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COUPLED FIXED POINT THEOREM IN PARTIALLY ORDERED

MODULAR METRIC SPACES AND ITS AN APPLICATION

ALİ MUTLU, KÜBRA ÖZKAN, AND UTKU GÜRDAL

Abstract. In this article, we extend certain coupled fixed theorem which

was introduced for mappings having the mixed monotone property in vari-
ous metric spaces to partially ordered modular metric spaces. In addition to

this, we express some results about this theorem. Finally, we show using our

main theorem that there exists a unique solution for a given nonlinear integral
equation.

1. Introduction

The first time in literature, Guo and Lakshmikantham [12] introduced the con-
cept of coupled fixed point in 1987. After that, Bhaskar and Lakshmikantham
[5] introduced the concept of the mixed monotone property and expressed certain
coupled fixed point theorems which are considered as the most interesting fixed
point theorems for mappings having this property in ordered metric spaces. They
showed the existence of a unique solution for a periodic boundary value problem.
Since the coupled fixed point theorems in the study of nonlinear integral equations
and differential equations are important tools, many researcher have studied them
in various partially ordered metric spaces, e.g. [3, 4, 6, 13, 16, 18, 20, 21, 22, 23, 24].

Lately, a lot of significant results related to fixed point theorems have been
extended to modular metric spaces which was introduced by Chistyakov via F-
modular [7] in 2008 and developed the theory of this spaces in 2010 [8]. And then,
many authors made various studies on these structures, e.g. [1, 2, 9, 10, 11, 14, 15,
17].

In this article, we extend certain coupled fixed theorem which was introduced
for mappings having the mixed monotone property in various metric spaces to
partially ordered modular metric spaces. In addition to this, we investigate some
results about this theorem. Finally, we show using our main theorem that there
exists a unique solution for a given nonlinear integral equation.

2. Modular Metric Spaces

Here, we express a series of definitions of some fundamental notions related to
modular metric spaces.

Definition 2.1. [19] Let X be a vector space on R and ρ : X → [0,∞] be a
function. If ρ satisfies the following conditions, we call that ρ is a modular on X:

(1) ρ(0) = 0;
(2) If a ∈ X and ρ(γa) = 0 for all numbers γ > 0, then a = 0;

2010 Mathematics Subject Classification. 46A80, 47H10, 54H25.
Key words and phrases. Modular metric space, coupled fixed point, complete modular metric.
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(3) ρ(−a) = ρ(a), for all a ∈ X;
(4) ρ(γa+ θb) ≤ ρ(a) + ρ(b) for all γ, θ ≥ 0 with γ + θ = 1 and a, b ∈ X.

Let X 6= ∅ and ω : (0,∞) × X × X → [0,∞] be a function where λ ∈ (0,∞).
Throughout this article, the value ω(λ, a, b) is denoted by ωλ(a, b) for all a, b ∈ X
and λ > 0.

Definition 2.2. [8] Let X 6= ∅ and ω : (0,∞) × X × X → [0,∞] be a function.
If ω satisfies the following conditions for all a, b, c ∈ X, we call that ω is a metric
modular on X:

(m1) ωλ(a, b) = 0 for all λ > 0 ⇔ a = b;
(m2) ωλ(a, b) = ωλ(b, a) for all λ > 0;
(m3) ωλ+µ(a, b) ≤ ωλ(a, c) + ωµ(c, b) for all λ, µ > 0.

From [8, 9], we know that as fix a0 ∈ X, the two sets

Xω = Xω(a0) = {a ∈ X : ωλ(a, a0)→ 0 as λ→∞}
and

X∗ω = X∗ω(a0) = {a ∈ X : ∃λ = λ(a) > 0 such that ωλ(a, a0) <∞}
are said to be modular spaces.

From [8, 9], the modular space Xω can be equipped by a metric

dω(a, b) = inf{λ > 0 : ωλ(a, b) ≤ λ}
which is generated by ω for any a, b ∈ Xω where ω is a modular on X.

Definition 2.3. [15] Let Xω be a modular metric space, {an}n∈N be a sequence in
Xω and C ⊆ Xω. Then,

(1) {an}n∈N is called a modular convergent sequence such that an → a, a ∈ Xω

if
ωλ(an, a)→ 0 as n→∞

for all λ > 0.
(2) {an}n∈N is called a modular Cauchy sequence if and only if for all ε > 0

there exists n(ε) ∈ N such that ωλ(an, am) < ε for each m,n ≥ n(ε) and
λ > 0.

(3) C is called complete modular if every modular Cauchy sequence {an} in C
is a modular convergent in C.

3. Main Results

Let ≤ be a ordered relation and Xω be a modular metric space. Throughout
this article, (Xω,≤) denotes partially ordered modular metric space.

Definition 3.1. Let (Xω,≤) be a partially ordered modular metric space. The
mapping F : Xω × Xω → Xω has the mixed monotone property if F holds the
following conditions for any a, b ∈ Xω

a1 ≤ a2 ⇒ F (a1, b) ≤ F (a2, b), a1, a2 ∈ Xω

and
b1 ≥ b2 ⇒ F (a, b1) ≤ F (a, b2), b1, b2 ∈ Xω.

These imply that F is monotone non-decreasing in a and monotone non-increasing
in b.
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Definition 3.2. Let Xω be a modular metric space, (a, b) ∈ Xω × Xω and F :
Xω×Xω → Xω be a mapping. (a, b) is called a coupled fixed point of the mapping
if

F (a, b) = a and F (b, a) = b.

Theorem 3.3. Let (Xω,≤) be a partially ordered complete modular metric space,
the mapping F : Xω ×Xω → Xω has the mixed monotone property in Xω and k, l
be non-negative constants such that k + l < 1. Suppose that we have the following
condition for all a, b, p, q ∈ Xω and λ > 0

(3.1) ωλ(F (a, b), F (p, q)) ≤ kωλ(a, p) + lωλ(b, q)

where a ≥ p, q ≥ b.
If there exist a0, b0 ∈ Xω with a0 ≤ F (a0, b0) and b0 ≥ F (b0, a0), then F has a

unique coupled fixed point.

Proof. Let a0, b0 ∈ Xω with a0 ≤ F (a0, b0) and b0 ≥ F (b0, a0). We take a1, b1 ∈
Xω with a1 = F (a0, b0) and b1 = F (b0, a0). Again we take a2, b2 ∈ Xω with
a2 = F (a1, b1) and b2 = F (b1, a1). Repeating this way, we obtain sequences {an}
and {bn} in Xω with

an+1 = F (an, bn) and bn+1 = F (bn, an)

for all n ∈ N+. In view of mixed monotone property of F , we get

a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · ·
and

b0 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1 ≥ · · · .
Then, by (3.1), we get

ωλ(an, an+1) = ωλ(F (an−1, bn−1), F (an, bn)),(3.2)

≤ kωλ(an−1, an) + lωλ(bn−1, bn)

for all n ∈ N+, λ > 0 and k + l < 1. Similarly,

ωλ(bn, bn+1) = ωλ(F (bn−1, an−1), F (bn, an)),(3.3)

≤ kωλ(bn−1, bn) + lωλ(an−1, an)

for all n ∈ N+, λ > 0 and k + l < 1. Therefore, letting

en = ωλ(an, an+1) + ωλ(bn, bn+1)

for all n ∈ N+, λ > 0. Using equations (3.2) and (3.3), we get

en = ωλ(an, an+1) + ωλ(bn, bn+1)

≤ kωλ(an−1, an) + lωλ(bn−1, bn) + kωλ(bn−1, bn) + lωλ(an−1, an)

= (k + l)(ωλ(an−1, an) + ωλ(bn−1, bn))

= (k + l)en−1.

Then, we obtain that

(3.4) 0 ≤ en ≤ (k + l)en−1 ≤ (k + l)2en−2 ≤ · · · ≤ (k + l)ne0.

If e0 = 0, then e0 = ωλ(a0, a1)+ωλ(b0, b1) = 0. Therefore, we get ωλ(a0, a1) = 0
and ωλ(b0, b1) = 0. So, from condition (m2) of modular metric spaces, we get

a0 ≤ a1 = F (a0, b0) and b0 ≥ b1 = F (b0, a0).

This implies that (a0, b0) is a coupled fixed point of F .
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Now, let e0 > 0. Preserving the generality, suppose that for m,n ∈ N and n < m,
there exist n λ

m−n
∈ N satisfying

ω λ
m−n

(an, an+1) + ω λ
m−n

(bn, bn+1) = en

for all λ
m−n > 0 and n ≥ n λ

m−n
. We get

(3.5)
ωλ(an, am) ≤ ω λ

m−n
(an, an+1) + ω λ

m−n
(an+1, an+2) + · · ·+ ω λ

m−n
(am−1, am),

ωλ(bn, bm) ≤ ω λ
m−n

(bn, bn+1) + ω λ
m−n

(bn+1, bn+2) + · · ·+ ω λ
m−n

(bm−1, bm)

for each n < m. Thus, from (3.4) and (3.5), we get

ωλ(an, am) + ωλ(bn, bm) ≤ (ω λ
m−n

(an, an+1) + ω λ
m−n

(bn, bn+1)) + · · ·

+(ω λ
m−n

(am−1, am) + ω λ
m−n

(bm−1, bm)),

= en + en+1 + · · ·+ em−1,

≤ (k + l)ne0 + (k + l)n+1e0 + · · ·+ (k + l)m−1e0,

= ((k + l)n + (k + l)n+1 + · · ·+ (k + l)m−1)e0,

≤ (k + l)n

1− (k + l)
e0(3.6)

for n < m and λ > 0. Let k + l = δ. Since there exists n0 such that δn0

1−δ e0 < ε,

from (3.6), we have for each n,m ≥ n0 that

ωλ(an, am) + ωλ(bn, bm) < ε

for an arbitrary ε > 0. Then, {an} and {bn} are Cauchy sequences in Xω. Using
completeness of Xω, we can talk about existence of a, b ∈ Xω with

lim
n→∞

an = a and lim
n→∞

bn = b.

There exists n0 ∈ N with ωλ
2
(an, a) < ε

2 and ωλ
2
(bn, b) <

ε
2 for all n ≥ n0, λ > 0

and every ε > 0. So, from (3.1), we get

ωλ(F (a, b), a) ≤ ωλ
2
(F (a, b), an+1) + ωλ

2
(an+1, a)

= ωλ
2
(F (a, b), F (an, bn)) + ωλ

2
(an+1, a)

≤ kωλ
2
(an, a) + lωλ

2
(bn, b) + ωλ

2
(an+1, a)

< k
ε

2
+ l

ε

2
+
ε

2

= (k + l)
ε

2
+
ε

2
< ε

for all λ > 0 and each n ∈ N. Then, ωλ(F (a, b), a) = 0. So, F (a, b) = a. In similar
way, we get F (b, a) = b. These imply that (a, b) is a coupled fixed point of F . We
assume that F has an another coupled fixed point (a∗, b∗). Then, for λ > 0 we get

ωλ(a∗, a) = ωλ(F (a∗, b∗), F (a, b)) ≤ kωλ(a∗, a) + lωλ(b∗, b)

and

ωλ(b∗, b) = ωλ(F (b∗, a∗), F (b, a)) ≤ kωλ(b∗, b) + lωλ(a∗, a).

Therefore, we get

(3.7) ωλ(a∗, a) + ωλ(b∗, b) ≤ (k + l)(ωλ(a∗, a) + ωλ(b∗, b)).
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Since k+ l < 1, from (3.7) we get ωλ(a∗, a) +ωλ(b∗, b) = 0 for all λ > 0. Hence, we
obtain that

ωλ(a∗, a) = 0⇔ a∗ = a and ωλ(b∗, b) = 0⇔ b∗ = b.

Therefore, (a, b) is a unique coupled fixed point of F . �

If we take equal the constants k, l in Theorem (3.3), the following corollary is
obtained.

Corollary 3.4. Let (Xω,≤) be a partially ordered complete modular metric space,
the mapping F : Xω × Xω → Xω has the mixed monotone property in Xω and
k ∈ [0, 1). Suppose that we have the following condition for all a, b, p, q ∈ Xω and
λ > 0

(3.8) ωλ(F (a, b), F (p, q)) ≤ k

2
(ωλ(a, p) + ωλ(b, q))

where a ≥ p, q ≥ b.
If there exist a0, b0 ∈ Xω with

a0 ≤ F (a0, b0) and b0 ≥ F (b0, a0),

then F has a unique coupled fixed point.

Theorem 3.5. Let (Xω,≤) be a partially ordered complete modular metric space.
Suppose that Xω satisfies the following conditions

(i) if a non-decreasing sequence an → a, then an ≤ a for all n,
(ii) if a non-increasing sequence bn → b, then bn ≥ b for all n.

Let the mapping F : Xω×Xω → Xω has the mixed monotone property in Xω and k,
l be non-negative constants such that k+ l < 1. Suppose that we have the following
condition for all a, b, p, q ∈ Xω and λ > 0

ωλ(F (a, b), (p, q)) ≤ kωλ(a, p) + lωλ(b, q)

where a ≥ p, q ≥ b.
If there exist a0, b0 ∈ Xω with

a0 ≤ F (a0, b0) and b0 ≥ F (b0, a0),

then F has a unique coupled fixed point.

Proof. This proof can be made in analogy to the proof of Theorem (3.3). Here, it
will be enough only to show that F (a, b) = a and F (b, a) = b for proof. Let ε > 0.
Since F (an−1, bn−1) = an → a and F (bn−1, an−1) = bn → b, there exists n0 ∈ N
with

(3.9)
ωλ(an, a) = ωλ(F (an−1, bn−1), a) < ε

3
ωλ(bn, b) = ωλ(F (bn−1, an−1), b) < ε

3

for all n ≥ n0. Letting n ≥ n0 and using the equations (3.1) and (3.9), we get

ωλ(F (a, b), a) ≤ ωλ
2
(F (a, b), an+1) + ωλ

2
(an+1, a)

= ωλ
2
(F (a, b), F (an, bn)) + ωλ

2
(an+1, a)

≤ kωλ
2
(an, a) + lωλ

2
(bn, b) + ωλ

2
(an+1, a)

< k
ε

3
+ l

ε

3
+
ε

3

= (k + l)
ε

3
+
ε

3
< ε.
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Then, we get F (a, b) = a. In a similar way, we obtain that ωλ(F (a, b), a) < ε
implies F (b, a) = b. On the other hand, uniqueness of the coupled fixed point of F
can be shown in a similar way with the proof of Theorem (3.3). �

Corollary 3.6. Let (Xω,≤) be a partially ordered complete modular metric space.
Suppose that Xω satisfies the following conditions;

(i) if a non-decreasing sequence an → a, then an ≤ a for all n,
(ii) if a non-increasing sequence bn → b, then bn ≥ b for all n.

Let the mapping F : Xω ×Xω → Xω has the mixed monotone property in Xω and
k ∈ [0, 1). Suppose that we have the following condition for all a, b, p, q ∈ Xω and
λ > 0

ωλ(F (a, b), (p, q)) ≤ k

2
(ωλ(a, p) + ωλ(b, q))

where a ≥ p, q ≥ b. If there exist a0, b0 ∈ Xω with

a0 ≤ F (a0, b0) and b0 ≥ F (b0, a0),

then F has a unique coupled fixed point.

Example 3.7. Let Xω = R. If we take the usual partial order ≤ in R, then (R,≤)
is a partially ordered set. We define a mapping ω : (0,∞) × R × R → [0,∞) by

ωλ(a, b) = |a−b|
λ for all a, b ∈ R and λ > 0. It can be said that Xω is a complete

modular metric space. We take a mapping F : R×R→ R such that F (a, b) = a+b
6 .

We easily see that F has the mixed monotone property. Then, we have

ωλ(F (a, b), F (p, q)) = ωλ(
a+ b

6
,
p+ q

6
)

=
|a+b6 −

p+q
6 )|

λ

=
1

6

|a− p+ b− q|
λ

≤ 1

6
(
|a− p|
λ

+
|b− q|
λ

)

=
1

6
(ωλ(a, p) + ωλ(b, q))

for any a, b, p, q ∈ Xω So, the equation (3.8) is satisfied for k = 1
3 . Therefore, from

Corollary (3.4), F has a unique coupled fixed point. Also, there are a0 = 0 ≤
F (0, 0) = F (a0, b0) and b0 = 0 ≥ F (0, 0) = F (b0, a0). It is obvious that (0, 0) is the
coupled fixed point of F .

On the other hand, if F : Xω ×Xω → Xω is defined by F (a, b) = a+b
2 , then F

satisfies the condition (3.8) for k = 1. Then, we get

ωλ(F (a, b), F (p, q)) = ωλ(
a+ b

2
,
p+ q

2
)

=
|a+b2 −

p+q
2 )|

λ

=
1

2

|a− p+ b− q|
λ

≤ 1

2
(
|a− p|
λ

+
|b− q|
λ

)

=
1

2
(ωλ(a, p) + ωλ(b, q)).
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Therefore, coupled fixed points of F are both (0, 0) and (1, 1). Namely, F has not a
unique the coupled fixed point. Then, the conditions k < 1 in Corollary (3.4) and
k + l < 1 in Theorem (3.3) are the most appropriate conditions for satisfying the
uniqueness of coupled fixed point.

4. Application

Here, we show that there exists a unique solution of a nonlinear integral equation
using the Theorem (3.3).

We consider the following nonlinear integral equations:

a(s) =

∫ S

0

f(s, a(t), b(t))dt, s ∈ [0, S] = I(4.1)

b(s) =

∫ S

0

f(s, b(t), a(t))dt, s ∈ [0, S] = I

where S ∈ R+ (S > 0) and f : I × R× R→ R.
Let Xω = C(I,R) and Xω be a partially ordered set. We define the order relation

as follows:

a ≤ b⇔ a(s) ≤ b(s)
for a, b ∈ C(I,R) and all s ∈ I. We can easily see that Xω is a complete modular
metric space such that

ωλ(a, b) = sup
s∈I

|a(s)− b(s)|
λ

,

for all a, b ∈ X and λ > 0.

Assumption 4.1. There exist two non-negative constants k and l with k + l < 1
such that

(4.2) 0 ≤ f(s, a, b)− f(s, p, q) ≤ 1

S
(
k(a− p) + l(q − b)

λ
)

for all s ∈ I, a, b, p, q ∈ Xω and λ > 0 where a ≥ p, q ≥ b.

Definition 4.2. (α, β) ∈ C(I,R) × C(I,R) is called a coupled lower and upper
solution of the integral equations (4.1) if α(s) ≤ β(s) and

α(s) ≤
∫ S

0

f(s, α(t), β(t))dt

β(s) ≤
∫ S

0

f(s, β(t), α(t))dt

for all s ∈ I.

Theorem 4.3. We suppose that the Assumption (4.1) is satisfied. The integral
equations (4.1) have a unique solution in C(I,R) if there exists a coupled lower
and upper solution for equations (4.1).

Proof. Let Xω = C(I,R). Xω is a partially ordered set if we define the order
relation such that for a, b ∈ C(I,R) and all s ∈ I

a ≤ b⇔ a(s) ≤ b(s).
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It is obvious that Xω is a complete modular metric space such that

(4.3) ωλ(a, b) = sup
s∈I

|a(s)− b(s)|
λ

for a, b ∈ C(I,R) and all λ > 0. Also, we define a partial order on Xω × Xω =
C(I,R)× C(I,R) such that

(a, b) ≤ (p, q)⇒ a(s) ≤ p(s) and q(s) ≤ b(s)

for (a, b), (p, q) ∈ Xω ×Xω and all s ∈ I.
Now, we define F : Xω ×Xω → Xω with

(4.4) F (a, b)(s) =

∫ S

0

f(s, a(t), b(t))dt

for a, b ∈ C(I,R) and s ∈ I. We need to show that F has the mixed monotone
property. If a1 ≤ a2, that is, a1(s) ≤ a2(s) for all s ∈ I, by Assumption (4.1) we
get

F (a1, b)(s)− F (a2, b)(s) =

∫ S

0

f(s, a1(t), b(t))dt−
∫ S

0

f(s, a2(t), b(t))dt

=

∫ S

0

(f(s, a1(t), b(t))− f(s, a2(t), b(t)))dt

≤ 0.

Then, F (a1, b)(s) ≤ F (a2, b)(s) for all s ∈ I. That is, F (a1, b) ≤ F (a2, b).
Similarly, if b1 ≥ b2, that is, b1(s) ≥ b2(s) for all s ∈ I, by Assumption (4.1), we

get

F (a, b1)(s)− F (a, b2)(s) =

∫ S

0

f(s, a(t), b1(t))dt−
∫ S

0

f(s, a(t), b2(t))dt

=

∫ S

0

(f(s, a(t), b1(t))− f(s, a(t), b2(t)))dt

≤ 0.

Then, F (a, b1)(s) ≤ F (a, b2)(s) for all s ∈ I. That is, F (a, b1) ≤ F (a, b2). There-
fore, F (a, b) is monotone nondecreasing in a and monotone nonincreasing in b.

Now, we show that F has a coupled fixed point. Let a ≥ p and q ≥ b. Then,
a(s) ≥ p(s) and q(s) ≥ b(s) for all s ∈ I. From equation (4.2), (4.3) and (4.4), we
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obtain that

|F (a, b)(s)− F (p, q)(s)|
λ

=
|
∫ S
0
f(s, a(t), b(t))dt−

∫ S
0
f(s, p(t), q(t))dt|

λ

=
|
∫ S
0

(f(s, a(t), b(t))− f(s, p(t), q(t)))dt|
λ

≤
∫ S
0
|f(s, a(t), b(t))− f(s, p(t), q(t))|dt

λ

≤ 1

S

∫ S

0

(
|k(a(t)− p(t)) + l(q(t)− b(t))|

λ
)dt

≤ 1

S

∫ S

0

(k
|a(t)− p(t)|

λ
+ l
|b(t)− q(t)|

λ
)dt

≤ 1

S

∫ S

0

(k sup
z∈I

|a(z)− p(z)|
λ

+ l sup
z∈I

|b(z)− q(z)|
λ

)dt

=
1

S
· S · (k sup

z∈I

|a(z)− p(z)|
λ

+ l sup
z∈I

|b(z)− q(z)|
λ

)

= k sup
z∈I

|a(z)− p(z)|
λ

+ l sup
z∈I

|b(z)− q(z)|
λ

for all λ > 0 which implies that

|F (a, b)(s)− F (p, q)(s)|
λ

≤ k sup
z∈I

|a(z)− p(z)|
λ

+ l sup
z∈I

|b(z)− q(z)|
λ

.

Therefore, we obtain that

ωλ(F (a, b), F (p, q)) ≤ kωλ(a, p) + lωλ(b, q)

for a, b, p, q ∈ Xω and all λ > 0. On the other hand, let (α, β) be a coupled lower
and upper solution of the integral equations (4.1), then we get

α(s) ≤ F (α, β)(s) and β(s) ≥ F (β, α)(s)

for all s ∈ I where α, β ∈ I. Then,

α ≤ F (α, β) and β ≥ F (β, α).

We obtain that Theorem (3.3) is satisfied. Therefore, from Theorem (3.3), we get
a unique solution (a, b) ∈ Xω ×Xω of integral equations (4.1). �
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Abstract

The minimum order and extremal graph of a connected m−Kn−residual graph were first proposed
by Erdös, Harary and Klawe, in addition to two important conjectures related to the graph. They
addressed said conjectures solely from the perspective of Kn−residual graphs, and did not study
the m − Kn−residual graphs m > 1. In this study, we found that with n > 2m + 2, the minimum
order of connected m−Kn−residual graph was (m + n)(m + 1) and the unique extremal graph was
Km+n ×Km+1. This conclusion agreed with the conjectures proposed by Erdös, Harary and Klawe.
Moreover, with n = 2m + 2, we identified at least two non isomorphic m − Kn−residual graphs;
this did not correspond with the conjecture. The m − Kn−residual graph was determined only by
m,n and the maximum connected branch r. The relationship among m,n and r was similar to that
among the parameters of Hill cryptosystem implementation steps. According to these observations
and principle knowledge regarding Hill cryptosystem implementation, the novel binary cryptosystem
related m−Kn−residual graphs was established. We also built a Hill password encryption algorithm
that ensures the binary cryptosystem is effective. The complexity of the minimum order and extremal
graphs of connected m−Kn−residual graphs make the ciphertext, plaintext, and relationship between
the keys highly complex and give the binary cryptosystem favorable performance.

Keywords: Residual graph; Minimum order; Extremal graph; Isomorphic.

1 Introduction

The residual graph, which represents an important branch of graph theory, was first proposed by
Erdös, Harary and Klawe[1], and has since been widely applied throughout information science, network-
ing, computer science, and other fields[2-7]. By definition, a residual graph is built by removing points
in the closed neighborhood N(u) that are isomorphic with the original graph; each removed point the
closed neighborhood N(u) in the graph has the same nature as its counterpart the original graph. For
example, K3 is a highly stable triangle that retains its original shape but with even higher stability after
the adjacent edges and vertices of m −K3−residual graph are removed for m times. In cryptology, an
important component of information security[8-9], known information is denoted by graphs and kept
in cipher form. Corresponding residual graphs are constructed according to their relevant definitions.
Many residual graphs can be constructed, but it is difficult to select only one as the ciphertext: On-
ly a sufficiently complex(i.e.,unique)representative residual graph can ensure information security. The
complete graph Kn is often utilized in the computer networking and computer aided design fields[10-12],
making it a useful research object in regards to the minimum order and extremal graph of connected
m−Kn−residual graph.

Erdös, Harary and Klawe originally defined this concept[1] and they concluded that as n > 1, n 6= 2,
the minimum order of connected m −Kn−residual graph is 2(n + 1); as n 6= 2, 3, 4, Kn+1 ×K2 is the
unique connected Kn−residual graph with the minimum order. They also proposed the following two
conjectures for connected m−Kn−residual graphs.

Conjecture 1: If n 6= 2, then every connected m −Kn−residual graph has at least min{2n(m +
1), (n+m)(m+ 1)} vertices.

Conjecture 2: If n is large, there is a unique smallest connected m−Kn−residual graph.

∗Corresponding author. Tel:+86-13507164166; E-mail:xpingxiao@163.com (X.P. Xiao).
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It is difficult to study the minimum order and residua graph of connected m−Kn−residual graph. As
shown in Fig.1, for example, we successfully constructed a residual graph with order of 6 from m = 2 and
n = 1, but it was very difficult to prove that the minimum order was 6 or even that the graph as-drawn
was the unique extremal graph.

Fig.1 2 −K1−residual graph.

There has been notable progress towards resolving problems related to the minimum order and ex-
tremal graph of connected m − Kn−residual graphs. Author [13], for example, investigated complete
residual graphs of odd order to find that there is no Kn−residual graph of odd order for any odd n. Au-
thor [14] studied the Kn−residual graph to determine several other important properties and ultimately
obtain the minimum order and extremal graph with n = 2, 3, 4 . Author [15] explored the 2−Kn−residual
graph to find that when n > 5, n 6= 6 , the results are in accordance with the two conjectures listed above.
Other researchers [16] found that when n ≥ 9 , the 3 − Kn−residual graph is also in accordance with
the conjectures. Author [17] examined the nature of a connected residual graph when n = 3, 4. In this
study, we explored a connected m − Kn−residual graph to find that when n > 2m + 2, the minimum
order was (m+n)(m+ 1) and the unique extremal graph was Km+n×Km+1. This also agreed well with
the conjectures described above. In addition, when n = 2m + 2, there were two isomorphic connected
m−Kn−residual graphs as least−this does not align with the conjectures.

Recent years have seen rapid advancements in modern cryptography [18-23]. Information security has
become especially important with the advent of the internet. Protecting information via secure, efficient
cryptosystems is a popular research subject, to this effect. Hill cryptosystems [23-24] are widely used
in encryption and digital signature applications, but do contain loopholes. Researchers are still looking
for a more effective cryptosystem. At present, the relationship between graph theory and cryptography
is understood primarily as a relationship between the block cipher and DNA algorithm components of
graph theory [25-27]. In other words, graph theory is an important theoretical basis for cryptography.

Again, there are some loopholes in the security of the traditional Hill cryptosystem [28-30]. Despite
notable achievements in improving cryptosystem security, there is much room for further improvement.
In this paper, plaintext is denoted by m,n, and the maximum connected branch r. The parameters of the
Hill cryptosystem and minimum order and extremal graph of the connected residual graph were carefully
assessed, and a novel Hill password encryption algorithm was established. The binary cryptosystem
was found to be secure due to the complexity of the minimum order and extremal graphs of connected
m−Kn−residual graphs, which makes the ciphertext, plaintext, and relationship between the keys highly
complex. The security of this binary cryptosystem was also found to be adjustable.

The remainder of this paper is organized as follows. Section 2 provides some background information
on the residual graph concept, and Section 3 introduces the minimum order and extremal graph of
the connected m−Kn−residual graph. In Section 4, the binary cipher is proposed according to several
parameters of the connected m−Kn−residual graph and the security of the resulting system is discussed.
Section 5 concludes the paper.

2 Preliminaries

The following concepts and results for solving the m−Kn−residual graphs.

Definition 2.1 V (G) is the number of vertices in a graph G, N(u) is the closed neighborhood of vertex
u ∈ V (G), and N∗(u) are the original neighborhood and closed neighborhood of u in G.

Definition 2.2 For u ∈ V (G), define Gu = G − N [u]. For convenience, we use notation 〈S〉 to mean
G[S](the subgraph induced by S in G).
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Definition 2.3 Let F ⊂ G, then the degree of F in G is the cardinality of its boundary dG(F ) =∑
dG(x)− dF (x), x ∈ F .

Definition 2.4 A graph G is said to be a F−residual graph if for every vertex v in G, the graph obtained
from G by removing the closed neighborhood of v is isomorphic to F. We inductively define a multiply
−F−residual graph by saying that G is an m−F−residual graph if the removal of the closed neighborhood
of any vertex of G results in a (m − 1) − F−residual graph, where of course a 1 − F−residual graph is
simply said to be a F−residual graph.

Definition 2.5 Let X,Y ⊂ V (G), X is said to be adjacent to Y , and viceversa, if there exist x ∈ X and
y ∈ Y , then xy ∈ E(G). If xy ∈ E(G) for all x ∈ X and y ∈ Y , then X is said to be complete adjacent to
Y , and viceversa, for example, X and Y are said to be nonadjacent if there are no edges between them.

Definition 2.6 Let G1 and G2 are two disjoint graphs the join, G = G1+G2, of G1 and G2 is defined as
follows V (G) = V (G1)∪ V (G2) two vertex u and v are adjacent to each other, if and only if, u ∈ V (G1)
and v ∈ V (G2), or uv ∈ E(G1) or uv ∈ E(G2).

The known supporting results are summarized in the following Lemma.

Lemma 2.1 [1] If G is a connected F-residual graph, then for any vertex u in G, the degree d(u) =
ν(G)− ν(F )− 1.

Lemma 2.2 [17] If G = G1 +G2, then G is m− F−residual graph, if and only if, both G1 and G2 are
m− F−residual graphs.

Lemma 2.3 [15] If G is a 2 −Kn−residual graph, when ν(G) = 3n + t, 1 ≤ 2n, then it hasn’t u ∈ G,
which makes d(u) = n+ t− 1, when n ≥ 5, n 6= 6, then ν(G) = 3n+ 6, G ∼= Kn+2 ×K3.

Lemma 2.4 [16] If G is a 3−Kn−residual graph, when n ≥ 11, then ν(G) = 4n+ 12, G ∼= Kn+3×K4.

Lemma 2.5 [17] Assume G is an mKn−residual graph, G 6= (m+ 1)Kn, then ν(G) ≥ 2(m+ 1)n, and
Km+1,m+1[Kn] is the unique extremal graphs.

3 On connected m−Kn−residual graphs
In order to obtain the minimum order and extremal graph of the connected m−Kn−residual graph,

we need the following Lemma.

Lemma 3.1 Assume G is an m −Kn−residual graph, m ≥ 2, u ∈ G, and F ⊂ G, F is the maximum
connected subgraph, and F is a r −Kn−residual graph, (0 ≤ r ≤ m − 2), if ν(G) < ν(F ) + 2(m − r)n,
then there certainly a v ∈ Gu, which makes Gv = G−N [v] connected.

Proof. In the following, by reductio absurdum, we suppose there don’t exist vertexes v ∈ Gu, which
make Gv = G − N [v] connected, then we need to prove ν(G) ≥ ν(F1) + 2(m − r)n. Set H = {F |F ⊂
Gv, v ∈ Gu, u ∈ F}. Let F1 ∈ H, ν(F1) = max{ν(F )|F ∈ H}, and Gv = F1 ∪ G1, then F1 is a
r −Kn−residual graph. When r = 0, F1

∼= Kn, then G1 is an (m− r − 2)−Kn−residual graph.
For every w ∈ (G−N(F1)) ⊂ Gu, let Gw = F2 ∪G2, where F1 ⊂ Gw, hence F1 ⊂ F2, because F1 is

the biggest connected components, then F2 = F1, Gw = F1 ∪ G2, N(F ) ∩ G2 = ∅, G2 ⊂ [G − N(F1)],
G2 is an (m − r − 2) −Kn−residual graph too, G −N(F1) is a (m − r − 1) −Kn−residual graph, and
ν(G−N(F1)) ≥ (m− r)n.

Let N(F1)−F1 = X, then G−N(F1) is complete adjacent to X, in the following, we have discussed
F1 according to three conditions.

Case 1. F1 is complete adjacent to X, then

G = 〈N(F1) ∪ (G−N(F1))〉 = 〈X ∪ F1 ∪ (G−N(F1))〉
= 〈X〉+ 〈F1 ∪ (G−N(F1))〉 = 〈X〉+ 〈G−X〉,

because |X| ≥ (m+ 1)n, then

ν(G) ≥ (m+ 1)n+ ν(F1) + (m− r)n ≥ ν(F1) + 2(m− r)n.

3
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Case 2. F1 is a (r+ 1) independent, let {u0, u1, · · · , ur} ⊂ F1, let X−N(u0, u1, · · · , ur ) = X1, then
X1 6= ∅, hence we have

G
′

= G−N(u0, u1, · · · , ur) = 〈X〉+ 〈G−N(F1)〉,

by Lemma 2.2, then G
′

is a (m − r − 1) −Kn−residual graph, and |X1| ≥ (m − r)n, according to the
proving in Case 1, we know that ν(G) ≥ ν(F1) + 2(m− r)n.

Case 3. There is a l independent set and l < r+1. Set u1, u2, · · · , ul} ⊂ F1, let X−N(u1,u2, · · · , ul) =
X2, then X2 6= ∅. Let

G
′′

= G−N(u1, u2, · · · , ul) = 〈X1〉+ 〈G′′ ∪ (G−N(F1))〉,

because|X| ≥ |X2| ≥ (m − l + 1)n > (m − r)n, according to the proving in Case 1, we know that
ν(G) ≥ ν(F1) + 2(m− r)n.

From the proves above, we know that if ν(G) < ν(F )+2(m−r)n, then there certainly exist a vertices
v ∈ Gu, which makes Gv = G−N [v] connected.

Theorem 3.1 Assume G is an m−Kn−residual graph, m ≥ 2, if δ(G) = n, then ν(G) ≥ (m+3)n+m−1,
and the Fig.3 is the only extremal graph.

Proof. We take induction to m, let G1 be a 2 − Kn−residual graph, if exist w ∈ G1u, which makes
Gw = G1 − N(w) connected, then dG1

(w) = n + t − 2, d(w) = n + t − 1, Gw = H1 ∪ H2
∼= 2Kn and

u ∈ H1
∼= Kn, i = 1, 2. By Lemma 3.1,

ν(G1) ≥ δ(G) + ν(Gw) + 1 ≥ n+ 4n+ 1 = 5n+ 1,

Gw is aKn−residual graph, when ν(G1) = 5n+1, we can specify the Fig.1 is the minimum 2−Kn−residual
graph.

Suppose that Theorem is true for m ≥ 2, and assume G is an (m + 1) − Kn−residual graph, and
δ(G) = n, let u ∈ G, d(u) = n, and assume ν(G) ≤ (m+ 4)n+m. In the following, we prove that it must
exist a vertex v ∈ Gu with the case of the above assumptions, which makes Gv connected. By contrary,
by Lemma 3.1, we have ν(G) ≥ ν(F ) + 2(m− r + 1)n, and F is a connected r −Kn−residual graph, if
F ∼= Kn. We have

ν(G) ≥ n+ 2(m+ 1)n = (m+ 4)n+ (m− 1)n

= (m+ 4)n+m+ (m− 1)n− 1)− 1 > (m+ 4)n+m,
this is a contradiction. Since u ∈ F , d(w) = n, we have r 6= 1. If r ≥ 2, by induction hypothesis of F is
a connected r −Kn−residual graph with δ(F ) = n, hence ν(F ) ≥ (r + 3)n+ r − 1 and

ν(G) ≥ (r + 3)n+ r − 1 + 2(m+ 1− r)n
= (m+ 4)n+ (m+ 1− r)n+ r − 1

> (m+ 4)n+m,
which contradicts that ν(G) ≤ (m+4)n+m. So we have there must be a vertex v ∈ Gu, which makes Gv

connected. Let u ∈ Gv, then n ≤ δ(Gv) ≤ dGv
(u) ≤ d(u) = n, so we have δ(Gv) = n, and by induction

hypothesis, we have ν(Gu) ≤ (m+ 3)n+m− 1, and by Lemma 2.1,

ν(G) = ν(Gu) + d(v) + 1

≥ (m+ 3)n+m− 1 + n+ 1

= (m+ 4)n+m.
So we have ν(G) = (m + 4)n + m, and ν(G) < (m + 4)n + m is not true, then ν(G) ≥ (m + 4)n + m.
When ν(G) = (m+4)n+m, we can construct (m−1)−Kn−residual graph and m−Kn−residual graph,
the Fig.2 is the minimum (m− 1)−Kn−residual graph, and the Fig.3 is the minimum m−Kn−residual
graph.

In the following, we have proved the Fig.3 is the only extremal graph. Let v ∈ Gu, Gv = X1 ∪X2 ∪
Y1∪Y2∪Vj , j = 3, 4, · · · ,m+1, Xi

∼= Yi, i = 1, 2, Vj ∼= Kn+1. Let Vj = {xj , yj}∪Cj , j = 3, 4, · · · ,m+1,
and let X = X1∪X2∪{x3, x4, · · · , xm+1}, Y = Y1∪Y2∪{y3, y4, · · · , ym+1}, then X is complete adjacent
to Y . Suppose u ∈ C3, Gu is the Fig.2, we have G = 〈N(v) ∪ Gv〉, Gu = 〈(Gv − N(u)) ∪ N(v)〉 =
〈((Gu) − V3) ∪ Vm+2〉, where Vm+2 = N(u) = {xm+2, ym+2} ⊂ Cm+2, xm+2 is complete adjacent to
Y −{y3}, ym+2 is complete adjacent to X−{x3}, hence we have let X∗ = X∪{xm+2}, Y ∗ = Y ∪{ym+2},
then X∗ is complete adjacent to Y ∗, so that the Fig.3 of G is the only extremal graph. 2
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Fig.1 2 −Kn−residual graph with order 5n + 1

Fig.2 (m− 1) −Kn-residual graph with order (m + 2)n + m− 2

Fig.3 m−Kn-residual graph with order (m + 3)n + m− 1

On the basis of the conclusion from literature [15] and the definition of m−Kn−residual graph, we
have

Theorem 3.2 Let G be a connected m−Kn−residual graph, ν(G) = (m+ 1)n+ t, 1 ≤ t ≤ 2n, m > 2,
n > 4, then G has no vertex of degree n+ t− 1.

Proof. We take induction to m, when m = 2, by Lemma 2.3, G has no vertex of degree n + t − 1.
When m = 3, G is a connected 3 − Kn−residual graph ν(G) = 4n + t, 1 ≤ t ≤ 2n. Supposing there
exist such vertices like u ∈ G, which make d(u) = n + t − 1 and Gu = H1 ∪ H2 ∪ H3 = 3Kn, because
ν(G) = 4n + t, 1 ≤ t ≤ 2n, then ν(G) ≤ 6n ≤ 6n + 2. By Lemma 3.1, there exists at least v ∈ Gu, and
we might as well suppose v ∈ H3, which makes Gv connected, then Gv −N(u) = H1 ∪H2

∼= 2Kn, and
by Lemma 2.1, ν(Gv) = ν(G) − d(v) − 1, let d(v) = n − r, ν(Gv) = 4n + t − n − r − 1 = 3n + t1, let
t1 = n − r − 1, ν(Gv) = 3n + t1, 1 ≤ t1 ≤ 2n, because Gv is 2 −Kn−residual graph, it is contradictory
to the conclusion of literature [15] that there are no vertexes makes d(u) = n+ t− 1.

We suppose let G be a connected m − Kn−residual graph, and there doesn’t exist such vertices
like u ∈ G, which make d(u) = n + t − 1. For G be a connected (m + 1) − Kn−residual graph,
ν(G) = (m + 2)n + t, 1 ≤ t ≤ 2n, m > 2, n > 4. Supposing there exists u ∈ G, which makes
d(u) = n+ t−1, then Gu = H1∪H2∪· · ·∪Hm+1 = (m+ 1)Kn, because ν(G) = (m+ 2)n+ t,1 ≤ t ≤ 2n,
then

ν(G) ≤ (m+ 2)n+ 2n= mn+ 4n

< mn+ 4n+m= (m+ 4)n+m,
by Lemma 2.3 and Lemma 3.1, there exists v ∈ Gu, let v ∈ Hm+1, which makes Gv is connected then

5
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Gv −N(u) = H1 ∪H2 ∪ · · · ∪Hm
∼= mKn,

and by Lemma2.1, ν(Gv) = ν(G)−d(v)−1, let d(v) = n−r, ν(Gv) = (m+2)n+t−n−r−1 = (m+1)n+t1,
t1 = n − r − 1 , it is contradictory to the induction and assumption that Gv is an m − Kn−residual
graph, then there don’t exist vertices, which make d(u) = n+ t− 1, u ∈ G.2

Theorem 3.3 There are at least two non isomorphic minimum m−Kn1
−residual graph, One is Km+n1

×
Km+1, and the other is Gm[Kn1

2
], where Gm

∼= m−K2−residual graph, n1 = 2m+ 2, and this example

doesn’t meet the conclusion Erdös and Harary and Klawe made in [1].

Proof. Let G ∼= Km+n1
× Km+1, ν(G) = (m + n1)(m + 1), and Gm

∼= m − K2−residual graph, by
literature [1], ν(Gm) ≥ 3m + 2, ν(Gm[Kn1

2
]) = n1

2 (3m + 2), and n1 = 2m + 2, so when n = n1, it
doesn’t meet the conclusion Erdös and Harary and Klawe made that only one Km+n1

× Km+1 is an
m−Kn1−residual graph. 2

Theorem 3.4 Let G be a connected m − Kn−residual graph, if n > 2m + 2, m ≥ 3, then ν(G) ≥
(m+n)(m+ 1), and when ν(G) = (m+n)(m+ 1), G ∼= Km+n×Km+1 is a connected m−Kn−residual
graph of minimum order, it is only such graph, so we show that the conjectures are true, when n > 2m+2.

Proof. At first, we prove ν(G) ≥ (m+ n)(m+ 1) and construct m−Kn−residual graph, and show the
conjecture [1] is true.

Let G1 be 2−Kn−residual graph, when n > 6, by Lemma 2.3, G1
∼= Kn+2×K3, and G1 is the Fig.4,

all points in the same square are mutually adjacent, and two vertices, which are joined by a line, are
adjacent. Let u ∈ G, we have Gu is (m− 1)−Kn−residual graph, suppose ν(Gu) = (m+ n− 1)m, and
Gu
∼= Km+n−1 ×Km. Let

Gu = 〈H1 ∪H2 · · · ∪Hm〉 = {xjr|
j=1,2,··· ,n+m−1
r=1,2,··· ,m }, (3.1)

where Hr = 〈x1r, x2r, · · · , xn+m−1
r 〉, and if i = j, then xil is adjacent to xjk, if i 6= j, xil is nonadjacent to

xjm, l 6= k, k, l = 1, 2, · · · ,m, adjacent to the Fig.5, all points in the same square are mutually adjacent,
and two vertices, which are joined by a line, are adjacent. According to the induction and assumption
that ν(Gu) ≥ (m + n − 1)m. When Gu is disconnected, by Lemma 2.5, let Gu = (m − 1)nKn, and
ν(Gu) ≥ 2(m− 1)n. Because n ≥ 2m+ 2,m ≥ 3, then ν(Gu) ≥ 2(m− 1)n > (m+n− 1)m, by definition
of residual graph, if and only if, when Gu is connected, ν(G) is minimum. According to the Fig.5, we
can construct m−Kn−residual graph in the Fig.6, when ν(G) = (m+ n)(m+ 1). The Fig.6, all points
in the same square are mutually adjacent, and two vertices, which are joined by a line, are adjacent. By
Gu is connected and Lemma 2.1, ν(G) = ν(Gu) + d(v) + 1, according to the induction and assumption
that ν(Gu) ≥ (m+ n− 1)m, and by the Fig.6, d(u) ≥ n+ 2m− 1, and by Lemma 2.1, hence

ν(G) = ν(Gu) + d(v) + 1

≥ (m+ n− 1)m+ n+ 2m− 1 + 1

= (m+ n)(m+ 1).
In the following, exist a vertex u ∈ G, which makes Gu connected. Because ν(G) = (m+ n)(m+ 1),

by Lemma 3.1, when F is r −Kn−residual graph, 0 ≤ r ≤ (m − 2), ν(G) = ν(F ) + 2(m − r)n. In the
following, we prove ν(G) = ν(F ) + 2(m− r)n ≥ (m+n)(m+ 1), when F ∼= Kn, and n > 2m+ 2, we have
ν(G) ≥ n+ 2mn > (m+ n)(m+ 1), if r ≥ 1 by induction hypothesis F is a connected r −Kn−residual
graph. So ν(F ) ≥ (r + n)(r + 1), and

ν(G) = ν(F ) + 2(m− r)n= (r + n)(r + 1) + 2(m− r)n,

because of (r + n)(r + 1) + 2(m− r)n− (m+ n)(m+ 1)> (m− r)2 +m− r > 0, then

ν(G) = ν(F ) + 2(m− r)n
= (r + n)(r + 1) + 2(m− r)n
> (m+ n)(m+ 1).

