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Locally and globally small Riemann sums and

Henstock integral of fuzzy-number-valued functions

Muawya Elsheikh Hamida∗, Luoshan Xu a , Zengtai Gong b

a School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
b College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R.China

Abstract In this paper, we first define and discuss the locally small Riemann sums (LSRS) for fuzzy-number-

valued functions. In addition the necessary and sufficient conditions have been obtained for a fuzzy-number-valued

function which has (LSRS), i.e., if a fuzzy-number-valued function is Henstock (H) integrable on [a, b] then it

has (LSRS) and the converse is always true. Secondly, the globally small Riemann sums (GSRS) for fuzzy-

number-valued functions is defined and discussed, and the necessary and sufficient conditions have been given for

a fuzzy-number-valued function which has (GSRS), i.e., if a fuzzy-number-valued function is (H) integrable on

[a, b] then it has (GSRS) and the converse is always true. Finally, by Egorov,s Theorem, we obtain the dominated

convergence theorem for globally small Riemann sums (GSRS) of fuzzy-number-valued functions.

Keywords: Fuzzy numbers; fuzzy integrals; (H) integral; (LSRS); (GSRS).

1 Introduction

Since the concept of fuzzy sets was firstly introduced by Zadeh in 1965 [22], it has been studied extensively

from many different aspects of the theory and applications, such as fuzzy topology, fuzzy analysis, fuzzy decision

making and fuzzy logic, information science and so on. fuzzy integrals of fuzzy-number-valued functions have

been studied by many authors from different points of views, including Goetschel [9], Nanda [15], Kaleva [12], Wu

[18, 19] and other authors [1, 3, 4, 5, 6, 8]. The locally and globally small Riemann sums have been introduced

by many authors from different points of views. In 1986, Schurle characterized the Lebesgue integral in (LSRS)

(locally small Riemann sums) property [16]. The (LSRS) property has been used to characterized the Perron

(P ) integral on [a, b] [17]. By considering the equivalency between the (P ) integral and the Henstock-Kurzweil

(HK) integral, the (LSRS) property has been used to characterized the (HK) integral on [a, b] [13].

The (LSRS) property brought a research to have global characterization on the Riemann sums of an (HK)

integrable function on [a, b]. This research has been done by considering the following fact: Every (HK) integrable

function on [a, b] is measurable, however, there is no guarantee the boundedness of the function. A measurable

function f is (HK) integrable on [a, b] depends on it behaves on the set of x in which |f(x)| is large, i.e. |f(x)| ≥ N
for some N . This fact has been characterized in (GSRS) (globally small Riemann sums) property [13].

The (GSRS) property involves one characteristic of the primitive of an (HK) integrable function. That is

the primitive of the (HK) integral on [a, b] is ACG∗ (generalized strongly absolutely continuous) on [a, b]. This

is not a simple concept.

In 2015, Indrati [11] introduced a countably Lipschitz condition of a function which is simpler than the ACG∗,

and proved that the (HK) integrable function or it,s primitive could be characterized in countably Lipschitz

condition. Also, by considering the characterization of the (HK) integral in the (GSRS) property, it showed that

the relationship between (GSRS) property and countably Lipschitz condition of an (HK) integrable function on

[a, b].

In this paper, we first define and discuss the locally small Riemann sums (LSRS) for fuzzy-number-valued

functions. In addition the necessary and sufficient conditions have been obtained for a fuzzy-number-valued

∗Corresponding author. Tel.: +8613218977118. E-mail address: muawya.ebrahim@gmail.com, mowia-84@hotmail.com

(M.E. Hamid), luoshanxu@hotmail.com (L.S. Xu) and gongzt@nwnu.edu.cn (Z.T. Gong).
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function which has (LSRS), i.e., if a fuzzy-number-valued function is (H) integrable on [a, b] then it has (LSRS)

and the converse is always true. Secondly, the globally small Riemann sums (GSRS) for fuzzy-number-valued

functions is defined and discussed, and the necessary and sufficient conditions have been given for a fuzzy-number-

valued function which has (GSRS), i.e., if a fuzzy-number-valued function is (H) integrable on [a, b] then it has

(GSRS) and the converse is always true. Finally, by Egorov,s Theorem, we obtain the dominated convergence

theorem for globally small Riemann sums (GSRS) of fuzzy-number-valued functions.

The paper is organized as follows, in Section 2 we shall review the relevant concepts and properties of fuzzy

sets and the definition of (H) integrals for fuzzy-number-valued functions. Section 3 is devoted to discussing

the locally small Riemann sums (LSRS) of fuzzy-number-valued functions. In section 4 we shall investigate

the globally small Riemann sums (GSRS) of fuzzy-number-valued functions by Egorov,s Theorem, we obtain

the dominated convergence theorem for globally small Riemann sums (GSRS) of fuzzy-number-valued functions.

The last section provides Conclusions.

2 Preliminaries

Definition 2.1 [10, 13] Let δ : [a, b]→ R+ be a positive real-valued function. P = {[xi−1, xi]; ξi} is said to be a

δ-fine division, if the following conditions are satisfied:

(1) a = x0 < x1 < x2 < ... < xn = b;

(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi))(i = 1, 2, · · · , n).

For brevity, we write P = {[u, v]; ξ}, where [u, v] denotes a typical interval in P and ξ is the associated point

of [u, v].

Definition 2.2 [10, 13] A real-valued function f(x) is said to be (H) integrable to G on [a, b] if for every ε > 0

there is a function δ(ξ) > 0 such that for any δ-fine division P = {[u, v]; ξ} we have∣∣∑
(P )

f(ξ)(v − u)−G
∣∣ < ε (2.1)

As usual, we write (RH)
∫ b
a
f(x)dx = G and f(x) ∈ RH[a, b].

For the results about fuzzy number space E1. we recall that E1 = {u : R→ [0, 1] : u satisfies (1)-(4) below}:
(1) u is normal, i.e., there exists a x0 ∈ R such that u(x0) = 1;

(2) u is a convex fuzzy set, i.e., u(rx+ (1− r)y) > min(u(x), u(y)), x, y ∈ R, r ∈ [0, 1];

(3) u is upper semi-continuous;

(4) cl{x ∈ R : u(x) > 0} is compact, where clA denotes the closure of A.

For 0 < r 6 1, denote [u]r = {x : u(x) > r}. Then from (1)-(4), it follows that the r−level set [u]r is a close

interval for all r ∈ [0, 1] (refer to [2, 7, 9, 12, 14, 20, 21]). We write ur = [u]r = [ur−, u
r
+] or [u−(r), u+(r)].

For u, v ∈ E1, k ∈ R, the addition and scalar multiplication are defined by the equations:

[u+ v]r = [u]r + [v]r, i.e., ur− + vr− = [u+ v]r− and ur+ + vr+ = [u+ v]r+;

[ku]r = k[u]r, i.e., [ku]r− = min{kur−, kur+} and [ku]r+ = max{kur−, kur+},

respectively.

Define D(u, v) = sup
r∈[0,1]

d([u]r, [v]r) = sup
r∈[0,1]

max{|ur− − vr−|, |ur+ − vr+|}, where d is Hausdorff metric. Further-

more, we write

‖ũ‖E1 = D(ũ, 0̃) = sup
λ∈[0,1]

max{|u−λ |, |u
+
λ |}.

Notice that ‖ · ‖E1 = D(·, 0̃) doesn’t stands for the norm of E1.

For u, v ∈ E1, u 6 v means ur− 6 v
r
−, u

r
+ 6 v

r
+ (see [2, 7, 9, 12, 14, 20, 21]).

Using the results of [2, 7, 9, 12, 14, 20, 21], we recall that:

(1) (E1, D) is a complete metric space,

(2) D(u+ w, v + w) = D(u, v),

(3) D(u+ v, w + e) 6 D(u,w) +D(v, e),

(4) D(ku, kv) = |k|D(u, v), k ∈ R,
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(5) D(u+ v, 0̃) 6 D(u, 0̃) +D(v, 0̃),

(6) D(u+ v, w) 6 D(u,w) +D(v, 0̃), where 0̃ = χ{0} and u, v, w, e ∈ E1.

Definition 2.3 [18] A fuzzy-number-valued function f̃(x) is said to be (H) integrable to Ã ∈ E1 if for every

ε > 0 there is a function δ(ξ) > 0 such that for any δ-fine division P = {[u, v]; ξ} of [a, b], we have

D(
∑

f̃(ξ)(v − u), Ã) < ε (2.2)

(FH)

∫ b

a

f̃(x)dx = Ã and f̃(x) ∈ FH[a, b]. (2.3)

Lemma 2.1 [18] Let f̃ : [a, b] → E1 be a fuzzy-number-valued function. Then f̃ ∈ FH[a, b] iff fr−(x), fr+(x) ∈
H[a, b] uniformly for any r ∈ [0, 1], i.e., δ(ξ) in Definition 2.2 is independent of r ∈ [0, 1].

3 Locally small Riemann sums and Henstock (H) integral of

fuzzy-number-valued functions

In this section, we shall define locally small Riemann sums or in short (LSRS) and show that it,s the necessary

and sufficient condition for f̃(x) to be Henstock (H) integrable on [a, b].

Definition 3.1 A fuzzy-number-valued function f̃ : [a, b] → E1 is said to be have locally small Riemann sums

or (LSRS) if for every ε > 0 there is a δ(ξ) > 0 such that for every t ∈ [a, b], we have∥∥∑ f̃(ξ)(v − u)
∥∥
E1 < ε, (3.1)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval [r, s] ⊂ (t− δ(t), t+ δ(t)), t ∈ [r, s] and Σ sums over P .

If there exists a z ∈ E1 such that x = y + z, then we call z the H− difference of x and y, denoted by x− y.

Lemma 3.1 [18] Let f̃ ∈ FH[a, b] and F̃ be the primitive of f̃(x) then F̃ satisfies the H− difference.

Lemma 3.2 (Henstock Lemma). If a fuzzy-number-valued function f̃ : [a, b] → E1 is (H) integrable on [a, b]

with primitive F̃ , i.e., for every ε > 0 there is a positive function δ(ξ) > 0 such that for any δ-fine division

P = {[u, v]; ξ} of [a, b], we have

D(
∑

f̃(ξ)(v − u),
∑

F̃ (u, v)) < ε. (3.2)

Then for any sum of parts
∑
1

from
∑

, we have

D(
∑
1

f̃(ξ)(v − u),
∑
1

F̃ (u, v)) < ε. (3.3)

The proof is similar to the Theorem 3.7 [13].

Theorem 3.1 If f̃(x) is (H) integrable on [a, b] then it has LSRS.

Proof Let F̃ be the primitive of f̃(x). Given ε > 0 there is a δ(ξ) > 0 such that for any δ-fine division

P = {[u, v]; ξ} of [a, b], we have

D
(∑

f̃(ξ)(v − u),
∑

F̃ (u, v)
)
< ε. (3.4)

Where F̃ (u, v) = F̃ (v)− F̃ (u). By the continuity of F̃ at ξ,

D
(
F̃ (u), F̃ (v)

)
< ε whenever [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)).

Therefore for t ∈ [a, b] and any δ-fine division P = {[u, v]; ξ} of [r, s] ⊂ (t− δ(t), t+ δ(t)), we have∥∥∑ f̃(ξ)(v − u)
∥∥
E1 ≤ D

(∑
f̃(ξ)(v − u),

∑
F̃ (u, v)

)
+D

(
F̃ (r), F̃ (s)

)
< 2ε.

That is f̃(x) has LSRS.

This completes the proof. �
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Lemma 3.3 [18] (Cauchy criterion). A fuzzy-number-valued function f̃ : [a, b] → E1 is (H) integrable on [a, b]

iff for every ε > 0 there is a positive function δ(ξ) > 0 such that whenever P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2}
are two δ-fine divisions, we have

D
(∑
(P1)

f̃(ξ1)(v1 − u1),
∑
(P2)

f̃(ξ2)(v2 − u2)
)
< ε. (3.5)

Theorem 3.2 If a fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS on [a, b] then f̃(x) is (H) integrable

on any closed sub-interval C ⊂ (a, b). (Where C = [r, s]).

Proof A fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS means that for every ε > 0 there is a δ(ξ) > 0

such that for every t ∈ [a, b], we have ∥∥∑ f̃(ξ)(v − u)
∥∥
E1 < ε, (3.6)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval C ⊂ (t− δ(t), t+ δ(t)), t ∈ C and Σ sums over P .

(i) If there t ∈ [a, b] with C ⊂ (t− δ(t), t+ δ(t)) we have the following discussion:

(1) If t ∈ C then for every ε > 0 there is a two δ-fine divisions P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2} on C,

such that

D
(∑
(P1)

f̃(ξ1)(v1 − u1),
∑
(P2)

f̃(ξ2)(v2 − u2)
)
< ε. (3.7)

According to the Cauchy criterion, then f̃(x) is (H) integrable on C.

(2) If t /∈ C then there is a closed interval E ⊂ (t− δ(t), t+ δ(t)), with the result that t ∈ E and C ⊂ E

(where E = [g, h] ). As a result, for every ε > 0 there is a two δ-fine divisions P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2}
on E, such that

D
(∑
(P1)

f̃(ξ1)(v1 − u1),
∑
(P2)

f̃(ξ2)(v2 − u2)
)
< ε. (3.8)

According to the Cauchy criterion, then f̃(x) is (H) integrable on E. Because C ⊂ E and f̃(x) is (H)

integrable on E then f̃(x) is (H) integrable on C.

(ii) If C * (t − δ(t), t + δ(t)) then there is a positive function δ on [a, b] which resulted in the presence that

P = {(Ci, ti) : i = 1, 2, · · · , k} is a δ-fine division of the interval C. It follows that f̃(x) is (H) integrable on Ci

for i = 1, 2, · · · , k.

Then f̃(x) is (H) integrable on C.

This completes the proof. �

Corollary 3.1 If a fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS on [a, b] then f̃(x) is (H) integrable

on C for any simple set C ⊂ (a, b).

Notice that a simple set C means that there exists finite closed sub-interval Ci which belongs to (a, b) such

that C =
k⋃
i=1

Ci.

Theorem 3.3 If a fuzzy-number-valued function f̃ : [a, b]→ E1 has LSRS on [a, b] then f̃(x) is (H) integrable

on [a, b].

Proof A fuzzy-number-valued function f̃ : [a, b] → E1 has LSRS then for every ε > 0 there is δ∗(ξ) > 0 such

that for every t ∈ [a, b], we have ∥∥∑ f̃(ξ)(v − u)
∥∥
E1 < ε, (3.9)

whenever P = {[u, v]; ξ} is a δ∗-fine division of an interval C ⊂ (t − δ(t), t + δ(t)), t ∈ C and Σ sums over P .

According to the Corollary 3.1, f̃(x) is (H) integrable on C for any simple set C ⊂ (a, b).

Rows set {Ei}, Ei
⋂
Ej = φ, ∀i 6= j with property (a, b) =

⋃
Ei, Ei is a closed interval. Thus for above ε > 0,

there is a positive numbers n0 with property

µ{[a, b]−
⋃
i≤n0

Ei} < ε, (3.10)

where µ is Lebesgue measure.
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For any i, there is a positive function δi such that for any δi-fine division on Ei, we have

D(
∑

f̃(ξ)(v − u), (H)

∫
Ei

f̃(x)dx) < ε. (3.11)

Define a positive function δ by the formula:

δ(ξ) =


min{δ∗(ξ), 1

2
d(ξ, ∂[a, b])} if ξ ∈

⋃
i>n0

Ei,

min{δ∗(ξ), δi(ξ)}, if ξ ∈
⋃
i≤n0

Ei.

For each C = {C} = {C1, C2, · · · , Ck} with Cj = Ei
⋂
Q (where Q = [u, v]), for one i ≤ n0 and one Q with

{[u, v]; ξ} is a δ-fine division and ξ ∈ (a, b), we have

(i) If Cj = Ei for i ≤ n0. Because f̃(x) is (H) integrable on Ei and f̃(x) is (H) integrable on Cj consequently

f̃(x) is (H) integrable on
k⋃
j=1

Cj . Selected a positive function δ∗ with δ∗(ξ) = min{δj(ξ) : j = 1, 2, · · · , k}, then

for each δ∗-fine division P = {[u, v]; ξ} on
k⋃
j=1

Cj , we have

D
(
(H)

∫
k⋃

j=1
Cj

f̃(x)dx,
∑

f̃(ξ)(v − u)
)
< ε. (3.12)

Thus obtained:

∥∥C∑(H)

∫
C

f̃(x)dx
∥∥
E1 ≤ D

(
(H)

∫
k⋃

j=1
Cj

f̃(x)dx,
∑

f̃(ξ)(v − u)
)

+

k∑
j=1

∥∥∑ f̃(ξ)(v − u)
∥∥
E1

< ε+ kε.

According to the properties of Cauchy, f̃(x) is (H) integrable on [a, b].

(ii) If Cj = Ei
⋂
Q, for i ≤ n0 and one δ-fine Q with {[u, v]; ξ} and ξ ∈ (a, b) then Cj ⊂ (ξ − δ(ξ), ξ + δ(ξ)).

According to the Theorem 3.2, then f̃(x) is (H) integrable on Cj . As the result f̃(x) is (H) integrable on
k⋃
j=1

Cj .

Selected a positive function δ1 with property δ1(ξ) ≤ δ(ξ) then for each δ∗-fine division P = {[u, v]; ξ} on
k⋃
j=1

Cj ,

we have

D
(
(H)

∫
k⋃

j=1
Cj

f̃(x)dx,
∑

f̃(ξ)(v − u)
)
< ε. (3.13)

Thus obtained:

∥∥C∑(H)

∫
C

f̃(x)dx
∥∥
E1 ≤ D

(
(H)

∫
k⋃

j=1
Cj

f̃(x)dx,
∑

f̃(ξ)(v − u)
)

+

k∑
j=1

∥∥∑ f̃(ξ)(v − u)
∥∥
E1

< ε+ kε.

According to the properties of Cauchy, f̃(x) is (H) integrable on [a, b].

This completes the proof. �

Corollary 3.2 A fuzzy-number-valued function f̃ : [a, b] → E1 has LSRS on [a, b] iff f̃(x) is (H) integrable on

[a, b].

4 Globally small Riemann sums and Henstock (H) integral of

fuzzy-number-valued functions

In this section, we shall define globally small Riemann sums or in short GSRS and show that it,s the necessary

and sufficient condition for f̃(x) to be Henstock (H) integrable on [a, b].

