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Global existence and blow-up of solutions to strongly damped

wave equations with nonlinear degenerate damping and

source terms ∗

Donghao Li1, Hongwei Zhang2, Xianwen Zhang1

(1.School of Mathematics and Statistics, Huazhong University of Science and
Technology 430074, China; 2. Department of Mathematics,
Henan University of Technology, Zhengzhou 450001, China)

Abstract This paper deals with the initial-boundary value problem of a class of strongly

damped wave equations with nonlinear degenerate damping and source terms. By potential

well theory, the global existence of weak solutions is proved if the initial data enter into the

stable set. By Nakao inequality, the asymptotic behavior is obtained. Moreover, by estab-

lishing a new second order differential inequality, we prove a finite-time blow-up result under

arbitrary positive initial energy.

Keywords strong damped wave equations; global existence; asymptotic behavior; blow-

up

AMS Classification (2010): 35L35,35B40,35B44.

1 Introduction

In this paper, we are concerned with the following initial boundary value problem:

utt −∆utt −∆ut −∆u+ (|u|ku)t = |u|qu, (x, t) ∈ Ω× (0, T ), (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

where Ω is a bounded domain in Rn with sufficiently smooth boundary ∂Ω.

Evolution equation (1.1) is a simple prototype of the more general equation

∂2

∂t2
(4u− u) +

∂

∂t
(4u− g(x, u)) +4u+ f(x, u) = 0, (1.4)

∗Corresponding author:Zhang H.W., Email: whz661@163.com

1
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which describes ion acoustic waves in a plasma taking account of strong nonlinear dissipation

and nonlinear sources [1, 2], where f(x, u) and g(x, u) describe the distribution of the sources

of bound charges and the ‘sinks’ of free charges, respectively. Korpusov [2] proved that for

any initial data in H1
0 (Ω) the problem (1.4), (1.2), (1.3) has a local strong generalized solution

and obtained sufficient conditions for the blow-up of a solution in finite time provided that∫
Ω

[|∇u0|2 + |∇u1|2 + |u1|2]dx− 2

∫
Ω

∫ u0(x)

0
f(x, s)dsdx < 0. (1.5)

Korpusov [3] gave sufficient conditions for finite-time blow-up of solutions of the following

abstract Cauchy problem for a formally hyperbolic equation with double non-linearity

A
d2u

dt2
+
du

dt
(A0u+

n∑
j=1

Aj(u)) +H ′f (u) = F ′f (u).

As far as we know, there is little information about the equation (1.4).

It is worth noting here that if the damping terms (|u|ku)t is absent, the problem (1.1)-

(1.3) is studied extensively in the literature. For example, Shang [4, 5] investigated the

existence, uniqueness, asymptotic behavior, and the blow up phenomenon of the solutions

under some specific assumptions on f for the fourth-order wave equation

utt −∆u−∆ut −∆utt = f(u). (1.6)

For the initial boundary value problem of equation (1.6), Zhang and Hu [6] proved the

existence and the stability of global weak solution. Xie and Zhong [7] established the existence

of global attractors. Xu et al. [8] investigated the asymptotic behavior of solutions by

using the multiplier method. For more results on the long-time behaviors of global strong

solutions of the initial boundary value problem of equation (1.6), the reader is referred to

[9, 10, 11, 12, 13, 14, 15, 16].

We mention also that, recently, in the absence of dispersive term and strong damped term

( i.e. the terms ∆utt and −∆ut are absence), equation (1.1) can be take the more general

form

utt −∆u+ |u|k∂j(ut) = |u|qu. (1.7)

Under suitable conditions on j and the parameters in equation (1.7), Barbuet al. [17] estab-

lished the existence and uniqueness of global weak solutions. They also obtained a nonexis-

tence result of global solutions with negative initial energy on condition that q is greater than

the critical value. In [18], the same authors established the blow-up result for the generalized

solution with additional regularity for equation (1.7) under more restrictions on j provided

that q is greater than the critical value and the initial energy is negative. A special case of

equation (1.7) is the following polynomial-damped wave equation

utt −∆u+ |u|k|ut|m−1ut = |u|qu, (1.8)

2
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which has been studied extensively in the literature. We refer the reader to [19, 20, 21, 22,

23, 24, 25, 26, 27] and the references therein. But much less work is known for the initial

boundary problem for a wave equation with degenerate damping term (|u|ku)t, dispersive

term ∆utt, strong damping term ∆ut and nonlinear source term |u|qu.

In this paper, we prove the global existence of weak solutions for problem (1.1)-(1.3) by

potential well theory [28] if the initial data enter into the stable set. By Nakao’s inequality

[29], the asymptotic behavior is obtained, and this method is different from that in [22, 26].

Moreover, we will extend the results in [2, 3] that the sufficient conditions for finite-time

blow-up of solutions with negative initial energy to that with positive initial energy. We

will establish a different differential inequality and prove a finite-time blow-up result under

arbitrary positive initial energy. This different differential inequality and blow-up result are,

to the best of our knowledge, new in the literature. The concavity method of Levine [30] is

one of the most powerful methods for proving finite time blow-up of the solutions to nonlinear

wave equations. The main idea of Levine is to replace the investigations of the equation with

the study of ordinary differential inequality

φφ′′ − α(φ′)2 + βφ2 ≥ 0, α > 1, β ≥ 0.

Later on, the generalization of this inequality

φφ′′ − α(φ′)2 + βφ2 + γφφ′ ≥ 0, α > 1, β ≥ 0, γ ≥ 0,

was obtained in [31]. On the other hand, as pointed in [2], Levine’s method as presented

in [30, 31] cannot be used here due to the term −∆ut + (|u|ku)t, so a different differential

inequality was used to prove Theorem 3 in [3] for negative initial energy case (i.e. in the case

of (1.5))

φφ′′ − α(φ′)2 + βφ2 + γφ2+q1 ≥ 0, α > 1, β ≥ 0, γ ≥ 0, q1 ≥ 0.

But the above inequality cannot be used to the positive initial energy case. In this paper,

we will establish a new differential inequality and prove a finite-time blow-up result under

arbitrary positive initial energy.

This article is organized as follows. In Section 2, we are concerned with some notations

and state our main results. Following the potential well theory introduced by [28], we get

global existence in Section 3. Section 3 gives also an asymptotic stability results of the

problem (1.1)-(1.3). In section 4, it is shown that the weak solution of the problem (1.1)

-(1.3) blow-up in the case of positive initial energy E(0) > 0 and q > k.

2 Preliminaries

In this section we present some notations and state our main results. We use the standard

Lebesgue space Lp(Ω)(1 ≤ p ≤ ∞) and Sobolev space H1
0 (Ω). We denote by ||u||p the Lp(Ω)

3
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norm and by ||∇· || the norm in H1
0 (Ω). Moreover, for later use we denote by (·, ·) the duality

paining between H1
0 (Ω) and H−1(Ω). In this paper, we will always assume that

0 < q <∞, if n = 1, 2; 0 < q <
4

n− 2
, if n ≥ 3, (2.1)

and then the Sobolev imbedding H1
0 (Ω) ↪→ Lq+2(Ω) holds. Furthermore, we denote C∗ is the

embedding constant, that is

||∇u|| ≤ C∗||u||q+2.

The constants Ci (i = 1, 2, · · · ) used throughout this paper are positive generic constants,

which may be different in various occurrences.

Now, we give the definition of a weak solution to problem (1.1)-(1.3).

A weak solution to the initial boundary value problem (1.1)-(1.3) over Ω × [0, T ) is a

function u ∈ L∞(0, T ;H1
0 (Ω)) with ut, utt ∈ L∞(0, T ;H1

0 (Ω)) such that

(utt, ϕ) + (∇utt,∇ϕ) + (∇u,∇ϕ) + (∇ut,∇ϕ) + ((|u|ku)t, ϕ) =

∫
Ω
u|u|qϕdx,

for all test functions ϕ ∈ H1
0 (Ω) and for almost all t ∈ [0, T ) and

u(x, 0) = u0 ∈ H1
0 (Ω), ut(x, 0) = u1 ∈ H1

0 (Ω).

We introduce the following functionals:

I(t) = I(u) = ||∇u||2 − ||u||q+2
q+2, (2.2)

J(t) = J(u) =
1

2
||∇u||2 − 1

q + 2
||u||q+2

q+2, (2.3)

E(t) = E(u) =
1

2
||ut||2 +

1

2
||∇ut||2 + J(u), (2.4)

and the level

d = inf
u∈H1

0 (Ω)\{0}
max
λ≥0

J(λu).

Moreover the value d is shown to be the Mountain Pass level associated to the underlying

Dirichlet problem −∆u = |u|qu in Ω, u = 0 on ∂Ω [32].

Remark 2.1 By multiplying Equation (1.1) by ut, integrating over Ω, and using integration

by parts, we get

E′(t) = −||∇ut||2 − (k + 1)

∫
Ω
|u|k|ut|2dx ≤ 0, for t ≥ 0. (2.5)

Therefore,

E(t) ≤ E(0), for t ≥ 0. (2.6)

4
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We can now define the stable set [32, 33, 34]

W = {u ∈ H1
0 |I(u) > 0, J(u) < d}

and one can easily see that the stable set can also be defined by

W = {(λ,E) ∈ [0,+∞)×R : 0 < g(λ) ≤ E < d, 0 < λ < λ0},

where g(λ) = 1
2λ

2 − Cq+2
∗

λq+2

q+2 , λ0 = C
− q+2

q
∗ is the absolute maximum point of g, and finally

d = g(λ0) = (1
2 −

1
q+2)λ2

0 > 0.

In order to get the energy decay of the solution, we introduce the following set

W1 = {u ∈ H1
0 |I(u) > 0, J(u) < E1},

where λ1 = ((q + 2)Cq+2
∗ )

− 1
q , E1 = (1

2 −
1
q+2)λ2

1. Obviously, d > E1 and W1 ⊂W.
Our main results read as follows. The first result is concerned with the global existence

of weak solutions to the problem (1.1)-(1.3). Namely, we have the following theorem.

Theorem 2.1 Let k > 1, if n = 1, 2; k < 2n
n−2 , if n ≥ 3; u0, u1 ∈ H1

0 (Ω), assuming that

k > q,E(0) < d and u0 ∈ W , then the problem (1.1)-(1.3) admits a global weak solution u

and u(·) ∈W for t ≥ 0.

The second result is about the asymptotic stability results of the weak solutions.

Theorem 2.2 Under the assumptions of Theorem 2.1, k > q and u0 ∈ W1, and ||∇u0|| <
λ1, E(0) < E1, then there exist positive constant α such that the energy E(t) satisfies the

energy estimates

E(t) ≤ E(0) exp{−α[t− 1]+} for large t,

where [t− 1]+ = max{t− 1, 0}.
Remark 2.2 Let us mention that the special polynomial form of the dissipation and source

terms in (1.1)-(1.3) is not essential. The results can be extend to the case of more general

nonlinearities under suitable assumptions.

Our final result provides a finite time blowup property of the weak solutions to problem

(1.1)-(1.3).

Theorem 2.3 Assume that k < q. If the initial data are such that

E(0) > 0, (2.7)

(∇u0,∇u1) + (u0, u1) > 0, (2.8)

and

(φ′(0))2 − β0
α0−1φ

2(0) + 2γ0
(α0−1)δ′1

φ2α0+δ′1(1−α0)(0)

+ 2δ0
(α0−1)δ′2

φ2α0+δ′2(1−α0)(0) = B0 > 0, (2.9)

5
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where α0 = 2 + k
2 , β0 = 2

q−k , γ0 =
2(k+1)2C

2(k+1)
0

q−k , δ0 = (q + 2)E(0), δ′1 = 2α0−2−k
α0−1 , δ′2 = 2α0−1

α0−1

and C0 is embedding constant from H1
0 to L2(k+1), then there exists

T∞ ≤ φ1−α0(0)A−1 such that lim
t→T−∞

φ(t) =∞,

where A2 = (α0 − 1)2φ−2α0(0)B0 and φ(t) = 1
2 ||∇u||

2 + 1
2 ||u||

2.

Finally, we state the local existence result of problem (1.1)-(1.3).

Theorem2.4 Let u0, u1 ∈ H1
0 (Ω), then problem (1.1)-(1.3) has a unique weak solution on

[0, T0) for some T0 > 0, and we have either T0 = +∞ or T0 < +∞ and

lim
t→T0+

sup[||ut||2H1
0 (Ω) + ||u||2H1

0 (Ω)] = +∞.

This lemma can be established by combining the arguments of Theorem 8.1 (or Theorem

6.8) and Example 9.5 in [3], Theorem 2 in [2] and [35], so we omit it.

3 Global existence and asymptotic stability of the solutions

In this section we study the existence and asymptotic stability of global solutions for problem

(1.1)-(1.3). We start by the following lemma.

Lemma 3.1 Suppose that u is the solution of problem (1.1)-(1.3), and u0, u1 ∈ H1
0 , if u0 ∈W

and E(0) < d, then u(t) remains inside the set ∈W for any t ≥ 0.

The proof is similar to that of Lemma 2.2 in [33], so we omit it.

Proof of Theorem 2.1. By Lemma 3.1, we have u(t) ∈ W for all t ∈ [0, T0), then I(u) >

0, J(u) < d for all t ∈ [0, T0). Therefore,

(
1

2
− 1

q + 2
)||um||q+2

q+2 =
1

2
||∇u||2 − 1

q + 2
||u||q+2

q+2 −
1

2
I(u) ≤ J(u) < d, (3.1)

then

||u||q+2
q+2 < d. (3.2)

By the energy equation (2.6), definition of J(u) and (3.1), we arrive

1

2
||ut||2 +

1

2
||∇ut||2 +

1

2
||∇u||2 ≤ E(0) +

1

q + 2
||u||q+2

q+2 ≤ Cd, for 0 ≤ t < T0, (3.3)

It follows from (3.3) and from a standard continuous argument that the local solution u

furnished by Theorem 2.4 can be extended to the whole interval [0,+∞), that is, u is a

global solution. Finally from Lemma 3.1 we get u ∈W for t ∈ [0,∞).

In order to get the energy decay of the solution, we prepare the following lemma.

Lemma 3.2[29] Let ϕ(x) be a nonnegative and non-increasing function defined on [0,∞),

satisfying

ϕ1+r(t) ≤ k0(ϕ(t)− ϕ(t+ 1)), t ∈ [0, T ],

6
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for k0 > 1, and r ≥ 0. Then we have, for each t ∈ [0, T ],

ϕ(t) ≤ ϕ(0) exp(−α[t− 1]+), if r = 0,

ϕ(t) ≤ (ϕ(0)−r + k0r[t− 1]+)−
1
r , if r > 0,

where [t− 1]+ = max{t− 1, 0}, and α = ln( k0
k0−1).

Adapting the idea of Vitillaro[34], we have the following lemma.

Lemma 3.3 Suppose that u is the solution of problem (1.1)-(1.3), and u0, u1 ∈ H1
0 , if u0 ∈W1

and ||∇u0|| < λ1, E(0) < E1, then u(t) remains inside the set W1 and ||∇u|| < λ1, E(t) < E1

for any t ≥ 0.

Lemma 3.4 Under the condition of Theorem 2.2. and q > 0, then, for t ≥ 0,

||∇u||2 ≥ 2||u||q+2
q+2. (3.4)

E(t) ≥ q + 1

2(q + 2)
||∇u||2 ≥ q + 1

q + 2
||u||q+2

q+2, (3.5)

Proof By the definition E(t) and embedding theorem, we have

E(t) ≥ 1
2 ||∇u||

2 − 1
q+2 ||u||

q+2
q+2 ≥ 1

2 ||∇u||
2 − ||u||q+2

q+2

≥ 1
2 ||∇u||

2 − Cq+2
∗ ||∇u||q+2 = g1(||∇u||). (3.6)

where g1(λ) = 1
2λ

2 −Cq+2
∗ λq+2. Note that g1(λ) has the maximum at λ1 = ((q + 2)Cq+2

∗ )
− 1
q

and the maximum value g1(λ1) = E1. We see that g1(λ) is increasing in (0, λ1), decreasing

in (λ1,+∞) and g1(λ)→ −∞ as λ→∞. Since ||∇u0||2 < λ1, E(0) < E1,then ||∇u||2 < λ1,

for any t ≥ 0, so g1(||∇u||) ≥ 0. By (3.6), we have

||∇u||2 − ||u||q+2
q+2 = 1

2 ||∇u||
2 + (1

2 ||∇u||
2 − ||u||q+2

q+2)

≥ 1
2 ||∇u||

2 + g1(||∇u||),

then (3.4) holds since g1(||∇u||) > 0. Furthermore, we have

E(t) ≥ 1

2
||∇u||2 − 1

q + 2
||u||q+2

q+2 ≥
q + 1

2(q + 2)
||∇u||2.

So (3.5) hold.

Proof of Theorem 2.2 From (2.5), we know that and E(t) is nonincreasing. Setting

F (t) =
√
E(t)− E(t+ 1), then we have

F 2(t) =

∫ t+1

t
[||∇us||2 + (k + 1)

∫
Ω
|u|k|us|2]ds ≥

∫ t+1

t
||∇us||2ds, (3.7)

F 2(t) ≥ (k + 1)

∫ t+1

t

∫
Ω
|u|k|us|2ds. (3.8)
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Applying the mean value theorem in (3.7), there exists t1 ∈ [t, t + 1
4 ] and t2 ∈ [t + 3

4 , t + 1]

such that

||∇ut(ti)||2 ≤ 2F 2(t), i = 1, 2. (3.9)

Multiplying u in (1.1), intergrating over [t1, t2]× Ω, we have∫ t2

t1

[||∇u||2 − ||u||q+2
q+2]dt

= −
∫

Ω
utu|t=t2t=t1

dx−
∫

Ω
∇ut∇u|t=t2t=t1

dx+

∫ t2

t1

(||ut||2 + ||∇ut||2)dt

−
∫ t2

t1

∫
Ω
∇u∇utdxdt− (k + 1)

∫ t2

t1

∫
Ω
|u|kuutdxdt

=

5∑
i=1

Mi.

(3.10)

Now we estimate the terms of the right-hand side of (3.10). By Hölder inequality, Poincaré

inequality, (3.9), Lemma 3.4, the fact that the E(t) is non-increasing, and Young inequality

with ε > 0, we have

|M1| = | −
∫

Ω
utu|t=t2t=t1

dx| ≤
2∑
i=1

||ut(ti)||||u(ti)||

≤
2∑
i=1

C2||ut(ti)||||∇u(ti)|| ≤ C3E
1
2 (t)F (t)

≤ C1(ε)F 2(t) + εE(t), (3.11)

|M2| = | −
∫

Ω
∇ut∇u|t=t2t=t1

dx|

≤
2∑
i=1

||∇ut(ti)||||∇u(ti)|| ≤ C4E
1
2 (t)F (t)

≤ C2(ε)F 2(t) + εE(t). (3.12)

By Poincaré inequality and (3.7), we have

|M3| = |
∫ t2

t1

(||ut||2 + ||∇ut||2)dt| ≤ C5

∫ t+1

t
||∇us||2ds ≤ C5F

2(t). (3.13)

From Lemma 3.4 and the fact that the E(t) is non-increasing, we arrive

|M4| = |
∫ t2
t1
∇u∇usds| ≤

∫ t+1
t [C3(ε)||∇us||2 + ε2(q+2)

q+1 ||∇u||
2]ds

≤ C3(ε)F 2(t) + εE(t). (3.14)

8
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According to Hölder inequality, embedding theorem, the assumption k > q and the Lem-

ma3.2, the fact that the E(t) is non-increasing and Young inequality, we have

|M5| ≤ (k + 1)

∫ t2

t1

∫
Ω
|u|k+1|ut|dxdt

= (k + 1)

∫ t2

t1

∫
Ω
|u|

k
2 |ut||u|

k+2
2 dxdt

≤ (k + 1)(

∫ t2

t1

∫
Ω
|u|k|ut|2dxdt)

1
2 (

∫ t2

t1

∫
Ω
|u|k+2dxdt)

1
2

≤ C7F (t)(

∫ t2

t1

||u||k+2
k+2dt)

1
2

≤ C9F (t)(

∫ t2

t1

||∇u||k||∇u||2dt)
1
2

≤ C10F (t)(

∫ t2

t1

E(t)dt)
1
2

≤ C4(ε)F 2(t) + εE(t). (3.15)

Substituting (3.11)-(3.15) into (3.10), we get the estimate∫ t2
t1

[||∇u||2 − ||u||q+2
q+2]dt ≤ C5(ε)F 2(t) + 4εE(t). (3.16)

On the other hand, it follows from the definition of E(t) and (3.5) in Lemma 3.4 that

E(t) =
1

2
(||∇u||2 − ||u||q+2

q+2) +
q

2(q + 2)
||u||q+2

q+2 +
1

2
||ut||2 +

1

2
||∇ut||2

≤ 1

2
(||∇u||2 − ||u||q+2

q+2) +
1

2
||ut||2 +

1

2
||∇ut||2 +

q

2(q + 1)
E(t). (3.17)

Then we have

q+2
2(q+1)E(t) ≤ 1

2
(||∇u||2 − ||u||q+2

q+2) +
1

2
||ut||2 +

1

2
||∇ut||2. (3.18)

Therefore, by (3.18), (3.16) and (3.13), we arrive that∫ t2
t1
E(s)ds ≤ 2(q+1)

q+2

∫ t2
t1

(||∇u||2 − ||u||q+2
q+2)ds+ q+2

2(q+1)

∫ t2
t1

(||ut||2 + ||∇ut||2)ds

≤ C6(ε)F 2(t) + 4ε2(q+1)
q+2 E(t). (3.19)

Since E(t) is non-increasing, we can choose t3 ∈ [t1, t2] such that

E(t3) ≤ C
∫ t2

t1

E(s)ds. (3.20)

Then, using (2.5), t3 < t + 1, it follows from (3.20) and the fact that E(t) is non-increasing

that

E(t) = E(t+ 1) +
∫ t+1
t ||∇us||2ds+ (k + 1)

∫ t+1
t

∫
Ω |u|

k|us|2ds

≤ E(t3) +
∫ t+1
t ||∇us||2ds+ (k + 1)

∫ t+1
t

∫
Ω |u|

k|us|2ds

≤ C
∫ t2
t1
E(s)ds+

∫ t+1
t ||∇us||2ds+ (k + 1)

∫ t+1
t

∫
Ω |u|

k|us|2ds. (3.21)
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Combining (3.21) with (3.19), (3.7) and (3.8), we have

E(t) ≤ C7(ε)F 2(t) + 4ε
2(q + 1)

q + 2
E(t). (3.22)

Choosing ε sufficiently small, (3.22) leads to

E(t) ≤ C8F
2(t),

where C8 = 2(1 + 2C6 +
C2

7
2 ).

Since E(t) is nonincreasing, using Lemma 3.2, we conclude that for each t ∈ [0,∞),

E(t) ≤ E(0) exp(−α[t− 1]+)

where [t− 1]+ = max{t− 1, 0}, and α = ln( C8
C8−1). Then the exponential decay of the energy

is obtained. The proof of Theorem 2.2 is completed.

4 Blowup of the solutions

In this section our aim is to establish sufficient condition for blow-up of solutions to problem

(1.1)-(1.3). We assume that k < q and u be a weak solution to the problem (1.1)-(1.3) on

the interval [0, T ]. We note that the Levine energy method [30] is one of basic methods for

studying the blow-up phenomenon. The role of the differential inequality [30]

φφ′′ − α(φ′)2 + βφ2 ≥ 0, α > 1, β ≥ 0,

in the standard Levine method is known. The generalization of this inequality

φφ′′ − α(φ′)2 + βφ2 + γφφ′ ≥ 0, α > 1, β ≥ 0, γ ≥ 0,

was obtained in [31]. On the other hand, a somewhat different differential inequality was

used to prove Theorem 3 in [3]

φφ′′ − α(φ′)2 + βφ2 + γφ2+q1 ≥ 0, α > 1, β ≥ 0, γ ≥ 0, q1 ≥ 0.

Now, we consider our main differential inequality

φφ′′ − α(φ′)2 + βφ2 + γφ2+l + δφ ≥ 0, (4.1)

where φ(t) ∈ C2([0, T ]) and

α > 1, β ≥ 0, γ ≥ 0, δ ≥ 0, l ≥ 0. (4.2)

Lemma 4.1 Suppose φ(t) ∈ C2([0, T ]). Let conditions (4.1) and (4.2) be satisfied and

moreover the following conditions hold:

2α > 2 + l, (4.3)

φ(t) ≥ 0, φ′(0) > 0, φ(0) > 0, (4.4)

(φ′(0))2 − β
α−1φ

2(0) + 2γ
(α−1)δ1

φ2α+δ1(1−α)(0) + 2δ
(α−1)δ2

φ2α+δ2(1−α)(0) = B > 0, (4.5)
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where δ1 = 2α−2−l
α−1 and δ2 = 2α−1

α−1 , then any solution to the differential inequality (4.1) satisfi

es the condition

T∞ ≤ φ1−α(0)A−1, lim
t→T−∞

φ(t) =∞

where A2 = (α− 1)2φ−2α(0)B.

Proof Condition (4.4) imply the existence of a time t1 > 0 for which the inequality φ′(t) > 0

for t ∈ [0, t1) holds. Hence, φ(t) > φ(0) > 0 for t ∈ [0, t1). Dividing both sides of (4.1) by

φ1+α we obtain

φ−αφ′′ − αφ−(1+α)(φ′)2 + βφ1−α + γφ1+l−α + δφ−α ≥ 0. (4.6)

Noting d2

dt2
φ1−α = (1 − α)φ−αφ′′ − α(1 − α)φ−(1+α)(φ′)2, from (4.6) it is easy to derive the

inequality

1
1−α

d2

dt2
φ1−α + βφ1−α + γφ1+l−α + δφ−α ≥ 0. (4.7)

We introduce the new function

ψ = φ1−α, (4.8)

then we obtain

1
1−αψ

′′ + βψ + γψ
1+l−α
1−α + δψ

−α
1−α ≥ 0. (4.9)

Note now that by (4.8), we have

ψ′(t) = (1− α)φ′φ−α, (4.10)

so in view of φ′(t) > 0 and α > 1, it follows that

ψ′(t) ≤ 0. (4.11)

Now multiplying (4.9) by ψ′(t) we obtain

1
1−αψ

′(t)ψ′′ + βψ′(t)ψ + γψ′(t)ψ
α−1−l
α−1 + δψ′(t)ψ

α
α−1 ≤ 0,

since α > 1, which gives us

ψ′(t)ψ′′ ≥ β(α− 1)ψ′(t)ψ + γ(α− 1)ψ′(t)ψ
α−1−l
α−1 + δ(α− 1)ψ′(t)ψ

α
α−1 .

Hence

1
2
d
dt(ψ

′(t))2 ≥ β(α−1)
2

d
dtψ

2 + γ(α−1)
δ1

d
dtψ

δ1 + δ(α−1)
δ2

d
dtψ

δ2 , (4.12)

where δ1 = 1 + α−1−l
α−1 = 2α−2−l

α−1 , δ2 = 1 + α
α−1 = 2α−1

α−1 . Since 2α > 2 + l and α > 1, it follows

that δ1 > 0 and δ2 > 0.

Integrating (4.12), we obtain that

1
2(ψ′(t))2 ≥ 1

2(ψ′(0))2 + β(α−1)
2 (ψ2 − ψ2(0)) + γ(α−1)

δ1
(ψδ1 − ψδ1(0)) + δ(α−1)

δ2
(ψδ2 − ψδ2(0)),
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then, we obtain the following equivalent inequality

(ψ′(t))2 ≥ A2 + β(α− 1)ψ2 + 2γ(α−1)
δ1

ψδ1 + 2δ(α−1)
δ2

ψδ2 ≥ A2, (4.13)

where

A2 = (ψ′(0))2 − β(α− 1)ψ2(0)− 2γ(α−1)
δ1

ψδ1(0)− 2δ(α−1)
δ2

ψδ2(0).

From (4.8), (4.10) and the initial condition (4.5) we get

A2 = (1− α)2φ−2α(0)(φ′(0))2 − β(α− 1)φ2(1−α)(0)

−2γ(α−1)
δ1

φδ1(1−α)(0)− 2δ(α−1)
δ2

φδ2(1−α)(0)

= (α− 1)2φ−2α(0)B > 0.

A further analysis of inequality (4.13) yields

|ψ′| ≥ A > 0,∀t ∈ [0, t0), (4.14)

where t0 is the life time of the solution. Since ψ′ < 0 by (4.11), hence,

ψ′ ≤ −A < 0. (4.15)

Integrating the inequality (4.15) we obtain

ψ(t) ≤ ψ(0)−At,

in view of (4.8) and α > 1, therefore

φ1−α(t) ≤ φ1−α(0)−At.

As a result, we obtain the lower estimate

φ(t) ≥ (φ1−α(0)−At)
−1
α−1 ,

which implies that T 6= +∞, since otherwise there exists T∞ < φ1−α(0)A−1 such that

lim
t→T−∞

φ(t) =∞. Then the proof is completed.

Proof of Theorem 2.3 We introduce the following notations

φ(t) =
1

2
||∇u||2 +

1

2
||u||2, G(t) = ||∇ut||2 + ||ut||2.

If we multiply the equation (1.1) by u, we obtain the following equality:

φ′′ −G+ (∇ut,∇u) + ((|u|ku)t, u) + ||∇u||2 = ||u||q+2
q+2. (4.16)

The third and fourth terms in (4.16) can be estimated as follows:

|(∇ut,∇u)| ≤ ε
2 ||∇ut||

2 + 1
2ε ||∇u||

2 ≤ ε
2G+ 1

εφ (4.17)
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and

|((|u|ku)t, u)| ≤ (k + 1)||ut||||u||k+1
2(k+1)

≤ ε
2 ||ut||

2 +
(k+1)2C

2(k+1)
0

2ε ||∇u||2(k+1) ≤ ε
2G+

(k+1)2C
2(k+1)
0

ε φk+1 (4.18)

for any ε > 0.

Hence, by the estimate (4.17) and (4.18), equality (4.16) yields

φ′′ −G+ εG+ 1
εφ+

(k+1)2C
2(k+1)
0

ε φk+1 + ||∇u||2 ≥ ||u||q+2
q+2. (4.19)

Integrating (2.5) with respect to t gives

E(t) =
1

2
||ut||2 +

1

2
||∇ut||2 +

1

2
||∇u||2 − 1

q + 2
||u||q+2

q+2 ≤ E(0).

Then we get

||u||q+2
q+2 ≥

q + 2

2
G+

q + 2

2
||∇u||2 − (q + 2)E(0). (4.20)

Then, (4.20) and (4.19) yield

φ′′ − q+4
2 G+ εG+ 1

εφ+
(k+1)2C

2(k+1)
0

ε φk+1 − q
2 ||∇u||

2 + (q + 2)E(0) ≥ 0. (4.21)

Now, we choose ε = ε0 = q−k
2 > 0 so that

α0 = q+4
2 −

ε0
2 = 2 + k

2 > 1, 2α0 = 4 + k > k + 2, (4.22)

where we have used the fact q > k. Then (4.21) becomes

φ′′ − α0G+ 1
ε0
φ+

(k+1)2C
2(k+1)
0

ε0
φk+1 + (q + 2)E(0) ≥ q

2 ||∇u||
2 ≥ 0. (4.23)

From the Cauchy-Schwarz inequality, we have

(φ′)2 ≤ φG. (4.24)

Then using (4.24) and (4.23) we arrive at the following second order differential inequality

φφ′′ − α0(φ′)2 + 1
ε0
φ2 +

(k+1)2C
2(k+1)
0

ε0
φk+2 + (q + 2)E(0)φ ≥ 0. (4.25)

Comparing this differential inequality with inequality (4.1), we find that

α = α0, β = 1
ε0
, γ =

(k+1)2C
2(k+1)
0

ε0
, δ = (q + 2)E(0), l = k. (4.26)

By (4.26) and (4.22), we know that (4.2) and (4.3) are satisfied. By (2.8) and (2.9), we know

that (4.4) and (4.5) are satisfied. Then by Lemma 4.1, we see that φ(t) blows up in finite

time. This theorem is proved.

ACKNOWLEDGEMENTS This work is supported by the National Natural Science

Foundation of China (No.11526077,11601122).

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1011 Donghao Li et al 999-1013



References

[1] S.A.Gabov. Mathematical fundamentals of linear theory of ionic sound waves in unmagnetized
plasma. Matematicheskoe Modelirovanie, 1 (12) (1989), 133-148.

[2] M.O.Korpusov. Blow-up of ion acoustic waves in a plasma, Sbornik: Mathematics, 202 (1)
(2011), 37-64.

[3] M.O.Korpusov, A.A.Panin. Blow-up of solutions of an abstract Cauchy problem for a formally
hyperbolic equation with double non-linearity. Izvestiya: Mathematics, 78(5)(2014), 937-985.

[4] Y.D.Shang. Initial-boundary value problem for a class of fourth order nonlinear evolution equa-
tions. Mathematica Applicata, 13(1)(2000), 7-11.(in Chinese)

[5] Y.D.Shang. Initial boundary value problem of equation utt − ∆u − ∆ut − ∆utt = f(u). Acta
Mathematicae Applicatae Sinica, 23A(2000), 385-393. (in Chinese)

[6] H.W.Zhang, Q.Y.Hu. Existence of global weak solution and stability of a class nonlinear evolu-
tion equation. Acta Mathematiea Scientia, 24A(3) (2004), 329-336.(in Chinese)

[7] Y.Q.Xie, C.K.Zhong. The existence of global attractors for a class nonlinear evolution equation.
Journal of Mathematical Analysis and Application, 336(2007), 54-69.

[8] R.Z.Xu, X.R.Zhao, J.H.Shen. Asymptotic behavior of solution for fourth order wave equation
with dispersive and dissipative terms. Applied Mathematics and Mechanics, 29 (2008), 259-262.

[9] Y.Q.Xie, C.K.Zhong. Asymptotic behavior of a class of nonlinear evolution equations. Nonlinear
Analysis, 71(11) (2009), 5095-5105.

[10] A.N.Carvalho, J.W.Cholewa. Local well posedness, asymptotic behavior and asymptotic boot-
strapping for a class of semilinear evolution equations of the second order in time. Transactions
of the American Mathematical Society, 361(5) (2009), 2567-2586.

[11] C.Y.Sun, L.Yang, J.Q.Duan. Asymptotic behavior for a semilinear second order evolution equa-
tion. Transactions of the American Mathematical Society, 363(11) (2011), 6085-6109

[12] C.S.Chen, H.Wang, S.L.Zhu. Global attractor and decay estimates of solutions to a class of
nonlinear evolution equations. Mathematical Methods in the Applied Sciences, 34(5)(2011),
497-508.

[13] R.Z.Xu, Y.B.Yang. Finite time blow up for the nonlinear fourth-order dispersive-dissipative wave
equation at high energy level. International Journal of Mathematics, 23(5) (2012), 1250060 (10
pages).

[14] H.F.Di, Y.D.Shang. Global existence and asymptotic behavior of solutions for the double
dispersive-dissipative wave equation with nonlinear damping and source terms. Boundary Value
Problems, 2015(2015) 29, DOI 10.1186/s13661-015-0288-6.

[15] V.Pata, M.Squassina. On the strongly damped wave equation. Communications in Mathematical
Physics, 253(3) (2005), 511-533.

[16] A.N.Carvalho, J.W.Cholewa, T.Dlotko. Strongly damped wave problems: bootstrapping and
regularity of solutions. Journal of Differential Equations, 244(2008), 2310-2333.

[17] V.Barbu, I.Lasiecka, M.A.Rammaha. On nonlinear wave equations with degenerate damping and
source terms. Transactions of the American Mathematical Society, 357(7),(2005), 2571-2611.

[18] V.Barbu, I.Lasiecka, M.A.Rammaha. Blow-up of generalizedsolutions to wave equations with
degenerate damping and source terms. Indiana University Mathematics Journal, 56(3),(2007),
995-1022.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1012 Donghao Li et al 999-1013



[19] D.R.Pitts, M.A.Rammaha. Global existence and nonexistence theorems for nonlinear wave e-
quations. Indiana University Mathematics Journal, 51(6)(2002), 1479-1509.

[20] M.A.Rammaha, T.A.Strei. Global existence and nonexistence for nonlinear wave equations with
damping and source terms. Transactions of the American Mathematical Society, 354(9)(2002),
3621-3637.

[21] V.Barbu, I.Lasiecka, M.A.Rammaha. Existence and uniqueness of solutions to wave equations
with degenerate damping and source terms. Control and Cybernetics, 34(3) (2005), 665-687.

[22] Q.Y. Hu, H.W. Zhang. Blowup and asymptotic stabiity of weak solutions to wave equations with
nonlinear degenerate damping and source terms. Electronic Journal of Differential Equations.
2007(2007), No. 76, 1-10.

[23] M.A.Rammaha, S.Sakuntasathien. Global existence and blow up of solutions to systems of
nonlinear wave equations with degenerate damping and source terms. Nonlinear Analysis Theory
Methods and Applications, 2010, 72(5), 2658-2683.

[24] M.A. Rammaha, S.Sakuntasathien. Critically and degenerately damped systems of nonlinear
wave equations with source terms. Applicable Analysis, 89(8)(2010), 1201-1227.

[25] X.S.Han, M.X.Wang. Global existence and blow-up of solutions for nonlinear viscoelastic wave
equation with degenerate damping and source. Mathematische Nachrichten, 284(5-6)(2011),
703-716.

[26] S.T. Wu. General decay of solutions for a nonlinear system of viscoelastic wave equations with
degenerate damping and source terms. Journal of Mathematical Analysis and Application, 406
(2013), 34-48.

[27] E.Piskin. Blow up of positive initial-energy solutions for coupled nonlinear wave equations with
degenerate damping and source terms. Boundary Value Problems, 2015(2015),no.43, 1-11.

[28] L.E.Payne, D.Sattinger. Saddle points and instability of nonlinear hyperbolic equations. Israel
Journal of Mathematics, 22(3-4) (1975), 273-303.

[29] M.Nakao. Asymptotic stability of the bounded or almost periodic solution of the wave equation.
Journal of Mathematical Analysis and Application, 56 (1977), 336-343.

[30] H.A.Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the
form Putt = Au+ F (u). Transactions of the American Mathematical Society, 192 (1974), 1-21.

[31] V.K.Kalantarov, O.A.Ladyzhenskaya. The occurrence of collapse for quasilinear equations of
parabolic and hyperbolic types. Journal of Soviet Mathematics, 10(1)(1978), 77-102.

[32] E.Vitillaro. A potential well theory for the wave equation with nonlinear source and boundary
damping terms. Glasgow Mathematical Journal, 44(2)(2002), 375-395.

[33] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation
with nonlinear damping and source terms. Journal of Mathematical Analysis and Application,
239(1999), 213-226

[34] E.Vitillaro. Some new results on global nonexistence and blow-up for evolution problems
with positive initial energy. Rendiconti Dellistituto Di Matematica Delluniversita Di Trieste,
31(2)(2000), 245-275.
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COMPACT AND MATRIX OPERATORS ON THE SPACE
jC;�1jk

G. CANAN HAZAR GÜLEÇ AND M. ALI SARIGÖL

Abstract. According to Hardy [5], Cesàro summability is usually consid-
ered for the range � � �1: In a more recent paper [14], the space jC�jk
is studied for � > �1: In this paper we de�ne jC�1jk using the Cesàro
mean (C;�1) of Thorpe [26] , compute its �-, �- and - duals, give some
algebraic and topological properties, and characterize related matrix oper-
ators, and also obtain some identities or estimates for the their operator
norms and the Hausdor¤ measure of noncompactness. Further, by apply-
ing the Hausdor¤ measure of noncompactness, we establish the necessary
and su¢ cient conditions for such operators to be compact. So some results
in [14] is also extended to the range � � �1:

1. Introduction

Let ! be the set of all complex sequences, c; `1 � w be the set of convergent
and bounded sequences. For cs; bs and `k (k � 1; `1 = `) ; we write the sets of all
convergent, bounded, k-absolutely convergent series, respectively. Let A = (anj)
be an arbitrary in�nite matrix of complex numbers. By A(x) = (An (x)) ; we
denote the A-transform of the sequence x, i.e., An (x) =

P1
j=0 anjxj ; provided

that the series converges for n � 0: We say that A de�nes a matrix trans-
formation from U into V , and it denote by A 2 (U; V ) or A : U ! V if
sequence Ax = (An(x)) 2 V for every sequence x 2 U , where U and V are
subspace of w and also the sets U� = f" 2 w : ("vxv) 2 ` for all x 2 Ug ; U� =
f" 2 w : ("vxv) 2 cs for all x 2 Ug ; U = f" 2 w : ("vxv) 2 bs for all x 2 Ug and

UA = fx 2 w : A(x) 2 Ug (1.1)

are said to be the �-, �-, - duals of U and the domain of the matrix A
in U; respectively. Further, U is said to be an BK-space if it is a complete
normed space with continuous coordinates pn : U ! C de�ned by pn (x) = xn
for n � 0: The sequence (en) is called a Schauder base (or brie�y base) for
a normed sequence space U if for each x 2 U there exist unique sequence of

1991 Mathematics Subject Classi�cation. 40C05, 40D25, 40F05, 46A45.
Key words and phrases. Sequence spaces; Absolute Cesàro summability; Dual spaces; ma-

trix operators; Bounded linear operator; BK spaces; Norms.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1014 GULECet al 1014-1024



2 HAZAR AND SARIGÖL

coe¢ cients (xv) such that kx�
Pm

v=0 xve
vk ! 0 (m!1) ; and in this case

we write x =
P1

v=0 xvev: For example, the sequence
�
e(n)

�
is a base of lk with

respect to the norm kxk`k =
�P1

v=0 jxvj
k
�1=k

; k � 1; where e(n) is the sequence
whose only non-zero term is 1 in the nth place for each n:Throughout k� denotes
the conjugate of k > 1, i.e., 1=k + 1=k� = 1; and 1=k� = 0 for k = 1:
Let �an be an in�nite series with partial sum sn. Let (��n) be the nth Cesàro

mean (C;�) of order � > �1 of the sequence (sn) ; e:i:; ��n = 1
A�
n

Pn
v=0A

��1
n�vsv:The

summability jC;�jk was de�ned by Flett [4] as follows. The series �an is said
to be summable jC;�jk with index k � 1 if

1P
n=1

nk�1
����n � ��n�1��k <1:

More recently the series space jC�jk has been studied by the second author
for � > �1, [14] : The Cesàro summability (C;�) is studied usually for range
� � �1 (see [5]). Since the above de�nition does not work for � = �1, so
it was separately de�ned by Thorpe [26] as follows. If the series to sequence
transformation

Tn =
n�1X
�=0

a� + (n+ 1) an (1.2)

tends to s as n tends to in�nity, then the series �an is summable by Cesàro
summability (C;�1) [26] : Now we de�ne the space jC�1jk ; k � 1; as the set
of all series summable by the method jC;�1jk : Then, it can be written that

jC�1jk =
�
a = (av) :

1P
n=1

nk�1 jTn � Tn�1jk <1
�
; where (Tn) is de�ned by

(1:2), or

jC�1jk =
(
a = (a�) :

1X
n=1

nk�1 j(n+ 1) an � (n� 1) an�1jk <1
)
:

The problems of absolute summability factors and comparision of these meth-
ods goes to old rather and uptill now were widely examined by many authors,
(see, [1-3], [6], [10-12], [16-22] ,[24-25])) et al. There are a close relation between
these problems and some special matrix transformations such as an identity
matrix I and a matrix W = (wnv) de�ned by wvv = "v and wnv = 0 for v 6= n:
In this paper we derive a series space jC�1jk using the Cesàro summability

(C;�1) of Thorpe [26] , compute its �-, �- and - duals, give some algebraic
and topological properties, and characterize certain matrix operators de�ned on
that space, and also obtain some identities or estimates for the their operator
norms and the Hausdor¤measure of noncompactness. Moreover, by applying the
Hausdor¤ measure of noncompactness, we establish the necessary and su¢ cient
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jC;�1jk SUMMABILITY 3

conditions for such operators to be compact. So we also complete some open
problems in the paper of Sar¬göl [14]:
The following lemmas play important roles to prove our theorems.
Lemma 1.1. Let 1 < k <1: Then, A 2 (`k; `) if and only if

kAk(`k;`) = sup
N

(
1P
v=0

���� 1P
n2N

anv

����k�
)1=k�

<1;

where N is any �nite set of positive numbers [23].
The following lemma is more useful in many cases, which gives equivalent

norm.
Lemma 1.2. Let 1 < k <1: Then, A 2 (`k; `) if and only if

kAk0(`k;`) =
(

1P
v=0

� 1P
n=0

janvj
�k�)1=k�

<1;

and there exists 1 � � � 4 such that kAk0(`k;`) = � kAk(`k;`) [15]:
The second part of this lemma is easily seen by following the lines in [15] that

kAk(`k;`) � kAk
0
(`k;`)

� 4 kAk(`k;`) :
Lemma 1.3. Let 1 � k <1: Then, A 2 (`; `k) if and only if

kAk(`;`k) = sup
v

� 1P
n=0

janvjk
�1=k

<1; [7]:

Lemma 1.4.
a-) A 2 (`; c), (i) limn anv exists, v � 0, (ii) supn;v janvj <1:
b-) A 2 (`; `1), (ii) holds.
c-) Let 1 < k <1:Then, A 2 (`k; `1), (iii) supn

P1
v=0 janvj

k�
<1;

d-) A 2 (`k; c), (i) and (iii) hold [23]:

2. The Hausdorff measure of noncompactness

If S and H are subsets of a metric space (X; d) and " > 0 then S is called an
"-net of H , if, for every h 2 H; there exists an s 2 S such that d (h; s) < "; if S is
�nite, then the "-net S of H is called a �nite "-net of H: Let X and Y be Banach
spaces. A linear operator L : X ! Y is called compact its domain is all of X
and, for every bounded sequence (xn) in X; the sequence (L(xn)) has a conver-
gent subsequence in Y: We denote the class of such operators by C (X;Y ). If Q
is a bounded subset of the metric space X; then the Hausdor¤ measure of non-
compactness of Q is de�ned by �(Q) = f" > 0 : Q has a �nite "-net in Xg ;and
� is called the Hausdor¤ measure of noncompactness.
The following result is an important tool to compute the Hausdor¤ measure

of noncompactness of a bounded subset of the BK space `k; k � 1:
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4 HAZAR AND SARIGÖL

Lemma 2.1. Let Q be a bounded subset of the normed space X where X =
`k, for 1 � k <1 or X = c0:If Pn : X ! X is the operator de�ned by Pr (x) =
(x0; x1; :::; xr; 0; :::) for all x 2 X; then �(Q) = limr!1

�
supx2Q k(I � Pr) (x)k

�
;where

I is the identity operator on X; [13].

If X and Y be Banach spaces and �1 and �2 be Hausdor¤ measures on X
and Y; then, the linear operator L : X ! Y is said to be (�1; �2)-bounded if
L (Q) is bounded subset of Y for every bounded subset Q of X and there ex-
ists a positive constant M such that �2 (L (Q)) � M �1 (Q) for every bounded
Q of X: If an operator L is (�1; �2)-bounded then the number kLk(�1;�2) =
inf fM > 0 : �2 (L (Q)) �M�1 (Q) for all bounded Q � Xg is called the (�1; �2)-
measure of noncompactness of L: In particular, we write kLk(�;�) = kLk� for
�1 = �2 = �:

Lemma 2.2. Let X and Y be Banach spaces, L 2 B (X;Y ) and SX =
fx 2 X : kxk � 1g denote the unit sphere in X: Then, kLk� = � (L (SX)) ; and

L 2 C (X;Y ) if and only if kLk� = 0; [8].
Lemma 2.3. Let X be normed sequence space and �T and � denote the

Hausdor¤ measures of noncompactness onM
XT
andMX , the collections of all

bounded sets in XT and X, respectively. Then, �T (Q) = � (T (Q) for all Q 2
M

XT
; where T = (tnv) is a triangular in�nite matrix, [9].

3. Continuous and compact matrix operators on the space jC�1jk
In this section by giving some topological properties, �-, �-, - duals, base of

jC�1jk ;we characterize matrix operators on that space, determine their norms,
and also establish the necessary and su¢ cient conditions for such operators to
be compact by applying the Hausdor¤ measure of noncompactness, which also
extends some results of Sar¬göl [14] to � � �1: First of all, we de�ne the matrix
T (k) = (t

(k)
nv ) by t

(k)
00 = 1;

t(k)nv =

8<: �n1=k� (n� 1) ; v = n� 1
n1=k

�
(n+ 1) ; v = n

0; otherwise,
(3.1)

for 1 � k < 1. Then it is clear that jC�1jk = (`k)T (k) according to (1:1) :
Further, since every triangular matrix has a unique inverse which is also triangle
[27, p. 9]. there exists the inverse of T (k) and denote this inverse by S(k): Now
it follows from (1:2) that a0 = y0 and an = [n (n+ 1)]

�1Pn
v=1 v

1=ky� ; n � 1;

and so s(k)00 = 1;

s(k)nv =

8<: �1=k

n (n+ 1)
; 1 � v � n

0; v > n:
(3.2)
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Finally, we de�ne the following notations:

D1 =

�
" = ("v) 2 w :

1P
v=r

s(1)vr "v converges, r � 1
�
;

D2 =

�
" = ("v) 2 w : sup

m;r

���� mP
v=r

s(1)vr "v

���� <1� ;
D3 =

(
" = ("v) 2 w : sup

m

mP
r=1

���� mP
v=r

s(k)vr "v

����k� <1
)
;

D4 =

�
" = ("v) 2 w : sup

�

1P
n=�

���s(1)nv "n��� <1� ;
D5 =

(
" = ("v) 2 w :

1P
�=1

� 1P
n=�

���s(k)nv "n����k� <1
)
:

Theorem 3.1. Let 1 � k <1 . Then,
a-) The space jC�1jk is BK-space with respect to the norm kxkjC�1jk =T (k)(x)

lk
and isomorphic to the space `k; i.e., jC�1jk �= `k; where T (k) is

de�ned by (3:1)
b-) jC�1j�k = D1 \D3 for 1 < k <1 and jC�1j� = D1 \D2 for k = 1:
c-) jC�1jk = D3 for 1 < k <1 and jC�1jk = D2 for k = 1:
d-) jC�1j�k = D5 for 1 < k <1 and jC�1j�k = D4 for k = 1:
e-) The sequence b(v) = (b

(v)
n ) is the Schauder base of the space jC�1jk for

v; n � 0; where b(v)n = s
(k)
nv :

Proof a-) Since lk is BK-spaces with its usual norm, jC�1jk = (`k)T (k) and
T (k) is a triangle matrix, it follows from Theorem 4.3.2 of Wilansky [27, p. 61]
that jC�1jk is BK-spaces for 1 � k <1: To prove the second part, de�ne T (k) :
jC�1jk ! lk by

T (k)n (x) = n1=k
�
[(n+ 1)xn � (n� 1)xn�1] ; n � 1:

Then, it is clear that T (k) is linear operator and surjective, since, if y 2 `k,
then xn = [n (n+ 1)]

�1Pn
v=1 v

1=ky� ; where y = T (k) (x) ; and also one to one.
Further, it preserves the norm, since

T (k)(x)
lk
= kxkjC�1jk ;which completes

the proof.
b-) Let 1 < k < 1: Now, " 2 jC�1j�k if and only if �"nxn is convergent for

every x 2 jC�1jk : Let y = T (k)(x): Then, y 2 `k if and only if x 2 jC�1jk ; where
xn = (n(n+ 1))

�1Pn
v=1 v

1=ky� for n � 1; x0 = y0; and also it can be written
that

mP
v=0

"�x� = "0y0 +
mX
r=1

�
mP
v=r

s(k)vr "v

�
yr =

mP
r=0

�mryr
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where, �m0 = "0;

�mr =

� Pm
v=r s

(k)
vr "v; 1 � r � m
0; r > m:

So it follows from Lemma 1.4. that " 2 jC�1j�k i¤ � 2 (`k; c), or equivalently,
" 2 D1 \D3; which completes the proof.
Since (c) and (d) can be proved easily as in (b), so we omit the detail.
e-) Since jC�1jk = (`k)T (k) and the sequence

�
e(v)

�
is a base of lk, where

e(v) =
�
e
(v)
n

�
, it is clear that the sequence

�
b(v)

�
is the base forjC�1jk : In fact,

if x 2 jC�1jk ; then there exists y 2 lk such that y = T (k)(x); and so it followsx� mP
v=0

xvb
(v)


jC�1jk

=

y � mP
v=0

yve
(v)


lk

! 0 as m!1;

where xv =
�
T (k)

��1
v
(y); v � 0: Further, it has the unique representation by x =P1

v=0 xvb
(v), which is immediately seen from the triange inequality of norm.

Also, we state the following result which is immediate by Theorem 3.1.
Theorem 3.2. Let 1 � k < 1 and A = (anv) is an in�nite matrix with

complex terms for all n; v � 0: De�ne the matrices L =
�
`nr
�
, D = (dnv) and

D(r) =
�
�d
(r)
n�

�
by

`nr = r
1P
v=r

anv
� (� + 1)

;

dnv = n
1=k�

�
(n+ 1) `n� � (n� 1) `n�1;�

�
; n � 1; v � 1: (3.3)

�d(r)n� =

�
0; 1 � n � r
dnv; n > r

Then each matrix in the class A 2 (jC�1j ; jC�1jk) de�nes a bounded linear
operator LA : jC�1j ! jC�1jk such that LA(x) = A(x) for all x 2 jC�1j ; and
A 2 (jC�1j ; jC�1jk) if and only if

L is well de�ned n; r � 1; (3.4)

sup
m;r

����r mP
v=r

anv
� (� + 1)

���� <1 for each n; (3.5)

sup
v

1P
n=1

jdnvjk <1: (3.6)

Morever, if A 2 (jC�1j ; jC�1jk) ; then

kLAk(jC�1j;jC�1jk) = kDk(`;`k) and kLAk� = lim
r!1

D(r)

(l;lk)

(3.7)

Proof.The �rst part is immediate by Theorem 4.2.8 of Wilansky [27; p:57],
since jC�1j and jC�1jk are a BK-spaces by Theorem 3.1. For second part, A 2
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(jC�1j ; jC�1jk) i¤ (anv)1v=0 2 (jC�1j)
� for each n; and A(x) 2 jC�1jk for every

x 2 jC�1j : Now, by Theorem 3.1 (b), (anv)1v=0 2 (jC�1j)
� i¤ (an�)

1
�=0 2 D1\D2;

or, equivalently, (3:4) and (3:5) hold for each n: Now, to obtain (3:6) ; consider
operator T (1) : jC�1j ! `1 by using (3:1) for k = 1 by

T (1)n (x) = (n+ 1)xn � (n� 1)xn�1 (3.8)

As in the proof of Theorem 3.1, T (1) is bijection and the matrix corresponding
to this operator is triangle. Further, let x 2 jC�1j be given, then y 2 `; where
y = T (1) (x) ; for n � 0; x�1 = 0; and also; xn = (n (n+ 1))

�1Pn
v=1 vy� for

n � 1 and x0 = y0: Now, we can write

mP
v=1

anvxv =
mP
r=1

�
r
mP
v=r

an�
� (� + 1)

�
yr =

mP
r=1

`
(n)

mryr;

where

`
(n)

mr =

(
r
Pm

v=r

an�
� (� + 1)

; 1 � � � m

0; � > m:

Moreover, if any matrix H = (hnv) 2 (`; c) ; then, the series Hn(x) = �vhnvxv
converges informly in n, since, by Lemma 1.4, the remaining term tends to zero
informly in n, that is,���� 1P

v=m
hnvxv

���� � sup
n;v
jhnvj

1P
v=m

jxvj ! 0 as m!1;

and so

lim
n
Hn(x) =

1P
v=0

lim
n
hnvxv (3.9)

Hence, since (3:4) and (3:5) hold, L
(n)
=
�
`
(n)

mr

�
2 (`; c), then by (3:9) ; we get

An(x) =
1P
r=0

�
lim
m
`
(n)

mr

�
yr =

1P
r=0

`nryr = Ln(y);

This shows that A(x) 2 jC�1jk for every x 2 jC�1j i¤ L(y) 2 jC�1jk for every
y 2 `; or, equivalently, D(y) 2 `k, since jC�1jk = (`k)T (k) ; where D = T (k)L:
So, it is clear that A 2 (jC�1j ; jC�1jk) i¤ (3:4) ; (3:5) hold, and D 2 (`; `k) : A
few calculations show that

dnv =
nP
r=1

t(k)nr `r� = n
1=k�

�
(n+ 1) `n� � (n� 1) `n�1;�

�
; v; n � 1;

Therefore, it can be obtained from Lemma 1.3 that D 2 (`; `k) i¤ (3:6) is satis-
�ed, which completes the proof of the second part.
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Now, to compute norm of A; A 2 (jC�1j ; jC�1jk) i¤ D 2 (`; `k), where D
is de�ned by (3:3) : On the other hand, consider the isomorphisms T (1) : jC�1j
! ` and T (k) : jC�1jk ! `k de�ned in (3:8) and Theorem 3.1 (a), respectively.