So it must exist a vertex u ∈ G, which makes Gu connected.
From the proves above, we know ν(G) ≥ (m + n)(m + 1), when n > 2m + 2, because 2n(m + 1) >

(m+ n)(m+ 1), so we show the conjecture [1] is true.
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Fig.4 2 −Kn−residual graph with minimum order 3n + 6

Fig.5 (m− 1) −Kn−residual graph with minimum order (m + n− 1)m

Fig.6 m−Kn−residual graph with minimum order (m + n)(m + 1)

In the following, we prove uniqueness, we have a discussion according to five conditions, so we show
that the conjecture [2] is true.

Fact 1. Let

F = H1 ∪H2 ∪ · · · ∪Hm
∼= Km+n−1 ×Km,

where Hi
∼= Kn+m−1, i = 1, 2, · · · ,m, then Hi and Hj have bijection

θ : V (Hi)→ V (Hj), i, j = 1, 2, · · · ,m,

and ui ∈ Hi is adjacent to θ(ui) ∈ Hj , where i 6= j, i, j = 1, 2, · · · ,m. If H ⊂ F , and H ⊂ Ks,
3 ≤ s ≤ n+m− 1, then H ⊂ Hw, 1 ≤ w ≤ n.

Fact 2. Let u ∈ G, ν(Gu) = (m+ n− 1)(m− 1), hence Gu
∼= Km+n−1 ×Km. Adjacent to (3.1), let

7
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G2 = G−N [xn+m−1
2 ] = 〈H∗

0 ∪H∗
1 ∪H∗

3 ∪ · · · ∪H∗
m〉 ∼= Km+n−1 ×Km,

we have
Km+n−2

∼= H1 − xn+m−1
1 = 〈x11, x21, · · · , xn+m−2

1 〉 ⊂ G2

by Fact 1, without loss of generality, we may assume that

〈x11, x11, · · · , xn+m−2
1 〉 ⊂ H∗

1 = 〈x00, x11, · · · , xn+m−2
1 〉

〈x12, x22, · · · , xn+m−2
2 〉 ⊂ H∗

2 = 〈x02, x12, · · · , xn+m−2
2 〉

· · · · · ·
〈x1m, x2m, · · · , xn+m−2

m 〉 ⊂ H∗
m = 〈x0m, x1m, · · · , xn+m−2

m 〉 (3.2)
If xj0 is adjacent to xj1, where j = 0, 1, · · · , n+m− 1. Obvious x00 = u, then H∗

0 = 〈x00, x10, · · · , xn+m−2
0 〉.

We now prove x01 is adjacent to xn+m−1
1 . Suppose the contrary, let G3 = G −N [xn+m−1

1 ], x01 ∈ G3,
by (3.1), (3.2), we have x01 is adjacent to {x11, x21, · · · , xn+m−1

1 } ⊂ N [xn+m−1
1 ]. Thus

d(x01) ≥ dG3
(x01) + n+m− 2

= n+m− 1 + n+m− 2

> n+m− 1−m = n+ 2m− 1.
So x01 is adjacent to xn+m−1

1 , x01 is adjacent to H1. Set

H1 = 〈x01, x11, · · · , xn+m−1
1 〉 ∼= Km+n.

Similarly, x0w is adjacent to Hw, set

Hw = 〈x0w, x1w, · · · , xn+m−1
w 〉 ∼= Km+n, w = 1, 2, · · · ,m.

Similarly, in
G−N∗[xn+m−1

2 ] = 〈H∗
0 ∪H∗

1 ∪H∗
3 ∪ · · · ∪H∗

m〉,

we have xn+m−1
0 ∈ N∗[xn+m−1

2 ] = 〈H∗
0 ∪H∗

1 ∪H∗
3 ∪ · · · ∪H∗

m〉 complete adjacent to H∗
0 . Obvious,

xn+m−1
0 ∈ (H2 ∪ xn+m−1

1 ∪ xn+m−1
3 ∪ · · · ∪ xn+m−1

m ) ⊂ N∗[xn+m−1
2 ],

hence H0 = 〈x00, x10, · · · , xn+m−1
0 〉 ∼= Km+n.

Fact 3. Any vertex in Hr is adjacent to single vertex in Hs, r 6= s. Suppose the contrary, let xj0 ∈ H0

be nonadjacent to Hm, then

G∗ = G−N [xj0] ∼= Kn+m−1 ×Km,

but Hm
∼= Km+n, H∗

m ⊂ G∗, contrary to G∗ ∼= Kn+m−1 ×Km, hence xj0 is adjacent to Hm. If Hm has

two vertices adjacent to xj0, by

dH0(xj0) = n+m+m− 1 = n+ 2m− 1,

d(xj0) = n+m+m+ 1 = n+ 2m+ 1,

we have this xj0 is nonadjacent to one of Hw, which is a contradiction. Similarly, xji−1 is adjacent to
Hi, i = 1, 2, · · · ,m, and is adjacent to only one vertex in Hi.

Fact 4. By Fact 3, we have x01 adjacent to H2. If x01 is adjacent to xj2, j 6= 0, by xj2, j 6= 0 is adjacent

to xj1, thus H1 has two vertices adjacent to xj2, j 6= 0, contrary to Fact 3, so x01 adjacent to x02. Similar,
so x0i adjacent to x0j , and xn+m−1

i adjacent to xn+m−1
0 , i = 1, 2, · · · ,m.

Fact 5. Since xj0 is adjacent to xjm for j = 0, n+m−1, let xj0 be nonadjacent to xjm for j 6= 0, n+m−1,

by Fact 3, we have xj0 is adjacent to xim, i 6= j. Since xjl is adjacent to xjk, l 6= k, l, k = 1, 2, · · · ,m, set

G−N [xj0] = 〈(H1 − xj1) ∪ (H2 − xj2) ∪ · · · ∪ (Hm − xjm)〉 ∼= Kn+m−1 ×Km (3.3)

By Fact 4, we have xt1 adjacent to xtm, t 6= i, j, by (3.3), we have xi1 adjacent to xjm, contrary (3.1), hence
xj0 is adjacent to xjm. Similarly, xj0 is adjacent to xjm.

Hence

G = 〈X〉 = 〈xjr|
j=0,1,2,··· ,n+m−1
r=0,1,2,··· ,m 〉,

where xir is adjacent to xjs, if and only if r = s,i 6= j, or i = j, r 6= s, thus G ∼= Km+n ×Km+1.2
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4 Binary cryptosystem of connected m−Kn−residual graphs
The implementation principle and steps of the traditional Hill cryptosystem were followed to establish

the novel, binary cryptosystem proposed here. The Hill cryptosystem is a symmetrical cipher that is
effectively resistant to frequency analysis that was first proposed by Prof. Lester S. Hill in 1929. It is
implemented in the following steps.

(1) The digitization of plaintext M = [m1,m2, · · · ,mk] (41 characters, including 26 letters, the
figures from 0 to 9 and punctuation corresponded to the figures from 0 to 40, respectively), with t
components taken as a row vector (if the amount could not reach t in the last row, the space is required
for supplementation.) that constitute a nt matrix, written as M .

(2) Matrix A of t · t is constructed in Z41 where gcd(det(A), 41) = 1 is required as the encryption key.
(3) Encryption operation C = E(M) ≡MA(mod41) is carried out to obtain the ciphertext.
(4) Decryption operation M = D(C) ≡ CA−1(mod41) is carried out to recover the plaintext.
It is difficult for the Hill cryptosystem to withstand a plaintext attack. After attackers intercept the

ciphertext C, they are able to guess certain words used in the plaintext to attempt to ascertain the key
K, then can calculate MK to determine whether ciphertext C can be generated. A large amount of
information is stored in a computer system in a form of figure and transmitted through a public signal
channel. Unfortunately, these computer systems and signal channels are very susceptible to attack in
an open environment. The complexities of the minimum order and extremal graph of the connected
m−Kn−residual graph can be used to denote the plaintext with different Kn, thus forming the proposed
binary cryptosystem of the connected m−Kn−residual graph. The corresponding encryption algorithm
is as follows.

(1) Each character in plaintext M is translated into the corresponding figure ni; 41 characters, (26
letters, figures from 0 to 9, and punctuation corresponded to the figures from 0 to 40, respectively, where
ni ∈ Z41 .)

(2)For encryption operation, each figure ni corresponds to a Kni . The sequence [m1,m2, · · · , mk]
represents the multiples, where mk ∈ Z. Finally, the largest connected branch r can be identified and
assigned to an extremal graph, i.e., the ciphertextC.

(3) For decryption operation, each ciphertext C equals an extremal graph and the complete graph Knj

is determined according to the multiple sequences [m1,m2, · · · ,mk] and the largest connected branch r.
The corresponding nj can also be identified, nj ∈ Z41(i.e., j(j = 1, 2, · · · , 41)); the resulting graph is the
plaintext M .

These implementation steps are depicted in Fig. 8.
The binary cryptosystem of the connected m − Kn−residual graph makes full use of all available

complexity in constructing the minimum order and extremal graph of the connected m −Kn−residual
graph, which ensures optimal binary cryptosystem security. Even if attackers intercept the ciphertext C
and knew that the minimum order and extremal graph of the connected m −Kn−residual graph have
been used for encryption, they are unable to solve the decryption operation and thus cannot obtain the
plaintext.

5 Conclusions

(1) The minimum order and extremal graphs of connected m − Kn−residual graphs form an open
question put forward by Erdös, Harary, and Klawe which was addressed in this study.

(2) It is difficult to determine the minimum order and extremal graphs of connected m−Kn−residual
graphs.

(3) We confirmed that the m and n values identified are in accordance with the conjectures of Erdös,
Harary, and Klawe; namely, that the minimum order and extremal graphs of connected m−Kn−residual
graphs do exist. This had important practical significance for establishing the proposed binary cryp-
tosystem.

(4) A new binary password system comprised of an image-encryption-based password system and
encryption algorithm was proposed here. This system represents an enhanced relationship between
graph theory and cryptography.

(5) According to the complexity of the minimum order and extremal graph of the connected m −
Kn−residual graph, the ciphertext, plaintext, and relationship between the keys is highly complex and the
binary cryptosystem performs well. The security of the binary cryptosystem can be effectively adjusted
according to these factors.
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Fig.8 Encryption and decryption operation
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Abstract
The question that raised after the recent introduction of the derivative with no singular ker-
nel was: Does this non-singularity have a comprehensive impact on real life phenom-
ena like wave motion or other related motions? We comprehensively analyze the Harry
Dym model generalized with two types of derivatives, namely a derivative with singular
kernel, the Caputo derivative and the other one without singular kernel called the Caputo-
Fabrizio derivative. Using Picard L-stability combined with the fixed-point theorem, the
well-posedness of both models are proved together with their existence and uniqueness
results existence. Techniques to approximate numerical solutions are provided for each of
the two models with graphical representations performed and compared for several values
given to the derivative order α. Similar behaviors are noticed for soliton waves related to
close values of α and are compared to the soliton wave of the standard first order (α = 1)
Harry Dym model.

Keywords: Harry Dym equation; existence, uniqueness, derivative with and without singu-
lar kernel, approximated solutions

AMS Mathematics Subject Classification: 35F10, 26A33, 35D05.

1. Introduction

It is well known that one of the most popularly used derivative with fractional order is the one
introduced in 1967 by Michele Caputo and called the Caputo derivative [1] given by

cDα
t r(x, t) =

1
Γ(1−α)

∫ t

0
(t− τ)−α d

dτ
r (x,τ)dτ, (1.1)

0 < α ≤ 1, with its associated anti-derivative well known to be defined by

I−α

0 r(x, t) =
1

Γ(α)

∫ t

0

r (x,τ)

(t− τ)1−α
dτ. (1.2)

However in April 2015, Caputo and Fabrizio [5] observed that the Caputo fractional derivative is
unable to properly described some features related to some behavior happening in the fields of clas-
sical thermal media, classical viscoelastic materials or electromagnetic. Hence they proposed a new
definition, the fractional derivative with no singular kernel in order to address the noticed unsolved
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issues. The new version called the Caputo-Fabrizio derivative differentiate from the Caputo deriva-
tive by having no singular kernel in the integral part. It reads as

c f Dα
t r(x, t) =

(2−α)M(α)

2(1−α)

∫ t

0

d
dτ

r (x,τ) exp
(
−α(t− τ)

1−α

)
dτ. (1.3)

0 < α ≤ 1, where M(α) is a normalization function such that M(0) = M(1) = 1. Its associated
fractional integral (anti-derivative) is given by [8]:

c f Iα
t r(x, t) =

2(1−α)

(2−α)M(α)
r(x, t)+

2α

(2−α)M(α)

∫ t

0
r (x,τ)dτ, (1.4)

α ∈ [0,1] t ≥ 0. This expression shows the integral as a sort of average between the function r and its
integral. Since then, many authors have improved the concepts. Starting with Losada and Nieto [8]
who developed the associated fractional integral (1.3) and Doungmo Goufo [11] or Doungmo Goufo
and Atangana [12] who proposed the related Riemann-Liouville version.

Nevertheless, the literature is full of several other definitions of fractional derivative. General
formulation is done in [9] and many useful properties are intensively analyzed in [1–3, 10], espe-
cially in the analysis of the spread of diseases [14–17]. The main goal of this work is to apply
both Caputo and Caputo-Fabrizio derivatives to the same Harry Dym equation and see their impact
on the output behavior of the solutions. In other words, does the non-singularity have a significant
influence on a real life process like wave motion or other motion? Recall that unlike Caputo deriva-
tive, there is no singularity at t = τ for Caputo-Fabrizio derivative and the following equality for
Caputo-Fabrizio fractional derivative is satisfied:

lim
α→1

c f Dα
t r(x, t) =

∂

∂ t
r (x, t) (1.5)

and

lim
α→0

c f Dα
t r(x, t) = r (x, t)− r(x,0). (1.6)

This paper investigates the non-linear third-order Harry Dym differential equation within the scope
of the two types of derivatives mentioned above. Note that the traditional Harry Dym model can be
solved using the Lax operator [18–20] and is associated with the Sturm-Liouville operator.

2. Solvability with Caputo fractional derivative

Let Ω=(a,b), R3 T > 0 R3 b> a∈R and r∈C0 [Ω× [0,T ]] . Let α ∈ [0;1],β ∈ (0,+∞) then, the
non-linear Dym equation expressed with the Caputo time fractional derivative is investigated in this
section. Existence and uniqueness of the exact solution are shown for the model under investigation
that reads as

CDα
t r(x, t) = r3rxxx(x, t), (2.1)

subject to the initial condition

r(x,0) = g(x) (2.2)

with CDα
t r(x, t) the Caputo derivative as defined in (1.1) and g : Ω 7−→R+. We start by transforming

(2.1) into an integral form by applying the anti-derivative integral (1.2) on both sides to get

2
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r(x, t)− r(x,0) =
1

Γ(α)

∫ t

0
(t− y)α−1(r3rxxx(x, t))dy (2.3)

Let us proceed by simplicity and consider the operator with three variables

Ξ(x, t,r) = r3rxxx(x, t). (2.4)

The next goal is to show that operator Ξ with respect to variable r verifies the Lipschitz condition.
For that,

‖Ξ(x, t,r)−Ξ(x, t,v)‖=
∥∥r3rxxx(x, t)− v3vxxx(x, t)

∥∥
C0[Ω×[0,T ]] (2.5)

Assuming that r and v are bounded functions, there is a positive constants k1 > 0 and k2 > 0 such
that

‖r‖3
C0[Ω×[0,T ]] ≤ k1 and ‖v‖3

C0[Ω×[0,T ]] ≤ k2. (2.6)

Furthermore, using the properties of the norm and the Lipschitz condition for the first order deriva-
tive function ∂x there is a positive constant ϑ such that (2.5) becomes

‖Ξ(x, t,r)−Ξ(x, t,v)‖C0[Ω×[0,T ]] ≤ k1k2ϑ
3 ‖r− v‖C0[Ω×[0,T ]] . (2.7)

Putting

K = k1k2ϑ
3,

we finally get

‖Ξ(x, t,r)−Ξ(x, t,v)‖C0[Ω×[0,T ]] ≤ K ‖r− v‖C0[Ω×[0,T ]] ,

which therefore proves the desired Lipschitz condition. This enables us to evaluate the following
norm

‖r(x, t)‖C0[Ω×[0,T ]] , t ∈ [0,T ].

Assuming the existence and the boundedness of the initial condition g, there is a positive constant
C such that ‖g(x)‖C0[Ω×[0,T ]] ≤C for any x ∈Ω. Whence,

‖r(x, t)‖C0[Ω×[0,T ]] ≤ ‖r(x,0)‖C0[Ω×[0,T ]]+
1

Γ(α)

∫ t
0(t− y)α−1Ξ(x,y,r(x,y))dy

≤ ‖g(x)‖C0[Ω×[0,T ]]+
K

Γ(α)

∫ t
0(t− y)α−1dy

≤C+ KT α

αΓ(α)

, (2.8)

which yields the following propositions:

Proposition 2.1. Assuming that g given in (2.2) is bounded, let 0 < α < 1 and Ξ[x, t,r(x, t)] :
[Ω× [0,T ]]×B −→ A (with A ⊃ B) be a continuous function with respect to t for any fixed x ∈
Ω, r ∈ B. If r(x, t) ∈ C0 [Ω× [0,T ]] , then the function r(x, t) verifies the model (2.1)-(2.2) if and
only if r(x, t) verifies the corresponding Volterra integral equation (2.3).

3
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Proof. To prove the necessity condition we assume that r(x, t) ∈C0 [Ω× [0,T ]] satisfies the equa-
tions (2.1)-(2.2). Because Ξ(x,y,r(x,y) ∈ C [Ω× [0,T ]×B] for any r ∈ B̄ then (2.1) means there
exists the Caputo fractional derivative of r in C [Ω× [0,T ]] . However

C
0 Dα

t r =
∂

∂ t

(
I−α

0

)
[r(x, t)− r(x,0)]. (2.9)

Exploiting

I−α

0 [r(x, t)− r(x,0)] ∈C0 [Ω× [0,T ]]

and applying the results in [13] for γ = 0 to

V (x, t) = r(x, t)− r(x,o),

yields

Iα
0

C
0 Dα

t r(x, t) = Iα
0

C
0 Dα

0 [r(x, t)− r(x,0)]

= r(x, t)− r(x,0)−
1

∑
j=1

ri− j
1−α

(x,0)α− j

Γ(α− j+1)
(2.10)

with r1−α(x, t) = I1−α

0 [r(x, t)− r(x,0)]. Using the integration by parts in (2.10) and differentiating
the resulting expression give

r(1− j)
1−α

(x, t) =
∂

∂ t

(
I2−α

0 [∂tr(x, t)− r(x,0)]
)

(2.11)

Changing of variable t = β +ρ(y−β ) leads to

r(1− j)
1−α

(x, t) =
(y−β )1−α

Γ(1−α)

1∫
0

(1−ρ)−α
(
r1− j[β +ρ(y−β )]

)
. (2.12)

Recalling 0 < α < 1 and r1− j(x, t) ∈C [Ω× [0,T ]] , equation (2.12) and (2.10) take the form

Iα
0

C
0 Dα

t r(x, t) = r(x, t)− r(x,0) (2.13)

Since Iα
0 Ξ(x,τ,r(x,τ)) ∈C0 [Ω× [0,T ]] and using the Lipschitz condition of Ξ, we obtain

‖Iα
0 Ξ(x,τ,r(x,τ)‖C0[Ω×[0,T ]] ≤

KT α

αΓ(α)
.

Nonetheless, applying Iα
0 on both sides of (2.1) and making use of the initial condition we prove the

necessity condition by recovering the Volterra version (2.3).

Conversely for the sufficient condition, assume r(x, t) ∈C [Ω× [0,T ]] verifies the Volterra ver-
sion (2.3) of equations (2.1)-(2.2). It suffices to show that r(x, t) satisfies the initial condition (2.2).

4
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The differentiation of the two sides of the Volterra version yields

∂tr(x, t) =
1

Γ(α−1)

t∫
0

Ξ(x,τ,r(x,τ))(t− τ)αdτ.

Changing again the variable t = β +ρ(y−β ) in the Volterra expression for k = 1, leads to

rk(x, t) =
(y−β )

Γ(α− k)

t∫
0

Ξ(x,β +ρ(y−β ),r(x,β +ρ(y−β )))

(1−β )1−α+k dy

Passing to the limit as y−→ β+ and making use of the continuity of K show that the sought initial
condition is verified, and the sufficient condition is proved.

Proposition 2.2. Considering 0 < α < 1 and the Lipschitz condition for Ξ then, there is a unique
solution for equation (2.3) in the space

C0,α [0,T ]×Ω

Proof. From the above analysis in Theorem 2.1, it is sufficient to show the existence of the unique
solution r(x, t) ∈C0 [Ω× [0,T ]] of the Volterra equation (2.3). Indeed, the model (2.3) holds in any
interval [0,τ]⊆ [0,T ]. Hence, we select the adequate t1 ∈ [0,T ] so that∣∣∣∣ Ktα

1
αΓ(α)

∣∣∣∣< 1

and then, prove the desired existence result of a unique r(x, t) ∈C0 [Ω× [0, t1]] . We can exploit the
technique of successive approximation and set

r0(x, t) = r(x,0)

rn(x, t) = rn−1(x,0)+
1

Γ(α)

t∫
0

Ξ(x,τ,rn−1(x,τ))
(t− τ)1−α

dτ, n ∈ N.
(2.14)

Obviously, r(x,0) ∈C0[0,T ] and the differentiation of (2.14) with respect to t yields

∂trn(x, t) =
1

Γ(α−1)

t∫
0

Ξ(x,τ,rn−1(x,τ))
(t− τ)−α

dτ.

Using the differentiability of r(x,0) with respect to t leads to rn(x, t) ∈C0[0,T ].
The quantity ‖rn(x, t)− rn−1(x, t)‖C0[Ω×[0,t1]] can be evaluated for n ∈ N. Whence,

‖rn(x, t)− rn−1(x, t)‖C0[Ω×[0,t1]] ≤
Ktα

1
αΓ(α)

.

5
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Furthermore,

‖r2(x, t)− r1(x, t)‖C0[Ω×[0,t1]] ≤ ‖I
α
0 Ξ(x,τ,r1(x,τ))−Ξ(x,τ,r0(x,τ))‖C0[Ω×[0,t1]]

≤
tα
1

αΓ(α)
‖r1(x, t)− r0(x, t)‖C0[Ω×[0,t1]]

≤
Ktα

1
αΓ(α)

·
tα
1

αΓ(α)

The above iteration is repeated n-times and yields

‖r2(x, t)− r1(x, t)‖C0[Ω×[0,t1]] ≤
(

Ktα
1

αΓ(α)

)n−1

·
tα
1

αΓ(α)

Hence, the sequence {rn(x, t)}n∈N has r(x, t) ∈ C0 [Ω× [0, t1]] as its limit function. Moreover, the
assumption ∣∣∣∣ tα

1
αΓ(α)

∣∣∣∣< 1

gives lim
n−→∞

‖rn(x, t)− rn−1(x, t)‖C0[Ω×[0,t1]] = 0. However by considering t1 = T, we can estimate

Ξ(x, t,rn(x,τ))−Ξ(x, t,r(x, t)).

Taking into account the Lipschitz condition of Ξ leads to∥∥∥∥∥∥ 1
Γ(α)

t∫
0

Ξ(x,τ,rn(x,τ))
(t− τ)1−α

dτ− 1
Γ(α)

t∫
0

Ξ(x,τ,r(x,τ))
(t− τ)1−α

dτ

∥∥∥∥∥∥
C0[Ω×[0,T ]]

≤
(

Ltα
1

αΓ(α)

)
‖rn(x, t)− r(x, t)‖C0[Ω×[0,t1]]

and

lim
n−→∞

∥∥∥∥∥∥ 1
Γ(α)

t∫
0

Ξ(x,τ,rn(x,τ))
(t− τ)1−α

dτ− 1
Γ(α)

t∫
0

Ξ(x,τ,r(x,τ))
(t− τ)1−α

dτ

∥∥∥∥∥∥
C0[Ω×[0,T ]]

= 0,

which prove that r(x, t) satisfies (2.3) in the space C0 [Ω× [0,T ]].

Uniqueness result

Considering now that there are two separate solutions r1(x, t) and r2(x, t) verifying (2.3) on [0, t1]
then,

‖r1(x, t)− r2(x, t)‖C0[Ω×[0,t1]] ≤
Ktα

1
αΓ(α)

‖r1(x, t)− r2(x, t)‖C0[Ω×[0,t1]].

This gives 1≤ Ktα
1

αΓ(α) which is a contradiction. The solution is unique in C0 [Ω× [0, t1]]
We consider now the closed interval [t1, t2] with t2 = t1+h1 where h1 > 0 and t2 < T. For t ∈ [t1, t2],

6
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we have

r(x, t) =
1

Γ(α)

t∫
t1

Ξ(x,τ,rn(x,τ))
(t− τ)1−α

dτ + r(x,0)+
1

Γ(α)

t1∫
0

Ξ(x,τ,rn(x,τ))
(t− τ)1−α

dτ.

Taking into account the uniqueness result on [0, t1], then

r(x, t) = r∗1(x, t)+
1

Γ(α)

t∫
t1

Ξ(x,τ,rn(x,τ))
(t− τ)1−α

dτ

where r∗1(x, t) = r(x,0)+ 1
Γ(α)

t1∫
0

Ξ(x,τ,rn(x,τ))
(t−τ)1−α dτ is a given function.

we repeat the same analysis presented above and there is an unique solution r(x, t) ∈C0 [Ω× [t1, t2]]
for (2.3). Taking another interval [t2, t3] so that t3 = t2+h2 with h2 > 0 and t3 < T, the same analysis
is performed to finally obtain the existence of an unique solution r(x, t) ∈ C0 [Ω× [0,T ]] of equa-
tion (2.3) and therefore, proves the existence of an unique solution of equation (2.1) in the space
C0,α [Ω× [0,T ]].

Corollary 2.3. Assume Ξ satisfies Theorem 2.1. If the inequality∣∣∣∣ KT α

αΓ(α)

∣∣∣∣≤ 1

holds, then the sequence rn(x, t), (n ∈ N) tends to the exact solution r(x, t). Moreover, we have for
any n ∈ N,

‖r(x, t)− rn(x, t)‖C0[Ω×[0,t1]] ≤
T α

αΓ(α)

Kn

1− T α

αΓ(α)

Proof. The proof is done by the mathematical induction on n.

For

‖r1(x, t)− r0(x, t)‖C0[Ω×[0,t1]] ≤
KT α

αΓ(α)

‖r2(x, t)− r1(x, t)‖C0[Ω×[0,t1]] ≤ K
(

T
αΓ(α)

)2

Thus by induction,

‖rn(x, t)− rn−1(x, t)‖C0[Ω×[0,t1]] ≤
T α

αΓ(α)

(
KT α

αΓ(α)

)n−1

7
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but,

‖r(x, t)− rn(x, t)‖C0[Ω×[0,t1]] = lim
j−→∞

‖rn+ j(x, t)− rn(x, t)‖C0[Ω×[0,t1]]

= ‖rn+1(x, t)− rn(x, t)‖C0[Ω×[0,t1]]+‖rn+2(x, t)− rn+1(x, t)‖C0[Ω×[0,t1]]+ · · ·

≤ Kn
(

T α

αΓ(α)

)n+1

+Kn+1
(

T α

αΓ(α)

)n+2

+ · · ·

= Kn
(

T α

αΓ(α)

)n+1
[

∞

∑
k=0

(
KT α

αΓ(α)

)k
] (2.15)

and the corollary is proved.

This implies the following existence and uniqueness results for our model (2.1)-(2.2):

Corollary 2.4. The function r(x, t) is the strong solution of the sequence rn(x, t) given by (2.14).

Proof. This result is an immediate consequence of Propositions 2.2 and 2.1

3. Analyzis with Caputo-Fabrizio fractional derivative

3.1. Introduction and formulation

Definition 3.1 (Piccard’s L-stability).
Consider the Banach space (B,‖‖), the self-map L of B and the recursive technique σn+1 = g(L,σn).

Let us assume that B(L), containing all the fixed points of L has at least one element and σn con-
verges to an element b of B(L). Let {un} ⊆ B and set dn = ‖un+1−g(L,un)‖. Therefore lim

n−→∞
dn = 0

leads to lim
n−→∞

un = b. In this case, we say that the reccurence formula σn+1 = g(L,σn) is L-stable.

Remark 3.1. Assuming that {un} has a upper boundary, σn+1 = Lσn is called Piccard’s iteration if
the conditions of Definition 3.1 are satisfied and therefore, will be L-stable.

Lemma 3.1. Let (B,‖‖) be a Banach space and L a self-map of B verifying

‖Lx−Ly‖ ≤C‖x−Lx‖+C‖x− y‖

for all x,y ∈ B, where 0≤C, 0≤ α ≤ 1. If L admits a fixed point f then, L is Picard L-stable.

Proof. [4, Theorem 3.1]

Proposition 3.2. The self-map L expressed as

L(rn(x, t)) = rn+1(x, t)

= rn(x, t)+c f Iα
t [r

3rxxx(x, t))]

is L-stable in L2(a,b)

8
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Proof. The first step is to prove that L has a fixed-point. For that set i, j ∈ N then,

‖Lri(x, t)−Lr j(x, t)‖= ‖ri+1(x, t)−r j+1(x, t)‖=
∥∥ri(x, t)+c f Iα

t
[
r3

i ∂
3
x3ri
]
− r j(x, t)−c f Iα

t
[
r3

j ∂
3
x3r j
]∥∥

with

c f Iα
t r(t) =

2(1−α)

(2−α)M(α)
r(t)+

2α

(2−α)M(α)

∫ t

0
r (τ)dτ,

the anti-derivative associated to the Caputo-Fabrizio derivative as given in (1.4). Then, making use
of the boundedness the function u, the Lipschitz condition for the first order operator ∂x with the
same constants k1, k2, ϑ as in the previous section, we have

‖Lri(x, t)−Lr j(x, t)‖ ≤ ‖ri(x, t)− r j(x, t)‖+‖c f Iα
t [r

3
i ∂

3
x3ri− r3

j ∂
3
x3r j]‖

≤ 2(1−α)

(2−α)M(α)
k1k2ϑ

3‖ri− r j‖+
2α

(2−α)M(α)
k1k2ϑ

3‖ri− r j‖.

Thus,

‖Lri(x, t)−Lr j(x, t)‖ ≤K ‖ri(x, t)− r j(x, t)‖

With

K =
2(1−α)

(2−α)M(α)
k1k2ϑ

3‖ri− r j‖+
2α

(2−α)M(α)
k1k2ϑ

3.

Consequently L is Lipschitz continuous with respect to r and this means the non-linear operator L
has a fixed point. To conclude the proof, it is necessary to remark that taking C = 0 and C = P, the
conditions of Lemma 3.1 are verified for L and then, L is Picard L-stable.

4. Numerical Solvability

This section deals with some numerical schemes associated with both models. So a technique to
determine the solution for each model using integral iterative methods is presented. We The model
with Caputo derivative is iteratively solved making use of Laplace transform while the model with
the Caputo-Fabrizio derivative exploit the Sumudu transform. Similar results are obtained as shown
below.

4.1. Numerical Approximations with Caputo derivative

Applying the Laplace transform L on both sides of the model (2.1)-(2.2) iteratively yields

pr(x, p)−g(x) = L
[
r3rxxx(x, t)

]
(p),

equivalently

r(x, p)

=
g(x)

p
+

1
p
L
[
r3rxxx(x, t)

]
(p).

9
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Taking the inverse Laplace transform L −1 yields

r(x, t)

= g(x)+L −1
(

1
p
L
[
r3rxxx(x, t)

])
(t).

Now, we can introduce the following iterative formula

r0(x, t) = g(x)

rn+1(x, t) = rn(x, t)+L −1
(

1
p
L
[
r3rxxx(x, t)

])
(t).

the above formula leads to a numerical approximation with Caputo derivative and the approximate
solution reads as

r(x, t) = lim
n−→∞

rn(x, t)

4.2. Numerical Approximations Caputo-Fabrizio derivative

Here we first recall the following important relation

S
(

c f
0 Dα

t f (t)
)
= M(α)

pF(p)− f (o)
1−α−α p

where F(p) = S ( f (t)) is the Sumudu transform of f (t). Applying the Sumudu transform S on
both sides of equation (2.1) yields

pr(x, p)−g(x)
1−α−α p

= S
[
r3rxxx(x, t)

]
(p),

equivalently

r(x, p)

=
g(x)

p
+(1−α−α p)S

[
r3rxxx(x, t)

]
(p).

The inverse Sumudu transform S −1 yields

r(x, t)

= g(x)+S −1 ((1−α−α p)S
[
r3rxxx(x, t)

])
(t).

repeating as above, the following iterative formula introduced

r0(x, t) = g(x)

rn+1(x, t) = rn(x, t)+S −1 ((1−α−α p)S
[
r3rxxx(x, t)

])
(t).

which leads to a numerical approximation with Caputo-Fabrizio derivative and the approximate
solution reads as

r(x, t) = lim
n−→∞

rn(x, t).

10
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Those recurrence schemes are used and numerical representations of both models can be depicted
in Fig.1 to Fig.5 for different values of the order α. The graphics in Fig.1, Fig.2, Fig.3, Fig.4 and
Fig.5, performed respectively for α = 0.2, α = 0.3, α = 0.4, α = 0.8 and α = 1.0 using the Caputo
derivative and compared to one using the Caputo-Fabrizio derivative show the standard well-known
wave solution of the Harry Dym equation. It is clear that the figures show similar behavior for
solutions of both models.

5. Concluding remarks

We have proved the existence and uniqueness of the solution to for the nonlinear Harry Dym equa-
tion modelled with both the classical Caputo derivative and the newly introcuced derivative of
fractional order with no singular kernel. It is the first time that the same model of Harry Dym is
analyzed using both derivatives in the same work. This proves that there is a possible way to extent
the nonlinear Harry Dym model to the scope of fractional calculus.Two numerical methods suitable
to approximate the solutions of model with both derivatives have been presented with numerical
simulations performed for α = 0.2, α = 0.3, α = 0.4, α = 0.8 and α = 1.0. Each figure exhibits
solution with similar behavior for the involved wave associated to the Dym equation. This paper
innovates by pointing out another concrete application of the Caputo-Fabrizio derivative, new in the
literature and till under investigation. More complex investigation will certainly follow.

Fig. 1: Representation of the solution r(x, t) when α = 0.2 with both derivatives.

Fig. 2: Representation of the solution r(x, t) when α = 0.3 with both derivatives.
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Fig. 3: Representation of the solution r(x, t) when α = 0.4 with both derivatives.

Fig. 4: Representation of the solution r(x, t) when α = 0.8 with both derivatives.

Fig. 5: Representation of the solution r(x, t) when α = 1.0 with both derivatives.
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[6] Caputo Michele , Carcione José M., Botelho Marco A. B., Modeling Extreme-Event Precursors with
the Fractional Difusion Equation, Fractional Calculus and Applied Analysis, 18 (1) 208–222, (2015).

[7] Doungmo Goufo EF, A biomathematical view on the fractional dynamics of cellulose degradation,
Fractional Calculus and Applied Analysis, Vol. 18, No 3, 554–564, (2015). DOI: 10.1515/fca-2015-
0034.

[8] Losada J, Nieto JJ, Properties of the new fractional derivative without singular Kernel. Progr. Fract.
Differ. Appl, 1(2), (2015) 87–92

[9] Tenreiro Machado J., Mainardi F., and Kiryakova V. Fractional calculus: quo vadimus? (Where are we
going?). Fract. Calc. Appl. Anal., 18(2):495–526, 2015.

[10] Doungmo Goufo EF, A biomathematical view on the fractional dynamics of cellulose degradation,
Fractional Calculus and Applied Analysis, Vol. 18, No 3, 554–564, (2015). DOI: 10.1515/fca-2015-
0034

[11] Doungmo Goufo EF, Application of the Caputo-Fabrizio fractional derivative without singular kernel
to Korteweg–de Vries–Bergers equation, Mathematical Modelling and Analysis, Vol. 21, Issue 2, 188-
198, 2016, http://dx.doi.org/10.3846/13926292.2016.1145607.

[12] Doungmo Goufo EF, Atangana A, Analytical and numerical schemes for a derivative with filtering
property and no singular kernel with applications to diffusion, The European Physical Journal Plus,
Vol. 131, Issue 8, 2016. DOI: 10.1140/epjp/i2016-16269-1

[13] Luchko Y. and Gorenflo R., The initial value problem for some fractional differential equations with
the Caputo derivative. Preprint Series A0898, Freic Universitat Berlin, 1998, Fachbreich Mathematik
and Informatik, 1998.

[14] Area I, Batarfi H, Losada J, Nieto JJ, Shammakh W, Torres A. On a Fractional Order Ebola Epidemic
Model. Adv Difference Equ. 2015; Art. ID 278, 12 pp.

[15] Rachah A, Torres DFM. Mathematical modelling, simulation, and optimal control of the 2014 Ebola
outbreak in West Africa. Discrete Dyn Nat Soc. 2015; Art. ID 842792, 9 pp.

[16] Area I, Losada J, Ndaı̈rou F, Nieto JJ, Tcheutia DD. Mathematical modeling of 2014 Ebola outbreak.
Math Method Appl Sci.; in press.

[17] Du, M, Wang, Z, Hu, H: Measuringmemorywith the order of fractional derivative. Sci. Rep. 3, 3431
(2013)

[18] Beals R. and Coifman R., Scattering and Inverse Scattering for First Order Systems, Commun. Pure
and Appl. Math. 37 (1984) 39-90

[19] Gerdjikov V. and Yanovski A., Completeness of the Eigenfunctions for the Caudrey-Beals-Coifman
System, J. Math. Phys. 35 (1994) 3687-3725

[20] Z. Yan, The Riccati equation with variable coefficients expansion algorithm to find more exact solutions
of nonlinear differential equation, MMRC, AMSS, Academis Sinica, Beijing 22(2003), 275-284.

[21] Khan Y., Sayevand K., Fardi M., Ghasemi M., A novel computing multi-parametric homotopy approach
for system of linear and nonlinear Fredholm integral equations, Applied Mathematics and Computation
2014, 249, 229–236.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

240 Doungmo Goufo et al 228-240



Product-type Operators from Weighted Bergman Spaces to
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Abstract: Let D be the open unit disk in the complex plane C and H(D) the class of all

analytic functions on D. Let ϕ be an analytic self-map of D and u ∈ H(D). By constructing some

suitable test functions in weighted Bergman space, in this paper the boundedness and compactness

of the product-type operators DnMuCϕ, DnCϕMu, CϕD
nMu, MuD

nCϕ, MuCϕD
n and CϕMuD

n

from weighted Bergman space to Bloch-Orlicz space are characterized in terms of the symbol func-

tions u and ϕ.
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1 Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H(D) the

class of all analytic functions on D. Let ϕ be an analytic self-map of D and u ∈ H(D). The

weighted composition operator Wϕ,u on H(D) is defined by

Wϕ,uf(z) = u(z)f(ϕ(z)), z ∈ D.

If u ≡ 1, it becomes the composition operator, usually denoted by Cϕ. If ϕ(z) = z, it becomes

the multiplication operator, usually denoted by Mu. Since Wϕ,u = MuCϕ, it is a product-

type operator. A standard problem is to provide function theoretic characterizations when

ϕ and u induce a bounded or compact weighted composition operator (see, for example,

[2, 4, 8, 13, 15, 23, 26, 27] and the references therein).

Let n ∈ N0 = N ∪ {0}. The nth differentiation operator Dn on H(D) is defined by

Dnf(z) = f (n)(z), z ∈ D,

Foundation item: Supported by the Sichuan Province University Key Laboratory of Bridge Non-

destruction Detecting and Engineering Computing (No.2016QZJ01), the Key Fund Project of Sichuan

Provincial Department of Education (No.15ZA0221) and the Cultivation Project of Sichuan University

of Science and Engineering (No.2015PY04).

E-mail: matjzj@126.com
1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

241 Zhi-jie Jiang 241-254



where f (0) = f . If n = 1, it is the differentiation operator D. A systematic study of

some other product-type operators started by Stević et al. since the publication of papers

[11] and [12]. Before that there were a few papers in the topic, e.g., [5]. The publication

of paper [11] first attracted some attention in product-type operators DCϕ and CϕD (see,

e.g., [14, 18, 20] and the references therein). The publication of paper [12] attracted some

attention in product-type operators involving integral-type ones (see, e.g., [9, 19, 21] and

the references therein). Now there is a great interest in various product-type operators (see,

e.g., [6, 7, 10, 16, 30, 31] and the references therein).

By using multiplication, composition and the nth differentiation operators, we define

the product-type operators in the following six ways

DnMuCϕ, D
nCϕMu, CϕD

nMu, MuD
nCϕ, MuCϕD

n, CϕMuD
n. (1.1)

When n = 1, they were studied by Sharma in [17]. They were also studied on the weighted

Bergman space in a unified manner by Stević et al. in [24] and [25].

By constructing some test functions in weighted Bergman space, here we characterize the

boundedness and compactness of the product-type operators in (1.1) from weighted Bergman

space to Bloch-Orlicz space. Because some more suitable test functions were not found in

weighted Bergman space, before this work we didn’t find any result on these operators from

weighted Bergman space to Bloch-Orlicz space.

Let dA(z) = 1
π
dxdy be the normalized Lebesgue measure on D. For α > −1, let

dAα(z) = (α + 1)(1 − |z|2)αdA(z) be the weighted Lebesgue measure on D. For p ≥ 1, the

famous weighted Bergman space Apα consists of all f ∈ H(D) such that

‖f‖p
Apα

=
∫

D
|f(z)|pdAα(z) <∞.

It is well known that the weighted Bergman space Apα with the norm ‖ · ‖Apα is a Banach

space. For some results of the weighted Bergman space, see, for example, [28, 29].

Let Ψ be a strictly increasing convex function on [0,+∞) such that Ψ(0) = 0. The Bloch-

Orlicz space BΨ was introduced in [15] by Ramos Fernández, is the class of all f ∈ H(D)

such that

sup
z∈D

(1− |z|2)Ψ(λ|f ′(z)|) <∞

for some λ > 0 depending on f . Ramos Fernández in [15] proved that BΨ is isometrically

equal to µΨ-Bloch space, where

µΨ(z) =
1

Ψ−1( 1
1−|z|2 )

, z ∈ D.

Hence, BΨ is a Banach space with the norm given by

‖f‖BΨ = |f(0)|+ sup
z∈D

µΨ(z)|f ′(z)|.
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This space generalizes some other spaces. For example, if Ψ(t) = tp with p > 0, then the

space BΨ coincides with the weighted Bloch space Bα, where α = 1/p. Also, if Ψ(t) =

t log(1 + t), then BΨ coincides with the Log-Bloch space (see [1]).

Let X and Y be Banach spaces. A linear operator L : X → Y is bounded if there exists

a positive constant K such that

‖Lf‖Y ≤ K‖f‖X

for all f ∈ X. The operator L : X → Y is compact if it maps bounded sets into relatively

compact sets.

In this paper, the letter C denotes a positive constant which may differ from one occur-

rence to the other. The notation a . b means that there exists a positive constant C such

that a ≤ Cb. When a . b and b . a, we write a � b.

2 Prerequisites

The first result is a alternative to Proposition 3.11 in [3], which characterizes the com-

pactness in terms of sequential convergence. So the proof is omitted.

Lemma 2.1. Let T be one of the operators in (1.1). Then the bounded operator T : Apα → BΨ

is compact if and only if for every bounded sequence {fj}j∈N in Apα such that fj → 0 uniformly

on every compact subset of D as j →∞, it follows that

lim
j→∞

‖Tfj‖BΨ = 0.

For k = 0, the following lemma was proved in [29], while for k ≥ 1 it essentially follows

from the Jensen’s inequality (see [6]).

Lemma 2.2. Let α > −1 and p ≥ 1. Then for each k ∈ N0, there exists a positive constant

Ck = C(α, p, k) independent of f ∈ Apα and z ∈ D such that

|f (k)(z)| ≤ Ck‖f‖Apα
(1− |z|2)k+α+2

p

.

In order to construct some test functions in weighted Bergman space, for a fixed w ∈ D
and i ∈ N0 we define the following function

kw,i(z) =
(1− |w|2)i+

α+2
p

(1− wz)i+
2α+4
p

, z ∈ D.

Then from [6], we know that fw,i ∈ Apα and

sup
w∈D
‖kw,i‖Apα . 1. (2.1)
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By using some suitable linear combinations of the functions kw,i, we obtain the test

function in Apα in the following result, which will be used in the proofs of our main results.

Lemma 2.3. Let w ∈ D and n ∈ N. Then for each fixed k ∈ {0, 1, . . . , n + 1}, there exist

constants a0,k, a1,k, . . . , an+1,k such that the function

fw,k(z) =
n+1∑
i=0

ai,kkw,i(z)

satisfies

f
(k)
w,k(w) =

wk

(1− |w|2)k+α+2
p

and f
(j)
w,k(w) = 0 (2.2)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}. Moreover,

sup
w∈D
‖fw,k‖Apα . 1. (2.3)

Proof. We write a = (2α+ 4)/p. From a direct calculation, it follows that the system (2.2)

is equivalent to the following system

n+1∑
i=0

(a+ i)ai,k = 0

n+1∑
i=0

(a+ i)(α+ i+ 1)ai,k = 0

· · · · · · ·
n+1∑
i=0

k−1∏
j=0

(a+ i+ j)ai,k = 1

· · · · · · ·
n+1∑
i=0

n∏
j=0

(a+ i+ j)ai,k = 0.

