definition 1.21 [20] Let f : X → X and T : X → CL(X) a multivalued mapping. The pair (f, T )
is called (a) commuting if Tfx = fTx for all x ∈ X (b) weakly compatible if they commute at their
coincidence points, that is, fTx = Tfx whenever x ∈ C(f, T ).

The mapping f is called T -weakly commuting at x ∈ X if f2x ∈ Tfx If a hybrid pair (f, T ) is weakly
compatible at x ∈ C(f, T ), then f is T -weakly commuting at x and hence fn(x) ∈ C(f, T ). However,
the converse is not true in general. For detailed discussion on the above mentioned notions and their
implications, we refer to [5, 16, 18, 19, 20, 30, 31] and references therein.

2 Main results

Throughout this section, we assume that the mapping F is right continuous.
Now we state our main result.

Theorem 2.1 Let f be a self mapping on a metric space (X, d) and T : X → CL(X) a multivalued
mapping with T (X) ⊆ f(X) satisfying the following assertions:

(i) the pair (f, T ) is an α∗-admissible mapping with respect to η;
(ii) T is a generalized multivalued Geraghty F -contraction with respect to η;
(iii) there exists x0, x1 ∈ X such that fx1 ∈ Tx0 and α(fx0, fx1) ≥ η(fx0, fx1);
(iv) if {fxn} is a sequence in f(X) such that α(fxn, fxn+1) ≥ η(fxn, fxn+1) for all n ∈ N and

fxn → fu∗, then α(fxn, fu
∗) ≥ η(fxn, fu

∗) for all n ∈ N.
If T (X) is complete, then C(f, T ) 6= φ provided that F is continuous. Moreover, F (f, T ) 6= ∅ if one

of the following conditions holds:
(a) for some x ∈ C(f, T ) with f is T -weakly commuting at x, f2x = fx;
(b) f(C(f, T )) is a singleton subset of C(f, T ).

Proof. We first note that, by Definition 1.16, H(Tx, Ty) <∞ for all x, y ∈ X. Now we shall show that
C(f, T ) 6= ∅. Let x0 and x1 be given points in X such that fx1 ∈ Tx0 and α(fx0, fx1) ≥ η(fx0, fx1). If
H(Tx0, Tx1) = 0, then Tx0 = Tx1 and so x1 ∈ C(f, T ). Assume that H(Tx0, Tx1) > 0. Since F is right
continuous, there exists h > 1 such that

F (hH(Tx0, Tx1)) < F (H(Tx0, Tx1)) + τ.

Then d(fx1, Tx1) ≤ H(Tx0, Tx1), and hence there exists y1 ∈ Tx1 such that

d(fx1, y1) < hH(Tx0, Tx1).

Pick an element x2 in X such that fx2 = y1. Then the above inequality becomes

d(fx1, fx2) < hH(Tx0, Tx1).

If fx1 = fx2, then fx1 ∈ Tx1. In this case x1 becomes a coincidence point of f and T and the proof is
finished.
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Assume that fx1 6= fx2, that is, d(fx1, fx2) > 0. Since F is strictly increasing, we obtain

F (d(fx1, fx2)) < F (hH(Tx0, Tx1)) < F (H(Tx0, Tx1)) + τ.

Since (f, T ) is an α∗-admissible mapping with respect to η, α(fx0, fx1) ≥ η(fx0, fx1) implies that
α∗(Tx0, Tx1) ≥ η∗(Tx0, Tx1). Since T is a generalized multivalued Geraghty F−contraction with respect
to η, we have

F (d(fx1, fx2)) < F (H(Tx0, Tx1)) + τ

≤ F (β (M(x0, x1))M(x0, x1))− 2τ + τ

= F (β

(
max{d(fx0, fx1), d(fx0, Tx0), d(fx1, Tx1),

d(fx0, Tx1) + d(fx1, Tx0)

2
}
)

×max{d(fx0, fx1), d(fx0, Tx0), d(fx1, Tx1),
d(fx0, Tx1) + d(fx1, Tx0)

2
})− τ

≤ F (β

(
max{d(fx0, fx1), d(fx0, fx1), d(fx1, fx2),

d(fx0, fx2) + d(fx1, fx1)

2
}
)

×max{d(fx0, fx1), d(fx0, fx1), d(fx1, fx2),
d(fx0, fx2) + d(fx1, fx1)

2
})− τ

≤ F (β

(
max{d(fx0, fx1), d(fx1, fx2),

d(fx0, fx1) + d(fx1, fx2)

2
}
)

×max{d(fx0, fx1), d(fx1, fx2),
d(fx0, fx1) + d(fx1, fx2)

2
})− τ

= F (β (max{d(fx0, fx1), d(fx1, fx2)}) max{d(fx0, fx1), d(fx1, fx2)})− τ.

Suppose that d(fx1, fx2) ≮ d(fx0, fx1). Then we obtain

F (d(fx2, fx1)) < F (β (d(fx1, fx2)) d(fx1, fx2)− τ.

Since β ∈ Ω, we have
F (d(fx2, fx1)) < F (d(fx1, fx2))− τ,

which implies τ ≤ 0, a contradiction. Hence d(fx1, fx2) < d(fx0, fx1) and so

τ + F (d(fx2, fx1)) ≤ F (β (d(fx0, fx1)) d(fx0, fx1)}.

Note that α(fx1, fx2) ≥ α∗(Tx0, Tx1) ≥ η∗(Tx0, Tx1) ≥ η(fx1, fx2). That is, α(fx1, fx2) ≥ η(fx1, fx2)
which further implies that α∗(Tx1, Tx2) ≥ η∗(Tx1, Tx2). If H(Tx1, Tx2) = 0, then Tx1 = Tx2 and so
x2 ∈ C(f, T ). Assume that H(Tx1, Tx2) > 0. Since F is right continuous, there exists h > 1 such that

F (hH(Tx1, Tx2)) < F (H(Tx1, Tx2)) + τ.

Then d(fx2, Tx2) ≤ H(Tx1, Tx2), and hence there exists y2 ∈ Tx2 such that

d(fx2, y2) < hH(Tx1, Tx2).

Pick an element x3 in X such that fx3 = y2. Then the above inequality becomes

d(fx2, fx3) < hH(Tx1, Tx2).

If fx2 = fx3, then fx2 ∈ Tx2. In this case x2 becomes a coincidence point of f and T and the proof is
finished.

Assume that fx2 6= fx3, that is, d(fx2, fx3) > 0. Since F is strictly increasing, we obtain

F (d(fx2, fx3)) < F (hH(Tx1, Tx2)) < F (H(Tx1, Tx2)) + τ.
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Now α∗(Tx1, Tx2) ≥ η∗(Tx1, Tx2) implies that

F (d(fx2, fx3)) < F (H(Tx1, Tx2)) + τ.

≤ F (β (M(x1, x2))M(x1, x2))− 2τ + τ

= F (β

(
max{d(fx1, fx2), d(fx1, Tx1), d(fx2, Tx2),

d(fx1, Tx2) + d(fx2, Tx1)

2
}
)

×max{d(fx1, fx2), d(fx1, Tx1), d(fx2, Tx2),
d(fx1, Tx2) + d(fx2, Tx1)

2
})− τ

≤ F (β

(
max{d(fx1, fx2), d(fx1, fx2), d(fx2, fx3),

d(fx1, fx3) + d(fx2, fx2)

2
}
)

×max{d(fx1, fx2), d(fx1, fx2), d(fx2, fx3),
d(fx1, fx3) + d(fx2, fx2)

2
})− τ

≤ F (β

(
max{d(fx1, fx2), d(fx2, fx3),

d(fx1, fx2) + d(fx2, fx3)

2
}
)

×max{d(fx1, fx2), d(fx2, fx3),
d(fx1, fx2) + d(fx2, fx3)

2
})− τ

= F (β (max{d(fx1, fx2), d(fx2, fx3)}) max{d(fx1, fx2), d(fx2, fx3))− τ.

Thus we have
τ + F (d(fx3, fx2)) < F (d(fx1, fx2)).

Note that α(fx2, fx3) ≥ α∗(Tx1, Tx2) ≥ η∗(Tx1, Tx2) ≥ η(fx2, fx3). That is, α(fx2, fx3) ≥ η(fx2, fx3)
which further implies that α∗(Tx2, Tx3) ≥ η∗(Tx2, Tx3). By continuing this process, we obtain a sequence
{fxn} ⊂ f(X) such that fxn ∈ Txn−1,

α(fxn−1, fxn) ≥ η(fxn−1, fxn) implies that α∗(Txn−1, Txn) ≥ η∗(Txn−1, Txn)

and we have

F (d(fxn, fxn+1)) < F (H(Txn−1, Txn)) + τ

≤ F (β

(
max{d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),

d(fxn−1, Txn) + d(fxn, Txn−1)

2
}
)

×max{d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),
d(fxn−1, Txn) + d(fxn, Txn−1)

2
})− τ

≤ F (β

(
max{d(fxn−1, fxn), d(fxn−1, fxn), d(fxn, fxn+1),

d(fxn−1, fxn+1) + d(fxn, fxn)

2
}
)

×max{d(fxn−1, fxn), d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn+1) + d(fxn, fxn)

2
})− τ

≤ F (β

(
max{d(fxn−1, fxn), d(fxn, fxn+1),

d(fxn−1, fxn) + d(fxn, fxn+1)

2
}
)

×max{d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn) + d(fxn, fxn+1)

2
})− τ

= F (β (max{d(fxn−1, fxn), d(fxn, fxn+1)}) max{d(fxn−1, fxn), d(fxn, fxn+1)})− τ

and

τ + F (d(fxn, fxn+1)) ≤ F (β (max{d(fxn−1, fxn), d(fxn, fxn+1)}) max{d(fxn−1, fxn), d(fxn, fxn+1)})

for all n ∈ N. Since F is strictly increasing, we have

d(fxn, fxn+1) < β (max{d(fxn−1, fxn), d(fxn, fxn+1)}) max{d(fxn−1, fxn), d(fxn, fxn+1)}.

If
max{d(fxn−1, fxn), d(fxn, fxn+1) = d(fxn, fxn+1)
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for some n, then
d(fxn, fxn+1) < d(fxn, fxn+1),

which is a contradiction since β ∈ Ω and hence we have

d(fxn, fxn+1) < d(fxn−1, fxn).

Consequently,
τ + F (d(fxn, fxn+1)) ≤ F (d(fxn−1, fxn))

for all n ∈ N. Thus we obtain that

F (d(fxn, fxn+1)) ≤ F (d(fxn−1, fxn))− τ
≤ F (d(fxn−2, fxn−1))− 2τ

...

≤ F (d(fx0, fx1))− nτ.

Taking limit as n → ∞, we have lim
n→∞

F (d (fxn, fxn+1)) = −∞. By (C2), lim
n→∞

d (fxn, fxn+1) = 0. By

(C3), there exists an r ∈ (0, 1) such that

lim
n→∞

{d (fxn, fxn+1)}r F (d (fxn, fxn+1)) = −∞.

Hence it follows that

{d (fxn, fxn+1)}r F (d (fxn, fxn+1))− {d (fxn, fxn+1)}r F (d (fx0, fx1))

≤ d (fxn, fxn+1)
r

[F (d (fx0, fx1)− nτ)]− d (xn, xn+1)
r
F (d (fx0, fx1))

= −nτ [d (fxn, fxn+1)]
r ≤ 0.

Taking limit as n tends to∞, we obtain that lim
n→∞

n {d (fxn, fxn+1)}r = 0, i.e., lim
n→∞

n1/rd (fxn, fxn+1) =

0. This implies that
∑∞
n=1 d (fxn, fxn+1) is convergent and hence the sequence {fxn}n≥1 is a Cauchy

sequence in T (X) ⊆ T (X). Since T (X) is complete, there exists p ∈ T (X) such that lim
n→∞

fxn = p. Now

T (X) ⊆ f(X) implies that there exists u∗ in X such that fu∗ = p. Since {fxn} is a sequence in f(X)
such that α(fxn, fxn+1) ≥ η(fxn, fxn+1) for all n ∈ N and fxn → fu∗, α(fxn, fu

∗) ≥ η(fxn, fu
∗)

for all n ∈ N. Since the hybrid pair (f, T ) is α∗-admissible with respect to η, we have α∗(Txn, Tu
∗) ≥

η∗(Txn, Tu
∗), which implies that

2τ + F (d(fxn+1, Tu
∗)) ≤ 2τ + F (H(Txn, Tu

∗))

≤ F (β (M(xn, u
∗))M(xn, u

∗)

for all n ∈ N by the contractive condition.
Next suppose that F is continuous. Then

lim
n→∞

d(fxn, Tu
∗) = d(fu∗, Tu∗). (2)

Note that

d(fu∗, Tu∗) ≤ M(xn, u
∗) = max

{
d(fxn, fu

∗), d(fxn, Txn), d(fu∗, Tu∗),
d(fxn, Tu

∗) + d(fu∗, Txn)

2

}
≤ max

{
d(fxn, fu

∗), d(fxn, fxn+1), d(fu∗, Tu∗),
d(fxn, Tu

∗) + d(fu∗, fxn+1)

2

}
.

Taking limit as n→∞, we obtain that

lim
n→∞

M(xn, u
∗) = d(fu∗, Tu∗). (3)
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Since β ∈ Ω, it follows from (2), (3) and the continuity of F that

2τ + F (d(fu∗, Tu∗)) ≤ F (d(fu∗, Tu∗)).

that is, d(fu∗, Tu∗) = 0 and thus fu∗ ∈ Tu∗.
Now let (a) hold, that is, for x ∈ C(f, T ), f is T -weakly commuting at x. So we get f2x ∈ Tfx. By

the given hypothesis, fx = f2x and hence fx = f2x ∈ Tfx. Consequently, fx ∈ F (f, T ).
Let (b) hold. Since f(C(f, T )) = {x} and x ∈ C(f, T ), x = fx ∈ Tx. Thus F (f, T ) 6= ∅.

Example 2.2 Let X = [1,∞) be the usual metric space. Define f : X → X, α, η : X × X → [0,∞),
β : [0,+∞) → [0, 1) and T : X → CL(X) by fx = x2, Tx = [x + 2,∞) for all x ∈ X, α(x, y) ={
exy if x, y ≥ 0
0 otherwise.

, η(x, y) =

{
ex−y if x ≥ y
0 otherwise.

, β(t) = 1
t+1 , ∀t > 0, where τ = ln

√
2, and F (t) = ln(t)

for all t > 0. Note that T (X) = T (X) = [3,∞) and α(fx, fy) ≥ η(fx, fy) imply that α∗(Tx, Ty) ≥
η∗(Tx, Ty) for all x, y ∈ X with Tx 6= Ty (equivalently, x 6= y) and we have

2τ + F (H(Tx, Ty)) ≤ F (β (M(x, y))M(x, y)) .

Thus all the conditions of Theorem 2.1 are satisfied.

If we take η(x, y) = 1 in Theorem 2.1, then we have the following result.

Theorem 2.3 Let f be a self mapping on a metric space (X, d) and T : X → CL(X) a multivalued
mapping with T (X) ⊆ f(X) satisfying the following assertions:

(i) the pair (f, T ) is an α∗-admissible mapping;
(ii) T is a generalized multivalued Geraghty F -contraction;
(iii) there exists x0, x1 ∈ X such that fx1 ∈ Tx0 and α(fx0, fx1) ≥ 1;
(iv) if {fxn} is a sequence in f(X) such that α(fxn, fxn+1) ≥ 1 for all n ∈ N and fxn → fu∗, then

α(fxn, fu
∗) ≥ 1 for all n ∈ N.

If T (X) is complete, then C(f, T ) 6= φ provided that F is continuous. Moreover, F (f, T ) 6= ∅ if one
of the following conditions holds:
(a) for some x ∈ C(f, T ) with f is T -weakly commuting at x, f2x = fx;
(b) f(C(f, T )) is a singleton subset of C(f, T ).

Corollary 2.4 Let f and T be a self mapping on a metric space (X, d) such that T (X) = f(X). Suppose
that

(i) the pair (f, T ) is an α-admissible mapping with respect to η;
(ii) T is a Geraghty F -contraction with respect to η;
(iii) there exists x0, x1 ∈ X such that fx1 = Tx0 and α(fx0, fx1) ≥ η(fx0, fx1);
(iv) if {fxn} is a sequence in f(X) such that α(fxn, fxn+1) ≥ η(fxn, fxn+1) for all n ∈ N and

fxn → fu∗, then α(fxn, fu
∗) ≥ η(fxn, fu

∗) for all n ∈ N.
If T (X) is complete, then C(f, T ) 6= φ provided that F is continuous. Moreover, F (f, T ) 6= ∅ if f and

T commute at their coincidence point.

Proof. If we take X = CL(X) in Theorem 2.1, then we obtain the required result.

3 Applications

In this section, we obtain the existence and uniqueness of common solution of: (I) system of functional
equations arising in dynamical programing problems and (II) system of integral equations.

(I) Application in dynamic programming
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Decision space and a state space are two basic components of dynamic programming problems. State
space is a set of states including initial states, action states and transitional states. So a state space is
set of parameters representing different states. A decision space is the set of possible actions that can be
taken to solve the problem. These general settings allow us to formulate many problems in mathematical
optimization and computer programming. In particular, the problem of dynamic programming related
to multistage process reduces to the problem of solving functional equations

p(x) = sup
y∈D
{g(x, y) +G1(x, y, p(ξ(x, y)))}, for x ∈W, (4)

q(x) = sup
y∈D
{g′(x, y) +G2(x, y, q(ξ(x, y)))}, for x ∈W, (5)

where U and V are Banach spaces, W ⊆ U and D ⊆ V and

ξ : W ×D −→W

g, g′ : W ×D −→ R
G1, G2 : W ×D × R −→ R

β : R+ → [0, 1) .

For more discussions and results on dynamic programming problems, we refer to [8, 9, 10, 11, 27] and
references mentioned therein. Suppose that W and D are the state and decision spaces, respectively. We
aim to give the existence and uniqueness of common and bounded solution of functional equations given
in (4) and (5). Let B(W ) denote the set of all bounded real valued functions on W . For an arbitrary
h ∈ B(W ), define ‖h‖ = supx∈W |h(x)| . Then (B(W ), ‖·‖) is a Banach space endowed with the metric d
given by

d(h, k) = sup
x∈W

|h(x)− k(x)| .

Suppose that the following conditions hold:

(C1) G1, G2, g and g′ are bounded.
(C2) For x ∈W , h ∈ B(W ) and b > 0, define

Kh(x) = supy∈D{g(x, y) +G1(x, y, h(ξ(x, y)))}, (6)

Jh(x) = supy∈D{g′(x, y) +G2(x, y, h(ξ(x, y)))}. (7)

Moreover, assume that there exist τ > 0 and L ≥ 0 such that for every (x, y) ∈W ×D, h, k ∈ B(W ) and
t ∈W imply

|G1(x, y, h(t))−G1(x, y, k(t))| ≤ e−2τ [β (M(h, k))M(h, k)], (8)

where

M((h, k)) = max{d(Jh, Jk), d(Jk,Kk), d(Jh,Kh),
d(Jh,Kk) + d(Jk,Kh)

2
}.

(C3) For any h ∈ B(W ), there exists k ∈ B(W ) such that Kh(x) = Jk(x) for x ∈W .
(C4) There exists h ∈ B(W ) such that Kh(x) = Jh(x) implies that JKh(x) = KJh(x).
(C5) There exist α, η : B(W )×B(W )→ R+ such that α(Jh1, Jh2) ≥ η(Jh1, Jh2).

Theorem 3.1 Assume that the conditions (C1) − (C5) are satisfied. If J(B(W )) is a closed convex
subspace of B(W ), then the functional equations (4) and (5) have a unique, common and bounded solution.

Proof. Note that (B(W ), d) is a complete metric space. By (C1), J,K are self-mappings of B(W ) and
each element is mapped into a singleton set. The condition (C3) implies that K(B(W )) ⊆ J(B(W )) is
satisfied. It follows from (C4) that J and K commute at their coincidence points. Let λ be an arbitrary
positive number and h1, h2 ∈ B(W ). Choose x ∈W and y1, y2 ∈ D such that

Khj < g(x, yj) +G1(x, yj , hj(xj) + λ, (9)
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where xj = ξ(x, yj), j = 1, 2. Further, from (6) and (7), we have

Kh1 ≥ g(x, y2) +G1(x, y2, h1(x2)),

Kh2 ≥ g(x, y1) +G1(x, y1, h2(x1)). (10)

Then (9) and (10) together with (8) imply that

Kh1(x)−Kh2(x) < G1(x, y1, h1(x1))−G1(x, y1, h2(x2)) + λ

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|+ λ

≤ e−2τ (β (M(h, k))M(h, k)) + λ. (11)

Then (8) and (9) together with (7) imply that

Kh2(x)−Kh1(x) ≤ G1(x, y1, h2(x2))−G1(x, y1, h1(x1))

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|
≤ e−2τ (β (M(h, k))M(h, k)). (12)

From (11) and (12), we have

|Kh1(x)−Kh2(x)| ≤ e−2τ (β (M(h, k))M(h, k)). (13)

The inequality (13) implies

d(Kh1,Kh2) ≤ e−2τ [(β (M(h, k))M(h, k))].

Since α(Jh1(x), Jh2(x)) ≥ η(Jh1(x), Jh2(x)) implies that α(Kh1(x),Kh2(x)) ≥ η(Kh1(x),Kh2(x)) and
so we have

2τ + ln[d(Kh1(x)−Kh2(x))] ≤ ln[(β (M(h(t), k(t)))M(h(t), k(t)))].

Therefore, by Corollary 2.4, the pair (K,J) has a common fixed point h∗, that is, h∗(x) is a unique,
bounded and common solution of (4) and (5).

(II) Application of integral equations

Now we discuss an application of fixed point theorem, proved in the previous section, to solve the
system of Volterra type integral equations. Such system is given by the following equations:

u(t) =

t∫
0

K1(t, s, u(s))ds+ g(t), (14)

w(t) =

t∫
0

K2(t, s, w(s))ds+ f(t). (15)

for t ∈ [0, a], where a > 0. We find the solution of the system (14) and (15). Let C([0, a],R) be
the space of all continuous functions defined on [0, a]. For u ∈ C([0, a],R), define supremum norm as:
‖u‖τ = sup

t∈[0,a]
{u(t)e−τ(t)t}, where τ > 0. Let C([0, a],R) be endowed with the metric

dτ (u, v) = sup
t∈[0,a]

‖ |u(t)− v(t)| e−τ(t)t‖τ

for all u, v ∈ C([0, a],R). With these setting C([0, a],R, ‖ · ‖τ ) becomes a Banach space.
Now we prove the following theorem to ensure the existence of solution of system of integral equations.

For more details on such applications, we refer the reader to [7, 26].
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Theorem 3.2 Assume the following conditions are satisfied:
(i) K1,K2 : [0, a]× [0, a]× R→ R and f, g : [0, a]→ R are continuous;
(ii) Define

Tu(t) =

t∫
0

K1(t, s, u(s))ds+ g(t),

Su(t) =

t∫
0

K2(t, s, u(s))ds+ f(t).

Suppose α, η : [0, a]× [0, a]→ R+, β : [0, a]→ [0, 1). Then there exist τ ≥ 1 and L ≥ 0 such that

|K1(t, s, u)−K2(t, s, v)| ≤ τe−2τ [β (M(u, v))M(u, v)]

for all t, s ∈ [0, a] and u, v ∈ C([0, a],R), where

M(u, v) = max{|Su(t)− Sv(t)| , |Sv(t)− Tv(t)| , |Su(t)− Tu(t)| , |Su(t)− Tv(t)|+ |Sv(t)− Tu(t)|
2

};

(iii) There exists u ∈ C([0, a],R) such that Tu(t) = Su(t) implies TSu(t) = STu(t).
Then the system of the integral equations (14) and (15) has a solution.

Proof. Define the mapping α, η : [0, a]× [0, a]→ R+ by

α(u, v) =

{
euv if u, v ∈ [0, a]

0, otherwise
and η(u, v) =

{
eu−v if u, v ∈ [0, a]

0, otherwise.

Then α(u, v) ≥ η(u, v) and so α(Su, Sv) ≥ η(Su, Sv). By the assumption (iii),

|Tu(t)− Tv(t)| =

t∫
0

|K1(t, s, u(s)−K2(t, s, v(s)))| ds

≤
t∫

0

τe−2τ ([β (M(u, v))M(u, v)]e−τs)eτsds

≤
t∫

0

τe−2τ‖β (M(u, v))M(u, v)‖τeτsds

≤ τe−2τ‖β (M(u, v))M(u, v)‖τ

t∫
0

eτsds

≤ τe−2τ‖β (M(u, v))M(u, v)‖τ
1

τ
eτt

≤ e−2τ‖β (M(u, v))M(u, v)‖τeτt,

which implies
|Tu(t)− Tv(t)| e−τt ≤ e−2τ‖β (M(u, v))M(u, v)‖τ .

That is,
‖Tu(t)− Tv(t)‖τ ≤ e−2τ‖β (M(u, v))M(u, v)‖τ

and
α(Su, Sv) ≥ η(Su, Sv) implies α(Tu, Tv) ≥ η(Tu, Tv)

and so we have
2τ + ln ‖Tu(t)− Tv(t)‖τ ≤ ln ‖β (M(u, v))M(u, v)‖τ .

So all the conditions of Corollary 2.4 are satisfied. Hence the system of integral equations (14) and (15)
has a unique common solution.
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α-ψ-GERAGHTY CONTRACTIONS IN GENERALIZED METRIC SPACES VIA

NEW FUNCTIONS

ARSLAN HOJAT ANSARI, CHOONKIL PARK, ANIL KUMAR, GEORGE A. ANASTASSIOU,
AND SUNG JIN LEE∗

Abstract. In this paper, we introduce the class of α-h-F -ψ-Greaghty contractions where the pair
(F, h) is up class of type I and establish several fixed point theorems for this newly introduced class.
Our results extend some recent results of Asadi et al. [1] as well as other corresponding results.

1. Introduction

Banach contraction principle is one of the most pivotal results of fixed point theory. Since this
principle plays a very crucial role in solving various kinds of nonlinear equations, it has been extended
in several possible ways. Geraghty [3] generalized the Banach contraction mapping principle by
introducing the class of auxiliary function in the following way:

Let F# denote all functions β : [0,∞)→ [0, 1) which satisfy the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

By using the function β ∈ F#, Geraghty [3] proved the following remarkable theorem.

Theorem 1.1. [3] Let (X, d) be a complete metric space and T : X → X be an operator. Suppose
that there exists β : [0,∞)→ [0, 1) satisfying the condition

β(tn)→ 1 implies tn → 0

If T satisfies the following inequality

d(Tx, Ty) ≤ β(d(x, y))d(x, y) (1.1)

for all x, y ∈ X, then T has a unique fixed point

Recently, Samet et al. [8] introduced the class of α-ψ contractive mappings and established several
fixed point theorems for such mappings in the set up of complete metric space which generalized
and extend the Banach contraction principle as well as many other well known fixed point theorems
existing in the literature. Branciari [2] replaces the triangle inequality in the metric space with the
quadrilateral inequality and introduced a new space called generalized metric space or rectangular
metric space. He extended the Banach contraction principle to this newly defined space. Very
recently, Asadi et al. [1] utilized the concept of Geraghty [3] and Samet et al. [8] and introduced
the notion of α-ψ-Greaghty contractions in the context of generalized metric space and extended
several well known contractions existing in the literature. For more information, see [9, 10].

In the present work, we extend the notion α-ψ-Geraghty contractions announced by Asadi et
al. [1] by introducing the class of α-h-F -ψ-Geraghty contractions and investigate the existence and
uniqueness of fixed points for this newly introduced class in the setting of generalized metric space.
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Key words and phrases. fixed point theorem; generalized metric space; α-ψ contraction.
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Before going to the main work, we recall some useful definitions and auxiliary results that will
be needed in the sequel. Throughout this paper, N and R denote the set of natural numbers and
the set of real numbers, respectively.

Definition 1.2. [2] Let X be a nonempty set and let d : X × X → [0,∞] satisfy the following
conditions for all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y:

(1) d(x, y) = 0 if and only if x = y
(2) d(x, y) = d(y, x)
(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)

(1.2)

Then the pair (X, d) is called a generalized metric space and abbreviated as GMS. Every metric
space is GMS but the converse need not be true (see [1, Example 39]).

Given a generalized metric d on X and ε > 0, we call Bd(x, ε) = {y ∈ X|d(x, y) < ε} as ε-ball
centered at x. It is to be noted that a GMS becomes a topological space, when a subset U of X
is said to be open if to each a ∈ U , there exists a positive number εa such that Bd(a, εa) ⊆ U .
The concepts of convergence, Cauchy sequence, completeness and continuity on a GMS are defined
below.

Definition 1.3. Let (X, d) be a generalized metric space.

(1) A sequence {xn} in (X, d) is GMS convergent to a limit x if and only if d(xn, x) → 0 as
n→∞.

(2) A sequence {xn} in (X, d) is GMS Cauchy if and only if for every ε > 0 there exists a positive
integer N(ε) such that d(xn, xm) < ε for all n > m > N(ε).

(3) A space (X, d) is called complete if every GMS Cauchy sequence in X is GMS convergent.
(4) A mapping T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such that

d(xn, x)→ 0 as n→∞, we have d(Txn, Tx)→ 0 as n→∞.

It is to be noted that any generalized metric space need not be complete, neither the respective
topology needs to be Hausdorff and a convergent sequence in GMS need not be Cauchy.

Lemma 1.4. [4] Let (X, d) be a generalized metric space and let {xn} be a Cauchy sequence in X
such that xm 6= xn whenever m 6= n. Then {xn} can converge to at most one point.

Lemma 1.5. [4] Let (X, d) be a generalized metric space and let {xn} be a sequence in X with
distinct elements (xn 6= xm for n 6= m). Suppose that d(xn, xn+1) and d(xn, xn+2) tend to 0 as
n → ∞ and that {xn} is not a Cauchy sequence. Then there exist ε > 0 and two sequences {mk}
and {nk} of positive integers such that nk > mk > k and the following four sequences

d(xmk
, xnk

), d(xmk
, xnk+1

), d(xmk−1
, xnk

), d(xmk−1
, xnk+1

) (1.3)

tend to ε as k →∞.

Proposition 1.6. [7] Suppose that {xn} is a Cauchy sequence in a GMS (X, d) with limn→∞ d(xn, u) =
0, where u ∈ X. Then limn→∞ d(xn, z) = d(u, z) for all z ∈ X.

Samet et al. [8] introduced the notion of α-admissible mappings as follows.

Definition 1.7. Let X be a nonempty set, and let T : X → X and α : X × X → [0,∞) be
mappings. Then T is called α-admissible if for all x, y ∈ X, we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1. (1.4)

Recently, Karapinar et al. [5] defined the notion of triangular α-admissible mappings as follows.

Definition 1.8. Let X be a nonempty set, and let T : X → X and α : X ×X → R be mappings.
Then T is called triangular α-admissible if
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(1) x, y ∈ X, α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1;
(2) x, y, z ∈ X, α(x, z) ≥ 1 and α(y, z) ≥ 1⇒ α(x, y) ≥ 1.

Lemma 1.9. [5] Let T : X → X be a triangular α-admissible map. Assume that there exists x1 ∈ X
such that α(x1, Tx1) ≥ 1. Define a sequence {xn} by xn+1 = Txn. Then we have α(xn, xm) ≥ 1 for
all m,n ∈ N with n < m.

Now we recall the following class of auxiliary functions (or altering distance functions) (see [6])
which will be used densely in the sequel: Let Ψ denote the class of the functions ψ : [0,∞)→ [0,∞)
which satisfy the following conditions:

(a) ψ is nondecreasing;
(b) ψ is continuous;
(c) ψ(t) = 0⇔ t = 0.

2. Main results

Definition 2.1. A function h : R+×R+ → R is of subclass of type I if it is continuous and satisfies
the following:
for y, z ∈ R+, y ≥ 1 =⇒ h(1, z) ≤ h(y, z).

Example 2.2. The following functions h : R+ × R+ → R are of subclass of type I. For y, z ∈ R+,
(1) h(y, z) = (z + l)y, l > 1;
(2) h(y, z) = (y + l)z, l > 1;
(3) h(y, z) = yz;

(4) h(y, z) = (1+y2 )z;

(5) h(y, z) = ykz;
(6) h(y, z) = z;

(7) h(y, z) = 1+2y
3 z;

(8) h(y, z) = (

n∑
i=0

yi

n+1 )z;

(9) h(y, z) = (

n∑
i=0

yi

n+1 + l)z, l > 1.

Definition 2.3. Let F : R+ × R+ → R be a function. We say that the pair (F, h) is a upclass of
type I if F is continuous, h is a function of subclass of type I and the following hold:
(1) for 0 ≤ s ≤ 1, t ∈ R+ =⇒ F (s, t) ≤ F (1, t);
(2) for z, s, t ∈ R+ if h(1, z) ≤ F (s, t) =⇒ z ≤ st.
Example 2.4. The following functions h : R+×R+ → R are of upclass of type I. For x, y, z, s, t ∈
R+,
(1) h(y, z) = (z + l)y, l > 1, F (s, t) = st+ l;
(2) h(y, z) = (xy + l)z, l > 1, F (s, t) = (1 + l)st;
(3) h(y, z) = yz, F (s, t) = st;

(4) h(y, z) = (1+y2 )z, F (s, t) = st;

(5) h(y, z) = ykz, F (s, t) = t;

(6) h(y, z) = 1+2y
3 z, F (s, t)) = st;

(7) h(y, z) = (1+y2 )z, F (s, t) = st;

(8) h(y, z) = (

n∑
i=0

yi

n+1 )z, F (s, t) = st;

(9) h(y, z) = (

n∑
i=0

yi

n+1 + l)z, l > 1, F (s, t) = (1 + l)st.
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We start to this section with the following definition.

Definition 2.5. Let (X, d) be a generalized metric space and let α : X ×X → R be a function. A
map T : X → X is called an α-h-F -ψ-Geraghty contraction type map if there exists β ∈ F# such
that for all x, y ∈ X,

h(α(x, y), ψ(d(Tx, Ty))) ≤ F (β(ψd(x, y)), ψ(d(x, y))), (2.1)

where ψ ∈ Ψ and the pair (F, h) is a upclass of type I.

Theorem 2.6. Let (X, d) be a complete generalized metric space, α : X ×X → R a function, and
let T : X → X be a map. Suppose that the following conditions are satisfied:

(1) T is an α-h-F -ψ-Geraghty contraction type map;
(2) T is triangular α-admissible;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(4) T is continuous.

Then T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

Proof. By (3), from x0 ∈ X, construct the sequence {xn} as xn+1 = Txn, n ∈ N. If xn = xn+1 for
some n ∈ N ∪ {0}, then x∗ = xn is a fixed point of T . Assume further that xn 6= xn+1 for each
n ∈ N ∪ {0}. Since T is triangular α-admissible, it follows from (3) that

α(x1, x2) = α(x1, Tx1) ≥ 1 and α(x1, x3) = α(x1, T
2x1) ≥ 1.