Then we get A =
�
T (k)

��1
oDoT (1): So, by Theorem 3.1, x 2 jC�1j i¤ y =

T (1)(x) 2 ` and kA(x)kjC�1jk = kD (y)k`k for all x 2 jC�1j and y 2 `; which
gives kAk(jC�1j;jC�1jk) = kDk(l;lk) :
Finally, let S = fx 2 jC�1j : kxk � 1g : Then, by Lemma 2.1-Lemma 2.3, and

from the de�nition of D(r) we get

kLAk� = � (LAS) = � (DTS) = lim
r!1

sup
y2TS

k(I � Pr)D(y)klk

= lim
r!1

D(r)

(l;lk)

= lim
r!1

sup
v

� 1P
n=r+1

jdnvjk
�1=k

where Pr : lk ! lk is de�ned by Pr(y) = (y0; y1; :::; yr; 0; :::) and the matrix
D(r) =

�
�dn�
�
is de�ned as: �dn� = dnv for n > r; 0 otherwise. Thus, the proof is

completed together with Lemma 1.3.

It is directly characterized from Theorem 3.2 the compact operators in the
class (jC�1j ; jC�1jk).
Corollary 3.3. Under hypotheses of Theorem 3.2, LA 2 (jC�1j ; jC�1jk) is

compact if and only if kLAk� = limr!1
D(r)


(l;lk)

= 0:

Now, If a matrix A is chosen as a special matrix W and I; then A 2
(jC�1j ; jC�1jk) means the form of summability factors that �"vxv is summa-
ble jC�1jk when �xv is summable jC�1j ; and I 2 (jC�1j ; jC�1jk) means the
comparisons of these methods, i.e., jC�1j � jC�1jk : If we put A = I; then, since

`nr =

( r

n (n+ 1)
; 1 � r � n

0; n < r

and

dnv =

�
n1=k

� �
(n+ 1) `n� � (n� 1) `n�1;�

�
; 1 � v � n

0; v > n;

it is also clear that condition (3:4) ; (3:5) and (3:6) are satis�ed. So one can
easily derive from Theorem 3.2 the following result.
Corollary 3.4. Let 1 � k <1. Then, jC�1j � jC�1jk :
Theorem 3.5. Let 1 < k < 1 and A = (anv) is an in�nite matrix with

complex terms for all n; v � 0: Let be de�ne the matrices L =
�
`n�
�
as in

Theorem 3.2 and F = (fn�) and F (r) =
�
~f
(n)
n�

�
by

fn� = �
�1=k� �(n+ 1) `n� � (n� 1) `n�1;�� ; � � 1; n � 1; (3.10)
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and

~f (r)n� =

�
0; 1 � n � r
fn� ; n > r

Then each matrix in the class A 2 (jC�1jk ; jC�1j) de�nes a bounded linear
operator LA : jC�1jk ! jC�1j such that LA(x) = A(x) for all x 2 jC�1jk ; and
A 2 (jC�1jk ; jC�1j) if and only if (3:4)

sup
m

mP
r=1

����r1=k mP
v=r

an�
� (� + 1)

����k� <1; (3.11)

1P
�=1

� 1P
n=1

jfn� j
�k�

<1: (3.12)

Morever, if A 2 (jC�1jk ; jC�1j) ; then, there exists 1 � � � 4 such that

kLAk(jC�1jk;jC�1j) =
1

�
kFk0(`k;`) and kLAk� =

1

�
lim
r!1

F (r)0
(lk;l)

: (3.13)

Proof. The �rst part is immediate by Theorem 4.2.8 of Wilansky [27; p:57],
since jC�1j and jC�1jk are a BK-spaces by Theorem 3.1. For the second part,
let A 2 (jC�1jk ; jC�1j) : Then, (an�)

1
�=0 2 (jC�1jk)

� and A (x) 2 jC�1j for every
x 2 jC�1jk : Now by Theorem 3.1 (b); (an�)

1
�=0 2 (jC�1jk)

� i¤ (an�)
1
�=0 2 D1 \

D3 for each n: This also means that (an�)
1
�=0 2 (jC�1jk)

� i¤ conditions (3:4) and
(3:11) hold: Also to obtain (3:12), we consider the operators T (k) : jC�1jk ! `k
same as Theorem 3.1 (a). Then, since the space jC�1jk is izomorf to `k; it can
be written that x 2 jC�1jk i¤ y 2 `k; where T (k) (x) = y ; i:e:; y0 = x0 and

yn = T
(k)
n (x) = n1=k

�
[(n+ 1)xn � (n� 1)xn�1] for n � 1 ; x�1 = 0. So by

(3:2) ; as in the proof of Theorem 3.2 we get
mP
v=1

anvxv =
mP
r=1

r�1=k
�
`(n)mryr =

mP
r=1

f
(n)

mryr

where, f
(n)

mr = r�1=k
�
`
(n)
mr for 1 � r � m; and f

(n)

mr = 0 for r > m; and L
(n)

=�
`
(n)

mr

�
is de�ned as in Theorem 3.2. Moreover, if any matrixH = (hnv) 2 (`k; c) ;

then by Lemma1.4 and using Hölder�s inequality, we get���� 1P
v=m

hnvxv

���� � sup
n

� 1P
v=0

jhnvjk
�
�1=k� � 1P

v=m
jxvjk

�1=k
Also, since x 2 `k; we obtain that the series Hn(x) = �vhnvxv converges in-
formly in n, which implies

lim
n
Hn(x) =

1P
v=0

lim
n
hnvxv: (3.14)
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Therefore, since (3:4) and (3:11) hold, F (n) =
�
f
(n)

mr

�
2 (`k; c), then by (3:14) ;

we get

An(x) =
1P
r=1

�
lim
m
f
(n)

mr

�
yr =

1P
r=1

r�1=k
�
`nryr =

1P
r=1

fnryr = Fn(y); n � 1

where, fnr = limm f
(n)

mr : This shows that A(x) 2 jC�1j for every x 2 jC�1jk i¤
F (y) 2 jC�1j for every y 2 `k or, equivalently

�
T (1)F

�
(y) 2 `; since jC�1j =

(`)T (1) ; so we obtain that F 2 (`k; `), where F = T (1)F : Hence, it is clear that
A 2 (jC�1jk ; jC�1j) i¤ (3:4) ; (3:11) hold, and F 2 (`k; `) :With a few calcula-
tions, it can be easily seen that F is the same as (3:10) ; and so it follows from
applying Lemma 1.2 to the matrix F that F 2 (`k; `) i¤ (3:12) is satis�ed, and
this proves the second part.
Also, considering that T (k) : jC�1jk ! `k and T (1) : jC�1j ! ` are norm

isomorphism, as in Theorem 3.2, it follows that A =
�
T (1)

��1
oFoT (k) and so,

by Lemma 1.2,

kLAk(jC�1jk;jC�1j) = kFk(`k;`) =
1

�
kFk0(`k;`)

Finally, S = fx 2 jC�1jk : kxk � 1g : Then, by considering Lemma 2.1-Lemma
2.3, and Lemma 1.2, there exists 1 � � � 4 such that

kLAk� = lim
r!1

sup
y2T (k)S

k(I � Pr)F (y)kl = lim
r!1

F (r)
(lk;l)

=
1

�
lim
r!1

F (r)0
(lk;l)

where Pr : l ! l is de�ned by Pr(y) = (y0; y1; :::; yr; 0; :::) and the matrix

F (r) =
�
~f
(n)
n�

�
is de�ned as: ~f (n)n� = 0 for 1 � n � r; and fn� for n > r; which

proves the theorem together with Lemma 1.2.
The compact operators in this class are obtained from Theorem 3.5 as follows.
Corollary 3.6. Under hypotheses of Theorem 3.5,

LA 2 (jC�1jk ; jC�1j) is compact if and only if limr!1

F (r)0
(lk;l)

= 0:
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On value distribution of meromorphic solutions of a certain

second order difference equations ∗
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Abstract. In this paper, we consider difference equation f(z + 1) + f(z − 1) =
A(z)f(z)+C

1−f2(z) , where C is a non-zero constant, A(z) = m(z)
n(z) , m(z) and n(z) are irre-

ducible polynomials, we obtain the forms of rational solutions.

To the difference equation f(z+1)+f(z−1) = A(z)f(z)+C(z)
1−f2(z) , where A(z), C(z)

are non-constant small functions with respect to f(z), the Borel exceptional value,

the exponents of convergence of zeros, poles and fixed points of finite order tran-

scendental meromorphic solution f(z), and the exponents of convergence of poles

of differences ∆f(z) = f(z + 1) − f(z), ∆2f(z) = ∆f(z + 1) −∆f(z) and divided

differences ∆f(z)
f(z) ,

∆2f(z)
f(z) are estimated.

Mathematics Subject Classification (2010). 39B32, 34M05, 30D35.

Keywords. Difference equation, Rational solution, Transcendental meromorphic

solution.

1 Introduction and Results

Halburd and Korhonen [6, 7] used value distribution theory and a reasoning related to the

singularity confinement to single out the difference Painlevé I and II equations from difference

equation

f(z + 1) + f(z − 1) = R(z, f), (1.1)

where R is rational in both of its arguments. They obtained that if (1.1) has an admissible

meromorphic solutions of finite order, then either f satisfies a difference Riccati equation, or

(1.1) may be transformed into some classical difference equations, which include difference

Painlevé I equations

f(z + 1) + f(z − 1) =
az + b

f(z)
+ c, (1.2)

f(z + 1) + f(z − 1) =
az + b

f(z)
+

c

f2(z)
, (1.3)

f(z + 1) + f(z) + f(z − 1) =
az + b

f(z)
+ c, (1.4)

and difference Painlevé II equation

f(z + 1) + f(z − 1) =
(az + b)f(z) + c

1− f2(z)
, (1.5)

∗This research was supported by the National Natural Science Foundation of China (No: 11371225) and by

the Fundamental Research Funds for the Central Universities.
†Corresponding author. E-mail: chenminfeng198710@126.com.
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where a, b and c are constants.

Recently, as the difference analogues of Nevanlinna’s theory are investigated [2, 5], many

results on the complex difference equations are rapidly obtained, such as [1, 3, 10−12]. However,

there are a few papers concerning with the existence of rational solution of difference Painlevé

equations. In this paper, we will consider the forms of rational solutions, and investigate the

value distribution of meromorphic solution of finite order of a certain type of difference equation

which originates from the difference Painlevé II equation.

We assume that the reader is familiar with the basic Nevanlinna’s value distribution theory

of meromorphic functions (see[4, 9]). In addition, we use the notation σ(f) to denote the order of

growth of the meromorphic function f(z), λ(f) and λ( 1
f ) to denote, respectively, the exponent

of convergence of zeros and poles of f(z). We also use the notation τ(f) to denote the exponent

of convergence of fixed points of f(z) which is defined as

τ(f) = lim
r→∞

logN
(
r, 1
f(z)−z

)
log r

.

We denote by S(r, f) any quantify satisfying S(r, f) = o(T (r, f)), as r → ∞, possibly outside

a set with finite measure. For every n ∈ N∗, the forward difference ∆nf(z) are defined in the

standard way [14] by ∆f(z) = f(z + 1)− f(z), ∆n+1f(z) = ∆nf(z + 1)−∆nf(z).

Chen and Shon [3] considered the difference Painlevé II equation (1.5) and proved the

following result.

Theorem A. (See [3]) Let a, b, c be constants, ac 6= 0. Suppose that a rational function

f(z) =
P (z)

Q(z)
=
pzm + pm−1z

m−1 + · · ·+ p0

qzn + qn−1zn−1 + · · ·+ q0

is a solution of (1.5), where P (z) and Q(z) are relatively prime polynomials, p, pm−1, . . . , p0

and q, qn−1, . . . , q0 are constants. Then

n = m+ 1 and p = − c
a
q.

In equation (1.5), if we replace az+ b with A(z) = m(z)
n(z) , where m(z) and n(z) are mutually

prime polynomials, we still consider the rational solutions of equation (1.5), what will happen?

Here, we obtain the following result.

Theorem 1.1. Let C be non-zero constant, and A(z) = m(z)
n(z) be a rational function, where

m(z) and n(z) are mutually prime polynomials with degm(z) = m, deg n(z) = n. If difference

equation

f(z + 1) + f(z − 1) =
A(z)f(z) + C

1− f2(z)
(1.6)

has a rational solution f(z) = P (z)
Q(z) , where P (z) and Q(z) are relatively prime polynomials with

degP (z) = p, degQ(z) = q, then

(i) Suppose that m > n, then p− q = m−n
2 and m− n must be even or q − p = m− n ≥ 1;

(ii) Suppose that m = n, then p− q = 0 and

lim
z→∞

m(z)

n(z)
= A ∈ C \ {0}, lim

z→∞

P (z)

Q(z)
= B ∈ C \ {0},

C = B[2(1−B2)−A] or C = ±A;

(iii) Suppose that m < n, then p− q = 0 and

lim
z→∞

P (z)

Q(z)
= B ∈ C \ {0,±1}, C = 2B(1−B2).
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The following examples show that the difference equation (1.6) has rational solutions satis-

fying Theorem 1.1 (i), (ii) and (iii).

Example 1.1. The difference equation

f(z + 1) + f(z − 1) =
− 2z6+2z4+Cz3+2z2−Cz

z4−1 f(z) + C

1− f2(z)

has a rational solution f(z) = z + 1
z , where C 6= 0, m = 6, n = 4, p = 2, q = 1 and

p− q = m−n
2 = 1.

Example 1.2. The difference equation

f(z + 1) + f(z − 1) =
(−Cz + 2)f(z) + C

1− f2(z)

has a rational solution f(z) = 1
z , where C 6= 0, m = 1, n = 0, p = 0, q = 1 and q − p =

m− n = 1.

Example 1.3. The difference equation

f(z + 1) + f(z − 1) =

−2(z3+5z+10)
z3+2z2−z−2 f(z) + 2

1− f2(z)

has a rational solution f(z) = z−1
z+1 , where m = n = 3, p = q = 1,

lim
z→∞

−2(z3 + 5z + 10)

z3 + 2z2 − z − 2
= −2, lim

z→∞

z − 1

z + 1
= 1,

and C = 2 = B[2(1−B2)−A] = 1 · [2 · (1− 1)− (−2)].

Example 1.4. The difference equation

f(z + 1) + f(z − 1) =
−44z3+36z2+28z+12

z4−2z3−z2+2z f(z)− 12

1− f2(z)

has a rational solution f(z) = 2(z+1)
z−1 , where m = 3, n = 4, p = q = 1 and

lim
z→∞

2(z + 1)

z − 1
= 2, C = −12 = 2B(1−B2) = 2 · 2 · (1− 22).

In [3], Chen and Shon also investigated some properties of meromorphic solutions of finite

order of difference Painlevé II equation (1.5) and obtained the following result.

Theorem B. (See [3]) Let a, b, c be constants with ac 6= 0. If f(z) is a finite-order tran-

scendental meromorphic solution of the difference Painlevé II equation (1.5), then:

(i) f(z) has at most one non-zero finite Borel exceptional value;

(ii) λ
(

1
f

)
= λ(f) = σ(f);

(iii) f(z) has infinitely many fixed points and satisfies τ(f) = σ(f).

In this paper, we investigate the properties of a transcendental meromorphic solution of the

difference equation

f(z + 1) + f(z − 1) =
A(z)f(z) + C(z)

1− f2(z)
, (1.7)

where A(z), C(z) are nonconstant small functions with respect to f(z). And we obtain the

following result.

Theorem 1.2. Suppose that the difference equation (1.7) admits a transcendental mero-

morphic solution of finite order, then

(i) λ
(

1
f

)
= λ(f) = σ(f);

(ii) λ
(

1
∆f(z)

)
= λ

(
1

∆f(z)
f(z)

)
= σ(f), λ

(
1

∆2f(z)

)
= λ

(
1

∆2f(z)
f(z)

)
= σ(f);

(iii) If 2z(z2 − 1) + zA(z) + C(z) 6≡ 0, then τ(f) = σ(f);

(iv) In particular, if A(z)±C(z) ≡ 0, then f(z) has at most one non-zero finite Borel exceptional

value.
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2 Lemmas for the Proof of Theorems

Lemma 2.1. (See [10, Theorem 2.4],[5]) Let f(z) be a transcendental meromorphic solution

of finite order σ of the difference equation

P (z, f) = 0,

where P (z, f) is a difference polynomial in f(z) and its shifts. If P (z, a) 6≡ 0 for a slowly

moving target meromorphic function a, that is, T (r, a) = S(r, f), then

m

(
r,

1

f − a

)
= O(rσ−1+ε) + S(r, f),

outside of a possible exceptional set of finite logarithmic measure.

Lemma 2.2. (See [10, Theorem 2.3]) Let f(z) be a transcendental meromorphic solution of

finite order σ of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f) and Q(z, f) are difference polynomials such that the total degree degf U(z, f) =

n in f(z) and its shifts, and degf Q(z, f) ≤ n. Moreover, we assume that U(z, f) contains just

one term of maximal total degree in f(z) and its shifts. Then for each ε > 0,

m(r, P (z, f)) = O(rσ−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.3. (See [13]) Let f(z) be a meromorphic function. Then for all irreducible rational

functions in f(z),

R(z, f(z)) =

∑m
i=0 ai(z)f

i(z)∑n
j=0 bj(z)f

j(z)
,

with meromorphic coefficients ai(z), bj(z)(am(z)bn(z) 6≡ 0) being small with respect to f(z), the

characteristic function of R(z, f(z)) satisfies

T (r,R(z, f(z))) = max{m,n}T (r, f) + S(r, f).

Lemma 2.4. (See [2, Corollary 2.5]) Let f(z) be a meromorphic function of finite order σ

and let η be a non-zero complex number. Then for each ε > 0, we have

m

(
r,
f(z + η)

f(z)

)
+m

(
r,

f(z)

f(z + η)

)
= O(rσ−1+ε).

Lemma 2.5. (See [2, Theorem 2.1]) Let f(z) be a meromorphic function with order σ =

σ(f), σ < +∞, and let η be a fixed non-zero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).

Lemma 2.6. (See [2, Theorem 2.2]) Let f(z) be a meromorphic function with exponent of

convergence of poles λ
(

1
f

)
= λ <∞, η 6= 0 be fixed, then for each ε > 0,

N(r, f(z + η)) = N(r, f(z)) +O(rλ−1+ε) +O(log r).

Lemma 2.7. (See [8, Remark 1]) Let f(z) be a transcendental meromorphic function. If

P (z, f) and Q(z, f) are mutually prime polynomials in f(z), there exist polynomials of f(z),

U(z, f) and V (z, f) such that

U(z, f)P (z, f) + V (z, f)Q(z, f) = s(z),

where s(z) and coefficients of U(z, f) and V (z, f) are small functions with respect to f(z).
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Lemma 2.8. Let f(z) be a transcendental meromorphic function and A(z)±C(z) 6≡ 0, then

A(z)f(z)+C(z) and f(z)(1−f2(z)) are mutually prime polynomials in f(z), where A(z), C(z)

are nonzero small functions with respect to f(z).

Proof. Since A(z), C(z) are non-zero small functions with respect to f(z) and A(z)±C(z) 6≡ 0,

then C(z)(C2(z) − A2(z)) 6≡ 0, T (r, C(z)(C2(z) − A2(z))) = S(r, f). There exist polynomials

of f(z), U(z, f) = A2(z)f2(z)−A(z)C(z)f(z) + C2(z)−A2(z) and V (z, f) = A3(z) such that

U(z, f)(A(z)f(z) + C(z)) + V (z, f)f(z)(1− f2(z)) = C(z)(C2(z)−A2(z)).

By Lemma 2.7, we see that A(z)f(z) + C(z) and f(z)(1− f2(z)) are mutually prime.

Lemma 2.9. Let f(z) be a transcendental meromorphic function and A(z)±C(z) 6≡ 0, then

2f3(z) + (A(z) − 2)f(z) + C(z) and 1 − f2(z) are mutually prime polynomials in f(z), where

A(z), C(z) are non-zero small functions with respect to f(z).

Proof. Since A(z), C(z) are non-zero small functions with respect to f(z) and A(z)±C(z) 6≡ 0,

then A2(z) − C2(z) 6≡ 0, T (r,A2(z) − C2(z)) = S(r, f). There exist polynomials of f(z),

U(z, f) = A(z)f(z)− C(z) and V (z, f) = 2A(z)f2(z)− 2C(z)f(z) +A2(z) such that

U(z, f)(2f3(z) + (A(z)− 2)f(z) + C(z)) + V (z, f)(1− f2(z)) = A2(z)− C2(z).

By Lemma 2.7, we see that 2f3(z) + (A(z)− 2)f(z) +C(z) and 1− f2(z) are mutually prime.

Lemma 2.10. (See [15, Theorem 1.51]) Suppose that f1(z), f2(z), . . . , fn(z)(n ≥ 2) are mero-

morphic functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following con-

ditions,

(1)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;

(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj(z)) = o(T (r, egh(z)−gk(z)))(r → ∞, r 6∈ E), where

E ⊂ [1,∞) is finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.11. Suppose that f(z) is a transcendental meromorphic solution of finite order of

the difference equation

f(z + 1) + f(z − 1) =
δA(z)

1− δf(z)
, (2.1)

where δ = ±1, A(z) is a non-constant small function with respect to f(z), then

(i) λ
(

1
f

)
= λ(f) = σ(f);

(ii) f(z) has at most one non-zero finite Borel exceptional value.

Proof. (i) Since f(z) is a finite order transcendental meromorphic solution of the equation

(2.1), then we have

P (z, f) := δf(z)(f(z + 1) + f(z − 1))− (f(z + 1) + f(z − 1)) + δA(z) ≡ 0. (2.2)

By (2.2), we obtain

P (z, 0) = δA(z) 6≡ 0. (2.3)

It follows from (2.3) and Lemma 2.1 that

m

(
r,

1

f

)
= S(r, f),

outside of a finite exceptional set of logarithmic measure. Then

N

(
r,

1

f

)
= T (r, f) + S(r, f),
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that is, λ(f) = σ(f).

Next, we will prove λ
(

1
f

)
= σ(f). It follows from (2.1) that

δf(z)(f(z + 1) + f(z − 1)) = f(z + 1) + f(z − 1)− δA(z). (2.4)

Set σ(f) = σ <∞, by Lemma 2.2, we have

m(r, f(z + 1) + f(z − 1)) = O(rσ−1+ε) + S(r, f), (2.5)

possibly outside of an exceptional set of finite logarithmic measure. By (2.1) and Lemma 2.3,

we obtain

T (r, f(z + 1) + f(z − 1)) = T

(
r,

δA(z)

1− δf(z)

)
= T (r, f) + S(r, f). (2.6)

Since λ
(

1
f

)
≤ σ(f) <∞, it follows from (2.5), (2.6) and Lemma 2.6 that

T (r, f) +O(rσ−1+ε) + S(r, f) = N(r, f(z + 1) + f(z − 1))

≤ 2N(r, f) +O(rλ(
1
f )−1+ε) +O(log r),

(2.7)

then λ
(

1
f

)
= σ(f).

(ii) By (i), we see that 0, ∞ are not the Borel exceptional values of f(z). Suppose that f(z)

has two distinct finite Borel exceptional values a(6= 0) and b(6= 0, a).

Set

g(z) =
f(z)− a
f(z)− b

. (2.8)

Then

σ(g) = σ(f), λ(g) = λ(f − a) < σ(g), λ

(
1

g

)
= λ(f − b) < σ(g).

That is, 0 and ∞ are the Borel exceptional values of g(z). By [15, Theorem 2.11], we see that

g(z) is of regular growth, then g(z) can be rewritten as

g(z) = P (z)edz
σ

, (2.9)

where d(6= 0) is a constant, σ(g) = σ(≥ 1) is a positive integer, P (z) is a meromorphic function

with σ(P ) < σ(g) = σ. By (2.8) and (2.9), we have

f(z) = b+
b− a

g(z)− 1
= b+

b− a
P (z)edzσ − 1

(2.10)

and

f(z + 1) = b+
b− a

P (z + 1)ed(z+1)σ − 1
= b+

b− a
P (z + 1)P+1(z)edzσ − 1

,

f(z − 1) = b+
b− a

P (z − 1)ed(z−1)σ − 1
= b+

b− a
P (z − 1)P−1(z)edzσ − 1

,

(2.11)

where

P+1(z) = exp

{
d

σ∑
i=1

(
σ

i

)
zσ−i

}
, P−1(z) = exp

{
d

σ∑
i=1

(−1)i
(
σ

i

)
zσ−i

}
.

Substituting (2.10) and (2.11) into (2.1) yields

C1(z)e3dzσ + C2(z)e2dzσ + C3(z)edz
σ

+ C4(z) = 0, (2.12)
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where

C1(z) = [δA(z)− 2b(1− δb)]P (z)P (z + 1)P+1(z)P (z − 1)P−1(z);

C2(z) = [(a+ b)(1− δb)− δA(z)]P (z)[P (z + 1)P+1(z) + P (z − 1)P−1(z)]

+[2b(1− δa)− δA(z)]P (z + 1)P+1(z)P (z − 1)P−1(z);

C3(z) = [δA(z)− (a+ b)(1− δa)][P (z + 1)P+1(z) + P (z − 1)P−1(z)]

+[δA(z)− 2a(1− δb)]P (z);

C4(z) = 2a(1− δa)− δA(z).

(2.13)

It follows from (2.13) and Lemma 2.10 that

C1(z) ≡ C2(z) ≡ C3(z) ≡ C4(z) ≡ 0.

Since P (z)P (z + 1)P+1(z)P (z − 1)P−1(z) 6≡ 0 and C1(z) ≡ C4(z) ≡ 0, we obtain

δA(z) ≡ 2b(1− δb) and δA(z) ≡ 2a(1− δa). (2.14)

Note that A(z) is a non-constant function, which shows that (2.14) is a contradiction.

3 Proof of Theorems

Proof of Theorem 1.1

Suppose that f(z) = P (z)
Q(z) is a rational solution of (1.6). Then (1.6) can be rewritten as[
P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
=
m(z)

n(z)
· P (z)

Q(z)
+ C (3.1)

or

n(z)[Q2(z)− P 2(z)][P (z + 1)Q(z − 1) + P (z − 1)Q(z + 1)]

= m(z)P (z)Q(z)Q(z + 1)Q(z − 1) + Cn(z)Q2(z)Q(z + 1)Q(z − 1).
(3.2)

(i) Suppose that m > n. If p > q, (3.2) yields
deg(n(z)[Q2(z)− P 2(z)][P (z + 1)Q(z − 1) + P (z − 1)Q(z + 1)]) = n+ 3p+ q,

deg(m(z)P (z)Q(z)Q(z + 1)Q(z − 1)) = m+ 3q + p,

deg(Cn(z)Q2(z)Q(z + 1)Q(z − 1)) = n+ 4q.

(3.3)

By n+ 3p+ q > n+ 4q and m+ 3q + p > n+ 4q, then we must have n+ 3p+ q = m+ 3q + p,

that is p− q = m−n
2 , m− n must be even.

If p = q, then P (z)
Q(z) → B, P (z+1)

Q(z+1) → B, P (z−1)
Q(z−1) → B as z → ∞, where B is a nonzero

constant, while m(z)
n(z) →∞ as z →∞. If B = 1 or B = −1, then[

P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 0,

m(z)

n(z)
· P (z)

Q(z)
+ C →∞ as z →∞.

If B 6= ±1, then[
P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 2B(1−B2),

m(z)

n(z)
· P (z)

Q(z)
+ C →∞ as z →∞.

These show that (3.1) is a contradiction.

If p < q, (3.2) yields
deg(n(z)[Q2(z)− P 2(z)][P (z + 1)Q(z − 1) + P (z − 1)Q(z + 1)]) = n+ 3q + p,

deg(m(z)P (z)Q(z)Q(z + 1)Q(z − 1)) = m+ 3q + p,

deg(Cn(z)Q2(z)Q(z + 1)Q(z − 1)) = n+ 4q.

(3.4)
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By m+ 3q + p > n+ 3q + p and n+ 4q > n+ 3q + p, then we must have m+ 3q + p = n+ 4q,

that is q − p = m− n ≥ 1.

(ii) Suppose that m = n. If p > q, by (3.3), we see that n+ 3p+ q > m+ 3q + p > n+ 4q.

This shows that there is only one term in (3.2) which has the highest degree, a contradiction.

If p = q, then P (z)
Q(z) → B, P (z+1)

Q(z+1) → B, P (z−1)
Q(z−1) → B as z → ∞, where B is a nonzero

constant, while m(z)
n(z) → A as z →∞, where A is a nonzero constant. If B = 1 or B = −1, then[

P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 0,

m(z)

n(z)
· P (z)

Q(z)
+ C → AB + C as z →∞.

So we have C ±A = 0. If B 6= ±1, then[
P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 2B(1−B2),

m(z)

n(z)
· P (z)

Q(z)
+C → AB+C as z →∞.

So we have C = B[2(1−B2)−A].

If p < q, by (3.4), we see that n+ 4q > n+ 3q+ p = m+ 3q+ p. This also shows that there

is only one term in (3.2) which has the highest degree, a contradiction.

(iii) Suppose that m < n. If p > q, by (3.3), we see that n+3p+q > m+3q+p, n+3p+q >

n+ 4q, that is, there is only one term in (3.2) which has the highest degree, a contradiction.

If p = q, then P (z)
Q(z) → B, P (z+1)

Q(z+1) → B, P (z−1)
Q(z−1) → B as z → ∞, where B is a nonzero

constant, while m(z)
n(z) → 0 as z →∞. If B = 1 or B = −1, then[

P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 0,

m(z)

n(z)
· P (z)

Q(z)
+ C → C as z →∞.

So we have C = 0, a contradiction. If B 6= ±1, then[
P (z + 1)

Q(z + 1)
+
P (z − 1)

Q(z − 1)

] [
1− P 2(z)

Q2(z)

]
→ 2B(1−B2),

m(z)

n(z)
· P (z)

Q(z)
+ C → C as z →∞.

So we have C = 2B(1−B2).

If p < q, by (3.4), we see that n+ 4q > n+ 3q + p > m+ 3q + p. That is, there is only one

term in (3.2) which has the highest degree, a contradiction.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2

In what follows, we consider two cases: A(z)± C(z) 6≡ 0 and A(z)± C(z) ≡ 0.

Case 1, A(z)± C(z) 6≡ 0.

(i) Using the same method as in the proof of Lemma 2.11 (i), we can obtain that λ
(

1
f

)
=

λ(f) = σ(f).

(ii) First, we will prove λ

(
1

∆f(z)
f(z)

)
= σ(f). By equation (1.7), Lemmas 2.3, 2.5 and 2.8, we

have

3T (r, f(z)) = T

(
r,
A(z)f(z) + C(z)

f(z)(1− f2(z))

)
+ S(r, f)

= T

(
r,
f(z + 1) + f(z − 1)

f(z)

)
+ S(r, f)

≤ T

(
r,
f(z + 1)

f(z)

)
+ T

(
r,

f(z)

f(z − 1)

)
+ S(r, f)

= 2T

(
r,
f(z + 1)

f(z)

)
+ S

(
r,
f(z + 1)

f(z)

)
+ S(r, f)

≤ 2T

(
r,
f(z + 1)

f(z)

)
+ S(r, f)

= 2T

(
r,

∆f(z)

f(z)

)
+ S(r, f),
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that is,
3

2
T (r, f(z)) ≤ T

(
r,

∆f(z)

f(z)

)
+ S(r, w). (3.5)

It follows from (3.5) and Lemma 2.4 that

N

(
r,

∆f(z)

f(z)

)
= T

(
r,

∆f(z)

f(z)

)
−m

(
r,

∆f(z)

f(z)

)
≥ 3

2
T (r, f(z)) + S(r, f).

Thus, λ

(
1

∆f(z)
f(z)

)
= σ(f).

Next, we will prove λ
(

1
∆f(z)

)
= σ(f). By equation (1.7),

∆f(z)−∆f(z − 1) = f(z + 1) + f(z − 1)− 2f(z)

=
A(z)f(z) + C(z)

1− f2(z)
− 2f(z)

=
2f3(z) + (A(z)− 2)f(z) + C(z)

1− f2(z)
.

(3.6)

From (3.6), Lemmas 2.3, 2.5 and 2.9, we have

3T (r, f(z)) = T

(
r,

2f3(z) + (A(z)− 2)f(z) + C(z)

1− f2(z)

)
+ S(r, f)

= T (r,∆f(z)−∆f(z − 1)) + S(r, f)

≤ 2T (r,∆f(z)) + S(r,∆f(z)) + S(r, f)

≤ 2T (r,∆f(z)) + S(r, f),

that is,
3

2
T (r, f(z)) ≤ T (r,∆f(z)) + S(r, f). (3.7)

It follows from (3.7) and Lemma 2.4 that

N(r,∆f(z)) = T (r,∆f(z))−m(r,∆f(z))

≥ T (r,∆f(z)−
(
m

(
r,

∆f(z)

f(z)

)
+m(r, f(z))

)
≥ 3

2
T (r, f(z))− T (r, f(z)) + S(r, f)

=
1

2
T (r, f(z)) + S(r, f).

Hence, λ
(

1
∆f(z)

)
= σ(f).

Furthermore, we will prove λ
(

1
∆2f(z)

)
= σ(f). By (3.6), we have

∆2f(z − 1) = ∆f(z)−∆f(z − 1) =
2f3(z) + (A(z)− 2)f(z) + C(z)

1− f2(z)
. (3.8)

From (3.8), Lemmas 2.3, 2.5 and 2.9, we have

3T (r, f(z)) = T

(
r,

2f3(z) + (A(z)− 2)f(z) + C(z)

1− f2(z)

)
+ S(r, f)

= T (r,∆2f(z − 1)) + S(r, f)

= T (r,∆2f(z)) + S(r, f).

(3.9)
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It follows from (3.9) and Lemma 2.4 that

N(r,∆2f(z)) = T (r,∆2f(z))−m(r,∆2f(z))

≥ 3T (r, f(z))−
(
m

(
r,

∆f(z)

f(z)

)
+m(r, f(z))

)
≥ 3T (r, f(z))− T (r, f(z)) + S(r, f)

= 2T (r, f(z)) + S(r, f).

Thus, λ
(

1
∆2f(z)

)
= σ(f).

Finally, we will prove λ

(
1

∆2f(z)
f(z)

)
= σ(f). It follows from (3.9) and Lemma 2.4 that

N

(
r,

∆2f

f

)
= T

(
r,

∆2f

f

)
−m

(
r,

∆2f

f

)
≥ T (r,∆2f(z))− T (r, f(z)) + S(r, f)

= 3T (r, f(z))− T (r, f(z)) + S(r, f)

= 2T (r, f(z)) + S(r, f).

Then, λ

(
1

∆2f(z)
f(z)

)
= σ(f).

(iii) Suppose that f(z) is a finite order transcendental meromorphic solution of equation

(1.7). Set g(z) = f(z) − z. Then g(z) is a transcendental meromorphic function with σ(g) =

σ(f) <∞ and τ(f) = λ(g). Substituting f(z) = g(z) + z into (1.7) yields

P (z, g) := [g(z + 1) + g(z − 1) + 2z][(g(z) + z)2 − 1] +A(z)g(z) + zA(z) + C(z) ≡ 0. (3.10)

Since P (z, 0) = 2z(z2 − 1) + zA(z) + C(z) 6≡ 0, it follows from (3.10) and Lemma 2.1 that

N

(
r,

1

g

)
= T (r, g) + S(r, g) = T (r, f) + S(r, f).

Then, τ(f) = λ(g) = σ(g) = σ(f).

Case 2, A(z)± C(z) ≡ 0. Rewriting equation (1.7) as

f(z + 1) + f(z − 1) =
δA(z)

1− δf(z)
, (3.11)

where δ = ±1.

By Lemma 2.11, we see that (i) and (iv) hold. Using the same method as in the proof of

Case 1 (ii) and (iii), we can also obtain (ii) and (iii). If 2z(1−δz)−δA(z) 6≡ 0, then τ(f) = σ(f).

This completes the proof of Theorem 1.2.
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Abstract

In the paper, the authors establish some new explicit formulas and integral representations
of the Catalan numbers and a class of parametric integrals in terms of the k-gamma and k-beta
functions.

2010 Mathematics Subject Classification: Primary 26A42; Secondary 11B75, 11B83, 26A06,
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Key words and phrases: explicit formula; integral representation; Catalan number; para-
metric integral; k-gamma function; k-beta function.

1 Introduction and main results

The Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers that occur in various
counting problems in combinatorial mathematics. The nth Catalan number can be expressed in
terms of the central binomial coefficients

(
2n
n

)
by

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
=

4nΓ
(
n+ 1

2

)
√
π Γ(n+ 2)

, (1)

where Γ(x) =
∫∞

0
tx−1e−t d t for x > 0 is the classical Euler gamma function, or say, the Euler

integral of the second kind.
The Catalan numbers Cn were described in the 18th century by Leonhard Euler and are named

after the Belgian mathematician Eugéne Charles Catalan. In 1988, it came to light that the
Catalan numbers Cn had been used in China by the Mongolian mathematician Ming Antu by
1730, see [11, 12, 14, 16, 17, 18, 19, 20, 35]. In recent years, the Catalan numbers Cn has been
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analytically generalized and studied in [15, 21, 23, 25, 26, 27, 28, 30, 29, 31, 33, 36] and closely-
related references therein. For more information on the Catalan numbers Cn, please refer to the
monographs [2, 3, 8, 9, 10, 32, 34] and closely-related references therein.

It is common knowledge [1, p. 4] that the beta function, or say, the Euler integral of the first kind

B(x, y) can be defined by B(x, y) =
∫ 1

0
tx−1(1−t)y−1 d t and satisfies B(x, y) = Γ(x)Γ(y)

Γ(x+y) for x, y > 0.

The rising factorial, denoted by (x)n, is defined [13, p. 13] by (x)n = x(x+1) · · · (x+n−1) = Γ(x+n)
Γ(x)

which is frequently called the Pochhammer symbol in mathematics.
Diaz and Pariguan [5, p. 180] introduced the Pochhammer k-symbol as

(x)n,k = x(x+ k)(x+ 2k) · · · [x+ (n− 1)k].

It is clear that (x)n,1 = (x)n.
Diaz et al. [4, 5, 6] introduced the k-gamma and k-beta functions and proved a number of their

properties. They also studied the k-zeta function and the k-hypergeometric functions based on the
Pochhammer k-symbols. The k-gamma function is defined in [5, p. 180] by

Γk(x) = lim
n→∞

n!kn(kn)x/k−1

(x)n,α
, k > 0.

It was showed [5, p. 180] that the Mellin transform of the exponential function e−t
k/k is the k-gamma

function, that is,

Γk(x) =

∫ ∞
0

tx−1e−t
k/k d t.

It is easy to see that

Γ(x) = Γ1(x), Γk(x) = kx/k−1Γ

(
x

k

)
, Γk(x+ k) = xΓk(x). (2)

This gives rise to the k-beta function

Bk(x, y) =
1

k

∫ 1

0

tx/k−1(1− t)y/k−1 d t (3)

which satisfies

Bk(x, y) =
1

k
B

(
x

k
,
y

k

)
and Bk(x, y) =

Γk(x)Γk(y)

Γk(x+ y)
. (4)

The aim of this paper is to establish some new explicit formulas and integral representations of
the Catalan numbers Cn and parametric integrals

Iα,β;k(a) =

∫ a

0

x(α+1)k−1
(
a2k − x2k

)β
dx

for a, k > 0 and some α, β > −1 in terms of the k-gamma function Γk(x) and the k-beta function
Bk(x, y).

Our main results in this paper can be stated as the following theorems.

Theorem 1.1. For k > 0 and n ∈ N, we have

Cn = k3/2 4nΓk
(

2n+1
2 k

)
√
π Γk((n+ 2)k)

=
k21+2n(1−k)

π(n+ 1)

∫ 2

0

x(2n+1)k−1

√
22k − x2k

dx. (5)
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Theorem 1.2. For a, k > 0 and n ≥ 0, we have

In,1/2;k(a) =
k1/2
√
π

4
a(n+2)kΓk

(
n+1

2 k
)

Γk
(
n+4

2 k
) =

k1/2

2
a(n+2)kBk

(
n+ 1

2
k,

3

2
k

)
(6)

and

In,−1/2;k(a) =

√
π

k

ank

2

Γk
(
n+1

2 k
)

Γk
(
n+2

2 k
) =

ank

2
B

(
n+ 1

2
k,

1

2
k

)
. (7)

For a, k > 0 and α, β > −1, we have

Iα,β;k(a) =
aα+2βk+1

2
Bk

(
α+ 1

2
, (β + 1)k

)
. (8)

2 Proofs of main results

We are now in a position to prove our main results stated in Theorems 1.1 and 1.2.
From the second relation in (2), we have

Γk

(
2n+ 1

2
k

)
= k(2n+1)k/2k−1Γ

(
(2n+ 1)k

2k

)
= k(2n−1)/2Γ

(
n+

1

2

)
= k(2n−1)/2 (2n)!

√
π

4nn!
.

Accordingly, it follows that

Γk
(

2n+1
2 k

)
Γk((n+ 2)k)

=
k(2n−1)/2 (2n)!

√
π

4nn!

kn+1(n+ 1)!
= k−3/2 (2n)!

√
π

4nn!(n+ 1)!
= k−3/2

√
π Cn
4n

.

The explicit formulas in (5) thus follow.
By changing variables x = at1/2k for t ∈ [0, 1], we have

In,1/2;k(a) =

∫ a

0

(
at1/2k

)(n+1)k−1
[
a2k −

(
at1/2k

)2k]1/2 a
2k
t1/2k−1 d t

=
a(n+2)k

2k

∫ 1

0

t(n+1)k/2k−1(1− t)1/2+1−1 d t

=
a(n+2)k

2k

∫ 1

0

t(n+1)k/2k−1(1− t)3k/2k−1 d t =
a(n+2)k

2
Bk

(
n+ 1

2
k,

3

2
k

)
.

Utilizing the second relation in (4) gives

In,1/2;k(a) =
a(n+2)k

2

Γk
(
n+1

2 k
)
Γk
(

3
2k
)

Γk
(
n+4

2 k
) .

Further using

Γk

(
3

2
k

)
= k1/2Γ

(
3

2

)
=

√
kπ

2
and Γ

(
1

2

)
=
√
π ,

we obtain the formulas in (6).
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By the Leibniz rule for differentiation

d

d t

∫ h(t)

g(t)

F (x, t) dx = h′(t)F (h(t), t)− g′(t)F (g(t), t) +

∫ h(t)

g(t)

∂

∂t
F (x, t) dx

in [7, p. 615], differentiating with respect to a on both sides of (6) gives

I ′n,1/2;k(a) = ka2k−1

∫ a

0

x(n+1)k−1(
a2k − x2k

)1/2 dx =

√
kπ

4
(n+ 2)ka(n+2)k−1 Γk

(
n+1

2 k
)

Γk
( (n+4)k

2

) .
Therefore, it follows that

In,−1/2;k(a) =

√
kπ

4
(n+ 2)ank

Γk
(
n+1

2 k
)

Γk
(
n+4

2 k
) . (9)

The formulas in (7) are thus acquired.

Letting a = 2 and replacing n by 2n in (9) derive

k21+2n(1−k)

π(n+ 1)

∫ 2

0

x(2n+1)k−1

√
22k − x2k

dx = k3/2 4nΓk
(

2n+1
2 k

)
√
π Γk

(
(n+ 2)k

) = Cn.

The integral representation in (5) is thus proved.

By changing variables x = a sin1/k θ for θ ∈
[
0, π2

]
, we have

In,k(a) =

∫ π/2

0

(
a sin1/k θ

)(α+1)k−1(
a2k − a2k sin2 θ

)β a
k

sin1/k−1 θ cos θ d θ

=
a(α+2β+1)k

k

∫ π/2

0

sinα θ cos2β+1 θ d θ

=
a(α+2β+1)k

k

∫ π/2

0

sin2k(α+1)/2k−1 θ cos2k(β+1)/k−1 θ d θ =
a(α+2β+1)k

2
Bk

(
α+ 1

2
k, (β + 1)k

)
,

where we used in the last step the formula∫ π/2

0

sin2x/k−1 θ cos2y/k−1 θ d θ =
k

2
Bk(x, y), <(x),<(y) > 0,

which can be derived from using the change of the variable t = sin2 θ in (3) by

Bk(x, y) =
1

k

∫ π/2

0

(
sin2 θ

)x/k−1(
1− sin2 θ

)y/k−1
2 sin θ cos θ d θ

=
2

k

∫ π/2

0

sin2x/k−1 θ cos2y/k−1 θ d θ.

The proof of the formula (8) is thus complete.
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3 Remarks

Finally we give some remarks about connections between our main results and some know conclu-
sions.

Remark 3.1. When k = 1, the expression (5) becomes the last expression in (1).
Letting k = 1 in (6), we can deduce [22, Theorem 2.1].
Letting k = 1 in (7), we can obtain [22, Theorem 3.1].
Letting k = 1 in (8), we can recover [22, Theorem 5.1].
Letting k = 1, α = n, and β = 1

2 in (8), we recover [22, Remark 6.1].
Letting k = 1, α = 2n, and β = 1

2 in (8), we can obtain [22, Remark 6.2].
Let k = 1, α = n, and β = − 1

2 in (6), we can derive [22, Remark 6.3].

The Wallis ratio Wn = (2n)!
4n(n!)2 can also be expressed by

Wn =

√
k

π

Γk
(

2n+1
2 k

)
Γk((n+ 1)k)

for n ∈ N and k > 0, which is a generalization of [22, Remark 6.5].

Remark 3.2. This paper is a slightly revised version of the preprint [24].
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Abstract

The generalized von Neumann-Jordan constant C
(p)
NJ (B) and the James constant

J(B) for a quasi-Banach space were introduced in [7]. In this note, it is shown that

C
(p)
NJ (B) ≤ 2 for any quasi-Banach space B and C

(p)
NJ(B) < 2 if and only if B is uniformly

non-square. Along with relationship between J(B) and C
(p)
NJ(B), the criterion for the

uniformly smooth quasi-Banach space is also established.

2010 Mathematics Subject Classification: 46B20, 46E30

Key words and phrases: James constant, generalized von Neumann-Jordan constant,
uniform non-square

1 Introduction

Among various geometric constants of a Banach space B, the von Neumann-Jordan con-

stant CNJ(B) for a Banach space B introduced by Clarkson [2] as the smallest constant

C, for which the estimates

1

C
≤

‖x1 + x2‖
2 + ‖x1 − x2‖

2

2(‖x1‖
2 + ‖x2‖

2)
≤ C

hold for any x1, x2 ∈ B with (x1, x2) 6= (0, 0). Equivalently

CNJ(B) = sup

{

‖x1 + x2‖
2 + ‖x1 − x2‖

2

2(‖x1‖
2 + ‖x2‖

2)
: x1, x2 ∈ B with (x1, x2) 6= (0, 0)

}

.

∗Corresponding author

1
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This idea was further enhanced by many authors in [2, 4, 5, 8, 9].

The James constant J(B) of a Banach space B is defined by

J(B) = sup
{

min(‖x1 + x2‖, ‖x1 − x2‖) : x1, x2 ∈ SB

}

,

where SB is unit sphere.

In [3], the authors introduced the generalized von Neumann-Jordan constant C
(p)
NJ (B)

which is defined as

C
(p)
NJ(B) = sup

{

‖x1 + x2‖
p + ‖x1 − x2‖

p

2p−1(‖x1‖
p + ‖x2‖

p)
: x1, x2 ∈ B with (x1, x2) 6= (0, 0)

}

and obtained the relationship between C
(p)
NJ(B) and J(B).

This has an analog in the quasi-Banach space, that was considered in [7]. In this note,

It is shown that C
(p)
NJ (B) ≤ 2 for any quasi-Banach space B and C

(p)
NJ (B) < 2 if and only if

B is uniformly non-square. A relationship between J(B) and C
(p)
NJ (B) is established. We

also give the criterion for the uniformly smooth quasi-Banach space.

2 Preliminaries

Recall [1], that a quasi-norm on ‖·‖ on vector space B over a field K (R or C) is a mapping

B → [0,∞) with properties

• ‖x‖ = 0 ⇐⇒ x = 0.

• ‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ B.

• There exists a constant C ≥ 1 such that ∀x1, x2 ∈ B we have

‖x1 + x2‖ ≤ C(‖x1‖ + ‖x2‖).

Definition 2.1. The generalized von Neumann-Jordan constant C
(p)
NJ (B) for a quasi-

Banach space is defined by

C
(p)
NJ(B) = sup

{

‖x1 + x2‖
p + ‖x1 − x2‖

p

2p−1Cp(‖x1‖
p + ‖x2‖

p)
: x1, x2 ∈ B with (x1, x2) 6= (0, 0)

}

,

where 1 ≤ p < ∞.

The parametrized formula for the constant C
(p)
NJ(B) is given as

C
(p)
NJ (B) = sup

{

‖x1 + tx2‖
p + ‖x1 − tx2‖

p

Cp2p−1(1 + tp)
: x1, x2 ∈ SB, 0 ≤ t ≤ 1

}

,

By taking t = 1 and x1 = x2, we obtain the estimate

C
(p)
NJ(B) ≥

‖2x1‖
p

C2p(1 + 1)
≥

2p

C2p−1(1 + 1)
=

1

C
.

2
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Definition 2.2. In a quasi-Banach space B the James constant is defined as

J(B) = sup

{

1

C
min(‖x1 + x2‖, ‖x1 − x2‖) : x1, x2 ∈ SB

}

.

Definition 2.3. A quasi-Banach space B is said to be uniformly non-square if there exists

a positive number δ < 2 such that for any x1, x2 ∈ SB, we have

min

(∥

∥

∥

∥

x1 + x2

C

∥

∥

∥

∥

,

∥

∥

∥

∥

x1 + x2

C

∥

∥

∥

∥

)

≤ δ.

Remark 2.4. As in classical case, the quasi-Banach space B is uniformly non-square if

and only if J(B) < 2

Definition 2.5. The modulus of uniform smoothness of a quasi-Banach space B is defined

as

ρB(t) = sup

{

‖x1 + tx2‖ + ‖x1 − tx2‖

2C
−

1

C
: x1, x2 ∈ SB, t ≥ 0

}

.

Definition 2.6. A quasi-Banach space B is said to be uniformly smooth if (ρB)′+(0) =

limt→0+
ρB(t)

t
= 0.

Definition 2.7. For any quasi-Banach space B and a real number p ∈ [0,∞), JB,p(t) is

defined by

JB,p(t) = sup

{(

‖x1 + tx2‖
p + ‖x1 − tx2‖

p

2Cp

)
1

p

: x1, x2 ∈ SB

}

.

3 Main results

Theorem 3.1. Let B be a non-trivial quasi-Banach space and p ∈ [1,∞). Then

JB,p(t) ≥ ρB(t) +
1

C
.

Proof. By using convexity of the function f(u) = up on (0,∞), one can easily obtained

(

‖x1 + tx2‖ + ‖x1 − tx2‖

2

)p

≤
‖x1 + tx2‖

p + ‖x1 − tx2‖
p

2
,

therefore
(

‖x1 + tx2‖ + ‖x1 − tx2‖

2C

)p

≤
‖x1 + tx2‖

p + ‖x1 − tx2‖
p

2Cp
,

which implies that
1

C
+ ρB(t) ≤ JB,p(t).

For p = 1, we have JB,1(t) = 1
C +ρB(t) and for p = 2, we have 2C2J2

B,2(t) = E(t,B), where

E(t,B) = sup
{

(‖x1 + tx2‖
2 + ‖x1 − tx2‖

2) : x1, x2 ∈ SB

}

.

This completes the proof.

3
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Theorem 3.2. For any quasi-Banach space B, we have

(a) JB,p(t) is a non-decreasing function.

(b) JB,p(t) is convex.

(c) JB,p(t) is continuous function.

(d)
JB,p(t)−1

t is a non-decreasing function.

Proof. We only prove (a) and remaining are analogous to it. Let g(t) = ‖x1 + tx2‖
p +

‖x1 − tx2‖
p be a convex and even function. Let 0 < t1 ≤ t2 and x1, x2 ∈ SB. Then we

have

‖x1 + t1x2‖
p + ‖x1 − t1x2‖

p = g(t1) = g

(

t2 + t1

2t2
t2 +

t2 − t1

2t2
(−t2)

)

≤
t2 + t1

2t2
g(t2) +

t2 − t1

2t2
g(t2)

= g(t2) = ‖x1 + t2x2‖
p + ‖x1 − t2x2‖

p

≤ 2CpJ
p
B,p(t2),

which implies that
‖x1 + t1x2‖

p + ‖x1 − t1x2‖
p

2Cp
≤ J

p
B,p(t2).

Hence JB,p(t1) ≤ JB,p(t2).

Theorem 3.3. For any quasi-Banach space B and 1 ≤ p < ∞, the generalized von

Neumann-Jordan constant C
(p)
NJ (B) satisfy the inequality C

(p)
NJ (B) ≤ 2.

Proof. As we have already defined

C
(p)
NJ(B) = sup

{

‖x1 + tx2‖
p + ‖x1 − tx2‖

p

Cp2p−1(1 + tp)
: x1, x2 ∈ SB with (x1, x2) 6= (0, 0)

}

,

where 0 ≤ t ≤ 1.

By using definition of a quasi-Banach space, we have the following inequality

‖x1 + tx2‖
p + ‖x1 − tx2‖

p ≤ Cp(‖x1‖ + t‖x2‖)
p + Cp(‖x1‖+ t‖x2‖)

p

= 2Cp(‖x1‖ + t‖x2‖)
p

= 2Cp(1 + t)p,

therefore
‖x1 + tx2‖

p + ‖x1 − tx2‖
p

Cp2p−1(1 + tp)
≤

2(1 + t)p

2p−1(1 + tp)
. (3.1)

The function f(u) = up is convex, which leads

(1 + t)p =

(

2 ·
1 + t

2

)p

≤ 2p

(

1 + tp

2

)

= 2p−1(1 + tp).

Using above inequality (3.1) become

‖x1 + tx2‖
p + ‖x1 − tx2‖

p

Cp2p−1(1 + tp)
≤

1

2p−2
2p−1 = 2.

4
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Hence

C
(p)
NJ (B) = sup

{

‖x1 + tx2‖
p + ‖x1 − tx2‖

p

Cp2p−1(1 + tp)
: x1, x2 ∈ SB, 0 ≤ t ≤ 1

}

≤ 2.

This completes the proof.

Next theorem presents the relationship between C
(p)
NJ (B) and J(B).

Theorem 3.4. Let B be a non-trivial qausi-Banach space and p ∈ (1,∞). Then the

following inequality hold:

J(B) ≤ 2
p−1

p
p

√

C
(p)
NJ(B).

Proof. For any x1, x2 ∈ SB, we have

2(min{‖x1 + x2‖, ‖x1 − x2‖})
p ≤ 2

(

‖x1 + x2‖ + ‖x1 − x2‖

2

)p

≤ 2

(

‖x1 + x2‖
p + ‖x1 − x2‖

p

2

)

=
‖x1 + x2‖

p + ‖x1 − x2‖
p

Cp2p−1(‖x1‖
p + ‖x2‖

p)
.Cp2p−1(‖x1‖

p + ‖x2‖
p)

≤ CpC
(p)
NJ(B)2p−1(‖x1‖

p + ‖x2‖
p)

= 2 · 2p−1CpC
(p)
NJ (B),

({min{‖x1 + x2‖, ‖x1 − x2‖})
p ≤ 2p−1CpC

(p)
NJ(B),

1

C
{min{‖x1 + x2‖, ‖x1 − x2‖)} ≤ 2

p−1

p
p

√

C
(p)
NJ(B).

