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SOME HERMITE−HADAMARD AND SIMPSON TYPE

INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL

INTEGRALS WITH APPLICATIONS

MUHAMMAD IQBAL, MUSTAFA HABIB, NASIR SIDDIQUI,
AND MUHAMMAD MUDDASSAR

Abstract. In this paper, a new general identity for Riemann−Liouville frac-
tional integrals is established. Then by making use of the established identity,
we establish some new inequalities of the Simpson and the Hermite−Hadamard
type for functions whose absolute values of derivatives are convex. Our results
have some relationships with the results, proved in [3, 6, 10], and the analysis
used in the proofs is simple.

1. Introduction

Definition 1. Let I ⊂ R be an interval. The function f : I → R is said to be
convex on I, if for all a, b ∈ I with a ≤ b and λ ∈ [0, 1] , satisfies the inequality

f (λa+ (1− λ) b) ≤ λf (a) + (1− λ)f (b)

The inequalities discovered by Hermite and Hadamard for convex functions are
very important in the literature (see, e.g.,[[12], p. 137], ).These inequalities state
that if f : I → R is a convex function on the interval I of real numbers and a, b ∈ I
with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
. (1)

Both inequalities hold in the reversed direction for f to be concave.
Hadamard’s inequality for convex functions has received renewed attention in

recent years and a remarkable variety of refinements and generalizations have been
found; see, for example, ([3],[5]−[6], [9]−[10], [12]) and the references cited therein.

In [10], a variant of Hermite−Hadamard type inequalities was obtained, which
follows as:

Theorem 1. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let
a, b ∈ I◦ with a < b. If |f ′| is convex function on [a, b], then the following inequality
holds: ∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ b− a
4

(
|f ′(a)|+ |f ′(b)|

2

)
(2)

In [6] authors proved the following version of Hermite−Hadamard type inequal-
ities:

Date: December 5, 2016.
2000 Mathematics Subject Classification. 26D15, 26A51, 26A33.
Key words and phrases. Hermite−Hadamard’s Inequality, Simpson’s Inequality, Convex Func-

tions, Riemann−Liouville fractional integral.
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Theorem 2. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let
a, b ∈ I◦ with a < b. If |f ′| is convex function on [a, b], then the following inequality
holds: ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

(
|f ′(a)|+ |f ′(b)|

2

)
(3)

The Simpson’s inequality is very important and well known in the literature. For
recent refinements, counterparts, generalizations and new Simpson’s type inequali-
ties, see ([7],[13], [16], [17]).

In [16], Sarikaya et al. obtained inequality for differentiable convex mappings
which is connected with Simpson’s inequality, is as follow:

Theorem 3. Let f : I◦ ⊆ R→ R be a differentiable function such that f ′ ∈ L[a, b]
where a, b ∈ I◦ with a < b. If |f ′| is convex function on [a, b], then the following
inequality holds:∣∣∣∣13

{
2f

(
a+ b

2

)
+
f(a) + f(b)

2

}
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ 5(b− a)

36

(
|f ′(a)|+ |f ′(b)|

2

)
(4)

In [3], the authors generalize some inequalities related to Hermite−Hadamard
and Simpsons inequality for functions whose derivatives in absolute value are convex
functions as:

Theorem 4. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let

a, b ∈ I◦ with a < b. If 0 ≤ λ ≤ 1 and |f ′|
1
q for q ≥ 1 is a convex on [a, b], then the

following inequality holds:∣∣∣∣∣(1− λ)f

(
a+ b

2

)
+ λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

8

(
1

6

) 1
q

(1− 2λ+ 2λ2)1−
1
q

×
[({

2− 3λ+ 2λ3
}
|f ′(a)|q +

{
4− 9λ+ 12λ2 − 2λ3

}
|f ′(b)|q

) 1
q

+
({

4− 9λ+ 12λ2 − 2λ3
}
|f ′(a)|q +

{
2− 3λ+ 2λ3

}
|f ′(b)|q

) 1
q

]
(5)

Remark 1. On letting λ =, 0, 1, 13 with q = 1 , inequality (5) reduces to inequalities
(2), (3) and (4), respectively..

It is well known that the integral inequalities play an important role in nonlinear
analysis. In the recent years, these inequalities have been improved and generalized
in a number of ways and a large number of research papers have been written on
these inequalities, (see, [1]−[2], [4], [10], [15]) and the references therein.

In recent paper, [10] Sarikaya et. al. proved a variant of Hermite−Hadamard’s
inequalities in fractional integral forms as follows:

Theorem 5. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L[a, b].
If f is convex function on [a, b], then the following inequalities for fractional integrals
hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ f(a) + f(b)

2
(6)

Remark 2. For α = 1, inequality (6) reduces to inequality (1).

In the following, we will give some necessary definitions and mathematical pre-
liminaries of fractional calculus theory which are used further in this paper.
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Definition 2. Let f ∈ L[a, b], the Reimann−Liouville integrals Jαa+ and Jαb− of
order α > 0 with a ≥ 0 are defined by

Jαa+ =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > α

and

Jαb− =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < α

respectively. Here, Γ(α) =
∫∞
0
e−tuα−1du is the Gamma function and J0

a+f(x) =

J0
b−f(x) = f(x).

In the case of α = 1, the fractional integral reduces to the classical integral.
Properties concerning this operator can be found in ([8] , [11] , [14]).

The aim of this paper is to establish some new Hermite−Hadamard and Simp-
son type inequalities in the form of fractional integrals for functions whose ab-
solute values of derivatives are convex. we derive a general integral identity via
Riemann−Liouville fractional integrals.

2. Main Results

In order to prove our main results we need the following integral identity:

Lemma 1. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R
be a differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with
a < b,then the following identity for Riemann−Liouville fractional integrals holds:(

1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

=
b− a
2α+2

4∑
n=1

In

where I1 =
∫ 1

0
[(1− t)α − λ] f ′

(
ta+ (1− t)a+b2

)
dt,

I2 =
∫ 1

0
[λ− (1− t)α] f ′

(
tb+ (1− t)a+b2

)
dt,

I3 =
∫ 1

0
[2α − λ− (2− t)α] f ′

(
ta+b2 + (1− t)a

)
dt,

I4 =
∫ 1

0
[λ− 2α + (2− t)α] f ′

(
ta+b2 + (1− t)b

)
dt.

Proof. Integrating by parts and substituting u = ta+ (1− t)a+b2

I1 =

∫ 1

0

[(1− t)α − λ] f ′
(
ta+ (1− t)a+ b

2

)
dt

=
2 [(1− t)α − λ] f ′

(
ta+ (1− t)a+b2

)
dt

a− b

∣∣∣∣1
0

+
2α

a− b

∫ 1

0

(1− t)α f ′
(
ta+ (1− t)a+ b

2

)
dt

=
2λ

b− a
f(a) +

2(1− λ)

b− a
f

(
a+ b

2

)
− 2α+1α

(b− a)α+1

∫ a+b
2

a

(u− a)
α−1

f(u)du
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Analogously

I2 =
2λ

b− a
f(b) +

2(1− λ)

b− a
f

(
a+ b

2

)
− 2α+1α

(b− a)α+1

∫ b

a+b
2

(b− u)
α−1

f(u)du

I3 =
2λ

b− a
f(a) +

2(2α − 1− λ)

b− a
f

(
a+ b

2

)
− 2α+1α

(b− a)α+1

∫ a+b
2

a

(b− u)
α−1

f(u)du

I4 =
2λ

b− a
f(b) +

2(2α − 1− λ)

b− a
f

(
a+ b

2

)
− 2α+1α

(b− a)α+1

∫ b

a+b
2

(b− u)
α−1

f(u)du

Multiplying above equalities by b−a
2α+2 , then adding, to get required identity.

Theorem 6. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b]→ R
be a differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with
a < b and 0 ≤ λ ≤ 1. If |f ′| is a convex on [a, b], then the following inequality for
Riemann−Liouville fractional integrals holds:

∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2α+2

[
2

α+ 1

{
1 + 2α − (1− ζ)α+1 − (2− ξ)α+1

}
+(1− 2ζ)λ+ (2α − λ)(1− 2ξ)] (|f ′(a)|+ |f ′(b)|) (7)

where ζ = 1− λ 1
α , and ξ = 2− (2α − λ)

1
α .

Proof. Let ζ = 1− λ 1
α , and ξ = 2− (2α − λ)

1
α then

A =

∫ 1

0

|(1− t)α − λ| dt =
1− 2(1− ζ)α+1

α+ 1
+ (1− 2ζ)λ

B =

∫ 1

0

|2α − (2− t)α − λ| dt =
1 + 2α+1 − 2(2− ξ)α+1

α+ 1
+ (2α − λ)(1− 2ξ)

C =

∫ 1

0

|(1− t)α − λ| t dt =
1− 2(1− ζ)α+2

(α+ 1)(α+ 2)
− 2ζ(1− ζ)α+1

α+ 1
+
λ

2
(1− 2ζ2)

D =

∫ 1

0

|2α − (2− t)α − λ| t dt

=
1 + 2α+2 − 2(2− ξ)α+2

(α+ 1)(α+ 2)
+

1− 2ξ(2− ξ)α+1

α+ 1
+ (2α − λ)(

1

2
− ξ2)

By using the properties of modulus on Lemma 1 and convexity of |f ′|, we have

∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2α+2

4∑
n=1

|In| (8)
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|I1| ≤
∫ 1

0

|(1− t)α − λ|
∣∣∣∣f ′(ta+ (1− t)a+ b

2

)∣∣∣∣ dt
=

∫ 1

0

|(1− t)α − λ|
∣∣∣∣f ′(1 + t

2
a+

1− t
2

b

)∣∣∣∣ dt
≤
∫ 1

0

|(1− t)α − λ|
{

1 + t

2
|f ′(a)|+ 1− t

2
|f ′(b)|

}
dt

=
|f ′(a)|+ |f ′(b)|

2

∫ 1

0

|(1− t)α − λ| dt+
|f ′(a)| − |f ′(b)|

2

∫ 1

0

|(1− t)α − λ| t dt

=
A

2
{|f ′(a)|+ |f ′(b)|}+

C

2
{|f ′(a)| − |f ′(b)|}

Analogously

|I2| ≤
A

2
{|f ′(a)|+ |f ′(b)|} − C

2
{|f ′(a)| − |f ′(b)|}

|I3| ≤ B|f ′(a)| − D

2
{|f ′(a)| − |f ′(b)|}

|I4| ≤ B|f ′(b)|+
D

2
{|f ′(a)| − |f ′(b)|}

To get desired result, substituting the above inequalities into the inequality (8).

Corollary 1. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let
a, b ∈ I◦ with a < b. If |f ′| is convex function on [a, b], then the following inequality
holds:∣∣∣∣∣(1− λ) f

(
a+ b

2

)
+ λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

8

[
2λ2 − 2λ+ 1

]
(|f ′(a)|+ |f ′(b)|) (9)

Proof. Setting α = 1 in Theorem 5, we get the required result.

Remark 3. For setting λ = 0, inequality (9) reduces to inequality (2).
For setting λ = 1, inequality (9) reduces to inequality (3).

Theorem 7. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b]→ R
be a differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with
a < b and 0 ≤ λ ≤ 1. If |f ′| is a convex on [a, b], then the following inequality for
Riemann−Liouville fractional integrals holds:∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2α+1

[
µ

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ ν

(
|f ′(a)|+ |f ′(b)|

2

)]
where
µ = 2α+2+2(1−ζ)α+2−2(2−ξ)α+2

(α+1)(α+2) + 2−2(1−ζ)α+2−2ξ(2−ξ)α+1

α+1

+(2α − λ)( 1
2 − ξ

2)− λ
2 (1− 2ζ2) + (1− 2ζ)λ

ν = 2(2−ξ)α+2−2(1−ζ)α+2−2α+2

(α+1)(α+2) + 2α+1−2ζ(1−ζ)α+1−2(1−ξ)(2−ξ)α+1

α+1

−(2α − λ)( 1
2 − ξ

2) + λ
2 (1− 2ζ2) + (2α − λ)(1− 2ξ).
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Proof. By using the properties of modulus on I1 and convexity of |f ′|, we have

|I1| ≤
∫ 1

0

|(1− t)α − λ|
∣∣∣∣f ′(ta+ (1− t)a+ b

2

)∣∣∣∣ dt
≤
∫ 1

0

|(1− t)α − λ|
{
t |f ′(a)|+ (1− t)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣} dt
≤ (A− C)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ C|f ′(a)|

Analogously

|I2| ≤ (A− C)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ C|f ′(b)|

|I3| ≤ D

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ (B −D)|f ′(a)|

|I4| ≤ D

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ (B −D)|f ′(b)|

Substituting the above inequalities into the following inequality∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2α+2

4∑
n=1

|In|

which completes the proof.

Corollary 2. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let
a, b ∈ I◦ with a < b. If |f ′| is convex function on [a, b], then the following inequality
holds:∣∣∣∣∣(1− λ) f

(
a+ b

2

)
+ λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

12

[(
2− 3λ+ 2λ3

)∣∣∣∣f ′(a+ b

2

)∣∣∣∣+(1− 3λ+ 6λ2− 2λ3)

(
|f ′(a)|+ |f ′(b)|

2

)]
(10)

Proof. Setting α = 1 in Theorem 6, we get the required result.
The corresponding version for powers of the absolute value of the derivative is

incorporated in the following theorem.

Theorem 8. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b]→ R
be a differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with

a < b and 0 ≤ λ ≤ 1. If |f ′|
1
q for q ≥ 1 is a convex on [a, b], then the following

inequality for Riemann−Liouville fractional integrals holds:∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ ≤ b− a
2α+2

×[
A

{(
A− C

2A
|f ′(a)|q +

A+ C

2A
|f ′(b)|q

) 1
q

+

(
A+ C

2A
|f ′(a)|q +

A− C
2A

|f ′(b)|q
) 1
q

}
(11)

+ B

{(
2B −D

2B
|f ′(a)|q +

D

2B
|f ′(b)|q

) 1
q

+

(
D

2B
|f ′(a)|q +

2B −D
2B

|f ′(b)|q
) 1
q

}]
.
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where

A =
1− 2(1− ζ)α+1

α+ 1
+ (1− 2ζ)λ

B =
1 + 2α+1 − 2(2− ξ)α+1

α+ 1
+ (2α − λ)(1− 2ξ)

C =
1− 2(1− ζ)α+2

(α+ 1)(α+ 2)
− 2ζ(1− ζ)α+1

α+ 1
+
λ

2
(1− 2ζ2)

D =
1 + 2α+2 − 2(2− ξ)α+2

(α+ 1)(α+ 2)
+

1− 2ξ(2− ξ)α+1

α+ 1
+ (2α − λ)(

1

2
− ξ2)

Proof. Using the well-known power-mean integral inequality , we have

∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2α+2

[(∫ 1

0

|(1− t)α − λ| dt
)1− 1

q

{(∫ 1

0

|(1− t)α − λ|
∣∣∣∣f ′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt)
1
q

+

(∫ 1

0

|(1− t)α − λ|
∣∣∣∣f ′(1− t

2
a+

1 + t

2
b

)∣∣∣∣q dt)
1
q

}
+

(∫ 1

0

|2α−(2− t)α −λ| dt
)1− 1

q

{(∫ 1

0

|2α− (2− t)α− λ|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣q dt)
1
q

+

(∫ 1

0

|2α − (2− t)α − λ|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣q dt)
1
q

}]
.

Which completes the proof.

Remark 4. For α = 1, inequality (11) reduces to inequality (5).

Theorem 9. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b]→ R
be a differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with

a < b and 0 ≤ λ ≤ 1. If |f ′|
1
q for q ≥ 1 is a convex on [a, b], then the following

inequality for Riemann−Liouville fractional integrals holds:

∣∣∣∣(1− 2

2α
λ

)
f

(
a+ b

2

)
+ λ

f(a) + f(b)

2α
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ ≤ b− a
2α+1

×[
A

{(
C

A
|f ′(a)|q+

(
1− C

A

)∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

(
C

A
|f ′(b)|q+

(
1− C

A

)∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

}

+B

{((
1−D

B

)
|f ′(a)|q+D

B

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

((
1− D

B

)
|f ′(b)|q+

D

B

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

}]
.
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where

A =
1− 2(1− ζ)α+1

α+ 1
+ (1− 2ζ)λ

B =
1 + 2α+1 − 2(2− ξ)α+1

α+ 1
+ (2α − λ)(1− 2ξ)

C =
1− 2(1− ζ)α+2

(α+ 1)(α+ 2)
− 2ζ(1− ζ)α+1

α+ 1
+
λ

2
(1− 2ζ2)

D =
1 + 2α+2 − 2(2− ξ)α+2

(α+ 1)(α+ 2)
+

1− 2ξ(2− ξ)α+1

α+ 1
+ (2α − λ)(

1

2
− ξ2)

Corollary 3. Let f : I◦ ⊆ R → R be a differentiable function on I◦ and let

a, b ∈ I◦ with a < b. If 0 ≤ λ ≤ 1 and |f ′|
1
q for q ≥ 1 is a convex on [a, b], then the

following inequality holds:∣∣∣∣∣(1− λ)f

(
a+ b

2

)
+ λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

3

(
1

3

) 1
q

(1− 2λ+ 2λ2)1−
1
q

×

[({
1− 3λ+ 6λ2 − 2λ3

}
|f ′(a)|q +

{
2− 3λ+ 2λ3

} ∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

({
1− 3λ+ 6λ2 − 2λ3

}
|f ′(b)|q +

{
2− 3λ+ 2λ3

} ∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

]
(12)

Proof. Setting α = 1 in Theorem 9, we get the required result.

3. Applications To Quadrature Formulae

In this section, some particular inequalities which generalize some classical results
such as: trapezoid inequality, Simpsons inequality, midpoint inequality and others,
are pointed out.

Proposition 1. (Midpoint Inequality). Under the assumptions Corollary 2 with
λ = 0 in inequality (10), then the following inequality holds,∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
24

(
|f ′(a)|+ 4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
)

Proposition 2. (Midpoint Inequality). Under the assumptions Corollary 3 with
λ = 0 in inequality (12), then the following inequality holds,∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
8

[(
1

3
|f ′(a)|q +

2

3

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

(
1

3
|f ′(b)|q +

2

3

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

]
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Proposition 3. (Trapezoid Inequality). Under the assumptions Corollary 2 with
λ = 1 in inequality (10), then the following inequality holds,∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
12

(
|f ′(a)|+

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
)

Proposition 4. (Trapezoid Inequality). Under the assumptions Corollary 3 with
λ = 1 in inequality (12), then the following inequality holds,∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
8

[(
2

3
|f ′(a)|q +

1

3

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

(
2

3
|f ′(b)|q +

1

3

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

]

Proposition 5. Under the assumptions Corollary 2 with λ = 1
2 in inequality (10),

then the following inequality holds,∣∣∣∣∣12
{
f

(
a+ b

2

)
+
f(a) + f(b)

2

}
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

32

(
|f ′(a)|+ 2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
)

Proposition 6. Under the assumptions Corollary 3 with λ = 1
2 in inequality (12),

then the following inequality holds,∣∣∣∣∣12
{
f

(
a+ b

2

)
+
f(a) + f(b)

2

}
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
16
×[(

1

2
|f ′(a)|q +

1

2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

(
1

2
|f ′(b)|q +

1

2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

]
Proposition 7. (Simpson Inequality). Under the assumptions Corollary 2 with
λ = 1

3 in inequality (10), then the following inequality holds,∣∣∣∣∣13
{

2f

(
a+ b

2

)
+
f(a) + f(b)

2

}
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

324

(
8|f ′(a)|+ 29

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ 8|f ′(b)|
)

Proposition 8. (Simpson Inequality). Under the assumptions Corollary 3 with
λ = 1

3 in inequality (12), then the following inequality holds,∣∣∣∣∣13
{

2f

(
a+ b

2

)
+
f(a) + f(b)

2

}
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ 5(b− a)

72
×[(

16

45
|f ′(a)|q +

29

45

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

+

(
16

45
|f ′(b)|q +

29

45

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)
1
q

]

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

405 MUHAMMAD IQBAL et al 397-406



10 M. IQBAL, M. HABIB, N. SIDDIQUI, AND M. MUDDASSAR

References

[1] G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montogomery iden-
tities for fractional integrals and related fractional inequalities, J. Ineq. Pure Appl. Math. 10
(4) Art. 97,2009.

[2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl.
Math. 10 (3) Art. 86, 2009.

[3] Bo-Yan Xi and Feng Qi, Some Integral Inequalities of Hermite-Hadamard Type for Convex
Functions with Applications to Means, Journal of Function Spaces and Applications, Vol.
2012, Art. ID 980438, doi:10.1155/2012/980438.

[4] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear
Scinece, 9(4), 493-497, 2010.

[5] S. S. Dragomir, M. I. Bhatti, M. Iqbal, and M. Muddassar, Some new fractional Integral
Hermite–Hadamard type inequalities, Journal of Computational Analysis and Application,
18(4), 655−661, 2015.

[6] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and appli-
cations to special means of real numbers and to trapezoidal formula, Applied Mathematics
Letters, 11 ( 5), 9195, 1998.

[7] S.S. Dragomir, R.P. Agarwal, P. Cerone, On Simpsons inequality and applications, J. Inequal.
Appl. 5, 533−579, 2000.

[8] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional
order, Springer Verlag, Wien (1997), 223−276.

[9] M. Iqbal, M. I. Bhatti, and K. Nazeer, Generaliation of inequalities analogous to
Hermite−Hadamard inequality via fractional integrals, Bull. Korean Math. Soc. 52( 3),
707−716, 2015.

[10] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of
real numbers and to midpoint formula, Applied Mathematics and Computation, 147 (1),
137146, 2004.

[11] S. Miller, B. Ross, An introduction to the Fractional Calculus and Fractional Differential
Equations, John Wiley & Sons, USA, 1993, 2.
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The differentiability for fuzzy n-cell mappings and the

KKT optimality conditions for a class of fuzzy

constrained minimization problem ∗

She-Xiang Haia†, Zeng-Tai Gongb

a School of Science, Lanzhou University of Technology, Lanzhou, 730050, P.R. China

b College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R.China

Abstract In this paper, the concept of generalized difference for fuzzy n-cell numbers is presented, and we

use the generalized difference to introduce and study the differentiability for fuzzy n-cell mappings. Next,

the convexity for fuzzy n-cell mappings is studied, which is based on the concept of the partial ordering of

fuzzy n-cell numbers proposed in this study. Finally, using the differentiability and the convexity for fuzzy

n-cell mappings, we obtain the KKT optimality conditions for a class of fuzzy constrained minimization

problem.

Keywords: Fuzzy n-cell numbers; fuzzy n-cell mappings; differentiability; fuzzy optimization.

1. Introduction

Since the concept and operations of fuzzy set were introduced by Zadeh [1], enormous researchers have

been dedicated on development of various aspects of the theory and applications of fuzzy sets. The occurrence

of randomness and imprecision in the real world is inevitable owing to some unexpected situations. Therefore,

imposing the uncertainty upon the conventional optimization problems is an interesting research topic.

The theory and methods of mathematical programming are important components of optimization. The

importance of the derivative of a function in the study of mathematical programming is well-known. Given

that our interest is in fuzzy objective mappings, it is necessary to introduce a concept of derivative for

fuzzy mappings. Toward this end, in the fuzzy analysis, there are a variety of notions of derivative for

fuzzy mappings. The concept of fuzzy derivative first introduced by Chang and Zadeh [2] in 1972. Since

then, numerous definitions of the differentiability for fuzzy mappings have been presented. In 1983, Puri and

Ralescu [3] defined the derivative and G-derivative for fuzzy mappings from an open subset of a normal space

into n-dimension fuzzy number space En by using embedding theorem (which shows how to isometrically

embed En into a Banach space as a closed convex cone of vertex zero) and Hukuhara difference. In 1987,

Kaleva [4] discussed the G-derivative, obtained a sufficient condition of the H-differentiability for fuzzy

mappings from [a, b] into En and a necessary condition for the H-differentiability of fuzzy mapping from

[a, b] into E1. In 2003, Wang and Wu [5] put forward the concepts of directional derivative, differential

and sub-differential for fuzzy mappings from Rn into E1 by using Hukuhara difference. However, the usual

Hukuhara difference between two fuzzy numbers exists only under very restrictive conditions [4] and the

H-difference of two fuzzy numbers does not always exist [6, 7]. The g-difference between two fuzzy numbers

proposed in [7] overcomes these shortcomings of the above discussed concepts and the g-difference of two

fuzzy numbers always exists. Based on the g-difference for two fuzzy numbers, Bede [8] introduced and

studied new generalized differentiability concepts for fuzzy valued functions in 2013, in particular, a new

very general fuzzy differentiability concept was defined and studied, the so-called g-derivative, and it was

∗This work is supported by National Natural Science Fund of China (11461062, 61262022).
†Corresponding author. Tel.: +86 931 2973590. E-mail address: haishexiang@lut.cn (SX Hai), zt-gong@163.com (Z. Gong).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

407 She-Xiang Hai et al 407-417



Shexiang Hai and Zengtai Gong: The differentiability for fuzzy n-cell mappings and the KKT optimality ...

shown that the g-derivative is the most general among all similar definitions.

Motivated both by [8] and the importance of the concept of differentiability for fuzzy optimization,

the paper focuses on the concept of differentiability for fuzzy mappings, which is based on the generalized

difference of fuzzy n-cell numbers presented in this paper. The Karush-Kuhn-Tucker optimality conditions

play an important role in the area of optimization theory and have been studied for over a century. We

extend the concept of convexity for real-valued functions to fuzzy n-cell mappings based on the partial

ordering �c introduced in this paper, and then establish the KKT optimality conditions for an optimization

problem with a fuzzy n-cell objective mapping.

The remainder of the paper is organised as follows: First of all, we give the preliminary terminology used

in the present paper. And then, the generalized difference of fuzzy n-cell numbers is introduced. We use

the generalized difference of fuzzy n-cell numbers to study differentiability for fuzzy n-cell mappings, and

convexity for fuzzy n-cell mappings based on the partial ordering �c is discussed in Section 4. At last, using

the convexity and differentiability for fuzzy n-cell mappings, section 5 deals with the Karush-Kuhn-Tucker

optimality conditions for a class of constrained fuzzy minimization problem.

2. Preliminaries

Throughout this paper, F (Rn) denotes the set of all fuzzy subsets on n-dimensional Euclidean space Rn.

A fuzzy set ũ on Rn is a mapping ũ : Rn → [0, 1]. For each fuzzy set ũ, we denote its r-level set as [ũ]r = {x ∈
Rn : ũ(x) ≥ r} for any r ∈ (0, 1]. The support of ũ we denote by suppũ where suppũ = {x ∈ Rn : ũ(x) > 0}.
The closure of suppũ defines the 0-level of ũ, i.e. [ũ]0 = cl(suppũ). Here cl(M) denotes the closure of set M.

Fuzzy set ũ ∈ F (Rn) is called a fuzzy number if

(1) ũ is a normal fuzzy set, i.e. there exists an x0 ∈ Rn such that ũ(x0) = 1,

(2) ũ is a convex fuzzy set, i.e. ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)} for any x, y ∈ Rn and λ ∈ [0, 1],

(3) ũ is upper semi-continuous,

(4) [ũ]0 = cl(suppũ) = cl(
⋃
r∈(0,1][ũ]r) is compact.

We will denote En the set of fuzzy numbers [9, 10, 11, 12].

It is clear that any u ∈ Rn can be regarded as a fuzzy number ũ defined by

ũ(x) =

{
1, x = u,

0, otherwise.

In particular, the fuzzy number 0̃ is defined as 0̃(x) = 1 if x = 0, and 0̃(x) = 0 otherwise.

Definition 2.1. [13] If ũ ∈ En, and [ũ]r is a cell, i.e., for any r ∈ [0, 1],

[ũ]r =
n∏
i=1

[u−i (r), u+i (r)] = [u−1 (r), u+1 (r)]× [u−2 (r), u+2 (r)]× · · · × [u−n (r), u+n (r)],

where u−i (r), u+i (r) ∈ R with u−i (r) ≤ u+i (r) (i = 1, 2, · · · , n), then we call ũ a fuzzy n-cell number. Denote

the collection of all fuzzy n-cell numbers by L(En).

For any r ∈ [0, 1], li[ũ]r = u+i (r) − u−i (r) (i = 1, 2, · · · , n) is called the r-level length of a fuzzy n-cell

number ũ with respect to the ith component.

Theorem 2.1. [13] (Representation theorem). If ũ ∈ L(En), then for i = 1, 2, · · · , n, u−i (r), u+i (r) are

real-valued functions on [0, 1], and satisfy

(1) u−i (r) are non-decreasing, left continuous at r ∈ (0, 1] and right continuous at r = 0,

(2) u+i (r) are non-increasing, left continuous at r ∈ (0, 1] and right continuous at r = 0,

(3) u−i (r) ≤ u+i (r) (it is equivalent to u−i (1) ≤ u+i (1)).

Conversely if ai(r), bi(r) (i = 1, 2, · · · , n) are real-valued functions on [0, 1] which satisfy conditions

(1)-(3), then there exists a unique ũ ∈ L(En) such that [ũ]r =
∏n
i=1[ai(r), bi(r)] for any r ∈ [0, 1].

Theorem 2.2. [13] Let ũ, ṽ ∈ L(En) and k ∈ R. Then for any r ∈ [0, 1],

(1) [ũ+ ṽ]r = [ũ]r + [ṽ]r =
∏n
i=1[u−i (r) + v−i (r), u+i (r) + v+i (r)],
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(2) [kũ]r = k[ũ]r =

{ ∏n
i=1[ku−i (r), ku+i (r)], k ≥ 0,∏n
i=1[ku+i (r), ku−i (r)], k < 0,

(3) [ũṽ]r =
∏n
i=1[min{u−i (r)v−i (r), u−i (r)v+i (r), u+i (r)v−i (r), u+i (r)v+i (r)},

max{u−i (r)v−i (r), u−i (r)v+i (r), u+i (r)v−i (r), u+i (r)v+i (r)}].
Given ũ, ṽ ∈ L(En), the distance D : L(En) × L(En) → [0,+∞) between ũ and ṽ is defined by the

equation

D(ũ, ṽ) = sup
r∈[0,1]

d([ũ]r, [ṽ]r) = sup
r∈[0,1]

max
1≤i≤n

{| u−i (r)− v−i (r) |, | u+i (r)− v+i (r) |}.

Then (L(En), D) is a complete metric space, and satisfies D(ũ+ w̃, ṽ+ w̃) = D(ũ, ṽ), D(kũ, kṽ) = |k|D(ũ, ṽ)

for any ũ, ṽ, w̃ ∈ L(En), k ∈ R.
In recent years, several authors have discussed different ordering relation of fuzzy numbers [14]. To the

best of our knowledge, very few investigations have been appeared to study ordering relation of fuzzy n-cell

numbers. For this reason, an ordering �c of fuzzy n-cell numbers will be introduced.

Definition 2.2. Let τ : L(En)→ Rn be a vector-valued function defined by

τ(ũ) = (2
∫ 1

0
r

∫
···

∫
[ũ]r

x1dx1dx2···dxn∫
···

∫
[ũ]r

1dx1dx2···dxn
dr, 2

∫ 1

0
r

∫
···

∫
[ũ]r

x2dx1dx2···dxn∫
···

∫
[ũ]r

1dx1dx2···dxn
dr, · · · , 2

∫ 1

0
r

∫
···

∫
[ũ]r

xndx1dx2···dxn∫
···

∫
[ũ]r

1dx1dx2···dxn
dr)

= (
∫ 1

0
r(ũ+1 (r) + u−1 (r))dr,

∫ 1

0
r(ũ+2 (r) + u−2 (r))dr, · · · ,

∫ 1

0
r(ũ+n (r) + u−n (r))dr),

where
∫ 1

0
r

∫
···

∫
[ũ]r

xidx1dx2···dxn∫
···

∫
[ũ]r

1dx1dx2···dxn
dr (i = 1, 2, · · · , n) are the Lebesgue integral of r

∫
···

∫
[ũ]r

xidx1dx2···dxn∫
···

∫
[ũ]r

1dx1dx2···dxn
(i =

1, 2, · · · , n) on [0, 1]. The vector-valued function τ is called a ranking value function defined on L(En).

In this case τ(ũ) represents a centroid of the fuzzy n-cell number ũ. From the ranking value function

τ(ũ), we consider the following ordering relation �c on L(En).

Definition 2.3. Let ũ, ṽ ∈ L(En), C ⊆ Rn be a closed convex cone with 0 ∈ C and C 6= Rn. We say that

ũ �c ṽ (ũ precedes ṽ) if τ(ṽ) ∈ τ(ũ) + C (τ(ṽ)− τ(ũ) ∈ C).

Obviously the order relation �c is reflexive and transitive, and �c is a partially ordered relation on

L(En). For ũ, ṽ ∈ L(En), if either ũ �c ṽ or ṽ �c ũ, then we say that ũ and ṽ are comparable, otherwise

non-comparable. If ũ, ṽ ∈ E1, C = [0,+∞) ⊆ R, then Definition 2.3 coincides with Definition 2.5 from [14].

We say that ũ ≺c ṽ if ũ �c ṽ and τ(ũ) 6= τ(ṽ). Sometimes we may write ṽ �c ũ (resp. ṽ �c ũ) instead of

ũ �c ṽ (resp. ũ ≺c ṽ).

Remark 2.1. Let ũ, ṽ ∈ L(En), k1, k2 ∈ R. According to Theorem 2.2 and Definition 2.2, it is easy to verify

that τ(k1ũ+ k2ṽ) = k1τ(ũ) + k2τ(ṽ).

Theorem 2.3. Let ũ1, ũ2, ṽ1, ṽ2,∈ L(En), k1, k2 ∈ [0,+∞], C ⊆ Rn be a closed convex cone with 0 ∈ C
and C 6= Rn. If ũ1 �c ṽ1 and ũ2 �c ṽ2, then k1ũ1 + k2ũ2 �c k1ṽ1 + k2ṽ2.

The proof is similar to the proof of Theorem 2.3 in [15]

3. Generalized difference for fuzzy n-cell numbers

Definition 3.1. [16] Let ũ, ṽ ∈ L(En). The generalized difference (g-difference for short) of ũ and ṽ is given

by its level sets as

[ũ	g ṽ]r =
n∏
i=1

[ inf
β≥r

min{u−i (β)− v−i (β), u+i (β)− v+i (β)}, sup
β≥r

max{u−i (β)− v−i (β), u+i (β)− v+i (β)}],

where β ∈ [r, 1].

Remark 3.1. If ũ, ṽ ∈ E1, we have

[ũ	g ṽ]r = [ inf
β≥r

min{u−(β)− v−(β), u+(β)− v+(β)}, sup
β≥r

max{u−(β)− v−(β), u+(β)− v+(β)}],

which coincides with Definition 7 of reference [8].
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According to Proposition 13 in [7], we have the following conclusion.

Theorem 3.1. Let ũ, ṽ ∈ L(En). If li[ũ]r ≤ li[ṽ]r or li[ũ]r ≥ li[ṽ]r for any r ∈ [0, 1] and i = 1, 2, · · · , n, then

the g-difference ũ	g ṽ exists and ũ	g ṽ ∈ L(En).

From now on, throughout this paper, we will assume that the g-difference ũ 	g ṽ for any fuzzy n-cell

numbers ũ and ṽ exists.

Theorem 3.2. For any ũ, ṽ, w̃,∈ L(En), we have

(1) ũ	g ũ = 0̃, ũ	g 0̃ = ũ, 0̃	g ũ = −ũ,
(2) ũ	g ṽ = −(ṽ 	g ũ),

(3) k(ũ	g ṽ) = kũ	g kṽ, for any k ∈ R,
(4) k1ũ	g k2ũ = (k1 − k2)ũ, for any k1, k2 ∈ R and k1 · k2 ≥ 0,

(5) ũ	g (−ṽ) = ṽ 	g (−ũ), (−ũ)	g ṽ = (−ṽ)	g ũ,
(6) (ũ+ ṽ)	g ṽ = ũ,

(7) 0̃	g (ũ	g ṽ) = ṽ 	g ũ = (−ũ)	g (−ṽ),

(8) ũ	g ṽ = ṽ 	g ũ = w̃ if and only if w̃ = −w̃.
Proof. The proof of (1), (3) are immediate.

(2) According to Definition 3.1, for any r ∈ [0, 1], we have

−[ṽ 	g ũ]r

= −
∏n
i=1[infβ≥r min{v−i (β)− u−i (β), v+i (β)− u+i (β)}, supβ≥r max{v−i (β)− u−i (β), v+i (β)− u+i (β)}]

=
∏n
i=1[− supβ≥r max{v−i (β)− u−i (β), v+i (β)− u+i (β)},

− infβ≥r min{v−i (β)− u−i (β), v+i (β)− u+i (β)}]

=
∏n
i=1[− supβ≥r(−min{u−i (β)− v−i (β), u+i (β)− v+i (β)}),

− infβ≥r(−max{u−i (β)− v−i (β), u+i (β)− v+i (β)})]

=
∏n
i=1[infβ≥r min{u−i (β)− v−i (β), u+i (β)− v+i (β)}, supβ≥r max{u−i (β)− v−i (β), u+i (β)− v+i (β)}]

= [ũ	g ṽ]r.

It follows from Theorem 2.2 that ũ	g ṽ = −(ṽ 	g ũ).

(4) For any r ∈ [0, 1], it follows from Definition 3.1 that

[k1ũ	g k2ũ]r

=
∏n
i=1[infβ≥r min{(k1 − k2)u−i (β), (k1 − k2)u+i (β)}, supβ≥r max{(k1 − k2)u−i (β), (k1 − k2)u+i (β)}].

If k1 − k2 ≥ 0, for any r ∈ [0, 1], it is obvious that

[k1ũ	g k2ũ]r =
n∏
i=1

[(k1 − k2)u−i (r), (k1 − k2)u+i (r)] = [(k1 − k2)ũ]r.

On the other hand, if k1 − k2 < 0, for any r ∈ [0, 1], we have from Theorem 2.2 that

[k1ũ	g k2ũ]r

=
∏n
i=1[infβ≥r min{(k1 − k2)u−i (β), (k1 − k2)u+i (β)}, supβ≥r max{(k1 − k2)u−i (β), (k1 − k2)u+i (β)}]

=
∏n
i=1[(k1 − k2) supβ≥r max{u−i (β), u+i (β)}, (k1 − k2) infβ≥r min{u−i (β), u+i (β)}]

=
∏n
i=1[(k1 − k2)u+i (r), (k1 − k2)u−i (r)]

= [(k1 − k2)ũ]r.

Then k1ũ	g k2ũ = (k1 − k2)ũ.
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(5) According to Definition 3.1 and Theorem 2.2, for any r ∈ [0, 1], we have

[ũ	g (−ṽ)]r

=
∏n
i=1[infβ≥r min{u−i (β) + v+i (β), u+i (β) + v−i (β)}, supβ≥r max{u−i (β) + v+i (β), u+i (β) + v−i (β)}]

=
∏n
i=1[infβ≥r min{v−i (β) + u+i (β), v+i (β) + u−i (β)}, supβ≥r max{v−i (β) + u+i (β), v+i (β) + u−i (β)}]

= [ṽ 	g (−ũ)]r.

Then ũ	g (−ṽ) = ṽ 	g (−ũ). It follows from (3) that (−ũ)	g ṽ = (−ṽ)	g ũ.
(6) For any r ∈ [0, 1], we have from Theorem 2.2 that

[(ũ+ ṽ)	g ṽ]r =
∏n
i=1[infβ≥r min{(u−i (β) + v−i (β))− v−i (β), (u+i (β) + v+i (β))− v+i (β)},

supβ≥r max{(u−i (β) + v−i (β))− v−i (β), (u+i (β) + v+i (β))− v+i (β)}]

=
∏n
i=1[infβ≥r min{u−i (β), u+i (β)}, supβ≥r max{u−i (β), u+i (β)}]

=
∏n
i=1[infβ≥r u

−
i (β), supβ≥r u

+
i (β)]

=
∏n
i=1[u−i (r), u+i (r)]

= [ũ]r.

Then (ũ+ ṽ)	g ṽ = ũ.

(7) It follows from (1), (2) and (3) that the proof of (7) is immediate.

(8) We have from (2) that the proof of (8) is immediate.

For any ũ, ṽ ∈ L(En), using the method with that Bede proved Proposition 15 in [8], we can show that

D(ũ, ṽ) = D(ũ	g ṽ, 0̃).

4. The differentiability and convexity for fuzzy n-cell mappings

In this work, let M be a convex set of m-dimensional Euclidean space Rm. We consider mapping F̃ from

M into L(En), such a mapping is called a fuzzy n-cell mapping. For the sake of brevity, F̃ is called a fuzzy

mapping. For any r ∈ [0, 1], we denote [F̃ (t)]r by Fr(t) =
∏n
i=1[F−i (r, t), F+

i (r, t)].

Let F̃ : M → L(En) be a fuzzy mapping and ũ ∈ L(En). For t0 ∈ intM, we write limt→t0 F̃ (t) = ũ, if,

for every ε > 0, there exists a δ > 0 such that, for 0 < ‖t− t0‖ < δ, we have D(F̃ (t), ũ) < ε.

We say that F̃ is continuous at t0 ∈ intM if limt→t0 F̃ (t) = F̃ (t0).

Theorem 4.1. Let F̃ : M → L(En) be a fuzzy mapping such that F̃ (t) = f(t) · ũ, where f(t) : M → R be

a real-valued function on M, ũ ∈ L(En) and ũ 6= 0. If f is continuous at t0, then F̃ is continuous at t0 and

lim
t→t0

F̃ (t) = ũ · lim
t→t0

f(t).

Proof. Assume that f is continuous at t0. Then for every ε > 0, there exists a δ > 0 such that, for

0 < ‖t− t0‖ < δ, we have |f(t)− f(t0)| < ε
D(ũ,0̃)

. According to the sign-preserving theorem of limit, we have

D(F̃ (t), F̃ (t0)) = D(f(t) · ũ, f(t0) · ũ)

= supr∈[0,1] max1≤i≤n{|f(t)− f(t0)| · |u−i (r)|, |f(t)− f(t0)| · |u+i (r)|}

= |f(t)− f(t0)| supr∈[0,1] max1≤i≤n{|u−i (r)|, |u+i (r)|}

= |f(t)− f(t0)| ·D(ũ, 0̃)

< ε,

which implies that F̃ is continuous at t0.
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Definition 4.1. [15] Let F̃ : M → L(En), t0 = (t01, t
0
2, · · · , t0m) ∈ intM and t = (t1, t2, · · · , tm) ∈ intM. If

g-difference F̃ (t)	g F̃ (t0) exists and there exist ũj ∈ L(En) (j = 1, 2, · · · ,m), such that

lim
t→t0

D(F̃ (t)	g F̃ (t0),
∑m
j=1 ũj(tj − t0j ))

d(t, t0)
= 0,

then we say that F̃ is differentiable at t0 and the fuzzy vector (ũ1, ũ2, · · · , ũm) is the gradient of F̃ at t0,

denoted by ∇F̃ (t0), i.e., ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm).

Remark 4.1. Let F̃ : M → L(En), t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. Then the gradient ∇F̃ (t0) exists at t0 if and only if and F̃ (t) 	g F̃ (t0) exists and there

are ũj ∈ L(En) (j = 1, 2, · · · ,m), such that

ũj = lim
h→0

F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m)

h
.

Here the limit is taken in the metric space (L(En), D).

Theorem 4.2. Let F̃ : M → L(En) be a fuzzy mapping such that F̃ (t) = f(t) · ũ, where f(t) : M → R

be a continuous function on M, ũ ∈ L(En) and ũ 6= 0. If F̃ (t)	g F̃ (t0) exists, then the gradient ∇F̃ (t0) =

(ũ1, ũ2, · · ·, ũm) of F̃ exists at t0 if and only if the gradient ∇f = ( ∂f∂t1 ,
∂f
∂t2
, · · · , ∂f∂tm ) of f exists at t0 and

ũ
∂f

∂tj
|t=t0 = ũj (j = 1, 2, · · · ,m).

Proof. It follows from the sign-preserving theorem of limit and Theorem 3.2 that

F̃ (t)	g F̃ (t0) = (f(t)− f(t0)) · ũ.

Only if: Taking h ∈ R, such that t = (t01, · · · , t0j + h, · · · , t0m) ∈ intM, then

ũ limh→0
f(t01,··· ,t

0
j+h,··· ,t

0
m)−f(t01,··· , t

0
j ,··· , t

0
m)

h

= limh→0
(f(t01,··· ,t

0
j+h,··· ,t

0
m)−f(t01,··· , t

0
j ,··· , t

0
m))·ũ

h

= limh→0
F̃ (t01,··· ,t

0
j+h,··· ,t

0
m)	gF̃ (t01,··· , t

0
j ,··· , t

0
m)

h

= ũj ,

which implies that the gradient ∇f = ( ∂f∂t1 ,
∂f
∂t2
, · · · , ∂f∂tm ) of f exists at t0 and ũ ∂f∂tj |t=t0 = ũj (j =

1, 2, · · · ,m).

If: Taking h ∈ R, such that t = (t01, · · · , t0j + h, · · · , t0m) ∈ intM, then

limh→0
F̃ (t01,··· ,t

0
j+h,··· ,t

0
m)�gF̃ (t01,··· , t

0
j ,··· , t

0
m)

h

= limh→0
(f(t01,··· ,t

0
j+h,··· ,t

0
m)−f(t01,··· ,t

0
j+h,··· ,t

0
m))·ũ

h

= ∂f
∂tj
|t=t0 · ũ,

which implies that the gradient ∇F̃ (t0) = (ũ1, ũ2, · · ·, ũm) of F̃ exists at t0 and ũj = ũ ∂f∂tj |t=t0 (j =

1, 2, · · · ,m).

Theorem 4.3. Let F̃ : M → L(En) be a fuzzy mapping such that F̃ (t) = f(t) · ũ, where f(t) : M → R be

a continuous function on M, ũ ∈ L(En) and ũ 6= 0. If F̃ (t)	g F̃ (t0) exists and f is differentiable at t0, then

F̃ is differentiable at t0.

Proof. It follows from the sign-preserving theorem of limit and Theorem 3.2 that F̃ (t)	g F̃ (t0) = (f(t)−
f(t0)) · ũ. According to Theorem 4.2, we have

D(F̃ (t)	g F̃ (t0),
∑m
j=1 ũj(tj − t0j ))

= D(ũ(f(t)− f(t0)), ũ
∑m
j=1

∂f
∂tj
|t=t0(tj − t0j ))

= D(ũ, 0̃) · |f(t)− f(t0)−
∑m
j=1

∂f
∂tj
|t=t0(tj − t0j )|,
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where, ũj = limh→0
F̃ (t01,··· ,t

0
j+h,··· ,t

0
m)	gF̃ (t01,··· ,t

0
j ,··· ,t

0
m)

h . This completes the proof.

Convexity plays a key role in mathematical economics, engineering, management science, and opti-

mization theory. Therefore, research into convexity is one of the most important aspects of mathematical

programming. Next, using the partial ordering relation �c we will extend the concept of convexity for

real-valued functions to fuzzy mappings.

Definition 4.2. Let F̃ : M → L(En) be a fuzzy mapping. F̃ is said to be convex (c.) on M if

F̃ (λt1 + (1− λ)t2) �c λF̃ (t1) + (1− λ)F̃ (t2)

for any t1, t2 ∈M and λ ∈ [0, 1].

Remark 4.2. If F̃ , G̃ : M → L(En) are convex fuzzy mappings and α, β ≥ 0, then αF̃ + βG̃ is a convex

fuzzy mapping on M.

Theorem 4.4. Let F̃ : M → L(En) be a fuzzy mapping such that F̃ (t) = f(t) · ũ, where f(t) : M → R be

a real-valued function on M, ũ ∈ L(En) and ũ �c 0̃. F̃ is convex on M if and only if f is convex on M.

Proof. If: Let C = Rn+ ⊆ Rn, where Rn+ = {(x1, x2, · · ·, xn) ∈ Rn : x1 ≥ 0, x2 ≥ 0, · · ·, xn ≥ 0}. Assume

that the real-valued function f is convex on M, then for any t1, t2 ∈M and λ ∈ [0, 1], we have

f(λt1 + (1− λ)t2) ≤ λf(t1) + (1− λ)f(t2).

According to ũ �c 0̃, we obtain

τ(ũ)(λf(t1) + (1− λ)f(t2)) ∈ τ(ũ)f(λt1 + (1− λ)t2) + C.

For any t1, t2 ∈M and λ ∈ [0, 1], it follows from Remark 2.1 that

τ(λũf(t1) + (1− λ)ũf(t2)) ∈ τ(ũf(λt1 + (1− λ)t2)) + C,

i.e., τ(λF̃ (t1) + (1− λ)F̃ (t2)) ∈ τ(F̃ (λt1 + (1− λ)t2)) + C, which implies that

F̃ (λt1 + (1− λ)t2) �c λF̃ (t1) + (1− λ)F̃ (t2).

Therefore, F̃ is convex on M.

Only if: Let F̃ be convex on M. For any t1, t2 ∈M and λ ∈ [0, 1],

F̃ (λt1 + (1− λ)t2) �c λF̃ (t1) + (1− λ)F̃ (t2),

i.e., τ(λF̃ (t1) + (1− λ)F̃ (t2)) ∈ τ(F̃ (λt1 + (1− λ)t2)) + C, which implies that

τ(λũf(t1) + (1− λ)ũf(t2)) ∈ τ(ũf(λt1 + (1− λ)t2)) + C.

According to Remark 2.1, we have

τ(ũ)(λf(t1) + (1− λ)f(t2)) ∈ τ(ũ)f(λt1 + (1− λ)t2) + C.

For any t1, t2 ∈M and λ ∈ [0, 1], we have from ũ �c 0̃ that

f(λt1 + (1− λ)t2) ≤ λf(t1) + (1− λ)f(t2).

Therefore, f is convex on M.

Theorem 4.5. Let F̃ : M → L(En) be a fuzzy mapping such that F̃ (t) = ũ0+ũ1f1(t)+ũ2f2(t)+· · ·+ũlfl(t),
where fk : M → R be real-valued functions on M, ũk ∈ L(En) and ũk �C 0̃ (k = 0, 1, 2, · · · , l). If fk

(k = 1, 2, · · · , l) are convex on M, then F̃ is convex on M.

Proof. Let fk (k = 1, 2, · · · , l) be convex fuzzy-number-valued functions. Then we have

fk(λt1 + (1− λ)t2) ≤ λfk(t1) + (1− λ)fk(t2)
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for any t1, t2 ∈M and λ ∈ [0, 1]. It follows from ũk �C 0̃ and Remark 2.1 that

ũk · fk(λt1 + (1− λ)t2) �C λũk · fk(t1) + (1− λ)ũk · fk(t2) (k = 0, 1, 2, · · · , l),

for any t1, t2 ∈M and λ ∈ [0, 1]. According to Theorem 2.3, we have

ũ0 +
l∑

k=1

ũk · fk(λt1 + (1− λ)t2) �C λ(ũ0 +
l∑

k=1

ũk · fk(t1)) + (1− λ)(ũ0 +
l∑

k=1

ũk · fk(t2)),

which implies that

F̃ (λt1 + (1− λ)t2) �c λF (t1) + (1− λ)F (t2),

for any t1, t2 ∈M and λ ∈ [0, 1]. This completes the proof.

5. Convex fuzzy programming

It is well known that convexity plays an important role in the aspect of optimality conditions for math-

ematical programming. Based on the new concept of convexity for fuzzy mappings, the KKT optimality

conditions for a class of fuzzy optimization problems are established.

Let F̃ (t), g̃1(t), g̃2(t), · · ·, g̃m(t) be fuzzy mappings on M. We consider the following fuzzy constrained

minimization problem (FCMP1):

Minimize F̃ (t)

Subject to g̃k(t) �c ũk (k = 1, 2, · · ·, l),
where ũk ∈ L(En). In the following arguments the feasible set T = {t ∈ intM : g̃k(t) �c ũk, k = 1, 2, · · · , l}
of fuzzy constrained minimization problem (FCMP1) is assumed to be a compact convex set. If t0 ∈ intM

and for no t ∈ intM such that F̃ (t) ≺c F̃ (t0), then t0 is called an optimal solution or a global optimal

solution to the problem FCMP1, F̃ (t0) is called the optimal objective value of F̃ .

Let C = Rn+ ⊆ Rn. We have from Definition 2.2 and Definition 2.3 that the problem FCMP1 can be

written as following constrained minimization problem (FCMP2):

Minimize F̃ (t)

Subject to
∫ 1

0
r[(g̃k(t))+1 (r) + (g̃k(t))−1 (r)]dr ≤

∫ 1

0
r[(ũk)+1 (r) + (ũk)−1 (r)]dr, k = 1, 2, · · ·, l,∫ 1

0
r[(g̃k(t))+2 (r) + (g̃k(t))−2 (r)]dr ≤

∫ 1

0
r[(ũk)+2 (r) + (ũk)−2 (r)]dr, k = 1, 2, · · ·, l,

· · ·∫ 1

0
r[(g̃k(t))+n (r) + (g̃k(t))−n (r)]dr ≤

∫ 1

0
r[(ũk)+n (r) + (ũk)−n (r)]dr, k = 1, 2, · · ·, l.

Let Gs(t) =
∫ 1

0
r[(g̃k(t))+i (r) + (g̃k(t))−i (r)]dr−

∫ 1

0
r[(ũk)+i (r) + (ũk)−i (r)]dr (i = 1, 2, · · ·, n, k = 1, 2, · · ·, l,

s = i× k = 1, 2, · · ·, n× l), denoted p = n× l. The problem FCMP2 can be written as follows (FCMP3):

Minimize F̃ (t)

Subject to Gs(t) ≤ 0, s = 1, 2, · · ·, p,
where Gs : M → R are real-valued functions. It is obvious that the feasible sets of problems (FCMP1) and

(FCMP3) are the same.

In the rest of this article, Gs (s = 1, 2, · · ·, p) are assumed to be convex functions on M, and continuously

differentiable at t0 ∈ T.
Theorem 5.1. Suppose that the fuzzy objective function F̃ (t) = f(t) · ũ, where f(t) : M → R, ũ ∈ L(En)

and ũ �c 0̃. let f be convex on M and continuously differentiable at t0 ∈ intM. If there exist Lagrange

multipliers µs ≥ 0 (s = 1, 2, · · · , p), such that

(1) ∇f(t0) +
∑p
s=1 µs · ∇Gs(t0) = 0,

(2) µs ·Gs(t0) = 0 (s = 1, 2, · · · , p),
then t0 is an optimal solution of FCMP3.

Proof. Since f is convex on M and continuously differentiable at t0 ∈ intM. We consider the following

constrained optimization problem

Minimize f(t)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

414 She-Xiang Hai et al 407-417



Shexiang Hai and Zengtai Gong: The differentiability for fuzzy n-cell mappings and the KKT optimality ...

Subject to Gs(t) ≤ 0 (s = 1, 2, · · · , p).
It is obvious that conditions (1) and (2) are the KKT optimality conditions for this optimization problem.

Therefore, we conclude that t0 is an optimal solution of the real-valued objective function f, i.e.,

f(t0) ≤ f(t), (5.1)

for any t ∈ intM.

Suppose that t0 is not a solution of problem FCMP3. Then, there exists a t ∈ intM such that

F̃ (t) ≺c F̃ (t0).

Let C = Rn+ ⊆ Rn, we have

τ(f(t0) · ũ) ∈ τ(f(t) · ũ) + C.

Thus

f(t0) · τ(ũ) ∈ f(t) · τ(ũ) + C,

and

f(t0) · τ(ũ) 6= f(t) · τ(ũ).

It follows from ũ �c 0̃ that f(t) < f(t0). This is a contradiction with (5.1), then t0 is an optimal solution of

FCMP3.

Example 5.1. Let

ũ(x1, x2) =



20x2 − 18, 0.9 ≤ x2 ≤ 0.95, 200x2 − 90 ≤ x1 ≤ 290− 200x2,

−0.1x1 + 11, 100 ≤ x1 ≤ 110, 1.45− 0.005x1 ≤ x2 ≤ 0.45 + 0.005x1,

−20x2 + 20, 0.95 ≤ x2 ≤ 1, 290− 200x2 ≤ x1 ≤ 200x2 − 90,

0.1x1 − 9, 90 ≤ x1 ≤ 100, 0.45 + 0.005x1 ≤ x2 ≤ 1.45− 0.005x1,

0, otherwise,

C = R2+ ⊆ R2. Then for any r ∈ [0, 1],

[ũ]r = [90 + 10r, 100− 10r]× [0.9 + 0.05r, 1− 0.05r].

According to Definition 2.3, τ(ũ) = (95, 0.95), thus ũ �c 0̃. Suppose that the fuzzy objective function

F̃ : [1,+∞)→ L(E2) and F̃ (t) = f(t) · ũ, where f(t) = et − t2. We consider the following fuzzy constrained

minimization problem:

Minimize F̃ (t),

Subject to G1(t) = t2 − 25 ≤ 0, G2(t) = −t+ 1 ≤ 0.