By Lemma 1.9, we have

α(xn, xn+1) ≥ 1 and α(xn, xn+2) ≥ 1. (2.2)

for all n ∈ N. Notice that we also find α(xn, xn+m) ≥ 1 for each m,n ∈ N.

Now we shall prove that limn→∞ d(xn, xn+1) = 0. By taking x = xn−1 and y = xn in (2.1) and
regarding (2.2), we get that

h(1, ψ(d(xn, xn+1))) ≤ h(α(xn−1, xn), ψ(d(Txn−1, Txn)))

≤ F (β(ψ(d(xn−1, xn))), ψ(d(xn−1, xn))) =⇒ (2.3)

ψ(d(xn, xn+1)) ≤ β(ψ(d(xn−1, xn))), ψ(d(xn−1, xn)) < ψ(d(xn−1, xn))

for each n ∈ N.
Since ψ is nondecreasing, we conclude from (2.3) that

d(xn, xn+1) < d(xn−1, xn)

for each n ∈ N. Thus we conclude that the sequence {d(xn, xn+1)} is nonnegative and nonincreasing.
As a result, there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We claim that r = 0. Suppose,
on the contrary, that r > 0. Then, on account of (2.3), we get that

ψ(d(xn, xn+1))

ψ(d(xn−1, xn))
≤ β(ψ(d(xn−1, xn))) < 1,

which yields that limn→∞ β(ψ(d(xn, xn+1))) = 1. We obtain

lim
n→∞

ψ(d(xn, xn+1)) = 0, (2.4)

due to the fact that β ∈ F#. On the other hand, the continuity of ψ together with (2.4) yield that

r = lim
n→∞

d(xn, xn+1) = 0. (2.5)
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Analogously, we shall prove that limn→∞ d(xn, xn+2) = 0. By substituting x = xn−1 and y = xn+1

in (2.1) and taking (2.2) into account, we find that

h(1, ψ(d(xn, xn+2))) ≤ h(α(xn−1, xn+1), ψ(d(Txn−1, Txn+1))

≤ F (β(ψ(d(xn−1, xn+1))), ψ(d(xn−1, xn+1))) =⇒ (2.6)

ψ(d(xn, xn+2)) ≤ β(ψ(d(xn−1, xn+1)))ψ(d(xn−1, xn+1)) < ψ(d(xn−1, xn+1))

for each n ∈ N. Since ψ is nondecreasing, we conclude from (2.6) that

d(xn, xn+2) < d(xn−1, xn+1)

for each n ∈ N. Thus we observe that the sequence {d(xn−1, xn+1)} is nonnegative and nonincreas-
ing. Consequently, there exists r ≥ 0 such that limn→∞ d(xn−1, xn+1) = r. We assert that r = 0.
Suppose, on the contrary, that r > 0. Then, by regarding (2.6), we get that

ψ(d(xn, xn+2))

ψ(d(xn−1, xn+1))
≤ β(ψ(d(xn−1, xn+1))) < 1,

which implies that limn→∞ β(ψ(d(xn−1, xn+1))) = 1. We obtain

lim
n→∞

ψ(d(xn−1, xn+1)) = 0, (2.7)

due to the fact that β ∈ F#. On the other hand, the continuity of ψ together with (2.7) yield that

r = lim
n→∞

d(xn−1, xn+1) = 0 = lim
n→∞

d(xn, xn+2). (2.8)

Suppose that xn = xm for some m,n ∈ N, m < n. Then

ψ(d(xm, xm+1)) = ψ(d(xn, xn+1))

≤ β(ψ(d(xn−1, xn)))ψ(d(xn−1, xn))

< ψ(d(xn−1, xn))

≤ ψn−m(d(xm, xm+1))

< ψ(d(xm, xm+1)),

a contradiction. Hence all elements of the sequence {xn} are distinct.
We are ready to prove that {xn} is a Cauchy sequence in (X, d). Suppose, on the contrary, that

we have
ε = lim sup

m,n→∞
d(xn, xm) > 0. (2.9)

Regarding the quadrilateral inequality, we need to examine two possible cases:
Case 1. Suppose k = n−m is odd, where k ≥ 1. Then we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)
= d(xn, xn+1) + d(Txn, Txm) + d(xm+1, xm), (2.10)

which is equivalent to

d(xn, xm)− d(xn, xn+1)− d(xm+1, xm) ≤ d(Txn, Txm)
(2.11)

Since T is triangular α-admissible, by applying ψ, we get that

ψ(d(xn, xm)− d(xn, xn+1)− d(xm+1, xm)) ≤ ψ(d(Txn, Txm))

and
h(1, ψ(d(Txn, Txm))) ≤ h(α(xn, xm), ψ(d(Txn, Txm)))

≤ F (β(ψ (d(xn, xm))) , ψ (d(xn, xm))) =⇒
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ψ(d(Txn, Txm))) ≤ β(ψ (d(xn, xm))) , ψ (d(xn, xm)) . (2.12)

Letting m,n→∞, we deduce that

lim
m,n→∞

ψ(d(xn, xm)− d(xn, xn+1)− d(xm+1, xm)) ≤ lim
m,n→∞

β(ψ (d(xn, xm))) lim
m,n→∞

ψ (d(xm, xn)) .

So, by using (2.5), (2.9) and the continuity of ψ, we get

1 ≤ lim
m,n→∞

β(ψ (d(xn, xm))) ,

which implies that lim
m,n→∞

β(ψ (d(xn, xm))) = 1. Consequently, we get lim
m,n→∞

d(xn, xm) = 0, which

is a contradiction.
Case 2. Suppose k = n−m is even, where k ≥ 1. So we have

d(xn, xm) ≤ d(xn, xn+2) + d(xn+2, xm+2) + d(xm+2, xm)
= d(xn, xn+2) + d(Txn+1, Txm+1) + d(xm+2, xm), (2.13)

that can be written as

d(xn, xm)− d(xn, xn+2)− d(xm+2, xm) ≤ d(Txn+1, Txm+1). (2.14)

Due to the fact that T is triangular α-admissible, by applying ψ, we obtain that

ψ(d(xn, xm)− d(xn, xn+2)− d(xm+2, xm)) ≤ ψ(d(Txn+1, Txm+1))

and
h(1, ψ(d(Txn+1, Txm+1))) ≤ h(α(xn+1, xm+1), ψ(d(Txn+1, Txm+1)))

≤ F (β(ψ (d(xn+1, xm+1))) , ψ (d(xn+1, xm+1))) =⇒
ψ(d(Txn+1, Txm+1)) ≤ β(ψ (d(xn+1, xm+1)))ψ (d(xn+1, xm+1)) . (2.15)

Letting m,n→∞, we find that

lim
m,n→∞

ψ(d(xn, xm)−d(xn, xn+2)−d(xm+2, xm)) ≤ lim
m,n→∞

β(ψ (d(xn+1, xm+1))) lim
m,n→∞

ψ (d(xn+1, xm+1))

So, by using (2.8), (2.9) and the continuity of ψ, we observe

1 ≤ lim
m,n→∞

β(ψ (d(xn+1, xm+1))) ,

which implies that lim
m,n→∞

β(ψ (d(xn+1, xm+1))) = 1. Thus we conclude that lim
m,n→∞

d(xn+1, xm+1) =

0, which is a contradiction.
From Case 1 and Case 2, we conclude that {xn} is a Cauchy sequence. Since (X, d) is a complete

generalized metric space, there exists x∗ ∈ X such that lim
n→∞

d(xn, x
∗) = 0. Since T is continuous,

we have
lim
n→∞

d(Txn, x
∗) = lim

n→∞
d(xn+1, Tx

∗) = 0.

By Lemma 1.4, we have that Tx∗ = x∗. �

It is also possible to remove the continuity of the mapping T by replacing it with a weaker
condition:

Definition 2.7. Let (X, d) be a complete generalized metric space, α : X ×X → R a function and
let T : X → X be a map. We say that the sequence {xn} is α-regular if the following condition is
satisfied:
If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → +∞, then
there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.
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Theorem 2.8. Let (X, d) be a complete generalized metric space, α : X ×X → R a function and
let T : X → X be a map. Suppose that the following conditions are satisfied:

(1) T is an α-h-F -ψ-Geraghty contraction type map;
(2) T is triangular α-admissible;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(4) either T is continuous or {xn} is α-regular.

Then T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

Proof. Following the proof of Theorem 2.6, we know that the sequence {xn}, defined by xn+1 = Txn
for all n ≥ 0, converges to some x∗ ∈ X. From (2.2) and the assumption (4) of the theorem, there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1. Applying (2.1), for all k, we get
that

h(1, ψ(d(xn(k)+1, Tx
∗))) ≤ h(α(xn(k), x

∗), ψ(d(Txn(k), Tx
∗))

≤ F (β(ψ(d(xn(k), x
∗))), ψ(d(xn(k), x

∗)))
=⇒

ψ(d(xn(k)+1, Tx
∗)) ≤ β(ψ(d(xn(k), x

∗)))ψ(d(xn(k), x
∗)) < ψ(d(xn(k), x

∗)). (2.16)

Letting k →∞ in (2.16), we have

lim
k→∞

ψ(d(xn(k)+1, Tx
∗)) ≤ 0.

Therefore, in view of Proposition 1.6, we obtain x∗ = Tx∗. �

Now we introduce the notion of generalized α-h-F -ψ-Geraghty contraction.

Definition 2.9. Let (X, d) be a generalized metric space and let α : X ×X → R be a function. A
map T : X → X is called an α-h-F -ψ-Geraghty contraction type map if there exists β ∈ F# such
that for all x, y ∈ X,

h(α(x, y), ψ(d(Tx, Ty))) ≤ F (β(ψ(M(x, y)), ψ(M(x, y))), (2.17)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, ψ ∈ Ψ and the pair (F, h) is a upclass of type I.

Theorem 2.10. Let (X, d) be a complete generalized metric space, α : X ×X → R a function and
let T : X → X be a map. Suppose that the following conditions are satisfied:

(1) T is a generalized α-h-F -ψ-Geraghty contraction type map;
(2) T is triangular α-admissible;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(4) T is continuous.

Then T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

Proof. By (3), from x0 ∈ X, construct the sequence {xn} as xn+1 = Txn, n ∈ N. If xn = xn+1 for
some n ∈ N ∪ {0}, then x∗ = xn is a fixed point of T . Assume further that xn 6= xn+1 for each
n ∈ N ∪ {0}. Since T is triangular α-admissible, it follows from (3) that

α(x1, x2) = α(x1, Tx1) ≥ 1 and α(x1, x3) = α(x1, T
2x1) ≥ 1

and so by induction, we get

α(xn, xn+1) ≥ 1 and α(xn, xn+2) ≥ 1 (2.18)
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for n ∈ N. And we also find α(xn, xn+m) ≥ 1 for each m,n ∈ N.
Therefore, by (2.17)

h(1, ψ(d(xn, xn+1))) ≤ h(α(xn−1, xn), ψ(d(Txn−1, Txn)))

≤ F (β(ψ(M(xn−1, xn))), ψ(M(xn−1, xn))) =⇒
ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn)))ψ(M(xn−1, xn)) < ψ(M(xn−1, xn)) (2.19)

for each n ≥ 1, where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)} = max{d(xn−1, xn), d(xn, xn+1)}.
(2.20)

If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then by (2.19), we get

ψ(d(xn, xn+1)) < ψ(d(xn, xn+1)),

which is a contradiction. Hence max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn) and (2.19) gives

ψ(d(xn, xn+1)) < ψ(d(xn−1, xn)), for all n ∈ N. (2.21)

This yields that, for each n ∈ N,

d(xn, xn+1) < d(xn−1, xn). (2.22)

Thus we conclude that the sequence {d(xn, xn+1)} is nonnegative and nonincreasing. As a result,
there exists t ≥ 0 such that limn→∞ d(xn, xn+1) = t. We claim that t = 0. Suppose, on the contrary,
that t > 0. Then, on account of (2.19), we get that

ψ(d(xn, xn+1))

ψ(M(xn−1, xn))
≤ β(ψ(M(xn−1, xn))) < 1,

which yields that limn→∞ β(ψ(d(xn, xn+1))) = 1. We obtain

lim
n→∞

ψ(d(xn, xn+1)) = 0, (2.23)

due to the fact that β ∈ F#. On the other hand, the continuity of ψ together with (2.23) yield that

lim
n→∞

d(xn, xn+1) = 0. (2.24)

Now we shall show
lim
n→∞

d(xn, xn+2) = 0. (2.25)

Regarding (2.17) and (2.18), we find that

h(1, ψ(d(xn, xn+2))) ≤ h(α(xn−1, xn+1)ψ(d(Txn−1, Txn+1))

≤ F (β(ψ(M(xn−1, xn+1))), ψ(M(xn−1, xn+1))) =⇒

ψ(d(xn, xn+2))) ≤ β(ψ(M(xn−1, xn+1)))ψ(M(xn−1, xn+1))) < ψ(M(xn−1, xn+1)) (2.26)

for all n ∈ N, where

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)}
= max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}. (2.27)

In view of (2.22), we obtain

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, xn)}.
Define an = d(xn, xn+2) and bn = d(xn, xn+1). Then, taking (2.26) into account, we get

ψ(an) < ψ(max{an−1, bn−1}).
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This yields that, for each n ∈ N,
an < max{an−1, bn−1}. (2.28)

By (2.22), we have
bn < max{an−1, bn−1}. (2.29)

Therefore,
max{an, bn} < max{an−1, bn−1}

for all n ∈ N. Thus the sequence max{an, bn} is nonegative and nonincreasing and so it converges
to some r ≥ 0. Clearly, by (2.24),

lim
n→∞

d(xn, xn+2) = lim
n→∞

an = lim
n→∞

max{an, bn} = r.

Now we will show that r = 0. If r > 0, then in view of (2.26), we have

ψ(d(xn, xn+2))

ψ(M(xn−1, xn+1))
≤ β(ψ(M(xn−1, xn+1))) < 1,

which yields that limn→∞ β(ψ(M(xn−1, xn+1))) = 1. We obtain

lim
n→∞

ψ(M(xn−1, xn+1)) = 0, (2.30)

due to the fact that β ∈ F#. On the other hand, the continuity of ψ together with (2.30) yield that

ψ(r) = ψ( lim
n→∞

max{an−1, bn−1}) = lim
n→∞

ψ(max{an−1, bn−1}) = 0,

which is a contradiction and hence r = 0.
Suppose that xn = xm for some m,n ∈ N, m < n. Then

ψ(d(xm, xm+1)) = ψ(d(xn, xn+1))

≤ β(ψ(M(xn−1, xn)))ψ(M(xn−1, xn))

< ψ(d(xn−1, xn))

≤ ψn−m(d(xm, xm+1))

< ψ(d(xm, xm+1)),

a contradiction. Hence all elements of the sequence {xn} are distinct.
In order to prove that {xn} is a Cauchy sequence in (X, d), suppose that it is not. Then by

Lemma 1.5, using (2.24) and (2.25), we assert that there exist ε > 0 and two sequences {mk} and
{nk} of positive integers such that nk > mk > k and the sequences (1.3) tend to ε as k → ∞. By
substituting x = xmk

and y = xnk+1
in (2.17) and taking (2.18) into account, we obtain

h(1, ψ(d(xmk
, xnk+1

))) ≤ h(α(xmk−1
, xnk

), ψ(d(Txmk−1
, Txnk

)))

≤ F (β(ψ(M(xmk−1
, xnk

))), ψ(M(xmk−1
, xnk

))). (2.31)

On the other hand, we have

M(xmk−1
, xnk

) = max{d(xmk−1
, xnk

), d(xmk−1
, Txmk−1

), d(xnk
, Txnk

)}
= max{d(xmk−1

, xnk
), d(xmk−1

, xmk
), d(xnk

, xnk+1
)} (2.32)

and hence
lim
k→∞

ψ(M(xmk−1
, xnk

)) = ψ(ε). (2.33)

From (2.31), we have

ψ(d(xmk
, xnk+1

))

ψ(M(xmk−1
, xnk

))
≤ β(ψ(M(xmk−1

, xnk
))) < 1.
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Letting k →∞, we get
lim
k→∞

β(ψ(M(xmk−1
, xnk

))) = 1.

Thus limk→∞ ψ(M(xmk−1
, xnk

)) = 0 and so (2.33) gives ψ(ε) = 0, which is a contradiction. There-
fore, {xn} is a Cauchy sequence. Since (X, d) is a complete generalized metric space, there exists
x∗ ∈ X such that lim

n→∞
d(xn, x

∗) = 0. Since T is continuous, we have

lim
n→∞

d(Txn, x
∗) = lim

n→∞
d(xn+1, Tx

∗) = 0.

By Lemma 1.4, we get that Tx∗ = x∗. �

Theorem 2.11. Let (X, d) be a complete generalized metric space, α : X ×X → R a function and
let T : X → X be a map. Suppose that the following conditions are satisfied:

(1) T is a generalized α-h-F -ψ-Geraghty contraction type map;
(2) T is triangular α-admissible;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(4) {xn} is α-regular.

Then T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

Proof. Following the proof of Theorem 2.10, we know that the sequence {xn}, defined by xn+1 = Txn
for all n ≥ 0, converges to some x∗ ∈ X. Now we shall show that Tx∗ = x∗. Suppose, on the
contrary, that Tx∗ 6= x∗, i.e,, d(x∗, Tx∗) > 0. Since xn is α-regular, from (2.18), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1. Applying (2.17), for all k, we get that

h(1, ψ(d(xn(k)+1, Tx
∗))) ≤ h(α(xn(k), x

∗), ψ(d(Txn(k), Tx
∗)))

≤ F (β(ψ(M(xn(k), x
∗))), ψ(M(xn(k), x

∗))), (2.34)

where M(xn(k), x
∗) = max{d(xn(k), x

∗), d(xn(k), Txn(k)), d(x∗, Tx∗)}.

Letting k →∞ in (2.34), we have

lim
n→∞

ψ(d(xn(k)+1, Tx
∗)) < ψ(d(x∗, Tx∗)).

In view of Proposition 1.6, we get a contradiction and hence x∗ = Tx∗. �

For the uniqueness of a fixed point of α-ψ-Geraghty contractive mapping, we will consider the
following condition.

Condition (U): For all x, y ∈ F (T ), we have α(x, y) ≥ 1, where F (T ) denotes the set of fixed
points of T .

Theorem 2.12. If the condition (U) is added to the hypothesis of Theorem 2.6 (respectively, The-
orem 2.8), then we obtain that u is the unique fixed point of T .

Proof. We will show that u is a unique fixed point of T . Let v be another fixed point of T with
v 6= u. By hypothesis (U),

1 ≤ α(u, v) = α(Tu, Tv).

Now, using (2.5), we have

h(1, ψ(d(u, v))) ≤ h(α(u, v), ψ(d(Tu, Tv)))

≤ F (β(ψ(d(u, v))), ψ(d(u, v))) =⇒

ψ(d(u, v)) ≤ β(ψ(d(u, v)))ψ(d(u, v)) < ψ(d(u, v)),

which is a contradiction. Hence u = v. �
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Theorem 2.13. If the condition (U) is added to the hypothesis of Theorem 2.10 (respectively,
Theorem 2.11), then we obtain that u is the unique fixed point of T .

Proof. Let v be another fixed point of T with v 6= u. Then by the assumption (U),

1 ≤ α(u, v) = α(Tu, Tv).

Now, using (2.17), we have

h(1, ψ(d(u, v))) ≤ h(α(u, v), ψ(d(Tu, Tv)))

≤ F (β(ψ(M(u, v)))ψ(M(u, v))),

ψ(d(u, v))) ≤ β(ψ(M(u, v)))ψ(M(u, v)) < ψ(M(u, v)),

where
M(u, v) = max{d(u, v), d(u, Tu), d(v, Tv)}.

Therefore,
ψ(d(u, v)) < ψ(d(u, v)),

which is a contradiction. Hence u = v. �

Now we give a useful example.

Example 2.14. Let X = A ∪ B, where A = {12 ,
1
3 ,

1
4 ,

1
5} and B = [34 , 1]. Define the function

d : X ×X → R as follows:

d

(
1

2
,
1

3

)
=

1

2
,

d

(
1

2
,
1

4

)
= d

(
1

3
,
1

4

)
=

1

5
,

d

(
1

4
,
1

5

)
= d

(
1

2
,
1

5

)
= d

(
1

3
,
1

5

)
=

1

6
,

d(x, x) = 0 for all x ∈ A,
d(x, y) = d(y, x) for all x, y ∈ A

and d(x, y) = |x− y|, whenever (x ∈ A, y ∈ B) or (x ∈ B, y ∈ A) or (x, y ∈ B). It is easy to check
that (X, d) is a generalized metric space. Let T : X → X be a mapping defined by

T (x) =

{
2x+1
x+2 if x ∈ B
1
5 otherwise

and the function α : X ×X → [0,∞) defined by

α(x, y) =

{
1 if x, y ∈ B
0 otherwise.

Define β(t) = 1
1+t . Using routine calculation it is easy to check that T is an α-h-F -ψ-Geraghty

contraction for h(y, z) = yz, F (s, t) = st and ψ(t) = t. For x0 = 3
4 , we have α (x0, Tx0) ≥ 1 and

α
(
x0, T

2x0
)
≥ 1. Using the definition of the maps α and T , we observe that α(x, y) ≥ 1 =⇒

α(Tx, Ty) ≥ 1 for all x, y ∈ X and also α(x, z) ≥ 1 and α(y, z) ≥ 1 =⇒ α(x, y) ≥ 1 and so T is
triangular α-admissible. Moreover, if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n
with xn → x as n → ∞, then the definition of α gives xn ∈ B for each n. Since B is closed, it
follows that x ∈ B. Thus α(xn, x) = 1 for each n and hence the sequence {xn} is α-regular. So all
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the hypotheses of Theorem 2.8 are satisfied and therefore T has a fixed point. Here x = 1 is such a
fixed point.

Remark 2.15. If the self map T is an α-ψ-Geraghty contraction type map (see [1]), then T is an
α-h-F -ψ-Geraghty contraction type map for h(y, z) = yz and F (s, t) = st. Therefore the results of
Asadi et al. [1] can be obtained as a particular case of our results.
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Absract In this paper, we investigate the oscillation of the following nth-order

nonlinear dynamic equation

(r(t)Φγ(an−1(t)(an−2(t)(· · · (a1(t)x∆(t))∆ · · · )∆)∆)∆+

k∑
i=0

qi(t)Φαi(x(δi(t))) = 0

on a time scale T with n ≥ 2. We obtain some new oscillation criteria of the

above equation.

Keywords: Oscillation; Dynamic equation; Time scale

Mathematics Subject Classification 2010: 34N05, 34K11, 39A21

1. Introduction

In this paper, we study the following nth-order nonlinear dynamic equation

(r(t)Φγ(an−1(t)(an−2(t)(· · · (a1(t)x∆(t))∆ · · · )∆)∆)∆ +
k∑
i=0

qi(t)Φαi(x(δi(t))) = 0, (1.1)

on a time scale T satisfying inf T = t0 and supT = ∞, where n, k ∈ N≡ {1, 2, · · · } with

n ≥ 2 and γ, αi > 0, i = 0, 1, 2, · · · , k, are ratios of odd numbers, qi(t) ∈ Crd(T, [0,∞)) and

qi(t) 6≡ 0, i = 0, 1, 2, · · · , k. And we also assume the following conditions are satisfied:

(H1) Φp(u) = |u|p−1u for any p > 0.

1
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(H2) There is an integer m ∈ [1, k) such that

α1 > α2 > · · · > αm > α0 = γ > αm+1 > · · · > αk. (1.2)

(H3) aj(t) ∈ Crd(T, (0,∞)), 1 ≤ j ≤ n− 1, r(t) ∈ Crd(T, (0,∞)) satisfying∫ ∞
t0

1

r1/γ(t)an−1(t)
∆t =∞.

(H4) δi(t) ∈ Crd(T,T) such that δ∆
i (t) > 0 and lim

t→∞
δi(t) =∞.

Write

Sl(t) =

{
x(t), l = 0,

al(t)S
∆
l−1(t), 1 ≤ l ≤ n− 1.

Then (1.1) reduces to the equation

(r(t)Φγ(Sn−1(t)))∆ +
k∑
i=0

qi(t)Φαi(x(δi(t))) = 0. (1.3)

Few decades, much attention has been paid to various dynamic equations, see [1-5]. In

recent years, there has been more interest in obtaining conditions for oscillation of solutions

of dynamic equations on time scales, see [6-10]. Erbe et al.[1] researched the oscillation of

the equation

x∆n
(t) + p(t)xα(σ(t)) = 0, t ∈ T,

where α > 1 is a ratio of odd numbers; and Jia et al.[2] investigated oscillation for the linear

equation

x∆n
(t) + p(t)x(t) = 0, t ∈ T.

On a general time scale T. Recently, Zhang et al.[3] established the oscillation criteria for

the equation

(r(t)Φγ(x∆n−1
(t))∆ +

k∑
i=0

qi(t)Φαi(x(δi(t))) = 0, (1.4)

where Φp(u), γ, αi, δi(t) is the same as (1.1).

The purpose of this paper is to generalize results in [3] to more general equation and

obtain some new oscillation criteria of (1.1).

2. Preliminary results

Lemma 2.1[3] Assume (1.2) holds. Then there exist ηi ∈ (0, 1), i = 1, · · · , k, such that

k∑
i=1

αiηi = γ and
k∑
i=1

ηi = 1. �

2
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Lemma 2.2[4] Assume that ∫ ∞
t0

4s
ai(s)

=∞, 1 ≤ i ≤ n− 2, (2.1)

and 1 ≤ m ≤ n− 2. Then,

(1) lim inft→∞ Sm(t) > 0 implies limt→∞ Si(t) = +∞, 0 ≤ i ≤ m− 1;

(2) lim supt→∞ Sm(t) < 0 implies limt→∞ Si(t) = −∞, 0 ≤ i ≤ m− 1. �

Lemma 2.3 Assume (2.1) holds, and suppose that x(t) > 0 and (r(t)Φγ(Sn−1(t)))∆ < 0 for

t ≥ t0. Then there exist an integer m ∈ [0, n− 1] with m+n− 1 even and a sufficiently large

T ∈ T such that, for any t ≥ T ,

(1) (−1)m+iSi(t) > 0, m ≤ i ≤ n− 1;

(2) Si(t) > 0, 1 ≤ i ≤ m− 1, when m > 1.

Proof First we claim that Sn−1(t) > 0 for t > t0. Otherwise, there exists some t1 > t0 such

that Sn−1(t1) < 0. By (1.3) and (H1), r(t)Sγn−1(t) is strictly decreasing on [t0,∞)T. It follows

that r
1
γ (t)(−Sn−1(t)) is positive and strictly increasing on [t1,∞)T. Thus,

Sn−2(t) = Sn−2(t1)−
∫ t

t1

r
1
γ (s)(−Sn−1(s))

r
1
γ (s)an−1(s)

∆s

≤ Sn−2(t1)− r
1
γ (t1)(−Sn−1(t1))

∫ t

t1

1

r
1
γ (s)an−1(s)

∆s.

By (H3), we have limt→∞ Sn−2(t) = −∞. From Lemma 2.2, we get limt→∞ S0(t) = −∞,
i.e., limt→∞ x(t) = −∞, which contradicts the fact that x(t) > 0 for t ≥ t0. Consequently,

Sn−1(t) > 0 for t > t0. Then we get two cases as follows:

(i) Si(t) > 0, 0 ≤ i ≤ n− 1;

(ii) there exists an integer j ∈ [1, n− 2] such that Sj(t) < 0.

For case (ii), let m be the smallest integer m ∈ [0, n − 1] with m + n − 1 even such that

(−1)m+iSi(t) > 0 for t ≥ t0 and m ≤ i ≤ n − 1. Note that S∆
m−1(t) = Sm(t)

am(t) > 0 for t ≥ t0.

So, when m > 1, we have that either Sm−1(t) < 0 for t ≥ t0 or there is t2 ∈ T such that

Sm−1(t) ≥ Sm−1(t2) > 0 for t ∈≥ t2.

If Sm−1(t) < 0 for t ≥ t0, then using the above arguments similar to the case of Sn−1(t) <

0, we have Sm−2(t) > 0 for t ≥ t0, which is a contradiction to the definition of m.

If Sm−1(t) ≥ Sm−1(t2) > 0 for t ≥ t2, then from (1) of Lemma 2.2 we have limt→∞ Si(t) =

∞ for 0 ≤ i ≤ m− 1. This completes the proof. �

Lemma 2.4 Assume that (2.1) holds and one of the following two conditions is satisfied:∫ ∞
t0

k∑
i=0

qi(s)∆s =∞ (2.2)

3
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or ∫ ∞
t0

[(∫ ∞
u2

(
∫∞
s

∑k
i=0 qi(u1)∆u1)

1
γ

r
1
γ (s)an−1(s)

∆s

)/
an−2(u2)

]
∆u2 =∞. (2.3)

Let x(t) be an eventually positive solution of Eq.(1.3). Then there exists T ∈ T such that,

for any t ≥ T , (r(t)Φγ(Sn−1(t)))∆ < 0, and the following statements hold:

(1) when n is even,

Sj(t) > 0, j = 1, 2, · · · , n− 1. (2.4)

(2) when n is odd, either (2.4) holds or limt→∞ x(t) = 0.

Proof Let x(t) be an eventually positive solution of Eq.(1.3), then by (H4), we may assume

that x(t) > 0 and x(δi(t)) > 0 (i = 0, 1, · · · , k) for t ≥ t0. By Eq.(1.3) and (H1), we have

(r(t)Φγ(Sn−1(t)))∆ = (r(t)(Sn−1(t))γ)∆ < 0, t ≥ t0.

From Lemma 2.3, there exists t1 ∈ T such that

Sj(t) > 0 for t ≥ t1 and j ∈ [1,m− 1], (2.5)

(−1)m+jSj(t) > 0 for t ≥ t1 and j ∈ [m,n− 1]. (2.6)

When n is even, by Lemma 2.3, m must be an odd number. By (2.5), x∆(t) = S1(t)
a1(t) > 0.

Hence, limt→∞ x(t) exists, and it’s positive or limt→∞ x(t) = ∞. In this case, we will show

that m = n − 1. Otherwise, the odd integer m ≤ n − 3. Now (2.6) implies that, for any

t ≥ t1,

Sn−2(t) < 0 and Sn−3(t) > 0.

Note that there exist T ≥ t1 and a > 0 such that x(t) ≥ a and x(δi(t)) ≥ a (i = 0, 1, · · · , k)

for t ≥ T . Taking b := min0≤i≤k{aαi}, we have

(r(t)(Sn−1(t))γ)∆ ≤ −
k∑
i=0

qi(t)a
αi ≤ −b

k∑
i=0

qi(t). (2.7)

If (2.2) holds, integrating (2.7) from T to t with t ≥ T , we obtain that

r(t)(Sn−1(t))γ ≤ r(T )(Sn−1(T ))γ − b
∫ t

T

k∑
i=0

qi(s)∆s→ −∞, as t→∞,

which contradicts the fact that Sn−1(t) > 0 for t ∈ [t1,∞)T. Hence, (2.4) holds. If (2.3)

holds, integrating (2.7) from t to u1 with T ≤ t ≤ u1, we obtain that

r(t)(Sn−1(t))γ ≥ r(u1)(Sn−1(u1))γ + b

∫ u1

t

k∑
i=0

qi(s)∆s ≥ b
∫ u1

t

k∑
i=0

qi(s)∆s.

4
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Taking u1 →∞, we have

Sn−1(t) ≥ b
1
γ

(
∫∞
t

∑k
i=0 qi(s)∆s)

1
γ

r
1
γ (t)

= b
1
γ

(
r−1(t)

∫ ∞
t

k∑
i=0

qi(s)∆s

) 1
γ

. (2.8)

Since Sn−2(t) < 0, integrating (2.8) from t to u2 with T ≤ t ≤ u2, we have

−Sn−2(t) ≥ Sn−2(u2)− Sn−2(t) ≥ b
1
γ

∫ u2

t

(
∫∞
t

∑k
i=0 qi(u1)∆u1)

1
γ

r
1
γ (s)an−1(s)

∆s.

Taking u2 →∞, we have

−Sn−2(t) ≥ b
1
γ

∫ ∞
t

(
∫∞
t

∑k
i=0 qi(u1)∆u1)

1
γ

r
1
γ (s)an−1(s)

∆s. (2.9)

Since Sn−3(t) > 0, integrating (2.9) from T to t with t ≥ T , we get

Sn−3(T ) ≥ −Sn−3(t)+Sn−3(T ) ≥ b
1
γ

∫ t

T

[(∫ ∞
t

(
∫∞
t

∑k
i=0 qi(u1)∆u1)

1
γ

r
1
γ (s)an−1(s)

∆s

)/
an−2(u2)

]
∆u2.

Let t→∞, we obtain∫ ∞
T

[(∫ ∞
t

(
∫∞
t

∑k
i=0 qi(u1)∆u)

1
γ

r
1
γ (s)an−1(s)

∆s

)/
an−2(u2)

]
∆u2 ≤ b−

1
γ Sn−3(T ) <∞,

which contradicts (2.3). Hence, m = n− 1 and (2.4) holds.

When n is odd, by Lemma 2.3, m must be even. From (2.5) and (2.6), either x∆(t) > 0

or x∆(t) < 0 hold, which implies limt→∞ x(t) = c ≥ 0. If c > 0, we claim that m = n − 1.

Otherwise, m ≤ n − 3. Similar as above, we can arrive a contradiction. This completes the

proof. �

In the sequel, for any n ∈ N and t, T ∈ T with t ≥ T , we define βk(t, T ) as follows:

βi(t, T ) =

∫ t

T

βi−1(s, T )

an−i(s)
∆s, i = 1, 2, · · · , k,

where β0(t, T ) = 1
rγ(t) .

Lemma 2.5 Suppose that (2.1) and either (2.2) or (2.3) hold. Let x(t) be an eventually

positive solution of Eq.(1.3) satisfied (2.4). Then there exists T ∈ T such that, for t ∈ [T,∞)T,

S1(t) ≥ r
1
γ (t)Sn−1(t)βn−2(t, T ) and x(t) ≥ r

1
γ (t)Sn−1(t)βn−1(t, T ).

5
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Proof By the hypothesis and (H4), there exists T ∈ [t0,∞)T such that x(t) > 0, x(δi(t)) > 0

(i = 0, 1, · · · , k) and (2.4) hold for t ≥ T . It’s easy to see, from Lemma 2.4, that r
1
γ (t)Sn−1(t)

is decreasing on [T,∞)T. From (2.4), we have

Sn−2(t) = Sn−2(T ) +

∫ t

T

Sn−1(s)

an−1(s)
∆s

= Sn−2(T ) +

∫ t

T

r
1
γ (s)Sn−1(s)

r
1
γ (s)an−1(s)

∆s

≥ r
1
γ (t)Sn−1(t)

∫ t

T

1

r
1
γ (s)an−1(s)

∆s

= r
1
γ (t)Sn−1(t)β1(t, T ).