(2.4)

Hence we only need to prove that there exist constants a0,k, a1,k, . . . , an+1,k such that

the system (2.4) holds. By Lemma 3 in [22], the determinant of the system (2.4) equals∏n+1

j=1 j!, which is different from zero. So there exist constants a0,k, a1,k, . . . , an+1,k such

that the system (2.4) holds. From (2.1) the asymptotic expression of supw∈D ‖fw,k‖Apα . 1

is obvious.

Remark 2.1. It is not hard to see that fw,k → 0 uniformly on every compact subset of D
as |w| → 1−.

Stević in [22] used the Faà di Bruno’s formula of the following version

(f ◦ ϕ)(n)(z) =
n∑
k=0

f (k)(ϕ(z))Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)), (2.5)
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where Bn,k(x1, ..., xn−k+1) is the Bell polynomial. For n ∈ N the sum can go from k = 1

since Bn,0(ϕ′(z), ..., ϕ(n−k+1)(z)) = 0, however we will keep the summation since for n = 0

the only existing term B0,0 is equal to 1. From (2.5) and the Leibnitz formula the next

Lemma 2.4 follows.

Lemma 2.4. Let f , u ∈ H(D) and ϕ be an analytic self-map of D. Then

(
u(z)f(ϕ(z))

)(n+1)
=

n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)
.

3 Boundedness of the product-type operators

First we characterize the boundedness of the operator DnMuCϕ : Apα → BΨ.

Theorem 3.1. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator DnMuCϕ : Apα → BΨ is bounded.

(ii) The functions u and ϕ satisfy the following conditions:

Ik := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)k+α+2

p

<∞

for each k ∈ {0, 1, . . . , n+ 1}.

Proof. (i)⇒ (ii). Let h0(z) ≡ 1 ∈ Apα. Then we get

L0 = sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0(ϕ′(z), . . . , ϕ(j+1)(z))

∣∣∣ ≤ C‖DnMuCϕ‖. (3.1)

Let hk(z) = zk ∈ Apα, k = 1, 2, . . . , n + 1. Assume now that we have proved the following

inequalities

sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=l

Cjn+1u
(n+1−j)(z)Bj,l(ϕ′(z), . . . , ϕ(j−l+1)(z))

∣∣∣ ≤ C‖DnMuCϕ‖ (3.2)

for each l ∈ {0, 1, ..., k − 1} and a k ≤ n + 1. Applying Lemma 2.4 to the function hk, and

noticing that h(s)
k (z) ≡ 0 for s > k, we get

(
DnMuCϕhk

)′
(z) =

k∑
j=0

h
(j)
k (ϕ(z))

n+1∑
i=j

Cin+1u
(n+1−i)(z)Bi,j(ϕ′(z), . . . , ϕ(i−j+1)(z))

=
k∑
j=0

k · · · (k − j + 1)(ϕ(z))k−j
n+1∑
i=j

Cin+1u
(n+1−i)(z)Bi,j(ϕ′(z), . . . , ϕ(i−j+1)(z)). (3.3)
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From (3.3), the boundedness of function ϕ and the triangle inequality, by noticing that the

coefficient at
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

is independent of z and finally using hypothesis (3.2) we easily obtain

Lk := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣∣ ≤ C‖DnMuCϕ‖. (3.4)

By induction we see that (3.4) holds for each k ∈ {0, 1, . . . , n+ 1}.
For a fixed w ∈ D and k ∈ {0, 1, . . . , n + 1}, by Lemma 2.3 there exist constants a0,k,

a1,k, . . . , an+1,k such that the function

fϕ(w),k(z) =
n+1∑
i=0

ai,kkϕ(w),i(z),

satisfies

f
(k)

ϕ(w),k(ϕ(w)) =
ϕ(w)

k

(1− |ϕ(w)|2)k+α+2
p

and f
(j)

ϕ(w),k(ϕ(w)) = 0 (3.5)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}. Moreover,

sup
w∈D
‖fϕ(w),k‖Apα ≤ C. (3.6)

Then from (3.5), (3.6) and the boundedness of DnMuCϕ : Apα → BΨ, we have

Ik(w) :=

µΨ(w)|ϕ(w)|k
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(w)Bj,k

(
ϕ′(w), . . . , ϕ(j−k+1)(w)

)∣∣
(1− |ϕ(w)|2)k+α+2

p

≤ ‖DnMuCϕfϕ(w),k‖BΨ ≤ C‖DnMuCϕ‖. (3.7)

From (3.7) we see that

sup
z∈D

Ik(z) ≤ C
∥∥DnMuCϕ

∥∥,
from which we obtain

sup
|ϕ(z)|>1/2

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)k+α+2

p

≤ C‖DnMuCϕ‖. (3.8)
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On the other hand, from (3.4) we get

sup
|ϕ(z)|≤1/2

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)k+α+2

p

≤ CLk ≤ C‖DnMuCϕ‖.

(3.9)

Hence from (3.8) and (3.9) we see that Ik <∞ for each k ∈ {0, 1, ..., n+ 1}.
(ii)⇒ (i). From Lemma 2.2 and Lemma 2.4, for all f ∈ Apα we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕf

)′
(z)
∣∣

= sup
z∈D

µΨ(z)
∣∣∣ n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)(ϕ(z))
∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤

n+1∑
k=0

CkIk‖f‖Apα . (3.10)

It is clear that

|(DnMuCϕf)(0)| ≤ C‖f‖Apα . (3.11)

Hence from (3.10) and (3.11) it follows that DnMuCϕ : Apα → BΨ is bounded.

Remark 3.1. If DnCϕMu : Apα → BΨ is a zero operator, then it is obvious that ‖DnCϕMu‖ =

0. Hence, the case is usually excluded from such considerations.

Remark 3.2. Since DnCϕMu = DnMu◦ϕCϕ, the characterization of the boundedness of

DnCϕMu : Apα → BΨ can be directly obtained from Theorem 3.1. So we omit here.

Noticing that

(CϕDnMuf)′(z) =
n+1∑
k=0

Ckn+1u
(n+1−k)(ϕ(z))ϕ′(z)f (k)(ϕ(z)),

we can obtain the following result whose proof is similar to that of Theorem 3.1. So we also

omit.

Theorem 3.2. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator CϕDnMu : Apα → BΨ is bounded.
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(ii) The functions u and ϕ satisfy the following conditions:

Jk := sup
z∈D

µΨ(z)|u(n+1−k)(ϕ(z))||ϕ′(z)|
(1− |ϕ(z)|2)k+α+2

p

<∞

for each k ∈ {0, 1, . . . , n+ 1}.

From a calculation, we have

(MuD
nCϕf)′(z) =

n∑
k=0

f (k)(ϕ(z))
[
u′(z)Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z))

+ u(z)Bn+1,k(ϕ′(z), . . . , ϕ(n−k+2)(z))
]

+ u(z)(ϕ′(z))n+1f (n+1)(ϕ(z)),

and then we have the next result.

Theorem 3.3. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator MuD
nCϕ : Apα → BΨ is bounded.

(ii) The functions u and ϕ satisfy the following conditions:

Mk := sup
z∈D

µΨ(z)
∣∣u′(z)Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)) + u(z)Bn+1,k(ϕ′(z), . . . , ϕ(n−k+2)(z))

∣∣
(1− |ϕ(z)|2)k+α+2

p

<∞

for each k ∈ {0, 1, . . . , n}, and

Mn+1 := sup
z∈D

µΨ(z)|u(z)||ϕ′(z)|n+1

(1− |ϕ(z)|2)n+1+α+2
p

<∞.

Since (MuCϕD
nf)′(z) = u′(z)f (n)(ϕ(z)) +u(z)ϕ′(z)f (n+1)(ϕ(z)), we have the following

result.

Theorem 3.4. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator MuCϕD
n : Apα → BΨ is bounded.

(ii) The functions u and ϕ satisfy the following conditions:

R: = sup
z∈D

µΨ(z)|u′(z)|
(1− |ϕ(z)|2)n+α+2

p

<∞,

and

S := sup
z∈D

µΨ(z)|u(z)||ϕ′(z)|
(1− |ϕ(z)|2)n+1+α+2

p

<∞.
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Remark 3.3. Noticing that CϕMuD
n = Mu◦ϕCϕD

n, we can obtain the characterization of

the boundedness of CϕMuD
n : Apα → BΨ from Theorem 3.4. Here we omit.

4 Compactness of the product-type operators

We first characterize the compactness of the operator DnMuCϕ : Apα → BΨ.

Theorem 4.1. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator DnMuCϕ : Apα → BΨ is compact.

(ii) The functions u and ϕ satisfy Lk <∞ and

lim
|ϕ(z)|→1−

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)k+α+2

p

= 0

for each k ∈ {0, 1, . . . , n+ 1}.

Proof. (i) ⇒ (ii). Suppose that the operator DnMuCϕ : Apα → BΨ is compact. Then

it is clear that the operator DnMuCϕ : Apα → BΨ is bounded. Hence from the proof of

Theorem 3.1 it follows that Lk < ∞ for each k ∈ {0, 1, . . . , n + 1}. Consider a sequence

{ϕ(zi)}i∈N in D such that |ϕ(zi)| → 1− as i → ∞. If such a sequence does not exist, then

the last condition in (ii) obviously holds. Without loss of generality, we may suppose that

|ϕ(zi)| > 1/2 for all i ∈ N. For each fixed k ∈ {0, 1, . . . , n + 1}, by using this sequence we

define the function sequence fi,k(z) = fϕ(zi),k(z), i ∈ N. Then from Lemma 2.3 and Remark

2.1, we see that supi∈N ‖fi,k‖Apα ≤ C and fi,k → 0 uniformly on every compact subset of D
as i→∞, moreover

f
(k)
i,k (ϕ(zi)) =

ϕ(zi)
k

(1− |ϕ(zi)|2)k+α+2
p

and f
(j)
i,k (ϕ(zi)) = 0 (4.1)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}. Then from Lemma 2.1 we have

lim
i→∞
‖DnMuCϕfi,k‖BΨ = 0. (4.2)

Combing (4.1) and (4.2), for each fixed k ∈ {0, 1, . . . , n+ 1} we get

lim
i→∞

µΨ(zi)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)k+α+2

p

= 0. (4.3)
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(ii) ⇒ (i). We first prove that DnMuCϕ : Apα → BΨ is bounded. We observe that the

last condition in (ii) implies that for every ε > 0, there is an η ∈ (0, 1), such that for any

z ∈ K = {z ∈ D : |ϕ(z)| > η}

Ik(z) =

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)k+α+2

p

< ε (4.4)

for each k ∈ {0, 1, . . . , n+ 1}. From the fact Lk <∞ for each k ∈ {0, 1, . . . , n+ 1} and (4.4),

we have

Ik ≤ ε+
Lk

(1− η2)k+α+2
p

. (4.5)

From (4.5) and Theorem 3.1, we see that the operator DnMuCϕ : Apα → BΨ is bounded.

In order to prove that DnMuCϕ : Apα → BΨ is compact, by Lemma 2.1 we only need to

prove that, if {fi}i∈N is a sequence in Apα such that supi∈N ‖fi‖Apα ≤M and fi → 0 uniformly

on any compact subset of D as i→∞, then

lim
i→∞
‖DnMuCϕfi‖BΨ = 0.

For such chosen ε and η, by using (4.4), Lemma 2.2 and Lemma 2.4, we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi

)′
(z)
∣∣

= sup
z∈D

µΨ(z)
∣∣∣ n+1∑
k=0

f
(k)
i (ϕ(z))

n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
(

sup
z∈K

+ sup
z∈D\K

)
µΨ(z)

n+1∑
k=0

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤

n+1∑
k=0

Lk sup
|z|≤η

|f (k)
i (z)|+M

n+1∑
k=0

Ckε. (4.6)

From (4.6), Lemma 2.1 and the fact fi → 0 uniformly on compact subsets of D as i → ∞
implies that for each k ∈ N, f (k)

i → 0 uniformly on compact subsets of D as i → ∞, we

finally get

lim
i→∞

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi)′(z)

∣∣ = 0. (4.7)

It is clear that

lim
i→∞

∣∣(DnMuCϕfi)(0)
∣∣ = 0. (4.8)
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From (4.7) and (4.8) we obtain

lim
i→∞
‖DnMuCϕfi‖BΨ = 0.

This shows that the operator DnMuCϕ : Apα → BΨ is compact.

Remark 4.1. Since DnCϕMu = DnMu◦ϕCϕ, the characterization of the compactness of

DnCϕMu : Apα → BΨ can be directly obtained from Theorem 4.1. So we omit here.

Similar to Theorems 3.2, 3.3 and 3.4, we have the following results.

Theorem 4.2. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator CϕDnMu : Apα → BΨ is compact.

(ii) The functions u and ϕ satisfy the following conditions:

sup
z∈D

µΨ(z)|u(n+1−k)(ϕ(z))||ϕ′(z)| <∞

and

lim
|ϕ(z)|→1−

µΨ(z)|u(n+1−k)(ϕ(z))||ϕ′(z)|
(1− |ϕ(z)|2)k+α+2

p

= 0

for each k ∈ {0, 1, . . . , n+ 1}.

Theorem 4.3. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator MuD
nCϕ : Apα → BΨ is compact.

(ii) The functions u and ϕ satisfy the following conditions:

sup
z∈D

µΨ(z)
∣∣u′(z)Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)) + u(z)Bn+1,k(ϕ′(z), . . . , ϕ(n−k+2)(z))

∣∣ <∞,
lim

|ϕ(z)|→1−

µΨ(z)
∣∣u′(z)Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)) + u(z)Bn+1,k(ϕ′(z), . . . , ϕ(n−k+2)(z))

∣∣
(1− |ϕ(z)|2)k+α+2

p

= 0

for each k ∈ {0, 1, . . . , n},

sup
z∈D

µΨ(z)|u(z)||ϕ′(z)|n+1 <∞,

and

lim
|ϕ(z)|→1−

µΨ(z)|u(z)||ϕ′(z)|n+1

(1− |ϕ(z)|2)n+1+α+2
p

= 0.
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Theorem 4.4. Let α > −1, p ≥ 1, ϕ be an analytic self-map of D and u ∈ H(D). Then the

following statements hold.

(i) The operator MuCϕD
n : Apα → BΨ is compact.

(ii) The functions u and ϕ are such that u ∈ BΨ,

sup
z∈D

µΨ(z)|u(z)||ϕ′(z)| <∞,

lim
|ϕ(z)|→1−

µΨ(z)|u′(z)|
(1− |ϕ(z)|2)n+α+2

p

= 0,

and

lim
|ϕ(z)|→1−

µΨ(z)|u(z)||ϕ′(z)|
(1− |ϕ(z)|2)n+1+α+2

p

= 0.

Remark 4.2. Noticing that CϕMuD
n = Mu◦ϕCϕD

n, we can obtain the characterization of

the compactness of CϕMuD
n : Apα → BΨ from Theorem 4.4. Here we omit.
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[11] Li, S. and Stević, S., Composition followed by differentiation between Bloch type spaces, J. Comput.

Anal. Appl., 2007, 9(2):195-205.
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On some recent fixed point results for
α-admissible mappings in b-metric spaces
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1. School of Mathematical Sciences, Beijing Normal University, Laboratory

of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China

2. Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120, Beograd, Serbia

Abstract: The purpose of this paper is to present some fixed point theorems for
weak α-admissible mappings type in the setting of b-metric spaces. The results
greatly optimize and improve some fixed point results in the existing literature.
Moreover, we highlight our assertions by utilizing an example. In addition, we
use our results to obtain the existence of solution for a class of nonlinear integral
equations.

Keywords: α-admissible mapping, α-contraction mapping, rational α-Geraghty
contraction of type, fixed point, integral equation

1 Introduction

Since Polish mathematician Banach proved the well-known Banach contraction map-
ping principle in metric spaces in 1922 (see [1]), fixed point theory occupies a prominent
place in strong research activity. Due to its applications in finding the existence of solu-
tions for the nonlinear Volterra integral equations, nonlinear integro-differential equations
and existence of equilibria in game theory as well, it has become the most celebrated tool
in nonlinear analysis. During the past decades, scholars extend this principle towards dif-
ferent spaces, such as G-metric spaces, 2-metric spaces, fuzzy metric spaces, probabilistic
metric spaces, cone metric spaces, partial metric spaces, modular metric spaces, b-metric
spaces, etc (see [2-10]). Whereas, the most influential spaces among them, i.e., b-metric
spaces, or metric type spaces called by some authors, introduced by Bakhtin [9] or Czer-
wik [10], have a rapid development. Compared with other spaces, people are willing to
deal with fixed point problems or the variational principle for single-valued or multi-valued
operators in b-metric spaces, based on the fact that b-metrics have no continuity in general.

On the other hand, people fascinate fixed point results by substituting the Banach
contractive mapping, such as Kannan contraction mapping, Chatterjea contraction map-
ping, α-ψ-contractive type mapping, cyclic contractive mapping, multivalued contraction

∗Correspondence: denggt@bnu.edu.cn (G. Deng)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

255 Huaping Huang et 255-269



mapping, and so on (see [6-14]). Recently, Samet et al. [12] introduced the notion of α-
admissible mapping in the framework of metric spaces, and very recently, Sintunavarat [15]
introduced the concepts of α-admissible mapping type S, weak α-admissible mapping, weak
α-admissible mapping type S, as some generalizations of α-admissible mapping. Moreover,
[15] proved fixed point theorems based on his new types of α-admissibility in the setup of
b-metric spaces. In this paper, inspired by [15], we introduce the notion of α-admissibility
mapping, and obtain some fixed point theorems, as compared to the main results of [15],
with much simpler conditions and more straightforward proofs. Furthermore, we cope
with some fixed point results for the mappings on rational α-Geraghty contraction of type
in terms of α-admissibility in b-metric spaces. In addition, we give an application in the
existence of a solution for a class of nonlinear integral equations. Our conditions are weak
and applicable compared to the applications from [15].

For the sake of reader, the following definitions and results will be needed in the sequel.
Definition 1.1([16]). A mapping ϕ : [0,∞) → [0,∞) is said to be an altering distance
function if it holds:

(1) ϕ is nondecreasing and continuous;
(2) ϕ(t) = 0 if and only if t = 0.

Definition 1.2([15]). Let X be a nonempty set and s ≥ 1 a given real number. Let
α : X ×X → [0,∞) and f : X → X be mappings. We say f is an α-admissible mapping
type S if for all x, y ∈ X, α(x, y) ≥ s leads to α(fx, fy) ≥ s. In particular, f is called
α-admissible mapping if s = 1.
Remark 1.3 Usually, useA(X,α) andAs(X,α) to denote the collection of all α-admissible
mappings on X and the collection of all α-admissible mappings type S on X. It is worth
reminding that the class of α-admissible mappings and the class of α-admissible mappings
type S are independent, in other words, A(X,α) 6= As(X,α) in general case.
Definition 1.4([15]). Let X be a nonempty set and s ≥ 1 a given real number. Let
α : X × X → [0,∞) and f : X → X be mappings. We say f is a weak α-admissible
mapping type S if for all x ∈ X, α(x, fx) ≥ s leads to α(fx, ffx) ≥ s. In particular, f is
called weak α-admissible mapping if s = 1.
Remark 1.5. Customarily, utilizeWA(X,α) andWAs(X,α) to denote the collection of
all weak α-admissible mappings on X and the collection of all weak α-admissible mappings
type S on X. Clearly, A(X,α) ⊆ WA(X,α) and As(X,α) ⊆ WAs(X,α).
Definition 1.6([10]). Let X be a nonempty set and s ≥ 1 a real number. A mapping
d : X ×X → [0,∞) is called a b-metric if for all x, y, z ∈ X, the following conditions are
satisfied:

(b1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, (X, d) is called a b-metric space.
Definition 1.7([17]). Let (X, d) be a b-metric space, x ∈ X and {xn} a sequence in X.
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Then we say
(i) {xn} b-converges to x if d(xn, x)→ 0 as n→∞. In this case, we write lim

n→∞
xn = x.

(ii) {xn} is a b-Cauchy sequence if d(xn, xm)→ 0 as n,m→∞.
(iii) (X, d) is b-complete if every b-Cauchy sequence is b-convergent in X.
(iv) a function f : X → Y is b-continuous at a point x ∈ X if {xn} ⊂ X b-converges to

x, then {fxn} b-converges to fx, where (Y, ρ) is a b-metric space.
Throughout this paper, unless otherwise specified, X is a nonempty set, f : X → X is

a mapping, Fix(f) denotes the set of all fixed points of f on X, that is,

Fix(f) := {x ∈ X|fx = x}.

Also, for each elements x and y in a b-metric space (X, d) with coefficient s ≥ 1, let

Ms(x, y) := max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
.

Lemma 1.8([18]). Let (X, d) be a b-metric space with coefficient s ≥ 1 and let {xn} and
{yn} be b-convergent to points x, y ∈ X, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we
have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 1.9([15]). Let (X, d) be a b-metric space with coefficient s ≥ 1, let α :

X × X → [0,∞) be a mapping and let ψ, ϕ : [0,∞) → [0,∞) be two altering distance
functions. A mapping f : X → X is said to be an (α, ψ, ϕ)s-contraction mapping if

x, y ∈ X with α(x, y) ≥ s =⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y)). (1.1)

In this case, write Ωs(X,α, ψ, ϕ) as the collection of all (α, ψ, ϕ)s-contraction mappings.
Theorem 1.10([15]). Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1,
let ψ, ϕ : [0,∞) → [0,∞) be two altering distance functions and let α : X ×X → [0,∞)

and f : X → X be given mappings. Suppose that the following conditions hold:
(S1) f ∈ Ωs(X,α, ψ, ϕ) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S, that is, for x, y, z ∈ X,

α(x, y) ≥ s and α(y, z) ≥ s⇒ α(x, z) ≥ s;

(S4) f is b-continuous.
Then Fix(f) 6= ∅.
Theorem 1.11([15]). Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1,
let ψ, ϕ : [0,∞) → [0,∞) be two altering distance functions and let α : X ×X → [0,∞)

and f : X → X be given mappings. Suppose that the following conditions hold:
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(S1) f ∈ Ωs(X,α, ψ, ϕ) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;
(S̃4) X is αs-regular, that is, if {xn} is a sequence in X such that

α(xn, xn+1) ≥ s

for all n ∈ N and xn → x ∈ X as n→∞, then α(xn, x) ≥ s for all n ∈ N.
Then Fix(f) 6= ∅.
Corollary 1.12([15]). Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1,
let ψ, ϕ : [0,∞) → [0,∞) be two altering distance functions and let α : X ×X → [0,∞)

and f : X → X be given mappings. Suppose that the following conditions hold:
(S̃1) f ∈ Ωs(X,α, ψ, ϕ) ∩ As(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;
(S4) f is b-continuous.

Then Fix(f) 6= ∅.
Corollary 1.13([15]). Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1,
let ψ, ϕ : [0,∞) → [0,∞) be two altering distance functions and let α : X ×X → [0,∞)

and f : X → X be given mappings. Suppose that the following conditions hold:
(S̃1) f ∈ Ωs(X,α, ψ, ϕ) ∩ As(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;
(S̃4) X is αs-regular.

Then Fix(f) 6= ∅.

2 Main results

Definition 2.1. Let (X, d) be a b-metric space with coefficient s ≥ 1, let α : X ×X →
[0,∞) be a mapping and ε > 1 be a constant. A mapping f : X → X is said to be an
α-contraction mapping if

x, y ∈ X with α(x, y) ≥ s =⇒ sεd(fx, fy) ≤Ms(x, y). (2.1)

In this case, write Ωs(X,α) as the collection of all α-contraction mappings.
Theorem 2.2. Let (X, d) be a b-complete b-metric space with coefficient s > 1. Let
α : X × X → [0,∞) and f : X → X be given mappings. Suppose that the following
conditions hold:

(S1) f ∈ Ωs(X,α) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) f is b-continuous.

Then Fix(f) 6= ∅.
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Proof. By (S2), for x0 ∈ X, construct a Picard iteration sequence {xn} satisfying xn+1 =

fxn, n ∈ N. Assume that xn0 = xn0+1 for some n0, then Fix(f) = {xn0} 6= ∅, in this case,
the conclusion is satisfied. So set xn 6= xn+1 for all n, that is, d(xn, xn+1) > 0 for all n. Let
us prove the following inequality:

d(xn+1, xn+2) ≤ λd(xn, xn+1), (2.2)

where λ ∈ [0, 1
s
) is a constant.

Indeed, in view of f ∈ WAs(X,α) and α(x0, fx0) ≥ s, it implies that

α(x1, x2) = α(fx0, ffx0) ≥ s.

Repeating this process, we make a conclusion that

α(xn, xn+1) ≥ s

for all n. Making the most of (2.1), we have

sεd(xn+1, xn+2) = sεd(fxn, fxn+1)

≤Ms(xn, xn+1)

= max

{
d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),

d(xn, fxn+1) + d(xn+1, fxn)

2s

}
= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}
≤ max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+1) + d(xn+1, xn+2)

2

}
= max{d(xn, xn+1), d(xn+1, xn+2)}. (2.3)

If d(xn, xn+1) ≤ d(xn+1, xn+2), then by (2.3), it follows that

sεd(xn+1, xn+2) ≤ d(xn+1, xn+2).

Hence, d(xn+1, xn+2) = 0, it is a contradiction. If d(xn+1, xn+2) ≤ d(xn, xn+1), then by
(2.3), it establishes that

sεd(xn+1, xn+2) ≤ d(xn, xn+1).

As a result, (2.2) holds, where λ = 1
sε
∈ [0, 1

s
).

Now by [11, Lemma 3.1], taking advantage of (2.2), we claim that {xn} is a b-Cauchy
sequence. Since (X, d) is b-complete, we know that {xn} b-converges to some point x ∈ X.
Finally, we show x ∈ Fix(f). Actually, by using (S3), it is not hard to verify that

d(fx, x) ≤ s[d(fx, fxn) + d(fxn, x)] = s[d(fx, fxn) + d(xn+1, x)]→ 0 as n→∞.
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Therefore, d(fx, x) = 0, that is to say, x ∈ Fix(f).
Theorem 2.3. Let (X, d) be a b-complete b-metric space with coefficient s > 1. Let
α : X × X → [0,∞) and f : X → X be given mappings. Suppose that the following
conditions hold:

(S1) f ∈ Ωs(X,α) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S̃3) X is αs-regular.

Then Fix(f) 6= ∅.
Proof. Making full use of the proof of Theorem 2.2, we obtain a sequence {xn} satisfying
xn+1 = fxn → x ∈ X as n → ∞. Then by (S̃3), we get α(xn, x) ≥ s for all n ∈ N. By
virtue of (S1), we have

sεd(fxn, fx) ≤Ms(xn, x)

= max

{
d(xn, x), d(xn, fxn), d(x, fx),

d(xn, fx) + d(x, fxn)

2s

}
≤ max

{
d(xn, x), s[d(xn, x) + d(xn+1, x)], d(x, fx),

d(xn, x) + d(x, fx)

2
+
d(x, xn+1)

2s

}
→ max

{
0, 0, d(x, fx),

d(x, fx)

2

}
= d(x, fx) (n→∞),

which implies that

lim
n→∞

d(fxn, fx) ≤ 1

sε
d(x, fx). (2.4)

Note that

1

s
d(x, fx) ≤ d(x, fxn) + d(fxn, fx) = d(x, xn+1) + d(fxn, fx). (2.5)

Taking the limit as the above inequality (2.5) and utilizing (2.4), we speculate that

1

s
d(x, fx) ≤ 1

sε
d(x, fx),

which follows that d(x, fx) = 0, that is, x ∈ Fix(f).
Corollary 2.4. Let (X, d) be a b-complete b-metric space with coefficient s > 1. Let
α : X × X → [0,∞) and f : X → X be given mappings. Suppose that the following
conditions hold:

(S̃1) f ∈ Ωs(X,α) ∩ As(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) f is b-continuous.

Then Fix(f) 6= ∅.
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Corollary 2.5. Let (X, d) be a b-complete b-metric space with coefficient s > 1. Let
α : X × X → [0,∞) and f : X → X be given mappings. Suppose that the following
conditions hold:

(S̃1) f ∈ Ωs(X,α) ∩ As(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S̃3) X is αs-regular.

Then Fix(f) 6= ∅.
Remark 2.6. Theorem 2.2, Theorem 2.3, Corollary 2.4 and Corollary 2.5 greatly opti-
mize and improve Sintunavarat’s theorems, i.e., Theorem 1.10, Theorem 1.11, Corollary
1.12 and Corollary 1.13, respectively. Actually, on the one hand, compared with (1.1),
(2.1) not only deletes the limitation of the altering distance functions ψ and ϕ, but also
it dispenses with an item ϕ(Ms(x, y)) which makes the condition become much wider.
These are some great improvements. Moreover, our index ε > 1 is arbitrary, and it clearly
contains ε = 3. Hence, our range ε > 1 is much larger and more applicable. On the other
hand, our theorems dismiss the condition of transitive property type S for the mapping α.
That is to say, the conditions of our theorems are weaker than Sintunavarat’s theorems.
Therefore, our conclusions may be more convenient than Sintunavarat’s in applications.
Remark 2.7. From the proofs of our theorems, it is easy to see that we do not use
Lemma 1.8. Our proofs are much simpler since we do not refer to b-discontinuity of b-
metric. Whereas, in order to overcome the difficulty of the b-discontinuity of b-metric, the
proofs of Sintunavarat’s theorems are very comprehensive based on the fact of depending
on Lemma 1.8 strongly.
Example 2.8. Let X = R and define

d(x, y) = |x− y|2

for all x, y ∈ X. Then (X, d) is a b-complete b-metric space with coefficient s = 2. Define
mappings f : X → X and α : X ×X → [0,∞) by

fx =

{
x
4
, x ∈ [0, 16

3
],

1
8
x+ 2

3
, x ∈ (16

3
,∞),

and

α(x, y) =

{ 5
4

+ 1
|x−y| , x, y ∈ [0, 16

3
],

0, otherwise.

Let us prove f ∈ Ωs(X,α). Actually, assume that x, y ∈ X with α(x, y) ≥ s = 2 and
hence x, y ∈ [0, 16

3
] with |x− y| ≤ 4

3
. Let 1 < ε ≤ 4 be a constant. Then

2εd(fx, fy) = 2ε|fx− fy|2

= 2ε
∣∣∣x
4
− y

4

∣∣∣2
= 2ε−4|x− y|2

≤Ms(x, y).
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As a consequence, f ∈ Ωs(X,α).
We also can verify f ∈ WAs(X,α). Indeed, if x ∈ X such that

α(x, fx) ≥ s = 2,

then x, fx ∈ [0, 16
3

] and |x − fx| ≤ 4
3
. Thus x ∈ [0, 16

9
]. This indicates that ffx ∈ [0, 1

9
]

and hence
α(fx, ffx) =

5

4
+

16

3|x|
≥ 17

4
> s = 2.

Otherwise, it is obvious that f is b-continuous and there exists x0 = 1 such that

α(x0, fx0) = α(1, f1) =
5

4
+

1

|1− f1|
=

31

12
≥ 2 = s.

Consequently, all the conditions of Theorem 2.2 hold. Thus Fix(f) = {0} 6= ∅.
However, we cannot use Theorem 1.10 to get Fix(f) 6= ∅, since α is unsuitable for the

condition (S3) of this theorem. Indeed, put x = 4, y = 3, z = 2. Though α(x, y) = 9
4
> 2

and α(y, z) = 9
4
> 2, whereas, α(x, z) = 7

4
< 2. So (S3) does not hold in this example. In

other words, Theorem 2.2 is more superior than Theorem 1.10.
In the sequel, let s ≥ 1 be a constant and let Fs denote the class of all functions

β : [0,∞)→ [0, 1
s
) satisfying the following condition:

lim sup
n→∞

β(tn) =
1

s
implies that tn → 0 as n→∞.

Definition 2.9. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let α : X×X →
[0,∞) be a function. A mapping f : X → X is called a rational α-Geraghty contraction
of type Iε,β if there exist ε > 0 and β ∈ Fs such that

x, y ∈ X with α(x, y) ≥ s =⇒ α(x, y)sεd(fx, fy) ≤ β(MI(x, y))MI(x, y), (2.6)

where
MI (x, y) = max

{
d (x, y) ,

d (x, fx) d (y, fy)

1 + d (x, y)
,
d (x, fx) d (y, fy)

1 + d (fx, fy)

}
.

Definition 2.10. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let α :

X × X → [0,∞) be a function. A mapping f : X → X is called a rational α-Geraghty
contraction of type IIε,β if there exist ε > 0 and β ∈ Fs such that

x, y ∈ X with α(x, y) ≥ s =⇒ α(x, y)sεd(fx, fy) ≤ β(MII(x, y))MII(x, y), (2.7)

where

MII (x, y) = max

{
d (x, y) ,

d (x, fx) d (x, fy) + d (y, fy) d (y, fx)

1 + s [d (x, fx) + d (y, fy)]
,

d (x, fx) d (x, fy) + d (y, fy) d (y, fx)

1 + s [d (x, fy) + d (y, fx)]

}
.
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Definition 2.11. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let α :

X × X → [0,∞) be a function. A mapping f : X → X is called a rational α-Geraghty
contraction of type IIIε,β if there exist ε > 0 and β ∈ Fs such that

x, y ∈ X with α(x, y) ≥ s =⇒ α(x, y)sεd(fx, fy) ≤ β(MIII(x, y))MIII(x, y), (2.8)

where

MIII (x, y) = max

{
d (x, y) ,

d (x, fx) d (y, fy)

1 + s [d (x, y) + d (x, fy) + d (y, fx)]
,

d (x, fy) d (x, y)

1 + sd (x, fx) + s3 [d (y, fx) + d (y, fy)]

}
.

Theorem 2.12. Let (X, d) be a b-complete b-metric space with coefficient s > 1, and
let α : X × X → [0,∞) be a function and f : X → X be a mapping. Suppose that the
following conditions hold:

(i) f is a rational α-Geraghty contraction of type Iε,β (resp. type IIε,β or type IIIε,β);
(ii) f ∈ As(X,α) and there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(iii) f is b-continuous or X is αs-regular.

Then Fix(f) 6= ∅.
Proof. By (ii) and the proof of Theorem 2.2, we can construct a Picard iteration sequence
{xn} satisfying xn+1 = fxn and

α(xn, xn+1) ≥ s

for all n ∈ N. Let us prove that

d(xn+1, xn+2) ≤ λd(xn, xn+1) (2.9)

for all n ∈ N, where λ ∈ [0, 1
s
).

First of all, let f be a rational α-Geraghty contraction of type Iε,β. Then by (2.6), we
have

sεd(xn+1, xn+2) = sεd(fxn, fxn+1)

≤ α(xn, xn+1)s
εd(fxn, fxn+1)

≤ β(MI(xn, xn+1))MI(xn, xn+1)

≤ 1

s
MI(xn, xn+1), (2.10)

which follows that

sε+1d(xn+1, xn+2) ≤MI(xn, xn+1)

= max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn+1, xn+2)

1 + d (xn, xn+1)
,
d (xn, xn+1) d (xn+1, xn+2)

1 + d (xn+1, xn+2)

}
≤ max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn+1, xn+2)

d (xn, xn+1)
,
d (xn, xn+1) d (xn+1, xn+2)

d (xn+1, xn+2)

}
= max {d (xn, xn+1) , d (xn+1, xn+2)} . (2.11)
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If d (xn, xn+1) ≤ d(xn+1, xn+2), then from (2.11), it leads to

d (xn+1, xn+2) ≤
1

sε+1
d (xn+1, xn+2) < d (xn+1, xn+2) .

This is a contradiction. So

d(xn+1, xn+2) ≤
1

sε+1
d (xn, xn+1) .

In this case, (2.9) is satisfied, where λ = 1
sε+1 ∈ [0, 1

s
).

Secondly, let f be a rational α-Geraghty contraction of type IIε,β. Then similarly by
(2.10), we have

sεd(xn+1, xn+2) ≤
1

s
MII(xn, xn+1),

which establishes that

sε+1d(xn+1, xn+2) ≤MII(xn, xn+1)

= max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn, xn+2) + d (xn+1, xn+2) d (xn+1, xn+1)

1 + s [d (xn, xn+1) + d (xn+1, xn+2)]
,

d (xn, xn+1) d (xn, xn+2) + d (xn+1, xn+2) d (xn+1, xn+1)

1 + s [d (xn, xn+2) + d (xn+1, xn+1)]

}
= max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn, xn+2)

1 + s [d (xn, xn+1) + d (xn+1, xn+2)]
,
d (xn, xn+1) d (xn, xn+2)

1 + sd (xn, xn+2)

}
≤ max

{
d (xn, xn+1) ,

sd (xn, xn+1) [d (xn, xn+1) + d (xn+1, xn+2)]

1 + s [d (xn, xn+1) + d (xn+1, xn+2)]
,
d(xn, xn+1)d(xn, xn+2)

sd(xn, xn+2)

}
≤ max

{
d (xn, xn+1) ,

sd (xn, xn+1) [d (xn, xn+1) + d (xn+1, xn+2)]

s [d (xn, xn+1) + d (xn+1, xn+2)]
,
d(xn, xn+1)

s

}
≤ d (xn, xn+1) .

Accordingly, (2.9) is also satisfied, where λ = 1
sε+1 ∈ [0, 1

s
).

Thirdly, let f be a rational α-Geraghty contraction of type IIIε,β. Then similarly by
(2.13), we have

sεd(xn+1, xn+2) ≤
1

s
MIII(xn, xn+1),

which implies that

sε+1d(xn+1, xn+2) ≤MIII(xn, xn+1)

= max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn+1, xn+2)

1 + s [d (xn, xn+1) + d (xn, xn+2) + d (xn+1, xn+1)]
,

d (xn, xn+2) d (xn, xn+1)

1 + sd (xn, xn+1) + s3 [d (xn+1, xn+1) + d (xn+1, xn+2)]

}
≤ max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn+1, xn+2)

1 + s [d (xn, xn+1) + d (xn, xn+2)]
,

s[d(xn, xn+1) + d(xn+1, xn+2)]d(xn, xn+1)

1 + sd(xn, xn+1) + s3d(xn+1, xn+2)

}
≤ max

{
d (xn, xn+1) ,

d (xn, xn+1) d (xn+1, xn+2)

d (xn, xn+1)
,
s[d(xn, xn+1) + d(xn+1, xn+2)]d(xn, xn+1)

s[d(xn, xn+1) + d(xn+1, xn+2)]

}
= max {d (xn, xn+1) , d (xn+1, xn+2)} .
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A similar discussion as to (2.11), we can get (2.9), too.
In a word, under the conditions of (i) and (ii), we always acquire (2.9). As a conse-

quence, by using [11, Lemma 3.1] and the b-completeness of (X, d), there exists a point
x ∈ X such that xn → x as n→∞. Now by (iii), if f is b-continuous, then

x = lim
n→∞

xn+1 = lim
n→∞

f (xn) = f
(

lim
n→∞

xn

)
= fx,

that is, x ∈ Fix(f). If X is αs-regular, then α(xn, x) ≥ s. Put

M(xn, x) ∈ {MI(xn, x),MII(xn, x),MIII(xn, x)},

it follows immediately from (2.6), (2.7) and (2.8) that

α(xn, x)sεd(fxn, fx) ≤ β(M(xn, x))M(xn, x). (2.12)

We show that

lim
n→∞

M(xn, x) = 0. (2.13)

Indeed, for one thing,

MI (xn, x) = max

{
d (xn, x) ,

d (xn, xn+1) d (x, fx)

1 + d (xn, x)
,
d (xn, xn+1) d (x, fx)

1 + d (xn+1, fx)

}
→ max {0, 0, 0} = 0, as n→∞.

For another thing,

MII (xn, x) = max

{
d (xn, x) ,

d (xn, xn+1) d (xn, fx) + d (x, fx) d (x, xn+1)

1 + s [d (xn, xn+1) + d (x, fx)]
,

d (xn, xn+1) d (xn, fx) + d (x, fx) d (x, xn+1)

1 + s [d (xn, fx) + d (x, xn+1)]

}
≤ max {d (xn, x) , d (xn, xn+1) s [d (xn, x) + d (x, fx)] + d (x, fx) d (x, xn+1) ,

d (xn, xn+1) s [d (xn, x) + d (x, fx)] + d (x, fx) d (x, xn+1)}

→ max {0, 0, 0} = 0, as n→∞.

For the third thing,

MIII(xn, x) = max

{
d(xn, x),

d(xn, xn+1)d(x, fx)

1 + s[d(xn, x) + d(xn, fx) + d(x, xn+1)]
,

d(xn, fx)d(xn, x)

1 + sd(xn, xn+1) + s3[d(x, xn+1) + d(x, fx)]

}
→ max {0, 0, 0} = 0, as n→∞.

Thus (2.13) holds.
Using (2.12) and (2.13), we speculate that

sεd(x, fx) ≤ sε+1[d(x, fxn) + d(fxn, fx)]

≤ sε+1d(x, xn+1) + sε+1α(xn, x)d(fxn, fx)

≤ sε+1d(x, xn+1) + sβ(M(xn, x))M(xn, x)

≤ sε+1d(x, xn+1) +M(xn, x)→ 0, as n→∞,

which establishes that d(x, fx) = 0, that is to say, x ∈ Fix(f).
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3 Application

In this section, we prove an existence theorem for a solution of the following nonlinear
integral equation by using our results in the previous section:

x(c) = φ(c) +

∫ b

a

K(c, r, x(r))dr, (3.1)

where a, b ∈ R, x ∈ C[a, b] (the set of all continuous functions from [a, b] into R, φ : [a, b]→
R and K : [a, b]× [a, b]× R→ R are given mappings.

The following theorem greatly improves Theorem 3.1 of [15] with simpler conditions,
which illustrates the superiority of our results.
Theorem 3.1. Consider the nonlinear integral equation (3.1). Suppose that the following
conditions hold:

(i) K : [a, b]× [a, b]× R→ R is continuous and nondecreasing in the third order;
(ii) there exists p > 1 satisfying the following condition: for each r, c ∈ [a, b] and

x, y ∈ C[a, b] with x(w) ≤ y(w) for all w ∈ [a, b], we have

|K(c, r, x(r))−K(c, r, y(r))| ≤ ζ(c, r)|x(r)− y(r)|, (3.2)

where ζ : [a, b]× [a, b]→ [0,∞) is a continuous function satisfying

sup
c∈[a,b]

(∫ b

a

ζ(c, r)pdr

)
≤ 1

2εp−ε(b− a)p−1

and ε > 1 is a constant.
(iii) there exists x0 ∈ C[a, b] such that x0(c) ≤ φ(c)+

∫ b
a
K(c, r, x0(r))dr for all c ∈ [a, b].

Then the nonlinear integral equation (3.1) has a solution.
Proof. Put X = C[a, b] and define a mapping f : X → X by

(fx)(c) = φ(c) +

∫ b

a

K(c, r, x(r))dr

for all x ∈ X and c ∈ [a, b]. Define a mapping d : X ×X → [0,∞) by

d(x, y) = sup
c∈[a,b]

|x(c)− y(c)|p (p > 1)

for all x, y ∈ X. Then (X, d) is a b-complete b-metric space with coefficient s = 2p−1.
Define a mapping α : X ×X → [0,∞) by

α(x, y) =

{
2p−1, x(c) ≤ y(c) for all c ∈ [a, b],
τ, otherwise,

where 0 < τ < 2p−1. Since K is nondecreasing in the third order, we get f ∈ As(X,α) ⊂
WAs(X,α). By (iii), it infers (S2) in Theorem 2.3 is satisfied. Also, we get that condition
(S̃3) in Theorem 2.3 also holds (see [21]).
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Finally, we show f ∈ Ωs(X,α). To prove this fact, we first choose q ∈ R such that
1
p

+ 1
q

= 1. Assume that x, y ∈ X such that α(x, y) ≥ s = 2p−1, that is, x(c) ≤ y(c) for all
c ∈ [a, b]. From (ii) and the Hölder inequality, for each c ∈ [a, b] we get

2εp−ε|(fx)(c)− (fy)(c)|p

≤ 2εp−ε
(∫ b

a

|K(c, r, x(r))−K(c, r, y(r))|dr
)p

≤ 2εp−ε

[(∫ b

a

1qdr

) 1
q
(∫ b

a

|K(c, r, x(r))−K(c, r, y(r))|pdr
) 1

p

]p

≤ 2εp−ε(b− a)
p
q

(∫ b

a

ζ(c, r)p|x(r)− y(r)|pdr
)

≤ 2εp−ε(b− a)
p
q

(∫ b

a

ζ(c, r)pd(x, y)dr

)
≤ 2εp−ε(b− a)p−1Ms(x, y)

(∫ b

a

ζ(c, r)pdr

)
≤Ms(x, y).

This implies that sεd(fx, fy) ≤Ms(x, y). Hence f ∈ Ωs(X,α). Thus all the conditions of
Theorem 2.3 are satisfied and hence f has a fixed point in X. It follows that the nonlinear
integral equation (3.1) has a solution.
Remark 3.2. Compared with [15, Theorem 3.1], our Theorem 3.1 has many superiori-
ties. First, our condition (ii) is much simpler than (ii) from [15, Theorem 3.1]. Indeed, our
condition (3.2) is weaker than the corresponding condition of [15, Theorem 3.1]. More-
over, we delete the function Υ(t). Whereas, Υ(t) is a complex function with very strong
conditions. Otherwise, our function ζ(c, r) satisfies the wider condition since ε is arbitrary.
Further, even if ε = 3, our condition for ζ(c, r) is also much weaker.
Remark 3.3. In [15, Theorem 3.1], there exist some mistakes. For instance, the incorrect
equality from the proof of [15, Theorem 3.1] appears as follows:

(
s3d(fx, fy)

)p
=

(
23p−3 sup

t∈[a,b]
|(fx)(t)− (fy)(t)|

)p

.