It is obvious that Gs(t) (s = 1, 2) are convex functions on [1,+∞), and continuously differentiable at t0 = 1.

Since f is a convex function on [1,+∞), and continuously differentiable at t0 = 1. On the other hand,

the condition (1) and (2) from Theorem 5.1 are satisfied for µ1 = 0, and µ2 = e− 2. Therefore, t0 = 1 is an

optimal solution of FCMP3.

Theorem 5.2. Suppose that the fuzzy objective function F̃ (t) = ũ1f1(t) + ũ2f2(t) + · · · + ũlfl(t), where

fk(t) : M → R, ũk ∈ L(En) and ũk �c 0̃ (k = 1, 2, · · · , l). Let real-valued functions fk are convex on M

and continuously differentiable at t0 ∈ intM. If there exist Lagrange multipliers µks ≥ 0 (s = 1, 2, · · · , p, k =

1, 2, · · · , l), such that

(1) ∇fk(t0) +
∑p
s=1 µ

k
s · ∇Gs(t0) = 0 (k = 1, 2, · · · , l),

(2) µks ·Gs(t0) = 0 (s = 1, 2, · · · , p, k = 1, 2, · · · , l),
then t0 is an optimal solution of FCMP3.

Proof. Since the real-valued functions fk(t) (k = 1, 2, · · · , l) are convex on M and continuously differentiable

at t0 ∈ intM. We consider the following constrained optimization problem

Minimize fk(t) (k = 1, 2, · · · , l),
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Subject to Gs(t) ≤ 0 (s = 1, 2, · · · , p).
It is obvious that conditions (1) and (2) are the KKT optimality conditions for this optimization problem.

Therefore, we conclude that t0 is an optimal solution of the real-valued objective functions fk, i.e.,

fk(t0) ≤ fk(t) (k = 1, 2, · · · , l).

for any t ∈ intM. Let C = Rn+ ⊆ Rn. We have from ũk �c 0̃ that

τ(ũk)fk(t) ∈ τ(ũk)fk(t0) + C (k = 1, 2, · · · , l).

Thus,
l∑

k=1

τ(ũk)fk(t) ∈
l∑

k=1

τ(ũk)fk(t0) + C.

According to Remark 2.1, we obtain

τ(
l∑

k=1

ukfk(t)) ∈ τ(
l∑

k=1

ukfk(t0)) + C,

i.e., F̃ (t) ∈ F̃ (t0) + C. Therefore, F̃ (t0) �c F̃ (t), which implies that t0 is an optimal solution of FCMP3.

6. Conclusion

The objective of this paper is to introduce the differentiability concept for fuzzy mappings and an ordering

relation on the fuzzy n-cell number space is considered. We have used the differentiability for fuzzy mappings

to obtain the KKT optimality conditions for fuzzy constrained minimization problem based on the ordering

relation �c .
Future research includes studying other types of optimality conditions for fuzzy constrained minimization

problem. One alternative is to define the concept of invex function using differentiability and the ordering

relation �c for fuzzy mappings.
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Abstract

In this article, we use a monotone iterative technique based on the presence of lower and

upper solutions to discuss the existence of mild solutions for the initial value problem of the

impulsive time fractional order partial differential equation of Volterra type in an ordered

Banach space E 
D0

qu(t) +Au(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = x0,

where D0
q is the Caputo fractional derivative of order q, 0 < q < 1, A : D(A) ⊂ E → E

is a closed linear operator and −A is a generator of equicontinuous C0-semigroup, f ∈
C(J×E×E,E), J = [0, a], a > 0 is a constant, T is a Volterra integral operator, 0 < t1 < t2 <

· · · < tm < a, Ik ∈ C(E,E), k = 1, 2, · · · ,m and x0 ∈ E. Under wide monotone conditions

and the noncompactness measure condition of nonlinearity f , we obtain the existence of

extremal mild solutions and unique mild solution between lower and upper solutions. The

results obtained generalize the recent conclusions on this topic. An example is also given to

illustrate that our results are valuable.
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1 Introduction

Fractional order models are found to be more adequate than integer order models in some

real world problems. Fractional order derivatives describe the property of memory and heredity

of materials, and this is the major advantage of fractional order derivatives compared with

integer order derivatives. In recent years, fractional order differential calculus has attracted

many physicists, mathematicians and engineers, and notable contributions have been made to

both theory and applications of fractional differential equations. It has been found that the

differential equations involving fractional order derivatives in time are more realistic to describe

many phenomena in practical cases than those of integer order in time. For instance, fractional

calculus concepts have been used in the modelling of neurons [1], viscoelastic materials [2]. Other

examples from fractional order differential equations can be found in [3-7] and the references

therein.

One of the branches of fractional differential equations and dynamics is the theory of time

fractional order evolution equations. Since time fractional order semilinear evolution equations

are abstract formulations for many problems arising in engineering and physics, time fraction-

al evolution equations have attracted increasing attention in recent years, see [8-16] and the

references therein.

In this article, we use a monotone iterative technique based on the presence of lower and

upper solutions to discuss the existence of mild solutions for the initial value problem (IVP)

of impulsive time fractional order partial differential equation of Volterra type in an ordered

Banach space E 
D0

qu(t) +Au(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = x0,

(1.1)

where D0
q is the Caputo fractional derivative of order q, 0 < q < 1, A : D(A) ⊂ E → E

is a closed linear operator, −A generates a C0-semigroup S(t)(t ≥ 0) in E, J = [0, a], a > 0

is a constant, f ∈ C(J × E × E,E), x0 ∈ E, 0 < t1 < t2 < · · · < tm < a, Ik ∈ C(E,E),

k = 1, 2, · · · ,m, and

Tu (t) :=

∫ t

0
K(t, s)u(s)ds (1.2)

is a Volterra integral operator with integral kernel K ∈ C(4,R+), 4 = {(t, s) ∈ R2 | 0 ≤ s ≤
t ≤ a}, ∆u|t=tk stands the jump of u(t) at t = tk, i.e., ∆u|t=tk = u(t+k ) − u(t−k ), where u(t+k )

and u(t−k ) represent the right and left limits of u(t) at t = tk, respectively.

The monotone iterative technique based on lower and upper solutions is an effective and

2
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flexible method, which yields monotone sequences of lower and upper approximate solutions

that converge to the minimal and maximal solutions between the lower and upper solutions. In

1982, Du and Lakshmikantham [17] established a monotone iterative method for an initial value

problem of ordinary differential equation in an ordered banach space. Later, Li [18,19], Chen

and Li [20,21] developed the monotone iterative method for the abstract evolution equations in

abstract space.

The theory of impulsive differential equations is a new and important branch of differential

equation theory, which has an extensive physical background and realistic mathematical model,

and hence has been emerging as an important area of investigation in recent years, see [22].

Correspondingly, the existence of solutions to impulsive integro-differential equations in Banach

spaces has also been studied by several authors, see for example [23,24] and the references therein.

But all of the results mentioned above are for the differential equations of integer order. To the

best of the author’s knowledge, no results yet exist for the initial value problem of the impulsive

time fractional order integro-differential evolution equation (1.1) by using the monotone iterative

technique. The purpose of this paper is to establish the monotone iterative method for IVP (1.1)

in an ordered Banach space E. Under the positivity assumption for the C0 semigroup S(t) and

some monotone conditions combined with the noncompactness measure condition of nonlinearity

f , we obtain the results on the existence and uniqueness of mild solutions for IVP(1.1).

2 Preliminaries

Let (E, ‖ · ‖) be an ordered Banach space with the partial order “ ≤ ”. Then the positive

cone P = {x ∈ E | x ≥ θ} is normal with normal constant N . Denote C(J, E) the Banach

space of all E-value continuous functions with the supremum norm ‖u‖C = sup
t∈J
‖u(t)‖. Clearly,

C(J, E) is also an ordered Banach space, which partial order “ ≤ ” is reduced by the positive

cone PC = {u ∈ C(J, E) | u(t) ≥ θ, t ∈ J}. Set

PC(J, E) = { u : J → E | u(t) is continuous at t 6= tk,

left continuous at t = tk, and u(t+k ) exists, k = 1, 2, · · · , m }.

Evidently, PC(J, E) is also an ordered Banach space with the supremum norm ‖u‖PC =

supt∈J ‖u(t)‖, its partial order “ ≤ ” is reduced by the positive function cone PPC = {u ∈
PC(J, E) | u(t) ≥ θ, t ∈ J}. PPC is also a normal with the same normal constant N . For

v, w ∈ PC(J, E) with v ≤ w, we use [v, w] to denote the order interval {u ∈ PC(J, E) | v ≤
u ≤ w}, and for every t ∈ J , we use [v(t), w(t)] to represent the order interval {x ∈ E | v(t) ≤
x ≤ w(t)} in E. Let J

′
:= J\{t1, t2, · · · , tm}. We denote by PC1(J, E) = {u ∈ PC(J,E) ∩

C1(J
′
, E) | u′(t+k ) and u

′
(t−k ) exist}. Set L(J, E) be the Banach space of all E-valued Bochner

integrable functions defined on J with the norm ‖u‖1 =
∫ t

0 ‖u(t)‖dt.

3
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Let 0 < q < 1. The Caputo fractional order derivative of order q with the lower limit 0 for

a function g ∈ C1(J) is defined as

D0
qf(t) =

1

Γ(1− q)

∫ t

0

g′(s)

(t− s)q
ds, t > 0, (2.1)

where Γ(·) is the Gamma function. See [7].

If g is an abstract function with values in E, the definition of its Caputo fractional order

derivative is same. In that case then the integrals appeared in (2.1) is taken in Bochner’s sense.

Let A : D(A) ⊂ E → E be a closed linear operator and E1 denote the Banach space D(A)

with the graphic norm ‖x‖1 = ‖x‖ + ‖Ax‖. We assume that −A generates a C0-semigroup

S(t) (t ≥ 0) of linear bounded operators in E. Denote by L (E) the Banach space of all linear

bounded operators in E. By the exponential boundedness of C0-semigroup, there exist M > 0

and ω ∈ R such that

‖S(t)‖L (E) ≤M eωt, t ≥ 0. (2.2)

If ω = 0, we call S(t) a uniformly bounded semigroup. Let h ∈ L(J, E) and consider the initial

value problem of the linear time fractional order evolution equation (LIVP)D0
qu(t) +Au(t) = h(t), t ∈ J,

u(0) = x0.
(2.3)

By [11], we have the following existence and uniqueness result

Lemma 2.1 Assume that the C0-semigroup S(t) (t ≥ 0) generated by −A is a uniformly

bounded and analytic semigroup. If h ∈ C(J, E) is uniformly Hölder continuous on J , then the

linear initial value problem (2.3) has a unique solution expressed by

u(t) = U(t)x0 +

∫ t

0
(t− s)q−1V (t− s)h(s)ds (2.4)

where U(t), V (t) : [0, ∞)→ L (E) are strongly continuous functions of linear bounded operator

value given by

U(t)x =

∫ ∞
0

ζq(ϑ)S(tqϑ)xdϑ, x ∈ E, t ≥ 0,

V (t)x = q

∫ ∞
0

ϑζq(ϑ)S(tqϑ)xdϑ, x ∈ E, t ≥ 0,

(2.5)

where

ζq(ϑ) =
1

q
ϑ−1−(1/q)ρq(ϑ

−1/q) (2.6)

4
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is a probability density function on (0,+∞), in which

ρq(ϑ) =
1

π

∞∑
n=0

(−1)n−1ϑ−qn−1 Γ(nq + 1)

n!
sin(nπq), ϑ ∈ (0,+∞).

By [11], the probability density function ζq(ϑ) given by (2.6) satisfies the following condition∫ ∞
0

ζq(ϑ)dϑ = 1,

∫ ∞
0

ϑζq(ϑ)dϑ =
1

Γ(1 + q)
. (2.7)

When S(t)(t ≥ 0) is a uniformly bounded C0-semigroup, we can also define two operator

value functions U(t) and V (t) by (2.5). From [11, 12], we have the following result

Lemma 2.2 Assume that S(t)(t ≥ 0) is a uniformly bounded C0-semigroup. Then operators

U(t) and V (t) defined by (2.5) have the following properties:

(1). For evrey t ≥ 0, U(t) and V (t) are linear bounded operators, and

‖U(t)x‖ ≤M‖x‖, ‖V (t)x‖ ≤ M

Γ(q)
‖x‖, x ∈ E. (2.8)

(2). U(t) and V (t) are strongly continuous on [0,+∞).

(3). When S(t)(t ≥ 0) is equicontinuous, U(t) and V (t) are continuous in [0, +∞) by the

operator norm.

In this case, by means of Lemma 2.2 (2), the function u gived by (2.5) belongs to C(J,E), we

call it a mild solution of the linear fractional order evolution equation (2.3). That is:

Definition 2.1 Let S(t)(t ≥ 0) be a uniformly bounded C0-semigroup and h ∈ L(J, E). By the

mild solution of the LIVP (2.3), we mean that the function u ∈ C(J,E) satisfying the integral

equation

u(t) = U(t)x0 +

∫ t

0
(t− s)q−1V (t− s)h(s)ds.

Let h ∈ PC(J, E), yk ∈ E, k = 1, 2, · · · ,m. We consider the initial value problem of the

linear impulsive time fractional order evolution equation (LIVP)
D0

qu(t) +Au(t) = h(t), t ∈ J, t 6= tk,

∆u|t=tk = yk, k = 1, 2, · · · ,m,

u(0) = x0 ∈ E.

(2.9)

Let J1 = [0, t1], Jk = (tk−1, tk], k = 2, 3, · · · , m + 1, where tm+1 = a. Using Definition 2.1,

from J1 to Jm+1 interval by interval, we can easily obtain the following result.

5
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Lemma 2.3 For every h ∈ PC(J,E) and yk ∈ E, k = 1, 2, · · · ,m, the LIVP (2.9) has a unique

mild solution u ∈ PC(J,E) given by

u(t) =



U(t)x0 +

∫ t

0
(t− s)α−1V (t)(t− s)h(s)ds, t ∈ J1,

U(t− t1)(u(t1) + y1) +

∫ t

t1

(t− s)q−1V (t− s)h(s)ds, t ∈ J2,

· · · · · · · · ·

U(t− tm)(u(tm) + ym) +

∫ t

tm

(t− s)q−1V (t− s)h(s)ds, t ∈ Jm+1.

(2.10)

Remark 2.1 Note that the operator value functions U(t) and V (t) do not possess the properties

of semigroup. The mild solution of the LIVP (2.9) can be expressed only by using piecewise

function.

We consider the nonlinear impulsive time fractional order evolution equation (1.1). By

Lemma 2.3, a function u ∈ PC(J,E) is called a mild solution of IVP (1.1) if u satisfies the

piecewise integral equation

u(t) =



U(t)x0 +

∫ t

0
(t− s)α−1V (t)(t− s)f(s, u(s), Tu(s))ds, t ∈ J1,

U(t− t1)(u(t1) + I1(u(t1))) +

∫ t

t1

(t− s)q−1V (t− s)f(s, u(s), Tu(s))ds, t ∈ J2,

· · · · · · · · ·

U(t− tm)(u(tm) + Im(u(tm))) +

∫ t

tm

(t− s)q−1V (t− s)f(s, u(s), Tu(s))ds, t ∈ Jm+1.

We will use the monotone iterative method based on lower and upper solutions to discuss

the existence of extremal mild solutions for IVP (1.1). Next, we introduce the concepts of lower

and upper solutions for IVP (1.1).

Definition 2.2 If a function v0 ∈ PC1(J,E) ∩ PC(J,E1) and satisfies inequalities
D0

qv0(t) +Av0(t) ≤ f(t, v0(t), T v0(t)), t ∈ J, t 6= tk,

∆v0|t=tk ≤ Ik(v0(tk)), k = 1, 2, · · · ,m,

v0(0) ≤ x0,

(2.11)

we called it a lower solution of IVP (1.1). If all the inequalities of (2.11) are inverse, we call it

an upper solution of IVP (1.1).

6
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Our discussion needs that the S(t)(t ≥ 0) is a positive C0-semigroup, that is, S(t)x ≥ θ for

any x ≥ θ and t ≥ 0. For more details of the properties of the positive C0-semigroup, see [19,25].

Clearly, by the (2.5) we obtain that:

Lemma 2.4 If S(t)(t ≥ 0) is a uniformly bounded positive C0-semigroup in E, then U(t) and

V (t) are positive operators in E for every t ∈ [0, +∞).

Let C ≥ 0 is a constant, I denote the identity operator in E. It is easy to see that −(A+CI)

generates a C0-semigroup S1(t) = e−CtS(t) (t ≥ 0) in E, and S1(t) is a positive C0 semigroup

if S(t) is a positive C0-semigroup. If C ≥ ω, then by (2.2), S1(t) is a a uniformly bounded

C0-semigroup, for more details please see [26]. Hence we can define the corresponding operator

value functions U1(t) and V1(t) as follows

U1(t)x =

∫ ∞
0

ζq(ϑ)S1(tqϑ)xdϑ, x ∈ E, t ≥ 0,

V1(t)x = q

∫ ∞
0

ϑζq(ϑ)S1(tqϑ)xdϑ, x ∈ E, t ≥ 0.

(2.12)

U1(t) and V1(t) have completely same properties with U(t) and V (t). If the semigroup S(t) is

not uniformly bounded, we choose C ≥ ω such that S1(t) uniformly bounded. In this case, the

mild solution of IVP (1.1) can be expressed by U1(t) and V1(t).

Next, we recall some properties about the measure of noncompactness that will be used in

the proof of our main results. Let α(·) denote the Kuratowski measure of noncompactness of the

bounded set. For the details of the definitions and properties of the measure of noncompactness,

see [27]. For ∀ B ⊂ PC(J, E) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂ E. If B is bounded in

PC(J, E), then B(t) is bounded in E and α(B(t)) ≤ α(B).

Lemma 2.5 [27] Let B ⊂ C(J,E) be bounded and equicontinuous. Then α(B(t)) is continuous

on J , and

α
({∫

J
u(t) | u ∈ B

})
≤
∫
J
α(B(t))dt.

Lemma 2.6 [28] Assume that B = {un} ⊂ PC(J,E) is a countable set and there exists a

function m ∈ L1(J,R+) such that for every n ∈ N

‖un(t)‖ ≤ m(t), a.e. t ∈ J.

Then α(B(t)) is Lebesgue integral on J , and

α
({∫

J
un(t)dt

})
≤ 2

∫
J
α(B(t))dt.

7
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Our discussion also need the following generalized Gronwall inequality which can be fund in

[29].

Lemma 2.7 Let C0 ≥ 0 be a constant and a ∈ L(J) be a nonnegative function. If ϕ ∈ L(J) is

nonnegative and satisfies

ϕ ≤ a(t) + C0

∫ t

0
(t− s)q−1ϕ(s)ds, t ∈ J,

then

ϕ(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(C0Γ(q))n

Γ(nq)
(t− s)nq−1a(s)

]
ds, t ∈ J.

3 Main Results

In this section, we use the monotone iterative method based on lower and upper solutions to

discuss the existence of mild solution for IVP (1.1). We assume that the operator A : D(A) ⊂
E → E satisfies

(H0) A : D(A) ⊂ E → E be a closed linear operator, −A generates a positive and equicontin-

uous C0-semigroup S(t) (t ≥ 0).

Our main results as follows:

Theorem 3.1 Let E be an ordered Banach space, and let the positive cone P be normal.

Assume that A : D(A) ⊂ E → E satisfies the assumption (H0), f ∈ C(J × E × E, E),

Ik ∈ C(E, E), k = 1, 2, · · · ,m, and IVP (1.1) has a lower solution v0 and an upper solution w0

with v0 ≤ w0. If the following conditions are satisfied:

(H1) There exists a constant C > 0 such that

f(t, x2, y2)− f(t, x1, y1) ≥ −C(x2 − x1),

for ∀ t ∈ J , v0(t) ≤ x1 ≤ x2 ≤ w0(t), and Tv0(t) ≤ y1 ≤ y2 ≤ Tw0(t).

(H2) Ik(x) is increasing on the order interval [v0(t), w0(t)] for t ∈ J , k = 1, 2, · · · ,m.

(H3) There exists a constant L > 0 such that

α({f(t, xn, yn)}) ≤ L(α({xn}) + α({yn})),

for ∀ t ∈ J , and increasing or decreasing monotonic sequences {xn} ⊂ [v0(t), w0(t)] and

{yn} ⊂ [Tv0(t), Tw0(t)],

8
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then IVP (1.1) has minimal and maximal mild solutions between v0 and w0, and they can be

obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. Without losing the generality, in the assumption (H1) we may assume that C ≥ ω,

where ω is the growth exponent of S(t) given by (2.2). Then the C0-semigroup

S1(t) = e−CtS(t), t ≥ 0 (3.1)

generated by −(A + CI) is uniformly bounded, positive and equicontinuous. Let U1(t)(t ≥ 0)

and V1(t)(t ≥ 0) be the operator value function defined by (2.12), then they have the properties

in Lemma 2.2, specially they satisfy

‖U1(t)x‖ ≤M‖x‖, ‖V1(t)x‖ ≤ M

Γ(q)
‖x‖, t ≥ 0, x ∈ E. (3.2)

For every u ∈ PC(J, E), set

G(u)(t) = f(t, u(t), Tu(t)) + Cu(t), t ∈ J. (3.3)

Then G : PC(J, E)→ PC(J, E) is a continuous mapping. We rewrite the equation (1.1) to the

form of 
D0

qu(t) + (A+ CI)u(t) = G(u) (t), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = x0,

(3.4)

then by Lemma 2.3, the mild solution of this equation, equivalently IVP (1.1), which means

that u ∈ PC(J, E) satisfies the piecewise integral equation

u(t) =



U1(t)x0 +

∫ t

0
(t− s)α−1V1(t)(t− s)G(u)(s) ds, t ∈ J1,

U1(t− t1)(u(t1) + I1(u(t1))) +

∫ t

t1

(t− s)q−1V1(t− s)G(u)(s) ds, t ∈ J2,

· · · · · · · · ·

U1(t− tm)(u(tm) + Im(u(tm))) +

∫ t

tm

(t− s)q−1V1(t− s)G(u)(s)ds, t ∈ Jm+1.

We define the mapping Q : [v0, w0]→ PC(J, E) by

9
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Qu(t) =



U1(t)x0 +

∫ t

0
(t− s)α−1V1(t)(t− s)G(u)(s) ds, t ∈ J1,

U1(t− t1)(u(t1) + I1(u(t1))) +

∫ t

t1

(t− s)q−1V1(t− s)G(u)(s) ds, t ∈ J2,

· · · · · · · · ·

U1(t− tm)(u(tm) + Im(u(tm))) +

∫ t

tm

(t− s)q−1V1(t− s)G(u)(s)ds, t ∈ Jm+1,

(3.5)

then the mild solution of IVP (1.1) is equivalent to the fixed point of Q. Clearly, Q : [v0, w0]→
PC(J, E) is continuous. Since operators U1(t) and V1(t) are positive, by the assumptions (H1)

and (H2), Q is increasing in [v0, w0]. We use monotone iterative method of increasing operator

to find the fixed point of Q.

Firstly, we show that v0 ≤ Qv0 and Qw0 ≤ w0.

Let h(t) = D0
qv0(t)+Av0(t)+Cv0(t). Then h ∈ PC(J,E) and v0 is the unique mild solution

of the the linear impulsive time fractional evolution equation (LIVP)
D0

qu(t) + (A+ CI)u(t) = h(t), t ∈ J, t 6= tk,

∆u|t=tk = ∆v0|t=tk , k = 1, 2, · · · ,m,

u(0) = v0(0) ∈ E.

(3.6)

By the definition of lower solution

v0(0) ≤ x0, h(t) ≤ G(v0)(t), t ∈ J ′,

∆v0|t=tk ≤ Ik(v0(tk)), k = 1, 2, · · · , m.

Hence by Lemma 2.3 and the positivity of operators U1(t) and V1(t), we have

v0(t) =



U1(t)v0(0) +

∫ t

0
(t− s)α−1V1(t)(t− s)h(s)ds, t ∈ J1,

U1(t− t1)(v0(t1) + ∆v0|t=t1) +

∫ t

t1

(t− s)q−1V1(t− s)h(s)ds, t ∈ J2,

· · · · · · · · ·

U1(t− tm)(v0(tm) + ∆v0|t=tm) +

∫ t

tm

(t− s)q−1V1(t− s)h(s)ds, t ∈ Jm+1

10
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≤



U1(t)v0(0) +

∫ t

0
(t− s)α−1V1(t)(t− s)G(v0)(s) ds, t ∈ J1,

U1(t− t1)(v0(t1) + I1(v0(t1))) +

∫ t

t1

(t− s)q−1V1(t− s)G(v0)(s) ds, t ∈ J2,

· · · · · · · · ·

U1(t− tm)(v0(tm) + Im(v0(tm))) +

∫ t

tm

(t− s)q−1V1(t− s)G(v0)(s) ds, t ∈ Jm+1

= Qv0(t).

This means that v0 ≤ Qv0. Using a similar method, we can prove that Qw0 ≤ w0. Combining

these facts and the increasing property of Q in [v0, w0], we see that Q maps [v0, w0] into itself.

Hence, Q : [v0, w0]→ [v0, w0] is a continuously increasing operator.

Secondly, we prove that the image set Q([v0, w0]) is equicontinuous in every interval Jk,

k = 1, 2,· · · , m+ 1.

For ∀ u ∈ [v0, w0], by the assumptions (H1) and (H2), we have

G(v0) ≤ G(u)(t) ≤ G(w0), t ∈ J,

and

v0(tk) + Ik(v0(tk)) ≤ u(tk) + Ik(u(tk)) ≤ w0(tk) + Ik(w0(tk)), k = 1, 2, · · · ,m.

Hence by the normality of the cone P , there exist positive constant M∗ and Lk, k = 1, 2, · · · ,m,

such that
‖G(u)(t)‖ ≤M∗, t ∈ J,

‖u(tk) + Ik(u(tk))‖ ≤ Lk, k = 1, 2, · · · ,m.
(3.7)

Consider the case of J1. Let t
′
, t
′′ ∈ J1 and 0 < t

′
< t

′′
. We show that ‖Qu(t

′′
)−Qu(t

′
)‖ → 0

independently of u as t
′′ − t′ → 0. By the definition of Q, we have

Qu (t
′′
)−Qu (t

′
) = U1(t

′′
)x0 − U1(t

′
)x0

+

∫ t
′′

t′
(t
′′ − s)q−1V1(t

′′ − s)G(u)(s)ds

+

∫ t
′

0
[(t
′′ − s)q−1 − (t

′ − s)q−1]V1(t
′′ − s)G(u)(s)ds

+

∫ t
′

0
(t
′ − s)q−1[V1(t

′′ − s)− V1(t
′ − s)]G(u)(s)ds

11
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= S11 + S12 + S13 + S14,

where

S11 = U1(t
′′
)x0 − U1(t

′
)x0,

S12 =

∫ t
′′

t′
(t
′′ − s)q−1V1(t

′′ − s)G(u)(s)ds,

S13 =

∫ t
′

0
[(t
′′ − s)q−1 − (t

′ − s)q−1]V1(t
′′ − s)G(u)(s)ds,

S14 =

∫ t
′

0
(t
′ − s)q−1[V1(t

′′ − s)− V1(t
′ − s)]G(u)(s)ds.

Since

‖Qu (t
′′
)−Qu (t

′
)‖ ≤ ‖S11‖+ ‖S12‖+ ‖S13‖+ ‖S14‖,

we only need to check that ‖S1i‖ → 0 independently of u ∈ [v0, w0] as t
′′ − t′ → 0, i = 1, 2, 3, 4.

For S11, by Lemma 2.2 (2), U1(t)x0 is continuous on J , hence it is uniformly continuous on J

and we have

‖S11‖ = ‖U1(t
′′
)x0 − U1(t

′
)x0‖ → 0 (t

′′ − t′ → 0).

For S12 and S13, by (3.2) and (3.7) we have

‖S12‖ ≤
∫ t
′′

t′
(t
′′ − s)q−1‖V1(t

′′ − s)G(u)(s)‖ds

≤ MM∗

q Γ(q)
(t
′′ − t′)q → 0 (t

′′ − t′ → 0).

‖S13‖ ≤
∫ t
′

0
[(t
′ − s)q−1 − (t

′′ − s)q−1] ‖V1(t
′′ − s)G(u)(s)‖ds

≤ MM∗

Γ(q)

∫ t
′

0
[(t
′ − s)q−1 − (t

′′ − s)q−1]ds

=
MM∗

q Γ(q)
[(t
′
)q − (t

′′
)q + (t

′′ − t′)q]

≤ MM∗

q Γ(q)
(t
′′ − t′)q → 0 (t

′′ − t′ → 0).

For S14, using (3.2), (3.7), Lemma 2.2(3) and the Lebesgue bounded convergence theorem of

integration, we have

‖S14‖ ≤
∫ t
′

0
(t
′ − s)q−1‖V1(t

′′ − s)− V1(t
′ − s)‖ · ‖G(u)(s)‖ ds.

12
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≤ M∗
∫ t
′

0
(t
′ − s)q−1‖V1(t

′′ − s)− V1(t
′ − s)‖ ds

= M∗
∫ t
′

0
rq−1‖V1(t

′′ − t′ + r)− V1(r)‖ dr

≤ M∗
∫ a

0
rq−1‖V1(t

′′ − t′ + r)− V1(r)‖ dr → 0 (t
′′ − t′ → 0).

As a result, ‖Q(u)(t
′′
)−Q(u)(t

′
)‖ tends to 0 independently of u ∈ [v0, w0] as t

′′ − t′ → 0, which

means that Q([v0, w0]) is equicontinuous in the interval J1.

Consider the case of J2. For t
′
, t
′′ ∈ J2 with t

′
< t

′′
, we have

Qu (t
′′
)−Qu (t

′
) = (U1(t

′′ − t1)− U1(t
′ − t1) ) (u(t1) + I1(u(t1)) )

+

∫ t
′′

t′
(t
′′ − s)q−1V1(t

′′ − s)G(u)(s) ds

+

∫ t
′

t1

[(t
′′ − s)q−1 − (t

′ − s)q−1]V1(t
′′ − s)G(u)(s) ds

+

∫ t
′

t1

(t
′ − s)q−1[V1(t

′′ − s)− V1(t
′ − s)]G(u)(s) ds

= S21 + S22 + S23 + S24,

where

S21 = (U1(t
′′ − t1)− U1(t

′ − t1) ) (u(t1) + I1(u(t1)) ),

S22 =

∫ t
′′

t′
(t
′′ − s)q−1V1(t

′′ − s)G(u)(s) ds,

S23 =

∫ t
′

t1

[(t
′′ − s)q−1 − (t

′ − s)q−1]V1(t
′′ − s)G(u)(s) ds,

S24 =

∫ t
′

t1

(t
′ − s)q−1[V1(t

′′ − s)− V1(t
′ − s)]G(u)(s) ds.

It is obvious that

‖Qu (t
′′
)−Qu (t

′
)‖ ≤ ‖S21‖+ ‖S22‖+ ‖S23‖+ ‖S24‖.

Therefore, we only need to check that ‖S2i‖ → 0 independently of u ∈ [v0, w0] as t
′′ − t′ → 0,

i = 1, 2, 3, 4. For S21, by Lemma 2.2 (3) and (3.7), we have that

‖S21‖ = ‖(U1(t
′′ − t1)− U1(t

′ − t1) ) (u(t1) + I1(u(t1)) )‖

13
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≤ ‖U1(t
′′ − t1)− U1(t

′ − t1)‖ · ‖u(t1) + I1(u(t1))‖

≤ L1‖U1(t
′′ − t1)− U1(t

′ − t1)‖ → 0 (t
′′ − t′ → 0).

For S22, similarly to S12, we have

‖S22‖ ≤
MM∗

q Γ(q)
(t
′′ − t′)q → 0 (t

′′ − t′ → 0).

For S23, by (3.2) and (3.7) we have

‖S23‖ ≤
∫ t
′

t1

[(t
′ − s)q−1 − (t

′′ − s)q−1] ‖V1(t
′′ − s)G(u)(s)‖ds

≤ MM∗

Γ(q)

∫ t
′

t1

[(t
′ − s)q−1 − (t

′′ − s)q−1]ds

=
MM∗

q Γ(q)
[(t
′ − t1)q − (t

′′ − t1)q + (t
′′ − t′)q]

≤ MM∗

q Γ(q)
(t
′′ − t′)q → 0 (t

′′ − t′ → 0).

For S24, by (3.7) and lemma 2.2(3), we have

‖S24‖ ≤
∫ t
′

t1

(t
′ − s)q−1‖V1(t

′′ − s)− V1(t
′ − s)‖ · ‖G(u)(s)‖ ds.

≤ M∗
∫ t
′

t1

(t
′ − s)q−1‖V1(t

′′ − s)− V1(t
′ − s)‖ ds

= M∗
∫ t1−t

′

0
rq−1‖V1(t

′′ − t′ + r)− V1(r)‖ dr

≤ M∗
∫ a

0
rq−1‖V1(t

′′ − t′ + r)− V1(r)‖ dr → 0 (t
′′ − t′ → 0).

Consequently, ‖Qu (t
′′
)−Qu (t

′
)‖ tends to 0 independently of u ∈ [v0, w0] as t

′′ − t′ → 0. This

means that Q([v0, w0]) is equicontinuous in the interval J2.

Continuing such a process interval by interval up to Jm+1, we can prove that Q([v0, w0] is

equicontinuous in every interval Jk, k = 1, 2, · · · , m+ 1.

Now, we define two sequences {vn} and {wn} in [v0, w0] by the iterative schemes

vn = Qvn−1, wn = Qwn−1, n = 1, 2, · · · . (3.8)

14
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Then from the monotonicity of Q, one can easy to prove that

v0 ≤ v1 ≤ · · · vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0. (3.9)

We prove that {vn} and {wn} are uniformly convergent in J .

For convenience, let B = {vn | n ∈ N} and B0 = {vn−1 | n ∈ N}. Since B = Q(B0) ⊂
Q([v0, w0]), so that B is equicontinuous in every interval Jk, k = 2, 3, · · · , m. From B0 =

B ∪ {v0} it is follows that α(B0(t)) = α(B(t)) for t ∈ J . Denote

ϕ(t) = α(B(t)) = α(B0(t)), t ∈ J. (3.10)

By Lemma 2.5, ϕ ∈ PC(J, R+). We from J1 to Jm+1 interval by interval show that ϕ(t) ≡ 0 in

J .

For every t ∈ J , by Lemma 2.6 we get that

α(T (B0)(t)) = α
({∫ t

0
K(t, s)vn−1(s)ds

∣∣∣ n ∈ N
})

≤ 2

∫ t

0
α({K(t, s)vn−1(s) | n ∈ N})ds

= 2

∫ t

0
K(t, s)α({vn−1(s) | n ∈ N})ds

≤ 2K0

∫ t

0
ϕ(s)ds,

where K0 = max(t,s)∈∆K(t, s). Therefore∫ t

0
(t− s)q−1α(T (B0)(s)) ds ≤ 2K0

∫ t

0
(t− s)q−1

[ ∫ s

0
ϕ(r)dr

]
ds

=
2K0

q

∫ t

0
(t− r)qϕ(r)dr,

≤ 2aK0

q

∫ t

0
(t− s)q−1ϕ(s)ds, t ∈ J. (3.11)

For ∀ t ∈ J1, by (3.5), using Lemma 2.6, the assumption (H3), (3.2) and (3.11), we have

ϕ(t) = α(B(t)) = α(Q(B0)(t) )

= α
({
U1(t)x0 +

∫ t

0
(t− s)q−1V1(t− s)G(vn−1)(s) ds

})
= α

({∫ t

0
(t− s)q−1V1(t− s)G(vn−1)(s) ds

})
15
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≤ 2

∫ t

0
α
({

(t− s)q−1V1(t− s)G(vn−1)(s)
})
ds

≤ 2M

Γ(q)

∫ t

0
(t− s)q−1α ({G(vn−1)(s) ds }) ds

=
2M

Γ(q)

∫ t

0
(t− s)q−1α ({ f(s, vn−1, T vn−1(s)) + Cvn−1(s) }) ds

≤ 2M

Γ(q)

∫ t

0
(t− s)q−1 [L(α(B0(s)) + α(T (B0)(s)) ) + Cα(B0(s)) ] ds

=
2M

Γ(q)
(L+ C)

∫ t

0
(t− s)q−1ϕ(s) ds+

2M

Γ(q)

∫ t

0
(t− s)q−1α(T (B0)(s)) ds

≤ 2M

Γ(q)

(
L+ C +

2aK0L

q

)∫ t

0
(t− s)q−1ϕ(s)ds.

Hence by Lemma 2.7, ϕ(t) ≡ 0 in J1. In particular, α(B(t1)) = α(B0(t1)) = ϕ(t1) = 0, this

means that B(t1) and B0(t1) are precompact in E. Hence, from the continuity of I1 we obtain

that I1(B0(t1)) is precompact in E, and α(I1(B0(t1))) = 0.

For ∀ t ∈ J2, since

α({U1(t− t1)[vn−1(t1) + I1(vn−1(t1))]}) ≤ α(U1(t− t1)(B0(t1) + I1(B0(t1)) )

≤ M(α(B0(t1)) + α(I1(B0(t1))) ) = 0,

using (3.5) and a similar argument above, we have

ϕ(t) = α(B(t)) = α(Q(B0)(t) )

= α
({
U1(t− t1)[vn−1(t1) + I1(vn−1(t1))] +

∫ t

t1

(t− s)q−1V1(t− s)G(vn−1)(s) ds
})

≤ α({U1(t− t1)[vn−1(t1) + I1(vn−1(t1))]})

+α
({∫ t

t1

(t− s)q−1V1(t− s)G(vn−1)(s) ds
})

= α
({∫ t

0
(t− s)q−1V1(t− s)G(vn−1)(s) ds

})
≤ 2

∫ t

t1

α
({

(t− s)q−1V1(t− s)G(vn−1)(s)
})
ds

≤ 2M

Γ(q)

∫ t

t1

(t− s)q−1α ({G(vn−1)(s) }) ds

16
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=
2M

Γ(q)

∫ t

t1

(t− s)q−1α ({ f(s, vn−1, T vn−1(s)) + Cvn−1(s) }) ds

≤ 2M

Γ(q)

∫ t

t1

(t− s)q−1[L(α(B0(s)) + α(T (B0)(s))) + Cα(B0(s)) ] ds

=
2M

Γ(q)
(L+ C)

∫ t

t1

(t− s)q−1ϕ(s) ds+
2ML

Γ(q)

∫ t

t1

(t− s)q−1α(T (B0)(s)) ds

≤ 2M

Γ(q)
(L+ C)

∫ t

0
(t− s)q−1ϕ(s) ds+

2ML

Γ(q)

∫ t

0
(t− s)q−1α(T (B0)(s)) ds

≤ 2M

Γ(q)

(
L+ C +

2aK0L

q

)∫ t

0
(t− s)q−1ϕ(s)ds.

Again by Lemma 2.7, ϕ(t) ≡ 0 on J2, from which we obtain that α(B0(t2)) = 0, and therefore

α(I2(B0(t2))) = 0. Continuing such a process interval by interval up to Jm+1, we can prove that

ϕ ≡ 0 in every Jk.

Therefore, for every Jk, {vn} is equicontinuous on Jk and {vn(t)} is precompact in E for every

t ∈ Jk. By the Arzela-Ascoli theorem, {vn} has a subsequence which is uniformly convergent

in Jk. Combining this with the monotonicity (3.9), we easily prove that {vn} itself is uniformly

convergent in Jk, k = 1, 2, · · · , m + 1. Consequently, {vn(t)} is uniformly convergent over the

whole of J .

Using a similar argument to that for {vn(t)}, we can prove that {wn(t)} is also uniformly

convergent on J . Hence, {vn} and {wn} are convergent in the Banach space PC(J,E). Set

u = lim
n→∞

vn and u = lim
n→∞

wn in PC(J, E). (3.12)

Letting n→∞ in (3.8) and (3.9), we see that v0 ≤ u ≤ u ≤ w0 and

u = Qu and u = Qu. (3.13)

By the monotonicity of Q, it is easy to prove that u and u are the minimal and maximal fixed

points of Q in [v0, w0], and therefore, they are the minimal and maximal mild solutions of IVP

(1.1) in [v0, w0], respectively.

This completes the proof of Theorem 3.1. 2

In Theorem 3.1, if E is weakly sequentially complete, the condition (H3) holds automatically.

In fact, when E is an ordered and weakly sequentially complete Banach space, by Theorem 2.2 in

paper [30], we know that any monotonic and order-bounded sequence is precompact. Let {xn}
and {yn} be two increasing or decreasing sequences in condition (H3), then by condition (H1),

{ f(t, xn, yn) +Cxn} is monotonic and order-bounded sequence. By the property of measure of
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noncompactness, we have

α({ f(t, xn, yn)}) ≤ α({ f(t, xn, yn) + Cxn}) + C α({xn}) = 0.

Hence, condition (H3) holds for any L > 0. From Theorem 3.1, we obtain that

Corollary 3.1 Let E be an ordered and weakly sequentially complete Banach space, and let

the positive cone P be normal. Assume that A : D(A) ⊂ E → E satisfies the assumption (H0),

f ∈ C(J × E × E, E), and Ik ∈ C(E,E), k = 1, 2, · · · ,m. If IVP (1.1) has a lower solution v0

and an upper solution w0 with v0 ≤ w0 and the assumptions (H1) and (H2) are satisfied, then

IVP (1.1) has minimal and maximal mild solutions between v0 and w0, which can be obtained

by a monotone iterative procedure starting from v0 and w0, respectively.

Now we discuss the uniqueness of the mild solution for IVP (1.1) in [v0, w0]. In theorem 3.1,

if replacing the assumption (H3) by the condition:

(H4) There exist positive constants C1 and C2 such that

f(t, x2, y2)− f(t, x1, y1) ≤ C1(x2 − x1) + C2(y2 − y1),

for ∀ t ∈ J , and v0(t) ≤ x1 ≤ x2 ≤ w0(t), Tv0(t) ≤ y1 ≤ y2 ≤ Tw0(t),

we have the following uniqueness result.

Theorem 3.2 Let E be an ordered Banach space, and let the positive cone P be normal.

Assume that A : D(A) ⊂ E → E satisfies the assumption (H0), f ∈ C(J × E × E, E), and

Ik ∈ C(E,E), k = 1, 2, · · · ,m. If IVP(1.1) has a lower solution v0 and an upper solution w0

with v0 ≤ w0 such that conditions (H1), (H2) and (H4) hold, then IVP (1.1) has a unique mild

solution between v0 and w0, which can be obtained by a monotone iterative procedure starting

from v0 or w0.

Proof. We firstly prove that (H1) and (H4) can deduce (H3). For t ∈ J , let {xn} ⊂
[v0(t), w0(t)] and {yn} ⊂ [Tv0(t), Tw0(t)] be two increasing sequences. For m,n ∈ N with

m > n, by (H1) and (H4),

θ ≤ ( f(t, xm, ym)− f(t, xn, yn) ) + C(xm − xn)

≤ (C + C1)(xm − xn) + C2(ym − yn).

By this and the normality of cone P , we have

‖f(t, xm, ym)− f(t, xn, yn)‖

18
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≤ N ‖(C + C1)(xm − xn) + C2(ym − yn)‖+ C ‖xm − xn‖

≤ (C +NC +NC1)‖xm − xn‖+NC2‖ym − yn‖.

From this and the definition of the measure of noncompactness, it follows that

α({ f(t, xn, yn)}) ≤ (C +NC +NC1)α({xn}) +NC2 α({yn})

≤ L (α({xn}) + α({yn})),

where L = C + NC + NC1 + NC2. If {xn} and {yn} are two decreasing sequences, the above

inequality is also valid. Hence (H3) holds.

Therefore, by Theorem 3.1, IVP (1.1) has a minimal mild solution u and a maximal mild

solution u in [v0, w0]. Let {vn} and {wn} be the sequences defined by the iterative scheme (3.8).

Then by the proof of Theorem 3.1, we know that (3.9), (3.12) and (3.13) are valid. We show

that u(t) ≡ u(t) on J . Set

ψ(t) = ‖u(t)− u(t)‖, t ∈ J, (3.14)

then ψ ∈ PC(J, R+). We need to show that ψ(t) ≡ 0 on J . We from J1 to Jm+1 interval by

interval show that ψ(t) ≡ 0 on J .

For every t ∈ J1, using (3.5), (3.8), (3.9) and assumption (H1) and (H4), we obtain that

θ ≤ u(t)− u(t) = Qu (t)−Qu (t)

=

∫ t

0
(t− s)q−1V1(t− s) (G(u)(s)−G(u)(s) ) ds

≤
∫ t

0
(t− s)q−1V1(t− s)

(
(C + C1)(u(s)− u(s)) + C2(Tu(s)− Tu(s))

)
ds.

Hence, by the the normality of cone P and (3.2), we have

ψ(t) = ‖u(t)− u(t)‖

≤ N
∥∥∥∫ t

0
(t− s)q−1V1(t− s)

(
(C + C1)(u(s)− u(s)) + C2(Tu(s)− Tu(s))

)
ds
∥∥∥

≤ MN

Γ(q)

[
(C + C1)

∫ t

0
(t− s)q−1ψ(s) ds+ C2

∫ t

0
(t− s)q−1‖Tu(s)− Tu(s)‖ ds

]
≤ MN

Γ(q)

[
(C + C1)

∫ t

0
(t− s)q−1ψ(s) ds+ C2K0

∫ t

0
(t− s)q−1

∫ s

0
ψ(r)drds

]
≤ MN

Γ(q)

[
(C + C1)

∫ t

0
(t− s)q−1ψ(s) ds+

C2K0

q

∫ t

0
(t− r)qψ(r)dr

]
19
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≤ MN

Γ(q)

[
(C + C1)

∫ t

0
(t− s)q−1ψ(s) ds+

aC2K0

q

∫ t

0
(t− s)q−1ψ(s)ds

]
=

MN

Γ(q)

(
C + C1 +

aC2K0

q

)∫ t

0
(t− s)q−1ψ(s) ds.

So we obtain that ψ(t) ≡ 0 on J1 by Lemma 2.7.

For t ∈ J2, noting that u(t1) = u(t1) and I1(u(t1)) = I1(u(t1)), using (3.5) and the same

argument as above for t ∈ J1, by (3.5) we can prove that

ψ(t) ≤ NM

Γ(q)

(
C + C1 +

aC2K0

q

)∫ t

t1

(t− s)q−1ψ(s)ds

≤ NM

Γ(q)

(
C + C1 +

aC2K0

q

)∫ t

0
(t− s)q−1ψ(s)ds, t ∈ J2.

Again by Lemma 2.7, we have ψ(t) ≡ 0 on J2.

Continuing such a process interval by interval up to Jm+1, we obtain that ψ(t) ≡ 0 over the

whole of J . Hence, u(t) ≡ u(t) on J and ũ := u = u is a unique mild solution of IVP (1.1) in

[v0, w0], which can be obtained by the monotone iterative procedure (3.8) starting from v0 or

w0.

This completes the proof of Theorem 3.2. 2

Remark 3.1 Since the condition (H4) can be more easily verified than (H3), the applications

of Theorem 3.2 are convenient.

4 Application

In order to illustrate the applicability of our main results, we consider the initial-boundary

value problem of time fractional order parabolic partial differential equation with impulses and

integral term

∂t
qu−∇2u = g(t, x, u(t, x), Tu(t, x)), (t, x) ∈ J × Ω, t 6= tk,

∆u|t=tk = ck u(tk, x), x ∈ Ω; k = 1, 2, · · · , m,

u|∂Ω = 0,

u(0, x) = ϕ0(x), x ∈ Ω,

(4.1)

where ∂t
q is the Caputo fractional order partial derivative of order q, 0 < q < 1, ∇2 is the

Laplace operator, J = [0, a], a > 0, 0 < t1 < t2 < · · · < tm < a, Ω ⊂ RN is a bounded domain

with a sufficiently smooth boundary ∂Ω, g ∈ C(J×Ω×R×R) and satisfies the growth condition

|g(t, x, ξ, η)| ≤ b0 + b1|ξ|+ b2|η|, (t, x, ξ, η) ∈ J × Ω× R× R, (4.2)
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with positive constants b0, b1, b2, and

Tu(t, x) :=

∫ t

0
K(t, s)u(s, x)ds (4.3)

is a Volterra integral operator with integral kernel K ∈ C(4,R+), 4 := {(t, s) ∈ R2 | 0 ≤ s ≤
t ≤ a}; c1, c2, · · · , cm are positive constants, and the initial value function ϕ0 ∈ L2(Ω).

Let E = L2(Ω), P = {u ∈ L2(Ω) | u(x) ≥ 0, a. e. x ∈ Ω}. Then E is a Banach space, P is a

normal cone of E. We define an operator A in L2(Ω) by

D(A) = H2(Ω) ∩H1
0 (Ω), Au = −∇2u, (4.4)

From [26, Chapter 7, Theorem 3.2], we know that−A generates a positive and analytic semigroup

S(t) (t ≥ 0) in E. Let

f(t, v, w) := g(t, x, v(x), w(x)), t ∈ J, v, w ∈ E. (4.5)

Then by the condition (4.2), f : J × E × E → E is continuous. Let Ik = ck I, k = 1, 2, · · · , m,

where I is the identity operator in L2(Ω). For the fuction u : J ×Ω→ R, let u(t) = u(t, ·). Then

the equation (4.1) be transformed into the following abstract form of IVP (1.1) in L2(Ω)
D0

qu(t) +Au(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = ϕ0.

(4.6)

Let λ1 be the first eigenvalue of A. It is well known that λ1 > 0 and it has a unique positive

eigenfunction φ1 ∈ C2(Ω) ∩ C0(Ω) satisfied maxx∈Ω φ1(x) = 1. Let

µ(t) = 1 +
∑

t>tk
ck, t ∈ J, (4.7)

then µ ∈ PC(J) and ∆µ|t=tk = ck, k = 1, 2, · · · , m. In order to solve the problem (4.1), we

make the following assumptions:

(A1) ϕ0 ∈ L2(Ω) and 0 ≤ ϕ0(x) ≤ φ1(x) for a. e. x ∈ Ω.

(A2) g(t, x, 0, 0) ≥ 0 and g(t, x, µ(t)φ1(x), φ1(x)Tµ(t)) ≤ λ1 µ(t)φ1(x) for every (x, t) ∈
J × Ω.

(A3) In J × Ω × R × R, g(t, x, ξ, η) has continuous partial derivative gξ
′(t, x, ξ, η) and

gη
′(t, x, ξ, η).

Theorem 4.1 If the assumptions (A1)-(A3) are satisfied, then the equation (4.1) has a unique

L2-mild solution between 0 and µ(t)φ1(x).
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Proof. Consider IVP (4.6). From Definition 2.2 and the assumptions (A1) and (A2) we see

that v0(t) ≡ 0 is a lower solution of IVP (4.6) and w0(t) = µ(t)φ1 is an upper solution of IVP

(4.6). From (A3) it is easy to verify that f satisfies the assumption (H1) and (H4). Clearly, for

Ik = ckI, k = 1, 2, · · · , m, (H2) holds. Therefore, by Theorem 3.2, IVP (4.6) has a unique mild

solution between v0 and w0, that is, the equation (4.1) has a unique L2-mild solution between

0 and µ(t)φ1(x). 2
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EVP, MINIMAX THEOREMS AND EXISTENCE OF NONCONVEX

EQUILIBRIA IN COMPLETE G-METRIC SPACES

E. HASHEMI AND R. SAADATI*

Abstract. We prove generalized EVP (Ekeland’s variational principle) and generalized Taka-

hashi’s nonconvex minimization theorem by Ω-distance on G-metric spaces. As a result of last

theorems, we get generalized flower petal theorem.

1. introduction

EVP, studied first one in 1972, has found a multitude of applications in different fields of

analysis. It has also served to provide simple and elegant proofs of known results. The best

references for those are by Ekeland himself: his survey article [2], his book with Aubin [1] and

[4].

2. EVP

Definition 2.1. [3] Let X 6= ∅. The function G : X ×X ×X → [0,∞) is said to be G-metric

when

(i) G(u, v, w) = 0 if u = v = w (coincidence),

(ii) G(u, u, v) > 0 for all u, v ∈ X, where u 6= v,

(iii) G(u, u, w) ≤ G(u, v, w) for all u, v, w ∈ X, with w 6= v,

(iv) G(u, v, w) = G(P{u, v, w}), where p is a permutation of u, v, w (symmetry),

(v) G(u, v, w) ≤ G(u, a, a) +G(a, v, w) for all u, v, w, a ∈ X (rectangle inequality).

In this paper, ϕ : (−∞,∞) → (0,∞) is a nondecreasing function. We say the function

h : X → (−∞,∞] is lower semicontinuous from above (shortly lsca) at w0 ∈ X when for

every sequence {wn} in X with wn → w0 and h(w1) ≥ h(w2) ≥ · · · ≥ h(wn) ≥ · · · , we have

Key words and phrases. Ω-distance; Generalized EVP; Lower semicontinuous from above function; Gener-

alized Caristi’s (common) fixed point theorem; Nonconvex minimax theorem; Nonconvex equilibrium theorem;

Generalized flower petal theorem.

*The corresponding author.
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2 E. HASHEMI AND R. SAADATI

h(w0) ≤ limn→∞ h(wn). We say h is lsca on X when h is lsca at every point of X. We say h

is proper if h 6=∞.

Definition 2.2. [3] Let (X,G) be a G-metric space.

(1) A sequence {un} in X is a G-Cauchy sequence when, for every ε > 0, there exists a

positive integer n0 such that if m,n, l ≥ n0, then G(um, un, ul) < ε.

(2) A sequence {un} in X is G-convergent to a point u ∈ X when for every ε > 0, there

exists a positive integer n0 such that for all m,n ≥ n0 we have G(um, un, u) < ε.

Definition 2.3. [5] Let (X,G) be a G-metric space. A function Ω : X ×X ×X → [0,∞) is

said to be an Ω-distance on X when

(a) Ω(u, v, w) ≤ Ω(u, a, a) + Ω(a, v, w) for all u, v, w ∈ X;

(b) For any u ∈ X, Ω(u, ., .) : X → [0,∞) is lower semicontinuous;

(c) For each ε > 0, there exists a δ > 0 such that Ω(u, a, a) ≤ δ and Ω(a, v, w) ≤ δ imply

G(u, v, w) ≤ ε.

Example 2.4. [5] Let (X, d) be a metric space and G : X3 → [0,∞) defined by G(u, v, w) =

max{d(u, v), d(u,w), d(v, w)} for all u, v, w ∈ X. Then Ω = G is an Ω-distance on X.

Lemma 2.5. [5] Let (X,G) be a G-metric space and Ω an Ω-distance on X. Let also

{un}, {vn} be sequences in X, {αn} and {βn} sequences in [0,∞) converging to zero and

let u, v, w, a ∈ X. Then we have

(1) if Ω(v, un, un) ≤ αn and Ω(un, v, w) ≤ βn for n ∈ N, then G(v, v, w) < ε and hence

w = v;

(2) if Ω(vn, un, un) ≤ αn and Ω(un, um, w) ≤ βn for any m > n ∈ N, Then G(vn, vm, w)→

0 and hence vn → w;

(3) if Ω(un, um, ul) ≤ αn for any l,m, n ∈ N with n ≤ m ≤ l, then {un} is a G-Cauchy

sequence;

(4) if Ω(un, a, a) ≤ αn for any n ∈ N, then {un} is a G-Cauchy sequence.

Lemma 2.6. Let Ω be an Ω-distance on X × X × X. If {un} is a sequence in X with

lim supn→∞{Ω(un, um, ul) : n ≤ m ≤ l} = 0, then {un} is a G-Cauchy sequence in X.

Proof. Suppose αn = sup{Ω(un, um, ul)}. We have limn→∞ αn = 0. By Lemma 2.5, we obtain

that {un} is a G-Cauchy sequence in X. �
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Lemma 2.7. Let f : X → (−∞,∞] be a function and Ω a Ω-distance on X × X × X. We

define the set P (u) by

P (u) = {v ∈ X : v 6= u, Ω(u, v, v) ≤ ϕ(f(u))(f(u)− f(v))}.

If v ∈ P (u), then we have f(v) ≤ f(u) and P (v) ⊆ P (u).

Proof. Let v ∈ P (u). Then v 6= u and Ω(u, v, v) ≤ ϕ(f(u))(f(u)−f(v)). Since Ω(u, v, v) ≥ 0 for

any u, v ∈ X and ϕ is nondecreasing in (0,∞), we have f(u) ≥ f(v). If P (v) = ∅, then P (v) ⊆

P (u). If P (v) 6= ∅, then let w ∈ P (v). We have w 6= v and Ω(v, w,w) ≤ ϕ(f(v))(f(v)− f(w)).

Then, we have f(v) ≥ f(w). Also we have

Ω(u,w,w) ≤ Ω(u, v, v) + Ω(v, w,w) ≤ ϕ
(
f(u)

)(
f(u)− f(w)

)
.

We claim that w 6= u. Let w = u; then Ω(u,w,w) = 0. On the other hand

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
≤ ϕ

(
f(u)

)(
f(u)− f(w)

)
= 0.