Integrating above inequality from T to t for t ≥ T , we have

Sn−3(t) = Sn−3(T ) +

∫ t

T

Sn−2(s)

an−2(s)
∆s

≥ r
1
γ (t)Sn−1(t)

∫ t

T

β1(s, T )

an−2(s)
∆s

= r
1
γ (t)Sn−1(t)β2(t, T ).

By induction, we can show that

S1(t) ≥ r
1
γ (t)Sn−1(t)βn−2(t, T ), x(t) ≥ r

1
γ (t)Sn−1(t)βn−1(t, T ).

This completes the proof. �

Lemma 2.6[3] Let g(y) = By − Ay
γ+1
γ , where A,B and y are positive numbers. Then g(y)

attains its maximum value on [0,∞) at y∗ = ( Bγ
A(γ+1))γ , and

max
y∈[0,∞)

g(y) = g(y∗) =
γγ

(γ + 1)γ+1

Bγ+1

Aγ
. �

3. Main Results

For the convenience of presentation, we give some notations. Write D = {(t, s) ∈ T2 : t ≥
s ≥ 0}, for any z ∈ C1

rd(T, (0,∞)), we denote

H = {H(t, s) ∈ C1
rd(D, [0,∞)) : H∆

s (t, s) ≤ 0 and H(t, s) = 0 iff t = s},

C(t, s) = H∆
s (t, s)zσ(s) +H(t, s)z∆(s),

6
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and

C+(t, s) = max{H∆
s (t, s)zσ(s) +H(t, s)z∆

+ (s), 0},

where H(t, s) ∈ H and z∆
+ (s) = max{z∆(s), 0}.

Theorem 3.1 Suppose that (2.1) and either (2.2) or (2.3) hold, and ηi (i = 1, · · · , k) are

defined as in Lemma 2.1. Assume that for sufficiently large T ∈ T, one of the following

conditions is satisfied:

(C1) either ∫ ∞
T

Q(s)∆s =∞,

or ∫ ∞
T

Q(s)∆s <∞ and lim sup
t→∞

βγn−1(δ(t), T )

∫ ∞
t

Q(s)∆s > 1,

(C2) there is a function z ∈ C1
rd(T, (0,∞)) such that

lim sup
t→∞

∫ t

T

[
Q(s)z(s)−

z∆
+ (s)

βγn−1(δσ(s), T )

]
∆s =∞,

(C3) there is a function z ∈ C1
rd(T, (0,∞)) such that

lim sup
t→∞

∫ t

T

[
Q(s)z(s)− 1

(γ + 1)γ+1

aγ1(s)(z∆
+ (s))γ+1

zγ(s)βγn−2(δ(s), T )(δ∆(s))γ

]
∆s =∞,

(C4) there are a function z ∈ C1
rd(T, (0,∞)) and H ∈ H such that

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Q(s)z(s)

−
aγ1(s)Cγ+1

+ (t, s)

Hγ (t, s)(γ + 1)γ+1zγ(s)βγn−2(δ(s), T )(δ∆(s))γ

]
∆s =∞

where Q(t) = q0(t) +
∏k
i=1

(
η−1
i qi(t)

)ηi and δ(t) = min{t, δi(t), i = 0, 1, 2, · · · , k}. Then

(i) every solution of Eq.(1.3) either oscillates or tends to zero as t→∞ when n is odd,

(ii) every solution of Eq.(1.3) is oscillatory when n is even.

Proof Assume that Eq.(1.3) has a nonoscillatory solution x(t). Without loss of generality,

we may suppose that x(t) is eventually positive. Then, Lemma 2.4 and Lemma 2.5 hold,

and by (H4), there exists a sufficiently large T ∈ T such that x(t) > 0 and x(δi(t)) > 0 (i =

0, 1, · · · , k) for t ≥ T .

When n is odd, from Lemma 2.4, we have that (2.4) holds or limt→∞ x(t) = 0. If (2.4)

holds, Eq.(1.3) reduces to

(r(t)(Sn−1(t))γ)∆ +
k∑
i=0

qi(t)x
αi(δi(t)) = 0. (3.1)

7
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We consider four parts corresponding conditions (C1)-(C4).

Part 1: Suppose that (C1) holds.

Write ψ(t) = r(t)(Sn−1(t))γ , then ψ(t) > 0 and ψ∆(t) +
∑k

i=0 qi(t)x
αi(δ(t)) ≤ 0 for

t ≥ T . So we have ψ∆(t) < 0 and limt→∞ ψ(t) = b ≥ 0. Put ai = η−1
i qi(t)x

αi(δ(t)), by the

arithmetic-geometric mean inequality [11], we get

k∑
i=1

ηiai ≥
k∏
i=1

aηii and ai ≥ 0.

So we have

k∑
i=0

qi(t)x
αi(δ(t)) ≥ q0(t)xγ(δ(t)) + (η−1

i qi(t))
ηixγ(δ(t)) = Q(t)xγ(δ(t)). (3.2)

Consequently,

ψ∆(t) +Q(t)xγ(δ(t)) ≤ 0. (3.3)

Integrating (3.3) from t to ∞, we have

b− ψ(t) +

∫ ∞
t

Q(s)xγ(δ(s))∆s ≤ 0.

If
∫∞
t Q(s)∆s =∞, using (2.4), we can arrive a contradiction. If

∫∞
t Q(s)∆s <∞, then

ψ(δ(t)) ≥ ψ(t) ≥
∫ ∞
t

Q(s)xγ(δ(s))∆s ≥ xγ(δ(t))

∫ ∞
t

Q(s)∆s.

From Lemma 2.5, we have

βγn−1(δ(t), T )

∫ ∞
t

Q(s)∆s ≤ 1,

which contradicts to (C1). Therefore, every solution of Eq.(1.3) either oscillates or tends to

zero as t→∞.
Part 2: Suppose that (C2) holds.

Define

w(t) =
z(t)r(t)(Sn−1(t))γ

xγ(δ(t))
, t ≥ T. (3.4)

We get w(t) > 0 immediately. From Lemma 2.5, we have

w∆(t) =
(
r(t)(Sn−1(t))γ

)∆
(

z(t)

xγ(δ(t))

)
+
(
r(t)(Sn−1(t))γ

)σ( z(t)

xγ(δ(t))

)∆

=
(
r(t)(Sn−1(t))γ

)σ[z∆(t)xγ(δ(t))− z(t)(xγ(δ(t)))∆

xγ(δ(t))xγ(δσ(t))

]

8
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+ z(t)
−
∑k

i=0 qi(t)x
αi(δi(t))

xγ(δ(t))

≤
z∆

+ (t)(r(t)(Sn−1(t))γ)σ

xγ(δσ(t))
− z(t)

∑k
i=0 qi(t)x

αi(δ(t))

xγ(δ(t))

− (r(t)(Sn−1(t))γ)σz(t)(xγ(δ(t)))∆

xγ(δ(t)xγ(δσ(t)))
. (3.5)

Noting that x∆(t) = S1(t)
a1(t) > 0. When γ ≥ 1, by Keller’s chain rule, we have

(xγ(t))∆ = γ

[ ∫ 1

0
(x(t) + hµ(t)x∆(t))γ−1dh

]
x∆(t)

≥ γx∆(t)

∫ 1

0
((1− h)x(t) + hx(t))γ−1dh = γxγ−1(t)x∆(t).

So (xγ(δ(t)))∆ ≥ γxγ−1(δ(t))(x(δ(t)))∆. It’s easy to see, from (H4), that δ∆(t) > 0 for t ∈ T.

Hence, from [12, Theorem 1.93], we have

(xγ(δ(t)))∆ ≥ γxγ−1(δ(t))x∆(δ(t))δ∆(t) ≥ 0. (3.6)

When 0 < γ < 1,

(xγ(t))∆ ≥ γx∆(t)

∫ 1

0
((1− h)xσ(t) + hxσ(t))γ−1dh = γ(xσ(t))γ−1x∆(t).

So (xγ(δ(t)))∆ ≥ γxγ−1(δσ(t))(x(δ(t)))∆. From [12, Theorem 1.93], we have

(xγ(δ(t)))∆ ≥ γxγ−1(δσ(t))x∆(δ(t))δ∆(t) ≥ 0. (3.7)

Noting that r(t) > 0. From (3.6) and (3.7), we get

(r(t)Sγn−1(t))σz(t)(xγ(δ(t)))∆

xγ(δ(t))xγ(δσ(t))
≥ 0.

Since (r(t)Sγn−1(t))∆ < 0, δ(t) ≤ t ≤ σ(t) and δσ(t) ≤ σ(t), we have

r(σ(t))Sγn−1(σ(t)) ≤ r(t)Sγn−1(t) ≤ r(δ(t))Sγn−1(δ(t)). (3.8)

and

r(σ(t))Sγn−1(σ(t)) ≤ r(δσ(t))Sγn−1(δσ(t)). (3.9)

Hence, from (3.2), (3.9), Lemma 2.5 and x∆(t) > 0, we have

w∆(t) ≤ −z(t)Q(t) +
z∆

+ (t)

βγn−1(δσ(t), T )
.
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Integrating the above inequality from T to t for t ≥ T , we get∫ t

T

[
z(s)Q(s)−

z∆
+ (s)

βγn−1(δσ(s), T )

]
∆s ≤ w(T )− w(t) < w(T ).

Taking the lim sup on both sides as t → ∞, we obtain a contradiction to (C2). Therefore,

every solution of Eq.(1.3) either oscillates or tends to zero as t→∞.

Part 3: Suppose that (C3) holds.

When γ ≥ 1, from (2.4), (3.5) and (3.6), we have

w∆(t) ≤ −z(t)Q(t) +
z∆

+ (t)

zσ(t)
wσ(t)− (r(t)Sγn−1(t))σ

z(t)γx∆(δ(t))δ∆(t)

xγ+1(δσ(t))
. (3.10)

Since x∆(t) = S1(t)
a1(t) ≥

r
1
γ (t)

Sn−1(t)βn−2(t,T ))
a1(t) , from (3.8) we get

−(r(t)Sγn−1(t))σ
z(t)γx∆(δ(t))δ∆(t)

xγ+1(δσ(t))
=
−(rσ(t))

γ+1
γ Sγ+1

n−1(t)

xγ+1(δσ(t))

z(t)γx∆(δ(t))δ∆(t)

r
1
γ (σ(t))Sn−1(σ(t))

≤
−(rσ(t))

γ+1
γ Sγ+1

n−1(t)

xγ+1(δσ(t))

z(t)γx∆(δ(t))δ∆(t)

r
1
γ (δ(t))Sn−1(δ(t))

≤ −z(t)γβn−2(t, T )δ∆(t)

a1(t)z
γ+1
γ (σ(t))

w
γ+1
γ (σ(t)).

Then

w∆(t) ≤ −z(t)Q(t) +
z∆

+ (t)

zσ(t)
wσ(t)− z(t)γβn−2(t, T )δ∆(t)

a1(t)z
γ+1
γ (σ(t))

w
γ+1
γ (σ(t)). (3.11)

When 0 < γ < 1, by (3.2), (3.5) and (3.7), we have

w∆(t) ≤ −z(t)Q(t) +
z∆

+ (t)

zσ(t)
wσ(t)− (r(t)Sγn−1(t))σ

z(t)γ(x(δσ(t)))γ−1x∆(δ(t))δ∆(t)

xγ(δ(t))(x(δσ(t)))γ
.

Then, by (3.8) and Lemma 2.5, we have

−(r(t)Sγn−1(t))σ
z(t)γ(x(δσ(t)))γ−1x∆(δ(t))δ∆(t)

xγ(δ(t))(x(δσ(t)))γ

=
−(rσ(t))

γ+1
γ Sγ+1

n−1(t)

xγ(δ(t))x(δσ(t))

z(t)γx∆(δ(t))δ∆(t)

r
1
γ (σ(t))Sn−1(σ(t))

≤
−(rσ(t))

γ+1
γ Sγ+1

n−1(t)

xγ(δ(t))x(δσ(t))

z(t)γx∆(δ(t))δ∆(t)

r
1
γ (δ(t))Sn−1(δ(t))

≤ −z(t)γβn−2(t, T )δ∆(t)

a1(t)z
γ+1
γ (σ(t))

w
γ+1
γ (σ(t)).
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It follows that

w∆(t) ≤ −z(t)Q(t) +
z∆

+ (t)

zσ(t)
wσ(t)− z(t)γβn−2(t, T )δ∆(t)

a1(t)z
γ+1
γ (σ(t))

w
γ+1
γ (σ(t)). (3.12)

Let

B =
z∆

+ (t)

zσ(t)
, A =

z(t)γβn−2(t, T )δ∆(t)

a1(t)z
γ+1
γ (σ(t))

, y = wσ(t).

Then, by Lemma 2.6 and (3.12), for all t ≥ T ,

w∆(t) ≤ −z(t)Q(t) +
1

(γ + 1)γ+1

aγ1(t)(z∆
+ (t))γ+1

zγ(t)βγn−2(t, T )(δ∆(t))γ
.

Integrating the above inequality from T to t for t ≥ T , we get∫ t

T

[
z(s)Q(s)− 1

(γ + 1)γ+1

aγ1(s)(z∆
+ (s))γ+1

zγ(s)βγn−2(s, T )(δ∆(s))γ

]
∆s ≤ w(T )− w(t) < w(T ).

By taking the lim sup on both sides as t→∞, we obtain a contradiction to (C3). Therefore,

every solution of Eq.(1.3) either oscillates or tends to zero as t→∞.

Part 4: Suppose that (C4) holds.

From (3.11) and (3.12), we have that for H ∈ H and t ≥ T∫ t

T
H(t, s)z(s)Q(s)∆s ≤ −

∫ t

T
H(t, s)w∆(s)∆s+

∫ t

T
H(t, s)wσ(s)

z∆
+ (s)

zσ(s)
∆s

−
∫ t

T
H(t, s)

z(s)γβn−2(δ(s), T )δ∆(s)

a1(s)z
γ+1
γ (σ(s))

w
γ+1
γ (σ(s))∆s

≤ H(t, T )w(T ) +

∫ t

T

[
H∆
s (t, s) +H(t, s)

z∆
+ (s)

zσ(s)

]
wσ(s)∆s

−
∫ t

T
H(t, s)

z(s)γβn−2(δ(s), T )δ∆(s)

a1(s)z
γ+1
γ (σ(s))

w
γ+1
γ (σ(s))∆s

≤ H(t, T )w(T ) +

∫ t

T

[
C+(t, s)

]
wσ(s)∆s

−
∫ t

T
H(t, s)

z(s)γβn−2(δ(s), T )δ∆(s)

a1(s)z
γ+1
γ (σ(s))

w
γ+1
γ (σ(s))∆s.

Let

B = C+(t, s), A = H(t, s)
z(s)γβn−2(δ(s), T )δ∆(s)

a1(s)z
γ+1
γ (σ(s))

, y = wσ(s).
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By Lemma 2.6, for all t ≥ T ,∫ t

T
H(t, s)z(s)Q(s)∆s ≤ H(t, T )w(T )

+

∫ t

T

[C+(t, s)]γ+1(zσ(s))γ+1aγ1(s)

βγn−2(δ(s), T )(δ∆(s))γHγ(t, s)(γ + 1)γ+1zγ(s)
∆s,

i.e.,

w(T ) ≥ 1

H(t, T )

∫ t

T

[
H(t, s)z(s)Q(s)

− [C+(t, s)]γ+1aγ1(s)

βγn−2(δ(s), T )(δ∆(s))γHγ(t, s)(γ + 1)γ+1zγ(s)

]
∆s.

Taking the lim sup on both sides as t→∞, we obtain a contradiction to (C4). Therefore,

every solution of Eq.(1.3) either oscillates or tends to zero as t→∞.

When n is even. From Lemma 2.4, (2.4) holds. Similar to above four parts, we can show

that every solution of Eq.(1.3) is oscillatory. This completes the proof. �

Theorem 3.2 Let γ ≥ 1. Suppose that (2.1) and either (2.2) or (2.3) hold. For sufficiently

large T ∈ T and z ∈ C1
rd(T, (0,∞)), one of the following two conditions is satisfied:

(I) lim sup
t→∞

∫ t

T

[
z(s)Q(s)− a1(s)(z∆(s))2

4γβ∗(δ(s), T )z(s)δ∆(s)

]
∆s =∞,

(II) there exists H ∈ H such that

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)z(s)Q(s)− a1(s)C2(t, s)

4γz(s)δ∆(s)β∗(δ(s), T )H(t, s)

]
∆s =∞,

where β∗(t, T ) = βγ−1
n−1(t, T )βn−2(t, T ). Then

(i) every solution of Eq.(1.3) either oscillates or tends to zero as t→∞ when n is odd,

(ii) every solution of Eq.(1.3) is oscillatory when n is even.

Proof Assume that Eq.(1.3) has a non-oscillatory solution x(t). Without loss of generality,

we may suppose that x(t) is eventually positive. Then, Lemma 2.4 and Lemma 2.5 hold, and

by (H4) there exists a sufficiently large T ∈ [t0,∞) such that x(t) > 0 and x(δi(t)) > 0 (i =

0, 1, · · · , k) for t ≥ T .

When n is odd, from Lemma 2.4 we see that (2.4) holds or limt→∞ x(t) = 0. If (2.4)

holds, we separate the rest of the proof into two parts.

Part one: Suppose that (I) holds.

Define w(t) as in (5.4). Because x(t) > 0, σ(t) ≥ t, by (3.2), (3.5) and (3.6), we get that

w∆(t) ≤ −z(t)Q(t) +
z∆(t)

zσ(t)
wσ(t)− (r(t)Sγn−1(t))σ

z(t)γxγ−1(δ(t))x∆(δ(t))δ∆(t)

xγ(δσ(t))xγ(δ(t))
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≤ −z(t)Q(t) +
z∆(t)

zσ(t)
wσ(t)− z(t)γxγ−1(δ(t))x∆(δ(t))δ∆(t)

(r(t)Sγn−1(t))σ(zσ(t))2
(wσ(t))2.

From (3.8) and Lemma 2.4, we get

w∆(t) ≤ −z(t)Q(t) +
z∆(t)

zσ(t)
wσ(t)− z(t)δ∆(t)

(zσ(t))2r(σ(t))

xγ−1(δ(t))

Sγ−1
n−1(δ(t))

x∆(δ(t))

Sn−1(δ(t))
(wσ(t))2

≤ −z(t)Q(t) +
z∆(t)

zσ(t)
wσ(t)− z(t)δ∆(t)

a1(t)(zσ(t))2
β∗(δ(t), T )(wσ(t))2.

By completing the square for wσ(t) on the right-hand side, we have

w∆(t) ≤ −z(t)Q(t) +
a1(t)(z∆(t))2

4γβ∗(δ(t), T )z(t)δ∆(t)
.

Integrating the above inequality from T to t for t ≥ T , we get∫ t

T

[
z(s)Q(s)− a1(s)(z∆(s))2

4γβ∗(δ(s), T )z(s)δ∆(s)

]
∆s ≤ w(T )− w(t) < w(T ).

Taking the lim sup on both sides as as t → ∞, we obtain a contradiction to (I). Therefore,

every solution of Eq.(1.3) either oscillates or tends to zero as t→∞.

Part two: Suppose that (II) holds.

The proof is similar to Part 4 of Theorem 3.1 and Part one of Theorem 3.2.

When n is even. From Lemma 2.4, (2.4) holds. Similarly, we can show that every solution

of Eq.(1.3) is oscillatory. The proof is completed. �

4. Examples

Example 4.1 Consider the equation(
t−1Φ 1

2
(Sn(t))

)∆
+ t−

1
2 Φ 1

2
(x(t+ 1)) + t−2Φ 19

3
(x(t− 1)) + t−3Φ 1

3
(x(t+ 2)) = 0, t ∈ T

where Sn(t) satisfies Eq.(1.3), ai(t) = t−1 (1 ≤ i ≤ n), T = [2,∞)R. Here, we have

(1) n ≥ 2, γ = α0 = 1
2 , α1 = 19

3 , α2 = 1
3 ;

(2) r(t) = t−1, q0(t) = t−
1
2 , q1(t) = t−2, q2(t) = t−3;

(3) δ0(t) = t+ 1, δ1(t) = t− 1 and δ(t) = t− 1.

Clearly, ∫ ∞
t0

1

r1/γ(t)an(t)
∆t =

∫ ∞
2

t3∆t =∞,∫ ∞
t0

1

ai(t)
∆t =

∫ ∞
2

t∆t =∞, 1 ≤ i ≤ n,
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hence (H1)-(H4) hold. Note that∫ ∞
2

2∑
i=0

q0(s)∆s =

∫ ∞
2

(
s−

1
2 + s−2 + s−3

)
∆s ≥

∫ ∞
2

s−
1
2 ∆s =∞,

i.e., (2.2) holds. Let η1 = 1
36 , η2 = 35

36 . Then η1, η2 satisfies Lemma 2.1. With z(t) = 1 we

see that for sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T

[
Q(s)z(s)− 1

(γ + 1)γ+1

aγ1(s)(z∆
+ (s))γ+1

zγ(s)βγn−2(δ(s), T )(δ∆(s))γ

]
∆s

= lim sup
t→∞

∫ t

T

[
s−

1
2 +

(
36s−2

) 1
36
(36

35
s−3
) 35

36

]
∆s

≥ lim sup
t→∞

∫ t

T
s−

1
2 ∆s =∞.

Hence, the condition (C3) of Theorem 3.1 is satisfied.

By Theorem 3.1, every solution of Eq.(1.3) either oscillates or tends to zero as t → ∞
when n is odd and oscillatory when n is even. �

Example 4.2 Consider the equation(
tΦ2(Sn(t))

)∆
+ Φ2(x(t)) + 2Φ3(x(t− 1)) + 3t−3Φ 3

2
(x(t+ 2)) = 0, t ∈ T

where Sn(t) satisfies Eq.(1.3), T = [1,∞)R, ai(t) = t−4(1 ≤ i ≤ n). Here, we have

(1) n ≥ 2, k = 2, γ = α0 = 3, α1 = 3, α2 = 3
2 ;

(2) r(t) = t, q0(t) = 1, q1(t) = 2, q2(t) = 3t−3;

(3) δ0(t) = t, δ1(t) = t− 1, δ2(t) = t+ 2 and δ(t) = t− 1.

Clearly, ∫ ∞
t0

1

r1/γ(t)an(t)
∆t =

∫ ∞
1

t
7
2 ∆t =∞,∫ ∞

t0

1

ai(t)
∆t =

∫ ∞
1

t4∆t =∞, (1 ≤ i ≤ n)

hence (H1)-(H4) hold. Note that∫ ∞
1

[(∫ ∞
v

(
∫∞
s

∑k
i=0 qi(u)∆u)

1
γ

r
1
γ (s)an−1(s)

∆s

)/
an−2(v)

]
∆v

=

∫ ∞
1

[(∫ ∞
v

(
∫∞
s (1 + 2 + 3u−3)∆u)

1
2

s
1
2 s−4

∆s

)/
v−4

]
∆v

≥
∫ ∞

1

(∫ ∞
v

(
∫∞
s (3u−3)∆u)

1
2

s
1
2 s−4

∆s

)
v4∆v

14
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≥
∫ ∞

1

(∫ ∞
v

s
5
2 ∆s

)
v4∆v =∞,

i.e., (2.3) holds. Let η1 = 1
3 , η2 = 2

3 . Then η1, η2 satisfies Lemma 2.1. With z(t) = 1 we see

that for sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T
Q(s)∆s = lim sup

t→∞

∫ t

T

[
1 + (3× 2)

1
3

(3

2
× 3s−3

) 2
3

]
∆s =∞.

Hence, the condition (I) of Theorem 3.2 is satisfied. By Theorem 3.2, every solution of

Eq.(1.3) either oscillates or tends to zero as t→∞ when n is odd and is oscillatory when n

is even. �
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Abstract: Let n, k be positive integers satisfying n ≥ 2k + 4, a 6= 0 be a complex

number, and let F be a family of functions meromorphic in a domain D, if for each f ∈ F ,

fn + af (k) and gn + ag(k) share b, and all zeros have multiplicity at least k + 1, then F is

normal in D.

Keywords : meromorphic function; normal family; shared value.

1. Introduction and results

In this paper, we denote by C the whole complex plane. Let f be a meromorphic

function in a domain D ⊂ C. For a ∈ C, set Ef (a) = {z ∈ D : f(z) = a}. We say that

two meromorphic functions f and g share the value a provided that Ef(a) = Eg(a) in D.

When a = ∞ the zeros of f − a means the poles of f .

Let F a family of meromorphic functions defined on D ⊂ C. F is said to be normal

on D, in the sense of Montel, if for any sequence fj ∈ F there exists a subsequence fnj

converges spherically locally uniformly on D, to a meromorphic function or ∞ (see [1],

[2], [3]).

According to Bloch’s principle, every condition which reduces a meromorphic function

in the plane C to a constant, makes a family of meromorphic functions in a domain D

normal. It is also more interesting to find normality criteria from the point of view of

shared values. In this area, Schwick[4] first proved an interesting result that a family

∗Xuan Zuxing is the corresponding author and he is supported in part by Information Processing

Academic Subject of BUU.
1
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of meromorphic functions in a domain is normal if in which every function shares three

distinct finite complex numbers with its first derivatives. And later, Sun[5] proved that a

family of meromorphic functions in a domain is normal if in which each pair of functions

share three fixed distinct values, which is an improvement of the famous Montel’s Normal

Criterion [6] by the idea of shared values. More results about normality criteria concerning

shared values can be found, for instance, in [7-9] and so on.

In 2008, Zhang[10] proved

Theorem A. (see [10]). let F be a family of functions meromorphic in a domain D, n

be a positive integer and a, b be two constants such that a 6= 0,∞ and b 6= ∞. If n ≥ 4

and for each f and g in F , f ′ − afn and g′ − agn share the value b, then F is normal in

D.

In this paper,we replace f ′ by f (k) in Theorem A and obtain the following theorem.

Theorem 1. Let n, k be a positive integers satisfying n ≥ 2k + 4, a 6= 0,∞ and b 6= ∞
be complex numbers, and let F be a family of functions meromorphic in a domain D. If

for each f, g ∈ F , fn+af (k) and gn+ag(k) share b, and all zeros have multiplicity at least

k + 1, then F is normal in D.

Example: Let D = {z : |z| < 1} and F = {fn} where

fn(z) =
1

n 4
√
z
, z ∈ D, n = 1, 2, 3, . . . .

Clearly f ′′
n + f 9

n = 5n8+5

8n9
4
√
z9
. So for each pair m,n, f ′′

n + f 7
n and f ′′

m + f 7
m share 0 in D, but

F is not normal at the point z = 0 since f ♯
n(

1
n4 ) =

n4

4(1+n)
→ ∞(n → ∞). This example

show that Theorem 1 is not valid if f doesn’t satisfy that all zeros have multiplicity at

least k + 1.

2.Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1([8]). Let F be a family of functions meromorphic on the unit disc, all of

whose zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such that

|f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not normal, there exist, for each 0 ≤ α ≤ k,

a) a number 0 < r < 1;

b) points zn, |zn| < r;

c) functions fn ∈ F ; and

d) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly with respect to the spherical

2
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metric, where g is a nonconstant meromorphic function on C, all of whose zeros have

multiplicity at least k, such that g♯(ξ) ≤ g♯(0) = kA + 1. In particular, g has order at

most two; and, in case g is an entire function, it is of exponential type.

Lemma 2.2 [11] Let f be a meromorphic function, then we have

T (r, f) < N(r, f) +N(r,
1

f
) +N(r,

1

f − 1
)−N(r,

1

f ′ ) + S(r, f), (2.1)

where

S(r, f) = 2m(r,
f ′

f
) +m(r,

f ′

f − 1
) + log|192f(0)(f(0)− 1)

f ′(0)
|.

Lemma 2.3 Let f be a transcendental meromorphic function, n and k be two integers

and n ≥ 2k + 4, and all zeros of f are of multiplicity greater than k + 1, then fn + af (k)

assumes every finite complex value b infinitely often.

Proof: Let ψ(z) = af(k)(z)−b

fn(z)
, and suppose that ψ(z) = −1 has only finite number of

roots. Then by Lemma 2.2 we have

T (r, ψ) < N(r, ψ) +N(r,
1

ψ
) +N(r,

1

ψ + 1
) + S(r, ψ). (2.2)

Now the poles of ψ(z) occur only at zeros of f(z), and those poles which are not simul-

taneously zeros of af (k) − b have multiplicity at least n. Zeros of ψ(z) can occur only at

zeros of af (k) − b which are not poles of f(z). Thus

N(r, ψ) +N(r,
1

ψ
) ≤ 1

n
N(r, ψ) +N(r,

1

af (k) − b
) +N(r, f)

≤ 1

n
T (r, ψ) + T (r, f (k)) +N(r, f). (2.3)

By the first fundamental theorem, we have

N(r, ψ) +N(r,
1

ψ
) ≤ 1

n
T (r, ψ) + T (r, f) + (k + 1)N(r, f) + S(r, f)

≤ 1

n
T (r, ψ) + (k + 2)T (r, f) + S(r, f). (2.4)

Take (2.4) into (2.1), we have

(1− 1

n
)T (r, ψ) < (k + 2)T (r, f) + S(r, f). (2.5)

On the other hand,

nT (r, f) = T (r, fn) = T (r,
af (k) − b

ψ
)

≤ T (r, f (k)) + T (r, ψ) +O(1)

≤ (k + 1)T (r, f) + T (r, ψ) + S(r, f),
3
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that is

(n− k − 1)T (r, f) ≤ T (r, ψ) + S(r, f). (2.6)

Combining (3.5) and (3.6) we obtain

(1− 1

n
)T (r, ψ) < [

k + 2

n− k − 1
+O(1)]T (r, ψ) (2.7)

which contradicts with the condition n ≥ 2k + 4.

Thus we proved Lemma 2.3.

Lemma 2.4 Let f be a nonconstant rational function, n and k be two integers and

n ≥ 2k + 4, and all zeros of f are of multiplicity greater than k + 1, then fn + af (k) has

at least two distinct zeros.

Proof: Case 1. If fn + af (k) has no zeros, it is easy to see that f is not a polynomial,

then f is rational function but not a polynomial.

Let f = P
(z−z1)m1 (z−z2)m2 ···(z−zt)mt

= P
Q
, f (k) = P1

Q1

. We denote p = degP , and q = degQ,

then degQ1 = q + kt, degP1 = p+ k(t− 1).

fn + af (k) =
P nQ1 + aP1Q

n

QnQ1

. (2.8)

deg(P nQ1) = np + q + kt, deg(P1Q
n) = p + k(t− 1) + nq.

If p ≥ q, then np + q + kt − (p + k(t − 1) + nq) = (n − 1)(p − q) + k > 0, that is

deg(P nQ1) > deg(P1Q
n); If p < q, since n ≥ 2k+4, then np+q+kt−(p+k(t−1)+nq) =

(n− 1)(p− q)+ k < 0, that is deg(P nQ1) < deg(P1Q
n), thus fn+ af (k) have zeros, which

is a contradiction.

Case 2. fn + af (k) has only one distinct zero z0.

If f is a polynomial, then fn + af (k) = A(z − z0)
l. From the condition that all zeros

of f are of multiplicity greater than k+1, we can deduce that z0 is the only zero of f , so

f = b(z − z0)
m, m ≥ k + 1, where b is a constant and m is a positive integer.

f (k) = bm(m − 1) · · · (m− k + 1)(z − z0)
m−k (2.9)

and

fn + af (k) = An(z − z0)
nl + c(z − z0)

m−k = (z − z0)
m−k[A(z − z0)

nl−m+k + C], (2.10)

thus fn + af (k) has two distinct zeros, contradiction.

So f is a non-polynomial rational function, then we can assume that

f(z) =
A(z − z0)

m

(z − z1)n1(z − z2)n2 · · · (z − zs)ns
. (2.11)

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1289 Xuan Zuxing et al 1286-1292



where A is a constant, and s is a positive integer. By integration (2.4) we get

f (k) =
(z − z0)

m−kg(z)

(z − z1)n1+1(z − z2)n2+1 · · · (z − zs)ns+1
, (2.12)

From (2.11) and (2.12) we obtain

fn + af (k) =
An(z − z0)

nm + a(z − z0)
m−kg(z)(z − z1)

(n−1)n1−k · · · (z − zs)
(n−1)ns−k

(z − z1)n1(z − z2)n2 · · · (z − zs)ns

=
(z − z0)

m−k[An(z − z0)
nm−m+k + ag(z)(z − z1)

(n−1)n1−k · · · (z − zs)
(n−1)ns−k]

(z − z1)n1(z − z2)n2 · · · (z − zs)ns
.(2.13)

On the other hand, since fn + af (k) has only one zero, we have

fn + af (k) =
C(z − z0)

l

(z − z1)n1(z − z2)n2 · · · (z − zs)ns
. (2.14)

Combining (2.13) and (2.14) we have

C(z − z0)
l = (z − z0)

m−kg1(z),

where g1(z) = An(z−z0)nm−m+k+ag(z)(z−z1)(n−1)n1−k · · · (z−zs)(n−1)ns−k. If l > m−k,
then g1(z) has a zero z0, which is impossible. If l = m − k, g1(z) = C, that is An(z −
z0)

nm−m+k+ag(z)(z− z1)(n−1)n1−k · · · (z− zs)(n−1)ns−k = C, thus nm−m+k = (n−1)N ,

where N = n1 + n2 + · · · + ns, thus (n − 1)(N − m) = k, which is impossible since

n ≥ 2k + 4.

The proof of Lemma 2.4 is completed.

3. The Proof of Theorem 1

We may assume that D = ∆, the unit disc. Suppose that F is not normal on ∆. Then

by Lemma1, we can find fj ∈ F, zj ∈ ∆, and ρj → 0+ such that gj(ξ) = ρ
k

n−1

n fj(zj +

ρjξ) converges locally uniformly with respect to the sphericity metric to a nonconstant

meromorphic function g on C, all of whose zeros have multiplicity at least k, which satisfies

g♯(ξ) ≤ g♯(0) = kA+ 1, in particular, g has order at most two.

On every compact subset of C we have

ρ
nk
n−1

j [fn
j + af

(k)
j − b] = gnj (ξ) + ag

(k)
j (ξ)− ρ

nk
n−1

j b→ gn(ξ) + ag(k)(ξ). (3.1)

If gn(ξ) + ag(k)(ξ) ≡ 0, then g has no poles and g is not a polynomial, thus g is a

transcendental entire function. From gn(ξ) + ag(k)(ξ) ≡ 0 we obtain gn−1 = −ag(k)

g
, by

the first fundamental theorem we have

(n− 1)T (r, g) = (n− 1)m(r, g) = m(r, gn−1) = m(r,−ag
(k)

g
) = S(r, g),

5
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since n ≥ 2k + 4, we obtain T (r, g) = S(r, g), which is a contradiction, thus gn(ξ) +

ag(k)(ξ) 6≡ 0.