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

15 Elsheikh Hamid et al 11-18



M.E. Hamid, L.S. Xu, Z.T. Gong: Locally and globally small Riemann sums and Henstock integral...

Definition 4.1 A fuzzy-number-valued function f̃ : [a, b]→ E1 is said to be have globally small Riemann sums

or (GSRS) if for every ε > 0 there exists a positive integer N such that for every n > N there is a δn(ξ) > 0 and

for every δn-fine division P = {[u, v]; ξ} of [a, b], we have∥∥ ∑
‖f̃(ξ)‖

E1>n

f̃(ξ)(v − u)
∥∥
E1 < ε, (4.1)

where the
∑

is taken over P and for which ‖f̃(ξ)‖E1 > n.

Theorem 4.1 Let f̃(x) be (H) integrable to F̃ (a, b) on FH[a, b] and F̃n(a, b) the integral of f̃n(x) on FH[a, b],

where f̃n(x) = f̃(x) when ||f̃(x)||E1 6 n and 0̃ otherwise. If F̃n(a, b)→ F̃ (a, b) as n→∞ then f̃(x) has GSRS.

Proof Given ε > 0 there is a δn(ξ) > 0 such that for every δn-fine division P = {[u, v]; ξ} of [a, b], we have

D(
∑

f̃n(ξ)(v − u), F̃n(a, b)) < ε, (4.2)

where (FH)
∫ b
a
f̃n(x)dx = F̃n(a, b).

D(
∑

f̃(ξ)(v − u), F̃ (a, b)) < ε, (4.3)

where (FH)
∫ b
a
f̃(x)dx = F̃ (a, b).

Choose N so that whenever n > N

D(F̃n(a, b), F̃ (a, b)) < ε. (4.4)

Therefore for n > N and δn-fine division P = {[u, v]; ξ} of [a, b], we have∥∥ ∑
‖f̃(ξ)‖

E1>n

f̃(ξ)(v − u)
∥∥
E1 = D(

∑
f̃n(ξ)(v − u),

∑
f̃(ξ)(v − u))

6 D(
∑

f̃n(ξ)(v − u), F̃n(a, b)) +D(F̃n(a, b), F̃ (a, b)) +D(F̃ (a, b),
∑

f̃(ξ)(v − u))

< 3ε.

Hence f̃(x) has GSRS.

This completes the proof. �

Theorem 4.2 A fuzzy-number-valued function f̃(x) has GSRS iff f̃(x) is (H) integrable on [a, b] and F̃n(a, b)→
F̃ (a, b) as n→∞ where F̃n(a, b) and F̃ (a, b) are defined as in Theorem 4.1.

Proof Theorem 4.1 proves the sufficiency. We shall prove only the necessity. Suppose f̃(x) has GSRS. Note

that f̃n(x), as defined in Theorem 4.1, is (FH) integrable on [a, b] for all n. Then for n,m > N and a suitably

chosen δ-fine division P = {[u, v]; ξ}, we have

D(F̃n(a, b), F̃m(a, b))

6 D(F̃n(a, b),
∑

‖f̃(ξ)‖
E16n

f̃(ξ)(v − u)) +D(
∑

‖f̃(ξ)‖
E16m

f̃(ξ)(v − u), F̃m(a, b))

+
∥∥ ∑
‖f̃(ξ)‖

E1>n

f̃(ξ)(v − u)
∥∥
E1 +

∥∥ ∑
‖f̃(ξ)‖

E1>m

f̃(ξ)(v − u)
∥∥
E1

< 4ε.

That is, F̃n(a, b) converge to a fuzzy number, say F̃ (a, b), as n → ∞. Again, for suitably chosen N and δ(ξ)

and for every δ-fine division P = {[u, v]; ξ}, we have

D(
∑

f̃(ξ)(v − u), F̃ (a, b)) 6 D(F̃ (a, b), F̃N (a, b))

+ D(F̃N (a, b),
∑

‖f̃(ξ)‖
E16N

f̃(ξ)(v − u)) +
∥∥ ∑
‖f̃(ξ)‖

E1>N

f̃(ξ)(v − u)
∥∥
E1

< 3ε.

That is, f̃(x) is (FH) integrable on [a, b].

This completes the proof. �
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Theorem 4.3 Let f̃n(x) ∈ FH[a, b], n = 1, 2, 3 · · · and satisfy:

(1) lim
n→∞

f̃n(x) = f̃(x) almost everywhere in [a, b];

(2) there exists a Lebesgue (L) integrable (H integrable) function h(x) on [a, b] such that

D(f̃n(x), f̃m(x)) < h(x). (4.5)

Then, f̃n(x) has GSRS on [a, b] uniformly for any n. Naturally, f̃ is (SFH) integrable on [a, b]. Furthermore,

lim
n→∞

(SFH)

∫ b

a

f̃n(x)dx = (SFH)

∫ b

a

f̃(x)dx. (4.6)

Proof Let ε > 0. Since H(x) = (L)
∫ x
a
h(t)dt is absolutely continuous on [a, b], there exists a positive number

η > 0 such that
∑
|H(bi)−H(ai)| < ε whenever {[ai, bi]} is a finite collection of non-overlapping intervals in [a, b]

that satisfy
∑

(bi − ai) < η. Since lim
n→∞

f̃n(x) = f̃(x) almost everywhere in [a, b], and

D(f̃n, f̃) = sup
r∈[0,1]

max{|(fn(x))r− − (f(x))r−|, |(fn(x))r+ − (f(x))r+|}

= sup
rk∈[0,1]

max{|(fn(x))
rk
− − (f(x))

rk
− |, |(fn(x))

rk
+ − (f(x))

rk
+ |}

is a sequence of Lebesgue (L) measurable functions, where rk ∈ [0, 1] is the set of rational numbers, by Egorov’s

Theorem, there exists an open set G with L(G) < η such that lim
n→∞

f̃n(x) = f̃(x) uniformly for x ∈ [a, b]\G. Then,

there is an natural number N , such that for any n,m > N , and for any x ∈ [a, b]\G, we have D(f̃n(x), f̃m(x)) < ε.

Since h(x) is (H) integrable on [a, b], there is a δh(ξ) > 0 such that for any δh-fine division P = {[u, v]; ξ} of [a, b],

we have ∣∣∑h(ξ)(v − u)− (L)

∫ b

a

h(t)dt
∣∣ < ε. (4.7)

Define

δ(ξ) =

δh(ξ), if ξ ∈ [a, b] \G,

δ(ξ), satisfying (ξi − δ(ξi), ξi + δ(ξi)) ⊂ G, if ξ ∈ [a, b].

Then, it follows that for a δ-fine division P0 = {[xi−1, xi]; ξi} of [a, b],

D(
∑

f̃n(ξi)(xi − xi−1),
∑

f̃m(ξi)(xi − xi−1))

≤ D(
∑

ξi∈[a,b]\G

f̃n(ξi)(xi − xi−1),
∑

ξi∈[a,b]\G

f̃m(ξi)(xi − xi−1))

+ D(
∑
ξi∈G

f̃n(ξi)(xi − xi−1),
∑
ξi∈G

f̃m(ξi)(xi − xi−1))

≤
∑

ξi∈[a,b]\G

D(f̃n(ξi), f̃m(ξi))(xi − xi−1) +
∑
ξi∈G

D(f̃n(ξi), f̃m(ξi))(xi − xi−1)

< ε(b− a) +
∣∣ ∑
ξi∈G

h(ξi)(xi − xi−1)−
∫
G

h(t)dt
∣∣+
∣∣ ∫
G

h(t)dt
∣∣

< ε(b− a) + 3ε.

Hence, there is an natural number N such that for any n,m > N , we have

D(F̃n[a, b], F̃m[a, b])

≤ D(F̃n[a, b],
∑

f̃n(ξi)(xi − xi−1)) +D(F̃m[a, b],
∑

f̃m(ξi)(xi − xi−1))

+ D(
∑

f̃n(ξi)(xi − xi−1),
∑

f̃m(ξi)(xi − xi−1))

< 3ε.

Thus, F̃n[a, b] is a Cauchy sequence, and there is an natural number N1 such that for any n > N1, we have

D(F̃n[a, b], Ã) < ε. According to the (FH) integrability of f̃N1(x), there is a δN1
(ξ) > 0 such that for any δN1

-fine

division P = {[u, v]; ξ} of [a, b], for any n > NN1 , we have

D(
∑

f̃n(ξ)(v − u), F̃n[a, b])

≤ D(F̃n[a, b], F̃N1 [a, b]) +D(
∑

f̃N1(ξ)(v − u), F̃N1 [a, b])

+ D(
∑

f̃n(ξ)(v − u),
∑

f̃N1(ξ)(v − u))

< 3ε.
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M.E. Hamid, L.S. Xu, Z.T. Gong: Locally and globally small Riemann sums and Henstock integral...

This completes the proof. �

5 conclusions

In this paper, we introduced locally and globally small Riemann sums for fuzzy-number-valued functions. We

proved that a fuzzy-number-valued functions is (H) integrable on [a, b] iff it has (LSRS). Also it is proved that

a fuzzy-number-valued functions is (H) integrable on [a, b] iff it has (GSRS). Finally, by Egorov,s Theorem, we

obtained the dominated convergence theorem for (GSRS) of fuzzy-number-valued functions.
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Abstract. In this paper, we consider and analyze a general iterative method to approximate a common solution of
split variational inclusion problem and fixed point problem for a nonexpansive mapping, which is the unique solution for

the variational inequality in real Hilbert spaces. Furthermore, under reasonable conditions, the sequence generated by
the proposed iterative scheme converges strongly to a common solution of split variational inclusion problem and fixed
point problem for a nonexpansive mapping, which is a solution of a certain optimization problem related to a strongly
positive linear operator. The results presented in this paper improve and extend the corresponding results reported by

some authors recently.
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1. Introduction

Throught out the paper unless otherwise stated, let H1 and H2 be two real Hilbert spaces with
inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C and Q be nonempty closed convex subsets of H1 and H2,
respectively. A mapping S : H1 → H1 is called contraction, if there exists a constant α ∈ (0, 1) such
that

∥Sx− Sy∥ ≤ α∥x− y∥, ∀x, y ∈ H1.

If α = 1, S is called nonexpansive, that is,

∥Sx− Sy∥ ≤ ∥x− y∥, ∀x, y ∈ H1.

Further, we consider the the following fixed point problem (in short, FPP) for a nonexpansive mapping
S : H1 → H1 : Find x ∈ H1 such that

Sx = x. (1.1)

The solution set of FPP (1.1) is denoted by Fix(S). It is well known that if Fix(S) ̸= ∅, Fix(S) is closed
and convex. Next, let T : H1 → H1 be a single-valued mapping. We recall the following definitions:

(i) T is said to be monotone, if

⟨Tx− Ty, x− y⟩ ≥ 0, ∀x, y ∈ H1.

(ii) T is said to be α-strongly monotone, if there exists a constant α > 0 such that

⟨Tx− ty, x− y⟩ ≥ α∥x− y∥2, ∀x, y ∈ H1.

(iii) T is said to be β-inverse strongly monotone(or, β-ism), if there exists a constant β > 0 such
that

⟨Tx− ty, x− y⟩ ≥ β∥Tx− Ty∥2, ∀x, y ∈ H1.

(iv) T is said to be firmly nonexpansive, if

⟨Tx− ty, x− y⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ H1.

Next, let M : H1 → 2H1 be a multi-valued mappings. We recall the following definitions:

• M is called monotone if for all x, y ∈ H1, u ∈Mx and v ∈My such that ⟨x− y, u− v⟩ ≥ 0.

∗Corresponding author:
Email address: rattanapornw@nu.ac.th (R. Wangkeeree) and kiattisakrat@live.com (K. Rattanaseeha) and rabi-

anw@nu.ac.th (R. Wangkeeree).
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2 R. WANGKEEREE, K. RATTANASEEHA AND R. WANGKEEREE

• A monotone mappings M : H1 → 2H1 is maximal if the Graph(M) is not properly contained
in the graph of any other monotone mapping.

For more precisely, a monotone mappingsM is maximal if and only if for (x, u) ∈ H1×H1, ⟨x−y, u−v⟩ ≥
0, for every (y, v) ∈ Graph(M) implies that u ∈Mx, where Graph(M) := {(x, y) ∈ H1×H1 : y ∈Mx}.
Let M : H1 → 2H1 be a multi-valued mappings. Then, the resolvent mapping associated with M , is
defined by

JM
λ (x) := (I + λM)−1(x), ∀x ∈ H1

for some λ > 0, where I stands identity operator on H1. We note that for all λ > 0 the resolvent
operator JM

λ is single-valued, nonexpansive and firmly nonexpansive.
For a given single-valued operator F : H1 → H1, Hartman and Stampacchia [12] introduced the

variational inequality problem (in short, VIP) :

(VIP)

{
Find x∗ ∈ C such that
⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

The VIP is a powerful tool to investigate and study a wide class of unrelated problems arising in
industrial, regional, physical, pure and applied sciences in a unified and general framwork. Variational
inequalities have been extended and generallized in several direction using novel and new techniques.
The following existence result of solutions for VIP can be found in [12]. Let H1 be a real Hilbert space,
C a nonempty, compact and convex subset H1. Then, if F : C → H1 is continuous, there exists x∗ ∈ C
such that

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

Recently, in 2011, Moudafi [24] introduced the following split monotone variational inclusion problem
(in short, SMVIP):

(SMVIP)

{
Find x∗ ∈ H1 such that 0 ∈ f1(x

∗) +B1(x
∗),

y∗ = Ax∗ ∈ H2 solves 0 ∈ f2(y
∗) +B2(y

∗).

where B1 : H1 → 2H1 is a multi-valued mappings on a Hilbert space H1, B2 : H2 → 2H2 is a multi-
valued mappings on a Hilbert space H2, A : H1 → H2 is a bounded linear operator, f1 : H1 → H1 and
f2 : H2 → H2 are two given single-valued operators. If f1 ≡ 0 and f2 ≡ 0, then SMVIP reduces to the
following split variational inclusion problem (in short, SVIP) : Find x∗ ∈ H1 such that

0 ∈ B1(x
∗), (1.2)

and

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y
∗). (1.3)

When looked separately, (1.2) is the variational inclusion problem and we denoted its solution set by
SOLVIP(B1). The SVIP (1.2)-(1.3) constitutes a pair of variational inclusion problems which have to
be solved so that the image y∗ = Ax∗ under a given bounded linear operator A, of the solution x∗ of
SVIP (1.2) in H1 is the solution of another SVIP (1.3) in another space H2, we denote the solution set
of SVIP (1.3) by SOLVIP(B2). The solution set of The SVIP (1.2)-(1.3) is denoted by

Γ : {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1) and Ax
∗ ∈ SOLVIP(B2)}.

l,Recently, Byrne et al. [3] studied the weak and strong convergence of the following iterative method
for SVIP. For given x0 ∈ H1, compute iterative sequence {xn} generated by the following scheme.

xn+1 = JB1

λ (x)
(
xn + γA∗(JB1

λ − I)Axn

)
, (1.4)

for λ > 0 and A∗ is the adjoint of A,L = ∥A∗A∥ and γ ∈ (0, 2
L ). It is proved, in [3], that the sequence

{xn} generated by (1.4) converges strongly to x∗ which is the solution of SVIP.
Very recently, Kazami and Rizvi [13] studied and analyzed the strong convergence of the iterative

method for approximating a common solution of SVIP and FPP for a nonexpansive mapping in a real
Hilbert space. Let g : H1 → H1 be a contraction mapping with constant α ∈ (0, 1) and S : H1 → H1

be a nonexpansive mapping. For a given x0 ∈ H1 arbitrarily, let {un} and {xn} be generated by

un = JB1

λ

(
xn + γA∗(JB2

λ − I)Axn

)
;

xn+1 = αng(xn) + (1− αn)Sun, (1.5)
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where λ > 0 and γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of

A and {αn} is a sequence in (0, 1). They proved that, under some certain conditions imposed on
the parameters {αn}, the sequences {un} and {xn} both converge strongly to z ∈ Fix(S) ∩ Γ, where
z = PFix(S)∩Γg(z).

On the other hand, iterative methods for nonexpansive mappings have recently been applied to
solve convex minimization problems; see, e.g., [11, 27, 28, 29] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all branches of
pure and applied sciences. A typical problem is to minimize a quadratic function over the set of the
fixed points a nonexpansive mapping on a real Hilbert space:

θ(x) = min
x∈C

1

2
⟨Gx, x⟩ − ⟨x, b⟩, (1.6)

where G is a linear bounded operator, C is the fixed point set of a nonexpansive mapping T and b is a
given point in H. Let H be a real Hilbert space. Recall that a linear bounded operator B is strongly
positive if there is a constant γ̄ > 0 with property

⟨Gx, x⟩ ≥ γ̄∥x∥2 for all x ∈ H. (1.7)

Marino and Xu [25] introduced the following general iterative scheme basing on the viscosity approxi-
mation method introduced by Moudafi [14]:

xn+1 = (I − αnG)Txn + αnβf(xn), n ≥ 0. (1.8)

where G is a strongly positive bounded linear operator on H. They proved that if the sequence {αn}
of parameters satisfies appropriate conditions, then the sequence {xn} generated by (1.8) converges
strongly to the unique solution of the variational inequality

⟨(G− βf)x∗, x− x∗⟩ ≥ 0, x ∈ C (1.9)

which is the optimality condition for the minimization problem

min
x∈C

1

2
⟨Gx, x⟩ − h(x),

where h is a potential function for βf(i.e., h′(x) = βf(x) for x ∈ H).
Motivated by the work of Kazmi and Rizvi [13] and Moudafi [24] and Marino and Xu [25] and by the

ongoing research in this direction, we suggest and analyze a general iterative method for approximating
a common solution of SVIP and FPP which solves the variational inequality (1.9). More precisely, let
g : H1 → H1 be a contraction mapping with constant α ∈ (0, 1), S : H1 → H1 be a nonexpansive
mapping and G : H1 → H1 be a strongly positive, bounded linear operator with constant µ and
0 < β < µ

α . For a given x0 ∈ H1 arbitrarily, let {un} and {xn} generated by

un = JB1

λ

(
xn + γA∗(JB2

λ − I)Axn

)
;

xn+1 = αnβf(xn) + (I − αnG)Sun, (1.10)

where λ > 0 and γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A

and {αn} is a sequence in (0, 1) and B1 : H1 → 2H1 , B2 : H2 → 2H2 two multi-valued mappings on
H1, and H2, respectively. We prove that the iterative method (1.10) converges strongly to a common
element of SVIP and FPP for a nonexpansive mapping, which is a solution of a certain optimization
problem related to a strongly positive linear operator. The result presented in this paper generalize the
corresponding results of Kazmi and Rizvi [13] and Moudafi [24], Marino and Xu [25] and many others.