Then Ω(u, v, v) = 0; for each ε > 0, we have Ω(u,w,w) = 0 < δ, Ω(w, v, v) = 0 < δ =⇒

G(w, v, v) < ε. Then G(w, v, v) = 0 and w = v, which is a contradiction. Therefore w ∈ P (u)

and hence P (v) ⊆ P (u). �

Proposition 2.8. Let f : X → (−∞,∞] be a proper lsca and bounded from below function.

Let also Ω be an Ω-distance on X ×X ×X. For each u ∈ X, let

P (u) =
{
v ∈ X : v 6= u, Ω(u, v, v) ≤ ϕ

(
f(u)

)(
f(u)− f(v)

)}
.

If {un} is a sequence in X such that P (un) is a nonempty set and un+1 ∈ P (un) for all n ∈ N,

then there exists u0 ∈ X such that un → u0 and u0 ∈
⋂∞

n=1 P (un).

Also, if f(un+1) ≤ infw∈P (un) f(w)+1/n for all n ∈ N, then
⋂∞

n=1 P (un) has only one point.

Proof. First we show that {un} is a Cauchy sequence. Whereas un+1 ∈ P (un), by Lemma 2.7,

f(un) ≥ f(un+1) for all n ∈ N, so {f(un)} is nonincreasing. On the other hand, f is bounded

from below; then r = limn→∞ f(un), so f(un) ≥ r for all n ∈ N.

We show that lim supn→∞{Ω(un, um, um) : m > n} = 0. We have

Ω(un, um, um) ≤ Ω(un, un+1, un+1) + Ω(un+1, um, um)

≤ Ω(un, un+1, un+1) + Ω(un+1, un+2, un+2) + Ω(un+2, um, um)
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4 E. HASHEMI AND R. SAADATI

Therefore Ω(un, um, um) ≤
∑m−1

j=n Ω(uj , uj+1, uj+1) ≤ ϕ
(
f(u1)

)(
f(un) − r

)
, for all m,n ∈ N

with m > n. Put αn = ϕ
(
f(u1)

)(
f(un)− r

)
for all n ∈ N. We have sup{Ω(un, um, um) : m >

n} ≤ αn for all n ∈ N. So limn→∞ f(un) = r. We have limn→∞ αn = 0 and

lim
n→∞

sup{Ω(un, um, um) : m > n} = 0.

By Lemma 2.6, {un} is a G-Cauchy sequence, and X is a G-complete metric space, so there

exists u0 ∈ X such that un → u0. We show that u0 ∈
⋂∞

n=1 P (un). Since f is lsca, then

f(u0) ≤ limn→∞ f(un) = r ≤ f(uk). Suppose that n ∈ N is fixed for all m ∈ N with

m > n. We have Ω(un, um, um) ≤
∑m−1

j=n Ω(uj , uj+1, uj+1) ≤ ϕ
(
f(un)

)(
(f(un)− f(u0)

)
. Since

Ω(u, ., .) : X → (0,∞) is lower semi continuous, then

Ω(un, u0, u0) ≤ ϕ
(
f(un)

)(
f(un)− f(u0)

)
. (2.1)

Also u0 6= un for all n ∈ N. Suppose contrary, that there exists j ∈ N such that u0 = uj .

Since Ω(uj , uj+1, uj+1) ≤ ϕ
(
f(uj)

)(
f(uj) − f(uj+1)

)
≤ ϕ

(
f(uj)

)(
f(uj) − f(u0)

)
= 0, so we

would have Ω(uj , uj+1, uj+1) = 0. Similarly, we would have Ω(uj+1, uj+2, uj+2) = 0. Now,

for ε > 0, we would have Ω(uj , uj+1, uj+1) = 0 < δ and Ω(uj+1, uj+2, uj+2) = 0 < δ. Then

G(uj , uj+2, uj+2) < ε, and by Definition 2.2, we would have uj = uj+2, which is contradiction.

Since uj+1 ∈ P (uj), then P (uj+1) ⊆ P (uj) and uj+2 ∈ P (uj+1), so uj+2 ∈ P (uj) and

therefore uj+2 6= uj . We conclude that u0 6= un for all n ∈ N. By (2.1) we have u0 ∈⋂∞
n=1 P (un), thus

⋂∞
n=1 P (un) 6= ∅. Now we assume that f(un+1) ≤ infw∈P (un) f(w) + 1/n for

all n ∈ N. We show that
⋂∞

n=1 P (un) = {u0}. Let t ∈
⋂∞

n=1 P (un); then

Ω(un, t, t) ≤ ϕ
(
f(un)

)(
f(un)− f(t)

)
≤ ϕ

(
f(u1)

)(
f(un)− inf

w∈S(un)
f(w)

)
≤ ϕ

(
f(u1)

)(
f(un)− f(un+1) + 1/n).

Let βn = ϕ
(
f(u1)

)(
f(un) − f(un+1) + 1/n), for all n ∈ N. Then limn→∞ βn = 0, thus

limn→∞Ω(un, t, t) = 0; also {um} is G-Cauchy. Then limn→∞Ω(um, um, un) = 0, and we

obtain un → t. By uniqueness, we have t = u0. Then
⋂∞

n=1 P (un) = {u0}. �

Theorem 2.9 (Generalized EVP). Let f : X → (−∞,∞] be a proper lsca and bounded from

below function. Let also Ω be an Ω-distance on X ×X ×X. Then there exists t ∈ X such that

Ω(t, u, u) > ϕ
(
f(t)

)(
f(t)− f(u)

)
for all u ∈ X with u 6= t.
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Proof. Suppose contrary, that for each u ∈ X, there exists v ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u) − f(v)). That would mean that P (u) 6= ∅ for each u ∈ X. Since

f is proper, there would exist u ∈ X such that f(u) 6= ∞. We define a sequence {un} as

follows: let u1 = x, and choose u2 ∈ P (u1) such that f(u2) ≤ infu∈P (u1) f(u) + 1. Suppose

un ∈ X is so defined, and choose un+1 ∈ P (un) such that f(un+1) ≤ infu∈P (un) f(u) + 1/n.

By Proposition 2.8, there would exist u0 ∈ X such that
⋂∞

n=1 P (un) = {u0}. By Lemma 2.7,

P (u0) ⊆
⋂∞

n=1 P (un) = {u0}, so P (u0) = {u0}, which is a contradiction. Therefore, there

exists t ∈ X such that

Ω(t, u, u) > ϕ
(
f(t)

)(
f(t)− f(u)

)
for all u ∈ X with u 6= t. �

Theorem 2.10 (Generalized Caristi’s common fixed point theorem for a family of multivalued

maps). Let f : X → (−∞,∞] be a proper lsca and bounded from below function. Let also

Ω be an Ω-distance on X × X × X. Let J be any index set and for each j ∈ J , suppose

Pj : X → 2X is a multivalued map with nonempty values such that for each u ∈ X, there exists

v = v(u, j) ∈ Pj(u) with

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
. (2.2)

Then there exists t ∈ X such that t ∈
⋂

j∈J Pj(t), and Ω(t, t, t) = 0.

Proof. By Theorem 2.9, there exists t ∈ X such that Ω(t, u, u) > ϕ
(
f(t)

)(
f(t) − f(u)) for all

u ∈ X with u 6= t. Now we show that t ∈
⋂

j∈J Pj(t) and Ω(t, t, t) = 0. According to the

assumption, there exists w(t, j) ∈ Pj(t) such that Ω(t, w,w) ≤ ϕ
(
f(t)

)(
f(t)− f(w(t, j))

)
. We

claim that w(t, j) = t, for all j ∈ J . If, on the contrary, w(t, j0) 6= t for some j0 ∈ J , then

Ω(t, w,w) ≤ ϕ
(
f(t)

)(
f(t)− f(w)

)
< Ω(t, w,w).

which is a contradiction. Therefore t = w(t, j) ∈ Pj(t) for all j ∈ P .

Since Ω(t, t, t) ≤ ϕ
(
f(t)

)(
f(t)− f(t)) = 0, we obtain Ω(t, t, t) = 0. �

Corollary 2.11 (Generalized Caristi’s common fixed point theorem for a family of single-val-

ued maps). Let f : X → (−∞,∞] be a proper lsca and bounded from below function. Let also

Ω be an Ω-distance on X ×X ×X. Let J be any index set and for each j ∈ J , let gj : X → X

be a single-valued map so that

Ω
(
u, gj(u), gj(u)

)
≤ ϕ

(
f(u)

)(
f(u)− f(gj(u))

)
(2.3)

is established for each u ∈ X. Then there exists t ∈ X such that gj(t) = t for each j ∈ J and

Ω(t, t, t) = 0.
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Proof. Let Pj : X → X and Pj(x) = {gj(u)}, for all u ∈ X and j ∈ J . Then by Theorem 2.10,

gj(t) = t for each j ∈ J and Ω(t, t, t) = 0. �

Remark 2.12. (a) Corollary 2.11 implies Theorem 2.10.

Suppose that for each u ∈ X, there exists v(u, j) ∈ Pj(u) such that

Ω
(
u, v(u, j), v(u, j))

)
≤ ϕ

(
f(u)

)(
f(u)− f(v(u, j))

)
for each j ∈ J , and let gj(u) = v(u, j). Then gj is single-valued map and

Ω
(
u, gj(u), gj(u))

)
≤ ϕ

(
f(u)

)(
f(u)− f(gj(u))

)
for all u ∈ X. By Corollary 2.11, there exists t ∈ X such that t = gj(t) ∈ Pj(t) for each j ∈ J

and Ω(t, t, t) = 0

(b) Theorem 2.10 implies Theorem 2.9.

Suppose contrary, that for each u ∈ X, there exists v ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
.

Define P : X → 2X \ {∅} by

P (u) = {v ∈ X : v 6= u,Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
}.

By Theorem 2.10, P has a fixed point t ∈ X; this means t ∈ P (t). This is a contradiction,

because t /∈ P (t).

Theorem 2.13 (Nonconvex maximal element theorem for a family of multivalued maps).

Let f : X → (−∞,∞] be a proper lsca and bounded from below function. Let also Ω be an Ω-

distance on X×X×X and J be any index set. For each j ∈ J , let Pj : X → 2X be a multivalued

map. Suppose that for each (u, j) ∈ X × J with Pj(u) 6= ∅, there exists v = v(u, j) ∈ X with

v 6= u such that (2.2) holds. Then there exists t ∈ X such that Pj(t) = ∅ for each j ∈ J .

Proof. By Theorem 2.9, there exists t ∈ X, such that Ω(t, u, u) > ϕ
(
f(t)

)(
f(t)− f(u)

)
for all

u ∈ X with u 6= t. We prove that Pj(t) = ∅ for each j ∈ J . Indeed, if Pj0(t) 6= ∅, for some

j0 ∈ J , according to the assumption, there would exist w = w(t, j0) ∈ X with w 6= t such

that Ω(t, w,w) ≤ ϕ
(
f(t)

)(
f(t) − f(w)

)
. Also Ω(t, w,w) > ϕ

(
f(t)

)(
f(t) − f(w)

)
, which is a

contradiction. �
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Remark 2.14. Theorem 2.13 implies Theorem 2.9.

Suppose contrary, that for each u ∈ X, there exists v ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
.

For each u ∈ X, we define

P (u) = {v ∈ X : v 6= u, Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
}.

Then P (u) 6= ∅ for all u ∈ X. But by Theorem 2.13, there would exist t ∈ X such that

P (t) = ∅, which is a contradiction.

3. Nonconvex optimization and minimax theorems

Theorem 3.1 (Generalized Takahashi’s nonconvex minimization theorem). Let f : X →

(−∞,∞] be a proper lsca and bounded from below function. Also, let Ω be an Ω-distance on

X × X × X. Suppose that for any u ∈ X with f(u) > infw∈X f(w) there exists v ∈ X with

v 6= u such that (2.2) holds. Then there exists t ∈ X such that f(t) = infw∈X f(w).

Proof. By Theorem 2.9, there exists t ∈ X such that Ω(t, u, u) > ϕ
(
f(t)

)(
f(t) − f(u)

)
, for

all u ∈ X, u 6= t. Now we prove that f(t) = infw∈X f(w). On the contrary, let f(t) >

infw∈X f(w). According to the assumption, there would exist v = v(t) ∈ X, with v 6= t such

that Ω(t, v, v) ≤ ϕ
(
f(t)

)(
f(t)− f(v)

)
. Then we would have

Ω(t, v, v) ≤ ϕ
(
f(t)

)(
f(t)− f(v)

)
< Ω(t, v, v)

which is a contradiction. �

Remark 3.2. Using Theorem 3.1, we can infer Theorem 2.9.

If we could not, then for each u ∈ X, there would exist v ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u) − f(v)

)
. By Theorem 3.1, there would exist t ∈ X such that

f(t) = infw∈X f(w). According to the assumption, there would exist z ∈ X with z 6= u, such

that Ω(t, z, z) ≤ ϕ
(
f(t)

)(
f(t)−f(z)

)
≤ 0. Then Ω(t, z, z) = 0 and f(t) = f(z) = infw∈X f(w).

There would exist w ∈ X with w 6= z such that Ω(z, w,w) ≤ ϕ
(
f(z)

)(
f(z)− f(w)

)
≤ 0. Then

we would have Ω(z, w,w) = 0 and f(t) = f(z) = f(w) = infu∈X f(u). Since Ω(t, w,w) ≤

Ω(t, z, z) + Ω(z, w,w), then Ω(t, w,w) = 0. For ε > 0 we would have Ω(t, z, z) = 0 < δ,

Ω(z, w,w) = 0 < δ; then G(t, w,w) < ε, that is, t = w. Also for ε > 0 we would have

Ω(z, t, t) = 0 < δ, Ω(t, w,w) = 0 < δ; then G(z, w,w) < ε that is, z = w, which is a

contradiction.
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Theorem 3.3 (Nonconvex minimax theorem). Let G : X × X → (−∞,∞] be a proper lsca

and bounded from below function in the first argument. Suppose that for each u ∈ X with

{x ∈ X : G(u, x) > infa∈X G(a, x)} 6= ∅, there exists v = v(u) ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
G(u, t)

)(
G(u, t)−G(v, t)

)
(3.1)

for all t ∈ {x ∈ X : G(u, x) > infa∈X G(a, x)}.

Then infu∈X supv∈X G(u, v) = supv∈X infu∈X G(u, v).

Proof. By Theorem 3.1, for every v ∈ X, there exists u(v) ∈ X such that G
(
u(v), v

)
=

infu∈X G(u, v). Then, supv∈X G
(
u(v), v

)
= supv∈X infu∈X G(u, v).

Replacing u(v) by an arbitrary u ∈ X, we obtain

inf
u∈X

sup
v∈X

G(u, v) = sup
v∈X

inf
u∈X

G(u, v). �

Theorem 3.4 (Nonconvex equilibrium theorem). Let G and ϕ be the same as in Theorem 3.3.

Let for each u ∈ X with {x ∈ X : G(u, x) < 0} 6= ∅, there exist v = v(u) ∈ X with v 6= u such

that (3.1) holds for all t ∈ X. Then there exists y ∈ X such that G(y, v) > 0 for all v ∈ X.

Proof. By Theorem 2.9, for each w ∈ X, there exists y(w) ∈ X such that Ω(y(w), u, u) >

ϕ
(
G(y(w), w)

)(
G(y(w), w) − G(u,w)

)
for all u ∈ X with u 6= y(w). We show that there

exists y ∈ X such that G(y, v) ≥ 0 for all v ∈ X. Suppose contrary, that for each u ∈ X

there exists v ∈ X such that G(u, v) < 0. Then for each u ∈ X, {x ∈ X : G(u, x) <

0} 6= ∅. According to the assumption, there would exist v = v(y(w)), y 6= y(w) such that

Ω(y(w), v, v) ≤ ϕ
(
G(y(w), w)

)(
G(y(w), w)−G(v, w)

)
, which is a contradiction. �

Example 3.5. Let X = [0, 1] and G(u, v, w) = max{|u − v|, |u − w|, |v − w|}. Then (X,G)

is a complete G-metric space. Suppose that a, b are positive real numbers with a > b. Let

H : X ×X → R with H(u, v) = au− bv. Therefore, the function u 7→ H(u, v) is proper, lower

semicontinuous and bounded from below, and H(1, v) ≥ 0 for every v ∈ X. Also H(u, v) ≥ 0

for every u ∈ [ ba , 1] and every v ∈ X. In fact, for every u ∈ [0, ba ], H(u, v) = au− bv < 0 when

v ∈ [abu, 1]. Then set {x ∈ X : H(u, x) < 0} 6= ∅ for every u ∈ [0, ba ]. Let u, v ∈ X, u ≥ v;

we have u − v = 1
a{(au − bx) − (av − bx)}, for every x ∈ X. Define ϕ : [0,∞) → [0,∞) by

ϕ(t) = 1
a . Then G(u, v, v) ≤ ϕ

(
H(u, x)

)(
H(u, x)−H(v, x)

)
, for every u > v, and u, v, x ∈ X.

By Theorem 3.4, there exists y ∈ X such that H(y, v) > 0 for every v ∈ X.
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Theorem 3.6. Let Ω, ϕ be the same as in Theorem 2.9. For each j ∈ J , let Pj : X → X be

multivalued maps with nonempty values, gj , hj : X ×X → R be functions and {aj} and {bj}

families of real numbers. Suppose that:

(i) For each (u, j) ∈ X × J , there exists v = v(u, j) ∈ Pj(u) such that gj(u, v) ≥ aj and

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
;

(ii) For each (x, j) ∈ X × J , there exists w = w(x, j) ∈ Pj(x) such that hj(x,w) ≤ bj and

Ω(x,w,w) ≤ ϕ
(
f(x)

)(
f(x)− f(w)

)
.

Then there exists u0 ∈ Pj(uo) such that gj(u0, u0) ≥ aj and hj(u0, u0) ≤ bj for all j ∈ J and

Ω(u0, u0, u0) = 0.

Proof. By Theorem 2.9, there exists t ∈ X such that Ω(t, u, u) > ϕ
(
f(t)

)(
f(t) − f(u)

)
, for

all u ∈ X with u 6= t. For each j ∈ J , by (i) there exists w1 = w1(t, j) ∈ Pj(t) such that

gj(t, w1) ≥ aj and Ω(t, , w1, w1) ≤ ϕ
(
f(t)

)(
f(t) − f(w1)

)
. Also according to (ii), there exists

w2 = w2(t, j) ∈ Pj(t) such that hj(t, w2) ≤ bj and Ω(t, , w2, w2) ≤ ϕ
(
f(t)

)(
f(t) − f(w2)

)
. If

w1 6= t, then Ω(t, , w1, w1) ≤ ϕ
(
f(t)

)(
f(t) − f(w1)

)
< Ω(t, w1, w1), which is a contradiction.

Therefore w1 = t. Similarly, we have w2 = t. Since Ω(t, , t, t) ≤ ϕ
(
f(t)

)(
f(t) − f(t)

)
= 0,

hence Ω(t, t, t) = 0. �

Remark 3.7. (a) In Theorem 3.6, put gj = hj = Fj and aj = bj = cj ; then there exists

u0 ∈ Pj(u0) such that Fj(u0, u0) = cj for all j ∈ J and Ω(u0, u0, u0) = 0.

(b) In (a), put Pj(u) = X for all u ∈ X; then there exists u0 ∈ X such that Fj(u0, u0) = cj

for all j ∈ J and Ω(u0, u0, u0) = 0.

Remark 3.8. From Theorem 3.5, we can infer Theorem 2.9.

Suppose contrary, that for each u ∈ X, there exists v ∈ X with v 6= u such that

Ω(u, v, v) ≤ ϕ
(
f(u)

)(
f(u)− f(v)

)
.

Define P : X → X \ {∅} by P (u) = {v ∈ X : v 6= u} and a function F : X × X → R by

F (u, v) = χP (u)(v), where χA is the characteristic function for an arbitrary set A. We would

have v ∈ P (u) ⇐⇒ F (u, v) = 1. Then for each u ∈ X, there would exist v ∈ X such that

F (u, v) = 1 and Ω(t, , u, u) ≤ ϕ
(
f(t)

)(
f(t) − f(u)

)
. According to Remark 3.7(a) with c = 1,

there would exist u0 ∈ X such that F (u0, u0) = 1 and Ω(u0, u0, u0) = 0. Then u0 ∈ P (u0).

This is a contradiction.
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4. Applications

Let (X,G) be a G-metric space and a, b ∈ X. Suppose that κ : X → (0,∞) is a function

and Ω a Ω-distance on X. Define

Ωε(a, b, κ) = {u ∈ X : εΩ(a, u, u) ≤ κ(a)
(
Ω(b, a, a)− Ω(b, u, u)

)
}

such that ε ∈ (0,∞) and a, b ∈ X.

Lemma 4.1. Let Ω, f,and ϕ be the same as in Theorem 2.9. Let ε > 0 and Ω be an Ω-distance

on X. Suppose that there exists x ∈ X such that f(x) < ∞ and Ω(x, x, x) = 0. Then there

exists t ∈ X such that

(i) εΩ(x, t, t) ≤ ϕ
(
f(x)

)(
f(x)− f(t)

)
;

(ii) Ω(t, u, u) > ϕ
(
f(t)

)(
f(t)− f(u)

)
for all u ∈ X with u 6= t.

Proof. Let x ∈ X, f(x) < +∞ and Ω(x, x, x) = 0. Put

V = {u ∈ X : εΩ(x, u, u) ≤ ϕ
(
f(x)

)(
f(x)− f(u)

)
}.

The space (V,G) is a nonempty complete G-metric space. By Theorem 2.9, there exists t ∈ V

such that εΩ(t, u, u) > ϕ
(
f(t)

)(
f(t)− f(u)

)
for all u ∈ V with u 6= t. For any u ∈ X \V , since

ε[Ω(x, t, t) + Ω(t, u, u)] ≥ εΩ(x, u, u) > ϕ
(
f(x)

)(
f(x)− f(u)

)
≥ εΩ(x, t, t) + ϕ

(
f(t)

)(
f(t)− f(u)

)
,

we have εΩ(t, u, u) > ϕ
(
f(t)

)(
f(t)−f(u)

)
for all u ∈ X \V . Then εΩ(t, u, u) > ϕ

(
f(t)

)(
f(t)−

f(t)
)

for all u ∈ X with u 6= t. �

Theorem 4.2 (Generalized flower petal theorem). Suppose that N is a proper complete subset

of a G-metric space X and a ∈ N . Let Ω be an Ω-distance on X with Ω(a, a, a) = 0. Let

b ∈ X \ N , Ω(b,N,N) = infu∈N Ω(b, u, u) ≥ r, Ω(b, a, a) = s > 0, and let there exist a

function κ : X → (0,∞) satisfying κ(u) = ϕ
(
Ω(b, u, u)

)
for some nondecreasing function

ϕ : (−∞,∞] → (0,∞). Then for each ε > 0, there exists t ∈ N ∩ Ωε(a, b, κ) such that

Ωε(t, b, κ) ∩ (N \ {t}) = ∅ and Ω(a, t, t) ≤ ε−1κ(a)(s− r).

Proof. The space (N,G) is a complete G-metric space. Consider the function f : N →

(−∞,∞] defined by f(u) = Ω(b, u, u). Since f(a) = Ω(b, a, a) = s < ∞ and Ω(b,N,N) =

infu∈N Ω(b, u, u) ≥ r, f is a proper lower semicontinuous and bounded from below function.

By Lemma 4.2, there exists t ∈ N such that
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(i) εΩ(a, t, t) ≤ κ(a)
(
f(a)− f(t)

)
;

(ii) εΩ(t, u, u) > κ(t)
(
f(t)− f(t)

)
for all u ∈ N with u 6= t.

Applying (i), we get t ∈ N
⋂

Ωε(a, b, κ). Applying (i) again, we get Ω(a, t, t) ≤ ε−1κ(a)
(
Ω(b, a, a)−

Ω(b, t, t)
)
≤ ε−1κ(a)(s − r). By (ii), we obtain εΩ(t, u, u) > κ(t)

(
Ω(b, t, t) − Ω(b, u, u)

)
for all

u ∈ N with u 6= t. Therefore u /∈ Ωε(t, b, κ) for all u ∈ N \{t} or Ωε(t, b, κ)∩ (N \{t}) = ∅. �
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Abstract. Applications of Bessel differential equations have attracted the univalent func-
tion theorists in recent years. In the present investigation, we establish certain sufficient
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1. Introduction

Let A be the class of functions f normalized by

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and S the subclass of A
consisting of functions which are also univalent in U. A function f ∈ A is said to be starlike of
order α (0 ≤ α < 1), if and only if

<
(
zf ′(z)

f(z)

)
> α (z ∈ U).

This function class is denoted by S∗(α). We also write S∗(0) =: S∗, where S∗ denotes the class of
functions f ∈ A that are starlike in U with respect to the origin. A function f ∈ A is said to be
convex of order α (0 ≤ α < 1) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> α (z ∈ U).

This class is denoted by K(α). Further, K = K(0), the well-known standard class of convex func-
tions. It is an established fact that

f ∈ K(α)⇐⇒ zf ′ ∈ S∗(α).

There has been a continuous interest shown on the Geometric and other related properties of
Bessel functions (like hypergeometric functions) after many papers have been published by Baricz
[2](see also the other works of Baricz) in recent times. One such problem of Baricz [3] was to find
conditions on the triplet p, b and c such that the function up,b,c is starlike and convex of order α. In
earlier investigations, finding conditions on the parameters for which the Gaussian hypergeometric
function belong to the various classes of functions have been discussed in detail by Shanmugam [20],
Sivasubramanian et al. [21] and Sivasubramanian and Sokol [22] (See also [6, 7, 10, 11, 12, 13, 16, 17]
).

Let us consider the following second-order linear homogenous differential equation (see, for de-
tails, [3]):

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1− b)p]ω(z) = 0 (b, c, p ∈ C). (1.2)

The function ωp,b,c(z), which is called the generalized Bessel function of the first kind of order
p, is defined as a particular solution of (1.2). Further, the function ωp,b,c(z) has the familiar
representation

ωp,b,c(z) =

∞∑
n=0

(−c)n

n!Γ
(
p+ n+ b+1

2

) (z
2

)2n+p
(z ∈ C), (1.3)

where Γ stands for the Euler gamma function. The series (1.3) permits the study of Bessel, modified
Bessel and spherical Bessel functions all together. Solutions of (1.2) are referred as the generalized
Bessel function of order p. The particular solution given by (1.3) is called the generalized Bessel
function of the first kind order of p. Although the series defined above is convergent everywhere,
the function ωp,b,c is generally not univalent in U. By ratio test, the radius of convergence for the
series in (1.3) is infinity and hence ωp,b,c(z) converges everywhere for all b, c, p ∈ C and for all z ∈ U.
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GEOMETRIC PROPERTIES OF BESSEL FUNCTIONS 3

It is worth mentioning that, in particular, for b = c = 1 in (1.3), we obtain the familiar Bessel
function of the first kind of order p defined by

Jp(z) =
∞∑
n=0

(−1)n

n!Γ(p+ n+ 1)

(z
2

)2n+p
(z ∈ C). (1.4)

Further, for the choices c = 1 and b = 2 in (1.3), we obtain the familiar spherical Bessel function
of the first kind of order p defined by

Sp(z) =
∞∑
n=0

(−1)n

n!Γ(p+ n+ 3/2)

(z
2

)2n+p
(z ∈ C). (1.5)

For the choices of b = 1 and c = −1 in (1.3), we obtain the modified Bessel function of the first
kind of order p defined by

Ip(z) =
∞∑
n=0

1

n!Γ(p+ n+ 1)

(z
2

)2n+p
(z ∈ C). (1.6)

From (1.3), it is clear that ω(0) = 0. Therefore, it follows from (1.3) that

ωp,b,c(z) =

[
2pΓ

(
p+

b+ 1

2

)]−1
zp
∞∑
n=0

(−c/4)n Γ (p+ (b+ 1)/2)

n!Γ (p+ n+ (b+ 1)/2)
z2n (z ∈ C). (1.7)

Let us set

up,b,c(z) =
∞∑
n=0

bnz
n,

where

bn =
(−c/4)n Γ (p+ (b+ 1)/2)

n!Γ (p+ n+ (b+ 1)/2)
.

Hence, (1.7) becomes

ωp,b,c(z) =

[
2pΓ

(
p+

b+ 1

2

)]−1
zpup,b,c(z

2). (1.8)

By using the well-known Pochhammer symbol (or the shifted factorial) (λ)µ defined, for λ, µ ∈ C
and in terms of the Euler Γ function, by

(λ)µ :=
Γ(λ+ µ)

Γ(λ)
=

{
1 (µ = 0;λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (µ = n ∈ N;λ ∈ C).

In view of the fact that (0)0 := 1, the series representation for the function up,b,c is given by

up,b,c(z) =
∞∑
n=0

(−c/4)nzn

(κ)n(n)!

(
κ := p+ (b+ 1)/2 6∈ Z−0

)
(1.9)

and therefore,

zup,b,c(z) = z +

∞∑
n=2

(−c/4)n−1zn

(κ)n−1(n− 1)!

(
κ := p+ (b+ 1)/2 6∈ Z−0

)
(1.10)

where N := {1, 2, ...} and Z−0 := {0,−1,−2, ...}. The function up,b,c is called the generalized and
normalized Bessel function of the first kind of order p. We note that by the ratio test, the radius of
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convergence of the series up,b,c is infinity. Moreover, the function up,b,c is analytic in C and satisfies

the differential equation 4z2u′′(z) + 4κzu′(z) + czu(z) = 0. Also, if b, p, c ∈ C and κ 6∈ Z−0 , then the
function up,b,c satisfies the recursive relation

4ku′p,b,c(z) = −cup+1,b,c(z) (z ∈ C). (1.11)

Further, for z = 1, we denote up,b,c(z) simply by up(1). For f ∈ A, we define the operator Ip,b,cf(z)
by

Ip,b,c f(z) = zup,b,c(z) ∗ f(z) = z +
∞∑
n=2

(−c/4)n−1

(κ)n−1

an z
n

(n− 1)!
, (1.12)

where κ = p + (b+ 1)/2 6∈ Z−0 . In fact, the function Ip,b,cf(z) given by (1.12) is an elementary
transform of the generalized hypergeometric function. Thus, it is easy to see that

Ip,b,cf(z) = z0F1(κ;−c/4z) ∗ f(z).

For the special choices of b = c = 1 in (1.12), Ip,b,cf reduces to Jp : A → A related with Bessel
function, defined by

Jp f(z) = zup,1,1(z) ∗ f(z) = z +

∞∑
n=2

(−1/4)n−1an
(p+ 1)n−1

zn

(n− 1)!
. (1.13)

For the special choices of b = 1 and c = −1 in (1.12), Ip,b,cf reduces to Mp : A → A related with
modified Bessel function, defined by

Mpf(z) = zup,1,−1(z) ∗ f(z) = z +

∞∑
n=2

an
(4)n−1(p+ 1)n−1

zn

(n− 1)!
(1.14)

where ∗ denotes the usual Hadamard product or convolution of power series.
If f and g are analytic in U, then we say that the function f is subordinate to g, if there ex-

ists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that
f(z) = g(w(z)) (z ∈ U). We denote this subordination by f ≺ g or f(z) ≺ g(z) (z ∈ U).

For −1 ≤ F < E ≤ 1, let

S∗ [E,F ] =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + Ez

1 + Fz
(z ∈ U)

}
and

K [E,F ] =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 + Ez

1 + Fz
(z ∈ U)

}
.

It is fairly straightforward to see that S∗ [1,−1] is the familiar class of starlike functions S∗,
S∗ [1− 2γ,−1] (0 ≤ γ < 1) is the class of starlike functions of order γ and also the class S∗ [λ, 0] is de-
noted by S∗λ. Further, K [1,−1] is the familiar class of convex functions K, K [1− 2γ,−1] (0 ≤ γ < 1)
is the class of convex functions of order γ and also the class K [λ, 0] is denoted by Kλ. These two
classes have been investigated in several works, for example, see [18, 19].

The connection between the Janowski starlike, Janowski convex functions and the Bessel func-
tions is not considered so far. In the present paper, we obtain mapping properties between various
subclasses of S motivated by the works of Anbudurai and Parvatham [1] (see also [5, 10, 11, 12,
16, 17, 18, 24]).
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2. Sufficient conditions for Bessel functions to be in
S∗[E,F ] and K[E,F ] involving Jack’s Lemma

In the present section, we determine certain sufficient conditions involving Jack’s Lemma for
up,b,c and z up,b,c to be in the class of Janowski starlike and Janowski convex functions. To prove
the main theorems we need the following lemma.

Lemma 2.1. [9] Let ω be regular in the unit disk U with ω(0) = 0. If |ω(z)| attains a maximum
value on the circle |z| = r (0 ≤ r < 1) at a point z, then z1ω

′(z1) = mω(z1) where m is real and
m ≥ 1.

Lemma 2.2. [18] Let a function f of the form (1.1) satisfy∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣1−α ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣α < (E − F )(2 + E + E2)α

(1 + |F |)(1 + E)2α
(2.1)

for fixed constants E, F and α such that −1 ≤ F < E ≤ 1, α ≥ 0 and z ∈ U. Then f ∈ S∗[E,F ].

Theorem 2.1. Let f ∈ A. If∣∣(Ip,b,cf(z))′ − 1
∣∣1−β ∣∣∣∣z(Ip,b,cf(z))′′

(Ip,b,cf(z))′

∣∣∣∣β < 1

2β
(β ≥ 0), (2.2)

then Ip,b,cf is univalent in U.

Proof. We know that

Ip,b,cf(z) = z +
∞∑
n=2

(−c/4)n−1

(κ)n−1(n− 1)!
an zn

in A. Define ω by ω(z) = (Ip,b,cf(z))′ − 1 for z ∈ U. Then it follows that ω is analytic in U with
ω(0) = 0. In view of (2.2), we have

|ω(z)|1−β
∣∣∣∣ zω′(z)1 + ω(z)

∣∣∣∣β = |ω(z)|
∣∣∣∣zω′(z)ω(z)

1

1 + ω(z)

∣∣∣∣β < 1

2β
. (2.3)

Suppose that there exists a point z1 ∈ U such that max
|z|≤|z1|

|ω(z)| = |ω(z1)| = 1. Then, by Lemma

3.1, we can put
z1ω

′(z1)

ω(z1)
= m ≥ 1.

Therefore, we obtain

|ω(z1)|
∣∣∣∣z1ω′(z1)ω(z1)

1

1 + ω(z)

∣∣∣∣β ≥ (m2 )β ≥ 1

2β

which contradicts the condition (2.3). This shows that |ω(z)| = |(Ip,b,cf(z))′ − 1| < 1 which implies
that <(Ip,b,cf(z))′ > 0 for z ∈ U. Therefore, by the Noshiro-Warschawski theorem [8], Ip,b,cf is
univalent in U. �

Theorem 2.2. Let f ∈ A, c ∈ C and κ > 0. If up,b,c defined by (1.9) satisfies the inequality∣∣∣∣∣zu′p,b,c(z)up,b,c(z)

∣∣∣∣∣ < E − F
1 + |F |

, (2.4)

where −1 ≤ F < E < 1, −1 ≤ F ≤ 0 and z ∈ U, then zup,b,c ∈ S∗[E,F ].
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Proof. Let us define a function F by

F (z) = zup,b,c(z) (z ∈ U).

In view of (2.4), we have ∣∣∣∣zF ′(z)F (z)
− 1

∣∣∣∣ < E − F
1 + |F |

. (2.5)

An application of Lemma 2.2 with α = 0 proves Theorem 2.2. �

Theorem 2.3. Let f ∈ A, c ∈ C and κ > 0. If up,b,c defined by (1.9) satisfies the inequality∣∣∣∣∣zu′′p,b,c(z)u′p,b,c(z)

∣∣∣∣∣ < (E − F )(2 + E + E2)

(1 + |F |)(1 + E)2
, (2.6)

where −1 ≤ F < E < 1 and −1 ≤ F ≤ 0, then up,b,c is starlike of order (E + F )/2F and type |F |
with respect to 1.

Proof. Let h : U→ C be defined by

h(z) =
up,b,c(z)− b0

b1
.

Then h ∈ A and h satisfies ∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ =

∣∣∣∣∣zu′′p,b,c(z)u′p,b,c(z)

∣∣∣∣∣
<

(E − F )(2 + E + E2)

(1 + |F |)(1 + E)2
.

An application of Lemma 2.2 with α = 1 implies that up,b,c is starlike of order (E + F )/2F and
type |F | with respect to 1 as the value of b0 = 1. �

Theorem 2.4. Let f ∈ A, c ∈ C and κ > 0. If up,b,c defined by (1.9) satisfies the inequality∣∣∣∣∣zu′p+1,b,c(z)

up+1,b,c(z)

∣∣∣∣∣ < E − F
1 + |F |

, (2.7)

where −1 ≤ F < E < 1, −1 ≤ F ≤ 0 and c 6= 0, then up,b,c(z) ∈ K[E,F ].

Proof. By virtue of Theorem 2.2, zup+1,b,c ∈ S∗[E,F ]. In view of (1.11), zu′p,b,c(z) = b1up+1,b,c(z),

where b1 = −c/4κ 6= 0. Therefore, we have zu′p,b,c ∈ S∗[E,F ], which implies up,b,c ∈ K[E,F ]. �

Remark 2.1. Note that, the conclusions of Theorem 2.2, Theorem 2.3 and Theorem 2.4 hold in the
disk |z| < 4/|c| where 0 < |c| < 4 which is larger than the unit disk. By applying as in Theorems 2,3,
and 5 of Owa and Srivastava [15] to the function F (z) = 0F1(κ, z) and using the transformation
F (z) = up,b,c(−4z/c) and replacing z by −cz/4, we obtain that Theorem 2.2, Theorem 2.3 and
Theorem 2.4 hold in the disk |z| < 4/|c|.

Theorem 2.5. Let c ∈ C, −1 ≤ F < E < 1, −1 ≤ F ≤ 0 and κ > 0. If the Bessel’s inequality

(1− F )
|c|
4κ
up+1,b,|c|(1) + (E − F )up,b,|c|(1) ≤ 2(E − F ) (2.8)

is satisfied, then zup,b,c ∈ S∗ [E,F ].
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Proof. A special case of Theorem 3 in [1] gives a sufficient condition for a function f ∈ S∗ [E,F ]
and is given by

∞∑
n=2

[n(1− F )− (1− E)] |An| ≤ E − F,

where

An =
(−c/4)n−1

(κ)n−1(n− 1)!
.

To prove the theorem, we need to show that

T : =
∞∑
n=2

[n(1− F )− (1− E)] |An|

=

∞∑
n=2

[n(1− F )− (1− E)]

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣
= (1− F )

∞∑
n=2

n

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣− (1− E)

∞∑
n=2

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣
≤ (1− F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 2)!
+ (E − F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!

= (1− F )
|c|
4κ
up+1,b,|c|(1) + (E − F )

(
up,b,|c|(1)− 1

)
,

which is bounded above by E − F if (2.8) is satisfied. �

For the choices of E = λ and F = 0, we get the following corollary.

Corollary 2.1. Let c ∈ C, −1 ≤ F < E < 1, −1 ≤ F ≤ 0 and κ > 0. If the Bessel’s inequality

|c|
4κ

up+1,b,|c|(1) + λup,b,c(1) ≤ 2λ (2.9)

is satisfied, then zup,b,|c| ∈ S∗λ.

Theorem 2.6. Let c ∈ C and κ > 0. If the Bessel’s inequality

(1− F )
(|c|/4)2

κ(κ+ 1)
up+2,b,|c|(1) + (2 +E − 3F )

|c|
4κ

up+1,b,|c|(1) + (E − F )up,b,|c|(1) ≤ 2(E − F ) (2.10)

is satisfied, then the operator zup,b,c ∈ K [E,F ].

Proof. By an analogous similar result [1] mentioned as in the earlier theorem, a sufficient condition
for f ∈ K [E,F ] is that

∞∑
n=2

n [n(1− F )− (1− E)] |An| ≤ E − F,

where

An =
(−c/4)n−1

(κ)n−1(n− 1)!
.
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Then we have to show that

T1 :=
∞∑
n=2

n [n(1− F )− (1− E)] |An| ≤ E − F. (2.11)

Writing n = n− 1 + 1, and proceeding with the calculation as in the previous theorem, we get

T1 =
∞∑
n=2

n (n(1− F )− (1− E))

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣
≤

∞∑
n=2

(n(1− F )− (1− E))
(|c|/4)n−1

(κ)n−1(n− 2)!
+
∞∑
n=2

(n(1− F )− (1− E))
(|c|/4)n−1

(κ)n−1(n− 1)!
.

Breaking the above inequality into two parts and simplifying, we observe that the summation is
bounded above by E − F if (2.10) is satisfied. �

For the choices of E = λ and F = 0, we get the following corollary.

Corollary 2.2. Let c ∈ C and κ > 0. If the Bessel’s inequality

(|c|/4)2

κ(κ+ 1)
up+2,b,|c|(1) + (2 + λ)

|c|
4κ
up+1,b,|c|(1) + λup,b,|c|(1) ≤ 2λ (2.12)

is satisfied, then the operator zup,b,c ∈ Kλ.

Remark 2.2. For the choices of E = 1− 2α (0 ≤ α < 1) and F = −1, each of the above theorems
reduces to the results obtained by Baricz [3].

3. Inclusion properties involving the class of
Janowski starlike and convex functions

Let a function f ∈ A is said to be in the class Rτ (A,B) if∣∣∣∣ f ′(z)− 1

τ(A−B)−B(f ′(z)− 1)

∣∣∣∣ < 1 (−1 ≤ B < A ≤ 1; τ ∈ C \ {0}; z ∈ U). (3.1)

Clearly, a function f belongs to Rτ (A,B) if and only if there exists a function w regular in U
satisfying w(0) = 0 and |w(z)| < 1 z ∈ U such that

1 +
1

τ
(f ′(z)− 1) =

1 +Aw(z)

1 +Bw(z)
(z ∈ U).

The class Rτ (A,B) was introduced by Dixit and Pal [6]. For τ = 1, A = β, B = −β, (0 < β ≤ 1),
Rτ (A,B) reduces to the class of functions f ∈ A satisfying the inequality∣∣∣∣f ′(z)− 1

f ′(z) + 1

∣∣∣∣ < β (z ∈ U; 0 < β ≤ 1),

which was studied by Caplinger and Cauchy [4] and Padmanaban [14].
Now we aim at investigating various mapping and inclusion properties involving the class of

Janowski starlike and Janowski convex functions. To prove the main results we need the following
lemmas.
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Lemma 3.1. [6] Let a function f of the form (1.1) be in Rτ (A,B). Then

|an| ≤
(A−B)|τ |

n
.

The result is sharp for the function

f(z) =

∫ z

0

(
1 +

(A−B)|τ |zn−1

1 +Bzn−1

)
dz (n ≥ 2; z ∈ U)

Lemma 3.2. [6] Let a function f of the form (1.1) satisfy the inequality

∞∑
n=2

(1 + |B|)n|an| ≤ (A−B)|τ | (−1 ≤ B < A ≤ 1; τ ∈ C).

Then f ∈ Rτ (A,B). The result is sharp for the function

f(z) = z +
(A−B)τ

(1 + |B|)n
zn (n ≥ 2; z ∈ U).

Theorem 3.1. Let c ∈ C, κ > 0. Suppose that f ∈ Rτ (A,B). If the Bessel’s inequality

2up,b,|c|(1)− 4
(κ− 1)

c

(
up−1,b,|c|(1)− 1

)
≤ 1

(1 +B)
+ 1 (3.2)

is satisfied, then zup,b,c(z
2) ∗ f(z) ∈ Rτ (A,B)

Proof. Suppose that f ∈ Rτ (A,B). We note that

zup,b,c(z
2) = z +

∞∑
n=2

(−c4 )n−1

(κ)n−1(n− 1)!
z2n−1.

By Lemma 3.2, it is enough to show that
∞∑
n=2

(1 + |B|) (2n− 1)

∣∣∣∣ (−c4 )n−1

(κ)n−1(n− 1)!
an

∣∣∣∣ ≤ (A−B)|τ |.

Then by a similar proof as in the earlier theorem, we get

(A−B) |τ | (1 + |B|)
[
2up,b,|c|(1)− 4

(κ− 1)

|c|
(
up−1,b,|c|(1)− 1

)
− 1

]
≤ (A−B) |τ |,

which completes the proof of Theorem 3.1. �

Theorem 3.2. Let c ∈ C and κ > 0. Suppose that f ∈ Rτ (A,B) and satisfy the condition

up,b,|c|(1) ≤ 1

1 + |B|
+ 1. (3.3)

Then Ip,b,c f ∈ Rτ (A,B).

Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). By Lemma 3.2, it suffices to show
that

∞∑
n=2

n(1 + |B|)|An| ≤ (A−B)|τ |, (3.4)
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where

An =
(−c/4)n−1

(κ)n−1(n− 1)!
an.

By virtue of Lemma 3.1 and making use of the fact that |−c/4|n ≤ (|c|/4)n, we obtain

∞∑
n=2

n(1 + |B|)
∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!
an

∣∣∣∣ ≤ (1 + |B|) |τ | (A−B)

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!

= (1 + |B|) |τ | (A−B) [up,b,|c|(1)− 1],

which is bounded above by (A − B)|τ | in view of (3.3). This completes the proof of Theorem
3.2. �

Theorem 3.3. Let c ∈ C and κ > 0. Suppose that f ∈ Rτ (A,B). If the Bessel’s inequality

(1− F )up,b,|c|(1)− (1− E)
4(κ− 1)

|c|
up−1,b,|c|(1) ≤ E − F

(A−B)|τ |
+ E − F − (1− E)4(κ− 1)

|c|
(3.5)

is satisfied, then the operator Ip,b,c f ∈ S∗ [E,F ].

Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). A special case of Theorem 3 [1]
gives a sufficient condition that

∞∑
n=2

[n(1− F )− (1− E)] |An| ≤ E − F,

where

An =
(−c/4)n−1

(κ)n−1(n− 1)!
an.

Then we have to show that

T :=

∞∑
n=2

[n(1− F )− (1− E)] |An| ≤ E − F. (3.6)

Since, f ∈ Rτ (A,B), in virtue of Lemma 3.1,

T ≤
∞∑
n=2

[n(1− F )− (1− E)]

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣ (A−B)|τ |
n

= (A−B)|τ |

[
(1− F )

∞∑
n=2

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣− (1− E)

∞∑
n=2

∣∣∣∣∣ (−c4)n−1

(κ)n−1(n!)

∣∣∣∣∣
]

≤ (A−B)|τ |

[
(1− F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!
− (1− E)

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n!)

]

= (A−B)|τ |
[
(1− F )(up,b,|c|(1)− 1)− (1− E)

4(κ− 1)

|c|

(
up−1,b,|c|(1)− 1− |c|/4

(κ− 1)

)]
,

which is bounded above by E − F if (3.5) is satisfied. �

For the choices of E = λ and F = 0, we get the following corollary.
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Corollary 3.1. Let c ∈ C, κ > 0 and λ ∈ [0, 1]. Suppose that f ∈ Rτ (A,B) and satisfy the
condition

up,b,|c|(1) + (λ− 1)
4(κ− 1)

c
[up−1,b,|c|(1)− 1] ≤

(
1

(A−B) |τ |
+ 1

)
λ.

Then the operator Ip,b,cf ∈ S∗λ.

Theorem 3.4. Let c ∈ C and κ > 0. Suppose that f ∈ Rτ (A,B). If the Bessel’s inequality

(1− F )
|c|
4κ
up+1,b,|c|(1) + (E − F )up,b,|c|(1) ≤ (E − F )

(
1

(A−B)|τ |
+ 1

)
(3.7)

is satisfied, then the operator Ip,b,cf ∈ K [E,F ].

Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). We need to show (see [1]) that

∞∑
n=2

n [(n(1− F )− (1− E))] |An| ≤ E − F,

where

An =
(−c/4)n−1

(κ)n−1(n− 1)!
an.

Since, f ∈ Rτ (A,B), in virtue of Lemma 3.1,

T : =
∞∑
n=2

n [n(1− F )− (1− E)] |An| ≤ E − F

T ≤
∞∑
n=2

(n(1− F )− (1− E))

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣ (A−B)|τ |

= (A−B)|τ |

[
(1− F )

∞∑
n=2

n

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣− (1− E)
∞∑
n=2

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n− 1)!

∣∣∣∣∣
]

≤ (A−B)|τ |

[
(1− F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 2)!
+ (E − F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!

]

= (A−B)|τ |
[
(1− F )

|c|
4κ
up+1,b,|c|(1) + (E − F )

(
up,b,|c|(1)− 1

)]
,

which is bounded above by E−F if (3.7) is satisfied. This completes the proof of Theorem 3.4. �

For the choices of E = λ and F = 0, we get the following corollary.

Corollary 3.2. Let c ∈ C and κ > 0. Suppose that f ∈ Rτ (A,B). If the Bessel’s inequality

|c|
4κ
up+1,b,|c|(1) + λup,b,|c|(1) ≤ λ

(
1

(A−B)|τ |
+ 1

)
(3.8)

is satisfied, then the operator Ip,b,cf ∈ Kλ.
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4. Sufficient conditions for Bessel’s integral operator to be
in the class of S∗[E,F ] and K[E,F ]

As in the work of Baricz [3], one can look at other linear operators acting on up,b,c to obtain
similar results. In this section, we make use of this idea in the case of a particular integral operator.
We continue our earlier work that was done in the earlier section. That is, we determine sufficient
conditions for the integral operator g defined by (4.1) to be in the class of Janowski starlike and
Janowski convex functions as follows:

g(z) =

∫ z

0
up(t)dt

= z +
∞∑
n=2

bn−1
n

zn

= z +
∞∑
n=2

(−c/4)n−1

(κ)n−1(n!)
zn. (4.1)

Theorem 4.1. Let c ∈ C and κ > 0. Further, let −1 ≤ F < E < 1 and −1 ≤ F ≤ 0. If the
Bessel’s inequality

(1− F )up,b,|c|(1)− (1− E)
4(κ− 1)

|c|
up−1,b,|c|(1) ≤ 2(E − F )− (1− E)

4(κ− 1)

|c|
(4.2)

is satisfied, then the function g ∈ S∗ [E,F ] where g is defined by (4.1).

Proof. To prove the theorem, we have to show that

T :=
∞∑
n=2

[n(1− F )− (1− E)] |Bn| ≤ E − F, (4.3)

where

Bn =
(−c/4)n−1

(κ)n−1(n)!
.

Then

T =
∞∑
n=2

[n(1− F )− (1− E)]

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n)!

∣∣∣∣∣
≤ (1− F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!
− (1− E)

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n)!

= (1− F )
(
up,b,|c|(1)− 1

)
− (1− E)

[
4(κ− 1)

|c|

(
up−1,b,|c|(1)− 1− |c|/4

(κ− 1)

)]
,

which is bounded above by E − F if (4.2) is satisfied. �

For the choices of E = λ and F = 0, we get the following corollary.

Corollary 4.1. Let c ∈ C and κ > 0. Further, let λ ≥ 0. If the Bessel’s inequality

up,b,|c|(1)− (1− λ)
4(κ− 1)

|c|
up−1,b,|c|(1) ≤ 2λ+ (1− λ)

4(κ− 1)

|c|
(4.4)
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is satisfied, then the function g ∈ S∗λ where g is defined by (4.1).

Theorem 4.2. Let c ∈ C and κ > 0. Further, let −1 ≤ F < E < 1 and −1 ≤ F ≤ 0 and g be
defined as in (4.1). If the Bessel’s inequality

(1− F )
|c|
4κ
up+1,b,|c|(1) + (E − F )up,b,|c|(1) ≤ 2(E − F ) (4.5)

is satisfied, then the integral operator g ∈ K [E,F ].

Proof. We have to show that

T4 :=
∞∑
n=2

n (n(1− F )− (1− E)) |Bn| ≤ E − F, (4.6)

where

Bn =
(−c/4)n−1

(κ)n−1(n)!
.

Then

T4 =
∞∑
n=2

n [n(1− F )− (1− E)]

∣∣∣∣∣ (−c/4)n−1

(κ)n−1(n)!

∣∣∣∣∣
≤

∞∑
n=2

[n(1− F )− (1− E)]
(|−c/4|)n−1

(κ)n−1(n− 1)!

= (1− F )
∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 2)!
+ (E − F )

∞∑
n=2

(|c|/4)n−1

(κ)n−1(n− 1)!

= (1− F )
|c|
4κ
up+1,b,|c|(1) + (E − F )

(
up,b,|c|(1)− 1

)
,

which is bounded above by E − F if (4.5) is satisfied. �

For the choices of E = λ and F = 0, we get the following corollary.

Corollary 4.2. Let c ∈ C and κ > 0. Further, let −1 ≤ F < E < 1 and −1 ≤ F ≤ 0 and g be
defined as in (4.1). If the Bessel’s inequality

|c|
4κ
up+1,b,|c|(1) + λup,b,|c|(1) ≤ 2λ (4.7)

is satisfied, then g ∈ Kλ.

5. Consequences and observations

Since the study generalized Bessel function permits the study of Bessel, modifed Bessel and spher-
ical Bessel functions all together, each of these Theorems can also be stated for the Bessel, modified
Bessel and spherical Bessel functions for special choices of the parameters b and c. However, we
leave all these results for the interested readers.
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Abstract. We consider the pseudo-integral with respect to a σ−⊕-measure of set-valued
functions which was defined by Grb́ıc et al. Román-Flores et al.(2007) proved the Jensen

type inequality for fuzzy integral with respect to a fuzzy measure. In this paper, we prove
the Jensen type inequality for the ḡ-integral with respect to a σ−⊕g-measure under some
sufficient conditions.

1. Introduction

Benvenuti-Mesiar [2], Deschrijver [3], J. Fang [4], Mesiar-Pap [9], Ralescu-Adams [10], and
Wu-Wang-Ma [12] provided the properties and applications of the generalized fuzzy integral
which is a generalization of fuzzy integrals.

The integrals of set-valued functions was introduced by Aumanm [1], and Jang [6,7] and
Zhang-Guo [13] investigated some properties of the generalized fuzzy integral of set-valued
functions. Not long ago, authors in [8,11] proved the Jensen type inequality for the fuzzy
integral and for the generalized Sugeno integral. We consider the pseudo-integral with respect
to a σ−⊕-measure of set-valued functions which was defined by Grb́ıc et al [5]. Román-Flores
et al. [11] proved the Jensen type inequality for fuzzy integral with respect to a fuzzy measure.
In this paper, we prove the Jensen type inequality for ḡ-integral with respect to a σ − ⊕g-
measure under some sufficient conditions.

2. Jensen type inequality for the g-integral

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of R =
[−∞,∞] and let ≼ be a total order on [a, b]. We introduce a semiring which is a structure
([a, b],⊕,⊙) as follows.

Key words and phrases. Sugeno integral, σ −⊕-measure, ḡ-integral, Jensen inequality.
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Definition 2.1. ([2,7,9]) (1) A function ⊕ : [a, b]× [a, b] −→ [a, b] is called a pseudo-addition
if it is commutative, non-decreasing with respect to ≼, associative, and with a zero (natural)
element denoted by 0, that is, for each x ∈ [a, b], 0⊕ x = x holds (usually 0 is either a or b).

(2) A function ⊙ : [a, b] × [a, b] −→ [a, b] is called a pseudo-multiplication if it is commu-
tative, positively non-decreasing, that is, x ≼ y implies x ⊙ z ≼ y ⊙ z for all z ∈ [a, b]+ =
{x|x ∈ [a, b],0 ≼ x}, associative and there exists a unit element 1 ∈ [a, b], that is, for each
x ∈ [a, b],1⊙ x = x.

(3) The structure ([a, b],⊕,⊙) is called a semiring if 0 ⊙ x = 0 and ⊙ is a distributive
pseudo-multiplication with respect to ⊕, that is, x⊙ (y ⊕ z) = (x⊙ y)⊕ (x⊙ z).

(4) A set function µ : Σ −→ [a, b] is a σ − ⊕-measure if it satisfies the following two
conditions:

(i) µ(∅) = 0 (if ⊕ is not idempotent);
(ii) µ(∪∞

i=1Ai) = ⊕∞
i=1µ(Ai) holds for any sequence (Ai)i∈N of disjoint sets from Σ.

We note that for a real interval [a, b] = [0,∞], a pseudo-addition ⊕ and a pseudo-
multiplication ⊙ are generated by a strictly monotone bijective function g : [0,∞] −→ [0,∞],
that is, pseudo-operations are given by

x⊕g y = g−1(g(x) + g(y)) and x⊙g y = g−1(g(x)g(y)).