Taking supremum both side,

sup

(

1

C
min{‖x1 + x2‖, ‖x1 − x2‖}

)

≤ 2
p−1

p
p

√

C
(p)
NJ(B).

Therefore

J(B) ≤ 2
p−1

p
p

√

C
(p)
NJ(B).

This completes the proof.

Theorem 3.5. For p ∈ (1,∞), a quasi-Banach space B is uniformly non-square if and

only if there exists δ ∈ (0, 1) such that for any x1, x2 ∈ B, we have

∥

∥

∥

∥

x1 + x2

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x1 − x2

2C

∥

∥

∥

∥

p

≤ (2 − δ)
‖x1‖

p + ‖x2‖
p

2
. (3.2)

5
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Proof. Let B be an uniformly non-square quasi-Banach space and on contrary assume that

(3.2) is not hold. Therefore for every positive integer n, there exists xn and yn in B such

that
∥

∥

∥

∥

xn + yn

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

xn − yn

2C

∥

∥

∥

∥

p

>

(

2 −
1

n

)

‖xn‖
p + ‖yn‖

p

2
.

Let xn ∈ SB and yn ∈ BB = {x ∈ B : ‖x‖ ≤ 1} for all n. With out loss of generality

we assume that {‖yn‖} converges to some γ, where 0 ≤ γ ≤ 1 (by Bolzano-Wiestrass) we

have
(

2 −
1

n

)

1 + ‖yn‖
p

2
<

∥

∥

∥

∥

xn + yn

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

xn − yn

2C

∥

∥

∥

∥

p

≤ 2

(

C(‖xn‖
p + ‖yn‖

p)

2C

)p

= 2

(

1 + ‖yn‖

2

)p

≤ 2

(

1 + ‖yn‖
p

2

)

,

letting n → ∞, we obtain

(1 + γ)p

1 + γp
= 2p−1 =⇒ γ = 1,

therefore
∥

∥

∥

∥

xn + yn

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

xn − yn

2C

∥

∥

∥

∥

p

−→ 2,

which implies that
∥

∥

∥

∥

xn + yn

2C

∥

∥

∥

∥

p

−→ 1 and

∥

∥

∥

∥

xn − yn

2C

∥

∥

∥

∥

p

−→ 1.

This contradiction to the fact that B is uniformly non-square.

Conversely, suppose that
∥

∥

∥

∥

x1 + x2

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x1 − x2

2C

∥

∥

∥

∥

p

≤ (2 − δ)
‖x1‖

p + ‖x2‖
p

2
.

In particularly, we have
∥

∥

∥

∥

x1 + x2

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x1 − x2

2C

∥

∥

∥

∥

p

≤ (2− δ),

which implies that

min

{
∥

∥

∥

∥

x1 + x2

2C

∥

∥

∥

∥

p

,

∥

∥

∥

∥

x1 − x2

2C

∥

∥

∥

∥

p}

≤

(

1 −
δ

2

)
1

p

.

Hence B is uniformly non-square. This completes the proof.

Theorem 3.6. For p ∈ (1,∞), a quasi-Banach space B is uniformly non-square if and

only if C
(p)
NJ(B) < 2.

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1048 Waqas Nazeer et al 1043-1052



Proof. From the Theorem 3.5, B is uniformly non-square if and only if there exists 0 <

δ < 1 such that
∥

∥

∥

∥

x1 + x2

2C

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x1 − x2

2C

∥

∥

∥

∥

p

≤ (2 − δ)
‖x1‖

p + ‖x2‖
p

2
.

Therefore
‖x1 + x2‖

p + ‖x1 − x2‖
p

Cp2p−1(‖x1‖
p + ‖x2‖

p)
≤ 2, ∀(x1, x2) 6= (0, 0).

Hence C
(p)
NJ(B) < 2.

Theorem 3.7. For any quasi-Banach space B and p ∈ (1,∞), the inequalities C
(p)
NJ (B) < 2

and J(B) < 2 are equivalent.

Proof. From the Remark 2.4, J(B) < 2 if and only if B is uniformly non-square. Therefore

by using Theorem 3.6, we have C
(p)
NJ (B) < 2.

Suppose that C
(p)
NJ (B) < 2. Then by using the Theorem 3.4, we have

J(B) < 2
p−1

p 2
1

p = 2.

This completes the proof.

Theorem 3.8. Let B be a quasi-Banach space, p ∈ [1,∞) and t > 0. Then the following

conditions are equivalent:

(a) JB,p(t) < 1 + t.

(b) J(t, x1) < 1 + t.

Proof. (a) ⇒ (b) Suppose on contrary that J(t, x1) ≥ 1 + t. Then it is enough to take

J(t, x1) = 1 + t.

Since

J(t,B) = sup

{

1

C
min(‖x1 + x2‖, ‖x1 − x2‖) : x1, x2 ∈ SB

}

,

by using the definition of supremum, for any ε > 0, there exist x1, x2 ∈ SB such that

‖x1 + tx2‖ + ‖x1 − tx2‖

2
≥ min{‖x1 + tx2‖, ‖x1 − tx2‖}

≥ c(1 + t − ε).

(3.3)

Applying convexity of the function f(u) = up, we get

((

‖x1 + tx2‖+ ‖x1 − tx2‖

2

)p) 1

p

≤

(

‖x1 + tx2‖
p + ‖x1 − tx2‖

2

p) 1

p

,

therefore from (3.3)

(

‖x1 + tx2‖
p + ‖x1 − tx2‖

2

p) 1

p

≥ min{‖x1 + tx2‖, ‖x1 − tx2‖}

≥ c(1 + t − ε).

7
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Since ε is any arbitrary so

JB,p(t) ≥ 1 + t,

which leads a contradiction.

(b) ⇒ (a) Suppose on contrary that JB,p(t) ≥ 1 + t. Then it is enough to take

JB,p(t) = 1 + t. Again using the definition of supremum, for any ε > 0 there exists

x1, x2 ∈ SB such that

‖x1 + tx2‖
p + ‖x1 − tx2‖

p ≥ 2Cp(1 + t − ε)p,

also using

‖x1 + tx2‖
p + ‖x1 − tx2‖

p ≤ 2Cp(1 + t)p,

2Cp(1 + t)p ≥ ‖x1 + tx2‖
p + ‖x1 − tx2‖

p ≥ 2Cp(1 + t − ε)p

since ε is arbitrary, so

‖x1 + tx2‖
p + ‖x1 − tx2‖

p = 2Cp(1 + t)p,

which implies that

‖x1 + tx2‖ = ‖x1 − tx2‖ = C(1 + t).

So using the definition of J(t, x1), we get J(t, x1) ≥ 1+t, which lead to a contradiction.

Corollary 3.9. Let B be a quasi-Banach space, p ∈ [1,∞) and t > 0. Then the following

conditions are equivalent:

(a) B is uniformly non-square.

(b) JB,p(t) < 1 + t.

(c) J(t, x1) < 1 + t.

Theorem 3.10. A quasi-Banach apace B is uniformly smooth if

lim
t→0

(

JB,p(t) −
1
C

t

)

= 0.

Proof. Suppose that

lim
t→0

(

JB,p(t) −
1
C

t

)

= 0.

From Theorem 3.1 we know that

JB,p(t) ≥ ρB(t) +
1

C
,

which implies that

JB,p(t) −
1

C
≥ ρB(t),

dividing both side by t and applying the limt→0

lim
t→0

ρB(t)

t
≤ lim

t→0

(

JB,p(t) −
1
C

t

)

= 0.

So by definition B is uniformly smooth.

8
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4 Quasi-Banach fixed point theorem (Contraction theorem)

Definition 4.1. ([6]) Let B = (B, d̃) be a quasi-metric space. A mapping T : B → T is

called a contraction on B if there exists a positive real number α < 1 such that for all

x1, x2 ∈ B
d̃(Tx1, Tx2) ≤ αd̃(x1, x2).

Theorem 4.2. Consider a quasi-metric space B = (B, d̃), where B 6= ∅. Suppose B is

complete and T : B → T be a contraction on B and suppose that Cnβm → 0, where β = α
C .

Then T has exactly one fixed point.

Proof. Let any x0 ∈ B and define the iterative sequence by

x0, x1 = Tx0, x2 = T 2x0, x3 = T 3x0, · · · , xn = T nx0, · · · .

First, we show that this iterative sequence (xn) is cauchy. For this we take

d̃(xm+1, xm) = d̃(Txm, Txm−1)

≤ αd̃(xm, xm−1)

≤ αd̃(Txm−1, Txm−2)

≤ α2d̃(xm−1, xm−2)

· · · · · ·

≤ αmd̃(x1, x0).

Suppose that n > m and using the definition of quasi-metric

d̃(xm, xn) ≤ C
(

d̃(xm, xn−1) + d̃(xn−1, xn)
)

≤ C2
(

d̃(xm, xn−2) + d̃(xn−2, xn−1)
)

+ Cd̃(xn−1, xn)

≤ C3
(

d̃(xm, xn−3) + d̃(xn−3, xn−2)
)

+ C2d̃(xn−2, xn−1) + Cd̃(xn−1, xn)

· · · · · ·

≤ Cn−m d̃(xm, xm+1) + · · ·+ Cd̃(xn−1, xn)

≤ Cn−m
(

d̃(xm, xm+1) + · · ·+ d̃(xn−1, xn)
)

≤ Cn−m
[

αm + αm+1 + · · ·+ αn−1
]

d̃(x1, x0)

≤ Cn−m αm

1− α
d̃(x1, x0)

= Cn
( α

C

)m 1

1 − α
d̃(x1, x0).

Since

d̃(xm, xn) ≤ Cn
( α

C

)m 1

1− α
d̃(x1, x0)

from our supposition d̃(xm, xn) → 0 as m → ∞. Since B is complete so xm → x ∈ B.

Next we show that this limit x is the fixed point of T . For this using the definition of

quasi-metric we have

d̃(x, Tx) ≤ C(d̃(x, xm) + d̃(xm, Tx))

≤ C(d̃(x, xm) + αd̃(xm−1, x))

9
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because (xm) converges to x, therefore we have d̃(x, Tx) = 0. This implies Tx = x. Now

we prove that x is the unique fixed point of T . For this let Tx = x and Ty = y, therefore

we have

d̃(x, y) = d̃(Tx, Ty) ≤ αd̃(x, y),

which implies d̃(x, y) = 0 because α < 1. Hence x = y. This completes the proof.

5 Conclusion

Generalized von Neumann-Jordan and James constants studied by many researcher for

Banach space for example in [2, 4, 5, 8, 9] and the references therein. In this paper,

we introduce the generalized von Neumann-Jordan constant and the James constant for a

quasi-Banach space. Relationships between James constant and generalized von Neumann-

Jordan constant are also presented.
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Abstract

In this paper, we study the shared values and uniqueness of meromorphic func-
tions on annulus, and obtain one theorem about meromorphic functions on annulus
sharing some distinct values, and this result is an improvement of some theorems
given by Cao, Yi [4, 5], Kondratyuk and Laine[9].
Key words: Meromorphic function, Nevanlinna theory, the annulus.
Mathematical Subject Classification (2010): 30D30, 30D35.

1 Introduction and main resut

In 1929, R.Nevanlinna(see [14]) first investigated the uniqueness of meromorphic func-
tions in the whole complex plane and obtained the well-known theorem—5 IM theorem
of two meromorphic functions sharing five distinct values.

After his theorem, there are vast references on the uniqueness of meromorphic func-
tions sharing values and sets in the whole complex plane(see [2, 16, 18]). In recent,
the uniqueness problem of meromorphic functions with shared values in some angu-
lar domain attracted many investigations (see [3, 11, 19, 20]). Thus, we always as-
sumed that the reader is familiar with the notations of the Nevanlinna theory such as
T (r, f),m(r, f), N(r, f) and so on (see [6, 16, 17]).

We use C to denote the open complex plane, C to denote the extended complex plane,
and X to denote the subset of C. Let S be a set of distinct elements in Ĉ and X ⊆ C.

∗This work was supported by the NSF of China(11561033, 11201395), the Natural Science Foundation
of Jiangxi Province (20151BAB201008), and the Foundation of Education Department of Jiangxi of
China (GJJ150902, GJJ151222).
†Corresponding author.
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Define
EX(S, f) =

⋃
a∈S
{z ∈ X|fa(z) = 0, counting multiplicities},

EX(S, f) =
⋃
a∈S
{z ∈ X|fa(z) = 0, ignoring multiplicities},

where fa(z) = f(z)− a if a ∈ C and f∞(z) = 1/f(z).
For a ∈ C, we say that two meromorphic functions f and g share the value a CM

(IM) in X (or C), if f(z)− a and g(z)− a have the same zeros with the same multiplic-
ities(ignoring multiplicities) in X (or C). In addition, we also use f = a 
 g = a in X
(or C) to express that f and g share the value a CM in X (or C), f = a⇐⇒ g = a in X
(or C) to express that f and g share the value a IM in X (or C), and f = a =⇒ g = a
in X (or C) to express that f = a implies g = a in X (or C).

As we know, the whole complex plane C and angular domain all can be regarded
as simply-connected regions, many results about the uniqueness of shared values and
sets in the complex plane and angular domain can also be regarded as the uniqueness of
meromorphic functions in simply-connected regions. Thus, it arises naturally an inter-
esting subject on the uniqueness for the meromorphic functions in the multiply connected
region?

The main purpose of this paper is to study the uniqueness of meromorphic functions
in doubly connected domains of complex plane C. From the Doubly Connected Mapping
Theorem [1], we can get that each doubly connected domain is conformally equivalent
to the annulus {z : r < |z| < R}, 0 ≤ r < R ≤ +∞. For two cases: r = 0, R = +∞
simultaneously and 0 < r < R < +∞, the latter case the homothety z 7→ z√

rR
reduces

the given domain to the annulus {z : 1
R0

< |z| < R0}, where R0 =
√

R
r . Thus, every

annulus is invariant with respect to the inversion z 7→ 1
z in two cases. The basic notions

of the Nevanlinna theory on annuli will be showed in the next section.
In recent, there have some results on the Nevannlina Theory of meromorphic functions

on the annulus (see [7, 8, 10, 12, 13, 15]). In 2005, Khrystiyanyn and Kondratyuk
[7, 8] proposed the Nevanlinna theory for meromorphic functions on annuli (see also [9]).
Lund and Ye [12] in 2009 studied functions meromorphic on the annuli with the form
{z : R1 < |z| < R2}, where R1 ≥ 0 and R2 ≤ ∞. However, there are few results about
the uniqueness of meromorphic functions on the annulus. In 2009 and 2011, Cao [4, 5]
investigated the uniqueness of meromorphic functions on annuli sharing some values and
some sets, and obtained an analog of Nevanlinna’s famous five-value theorem as follows:

Theorem 1.1 ([5, Thereom 3.2] or [4, Corollary 3.3]). Let f1 and f2 be two transcen-
dental or admissible meromorphic functions on the annulus A = {z : 1

R0
< |z| < R0},

where 1 < R0 ≤ +∞. Let aj (j = 1, 2, 3, 4, 5) be five distinct complex numbers in C. If
f1, f2 share aj IM for j = 1, 2, 3, 4, 5, then f1(z) ≡ f2(z).

Remark 1.1 For the case R0 = +∞, the assertion was proved by Kondratyuk and Laine
[9].

In this paper, we will focus on the uniqueness problem of meromorphic functions in
the field of complex analysis and obtain the main result below which improve Theorem
1.1.
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Theorem 1.2 Let f and g be two transcendental or admissible meromorphic functions
on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞, aj ∈ C(j = 1, 2, 3, 4) be

four distinct values. We assume that f and g share four distinct values aj(j = 1, 2, 3, 4)
IM on A and EA(S, f) ⊂ EA(S, g), where S = {b1, . . . , bm},m ≥ 1 and b1, . . . , bm ∈
Ĉ \ {a1, a2, a3, a4}. Then f and g share all values CM on A, thus it follows that either
f ≡ g or f is a Möbius transformation of g. Furthermore, if the number of the values in
S is odd, then f ≡ g.

Remark 1.2 The special case m = 1 of Theorem 1.2 immediately yields Theorem 1.1.
In fact, when m = 1, set S = {a5}. If f, g share a5 IM on A, which implies EA(S, f) ⊂
EA(S, g), then by Theorem 1.2, we can get f ≡ g.

2 Basic notions in the Nevanlinna theory on annuli

For a meromorphic function f on whole plane C, the classical notations of Nevanlinna
theory are denoted as follows

N(R, f) =

∫ R

0

n(t, f)− n(0, f)

t
dt+ n(0, f) logR,

m(R, f) =
1

2π

∫ 2π

0

log+ |f(Reiθ)|dθ, T (R, f) = N(R, f) +m(R, f),

where log+ x = max{log x, 0}, and n(t, f) is the counting function of poles of the function
f in {z : |z| ≤ t}.

Let f be a meromorphic function on the annulus A = {z : 1
R0

< |z| < R0}, where
1 < R < R0 ≤ +∞, the notations of the Nevanlinna theory on annuli will be introduced
as follows, let

N1(R, f) =

∫ 1

1
R

n1(t, f)

t
dt, N2(R, f) =

∫ R

1

n2(t, f)

t
dt,

m0(R, f) = m(R, f) +m(
1

R
, f), N0(R, f) = N1(R, f) +N2(R, f),

where n1(t, f) and n2(t, f) are the counting functions of poles of the function f in {z :
t < |z| ≤ 1} and {z : 1 < |z| ≤ t}, respectively. Similarly, for a ∈ C, we have

N0(r,
1

f − a
) = N1(R,

1

f − a
) +N2(R,

1

f − a
)

=

∫ 1

1
R

n1(t, 1
f−a )

t
dt+

∫ R

1

n2(t, 1
f−a )

t
dt

in which each zero of the function f − a is counted only once. In addition, we use

n
k)
1 (t, 1

f−a ) (or n
(k
1 (t, 1

f−a )) to denote the counting function of poles of the function
1

f−a with multiplicities ≤ k (or > k) in {z : t < |z| ≤ 1}, each point counted only
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once. Similarly, we have the notations N
k)

1 (t, f), N
(k

1 (t, f), N
k)

2 (t, f), N
(k

2 (t, f), N
k)

0 (t, f),

N
(k

0 (t, f).
The Nevanlinna characteristic of f on the annulus A is defined by

T0(R, f) = m0(R, f)− 2m(1, f) +N0(R, f).

For a nonconstant meromorphic function f on the annulus A = {z : 1
R0

< |z| < R0},
where 1 < R < R0 ≤ +∞, the following properties will be used in this paper (see [7])

(i) T0(R, f) = T0

(
R,

1

f

)
,

(ii) max{T0(R, f1 · f2), T0(R,
f1
f2

), T0(R, f1 + f2)} ≤ T0(R, f1) + T0(R, f2) +O(1),

(iii) T0(R,
1

f − a
) = T0(R, f) +O(1), for every fixed a ∈ C.

In 2005, the lemma on the logarithmic derivative on the the annulus A was obtained
by Khrystiyanyn and Kondratyuk [8].

Theorem 2.1 ([8]) (Lemma on the logarithmic derivative) Let f be a nonconstant mero-
morphic function on the annulus A = {z : 1

R0
< |z| < R0}, where R0 ≤ +∞, and let

λ > 0. Then
(i) in the case R0 = +∞,

m0

(
R,

f ′

f

)
= O(log(RT0(R, f)))

for R ∈ (1,+∞) except for the set 4R such that
∫
4R R

λ−1dR < +∞;

(ii) if R0 < +∞, then

m0

(
R,

f ′

f

)
= O(log(

T0(R, f)

R0 −R
))

for R ∈ (1, R0) except for the set 4′R such that
∫
4′R

dR
(R0−R)λ−1 < +∞.

In 2005, the second fundamental theorem on the the annulus A was first obtained
by Khrystiyanyn and Kondratyuk [8]. Later, the other forms of the second fundamental
theorem on annuli were given by Cao, Yi and Xu [5].

Theorem 2.2 ([5, Theorem 2.3]) (The second fundamental theorem) Let f be a non-
constant meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where

1 < R0 ≤ +∞. Let a1, a2, . . . , aq be q distinct complex numbers in the extended
complex plane C. Let k1, k2, . . . , kq be q positive integers, and let λ ≥ 0. Then

(i) (q − 2)T0(R, f) <

q∑
j=1

N0(R,
1

f − aj
)−N (1)

0 (R, f) + S(R, f),

(ii) (q − 2)T0(R, f) <

q∑
j=1

N0(R,
1

f − aj
) + S(R, f),
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where

N
(1)
0 (R, f) = N0(R,

1

f ′
) + 2N0(R, f)−N0(R, f

′
),

and (i) in the case R0 = +∞,

S(R, f) = O(log(RT0(R, f)))

for R ∈ (1,+∞) except for the set 4R such that
∫
4R R

λ−1dR < +∞;

(ii) if R0 < +∞, then

S(R, f) = O(log(
T0(R, f)

R0 −R
))

for R ∈ (1, R0) except for the set 4′R such that
∫
4′R

dR
(R0−R)λ−1 < +∞.

Definition 2.1 Let f(z) be a non-constant meromorphic function on the annulus A =
{z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. The function f is called a transcendental or

admissible meromorphic function on the annulus A provided that

lim sup
R→∞

T0(R, f)

logR
=∞, 1 < R < R0 = +∞

or

lim sup
R→R0

T0(R, f)

− log(R0 −R)
=∞, 1 < R < R0 < +∞,

respectively.

Then for a transcendental or admissible meromorphic function on the annulus A,
S(R, f) = o(T0(R, f)) holds for all 1 < R < R0 except for the set 4R or the set 4′R
mentioned in Theorem 2.1, respectively.

3 Some lemmas

To prove the above theorems, we need some Lemmas as follows.
From Theorem 2.1 and the definition of m0(R, f), f is transcendental or admissible

function on A, we can get Lemma 3.1 by using the same argument as in Lemma 4.3 in
[16]

Lemma 3.1 Suppose that f is a transcendental or admissible meromorphic function on
the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let P (f) = a0f

p +

a1f
p−1 + · · · + ap(a0 6= 0) be a polynomial of f with degree p, where the coefficients

aj(j = 0, 1, . . . , p) are constants, and let bj(j = 1, 2, . . . , q) be q(q ≥ p+ 1) distinct finite
complex numbers. Then

m0

(
R,

P (f) · f ′

(f − b1)(f − b2) · · · (f − bq)

)
= S(R, f).
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Lemma 3.2 Let f, g be two distinct transcendental or admissible meromorphic functions
on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Suppose that f and g

share four distinct values a1, a2, a3, a4 IM on the annulus A. Then
(i) T0(R, f) = T0(R, g) + S(R, f) and T0(R, g) = T0(R, f) + S(R, g);

(ii)
∑4
j=1N0

(
R, 1

f−aj

)
= 2T0(R, f) + S(R, f);

(iii) N0(R, 1
f−b ) = T0(R, f) + S(R, f), N0(r, 1

g−b ) = T0(R, g) + S(R, g), where b 6=
aj(j = 1, 2, 3, 4).

Proof: From Theorem 2.2(ii), we have

2T0(R, f) ≤
4∑
j=1

N0(R,
1

f − aj
) + S(R, f) ≤ N0(R,

1

f − g
) + S(R, f)

≤ T0(R, f) + T0(R, g) + S(R, f),

then we can get T0(R, f) = T0(R, g) + S(R, f) and
∑4
j=1N0

(
R, 1

f−aj

)
= 2T0(R, f) +

S(R, f). Similarly, we can get T0(R, g) = T0(R, f) +S(R, g). Thus, we prove (i) and (ii).
Again by Theorem 2.2 and (ii), we get

3T0(R, f) ≤
4∑
j=1

N0(R,
1

f − aj
) +N0(R,

1

f − b
) + S(R, f)

= 2T0(R, f) +N0(R,
1

f − b
) + S(R, f),

that is,

N0(R,
1

f − b
) = T0(R, f) + S(R, f).

Similarly, we can get

N0(R,
1

g − b
) = T0(R, g) + S(R, g).

Thus, we obtain (iii).
Therefore, we complete the proof of this lemma. 2

Lemma 3.3 Let f, g be two distinct transcendental or admissible meromorphic functions
on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Suppose that f and

g share four distinct values a1, a2, a3, a4 CM on the annulus A. Then f is a Möbius
transformation of g, two of the shared values, say a1 and a2, are Picard values on A, and
the cross ratio (a1, a2, a3, a4) = −1.

Proof: Since f, g share a1, a2, a3, a4 CM on A, from Lemma 3.2(i) and f, g are tran-
scendental or admissible, we have S(R, f) = S(R, g). We assume that there exist three
of N0(R, 1

f−aj )(j = 1, 2, 3, 4), say N0(R, 1
f−aj )(j = 1, 2, 3), such that N0(R, 1

f−aj ) =

S(R, f), then from Theorem 2.2(ii) we have

T0(R, f) ≤
3∑
j=1

N0(R,
1

f − aj
) + S(R, f) = S(R, f).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1058 Si Jun Tao et al 1053-1066



Thus, we can get a contradiction with the condition of the lemma. Therefore, there are
at least two of N0(R, 1

f−aj )(j = 1, 2, 3, 4), say N0(R, 1
f−aj )(j = 1, 2), such that

N0(R,
1

f − a1
) = S(R, f), N0(R,

1

f − a2
) = S(R, f). (1)

Set

L(z) =
z − a3
z − a4

a2 − a4
a2 − a3

.

Then L(a3) = 0, L(a4) =∞, L(a2) = 1 and

L(a1) =
z − a3
z − a4

a2 − a4
a2 − a3

= (a1, a2, a3, a4),

which is the cross ratio of a1, a2, a3, a4. Let Φ(z) = L(f(z)),Ψ(z) = L(g(z)). From
f(z) 6≡ g(z), we get Φ(z) 6≡ Ψ(z). From the assumptions of this lemma, we have L(aj)(j =
1, 2, 3, 4) are shared CM by Φ(z) and Ψ(z) on A. Thus, we can get that Φ(z) and Ψ(z)
share 0, 1,∞, b CM on A, where b = L(a1). From Lemma 3.2(i) and (1), we have
S(R,Φ) = S(R,Ψ) and

N0(R,
1

Φ
) 6= S(R, f), N0(R,Φ) 6= S(R, f). (2)

Set

H1 =
Φ′

Φ(Φ− 1)(Φ− b)
− Ψ′

Ψ(Ψ− 1)(Ψ− b)
. (3)

Suppose that H1(z) 6≡ 0, from Lemma 3.1, we have m0(R,H1) = S(R,Φ). If z0 ∈ A
is a point such that Φ(z0) = Ψ(z0) = L(aj) for some j = 1, 2, 3, 4, then from (3) we can
get that H1 has no pole on A. Thus, from we have T0(R,H1) = m0(R,H1)+N0(R,H1)−
2m(1, H1) = S(R,Φ). If z1 ∈ A is a pole of Φ with multiplicity p, then it must be a pole
of Ψ with multiplicity p. Hence from (3) we have that z1 is a zero of H with multiplicities
as least 3p− (p+ 1) = 2p− 1. Thus, we get

N0(R,
1

Φ
) ≤ N0(R,

1

H1
) ≤ T0(R,H1) + 2m(1, H1) +O(1) = S(R, f).

Therefore, we can get a contradiction with (2). Thus, we can get that H1(z) ≡ 0.
Set

H2 =
ΦΦ′

(Φ− 1)(Φ− b)
− ΨΨ′

(Ψ− 1)(Ψ− b)
. (4)

By using the same argument as in the above, we can get that H2(z) ≡ 0. From H1(z) ≡
H2(z) ≡ 0 we have Φ2(z) ≡ Ψ2(z). Since Φ(z) 6≡ Ψ(z), we have Φ(z) = −Ψ(z). Thus,
both 1 and −1 are Picard values of Φ and Ψ on A. From Lemma 3.2(iii), we get that
b = −1. Hence we have L(a1) = (a1, a2, a3, a4) = −1. Therefore we get that a1 and
a2 are Picard values of f and g on A and L(f(z)) = L(g(z)). Thus, we get that f is a
Möbius transformation of g.

This completes the proof of this lemma. 2
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4 The proof of Theorem 1.2

Suppose that f 6≡ g and none of the aj(j = 1, 2, 3, 4) is ∞. From Lemma 3.2, we have
S(R, f) = S(R, g). Set S(R) := S(R, f) = S(R, g). Let ϕ be the function expressed as
follows

ϕ =
f ′g′(f − g)2

(f − a1)(f − a2)(f − a3)(f − a4)(g − a1)(g − a2)(g − a3)(g − a4)
. (5)

Then we can get ϕ 6≡ 0. We will show that T0(R,ϕ) = S(R) as follows.
Suppose z0 ∈ A and f(z0) = a1 (or a2, a3, a4) with multiplicity p and g(z0) = a1 (or

a2, a3, a4) with multiplicity q. From (5), we can get

ϕ(z) = O
(

(z − z0)2min(p,q)−2
)
.

Hence ϕ is an analytic function on A. Then, we have

T0(R,ϕ) = m0(R,ϕ)

≤ m0

(
R,

f ′

(f − a2)(f − a3)(f − a4)

)
+m0

(
R,

f ′

(f − a1)(f − a2)(f − a3)

)
+m0

(
R,

f ′

(f − a1)(f − a2)(f − a3)(f − a4)

)
+m0

(
R,

f ′P1(f)

(f − a1)(f − a2)(f − a3)(f − a4)

)
+m0

(
R,

g′

(g − a2)(g − a3)(g − a4)

)
+m0

(
R,

g′

(g − a1)(g − a2)(g − a3)

)
+m0

(
R,

g′

(g − a1)(g − a2)(g − a3)(g − a4)

)
+m0

(
R,

g′P2(g)

(g − a1)(g − a2)(g − a3)(g − a4)

)
+O(1)

= S(R, f) + S(R, g) = S(R),

where P1(f) is a polynomial of degree no more than 2 in f and P2(g) is a polynomial of
degree no more than 2 in g. By Lemma 3.2 (iii), we have

m0

(
R,

1

f − bj

)
= S(R, f), m0

(
R,

1

g − bj

)
= S(R, g), (6)

for any bj ∈ S(j = 1, 2, . . . ,m).
Set

ϕ1 :=
(g − b1) · · · (g − bm)

(f − b1) · · · (f − bm)
·
(

g′(f − g)

(g − a1) · · · (g − a4)

)m
and

ϕ2 :=
(f − b1) · · · (f − bm)

(g − b1) · · · (g − bm)
·
(

f ′(f − g)

(f − a1) · · · (f − a4)

)m
.
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By Lemma 3.1 and (6), we can get that

m0

(
R,

1

f − bj
· g′(f − g)(g − bj)

(g − a1) · · · (g − a4)

)
= S(R)

and

m0

(
R,

1

g − bj
· f ′(f − g)(f − bj)

(f − a1) · · · (f − a4)

)
= S(R).

From the definitions of ϕ1 and ϕ2, we get m0(R,ϕj) = S(R), j = 1, 2. By Lemma
3.2(iii), we see that ”almost all” of poles and bj-points of f and g on the annulus A are
simple. Since f, g share the four distinct values aj , j = 1, 2, 3, 4 on the annulus A and
EA(S, f) ⊂ EA(S, g), we can easily get that N0(R,ϕ1) = S(R). Therefore, we have

T0(R,ϕ1) = S(R). (7)

Since ϕ1ϕ2 ≡ ϕm and T0(R,ϕ) = S(R), we can have

T0(R,ϕ2) = S(R). (8)

Let ΓpqA (aj) be the set of those aj-points of f and g on the annulus A such that the
multiplicities of f and g at these points are p and q, respectively. For any z0 ∈ ΓpqA (a1),
by simple computation, we have

ϕ1(z0) =

(
q · f ′(z0)− g′(z0)

(a1 − a2)(a1 − a3)(a1 − a4)

)m
and

ϕ2(z0) =

(
p · f ′(z0)− g′(z0)

(a1 − a2)(a1 − a3)(a1 − a4)

)m
.

Hence
1

qm
ϕ1(z0)− 1

pm
ϕ2(z0) = 0. (9)

Similarly, we can see that (9) holds for any z0 ∈ ΓpqA (aj), j = 2, 3, 4.
Now we discuss two cases as follows.
Case 1. Suppose that ϕpq := 1

qmϕ1 − 1
pmϕ2 6≡ 0, for all positive integers p, q.

Next, for j = 1, 2, 3, 4, we denote by

Npq
0 (R,

1

f − aj
) = Npq

1 (R,
1

f − aj
) +Npq

2 (R,
1

f − aj
),

Npq
1 (R,

1

f − aj
) =

∫ 1

1
R

npq1 (t, 1
f−aj )

t
dt, Npq

2 (R,
1

f − aj
) =

∫ R

1

npq2 (t, 1
f−aj )

t
dt,

where npq1 (t, 1
f−aj )( npq2 (t, 1

f−aj )) is the counting function of zeros of the function f − aj
in {z : t < |z| ≤ 1} (resp. {z : 1 < |z| ≤ t}) with respect to the set ΓpqA (aj), similarly, we
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have N
pq

0 (R, 1
f−aj ), N

pq

1 (R, 1
f−aj ) and N

pq

2 (R, 1
f−aj ). Thus, we have

N0

(
R,

1

f − aj

)
= N1

(
R,

1

f − aj

)
+N2

(
R,

1

f − aj

)
=

∞∑
p,q=1

(
Npq

1

(
R,

1

f − aj

)
+Npq

2

(
R,

1

f − aj

))

=
∞∑

p,q=1

Npq
0

(
R,

1

f − aj

)
and

N0

(
R,

1

f − aj

)
=

∞∑
p,q=1

N
pq

0

(
R,

1

f − aj

)
.

Since f, g are transcendental meromorphic on the annulus A, and from the above two
equations, (6),(7) and (8), we can see that T0(R,ϕpq) = S(R, f) + S(R, g). And by (9)
each zero of f − aj is a zero of ϕpq, so with the help of ϕpq 6≡ 0, we can get

N
pq

0

(
R,

1

f − aj

)
≤ N

pq

0

(
R,

1

ϕpq

)
≤ T0

(
R,

1

ϕpq

)
+O(1)

≤ T0(R,ϕpq) +O(1) = S(R, f) + S(R, g) := S(R),

for some p, q. By Lemma 3.2 (ii), we have T0(R, f)+S(R, f) = T0(R, g)+S(R, g). Thus,
from the definition of S(R), we can get T0(R, f) = T0(R, g) + S(R). Therefore, for a
positive integer k(> 4), we have

N0

(
R,

1

f − aj

)
=

∑
max(p,q)≥k

N
pq

0

(
R,

1

f − aj

)
+ S(R, f)

≤ 1

k

 ∑
max(p,q)≥k

Npq
0

(
R,

1

f − aj

)
+

∑
max(p,q)≥k

Npq
0

(
R,

1

g − aj

)
+S(R, f)

≤ 1

k

(
N0

(
R,

1

f − aj

)
+N0

(
R,

1

g − aj

))
+ S(R, f)

≤ 2

k
T (R, f) + S(R), j = 1, 2, 3, 4.

By the above inequality and Lemma 3.2(ii), we can get

T0(R, f) ≤ 4

k
T0(R, f) + S(R). (10)

Since k(> 4) is a positive integer, that is, 4
k < 1, from f is transcendental or admissible

on A, thus, we can get a contradiction.
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Case 2. Suppose that ϕpq := 1
qmϕ1 − 1

pmϕ2 ≡ 0, for some positive integers p, q.
Thus, we have(

p

q

)m
· (g − b1)2 · · · (g − bm)2

(f − b1)2 · · · (f − bm)2
≡
(
f ′(g − a1) · · · (g − a4)

g′(f − a1) · · · (f − a4)

)m
. (11)

We will consider the two following subcases:
Subcase 2.1. p 6= q. Without loss of generality, we may assume that p < q. For

some two positive integers p1 and q1, if z1 ∈ Γp1q1A (aj) for some j ∈ {1, 2, 3, 4}, then (11)
implies that p

q = p1
q1

. Hence q1 > p1 ≥ 1, and q1 ≥ 2 which means that any aj-points

(j = 1, 2, 3, 4) of g on A are multiple. By Lemma 3.2 and f, g are transcendental or
admissible on A, we can get

2T0(R, g) =
4∑
j=1

N0

(
R,

1

g − aj

)
+ S(R, g)

≤ 1

2

4∑
j=1

N0

(
R,

1

g − aj

)
+ S(R, g)

≤ 2T0(R, g) + S(R, g).

Thus, we can get the following equalities easily

T0(R, g) = N0

(
R,

1

g − aj

)
+ S(R), j = 1, 2, 3, 4 (12)

and

N0

(
R,

1

g − aj

)
= 2N0

(
R,

1

g − aj

)
+ S(R), j = 1, 2, 3, 4. (13)

From (12) and (13), we can see that ”almost all” of aj-points of g have multiplicity 2,
and ”almost all” of aj-points of f are simple on the annulus A. Without loss of generality,
we may assume that f and g attain the values a3 and a4 on the annulus A. Set

φ1 :=
2f ′(f − a4)

(f − a1)(f − a2)(f − a3)
− g′(g − a4)

(g − a1)(g − a2)(g − a3)

and

φ2 :=
2f ′(f − a3)

(f − a1)(f − a2)(f − a4)
− g′(g − a3)

(g − a1)(g − a2)(g − a4)
.

Since φi(i = 1, 2) is analytic at the poles of f and of g and also at those common
aj-points of f and g which have multiplicity 1 with respect to f and multiplicity 2 with
respect to g, by Lemma 3.1, we have T0(R,φi) = S(R, f), i = 1, 2. If φi 6≡ 0, then

N0

(
r, 1
f−a4

)
≤ N0

(
R, 1

φ1

)
= S(R, f), which contradicts to equation (13). Then φ1 ≡ 0.

Similarly, we have φ2 ≡ 0. Therefore, from the definitions of φ1 and φ2, we have(
f − a4
f − a3

)2

≡
(
g − a4
g − a3

)2

. (14)
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Since f 6≡ g, and from (14), we have

f − a4
f − a3

≡ −g − a4
g − a3

,

which implies that f and g share a3, a4 CM on the annulus A. Since f and g assume
the value a3 there exist positive integers p1, q1 such that Γp1q1A (a3) 6= ∅. From the
considerations above we get q1 > p1, contradicting the fact that f and g share a3 CM .

Subcase 2.2. p = q.
In this subcase, (10) becomes

(g − b1)2 · · · (g − bm)2

(f − b1)2 · · · (f − bm)2
≡
(
f ′(g − a1) · · · (g − a4)

g′(f − a1) · · · (f − a4)

)m
.

which implies that f and g share the four values aj(j = 1, 2, 3, 4) CM on the annulus A.
From the conditions of this lemma and applying Lemma 3.3, g is a Möbius transformation
of f on A. Furthermore, two of the four values, say a1, a2 are Picard exceptional values
of f and g on the annulus A. Set

∆1 :=
f ′(f − a4)

(f − a1)(f − a2)(f − a3)
− g′(g − a4)

(g − a1)(g − a2)(g − a3)

and

∆2 :=
f ′(f − a3)

(f − a1)(f − a2)(f − a4)
− g′(g − a3)

(g − a1)(g − a2)(g − a4)
.

Using the same argument as in Subcase 2.1 for ∆1,∆2, we can get

f − a3
f − a4

≡ −g − a3
g − a4

.

We take the Möbius transformations T,M and L satisfying

T (ω) :=
w − a3
w − a4

, M(w) := −w and L := T−1 ◦M ◦ T.

Then we have
T ◦ f = −T ◦ g, hence g = L ◦ f.

Thus, we can see that a3 and a4 are the fixed points of L. Therefore, there exist no fixed
points of L in the set S. If some b ∈ S is given. Then from b 6= a1, a2, there exists a
z0 ∈ C such that b = f(z0), and from EA(S, f) ⊆ EA(S, g) we obtain

L(b) = L(f(z0)) = g(z0) ∈ S.

So S is invariant under L. Furthermore, we have L ◦L = I where I denotes the identical
transformation. Thus, we can get that S must contain an even number of values.

Thus, we complete the proof of Theorem 1.2.
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1 Introduction

It is well-known that the Henstock integral includes the Riemann, improper Riemann, Lebesgue and
Newton integrals [9, 12]. It is also equal to the Denjoy and Perron integrals [14]. In the theory
of integrals, there are some integrals based on the Banach space-valued functions such as Pettis
and Bochner integrals [3, 14, 21]. In particular, Ziat [28, 29] and Amri and Hess [1] presented a
characterization of Pettis integral having as their values convex weakly compact subsets of a Banach
space. Bochner and Pettis integrals are all defined by using the Lebesgue integrability of the support
functions. The integrals of fuzzy-number-valued functions, as a natural generalization of set-valued
functions, have been discussed by Puri and Ralescu [19], Kaleva [10], and other authors [7, 24, 25, 27].
Recently, Wu and Gong [6, 8] discussed the fuzzy Henstock integrals of fuzzy-number-valued functions
which extended Kaleva [10] integration. However, for a fuzzy valued function in the n−dimensional
fuzzy number space En, the integral and its characteristic theorems have not defined or discussed. In
[2], the authors shown that a fuzzy-number valued function is fuzzy Henstock integrable if and only if it
can be represented by a sum of a fuzzy McShane integrable fuzzy-number valued function and a fuzzy
Henstock integrable fuzzy number valued function generated by a Henstock integrable function. In
2014, K. Musia l [18] established the following decomposition theorem for fuzzy mappings with values
in a Banach space: a fuzzy mapping is fuzzy Henstock integrable if and only if it can be represented as
a sum of a fuzzy McShane integrable fuzzy mapping and of a fuzzy Henstock integrable fuzzy mapping
generated by a Henstock integrable function. As a continuation of our previous work [16, 17, 22], in
this paper, we continue to develop the theory of Henstock-Pettis integrals in fuzzy number spaces. By
means of replacing the Lebesgue integrability of support functions with their Henstock integrability,
we give the definitions of Henstock-Pettis integral and Aumann-Henstock-Pettis integral for compact
convex set-valued functions. In addition, the relationships among Henstock-Pettis integral, Aumann-
Henstock integral and Pettis integral are investigated. Furthermore, we present the Henstock-Pettis
integral, fuzzy Henstock-Pettis integral and Aumann-Henstock-Pettis integral of n−dimensional fuzzy-
number-valued functions, and the relationships among them are studied. At the same time, the
representation theorems and the calculations of fuzzy Henstock-Pettis integral are given. It shows
that the fuzzy Henstock-Pettis integration of a n−dimensional fuzzy-number-valued function equals
the sum of the Henstock-Pettis integration of an n−dimensional fuzzy-number-valued function and
the Henstock-Pettis integration of a vector-valued function which valued in the kernel sets.

The rest of the paper is organized as follows. In section 2, the definitions of Pettis integral,
Henstock-Pettis integral and Aumann-Henstock integral for compact convex set-valued functions are
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given. In section 3, we disscus the characterization of Henstock-Pettis integral, fuzzy Henstock-
Pettis integral and Aumann-Henstock integral for fuzzy-number-valued functions, and we give the
representation theorems of fuzzy Henstock-Pettis integral. In section 4, we present a Komlós-type
convergence theorem to the fuzzy Henstock-Pettis integral and give an existence theorem for a kind
of fuzzy integral inclusion. And in section 5, we present some concluding remarks.

2 Preliminaries

Let T be the closed interval on the real line R, i.e., T = [a, b] (a, b ∈ R). |T | denotes the length of T .
Throughout this paper, we use Pk(Rn) to denote the family of all nonempty compact convex

subsets of Rn. For A,B ∈ Pk(Rn), k ∈ R, the addition and scalar multiplication are defined by the
equations as follows respectively:

A+B =
{
x+ y | x ∈ A, y ∈ B

}
, aA =

{
ax | x ∈ A

}
.

In addition, for A,B ∈ Pk(Rn), the Hausdorff metric between them defined by:

d(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖b− a‖

}
.

A compact convex set-valued function F : T → Pk(Rn) is said to be measurable if {t ∈ T |F (t)∩O 6=
φ} is a measurable set for any open subset O ⊂ Rn. F is said to be scalarly measurable if the
map σ(x, F (·)) is measurable for every x ∈ Sn−1. Certainly, a compact convex set-valued function
F : T → Pk(Rn) is measurable if it is scalarly measurable.

A function f : T → Rn is called a selection of F if f(t) ∈ F (t) for any t ∈ T. A selection f is said
to be measurable if the function f is strongly measurable, i.e., f is a limit of an almost everywhere
convergent sequence of measurable simple functions.

A compact convex set-valued function F : T → Pk(Rn) is said to be graph measurable if the set
{(t, x) ∈ T × Rn|x ∈ F (t)} is a member of the product σ−algebra generated by L and the Borel
subsets of Rn in the norm topology. Here L denotes the family of all Lebesgue measurable subsets of
T .

Definition 2.1 ([27]). For A ∈ Pk(Rn), x ∈ Sn−1, the support function of A is defined by

σ(x,A) = sup
y∈A
〈y, x〉,

where Sn−1 denotes the unit sphere of Rn, 〈·, ·〉 is the inner product in Rn.

Next, we shall give the definitions of Pettis integral, Henstock-Pettis integral and Aumann-
Henstock-Pettis integral for compact convex set-valued functions.

Definition 2.2. A set-valued function F : T → Pk(Rn) is said to be Henstock integrable to I ∈
Pk(Rn) if for every ε > 0 there is a function δ(x) > 0 such that for any δ−fine division Π =
{ξi, [xi−1, xi]} of T , we have

d(I,
∑
i

F (ξi)(xi − xi−1)) < ε,

and write (H)
∫
T
F (x)dx = I.

Lemma 2.3 ([27]). If A ∈ Pk(Rn), x ∈ Sn−1, then A =
{
y ∈ Rn|〈y, x〉 ≤ σ(x,A), x ∈ Sn−1

}
.

Lemma 2.4 ([26]). If Ar ∈ Pk(Rn), {Arm} ⊂ Pk(Rn), where rm is converging nondecreasingly to r

and Arm ⊃ Arm+1 ⊃ Ar(m = 1, 2, · · · ) for any x ∈ Sn−1, then Ar =
∞⋂
m=1

Arm if σ(x,Arm) converge

to σ(x,Ar).

2
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Theorem 2.5. A set-valued function F : T → Pk(Rn) is Henstock integrable on T iff the real-valued
function σ

(
x, F (t)

)
is Henstock integrable uniformly on T for any x ∈ Sn−1, and

σ
(
x, (H)

∫
T

F (t)dt
)

= (H)

∫
T

σ
(
x, F (t)

)
dt. (2.1)

Definition 2.6. Let F : T → Pk(Rn) be a measurable set-valued function. F is said to be Pettis
(Henstock-Pettis) integrable on T if there is a nonempty set A ∈ Pk(Rn) such that for any x ∈ Sn−1
we have

σ(x,A) = (L)

∫
T

σ(x, F (t))dt

(σ(x,A) = (H)

∫
T

σ(x, F (t))dt),

and write A = (P )
∫
T
F (t)dt (A = (wH)

∫
T
F (t)dt).

In particular, if the set-valued function above is defined by F : T → Rn, then the set A will become
a vector in Rn, and for any x ∈ Sn−1 we have

< x,A >= (L)

∫
T

< x,F (t) > dt

(< x,A >= (H)

∫
T

< x,F (t) > dt).

In this case, F is also said to be Pettis (Henstock-Pettis) integrable on T .

Theorem 2.7. If F : T → Pk(Rn) is a measurable set-valued function, then the family of measurable
selections of F is not empty.

Proof. Since Rn is a separable space, we can prove the theorem easily.

Now, we use sH(F ) to denote the family of Henstock-Pettis integrable selections and sP (F ) to
denote the family of Pettis integrable selections of F .

Definition 2.8. The Aumann-Henstock integral of a measurable set-valued function F : T → Pk(Rn)
defined by

(AH)

∫
T

F (t)dt = {(HP )

∫
T

f(t)dt|f ∈ sH(F )}.

Definition 2.9. Pick a set-valued function F : T → Pk(Rn) and let I ⊂ T . The function f : A →
Pk(Rn) is the weak derivative of F on T if the Banach valued function (σ(x, F ))′ is differentiable
almost everywhere on I and (σ(x, F ))′ = σ(x, f)) almost everywhere on T .

Example. Let F : T → Pk(Rn) be weakly differentiable. Then its weak derivative F ′ is Henstock-Pettis
integrable and

(HP )

∫ s

a

F ′(t)dt = F (s)− F (a), s ∈ T.

Indeed, F has the weak derivative at a point t means that there is a point F ′(t) ∈ Rn such that
for any x ∈ Sn−1, we have

lim
4t→0

< x,F (t+4t) > − < x,F (t) >

4t
=< x,F ′(t) > .

Since < x,F > is differentiable, so we have

< x,F (s) > − < x,F (a) >= (H)

∫ s

a

< x,F >′ dt, s ∈ T.

3
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On the other hand, < x,F >′=< x,F ′ >, it implies that

< x,F (s) > − < x,F (a) >= (H)

∫ s

a

< x,F ′(t) > dt.

That is

< x,F (s)− F (a) >= (H)

∫ s

a

< x,F ′(t) > dt.

Hence

F (s)− F (a) = (HP )

∫ s

a

F ′(t)dt. �

Theorem 2.10. If all measurable selections of F : T → Pk(Rn) are Henstock-Pettis integrable and
σ(x, F (t)) is Henstock integrable, then (AH)

∫
T
F (t)dt is a compact convex set.

Proof. Since σ(x, F (t)) is Henstock integrable, so σ(x, F (t)) is measurable. Now fix a measurable
selection f of F and let G(t) = F (t) − f(t). Since f is Henstock-Pettis integrable, so G is Aumann-
Henstock integrable.

Let IT = (AH)
∫
T
G(t)dt and D be a countable dense subset of Sn−1. We prove the convexity of

IT first. It can be proved that

(AH)

∫
T

G(t)dt = {(wH)

∫
T

g(t)dt|g ∈ sH(F − f)}

is a convex set. In fact, for any A,B ∈ IT , there exist g1(t), g2(t) ∈ sH(F − f) such that

A = (HP )

∫
T

g1(t)dt, B = (HP )

∫
T

g2(t)dt. (2.2)

In addition, for any λ ∈ [0, 1],

λA+ (1− λ)B = λ(HP )

∫
T

g1(t)dt+ (1− λ)

∫
T

g2(t)dt

= (HP )

∫
T

(λg1(t) + (1− λ)g2(t))dt.

That is, λA+ (1− λ)B ∈ IT .
In order to prove the compactness of IT , we take a sequence of points xn ∈ IT , and then there exists

gn ∈ sH(G) with xn = (HP )
∫
T
gn(t)dt. For each n ∈ N, t ∈ T, x ∈ Sn−1, we have the inequalities

−σ(−x,G(t)) ≤< x, gn(t) >≤ σ(x,G(t)). (2.3)

Since f ∈ sH(F ) and the null function is included in G(t), σ(x,G(t)) is nonnegative Henstock inte-
grable. It implies that the support function σ(x,G(t)) is Lebesgue integrable. Thus, each < x, gn >
is Lebesgue integrable and

(L)

∫
T

| < x, gn(t) > |dt ≤ (L)

∫
T

σ(x,G(t))dt+ (L)

∫
T

σ(−x,G(t))dt.

Furthermore, due to the countability of D and L1−boundeness of each < x, gn > we can find there
exist hn ∈ conv{gn, gn+1, · · · }, such that for each x ∈ D the sequence < x, hn > is almost everywhere
convergent to a measurable function hx.

As for each t and n we have hn(t) ∈ G(t) and G(t) is compact, there is a cluster point h(t) ∈ G(t).
It follows that there is a set N of Lebesgue measure zero such that for any x ∈ D and t /∈ N we have

< x, h(t) >= lim
n→∞

< x, hn(t) >= hx(t).

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1070 Yabin Shao et al 1067-1080



Taking into formula Eq. (2.3) and the Lebesgue dominated convergence theorem, we have for any
x ∈ Sn−1,

lim
n→∞

< x, (HP )

∫
T

hn(t)dt > = lim
n→∞

(L)

∫
T

< x, hn(t) > dt

= (L)

∫
T

< x, h(t) > dt

= < x, (HP )

∫
T

h(t)dt > . (2.4)

We write yn = (HP )
∫
T
hn(t)dt, then yn ∈ IT , yn ∈ conv{xn, xn+1, · · · } and the sequence {yn}

convergent to y0 = (HP )
∫
T
h(t)dt. Thus, given an arbitrary sequence {xn}, xn ∈ IT , there is

a convex combination of points yn ∈ conv{xn, xn+1, · · · } and y0 ∈ IT such that yn converge to
y0. Consequently, the set IT is compact, i.e., there exists y0 = (HP )

∫
T
h(t)dt ∈ IT such that

lim
n→∞

yn = y0.

3 The Henstock-Pettis integral for fuzzy number valued func-
tions

In this section, we give the definition of Henstock-Pettis integral of fuzzy-number-valued functions
and its representation theorems.

Definition 3.1 ([4, 23]). Let En =
{
u|u : Rn → [0, 1]}. For any u ∈ En, u is said to be a

n−dimensional fuzzy number if the following conditions are satisfied:
(1) u is a normal fuzzy set, i.e., there exists an x0 ∈ Rn, such that u(x0) = 1;
(2) u is a convex fuzzy set, i.e., u

(
tx+ (1− t)y

)
≥ min

{
u(x), u(y)

}
for any x, y ∈ Rn, t ∈ [0, 1];

(3) u is upper semi-continuous;
(4) suppu = {x ∈ Rn | u(x) > 0} is compact, here A denotes the closure of A.

For r ∈ (0, 1], denote [u]r = {x ∈ Rn | u(x) ≥ r} and we call it the r−level set of u, and
[u]0 =

⋃
r∈(0,1]

[u]r.

En denotes the n−dimensional fuzzy number space. If u ∈ En, then [u]r is a nonempty compact
convex subset of Rn for each r ∈ [0, 1].

Theorem 3.2 ([4, 23]). Define D : En × En → [0,∞) by the equation

D(u, v) = sup
r∈[0,1]

d([u]r, [v]r), u, v ∈ En,

then
(1) (En, D) is a complete metric space;
(2) D(λu, λv) = |λ|D(u, v), λ ∈ R;
(3) D(u+ w, v + w) = D(u, v);
(4) D(u+ v, w + e) ≤ D(u,w) +D(v, e);
(5) D(u+ v, 0̃) = D(u, 0̃) +D(v, 0̃);
(6) D(u+ v, w) ≤ D(u,w) +D(v, 0̃).
where u, v, w, e, 0̃ ∈ En, 0̃ = χ({0}).

The metric space (En, D) has a linear structure, it can be imbedded isomorphically as a convex
cone with vertex θ into the Banach space of functions u∗ : I × Sn−1 −→ R, where Sn−1 is the unit
sphere in Rn, with an imbedding function u∗ = j(u) defined by

u∗(r, x) = sup
α∈[u]α

< α, x >

5
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for all < r, x >∈ I × Sn−1.

Theorem 3.3 ([23]). There exists a real Banach space X such that En can be imbedding as a convex
cone C with vertex θ into X. Furthermore the following conditions hold true:

(1) the imbedding j is isometric,
(2) addition in X induces addition in En,
(3) multiplication by nonnegative real number in X induces the corresponding operation in En,
(4) C − C is dense in X,
(5) C is closed.

A fuzzy-number-valued function F̃ : [a, b]→ En is said to satisfy the condition (H) on [a, b], if for
any x1 < x2 ∈ [a, b] there exists u ∈ En such that f(x2) = f(x1) + u. We call u is the H-difference of
F̃ (x2) and F̃ (x1), denoted F̃ (x2)−H F̃ (x1) ([10]).

For brevity, we always assume that the condition (H) is satisfied when dealing with the operation
of subtraction of fuzzy numbers throughout this paper.

Definition 3.4 ([24, 25]). A fuzzy-number-valued function F̃ : T → En is said to be fuzzy Henstock
integrable on T if there exists a fuzzy number Ã ∈ En such that for every ε > 0 there is a function
δ(x) > 0 such that for any δ−fine division Π = {ξi, [xi−1, xi]} of T , we have

D(Ã,
∑
i

F̃ (ξi)(xi − xi−1)) < ε.

We write (FH)
∫
T
F̃ (x)dx = Ã.