2. Preliminaries

For a real Hilbert space H1 with the norm ∥ · ∥ and the inner product ⟨·, ·⟩, it is well known that for
any λ ∈ (0, 1),

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2, ∀x, y ∈ H1. (2.1)

Further, every nonexpansive operator T : H1 → H1 satisfies, for all (x, y) ∈ H1 ×H1, the inequality

⟨(x− T (x))− (y − T (y)), T (y)− T (x)⟩ ≤ 1

2
∥(T (x)− x)− (T (y)− y)∥2 (2.2)
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and therefore, we get, for all (x, y) ∈ H1× Fix(T ),

⟨(x− T (x), (y − T (x)⟩ ≤ 1

2
∥T (x)− x∥2. (2.3)

A mapping T : H1 → H1 is said to be averaged if and only if it can be written as the average of the
identity mapping and a nonexpansive mapping, i.e.,

T := (1− α)I + αS

where α ∈ (0, 1) and S : H1 → H1 is nonexpansive and I is the identity operator on H1

Proposition 2.1. (i) If T = (1 − α)S + αV , where S : H1 → H1 is averaged, V : H1 → H1 is
nonexpansive and α ∈ (0, 1), then T is averaged.
(ii) The composite of finitely many averaged mapping is averaged.
(iii) If the mapping are averaged and have a nonempty common fixed point, then

N∩
i=1

Fix(Ti) = Fix(T1, T2, . . . , TN ).

(iv) If T is τ − ism, then for γ > 0, γT is
τ

γ
− ism

(v) T is averaged if and only if , its complement I − T is τ − ism for some τ >
1

2

For every point x ∈ H1, there exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C.

PC is called the (nearest point or metric) projection of H1 onto C. In addition, PCx is characterized
by the following properties: PCx ∈ C and

⟨x− PCx, y − PCx⟩ ≤ 0, (2.4)

∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2, ∀x ∈ H1, y ∈ C. (2.5)

Recall that a mapping T : H1 → H1 is said to be firmly nonexpansive mapping if

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H1.

It is well known that PC is a firmly nonexpansive mapping of H1 onto C and satisfies

∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩, ∀x, y ∈ H1. (2.6)

IfG an α−inverse-strongly monotone mapping of C intoH1, then it is obvious thatG is 1
α−Lipschitz

continuous. We also have that for all x, y ∈ C and λ > 0,

∥(I − λG)x− (I − λG)y∥2 = ∥x− y − λ(Gx−Gy)∥2

= ∥x− y∥2 − 2λ⟨Gx−Gy, x− y⟩+ λ2∥Gx−Gy∥2

≤ ∥x− y∥2 + λ(λ− 2α)∥Gx−Gy∥2 (2.7)

So, if λ ≤ 2α, then I − λG is a nonexpansive mapping of C into H1.

Next, we denote weak convergence and strong convergence by notations ⇀ and →, respectively. A
space X is said to satisfy Opials condition [31] if for each sequence {xn} in X which converges weakly
to a point x ∈ X, we have

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀y ∈ X, y ̸= x.

Lemma 2.2. [25] Let H1 be a Hilbert space, C be a nonempty closed convex subset of H, and f : H1 →
H1 be a contraction with coefficient 0 < α < 1, and G be a strongly positive linear bounded operator
with coefficient γ̄ > 0. Then, for 0 < γ < γ̄

α ,

⟨x− y, (G− γf)x− (G− γf)y⟩ ≥ (γ̄ − γα)∥x− y∥2, x, y ∈ H1.

That is, G− γf is strongly monotone with coefficient γ̄ − γα.

Lemma 2.3. [25] Assume G is a strongly positive linear bounded operator on a Hilbert space H1 with
coefficient γ̄ > 0 and 0 < ρ ≤ ∥G∥−1. Then ∥I − ρG∥ ≤ 1− ργ̄.
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Lemma 2.4. [23] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a
sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1−βn)yn+βnxn
for all integers n ≥ 0 and lim supn→∞(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0. Then limn→∞ ∥yn − xn∥ = 0.

Lemma 2.5. [31] Let H1 be a Hilbert space, C a closed convex subset of H1, and S : C → C a
nonexpansive mapping with F (S) ̸= ∅. If {xn} is a sequence in C weakly converging to x ∈ C and if
{(I − S)xn} converges strongly to y, then (I − S)x = y; in particular, if y = 0, then x ∈ Fix(S).

Lemma 2.6. [26] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− σn)an + δn,

where {σn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 σn = ∞;

(2) lim supn→∞
δn
σn

≤ 0 or
∑∞

n=1 |δnσn| <∞.

Then limn→∞ αn = 0.

3. Main Results

In this section, we prove a strong convergence theorem for the general iterative methods for ap-
proximating the common element of SVIP and FPP which is the unique solution for the variational
inequality (1.9). First, we have the following technical lemma, which is immediately consequence of
the definition of resolvent mapping:

Lemma 3.1. SVIP is equivalent to find x∗ ∈ H1 such that y∗ = Ax∗ ∈ H2, x
∗ = JB1

λ (x∗) and

y∗ = JB2

λ (y∗) for some λ > 0.

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator. Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal monotone mappings. Let
S : H1 → H1 be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅. Let f : H1 → H1 be a contraction
mapping with constant α ∈ (0, 1) and G : H1 → H1 a strongly positive, bounded linear operator with
constant µ such that ∥G∥ = 1, and 0 < β < µ

α . For given ∀x0 ∈ H1, let the sequences {un} and {xn}
be generated by (1.10), where {αn} is a sequence in (0, 1) satisfying the following conditions :

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn = ∞ and

(iii)
∑∞

n=1 |αn − αn−1| <∞.

Then the sequences {un} and {xn} both converge strongly to z ∈ Fix(S) ∩ Γ, where z = PFix(S)∩Γ(I −
G+ βf)(z). Moreover, z is a unique solution of the variational inequality (1.9).

Proof We observe that PFix(S)∩Γ(I − G + βf) is a contraction. Indeed, applying Lemma 2.3 with

∥G∥ = 1, we have,

∥PFix(S)∩Γ(I −G+ βf)(x)− PFix(S)∩Γ(I −G+ βf)(y)∥ ≤ ∥(βf + (I −G))(x)− (βf + (I −G))(y)∥
≤ β∥f(x)− f(y)∥+ ∥I −G∥∥x− y∥
≤ γα∥x− y∥+ (1− γ)∥x− y∥
≤ (1− (γ − αβ)) ∥x− y∥,

for all x, y ∈ H1. Therefore, Banach’s Contraction Mapping Principle guarantees that PFix(S)∩Γ(I −
G+ βf) has a unique fixed point, say z ∈ H1. That is, z = QF (γf + (I −G))(z). Next, we devide the
proof into five steps as follows.

Step 1. We first show that the sequences {xn} is bounded. Let p ∈ Fix(S) ∩ Γ, then we have that

p = JB1

λ p,Ap = JB2

λ (Ap) and Sp = p. So, we have

∥un − p∥2 =
∥∥∥JB1

λ

(
xn + γA∗

(
JB2

λ − I
)
Axn

)
− p
∥∥∥2

=
∥∥∥JB1

λ

(
xn + γA∗

(
JB2

λ − I
)
Axn

)
− JB1

λ p
∥∥∥2

≤
∥∥∥xn + γA∗

(
JB2

λ − I
)
Axn − p

∥∥∥2
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≤ ∥xn − p∥2 + γ2
∥∥∥A∗

(
JB2

λ − I
)
Axn

∥∥∥2 + 2γ
⟨
xn − p,A∗

(
JB2

λ − I
)
Axn

⟩
. (3.1)

It follow that

∥un − p∥2 ≤ ∥xn − p∥2 + γ2
⟨(
JB2

λ − I
)
Axn, AA

∗
(
JB2

λ − I
)
Axn

⟩
+2γ

⟨
xn − p,A∗

(
JB2

λ − I
)
Axn

⟩
. (3.2)

Since

γ2
⟨(
JB2

λ − I
)
Axn, AA

∗
(
JB2

λ − I
)
Axn

⟩
≤ Lγ2

⟨(
JB2

λ − I
)
Axn,

(
JB2

λ − I
)
Axn

⟩
= Lγ2

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2 (3.3)

and using (2.3), we have

2γ
⟨
xn − p,A∗

(
JB2

λ − I
)
Axn

⟩
= 2γ

⟨
A(xn − p),

(
JB2

λ − I
)
Axn

⟩
= 2γ

⟨
A(xn − p) +

(
JB2

λ − I
)
Axn −

(
JB2

λ − I
)
Axn,

(
JB2

λ − I
)
Axn

⟩
= 2γ

{⟨
JB2

λ Axn −Ap,
(
JB2

λ − I
)
Axn

⟩
−
∥∥∥(JB2

λ − I
)
Axn

∥∥∥2}

≤ 2γ

{
1

2

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2 − ∥∥∥(JB2

λ − I
)
Axn

∥∥∥2}

≤ −γ
∥∥∥(JB2

λ − I
)
Axn

∥∥∥2. (3.4)

From the inequalities (3.2), (3.3) and (3.4), we can conclude that

∥un − p∥2 ≤ ∥xn − p∥2 + γ(Lγ − 1)
∥∥∥(JB2

λ − I
)
Axn

∥∥∥2. (3.5)

Since γ ∈ (0, 1
L ), we obtain

∥un − p∥2 ≤ ∥xn − p∥2,
which implies that

∥un − p∥ ≤ ∥xn − p∥. (3.6)

Therefore

∥xn+1 − p∥ = ∥αnβf(xn) + (I − αnG)Sun − p∥
≤ βαn∥f(xn)− f(p)∥+ ∥(I − αnG)∥∥Sun − p∥+ αn∥βf(p)−Gp∥
≤ βαnα∥xn − p∥+ (1− αnµ)∥un − p∥+ αn∥βf(p)−Gp∥
≤ βαnα∥xn − p∥+ (1− αnµ)∥xn − p∥+ αn∥βf(p)−Gp∥
=
(
βαnα+ (1− αnµ)

)
∥xn − p∥+ αn∥βf(p)−Gp∥

=
(
1− αn(µ− βα)

)
∥xn − p∥+ αn(µ− βα)

∥βf(p)−Gp∥
(µ− βα)

≤ max

{
∥xn − p∥, ∥βf(p)−Gp∥

µ− βα

}
.

By induction, we have

∥xn − p∥ ≤ max

{
∥x1 − p∥, ∥βf(p)−Gp∥

µ− βα

}
, ∀n ≥ 1. (3.7)

Hence {xn} is bounded and consequently, we deduce that {un}, {f(xn)} and {Sun} are bounded.

Step 2. We show that the sequences {xn} is asymptotically regular, i.e.,

∥xn+1 − xn∥ → 0 as n→ ∞.
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For each n ∈ N, we notice that

∥xn+1 − xn∥ = ∥αnβf(xn) + (I − αnG)Sun −
(
αn−1βf(xn−1) + (I − αn−1G)Sun−1

)
∥

≤ ∥(I − αnG)(Sun − Sun−1)− (αn − αn−1)GSun−1

+βαn

(
f(xn)− f(xn−1)

)
+ β(αn − αn−1)f(xn−1)∥

≤ (1− αnµ)∥Sun − Sun−1∥+ |αn − αn−1|∥GSun−1∥
+βαn∥(f(xn)− f(xn−1)∥+ β|αn − αn−1|∥f(xn−1)∥

≤ (1− αnµ)∥un − un−1∥+ |αn − αn−1|∥GSun−1∥
+βααn∥xn − xn−1∥+ β|αn − αn−1|∥f(xn−1)∥

= (1− αnµ)∥un − un−1∥+ βααn∥xn − xn−1∥
+|αn − αn−1|

(
∥Gun−1∥+ β∥f(xn−1)∥

)
≤ (1− αnµ)∥un − un−1∥+ βααn∥xn − xn−1∥+ |αn − αn−1|K (3.8)

where K = sup
{
∥Gun−1∥ + β∥f(xn−1)∥ : n ∈ N

}
. Since, for γ ∈ (0, 1

L ), the mapping JB1

λ (I +

γA∗(JB2

λ − I)A) is averaged and hence nonexpansive, therefore

∥un − un−1∥ =
∥∥∥JB1

λ

(
xn + γA∗

(
JB2

λ − I
)
Axn

)
− JB1

λ

(
xn−1 + γA∗

(
JB2

λ − I
)
Axn−1

)∥∥∥
≤

∥∥∥JB1

λ

(
I + γA∗

(
JB2

λ − I
)
A
)
xn − JB1

λ

(
I + γA∗

(
JB2

λ − I
)
A
)
xn−1

∥∥∥
≤ ∥xn − xn−1∥. (3.9)

It follows from (3.8) and (3.9) that

∥xn+1 − xn∥ ≤
(
1− αn(µ− βα)

)
∥xn − xn−1∥+ |αn − αn−1|K.

By applying Lemma 2.6 with βn = αn(µ− βα) and δn = |αn − αn−1|K, we obtain

lim
n→∞

∥xn+1 − xn∥ = 0. (3.10)

Step 3. We show that
∥xn+1 − p∥ → 0 as n→ ∞.

For each n ∈ N,
∥xn+1 − p∥2 = ∥αnβf(xn) + (I − αnG)Sun − p∥2

= ∥αn(βf(xn)−Gp) + (I − αnG)(Sun − p)∥2

≤ ∥(I − αnG)(Sun − p)∥2 + 2αn⟨βf(xn)−Gp, xn+1 − p⟩
≤ (1− αnµ)

2∥Sun − p∥2 + 2αnβ⟨f(xn)− f(p), xn+1 − p⟩
+2αn⟨βf(xn)−Gp, xn+1 − p⟩

≤ (1− αnµ)
2∥un − p∥2 + 2αnβ⟨f(xn)− f(p), xn+1 − p⟩

+2αn⟨βf(p)−Gp, xn+1 − p⟩
≤ (1− αnµ)

2∥un − p∥2 + 2αnβα∥xn − p∥∥xn+1 − p∥
+2αn∥βf(p)−Gp∥∥xn+1 − p∥. (3.11)

Thus, from (3.5), we obtain

∥xn+1 − p∥2 ≤ (1− αnµ)
2

{
∥xn − p∥2 + γ(Lγ − 1)

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2}
+2αnβα∥xn − p∥∥xn+1 − p∥
+2αn∥βf(p)−Gp∥∥xn+1 − p∥

=
(
1− 2αnµ+ (αnµ)

2
)
∥xn − p∥2 + (1− αnµ)

2
(
γ(Lγ − 1)

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2)
+2αnβα∥xn − p∥∥xn+1 − p∥
+2αn∥βf(p)−Gp∥∥xn+1 − p∥

≤ ∥xn − p∥2 + αnµ
2∥xn − p∥2 −

(
1− αnµ)

2(γ(1− Lγ)
∥∥∥(JB2

λ − I
)
Axn

∥∥∥2)
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+2αnβα∥xn − p∥∥xn+1 − p∥
+2αn∥βf(p)−Gp∥∥xn+1 − p∥. (3.12)

Therefore,

(1− αnµ)
2(γ(1− Lγ)

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnµ
2∥xn − p∥2

+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥

≤ ∥xn+1 − xn∥
(
∥xn − p∥+ ∥xn+1 − p∥

)
+ αnµ

2∥xn − p∥2

+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥.

Since γ(1− Lγ) > 0, and αn → 0 and ∥xn+1 − xn∥ → 0 as n→ ∞, we have

lim
n→∞

∥∥∥(JB2

λ − I
)
Axn

∥∥∥ = 0. (3.13)

Furthermore, using (3.7), (3.11) and γ ∈ (0, 1
L ), we notice that

∥un − p∥2 =
∥∥∥JB1

λ

(
xn + γA∗

(
JB2

λ − I
)
Axn

)
− p
∥∥∥2

=
∥∥∥JB1

λ

(
xn + γA∗

(
JB2

λ − I
)
Axn

)
− JB1

λ p
∥∥∥2

≤
⟨
un − p, xn + γA∗

(
JB2

λ − I
)
Axn

)
− p
⟩

=
1

2

{
∥un − p∥2 + ∥xn + γA∗

(
JB2

λ − I
)
Axn − p∥2

− ∥(un − p)−
(
xn + γA∗

(
JB2

λ − I
)
Axn − p

)}
=

1

2

{
∥un − p∥2 + ∥xn − p∥2 + γ(Lγ − 1)

∥∥∥(JB2

λ − I
)
Axn

∥∥∥2
− ∥(un − xn)− γA∗

(
JB2

λ − I
)
Axn∥2

}
≤ 1

2

{
∥un − p∥2 + ∥xn − p∥2 −

[
∥un − xn∥2

+ γ2∥A∗
(
JB2

λ − I
)
Axn∥2 − 2γ

⟨
un − xn, A

∗
(
JB2

λ − I
)
Axn

⟩]}
≤ 1

2

{
∥un − p∥2 + ∥xn − p∥2 − ∥un − xn∥2

+ 2γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
}
.

Thus, we obtain

∥un − p∥2 ≤ ∥xn − p∥2 − ∥un − xn∥2 + 2γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥. (3.14)

It follows from (3.11) and (3.14) that

∥xn+1 − p∥2 ≤ (1− αnµ)
2
[
∥xn − p∥2 − ∥un − xn∥2 + 2γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
]

+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥

= (1− 2αnµ+ (αnµ)
2∥xn − p∥2 − (1− αnµ)

2∥un − xn∥2

+ (1− αnµ)
22γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥

≤ ∥xn − p∥2 + αnµ
2∥xn − p∥2 − (1− αnµ)

2∥un − xn∥2

+ (1− αnµ)
22γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
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+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥.

Therefore,

(1− αnµ)
2∥un − xn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnµ

2∥xn − p∥2

+ (1− αnµ)
22γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥

≤ ∥xn+1 − xn∥
(
∥xn − p∥+ ∥xn+1 − p∥

)
+ αnµ

2∥xn − p∥2

+ (1− αnµ)
22γ∥A(un − xn)∥∥(JB2

λ − I)Axn∥
+ 2αnβα∥xn − p∥∥xn+1 − p∥
+ 2αn∥βf(p)−Gp∥∥xn+1 − p∥.