In fact, it should be the following:

(
s3d(fx, fy)

)p
=

(
23p−3 sup

t∈[a,b]
|(fx)(t)− (fy)(t)|p

)p

.

Due to such mistake, the conditions from [15, Theorem 3.1] need some revisions. Similar
revisions should be done in Corollary 3.2 and Corollary 3.3 from [15, Theorem 3.1].
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Anti Implicative IF-Ideals in BCK/BCI-algebras
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Abstract:Using triangular norms, we present a new classi�cation of fuzzy subalgebras, ideals and
implicative ideals in BCK/BCI-algebras.

Keywords: t-norm; anti if-ideal; anti implicative if-ideal; BCK/BCI-algebra.

1 Introduction

BCK/BCI-algebras are an important class of logical algebras introduced by Imai and Iseki [7], and was
extensively investigated by several researches. BCK/BCI-algebras generalize, on the one hand, the
notion of the algebra of sets with the set subtraction as the only fundemental non-nullary operation
and, on the other hand, the notion of the implication algebra (see [7]). In 1965, Zadeh [16] introduced
the notion of fuzzy sets and in 1991, Xi [15] applied this notion to BCK/BCI-algebras. In 1990,
Biswas [4] introduced the notion of anti fuzzy subgroups of groups and in 2008, modifying Biswas�
idea, Kutukcu and Sharma [10] introduced the notion of anti fuzzy ideals in BCC-algebras.
In the present paper, we introduce the notions of anti if-subalgebras, anti if-ideals and anti implica-

tive if-ideals of BCK/BCI-algebras with respect to arbitrary t-conorms and t-norms. Illustrating with
examples, we prove that our de�nitions are more general than the classical ones. We also prove that
an if-subset of a BCK/BCI-algebra is an anti if-ideal if and only if the complement of this if-subset is
an anti if-ideal. We also discuss some relationships between such notions.
Let us recall [7,8] that a BCI-algebra is an algebra (X; �; 0) of type (2; 0) which satis�es the

following conditions, for all x; y; z 2 X: (i) ((x � y) � (x � z)) � (z � y) = 0; (ii) (x � (x � y)) � y = 0;
(iii) x � x = 0; (iv) x � y = 0 and y � x = 0 imply x = y. A BCI-algebra X satisfying the additional
condition (v) for all x 2 X; 0 � x = 0 is called a BCK-algebra.
We can de�ne a partial ordering � on X by x � y if and only if x � y = 0. Furthermore, in any

BCK/BCI-algebra X, the following properties hold, for all x; y; z 2 X: (i) (x � y) � z = (x � z) � y; (ii)

*Corresponding Author
E-mail: skutukcu@omu.edu.tr (S. Kutukcu), atuna@nigde.edu.tr (A. Tuna)
2010 MR Subject Classi�cation: 06F35, 03G25, 03E72, 94D05
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x � (x � (x � y)) = x � y; (iii) x � y � x; (iv) x � 0 = x; (v) (x � z) � (y � z) � x � y; (vi) x � y implies
x � z � y � z and z � y � z � x.
A non-empty subset A of a BCK/BCI-algebra X is called an ideal of X if 0 2 A; and x � y 2 A

and y 2 A imply x 2 A for all x; y 2 X.
A non-empty subset A of a BCK/BCI-algebra X is called an implicative ideal of X if 0 2 A; and

(x � (y � x)) � z 2 A and z 2 A imply x 2 A for all x; y; z 2 X. Any implicative ideal is an ideal, but
not conversely.
A mapping f of a BCK/BCI-algebra X into a BCK/BCI-algebra Y is called a homomorphism if

f(x � y) = f(x) � f(y) for all x; y 2 X.
By a triangular conorm (shortly t-conorm) S [14], we mean a binary operation on the unit interval

[0; 1] which satis�es the following conditions, for all x; y; z 2 [0; 1]: (i) S(x; 0) = x; (ii) S(x; y) � S(x; z)
if y � z; (iii) S(x; y) = S(y; x); (iv) S(x; S(y; z)) = S(S(x; y); z). Some important examples of
t-conorms are SL(x; y) = min fx+ y; 1g, SP (x; y) = x+ y � xy and SM (x; y) = max fx; yg :
By a triangular norm (shortly t-norm) T [14], we mean a binary operation on the unit interval [0; 1]

which satis�es the following conditions, for all x; y; z 2 [0; 1]: (i) T (x; 1) = x; (ii) T (x; y) � T (x; z) if
y � z; (iii) T (x; y) = T (y; x); (iv) T (x; T (y; z)) = T (T (x; y); z). Some important examples of t-norms
are TL(x; y) = max fx+ y � 1; 0g, TP (x; y) = xy and TM (x; y) = min fx; yg :
A t-conorm S and a t-norm T are called associated [11], i.e. S(x; y) = 1 � T (1 � x; 1 � y) for all

x; y 2 [0; 1]. For example, t-conorm SM and t-norm TM are associated [6,9-11]. Also, it is well known
[6,9] that if S is a t-conorm and T is a t-norm, then max fx; yg � S(x; y) and min fx; yg � T (x; y) for
all x; y 2 [0; 1], respectively.
Note that, the concepts of t-conorms and t-norms are known as the axiomatic skeletons that we

use for characterizing fuzzy unions and intersections, respectively. These concepts were originally
introduced by Menger [13] and several properties and examples for these concepts were proposed by
many authors (see [6,9-11,13,14]).
A fuzzy subset A in an arbitrary non-empty set X is a function �A : X ! [0; 1]. The complement

of �A, denoted by �
c
A, is the fuzzy subset in X given by �cA(x) = 1� �A(x) for all x 2 X.

De�nition 1.1 ([15]) A fuzzy subset A in a BCK/BCI-algebra X is called a fuzzy BCK/BCI-subalgebra
of X if

�A(x � y) � min f�A(x); �A(y)g
for all x; y 2 X.

De�nition 1.2 ([15]) A fuzzy subset A in a BCK/BCI-algebra X is called a fuzzy ideal of X if

�A(0) � �A(x) � min f�A(x � y); �A(y)g

for all x; y 2 X.

De�nition 1.3 ([10,12]) A fuzzy subset A in a BCK/BCI-algebra X is called a implicative fuzzy
ideal of X if

�A(0) � �A(x) � min f�A((x � (y � x)) � z); �A(z)g
for all x; y; z 2 X.

De�nition 1.4 ([12]) A fuzzy subset A in a BCK/BCI-algebra X is called an anti fuzzy BCK/BCI-
subalgebra of X if

�A(x � y) � max f�A(x); �A(y)g
for all x; y 2 X.
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De�nition 1.5 ([12]) A fuzzy subset A in a BCK/BCI-algebra X is called an anti fuzzy ideal of X
if

�A(0) � �A(x) � max f�A(x � y); �A(y)g
for all x; y 2 X.

As a generalization of the notion of fuzzy subsets in X, Atanassov [2] introduced the concept of
intuitionistic fuzzy subsets (or simply if-sets) de�ned on X as objects having the form

A = f(x; �A(x); �A(x)) : x 2 Xg

where the functions �A : X ! [0; 1] and �A : X ! [0; 1] denote the degree of membership (namely
�A(x)) and the degree of non-membership (namely �A(x)) of each element x in X to the set A,
respectively, and 0 � �A(x) + �A(x) � 1 for all x in X.
In [3], for every two if-subsets A and B in X, we have

(i) A � B i¤ �A(x) � �B(x) and �A(x) � �B(x) for all x 2 X,

(ii) �A = f(x; �A(x); �cA(x)) : x 2 Xg ;

(iii) �A = f(x; �cA(x); �A(x)) : x 2 Xg :

For the sake of simplicity, we shall use the symbolA = (�A; �A) for the if-subsetA = f(x; �A(x); �A(x)) : x 2 Xg.

2 Anti IF-Ideals

De�nition 2.1 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti intuitionistic
fuzzy BCK/BCI-subalgebra of X (or simply, an anti if-BCK/BCI-subalgebra of X) if

(i) �A(x � y) � max f�A(x); �A(y)g ;

(ii) �A(x � y) � min f�A(x); �A(y)g

for all x; y 2 X.

De�nition 2.2 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti intuitionistic
fuzzy BCK/BCI-subalgebra of X with respect to a t-conorm S and a t-norm T (or simply, an (S; T )-
anti if-BCK/BCI-subalgebra of X) if

(i) �A(x � y) � S(�A(x); �A(y))

(ii) �A(x � y) � T (�A(x); �A(y))

for all x; y 2 X.

Remark 2.3 Every anti if-BCK/BCI-subalgebra of a BCK/BCI-algebra is an (S; T )-anti if-BCK/BCI-
subalgebra of X such that S = SM and T = TM , but it is clear that the converse is not true. If
�A(x) = 1 � �A(x) for all x 2 X, then every anti if-BCK/BCI-subalgebra of a BCK/BCI-algebra X
is an anti fuzzy BCK/BCI-subalgebra of X. Also, if �A(x) = 1 � �A(x) for all x 2 X, S = SM and
T = TM , then every (S; T )-anti if-BCK/BCI-subalgebra of a BCK/BCI-algebra X is an anti fuzzy
BCK/BCI-subalgebra of X.
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De�nition 2.4 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti if-ideal of
X if

(i) �A(0) � �A(x) and �A(0) � �A(x);

(ii) �A(x) � max f�A(x � y); �A(y)g ;

(iii) �A(x) � min f�A(x � y); �A(y)g

for all x; y 2 X.

De�nition 2.5 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti if-ideal of
X with respect to a t-conorm S and a t-norm T (or simply, an (S; T )-anti if-ideal of X) if

(i) �A(0) � �A(x) and �A(0) � �A(x);

(ii) �A(x) � S(�A(x � y); �A(y));

(iii) �A(x) � T (�A(x � y); �A(y))

for all x; y 2 X.

Remark 2.6 Every anti if-ideal of a BCK/BCI-algebra is an (S; T )-anti if-ideal of X such that
S = SM and T = TM , but it is clear that the converse is not true. If �A(x) = 1 � �A(x) for
all x 2 X, then every anti if- ideal of a BCK/BCI-algebra X is an anti fuzzy ideal of X. Also,
if �A(x) = 1 � �A(x) for all x 2 X, S = SM and T = TM , then every (S; T )-anti if-ideal of a
BCK/BCI-algebra X is an anti fuzzy ideal of X.

Example 2.7 Let X = f0; 1; 2; 3g be a BCK-algebra with the Cayley table as follows

� j 0 1 2 3
0
1
2
3

��������
0 0 0 0
1 0 0 1
2 1 0 2
3 3 3 0

De�ne an if-set A = (�A; �A) in X by

�A(x) =

8<: 0, x = 0
1=2, x = 1 or 2
1, x = 3

and �A(x) =

8<: 1, x = 0
1=3, x = 1 or 2
0, x = 3

It is easy to check that 0 � �A(x) + �A(x) � 1, �A(0) � �A(x) and �A(0) � �A(x). Also,
�A(x) � SM (�A(x�y); �A(y)) and �A(x) � TL(�A(x�y); �A(y)) for all x; y 2 X. Hence A = (�A; �A)
is an (SM ; TL)-anti if-ideal of X. Also note that t-conorm SM and t-norm TL are not associated.

Remark 2.8 Note that, the above example holds even with the t-conorm SM and t-norm TM , and
hence A = (�A; �A) is also an (SM ; TM )-anti if-ideal of X. Therefore, every anti if-ideal of X is an
(S; T )-anti if-ideal but the converse is not true.

Example 2.9 Let X = f0; a; b; c; dg be a BCK-algebra with the Cayley table as follows

4
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� j 0 a b c d
0
a
b
c
d

����������
0 0 0 0 0
a 0 a 0 0
b b 0 0 0
c b a 0 0
d d d d 0

De�ne an if-set A = (�A; �A) in X by

�A(x) =

�
1=2, x 2 f0; a; bg
3=4, otherwise

and �A(x) =
�
1=3, x 2 f0; a; bg
1=4, otherwise.

It is easy to check that 0 � �A(x) + �A(x) � 1, �A(0) � �A(x) and �A(0) � �A(x). Also,
�A(x) � SL(�A(x�y); �A(y)) and �A(x) � TP (�A(x�y); �A(y)) for all x; y 2 X. Hence A = (�A; �A)
is an (SL; TP )-anti if-ideal of X. But A = (�A; �A) is not an anti if-ideal of X.

Lemma 2.10 If A = (�A; �A) is an (S; T )-anti if-ideal of a BCK/BCI-algebra X, then so is �A =
(�A; �

c
A) such that t-conorm S and t-norm T are associated.

Proof. Since A = (�A; �A) is an (S; T )-anti if-ideal of X, then �A(0) � �A(x) for all x 2 X and so
1� �cA(0) � 1� �cA(x), hence �cA(0) � �cA(x). Also, for all x; y 2 X, we have

�A(x) � S(�A(x � y); �A(y))

and so
1� �cA(x) � S(1� �cA(x � y); 1� �cA(y))

which implies
�cA(x) � 1� S(1� �cA(x � y); 1� �cA(y)):

Since S and T are associated, we have

�cA(x) � T (�cA(x � y); �cA(y)):

Thus, �A = (�A; �cA) is an (S; T )-anti if-ideal of X.

Lemma 2.11 If A = (�A; �A) is an (S; T )-anti if-ideal of a BCK/BCI-algebra X, then so is �A =
(�cA; �A) such that t-conorm S and t-norm T are associated.

Proof. The proof is similar to the proof of Lemma 2.10.
Combining the above two lemmas, it is easy to see that the following theorem is valid.

Theorem 2.12 A = (�A; �A) is an (S; T )-anti if-ideal of a BCK/BCI-algebra X if and only if �A
and �A are (S; T )-anti if-ideals of X such that t-conorm S and t-norm T are associated.

Corollary 2.13 A = (�A; �A) is an (S; T )-anti if-ideal of a BCK/BCI-algebra X if and only if �A
and �cA are anti fuzzy ideals of X such that t-conorm S and t-norm T are associated.

Lemma 2.14 Let A = (�A; �A) be an (S; T )-anti if-ideal of a BCK/BCI-algebra X. If � is a partial
ordering on X then �A(x) � �A(y) and �A(y) � �A(x) for all x; y 2 X such that x � y.

5
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Proof. Let X be a BCK/BCI-algebra. It is known [8] that � is a partial ordering on X de�ned by
x � y if and only if x � y = 0 for all x; y 2 X. Let A = (�A; �A) be an (S; T )-anti if-ideal of X. Then

�A(x) � S(�A(x � y); �A(y)) = S(�A(0); �A(y)) � �A(y)

and
�A(x) � T (�A(x � y); �A(y)) = T (�A(0); �A(y)) � �A(y):

These complete the proof.

Theorem 2.15 Let A = (�A; �A) be an (S; T )-anti if-ideal of a BCK/BCI-algebra X. A is an (S; T )-
anti if-BCK/BCI-subalgebra of X:

Proof. Let A = (�A; �A) be an (S; T )-anti if-ideal of X. Since x � y � x for all x; y 2 X, it follows
from Lemma 2.14 that �A(x � y) � �A(x) and �A(x) � �A(x � y). Then

�A(x � y) � �A(x) � S(�A(x � y); �A(y)) � S(�A(x); �A(y))

and
�A(x � y) � �A(x) � T (�A(x � y); �A(y)) � T (�A(x); �A(y))

and so A is an (S; T )-anti if-BCK/BCI-subalgebra of X.

Remark 2.16 The converse of the above theorem does not hold in general. In fact, suppose that X
be the BCK-algebra in Example 2.7. De�ne an if-set A = (�A; �A) in X by

�A(x) =

8<: 0, x = 0
1=2, x = 1
1, x = 2 or 3

and �A(x) =

8<: 1, x = 0
1=3, x = 1
0, x = 2 or 3

By routine calculations, we know that A = (�A; �A) is an (SM ; TM )-anti if-BCK-subalgebra of X but
not an (SM ; TM )-anti if-ideal of X because �A(2) = 1 > maxf�A(2 � 1); �A(1)g and �A(2) = 0 <
minf�A(2 � 1); �A(1)g.

If A = (�A; �A) is an if-subset in a BCK/BCI-algebra X and f is a self mapping of X, we de�ne
mappings �A[f ] : X ! [0; 1] by �A[f ](x) = �A(f(x)) and �A[f ] : X ! [0; 1] by �A[f ](x) = �A(f(x))
for all x 2 X, respectively.

Proposition 2.17 If A = (�A; �A) is an (S; T )-anti if-ideal of a BCK/BCI-algebra X and f is an
increasing endomorphism of X, then (�A[f ]; �A[f ]) is an (S; T )-anti if-ideal of X.

Proof. For any given x; y 2 X, we have

�A[f ](x) = �A(f(x)) � S(�A(f(x) � f(y)); �A(f(y)))
= S(�A(f(x � y)); �A(f(y)))
= S(�A[f ](x � y); �A[f ](y));

�A[f ](x) = �A(f(x)) � T (�A(f(x) � f(y)); �A(f(y)))
= T (�A(f(x � y)); �A(f(y)))
= T (�A[f ](x � y); �A[f ](y)):

6
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Also, since X is a BCK/BCI-algebra, we have 0 � x = 0 and so 0 � x for all x 2 X. Since f is
increasing, we have f(0) � f(x) for all x 2 X and, from Lemma 2.14, �A(f(0)) � �A(f(x)) and
�A(f(x)) � �A(f(0)) i.e., �A[f ](0) � �A[f ](x) and �A[f ](x) � �A[f ](0) for all x 2 X. This completes
the proof.
If f is a self mapping of a BCK/BCI-algebra X and B = (�B ; �B) is an if-subset in f(X), then

the if-subset A = (�A; �A) in X de�ned by �A = �B � f and �A = �B � f (i.e., �A(x) = �B(f(x)) and
�A(x) = �B(f(x)) for all x 2 X) is called the preimage of B under f .

Theorem 2.18 An onto increasing homomorphic preimage of an (S; T )-anti if-ideal is an (S; T )-anti
if-ideal.

Proof. Let f : X ! Y be an onto homomorphism of BCK/BCI-algebras, B = (�B ; �B) be an
(S; T )-anti if-ideal of Y , and A = (�A; �A) be preimage of B under f . Then, we have

�A(x) = �B(f(x)) � S(�B(f(x) � f(y)); �B(f(y)))
= S(�B(f(x � y)); �B(f(y)))
= S(�A(x � y); �A(y));

�A(x) = �B(f(x)) � T (�B(f(x) � f(y)); �B(f(y)))
= T (�B(f(x � y)); �B(f(y)))
= T (�A(x � y); �A(y))

for all x; y 2 X. Also, �A(0) = �B(f(0)) � �B(f(x)) = �A(x) and �A(0) = �B(f(0)) � �B(f(x)) =
�A(x) for all x 2 X. Hence, A = (�A; �A) is an (S; T )-anti if-ideal of X.

Lemma 2.19 ([9]) Let S and T be a t-conorm and a t-norm, respectively. Then

S(S(x; y); S(z; t)) = S(S(x; z); S(y; t));

T (T (x; y); T (z; t)) = T (T (x; z); T (y; t))

for all x; y; z; t 2 [0; 1]:

Theorem 2.20 Let S be a t-conorm, T be a t-norm and X = X1�X2 be the direct product BCK/BCI-
algebra of BCK/BCI-algebras X1 and X2. If A1 = (�A1

; �A1) (resp. A2 = (�A2
; �A2)) is an (S; T )-anti

if-ideal of X1 (resp. X2), then A = (�A; �A) is an (S; T )-anti if-ideal of X de�ned by �A = �A1
��A2

and �A = �A1
� �A2

such that

�A(x1; x2) = (�A1
� �A2

)(x1; x2) = S(�A1
(x1); �A2

(x2));

�A(x1; x2) = (�A1 � �A2)(x1; x2) = T (�A1(x1); �A2(x2))

for all (x1; x2) 2 X.
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Proof. Let x = (x1; x2) and y = (y1; y2) be any elements of X. Since X is a BCK/BCI-algebra, we
have

�A(x) = (�A1
� �A2

)(x1; x2)

= S(�A1
(x1); �A2

(x2))

� S(S(�A1
(x1 � y1); �A1

(y1)); S(�A2
(x2 � y2); �A2

(y2)))

= S(S(�A1
(x1 � y1); �A2

(x2 � y2)); S(�A1
(y1); �A2

(y2)))

= S((�A1
� �A2

)(x1 � y1; x2 � y2); (�A1
� �A2

)(y1; y2))

= S((�A1
� �A2

)((x1; x2) � (y1; y2)); (�A1
� �A2

)(y1; y2))

= S(�A(x � y); �A(y));

�A(x) = (�A1 � �A2)(x1; x2)

= T (�A1(x1); �A2(x2))

� T (T (�A1(x1 � y1); �A1(y1)); T (�A2(x2 � y2); �A2(y2)))

= T (T (�A1(x1 � y1); �A2(x2 � y2)); T (�A1(y1); �A2(y2)))

= T ((�A1 � �A2)(x1 � y1; x2 � y2); (�A1 � �A2)(y1; y2))

= T ((�A1 � �A2)((x1; x2) � (y1; y2)); (�A1 � �A2)(y1; y2))

= T (�A(x � y); �A(y))

Also,

�A(0) = (�A1
� �A2

)(0; 0) = S(�A1
(0); �A2

(0))

� S(�A1
(x1); �A2

(x2)) = (�A1
� �A2

)(x1; x2)

= �A(x);

�A(0) = (�A1
� �A2

)(0; 0) = T (�A1
(0); �A2

(0))

� T (�A1
(x1); �A2

(x2)) = (�A1
� �A2

)(x1; x2)

= �A(x):

This completes the proof.

De�nition 2.21 Let S be a t-conorm and T be a t-norm, and let A = (�A; �A) and B = (�B ; �B)
be if-sets in a BCK/BCI-algebra X. Then S-product of �A and �B, and T -product of �A and �B,
written [�A:�B ]S and [�A:�B ]T , are de�ned by

[�A:�B ]S(x) = S(�A(x); �B(x));

[�A:�B ]T (x) = T (�A(x); �B(x))

for all x 2 X, respectively.

Theorem 2.22 Let S be a t-conorm and T be a t-norm, and let A = (�A; �A) and B = (�B ; �B) be
(S; T )-anti if-ideals of a BCK/BCI-algebra X. If S1 is a t-conorm which dominates S, that is,

S1(S(x; y); S(z; t)) � S(S1(x; z); S1(y; t))
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and T1 is a t-norm which dominates T , that is,

T1(T (x; y); T (z; t)) � T (T1(x; z); T1(y; t))

for all x; y; z; t 2 [0; 1], then ([�A:�B ]S1 ; [�A:�B ]T1) is an (S; T )-anti if-ideal of X.

Proof. For any x; y 2 X, we have

[�A:�B ]S1(x) = S1(�A(x); �B(x))

� S1(S(�A(x � y); �A(y)); S(�B(x � y); �B(y)))
� S(S1(�A(x � y); �B(x � y)); S1(�A(y); �B(y)))
= S([�A:�B ]S1(x � y); [�A:�B ]S1(y));

[�A:�B ]T1(x) = T1(�A(x); �B(x))

� T1(T (�A(x � y); �A(y)); T (�B(x � y); �B(y)))
� T (T1(�A(x � y); �B(x � y)); T1(�A(y); �B(y)))
= T ([�A:�B ]T1(x � y); [�A:�B ]T1(y)):

Also,
[�A:�B ]S1(0) = S1(�A(0); �B(0)) � S1(�A(x); �B(x)) = [�A:�B ]S1(x);

[�A:�B ]T1(0) = T1(�A(0); �B(0)) � T1(�A(x); �B(x)) = [�A:�B ]T1(x)

This completes the proof.

3 Anti Implicative IF-Ideals

De�nition 3.1 A fuzzy subset A in a BCK/BCI-algebra X is said to be an anti implicative fuzzy
ideal of X if

(i) �A(0) � �A(x);

(ii) �A(x) � max f�A((x � (y � x)) � z); �A(z)g

for all x; y; z 2 X.

De�nition 3.2 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti implicative
if-ideal of X if

(i) �A(0) � �A(x) and �A(0) � �A(x);

(ii) �A(x) � max f�A((x � (y � x)) � z); �A(z)g ;

(iii) �A(x) � min f�A(x � (y � x)) � z); �A(z)g

for all x; y; z 2 X.
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De�nition 3.3 An if-subset A = (�A; �A) in a BCK/BCI-algebra X is said to be an anti implicative
if-ideal of X with respect to a t-conorm S and a t-norm T (or simply, an (S; T )-anti implicative if-ideal
of X) if

(i) �A(0) � �A(x) and �A(0) � �A(x);

(ii) �A(x) � S(�A((x � (y � x)) � z); �A(z));

(iii) �A(x) � T (�A(x � (y � x)) � z); �A(z))

for all x; y; z 2 X.

Remark 3.4 Every anti implicative if-ideal of a BCK/BCI-algebra is an (S; T )-anti implicative if-
ideal of X such that S = SM and T = TM , but it is clear that the converse is not true. If �A(x) =
1 � �A(x) for all x 2 X, then every anti implicative if-ideal of a BCK/BCI-algebra X is an anti
implicative fuzzy ideal of X. Also, if �A(x) = 1 � �A(x) for all x 2 X, S = SM and T = TM , then
every (S; T )-anti implicative if-ideal of a BCK/BCI-algebra X is an anti implicative fuzzy ideal of X.

Example 3.5 In Example 2.9, it is easy to see that A = (�A; �A) is also an (SL; TP )-anti implicative
if-ideal of X.

Remark 3.6 An (S; T )-anti if-ideal of a BCK/BCI-algebra X need not to be (S; T )-anti implicative
if-ideal. For instance, in Example 2.7, we know that A = (�A; �A) is an (SM ; TL)-anti if-ideal of X
but it is not an (SM ; TL)-anti implicative if-ideal of X, because �A(1) > SM (�A((1�(2�1))�0); �A(0))
and �A(1) < TL(�A((1 � (2 � 1)) � 0); �A(0)).

Theorem 3.7 Any (S; T )-anti implicative if-ideal of a BCK/BCI-algebra X is an (S; T )-anti if-ideal
of X.

Proof. In De�nition 3.3, let z = y and y = x. Hence �A(x) � S(�A((x � (x � x)) � y); �A(y)) and
�A(x) � T (�A((x � (x � x)) � y); �A(y)). Since x � x = 0 and x � 0 = x, we obtain (ii) and (iii) in
De�nition 2.5. This completes the proof.

Theorem 3.8 Let A = (�A; �A) be an (S; T )-anti if-ideal of a BCK/BCI-algebra X. Then A =
(�A; �A) is an (S; T )-anti implicative if-ideal of X i¤ �A(x) � �A(x�(y�x)) and �A(x) � �A(x�(y�x))
for all x; y 2 X.

Proof. Assume that A = (�A; �A) is an (S; T )-anti implicative if-ideal. Taking z = 0 in (ii) and (iii),
and using (i) in De�nition 3.3, we get the inequalities. Conversely, since A = (�A; �A) is an (S; T )-anti
if-ideal, hence

�A(x) � �A(x � (y � x)) � S(�A((x � (y � x)) � z); �A(z));

�A(x) � �A(x � (y � x)) � T (�A((x � (y � x)) � z); �A(z)):

This completes the proof.

Lemma 3.9 Let A = (�A; �A) be an (S; T )-anti if-ideal of a BCK/BCI-algebra X. If x � y � z holds
in X, then �A(x) � S(�A(y); �A(z)) and �A(x) � T (�A(y); �A(z)) for all x; y 2 X.
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Proof. Since x � y � z holds for all x; y 2 X, we have

�A(x � y) � S(�A((x � y) � z); �A(z))
� S(�A(z � z); �A(z))
= S(�A(0); �A(z))

� �A(z)

it follows that
�A(x) � S(�A(x � y); �A(y)) � S(�A(y); �A(z));

�A(x � y) � T (�A((x � y) � z); �A(z))
� T (�A(z � z); �A(z))
= T (�A(0); �A(z))

� �A(z)

hence
�A(x) � T (�A(x � y); �A(y)) � T (�A(y); �A(z)):

This completes the proof.

Theorem 3.10 ([12]) A BCK-algebra is implicative i¤ it is both commutative and positive implica-
tive.

Theorem 3.11 ([12]) If X is an implicative BCK-algebra, then x � ((x � (y � x)) � z) � z for all
x; y; z 2 X.

Theorem 3.12 In an implicative BCK/BCI-algebra, every (S; T )-anti if-ideal is an (S; T )-anti im-
plicative if-ideal.

Proof. The proof is easily follows from Lemma 3.9 and Theorem 3.11.

Theorem 3.13 The intersection of any set of (S; T )-anti implicative if-ideals of a BCK/BCI-algebra
X is also an (S; T )-anti implicative if-ideal whenever S and T are continuous norms.

Proof. Let
�
Ai = (�Ai

; �Ai)
	
i2I be a family of (S; T )-anti implicative if-ideals of X. Then, for any

x; y; z 2 X, �
\ �Ai

�
(0) = inf

�
�Ai

(0)
	
� inf

�
�Ai

(x)
	
=
�
\ �Ai

�
(x);

(\ �Ai) (0) = sup f�Ai(0)g � sup f�Ai(x)g = (\ �Ai) (x):

Also, �
\ �Ai

�
(x) = inf

�
�Ai

(x)
	
� inf

�
S(�Ai

((x � y) � z); �Ai
(z))

	
= S(inf

�
�Ai

((x � y) � z)
	
; inf

�
�Ai

(z)
	
)

= S(
�
\ �Ai

�
((x � y) � z);

�
\ �Ai

�
(z));

(\ �Ai
) (x) = sup

�
�Ai

(x)
	
� sup fT (�Ai

((x � y) � z); �Ai
(z))g

= T (sup f�Ai
((x � y) � z)g ; sup f�Ai

(z)g)
= T ((\ �Ai

) ((x � y) � z); (\ �Ai
) (z)):

This completes the proof.
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4 Conclusions

In this work, we introduce the notions of anti intuitionistic fuzzy BCK/BCI- subalgebras, anti in-
tuitionistic fuzzy ideals and anti implicative intuitionistic fuzzy ideals with the help of arbitrary
t-conorms and t-norms, and discuss some properties such as product, direct product and relations
between them. But there are still some open problems. How can we de�ne the notions of anti in-
tuitionistic fuzzy �lters and anti intuitionistic fuzzy congruences with recpect to arbitrary t-conorms
and t-norms on a BCK/BCI-algebra? What are the relations between such notions, between the
cosets of an anti intuitionistic fuzzy �lter and anti intuitionistic fuzzy congruences? These could be
a topic of further research. Furthermore, using that generalizations, one could de�ne the notion anti
intuitionistic fuzzy subgroups in BCK/BCI-algebras with respect to arbitrary t-conorms and t-norms
in the sense of [1] and [7]. Using the idea of Dudek et al. [5], one could also generalize the notion of
fuzzy topological anti BCK/BCI-algebras to intuitionistic fuzzy structures.
The notions given in this paper can be fundamental to other sciences. For instance, in the last

decade, most of researchers are focused on Content Based Image Retrieval, shortly CBIR, and manag-
ing uncertainty becomes a fundamental topic in image database. Intuitionistic fuzzy set theory can be
ideally suited to deal with this kind of uncertainty. This fuzziness is mainly due to similarity of media
features, imperfection in the feature extraction algorithms, esc. Using the concept of this paper, one
could develop an anti intuitionistic fuzzy model for image data and provide an anti intuitionistic fuzzy
subalgebra for dealing with such data. Moreover, new anti intuitionistic fuzzy algebraic operators
could be de�ned in order to capture the fuzziness related to the semantic descriptors of an image,
and built thematic categorizations of multimedia documents using ontological information and anti
intuitionistic fuzzy subalgebra in triangular norm systems.
Problem. Can we replace in the statement of Theorem 3.13, the condition "S and T are contin-

uous" with "infa>0 S(a; a) = 0 and supb<1 T (b; b) = 1"?
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Abstract:The concept of (IT)-commutativity and property (E.A) between set-valued mappings and
single-valued mappings are used to prove some common �xed point theorems on metric spaces without
taking condition of continuity.
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1 Introduction

Banach contraction principle or Banach�s �xed point theorem provides a technique for solving a va-
riety of applied problems in mathematical science and engineering. Many authors have extended,
generalized and improved Banach�s �xed point theorem in di¤erent ways. In [9] Jungck introduced
more generalized commuting mappings, called compatible mappings, which are more general than
commuting and weakly commuting mappings. This concept has been useful for obtaining more com-
prehensive �xed point theorems (Jeong and Rhoades [8], Jungck [9,10], Jungck and Rhoades [11],
Kang and Rhoades [13]).
Recently, Jungck and Rhoades [11,12] de�ned the concepts of ��compatible mappings and weakly

compatible mappings, respectively, which extend the concept of compatible mappings in single-valued
settings to set-valued mappings. They showed that compatible mappings and ��compatible mappings
are weakly compatible but the converse does not need to be true. Several authors used these concepts
to prove some common �xed point theorems (Ahmed [2], Chang[3], Rashwan and Ahmed [20,21],
Rhoades [22]). Pant [16-19] initiated the study of noncompatible maps and introduced pointwise R-
weak commutativity of mappings. He also showed that pointwise R- weak commutativity is equivalent
to weak compatibility at coincidence points for single-valued mappings. Following Itoh and Takahshi
[7], Singh and Mishra [23] introduced the notion of (IT)-commutativity for single-valued and multi-
valued mappings. They showed that (IT)-commutativity of hybrid pair is more general than their
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weak compatibility at the same point. More recently, Aamri and Moutawakil [1] de�ned a property
(E.A) for self single valued maps and obtained some �xed point theorems for such mappings under
strict contractive conditions. The class of (E.A) maps contains the class of noncompatible maps.
In this paper, the concept of (IT)-commutativity and property (E.A) between single-valued map-

pings and set-valued mappings are used to prove some common �xed point theorems on metric spaces
without taking any mapping continuous. We improve and generalize the results of Ahmed [2], Fisher
[4] and Khan et al. [15].

2 Preliminaries

In the sequel, (X; d) denotes a metric space and B(X) is the set of all non empty bounded subsets of
X. As in [3] and [6], we de�ne

�(A;B) = supfd(a; b) : a 2 A; b 2 Bg;
D(A;B) = inffd(a; b) : a 2 A; b 2 Bg;
H(A;B) = inffr > 0 : Ar � B;Br � Ag

for all A;B in B(X) where Ar = fx 2 X : d(x; a) < r for some a 2 Ag and Br = fy 2 X : d(y; b) < r
for some b 2 Bg:
If A = fag for some a 2 A, we denote �(a;B), D(a;B) and H(a;B) for �(A;B), D(A;B) and

H(A;B) respectively. Also, if B = fbg and A = fag, one can deduce that �(A;B) = D(A;B) =
H(A;B) = d(a; b).
It follows immediately from the de�nition of �(A;B) that �(A;B) = �(B;A) � 0, �(A;B) �

�(A;C) + �(C;B), �(A;B) = 0 i¤ A = B = fag, �(A;A) = diamA for all A;B;C 2 B(X).

De�nition 2.1 ([6]) A sequence fAng of nonempty subsets of X is said to be convergent to a subset
A of X if

(i) Each point a in A is the limit of a convergent sequence fang, where an is in An for all n 2 N .

(ii) For arbitrary � > 0, there exists an integer m such that An � A� for n > m, where A� denotes
the set of all points x in X for which there exists a point a in A, depending on x, such that
d(x; a) < �.

A is said to be the limit of the sequence fAng.

Lemma 2.2 ([6]) If fAng and fBng are sequences in B(X) converging to A and B in B(X), respec-
tively, then the sequence f�(An; Bn)g converges to �(A;B).

Lemma 2.3 ([6]) If fAng is a sequence in B(X) and y is a point in X such that �(An; y)! 0, then
the sequence fAng converges to the set fyg in B(X).

Lemma 2.4 ([3]) For A;B;C;D 2 B(X), we have

�(A;B) � H(A;C) + �(C;D) +H(D;B):

De�nition 2.5 ([6]) The mappings I : X ! X and F : X ! B(X) are said to be weakly commuting
if IFx 2 B(X) and �(FIx; IFy) � maxf�(Ix; Fx); diamIFxg for all x in X.
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De�nition 2.6 ([11]) The mappings I : X ! X and F : X ! B(X) are �-compatible if the limit
limn!1�(FIxn; IFxn) = 0 whenever fxng is a sequence in X such that IFxn 2 B(X), Fxn ! ftg
and Ixn ! t for some t in X.

De�nition 2.7 ([12]) The mappings I : X ! X and F : X ! B(X) are weakly compatible if they
commute at coincidence points, i.e. for each point u 2 X such that Fu = fIug, we have FIu = IFu
(Note that the equation Fu = fIug implies that Fu is singleton).

Itoh and Takahsi [7], and Singh and Mishra [23] de�ned the (IT)-commutativity for single-valued
and set-valued mappings is as follows:

De�nition 2.8 The mappings I : X ! X and F : X ! B(X) are said to be (IT)-commuting (Itoh-
Takahasi commutativity is simply called (IT)-commuting) at x 2 X if IFx � FIx. I and F are
(IT)-commuting on X if they are (IT)-commuting at each point of X.

In [14], the property (E.A) for single-valued and set-valued mappings is de�ned as follows:

De�nition 2.9 The mappings I : X ! X and F : X ! B(X) are said to satisfy the property (E.A)
if there exists a sequence fxng in X such that limn!1Ixn = t and limn!1Fxn = ftg for some
t 2 X.

Remark 2.10 Let X is a metric space, I : X ! X and F : X ! B(X). Then it is clear from Jungck
and Rhoade�s [11] de�nition that I and F will not be �-compatible if there exists at least one sequence
fxng in X such that limn!1Ixn = t and limn!1Fxn = ftg for some t 2 X, but �(FIxn; IFxn) is
either non- zero or non existent. Thus two non �-compatible maps satisfy the property (E.A).

Example 2.11 Let X = [1;1] with the usual metric. De�ne I : X ! X, F : X ! B(X) by
Ix = x + 1 and Fx = [1; x + 1] for all x 2 X. Then IF1 � FI1. Therefore, I and F are IT-
commuting at x = 1. But I and F are not weakly compatible since IF1 6= FI1. Consider the sequence
fxng = f1=ng. Clearly limn!1Ixn = 1 and limn!1Fxn = f1g. Thus I and F satisfy the property
(E.A). But I and F are not �-compatible.

Remark 2.12 It is clear from Remark 1 and Example 1 that if I : X ! X and F : X ! B(X) are
(IT)-commuting maps then I and F satisfy the property (E.A).

Let I : X ! X and F : X ! B(X). In all that follows, C(F; I) stands for the set of coincidence
points of the maps F and I, that is C(F; I) = fz : fIzg = Fzg.

3 Main Results

Theorem 3.1 Let (X; d) be a complete metric space. Let I; J be mappings of X into itself and F;G
of X into B(X) such that

(1.1) �(Fx;Gy) � maxfcd(Ix; Jy); c�(Ix; Fx); c�(Jy;Gy); aD(Ix;Gy)+bD(Jy; Fx)g for all x; y 2 X,
where 0 � c < 1, a; b � 0, a+ b < 1, cmaxf a

1�a ;
b
1�bg < 1,

(1.2) [F (X) � J(X) and [G(X) � I(X), then

3
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(i) F and I have a coincidence point.
(ii) G and J have a coincidence point.
Further if

(1.3) F and I are (IT)- commuting at p 2 C(F; I), G and J are (IT)- commuting at q 2 C(G; J),
then

(iii) I; J; F and G have a unique common �xed point u 2 X.
Proof. Let x0 be an arbitrary point in X. By (1.2), we choose a point x1 in X such that Jx1 2
Fx0 = Z0 and for this point x1; there exists a point x2 in X such taht Ix2 2 Gx1 = Z1 and so on.
Continuing in this manner, we can de�ne a sequence fxng as follows:
(1.4) Jx2n+1 2 Fx2n = Z2n and Ix2n+2 2 Gx2n+1 = Z2n+1; n 2 N [ f0g.
For simplicity, we put Vn = �(Zn; Zn+1) for n 2 N [ f0g. By (1.1) and (1.4), we have

V2n = �(Z2n; Z2n+1) = �(Fx2n; Gx2n+1)

� maxfcd(Ix2n; Jx2n+1); c�(Ix2n; Fx2n); c�(Jx2n+1; Gx2n+1);
aD(Ix2n; Gx2n+1) + bD(Jx2n+1; Fx2n)g

� maxfcV2n�1; cV2n; a(V2n�1 + V2n)g
� maxfc; a

1� agV2n�1

for n 2 N . Similarly, one can show that

V2n+1 = �(Z2n+1; Z2n+2) = �(Gx2n+1; Fx2n+2) � maxfc;
b

1� bgV2n

for n 2 N . If we put � = maxfc; a
1�ag:maxfc;

b
1�bg, then by hypothesis it can be easily seen that

0 � � < 1. So we deduce that
(1.5) V2n � �V2n�2 � :::: � �nV0 and V2n+1 � �V2n�1 � :::: � �nV1
for n 2 N . Put M = maxfV0; V1g. It follows from the inequality (1.5) that if zn is an arbitrary

point in the set Zn for n 2 N , then we obtain that d(z2n; z2n+1) � �(Z2n; Z2n+1) � �nM and
d(z2n+1; z2n+2) � �(Z2n+1; Z2n+2) � �nM . This implies that fzng is a Cauchy sequence in the
complete metric space X. Hence it converges to a point u 2 X, which does not depend upon the
particular choice of each zn. In particular, the sequences fIx2ng and fJx2n+1g converge to u and the
sequences of sets fFx2ng and fGx2n+1g converge to the set fug.
Since [G(X) � I(X), there exists a point p 2 X such that fug = fIpg. Then using (1.1), we have

�(Fp;Gx2n+1) � maxfcd(Ip; Jx2n+1); c�(Ip; Fp); c�(Jx2n+1; Gx2n+1);
aD(Ip;Gx2n+1) + bD(Jx2n+1; Fp)g

� maxfcd(u; Jx2n+1); c�(u; Fp); c�(Jx2n+1; Gx2n+1);
a�(u;Gx2n+1) + b�(Jx2n+1; Fp)g:

Taking the limit as n!1, we have

�(Fp; u) � maxfc�(u; Fp); b�(u; Fp)g = maxfc; bg�(Fp; u)

and hence Fp = fug, since maxfc; bg < 1. Therefore fIpg = fug = Fp. Thus Fp is singleton and
p 2 C(F; I).

4
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Since [F (X) � J(X), there exists a point q 2 X such that fug = fJqg. Then using (1.1), we
have

�(u;Gq) = �(Fp;Gq)

� maxfcd(u; u); c�(u; u); c�(u;Gq); a�(u;Gq) + b�(u; u)g
= maxfc�(u;Gq); a�(u;Gq)g
= maxfc; ag�(u;Gq):

Since maxfc; ag < 1, then fug = Gq = fJqg. Thus Gq is singleton and q 2 C(G; J).
Since F and I are (IT)-commuting at p 2 C(F; I), so IFp � FIp; that is, fIug � Fu. Using (1.1),

we have

�(Fu;Gx2n+1) � maxfcd(Iu; Jx2n+1); c�(Iu; Fu); c�(Jx2n+1; Gx2n+1);
aD(Iu;Gx2n+1) + bD(Jx2n+1; Fu)g

� maxfc�(Fu; Jx2n+1); c�(Jx2n+1; Gx2n+1);
a�(Fu;Gx2n+1) + b�(Jx2n+1; Fu)g:

Taking the limit as n!1, we have

�(Fu; u) � maxfc�(Fu; u); a�(Fu; u) + b�(u; Fu)g
= maxfc; a+ bg�(Fu; u):

Since maxfc; a + bg < 1, then fug = Fu. Since fug = fIug, fIug = Fu = fug. Similarly we can
prove that Gu = fJug = fug. Thus u is a common �xed point of I; J; F and G.
Now suppose there exists w 2 X;u 6= w such that Fw = fwg = fIwg. Using (1.1), we obtain

that

d(w; u) � �(Fw;Gu)

� maxfcd(w; u); ad(w; u) + bd(u;w)g
= maxfc; a+ bgd(w; u):

Since maxfc; a + bg < 1, it follows that u = w. So u is unique common �xed point of F and I such
that Fu = fug = fIug. Similarly, it can be shown that u is the unique common �xed point of G and
J such that Gu = fug = fJug. This completes the proof.
By using the property (E.A) and by removing the completeness of the space with a set of alternative

conditions in Theorem 3.1, we prove the following:

Theorem 3.2 Let (X; d) be a metric space. Let I; J be mappings of X into itself and F;G of X into
B(X) satisfying condition (1.1), (1.2) and

(2.1) fF; Ig or fG; Jg satisfy the property (E.A),

(2.2) if the range of one of I(X), J(X), F (X) or G(X) is a complete subspace of X, then

(i) F and I have a coincidence point
(ii) G and J have a coincidence point.
Further if (1.3) is satis�ed then

5
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(iii) I; J; F and G have a unique common �xed point.
Proof. Suppose that the pair fF; Ig satis�es the property (E.A). Then there exists a sequence fxng
in X such that limn!1Ixn = u and limn!1Fxn = fug for some u 2 X. Since [F (X) � J(X),
there exists a sequence fyng in X such that limn!1Fxn = limn!1Jyn. Hence limn!1Jyn = u.
Let us now show that limn!1Gyn = fug. Indeed in view of (1.1), we have

�(Fxn; Gyn) � maxfcd(Ixn; Jyn); c�(Ixn; Fxn); c�(Jyn; Gyn);
aD(Ixn; Gyn) + bD(Jyn; Fxn)g:

Taking the limit as n!1 and since maxfa; cg < 1, we have limn!1Gyn = fug. Suppose that J(X)
is complete subspace of X. Then u = Jq for some q 2 X. Subsequently, we have limn!1Gyn =
fJqg = limn!1Fxn and limn!1Ixn = limn!1Jyn = Jq. Using (1.1), we have

�(Fxn; Gq) � maxfcd(Ixn; Jq); c�(Ixn; Fxn); c�(Jq;Gq);
aD(Ixn; Gq) + bD(Jq; Fxn)g:

Taking the limit as n!1 and since maxfa; cg < 1, we have Gq = fJqg = fug. Thus Gq is singleton
and q 2 C(G; q). On the other hand [G(X) � I(X), there exists p 2 X such that fIpg = Gq. Using
(1.1), we have

�(Fp;Gq) � maxfcd(Ip; Jq); c�(Ip; Fp); c�(Jq;Gq);
aD(Ip;Gq) + bD(Jq; Fp)g

� maxfc; bg�(Ip; Fp):

Since maxfc; bg < 1, so fIpg = Fp that is p 2 C(F; I) and fIpg = Fp = fug = fJqg = Gq. Since
F and I are (IT)-commuting at p 2 X. Therefore IFp � FIp which implies fIug � Fu. Similarly
fJug � Gu. By using (1.1), we have

�(Fu;Gyn) � maxfcd(Iu; Jyn); c�(Iu; Fu); c�(Jyn; Gyn);
aD(Iu;Gyn) + bD(Jyn; Fu)g

� maxfc�(Fu; Jyn); c�(Fu; Fu); c�(Jyn; Gyn);
a�(Fu;Gyn) + b�(Jyn; Fu)g:

Taking the limit as n ! 1, we have �(Fu; u) � maxfc; a + bg�(Fu; u), then Fu = fug. Since
fIug � Fu and Fu is singleton, Iu = u. Therefore u is common �xed point of F and I. Similarly we
can prove that u is common �xed point of G and J .
The proof is similar when I(X) is assumed to be complete subspace of X. The cases in which F (X)

or G(X) is a complete subspace of X are similar to the cases in which J(X) or I(X), respectively, is
complete since [F (X) � J(X) and [G(X) � I(X). Hence u is common �xed point of I; J; F and G.
The uniqueness of common �xed point u 2 X follows from (1.1). This completes the proof.
With the help of Remark 2.12 and Theorem 3.2, we get the following:

Corollary 3.3 Let (X; d) be a metric space. Let I; J be mappings of X into itself and F;G of X into
B(X) satisfying condition (1.1), (1.2), (2.2) and the pairs fF; Ig, fG; Jg are (IT)-commuting. Then
I; J; F and G have a unique common �xed point.