Definition 3.5 ([22]). A fuzzy-number-valued function F̃ : T → En is said to be Pettis ( Henstock-
Pettis) integrable on T if [F (t)]r is Pettis ( Henstock-Pettis) integrable on T for every r ∈ [0, 1], and
there exists a fuzzy number Ã ∈ En such that for any x ∈ Sn−1 we have

σ(x, [A]r) = (L)

∫
T

σ(x, [F (t)]r)dt

(σ(x, [A]r) = (H)

∫
T

σ(x, [F (t)]r)dt).

We write Ã = (FP )
∫
T
F̃ (t)dt (Ã = (FHP )

∫
T
F̃ (t)dt).

Remark 3.6. In particular, if F̃ is degenerated into F : T → Rn and Ã is degenerated into A ∈ Rn,
then

σ(x, [A]r) =< x,A > .

Remark 3.7. When n = 1, if the fuzzy-number-valued function F̃ : T → E1 is Kaleva integrable on T
(refer to [25]), then F̃ is also Pettis integrable.

Remark 3.8. When n = 1, if the fuzzy-number-valued function F̃ : T → E1 is fuzzy Henstock
integrable on T (refer to the Definition 3.2 of [24]), then F̃ is also fuzzy Henstock-Pettis integrable.

A fuzzy-number-valued function F̃ : T → En is said to be measurable on T iff the compact convex
set-valued function F r : T → Pk(Rn) is measurable for any r ∈ [0, 1].

Definition 3.9. Let F̃ : T → En be a measurable fuzzy-number-valued function, F̃ is said to be
fuzzy Aumann-Henstock-Petiss integrable on T if

(FAHP )

∫
T

[F (t)]rdt = {(HP )

∫
T

f(t)dt|f ∈ sHP [F (t)]r}

determines a unique fuzzy number Ã ∈ En, where sH [F (t)]r denotes the family of all fuzzy Henstock-
Petiss integrable selections of [F (t)]r. We write (FAH)

∫
T
F̃ (t)dt = Ã.

6
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Theorem 3.10. Let F̃ : T → En be a fuzzy Aumann-Henstock-Pettis integrable function on T . If the
set-valued function [F (t)]r is measurable and the measurable selections of [F (t)]r are Henstock-Pettis
integrable for any r ∈ [0, 1], then for every x ∈ Sn−1 we have

σ
(
x, (AHP )

∫
T

[F (t)]rdt
)

= (H)

∫
T

σ(x, [F (t)]r)dt.

Proof. Since the measurable selections of [F (t)]r are Henstock-Pettis integrable for any r ∈ [0, 1], we
have

σ
(
x, (AHP )

∫
T

[F (t)]rdt
)

= (H)

∫
T

σ(x, [F (t)]r)dt

for any x ∈ Sn−1, r ∈ [0, 1].

Furthermore, by Theorem 2.10, we can easily obtain the following Theorem 3.11.

Theorem 3.11. Let F̃ : T → En be a fuzzy-number-valued function. If all measurable selections of
[F (t)]r are Henstock-Pettis integrable and σ(x, [F (t)]r) is Henstock integrable for any r ∈ [0, 1], then
(AHP )

∫
T

[F (t)]rdt is a compact convex set.

Theorem 3.12. Let F̃ : T → En be a fuzzy-number-valued function on T . If F̃ is fuzzy Henstock-
Pettis integrable on T , then each measurable selection of [F (t)]r is Henstock-Pettis integrable for any
r ∈ [0, 1] and t ∈ T .

Proof. Since [F (t)]r is Henstock-Pettis integrable on T, for any r ∈ [0, 1] and t ∈ T , by Lemma 3 of
[5], the conclusion holds.

Theorem 3.13. If Ã, B̃ ∈ En, then Ã ⊂ B̃ if and only if σ(x, [A]r) ≤ σ(x, [B]r) for any r ∈ [0, 1]
and x ∈ Sn−1.

Proof. Necessity: If Ã ⊂ B̃, then for any r ∈ [0, 1] and x ∈ Sn−1 we have

σ(x, [A]r) = sup{< x, a > |a ∈ [A]r}
≤ sup{< x, b > |b ∈ [B]r}
= σ(x, [B]r). (3.1)

Sufficiency: If σ(x, [A]r) ≤ σ(x, [B]r) for any r ∈ [0, 1] and x ∈ Sn−1, then for every a ∈ A, by
the Lemma 2.3 we have < x, a >≤ σ(x,A) ≤ σ(x,B), thus a ∈ [B]r, that is [A]r ⊂ [B]r. Hence,
Ã ⊂ B̃.

Theorem 3.14. Let F̃ : T → En be a fuzzy-number-valued function on T. If the integration (FH)
∫
T
F̃ (t)dt

exists, then the following statements are equivalent:
(1) F̃ is fuzzy Henstock-Pettis integrable on T ;
(2) For every Henstock-Pettis integrable function f ∈ sHP ([F (t)]1), there exists a fuzzy-number-

valued function G̃ : T → En such that F̃ (t) = G̃(t) + f̃(t) and G̃ is fuzzy Pettis integrable on T ;
(3) For every f, h ∈ sH([F (t)]1), h− f is Pettis integrable;
(4) F̃ (x) is fuzzy Aumann-Henstock-Pettis integrable on T and for any x ∈ Sn−1, we have

σ(x, (AHP )

∫
T

[F (t)]rdt) = (H)

∫
T

σ(x, [F (t)]r)dt (r ∈ [0, 1]).

Proof. (1) ⇒ (2): For every f(t) ∈ sH([F (t)]1), since [F (t)]1 is Henstock-Pettis integrable on
T, by Theorem 3.10, wa can infer that f(t) is Henstock-Pettis integrable on T . Define [G(t)]r =
[F (t)]r − f(t), [G]r : T → Pk(Rn), then for any x ∈ Sn−1, t ∈ T we have σ(x, [G(t)]r) ≥ 0, and

σ(x, [F (t)]r) = σ(x, [G(t)]r)+ < x, f(t) > .
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By Theorem 3.12, [G(t)]r is Pettis integrable. In addition, we can prove that {[G(t)]r, r ∈ [0, 1]}
determines a fuzzy number. In fact, {[G(t)]r} satisfies the following conditions:

(i) [G(t)]r is a nonempty compact convex set;
(ii) if 0 ≤ r1 ≤ r2 ≤ 1, then

σ(x, [G(t)]r1) = σ(x, [F (t)]r1)− < x, f(t) >

≥ σ(x, [F (t)]r2)− < x, f(t) >

= σ(x, [G(t)]r2) (3.2)

That is [G(t)]r1 ⊇ [G(t)]r2 ;
(iii) for any {rm} converging increasingly to r ∈ (0, 1], since for any x ∈ Sn−1 we have

σ(x, [F (t)]rm) ↓ σ(x, [F (t)]r),

so

σ(x, [G(t)]rm) = σ(x, [F (t)]rm)− < x, f(t) >

↓ σ(x, [F (t)]r)− < x, f(t) >

= σ(x, [G(t)]r). (3.3)

(2) ⇒ (3): Let f ∈ sHP ([F (t)]1), [G(t)]r = [F (t)]r − f(t). If h ∈ sH([F (t)]1), then g = h− f is a
measurable selection of [G]r, and

−σ(−x, [G(t)]r) ≤< x, g(t) >≤ σ(x, [G(t)]r).

For every E ∈ L, we denotes wE = (P )
∫
E

[G(t)]rdt ∈ Pk(Rn), then

−σ(−x,wE) = −(L)

∫
E

σ(−x, [G(t)]r)dt

≤ (L)

∫
E

< x, g(t) > dt

≤ (L)

∫
E

σ(x, [G(t)]r)dt = σ(x,wE). (3.4)

On the other hand, wE is compact and its support function σ(x,wE) is Lipschitz continuous uniformly
with respect to x, therefore x→ (L)

∫
E
< x, g(t) > dt is continuous uniformly, it follows that g = h−f

is Pettis integrable.
(3) ⇒ (2): For f ∈ sHP ([F (t)]1), define [G(t)]r = [F (t)]r − f(t), then by assumption, each

measurable selection g of [G(t)]r is Pettis integrable, and by Theorem 3.12, [G(t)]r is also Pettis
integrable on T . Furthermore, we can prove {[G(t)]r, r ∈ [0, 1]} determines a fuzzy number similar to
(1)⇒ (2). It shows that G̃ is Pettis integrable on T .

(2)⇒ (4) For f ∈ sH([F (t)]1), the set-valued function [G(t)]r = [F (t)]r − f(t) is Pettis integrable
on T . By the Theorem 3.12, [G(t)]r is Aumann-Henstock-Pettis integrable on T , and

(P )

∫
T

[G(t)]rdt = {(P )

∫
T

g(t)dt|g ∈ sP ([G(t)]r)}.

Note that (P )
∫
T

[G(t)]rdt is a compact convex set, then

(AHP )

∫
T

[F (t)]rdt = (P )

∫
T

[G(t)]rdt+ (HP )

∫
T

f(t)dt

is also a compact convex set.
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We can prove that {(AHP )
∫
T

[F (t)]rdt | r ∈ [0, 1]} determines a unique fuzzy number. In fact,
{(AHP )

∫
T

[F (t)]rdt | r ∈ [0, 1]} satisfies the following conditions:
(i) (AHP )

∫
T

[F (t)]rdt is a compact convex set;
(ii) if 0 ≤ r1 ≤ r2 ≤ 1, then

σ(x, (AHP )

∫
T

[F (t)]r1dt) = σ(x, (P )

∫
T

[G(t)]r1dt+ (HP )

∫
T

f(t)dt)

= σ(x, (P )

∫
T

[G(t)]r1dt) + σ(x, (HP )

∫
T

f(t)dt)

≥ σ(x, (P )

∫
T

[G(t)]r2dt) + σ(x, (HP )

∫
T

f(t)dt)

= σ(x, (AHP )

∫
T

[F (t)]r2dt). (3.5)

(iii) for any {rm} converging increasingly to r ∈ (0, 1], since for every x ∈ Sn−1 we have

σ(x, [G(t)]rm) ↓ σ(x, [G(t)]r).

Consequently,

σ(x, (AHP )

∫
T

[F (t)]rmdt)

= σ(x, (P )

∫
T

[G(t)]rmdt) + σ(x, (HP )

∫
T

f(t)dt)

↓ σ(x, (P )

∫
T

[G(t)]rdt) + σ(x, (HP )

∫
T

f(t)dt)

= σ(x, (AHP )

∫
T

[F (t)]rdt).

Thus, {(AHP )
∫
T

[F (t)]rdt | r ∈ [0, 1]} determines a unique fuzzy number. That is, F̃ (x) is fuzzy
Aumann-Henstock-Pettis integrable on T , and

σ(x, (AHP )

∫
T

[F (t)]rdt) = (H)

∫
T

σ(x, [F (t)]r)dt.

(4) ⇒ (1): Since F̃ (t) is fuzzy Aumann-Henstock-Pettis integrable on T , so [F (t)]r is Aumann-
Henstock-Pettis integrable on T for any r ∈ [0, 1]. By Theorem 3.12, [F (t)]r is Henstock-Pettis
integrable on T . Similar to the proof of (2) ⇒ (4), we can prove that {[F (t)]r, r ∈ [0, 1]} determines
a unique fuzzy number (FAHP )

∫
T
F̃ (t)dt ∈ En, i.e., F̃ (t) is fuzzy Henstock-Pettis integrable on

T .

Corollary 3.15. If F̃ : T → En, G̃ : T → En, f ∈ sHP ([F (t)]1, then the fuzzy Henstock-Pettis
integration of F̃ could be translated into the Henstock-Pettis integration of G̃, and

(FHP )

∫
T

F̃ (t)dt = (FP )

∫
T

G̃(t)dt+ (HP )

∫
T

f(t)dt.

Theorem 3.16. Let F̃ : T → En be a measurable fuzzy-number-valued function, σ(x, [F (t)]r) Hen-
stock integrable on T . If F̃ is fuzzy Henstock-Pettis integrable on T , then [G(t)]r = [F (t)]r − f(t) is
Pettis integrable on T for any measurable selection f of [F (t)]1, and

(H)

∫
T

σ(x, [F (t)]r)dt = (L)

∫
T

σ(x, [G(t)]r)dt+ (H)

∫
T

< x, f(t) > dt.

for every t ∈ T, x ∈ Sn−1.
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Proof. Suppose f is a measurable selection of [F (t)]1, [G(t)]r = [F (t)]r−f(t). Since the support func-
tion σ(x, [G(t)]r) is a Henstock integrable set-valued function and < x, f(t) > is Henstock integrable,
we see that

[F (t)]r = [G(t)]r + f(t).

On the other hand, since [G(t)]r has at least one Bochner integrable selection (the null function), for
every E ∈ L there is wE ∈ Rn with

σ(x,wE) = (L)

∫
E

σ(x, [G(t)]r)dt

for any x ∈ Sn−1. Hence, we have for every x ∈ Sn−1

σ(x,wT ) + (H)

∫
T

< x, f(t) > dt = (H)

∫
T

σ(x, [F (t)]r)dt 6= ±∞.

It follows that σ(x,wT ) 6= ±∞ for all x ∈ Sn−1. By Banach-Steinhaus Theorem, wT ∈ Pk(Rn). And
we get that every wE is bounded, thus [G(t)]r is Pettis integrable on T .

4 The Komlós-type convergence theorem for the Fuzzy Henstock-
Pettis integrals and a fuzzy integral inclusion

The Komlós’s classical theorem (see[11]) yields that from any L1−bounded sequence of real functions
one can extract a subsequence such that the arithmetic averages of all its subsequence converge point
almost everywhere. In [20], the author extended these results by providing a Komlós-type theorem for
set-valued functions under Henstock-Pettis integrability assumptions. In this section, we extend the
Komlós theorem to the case of the fuzzy-number-valued Henstock-Pettis integrals. As an application,
an existence theorem for a fuzzy integral inclusion involving the fuzzy Henstock-Pettis integral is
obtained.

Definition 4.1. A sequence (F̃n)n of fuzzy-number-valued functions is said to be Komlós convergent
(K−convergent for short) to a fuzzy-number-valued function F̃ if for every subsequence (F̃kn)n there
exists a µ−null set N ⊂ T , such that for all t ∈ T\N ,

σ(x, [F (t)]r) = lim
n
σ(x,

1

n

n∑
i=1

[Fki(t)]
r).

Theorem 4.2. Let F̃n : T → En be a sequence of (FHP )−integrable functions. Suppose
(i) there exists a real Henstock integrable function f̄ , such that

f̄(t) ≤ σ(x, [Fn(t)]r), ∀t ∈ T, ∀n ∈ N;

and

sup
n∈N

(H)

∫
T

σ(x, [Fn(t)]r)dt < +∞;

(ii) there exists a function h : T ×R→ [0,+∞) such that, for every t ∈ T , h(t, ·) is convex and
compact, and a countable measurable partition (Bm)m of T satisfying:

(a) supn(H)
∫
Bm
|σ(x, [Fn(t)]r)|dt < +∞;

(b) supn(H)
∫
Bm

h(t, [Fn(t)]r)dt.

Then there exist a (FHP )−integrable function F̃ and a subsequence of (F̃n)n which K−converges to
F̃ . Moreover,

∫
Bm

h(t, [F (t)]r)dt exist for each m ∈ N.
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Proof. Consider the convex Y ⊂ En, let the function g(t, C) = σ(x,C) be continuous on Y . By
(ii) and defn 5.1, the fuzzy sequence (F̃n)n K−converges to F̃ which is (FHP )−integrable and∫
Bm

h(t, [F (t)]r)dt exist for each m ∈ N.

By (i), the function −f̄(t) + σ(x, 1
n

∑n
i=1[Fki(t)]

r) is Henstock integrable for every n ∈ N. We are
now able to apply Fatou’s Lemma to the sequence (−f̄(t) + σ(x, 1

n

∑n
i=1[Fki(t)]

r))n, and have∫
T

(−f̄(t) + σ(x, [F (t)]r)dt

≤ lim
n

inf(H)

∫
T

(−f̄(t) + σ(x,
1

n

n∑
i=1

[Fki(t)]
r))dt

= (H)

∫
T

(−f̄(t)dt+ lim
n

inf(H)

∫
T

σ(x,
1

n

n∑
i=1

[Fki(t)]
r)dt

≤ (H)

∫
T

(−f̄(t)dt+ sup
n∈N

∫
T

σ(x, [Fn(t)]r)dt ≤ +∞. (4.1)

Consequently, −f̄(t)+σ(x, [F (t)]r is (H)-integrable and, since f̄(t) is (H)-integrable, theH-integrability
of σ(x, [F (t)]r follows. Every measurable selection f̃ of F̃ is HP−integrable, so we have

−σ(−x, [F (t)]r) ≤ 〈x, f(t)〉 ≤ σ(x, F (t)]r), a.e.t ∈ T.

For every [a, b] ⊂ T , there exist A, such that 〈x,A〉 = (H)
∫ b
a
〈x, f(t)〉. Thus every measurable selection

of F̃ is Hestock-Pettis integrable.
Finally, by implication (4)⇒ (1) in Theorem 3.14, we have

lim
n→∞

(FHP )

∫
T

F̃n(t)dt = (FHP )

∫
T

F̃ (t)dt.

Corollary 4.3. Let (F̃n)n be a sequence of (FHP )−integrable functions satisfying hypothesis (i) in
Theorem 4.2 and for every n ∈ N there exist F̃ ′n(t), such that F̃n(t) ⊂ F̃ ′n a.e. Then there exist a
FHP−integrable function F̃ and a subsequence of (F̃n)n which K−converges to F̃ .

Proof. Let Bm = {t ∈ T |m− 1 ≤ D(F̃ ′n(t), 0̃) < m, ∀m ∈ N} satisfy hypothesis (ii) in Theorem 4.2.
Then, for every m ∈ N, we have

sup
n∈N

(H)

∫
Bm

|σ(x, [Fn(t)]r)|dt ≤ (H)

∫
Bm

|σ(x, [F ′n(t)]r)|dt

≤ (H)

∫
Bm

D(F̃ ′n(t), 0̃) < +∞.

By Theorem 4.2, the conclusion holds.

Theorem 4.4. Let (F̃n)n be a sequence of (FHP )−integrable functions satisfying hypothesis (i) in
Theorem 4.2 and

(ii′) there exists a measurable countable partition (Bm)m of T such that, for each m ∈ N,

sup
n∈N

(H)

∫
Bm

D(F̃n(t), 0̃)dt < +∞.

Then there exist a (FHP )−integrable function F̃ and a subsequence of (F̃n)n which K−converges
to F̃ Moreover, (H)

∫
Bm

D(F̃ (t), 0̃)dt < +∞ for every m ∈ N.
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In the sequel, using above Komlós-type convergence theorem, we give an existence theorem of a
fuzzy integral inclusion as the following:

x(t) ∈ ξ + (FHP )

∫ t

0

F̃ (s, x(s))ds, t ∈ T

Theorem 4.5. Let U an open subset of fuzzy number space (En, D), and FHP -integrable function
F̃ : T × U → En and Γ̃ : T → En satisfy

(1) F̃ (t, x) ⊂ Γ̃(t), ∀t ∈ T, ∀x ∈ U ;
(2) F̃ (t, x) is upper semi-continuous for t ∈ T ;
(3) σ(x, [F (·, x)]r) is measurable for every x ∈ U .

Then, for every fixed ξ ∈ U , there exist t0 ∈ T such that ξ + (FHP )
∫ t0
0

Γ̃(s)ds ⊂ U and

x(t) ∈ ξ + (FHP )

∫ t

0

F̃ (s, x(s))ds

has a solution in C([0, t0], En).

Proof. By Theorem 3.14, for all f̃ ∈ sHP ([F (t)]1), there exists G̃ : T → En such that F̃ (t) =
G̃(t) + f̃(t), and G̃ is fuzzy Pettis integrable on T , then f̃ is measurable.

Fixing ξ ∈ U , we consider the open subset U1 and U2 of En such that ξ ∈ U1 and U1 + U2 ⊂ U .

Since (FHP )
∫ (·)
0
f̃(t)dt is continuous, there exist t1 ∈ T such that (FHP )

∫ t
0
f̃(t)dt ∈ U2 for every

t ∈ [0, t1]. We define a fuzzy-number-valued function F̃ ′ : [0, t1]× U1 −→ En as the following:

F̃ ′(t, x) = (−1) · f̃ + F̃ (t, x+ (FHP )

∫ t

0

f̃(τ)dτ),

which satisfies the following conditions:
(1) F̃ ′(t, x) ⊂ G̃(t), ∀t ∈ T, ∀x ∈ U ;
(2) for evry t ∈ T , F̃ ′(t, x) is upper semi-continuous;
(3) σ(x, [F ′(·, x)]r) is measurable for every x ∈ U .

Then we obtain that there exist t0 ∈ [0, t1] such that ξ+ (FP )
∫ t0
0
G̃(s)ds ∈ U1, the integral inclusion

y(t) ∈ ξ + (FHP )

∫ t

0

F̃ ′(s, y(s))ds (4.2)

has a solution in C([0, t0], En) and the set of solution is compact in C([0, t0], En).
Therefore, we have

ξ + (FHP )

∫ t0

0

Γ̃(s)ds = ξ + (FHP )

∫ t0

0

f̃(s)ds+ (FP )

∫ t0

0

G̃(s)ds ⊂ U

and we find y(t) ∈ C([0, t0], En) such that

y(t) ∈ ξ + (FP )

∫ t

0

(−1) · f̃(s) + F̃ (s, y(s) + (FHP )

∫ s

0

f̃(τ)dτ)ds,

That is

y(t) + (FHP )

∫ t

0

f̃(s)ds ∈ ξ + (FHP )

∫ t

0

F̃ (s, y(s) + (FHP )

∫ s

0

f̃(τ)dτ)ds.

Thus x(·) = y(·) + (FHP )
∫ (·)
0
f̃(τ)dτ is a solution of the integral inclusion.
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5 Conclusions

In this paper, we study the Henstock-Pettis integral of compact convex set-valued functions and
fuzzy-number-valued function and the K−convergence theorem of fuzzy Henstock-Pettis integrals.
We emphasize that the outcomes of the second part in our paper are different from the results in L. Di
Piazza’s paper [5]. In the future research, we shall deals with a new derivative and Hestock-Pettis-∆-
integral for fuzzy-number-valued functions on time scales. Also, we shall study and investigate fuzzy
differential equations and fuzzy integral equations with ∆H−derivative and FHP − ∆−integral on
time scales.
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Abstract

In this paper, we investigate the Diamond integral on time scales. By using

Darboux approach, we define the Riemann Diamond integral on time scales

and prove the corresponding theorems. Our results extend and improve the

corresponding results on inequality of [8].
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Jensen’s inequality, time scales
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1. Introduction

The theory of time scales was born in 1988 with the Ph.D. thesis of Stefan

Hilger, done under the supervision of Bernd Aulbach [9]. The aim of this theory

was to unify various definitions and results from the theories of discrete and

continuous dynamical systems, and to extend such theories to more general

classes of dynamical systems. It has been extensively studied on various aspects

by several authors [1,4,5,6,7,10,14,16].

Two versions of the calculus on time scales, the delta and nabla calculus,

are now standard in the theory of time scales [5,6]. In 2006, the Diamond-alpha
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integral on time scales was introduced by Sheng, Fadag, Henderson, and Davis

[16], as a linear combination of the delta and nabla integrals. The Diamond-

alpha integral reduces to the standard delta integral for α = 1 and to the

standard nabla integral for α = 0. We refer the reader to [2,3,11,12,13,15,16]

for a complete account of the recent Diamond-alpha integral on time scales. In

2015, the Diamond integral on time scales, as a refined version of the diamond-

alpha integral, was introduced by Artur M. C. Brito da Cruz et al., [8]. In this

paper we define and study the Riemann Diamond integral on time scales. Basic

properties of the theory are proved.

The paper is organized as follows. Section 2 contains basic concepts of time

scales theory. In Section 3, definition of the Riemann diamond integral will

be introduced. We will investigate basic properties of the Riemann diamond

integral. In Section 4, we will establish generalized Hölder’s inequality, Cauchy-

Schwarz’s inequality, Minkowski’s inequality and Jensen’s inequality on time

scales.

2. Preliminaries

Let T be a time scale, i.e. a nonempty closed subset of R. For a, b ∈ T we

define the closed interval [a, b]T by [a, b]T = {t ∈ T : a ≤ t ≤ b}. The open and

half-open intervals are defined in an similar way. For t ∈ T we define the forward

jump operator σ : T→ T by σ(t) = inf{s ∈ T : s > t} where inf ∅ = supT, while

the backward jump operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}

where sup ∅ = inf T.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is

left-scattered. If σ(t) = t, we say that t is right-dense, while if ρ(t) = t, we say

that t is left-dense. A point t ∈ T is dense if it is right and left dense; isolated if

it is right and left scattered. The forward graininess function µ : T→ [0,∞) and

the backward graininess function η : T→ [0,∞) are defined by µ(t) = σ(t)− t,

η(t) = t−ρ(t) for all t ∈ T respectively. If supT is finite and left-scattered, then

we define Tk := T\ supT, otherwise Tk := T; if inf T is finite and right-scattered,

2
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then Tk := T\ inf T, otherwise Tk := T. We set Tkk := Tk
⋂
Tk.

A function f : T→ R is called regulated provided its right-sided limits exist

(finite) at all right-dense point of T and its left-sided limits exist (finite) at all

left-dense point of T.

A function f : T → R is called rd-continuous provided it is continuous at

all right-dense points in T and its left-sided limits exist (finite) at all left-dense

points in T.

Assume f : T→ R is a function and let t ∈ Tk. Then we define f∆(t) to be

the number (provided it exists) with the property that given any ε > 0, there

exists a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . We call f∆(t) the delta derivative of f at t and we say that f is

delta differentiable on Tk provided f∆(t) exists for all t ∈ Tk.

let t ∈ Tk. We define f∇(t) to be the number with the property that given

any ε > 0, there exists a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ U . We call f∇(t) the nabla derivative of f at t and we say that f is

nabla differentiable on Tk provided f∇(t) exists for all t ∈ Tk.

Let t, s ∈ T and define µt,s := σ(t) − s and ηt,s := ρ(t) − s. We define

f♦α(t) to be the number with the property that given any ε > 0, there exists a

neighborhood U of t such that

|α(f(σ(t))− f(s))ηt,s + (1−α)(f(ρ(t))− f(s))µt,s − f♦α(t)µt,sηt,s| ≤ ε|µt,sηt,s|

for all s ∈ U . We call f♦α(t) the diamond-α derivative of f at t and we say that

f is diamond-α differentiable on Tkk provided f♦α(t) exists for all t ∈ Tkk.

The real function

γ(t) := lim
s→t

σ(t)− s
σ(t) + 2t− 2s− ρ(t)

.

3
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3. The Riemann Diamond integral

A partition of [a, b]T is any finite ordered subset

P = {t0, t1, . . . , tn} ⊂ [a, b]T, where a = t0 < t1 < . . . < tn = b.

Each partition P = {t0, t1, . . . , tn} of [a, b]T decomposes it into subintervals

[ti−1, ti)T, i = 1, 2, . . . , n, such that for i 6= j one has [ti−1, ti)T ∩ [tj−1, tj)T = ∅.

By P([a, b]T) we denote the set of all partitions of [a, b]T. Let Pn, Pm ∈

P([a, b]T). If Pn ⊂ Pm we call Pn a refinement of Pm. If Pn, Pm are indepen-

dently chosen, then the partition Pn ∪ Pm is a common refinement of Pn and

Pm.

Let f : [a, b]T → R be a real-valued bounded function on [a, b]T. We denote

M = sup{γ(t)f(t) : t ∈ [a, b)T}, m = inf{γ(t)f(t) : t ∈ [a, b)T},

M = sup{(1− γ(t))f(t) : t ∈ (a, b]T}, m = inf{(1− γ(t))f(t) : t ∈ (a, b]T},

and for 1 ≤ i ≤ n,

Mi = sup{γ(t)f(t) : t ∈ [ti−1, ti)T}, mi = inf{γ(t)f(t) : t ∈ [ti−1, ti)T},

Mi = sup{(1−γ(t))f(t) : t ∈ (ti−1, ti]T}, mi = inf{(1−γ(t))f(t) : t ∈ (ti−1, ti]T},

Let γ(t) ∈ [0, 1]. The upper Darboux ♦-sum of f with respect to the parti-

tion P , denoted by U(f, P ), is defined by

U(f, P ) =
n∑
i=1

(Mi +Mi)(ti − ti−1),

while the lower Darboux ♦-sum of f with respect to the partition P , denoted

by L(f, P ), is defined by

L(f, P ) =
n∑
i=1

(mi +mi)(ti − ti−1).

Note that

U(f, P ) ≤
n∑
i=1

(M +M)(ti − ti−1) = (M +M)(b− a)

4
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and

L(f, P ) ≥
n∑
i=1

(m+m)(ti − ti−1) = (m+m)(b− a).

Thus, we have (m+m)(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ (M +M)(b− a).

Definition 3.1 Let I = [a, b]T, where a, b ∈ T. The upper Darboux

♦−integral of f from a to b is defined by

∫ b

a

f(t)♦t = inf
P∈P([a,b]T)

U(f, P );

The lower Darboux ♦−integral of f from a to b is defined by

∫ b

a

f(t)♦t = sup
P∈P([a,b]T)

L(f, P ).

If
∫ b
a
f(t)♦t =

∫ b
a
f(t)♦t, then we say that f is Riemann ♦−integrable on

[a, b]T, and the common value of the integrals, denoted by
∫ b
a
f(t)♦t, is called

the Riemann ♦− integral.

Definition 3.2 Let I = [a, b]T, where a, b ∈ T. The upper Darboux

∆−integral of f from a to b is defined by

∫ b

a

f(t)∆t = inf
P∈P([a,b]T)

U(f, P )

where U(f, P ) denote the upper Darboux sum of f with respect to the partition

P and

U(f, P ) =
n∑
i=1

Mi(ti − ti−1),Mi = sup{f(t) : t ∈ [ti−1, ti)T}.

The lower Darboux ∆−integral of f from a to b is defined by

∫ b

a

f(t)∇t = sup
P∈P([a,b]T)

L(f, P ).

where L(f, P ) denote the lower Darboux sum of f with respect to the par-

tition P and

L(f, P ) =

n∑
i=1

mi(ti − ti−1),mi = inf{f(t) : t ∈ [ti−1, ti)T}.

5
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If
∫ b
a
f(t)∆t =

∫ b
a
f(t)∆t, then we say that f is ∆−integrable on [a, b]T, and the

common value of the integrals, denoted by
∫ b
a
f(t)∆t, is called the Riemann ∆−

integral. Similarly, we can give the definition of the Riemann ∇− integral.

We can easily get the following two theorems.

Theorem 3.1 If γf : [a, b]T → R is Riemann ∆−integrable and (1−γ)f :

[a, b]T → R Riemann ∇−integrable on the interval [a, b]T, then f : [a, b]T → R

is Riemann ♦−integral on [a, b]T and∫ b

a

f(t)♦t =

∫ b

a

γ(t)f(t)∆t+

∫ b

a

(1− γ(t))f(t)∇t.

Theorem 3.2 Let f : [a, b]T → R is Riemann ♦−integrable on the interval

[a, b]T.

(1) If γ(t) ≡ 1, then f is Riemann ∆−integrable on [a, b]T.

(2) If γ(t) ≡ 0, then f is Riemann ∇−integrable on [a, b]T.

(3) If 0 < γ(t) < 1, then f is Riemann ∆−integrable and Riemann∇−integrable

on [a, b]T.

The proofs of the following two Theorem are standard and similar to [6,

Theorem 5.5 and Theorem 5.6].

Theorem 3.3 Let L(f, P ) = U(f, P ) for some P ∈ P([a, b]T), then the

function f is Riemann ♦−integrable on the interval [a, b]T and∫ b

a

f(t)♦t = L(f, P ) = U(f, P ).

Theorem 3.4 (Cauchy criterion) Let f : [a, b]T → R be a bounded

function on the interval [a, b]T. Then the function f is Riemann ♦−integrable

on the interval [a, b]T if and only if for every ε > 0 there exists a partition

P ∈ P([a, b]T) such that U(f, P )− L(f, P ) < ε.

The following Lemma can be found in [7].

Lemma 3.5 Let I = [a, b]T be a closed (bounded) interval in T. For every

δ > 0 there is a partition Pδ = {t0, t1, . . . , tn} ∈ P([a, b]T) such that for each i

one has:

ti − ti−1 ≤ δ or ti − ti−1 > δ ∧ ρ(ti) = ti−1.

6
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The next theorem gives another Cauchy criterion for integrability.

Theorem 3.6 A bounded function f on [a, b]T is Riemann ♦−integrable

if and only if for each ε > 0 there exists δ > 0 such that Pδ ∈ P([a, b]T) implies

U(f, Pδ)− L(f, Pδ) < ε.

Proof. If for each ε > 0 there exists δ > 0 such that Pδ ∈ P([a, b]T) implies

U(f, Pδ)− L(f, Pδ) < ε,

then we have that f is integrable on [a, b]T by Theorem 3.4.

Conversely, suppose that f is Riemann ♦−integrable on [a, b]T. If γ(t) ≡

1 or γ(t) ≡ 0, then f is Riemann ∆−integrable or ∇−integrable on [a, b]T.

Therefore condition holds from [6, Theorem 5.9]. Now, let 0 < γ(t) < 1, f

is Riemann ♦− integrable, then γf is Riemann ∆−integrable and (1 − γ)f is

Riemann ∇−integrable. For each ε > 0 there exists δ′ > 0 and δ′′ > 0 such that

Pδ′ ∈ P([a, b]T), Pδ′′ ∈ P([a, b]T) we have

U(γf, Pδ′)− L(γf, Pδ′) <
ε

2
, U((1− γ)f, Pδ′′)− L((1− γ)f, Pδ′′) <

ε

2
.

If Pδ ∈ P([a, b]T) where δ = min{δ′, δ′′}, then we have

U(f, Pδ)−L(f, Pδ) = U(γf, Pδ)−L(γf, Pδ)+U((1−γ)f, Pδ)−L((1−γ)f, Pδ) < ε.

The Riemann ♦−integral has the following properties. Here we will not

dwell with the proofs.

Theorem 3.7 Let functions f, g : T → R be Riemann ♦−integrable on

the interval [a, b]T, a < b < c and α, β be arbitrary real numbers. Then,

(1) αf ± βg is Riemann ♦−integrable on the interval [a, b]T and∫ b

a

(αf(t)± βg(t))♦t = α

∫ b

a

f(t)♦t± β
∫ b

a

g(t)♦t.

(2)
∫ c
a
f(t)♦t+

∫ b
c
f(t)♦t =

∫ b
a
f(t)♦t.

(3) if f ≤ g for t ∈ [a, b]T, then
∫ b
a
f(t)♦t ≤

∫ b
a
g(t)♦t.

(4) |f | is Riemann ♦−integrable on the interval [a, b]T and |
∫ b
a
f(t)♦t| ≤∫ b

a
|f(t)|♦t.

7
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(5) fg is Riemann ♦−integrable on the interval [a, b]T.

The following theorem may be proved in much the same way as [6, Theorem

5.18, 5.19, 5.20, 5.21.].

Theorem 3.8 Let I = [a, b]T, where a, b ∈ T.

(¡) Every monotone function f is Riemann ♦−integrable on [a, b]T.

(¡¡) Every continuous function f is Riemann ♦−integrable on [a, b]T.

(¡¡¡) Every bounded function f with only finitely many discontinuity points

is Riemann ♦−integrable on [a, b]T.

(¡¡¡¡) Every regulated function f is Riemann ♦−integrable on [a, b]T.

Theorem 3.9 Let f : T→ R and t ∈ T. Then, f is Riemann ♦−integrable

on [t, σ(t)]T and ∫ σ(t)

t

f(s)♦s = µ(t)(f(t) + fσ(t)).

Proof If t = σ(t), then the equality is obvious. If t < σ(t), then

P([t, σ(t)]T) contains only one element given by

t = s0 < s1 = σ(t).

Since [s0, s1)T = {t} and (s0, s1]T = {σ(t)}, we have

U(f, P ) = L(f, P ) = γ(t)f(t)(σ(t)−t)+(1−γ(σ(t)))fσ(t)(σ(t)−t) = µ(t)(f(t)+fσ(t)).

By Theorem 3.3, f is Riemann ♦−integrable on [t, σ(t)]T and∫ σ(t)

t

f(s)♦s = µ(t)(f(t) + fσ(t)).

Theorem 3.10 Let f : T→ R and t ∈ T. Then, f is Riemann ♦−integrable

on [ρ(t), t]T and ∫ t

ρ(t)

f(s)♦s = η(t)(fρ(t) + f(t)).

Proof If t = ρ(t), then the equality is obvious. If t > ρ(t), then [ρ(t), t]T

contains only one element given by

ρ(t) = s0 < s1 = t.

8
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Since [s0, s1)T = {ρ(t)} and (s0, s1]T = {t}, we have

U(f, P ) = L(f, P ) = γ(ρ(t))fρ(t)(t−ρ(t))+(1−γ(t))f(t)(t−ρ(t)) = η(t)(fρ(t)+f(t)).

By Theorem 3.3, f is Riemann ♦−integrable on [ρ(t), t]T and∫ t

ρ(t)

f(s)♦s = η(t)(fρ(t) + f(t)).

By the definition of the Riemann ♦−integral, we have the following Corol-

lary:

Corollary Let a, b ∈ T and a < b. Then we have the following:

(1) If T = R, then a bounded function f is Riemann ♦−integrable on the

interval [a, b]T if and only if f is Riemann integrable on [a, b]T in the classical

sense, and in this case ∫ b

a

f(t)♦t =

∫ b

a

f(t)dt.

(2) If T = Z, then each function f : Z→ R is Riemann ♦−integrable on the

interval [a, b]T. Moreover∫ b

a

f(t)♦t =
b−1∑
t=a+1

f(t) + f(a) + f(b).

(3) If T = hZ, then each function f : hZ → R is Riemann ♦−integrable on

the interval [a, b]T. Moreover

∫ b

a

f(t)♦t =

b
h−1∑

k= a
h+1

f(kh) + f(a)h+ f(b)h.

Example Let f : {1, 2, 3} → R be defined by f(t) = t. Then,∫ 3

1

f(t)♦t = γ(1)f(1)+(1−γ(2))f(2)+γ(2)f(2)+(1−γ(3))f(3) = 1+2+3 = 6.

4. Generalized Inequalities

In this section, we will establish generalized Hölder’s inequality, Cauchy-

Schwarz’s inequality, Minkowski’s inequality and Jensen’s inequality on time

scales.

9
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Theorem 4.1 (Generalized Hölder’s inequality) Let f, g, h ∈ Cld([a, b]T, R)

and 1
p + 1

q = 1 with p > 1; then∫ b

a

|h(t)||f(t)g(t)|♦t ≤
(∫ b

a

|h(t)||f(t)|p♦t
) 1
p
(∫ b

a

|h(t)||g(t)|q♦t
) 1
q

.

Proof For nonnegative real numbers α, β and p, q such that 1
p + 1

q = 1 with

p > 1, we have the well-known Young’s inequality α
1
p β

1
q ≤ α

p + β
q .

Without loss of generality, we suppose that(∫ b

a

|h(t)||f(t)|p♦t
)(∫ b

a

|h(t)||g(t)|q♦t
)
6= 0.

Let

α(t) =
|h(t)||f(t)|p∫ b

a
|h(t)||f(t)|p♦t

, β(t) =
|h(t)||g(t)|q∫ b

a
|h(t)||g(t)|q♦t

.

Consequently we have that∫ b

a

|h(t)|
1
p |f(t)|( ∫ b

a
|h(t)||f(t)|p♦t

) 1
p

|h(t)|
1
q |g(t)|( ∫ b

a
|h(t)||g(t)|q♦t

) 1
q

♦t

=

∫ b

a

α
1
p (t)β

1
q (t)♦t

≤
∫ b

a

(α(t)

p
+
β(t)

q

)
♦t

=

∫ b

a

(1

p

|h(t)||f(t)|p∫ b
a
|h(t)||f(t)|p♦t

+
1

q

|h(t)||g(t)|q∫ b
a
|h(t)||g(t)|q♦t

)
♦t

=
1

p
+

1

q
= 1,

which completes the proof. For the particular case p = q = 2 in Theorem

4.1, we obtain the Cauchy-Schwarz’s inequality.

Theorem 4.2 (Generalized Cauchy-Schwarz’s Inequality) Let f, g, h be

♦−integrable on the interval [a, b]T, then∫ b

a

|h(t)||f(t)g(t)|♦t ≤

√(∫ b

a

|h(t)||f(t)|2♦t
)(∫ b

a

|h(t)||g(t)|2♦t
)
.

Theorem 4.3 (Generalized Minkowski’s inequality) Let f, g, h be♦−integrable

on the interval [a, b]T and p > 1, then(∫ b

a

|h(t)||f(t)+g(t)|p♦t
) 1
p ≤

(∫ b

a

|h(t)||f(t)|p♦t
) 1
p

+
(∫ b

a

|h(t)||g(t)|p♦t
) 1
p

.

10
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Proof It follows from Theorem 4.1 that∫ b

a

|h(t)||f(t) + g(t)|p♦t

=

∫ b

a

|h(t)||f(t) + g(t)|p−1(|f(t) + g(t)|)♦t

≤
∫ b

a

|h(t)||f(t) + g(t)|p−1(|f(t)|+ |g(t)|)♦t

=

∫ b

a

|h(t)||f(t) + g(t)|p−1|f(t)|♦t+

∫ b

a

|h(t)||f(t) + g(t)|p−1|g(t)|♦t

≤
{∫ b

a

|h(t)|
(
|f(t) + g(t)|p−1

)q
♦t
} 1
q
(∫ b

a

|h(t)||f(t)|p♦t
) 1
p

+
{∫ b

a

|h(t)|
(
|f(t) + g(t)|p−1

)q
♦t
} 1
q
(∫ b

a

|h(t)||g(t)|p♦t
) 1
p

=
{∫ b

a

|h(t)||f(t) + g(t)|p♦t
} 1
q
{(∫ b

a

|h(t)||f(t)|p♦t
) 1
p

+
(∫ b

a

|h(t)||g(t)|p♦t
) 1
p

.

Dividing both sides by {∫ b

a

|h(t)||f(t) + g(t)|p♦t
} 1
q

,

we arrive to Minkowskis inequality:(∫ b

a

|h(t)||f(t)+g(t)|p♦t
) 1
p ≤

(∫ b

a

|h(t)||f(t)|p♦t
) 1
p

+
(∫ b

a

|h(t)||g(t)|p♦t
) 1
p

.

Theorem 4.4 (Jensen’s inequality) Let a, b ∈ T and c, d ∈ R. If g :

[a, b]T → (c, d) is rd-continuous and f : (c, d) → R is continuous and convex,

then

f
(∫ b

a
g(t)♦t
b− a

)
≤
∫ b
a
f(g(t))♦t
b− a

.

Proof Let x0 ∈ (c, d). Then for each x ∈ (c, d), there exists β such that

f(x)− f(x0) ≥ β(x− x0).

11
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Let x0 =
∫ b
a
g(t)♦t
b−a , Thus,

∫ b

a

f(g(t))♦t− (b− a)f
(∫ b

a
g(t)♦t
b− a

)
=

∫ b

a

f(g(t))♦t− (b− a)f(x0)

=

∫ b

a

(f(g(t))− f(x0))♦t

≥ β

∫ b

a

(g(t)− x0)♦t

= β

∫ b

a

g(t)♦t− (b− a)x0 = 0,

which completes our proof.

Similarly, we have the following Generalized Jensen’s inequality.

Theorem 4.5 (Generalized Jensen’s inequality) Let a, b ∈ T and c, d ∈ R.

If g : [a, b]T → (c, d), h : [a, b]T → R is rd-continuous with
∫ b
a
|h(t)|♦t > 0 and

f : (c, d)→ R is continuous and convex, then

f
(∫ b

a
|h(t)|g(t)♦t∫ b
a
|h(t)|♦t

)
≤
∫ b
a
|h(t)|f(g(t))♦t∫ b
a
|h(t)|♦t

.
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CONTINUITY AND CONTINUOUS HOMOGENEOUS
SELECTIONS OF SET-VALUED METRIC GENERALIZED

INVERSE IN BANACH SPACES

SHAOQIANG SHANG1∗ AND YUNAN CUI2

Abstract. In this paper, upper semicontinuity and continuity for the set-
valued metric generalized inverses T ∂ in Banach spaces are investigated by
metric projection operator. Moreover, criteria for the set-valued metric gener-
alized inverses to have continuous homogeneous selections are given. Finally,
the relation of continuity and continuous selection of the set-valued metric
generalized inverse are given.

1. Introduction and preliminaries

Let (X, ‖ · ‖) be a real Banach space. Let S(X) and B(X) denote the unit
sphere and the unit ball of X, respectively. By X∗ we denote the dual space of
X. Let T denote a linear bounded operator from subspace of X into Banach
space Y . Let D(T ), R(T ) and N(T ) denote the domain, range and null space of
T , respectively. Let L be a subspace of X. The set-valued mapping PL : X → L

PL(x) =

{
z ∈ L : ‖x− z‖ = dist(x, L) := inf

y∈L
‖x− y‖

}
is said to be the metric projection operator from X onto L. A subspace L is
said to be proximinal if PL(x) 6= ∅ for all x ∈ X. Continuity of metric projection
operator is an important content in geometry of Banach spaces. Moreover, metric
projection operator plays an important role in the optimization, computational
mathematics, theory of equation and control theory.

The concept of generalized inverses has been extensively studied in the last
decades, which has its genetic in the context of the so-called ”ill-posed” linear
problems. If N(T ) 6= {0} or R(T ) 6= Y , the operator equation Tx = y is generally
ill-posed, i.e., there exists y0 ∈ Y such that ‖Tx− y0‖ 6= 0 for any x ∈ D(T ).
In order to solve the best approximation problems for ill-posed linear operator
equations in Banach spaces, it is necessary to study the set-valued metric gener-
alized inverses of linear operators between Banach spaces. In 1974, Nashed and
Votruba [9] introduced the concept of the set-valued metric generalized inverse of
a linear operator between Banach spaces and they raised the following research
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2 S. SHANG, Y. CUI

suggestion ”The problem of obtaining selections with nice properties for the met-
ric generalized inverse merits study”. Moreover, it is well known that set-valued
metric generalized inverses is a set-valued mapping. Hence upper semicontinuity
and continuity of set-valued metric generalized inverses merit study. In 2015,
Shang and Cui [8] gave a criteria for upper semicontinuity of the set-valued met-
ric generalized inverses in approximative compact spaces. In this paper, upper
semicontinuity and continuity for the set-valued metric generalized inverses T ∂ in
Banach spaces are investigated by metric projection operator. Moreover, criteria
for the set-valued metric generalized inverses to have continuous homogeneous
selection are given. Finally, the relation of continuity and continuous selections
of the set-valued metric generalized inverse are given. First let us recall some
definitions that will be used in the further part of the paper.

Definition 1.1. (see [7]) A subspace L ⊂ X is said to be k-Chebyshev subspace
if L is proximinal and for any x ∈ X, we have dim (span {x− PL(x)}) ≤ k.

I. Singer defined the k-strictly convex spaces in [15]. He proved that if X is
reflexive and k-strictly convex, then every closed subspace of X is k-Chebyshev
subspace. Moreover, it is easy to see that if L is a Chebyshev subspace, then L
is k-Chebyshev.

Definition 1.2. (see [4]) Set-valued mapping F : X → Y is said to be upper
semicontinuous at x0, if for each norm open set W with F (x0) ⊂ W , there exists
a norm neighborhood U of x0 such that F (x) ⊂ W for all x in U . F is called lower
semicontinuous at x0, if for any y ∈ F (x0) and any {xn}∞n=1 in X with xn → x0,
there exists yn ∈ F (xn) such that yn → y as n → ∞. F is called continuous at
x0, if F is upper semicontinuous and is lower semicontinuous at x0.

Definition 1.3. (see [14]) A closed subspace N of X is said to be a topologically
complemented subspace of X, if there exists a closed subspace M of X such that
M ⊕N = X.

Definition 1.4. A subspace L ⊂ X is said to be maximal subspace of X if there
exists x∗ ∈ S(X∗) such that L = {x ∈ X : x∗(x) = 0}.

Definition 1.5. (see [6]) A Banach space X is said to be nearly convex, if every
closed convex set of S(X) is compact.

Definition 1.6. (see [9]) A point x0 ∈ D(T ) is said to be the best approximative
solution to the operator equation Tx = y, if

‖Tx0 − y‖ = inf {‖Tx− y‖ : x ∈ D(T )}
and

‖x0‖ = min

{
‖v‖ : v ∈ D(T ), ‖Tv − y‖ = inf

x∈D(T )
‖Tx− y‖

}
.

Definition 1.7. (see [9]) Let X, Y be Banach spaces, T be a linear bounded
operator from subspace of X to Y and D(T ) be the domain of T . The set-valued
mapping T ∂ : D(T ∂)→ X defined by

T ∂(y) = {x0 ∈ D(T ) : x0 is a best approximative solution to T (x) = y}
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CONTINUITY AND CONTINUOUS HOMOGENEOUS SELECTIONS 3

for any y ∈ D(T ∂), is said to be the (set-valued) metric generalized inverse of T,
where

D(T ∂) = {y ∈ Y : T (x) = y has a best approximative solution in X}.

2. Continuity of the set-valued metric generalized inverse in
Banach spaces

Theorem 2.1. Let X be a nearly convex space, Y be a Banach space, T be a
linear bounded operator from subspace of X into Y , D(T ) be a closed subspace of
X and R(T ) be a 2-Chebyshev maximal subspace of Y . Then

(1) T ∂ is upper semicontinuous on Y if and only if PN(T ) is upper semicontin-
uous on D(T );

(2) T ∂ is continuous if and only if TT ∂ is lower semicontinuous and PN(T ) is
continuous on D(T ).

Proof. (1) ”⇒” We first will prove that the metric projector operator PR(T ) is
continuous and PR(T )(y) is a line segment. In fact, by Lemma 1 of [8], we know
that if closed subspace H is a 2-Chebyshev subspace of X, then PH(x) is a line
segment for any x ∈ X. Hence PR(T )(y) is a line segment.

Since R(T ) is an 2-Chebyshev maximal subspace of Y , there exists f ∈ S(X∗)
such that R(T ) = {y ∈ Y : f(y) = 0}. Let y ∈ Y . Pick z ∈ R(T ) and h ∈ S(Y ).
Then there exists α ∈ R such that y−z = αh. It is easy to see that α = f(y)/f(h).
Then y − z = (f(y)/f(h))h. Hence ‖y − z‖ = |f(y)| / |f(h)| ≥ |f(y)|. Then it is
easy to see that z ∈ PR(T )(y) if and only if h ∈ Af . Hence PR(T )(y) = y−f(y)Af ,
where Af = {y ∈ S(Y ) : f(y) = 1}.

Suppose that metric projection operator PR(T ) is not upper semicontinuous at
y0. Then there exist a sequence {yn}∞n=1 ⊂ Y and an open set W ⊃ PR(T )(y0) such
that PR(T )(yn) 6⊂ W and yn → y0 as n → ∞. Hence there exists zn ∈ PR(T )(yn)
such that zn /∈ W . Then zn = yn − f(yn)hn, where hn ∈ Af . Since PR(T )(y) is
a line segment and PR(T )(y) = y − f(y)Af , we obtain that Af is a line segment.
Hence there exists a subsequence {hnk

}∞k=1 of {hn}∞n=1 such that hnk
→ h0 ∈ Af

as k →∞. Let z0 = y0 − f(y0)h0. Then z0 ∈ PR(T )(y0) and

lim
k→∞

znk
= lim

k→∞
(ynk
− f(ynk

)hnk
) = y0 − f(y0)h0 = z0,

a contradiction. This implies that PR(T ) is upper semicontinuous.
Let yn → y0 as n → ∞. Pick z0 ∈ PR(T )(y0). Then there exists h0 ∈ Af such

that z0 = y0 − f(y0)h0. Hence zn = yn − f(yn)h0 ∈ PR(T )(xn) and

lim
n→∞

zn = lim
n→∞

(yn − f(yn)h0) = y0 − f(y0)h0 = z0

This implies that PR(T ) is lower semicontinuous at y0. Hence we obtain that PR(T )

is continuous.
Pick y0 ∈ Y . Suppose that T ∂ is not upper semicontinuous at y0. Then there

exist a sequence {yn}∞n=1 ⊂ Y , yn → y0 ∈ Y and norm open set W with T ∂(y0) ⊂
W such that T ∂(yn) 6⊂ W for all n ∈ N . Hence there exists xn ∈ T ∂(yn) ⊂ X
such that xn /∈ W . Since T is a bounded linear operator, we obtain that N(T ) is
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a closed subspace of D(T ). Let

T : D(T )/N(T )→ R(T ), T [x] = Tx,

where [x] ∈ D(T )/N(T ) and x ∈ D(T ). Then it is easy to see that R(T ) = R(T ).

Moreover, R(T ) = R(T ). In fact, suppose that R(T ) 6= R(T ). Then there exists

y′ ∈ R(T ) such that y′ /∈ R(T ). It is easy to see that {y ∈ R(T ) : ‖y′ − y‖ =
dist(y′, R(T ))} = ∅. This implies that R(T ) is not a 2-Chebyshev subspace of Y ,

a contradiction. Since R(T ) = R(T ), we obtain that R(T ) is a Banach space.
Moreover, it is easy to see that T is a bounded linear operator and N(T ) = {0}.
This implies that the bounded linear operator T is both injective and surjective.

Therefore, by the inverse operator theorem, we obtain that the operator T
−1

is a
bounded linear operator.

Let PR(T )(y0) = [y(1, 0), y(2, 0)]. Since T
−1

is a bounded linear operator and
[y(1, 0), y(2, 0)] is a compact set, we obtain that the infimum

inf
{∥∥∥T−1(z)

∥∥∥ : z ∈ [y(1, 0), y(2, 0)]
}

is attainable on [y(1, 0), y(2, 0)]. Let

A(0) =
{
y ∈ [y(1, 0), y(2, 0)] :

∥∥∥T−1(y)
∥∥∥ = inf{

∥∥∥T−1(z)
∥∥∥ : z ∈ [y(1, 0), y(2, 0)]}

}
.

It is easy to see that A(0) is a closed set. Moreover, if z1 ∈ A(0) and z2 ∈ A(0),
then ∥∥∥T−1 (λz1 + (1− λ)z2)

∥∥∥ ≤ λ
∥∥∥T−1 (z1)

∥∥∥+ (1− λ)
∥∥∥T−1 (z2)

∥∥∥
= inf

{∥∥∥T−1(z)
∥∥∥ : z ∈ [y(1, 0), y(2, 0)]

}
,

where λ ∈ [0, 1]. This implies that the set A(0) is a closed convex set. Hence there
exist z(1, 0) ∈ [y(1, 0), y(2, 0)] and z(2, 0) ∈ [y(1, 0), y(2, 0)] such that A(0) =
[z(1, 0), z(2, 0)]. Let PR(T )(yn) = [y(1, n), y(2, n)]. Then there exist z(1, n) ∈
[y(1, n), y(2, n)] and z(2, n) ∈ [y(1, n), y(2, n)] such that

A(n)

=
{
y ∈ [y(1, n), y(2, n)] :

∥∥∥T−1(y)
∥∥∥ = inf

{∥∥∥T−1(z)
∥∥∥ : z ∈ [y(1, n), y(2, n)]

}}
= [z(1, n), z(2, n)].

Since PR(T ) is continuous, we may assume without loss of generality that

lim
n→∞

y(1, n) = z1 ∈ [y(1, 0), y(2, 0)] and lim
n→∞

y(2, n) = z2 ∈ [y(1, 0), y(2, 0)].

(2.1)

We claim that [z1, z2] ∈ [z(1, 0), z(2, 0)]. Otherwise, we may assume without loss
of generality that z1 /∈ [z(1, 0), z(2, 0)]. Hence there exists r > 0 such that∥∥∥T−1 (z1)

∥∥∥ > inf
{∥∥∥T−1(z)

∥∥∥ : z ∈ [y(1, 0), y(2, 0)]
}

+ 4r.
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Since T
−1

is a bounded linear operator and y(1, n) → z1 as n → ∞, we may
assume without loss of generality that∥∥∥T−1 (z(1, n))

∥∥∥ > inf
{∥∥∥T−1(z)

∥∥∥ : z ∈ [y(1, 0), y(2, 0)]
}

+ 2r (2.2)

for every n ∈ N . Since the metric projection operator PR(T ) is continuous, there

exists z(n) ∈ [y(1, n), y(2, n)] such that z(n)→ z(1, 0) as n→∞. Since T
−1

is a
bounded linear operator and z(n)→ z(1, 0) as n→∞, we have

lim
n→∞

∥∥∥T−1(z(n))
∥∥∥ =

∥∥∥T−1(z(1, 0))
∥∥∥ = inf

{∥∥∥T−1(z)
∥∥∥ : z ∈ [y(1, 0), y(2, 0)]

}
.