Since αn → 0 as n→ ∞, and from (3.10) and (3.13), we obtain

lim
n→∞

∥un − xn∥ = 0. (3.15)

Since ∥Sun − un∥ ≤ ∥Sun − xn∥+ ∥xn − un∥, it follows that
∥Sun − un∥ → 0 as n→ ∞. (3.16)

Step 4. We will show that

lim sup
n→∞

⟨(G− βf)z, xn − z⟩ ≤ 0,where z = PFix(S)∩Γ(I −G+ βf)(z).

Since {un} is bounded, we consider a weak cluster point w of {un}. Hence, there exists a subsequence
{uni} of {un}, which converges weakly to w. Now, S being nonexpansive, by (3.16) and Lemma 2.5, we

obtain that w ∈ Fix(S). On the other hand, uni
= JB1

λ

(
xni

+ γA∗(JB2

λ − I)Axni

)
can be rewritten as

(xni
− uni

) +A∗(JB2

λ − I)Axni

λ
∈ B1uni . (3.17)

By passing to limit i→ ∞ in (3.17) and by taking into account (3.13), (3.15) and the fact that the graph
of a maximal monotone operator is weakly-trongly closed, we obtain 0 ∈ B1(w). Furthermore, since
{un} and {xn} have the same asymptoical behavior, {Axni} weakly converges to Aw. Again, by (3.13)

and the fact that the resolvent JB2

λ is nonexpansive and Lemma 3.1, we obtain that Aw ∈ B2(Aw).
Thus w ∈ Fix(S) ∩ Γ. Since z = PFix(S)∩Γ(I −G+ βf)(z). Indeed, we have

lim sup
n→∞

⟨(G− βf)z, z − xn⟩ = lim
i→∞

⟨(G− βf)z, z − xni⟩

= ⟨(G− βf)z, z − w⟩ ≤ 0. (3.18)

Step 5. Finally, we will show that xn → z as n→ ∞. We have

∥xn+1 − z∥2 = ∥αnβf(xn) + (I − αnG)Sun − z∥2

= ∥αn(βf(xn)−Gz) + (I − αnG)(Sun − z)∥2

≤ ∥(I − αnG)(Sun − z)∥2 + 2αn⟨βf(xn)−Gz, xn+1 − z⟩
≤ (1− αnµ)

2∥un − z∥2 + 2αnβ⟨f(xn)− f(z), xn+1 − z⟩
+ 2αn⟨βf(xn)−Gz, xn+1 − z⟩

≤ (1− αnµ)
2∥xn − z∥2 + 2αnβ⟨f(xn)− f(z), xn+1 − z⟩

+ 2αn⟨βf(z)−Gz, xn+1 − z⟩
≤ (1− αnµ)

2∥xn − z∥2 + 2αnβα∥xn − z∥∥xn+1 − z∥
+ 2αn∥βf(z)−Gz∥∥xn+1 − z∥

≤ (1− αnµ)
2∥xn − z∥2 + αnβα

[
∥xn − z∥2 + ∥xn+1 − z∥2

]
+ 2αn∥βf(z)−Gz∥∥xn+1 − z∥
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≤
(
(1− αnµ)

2 + αnβα
)
∥xn − z∥2 + αnβα∥xn − z∥2 + ∥xn+1 − z∥2

+ 2αn∥βf(z)−Gz∥∥xn+1 − z∥,

which implies that

∥xn+1 − z∥2 ≤ 1− 2αnµ+ (αnµ)
2 + αnβα

1− αnβα
∥xn − z∥2

+
2αn

1− αnβα
⟨βf(z)−Gz, xn+1 − z⟩

=

[
1− 2(µ− βα)αn

1− αnβα

]
∥xn − z∥2 + (αnµ)

2

1− αnβα
∥xn − z∥2

+
2αn

1− αnβα
⟨βf(z)−Gz, xn+1 − z⟩

≤

[
1− 2(µ− βα)αn

1− αnβα

]
∥xn − z∥2

+
2(µ− βα)αn

1− αnβα

[
(αnµ

2)M

2(µ− βα)
+

1

µ− βα
⟨βf(z)−Gz, xn+1 − z⟩

]
= (1− σn)∥xn − z∥2 + σnδn,

where M = sup{∥xn − z∥2 : n ∈ N}, σn =
2(µ− βα)αn

1− αnβα
and δn =

(αnµ
2)M

2(µ− βα)
+

1

µ− βα
⟨βf(z) −

Gz, xn+1 − z⟩. It is easily to see that σn → 0,
∑∞

n=1 σn = ∞ and lim supn→∞
δn
σn

≤ 0 by (3.18). Thus,

by Lemma 2.6, we deduce that xn → z as n → ∞. Further it follows from ∥un − xn∥ → 0, un ⇀ w ∈
Fix(S) ∩ Γ and xn → z as n→ ∞, that is z = w. This completes the proof. □

Remark 3.3. In general case, if G is any strongly positive bounded linear operator with coefficient γ̄

and 0 < γ <
µ

α
. We define a bounded linear operator G on E by

G = ∥G∥−1G.

It is easy to see that G is a strongly positive with coefficient ∥G∥−1µ > 0 such that ∥G∥ = 1 and

0 < ∥G∥−1γ <
∥G∥−1µ

α
.

Let the sequence {xn} be defined by, for any x0 ∈ E,

un = JB1

λ

(
xn + γA∗(JB2

λ − I)Axn

)
;

xn+1 = αnβ∥G∥−1f(xn) + (I − αnḠ)Sun, (3.19)

Replacing G with G in Theorem 3.2, we obtain the following result.

Theorem 3.4. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator. Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal monotone mappings. Let
S : H1 → H1 be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅. Let f : H1 → H1 be a contraction
mapping with constant α ∈ (0, 1) and G : H1 → H1 a strongly positive, bounded linear operator with
constant µ and 0 < β < µ

α . For given ∀x0 ∈ H1, let the sequences {un} and {xn} be generated by
(3.19), where {αn} is a sequence in (0, 1) satisfying the following conditions :

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn = ∞ and

(iii)
∑∞

n=1 |αn − αn−1| <∞.

Then the sequences {un} and {xn} both converge strongly to z ∈ Fix(S) ∩ Γ, where

z = PFix(S)∩Γ

(
(I − ∥G∥−1(G+ γf)x̃)

)
z.

Moreover, z is also a unique solution of the variational inequality (1.9).
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Proof. From Theorem 3.2, we have that {xn} converges strongly, as n→ ∞, to a point z satisfying

z = PFix(S)∩Γ

(
I − ∥G∥−1(G+ γf)

)
z,

which is a unique solution of the variational inequality:

∥G∥−1⟨(G− βf)z, x− z⟩ ≥ 0, x ∈ H1 (3.20)

It is easy to see that (3.20) is equivalent to (1.9). Hence z is a unique solution of the variational
inequality (1.9). □

Putting G = I and β = 1 in Theorem 3.2, we have the following results immediately.

Theorem 3.5. [13] Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator. Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal monotone mappings. Let
S : H1 → H1 be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅. Let f : H1 → H1 be a contraction
mapping with constant α ∈ (0, 1). For any given x0 ∈ H1, let the sequences {un} and {xn} generated
by

un = JB1

λ

(
xn + γA∗(JB2

λ − I)Axn

)
;

xn+1 = αnf(xn) + (1− αn)Sun, (3.21)

where λ > 0 and γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A

and {αn} is a sequence in (0, 1) such that

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn = ∞ and

(iii)
∑∞

n=1 |αn − αn−1| <∞.

Then the sequences {un} and {xn} both converge strongly to z ∈ Fix(S)∩Γ, where z = PFix(S)∩Γf(z).

Applying Theorem 3.2, we can establish the strong convergence for new iterative method as the
following theorem.

Theorem 3.6. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator. Assume that B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal monotone mappings. Let
S : H1 → H1 be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅. Let f : H1 → H1 be a contraction
mapping with constant α ∈ (0, 1) and G : H1 → H1 a strongly positive, bounded linear operator with
constant µ and 0 < β < µ

α . For any given y1 ∈ H1, let the sequences {u′n} and {yn} generated by

u′n = JB1

λ

(
yn + γA∗(JB2

λ − I)Ayn

)
;

yn+1 = αnβf(Su
′
n) + (I − αnG)Su

′
n, n ≥ 1, (3.22)

where λ > 0 and γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A

and {αn} is a sequence in (0, 1) such that

(i) limn→∞ αn = 0;
(ii)

∑∞
n=1 αn = ∞ and

(iii)
∑∞

n=1 |αn − αn−1| <∞.

Then the sequences {u′n} and {yn} both converge strongly to z obtained in Theorem 3.2.

Proof. Let {xn} be the sequence given by x1 = y1 and

un = JB1

λ

(
xn + γA∗(JB2

λ − I)Axn

)
;

xn+1 = αnβf(xn) + (I − αnG)Sun, n ≥ 1. (3.23)

From Theorem 3.2, xn → z. Next, we claim that yn → z. Since JB1

λ and JB2

λ both are firmly

nonexpansive, they are averaged. For γ ∈ (0, 1
L ), L, the mapping (I + γA∗(JB2

λ I)A) is averaged, see

[15] . It follows from Proposition 2.1 (ii) that the mapping JB1

λ (I+γA∗(JB2

λ I)A) is averaged and hence
nonexpansive. For each n ≥ 1, we can estimate the following

∥xn+1 − yn+1∥ = ∥αnβf(xn) + (I − αnG)Sun − αnβf(Su
′
n)− (I − αnG)Su

′
n∥

≤ ∥αnβf(xn)− αnβf(Su
′
n)∥+ ∥(I − αnG)Sun − (I − αnG)Su

′
n∥

≤ αnβα∥Su′n − xn∥+ (1− αnµ)∥un − u′n∥
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≤ αnβα∥Su′n − Sz∥+ αnβα∥Sz − xn∥+ (1− αnµ)∥xn − yn∥
≤ αnβα∥u′n − z∥+ αnβα∥z − xn∥+ (1− αnµ)∥xn − yn∥
≤ αnβα∥yn − z∥+ αnβα∥z − xn∥+ (1− αnµ)∥xn − yn∥
≤ αnβα∥yn − xn∥+ αnβα∥xn − z∥+ αnβα∥z − xn∥+ (1− αnµ)∥xn − yn∥

= (1− αn(µ− βα))∥xn − yn∥+ αn(µ− βα)
2βα

µ− βα
∥xn − z∥.

It follows from
∑∞

n=1 αn = ∞, limn→∞ ∥xn−z∥ = 0 and Lemma 2.6 that ∥xn−yn∥ → 0. Consequently,
yn → z as required. □
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A FIXED POINT ALTERNATIVE TO THE STABILITY OF AN ADDITIVE

ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

CHOONKIL PARK AND SUN YOUNG JANG∗

Abstract. In this paper, we solve the following additive ρ-functional inequalities

N
(
f(x+ y)− f(x)− f(y)− ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t
)
≥ t

t+ ϕ(x, y)
(0.1)

and

N
(

2f
(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ ϕ(x, y)
(0.2)

in fuzzy normed spaces, where ρ is a fixed real number with ρ 6= 1.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive ρ-functional

inequalities (0.1) and (0.2) in fuzzy Banach spaces.

1. Introduction and preliminaries

Katsaras [23] defined a fuzzy norm on a vector space to construct a fuzzy vector topological

structure on the space. Some mathematicians have defined fuzzy norms on a vector space from

various points of view [14, 27, 52]. In particular, Bag and Samanta [3], following Cheng and

Mordeson [10], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy

metric is of Kramosil and Michalek type [26]. They established a decomposition theorem of

a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed

spaces [4].

We use the definition of fuzzy normed spaces given in [3, 31, 32] to investigate the Hyers-Ulam

stability of additive ρ-functional inequalities in fuzzy Banach spaces.

Definition 1.1. [3, 31, 32, 33] Let X be a real vector space. A function N : X ×R→ [0, 1] is

called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c|) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.

(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in

[30, 31].

2010 Mathematics Subject Classification. Primary 46S40, 39B52, 47H10, 39B62, 26E50, 47S40.
Key words and phrases. fuzzy Banach space; additive ρ-functional inequality; fixed point method; Hyers-

Ulam stability.
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Definition 1.2. [3, 31, 32, 33] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in

X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn−x, t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N -

limn→∞ xn = x.

Definition 1.3. [3, 31, 32, 33] Let (X,N) be a fuzzy normed vector space. A sequence {xn}
in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all

n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If

each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy

normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is

continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the

sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then

f : X → Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [51]

concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,

every solution of the Cauchy equation is said to be an additive mapping. Hyers [19] gave a

first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was

generalized by Aoki [2] for additive mappings and by Th.M. Rassias [43] for linear mappings by

considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias theorem

was obtained by Găvruta [15] by replacing the unbounded Cauchy difference by a general

control function in the spirit of Th.M. Rassias’ approach.

The functional equation f
(
x+y
2

)
= 1

2f(x)+ 1
2f(y) is called the Jensen equation. The stability

problems of several functional equations have been extensively investigated by a number of

authors and there are many interesting results concerning this problem (see [9, 20, 22, 24, 25,

28, 39, 40, 41, 45, 46, 47, 48, 49, 50]).

Gilányi [17] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x+ y)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x+ y) + f(x− y).

See also [44]. Fechner [13] and Gilányi [18] proved the Hyers-Ulam stability of the functional

inequality (1.1). Park, Cho and Han [38] investigated the Cauchy additive functional inequality

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖ (1.2)

and the Cauchy-Jensen additive functional inequality

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥ (1.3)

and proved the Hyers-Ulam stability of the functional inequalities (1.2) and (1.3) in Banach

spaces.

Park [36, 37] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability

of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.
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We recall a fundamental result in fixed point theory.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.4. [6, 11] Let (X, d) be a complete generalized metric space and let J : X → X

be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element

x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [21] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with applications. By

using fixed point methods, the stability problems of several functional equations have been

extensively investigated by a number of authors (see [1, 5, 7, 8, 12, 16, 30, 34, 35, 41, 42]).

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-Ulam

stability of the additive ρ-functional inequality (0.1) in fuzzy Banach spaces by using the fixed

point method.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-Ulam

stability of the additive ρ-functional inequality (0.2) in fuzzy Banach spaces by using the fixed

point method.

Throughout this paper, assume that X is a real vector space and (Y,N) is a fuzzy Banach

space.

2. Additive ρ-functional inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive ρ-functional inequality

(0.1) in fuzzy Banach spaces. Let ρ be a real number with ρ 6= 1. We need the following lemma

to prove the main results.

Lemma 2.1. Let f : X → Y be a mapping satisfying

f(x+ y)− f(x)− f(y) = ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
(2.1)

for all x, y ∈ X. Then f : X → Y is additive.

Proof. Letting x = y = 0 in (2.1), we get −f(0) = 0 and so f(0) = 0.

Replacing y by x in (2.1), we get f(2x) − 2f(x) = 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f(x+ y)− f(x)− f(y) = ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
= ρ(f(x+ y)− f(x)− f(y))

and so f(x+ y) = f(x) + f(y) for all x, y ∈ X. �
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Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying

N

(
f(x+ y)− f(x)− f(y)− ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t

)
≥ t

t+ ϕ(x, y)
(2.2)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n

)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ Lϕ(x, x)
(2.3)

for all x ∈ X and all t > 0.

Proof. Letting y = x in (2.2), we get

N (f (2x)− 2f(x), t) ≥ t

t+ ϕ(x, x)
(2.4)

for all x ∈ X.

Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ ϕ(x, x)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [29, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
2g

(
x

2

)
− 2h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 ,

x
2

) ≥ Lt
2

Lt
2 + L

2ϕ(x, x)

=
t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
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It follows from (2.4) that

N

(
f(x)− 2f

(
x

2

)
,
L

2
t

)
≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
2 .

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A

(
x

2

)
=

1

2
A(x) (2.5)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a

unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.5) such that there exists a µ ∈ (0,∞)

satisfying

N(f(x)−A(x), µt) ≥ t

t+ ϕ(x, x)

for all x ∈ X;

(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

N - lim
n→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ L

2− 2L
.

This implies that the inequality (2.3) holds.

By (2.2),

N

(
2n

(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
−ρ

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

))
, 2nt

)
≥ t

t+ ϕ
(
x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n

(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
−ρ

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

))
, t

)
≥

t
2n

t
2n + Ln

2n ϕ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
ϕ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

A(x+ y)−A(x)−A(y) = ρ

(
2A

(
x+ y

2

)
−A(x)−A(y)

)
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is Cauchy additive, as desired. �
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Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector

space with norm ‖ · ‖. Let f : X → Y be amapping satisfying

N

(
f(x+ y)− f(x)− f(y)− ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t

)
≥ t

t+ θ(‖x‖p + ‖y‖p)
(2.6)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.

Then we can choose L = 21−p, and we get the desired result. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ

(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.2). Then A(x) := N -limn→∞

1
2n f (2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2L)t

(2− 2L)t+ ϕ(x, x)
(2.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.

It follows from (2.4) that

N

(
f(x)− 1

2
f(2x),

1

2
t

)
≥ t

t+ ϕ(x, x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
2 . Hence

d(f,A) ≤ 1

2− 2L
,

which implies that the inequality (2.7) holds.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed

vector space with norm ‖ · ‖. Then A(x) := N -limn→∞
1
2n f(2nx) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.

Then we can choose L = 2p−1, and we get the desired result. �

3. Additive ρ-functional inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive ρ-functional inequality

(0.2) in fuzzy Banach spaces. Let ρ be a fuzzy number with ρ 6= 1.

Lemma 3.1. Let f : X → Y be a mapping satisfying f(0) = 0 and

2f

(
x+ y

2

)
− f(x)− f(y) = ρ (f(x+ y)− f(x)− f(y)) (3.1)

for all x, y ∈ X. Then f : X → Y is additive.