Now, the pseudo-integral, known as the g-integral, of some measurable function f : X −→
[0,∞] is

(g)

∫
X

fdµ =

∫ ⊕g

X

f ⊙g dµ = g−1

(∫
X

(g ◦ f) d(g ◦ µ)
)

(1)

where g ◦ µ is the Lebesgue measure and the integral on the right-hand side of (A) is the
Lebesgue integral (see [7,9]). Let (X,Σ, µ) be a σ−⊕-measure space. Grb́ıc et al. [5] defined
the pseudo-integral of an interval-valued function F on A ∈

∑
as follows;∫ ⊕

A

F ⊙ dµ = {
∫ ⊕

A

f ⊙ dµ|f ∈ S(F )} (2)

where µ is a σ − ⊕-measure and S(F ) is the set of all selections of F . Let L1(η) be the set
of all Lebesgue integrable functions on the Lebesgue space ([0,∞),

∑
, η) and f ∈ L1

⊕(µ) if
and only if g ◦ f ∈ L1(g ◦ µ). We introduce the definition of g-integrable boundedness of a
set-valued function F as follows:

Definition 2.2. ([5]) Let g be a strictly monotone bijective function. A set-valued function
F is g -integrable bounded if there is a function h ∈ L1

⊕(µ) such that
(i) ⊕α∈F (x)α ≼ h(x), for the idempotent pseudo-addition,
(ii) supα∈F (x) α ≼ h(x), for the pseudo-addition given by an increasing generator g,

(iii) infα∈F (x) α ≼ h(x), for the pseudo-addition given by a decreasing generator g.

From Proposition 11 in [5], we note that if F is a pseudo-integrable bounded set-valued

function, then F is pseudo-integrable, that is,
∫ ⊕
X
F ⊙ dµ ̸= ∅.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

468 JEONG GON LEE et al 467-473



3

Theorem 2.1. (Theorem 2.4 [5]) Let F be a pseudo-integrable bounded interval-valued func-
tion with border functions fl and fr. Then we have∫ ⊕

X

F ⊙ dµ =

[∫ ⊕

X

fl ⊙ dµ,

∫ ⊕

X

fr ⊙ dµ

]
, (3)

Now, we obtain the following Jensen type inequality for the g-integral with respect to a
σ −⊕g-measure.

Theorem 2.2. Let g be a decreasing function and (X,
∑
, g◦µ) be the Lebesgue measure space

and f ∈ L1
⊕µ with (g)

∫
X
fdµ = m. If Φ : [o,∞) −→ [0,∞) is strictly increasing function

such that Φ(x) ≤ x, for every x ∈ [0,m] and Φ(f) ∈ L1
⊕(µ), then we have

Φ

(
(g)

∫
X

fdµ

)
≤ (g)

∫
X

Φ(f)dµ. (4)

Proof. Since Φ(f) ≤ f and g is decrasing,

g ◦ Φ(f) ≥ g ◦ f. (5)

By (5) and monotonicity of the Lebesgue integral with respect to g ◦ µ, we have∫
X

g ◦ Φ(f) dg ◦ µ ≥
∫
X

g ◦ f dg ◦ µ. (6)

Since g−1 is decreasing, by (6), we have

g−1

∫
X

g ◦ Φ(f) dg ◦ µ ≤ g−1

∫
X

g ◦ f dg ◦ µ. (7)

By (7),

Φ

(
(g)

∫
X

fdµ

)
= Φ

(
g−1

∫
X

g ◦ f dg ◦ µ
)

≤ g−1

∫
X

g ◦ f dg ◦ µ

≤ g−1

∫
X

g ◦ Φ(f) dg ◦ µ

= (g)

∫
X

Φ(f)dµ.

□

Theorem 2.3. Let g be an increasing function and (X,
∑
, g ◦ µ) be the Lebesgue measure

space and f ∈ L1
⊕(µ) with (g)

∫
X
fdµ = m. If Φ : [0,∞) −→ [0,∞) is strictly increasing

function such that Φ(x) ≥ x, for every x ∈ [0,m], and Φ(f) ∈ L1
⊕(µ), then

Φ

(
(g)

∫
X

fdµ

)
≥ (g)

∫
X

Φ(f)dµ. (8)

Proof. Since Φ(f) ≤ f and g is increasing,

g ◦ Φ(f) ≤ g ◦ f. (9)

By (9) and monotonicity of the Lebesgue integral with respect to g ◦ µ, we have
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∫
X

g ◦ Φ(f) dg ◦ µ ≤
∫
X

g ◦ f dg ◦ µ. (10)

Since g−1 is increasing, by (10), we have

g−1

∫
X

g ◦ Φ(f) dg ◦ µ ≤ g−1

∫
X

g ◦ f dg ◦ µ. (11)

By (11),

Φ

(
(g)

∫
X

fdµ

)
= Φ

(
g−1

∫
X

g ◦ f dg ◦ µ
)

≥ g−1

∫
X

(g ◦ f) dg ◦ µ

≥ g−1

∫
X

g ◦ Φ(f) dg ◦ µ

= (g)

∫
X

Φ(f)dµ.

□

3. Jensen type inequality for the ḡ-integral

Let I([0,∞]) be the set of all bounded closed intervals in [0,∞] as follows :

I([0,∞]) = {ā = [al, ar]|al, ar ∈ [0,∞] and al ≤ ar}

For these intervals, we define the order, the strictly order, and strong strictly order of intervals
as follows:

Definition 3.1. ([5]) If ā = [al, ar], b̄ = [bl, br] ∈ I([0,∞]), then we define order (≤), strictly
order (<), and strong strictly order (≺s) as follows :

(a) ā ≤ b̄ if and only if al ≤ bl and ar ≤ br,
(b) ā < b̄ if and only if ā ≤ b̄ and ā ̸= b̄,
(c) ā ≺s b̄ if and only if al < bl and ar < br.

Definition 3.2. A mapping Φ = [Φl,Φr] : [0,∞) × [0,∞) −→ [0,∞) × [0,∞) by Φ(x, y) =
[Φl(x),Φr(y)] is called a strictly increasing function if for all x̄ = [xl, xr], ȳ = [yl, yr] ∈
[0,∞)× [0,∞),

x̄ ≺s ȳ ⇒ Φ(x̄) ≺s Φ(y).

From Definition 2.2, we directly obtain the following theorem.
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Theorem 3.1. Let Φ = [Φl,Φr] : [0,∞)×[0,∞) −→ [0,∞)×[0,∞) by Φ(x, y) = [Φl(x),Φr(y)]
be a mapping. Then Φ = [Φl,Φr] is an strictly increasing function if and only if Φl and Φr

are strictly increasing functions.

We remark that if f ∈ L1
⊕(ν) = L1(g◦µ), then f is a (g)-integrable function and g−1

∫
X
(g◦

g) dg ◦ µ is finite. By Theorem 2.1, and (1), we obtain the following theorem.

Theorem 3.2. Let F be a pseudo-inequality bounded interval-valued function with border
functions fl and fr. If ḡ = [gl, gr] is a monotone function and gl ◦ fl ∈ L1(gl ◦ µ) and
gr ◦ fr ∈ L1(gr ◦ µ). Then we have

(ḡ)

∫
X

f̄dµ =

[
(gl)

∫
X

fldµ, (gr)

∫
X

frdµ

]
. (12)

Proof. By (1), we have

(gl)

∫
X

fldµ = g−1
l

(∫
X

(gl ◦ f) dgl ◦ µ
)

=

∫ ⊕gl

X

f ⊙gl dµ. (13)

and

(gr)

∫
X

frdµ = g−1
r

(∫
X

(gr ◦ f) dgr ◦ µ
)

=

∫ ⊕gr

X

f ⊙gr dµ. (14)

By (13) and (14), and Theorem 2.1, we have

(ḡ)

∫
X

f̄dµ =

∫ ⊕ḡ

X

F ⊙ḡ dµ

=

[∫ ⊕gl

X

fl ⊙gl dµ,

∫ ⊕gr

X

fr ⊙gr dµ

]
=

[
(gl)

∫
X

fldµ, (gr)

∫
X

frdµ

]
.

□

Finally, we obtain the following Jensen inequality for the ḡ-integral with respect to a .

Theorem 3.3. Let ḡ be a decreasing function and (X,
∑
, gs ◦ µ) be the Lebesgue measure

space for s = l, r and gl ◦ fl ∈ L1(gl ◦ µ) and gr ◦ fr ∈ L1(gr ◦ µ) with (gl)
∫
X
fldµ = ml

and (gr)
∫
X
frdµ = mr. If Φ = [Φl,Φr] : [0,∞) × [0,∞) −→ [0,∞) × [0,∞) by Φ(x, y) =

[Φl(x),Φr(y)] is strictly increasing function such that Φ(x, y) ≤ (x, y) for every (x, y) ∈
[0,ml]× [0,mr] and Φl(fl) ∈ L1(gl ◦ µ) and Φr(fr) ∈ L1(gr ◦ µ), then we have

Φ

(
(ḡ)

∫
X

Fdµ

)
≤ (ḡ)

∫
X

Φ(F )dµ. (15)

Proof. By Theorem 3.1 we have the following two inequalities :

(ḡ)

∫
X

Fdµ =

[
(gl)

∫
X

fldµ, (gr)

∫
X

frdµ

]
(16)
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and

(ḡ)

∫
X

Φ(F )dµ =

[
(gl)

∫
X

Φl(fl)dµ, (gr)

∫
X

Φr(fr)dµ

]
. (17)

By Theorem 2.2, we have

Φs

(
(gs)

∫
X

fsdµ

)
≤ (gs)

∫
X

Φs(fx)dµ, (18)

for s = l, r. By (16), (17) and (18), we obtain the following result :

Φ

(
(ḡ

∫
X

Fdµ

)
=

[
Φl

(
(gl)

∫
X

fldµ

)
,Φr

(
(gr)

∫
X

frdµ

)]
≤

[
(gl)

∫
X

Φl(fl)dµ, (gr)

∫
X

Φr(fr)dµ

]
= (ḡ)

∫
X

[Φl(fl),Φr(fr)] dµ

= (ḡ)

∫
X

Φ(F )dµ.

□

Theorem 3.4. Let ḡ be an increasing function and (X,
∑
, gs ◦ µ) be the Legesgue measure

space and gl◦fl ∈ L1(gl◦µ) and gr ◦fr ∈ L1(gr ◦µ) with (gl)
∫
X
fldµ = ml and (gr)

∫
X
frdµ =

mr.
If Φ = [Φl,Φr] : [0,∞) × [0,∞) −→ [0,∞) × [0,∞) by Φ(x, y) = [Φl(x),Φr(y)] for all

(x, y) ∈ [0,∞) × [0,∞) is strictly increasing such that Φ(x, y) ≥ (x, y) for every (x, y) ∈
[0,ml]× [0,mr] and Φl(fl) ∈ L1(gl ◦ µ) and Φr(fr) ∈ L1(gr ◦ µ),

Φl

(
(ḡ)

∫
X

Fdµ

)
≥ (ḡ)

∫
X

Φ(F )dµ. (19)

Proof. By using Theorem 2.3,we have

Φs

(
(gs)

∫
X

fsdµ

)
≥ (gs)

∫
X

Φs(fs)dµ (20)

for s = l, r. By (16), (17) and (20), we obtain the following result:

Φ

(
(ḡ)

∫
X

Fdµ

)
=

[
Φl

(
(gl)

∫
X

fldµ

)
,Φr

(
(gr)

∫
X

frdµ

)]
≥

[
(gl)

∫
X

Φl(fl)dµ, (gr)

∫
X

Φr(fr)dµ

]
= (ḡ)

∫
X

[Φl(fl),Φr(fr)] dµ

= (ḡ)

∫
X

Φ(F )dµ.

□
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SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS ON THE

CO-ORDINATES

SHU-HONG WANG AND SHAN-HE WU

Abstract. In this paper, operator m-convex and (α, m)-convex function on the co-ordinates
are defined, and some new integral inequalities of Hermite-Hadamard type for operator m-

convex and (α, m)-convex on the co-ordinates are established.

1. Introduction

Throughout this paper, we adopt the notations: R = (−∞,∞) and R0 = [0,∞).
The following inequality holds for any convex function f defined on R and a, b ∈ R with a < b

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

. (1.1)

Both inequalities hold in the reversed direction if f is concave on [a, b]. The inequality (1.1)
is well known in the literature as Hermite-Hadamard’s inequality. We note that the Hermite-
Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows
easily from Jensen’s inequality.

The concept of m-convexity was first introduced by G. Toader in [19] (see also [2]) and it is
defined as follows:

Definition 1.1 ([19]). The function f : [0, b] → R, b > 0 is said to be m-convex, where m ∈ [0, 1],
if for every x, y ∈ [0, b] and t ∈ [0, 1], we have

f(tx + m(1− t)y) ≤ tf(x) + m(1− t)f(y). (1.2)

The class of (α, m)-convex functions was also first introduced in [16] and it is defined as follows:

Definition 1.2 ([16]). The function f : [0, b] → R, b > 0 is said to be (α, m)-convex, where
(α, m) ∈ [0, 1]2, if we have

f(tx + m(1− t)y) ≤ tαf(x) + m(1− tα)f(y) (1.3)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Also, the m-convex and (α, m)-convex functions on the co-ordinates defined in a rectangle
from the plane were introduced as follows.

Definition 1.3 ([17]). Let 4 := [0, b] × [0, d] be the bidimensional interval in R2
0 with b > 0

and d > 0. For some m ∈ [0, 1], the function f : 4 → R is said to be m-convex if the following
inequality

f(λx + (1− λ)z, λy + m(1− λ)w) ≤ λf(x, y) + m(1− λ)f(z, w) (1.4)

1991 Mathematics Subject Classification. 15A45, 15A46, 15A47, 26A51, 26D15.
Key words and phrases. integral inequality; operator m-convex function on the co-ordinates; operator (α, m)-
convex function on the co-ordinates.
This paper was typeset using AMS-LATEX.
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holds for all (x, y), (z, w) ∈ 4 and λ ∈ (0, 1).

Definition 1.4 ([17]). For some m ∈ [0, 1], a function f : 4 := [0, b]× [0, d] ⊆ R2
0 → R which is

m-convex on 4 will be called m-convex on the co-ordinates with b > 0 and d > 0 if the partial
mappings

fy : [a, b] → R, fy(u) := f(u, y)
and

fx : [c, d] → R, fx(v) := f(x, v)
are m-convex for all y ∈ [c, d] and x ∈ [a, b].

Definition 1.5 ([17]). Let 4 := [0, b] × [0, d] be the bidimensional interval in R2
0 with b > 0

and d > 0. For some (α, m) ∈ [0, 1]2, the function f : 4 → R is said to be (α, m)-convex if the
following inequality

f(λx + (1− λ)z, λy + m(1− λ)w) ≤ λαf(x, y) + m(1− λα)f(z, w) (1.5)

holds for all (x, y), (z, w) ∈ 4 and λ ∈ (0, 1).

Definition 1.6 ([17]). For some (α, m) ∈ [0, 12], a function f : 4 := [0, b] × [0, d] ⊆ R2
0 → R

which is (α, m)-convex on 4 will be called (α, m)-convex on the co-ordinates with b > 0 and
d > 0 if the partial mappings

fy : [a, b] → R, fy(u) := f(u, y)

and
fx : [c, d] → R, fx(v) := f(x, v)

are (α, m)-convex for all y ∈ [c, d] and x ∈ [a, b].

In recent years several extensions and generalizations have been considered for classical con-
vexity. A significant generalization of convex functions is that of operator functions introduced
by S. S. Dragomir in [6].

We review the operator order in B(H) and the continuous functional calculus for a bounded
self-adjoint operator. For self-adjoint operators A,B ∈ B(H), we write A ≤ B if 〈Ax, x〉 ≤
〈Bx, x〉 for every vector x ∈ H, we call it the operator order.

Let A be a bounded self-adjoint linear operator on a complex Hilbert space (H; 〈., .〉). The
Gelfand map establishes a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all contin-
uous complex-valued functions defined on the spectrum of A, denoted Sp(A), and the C∗-algebra
C∗(A) generated by A and the identity operator 1H on H as follows (see for instance [8], p.3).
For any f, g ∈ C(Sp(A)) and any α, β ∈ C, we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);

(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f∗) = Φ(f)∗;

(iii) ‖Φ(f) ‖=‖ f‖ := sup
t∈Sp(A)

| f |;

(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for t ∈ Sp(A).

With this notation, we define

f(A) := Φ(f) for all f ∈ C(Sp(A)) (1.6)

and we call it the continuous functional calculus for a bounded self-adjoint operator A.
A real valued continuous function f on an interval I ⊆ R is said to be operator convex

(operator concave) if the operator inequality

f((1− λ)A + λB) ≤ (≥)(1− λ)f(A) + λf(B) (1.7)
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holds in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint operators
A and B in B(H) whose spectra are contained in I.

In [20], Wang defined operator m-convex and (α, m)-convex functions in the following way:.

Definition 1.7. Let [0, b] ⊆ R0 with b > 0 and K be a convex set of B(H)+. A continuous
function f : [0, b] → R is said to be operator m-convex on [0, b] for operators in K, if

f(tA + m(1− t)B) ≤ tf(A) + m(1− t)f(B) (1.8)

in the operator order in B(H), for all t ∈ [0, 1] and every positive operators A and B in K whose
spectra are contained in [0, b] and for some fixed m ∈ [0, 1].

Definition 1.8. Let [0, b] ⊆ R0 with b > 0 and K be a convex set of B(H)+. A continuous
function f : [0, b] → R is said to be operator (α, m)-convex on [0, b] for operators in K, if

f(tA + m(1− t)B) ≤ tαf(A) + m(1− tα)f(B) (1.9)

in the operator order in B(H), for all t ∈ [0, 1] and every positive operators A and B in K whose
spectra are contained in [0, b] and for some fixed (α, m) ∈ [0, 1]2.

Also, author proved the following inequalities in [20]:

Theorem 1.1 ([20]). Let the continuous function f : R0 → R be operator (α, m)-convex for
operators in K ⊆ B(H)+ with (α, m) ∈ (0, 1]2. Then for all positive operator A,B ∈ K with
spectra in R0, the following inequality holds:∫ 1

0

f(tA + (1− t)B) dt ≤ min

{
f(A) + αmf

(
B
m

)
α + 1

,
f(B) + αmf

(
A
m

)
α + 1

}
. (1.10)

Theorem 1.2 ([20]). Let the continuous function f : R0 → R be operator (α, m)-convex for
operators in K ⊆ B(H)+ with (α, m) ∈ (0, 1]2. Then for all positive operator A,B ∈ K with
spectra in R0, the following inequalities hold:

f

(
A + B

2

)
≤ 1

2α

∫ 1

0

[
f(tA + (1− t)B) + m(2α − 1)f

(
(1− t)A + tB

m

)]
dt

≤ 1
2α+1(α + 1)

{
f(A) + f(B) + m(α + 2α − 1)

[
f

(
A

m

)
+ f

(
B

m

)]
+ αm2(2α − 1)

[
f

(
A

m2

)
+ f

(
B

m2

)]}
. (1.11)

Theorem 1.3 ([20]). Let the continuous function f : R0 → R be operator (α, m)-convex for
operators in K ⊆ B(H)+ with (α, m) ∈ (0, 1]2. Then for all positive operator A,B ∈ K with
spectra in R0, the following inequality holds:∫ 1

0

f(tA + (1− t)B) dt ≤
f(A) + f(B) + αm

[
f
(

A
m

)
+ f

(
B
m

)]
2(α + 1)

. (1.12)

Theorem 1.4 ([20]). Let the continuous function f : R0 → R be operator (α, m)-convex for
operators in K ⊆ B(H)+ with (α, m) ∈ (0, 1]2. Then for all positive operator A,B ∈ K with
spectra in R0, the following inequality holds:∫ 1

0

[
f(tA + m(1− t)B) + f(tB + m(1− t)A)

]
dt ≤ (1 + mα)[f(A) + f(B)]

α + 1
. (1.13)
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Theorem 1.5 ([20]). Let the continuous function f : R0 → R be operator (α, m)-convex for
operators in K ⊆ B(H)+ with (α, m) ∈ (0, 1]2. Then for all positive operator A,B ∈ K with
spectra in R0, the following inequalities hold:

f

(
2−m

2
B +

m

2
(mA)

)
≤ 1

2α

∫ 1

0

[
f
(
t(2−m)B + (1− t)m2A

)
+ m(2α − 1)f

(
(1− t)(2−m)B + tm2A

m

)]
dt

≤ 1
2α(α + 1)

[
f((2−m)B) + m

(
α + 2α − 1

)
f(mA)

+ m2α(2α − 1)f
(

(2−m)B
m2

)]
. (1.14)

For recent results related to Hermite-Hadamard type inequalities are given in [1], [4], [5], [7],
[8], [9], [10], [13], [14], and plenty of references therein.

The main purpose of this paper is to establish some new Hadamard type inequalities for
operator m)-convex and (α, m)-convex functions on the co-ordinates.

2. operator co-ordinated m-convex and (α, m)-convex functions

Let I1, I2 be real intervals and let f : I1 × I2 → R be a Borel measurable and essentially
bounded function. Let X = (X1, X2) be a 2-tuple of bounded self-adjoint operators on Hilbert
spaces H1,H2 such that the spectrum of Xi is contained in Ii for i = 1, 2. We say that such a
2-tuple is in the domain of f . If

Xi =
∫

Ii

λiEi(dλi), i = 1, 2

is the spectral decomposition of Xi where Ei is a bounded positive measure on Ii, we define

f(X) =
∫

I1×I2

f(λ1, λ2)E1(dλ1)⊗ E2(dλ2)

as a bounded self-adjoint operator on the tensor product H1 ⊗H2. If the Hilbert spaces are of
finite dimension, then the above integrals become finite sums, and we may consider the functional
calculus for arbitrary real functions. This construction have the property that

f(X1, X2) = f1(X1)⊗ f2(X2),

whenever f can be separated as a product f(t1, t2) = f1(t1)f2(t2) of 2 functions each depending
on only one variable.

With above functional calculus, we say that a function f : I1 × I2 → R is operator convex if
f is continuous and the operator inequality

f(tX + (1− t)Y ) ≤ tf(X) + (1− t)f(Y ) (2.1)

holds for all 2-tuples of self-adjoint operators X = (X1, X2) and Y = (Y1, Y2) in the domain of
f acting on any Hilbert spaces H1,H2 and for all t ∈ [0, 1].

In [21], Hermite-Hadamard type inequality for the co-ordinated operator convex functions is
given.

Theorem 2.1. Suppose that a continuous function f : I1 × I2 ⊆ R2 → R is operator convex on
the co-ordinates for all 2-tuples of self-adjoint operators in the domain of f acting on any Hilbert
spaces H1,H2. Then we have the inequalities

f

(
A + C

2
,
B + D

2

)
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≤1
2

[ ∫ 1

0

f

(
tA + (1− t)C,

B + D

2

)
dt +

∫ 1

0

f

(
A + C

2
, λB + (1− λ)D

)
dλ

]
≤

∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dt dλ

≤1
4

[ ∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+
∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

]
≤f(A,B) + f(A,D) + f(C,B) + f(C,D)

4
, (2.2)

where (A,B), (C,D) ∈ B(H1)⊗B(H2) with spectra in I1 × I2.

For some fundamental results on operator convex and operator monotone functions of several
variables, see [11], [12], [15], and the references therein

Now we give the concepts of operator m-convex and (α, m)-convex functions on the co-
ordinates.

Definition 2.1. A continuous function f : [0, b]×[0, d] ⊆ R2
0 → R is said to be operator m-convex

with b > 0 and d > 0 for some fixed m ∈ [0, 1] if the operator inequality

f(tX1 + (1− t)Y1, tX2 + m(1− t)Y2) ≤ tf(X1, X2) + m(1− t)f(Y1, Y2) (2.3)

holds for all 2-tuples of self-adjoint operators X = (X1, X2) and Y = (Y1, Y2) in the domain of
f acting on any Hilbert spaces H1,H2 and for all t ∈ (0, 1).

Definition 2.2. A continuous function f : [0, b] × [0, d] ⊆ R2
0 → R which is operator m-convex

on [0, b] × [0, d] with b > 0 and d > 0 is said to be operator m-convex on the co-ordinates for
some fixed m ∈ [0, 1] if the partial mapping

fX2 : I1 → R, fX2(u) := f(u, X2)

and
fX1 : I2 → R, fX1(v) := f(X1, v)

are operator m-convex for all operators X2 ∈ B(H2) and X1 ∈ B(H1) whose spectra are con-
tained in [0, d] and [0, b], respectively.

Definition 2.3. A continuous function f : [0, b] × [0, d] ⊆ R2
0 → R is said to be operator

(α, m)-convex with b > 0 and d > 0 for some fixed (α, m) ∈ [0, 1]2 if the operator inequality

f(tX1 + (1− t)Y1, tX2 + m(1− t)Y2) ≤ tαf(X1, X2) + m(1− tα)f(Y1, Y2) (2.4)

holds for all 2-tuples of self-adjoint operators X = (X1, X2) and Y = (Y1, Y2) in the domain of
f acting on any Hilbert spaces H1,H2 and for all t ∈ (0, 1).

Definition 2.4. A continuous function f : [0, b] × [0, d] ⊆ R2
0 → R which is operator (α, m)-

convex on [0, b] × [0, d] with b > 0 and d > 0 is said to be operator (α, m)-convex on the
co-ordinates for some fixed (α, m) ∈ [0, 1]2 if the partial mapping

fX2 : I1 → R, fX2(u) := f(u, X2)

and
fX1 : I2 → R, fX1(v) := f(X1, v)

are operator (α, m)-convex for all operators X2 ∈ B(H2) and X1 ∈ B(H1) whose spectra are
contained in [0, d] and [0, b], respectively.
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Remark 2.1. It can be easily seen that for (α, m) ∈ {(1, 1), (1,m)} one obtains the classes of
operator convex and operator m-convex functions of two variables, respectively.

The following lemmas hold:

Lemma 2.1. For b > 0, d > 0, and some fixed m ∈ [0, 1], every operator m-convex mapping
f : [0, b] × [0, d] ⊆ R2

0 → R is operator m-convex on the co-ordinates, but the converse is not
generally true.

Proof. Suppose that f is operator m-convex mapping on [0, b] × [0, d]. Consider fX1 : [0, d] →
R, fX1(v) := f(X1, v). Then for all t ∈ (0, 1) and operators A,C ∈ B(H2) with spectra in [0, d],
one has

fX1(tA + m(1− t)C) = f(tX1 + (1− t)X1, tA + m(1− t)C)

≤ tf(X1, A) + m(1− t)f(X1, C) = tfX1(A) + m(1− t)fX1(C),

where X1 ∈ B(H1) with spectra in [0, b]. It shows the operator m-convexity of fX1 .
The fact that fX2 : [0, b] → R, fX2(u) := f(u, X2) is also operator m-convex on [0, b] for all

operators X2 ∈ B(H2) with spectra in [0, d] goes likewise and we shall omit the details.
In [21], authors gave a mapping f : [0, 1]2 → R0 defined by f(r1, r2) = r1 × r2 which is

operator convex on the co-ordinates but is not operator convex. We consider the same function
with m = 1 to prove that the operator m-convexity on the co-ordinates does not imply the
operator m-convexity.

The Lemma 2.1 is thus proved. �

Similarly, we state the following elementary results without proof.

Lemma 2.2. For b > 0, d > 0, and some fixed (α, m) ∈ [0, 1]2, every operator (α, m)-convex
mapping f : [0, b] × [0, d] ⊆ R2

0 → R is operator (α, m)-convex on the co-ordinates, but the
converse is not generally true.

3. Hermite-Hadamard type inequalities for operator m-convex and
(α, m)-convex functions on the co-ordinates

We will now point out some new inequalities of the Hermite-Hadamard type.

Theorem 3.1. Let some fixed (α, m) ∈ (0, 1]2 and a continuous function f : R2
0 → R be operator

(α, m)-convex on the co-ordinates for all 2-tuples of positive self-adjoint operators in the domain
of f acting on any Hilbert spaces H1,H2. Then one has∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt ≤ min{v1, v2}+ min{v3, v4}
2(α + 1)

, (3.1)

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in R2
0, and

v1 =
∫ 1

0

f(tA + (1− t)C,B) dt + αm

∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt,

v2 =
∫ 1

0

f(tA + (1− t)C,D) dt + αm

∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt,

v3 =
∫ 1

0

f(A, λB + (1− λ)D) dλ + αm

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ,

v4 =
∫ 1

0

f(C, λB + (1− λ)D) dλ + αm

∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ. (3.2)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

479 SHU-HONG WANG et al 474-487



HERMITE-HADAMARD TYPE INEQUALITIES 7

Proof. Since the spectrum of tA + (1 − t)C and λB + (1 − λ)D are contained in R0, and f is
continuous, the operator valued integrals

∫ 1

0
f(tA + (1 − t)C) dt,

∫ 1

0
f(λB + (1 − λ)D) dλ and∫ 1

0

∫ 1

0
f(tA + (1− t)C, λB + (1− λ)D) dt dλ exist.

From the operator co-ordinated (α, m)-convexity of f and the inequality (1.10) it is easy to
see that ∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dt

≤min

{
f(A, λB + (1− λ)D)) + αmf

(
C
m , λB + (1− λ)D)

)
α + 1

,

f(C, λB + (1− λ)D)) + αmf
(

A
m , λB + (1− λ)D)

)
α + 1

}
.

Integrating this inequality on [0, 1] over λ, we deduce∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dt dλ

≤ 1
α + 1

min

{∫ 1

0

f(A, λB + (1− λ)D) dλ + αm

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ,

∫ 1

0

f(C, λB + (1− λ)D) dλ + αm

∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ

}
. (3.3)

By a similar argument we get∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤ 1
α + 1

min

{∫ 1

0

f(tA + (1− t)C,B) dt + αm

∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt,

∫ 1

0

f(tA + (1− t)C,D) dt + αm

∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt

}
. (3.4)

Summing the inequalities (3.3) and (3.4) and dividing by 2, we get the inequality (3.1).
The proof thus is complete. �

Corollary 3.1.1. Under the assumptions of Theorem 3.1, choosing α = 1, we get the inequality
for operator m-convex:∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt ≤ min{u1, u2}+ min{u3, u4}
4

, (3.5)

where

u1 =
∫ 1

0

f(tA + (1− t)C,B) dt + m

∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt,

u2 =
∫ 1

0

f(tA + (1− t)C,D) dt + m

∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt,

u3 =
∫ 1

0

f(A, λB + (1− λ)D) dλ + m

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ,
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u4 =
∫ 1

0

f(C, λB + (1− λ)D) dλ + m

∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ. (3.6)

Furthermore, for α, m = 1 we have∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤1
4

[∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+
∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

]
. (3.7)

Theorem 3.2. Let some fixed (α, m) ∈ (0, 1]2 and a continuous function f : R2
0 → R be operator

(α, m)-convex on the co-ordinates for all 2-tuples of positive self-adjoint operators in the domain
of f acting on any Hilbert spaces H1,H2. Then one has

f

(
A + C

2
,
B + D

2

)
≤ 1

2α+1

{∫ 1

0

[
f

(
A + C

2
, λB + (1− λ)D

)
+ m(2α − 1)f

(
A + C

2
,
(1− λ)B + λD

m

)]
dλ

+
∫ 1

0

[
f

(
tA + (1− t)C,

B + D

2

)
+ m(2α − 1)f

(
(1− t)A + tC

m
,
B + D

2

)]
dt

}
≤ 1

2α+2(α + 1)

{
f

(
A + C

2
, B

)
+ f

(
A + C

2
, D

)
+ f

(
A,

B + D

2

)
+ f

(
C,

B + D

2

)
+ m(α + 2α − 1)

[
f

(
A + C

2
,
B

m

)
+ f

(
A + C

2
,
D

m

)
+ f

(
A

m
,
B + D

2

)
+ f

(
C

m
,
B + D

2

)]
+ αm2(2α − 1)

[
f

(
A + C

2
,

B

m2

)
+ f

(
A + C

2
,

D

m2

)
+ f

(
A

m2
,
B + D

2

)
+ f

(
C

m2
,
B + D

2

)]}
, (3.8)

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in R2
0.

Proof. By operator co-ordinated (α, m)-convexity of f and and the inequality (1.11), we can give

f

(
A + C

2
,
B + D

2

)
≤ 1

2α

∫ 1

0

[
f

(
tA + (1− t)C,

B + D

2

)
+ m(2α − 1)f

(
(1− t)A + tC

m
,
B + D

2

)]
dt

≤ 1
2α+1(α + 1)

{
f

(
A,

B + D

2

)
+ f

(
C,

B + D

2

)
+ m(α + 2α − 1)

[
f

(
A

m
,
B + D

2

)
+ f

(
C

m
,
B + D

2

)]
+ αm2(2α − 1)

[
f

(
A

m2
,
B + D

2

)
+ f

(
C

m2
,
B + D

2

)]}
(3.9)

and

f

(
A + C

2
,
B + D

2

)
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≤ 1
2α

∫ 1

0

[
f

(
A + C

2
, λB + (1− λ)D

)
+ m(2α − 1)f

(
A + C

2
,
(1− λ)B + λD

m

)]
dλ

≤ 1
2α+1(α + 1)

{
f

(
A + C

2
, B

)
+ f

(
A + C

2
, D

)
+ m(α + 2α − 1)

[
f

(
A + C

2
,
B

m

)
+ f

(
A + C

2
,
D

m

)]
+ αm2(2α − 1)

[
f

(
A + C

2
,

B

m2

)
+ f

(
A + C

2
,

D

m2

)]}
(3.10)

Summing the inequalities (3.9) and (3.10) and dividing by 2, we get the inequality (3.8).
The proof is completed. �

Corollary 3.2.1. Under the assumptions of Theorem 3.2, choosing α = 1, we get the inequality
for operator m-convex:

f

(
A + C

2
,
B + D

2

)
≤1

4

{∫ 1

0

[
f

(
A + C

2
, λB + (1− λ)D

)
+ mf

(
A + C

2
,
(1− λ)B + λD

m

)]
dλ

+
∫ 1

0

[
f

(
tA + (1− t)C,

B + D

2

)
+ mf

(
(1− t)A + tC

m
,
B + D

2

)]
dt

}
≤ 1

16

{
f

(
A + C

2
, B

)
+ f

(
A + C

2
, D

)
+ f

(
A,

B + D

2

)
+ f

(
C,

B + D

2

)
+ 2m

[
f

(
A + C

2
,
B

m

)
+ f

(
A + C

2
,
D

m

)
+ f

(
A

m
,
B + D

2

)
+ f

(
C

m
,
B + D

2

)]
+ m2

[
f

(
A + C

2
,

B

m2

)
+ f

(
A + C

2
,

D

m2

)
+ f

(
A

m2
,
B + D

2

)
+ f

(
C

m2
,
B + D

2

)]}
. (3.11)

Furthermore, for α, m = 1 we have

f

(
A + C

2
,
B + D

2

)
≤1

2

[∫ 1

0

f

(
A + C

2
, λB + (1− λ)D

)
dλ +

∫ 1

0

f

(
tA + (1− t)C,

B + D

2

)
dt

]
≤1

4

[
f

(
A + C

2
, B

)
+ f

(
A + C

2
, D

)
+ f

(
A,

B + D

2

)
+ f

(
C,

B + D

2

)]
. (3.12)

Theorem 3.3. Let some fixed (α, m) ∈ (0, 1]2 and a continuous function f : R2
0 → R be operator

(α, m)-convex on the co-ordinates for all 2-tuples of positive self-adjoint operators in the domain
of f acting on any Hilbert spaces H1,H2. Then one has∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤ 1
4(α + 1)

{∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+ αm

[∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt +

∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt

]
+

∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ
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+ αm

[∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ +

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ

]}
, (3.13)

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in R2
0.

Proof. Using operator co-ordinated (α, m)-convexity of f and the inequality (1.12), we can write∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dt

≤ 1
2(α + 1)

{
f(A, λB + (1− λ)D) + f(C, λB + (1− λ)D)

+ αm

[
f

(
A

m
,λB + (1− λ)D

)
+ f

(
C

m
,λB + (1− λ)D

)]}
.

Integrating this inequality on [0, 1] over λ, we deduce∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dt dλ

≤ 1
2(α + 1)

{∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

+ αm

[∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ +

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ

]}
. (3.14)

By a similar argument we get∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤ 1
2(α + 1)

{∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+ αm

[∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt +

∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt

]}
. (3.15)

Summing the inequalities (3.14) and (3.15) and dividing by 2, we get the inequality (3.13).
The proof thus is complete. �

Corollary 3.3.1. Under the assumptions of Theorem 3.3, choosing α = 1, we get the inequality
for operator m-convex:∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤1
8

{∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt + m

[∫ 1

0

f

(
tA + (1− t)C,

B

m

)
dt

+
∫ 1

0

f

(
tA + (1− t)C,

D

m

)
dt

]
+

∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

+ m

[∫ 1

0

f

(
A

m
,λB + (1− λ)D

)
dλ +

∫ 1

0

f

(
C

m
,λB + (1− λ)D

)
dλ

]}
. (3.16)

Furthermore, for α, m = 1 we have∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt
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≤1
4

[∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+
∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

]
. (3.17)

Theorem 3.4. Let some fixed (α, m) ∈ (0, 1]2 and a continuous function f : R2
0 → R be operator

(α, m)-convex on the co-ordinates for all 2-tuples of positive self-adjoint operators in the domain
of f acting on any Hilbert spaces H1,H2. Then one has∫ 1

0

∫ 1

0

[
f(tA + m(1− t)C, λB + m(1− λ)D) + f(tC + m(1− t)A, λB + m(1− λ)D)

]
dt dλ

≤ 1 + mα

2(α + 1)

[∫ 1

0

f(tA + m(1− t)C,B) dt +
∫ 1

0

f(tA + m(1− t)C,D) dt

+
∫ 1

0

f(A, λB + m(1− λ)D) dλ +
∫ 1

0

f(C, λB + m(1− λ)D) dλ

]
, (3.18)

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in R2
0.

Proof. Using operator co-ordinated (α, m)-convexity of f and the inequality (1.13), we can write∫ 1

0

[
f(tA + m(1− t)C, λB + m(1− λ)D) + f(tC + m(1− t)A, λB + m(1− λ)D)

]
dt

≤ (1 + mα)[f(A, λB + m(1− λ)D) + f(C, λB + m(1− λ)D]
α + 1

.

Integrating this inequality on [0, 1] over λ, we deduce∫ 1

0

∫ 1

0

[
f(tA + m(1− t)C, λB + m(1− λ)D) + f(tC + m(1− t)A, λB + m(1− λ)D)

]
dt dλ

≤1 + mα

α + 1

[∫ 1

0

f(A, λB + m(1− λ)D) dλ +
∫ 1

0

f(C, λB + m(1− λ)D) dλ

]
. (3.19)

By a similar argument we get∫ 1

0

∫ 1

0

[
f(tA + m(1− t)C, λB + m(1− λ)D) + f(tC + m(1− t)A, λB + m(1− λ)D)

]
dt dλ

≤1 + mα

α + 1

[∫ 1

0

f(tA + m(1− t)C,B) dt +
∫ 1

0

f(tA + m(1− t)C,D) dt

]
. (3.20)

Summing the inequalities (3.19) and (3.20) and dividing by 2, we get the inequality (3.18).
The proof thus is complete. �

Corollary 3.4.1. Under the assumptions of Theorem 3.3, choosing α = 1, we get the inequality
for operator m-convex:∫ 1

0

∫ 1

0

[
f(tA + m(1− t)C, λB + m(1− λ)D) + f(tC + m(1− t)A, λB + m(1− λ)D)

]
dt dλ

≤1 + m

4

[∫ 1

0

f(tA + m(1− t)C,B) dt +
∫ 1

0

f(tA + m(1− t)C,D) dt

+
∫ 1

0

f(A, λB + m(1− λ)D) dλ +
∫ 1

0

f(C, λB + m(1− λ)D) dλ

]
. (3.21)
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Furthermore, for α, m = 1 we have∫ 1

0

∫ 1

0

f(tA + (1− t)C, λB + (1− λ)D) dλ dt

≤1
4

[∫ 1

0

f(tA + (1− t)C,B) dt +
∫ 1

0

f(tA + (1− t)C,D) dt

+
∫ 1

0

f(A, λB + (1− λ)D) dλ +
∫ 1

0

f(C, λB + (1− λ)D) dλ

]
. (3.22)

Theorem 3.5. Let some fixed (α, m) ∈ (0, 1]2 and a continuous function f : R2
0 → R be operator

(α, m)-convex on the co-ordinates for all 2-tuples of positive self-adjoint operators in the domain
of f acting on any Hilbert spaces H1,H2. Then one has

f

(
2−m

2
C +

m

2
(mA),

2−m

2
D +

m

2
(mB)

)
≤ 1

2α+1

[∫ 1

0

f

(
2−m

2
C +

m

2
(mA), λ(2−m)D + (1− λ)m2B

)
dλ

+ m(2α − 1)
∫ 1

0

f

(
2−m

2
C +

m

2
(mA),

(1− λ)(2−m)D + λm2B

m

)
dλ

+
∫ 1

0

f

(
t(2−m)C + (1− t)m2A,

2−m

2
D +

m

2
(mB)

)
dt

+ m(2α − 1)
∫ 1

0

f

(
(1− t)(2−m)C + tm2A

m
,
2−m

2
D +

m

2
(mB)

)
dt

]
≤ 1

2α+2(α + 1)

[
f

(
2−m

2
C +

m

2
(mA), (2−m)D

)
+ m

(
α + 2α − 1

)
f

(
2−m

2
C +

m

2
(mA),mB

)
+ m2α(2α − 1)f

(
2−m

2
C +

m

2
(mA),

(2−m)D
m2

)
+ f

(
(2−m)C,

2−m

2
D +

m

2
(mB)

)
+ m

(
α + 2α − 1

)
f

(
mA,

2−m

2
D +

m

2
(mB)

)
+ m2α(2α − 1)f

(
(2−m)C

m2
,
2−m

2
D +

m

2
(mB)

)]
, (3.23)

where (A,B), (C,D) ∈ B(H1)×B(H2) with spectra in R2
0.

Proof. From operator co-ordinated (α, m)-convexity of f and the inequality (1.14), we can deduce

f

(
2−m

2
C +

m

2
(mA),

2−m

2
D +

m

2
(mB)

)
≤ 1

2α

∫ 1

0

[
f

(
t(2−m)C + (1− t)m2A,

2−m

2
D +

m

2
(mB)

)
+ m(2α − 1)f

(
(1− t)(2−m)C + tm2A

m
,
2−m

2
D +

m

2
(mB)

)]
dt

≤ 1
2α+1(α + 1)

{
f

(
(2−m)C,

2−m

2
D +

m

2
(mB)

)
+ m

(
α + 2α − 1

)
f

(
mA,

2−m

2
D +

m

2
(mB)

)
+ m2α(2α − 1)f

(
(2−m)C

m2
,
2−m

2
D +

m

2
(mB)

)}
(3.24)
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and

f

(
2−m

2
C +

m

2
(mA),

2−m

2
D +

m

2
(mB)

)
≤ 1

2α

∫ 1

0

[
f

(
2−m

2
C +

m

2
(mA), λ(2−m)D + (1− λ)m2B

)
+ m(2α − 1)f

(
2−m

2
C +

m

2
(mA),

(1− λ)(2−m)D + λm2B

m

)]
dλ

≤ 1
2α+1(α + 1)

{
f

(
2−m

2
C +

m

2
(mA), (2−m)D

)
+ m

(
α + 2α − 1

)
f

(
2−m

2
C +

m

2
(mA),mB

)
+ m2α(2α − 1)f

(
2−m

2
C +

m

2
(mA),

(2−m)D
m2

)}
. (3.25)

Summing the inequalities (3.24) and (3.25) and dividing by 2, we get the inequality (3.23).
The proof is completed. �

Corollary 3.5.1. Under the assumptions of Theorem 3.5, choosing α = 1, we get the inequality
for operator m-convex:

f

(
2−m

2
C +

m

2
(mA),

2−m

2
D +

m

2
(mB)

)
≤1

4

[∫ 1

0

f

(
2−m

2
C +

m

2
(mA), λ(2−m)D + (1− λ)m2B

)
dλ

+ m

∫ 1

0

f

(
2−m

2
C +

m

2
(mA),

(1− λ)(2−m)D + λm2B

m

)
dλ

+
∫ 1

0

f

(
t(2−m)C + (1− t)m2A,

2−m

2
D +

m

2
(mB)

)
dt

+ m

∫ 1

0

f

(
(1− t)(2−m)C + tm2A

m
,
2−m

2
D +

m

2
(mB)

)
dt

]
≤ 1

16

[
f

(
2−m

2
C +

m

2
(mA), (2−m)D

)
+ 2mf

(
2−m

2
C +

m

2
(mA),mB

)
+ m2f

(
2−m

2
C +

m

2
(mA),

(2−m)D
m2

)
+ f

(
(2−m)C,

2−m

2
D +

m

2
(mB)

)
+ 2mf

(
mA,

2−m

2
D +

m

2
(mB)

)
+ m2f

(
(2−m)C

m2
,
2−m

2
D +

m

2
(mB)

)]
, (3.26)

Furthermore, for α, m = 1 we have

f

(
A + C

2
,
B + D

2

)
≤1

2

[∫ 1

0

f

(
A + C

2
, λB + (1− λ)D

)
dλ +

∫ 1

0

f

(
tA + (1− t)C,

B + D

2

)
dt

]
≤1

4

[
f

(
A + C

2
, B

)
+ f

(
A + C

2
, D

)
+ f

(
A,

B + D

2

)
+ f

(
C,

B + D

2

)]
. (3.27)
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ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY

BANACH SPACES: A FIXED POINT APPROACH

CHOONKIL PARK1, JUNG RYE LEE2∗, AND DONG YUN SHIN3

Abstract. Let

M1f(x, y) : =
3

4
f(x+ y)− 1

4
f(−x− y) +

1

4
f(x− y) +

1

4
f(y − x)− f(x)− f(y),

M2f(x, y) : = 2f
(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y).

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic
ρ-functional inequalities

N (M1f(x, y)− ρM2f(x, y), t) ≥
t

t+ φ(x, y)
(0.1)

and

N (M2f(x, y)− ρM1f(x, y), t) ≥
t

t+ φ(x, y)
(0.2)

in fuzzy Banach spaces, where ρ is a fixed real number with ρ ̸= 1.

1. Introduction and preliminaries

Katsaras [19] defined a fuzzy norm on a vector space to construct a fuzzy vector topological

structure on the space. Some mathematicians have defined fuzzy norms on a vector space from

various points of view [15, 21, 48]. In particular, Bag and Samanta [3], following Cheng and

Mordeson [11], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy

metric is of Kramosil and Michalek type [20]. They established a decomposition theorem of

a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed

spaces [4].

We use the definition of fuzzy normed spaces given in [3, 25, 26] to investigate the Hyers-Ulam

stability of additive ρ-functional inequalities in fuzzy Banach spaces.

Definition 1.1. [3, 25, 26, 27] Let X be a real vector space. A function N : X ×R → [0, 1] is

called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c|) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.

(N6) for x ̸= 0, N(x, ·) is continuous on R.

2010 Mathematics Subject Classification. Primary 46S40, 39B52, 47H10, 39B62, 26E50, 47S40.
Key words and phrases. fuzzy Banach space; fixed point method; additive-quadratic ρ-functional inequality;

Hyers-Ulam stability.
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The pair (X,N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in

[25, 28].

Definition 1.2. [3, 28, 26, 27] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in

X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn−x, t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N -

limn→∞ xn = x.

Definition 1.3. [3, 28, 26, 27] Let (X,N) be a fuzzy normed vector space. A sequence {xn}
in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all

n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If

each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy

normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is

continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the

sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then

f : X → Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [47]

concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In particular,

every solution of the Cauchy equation is said to be an additive mapping. Hyers [17] gave a

first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem

was generalized by Aoki [2] for additive mappings and by Rassias [39] for linear mappings by

considering an unbounded Cauchy difference. A generalization of the Rassias theorem was

obtained by Găvruta [16] by replacing the unbounded Cauchy difference by a general control

function in the spirit of Rassias’ approach.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called the quadratic functional

equation. In particular, every solution of the quadratic functional equation is said to be a

quadratic mapping. The stability of quadratic functional equation was proved by Skof [46] for

mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [12]

noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian

group. The stability problems of various functional equations have been extensively investigated

by a number of authors (see [1, 5, 9, 10, 14, 22, 24, 29, 34, 35, 36, 40, 41, 42, 43, 44, 45, 49, 50]).

We recall a fundamental result in fixed point theory.

Theorem 1.4. [6, 13] Let (X, d) be a complete generalized metric space and let J : X → X

be a strictly contractive mapping with Lipschitz constant α < 1. Then for each given element

x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
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(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [18] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with applications. By

using fixed point methods, the stability problems of several functional equations have been

extensively investigated by a number of authors (see [7, 8, 30, 31, 38]).

Park [32, 33] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability

of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional in-

equality (0.1) in fuzzy Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional in-

equality (0.2) in fuzzy Banach spaces by using the fixed point method.

Throughout this paper, assume that X is a real vector space and (Y,N) is a fuzzy Banach

space. Let ρ be a real number with ρ ̸= 1.

2. Additive-quadratic ρ-functional inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional

inequality (0.1) in fuzzy Banach spaces.

Theorem 2.1. Let φ : X2 → [0,∞) be a function such that there exists an L < 1 with

φ(x, y) ≤ L

4
φ (2x, 2y) ≤ L

2
φ (2x, 2y) (2.1)

for all x, y ∈ X.

(i) Let f : X → Y be an odd mapping satisfying

N (M1f(x, y)− ρM2f(x, y), t) ≥
t

t+ φ(x, y)
(2.2)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n
)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ Lφ(x, x)
(2.3)

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then Q(x) := N -

limn→∞ 4nf
(

x
2n
)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (2− 2L)t

(2− 2L)t+ Lφ(x, x)
(2.4)

for all x ∈ X and all t > 0.

Proof. (i) Letting y = x in (2.2), we get

N (f (2x)− 2f(x), t) ≥ t

t+ φ(x, x)
(2.5)
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and so

N

(
f (x)− 2f

(
x

2

)
, t

)
≥ t

t+ φ
(
x
2 ,

x
2

) (2.6)

for all x ∈ X.

Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, x)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [23, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
2g

(
x

2

)
− 2h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

2
εt

)
≥

Lt
2

Lt
2 + φ

(
x
2 ,

x
2

) ≥
Lt
2

Lt
2 + L

2φ(x, x)
=

t

t+ φ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.6) that N
(
f(x)− 2f

(
x
2

)
, L2 t

)
≥ t

t+φ(x,x) for all x ∈ X and all t > 0. So

d(f, Jf) ≤ L
2 .

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A

(
x

2

)
=

1

2
A(x) (2.7)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a

unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.7) such that there exists a µ ∈ (0,∞)

satisfying

N(f(x)−A(x), µt) ≥ t

t+ φ(x, x)

for all x ∈ X;
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(2) d(Jnf,A) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (2.3) holds.

By (2.2),

N

(
2n
(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
, 2nt

)
≥ t

t+ φ
(

x
2n ,

y
2n
)

and so

N

(
4n
(
f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

))
, t

)
≥

t
2n

t
2n + Ln

2n φ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
φ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

N (A(x+ y)−A(x)−A(y), t) = 1

for all x, y ∈ X and all t > 0. So the mapping A : X → Y is additive.

(ii) Letting y = x in (2.2), we get

N

(
1

2
f (2x)− 2f(x), t

)
≥ t

t+ φ(x, x)
(2.8)

and so

N

(
f (x)− 4f

(
x

2

)
, t

)
≥

t
2

t
2 + φ

(
x
2 ,

x
2

) =
t

t+ 2φ
(
x
2 ,

x
2

) (2.9)

for all x ∈ X.

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
4g

(
x

2

)
− 4h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

4
εt

)
≥

Lt
4

Lt
4 + φ

(
x
2 ,

x
2

) ≥
Lt
4

Lt
4 + L

4φ(x, x)
=

t

t+ φ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)
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for all g, h ∈ S.

It follows from (2.9) that N
(
f(x)− 4f

(
x
2

)
, L2 t

)
≥ t

t+φ(x,x) for all x ∈ X and all t > 0. So

d(f, Jf) ≤ L
2 .

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q

(
x

2

)
=

1

4
Q(x) (2.10)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is a even mapping. The mapping Q is a

unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.10) such that there exists a µ ∈ (0,∞)

satisfying

N(f(x)−Q(x), µt) ≥ t

t+ φ(x, x)

for all x ∈ X;

(2) d(Jnf,Q) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

4nf

(
x

2n

)
= Q(x)

for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

2− 2L
.

This implies that the inequality (2.4) holds.

By (2.2),

N

(
4n
(
1

2
f

(
x+ y

2n

)
+

1

2
f

(
x− y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
, 4nt

)
≥ t

t+ φ
(

x
2n ,

y
2n
)

and so

N

(
4n
(
1

2
f

(
x+ y

2n

)
+

1

2
f

(
x− y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
, t

)
≥

t
4n

t
4n + Ln

4n φ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
4n

t
4n

+Ln

4n
φ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

N

(
1

2
Q(x+ y) +

1

2
Q(x− y)−Q(x)−Q(y), t

)
= 1

for all x, y ∈ X and all t > 0. So the mapping Q : X → Y is quadratic. □

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector

space with norm ∥ · ∥.
(i) Let f : X → Y be an odd mapping satisfying

N (M1f(x, y)− ρM2f(x, y), t) ≥
t

t+ θ(∥x∥p + ∥y∥p)
(2.11)
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for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2θ∥x∥p

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.11). Then Q(x) := N -

limn→∞ 4nf( x
2n ) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (2p − 4)t

(2p − 4)t+ 4θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking φ(x, y) := θ(∥x∥p+∥y∥p) for all x, y ∈ X.

Choosing L = 21−p for an odd mapping case and L = 22−p for an even mapping case, then we

obtain the desired results. □

Theorem 2.3. Let φ : X2 → [0,∞) be a function such that there exists an L < 1 with

φ (x, y) ≤ 2Lφ

(
x

2
,
y

2

)
≤ 4Lφ

(
x

2
,
y

2

)
(2.12)

for all x, y ∈ X..

(i) Let f : X → Y be an odd mapping satisfying (2.2). Then A(x) := N -limn→∞
1
2n f (2

nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ φ(x, x)

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then Q(x) := N -

limn→∞
1
4n f (2

nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (2− 2L)t

(2− 2L)t+ φ(x, x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.

(i) It follows from (2.5) that

N

(
f(x)− 1

2
f(2x),

1

2
t

)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0.

(ii) It follows from (2.8) that

N

(
f(x)− 1

4
f(2x),

1

2
t

)
≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0.

The rest of the proof is similar to the proof of Theorem 2.1. □

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

494 CHOONKIL PARK et al 488-499



C. PARK, J.R. LEE, AND D. SHIN

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed

vector space with norm ∥ · ∥.
(i) Let f : X → Y be an odd mapping satisfying (2.11). Then A(x) := N -limn→∞

1
2n f(2

nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2θ∥x∥p

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.11). Then Q(x) := N -

limn→∞
1
4n f(2

nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (4− 2p)t

(4− 2p)t+ 4θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking φ(x, y) := θ(∥x∥p+∥y∥p) for all x, y ∈ X.

Choosing L = 2p−1 for an odd mapping case and L = 2p−2 for an even mapping case, then we

obtain the desired results. □

3. Additive-quadratic ρ-functional inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional

inequality (0.2) in fuzzy Banach spaces.

Theorem 3.1. Let φ : X2 → [0,∞) be a function satisfying (2.1).

(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y)− ρM1f(x, y), t) ≥
t

t+ φ(x, y)
(3.1)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n
)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ φ(x, x)

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then Q(x) := N -

limn→∞ 4nf
(

x
2n
)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (1− L)t

(1− L)t+ φ(x, x)

for all x ∈ X and all t > 0.

Proof. (i) Letting y = 0 in (3.1), we get

N

(
f(x)− 2f

(
x

2

)
, t

)
= N

(
2f

(
x

2

)
− f(x), t

)
≥ t

t+ φ(x, 0)
(3.2)

for all x ∈ X.
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Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, 0)
, ∀x ∈ X, ∀t > 0

}
,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [23, Lemma 2.1]).

The rest of the proof is similar to the proof of Theorem 2.1 (i).

(ii) Letting y = 0 in (3.1), we get

N

(
f(x)− 4f

(
x

2

)
, t

)
= N

(
4f

(
x

2

)
− f(x), t

)
≥ t

t+ φ(x, 0)
(3.3)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.1 (ii). □

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector

space with norm ∥ · ∥.
(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y)− ρM1f(x, y), t) ≥
t

t+ θ(∥x∥p + ∥y∥p)
(3.4)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2pθ∥x∥p

for all x ∈ X and all t > 0.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.4). Then Q(x) := N -

limn→∞ 4nf( x
2n ) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (2p − 4)t

(2p − 4)t+ 2pθ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking φ(x, y) := θ(∥x∥p+∥y∥p) for all x, y ∈ X.

Choosing L = 21−p for an odd mapping case and L = 22−p for an even mapping case, then we

obtain the desired results. □

Theorem 3.3. Let φ : X2 → [0,∞) be a function satisfying (2.12).

(i) Let f : X → Y be an odd mapping satisfying (3.1). Then A(x) := N -limn→∞
1
2n f (2

nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ Lφ(x, x)

for all x ∈ X and all t > 0.
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(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then Q(x) := N -

limn→∞
1
4n f (2

nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (1− L)t

(1− L)t+ Lφ(x, x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.