By Lemma 2.3 and Lemma 2.4 we obtain that gn + ag(k) has at least two distinct

zeros.

Next we prove that gn + ag(k) has only one distinct zero.

Let ξ0 and ξ∗0 be two distinct zeros of gn + ag(k). We choose a small δ > 0 such that

D1 ∩D2 = ∅, where D1 = ξ ∈ C : |ξ − ξ0| < δ and D2 = ξ ∈ C : |ξ − ξ∗0 | < δ.

From (3.1), Hurwitz’s theorem implied that there exist points ξj ∈ D1 and ξ∗j ∈ D2

such that for sufficiently large j

fn
j (zj + ρjξj) + af

(k)
j (zj + ρjξj) = b,

fn
j (zj + ρjξ

∗
j ) + af

(k)
j (zj + ρjξ

∗
j ) = b.

By the assumption of Theorem 1, we see that for each fm ∈ F

fn
m(zj + ρjξj) + af (k)

m (zj + ρjξj) = b,

fn
m(zj + ρjξ

∗
j ) + af (k)

m (zj + ρjξ
∗
j ) = b.

Fix m and let j → ∞, we have zj + ρjξj → z0, and zj + ρjξ
∗
j → z0, and

fn
m(z0) + af (k)

m (z0) = b.

Since the zeros of fn
m+af

(k)
m −b have no accumulation points, we deduce that zj+ρjξj = z0

and zj+ρjξ
∗
j = z0, for sufficiently large j. Hence ξj = ξ∗j = (z0−zj)/ρj, which contradicts

the fact that ξj ∈ D1, ξ
∗
j ∈ D2 and D1 ∩D2 = ∅.

Thus we complete the proof of Theorem 1.
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Abstract In this paper, we introduce a general iterative algorithm for finding a common element of

the set of common fixed points of an finite family of nonexpansive mappings and the set of solutions of

class of variational inequalities in uniformly convex and q-uniformly smooth Banach space. We prove

that the sequence generated by the iterative algorithm converges strongly to the unique solution of the

variational inequality under suitable conditions. Our result improves and extends the recent results

announced by many others.

Keywords Strong convergence, Fixed point, nonexpansive mapping, Variational inequality, Banach

space.
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1. Introduction

Throughout this paper, we denote by X and X∗ a real Banach space and the dual space

of X, respectively. Let C be a subset of X and T be a mapping. We denote the fixed points

of T by F (T ) = {x ∈ C : Tx = x} and denote → and ⇀ by strong and weak convergence,

respectively. Let q > 1 be a real number.

A Banach space X is said to be strictly convex, if whenever x and y are not colinear, then

‖x+ y‖ < ‖x‖+ ‖y‖ .

The modulus of convexity of X is defined by

δX(ε) = inf

{
1−

∥∥∥∥1

2
(x+ y)

∥∥∥∥ : ‖x‖ , ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}

for all ε ∈ [0, 2]. X is said to be uniformly convex if δX(0) = 0, and δX(ε) > 0 for all 0 < ε ≤ 2.

It is known that every uniformly convex Banach space is strictly convex and reflexive(see [1]).

Let S(X) = {x ∈ X : ‖x‖ = 1}. Then the norm of X is said to be Gâteaux differentiable if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S(X). In this case, X is said to be smooth. Let ρX : [0,∞) −→ [0,∞) be

the modulus of smoothness of X defined by

ρX(t) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(X), ‖y‖ ≤ t

}
.

∗ Corresponding author.

E-mail addresses: youxuexiao@126.com(Xuexiao You), dafangzhao@163.com(Dafang Zhao),

huchang1004@aliyun.com(Changsong Hu).
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A Banach space X is said to be uniformly smooth if
ρX(t)

t
→ 0 as t→ 0. A Banach space

X is said to be q-uniformly smooth(q > 1), if there exists a fixed constant c > 0 such that

ρX(t) ≤ ctq. It is easy to see that X is q-uniformly smooth, then q ≤ 2 and X is uniformly

smooth. The(generalized)duality mapping Jq : X → 2X
∗

is defined by

Jq(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖q , ‖x∗‖ = ‖x‖q−1

}
, ∀x ∈ X,

where 〈·, ·〉 denote the duality pairing between X and X∗. In particular, J = J2 is called the

normalized duality mapping and Jq(x) = ‖x‖q−2
J2(x) for x 6= 0. If X is a Hilbert space,

then J = I where I is the identity mapping. Further, we have the following properties of the

generalized duality mapping Jq:

(1) Jq(x) = ‖x‖q−2
J2(x) for all x ∈ X with x 6= 0.

(2) Jq(tx) = tq−1Jq(x) for all x ∈ X and t ∈ [0,∞).

(3) Jq(−x) = −Jq(x) for all x ∈ X.

It is well-known that if X is smooth, then Jq is single-valued, which is denoted by jq. The

duality mapping Jq from a smooth Banach space X into X∗ is said to be weakly sequentially

continuous generalized duality mapping if for all {xn} ⊂ X with xn ⇀ x implies Jq(xn) ⇀ Jq(x).

Definition 1.1 A mapping T : C → X is said to be:

(1) L-Lipschitzian if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L ‖x− y‖ , ∀x, y ∈ C. (1.1)

If 0 < L < 1, then T is a contraction and if L = 1, then T is a nonexpansive mapping.

(2) α-strongly accretive if there exists jq(x− y) ∈ Jq(x− y) and a constant α > 0 such that

〈Ax−Ay, jq(x− y)〉 ≥ α ‖x− y‖q , ∀x, y ∈ C. (1.2)

Remark 1.2 If X := H is a real Hilbert space, accretive and strongly accretive mappings co-

incide with monotone and strongly monotone mappings, respectively.

Recall that the normal Manns iterative algorithm was introduced by Mann [1] in 1953. Since

then, construction of fixed points for nonexpansive mappings and strict pseudo-contractions via

the normal Manns iterative algorithm has extensively investigated by many authors (see, e.g.

[2-8]).

variational inequality theory has emerged as an important tool in studying a wide class

of obstacle, unilateral, free, moving, equilibrium problems arising in several branches of pure

and applied sciences in a unified and general framework. Several numerical methods have been

developed for solving variational inequalities and related optimization problems, see [9-14,25-28]

and the references therein.

In 2010, Tian [11] introduced the general steepest-descent method

xn+1 = αnρf(xn) + (I − µαnF )Txn,∀n ≥ 0, (1.3)

where F is an L-Lipschitzian and η-strongly monotone operator. Under certain approximate

conditions, the sequence {xn} generated by (1.5) converges strongly to a fixed point of T , which
2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1294 Xuexiao You et al 1293-1306



solves the variational inequality:

〈(ρf − µF )x∗, x− x∗〉 ≤ 0,∀x ∈ Fix(T ).

Recently, Zhang et al. [12] proposed the following iterative algorithm:

xk+1 = αkγV (xk) + (I − µαkF )T kN · · ·T k1 (xk),∀k ≥ 0, (1.4)

where V is a L-Lipschitzian mapping, and F is a Lipschitzian and strongly monotone mapping,

T ki := (1− βik)I + βikTi.

{Ti}Ni=1 is a finite family of nonexpansive mappings of H. They obtained that under some

approximate assumptions on the operators and parameters, the sequence {xk} generated by

(1.6) converges strongly to the unique solution of the variational inequality:

〈(µF − γV )x∗, (x− x∗)〉 ≥ 0,∀x ∈ C =
N⋂
i=1

Fix(Ti).

On the other hand, Ceng et al. [16] investigated implicit and explicit iterative schemes for

finding the fixed points of a nonexpansive mapping T on a nonempty, closed and convex subset

C in a real Hilbert space H as follows:

xt = PC [tγV xt + (I − tµF )Txt] (1.5)

and

xn+1 = PC [αnγV xn + (I − αnµF )Txn],∀n ≥ 0, (1.6)

where V is a L-Lipschitzian mapping and F is a κ-Lipschitzian and η-strongly monotone op-

erator. Then they proved that under some approximate assumptions on the operators and

parameters, the sequences generated by (1.7) and (1.8) converge strongly to the unique solution

of the variational inequality

〈(µF − γV )x∗, x− x∗〉 ≥ 0,∀x ∈ Fix(T ). (1.7)

Pongsakorn et al. [17] introduced the following iterative process:

xn+1 = βnxn + (1− βn)PC [αnγSxn + (I − αnF )Txn],∀n ≥ 1, (1.8)

where PC is a metric projection from H onto C, {αn}, {βn} are sequences in (0, 1), S : C → H is

a Lipschitzian mapping, F : C → H is an invertible positive linear operator, and T : C → C is a

nonexpansive mapping. Then they proved strong convergence theorems under different control

conditions on {αn} and {βn}, the sequence {xn} generated by (1.10) converges to a fixed point

of T , which is a unique solution of some variational inequalities.

The following questions naturally arise in connection with above results:

Question 1. Can theorem of Zhang et al. [12] be extended from a real Hilbert space to a

general Banach space? such as q-uniformly smooth Banach space.

Question 2. Can we extend the iterative scheme of algorithm (1.6) to a more general iterative

scheme?

3
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The purpose of this paper is to give the affirmative answers to these questions mentioned

above, motivated by Tian [11], Zhang et al. [12], Ceng et al. [16] and Pongsakorn et al.

[17], we introduce a general iterative method. Under some suitable assumptions, we prove the

strong convergence theorems of such iterative scheme in q-uniformly smooth Banach space which

admits a weakly sequentially continuous generalized duality mapping. The results presented in

this article extend and generalize the corresponding results announced by many others in the

literature.

2. Preliminaries

Let C and D be nonempty subsets of a Banach space X such that C is nonempty closed

convex and D ⊂ C, then a mapping Q : C → D is sunny provided Q(x + t(x−Q(x))) = Q(x)

for all x ∈ C and t ≥ 0, whenever x + t(x − Q(x)) ∈ C. A mapping Q : C → D is retraction

if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from C onto D if

Q is a retraction from C onto D which is also sunny and nonexpansive. It is well known that if

X := H is a real Hilbert space, then a sunny nonexpansive retraction QC is coincident with the

metric projection from X onto C.

A subset D of C is called of a sunny nonexpansive retraction of C if there exists a sunny

nonexpansive retraction from C onto D.

In order to prove our main results, we need the following lemmas.

Lemma 2.1 ([15]). Let 1 < p <∞, q ∈ (1, 2], r > 0 be given.

(i) If X is uniformly convex, then there exists a continuous, strictly increasing and convex

function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p −Wp(λ)ϕ(‖x− y‖), x, y ∈ Br, 0 ≤ λ ≤ 1,

where Wp(λ) = λp(1− λ) + (1− λ)pλ, Br = {z ∈ X : ‖z‖ ≤ r}.
(ii) Let X be a real q-uniformly smooth Banach space, then there exists a constant Cq > 0 such

that

‖x+ y‖q ≤ ‖x‖q + q 〈y, jqx〉+ Cq ‖y‖q

for all x, y ∈ X.

Lemma 2.2 ([21]). Assume {αn} is a sequence of nonnegative real numbers satisfying the

property

αn+1 ≤ (1− γn)αn + δn

where {γn} is a sequence in (0, 1) and δn is a sequence such that

(i)
∞∑
n=0

γn =∞,

(ii) lim sup
n→∞

δn
γn
≤ 0 or

∞∑
n=1
|δn| <∞.

Then lim
n→∞

αn = 0.

Lemma 2.3 ([7]). Let C be a nonempty convex subset of a real uniformly convex Banach space

X and T : C → X be a nonexpansive mapping with F (T ) 6= ∅. Then I−T is demiclosed at zero.
4
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Lemma 2.4 ([20]). Let C ⊆ X be a nonempty set. T : C → X is said to be α-averaged

mapping if there exists some number α ∈ (0, 1) such that

T = (1− α)I + αS

for some nonexpansive mapping S.

(i) The composite of finitely many averaged mappings is averaged. In particular, if T1 is α1-

averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then both T1T2 and T2T1 are α-averaged,

where α = α1 + α2 − α1α2.

(ii) If the mapping {Ti}Ni=1 are averaged and have a common fixed point, then

N⋂
i=1

F (Ti) = F (T1 · · ·TN ).

In particular, if N = 2, we have F (T1)
⋂
F (T2) = F (T1T2) = F (T2T1).

Lemma 2.5 ([21], p.63). Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q
q−1

for arbitrary positive real numbers a, b.

Lemma 2.6 ([22]). Let C be a nonempty closed convex subset of a real q-uniformly smooth

Banach space X. Let V : C → X be a k-Lipschitz and η-strongly accretive operator with con-

stants k, η > 0. Let 0 < µ < ( qη
cqkq

)
1

q−1 and τ = µ(η − Cqµ
q−1kq

q ). Then for t ∈
(
0,min

{
1, 1

τ

})
,

the mapping S : C → X define by S := (I − tµV ) is a contraction with a constant 1− tτ .

Lemma 2.7 ([23]). Let C be a nonempty closed convex subset of a real smooth Banach space

X. Let C̃ be a nonempty subset of C. Let QC : C → C̃ be a retraction, and let j, jq be

the normalized duality mapping and generalized duality mapping on X, respectively. Then the

following are equivalent:

(i) QC is sunny and nonexpensive;

(ii) ‖QCx−QCy‖2 ≤ 〈x− y, j(QCx−QCy)〉 , ∀x, y ∈ C;

(iii) 〈x−QCx, j(y −QCx)〉 ≤ 0, ∀x ∈ C, y ∈ C̃;

(iv) 〈x−QCx, jq(y −QCx)〉 ≤ 0, ∀x ∈ C, y ∈ C̃.

3. Main results

Let C be a nonempty, closed and convex subset of a real q-uniformly smooth Banach space

X. Let QC be a sunny nonexpansive retraction from X onto C. Let F : C → X be a L-

Lipschitz and η-strongly accretive operator, V : C → X be α-Lipschitzian mapping and T be

a nonexpansive mapping such that F (T ) 6= ∅. Let 0 < µ < ( qη
cqLq )

1
q−1 , 0 < γα < τ with

τ = µ(η − Cqµ
q−1Lq

q ). For each t ∈
(
0,min

{
1, 1

τ

})
, we define the mapping St : C → C by

5
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Stx := QC [tγV x+ (I − tµF )Tx],∀x ∈ C.

It is easy to see that St is a contraction. Indeed, in terms of Lemma 2.6, we have

‖Stx− Sty‖ = ‖QC [tγV x+ (I − tµF )Tx]−QC [tγV y + (I − tµF )Ty]‖

≤ ‖[tγV x+ (I − tµF )Tx]− [tγV y + (I − tµF )Ty]‖

≤ tγ ‖V x− V y‖+ ‖(I − tµF )Tx− (I − tµF )Ty‖

≤ tγα ‖x− y‖+ (1− tτ) ‖x− y‖

= (1− t(τ − γα)) ‖x− y‖ .

Hence, St has a unique fixed point, denoted by xt, which uniquely solve the fixed point equation

xt = QC [tγV xt + (I − tµF )Txt]. (3.1)

Lemma 3.1 Let C be a nonempty, closed and convex subset of a real uniformly convex and

q-uniformly smooth Banach space X which admits a weakly sequentially continuous generalized

duality mapping jq from x into X∗. Let QC be a sunny nonexpansive retraction. Let F : C → X

be a L-Lipschitz and η-strongly accretive operator, V : C → X be α-Lipschitzian mapping and

T : C → C be a nonexpansive mapping such that F (T ) 6= ∅. Let 0 < µ < ( qη
cqLq )

1
q−1 and

0 < γα < τ with τ = µ(η − Cqµ
q−1Lq

q ). For each t ∈
(
0,min

{
1, 1

τ

})
, let {xt} defined by (3.1),

then {xt} converges strongly to x∗ ∈ F (T ) as t → 0, which x∗ is the unique solution of the

variational inequality

〈(γV − µF )x∗, jq(x− x∗)〉 ≤ 0, ∀x ∈ F (T ). (3.2)

Proof. We observe that

Cqµ
q−1Lq

q
> 0⇔ η − Cqµ

q−1Lq

q
< η

⇔ µ

(
η − Cqµ

q−1Lq

q

)
< µη

⇔ τ < µη. (3.3)

It follows that

0 < γα < τ < µη. (3.4)

First, we show the uniqueness of solution of the variational inequality (3.2). Suppose that x̃ ,

x∗ are solutions of (3.2), then

〈(γV − µF )x∗, jq(x− x∗)〉 ≤ 0, ∀x ∈ F (T ). (3.5)

and

〈(γV − µF )x̃, jq(x− x̃)〉 ≤ 0, ∀x ∈ F (T ). (3.6)
6
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Adding up (3.5) and (3.6), we have

0 ≥ 〈(µF − γV )x̃− (µF − γV )x∗, jq(x̃− x∗)〉

= µ 〈Fx̃− Fx∗, jq(x̃− x∗)〉 − γ 〈V x̃− V x∗, jq(x̃− x∗)〉

≥ µη‖x̃− x∗‖q − γα‖x̃− x∗‖q

≥ (µη − γα)‖x̃− x∗‖q.

Therefore, x̃ = x∗ and the uniqueness is proved. Below we use x∗ to denote the unique solution

of (3.2).

We observe that {xt} is bounded. Indeed, taking x̄ ∈ F (T ), then, we have

‖xt − x̄‖ ≤ ‖tγV xt + (I − tµF )Txt − x̄‖

= ‖t(γV xt − µF x̄) + (I − tµF )Txt − (I − tµF )x̄‖

≤ tγ ‖V xt − V x̄‖+ t ‖γV x̄− µF x̄‖+ (1− tτ) ‖Txt − x̄‖

≤ (1− t(τ − γα)) ‖xt − x̄‖+ t ‖γV x̄− µF x̄‖ .

therefore, ‖xt − x̄‖ ≤ ‖γV x̄−µFx̄‖τ−γα , so are {V xt} and {FTxt}.
By the definition of {xt}, we have

‖xt − Txt‖ = ‖QC [tγV xt + (I − tµF )Txt −QCTxt]‖

≤ ‖[tγV xt + (I − tµF )Txt − Txt]‖

= t ‖γV xt − µFTxt‖ → 0 as t→ 0. (3.7)

Next, we prove that xt → x̃ as t→ 0.

Setting yt = tγV xt + (I − tµF )Txt, we obtain xt = QCyt. Assume that {tn} ⊂ (0, 1) is a

sequence such that tn → 0 as n → ∞. Since {xt} is bounded and X is reflexive, there exists a

subsequence {xtn} of {xt} such that xtn ⇀ x̃.

we claim ‖xtn − x̃‖ → 0.

‖xtm − x̃‖
q

= 〈xtm − x̃, jq(xtm − x̃)〉

= 〈QCytm − ytm + ytm − x̃, jq(xtm − x̃)〉

≤ 〈tmγV xtm + (I − tmµF )Txtm − x̃, jq(xtm − x̃)〉

= 〈tm(γV xtm − µF x̃) + (I − tmµF )Txtm − (I − tmµF )x̃, jq(xtm − x̃)〉

= tm 〈γV xtm − µF x̃, jq(xtm − x̃)〉+ 〈(I − tmµF )Txtm − (I − tmµF )x̃, jq(xtm − x̃)〉

≤ tm 〈γV xtm − µF x̃, jq(xtm − x̃)〉+ (1− tmτ)‖xtm − x̃‖
q
.

Thus, we have

‖xtm − x̃‖
q ≤ 1

τ
〈γV xtm − µF x̃, jq(xtm − x̃)〉

=
1

τ
〈γ(V xtm − V x̃) + (γV x̃− µF x̃), jq(xtm − x̃)〉

≤ 1

τ
γα‖xtm − x̃‖

q
+

1

τ
〈γV x̃− µF x̃, jq(xtm − x̃)〉

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1299 Xuexiao You et al 1293-1306



which implies that

‖xtn − x̃‖
q ≤ 1

τ − γα
〈γV x̃− µF x̃, jq(xtn − x̃)〉 . (3.8)

By (3.8), we get that ‖xtn − x̃‖ → 0. From (3.7), (3.8) and Lemma 2.3, we have x̄ ∈ F (T ).

Next, we show that x∗ solves the variational inequality (3.2). Since

xt = QCyt = QCyt − yt + yt,

we derive that

(µF − γV )xt =
1

t
(QCyt − yt)−

1

t
(I − T )xt + µ(Fxt − FTxt). (3.9)

Note that I − T is accretive(i.e.〈(I − T )x− (I − T )y, jq(x− y)〉 ≥ 0, for all x, y ∈ C). For all

z ∈ F (T ), it follows from (3.9) and Lemma 2.7 that

〈(µF − γV )xt, jq(xt − z)〉 =
1

t
〈QCyt − yt, jq(QCyt − z)〉 −

1

t
〈(I − T )xt − (I − T )z, jq(xt − z)〉

+ µ 〈Fxt − FTxt, jq(xt − z)〉

≤ µ 〈Fxt − FTxt, jq(xt − z)〉

≤ µ ‖Fxt − FTxt‖ ‖xt − z‖q−1

≤ ‖xt − Txt‖M (3.10)

where M = sup
{
µL‖xt − z‖q−1

}
, where t ∈

(
0,min

{
1, 1

τ

})
.

Now replacing t in (3.10) with tn and taking the limit as n → ∞, we noticing that

xtn − Txtn → x̄− T x̄ = 0 for x̄ ∈ F (T ), we obtain 〈(µF − γV )x̄− (µF − γV )x̄, jq(x̄− z)〉 ≤ 0.

That is, x̄ ∈ F (T ) is the solution of variational inequality (3.2). Consequently, x̄ = x∗ by

uniqueness. Therefore xt → x∗ as t→ 0. This completes the proof. �

Theorem 3.2 Let C be a nonempty, closed and convex subset of a real uniform convex and

q-uniformly smooth Banach space X which admits a weakly sequentially continuous generalized

duality mapping jq from X into X∗. Let QC be a sunny nonexpansive retraction. Let F : C → X

be a L-Lipschitz and η-strongly accretive operator, V : C → X be α-Lipschitzian mapping and

{Si}Ni=1 : C → C be a finite family of nonexpansive mappings such that Ω =
N⋂
i=1

F (Si) 6= ∅.

Define T ki := (1 − βik)I + βikSi, where βik ∈ (a, b) ⊂ (0, 1). For arbitrarily given x0 ∈ X and

0 < µ < ( qη
cqLq )

1
q−1 , let {xk} be the sequence generated iteratively by :

xk+1 = βkxk + (1− βk)QC [αkγV xk + (I − µαkF )T kN · · ·T k1 xk], ∀k ≥ 0 (3.11)

where 0 < γα < τ with τ = µ(η − Cqµ
q−1Lq

q ). Assume that {αk} ⊂ (0, 1) and {βk} ⊂ [0, 1)

satisfying the following conditions:

(i) lim
k→∞

αk = 0 and
∞∑
k=1

αk =∞;

(ii)
∞∑
k=1

|βk+1 − βk| <∞, lim sup
n→∞

βk < 1 and
∞∑
k=1

|αk+1 − αk| <∞;

(iii)
∞∑
k=1

∣∣βik+1 − βik
∣∣ <∞.

8
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Then the sequence {xk} converges strongly to the unique solution x∗ of the variational inequality:

〈(γV − µF )x∗, jq(x− x∗)〉 ≤ 0,∀x ∈ Ω. (3.12)

Proof. Set yk = QC [αnγV xk + (I − µαkF )T kN · · ·T k1 xk], then

xk+1 = βkxk + (1− βk)yk. (3.13)

Since our methods easily deduce the general case, we prove theorem 3.2 for N = 2. The proof

is divided into five steps.

Step 1. First we show that {xk} is bounded. Indeed, taking some p ∈ Ω, from (3.13) and

Lemma 2.6, we have

‖yk − p‖ =
∥∥QC [αkγV xk + (I − µαkF )T k2 T

k
1 xk]−QC(p)

∥∥
≤
∥∥αkγV xk + (I − µαkF )T k2 T

k
1 xk − p

∥∥
=
∥∥(I − µαkF )T k2 T

k
1 xk − (I − µαkF )p+ αk(γV xk − γV p) + αk(γV p− µFp)

∥∥
≤
∥∥(I − µαkF )T k2 T

k
1 xk − (I − µαkF )p

∥∥+ αk ‖γV xk − γV p‖+ αk ‖γV p− µFp‖

≤ (1− αkτ) ‖xk − p‖+ αkγα ‖xk − p‖+ αk ‖γV p− µFp‖

≤ [1− αk(τ − γα)] ‖xk − p‖+ αk ‖γV p− µFp‖ .

Also, it follows that

‖xk+1 − p‖ = ‖βkxk + (1− βk)yk − p‖

= ‖βk(xk − p) + (1− βk)(yk − p)‖

≤ βk ‖xk − p‖+ (1− βk) ‖yk − p‖

≤ βk ‖xk − p‖+ (1− βk)[1− αk(τ − γα)] ‖xk − p‖+ (1− βk)αk ‖γV p− µFp‖

= [1− αk(1− βk)(τ − γα)] ‖xk − p‖+ αk(1− βk) ‖γV p− µFp‖

= [1− αk(1− βk)(τ − γα)] ‖xk − p‖+ αk(1− βk)(τ − γα)
‖γV p− µFp‖

τ − γα
.

By induction, we have

‖xk+1 − p‖ ≤ max

{
‖x0 − p‖ ,

‖γV p− µFp‖
τ − γα

}
,∀k ≥ 0.

Hence {xk} is bounded. So are
{
T k2 T

k
1 (xk)

}
,
{
FT k2 T

k
1 (xk)

}
and {V (xk)}.

Step 2. We claim that

lim
k→∞

‖xk+1 − xk‖ = 0.

9
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We note that

‖yk+1 − yk‖

=
∥∥QC [αk+1γV xk+1 + (I − µαk+1F )T k+1

2 T k+1
1 xk+1]−QC [αkγV xk + (I − µαkF )T k2 T

k
1 xk]

∥∥
≤
∥∥[αk+1γV xk+1 + (I − µαk+1F )T k+1

2 T k+1
1 xk+1]− [αkγV xk + (I − µαkF )T k2 T

k
1 xk]

∥∥
≤ ‖αk+1γ(V xk+1 − V xk)‖+

∥∥(I − µαk+1F )T k+1
2 T k+1

1 xk+1 − (I − µαk+1F )T k2 T
k
1 xk

∥∥
+
∥∥(αk+1 − αk)(γV xk − µFT k2 T k1 xk)

∥∥
≤ αk+1γα ‖xk+1 − xk‖+ (1− αk+1τ)[‖xk+1 − xk‖+

∥∥T k+1
2 T k1 xk − T k2 T k1 xk

∥∥
+
∥∥T k+1

1 xk − T k1 xk
∥∥] + |αk+1 − αk| ·M1

= [1− αk+1(τ − γα)] ‖xk+1 − xk‖+ [(1− αk+1τ)[
∥∥T k+1

2 T k1 xk − T k2 T k1 xk
∥∥

+
∥∥T k+1

1 xk − T k1 xk
∥∥] + |αk+1 − αk| ·M1 (3.14)

where M1 is a fixed constant satisfying

M1 ≥ sup
k≥1
{
∥∥γV xk − µFT k2 T k1 xk∥∥}.

It follows from (3.13) and (3.14) that

‖xk+2 − xk+1‖ = ‖βk+1xk+1 + (1− βk+1)yk+1 − βkxk − (1− βk)yk‖

= ‖βk+1(xk+1 − xk) + (1− βk+1)(yk+1 − yk) + (βk+1 − βk)(xk − yk)‖

≤ βk+1 ‖xk+1 − xk‖+ (1− βk+1) ‖yk+1 − yk‖+ |βk+1 − βk| ‖xk − yk‖

≤ βk+1 ‖xk+1 − xk‖+ (1− βk+1)[1− αk+1(τ − γα)] ‖xk+1 − xk‖

+ (1− αk+1τ)(1− βk+1)[
∥∥T k+1

2 T k1 xk − T k2 T k1 xk
∥∥+

∥∥T k+1
1 xk − T k1 xk

∥∥]

+ (1− βk+1) |αk − αk−1| ·M1 + |βk+1 − βk| ·M2

≤ [1− αk+1(1− βk+1)(τ − γα)] ‖xk+1 − xk‖+ (1− βk+1)(1− αk+1τ)

[
∥∥T k+1

2 T k1 xk − T k2 T k1 xk
∥∥+

∥∥T k+1
1 xk − T k1 xk

∥∥]

+ (1− βk+1) |αk − αk−1| ·M1 + |βk+1 − βk| ·M2 (3.15)

where M2 ≥ sup
k≥1
{‖xk − yk‖}, then (3.5) reduces to the following:

‖xk+2 − xk+1‖ ≤ (1− γk) ‖xk+1 − xk‖+ δk.

where γk = αk+1(1 − βk+1)(τ − γα), δk = (1 − βk+1)(1 − αk+1τ)[
∥∥T k+1

2 T k1 xk − T k2 T k1 xk
∥∥ +∥∥T k+1

1 xk − T k1 xk
∥∥] + (1− βk+1) |αk − αk−1| ·M1 + |βk+1 − βk| ·M2. It is easily seen that

∞∑
k=1

γk =∞.

Note that ∥∥T k+1
1 xk − T k1 xk

∥∥ =
∥∥(1− β1

k+1)xk + β1
k+1S1xk − (1− β1

k)xk + β1
kS1xk

∥∥
=
∥∥(β1

k+1 − β1
k)(S1xk − xk)

∥∥
≤
∣∣β1
k+1 − β1

k

∣∣ (‖S1xk‖+ ‖xk‖). (3.16)
10
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Similarly, ∥∥T k+1
2 T k1 xk − T k2 T k1 xk

∥∥ ≤ ∣∣β2
k+1 − β2

k

∣∣ (∥∥S2T
k
1 xk

∥∥+
∥∥T k1 xk∥∥). (3.17)

From condition (iii), (3.16) and (3.17), we get that

∞∑
k=1

∥∥T k+1
1 xk − T k1 xk

∥∥<∞, ∞∑
k=1

∥∥T k+1
2 T k1 xk − T k2 T k1 xk

∥∥<∞. (3.18)

Then we have that
∞∑
n=1
|δk| <∞. Therefore, from Lemma 2.2, it follows that

lim
k→∞

‖xk+1 − xk‖ = 0. (3.19)

Step 3. We show that

lim
k→∞

∥∥xk − T k2 T k1 xk∥∥ = 0.

Since

‖xk − yk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − yk‖

≤ ‖xk − xk+1‖+ βk ‖xk − yk‖ ,

that is,

‖xk − yk‖ ≤
1

1− βk
‖xk − xk+1‖ .

It follows from (ii) and (3.19) that

lim
k→∞

‖xk − yk‖ = 0. (3.20)

By (i), we have∥∥yk − T k2 T k1 xk∥∥ =
∥∥PC [αkγV xk + (I − µαkF )T k2 T

k
1 xk]− PCT k2 T k1 xk

∥∥
≤
∥∥αkγV xk + (I − µαkF )T k2 T

k
1 xk − T k2 T k1 xk

∥∥
≤ αk

∥∥γV xk − µFT k2 T k1 xk∥∥→ 0 as k →∞. (3.21)

Moreover, we observe that∥∥xk − T k2 T k1 xk∥∥ ≤ ‖xk − yk‖+
∥∥yk − T k2 T k1 xk∥∥ , (3.22)

it follows from (3.20), (3.21) and (3.22) that

lim
k→∞

∥∥xk − T k2 T k1 xk∥∥ = 0. (3.23)

Step 4. We will show that

lim sup
k→∞

〈(γV − µF )x∗, jq(xk − x∗)〉 ≤ 0, (3.24)

where x∗ is the unique solution of (3.12). To show this, we take a subsequence {xkj} of {xk}
such that

lim sup
k→∞

〈(γV − µF )x∗, jq(xk − x∗)〉 = lim
j→∞

〈
(γV − µF )x∗, jq(xkj − x∗)

〉
.

11
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Without loss of generality, we may further assume that xkj ⇀ x̂ as j → ∞ due to reflexivity

of the Banach space X and boundness of {xk}. Since {βik} is bounded for i = 1, 2, we can

assume that βikj → βi∞ as j → ∞ where 0 < a ≤ βi∞ ≤ b < 1 for i = 1, 2. Define T∞i =

(1− βi∞)I + βi∞Si(i = 1, 2). From Lemma 2.4, we have

F (T∞1 T∞2 ) = F (T∞1 ) ∩ F (T∞2 ) = F (S1) ∩ F (S2).

Note that ∥∥∥T kji x− T∞i x
∥∥∥ ≤ ∣∣∣βikj − βi∞∣∣∣ (‖Six‖+ ‖x‖).

Hence, we deduce that

lim
j→∞

sup
x∈D

∥∥∥T kji x− T∞i x
∥∥∥ = 0, (3.25)

where D is an arbitrary bounded subset of X. Combine (3.23) and (3.25), we obtain∥∥xkj − T∞2 T∞1 xkj
∥∥

≤
∥∥∥xkj − T kj2 T

kj
1 xkj

∥∥∥+
∥∥∥T kj2 T

kj
1 xkj − T∞2 T

kj
1 xkj

∥∥∥+
∥∥∥T∞2 T

kj
1 xkj − T∞2 T∞1 xkj

∥∥∥
≤
∥∥∥xkj − T kj2 T

kj
1 xkj

∥∥∥+ sup
x∈D′

∥∥∥T kj2 x− T∞2 x
∥∥∥+ sup

x∈D′

∥∥∥T kj1 x− T∞1 x
∥∥∥ ,

where D′ is a bounded subset including {T kj1 xkj} and D′′ is a bounded subset including {xkj}.
Hence lim

j→∞

∥∥xkj − T∞2 T∞1 xkj
∥∥ = 0. From Lemma 2.3, we have x̂ ∈ F (T∞1 T∞2 ). Since Banach

space X has a weakly sequentially continuous generalized duality mapping jq : X → X∗, we

obtain that

lim sup
k→∞

〈(γV − µF )x∗, jq(yk − x∗)〉 = lim sup
k→∞

〈(γV − µF )x∗, jq(xk − x∗)〉

= lim
j→∞

〈
(γV − µF )x∗, jq(xkj − x∗)

〉
= 〈(γV − µF )x∗, jq(x̂− x∗)〉 ≤ 0.

Step 5. Finally we show that xk → x∗ as k →∞.