Proof. Letting y = 0 in (3.1), we get 2f
(
x
2

)
− f(x) = 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f(x+ y)− f(x)− f(y) = 2f

(
x+ y

2

)
− f(x)− f(y) = ρ(f(x+ y)− f(x)− f(y))

and so f(x+ y) = f(x) + f(y) for all x, y ∈ X. �

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

N

(
2f

(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ ϕ(x, y)
(3.2)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n

)
exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ ϕ(x, 0)
(3.3)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (3.2), we get

N

(
f(x)− 2f

(
x

2

)
, t

)
= N

(
2f

(
x

2

)
− f(x), t

)
≥ t

t+ ϕ(x, 0)
(3.4)

for all x ∈ X.

Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ ϕ(x, 0)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [29, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.
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Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
2g

(
x

2

)
− 2h

(
x

2

)
, Lεt

)
= N

(
g

(
x

2

)
− h

(
x

2

)
,
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 , 0

) ≥ Lt
2

Lt
2 + L

2ϕ(x, 0)

=
t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (3.4) that

N

(
f(x)− 2f

(
x

2

)
, t

)
≥ t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1.

By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , i.e.,

A

(
x

2

)
=

1

2
A(x) (3.5)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (3.5) such that there exists a µ ∈ (0,∞)

satisfying

N(f(x)−A(x), µt) ≥ t

t+ ϕ(x, 0)

for all x ∈ X;

(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

N - lim
n→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ 1

1− L
.

This implies that the inequality (3.3) holds.
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By (3.2),

N

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

)
− ρ

(
2n

(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)))
, 2nt

)
≥ t

t+ ϕ
(
x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

)
− ρ

(
2n

(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)))
, t

)
≥

t
2n

t
2n + Ln

2n ϕ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
2n

t
2n

+Ln

2n
ϕ(x,y)

= 1 for all x, y ∈ X and all

t > 0,

2A

(
x+ y

2

)
−A(x)−A(y) = ρ (A(x+ y)−A(x)−A(y))

for all x, y ∈ X. By Lemma 3.1, the mapping A : X → Y is Cauchy additive, as desired. �

Corollary 3.3. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector

space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and

N

(
2f

(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ θ(‖x‖p + ‖y‖p)
(3.6)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.

Then we can choose L = 21−p, and we get the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ

(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then A(x) := N -

limn→∞
1
2n f (2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such

that

N (f(x)−A(x), t) ≥ (1− L)t

(1− L)t+ Lϕ(x, 0)
(3.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.2.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)
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for all x ∈ X.

It follows from (3.4) that

N

(
f(x)− 1

2
f(2x), Lt

)
≥ t

t+ ϕ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L. Hence

d(f,A) ≤ L

1− L
,

which implies that the inequality (3.7) holds.

The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 3.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed

vector space with the norm ‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.6).

Then A(x) := N -limn→∞
1
2n f(2nx) exists for each x ∈ X and defines an additive mapping

A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2pθ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X.

Then we can choose L = 2p−1, and we get the desired result. �
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[29] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces,

J. Math. Anal. Appl. 343 (2008), 567–572.
[30] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz.

Math. Soc. 37 (2006), 361–376.
[31] A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation,

Fuzzy Sets and Systems 159 (2008), 730–738.
[32] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and

Systems 159 (2008), 720–729.
[33] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008),

3791–3798.
[34] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach

algebras, Fixed Point Theory Appl. 2007, Art. ID 50175 (2007).
[35] C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach,

Fixed Point Theory Appl. 2008, Art. ID 493751 (2008).
[36] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17–26.
[37] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015),

397–407.
[38] C. Park, Y. Cho and M. Han, Stability of functional inequalities associated with Jordan-von Neumann type

additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820 (2007).
[39] C. Park, K. Ghasemi, S. G. Ghaleh and S. Jang, Approximate n-Jordan ∗-homomorphisms in C∗-algebras,

J. Comput. Anal. Appl. 15 (2013), 365-368.
[40] C. Park, A. Najati and S. Jang, Fixed points and fuzzy stability of an additive-quadratic functional equation,

J. Comput. Anal. Appl. 15 (2013), 452–462.
[41] C. Park and Th.M. Rassias, Fixed points and generalized Hyers-Ulam stability of quadratic functional equa-

tions, J. Math. Inequal. 1 (2007), 515–528.
[42] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003),

91–96.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

42 CHOONKIL PARK et al 32-43



C. PARK, S. Y. JANG

[43] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),
297–300.

[44] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math.
66 (2003), 191–200.
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FOURIER SERIES OF HIGHER-ORDER GENOCCHI FUNCTIONS AND THEIR

APPLICATIONS

TAEKYUN KIM, DAE SAN KIM, LEE CHAE JANG, AND DMITRY V. DOLGY

Abstract. In this paper, we derive some identities for higher-order Genocchi functions arising from
Fourier series for them . In addition, we give some application of these identities related to Bernoulli

function.

1. Introduction

The numbers Gk, (k ≥ 0), in the Taylor expansion

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
, (see [2− 11]), (1.1)

are known as the Genocchi numbers. These numbers arise in the series expansion of trigonometric
functions, and are extremely important in the number theory and analysis. The Genocchi polynomials
Gn(x), (n ≥ 0), are defined by the generating function(

2t

et + 1

)
ext =

∞∑
n=0

Gn(x)
tn

n!
, (see [5, 12, 13]). (1.2)

Note that Gn(x) ∈ Z[x] with degGn(x) = n − 1, for n ≥ 1. Let f(x) be a square integrable function
defined on [−p, p]. Then the Fourier series of f(x) is given by

a0
2

+
∞∑

n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x

)
, (1.3)

where

a0 =
1

p

∫ p

−p

f(x)dx, an =
1

p

∫ p

−p

f(x) cos
nπ

p
x dx, (1.4)

and

bn =
1

p

∫ p

−p

f(x) sin
nπ

p
x dx, (see [6, 7]). (1.5)

The Fourier series in (1.3) can be alternatively given as follows:
∞∑

n=−∞
Cne

nπi
p x, (i =

√
−1), (1.6)

where

Cn =
1

2p

∫ p

−p

f(x)e−
nπi
p xdx, , (see [6, 7]). (1.7)

2010 Mathematics Subject Classification. 11B83, 42A16.
Key words and phrases. Fourier series, Genocchi polynomials, Genocchi functions.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

44 TAEKYUN KIM et al 44-50



2 Fourier series of higher-order Genocchi functions and their applications

For r ∈ N, the higher-order Genocchi polynomials are defined by the generating function to be(
2t

et + 1

)r

ext =
∞∑

n=0

G(r)
n (x0

tn

n!
, (see [5]). (1.8)

When x = 0, G
(r)
n = G

(r)
n (0) are called the higher-order Genocchi numbers.

For any real number x, we define

< x >= x− [x] ∈ [0, 1), (1.9)

where [·] is the Gauss symbol. Note that < x > is the fractional part of x. Thus, G
(r)
m (< x >) are

functions defined on (−∞,∞) and periodic with period 1, which are called Genocchi functions of order
r.

In this paper, we derive some identities of Genocchi functions of order r arising from Fourier series for
them. In addition, we give some application of these identities related to Bernoulli functions.

2. Fourier series of higher-order Genocchi functions and their applications

From (1.8), we note that

G(r)
m (x) = 0, for 0 ≤ m ≤ r − 1, and G(r)

r (x) = r!. (2.1)

Now, we assume that m ≥ r + 1 ≥ 2. We first observe that

G(r)
m (x+ 1) = 2mG

r−1)
m−1(x)−G(r)

m (x), (m ≥ 0). (2.2)

Indeed,

∞∑
m=0

G(r)
m (x+ 1)

tm

m!
=

(
2t

et + 1

)r

e(x+1)t =

(
2t

et + 1

)r

ext(et + 1− 1)

=

(
2t

et + 1

)r−1

ext
(

2t

et + 1

)
(et + 1)−

(
2t

et + 1

)r

ext

= 2t
∞∑

m=0

G(r−1)
m (x)

tm

m!
−

∞∑
m=0

G(r)
m (x)

tm

m!

= 2
∞∑

m=0

mG
(r−1)
m−1 (x)

tm

m!
−

∞∑
m=0

G(r)
m (x)

tm

m!

=
∞∑

m=0

(
2mG

(r−1)
m−1 (x)−G(r)

m (x)
) tm
m!
.

(2.3)

For x = 0 in , we have

G(r)
m (1) = 2mG

(r−1)
m−1 (0)−G(r)

m (0). (2.4)

By (2.4), we get

G(r)
m (1) = G(r)

m (0) ⇔ G(r)
m (0) = mG

(r−1)
m−1 (0). (2.5)

G
(r)
m (< x >) is piecewise C∞. Moreover, G

(r)
m (< x >) is continuous for those (r,m) with G

(r)
m (0) =

mG
(r−1)
m−1 (0), and discontinuous with jump discontinuities at integers for those (r,m) with G

(r)
m (0) ̸=
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mG
(r−1)
m−1 (0). The Fourier series of G

(r)
m (< x >) is

∞∑
n=−∞

C(r,m)
n e2πinx, (i =

√
−1), (2.6)

where

C(r,m)
n =

∫ 1

0

G(r)
m (< x >)e−2πinxdx

=

∫ 1

0

G(r)
m (x)e−2πinxdx.

(2.7)

Now, we observe that

C(r,m)
n =

∫ 1

0

G(r)
m (x)e−2πinxdx

=
1

m+ 1

[
G

(r)
m+1e

−2πinx
]1
0
+

2πin

m+ 1

∫ 1

0

G
(r)
m+1(x)e

−2πinxdx

=
1

m+ 1

(
G

(r)
m+1(0)−G

(r)
m+1(0)

)
+

2πin

m+ 1
C(r,m+1)

n

=
2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

2πin

m+ 1
C(r,m+1)

n .

(2.8)

Replacing m by m− 1 in (2.8), we have

2πin

m
C(r,m)

n = C(r,m−1)
n +

2

m

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
. (2.9)

Assume first that n ̸= 0. Then we have

C(r,m)
n =

m

2πin
C(r,m−1)

n +
1

πin

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
=

m

2πin

(
m− 1

2πin
C(r,,m−2)

n +
1

πin

(
G

(r)
m−1(0)− (m− 1)G

(r−1)
m−2 (0)

))
+

1

πin

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
=
m(m− 1)

(2πin)2
C(r,m−2)

n +
m

2

1

(πin)2

(
G

(r)
m−1(0)− (m− 1)G

(r−1)
m−2 (0)

)
+

1

πin

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
=
m(m− 1)

(2πin)2

{
m− 2

2πin
C(r,m−3)

n +
1

πin

(
G

(r)
m−2(0)− (m− 2)G

(r−1)
m−3 (0)

)}
+
m

2

1

(πin)2

(
G

(r)
m−1(0)− (m− 1)G

(r−1)
m−2 (0)

)
+

1

πin

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
=
m(m− 1)(m− 2)

(2πin)3
C(r,m−3)

n +
m(m− 1)

22
1

(πin)3

(
G

(r)
m−2(0)− (m− 2)G

(r−1)
m−3 (0)

)
+
m

2

1

(πin)2

(
G

(r)
m−1(0)− (m− 1)G

(r−1)
m−2 (0)

)
+

1

πin

(
G(r)

m (0)−mG
(r−1)
m−1 (0)

)
= · · ·

=
m!

(2πin)m−1
C(r,1)

n +
m−1∑
k=1

(m)k−1

2k−1

1

(πin)k

(
G

(r)
m+1−k(0)− (m+ 1− k)G

(r−1)
m−k (0)

)
.

(2.10)
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4 Fourier series of higher-order Genocchi functions and their applications

Note that

C(r,1)
n =

∫ 1

0

G
(r)
1 (x)e−2πinxdx = 0, (2.11)

since G
(r)
1 (x) = 0, for r ≥ 2 and G

(1)
1 (x) = 1. From (2.10) and (2.11), we have

C(r,m)
n =

m−1∑
k=1

(m)k−1

2k−1

1

(πin)k

(
G

(r)
m−k+1(0)− (m− k + 1)G

(r−1)
m−k (0)

)

=

min{m+1−r,m−1}∑
k=1

(m)k−1

2k−1

1

(πin)k

(
G

(r)
m−k+1(0)− (m− k + 1)G

(r−1)
m−k (0)

) (2.12)

Here we used the fact that G
(r)
m = 0, for 0 ≤ m ≤ r − 1. Assume next that n = 0. Then we have

C
(r,m)
0 =

∫ 1

0

G(r)
m (x)dx =

1

m+ 1

[
G

(r)
m+1(x)

]1
0
=

1

m+ 1

(
G

(r)
m+1(1)−G

(r)
m+1(0)

)
=

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

) (2.13)

Before proceeding further, we recall the following facts about Bernoulli functions Bn(< x >) :

Bm(< x >) = −m!
∞∑

n=−∞
n̸=0

e2πinx

(2πin)m
, for m ≥ 2, (see [1]), (2.14)

and

−
∞∑

n=−∞
n̸=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z
0, for x ∈ Z. (2.15)

The series in (2.14) converges uniformly, but that in (2.15) converges only pointwise. Assume first that

G
(r)
m (0) = mG

(r−1)
m−1 (0). Then G

(r)
m (1) = G

(r)
m (0). G

(r)
m (< x >) is piecewise C∞, and continuous. Hence

the Fourier series of G
(r)
m (< x >) converges uniformly to G

(r)
m (< x >), and we have

G(r)
m (< x >) =

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

∞∑
n=−∞
n ̸=0

min{m+1−r,m−1}∑
k=1

(m)k−1

2k−1

1

(πin)k

(
G

(r)
m−k+1(0)− (m− k + 1)G

(r−1)
m−k (0)

) e2πinx,
(2.16)
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for all x ∈ (−∞,∞). In addition, we can express this in terms of Bernoulli functions Bm(< x >).

G(r)
m (< x >) =

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
−

min{m+1−r,m−1}∑
k=1

2(m)k−1

k!

(
G

(r)
m−k+1(0)− (m− k + 1)G

(r−1)
m−k (0)

)−k!
∞∑

n=−∞
n ̸=0

e2πinx

(2πin)k


=

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

min{m+1−r,m−1}∑
k=2

2(m)k−1

k!

(
(m+ 1− k)G

(r−1)
m−k (0)−G

(r)
m+1−k(0)

)
Bk(< x >)

+ 2
(
mG

(r−1)
m−1 (0)−G(r)

m (0)
)
×

{
B1(< x >), for x /∈ Z
0, for x ∈ Z.

(2.17)

Therefore, we obtain the following theorem.

Theorem 2.1. Let m ≥ r + 1 ≥ 2. Assume that

G(r)
m (0) = mG

(r−1)
m−1 (0).

Then we have

(a) G(r)
m (< x >) =

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

∞∑
n=−∞
n̸=0

min{m+1−r,m−1}∑
k=1

(m)k−1

2k−1

1

(πin)k

(
G

(r)
m−k+1(0)− (m− k + 1)G

(r−1)
m−k (0)

) e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b) G(r)
m (< x >) =

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

min{m+1−r,m−1}∑
k=2

2(m)k−1

k!

(
(m+ 1− k)G

(r−1)
m−k (0)−G

(r)
m+1−k(0)

)
Bk(< x >),

for all x ∈ (−∞,∞), where Bk(< x >) is the Bernoulli function.

Assume next that G
(r)
m (0) ̸= mG

(r−1)
m (0). Then G

(r)
m (1) ̸= G

(r)
m (0), and hence G

(r)
m (< x >) is piecewise

C∞ and discontinuous with jump discontinuities at integers. Thus, the Fourier series of G
(r)
m (< x >)

converges pointwise to G
(r)
m (< x >), for x /∈ Z, and converges to 1

2

(
G

(r)
m (1) +G

(r)
m (0)

)
= mG

(r−1)
m−1 (0),

for x ∈ Z. Therefore, we obtain the following theorem.
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6 Fourier series of higher-order Genocchi functions and their applications

Theorem 2.2. Let m ≥ r + 1 ≥ 2. Assume that G
(r)
m (0) ̸= mG

(r)
m−1(0). Then we have

(a)
2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

∞∑
n=−∞
n̸=0

(
min{m+1−r,m−1}∑

k=1

(m)k−1

2k−1

(
1

πin

)k

×
(
G

(r)
m+1−k(0)− (m+ 1− k)G

(r−1)
m−k (0)

))
e2πinx =

{
G

(r)
m (< x >), for x /∈ Z,

mG
(r−1)
m−1 (0), for x ∈ Z.

Here the convergence is pointwise.

(b)
2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

min{m+1−r,m−1}∑
k=1

2(m)k−1

k!

(
(m+ 1− k)G

(r−1)
m−k (0)−G

(r)
m+1−k(0)

)
Bk(< x >)

= G(r)
m (< x >), for x /∈ Z,

and

2

m+ 1

(
(m+ 1)G(r−1)

m (0)−G
(r)
m+1(0)

)
+

min{m+1−r,m−1}∑
k=2

2(m)k−1

k!

(
(m+ 1− k)G

(r−1)
m−k (0)−G

(r)
m+1−k(0)

)
Bk(< x >)

= mG
(r−1)
m−1 (0), for x ∈ Z.

Here Bk(< x >) is the Bernoulli function.
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(
g, ϕh,m

)
− CONVEX AND (g, logϕ)− CONVEX DOMINATED

FUNCTIONS AND HADAMARD TYPE INEQUALITIES
RELATED TO THEM

MUSTAFA GÜRBÜZ

Abstract. In this paper, we present the notion of
(
g, ϕh,m

)
−convex and

(g, logϕ)−convex dominated function and present some properties of them.
Besides, we attain some Hermite-Hadamard-type inequalities for

(
g, ϕh,m

)
−convex

and (g, logϕ)− convex dominated functions. Our results generalize some find-
ings about Hermite-Hadamard-type inequalities in the literature.

1. Introduction

The inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

which holds for every convex function f, from a closed set [a, b] to R, is known in
the literature as Hermite-Hadamard’s inequality (see [13]).
In [1], Dragomir and Ionescu introduced the following class of functions.

Definition 1. Let g : I → R be a convex function on the interval I. The function
f : I → R is called g−convex dominated on I if the following condition is satisfied:

|λf (x) + (1− λ) f (y)− f (λx+ (1− λ) y)|
(1.2)

≤ λg (x) + (1− λ) g (y)− g (λx+ (1− λ) y)
for all x, y ∈ I and λ ∈ [0, 1] .