Therefore, by formula (2.2), we may assume without loss of generality that∥∥∥T−1 (z(1, n))
∥∥∥ > ∥∥∥T−1(z(n))

∥∥∥+ r

for all n ∈ N , a contradiction.

Pick x(1, 0) ∈ T−1(z1), x(2, 0) ∈ T−1(z2), x(1, n) ∈ T−1 (z(1, n)) and x(2, n) ∈
T
−1

(z(2, n)). Then we have [x(1, n)] = T
−1

(z(1, n)) and [x(2, n)] = T
−1

(z(2, n)).

Since T
−1

is a bounded linear operator, by formula (2.1), we have

‖[x(1, n)− x(1, 0)]‖ = ‖[x(1, n)]− [x(1, 0)]‖ ≤
∥∥∥T−1 (z(1, n))− T−1z1

∥∥∥
≤

∥∥∥T−1∥∥∥ ‖z(1, n)− z1‖ → 0 as n→∞.

Hence we may assume without loss of generality that x(1, n)→ x(1, 0) as n→∞.
Similarly, we may assume without loss of generality that x(2, n)→ x(2, 0) as
n → ∞. Moreover, by the definition of set-valued metric generalized inverse,
there exists a sequence {λn}∞n=1 ⊂ [0, 1] such that

xn = λnx(1, n) + (1− λn)x(2, n)− πN(T ) (λnx(1, n) + (1− λn)x(2, n)) ,

where

πN(T ) (λnx(1, n) + (1− λn)x(2, n)) ∈ PN(T ) (λnx(1, n) + (1− λn)x(2, n)) .

We may assume without loss of generality that λn → λ as n→∞. Then

lim
n→∞

λnx(1, n) + (1− λn)x(2, n) = λz1 + (1− λ)z2 ∈ [z1, z2]. (2.3)

Since PN(T ) is upper semicontinuous, by formula (2.3), we obtain that for any
ε > 0, there exists n0 ∈ N such that

πN(T ) (λnx(1, n) + (1− λn)x(2, n)) ∈ ∪
x∈PN(T )(λz1+(1−λ)z2)

B(x, ε)

whenever n > n0. This implies that

dist
(
{λnx(1, n) + (1− λn)x(2, n)}∞n=1, PN(T )(λz1 + (1− λ)z2)

)
= 0.

Hence, for any k > 0, there exists hnk
∈ PN(T )(λz1 + (1− λ)z2) such that∥∥πN(T )(λnk

x(1, nk) + (1− λnk
)x(2, nk))− hnk

∥∥ < 1

k
. (2.4)

Moreover, there exists r > 0 such that

λz1 + (1− λ)z2 − PN(T )(λz1 + (1− λ)z2) ⊂ rS(X).
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Since X is a nearly convex space, we obtain that λz1 + (1− λ)z2 − PN(T )(λz1 +
(1−λ)z2) is compact. Then the set PN(T )(λz1 + (1−λ)z2) is compact. Hence we
may assume without loss of generality that hnk

→ h ∈ PN(T )(λz1 + (1− λ)z2) as
n→∞. Therefore, by formula (2.4), we have

lim
k→∞

πN(T ) (λnk
x(1, nk) + (1− λnk

)x(2, nk)) = h ∈ PN(T )(λz1 + (1− λ)z2).

This implies that

xk = λnk
x(1, nk) + (1− λnk

)x(2, nk)− πN(T ) (λnk
x(1, nk) + (1− λnk

)x(2, nk))

→ λz1 + (1− λ)z2 − h
∈ λz1 + (1− λ)z2 − PN(T )(λz1 + (1− λ)z2).

Moreover, by the definition of set-valued metric generalized inverse, we obtain
that λz1 + (1− λ)z2 − PN(T )(λz1 + (1− λ)z2) ⊂ T ∂(y) ⊂ W . Since W is a norm
open set, we have xk ∈ W for k large enough, a contradiction.

”⇐” Suppose that PN(T ) is not upper semicontinuous on D(T ). Then there
exist {xn}∞n=1 ⊂ D(T ), x0 ∈ D(T ) and a norm open set W such that xn → x0,
PN(T )(x0) ⊂ W and PN(T )(xn) 6⊂ W . Hence there exists πN(T )(xn) ∈ PN(T )(xn)
such that πN(T )(xn) /∈ W . We claim that there exists δ > 0 such that

∪
z∈PN(T )(x0)

B(z, 2δ) ⊂ W.

Otherwise, there exists zn ∈ PN(T )(x0) such thatB(zn, 1/n) 6⊂ W . Since PN(T )(x0)
is compact, we may assume that zn → z0 ∈ PN(T )(x0) as n → ∞. Hence there
exists η > 0 such that B(z0, 4η) ⊂ W . Moreover, there exists n0 ∈ N such that
1/n0 < η and ‖zn0 − z0‖ ≤ η. Hence, for any z ∈ B(zn0 , 1/n0), we have

‖z − z0‖ ≤ ‖z − zn0‖+ ‖zn0 − z0‖ ≤
1

n0

+ η < η + η < 4η.

This implies that z ∈ W . Then B(zn0 , 1/n0) ⊂ W , a contradiction. Let yn = Txn
and y0 = Tx0. Then

T ∂(yn) = xn − PN(T )(xn), T ∂(y0) = x0 − PN(T )(x0) and lim
n→∞

yn = y0.

Since PN(T )(x0) ⊂ W , we obtain that T ∂(y0) = x0 − PN(T )(x0) ⊂ x0 −W . We
claim that

xn − πN(T )(xn) /∈ x0 − ∪
z∈PN(T )(x0)

B(z, δ)

whenever ‖xn − x0‖ < δ. In fact, suppose that xn−πN(T )(xn) ∈ x0− ∪
z∈PN(T )(x0)

B(z,

δ) whenever ‖xn − x0‖ < δ. Then

πN(T )(xn) = xn −
(
xn − πN(T )(xn)

)
∈ xn −

(
x0 − ∪

z∈PN(T )(x0)
B(z, δ)

)
= ∪

z∈PN(T )(x0)
B(z, δ) + (xn − x0)

⊂ ∪
z∈PN(T )(x0)

B(z, 2δ) ⊂ W,
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a contradiction. Since xn−πN(T )(xn) /∈ x0− ∪
z∈PN(T )(x0)

B(z, δ) whenever ‖xn − x0‖

< δ, we obtain that T ∂ is not upper semicontinuous at y0, a contradiction.
(2) ”⇒” Let y0 ∈ Y and yn → y0 as n → ∞. Then, by the previous proof,

there exist z(1, n) ∈ PR(T )(yn) and z(2, n) ∈ PR(T )(yn), z(1, 0) ∈ PR(T )(y0) and
z(2, 0) ∈ PR(T )(y0) such that

[z(1, n), z(2, n)] =
{
z :
∥∥∥T−1(z)

∥∥∥ = inf{
∥∥∥T−1(y)

∥∥∥ : y ∈ PR(T )(yn)}
}

and

[z(1, 0), z(2, 0)] =
{
z :
∥∥∥T−1(z)

∥∥∥ = inf{
∥∥∥T−1(y)

∥∥∥ : y ∈ PR(T )(y0)}
}
.

Moreover, by the previous proof, we may assume without loss of generality that

lim
n→∞

z(1, n) = z1 ∈ [z(1, 0), z(2, 0)] and lim
n→∞

z(2, n) = z2 ∈ [z(1, 0), z(2, 0)].

(2.5)

From the previous proof, there exist [x(1, n), x(2, n)] ⊂ X and [x(1, 0), x(2, 0)] ⊂
X such that

T {x : x ∈ [x(1, n), x(2, n)]} = [z(1, n), z(2, n)]

and
T {x : x ∈ [x(1, 0), x(2, 0)]} = [z(1, 0), z(2, 0)].

Moreover, by the definition of set-valued metric generalized inverse, we obtain
that

TT ∂(y0) = [z(1, 0), z(2, 0)] and TT ∂(yn) = [z(1, n), z(2, n)].

Since the set-valued mapping TT ∂ is lower semicontinuous, by formula (2.5), we
have

lim
n→∞

z(1, n) = z1 = z(1, 0) and lim
n→∞

z(2, n) = z2 = z(2, 0).

Therefore, by the previous proof, we obtain that

lim
n→∞

x(1, n) = x(1, 0) and lim
n→∞

x(2, n) = x(2, 0), (2.6)

Moreover, by the definition of set-valued metric generalized inverse, we obtain
that for any x ∈ T ∂(y0), there exist λ ∈ [0, 1] and h ∈ PN(T )(λx(1, 0) + (1 −
λ)x(2, 0)) such that x = λx(1, 0) + (1− λ)x(2, 0)− h. Since PN(T ) is continuous,
there exists hn ∈ PN(T )(λx(1, n) + (1 − λ)x(2, n)) such that hn → h as n → ∞.
Therefore, by formula (2.6), we obtain that

lim
n→∞

λx(1, n) + (1− λ)x(2, n) = λx(1, 0) + (1− λ)x(2, 0).

This implies that

lim
n→∞

(λx(1, n) + (1− λ)x(2, n)− hn) = λx(1, 0) + (1− λ)x(2, 0)− h = x. (2.7)

Noticing that λx(1, n)+(1−λ)x(2, n)−hn ∈ T ∂(yn) and formula (2.7), we obtain
that T ∂ is lower semicontinuous at y0. Therefore, by (1), we obtain that T ∂ is
upper semicontinuous at y0. Hence T ∂ is continuous at y0.

”⇐” Let y0 ∈ Y and yn → y0 as n → ∞. Then, by the previous proof, there
exist x0 ∈ X and {xn}∞n=1 ⊂ X such that PR(T )(y0) = Tx0, PR(T )(yn) = Txn and
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xn → x0 as n→∞. Then T ∂(y0) = x0−PN(T )(x0) and T ∂(yn) = xn−PN(T )(xn).
Since T ∂ is continuous, we obtain that for any x0 − z ∈ x0 − PN(T )(x0), there
exists xn − zn ∈ xn − PN(T )(xn) such that xn − zn → x0 − z as n → ∞, where
zn ∈ PN(T )(xn). Hence, for any z ∈ PN(T )(x0), there exists zn ∈ PN(T )(xn) such
that zn → z0 as n → ∞. This implies that PN(T ) is lower semicontinuous at y0.
Therefore, by (1), we obtain that PN(T ) is continuous at y0.

We next will prove that TT ∂ is lower semicontinuous. Let y0 ∈ Y and yn →
y0 as n → ∞. Pick z ∈ TT ∂(y0). Then there exists x0 ∈ D(T ) such that
Tx0 = y0 and x0 ∈ T ∂(y0). Since T ∂ is continuous, we obtain that T ∂ is lower
semicontinuous. Hence there exists xn ∈ T ∂(yn) such that xn → x0 as n → ∞.
This implies that Txn → Tx0 = y0 as n→∞. Since xn ∈ T ∂(yn), we obtain that
Txn ∈ TT ∂(yn). Hence TT ∂ is lower semicontinuous at y0, which completes the
proof. �

3. Continuous selections of the set-valued metric generalized
inverse in Banach spaces

Theorem 3.1. Let X, Y be Banach spaces, T be a linear bounded operator from
subspace of X into Y , D(T ) be a closed subspace of X, N(T ) be a topologically
complemented subspace of D(T ) and R(T ) be a proximinal subspace of Y . Then
the following statements are equivalent:

(1) T ∂ has a continuous homogeneous selection on Y ;
(2) PN(T ) has a continuous homogeneous selection on D(T ) and the set-valued

mapping TT ∂ has a continuous homogeneous selection on Y .

Proof. (2)⇒ (1). Since N(T ) is a topologically complemented subspace of D(T ),
there exists a closed subspace M(T ) of D(T ) such that M(T ) ⊕ N(T ) = D(T ).
Moreover, by M(T )⊕N(T ) = D(T ), we obtain that T−1(y)∩M(T ) is singleton
for any y ∈ R(T ). Define the mapping G : R(T )→M(T ) such that

G(y) = T−1(y) ∩M(T ), y ∈ R(T ).

Since T be a linear bounded operator from D(T ) into R(T ), by M(T )⊕N(T ) =
D(T ), we obtain that G is a linear bounded operator from R(T ) into M(T ). Let
TT σ be a continuous homogeneous selection of TT ∂ and πN(T ) be a continuous
homogeneous selection of PN(T ). Therefore, by the definition of set-valued metric
generalized inverse, we obtain that the mapping

G ◦ TT σ − πN(T ) ◦G ◦ TT σ : Y → D(T )

is a continuous homogeneous selection of T ∂.
(1) ⇒ (2). Since T ∂ has a continuous homogeneous selection on Y , by the

definition of set-valued metric generalized inverse, we obtain that N(T ) is a prox-
iminal subspace of D(T ). Let T σ be a continuous homogeneous selection of T ∂.
Pick x ∈ D(T ). Let

πN(T )(x) = x− T σT (x).

We next will prove that πN(T ) is a continuous homogeneous selection of PN(T ). In
fact, since

T
(
πN(T )(x)

)
= T (x− T σT (x)) = Tx− TT σT (x) = Tx− Tx = 0, (3.1)
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we obtain that πN(T )(x) ∈ N(T ). Moreover, by the definition of set-valued metric
generalized inverse, we obtain that ‖T σT (x)‖ = dist (x,N(T )). Therefore, by

x− πN(T )(x) = x− x+ T σT (x) = T σT (x)

and formula (3.1), we obtain that πN(T )(x) ∈ PN(T )(x). Moreover, since T σ is a
continuous homogeneous selection of T ∂ and πN(T )(x) = x − T σT (x), we obtain
that πN(T ) is a homogeneous selection. This implies that PN(T ) has a continuous
homogeneous selection on D(T ).

Since T σ is a continuous homogeneous selection of T ∂, we obtain that TT σ is
a continuous homogeneous selection of TT ∂, which completes the proof. �

Definition 3.2. (see [5]) A nonempty subset C of X is said to be approxima-
tively compact if for any {yn}∞n=1 ⊂ C and any x ∈ X satisfying ‖x− yn‖ →
infy∈C ‖x − y‖ as n → ∞, there exists a subsequence of {yn}∞n=1 converging to
an element in C. X is called approximatively compact if every nonempty closed
convex subset of X is approximatively compact.

Definition 3.3. (see [5]) A Banach space X is be said to be strictly convex if for
any x, y ∈ S(X) and ‖x+ y‖ = 2 we have x = y.

Theorem 3.4. Let X be approximatively compact and strictly convex, Y be a
Banach spaces, T be a linear bounded operator from subspace of X into Y , D(T )
be a closed subspace of X, N(T ) be a topologically complemented subspace of
D(T ) and R(T ) be a proximinal subspace of Y . Then the following statements
are equivalent:

(1) T ∂ has a continuous homogeneous selection on Y ;
(2) TT ∂ has a continuous homogeneous selection on Y .

Proof. Since X is approximatively compact, we obtain that PN(T ) is upper semi-
continuous. Since X is a strictly convex space, we obtain that PN(T ) is single
value mapping. This implies that PN(T ) is continuous. Therefore, by Theorem
3.1, it is easy to see that Theorem 3.4 is true, which completes the proof. �

Theorem 3.5. Let X be approximatively compact and strictly convex, Y be a
Banach space, T be a linear bounded operator from subspace of X into Y , D(T )
be a closed subspace of X and R(T ) be a proximinal subspace of Y . Then the
following statements are equivalent:

(1) T ∂ has a continuous selection on Y ;
(2) TT ∂ has a continuous selection on Y .

Proof. (2)⇒(1). Since X is approximatively compact, we obtain that PN(T ) is
upper semicontinuous. Since X is a strictly convex space, we obtain that PN(T ) is
a single value mapping. This implies that PN(T ) is a continuous and single value
mapping. Let TT σ be a continuous selection of TT ∂ and f−1TT σ be a selection
of T−1TT σ. This implies that the mapping

f−1TT σ − PN(T )f
−1TT σ

is a selection of T ∂. We next will prove that if yn → y as n→∞, then

lim
n→∞

[f−1TT σ(yn)− PN(T )f
−1TT σ(yn)] = f−1TT σ(y)− PN(T )f

−1TT σ(y). (3.2)
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In fact, by the proof of Theorem 2.1, there exists a sequence {xn}∞n=1 ⊂ D(T )
such that

xn ∈ f−1TT σ(yn)− PN(T )f
−1TT σ(yn) +N(T ) and lim

n→∞
xn = f−1TT σ(y).

Since the mapping PN(T ) and f−1TT σ are single value mappings, we obtain that

Txn = T
(
f−1TT σ(yn)− PN(T )f

−1TT σ(yn)
)
.

Hence there exists a sequence {zn}∞n=1 ⊂ N(T ) such that

xn − PN(T )(xn)− zn = f−1TT σ(yn)− PN(T )f
−1TT σ(yn).

Moreover, by the definition of set-valued metric generalized inverse, we have∥∥xn − PN(T )(xn)− zn
∥∥ =

∥∥f−1TT σ(yn)− PN(T )f
−1TT σ(yn)

∥∥ = dist (xn, N(T )) .

This implies that PN(T )(xn)+zn ⊂ PN(T )(xn). Since the mapping PN(T ) is a single
value mapping, we have zn = 0. Hence

xn − PN(T )(xn) = f−1TT σ(yn)− PN(T )f
−1TT σ(yn).

Since PN(T ) is a continuous single value mapping, by xn → f−1TT σ(y) as n→∞,
we obtain that

lim
n→∞

[xn − PN(T )(xn)] = f−1TT σ(y)− PN(T )f
−1TT σ(y).

Noticing that xn − PN(T )(xn) = f−1TT σ(yn)− PN(T )f
−1TT σ(yn), we obtain that

(3.2) is true. Hence f−1TT σ − PN(T )f
−1TT σ is a continuous selection of T ∂.

(1)⇒(2). Let T σ be a continuous selection of T ∂. Then TT σ is a continuous
selection of TT ∂, which completes the proof. �

Theorem 3.6. Let X be approximatively compact and strictly convex, Y be a
Banach spaces, T be a linear bounded operator from subspace of X into Y , D(T )
be a closed subspace of X, N(T ) be a topologically complemented subspace of
D(T ) and R(T ) be a 2-Chebyshev maximal subspace of Y . Then the following
statements are equivalent:

(1) For any x ∈ T ∂(y), there exists a selection T σ of T ∂ such that T σ(y) = x
and T σ is continuous at y;
(2) TT ∂ is lower semicontinuous at y.

Proof. (1)⇒(2). From the proof of Theorem 2.1, there exist z(1) ∈ PR(T )(y) and
z(2) ∈ PR(T )(y) such that

TT ∂(y) = [z(1, y), z(2, y)] ⊂ PR(T )(y).

Since N(T ) is a topologically complemented subspace of D(T ), there exists a
closed subspace M(T ) of D(T ) such that M(T )⊕N(T ) = D(T ). Pick x(1, y) ∈
T
−1

(z(1, y)) and x(2, y) ∈ T−1(z(2, y)). Then, by M(T ) ⊕ N(T ) = D(T ), there
exist G(y(1)), G(y(2)) ∈M(T ) and h(y(1)), h(y(2) ∈ N(T ) such that

x(1, y) = G(y(1)) + h(y(1)) and x(2, y) = G(y(2)) + h(y(2)).

Therefore, by x(1, y) ∈ T−1(z(1, y)) and x(2, y) ∈ T−1(z(2, y)), we obtain that

T (G(y(1))) = z(1, y) and T (G(y(2))) = z(2, y).
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Hence, for any z ∈ TT ∂(y), there exists λ ∈ [0, 1] such that

z = T (λG(y(1)) + (1− λ)G(y(2))) .

Pick x ∈ T σ(y). Then there exists a selection T σ of T ∂ such that T σ(y) = x and
T σ is continuous at y. This implies that

Tx = T (λG(y(1)) + (1− λ)G(y(2))) = z.

Therefore, by the definition of set-valued metric generalized inverse, we have

T σ(y) = λG(y(1)) + (1− λ)G(y(2))− PN(T ) (λG(y(1)) + (1− λ)G(y(2))) .

We next will prove that set-valued mapping TT ∂ is lower semicontinuous at y.
Let yn → y as n→∞. Then, by M(T )⊕N(T ) = D(T ) and the previous proof,
there exist G(yn(1)) ∈M(T ) and G(yn(2)) ∈M(T ) such that

T (G(yn(1))) = z(1, yn), T (G(yn(2))) = z(2, yn)

and

TT ∂(yn) = [z(1, yn), z(2, yn)] ⊂ PR(T )(yn).

Hence there exists a sequence {λn}∞n=1 ⊂ [0, 1] such that

T σ(yn) = λnG(yn(1))+(1−λn)G(yn(2))−PN(T ) (λnG(yn(1)) + (1− λn)G(yn(2))) .

Since

λnG(yn(1)) + (1− λn)G(yn(2)) ∈M(T ), λG(y(1)) + (1− λ)G(y(2)) ∈M(T ),

PN(T ) (λnG(yn(1)) + (1− λn)G(yn(2))) ∈ N(T )

and

PN(T ) (λG(y(1)) + (1− λ)G(y(2))) ∈ N(T ),

by M(T )⊕N(T ) = D(T ) and T σ(yn)→ T σ(y) as n→∞, we obtain that

lim
n→∞

λnG(yn(1)) + (1− λn)G(yn(2)) = λG(y(1)) + (1− λ)G(y(2)).

This implies that

lim
n→∞

T (λnG(yn(1)) + (1− λn)G(yn(2))) = T (λG(y(1)) + (1− λ)G(y(2))) = z.

where T (λnG(yn(1)) + (1− λn)G(yn(2))) ∈ TT σ(yn). Hence the set-valued map-
ping TT ∂ is lower semicontinuous at y.

(2)⇒(1). Let x ∈ T ∂(y). Then, by the previous proof, there exists λ ∈ [0, 1]
such that

x = λG(y(1)) + (1− λ)G(y(2))− PN(T ) (λG(y(1)) + (1− λ)G(y(2))) .

Define the set-valued mapping Y → TT ∂(Y ) such that

F (z) = c, where ‖c− Tx‖ = inf
h∈TT∂(z)

‖h− Tx‖ and c ∈ TT ∂(z).

It is easy to see that F (y) = Tx. Let f be a selection of F . Moreover, let yn → y
and f(yn) = cn. Since TT ∂ is lower semicontinuous at y, we obtain that cn → Tx
as n→∞. This implies that f is continuous at y. Since N(T ) is a topologically
complemented subspace of D(T ), there exists a closed subspace M(T ) of D(T )
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such that M(T ) ⊕ N(T ) = D(T ). Define the mapping G : R(T ) → M(T ) such
that

G(y) = T−1(y) ∩M(T ), y ∈ R(T ).

Then, by the previous proof, we obtain that G is a linear bounded operator from
R(T ) into M(T ). Since M(T ) ⊕ N(T ) = D(T ), we have x = x1 − x2, where
x1 ∈ M(T ) and x2 ∈ N(T ). Since X is a strictly convex space, we obtain that
PN(T ) is a single value mapping. Since x ∈ T ∂(y), by the definition of set-valued
metric generalized inverse, we have

‖x‖ = ‖x1 − x2‖ = inf
{
‖z‖ : z ∈ T−1x = T−1x1

}
= inf {‖x1 − h‖ : h ∈ N(T )} .

Therefore, by x1 ∈ M(T ) and x2 ∈ N(T ), we obtain that x2 = PN(T )(x1). Since
f is a selection of F and F (y) = Tx, we have G ◦ f(y) = G(Tx) = x1 Define the
mapping

T σ = G ◦ f − PN(T ) ◦G ◦ f.
Then T σ is a selection of T ∂. Moreover, by G ◦ f(y) = G(Tx) = x1, we have

T σ(y) = G ◦ f(y)− PN(T ) ◦G ◦ f(y)

= G(Tx)− PN(T )(G(Tx))

= x1 − PN(T )(x1) = x.

Since X is approximatively compact, we obtain that PN(T ) is upper semicontin-
uous. Since PN(T ) is a single value mapping, we obtain that PN(T ) is continuous.
Since f and G is continuous at y, we obtain that T σ = G ◦ f − PN(T ) ◦ G ◦ f is
continuous at y, which completes the proof. �

4. Relation of continuity and continuous selections of the
set-valued metric generalized inverse in Banach spaces

Theorem 4.1. Let X be approximatively compact and strictly convex, Y be a
Banach space, T be a linear bounded operator from subspace of X into Y , D(T )
be a closed subspace of X, N(T ) be a topologically complemented subspace of
D(T ) and R(T ) be a 2-Chebyshev maximal subspace of Y . Then the following
statements are equivalent:

(1) For any x ∈ ∪y∈Y T ∂(y), there exists a selection T σ of T ∂ such that T σ(y) =
x and T σ is continuous at y;
(2) TT ∂ is lower semicontinuous;
(3) T ∂ is continuous.

Proof. Since X is approximatively compact, we obtain that PN(T ) is upper semi-
continuous. Since X is a strictly convex space, we obtain that PN(T ) is single
value mapping. This implies that PN(T ) is continuous. Therefore, by Theorem
2.1, we obtain that (2)⇔ (3) is true. Moreover, by Theorem 3.5, we obtain that
(1)⇔ (2) is true, which completes the proof. �
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Abstract: In this paper, we introduce and study locally and globally small Riemann sums with respect to α on

[a, b] for fuzzy-number-valued functions and obtain some of it,s characterizations. Also, we shall prove two main

theorems: (i) If a fuzzy-number-valued functions f̃(x) is Henstock-Stieltjes integrable on [a, b] then it has (LSRS)

and the converse is always true. (ii) If a fuzzy-number-valued functions f̃(x) is Henstock-Stieltjes integrable on

[a, b] then it has (GSRS) and the converse is always true. Finally, by Egorov,s Theorem, we obtain the dominated

convergence theorem for globally small Riemann sums (GSRS) with respect to α on [a, b] for fuzzy-number-valued

functions.

Keywords : Fuzzy numbers; fuzzy integrals; Henstock-Stieltjes integral; locally small Riemann sums (LSRS)

with respect to α on [a, b]; globally small Riemann sums (GSRS) with respect to α on [a, b].

1 Introduction

Since the concept of fuzzy sets was firstly introduced by Zadeh in 1965 [21], it has been studied extensively

from many different aspects of the theory and applications, such as fuzzy topology, fuzzy analysis, fuzzy decision

making and fuzzy logic, information science and so on. It,s well known that the concept of the Stieltjes integral

for fuzzy-number-valued functions was originally introduced by Nanda [12] in 1989. Nonetheless, as Wu et al.

[17] pointed out that the existence of supremum and infimum for a finite set of fuzzy numbers wasn,t easy at

first thought. That is, Nanda,s concept of fuzzy Riemann-Stieltjes (FRS) integral in [12] was incorrect. In 1998,

Wu [18] introduced the notion of (FRS) integral by means of the representation theorem of fuzzy-number-valued

functions, whose membership function could be obtained by solving a nonlinear programming problem, but it,s

difficult to calculate and extend to the higher-dimensional space. In 2006, Ren et al. proposed the notion of two

types of (FRS) integral for fuzzy-number-valued functions [13, 14] and showed that a continuous fuzzy-number-

valued function was (FRS) integrable with respect to a real-valued increasing function. Gong et al. [2] defined and

discussed the (HS) integral for fuzzy-number-valued functions and proved two convergence theorems for sequences

of the (FHS) integrable functions in 2012. The locally and globally small Riemann sums have been introduced

by many authors from different points of views. In 1986, Schurle characterized the Lebesgue integral in (LSRS)

(locally small Riemann sums) property [15]. The (LSRS) property has been used to characterized the Perron

(P ) integral on [a, b] [16]. By considering the equivalency between the (P ) integral and the Henstock-Kurzweil

(HK) integral, the (LSRS) property has been used to characterized the (HK) integral on [a, b] [10].

The (LSRS) property brought a research to have global characterization on the Riemann sums of an (HK)

integrable function on [a, b]. This research has been done by considering the following fact: Every (HK) integrable

function on [a, b] is measurable, however, there is no guarantee the boundedness of the function. A measurable

function f is (HK) integrable on [a, b] depends on it behaves on the set of x in which |f(x)| is large, i.e. |f(x)| ≥ N

∗Corresponding author. Tel.: +8613218977118. E-mail address: muawya.ebrahim@gmail.com, mowia-84@hotmail.com

(M.E. Hamid), luoshanxu@hotmail.com (L.S. Xu) and gongzt@nwnu.edu.cn (Z.T. Gong).
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for some N . This fact has been characterized in (GSRS) (globally small Riemann sums) property [10]. The

(GSRS) property involves one characteristic of the primitive of an (HK) integrable function. That is the primitive

of the (HK) integral on [a, b] is ACG∗ (generalized strongly absolutely continuous) on [a, b]. This is not a simple

concept. In 2015, Indrati [8] introduced a countably Lipschitz condition of a function which is simpler than

the ACG∗, and proved that the (HK) integrable function or it,s primitive could be characterized in countably

Lipschitz condition. Also, by considering the characterization of the (HK) integral in the (GSRS) property, it

showed that the relationship between (GSRS) property and countably Lipschitz condition of an (HK) integrable

function on [a, b].

In 2018, Hamid et al. [6] investigated locally and globally small Riemann sums for fuzzy-number-valued

functions and proved two main theorems: (1) A fuzzy-number-valued functions f̃(x) is Henstock integrable on

[a, b] if and only if f̃(x) has (LSRS). (2) A fuzzy-number-valued functions f̃(x) is Henstock integrable on [a, b] if

and only if f̃(x) has (GSRS).

In this paper, we introduce and study the locally and globally small Riemann sums with respect to α on [a, b]

for fuzzy-number-valued functions. We show that a fuzzy-number-valued functions is Henstock-Stieltjes integrable

with respect to α on [a, b] iff it has (LSRS) with respect to α on [a, b]. Also it is shown that a fuzzy-number-

valued functions is Henstock-Stieltjes integrable on [a, b] iff it has (GSRS) with respect to α on [a, b]. Finally, by

Egorov,s Theorem, we get the dominated convergence theorem for globally small Riemann sums (GSRS) with

respect to α on [a, b] for fuzzy-number-valued functions.

The rest of this paper is organized as follows, in Section 2 we shall review the relevant concepts and properties

of fuzzy sets and the definition of Henstock-Stieltjes integrals for fuzzy-number-valued functions. Section 3 is

devoted to discussing the locally small Riemann sums (LSRS) with respect to α on [a, b] for fuzzy-number-valued

functions. In Section 4 we shall investigate the globally small Riemann sums (GSRS) with respect to α on [a, b]

for fuzzy-number-valued functions.

2 Preliminaries

Definition 2.1 [7, 10] Let δ : [a, b] → R+ be a positive real-valued function. P = {[xi−1, xi]; ξi} is said to be a

δ-fine division, if the following conditions are satisfied:

(1) a = x0 < x1 < x2 < ... < xn = b;

(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi))(i = 1, 2, · · · , n).

For brevity, we write P = {[u, v]; ξ}, where [u, v] denotes a typical interval in P and ξ is the associated point

of [u, v].

Definition 2.2 [4] Let α : [a, b]→ R be an increasing function. A real function f : [a, b]→ R is Henstock-Stieltjes

(HS) integrable to A ∈ R with respect to α on [a, b] if for every ε > 0, there is a function δ(x) > 0 , such that for

any δ-fine division P = {[ui, vi]; ξi}ni=1 we have

∣∣ n∑
i=1

f(ξi)[α(vi)− α(ui)]−A
∣∣ < ε. (2.1)

We write (HS)
b∫
a

f(x)dα = A , and f ∈ HSα[a, b].

For the results about fuzzy number space E1. we recall that E1 = {u : R→ [0, 1] : u satisfies (1)-(4) below}:
(1) u is normal, i.e., there exists a x0 ∈ R such that u(x0) = 1;

(2) u is a convex fuzzy set, i.e., u(rx+ (1− r)y) > min(u(x), u(y)), x, y ∈ R, r ∈ [0, 1];

(3) u is upper semi-continuous;

(4) cl{x ∈ R : u(x) > 0} is compact, where clA denotes the closure of A.

For 0 < r 6 1, denote [u]r = {x : u(x) > r}. Then from (1)-(4), it follows that the r−level set [u]r is a close

interval for all r ∈ [0, 1] (refer to [1, 3, 5, 9, 11, 19, 20]). We write ur = [u]r = [ur−, u
r
+] or [u−(r), u+(r)].

For u, v ∈ E1, the addition and scalar multiplication are defined by the equations:

[u+ v]r = [u]r + [v]r, i.e., ur− + vr− = [u+ v]r− and ur+ + vr+ = [u+ v]r+;
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[ku]r = k[u]r, i.e., [ku]r− = min{kur−, kur+} and [ku]r+ = max{kur−, kur+},

respectively.

Define D(u, v) = sup
r∈[0,1]

d([u]r, [v]r) = sup
r∈[0,1]

max{|ur− − vr−|, |ur+ − vr+|}, where d is Hausdorff metric. Further-

more, we write

‖ũ‖E1 = D(ũ, 0̃) = sup
λ∈[0,1]

max{|u−λ |, |u
+
λ |}.

Notice that ‖ · ‖E1 = D(·, 0̃) doesn’t stands for the norm of E1.

For u, v ∈ E1, u 6 v means ur− 6 v
r
−, u

r
+ 6 v

r
+ (see [1, 3, 5, 9, 11, 19, 20]).

Using the results of [1, 3, 5, 9, 11, 19, 20], we recall that:

(1) (E1, D) is a complete metric space,

(2) D(u+ w, v + w) = D(u, v),

(3) D(u+ v, w + e) 6 D(u,w) +D(v, e),

(4) D(ku, kv) = |k|D(u, v), k ∈ R,

(5) D(u+ v, 0̃) 6 D(u, 0̃) +D(v, 0̃),

(6) D(u+ v, w) 6 D(u,w) +D(v, 0̃), where 0̃ = χ{0} and u, v, w, e ∈ E1.

Definition 2.3 [2] Let α : [a, b]→ R be an increasing function. A fuzzy-number-valued function f̃(x) is said to

be fuzzy Henstock-Stieltjes (FHS) integrable with respect to α on [a, b] if there exists a fuzzy number H̃ ∈ E1

such that for every ε > 0, there is a function δ(x) > 0 such that for any δ-fine division P = {[ui, vi]; ξi}ni=1, we

have

D
( n∑
i=1

f̃(ξi)[α(vi)− α(ui)], H̃
)
< ε. (2.2)

We write (FHS)
b∫
a

f̃(x)dα = H̃ , and f̃ ∈ FHSα[a, b].

Definition 2.4 [6] A fuzzy-number-valued function f̃ : [a, b]→ E1 is said to be have locally small Riemann sums

or (LSRS) if for every ε > 0 there is a δ(ξ) > 0 such that for every t ∈ [a, b], we have∥∥∑ f̃(ξ)(v − u)
∥∥
E1 < ε, (2.3)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval [r, s] ⊂ (t− δ(t), t+ δ(t)), t ∈ [r, s] and Σ sums over P .

3 Locally small Riemann sums and Henstock-Stieltjes integral

of fuzzy-number-valued functions

In this section, we shall define locally small Riemann sums with respect to α on [a, b] for fuzzy-number-

valued functions. Furthermore, we prove that a fuzzy-number-valued functions is Henstock-Stieltjes integrable

with respect to α on [a, b] if and only if it has (LSRS) with respect to α on [a, b]. We begin with the following

definition.

Definition 3.1 Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃ : [a, b] → E1 is

said to be have locally small Riemann sums (or LSRS) with respect to α on [a, b], if for every ε > 0 there is a

δ(ξ) > 0 such that for every t ∈ [a, b], we have∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε, (3.1)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval [r, s] ⊂ (t− δ(t), t+ δ(t)), t ∈ [r, s] and Σ sums over P .

If there exists a z ∈ E1 such that x = y + z, then we call z the H− difference of x and y, denoted by x− y.

According to the additivity of FHS, we have the following Lemma.

Lemma 3.1 [2] Let f̃ ∈ FHSα[a, b] and F̃ be the primitive of f̃(x) then F̃ satisfies the H− difference.
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Lemma 3.2 (Henstock Lemma). Let α : [a, b]→ R be an increasing function. If a fuzzy-number-valued function

f̃ : [a, b] → E1 is Henstock-Stieltjes integrable with respect to α on [a, b] with primitive F̃ , i.e., for every ε > 0

there is a positive function δ(ξ) > 0 such that for any δ-fine division P = {[u, v]; ξ} of [a, b], we have

D

(∑
f̃(ξ)[α(v)− α(u)],

∑
F̃ (u, v)

)
< ε. (3.2)

Then for any sum of parts
∑
1

from
∑

, we have

D

(∑
1

f̃(ξ)[α(v)− α(u)],
∑
1

F̃ (u, v)

)
< ε. (3.3)

The proof is similar to the Theorem 3.7 [10].

Theorem 3.1 Let α : [a, b] → R be an increasing function. If f̃(x) is Henstock-Stieltjes integrable with respect

to α on [a, b] then f̃(x) it has LSRS with respect to α on [a, b].

Proof Let F̃ be the primitive of f̃(x). Given ε > 0 there is a δ(ξ) > 0 such that for any δ-fine division

P = {[u, v]; ξ} of [a, b], we have

D

(∑
f̃(ξ)[α(v)− α(u)],

∑
F̃ (u, v)

)
< ε. (3.4)

Where F̃ (u, v) = F̃ (v)− F̃ (u). By the continuity of F̃ at ξ,

D
(
F̃ (u), F̃ (v)

)
< ε whenever [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)).

Therefore for t ∈ [a, b] and any δ-fine division P = {[u, v]; ξ} of [r, s] ⊂ (t− δ(t), t+ δ(t)), we have∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

≤ D

(∑
f̃(ξ)[α(v)− α(u)],

∑
F̃ (u, v)

)
+D

(
F̃ (r), F̃ (s)

)
< 2ε.

That is f̃(x) has LSRS with respect to α on [a, b].

This completes the proof. �

Lemma 3.3 [2] (Cauchy criterion). Let α : [a, b]→ R be an increasing function. A fuzzy-number-valued function

f̃ : [a, b] → E1 is Henstock-Stieltjes integrable with respect to α on [a, b] if and only if for every ε > 0 there is a

positive function δ(ξ) > 0 such that whenever P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2} are two δ-fine divisions, we

have

D

(∑
(P1)

f̃(ξ1)[α(v1)− α(u1)],
∑
(P2)

f̃(ξ2)[α(v2)− α(u2)]

)
< ε. (3.5)

Theorem 3.2 Let α : [a, b] → R be an increasing function. If a fuzzy-number-valued function f̃ : [a, b] → E1

has LSRS with respect to α on [a, b] then f̃(x) is Henstock-Stieltjes integrable with respect to α on any closed

sub-interval C ⊂ (a, b). (Where C = [r, s]).

Proof A fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS with respect to α on [a, b] means that for every

ε > 0 there is a δ(ξ) > 0 such that for every t ∈ [a, b], we have∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε, (3.6)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval C ⊂ (t− δ(t), t+ δ(t)), t ∈ C and Σ sums over P .

(i) If there t ∈ [a, b] with C ⊂ (t− δ(t), t+ δ(t)) we have the following discussion:

(1) If t ∈ C then for every ε > 0 there is a two δ-fine divisions P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2} on C,

such that

D

(∑
(P1)

f̃(ξ1)[α(v1)− α(u1)],
∑
(P2)

f̃(ξ2)[α(v2)− α(u2)]

)
< ε. (3.7)

According to the Cauchy criterion, then f̃(x) is Henstock-Stieltjes integrable on C.
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(2) If t /∈ C then there is a closed interval E ⊂ (t− δ(t), t+ δ(t)), with the result that t ∈ E and C ⊂ E

(where E = [g, h] ). As a result, for every ε > 0 there is a two δ-fine divisions P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2}
on E, such that

D

(∑
(P1)

f̃(ξ1)[α(v1)− α(u1)],
∑
(P2)

f̃(ξ2)[α(v2)− α(u2)]

)
< ε. (3.8)

According to the Cauchy criterion, then f̃(x) is Henstock-Stieltjes integrable on E. Because C ⊂ E and f̃(x)

is Henstock-Stieltjes integrable on E then f̃(x) is Henstock-Stieltjes integrable on C.

(ii) If C * (t − δ(t), t + δ(t)) then there is a positive function δ on [a, b] which resulted in the presence that

P = {(Ci, ti) : i = 1, 2, · · · , k} is a δ-fine division of the interval C. It follows that f̃(x) is Henstock-Stieltjes

integrable on Ci for i = 1, 2, · · · , k.

Then f̃(x) is Henstock-Stieltjes integrable on C.

This completes the proof. �

Corollary 3.1 Let α : [a, b] → R be an increasing function. If a fuzzy-number-valued function f̃ : [a, b] → E1

has LSRS with respect to α on [a, b] then f̃(x) is Henstock-Stieltjes integrable with respect to α on C for any

simple set C ⊂ (a, b).

Notice that a simple set C means that there exists finite closed sub-interval Ci which belongs to (a, b) such

that C =
k⋃
i=1

Ci.

Theorem 3.3 Let α : [a, b]→ R be an increasing function. If a fuzzy-number-valued function f̃ : [a, b]→ E1 has

LSRS with respect to α on [a, b] then f̃(x) is Henstock-Stieltjes integrable with respect to α on [a, b].

Proof A fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS with respect to α on [a, b], then for every ε > 0

there is δ∗(ξ) > 0 such that for every t ∈ [a, b], we have∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε, (3.9)

whenever P = {[u, v]; ξ} is a δ∗-fine division of an interval C ⊂ (t − δ(t), t + δ(t)), t ∈ C and Σ sums over P .

According to the Corollary 3.1, f̃(x) is Henstock-Stieltjes integrable on C for any simple set C ⊂ (a, b).

Rows set {Ei}, Ei
⋂
Ej = φ, ∀i 6= j with property (a, b) =

⋃
Ei, Ei is a closed interval. Thus for a bove

ε > 0, there is a positive numbers n0 with property

µ{[a, b]−
⋃
i≤n0

Ei} < ε, (3.10)

where µ is Lebesgue measure.

For any i, there is a positive function δi such that for any δi-fine division on Ei, we have

D

(∑
f̃(ξ)[α(v)− α(u)], (HS)

∫
Ei

f̃(x)dα

)
< ε. (3.11)

Define a positive function δ by the formula:

δ(ξ) =


min{δ∗(ξ), 1

2
d(ξ, ∂[a, b])} if ξ ∈

⋃
i>n0

Ei,

min{δ∗(ξ), δi(ξ)}, if ξ ∈
⋃
i≤n0

Ei.

For each C = {C} = {C1, C2, · · · , Ck} with Cj = Ei
⋂
Q (where Q = [u, v]), for one i ≤ n0 and one Q with

{[u, v]; ξ} is a δ-fine division and ξ ∈ (a, b), we have

(i) If Cj = Ei for i ≤ n0. Because f̃(x) is Henstock-Stieltjes integrable on Ei and f̃(x) is Henstock-Stieltjes

integrable on Cj consequently f̃(x) is Henstock-Stieltjes integrable on
k⋃
j=1

Cj . Selected a positive function δ∗ with

δ∗(ξ) = min{δj(ξ) : j = 1, 2, · · · , k}, then for each δ∗-fine division P = {[u, v]; ξ} on
k⋃
j=1

Cj , we have

D

(
(HS)

∫
k⋃

j=1
Cj

f̃(x)dα,
∑

f̃(ξ)[α(v)− α(u)]

)
< ε. (3.12)
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Thus obtained:∥∥∥∥C∑(HS)

∫
C

f̃(x)dα

∥∥∥∥
E1

≤ D

(
(HS)

∫
k⋃

j=1
Cj

f̃(x)dα,
∑

f̃(ξ)[α(v)− α(u)]

)
+

k∑
j=1

∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε+ kε.

According to the properties of Cauchy, f̃(x) is Henstock-Stieltjes integrable on [a, b].

(ii) If Cj = Ei
⋂
Q, for i ≤ n0 and one δ-fine Q with {[u, v]; ξ} and ξ ∈ (a, b) then Cj ⊂ (ξ − δ(ξ), ξ + δ(ξ)).

According to the Theorem 3.2, then f̃(x) is Henstock-Stieltjes integrable on Cj . As the result f̃(x) is Henstock-

Stieltjes integrable on
k⋃
j=1

Cj . Selected a positive function δ1 with property δ1(ξ) ≤ δ(ξ) then for each δ∗-fine

division P = {[u, v]; ξ} on
k⋃
j=1

Cj , we have

D

(
(HS)

∫
k⋃

j=1
Cj

f̃(x)dα,
∑

f̃(ξ)[α(v)− α(u)]

)
< ε. (3.13)

Thus obtained:∥∥∥∥C∑(HS)

∫
C

f̃(x)dα

∥∥∥∥
E1

≤ D

(
(HS)

∫
k⋃

j=1
Cj

f̃(x)dα,
∑

f̃(ξ)[α(v)− α(u)]

)
+

k∑
j=1

∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε+ kε.

According to the properties of Cauchy, f̃(x) is Henstock-Stieltjes integrable on [a, b].

This completes the proof. �

Corollary 3.2 Let α : [a, b]→ R be an increasing function. A fuzzy-number-valued function f̃ : [a, b]→ E1 has

LSRS with respect to α on [a, b] if and only if f̃(x) is Henstock-Stieltjes integrable with respect to α on [a, b].

4 Globally small Riemann sums and Henstock-Stieltjes integral

of fuzzy-number-valued functions

In this section, we shall define globally small Riemann sums with respect to α on [a, b] for fuzzy-number-

valued functions. Furthermore, we prove that a fuzzy-number-valued functions is Henstock-Stieltjes integrable

with respect to α on [a, b] if and only if it has (GSRS) with respect to α on [a, b]. We begin with the following

definition.

Definition 4.1 Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃ : [a, b] → E1 is

said to be have globally small Riemann sums or (GSRS) with respect to α on [a, b] if for every ε > 0 there exists

a positive integer N such that for every n > N there is a δn(ξ) > 0 and for every δn-fine division P = {[u, v]; ξ}
of [a, b], we have ∥∥∥∥ ∑

‖f̃(ξ)‖
E1>n

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< ε, (4.1)

where the
∑

is taken over P and for which ‖f̃(ξ)‖E1 > n.

Theorem 4.1 Let α : [a, b] → R be an increasing function and let f̃(x) be Henstock-Stieltjes integrable to

F̃ (a, b) with respect to α on FHSα[a, b] and F̃n(a, b) the integral of f̃n(x) on FHSα[a, b], where f̃n(x) = f̃(x)

when
∥∥f̃(x)

∥∥
E1 6 n and 0̃ otherwise. If F̃n(a, b)→ F̃ (a, b) as n→∞ then f̃(x) has GSRS with respect to α on

[a, b].

Proof Given ε > 0 there is a δn(ξ) > 0 such that for every δn-fine division P = {[u, v]; ξ} of [a, b], we have

D
(∑

f̃n(ξ)[α(v)− α(u)], F̃n(a, b)
)
< ε, (4.2)
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where (FHS)
∫ b
a
f̃n(x)dα = F̃n(a, b).

D
(∑

f̃(ξ)[α(v)− α(u)], F̃ (a, b)
)
< ε, (4.3)

where (FHS)
∫ b
a
f̃(x)dα = F̃ (a, b).

Choose N so that whenever n > N

D
(
F̃n(a, b), F̃ (a, b)

)
< ε. (4.4)

Therefore for n > N and δn-fine division P = {[u, v]; ξ} of [a, b], we have∥∥∥∥ ∑
‖f̃(ξ)‖

E1>n

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

= D

(∑
f̃n(ξ)[α(v)− α(u)],

∑
f̃(ξ)[α(v)− α(u)]

)

6 D

(∑
f̃n(ξ)[α(v)− α(u)], F̃n(a, b)

)
+D

(
F̃n(a, b), F̃ (a, b)

)
+D

(
F̃ (a, b),

∑
f̃(ξ)[α(v)− α(u)]

)
< 3ε.

Hence f̃(x) has GSRS with respect to α on [a, b].

This completes the proof. �

Theorem 4.2 Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃(x) has GSRS

with respect to α on [a, b] if and only if f̃(x) is Henstock-Stieltjes integrable with respect to α on [a, b] and

F̃n(a, b)→ F̃ (a, b) as n→∞ where F̃n(a, b) and F̃ (a, b) are defined as in Theorem 4.1.

Proof Theorem 4.1 proves the sufficiency. We shall prove only the necessity. Suppose f̃(x) has GSRS with

respect to α on [a, b]. Note that f̃n(x), as defined in Theorem 4.1, is fuzzy Henstock-Stieltjes integrable on [a, b]

for all n. Then for n,m > N and a suitably chosen δ-fine division P = {[u, v]; ξ}, we have

D

(
F̃n(a, b), F̃m(a, b)

)
6 D

(
F̃n(a, b),

∑
‖f̃(ξ)‖

E16n

f̃(ξ)[α(v)− α(u)]

)
+D

( ∑
‖f̃(ξ)‖

E16m

f̃(ξ)[α(v)− α(u)], F̃m(a, b)

)

+

∥∥∥∥ ∑
‖f̃(ξ)‖

E1>n

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

+

∥∥∥∥ ∑
‖f̃(ξ)‖

E1>m

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< 4ε.

That is, F̃n(a, b) converge to a fuzzy number, say F̃ (a, b), as n → ∞. Again, for suitably chosen N and δ(ξ)

and for every δ-fine division P = {[u, v]; ξ}, we have

D

(∑
f̃(ξ)[α(v)− α(u)], F̃ (a, b)

)
6 D

(
F̃ (a, b), F̃N (a, b)

)
+ D

(
F̃N (a, b),

∑
‖f̃(ξ)‖

E16N

f̃(ξ)[α(v)− α(u)]

)
+

∥∥∥∥ ∑
‖f̃(ξ)‖

E1>N

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
E1

< 3ε.

That is, f̃(x) is fuzzy Henstock-Stieljes integrable on [a, b].

This completes the proof. �

Theorem 4.3 Let α : [a, b]→ R be an increasing function and let f̃n(x) ∈ FHSα[a, b], n = 1, 2, 3 · · · and satisfy:

(1) lim
n→∞

f̃n(x) = f̃(x) almost everywhere in [a, b];

(2) there exists a Lebesgue-Stieljes integrable (Henstock-Stieljes integrable) function h(x) on [a, b] such that

D
(
f̃n(x), f̃m(x)

)
< h(x). (4.5)

Then, f̃n(x) has GSRS with respect to α on [a, b] uniformly for any n. Naturally, f̃ is (FHS) integrable with

respect to α on [a, b]. Furthermore,

lim
n→∞

(FHS)

∫ b

a

f̃n(x)dα = (FHS)

∫ b

a

f̃(x)dα. (4.6)
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Proof Let ε > 0. Since H(x) = (LS)
∫ x
a
h(t)dα is absolutely continuous with respect to stieljes measurable

on [a, b], there exists a positive number η > 0 such that
∑
|H(bi) − H(ai)| < ε whenever {[ai, bi]} is a finite

collection of non-overlapping intervals in [a, b] that satisfy
∑(

α(bi)−α(ai)
)
< η. Since lim

n→∞
f̃n(x) = f̃(x) almost

everywhere in [a, b], and

D(f̃n, f̃) = sup
r∈[0,1]

max{|(fn(x))r− − (f(x))r−|, |(fn(x))r+ − (f(x))r+|}

= sup
rk∈[0,1]

max{|(fn(x))
rk
− − (f(x))

rk
− |, |(fn(x))

rk
+ − (f(x))

rk
+ |}

is a sequence of Lebesgue-Stieljes measurable functions, where rk ∈ [0, 1] is the set of rational numbers, by

Egorov’s Theorem, there exists an open set G with LS(G) < η such that lim
n→∞

f̃n(x) = f̃(x) uniformly for

x ∈ [a, b] \ G. Then, there is an natural number N , such that for any n,m > N , and for any x ∈ [a, b] \ G, we

have D(f̃n(x), f̃m(x)) < ε. Since h(x) is Henstock-Stieljes integrable on [a, b], there is a δh(ξ) > 0 such that for

any δh-fine division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣∑h(ξ)[α(v)− α(u)]− (LS)

∫ b

a

h(t)dα

∣∣∣∣ < ε. (4.7)

Define

δ(ξ) =

δh(ξ), if ξ ∈ [a, b] \G,

δ(ξ), satisfying (ξi − δ(ξi), ξi + δ(ξi)) ⊂ G, if ξ ∈ [a, b].

Then, it follows that for a δ-fine division P0 = {[xi−1, xi]; ξi} of [a, b],

D

(∑
f̃n(ξi)[α(xi)− α(xi−1)],

∑
f̃m(ξi)[α(xi)− α(xi−1)]

)
≤ D

( ∑
ξi∈[a,b]\G

f̃n(ξi)[α(xi)− α(xi−1)],
∑

ξi∈[a,b]\G

f̃m(ξi)[α(xi)− α(xi−1)]

)

+ D

( ∑
ξi∈G

f̃n(ξi)[α(xi)− α(xi−1)],
∑
ξi∈G

f̃m(ξi)[α(xi)− α(xi−1)]

)
≤

∑
ξi∈[a,b]\G

D
(
f̃n(ξi), f̃m(ξi)

)
[α(xi)− α(xi−1)] +

∑
ξi∈G

D
(
f̃n(ξi), f̃m(ξi)

)
[α(xi)− α(xi−1)]

< ε(b− a) +

∣∣∣∣ ∑
ξi∈G

h(ξi)[α(xi)− α(xi−1)]−
∫
G

h(t)dα

∣∣∣∣+

∣∣∣∣ ∫
G

h(t)dα

∣∣∣∣
< ε(b− a) + 3ε.

Hence, there is an natural number N such that for any n,m > N , we have

D

(
F̃n[a, b], F̃m[a, b]

)
≤ D

(
F̃n[a, b],

∑
f̃n(ξi)[α(xi)− α(xi−1)]

)
+D

(
F̃m[a, b],

∑
f̃m(ξi)[α(xi)− α(xi−1)]

)
+ D

(∑
f̃n(ξi)[α(xi)− α(xi−1)],

∑
f̃m(ξi)[α(xi)− α(xi−1)]

)
< 3ε.

Thus, F̃n[a, b] is a Cauchy sequence, and there is an natural number N1 such that for any n > N1, we have

D(F̃n[a, b], Ã) < ε. According to the (FHS) integrability of f̃N1(x), there is a δN1
(ξ) > 0 such that for any

δN1
-fine division P = {[u, v]; ξ} of [a, b], for any n > NN1 , we have

D

(∑
f̃n(ξ)[α(v)− α(u)], F̃n[a, b]

)
≤ D

(
F̃n[a, b], F̃N1 [a, b]

)
+D

(∑
f̃N1(ξ)[α(v)− α(u)], F̃N1 [a, b]

)
+ D

(∑
f̃n(ξ)[α(v)− α(u)],

∑
f̃N1(ξ)[α(v)− α(u)]

)
< 3ε.

This completes the proof. �

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1114 Elsheikh Hamid et al 1107-1115



M.E. Hamid, L.S. Xu, Z.T. Gong: Locally and globally small Riemann sums and Henstock-Stieltjes integral...

5 conclusions

In this paper, we have investigated locally and globally small Riemann sums with respect to α on [a, b] for

fuzzy number-valued functions. Also we have stated and proved two main theorems: (1) If a fuzzy number-valued

functions f̃(x) is Henstock-Stieltjes integrable with respect to α on [a, b] then f̃(x) has (LSRS) with respect to

α on [a, b] and the converse is always true. (2) If a fuzzy number-valued functions f̃(x) is Henstock-Stieltjes

integrable with respect to α on [a, b] then f̃(x) has (GSRS) with respect to α on [a, b] and the converse is always

true. Finally, by Egorov,s Theorem, we got the dominated convergence theorem for globally small Riemann sums

(GSRS) with respect to α on [a, b] for fuzzy-number-valued functions.
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Abstract

In this paper we establish some fuzzy differential subordinations regarding the differential operator
RIαm,λ,l : An → An, RIαm,λ,lf(z) = (1 − α)Rmf(z) + αI (m,λ, l) f(z), where Rm is the Ruscheweyh
derivative,I (m,λ, l) is the multiplier transformation and An = {f ∈ H(U), f(z) = z + an+1z

n+1 + . . . , z ∈
U} is the class of normalized analytic functions. We introduce a fuzzy class RIδF (α,m, λ, l) and by using
the fuzzy differential subordinations we derive some properties of this class. Also, several fuzzy differential
subordinations are established regarding the studied differential operator.