Set yk = QCuk for all k ≥ 0, where uk = αkγV xk + (I − µαkF )T k2 T
k
1 xk. From Lemma 2.7, we

have

‖yk − x∗‖q = 〈QCuk − x∗, jq(QCuk − x∗)〉

= 〈QCuk − uk, jq(QCuk − x∗)〉+ 〈uk − x∗, jq(QCuk − x∗)〉

≤ 〈uk − x∗, jq(yk − x∗)〉

=
〈
αkγV xk + (I − µαkF )T k2 T

k
1 xk − x∗, jq(yk − x∗)

〉
= αkγ 〈V xk − V x∗, jq(yk − x∗)〉+ αk 〈γV x∗ − µFx∗, jq(yk − x∗)〉

+
〈
(I − µαkF )T k2 T

k
1 xk − (I − µαkF )x∗, jq(yk − x∗)

〉
≤ αkαγ ‖xk − x∗‖ ‖yk − x∗‖q−1

+ αk 〈γV x∗ − µFx∗, jq(yk − x∗)〉

+ (1− αkτ) ‖xk − x∗‖ ‖yk − x∗‖q−1

= [1− αk(τ − αγ)] ‖xk − x∗‖ ‖yk − x∗‖q−1
+ αk 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉

= [1− αk(τ − αγ)](
1

q
‖xk − x∗‖q +

q − 1

q
‖yk − x∗‖q) + αk 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉 ,

12
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which implies that

‖yk − x∗‖q ≤ [1− αk(τ − αγ)]‖xk − x∗‖q + qαk 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉 . (3.26)

Again from (3.26) and Lemma 2.1, we obtain

‖xk+1 − x∗‖q = ‖βkxk + (1− βk)yk − x∗‖q

= ‖βk(xk − x∗) + (1− βk)(yk − x∗)‖q

≤ βk‖xk − x∗‖q + (1− βk)‖yk − x∗‖q

≤ βk‖xk − x∗‖q + (1− βk)[1− αk(τ − αγ)]‖xk − x∗‖q + qαk(1− βk) 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉

≤ [1− αk(1− βk)(τ − αγ)]‖xk − x∗‖q + qαk(1− βk) 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉 , (3.27)

Put ak = αk(1− βk)(τ − αγ) and δk = qαk(1− βk) 〈γV (x∗)− µF (x∗), jq(yk − x∗)〉, thus (3.27)

reduce to the following:

‖xk+1 − x∗‖q ≤ (1− ak)‖xk − x∗‖q + δk. (3.28)

Apply Lemma 2.2 to (3.28), we obtain xk → x∗ as k →∞. This completes the proof. �

Remark 3.3 Theorem 3.2 extend and generalize Theorem 3.2 of Pongsakorn et al. [17] in the

following aspects:

(i) From a real Hilbert space to a real q-uniformly smooth Banach space which admits a

weakly sequentially continuous generalized duality mapping.

(ii) From an invertible positive linear operator F : C → H to the Lipschitzian and strongly

accretive operator F : C → X.

(iii) From nonexpansive mapping T : C → C to a finite family of nonexpansive mappings.

Remark 3.4 Compared with the known results in the literature, our results are very different

from Theorem 3.1 of Zhang et al. [12] in the following aspects:

(i) Theorem 3.2 extends and improves Theorem 3.1 of Zhang et al. [12] from real Hilbert

space to a real q-uniformly smooth Banach space which admits a weakly sequentially continuous

generalized duality mapping.

(ii) We generalize the iteration process in theorem 3.1 of Zhang et al. [12].
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FOURIER SERIES OF FUNCTIONS ASSOCIATED WITH

POLY-BERNOULLI POLYNOMIALS

TAEKYUN KIM1, DAE SAN KIM2, GWAN-WOO JANG3, AND JONGKYUM KWON4,∗

Abstract. In this paper, we consider three types of functions associated with

poly-Bernoulli functions and derive their Fourier series expansions. In addi-

tion, we will express each of them in terms of Bernoulli functions.

1. Introduction

As is well known, the Bernoulli polynomials Bm(x) are given by the generating
function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
, (see [4,14,16,19]). (1.1)

For any integer r, the poly-Bernoulli polynomials B(r)
m (x) of index r are given by

the generating function

Lir(1− e−t)
et − 1

ext =
∞∑
m=0

B(r)
m (x)

tm

m!
, (see [2,3,8,10,13,20]), (1.2)

where Lir(x) =
∑∞
m=1

xm

mr is the rth polylogarithmic function for r ≥ 1, and a
rational function for r ≤ 0.

We observe here that

d

dx
(Lir+1(x)) =

1

x
Lir(x). (1.3)

We need to note the following as to the poly-Bernoulli polynomials:

d

dx
B(r)
m (x) = mB

(r)
m−1(x), (m ≥ 1), (1.4)

B(1)
m (x) = Bm(x),B

(r)
0 (x) = 1,B(0)

m (x) = xm,

B(0)
m = δm,0,B

(r+1)
m (1)−B(r+1)

m (0) = B
(r)
m−1, (m ≥ 1).

(1.5)

For any real number x, let

< x >= x− [x] ∈ [0, 1) (1.6)

denote the fractional part of x.
Fourier series expansion of higher-order Bernoulli functions were treated in the

recent paper [15]. Here we will study three types of functions associated with poly-
Bernoulli functions and derive their Fourier series expansions. In addition, we will
express each of them in terms of Bernoulli functions.

2010 Mathematics Subject Classification. 11B83, 42A16.

Key words and phrases. Fourier series, poly-Bernoulli polynomial, poly-Bernoulli function.
∗ corresponding author.
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2 Fourier series of functions associated with poly-Bernoulli polynomials

(1) αm(< x >) =
∑m
k=0 B

(r+1)
k (< x >) < x >m−k, (m ≥ 1);

(2) βm(< x >) =
∑m
k=0

1
k!(m−k)!B

(r+1)
k (< x >) < x >m−k, (m ≥ 1);

(3) γm(< x >) =
∑m−1
k=1

1
k(m−k)B

(r+1)
k (< x >) < x >m−k, (m ≥ 2).

For elementary facts about Fourier analysis, the reader may refer to any book (for
example, see [1,17,21]).

As to γm(< x >), we note that the next polynomial identity follows immedi-
ately from Theorems 4.1 and 4.2, which is in turn derived from the Fourier series
expansion of γm(< x >):

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (x)xm−k,

=
1

m

m∑
s=0

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(x)

where Hl =
∑l
j=1

1
j are the harmonic numbers and

Λl =

l−1∑
k=1

B
(r+1)
k

k(l − k)
+

l−1∑
k=1

B
(r)
k−1

k(l − k)
.

The obvious polynomial identities can be derived also for αm(< x >) and βm(<
x >) from Theorems 2.1 and 2.2, and Theorems 3.1 and 3.2, respectively. It is re-

markable that from the Fourier series expansion of the function
∑m−1
k=1

1
k(m−k)Bk(<

x >)Bm−k(< x >) we can derive the Faber-Pandharipande-Zagier identity (see
[6,9,11,12]) and the Miki’s identity (see [5,7,9,11,12,18]).

2. The function αm(< x >)

For integers r,m with m ≥ 1, we let

αm(x) =
m∑
k=0

B
(r+1)
k (x)xm−k.

Now, we consider the function

αm(< x >) =
m∑
k=0

B
(r+1)
k (< x >) < x >m−k, (m ≥ 1), (2.1)

defined on (−∞,∞), which is periodic with period 1.

The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx,
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where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.2)

Before proceeding any further, we need to observe the following.

α′m(x) =
m∑
k=0

(
kB

(r+1)
k−1 (x)xm−k + (m− k)B

(r+1)
k (x)xm−k−1

)
=

m∑
k=1

kB
(r+1)
k−1 (x)xm−k +

m−1∑
k=0

(m− k)B
(r+1)
k (x)xm−k−1

=
m−1∑
k=0

(k + 1)B
(r+1)
k (x)xm−1−k +

m−1∑
k=0

(m− k)B
(r+1)
k (x)xm−1−k

= (m+ 1)
m−1∑
k=0

B
(r+1)
k (x)xm−1−k

= (m+ 1)αm−1(x).

(2.3)

From this, we see that (
αm+1(x)

m+ 2

)′
= αm(x), (2.4)

∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.5)

For m ≥ 1, we put

∆m = αm(1)− αm(0)

=
m∑
k=0

(
B

(r+1)
k (1)−B

(r+1)
k δm,k

)
= B

(r+1)
0 (1) +

m∑
k=1

B
(r+1)
k (1)−

m∑
k=0

B
(r+1)
k δm,k

= 1 +
m∑
k=1

(
B

(r+1)
k + B

(r)
k−1

)
−B(r+1)

m

=
m−1∑
k=0

B
(r+1)
k +

m−1∑
k=0

B
(r)
k .

(2.6)

Then αm(1) = αm(0)⇐⇒ ∆m = 0, and∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1.
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4 Fourier series of functions associated with poly-Bernoulli polynomials

We are now ready to determine the Fourier coefficients A
(m)
n .

Case1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n − 1

2πin
∆m

=
m+ 1

2πin

(
m

2πin
A(m−2)
n − 1

2πin
∆m−1

)
− 1

2πin
∆m

=
(m+ 1)2
(2πin)2

A(m−2)
n −

2∑
j=1

(m+ 1)j−1
(2πin)j

∆m−j+1

= · · ·

=
(m+ 1)!

(2πin)m
A(0)
n −

m∑
j=1

(m+ 1)j−1
(2πin)j

∆m−j+1

= − 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1,

(2.7)

where A
(0)
n =

∫ 1

0
e−2πinxdx = 0.

Case2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.8)

Here we recall the following facts about Bernoulli functions Bm(< x >) :
(a) for m ≥ 2,

Bm(< x >) = −m!

∞∑
n=−∞
n6=0

e2πinx

(2πin)m
. (2.9)

(b) for m = 1,

−
∞∑

n=−∞
n6=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.10)

αm(< x >), (m ≥ 1) is piecewise C∞. Moreover, αm(< x >) is continuous for
those positive integers m with ∆m = 0 and discontinuous with jump discontinuities
at integers for those positive integers m with ∆m 6= 0.

Assume first that m is a positive integer with ∆m = 0. Then αm(1) = αm(0).
Hence αm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of
αm(< x >) converges uniformly to αm(< x >), and
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αm(< x >) =
1

m+ 2
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1

×

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+ ∆m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.11)

Now, we can state our first result.

Theorem 2.1. For each positive integer l, let

∆l =

l−1∑
k=0

B
(r+1)
k +

l−1∑
k=0

B
(r)
k .

Assume that ∆m = 0, for a positive integer m. Then we have the following.

(a)
∑m
k=0 B

(r+1)
k (< x >) < x >m−k has the Fourier series expansion

m∑
k=0

B
(r+1)
k (< x >) < x >m−k

=
1

m+ 2
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)
m∑
k=0

B
(r+1)
k (< x >) < x >m−k

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >),

for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Assume next that m is a positive integer with ∆m 6= 0. Then αm(1) 6= αm(0).
Hence αm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
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6 Fourier series of functions associated with poly-Bernoulli polynomials

integers. The Fourier series of αm(< x >) converges pointwise to αm(< x >), for
x /∈ Z, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m,

for x ∈ Z.

Next, we can state the second result.

Theorem 2.2. For each positive integer l, let

∆l =
l−1∑
k=0

B
(r+1)
k +

l−1∑
k=0

B
(r)
k .

Assume that ∆m 6= 0, for a positive integer m. Then we have the following.

(a)
1

m+ 2
∆m+1

+
∞∑

n=−∞
n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{∑m
k=0 B

(r+1)
k (< x >) < x >m−k, for x /∈ Z,

B(r+1)
m + 1

2∆m, for x ∈ Z.

(b)
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m∑
k=0

B
(r+1)
k (< x >) < x >m−k, for x /∈ Z;

1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

= B(r+1)
m +

1

2
∆m, for x ∈ Z.

3. The fuction βm(< x >)

Let βm(x) =
∑m
k=0

1
k!(m−k)!B

(r+1)
k (x)xm−k, (m ≥ 1).

Before proceeding further, we need to observe the following.
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β′m(x) =
m∑
k=0

{
k

k!(m− k)!
B

(r+1)
k−1 (x)xm−k(x)

+
m− k

k!(m− k)!
B

(r+1)
k (x)xm−k−1

}
=

m∑
k=1

1

(k − 1)!(m− k)!
B

(r+1)
k−1 xm−k

+
m−1∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)xm−k−1

= 2
m−1∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)xm−1−k

= 2βm−1(x).

(3.1)

From this, we obtain
(
βm+1(x)

2

)′
= βm(x),

and ∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
. (3.2)

For m ≥ 1, we have

Ωm = βm(1)− βm(0)

=
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (1)− 1

m!
B(r+1)
m

=
1

m!
+

m∑
k=1

1

k!(m− k)!
B

(r+1)
k (1)− 1

m!
B(r+1)
m

=
1

m!
+

m∑
k=1

1

k!(m− k)!
(B

(r+1)
k + B

(r)
k−1)− 1

m!
B(r+1)
m

=

m−1∑
k=0

1

k!(m− k)!
B

(r+1)
k +

m∑
k=1

1

k!(m− k)!
B

(r)
k−1

(3.3)

Then βm(1) = βm(0)⇐⇒ Ωm = 0.
Also, ∫ 1

0

βm(x)dx =
1

2
Ωm+1.

Now, we are going to consider the function

βm(< x >) =
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >) < x >m−k, (m ≥ 1),

defined on (−∞,∞), which is periodic with period 1.
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8 Fourier series of functions associated with poly-Bernoulli polynomials

The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx.

Next, we want to determine the Fourier coefficients B
(m)
n .

Case 1:n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

1

πin

∫ 1

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)
n − 1

2πin
Ωm

=
2

2πin

( 2

2πin
B(m−2)
n − 1

2πin
Ωm−1

)
− 1

2πin
Ωm

=
( 2

2πin

)2
B(m−2)
n −

2∑
j=1

2j−1

(2πin)j
Ωm−j+1

= · · ·

=
( 2

2πin

)m
B(0)
n −

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

= −
m∑
j=1

2j−1

(2πin)j
Ωm−j+1,

(3.4)

where B
(0)
n =

∫ 1

0
e−2πinxdx = 0.

Case 2: n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.5)

βm(< x >), (m ≥ 1) is piecewise C∞. Moreover, βm(< x >) is continuous for
those positive integers m with Ωm = 0 and discontinuous with jump discontinuities
at integers for those positive integers m with Ωm 6= 0.

Assume first that m is a positive integer with Ωm = 0. Then βm(1) = βm(0).
Hence βm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of
βm(< x >) converges uniformly to βm(< x >), and
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βm(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞
n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1 ×

(
−j!

∞∑
n=−∞
n6=0

e2πinx

(2πin)j

)

=
1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(3.6)

Now, we can state our first result.

Theorem 3.1. For each positive integer l, let

Ωl =
l−1∑
k=0

1

k!(l − k)!
B

(r+1)
k +

l∑
k=1

1

k!(l − k)!
B

(r)
k−1.

Assume that Ωm = 0, for a positive integer m. Then we have the following.

(a)
∑m
k=0

1
k!(m−k)!B

(r+1)
k (< x >) < x >m−k has the Fourier series expansion

m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >) < x >m−k

=
1

2
Ωm+1 −

∞∑
n=−∞
n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,

(3.7)

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >) < x >m−k=

1

2
Ωm+1+

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Assume next that m is a positive integer with Ωm 6= 0. Then, βm(1) 6= βm(0).
Hence βm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
integers. Thus the Fourier series of βm(< x >) converges pointwise to βm(< x >),
for x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm =

1

m!
B(r+1)
m +

1

2
Ωm, (3.8)

for x ∈ Z.

Now, we can state our second result.

Theorem 3.2. For each positive integer l, let

Ωl =
l−1∑
k=0

1

k!(l − k)!
B

(r+1)
k +

l∑
k=1

1

k!(l − k)!
B

(r)
k−1.
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10 Fourier series of functions associated with poly-Bernoulli polynomials

Assume that Ωm 6= 0, for a positive integer m. Then we have the following.

(a)
1

2
Ωm+1 +

∞∑
n=−∞
n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m
k=0

1
k!(m−k)!B

(r+1)
k (< x >) < x >m−k, for x /∈ Z,

1
m!B

(r+1)
m + 1

2Ωm, for x ∈ Z.

(b)

1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >) < x >m−k, for x /∈ Z;

1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

=
1

m!
B(r+1)
m +

1

2
Ωm, for x ∈ Z.

4. The function γm(< x >)

Let γm(x) =
∑m−1
k=1

1
k(m−k)B

(r+1)
k (x)xm−k, (m ≥ 2).

γ′m(x) =
m−1∑
k=1

1

k(m− k)

(
kB

(r+1)
k−1 (x)xm−k + (m− k)B

(r+1)
k (x)xm−k−1

)
=
m−2∑
k=0

1

m− 1− k
B

(r+1)
k (x)xm−1−k +

m−1∑
k=1

1

k
B

(r+1)
k (x)xm−1−k

=
1

m− 1
xm−1 +

m−2∑
k=1

1

m− 1− k
B

(r+1)
k (x)xm−1−k +

1

m− 1
B

(r+1)
m−1 (x)

+
m−2∑
k=1

1

k
B

(r+1)
k (x)xm−1−k

=
1

m− 1

(
xm−1 + B

(r+1)
m−1 (x)

)
+ (m− 1)

m−2∑
k=1

1

k(m− 1− k)
B

(r+1)
k (x)xm−1−k

=
1

m− 1

(
xm−1 + B

(r+1)
m−1 (x)

)
+ (m− 1)γm−1(x).

(4.1)
Thus,

γ′m(x) =
1

m− 1

(
xm−1 + B

(r+1)
m−1 (x)

)
+ (m− 1)γm−1(x).
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From this, we obtain(
1

m

(
γm+1(x)− 1

m(m+ 1)
B

(r+1)
m+1 (x)− 1

m(m+ 1)
xm+1

))′
= γm(x).

∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)− 1

m(m+ 1)
B

(r+1)
m+1 (x)− 1

m(m+ 1)
xm+1

]1
0

=
1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)

(
B

(r+1)
m+1 (1)−B

(r+1)
m+1 (0)

)
− 1

m(m+ 1)

)
=

1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
.

(4.2)

For m ≥ 2, we let

Λm = Λm(r) = γm(1)− γm(0)

=

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (1)

=

m−1∑
k=1

1

k(m− k)

(
B

(r+1)
k + B

(r)
k−1

)
=
m−1∑
k=1

B
(r+1)
k

k(m− k)
+
m−1∑
k=1

B
(r)
k−1

k(m− k)
.

(4.3)

Then,

γm(1) = γm(0) ⇔ Λm = 0, (4.4)

and ∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
. (4.5)

We are going to consider

γm(< x >) =
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >) < x >m−k, (4.6)

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.7)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.8)
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12 Fourier series of functions associated with poly-Bernoulli polynomials

Now, we want to determine the Fourier coefficients C
(m)
n .

Case 1: n 6= 0. We can easily show that, for l ≥ 1,

∫ 1

0

B
(r+1)
l (x)e−2πinxdx

=

{
−
∑l
k=1

(l)k−1

(2πin)k
B

(r)
l−k(< x >), for n 6= 0,

1
l+1B

(r)
l , for n = 0,

(4.9)

∫ 1

0

xle−2πinxdx

=

{
−
∑l
k=1

(l)k−1

(2πin)k
, for n 6= 0,

1
l+1 , for n = 0.

(4.10)

By using (4.9) and (4.10), we can obtain the following recursive relation.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin

[
γm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+

1

2πin

∫ 1

0

(
(m− 1)γm−1(x) +

1

m− 1
(xm−1 + B

(r+1)
m−1 (x))

)
e−2πinxdx

= − 1

2πin
Λm +

m− 1

2πin
C(m−1)
n +

1

2πin(m− 1)

∫ 1

0

B
(r+1)
m−1 (x)e−2πinxdx

+
1

2πin(m− 1)

∫ 1

0

xm−1e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)
Θm −

1

2πin(m− 1)
Φm,

(4.11)

where, for m ≥ 2,

Λm = γm(1)− γm(0) =
m−1∑
k=1

B
(r+1)
k

k(m− k)
+
m−1∑
k=1

B
(r)
k−1

k(m− k)
,

Θm =
m−1∑
k=1

(m− 1)k−1
(2πin)k

B
(r)
m−k−1,

Φm =
m−1∑
k=1

(m− 1)k−1
(2πin)k

.

(4.12)

From the relation (4.11), we can get an expression for C
(m)
n .
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C(m)
n =

m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)
Φm −

1

2πin(m− 1)
Θm

=
m− 1

2πin

(m− 2

2πin
C(m−2)
n − 1

2πin
Λm−1 −

1

2πin(m− 2)
Φm−1 −

1

2πin(m− 2)
Θm−1

)
− 1

2πin
Λm −

1

2πin(m− 1)
Φm −

1

2πin(m− 1)
Θm

=
(m− 1)2
(2πin)2

C(m−2)
n −

2∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 −
2∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

−
2∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

= · · ·

=
(m− 1)!

(2πin)m−1
C(1)
n −

m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 −
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

−
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1,

(4.13)
where

C(1)
n =

∫ 1

0

γ1(x)e−2πinxdx = 0. (4.14)

Before proceeding further, we note the following:

m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

=
m−1∑
j=1

1

m− j

m−j∑
k=1

(m− 1)j+k−2
(2πin)j+k

B
(r)
m−j−k

=
m−1∑
j=1

1

m− j

m∑
s=j+1

(m− 1)s−2
(2πin)s

B
(r)
m−s

=
1

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
B

(r)
m−s.

(4.15)

Putting everything altogether, we obtain

C(m)
n = − 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
. (4.16)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
. (4.17)
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14 Fourier series of functions associated with poly-Bernoulli polynomials

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for
those positive integers m ≥ 2 with Λm = 0 and discontinuous with jump disconti-
nuities at integers for those positive integers ≥ 2 with Λm 6= 0.

Assume first that Λm = 0. Then γm(1) = γm(0). Hence γm(< x >) is piecewise
C∞, and continuous. Thus the Fourier series of γm(< x >) converges uniformly to
γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
−

∞∑
n=−∞
n6=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

))
e2πinx

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
+

1

m

m∑
s=1

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
×
(
−s!

∞∑
n=−∞
n6=0

e2πinx

(2πin)s

)

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
+

1

m

m∑
s=2

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z

=
1

m

m∑
s=0
s6=1

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(4.18)

Now, we are ready to state our first result.

Theorem 4.1. For each integer l ≥ 2, let

Λl =
l−1∑
k=1

B
(r+1)
k

k(l − k)
+

l−1∑
k=1

B
(r)
k−1

k(l − k)
,

with Λ1 = 0.
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Assume that Λm = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1
k=1

1
k(m−k)B

(r+1)
k (< x >) < x >m−k has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >) < x >m−k

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
−

∞∑
n=−∞
n6=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

))
e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >) < x >m−k

=
1

m

m∑
s=0
s6=1

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(< x >),

for all x ∈ (−∞,∞), where Bk(< x >) is the Bernoulli function.

Assume next that m is a positive integer ≥ 2, with Λm 6= 0. Then, γm(1) 6=
γm(0). Hence γm(< x >) is piecewise C∞, and discontinuous with jump disconti-
nuities at integers. Thus the Fourier series of γm(< x >) convergence pointwise to
γm(< x >), for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm =

1

2
Λm,

for x ∈ Z.

Next, we can state the second result.

Theorem 4.2. For each integer l ≥ 2, let

Λl =
l−1∑
k=1

B
(r+1)
k

k(l − k)
+

l−1∑
k=1

B
(r)
k−1

k(l − k)
,

with Λ1 = 0.
Assume that Λm 6= 0, for the an integer m ≥ 2. Then we have the following.

(a)

1

m

(
Λm+1 −

1

m(m+ 1)
B(r)
m −

1

m(m+ 1)

)
−

∞∑
n=−∞
n6=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

))
e2πinx

=

{∑m−1
k=1

1
k(m−k)B

(r+1)
k (< x >) < x >m−k, for x /∈ Z,

1
2Λm, for x ∈ Z.
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(b)

1

m

m∑
s=0

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >) < x >m−k, for x /∈ Z;

1

m

m∑
s=0
s6=1

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s + 1)

)
Bs(< x >)

=
1

2
Λm, for x ∈ Z.
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Abstract
In this paper, we discuss the existence of a fixed point of a self-mapping T on a Menger PM-
space under two constraint inequalities with respect to two partial orders under two kinds
of contractive conditions and obtain some new fixed point results. We then present several
useful consequences of our main results. We also give examples to show the validity of our
main results.
Keywords: Menger PM-space; fixed point; constraint inequalities; partial order; implicit
contraction

2010 Mathematics Subject Classification: 47H10; 46S50; 47S50

1 Introduction and preliminaries

In 1942, Menger introduced the concept of a probabilistic metric space which give birth to a new
branch called probabilistic analysis [1]-[2]. The theory of PM-spaces and its applications has attracted
much attention since then and fixed point theory for nonlinear operators in the setting of PM-spaces
was studied by many authors [3]-[11].

The research on the existence of fixed points for mappings in a metric space equipped with a
partial order was initiated by Turinici [12]. Ran and Reurings [13] obtained fixed point results for
continuous monotone operators in a partially ordered metric space and applied them to study the
existence of positive solutions to certain classes of nonlinear matrix equations. The results in [13] were
generalized by many authors from different aspects (see e.g. [14]-[17]). On the other hand, the fixed
point problems for mappings in partially ordered Menger PM-spaces were also extensively studied (see
e.g. [18]-[21]).

Let (X,F ,∆) be a Menger PM-space and X be endowed with two partial orders ≼1 and ≼2.
Consider five self-mappings T,A,B,C,D : X → X. In this paper, we are interested in the following
problem: Find x ∈ X, such that x = Tx,

Ax ≼1 Bx,
Cx ≼2 Dx.

(1.1)

In [22], Jleli and Samet considered the existence of solutions to (1.1) in the framework of metric
spaces. They introduced the concepts of d-regularity and (A,B,C,D,≼1,≼2)-stability, and obtained a
fixed point result which guaranteed the existence of a fixed point of T under two constraint inequalities.
In [23], Ansari et al. argued that the result of Jleli and Samet holds by assuming that only A and
B are continuous (or only C and D are continuous), and proved that (1.1) has a unique solution.
Moreover, they considered the existence of solutions to (1.1) under a certain implicit contraction by
introducing a more general class of functions.

†To whom correspondence should be addressed. Email: wuzhaoqi conquer@163.com
†This work is supported by the Natural Science Foundation of China (11461045,11361042,11461043), the Natural Sci-

ence Foundation of Jiangxi Province of China (20142BAB211016,20132BAB201001,20161BAB201009), and the Scientific
Program of the Provincial Education Department of Jiangxi (GJJ150008).
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In this paper, we will discuss the existence of a fixed point of a self-mapping T in the setting of
Menger PM-spaces under two constraint inequalities with respect to two partial orders and obtain a
new fixed point result, which extends the main results of [22] and [23] from metric spaces to Menger
PM-spaces. As a consequence, we derive some corollaries of our main result. Also, some examples are
given to show the validity of the new results.

We now recall some basic definitions in the theory of Menger PM-spaces.

A mapping F : R → R+ is called a distribution function if it is nondecreasing left-continuous with
sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 0.

We will denote by D the set of all distribution functions while H will always denote the specific
distribution function defined by

H(t) =
{

0, t ≤ 0,
1, t > 0.

Definition 1.1[5] A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a
t-norm) if the following conditions are satisfied: ∆(a, 1) = a; ∆(a, b) = ∆(b, a); ∆(a, c) ≥ ∆(b, d) for
a ≥ b, c ≥ d;∆(a,∆(b, c)) = ∆(∆(a, b), c).

A typical example of a t-norm is ∆min which is defined by ∆min(a, b) = min{a, b} for all a, b ∈ [0, 1].

Definition 1.2[5] A triplet (X,F ,∆) is called a Menger probabilistic metric space (for short, a
Menger PM-space) if X is a nonempty set, ∆ is a t-norm and F is a mapping from X × X into D
satisfying the following conditions (we denote F (x, y) by Fx,y):

(PM-1) Fx,y(0) = 0;

(PM-2) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;

(PM-3) Fx,y(t) = Fy,x(t) for all t ∈ R;

(PM-4) Fx,y(t+ s) ≥ ∆(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s ≥ 0.

Remark 1.1[5] If a Menger PM-space (X,F ,∆) satisfies the condition sup
0<t<1

∆(t, t) = 1, then

(X,F ,∆) is a Hausdorff topological space in the (ϵ, λ)-topology T , i.e., the family of sets {Ux(ϵ, λ) :
ϵ > 0, λ ∈ (0, 1]}(x ∈ X) is a basis of neighborhoods of a point x for T , where Ux(ϵ, λ) = {y ∈ X :
Fx,y(ϵ) > 1− λ)} .

By virtue of the topology T , a sequence {xn} is said to be T -convergent to x ∈ X(we write

xn
T→ x(n → ∞)) if for any given ϵ > 0 and λ ∈ (0, 1], there exists a positive integer N = N(ϵ, λ)

such that Fxn,x(ϵ) > 1 − λ whenever n ≥ N , which is equivalent to lim
n→∞

Fxn,x(t) = 1 for all t > 0;

{xn} is called a T -Cauchy sequence in (X,F ,∆) if for any given ϵ > 0 and λ ∈ (0, 1], there exists a
positive integer N = N(ϵ, λ) such that Fxn,xm(ϵ) > 1 − λ whenever n,m ≥ N ; (X,F ,∆) is said to
be T -complete if each T -Cauchy sequence in X is T -convergent in X. It is worth noting that in a

Menger PM-space, lim
n→∞

xn = x implies that xn
T→ x(n→ ∞).

Remark 1.2[5] Let (X, d) be a metric space and F : X ×X → D be defined by

F (x, y)(t) = Fx,y(t) = H(t− d(x, y)),∀x, y ∈ X and t > 0. (1.2)

Then (X,F ,∆min) is a T -complete Menger PM-space induced by (X, d).

The following definitions and notations will be needed in the sequel.

Definition 1.3 Let (X,F ,∆) be a Menger PM-space and ≼ be partial order on X. ≼ is called
F-regular, if for any sequences {an}, {bn} ⊂ X, we have

lim
n→∞

Fan,a(t) = lim
n→∞

Fbn,b(t) = 1,∀t > 0, and an ≼ bn for all n ∈ N =⇒ a ≼ b,

where (a, b) ∈ X ×X.
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Definition 1.4 Let X be a nonempty set endowed with two partial orders ≼1 and ≼2. Let
T,A,B,C,D : X → X be five self-mappings. The mapping T is called (A,B,C,D,≼1,≼2)-stable, if
the following condition is satisfied:

x ∈ X,Ax ≼1 Bx =⇒ CTx ≼2 DTx.

Denote by Ψ the set of functions ψ : [0, 1] → [0, 1] satisfying the following conditions:

(ψ1) ψ is lower semi-continuous;

(ψ2) ψ(t) = 0 if and only if t = 1.

Denote by Φ the set of functions ϕ : [0, 1] → [1,∞) satisfying the following conditions:

(ϕ1) ϕ is lower semi-continuous;

(ϕ2) ϕ(t) = 1 if and only if t = 1.

2 Main results

We are now ready to state and prove our main results.

Theorem 2.1 Let (X,F ,∆) be a T -complete Menger PM-space endowed with two partial orders
≼1 and ≼2, and T,A,B,C,D : X → X be self-mappings. Suppose that the following conditions are
satisfied:

(i) ≼i is F -regular, i = 1, 2;

(ii) A and B are T -continuous or C and D are T -continuous;

(iii) there exists x0 ∈ X, such that Ax0 ≼1 Bx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable;

(v) T is (C,D,A,B,≼2,≼1)-stable;

(vi) there exists ψ ∈ Ψ such that

Ax ≼1 Bx,Cy ≼2 Dy =⇒ FTx,Ty(t) ≥ Fx,y(t) + ψ(Fx,y(t)),∀t > 0.

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1.1). Moreover, x∗ is
the unique solution to (1.1).

Proof. By (iii), there exists x0 ∈ X such that Ax0 ≼1 Bx0. Construct a sequence {xn} ⊂ X by

xn = Tnx0, n = 0, 1, 2, · · · .

By (iv), we have CTx0 ≼2 DTx0, that is, Cx1 ≼2 Dx1. Thus, we get Ax0 ≼1 Bx0 and Cx1 ≼2 Dx1.
By (v), we have ATx1 ≼1 BTx1, that is, Ax2 ≼1 Bx2. Again, by (iv), we obtain CTx2 ≼2 DTx2,
that is, Cx3 ≼2 Dx3. Thus, we get Ax2 ≼1 Bx2 and Cx3 ≼2 Dx3. Continuing this process, we obtain

Ax2n ≼1 Bx2n and Cx2n+1 ≼2 Dx2n+1, n = 0, 1, 2, · · · . (2.1)

By (2.1) and (vi), we have

Fxn+1,xn(t) = FTxn,Txn−1(t) ≥ Fxn,xn−1(t) + ψ(Fxn,xn−1(t)),∀t > 0, n = 1, 2, · · · , (2.2)

which yields that
Fxn+1,xn(t) ≥ Fxn,xn−1(t),∀t > 0, n = 1, 2, · · · .

Thus, {Fxn+1,xn(t)} is an increasing sequence of positive numbers for each t > 0. Therefore, there
exists some r(t) ∈ [0, 1], such that

lim
n→∞

Fxn+1,xn(t) = r(t),∀t > 0. (2.3)
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By (2.2), we have

lim inf
n→∞

Fxn+1,xn(t) ≥ lim inf
n→∞

(Fxn,xn−1(t) + ψ(Fxn,xn−1(t))),∀t > 0.

Using (2.3) and (ψ1), we obtain
r(t) ≥ r(t) + ψ(r(t)),∀t > 0,

which implies that ψ(r(t)) = 0,∀t > 0. By (ψ2), we get r(t) = 1,∀t > 0, i.e.,

lim
n→∞

Fxn+1,xn(t) = 1,∀t > 0. (2.4)

We now show that {xn} is a T -Cauchy sequence in (X,F ,∆). Suppose that this is not true. Then
there exists ϵ0 > 0 and λ0 ∈ (0, 1], for which we can find two sequences of positive integers {mk} and
{nk}, such that for all positive integers k, we have

n(k) > m(k) > k, Fxm(k),xn(k)
(ϵ0) ≤ 1− λ0, Fxm(k),xn(k)−1

(ϵ0) > 1− λ0. (2.5)

For any δ ∈ (0, ϵ0), we have

Fxm(k),xn(k)
(ϵ0) ≥ ∆(Fxm(k),xn(k)−1

(ϵ0 − δ), Fxn(k)−1,xn(k)
(δ)).

Letting k → ∞, by (2.4), we have

lim inf
k→∞

Fxm(k),xn(k)
(ϵ0) ≥ ∆(lim inf

k→∞
Fxm(k),xn(k)−1

(ϵ0 − δ), 1) = lim inf
k→∞

Fxm(k),xn(k)−1
(ϵ0 − δ).