The conditions (1.2) and (2.2) can be removed by taking I(X) and J(X) as closed subspaces of
X. We prove the following:

6
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Theorem 3.4 Let (X; d) be a metric space. Let I; J be mappings of X into itself and F;G of X into
B(X) satisfying condition (1.1) and

(3.1) the pairs fF; Ig and fG; Jg satisfy the property (E.A),

(3.2) I(X) and J(X) are closed subspaces of X, then

(i) F and I have a coincidence point,
(ii) G and J have a coincidence point.
Further if (1.3) is satis�ed then
(iii) I; J; F and G have a unique common �xed point.

Proof. Since the pair fF; Ig satis�es the property (E.A), then there exists a sequence fxng in X
such that limn!1Ixn = u and limn!1Fxn = fug for some u 2 X. Again since the pair fG; Jg
satis�es the property (E.A), then there exists a sequence fyng in X such that limn!1Jyn = w and
limn!1Gyn = fwg for some w 2 X. If w 6= u, then by using (1.1), we have

�(Fxn; Gyn) � maxfcd(Ixn; Jyn); c�(Ixn; Fxn); c�(Jyn; Gyn);
aD(Ixn; Gyn) + bD(Jyn; Fxn)g:

Taking the limit as n!1, we have

�(u;w) � maxfcd(u; w); ad(u;w) + bd(u;w)g
= maxfc; a+ bgd(u;w):

Since maxfc; a + bg < 1, it follows that u = w. Since I(X) is closed, we have limn!1Ixn = Ip for
some p 2 X. Thus Ip = u. Subsequently, we have limn!1Fxn = fIpg. From (1.1), we have

�(Fp;Gyn) � maxfcd(Ip; Jyn); c�(Ip; Fp); c�(Jyn; Gyn);
aD(Ip;Gyn) + bD(Jyn; Fp)g

Taking the limit as n!1, we have �(Fp; u) � maxfc; bg�(u; Fp) and hence Fp = fug = fIpg, since
maxfc; bg < 1. Since J(X) is closed, we have limn!1Jyn = Jq for some q 2 X. Thus Jq = u.
Subsequently, we have limn!1Gyn = fJqg = fug. Using (1.1), we have

�(u;Gq) = �(Fp;Gq) � maxfcd(Ip; Jq); c�(Ip; Fp); c�(Jq;Gq);
aD(Ip;Gq) + bD(Jq; Fp)g

= maxfc�(u;Gq); a�(u;Gq)g
= maxfc; ag�(u;Gq):

Since maxfc; ag < 1 then fug = Gq. Thus Gq is singleton and q 2 C(G; J). The remaining part of
the proof is same as that of Theorem 3.1. This completes the proof.
With the help of Remark 2.12 and Theorem 3.4, we get the following:

Corollary 3.5 Let (X; d) be a metric space. Let I; J be mappings of X into itself and F;G of X
into B(X) satisfying condition (1.1), (3.2) and the pairs fF; Ig and fG; Jg are (IT)-commuting then
I; J; F and G have a �xed point.

7
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Abstract:The aim of this paper is to give some new �xed point theorems for contractive type map-
pings in intuitionistic fuzzy metric spaces. The results presented improve and generalize some well
known results in literature.
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1 Introduction

In [6], the well-known �xed point theorems of Banach [1] and Edelstein [3] were extended to fuzzy
metric spaces obtaining the following two theorems,

Theorem 1.1 Let (X;M; �) be a complete fuzzy metric space. Let T : X ! X be a mapping satisfying

M(Tx; Ty; kt) �M(x; y; t)

for all x; y 2 X where 0 < k < 1. Then T has a unique �xed point.

Theorem 1.2 Let (X;M; �) be a compact fuzzy metric space. Let T : X ! X be a mapping satisfying

M(Tx; Ty; :) > M(x; y; :)

for all x 6= y (i.e. M(Tx; Ty; :) � M(x; y; :) and M(Tx; Ty; :) 6= M(x; y; :) for all x 6= y). Then T
has a unique �xed point.

In this paper, we give some new �xed point theorems in intuitionistic fuzzy metric spaces. The
results not only improve and generalize Theorems 1.1 and 1.2, but also unify and extend some main
results of [5-8]. Let us call some basic de�nitions,
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De�nition 1.3 ([2]) The 5-tuble (X;M;N; �;�) is an intuitionistic fuzzy metric space if X is an
arbitrary set, � is a continuous t-norm, � is a continuous t-conorm and M;N are fuzzy sets on
X2 � [0;1) satisfying the following conditions: for all x; y; z 2 X;

(i) M(x; y; t) +N(x; y; t) � 1;

(ii) M(x; y; 0) = 0;

(iii) M(x; y; t) = 1 for all t > 0 i¤ x = y;

(iv) M(x; y; t) =M(y; x; t);

(v) M(x; z; t+ s) �M(x; y; t) �M(y; z; s) for all t; s > 0;

(vi) M(x; y; :) : [0;1)! [0; 1] is left continuous;

(vii) lim
t!1

M(x; y; t) = 1;

(viii) N(x; y; 0) = 1;

(ix) N(x; y; t) = 0 for all t > 0 i¤ x = y;

(x) N(x; y; t) = N(y; x; t);

(xi) N(x; z; t+ s) � N(x; y; t)�N(y; z; s) for all t; s > 0;

(xii) N(x; y; :) : [0;1)! [0; 1] is right continuous;

(xiii) lim
t!1

N(x; y; t) = 0.

Remark 1.4 By (iii) and (v), it is easy to show that M(x; y; :) is non-decreasing and by (ix) and
(xi), it is easy to show that N(x; y; :) is non-increasing for all x; y 2 X.

Remark 1.5 Every fuzzy metric space (X;M; �) is an intuitionistic fuzzy metric space of the form
(X;M; 1�M; �;�) such that t-norm � and t-conorm � are assosiated, i.e. x�y = 1�((1�x)�(1�y))
for any x; y 2 [0; 1]. Moreover, Theorem 1.1 is a fuzzy generalization of Theorem 2 in [4].

De�nition 1.6 ([2]) A sequence fxng in an intuitionistic fuzzy metric space (X;M;N; �;�) is a
Cauchy sequence i¤ limnM(xn+p; xn; t) = 1 and limnN( xn+p; xn; t) = 0 for each t > 0 and p 2 N.
A sequence fxng in X is convergent to x 2 X if limn!1M(xn; x; t) = 1 and limn!1N(xn; x; t) = 0
for each t > 0. An intuitionistic fuzzy metric space (X;M;N; �;�) is called complete, if every Cauchy
sequence in X is convergent. It is called compact, if every sequence in X contains a convergent
subsequence.

Lemma 1.7 ([2]) Let limn xn = x and limn yn = y. Then, for all t > 0;

lim
n!1

infM(xn; yn; t) �M(x; y; t) and lim
n!1

supN(xn; yn; t) � N(x; y; t);

lim
n!1

supM(xn; yn; t) �M(x; y; t) and lim
n!1

inf N(xn; yn; t) � N(x; y; t):

Particularly, if M(x; y; :) and N(x; y; :) are continuous at point t, then

lim
n!1

M(xn; yn; t) =M(x; y; t) and lim
n!1

N(xn; yn; t) = N(x; y; t):

2
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2 Main Results

De�nition 2.1 Let the function � : [0;1)! [0;1) satis�es the following conditions:

(�1) �(t) is strictly increasing, �(0) = 0 and limn �
n(t) = 1 for all t > 0, where �n(t) denotes the

n-th iterative function of �(t). Then �(t) > t and �n(t) > �n�1(t) for t > 0 and n = 1; 2; :::

(�2) limt!1[�(t)� t] =1:

Lemma 2.2 Let � and � be continuous t-norm and t-conorm, respectively. Then for each � 2 (0; 1),
there is a sequence f�ng in (0; 1) such that

(1� �n) � (1� �n) > 1� �n�1 and �n��n < �n�1; n = 1; 2; :::;

where �0 = � (obviously, the sequence f�ng satisfying the condition is decreasing).

Proof. Since � is continuous at point (1; 1) and a � b � 1 � 1 = 1, and since � is continuous at point
(0; 0) and a�b � 0�0 = 0 for all a; b 2 [0; 1], we have

sup
0<�<1

[(1� �) � (1� �)] = 1 and inf
0<�<1

��� = 0;

respectively. Thus, for each � 2 (0; 1), there exists �1 2 (0; 1) such that

(1� �1) � (1� �1) > 1� � and �1��1 < �:

Similarly, there exists �2 2 (0; 1) such that

(1� �2) � (1� �2) > 1� �1 and �2��2 < �1:

Continuing this procedure, we can obtain a sequence f�ng � (0; 1) satisfying the condition.

Lemma 2.3 Let (X;M;N; �;�) be an intuitionistic fuzzy metric space. Let T : X ! X be a mapping
satisfying

M(Tx; Ty; t1) > M(x; y; t1) and N(Tx; Ty; t1) < N(x; y; t1);

where t1 is a �xed positive number. Then there exist a continuity point t0 of M(x; y; :) and N(x; y; :)
such that

M(Tx; Ty; t0) > M(x; y; t0) and N(Tx; Ty; t0) < N(x; y; t0):

Proof. Since M(Tx; Ty; :)�M(x; y; :) is left continuous and N(Tx; Ty; :)�N(x; y; :) is right contin-
uous at point t1, there exists t2 > 0 such that

M(Tx; Ty; t) > M(x; y; t) and N(Tx; Ty; t) < N(x; y; t)

for all t 2 [t2; t1]: Note that the set of discontinuous points of M(x; y; :) and N(x; y; :) is countable at
most. Hence, there exists t0 2 [t2; t1] such that M(x; y; :) and N(x; y; :) are continuous at t0.

Theorem 2.4 Let (X;M;N; �;�) be a complete intuitionistic fuzzy metric space. Let T : X ! X be
a mapping satisfying the following conditions:

3
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(i) there exists x0 2 X such that

lim
n!1

M(x0; T
ix0; t) = 1, lim

n!1
N(x0; T

ix0; t) = 0; i = 1; 2; :::; (2.1)

(ii) there exists a mapping m : X ! N such that for any x; y 2 X
M(Tm(x)x; Tm(x)y; t) � M(x; y; �(t)) and

N(Tm(x)x; Tm(x)y; t) � N(x; y; �(t)) (2.2)

where the function �(t) satis�es conditions (�1) and (�2):

Then T has a unique �xed point x� and the quasi-iterative sequence fxn = Tm(xn�1)xn�1g con-
verges to x�:
Proof. First, we prove that

sup
s>0

inf
x2OT (x0)

M(x0; x; s) = 1 and inf
s>0

sup
x2OT (x0)

N(x0; x; s) = 0 (2.3)

where OT (x0) =
�
x0; Tx0; T

2x0; :::
	
is called the orbit of x0 for T . For any n 2 N with n > m(x0),

we can denote
n = km(x0) + s where 0 � s < m(x0).

Note that �(t) > t for all t > 0 and limt!1[�(t)� t] =1. By (2.1), we have
lim
t!1

M(x0; T
ix0; �(t)) = 1 and lim

t!1
N(x0; T

ix0; �(t)) = 0 (2.4)

for i = 1; 2; :::;m(x0) and

lim
t!1

M(x0; T
ix0; �(t)� t) = 1 and lim

t!1
N(x0; T

ix0; �(t)� t) = 0: (2.5)

Moreover, by Lemma 2.2, for any � 2 (0; 1), there is a sequence f�ng in (0; 1) such that
(1� �n) � (1� �n) > 1� �n�1 and �n��n < �n�1; n = 1; 2; ::::

Thus, it follows from (2.4) and (2.5) that for given �k, there exists t0 > 0 such that

min
1�i�m(x0)

M(x0; T
ix0; �(t)) > 1� �k and max

1�i�m(x0)
N(x0; T

ix0; �(t)) < �k;

M(x0; T
m(x0)x0; �(t)� t) > 1� �k and N(x0; Tm(x0)x0; �(t)� t) < �k;8t > t0:

So, by (2.2), for all t > t0, we have

M(x0; T
nx0; �(t)) = M(x0; T

km(x0)+sx0; �(t))

� M(x0; T
m(x0)x0; �(t)� t)

�M(Tm(x0)x0; T km(x0)+sx0; t)
� M(x0; T

m(x0)x0; �(t)� t)
�M(x0; T (k�1)m(x0)+sx0; �(t))

� ::: �M(x0; Tm(x0)x0; �(t)� t)
�(k)::: �M(x0; Tm(x0)x0; �(t)� t) �M(x0; T sx0; �(t))

> (1� �k) � (k+1)::: � (1� �k)
> (1� �k�1) � (k)::: � (1� �k�1)
> ::: > (1� �1) � (1� �1) > 1� �;

4
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N(x0; T
nx0; �(t)) = N(x0; T

km(x0)+sx0; �(t))

� N(x0; T
m(x0)x0; �(t)� t)

�N(Tm(x0)x0; T km(x0)+sx0; t)
� N(x0; T

m(x0)x0; �(t)� t)
�N(x0; T (k�1)m(x0)+sx0; �(t))

� ::: � N(x0; Tm(x0)x0; �(t)� t)
�(k):::�N(x0; Tm(x0)x0; �(t)� t)�N(x0; T sx0; �(t))

< �k�(k+1)::: ��k
< �k�1�(k+1)::: ��k�1
< ::: < �1��1 < �:

Therefore, for all t > t0,

inf
x2OT (x0)

M(x0; x; �(t)) � 1� � and sup
x2OT (x0)

N(x0; x; �(t)) � �

and hence
sup
s>0

inf
x2OT (x0)

M(x0; x; s) � 1� � and inf
s>0

sup
x2OT (x0)

N(x0; x; s) � �:

By the arbitrariness of �, we have

sup
s>0

inf
x2OT (x0)

M(x0; x; s) = 1 and inf
s>0

sup
x2OT (x0)

N(x0; x; s) = 0:

Next, we prove that the quasi-iterative sequence
�
xn = T

m(xn�1)xn�1
	1
n=1

is a Cauchy sequence. For
convenience, put mi = m(xi); i = 0; 1; 2; :::. Then, by (2.1), for all t > 0, we have

M(xn; xn+p; t) = M(Tmn�1xn�1; T
mn+p�1+mn+p�2+:::+mn�1xn�1; t)

� M(xn�1; T
mn+p�1+:::+mnxn�1; �(t))

� M(xn�2; T
mn+p�1+:::+mnxn�2; �

2(t))

� ::: �M(x0; Tmn+p�1+:::+mnx0; �
n(t))

� inf
x2OT (x0)

M(x0; x; �
n(t))

� sup
0<s<�n(t)

inf
x2OT (x0)

M(x0; x; s);

N(xn; xn+p; t) = N(Tmn�1xn�1; T
mn+p�1+mn+p�2+:::+mn�1xn�1; t)

� N(xn�1; T
mn+p�1+:::+mnxn�1; �(t))

� N(xn�2; T
mn+p�1+:::+mnxn�2; �

2(t))

� ::: � N(x0; Tmn+p�1+:::+mnx0; �
n(t))

� sup
x2OT (x0)

N(x0; x; �
n(t))

� inf
0<s<�n(t)

sup
x2OT (x0)

N(x0; x; s):

5
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Then, by condition (�1) and (2.3)

lim
n!1

M(xn; xn+p; t) = 1 and lim
n!1

N(xn; xn+p; t) = 0

for all t > 0. This means that fxng is a Cauchy sequence in X. By the completeness of X, there
exists limn xn = x� 2 X. Now, we prove that x� is the unique �xed point of Tm� , where m� = m(x�).
By (v) and (xi) in De�nition 1.3, and (2.2), we have

M(x�; T
m�x�; t) � M(x�; T

m�xn;
t

2
) �M(Tm�xn; T

m�x�;
t

2
)

� M(x�; T
m�xn;

t

2
) �M(xn; Tm�x�; �(

t

2
)); (2.6)

N(x�; T
m�x�; t) � N(x�; T

m�xn;
t

2
)�N(Tm�xn; T

m�x�;
t

2
)

� N(x�; T
m�xn;

t

2
)�N(xn; Tm�x�; �(

t

2
)): (2.7)

It is easy to prove that

lim
n!1

M(x�; T
m�xn; u) = 1 and lim

n!1
N(x�; T

m�xn; u) = 0

for all u > 0. In fact,

M(x�; T
m�xn; u) � M(x�; xn;

u

2
) �M(xn; Tm�xn;

u

2
)

= M(x�; xn;
u

2
) �M(Tmn�1xn�1; T

mn�1+m�xn�1;
u

2
)

� M(x�; xn;
u

2
) �M(xn�1; Tm�xn�1; �(

u

2
))

� ::: �M(x�; xn;
u

2
) �M(x0; Tm�x0; �

n(
u

2
))! 1;

N(x�; T
m�xn; u) � N(x�; xn;

u

2
)�N(xn; Tm�xn;

u

2
)

= N(x�; xn;
u

2
)�N(Tmn�1xn�1; T

mn�1+m�xn�1;
u

2
)

� N(x�; xn;
u

2
)�N(xn�1; Tm�xn�1; �(

u

2
))

� ::: � N(x�; xn;
u

2
)�N(x0; Tm�x0; �

n(
u

2
))! 0:

Thus, letting n ! 1 on the right sides of (2.6) and (2.7), and noting the continuity of � and �, we
have

M(x�; T
m�x�; t) = 1 and N(x�; Tm�x�; t) = 0

for all t > 0. This implies that Tm�x� = x�, i.e. x� is a �xed point of Tm(x�). To show uniqueness,
assume that Tm(x�)y = y for some y 2 X. Then

M(x�; y; t) = M(Tm(x�)x�; T
m(x�)y; t) �M(x�; y; �(t));

N(x�; y; t) = N(Tm(x�)x�; T
m(x�)y; t) � N(x�; y; �(t)):

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

297 Servet Kutukcu et al 292-301



On the other hand, asM(x�; y; t) is non-decreasing andN(x�; y; t) is non-increasing, we haveM(x�; y; t) �
M(x�; y; �(t)) and N(x�; y; t) � N(x�; y; �(t)), respectively. Thus

M(x�; y; t) = M(x�; y; �(t)) =M(x�; y; �
n(t));

N(x�; y; t) = N(x�; y; �(t)) = N(x�; y; �
n(t))

for all t > 0. Hence, by condition (�1), and (vii) and (xiii) in De�nition 1.3, we have

M(x�; y; t) = 1 and N(x�; y; t) = 0;

i.e. x� = y. Finally, we prove x� is the unique �xed point of T , too. In fact, since Tm(x�)x� = x�, it
follows that Tx� = T (Tm�x�) = T

m�(Tx�). Hence, Tx� = x�. Uniqueness is obvious. This completes
the proof.
From Theorem 2.4, we can obtain the following consequence immediately.

Corollary 2.5 Let (X;M;N; �;�) be a complete intuitionistic fuzzy metric space. Let T : X ! X be
a mapping satisfying the following conditions:

(i) there exists x0 2 X such that

lim
n!1

M(x0; T
ix0; t) = 1; lim

n!1
N(x0; T

ix0; t) = 0; i = 1; 2; :::;

(ii) there exists a mapping m : X ! N such that for any x; y 2 X

M(Tm(x)x; Tm(x)y; t) �M(x; y; t=k); N(Tm(x)x; Tm(x)y; t) � N(x; y; t=k)

where 0 < k < 1.

Then the conclusion of Theorem 2.4 remains true.
Proof. Taking �(t) = t=k. Obviously, �(t) satis�es the conditions (�1) and (�2). Theorefore the
conclusion follows from Theorem 2.4 directly.

Corollary 2.6 Let (X;M;N; �;�) be a complete intuitionistic fuzzy metric space. Let T : X ! X be
a mapping. If there exists a mapping m : X ! N such that for any x; y 2 X,

M(Tm(x)x; Tm(x)y; t) �M(x; y; �(t)); N(Tm(x)x; Tm(x)y; t) � N(x; y; �(t));

where the function �(t) satis�es the conditions (�1) and (�2). Then T has a unique �xed point x� and
the iterative sequence fTnxg converges to x� for every x 2 X.

Proof. By Theorem 2.4, we need only to show that the iterative sequence fTnxg converges to x�.
For n 2 N with n > m(x�),

n = km(x�) + s; 0 � s < m(x�):

Since

M(x�; T
nx; t) = M(Tm(x�)x�; T

km(x�)+sx; t)

� M(x�; T
(k�1)m(x�)+sx; �(t))

� ::: �M(x�; T sx; �k(t))! 1;

7
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N(x�; T
nx; t) = N(Tm(x�)x�; T

km(x�)+sx; t)

� N(x�; T
(k�1)m(x�)+sx; �(t))

� ::: � N(x�; T sx; �k(t))! 0

so limnM(x�; Tnx; t) = 1 and limnN(x�; Tnx; t) = 0 for all t > 0, i.e. Tnx! x�.

Remark 2.7 Taking �(t) = t=k (0 < k < 1) and m(x) = 1 in Corollary 2.6, we at once obtain
Theorem 1.1. Hence Theorem 1.1 is a special case of Corollary 2.6. In the view of Remark 1.5, taking
�(t) = t=k; N = 1 �M , and � = min and � = max (i.e. a � b = min(a; b) and a�b = max(a; b)) in
Corollary 2.6, we obtain that the main results of [5-8] are special cases of Corollary 2.6.

Theorem 2.8 Let (X;M;N; �;�) be a compact intuitionistic fuzzy metric space. Let T : X ! X be
a continuous mapping satisfying

M(Tx; Ty; :) > min fM(x; Tx; :);M(y; Ty; :);M(x; y; :)g ; (2.8)

N(Tx; Ty; :) < max fN(x; Tx; :); N(y; Ty; :); N(x; y; :)g (2.9)

for all x 6= y. If there exists x0 2 X such that fTnx0g1n=0 has an accumulation point x� 2 X and for
all t > 0; n = 1; 2; :::

M(Tn�1x0; T
nx0; t) � M(Tnx0; T

n+1x0; t);

N(Tn�1x0; T
nx0; t) � N(Tnx0; T

n+1x0; t)

then x� is the unique �xed point of T and limn Tnx0 = x�.

Proof. Assume Tnx0 6= Tn+1x0 for each n 2 N. (If not, there is n0 2 N such that Tn0x0 = Tn0+1x0.
This means that x� = Tn0x0 is a �xed point of T and limn Tnx0 = x�). Since fTnx0g1n=0 has an accu-
mulation point x� 2 X, there exists a subsequence fTnix0g ; limi Tnix0 = x�.

�
M(Tnx0; T

n+1x0; t)
	

and
�
N(Tnx0; T

n+1x0; t)
	
are non-decreasing and non-increasing, respectively, and also bounded, thus�

M(Tnix0; T
ni+1x0; t)

	
;
�
M(Tni+1x0; T

ni+2x0; t)
	
and

�
N(Tnix0; T

ni+1x0; t)
	
;
�
N(Tni+1x0; T

ni+2x0; t)
	

are convergent to a common limit, i.e.

lim
i!1

M(Tnix0; T
ni+1x0; t) = lim

i!1
M(Tni+1x0; T

ni+2x0; t);

lim
i!1

N(Tnix0; T
ni+1x0; t) = lim

i!1
N(Tni+1x0; T

ni+2x0; t)

for all t > 0. By the continuity of T , we have

lim
i!1

Tni+1x0 = lim
i!1

T (Tnix0) = Tx�:

Suppose x� 6= Tx�. Putting y = Tx in (2.8) and (2.9), we have

M(x; Tx; :) < M(Tx; T 2x; :) and N(x; Tx; :) > N(Tx; T 2x; :)

for every x 6= Tx. So, by Lemma 2.3, there exists a continuous point t0 of M(x�; Tx�; :) and
N(x�; Tx�; :) such that M(Tx�; T 2x�; t0) > M(x�; Tx�; t0) and N(Tx�; T 2x�; t0) < N(x�; Tx�; t0).
On the other hand, by Lemma 1.7

M(x�; Tx�; t0) = lim
i!1

M(Tnix0; T (T
nix0); t0)

= lim
i!1

M(Tni+1x0; T
ni+2x0; t0)

� M(Tx�; T
2x�; t0);

8
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N(x�; Tx�; t0) = lim
i!1

N(Tnix0; T (T
nix0); t0)

= lim
i!1

N(Tni+1x0; T
ni+2x0; t0)

� N(Tx�; T
2x�; t0)

are contradictions. Therefore x� = Tx�, i.e. x� is a �xed point of T . Uniqueness follows from (2.8) and
(2.9). Finally, we prove that limn Tnx0 = x�. Since limi Tnix0 = x� and limi Tni+1x0 = Tx� = x�,
by Lemma 1.7,

lim
i!1

infM(Tnix0; T
ni+1x0; t) � M(x�; x�; t) = 1;

lim
i!1

supN(Tnix0; T
ni+1x0; t) � N(x�; x�; t) = 0

for all t > 0. So, limiM(Tnix0; Tni+1x0; t) = 1 and limiN(Tnix0; Tni+1x0; t) = 0 for all t > 0. For
any n 2 N with n > n1, there exists ni with ni+1 � n > ni. By (2.8) and (2.9), we have

M(Tnx0; x�; t) � min
�
M(Tn�1x0; T

nx0; t); 1;M(T
n�1x0; x�; t)

	
� min

�
M(Tn�1x0; T

nx0; t);M(T
n�2x0; T

n�1x0; t)
;M(Tn�2x0; x�; t)

�
= min

�
M(Tn�2x0; T

n�1x0; t);M(T
n�2x0; x�; t)

	
� ::: � min

�
M(Tnix0; T

ni+1x0; t);M(T
nix0; x�; t)

	
;

N(Tnx0; x�; t) � max
�
N(Tn�1x0; T

nx0; t); 0; N(T
n�1x0; x�; t)

	
� max

�
N(Tn�1x0; T

nx0; t); N(T
n�2x0; T

n�1x0; t)
; N(Tn�2x0; x�; t)

�
= max

�
N(Tn�2x0; T

n�1x0; t); N(T
n�2x0; x�; t)

	
� ::: � max

�
N(Tnix0; T

ni+1x0; t); N(T
nix0; x�; t)

	
:

Letting n!1 (ni !1), we have

lim
n!1

M(Tnx0; x�; t) � 1 and lim
n!1

N(Tnx0; x�; t) � 0

for all t > 0. Hence, limn Tnx0 = x�.

Remark 2.9 Theorem 1.2 is the immediate consequence of Theorem 2.8. In fact, by Theorem 1.2,
it is easy to see that T is continuous and (2.8), (2.9) hold for any x0 2 X. In addition, by the
compactness of X, fTnx0g has an accumulation point. Hence Theorem 1.2 follows immediately from
Theorem 2.8.
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Existence and uniqueness of positive solutions for singular higher
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Abstract

In this paper, we consider the singular problem for higher order fractional differential equations with
infinite-point boundary value conditions. First, we get some properties of the Green function, then
by a monotone iterative technique, we establish the existence and uniqueness of the positive solutions
for singular higher order fractional differential equations with infinite-point boundary value conditions.
Moreover the iterative sequences of positive solution and error estimation are also given. In the end, an
example is given to illustrate one of the main results.

Keywords: fractional differential equation, positive solution, monotone iterative technique, Green function, exis-

tence and uniqueness,completely continuous operator

1 Introduction

In this paper, we consider the following singular problem for a higher order fractional differential equation
with infinite-point boundary value conditions.

−Dαx(t) = q(t)f(x(t),Dµ1x(t),Dµ2x(t), · · · ,Dµn−1x(t)), t ∈ (0, 1)

x(0) = Dµix(0) = 0,Dµx(1) =
∞∑
j=1

αjDµx(ξj), 1 ≤ i ≤ n− 1,
(1.1)

where n ≥ 3, n− 1 < α < n, n− k− 1 < α−µk < n− k, for k = 1, 2, · · · , n− 2, µ−µn−1 > 0, α−µn−1 ≤ 2,

α − µ > 1, αj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1(j = 1, 2, . . .), 0 <
∞∑
j=1

αjξ
α−µ−1
j < 1, Dα is

the standard Riemann-Liouville derivative. Recently, fractional differential equations have been applied in
variety of different areas such as chemical physics, engineering, electrical networks, mechanics, see [1, 3–10]
and references cited therein for details. Zhang et.al [11], by establishing eigenvalue interval for the existence
of positive solutions from Schauder’s fixed point theorem and the upper and lower solutions, obtained a
multiple positive solution of the following fractional differential equation.

−Dαx(t) = λf(x(t),Dµ1x(t),Dµ2x(t), · · · ,Dµn−1x(t)), t ∈ (0, 1)

x(0) = Dµix(0) = 0,Dµx(1) =

p−2∑
j=1

αjDµx(ξj), 1 ≤ i ≤ n− 1,
(1.2)

∗The work was supported by the Foundation of Department of Education of Jiangxi Province(No. GJJ152008).
†Corresponding author
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where n ≥ 3, n− 1 < α < n, n− k− 1 < α−µk < n− k, for k = 1, 2, · · · , n− 2, µ−µn−1 > 0, α−µn−1 ≤ 2,

α−µ > 1, αj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξp−3 < ξp−2 < 1(j = 1, 2, . . . , p− 2), 0 <

p−2∑
j=1

αjξ
α−µ−1
j < 1, Dα is the

standard Riemann-Liouville derivative. In [12], Zhang and Han concerned the following singular nonlinear
(n− 1, 1) conjugate-type fractional differential equation with one nonlocal term

−Dαx(t) = f(t, x(t)), t ∈ (0, 1), α ∈ (n− 1, n],

xk(0) = 0, 0 ≤ k ≤ n− 2, x(1) =

∫ 1

0

x(s)dA(s),
(1.3)

where α ≥ 2, Dα is the standard Riemann-Liouville derivative,A is a function of bounded variation and∫ 1

0
x(s)dA(s) denotes the Riemann-Stieltjes integral of x with respect to A, dA is a signed measure. By using

a monotone iterative technique, Zhang and Han [12] established the existence and uniqueness of this positive
solution.

Motivated by the above articles, we study the existence and uniqueness of positive solution of fraction-
al differential equation (1.1). By means of a monotone iterative technique, we obtain the existence and
uniqueness of the positive solutions of (1.1).

In the rest of this article, we suppose that following assumptions hold:
(L1) q(t) : (0, 1)→ [0,+∞) is continuous and does not vanish identically of (0, 1) and

0 <

∫ 1

0

q(s)ds < +∞;

(L2) f : (0,+∞)n → [0,+∞) is continuous and is nondecreasing at xi > 0 for i = 1, 2, · · · , n;
(L3) for all r ∈ (0, 1), there exists a constant 0 < λ < 1 such that for each (x1, x2, · · · , xn) ∈ (0,+∞)n,

f(rx1, rx2, · · · , rxn) ≥ rλf(x1, x2, · · · , xn).

Remark 1.1. If (L3) holds, then for r ≥ 1, there exists a constant 0 < λ < 1 such that for each
(x1, x2, · · · , xn) ∈ (0,+∞)n,

f(rx1, rx2, · · · , rxn) ≤ rλf(x1, x2, · · · , xn).

2 Preliminaries

For the convenience of the reader, we present the necessary definitions and lemmas from the fractional
calculus theory. These definitions and lemmas can be found in monograph [3, 5, 6, 8, 10, 11].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,+∞)→ R is
given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)(α−1)f(s)ds,

provided that the right-hand side is point wise defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a continuous function f :
(0,+∞)→ R is given by

Dαf(t) =
1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− s)(n−α−1)f(s)ds,

where n− 1 ≤ α < n, provided that the right-hand side is point wise defined on (0,+∞).
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Lemma 2.1. (1) If x ∈ C(0, 1)
⋂
L(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t),DσIνx(t) = Iν−σx(t),DσIσx(t) = x(t).

(2)If ν > 0,σ > 0, then

Dνtσ−1 =
Γ(σ)

Γ(σ − ν)
tσ−ν−1.

Lemma 2.2. Assume that x ∈ C(0, 1)
⋂
L(0, 1), with a fractional derivative of order α > 0 that belongs to

C(0, 1)
⋂
L1(0, 1). Then

IαDαx(t) = x(t) + c1t
α−1 + c1t

α−2 + · · ·+ cnt
α−n,

where ci ∈ R(i = 1, 2, · · · , n), n is the smallest integer greater than or equal to α.

Remark 2.1. There are many kinds of functions satisfying conditions (L2) and (L3). In fact, let
K = {f(x1, x2, · · · , xn) : f(x1, x2, · · · , xn) satisfies conditions (L2) and (L3)}
and ai(t) be nonnegative continuous on (0,+∞), (i = 1, 2, · · · , n).
Then it is easily verified directly that the following facts hold:

(1)
n∑
1

ai(t)x
bi
i ∈ K, where bi ∈ (0, 1) are constants, i = 1, 2, · · · , n.

(2)
n∑
1

[ai(t)x
µi
i ]

1
µ ∈ K (i = 1, 2, · · · , n) and µ ≥ max

1≤i≤n
{µi},

(3)If f(x1, x2, · · · , xn) ∈ K then ai(t)f(x1, x2, · · · , xn) ∈ K(i = 1, 2, · · · , n).
(4)If fi(x1, x2, · · · , xn) ∈ K (i = 1, 2, · · · , n), then

max
1≤i≤n

{fi(x1, x2, · · · , xn)} ∈ K, min
1≤i≤n

{fi(x1, x2, · · · , xn)} ∈ K

and
max
1≤i≤n

{fi(x1, x2, · · · , xn)}+ min
1≤i≤n

{fi(x1, x2, · · · , xn)} ∈ K.

Let

G1(t, s) =


tα−µn−1−1(1− s)α−µ−1 − (t− s)α−µn−1−1

Γ(α− µn−1)
, 0 ≤ s ≤ t ≤ 1

tα−µn−1−1(1− s)α−µ−1

Γ(α− µn−1)
, 0 ≤ t ≤ s ≤ 1

(2.1)

and

G2(t, s) =


tα−µ−1(1− s)α−µ−1 − (t− s)α−µ−1

Γ(α− µn−1)
, 0 ≤ s ≤ t ≤ 1

tα−µ−1(1− s)α−µ−1

Γ(α− µn−1)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Obviously for t, s ∈ [0, 1], we have

0 ≤ G1(t, s) ≤ tα−µn−1−1

Γ(α− µn−1)
, (2.3)

0 ≤ tα−µ−1(1− t)s(1− s)α−µ−1

Γ(α− µn−1)
≤ G2(t, s) ≤ tα−µ−1

Γ(α− µn−1)
. (2.4)
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Lemma 2.3. If h(t) ∈ L1(0, 1) then the boundary value problem
−Dα−µn−1w(t) = h(t), t ∈ (0, 1)

w(0) = 0,Dα−µn−1w(1) =
∞∑
j=1

αjDα−µn−1w(ξj)
(2.5)

has the unique solution

w(t) =

∫ 1

0

G(t, s)h(s)ds,

where

G(t, s) = G1(t, s) +
tα−µn−1−1

1−
∞∑
j=1

αjξ
α−µ−1
j

∞∑
j=1

αjG2(ξj , s) (2.6)

is the Green function of the boundary value problem (2.5)

Proof. The proof is similar to Lemma 2.3 of [11] if replacing

p−2∑
j=1

αjDα−µn−1w(ξj) with

∞∑
j=1

αjDα−µn−1w(ξj),

so we omit the details.

Lemma 2.4. The function G(t, s) has the following properties;
(1) G(t, s) > 0, for t, s ∈ (0, 1);
(2) ctα−µn−1−1(1− s)α−µ−1s ≤ G(t, s) ≤ dtα−µn−1−1, where

c =

∞∑
j=1

αjξ
α−µ−1
j (1− ξj)

(1−
∞∑
j=1

αjξ
α−µ−1
j )Γ(α− µn−1)

, d =
1

(1−
∞∑
j=1

αjξ
α−µ−1
j )Γ(α− µn−1)

.

Proof. The first result is obvious so we only prove the second one.
From (2.3), (2.4), (2.6) we have

G(t, s) ≥ tα−µn−1−1

1−
∞∑
j=1

αjξ
α−µ−1
j

∞∑
j=1

αjG2(ξj , s)

≥ tα−µn−1−1

∞∑
j=1

αjξ
α−µ−1
j (1− ξj)(1− s)α−µ−1s

(1−
∞∑
j=1

αjξ
α−µ−1
j )Γ(α− µn−1)

= ctα−µn−1−1(1− s)α−µ−1s
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and

G(t, s) = G1(t, s) +
tα−µn−1−1

1−
∞∑
j=1

αjξ
α−µ−1
j

∞∑
j=1

αjG2(ξj , s)

≤ tα−µn−1−1

Γ(α− µn−1)
+

tα−µn−1−1

1−
∞∑
j=1

αjξ
α−µ−1
j

∞∑
j=1

αjG2(ξj , s)

≤ tα−µn−1−1

(1−
∞∑
j=1

αjξ
α−µ−1
j )Γ(α− µn−1)

= dtα−µn−1−1.

For the convenience of expression in the rest of the paper, we let µ0 = 0, E = C[0, 1]. Now let us consider
the following modified problem of (1.1):

−Dα−µn−1v(t) = q(t)f(Iµn−1−µ0v(t), Iµn−1−µ1v(t), · · · , Iµn−1−µn−2v(t), v(t)), t ∈ (0, 1)

v(0) = 0,Dµ−µn−1v(1) =
∞∑
j=1

αjDµ−µn−1v(ξj),
(2.7)

Lemma 2.5. Let x(t) = Iµn−1−µ0v(t), v(t) ∈ E. Then we can transform (1.1) into (2.7). Moreover, if
v ∈ C[(0, 1), (0,+∞)] is a solution of (2.7), then the function x(t) = Iµn−1−µ0v(t) is a positive solution of
(1.1).

Proof. The proof is similar to Lemma 2.5 of [11], so we omit the details.

Let en−1(t) = tα−µn−1−1, and for i = 0, 1, 2, · · · , n− 2, define

ei(t) = Iµn−1−µien−1(t) =
Γ(α− µn−1)

Γ(α− µi)
tα−µi−1.

Let P = {v ∈ E : v(t) ≥ 0, t ∈ [0, 1]}. Clearly P is a normal cone in E. Now let us define a sub-cone of P as
follows:

D = {v(t) ∈ P : there exist two positive numbers Lv ≥ lv such that lven−1(t) ≤ v(t) ≤ Lven−1(t)}.
Obviously, D is a nonempty set since en−1(t) ∈ P .

Lemma 2.6. Let the operator T : D → E be defined by

(Tv)(t) =

∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0v(s), Iµn−1−µ1v(s), · · · , Iµn−1−µn−2v(s), v(s))ds,

and 0 <
∫ 1

0
q(s)f(e0(s), e1(s), · · · , en−2(s), en−1(s))ds < +∞, then any fixed point of T is a solution of (2.7),

and T is a well defined completely continuous operator and T : D → D.

Proof. For each v ∈ D, there exist two positive numbers Lv > 1 > lv such that

lven−1(t) ≤ v(t) ≤ Lven−1(t), t ∈ [0, 1]. (2.8)
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According to (2.8), (L2), (L3), Lemma 2.1(2) and Remark 1.1, we have

(Tv)(t) ≤
∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0Lven−1(s), Iµn−1−µ1Lven−1(s), · · · , Iµn−1−µn−2Lven−1(s), Lven−1(s))ds

≤ Lλv

∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0en−1(s), Iµn−1−µ1en−1(s), · · · , Iµn−1−µn−2en−1(s), en−1(s))ds

≤ dLλv

∫ 1

0

q(s)f(e0(s), e1(s), · · · , en−2(s), en−1(s))dsen−1(t) < +∞,

and

(Tv)(t) ≥
∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0 lven−1(s), Iµn−1−µ1 lven−1(s), · · · , Iµn−1−µn−2 lven−1(s), lven−1(s))ds

≥ lλv

∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0en−1(s), Iµn−1−µ1en−1(s), · · · , Iµn−1−µn−2en−1(s), en−1(s))ds

≥ clλv

∫ 1

0

s(1− s)α−µ−1q(s)f(e0(s), e1(s), · · · , en−2(s), en−1(s))dsen−1(t).

From above it is not difficulty to prove that T : D → D is a completely continuous operator.

3 Main results

Theorem 3.1. Suppose that (L1)-(L3) hold and

0 <

∫ 1

0

q(s)f(e0(s), e1(s), · · · , en−2(s), en−1(s))ds < +∞.

Then the equation (2.7) has a unique positive solution ν∗ in D, and for each initial value ν0 ∈ D, the iterative
sequence νn = Tνn−1(n = 1, 2, · · · ) converges to ν∗ as n→ +∞. Meanwhile Iµn−1−µ0v∗ is the unique solution
of (1.1). Furthermore we have the following error estimation

‖Iµn−1−µ0νn − ν∗‖ ≤ 2(1− (t20)λ
n

)‖Iµn−1−µ0ω0‖,

and the rate of convergence is o(1− (t20)λ
n

), where t0 is determined by ν0, and t0 ∈ (0, 1).

Proof. From Lemma 2.6 for any ν0 ∈ D, then there exist four positive constants lν0 , Lν0 , l−ν0 , L−ν0 such that

lν0en−1(t) ≤ ν0 ≤ Lν0en−1(t), l−ν0en−1(t) ≤ Tν0 ≤ L−ν0en−1(t).

So
l−ν0
Lν0

ν0 ≤ Tν0 ≤
L−ν0
lν0

ν0.

Let

t0 = min

{(
l−ν0
Lν0

) 1
1−λ

,

(
lν0
L−ν0

) 1
1−λ
}
,

then t0 ∈ (0, 1) and

t1−λ0 ν0 ≤ Tν0 ≤
(

1

t0

)1−λ

ν0. (3.1)

Let µ0 = t0ν0, ω0 = 1
t0
ν0, then µ0 ≤ ν0 ≤ ω0. Now we define

µn = Tµn−1, ωn = Tωn−1(n = 1, 2, · · · ). (3.2)
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According to (L3)and Remark 1.1 we have

(Trv)(t) =

∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0rv(s), Iµn−1−µ1rv(s), · · · , Iµn−1−µn−2rv(s), rv(s))ds

≥ rλT (v), if 0 < λ < 1

(Trv)(t) =

∫ 1

0

G(t, s)q(s)f(Iµn−1−µ0rv(s), Iµn−1−µ1rv(s), · · · , Iµn−1−µn−2rv(s), rv(s))ds

≤ rλT (v), if λ > 1.

By a careful calculation and (L2) we can obtain

Tµ0 ≥ tλ0Tν0 ≥ t0ν0 = µ0, Tω0 ≤
(

1

t0

)λ
Tν0 ≤

1

t0
ν0 = ω0. (3.3)

By induction we can get
µ0 ≤ µ1 ≤ · · · ≤ µn ≤ · · · ≤ ωn ≤ · · · ≤ ω1 ≤ ω0. (3.4)

Notice that µ0 = t20ω0, by induction it is easy to get µn ≥ (t20)λ
n

ωn, (n = 1, 2, · · · ). Since P is a normal cone
with the normality constant 1, and µn+m − µn ≤ ωn − µn for each m ∈ N, we obtain

‖µn+m − µn‖ ≤ ‖ωn − µn‖ ≤ (1− (t20)λ
n

)‖ω0‖ → 0, (n→ +∞). (3.5)

It means that {µn} is a Cauchy-sequence, so µn converges to some ν∗ ∈ D, and Tν∗ ≥ ν∗ in the other hand
we have

‖ωn − ν∗‖ ≤ ‖ωn − µn‖+ ‖µn − ν∗‖ → 0, (n→ +∞).