In [1] and [2], the authors connect together some disparate threads through a
Hermite-Hadamard motif. The first of these threads is the unifying concept of a
g−convex-dominated function. In [3], Hwang et al. established some inequalities
of Fejér type for g−convex-dominated functions. Finally, in [4], [5] and [6] authors
introduced several new different kinds of convex -dominated functions and then
gave Hermite-Hadamard-type inequalities for this classes of functions.
In [7], S. Varošanec introduced the following class of functions.
I and J are intervals in R, (0, 1) ⊆ J and functions h and f are real non-negative

functions defined on J and I, respectively.

Date : October 12, 2016.
2000 Mathematics Subject Classification. Primary 26D15, Secondary 26D10, 05C38.
Key words and phrases. Convex dominated functions, Hermite-Hadamard Inequality,

ϕh,m−convex functions, (g, ϕh)−convex dominated functions, (g, logϕ)−convex dominated
functions.
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2 MUSTAFA GÜRBÜZ

Definition 2. Let h be a non-negative function from J which is a subset of R to
R, h 6≡ 0. f : I → R is called an h−convex function, or that f belongs to the class
SX (h, I) , if f is non-negative and for all x, y ∈ I and α ∈ (0, 1], we get
(1.3) f(αx+ (1− α) y) ≤ h (α) f(x) + h (1− α) f(y).

If the inequality (1.3) is reversed, then f is said to be h−concave, i.e. f ∈
SV (h, I) .
Youness have defined the ϕ−convex functions in [9]. A function ϕ : [a, b]→ [c, d]

where [a, b] ⊂ R:

Definition 3. A function f : [a, b]→ R is said to be ϕ−convex on [a, b] if for every
two points x ∈ [a, b] , y ∈ [a, b] and t ∈ [0, 1] the following inequality holds:
(1.4) f (tϕ (x) + (1− t)ϕ (y)) ≤ tf (ϕ (x)) + (1− t) f (ϕ (y)) .

In [8], Sarıkaya defined a new kind of ϕ−convexity using h−convexity as follow-
ing:

Definition 4. Let I be an interval in R and h : (0, 1)→ (0,∞) be a given function.
We say that a function f : I → [0,∞) is ϕh−convex if
(1.5) f (tϕ (x) + (1− t)ϕ (y)) ≤ h (t) f (ϕ (x)) + h (1− t) f (ϕ (y))
for all x, y ∈ I and t ∈ (0, 1) .

If inequality (1.5) is reversed, then f is said to be ϕh−concave. In particular, if f
satisfies (1.5) with h (t) = t, h (t) = ts (s ∈ (0, 1)) , h (t) = 1

t , and h (t) = 1, then f is
said to be ϕ−convex, ϕs−convex, ϕ−Godunova-Levin function and ϕ−P−function,
respectively.
In [10], Özdemir et al. defined (h−m)−convexity and obtained Hermite-Hadamard-

type inequalities as following.

Definition 5. Let h : J ⊂ R → R be a non-negative function. We say that
f : [0, b] → R is a (h−m)−convex function, if f is non-negative and for all
x, y ∈ [0, b] , m ∈ [0, 1] and α ∈ (0, 1) , we have
(1.6) f (αx+m (1− α) y) ≤ h (α) f (x) +mh (1− α) f (y) .
If the inequality is reversed, then f is said to be (h−m)−concave function on [0, b] .

In [2], Dragomir et al. proved the following theorem for g−convex dominated
functions related to (1.1):

Definition 6. A function f : I → [0,∞) is said to be log−convex or multiplica-
tively convex if log t is convex, or, equivalently, if for all x, y ∈ I and t ∈ [0, 1] one
has the inequality

(1.7) f (tx+ (1− t) y) ≤ [f (x)]t [f (y)]1−t .

We note that if f and g are convex and g is increasing, then g ◦ f is convex;
moreover, since f = exp (log f) , it follows that a log−convex function is convex,
but the converse may not necessarily be true [12]. This follows directly from (1.7)
because, by the aritmetic-geometric mean inequality, we have

[f (x)]
t
[f (y)]

1−t ≤ tf (x) + (1− t) f (y)
for all x, y ∈ I and t ∈ [0, 1] .
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INEQUALITIES FOR SOME CONVEX DOMINATED FUNCTIONS 3

For some results related to this classical results, (see [13], [14], [15], [16], [17])
and the references therein.
In [17], Sarıkaya has defined the log−ϕ−convex function as following.

Definition 7. Let us consider a ϕ : [a, b]→ [a, b] where [a, b] ⊂ R and I stands for
a convex subset of R. We say that a function f : I → R+ is a log−ϕ−convex if

(1.8) f (tϕ (x) + (1− t)ϕ (y)) ≤ [f (ϕ (x))]t [f (ϕ (y))]1−t

for all x, y ∈ I and t ∈ [0, 1] .

Theorem 1. Let g : I → R be a convex function and f : I → R a g−convex
dominated mapping. Then for all a, b ∈ I with a < b,

(1.9)

∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ 1

b− a

∫ b

a

g (x) dx− g
(
a+ b

2

)
and

(1.10)

∣∣∣∣∣f (a) + f (b)2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ g (a) + g (b)

2
− 1

b− a

∫ b

a

g (x) dx.

In [4], Kavurmacıet al. proved the next theorem:

Theorem 2. Let h : J → R be a non-negative function, h 6= 0, g : I → R be an
h−convex function and the real function f : I → R be a (g, h)−convex dominated
on I. Then one has the inequalities:
(1.11)∣∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− 1

2h
(
1
2

)f (a+ b
2

)∣∣∣∣∣ ≤ 1

b− a

∫ b

a

g (x) dx− 1

2h
(
1
2

)g(a+ b
2

)
and
(1.12)∣∣∣∣∣[f (a) + f (b)]

∫ 1

0

h (λ) dλ− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ [g (a) + g (b)]
∫ 1

0

h (λ) dλ− 1

b− a

∫ b

a

g (x) dx

for all x, y ∈ I and λ ∈ [0, 1] .

In [6], Özdemir et al. proved the following theorem:

Theorem 3. Let a nonnegative function g : I ⊆ R → R belong to the class of
P (I) . The real function f : I ⊆ R → R is (g, P (I))−convex dominated on I. If
a, b ∈ I with a < b and f, g ∈ L1 [a, b], then one has the inequalities:

(1.13)

∣∣∣∣∣ 2

b− a

∫ b

a

f (x) dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ 2

b− a

∫ b

a

g (x) dx− g
(
a+ b

2

)
and

(1.14)

∣∣∣∣∣[f (a) + f (b)]− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ [g (a) + g (b)]− 1

b− a

∫ b

a

g (x) dx

for all x, y ∈ I.

In [11], Özdemir et al. proved the following theorem:
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Theorem 4. Let h : (0, 1)→ (0,∞) be a given function, g : I → [0,∞) be a given
ϕh−convex function. If f : I → [0,∞) is Lebesgue integrable and (g, ϕh)−convex
dominated on I for linear continious, non-constant function ϕ : [a, b]→ [a, b], then
the following inequalities hold:∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (x) dx− 1

2h
(
1
2

)f (ϕ (a) + ϕ (b)
2

)∣∣∣∣∣
(1.15)

≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx− 1

2h
(
1
2

)g(ϕ (a) + ϕ (b)
2

)
and ∣∣∣∣∣[f (ϕ (a)) + f (ϕ (b))]

∫ 1

0

h (t) dt− 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (x) dx

∣∣∣∣∣(1.16)

≤ [g (ϕ (a)) + g (ϕ (b))]

∫ 1

0

h (t) dt− 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx

for all x, y, a ∈ [0, b], t ∈ (0, 1) and m ∈ (0, 1] .

In the following sections our main results are given: We introduce the notion
of
(
g, ϕh,m

)
−convex and (g, logϕ)− convex dominated function and present some

properties of them. Besides, we present some Hermite-Hadamard-type inequalities
for

(
g, ϕh,m

)
−convex and (g, logϕ)− convex dominated functions. Our results

generalize the Hermite-Hadamard-type inequalities in [2], [4], [6] and [11].

2.
(
g, ϕh,m

)
−convex dominated functions

Definition 8. Let h : (0, 1) → R be a non-negative function, h 6= 0, g : [0, b] ⊆
[0,∞) → R+ be a given ϕh,m−convex function. The real function f : [0, b] → R+

is called
(
g, ϕh,m

)
−convex dominated on [0, b] if the following condition is satisfied

|h (t) f (ϕ (x)) +mh (1− t) f (ϕ (y))− f (tϕ (x) +m (1− t)ϕ (y))|
(2.1)

≤ h (t) g (ϕ (x)) +mh (1− t) g (ϕ (y))− g (tϕ (x) +m (1− t)ϕ (y))
for all x, y ∈ [0, b], t ∈ (0, 1) and m ∈ [0, 1].

In particular, if f satisfies (2.1) with m = 1, then f is said to be (g, ϕh)−convex
dominated function. If the inequality (2.1) is reversed, then f is said to be ϕh,m−concave
dominated function on [0, b] .
The next simple characterisation of

(
g, ϕh,m

)
−convex dominated functions holds.

Lemma 1. Let h : (0, 1)→ (0,∞) be a given function, g : [0, b] ⊆ [0,∞)→ R+ be
a given ϕh,m−convex function and f : [0, b]→ R+ be a real function. The following
statements are equivalent:

(1) f is
(
g, ϕh,m

)
−convex dominated on [0, b] .

(2) The mappings g − f and g + f are ϕh,m− convex on [0, b] .
(3) There exist two ϕh,m−convex mappings l, k defined on [0, b] such that

f = 1
2 (l − k) and g = 1

2 (l + k) .
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Proof. 1⇐⇒2 The condition (2.1) is equivalent to
g (tϕ (x) +m (1− t)ϕ (y))− h (t) g(ϕ (x))−mh(1− t)g(ϕ (y))

≤ h (t) f(ϕ (x)) +mh(1− t)f(ϕ (y))− f (tϕ (x) +m (1− t)ϕ (y))

≤ h (t) g(ϕ (x)) +mh(1− t)g(ϕ (y))− g (tϕ (x) +m (1− t)ϕ (y))
for all x, y ∈ [0, b] and t ∈ (0, 1) . The two inequalities may be rearranged as

(g + f) (tϕ (x) +m (1− t)ϕ (y))

≤ h (t) (g + f) (ϕ (x)) +mh(1− t) (g + f) (ϕ (y))
and

(g − f) (tϕ (x) +m (1− t)ϕ (y))

≤ h (t) (g − f) (ϕ (x)) +mh(1− t) (g − f) (ϕ (y))
which are eqivalent to the ϕh,m−convexity of g + f and g − f, respectively.
2⇐⇒3 Let we define the mappings f, g as f = 1

2 (l − k) and g =
1
2 (l + k). Then

if we sum and subtract f and g, respectively, we have g + f = l and g − f = k. By
the condition 2 in Lemma 1, the mappings g − f and g + f are ϕh,m−convex on
[0, b] , so l, k are ϕh,m−convex mappings on [0, b] too. �

Theorem 5. Let h : (0, 1)→ (0,∞) be a given function, g : [0, b] ⊆ [0,∞)→ R+ be
a given ϕh,m−convex function. If f is defined from [0, b] to [0,∞) and it is Lebesgue
integrable with

(
g, ϕh,m

)
−convex dominated on [0, b] for linear continuous, non-

constant function ϕ : [0, b]→ [0, b] , then the following inequalities hold:

∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (x) dx+
m2

ϕ (b)− ϕ (a)

∫ ϕ(b)
m

ϕ(a)
m

f (x) dx− 1

h
(
1
2

)f (ϕ (a) + ϕ (b)
2

)∣∣∣∣∣
(2.2)

≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx+
m2

ϕ (b)− ϕ (a)

∫ ϕ(b)
m

ϕ(a)
m

g (x) dx− 1

h
(
1
2

)g(ϕ (a) + ϕ (b)
2

)
and ∣∣∣∣∣∣∣∣

[
f (ϕ (a)) +m

{
f
(
ϕ
(
a
m

))
+ f

(
ϕ
(
b
m

))
+mf

(
ϕ
(
b
m2

))}] ∫ 1
0
h (t) dt

−
[

1

mϕ( b
m )−ϕ(a)

∫mϕ( b
m )

ϕ(a) f (x) dx+ m

mϕ( b
m2 )−ϕ( am )

∫mϕ( b
m2 )

ϕ( am )
f (x) dx

]
∣∣∣∣∣∣∣∣(2.3)

≤ [
g (ϕ (a)) +m

{
g
(
ϕ
( a
m

))
+ g

(
ϕ

(
b

m

))
+mg

(
ϕ

(
b

m2

))}]∫ 1

0

h (t) dt

−
[

1

mϕ
(
b
m

)
− ϕ (a)

∫ mϕ( b
m )

ϕ(a)

g (x) dx+
m

mϕ
(
b
m2

)
− ϕ

(
a
m

) ∫ mϕ( b
m2 )

ϕ( am )
g (x) dx

]
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for all x, y, a ∈ [0, b], t ∈ (0, 1) and m ∈ (0, 1] .

Proof. By the Definition 8 with t = 1
2 , x = λa+(1−λ)b, y = (1− λ) am +λ

b
m , λ ∈

[0, 1] and m ∈ (0, 1] , as the mapping f is
(
g, ϕh,m

)
−convex dominated function,

we have that ∣∣∣∣∣∣
h
(
1
2

) [
f (ϕ (λa+ (1− λ)b)) +mf

(
ϕ
(
(1− λ) am + λ

b
m

))]
−f
(
ϕ(λa+(1−λ)b)+mϕ((1−λ) am+λ

b
m )

2

) ∣∣∣∣∣∣
≤

h

(
1

2

)[
g (ϕ (λa+ (1− λ)b)) +mg

(
ϕ

(
(1− λ) a

m
+ λ

b

m

))]
−g
(
ϕ (λa+ (1− λ)b) +mϕ

(
(1− λ) am + λ

b
m

)
2

)
.

Then using the linearity of ϕ−function, we have∣∣∣∣h(12
)[

f (λϕ (a) + (1− λ)ϕ (b)) +mf
(
1− λ
m

ϕ (a) +
λ

m
ϕ (b)

)]
− f

(
ϕ (a) + ϕ (b)

2

)∣∣∣∣
≤

h

(
1

2

)[
g (λϕ (a) + (1− λ)ϕ (b)) +mg

(
1− λ
m

ϕ (a) +
λ

m
ϕ (b)

)]
− g

(
ϕ (a) + ϕ (b)

2

)
.

If we integrate the above inequality with respect to λ over [0, 1] , the inequality
(2.2) is proved.
Since f is

(
g, ϕh,m

)
−convex dominated on [0, b] , we have

|h (t) f (ϕ (x)) +mh (1− t) f (ϕ (y))− f (tϕ (x) +m (1− t)ϕ (y))|

≤ h (t) g (ϕ (x)) +mh (1− t) g (ϕ (y))− g (tϕ (x) +m (1− t)ϕ (y))

for all x, y > 0 which gives for x = a and y = b∣∣∣∣h (t) f (ϕ (a)) +mh (1− t) f (ϕ( b

m

))
− f

(
tϕ (a) +m (1− t)ϕ

(
b

m

))∣∣∣∣
≤

h (t) g (ϕ (a)) +mh (1− t) g
(
ϕ

(
b

m

))
− g

(
tϕ (a) +m (1− t)ϕ

(
b

m

))
and for x = a

m , y =
b
m2 , multiplying with m,∣∣∣∣mh (t) f (ϕ( am))+m2h (1− t) f

(
ϕ

(
b

m2

))
−mf

(
tϕ
( a
m

)
+m (1− t)ϕ

(
b

m2

))∣∣∣∣
≤

mh (t) g
(
ϕ
( a
m

))
+m2h (1− t) g

(
ϕ

(
b

m2

))
−mg

(
tϕ
( a
m

)
+m (1− t)ϕ

(
b

m2

))
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for all t ∈ (0, 1) . By properties of modulus and adding the above inequalities side
by side we get,∣∣∣∣ h (t) [f (ϕ (a)) +mf (ϕ ( am))]+mh (1− t) [f (ϕ ( bm))+mf (ϕ ( b

m2

))]
−
[
f
(
tϕ (a) +m (1− t)ϕ

(
b
m

))
+mf

(
tϕ
(
a
m

)
+m (1− t)ϕ

(
b
m2

))] ∣∣∣∣
≤

h (t)
[
g (ϕ (a)) +mg

(
ϕ
( a
m

))]
+mh (1− t)

[
g

(
ϕ

(
b

m

))
+mg

(
ϕ

(
b

m2

))]
−
[
g

(
tϕ (a) +m (1− t)ϕ

(
b

m

))
+mg

(
tϕ
( a
m

)
+m (1− t)ϕ

(
b

m2

))]
Thus, integrating over t on [0, 1] we obtain the inequality (2.3). �

Remark 1. Under the assupmtions of Theorem 5, if we choose m = 1, the inequali-
ties (2.2) and (2.3) reduce to Hermite-Hadamard type inequalities for (g, ϕh)−convex
dominated functions given as (1.15) and (1.16) in [11].

Remark 2. Under the assupmtions of Theorem 5, if we choose m = 1, h (t) = t,
t ∈ (0, 1) and the function ϕ is the identity, then the inequalities (2.2) and (2.3)
reduce to Hermite-Hadamard type inequalities for convex-dominated functions given
as (1.9) and (1.10) in [2].

Remark 3. Under the assupmtions of Theorem 5, if we choose m = 1, h (t) =
ts, t, s ∈ (0, 1) and the function ϕ is the identity, then the inequalities (2.2) and
(2.3) reduce to Hermite-Hadamard type inequalities for (g, s)−convex-dominated
functions given as (1.9) and (1.10) in [4].

Remark 4. Under the assupmtions of Theorem 5, if we choose m = 1, h (t) = 1
t ,

t ∈ (0, 1) and the function ϕ is the identity, then the inequalities (2.2) and (2.3) re-
duce to Hermite-Hadamard type inequalities for (g,Q (I))−convex-dominated func-
tions given as (1.9) and (1.10) in [6].

3. (g, logϕ)−convex dominated functions

Definition 9. Let g : [a, b] ⊆ R→ (0,∞) be a given log−ϕ−convex mapping where
ϕ : [a, b]→ [a, b] . The real function f : [a, b]→ (0,∞) is called (g, log−ϕ)−convex
dominated on [a, b] if it holds∣∣∣[f (ϕ (x))]t [f (ϕ (y))]1−t − f (tϕ (x) + (1− t)ϕ (y))∣∣∣(3.1)

≤ [g (ϕ (x))]
t
[g (ϕ (y))]

1−t − g (tϕ (x) + (1− t)ϕ (y))

for all x, y ∈ [a, b] and t ∈ [0, 1].