Letting δ → 0, by the left-continuity of the distribution function and (2.5), we obtain

1− λ0 ≥ lim inf
k→∞

Fxm(k),xn(k)
(ϵ0) ≥ lim inf

k→∞
Fxm(k),xn(k)−1

(ϵ0) ≥ 1− λ0,

which implies that
lim inf
k→∞

Fxm(k),xn(k)
(ϵ0) = 1− λ0. (2.6)

On the other hand, for any δ ∈ (0, ϵ0), we have

Fxm(k),xn(k)+1
(ϵ0) ≥ ∆(Fxm(k),xn(k)

(ϵ0 − δ), Fxn(k),xn(k)+1
(δ))

and
Fxm(k),xn(k)

(ϵ0) ≥ ∆(Fxm(k),xn(k)+1
(ϵ0 − δ), Fxn(k)+1,xn(k)

(δ)).

Letting k → ∞, by (2.4), (2.6) and the left-continuity of the distribution function, we have

lim inf
k→∞

Fxm(k),xn(k)+1
(ϵ0) ≥ 1− λ0 and 1− λ0 ≥ lim inf

k→∞
Fxm(k),xn(k)+1

(ϵ0),

which implies that
lim inf
k→∞

Fxm(k),xn(k)+1
(ϵ0) = 1− λ0. (2.7)

Similarly, for any δ ∈ (0, ϵ0), we have

Fxn(k),xm(k)−1
(ϵ0) ≥ ∆(Fxm(k),xn(k)

(ϵ0 − δ), Fxm(k)−1,xm(k)
(δ))

and
Fxm(k),xn(k)

(ϵ0) ≥ ∆(Fxn(k),xm(k)−1
(ϵ0 − δ), Fxm(k)−1,xm(k)

(δ)).
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Letting k → ∞, by (2.4), (2.6) and the left-continuity of the distribution function, we have

lim inf
k→∞

Fxn(k),xm(k)−1
(ϵ0) ≥ 1− λ0 and 1− λ0 ≥ lim inf

k→∞
Fxn(k),xm(k)−1

(ϵ0),

which implies that
lim inf
k→∞

Fxn(k),xm(k)−1
(ϵ0) = 1− λ0. (2.8)

Also, for any δ ∈ (0, ϵ0), we have

Fxn(k)+1,xm(k)
(ϵ0) ≥ ∆(Fxn(k)+1,xm(k)+1

(ϵ0 − δ), Fxm(k),xm(k)+1
(δ))

and
Fxn(k)+1,xm(k)+1

(ϵ0) ≥ ∆(Fxn(k)+1,xm(k)
(ϵ0 − δ), Fxm(k),xm(k)+1

(δ)).

Letting k → ∞, we can similarly obtain

lim inf
k→∞

Fxn(k)+1,xm(k)+1
(ϵ0) = 1− λ0. (2.9)

Note that for all k, there exists a positive integer 0 ≤ i(k) ≤ 1 such that

n(k)−m(k) + i(k) ≡ 1(2).

By (2.1), for all k > 1, we have

Axn(k) ≼1 Bxn(k) and Cxm(k)−i(k) ≼2 Dxm(k)−i(k)

or
Axm(k)−i(k) ≼1 Bxm(k)−i(k) and Cxn(k) ≼2 Dxn(k).

Then from (vi), we have

FTxn(k),Txm(k)−i(k)
(t) ≥ Fxn(k),xm(k)−i(k)

(t) + ψ(Fxn(k),xm(k)−i(k)
(t)),∀k ∈ Z+ and t > 0,

that is,

Fxn(k)+1,xm(k)−i(k)+1
(t) ≥ Fxn(k),xm(k)−i(k)

(t) + ψ(Fxn(k),xm(k)−i(k)
(t)),∀k ∈ Z+ and t > 0. (2.10)

Set
Γ1 := {k > 1|i(k) = 0} and Γ2 := {k > 1|i(k) = 1}.

Now consider the following two cases.

• Case 1. Γ1 is a countably infinite set. By (2.10), we get

Fxn(k)+1,xm(k)+1
(ϵ0) ≥ Fxn(k),xm(k)

(ϵ0) + ψ(Fxn(k),xm(k)
(ϵ0)),∀k ∈ Γ1,

which yields that

lim inf
k→∞

Fxn(k)+1,xm(k)+1
(ϵ0) ≥ lim inf

k→∞
(Fxn(k),xm(k)

(ϵ0) + ψ(Fxn(k),xm(k)
(ϵ0))).

Combining (2.6), (2.9) and (ψ1), we obtain

1− λ0 ≥ 1− λ0 + ψ(1− λ0),

which implies that ψ(1− λ0) = 0. By (ψ2), we get λ0 = 0, which is in contradiction with λ0 > 0.
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• Case 2. Γ1 is a finite set. In this case, Γ2 must be a countably infinite set. By (2.10), we get

Fxn(k)+1,xm(k)
(ϵ0) ≥ Fxn(k),xm(k)−1

(ϵ0) + ψ(Fxn(k),xm(k)−1
(ϵ0)),∀k ∈ Γ2,

which yields that

lim inf
k→∞

Fxn(k)+1,xm(k)
(ϵ0) ≥ lim inf

k→∞
(Fxn(k),xm(k)−1

(ϵ0) + ψ(Fxn(k),xm(k)−1
(ϵ0))).

Combining (2.7), (2.8) and (ψ1), we obtain

1− λ0 ≥ 1− λ0 + ψ(1− λ0),

which implies that ψ(1− λ0) = 0. By (ψ2), we get λ0 = 0, which is in contradiction with λ0 > 0.

Therefore, we deduce that {xn} is a T -Cauchy sequence in (X,F ,∆). Since (X,F ,∆) is T -

complete, there exists x∗ ∈ X, such that xn
T→ x∗(n→ ∞), i.e.,

lim
n→∞

Fxn,x∗(t) = 1,∀t > 0. (2.11)

On the other hand, by (2.1), we have

Ax2n ≼1 Bx2n, n = 0, 1, 2, · · · .

Suppose first that A and B are T -continuous, by (2.11), we have Ax2n
T→ Ax∗(n → ∞) and

Bx2n
T→ Bx∗(n→ ∞), i.e.,

lim
n→∞

FAx2n,Ax∗(t) = lim
n→∞

FBx2n,Bx∗(t) = 1,∀t > 0.

Since ≼1 is F -regular, we get
Ax∗ ≼1 Bx

∗. (2.12)

On the other hand, by (2.1), (2.12) and condition (vi), for all t > 0 and any δ ∈ (0, t), we obtain

FTx∗,x∗(t) ≥ ∆(FTx∗,Tx2n+1(t− δ), Fx2n+2,x∗(δ))

≥ ∆(Fx∗,x2n+1(t− δ) + ψ(Fx∗,x2n+1(t− δ)), Fx2n+2,x∗(δ)), n = 0, 1, 2, · · · .

Therefore, we get

FTx∗,x∗(t) ≥ ∆(lim inf
n→∞

Fx∗,x2n+1(t− δ) + ψ(Fx∗,x2n+1(t− δ)), lim inf
n→∞

Fx2n+2,x∗(δ)), n = 0, 1, 2, · · · .

Using (ψ1), (ψ2) and (2.11), we obtain

FTx∗,x∗(t) ≥ ∆(1 + ψ(1), 1) = ∆(1, 1) = 1,∀t > 0,

which implies that
Tx∗ = x∗. (2.13)

Now, since T is (A,B,C,D,≼1,≼2)-stable, from (2.12), we get

CTx∗ ≼ DTx∗,

which implies from (2.13) that
Cx∗ ≼ Dx∗. (2.14)

As a consequence, it follows from (2.12), (2.13) and (2.14) that x∗ ∈ X is a solution to (1.1).
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Suppose now that y∗ ∈ X is another solution to (1.1), that is,

Ty∗ = y∗, Ay∗ ≼1 By
∗, Cy∗ ≼2 Dy

∗, and Fx∗,y∗(t0) < 1 for some t0 > 0.

By condition (vi) and (ψ2), we obtain

Fx∗,y∗(t0) = FTx∗,Ty∗(t0) ≥ Fx∗,y∗(t0) + ψ(Fx∗,y∗(t0)) > Fx∗,y∗(t0),

which is a contradiction. Therefore, x∗ is the unique solution to (1.1).

If we require only the T -continuity of C and D by condition (ii), we can also deduce the conclusions
using similar arguments. This completes the proof.

Example 2.1 Let X = R be the set of all real numbers equipped with the standard order ≤.
Take ≼1=≼2=≤. Let X be endowed with the standard metric d(x, y) = |x − y|, (x, y) ∈ X ×X and
F : X ×X → D is defined by (1.2). Then (X,F ,∆min) is a T -complete Menger PM-space induced
by (X, d). Let T : X → X be defined by

Tx =

{
−1, ifx < 0,
2, ifx ≥ 0,

and A,B,C,D : X → X be defined by

Ax = 2x2, Bx = 6x, Cx = 2,

Dx =

{
0, ifx < 2,
x, ifx ≥ 2.

It is obvious that ≼i is F -regular, i = 1, 2. Moreover, A and B are T -continuous. Also, for x0 = 1,
we have Ax0 = 2 ≤ 6 = Bx0. If for some x ∈ X, we have Ax ≤ Bx, then 0 ≤ x ≤ 3, which yields
CTx = 2 ≤ 3 = D3 = DTx. So T is (A,B,C,D,≼1,≼2)-stable. If for some x ∈ X, we have Cx ≤ Dx,
then x ≥ 2, which yields ATx = A3 = 18 = B3 = BTx. So T is (C,D,A,B,≼1,≼2)-stable. Note
that for any (x, y) ∈ X ×X, we have

Ax ≤ Bx,Cy ≤ Dy =⇒ (x, y) ∈ [0, 3]× [2,∞) =⇒ (Tx, Ty) = (3, 3).

Therefore,
Ax ≼1 Bx,Cy ≼2 Dy =⇒ FTx,Ty(t) = 1 ≥ Fx,y(t) + ψ(Fx,y(t)),∀t > 0,

where ψ(x) = 1−x for x ∈ [0, 1]. By Theorem 2.1, (1.1) has a unique solution, which is x∗ = 3. On the
other hand, observe that D is not T -continuous. So we don’t need A,B,C,D are all T -continuous
to guarantee the existence of the solution.

Remark 2.1 Note that although the conditions of Theorem 2.1 are sufficient to guarantee the
existence of a unique solution to (1.1), T need not have a unique fixed point, as the above example
shows (in fact, the mapping T has two fixed points −2 and 3).

Denote by L the class of all functions f : [0, 1]× [1,∞) → R satisfying

(L1) f is T -continuous;

(L2) f(a, b) ≥ a,∀a ∈ [0, 1] and b ∈ [1,∞);

(L3) a ∈ [0, 1], b ∈ [1,∞), f(a, b) = a =⇒ b = 1;

(L4) ∀a ∈ [0, 1], b1 ≥ b2 =⇒ f(a, b1) ≥ f(a, b2).

We give the second main result of this paper by utilizing this new class of functions.

Theorem 2.2 Let (X,F ,∆) be a T -complete Menger PM-space endowed with two partial orders
≼1 and ≼2, and T,A,B,C,D : X → X be self-mappings. Suppose that the following conditions are
satisfied:

(i) ≼i is F -regular, i = 1, 2;
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(ii) A and B are T -continuous or C and D are T -continuous;

(iii) there exists x0 ∈ X, such that Ax0 ≼1 Bx0;

(iv) T is (A,B,C,D,≼1,≼2)-stable;

(v) T is (C,D,A,B,≼2,≼1)-stable;

(vi) there exists ϕ ∈ Φ and f ∈ L such that

Ax ≼1 Bx,Cy ≼2 Dy =⇒ FTx,Ty(t) ≥ f(Fx,y(t), ϕ(Fx,y(t))),∀t > 0.

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1.1). Moreover, x∗ is
the unique solution to (1.1).

Proof. By (iii), there exists x0 ∈ X such that Ax0 ≼1 Bx0. Construct a sequence {xn} ⊂ X by

xn = Tnx0, n = 0, 1, 2, · · · .

By similar arguments in the proof of Theorem 2.1, we obtain (2.1).

By (2.1) and (vi), we have

Fxn+1,xn(t) = FTxn,Txn−1(t) ≥ f(Fxn,xn−1(t), ϕ(Fxn,xn−1(t))),∀t > 0, n = 1, 2, · · · , (2.15)

which by (L2) yields that

Fxn+1,xn(t) ≥ Fxn,xn−1(t),∀t > 0, n = 1, 2, · · · .

Thus, {Fxn+1,xn(t)} is an increasing sequence of positive numbers for each t > 0. Therefore, there
exists some p(t) ∈ [0, 1], such that

lim
n→∞

Fxn+1,xn(t) = p(t),∀t > 0. (2.16)

By the properties of f and ϕ, we obtain

p(t) ≥ f(p(t), ϕ(p(t))) ≥ p(t),

which yields that
f(p(t), ϕ(p(t))) = p(t).

Hence, by (L1), we get ϕ(p(t)) = 1,∀t > 0, and thus p(t) = 1,∀t > 0, that is,

lim
n→∞

Fxn+1,xn(t) = 1,∀t > 0. (2.17)

We now show that {xn} is a T -Cauchy sequence in (X,F ,∆). Suppose that this is not true. Then
there exists ϵ0 > 0 and λ0 ∈ (0, 1], for which we can find two sequences of positive integers {mk} and
{nk}, such that for all positive integers k, (2.5) holds. By similar arguments in the proof of Theorem
2.1, (2.6)−(2.9) hold.

Note that for all k, there exists a positive integer 0 ≤ i(k) ≤ 1 such that

n(k)−m(k) + i(k) ≡ 1(2).

Similarly, by (2.1) and (vi), we have

Fxn(k)+1,xm(k)−i(k)+1
(t) ≥ f(Fxn(k),xm(k)−i(k)

(t) + ϕ(Fxn(k),xm(k)−i(k)
(t))),∀k ∈ Z+ and t > 0. (2.18)

Set
Γ1 := {k > 1|i(k) = 0} and Γ2 := {k > 1|i(k) = 1}.

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1331 Zhaoqi Wu et al 1324-1336



Now consider the following two cases.

• Case 1. Γ1 is a countably infinite set. By (2.18), we get

Fxn(k)+1,xm(k)+1
(ϵ0) ≥ f(Fxn(k),xm(k)

(ϵ0), ϕ(Fxn(k),xm(k)
(ϵ0))),∀k ∈ Γ1,

which yields that

lim inf
k→∞

Fxn(k)+1,xm(k)+1
(ϵ0) ≥ lim inf

k→∞
f(Fxn(k),xm(k)

(ϵ0), ϕ(Fxn(k),xm(k)
(ϵ0))).

Combining (2.6), (2.9) and the properties of f and ϕ, we obtain

1− λ0 ≥ f(1− λ0, ϕ(1− λ0)) ≥ 1− λ0,

which implies that
f(1− λ0, ϕ(1− λ0)) = 1− λ0.

Again, by (L3) and (ϕ2), we get λ0 = 0, which is in contradiction with λ0 > 0.

• Case 2. Γ1 is a finite set. In this case, Γ2 must be a countably infinite set. By (2.18), we get

Fxn(k)+1,xm(k)
(ϵ0) ≥ f(Fxn(k),xm(k)−1

(ϵ0), ϕ(Fxn(k),xm(k)−1
(ϵ0))),∀k ∈ Γ2,

which yields that

lim inf
k→∞

Fxn(k)+1,xm(k)
(ϵ0) ≥ lim inf

k→∞
f(Fxn(k),xm(k)−1

(ϵ0) + ϕ(Fxn(k),xm(k)−1
(ϵ0))).

Combining (2.7), (2.8) and (ϕ1), we also obtain

1− λ0 ≥ f(1− λ0, ϕ(1− λ0)) ≥ 1− λ0.

It follows from the properties of f and ϕ that λ0 = 0, which is a contradiction.

Therefore, we deduce that {xn} is a T -Cauchy sequence in (X,F ,∆). Since (X,F ,∆) is T -

complete, there exists x∗ ∈ X, such that xn
T→ x∗(n→ ∞), i.e.,

lim
n→∞

Fxn,x∗(t) = 1,∀t > 0. (2.19)

We only consider the case when A and B are T -continuous (the proof is similar when C and D
are T -continuous). By (2.19), we have

lim
n→∞

FAx2n,Ax∗(t) = lim
n→∞

FBx2n,Bx∗(t) = 1,∀t > 0.

Since ≼1 is F -regular, noting that (2.1) holds, we get

Ax∗ ≼1 Bx
∗. (2.20)

On the other hand, by (2.1), (2.12) and condition (vi), for all t > 0 and any δ ∈ (0, t), we obtain

FTx∗,x∗(t) ≥ ∆(FTx∗,Tx2n+1(t− δ), Fx2n+2,x∗(δ))

≥ ∆(f(Fx∗,x2n+1(t− δ), ϕ(Fx∗,x2n+1(t− δ))), Fx2n+2,x∗(δ)), n = 0, 1, 2, · · · .

By (2.19) and the properties of f and ϕ, we obtain

FTx∗,x∗(t) ≥ ∆(f(1, ϕ(1)), 1) = f(1, ϕ(1)) = f(1, 1) ≥ 1,∀t > 0,
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which implies that
Tx∗ = x∗. (2.21)

Now, since T is (A,B,C,D,≼1,≼2)-stable, from (2.20), we get

CTx∗ ≼ DTx∗,

which implies from (2.21) that
Cx∗ ≼ Dx∗. (2.22)

As a consequence, it follows from (2.20), (2.21) and (2.22) that x∗ ∈ X is a solution to (1.1).

Suppose now that y∗ ∈ X is another solution to (1.1), that is,

Ty∗ = y∗, Ay∗ ≼1 By
∗, Cy∗ ≼2 Dy

∗, and Fx∗,y∗(t0) < 1 for some t0 > 0.

By condition (vi) and (ϕ2), we obtain

Fx∗,y∗(t0) = FTx∗,Ty∗(t0) ≥ f(Fx∗,y∗(t0), ϕ(Fx∗,y∗(t0))) ≥ Fx∗,y∗(t0),

which yields that
f(Fx∗,y∗(t0), ϕ(Fx∗,y∗(t0))) = Fx∗,y∗(t0).

By (L3) and (ϕ2), we get Fx∗,y∗(t0) = 1, which is a contradiction. Therefore, x∗ is the unique solution
to (1.1). This completes the proof.

3 Some consequences

Setting ≼1=≼2=≼, C = B and D = A, problem (1.1) becomes the following one: Find x ∈ X,
such that {

x = Tx,
Ax = Bx,

(3.1)

where T,A,B : X → X are given self-mappings and (X,F ,∆) is a Menger PM-space endowed with
a partial order ≼.

Letting ≼1=≼2=≼, C = B and D = A, we can obtain the following corollary from Theorem 2.2.

Corollary 3.1 Let (X,F ,∆) be a T -complete Menger PM-space endowed with a partial order
≼, and T,A,B : X → X be self-mappings. Suppose that the following conditions are satisfied:

(i) ≼ is F -regular;

(ii) A and B are T -continuous;

(iii) there exists x0 ∈ X, such that Ax0 ≼1 Bx0;

(iv) x ∈ X,Ax ≼ Bx =⇒ BTx ≼ ATx;

(v) x ∈ X,Bx ≼ Ax =⇒ ATx ≼ BTx;

(vi) there exists ϕ ∈ Φ and f ∈ L such that

Ax ≼ Bx,By ≼2 Ay =⇒ FTx,Ty(t) ≥ f(Fx,y(t), ϕ(Fx,y(t))),∀t > 0.

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (3.1). Moreover, x∗ is
the unique solution to (3.1).

Next, we provide an example to show the validity of Corollary 3.1.

Example 3.1 Let X = {(6, 2), (2, 2), (8, 2), (5, 2), (5, 3)} ⊂ R2 and ≼ be the partial order on X
defined by

(x1, y1), (x2, y2) ∈ X, (x1, y1) ≼ (x2, y2) ⇐⇒ x1 ≤ x2, y1 ≤ y2.
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Let X be endowed with the metric d defined by

d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2, for x = (x1, y1), y = (x2, y2) ∈ X.

Let F : X ×X → D be defined by (1.2). Then it follows from Remark 1.2 that (X,F ,∆min) is a
T -complete Menger PM-space.

Let T,A,B : X → X be the mappings defined by
T (6, 2) = (6, 2),
T (2, 2) = (8, 2),
T (8, 2) = (5, 2),
T (5, 2) = (6, 2),
T (5, 3) = (2, 2),


A(6, 2) = (6, 2),
A(2, 2) = (4, 2),
A(8, 2) = (3, 2),
A(5, 2) = (7, 2),
A(5, 3) = (4, 3),

and


B(6, 2) = (6, 2),
B(2, 2) = (5, 2),
B(8, 2) = (2, 2),
B(5, 2) = (8, 2),
B(5, 3) = (6, 2).

It is obvious that
u ∈ X, u ≼ Bu⇐⇒ u ∈ {(6, 2), (2, 2), (2, 2)}

and
v ∈ X, Bv ≼ v ⇐⇒ v ∈ {(6, 2), (8, 2)}.

By the above definitions, it is easy to check that

u ∈ X,Au ≼ Bu =⇒ BTu ≼ ATu

and
v ∈ X,Bv ≼ Av =⇒ ATv ≼ BTv.

Now, let (u, v) ∈ X ×X satisfies Au ≼ Bu and Bv ≼ Av. Then we have

(u, v) ∈ {((6, 2), (6, 2)), ((6, 2), (8, 2)), ((2, 2), (6, 2)), ((2, 2), (8, 2)), ((5, 2), (6, 2)), ((5, 2), (8, 2))}.

For (u, v) = ((6, 2), (6, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t) = 1 ≥ 1 · ϕ(1) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.

For (u, v) = ((6, 2), (8, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t− 1) ≥ H(t− 2) · ϕ(H(t− 2)) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.

For (u, v) = ((2, 2), (6, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t− 2) ≥ H(t− 4) · ϕ(H(t− 4)) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.

For (u, v) = ((2, 2), (8, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t− 3) ≥ H(t− 6)) · ϕ(H(t− 6)) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.

For (u, v) = ((5, 2), (6, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t) = 1 ≥ H(t− 1) · ϕ(H(t− 1)) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.

For (u, v) = ((5, 2), (8, 2)), we have

FTu,Tv(t) = H(t− d(Tu, Tv)) = H(t− 1) ≥ H(t− 3) · ϕ(H(t− 3)) = Fu,v(t) · ϕ(Fu,v(t)),∀t > 0.
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Then we have

Au ≼ Bu,Bv ≼ Av =⇒ FTu,Tv(t) ≥ f(Fu,v(t), ψ(Fu,v(t))),∀t > 0,

where f(a, b) = a · b, ∀a ∈ [0, 1] and b ∈ [1,∞). Therefore, all the conditions of Corollary 3.1 are
satisfied and thus (3.1) has a unique solution. In fact, we observe that x∗ = (6, 2) is the unique
solution to (3.1). We would like to point out that there exists t0 = 3 > 0, such that

FT (6,2),T (5,3)(t0) = H(t0 − 4) = 0 < 1 = H(t0 −
√
2) = F(6,2),(5,3)(t0),

which shows that T is not a SB-contraction on (X,F ,∆).

Furthermore, setting A = IX in (3.1), where IX denotes the identity mapping on X, we get another
problem: Find x ∈ X, such that {

x = Tx,
x = Bx,

(3.2)

where T,B : X → X are given self-mappings and (X,F ,∆) is a Menger PM-space endowed with a
partial order ≼. This problem is to find a common fixed point of two self-mappings on a partially
ordered Menger PM-space.

Taking A = IX in Corollary 3.1, we obtain the following result immediately.

Corollary 3.2 Let (X,F ,∆) be a T -complete Menger PM-space endowed with a partial order
≼, and T,B : X → X be self-mappings. Suppose that the following conditions are satisfied:

(i) ≼ is F -regular;

(ii) B is T -continuous;

(iii) there exists x0 ∈ X, such that x0 ≼1 Bx0;

(iv) x ∈ X,x ≼ Bx =⇒ BTx ≼ Tx;

(v) x ∈ X,Bx ≼ x =⇒ Tx ≼ BTx;

(vi) there exists ϕ ∈ Φ and f ∈ L such that

x ≼ Bx,By ≼ y =⇒ FTx,Ty(t) ≥ f(Fx,y(t), ϕ(Fx,y(t))),∀t > 0.

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (3.2). Moreover, x∗ is
the unique solution to (3.2).

Furthermore, by taking B = T in Corollary 3.2, we obtain a fixed point theorem of a self-mapping
T on a partially ordered Menger PM-space.
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Fixed Point Theorems for several types of Meir-Keeler

contraction mappings in Ms−metric spaces
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Abstract: In this paper, we first introduce several types of Meir-Keeler contractive mappings

in the structure of MS−metric spaces. Then we study some existence and uniqueness fixed point

theorems for these types of MKC mappings in Ms−metric spaces via Gupta-Saxena type contraction

and other fraction version type contractions. Also, we extend and improve very recent results in fixed

point theory.
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1. Introduction and Preliminaries

In 2014, Nabil [1] established an extension of S-metric spaces to partial S-metric spaces and pointed

out that every S-metric space is a partial S-metric space. Also, they obtained some fixed point results

under certain contractive principle in partial S−metric spaces. Recently, Nabil et al.[2] have extended

the concept of a partial S−metric space to the concept of an Ms−metric space. They gave a more

general extension of almost any metric space with three dimensions and that is not by defining the

self ”distance” in a metric as in partial metric spaces, but they assumed that is not necessary that

the self ”distance” is less than the value of the metric among three distinct elements.

In 1969, Meir and Keeler [3] established a fixed point theorem in a metric space (X, d) for mappings

satisfying the condition that for each ε > 0 there exists δ(ε) > 0 such that

ε ≤ d(x, y) < ε+ δ implies d(Tx, Ty) < ε, (1)

∀x, y ∈ X. This condition is called the Meri-Keeler contractive (MKC, for short) type condition.

Since then, many authors extended and improved this condition and established fixed point results

for new generalized MKC mappings, see [4]-[7].

In this paper, we establish some of the fixed point theorem for some types of MKC mappings in

Ms−metric spaces. Also, we extend and improve very recent results in fixed point theory.

Next, we remind the reader of some definitions, notions, lemmas which are useful in the sequel.
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Now, we present the definition of an Ms-metric space, but first we introduce the following notations

which are useful in the sequel:

(1) msx,y,z = min{ms(x, x, x),ms(y, y, y),ms(z, z, z)};
(2) Msx,y,z

= max{ms(x, x, x),ms(y, y, y),ms(z, z, z)}.

Definition 1.1. [2] An Ms-metric on a nonempty set X is a function ms : X3 7→ R+ that satisfies

the following conditions: for ∀x, y, z, t ∈ X,

(ms1) ms(x, x, x) = ms(y, y, y) = ms(z, z, z) = ms(x, y, z) if and only if x = y = z;

(ms2) msx,y,z ≤ ms(x, y, z);

(ms3) ms(x, x, y) = ms(y, y, x);

(ms4) (ms(x, y, z)−msx,y,z ) ≤ (ms(x, x, t)−msx,x,t)+(ms(y, y, t)−msy,y,t)+(ms(z, z, t)−msz,z,t).

Then the pair (X,ms) is called an Ms-metric space.

Immediate examples of such Ms−metric space are:

(1) Let X = [0,∞) and ms : X3 7→ R+ be a mapping defined by

ms(x, y, z) = max{x, y, z} −min{x, y, z},

for ∀x, y, z ∈ X. Then ms is an Ms-metric on X.

(2) Let X be a nonempty set and d be the ordinary metric on X. Define mapping ms : X3 7→ [0,∞)

by

ms(x, y, z) = d(x, y) + d(x, z) + d(y, z),

for ∀x, y, z ∈ X. Then ms is an Ms-metric on X.

(3) Let X = {1, 2, 3} and define a mapping ms on X by

ms(1, 2, 3) = 6, ms(1, 1, 2) = ms(2, 2, 1) = 10,

ms(1, 1, 3) = ms(3, 3, 1) = ms(2, 2, 3) = ms(3, 3, 2) = 7,

ms(2, 2, 2) = 9, ms(3, 3, 3) = 5, ms(1, 1, 1) = 8.

Then ms is an Ms-metric on X.

Remark 1.1. If ms is an Ms-metric on a nonempty set X, then two mappings mw
s ,m

∗
s : X3 7→ R+

defined by

mw
s (x, y, z) = ms(x, y, z)− 2msx,y,z

+Msx,y,z

and

m∗s(x, y, z) =

ms(x, y, z)−msx,y,z
, x 6= y 6= z,

0, x = y = z = 0,

for all x, y, z ∈ X are two ordinary S-metrics on X. In fact, if mw
s (x, y, z) = 0, then we have

ms(x, y, z) = 2msx,y,z
−Msx,y,z

.

But, from the equation defined above and (ms2), it follows that

msx,y,z
= Msx,y,z

= ms(x, x, x) = ms(y, y, y) = ms(z, z, z).
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So, by the equation above, we have that ms(x, y, z) = ms(x, x, x) = ms(y, y, y) = ms(z, z, z) and so

x = y = z. We can get the inequality property in the definition of an S-metric from Lemma 1.1 (7)

and (ms4).

Lemma 1.1. Let (X,ms) be an Ms-metric space. Then, for all x, y, z, t ∈ X,

(1) ms(x, y, y) ≤ ms(x, x, y);

(2) ms(x, y, x) ≤ 2ms(x, x, y);

(3) ms(x, y, z)−msx,y,z ≤ (ms(x, x, z)−msx,x,z ) + (ms(y, y, z)−msy,y,z );

(4) ms(x, y, z)−msx,y,z
≤ (ms(x, x, y)−msx,x,y

) + (ms(z, z, y)−msz,z,y );

(5) ms(x, y, z)−msx,y,z
≤ (ms(y, y, x)−msy,y,x

) + (ms(z, z, x)−msz,z,x);

(6) ms(x, y, z)−msx,y,z ≤ 2
3 [(ms(x, x, z)−msx,x,z )+(ms(z, z, y)−msz,z,y )+(ms(y, y, x)−msy,y,x)];

(7) (Msx,y,z
−msx,y,z

) ≤ (Msx,x,t
−msx,x,t

) + (Msy,y,t
−msy,y,t

) + (Msz,z,t −msz,z,t).

Proof. (1)-(7) can be directly obtained from Definition 1.1.

2. Topology for Ms−metric

It is clear that each Ms-metric ms on X generates a topology τms
on X. The set

{Bms(x, ε) : x ∈ X, ε > 0},

where

Bms
(x, ε) := {y ∈ X : ms(x, x, y)−msx,x,y

< ε},

for ∀x ∈ X and ε > 0, forms a base of τms
.

Definition 2.1. Let (X,ms) be an Ms-metric space. Then:

(1) A sequence {xn} in X is said to be convergent to a point x if

lim
n→∞

(ms(xn, xn, x)−msxn,xn,x
) = 0.

(2) A sequence {xn} in X is called an Ms-Cauchy sequence if

lim
n,m→∞

(ms(xn, xn, xm)−msxn,xn,xm
), lim
n,m→∞

(Msxn,xn,xm
−msxn,xn,xm

)

exist and finite.

(3) An Ms-metric space is said to be complete if every ms-Cauchy sequence {xn} in X converges,

with respect to τms
, to a point x ∈ X such that

lim
n→∞

(ms(xn, xn, x)−msxn,xn,x) = 0, lim
n→∞

(Msxn,xn,x −msxn,xn,x) = 0.

Lemma 2.1. Let (X,ms) be an Ms-metric space. Then:

(1) {xn} is an Ms-Cauchy sequence in (X,ms) if and only if it is an S-Cauchy sequence in the

S-metric space (X,mw
s ).
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(2) An Ms-metric space (X,ms) is complete if and only if the S-metric space (X,mw
s ) is complete.

Furthermore,

lim
n→∞

mw
s (xn, xn, x) = 0

=⇒ lim
n→∞

(ms(xn, xn, x)−msxn,xn,x) = 0, lim
n→∞

(Msxn,xn,x −msxn,xn,x) = 0.

Proof. It is obviously follows from the definitions of Ms-Cauchy sequence, Ms-completeness, S-Cauchy

sequence and S-completeness.

Meanwhile, the above assertions are true for m∗s.

Lemma 2.2. Assume that xn → x and yn → y as n→∞ in an Ms-metric space (X,ms). Then:

lim
n→∞

ms(xn, xn, yn)−msxn,xn,yn
= ms(x, x, y)−msx,x,y

.

Proof. We have

|(ms(xn, xn, yn)−msxn,xn,yn
)− (ms(x, x, y)−msx,x,y

)|

≤ 2|ms(xn, xn, x)−msxn,xn,x |+ 2|ms(yn, yn, y)−msyn,yn,y |.

From Lemma 2.2, we can deduce the following lemma:

Lemma 2.3. Assume that xn → x as n→∞ in an Ms-metric space (X,ms). Then:

lim
n→∞

ms(xn, xn, y)−msxn,xn,y
= ms(x, x, y)−msx,x,y

,

∀y ∈ X.

Lemma 2.4. Assume that xn → x and xn → y as n → ∞ in an Ms-metric space (X,ms). Then:

ms(x, x, y) = msx,x,y
. Furthermore, if ms(x, x, x) = ms(y, y, y), then x = y.

Proof. By Lemma 2.2, we have

0 = lim
n→∞

ms(xn, xn, xn)−msxn,xn,xn
= ms(x, x, y)−msx,x,y

.

Lemma 2.5. Let {xn} be a sequence in Ms-metric space (X,ms) such that there exists r ∈ [0, 1)

such that

ms(xn+1, xn+1, xn) ≤ rms(xn, xn, xn−1), (2)

for ∀n ∈ N. Then we have

(1) lim
n→∞

ms(xn, xn, xn−1) = 0.

(2) lim
n→∞

ms(xn, xn, xn) = 0.

(3) lim
n,m→∞

msxn,xn,xm
= 0.

(4) {xn} is an Ms−Cauchy sequence.
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Proof. From the equation (2), we have

ms(xn, xn, xn−1) ≤ rms(xn−1, xn−1, xn−2) ≤ r2ms(xn−2, xn−2, xn−3) ≤ · · · ≤ rnms(x1, x1, x0)

and so lim
n→∞

ms(xn, xn, xn−1) = 0, which implies that (A) holds. From (ms2) and (1), we have

lim
n→∞

msxn,xn,xn−1
≤ lim
n→∞

ms(xn, xn, xn−1) = 0,

that is, (2) holds. Clearly, (3) and (4) hold.

Theorem 2.1. The topology τms is not Hausdorff.

Proof. Let x, y, z ∈ X be such that a := ms(x, x, x) < ms(z, z, z) = a+b
2 < b := ms(y, y, y) with

b

2
<
k

2
< ms(y, y, y) < Msx,x,y

= b, r = 2ms(x, x, y)− a− b > 0,

max{ms(x, x, z),ms(z, z, y)} ≤ (2ms(x, x, y)− k)
ε

r
.