This implies that ωn converges to ν∗, and and Tν∗ ≤ ν∗. So ν∗ is a fixed point of T , and ν∗ ∈ [µ0, ω0]. For
each initial value ν0 ∈ D, we have µ0 ≤ ν0 ≤ ω0 and µn ≤ νn ≤ ωn, (n = 1, 2, · · · ). So

‖νn − ν∗‖ ≤ ‖νn − µn‖+ ‖µn − ν∗‖ ≤ 2‖ωn − µn‖ ≤ 2(1− (t20)λ
n

)‖ω0‖,

which implies that νn converges to ν∗. From Lemma 2.5 we get Iµn−1−µ0ν∗ is a positive solution of equation
(1.1) satisfying

Iµn−1−µ0νn − Iµn−1−µ0ν∗ = Iµn−1−µ0(νn − ν∗) ≤ 2(1− (t20)λ
n

)Iµn−1−µ0ω0.

Furthermore we have the error estimation

‖Iµn−1−µ0νn − Iµn−1−µ0ν∗‖ ≤ 2(1− (t20)λ
n

)‖Iµn−1−µ0ω0‖.

So the rate of convergence is o(1− (t20)λ
n

), where t0 is determined by ν0.
Now we shall prove the uniqueness of positive solution of(2.7).
For any fixed point ν− ∈ D of T , from the definition of D, let

t1 = inf{t > 0 : ν− ≤ tν∗}.

Then 0 < t1 < +∞. Now we prove t1 ≤ 1. Otherwise, then

ν− = Tν− ≤ T (t1ν
∗) ≤ tλ1T (ν∗) = tλ1ν

∗.

It implies tλ1 < t1, which contradicts the definition of t1. So t1 ≤ 1 and ν− ≤ ν∗. In the other hand, let
t2 = inf{t > 0 : ν∗ ≤ tν−}. In the same way we obtain ν∗ ≤ ν−, thus ν− = ν∗, that is ν∗ is the unique fixed
point of T ∈ D. Of course, it is also the unique positive solution of (2.7).

Thus according to Lemma 2.5, Iµn−1−µ0v∗ is the unique solution of (1.1).
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Example 3.1 Consider the following equation

D 7
2x(t) + t2(x

4
9 (t) + (D 3

4x(t))
1
3 + (D 7

4x(t))
3
7 + (D 7

3x(t))
3
8 ) = 0, t ∈ [0, 1]

x(0) = D 3
4x(0) = D 7

4x(0) = D 7
3x(0) = 0

D 12
5 x(1) =

∞∑
j=1

3

4
(
1

3
)jD 12

5 x([1− (
1

3
)j ]10),

(3.6)

where n = 4, µ1 = 3
4 , µ2 = 7

4 , µ3 = 7
3 , q(t) = t2, α = 7

2 ,

f(x1, x2, x3, x4) = x
4
9
1 (t) + x

1
3
2 (t) + x

3
7
3 (t) + x

3
8
4 (t).

By a careful calculation we get α− µ− 1 = 1
10 , α− µn−1 − 1 = 1

6 ,

f(x1, x2, x3, x4) = x
4
9
1 (t) + x

1
3
2 (t) + x

3
7
3 (t) + x

3
8
4 (t),

is increasing on [0, 1].

And f(rx1, rx2, rx3, rx4) = r
4
9 f(x1, x2, x3, x4), 0 < 4

9 < 1, 1 > 3
4 =

∞∑
j=1

αjξ
α−µ−1
j > 0.

e0 = I
7
3 t

1
6 =

Γ( 7
6 )

Γ( 7
2 )
t
5
2 , e1 = I

19
12 t

1
6 =

Γ( 7
6 )

Γ( 11
4 )
t
7
4 , e2 = I

7
12 t

1
6 =

Γ( 7
6 )

Γ( 7
4 )
t
3
4 , e3 = t

1
6 .

0 <

∫ 1

0

q(s)f(e0(s), e1(s), · · · , en−2(s), en−1(s))ds

=

∫ 1

0

s2f(
Γ( 7

6 )

Γ( 7
2 )
s

5
2 ,

Γ( 7
6 )

Γ( 11
4 )
s

7
4 ,

Γ( 7
6 )

Γ( 7
4 )
t
3
4 , s

1
6 )

≤
∫ 1

0

f(
Γ( 7

6 )

Γ( 7
2 )
,

Γ( 7
6 )

Γ( 11
4 )
,

Γ( 7
6 )

Γ( 7
4 )
, 1) < +∞.

From Theorem 3.1, the equation (3.6) has a unique positive solution.
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Abstract. In this paper, we consider the fermionic p-adic q-integral on Zp which was
defined by Kim [T. Kim, On p-adic interpolating function for q-Euler numbers and its

derivatives, J. Math. Anal. Appl. 339(2008) 598-608]. By using this integral, we define
the (h, q)-Euler polynomials and numbers and give some interesting identities of these

polynomials and numbers.

1. Introduction

Let p be a fixed prime number with p ≡ 1(mod 2). Throughout this work, Zp, C, Qp and
Cp will, respectively, denote the ring of p-adic integers, the complex field, the field of p-adic
rational numbers and the completion of the algebraic closure of Qp. The p-adic norm | · |p
is normalized by |p|p = 1

p . When one talks of q-extension, q is variously considered as an

indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, we assume that

|q| < 1. If q ∈ Cp, we assume that |q− 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p < 1. We
use the notation

[x]q =
1− qx

1− q
and [x]−q =

1− (−q)x

1 + q
, (see [1, 4, 5, 11, 12, 15, 21, 22, 24]). (1)

Let C(Zp) be the set of continuous functions on Zp. For f ∈ C(Zp), the p-adic q-integral
on Zp is defined by Kim to be

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (see [2, 3, 6− 25]). (2)

It is well-known that the classical Euler polynomials En(x) are defined by means of the
following generating function:∫

Zp

et(x+y)dµ−q(y) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (see [8− 13, 15, 16, 19, 22− 25]). (3)

1991 Mathematics Subject Classification. 05A10, 11B68, 11S80, 05A19.
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2 LEE-CHAE JANG, JEONG GON LEE

For a fixed h ∈ Cp with |1− h|p < p−
1

1−p , we define the (h, q)-Euler polynomials as

E(h)n,q (x) =

∫
Zp

[y + x]nq h
ydµ−q(y). (4)

When x = 0, E(h)n,q = E(h)n,q (0) are called the (h, q)-Euler numbers. When q = 1, E
(h)
n (x) =

E(h)n,1(x) is called the (h)-Euler polynomials as follows

E(h)
n (x) =

∫
Zp

(y + x)nhydµ−q(y), (5)

and E
(h)
n = E

(h)
n (0) is called the (h)-Euler numbers.

In this paper, by using the fermionic p-adic q-integral on Zp, we define the (h, q)-Euler
polynomials and discuss their properties. Furthermore, we give some interesting identities of
these polynomials and numbers.

2. The (h, q)-Euler polynomials

From (4), we observe that

E(h)n,q (x) =
1

(1− q)n
n∑

l=0

(
n

l

)
qlx(−1)l

∫
Zp

(qlh)ydµ−q(y). (6)

We note that ∫
Zp

(qlh)ydµ−q(y) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

(ql+1h)y(−1)y

=
[2]q
2

lim
N→∞

1 + (ql+1h)p
N

1 + ql+1h

=
[2]q

1 + ql+1h
. (7)

By (6) and (7), we obtain the following theorem.

Theorem 2.1. For n ∈ N ∪ {0}, we have

E(h)n,q (x) =
[2]q

(1− q)n
n∑

l=0

(
n

l

)
qlx(−1)l

1

1 + ql+1h
. (8)

Now, we observe that

E(h)n,q (x)

=
[2]q

(1− q)n
n∑

l=0

(
n

l

)
qlx(−1)l

∞∑
m=0

(−1)mq(l+1)mhm

=
[2]q

(1− q)n
∞∑

m=0

(−1)mhmqm
n∑

l=0

(
n

l

)
ql(x+m)(−1)l

= [2]q

∞∑
m=0

(−1)mhmqm
1

(1− q)n
(qx+m − 1)n
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= [2]q

∞∑
m=0

(−1)mhmqm[x+m]nq . (9)

By (9), we obtain the following theorem.

Theorem 2.2. For n ∈ N ∪ {0}, we have

E(h)n,q (x) = [2]q

∞∑
m=0

(−1)mhmqm[x+m]nq . (10)

Let us consider the generating function of the (h, q)-Euler polynomials as Fh,q(x, t) =∑∞
n=0 E

(h)
n,q (x) tn

n! , where t ∈ Cp with |1− t|p < 1 or t ∈ C with |t| < 1. Then we see that

Fh,q(x, t) =
∞∑

n=0

E(h)n,q (x)
tn

n!

=
∞∑

n=0

(
[2]q

∞∑
m=0

(−1)mhmqm[x+m]nq

)
tn

n!

= [2]q

∞∑
m=0

(−1)mhmqm
∞∑

n=0

[x+m]nq
tn

n!

= [2]q

∞∑
m=0

(−1)mhmqme[x+m]qt. (11)

By (11), we obtain the following theorem.

Theorem 2.3. Let Fh,q(x, t) be the generating function of (h, q)-Euler polynomials as Fq(x, t) =∑∞
n=0 E

(h)
n,q (x) tn

n! . Then we have

Fh,q(x, t) = [2]q

∞∑
m=0

(−1)mhmqme[x+m]qt. (12)

From Theorem 2.3, we note that

limq→1Fh.q(x, t) = 2
∞∑

m=0

(−1)mhme(x+m)t

= 2ext
∞∑

m=0

(−1)mhmemt

=
2

het + 1
ext (13)

and ∫
Zp

hyet(x+y)dµ−q(y)

=
∞∑

n=0

∫
Zp

hy(x+ y)ndµ−q(y)
tn

n!

=
∞∑

n=0

E(h)
n (x)

tn

n!
, (14)
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where E
(h)
n (x) are the (h)-Euler polynomials. We also observe that if f1(x) = f(x+ 1), then

we have

qI−q(f1) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

(−1)xf(x+ 1)qx+1

= lim
N→∞

1

[pN ]−q

pN∑
x=1

(−1)x−1f(x)qx

= − lim
N→∞

1

[pN ]−q

pN−1∑
x=0

(−1)xf(x)qx

+ lim
N→∞

[2]q
2

(
(−1)p

N−1qp
N

f(pN ) + f(0)
)

= − lim
N→∞

1

[pN ]−q

pN−1∑
x=0

(−1)x−1f(x)qx + [2]qf(0)

] = −I−q(f) + [2]qf(0). (15)

By (15), we obtain the following integral equation.

qI−q(f1) + I−q(f) = [2]qf(0). (16)

We note that if f(y) = hye(x+y)t, by (5) and (16), then we get∫
Zp

hyet(x+y)dµ−q(y) =
2

het + 1
ext. (17)

From (13), (14) and (17)

Theorem 2.4. Let E
(h)
n (x) be (h)-Euler polynomials with the generating function Fh,1(x, t) =∑∞

n=0E
(h)
n (x) tn

n! . Then we have

Fh,1(x, t) =
2

het + 1
ext =

∞∑
n=0

E(h)
n (x)

tn

n!
, (18)

In particular, when h = 1 and q = 1, we get

F1,1(x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (19)

where En(x) are the classical Euler polynomials.

From (16), we note that if f(x) = hx[x]nq , then we have

q

∫
Zp

hx+1[x+ 1]nq dµ−q(x) +

∫
Zp

hx[x]nq dµ−q(x) = [2]q0nq . (20)

By (20), we obtain the following theorem.

Theorem 2.5. For n ∈ N ∪ {0}, we have

qhE(h)n,q (1) + E(h)n,q = [2]qδn,0, (21)

where δn,0 is the Kronecker’s symbol.
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We note that

[x+ y]nq = ([x]q + qx[y]q)n

=
n∑

l=0

(
n

l

)
[x]n−lq qlx[y]lq. (22)

By (22), we get

E(h)n,q (x) =

∫
Zp

hy[x+ y]nq dµ−q(y)

=
n∑

l=0

(
n

l

)
[x]n−lq qlx

∫
Zp

[y]lqdµ−q(y)

=
n∑

l=0

(
n

l

)
[x]n−lq qlxEl, q(h)(x)

=
(
E(h)q (x) + [x]q

)n
, (23)

with the usual convention about replacing (E(h)q (x))l = E(h)n,q (x). Thus, by (21) and (23), we
obtain the following theorem.

Theorem 2.6. For n ∈ N ∪ {0}, we have

qh
(
qE(h)q (1) + 1

)n
+ E(h)n,q = [2]qδn,0 (24)

with the usual convention about replacing (E(h)q (x))l = E(h)n,q (x), where δn,0 is the Kronecker’s
symbol.

3. Remarks

In this section, we assume that q, h ∈ C with |q| < 1 and |h| < 1. For s ∈ C, we define the
(h, q)-Zeta functions as follows:

ζ(h)q (s, x) = [2]q

∞∑
n=0

(−1)nqnhh

[n+ x]sq
, x 6= 0,−1,−2, · · · . (25)

By (10) and (25), we obtain the following theorem.

Theorem 3.1. For m ∈ N, we have

ζ(h)q (−m,x) = E(h)m,q(x). (26)

We note that if d ∈ N with d ≡ 1(mod 2), then we have∫
Zp

f(x)dµ−q(x)

= lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

315 LEE-CHAE JANG et al 311-318



6 LEE-CHAE JANG, JEONG GON LEE

= lim
N→∞

1

[pN ]−q

d−1∑
a=0

pN−1∑
x=0

f(a+ dx)(−q)a+dx

= lim
N→∞

1 + qd

1 + qdpN ·
1 + q

1 + qd

d−1∑
a=0

pN−1∑
x=0

f(a+ dx)(−q)a+dx

=
1

[d]−q
lim

N→∞

1

[pN ]−qd

d−1∑
a=0

pN−1∑
x=0

f(x)f(a+ dx)(−q)a+dx

=
1

[d]−q

d−1∑
a=0

(−q)a lim
N→∞

1

[pN ]−qd

pN−1∑
x=0

f(x)f(a+ dx)(−qd)x

=
1

[d]−q

d−1∑
a=0

(−q)a
∫
Zp

f(a+ dx)dµ−q(x). (27)

By (27), we obtain the following theorem.

Theorem 3.2. Let d ∈ N with d ≡ 1(mod 2). Then, we have∫
Zp

f(x)dµ−q(x) =
1

[d]−q

d−1∑
a=0

(−q)a
∫
Zp

f(a+ dx)dµ−q(x). (28)

We note that if f(y) = hy[x+ y]nq , then we derive∫
Zp

hy[x+ y]nq dµ−q(y)

=
1

[d]−q

d−1∑
a=0

(−q)a
∫
Zp

ha+dy[a+ dy + x]nq dµ−q(y)

=
1

[d]−q

d−1∑
a=0

(−q)aha
∫
Zp

hdy[a+ dy + x]nq dµ−q(y)

=
[d]nq
[d]−q

d−1∑
a=0

(−q)aha
∫
Zp

hdy[
a+ x

d
+ y]nqddµ−q(y)

=
[d]nq
[d]−q

d−1∑
a=0

(−q)ahaE(h)
n,qd

(
a+ x

d

)
, (29)

where d ∈ N with d ≡ 1(mod 2).

Theorem 3.3. For n ∈ N ∪ {0}, we have

E(h)n,q (x) =
[d]nq
[d]−q

d−1∑
a=0

(−q)ahaE(h)
n,qd

(
a+ x

d

)
. (30)

4. Results and discussion

The results of our works are some interesting identities of the (h, q)-Euler polynomials as
follows. The first result is to fine the generating function of the (h, q)-Euler polynomials in
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Theorem 2.3. We note that the (h, q)-Euler polynomial is the generalization of the q-Euler
polynomial and the (h)-Euler polynomials (see Theorem 2.4). The second result is to find
the recurrence formula of the (h, q)-Euler polynomials in Theorem 2.6. The third result is to
compare with the (h, q)-Euler polynomials and the (h, q)-Zeta functions in Theorem 3.1. The
fourth result is to find the distribution equation of the (h, q)-Euler polynomials in Theorem
3.3.

In the future, we will work to find some interesting identities between the (h, q)-Euler
polynomials and the q-Euler polynomials and to compare with the zeros of the (h, q)-Euler
polynomials and the zeros of the q-Euler polynomials.

5. Conclusions

We defined (h, q)-Euler polynomials which are q-Euler polynomials with some weight func-
tion in Eq.(6) and remarked that if h = 1, (1, q)-Euler polynomials are q-Euler polynomials.
In Theorems 2.1 and 2.2, we found some properties of (h, q)-Euler polynomials. In Theorem
2.3, we obtained some specific type of the generating function for (h, q)-Euler polynomials
and noted that when h = q, we saw the more specific type of the generating function of
(h, q)-Euler polynomials.

Furthermore, we investigated very interesting recursion formula of (h, q)-Euler polynomials
in Theorem 3.1. In section 3, we defined the (h, q)-Zeta functions and gave some relation
with the (h, q)-Zeta funtion and (h, q)-Euler polynomials. Finally, we obtained a distribution
identity equation of (h, q)-Euler polynomials in Theorem 3.3.
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HERMITE-HADAMARD TYPE INEQUALITIES FOR n-TIMES

DIFFERENTIABLE AND α-LOGARITHMICALLY PREINVEX FUNCTIONS

SHUHONG WANG*

ABSTRACT: In the paper, the concept of α-logarithmically preinvex func-
tion is introduced, and by creating an integral identity involving an n-times
differentiable function, some new Hermite-Hadamard type inequalities for α-
logarithmically preinvex functions are established.

KEY WORDS: Integral identity, Hermite-Hadamard type inequality, α-logarithmically
preinvex function.

1. Introduction

Throughout this paper, let R = (−∞,∞), R+ = (0,∞), N denote the set of all positive
integers, I denote the interval in R, and A denote the set in Rn, n ∈ N.

First, let us recall some definitions of various convex functions.

Definition 1.1. A function f : I ⊆ R→ R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (1.1)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality (1.1) reverses, then f is said to be concave
on I.

Definition 1.2 ([1]). A set A ⊆ Rn is said to be invex with respect to the map η : A×A→ Rn,
if for every x, y ∈ A and t ∈ [0, 1]

y + tη(x, y) ∈ A. (1.2)

The invex set A is also called a η-connected set.

It is obvious that every convex set is invex with respect to the map η(x, y) = x− y, but there
exist invex sets which are not convex (see [1], for example).

Definition 1.3 ([1]). Let A ⊆ Rn be an invex set with respect to η : A×A→ Rn. For every
x, y ∈ A, the η-path Pxv joining the points x and v = x+ η(y, x) is defined by

Pxv = {v|v = x+ tη(y, x), t ∈ [0, 1]}. (1.3)

Definition 1.4 ([13]). Let A ⊆ Rn be an invex set with respect to η : A × A → Rn. A
function f : A→ R is said to be preinvex with respect to η, if for every x, y ∈ A and t ∈ [0, 1]

f(y + tη(x, y)) ≤ tf(x) + (1− t)f(y). (1.4)

The function f is said to be preincave if and only if −f is preinvex.

Every convex function is preinvex with respect to the map η(x, y) = x− y, but not conversely
(see [13], for instance).

*College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China.
*To whom correspondence should be addressed. e-mail:shuhong7682@163.com
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2 S. H. WANG

Definition 1.5 ([10]). Let A ⊆ Rn be an invex set with respect to η : A × A → Rn. The
function f : A→ R+ on the set A is said to be logarithmically preinvex with respect to η, if for
every x, y ∈ A and t ∈ [0, 1]

f(y + tη(x, y)) ≤
[
f(x)

]t[
f(y)

]1−t
. (1.5)

For properties and applications of preinvex and logarithmically preinvex functions, please refer
to [8, 9, 14, 16] and closely related references therein.

The most important inequality in the theory of convex functions, the well known Hermite-
Hadamard’s integral inequality, may be stated as follows. Let I ⊆ R and a, b ∈ I with a < b. If
f : [a, b] ⊆ I → R is a convex function on [a, b], then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
. (1.6)

If f is concave on [a, b], then the inequality (1.6) is reversed.
The inequality (1.6) has been generalized by many mathematicians. Some of them may be

recited as follows.

Theorem 1.1 ([5]). Let f : I ⊆ R → R be a differentiable mapping on I and a, b ∈ I with
a < b. If |f ′(x)|q for q ≥ 1 is convex function on [a, b], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ b− a
4

(
|f ′(a)|q+|f ′(b)|q

2

)1/q

(1.7)

and ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ b− a
4

(
|f ′(a)|q+|f ′(b)|q

2

)1/q

. (1.8)

Theorem 1.2 ([6]). Let f : I ⊆ R→ R be differentiable on I, a, b ∈ I with a < b, and p > 1.
If |f ′(x)|p/(p−1) is convex on [a, b], then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣≤ b− a
16

(
4

p+ 1

)1/p

×
{[
|f ′(a)|p/(p−1)+3|f ′(b)|p/(p−1)

]1−1/p
+
[
3|f ′(a)|p/(p−1)+|f ′(b)|p/(p−1)

]1−1/p}
. (1.9)

Theorem 1.3 ([9]). Let A ⊆ R be an open invex set with respect to η : A × A → R and
a, b ∈ A with η(a, b) > 0 for all a 6= b. If f : A → R+ is a preinvex function on A, then the
following inequality holds

f

(
2a+ η(b, a)

2

)
≤ 1

η(b, a)

∫ a+η(b,a)

a

f(x) dx ≤ f(a) + f(b)

2
. (1.10)

Theorem 1.4 ([11]). Let A ⊆ R be an open invex set with respect to η : A × A → R and
a, b ∈ A with η(a, b) > 0 for all a 6= b. Suppose that f : A → R is a differentiable function. If
|f (n)|q, q > 1, q ∈ R, is a log-preinvex function on A, then we have the inequality∣∣∣∣f(a+

1

2
η(b, a)

)
− 1

η(b, a)

∫ a+η(b,a)

a

f(x) dx

∣∣∣∣
≤

η(b, a)
√
|f ′(a)|

21/p(p+ 1)1/pq1/q

[ (|f ′(b)|)q/2 − (|f ′(a)|
)q/2(

ln
(
|f ′(b)|

)
− ln

(
|f ′(a)|

))]1/q, (1.11)

where 1
p + 1

q = 1.
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Theorem 1.5 ([7]). Let A ⊆ R be an open invex set with respect to η : A × A → R and
a, b ∈ A with η(a, b) > 0 for all a 6= b. Suppose f : A → R is a function such that f (n) exits on
A and f (n) is integrable on [a, a + η(b, a)] for n ∈ N, n ≥ 1. If |f (n)|q is log-preinvex on A for
n ∈ N, n ≥ 1, q ≥ 1, then we have the following inequality∣∣∣∣n−1∑

k=0

[
(−1)k + 1

]
(η(b, a))k

2k+1(k + 1)!
f (k)

(
a+

1

2
η(b, a)

)
− 1

η(b, a)

∫ a+η(b,a)

a

f(x) dx

∣∣∣∣
≤

(η(b, a))n
∣∣f (n)(a)

∣∣(n!)1/q−1

2(n+1)(q−1)/q(n+ 1)1−1/q
{

[E2(n, q)]1/q + [E3(n, q)]1/q
}
, (1.12)

where

E2(n, q) =
(−1)n+1

qn+1
[
ln
(∣∣f (n)(b)∣∣)− ln

(∣∣f (n)(a)
∣∣)]n+1

+

( ∣∣f (n)(b)∣∣∣∣f (n)(a)
∣∣
)q/2 n∑

k=0

(−1)k

(n− k)!qk+12n−k
[
ln
(∣∣f (n)(b)∣∣)− ln

(∣∣f (n)(a)
∣∣)]k+1

(1.13)

and

E3(n, q) =

∣∣f (n)(b)∣∣q
qn+1

[
ln
(∣∣f (n)(b)∣∣)− ln

(∣∣f (n)(a)
∣∣)]n+1∣∣f (n)(a)

∣∣q
−
( ∣∣f (n)(b)∣∣∣∣f (n)(a)

∣∣
)q/2 n∑

k=0

1

(n− k)!qk+12n−k
[
ln
(∣∣f (n)(b)∣∣)− ln

(∣∣f (n)(a)
∣∣)]k+1

. (1.14)

Recently, some related inequalities for preinvex functions were also obtained in [4, 15, 16, 17].

2. New Definitions and lemmas

Now we introduce the concept of α-logarithmic preinvex function.

Definition 2.1. Let A ⊆ Rn be an invex set with respect to η : A× A → Rn. The function
f : A → R+ on the set A is said to be α-logarithmically preinvex function with respect to η, if
for every x, y ∈ A, t ∈ [0, 1] and some α ∈ (0, 1]

f(y + tη(x, y)) ≤
[
f(x)

]tα[
f(y)

]1−tα
. (2.1)

Clearly, when taking α = 1 in (2.1), then f becomes the standard logarithmically preinvex
convex function on A.

In order to obtain our main results, we need the following lemmas.

Lemma 2.1. For n ∈ N, let A ⊆ R be an open invex set with respect to η : A × A → R and
a, b ∈ A with η(a, b) > 0 for all a 6= b. If f : A → R is an n-times differentiable function on A
and f (n) is integrable on the η-path Pbc for c = b+ η(a, b), then

n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

=
(−1)n+1[η(a, b)]n

n!

[∫ x−b
η(a,b)

0

tnf (n)(b+ tη(a, b)) dt+

∫ 1

x−b
η(a,b)

(t− 1)nf (n)(b+ tη(a, b)) dt

]
, (2.2)

where x ∈ [b, b+ η(b, a)].
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4 S. H. WANG

Proof. Since a, b ∈ A and A is an invex set with respect to η, for every t ∈ [0, 1], it follows that
b+ tη(a, b) ∈ A. When n = 1, by integrating by part in the right-hand side of (2.2), it turns out
that

η(a, b)

[∫ x−b
η(a,b)

0

tf
′
(b+ tη(a, b)) dt+

∫ 1

x−b
η(a,b)

(t− 1)f
′
(b+ tη(a, b)) dt

]

=
x− b
η(a, b)

f(x)−
∫ x−b

η(a,b)

0

f(b+ tη(a, b)) dt− x− b− η(a, b)

η(a, b)
f(x)−

∫ 1

x−b
η(a,b)

f(b+ tη(a, b)) dt

= f(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx.

Hence, the identity (2.2) holds for n = 1.
When n = m and m ≥ 1, suppose that the identity (2.2) is valid.
When n = m+ 1, by the hypothesis, we have

(−1)m+2[η(a, b)]m+1

(m+ 1)!

[∫ x−b
η(a,b)

0

tm+1f (m+1)(b+ tη(a, b)) dt

+

∫ 1

x−b
η(a,b)

(t− 1)m+1f (m+1)(b+ tη(a, b)) dt

]

=
(−1)m+2[η(a, b)]m

(m+ 1)!

[(
x− b
η(a, b)

)m+1

f (m)(x)− (m+ 1)

∫ x−b
η(a,b)

0

tmf (m)(b+ tη(a, b)) dt

−
(
x− b− η(a, b)

η(a, b)

)m+1

f (m)(x)− (m+ 1)

∫ 1

x−b
η(a,b)

(t− 1)mf (m)(b+ tη(a, b)) dt

]
=

(−1)m+2f (m)(x)

(m+ 1)!η(a, b)

[
(x− b)m+1 − (x− b− η(a, b))m+1

]
+

(−1)m+1[η(a, b)]m

m!

[∫ x−b
η(a,b)

0

tmf (m)(b+ tη(a, b)) dt+

∫ 1

x−b
η(a,b)

(t− 1)mf (m)(b+ tη(a, b)) dt

]

=
m∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx.

Therefore, when n = m + 1, the identity (2.2) holds. By induction, the proof of Lemma 2.1 is
complete. �

Remark 2.1. Under the conditions of Lemma 2.1, taking x = b+ η(a,b)
2 , we get

n−1∑
k=0

[η(a, b)]k[1 + (−1)k]

(k + 1)!2k+1
f (k)

(
b+

η(a, b)

2

)
− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

=
(−1)n+1[η(a, b)]n

n!

[∫ 1
2

0

tnf (n)(b+ tη(a, b)) dt+

∫ 1

1
2

(t− 1)nf (n)(b+ tη(a, b)) dt

]
, (2.3)

which may be found in [7].

Lemma 2.2 ([14]). Let µ > 0 and x ≥ 0. Then

E(n;µ, x) ,
∫ x

0

tnµt dt =

{
(−1)n+1n!
(lnµ)n+1 + n!µx

∑n
k=0

(−1)kxn−k
(n−k)!(lnµ)k+1 , µ 6= 1,

xn+1

n+1 , µ = 1
(2.4)
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for n ≥ 0, n ∈ N.

Lemma 2.3 ([12]). Let r > 0, µ > 0 and x ≥ 0. Then

F (r;µ, x) ,
∫ x

0

tr−1µt dt =

{
xrµx

∑∞
k=1

(−x lnµ)k−1

(r)k
<∞, µ 6= 1,

xr

r , µ = 1,
(2.5)

where (r)k = r(r + 1)(r + 2) · · · (r + k − 1).

Lemma 2.4 ([3]). Let 0 < φ ≤ 1 ≤ ψ and 0 < t, s ≤ 1. Then

φt
s

≤ φst (2.6)

and
ψt

s

≤ ψst+1−s. (2.7)

.

3. Hermite-Hadamard type inequalities

Now we start out to establish some new Hermite-Hadamard type inequalities for n-times
differentiable and α-logarithmically preinvex functions.

Theorem 3.1. For n ∈ N and n ≥ 1, let A ⊆ R be an open invex set with respect to
η : A×A→ R and a, b ∈ A with η(a, b) > 0 for all a 6= b. Suppose that f : A→ R is an n-times

differentiable function on A and f (n) is integrable on the η-path Pbc for c = b+ η(a, b). If
∣∣f (n)∣∣q

is α-logarithmically preinvex function on A for q ≥ 1, then for α ∈ (0, 1] and x ∈ [b, b+ η(a, b)]∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](n+1−q)/q

n!(n+ 1)1−1/q

{
(x− b)(n+1)(q−1)/q∣∣f (n)(a)

∣∣ξ∣∣f (n)(b)∣∣ζ[E(n;µqα,
x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)(n+1)(q−1)/q∣∣f (n)(a)

∣∣δ∣∣f (n)(b)∣∣σ[E(n;µ−qα,
b+ η(a, b)− x

η(a, b)

)]1/q}
, (3.1)

where µ =

∣∣f(n)(a)
∣∣∣∣f(n)(b)
∣∣ ,

{ξ, ζ} =

{
{0, 1}, if 0 < µ ≤ 1,

{1− α, α}, if µ > 1,
(3.2)

{δ, σ} =

{
{α, 1− α}, if 0 < µ ≤ 1,

{1, 0}, if µ > 1,
(3.3)

and E(n;µ, x) is defined in (2.4).

Proof. Since a, b ∈ A and A is an invex set with respect to η, for every t ∈ [0, 1], we have

b+ tη(a, b) ∈ A. Using Lemma 2.1, Hölder’s inequality and α-logarithmic preinvexity of
∣∣f (n)∣∣q,

we deduce that∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)]n

n!

[∫ x−b
η(a,b)

0

tn
∣∣f (n)(b+ tη(a, b))

∣∣ dt+

∫ 1

x−b
η(a,b)

(1− t)n
∣∣f (n)(b+ tη(a, b))

∣∣ dt]
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≤ [η(a, b)]n

n!

{[∫ x−b
η(a,b)

0

tn dt

]1−1/q[∫ x−b
η(a,b)

0

tn
∣∣f (n)(b+ tη(a, b))

∣∣q dt

]1/q
+

[∫ 1

x−b
η(a,b)

(1− t)n dt

]1−1/q[∫ 1

x−b
η(a,b)

(1− t)n
∣∣f (n)(b+ tη(a, b))

∣∣q dt

]1/q}

≤ [η(a, b)](n+1−q)/q

n!(n+ 1)1−1/q

{
(x− b)(n+1)(q−1)/q

[∫ x−b
η(a,b)

0

tn
∣∣f (n)(a)

∣∣qtα ∣∣f (n)(b)∣∣q(1−tα) dt

]1/q
+ (b+ η(a, b)− x)(n+1)(q−1)/q

[∫ 1

x−b
η(a,b)

(1− t)n
∣∣f (n)(a)

∣∣qtα∣∣f (n)(b)∣∣q(1−tα) dt

]1/q}

=
[η(a, b)](n+1−q)/q

∣∣f (n)(b)∣∣
n!(n+ 1)1−1/q

{
(x− b)(n+1)(q−1)/q

[∫ x−b
η(a,b)

0

tnµqt
α

dt

]1/q
+ (b+ η(a, b)− x)(n+1)(q−1)/q

[∫ 1

x−b
η(a,b)

(1− t)nµqt
α

dt

]1/q}
, (3.4)

where µ =

∣∣f(n)(a)
∣∣∣∣f(n)(b)
∣∣ .

By Lemma 2.2 and Lemma 2.4, for 0 < µ ≤ 1, we give∫ x−b
η(a,b)

0

tnµqt
α

dt ≤
∫ x−b

η(a,b)

0

tnµqαt dt = E

(
n;µqα,

x− b
η(a, b)

)
(3.5)

and ∫ 1

x−b
η(a,b)

(1− t)nµqt
α

dt ≤
∫ 1

x−b
η(a,b)

(1− t)nµqαt dt

=

∫ b+η(a,b)−x
η(a,b)

0

tnµqα(1−t) dt = µqαE

(
n;µ−qα,

b+ η(a, b)− x
η(a, b)

)
; (3.6)

for µ > 1, we obtain∫ x−b
η(a,b)

0

tnµqt
α

dt ≤
∫ x−b

η(a,b)

0

tnµq(αt+1−α) dt = µq(1−α)E

(
n;µqα,

x− b
η(a, b)

)
(3.7)

and ∫ 1

x−b
η(a,b)

(1− t)nµqt
α

dt ≤
∫ 1

x−b
η(a,b)

(1− t)nµq(αt+1−α) dt

=

∫ b+η(a,b)−x
η(a,b)

0

tnµq(α(1−t)+1−α) dt = µqE

(
n;µ−qα,

b+ η(a, b)− x
η(a, b)

)
. (3.8)

Substituting (3.5) to (3.8) into (3.4), we get the inequality (3.1).
Theorem 3.1 is thus proved. �

Corollary 3.1.1. Under the assumptions of Theorem 3.1,

(1) if q = 1, we know∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)]n

n!

{∣∣f (n)(a)
∣∣ξ∣∣f (n)(b)∣∣ζE(n;µα,

x− b
η(a, b)

)
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+
∣∣f (n)(a)

∣∣δ∣∣f (n)(b)∣∣σE(n;µ−α,
b+ η(a, b)− x

η(a, b)

)}
; (3.9)

(2) if α = 1, we get∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](n+1−q)/q

n!(n+ 1)1−1/q

{
(x− b)(n+1)(q−1)/q∣∣f (n)(b)∣∣[E(n;µq,

x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)(n+1)(q−1)/q∣∣f (n)(a)

∣∣[E(n;µ−q,
b+ η(a, b)− x

η(a, b)

)]1/q}
; (3.10)

(3) if α = 1 and q = 1, we have∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)]n

n!

{∣∣f (n)(b)∣∣E(n;µ,
x− b
η(a, b)

)
+
∣∣f (n)(a)

∣∣E(n;µ,
b+ η(a, b)− x

η(a, b)

)}
. (3.11)

Theorem 3.2. For n ∈ N and n ≥ 1, let A ⊆ R be an open invex set with respect to
η : A×A→ R and a, b ∈ A with η(a, b) > 0 for all a 6= b. Suppose that f : A→ R is an n-times

differentiable function on A and f (n) is integrable on the η-path Pbc for c = b+ η(a, b). If
∣∣f (n)∣∣q

is α-logarithmically preinvex function on A for q > 1, then for α ∈ (0, 1], x ∈ [b, b+ η(a, b)] and
0 ≤ r ≤ nq, we get∣∣∣∣∣

n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](r+1−q)/q

n!

(
q − 1

nq + q − r − 1

)1−1/q

×
{

(x− b)n+1−(r+1)/q
∣∣f (n)(a)

∣∣ξ∣∣f (n)(b)∣∣ζ[F(r + 1;µqα,
x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)n+1−(r+1)/q

∣∣f (n)(a)
∣∣δ∣∣f (n)(b)∣∣σ[F(r + 1;µ−qα,

b+ η(a, b)− x
η(a, b)

)]1/q}
,

(3.12)

where µ, {ξ, ζ} and {δ, σ} are given in Theorem 3.1, and F (r;µ, x) is defined by (2.5).

Proof. Since a, b ∈ A and A is an invex set with respect to η, for every t ∈ [0, 1], it is easy to
see that b+ tη(a, b) ∈ A. From Lemma 2.1, Hölder’s inequality and α-logarithmic preinvexity of∣∣f (n)∣∣q, one has that∣∣∣∣∣

n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)]n

n!

[∫ x−b
η(a,b)

0

tn
∣∣f (n)(b+ tη(a, b))

∣∣dt+

∫ 1

x−b
η(a,b)

(1− t)n
∣∣f (n)(b+ tη(a, b))

∣∣dt]

≤ [η(a, b)]n

n!

{[∫ x−b
η(a,b)

0

t(nq−r)/(q−1) dt

]1−1/q[∫ x−b
η(a,b)

0

tr
∣∣f (n)(b+ tη(a, b))

∣∣q dt

]1/q
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+

[∫ 1

x−b
η(a,b)

(1− t)(nq−r)/(q−1) dt

]1−1/q[∫ 1

x−b
η(a,b)

(1− t)r
∣∣f (n)(b+ tη(a, b))

∣∣q dt

]1/q}

≤ [η(a, b)](r+1−q)/q

n!

(
q − 1

nq + q − r − 1

)1−1/q

×
{

(x− b)n+1−(r+1)/q

[∫ x−b
η(a,b)

0

tr
∣∣f (n)(a)

∣∣qtα∣∣f (n)(b)∣∣q(1−tα) dt

]1/q
+ (b+ η(a, b)− x)n+1−(r+1)/q

[∫ 1

x−b
η(a,b)

(1− t)r
∣∣f (n)(a)

∣∣qtα ∣∣f (n)(b)∣∣q(1−tα) dt

]1/q}

=
[η(a, b)](r+1−q)/q

∣∣f (n)(b)∣∣
n!

(
q − 1

nq + q − r − 1

)1−1/q{
(x− b)n+1−(r+1)/q

[∫ x−b
η(a,b)

0

trµqt
α

dt

]1/q
+ (b+ η(a, b)− x)n+1−(r+1)/q

[∫ 1

x−b
η(a,b)

(1− t)rµqt
α

dt

]1/q}
, (3.13)

where µ =

∣∣f(n)(a)
∣∣∣∣f(n)(b)
∣∣ .

By Lemma 2.3 and Lemma 2.4, for 0 < µ ≤ 1, we show∫ x−b
η(a,b)

0

trµqt
α

dt ≤
∫ x−b

η(a,b)

0

trµqαt dt = F

(
r + 1;µqα,

x− b
η(a, b)

)
(3.14)

and ∫ 1

x−b
η(a,b)

(1− t)rµqt
α

dt ≤
∫ 1

x−b
η(a,b)

(1− t)rµqαt dt

=

∫ b+η(a,b)−x
η(a,b)

0

trµqα(1−t) dt = µqαF

(
r + 1;µ−qα,

b+ η(a, b)− x
η(a, b)

)
; (3.15)

for µ > 1, we state∫ x−b
η(a,b)

0

trµqt
α

dt ≤
∫ x−b

η(a,b)

0

trµq(αt+1−α) dt = µq(1−α)F

(
r + 1;µqα,

x− b
η(a, b)

)
(3.16)

and ∫ 1

x−b
η(a,b)

(1− t)rµqt
α

dt ≤
∫ 1

x−b
η(a,b)

(1− t)rµq(αt+1−α) dt

=

∫ b+η(a,b)−x
η(a,b)

0

trµq(α(1−t)+1−α) dt = µqF

(
r + 1;µ−qα,

b+ η(a, b)− x
η(a, b)

)
. (3.17)

Substituting (3.14) to (3.17) into (3.13), we get to the inequality (3.12).
The proof of Theorem 3.2 is established. �

Corollary 3.2.1. Under the assumptions of Theorem 3.2,

(1) if α = 1, we write∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](r+1−q)/q

n!

(
q − 1

nq + q − r − 1

)1−1/q
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×
{

(x− b)n+1−(r+1)/q
∣∣f (n)(b)∣∣[F(r + 1;µq,

x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)n+1−(r+1)/q

∣∣f (n)(a)
∣∣[F(r + 1;µ−q,

b+ η(a, b)− x
η(a, b)

)]1/q}
; (3.18)

(2) if r = nq, we find

∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](nq+1−q)/q

n!

{
(x− b)1−1/q

∣∣f (n)(a)
∣∣ξ∣∣f (n)(b)∣∣ζ[F(nq + 1;µqα,

x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)1−1/q

∣∣f (n)(a)
∣∣δ∣∣f (n)(b)∣∣σ[F(nq + 1;µ−qα,

b+ η(a, b)− x
η(a, b)

)]1/q}
. (3.19)

In particular, if r = nq and α = 1, one has

∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
≤ [η(a, b)](nq+1−q)/q

n!

{
(x− b)1−1/q

∣∣f (n)(b)∣∣[F(nq + 1;µq,
x− b
η(a, b)

)]1/q
+ (b+ η(a, b)− x)1−1/q

∣∣f (n)(a)
∣∣[F(nq + 1;µ−q,

b+ η(a, b)− x
η(a, b)

)]1/q}
; (3.20)

(3) if r = 0, we observe

∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣

≤



[η(a,b)](1−q)/q

n!(qα)1/q

(
q−1

nq+q−1

)1−1/q{
(x− b)n+1−1/q

∣∣f (n)(a)
∣∣ξ

×
∣∣f (n)(b)∣∣ζ−α(x−b)/η(a,b)[∣∣f(n)(a)

∣∣(x−b)qα/η(a,b)−∣∣f(n)(b)
∣∣(x−b)qα/η(a,b)

ln
∣∣f(n)(a)

∣∣−ln∣∣f(n)(b)
∣∣ ]1/q

+(b+ η(a, b)− x)n+1−1/q
∣∣f (n)(a)

∣∣δ−α(b+η(a,b)−x)/η(a,b)∣∣f (n)(b)∣∣σ
×
[∣∣f(n)(b)

∣∣(b+η(a,b)−x)qα/η(a,b)−∣∣f(n)(a)
∣∣(b+η(a,b)−x)qα/η(a,b)

ln
∣∣f(n)(b)

∣∣−ln∣∣f(n)(a)
∣∣ ]1/q}

, if µ 6= 1,∣∣f(n)(b)
∣∣

n!η(a,b)

(
q−1

nq+q−1

)1−1/q[
(x− b)n+1 + (b+ η(a, b)− x)n+1

]
, if µ = 1.

(3.21)

Specially, if r = 0 and α = 1, one has

∣∣∣∣∣
n−1∑
k=0

1

(k + 1)!η(a, b)

[
(b+ η(a, b)− x)k+1 − (b− x)k+1

]
f (k)(x)− 1

η(a, b)

∫ b+η(a,b)

b

f(x) dx

∣∣∣∣
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≤



[η(a,b)](1−q)/q

n!q1/q

(
q−1

nq+q−1

)1−1/q{
(x− b)n+1−1/q

∣∣f (n)(b)∣∣(b+η(a,b)−x)/η(a,b)
×
[∣∣f(n)(a)

∣∣(x−b)q/η(a,b)−∣∣f(n)(b)
∣∣(x−b)q/η(a,b)

ln
∣∣f(n)(a)

∣∣−ln∣∣f(n)(b)
∣∣ ]1/q

+(b+ η(a, b)− x)n+1−1/q
∣∣f (n)(a)

∣∣(x−b)/η(a,b)
×
[∣∣f(n)(b)

∣∣(b+η(a,b)−x)q/η(a,b)−∣∣f(n)(a)
∣∣(b+η(a,b)−x)q/η(a,b)

ln
∣∣f(n)(b)

∣∣−ln∣∣f(n)(a)
∣∣ ]1/q}

, if µ 6= 1,∣∣f(n)(b)
∣∣

n!η(a,b)

(
q−1

nq+q−1

)1−1/q[
(x− b)n+1 + (b+ η(a, b)− x)n+1

]
, if µ = 1.

(3.22)
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Existence of solutions for boundary value problems
of fractional differential equation in Banach spaces∗
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Abstract

In this paper, with the help of a new estimation technique for the measure

of noncompactness, under more general conditions of growth and noncom-

pactness measure, combining with the Sadovskii’s fixed point theorem and

Leray-Schauder type fixed point theorem of condensing mapping, we obtain

the existence of solutions for the following boundary value problems of frac-

tional differential equation in Banach spaces{
−CD β

0+u(t) = f(t, u(t)), t ∈ J,

u(0) = u(1) = θ,

where 1 < β ≤ 2 is a real number, J = [0, 1], CD β
0+ is the Caputo fractional

derivative of order β, f : J × E → E is continuous, E is a Banach spaces, θ

is the zero element of E.