(i) It follows from (3.2) that

N

(
f(x)− 1

2
f(2x),

t

2

)
≥ t

t+ φ(2x, 0)

and so

N

(
f(x)− 1

2
f(2x), Lt

)
≥ 2Lt

2Lt+ φ(2x, 0)
=

t

t+ φ(x, 0)

for all x ∈ X and all t > 0.

(ii) It follows from (3.3) that

N

(
f(x)− 1

4
f(2x),

t

4

)
≥ t

t+ φ(2x, 0)

and so

N

(
f(x)− 1

4
f(2x), Lt

)
≥ 4Lt

4Lt+ φ(2x, 0)
=

t

t+ φ(x, 0)

for all x ∈ X and all t > 0.

The rest of the proof is similar to the proof of Theorem 2.1. □

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed

vector space with norm ∥ · ∥.
(i) Let f : X → Y be an odd mapping satisfying (3.4). Then A(x) := N -limn→∞

1
2n f(2

nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2pθ∥x∥p

for all x ∈ X.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.4). Then Q(x) := N -

limn→∞
1
4n f(2

nx) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such

that

N (f(x)−Q(x), t) ≥ (4− 2p)t

(4− 2p)t+ 2pθ∥x∥p

for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking φ(x, y) := θ(∥x∥p+∥y∥p) for all x, y ∈ X.

Choosing L = 2p−1 for an odd mapping case and L = 2p−2 for an even mapping case, then we

obtain the desired results. □
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Abstract

This paper is devoted to the optimal harvesting problem for a diffusive population dynam-

ics with functional response in a polluted environment . C0-semigroup theory is used to obtain

the existence and uniqueness of the positive strong solution for the controlled system. The

first order necessary optimality condition is derived by means the technique of tangent-normal

cones and adjoint system of the state. The second-order necessary and sufficient optimal-

ity conditions are established by making use of the second order Fréchet derivative of the

associated Lagrange function.

Keywords: Optimal harvesting; optimal conditions; functional response; toxicant

1 Introduction

The optimal control problems of population dynamics have been widely studied, such as N.C.

Apreutesei [1] studied for a Lotka-Volterra system of three differential equations, some necessary

conditions of optimality were founded in order to maximize the total number of individuals. W.Ko

[2-3] considered a diffusive two-competing-prey and one-predator system with functional response

(Beddington-DeAngelis and ratio-dependent), showed the properties for the positive steady-state

solutions of the corresponding elliptic system with Robin boundary. Then N.C. Apreutesei [4]

studied for a reaction-diffusion system as follows

∂y1

∂t
= α1∆y1 + y1g1(y1) + u1y1 − y1y2f(y1),

∂y2

∂t
= α2∆y2 − ay2 + by1y2f(y1) + cy2y3h(y3),

∂y3

∂t
= α3∆y3 + y3g3(y3) + u3y3 − y3y2h(y3),

∂yi
∂v

(t, x) = 0, on Σ = [0, T ]× ∂Ω, i = 1, 2, 3,

yi(0, x) = y0
i (x), x ∈ Ω, i = 1, 2, 3.

(1.1)

the author considered the general functional response yif(yi), which contains the classical various

Holling type, the existence of an optimal solution and first and second order optimality conditions

∗Corresponding author. E-mail: lhw1220@126.com
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were proved. E.Casas [5] investigated an abstract formulation for optimization problems in some

Lp spaces, devoted to reduce the classical gap between the necessary and sufficient conditions for

optimization problems in Banach spaces. Other models from population dynamics and optimal

control problems can be found in [6-9]. However, those papers were not take into account toxicant

factor. Among the practical problems, it determines the real rate of the biological individual and

the behavior of individual. To this end, Luo [10-12] first formulated a new age-dependent toxicant

population model in an environment with small toxicant capacity, effectively bridge the research

between age-structure and polluted environment. Inspired his works, this paper propose a more

realistic models with toxicant-population in a small content of the environment.

The aim of this paper is to seek the maximum of the following functional, which gives the profit

from harvesting less the cost of harvesting:

J(u, ν) =
3∑
i=1

∫ T

0

∫
Ω

[
Kiui(t, x)yi(t, x)− 1

2
Ciu

2
i (t, x)

]
dxdt− 1

2

∫ T

0

C4[ν(t)]2dt. (OH)

where Ki are selling price factors, positive constants Ci and C4 represents the cost factors of har-

vesting and the cost factor of administering pollution of environment, respectively; u = (u1, u2, u3)

are the proportions of the populations to be harvested, ν(t) is the exogenous toxicant input rate

the moment t, and the state y = (y1, y2, y3) is the solution of the following system corresponding

to (u1, u2, u3):

∂y1

∂t
= α1∆y1 + y1[g1(y1)− r1c10]− y1y2f(y1)− u1y1,

∂y2

∂t
= α2∆y2 − (a− r2c20)y2 + by1y2f(y1) + cy2y3h(y3)− u2y2,

∂y3

∂t
= α3∆y3 + y3[g3(y3)− r3c30]− y3y2h(y3)− u3y3,

dci0
dt

= kce(t)− gci0(t)−mci0(t), i = 1, 2, 3,

dce
dt

= −k1ce(t)[y1(t) + y2(t) + y3(t)] + g1

3∑
i=1

ci0(t)yi(t)− hce(t) + ν(t)

(1.2)

for (t, x) ∈ Q, subject to some Neumann boundary conditions

∂yi
∂ν

(t, x) = 0, on Σ = [0, T ]× ∂Ω, i = 1, 2, 3

and to the initial conditions

yi(0, x) = y0
i (x), x ∈ Ω, i = 1, 2, 3.

which descried a diffusive one-predator and two-competing-prey system in a spatially inhomoge-

neous environment, where Q = (0, T )×Ω, Ω is a bounded domain in Rd(d ≥ 1) with the boundary

∂Ω of class C2+σ(σ > 0), we denote by yi(t, x) the density of individuals of ith population at the

moment t and in the location x ∈ Ω. c0(t) is the concentration of the toxicant in an organism

at the moment t, ce(t) is the concentration of the toxicant in the environment at the moment t.

The function ui is the harvesting rate of population yi, and the coefficients α1, α2, α3, a, b, c are all

positive constants. For the simplicity, we have assumed that f and h depend only on y1 and on

y3 respectively, but the reasoning and the main results remain true also in the case when f and h

depend on y2 too, parameter a is the per capita death rate of the predator.
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The admissible control set is defined as

Uad =
{

(u, ν) ∈ [L2(Q)]3 × L∞(0, T )| 0 ≤ ui(t, x) ≤ 1, a.e in Q, 0 ≤ ν(t) ≤ h a.e in (0, T )
}
.

Throughout this paper, we always assume that:

(H1) g1, g3 are continuous and bounded on (0,∞);

(H2) f, h are continuous and positive on (0,∞) and bounded on bounded sets;

(H3) y0
i ∈ H2(Ω), y0

i > 0 on Ω and ∂y0
i /∂ν = 0 a.e. on ∂Ω, i = 1, 2, 3;

(H4) ν(·) ∈ L2[0, T ], 0 ≤ ν(t) ≤ ν1 < +∞;

(H5) 0 ≤ ci0(0) ≤ 1, 0 ≤ ce(0) ≤ 1;

(H6) g ≤ k ≤ g +m, ν ≤ h.
The paper is organized as follows: In section 2, we use results from the semigroup theory and

some well-known existence theorems from [13-14] to derive the global existence and uniqueness of a

positive strong solution of the controlled system (1.2), Section 3 is devoted to first order necessary

optimality conditions for (OH). Necessary and sufficient second order optimality conditions are

given in Section 4.

2 Basic properties of the solution

This section concerns the most important properties of the dynamics system with diffusion. Ex-

istence, uniqueness and positivity of the solution will be proved. Thus formally, system (1.1) can

be written as an infinite dimensional Cauchy problem of the form
dy

dt
(t) = Ay(t) + F (t, y(t)), t ∈ [0, T ],

y(0) = y0,
(2.1)

where A : D(A) ⊂ X→ X is the infinitesimal generator of a C0-semigroup of contractions {S(t)}t≥0

on the Banach space X, if X is a Hilbert space, A is called dissipative if (Ax, x) ≤ 0, ∀x ∈ D(A),

and F : [0, T ]× X→ X is measurable in t and Lipschtiz in x ∈ X uniformly with respect to t.

We shall employ a general existence result which we use in the sequel (Proposition 1.2, p.175,[14]).

Theorem 2.1 For each y0 ∈ X, the initial value problem (2.1) has a unique mild solution

y ∈ C([0, T ];X), and

y(t) = S(t)y0 +

∫ t

0

S(t− s)F (s, y(s))ds, t ∈ [0, T ].

In addition, if X is a Hilbert space, A is self-adjoint and dissipative on X, and y0 ∈ D(A), then the

mild solution is in fact a strong solution and y ∈W 1,2([δ, T ];X),∀δ ∈ [0, T ].

Thus, we work in the Hilbert space H = (L2(Ω))3, where the operator A : D(A) ⊂ H → H,

A =

 α1∆ 0 0

0 α2∆ 0

0 0 α3∆

 , F (t, y(t)) =

 F1(t, y(t))

F2(t, y(t))

F3(t, y(t))

 ,

for y = (y1, y2, y3) ∈ D(A), D(A) =
{
y = (y1, y2, y3) ∈ (H2(Ω))3,

∂yi
∂ν

= 0 on ∂Ω, i = 1, 2, 3
}
,

y0 = (y0
1 , y

0
2 , y

0
3) is the initial value of y, and F = (F1, F2, F3) is the nonlinear term in (2.1), that is

F1(t, y(t)) = y1g1(y1)− y1y2f(y1)− u1y1,

F2(t, y(t)) = −ay2 + by1y2f(y1) + cy2y3h(y3)− u2y2,

F3(t, y(t)) = y3g3(y3)− y3y2h(y3)− u3y3,

(2.2)
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Theorem 2.2 Suppose that y0 = (y0
1 , y

0
2 , y

0
3) ∈ D(A), and y0

i > 0, i = 1, 2, 3. Then for each

u ∈ Uad, the system (2.1) has a unique nonnegative solution (y(t, x), c0(t), ce(t)), such that

(i) (yi(t, x), ci0(t), ce(t)) ∈ L∞(Q) ∩ L2(0, T ;H2(Ω) ∩ L∞(0, T ;H1(Ω)))× L∞(0, T )× L∞(0, T ),

(ii) 0 ≤ ci0(t) ≤ 1, 0 ≤ ce(t) ≤ 1,∀ t ∈ (0, T ).

Proof Since F is not satisfy Lipschtiz conditions, we cannot apply the theorem 2.1 directly for

our problem, usually we use a truncation procedure for F , consider the truncated initial value

problem 
∂yN

∂t
(t, x) = AyN (t) + FN (t, y(t)), t ∈ [0, T ],

yN (0) = y0,

(2.3)

where FN = (FN1 , FN2 , FN3 ) is obtained from F = (F1, F2, F3), a fixed large number N > 0. If

|yi| ≤ N , then yi in F (t, y1, y2, y3) remains unchanged, if yi > N , then yi from (2.2) is replaced

by N , if yi < −N , then yi from (2.2) is replaced by −N . Thus function FN becomes Lipschitz

continuous with respect to t, according theorem 2.1, the problem (2.3) admits a unique strong

solution yN = (yN1 , y
N
2 , y

N
3 ) ∈W 1,2([δ, T ];H) ∩ L2(0, T ;D(A)),∀δ ∈ [0, T ].

To begin with, we shall that y ∈ L2(0, T ;H2(Ω)∩L∞(0, T ;H1(Ω)). On one hand, from theorem

2.1 we know y ∈ L2(0, T ;H2(Ω), on the other hand, from (2.3) we derive that∫
Q

∣∣∣∂yN1
∂t

∣∣∣2dsdx− 2α1

∫
Q

∂yN1
∂t

∆yN1 dsdx+ α2

∫
Q

|∆yN1 |2dsdx =

∫
Q

|F1(t, y(t))|2dsdx,

Using the regularity of yN1 and the Green’s formula, we have∫
Q

∣∣∣∂yN1
∂t

∣∣∣2dsdx+ 2α1

∫
Ω

|∇yN1 |2dx+α2

∫
Q

|∆yN1 |2dsdx =

∫
Q

|F1(t, y(t))|2dsdx+ 2α1

∫
Ω

|∇y0
1 |2dx.

Since yN1 ∈W 1,2(0, T ;H) and y0
1 ∈ H2(Ω), by the Lipschitz property of FN1 we deduce that

2α1

∫
Ω

|∇yN1 |2dx ≤
∫
Q

|yN |dxds+ 2α1

∫
Ω

|∇y0
1 |2dx < +∞.

Thus, we have y1 ∈ L∞(0, T ;H1(Ω)), analogously y2, y3 are proved.

Further more, it remains to prove that yN ∈ L∞(Q), (ci0, ce) ∈ L∞(0, T ). Indeed, consider the

following auxiliary initial value problems
∂ρN1
∂t

(t, x) = ∆ρN1 (t) + FN1 (t, y(t))−MN , t ∈ [0, T ],

ρN1 (0) = y0
1 − ‖y0

1‖L∞(Ω)

(2.4)

and 
∂ωN1
∂t

(t, x) = ∆ωN1 (t) + FN1 (t, y(t)) +MN , t ∈ [0, T ],

ωN1 (0) = y0
1 + ‖y0

1‖L∞(Ω),

(2.5)

where MN = max
{
‖FNi (·, y(t))‖L∞(Q), ‖y0

i ‖L∞(Q), i = 1, 2, 3
}

.

By theorem 2.1 the function ρN1 and ωN1 in C([0, T ];X) is a mild solution to problem (2.4) and

(2.5), the solution of these can be written as

ρ1(t) = S(t)(y0
1 − ‖y0

1‖L∞(Ω)) +

∫ t

0

S(t− s)(FN1 (s, y1, y2, y3)−MN )ds,
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ω(t) = S(t)(y0
1 + ‖y0

1‖L∞(Ω)) +

∫ t

0

S(t− s)(FN1 (s, y1, y2, y3) +MN )ds.

Remark that their solutions are

ρ1(t, x) = yN1 (t, x)−MN t− ‖y0
1‖L∞(Ω), ω1(t, x) = yN1 (t, x) +MN t+ ‖y0

1‖L∞(Ω),

since |FN1 (t, yN )| ≤ MN , from the comparison principle of linear parabolic equation, we deduce

that ρN1 (0) ≤ 0, ωN1 (0) ≥ 0, that is

|yN1 (t, x)| ≤MN t+ ‖y0
1‖L∞(Ω),

and in the same manner to prove that yN2 , y
N
3 hold for (t, x) ∈ Q. Therefor, yNi ∈ L∞(Q). To prove

(ci0, ce) ∈ L∞(0, T ), we define G : X→ X, from (1.2) we can deduce that

Gi(t) = ci0(t) = ci0(0) exp{−(g +m)t}+ k

∫ t

0

ce(s) exp
{

(s− t)(g +m)
}
ds, i = 1, 2, 3, (2.6)

G4(t) = ce(t) = ce(0) exp
{
−
∫ t

0

[ 3∑
i=1

k1yi(τ) + h
]
dτ
}

+

∫ t

0

[
g1

( 3∑
i=1

ci0(s)yi(s)
)

+ ν(s)
]

exp
{∫ s

t

[ 3∑
i=1

k1yi(τ) + h
]
dτ
}
ds,

(2.7)

if the hypothesis (H6) hold, it is clear that 0 ≤ ci0(t) ≤ 1, 0 ≤ ce(t) ≤ 1 and (ci0, ce) ∈ L∞(0, T ), i =

1, 2, 3. the specific process can refer to [15].

Moreover, we shall that yNi are positive on Q, to this end, let yNi = (yNi )+ − (yNi )−, where

(yNi )+(t, x) = sup{yNi (t, x), 0}, (yNi )−(t, x) = − inf{yNi (t, x), 0}, i = 1, 2, 3. (2.8)

Multiplying the first equation from (2.1) by yN1 we have

1

2

∂

∂t
|(yN1 )−|2 = α1(yN1 )−∆(yN1 )− + |(yN1 )−|2

[
g1(yN1 )− yN2 f(yN1 )− u1

]
. (2.9)

Integrating (2.9) on Ω and using Greens formula we get

1

2

∫
Ω

∂

∂t
|(yN1 )−|2dx = −α1

∫
Ω

|∇(yN1 )−|2dx+

∫
Ω

|(yN1 )−|2
[
g1(yN1 )− yN2 f(yN1 )− u1

]
dx.

By integrating over [0, t], for t ∈ [0, T ], and take into consideration of the uniformly boundedness

of yNi , it is not difficult to see that there exists a constant CN > 0 depending on N such that

1

2

∫
Ω

|(yN1 )−|2dx+ α1

∫ t

0

∫
Ω

|∇(yN1 )−|2dxds ≤ CN
∫ t

0

∫
Ω

|yN1 (s)|2dxds.

Gronwalls inequality lead to ∫
Ω

|(yN1 )−|2dx ≤ 0, ∀t ∈ [0, T ],

that is (yN1 )− = 0, by the definition of (2.8) we conclude that yN1 (t, x) > 0, analogously we get

yN2 (t, x) > 0 and yN3 (t, x) > 0.
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In addition, we prove the uniqueness of the solution. For any (y1, c10, c
1
e) and (y2, c20, c

2
e) are

two solutions of problem (1.2), where y1 = (y1
1 , y

1
2 , y

1
3), c10 = (c110, c

1
20, c

1
30), y2 = (y2

1 , y
2
2 , y

2
3), c20 =

(c210, c
2
20, c

2
30), we denote by ϕ = y1 − y2, then ϕ is the solution of



∂ϕ1

∂t
= α1∆ϕ1 + F1(t, y1

1 , y
1
2 , y

1
3)− F1(t, y2

1 , y
2
2 , y

2
3),

∂ϕ2

∂t
= α2∆ϕ2 + F2(t, y1

1 , y
1
2 , y

1
3)− F2(t, y2

1 , y
2
2 , y

2
3),

∂ϕ3

∂t
= α3∆ϕ3 + F3(t, y1

1 , y
1
2 , y

1
3)− F3(t, y2

1 , y
2
2 , y

2
3),

∂ϕ1

∂ν
=
∂ϕ2

∂ν
=
∂ϕ3

∂ν
= 0, on Σ,

ϕ1(0, x) = ϕ2(0, x) = ϕ3(0, x) = 0.

(2.10)

Suppose g1, g3, f, h ∈ C1[0,∞), g1, g3 are bounded and f, h are positive and have at most polyno-

mial growth, then from (2.2) we obtain

|Fi(t, y1
1 , y

1
2 , y

1
3)− Fi(t, y2

1 , y
2
2 , y

2
3)| ≤ c(|ϕ1|+ |ϕ2|+ |ϕ3|),

where c is a positive constant. Multiplying (2.10) by ϕ1, ϕ2, ϕ3 respectively, and integrating on

ΩT = Ω× (0, t) we get

1

2

3∑
i=1

∫
Ω

|ϕi(t)|2dx+
3∑
i=1

∫
ΩT

αi|∇ϕi|2dsdx =
3∑
i=1

∫
ΩT

ϕi(Fi(t, y
1
1 , y

1
2 , y

1
3)− Fi(t, y2

1 , y
2
2 , y

2
3))dsdx

≤ C
∫ t

0

∫
Ω

(|ϕ1(s)|2 + |ϕ2(s)|2 + |ϕ3(s)|2)dsdx.

(2.11)

From (2.11) and Gronwall’s lemma we have∫
Ω

(|ϕ1(s)|2 + |ϕ2(s)|2 + |ϕ3(s)|2) ≤ 0,

which yields that ϕ1 = ϕ2 = ϕ3 = 0, thus we have proved the uniqueness of the yi. However, we

can follow by (2.6) and (2.7)

|c10(t)− c20(t)| =
3∑
i=1

|c1i0(t)− c2i0(t)| ≤ 3k

∫ t

0

|c1e(s)− c2e(s)|ds, i = 1, 2, 3. (2.12)

|c1e(t)− c2e(t)| ≤M1

3∑
i=1

∫ t

0

|c1i0(s)− c2i0(s)|ds, (2.13)

where M1 is constant. We define an equivalent norm in X as follows:

‖(ci0, ce)‖∗ = Ess sup
t∈(0,T )

e−λt
{ 3∑
i=1

|ci0(t)|+ |ce(t)|
}
,
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by (2.11) and (2.12) we obtain

‖G(x1)−G(x)2‖∗ = ‖Gi(x1)−Gi(x2), G4(x1)−G4(x2)‖∗

≤M2Ess sup
t∈(0,T )

e−λt
∫ t

0

{ 3∑
i=1

|c1i0(s)− c2i0(s)|+ |c1e(s)− c2e(s)|
}
ds

≤M2Ess sup
t∈(0,T )

e−λt
∫ t

0

eλs
{
e−λs[

3∑
i=1

|c1i0(s)− c2i0(s)|+ |c1e(s)− c2e(s)|]
}
ds

≤M2‖x1 − x2‖∗Ess sup
t∈(0,T )

{e−λt
∫ t

0

eλsds}

≤ M2

λ
‖x1 − x2‖∗,

where M2 is constant, choose λ > M2 yields that G is a strict contraction on (X, ‖ · ‖∗) and

consequently has a unique fixed point.

Thus, the system (1.2) has a unique solution (yi, ci0, ce). the proof is completed.

3 Necessary optimality conditions

In this section, we find some necessary optimality conditions in order to maximize the profit from

harvesting less the cost of harvesting.

Theorem 3.1 If (u∗, ν∗) is an optimal control and (y∗, c∗i0, c
∗
e) is the corresponding optimal state,

then

u∗i (t, x) = Li
( (Ki − qi)y∗i

Ci

)
, i = 1, 2, 3, a.e. in Q,

ν∗(t) = L4

(q7(t)

C4

)
, a.e. in (0, T ),

(3.1)

where

Lj(x) =


0 x < 0

x 0 ≤ x ≤ Hj ,

Hj x > Hj

j = 1, 2, 3, 4.

and q = (q1, q2, . . . , q7) is the solution of following adjoint system corresponding to (u∗, ν∗).

∂q1

∂t
= −α1∆q1 + [g1(y∗1)− r1c

∗
10 + y∗1g

′
1(y∗1)− u∗1 − y∗2f(y∗1)− y∗1y∗2f ′(y∗1)]q1

− [by∗2f(y∗1) + by∗1y
∗
2f
′(y∗1)]q2 + [k1c

∗
e − g1c

∗
10]q7 +K1u

∗
1,

∂q2

∂t
= −α2∆q2 + y∗1f(y∗1)q1 − [−a− r2c

∗
20 + by∗1f(y∗1) + cy∗3h(y∗3)]q2

+ y∗3h(y∗3)q3 + [k1c
∗
e − g1c

∗
20]q7 +K2u

∗
2,

∂q3

∂t
= −α3∆q3 − [g3(y∗3)− r3c

∗
30 + y∗3g

′
3(y∗1)− u∗3 − y∗2h(y∗3)− y∗3y∗2h′(y∗3)]q3

− cy∗2 [h(y∗3) + y∗3h
′(y∗3)]q2 + [k1c

∗
e − g1c

∗
30]q7 +K3u

∗
3,

∂qj
∂t

= (g +m)qj − g1y
∗
i q7, j = i+ 3, i = 1, 2, 3,

∂q7

∂t
= −k

6∑
j=4

qj + k1

3∑
i=1

yiq7 + hq7,

qi(T, x) = 0, x ∈ Ω,

(3.2)
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∂qi
∂ν

= 0 a.e. on Σ, i = 1, 2, 3.

Proof Existence and uniqueness of the solution q to system (3.2) follows by theorem 2.2. Denote

by NUad
(u∗, ν∗) the normal cone at Uad in (u∗, ν∗),

NUad
(u∗, ν∗) = {v1 ∈ L2(Q), v2 ∈ L2(0, T ) satisfying the following formula},

v1(t, x) ≤ 0, when u(t, x) = 0,

v1(t, x) = 0, when 0 ≤ u(t, x) ≤ 1,

v1(t, x) ≥ 0, when u(t, x) = 1,


v2(t) ≤ 0, when ν(t) = 0,

v2(t) = 0, when 0 ≤ ν(t) ≤ h,
v2(t) ≥ 0, when ν(t) = h,

for any given (ϑ1, ϑ2) ∈ TUad
(u∗, ν∗) ϑ1 = (ϑ11, ϑ21, ϑ31), as ε > 0 small enough, (u∗+εϑ1, ν

∗+

εϑ2) ∈ Uad, we get

J(u∗ + εϑ1, ν
∗ + εϑ2) ≤ J(u∗, ν∗). (3.3)

Substituting (2.1) into (3.3) gives that

3∑
i=1

∫ T

0

∫
Ω

Ki(u
∗
i + εϑi1)yεi dxdt−

1

2

3∑
i=1

∫ T

0

∫
Ω

Ci(u
∗
i + εϑi1)2dxdt− 1

2

∫ T

0

C4(ν∗ + εϑ2)2dt

≤
3∑
i=1

∫ T

0

∫
Ω

Kiu
∗
i y
∗
i dxdt−

1

2

3∑
i=1

∫ T

0

∫
Ω

Ci[u
∗
i ]

2dxdt− 1

2

∫ T

0

C4[ν∗]2dt,

that is

3∑
i=1

∫ T

0

∫
Ω

Kiu
∗
i z
∗
i dxdt+

3∑
i=1

∫ T

0

∫
Ω

(Kiy
∗
i − Ciu∗i )ϑi1dxdt−

∫ T

0

ν∗ϑ2dt ≤ 0, (3.4)

where

zi(t, x) = lim
ε→0+

yεi (t, x)− y∗i (t, x)

ε
, zi+3(t) = lim

ε→0+

cεi0(t)− c∗i0(t)

ε
, z7(t) = lim

ε→0+

cεe(t)− c∗e(t)
ε

, i = 1, 2, 3,

(yε, cε0, c
ε
e) is the state corresponding to (u∗ + εϑ1, ν

∗ + εϑ2), it follows from the state system (1.2)

that z = (z1, z2, . . . , z7) is the solution of

∂z1

∂t
= α1∆z1 + z1[g1(y∗1) + y∗1g

′
1(y∗1)− u∗1 − y∗2f(y∗1)− y∗1y∗2f ′(y∗1)]

− y∗1z2f(y∗1)− ϑ11y
∗
1 ,

∂z2

∂t
= α2∆z2 + +bz1[y∗2f(y∗1) + y∗1y

∗
2f
′(y∗1)] + z2[−a− u∗2 + by∗1f(y∗1) + cy∗3h(y∗3)]

+ cz3[y∗2h(y∗3) + y∗3y
∗
2h
′(y∗3)]− ϑ21y

∗
2 ,

∂z3

∂t
= α3∆z3 + z3[g3(y∗3) + y∗3g

′
3(y∗1)− u∗3 − y∗2h(y∗3)− y∗3y∗2h′(y∗3)]

− z2y
∗
3h(y∗3)− ϑ31y

∗
3 ,

∂zj
∂t

= kz7(t)− gzj(t)−mzj(t), j = i+ 3, i = 1, 2, 3,

∂z7

∂t
= −k1c

∗
e(t)

3∑
i=1

zi + g1

3∑
i=1

ci0(t)zi(t) + g1

3∑
i=1

y∗i zj(t)− [k1

3∑
i=1

y∗i (t) + h]z7(t) + ϑ2(t),

(3.5)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

507 Jiangbi Liu et al 500-511



Optimal control of a special predator-prey system with functional response and toxicant 9

for all (t, x) ∈ Q, subject to the boundary and initial conditions

∂qi
∂ν

= 0 a.e. on Σ, i = 1, 2, 3.

zi(0, x) = zj(0) = 0, x ∈ Ω, j = i+ 3, i = 1, 2, 3.

Multiplying the (3.5) by q1, q2, . . . , q7 respectively, integrating on Q and (0, T ) and using (3.2) yield

3∑
i=1

∫ T

0

∫
Ω

Kiu
∗
i (t, x)zi(t, x)dxdt = −

3∑
i=1

∫ T

0

∫
Ω

y∗i (t, x)qi(t, x)ϑ1idxdt+

∫ T

0

ϑ2(t)q7(t)dt. (3.6)

Substituting (3.6) into (3.4) we obtain that

3∑
i=1

∫ T

0

∫
Ω

[(Ki − qi)y∗i − Ciu∗i ]ϑ1idxdt+

∫ T

0

(−C4ν
∗ + q7)ϑ2dt ≤ 0. (3.7)

By using the concept of normal cone Uad at (u∗, ν∗) [16], we get(
(Ki − qi)y∗i − Ciu∗i ,−C4ν

∗ + q7

)
∈ NUad

(u∗, ν∗),

the proof is completed by the characteristics properties of the normal vector [14].

4 Second order optimality conditions

In this section, we discuss the second order sufficient conditions for the controlled system, since

the second order optimality conditions can be solved by using the second order Fréchet derivative

of the associated Lagrange function, so we introduce the Lagrange function firstly,

L(y, u, ν, q) = J(u, ν)−
∫
Q

q(yt −Ay − F )Tdtdx−
∫

Σ

q
(∂y
∂ν

)T
dtdx, (4.1)

here the upper index T is the transposed of any matrix and
∂y

∂ν
=
(∂y1

∂ν
,
∂y2

∂ν
,
∂y3

∂ν

)
, we employ

the method from [17-18], let X = (y, c0, ce), U = (u, v), Q = (q1, q2, · · · , q7), then (4.1) can be

written in detail as

L(X,U,Q) =

∫ T

0

∫
Ω

[
K1u1y1 +K2u2y2 +K3u3y3 −

1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3)
]
dxdt− 1

2

∫ T

0

C4ν
2dt

+

∫
Q

(∂q1

∂t
y1 +

∂q2

∂t
y2 +

∂q3

∂t
y3

)
dtdx+

∫
Q

(α1y1∆q1 + α2y2∆q2 + α3y3∆q3)dtdx

+

∫
Q

[y1g1(y1)q1 + y3g3(y3)q3 − u1y1q1 − u2y2q2 − u3y3q3 + y1y2f(y1)(bq2 − q1)

− ay2q2 + y2y3h(y3)(cq2 − q3)]dtdx+

∫ T

0

6∑
j=4

qj [kce − (g +m)ci0]dt

−
∫ T

0

q7[k1ce(y1 + y2 + y3) + g1(c10y1 + c20y2 + c30y3)− hce + ν]dt,

(4.2)
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we introduce the Hamiltonian function secondly

H(X,U,Q) =K1u1y1 +K2u2y2 +K3u3y3 + y1g1(y1)q1 + y3g3(y3)q3 − u1y1q1 − u2y2q2 − u3y3q3

+ y1y2f(y1)(bq2 − q1)− ay2q2 + y2y3h(y3)(cq2 − q3) +
6∑
j=4

qj [kce − (g +m)ci0]

− q7[k1ce(y1 + y2 + y3) + g1(c10y1 + c20y2 + c30y3)− hce + ν],

Assume that g1, g3, f and h are functions of class C2. If ū, ν̄ is an admissible control and y, q are

the corresponding state and adjoint state, then the associated Hessian matrix at (y, u, q) is

D2H(y, u, ν, q) =



H11 H12 0 H14 0 0 0

H21 0 H23 0 H25 0 0

0 H32 H33 0 0 H36 0

H41 0 0 −C1 0 0 0

0 H52 0 0 −C2 0 0

0 0 H63 0 0 −C3 0

0 0 0 0 0 0 −C4


,

and 
H11 = q̄1[2g′1(ȳ1) + ȳ1g

′′
1 (ȳ1)]− ȳ2(q̄1 − bq̄2)[2f ′(ȳ1) + ȳ1f

′′(ȳ1)],

H12 = −(q̄1 − bq̄2)[f(ȳ1) + ȳ1f
′(ȳ1)],

H23 = −(q̄3 − cq̄2)[h(ȳ3) + ȳ3f
′(ȳ3)],

H33 = q̄3[2g′3(ȳ3) + ȳ3g
′′
3 (ȳ3)]− ȳ2(q̄3 − cq̄2)[2h′(ȳ3) + ȳ3h

′′(ȳ3)]

H14 = H41 = K1 − q̄1, H25 = H52 = K2 − q̄2, H36 = H63 = K3 − q̄3.

Then, we have

L′′(ȳ, ū, ν̄, q̄)[(y, u, ν), (y, u, ν)] =

∫
Q

(y, u, ν)D2H(y, u, q)(y, u, ν)Tdtdx,

that is

L′′(ȳ, ū, ν̄, q̄)[(y, u, ν), (y, u, ν)]

=

∫
Q

(y1)2[q̄1(2g′1(ȳ1) + ȳ1g
′′
1 (ȳ1))− ȳ2(q̄1 − bq̄2)(2f ′(ȳ1) + ȳ1f

′′(ȳ1))]dtdx

+

∫
Q

(y3)2[q̄3(2g′3(ȳ3) + ȳ3g
′′
3 (ȳ3))− ȳ2(q̄3 − cq̄2)(2h′(ȳ3) + ȳ3h

′′(ȳ3))]dtdx

+

∫
Q

2[−y1y2(q̄1 − bq̄2)(f(ȳ1) + ȳ1f
′(ȳ1))− y2y3(q̄3 − cq̄2)(h(ȳ3) + ȳ3f

′(ȳ3))]dtdx

+

∫
Q

[2u1y1(K1 − q̄1) + 2u2y2(K2 − q̄2) + 2u3y3(K3 − q̄3)]dtdx

−
∫
Q

(C1u
2
1 + C2u

2
2 + C3u

2
3)dtdx−

∫ T

0

C4ν
2dt.

Now we can formulate the second order optimality conditions for our problem.

Theorem 4.1 (i) (Second order necessary optimality conditions.) Under the hypotheses of

Theorem 3.1, if (u∗, ν∗) is an optimal pair and q is the corresponding adjoint variable, then

L′′(y∗, u∗, ν∗, q)[(y, u, ν), (y, u, ν)] ≤ 0, ∀ (u, ν) ∈ NUad
(u∗, ν∗).
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(ii) (Second order sufficient optimality conditions.) ∀ (u∗, ν∗) ∈ Uad, together with its correspond-

ing state y∗ and adjoint state q, if (y∗, u∗, ν∗, q) satisfies the first order necessary condition (3.1)

and the condition

L′′(y∗, u∗, ν∗, q)[(y, u, ν), (y, u, ν)] < κ(‖v1‖2L2(Q) + ‖v2‖2L2(0,T )), ∀ (v1, v2) ∈ NUad
,

for some κ > 0, then (y∗, u∗, ν∗) is an optimal local solution of the controlled system (1.2).
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Abstract

In this paper, we establish and study some new existence theorems for a new extended vector

variational-like inequality in a Banach space. The results are proved by using the new definition

of g − f − η − ϕ − µ−quasimonotone of Stampacchia and of Minty type mappings. The obtained

results in this article can be viewed as some new and generalized forms which can be applied to

several problems.

Keywords: New extended vector variational-like inequality; Existence result; C-convex;

KKM-mapping; g − f − η − ϕ− µ−quasimonotonicity; g − f − η − ϕ− µ−pseudomonotoncity.

1. Introduction

In 1980, Giannessi introduced a generalization of variational inequality is the vector variational

inequality (for short, VVI) in a finite-dimensional Euclidean space, see [8]. For the past years, vector

variational inequalities and their generalizations have been studied and applied in various directions.

The vector variational-like inequalities is a generalized form of a vector variational inequalities re-

lated to the class of η-connected sets which is much more general than the class of convex sets.

It well Known that monotonicity plays an important role to proving existence of solutions of vec-

tor variational inequalities and vector variational-like inequalities. Some important generalizations

of monotonicity, such as quasimonotonicity, proper quasimonotonicity, pseu-domonotonicity, dense

pseudomonotonicity, semimonotonicity, have been introduced and considered to study various varia-

tional inequalities and other related problems. In [9] Ahmad and Irfan obtained existence results for

extended vector variational-like inequality and equilibrium problems by using g-h-η-quasimonotone

of Stampacchia and Minty types.

In this paper, we introduce a new definition for a new extended vector variational-like inequality

and we define a new and general form of definitions for quasimonotone of Stampacchia and Minty

type mappings. We have some ideas to establish some sufficient conditions to guarantee the exis-

tence of solutions. The new problems can be viewed as some unified forms of the previous problem,

that is, extended vector variational-like inequalities considered and studied by Ahmad and Irfan

[9].

Let X and Y be two real Banach spaces, K ⊂ X be a nonempty, closed and convex subset,

C ⊂ Y be a pointed, closed and convex cone in Y such that intC ̸= ∅ where intC denote the

∗Corresponding author. Tel.:+66 55963250; fax:+66 55963201.
Email addresses: kasamsuku@nu.ac.th (Kasamsuk Ungchittrakool), boonyaritng@hotmail.com (Boonyarit

Ngeonkam)
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interior of C. Then for x, y ∈ Y , a partial order ≥C in Y is defined as

x ≥C y ⇔ x− y ∈ C.

Let L(X,Y ) be the space of all continuous linear mappings from X to Y . Let T1, T2, · · · , TN :

K → L(X,Y ), g, f : K → K, η : K ×K → X and ϕ, µ : K ×K → Y are mappings.

We consider the following new extended vector variational-like inequalities:

(NEV V LI − I)


Find x ∈ Ksuch that,⟨

N∑
i=1

Ti(x), η(g(y), g(x))

⟩
+ ϕ (f(y), f(x))− µ (f(x), f(y))≥C0,

∀y ∈ K.

and

(NEV V LI − II)


Find x ∈ Ksuch that,⟨

N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0,

∀y ∈ K.

Special cases:

(i) If T3, T4, · · · , TN ≡ 0, T1 = S, T2 = T , ϕ = h, µ ≡ 0 and f = g then (NEVVLI-I) and

(NEVVLI-II) reduces to the following extended vector variational-like inequalities considered

and studied by Ahmad and Irfan [9]

(EV V LI − I)


Find x ∈ Ksuch that,

⟨S(x) + T (x), η(g(y), g(x))⟩+ h(g(y), g(x)) ≥C 0,

∀y ∈ K,

and

(EV V LI − II)


Find x ∈ Ksuch that,

⟨S(y) + T (y), η(g(x), g(y))⟩+ h(g(x), g(y)) ≤C 0,

∀y ∈ K,

(ii) If T2, T3, · · · , TN ≡ 0, T1 = T , ϕ = h, µ ≡ 0 and f = g = I then (NEVVLI-I) and (NEVVLI-II)

reduces to the following vector variational-like inequalities considered and studied by Ahmad

[1]

(V V LI − I)

{
Find x ∈ Ksuch that,

⟨T (x), η(y, x)⟩+ h(y, x) ≥C 0, ∀y ∈ K,

and

(V V LI − I)

{
Find x ∈ Ksuch that,

⟨T (y), η(x, y)⟩+ h(x, y) ≤C 0, ∀y ∈ K,

(iii) If T2, T3, · · · , TN ≡ 0, T1 = T , ϕ ≡ 0, µ ≡ 0 and g = I then (NEVVLI-I) and (NEVVLI-II)

reduces to the following vector variational-like inequalities considered and studied by Zhao

and Xia [12]

(V V LI − I)

{
Find x ∈ Ksuch that,

⟨T (x), η(y, x)⟩ ≥C 0, ∀y ∈ K,

2
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and

(V V LI − I)

{
Find x ∈ Ksuch that,

⟨T (y), η(x, y)⟩ ≤C 0, ∀y ∈ K,

The following concepts and results are needed for the results.

Definition 1.1. A mapping f : K → Y is said to be hemicontinuous if, for any fixed x, y ∈ K, the

mapping t 7→ f(x+ t(y − x)) is continuous at 0+.

Definition 1.2. Let C : K → 2Y be a set-valued mapping, h : K ×K → Y and g : K ×K → X

are the single-valued mappings. Then

(i) h(·, v) is said to be C-convex in the first argument if

h(tu1 + (1− t)u2, v) ∈ th(u1, v) + (1− t)h(u2, v)− C, ∀u1, u2 ∈ K, t ∈ [0, 1],

(ii) If K is an affine set, the η(x, y) is said to be affine with respect to u if for any given v ∈ K

η(tu1 + (1− t)u2, v) = tη(u1, v) + (1− t)η(u2, v), ∀u1, u2 ∈ K, t ∈ R,

with u = (tu1 + (1− t)u2) ∈ K.

Definition 1.3. Let T1, T2, · · · , TN : K → L(X,Y ), g, f : K → K, η : K × K → X and ϕ, µ :

K × K → Y are mappings. Then T1, T2, · · · , TN are said to be g-f -η-ϕ-µ-pseudomonotone if for

any x, y ∈ K,⟨
N∑
i=1

Ti(x), η(g(y), g(x))

⟩
+ ϕ (f(y), f(x))− µ (f(x), f(y))≥C0,

⇒

⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0.

Example 1.4. Let X = R,K = R+, Y = R2, C = R2
+ and

T1(x) =

(
1

1

)
, T2(x) =

(
2x

2−x

)
, T3(x) =

(
3x

3−x

)
, · · · , TN (x) =

(
Nx

N−x

)
g(x) = 3x, f(x) = 2x, η(y, x) = 4y − 5x, ϕ(y, x) =

(
8y − 12x

6y2 − 5xy − 11x2

)
,

µ(x, y) =

(
3x− 4y

4x2 − 2xy − 6y2

)
, ∀x, y ∈ K.

Thus

η(g(y), g(x)) = η(3y, 3x)

= 4(3y)− 5(3x)

= 12y − 15x,

3
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ϕ(f(y), f(x)) = ϕ(2y, 2x)

=

 8(2y)− 12(2x)

6(2y)
2 − 5(2x)(2y)− 11(2x)

2


=

(
16y − 24x

24y2 − 20xy − 44x2

)
,

and

µ(f(x), f(y)) = µ(2y, 2x)

=

 3(2x)− 4(2y)

4(2x)
2 − 2(2x)(2y)− 2(2y)

2


=

(
6x− 8y

16x2 − 8xy − 24y2

)
.

Then ∀x, y ∈ K⟨
N∑
i=1

Ti(x), η(g(y), g(x))

⟩
+ ϕ (f(y), f(x))− µ (f(x), f(y))

=

(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
(12y − 15x) +

 16y − 24x

24x2 − 20xy − 44y2

−

 6x− 8y

16y2 − 8xy − 24x2


=

(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
(12y − 15x) +

 16y − 24x− 6x+ 8y

24y2 − 20xy − 44x2 − 16x2 + 8xy + 24y2


=

(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
(12y − 15x) +

 24y − 30x

48y2 − 12xy − 60x2


=

(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
(12y − 15x) +

(
2(12y − 15x)

2(12y − 15x)(y + x)

)
=

(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
(12y − 15x) +

(
2

4(y + x)

)
(12y − 15x)

= (12y − 15x)

[(
1 + 2x + 3x + · · ·+Nx

1 + 2−x + 3−x + · · ·+N−x

)
+

(
2

4(y + x)

)]
= (12y − 15x)

(
1 + 2x + 3x + · · ·+Nx + 2

1 + 2−x + 3−x + · · ·+N−x + 4y + 4x

)
≥C 0,

implies that 12y ≥ 15x. Thus, 12x ≤ 15x ≤ 12y ≤ 15y. Therefore, 12x− 15y ≤ 0.

4
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So it follows that⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))

=

(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
(12x− 15y) +

 16x− 24y

24y2 − 20xy − 44x2

−

 6y − 8x

16x2 − 8xy − 24y2


=

(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
(12x− 15y) +

 16x− 24y − 6y + 8x

24x2 − 20xy − 44y2 − 16y2 + 8xy + 24x2


=

(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
(12x− 15y) +

 24x− 30y

48x2 − 12xy − 60y2


=

(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
(12x− 15y) +

(
2(12x− 15y)

2(12x− 15y)(x+ y)

)
=

(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
(12x− 15y) +

(
2

4(x+ y)

)
(12x− 15y)

= (12x− 15y)

[(
1 + 2y + 3y + · · ·+Ny

1 + 2−y + 3−y + · · ·+N−y

)
+

(
2

4(x+ y)

)]
= (12x− 15y)

(
1 + 2y + 3y + · · ·+Ny + 2

1 + 2−y + 3−y + · · ·+N−y + 4x+ 4y

)
≤C 0.

⇒ T1, T2, · · · , TN are g-f -η-ϕ-µ-pseudomonotone.

Definition 1.5. A multi-valued operator S : X → 2X
∗
is called quasimonotone if for all x, y ∈ X

the following implications hold:

∃x∗ ∈ S(x) : ⟨x∗, y − x⟩ > 0 ⇒ ∃y∗ ∈ S(y) : ⟨y∗, y − x⟩ ≥ 0.

Definition 1.6. A multi-valued operator S : X → 2X
∗
is called properly quasimonotone if for all

x1, x2, ..., xn ∈ X and every y ∈ Conv{x1, x2, ..., xn} there exist i such that

∀x∗i ∈ S(xi) : ⟨x∗i , y − xi⟩ ≥ 0.

Definition 1.7. A mapping T : K → L(X,Y ) is said to be properly quasimonotone of Stampacchia

type if for all n ∈ N for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with∑n
i=1 λi = 1 and u :=

∑n
i=1 λivi, ⟨Tu, vi − u⟩≥C0 holds for some i. T is said to be properly

quasimonotone of Minty type if for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n

with
∑n

i=1 λi = 1 and u :=
∑n

i=1 λivi, ⟨Tvi, vi − u⟩≤C0 holds for some i.

Definition 1.8. A mapping T : K → L(X,Y ) is said to be properly g-η-quasimonotone of Stam-

pacchia type if for all n ∈ N for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with∑n
i=1 λi = 1 and u :=

∑n
i=1 λivi, ⟨Tu, η(g(vi), g(u))⟩≥C0 holds for some i. T is said to be properly

g-η-quasimonotone of Minty type if for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n

with
∑n

i=1 λi = 1, and u :=
∑n

i=1 λivi, ⟨Tvi, η(g(vi), g(u))⟩≤C0 holds for some i.

Definition 1.9. A mapping T : K → L(X,Y ) is said to be properly g-h-η-quasimonotone of

Stampacchia type if for all n ∈ N for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n

with
∑n

i=1 λi = 1 and u :=
∑n

i=1 λivi, ⟨Tu, η(g(vi), g(u))⟩+h(g(vi), g(u))≥C0 holds for some i. T is

said to be properly g-h-η-quasimonotone of Minty type if for all vectors v1, v2, ..., vn ∈ K and scalars

λi ≥ 0, i = 1, 2, ..., n with
∑n

i=1 λi = 1, and u :=
∑n

i=1 λivi, ⟨Tvi, η(g(u), g(vi))⟩+h(g(u), g(vi))≤C0

holds for some i.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

516 Ungchittrakool et al 512-524



Definition 1.10. A mapping T : K → L(X,Y ) is said to be properly g-f -η-ϕ-µ-quasimonotone of

Stampacchia type if for all n ∈ N for all vectors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n

with
∑n

i=1 λi = 1 and u :=
∑n

i=1 λivi, ⟨T (u), η(g(vi), g(u))⟩ + ϕ(f(vi), f(u)) − µ(f(u), f(vi))≥C0

holds for some i. T is said to be properly g-f -η-ϕ-µ-quasimonotone of Minty type if for all vec-

tors v1, v2, ..., vn ∈ K and scalars λi ≥ 0, i = 1, 2, ..., n with
∑n

i=1 λi = 1, and u :=
∑n

i=1 λivi,

⟨T (vi), η(g(u), g(vi))⟩+ ϕ(f(u), f(vi))− µ(f(vi), f(u))≤C0 holds for some i.

Example 1.11. Let X = R,K = R+, Y = R2, C = R2
+ and

T1(x) =

(
1

x

)
, T2(x) =

(
2

x2

)
, T3(x) =

(
3

x3

)
, · · · , TN (x) =

(
N

xN

)
g(x) = 2x, f(x) = 3x, η(y, x) = 7y − 5x, ϕ(y, x) =

(
5y + 3x

5y2 + 3x2

)
,

µ(x, y) =

(
2x+ 3y

2x2 + 3y2

)
,∀x, y ∈ K.

Thus

η(g(y), g(x)) = η(2y, 2x)

= 7(2y)− 5(2x)

= 14y − 10x,

ϕ(f(y), f(x)) = ϕ(3y, 3x)

=

 5(3y) + 3(3x)

5(3y)
2
+ 3(3x)

2


=

(
15y + 9x

45y2 + 27x2

)
,

and

µ(f(x), f(y)) = µ(3x, 3y)

=

 2(3x) + 3(3y)

2(3x)
2
+ 3(3y)

2


=

(
6x+ 9y

18x2 + 27y2

)
.

We claim that T1, T2, · · · , TN are properly g-f -η-ϕ-µ-quasimonotone of Stampacchia type. Suppose

to the contrary that there exists xi ∈ K, ti ≥ 0, i = 1, 2, ..., n with
∑n

i=1 ti = 1 such that⟨
N∑
i=1

Ti(x), η(g(xi), g(x))

⟩
+ ϕ (f(xi), f(x))− µ (f(x), f(xi))�C

0, i = 1, 2, ..., n

6
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where xi =
∑n

i=1 λixi, it follows that⟨
N∑
i=1

Ti(x), η(g(xi), g(x))

⟩
+ ϕ (f(xi), f(x))− µ (f(x), f(xi))

=

(
1 + 2 + 3 + · · ·+N

x+ x2 + x3 + · · ·+ xN

)
(14xi − 10x) +

(
15xi + 9x

45xi
2 + 27x2

)
−
(

6x+ 9xi
18x2 + 27xi

2

)

=

(
(1 + 2 + 3 + · · ·+N)(14xi − 10x)

(x+ x2 + x3 + · · ·+ xN )(14xi − 10x)

)
+

 6xi + 3x

18xi + 9x

 �C 0

=

(
(1 + 2 + 3 + · · ·+N)(14xi − 10x) + 6xi + 3x

(x+ x2 + x3 + · · ·+ xN )(14xi − 10x) + 18xi + 9x

)
�C 0

i = 1, 2, ..., n,

which is a contradiction, since

(1 + 2 + 3 + · · ·+N)(14xi − 10x) + 6xi + 3x ≥C 0,

and

(x+ x2 + x3 + · · ·+ xN )(14xi − 10x) + 18xi + 9x ≥C 0,

for atleast one i. Thus T1, T2, · · · , TN are properly g-f -η-ϕ-µ-quasimonotone of Stampacchia type.

Lemma 1.12. Let T1, T2, · · · , TN : K → L(X,Y ), η : K × K → X,ϕ, µ : K × K → Y and

g : K → K be mappings. If T1, T2, · · · , TN are g-f -η-ϕ-µ-pseudomonotone and properly g-f -η-ϕ-µ-

quasimonotone of Stampacchia type, then T1, T2, · · · , TN are properly g-f -η-ϕ-µ-quasimonotone of

Minty type.

Proof. The fact directly follows from Definitions 1.3 and 1.9.

Definition 1.13. Let D be a nonempty subset of a topological Hausdorff space E. A mapping

G : D → 2E (the family of nonempty subset of E) is said to be a KKM mapping if for any finite

subset {x1, x2, ..., xn} ⊂ D,

we have Co {x1, ..., xn} ⊂
∪n

i=1G(xi). where Co denotes the convex hull operator.

Lemma 1.14 ([6]). Let D be a nonempty subset of a topological Hausdorff vector space E and

G : D → 2E be a KKM mapping. If G(x) is closed for any x ∈ D, and compact for some x ∈ D,

then
∩

x∈D

G(x) ̸= ∅.

Lemma 1.15. Let Y be a topological vector space with a pointed, closed and convex cone C such

that intC ̸= ∅. If u, v ∈ Y and u /∈ C and v ∈ −C, then tv + (1− t)u /∈ C, ∀t ∈ (0, 1).

Proof. Assume that u, v ∈ Y and u /∈ C and v ∈ −C. We must to show that tv + (1 − t)u /∈ C

∀t ∈ (0, 1). Suppose to the contrary that there exists some t ∈ (0, 1) such that tv + (1 − t)u ∈ C.

Since C is cone and v ∈ −C, we have −tv ∈ C. Thus tv+ (1− t)u+ (−tv) ∈ C +C ⊂ C and hence

(1− t)u ∈ C. By (1− t) > 0 and C is cone, it follows that 1
(1−t) (1− t)u ∈ C. So u ∈ C. Which is

a contradiction. Hence tv + (1− t)u /∈ C, ∀t ∈ (0, 1). This completes the proof.

7
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2. Existence results

In this section, we establish some existence results for (NEVVLI-I) and (NEVVLI-II) by using

Lemma 1.14.

Lemma 2.1. Let T1, T2, · · · , TN : K → L(X,Y ), η : K ×K → X,ϕ, µ : K ×K → Y be mappings

and g, f : K → K is affine mapping satisfying the following conditions:

(a) T1, T2, · · · , TN are g-f -η-ϕ-µ-pseudomonotone;

(b) for any fixed x ∈ X, the mapping y 7→
⟨

N∑
i=1

Ti(y), η(g(x), g(y))

⟩
is hemicontinuous and

ϕ(f(x), f(y)) and µ(f(y), f(x)) are continuous with {zt} → x0 ∈ K, zt ∈ K;

(c) ϕ(·, f(y)) is C-convex in the first variable and ϕ(f(x), f(x)) = 0, ∀x ∈ K;

(d) µ(f(y), ·) is C-concave in the second variable and µ(f(x), f(x)) = 0, ∀x ∈ K;

(e) η(·, g(y)) is affine in the first variable and η(g(x), g(x)) = 0,∀x ∈ K.

Then for any x0 ∈ K, the following statements are equivalent

(I)

⟨
N∑
i=1

Ti(x0), η(g(x), g(x0))

⟩
+ ϕ (f(x), f(x0))− µ (f(x0), f(x))≥C0,

(II)

⟨
N∑
i=1

Ti(x), η(g(x0), g(x))

⟩
+ ϕ (f(x0), f(x))− µ (f(x), f(x0))≤C0.

Proof. T1, T2, · · · , TN are g-f -η-ϕ-µ-pseudomonotone, it follows that (I) ⇒ (II).

(II) ⇒ (I). Suppose that (II) holds for any x0 ∈ K⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0.

For arbitrary z ∈ K, letting zt = (1 − t)x0 + tz, t ∈ (0, 1), we have zt ∈ K by convexity of K.

Hence we have⟨
N∑
i=1

Ti(zt), η(g(x0), g(zt))

⟩
+ ϕ (f(x0), f(zt))− µ (f(zt), f(x0))≤C0.

Now we show that⟨
N∑
i=1

Ti(zt), η(g(z), g(zt))

⟩
+ ϕ (f(z), f(zt))− µ (f(zt), f(z))≥C0.

Suppose to the contrary that there exists some t ∈ (0, 1) such that⟨
N∑
i=1

Ti(zt), η(g(z), g(zt))

⟩
+ ϕ (f(z), f(zt))− µ (f(zt), f(z))�C

0.
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As C is a convex cone and in veiw of (c), (d) and (e) we get

0 =

⟨
N∑
i=1

Ti(zt), η(g(zt), g(zt))

⟩
+ ϕ (f(zt), f(zt))− µ (f(zt), f(zt))

=

⟨
N∑
i=1

Ti(zt), η(g((1− t)x0 + tz), g(zt))

⟩
+ ϕ (f((1− t)x0 + tz), f(zt))

− µ (f(zt), f((1− t)x0 + tz))

=

⟨
N∑
i=1

Ti(zt), η((1− t)g(x0) + tg(z), g(zt))

⟩
+ ϕ ((1− t)f(x0) + tf(z), f(zt))

− µ (f(zt), (1− t)f(x0) + tf(z))

=

⟨
N∑
i=1

Ti(zt), (1− t)η(g(x0)g(zt)) + tη(g(z), g(zt))

⟩
+ ϕ ((1− t)f(x0) + tf(z), f(zt))

− µ (f(zt), (1− t)f(x0) + tf(z))

≤C

⟨
N∑
i=1

Ti(zt), (1− t)η(g(x0)g(zt)) + tη(g(z), g(zt))

⟩
+ (1− t)ϕ (f(x0), f(zt))

+ tϕ(f(z), f(zt))− [(1− t)µ (f(zt), f(x0)) + tµ(f(zt), f(z))]

=

⟨
N∑
i=1

Ti(zt), (1− t)η(g(x0)g(zt))

⟩
+

⟨
N∑
i=1

Ti(zt), tη(g(z), g(zt))

⟩
+ (1− t)ϕ (f(x0), f(zt)) + tϕ(f(z), f(zt))− (1− t)µ (f(zt), f(x0))− tµ(f(zt), f(z))

= (1− t)

⟨
N∑
i=1

Ti(zt), η(g(x0)g(zt))

⟩
+ t

⟨
N∑
i=1

Ti(zt), η(g(z), g(zt))

⟩
+ (1− t)ϕ (f(x0), f(zt)) + tϕ(f(z), f(zt))− (1− t)µ (f(zt), f(x0))− tµ(f(zt), f(z))

= t

{⟨
N∑
i=1

Ti(zt), η(g(z), g(zt)) + ϕ(f(z), f(zt))− tµ(f(zt), f(z))

⟩}

+ (1− t)

{⟨
N∑
i=1

Ti(zt), η(g(x0)g(zt)) + ϕ (f(x0), f(zt))− µ (f(zt), f(x0))

⟩}

∈ t

{⟨
N∑
i=1

Ti(zt), η(g(z), g(zt)) + ϕ(f(z), f(zt))− tµ(f(zt), f(z))

⟩}

+ (1− t)

{⟨
N∑
i=1

Ti(zt), η(g(x0)g(zt)) + ϕ (f(x0), f(zt))− µ (f(zt), f(x0))

⟩}
− C,

which implies that

t

{⟨
N∑
i=1

Ti(zt), η(g(z), g(zt)) + ϕ(f(z), f(zt))− tµ(f(zt), f(z))

⟩}

+ (1− t)

{⟨
N∑
i=1

Ti(zt), η(g(x0)g(zt)) + ϕ (f(x0), f(zt))− µ (f(zt), f(x0))

⟩}
∈ C.
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Which is a contradiction. Hence⟨
N∑
i=1

Ti(zt), η(g(z), g(zt))

⟩
+ ϕ (f(z), f(zt))− µ (f(zt), f(z))≥C0.