Without loss of generality, we assume that, for each ε > 0, ε < r. Now, we need to prove that the

intersection of the following neighborhoods is not empty:

Ux = {z ∈ X : ms(x, x, z)−msx,x,z
< ε}, Vy = {z ∈ X : ms(y, y, z)−msy,y,z

< ε}.

To prove z ∈ Ux, we have

ms(x, x, z) < (2ms(x, x, y)− k)
ε

r
,

ms(x, x, z)−msx,x,z < (2ms(x, x, y)− k)
ε

r
− a

< (2ms(x, x, y)− k − a)
ε

r

< (2ms(x, x, y)− a− b) ε
r

= ε,

and, for any z ∈ Vy, we also have

ms(y, y, z) < (2ms(x, x, y)− k) εr ,

ms(y, y, z)−msy,y,z < (2ms(x, x, y)− k)
ε

r
− a+ b

2

< (2ms(x, x, y)− k)
ε

r
− a+ b

2

ε

r

= (2ms(x, x, y)− k − a+ b

2
)
ε

r

< (2ms(x, x, y)− a− b) ε
r

= ε.

So, we can find x, y ∈ X such that, for all nonempty neighborhoods Ux of x and Vy of y, Ux ∩ Vy 6= ∅.
This completes the proof.
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3. Main Results

The following definition is new version of definition in [3] for an Ms−metric space.

Definition 3.1. A Meir-Keeler mapping is a mapping T : X 7→ X on an Ms−metric space (X,ms)

such that

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y ∈ Xε ≤ ms(x, x, y) < ε+ δ(ε) implies ms(Tx, Tx, Ty) < ε. (3)

Theorem 3.1. Let (X,ms) be a complete Ms−metric space and let T be a mapping from X into

itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y ∈ Xε ≤ ms(x, x, y) < ε+ δ(ε)⇒ ms(Tx, Tx, Ty) < ε.

Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.

Proof. It is easy to check that T is a strict contractive mapping, i.e.,

x 6= y ⇒ ms(Tx, Tx, Ty) < ms(x, x, y). (4)

Let x0 ∈ X and define the sequence {xn} by xn = Tn(x0), n ∈ N. So we have

ms(xn, xn, xn−1) = ms(Txn−1, Txn−1, Txn−2) < ms(xn−1, xn−1, xn−2), ∀n ∈ N. (5)

So the sequence {ms(xn, xn, xn−1)} is bounded below and decreasing.

Then, there exists r ≥ 0 such that

lim
n→∞

ms(xn, xn, xn−1) = lim
n→∞

ms(xn−1, xn−1, xn) = r.

Next, we will show that r = 0. If r > 0, therefore, ms(xn, xn, xn−1) ≥ r, for ∀n ∈ N.

On the other hand, for r > 0, by the hypothesis that T is MKC mapping, there exists δ(r) > 0 such

that

r ≤ ms(xn−1, xn−1, xn−2) < r + δ(r)⇒ ms(Txn−1, Txn−1, Txn−2) = ms(xn, xn, xn−1) < r,

which implies that it is a contradiction. Hence, r = 0. Then, we have that

lim
n→∞

ms(xn, xn, xn−1) = lim
n→∞

ms(xn−1, xn−1, xn) = 0. (6)

and

lim
n→∞

min{ms(xn−1, xn−1, xn−1),ms(xn, xn, xn)} = lim
n→∞

msxn,xn,xn−1
< lim
n→∞

ms(xn, xn, xn−1) = 0. (7)

And then, we also have that

lim
m,n→∞

msxm,xm,xn
= 0 and lim

m,n→∞
Msxm,xm,xn

= 0. (8)

Next, we claim that lim
m,n→∞

ms(xm, xm, xn) = 0, that is

for every ε > 0, there exists N ∈ N, such that

ms(xl, xl, xl+k) < ε, (9)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1342 Mi Zhou et al 1337-1353



for all l ≥ N and k ∈ N.

For ∀ε > 0.

By (7), we can choose N1 ∈ N such that for all m,n > N1,

msxm,xm,xn
<
ε

4
. (10)

Since {ms(xn−1, xn−1, xn} converges to 0, as n→∞, for every δ > 0, there exists N2 ∈ N such that

ms(xn−1, xn−1, xn) <
δ

4
, ∀n > N2 + 1. (11)

Choose δ such as δ < ε. We will prove (8) by using mathematic induction on k.

For k = 1, (8) becomes that

ms(xl, xl, xl+1) <
δ

4
<
ε

4
< ε,

and clearly holds for all l > N2 + 1, due to (11) and the choice of δ.

Assume that the inequality (9) holds for some k = m, that is

ms(xl, xl, xl+m) <
δ

4
<
ε

4
< ε,

for ∀l ≥ N2 + 1.

For k = m+ 1, we have to show that ms(xl, xl, xl+m) < ε, for some l ≥ N .

Take N = max{N1, N2 + 1}. For all l ≥ N , we have that

ms(xl, xl, xl+m+1)

≤ (ms(xl, xl, xl+m)−msxl,xl,xl+m
) + (ms(xl, xl, xl+m)−msxl,xl,xl+m

)

+ (ms(xl+m, xl+m, xl+m+1)−msxl+m,xl+m,xl+m+1
) +msxl,xl,xl+m

≤ 2ms(xl, xl, xl+m) +ms(xl+m, xl+m, xl+m+1) +msxl,xl,xl+m

< 2 · δ
4

+
δ

4
+
ε

4

< 2 · ε
4

+
ε

4
+
ε

4
= ε.

Hence, (9) holds for k = m+ 1.

Therefore, the claim is true.

So by (8) and lim
m,n→∞

ms(xm, xm, xn) = 0, we see that the sequence {xn} is a Cauchy sequence and

by completeness of X, xn → x∗ in ms for some x∗ ∈ X, that is

lim
n→∞

(ms(xn, xn, x
∗)−msxn,xn,x∗ ) = 0. (12)

But msxn,xn,x∗ → 0, as n→∞, due to ms(xn, xn, xn)→ 0. So ms(xn, xn, x
∗)→ 0, as n→∞ .

Thus, by the hypothesis, we have that ms(Txn, Txn, Tx
∗) < ms(xn, xn, x

∗) → 0, as n → ∞. Hence,

by (ms2), we have that

msTxn,Txn,Tx∗ ≤ ms(Txn, Txn, Tx
∗)→ 0.

Therefore, Txn → Tx∗, as n→∞.

Equation (6) implies that ms(xn, xn, Txn) → 0, as n → ∞. Since msxn,xn,Txn
→ 0, as n → ∞, by
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Lemma 2.2, we get ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ .

On the other hand, by Lemma 2.2 and

Txn−1 = xn → x∗ and xn+1 = Txn → Tx∗,

we have

0 = lim
n→∞

(ms(xn, xn, Txn)−msxn,xn,Txn
)

= lim
n→∞

(ms(xn, xn, xn+1)−msxn,xn,Txn
)

= ms(x
∗, x∗, x∗)−msx∗,x∗,Tx∗

= ms(Tx
∗, Tx∗, Tx∗)−msx∗,x∗,Tx∗ .

Thus, ms(x
∗, x∗, x∗) = msx∗,x∗,Tx∗ = ms(Tx

∗, Tx∗, Tx∗).

And since

ms(x
∗, x∗, Tx∗) = ms(Tx

∗, Tx∗, x∗) = msx∗,x∗,Tx∗ = ms(x
∗, x∗, x∗) = ms(Tx

∗, Tx∗, Tx∗),

then, by Lemma 2.4, we have that x∗ = Tx∗.

Uniqueness by the contraction (4) is clear.

Next, we establish a fixed point theorem for a MKC mapping in Ms−metric space via Gupta-

Saxena type contraction.

Put

C(x, x, y) = ms(x, x, y) +
(1 +ms(x, x, Tx))ms(y, y, Ty)

1 +ms(x, x, y)
+
ms(x, x, Tx)ms(y, y, Ty)

ms(x, x, y)
.

Theorem 3.2. Let (X,ms) be a complete Ms−metric space and let T be a continuous mapping from

X into itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y ∈ Xε ≤ kC(x, x, y) < ε+ δ(ε)⇒ ms(Tx, Tx, Ty) < ε, (13)

for some 0 < k < 1
3 .

Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.

Proof. From definition of C(x, x, y), it follows that T is a strict contraction, i.e.,

x 6= y ⇒ ms(Tx, Tx, Ty) < kC(x, x, y). (14)

Let x0 ∈ X and define the sequence {xn} by xn = Tn(x0), n ∈ N. So we have

C(xn−1, xn−1, xn) = ms(xn−1, xn−1, xn) +
(1 +ms(xn−1, xn−1, xn))ms(xn, xn, xn+1)

1 +ms(xn−1, xn−1, xn)

+
ms(xn−1, xn−1, xn)ms(xn, xn, xn+1)

ms(xn−1, xn−1, xn)

= ms(xn−1, xn−1, xn) + 2ms(xn, xn, xn+1),
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and

ms(xn, xn, xn+1) = ms(Txn−1, Txn−1, Txn)

< kC(xn−1, xn−1, xn)

= k(ms(xn−1, xn−1, xn) + 2ms(xn, xn, xn+1)).

Therefore,

ms(xn, xn, xn+1) < rms(xn−1, xn−1, xn),

where r = k
1−2k ∈ [0, 1) by the choice of k. Now, by Lemma 2.5, {xn} is a Cauchy sequence, and by

completeness of X, Txn−1 = xn → x∗ as n → ∞ in ms for some x∗ ∈ X. Since T is a continuous

mapping, so xn = Txn−1 → Tx∗ as n→∞ in ms. By Lemma 2.4, we find

ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ ,

and

0 = lim
n→∞

(ms(xn, xn, Txn)−msxn,xn,Txn
)

= ms(x
∗, x∗, Tx∗)−msx∗,x∗,Tx∗

= ms(Tx
∗, Tx∗, Tx∗)−msx∗,x∗,Tx∗ .

By Lemma 2.2, we have that

ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ = ms(x

∗, x∗, x∗) = ms(Tx
∗, Tx∗, Tx∗).

Then, by Lemma 2.4, we have that x∗ = Tx∗.

Uniqueness by the contraction (14) is clear.

Theorem 3.3. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function ϕ(t) : [0,∞) 7→ [0,∞) satisfying the following conditions:

(1) ϕ(0) = 0 and t > 0⇒ ϕ(t) > 0;

(2) ϕ is nondecreasing and right continuous;

(3) for every ε > 0, there exists δ > 0 such that

ε ≤ ϕ(kC(x, x, y)) < ε+ δ ⇒ ϕ(ms(Tx, Tx, Ty)) < ε, (15)

for some 0 < k < 1
3 and for all x, y ∈ X with x 6= y.

Then, (13) is satisfied.

Proof. Fix ε > 0, so ϕ(ε) > 0. By (15) there exists δ > 0 such that

∀x, y ∈ X,x 6= y, ϕ(ε) < ϕ(kC(x, x, y)) < ϕ(ε) + δ ⇒ ϕ(ms(Tx, Tx, Ty)) < ϕ(ε).

In view of the fact that ϕ is right continuous, then there exists δ′ > 0 such that

ϕ(ε+ δ) < ϕ(ε) + δ′.
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Now, for x, y ∈ X with x 6= y and fixed

ε ≤ kC(x, x, y) < ε+ δ,

Since ϕ is a nondecreasing mapping, we have

ϕ(ε) ≤ ϕ(kC(x, x, y)) < ϕ(ε+ δ) < ϕ(ε) + δ′.

So we get

ϕ(ms(Tx, Tx, Ty)) < ϕ(ε),

which implies that ms(Tx, Tx, Ty) < ε, i.e., (13) is satisfied.

Corollary 3.1. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function h(t) : [0,∞) 7→ [0,∞) is a locally integrable satisfying the

following conditions:

(1)
∫ t
0
h(s)ds > 0 for all t > 0;

(2) for every ε > 0 there exists δ > 0 such that

1

k
ε ≤

∫ C(x,x,y)

0

h(s)ds <
1

k
ε+ δ ⇒

∫ 1
kms(Tx,Tx,Ty)

0

h(s)ds <
1

k
ε,

for some 0 < k < 1
3 and for all x, u ∈ X with x 6= y.

Then (13) is satisfied.

Proof. Defining ϕ(t) in Theorem 3.3 by ϕ(t) =
∫ t
0
h(s)ds, then we can draw the conclusion.

Next, we establish a fixed point theorems for a MKC mapping in Ms−metric spaces via other

fractional type contractions.

Put

MA(x, y, z) = ms(x, y, z) +
ms(x, Tx, Tx)ms(y, Ty, Ty)ms(z, Tz, Tz)

ms(x, y, z)ms(Tx, Ty, Tz)
+
ms(x, Tx, Tx)ms(y, Ty, Ty)ms(z, Tz, Tz)

ms(x, y, z)2
.

Theorem 3.4. Let (X,ms) be a complete Ms−metric space and let T be a continuous mapping from

X into itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y, z ∈ Xε ≤ kMA(x, y, z) < ε+ δ(ε)⇒ ms(Tx, Ty, Tz) < ε. (16)

for some 0 < k < 1
3 .

Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.

Proof. From definition of MA(x, y, z), it follows that T is a strict contraction, i.e.,

x 6= y 6= z ⇒ ms(Tx, Ty, Tz) < kMA(x, y, z). (17)
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Let x0 ∈ X and define the sequence {xn} by xn = Tn(x0), n ∈ N. So we have

MA(xn−1, xn−1, xn) = ms(xn−1, xn−1, xn) +
ms(xn−1, xn, xn)2ms(xn, xn+1, xn+1)

ms(xn−1, xn−1, xn)ms(xn, xn, xn+1)

+
ms(xn−1, xn, xn)2ms(xn, xn+1, xn+1)

ms(xn−1, xn−1, xn)2

≤ ms(xn−1, xn−1, xn) +
ms(xn−1, xn−1, xn)2ms(xn, xn, xn+1)

ms(xn−1, xn−1, xn)ms(xn, xn, xn+1)

+
ms(xn−1, xn, xn)2ms(xn, xn, xn+1)

ms(xn−1, xn−1, xn)2
(” ≤ ”byLemma1.1(1))

= ms(xn−1, xn−1, xn) + 2ms(xn, xn, xn+1),

and

ms(xn, xn, xn+1) = ms(Txn−1, Txn−1, Txn)

< kMA(xn−1, xn−1, xn)

< k(ms(xn−1, xn−1, xn) + 2ms(xn, xn, xn+1)).

Therefore,

ms(xn, xn, xn+1) < rms(xn−1, xn−1, xn),

where r = k
1−2k ∈ [0, 1) by the choice of k. Now, by Lemma 2.5, {xn} is a Cauchy sequence, and by

completeness of X, Txn−1 = xn → x∗ as n → ∞ in ms for some x∗ ∈ X. Since T is a continuous

mapping, so xn = Txn−1 → Tx∗ as n→∞ in ms. By Lemma 2.4, we find

ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ ,

and

0 = lim
n→∞

(ms(xn, xn, Txn)−msxn,xn,Txn
)

= ms(x
∗, x∗, Tx∗)−msx∗,x∗,Tx∗

= ms(Tx
∗, Tx∗, Tx∗)−msx∗,x∗,Tx∗ .

By Lemma 2.2, we have that

ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ = ms(x

∗, x∗, x∗) = ms(Tx
∗, Tx∗, Tx∗).

Then, by Lemma 2.4, we have that x∗ = Tx∗.

Uniqueness by the contraction (17) is clear.

Put

MB(x, y, z) = ms(x, y, z) +
(1 +ms(x, x, Tx))ms(y, y, Ty)

1 +ms(x, y, z)

+
(1 +ms(y, y, Ty))ms(z, z, Tz)

1 +ms(x, y, z)
+
ms(x, x, Tx)ms(y, y, Ty)ms(z, z, Tz)

ms(x, y, z)2
.

Theorem 3.5. Let (X,ms) be a complete Ms−metric space and let T be a continuous mapping from

X into itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y, z ∈ Xε ≤ kMB(x, y, z) < ε+ δ(ε)⇒ ms(Tx, Ty, Tz) < ε. (18)
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for some 0 < k < 1
4 .

Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.

Proof. From definition of MB(x, y, z), it follows that T is a strict contraction, i.e.,

x 6= y 6= z ⇒ ms(Tx, Ty, Tz) < kMB(x, y, z). (19)

Let x0 ∈ X and define the sequence {xn} by xn = Tn(x0), n ∈ N. So we have

MB(xn−1, xn−1, xn) = ms(xn−1, xn−1, xn) +
(1 +ms(xn−1, xn−1, xn))ms(xn−1, xn−1, xn)

1 +ms(xn−1, xn−1, xn)

+
(1 +ms(xn−1, xn−1, xn))ms(xn, xn, xn+1)

1 +ms(xn−1, xn−1, xn)
+
ms(xn−1, xn−1, xn)2ms(xn, xn, xn+1)

ms(xn−1, xn−1, xn)2

= 2(ms(xn−1, xn−1, xn) +ms(xn, xn, xn+1)),

and

ms(xn, xn, xn+1) = ms(Txn−1, Txn−1, Txn)

< kMB(xn−1, xn−1, xn)

< 2k(ms(xn−1, xn−1, xn) +ms(xn, xn, xn+1)).

Therefore,

ms(xn, xn, xn+1) < rms(xn−1, xn−1, xn),

where r = 2k
1−2k ∈ [0, 1) by the choice of k.

Then, the conclusion we can directly obtain by using the similar arguments to the proof of Theorem

3.4.

Replacing C(x, x, y) by MA(x, y, z) or MB(x, y, z) in Theorem 3.3 and Corollary 3.1, we can obtain

the following theorem and corollary.

Theorem 3.6. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function ϕ(t) : [0,∞) 7→ [0,∞) satisfying the following conditions:

(1) ϕ(0) = 0 and t > 0⇒ ϕ(t) > 0;

(2) ϕ is nondecreasing and right continuous;

(3) for every ε > 0, there exists δ > 0 such that

ε ≤ ϕ(kMA(x, x, y)) < ε+ δ ⇒ ϕ(ms(Tx, Tx, Ty)) < ε,

for some 0 < k < 1
3 and for all x, y, z ∈ X with x 6= y 6= z.

Then, (16) is satisfied.

Theorem 3.7. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function ϕ(t) : [0,∞) 7→ [0,∞) satisfying the following conditions:

(1) ϕ(0) = 0 and t > 0⇒ ϕ(t) > 0;

(2) ϕ is nondecreasing and right continuous;
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(3) for every ε > 0, there exists δ > 0 such that

ε ≤ ϕ(kMB(x, x, y)) < ε+ δ ⇒ ϕ(ms(Tx, Tx, Ty)) < ε,

for some 0 < k < 1
4 and for all x, y, z ∈ X with x 6= y 6= z.

Then, (18) is satisfied.

Corollary 3.2. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function h(t) : [0,∞) 7→ [0,∞) is a locally integrable satisfying the

following conditions:

(1)
∫ t
0
h(s)ds > 0 for all t > 0;

(2) for every ε > 0 there exists δ > 0 such that

1

k
ε ≤

∫ MA(x,y,z)

0

h(s)ds <
1

k
ε+ δ ⇒

∫ 1
kms(Tx,Ty,Tz)

0

h(s)ds <
1

k
ε,

for some 0 < k < 1
3 and for all x, u ∈ X with x 6= y 6= z.

Then (16) is satisfied.

Corollary 3.3. Let (X,ms) be an Ms−metric space and let T be a self-mapping defined on X.

Assume that there exists a function h(t) : [0,∞) 7→ [0,∞) is a locally integrable satisfying the

following conditions:

(1)
∫ t
0
h(s)ds > 0 for all t > 0;

(2) for every ε > 0 there exists δ > 0 such that

1

k
ε ≤

∫ MB(x,y,z)

0

h(s)ds <
1

k
ε+ δ ⇒

∫ 1
kms(Tx,Ty,Tz)

0

h(s)ds <
1

k
ε,

for some 0 < k < 1
4 and for all x, u ∈ X with x 6= y 6= z.

Then (18) is satisfied.

We are now in a position to define two new types of Meir-Keeler contractions on Ms−metric spaces,

say type A and type B.

Definition 3.2. Let (X,ms) ba an Ms−metric space. A self-mapping T : X 7→ X is said to be a

Meir-Keeler contraction mapping of type A if for every ε > 0 there exists δ(ε) > 0 such that

ε ≤M(x, y) < ε+ δ(ε) implies ms(Tx, Tx, Ty) < ε, (20)

where M(x, y) = min{ms(x, x, y),ms(x, x, Tx),ms(y, y, Ty)}, for all x, y ∈ X.

Definition 3.3. Let (X,ms) ba an Ms−metric space. A self-mapping T : X 7→ X is said to be a

Meir-Keeler contraction mapping of type B if for every ε > 0 there exists δ(ε) > 0 such that

ε ≤ N(x, y) < ε+ δ(ε) implies ms(Tx, Tx, Ty) < ε, (21)

where N(x, y) = min{ms(x, x, y), 12 [ms(x, x, Tx) +ms(y, y, Ty)]}, for all x, y ∈ X.
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Remark 3.1. (1) Suppose that T : X 7→ X is a Meir-Keeler contraction mapping of type A (respec-

tively, type B). Then

ms(Tx, Tx, Ty) < M(x, y) (respectively,N(x, y)),

for all x, y ∈ X with x 6= y.

(2) It is readily verified that M(x, y) ≤ N(x, y) for all x, y ∈ X, where M(x, y), N(x, y) are defined

in Definition 3.2 and Definition 3.3.

Theorem 3.8. Let (X,ms) be a complete Ms−metric space and let T be a mapping from X into

itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y ∈ Xε ≤M(x, y) < ε+ δ(ε)⇒ ms(Tx, Tx, Ty) < ε, (22)

where M(x, y) = min{ms(x, x, y),ms(x, x, Tx),ms(y, y, Ty)}.
Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.

Proof. It is readily verified that T is a strict contractive mapping, i.e.,

x 6= y ⇒ ms(Tx, Tx, Ty) < M(x, y), (23)

where M(x, y) = min{ms(x, x, y),ms(x, x, Tx),ms(y, y, Ty)}.
Let x0 ∈ X and define the sequence {xn} by xn = Tn(x0), n ∈ N. So we have

ms(xn, xn, xn−1) = ms(Txn−1, Txn−1, Txn−2) < M(xn−1, xn−2).

where M(xn−1, xn−2) = min{ms(xn−1, xn−1, xn−2),ms(xn−1, xn−1, xn),ms(xn−2, xn−2, xn−1)}.
In what follows, we examine three cases.

Case1. Assume that M(xn−1, xn−2) = ms(xn−1, xn−1, xn−2). Then (22) becomes that

ε ≤ ms(xn−1, xn−1, xn−2) < ε+ δ ⇒ ms(xn, xn, xn−1) < ε.

Therefore, we deduce that

ms(xn, xn, xn−1) < ε ≤ ms(xn−1, xn−1, xn−2),

for all n ∈ N. That is {ms(xn, xn, xn−1)} is a bounded below and decreasing, and it converges to

some r ≥ 0. To show that r = 0, we assume the contrary that r > 0. Then we must have

0 < r ≤ ms(xn, xn, xn−1), ∀n ∈ N.

On the other hand, for r > 0, by the hypothesis that T is MKC mapping of type A, there exists

δ(r) > 0 such that

r ≤ ms(xn−1, xn−1, xn−2) < r + δ(r)⇒ ms(Txn−1, Txn−1, Txn−2) = ms(xn, xn, xn−1) < r,

which is a contradiction. Hence, r = 0. Therefore, we get

lim
n→∞

ms(xn, xn, xn−1) = lim
n→∞

ms(xn−1, xn−1, xn) = 0. (24)
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Case2. Assume that M(xn−1, xn−2) = ms(xn−1, xn−1, xn). Then (22) becomes that

ε ≤ ms(xn−1, xn−1, xn) < ε+ δ ⇒ ms(xn, xn, xn+1) < ε.

Therefore, we deduce that

ms(xn, xn, xn−1) < ε ≤ ms(xn−1, xn−1, xn−2),

for all n ∈ N. That is {ms(xn, xn, xn+1)} is a bounded below and decreasing, and it converges to

some L ≥ 0. In fact, the limit L of this sequence is 0, which can be shown by mimicking the proof of

(24) done above.

Case3. Assume that M(xn−1, xn−2) = ms(xn−2, xn−2, xn−1). Then (22) becomes that

ε ≤ ms(xn−2, xn−2, xn−1) < ε+ δ ⇒ ms(xn−1, xn−1, xn) < ε.

Therefore, we deduce that

ms(xn−1, xn−1, xn) < ε ≤ ms(xn−2, xn−2, xn−1),

for all n ∈ N. As in two cases above, the sequence {ms(xn−1, xn−1, xn)} is a bounded below and

decreasing, hence it converges to 0.

As a result, we see all three cases, the sequence {ms(xn, xn, xn−1)} converges to 0.

Form (21), we get that

lim
n→∞

min{ms(xn−1, xn−1, xn−1),ms(xn, xn, xn)} = lim
n→∞

msxn,xn,xn−1
< lim
n→∞

ms(xn, xn, xn−1) = 0. (25)

and

lim
m,n→∞

msxm,xm,xn
= 0 and lim

m,n→∞
Msxm,xm,xn

= 0. (26)

Using similar arguments as in proof of Theorem 3.1, it can be shown that

lim
m,n→∞

ms(xm, xm, xn) = 0.

So, by (26) and lim
m,n→∞

ms(xm, xm, xn) = 0, we get that the sequence {xn} is a Cauchy sequence and

by completeness of X, xn → x∗ in ms for some x∗ ∈ X, that is

lim
n→∞

(ms(xn, xn, x
∗)−msxn,xn,x∗ ) = 0.

But msxn,xn,x∗ → 0, as n→∞, due to ms(xn, xn, xn)→ 0. So ms(xn, xn, x
∗)→ 0, as n→∞ .

Thus, by the hypothesis, we have that ms(Txn, Txn, Tx
∗) < M(xn, x

∗) → 0, as n → ∞. Hence, by

(ms2), we have that

msTxn,Txn,Tx∗ ≤ ms(Txn, Txn, Tx
∗)→ 0.

Therefore, Txn → Tx∗, as n→∞.

Equation (24) implies that ms(xn, xn, Txn) → 0, as n → ∞. Since msxn,xn,Txn
→ 0, as n → ∞, by

Lemma 2.2, we get ms(x
∗, x∗, Tx∗) = msx∗,x∗,Tx∗ .

On the other hand, by Lemma 2.2 and

Txn−1 = xn → x∗ and xn+1 = Txn → Tx∗,
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we have

0 = lim
n→∞

(ms(xn, xn, Txn)−msxn,xn,Txn
)

= lim
n→∞

(ms(xn, xn, xn+1)−msxn,xn,Txn
)

= ms(x
∗, x∗, x∗)−msx∗,x∗,Tx∗

= ms(Tx
∗, Tx∗, Tx∗)−msx∗,x∗,Tx∗ .

Thus, ms(x
∗, x∗, x∗) = msx∗,x∗,Tx∗ = ms(Tx

∗, Tx∗, Tx∗).

And since

ms(x
∗, x∗, Tx∗) = ms(Tx

∗, Tx∗, x∗) = msx∗,x∗,Tx∗ = ms(x
∗, x∗, x∗) = ms(Tx

∗, Tx∗, Tx∗),

then, by Lemma 2.4, we have that x∗ = Tx∗.

Uniqueness by the contraction (23) is clear.

In what follows, we present an existence and uniqueness theorem for fixed point of Meir-Keeler

contraction of type B. Taking Remark 3.1 into account, we observe that the proof of this is similar

to the proof of Theorem 3.8.

Theorem 3.9. Let (X,ms) be a complete Ms−metric space and let T be a mapping from X into

itself satisfying the following condition:

∀ε > 0 ∃δ(ε) > 0 such that ∀x, y ∈ Xε ≤ N(x, y) < ε+ δ(ε)⇒ ms(Tx, Tx, Ty) < ε, (27)

where N(x, y) = min{ms(x, x, y), 12 [ms(x, x, Tx) +ms(y, y, Ty)]}.
Then, T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X the sequence {Tn(x)} converges

to x∗.
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Abstract. The notion of tender and naive weak closure operation is introduced, and their relations and properties

are investigated. Using a weak closure operation “cl” and an ideal A of a lower BCK-semilattice X with the

greatest element 1, a new ideal K of X containing the ideal Acl of X is established. Using this ideal K, a new

function

clt : I(X) → I(X), A 7→ K

is given, and related properties are considered. We show that if “cl” is a tender (resp., naive) weak closure

operation on I(X), then so are “clt” and “clf”.

1. Introduction

In [2], Bordbar et al. introduced a weak closure operation, which is more general form than

closure operation, on ideals of BCK-algebras, and investigated related properties. Regarding

weak closure operation, they defined finite type and (strong) quasi-primeness, and investigated

related properties. They also discussed positive implicative (resp., commutative and implicative)

weak closure operations, and provided several examples to illustrate notions and properties.

In this paper, we introduce the notion of tender and naive weak closure operation, and investi-

gate their relations and properties. Using a weak closure operation “cl” and an ideal A of a lower

BCK-semilattice X with the greatest element 1, we construct a new ideal K of X containing

the ideal Acl of X. Using this ideal K, we define a new function

clt : I(X) → I(X), A 7→ K

and investigate related properties. We show that if “cl” is a tender (resp., naive) weak closure

operation on I(X), then so are “clt” and “clf”.

2. Preliminaries
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operation.
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A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was

extensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra.

Any BCK/BCI-algebra X satisfies the following conditions

(a1) (∀x ∈ X) (x ∗ 0 = x),

(a2) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),
(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y)

where x ≤ y if and only if x ∗ y = 0. A BCK-algebra X is called a lower BCK-semilattice (see

[6]) if X is a lower semilattice with respect to the BCK-order.

A subset A of a BCK/BCI-algebra X is called an ideal of X (see [6]) if it satisfies

0 ∈ A, (2.1)

(∀x ∈ X) (∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A) . (2.2)

Note that every ideal A of a BCK/BCI-algebra X satisfies the following implication (see [6]).

(∀x, y ∈ X) (x ≤ y, y ∈ A ⇒ x ∈ A) . (2.3)

For any subset A of X, the ideal generated by A is defined to be the intersection of all ideals of

X containing A, and it is denoted by ⟨A⟩. If A is finite, then we say that ⟨A⟩ is finitely generated

ideal of X (see [6]).

Let I(X) and If (X) be a set of all ideals of X and a set of all finitely generated ideals of X,

respectively.

We refer the reader to the books [5, 6] for further information regarding BCK/BCI-algebras.

3. Tender and naive weak closure operations

In what follows, let X be a lower BCK-semilattice unless otherwise specified. For any a, b ∈ X,

denote by a ∧ b the greatest lower bound of a and b.

Definition 3.1 ([2]). An element x of X is called a zeromeet element of X if the condition

(∃ y ∈ X \ {0}) (x ∧ y = 0)

is valid. Otherwise, x is called a non-zeromeet element of X.
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Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.
Obviously, 0 ∈ Z(X) and if X has the greatest element 1, then 1 ∈ X \ Z(X).

Lemma 3.2 ([2]). For any x, y ∈ X, if x, y /∈ Z(X), then x∧y /∈ Z(X), that is, the set X \Z(X)

is closed under the operation ∧.

Definition 3.3 ([4]). For any nonempty subsets A and B of X, we denote

A ∧B := ⟨{a ∧ b | a ∈ A, b ∈ B}⟩

which is called the meet ideal of X generated by A and B. In this case, we say that the operation

“∧” is a meet operation. If A = {a}, then {a} ∧ B is denoted by a ∧ B. Also, if B = {b}, then
A ∧ {b} is denoted by A ∧ b.

Definition 3.4 ([3]). For any nonempty subsets A and B of X, we define a set

(A :∧ B) := {x ∈ X | x ∧B ⊆ A}

whenever x∧B exists for all x ∈ X, and it is called the relative annihilator of B with respect to

A.

Lemma 3.5 ([3]). If A and B are ideals of a lower BCK-semilattice X, then the relative anni-

hilator (A :∧ B) of B with respect to A is an ideal of X.

Definition 3.6 ([2]). A mapping cl : I(X) → I(X) is called a weak closure operation on I(X)

if the following conditions are valid.

(∀A ∈ I(X)) (A ⊆ cl(A)) , (3.1)

(∀A,B ∈ I(X)) (A ⊆ B ⇒ cl(A) ⊆ cl(B)) . (3.2)

If a weak closure operation cl : I(X) → I(X) satisfies the condition

(∀A ∈ I(X)) (cl(cl(A)) = cl(A)) , (3.3)

then we say that “cl” is a closure operation on I(X) (see [1]). In what follows, we use Acl instead

of cl(A).

For non-zeromeet elements a and b of X and A ∈ I(X), we consider two ideals

((a ∧ A)cl :∧ ⟨b⟩) and Acl,

and investigate their relations where “cl” is a weak closure operation on I(X). In the following

example, we will check that there are following relations:

(1) ((a ∧ A)cl :∧ ⟨b⟩) ⊆ Acl for some A ∈ I(X) and some non-zeromeet elements a and b of

X,

(2) ((a ∧ A)cl :∧ ⟨b⟩) ⊇ Acl for some A ∈ I(X) and some non-zeromeet elements a and b of

X,

(3) They have no inclusion relation, that is,
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((a ∧ A)cl :∧ ⟨b⟩) ⊈ Acl and ((a ∧ A)cl :∧ ⟨b⟩) ⊉ Acl

for some A ∈ I(X) and some non-zeromeet elements a and b of X.

Example 3.7. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the following Cayley

table.
∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 0 0

3 3 3 3 0 3

4 4 4 4 4 0

We have 6 ideals of X, and they are A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 2, 4} and A5 = X. Define a mapping cl : I(X) → I(X) by Acl

0 = A1, A
cl
1 = A2,

Acl
2 = A2, A

cl
3 = A5, A

cl
4 = A5 and Acl

5 = A5. Then “cl” is a weak closure operation on I(X). For

non-zeromeet elements 1 and 3 of X, we have

((1 ∧ A3)
cl :∧ ⟨3⟩) = (A2 :∧ {0, 1, 2, 3}) = {0, 1, 2, 4} = A4 ⊆ A5 = Acl

3 .

Example 3.8. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the following Cayley

table.
∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 1 0 0 0

3 3 3 3 0 3

4 4 4 4 4 0

We have 5 ideals of X, and they are A0 = {0}, A1 = {0, 1, 2}, A2 = {0, 1, 2, 3}, A3 = {0, 1, 2, 4}
and A4 = X. Define a mapping cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A2, A

cl
2 = A4, A

cl
3 = A4

and Acl
4 = A4. Then “cl” is a weak closure operation on I(X). For non-zeromeet elements 1 and

2 of X, we have

((2 ∧ A1)
cl :∧ ⟨1⟩) = (A2 :∧ {0, 1, 2}) = {0, 1, 2, 3, 4} = X ⊇ A2 = Acl

1 .