Keywords: Banach spaces; fractional differential equation; measure of non-

compactness; condensing mapping
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1 Introduction

Differential equations of fractional order occur more frequently in difference re-

search areas and engineering, such as physics, chemistry. For the details, one can
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see the monographs [1-5]. Recently, many people pay attention to the boundary

value problem for fractional order ordinary differential equation involving Caputo’s

derivative, see [8-29] and the references therein. However, as far as we know, there

are few papers studied the existence of solution to boundary value problems for

fractional differential equation involving Caputo’s derivative in abstract space.

In 1988, Guo and Lakshmikantham [6] firstly studied the existence of solutions for

the following boundary value problem of nonlinear second order differential equation

in Banach spaces {
−u′′(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = u(1) = θ,
(1)

where f : J × E → E is continuous, E is a Banach spaces, θ is the zero element of

E.

In 2008, Li and Guo [7] obtained an existence result of positive solution of BVP

(1) by employing a new estimate of noncompactness measure and the fixed point

index theory of condensing mapping.

Motivated by the above mentioned works, in this paper, with the help of a new

estimation technique of noncompactness measure, under more general conditions of

growth and noncompactness measure, combining with the Sadovskii’s fixed point

theorem and Leray-Schauder type fixed point theorem of condensing mapping, we

consider the existence of solutions for the following boundary value problem (BVP)

of fractional differential equation in Banach space E{
−CD β

0+u(t) = f(t, u(t)), t ∈ J,

u(0) = u(1) = θ,
(2)

where 1 < β ≤ 2 is real number, J = [0, 1], CD β
0+ is the Caputo fractional derivative

of order β, f : J×E → E is continuous, θ is the zero element of Banach space E. It

is easy to see that if β = 2, then BVP (2) will degrade into the problem (1), which

was studied in [6] and [7].

2 Preliminaries

Throughout this paper, we denote by C(J,E) the Banach space of all continuous

E-value functions on interval J with the supnorm ‖u‖C = sup
t∈J
‖u(t)‖.
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Definition 2.1 The fractional integral of order q > 0 with the lower limit ze-

ro for a function g is defined as

Iq0+g(t) =
1

Γ(q)

∫ t

0

(t− s)q−1g(s)ds, t > 0,

where Γ(·) is the gamma function.

Definition 2.2 The Caputo fractional derivative of order q > 0 with the low-

er limit zero for a function g is defined as

CD q
0+g(t) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, t > 0, 0 ≤ n− 1 < q < n,

where the function g(t) has absolutely continuous derivatives up to order n− 1.

If g is an abstract function with values in E, then the integrals which appear in

Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Next, we recall some properties of the measure of noncompactness that will be

used in the proof of our main results. In order to no confusion may occur, we denote

by α(·) the Kuratowski measure of noncompactness on both the bounded sets of

E and C(J,E). For the details of the definition and properties of the measure of

noncompactness, we refer to the monographs [30] and [31]. For any D ⊂ C(J,E)

and t ∈ J , set D(t) = {u(t) | u ∈ D} ⊂ E. If D ⊂ C(J,E) is bounded, then D(t) is

bounded in E and α(D(t)) ≤ α(D).

Lemma 2.3 ([36]). Let E be a Banach space, and let D ⊂ C(J,E) be bound-

ed and equicontinuous. Then α(D(t)) is continuous on J , and

max
t∈J

α(D(t)) = α(D) = α(D(J)).

Lemma 2.4 ([35]). Let E be a Banach space, and let D = {un} ⊂ C(J,E) be a

bounded and countable set. Then α(D(t)) is Lebesgue integral on J , and

α
({∫

J

un(t)dt | n ∈ N
})
≤ 2

∫
J

α(D(t))dt.

Lemma 2.5 ([32,33]). Let E be a Banach space, and let D ⊂ E be bounded. Then

there exists a countable set D0 ⊂ D, such that α(D) ≤ 2α(D0).

3
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Lemma 2.6 ([34]). Let u ∈ C(J,E), ψ ∈ L(J,R+). Then∫
J

u(s)ψ(s)ds ∈
∫
J

ψ(s)dscou(J),

where u(J) = {u(t) | t ∈ J}.

Lemma 2.7 ([31]). Let E be a Banach space. Assume that D ⊂ E is a bounded

closed and convex set on E, Q : D → D is condensing. Then Q has at least one

fixed point in D.

Lemma 2.8 ([36]). Let E be a Banach space. Assume that Q : D → D is

condensing, if {x | x = λQx, 0 < λ < 1} is a bounded set. Then Q has at least one

fixed point in D.

With the help of the existence of solutions for fractional differential equation in

real number space, we firstly get the corresponding existence and uniqueness of the

fractional linear differential equation in Banach spaces.

Lemma 2.9. Assume that 1 < β ≤ 2 and J = [0, 1]. Then for any h ∈ C(J,E),

the boundary value problems of fractional linear differential equation in Banach

spaces (LBVP)  −
CD β

0+u(t) = h(t), t ∈ J,

u(0) = u(1) = θ,
(3)

has a unique solution

u(t) =

∫ 1

0

G(t, s)h(s)ds := Th(t), (4)

where

G(t, s) =
1

Γ(β)

{
t(1− s)β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,
t(1− s)β−1, 0 ≤ t ≤ s ≤ 1.

(5)

Proof. From the expression (4), we first easily know that u(t) is a solution of

LBVP (3). Next, we prove u(t) is uniqueness solution.

Suppose u1(t), u2(t) ∈ C(J,E) is solutions of LBVP (3). For any ϕ ∈ E∗, where

E∗ is conjugate space of E. Let r(t) = ϕ(u1(t) − u2(t)). Then r(t) is a solution

4
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about pure variable t of fractional linear differential equation −
CD β

0+r(t) = 0, 1 < β ≤ 2, t ∈ J,

r(0) = r(1) = 0.

Evidently, r(t) ≡ 0, according to the arbitrary of ϕ ∈ E∗, we know u1(t)−u2(t) ≡ θ,

also, u1(t) ≡ u2(t) on J . Thus, u(t) expressed by (4) is a unique solution of LBVP

(3). This completes the proof of Lemma 2.9. �

Lemma 2.10. The integral operator T : C(J,E)→ C(J,E) defined by (4) satisfies

the following inequality of norm

‖T‖ ≤ 1

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
.

Proof. For any h ∈ C(J,E), by the definition of T , we have

‖Th(t)‖ ≤ ‖
∫ 1

0

G(t, s)h(s)ds‖,

replace above G(t, s) with the expression of G(t, s) defined by (5), we obtain

‖Th(t)‖ ≤
( t

Γ(β + 1)
− tβ

Γ(β + 1)

)
‖h‖C ,

and since, we easily know

1

Γ(β + 1)

(
t− tβ

)
‖h‖C ≤

1

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
‖h‖C

Hence

‖Th‖ ≤ 1

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
‖h‖C ,

namely,

‖T‖ ≤ 1

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
.

This proof is completed. �
Let us introduce the following assumptions which are used hereafter.

(F1) There exist constants c0, c1 > 0 satisfying c1 <
(

1
Γ(β+1)

(
β

1
1−β −β

β
1−β

))−1

,

such that for any t ∈ J and x ∈ E, ‖f(t, x)‖ ≤ c1‖x‖+ c0;

5
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(F2) There exist constant L satisfying 0 < L <

(
1

Γ(β+1)

(
β

1
1−β −β

β
1−β

))−1

4
, such

that for any t ∈ J and bounded set D ⊂ E, α(f(t,D)) ≤ Lα(D);

(F3) There exist constant L satisfying 0 < L <

(
1

Γ(β+1)

(
β

1
1−β −β

β
1−β

))−1

2
, such

that for every bounded set D ⊂ E, α(f(J,D)) < Lα(D);

(F4) There exist constant L satisfying 0 < L <
(

1
Γ(β+1)

(
β

1
1−β − β

β
1−β

))−1

,

such that for every bounded set D ⊂ E, α(f(J,D)) < Lα(D).

Defined by the following integral operator Q : C(J,E)→ C(J,E)

Qu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (6)

To be convenient for next prove procedure, we firstly introduce the following two

Lemmas.

Lemma 2.11. Assume that (F1) and (F2) hold. Then Q : C(J,E) → C(J,E) is

a condensing mapping.

Proof. By (6) we easily know that Q is a continuous operator. Next, we show

that Q is a condensing mapping.

When (F1) hold, we see easily that Q maps bounded set in C(J,E) into bounded

and equicontinuous set in C(J,E). For every non-relatively compact bounded set

D ⊂ C(J,E), we will prove in the following that α(Q(D)) < α(D).

For every bounded set D ⊂ C(J,E), by the Lemma 2.5, there exists a count-

able subset D1 = {un} ⊂ D, such that α(Q(D)) ≤ 2α(Q(D1)). Since α(Q(D1))

is a bounded and equicontinuous set, by the Lemma 2.3, we have α(Q(D1)) =

max
t∈J

α(Q(D1(t))). By the Lemma 2.4, for any t ∈ J , we can obtain

α(Q(D1(t))) = α
({∫ 1

0

G(t, s)f(s, un(s))ds | n ∈ N
})

≤ 2

∫ 1

0

α
({
G(t, s)f(s, un(s))ds | n ∈ N

})
ds

≤ 2

∫ 1

0

G(t, s)α
(
f(s,D1(s))

)
ds.

6
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According to properties of the measure of noncompactness and condition (F2), we

have

α(f(s,D1(s)) ≤ Lα(D1(s)) ≤ Lα(D1) ≤ Lα(D).

Further

α(Q(D1(t))) ≤ 2Lα(D)

∫ 1

0

G(t, s)ds.

From this inequality, we have

α(Q(D1)) = max
t∈J

α(Q(D1(t)))

≤ 2Lα(D) max
t∈J

∫ 1

0

G(t, s)ds

≤ 2L

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
α(D).

From the condition (F2), we get that

α(Q(D)) ≤ 2α(Q(D1)) ≤ 4L

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
α(D) < α(D).

Then, Q : C(J,E) → C(J,E) is a condensing mapping. This completes the proof

of Lemma 2.11. �

Lemma 2.12. Assume that (F1) and (F3) hold. Then Q : C(J,E) → C(J,E) is

a condensing mapping.

Proof. By Q defined by (6) and condition (F1), we easily know that Q maps

bounded set in Q : C(J,E) into bounded and equicontinuous set in Q : C(J,E).

For every non-relatively compact bounded set D ⊂ C(J,E), we hope prove that

α(Q(D)) < α(D).

For every bounded set D ⊂ C(J,E), since Q(D) is bounded and equicontinuous

set, by the Lemma 2.3, we know α(Q(D)) = max
t∈J

α(Q(D(t))).

Denote B = D(J), then B ⊂ E is bounded and α(B) ≤ 2α(D). For any

t ∈ J, u ∈ D, by the Lemma 2.6, we obtain

Qu(t) =

∫ 1

0

G(t, s)f(s, u(s)) ∈
∫ 1

0

G(t, s)dsco f(J ×B),

Q(D)(t) ⊂
∫ 1

0

G(t, s)dsco f(J ×B).

7
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Combining with properties of the measure of noncompactness and condition (F3),

we have

α(Q(D)(t)) ≤
∫ 1

0

G(t, s)dsα
(

co f(J ×B)
)

=

∫ 1

0

G(t, s)dsα
(
f(J ×B)

)
≤ L

∫ 1

0

G(t, s)dsα(B)

≤ 2L

∫ 1

0

G(t, s)dsα(D)

≤ 2L

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
α(D).

From condition (F3), make the maximum value on both sides of this inequality, we

know

α(Q(D)) = max
t∈J

α(Q(D(t))) ≤ 2L

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
α(D) < α(D).

Therefore,Q : C(J,E)→ C(J,E) is a condensing mapping. This proof is completed.

�

By the definition of Q, we know that the solution of BVP (2) is equivalent to the

fixed point of Q. We will find the fixed point of Q by using the Leray-Schauder fixed

point theorem and the Sadovskii’s fixed point theorem about condensing mapping.

3 Main results

Theorem 3.1. Assume that f : J ×E → E is continuous and satisfies the condi-

tions (F1) and (F2). Then BVP (2) has at least one solution.

Proof. We firstly prove that Ω = {u ∈ C(J,E) | u = λQu, 0 < λ < 1} is a

bounded set in C(J,E). In fact, for any u ∈ Ω satisfies

u(t) = λQu(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds, 0 < λ < 1.

8
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Combining with condition (F1), we have

‖u(t)‖ = λ‖
∫ 1

0

G(t, s)f(s, u(s))ds‖

≤
∫ 1

0

G(t, s)(c0 + c1‖u(s)‖)ds

≤ c0

∫ 1

0

G(t, s)ds+ c1T0‖u(t)‖,

where T‖u(t)‖ =
∫ 1

0
G(t, s)‖u(s)‖ds is defined by (3). Since ‖T‖ ≤ 1

Γ(β+1)

(
β

1
1−β −

β
β

1−β

)
, we can obtain ‖c1T‖ < c1

Γ(β+1)

(
β

1
1−β − β

β
1−β

)
< 1, and by the famous per-

turbation theorem of unit operator, we easily know that I − c1T exists a bounded

inverse operator (I − c1T )−1, and

(I − c1T )−1 =
∞∑
n=0

(c1T )n

is positive. Hence

‖u‖C ≤ c0

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
(I − c1T )−1(1)

=
c0

Γ(β + 1)

(
β

1
1−β − β

β
1−β

) ∞∑
n=0

(c1T )n(1).

Since c1 <
(

1
Γ(β+1)

(
β

1
1−β − β

β
1−β

))−1

, then there exist ε > 0 such that c1 + ε <(
1

Γ(β+1)

(
β

1
1−β − β

β
1−β

))−1

. Namely

‖cn1T n‖ ≤ cn1‖T‖n ≤
( c1

c1 + ε

)n
.

By the fact that
∑∞

n=0

(
c1
c1+ε

)n
is convergence, we know that

∑∞
n=0 c

n
1‖T n‖ is conver-

gence. Denote M0 =
∑∞

n=0 c
n
1‖T n‖ < +∞. Then ‖u‖C ≤ c0

Γ(β+1)

(
β

1
1−β − β

β
1−β

)
M0.

Therefore, combined with Lemma 2.8 and Lemma 2.11, we get that the operator Q

has a fixed point, which is the solution of BVP (2). This proof is completed. �

Similar with the Proof of Theorem 3.1, we can obtain the following result.

9
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Theorem 3.2. Assume that f : J ×E → E is continuous and satisfies the condi-

tions (F1) and (F3). Then BVP (2) has at least one solution.

Theorem 3.3. Assume that f : J ×E → E is continuous and satisfies the condi-

tions (F1) and (F4). Then BVP (2) has at least one solution.

Proof. Firstly, when (F1) hold, we easily know Q maps bounded set in C(J,E)

into bounded and equicontinuous set in C(J,E).

Secondly, let ΩR = BC(θ, R) be a closed ball in C(J,E), where

R ≥
c0

(
β

1
1−β − β

β
1−β

)
Γ(β + 1)− c1

(
β

1
1−β − β

β
1−β

) .
Clearly, ΩR is a bounded set in C(J,E). For any t ∈ J, u ∈ ΩR, according to the

condition (F1), we have

‖(Qu)(t)‖ ≤
∫ 1

0

G(t, s)‖f(s, u(s))‖ds

≤
∫ 1

0

G(t, s)(c0 + c1‖u(s)‖)ds

≤ c0

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
+

c1

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
R

≤ R,

then Q(ΩR) ⊂ ΩR and it is continuous operator. Let Ω0 = coQ(ΩR), obvious Ω0 is a

bounded closed and convex set in C(J,E) and it is equicontinuous. Since Ω0 ⊂ ΩR,

then we have Q(Ω0) ⊂ Q(ΩR) ⊂ Ω0 and Q : Ω0 → Ω0 is a continuous operator.

Finally, we will prove Q : Ω0 → Ω0 is a condensing operator.

For any non-relatively compact bounded B in Ω0, we can obtain that both B

and Q(B) is a bounded set and equicontinuous set. By the Lemma 2.3, we have

α(B) = max
t∈J

α(B(t)) = α(B(J)), α(Q(B)) = max
t∈J

α(Q(B(t))).

By the proof of the Lemma 2.12 and the Lemma 2.6, for any t ∈ J , u ∈ B, we

have

Q(B)(t) ⊂
∫ 1

0

G(t, s)dsco f(J ×B(J)).

From the properties of the measure of noncompactness and condition (F4), we easily

obtain

α(Q(B)(t)) ≤
∫ 1

0

G(t, s)dsα(co f(J ×B(J)))

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

338 Yabing Gao et al 329-341



≤ L

∫ 1

0

G(t, s)dsα(B(J))

= L

∫ 1

0

G(t, s)dsα(B).

Combining with condition (F4), we have

α(Q(B)(t)) = max
t∈J

α(Q(B(t)))

≤ Lα(B) max
t∈J

∫ 1

0

G(t, s)ds

≤ L

Γ(β + 1)

(
β

1
1−β − β

β
1−β

)
α(B)

< α(B).

Therefore, Q : Ω0 → Ω0 is a condensing operator. By the Lemma 2.7, we obtain

that the Q has at least one fixed point, which is the solution of BVP (2). This

completes the proof of Theorem 3.3. �
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ABSTRACT

The main objective of this paper is to study the global stability of the positive solutions, the boundedness and
the periodic character of the di¤erence equation

xn+1 = Axn + Bxn¡l + Cxn¡k +
γxn¡k

Dxn¡s + Exn¡t
, n = 0, 1, ...,

where the parameters A, B, C, D, E, γ2 (0, 1) and the initial conditions x¡σ, x¡σ+1, ..., x¡1, x0 are positive
real numbers where σ= maxfl, k, s, tg. Numerical examples will be given to explicate our results.

Keywords: Di¤erence equations, Stability, Global stability, Periodic solutions, Boundedness.

Mathematics Subject Classi…cation: 39A10

—————————————————

1. INTRODUCTION

Di¤erence equations appeared much earlier than di¤erential equations. But it is only recently that di¤erence
equations gained the place they deserve. There is no doubt the interest in di¤erence calculus is related to
computers which let e¤ectively apply approximate methods to solve nonlinear di¤erence equations and systems
of di¤erence equations [1 - 6]. Particularly, the boundedness, persistence, local asymptotic stability, global
character, and the existence of positive periodic solutions can be discussed in many papers [7 - 36].

In [7] El-Dessoky investigated the global stability character and the periodicity of solutions of the recursive
sequence

xn+1 = axn¡l+bxn¡k

c+dxn¡lxn¡k
.

Xiu-Mei Jia et al. [8] studied the dynamical behavior of rational di¤erence equation,

yn+1 = r+pyn+yn¡k

qyn+yn¡k
.

Kosmala et al. [9] obtained the periodic and the global stability of solutions of rational di¤erence equation

yn+1 = p+yn¡1

qyn+yn¡1
.

In [10] Abo-Zeid studied the global asymptotic stability of all solutions of the di¤erence equation

xn+1 = Axn¡2

B+Cxnxn¡1xn¡2
.

In [11] Devault et al. investigated the dynamics of the di¤erence equation

xn+1 = p +
xn¡k

xn
.
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Elsayed et al. [12] investigated the global stability and the periodicity of solutions of the di¤erence equation

xn+1 = axn + b+cxn¡1

d+exn¡1
.

Zayed et al. [13] obtained some qualitative behavior of the solutions of the di¤erence equation,

xn+1 = γxn¡k + axn+bxn¡k

cxn¡dxn¡k
.

In [14] El-Dessoky obtained the global stability character, the boundedness and the periodicity of the positive
solutions of the di¤erence equation

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s¡αxn¡t
.

Our goal is to investigate some qualitative behavior of the positive solutions of the di¤erence equation

xn+1 = Axn + Bxn¡l + Cxn¡k + γxn¡k

Dxn¡s+Exn¡t
, n = 0, 1, ..., (1)

where the initial conditions x¡σ, x¡σ+1, ..., x¡1, x0 are positive real numbers where σ= maxfl, k, s, tg and the
coe¢cients A, B, C, D, E, γ2 (0, 1).

Let J be some interval of real numbers and let

G : Jσ+1 ! J,

be a continuously di¤erentiable function. Then for every set of initial conditions x¡σ, x¡σ+1, ..., x0 2 J, the
di¤erence equation

xn+1 = G(xn, xn¡1, ..., xn¡σ), n = 0, 1, ..., (2)

has a unique solution fxng1
n=¡σ.

Definition 1.1. The linearized equation of Eq. (2) about the equilibrium x is the linear di¤erence equation

yn+1 = q1yn + q2yn¡l + q3yn¡k + q4yn¡s + q5yn¡t. (3)

q1 = ∂G(x, x, x, x, x)
∂xn

, q2 = ∂G(x, x, x, x, x)
∂xn¡l

, q3 = ∂G(x, x, x, x, x)
∂xn¡k

, q4 = ∂G(x, x, x, x, x)
∂xn¡s

, q5 = ∂G(x, x, x, x, x)
∂xn¡t

.

The characteristic equation associated with Eq. (3) is

q(λ) = q1 + q2λ
σ¡l + q3λ

σ¡k + q4λ
σ¡s + q5λ

σ¡t = 0, (4)

Theorem 1.2. [1]: Assume that q1, q2, q3, q4 and q5 2 R. Then

jq1j + jq2j + jq3j + jq4j + jq5j < 1, (4)

is a su¢cient condition for the locally asymptotically stability of the Eq. (2).

Theorem 1.3. [4, 5]: Let h : [ζ,η]σ+1 ! [ζ,η], be a continuous function, where σ is a positive integer, and
where [ζ, η] is an interval of real numbers. Consider the di¤erence equation

xn+1 = h(xn, xn¡1, ..., xn¡σ), n = 0, 1, ... . (5)

Suppose that g satis…es the following conditions.

(1) For each integer i with 1 · i · σ+1; the function h(z1, z2, ..., zσ+1) is weakly monotonic in zi for …xed
z1, z2, ..., zi¡1, zi+1, ..., zσ+1.
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(2) If m, M is a solution of the system

m = h(m1, m2, ..., mσ+1), M = h(M1, M2, ..., Mσ+1),

then m = M , where for each i = 1, 2, ..., σ+ 1, we set

mi =

½
m, if h is non-decreasing in zi

M, if h is non-increasing in zi

and

Mi =

½
M, if h is non-decreasing in zi

m, if h is non-increasing in zi.

Then there exists exactly one equilibrium point x of Eq. (5), and every solution of Eq. (5) converges to x.

2. LOCAL STABILITY OF EQ. (1)

Eq. (1) has equilibrium point and is given by

x = Ax + Bx + Cx + γx
Dx+Ex

,

or
x(D + E) (1 ¡ A ¡ B ¡ C) = γ.

If A + B + c < 1; then the only positive equilibrium point x of Eq. (1) is given by

x = γ
(D+E)(1¡A¡B¡C)

.

Theorem 2.1. The equilibrium point x of Eq. (1) is locally asymptotically stable if

A + B + C < 1.

Proof: Suppose that G : (0, 1)5 ¡! (0, 1) be a continuous function de…ned by

G(u1, u2, u3, u4, u5) = Au1 + Bu2 + Cu3 + γu3

Du4+Eu5
. (6)

Therefore, it follows that

∂G(u1, u2, u3, u4, u5)
∂u1

= A, ∂G(u1, u2, u3, u4, u5)
∂u2

= B, ∂G(u1, u2, u3, u4, u5)
∂u3

= C + γ
Du4+Eu5

,

∂G(u1, u2, u3, u4, u5)
∂u4

= ¡ Dγu3

(Du4+Eu5)
2 , ∂G(u1, u2, u3, u4, u5)

∂u5
= ¡ Eγu3

(Du4+Eu5)
2 .

So, we can write

∂G(x, x, x, x, x)
∂u1

= A = p1,
∂G(x, x, x, x, x)

∂u2
= B = p2,

∂G(x, x, x, x, x)
∂u3

= 1 ¡ A ¡ B = p3,

∂G(x, x, x, x, x)
∂u4

=
¡Dγ( γ

(D+E)(1¡A¡B¡C) )
(D+E)2( γ

(D+E)(1¡A¡B¡C) )
2 = D(A+B+C¡1)

(D+E)
= p4,

∂G(x, x, x, x, x)
∂u5

=
¡Eγ( γ

(D+E)(1¡A¡B¡C) )
(D+E)2( γ

(D+E)(1¡A¡B¡C) )
2 = E(A+B+C¡1)

(D+E)
= p5.

Then the linearized equation of Eq. (1) about x is

yn+1 ¡ p1yn ¡ p2yn¡l ¡ p3yn¡k ¡ p4yn¡s ¡ p5yn¡t = 0.
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It follows by Theorem 1 that, Eq. (1) is local asymptotically stable if and only if

jp1j + jp2j + jp3j + jp4j + jp5j < 1.

Thus,

jp1j + jp2j + jp3j + jp4j + jp5j = jAj + jBj
+ j1 ¡ A ¡ Bj +

¯̄̄
D(A+B+C¡1)

(D+E)

¯̄̄
+

¯̄̄
E(A+B+C¡1)

(D+E)

¯̄̄
= 1 + A + B + C ¡ 1 = A + B + C,

for
A + B + C < 1.

The proof is complete.

Theorem 2.2. The equilibrium x of Eq. (1) is unstable if A + B + C > 1.

Example 1. The solution of Eq. (1) is local stability if l = 2, k = s = 3, t = 4, A = B = γ= 0.1, C =
0.2, D = 1 and E = 0.6 and the initial conditions x¡4 = 0.2, x¡3 = 0.7, x¡2 = 0.3, x¡1 = 2.1 and x0 = 1.1 (See
Fig. 1).

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

n

x(
n)

plot of x(n+1)= A X(n)+B X(n-l)+C X(n-k)+(gamma X(n-k)/(D X(n-s)+E X(n-t)))

Figure 1. Plot the behavior of the solution of Eq. (1).

Example 2. The solution of Eq. (1) is local stability if l = 4, k = t = 2, s = 3, A = 0.09, B = C =
0.01, D = 0.3, E = 0.5 and γ = 0.6 and the initial conditions x¡4 = 0.2, x¡3 = 0.7, x¡2 = 0.2, x¡1 = 2.1
and x0 = 1.1 (See Fig. 2).
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plot of x(n+1)= A X(n)+B X(n-l)+C X(n-k)+(gamma X(n-k)/(D X(n-s)+E X(n-t)))

Figure 2. Plot the behavior of the solution of Eq. (1).
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Example 3. The solution of Eq. (1) is unstable if l = 4, k = t = 2, s = 3, A = C = 0.2, B = γ= 0.7, D =
0.1 and E = 0.5 and the initial conditions x¡4 = 0.2, x¡3 = 0.7, x¡2 = 0.3, x¡1 = 2.1 and x0 = 1.1 (See Fig.
3).
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1400

n

x(
n)

plot of x(n+1)= A X(n)+B X(n-l)+C X(n-k)+(gamma X(n-k)/(D X(n-s)+E X(n-t)))

Figure 3. Plot the behavior of the solution of Eq. (1) is unstable.

3. GLOBAL ATTRACTIVITY OF EQ. (1)

Theorem 3.1. The equilibrium point x is a global attractor of Eq. (1) if A + B + C < 1 and γ> 1.

Proof: Suppose that ζand ηare real numbers and assume that h : [ζ, η]5 ¡! [ζ, η] is a function de…ned by

h(v1, v2, v3, v4, v5) = Av1 + Bv2 + Cv3 + γv3

Dv4+Ev5
. (7)

Then

∂h(v1, v2, v3, v4, v5)
∂v1

= A, ∂h(v1, v2, v3, v4, v5)
∂v2

= B, ∂h(v1, v2, v3, v4, v5)
∂v3

= C + γ
Dv4+Ev5

,

∂h(v1, v2, v3, v4, v5)
∂v4

= ¡ Dγv3

(Dv4+Ev5)
2 , ∂h(v1, v2, v3, v4, v5)

∂v5
= ¡ Eγv3

(Dv4+Ev5)
2 .

First, we can see that the function h(v1, v2, v3, v4, v5) increasing in v1, v2, v3 and decreasing in v4, v5 for

C +
γ

Dv4 + Ev5
> 0.

Let (m,M) be a solution of the system M = h(M, M, M, m, m) and m = h(m, m, m, M, M). Then
from Eq. (1), we see that

M = AM + BM + CM + γM
Dm+Em and m = Am + Bm + Cm + γm

DM+EM ,

and then
M(1 ¡ A ¡ B ¡ C) = γM

Dm+Em and m(1 ¡ A ¡ B ¡ C) = γm
DM+EM ,

thus
(1 ¡ A ¡ B ¡ C) (D + E)Mm = γM

and
(1 ¡ A ¡ B ¡ C) (D + E)Mm = γm.

Subtracting we obtain
γ(M ¡ m) = 0,

then
M = m.
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It follows by Theorem 2 that x is a global attractor of Eq. (1). This completes the proof.

Second, we can see that the function h(v1, v2, v3, v4, v5) increasing in v1, v2 and decreasing in v3, v4, v5

for C +
γ

Dv4 + Ev5
< 0.

Let (m,M) be a solution of the system M = h(M, M, m, m, m) and m = h(m, m, M, M, M). Then
from Eq. (1), we see that

M = AM + BM + Cm + γm
Dm+Em and m = Am + Bm + CM + γM

DM+EM ,

and then
M(1 ¡ A ¡ B) ¡ Cm = γ

D+E ,

and
m(1 ¡ A ¡ B) ¡ CM = γ

D+E
.

Subtracting we obtain
(M ¡ m)(1 ¡ A ¡ B ¡ C) = 0,

under the condition A + B + C < 1, we see that

M = m.

It follows by Theorem 2 that x is a global attractor of Eq. (1). This completes the proof.

Example 4. The solution of Eq. (1) is global stability if l = 2, k = s = 3, t = 4, A = 0.5, B = 0.07, C =
0.01, D = 2, E = 0.6 and γ = 0.1 and the initial conditions x¡4 = 0.2, x¡3 = 0.7, x¡2 = 0.3, x¡1 = 2.1
and x0 = 1.1 (See Fig. 4).
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n

x(
n)

plot of x(n+1)= A X(n)+B X(n-l)+C X(n-k)+(gamma X(n-k)/(D X(n-s)+E X(n-t)))

Figure 4. Plot the behavior of the solution of Eq. (1) is global stability.

4. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 4.1. If l, k, t are an even and s is an odd then Eq. (1) has a prime period two solutions if and only if

(i) (E ¡ D)(A + B + C + 1) + 4D > 0.
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Proof: First Let there exists a prime period two solution

...P, Q, P, Q, ...,

of Eq. (1). We see from Eq. (1) when l, k and t are even and s odd that

P = AQ + BQ + CQ + γQ
DP+EQ

and Q = AP + BP + CP + γP
DQ+EP

.

Therefore,
DP 2 + EPQ = D(A + B + C)PQ + E(A + B + C)Q2 + γQ, (8)

and
DQ2 + EPQ = D(A + B + C)PQ + E(A + B + C)P 2 + γP. (9)

Subtracting (9) from (8) gives

D(P 2 ¡ Q2) + E(A + B + C)(P 2 ¡ Q2) + γ(P ¡ Q) = 0,

then
(P ¡ Q) [(D + E(A + B + C))(P + Q) + γ] = 0

Since P 6= Q, then
P + Q = ¡γ

D+E(A+B+C)
. (10)

Again, adding (8) and (9) yields

D(Q2 + P 2) + 2EPQ = 2D(A + B + C)PQ + E(A + B + C)(Q2 + P 2) + γ(Q + P ),

then
2(E ¡ D(A + B + C))PQ = (E(A + B + C) ¡ D)(Q2 + P 2) + γ(Q + P ). (11)

By using (10), (11) and the relation

P 2 + Q2 = (P + Q)2 ¡ 2PQ for all P, Q 2 R,

we obtain
(E(A + B + C) ¡ D)((P + Q)2 ¡ 2PQ) + γ(Q + P ) = 2(E ¡ D(A + B + C))PQ,

2 [E ¡ D(A + B + C) + E(A + B + C) ¡ D]PQ = (E(A + B + C) ¡ D)(P + Q)2 + γ(Q + P ),

2(E ¡ D)(A + B + C + 1)PQ =
³

¡γ
D+E(A+B+C)

´2

(E(A + B + C) ¡ D) + γ
³

¡γ
D+E(A+B+C)

´
,

2(E ¡ D)(A + B + C + 1)PQ = γ2(E(A+B+C)¡D)¡γ2(D+E(A+B+C))

(D+E(A+B+C))2
,

2(E ¡ D)(A + B + C + 1)PQ = ¡ 2Dγ2

(D+E(A+B+C))2
.

Then,
PQ = ¡

³
Dγ2

(D+E(A+B+C))2

´³
1

(E¡D)(A+B+C+1)

´
. (12)

Now it is obvious from Eq. (10) and Eq. (12) that P and Q are the two distinct roots of the quadratic
equation

t2 + γ
D+E(A+B+C)

t ¡
³

Dγ2

(D+E(A+B+C))2

´³
1

(E¡D)(A+B+C+1)

´
= 0,

(D + E(A + B + C)) t2 + γt ¡ Dγ2

(E¡D)(A+B+C+1)(D+E(A+B+C))
= 0, (13)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

348 M. M. El-Dessoky et al 342-354



and so ³
γ

D+E(A+B+C)

´2

+ 4
³

Dγ2

(D+E(A+B+C))2

´³
1

(E¡D)(A+B+C+1)

´
> 0,

1 +
³

4D
(E¡D)(A+B+C+1)

´
> 0,

or
(E ¡ D)(A + B + C + 1) + 4D > 0.

For E > D then the Inequality (i) holds.

Second suppose that Inequality (i) is true. We will show that Eq. (1) has a prime period two solution.

Suppose that
P = γ(ζ¡1)

2(D+Eα) and Q = ¡ γ(1+ζ)
2(D+Eα) ,

where ζ=
q

1 + 4D
(E¡D)(α+1)and α= A + B + C.

We see from the inequality (i) that

(E ¡ D)(A + B + C + 1) + 4D > 0,

which equivalents to
(E ¡ D)(α+ 1) + 4D > 0.

Therefore P and Q are distinct real numbers.

Set
x¡l = Q, x¡k = Q, x¡s = P, x¡t = Q, ..., x¡3 = P, x¡2 = Q, x¡1 = P, x0 = Q.

We would like to show that
x1 = x¡1 = P and x2 = x0 = Q.

It follows from Eq. (1) that

x1 = AQ + BQ + CQ + γQ
DP+EQ = α

³
γ(¡1¡ζ)
2(D+Eα)

´
+

γ( γ(¡1¡ζ)
2(D+Eα))

D( γ(¡1+ζ)
2(D+Eα))+E( γ(¡1¡ζ)

2(D+Eα) )
.

Dividing the denominator and numerator by 2 (D + Eα) we get

x1 = α
³

γ(¡1¡ζ)
2(D+Eα)

´
+ γ(¡1¡ζ)

D(¡1+ζ)+E(¡1¡ζ)
= α

³
γ(¡1¡ζ)
2(D+Eα)

´
+ γ(1+ζ)

(D+E)+(E¡D)ζ
.

Multiplying the denominator and numerator of the right side by (D + E) ¡ (D ¡ E)ζ

x1 = α
³

γ(¡1¡ζ)
2(D+Eα)

´
+ γ(1+ζ)((D+E)¡(E¡D)ζ)

((D+E)+(E¡D)ζ)((D+E)¡(E¡D)ζ) = α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γ((D+E)¡(E¡D)ζ+(D+E)ζ¡(E¡D)ζ2)
(D+E)2¡(E¡D)2ζ2 ,

= α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γ((D+E)+2Dζ¡(E¡D)ζ2)
(D+E)2¡(E¡D)2ζ2 = α

³
γ(¡1¡ζ)
2(D+Eα)

´
+

γ

(
(D+E)+2Dζ¡(E¡D)

(
(E¡D)(α+1)+4D

(E¡D)(α+1)

))
(D+E)2¡(E¡D)2

(
(E¡D)(α+1)+4D

(E¡D)(α+1)

) ,

= α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γ

(
(D+E)+2Dζ¡

(
(E¡D)(α+1)+4D

(α+1)

))
(D+E)2¡(E¡D)

(
(E¡D)(α+1)+4D

(α+1)

) = α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γ
(
(D+E)+2Dζ¡

(
(E¡D)+

4D
(α+1)

))
(D+E)2¡(E¡D)

(
(E¡D)+4

D
(α+1)

) ,

= α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γ
(

D+E+2Dζ¡E+D¡ 4D
(α+1)

)
(D+E)2¡(E¡D)2¡ 4(E¡D)D

(α+1)

= α
³

γ(¡1¡ζ)
2(D+Eα)

´
+

γD
(
2+2ζ¡ 4

(α+1)

)
4DE¡ 4(E¡D)D

(α+1)

,

= α
³

γ(¡1¡ζ)
2(D+Eα)

´
+ γ((1+ζ)(α+1)¡2)

2E(α+1)¡2(E¡D) = γ
³

α(¡1¡ζ)+(1+ζ)(α+1)¡2
2(D+Eα)

´
= γ(ζ¡1)

2(D+Eα) = P.
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Similarly as before, it is easy to show that
x2 = Q.

Then by induction we get
x2n = Q and x2n+1 = P for all n ¸ ¡2.

Thus Eq. (1) has the prime period two solution

...,P , Q, P , Q,...,

where P and Q are the distinct roots of the quadratic equation (13) and the proof is complete.

Example 5. Figure (5) shows the Eq. (1) has a prime period two solution when l = 2, k = t = 4, s = 3,
A = 0.01, B = 0.02, C = 0.03, D = 0.2, E = 0.3 and γ= 0.1 and the initial conditions x¡4 = x¡2 = x0 = Q
and x¡3 = x¡1 = P .

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

n

x(
n)

plot of x(n+1)= A X(n)+B X(n-l)+C X(n-k)+(gamma X(n-k)/(D X(n-s)+E X(n-t)))

Figure 5. Plot the solution of Eq. (1) has a periodic solution.

Theorem 4.2. Eq. (1) has a prime period two solutions if and only if

(D ¡ E)(A + B + C + 1) + 4E > 0 , l, k, s ¡ even and t ¡ odd.

Theorem 4.3. Eq. (1) has a prime period two solutions if and only if

1 ¡ C ¡ 3A ¡ 3B > 0 l, s, t ¡ even and k ¡ odd.

Theorem 4.4. Eq. (1) has a prime period two solutions if and only if

A + B + C > 3 l, k ¡ even and s, t ¡ odd.

Theorem 4.5. Eq. (1) has a prime period two solutions if and only if

(D ¡ E) (A + B + 1 ¡ C) > 4D(A + B) l, s ¡ even and k, t ¡ odd.
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Theorem 4.6. Eq. (1) has a prime period two solutions if and only if

(E ¡ D)(1 + A + B ¡ C) > 4E(A + B) l, t ¡ even and k, s ¡ odd.

Theorem 4.7. Eq. (1) has a prime period two solutions if and only if

(D ¡ E) (1 + A + C ¡ B) + 4E(1 ¡ B) > 0, k, s ¡ even and l, t ¡ odd.

Theorem 4.8. Eq. (1) has a prime period two solutions if and only if

(E ¡ D) (1 + A + C ¡ B) + 4D (1 ¡ B) > 0, k, t ¡ even and l, s ¡ odd.

Theorem 4.9. Eq. (1) has a prime period two solutions if and only if

A + C + 3B > 3, k ¡ even and l, s, t ¡ odd.

Theorem 4.10. Eq. (1) has a prime period two solutions if and only if

(D ¡ E) (1 + A ¡ C ¡ B) > 4DA, s ¡ even and l, k, t ¡ odd.

Theorem 4.11. Eq. (1) has a prime period two solutions if and only if

(E ¡ D) (1 + A ¡ C ¡ B) > 4EA, t ¡ even and l, k, s ¡ odd.

Theorem 4.12. Eq. (1) has a prime period two solutions if and only if

3A + B + C < 1, s, t ¡ even and l, k ¡ odd.

Theorem 4.13. Eq. (1) has no prime period two solutions if l, k , t and s are an even when 1+A+B+C 6= 0.

Proof. Let there exists a prime period two solution ...P, Q, P, Q, ..., of Eq. (1). We see from Eq. (1) when
l, k , t and s are even

P = AQ + BQ + CQ + γQ
DQ+EQ , (14)

and
Q = AP + BP + CP + γP

DP+EP . (15)

Subtracting (14) from (15) gives
(1 + A + B + C) (P ¡ Q) = 0,

then
(P ¡ Q) [(D + E)(A + B + C)(P + Q) + γ] = 0

Since 1 + A + B + C 6= 0, then P = Q. This is a contradiction. Thus, the proof is completed.
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Example 6. Figure (6) shows the Eq. (1) has no period two solution when l = 2, k = s = t = 4, A = 0.1,
B = D = 0.2, C = 0.6, E = 0.3 and γ = 0.1 and the initial conditions x¡4 = 0.2, x¡3 = 0.7, x¡2 = 0.3,
x¡1 = 2.1 and x0 = 1.1.
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Figure 6. Plot the solution of Eq. (1) has no periodic.

Theorem 4.14. Eq. (1) has no prime period two solutions if l is an even and k, s, t are an odd when
A + B ¡ C + 1 6= 0.

Theorem 4.15. Eq. (1) has no a prime period two solutions if l, k, s, t are an odd when 1 ¡ A + B + C 6= 0.

Theorem 4.16. Eq. (1) has no a prime period two solutions if k, t, s are an even and l is an odd when
1 + A + C ¡ B 6= 0.

5. BOUNDEDNESS OF THE SOLUTIONS OF EQ. (1)

Theorem 5.1. Let fxng be a solution of Eq. (1). Then the following statements are true:
(i) Suppose γ< D and for some N ¸ 0, the intial conditions

xN¡σ+1, ..., xN¡1, xN 2 £
γ
D , 1

¤
,

are valid, then we have the inequality

γ
D (A + B + C) + γ2

(D2+γE) · xn · (A + B + C) + γ
(γ+E) , (16)

for all n ¸ N.
(ii) Suppose γ> D and for some N ¸ 0, the intial conditions

xN¡σ+1, ..., xN¡1, xN 2 £
1, γ

D

¤
,

are valid, then we have the inequality

(A + B + C) + γ
(γ+E) · xn · γ

D
(A + B + C) + γ2

(D2+γE) , (17)

for all n ¸ N.

Proof: First of all, if for some N > 0, γ
D

· xN · 1, we have

xN+1 = AxN + BxN¡l + CxN¡k + γxN¡k

DxN¡s+ExN¡t
· A + B + C + γxN¡k

DxN¡s+ExN¡t
.
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But, it is easy to see that DxN¡s + ExN¡t ¸ γ+ E, then we get

xN+1 · A + B + C + γ
γ+E . (18)

Similarly, we can show that
xN+1 ¸ γ

D (A + B + C) +
γxN¡k

DxN¡s+ExN¡t
(19)

But, one can see that DxN¡s + ExN¡t · D2+γE
D , then

xN+1 ¸ γ
D (A + B + C) + γ2

D2+γE (20)

From (18) and (20) we deduce for all n ¸ N that the inequality (16) is valid. Hence, the proof of part (i) is
completed.

Similarly, if 1 · xN · γ
D , then we can prove part (ii) which is omitted here for convenience. Thus, the proof

is now completed.
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AN ADDITIVE (α, β)-FUNCTIONAL EQUATION AND LINEAR
MAPPINGS IN BANACH SPACES

CHOONKIL PARK, SUN YOUNG JANG∗, AND YOUNG CHO

Abstract. In this paper, we investigate the additive (α, β)-functional equation

f(x) + αf(αy) = β−1f(β(x+ y)) (0.1)

for all complex numbers α with |α| = 1 and for a fixed nonzero complex number β.
Using the fixed point method and the direct method, we prove the Hyers-Ulam

stability of the additive (α, β)-functional equation (0.1) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [21]

concerning the stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In

particular, every solution of the Cauchy equation is said to be an additive mapping.

Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach

spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by

Rassias [17] for linear mappings by considering an unbounded Cauchy difference. A

generalization of the Rassias theorem was obtained by Găvruta [8] by replacing the

unbounded Cauchy difference by a general control function in the spirit of Rassias’

approach. See [5, 7, 13, 14, 15, 18, 19, 20, 22] for more information on functional

equations.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [2, 6] Let (X, d) be a complete generalized metric space and let J : X →
X be a strictly contractive mapping with Lipschitz constant α < 1. Then for each given

element x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};

2010 Mathematics Subject Classification. Primary 39B52, 39B62, 47H10.
Key words and phrases. Hyers-Ulam stability; additive (α, β)-functional equation; C-linear map-

ping; fixed point method; direct method; complex Banach space.
∗Corresponding author .
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(4) d(y, y∗) ≤ 1
1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [10] were the first to provide applications of stability theory

of functional equations for the proof of new fixed point theorems with applications. By

using fixed point methods, the stability problems of several functional equations have

been extensively investigated by a number of authors (see [3, 4, 16]).

In Section 2, we solve the additive (α, β)-functional equation (0.1) in vector spaces

and prove the Hyers-Ulam stability of the additive (α, β)-functional equation (0.1) in

Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive (α, β)-functional

equation (0.1) in Banach spaces by using the direct method.

Throughout this paper, assume that X is a complex normed space and that Y is a

complex Banach space. Let β be a fixed nonzero complex number.

2. Additive (α, β)-functional equation (0.1) in complex Banach spaces I

We solve the additive (α, β)-functional equation (0.1) in complex vector spaces.

Lemma 2.1. Let X and Y be complex vector spaces. If a mapping f : X → Y satisfies

f(x) + αf(αy) = β−1f(β(x+ y)) (2.1)

for all x, y ∈ X and all α ∈ T := {µ ∈ C | |µ| = 1}, then f : X → Y is C-linear.