Keywords: fuzzy differential subordination, convex function, fuzzy best dominant, differential operator.
2010 Mathematical Subject Classification: 30C45, 30A20.

1 Introduction

The differential subordination method was introduced and developed by S.S. Miller and P.T. Mocanu. G.I.
Oros and Gh.Oros in [6], [7] combine the notions from the complex functions domain with the fuzzy sets theory.

In this paper we obtain fuzzy differential subordinations regarding the differential operator studied in [4]
using the methods from [2], [3].

Consider U = {z ∈ C : |z| < 1} the unit disc of the complex plane, H(U) the space of holomorphic
functions in U , An = {f ∈ H(U) : f(z) = z + an+1z

n+1 + . . . , z ∈ U} and H[a, n] = {f ∈ H(U) : f(z) =
a + anz

n + an+1z
n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N. The class of normalized convex functions in U is

denoted by K =
{
f ∈ An : Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}

.

We need the following.

Definition 1.1 ([6]) Let D ⊂ C, z0 ∈ D be a fixed point and let the functions f, g ∈ H (D). The function f is
said to be fuzzy subordinate to g and write f ≺F g or f (z) ≺F g (z), if are satisfied the conditions f (z0) = g (z0)
and Ff(D)f (z) ≤ Fg(D)g (z), z ∈ D.

Definition 1.2 ([7, Definition 2.2]) Let ψ : C3 × U → C and h univalent in U , with ψ (a, 0; 0) = h (0) = a. If
p is analytic in U , with p (0) = a and satisfies the fuzzy differential subordination

Fψ(C3×U)ψ(p(z), zp′ (z) , z2p′′(z); z) ≤ Fh(U)h(z), z ∈ U, (1.1)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a fuzzy
dominant of the fuzzy solutions of the fuzzy differential subordination, if Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U , for all
p satisfying (1.1). A fuzzy dominant q̃ that satisfies Fq̃(U)q̃(z) ≤ Fq(U)q(z), z ∈ U , for all fuzzy dominants q of
(1.1) is said to be the fuzzy best dominant of (1.1).

Lemma 1.1 ([5, Corollary 2.6g.2, p. 66]) Let h ∈ An and L [f ] (z) = G (z) = 1

nz
1
n

∫ z
0
h (t) t

1
n−1dt, z ∈ U. If

Re
(
zh′′(z)
h′(z) + 1

)
> − 1

2 , z ∈ U, then L (f) = G ∈ K.

Lemma 1.2 ([8]) Let h be a convex function with h(0) = a, and let γ ∈ C∗ be a complex number with Re γ ≥ 0.
If p ∈ H[a, n] with p (0) = a, ψ : C2 × U → C, ψ (p (z) , zp′ (z) ; z) = p (z) + 1

γ zp
′ (z) an analytic function in U

and

Fψ(C2×U)

(
p(z) +

1

γ
zp′(z)

)
≤ Fh(U)h(z), z ∈ U, (1.2)

then Fp(U)p(z) ≤ Fg(U)g(z) ≤ Fh(U)h(z), z ∈ U, where g(z) = γ
nzγ/n

∫ z
0
h(t)tγ/n−1dt, z ∈ U. The function q is

convex and is the fuzzy best dominant.
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Lemma 1.3 ([8]) Let g be a convex function in U and let h(z) = g(z)+nαzg′(z), z ∈ U, where α > 0 and n is a
positive integer. If p(z) = g(0)+pnz

n+pn+1z
n+1+. . . , z ∈ U, is holomorphic in U and Fp(U) (p(z) + αzp′(z)) ≤

Fh(U)h(z), z ∈ U, then Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, and this result is sharp.

We need the following diferential operators.

Definition 1.3 (Ruscheweyh [9]) For f ∈ An, m,n ∈ N, the operator Rm is defined by Rm : An → An,

R0f (z) = f (z) , R1f (z) = zf ′ (z) , ...

(m+ 1)Rm+1f (z) = z (Rmf (z))
′
+mRmf (z) , z ∈ U.

Remark 1.1 If f ∈ An, f(z) = z +
∑∞
j=n+1 ajz

j, then Rmf (z) = z +
∑∞
j=n+1

(n+j−1)!
n!(j−1)! ajz

j, z ∈ U .

Definition 1.4 ([1]) For f ∈ An, m,n ∈ N, λ, l ≥ 0, the operator I (m,λ, l) f(z) is defined by the following

infinite series I (m,λ, l) f(z) = z +
∑∞
j=n+1

(
λ(j−1)+l+1

l+1

)m
ajz

j .

Remark 1.2 We have I (0, λ, l) f(z) = f(z), (l + 1) I (m+ 1, λ, l) f(z) = (l + 1− λ) I (m,λ, l) f(z)+λz (I (m,λ, l) f(z))
′
,

z ∈ U.

Definition 1.5 ([4]) Let α, λ, l ≥ 0, m,n ∈ N. Denote by RIαm,λ,l the operator given by RIαm,λ,l : An → An,
RIαm,λ,lf(z) = (1− α)Rmf(z) + αI (m,λ, l) f(z), z ∈ U.

Remark 1.3 If f ∈ An, f(z) = z +
∑∞
j=n+1 ajz

j, then

RIαm,λ,lf(z) = z +
∑∞
j=n+1

{
α
(

1+λ(j−1)+l
l+1

)m
+ (1− α) (n+j−1)!

n!(j−1)!

}
ajz

j , z ∈ U.

2 Main results

Using the operator RIαm,λ,l we define the class RIδF (α,m, λ, l) and we study fuzzy subordinations.

Definition 2.1 The class RIδF (α,m, λ, l) contains all the functions f ∈ An which satisfy the inequality

F(RIαm,λ,lf)
′
(U)

(
RIαm,λ,lf (z)

)′
> δ, z ∈ U, (2.1)

where δ ∈ (0, 1], α, λ, l ≥ 0 and m,n ∈ N.

Theorem 2.1 RIδF (α,m, λ, l) is a convex set.

Proof. Let f1, f2 ∈ RIδF (α,m, λ, l), fk (z) = z+
∑∞
j=n+1 ajkz

j , k = 1, 2, z ∈ U. We show that the function

h (z) = η1f1 (z)+η2f2 (z) is in the class RIδF (α,m, λ, l) , where η1 and η2 are nonnegative such that η1 +η2 = 1.
Differentiating, we obtain h′ (z) = (µ1f1 + µ2f2)

′
(z) = µ1f

′
1 (z) + µ2f

′
2 (z), z ∈ U , and(

RIαm,λ,lh (z)
)′

=
(
RIαm,λ,l (µ1f1 + µ2f2) (z)

)′
= µ1

(
RIαm,λ,lf1 (z)

)′
+ µ2

(
RIαm,λ,lf2 (z)

)′
, so we have also

F(RIαm,λ,lh)
′
(U)

(
RIαm,λ,lh (z)

)′
= F(RIαm,λ,l(µ1f1+µ2f2))

′
(U)

(
RIαm,λ,l (µ1f1 + µ2f2) (z)

)′
=

F(RIαm,λ,l(µ1f1+µ2f2))
′
(U)

(
µ1

(
RIαm,λ,lf1 (z)

)′
+ µ2

(
RIαm,λ,lf2 (z)

)′)
=

F
(µ1RIαm,λ,lf1)

′
(U)

(µ1(RIαm,λ,lf1(z))
′
)+F(µ2RIαm,λ,lf2)

′
(U)

(µ2(RIαm,λ,lf2(z))
′
)

2 =
F
(RIαm,λ,lf1)

′
(U)

(RIαm,λ,lf1(z))
′
+F

(RIαm,λ,lf2)
′
(U)

(RIαm,λ,lf2(z))
′

2 .

Since f1, f2 ∈ RIδF (α,m, λ, l), we have δ < F(RIαm,λ,lf1)
′
(U)

(
RIαm,λ,lf1 (z)

)′
≤ 1 and

δ < F(RIαm,λ,lf2)
′
(U)

(
RIαm,λ,lf2 (z)

)′
≤ 1, z ∈ U .

Therefore δ <
F
(RIαm,λ,lf1)

′
(U)

(RIαm,λ,lf1(z))
′
+F

(RIαm,λ,lf2)
′
(U)

(RIαm,λ,lf2(z))
′

2 ≤ 1 and we obtain that

δ < F(RIαm,λ,lh)
′
(U)

(
RIαm,λ,lh (z)

)′
≤ 1, which means that h ∈ RIδF (α,m, λ, l) and RIδF (α,m, λ, l) is a convex

set.
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Theorem 2.2 Consider g a convex function in U and h (z) = g (z) + 1
c+2zg

′ (z) , with z ∈ U, c > 0. When

f ∈ RIδF (α,m, λ, l) and G (z) = c+2
zc+1

∫ z
0
tcf (t) dt, z ∈ U, then

F(RIαm,λ,lf)
′
(U)

(
RIαm,λ,lf (z)

)′ ≤ Fh(U)h (z) , z ∈ U, (2.2)

implies F(RIαm,λ,lG)
′
(U)

(
RIαm,λ,lG (z)

)′
≤ Fg(U)g (z), z ∈ U, and this result is sharp.

Proof. Differentiating with respect to z the following relation zc+1G (z) = (c+ 2)
∫ z
0
tcf (t) dt. We obtain

(c+ 1)G (z)+zG′ (z) = (c+ 2) f (z) and (c+ 1)RIαm,λ,lG (z)+z
(
RIαm,λ,lG (z)

)′
= (c+ 2)RIαm,λ,lf (z) , z ∈ U.

Differentiating again we get
(
RIαm,λ,lG (z)

)′
+ 1

c+2z
(
RIαm,λ,lG (z)

)′′
=
(
RIαm,λ,lf (z)

)′
, z ∈ U, and the fuzzy

differential subordination (2.2) becomes

FRIαm,λ,lG(U)

((
RIαm,λ,lG (z)

)′
+

1

c+ 2
z
(
RIαm,λ,lG (z)

)′′) ≤ Fg(U)

(
g (z) +

1

c+ 2
zg′ (z)

)
. (2.3)

Consider
p (z) =

(
RIαm,λ,lG (z)

)′
, z ∈ U, (2.4)

evidently p ∈ H [1, n] and from relation (2.3) we get Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ Fg(U)

(
g (z) + 1

c+2zg
′ (z)

)
,

z ∈ U.
By using Lemma 1.3 we obtain F(RIαm,λ,lG)

′
(U)

(
RIαm,λ,lG (z)

)′
≤ Fg(U)g (z), z ∈ U, and g is the fuzzy best

dominant.

Theorem 2.3 Let h (z) = 1+(2β−1)z
1+z , β ∈ [0, 1) and c > 0. If λ, l ≥ 0, m,n ∈ N and Ic (f) (z) = c+2

zc+1

∫ z
0
tcf (t) dt,

z ∈ U, then

Ic

[
RIβF (α,m, λ, l)

]
⊂ RIβ

∗

F (α,m, λ, l) , (2.5)

where β∗ = 2β − 1 + (c+2)(2−2β)
n

∫ 1

0
t
c+2
n
−1

t+1 dt.

Proof. A similar proof with Theorem 2.2 for the convex function h get us Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤

fh(U)h (z) , with p (z) defined in (2.4).

Applying Lemma 1.2 we obtain F(RIαm,λ,lG)
′
(U)

(
RIαm,λ,lG (z)

)′
≤ Fg(U)g (z) ≤ Fh(U)h (z) , where g (z) =

c+2

nz
c+2
n

∫ z
0
t
c+2
n −1 1+(2β−1)t

1+t dt = 2β − 1 + (c+2)(2−2β)

nz
c+2
n

∫ z
0
t
c+2
n
−1

t+1 dt. Since g is convex and g (U) is symmetric with

respect to the real axis, we have

FI(m,λ,l)G(U) (I (m,λ, l)G (z))
′ ≥ min

|z|=1
Fg(U)g (z) = Fg(U)g (1) (2.6)

and β∗ = g (1) = 2β − 1 + (c+2)(2−2β)
n

∫ 1

0
t
c+2
n
−1

t+1 dt. The inclusion (2.5) follows from (2.6).

Theorem 2.4 Consider g a convex function with g(0) = 1 and h(z) = g(z) + zg′(z), z ∈ U. For λ, l ≥ 0,
m,n ∈ N, f ∈ An and the fuzzy differential subordination

F(RIαm,λ,lf)
′
(U)

(
RIαm,λ,lf (z)

)′ ≤ Fh(U)h (z) , z ∈ U, (2.7)

holds, we obtain FRIαm,λ,lf(U)
RIαm,λ,lf(z)

z ≤ Fg(U)g(z), z ∈ U, and this result is sharp.

Proof. For p(z) =
RIαm,λ,lf(z)

z , z ∈ U , we have p ∈ H[1, n] and differentiating the relation RIαm,λ,lf(z) =

zp(z), z ∈ U, we obtain
(
RIαm,λ,lf(z)

)′
= p(z) + zp′(z), z ∈ U.

The fuzzy differential subordination (2.7) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) ,

z ∈ U, and applying Lemma 1.3, we deduce F(RIαm,λ,lf)
′
(U)

RIαm,λ,lf(z)

z ≤ Fg(U)g(z), z ∈ U.

Theorem 2.5 Let h be a holomorphic function with Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, and h(0) = 1. When the

fuzzy differential subordination

F(RIαm,λ,lf)
′
(U)

(
RIαm,λ,lf (z)

)′ ≤ Fh(U)h (z) , z ∈ U, (2.8)

holds, where λ, l ≥ 0, m, n ∈ N, f ∈ An, then FRIαm,λ,lf(U)
RIαm,λ,lf(z)

z ≤ Fq(U)q(z), z ∈ U. The function

q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is convex and it is the fuzzy best dominant.
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Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is

a convex function and verifies the differential equation associated to the fuzzy differential subordination (2.8)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.

Keeping p(z) =
RIαm,λ,lf(z)

z , p ∈ H[1, n] and differentiating it, we obtain
(
RIαm,λ,lf(z)

)′
= p(z) + zp′(z),

z ∈ U and (2.8) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.
By using Lemma 1.3, we deduce FRIαm,λ,lf(U)

RIαm,λ,lf(z)

z ≤ Fq(U)q(z), z ∈ U.

Example 2.1 Let h (z) = 1−z
1+z with h (0) = 1, h′ (z) = −2

(1+z)2
and h′′ (z) = 4

(1+z)3
.

Since Re
(
zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 , the function h is

convex in U .
Let f (z) = z − z2, z ∈ U . For n = 1, m = 1, l = 1, λ = 2, α = 2

3 , we obtain RI
2
3
1,2,1f (z) = 1

3R
1f (z) +

2
3I (1, 2, 1) f (z) = 1

3zf
′ (z)+ 2

3zf
′ (z) = z−2z2. Then

(
RI

2
3
1,2,1f (z)

)′
= 1−4z and

RI
2
3
1,2,1f(z)

z = 1−2z. Function

q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

From Theorem 2.5 we have FU (1− 4z) ≤ FU

(
1−z
1+z

)
, z ∈ U, imply FU (1− 2z) ≤ FU

(
−1 + 2 ln(1+z)

z

)
,

z ∈ U.

Theorem 2.6 Let g be a convex function with g (0) = 1 and h (z) = g (z) + zg′ (z), z ∈ U . When the fuzzy
differential subordination

FRIαm,λ,lf(U)

(
zRIαm+1,λ,lf (z)

RIαm,λ,lf (z)

)′
≤ Fh(U)h (z) , z ∈ U (2.9)

holds, for λ, l ≥ 0, m,n ∈ N, f ∈ An, then FRIαm,λ,lf(U)
RIαm+1,λ,lf(z)

RIαm,λ,lf(z)
≤ Fg(U)g (z), z ∈ U, and this result is

sharp.

Proof. Diferentiating p(z) =
RIαm+1,λ,lf(z)

RIαm,λ,lf(z)
we get p′ (z) =

(RIαm+1,λ,lf(z))
′

RIαm,λ,lf(z)
− p (z) · (RIαm+1,λ,lf(z))

′

RIαm,λ,lf(z)
and

p (z) + z · p′ (z) =
(
zRIαm+1,λ,lf(z)

RIαm,λ,lf(z)

)′
.

In this conditions, relation (2.9) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) , z ∈ U,
and aplying Lemma 1.3, we obtain FRIαm,λ,lf(U)

RIαm+1,λ,lf(z)

RIαm,λ,lf(z)
≤ Fg(U)g(z), z ∈ U.

Theorem 2.7 For a convex function g, with g(0) = 1, consider h(z) = g(z) + z
δ g
′(z), z ∈ U. The fuzzy

differential subordination

FRIαm,λ,lf(U)

((
RIαm,λ,lf(z)

z

)δ−1 (
RIαm,λ,lf(z)

)′) ≤ Fh(U)h (z) , z ∈ U, (2.10)

is satisfied, when α, λ, l, δ ≥ 0, m,n ∈ N, f ∈ An, and implies the following fuzzy sharp differential subordination

FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z

)δ
≤ Fg(U)g (z), z ∈ U.

Proof. Differentiating p(z) =
(
RIαm,λ,lf(z)

z

)δ
, z ∈ U, we get

(
RIαm,λ,lf(z)

z

)δ−1 (
RIαm,λ,lf(z)

)′
= p(z) +

1
δ zp
′(z), z ∈ U. Evidently p ∈ H[1, n], and (2.10) becomes Fp(U)

(
p(z) + 1

δ zp
′(z)
)
≤ Fh(U)h(z) = Fg(U)

(
g(z) + z

δ g
′(z)
)
,

z ∈ U.
By using Lemma 1.3, we have FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z

)δ
≤ Fg(U)g(z), z ∈ U.

Theorem 2.8 Consider an holomorphic function h which satisfies the inequality Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U,
and h(0) = 1. When the fuzzy differential subordination

FRIαm,λ,lf(U)

((
RIαm,λ,lf(z)

z

)δ−1 (
RIαm,λ,lf(z)

)′) ≤ Fh(U)h (z) , z ∈ U, (2.11)

holds, with α, λ, l, δ ≥ 0, m, n ∈ N, f ∈ An, then FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z

)δ
≤ Fq(U)q (z), z ∈ U, and q(z) =

δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt.
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Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt is

a convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.11)
q (z) + 1

δ zq
′ (z) = h (z), therefore it is the fuzzy best dominant.

Consider p(z) =
(
RIαm,λ,lf(z)

z

)δ
, z ∈ U, then p ∈ H[1, n].Differentiating, we obtain

(
RIαm,λ,lf(z)

z

)δ−1 (
RIαm,λ,lf(z)

)′
=

p(z)+ 1
δ zp
′(z), z ∈ U, and the fuzzy differential subordination (2.11) becomes Fp(U)

(
p(z) + 1

δ zp
′(z)
)
≤ Fh(U)h(z),

z ∈ U. Aplying Lemma 1.2, we get FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z

)δ
≤ Fq(U)q(z) and q(z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt, z ∈ U,

is the best dominant.

Theorem 2.9 For a convex function g, with g (0) = 1, define the function h (z) = g (z) + z
δ g
′ (z), z ∈ U . If

α, λ, l, δ ≥ 0, m,n ∈ N, f ∈ An and the fuzzy differential subordination

FRIαm,λ,lf(U)

z2
δ

RIαm,λ,lf(z)(
RIαm+1,λ,lf(z)

)2

(
RIαm,λ,lf(z)

)′
RIαm,λ,lf(z)

− 2

(
RIαm+1,λ,lf(z)

)′
RIαm+1,λ,lf(z)



+z
δ + 1

δ

RIαm,λ,lf (z)(
RIαm+1,λ,lf (z)

)2
 ≤ Fh(U)h (z) , z ∈ U, (2.12)

holds, then FRIαm,λ,lf(U)

(
z

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

)
≤ Fg(U)g (z), z ∈ U, and this result is sharp.

Proof. Differentiating p(z) = z
RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2 , we get

p (z) + z
δ p
′ (z) = z δ+1

δ

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2 + z2

δ

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

[
(RIαm,λ,lf(z))

′

RIαm,λ,lf(z)
− 2

(RIαm+1,λ,lf(z))
′

RIαm+1,λ,lf(z)

]
.

The fuzzy differential subordination (2.12) becomes
Fp(U)

(
p(z) + z

δ p
′(z)
)
≤ Fh(U)h(z)Fg(U)

(
g(z) + z

δ g
′(z)
)
, z ∈ U, and by using Lemma 1.3, we derive

FRIαm,λ,lf(U)

(
z

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

)
≤ Fg(U)g(z), z ∈ U.

Theorem 2.10 Let h be a holomorphic function with properties Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, and h(0) = 1.

The fuzzy differential subordination

FRIαm,λ,lf(U)

z2
δ

RIαm,λ,lf(z)(
RIαm+1,λ,lf(z)

)2

(
RIαm,λ,lf(z)

)′
RIαm,λ,lf(z)

− 2

(
RIαm+1,λ,lf(z)

)′
RIαm+1,λ,lf(z)



+z
δ + 1

δ

RIαm,λ,lf (z)(
RIαm+1,λ,lf (z)

)2
 ≤ Fh(U)h (z) , z ∈ U, (2.13)

implies the following fuzzy differential subordination FRIαm,λ,lf(U)

(
z

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

)
≤ Fq(U)q (z), z ∈ U, where

α, λ, l, δ ≥ 0, m, n ∈ N, f ∈ An, and q(z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt is

a convex function and verifies the differential equation associated to the fuzzy differential subordination (2.13)
q (z) + 1

δ zq
′ (z) = h (z), therefore it is the fuzzy best dominant.

Considering p(z) = z
RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2 , z ∈ U, p ∈ H[1, n]. Since

p (z) + z
δ p
′ (z) = z δ+1

δ

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2 + z2

δ

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

[
(RIαm,λ,lf(z))

′

RIαm,λ,lf(z)
− 2

(RIαm+1,λ,lf(z))
′

RIαm+1,λ,lf(z)

]
, z ∈ U, from

(2.13) we have Fp(U)

(
p(z) + z

δ p
′(z)
)
≤ Fh(U)h(z), z ∈ U, and from Lemma 1.2, we obtain FRIαm,λ,lf(U)

(
z

RIαm,λ,lf(z)

(RIαm+1,λ,lf(z))
2

)
≤

Fq(U)q(z), z ∈ U, and the best dominant is q (z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt.
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Theorem 2.11 For a convex function g with g(0) = 0 define h(z) = g(z) + z
δ g
′(z), z ∈ U. If α, λ, l, δ ≥ 0,

m,n ∈ N, f ∈ An and the fuzzy differential subordination

FRIαm,λ,lf(U)

z2 δ + 2

δ

(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)

+

z3

δ


(
RIαm,λ,lf (z)

)′′
RIαm,λ,lf (z)

−


(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)


2
 ≤ Fh(U)h (z) , z ∈ U, (2.14)

holds, then the following result is sharp FRIαm,λ,lf(U)

(
z2

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)
≤ Fg(U)g (z), z ∈ U.

Proof. Considering p(z) = z2
(RIαm,λ,lf(z))

′

RIαm,λ,lf(z)
, we deduce that p ∈ H[0, 1] and differentiating it, we obtain

p (z) + z
δ p
′ (z) = z2 δ+2

δ

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)
+ z3

δ

[
(RIαm,λ,lf(z))

′′

RIαm,λ,lf(z)
−
(

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)2
]
, z ∈ U.

The fuzzy differential subordination becomes Fp(U)

(
p(z) + 1

δ zp
′(z)
)
≤ Fh(U)h(z) = Fg(U)

(
g(z) + z

δ g
′(z)
)

and by using Lemma 1.3, we deduce FRIαm,λ,lf(U)

(
z2

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)
≤ Fg(U)g(z), z ∈ U, and this result is sharp.

Theorem 2.12 Consider h a holomorphic function with Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, and h(0) = 0. If the

fuzzy differential subordination

FRIαm,λ,lf(U)

z2 δ + 2

δ

(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)

+

z3

δ


(
RIαm,λ,lf (z)

)′′
RIαm,λ,lf (z)

−


(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)


2
 ≤ Fh(U)h (z) , z ∈ U, (2.15)

holds, for α, λ, l, δ ≥ 0, m, n ∈ N, f ∈ An, then FRIαm,λ,lf(U)

(
z2

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)
≤ Fq(U)q (z), z ∈ U, where

q(z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt is

a convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.15)
q (z) + 1

δ zq
′ (z) = h (z), therefore it is the fuzzy best dominant.

Considering p(z) = z2
(RIαm,λ,lf(z))

′

RIαm,λ,lf(z)
, z ∈ U, p ∈ H[0, n]. Differentiating it, we obtain p (z) + z

δ p
′ (z) =

z2 δ+2
δ

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)
+ z3

δ

[
(RIαm,λ,lf(z))

′′

RIαm,λ,lf(z)
−
(

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)2
]
, z ∈ U, and (2.15) becomes Fp(U)

(
p(z) + 1

δ zp
′(z)
)
≤

Fh(U)h(z), z ∈ U.

Applying Lemma 1.2, we get FRIαm,λ,lf(U)

(
z2

(RIαm,λ,lf(z))
′

RIαm,λ,lf(z)

)
≤ Fq(U)q(z), z ∈ U, and the best dominant is

q(z) = δ

nz
δ
n

∫ z
0
h(t)t

δ
n−1dt.

Theorem 2.13 Let h(z) = g(z) + zg′(z), z ∈ U , where g is a convex function such that g(0) = 1. When the
fuzzy differential subordination

FRIαm,λ,lf(U)

1−
RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′
[(
RIαm,λ,lf (z)

)′]2
 ≤ Fh(U)h (z) , z ∈ U (2.16)

holds, for α, λ, l ≥ 0, m,n ∈ N, f ∈ An, then the followinf result is sharp FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′

)
≤

Fg(U)g(z), z ∈ U.
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Proof. Let p(z) =
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′ . We deduce that p ∈ H[1, n] and differentiating it, we get 1−RI

α
m,λ,lf(z)·(RI

α
m,λ,lf(z))

′′

[(RIαm,λ,lf(z))
′
]
2 =

p (z) + zp′ (z) , z ∈ U.
The fuzzy differential subordination becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) and

we apply Lemma 1.3 to deduce the following sharp result RIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′

)
≤ Fg(U)g(z), z ∈ U.

Theorem 2.14 Let h be a holomorphic function with h(0) = 1 and Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U. The fuzzy

differential subordination

FRIαm,λ,lf(U)

1−
RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′
[(
RIαm,λ,lf (z)

)′]2
 ≤ Fh(U)h(z), z ∈ U, (2.17)

induce FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′

)
≤ Fq(U)q(z), z ∈ U, where q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt, for α, λ, l ≥ 0,

m, n ∈ N, f ∈ An.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is a

convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.17)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.

Consider p(z) =
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′ , z ∈ U, p ∈ H[1, n]. Differentiating it, we obtain 1−RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′′

[(RIαm,λ,lf(z))
′
]
2 =

p (z)+zp′ (z) , z ∈ U, and the fuzzy differential subordination (2.17) is written Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z),
z ∈ U.

By using Lemma 1.2, we get FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)

z(RIαm,λ,lf(z))
′

)
≤ Fq(U)q(z), z ∈ U, and the best dominant is

q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt.

Example 2.2 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Let f (z) = z − z2, z ∈ U . For n = 1, m = 1, l = 1, λ = 2, α = 2
3 , we obtain RI

2
3
1,2,1f (z) = z − 2z2, z ∈ U .

Then
(
RI

2
3
1,2,1f (z)

)′
= 1− 4z and

(
RI

2
3
1,2,1f (z)

)′′
= −4,

RI
2
3
1,2,1f(z)

z

(
RI

2
3
1,2,1f(z)

)′ = z−2z2
z(1−4z) = 1−2z

1−4z ,

1−
RI

2
3
1,2,1f(z)·

(
RI

2
3
1,2,1f(z)

)′′
[(
RI

2
3
1,2,1f(z)

)′]2 = 1− (z−2z2)·(−4)
(1−4z)2 = 8z2−4z+1

(1−4z)2 . We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.14 we obtain FU

(
8z2−4z+1
(1−4z)2

)
≤ FU

(
1−z
1+z

)
, z ∈ U, induce FU

(
1−2z
1−4z

)
≤ FU

(
−1 + 2 ln(1+z)

z

)
,

z ∈ U.

Theorem 2.15 Consider h(z) = g(z) + zg′(z), z ∈ U, where g is a convex function with g(0) = 1. When the
fuzzy differential subordination

FRIαm,λ,lf(U)

([(
RIαm,λ,lf (z)

)′]2
+RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′) ≤ Fh(U)h(z), z ∈ U (2.18)

holds, for α, λ, l ≥ 0, m,n ∈ N, f ∈ An, then the following result is sharp FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z

)
≤

Fg(U)g(z), z ∈ U.

Proof. Let p(z) =
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z . We deduce that p ∈ H[1, n].

Differentiating it, we obtain

[(
RIαm,λ,lf (z)

)′]2
+RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′
= p (z) +zp′ (z) , z ∈ U , and

the fuzzy differential subordination becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) .

By using Lemma 1.3, we obtain the following result sharp FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z

)
≤ Fg(U)g(z),

z ∈ U.
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Theorem 2.16 For a holomorphic function h which satisfies the inequality Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, and

h(0) = 1, the fuzzy differential subordination

FRIαm,λ,lf(U)

([(
RIαm,λ,lf (z)

)′]2
+RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′) ≤ Fh(U)h(z), z ∈ U, (2.19)

induce FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z

)
≤ Fq(U)q(z), z ∈ U, where q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt, and α, λ, l ≥

0, m, n ∈ N, f ∈ An

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is

a convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.19)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.

Let p(z) =
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z , z ∈ U, evidently p ∈ H[1, n].

We have p (z) + zp′ (z) =

[(
RIαm,λ,lf (z)

)′]2
+ RIαm,λ,lf (z) ·

(
RIαm,λ,lf (z)

)′′
, z ∈ U, and (2.19) means

Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.

Applying Lemma 1.2, we get FRIαm,λ,lf(U)

(
RIαm,λ,lf(z)·(RI

α
m,λ,lf(z))

′

z

)
≤ Fq(U)q(z), z ∈ U, and the best

dominant is q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt.

Example 2.3 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Consider f (z) = z − z2, z ∈ U . For n = 1, m = 1, l = 1, λ = 2, α = 2
3 , we obtain RI

2
3
1,2,1f (z) = z − 2z2,

z ∈ U .

Then
(
RI

2
3
1,2,1f (z)

)′
= 1−4z,

(
RI

2
3
1,2,1f (z)

)′′
= −4,

RI
2
3
1,2,1f(z)·

(
RI

2
3
1,2,1f(z)

)′
z =

(z−2z2)(1−4z)
z = 8z2−6z+1,[(

RI
2
3
1,2,1f (z)

)′]2
+RI

2
3
1,2,1f (z) ·

(
RI

2
3
1,2,1f (z)

)′′
= (1− 4z)

2
+
(
z − 2z2

)
· (−4) = 24z2 − 12z + 1.

We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

From Theorem 2.16 we obtain FU
(
24z2 − 12z + 1

)
≤ FU

(
1−z
1+z

)
, z ∈ U, induce FU

(
8z2 − 6z + 1

)
≤

FU

(
−1 + 2 ln(1+z)

z

)
, z ∈ U.

Theorem 2.17 Consider h(z) = g(z) + z
1−δ g

′(z), z ∈ U , where g is a convex function with g(0) = 1. If the
fuzzy differential subordination

FRIαm,λ,lf(U)

( z

RIαm,λ,lf (z)

)δ
RIαm+1,λ,lf (z)

1− δ


(
RIαm+1,λ,lf (z)

)′
RIαm+1,λ,lf (z)

− δ

(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)


 ≤ Fh(U)h(z),

(2.20)
z ∈ U, holds, for α, λ, l ≥ 0, δ ∈ (0, 1), m,n ∈ N, f ∈ An, then the following result is sharp

FRIαm,λ,lf(U)

(
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ)
≤ Fg(U)g(z), z ∈ U.

Proof. Let p(z) =
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ
. We deduce that p ∈ H[1, n] and differentiating the function

p, we obtain
(

z
RIαm,λ,lf(z)

)δ RIαm+1,λ,lf(z)

1−δ

(
(RIαm+1,λ,lf(z))

′

RIαm+1,λ,lf(z)
− δ (RIαm,λ,lf(z))

′

RIαm,λ,lf(z)

)
= p (z) + 1

1−δ zp
′ (z) , z ∈ U.

The fuzzy differential subordination means Fp(U)

(
p(z) + 1

1−δ zp
′(z)
)
≤ Fh(U)h(z) = Fg(U)

(
g(z) + z

1−δ g
′(z)
)

and by using Lemma 1.3, we obtain the following sharp result FRIαm,λ,lf(U)

(
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ)
≤

Fg(U)g(z), z ∈ U.

Theorem 2.18 Let h be an holomorphic function with h(0) = 1 and Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U.The fuzzy

differential subordination

FRIαm,λ,lf(U)

( z

RIαm,λ,lf (z)

)δ
RIαm+1,λ,lf (z)

1− δ


(
RIαm+1,λ,lf (z)

)′
RIαm+1,λ,lf (z)

− δ

(
RIαm,λ,lf (z)

)′
RIαm,λ,lf (z)


 ≤ Fh(U)h(z),

(2.21)
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z ∈ U, induce FRIαm,λ,lf(U)

(
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ)
≤ Fq(U)q(z), z ∈ U, where q(z) = 1−δ

nz
1−δ
n

∫ z
0
h(t)t

1−δ
n −1dt,

for α, λ, l ≥ 0, δ ∈ (0, 1) , m, n ∈ N, f ∈ An.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we deduce that q (z) = 1−δ
nz

1−δ
n

∫ z
0
h(t)t

1−δ
n −1dtt

is a convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.21)
q (z) + 1

1−δ zq
′ (z) = h (z), therefore it is the fuzzy best dominant.

Consider p(z) =
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ
, z ∈ U, p ∈ H[1, n].

Differentiating it, we get
(

z
RIαm,λ,lf(z)

)δ RIαm+1,λ,lf(z)

1−δ

(
(RIαm+1,λ,lf(z))

′

RIαm+1,λ,lf(z)
− δ (RIαm,λ,lf(z))

′

RIαm,λ,lf(z)

)
= p (z)+ 1

1−δ zp
′ (z) ,

z ∈ U, and (2.21) becomes Fp(U)

(
p(z) + 1

1−δ zp
′(z)
)
≤ Fh(U)h(z), z ∈ U.

From Lemma 1.2, we get FRIαm,λ,lf(U)

(
RIαm+1,λ,lf(z)

z ·
(

z
RIαm,λ,lf(z)

)δ)
≤ Fq(U)q (z), z ∈ U, and the best

dominant is q(z) = 1−δ
nz

1−δ
n

∫ z
0
h(t)t

1−δ
n −1dt.
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Abstract

In this work we study a new operator IRm,nλ,l defined as the Hadamard product of the multiplier transfor-
mation I (m,λ, l) and Ruscheweyh derivativeRn, given by IRm,nλ,l : A → A, IRm,nλ,l f (z) = (I (m,λ, l) ∗Rn) f (z)

and An = {f ∈ H (U) : f (z) = z + an+1z
n+1 + ..., z ∈ U} is the class of normalized analytic functions with

A1 = A. The purpose of this paper is to derive certain subordination and superordination results involving
the operator IRm,nλ.l and we establish differential sandwich-type theorems.

Keywords: analytic functions, differential operator, differential subordination, differential superordination.
2010 Mathematical Subject Classification: 30C45.

1 Introduction

Let H (U) be the class of analytic function in the open unit disc of the complex plane U = {z ∈ C : |z| < 1}.
Let H (a, n) be the subclass of H (U) consisting of functions of the form f(z) = a+ anz

n + an+1z
n+1 + . . . .

Let An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} and A = A1.

Let the functions f and g be analytic in U . We say that the function f is subordinate to g, written f ≺ g,
if there exists a Schwarz function w, analytic in U , with w(0) = 0 and |w(z)| < 1, for all z ∈ U, such that
f(z) = g(w(z)), for all z ∈ U . In particular, if the function g is univalent in U , the above subordination is
equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Let ψ : C3×U → C and h be an univalent function in U . If p is analytic in U and satisfies the second order
differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), for z ∈ U, (1.1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of
the solutions of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying (1.1). A
dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best dominant of (1.1). The best
dominant is unique up to a rotation of U .

Let ψ : C2×U → C and h analytic in U . If p and ψ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
are univalent and if p satisfies

the second order differential superordination

h(z) ≺ ψ(p(z), zp′(z), z2p′′ (z) ; z), z ∈ U, (1.2)

then p is a solution of the differential superordination (1.2) (if f is subordinate to F , then F is called to be
superordinate to f). An analytic function q is called a subordinant if q ≺ p for all p satisfying (1.2). An
univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (1.2) is said to be the best subordinant.

Miller and Mocanu [6] obtained conditions h, q and ψ for which the following implication holds h(z) ≺
ψ(p(z), zp′(z), z2p′′ (z) ; z)⇒ q (z) ≺ p (z) .

For two functions f(z) = z +
∑∞
j=2 ajz

j and g(z) = z +
∑∞
j=2 bjz

j analytic in the open unit disc U ,
the Hadamard product (or convolution) of f (z) and g (z), written as (f ∗ g) (z) is defined by f (z) ∗ g (z) =
(f ∗ g) (z) = z +

∑∞
j=2 ajbjz

j .

Definition 1.1 [5] For f ∈ A, m ∈ N∪{0}, λ, l ≥ 0, the multiplier transformation I (m,λ, l) f(z) is defined by

the following infinite series I (m,λ, l) f(z) := z +
∑∞
j=2

(
1+λ(j−1)+l

1+l

)m
ajz

j .

Remark 1.1 We have (l + 1) I (m+ 1, λ, l) f(z) = (l + 1− λ) I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))
′
, z ∈ U.
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Remark 1.2 For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was introduced and studied by Al-Oboudi , which

reduced to the Sălăgean differential operator Sm = I (m, 1, 0) for λ = 1.

Definition 1.2 (Ruscheweyh [8]) For f ∈ A and n ∈ N, the Ruscheweyh derivative Rn is defined by Rn : A →
A,

R0f (z) = f (z) , R1f (z) = zf ′ (z) , ...

(n+ 1)Rn+1f (z) = z (Rnf (z))
′
+ nRnf (z) , z ∈ U.

Remark 1.3 If f ∈ A, f(z) = z +
∑∞
j=2 ajz

j, then Rnf (z) = z +
∑∞
j=2

(n+j−1)!
n!(j−1)! ajz

j for z ∈ U .

Definition 1.3 ([2]) Let λ, l ≥ 0 and n,m ∈ N. Denote by IRm,nλ,l : A → A the operator given by the

Hadamard product of the multiplier transformation I (m,λ, l) and the Ruscheweyh derivative Rn, IRm,nλ,l f (z) =
(I (m,λ, l) ∗Rn) f (z) , for any z ∈ U and each nonnegative integers m,n.

Remark 1.4 If f ∈ A and f(z) = z +
∑∞
j=2 ajz

j, then IRm,nλ,l f (z) = z +
∑∞
j=2

(
1+λ(j−1)+l

l+1

)m
(n+j−1)!
n!(j−1)! a

2
jz
j,

z ∈ U .

Using simple computation one obtains the next result.

Proposition 1.1 [1]For m,n ∈ N and λ, l ≥ 0 we have

(n+ 1) IRm,n+1
λ,l f (z)− nIRm,nλ,l f (z) = z

(
IRm,nλ,l f (z)

)′
. (1.3)

The purpose of this paper is to derive the several subordination and superordination results involving
a differential operator. Furthermore, we studied the results of Selvaraj and Karthikeyan [10], Shanmugam,
Ramachandran, Darus and Sivasubramanian [11] and Srivastava and Lashin [12].

In order to prove our subordination and superordination results, we make use of the following known results.

Definition 1.4 [7] Denote by Q the set of all functions f that are analytic and injective on U\E (f), where
E (f) = {ζ ∈ ∂U : lim

z→ζ
f (z) =∞}, and are such that f ′ (ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1.1 [7] Let the function q be univalent in the unit disc U and θ and φ be analytic in a domain D
containing q (U) with φ (w) 6= 0 when w ∈ q (U). Set Q (z) = zq′ (z)φ (q (z)) and h (z) = θ (q (z)) + Q (z).

Suppose that Q is starlike univalent in U and Re
(
zh′(z)
Q(z)

)
> 0 for z ∈ U .

If p is analytic with p (0) = q (0), p (U) ⊆ D and θ (p (z)) +zp′ (z)φ (p (z)) ≺ θ (q (z)) +zq′ (z)φ (q (z)) , then
p (z) ≺ q (z) and q is the best dominant.

Lemma 1.2 [4] Let the function q be convex univalent in the open unit disc U and ν and φ be analytic in a

domain D containing q (U). Suppose that Re
(
ν′(q(z))
φ(q(z))

)
> 0 for z ∈ U and ψ (z) = zq′ (z)φ (q (z)) is starlike

univalent in U .
If p (z) ∈ H [q (0) , 1] ∩ Q, with p (U) ⊆ D and ν (p (z)) + zp′ (z)φ (p (z)) is univalent in U and ν (q (z)) +

zq′ (z)φ (q (z)) ≺ ν (p (z)) + zp′ (z)φ (p (z)) , then q (z) ≺ p (z) and q is the best subordinant.

2 Main results

We begin with the following

Theorem 2.1 Let
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H (U) and let the function q (z) be analytic and univalent in U such that

q (z) 6= 0, for all z ∈ U . Suppose that zq′(z)
q(z) is starlike univalent in U . Let

Re

(
ξ

β
q (z) +

2µ

β
q2 (z) + 1 + z

q′′ (z)

q (z)
− z q

′ (z)

q (z)

)
> 0, (2.1)

for α, ξ, β, µ ∈ C, β 6= 0, z ∈ U and

ψm,nλ,l (α, ξ, µ, β; z) :=
(
α− ξn+ µn2

)
+ (n+ 1) (ξ − 2nµ− β)

IRm,n+1
λ,l f (z)

IRm,nλ,l f (z)
(2.2)
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+µ (n+ 1)
2

(
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)

)2

+ β (n+ 1)
(n+ 2) IRm,n+2

λ,l f (z)− (n+ 1) IRm,n+1
λ,l f (z)

(n+ 1) IRm,n+1
λ,l f (z)− nIRm,nλ,l f (z)

.

If q satisfies the following subordination

ψm,nλ,l (α, β, µ; z) ≺ α+ ξq (z) + µ (q (z))
2

+ β
zq′ (z)

q (z)
, (2.3)

for α, ξ, β, µ ∈ C, β 6= 0, then

z
(
IRm,nλ,l f (z)

)′
IRm,nλ,l f (z)

≺ q (z) , (2.4)

and q is the best dominant.

Proof. Let the function p be defined by p (z) :=
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U , z 6= 0, f ∈ A. We have p′ (z) =

(n+ 1)
(IRm,n+1

λ,l f(z))
′

IRm,nλ,l f(z)
− (n+ 1)

IRm,n+1
λ,l f(z)

IRm,nλ,l f(z)
· (IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
.

By using the identity (1.3), we obtain

zp′ (z)

p (z)
= (n+ 1)

(n+ 2) IRm,n+2
λ,l f (z)− (n+ 1) IRm,n+1

λ,l f (z)

(n+ 1) IRm,n+1
λ,l f (z)− nIRm,nλ,l f (z)

− (n+ 1)
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)
. (2.5)

By setting θ (w) := α + ξw + µw2 and φ (w) := β
w , it can be easily verified that θ is analytic in C, φ is

analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Also, by lettingQ (z) = zq′ (z)φ (q (z)) = β zq

′(z)
q(z) and h (z) = θ (q (z))+Q (z) = α+ξq (z)+µ (q (z))

2
+β zq

′(z)
q(z) ,

we find that Q (z) is starlike univalent in U .

We have h′ (z) = ξq′ (z) + 2µq (z) q′ (z) + β q
′(z)
q(z) + βz q

′′(z)
q(z) − βz

(
q′(z)
q(z)

)2
and zh′(z)

Q(z) = ξ
β q (z) + 2µ

β q
2 (z) + 1 +

z q
′′(z)
q(z) − z

q′(z)
q(z) .

We deduce that Re
(
zh′(z)
Q(z)

)
= Re

(
ξ
β q (z) + 2µ

β q
2 (z) + 1 + z q

′′(z)
q(z) − z

q′(z)
q(z)

)
> 0.

By using (2.5), we obtain

α+ ξp (z) + µ (p (z))
2

+ β zp
′(z)
p(z) =

(
α− ξn+ µn2

)
+ (n+ 1) (ξ − 2nµ− β)

IRm,n+1
λ,l f(z)

IRm,nλ,l f(z)
+

µ (n+ 1)
2

(
IRm,n+1

λ,l f(z)

IRm,nλ,l f(z)

)2

+ β (n+ 1)
(n+2)IRm,n+2

λ,l f(z)−(n+1)IRm,n+1
λ,l f(z)

(n+1)IRm,n+1
λ,l f(z)−nIRm,nλ,l f(z)

.

By using (2.3), we have α+ ξp (z) + µ (p (z))
2

+ β zp
′(z)
p(z) ≺ α+ ξq (z) + µ (q (z))

2
+ β zq

′(z)
q(z) .

By an application of Lemma 1.1, we have p (z) ≺ q (z), z ∈ U, i.e.
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺ q (z), z ∈ U and q is the

best dominant.

Corollary 2.2 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α, β, µ; z) ≺ α+ ξ 1+Az
1+Bz +

µ
(

1+Az
1+Bz

)2
+ β(A−B)z

(1+Az)(1+Bz) , for α, β, µ, ξ ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.2), then

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺ 1+Az

1+Bz , and 1+Az
1+Bz is the best dominant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.1 we get the corollary.

Corollary 2.3 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) holds. If f ∈ A and ψm,nλ,l (α, β, µ; z) ≺ α +

ξ
(

1+z
1−z

)γ
+ µ

(
1+z
1−z

)2γ
+ 2βγz

1−z2 , for α, β, µ, ξ ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is defined in (2.2), then

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺
(

1+z
1−z

)γ
, and

(
1+z
1−z

)γ
is the best dominant.

Proof. Corollary follows by using Theorem 2.1 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Theorem 2.4 Let q be analytic and univalent in U such that q (z) 6= 0 and zq′(z)
q(z) be starlike univalent in U .

Assume that

Re

(
ξ

β
q (z) q′ (z) +

2µ

β
q2 (z) q′ (z)

)
> 0, for ξ, β, µ ∈ C, β 6= 0. (2.6)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1127 Alb Lupas Alina 1125-1131



If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩ Q and ψm,nλ,l (α, β, µ; z) is univalent in U , where ψm,nλ,l (α, β, µ; z) is as

defined in (2.2), then

α+ ξq (z) + µ (q (z))
2

+
βzq′ (z)

q (z)
≺ ψm,nλ,l (α, β, µ; z) (2.7)

implies

q (z) ≺
z
(
IRm,nλ,l f (z)

)′
IRm,nλ,l f (z)

, z ∈ U, (2.8)

and q is the best subordinant.

Proof. Let the function p be defined by p (z) :=
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U , z 6= 0, f ∈ A.

By setting ν (w) := α + ξw + µw2 and φ (w) := β
w it can be easily verified that ν is analytic in C, φ is

analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.
Since ν′(q(z))

φ(q(z)) = q′(z)q(z)[ξ+2µq(z)]
β , it follows that Re

(
ν′(q(z))
φ(q(z))

)
= Re

(
ξ
β q (z) q′ (z) + 2µ

β q
2 (z) q′ (z)

)
> 0, for

α, β, µ ∈ C, µ 6= 0.

By using (2.5) and (2.7) we obtain α+ ξq (z) + µ (q (z))
2

+ βzq′(z)
q(z) ≺ α+ ξp (z) + µ (p (z))

2
+ βzp′(z)

p(z) .

Using Lemma 1.2, we have q (z) ≺ p (z) =
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U, and q is the best subordinant.

Corollary 2.5 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.6) holds. If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩Q and

α + ξ 1+Az
1+Bz + µ

(
1+Az
1+Bz

)2
+ β(A−B)z

(1+Az)(1+Bz) ≺ ψm,nλ,l (α, β, µ; z) , for α, β, ξ, µ ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where

ψm,nλ,l is defined in (2.2), then 1+Az
1+Bz ≺

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
, and 1+Az

1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1 in Theorem 2.4 we get the corollary.

Corollary 2.6 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.6) holds. If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩Q and

α+ξ
(

1+z
1−z

)γ
+µ

(
1+z
1−z

)2γ
+ 2βγz

1−z2 ≺ ψ
m,n
λ,l (α, β, µ; z) , for α, β, µ, ξ ∈ C, β 6= 0, 0 < γ ≤ 1, where ψm,nλ,l is defined

in (2.2), then
(

1+z
1−z

)γ
≺ z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, and

(
1+z
1−z

)γ
is the best subordinant.

Proof. For q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1 in Theorem 2.4 we get the corollary.

Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich theorem.

Theorem 2.7 Let q1 and q2 be analytic and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all z ∈ U ,

with
zq′1(z)
q1(z)

and
zq′2(z)
q2(z)

being starlike univalent. Suppose that q1 satisfies (2.1) and q2 satisfies (2.6). If f ∈ A,

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩Q and ψm,nλ,l (α, β, µ; z) is as defined in (2.2) univalent in U , then

α+ ξq1 (z) + µ (q1 (z))
2

+
βzq′1 (z)

q1 (z)
≺ ψm,nλ,l (α, β, µ; z) ≺ α+ ξq2 (z) + µ (q2 (z))

2
+
βzq′2 (z)

q2 (z)
,

for α, β, µ, ξ ∈ C, β 6= 0, implies q1 (z) ≺ z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺ q2 (z), and q1 and q2 are respectively the best

subordinant and the best dominant.

For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.

Corollary 2.8 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.6) hold. If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1]∩

Q and α+ξ 1+A1z
1+B1z

+µ
(

1+A1z
1+B1z

)2
+ β(A1−B1)z

(1+A1z)(1+B1z)
≺ ψm,nλ,l (α, β, µ; z) ≺ α+ξ 1+A2z

1+B2z
+µ

(
1+A2z
1+B2z

)2
+ β(A2−B2)z

(1+A2z)(1+B2z)
,

for α, β, µ, ξ ∈ C, β 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in (2.2), then 1+A1z
1+B1z

≺
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺ 1+A2z

1+B2z
, hence 1+A1z

1+B1z
and 1+A2z

1+B2z
are the best subordinant and the best dominant, respectively.

For q1 (z) =
(

1+z
1−z

)γ1
, q2 (z) =

(
1+z
1−z

)γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.
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Corollary 2.9 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.1) and (2.6) hold. If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1]∩

Q and α + ξ
(

1+z
1−z

)γ1
+ µ

(
1+z
1−z

)2γ1
+ 2βγ1z

1−z2 ≺ ψm,nλ,l (α, β, µ; z) ≺ α + ξ
(

1+z
1−z

)γ2
+ µ

(
1+z
1−z

)2γ2
+ 2βγ2z

1−z2 , for

α, β, µ, ξ ∈ C, β 6= 0, 0 < γ1 < γ2 ≤ 1, where ψm,nλ,l is defined in (2.2), then
(

1+z
1−z

)γ1
≺ z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺
(

1+z
1−z

)γ2
,

hence
(

1+z
1−z

)γ1
and

(
1+z
1−z

)γ2
are the best subordinant and the best dominant, respectively.

We have also

Theorem 2.10 Let
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H (U) , f ∈ A, z ∈ U , m,n ∈ N, λ, l ≥ 0 and let the function q (z) be convex

and univalent in U such that q (0) = 1, z ∈ U . Assume that

Re

(
α+ β

β
+ z

q′′ (z)

q′ (z)

)
> 0, (2.9)

for α, β ∈ C, β 6= 0, z ∈ U, and

ψm,nλ,l (α, β; z) := β (n+ 1) (n+ 2)
IRm,n+2

λ,l f (z)

IRm,nλ,l f (z)
− (2.10)

β (n+ 1)
2

(
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)

)2

+ (α− β) (n+ 1)
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)
− αn.

If q satisfies the following subordination

ψm,nλ,l (α, β; z) ≺ αq (z) + βzq′ (z) , (2.11)

for α, β ∈ C, β 6= 0, z ∈ U, then

z
(
IRm,nλ,l f (z)

)′
IRm,nλ,l f (z)

≺ q (z) , z ∈ U, (2.12)

and q is the best dominant.

Proof. Let the function p be defined by p (z) :=
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U , z 6= 0, f ∈ A. The function p is

analytic in U and p (0) = 1

We have p′ (z) = (n+ 1)
(IRm,n+1

λ,l f(z))
′

IRm,nλ,l f(z)
− (n+ 1)

IRm,n+1
λ,l f(z)

IRm,nλ,l f(z)
· (IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
.

By using the identity (1.3), we obtain

zp′ (z) = (n+ 1) (n+ 2)
IRm,n+2

λ,l f (z)

IRm,nλ,l f (z)
− (n+ 1)

2

(
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)

)2

− (n+ 1)
IRm,n+1

λ,l f (z)

IRm,nλ,l f (z)
. (2.13)

By setting θ (w) := αw and φ (w) := β, it can be easily verified that θ is analytic in C, φ is analytic in C\{0}
and that φ (w) 6= 0, w ∈ C\{0}.

Also, by letting Q (z) = zq′ (z)φ (q (z)) = βzq′ (z) , we find that Q (z) is starlike univalent in U.
Let h (z) = θ (q (z)) +Q (z) = αq (z) + βzq′ (z).

We have Re
(
zh′(z)
Q(z)

)
= Re

(
α+β
β + z q

′′(z)
q′(z)

)
> 0.

By using (2.13), we obtain αp (z) + βzp′ (z) = β (n+ 1) (n+ 2)
IRm,n+2

λ,l f(z)

IRm,nλ,l f(z)
−

β (n+ 1)
2

(
IRm,n+1

λ,l f(z)

IRm,nλ,l f(z)

)2

+ (α− β) (n+ 1)
IRm,n+1

λ,l f(z)

IRm,nλ,l f(z)
− αn.

By using (2.11), we have αp (z) + βzp′ (z) ≺ αq (z) + βzq′ (z) .

From Lemma 1.1, we have p (z) ≺ q (z), z ∈ U, i.e.
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺ q (z), z ∈ U, and q is the best dominant.

Corollary 2.11 Let q (z) = 1+Az
1+Bz , z ∈ U, −1 ≤ B < A ≤ 1, m, n ∈ N, λ, l ≥ 0. Assume that (2.9) holds. If

f ∈ A and ψm,nλ,l (α, β; z) ≺ α 1+Az
1+Bz + β(A−B)z

(1+Bz)2
, for α, β ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in

(2.10), then
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺ 1+Az

1+Bz , and 1+Az
1+Bz is the best dominant.
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Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.10 we get the corollary.

Corollary 2.12 Let q (z) =
(

1+z
1−z

)γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.9) holds. If f ∈ A and ψm,nλ,l (α, β; z) ≺

α
(

1+z
1−z

)γ
+ 2βγz

1−z2

(
1+z
1−z

)γ
, for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is defined in (2.10), then

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺(

1+z
1−z

)γ
, and

(
1+z
1−z

)γ
is the best dominant.

Proof. Corollary follows by using Theorem 2.10 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Theorem 2.13 Let q be convex and univalent in U such that q (0) = 1. Assume that

Re

(
α

β
q′ (z)

)
> 0, for α, β ∈ C, β 6= 0. (2.14)

If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩Q and ψm,nλ,l (α, β; z) is univalent in U , where ψm,nλ,l (α, β; z) is as defined

in (2.10), then
αq (z) + βzq′ (z) ≺ ψm,nλ,l (α, β; z) (2.15)

implies

q (z) ≺
z
(
IRm,nλ,l f (z)

)′
IRm,nλ,l f (z)

, δ ∈ C, δ 6= 0, z ∈ U, (2.16)

and q is the best subordinant.