Example 3.9. Let X = {0, 1, 2, 3, 4} be a lower BCK-semilattice which is given in Example 3.7.

If we define a mapping cl : I(X) → I(X) by Acl
0 = A0, A

cl
1 = A2, A

cl
2 = A2, A

cl
3 = A5, A

cl
4 = A4,

Acl
5 = A5. Then “cl” is a weak closure operation on I(X). For non-zeromeet elements 3 and 4,

we have

((3 ∧ A4)
cl :∧ ⟨4⟩) = (A2 :∧ {0, 1, 2, 4}) = {0, 1, 2, 3} = A3

and Acl
4 = A4. Therefore

((3 ∧ A4)
cl :∧ ⟨4⟩) ⊈ Acl

4 and ((3 ∧ A4)
cl :∧ ⟨4⟩) ⊉ Acl

4 .

We consider the equality of ((a ∧ A)cl :∧ ⟨b⟩) and Acl, that is,

((a ∧ A)cl :∧ ⟨b⟩) = Acl. (3.4)
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Proposition 3.10. If X has the greatest element 1, then every weak closure operation “cl” on

I(X) satisfies the equality (3.4) for some A ∈ I(X) and non-zeromeet elements a and b of X.

Proof. The ideals A = {0} and a non-zeromeet element b = 1 satisfy the equality (3.4) for all

non-zeromeet element a of X. □

The following example shows that the converse of Proposition 3.10 is not true in general.

Example 3.11. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the following Cayley

table.
∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 2 0

3 3 3 3 0 0

4 4 4 4 4 0

Note that 4 is the greatest element and there are 6 ideals of X, that is, A0 = {0}, A1 = {0, 1},
A2 = {0, 1, 2}, A3 = {0, 1, 3}, A4 = {0, 1, 2, 3} and A5 = X. Define a mapping cl : I(X) → I(X)

by Acl
0 = A0, A

cl
1 = A3, A

cl
2 = A2, A

cl
3 = A4, A

cl
4 = A5 and Acl

5 = A5. Note that 0 is the only

zeromeet element of X. For non-zeromeet elements 2 and 3 of X, we have (3∧A1)
cl = Acl

1 = A3.

Hence

((3 ∧ A1)
cl :∧ ⟨2⟩) = (A3 :∧ A2) = {0, 1, 3} = A3 = Acl

1 .

Therefore “cl” satisfies the equality (3.4) for ideal A1 and non-zeromeet elements 2 and 3 of X.

But “cl” is not a weak closure operation because A1 ⊆ A2, but

Acl
1 = A3 ⊈ A2 = Acl

2 .

Definition 3.12. A weak closure operation “cl” on I(X) is said to be

• tender if for any A ∈ I(X) and any non-zeromeet elements a and b of X, the equality

(3.4) is valid,

• naive if for any A ∈ I(X) there exist non-zeromeet elements a and b of X such that the

equality (3.4) is valid.

Example 3.13. Consider a lower BCK-semilattice X = {0, 1, 2, 3} with the following Cayley

table.
∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 0

3 3 3 3 0

We have 5 ideals of X, and they are A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}, and
A4 = X. Note that 3 is only the non-zeromeet element of X. Define a mapping cl : I(X) → I(X)
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by Acl
0 = A0, A

cl
1 = A3, A

cl
2 = A3, A

cl
3 = A3 and Acl

4 = A4. Then “cl” is a weak closure operation

on I(X) and

(3 ∧ A0)
cl :∧ ⟨3⟩) = (Acl

0 :∧ ⟨3⟩) = (A0 :∧ ⟨3⟩) = A0 = Acl
0 ,

(3 ∧ A1)
cl :∧ ⟨3⟩) = (Acl

1 :∧ ⟨3⟩) = (A3 :∧ ⟨3⟩) = A3 = Acl
1 ,

(3 ∧ A2)
cl :∧ ⟨3⟩) = (Acl

2 :∧ ⟨3⟩) = (A3 :∧ ⟨3⟩) = A3 = Acl
2 ,

(3 ∧ A3)
cl :∧ ⟨3⟩) = (Acl

3 :∧ ⟨3⟩) = (A3 :∧ ⟨3⟩) = A3 = Acl
3 ,

(3 ∧ A4)
cl :∧ ⟨3⟩) = (Acl

4 :∧ ⟨3⟩) = (A4 :∧ ⟨3⟩) = A4 = Acl
4 .

Therefore “cl” is a tender weak closure operation on I(X). Also, it is a naive weak closure

operation on I(X).

Obviously, every tender weak closure operation is a native weak closure operation. But the

converse is not true in general as seen in the following example.

Example 3.14. Consider a lower BCK-semilattice X = {0, 1, 2, 3} with the following Cayley

table.

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 1 0 1

3 3 3 3 0

We have 3 ideals of X, and they are A0 = {0}, A1 = {0, 1, 2} and A2 = X. Define a mapping

cl : I(X) → I(X) by Acl
0 = Acl

1 = A1 and Acl
2 = A2. We can easily check that “cl” is a naive

weak closure operation on I(X). But, it is not a tender weak closure operation on I(X). In fact,

we know that there are two non-zeromeet elements 2 and 3. Thus

((3 ∧ A1)
cl :∧ ⟨2⟩) = (Acl

1 :∧ ⟨2⟩) = (A1 :∧ A1) = X ̸= A1 = Acl
1 .

Definition 3.15 ([2]). Given a (weak) closure operation “cl” on I(X), we define a new operation

clf : I(X) → I(X) by

(∀A ∈ I(X))
(
Aclf = ∪{Bcl | B ⊆ A, B ∈ If (X)}

)
, (3.5)

where If (X) is the set of all finitely generated ideals of X.

Definition 3.16 ([2]). A (weak) closure operation “cl” on I(X) is said to be of finite type if the

following assertion is valid.

(∀A ∈ I(X))
(
Acl = Aclf

)
. (3.6)

Theorem 3.17. If “cl” is a tender weak closure operation on I(X), then

((a ∧ A)clf :∧ ⟨b⟩) ⊆ Aclf . (3.7)

for all A ∈ I(X) and every non-zeromeet elements a and b of X.
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Proof. Suppose that “cl” is a tender weak closure operation on I(X). Let A ∈ I(X) and consider

non-zeromeet elements a and b of X. If x ∈ ((a ∧ A)clf :∧ ⟨b⟩), then x ∧ ⟨b⟩ ⊆ (a ∧ A)clf and so

x ∧ z ∈ (a ∧ A)clf for all z ∈ ⟨b⟩. Thus there exists a finitely generated ideal B of X such that

B ⊆ a ∧ A and x ∧ z ∈ Bcl. Since

B = ⟨x1, x2, · · · , xn⟩

for some x1, x2, · · · , xn ∈ X, it follows that xi ∈ a ∧ A and so that xi = a ∧ ai for ai ∈ A and

i ∈ {1, 2, · · · , n}. Thus
B = ⟨a ∧ a1, a ∧ a2, · · · , a ∧ an⟩.

Now put C = ⟨a1, a2, · · · , an⟩. Then C ⊆ A. If x ∈ B, then

(· · · ((x ∗ (a ∧ a1)) ∗ (a ∧ a2)) ∗ · · · ) ∗ (a ∧ an) = 0. (3.8)

Since a1, a2, · · · , an ∈ C, we have

a ∧ ai ∈ {a ∧ c | c ∈ C} for i = 1, 2, · · · , n.

Since a∧C = ⟨{a∧ c | c ∈ C}⟩, it follows from (3.8) that x ∈ a∧C. Thus B ⊆ a∧C, and hence

x ∧ z ∈ Bcl ⊆ (a ∧ C)cl which means that x ∈ ((a ∧ C)cl :∧ z). Since z is an arbitrary element of

⟨b⟩, we have

x ∈ ((a ∧ C)cl :∧ ⟨b⟩) = Ccl.

Since C is a finitely generated ideal of X which is contained in A, we have x ∈ Aclf . Therefore

((a ∧ A)clf :∧ ⟨b⟩) ⊆ Aclf . □

If the condition “tender” in Theorem 3.17 is omitted, then Theorem 3.17 is not true as seen in

the following example.

Example 3.18. Consider the lower BCK-semilattice X and the weak closure operation “cl” on

I(X) as in Example 3.14. Then “cl” is a naive weak closure operation but it is not tender. In

fact, for ideal A1 and 2, 3 ∈ X \ Z(X), we have

((3 ∧ A1)
clf = ∪{Bcl | B ⊆ 3 ∧ A1, B ∈ If (X)} = A1.

Thus ((3 ∧ A1)
clf :∧ ⟨2⟩) = (A1 :∧ A1) = X. But,

A
clf
1 = ∪{Bcl | B ⊆ A1, B ∈ If (X)} = A1.

Therefore ((3 ∧ A1)
clf :∧ ⟨2⟩) = X ⊈ A1 = A

clf
1 , that is, the condition (3.7) is not true.

Remark 3.19. Example 3.18 also shows that the condition (3.7) does not hold whenever we use

a naive weak closure operation instead of a tender weak closure operation on I(X).

Lemma 3.20 ([3]). If A is an ideal of X, then (A :∧ X) = A and (A :∧ A) = X.

Theorem 3.21. Suppose that X has the greatest element 1. If “cl” is a naive weak closure

operation on I(X), then so is “clf”.
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Proof. Note that if “cl” is a weak closure operation on I(X), then so is “clf” (see [1, Lemma

4.1]). Suppose that A is an ideal of X. Since 1 ∧ A = A and ⟨1⟩ = X, it follows from Lemma

3.20 that

Aclf = ((1 ∧ A)clf :∧ ⟨1⟩).

Therefore “clf” is naive weak closure operation on I(X). □

Corollary 3.22. Suppose that X has the greatest element 1. If “cl” is a tender weak closure

operation on I(X), then “clf” is a naive weak closure operation on I(X).

Corollary 3.23. Suppose that X has the greatest element 1. If “cl” is a naive weak closure

operation on I(X), then

(∀A ∈ I(X))(∃a, b ∈ X \ Z(X))
(
((a ∧ A)clf :∧ ⟨b⟩) = Aclf

)
.

Lemma 3.24 ([5]). Every commutative BCK-algebra X satisfies the identity:

(∀x, y, z ∈ X) ((x ∧ y) ∗ (x ∧ z) = (x ∧ y) ∗ z) .

Theorem 3.25. In a commutative BCK-algebra X with the greatest element 1, if “cl” is a

tender weak closure operation on I(X), then so is “clf”.

Proof. Suppose that “cl” is a tender weak closure operation on I(X). Note that if “cl” is a weak

closure operation on I(X), then so is “clf” (see [1, Lemma 4.1]). For any A ∈ I(X), if x ∈ Aclf ,

then there exists B ∈ If (X) such that B ⊆ A and x ∈ Bcl. Since “cl” is a tender weak closure

operation, we have

Bcl = ((a ∧B)cl :∧ ⟨b⟩)

for every elements a, b ∈ X \ Z(X). Thus x ∈ ((a ∧B)cl :∧ ⟨b⟩) which means that

x ∧ ⟨b⟩ ⊆ (a ∧B)cl.

Now we will show that a ∧ B ⊆ C where C = ⟨a ∧ x1, a ∧ x2, · · · , a ∧ xn⟩. Let p ∈ a ∧ B. Then

p = a ∧ q for some q ∈ B. Since B is finitely generated, we have

(· · · ((q ∗ x1) ∗ x2) ∗ · · · ) ∗ xn = 0

for some x1, x2, · · · , xn ∈ X. It follows from Lemma 3.24 and (a3) that

((a ∧ q) ∗ (a ∧ x1)) ∗ (a ∧ x2) = ((a ∧ q) ∗ x1) ∗ (a ∧ x2)

= ((a ∧ q) ∗ (a ∧ x2)) ∗ x1

= ((a ∧ q) ∗ x2) ∗ x1

= ((a ∧ q) ∗ x1) ∗ x2
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and so from Lemma 3.24 and (a3) again that

(((a ∧ q) ∗ (a ∧ x1)) ∗ (a ∧ x2)) ∗ (a ∧ x3)

= (((a ∧ q) ∗ x1) ∗ x2) ∗ (a ∧ x3)

= (((a ∧ q) ∗ (a ∧ x3)) ∗ x1) ∗ x2

= (((a ∧ q) ∗ x3) ∗ x1) ∗ x2

= (((a ∧ q) ∗ x1) ∗ x2) ∗ x3.

By the mathematical induction, we conclude that

(· · · (((a ∧ q) ∗ (a ∧ x1)) ∗ (a ∧ x2)) ∗ · · · ) ∗ (a ∧ xn)

= (· · · (((a ∧ q) ∗ x1) ∗ x2) ∗ · · · ) ∗ xn.
(3.9)

The inequality a ∧ q ≤ q implies from (a2) that

(· · · (((a ∧ q) ∗ x1) ∗ x2) ∗ · · · ) ∗ xn ≤ (· · · ((q ∗ x1) ∗ x2) ∗ · · · ) ∗ xn = 0

which implies that

0 = (· · · (((a ∧ q) ∗ x1) ∗ x2) ∗ · · · ) ∗ xn

= (· · · (((a ∧ q) ∗ (a ∧ x1)) ∗ (a ∧ x2)) ∗ · · · ) ∗ (a ∧ xn).

Hence p = a ∧ q ∈ C, and so a ∧B ⊆ C. Thus

x ∧ ⟨b⟩ ⊆ (a ∧B)cl ⊆ Ccl.

Since C is a finitely generated ideal of X which is contained in a∧A, it follows that x∧⟨b⟩ ⊆ (a∧
A)clf , that is, x ∈ ((a∧A)clf :∧ ⟨b⟩). Thus Aclf ⊆ ((a∧A)clf :∧ ⟨b⟩). Now let x ∈ ((a∧A)clf :∧ ⟨b⟩).
Then x ∧ ⟨b⟩ ⊆ (a ∧ A)clf , and so there exists B ∈ If (X) such that B ⊆ a ∧ A and x ∧ z ∈ Bcl

for every z ∈ ⟨b⟩. Hence
x ∈ ((1 ∧B)cl :∧ ⟨b⟩).

Since “cl” is a tender weak closure operation on I(X), we have ((1 ∧ B)cl :∧ ⟨b⟩) = Bcl and

x ∈ Bcl. Since B ∈ If (X) and B ⊆ a ∧ A ⊆ A, we get x ∈ Aclf . Therefore

Aclf = ((a ∧ A)clf :∧ ⟨b⟩). (3.10)

Consequently we know that “clf” is a tender weak closure operation on I(X). □

Lemma 3.26 ([3]). For any nonempty subsets A, B1 and B2 of X, we have

B1 ⊆ B2 ⇒ (A :∧ B2) ⊆ (A :∧ B1). (3.11)

Lemma 3.27 ([3]). For any ideal A of X, we have

(∀x, y ∈ X) (x ≤ y ⇒ x ∧ A ⊆ y ∧ A) . (3.12)
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Theorem 3.28. Assume that X has the greatest element 1. For every weak closure operation

“cl” on I(X) and every ideal A of X, let

K := ∪{((a ∧ A)cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}. (3.13)

Then K is an ideal of X containing Acl.

Proof. Suppose that A is an ideal of X. Then ((a ∧ A)cl :∧ ⟨b⟩) is an ideal of X for every

a, b ∈ X \Z(X) by Definition 3.3 and Lemma 3.5. Hence it is clear that 0 ∈ K. Let x, y ∈ X be

such that x ∈ K and y ∗ x ∈ K. Then there exist a1, a2, b1, b2 ∈ X \ Z(X) such that

x ∈ ((a1 ∧ A)cl :∧ ⟨b1⟩) and y ∗ x ∈ ((a2 ∧ A)cl :∧ ⟨b2⟩).

Thus x∧ ⟨b1⟩ ⊆ (a1 ∧A)cl and (y ∗ x)∧ ⟨b2⟩ ⊆ (a2 ∧A)cl. Since ai ≤ 1 for i = 1, 2, it follows from

Lemma 3.27 that ai ∧ A ⊆ 1 ∧ A = A for i = 1, 2. Hence

(ai ∧ A)cl ⊆ (1 ∧ A)cl

for i = 1, 2, which implies that x ∧ ⟨b1⟩ ⊆ (1 ∧ A)cl and (y ∗ x) ∧ ⟨b2⟩ ⊆ (1 ∧ A)cl. Therefore

x ∈ ((1∧A)cl :∧ ⟨b1⟩) and y ∗x ∈ ((1∧A)cl :∧ ⟨b2⟩). Note that ⟨b1∧ b2⟩ ⊆ ⟨b1⟩ and ⟨b1∧ b2⟩ ⊆ ⟨b2⟩,
and so

((1 ∧ A)cl :∧ ⟨b1⟩) ⊆ ((1 ∧ A)cl :∧ ⟨b1 ∧ b2⟩)

and

((1 ∧ A)cl :∧ ⟨b2⟩) ⊆ ((1 ∧ A)cl :∧ ⟨b1 ∧ b2⟩).

Therefore

x ∈ ((1 ∧ A)cl :∧ ⟨b1 ∧ b2⟩)

and

y ∗ x ∈ ((1 ∧ A)cl :∧ ⟨b1 ∧ b2⟩).

It follows that y ∈ ((1 ∧ A)cl :∧ ⟨b1 ∧ b2⟩). Since X \ Z(X) is closed under the operation ∧ by

Lemma 3.2, then b1 ∧ b2 ∈ X \ Z(X). Therefore y ∈ K and K is an ideal of X. Obviously

Acl ⊆ K. □

Assume that X has the greatest element 1 and define a new function

clt : I(X) → I(X), A 7→ K (3.14)

where K is the ideal in Theorem 3.28.

Theorem 3.29. Assume that X has the greatest element 1. If “cl” is a weak closure operation

on I(X), then so is the function “clt” in (3.14).
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Proof. Let “cl” be a weak closure operation on I(X). For any ideal A of X, we have

A ⊆ Acl = ((1 ∧ A)cl :∧ ⟨1⟩) ⊆ Aclt .

Let A and B be ideals of X. Then

A ⊆ B ⇒ a ∧ A ⊆ a ∧B ⇒ (a ∧ A)cl ⊆ (a ∧B)cl

⇒ ((a ∧ A)cl :∧ ⟨b⟩) ⊆ ((a ∧B)cl :∧ ⟨b⟩),

and so Aclt ⊆ Bclt . Therefore “clt” is a weak closure operation on I(X). □

Theorem 3.30. Assume that X has the greatest element 1. If “cl” is a finite type weak closure

operation on I(X), then so is the function “clt” in (3.14).

Proof. Assume that “cl” is a finite type weak closure operation on I(X). Then “clt” is a weak

closure operation on I(X) by Theorem 3.29. For any ideal A of X, if x ∈ Aclt then there exist

non-zeromeet elements a and b of X such that

x ∈ ((a ∧ A)cl :∧ ⟨b⟩).

Thus x ∧ ⟨b⟩ ⊆ (a ∧ A)cl, and so x ∧ z ∈ (a ∧ A)cl for every element z ∈ ⟨b⟩. Since “cl” is of

finite type, there exists a finitely generated ideal B such that B ⊆ a∧A and x∧ z ∈ Bcl. On the

other hand, we know that B ⊆ a ∧ C for some finite generated ideal C of X since B is finitely

generated. Thus x ∧ z ∈ Bcl implies that x ∧ z ∈ (a ∧ C)cl, that is, x ∈ ((a ∧ C)cl :∧ z). Since

z ∈ ⟨b⟩, it follows that
x ∈ ((a ∧ C)cl :∧ ⟨b⟩)

and so that x ∈ Cclt . Therefore Aclt ⊆ A(clt)f . Obviously, A(clt)f ⊆ Aclt and therefore Aclt is a

finite type weak closure operation on I(X). □

Theorem 3.31. Assume that X has the greatest element 1. If “cl” is a naive weak closure

operation on I(X), then so is the function “clt” in (3.14).

Proof. Suppose that “cl” is a naive weak closure operation on I(X). Then “clt” is a weak

closure operation on I(X) by Theorem 3.29. For any A ∈ I(X), if x ∈ Aclt , then there exists

a, b ∈ X \ Z(X) such that x ∈ ((a ∧ A)cl :∧ ⟨b⟩). Thus

x ∧ ⟨b⟩ ⊆ (a ∧ A)cl.

Since a ∧ A ∈ I(X) and “cl” is naive, there exists p, q ∈ X \ Z(X) such that

(a ∧ A)cl = ((p ∧ (a ∧ A))cl :∧ ⟨q⟩).

Hence x ∧ ⟨b⟩ ⊆ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩). Also

((p ∧ (a ∧ A))cl :∧ ⟨q⟩) ⊆ (a ∧ A))clt .

Therefore x ∈ ((a ∧ A)clt :∧ ⟨b⟩).
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Conversely, suppose that x ∈ ((a ∧ A)clt :∧ ⟨b⟩). Then x ∧ z ∈ (a ∧ A)clt for every z ∈ ⟨b⟩, and
so there exist p, q ∈ X \ Z(X) such that

x ∧ z ∈ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩).

Hence x ∧ ⟨b⟩ ∧ ⟨q⟩ ⊆ ((p ∧ a) ∧ A)cl. Also ⟨b ∧ q⟩ ⊆ ⟨b⟩ ∧ ⟨q⟩. Therefore

x ∧ ⟨b ∧ q⟩ ⊆ ((p ∧ a) ∧ A)cl

which means that

x ∈ (((p ∧ a) ∧ A)cl :∧ ⟨b ∧ q⟩).
Since X \ Z(X) is closed under the operation ∧ by Lemma 3.2, we have p ∧ a, b ∧ q ∈ X \ Z(X)

and therefore x ∈ Aclt . Consequently, “clt” is a naive weak closure operation on I(X). □

Theorem 3.32. Assume that X has the greatest element 1. If “cl” is a tender weak closure

operation on I(X), then so is the function “clt” in (3.14).

Proof. It is similar to the proof of Theorem 3.31. □
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Abstract

In the paper, the authors present some functional inequalities for the generalized error
function. Concretely speaking, the authors present several inequalities of the generalized error
function in terms of the arithmetic, logarithmic, and exponential means, find monotonicity, con-
vexity, and concavity of the generalized error function, and, consequently, derive two Grünbaum
type and Turán type inequalities.

2010 Mathematics Subject Classification: Primary 33B20; Secondary 26A48, 26A51, 26D15.
Key words and phrases: functional inequality; generalized error function; monotonicity;
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1 Introduction

It is well known that the error function erf(x) is defined by

erf(x) =
2√
π

∫ x

0

e−t
2

d t, x ∈ R.

The function erf(x) has numerous applications in statistics, probability, partial differential equa-
tions, and so on. It is not difficult to directly verify that erf(x) is odd on (−∞,∞), convex
on (−∞, 0), concave on [0,∞), strictly increasing on R, and erf(0) = 0. Moreover, the limit
limx→∞ erf(x) = 1 can be found in [1, 12, 17, 18, 23, 28] and the closely related references therein.

In 1955, Chu [13] established a double inequality√
1− e−ax2 ≤ erf(x) ≤

√
1− e−bx2 ,

where 0 ≤ a ≤ 1 and b ≥ 4
π for x ≥ 0. Later, Cao et al. [12, 17] obtained the double inequality

1√
1 + (9π/16− 1)/(n2)

≤ erf(n) <
1√

1− 3/(4n2)
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for n ∈ N and derived the probability integral
∫∞

0
e−x

2

dx =
√
π
2 . See also related texts in [18,

p. 31]. In 1968, Mitrinović and Weinacht [21] obtained

erf(x) + erf(y) ≤ erf(x+ y) + erf(x) erf(y), x, y ≥ 0.

In 2003 and 2009, Alzer [2, 3] proved for all x ≥ y > 0 the sharp double inequalities

erf(1) <
erf(x+ erf(y))

erf(y + erf(x))
<

2√
π

and 0 <
erf(x erf(y))

erf(y erf(x))
≤ 1.

For p > 0 and x ∈ (0,∞), the generalized error function erfp(x) is defined by

erfp(x) =
p

Γ(1/p)

∫ x

0

e−t
p

d t,

where Γ(z) for <(z) > 0 stands for the classical Euler gamma function. It is easy to see that
erf2(x) = erf(x). By an easy computation, we can see that erfp(x) is odd on (−∞,∞), convex on
(−∞, 0), concave on [0,∞), strictly increasing on R, erfp(0) = 0, and limx→∞ erfp(x) = 1.

In 1997, Alzer [5] established the double inequality

Γ

(
1 +

1

p

)(
1− e−bx

p)1/p
<

∫ x

0

e−t
p

d t < Γ

(
1 +

1

p

)(
1− e−ax

p)1/p
, x > 0,

where 
a = 1 and b =

[
Γ

(
1 +

1

p

)]−p
, 0 < p < 1;

a =

[
Γ

(
1 +

1

p

)]−p
and b = 1, p > 1

are best possible constants. In 1999, Qi and Guo [26, Theorem 1] proved that

xe−(x/2)p <

∫ x

0

e−t
p

d t <
x

2

(
1 + e−x

p)
(1.1)

for p ∈ (0, 1] and x ∈ (0,∞); if p > 1 and 0 < x <
(
1− 1

p

)1/p
, the double inequality (1.1) reverses.

In 1999, Qi et al [25, 27] constructed∫ π/2

0

e−t
2 sin2 x sinxdx ≤ 1− e−t2

t2
,

∫ x

0

e−t
2

d t ≥ 1− e−x2

x
,

∫ x

0

e−t
α

d t ≥ 1− e−xα

xα−1
,∫ t

0

ex
2

dx <
et

2 − 1

t
,

∫ ∞
x

e−t
α

d t ≤ e−x
α

αxα−1
,

∫ ∞
x

e−t
3

d t ≥ e−x
3

3(x+ 1)2
,

∫ x

0

et
α

d t ≤ ex
α − 1

xα−1
,

where α ≥ 1. There are more results on erfp in the papers [8, 16, 20, 22, 24, 25, 27] and the closely
related references therein.

For two distinct positive numbers x and y, the arithmetic, geometric, harmonic, logarithmic,
exponential means and the power mean of order t ∈ R are respectively defined by A(x, y) = x+y

2 ,
G(x, y) =

√
xy , H(x, y) = 1

A(1/x,1/y) , and

L(x, y) =
x− y

lnx− ln y
, I(x, y) =

1

e

(
xx

yy

)1/(x−y)

, Mt(x, y) =

(
xt + yt

2

)1/t

.
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Recently, several mathematicians began to study inequalities for the error function erf(x) with
respect to all kinds of means, including the arithmetic mean, harmonic mean, and the power mean.
See the papers [4, 14, 15] and the closely related references therein.

Let f : J ⊆ (0,∞)→ (0,∞) be continuous. Let M and N be means defined above. If

f(M(x, y)) Q N(f(x), f(y))

for all x, y ∈ J , we call f MN -convex (or MN -concave, respectively).
In 2007, Anderson et al [6] studied the generalized convexity (or concavity, respectively) with

respect to general means. In 2010, Baricz [7] presented that if f is differentiable, then it is (a, b)-

convex (or (a, b)-concave, respectively) on J if and only if x1−af ′(x)
f1−b(x)

is increasing (or decreasing,

respectively). We observe that the (1, 1)-convexity means the AA-convexity, the (1, 0)-convexity is
the AG-convexity, and the (0, 0)-convexity implies GG-convexity. It is easy to see that a function
f : J ⊆ (0,∞) → (0,∞) is said to be geometrically convex if it is convex with respect to the
geometric mean, that is, the inequality f

(
xλy1−λ) ≤ [f(x)]λ[f(y)]1−λ holds for all x, y > 0 and

λ ∈ (0, 1); if the above inequality is reversed, the function f is called geometrically concave. We
note that a differentiable function f is geometrically convex (or concave, respectively) if and only

if xf ′(x)
f(x) is increasing (or decreasing, respectively).

The first aim of this paper is to present several inequalities of the generalized error function
erfp(x) in terms of the arithmetic, logarithmic, and exponential means A(a, b), L(a, b) and I(a, b).
The second aim is to find monotonicity, convexity, and concavity of the generalized error function
erfp(x) and, consequently, derive two Grünbaum type and Turán type inequalities.

Our main results can be stated as following theorems.

Theorem 1.1. For all p ∈ (0,∞) and x, y ∈ (0,∞), we have

L
(
erfp(x), erfp(y)

)
< erfp(L(x, y)) and I

(
erfp(x), erfp(y)

)
< erfp(A(x, y)).

Theorem 1.2. For all p ∈ [1,∞) and x, y ∈ (0,∞), we have

L
(
xp−1 erfp(x), yp−1 erfp(y)

)
< Lp−1(x, y) erfp(L(x, y))

and
I
(
xp−1 erfp(x), yp−1 erfp(y)

)
< Ap−1(x, y) erfp(A(x, y)).

Theorem 1.3. Let x, y, z ∈ (0,∞) such that z2 = x2 + y2. Then we have the Grünbaum type
inequality

1 + erfp
(
z2
)
≥ erfp

(
x2
)

+ erfp
(
y2
)
.

Theorem 1.4. For all p ∈ (0,∞), the function x 7→ erfp(x)
arctanp x

is strictly decreasing in x ∈ (0,∞),

where arctanp(x) is defined by arctanp x =
∫ x

0
1

1+tp d t. Consequently, we have

2

πp
arctanp x < erfp(x) <

p

Γ(1/p)
arctanp x.

where 2
πp

and p
Γ(1/p) are best possible constants.
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Theorem 1.5. For all x ∈ (0,∞) fixed, the function p 7→ erfp(x) is strictly logarithmically concave
in p ∈

(
0, 1

x0

)
, where x0 = 1.461632 . . . is the only positive root of the digamma function ψ(x).

Consequently, the Turán type inequality

erf2
p(x) > erfp−1(x) erfp+1(x)

is valid for all p ∈
(
0, 1

x0

)
and x ∈ (0,∞).

2 Lemmas

In order to prove our main results, we need the following lemmas.

Lemma 2.1 ([10, Theorem 1, p. 138]). Let f : J ⊆ (0,∞)→ (0,∞).

1. If f is increasing and logarithmically convex (or logarithmically concave, respectively), then
it is LL-convex (or concave, respectively);

2. If f is increasing and logarithmically convex (or logarithmically concave, respectively), then
it is AL-convex (or concave, respectively).

Lemma 2.2 ([11, Theorem 1, p. 6]). Let f : J ⊆ (0,∞) → (0,∞). If f(x) is continuously
differentiable, increasing, and logarithmically convex (or logarithmically concave, respectively), then

I(f(x), f(y)) ≥ f(I(x, y)) and I(f(x), f(y)) ≤ f(A(x, y)).

Lemma 2.3 ([29, Example 152, p. 124]). If f(x) and g(x) are convex functions on (0,∞) such

that f1(x) ≥ 0, f2(x) ≥ 0, and f1(0) = f2(0) = 0, then f1(x)f2(x)
x is also convex on (0,∞).

Lemma 2.4 ([9, Lemma 3, p. 246]). Let f : (a,∞)→ R for a ≥ 0 and g(x) = f(x)−1
x be increasing

on (a,∞). Then h(x) = f
(
x2
)

satisfies the Grünbaum type inequality

1 + h(z) ≥ h(x) + h(y) (2.1)

for x, y ≥ a and z2 = x2 + y2. If g(x) is decreasing, then the inequality (2.1) is reversed.

Lemma 2.5 ([19, Lemma 3.2, p. 523]). Let f(x), g(x) be continuous on [a, b], differentiable on

(a, b), g′(x) 6= 0 on (a, b), and f(a) = g(a) = 0 or f(b) = g(b) = 0. If f ′(x)
g′(x) is increasing (or

decreasing, respectively) on (a, b), then the ratio f(x)
g(x) is also increasing (or decreasing, respectively)

on (a, b).

3 Proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1.1. A simple computation yields

erf ′p(x) =
p

Γ(1/p)
e−x

p

> 0 and erf ′′p(x) = − p2

Γ(1/p)
xp−1e−x

p

< 0.

Hence, the function erfp(x) is strictly increasing and concave on (0,∞). Since the concavity implies
the logarithmic concavity, considering Lemmas 2.1 and 2.2, Theorem 1.1 is thus proved.
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Proof of Theorem 1.2. Considering Lemmas 2.1 and 2.2, it suffices to prove that xp−1 erfp(x) is
strictly increasing and concave on (0,∞). This follows readily from a simple computation[

xp−1 erfp(x)
]′

= xp−2
[
(p− 1) erfp(x) + x erf ′p(x)

]
> 0.

On the other hand, the function f1(x) = xp and f2(x) = − erfp(x) are convex on (0,∞) and
f1(0) = f2(0) = 0. Making use of Lemma 2.3 reveals that −xp−1 erfp(x) is also convex on (0,∞).
So, the function xp−1 erfp(x) is strictly increasing and concave on (0,∞). The proof of Theorem 1.2
is complete.

Proof of Theorem 1.3. By virtue of Lemma 2.4, we only need to prove that the function
erfp(x)−1

x
is strictly increasing on (0,∞). A direct computation results in[

erfp(x)− 1

x

]′
=

1

x2

[
p

Γ(1/p)
e−x

p

− erfp(x) + 1

]
,
g(x)

x2
and g′(x) = − p2

Γ(1/p)
xpe−x

p

< 0.

Accordingly, the function g(x) is strictly decreasing on (0,∞). Therefore, from the inequality
g(x) > limx→∞ g(x) = 0, Theorem 1.3 follows immediately.

Proof of Theorem 1.4. For proving the monotonicity of
erfp(x)

arctanp x
, we denote g1(x) = erfp(x) and

g2(x) = arctanp x. Then g1(0) = g2(0) = 0 and

g′1(x)

g′2(x)
=

p

Γ(1/p)
(1 + xp)e−x

p

,
p

Γ(1/p)
q(x).

By a direct differentiation, it follows that q′(x) = −px2p−1e−x
p

< 0 which implies that the function
q(x) is strictly decreasing on (0,∞). By Lemma 2.5, we complete the required proof.

Proof of Theorem 1.5. Let t ∈ (0, x) and x ∈ (0,∞) be fixed. Define the function

α(p) = ln

[
p

Γ(1/p)
e−t

p

]
= ln p− ln

[
Γ

(
1

p

)]
− tp.

By a direct computation, we have

α′(p) =
1

p
+

1

p2
ψ

(
1

p

)
− tp ln t and α′′(p) = − 1

p2
− 2

p3
ψ

(
1

p

)
− 1

p4
ψ′
(

1

p

)
− tp ln2 t < 0.

Therefore, the function α(p) is strictly logarithmically concave. By the fact that integrating pre-
serves the monotonicity and logarithmic concavity, it follows that the function p 7→ erfp(x) is strictly
logarithmically concave in p ∈

(
0, 1

x0

)
.
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