Proof. Assume that f : X → Y satisfies (2.1).

Letting x = y = 0 in (2.1), we get (1 + α)f(0) = β−1f(0) for all α ∈ T. So f(0) = 0.

Letting α = 1, y = −x in (2.1), we get f(x) + f(−x) = 0 and so f(−x) = −f(x) for

all x ∈ X.

Letting α = 1, x = 0 and replacing y by x+ y in (2.1), we get

f(x+ y) = β−1f(β(x+ y))

for all x, y ∈ X. Letting α = 1 in (2.1), we get f(x) + f(y) = β−1f(β(x+ y)) and so

f(x+ y) = f(x) + f(y)

for all x, y ∈ X.

Letting y = −x in (2.1), we get f(x) + αf(−αx) = 0 and so f(αx) = αf(x) for all

x ∈ X and all α ∈ T. By the same reasoning as in the proof of [12, Theorem 2.1], the

mapping f : X → Y is C-linear. �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive

(α, β)-functional equation (2.1) in complex Banach spaces.
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ADDITIVE (α, β)-FUNCTIONAL EQUATION

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x

2
,
y

2

)
≤ L

2
ϕ (x, y) (2.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and∥∥∥f(x) + αf(αy)− β−1f(β(x+ y))
∥∥∥ ≤ ϕ(x, y) (2.3)

for all x, y ∈ X and all α ∈ T. Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ L

2(1− L)
(ϕ (0, 2x) + ϕ (x, x)) (2.4)

for all x ∈ X.

Proof. Let α = 1.

Letting y = x in (2.3), we get∥∥∥2f(x)− β−1f(2βx)
∥∥∥ ≤ ϕ(x, x) (2.5)

for all x ∈ X.

Replacing y by 2x and letting x = 0 in (2.3), we get∥∥∥f(2x)− β−1f(2βx)
∥∥∥ ≤ ϕ(0, 2x) (2.6)

for all x ∈ X.

It follows from (2.5) and (2.6) that

‖f(2x)− 2f(x)‖ ≤ ϕ(0, 2x) + ϕ(x, x) (2.7)

for all x ∈ X.

Consider the set

S := {h : X → Y, h(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µ(ϕ (0, 2x) + ϕ (x, x)), ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [11]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ ε(ϕ (0, 2x) + ϕ (x, x))
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for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥∥2g (x2

)
− 2h

(
x

2

)∥∥∥∥ ≤ 2ε
(
ϕ (0, x) + ϕ

(
x

2
,
x

2

))
≤ 2ε

L

2
(ϕ (0, 2x) + ϕ (x, x)) = Lε(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.7) that∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ ϕ (0, x) + ϕ
(
x
2
, x
2

)
≤ L

2
(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X. So d(f, Jf) ≤ L
2
.

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A (x) = 2A
(
x

2

)
(2.8)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.8) such that there exists a µ ∈
(0,∞) satisfying

‖f(x)− A(x)‖ ≤ µ(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X;

(2) d(J lf, A)→ 0 as l→∞. This implies the equality

lim
l→∞

2nf
(
x

2n

)
= A(x)

for all x ∈ X;

(3) d(f, A) ≤ 1
1−Ld(f, Jf), which implies

‖f(x)− A(x)‖ ≤ L

2(1− L)
(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X.

It follows from (2.2) and (2.3) that∥∥∥A(x) + αA(αy)− β−1A (β(x+ y))
∥∥∥

= lim
n→∞

2n
∥∥∥∥f ( x2n

)
+ αf

(
αy

2n

)
− β−1f

(
β
(
x+ y

2n

))∥∥∥∥
≤ lim

n→∞
2nϕ

(
x

2n
,
y

2n

)
= 0
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for all x, y ∈ X and all α ∈ T. So

A(x) + αA(αy)− β−1A (β(x+ y)) = 0

for all x, y ∈ X and all α ∈ T. By Lemma 2.1, the mapping A : X → Y is C-linear. �

Corollary 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a

mapping satisfying∥∥∥f(x) + αf(αy)− β−1f(β(x+ y))
∥∥∥ ≤ θ(‖x‖r + ‖y‖r) (2.9)

for all x, y ∈ X and all α ∈ T. Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ 2r + 2

2r − 2
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all

x, y ∈ X. Then we can choose L = 21−r and we get the desired result. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 2Lϕ
(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then

there exists a unique C-linear mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2(1− L)
(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2
(ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X.

Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be a

mapping satisfying (2.9). Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ 2 + 2r

2− 2r
θ‖x‖r
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for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all

x, y ∈ X. Then we can choose L = 2r−1 and we get desired result. �

3. Additive (α, β)-functional equation (0.1) in complex Banach spaces II

In this section, using the direct method, we prove the Hyers-Ulam stability of the

additive (α, β)-functional equation (2.1) in complex Banach spaces.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0 and

Ψ(x, y) :=
∞∑
j=1

2jϕ
(
x

2j
,
y

2j

)
< ∞,

∥∥∥f(x) + αf(αy)− β−1f(β(x+ y))
∥∥∥ ≤ ϕ(x, y) (3.1)

for all x, y ∈ X and all α ∈ T. Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ 1

2
(Ψ(0, 2x) + Ψ(x, x)) (3.2)

for all x ∈ X.

Proof. Let α = 1.

It follows from (2.7) that∥∥∥∥f(x)− 2f
(
x

2

)∥∥∥∥ ≤ ϕ (0, x) + ϕ
(
x

2
,
x

2

)
for all x ∈ X. Hence∥∥∥∥2lf ( x2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥ (3.3)

≤
m−1∑
j=l

(
2jϕ

(
0,
x

2j

)
+ 2jϕ

(
x

2j+1
,
x

2j+1

))

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.3)

that the sequence {2kf( x
2k

)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf( x
2k

)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.3), we get

(3.2).
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Now, let T : X → Y be another additive mapping satisfying (3.2). Then we have

‖A(x)− T (x)‖ =
∥∥∥∥2qA( x2q

)
− 2qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥2qA( x2q
)
− 2qf

(
x

2q

)∥∥∥∥+
∥∥∥∥2qT ( x2q

)
− 2qf

(
x

2q

)∥∥∥∥
≤ 2qΨ

(
0,

2x

2q

)
+ 2qΨ

(
x

2q
,
x

2q

)
,

which tends to zero as q →∞ for all x ∈ X. So we can conclude that A(x) = T (x) for

all x ∈ X. This proves the uniqueness of A.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping satisfying (2.9). Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ 2r + 2

2r − 2
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all

x, y ∈ X. �

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping

satisfying f(0) = 0, (3.1) and

Ψ(x, y) :=
∞∑
j=0

1

2j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique C-linear mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2
(Ψ(0, 2x) + Ψ(x, x)) (3.4)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ (ϕ (0, 2x) + ϕ (x, x))

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥ (3.5)

≤
m−1∑
j=l

(
1

2j+1
ϕ(0, 2j+1x) +

1

2j+1
ϕ(2jx, 2jx)

)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.5)

that the sequence { 1
2n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence { 1
2n
f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.5), we get

(3.4).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.1. �

Corollary 3.4. Let r < 1 and θ be positive real numbers, and let f : X → Y be a

mapping satisfying (2.9). Then there exists a unique C-linear mapping A : X → Y

such that

‖f(x)− A(x)‖ ≤ 2 + 2r

2− 2r
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all

x, y ∈ X. �
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Abstract

In this paper, we first prove two Hermite-Hadamard type inequalities for
h-preinvex functions via Riemann-Liouville fractional integrals, and then, by
introducing an integral identity including the second order derivatives of a given
function, we establish some Hermite-Hadamard type inequalities for functions
whose second order derivatives are h-preinvex via Riemann-Liouville fractional
integrals.

2010 Mathematics Subject Classification: Primary 26A33; 26A51; Secondary
26D07, 26D20, 41A55.

Key words and phrases: Hermite-Hadamard’s inequality; h-preinvex func-
tions; Riemann-Liouville fractional integrals.

1 Introduction

In [27], Sarikaya et al. considered Hermite-Hadamard type inequalities involving
Riemann-Liouville fractional integrals and established the following interesting
inequalities.

Theorem 1.1 Let f : [u, v] → R be a positive function with 0 ≤ u < v and
let f ∈ L1[u, v]. Suppose f is a convex function on [u, v], then the following
inequalities for fractional integrals hold:

f
(u+ v

2

)
≤ Γ(α+ 1)

2(v − u)α
[Jαu+f(v) + Jαv−f(u)] ≤ f(u) + f(v)

2
, (1.1)

1
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where the symbol Jαu+f and Jαv−f denote respectively the left-sided and right-
sided Riemann-Liouville fractional integrals of the order α ∈ R+ defined by

Jαu+f(x) =
1

Γ(α)

∫ x

u

(x− t)α−1f(t)dt, u < x

and

Jαv−f(x) =
1

Γ(α)

∫ v

x

(t− x)α−1f(t)dt, x < v.

Here, Γ(α) is the Gamma function and its definition is

Γ(α) =

∫ ∞
0

e−µµα−1dµ.

We observe that, for α = 1, the inequality (1.1) can be reduced to the
following termed Hermite-Hadamard inequality

f

(
u+ v

2

)
≤ 1

v − u

∫ v

u

f(x)dx ≤ f(u) + f(v)

2
, (1.2)

where f : I ⊆ R→ R is a convex mapping on the interval I of real numbers and
u, v ∈ I with u < v.

In recent years, many researchers have studied error estimations with respect
to the inequality (1.2); for refinements, counterparts, generalization please refer
to [7, 16, 17, 22, 35–37].

We evoke, now, some basic definitions as follows.

Definition 1.1 ([34]) A set S ⊆ Rn is said to be invex set with respect to the
mapping η : S × S → Rn, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].
The invex set S is also termed an η-connected set.

Definition 1.2 ([34]) A function f defined on the invex set K ⊆ Rn is said to
be preinvex respecting η, if

f
(
x+ tη(y, x)

)
≤ (1− t)f(x) + tf(y),∀x, y ∈ K, t ∈ [0, 1]. (1.3)

The function f is said to be preincave if and only if −f is preinvex.

Very recently, some new generalizations of integral inequalities in connection
with the preinvexity were explored by Du, Liao and Li [6], Hussain and Qaisar
[8], Latif and Dragomir [14], Li and Du [15], respectively.

Definition 1.3 ([31]) Let h : J ⊆ R → R be a positive function, h 6≡ 0. We
say that f : I ⊆ R → R is h-convex, or that f belongs to the class SX(h, I), if
f is non-negative and for all x, y ∈ I and t ∈ (0, 1), one has

f
(
tx+ (1− t)y

)
≤ h(t)f(x) + h(1− t)f(y). (1.4)

If inequality (1.4) is reversed, then f is called h-concave, i.e. f ∈ SV (h, I).

2
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If h(t) = t, then any non-negative convex mapping belongs to SX(h, I)
and each non-negative concave mapping belongs to SV (h, I); if h(t) = 1

t , then
SX(h, I) = Q(I); if h(t) = 1, then SX(h, I) ⊇ P (I); and if h(t) = ts for
s ∈ (0, 1], then SX(h, I) ⊇ K2

s .

Definition 1.4 ([19]) Let h : [0, 1]→ R be a non-negative function and h 6= 0.
The function f on the invex set X is said to be h-preinvex with respect to η, if

f
(
x+ tη(y, x)

)
≤ h(1− t)f(x) + h(t)f(y) (1.5)

for each x, y ∈ X and t ∈ [0, 1] where f(·) > 0.

Definition 1.5 ([31]) We say that h : J ⊆ R → R is a super-multiplicative
function, if for any x, y ∈ J with xy ∈ J , one has

h(xy) ≥ h(x)h(y).

Definition 1.6 ([1]) We say that h : J ⊆ R → R is a super-additive function,
if for every x, y ∈ J with x+ y ∈ J , one has

h(x+ y) ≥ h(x) + h(y).

In order to prove some of our results in the present paper, we need the
following Condition C given by Mohan and Neogy in [24].

Condition C: Let η : Rn × Rn → Rn, we say that the mapping η satisfies
the condition C if for any x, y ∈ Rn,

(C1) η
(
x, x+ tη(y, x)

)
= −tη(y, x),

(C2) η
(
y, x+ tη(y, x)

)
= (1− t)η(y, x),

for all t ∈ [0, 1].
Note that for any x, y ∈ Rn, t1, t2 ∈ [0, 1] and from Condition C, we can deduce

η
(
x+ t2η(y, x), x+ t1η(y, x)

)
= (t2 − t1)η(y, x).

Also, if t1 = 0, we have

η
(
x+ t2η(y, x), x

)
= t2η(y, x).

In [21], Noor et al. proved the following variant of the Fejér-Hermite-
Hadamard inequality type under h-preinvexity.

Theorem 1.2 Let f : I ⊆ R→ (0,∞) be an h-preinvex function with η(v, u) >
0, h( 1

2 ) 6= 0 and let w : [u;u+η(v, u)]→ R is a non-negative, integrable function
and symmetric regarding u+ 1

2η(v, u), then recurring to Condition C, we have

1

2h( 1
2 )
f
(2u+ η(v, u)

2

) u+η(v,u)∫
u

w(x)dx ≤
u+η(v,u)∫
u

f(x)w(x)dx

≤ f(u) + f(v)

2
[h(t) + h(1− t)]

u+η(v,u)∫
u

w(x)dx

(1.6)

3
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Corollary 1.1 In Theorem 1.2, letting w(x) = 1 or 1
η(v,u) , we can obtain

1

2h( 1
2 )
f
(2u+ η(v, u)

2

)
≤ 1

η(v, u)

u+η(v,u)∫
u

f(x)dx ≤ f(u) + f(v)

2
[h(t) + h(1− t)],

(1.7)

specially for η(v, u) = v − u, we can get

1

2h( 1
2 )
f
(u+ v)

2

)
≤ 1

v − u

v∫
u

f(x)dx ≤ f(u) + f(v)

2
[h(t) + h(1− t)]. (1.8)

Corollary 1.2 In Theorem 1.2, if f is an h-preincave function and w(x) = 1
or 1

η(v,u) , we can get

f(u) + f(v)

2
[h(t) + h(1− t)] ≤ 1

η(v, u)

u+η(v,u)∫
u

f(x)dx ≤ 1

2h( 1
2 )
f
(2u+ η(v, u)

2

)
.

(1.9)

In some of the recent literatures, Riemann-Liouville fractional Hermite-
Hadamard type inequalities are applied widely in the field of analysis, and many
new results of fractional Hermite-Hadamard type inequalities are gained based
on the original Hermite-Hadamard inequalities for functions of different classes.
For example, refer to for convex functions [4, 9–11, 25, 27, 28], for m-convex
functions [32, 38] and (s,m)-convex functions [2], for r-convex functions [33],
for harmonically convex functions [3, 13], for quasi-geometrically convex func-
tions [12], for GA-s-convex functions [18], for preinvex functions [23, 26], for
(α,m)-preinvex functions [5], for h-convex functions [20] and references cited
therein.

Motivated and inspired by these results and the recent developments in this
area, in the present paper, two Hermite-Hadamard’s inequalities for h-preinvex
functions via fractional integrals are firstly established and the obtained results
of [30] are generalized. Secondly, a second-order new identity for fractional inte-
grals is found. By virtue of this integral identity, we present the left-sided new
Hermite-Hadamard type inequalities for h-preinvex functions and h-preincave
functions via Riemann-Liouville fractional integrals. Some results proved in this
paper can be viewed as generalization of several known results of [29, 30].

2 Main Results

In this section, we are going to prove our main results.

Theorem 2.1 Let f : I ⊆ R→ (0,∞) be an h-preinvex function with η(b, a) >
0 and f ∈ L1[a, b]. Then one has the following inequality recurring to Condition

4
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C via fractional integrals

Γ(α)

ηα(b, a
)[Jαa+f(a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
≤
[
f(a) + f

(
a+ η(b, a)

)] ∫ 1

0

tα−1[h(t) + h(1− t)]dt

≤
2
[
f(a) + f

(
a+ η(b, a)

)]
(αp− p+ 1)

1
p

(∫ 1

0

(
h(t)

)q
dt

) 1
q

,

(2.1)

where p−1 + q−1 = 1 with p, q > 1.

Proof. Since f is h-preinvex, we have

f
(
x+ (1− t)η(y, x)

)
≤ h(t)f(x) + h(1− t)f(y)

and
f
(
x+ tη(y, x)

)
≤ h(1− t)f(x) + h(t)f(y).

By adding these inequalities we can deduce

f
(
x+ (1− t)η(y, x)

)
+ f

(
x+ tη(y, x)

)
≤ [h(t) + h(1− t)][f(x) + f(y)]. (2.2)

By employing (2.2) with x = a and y = a+ η(b, a) we have

f
(
a+ (1− t)η

(
a+ η(b, a), a

))
+ f

(
a+ tη

(
a+ η(b, a), a

))
≤
[
h(t) + h(1− t)

][
f(a) + f

(
a+ η(b, a)

)]
.

(2.3)

By making use of Condition C for the left hand side of (2.3), we can get

f
(
a+ (1− t)η

(
a+ η(b, a), a

))
+ f

(
a+ tη

(
a+ η(b, a), a

))
= f

(
a+ (1− t)η(b, a)

)
+ f

(
a+ tη(b, a)

)
.

(2.4)

Utilizing (2.4) in (2.3), we have

f
(
a+ (1− t)η(b, a)

)
+ f

(
a+ tη(b, a)

)
≤
[
h(t) + h(1− t)

][
f(a) + f

(
a+ η(b, a)

)]
.

(2.5)

Then multiplying both sides of (2.5) by tα−1 and integrating the resulting in-
equality with respect to t over [0, 1], we obtain∫ 1

0

tα−1
[
f
(
a+ (1− t)η(b, a)

)
+ f

(
a+ tη(b, a), a

))]
dt

≤
∫ 1

0

tα−1
[
h(t) + h(1− t)

][
f(a) + f

(
a+ η(b, a)

)]
dt

5
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and

Γ(α)

ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
≤
[
f(a) + f

(
a+ η(b, a)

)] ∫ 1

0

tα−1[h(t) + h(1− t)]dt
(2.6)

and therefore the first inequality of (2.1) is proved.
To prove the second inequality in (2.1), by virtue of Hölder’s inequality for

the right hand side of (2.6), we get∫ 1

0

tα−1[h(t) + h(1− t)]dt ≤
(∫ 1

0

(
tα−1

)p
dt
) 1

p
(∫ 1

0

(
h(t) + h(1− t)

)q
dt
) 1

q

=
( 1

αp− p+ 1

) 1
p
(∫ 1

0

(
h(t) + h(1− t)

)q
dt
) 1

q

.

Due to the Minkowski inequality, we may deduce( 1

αp− p+ 1

) 1
p
(∫ 1

0

(
h(t) + h(1− t)

)q
dt
) 1

q

≤
( 1

αp− p+ 1

) 1
p

[(∫ 1

0

(
h(t)

)q
dt
) 1

q

+
(∫ 1

0

(
h(1− t)

)q
dt
) 1

q

]
=

2

(αp− p+ 1)
1
p

(∫ 1

0

(
h(t)

)q
dt

) 1
q

,

where the proof is completed.

We point out, now, some special cases of Theorem 2.1.

Corollary 2.1 Letting η(b, a) = b− a, the inequalities (2.1) reduce to Theorem
2.1 given by Tunç in [30, Page 561].

Corollary 2.2 In Theorem 2.1, letting α = 1, we can deduce

1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤
[
f(a) + f

(
a+ η(b, a)

)] ∫ 1

0

h(t)dt

≤
[
f(a) + f

(
a+ η(b, a)

)](∫ 1

0

(
h(t)

)q
dt

) 1
q

for h-preinvex functions.

Corollary 2.3 (1) If we take h(t) = t in Corollary 2.2, we get

1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤
f(a) + f

(
a+ η(b, a)

)
2

≤
f(a) + f

(
a+ η(b, a)

)
(q + 1)

1
q

6
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for preinvex functions.
(2) If we take h(t) = 1 in Corollary 2.2, we have

1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤ f(a) + f
(
a+ η(b, a)

)
for P -preinvex functions.
(3) If we take h(t) = ts in Corollary 2.2, we also obtain

1

η(b, a)

∫ a+η(b,a)

a

f(x)dx ≤
f(a) + f

(
a+ η(b, a)

)
s+ 1

≤
f(a) + f

(
a+ η(b, a)

)
(sq + 1)

1
q

for s-preinvex functions in the second sense with s ∈ (0, 1].

Theorem 2.2 Let f : I → (0,∞) be an h-preinvex function with η(b, a) > 0, h
be super-additive on I and f ∈ L1[a, b], h ∈ L1[0, 1]. Then one has inequality
for h-preinnvex functions via fractional integrals

Γ(α)

ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
≤ h(1)

α

[
f(a) + f

(
a+ η(b, a)

)]
.

(2.7)

Proof. Since f is h-preinvex and h is super-additive, by virtue of (2.5), we have

f
(
a+ (1− t)η(b, a)

)
+ f

(
a+ tη(b, a)

)
≤
[
h(t) + h(1− t)

][
f(a) + f

(
a+ η(b, a)

)]
≤ h(1)

[
f(a) + f

(
a+ η(b, a)

)]
.

(2.8)

Then multiplying both sides of (2.8) by tα−1 and integrating the resulting in-
equality respecting t over [0, 1], we get∫ 1

0

tα−1
[
f
(
a+ (1− t)η(b, a)

)
+ f

(
a+ tη(b, a)

)]
dt

≤
∫ 1

0

tα−1h(1)
[
f(a) + f

(
a+ η(b, a)

)]
dt

and

Γ(α)

ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
≤ h(1)

[
f(a) + f

(
a+ η(b, a)

)] ∫ 1

0

tα−1dt,

(2.9)

which completes the proof.
As special cases, we provide the following results for the Theorem 2.2.

Corollary 2.4 Letting η(b, a) = b− a, the inequality (2.7) reduces to Theorem
2.4 proven by Tunç in [30, Page 562].

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

370 Tingsong Du et al 364-384



Corollary 2.5 If we take α = 1 with η(b, a) = b− a in Theorem 2.2, then the
inequality (2.7) becomes a special version of right hand side of (1.8).

We prove, next, some Hermite-Hadamard type inequalities for mappings
whose derivatives are differentiable h-preinvex via fractional integrals. To do
this, we present the following lemma.

Lemma 2.1 Let A ⊆ R be an open invex subset with respect to η : A×A→ R
and a, b ∈ A with η(b, a) > 0. Suppose that f : A → R be a twice differentiable
function on A. If f ′′ ∈ L[a, a+η(b, a)] , then the following identity for Riemann-
Liouville fractional integrals with α > 0 holds:

Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)
=
η2(b, a)

2

[ ∫ 1
2

0

(
t− λ(t)

)
f ′′
(
a+ tη(b, a)

)
dt+

∫ 1

1
2

(
(1− t)− λ(t)

)
f ′′
(
a+ tη(b, a)

)
dt

]
,

(2.10)

where

λ(t) =
1− tα+1 − (1− t)α+1

α+ 1
. (2.11)

Proof. Set

I1 =
η2(b, a)

2

∫ 1
2

0

tf ′′
(
a+ tη(b, a)

)
dt,

I2 =
η2(b, a)

2

∫ 1

1
2

(1− t)f ′′
(
a+ tη(b, a)

)
dt,

and

I3 =
η2(b, a)

2

∫ 1

0

1− tα+1 − (1− t)α+1

α+ 1
f ′′
(
a+ tη(b, a)

)
dt.

Since a, b ∈ A and A is an invex set regarding η, for every t ∈ [0, 1], we have
a+ tη(b, a) ∈ A. Integrating by part yields that

I1 =
η2(b, a)

2

[
1

η(b, a)
tf ′
(
a+ tη(b, a)

)∣∣∣ 12
0
− 1

η(b, a)

∫ 1
2

0

f ′
(
a+ tη(b, a)

)
dt

]
=
η(b, a)

4
f ′
(2a+ η(b, a)

2

)
− 1

2
f
(
a+ tη(b, a)

)∣∣∣ 12
0

=
η(b, a)

4
f ′
(2a+ η(b, a)

2

)
− 1

2

[
f
(2a+ η(b, a)

2

)
− f(a)

]
.

Analogously we also have

I2 = −η(b, a)

4
f ′
(2a+ η(b, a)

2

)
+

1

2

[
f(a+ η(b, a))− f

(2a+ η(b, a)

2

)]
.

8
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On the other hand, integrating by part, it yields that

I3 =
η2(b, a)

2

[
1− tα+1 − (1− t)α+1

(α+ 1)η(b, a)
f ′
(
a+ tη(b, a)

)∣∣∣1
0

−
∫ 1

0

−(α+ 1)tα + (α+ 1)(1− t)α

(α+ 1)η(b, a)
f ′
(
a+ tη(b, a)

)
dt

]
=
η2(b, a)

2

[
tα − (1− t)α

η2(b, a)
f
(
a+ tη(b, a)

)∣∣∣1
0

−
∫ 1

0

αtα−1 + α(1− t)α−1

η2(b, a)
f
(
a+ tη(b, a)

)
dt

]
=
f(a) + f

(
a+ tη(b, a)

)
2

− α

2

[ ∫ 1

0

(
tα−1 + (1− t)α−1

)
f
(
a+ tη(b, a)

)
dt

]
.

(2.12)

Let u = a+ tη(b, a) and using the reduction formula Γ(α+ 1) = αΓ(α)(α > 0)
for Euler gamma function, we get

α

2

∫ 1

0

tα−1f
(
a+ tη(b, a)

)
dt =

Γ(α+ 1)

2ηα(b, a)
Jα(a+η(b,a))−f(a) (2.13)

and similarly we also have

α

2

∫ 1

0

(1− t)α−1f
(
a+ tη(b, a)

)
dt =

Γ(α+ 1)

2ηα(b, a)
Jαa+f

(
a+ tη(b, a)

)
. (2.14)

Applying (2.13) and (2.14) to (2.12), we obtain

I3 =
f(a) + f

(
a+ η(b, a)

)
2

− Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
.

From I1, I2 and I3, it follows that

I1 + I2 − I3 =
Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)
,

which is the desired result. The proof of Lemma 2.1 is completed.

Corollary 2.6 Letting η(b, a) = b−a, the formula (2.10) reduces to lemma 2.1
given by Zhang and Wang in [38, page 4]. Clearly, the obtained Lemma 2.1 in
the present paper is an extension of a result proved by Zhang et al. in [38].

With the aid of Lemma 2.1, let us begin with our next results involving
fractional integral inequalities for h-preinvex functions.

Theorem 2.3 Let h : J ⊆ R → R ([0, 1] ⊆ J) be a non-negative function and
h(t) ≥ t for 0 ≤ t ≤ 1. Suppose that f : [a, a + η(b, a)] ⊆ [0,∞) → R be a
twice differentiable mapping on (a, a + η(b, a)) with η(b, a) > 0 such that f ′′

9
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∈ L1[a, a + η(b, a)]. If |f ′′| is h-preinvex on [a, a + η(b, a)], then the following
inequality for fractional integrals with α > 0 hold:∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

[ ∫ 1
2

0

(
t− λ(t)

)
h(t)dt+

∫ 1

1
2

(
(1− t)− λ(t)

)
h(t)dt

](
|f ′′(a)|+ |f ′′(b)|

)
,

(2.15)

where λ(t) is defined by (2.11).

Proof. From Lemma 2.1 and properties of absolute value, we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

[ ∫ 1
2

0

∣∣t− λ(t)
∣∣∣∣f ′′(a+ tη(b, a)

)∣∣dt+

∫ 1

1
2

∣∣(1− t)− λ(t)
∣∣∣∣f ′′(a+ tη(b, a)

)∣∣dt]

=
η2(b, a)

2

[ ∫ 1
2

0

t
∣∣f ′′(a+ tη(b, a)

)∣∣dt+

∫ 1

1
2

(1− t)
∣∣f ′′(a+ tη(b, a)

)∣∣dt
−
∫ 1

0

λ(t)|f ′′
(
a+ tη(b, a)

)
|dt
]
.

(2.16)

According to the h-preinvexity of |f ′′| on [a, a+ η(b, a)], we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

{∫ 1
2

0

t
[
h(1− t)|f ′′(a)|+ h(t)|f ′′(b)|

]
dt+

∫ 1

1
2

(1− t)
[
h(1− t)|f ′′(a)|+ h(t)|f ′′(b)|

]
dt

−
∫ 1

0

λ(t)
[
h(1− t)|f ′′(a)|+ h(t)|f ′′(b)|

]
dt

}
=
η2(b, a)

2

{
|f ′′(a)|

[ ∫ 1
2

0

th(1− t)dt+

∫ 1

1
2

(1− t)h(1− t)dt−
∫ 1

0

λ(t)h(1− t)dt
]

+ |f ′′(b)|
[ ∫ 1

2

0

th(t)dt+

∫ 1

1
2

(1− t)h(t)dt−
∫ 1

0

λ(t)h(t)dt
]}

=
η2(b, a)

2

[ ∫ 1
2

0

(
t− λ(t)

)
h(t)dt+

∫ 1

1
2

(
(1− t)− λ(t)

)
h(t)dt

](
|f ′′(a)|+ |f ′′(b)|

)
,

(2.17)

where we use the following fact that∫ 1
2

0

th(1− t)dt =

∫ 1

1
2

(1− t)h(t)dt,

10
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∫ 1
2

0

th(t)dt =

∫ 1

1
2

(1− t)h(1− t)dt

and ∫ 1

0

λ(t)h(1− t)dt =

∫ 1

0

λ(t)h(t)dt.

Hence, we obtain the required inequality (2.15). This completes the proof of
Theorem 2.3.

Let us discuss some special cases of Theorem 2.3.

Corollary 2.7 Under conditions of Theorem 2.3, if we choose h(t) = t, then
(2.15) becomes the following inequality for preinvex functions∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

16

[ α2 − α+ 2

(α+ 1)(α+ 2)

][
|f ′′(a)|+ |f ′′(b)|

]
,

specially for α = 1 and η(b, a) = b−a, we get the following inequality for convex
functions∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(a+ b

2

)∣∣∣∣ ≤ (b− a)2

24

[ |f ′′(a)|+ |f ′′(b)|
2

]
,

which is is the same as the inequality established by Sarikaya, Saglam, and
Yildirim in [29, Theorem 3].
Also, in Theorem 2.3, letting h(t) = 1, then we get∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

{[
|f ′′(a)|+ |f ′′(b)|

](1

4
− α

(α+ 1)(α+ 2)

)}
for P -preinvex functions.

Corollary 2.8 In given conditions of Theorem 2.3, if we take h(t) = ts, then
(2.15) reduces to the following inequality for s-preinvex functions∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

{[
|f ′′(a)|+ |f ′′(b)|

][ 2s+1 − 1

2s+1(s+ 1)(s+ 2)
− 1

(s+ 1)(s+ α+ 2)
+
β(s+ 1, α+ 2)

α+ 1

]}
.

Corollary 2.9 In Theorem 2.3, if |f ′′(x)| ≤ M , then (2.15) becomes the fol-
lowing inequality∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f

(
a+ η(b, a)

)
+ Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤Mη2(b, a)

[ ∫ 1
2

0

th(t)dt+

∫ 1

1
2

(1− t)h(t)dt−
∫ 1

0

λ(t)h(t)dt

]
,

11
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where λ(t) is defined by (2.11).

Theorem 2.4 Let h : J ⊆ R → R ([0, 1] ⊆ J) be a non-negative and h(t) ≥ t
for 0 ≤ t ≤ 1. Suppose f : [a, a+ η(b, a)] ⊆ [0,∞) → R be a twice differentiable
mapping on (a, a+ η(b, a)) with η(b, a) > 0 such that hq, f ′′ ∈ L1[a, a+ η(b, a)]
and p−1 + q−1 = 1 with p, q > 1. If |f ′′| is h-preinvex on [a, a + η(b, a)], then
the following inequality for fractional integrals with α > 0 hold:∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

[
|f ′′(a)|+ |f ′′(b)|

]{( 1

p+ 1

) 1
p
(1

2

)1+ 1
p

[(∫ 1
2

0

hq(t)dt
) 1

q

+
(∫ 1

1
2

hq(t)dt
) 1

q

]

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
(∫ 1

0

hq(t)dt
) 1

q

}
.

(2.18)

Proof. Continuing from inequality (2.17) in the proof of Theorem 2.3, using
properties of absolute value again, recurring to definition of λ(t) and Hölder’s
inequality, we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

[
|f ′′(a)|+ |f ′′(b)|

]
×
{(∫ 1

2

0

tpdt

) 1
p
(∫ 1

2

0

hq(t)dt

) 1
q

+

(∫ 1

1
2

(1− t)pdt
) 1

p
(∫ 1

1
2

hq(t)dt

) 1
q

+
1

α+ 1

(∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
dt

) 1
p
(∫ 1

0

hq(t)dt

) 1
q
}

≤η
2(b, a)

2

[
|f ′′(a)|+ |f ′′(b)|

]
×
{( 1

p+ 1

) 1
p
(1

2

)1+ 1
p

[(∫ 1
2

0

hq(t)dt

) 1
q

+

(∫ 1

1
2

hq(t)dt

) 1
q

]

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p

(∫ 1

0

hq(t)dt

) 1
q
}
.

To prove the second inequality above, we use the following fact that∫ 1
2

0

tpdt =

∫ 1

1
2

(1− t)pdt =
1

2p+1(p+ 1)
(2.19)

and ∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
dt ≤ pα+ p− 1

pα+ p+ 1
, (2.20)

12
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where we use the following inequality(
1− tα+1 − (1− t)α+1

)p ≤ 1− tp(α+1) − (1− t)p(α+1)

for any t ∈ [0, 1], which follows from

(A−B)p ≤ Ap −Bp

for any A > B ≥ 0 and p > 1.
Hence, we can get the desired result (2.18).

We give, now, some special cases of Theorem 2.4.

Corollary 2.10 In Theorem 2.4, if we take p = q = 2, then we get∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

[
|f ′′(a)|+ |f ′′(b)|

]{ 1

2
√

6

[(∫ 1
2

0

h(t2)dt
) 1

2

+
(∫ 1

1
2

h(t2)dt
) 1

2

]

+
1

α+ 1

(2α+ 1

2α+ 3

) 1
2
(∫ 1

0

h(t2)dt
) 1

2

}
,

where h is super-multiplicative.

Corollary 2.11 Under assumptions of Theorem 2.4, letting h(t) = t, then the
inequality (2.18) becomes the following inequality for the preinvex function∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

( 1

q + 1

) 1
q
[
|f ′′(a)|+ |f ′′(b)|

]
×

{( 1

p+ 1

) 1
p
(1

2

)1+ 1
p

[(1

2

)1+ 1
q

+
(

1− 1

2q+1

) 1
q

]
+

1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p

}
,

specially for α = 1, we get the following inequality for preinvex functions∣∣∣∣ 1

2η(b, a)

∫ a+η(b,a)

a

f(t)dt− f
(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

4

( 1

q + 1

) 1
q
[
|f ′′(a)|+ |f ′′(b)|

]
×

{( 1

2p+ 2

) 1
p

[(1

2

)1+ 1
q

+
(

1− 1

2q+1

) 1
q

]
+
(2p− 1

2p+ 1

) 1
p

}
.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

376 Tingsong Du et al 364-384



In Theorem 2.4, if we choose h(t) = 1, then we get∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

[
|f ′′(a)|+ |f ′′(b)|

]{1

2

( 1

p+ 1

) 1
p

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p

}
,

for P -preinvex functions.

Corollary 2.12 In Theorem 2.4, if we take h(t) = ts, then the inequality (2.18)
becomes the following inequality for s-preinvex functions∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

( 1

sq + 1

) 1
q
[
|f ′′(a)|+ |f ′′(b)|

]
×

{( 1

p+ 1

) 1
p
(1

2

)1+ 1
p

[(1

2

)s+ 1
q

+
(

1− 1

2sq+1

) 1
q

]
+

1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p

}
.

Theorem 2.5 Let h : J ⊆ R → R ([0, 1] ⊆ J) be a non-negative and super-
multiplicative function, h(t) ≥ t for 0 ≤ t ≤ 1. Assume that f : [a, a+ η(b, a)] ⊆
[0,∞) → R be a twice differentiable mapping on (a, a+ η(b, a)) with η(b, a) > 0
such that f ′′ ∈ L1[a, a+ η(b, a)]. If |f ′′|q is h-preinvex on [a, a+ η(b, a)], q ≥ 1
and |f ′′(x)| ≤M , x ∈ [a, a+η(b, a)], then the following inequalities for fractional
integrals with α > 0 hold:∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤Mη2(b, a)

2

{(1

8

)1− 1
q
[( ∫ 1

2

0

t[h(t) + h(1− t)]dt
) 1

q

+
(∫ 1

1
2

(1− t)[h(t) + h(1− t)]dt
) 1

q
]

+
2qα − 1

2qα(α+ 1)

(∫ 1

0

[
h(t) + h(1− t)

]
dt
) 1

q

}
(2.21)

≤Mη2(b, a)

2

{(1

8

)1− 1
q
[( ∫ 1

2

0

[h(t2) + h(t− t2)]dt
) 1

q

+
(∫ 1

1
2

[
h(t− t2) + h

(
(1− t)2

)]
dt
) 1

q
]

+
2qα − 1

2qα(α+ 1)

(∫ 1

0

[
h(t) + h(1− t)

]
dt
) 1

q

}
.

(2.22)

Proof. Continuing from inequality (2.16) in the proof of Theorem 2.3, using
properties of absolute value again, recurring to definition of λ(t) and power
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mean inequality for q ≥ 1, we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

{(∫ 1
2

0

tdt
)1− 1

q
(∫ 1

2

0

t
∣∣f ′′(a+ tη(b, a)

)∣∣qdt) 1
q

+
(∫ 1

1
2

(1− t)dt
)1− 1

q
(∫ 1

1
2

(1− t)
∣∣f ′′(a+ tη(b, a)

)∣∣qdt) 1
q

+
1

α+ 1

(∫ 1

0

1dt

)1− 1
q
[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)q∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q
}
.

According to the h-preinvexity of |f ′′|q and |f ′′| ≤M , we get∫ 1
2

0

t
∣∣f ′′(a+ tη(b, a)

)∣∣qdt ≤ ∫ 1
2

0

t
[
h(1− t)|f ′′(a)|q + h(t)|f ′′(b)|q

]
dt

≤Mq

∫ 1
2

0

t[h(t) + h(1− t)]dt.

Similarly, we also have∫ 1

1
2

(1− t)
∣∣f ′′(a+ tη(b, a)

)∣∣qdt ≤Mq

∫ 1

1
2

(1− t)[h(t) + h(1− t)]dt

and ∫ 1

0

(
1− tα+1 − (1− t)α+1

)q∣∣f ′′(a+ tη(b, a)
)∣∣qdt

≤
(

1− 1

2qα

)
Mq

∫ 1

0

[h(t) + h(1− t)]dt,

where we use the fact that(
1− (1− t)α+1 − tα+1

)q ≤ 1−
[
(1− t)α+1 + tα+1

]q ≤ 1− (2−α)q = 1− 1

2qα

for any t ∈ [0, 1] with q ≥ 1.
Also ∫ 1

2

0

tdt =

∫ 1

1
2

(1− t)dt =
1

8
.

Using these results, we see that the inequality (2.21) is proved. To prove (2.22),
and using the additional properties of h in hypothetical conditions, we further
have ∫ 1

2

0

t[h(t) + h(1− t)]dt ≤
∫ 1

2

0

[h(t2) + h(t− t2)]dt
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and ∫ 1

1
2

(1− t)[h(t) + h(1− t)]dt ≤
∫ 1

1
2

[
h(t− t2) + h

(
(1− t)2

)]
dt.

Hence, the proof of (2.22) is completed.

Elementary calculation yields the following result.

Corollary 2.13 In Theorem 2.5, if we choose h(t) = t, we can obtain∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ Mη2(b, a)

2

(1

4
+

2qα − 1

2qα(α+ 1)

)
,

specially for h(t) = 1, we get∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ Mη2(b, a)

21−
1
q

(1

4
+

2qα − 1

2qα(α+ 1)

)
.

Theorem 2.6 Let h : J ⊆ R → R ([0, 1] ⊆ J) be a non-negative and super-
additive function, h(t) ≥ t for 0 ≤ t ≤ 1. Suppose that f : [a, a+η(b, a)] ⊆ [0,∞)
→ R be a twice differentiable mapping on (a, a + η(b, a)) with η(b, a) > 0 such
that f ′′ ∈ L1[a, a + η(b, a)]. If |f ′′|q is h-preinvex on [a, a + η(b, a)], p, q > 1,
1
p + 1

q = 1 and |f ′′(x)| ≤ M , x ∈ [a, a + η(b, a)], then the following inequalities
for fractional integrals with α > 0 hold:∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤Mη2(b, a)

2

{(1

2

)1+ 1
p
( 1

p+ 1

) 1
p
[( ∫ 1

2

0

[h(t) + h(1− t)]dt
) 1

q

+
(∫ 1

1
2

[h(t) + h(1− t)]dt
) 1

q
]

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
(∫ 1

0

[h(t) + h(1− t)]dt
) 1

q

}
(2.23)

≤Mη2(b, a)

2

[
1

2

( 1

p+ 1

) 1
p

h
1
q (1) +

1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p

h
1
q (1)

]
.

(2.24)

Proof. Continuing from inequality (2.16) in the proof of Theorem 2.3, using
properties of absolute value again, recurring to definition of λ(t) and Hölder’s
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inequality for q > 1, we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

{(∫ 1
2

0

tpdt
) 1

p
[ ∫ 1

2

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

+
(∫ 1

1
2

(1− t)pdt
) 1

p
[ ∫ 1

1
2

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

+
1

α+ 1

[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
dt
] 1

p
[ ∫ 1

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

}
.

According to the h-preinvexity of |f ′′|q and |f ′′| ≤M , we can get∫ 1
2

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt ≤ |f ′′(a)|q

∫ 1
2

0

h(1− t)dt+ |f ′′(b)|q
∫ 1

2

0

h(t)dt

≤Mq

∫ 1
2

0

[h(t) + h(1− t)]dt.

Similarly we also have∫ 1

1
2

∣∣f ′′(a+ tη(b, a)
)∣∣qdt ≤Mq

∫ 1

1
2

[h(t) + h(1− t)]dt

and ∫ 1

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt ≤Mq

∫ 1

0

[h(t) + h(1− t)]dt.

By virtue of the above results and the fact (2.19) and the inequality (2.20), we
complete the proof of (2.23).
Using the supper-additive property of h in the assumptions, we further have

h(t) + h(1− t) ≤ h(1).

Hence, the proof of (2.24) is completed.

Finally we shall obtain estimate of Riemann-Liouville fractional Hermite-
Hadamard inequality for for h-preincave functions.

Theorem 2.7 Let h : J ⊆ R → R ([0, 1] ⊆ J) be a non-negative function,
h(t) ≥ t for 0 ≤ t ≤ 1 and f : [a, a + η(b, a)] ⊆ [0,∞) → R be a twice
differentiable mapping on (a, a+η(b, a)) with η(b, a) > 0 such that f ′′ ∈ L1[a, a+
η(b, a)]. If |f ′′|q is h-preincave on [a, a+ η(b, a)], p, q > 1, p−1 + q−1 = 1, then
the following inequality for fractional integrals with α > 0 hold:∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

[( 1

2p+ 2

) 1
p

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
][ 1

2h( 1
2 )

] 1
q
∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣
17

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.2, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

380 Tingsong Du et al 364-384



Proof. Continuing from inequality (2.16) in the proof of Theorem 2.3, using
properties of absolute value again, recurring to definition of λ(t) and Hölder’s
inequality, we have∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤η

2(b, a)

2

{(∫ 1
2

0

tpdt
) 1

p
[ ∫ 1

2

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

+
(∫ 1

1
2

(1− t)pdt
) 1

p
[ ∫ 1

1
2

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

+
1

α+ 1

[ ∫ 1

0

(
1− tα+1 − (1− t)α+1

)p
dt
] 1

p
[ ∫ 1

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

}

≤η
2(b, a)

2

{( 1

2p+1(p+ 1)

) 1
p
[( ∫ 1

2

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt) 1

q

+
(∫ 1

1
2

∣∣f ′′(a+ tη(b, a)
)∣∣qdt) 1

q
]

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
[ ∫ 1

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt] 1

q

}
.

To prove the second inequality above, we here use the fact (2.19) and the in-
equality(2.20) again.
Also, |f ′′|q is h-preincave on [a, a+ η(b, a)], by inequalities (1.9) we have∫ 1

2

0

∣∣f ′′(a+tη(b, a)
)∣∣qdt ≤ ∫ 1

0

∣∣f ′′(a+tη(b, a)
)∣∣qdt ≤ 1

2h( 1
2 )

∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣q.
Similarly, we also have∫ 1

1
2

∣∣f ′′(a+ tη(b, a)
)∣∣qdt ≤ 1

2h( 1
2 )

∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣q
and ∫ 1

0

∣∣f ′′(a+ tη(b, a)
)∣∣qdt ≤ 1

2h( 1
2 )

∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣q.
Therefore, we can get∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

[( 1

2p+ 2

) 1
p

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
][ 1

2h( 1
2 )

] 1
q
∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣.
Direct computation provides the following corollary.

Corollary 2.14 In given conditions of Theorem 2.7, if we take h(t) = t, we
obtain the following inequality for the preincave functions∣∣∣∣Γ(α+ 1)

2ηα(b, a)

[
Jαa+f(a+ η(b, a)) + Jα(a+η(b,a))−f(a)

]
− f

(2a+ η(b, a)

2

)∣∣∣∣
≤ η2(b, a)

2

[( 1

2p+ 2

) 1
p

+
1

α+ 1

(pα+ p− 1

pα+ p+ 1

) 1
p
]∣∣∣f ′′(2a+ η(b, a)

2

)∣∣∣.
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