Proposition 1. Let g : [a, b] ⊆ R → (0,∞) be a given log−ϕ−convex mapping
where ϕ : [a, b] → [a, b] and f : [a, b] → (0,∞) be a (g, log−ϕ)−convex dominated
function on [a, b] .Then the mapping g + f is ϕ−convex on [a, b] .
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Proof. The condition (3.1) is equivalent to

g (tϕ (x) + (1− t)ϕ (y))− [g (ϕ (x))]t [g (ϕ (y))]1−t

≤ [f (ϕ (x))]
t
[f (ϕ (y))]

1−t − f (tϕ (x) + (1− t)ϕ (y))

≤ [g (ϕ (x))]
t
[g (ϕ (y))]

1−t − g (tϕ (x) + (1− t)ϕ (y))
for all x, y ∈ [a, b] and t ∈ [0, 1] . The left side of the inequality may be rearranged
as

(g + f) (tϕ (x) + (1− t)ϕ (y))

≤ [f (ϕ (x))]
t
[f (ϕ (y))]

1−t
+ [g (ϕ (x))]

t
[g (ϕ (y))]

1−t

≤ tf (ϕ (x)) + (1− t) f (ϕ (y)) + tg (ϕ (x)) + (1− t) g (ϕ (y))

= t (f + g) (ϕ (x)) + (1− t) (f + g) (ϕ (y))
which is eqivalent to the ϕ−convexity of f + g. �

Theorem 6. Let g : [a, b] ⊆ R → (0,∞) be a given log−ϕ−convex mapping
and f : [a, b] → (0,∞) is Lebesgue integrable and (g, log−ϕ)−convex dominated
function on [a, b] for linear continuous function ϕ : [a, b]→ [a, b] , then the following
inequalities hold:

∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

G (f (x) , f (ϕ (a) + ϕ (b)− x)) dx− f
(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣
(3.2)

≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

G (g (x) , g (ϕ (a) + ϕ (b)− x)) dx− g
(
ϕ (a) + ϕ (b)

2

)
∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

G (f (x) , f (ϕ (a) + ϕ (b)− x)) dx− f
(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣(3.3)

≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx− g
(
ϕ (a) + ϕ (b)

2

)
and ∣∣∣∣∣L (f (ϕ (b)) , f (ϕ (a)))− 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (x) dx

∣∣∣∣∣
(3.4)

≤ L (g (ϕ (b)) , g (ϕ (a)))− 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx

for all x, y ∈ [a, b] .
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Proof. By the Definition 3.1 with t = 1
2 , x = λa+(1−λ)b, y = (1− λ) a+λb and λ ∈

[0, 1] , as the mapping f is (g, log−ϕ)−convex dominated function, we have that∣∣∣∣[f (ϕ (λa+ (1− λ)b))] 12 [f (ϕ ((1− λ) a+ λb))] 12 − f (ϕ (λa+ (1− λ)b) + ϕ ((1− λ) a+ λb)2

)∣∣∣∣
≤ [g (ϕ (λa+ (1− λ)b))]

1
2 [g (ϕ ((1− λ) a+ λb))]

1
2 − g

(
ϕ (λa+ (1− λ)b) + ϕ ((1− λ) a+ λb)

2

)
.

Then using the linearity of ϕ−function we have∣∣∣∣[f (λϕ (a) + (1− λ)ϕ (b))] 12 [f ((1− λ)ϕ (a) + λϕ (b))] 12 − f (ϕ (a) + ϕ (b)2

)∣∣∣∣(3.5)

≤

[g (λϕ (a) + (1− λ)ϕ (b))]
1
2 [g ((1− λ)ϕ (a) + λϕ (b))]

1
2 − g

(
ϕ (a) + ϕ (b)

2

)
.

If we integrate the above inequality with respect to λ over [0, 1] , the inequality in
(3.2) is proved.
On the other hand, if we use the inequality

√
ab ≤ 1

2 (a+ b) for a, b > 0 on (3.5)
we have∣∣∣∣[f (λϕ (a) + (1− λ)ϕ (b))] 12 [f ((1− λ)ϕ (a) + λϕ (b))] 12 − f (ϕ (a) + ϕ (b)2

)∣∣∣∣
≤

g (λϕ (a) + (1− λ)ϕ (b)) + g ((1− λ)ϕ (a) + λϕ (b))
2

− g
(
ϕ (a) + ϕ (b)

2

)
.

If we integrate the above inequality with respect to λ over [0, 1] , the inequality in
(3.3) is proved.
To prove the inequality in (3.4), firstly we use the Definition 3.1 for x = a and

y = b, we have ∣∣∣[f (ϕ (a))]t [f (ϕ (b))]1−t − f (tϕ (a) + (1− t)ϕ (b))∣∣∣
≤ [g (ϕ (a))]

t
[g (ϕ (b))]

1−t − g (tϕ (a) + (1− t)ϕ (b))
Then, we integrate the above inequality with respect to t over [0, 1] , we get∣∣∣∣∣f (ϕ (b))

∫ 1

0

[
f (ϕ (a))

f (ϕ (b))

]t
dt−

∫ 1

0

f (tϕ (a) + (1− t)ϕ (b)) dt
∣∣∣∣∣

≤ g (ϕ (b))

∫ 1

0

[
g (ϕ (a))

g (ϕ (b))

]t
dt−

∫ 1

0

g (tϕ (a) + (1− t)ϕ (b)) dt

= g (ϕ (b))

(
g (ϕ (a))

g (ϕ (b))
− 1
)

1

log g (ϕ (a))− log g (ϕ (b)) −
1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx

=
g (ϕ (b))− g (ϕ (a))

log f (ϕ (b))− log f (ϕ (a)) −
1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx

= L (g (ϕ (b)) , g (ϕ (a)))− 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

g (x) dx.
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If similar calculation is made for the function f, the proof is completed. �

Corollary 1. If function ϕ is the identity in (3.2), (3.3) and (3.4), then we have∣∣∣∣∣ 1

b− a

∫ b

a

G (f (x) , f (a+ b− x)) dx− f
(
a+ b

2

)∣∣∣∣∣
(3.6)

≤ 1

b− a

∫ b

a

G (g (x) , g (a+ b− x)) dx− g
(
a+ b

2

)
∣∣∣∣∣ 1

b− a

∫ b

a

G (f (x) , f (a+ b− x)) dx− f
(
a+ b

2

)∣∣∣∣∣(3.7)

≤ 1

b− a

∫ b

a

g (x) dx− g
(
a+ b

2

)
and ∣∣∣∣∣L (f (b) , f (a))− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
(3.8)

≤ L (g (b) , g (a))− 1

b− a

∫ b

a

g (x) dx

for all x, y ∈ [a, b] .
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FIXED POINT THEOREM AND A UNIQUENESS THEOREM

CONCERNING THE STABILITY OF FUNCTIONAL QUATIONS

IN MODULAR SPACES

CHANGIL KIM

Abstract. In this paper, we investigate a �xed point theorem in modular
spaces, whose induced modular is lower semi-continunous, for a mapping with
some conditions in place of the condition of bounded orbit. Using this �xed
point theorem, we prove the generalized Hyers-Ulam stability for the following
additive-quadratic functional equation

f(2x+ y) + f(2x� y)� 2f(x+ y)� 2f(x� y)� 2f(2x) + 4f(x) = 0

in modular spaces.

1. Introduction and preliminaries

A problem that mathematicians has dealt with, for almost �fty years, is how to
generalize the classical function space Lp". A �rst attempt was made by Birnhaum
and Orlicz in 1931. This generalization found many applications in di�erential and
integral equations with kernels of nonpower types. The more abstract generalization
was given by Nakano [13] based on replacing the particular integral form of the
functional by an abstract one that satisfes some good properties. This functional
was called modular. This idea was re�ned and generalized by Musielak and Orlicz
[11] in 1959. Modular spaces have been studied for almost forty years and there is
a large set of known applications of them in various parts of analysis([6], [7], [9],
[10], [12], [14], [17], [20]).

It is well known that �xed point theories are one of powerful tools in solving
mathematical problems. Banach's contraction principle is one of the pivotal results
in �xed point theories and they have a board set of applications. Khamsi, Kozowski
and Reich [4] investigated the �xed point theorem in modular spaces. In [5], Khamsi
proved a series of �xed point theorems in modular spaces, where the modulars do
not satisfy 42-conditions.

Lemma 1.1. [5] Let X� be a modular space whose induced modular is lower semi-
continuous and let C � X� be a �-complete subset. If T : C �! C is a �-
contraction, that is, there is a constant L 2 [0; 1) such that

�(Tx� Ty) � L�(x� y); 8x; y 2 C

and T has a bounded orbit at a point x0 2 C, then the sequence fTnx0g is �-
convergent to a point w 2 C.

2010 Mathematics Subject Classi�cation. 39B52, 39B72, 47H09.
Key words and phrases. Fixed point theorem, Hyers-Ulam stability, modular spaces.
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2 CHANGIL KIM

The stability problem for functional equations �rst was planed in 1940 by Ulam
[18].

\Let G1 be a group and G2 a metric group with the metric d. Given a constant
� > 0, does there exist a constant c > 0 such that if a mapping f : G1 �!
G2 satis�es d(f(xy); f(x)f(y)) < c for all x; y 2 G1, then there exists a unique
homomorphism h : G1 �! G2 with d(f(x); h(x)) < � for all x 2 G1?"

In the next year, Hyers [3] gave the �rst a�rmative partial answer to the question
of Ulam for Banach spaces. Hyers' theorem was generalized by Aoki [1] for additive
mappings and by Rassias [15] for linear mappings by considering an unbounded
Cauchy di�erence, the latter of which has in
uenced many developments in the
stability theory. This area is then referred to as the generalized Hyers-Ulam sta-
bility. In 1994, P. G�avruta [2] generalized these theorems for approximate additive
mappings controlled by the unbounded Cauchy di�erence with regular conditions.

Recently, Sadeghi [16] presented a �xed point method to prove the general-
ized Hyers-Ulam stability of functional equations in modular spaces with the 42-
condition and using the �xed point theorem Lemma 1.1, Wongkum, Chaipunya,
and Kumam [19] proved the generalized Hyers-Ulam stability for quadratic map-
pings in a modular space whose modular is convex, lower semi-continuous but do
not satisfy the 42-condition.

Lee and Jung [8] proved a general uniqueness theorem that can be easily applied
to the (generalized) Hyers-Ulam stability of the Cauchy additive functional equa-
tion, the quadratic functional equation, and the quadratic-additive type functional
equations in Banach spaces.

In this paper, we investigate a �xed point theorem in modular spaces, whose
induced modular is lower semi-continuous, for a mapping with some conditions in
place of the condition of a bounded orbit. Using this �xed point theorem, we will
prove a general uniqueness theorem that can be applied to the generalized Hyers-
Ulam stability of additive-quadratic functional equations in modular spaces without
42-conditions.

2. Fixed point Theorems in modular spaces

In this section, we will prove a �xed point theorem in modular spaces, whose
induced modular is (convex) lower semi-continuous, for a mapping with some con-
ditions in place of the condition of a bounded orbit.

De�nition 2.1. Let X be a vector space over a �eld K(=R or C).
(1) A generalized functional � : X �! [0;1] is called a modular if

(M1) �(x) = 0 if and only if x = 0,
(M2) �(�x) = �(x) for every scalar � with j�j = 1, and
(M3) �(z) � �(x) + �(y) whenever z is a convex combination of x and y.

(2) If (M3) is replaced by
(M4) �(�x+ �y) � ��(x) + ��(y)

for all x; y 2 V and for all nonnegative real numbers �, � with �+ � = 1, then we
say that � is convex.

Remark 2.2. Let � be a modualr on a vector space X. Then by (M1) and (M3),
we can easily show that for any positive real number � with � < 1,

�(�x) � �(x)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

63 CHANGIL KIM 62-74



A FIXED POINT APPROACH TO THE STABILITY OF ADDITIVE-CUBIC... 3

for all x 2 X and hence we have

�(x) � �(2x)

for all x 2 X.

For any modular � on X, the modular space X� is de�ned by

X� := fx 2 X j �(�x)! 0 as �! 0g:

Let X� be a modular space and let fxng be a sequence in X�. Then (i) fxng is
called �-convergent to a point x 2 X�, denoted by

lim
n!1

xn =� x or x =� lim
n!1

xn;

if �(xn � x) ! 0 as n ! 1, (ii) fxng is called �-Cauchy if for any � > 0, one has
�(xn � xm) < � for su�ciently large m;n 2 N, and (iii) a subset K of X� is called
�-complete if each �-Cauchy sequence in K is �-convergent to a ponit in K.

Proposition 2.3. Let � be a modualr on a vector space X and S : X �! X an
one-to-one linear map. De�ne a map �S : X �! [0;1] by

�S(x) = �(S(x)); 8x 2 X:

Then we have
(1) �S is a modular on X,
(2) if � is a convex modular on X, then �S is a convex modular on X, and
(3) if � is lower semi-continuous, then �S is lower semi-continuous.

Suppose that S is an isomorphism. Then we have
(4) S(X�S ) = X� and
(5) if C is a �-complete subset of X� and S(C) = C, then C is a �S-complete subset
of X�S .

Proof. (1) Suppose that �S(x) = 0. Then by (M1), S(x) = 0 and since S is one-
to-one, x = 0. If x = 0, then �S(0) = �(S(0)) = �(0) = 0. Hence �S satis�es
(M1). Since S is a linear map, �S satis�es (M2). Let z = �x+ �y for x; y 2 X and
non-negative real numbers �; � with �+ � = 1. Since S is a linear map and � is a
modular, by (M3), we have

�S(�x+ �y) = �(�S(x) + �S(y)) � �(S(x)) + �(S(y)) � �S(x) + �S(y)

and thus �S satis�es (M3).
(2) is trivial.
(3) Suppose that fxng is a sequence in X�S such that fxng is �S-convergent to

x in X�S . Then fS(xn)g is �-convergent to S(x). Since � is lower semi-continuous
and fS(xn)g is �-convergent to S(x),

�S(x) = �(S(x)) � lim inf
n!1

�(S(xn)) � lim inf
n!1

�S(xn):(2.1)

and hence �S is lower semi-continuous.
(4) Let x 2 X�. Then

lim
�!0

�(�x) = lim
�!0

�S(�S
�1(x)) = 0

and so S�1(x) 2 X�S . Hence X� � S(X�S ). For the converse, let x 2 X�S . Then

lim
�!0

�S(�x) = lim
�!0

�(�S(x)) = 0
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and so S(x) 2 X�. Hence S(X�S ) � X�.
(5) Suppose that C is a �-complete subset of X� with S(C) = C. By (4),

C � X�S . Let fxng be a �S-Cauchy sequence in C. For any n;m 2 N,

�(S(xn)� S(xm)) = �S(xn � xm);

fS(xn)g is a �-Cauchy sequence in C. Since C is a �-complete subset of X�, there
is an y 2 C such that fS(xn)g is �-convergent to y. Then clearly, fxng is �S-
convergent to S�1(y) 2 C and so C is a �S-complete subset of X�S . �

A modular space X� is said to satisfy the 42-condition if there exists k � 2 such
that �(2x) � k�(x) for all x 2 X.

Now, we will prove a �xed point theorem in modular spaces where the map T

do not assume to be the boundedness of an orbit. Our results exploit one unifying
hypothesis in which some conditions are assumed.

Lemma 2.4. Let X� be a modular space whose induced modular is lower semi-
continuous and let C � X� be a �-complete subset. Let S : X �! X be an
isomorphism and T : C �! C a mapping such that S(C) = C and STx = TSx

for all x 2 C. Suppose that there is a constant L 2 [0; 1) and xo 2 C such that
�(Txo � xo) <1 and

(2.2) �(x+ y) � �S(x) + �S(y); �S(Tx� Ty) � L�(x� y); 8x; y 2 C:

Then there is a unique �xed point w 2 C of T such that

(2.3) �(S�2x0 � w) �
2

1� L
�(Tx0 � x0):

Further, we have

lim
n!1

�(TnS�2x0) =� w:

Proof. By Proposition 2.3, �S is a modular, C is a �S-complete subset of X�S , and
S(X�S ) = X�. By (M1) and (2.2), we have

�(x) � �S(x); �S(Tx� Ty) � L�(x� y) � L�S(x� y)

for all x; y 2 C and so T is a �S-contraction. By (M1) and (2.2), we have

�S(S
�2T 2x0 � S�2x0) = �(S�1T 2x0 � S�1x0)

� �S(S
�1T 2x0 � S�1Tx0) + �S(S

�1Tx0 � S�1x0)

� L�(S�1Tx0 � S�1x0) + �(Tx0 � x0)

� (L+ 1)�(Tx0 � x0):

and

�S(S
�2Tnx0 � S�2x0) � �S(S

�1Tnx0 � S�1Tx0) + �S(S
�1Tx0 � S�1x0)

� L�(S�1Tn�1x0 � S�1x0) + �(Tx0 � x0)

= L�S(S
�2Tn�1x0 � S�2x0) + �(Tx0 � x0)

for all n 2 N. By induction, we have

�S(S
�2Tnx0 � S�2x0) � �n�1

k=0L
k�(Tx0 � x0) �

1

1� L
�(Tx0 � x0)
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for all n 2 N. For any non-negative integers m;n with m > n,

�S(S
�3Tnx0 � S�3Tmx0) = �(S�2Tnx0 � S�2Tmx0)

� �S(S
�2Tnx0 � S�2x0) + �S(S

�2Tmx0 � S�2x0)

�
2

1� L
�(Tx0 � x0):

(2.4)

Since STx = TSx for all x 2 C, T has a bounded orbit at a point S�3x0 in
C � X�S and thus by Lemma 1.1, fTnS�3x0g is �S-convergent to a point !0 2 C.
Let ! = S!0. Then

lim
n!1

�(TnS�2x0) =� w

and since �S is lower semi-continuous, by (2.4), we have (2.3).
Now, we claim that w is a unique �xed point of T . Since �S is a lower semi-

continuous, we have

�(w � Tw) = �S(w0 � Tw0) � lim inf
n!1

�S(T
n+1S�3x0 � Tw0)

� lim inf
n!1

L�(TnS�3x0 � w0) = 0

and hence w is a �xed point of T . Suppose that v is another �xed point of T . Since
STx = TSx for all x 2 C, by (2.2) and (2.3), we have

�(S�1w � S�1v) � �S(T
nw � TnS�2x0) + �S(T

nS�2x0 � Tnv)

� Ln
4

1� L
�(Tx0 � x0)

for all n 2 N and since 0 � L < 1, w = v. �

Replacing (2.2) by (2.5), we have the following lemma. The proof is similar to
the proof of Lemma 2.4.