Condition (b) implies that⟨
N∑
i=1

Ti(x0), η(g(z), g(x0))

⟩
+ ϕ (f(z), f(x0))− µ (f(x0), f(z))≥C0, ∀x ∈ K.

This completes the proof.

Theorem 2.2. Let X and Y be two real Banach spaces and K ⊂ X a nonempty, compact and

convex set. Let T1, T2, · · · , TN : K → L(X,Y ), η : K×K → X,ϕ, µ : K×K → Y and g, f : K → K

are the mappings satisfying the following conditions:

(i) for any fixed y ∈ X, the mapping x 7→
⟨

N∑
i=1

Ti(x), η(g(y), g(x))

⟩
, ϕ(f(y), f(x)) and µ(f(x), f(y))

are continuous;

(ii) T1, T2, · · · , TN are properly g-f -η-ϕ-µ-quasimonotone of Stampacchia type;

(iii) for all x ∈ K, η(g(x), g(x)) = 0 and ϕ(f(x), f(x)) = 0 = µ(f(x), f(x)).

Then there exists x ∈ K such that⟨
N∑
i=1

Ti(x), η(g(y), g(x))

⟩
+ ϕ (f(y), f(x))− µ (f(x), f(y))≥C0, ∀y ∈ K.

Proof. Define a multivalued mapping M1 : K → 2K by

M1(z) =

{⟨
N∑
i=1

Ti(x), η(g(z), g(x))

⟩
+ ϕ (f(z), f(x))− µ (f(x), f(z))≥C0

}
, ∀z ∈ K,

then M1(z) is nonempty for each z ∈ K. We claim that M1 is a KKM mapping. In fact if it is

not the case then there exists {x1, x2, ..., xn} ⊂ K, x =
∑n

i=1 tixi with ti > 0, i = 1, 2, ..., n and∑n
i=1 ti = 1 such that x /∈

∪m
i=1M1(xi).

This implies that⟨
N∑
i=1

Ti(x), η(g(xi), g(x))

⟩
+ ϕ (f(xi), f(x))− µ (f(x), f(xi))≥C0.

This contradicts condition (ii). Therefore M1 is a KKM mapping; Now we prove that for any

z ∈ K,M1(z) is closed.

In veiw of (i), let there exists a net {xn} ⊂M1(z) such that xn → x ∈ K. Because⟨
N∑
i=1

Ti(xn), η(g(z), g(xn))

⟩
+ ϕ (f(z), f(xn))− µ (f(xn), f(z))≥C0, ∀n,

we have⟨
N∑
i=1

Ti(x), η(g(z), g(x))

⟩
+ ϕ (f(z), f(x))− µ (f(x), f(z))≥C0.
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Hence x ∈ M1(z) and so M1(z) is closed. It follows from the compactness of K and closedness of

M1(z) ⊂ K, that M1(z) is compact. Thus by Lemma 1.14, we have
∩

z∈K M1(z) ̸= ∅. Hence there

exist x ∈ K such that⟨
N∑
i=1

Ti(x), η(g(y), g(x))

⟩
+ ϕ (f(y), f(x))− µ (f(x), f(y))≥C0 ∀y ∈ K.

This completes the proof.

Theorem 2.3. Let K be a nonempty, bounded, closed and convex subset a real reflexive Banach

space X and Y a real Banach space. Let T1, T2, · · · , TN : K → L(X,Y ), η : K × K → X,ϕ, µ :

K ×K → Y and g, f : K → K are the mappings satisfying the following conditions:

(i) for any fixed y ∈ X, the mapping

⟨
N∑
i=1

Ti(y), η(g(·), g(y))
⟩
, ϕ(f(·), f(y)) and µ(f(y), f(·)) are

lower semicontinuous;
(ii) T1, T2, · · · , TN are properly g-f -η-ϕ-µ-quasimonotone of Minty type;
(iii) forall x ∈ K, η(g(x), g(x)) = 0 and ϕ(f(x), f(x)) = 0 = µ(f(x), f(x)).

Then there exists x ∈ K such that⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0, ∀y ∈ K.

Proof. Define a multivalued mapping M2 : K → 2K by

M2(z) =

{
x ∈ K :

⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0

}
, ∀z ∈ K.

then M2(z) is nonempty for each z ∈ K. We claim that M2 is not KKM mapping, then there

exists {x1, x2, ..., xn} ⊂ K, x =
∑n

i=1 tixi with ti > 0, i = 1, 2, ..., n and
∑n

i=1 ti = 1 such that

x /∈
∪m

i=1M2(xi).

This implies that⟨
N∑
i=1

Ti(xi), η(g(x), g(xi))

⟩
+ ϕ (f(x), f(xi))− µ (f(xi), f(x))�C

0, i = 1, 2, ..., n.

This contradicts condition (ii). Therefore M2 is a KKM mapping. Since K is bounded, M2(z) is

bounded. From (ii), we have M2(z) is convex. Next, we will show that M2(z) closed.

In veiw of (i), let there exists a net {xn} ⊂M2(z) such that xn → x ∈ K. Because⟨
N∑
i=1

Ti(y), η(g(xn), g(y))

⟩
+ ϕ (f(xn), f(y))− µ (f(y), f(xn))≤C0, ∀n,

we have⟨
N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0.

Hence x ∈M2(z) and so M2(z) is closed.

Since X is reflexive, M2(z) is weakly compact for all z ∈ K. It follows from Lemma 1.14, that∩
z∈K M2(z) ̸= ∅. Hence there exist x ∈ K such that⟨

N∑
i=1

Ti(y), η(g(x), g(y))

⟩
+ ϕ (f(x), f(y))− µ (f(y), f(x))≤C0, ∀y ∈ K.

This completes the proof.
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It is useful to mention that the result of Theorem 2.2 can be viewed as an improvement of the

following corollary.

Corollary 2.4 ([9, Theorem 2.1]). Let X and Y be two real Banach spaces and K ⊂ X a nonempty,

compact and convex set. Let S, T : K → L(X,Y ), η : K ×K → X,h : K ×K → Y and g : K → K

are the mappings satisfying the following conditions:

(a) for any fixed y ∈ X, the mapping x 7→ ⟨S(y) + T (y), η(g(x), g(y))⟩ and h(g(x), g(y)) are

continuous;

(b) S and T are properly g-h-η-quasimonotone of Stampacchia type;

(c) for all x ∈ K, η(g(x), g(x)) = 0 = h(g(x), g(x)).

Then there exists x ∈ K such that

⟨S(x) + T (x), η(g(y), g(x))⟩+ h(g(y), g(x)) ≥C 0, ∀y ∈ K.

Proof. By taking T3, T4, · · · , TN ≡ 0, T1 = S, T2 = T , ϕ = h, µ ≡ 0 and f = g in Theorem 2.2, we

obtain the desired results.
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Abstract

By using monotone iterative technique and operator semigroup theorem, we

consider the existence of mild solutions for a class of nonlocal semi-linear evolution

equation with not instantaneous impulses in ordered Banach spaces. Finally, an

example is given to show the existence results.

Key Words: evolution equation; not instantaneous impulses; operator semi-

group; upper and lower solutions; monotone iterative technique; mild solutions

MR(2010) Subject Classification: 34K30; 34K45; 47H05.

1 Introduction

The impulsive differential equations are used to describe mathematical models of

many real processes and phenomena studied by physical, chemical, biological, popula-

tion dynamics, industrial robotics, economics, engineering and so on, see [1]. Applied

impulsive mathematical models have become an active research subject in nonlinear

science and have attracted more attention in many fields , see[2-4] and references there-

in.

For more details on differential equations with “abrupt and instantaneous” impulses,

one can see for instance the monographs[5-7] and the references therein. By means of

monotone iterative method coupled with lower and upper solutions, some sufficient
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conditions for the existence of solutions of impulsive integro-differential equations were

established in [8]. Recently, the existence results to impulsive differential equations

with nonlocal conditions was studied in [9-15]. Moreover, Chen, Li and Yang[16] used

the perturbation method and monotone iterative technique in the presence of lower

and upper solutions to discuss the existence of mild solutions for the nonlocal impulsive

evolution equation in ordered Banach spaces.

However, it seems that the models with instantaneous impulses could not explain

the certain dynamics of evolution processes in pharmacotherapy. For example, one

considers the hemodynamic equilibrium of a person, the introduction of the drugs in

the bloodstream and the consequent absorption for the body are gradual and continuous

process. Hernandez and O’Regan[17] and Pierri et al.[18] initially studied on Cauchy

problems for a new type first order evolution equations with not instantaneous impulses

of the form:
u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

u(0) = u0.

Wang and Li[19], Yu et al.[20] considered periodic boundary value problems for non-

linear evolution equations with non instantaneous impulses. Wang et al.[21] discussed

a class of new fractional differential equations with not instantaneous impulses.

However, to the best of our knowledge, the existence mild solutions for nonlocal

evolution equations with not instantaneous impulses by means of monotone iterative

technique has not been investigated yet. Motivated by this consideration, in this paper,

we discuss the existence of mild solutions for the nonlocal evolution equation with not

instantaneous impulses in an ordered Banach space X
u′(t) + Au(t) = f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,

u(0) = g(u),

(1.1)

where A : D(A) ⊂ X → X is a closed linear operator and −A generates a C0-semigroup

T (t)(t ≥ 0) in X; 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < t3 ≤ s3 < · · · < tm−1 ≤ sm−1 < tm ≤
sm < tm+1 = a are pre-fixed numbers, J = [0, a], a > 0 is a constant; f ∈ C([0, a], X).

hi ∈ C([ti, si]×X,X) for all i = 1, 2, · · · ,m.
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2 Preliminaries

Throughout this paper, Let X be a Banach space, A : D(A) ⊂ X → X be a closed

linear operator and −A generate a C0-semigroup T (t)(t ≥ 0) in X. Denote

M ≡ sup
t∈J
‖T (t)‖,

which is a finite number. For more details of the properties of the operator semigroups

and positive C0-semigroup, we refer to the monographs[22, 23] and [24].

Let X be an ordered Banach space with the norm ‖·‖ and partial order ” ≤ ”, whose

positive cone K = {x ∈ X|x ≥ θ} is normal with normal constant N . Let C(J,X) with

the norm ‖u‖C = max
t∈J
‖u(t)‖, then C(J,X) is an ordered Banach space induced by the

convex cone KC = {u ∈ C(J,X) | u(t) ≥ 0, t ∈ J}, and KC is also a normal cone.

Let J ′ = J \ {t1, t2, · · · , tm}, J ′′ = J \ {0, t1, t2, · · · , tm}. Evidently, PC(J,X) =

{u : J → X | u(t) is continuous in J ′, and left continuous at tk, and u(t+k ) exists,

k = 1, 2, · · · ,m}. PC(J,X) is a Banach space with the norm ‖ · ‖PC = sup
t∈J
‖u(t)‖.

Evidently, PC(J,X) is also an order Banach space with the partial order ” ≤ ” induced

by the positive cone KPC = {u ∈ PC(J,X)|u(t) ≥ θ, t ∈ J}. KPC is normal with the

same normal constant N . For v, w ∈ PC(J,X) with v ≤ w, we use [v, w] to denote

the order interval {u ∈ PC(J,X) | v ≤ u ≤ w} in PC(J,X), and [v(t), w(t)] to denote

the order interval {u ∈ X | v(t) ≤ u(t) ≤ w(t), t ∈ J} in X. We use X1 to denote the

Banach space D(A) with the graph norm ‖ · ‖1 = ‖ · ‖ + ‖A · ‖. For more details and

definitions of the partial and cone, we refer to the monographs [25, 26].

Definition 2.1. If functions v0 ∈ PC(J,X) ∩ C1(J ′′, X) ∩ C(J ′, X1) satisfy
v′0(t) + Av0(t) ≤ f(t, v0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) ≤ g(v0),

(2.1)

we call v0 a lower solution of problem (1.1); if all the inequalities of (2.1) are inverse,

we call it an upper solution of problem (1.1).

Next, we recall some properties of measure of noncompactness that will be used in

the proof of our main results. Let α(·) denotes the Kuratowski measure of noncompact-

ness of the bounded set.For the details of the definition and properties of the measure

of noncompactness, see [25]. The following lemmas are needed in our arguments.

Lemma 2.3.([27]) Let B ⊂ C(J,X) be bounded and equicontinuous. Then α(B(t)) is

continuous on J , and

α(B) = max
t∈J

α(B(t)) = α(B(J)).
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Lemma 2.4. ([28]) Let B = {un} ⊂ C(J,X)(n = 1, 2, · · ·) be a bounded and countable

set. Then α(B(t)) is Lebesgue integral on J , and

α
({∫

J

un(t)dt | n ∈ N
})
≤ 2

∫
J

α(B(t))dt. (2.2)

3 Linear nonlocal problem

Let I = [t0, t], t0 ≥ 0. It is well-known ([22])that for any x0 ∈ D(A) and h ∈
C1(I,X), the initial value problem of linear evolution equation{

u′(t) + Au(t) = h(t), t ∈ I,

u(t0) = x0,
(3.1)

has a unique classical solution u ∈ C1(I,X) ∩ C(I,X1) expressed by

u(t) = T (t− t0)x0 +

∫ t

t0

T (t− s)h(s)ds, t ∈ I (3.2)

If x0 ∈ X and h ∈ C(I,X), the function u given by (3.2) belongs to C(I,X), which is

known as a mild solution of IVP(3.1).

To prove our main results, for any h ∈ PC(J,X) and yi ∈ PC(J,X), i = 1, 2, · · · ,m,

we consider the linear nonlocal evolution equation with not instantaneous impulses in

X 
u′(t) + Au(t) = h(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m.

u(0) = g(u).

(3.3)

Theorem 3.1. Let X be a Banach space, A : D(A) ⊂ X → X be a closed linear

operator and −A generate a C0-semigroup T (t)(t ≥ 0) in X. For any h ∈ PC(J,X),

yi ∈ PC(J,X), i = 1, 2, · · · ,m, g : PC(J,X) → X, problem(3.3) has a unique mild

solution u ∈ PC(J,X) given by
u(t) = T (t)g(u) +

∫ t
0
T (t− τ)h(τ)dτ, t ∈ [0, t1];

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m;

u(t) = T (t− si)yi(si) +
∫ t
si
T (t− τ)h(τ)dτ, t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(3.4)
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Proof Let t ∈ [0, t1], problem(3.3) is equivalent to the linear nonlocal evolution

equation without impulse{
u′(t) + Au(t) = h(t), t ∈ [0, t1],

u(0) = g(u).
(3.5)

Then (3.5) has a unique mild solution u ∈ C([0, t1], X) given by

u(t) = T (t)g(u) +

∫ t

0

T (t− τ)h(τ)dτ.

Let t ∈ (ti, si], then u(t) = yi(t), i = 1, 2, · · · ,m.
Let t ∈ (si, ti+1], problem(3.3) is equivalent to the initial value problem of linear

evolution equation{
u′(t) + Au(t) = h(t), t ∈ (si, ti+1], , i = 1, 2, · · · ,m,

u(si) = yi(si).
(3.6)

Then (3.6) has a unique mild solution u ∈ C([si, ti+1], X) given by

u(t) = T (t− si)yi(si) +

∫ t

si

T (t− τ)h(τ)dτ.

Inversely, we can verify directly that the function u ∈ PC(J,X) defined by(3.4)

is a mild solution of problem(3.3). Hence problem(3.3) has a unique mild solution

u ∈ PC(J,X) given by (3.4). This completes the proof.

Remark 3.2. In Theorem 3.1, let X be an ordered Banach space,−A generate a positive

C0-semigroup T (t)(t ≥ 0) in X. For any h ≥ θ,g ≥ θ and yi ≥ θ, i = 1, 2, · · · ,m, then

the mild solution of problem(3.3) is a positive solution.

4 The main results

Now, we are in a position to state and prove our main results of this section.

Theorem 4.1. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator

and −A generate a compact and positive C0-semigroup T (t)(t ≥ 0) in X. f ∈ C(J ×
X,X). Assume that problem(1.1) has lower and upper solutions v0 and w0 with v0(t) ≤
w0(t)(t ∈ J). Suppose that the following conditions are satisfied:

(H1) There exists a constant C ≥ 0 such that

f(t, x2)− f(t, x1) ≥ −C(x2 − x1), t ∈ J,

5
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for any t ∈ J , and v0(t) ≤ x1 ≤ x2 ≤ w0(t).

(H2) The impulsive functions hi(i = 1, 2, · · · ,m) are satisfy the conditions

hi(t, x2) ≥ hi(t, x1), i = 1, 2, · · · ,m,

for ∀t ∈ J, v0(t) ≤ x1 ≤ x2 ≤ w0(t).

(H3) The nonlocal function g(u) is increasing in u for u ∈ [v0, w0].

(H4) hi ∈ C(J ×X,X)(i = 1, 2, · · · ,m) are compact operators.

(H5) g : PC(J,X)→ X is compact operator.

Then the problem (1.1) has minimal and maximal mild solutions u and u between v0
and w0, which can be obtained by monotone iterative sequences starting from v0 and w0.

Proof It is easy to see that −(A + CI) generates a positive compact semigroup

S(t) = e−CtT (t). Define D = [v0, w0]. Let M = sup
t∈J
‖S(t)‖, we define an operator

Q : D → PC(J,X) by

(Qu)(t) =



S(t)g(u) +
∫ t
0
S(t− τ)(f(τ, u(τ)) + Cu(τ))dτ, t ∈ [0, t1];

hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

S(t− si)hi(si, u(si)) +
∫ t
si
S(t− τ)(f(τ, u(τ)) + Cu(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(4.1)

Since f , hi and g are continuous, so Q : D → PC(J,X) is continuous. Clearly, from

Theorem 3.1, the mild solutions of problem (1.1) are equivalent to the fixed point of

operator Q.

(i) We show Q : D → PC(J,X) is an increasing operator.

For ∀x1, x2 ∈ D and x1 ≤ x2, from the assumptions (H1) and (H2), we have

f(t, x1(t)) + Cx1(t) ≤ f(t, x2(t)) + Cx2(t), t ∈ J. (4.2)

and

hi(t, x1(t)) ≤ hi(t, x2(t)), i = 1, 2, · · · ,m. (4.3)

Combining the positive of C0-semigroup S(t) with (4.2), (4.2) and (H3), we have

S(t)g(x1) +

∫ t

0

S(t− τ)(f(τ, x1(τ)) + Cx1(τ))dτ

≤ S(t)g(x2) +

∫ t

0

S(t− τ)(f(τ, x2(τ)) + Cx2(τ))dτ, t ∈ [0, t1];

hi(t, x1(t)) ≤ hi(t, x2(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

6
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S(t− si)hi(si, x1(si)) +

∫ t

si

S(t− τ)(f(τ, x1(τ)) + Cx1(τ))dτ

≤ S(t− si)hi(si, x2(si)) +

∫ t

si

S(t− τ)(f(τ, x2(τ)) + Cx2(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

Namely, Q : D → PC(J,X) is an increasing operator.

(ii) We show v0 ≤ Q(v0), Q(w0) ≤ w0.

Let 
v′0(t) + Av0(t) + Cv0(t) = f̄(t) t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) = h̄i(t), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) = ḡ(v0),

(4.4)

by the definition of v0, we have
f̄(t) ≤ f(t, v0(t)) + Cv0(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

h̄i(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

ḡ(v0) ≤ g(v0),

(4.5)

By Theorem 3.1, (4.5)and (4.6), we have

v0(t) =



S(t)ḡ(v0) +
∫ t
0
S(t− τ)f̄(τ)dτ, t ∈ [0, t1];

h̄i(t), t ∈ (ti, si], i = 1, 2, · · · ,m;

S(t− si)h̄i(si) +
∫ t
si
S(t− τ)f̄(τ)dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(4.6)

and

S(t)ḡ(v0) +

∫ t

0

S(t− τ)f̄(τ)dτ

≤ S(t)g(v0) +

∫ t

0

S(t− τ)(f(τ, v0(τ)) + Cv0(τ))dτ, t ∈ [0, t1];

h̄i(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

S(t− si)h̄i(si) +

∫ t

si

S(t− τ)f̄(τ)dτ

≤ S(t− si)hi(si, v0(si)) +

∫ t

si

S(t− τ)(f(τ, v0(τ)) + Cv0(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

7
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Namely, v0(t) ≤ Q(v0)(t). Similarly, it can be shown that Q(w0)(t) ≤ w0(t). Therefore,

Q : [v0, w0]→ [v0, w0] is a continuously increasing operator.

(iii) We prove that the operator Q has fixed points on [v0, w0].

Now, we define two sequences {vn} and {wn} by the iterative scheme

vn = Q(vn−1), wn = Q(wn−1), n = 1, 2, · · · (4.7)

Then from the monotonicity of operator Q it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (4.8)

Next, we prove that {vn} and {wn} are convergent in J . Let B = {vn | n ∈ N},
B0 = {vn−1 | n ∈ N}, then B0 = {v0} ∪B and B = Q(B0).

For any vn−1 ∈ B0, let

(Q1vn−1)(t) = S(t)g(u) +

∫ t

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ, t ∈ [0, t1];

(Q2vn−1)(t) = hi(t, vn−1(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

(Q3vn−1)(t) = S(t− si)hi(si, vn−1(si)) +

∫ t

si

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

For 0 < t ≤ a, by the assumption (H1), we know that

f(t, v0(t)) + Cv0(t) ≤ f(t, vn−1(t)) + Cvn−1(t) ≤ f(t, w0(t)) + Cw0(t).

Since f(t, v0(t)) and f(t, w0(t)) are continuous in compact set [0, a], so their image sets

are compact sets in X, namely image sets are bounded. Combining this fact with the

normality of cone K in X, we have ∃M1 > 0, ∀vn−1 ∈ B0,

‖f(t, vn−1(t)) + Cvn−1(t)‖

≤ ‖f(t, v0(t)) + Cv0(t)‖+N0‖f(t, w0(t)) + Cw0(t)− f(t, v0(t))− Cv0(t)‖

≤ M1.

(4.9)

Case 1. For interval [0, t1] and any 0 < ε < t1, let

(W1vn−1)(t) :=

∫ t

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ

and

(W ε
1vn−1)(t) :=

∫ t−ε

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ,
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then

‖(W1vn−1)(t))− (W ε
1vn−1)(t)‖

= ‖
∫ t

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ

−
∫ t−ε

0

S(t− s)τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ‖

≤
∫ t

t−ε
‖S(t− τ)‖‖f(τ, vn−1(τ)) + Cvn−1(τ)‖dτ

≤ MM1ε.

Therefore, Y1(t) , {(W1vn−1)(t) | vn−1 ∈ B0} is precompact in X by using the total

boundedness.

On the other hand, by the assumption (H5), {S(t)g(vn−1) | vn−1 ∈ B0} is precom-

pact in X due to the compactness of S(t). Therefore, {(Q1vn−1)(t) | vn−1 ∈ B0} is

precompact in X for t ∈ [0, t1].

Case 2. For t ∈ (ti, si], i = 1, 2, · · · ,m, the set {(Q2vn−1)(t) | vn−1 ∈ B0} is precom-

pact in X by the assumption (H4).

Case 3. For t ∈ (si, ti+1], i = 1, 2, · · · ,m, similar to the case 1, {(Q3vn−1)(t) | vn−1 ∈
B0} is precompact in X by (4.9)and the assumption (H4).

Hence, {vn(t)} = {Q(vn−1)(t) | vn−1 ∈ B0} is precompact in X for t ∈ J , combining

this fact with the monotonicity of {vn}, we easily prove that {vn(t)} is convergent. Let

{vn(t)} → u(t) in t ∈ J . Similarly, we prove that {wn(t)} → u(t) in t ∈ J .

Evidently {vn(t)}, {wn(t)} ∈ PC(J,X), so u(t) and u(t) is bounded integrable in

J). Since for any t ∈ J , vn(t) = Q(vn−1)(t), wn(t) = Q(wn−1)(t), letting n → ∞, by

the Lebesgue dominated convergence theorem, we have u(t) = Q(u)(t), u(t) = Q(u)(t)

and u(t), u(t) ∈ PC(J,X). Combining this with monotonicity (4.8), we have v0(t) ≤
u(t) ≤ u(t) ≤ w0(t).

Next, we prove that u(t) and u(t) are the minimal and maximal fixed points of Q

in [v0, w0], respectively. In fact, for any u∗ ∈ [v0, w0], Q(u∗) = u∗, we have v0 ≤ u∗ ≤ w0

and v1 = Q(v0) ≤ Q(u∗) = u∗ ≤ Q(w0) = w1. Continuing such progress, we get

vn ≤ u∗ ≤ wn. Letting n → ∞, we get u(t) ≤ u∗ ≤ u(t). Therefor, u(t) and u(t) are

the minimal and maximal mild solutions of the problem (1.1) between v0 and w0, which

can be obtained by monotone iterative sequences starting from v0 and w0, respectively.�
From the Theorem4.1, we obtain the following result.

Theorem4.2. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator
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and −A generate a compact and positive C0-semigroup T (t)(t ≥ 0) in X. f ∈ C(J ×
X,X). Assume that problem(1.1) has lower and upper solutions v0 and w0 with v0(t) ≤
w0(t)(t ∈ J). Suppose that conditions (H1), (H2), (H3) and the following conditions

are satisfied:

(H6) {hi(·, xn)}(i = 1, 2, · · · ,m) are precompact in X, for any increasing or decreasing

monotonic sequence {xn} ⊂ [v0, w0].

(H7) {g(xn)} is a precompact set in X, for any increasing or decreasing monotonic

sequence {xn} ⊂ [v0, w0].

Then problem (1.1) has minimal and maximal mild solutions u and u between v0 and

w0, which can be obtained by monotone iterative sequences starting from v0 and w0.

Next, we discuss the existence of the mild solutions for problem (1.1) under the

function g is continuous in PC(J,X) and noncompactness measure conditions.

Theorem 4.3. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator

and −A generate an equicontinuous and positive C0-semigroup T (t)(t ≥ 0) in X. f ∈
C(J ×X,X). hi ∈ C(J ×X,X)(i = 1, 2, · · · ,m). g : PC(J,X) → X be a continuous

function. Assume that problem(1.1) has lower and upper solutions v0 and w0 with

v0(t) ≤ w0(t)(t ∈ J). Suppose that conditions (H1), (H2) and (H3) hold, and satisfy:

(H8) There exist a constant L > 0 such that

α({f(t, xn)}) ≤ Lα({xn}),

for all t ∈ J , and increasing or decreasing sequence {xn} ⊂ [v0(t), w0(t)].

(H9) There exist constants 0 < Li < 1(i = 1, 2, · · · ,m) such that

α({hi(t, xn)}) ≤ Liα({xn}), (i = 1, 2, · · · ,m),

for all t ∈ J , and increasing or decreasing sequence {xn} ⊂ [v0(t), w0(t)].

(H10) There exist a constant L
′
> 0 such that

α({g(xn)}) ≤ L
′
α({xn}),

for all t ∈ J , and increasing or decreasing sequence {xn} ⊂ [v0(t), w0(t)].

(H11) M [Li + L
′
+ 2(L+ C)a] < 1(i = 1, 2, · · · ,m).

Then the problem (1.1) has minimal and maximal mild solutions u and u between v0
and w0, which can be obtained by monotone iterative sequences starting from v0 and w0.

Proof From Theorem 4.1, we know that Q : [v0, w0]→ [v0, w0] is continuous. Further-

more, if conditions (H1), (H2) and (H3) are satisfied, the iterative sequences {vn} and
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{wn} defined by (4.7) satisfying (4.8). Therefore, for any t ∈ J , {vn(t)} and {wn(t)}
are monotone and order-bounded sequences in X.

Next, we prove that {vn} and {wn} are convergent in J . Since T (t)(t ≥ 0) is an

equicontinuous C0-semigroup, so S(t)(t ≥ 0) also is an equicontinuous C0-semigroup.

Let B = {vn | n ∈ N} and B0 = {vn−1 | n ∈ N}, by (4.8) and the normality of the

positive cone K, then B and B0 are bounded.

(i) We prove that Q(B0) is equicontinuous in PC(J,X).

Combining (H2) and (H3) with the normality of cone K in X, we have ∃M2 >

0,M3 > 0, ∀vn−1 ∈ B0,

‖g(vn−1)‖ ≤ ‖g(v0)‖+N0‖g(w0)− g(v0)‖ ≤M2. (4.10)

‖hi(t, vn−1(t))‖ ≤ ‖hi(t, v(t))‖+N0‖hi(t, w0(t))− g(hi(t, v0(t))‖ ≤M3. (4.11)

Case 1. For ∀t′, t′′ ∈ [0, t1] and t′ < t′′, by (4.9) and (4.10) we have that

‖(Qvn−1)(t′′)− (Qvn−1)(t
′)‖

= ‖S(t′′)g(vn−1) +

∫ t′′

0

S(t′′ − τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ

−S(t′)g(vn−1)−
∫ t′

0

S(t′ − τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ‖

≤ ‖S(t′′)− S(t′)‖‖g(vn−1)‖

+

∫ t′

0

‖S(t′′ − τ)− S(t′ − τ)‖‖f(τ, vn−1(τ)) + Cvn−1(τ)‖dτ

+

∫ t′′

t′
‖S(t′′ − τ)‖‖f(τ, vn−1(τ)) + Cvn−1(τ)‖dτ

≤ M2‖S(t′)‖‖S(t′′ − t′)− I‖+M1

∫ t′

0

‖S(t′′ − τ)− S(t′ − τ)‖dτ +MM1(t
′′ − t′)

≤ M2M‖S(t′′ − t′)− I‖+M1

∫ t′

0

‖S(t′′ − t′ + τ)− S(τ)‖dτ +MM1(t
′′ − t′)

→ 0(t′′ − t′ → 0).

Case 2. For ∀t′, t′′ ∈ (ti, si](i = 1, 2, · · · ,m) and t′ < t′′, we have that

‖(Qvn−1)(t′′)− (Qvn−1)(t
′)‖ = ‖hi(t′′, vn−1(t′′))− hi(t′, vn−1(t′))‖ → 0(t′′ − t′ → 0).
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Case 3. For ∀t′, t′′ ∈ (si, ti+1](i = 1, 2, · · · ,m) and t′ < t′′, by (4.9) and (4.11) we

have that

‖(Qvn−1)(t′′)− (Qvn−1)(t
′)‖

= ‖S(t′′)hi(si, vn−1(si)) +

∫ t′′

si

S(t′′ − τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ

−S(t′)hi(si, vn−1(si))−
∫ t′

si

S(t′ − τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ‖

≤ ‖S(t′′)− S(t′)‖‖hi(si, vn−1(si))‖

+

∫ t′

si

‖S(t′′ − τ)− S(t′ − τ)‖‖f(τ, vn−1(τ)) + Cvn−1(τ)‖dτ

+

∫ t′′

t′
‖S(t′′ − τ)‖‖f(τ, vn−1(τ)) + Cvn−1(τ)‖dτ

≤ M3‖S(t′)‖‖S(t′′ − t′)− I‖+M1

∫ t′

si

‖S(t′′ − τ)− S(t′ − τ)‖dτ +MM1(t
′′ − t′)

≤ M3M‖S(t′′ − t′)− I‖+M1

∫ t′−si

0

‖S(t′′ − t′ + τ)− S(τ)‖dτ +MM1(t
′′ − t′)

→ 0(t′′ − t′ → 0).

Therefore, Q(B0) is equicontinuous in PC(J,X).

(ii) We prove that α(B(t)) = 0 for t ∈ J .

It follows from B0 = {v0} ∪B that α(B(t)) = α(B0(t)) for t ∈ J .

Case 1. For t ∈ [0, t1], by Lemma 2.3 and Lemma 2.4, we have that

α(B(t)) = α((QB0)(t))

= α
({
S(t)g(vn−1) +

∫ t

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N
})

≤ α({S(t)g(vn−1) | n ∈ N})

+α
({∫ t

0

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N
})

≤ Mα({g(vn−1) | n ∈ N}) + 2

∫ t

0

α({S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N})

≤ ML
′
α(B0) + 2M

∫ t

0

(L+ C)α(B0(τ))dτ
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≤ ML
′
max
t∈J

α(B(t)) + 2M(L+ C)amax
t∈J

α(B(t))

≤ M [L
′
+ 2(L+ C)a] max

t∈J
α(B(t)).

Case 2. For t ∈ (ti, si], i = 1, 2, · · · ,m, by (H9) we have

α(B(t)) = α((QB0)(t)) = α
({
hi(t, vn−1(t)) | n ∈ N

})
≤ Liα(B0(t)) ≤ Li max

t∈J
α(B(t)) < max

t∈J
α(B(t)).

Case 3. For t ∈ (si, ti+1](i = 1, 2, · · · ,m), we have

α(B(t)) = α((QB0)(t))

= α
({
S(t− si)hi(si, vn−1(si)) +

∫ t

si

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N
})

≤ α({S(t− si)hi(si, vn−1(si)) | n ∈ N})

+α
({∫ t

si

S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N
})

≤ Mα({hi(si, vn−1(si)) | n ∈ N})

+2

∫ t

si

α({S(t− τ)(f(τ, vn−1(τ)) + Cvn−1(τ))dτ | n ∈ N})

≤ MLiα(B0) + 2M

∫ t

si

(L+ C)α(B0(τ))dτ

≤ MLi max
t∈J

α(B(t)) + 2M(L+ C)amax
t∈J

α(B(t))

≤ M [Li + 2(L+ C)a] max
t∈J

α(B(t)).

By (H11), we have α(B(t)) < max
t∈J

α(B(t)), then α(B(t)) = 0 in t ∈ J . Therefore,

{vn(t)} is precompact in X for t ∈ J , combining this fact with the monotonicity of {vn},
we easily prove that {vn(t)} is convergent. Let {vn(t)} → u(t) in t ∈ J . The same idea

can be used to prove that {wn(t)} → u(t) in t ∈ J . Similar to the proof of Theorem

4.1, we know that u(t) and u(t) are the problem(1.1) between v0 and w0, which can be

obtained by monotone iterative sequences starting from v0 and w0, respectively. This

completes the proof of Theorem 4.3. �

Remark 4.4. Analytic semigroup and differentiable semigroup are equicontinuous

semigroup ([22]). In the application of partial differential equations, such as parabolic
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and strongly damped wave equations, the corresponding solution semigroup are analytic

semigroup. Therefore, Theorem 4.3. has extensive applicability.

we discuss the existence of the mild solutions for problem (1.1) under the positive

cone is regular.

Theorem 4.5. Let X be an ordered Banach space, whose positive cone K is regular.

Let A : D(A) ⊂ X → X be a closed linear operator and −A generate a positive C0-

semigroup T (t)(t ≥ 0) in X. f ∈ C(J × X,X). hi ∈ C(J × X,X)(i = 1, 2, · · · ,m).

g : PC(J,X)→ X be a continuous function. Assume that problem(1.1) has lower and

upper solutions v0 and w0 with v0(t) ≤ w0(t)(t ∈ J). Suppose that conditions (H1),

(H2) and (H3) are satisfied.

Then the problem (1.1) has minimal and maximal mild solutions u and u between v0
and w0, which can be obtained by monotone iterative sequences starting from v0 and w0.

Proof From Theorem 4.1 we know that Q : [v0, w0] → [v0, w0] is a continuously

increasing operator. Similarly, the two sequences {vn(t)} and {wn(t)} are defined in

[v0, w0] by the iterative scheme (4.7). By conditions (H1), (H2) and (H3), then {vn(t)}
and {wn(t)} are ordered-monotonic and ordered-bounded sequences in X.

Using the regularity of the cone K, any ordered-monotonic and ordered-bounded

sequence in X is convergent. Similar to the proof of Theorem 4.1, we know that u(t)

and u(t) are the problem(1.1) between v0 and w0, which can be obtained by monotone

iterative sequences starting from v0 and w0, respectively. This completes the proof of

Theorem 4.5. �

Corollary 4.6. Let X be an ordered and weakly sequentially complete Banach space,

whose positive cone K is normal, and N0 be the normal constant. Let A : D(A) ⊂ X →
X be a closed linear operator and −A generate a positive C0-semigroup T (t)(t ≥ 0) in

X. f ∈ C(J × X,X). hi ∈ C(J × X,X)(i = 1, 2, · · · ,m). g : PC(J,X) → X be a

continuous function. Assume that problem(1.1) has lower and upper solutions v0 and w0

with v0(t) ≤ w0(t)(t ∈ J). Suppose that conditions (H1), (H2) and (H3) are satisfied.

Then the problem (1.1) has minimal and maximal mild solutions u and u between v0
and w0, which can be obtained by monotone iterative sequences starting from v0 and w0.

Proof In an ordered and weakly sequentially complete Banach space, the normal cone

K is regular. Then the proof is complete. �

Next, we discuss the existence of mild solutions of problem (1.1), when we don’t

assume the lower and upper solutions of problem (1.1) be exist.

Theorem 4.7. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator and
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−A generate a positive and compact C0-semigroup T (t)(t ≥ 0) in X. f ∈ C(J×X,X).

hi ∈ C(J × X,X)(i = 1, 2, · · · ,m). g : PC(J,X) → X be a continuous function.

Suppose that conditions (H1)–(H5) hold and the following condition is satisfied:

(H12) ∃b ≥ 0, h ∈ PC(J,X), h ≥ θ, yi(si) ∈ D(A), yi ≥ θ, i = 1, 2, · · · ,m and

g(u) ∈ D(A), g(u) ≥ θ for any u ∈ PC(J,X), such that

f(t, u) ≤ bu+ h(t), hi(t, u) ≤ yi(t), u ≥ 0;

bu− h(t) ≤ f(t, u), −yi(t) ≤ hi(t, u), u ≤ 0.

Then the problem (1.1) has minimal and maximal mild solutions , which can be obtained

by monotone iterative procedure.

Proof For h(t) ≥ θ, yi(t) ≥ θ, we consider the linear nonlocal evolution equation with

not instantaneous impulses in X
u′(t) + Au(t)− bu(t) = h(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m.

u(0) = g(u),

(4.12)

Since −(A − bI) generate a positive C0-semigroup S(t) = ebtT (t)(t ≥ 0) in X. By

Theorem 3.1 and assumption (H12), we know that the problem (4.12) has a unique

positive solution u∗ ≥ θ. Let v0 = −u∗, w0 = u∗, by the conditions (H1)–(H3) and

(H12), we get
v′0(t) + Av0(t) = bv0(t)− h(t) ≤ f(t, v0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) = −yi(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) = −g(−v0) ≤ g(v0),

(4.13)

and
w′0(t) + Aw0(t) = bw0(t) + h(t) ≥ f(t, w0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

w0(t) = yi(t) ≥ hi(t, w0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

w0(0) ≥ g(w0),

(4.14)

So, we inferred that v0 and w0 are a lower solution and an upper solution of the problem

(1.1), respectively. Therefore by Theorem 4.1., the conclusion holds. Then the proof is

complete.�
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Meanwhile, we can obtain the following results from Theorem 4.2, 4.3, 4.5 and

Corollary 4.6, respectively.

Corollary 4.8. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator and

−A generate a positive and compact C0-semigroup T (t)(t ≥ 0) in X. f ∈ C(J×X,X).

g, hi(i = 1, 2, · · · ,m) are continuous and map a monotonic set into a precompact set

and conditions (H1)–(H3) and (H12) hold, then the problem (1.1) has minimal and

maximal mild solutions , which can be obtained by monotone iterative procedure.

Corollary 4.9. Let X be an ordered Banach space, whose positive cone K is normal,

and N0 be the normal constant. Let A : D(A) ⊂ X → X be a closed linear operator and

−A generate a positive C0-semigroup T (t)(t ≥ 0) in X. f ∈ C(J × X,X). g, hi(i =

1, 2, · · · ,m) are continuous and for any monotonic sequence {xn} satisfy conditions

(H8)–(H11) and conditions (H1)–(H3) as well as (H12) hold, then the problem (1.1)

has minimal and maximal mild solutions , which can be obtained by monotone iterative

procedure.

Corollary 4.10. Let X be an ordered Banach space, whose positive cone K is regular.

Let A : D(A) ⊂ X → X be a closed linear operator and −A generate a positive C0-

semigroup T (t)(t ≥ 0) in X. f ∈ C(J × X,X). g, hi(i = 1, 2, · · · ,m) are continuous

and conditions (H1)–(H3) as well as (H12) hold, then the problem (1.1) has minimal

and maximal mild solutions , which can be obtained by monotone iterative procedure.

Corollary 4.11. Let X be an ordered and weakly sequentially complete Banach space,

whose positive cone K is normal, and N0 be the normal constant. Let A : D(A) ⊂ X →
X be a closed linear operator and −A generate a positive C0-semigroup T (t)(t ≥ 0) in

X. f ∈ C(J ×X,X). g, hi(i = 1, 2, · · · ,m) are continuous and conditions (H1)–(H3)

as well as (H12) hold, then the problem (1.1) has minimal and maximal mild solutions,

which can be obtained by monotone iterative procedure.

5 Application

In this section, we present one example, which indicates how our abstract results

can be applied to concrete problems.

Example 5.1. Consider the following nonlocal parabolic partial differential equa-
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tion with not instantaneous impulses:

∂
∂t
u(x, t) + A(x,D)u(x, t) = f(x, t, u(x, t)), x ∈ Ω,

t ∈ J, t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(x, t) = hi(x, t, u(x, t)), x ∈ Ω, t ∈ (ti, si], i = 1, 2, · · · ,m,

Bu = 0, (x, t) ∈ ∂Ω× J,

u(x, 0) = g(u), x ∈ Ω,

(5.1)

where J = [0, a], a > 0 is a constant, 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < t3 ≤ s3 < · · · <
tm−1 ≤ sm−1 < tm ≤ sm < tm+1 = a are pre-fixed numbers, integer n ≥ 1,Ω ⊂ Rn is a

bounded domain with a sufficiently smooth boundary ∂Ω,

A(x,D) = −
n∑
i=1

n∑
j=1

aij(x)
∂2

∂xi∂yj
+

n∑
i=1

ai(x)
∂

∂xi
+ a0(x)

is a strongly elliptic operator of second order, coefficient functions aij(x), ai(x) and

a0(x) are Hölder continuous in Ω, Bu = b0(x)u + δ ∂u
∂n

is a regular boundary operator

on ∂Ω, f : Ω × J × R → R is continuous, hi : Ω × J × R → R are also continuous,

i = 1, 2, · · · ,m, g is a continuous function.

Let X = Lp(Ω) with p > n + 2, K = {u ∈ Lp(Ω) | u(x) ≥ 0 a.e. x ∈ Ω}, and

define the operator A as follows:

D(A) = {u ∈ W 2,p(Ω) | Bu = 0}, Au = A(x,D)u.

We know that X is a Banach space, K is a regular cone of X, and −A generates

a positive and analytic C0-semigroup T (t)(t ≥ 0) in X (see [22]). Define u(t) =

u(·, t), f(t, u(t)) = f(·, t, u(·, t)), hi(t, u(t)) = hi(·, t, u(·, t)), then system (5.1) can be

reformulated as problem (1.1) in X. We assume that the following conditions hold:

(i) Let f(x, t, 0) ≥ 0, hi(x, t, 0) ≥ 0, g(0) ≥ 0, x ∈ Ω.

(ii) There exist w = w(x, t) ∈ PC(Ω×J)∩C2,1(Ω×J ′′), and w(x, t) ≥ 0, x ∈ Ω, t ∈ J
such that

∂
∂t
w(x, t) + A(x,D)w(x, t) ≥ f(x, t, w(x, t)), x ∈ Ω,

t ∈ J, t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

w(x, t) ≥ hi(x, t, w(x, t)), x ∈ Ω, t ∈ (ti, si], i = 1, 2, · · · ,m,

Bw = 0, (x, t) ∈ ∂Ω× J,

w(x, 0) ≥ g(w), x ∈ Ω,

(iii) The partial derivative f ′u(x, t, u) is continuous on any bounded domain.

(iv) For any u1, u2 ∈ [0, w(x, t)] with u1 ≤ u2, for any x ∈ Ω, i = 1, 2, · · · ,m,we have

hi(x, t, u1(x, t)) ≤ hi(x, t, u2(x, t)), g(u1) ≤ g(u1)
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Theorem 5.2. If assumptions (i), (ii), (iii) and (iv) are satisfied, then the impul-

sive parabolic partial differential equation (5.1) has minimal and maximal mild solu-

tions between 0 and w(x, t), which can be obtained by a monotone iterative procedure

starting from 0 and w(x, t), respectively.

Proof From assumptions (i) and(ii) we know that 0 and w(x, t) are lower and

upper solutions of problem (5.1), respectively. (iii) implies that condition (H1) is satis-

fied. (iv) implies that conditions (H2) and (H2) are satisfied. So, by Theorem 4.5., we

have the result. Then the proof is complete.�

6 Conclusions

In this paper, we consider the existence of mild solutions for the new nonlocal

evolution equation with impulses. We initially use the monotone iterative technique to

the problem under new impulsive conditions. Hence the results are new.
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Eigenvalue for a system of Caputo fractional

differential equations ∗
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Abstract: In this article, we study the existence of positive solutions for a system of non-
linear differential equations of mixed Caputo fractional orders

8
>><
>>:

cDα
0+u(t) + λf(t, u(t), v(t)) = 0, 0 < t < 1,

cDβ
0+v(t) + µg(t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(0) = 0,
v(0) = v′(0) = v′′(1) = v′′′(0) = 0,

where 3 < α, β ≤ 4 are real numbers, cDα
0+,c Dβ

0+ are the Caputo fractional derivatives,
and f, g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) are given continuous functions. By using
Krasnoselskii’s fixed point theorem, some sufficient conditions for the existence of positive
solutions and the eigenvalue intervals on which there exists a positive solution are obtained.
Keywords: Fractional order differential equation, Positive solution, Existence, Krasnosel-
skii’s fixed point theorem, Eigenvalue.
2010 Mathematics Subject Classification: 34B15, 34B16, 34B18

1 Introduction

Fractional differential equations describe many phenomena in various fields of engineering and sci-
entific disciplines such as physics, biophysics, chemistry, economics, control theory, see [4, 8]. Recently,
fractional differential equations have been of great interest, there are a large number of papers dealing
with the existence of positive solutions of nonlinear fractional differential equations by the use of tech-
niques of nonlinear analysis (such as upper and lower solution method, Leray-Schauder theory, etc.), see
[1, 2, 5, 7, 9, 10]. In this paper, we consider the system of Caputo fractional differential equations





cDα
0+u (t) + λf (t, u (t) , v (t)) = 0, 0 < t < 1,

cDβ
0+v (t) + µg (t, u (t) , v (t)) = 0, 0 < t < 1,

u (0) = u′ (0) = u′′ (1) = u′′′ (0) = 0,
v (0) = v′ (0) = v′′ (1) = v′′′ (0) = 0,

(1.1)

where 3 < α, β ≤ 4 are real numbers, cDα
0+,c Dβ

0+ are the Caputo fractional derivatives, and f, g :
[0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are given continuous functions. By using Krasnoselskii’s fixed point
theorem, some sufficient conditions for the existence of positive solutions and the eigenvalue intervals on
which there exists a positive solution are obtained.

This paper is organized as follows. In Section 2, we present some basic definitions and properties from
the fractional calculus theory. In Section 3, based on the Krasnoselskii’s fixed point theorem, we prove
two existence theorems of the positive solutions for BVP (1.1). In section 4, an example is presented to
illustrate the main results.

2 Preliminaries

Let us start with the necessary definitions which are used throughout this paper.
∗Supported by NNSF of China (11371368) and HEBNSF of China (A2014506016).
†Corresponding author. E-mail address: fhanying@126.com (H. Feng)
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Definition 2.1 ([2]). The Riemann-Liouville fractional integral of order α > 0 of a function f :
(0,+∞) → R is given by

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

provided the right-hand side is pointwise defined on (0,+∞).
Definition 2.2 ([3, 8]).For a function f : (0, +∞) → R, the Caputo derivative of fractional order is

defined as
cDα

0+f(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

ds, t > 0,

where n = [α] + 1, [α] denotes the integer part of the number α.
Lemma 2.1 ([3, 9]). Let α > 0, then fractional differential equation cDα

0+u(t) = 0 has solutions

u(t) = C1 + C2t + · · ·+ Cntn−1, Ci ∈ R, i = 1, 2, · · ·, n, n = [α] + 1.

Lemma 2.2 ([3, 9]). Let α > 0, then

Iα
0+

cDα
0+u(t) = u(t) + C1 + C2t + · · ·+ Cntn−1, Ci ∈ R, i = 1, 2, · · ·, n, n = [α] + 1.

In the following, we present Green’s function of BVP (1.1).
Lemma 2.3 . Let h1 ∈ C[0, 1] and 3 < α ≤ 4, the unique solution of problem

cDα
0+u(t) + h1(t) = 0, 0 < t < 1, (2.1)

u(0) = u′(0) = u′′(1) = u′′′(0) = 0, (2.2)

is u(t) =
∫ 1

0

G1(t, s)h1(s)ds,

where

G1(t, s) =





(α− 1)(α− 2)t2(1− s)α−3 − 2(t− s)α−1

2Γ(α)
, 0 ≤ s ≤ t ≤ 1,

t2(1− s)α−3

2Γ(α− 2)
, 0 ≤ t ≤ s ≤ 1.

(2.3)

Here G1(t, s) is called the Green’s function of BVP (2.1) and (2.2).
Proof. We may apply Lemma 2.2 to reduce (2.1) to an equivalent integral equation

u(t) = −Iα
0+h1(t) + C1 + C2t + C3t

2 + C4t
3,

for some C1, C2, C3, C4 ∈ R. Consequently, the general solution of (2.1) is

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1h1(s)ds + C1 + C2t + C3t
2 + C4t

3.

By (2.2), there are C1 = C2 = C4 = 0, and C3 =
1

2Γ(α− 2)

∫ 1

0

(1− s)α−3h1(s)ds.

Therefore, the unique solution of problem (2.1) and (2.2) is

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1h1(s)ds +
1

2Γ(α− 2)

∫ 1

0

t2(1− s)α−3h1(s)ds

=
∫ t

0

[
t2(1− s)α−3

2Γ(α− 2)
− (t− s)α−1

Γ(α)

]
h1(s)ds +

∫ 1

t

t2(1− s)α−3

2Γ(α− 2)
h1(s)ds

=
∫ t

0

(α− 1)(α− 2)t2(1− s)α−3 − 2(t− s)α−1

2Γ(α)
h1(s)ds +

∫ 1

t

t2(1− s)α−3

2Γ(α− 2)
h1(s)ds

=
∫ 1

0

G1(t, s)h1(s)ds.
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The proof is finished.
Lemma 2.4 . The function G1 (t, s) defined by (2.3) possesses the following properties:
(1) G1 (t, s) > 0, for t, s ∈ (0, 1) ;

(2) min
1
4≤t≤ 3

4

G1(t, s) ≥ 1
16

max
0≤t≤1

G1(t, s) =
1
16

G1(1, s), for s ∈ (0, 1) .

Proof. Let g1(t, s) =
(α− 1)(α− 2)t2(1− s)α−3 − 2(t− s)α−1

2Γ(α)
, g2(t, s) =

t2(1− s)α−3

2Γ(α− 2)
.

(1) Since 3 < α ≤ 4, 0 < s ≤ t < 1, so

(α− 1)(α− 2)t2(1− s)α−3 > 2t2(1− s)α−3 > 2t2(t− s)α−3 ≥ 2(t− s)α−1,

therefore, g1(t, s) > 0, obviously, g2(t, s) > 0, thus G1(t, s) > 0, for t, s ∈ (0, 1).
(2) Since

∂g1(t, s)
∂t

=
(α− 1) (α− 2) t (1− s)α−3 − (α− 1) (t− s)α−2

Γ (α)
> 0,

∂g2(t, s)
∂t

=
t(1− s)α−3

Γ(α− 2)
> 0,

so G1(t, s) is monotone increasing function for t.
Thus,

0 ≤ G1(t, s) ≤ max
0≤t≤1

G1(t, s) = G1(1, s), t, s ∈ [0, 1].

Noticing that

min
1
4≤t≤ 3

4

G1(t, s) = G1(
1
4
, s) =





(α− 1) (α− 2) (1− s)α−3 − 32
(

1
4 − s

)α−1

32Γ (α)
, s ∈ (0,

1
4
],

(1− s)α−3

32Γ (α− 2)
, s ∈ [

1
4
, 1).

max
0≤t≤1

G1(t, s) = G1(1, s) =
(α− 1) (α− 2) (1− s)α−3 − 2 (1− s)α−1

2Γ (α)
, s ∈ (0, 1).

Next we proof

min
1
4≤t≤ 3

4

G1(t, s) ≥ 1
16

max
0≤t≤1

G1(t, s) =
1
16

G1(1, s).

When 0 < s ≤ 1
4 , since 3 < α ≤ 4, we have

(
1
4
− s)α−1 = (

1
4
)α−1(1− 4s)α−1 ≤ (

1
4
)2(1− 4s)α−1 <

1
16

(1− s)α−1,

so min
1
4≤t≤ 3

4

G1(t, s) ≥ 1
16

max
0≤t≤1

G1(t, s) =
1
16

G1(1, s).

When 1
4 ≤ s < 1, we obtain

min
1
4≤t≤ 3

4

G1(t, s) =
(1− s)α−3

32Γ (α− 2)
=

(α− 1)(α− 2) (1− s)α−3

32Γ (α)
,

1
16

max
0≤t≤1

G1(t, s) =
1
16

G1(1, s) =
(α− 1)(α− 2)(1− s)α−3

32Γ(α)
− (1− s)α−1

16Γ (α)
.

Obvious that,

min
1
4≤t≤ 3

4

G1(t, s) ≥ 1
16

max
0≤t≤1

G1(t, s) =
1
16

G1(1, s), s ∈ (0, 1) .

The proof is finished.
Lemma 2.5 . If the function f ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)), then the unique solution of

BVP (1.1) satisfied

min
1
4≤t≤ 3

4

u(t) ≥ 1
16
‖u‖ .

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

546 Xiaofeng Zhang et al 544-551



Proof. From lemma 2.3, we known

u (t) =
∫ 1

0

G1 (t, s) f (s, u(s), v(s)) ds ≤
∫ 1

0

max
0≤t≤1

G1 (t, s) f (s, u(s), v(s)) ds,

and

‖u‖ = max
0≤t≤1

|u(t)| = max
0≤t≤1

∫ 1

0

G1 (t, s) f (s, u(s), v(s)) ds ≤
∫ 1

0

max
0≤t≤1

G1 (t, s) f (s, u(s), v(s)) ds.

From lemma 2.4, we have

min
1
4≤t≤ 3

4

u(t) = min
1
4≤t≤ 3

4

∫ 1

0

G1 (t, s) f (s, u(s), v(s)) ds

≥ 1
16

∫ 1

0

max
0≤t≤1

G1 (t, s) f (s, u(s), v(s)) ds ≥ 1
16

max
0≤t≤1

∫ 1

0

G1 (t, s) f (s, u(s), v(s)) ds =
1
16
‖u‖ .

The proof is finished.
Similarly, we can obtain G2 (t, s) if α is replaced by β,

G2 (t, s) =





(β − 1)(β − 2)t2(1− s)β−3 − 2 (t− s)β−1

2Γ (β)
, 0 ≤ s ≤ t ≤ 1,

t2(1− s)β−3

2Γ(β − 2)
, 0 ≤ t ≤ s ≤ 1.

(2.4)

The function G2 (t, s) defined by (2.4) have the same properties with G1 (t, s), so

min
1
4≤t≤ 3

4

G2(t, s) ≥ 1
16

max
0≤t≤1

G2(t, s) =
1
16

G2(1, s), s ∈ (0, 1) .

Lemma 2.6 ([6]). Let E be a Banach space, and let P ⊂ E be a cone in E. Assume Ω1,Ω2 be two
open subsets of E with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : P → P be a completely continuous operator such
that either

(i)‖Tw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Tw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or
(ii)‖Tw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Tw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P ∩ Ω2\Ω1.