Proof. Let the function p be defined by p (z) :=
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U , z 6= 0, f ∈ A. The function p is

analytic in U and p (0) = 1.
By setting ν (w) := αw and φ (w) := β it can be easily verified that ν is analytic in C, φ is analytic in C\{0}

and that φ (w) 6= 0, w ∈ C\{0}.
Since ν′(q(z))

φ(q(z)) = α
β q
′ (z), it follows that Re

(
ν′(q(z))
φ(q(z))

)
= Re

(
α
β q
′ (z)

)
> 0, for α, β ∈ C, β 6= 0.

Now, by using (2.15) we obtain αq (z) + βzq′ (z) ≺ αp (z) + βzp′ (z) , z ∈ U. From Lemma 1.2, we have

q (z) ≺ p (z) =
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, z ∈ U, and q is the best subordinant.

Corollary 2.14 Let q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, z ∈ U, m, n ∈ N, λ, l ≥ 0. Assume that (2.14) holds.

If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩ Q, and α 1+Az

1+Bz + β(A−B)z

(1+Bz)2
≺ ψm,nλ,l (α, β; z) , for α, β ∈ C, β 6= 0,

−1 ≤ B < A ≤ 1, where ψm,nλ,l is defined in (2.10), then 1+Az
1+Bz ≺

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
, and 1+Az

1+Bz is the best subordinant.

Proof. For q (z) = 1+Az
1+Bz , −1 ≤ B < A ≤ 1, in Theorem 2.13 we get the corollary.

Corollary 2.15 Let q (z) =
(

1+z
1−z

)γ
,m, n ∈ N, λ, l ≥ 0. Assume that (2.14) holds. If f ∈ A,

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
∈

H [q (0) , 1] ∩Q and α
(

1+z
1−z

)γ
+ 2βγz

1−z2

(
1+z
1−z

)γ
≺ ψm,nλ,l (α, β; z) , for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,nλ,l is

defined in (2.10), then
(

1+z
1−z

)γ
≺ z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
, and

(
1+z
1−z

)γ
is the best subordinant.

Proof. Corollary follows by using Theorem 2.13 for q (z) =
(

1+z
1−z

)γ
, 0 < γ ≤ 1.

Combining Theorem 2.10 and Theorem 2.13, we state the following sandwich theorem.

Theorem 2.16 Let q1 and q2 be convex and univalent in U such that q1 (z) 6= 0 and q2 (z) 6= 0, for all z ∈ U .

Suppose that q1 satisfies (2.9) and q2 satisfies (2.14). If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1]∩Q , and ψm,nλ,l (α, β; z)

is as defined in (2.10) univalent in U , then αq1 (z)+βzq′1 (z) ≺ ψm,nλ,l (α, β; z) ≺ αq2 (z)+βzq′2 (z) , for α, β ∈ C,

β 6= 0, implies q1 (z) ≺ z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺ q2 (z), z ∈ U, and q1 and q2 are respectively the best subordinant and the

best dominant.

For q1 (z) = 1+A1z
1+B1z

, q2 (z) = 1+A2z
1+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we have the following corollary.
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Corollary 2.17 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.9) and (2.14) hold for q1 (z) = 1+A1z
1+B1z

and q2 (z) =

1+A2z
1+B2z

, respectively. If f ∈ A,
z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
∈ H [q (0) , 1] ∩ Q and α 1+A1z

1+B1z
+ β(A1−B1)z

(1+B1z)
2 ≺ ψm,nλ,l (α, β; z) ≺

α 1+A2z
1+B2z

+ β(A2−B2)z

(1+B2z)
2 , z ∈ U, for α, β ∈ C, β 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,nλ,l is defined in

(2.2), then 1+A1z
1+B1z

≺ z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
≺ 1+A2z

1+B2z
, z ∈ U, hence 1+A1z

1+B1z
and 1+A2z

1+B2z
are the best subordinant and the best

dominant, respectively.

For q1 (z) =
(

1+z
1−z

)γ1
, q2 (z) =

(
1+z
1−z

)γ2
, where 0 < γ1 < γ2 ≤ 1, we have the following corollary.

Corollary 2.18 Let m,n ∈ N, λ, l ≥ 0. Assume that (2.9) and (2.14) hold for q1 (z) =
(

1+z
1−z

)γ1
and q2 (z) =(

1+z
1−z

)γ2
, respectively. If f ∈ A,

z(IRm,nλ,l f(z))
′

IRm,nλ,l f(z)
∈ H [q (0) , 1]∩Q and α

(
1+z
1−z

)γ1
+ 2βγ1z

1−z2

(
1+z
1−z

)γ1
≺ ψm,nλ,l (α, β; z)

≺ α
(

1+z
1−z

)γ2
+ 2βγ2z

1−z2

(
1+z
1−z

)γ2
, z ∈ U, for α, β ∈ C, β 6= 0, 0 < γ1 < γ2 ≤ 1, where ψm,nλ,l is defined in (2.2),

then
(

1+z
1−z

)γ1
≺ z(IRm,nλ,l f(z))

′

IRm,nλ,l f(z)
≺
(

1+z
1−z

)γ2
, z ∈ U, hence

(
1+z
1−z

)γ1
and

(
1+z
1−z

)γ2
are the best subordinant and the

best dominant, respectively.
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Global stability of a quadratic anti-competitive system of rational difference
equations in the plane with Allee effects.
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Abstract. We investigate global dynamics of the following systems of difference equations
xn+1 =

y2n
a+x2n

yn+1 =
x2n
b+y2n

, n = 0, 1, 2, . . .

where the parameters a, b are positive numbers and initial conditions x0 and y0 are arbitrary nonnegative numbers. We
find all possible dynamical scenario for this system. We show that this system has substantially different behavior than
the corresponding linear fractional system.

Keywords. Competitive map, global stable manifold, monotonicity, period-two solution.

AMS 2010 Mathematics Subject Classification: Primary: 39A10, 39A30 Secondary: 37E99, 37D10

1 Introduction and Preliminaries

We investigate global dynamics of the following systems of difference equations
xn+1 =

y2n
a+x2n

yn+1 =
x2n
b+y2n

, n = 0, 1, . . . (1)

where the parameters a, b are positive numbers and initial conditions x0 and y0 are arbitrary nonnegative numbers.
System (1) is related to an anti-competitive system considered in [21]

xn+1 =
γ1yn

A1 + xn
, yn+1 =

β2xn
A2 + yn

, n = 0, 1, ..., (2)

where the parameters A1, γ1, A2 and β2 are positive numbers and the initial conditions (x0, y0) are arbitrary nonnegative
numbers. In the classification of all linear fractional systems in [3], System (2) was mentioned as system (16, 16).

The main result on the global behavior of System (2) is summarized in the following theorem, see [21].

Theorem 1 (a) If β2 γ1 −A1A2 < 0, then E0(0, 0) is a unique equilibrium and it is globally asymptotically stable.

(b) If β2 γ1 − A1A2 > 0, then there exist two equilibrium points, namely a repeller E0 and an interior saddle E+.
There exists a set C ⊂ R = [0,∞)× [0,∞) which is invariant subset of the basin of attraction of E+. The set C is
a graph of a strictly increasing continuous function of the first variable on an interval, and E0 ∈ C and separates
R into two connected and invariant components, namely

W− : = {x ∈ R\C : ∃y ∈ C with x �se y} ,

W+ : = {x ∈ R\C : ∃y ∈ C with y �se x} .

1Corresponding author, e-mail: mkulenovic@uri.edu
2Partially supported by Maitland P. Simmons Foundation
3Partially supported by FMON grant 05-39-3087-18/16
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which satisfy:

i) If (x0, y0) ∈ W+, then

lim
n→∞

(x2n, y2n) = (∞, 0) and lim
n→∞

(x2n+1, y2n+1) = (0,∞) .

ii) If (x0, y0) ∈ W−,
lim
n→∞

(x2n, y2n) = (0,∞) and lim
n→∞

(x2n+1, y2n+1) = (∞, 0) .

(c) If β2 γ1 −A1A2 = 0, then,

i. E0(0, 0) is the unique equilibrium, and every point of the positive semiaxes is a period-two point. Orbits of
period-two solutions consist of the points (x, 0) and (0, β2

A2
x), for some x > 0.

ii. All minimal period-two solutions and the equilibrium are stable but not asymptotically stable.

iii. There exists a family of strictly increasing curves C0, Cx and Cx for x > 0, that emanate from E0, Ex := (x, 0)
and Ex := (0, β2

A2
x) respectively, such that the curves are pairwise disjoint, the union of all the curves equals

R2
+, and solutions with initial point in C0 converge to E0, solutions with initial point in Cx have even-indexed

terms converging to Ex and odd-indexed terms converging to Ex, and, solutions with initial point in Cx have
even-indexed terms converging to Ex and odd-indexed terms converging to Ex.

As we will show in this paper System (1) has very different behavior than System (2), showing that introduction of
quadratic terms can significantly change behavior of the system. As we will show in Section 4 there are three dynamic
scenarios for System (1), each different than one of the three scenarios for System (2). For example System (1) always
possesses the unique period-two solution which substantially effects the global behavior. Second System (1) exhibits
the Allee’s effect which is nonexistent in System (2). Third major difference between two systems lies in the techniques
of the proof used in two results. While the results about the global stable and unstable manifolds in [18, 19, 20] were
sufficient for the proofs of global dynamics of System (2), these results are not effective in the case of System (1) as the
eigenvectors which correspond to the period-two solution of System (1) are parallel to the coordinate axes. Thus we used
new techniques based on the properties of the basins of attraction of the period-two solution or the points at infinity
(0,∞) and (∞, 0). Furthermore, we used the real algebraic geometry to prove some basic facts about the local stabilty
of the equilibrium points and the period-two solutions. Our results show that the introduction of quadratic terms in
the linear fractional systems of difference equations change substantially their behavior, see [2, 10] for similar results. In
particular, introduction of quadratic terms creates the Allee’s effect and introduces the periodic solutions.

The rest of this section contains some known results about competitive systems. Section 2 gives some basic facts
about the global behavior of System (1). Section 3 presents local stability analysis of the equilibrium solutions and the
period-two solution. Finally, Section 4 gives complete global dynamics of System (1).

A first order system of difference equations{
xn+1 = f (xn, yn)
yn+1 = g (xn, yn)

, n = 0, 1, ..., (x0, y0) ∈ R, (3)

where R ⊂ R2, (f, g) : R → R, f, g are continuous functions is competitive if f (x, y) is non-decreasing in x and
non-increasing in y, and g (x, y) is non-increasing in x and non-decreasing in y.

System (3) where the functions f and g have monotonic character opposite of the monotonic character in competitive
system will be called anti-competitive. In other words (3) is anti-competitive if f (x, y) is non-increasing in x and non-
decreasing in y, and g (x, y) is non-decreasing in x and non-increasing in y.

Consider a partial ordering � on R2. Two points v,w ∈ R2 are said to be related if v � w or w � v. Also, a
strict inequality between points may be defined as v ≺ w if v � w and v 6= w. A stronger inequality may be defined as
v = (v1, v2)� w = (w1, w2) if v � w with v1 6= w1 and v2 6= w2. For u, v in R2, the order interval Ju,vK is the set of
all x ∈ R2 such that u � x � v. The interior of a set A is deoned as intA.

A map T on a nonempty set S ⊂ R2 is a continuous function T : S → S. The map T is monotone if v � w implies
T (v) � T (w) for all v,w ∈ S, and it is strongly monotone on S if v ≺ w implies that T (v)� T (w) for all v,w ∈ S. The
map is strictly monotone on S if v ≺ w implies that T (v) ≺ T (w) for all v,w ∈ S. Clearly, being related is invariant
under iteration of a strongly monotone map.

Throughout this paper we shall use the North-East ordering (NE) for which the positive cone is the first quadrant,
i.e. this partial ordering is defined by (x1, y1) �ne (x2, y2) if x1 ≤ x2 and y1 ≤ y2 and the South-East (SE) ordering
defined as (x1, y1) �se (x2, y2) if x1 ≤ x2 and y1 ≥ y2.

A map T on a nonempty set S ⊂ R2 which is monotone with respect to the North-East ordering is called cooperative
and a map monotone with respect to the South-East ordering is called competitive. A map T on a nonempty set
S ⊂ R2 which second iterate T 2 is monotone with respect to the North-East ordering is called anti-cooperative and a
map which second iterate T 2 is monotone with respect to the South-East ordering is called anti-competitive. A map
T that corresponds to System (3) is defined as T = (f, g). An equilibrium x of anti-competitive system (3) is said to

2
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be nonhyperbolic of stable (resp. unstable) type if one of the eigenvalues of the Jacobian matrix evaluated at x is by
absolute value 1 and the second one is by absolute value less (resp. bigger) than 1.

Next, we give three results for competitive maps in the plane. There is an extensive literature on competitive
systems in the plane, see [1, 2, 4, 5, 6, 8, 9, 18, 19, 20, 23] for different examples of planar competitive systems and their
applications. The following definition is from [24].

Definition 1 Let S be a nonempty subset of R2. A competitive map T : S → S is said to satisfy condition (O+) if
for every x, y in S, T (x) �ne T (y) implies x �ne y, and T is said to satisfy condition (O−) if for every x, y in S,
T (x) �ne T (y) implies y �ne x.

The following theorem was proved by de Mottoni-Schiaffino [7] for the Poincaré map of a periodic competitive
Lotka-Volterra system of differential equations. Smith generalized the proof to competitive and cooperative maps [23].

Theorem 2 Let S be a nonempty subset of R2. If T is a competitive map for which (O+) holds then for all x ∈ S,
{Tn(x)} is eventually componentwise monotone. If the orbit of x has compact closure, then it converges to a fixed point
of T . If instead (O−) holds, then for all x ∈ S, {T 2n} is eventually componentwise monotone. If the orbit of x has
compact closure in S, then its omega limit set is either a period-two orbit or a fixed point.

The following result is from [24], with the domain of the map specialized to be the cartesian product of intervals of
real numbers. It gives a sufficient condition for conditions (O+) and (O−).

Theorem 3 Let R ⊂ R2 be the cartesian product of two intervals in R. Let T : R → R be a C1 competitive map. If T
is injective and detJT (x) > 0 for all x ∈ R then T satisfies (O+). If T is injective and detJT (x) < 0 for all x ∈ R then
T satisfies (O−).

The following result is a direct consequence of the Trichotomy Theorem of Dancer and Hess, see [11, 19], and is
helpful for determining the basins of attraction of the equilibrium points.

Corollary 1 If the nonnegative cone of � is a generalized quadrant in Rn, and if T has no fixed points in Ju1, u2K other
than u1 and u2, then the interior of Ju1, u2K is either a subset of the basin of attraction of u1 or a subset of the basin of
attraction of u2.

2 Some Basic Facts

Let

T1(x, y) =
y2

a+ x2
, T2(x, y) =

x2

b+ y2
.

The map T (x, y) associated to system (1) is given by

T (x, y) = (T1(x, y), T2(x, y)) =

(
y2

a+ x2
,

x2

b+ y2

)
, (x, y) ∈ [0,∞)× [0,∞) (4)

and the Jacobian matrix of the map T at the point (x, y) is given by:

JT (x, y) =

 − 2xy2

(x2+a)2
2y

x2+a

2x
y2+b

− 2x2y
(y2+b)2

 . (5)

Determinant of the Jacobian matrix (5) is given by

det JT (x, y) = −4xy(bx2 + a(y2 + b))

(x2 + a)2(y2 + b)2
, (6)

and the trace of the Jacobian matrix (5) is given by

trJT (x, y) = −
(

2yx2

(y2 + b)2
+

2y2x

(x2 + a)2

)
. (7)

The map T 2 is given by T 2(x, y) = (F (x, y), G(x, y)), where

F (x, y) =
x4

(b+ y2)2
(

y4

(a+x2)2
+ a

) , G(x, y) =
y4

(a+ x2)2
(

x4

(b+y2)2
+ b

) . (8)

3
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The Jacobian matrix of T 2 is given as

JT2(x, y) =

(
A B
C D

)
, (9)

where

A =

4x3
(

(2x2+a)y4

(x2+a)3
+ a

)
(y2 + b)2

(
y4

(x2+a)2
+ a

)2 , B = −
4x4

(
x2 + a

)2
y
(

2y4 + by2 + a
(
x2 + a

)2)
(y2 + b)3

(
y4 + a (x2 + a)2

)2 , (10)

C = −
4xy4

(
y2 + b

)2 ((
2x2 + a

)
x2 + b

(
y2 + b

)2)
(x2 + a)3

(
x4 + b (y2 + b)2

)2 , D =

4y3
(

(2y2+b)x4

(y2+b)3
+ b

)
(x2 + a)2

(
x4

(y2+b)2
+ b

)2 . (11)

Determinant of the Jacobian matrix (9) is

det JT2(x, y) =
A

(a+ x2) (b+ y2)
(
a (a+ x2)2 + y4

)2 (
b (b+ y2)2 + x4

)2 , (12)

where

A = 16x3y3
(
a
(
a+ x2

)2 (
b3 + x4

)
+by4

(
a
(
a+ x2

)2
+ b2

)
+ 2ab2y2

(
a+ x2

)2
+ 2b2y6 + by8

) (
a
(
b+ y2

)
+ bx2

)
.

The following lemma summarizes some basic facts about System (1).

Lemma 1 Let (xn, yn) := Tn(x0, y0) be any solution of System (1). Then

(i) Assume that x0 = 0 and y0 > 0. Then the following holds:

(i.1) x2n = 0 and y2n−1 = 0 for all n ∈ N.
(i.2) If 0 < y0 <

3
√
a2b, then 0 < x1 <

3
√
ab2 and y2n+2 ≤ y2n for all n ∈ N.

(i.3) If y0 >
3
√
a2b, then x1 >

3
√
ab2 and y2n ≤ y2n+2 for all n ∈ N.

(ii) Assume that x0 > 0 and y0 = 0. Then the following holds

(ii.1) x2n−1 = 0 and y2n = 0 for all n ∈ N.
(ii.2) If 0 < x0 <

3
√
ab2, then y1 <

3
√
a2b and x2n+2 ≤ x2n for all n ∈ N.

(ii.3) If x0 >
3
√
ab2, then y1 >

3
√
a2b and x2n ≤ x2n+2 for all n ∈ N.

(iii) For all n > 0 we have xnyn < 1.

Proof. We prove statement (i.1). Take x0 = 0 and y0 > 0. The statement (i) follows from

(0, y0)− T 2(0, y0) = (0, y0)−
(

0,
y40
a2b

)
=

(
0,
a2by0 − y40

a2b

)
,

x1 − 3
√
ab2 =

y20
a
− 3
√
ab2 =

y20 −
3
√
a4b2

a

and monotonicity of T 2. Similarly, we prove (ii.1). Proofs of (i.2), (ii.2), (i.3) and (ii.3) are immediate.
Take x0, y0 ∈ [0,∞)× [0,∞). Let (xn, yn) := Tn(x0, y0). The proof of the statement (iii) follows from the fact

xn+1yn+1 =
y2n

a+ x2n

x2n
b+ y2n

=
x2n

a+ x2n

y2n
b+ y2n

< 1.

2

Lemma 2 The map T is injective.

4
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Proof. We have to prove that

T (x1, y1) = T (x2, y2)⇒ x1 = x2 and y1 = y2.

Let x1, y1, x2, y2 > 0. Then

T (x1, y1)− T (x2, y2) =

(
x22y

2
1 + ay21 − x21y22 − ay22
(x21 + a) (x22 + a)

,
y22x

2
1 + bx21 − bx22 − x22y21
(y21 + b) (y22 + b)

)
.

From T (x1, y1)− T (x2, y2) = 0 we have
x22y

2
1 + ay21 − x21y22 − ay22 = 0 (13)

and
y22x

2
1 + bx21 − bx22 − x22y21 = 0. (14)

Equation (13) implies that

x21 =
x22y

2
1 + ay21 − ay22

y22
. (15)

Substituting x21 from (15) into equation (14) we have

(y1 − y2) (y1 + y2)
(
bx22 + ay22 + ab

)
y22

= 0,

from which it follows that y1 = y2. Substituting in (15) we have x1 = x2. This proves Lemma. 2

Theorem 4 Every bounded solution of System (1) converges to a period-two solution.

Proof. In view of Lemma 2 the map T associated to System (1) is injective which implies that the map T 2 is also
injective. Relation (12) implies that determinant of the Jacobian matrix (9) is positive for all x ∈ (0,∞) × (0,∞). By
using Theorem 3 we have that the condition (O+) is satisfied for the map T 2 (T 2 is competitive). Theorem 2 implies that
odd and even subsequences {x2n}∞n=0, {x2n+1}∞n=−1, {y2n}∞n=0, {y2n+1}∞n=−1 of any solution {(xn, yn)}∞n=0 are eventually
monotonic, from which the proof follows. 2

3 The local stability of the equilibrium solutions and the period-two
solution

The equilibrium points (x̄, ȳ) of System (1) satisfy equations

ȳ2

a+ x̄2
= x̄,

x̄2

b+ ȳ2
= ȳ. (16)

By eliminating x̄ from (16) we get

ȳ9 + 3bȳ7 + 2aȳ6 + 3b2ȳ5 + (4ab− 1)ȳ4 +
(
b3 + a2

)
ȳ3 + 2ab2ȳ2 + a2bȳ = 0. (17)

Similarly, we can eliminate variable ȳ from system (16) to obtain

x̄9 + 3ax̄7 + 2bx̄6 + 3a2x̄5 + (4ab− 1)x̄4 +
(
a3 + b2

)
x̄3 + 2a2bx̄2 + ab2x̄ = 0. (18)

In view of Descartes’ Rule of Signs we obtain that Eq. (18) has zero equilibrium always and either zero, one or two
positive equilibrium points if 4ab− 1 < 0. By using (16) all its real roots are positive numbers. These equilibrium points
will be denoted E0(0, 0), E(x̄, ȳ), ESW (x̄, ȳ) and ENE(x̄, ȳ).

Lemma 3 Let

∆1 = 186624b2a15 + 55296b5a13 + 2657664b4a12 + 4096b8a11 + 1619712b3a11

+ 754688b7a10 − 12500b2a10 + 10767632b6a9 + 55296b10a8 − 11550400b5a8 + 2657664b9a7

+ 1980000b4a7 + 1619712b8a6 − 84375b3a6 + 186624b12a5 − 12500b7a5 (19)

and
∆2 = 4ab− 1.

Then the following holds:

5
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a) If ∆2 ≥ 0, then equation (18) has one real root and four pairs of conjugate imaginary roots. Consequently, System
(1) has one equilibrium point E0(0, 0);

b) If ∆2 < 0, and ∆1 < 0, then equation (18) has three distinct real roots and three pairs of conjugate imaginary
roots. Consequently, System (1) has three equilibrium points E0(0, 0); ESW (x̄, ȳ) and ENE(x̄, ȳ);

c) If ∆2 < 0, and ∆1 > 0, then equation (18) has four pairs of conjugate imaginary roots and one real root.
Consequently, System (1) has one equilibrium point E0(0, 0);

d) If ∆2 < 0 and ∆1 = 0 then equation (18) has three pairs of conjugate imaginary roots and one real root of
multiplicity two and one root of multiplicity one. Consequently, System (1) has two equilibrium points E0(0, 0)
and E(x̄, ȳ).

Proof. Let ∆ be discriminant of

f̃(x) = x9 + 3ax7 + 2bx6 + 3a2x5 + (4ab− 1)x4 +
(
a3 + b2

)
x3 + 2a2bx2 + ab2x.

Then ∆ = a2b∆1. The rest of the proof follows from the fact that equation (18) has at most three real roots and Theorem
5.1 from [13]. 2

Period-two solution {(Φ,Ψ), T (Φ,Ψ)} satisfies the system

F (Φ,Ψ) = Φ, G(Φ,Ψ) = Ψ,

which is equivalent to

Φ

(
Φ3 −

(
b+ Ψ2)2( Ψ4

(a+ Φ2)2
+ a

))
= 0, Ψ

(
Ψ3 −

(
a+ Φ2)2( Φ4

(b+ Ψ2)2
+ b

))
= 0. (20)

For Φ = 0 we have Ψ = 0 or Ψ =
3
√
a2b, and for Ψ = 0 we have Φ = 0 or Φ =

3
√
ab2. Hence, we have two minimal

period-two points P1

(
0,

3
√
a2b)

)
and P2

(
3
√
ab2, 0

)
.

Lemma 4 The period-two solution {P1, P2} is a saddle point with corresponding eigenvectors which are coordinate axes.

Proof. The proof follows from the fact that JT2(P1) =

(
0 0
0 4

)
. 2

Lemma 5 Let CF := {(x, y) : F (x, y) = x} and CG := {(x, y) : G(x, y) = y} be the period-two curves, that is the
curves which intersection is a period-two solution. Then for all y >

3
√
a2b there exists exactly one xG(y) > 0 such that

G(xG(y), y) = y and for all x >
3
√
ab2 there exists exactly one yF (x) > 0 such that F (x, yF (x)) = x. Furthermore, xG(y)

and yF (x) are continuous functions and x′G(y) > 0, y′F (x) > 0.

Proof. Since F (x, y) = x and G(x, y) = y if and only if

−xy4
(
a3 + 2a2x2 + ax4 + b2

)
+ x

(
a+ x2

)2 (
x3 − ab2

)
− 2abxy2

(
a+ x2

)2 − 2bxy6 − xy8 = 0,

−x4
(
a2 + b

(
b+ y2

)2)− (b+ y2
)2 (

a2b− y3
)
− 2abx2

(
b+ y2

)2 − 2ax6 − x8 = 0,

respectively, in view of Descartes’ Rule of Signs we have that for all y >
3
√
a2b there exists exactly one xG(y) > 0

such that G(xG(y), y) = y and for all x >
3
√
ab2 there exists exactly one yF (x) > 0 such that F (x, yF (x)) = x. Taking

derivatives of F (x, y) = x with respect to x we get

y′F (x) =
1− F ′x(x, y)

F ′y(x, y)
.

From F (x, y) = x we have that
(
b+ y2

)2
= x3

y4

(a+x2)2
+a

, which implies

F ′x(x, y) =
4y4

(
a+ 2x2

)
+ 4a

(
a+ x2

)3
y4 (a+ x2) + a (a+ x2)3

> 1.

Since F ′y(x, y) < 0 we get x′F (y) > 0. Taking derivatives of G(x, y) = y with respect to y we get

x′G(y) =
1−G′y(x, y)

G′x(x, y)
.
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From G(x, y) = y we have that
(
b+ y2

)2
= x3

y4

(a+x2)2
+a

, which implies

G′y(x, y) =
4x4y2

(b+ y2)
(
b (b+ y2)2 + x4

) + 4 > 4.

Since G′x(x, y) < 0 we get x′G(y) > 0. 2

Theorem 5 If T has a period-two solution {(Φ,Ψ), T (Φ,Ψ)}, then it is unstable. If µ1 and µ2, (0 < µ1 < µ2) are the
eigenvalues of JT2(Φ,Ψ) then µ1 > 0 and µ2 > 1. All period-two-solutions are ordered with respect to the North-East
ordering.

Proof. Since

F ′x(Φ,Ψ) =
4Ψ4

(
a+ 2Φ2

)
+ 4a

(
a+ Φ2

)3
Ψ4 (a+ Φ2) + a (a+ Φ2)3

> 1

and

G′y(Φ,Ψ) =
4Φ4Ψ2

(b+ Ψ2)
(
b (b+ Ψ2)2 + Φ4

) + 4 > 4,

we obtain

trJT2(Φ,Ψ) = µ1 + µ2 > 5.

The rest of the proof follows from the fact that detJT2(Φ,Ψ) = µ1µ2 > 0 and Lemma 5. 2

Theorem 6 If map T has a minimal period-two point {(Φ1,Ψ1), T (Φ1,Ψ1)}, which is non-hyperbolic, then Dis(p) = 0,
where Dis(p) is the discriminant of polynomial

p(x) := p16x
16 + p15x

15 + · · ·+ p1x+ p0,

where the coefficients pi, i = 0, ..., 16 are given in appendix A. If {(Φ1,Ψ1), T (Φ1,Ψ1)} and {(Φ2,Ψ2), T (Φ2,Ψ2)} are two
period-two points such that T has no other period-two points in [[(Φ1,Ψ1), (Φ2,Ψ2)]] = {(x, y) : (Φ1,Ψ1) �ne (x, y) �ne
(Φ2,Ψ2)}, Dis(f̃) 6= 0 and Dis(p) 6= 0, then one of them is a saddle point and the other one is repeller.

Proof. Period-two solution curves CF = {(x, y) ∈ R : F̃ (x, y) = 0} and CG = {(x, y) ∈ R : G̃(x, y) = 0}, where

F̃ (x, y) =− a3b2x− 2a3bxy2 − a3xy4 − 2a2b2x3 − 4a2bx3y2 + a2x4

− 2a2x3y4 − ab2x5 − 2abx5y2 + 2ax6 − ax5y4 − b2xy4 − 2bxy6 + x8 − xy8,

G̃(x, y) =− a2b3y − 2a2b2y3 − a2by5 − a2x4y − 2ab3x2y − 4ab2x2y3

− 2abx2y5 − 2ax6y − b3x4y − 2b2x4y3 + b2y4 − bx4y5 + 2by6 − x8 − y + y8,

are algebraic curves. By using software Mathematica one can see that the resultant of the polynomials F̃ (x, y) and
G̃(x, y) in variable y is given by

R(F̃ , G̃) =x20
(
a+ x2

)16 (
ab2 − x3

)(
a3x2 + 2a2bx+ 3a2x4 + ab2 + 4abx3 + 3ax6 + b2x2 + 2bx5 + x8 − x3

)
p(y)

=x19(a+ x2)16(ab2 − x3)f̃(x)p(x).

The rest of the proof is the same as the proof of Theorem 15 in [10] so we skip it. 2

It is easy to see that the following holds:

Lemma 6 The equilibrium point E0 is locally asymptotically stable.

Let C1 := {(x, y) : T1(x, y) = x} and C2 := {(x, y) : T2(x, y) = y} be the equilibrium curves, that is the curves which
intersection is an equilibrium solution. Then for all x ≥ 0 there exist exactly one y1(x) > 0 such that T1(x, y1(x)) = x
and exactly one y2(x) > 0 such that T2(x, y2(x)) = y. Furthermore, it can be seen that y1(x) and y2(x) are continuous
increasing functions.
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Theorem 7 Assume that ∆1 < 0 and ∆2 < 0. Then there exist two positive equilibrium solutions ESW and ENE and
the following holds true:

(i) The equilibrium solution ESW is repeller.

(ii) The equilibrium solution ENE is a saddle point.

Proof. The existence of the equilibrium solution follows from Lemma 3.

(i) Since the map T is anti-competitive then by results in [15], the eigenvalues λ1 and λ2 of the Jacobian matrix
associated to the map T at ESW (x̄, ȳ) ∈ int(R2

+) are real and distinct, and the following holds |λ2| < −λ1. By
using (6), we see that detJT (x̄, ȳ) = λ1λ2 < 0, which implies λ2 > 0. Let

JT (x̄, ȳ) =

(
e f
g h

)
. (21)

Taking derivatives of T1(x, y) = x and T2(x, y) = y with respect to x in the neighborhood of x̄, we have

y′1(x̄)− y′2(x̄) =
1− e
f
− g

1− h =
p(1)

f(1− h)
=

(λ1 − 1)(λ2 − 1)

f(1− h)
, (22)

where
p(λ) = λ2 − (e+ f)λ+ (eh− fg)

is the characteristic equation of (21). One can see that y′1(x̄) − y′2(x̄) < 0. Since λ1 < 0, and f > 0, h < 0, we
obtain λ2 > 1. In view of |λ2| < −λ1 we have λ1 < −1 from which the proof follows.

(ii) Now, we consider the equilibrium point ENE(x̄, ȳ). Same as in the previous case we have that y′1(x̄)− y′2(x̄) > 0
which implies that 0 < λ2 < 1. By Theorem 5 we have λ2

1 + λ2
2 > 5 from which it follows λ2

1 > 4, i.e. λ1 < −2.
This completes the proof.

2

Theorem 8 Assume that ∆2 < 0 and ∆1 = 0. Then there exist one positive equilibrium point E(x̄, ȳ) which is a
non-hyperbolic equilibrium point of unstable type. If λ1 and λ2 are the eigenvalues of the Jacobian matrix associated to
the map T at E(x̄, ȳ) ∈ int(R2

+) then λ1 < −1 and λ2 = 1.

Proof. In view of Lemmas 6 and 7 from [1], the curves CF and CG intersect tangentially at E(x̄, ȳ) (i.e. y′1(x̄)−y′2(x̄) = 0)
if and only if x̄ is zero of f̃(x) of multiplicity greater then one. By Lemma 3, x̄ is a root of f̃(x) of multiplicity two. In
view of

y′1(x̄)− y′2(x̄) =
(λ1 − 1)(λ2 − 1)

f(1− h)
= 0, (23)

we obtain λ2 = 1. Since |λ2| < −λ1 we have λ1 < −1. 2

4 The global behavior

Let R = [0,∞)2, CF = {(x, y) ∈ R : F (x, y) = x}, CG = {(x, y) ∈ R : G(x, y) = y} and

RT2(−,−) = { (x, y) ∈ R : F (x, y) < x, G(x, y) < y },

RT2(+,−) = { (x, y) ∈ R : F (x, y) > x, G(x, y) < y },

RT2(+,+) = { (x, y) ∈ R : F (x, y) > x, G(x, y) > y },

RT2(−,+) = { (x, y) ∈ R : F (x, y) < x, , G(x, y) > y }.

By Lemma 5, CF na CG are the graphs of continuous strictly increasing functions yF and yG, i.e. CF = { (x, yF (x)) :
x ≥ 3
√
ab2 } and CG = { (x, yG(x)) : x ≥ 0 }.

In view of Lemma 4 [15] we have that T (RT2(+,−)) ⊆ RT2(−,+) and T (RT2(−,+)) ⊆ RT2(+,−) and T 2(RT2(−,+)) ⊆
RT2(−,+) and T 2(RT2(+,−)) ⊆ RT2(+,−). Since T 2 is competitive map, by using (iii) of Lemma 1, we obtain
T 2(x0, y0)→ (0,∞) if (x0, y0) ∈ RT2(−,+) and T 2(x̃0, ỹ0)→ (∞, 0) if (x̃0, ỹ0) ∈ RT2(+,−).

Lemma 7 int[[P1, P2]] ⊂ B(E0).

8
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Proof. If P ∈ int[[P1, P2]] then there exist x0 and y0 such that

P1 ≺se (0, y0) ≺se P ≺se (x0, 0) ≺se P2.

Since T 2 is competitive map we have

P1 ≺se T 2n(0, y0) ≺se T 2n(P ) ≺se T 2n(x0, 0) ≺se P2.

From Lemma 1 we obtain T 2n(0, y0)→ E0 and T 2n(x0, 0)→ E0 as n→∞ from which the proof follows. 2

4.1 The case ∆2 ≥ 0 or (∆2 < 0 and ∆1 > 0)

In this case, by Lemma 3, there exists one equilibrium point, E0 which is locally asymptotically stable and the minimal
period two solution {P1, P2} which is a saddle point. In this case we have that yF (x) < yG(x) for x ≥ 0 and

RT2(−,−) = { (x, y) ∈ R : yF (x) < y < yG(x) },

RT2(+,−) = { (x, y) ∈ R : yF (x) > y } ⊆ B(∞, 0),

RT2(−,+) = { (x, y) ∈ R : y > yG(x) } ⊆ B(0,∞).

Let B(0,∞) denote the basin of attraction of (0,∞) and B(∞, 0) denote the basin of attraction of (∞, 0) with respect
to the map T 2.

In view of Theorem 4 and iii) of Lemma 1 it is clear that {Tn(x0, y0)} is either asymptotic to {(0,∞), (∞, 0)} or
converges to a period-two solution, for all (x0, y0) ∈ R = [0,∞)2. Let S1 denote the boundary of B(0,∞) and let S2
denote the boundary of B(∞, 0). It is easy to see that P1 ∈ S1, P2 ∈ S2, and S1,S2 ⊆ RT2(−,−). Similarly as in [10] it
follows that T 2(S1) ⊆ S1, T 2(S2) ⊆ S2 and T (S1) = S2, T (S2) = S1. Further, S1 and S2 are the graphs of continuous
strictly increasing functions. Since S1,S2 ⊆ RT2(−,−), we have, by the uniqueness of the global stable manifold of the
map T 2, that Ws(P1) = S1 and Ws(P2) = S2.

Theorem 9 Assume that ∆2 ≥ 0. Then System (1) possesses one equilibrium point E0(0, 0) and one minimal period-two
solution {P1, P2}. Equilibrium E0 is locally asymptotically stable and {P1, P2} is a saddle point. Global stable manifold
Ws({P1, P2}), which is a union of two continuous increasing curves S1 and S2, divides the first quadrant such that the
following holds:

i) Every initial point (x0, y0) ∈ R such that (x̃0, ỹ0)�se (x0, y0)�se (x̄0, ȳ0) for some (x̃0, ỹ0) ∈ S1 and (x̄0, ȳ0) ∈ S2
is attracted to E0.

ii) If (x0, y0) ∈ R such that (x0, y0) �se (x̃0, ỹ0) for some (x̃0, ỹ0) ∈ S1 then the subsequence of even-indexed terms
{(x2n, y2n)} is asymptotic to (0,∞), and the subsequence of odd-indexed terms {(x2n+1, y2n+1)} is asymptotic to
(∞, 0).

iii) If (x0, y0) ∈ R such that (x̄0, ȳ0) �se (x0, y0) for some (x̄0, ȳ0) ∈ S2 then the subsequence of even-indexed terms
{(x2n, y2n)} is asymptotic to (∞, 0), and the subsequence of odd-indexed terms {(x2n+1, y2n+1)} is asymptotic to
(0,∞).

See Figure 1 (a) for visual illustration.

Proof. Since S1 is invariant under T 2 and subset of RT2(−,−) we have that if (x0, y0) ∈ S1 then T 2n+2(x0, y0) �ne
T 2n(x0, y0). This implies that subsequences {x2n} and {y2n} are decreasing and since they are bounded sequences, they
are convergent. It must be that T 2n(x0, y0) → P1 as n → ∞. By the uniqueness of the global stable manifold of T 2

we obtain Ws(P1) = S1. Similarly we get Ws(P2) = S2 from which it follows that Ws({P1, P2}) = S1 ∪ S2. Take
(x0, y0) ∈ R, (x̃0, ỹ0) ∈ S1 and (x̄0, ȳ0) ∈ S2 such that (x̃0, ỹ0) �se (x0, y0) �se (x̄0, ȳ0). By monotonicity of T 2 we
have T 2n(x̃0, ỹ0) �se T

2n(x0, y0) �se T
2n(x̄0, ȳ0). Since T 2n(x̃0, ỹ0) → P1 and T 2n(x̄0, ȳ0) → P2 as n → ∞ and by the

uniqueness of the global stable manifold we obtain that T 2n(x0, y0) eventually enters int[[P1, P2]]se. So it is enough to
prove that [[P1, P2]]se ⊆ B(E0). Indeed, for (x0, y0) ∈ int[[P1, P2]]se there exist

3
√
ab2 > ¯̄x0 > 0 and

3
√
a2b > ¯̄y0 > 0

such that (0, ¯̄y0) �se (x0, y0) �se (¯̄x0, 0). By Lemma 1 we have T 2n(0, ¯̄y0) → E0 and T 2n(¯̄x0, 0) → E0 as n → ∞. By
monotonicity of T 2 we get T 2n(x0, y0) → E0 from which the proof follows. By construction of the sets S1 and S2 the
statements ii) and iii) are valid. 2
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4.2 The case ∆2 < 0 and ∆1 < 0

In this case, by Lemma 3, there exist three equilibrium points E0, ESW and ENE . By Lemma 6 E0 is locally asymptotically
stable and by Theorem 7 ESW is repeller and ENE is a saddle point. If Q2(ESW ) = {(x, y) : 0 ≤ x ≤ x̄SW and y ≥ x̄SW }
and Q4(ESW ) = {(x, y) : x ≥ x̄SW and 0 ≤ y ≤ x̄SW }, then one can see that Q2(ESW ) ⊆ RT2(−,+) and Q4(ESW ) ⊆
RT2(+,−).

Let B(0,∞) denote the basin of attraction of (0,∞) and B(∞, 0) denote the basin of attraction of (∞, 0) with respect
to the map T 2.

In view of Theorem 4 and iii) of Lemma 1 it is easy to see that {Tn(x0, y0)} is either asymptotic to (0,∞) or (∞, 0)
or converges to a period-two solution, for all (x0, y0) ∈ R = [0,∞)2. Let S1 denote the boundary of B(0,∞) considered
as a subset of Q3(ESW ) and S2 denote the boundary of B(∞, 0) considered as a subset of Q3(ESW ). It follows that
P1, ESW ∈ S1 and P2, ESW ∈ S2. It is easy to see S1,S2 ⊆ RT2(−,−), from which, similarly as in [10], it follows that
T 2(S1) ⊆ S1, T 2(S2) ⊆ S2 and T (S1) = S2, T (S2) = S1. Further, S1 and S2 are the graphs of continuous strictly
increasing functions. Since S1,S2 ⊆ RT2(−,−), we have, by the uniqueness of the global stable manifold of T 2, that
Ws(P1) = S1 and Ws(P2) = S2.

Lemma 8 B(E0) = {P ∈ [0,∞)2 : P̃ ≺se P ≺se P for P̃ ∈ S1 and P ∈ S2}.

Proof. Assume that P̃ ≺se P ≺se P for P̃ ∈ S1 and P ∈ S2. By monotonicity of T we get T 2n(P̃ ) ≺se T 2n(P ) ≺se
T 2n(P ). Since T 2n(P̃ )→ P1 and T 2n(P )→ P2 as n→∞. By the uniqueness of the global stable manifold we have that
T 2n eventually enters int[[P1, P2]]. The rest of the proof follows from Lemma 7. 2

Lemma 9 Assume that Dis(P ) 6= 0. Then System (1) does not have minimal period-two solution.

Proof. For contradiction, assume that P is a minimal period-two solution of System (1). It is clear from previous
discussions that P ∈ (Q1(ESW ) ∩ Q3(ENE)) ∪ Q1(ENE). Furthermore, assume that P ∈ Q1(ESW ) ∩ Q3(ENE) and T
has no other minimal period-two solutions in [[ESW , P ]]�ne . Since ESW is a repeller by Lemma 6 we obtain that P
is a saddle point. The map T 2 satisfy all conditions of Theorem 5 [20], which yields the existence of the global stable
manifoldsWs({P, T (P )}), which is the union of two curvesWs(P ) andWs(T (P )). SinceWs(T (P )) = T (Ws(P )) we have
that these two curves have a common endpoint ESW and there exists minimal period-two solution {P̃ , T (P̃ )} such that
P �ne P̃ �ne ENE and the curveWs(P ) has the second endpoint at P̃ while the curveWs(T (P )) has the second endpoint
at T (P̃ ). Furthermore, the minimal period-two solution {P̃ , T (P̃ )} is a repeller. Since all positive period-two solutions
are ordered with respect to the North-East ordering it must be Ws(T (P )) �ne Ws(P ), i.e. Ws(T (P )) ⊂ Q3(ESW )
which is in contradiction to Ws(T (P )) ⊂ Q1(ESW ). Similarly, we have contradiction if P ∈ Q1(ENE). Hence, T has no
minimal period-two solutions. 2

Theorem 10 Assume that ∆2 < 0 and ∆1 < 0. Then System (1) has three equilibrium solutions E0 ≺ne ESW ≺ne ENE ,
where E0 is locally asymptotically stable, ESW is a repeller and ENE is a saddle point and the minimal period-two
solution {P1, P2} which is a saddle point. In this case there exist three invariant continuous curves Ws(ENE), Ws(P1),
Ws(P2), which have end point at ESW and they are graphs of increasing functions. Every solution {(xn, yn)} which
starts below Ws(ENE) ∪ Ws(P1) in South-East ordering is asymptotic to (0,∞) and every solution {(xn, yn)} which
starts above Ws(ENE) ∪Ws(P2) in South-East ordering is asymptotic to (∞, 0). Every solution {(xn, yn)} which starts
below Ws(P2) and above Ws(P1) in South-East ordering converges to E0. The first quadrant of the initial conditions
Q1 = {(x0, y0) : x0 ≥ 0, y0 ≥ 0} is the union of six disjoint basins of attraction, i.e.

Q1 = B(0,∞) ∪ B(∞, 0) ∪ B(E0) ∪ B({P1, P2}) ∪ B(ENE) ∪ B(ESW ),

where

B(ESW ) = {ESW }, B(ENE) =Ws(ENE), B({P1, P2}) =Ws(P1) ∪Ws(P2),

B(0,∞) ={(x, y)|(x, y) �se (x̃0, ỹ0) for some (x̃0, ỹ0) ∈ Ws(ENE) ∪Ws(P1)},
B(∞, 0) ={(x, y)|(x̃1, ỹ1) �se (x, y) for some (x̃1, ỹ1) ∈ Ws(ENE) ∪Ws(P2)},
B(E0) ={(x, y)|(x̃1, ỹ1) �se (x, y) �se (x̃2, ỹ2) for some (x̃1, ỹ1) ∈ Ws(P1), (x̃2, ỹ2) ∈ Ws(P2)}.

Proof. The proof which follows from previous discussions and Theorem 5 [20] will be ommited. See Figure 1 (c) for
visual illustration. 2
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Figure 1: Visual illustration of (a) Theorem 9 (b) Theorem 11 and (c) Theorem 10.

4.3 The case ∆2 < 0 and ∆1 = 0

Let S1 and S2 be defined as in the previous case where ESW = ENE = E. In this case, by Lemma 3, there exist two
equilibrium points E0 and E. By Lemma 6 we have that E0 is locally asymptotically stable and E is a non-hyperbolic
equilibrium point of unstable type. Let S̃1 denote the boundary of B(0,∞) considered as a subset of Q1(E) and S̃2
denote the boundary of B(∞, 0) considered as a subset of Q1(E). It is clear that E ∈ S̃1 ∪ S̃2. Furthermore, one can see

S̃1, S̃2 ⊆ RT2(−,−). Similarly as in [10], we have that T 2(S̄1) ⊆ S̃1, T 2(S̃2) ⊆ S̃2 and T (S̃1) = S̃2, T (S̃2) = S̃1. Further,

S̃1 and S̃2 are the graphs of continuous strictly increasing functions.

Theorem 11 Assume that ∆2 < 0 and ∆1 = 0. Then System (1) possesses two equilibrium solutions E0 and E and one
minimal period-two solution {P1, P2}. Equilibrium E0 is locally asymptotically stable, E is non-hyperbolic of unstable type
and {P1, P2} is a saddle point. Global stable manifold Ws({P1, P2}) is the union of two continuous increasing curves S1
and S2 and the following holds

i) Every initial point (x0, y0) ∈ R such that (x̃0, ỹ0)�se (x0, y0)�se (x̄0, ȳ0) for some (x̃0, ỹ0) ∈ S1 and (x̄0, ȳ0) ∈ S2
is attracted to E0.

ii) Every initial point (x0, y0) ∈ R such that (x̃0, ỹ0)�se (x0, y0)�se (x̄0, ȳ0) for some (x̃0, ỹ0) ∈ S̃1 and (x̄0, ȳ0) ∈ S̃2
is attracted to E.

iii) If (x0, y0) ∈ R such that (x0, y0)�se (x̃0, ỹ0) for some (x̃0, ỹ0) ∈ S1∪S̃1 then the subsequence of even-indexed terms
{(x2n, y2n)} is asymptotic to (0,∞), and the subsequence of odd-indexed terms {(x2n+1, y2n+1)} is asymptotic to
(∞, 0).

iv) If (x0, y0) ∈ R such that (x̄0, ȳ0)�se (x0, y0) for some (x̄0, ȳ0) ∈ S2∪S̃2 then the subsequence of even-indexed terms
{(x2n, y2n)} is asymptotic to (∞, 0), and the subsequence of odd-indexed terms {(x2n+1, y2n+1)} is asymptotic to
(0,∞).

See Figure 1 (b) for visual illustration.

Proof. The proof of the statement i) is the same as the proof of the statement i) of Theorem 9. Since S̃1 is invariant

under T 2 and subset of RT2(−,−) we have that if (x0, y0) ∈ S̃1 then T 2n+2(x0, y0) �ne T 2n(x0, y0). This implies that
subsequences {x2n} and {y2n} are decreasing and since they are bounded sequences, they are convergent. It must be
that T 2n(x0, y0)→ E as n→∞. Since T is continuous map and E is an equilibrium point we obtain T 2n+1(x0, y0)→ E

as n→∞ and S̃2 = T (S̃1). Similarly we obtain that if (x0, y0) ∈ S̃2 then T 2n(x0, y0) ∈ S̃2, T
2n(x0, y0)→ E as n→∞.

Further, T 2n+1(x0, y0) ∈ S̃1, T
2n+1(x0, y0) → E as n → ∞. Take (x0, y0) ∈ R and (x̃0, ỹ0) ∈ S̃1 and (x̄0, ȳ0) ∈ S̃2 such

that (x̃0, ỹ0) �se (x0, y0) �se (x̄0, ȳ0). By monotonicity of T 2 we have T 2n(x̃0, ỹ0) �se T
2n(x0, y0) �se T

2n(x̄0, ȳ0).
Since T 2n(x̃0, ỹ0) → E and T 2n(x̄0, ȳ0) → E as n → ∞ we obtain that T 2n(x0, y0) → E, which implies the statement

ii). The statements iii) and iv) follow by construction of the sets S̃1 and S̃2. 2

Remark 1 The major results of this paper, Theorems 9 - 11, are actually the general results for general anti-competitive
system (3). In fact, any anti-competitive system (3) with same configuration and local stability of the equilibrium and
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period-two solutions will have the same global dynamics. So System (1) is actually an example of a global dynamics
described in Theorems 9 - 11.

Remark 2 In [22] we consider system 
xn+1 =

x2n
a+y2n

yn+1 =
y2n
b+x2n

, n = 0, 1, . . . (24)

where the parameters a, b are positive numbers and initial conditions x0 and y0 are arbitrary nonnegative numbers, and
obtain global dynamics similar to one described in Theorems 9 - 11, with the major difference that P1 and P2 are saddle
point equilibrium solutions. Since the eigenvectors of the linearized system at P1 and P2 are parallel to the coordinate
axes one can not apply at this time the results from [19, 20] to prove the existence of stable manifolds at these two
points. However, existence of stable manifolds at these two points can be proved as in Theorems 9 - 11, where these
two manifolds are obtained as Julia sets of the points (∞, 0) and (0,∞). Thus all results in [22] are correct with this
adjustment of the proof.

A Values of coefficients pi for i = 0, ..., 16.

p16 =a4b4 − 4a3b3 + 6a2b2 − 4ab+ 1

p15 =4a3b5 − 12a2b4 + 12ab3 − 4b2

p14 =6a2b6 − 12ab5 + 7a5b4 + 6b4 − 20a4b3 + 18a3b2 − 4a2b− a

p13 =4ab7 − 4b6 + 26a4b5 − 52a3b4 + 24a2b3 + 4ab2 − 2b

p12 =b8 + 38a3b6 − 40a2b5 + 21a6b4 − 10ab4 − 40a5b3 + 12b3 + 10a4b2 + 8a3b+ a7 + a2

p11 =28a2b7 − 4ab6 + 72a5b5 − 16b5 − 87a4b4 − 30a3b3 + 26a2b2 + 4a6b+ 10ab+ 7a5 + 1

p10 =5a8 + 35b4a7 − 40b3a6 − 12b2a5 + 101b6a4 + 32ba4 − 44b5a3 + 13a3 − 100b4a2

+ 11b8a+ 16b3a+ 4b7 + 11b2

p9 =2b9 + 76a3b7 + 10a2b6 + 110a6b5 − 58ab5 − 68a5b4 − 6b4 − 102a4b3

+ 34a3b2 + 18a7b+ 28a2b+ 21a6 + 3a

p8 =10a9 + 35b4a8 − 20b3a7 + 2b2a6 + 145b6a5 + 58ba5 − 12b5a4 + 15a4 − 163b4a3 + 33b8a2

− 20b3a2 + 8b7a+ 13b2a+ 8b6 + 4b

p7 =8ab9 + b8 + 104a4b7 + 16a3b6 + 100a7b5 − 66a2b5 − 22a6b4 − 33ab4 − 66a5b3 + 29a4b2

+ 32a8b+ 22a3b+ 22a7 + 3a2

p6 =10a10 + 21b4a9 − 4b3a8 + 35b2a7 + 120b6a6 + 48ba6 + 8b5a5 + 6a5 − 90b4a4 + 43b8a3

− 42b3a3 + 6b7a2 − b2a2 + 16b6a+ 4ba+ b10 + 2b5 + 1

p5 =28ba9 + 54b5a8 + 9a8 + 10b3a6 + 76b7a5 + 16b2a5 + 6b6a4 + 10ba4 − 22b5a3

+ a3 + 10b9a2 − 37b4a2 + 4b8a− 10b3a+ b2

p4 =5a11 + 7b4a10 + 33b2a8 + 56b6a7 + 14ba7 + 4b5a6 + a6 − 5b4a5 + 26b8a4 − 18b3a4

+ 6b7a3 − b2a3 + 14b6a2 + 2ba2 + b10a− 2b5a+ 2b9 + b4

p3 =12ba10 + 16b5a9 + a9 + b4a8 + 20b3a7 + 28b7a6 + 3b2a6 + 4ba5 + 2b5a4

+ 4b9a3 − 9b4a3 + 8b8a2 − 6b3a2 − 4b7a− 2b2a+ b6

p2 =a12 + b4a11 + 11b2a9 + 13b6a8 + 6b4a6 + 6b8a5 + 2b3a5

+ 6b7a4 + 3b2a4 + 3b6a3 + 2b5a2 + 2b9a− b4a+ b8

p1 =2ba11 + 2b5a10 + 4b3a8 + 4b7a7 + 4b4a4 + 4b8a3 − 2b3a3 − 2b7a2

p0 =ab8 + 2a5b7 + a9b6 + a2b4 + 2a6b3 + a10b2
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Solutions to Periodic Sylvester Matrix Equations Based on Matrices

Splitting ∗

Lingling Lv, †Chaofei Han, ‡Lei Zhang, §

Abstract

New iterative algorithms are introduced to solve periodic Sylvester matrix equations in this paper. The
iterative algorithms are based on the principle of matrix splitting and gradient iteration method. Detailed
iterative steps for solving equations are presented and their convergence property are strictly verified. A
numerical test is employed to prove the correctness and effectiveness of the iterative algorithms.

Keywords: Periodic Sylvester matrix equations; iterative algorithm; matrix splitting.

1 Introduction

Analysis and design of time-varying systems are more charllenging than that of time-invariant dynamic
systems since their coefficients are changing according to time. Take stability and stabilization for example,
the stability concepts and criterion for (linear) time-varying systems are very difficult to characterize as they
generally have no direct relationship with their coefficients (see [18] and [19] for detailed introductions). The
periodic linear system as a special case of linear time-varying systems is thus important since it helps to
understand that methods built for time-invariant systems can be generalized to time-varying setting. On the
other, periodic linear systems also have important applications in engineering since they can be frequently
used to describe cyclic temporal variation (seasonal or interannual) and to account for the operation of
multiple processes. For example, Caswell analyzed in [1] the periodic models that must trace the effects of
parameter changes and they applied the method to periodic system for periodic environments, and Verstraete
introduced in [13] a picture to analyse the density matrix renormalization group (DMRG) numerical method
from a quantum information prespective, which leads to a variational formulation of DMRG that allows
for dramatic improvements in the case of problems with periodic boundary conditions. Therefore, in recent
years, periodic linear systems have attracted significant attention in the literature.

Periodic Sylvester matrix equations play a major role in the analysis and design of discrete-time periodic
linear systems. A general form of the periodic Sylvester matrix equation is as follows

AtXt +Xt+1Bt = Ct, (1)

and
AtXt+1 +XtBt = Ct, (2)

where the coefficient matrices At, Bt, Ct ∈ Rn×n, t = 0, 1, · · · , are given matrices and Xt ∈ Rn×n are
unknown matrices. These matrices are periodic with period T , i.e., At+T = At, Bt+T = Bt, Ct+T = Ct and
Xt+T = Xt. In [8], Korotyaev showns that it is related with the periodic matrix-valued Jacobi operators. We
have shown recently that the aboveperiodic Sylvester matrix equation are helpful in the design of periodic

∗This work is supported by the Programs of National Natural Science Foundation of China (Nos. 11501200, U1604148,
61402149), Innovative Talents of Higher Learning Institutions of Henan (No. 17HASTIT023), China Postdoctoral Science
Foundation (No. 2016M592285).
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Email: 18235140359@163.com (Chaofei Han).