3 Main results and proof

In this section, we establish the existence of positive solutions for BVP (1.1). For convenience, we
introduce the following notations

f0 = lim inf
u+v→0+

min
t∈[ 1

4 , 3
4 ]

f (t, u, v)
u + v

, g0 = lim inf
u+v→0+

min
t∈[ 1

4 , 3
4 ]

g (t, u, v)
u + v

,

f0 = lim sup
u+v→0+

max
t∈[0,1]

f (t, u, v)
u + v

, g0 = lim sup
u+v→0+

max
t∈[0,1]

g (t, u, v)
u + v

,

f∞ = lim inf
u+v→∞

min
t∈[ 1

4 , 3
4 ]

f (t, u, v)
u + v

, g∞ = lim inf
u+v→∞

min
t∈[ 1

4 , 3
4 ]

g (t, u, v)
u + v

,

f∞ = lim sup
u+v→∞

max
t∈[0,1]

f (t, u, v)
u + v

, g∞ = lim sup
u+v→∞

max
t∈[0,1]

g (t, u, v)
u + v

.

By using the Green’s functions Gi (t, s) (i = 1, 2) , from Section 2, the problem (1.1) can be written
equivalently as the following nonlinear system of integral equations





u(t) = λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds, 0 ≤ t ≤ 1,

v (t) = µ

∫ 1

0

G2(t, s)g(s, u(s), v(s))ds, 0 ≤ t ≤ 1.

4
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We consider the Banach space X = C [0, 1] with the norm ‖u‖ = max
0≤t≤1

|u (t)|, and the Banach space

Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖+ ‖v‖.
We define the cone P ⊂ Y by

P =

{
(u, v) ∈ Y |u (t) ≥ 0, v (t) ≥ 0, min

1
4≤t≤ 3

4

(u(t) + v(t)) ≥ 1
16
‖(u, v)‖Y , t ∈ [0, 1]

}
.

For λ, µ > 0, we define the operators T1, T2 : Y → X and T : Y → Y respectively by




T1(u, v)(t) = λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds, 0 ≤ t ≤ 1,

T2(u, v)(t) = µ

∫ 1

0

G2(t, s)g(s, u(s), v(s))ds, 0 ≤ t ≤ 1,

and T (u, v) = (T1 (u, v) , T2 (u, v)) , (u, v) ∈ Y. Thus, the solutions of BVP (1.1) are the fixed points of
the operator T .

Lemma 3.1. T : P → P is a completely continuous operator.
Proof. Let (u, v) ∈ P be an arbitrary element. From the definition T1(u, v) and Lemma 2.4, we get

‖T1(u, v)‖ = max
0≤t≤1

|T1(u, v)(t)| ≤
∫ 1

0

max
0≤t≤1

G1(t, s)f(s, u(s), v(s))ds,

min
1
4≤t≤ 3

4

T1(u, v)(t) = min
1
4≤t≤ 3

4

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds ≥ 1
16

∫ 1

0

max
0≤t≤1

G1 (t, s) f (s, u(s), v(s)) ds

≥ 1
16

max
0≤t≤1

∫ 1

0

G1 (t, s) f (s, u(s), v(s)) ds =
1
16
‖T1(u, v)‖ .

In the similar manner, we deduce min
1
4≤t≤ 3

4

T2(u, v)(t) ≥ 1
16
‖T2(u, v)‖ .

Thus we have
min

1
4≤t≤ 3

4

(T1(u, v)(t) + T2(u, v)(t)) ≥ 1
16

(‖T1(u, v)‖+ ‖T2(u, v)‖) ≥ 1
16

T‖(u, v)‖Y .

Hence T (u, v) ∈ P, that is T (P ) ⊂ P.
According to the Arzela-Ascoli theorem, we can easily get that T : P → P is a completely continuous

operator. The proof is completed.
Next, for α1, α2, α1, α2 > 0 such that α1 + α2 = 1, α1 + α2 = 1, we define the numbers L1, L2, L3, L4

by

L1 =

∫ 3
4
1
4

G1(1, s)ds

256α1
, L2 =

∫ 1

0
G1(1, s)ds

α1
, L3 =

∫ 3
4
1
4

G2(1, s)ds

256α2
, L4 =

∫ 1

0
G2(1, s)ds

α2
.

Theorem 3.1. If f0, g0, f∞, g∞ ∈ (0,∞), 1
L1f∞

< 1
L2f0 and 1

L3g∞
< 1

L4g0 hold, then for any λ ∈(
1

L1f∞
, 1

L2f0

)
and µ ∈ ( 1

L3g∞
, 1

L4g0 ), BVP (1.1) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].

Proof. When λ ∈
(

1
L1f∞

, 1
L2f0

)
and µ ∈

(
1

L3g∞
, 1

L4g0

)
, choosing ε > 0, such that

1
L1(f∞ − ε)

≤ λ ≤ 1
L2(f0 + ε)

,
1

L3(g∞ − ε)
≤ µ ≤ 1

L4(g0 + ε)
(3.1)

By the definition of f0, g0, there exists R1 > 0, such that for all t ∈ [0, 1], u, v ∈ R+, with 0 ≤ u + v ≤ R1,
we have

f(t, u, v) ≤ (f0 + ε)(u + v), g(t, u, v) ≤ (g0 + ε)(u + v). (3.2)

Now define the set Ω1 = {(u, v) ∈ Y, ‖(u, v)‖Y < R1}. Let (u, v) ∈ P ∩ ∂Ω1, that is (u, v) ∈ P with
‖(u, v)‖Y = R1, so u(t) + v(t) ≤ R1 for all t ∈ [0, 1], thus

T1(u, v)(t) =λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds ≤ λ

∫ 1

0

G1(1, s)(f0 + ε)(u(s) + v(s))ds

≤λ(f0 + ε)
∫ 1

0

G1(1, s)ds‖(u, v)‖Y ≤ 1
L2

∫ 1

0

G1(1, s)ds‖(u, v)‖Y

≤α1 ‖(u, v)‖Y .

5
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Therefore, ‖T1(u, v)‖ ≤ α1 ‖(u, v)‖Y .
In the similar manner, we deduce

T2(u, v)(t) ≤ µ(g0 + ε)
∫ 1

0

G2(1, s)ds ‖(u, v)‖Y ≤ α2 ‖(u, v)‖Y .

So, ‖T2 (u, v)‖ ≤ α2 ‖(u, v)‖Y .
Then for (u, v) ∈ P ∩ ∂Ω1, we deduce

‖T (u, v)‖Y = ‖T1 (u, v)‖+ ‖T2(u, v)‖ ≤ (α1 + α2) ‖(u, v)‖Y = ‖(u, v)‖Y .

By the definition of f∞, g∞, there exists R2 > 0, such that for all t ∈ [0, 1], u, v ∈ R+, with u + v ≥ R2,
we have

f(t, u, v) ≥ (f∞ − ε)(u + v), g(t, u, v) ≥ (g∞ − ε)(u + v). (3.3)

Now define the set Ω2 = {(u, v) ∈ Y, ‖(u, v)‖Y < R2}. Let (u, v) ∈ P ∩ ∂Ω2, that is (u, v) ∈ P with
‖(u, v)‖Y = R2, so u(t) + v(t) ≥ 1

16‖(u, v)‖Y for all t ∈ [ 14 , 3
4 ], thus, it follows from Lemma 2.4 that

T1(u, v)(t) =λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds ≥ λ

∫ 3
4

1
4

G1(t, s)f(s, u(s), v(s))ds

≥λ

∫ 3
4

1
4

1
16

G1(1, s)(f∞ − ε)(u(s) + v(s))ds =
λ(f∞ − ε)

16

∫ 3
4

1
4

G1(1, s)(u(s) + v(s))ds

≥λ(f∞ − ε)
256

∫ 3
4

1
4

G1(1, s)ds ‖(u, v)‖Y ≥ 1
256L1

∫ 3
4

1
4

G1(1, s)ds ‖(u, v)‖Y ≥ α1 ‖(u, v)‖Y .

Therefore, ‖T1(u, v)‖ ≥ α1 ‖(u, v)‖Y .
Similarly, we have

T2(u, v)(t) ≥ µ(g∞ − ε)
256

∫ 3
4

1
4

G2(1, s)ds ‖(u, v)‖Y ≥ α2 ‖(u, v)‖Y .

So, ‖T2(u, v)‖ ≥ α2 ‖(u, v)‖Y .
Then for (u, v) ∈ P ∩ ∂Ω2, we deduce

‖T (u, v)‖Y = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≥ (α1 + α2) ‖(u, v)‖Y = ‖(u, v)‖Y .

By using Lemma 2.6, we conclude that T has a fixed point (u, v) ∈ P ∩ (Ω2 \ Ω1) such that R1 ≤
‖u‖+ ‖v‖ ≤ R2.

Theorem 3.2. If f0, g0, f
∞, g∞ ∈ (0,∞), 1

L1f0
< 1

L2f∞ and 1
L3g0

< 1
L4g∞ hold, then for any λ ∈

( 1
L1f0

, 1
L2f∞ ) and µ ∈ ( 1

L3g0
, 1

L4g∞ ), BVP (1.1) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].

Proof. When λ ∈
(

1
L1f0

, 1
L2f∞

)
and µ ∈ ( 1

L3g0
, 1

L4g∞ ), choosing ε > 0, such that

1
L1(f0 − ε)

≤ λ ≤ 1
L2(f∞ + ε)

,
1

L3(g0 − ε)
≤ µ ≤ 1

L4(g∞ + ε)
. (3.4)

By the definition of f0, g0, there exists R3 > 0, such that for all t ∈ [0, 1], u, v ∈ R+, with 0 ≤ u + v ≤ R3,
we have

f(t, u, v) ≥ (f0 − ε)(u + v), g(t, u, v) ≥ (g0 − ε)(u + v). (3.5)

Now define the set Ω3 = {(u, v) ∈ Y, ‖(u, v)‖Y < R3}. Let (u, v) ∈ P ∩ ∂Ω3, that is (u, v) ∈ P with
‖(u, v)‖Y = R3, so u(t) + v(t) ≥ 1

16 ‖(u, v)‖Y for all t ∈ [ 14 , 3
4 ], thus, it follows from Lemma 2.4 that

T1(u, v)(t) =λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds ≥ λ

∫ 3
4

1
4

G1(t, s)f(s, u(s), v(s))ds

≥λ

∫ 3
4

1
4

1
16

G1(1, s)(f0 − ε)(u(s) + v(s))ds =
λ(f0 − ε)

16

∫ 3
4

1
4

G1(1, s)(u(s) + v(s))ds

≥λ(f0 − ε)
256

∫ 3
4

1
4

G1(1, s)ds‖(u, v)‖Y ≥ 1
256L1

∫ 3
4

1
4

G1(1, s)ds‖(u, v)‖Y ≥ α1‖(u, v)‖Y .

6
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Therefore, ‖T1(u, v)‖ ≥ α1 ‖(u, v)‖Y .
In the similar manner, we deduce

T2(u, v)(t) ≥ µ(g0 − ε)
256

∫ 3
4

1
4

G2(1, s)ds ‖(u, v)‖Y ≥ α2 ‖(u, v)‖Y .

So, ‖T2(u, v)‖ ≥ α2 ‖(u, v)‖Y .
Then for (u, v) ∈ P ∩ ∂Ω3, we deduce

‖T (u, v)‖Y = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≥ (α1 + α2) ‖(u, v)‖Y = ‖(u, v)‖Y .

Next, we define the functions f∗, g∗ : [0, 1] × R+ → R+, f∗(t, x) = max
0≤u+v≤x

f(t, u, v), g∗(t, x) =

max
0≤u+v≤x

g(t, u, v), t ∈ [0, 1], x ∈ R+. Then f(t, u, v) ≤ f∗(t, x), g(t, u, v) ≤ g∗(t, x) for all t ∈ [0, 1] , u ≥
0, v ≥ 0 and u + v ≤ x. The functions f∗(t, ·), g∗(t, ·) are nondecreasing for every t ∈ [0, 1], and satisfy
the conditions

lim sup
x→∞

max
t∈[0,1]

f∗(t, x)
x

≤ f∞, lim sup
x→∞

max
t∈[0,1]

g∗(t, x)
x

≤ g∞.

Therefore, for ε > 0, there exists R4 > 0, such that for all x ≥ R4 and t ∈ [0, 1], we can get

f∗(t, x)
x

≤ lim sup
x→∞

max
t∈[0,1]

f∗(t, x)
x

+ ε ≤ f∞ + ε,

g∗(t, x)
x

≤ lim sup
x→∞

max
t∈[0,1]

g∗(t, x)
x

+ ε ≤ g∞ + ε,

so f∗(t, x) ≤ (f∞ + ε)x, g∗(t, x) ≤ (g∞ + ε)x.
We consider R4 ≥ R4 +R3 and define the set Ω4 = {(u, v) ∈ Y, ‖(u, v)‖Y < R4} . Let (u, v) ∈ P ∩∂Ω4,

that is (u, v) ∈ P with ‖(u, v)‖Y = R4 or equivalently ‖u‖ + ‖v‖ = R4. By the definition of f∗, g∗, we
can get for all t ∈ [0, 1],

f(t, u(t), v(t)) ≤ f∗(t, ‖(u, v)‖Y ), g(t, u(t), v(t)) ≤ g∗(t, ‖(u, v)‖Y ). (3.6)

Thus

T1(u, v)(t) =λ

∫ 1

0

G1(t, s)f(s, u(s), v(s))ds ≤ λ

∫ 1

0

G1(1, s)f∗(t, ‖(u, v)‖Y )ds

≤λ

∫ 1

0

G1(1, s)(f∞ + ε)R4ds = λ(f∞ + ε)
∫ 1

0

G1(1, s)ds‖(u, v)‖Y

≤ 1
L2

∫ 1

0

G1(1, s)ds‖(u, v)‖Y ≤ α1 ‖(u, v)‖Y .

Therefore, ‖T1(u, v)‖ ≤ α1 ‖(u, v)‖Y .
Similarly, we have

T2(u, v)(t) ≤ µ(g∞ + ε)
∫ 1

0

G2(1, s)ds‖(u, v)‖Y ≤α2 ‖(u, v)‖Y .

So, ‖T2 (u, v)‖ ≤ α2 ‖(u, v)‖Y .
Then for(u, v) ∈ P ∩ ∂Ω4, we deduce

‖T (u, v)‖Y = ‖T1(u, v)‖+ ‖T2(u, v)‖ ≤ (α1 + α2)‖(u, v)‖Y = ‖(u, v)‖Y .

By using Lemma 2.6, we conclude that T has a fixed point (u, v) ∈ P ∩ (Ω4 \ Ω3) such that R3 ≤
‖u‖+ ‖v‖ ≤ R4.

7
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4 Example

Example 4.1. Consider the following system of fractional differential equations




cD
7
2
0+u(t) + λf(t, u(t), v(t)) = 0, 0 < t < 1,

cD
10
3

0+v(t) + µg(t, u(t), v(t)) = 0, 0 < t < 1,
u(0) = u′(0) = u′′(1) = u′′′(0) = 0,
v(0) = v′(0) = v′′(1) = v′′′(0) = 0,

(4.1)

In the system (4.1), α = 7
2 , β = 10

3 and

f(t, u, v) =
(t + 1)[p1(u + v) + q1e

−(u+v)](u + v)
u + v + 1

,

g(t, u, v) =
(t + 1)2[p2(u + v) + q2e

−(u+v)](u + v)
u + v + 1

,

for t ∈ [0, 1], u, v ≥ 0, where p1, p2, q1, q2 > 0.
We deduce L1 ≈ 0.0007

α1
, L2 ≈ 0.2902

α1
, L3 ≈ 0.0007

α2
, L4 ≈ 0.3120

α2
. We have f0 = 2q1, g

0 = 4q2, f∞ =
p1, g∞ = p2. For α1, α2 > 0 with α1 + α2 = 1, we consider α1 = α1, α2 = α2.

Then, the conditions 1
L1f∞

< 1
L2f0 and 1

L3g∞
< 1

L4g0 become

L1p1 > 2L2q1, L3p2 > 4L4q2.

For example, if
p1

q1
≥ 830 and

p2

q2
≥ 1783, then the above conditions are satisfied. Therefore, by Theorem

3.1, there exists one positive solution (u(t), v(t)), t ∈ [0, 1].
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A COMMON FIXED POINT THEOREM FOR A PAIR OF GENERALIZED

CONTRACTION MAPPINGS WITH APPLICATIONS

MUHAMMAD NAZAM, MUHAMMAD ARSHAD, AND CHOONKIL PARK∗

Abstract. In this article, we introduce abscissa dominating function F : [0,∞)2 → R and define
a generalized (α,F, ψ, ϕ)-contraction mapping which retrieves Banach’s contraction, Geraghty type
contraction and weak contraction as particular cases. We establish a common fixed points theorem
for a pair of generalized (α,F, ψ, ϕ)-contraction mappings in complete partial metric spaces and apply
this theorem to show the existence of solution of system of integral equations. This result and its
consequences generalize many existing results both in partial metric spaces and metric spaces. We
give examples to illustrate our results and to express the usefulness of these results in the literature.

1. Introduction

A partial metric on a nonempty set X is a function p : X ×X → [0,∞) such that

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Partial metrics were introduced in [12] as a generalization of the notion of metric to allow non-zero

self distance for the purpose of modeling partial objects in reasoning about data flow networks. The

self distance p(x, x) is to be understood as a quantification of the extent to which x is unknown. A

partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

Matthews [12] proved an analogue of Banach’s fixed point theorem in partial metric spaces. After

this remarkable fixed point theorem, many authors took interest in partial metric spaces and its

topological properties and established many well known fixed point results successfully (see [1, 2, 3,

4, 5, 6, 7, 8, 11]).

In this paper, continuing the study of fixed point theorems in partial metric spaces, we shall

establish a common fixed points theorem for a pair of generalized (α,F, ψ, ϕ)-contraction mappings

and shall discuss its consequences. The result proved in this paper generalizes many existing results

in the literature (see [5, 7, 8, 14]). We explain hypotheses of our result through an example. In

the last section of this paper, we apply this theorem to show the existence of solution of system of

integral equations.

2010 Mathematics Subject Classification. Primary: 47H09; 47H10; 54H25.
Key words and phrases. common fixed points; generalized contraction mapping; partial metric space.
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2. Preliminaries

Throughout this paper, we denote (0,∞) by R+, [0,∞) by R+
0 , (−∞,+∞) by R and the set of

natural numbers by N. Following concepts and results will be required for the proofs of main results.

Matthews [12] proved that every partial metric p on X induces a metric dp : X ×X → R+
0 by

dp (x, y) = 2p (x, y)− p (x, x)− p (y, y) , (2.1)

for all x, y ∈ X.

Notice that a metric on a set X is a partial metric p such that p(x, x) = 0 for all x ∈ X. Following

[12], each partial metric p on X generates a T0 topology τ(p) on X. The base of the topology τ(p) is

the family of open p-balls {Bp (x, ε) : x ∈ X, ε > 0}, whereBp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε}
for all x ∈ X and ε > 0.

A sequence {xn}n∈N in (X, p) converges to a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn).

Definition 1. [12] Let (X, p) be a partial metric space.

(1) A sequence {xn}n∈N in (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists and

is finite.

(2) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn}n∈N in X

converges, with respect to τ(p), to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Definition 2. [15] Let S : X → X and α : X × X → R+
0 be two functions. Then S is said to be

α-admissible if

α(x, y) ≥ 1 implies α(S(x), S(y)) ≥ 1 ∀ x, y ∈ X.

Definition 3. [10] Let S : X → X and α : X ×X → R+
0 be two functions. Then S is said to be a

triangular α-admissible mapping if

(1) α(x, y) ≥ 1 implies α(S(x), S(y)) ≥ 1,

(2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1

for all x, y, z ∈ X.

Definition 4. [1] Let S, T : X → X and α : X ×X → R+
0 be two functions. The pair (S, T ) is said

to be triangular α-admissible if

(1) α(x, y) ≥ 1 implies α(S(x), T (y)) ≥ 1 and α(T (x), S(y)) ≥ 1,

(2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1

for all x, y, z ∈ X.

The following lemma will be helpful in the sequel.

Lemma 1. [12]

(1) A partial metric space (X, p) is complete if and only if the metric space (X, dp) is complete.

(2) A sequence {xn}n∈N in X converges to a point x ∈ X, with respect to τ(dp) if and only if

limn→∞ p(x, xn) = p(x, x) = limn,m→∞ p(xn, xm).

(3) If limn→∞ xn = υ such that p(υ, υ) = 0 then limn→∞ p(xn, y) = p(υ, y) for every y ∈ X.
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Lemma 2. [5] Let S : X → X be a triangular α-admissible mapping. Assume that there exists

x0 ∈ X such that α(x0, S(x0)) ≥ 1. Define a sequence {xn} by xn+1 = S(xn). Then we have

α(xn, xm) ≥ 1 for all m,n ∈ N ∪ {0} with n < m.

Lemma 3. [1] Let S, T : X → X be triangular α-admissible mappings. Assume that there exists

x0 ∈ X such that α(x0, S(x0)) ≥ 1. Define sequence x2i+1 = S(x2i), and x2i+2 = T (x2i+1), where

i = 0, 1, 2, . . . .. Then we have α(xn, xm) ≥ 1 for all m,n ∈ N ∪ {0} with n < m.

Definition 5. A continuous function F : [0,∞)2 → R is called an abscissa dominating function if for

any u, v ∈ R+
0 , the following conditions hold:

(1) F(u, v) < u,

(2) If F(u, v) = u, then either u = 0 or v = 0.

An extra condition F(0, 0) = 0 could be imposed in some cases if required. Let ∆c denote the class

of all abscissa dominating functions.

Example 1. (1) F(u, v) = u− v.
(2) F(u, v) = ru, for some r ∈ (0, 1).

(3) F(u, v) =
u

(1 + v)r
for some r ∈ (0,∞).

(4) F(u, v) =
log(t+ au)

(1 + v)
, for some a > 1.

(5) F(u, v) = (u+ l)

1

(1 + v)r − l, l > 1, for r ∈ (0,∞).

(6) F(u, v) = uβ(u), where β : R+
0 → [0, 1). and continuous.

(7) F(u, v) = uπ−1/2
∫∞
0

e−j√
j + v

dj.

Let Φ denote the class of the functions ϕ : R+
0 → R+

0 which satisfy the following conditions:

(a) ϕ is continuous;

(b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0,

and Ψ denote the class of all the functions ψ : R+
0 → R+

0 which satisfy the following conditions:

(1) ψ is increasing;

(2) ψ(t) > 0, t > 0 and ψ(t) = 0 imply t = 0.

3. Main results

This section contains definitions, a common fixed point result for a pair of generalized (α,F, ψ, ϕ)-

contraction mappings in the setting of partial metric spaces and examples to support this result. We

begin with following definitions.

Definition 6. Let (X,p) be a partial metric space and α : X ×X → [0,∞) be a function. Mappings

S, T : X → X are called a pair of generalized (α,F, ψ, ϕ)-contraction mapping if for all x, y ∈ X, the

contractive condition

α(x, y)ψ (p(S(x), T (y))) ≤ F(ψ(M(x, y)), ϕ(M(x, y))) (3.1)
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holds, where F ∈ ∆c, ψ ∈ Ψ, ϕ ∈ Φ and

M(x, y) = max

{
p(x, y),

p(x, S(x))p(y, T (y))

1 + p(x, y)
,
p(x, S(x))p(y, T (y))

1 + p(S(x), T (y))

}
.

If we set S = T in (3.1), then we obtain the following contractive condition

α(x, y)ψ (p(T (x), T (y))) ≤ F(ψ(N(x, y)), ϕ(N(x, y))),

where

N(x, y) = max

{
p(x, y),

p(x, T (x))p(y, T (y))

1 + p(x, y)
,
p(x, T (x))p(y, T (y))

1 + p(T (x), T (y))

}
.

The following theorem is one of the main results.

Theorem 1. Let (X, p) be a complete partial metric space, α : X ×X → R+
0 be a function. Suppose

that S, T : X → X are continuous mappings satisfying the following conditions:

(1) (S, T ) is a pair of (α,F, ψ, ϕ)-contraction mappings,

(2) (S, T ) is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(T, S).

Then (S, T ) have a unique common fixed point.

Proof. We begin with the following observation. M(x, y) = 0 if and only if x = y is a common fixed

point of (S, T ). Indeed, if x = y is a common fixed point of (S, T ), then T (y) = T (x) = x = y =

S(y) = S(x) and

M(x, y) = max

{
p(x, x),

p(x, x)p(x, x)

1 + p(x, x)
,
p(x, x)p(x, x)

1 + p(x, x)

}
= p(x, x).

From the contractive condition (3.1), we get

ψ (p(x, x)) = ψ (p(S(x), T (y))) ≤ α(x, y)ψ (p(S(x), T (y))) ≤ F (ψ (M(x, y)) , ϕ (M(x, y))) ,

which is only possible if p(x, x) = 0. So M(x, y) = 0.

Conversely, if M(x, y) = 0, then by (P1) and (P2) it is easy to check that x = y is a fixed point of

S and T .

On the other hand, if M(x, y) > 0, we construct an iterative sequence xn of points in X such a way

that x2i+1 = S(x2i) and x2i+2 = T (x2i+1) where i = 0, 1, 2, . . . . We observe that if xn = xn+1, then

xn is a common fixed point of S and T . Suppose that xn 6= xn+1 for all n ≥ 0. Since α(x0, x1) ≥ 1

and the pair (S, T ) is α-admissible, by Lemma 3, we have

α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}. (3.2)

Thus, for F ∈ ∆c, we have

ψ (p(x2i+1, x2i+2)) = ψ (p(S(x2i), T (x2i+1))) ≤ α(x2i, x2i+1)ψ (p(S(x2i), T (x2i+1)))

≤ F (ψ (M(x2i, x2i+1)) , ϕ (M(x2i, x2i+1)))

for all i ∈ N ∪ {0}.
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Now

M(x2i, x2i+1) = max


p(x2i, x2i+1),

p(x2i, S(x2i))p(x2i+1, T (x2i+1))

1 + p(x2i, x2i+1)
,

p(x2i, S(x2i))p(x2i+1, T (x2i+1))

1 + p(S(x2i), T (x2i+1))


= max

{
p(x2i, x2i+1),

p(x2i, x2i+1)p(x2i+1, x2i+2)

1 + p(x2i, x2i+1)
,
p(x2i, x2i+1)p(x2i+1, x2i+2)

1 + p(x2i+1, x2i+2)

}
≤ max {p(x2i, x2i+1), p(x2i+1, x2i+2)} .

From the definition of F, the case M(x2i, x2i+1) = p(x2i+1, x2i+2) is impossible. Indeed, if x2i+1 6=
x2i+2, then

ψ (p(x2i+1, x2i+2)) ≤ F (ψ (M(x2i, x2i+1)) , ϕ (M(x2i, x2i+1)))

< ψ (M(x2i, x2i+1)) = ψ (p(x2i+1, x2i+2)) ,

which is a contradiction. Therefore, M(x2i, x2i+1) = p(x2i, x2i+1). Thus

ψ (p(x2i+1, x2i+2)) ≤ F (ψ (M(x2i, x2i+1)) , ϕ (M(x2i, x2i+1)))

≤ F (ψ (p(x2i, x2i+1)) , ϕ (p((x2i, x2i+1)) < ψ (p(x2i, x2i+1)))

and so

ψ (p(x2i+1, x2i+2)) < ψ (p(x2i, x2i+1)) .

The definition of ψ implies that

p(x2i+1, x2i+2) < p(x2i, x2i+1).

Thus

p(xn+1, xn+2) < p(xn, xn+1), for all n ∈ N ∪ {0}. (3.3)

Hence we deduce that the sequence {p(xn, xn+1)}n∈N is nonnegative and nonincreasing. Conse-

quently, there exists r ≥ 0 such that limn→∞ p(xn, xn+1) = r. We assert that r = 0. Suppose, on

contrary, that r > 0. If r > 0, then letting n→ +∞ in the following inequality

ψ (p(xn+1, xn+2)) ≤ F (ψ (p(xn, xn+1)) , ϕ (p((xn, xn+1))) ≤ ψ (p(xn, xn+1)) , (3.4)

we get

ψ(r) ≤ F(ψ(r), ϕ(r)) < ψ(r),

which is a contradiction. Thus r = 0. Hence

lim
n→+∞

p(xn−1, xn) = 0. (3.5)

Now, we claim that the sequence {xn} is a Cauchy sequence in (X, p). Suppose, on contrary, that

{xn} is not a Cauchy sequence. Then limn,m→∞ p(xn, xm) 6= 0 and there exists ε > 0 for which we can

find two subsequences {xmk
} and {xnk

} of {xn} such that mk is the smallest index for mk > nk > k

satisfying

p(xmk
, xnk

) ≥ ε. (3.6)

This means that

p(xmk
, xnk−1

) < ε. (3.7)
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By the triangle inequality, we have

ε ≤ p(xmk
, xnk

)

≤ p(xmk
, xnk−1

) + p(xnk−1
, xnk

)− p(xnk−1
, xnk−1

)

≤ p(xmk
, xnk−1

) + p(xnk−1
, xnk

)

< ε+ p(xnk−1
, xnk

).

That is,

ε < ε+ p(xnk−1
, xnk

) (3.8)

for all k ∈ N. In the view of (3.8), (3.5), we have

lim
k→∞

p(xmk
, xnk

) = ε. (3.9)

Again using the triangle inequality, we have

p(xmk
, xnk

) ≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk

)− p(xmk+1
, xmk+1

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk+1

) + p(xnk+1
, xnk

)− p(xnk+1
, xnk+1

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk+1

) + p(xnk+1
, xnk

)

and

p(xmk+1
, xnk+1

) ≤ p(xmk+1
, xmk

) + p(xmk
, xnk+1

)− p(xmk
, xmk

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk+1

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk

) + p(xnk
, xnk+1

)− p(xnk
, xnk

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk

) + p(xnk
, xnk+1

).

Taking the limit as k → +∞ and using (3.5) and (3.9), we obtain

lim
k→+∞

p(xmk+1
, xnk+1

) = ε. (3.10)

By Lemma 3 and α(xnk
, xmk+1

) ≥ 1, we have

ψ
(
p(xnk+1

, xmk+2
)
)

= ψ
(
p(S(xnk

), T (xmk+1
))
)
≤ α(xnk

, xmk+1
)ψ
(
p(S(xnk

), T (xmk+1
))
)

≤ F
(
ψ
(
M(xnk

, xmk+1
)
)
, ϕ
(
M(xnk

, xmk+1
)
))
.

This implies that limk→∞ p(xnk
, xmk+1

) = 0 < ε, which is a contradiction. So limn,m→∞ p(xn, xm) =

0, which implies that {xn} is a Cauchy sequence in (X, p). From (2.1), we obtain that dp(xn, xm) ≤
2p(xn, xm). Therefore, limn,m→∞ dp(xn, xm) = 0 and thus by Lemma 1, {xn} is a Cauchy sequence in

both (X, p) and (X, dp). Since (X, p) is a complete partial metric space, by Lemma 1, (X, dp) is also

a complete metric space. Thus there exists υ ∈ X such that xn → υ, that is, limn→∞ dp(xn, υ) = 0.

Then again from Lemma 1, we get

lim
n→∞

p(υ, xn) = p(υ, υ) = lim
n,m→∞

p(xn, xm). (3.11)

Due to limn,m→∞ p(xn, xm) = 0, it follows from (3.11) that p(υ, υ) = 0 and {xn} converges to υ with

respect to τ(p). Moreover, x2n+1 → υ and x2n+2 → υ. Now the continuity of T implies

υ = lim
n→∞

xn = lim
n→∞

x2n+1 = lim
n→∞

x2n+2 = lim
n→∞

T (x2n+1) = T ( lim
n→∞

x2n+1) = T (υ).
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Analogously, υ = S(υ). Thus we have S(υ) = T (υ) = υ. Hence (S, T ) have a common fixed point.

Now we show that υ is the unique common fixed point of S and T . Assume the contrary, that is,

there exists ω ∈ X such that υ 6= ω and ω = T (ω). From the contractive condition (3.1), we have

ψ (p(υ, ω)) ≤ F (ψ (M(υ, ω)) , ϕ (M(υ, ω))) < ψ (M(υ, ω)) ,

but

M(υ, ω) = max

{
p(υ, ω),

p(υ, S(υ))p(ω, T (ω))

1 + p(υ, ω)
,
p(υ, S(υ))p(ω, T (ω))

1 + p(S(υ), T (ω))

}
.

This implies that

M(υ, ω) = p(υ, ω).

This means that p(υ, ω) < p(υ, ω), which is a contradiction and so p(υ, ω) = 0. Consequently, υ is a

unique common fixed point of the pair (S, T ). �

It is also possible to remove the continuity of the mappings S and T by replacing a weaker condition:

(C) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → υ ∈ X as

n→ +∞, then there exists a subsequence {xnk
} of {xn} such that α(xnk

, υ) ≥ 1 for all k.

Theorem 2. Let (X, p) be a complete partial metric space and α : X × X → R+
0 be a function.

Suppose that S, T : X → X are mappings such that

(1) (S, T ) is a pair of (α,F, ψ, ϕ)-contraction mappings,

(2) (S, T ) is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(T, S),

(5) (C) holds.

Then (S, T ) have a unique common fixed point.

Proof. Following the proof of Theorem 1, we know that x2n+1 → υ and x2n+2 → υ as n→ +∞. We

only have to show that υ is a common fixed point of the pair (S, T ). Due to the hypothesis (4), there

exists a subsequence {xnk
} of {xn} such that α(x2nk

, υ) ≥ 1 for all k. Now by using (3.1) for all k,

we have

ψ (p(x2nk+1, T (υ))) = ψ
(
p(S(x2nk), T (υ))

)
≤ α(x2nk

, υ)ψ (p(S(x2nk
), T (υ)))

≤ F (ψ (M(x2nk
, υ)) , ϕ (M(x2nk

, υ)))

and so

ψ (p(x2nk+1, T (υ))) ≤ F (ψ (M(x2nk
, υ)) , ϕ (M(x2nk

, υ))) ,

which implies that

p(x2nk+1, T (υ)) ≤M(x2nk
, υ). (3.12)

On the other hand, we obtain

M(x2nk
, υ) = max

{
p(x2nk

, υ),
p(x2nk

, S(x2nk
))p(υ, T (υ))

1 + p(x2nk
, υ)

,
p(x2nk

, S(x2nk
))p(υ, T (υ))

1 + p(S(x2nk
), T (υ))

}
.

Letting k →∞, we have

lim
k→∞

M(x2nk
, υ) ≤ max {p(υ, S(υ)), p(υ, T (υ))} . (3.13)
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Case I. Assume that limk→∞M(x2nk
, υ) = p(υ, T (υ)). Suppose that p(υ, T (υ)) > 0. Otherwise,

the result is obvious. Letting k → ∞ in (3.12), we obtain that p(υ, T (υ)) < p(υ, T (υ)), which is a

contradiction. Thus we obtain that p(υ, T (υ)) = 0. Due to (PM1) and (PM2), we have υ = T (υ).

Case II. Assume that limk→∞M(x2nk
, υ) = p(υ, S(υ)). Then arguing as above, we get υ = S(υ).

Thus υ = T (υ) = S(υ). �

If we set T = S and M(x, y) = max

{
p(x, y),

p(x, S(x))p(y, S(y))

1 + p(x, y)
,
p(x, S(x))p(y, S(y))

1 + p(S(x), S(y))

}
in Theo-

rems 1 and 2, then we obtain the following results.

Corollary 1. Let (X, p) be a complete partial metric space and α : X × X → R+
0 be a function.

Suppose that S : X → X is a continuous mapping such that

(1) S is a (α,F, ψ, ϕ)-contraction mapping,

(2) S is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(S).

Then S has a unique fixed point υ ∈ X and {Sn(x)} converges to υ for every x ∈ X.

Corollary 2. Let (X, p) be a complete partial metric space and α : X × X → R+
0 be a function.

Suppose that S satisfies the following conditions:

(1) S is a (α,F, ψ, ϕ)-contraction mapping,

(2) S is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(S),

(5) (C) holds.

Then S has a unique fixed point υ ∈ X and {Sn(x)} converges to υ for every x ∈ X.

Remark 1. For a partial metric space (X, p), we have the following observations:

(1) If we set p(x, x) = 0 and F(x, y) = β(x)x for all x, y ∈ X in Corollaries 1 and 2, then we

obtain the results presented by Chandok [4].

(2) If we set M(x, y) = max {p(x, y), p(x, S(x)), p(y, S(y))}, p(x, x) = 0 and F(x, y) = β(x)x for

all x, y ∈ X in Theorems 1 and 2, then the results presented by Cho et al. [5] can be viewed

as particular cases of Theorems 1 and 2.

4. Consequences

The following corollaries shall support our claim that Theorem 1 is a generalized version of many

corresponding results and shorten the proofs of many results presented in the literature.

The results established in [14] can be viewed as particular cases of Corollary 3.

Corollary 3. ([14]) Let (X, p) be a complete partial metric space and α : X×X → R+
0 be a function.

Let S, T : X → X be a pair of self-mappings such that

(1) (S, T ) is a pair of Geraghty type contraction mappings,

(2) (S, T ) is triangular α-admissible,
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(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(T, S),

(5) either S, T are continuous or the condition (C) holds.

Then (S, T ) have a unique common fixed point υ in X with p(υ, υ) = 0.

Proof. Setting F(x, y) = xβ(x), ψ(t) = t, ϕ(t) = t in Theorem 1, we obtain the required result. �

Corollary 4. ([14]) Let (X, p) be a complete partial metric space and α : X×X → R+
0 be a function.

Let S, T : X → X be a pair of self-mappings such that

(1) the pair (S, T ) satisfies

α(x, y)p(S(x), T (y)) ≤ κM(x, y) where κ ∈ (0, 1),

(2) (S, T ) is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(T, S),

(5) either S, T are continuous or the condition (C) holds.

Then (S, T ) have a unique common fixed point υ in X with p(υ, υ) = 0.

Proof. Setting F(x, y) = κx, ψ(t) = t, ϕ(t) = t in Theorem 1, we obtain the required result. �

Corollary 5 generalizes the results proved in [13].

Corollary 5. ([13]) Let (X, p) be a complete partial metric space and α : X×X → R+
0 be a function.

Let S, T : X → X be a pair of self-mappings such that

(1) the pair (S, T ) satisfies

α(x, y)ψ(p(S(x), T (y))) ≤ ψ(M(x, y))− ϕ(M(x, y)),

(2) (S, T ) is triangular α-admissible,

(3) there exists x0 ∈ X such that α(x0, S(x0)) ≥ 1,

(4) α(x, y) ≥ 1 for all x, y ∈ Fix(T, S),

(5) either S, T are continuous or thecondition (C) holds.

Then (S, T ) have a unique common fixed point υ in X with p(υ, υ) = 0.

Proof. Setting F(x, y) = x− y in Theorem 1, we obtain the required result. �

To illustrate the results proved in this paper and to show the superiority of a pair of (α,F, ψ, ϕ)-

contraction mappings than the contractions used in [4, 5], we present the following example.

Example 2. Let X = {1, 2, 3}. Define p : X ×X → R+
0 by

p(1, 3) = p(3, 1) =
5

7
, p(1, 1) =

1

10
, p(2, 2) =

2

10
, p(3, 3) =

3

10
,

p(1, 2) = p(2, 1) =
3

7
, p(2, 3) = p(3, 2) =

4

7
.

It is easy to check that p is a partial metric and define α : X ×X → R+
0 by

α(x, y) =

{
1 if x, y ∈ X;
0 if otherwise.
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Define the mappings S, T : X → X as follows:

S(x) = 1 for each x ∈ X,
T (1) = T (3) = 1, T (2) = 3.

In addition, define F(x, y) = β(x)x for all x ∈ X, where β : R+
0 → [0, 1) defined by β (M(x, y)) =

9

10
for all x, y ∈ X. Note that S(x) and T (x) belong to X and are continuous. The pair (S, T ) is

α-admissible. Indeed, α(x, y) = 1 implies α(S(x), T (y)) = 1. We shall show that the condition (3.1)

in Theorem 2 is satisfied. If x = 2, y = 3, then α(2, 3) = 1 and

M(2, 3) = max

{
p(2, 3),

p(2, S(2))p(3, T (3))

1 + p(2, 3)
,
p(2, S(2))p(3, T (3))

1 + p(S(2), T (3))

}
= max

{
4

7
,

9

20
,

9

14

}
=

9

14
,

p (S(2), T (3)) = p (1, 1) =
1

10
. Now

1

10
= α(2, 3)p (S(2), T (3)) ≤ β(M(2, 3))M(2, 3) =

81

140

holds.

Similarly, for other cases (x = 1, y = 3 and x = 2, y = 1), it is easy to check that the contractive

condition (3.1) in Theorem 1 is satisfied. Consequently, all the conditions (1-4) of Theorem 1 are

satisfied. Hence (S, T ) have a unique common fixed point (x = 1). Nevertheless, the contractive

condition (3) in [5] does not hold for this particular case. Indeed, for x = 2, y = 3,

M(2, 3) = max {d(2, 3), d(2, T (2)), d(3, T (3))}

= max

{
4

7
,
4

7
,
5

7

}
=

5

7
,

α(2, 3)d(T (2), T (3)) =
5

7
�

9

14
= β(M(2, 3))M(2, 3).

Similarly, the contractive condition (2.1) in [4] does not hold for this particular case. Indeed, for

x = 2, y = 3 and ψ(t) = t,

M(2, 3) = max

{
d(2, 3), d(2, T (2)), d(3, T (3)),

d(2, T (2))d(3, T (3))

1 + d(2, 3)
,
d(2, T (2))d(3, T (3))

1 + d(T2, T3)

}
= max

{
4

7
,
4

7
,
5

7
,
20

77
,

5

21

}
=

5

7
,

α(2, 3)ψ (d (T (2), T (3))) =
5

7
�

9

14
= β(ψ (M(2, 3)))ψ (M(2, 3)) .

Here we have assumed that p(x, y) = d(x, y) for all x, y ∈ X such that x 6= y.
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5. Application to system of integral equations

In this section, we shall apply Theorem 1 to show the existence of solution of a pair of simultaneous

Volterra-Hammerstein integral equations

x(t) = f(t) + λ

∫ 1

0
K(t, s)Fn(s, x(s)) ds, (5.1)

y(t) = f(t) + λ

∫ 1

0
K(t, s)Gn(s, y(s)) ds (5.2)

for all t ∈ [0, 1], where f(t) is known, K(t, s), Fn(s, x(s)) and Gn(s, y(s)) are real-valued functions

that are measurable both in t and s on [0, 1], and λ is a real number.

Let X = L1([0, 1],R) and p(x, y) = d(x, y) + cn for all x, y ∈ X, where

d(x, y) = ‖x(s)− y(s)‖X =

∫ 1

0
|x(s)− y(s)| ds

and {cn} is a sequence of positive real numbers satisfying cn → 0 as n→∞. It is easy to verify that

(X, p) is a complete partial metric space. We define F : [0,∞)2 → R by F(x, y) = β(x)x for all x ∈ X
and ψ(t) = t.

Let Θ represent the class of functions φ : R+
0 → R+

0 with the following properties

(1) φ is increasing,

(2) For each t > 0, φ(t) < t,

(3)
∫ 1
0 φ(t) dt ≤ φ

(∫ 1
0 t dt

)
,

(4) β(t) = φ(t)
t ∈ S.

For examples, φ(t) = 1
5 t, φ(t) = t

1+t are elements of Θ.

Now we present the main result regarding application of Theorem 1.

Theorem 3. Assume that the following hypotheses are satisfied:

(C1) ∫ 1

0
sup

0≤s≤1
|K(t, s)| dt = R1 < +∞.

(C2) F,G ∈ L1[0, 1] are such that, for all s ∈ [0, 1] and x, y ∈ L1[0, 1],

|Fn(s, x(s))−Gn(s, y(s))| ≤ φ(x(s)− y(s)), as n→∞.

Then the system of integral equations (5.1) and (5.2) has a solution for each λ with λR1 < 1.

Proof. We define the operators, for all x, y ∈ X,

Sx(t) = f(t) + λ

∫ 1

0
K(t, s)Fn(s, x(s)) ds,

Ty(t) = f(t) + λ

∫ 1

0
K(t, s)Gn(s, y(s)) ds.
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Then S and T are operators from X into itself. Indeed, we have

|Sx| ≤ |f(t)|+ |λ|
∫ 1

0
|K(t, s)Fn(s, x(s))| ds

≤ |f(t)|+ |λ| sup
0≤s≤1

|K(t, s)|
∫ 1

0
|Fn(s, x(s))| ds.

By the assumptions (C1) and (C2), we obtain∫ 1

0
|Sx| dt ≤ |λ|

∫ 1

0
sup

0≤s≤1
|K(t, s)| dt

∫ 1

0
|Fn(s, x(s))| ds+

∫ 1

0
|f(t)| dt < +∞.

This implies that Sx ∈ X.

Similarly Ty ∈ X.

Now consider

p(Sx, Ty) = d(Sx, Ty) + cn

= ‖Sx− Ty‖+ cn

=

∫ 1

0
|Sx(t)− Ty(t)| dt+ cn

=

∫ 1

0

∣∣∣∣λ ∫ 1

0
K(t, s)Fn(s, x(s)) ds− λ

∫ 1

0
K(t, s)Gn(s, y(s)) ds

∣∣∣∣ dt+ cn

=

∫ 1

0

∣∣∣∣λ ∫ 1

0
K(t, s) [Fn(s, x(s))−Gn(s, y(s))] ds

∣∣∣∣ dt+ cn

≤ |λ|
∫ 1

0
sup

0≤s≤1
|K(t, s)| dt

∫ 1

0
|Fn(s, x(s))−Gn(s, y(s))| ds+ cn

for all x, y ∈ X.

Letting n→∞, we get

p(Sx, Ty) ≤ |λ|R1

∫ 1

0
φ (|x(s)− y(s)|) ds

≤ |λ|R1φ (d(x, y)) < φ (d(x, y)) ≤ φ (p(x, y)) .

Thus

p(Sx, Ty) ≤ φ (p(x, y)) ≤ φ (M(x, y)) =
φ (M(x, y))

M(x, y)
M(x, y),

p(Sx, Ty) ≤ β (M(x, y))M(x, y)

for all x, y ∈ X.
Finally, we define α : X ×X → R+

0 by

α(x, y) =

{
1 if x, y ∈ X;
0 otherwise.

Hence, for all x, y ∈ X, we have

α(x, y)ψ (p(S(x), T (y))) ≤ F (ψ (M(x, y)) , ϕ (M(x, y))) .

Apparently, α(x, y) = 1 and α(y, z) = 1 imply α(x, z) = 1 for all x, y, z ∈ X. Moreover, α(x, y) = 1

implies α(S(x), T (y)) = 1 and α(T (x), S(y)) = 1 and so (S, T ) is a triangular α-admissible pair of
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mappings. Hence all the hypotheses of Theorem 1 are satisfied. Consequently, the mappings S and T

have a common fixed point which is the solution of system of integral equations (5.1) and (5.2). �

6. Conclusion

This paper presents a common fixed point theorem for a pair of generalized (α,F, ψ, ϕ)-contraction

mappings. The presented theorem not only generalizes and improvea many new and classical results

in fixed point theory but also proves a short method to show the existence of fixed points. The

authors believe that the use of abscissa dominating function to find fixed points of various contraction

mappings makes significant and useful contribution in the existing literature.

References

[1] T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 2013,
2013:100.

[2] T. Abdeljawad, E. Karapnar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces,
Appl. Math. Lett. 24 (2011), 1900–1904.

[3] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778–
2785.

[4] S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results,
Math. Sci. 9 (2015), 127–135.

[5] S. H. Cho, S. Bae, E. Karapinar Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed
Point Theory Appl. 2013, 2013:329.
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Inner-outer factorization on the
Nevanlinna space in a strip

Cuiqiao Wang, Guantie Deng∗, Huaping Huang
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex

Systems, Ministry of Education, Beijing, 100875, China

Abstract In this paper, we prove a famous harmonic majorant lemma, and by applying this
lemma to log+ |f |, we claim that log+ |f | has indeed a harmonic majorant for every function f
in the Nevanlinna space in a strip instead of the usual assumption on log+ |f | having a harmonic
majorant in the same setting. By using the conformal mapping from a strip onto the unit disk
and the inner-outer factorization theorem on the Nevanlinna space in the unit disk, we obtain
an inner-outer factorization theorem on the Nevanlinna space in such a strip.

Key words Nevanlinna space; strip; inner-outer factorization; harmonic majorant

1 Introduction

Let C be the complex plane. We denote the unit disk {z ∈ C : |z| < 1} by U and its
boundary by ∂U. Let H(U) be the space of all holomorphic functions in U. For 0 < p <∞,
the Hardy space Hp(U) (see [1–3]) is the set of f ∈ H(U) for which

‖f‖pHp = sup
0<r<1

1

2π

∫ π

−π
|f(reiθ)|pdθ <∞.

The Nevanlinna space H0(U) (see [1–3]) is the set of f ∈ H(U) for which

‖f‖H0 = sup
0<r<1

exp

{
1

2π

∫ π

−π
log+ |f(reiθ)|dθ

}
<∞.

Let eiθ0 be a point of ∂U. We write limz→eiθ0 f(z) = A nontangentially if for every open
triangular sector D in U with vertex at eiθ0 , f(z)→ A as z → eiθ0 within D.

For a sequence {zn} in U satisfying
∑

n(1− |zn|) <∞, the following function

B(z) = zk
∏
n

|zn|(zn − z)

zn(1− zzn)
(1.1)

is called a Blaschke product, where k is a nonnegative integer. Note that {zn} may be finite,
or even empty. If {zn} is empty, then denote B(z) = zk.

∗Corresponding author.
Email addresses: bnuwcq@hotmail.com, denggt@bnu.edu.cn, mathhhp@163.com
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A function g ∈ H(U) is said to be an inner function if it is bounded and has nontangential
limit whose modulus is 1 almost everywhere on ∂U. The following function

S(z) = exp

{
− 1

2π

∫ π

−π

eit + z

eit − z
dµ(t)

}
(1.2)

is called a singular inner function, where µ(t) is a bounded nondecreasing singular function.
One can show that every inner function has a factorization eiγB(z)S(z), where B(z) is from
(1.1), S(z) is from (1.2). For more details on inner function, we refer to [4–8].

A function h ∈ H(U) is called an outer function if there exists a positive function ϕ
with logϕ ∈ L1(∂U) and a complex number c with |c| = 1 such that

h(z) = c exp

{
1

2π

∫ π

−π

eit + z

eit − z
logϕ(eit)dt

}
.

Let Sa = {x+ iy : x ∈ R, 0 < y < a}(a > 0) be a strip in C. We denote its boundary by
∂Sa = L0

⋃
La, where Lb = {t + ib : t ∈ R} (b ∈ R). Let H(Sa) be the space of all analytic

functions in Sa. The Nevanlinna space H0(Sa) is the set of f ∈ H(Sa) with

‖f‖H0 = sup
0<y<a

exp

{
1

2π

∫ ∞
−∞

log+ |f(x+ iy)|dx
}
<∞.

If α > 0 and z0 = x0 + iy0 ∈ ∂Sa, then the angular domain in Sa with vertex z0 and
aperture α > 0 is the region

Γα(z0) = {x+ iy ∈ Sa : |x− x0| < α|y − y0|}.

Let M (R) be the set of finite complex valued Borel measures, then M (R) is a Banach
space with the norm ‖µ‖M =

∫
R d|µ|(x), where |µ| is the total variation of µ ∈ M (R).

Moreover, by Riesz representation theorem, M (R) is the dual space of C0(R) in the sense
of isomorphism (see [9]).

It is well known that every f ∈ Hp(U) (p > 0) has a unique canonical factorization
f(z) = B(z)S(z)F (z), where B(z) is a Blaschke product, S(z) is a singular inner function,
and F (z) is an outer function. Motivated by this result, inner-outer factorization of analytic
functions in some other spaces were studied (see Qp spaces [10], Besov-type spaces [11,12]).
However, there is a sharp structural difference between functions in the Hardy space and that
in the Nevanlinna space. In factoring functions in the Nevanlinna space H0(U), the singular
factor is replaced by a quotient of two singular inner functions. That is the following theorem,
which can be found in [1, 3].

Theorem A If f ∈ H0(U), f 6≡ 0, then f ∗(eiθ) = lim
z→eiθ

f(z) exists nontangentially at almost

every θ ∈ [−π, π) and log |f ∗(eiθ)| ∈ L1([−π, π)). Moreover, f(z) can be written by

f(z) = cB(z)G(z)S(z),
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where c is a constant with |c| = 1. B(z) is the Blaschke product of the form (1.1), where
{zn} are the zeros of f(z); and

G(z) = exp
{ 1

2π

∫ π

−π

eit + z

eit − z
log |f ∗(eit)|dt

}
is an outer function in U; and

S(z) = exp
{ 1

2π

∫ π

−π

eit + z

eit − z
dµs(t)

}
is a quotient of two singular inner functions in U, where µs is a singular signed measure on
[−π, π) with finite total variation.

Inner-outer factorization on the Nevanlinna space in other domains were studied (see
[3, 13]). However, most of the results on the unit disk or other domains were obtained on
the premise that log+ |f | had a harmonic majorant (see [1, 13, 14]). In this paper, we prove
that log+ |f | has a harmonic majorant indeed for every function f in the Nevanlinna space
in a strip. Based on this fact, we obtain the existence of nontangential limits of f ∈ H0(Sa)
as follows:

Theorem 1.1 If f ∈ H0(Sa) and f(z) 6≡ 0, then

f ∗(t) = lim
z→t

z∈Γα(t)

f(z), f ∗(t+ ia) = lim
z→t+ia

z∈Γα(t+ia)

f(z) (1.3)

exist nontangentially at almost every t ∈ R, and∫ ∞
−∞

∣∣ log |f ∗(t)|
∣∣+
∣∣ log |f ∗(t+ ia)|

∣∣
cosh π

a
t

dt <∞. (1.4)

Further, f ∗(t), f ∗(t+ ia) 6= 0 at almost every t ∈ R.

Next, we give a similar factorization on H0(Sa) as Theorem A, which is also called
inner-outer factorization.

Theorem 1.2 Let f ∈ H0(Sa), f 6≡ 0, then the zeros {zn} of f satisfy

∑
n

e
π
a
xn sin π

a
yn

1 + e
2π
a
xn

<∞, zn = xn + iyn, (1.5)

and there exist two singular signed measures µ1,s on L0 and µ2,s on La such that∫
R

∣∣ log |f ∗(t)|
∣∣

cosh π
a
t

dt+

∫
R

∣∣ log |f ∗(t+ ia)|
∣∣

cosh π
a
t

dt+

∫
R

d|µ1,s|(t)
cosh π

a
t

+

∫
R

d|µ2,s|(t)
cosh π

a
t
<∞. (1.6)
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Moreover, f can be written by

f(z) = cG(z)S(z)B(z),

where c is a complex constant with |c| = 1,

G(z) = exp

{
1

ai

∫ ∞
−∞

(
e
π
a
t

e
π
a
t − eπa z

− e
2π
a
t

1 + e
π
a
t

)
log |f ∗(t)|dt

− 1

ai

∫ ∞
−∞

(
e
π
a
t

e
π
a
t + e

π
a
z
− e

2π
a
t

1 + e
2π
a
t

)
log |f ∗(t+ ia)|dt

}
;

and

S(z) = exp

{
iτ1e

−π
a
z − iτ2e

π
a
z +

1

ai

∫ ∞
−∞

(
e
π
a
t

e
π
a
t − eπa z

− e
2π
a
t

1 + e
2π
a
t

)
dµ1,s(t)

− 1

ai

∫ ∞
−∞

(
e
π
a
t

e
π
a
t + e

π
a
z
− e

2π
a
t

1 + e
2π
a
t

)
dµ2,s(t)

}
,

where τ1, τ2 are real numbers; and

B(z) =

(
e
π
a
z − i

e
π
a
z + i

)k∏
n

e
π
a
z − eπa zn

e
π
a
z − eπa z̄n

eiθ(zn),

where k is a nonnegative integer and

eiθ(zn) =
(e

π
a
z̄n + i)(e

π
a
z̄n − i)

|eπa zn + i||eπa zn − i|
.

2 Proofs of main results

In this section, we will give the proofs of our main results in Section 1. To this end, we need
the following lemmas.

Lemma 2.1 If v(z) is subharmonic in Sa and it satisfies

C = sup
0<y<a

∫ ∞
−∞
|v(x+ iy)|dx <∞, (2.1)

then

v(x+ iy) ≤ 2C

πmin{y, a− y}
.
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Proof Let z = x + iy ∈ Sa, ρ = min{y, a− y}, D(z, ρ) = {w : |w − z| < ρ}. By the mean
property, it establishes that

v(z) ≤
∫
D(z,ρ)

v(ζ)
dλ(ζ)

πρ2
≤
∫
D(z,ρ)

|v(ζ)|dλ(ζ)

πρ2

≤ 1

πρ2

∫ y+ρ

y−ρ

∫
R
|v(ξ + iη)|dξdη

≤ 2C

πρ
=

2C

πmin{y, a− y}
.

Lemma 2.2 Let

P±y (x) =
sin π

a
y

2a(cosh π
a
x∓ cos π

a
y)

and Py(x) = P+
y (x) + P−y (x). Then

(1) P (x, y) = Py(x) is harmonic in Sa;

(2) Py(x) > 0, x+ iy ∈ Sa;

(3)
∫
R P

±
y (x)dx = 1

2
± (1

2
− y

a
),
∫
R Py(x)dx = 1;

(4)
∫
|x|>δ Py(x)dx→ 0 (y → 0) and

∫
|x|>δ Py(x)dx→ 0 (y → a), where δ > 0 is a constant.

Proof The proofs of these facts follow from the following relations (see [15]):

A. P±y (x) = 1
a
Im(±1− eπa z)−1;

B. − cosh π
a
x < cos π

a
y < cosh π

a
x;

C. d
dx

( 1
π

arctan(tan π
2a
y · tanh π

2a
x)) = P−y (x), P+

y (x) = P−a−y(x);

D. cos π
a
y ∈ (−1, 1), e−

π
a
|x|(cosh π

a
x − 1) is even and increasing for δ ≤ x < +∞, which

implies that

|P±y (x)| ≤
e−

π
a
|x|+π

a
δ sin π

a
y

2a(cosh π
a
δ − 1)

(|x| ≥ δ).

Lemma 2.3 Let P̃±y (x) =
sin π

a−2y0
y

2(a−2y0)(cosh π
a−2y0

x∓cos π
a−2y0

y)
, 0 < y0 <

a
2
, then there exist A1,A2 >

0 depending on y0 and y, such that

|P+
y (x)− P̃+

y−y0
(x)| ≤ 1

1− cos π
a
y

∣∣∣∣ 1

2a
− 1

2(a− 2y0)

∣∣∣∣+ A1

∣∣∣∣ π

a− 2y0

− π

a

∣∣∣∣
+
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1− cos π
a
y)

+
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1− cos π
a
y)(1− cos π

a−2y0
(y − y0))

(2.2)
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and

|P−y (x)− P̃−y−y0
(x)| ≤ 1

1 + cos π
a
y

∣∣∣∣ 1

2a
− 1

2(a− 2y0)

∣∣∣∣+ A2

∣∣∣∣ π

a− 2y0

− π

a

∣∣∣∣
+
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1 + cos π
a
y)

+
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1 + cos π
a
y)(1 + cos π

a−2y0
(y − y0))

(2.3)

hold for every y0 < y < a− y0.

Proof Firstly, we have

P+
y (x)− P̃+

y−y0
(x) =

sin π
a
y

2a(cosh π
a
x− cos π

a
y)
−

sin π
a−2y0

(y − y0)

2(a− 2y0)(cosh π
a−2y0

x− cos π
a−2y0

(y − y0))

=I1 + I2 + I3 + I4,

where

I1 =

[
1

2a
− 1

2(a− 2y0)

]
sin π

a
y

cosh π
a
x− cos π

a
y
,

I2 =
sin π

a
y − sin π

a−2y0
(y − y0)

2(a− 2y0)(cosh π
a
x− cos π

a
y)
,

I3 =
sin π

a−2y0
(y − y0)

2(a− 2y0)

cos π
a
y − cos π

a−2y0
(y − y0)

(cosh π
a
x− cos π

a
y)(cosh π

a−2y0
x− cos π

a−2y0
(y − y0))

,

I4 =
sin π

a−2y0
(y − y0)

2(a− 2y0)

cosh π
a−2y0

x− cosh π
a
x

(cosh π
a
x− cos π

a
y)(cosh π

a−2y0
x− cos π

a−2y0
(y − y0))

.

Obviously,

|I1| ≤
1

1− cos π
a
y

∣∣∣∣ 1

2a
− 1

2(a− 2y0)

∣∣∣∣ .
By mean value theorem of differentials, it is easy to see that

|I2| ≤
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1− cos π
a
y)
,

|I3| ≤
|π
a
y − π

a−2y0
(y − y0)|

2(a− 2y0)(1− cos π
a
y)(1− cos π

a−2y0
(y − y0))

,

I4 =
sin π

a−2y0
(y − y0)

2(a− 2y0)

( π
a−2y0

− π
a
)x · sinh ξ

(cosh π
a
x− cos π

a
y)(cosh π

a−2y0
x− cos π

a−2y0
(y − y0))

,
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where ξ is between π
a
x and π

a−2y0
x. Note that there exists M > 0 such that |x|e−πa |x| ≤

1
4
, cosh π

a
x ≥ 2 and cosh π

a−2y0
x ≥ 2 for all |x| > M . Therefore, we have

|x|
cosh π

a
x− cos π

a
y
≤ |x|

1
2

cosh π
a
x
≤ 4|x|
e
π
a
|x| ≤ 1

and
| sinh ξ|

cosh π
a−2y0

x− cos π
a−2y0

(y − y0)
≤ | sinh ξ|

1
2

cosh π
a−2y0

x
≤ 2e|ξ|

cosh π
a−2y0

x
≤ 4.

Hence

|I4| ≤
2

a− 2y0

∣∣∣∣ π

a− 2y0

− π

a

∣∣∣∣ .
If |x| ≤M , then

| sinh ξ| ≤ sinh
π

a
|x|+ sinh

π

a− 2y0

|x| ≤ sinh
π

a
M + sinh

π

a− 2y0

M,

which follows that

|I4| ≤
1

2(a− 2y0)

M(sinh π
a
M + sinh π

a−2y0
M)

(1− cos π
a
y)(1− cos π

a−2y0
(y − y0))

∣∣∣∣ π

a− 2y0

− π

a

∣∣∣∣ .
Let

A1 = max

{
2

a− 2y0

,
M(sinh π

a
M + sinh π

a−2y0
M)

2(a− 2y0)(1− cos π
a
y)(1− cos π

a−2y0
(y − y0))

}
,

then

|I4| ≤ A1

∣∣∣∣ π

a− 2y0

− π

a

∣∣∣∣ , x ∈ R,

(2.2) is thus proved. Similarly, we can prove (2.3).

Lemma 2.4 (Harmonic Majorant) Let v(z) be a nonnegative subharmonic function in
Sa satisfying (2.1), then

Mv(y) =

∫
R
v(x+ iy)dx

is convex in (0, a) and there exist two positive measures µ1, µ2 ∈M (R) with ‖µ1‖, ‖µ2‖ ≤ C
such that

u(x+ iy) =

∫ ∞
−∞

P+
y (x− t)dµ1(t) +

∫ ∞
−∞

P−y (x− t)dµ2(t).

Moreover, v(z) ≤ u(z) for all z ∈ Sa.

Proof There exists a sequence {yk} such that limk→∞ yk = 0. By (2.1), {vyk}, {va−yk}
are bounded linear functionals on C0(R) and they are uniformly bounded, where vy(x) =
v(x+ iy). Based on Banach-Alaoglu theorem, there exist µ1, µ2 ∈M (R) and a subsequence
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{ykj} such that {vykj } converges weakly to µ1 as j → ∞ and {va−ykj } converges weakly to

µ2 as j →∞. That is, for each ϕ ∈ C0(R),

lim
j→∞

∫ ∞
−∞

v(t+ iykj)ϕ(t)dt =

∫ ∞
−∞

ϕ(t)dµ1(t),

lim
j→∞

∫ ∞
−∞

v(t+ i(a− ykj))ϕ(t)dt =

∫ ∞
−∞

ϕ(t)dµ2(t).

Accordingly, we obtain that

‖µ1‖ = sup

{∣∣∣ ∫
R
ϕ(t)dµ1(t)

∣∣∣ : ϕ ∈ C0(R), ‖ϕ‖∞ = 1

}
≤ lim inf

j→∞

∫
R
v(t+ iykj)dt ≤ C,

‖µ2‖ = sup

{∣∣∣ ∫
R
ϕ(t)dµ2(t)

∣∣∣ : ϕ ∈ C0(R), ‖ϕ‖∞ = 1

}
≤ lim inf

j→∞

∫
R
v(t+ i(a− ykj)dt ≤ C.

Because of ϕ(t) = P+
y (x− t)(or P−y (x− t)) ∈ C0(R), in particular, we have

lim
j→∞

∫ ∞
−∞

v(t+ iykj)P
+
y (x− t)dt+ lim

j→∞

∫ ∞
−∞

v(t+ i(a− ykj))P−y (x− t)dt

=

∫ ∞
−∞

P+
y (x− t)dµ1(t) +

∫ ∞
−∞

P−y (x− t)dµ2(t) , u(x+ iy).

For any fixed 0 < y0 < y1 < a, let r = y1−y0

a
, then the function

ũ(z) =

∫
R
v(t+ iy0)P+

y (x− t)dt+

∫
R
v(t+ iy1)P−y (x− t)dt

is harmonic in Sa (see [15, Theorem 1]). Assume that ε > 0 and A > exp{ C
πεmin{y0,a−y1}}+1.

Since v(rz+ iy0) is subharmonic in the set {z = x+ iy : x ∈ R,−y0

r
< y < a−y0

r
}, then there

exist two sequences of continuous functions {u(1)
n (t)} and {u(2)

n (t)} decreasing to v(rt+ iy0)
and v(rt+ iy1) on [−A,A], respectively. Let

Un(z) =

∫ A

−A
P+
y (x− t)u(1)

n (t)dt+

∫ A

−A
P−y (x− t)u(2)

n (t)dt,

then by Lemma 2.2, Un(z) is harmonic in Sa and

|Un(z)| ≤ max{max
|t|≤A

u(1)
n (t),max

|t|≤A
u(2)
n (t)} = An.
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Therefore, the function

Vn(z) = v(rz + iy0)− 2ε log |z + i| − Un(z)

is subharmonic in Sa, and by Lemma 2.1, we speculate that

Vn(z) ≤ 2C

πmin{y0, a− y1}
− ε log |x2 + (y + 1)2|+ An → −∞ (z →∞, 0 < y < a).

It follows that

lim sup
z→t,0<y<a

Vn(z) ≤ 2C

πmin{y0, a− y1}
− 2ε logA ≤ 0

and

lim sup
z→t+ia,0<y<a

Vn(z) ≤ 2C

πmin{y0, a− y1}
− 2ε logA ≤ 0

for t ∈ R, |t| > A. If t ∈ R, |t| ≤ A, then

lim sup
z→t,0<y<a

Vn(z) ≤ v(rt+ iy0)− u(1)
n (t) ≤ 0,

and
lim sup

z→t+ia,0<y<a
Vn(z) ≤ v(rt+ iy1)− u(2)

n (t) ≤ 0.

By [3, Theorem 4.3.11], we derive that Vn(z) ≤ 0 on Sa. Take n → ∞, then A → ∞, and
then let ε→ 0, we obtain

v(rz + iy0) ≤
∫ ∞
−∞

P+
y (x− t)v(rt+ iy0)dt+

∫ ∞
−∞

P−y (x− t)v(rt+ iy1)dt.

Hence, for every 0 < y0 < y < y1 < a, we have

v(z) ≤
∫ ∞
−∞

P+
y−y0
r

(x
r
− t
)
v(rt+ iy0)dt+

∫ ∞
−∞

P−y−y0
r

(x
r
− t
)
v(rt+ iy1)dt

=

∫ ∞
−∞

1

r
P+
y−y0
r

(
x

r
− t

r

)
v(t+ iy0)dt+

∫ ∞
−∞

1

r
P−y−y0

r

(
x

r
− t

r

)
v(t+ iy1)dt. (2.4)

Moreover, by Lemma 2.2,∫ ∞
−∞

v(x+ iy)dx ≤
∫ ∞
−∞

∫ ∞
−∞

1

r
P+
y−y0
r

(
x

r
− t

r

)
v(t+ iy0)dtdx

+

∫ ∞
−∞

∫ ∞
−∞

1

r
P−y−y0

r

(
x

r
− t

r

)
v(t+ iy1)dtdx

=

(
1− y − y0

ar

)∫ ∞
−∞

v(t+ iy0)dt+
y − y0

ar

∫ ∞
−∞

v(t+ iy1)dt

=
y1 − y
y1 − y0

∫ ∞
−∞

v(t+ iy0)dt+
y − y0

y1 − y0

∫ ∞
−∞

v(t+ iy1)dt.
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Thus, we conclude that Mv(y) is convex in (0, a). Let y1 = a − y0, then 1
r
P±y−y0

r

(x
r
− t

r
) =

P̃±y−y0
(x− t) and (2.4) becomes

v(z) ≤
∫ ∞
−∞

P̃+
y−y0

(x− t)v(t+ iy0)dt+

∫ ∞
−∞

P̃−y−y0
(x− t)v(t+ i(a− y0))dt,

where 0 < y0 < y < a− y0 < a. By Lemma 2.3, one has

lim
j→∞

∫ ∞
−∞
|P̃+
y−ykj

(x− t)− P+
y (x− t)|v(t+ iykj)dt = 0,

lim
j→∞

∫ ∞
−∞
|P̃−y−ykj (x− t)− P

−
y (x− t)|v(t+ i(a− ykj))dt = 0.

Therefore, it is not hard to verify that

v(z) ≤ lim
j→∞

∫ ∞
−∞

[v(t+ iykj)P
+
y (x− t) + v(t+ i(a− ykj))P−y (x− t)]dt

=

∫ ∞
−∞

P+
y (x− t)dµ1(t) +

∫ ∞
−∞

P−y (x− t)dµ2(t)

=u(z)

for all z = x+ iy, 0 < y < a. It completes the proof.
Next, we will apply this lemma to the function log+ |f | to prove Theorem 1.1 and

Theorem 1.2, where f ∈ H0(Sa).

Lemma 2.5 ([2, 14]) If v is subharmonic in U, then the following statements are equivalent:
(i) v has a harmonic majorant in U;
(ii) sup

0<r<1
{ 1

2π

∫ π
−π v(reiϕ)dϕ} <∞.

Proof of Theorem 1.1 Since log+ |f | is subharmonic and it satisfies (2.1), it follows from
Lemma 2.4 that there exist two positive measures µ1, µ2 ∈M (R) such that

u(x+ iy) =

∫ ∞
−∞

P+
y (x− t)dµ1(t) +

∫ ∞
−∞

P−y (x− t)dµ2(t),

and log+ |f |(z) ≤ u(z) for all z ∈ Sa. The conformal mapping

β(z) =
e
π
a
z − i

e
π
a
z + i

(2.5)

from Sa onto U maps ∂Sa onto ∂U\{1,−1} conformally (to be precise, there exists a contin-
uous and strictly increasing function θ1(t) from R onto (−π, 0) such that eiθ1(t) = β(t); and
there exists a continuous and strictly decreasing function θ2(t) from R onto (0, π) such that
eiθ2(t) = β(t+ ia)). Its inverse mapping is

α(w) =
a

π
log

i(1 + w)

1− w
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(take the analytic branch log 1 = 0). Then the function log+ |f |(α(w)) has a harmonic
majorant u(α(w)) in U. According to Lemma 2.5, one has F (w) = f(α(w)) ∈ H0(U).
Therefore, by Theorem A, F (w) = f(α(w)) has a nontangential limit F ∗(eiθ) at almost
every θ ∈ [−π, π) and log |F ∗(eiθ)| ∈ L1([−π, π)). Since α and β are conformal, the limits in
(1.3) exist nontangentially for almost every t ∈ R. By virtue of

eiθ1(t) = β(t) =
e
π
a
t − i

e
π
a
t + i

, eiθ2(t) = β(t+ ia) =
e
π
a

(t+ia) − i
e
π
a

(t+ia) + i
,

which follows that dθ1 =
2π
a
e
π
a t

1+e
2π
a t
dt and dθ2 =

− 2π
a
e
π
a t

1+e
2π
a t
dt. Thus, (1.4) follows immediately from

the following identities:∫ π

−π

∣∣ log |F ∗(eiθ)|
∣∣dθ =

∫ ∞
−∞

2π
a
e
π
a
t
∣∣ log |f ∗(t)|

∣∣
1 + e

2π
a
t

dt

+

∫ ∞
−∞

2π
a
e
π
a
t
∣∣ log |f ∗(t+ ia)|

∣∣
1 + e

2π
a
t

dt

=
π

a

∫ ∞
−∞

| log |f ∗(t)||+
∣∣ log |f ∗(t+ ia)|

∣∣
cosh π

a
t

dt.

Proof of Theorem 1.2 According to Theorem 1.1, f(z) has nontangential limits f ∗(t) and
f ∗(t+ ia) and they satisfy (1.4). Since log+ |f | is subharmonic and it satisfies (2.1), then by
Lemma 2.4, log+ |f | has a harmonic majorant in Sa. It follows that F (w) = f(α(w)) ∈ H(U)
and log+ |F | has a harmonic majorant in U. By Lemma 2.5, we have F ∈ H0(U). Then,
by Theorem A, F (w) has a nontangential limit F ∗(eiθ) at almost every θ ∈ [−π, π) and
log |F ∗(eiθ)| ∈ L1([−π, π)). Furthermore, F can be written by

F (w) = c1G1(w)B1(w)S1(w),

where c1 is a constant with |c1| = 1, and

G1(w) = exp

{
1

2π

∫ π

−π

eiθ + w

eiθ − w
log |F ∗(eiθ)|dθ

}
is an outer function in U; and

S1(w) = exp

{
1

2π

∫ π

−π

eiθ + w

eiθ − w
dνs(θ)

}
is a quotient of two singular inner functions in U, where νs is a singular signed measure on
[−π, π) with finite total variation;

B1(w) = wk
∏
n

( β(zn)− w
1− β(zn)w

)( β(zn)

|β(zn)|

)
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is a Blaschke product in U, where k is a nonnegative integer and∑
n

(1− |β(zn)|2) ≤ 2
∑
n

(1− |β(zn)|) <∞. (2.6)

Therefore,

log |G1(β(z))| = 1

2π

∫ ∞
−∞

(
Re
β(t) + β(z)

β(t)− β(z)

)
|β′(t)| log |f ∗(t)|dt

+
1

2π

∫ ∞
−∞

(
Re
β(t+ ia) + β(z)

β(t+ ia)− β(z)

)
|β′(t+ ia)| log |f ∗(t+ ia)|dt,

log |S1(β(z))| = 1

2π
Re
−1 + β(z)

−1− β(z)
νs({−π}) +

1

2π
Re

1 + β(z)

1− β(z)
νs({0})

+
1

2π

∫ ∞
−∞

(
Re
β(t) + β(z)

β(t)− β(z)

)
dνs(θ1(t))

+
1

2π

∫ ∞
−∞

(
Re
β(t+ ia) + β(z)

β(t+ ia)− β(z)

)
dνs(θ2(t)).

Making use of (2.5), we have

1− |β(zn)|2 =
4e

π
a
xn sin π

a
yn

1 + e
2π
a
xn + 2e

π
a
xn sin π

a
yn
≥
e
π
a
xn sin π

a
yn

1 + e
2π
a
xn

, (2.7)

and ( β(zn)− w
1− β(zn)w

)( β(zn)

|β(zn)|

)
=
e
π
a
zn − eπa z

e
π
a
zn − eπa z

eiθ(zn),

where

eiθ(zn) =
(e

π
a
z̄n + i)(e

π
a
z̄n − i)

|eπa zn + i||eπa zn − i|
.

Moreover,

1

2π
Re
−1 + β(z)

−1− β(z)
νs({−π}) =

νs({−π})
2π

Re(ie−
π
a
z),

1

2π
Re

1 + β(z)

1− β(z)
νs({0}) =

νs({0})
2π

Re(−ie
π
a
z),

1

2π
Re
β(t) + β(z)

β(t)− β(z)
|β′(t)| = Re

{
1

ai

(
e
π
a
t

e
π
a
t − eπa z

− e
2π
a
t

1 + e
2π
a
t

)}
,

1

2π
Re
β(t+ ia) + β(z)

β(t+ ia)− β(z)
|β′(t+ ia)| = Re

{
− 1

ai

(
e
π
a
t

e
π
a
t + e

π
a
z
− e

2π
a
t

1 + e
2π
a
t

)}
.
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Let τ1 = νs({−π})
2π

, τ2 = νs({0})
2π

. Define two singular signed measures µ1,s on L0 and µ2,s on La
by

dµ1,s(t) = |β′(t)|−1dνs(θ1(t)) =
a

π
cosh

π

a
t dνs(θ1(t)),

dµ2,s(t) = |β′(t+ ia)|−1dνs(θ2(t)) =
a

π
cosh

π

a
t dνs(θ2(t)),

then log |G1(β(z))| = log |G(z)| and log |S1(β(z))| = log |S(z)|. Therefore, there exist two
constants c2, c3 with |c2| = |c3| = 1 such that G1(β(z)) = c2G(z), S1(β(z)) = c3S(z).
Let c = c1c2c3, B(z) = B1(β(z)), then f(z) = cG(z)S(z)B(z). Accordingly, (1.5) follows
instantly from (2.6) and (2.7). Since νs is finite, then (1.6) follows from (1.4). It completes
the proof.
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Controllability of Stochastic Evolution Differential Equations Driven by

Fractional Brownian Motion and Poisson Jumping Processes ∗
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Nanning,Guangxi,530003,P.R.China

Abstract

In this article, we investigate stochastic evolution differential equations driven by fractional Brownian mo-
tions and Poisson random measure processes. At first, we discuss the existence and unique of the mild solution
by using Banach fixed point principle. Secondly, sufficient conditions for the complete controllability of the s-
tochastic evolution systems are formulated and proved by using the C0-semigroup theory and stochastic analysis
techniques. In the end, an example is presented to illustrate our main results.

Key words: Stochastic evolution equation; Fractional Brownian motion; Poisson noise process; Mild solution;
Complete controllability.

1 Introduction

In this paper, we will study the problem having the following form:
dx(t) = [Ax(t) +Bu(t) + f(t, x(t))]dt+ σ(t)dBH

Q (t) +

∫
Z

h(t, x(t), y)Ñ(dt, dy),

t ∈ J = [0, T ]
x(0) = x0.

(1.1)

where A is the infinitesimal generator of a C0-semigroup S(t) on a separable Hilbert space X, BH
Q (t) is a fractional

Brownian motion (fBm for short) with Hurst index H ∈ ( 12 , 1) on a real and separable Hilbert space K. f :
J ×X → X,σ : J → L0

2(K,X), h : J ×X × Z → X are Borel measurable functions. Here L0
2(K,X) denotes the

space of all Q-Hilbert-Schmidt operators from K into X. The control function u(t) takes value in V = L2(J, U),

and U is a Hilbert space, B is a linear operator from V into L2(J,X). Ñ(dt, dy) is the compensated Poisson
measure which will be given in the below.

Recently, stochastic differential systems have attracted a great attention since it arises naturally in mathemat-
ical modeling of various phenomena in the social and natural sciences, such as pricing an option, forecasting the
growth of population and determining optimal portfolio of investments, for example one can see [16, 29, 32] and
the references therein. Prato and Giuseppe [33] researched stochastic equations in infinite dimensions. Luo and
Taniguchi [26] considered the existence and uniqueness of non-Lipschitz stochastic neutral delay evolution equa-
tions driven by Poisson jumps. For the literatures on controllability of stochastic system with impulsive effect,
one can see the papers [18, 24, 27, 36] and references therein.

It’s well known that the noise or perturbations of a stochastic differential system are typically modeled by a
Brownian motion as such a process is Gauss-Markov and has independent increments. However, many researchers
have found that empirical data from many physical phenomena with the standard Brownian motion is often shown
not to be an effective process to use in a model. A family of processes that seems to have wide physical applicability
is fractional Brownian motion (fBm). Since it was first introduced by Kolmogorov in 1940, Mandelbrot and Ness
discussed the applications of the fBm process in later. Since then, based on different settings, various forms of
equations have been studied. For example, the case of finite-dimensional equations has been studied by Besalú and
Rovira [5], Jérémie Unterberger [39], Dung [9], León and Tindel [23], for the case of infinite-dimensional systems in
a Hilbert space have been considered by Boufoussi and Hajji [7], Caraballo, Garrido-Atienza and Taniguchi [8], and
Ahmed [11]. Furthermore, the stochastic differential equations driven by a Poisson process can be widely found in
applications from various fields such as storage systems, queueing systems, economic systems and neurophysiology
systems, for example, one can see [1, 20, 35]. SPDEs with Poisson jump process is an important step for the study
of SPDEs with Lévy process. In recent years, there is quite a substantial amount of work that has been done in
this field. Hausenblas[12] dealt with SPDEs driven by Poisson random measures with non-Lipschitz coefficients in
Banach spaces. Laukajtys and Slomiński [22] considered the penalization method for a reflected SDE driven by

∗Project supported by School-based research project on the key discipline development and research in Guangxi university of
Finance and Economics in 20162016KY20.

†Corresponding author. E-mail address: zhaoliang200809@yeah.net; Tel.: +86-771-3833280.
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Poisson jumps. Later, Ren and Wu [34] established existence and uniqueness for solutions of multivalued, finite
dimensional SDEs driven by Poisson point processes, where the maximal monotone operator has the whole space
as domain.

On the other hand, one of the well-known qualitative behaviors of a dynamical system is controllability, which
was first introduced by Kalman [17] in 1963. It means that it is possible to steer a dynamical control system
from an arbitrary initial state to an arbitrary final state using the set of admissible controls. Recently, many
researchers take attention to the study of the controllability for a variety of differential dynamical systems. For
example, Leiva [13] considered the exact controllability of the suspension bridge model proposed by Lazer and
McKenna. Liu and Li [25] studied the controllability of impulsive fractional evolution inclusions in Banach spaces.
The approximate controllability for a class of semilinear abstract equations was discussed by Zhou [40]. For
more detailed, one can see [4, 14, 37]. For the controllability problem there are different methods for various
types of nonlinear stochastic systems. Subalakshmi and Balachandran [37] studied the approximate controllability
of nonlinear stochastic impulsive systems in Hilbert spaces by using Nussbaum’s fixed point theorem. In [19],
using a stochastic Lyapunov-like approach, sufficient conditions for stochastic ϵ-controllability are formulated.
Balachandran etal.[3] researched the controllability of semilinear stochastic integrodifferential systems by using the
Picard type iteration. By using the contraction mapping principle, Mahmudov and Zorlu studied the controllability
[28] for non-linear stochastic systems.

By contrast, there has not been very much research of stochastic differential equations driven both by fractional
Brownian motion and by Poisson noise processes. By using the extended form of Krylov-type estimate for the
combined noise of fBM and compound Poisson, Bai and Ma [2] studied the existence of the strong solutions for
the stochastic differential equation driven by fractional Brownian motion and Poisson point processes. Hajji and
Lakhel [10] discussed the existence of the neutral stochastic functional differential equation driven by fractional
Brownian motion and Poisson point processes. To the best of our knowledge, there is no paper researched the
complete controllability of stochastic differential equations driven by fractional Brownian motions and poisson
noise processes. Thus, we shall make the first attempt to discuss such problem in this paper.

The rest of this paper is organized as follows. In the next section, we will introduce some useful preliminaries
on the data. In Section 3, some sufficient conditions are established to guarantee the existence and uniqueness
of mild solutions of the system (1.1). In Section 4, we will study the completely controllability for stochastic
evolution systems. Finally, we present an example to illustrate our main results.

2 Preliminaries

Now, we introduce some basic definitions and preliminaries which are used throughout this paper. Throughout
this article, we use the following notations:

Let (Ω,F , {Ft, t ∈ [0, T ]}, P ) be a complete probability space satisfying the standard conditions, which means
that the filtration Ft, t ∈ [0, T ] is right continuous increasing family and F0 contains all P -null sets. Let L2(Ω, X) =
L2(Ω,Ft, X) be the Hilbert space of all Ft-measurable square integrable random variables with values in X.
Moreover, let LF

2 (J,X) be the Hilbert space of all square integrable and Ft-adapted measurable processes with
values in X. Further, let C(J, L2(Ω, X)) := C(J, L2(Ω,Ft, X)) be the Banach space of continuous maps from J

into L2(Ω, X) satisfying supt∈J E∥x(t)∥2 <∞ with the norm ∥x∥ = (supt∈J E∥x(t)∥2X)
1
2 .

Now, we present some basic definitions on fractional Brownian motion (fBm).

Definition 2.1. The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a Gaussian process
BH

t = {BH
t ,Ft, t ∈ [0, T ]}, having the properties BH

0 = 0, EBH
t = 0, and EBH

t B
H
s = 1

2 (s
2H + t2H − |t− s|2H).

Let T > 0, for a linear space Λ, there exists a R−valued step function ϕ ∈ Λ on [0, T ], such that

ϕ(t) =

n−1∑
i=1

ziχ(ti,ti+1](t),

where t ∈ [0, T ], zi ∈ R and 0 = t1 < t2 < · · · < tn = T. For any ϕ ∈ Λ, the Wiener integral with respect to BH

can be defined as∫ T

0

ϕ(s)dBH(s) =
n−1∑
i=1

zi(B
H(ti+1)−BH(ti)).

LetH be a Hilbert space, which is defined as the closure of Λ with respect to the scalar product ⟨χ[0,t], χ(0,s]⟩H =
RH(t, s). Then the mapping

ϕ =

n−1∑
i=1

ziχ(ti,ti+1] 7→
∫ T

0

ϕ(s)dBH(s)

is an isometry between Λ and the linear space span {BH(t) : t ∈ [0, T ]}, which can be extended to an isometry

between H and the first Wiener chaos of the fBm spanL2(Ω){BH(t) : t ∈ [0, T ]} (see [38] ). The image of an
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element ϕ ∈ H by this isometry is called the Wiener integral of ϕ with respect to BH . Our next aim is to give an
explicit expression of this integral.

Now, let us consider the Kernel

KH(t, s) = cHs
1
2−H

∫ t

s

(z − s)H− 3
2 zH− 1

2 dz,

where cH =

(
H(2H−1)

B(2−2H,H− 1
2 )

) 1
2

(B(·, ·) denote the Beta function), and t > s. It is easily shown that

∂KH(t, s)

∂t
= cH

(
t

s

)H− 1
2

(t− s)H− 3
2 .

Let KH : Λ → L2([0, T ]) be the linear operator, which is defined as

KHϕ(s) =

∫ t

s

ϕ(t)
∂KH

∂t
(t, s)dt.

Then (KHχ[0,T ])(s) = KH(t, s)χ[0,T ](s), and KH is an isometry between Λ and L2([0, T ]) which can be extended
to H.

We denote LH
2 ([0, T ]) = {ϕ ∈ H : KHϕ ∈ L2([0, T ])}, then for H > 1

2 , we get

L
1
H ([0, T ]) ⊂ LH

2 ([0, T ]).

Moreover, the following lemma hold:

Lemma 2.2 ([30]). For ϕ ∈ L
1
H ([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0

|ϕ(r)||ϕ(z)||r − u|2H−2drdz ≤ cH∥ϕ∥2
L

1
H ([0,T ])

.

Let (X, |·|X , ⟨·, ·⟩X) and (K, |·|K , ⟨·, ·⟩K) be separable Hilbert spaces. L(K,X) denotes the space of all bounded
linear operator from K to X and Q ∈ L(K,X) is a non-negative self adjoint operator. Denote by L0

2(K,X) the

space of all ξ ∈ L(K,X) such that ξQ
1
2 is a Hilbert-Schmidt operator, the norm is given by

|ξ|2L0
2(K,X) = |ξQ 1

2 |2HS = tr(ξQξ∗).

Then ξ is a Q-Hilbert-Schmidt operator from K to X.
Let {BH

n (t)}n∈N be a sequence of two-side one-dimensional fBm mutually independent on the complete prob-
ability space (Ω,F , P ), {en}n∈N be a complete orthonormal basis in K. We define the K-valued stochastic process
BH

Q (t) as

BH
Q (t) =

∞∑
n=1

BH
n (t)Q

1
2 en , t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then the series
∑∞

n=1B
H
n (t)Q

1
2 en , t ≥ 0 converges in the

space K, i.e., it holds that BH
Q (t) ∈ L2(Ω,K). Then, we can say that BH

Q (t) is a K-valued Q-cylindrical fBm with
covariance operator Q.

Definition 2.3. Let ψ : [0, T ] → L0
2(K,X) such that

∞∑
n=1

∥KH(ψQ
1
2 )en∥L2([0,T ],X) <∞. (2.1)

Then for t ≥ 0, its stochastic integral with respect to the fBm BH
Q is defined as∫ t

0

ψ(s)dBH
Q (s) =

∞∑
n=1

∫ t

0

ψ(s)Q
1
2 endB

H
n (s) =

∞∑
n=1

∫ t

0

(
KH(ψQ

1
2 en)

)
(s)dw(s),

where w is a Wiener process.

Notice that if

∞∑
n=1

∥ψQ 1
2 en∥

L
1
H ([0,T ],X)

<∞, (2.2)

then in particular (2.2) holds, which follows immediately from (2.1).
The following lemma is obtained as a simple application of Lemma 2.2.
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Lemma 2.4 ([30]). For any ψ : [0, T ] → L0
2(K,X) such that

∑∞
n=1 ∥ψQ

1
2 en∥U is uniformly convergent for

t ∈ [0, T ], and for any p, q ∈ [0, T ] with p > q,

E

∥∥∥∥∫ p

q

ψ(s)dBH
Q (s)

∥∥∥∥2
X

≤ cH(2H − 1)(p− q)2H−1
∞∑

n=1

∫ p

q

∥ψQ 1
2 en∥2Xds.

Then

E

∥∥∥∥∫ p

q

ψ(s)dBH
Q (s)

∥∥∥∥2
X

≤ cH(2H − 1)(p− q)2H−1

∫ p

q

∥ψ(s)∥2L0
2
ds, (2.3)

where c = c(H).

In the follow, we give the definition of the Poission random measure.
Let {p(t) : t ∈ J} be a Poisson point process, and take its value in a measure in a measurable space (Z,B(Z))

with a σ-finite intensity measure µ(dy). We denote the Poisson counting measure as N(dt, dy), which is induced
by p(·), and the compensating martingale measure by

Ñ(dt, dy) = N(dt, dy)− µ(dy)dt.

For investigated our main results, we shall give the following lemma.

Lemma 2.5. Let the space Mθ
µ(J ×Ω× (K −{0}),H), (θ ≥ 2) be the set of all random process L(t, y) with values

in H, predictable with respect to {Ft}t≥0 such that

E

(∫ T

0

∫
Z

∥L(t, y)∥θXµ(dy)dt
)
<∞.

Assume L ∈M2
µ(J × Ω× (K − {0}),H) ∩M4

µ(J × Ω× (K − {0}), H), then for any t ∈ J , we have

E

[
sup

0≤r≤t

∥∥∥∥∫ r

0

∫
Z

S(r − s)L(s, y)Ñ(dy, ds)

∥∥∥∥2
H

]
≤ l

{
E

(∫ t

0

∫
Z

∥L(s, y)∥2Hµ(dy)ds
)

+E

(∫ t

0

∫
Z

∥L(s, y)∥4Hµ(dy)ds
) 1

2
}

for some number l > 0 dependent on T > 0.

Now, we define the mild solution of the system(1.1) as follows.

Definition 2.6. A X-valued process x(t) is called a mild solution of (1.1), if x(0) = x0, x(t) ∈ C(J, L2(Ω, X)), for
each 0 ≤ t ≤ T , the following integral equation satisfies:

x(t) = S(t)x0 +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, x(s))dt+

∫ t

0

S(t− s)σ(s)dBH
Q (s)

+

∫ t

0

∫
Z

S(t− s)h(t, x(t), y)N(ds, dy). (2.4)

3 Existence result

The purpose of this section is to study the existence of mild solutions for problem (1.1). Our main method is
the Banach contraction fixed point theorem.

At first, we assume that the following hypotheses be held:
(H1) The C0-semigroup {S(t)}t≥0 is linear and bounded in X [31], i.e., there exists a constant M > 0, such

that

∥S(t)∥ ≤M.

(H2) There exist constants L1, L2 > 0 such that

∥f(t, x1)− f(t, x2)∥2 ≤ L1∥x1 − x2∥2

∥f(t, x)∥2 ≤ L2(1 + ∥x∥2)

for all x1, x2, x ∈ X and a.e. t ∈ J .
(H3) There are some constants L3, L4 > 0 such that∫

Z

∥h(t, x1(t), y)− h(t, x2(t), y)∥2µ(dy) ≤ L3∥x1(t)− x2(t)∥2,
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∫
Z

∥h(t, x(t), y)− h(t, x(t), y)∥4µ(dy) ≤ L4∥x1(t)− x2(t)∥4,

for all x1, x2, x ∈ X and a.e. t ∈ J .
(H4) There are some constants L5, L6 > 0 such that∫

Z

∥h(t, x(t), y)∥2µ(dy) ≤ L5(1 + ∥x(t)∥2),∫
Z

∥h(t, x(t), y)∥4µ(dy) ≤ L6(1 + ∥x(t)∥4)

for all x1, x2, x ∈ X and a.e. t ∈ J .

(H5) The function σ : [0,∞) → L0
2(K,X) satisfies

∫ T

0
∥σ(s)∥2

L0
2
ds <∞.

Now, we consider the existence result for system (1.1).

Theorem 3.1. Assume that hypotheses (H1)− (H5) hold. Then for any u ∈ L2(J, U) the stochastic system (1.1)
has a unique mild solution on J , if

2T 2[M2L1 + l(L3 +
√
L4)] < 1.

Proof. We define an operator F : C(J, L2(Ω, X)) → C(J, L2(Ω, X)) by

(Fx)(t) = S(t)x0 +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, x(s))ds

+

∫ t

0

S(t− s)σ(s)dBH
Q (s) +

∫ t

0

∫
Z

S(t− s)h(s, x(s), y)N(ds, dy).

Using the contraction mapping principle, we will show that the operator F has a fixed point. To prove this, we
subdivide the proof into four steps.

Step 1. For any x ∈ C(J, L2(Ω, X)), we show that F maps C(J, L2(Ω, X)) into itself.
For all x ∈ C(J, L2(Ω, X)), we have

E∥(Fx)(t)∥2

≤ 5E∥S(t)x0∥2 + 5E

∥∥∥∥∫ t

0

S(t− s)Bu(s)ds

∥∥∥∥2 + 5E

∥∥∥∥ ∫ t

0

S(t− s)f(s, x(s))ds

∥∥∥∥2
+5E

∥∥∥∥ ∫ t

0

S(t− s)σ(s)dBH
Q (s)

∥∥∥∥2 + 5E

∥∥∥∥ ∫ t

0

∫
Z

S(t− s)h(t, x(t), y)N(ds, dy)

∥∥∥∥2
≤ 5M2

[
E∥x0∥2 + E∥Bu∥2T 2 + TL2(1 + E∥x∥2C) + cH(2H − 1)T 2H−1

∫ T

0

∥σ(s)∥2L0
Q(V,U)ds

]
+l

{
E

(∫ t

0

∫
Z

∥h(t, x(t), y)∥2Hµ(dy)ds
)
+ E

(∫ t

0

∫
Z

∥h(t, x(t), y)∥4Hµ(dy)ds
) 1

2
}

≤ 5M2

[
E∥x0∥2 + E∥Bu∥2T 2 + TL2(1 + E∥x∥2C) + cH(2H − 1)T 2H−1

∫ T

0

∥σ(s)∥2L0
Q(V,U)ds

]
+l

[
L5

∫ t

0

E(1 + ∥x(s)∥2)ds+
√
L6

(∫ t

0

E(1 + ∥x(s)∥4)ds
) 1

2
]

≤ 5M2

[
E∥x0∥2 + E∥Bu∥2T 2 + TL2(1 + E∥x∥2C)

+cH(2H − 1)T 2H−1

∫ T

0

∥σ(s)∥2L0
Q(V,U)ds

]
+ l(L5T +

√
L6T )E(1 + ∥x(s)∥2) (3.1)

for all t ∈ J .
From the inequality (3.1) and the assumptions, one can see that there exists M1 > 0 such that

E∥(Fx)(t)∥2 ≤ M1(1 + T sup
s∈J

E∥x(s)∥2)

for all t ∈ J . Thus, F maps C(J, L2(Ω, X)) into itself.
Step 2. We prove that F is a contraction mapping.
Let x1, x2 ∈ C(J, L2(Ω, X)), for t ∈ J we have

E∥(Fx1)(t)− (Fx2)(t)∥2

≤ E

∥∥∥∥ ∫ t

0

S(t− s)[f(s, x1(s))− f(s, x2(s))]ds
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+

∫ t

0

∫
Z

S(t− s)[h(t, x1(t), y)− h(t, x2(t), y)]N(ds, dy)

∥∥∥∥2
≤ 2M2T 2L1 sup

t∈[0,T ]

E∥x1(t)− x2(t)∥X2 + 2l

{
E

(∫ t

0

∫
Z

∥h(t, x1(t), y)− h(t, x2(t), y)∥2Cµ(dy)ds
)

+E

(∫ t

0

∫
Z

∥h(t, x1(t), y)− h(t, x2(t), y)∥4Cµ(dy)ds
) 1

2
}

≤ 2M2T 2L1 sup
s∈J

E∥x1(s)− x2(s)∥2C + 2l(L3 +
√
L4)

∫ t

0

E∥x1(s)− x2(s)∥2ds

≤ 2T 2[M2L1 + l(L3 +
√
L4)] sup

s∈J
E∥x1(s)− x2(s)∥2C .

Since 2T 2[M2L1 + l(L3 +
√
L4)] < 1, then F is a contraction mapping and hence there exists a unique fixed point

x(·) in C(J, L2(Ω, X)) which is the mild solution of problem (1.1).

4 Controllability results

In this section, we discuss the controllability results for System (1.1). Before starting, we consider the following
assumption:

(H5) The linear operator LT
0 ∈ L2(U,X) is defined by

LT
0 u =

∫ T

0

S(T − s)Bu(s)ds.

has an inverse operator (LT
0 )

−1 which takes values in L2(J, U) \ kerLT
0 , where kerLT

0 = {x ∈ L2(J, U), LT
0 x = 0},

and there are positive constants Mb,ML such that ∥B∥2 ≤Mb, ∥(LT
0 )

−1∥2 ≤ML.
To the readers’ convenience, we give the definitions of controllability as follows.

Definition 4.1. System (1.1) is said to be completely controllable on the interval J if

Rt(x0) = C(J, L2(Ω, X)),

that is, all the points in C(J, L2(Ω, X)) can be exactly reached from arbitrary initial condition x(0) = x0 and xT
at time T .

Theorem 4.2. Assume that hypotheses (H1)− (H5) hold. Then the stochastic system (1.1) is completely control-
lable on J , if

3

{
TM2

(
L1T + 2M2M2

bML[M
2L1T + (L3 +

√
L4)]T

2

)
+ l(L3 +

√
L4)

}
< 1.

Proof. Fix T > 0 and let ZT = C(J, L2(Ω, X)) be the Banach space of all functions from J into L2(Ω, X), endowed
with the supremum norm

∥µ∥ZT
=

(
sup

t∈[0,T ]

E∥µ(t)∥2
) 1

2

.

Let’s consider the set

GT = {x ∈ ZT : x(0) = x0}.

We easily know that GT is a closed subset of ZT equipped with norm ∥ · ∥ZT .
By assumption (H5), one can choose the feedback control function ux(t) as

ux(t) = B∗S∗(T − t)E

{
(LT

0 )
−1(xT − S(T )x0 −

∫ T

0

S(T − s)f(s, x(s))ds

−
[ ∫ T

0

S(T − s)σ(s)dBH
Q (s) +

∫ T

0

∫
Z

S(T − s)h(s, x(s), y)N(ds, dy)

]
|Ft

}
.

We will prove that if we use this control ux(t), the operator Φ define on ∥ · ∥ZT
by

Φ(x)(t) = S(t)x0 +

∫ t

0

S(t− s)BB∗S∗(T − s)E

[
(LT

0 )
−1

(
xb − S(T )x0

−
∫ T

0

S(T − η)f(s, x(η))dη −
[ ∫ T

0

S(T − η)σ(η)dBH
Q (η)

+

∫ T

0

∫
Z

S(T − η)h(η, x(η), y)N(dη, dy)

]
|Ft

]
ds+

∫ t

0

S(t− s)f(s, x(s))ds
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+

∫ t

0

S(t− s)σ(s)dBH
Q (s) +

∫ t

0

∫
Z

S(t− s)h(s, x(s), y)N(ds, dy).

has a fixed point on J .
To prove that the operator Φ has a fixed point on J , we divide the subsequent proof into the following two

steps.
Step 1. For any x ∈ GT , let’s prove that t→ Φ(x)(t) is continuous on J in the L2(Ω, X)-sense.
Let 0 < t < t+ δ < T , here t, t+ δ are belong to J , and δ > 0 is sufficiently small. Then we have

E∥Φ(x)(t+ δ)− Φ(x)(t)∥2

≤ 9E∥S(t+ δ)x0 − S(t)x0]∥2 + 9E

∥∥∥∥ ∫ t

0

[S(t+ δ − s)− S(t− s)]f(s, x(s))ds

∥∥∥∥2
+9E

∥∥∥∥ ∫ t+δ

t

S(t+ δ − s)f(s, x(s))ds

∥∥∥∥2 + 9E

∥∥∥∥ ∫ t

0

[S(t+ δ − s)− S(t− s)]B

×B∗S∗(T − s)(LT
0 )

−1

(
xT − S(T )x0 −

∫ T

0

S(T − η)f(η, x(η))dη

−
∫ T

0

S(T − η)σ(η)dBH
Q (η)−

∫ T

0

∫
Z

S(T − η)h(η, x(η), y)N(dη, dy)

)
ds

∥∥∥∥2
+9E

∥∥∥∥ ∫ t+δ

t

S(t+ δ − s)BB∗S∗(T − s)(LT
0 )

−1

(
xT − S(T )x0 −

∫ T

0

S(T − η)f(η, x(η))dη

−
∫ T

0

S(T − η)σ(η)dBH
Q (η)−

∫ T

0

∫
Z

S(T − η)h(η, x(η), y)N(dη, dy)

)
ds

∥∥∥∥2
+9E

∥∥∥∥ ∫ t

0

[S(t+ δ − s)− S(t− s)]σ(s)dBH
Q (s)

∥∥∥∥2 + 9E

∥∥∥∥ ∫ t+δ

t

S(t− s)σ(s)dBH
Q (s)

∥∥∥∥2.
+9E

∥∥∥∥ ∫ t

0

∫
Z

[S(t+ δ − s)− S(t− s)]h(t, x(t), y)N(ds, dy)

∥∥∥∥2
+9E

∥∥∥∥ ∫ t+δ

t

∫
Z

S(t+ δ − s)h(t, x(t), y)N(ds, dy)

∥∥∥∥2
≤ 9

9∑
i=1

I9.

We can easily know that

I1 ≤ ∥S(t+ δ)− S(t)∥2E∥x0∥2 → 0 as δ → 0.

By using the well-known Hölder’s inequality, we get

I2 ≤ t

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2 sup
s∈J

E(1 + ∥x(s)∥2)ds→ 0 as δ → 0.

I3 ≤M2t

∫ t+δ

t

sup
s∈J

E(1 + ∥x(s)∥2)ds→ 0 as δ → 0.

By Hölder’s inequality again, Lemma 2.4 and the condition (H3), we get

I4 ≤ 5t

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2∥B∥4∥LT
0 ∥2
(
E∥xT ∥2 +M2E∥x0∥2

+E

∥∥∥∥ ∫ T

0

S(T − η)f(η, x(η))dη

∥∥∥∥2 + E

∥∥∥∥ ∫ T

0

S(T − η)σ(η)dBH
Q (η)

∥∥∥∥2
+E

∥∥∥∥ ∫ T

0

∫
Z

S(T − η)h(η, x(η), y)N(dη, dy)

∥∥∥∥2)ds
≤ 5M2

bML

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2
(
E∥xT ∥2 +M2E∥x0∥2

+M2T

∫ T

0

sup
η∈J

E(1 + ∥x(η)∥2)dη +M2cH(2H − 1)T 2H−1

∫ T

0

∥σ(η)∥2L0
2
dη

+l
{
E
( ∫ T

0

∫
Z

E∥h(η, x(η), y)∥2µ(dy)dη
)
+ E

( ∫ T

0

∫
Z

E∥h(η, x(η), y)∥4µ(dy)dη
) 1

2

})
ds

≤ 5M2
bML

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2
(
E∥xT ∥2 +M2E∥x0∥2
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+M2T

∫ T

0

sup
η∈J

E(1 + ∥x(η)∥2)dη +M2cH(2H − 1)T 2H−1

∫ T

0

∥σ(η)∥2L0
2
dη

+l(L5T +
√
L6T )E(1 + ∥x(s)∥2)

)
ds.

Hence, by Lebesgue’s dominated convergence, one can know that I4 → 0 as δ → 0.
For a similar way, we obtain

I5 ≤ 5M2M2
bML

∫ t+δ

t

(
E∥xT ∥2 +M2E∥x0∥2 +M2T

∫ T

0

sup
η∈J

E(1 + ∥x(η)∥2)dη

+M2cH(2H − 1)T 2H−1

∫ T

0

∥σ(η)∥2L0
2
dη

+L4M
2

∫ T

0

sup
η∈J

E(1 + ∥x(η)∥2)dη
)
ds→ 0 as δ → 0.

I6 ≤ cH(2H − 1)t2H−1

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2∥σ(s)∥2L0
2
ds as δ → 0.

I7 ≤ cH(2H − 1)M2δ2H−1

∫ t+δ

t

∥σ(s)∥2L0
2
ds as δ → 0.

I8 ≤ (L5T +
√
L6T )

∫ t

0

∥S(t+ δ − s)− S(t− s)∥2 sup
s∈J

E(1 + ∥x(s)∥2)ds as δ → 0.

I9 ≤ l(L5T +
√
L6T )

∫ t+δ

t

sup
s∈J

E(1 + ∥x(s)∥2)ds as δ → 0.

Then, by the strong continuous of S(t) and the Lebesgue’s dominated convergence theorem, we know that the
right hand of Ii(i = 1, · · · , 9) tends to 0 as δ → 0. Hence, Φ(x)(t) is continuous on J in the L2(Ω, X)-sense.

Next, we prove that Φ is a contraction mapping. Let x, z ∈ C(J, L2(Ω, X)) are two mild solution of (1.1), then

E∥Φ(x)(t)− Φ(z)(t)∥2H

≤ 3E

∥∥∥∥ ∫ t

0

S(t− s)[f(s, x(s))− f(s, z(s))]ds

∥∥∥∥2
+3E

∥∥∥∥ ∫ t

0

S(t− s)B(s)[ux(s)− uz(s)]ds

∥∥∥∥2
+3E

∥∥∥∥ ∫ t

0

∫
Z

S(t− s)[h(s, x(s), y)− h(s, z(s), y)]N(ds, dy)

∥∥∥∥2
≤ 3J1 + 3J2 + 3J3.

We can easily show that

J1 ≤ TM2L1T sup
t∈J

E∥x(t)− z(t)∥2H , (4.1)

J3 ≤ l(L3 +
√
L4) sup

t∈J
E∥x(t)− z(t)∥2. (4.2)

Since

E∥ux(t)− uz(t)∥2

≤ E

∥∥∥∥B∗S∗(T − t)(LT
0 )

−1

(∫ T

0

S(T − s)(f(s, x(s))− f(s, z(s)))ds

−
∫ T

0

∫
Z

S(T − s)[h(s, x(s), y)− h(s, z(s), y)]N(ds, dy)

)∥∥∥∥2
≤ 2M2MbML

(
M2T

∫ T

0

E∥f(s, x(s))− f(s, z(s))∥2ds

+l
{
E
( ∫ T

0

∫
Z

E∥h(η, x(η), y)∥2µ(dy)dη
)
+ E

( ∫ T

0

∫
Z

E∥h(η, x(η), y)∥4µ(dy)dη
) 1

2

})
≤ 2M2MbML[M

2L1T + (L3 +
√
L4)]

∫ T

0

sup
s∈[0,t]

E∥x(s)− z(s)∥2ds,

we have

sup
t∈J

E∥ux(t)− uz(t)∥2 ≤ 2M2MbML[M
2L1T + (L3 +

√
L4)]T sup

t∈J
E∥x(t)− z(t)∥2.
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Hence

J2 ≤ 2M4M2
bML[M

2L1T + (L3 +
√
L4)]T

2 sup
t∈J

E∥x(t)− z(t)∥2, (4.3)

By inequalities (4.1)-(4.3), we get

E∥Ψ(x)(t)−Ψ(z)(t)∥2

≤ 3

{
TM2

(
L1T + 2M2M2

bML[M
2L1T + (L3 +

√
L4)]T

2

)
+ l(L3 +

√
L4)

}
∥x− z∥2C .

Since 3

{
TM2

(
L1T + 2M2M2

bML[M
2L1T + (L3 +

√
L4)]T

2

)
+ l(L3 +

√
L4)

}
< 1. Therefore, Φ is a contraction

mapping and hence there exists a unique fixed point x(·) in C(J, L2(Ω, X)) which is the mild solution of system
(1.1). Thus, system (1.1) is complete controllable on J .

5 An example

Let’s consider the following stochastic partial differential equations driven by fractional Brownian motion and
Poisson noise process:

dx(θ, t) =

[
∂2x(θ, t)

∂θ2
+ F (θ, t, x(θ, t)) + g(θ, t)

]
dt+ σ(t)dBH(t)

+

∫
Z

cos tx(θ, t)µÑ(dt, dµ), in Ω× [0, τ ],

x(θ, t) = 0, on ∂Ω× [0, τ ],
x(θ, 0) = x0(θ), θ ∈ Ω,

(5.1)

where BH is a fractional Brownian motion, Ω is a bounded open set in R,F : Ω × J × R → R is nonlinear
function, measurable with respect to θ and almost everywhere continuous with respect to t. Let {q(t), t ∈ [0, τ ]}
be the Poisson jump process taking values in the space H = [0,∞) with a σ-finite intensity measure λ(dµ) on the
completely probability space (Σ,F , P ). We denote the Poisson counting measure as N(dt, dµ), which is induced
by q(·), and compensating martingale measure given by

Ñ(dt, dµ) = N(dt, dµ)− λ(dµ)dt.

Take X = Y = U = L2([0, τ ]) and the operator A : D(A) ⊂ X → X is defined by

Ax = x′′,

D(A) = {x ∈ X : x, x′ are absolutely continuous, x′′ ∈ X, x(0) = x(π) = 0}.

Then, A can be written as

Ax = −
∞∑

n=1

n2(x, xn)xn, x ∈ D(A),

where xn(x) =
√
2/π sinny(n = 1, 2, · · · ) is an orthonormal basis of X. It is well known that A is the infinitesimal

generator of a differentiable semigroup T (t)(t > 0) in X given by

T (t)x =
∞∑

n=1

exp−n2t(x, xn)xn, x ∈ X, and ∥T (t)∥ ≤ e−1 < 1 =M.

In order to define the operator Q : Y → R, we choose a sequence {ln}n∈N ⊂ R+, let Qen = lnen, and assume
that

tr(Q) =
∞∑

n=1

√
ln <∞.

Thus, we define the fractional Brownian motion in Y as

BH(t) =

∞∑
n=1

√
lnγ

H
n (t)en,

where H ∈ ( 12 , 1) and {γHn }n∈n is a sequence of one-dimensional fractional Brownian motion mutually independent.
Let x(t)(·) = x(·, t), f(t, x)(·) = F (·, t, x(·)). Define the bounded operator B : U → X by Bu(t)(θ) = g(θ, t), θ ∈

Ω, u ∈ U . Hence, by the above choice, it’s easily known that the system (5.1) can be written into (1.1) and all
the conditions of Theorem 4.2 are satisfied. Then by the Theorem 4.2, the stochastic partial differential equations
driven by fractional Brownian motion and Poisson noise process is completely controllable on [0, τ ].
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[5] M. Besalú, C. Rovira, Stochastic delay equations with non-negativity constraints driven by fractional Brow-
nian motion, Bernoulli, 18(1) (2012) 24-45.

[6] W. Bian, Controllability of nonlinear evolution systems with preassigned responses, J. Optim. Theory Appl.,
100 (1999) 265-285.

[7] B. Boufoussi, S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian
motion in a Hilbert space, Statistics and Probability Letters, 82(8) (2012) 1549-1558.

[8] T. Caraballo, M.J. Garrido-Atienza, The existence and exponential behavior of solutions to stochastic delay
evolution equations with a fractional Brownian motion, Nonlinear Analysis, 74 (2011) 3671-3684.

[9] N.T. Dung, Mackey-Glass equation driven by fractional Brownian motion, Physica A, 391(2012) 5465-5472.

[10] S. Hajji, E. Lakhel, Neutral stochastic functional differential equation driven by fractional Brownian motion
and Poisson point processes, (2013) 18 pages. arXiv admin note: text overlap with arXiv:1312.6147

[11] Hamdy M. Ahmed, Controllability of impulsive neutral stochastic differential equations with fractional Brown-
ian motion, IMA Journal of Mathematical Control and Information, (2014) 1-14, doi:10.1093/imamci/dnu019

[12] E. Hausenblas, SPDEs driven by Poisson random measure with non-Lipschitz coefficients: Existence results,
Probab. Th. Relat. Fields 137 (2007) 161-200.

[13] H. Leiva, Exact controllability of the suspension bridge model proposed by Lazer and McKenna, J. Math.
Anal. Appl. 309 (2005) 404-419.

[14] H. Leiva, Exact controllability of semilinear evolution equation and applications, Int. J. Systems Control
Communications, 1 (1) (2008) 1-12.

[15] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.
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