§Computer and Information Engineering College, Henan University, Kaifeng 475004, P. R. China. Email:
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Luenberger observers [10] and output regulator [11]. For more applications of this class of periodic Sylvester
matrix equations, see [10], [11] and the refereces therein.

The (generalized periodic) Sylvester matrix equations were first put forward by Sylvester and applied in
mathematical control theory. As the development of science and technology, they become more and more
important. Now many scholars and experts have analyzed the existence and uniqueness of solutions to
the Sylvester matrix equation. In [12], Sreedhar proposed an elegant and simple method for computing
the periodic solution of Sylvester matrix equations. In [3], Chen used the matrix sign function to solve
periodic Sylvester equations. In [16], Zhang offered a finite iterative algorithm for solving the complex
generalized coupled Sylvester matrix equations. In [2], the author pays attention to solving the Lyapunov
matrix equations and Sylvester matrix equations in control theory by numerical methods. [4] constructs an
iterative algorithm to solve the generalized coupled Sylvester matrix equations over reflexive matrices. In
[9], a comprehensive theory of the matrix linear equation AX + XB = C is presented. In [6], Gu applied
Jacobi iteration of solving linear equations to solve Sylvester matrix equations. In [5], M Dehghan propose
two iterative algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of the Sylvester
matrix equation AX +XB = C.

Furthermore, it should be pointed that gradient iterative algorithm is attracting more and more researchers.
Many experts apply it to solve the Sylvester matrix equations and a lot of cases show that it is a better
way to solve matrix equations. In [17], zhang present a gradient iterative algorithm for solving coupled
matrix equations based on the hierarchical identification principle. In [14], Li study solutions of general
matrix equations by using the iterative method and present gradient iterative algorithms by applying the
hierarchical identification principle. In [7], Hoskins discussed an iterative method for solving the matrix
equation XA + AY = F and compared it with existing techniques. In [15], an iterative algorithm is
construct to solve the general coupled matrix equations over reflexive matrix solution. Of course, researchers
have given numerical examples to demonstrate the correctness of the proposed algorithm.

However, to the best of our knlowedge, the iterative algorithms for the periodic Sylvester matrix equations
have not been fully researched in the literature. Therefore, in this paper, we dedicate to give iterative
algorithms for solving equations (1) and (2). The iterative algorithms are based on the principle of matrix
splitting and gradient iteration method. Detailed iterative steps for solving equations are presented and
their convergence property are strictly verified. A numerical test is employed to prove the correctness and
effectiveness of the iterative algorithms.

The rest of this paper is arranged in the following ways. In section 2, new iterative algorithms are proposed
to solve the Sylvester matrix equations and the convergences are validated. In section 3, a numerical example
is provided to verify the correctness of the iterative algorithm. And in section 4, we draw some conclusions.

2 Main results

2.1 Iterative algorithm for equation (1)

Firstly, for t = 0, 1, · · · , T − 1, define W
′

t and W
′′

t as

W
′

t = Ct −Xt+1Bt (3)

W
′′

t = Ct −AtXt (4)

Rewrite matrices At and Bt as
At = αtIn×n + T

′

t , (5)

Bt = βtIn×n + T
′′

t , (6)

where αt and βt are arbitrary constant numbers, In×n is the unit matrix and T
′

t , T
′′

t are the remaining
matrices of At, Bt.

Based on the above division, it is easy to obtain that

W
′

t = (αtIn×n + T
′

t )Xt (7)
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W
′′

t = Xt+1(βtIn×n + T
′′

t ) (8)

Construct the following iteration:

X
′

t(k) = X
′

t(k − 1) + θtαt

(
Ct −X

′

t+1(k − 1)Bt −AtX
′

t(k − 1)
)

(9)

X
′′

t (k) = X
′′

t (k − 1) + θtβt

(
Ct −X

′′

t+1(k − 1)Bt −AtX
′′

t (k − 1)
)

(10)

Where k is iterative step and bigger than 1.

Further, let

Xt(k) =
X

′

t(k) +X
′′

t (k)

2

= Xt(k − 1) +
1

2
θt(αt + βt) (Ct −Xt+1(k − 1)Bt −AtXt(k − 1)) (11)

In addition, denote
Rt(k) = ∥Xt(k)−Xt(k − 1)∥ (12)

Algorithm 1 (An iterative algorithm for equation (1))

1. Set error upper limit ε, freely select initial matrices X
′

t(0) and X
′′

t (0), calculate

Xt(0) =
X

′

t(0) +X
′′

t (0)

2

2. Choose parameters of αt, βt and θt for t = 0, 1, · · · , T − 1, calculate

λt =
T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥+

T−1∑
t=0

∥1
2
θt(αt + βt)∥

T−1∑
t=0

∥Bt∥) (13)

k := 0;

3. If λt < 1 for t = 0, 1, · · · , T − 1, go to next step; else, return to step 2.

4. Set k=k + 1, according to (9),(10),(11), compute Xt(k); Further more, compute Rt(k) by (12).

5. If Rt(k) ≤ ε, stop; else, go to step 4.

The convergence of the iterative algorithm will be proved by the following theorem.

Theorem 1 If equation (1) has solutions X∗
t and λt shown in (13) is less than 1, the iterative sequence of

Xt(k) generated by Algorithm 1 converges to the true solution X∗
t , which means, for any initial Xt(0), there

is
lim
k→∞

Xt(k) = X∗
t

Proof. Define error matrix X̄t(k)=Xt(k) − X∗
t , where X

∗
t act as the real matrix, Xt(k) is the iterative

solution to k by the algorithm, then
X̄

′

t(k) = Xt
′(k)−X∗

t (14)

X̄
′′

t (k) = Xt
′′(k)−X∗

t (15)

We can easily get

X̄
′

t(k) = X̄
′

t(k − 1) +
1

2
θt(αt + βt)(−X̄

′

t+1(k − 1)Bt −AtX̄
′

t(k − 1)) (16)

3
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X̄
′′

t (k) = X̄
′′

t (k − 1) +
1

2
θt(αt + βt)(−X̄

′′

t+1(k − 1)Bt −AtX̄
′′

t (k − 1)) (17)

Then, we get

X̄t(k) =
X̄

′

t(k) + X̄
′′

t (k)

2

= X̄t(k − 1) +
1

2
θt(αt + βt)(−X̄t+1(k − 1)Bt −AtX̄t(k − 1))

= X̄t(k − 1)− 1

2
θtαtX̄t+1(k − 1)Bt −

1

2
θtβtX̄t+1(k − 1)Bt

− 1

2
θtαtAtX̄t(k − 1))− 1

2
θtβtAtX̄t(k − 1))

= (It −
1

2
θtαtAt −

1

2
θtβtAt)X̄t(k − 1)− 1

2
θtαtX̄t+1(k − 1)Bt

− 1

2
θtβtX̄t+1(k − 1)Bt

= (It −
1

2
θt(αt + βt)At)X̄t(k − 1)− 1

2
θt(αt + βt)X̄t+1(k − 1)Bt

Let

∥X̄t(k)∥ = ∥(It −
1

2
θt(αt + βt)At)X̄t(k − 1)− 1

2
θt(αt + βt)X̄t+1(k − 1)Bt∥

≤ ∥(It −
1

2
θt(αt + βt)At)X̄t(k − 1)∥+ ∥1

2
θt(αt + βt)X̄t+1(k − 1)Bt∥

≤ ∥(It −
1

2
θt(αt + βt)At)∥∥X̄t(k − 1)∥+ ∥1

2
θt(αt + βt)∥∥X̄t+1(k − 1)∥∥Bt∥

So we can obtain

T−1∑
t=0

∥X̄t(k)∥ ≤
T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥∥X̄t(k − 1)∥+ ∥1

2
θt(αt

+ βt)∥∥X̄t+1(k − 1)∥∥Bt∥

≤
T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥

T−1∑
t=0

∥X̄t(k − 1)∥+
T−1∑
t=0

∥1
2
θt(αt

+ βt)∥
T−1∑
t=0

∥X̄t+1(k − 1)∥
T−1∑
t=0

∥Bt∥

≤ (

T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥+

T−1∑
t=0

∥1
2
θt(αt

+ βt)∥
T−1∑
t=0

∥Bt∥)
T−1∑
t=0

∥X̄t(k − 1)∥

According to assumption λt < 1, where λt are shown in (14), we can obtain that

T−1∑
t=0

∥X̄t(k)∥ ≤ λt

T−1∑
t=0

∥X̄t(k − 1)∥ ≤ λ2t

T−1∑
t=0

∥X̄t(k − 2)∥ ≤ . . . ≤ λkt

T−1∑
t=0

∥X̄t(0)∥ (18)

By controlling parameters of αt, βt, θt to make λt < 1.

When k is towards infinity,

lim
k→∞

X̄t(k) = 0

4
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So
lim
k→∞

Xt(k) = X∗
t

2.2 Iterative algorithm for equation (2)

On periodic Sylvester matrix equation (2),we can also build an convergent algorithm which is similar to
Algorithm 1.

Firstly construct the following iteration:

X
′

t(k) = X
′

t(k − 1) + θtαt

(
Ct −X

′

t(k − 1)Bt −AtX
′

t+1(k − 1)
)

(19)

X
′′

t (k) = X
′′

t (k − 1) + θtβt

(
Ct −X

′′

t (k − 1)Bt −AtX
′′

t+1(k − 1)
)

(20)

Let

Xt(k) =
X

′

t(k) +X
′′

t (k)

2

= Xt(k − 1) +
1

2
θt(αt + βt) (Ct −Xt(k − 1)Bt −AtXt+1(k − 1)) (21)

Algorithm 2 (An iterative algorithm for equation (2))

1. Set error upper limit ε, arbitrary select initial matrices X
′

t(0) and X
′′

t (0), calculate Xt(0) as

Xt(0) =
X

′

t(0) +X
′′

t (0)

2

2. Choose parameters of αt, βt and θt for t = 0, 1, · · · , T − 1, calculate λt according to (13), and set

k := 0;

3. If λt < 1 for t = 0, 1, · · · , T − 1, go to next step; else, return to step 2.

4. Set k=k + 1, according to (19),(20),(21), compute Xt(k).

5. Compute Rt(k) according to (12). If Rt(k) ≤ ε, stop; else, go to step 4.

We can make use of the following theorem to prove the convergence of the iterative algorithm.

Theorem 2 If equation (2) has solutions X∗
t and λt shown in (13) is less than 1, the iterative sequence of

Xt(k) generated by Algorithm 2 converges to the true solutions X∗
t , which means, for any initial Xt(0), there

is
lim
k→∞

Xt(k) = X∗
t

Proof. According to Algorithm 2, we can acquire the following results

X̄
′

t(k) = X̄
′

t(k − 1) +
1

2
θt(αt + βt)(−X̄

′

t(k − 1)Bt −AtX̄
′

t+1(k − 1)) (22)

X̄
′′

t (k) = X̄
′′

t (k − 1) +
1

2
θt(αt + βt)(−X̄

′′

t (k − 1)Bt −AtX̄
′′

t+1(k − 1)) (23)

X̄t(k) = X̄t(k − 1) +
1

2
θt(αt + βt)(−X̄t(k − 1)Bt −AtX̄t+1(k − 1)) (24)

5
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Let

∥X̄t(k)∥ = ∥(It −
1

2
θt(αt + βt)At)X̄t+1(k − 1)− 1

2
θt(αt + βt)X̄t(k − 1)Bt∥

≤ ∥(It −
1

2
θt(αt + βt)At)X̄t+1(k − 1)∥+ ∥1

2
θt(αt + βt)X̄t(k − 1)Bt∥

≤ ∥(It −
1

2
θt(αt + βt)At)∥∥X̄t+1(k − 1)∥+ ∥1

2
θt(αt + βt)∥∥X̄t(k − 1)∥∥Bt∥

Further, let

T−1∑
t=0

∥X̄t(k)∥ ≤
T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥∥X̄t+1(k − 1)∥+ ∥1

2
θt(αt

+ βt)∥∥X̄t(k − 1)∥∥Bt∥

≤
T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥

T−1∑
t=0

∥X̄t+1(k − 1)∥+
T−1∑
t=0

∥1
2
θt(αt

+ βt)∥
T−1∑
t=0

∥X̄t(k − 1)∥
T−1∑
t=0

∥Bt∥

≤ (

T−1∑
t=0

∥(It −
1

2
θt(αt + βt)At)∥+

T−1∑
t=0

∥1
2
θt(αt

+ βt)∥
T−1∑
t=0

∥Bt∥)
T−1∑
t=0

∥X̄t(k − 1)∥

According to assumption λt < 1, where λt are shown in (13), we can obtain that

T−1∑
t=0

∥X̄t(k)∥ ≤ λt

T−1∑
t=0

∥X̄t(k − 1)∥ ≤ λ2t

T−1∑
t=0

∥X̄t(k − 2)∥ ≤ . . . ≤ λkt

T−1∑
t=0

∥X̄t(0)∥ (25)

When k is towards infinity and λ < 1, we can obtain

lim
k→∞

X̄t(k) = 0

So
lim
k→∞

Xt(k) = X∗
t

3 A numerical example

In this section, we will give an example to illustrate the correctness and effectiveness of the iterative algorithm.

Example 1 In this example, we consider the following periodic Sylvester matrix equation with T = 3:

AtXt +Xt+1Bt = Ct

For given matrices

A0 =

[
2.1 0.8
−1.0 1.3

]
, A1 =

[
3.2 1.3
0.9 3.1

]
, A2 =

[
5.2 2.8
−3.1 5.3

]
B0 =

[
0.5 −0.2
0.3 1.0

]
, B1 =

[
1.1 −0.4
0.3 1.0

]
, B2 =

[
2.1 −1.6
0.7 2.5

]
C0 =

[
12.2 10.6
0.6 7.4

]
, C1 =

[
25.6 21.4
1.2 15.1

]
, C2 =

[
37.4 30.2
1.6 24.4

]

6
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Set the corresponding parameters as follows:

θ0 = 0.22, α0 = 1, β0 = 1

θ1 = 0.44, α1 = 1, β1 = 0

θ2 = 0.44, α2 = 0, β2 = 1

ε = 0.0000001

By applying the iterative algorithm given in Algorithm 1 with X0(0) = X1(0) = X2(0) = 10−61(2), we can
compute the sequences X0(k) , X1(k) and X2(k) and finally obtain the convergent solution as

X∗
0 =

[
2.2792084 2.1443643

−0.0053164232 2.8578095

]
X∗

1 =

[
3.8959794 3.0173837
0.91457065 4.3687527

]
X∗

2 =

[
3.7974423 2.1832934
1.8076325 3.3274102

]
In order to demonstrate the convergent effectiveness,we define the relative iteration error as

δ(k) =

√√√√∑T−1
t=0 ∥Xt(k)−X∗

t ∥
2∑T−1

t=0 ∥X∗
t ∥

2
.

The varying trajectory of relative iteration error with the time is shown in 1. It is cleared that δ(k) decreases
quickly and converges to zero as k increases.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: The changed trend of relative error

4 Conclusions

In this paper, we introduce a new iterative algorithm to solve a kind of periodic Sylvester matrix equation.
The iterative algorithm is proven to converge the exact solutions in finite iteration steps without round-off
errors. Finally, we give a numerical example to check the convergence and performance of the iterative
algorithm.
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FOURIER SERIES OF SUMS OF PRODUCTS OF EULER AND

GENOCCHI FUNCTIONS AND THEIR APPLICATIONS

TAEKYUN KIM1, DAE SAN KIM2, DMITRY V. DOLGY3, AND JIN-WOO PARK4,∗

Abstract. We study three types of sums of products of Euler and Genocchi
functions and derive Fourier series expansions for them. Further, we will be

able to express each of those functions in terms of Bernoulli functions.

1. Introduction

The Genocchi polynomials Gm(x) are given by the generating function

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
, (see [1-5, 7, 11]).

The first few Genocchi polynomials are as follows:

G0(x) = 0, G1(x) = 1, G2(x) = 2x− 1,

G3(x) = 3x2 − 3x, G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x, G6(x) = 6x5 − 15x4 + 15x2 − 3,

G7(x) = 7x6 − 21x5 + 35x3 − 21x.

The Euler polynomials Em(x) are defined by the generating function

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
, (see [2-4, 6-8, 10]).

When x = 0, Em(0) = Em are called the Euler numbers.
From the relation Gm(x) = mEm−1(x) (m ≥ 1), we have

deg Gm(x) = m− 1 (m ≥ 1), Gm = mEm−1 (m ≥ 1),

G0 = 0, G1 = 1, G2m+1 = 0 (m ≥ 1), and G2m 6= 0 (m ≥ 1).

Moreover,

d

dx
Gm(x) = mGm−1(x), (m ≥ 1),

Gm(x+ 1) +Gm(x) = 2mxm−1, (m ≥ 0).

From these, we have

Gm(1) +Gm(0) = 2δm,1, (m ≥ 0),

2010 Mathematics Subject Classification. 11B68, 11B83, 42A16.
Key words and phrases. Fourier series, Euler polynomial, Euler function, Genocchi polynomial,

Genocchi function.
∗ Corresponding author.
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2 Fourier series of sums of products of Euler and Genocchi functions∫ 1

0

Gm(x)dx =
1

m+ 1
(Gm+1(1)−Gm+1(0))

=
2

m+ 1
(−Gm+1(0) + δm,0)

=


0, for m even,

− 2

m+ 1
Gm+1, for m odd.

For any real number x, let

< x >= x− bxc ∈ [0, 1)

denote the fractional part of x.

LetBm(x) denote the Bernoulli polynomials given by t
et−1e

tx =
∑∞
m=0Bm(x) t

m

m! .

Then we recall the following about Bernoulli functions Bm(< x >):

(a) for m ≥ 2,

Bm(< x >) = −m!

∞∑
n=−∞
n6=0

e2πinx

(2πin)m
,

(b) for m = 1,

−
∞∑

n=−∞
n6=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.

Fourier series expansion of higher-order Bernoulli functions were treated in the
recent paper [9]. Here we will study three types of sums of products of Euler and
Genocchi functions and derive Fourier series expansions for them. Further, we will
be able to express each of those functions in terms of Bernoulli functions.

2. Sums of products of Euler and Genocchi functions of the first
type

Let

αm(x) =
m−1∑
k=0

Ek(x)Gm−k(x), (m ≥ 2).

Note that deg αm(x) = m− 1. Then we will consider the function

αm(< x >) =
m−1∑
k=0

Ek(< x >)Gm−k(< x >), (m ≥ 2)

defined on (−∞, ∞), which is periodic with period 1.
The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx,
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T. Kim, D. S. Kim, D. V. Dolgy, J.-W. Park 3

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

To proceed further, we need the following

α′(x) =
m−1∑
k=0

(kEk−1(x)Gm−k(x) + (m− k)Ek(x)Gm−k−1(x))

=
m−1∑
k=1

kEk−1(x)Gm−k(x) +
m−2∑
k=0

(m− k)Ek(x)Gm−k−1(x)

=
m−2∑
k=0

(k + 1)Ek(x)Gm−1−k(x) +
m−2∑
k=0

(m− k)Ek(x)Gm−1−k(x)

=(m+ 1)
m−2∑
k=0

Ek(x)Gm−1−k(x)

=(m+ 1)αm−1(x).

So, α′m(x) = (m+ 1)αm−1(x). From this,(
αm+1(x)

m+ 2

)′
=αm(x),∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) ,

and

αm(1)− αm(0) =
m−1∑
k=0

(Ek(1)Gm−k(1)− EkGm−k)

=
m−1∑
k=0

((−Ek + 2δ0,k) (−Gm−k + 2δm−1,k)− EkGm−k)

=
m−1∑
k=0

(−2Ekδm−1,k − 2δ0,kGm−k + 4δk,0δm−1,k)

=− 2Em−1 − 2Gm + 4δm−1,0

=− 2 (Em−1 +Gm)

=− 2(m+ 1)Em−1.

Recall that

E2n = 0 (n ≥ 1), E2n−1 6= 0 (n ≥ 1), and E0 = 1.

So

αm(0) = α(1) ⇔ m = 2n+ 1 (n ≥ 1).
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4 Fourier series of sums of products of Euler and Genocchi functions

Also,

∫ 1

0

αm(x)dx =
1

m+ 2
(−2(m+ 2)Em)

=− 2Em.

Now, we are going to determine the Fourier coefficients A
(m)
n .

Case 1: n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

=− 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

=− 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n +

2(m+ 1)

2πin
Em−1

=
m+ 1

2πin

(
m

2πin
A(m−2)
n +

2m

2πin
Em−2

)
+

2(m+ 1)

2πin
Em−1

=
(m+ 1)2
(2πin)2

A(m−2)
n +

2∑
k=1

2(m+ 1)k
(2πin)k

Em−k

= · · ·

=
(m+ 1)m−1
(2πin)m−1

A(1)
n +

m−1∑
k=1

2(m+ 1)k
(2πin)k

Em−k

=
m−1∑
k=1

2(m+ 1)k
(2πin)k

Em−k,

where A
(1)
n =

∫ 1

0
e−2πinxdx = 0.

Case 2: n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx = −2Em.

αm(< x >), (m ≥ 2) is piecewise C∞. Moreover, αm(< x >) is continuous for
all odd integers ≥ 3 and is discontinuous with jump discontinuities at integers for
all even integers ≥ 2.

Assume the first thatm is an odd integer≥ 3 . Then αm(0) = αm(1). αm(< x >)
is piecewise C∞, and continuous. So the Fourier series of αm(< x >) converges
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uniformly to αm(< x >), and

αm(< x >) =− 2Em +
∞∑

n=−∞
n6=0

(
m−1∑
k=1

2(m+ 1)k
(2πin)k

Em−k

)
e2πinx

=− 2Em − 2
m−1∑
k=1

(
m+ 1

k

)
Em−k

−k!
∞∑

n=−∞
n6=0

e2πinx

(2πin)k


=− 2Em − 2

m−1∑
k=2

(
m+ 1

k

)
Em−kBk(< x >)− 2(m+ 1)Em−1

×

{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.

Now, we can state our first theorem.

Theorem 2.1. Let m be an odd integer ≥ 3. Then we have the following.

(i)
∑m−1
k=0 Ek(< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=0

Ek(< x >)Gm−k(< x >)

=− 2Em +

∞∑
n=−∞
n6=0

(
m−1∑
k=1

2(m+ 1)k
(2πin)k

Em−k

)
e2πinx,

for all x ∈ (−∞,∞). Here the convergence is uniform.
(ii)

m−1∑
k=0

Ek(< x >)Gm−k(< x >)

=− 2Em − 2

m−1∑
k=2

(
m+ 1

k

)
Em−kBk(< x >).

Here Bk(< x >) is the Bernoulli function.

Assume next that m is an even integer ≥ 2. Then αm(0) 6= αm(1). Hence αm(<
x >) is piecewise C∞, and discontinuous with jump discontinuities at integers.
The Fourier series of αm(< x >) converges pointwise to αm(< x >), for x /∈ Z, and
converges to

1

2
(αm(0) + αm(1))

=αm(0)− (m+ 1)Em−1

=
m−1∑
k=0

EkGm−k − (m+ 1)Em−1,

for x ∈ Z. Hence we have the following theorem.

Theorem 2.2. Let m be an even integer ≥ 2. Then we have the following.
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6 Fourier series of sums of products of Euler and Genocchi functions

(i)

− 2Em +
∞∑

n=−∞
n6=0

(
m−1∑
k=1

2(m+ 1)k
(2πin)k

Em−k

)
e2πinx

=

{ ∑m−1
k=0 Ek(< x >)Gm−k(< x >), for x /∈ Z,∑m−1
k=0 EkGm−k − (m+ 1)Em−1, for x ∈ Z.

Here the convergence is pointwise.
(ii)

− 2Em − 2
m−1∑
k=1

(
m+ 1

k

)
Em−kBk(< x >)

=
m−1∑
k=0

Ek(< x >)Gm−k(< x >), for x /∈ Z;

− 2Em − 2
m−1∑
k=2

(
m+ 1

k

)
Em−kBk(< x >)

=
m−1∑
k=0

EkGm−k − (m+ 1)Em−1, for x ∈ Z.

Here Bk(< x >) is the Bernoulli function.

3. Sums of products of Euler and Genocchi functions of the second
type

Let

βm(x) =
m−1∑
k=0

1

k!(m− k)!
Ek(x)Gm−k(x), (m ≥ 2).

Then we will consider the function

βm(< x >) =
m−1∑
k=0

1

k!(m− k)!
Ek(< x >)Gm−k(< x >), (m ≥ 2)

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx

=

∫ 1

0

βm(x)e−2πinxdx.
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To proceed further, we need to observe the following.

β′m(x) =
m−1∑
k=0

{
k

k!(m− k)!
Ek−1(x)Gm−k(x) +

m− k
k!(m− k)!

Ek(x)Gm−k−1(x)

}

=
m−1∑
k=1

1

(k − 1)!(m− k)!
Ek−1(x)Gm−k(x) +

m−2∑
k=0

1

k!(m− k − 1)!
Ek(x)Gm−k−1(x)

=
m−2∑
k=0

1

k!(m− 1− k)!
Ek(x)Gm−1−k(x) +

m−2∑
k=0

1

k!(m− 1− k)!
Ek(x)Gm−1−k(x)

=2
m−2∑
k=0

1

k!(m− 1− k)!
Ek(x)Gm−1−k(x)

=2βm−1(x).

So β′m(x) = 2βm−1(x), and from this we obtain(
βm+1(x)

2

)′
= βm(x).

Thus ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)) ,

and

βm(1)− βm(0)

=
m−1∑
k=0

1

k!(m− k)!
(Ek(1)Gm−k(1)− EkGm−k)

=
m−1∑
k=0

1

k!(m− k)!
((−Ek + 2δk,0)(−Gm−k + 2δm−1,k)− EkGm−k)

=
m−1∑
k=0

1

k!(m− k)!
(−2Ekδm−1,k − 2δk,0Gm−k + 4δk,0δm−1,k)

=− 2Em−1
(m− 1)!

− 2Gm
m!

+
4δm−1,0
m!

=− 2Em−1
(m− 1)!

− 2mEm−1
m!

=− 4

(m− 1)!
Em−1.

So,

βm(0) = βm(1)⇐⇒ Em−1 = 0

⇐⇒ m = 2n+ 1 (n ≥ 1).

Also, ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0))

=− 2

m!
Em.
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Now, we are ready to determine the Fourier coefficients B
(m)
n .

Case 1 : n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

=− 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

=− 1

2πin
(βm(1)− βm(0)) +

2

2πin

∫ 1

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)
n +

4

2πin(m− 1)!
Em−1

=
2

2πin

(
2

2πin
B(m−2)
n +

4

2πin(m− 2)!
Em−2

)
+

4

2πin(m− 1)!
Em−1

=

(
2

2πin

)2

B(m−2)
n +

2∑
k=1

2k+1

(2πin)k(m− k)!
Em−k

= · · ·

=

(
2

2πin

)m−1
B(1)
n +

m−1∑
k=1

2k+1

(2πin)k(m− k)!
Em−k

=
m−1∑
k=1

2k+1

(2πin)k(m− k)!
Em−k,

where B
(1)
n =

∫ 1

0
e−2πinxdx = 0.

Case 2 : n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx = − 2

m!
Em.

βm(< x >), (m ≥ 2) is piecewise C∞. Moreover, βm(< x >) is continuous for
all odd integers ≥ 3 and discontinuous with jump discontinuities at integers for all
even integers ≥ 2.

Assume first that m is an odd integer ≥ 3. Then βm(0) = βm(1). βm(< x >)
is piecewise C∞, and continuous. So the Fourier series of βm(< x >) converges
uniformly to βm(< x >), and

βm(< x >) =− 2

m!
Em + 2

∞∑
n=−∞
n6=0

(
m−1∑
k=1

2k

(2πin)k(m− k)!
Em−k

)
e2πinx

=− 2

m!
Em −

2

m!

m−1∑
k=1

2k
(
m

k

)
Em−k

−k!
∞∑

n=−∞
n6=0

e2πinx

(2πin)k


=− 2

m!
Em −

2

m!

m−1∑
k=2

2k
(
m

k

)
Em−kBk(< x >)

− 4

(m− 1)!
Em−1 ×

{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.
We can now state our first theorem.
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Theorem 3.1. Let m be an odd integer ≥ 3. Then we have the following.

(i)

m−1∑
k=0

1

k!(m− k)!
Ek(< x >)Gm−k(< x >)

has the Fourier series expansion

m−1∑
k=0

1

k!(m− k)!
Ek(< x >)Gm−k(< x >)

=− 2

m!
Em + 2

∞∑
n=−∞
n6=0

(
m−1∑
k=1

2k

(2πin)k(m− k)!
Em−k

)
e2πinx

for all x ∈ (−∞,∞). Here the convergence is uniform.
(ii)

m−1∑
k=0

1

k!(m− k)!
Ek(< x >)Gm−k(< x >)

=− 2

m!
Em −

2

m!

m−1∑
k=2

2k
(
m

k

)
Em−kBk(< x >)

Here Bk(< x >) is the Bernoulli function.

Assume next that m is an even integer ≥ 2. Then βm(0) 6= βm(1). Hence βm(<
x >) is piecewise C∞, and discontinuous with jump discontinuities at integers.
The Fourier series of βm(< x >) converges pointwise to βm(< x >), for x /∈ Z, and
converges to

1

2
(βm(0) + βm(1)) = βm(0)− 2

(m− 1)!
Em−1

=
m−1∑
k=0

1

k!(m− k)!
EkGm−k −

2

(m− 1)!
Em−1,

for x ∈ Z.
Now, we can state our second theorem.

Theorem 3.2. Let m be an even integer ≥ 2. Then we have the following.

(i)

− 2

m!
Em + 2

∞∑
n=−∞
n6=0

(
m−1∑
k=1

2k

(2πin)k(m− k)!
Em−k

)
e2πinx

=

{ ∑m−1
k=0

1
k!(m−k)!Ek(x)Gm−k(x), for x /∈ Z,∑m−1

k=0
1

k!(m−k)!EkGm−k −
2

(m−1)!Em−1, for x ∈ Z.

Here the convergence is pointwise.
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(ii)

− 2

m!
Em −

2

m!

m−1∑
k=1

2k
(
m

k

)
Em−kBk(< x >)

=
m−1∑
k=0

1

k!(m− k)!
Ek(< x >)Gm−k(< x >), for x /∈ Z;

− 2

m!
Em −

2

m!

m−1∑
k=2

2k
(
m

k

)
Em−kBk(< x >)

=
m−1∑
k=0

1

k!(m− k)!
EkGm−k −

2

(m− 1)!
Em−1, for x ∈ Z.

Here Bk(< x >) is the Bernoulli function.

4. Sums of products of Euler and Genocchi functions of the third
type

Let γm(x) =
∑m−1
k=1

1
k(m−k)Ek(x)Gm−k(x), (m ≥ 3). Then we will consider the

function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
Ek(< x >)Gm−k(< x >)

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx,

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx

=

∫ 1

0

γm(x)e−2πinxdx.
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To proceed further, we need to note the following.

γ′m(x) =
m−1∑
k=1

1

k(m− k)
{kEk−1(x)Gm−k(x) + (m− k)Ek(x)Gm−k−1(x)}

=
m−1∑
k=1

1

m− k
Ek−1(x)Gm−k(x) +

m−2∑
k=1

1

k
Ek(x)Gm−k−1(x)

=
m−2∑
k=0

1

m− 1− k
Ek(x)Gm−1−k(x) +

m−2∑
k=1

1

k
Ek(x)Gm−1−k(x)

=
1

m− 1
Gm−1(x) +

m−2∑
k=1

1

m− 1− k
Ek(x)Gm−1−k(x) +

m−2∑
k=1

1

k
Ek(x)Gm−1−k(x)

=
1

m− 1
Gm−1(x) + (m− 1)

m−2∑
k=1

1

k(m− 1− k)
Ek(x)Gm−1−k(x)

=
1

m− 1
Gm−1(x) + (m− 1)γm−1(x).

So γ′m(x) = 1
m−1Gm−1(x) + (m− 1)γm−1(x), and from this, we have(

1

m

(
γm+1(x)− 1

m(m+ 1)
Gm+1(x)

))′
= γm(x).

Since Gm+1(1) +Gm+1(0) = 2δm,0,∫ 1

0

γm(x)dx =
1

m

[
γm+1(x)− 1

m(m+ 1)
Gm+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
(Gm+1(1)−Gm+1(0))

)
=

1

m

(
γm+1(1)− γm+1(0) +

2

m(m+ 1)
Gm+1

)
,

and

γm(1)− γm(0) =
m−1∑
k=1

1

k(m− k)
(Ek(1)Gm−k(1)− EkGm−k)

=
m−1∑
k=1

1

k(m− k)
((−Ek + 2δk,0) (−Gm−k + 2δm−1,k)− EkGm−k)

=
m−1∑
k=1

1

k(m− k)
(−2Ekδm−1,k)

=− 2Em−1
m− 1

.

So

γm(0) = γm(1)⇐⇒ Em−1 = 0

⇐⇒ m = 2n+ 1, (n ≥ 1).
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Also, ∫ 1

0

γm(x)dx =
1

m

(
−2Em

m
+

2

m(m+ 1)
Gm+1

)
=

1

m

(
−2Em

m
+

2Em
m

)
=0.

Now, we are going to determine the Fourier coefficients C
(m)
n .

Case 1 : n 6= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

=− 1

2πin

[
γm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

=− 1

2πin
(γm(1)− γm(0)) +

1

2πin

∫ 1

0

{
1

m− 1
Gm−1(x) + (m− 1)γm−1(x)

}
e−2πinxdx

=− 1

2πin
(γm(1)− γm(0)) +

1

2πin(m− 1)

∫ 1

0

Gm−1(x)e−2πinxdx

+
m− 1

2πin

∫ 1

0

γm−1(x)e−2πinxdx

=
2Em−1

2πin(m− 1)
+

2

2πin(m− 1)
Φm +

m− 1

2πin
C(m−1)
n ,

where Φm =
∑m−2
k=1

(m−1)k−1Gm−k

(2πin)k
, and, for l ≥ 2,∫ 1

0

Gl(x)e−2πinxdx =

{
2
∑l−1
k=1

(l)k−1Gl−k+1

(2πin)k
, for n 6= 0,

− 2Gl+1

l+1 , for n = 0.

Continuing our argument, we have

C(m)
n =

m− 1

2πin
C(m−1)
n +

2Em−1
2πin(m− 1)

+
2

2πin(m− 1)
Φm

=
m− 1

2πin

(
m− 2

2πin
C(m−2)
n +

2Em−2
2πin(m− 2)

+
2

2πin(m− 2)
Φm−1

)
+

2Em−1
2πin(m− 1)

+
2

2πin(m− 1)
Φm

=
(m− 1)2
(2πin)2

C(m−2)
n +

2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Em−j +
2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

= · · ·

=
(m− 1)!

(2πin)m−2
C(2)
n +

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Em−j +
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

=− (m− 1)!

(2πin)m−1
+
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Em−j +
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1,
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where C
(2)
n =

∫ 1

0
(x− 1

2 )e−2πinxdx = − 1
2πin .

Here we note that

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm−j+1

=
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

m−j−1∑
k=1

(m− j)k−1Gm−j−k+1

(2πin)k

=
m−2∑
j=1

m−j−1∑
k=1

2(m− 1)j+k−2
(2πin)j+k(m− j)

Gm−j−k+1

=
2

m

m−2∑
j=1

m−1∑
s=j+1

(m)s−1
(2πin)s(m− j)

Gm−s+1

=
2

m

m−1∑
s=2

(m)s−1
(2πin)s

Gm−s+1

s−1∑
j=1

1

m− j

=
2

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s).

Thus

C(m)
n =− (m− 1)!

(2πin)m−1
+

2

m

m−2∑
s=1

(m)s
(2πin)s(m− s)

Em−s

+
2

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

=− (m− 1)!

(2πin)m−1
+

2

m

m−2∑
s=1

(m)s
(2πin)s(m− s)

Em−s

+
2

m

m−2∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)−

(m− 1)!

(2πin)m−1
(Hm−1 − 1)

=− (m− 1)!

(2πin)m−1
Hm−1 +

2

m

m−2∑
s=1

(m)s
(2πin)s

{
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

}
.

Case 2 : n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx = 0.

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for all
odd integers ≥ 3, and discontinuous with jump discontinuities at integers for all
even integers ≥ 2.

Assume first that m is an odd integer ≥ 3. Then γm(0) = γm(1). γm(< x >)
is piecewise C∞, and continuous. So the Fourier series of γm(< x >) converges
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uniformly to γm(< x >), and

γm(< x >) =
∞∑

n=−∞
n6=0

{
− (m− 1)!

(2πin)m−1
Hm−1

+
2

m

m−2∑
s=1

(m)s
(2πin)s

(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)}
e2πinx

=Hm−1

−(m− 1)!
∞∑

n=−∞
n6=0

e2πinx

(2πin)m−1



− 2

m

m−2∑
s=1

(
m

s

)(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)−s! ∞∑
n=−∞
n6=0

e2πinx

(2πin)s


=Hm−1Bm−1(< x >)− 2

m

m−2∑
s=2

(
m

s

)(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)
×Bs(< x >)− 2Em−1

m− 1
×
{
B1(< x >), for x /∈ Z,

0, for x ∈ Z.

Now, we can state our first theorem.

Theorem 4.1. Let m be an odd integer ≥ 3. Then we have the following.

(i)
m−1∑
k=1

1

k(m− k)
Ek(< x >)Gm−k(< x >)

has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
Ek(< x >)Gm−k(< x >)

=
∞∑

n=−∞
n6=0

{
− (m− 1)!

(2πin)m−1
Hm−1

+
2

m

m−2∑
s=1

(m)s
(2πin)s

(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)}
e2πinx,

for all x ∈ (−∞,∞). Here the convergence is uniform.
(ii)

m−1∑
k=1

1

k(m− k)
Ek(< x >)Gm−k(< x >)

=Hm−1Bm−1(< x >)− 2

m

m−2∑
s=2

(
m

s

)(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)
Bs(< x >).

Here Bs(< x >) is the Bernoulli function.
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Assume next that m is an even integer ≥ 4. Then γm(0) 6= γm(1). Hence
γm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at integers.
The Fourier series of γm(< x >) converges pointwise to γm(< x >), for x /∈ Z, and
converges to

1

2
(γm(0) + γm(1)) = γm(0)− Em−1

m− 1

=
m−2∑
k=1

1

k(m− k)
EkGm−k,

for x ∈ Z. Now, we can state our second theorem.

Theorem 4.2. Let m be an even integer ≥ 4. Then we have the following.

(i)
∞∑

n=−∞
n6=0

{
− (m− 1)!

(2πin)m−1
Hm−1

+
2

m

m−2∑
s=1

(m)s
(2πin)s

(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)}
e2πinx

=

{ ∑m−1
k=1

1
k(m−k)Ek(< x >)Gm−k(< x >), for x /∈ Z,∑m−2

k=1
1

k(m−k)EkGm−k, for x ∈ Z.

Here the convergence is pointwise.
(ii)

− 2

m

m−1∑
s=1

(
m

s

)(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
Ek(< x >)Gm−k(< x >), for x /∈ Z;

− 2

m

m−1∑
s=2

(
m

s

)(
Gm−s+1

m− s+ 1
(Hm−1 −Hm−s) +

Em−s
m− s

)
Bs(< x >)

=

m−2∑
k=1

1

k(m− k)
EkGm−k, for x ∈ Z.
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MAJORIZATION PROPERTIES FOR CERTAIN
FAMILIES OF ANALYTIC FUNCTIONS IN THE UNIT

DISK

ADEL A. ATTIYA, M. F. YASSEN, AND MAHER I. ABDELHAFIZ

Abstract. The main object of this paper is to introduce the ma-
jorization properties for certain families of analytic functions asso-
ciated with generalized Srivastava-Attiya operator in the unit disk.
Also, some applications of our results are discussed which give a
number of new results.

1. Introduction

Let A(p) denote the class of functions f(z) of the from

(1.1) f(z) = zp +
∞∑
k=1

ak+pz
k+p,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also,
let A = A(1).

Definition 1.1. Let f and F be analytic functions in U, f is said to
be majorized by F in U (see [15], [18]), written f � F , z ∈U, if there
exists a function ϕ, analytic in U such that

(1.2) |ϕ(z)| ≤ 1 and f(z) = ϕ(z)F (z) (z ∈ U).

Noting that the concept of majorization is closely related to the concept
of quasi-subordination between analytic functions (see [18]).

Definition 1.2. Let f andF be analytic functions. The function f is
said to be subordinate to F , written f ≺ F, if there exists a function
w analytic in U with w(0) = 0 and |w(z)| < 1, and such that f(z) =
g(w(z)), in particular, if F is univalent, then f ≺ F if and only if
f(0) = F (0) and f(U) ⊂ F (U) .

2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic functions, Hurwitz-Lerch Zeta function, Ma-

jorization , Subordination relation, Srivastava-Attiya operator .
1
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2 ADEL A. ATTIYA, M. F. YASSEN, AND MAHER I. ABDELHAFIZ

A general Hurwitz-Lerch Zeta function Φ(z, s, b) defined by (cf., e.g.,
[20, P. 121 et seq.])

(1.3) Φ(z, s, b) =

∞∑
k=0

zk

(k + b)s
,

(b ∈ C \Z−0 , Z−0 = Z− ∪ {0} = {0, −1, −2, ... }, s ∈ C when z ∈
U, Re(s) > 1 when |z| = 1 ).

Many authors studied and invistagated various properties ofΦ(z, s, b),
see e.g. [2], [6], [5], [7], [8], [14], [10], [11], [19], [21], [22] and [17].

Now, let us define, the operator Js,b (f) which has been introduced
by Srivastava and Attiya [19]

(1.4) Js,b (f) (z) = Gs,b(z) ∗ f(z)

(
z ∈ U; f ∈ A; b ∈ C\Z−0 ; s ∈ C

)
where

(1.5) Gs,b(z) = (1 + b)s
[
Φ(z, s, b)− b−s

]
and ∗ denotes the Hadamard product .

Moreover, Attiya and Hakami [2] defined the function Gs,b,t by

(1.6) Gs,b,t = 1 + (t+ b)s zΦ(z, s, 1 + t+ b)(
z ∈ U; b ∈ C\Z−0 ; s ∈ C; t ∈ R

)
,

we denote by

J t
s,b(f) : A(p) −→ A(p),

Attiya and Hakami [2] defined the operator J t
s,b(f)(z) by:

(1.7) J t
s,b(f)(z) = zpGs,b,t ∗ f(z)(

z ∈ U; f ∈ A(p); b ∈ C\Z−0 ; s ∈ C; t ∈ R
)
,

where ∗ denotes the Hadamard product
Noting that
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MAJORIZATION PROPERTIES FOR CERTAIN FAMILIES... 3

(1.8) J t
s,b(f)(z) = zp +

∞∑
k=1

(
t+ b

k + t+ b

)s
ak+p z

k+p (z ∈ U)

we note that

(1.9) J 1s,b(f) = J p
s,b(f) ,

where J p
s,b(f) introduced by Liu [13] .

The operator J t
s,b(f) generalizes many operators e.g., Srivastava and

Attiya operator [19], Liu operator [13], Alexander operator [1], Libera
operator [12], Bernardi operator [4] and Jung-Kim-Srivastava integral
operator [9].

Now, we begin by the following lemma due to Attiya and Hakami
[2].

Lemma 1.1. Let f(z) ∈ A(p), then

z
(
J t
s+1,b f(z)

)′
= (t+ b)J t

s,bf(z)− (t+ b− p)J t
s+1,bf(z),(1.10) (

z ∈ U; b ∈ C\Z−0 ; s ∈ C; t ∈ R
)

Definition 1.3. A function f(z) ∈ A(p) is said to be in the class
Sn,ts,b,p(A,B, ζ) if it satisfies

(1.11) 1 +
1

ζ

z
((
J t
s+1,b

)(n+1)
(f)(z)

)
(
J t
s+1,b

)(n)
(f)(z)

− p+ n

 ≺ 1 + Az

1 +Bz
,

where n ∈ N0 = {0, 1, ...},−1 ≤ B < A ≤ 1, ζ ∈ C∗ := C \ {0}, s ∈
C, t ∈ R and b ∈ C \ Z−0 .

We note that S0,1s−1,b,1(A,B, 1− α) = Hs,b,α(A,B) the class which in-
troduced by Kutbi and Attiya [10], S0,1−1,b,1(1,−1, 1− α) the well known
class of starlike function of order α.Also, using special cases of n, b, p, t, A,B, ζ we
have many various classes associated with Alexander operator, Libera
operator, Bernardi and Jung-Kim-Srivastava operator.

Also, we define the following classes:
(1) Sn,ts,b,p(−1, 1, ζ) = Sn,ts,b,p(ζ).

(2) Sn,ts,b,p(−1, 1, 1) =Sn,ts,b,p.

(3) Sn,t0,0,p(A,B, ζ) =An,tp (A,B, ζ).

(4) Sn,t0,1,p(A,B, ζ) =Ln,tp (A,B, ζ).

(5) Sn,t0,γ,p(A,B, ζ) =Ln,tγ,p(A,B, ζ) ( γ real ; γ > −1 )
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4 ADEL A. ATTIYA, M. F. YASSEN, AND MAHER I. ABDELHAFIZ

(6) Sn,tσ,1,p(A,B, ζ) =In,tσ,p(A,B, ζ) (σ real ; σ > 0 )

2. Main Results

To introduce our results, we need the following lemma which can be
proved by using Lemma 1.1 and induction .

Lemma 2.1. Let f(z) ∈ A(p), then

z
(
J t
s+1,b

)(n+1)
(f)(z) = (t+ b)

(
J t
s,b

)(n)
(f)(z)− (t+ n+ b− p)

(
J t
s+1,b

)(n)
(f)(z)

(2.1)

(
n ∈ N0, z ∈ U; b ∈ C\Z−0 ; s ∈ C; t ∈ R

)
We begin by proving the following main result.

Theorem 2.1. Let the function g(z) ∈ Sns,b(A,B, ζ), if

(2.2) J (n)s+1,b(f)(z)� J (n)s+1,b(g)(z), (z ∈ U),

then

(2.3)
∣∣∣(J t

s+1,b

)(n)
(f)(z)

∣∣∣ ≤ ∣∣∣(J t
s+1,b

)(n)
(g)(z)

∣∣∣ (|z| ≤ r0),

where f(z) ∈ A(p) and r0 = r0(ζ, b, A,B) is the positive root and the
smallest of the equation
(2.4)
r3|ζ(A−B)+(t+b)B|−[|t+ b|+2|B|]r2−[|ζ(A−B)+(t+b)B|+2]r+|t+ b| = 0,

(−1 ≤ B < A ≤ 1, ζ ∈ C∗, s ∈ C, b ∈ C \ Z−0 , t ∈ R),

Proof. Since g(z) ∈ Sn,ts,b,p(A,B, ζ), then (1.11) gives

(2.5) 1 +
1

ζ

z
((
J t
s+1,b

)(n+1)
(g)(z)

)
(
J t
s+1,b

)(n)
(g)(z)

− p+ n

 =
1 + A ω(z)

1 +B ω(z)
,

where ω(z) is analytic in U with
ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

From (2.5), we get
(2.6)

z
((
J t
s+1,b

)(n+1)
(g)(z)

)
(
J t
s+1,b

)(n)
(g)(z)

=
(p− n) + [(p− n)B + ζ(A−B)]ω(z)

1 +B ω(z)
.

by using Lemma 2.1 and (2.6), we get
(2.7)∣∣∣(J t

s+1,b

)(n)
(g)(z)

∣∣∣ ≤ (t+ b)[1 + |B||z|]
(t+ b)− |ζ(A−B) + (t+ b)B||z|

∣∣∣(J t
s,b

)(n)
(g)(z)

∣∣∣ .
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Since
(
J t
s+1,b

)(n)
(f)(z)) is majorized by

(
J t
s+1,b

)(n)
(g)(z), in U, there-

fore, the equation (2.2), gives

(2.8)
(
J t
s+1,b

)(n)
(f)(z)) = ϕ(z)

(
J t
s+1,b

)(n)
(g)(z),

where |ϕ(z)| ≤ 1. Differentiating (2.8) with respect to z , we have the
following relation:
(2.9)
z(
(
J t
s+1,b

)(n+1)
(f)(z)) = zϕ′(z)

(
J t
s+1,b

)(n)
(g)(z)+zϕ(z)

(
J t
s+1,b

)(n+1)
(g)(z).

Using (2.1) in the above equation, we get

(2.10)(
J t
s,b

)(n)
(f)(z)) =

zϕ′(z)

(t+ b)

(
J t
s+1,b

)(n)
(g)(z) + ϕ(z)

(
J t
s,b

)(n)
(g)(z).

since ϕ ∈ P satisfies the inequality (See, e.g., Nehari [16])

(2.11) |ϕ′(z)| ≤ 1− |ϕ(z)|2
1− |z|2 , (z ∈ U),

and making use of (2.7) and (2.11) in(2.10), it yields

|
(
J t
s,b

)(n)
(f)(z)| ≤

(2.12)

(
|ϕ(z)|+ 1− |ϕ(z)|2

1− |z|2
[1 + |B||z|]|z|

|t+ b| − |ζ(A−B) + (t+ b)B||z|

)
|
(
J t
s,b

)(n)
(g)(z)|.

Setting
|z| = r and |ϕ(z)| = η (0 ≤ η ≤ 1)

this gives us the following inequality
(2.13)

|
(
J t
s,b

)(n)
(f)(z)| ≤ Φ(η)

(1− r2) [|t+ b| − |ζ(A−B) + (t+ b)B|r] |
(
J t
s,b

)(n)
(g)(z)|,

where
(2.14)
Φ(η) = −r(1+|B|r)η2+(1−r2) [|t+ b| − |ζ(A−B) + (t+ b)B|r] η+r(1+|B|r),
the function Φ(η) takes the maximum value at η = 1, with r0 =
r0(A,B, s, b, t) where r0 is the smallest positive root of (2.4). More-
over, if 0 ≤ η ≤ r0(A,B, s, b, t) then the function Ψ(η) defined by

Ψ(η) = −σ(1+|B|σ)η2+(1−σ2) [|t+ b| − |ζ(A−B) + (t+ b)B|σ] η+σ(1+|B|σ),

is an increasing function on the interval [0, 1], therefore

(2.15) Ψ(η) ≤ Ψ(1) = (1− σ2)[|t+ b| − |ζ(A−B) + (t+ b)B|σ],
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(0 ≤ η ≤ 1; 0 ≤ σ ≤ r0(A,B, s, b)).

Hence putting η = 1, in (2.14), we conclude that (2.3) of Theorem 2.1
holds true for

|z| ≤ r0 = r0(A,B, s, b),

where r0 is the smallest positive root of equation (2.4). This completes
the proof of Theorem 2.1. �
Remark 2.1. Putting t = 1 in Theorem 2.1, we have the result due to
Attiya and Yassen [3].

Putting A = 1 and B = −1 in Theorem 2.1, we have the following
result.

Corollary 2.1. Let the function g(z) ∈ Sn,ts,b,p(ζ), if

(2.16)
(
J t
s+1,b

)(n)
(f)(z)�

(
J t
s+1,b

)(n)
(g)(z), (z ∈ U),

then

(2.17) |
(
J t
s+1,b

)(n)
(f)(z)| ≤ |

(
J t
s+1,b

)(n)
(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 given by

(2.18) r0 =


m−
√
m2−4|b+t||2ζ−b−t|
2|2ζ−b−t| , ζ 6= b+t

2√
1+|b+t|(2+|b+t|)−1

2+|b+t| , ζ = b+t
2

,

m = 2 + |b+ t|+ |2ζ − b− t| , ζ ∈ C∗, s ∈ C and b ∈ C \ Z−0 ).

Letting A = 1, B = −1 and ζ = 1 in Theorem 2.1, we get the
following property.

Corollary 2.2. Let the function g(z) ∈ Sn,ts,b,p, if

(2.19)
(
J t
s+1,b

)(n)
(f)(z)�

(
J t
s+1,b

)(n)
(g)(z), (z ∈ U),

then

(2.20) |
(
J t
s+1,b

)(n)
(f)(z)| ≤ |

(
J t
s+1,b

)(n)
(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 given by

(2.21) r0 =

{
m−
√
m2−4|b+t||2−b−t|
2|2−b−t| , b 6= 2− t

1
2
, b = 2− t

,

m = 2 + |b+ t|+ |2− b− t| , s ∈ C and b ∈ C \ Z−0 ).

Letting s = b = 0, in Theorem 2.1, we have the following corollary.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1174 ADEL A. ATTIYA et al 1169-1177



MAJORIZATION PROPERTIES FOR CERTAIN FAMILIES... 7

Corollary 2.3. Let the function g(z) ∈ An,tp (A,B, ζ), if

(2.22)
(
Atp
)(n)

(f)(z)�
(
Atp
)(n)

(g)(z), (z ∈ U),

then

(2.23) |
(
Atp
)(n)

(f)(z)| ≤ |
(
Atp
)(n)

(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 = r0(ζ, A,B) is the smallest positive root of
the equation

(2.24) r3|ζ(A−B)+Bt|−[|t|+2|B|]r2−[|ζ(A−B)+Bt|+2]r+|t| = 0,

(−1 ≤ B < A ≤ 1, ζ ∈ C∗),

If we put s = 0 and b = 1,in Theorem 2.1, then we have the following
result.

Corollary 2.4. Let g(z) ∈ Ln,tp (A,B, ζ), if

(2.25)
(
Ltp
)(n)

(f)(z)�
(
Ltp
)(n)

(g)(z), (z ∈ U),

then

(2.26) |
(
Ltp
)(n)

(f)(z)| ≤ |
(
Ltp
)(n)

(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 = r0(ζ, A,B) is the smallest positive root of
the equation
(2.27)
r3|ζ(A−B)+(t+1)B|−[|1 + t|+2|B|]r2−[|ζ(A−B)+(1+t)B|+2]r+|1 + t| = 0,

(−1 ≤ B < A ≤ 1, ζ ∈ C∗).

Putting s = 0 and b = γ > −t in Theorem 2.1, we get the following
corollary.

Corollary 2.5. Let the function g(z) ∈ Lnγ(A,B, ζ), if

(2.28)
(
Ltγ,p

)(n)
(f)(z)�

(
Ltγ,p

)(n)
(g)(z), (z ∈ U, γ > −1),

then

(2.29) |
(
Ltγ,p

)(n)
(f)(z)| ≤ |

(
Ltγ,p

)(n)
(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 = r0(ζ, b, A,B) is the smallest positive root
of the equation
(2.30)
r3|ζ(A−B)+(t+γ)B|−[t+γ+2|B|]r2−[|ζ(A−B)+(t+γ)B|+2]r+(t+ γ) = 0,

(−1 ≤ B < A ≤ 1, γ > −1, ζ ∈ C∗, s ∈ C),

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.6, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1175 ADEL A. ATTIYA et al 1169-1177



8 ADEL A. ATTIYA, M. F. YASSEN, AND MAHER I. ABDELHAFIZ

Putting s = σ (σ; real, σ > 0) and b = 1 in Theorem 2.1, we get the
following corollary.

Corollary 2.6. Let the function g(z) ∈ Inσ (A,B, ζ), if

(2.31)
(
Itσ,p
)(n)

(f)(z)�
(
Itσ,p
)(n)

(g)(z), (z ∈ U;σ > 0),

then

(2.32) |
(
Itσ,p
)(n)

(f)(z)| ≤ |
(
Itσ,p
)(n)

(g)(z)| (|z| ≤ r0),

where f(z) ∈ A(p) and r0 = r0(ζ, A,B) is the smallest positive root of
the equation

r3|ζ(A−B)+(t+1)B|−[|1 + t|+2|B|]r2−[|ζ(A−B)+(1+t)B|+2]r+|1 + t| = 0,

(−1 ≤ B < A ≤ 1, ζ ∈ C∗, s ∈ C).
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