Lemma 2.5. Let X� be a modular space whose induced modular is lower semi-
continuous and let C � X� be a �-complete subset. Let S : X �! X be an
isomorphism and T : C �! C a mapping such that S(C) = C and STx = TSx for
all x 2 C. Suppose that there are real numbers r; L and xo 2 C such that 0 < r < 1,
L 2 [0; 1

r
), �(Txo � xo) <1, and

(2.5) �(x+ y) � r�S(x) + r�S(y); �S(Tx� Ty) � L�(x� y); 8x; y 2 C:

Then there is a unique �xed point w 2 C of T such that

lim
n!1

�(TnS�2x0) =� w

and

(2.6) �(S�2x0 � w) �
2r2

1� rL
�(Tx0 � x0):

Proof. By Proposition 2.3, �S is a modular, C is a �S-complete subset of X�S , and
S(X�S ) = X�. By (M1) and (2.5), we have

�(x) � �S(x); �S(Tx� Ty) � L�(x� y) � rL�S(x� y)
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for all x; y 2 C and so T is a �S-contraction. By (M1) and (2.5), we have

�S(S
�2T 2x0 � S�2x0) = �S(S

�1T 2x0 � S�1x0)

� r�S(S
�1T 2x0 � S�1Tx0) + r�S(S

�1Tx0 � S�1x0)

� rL�(S�1Tx0 � S�1x0) + r�(Tx0 � x0)

� r(rL+ 1)�(Tx0 � x0):

and

�S(S
�2Tnx0 � S�2x0) � r�S(S

�1Tnx0 � S�1Tx0) + r�S(S
�1Tx0 � S�1x0)

� rL�(S�1Tn�1x0 � S�1x0) + r�(Tx0 � x0)

= rL�S(S
�2Tn�1x0 � S�2x0) + r�(Tx0 � x0)

for all n 2 N. By induction, we have

�S(S
�2Tnx0 � S�2x0) � �n�1

k=0r
k+1Lk�(Tx0 � x0) �

r

1� rL
�(Tx0 � x0)

for all n 2 N. For any non-negative integers m;n with m > n,

�S(S
�3Tnx0 � S�3Tmx0) = �(S�2Tnx0 � S�2Tmx0)

� r�S(S
�2Tnx0 � S�2x0) + r�S(S

�2Tmx0 � S�2x0)

�
2r2

1� rL
�(Tx0 � x0):

The rest of the proof is similar to the proof of Lemma 2.4 . �

3. Uniquness theorem for the stability of functional equations and

its applications

Throughout this section, we assume that V is a linear space and X� is a �-
complete modular space whose induced modular is lower semi-continuous. In this
section, we prove that, if for given map f : V �! X�, there is a mapping F : V �!
X�, which is near f in X�, with some properties possessed by additive-quadratic
mappings, then F is uniquely determined.

De�ne a set M by

M := fg : V �! X� j g(0) = 0g

and a generalized function e� on M by for each g 2M,

e�(g) := inffc > 0 j �(g(x)) � c	(x); 8x 2 V g;

where 	 : V �! [0;1) is a mapping.
Similar to Lemma 10 in [19], we have the following lemma :

Lemma 3.1. We have the following :
(1) M is a linear space,
(2) e� is a modular on M, and
(3) if � is convex, then e� is convex,
(4) M

e� =M and M
e� is e�-complete, and

(5) e� is lower semi-continuous.
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Proof. (1), (2), and (3) are trivial.
(4) By the de�nition of M

e�, Me� =M. Take any e�-Cauchy sequence fgng in Me�.
Then fgn(x)g is a �-Cauchy sequence in X� for all x 2 X. Since X� is �-complete,
there is a mapping g : V �! X� such that �(gn(x) � g(x)) �! 0 as n �! 1 for
all x 2 X. For any � > 0, there is an m 2 N such that

�(gm(0)� g(0)) = �(g(0)) � �

and hence g 2 M
e� = M. Let � > 0 be given. Since fgng is a e�-Cauchy sequence in

M
e�, there is a k 2 N such that for any n;m 2 N with n;m � k,

�(gn(x)� gm(x)) � �	(x);8x 2 V

and since � is a lower semi-continuous, we have

�(gn(x)� g(x)) � lim inf
m!1

�(gn(x)� gm(x)) � �	(x)

for all x 2 X. Hence fgng is e�-convergent and thus M
e� is e�-complete.

(5) Suppose that fgng is a sequence in M
e� which is e�-convergent to g 2 M

e�.
Then fgn(x)g is �-convergent to g(x) for all x 2 V . Let � > 0 be given. Then for
any n 2 N, there is a positive real number cn such that

e�(gn) � cn � e�(gn) + �

and so

�(g(x)) � lim inf
n!1

�(gn(x)) � lim inf
n!1

cn	(x) �
�
lim inf
n!1

e�(gn) + �
�
	(x)

for all x 2 X. Hence e� is lower semi-continuous. �

Now, with Lemma 2.4 and Lemma 3.1, we will show the following uniquness
concerning the stability of additive-quadratic mappings and using these, we prove
the generalized Hyers-Ulam stability for additive-quadratic mappings

Theorem 3.2. Let � : V �! [0;1) be a mapping and L a positive real number
sucht that 0 � L < 1

2
and

(3.1) �(2x) � L�(x)

for all x 2 V . Let f; F : V �! X� be mappings such that

(3.2) �(f(x)� F (x)) �M [�(x) + �(�x)]

for all x 2 V and some non-negative real number M and

(3.3) F (2x) = 3F (x) + F (�x)

for all x 2 X. Then F is determined by

(3.4)
1

8
F (x) =� lim

n!1

h� 1

22n+4
+

1

2n+4

�
f(2nx) +

� 1

22n+4
�

1

2n+4

�
f(�2nx)

i

for all x 2 V .

Proof. Let 	(x) = �(x) + �(�x) for all x 2 V . By Lemma 3.1, M
e� = M ise�-complete and e� is lower semi-continuous. De�ne T : M

e� �! M
e� by Tg(x) =

3

8
g(2x)� 1

8
g(�2x) for all g 2M

e� and all x 2 V and S :M
e� �!M

e� by Sg = 2g for
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all g 2 M
e�. Then S is an isomorphism. Suppose that g; h 2 M

e� and e�(g � h) � c

for some positive real number c. By (M3) and (3.1), we have

�S(Tg(x)� Th(x)) = �(
3

4
g(2x)�

1

4
g(�2x)�

3

4
h(2x) +

1

4
h(�2x))

� �(g(2x)� h(2x)) + �(g(�2x)� h(�2x))

� c(	(2x) + 	(�2x))

� 2cL	(x)

for all x 2 V and so

e�S(Tg � Th) � 2Le�(g � h):

By (M3), we have

e�(g � h) � e�S(g) + e�S(h)
for all g; h 2M

e�. By (3.3), F is a �xed point of T and since e�S = f�S , by (3.2), we
get

�(S�1f(x)� TS�1f(x)) � �(f(x)� F (x)) + �(TF (x)� Tf(x))

�M	(x) + �S(TF (x)� Tf(x))

�M	(x) + 2L�(F (x)� f(x))

for all x 2 V and thus

e�(S�1f � TS�1f) � (1 + 2L)M <1:

By Lemma 2.4, there is a unique �xed point G 2M
e� of T such that

lim
n!1

e�(TnS�3f �G) = 0

and

e�(S�3f �G) �
2

1� 2L
e�(S�1f � TS�1f):

Since F is a �xed point of T , S�3F is a �xed point of T and by (3.2), we have

e�(S�3f � S�3F ) � e�(S�1f � S�1F ) �
2

1� 2L
e�(S�1f � TS�1f)

because 1 < 2

1�2L
. Hence by the uniquness of G in Lemma 2.4, S�3F = G and

(3.5) lim
n!1

e��TnS�3f � S�3F
�
= 0:

By induction, there are sequences fang and fbng such that

Tnf(x) = anf(2
nx) + bnf(�2

nx)

for all x 2 V and all n 2 N. By the de�nition of T ,

Tn+1f(x) =
�3
8
an �

1

8
bn

�
f(2n+1x) +

�3
8
bn �

1

8
an

�
f(�2n+1x)

and so 8><
>:
an+1 =

3

8
an �

1

8
bn

bn+1 =
3

8
bn �

1

8
an

for all n 2 N. Hence
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8><
>:
an+1 + bn+1 =

1

4
(an + bn)

an+1 � bn+1 =
1

2
(an � bn)

for all n 2 N and so we get

8><
>:
an = 1

22n+1
+ 1

2n+1

bn = 1

22n+1
� 1

2n+1

for all n 2 N. Thus

S�3F (x) =� lim
n!1

h� 1

22n+4
+

1

2n+4

�
f(2nx) +

� 1

22n+4
�

1

2n+4

�
f(�2nx)

i
for all x 2 V and hence we have (3.4). �

For any mapping f : V �! X�, let

fo(x) =
f(x)� f(�x)

2
; fe(x) =

f(x) + f(�x)

2
:

Then fo is odd and fe is even. By the fact that f(x) = fo(x) + fo(x) for all x 2 V ,
we can easily show the following corollary :

Corollary 3.3. All conditions in Theorem 3.2 are assumed. Then F is determined
by

(3.6)
1

8
Fo(x) =� lim

n!1

1

2n+3
fo(2

nx);

(3.7)
1

8
Fe(x) =� lim

n!1

1

22n+3
fe(2

nx);

and

(3.8)
1

16
F (x) =� lim

n!1

� 1

22n+4
fe(2

nx) +
1

2n+4
fo(2

nx)
�

for all x 2 V .

Proof. Note that

�
h1
8
Fo(x)�

1

2n+3
fo(2

nx)
i

= �
h 1
16
F (x)�

1

16
F (�x)�

1

2n+4
f(2nx) +

1

2n+4
f(�2nx)

i

� �
h1
8
F (x)�

� 1

22n+4
+

1

2n+4

�
f(2nx)�

� 1

22n+4
�

1

2n+4

�
f(�2nx)

i

+ �
h1
8
F (�x)�

� 1

22n+4
+

1

2n+4

�
f(�2nx)�

� 1

22n+4
�

1

2n+4

�
f(2nx)

i
for all x 2 V and for all n 2 N. By (3.4), we have (3.6) and similarly, we have (3.7).
Thus we get (3.8). �

If F is additive or quadratic or additive-quadratic, then F satis�es (3.3) and
hence we have the following corollary :
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Corollary 3.4. All conditions in Theorem 3.2 are assumed. If F is addi-
ive(quadratic, addiitive-quadratic, resp.) then F is determind by

1

8
F (x) =� lim

n!1

1

2n+3
fo(2

nx)
�1
8
F (x) =� lim

n!1

1

22n+3
fe(2

nx);

1

16
F (x) =� lim

n!1

� 1

22n+4
fe(2

nx) +
1

2n+4
fo(2

nx)
�
; resp:

�
for all x 2 V .

Similar to the proof of Theorem 3.2, we can show the following theorem for
modular spaces with convex modulars.

Theorem 3.5. All conditions in Theorem 3.2 are assumed. Suppose that � is
convex and L is a positive real number sucht that 0 � L < 2. Then F is determined
by

(3.9)
1

8
F (x) =� lim

n!1

h� 1

22n+4
+

1

2n+4

�
f(2nx) +

� 1

22n+4
�

1

2n+4

�
f(�2nx)

i
for all x 2 V .

Proof. Let 	(x) = �(x) + �(�x) for all x 2 V . By Lemma 3.1, M
e� = M ise�-complete and e� is lower semi-continuous. De�ne T : M

e� �! M
e� by Tg(x) =

3

8
g(2x)� 1

8
g(�2x) for all g 2M

e� and all x 2 V and S :M
e� �!M

e� by Sg = 2g for
all g 2 M

e�. Then S is an isomorphism. Suppose that g; h 2 M
e� and e�(g � h) � c

for some positive real number c. By (M3) and (3.1), we have

�S(Tg(x)� Th(x)) = �(
3

4
g(2x)�

1

4
g(�2x)�

3

4
h(2x) +

1

4
h(�2x))

�
3

4
�(g(2x)� h(2x)) +

1

4
�(g(2x)� h(�2x))

� cL	(x)

for all x 2 V and so

e�S(Tg � Th) � Le�(g � h):

Further, clearly we have

e�(g � h) �
1

2
e�S(g) + 1

2
e�S(h)

for all g; h 2M
e�. By (3.3), F is a �xed point of T and by (3.2), we get

�(S�1f(x)� TS�1f(x)) �
1

2
�(f(x)� F (x)) +

1

2
�(TF (x)� Tf(x))

�
1

2
M	(x) +

1

2
�S(TF (x)� Tf(x))

�
1

2
(1 + L)M	(x)

for all x 2 V and thus

e�(S�1f � TS�1f) �
1

2
(1 + L)M <1:

By Lemma 2.5, there is a unique �xed point G 2M
e� of T such that

e�(S�3f �G) �
1

2� L
e�(S�1f � TS�1f):
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and further, we have

lim
n!1

e�(TnS�3f �G) = 0:

Since F is a �xed point of T , S�3F is a �xed point of T and

e�(S�3f � S�3F ) �
1

4
e�(S�1f � S�1F ) �

1

2� L
e�(S�1f � TS�1f)

because 1

2
� 1

2�L
. Hence by the uniquness of G in Lemma 2.4, S�3F = G. The

rest proof is similar to the proof of Theorem 3.2. �

Using Lemma 2.5 and Theorem 3.5, we can show the generalized Hyers-Ulam
stability for aditive-quadratic mappings.

Corollary 3.6. Let V be a linear space and X� a �-complete modular space whose
induced modular is convex lower semi-continuous. Suppose that f : V �! X� is a
mapping such that

(3.10) �(f(x+ y) + f(x� y)� 2f(x)� f(y)� f(�y)) � �(x; y)

for all x; y 2 V and let � : V 2 �! [0;1) be a mapping satisfying

(3.11) �(2x; 2y) � L�(x; y); 8x; y 2 V

for some real number L with 0 � L < 2. Then there is a unique additive-quadratic
mapping G : V �! X� such that

(3.12) �(
1

4
f(x)�G(x)) �

3

8(2� L)
[�(x; x) + �(�x;�x)]

for all x 2 V .

Proof. Let �(x) = �(x; x) and 	(x) = �(x)+�(�x) for all x 2 V . By Lemma 3.1,
M

e� = M is e�-complete and e� is lower semi-continuous. De�ne T : M
e� �! M

e� by
Tg(x) = 3

8
g(2x) � 1

8
g(�2x) for all g 2 M

e� and all x 2 V and S : M
e� �! M

e� by
Sg = 2g for all g 2 M

e�. Then S is an isomorphism and (2.5) in Lemma 2.5 holds
for r = 1

2
. Letting y = x in (3.10), we get

(3.13) �(f(2x)� 3f(x)� f(�x)) � �(x; x)

for all x 2 V and by (3.13), we have

�(Tf(x)� f(x)) �
3

8
�(x; x) +

1

8
�(�x;�x) �

3

8
	(x)

for all x 2 V . Hence we get

(3.14) e�(Tf � f) �
3

8

and by Lemma 2.5, there is a unique �xed point G 2M
e� of T such that

e�(S�2f �G) �
3

8(2� L)
:

For any n 2 N, let

an =
1

22n+4
+

1

2n+4
; bn =

1

22n+4
�

1

2n+4
:
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Since G is a �xed point of T , G satis�es (3.3) and by Theorem 3.5, we have

1

8
G(x) =� lim

n!1
[anf(2

nx) + bnf(�2
nx)]

for all x 2 V . By (M3), we get

�
� 1

29
G(x+ y) +

1

29
G(x� y)�

1

28
G(x)�

1

29
G(y)�

1

29
G(�y)

�

�
1

26
�
�1
8
G(x+ y)� anf(2

n(x+ y))� bnf(�2
n(x+ y))

�

+
1

26
�
�1
8
G(x� y)� anf(2

n(x� y))� bnf(�2
n(x� y))

�

+
1

26
�
�1
4
G(x)� 2anf(2

nx)� 2bnf(�2
nx)

�

+
1

26
�
�1
8
G(y)� anf(2

ny)� bnf(�2
ny)

�

+
1

26
�
�1
8
G(�y)� anf(2

n(�y))� bnf(�2
n(�y))

�

+
an

26
�
�
f(2n(x+ y)) + f(2n(x� y))� 2f(2nx)� f(2ny)� f(2n(�y))

�

+
jbnj

26
�
�
f(�2n(x+ y)) + f(�2n(x� y))� 2f(�2nx)� f(�2ny)� f(�2n(�y))

�

(3.15)

and by (3.11), we have

an

26
�
�
f(2n(x+ y)) + f(2n(x� y))� 2f(2nx)� f(2ny)� f(2n(�y))

�

+
jbnj

26
�
�
f(�2n(x+ y)) + f(�2n(x� y))� 2f(�2nx)� f(�2ny)� f(�2n(�y))

�

�
an

26
�(2nx; 2ny) +

jbnj

26
�(�2nx;�2ny)

� Ln
han
26
�(x; y) +

jbnj

26
�(�x;�y)

i

(3.16)

for all x; y 2 V and for all n 2 N. Since 0 < an; jbnj < 2�n, by (3.15) and (3.16), we
can show that G is an additive-quadratic mapping. Since every additive-quadratic
mapping satisifes (3.3), G is a unique additive-quadratic mapping with (3.12). �
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Rough fuzzy ideals in BCK/BCI-algebras
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Abstract. The notions of rough ideals and rough fuzzy ideals in BCK/BCI-algebras are introduced and some

properties of such ideals are investigated. The relations between the upper(lower) rough ideals and the upper

(lower) approximations of their homomorphic images are discussed.

1. Introduction

The notion of rough sets was introduced by Pawlark ([11]). The theory of rough sets has

emerged as another major mathematical approach for managing uncertainty that arises from

inexact, noisy, or incomplete information. It is turning out to be methodologically significant

to the domains of artificial intelligence and cognitive sciences, especially in the representation of

reasoning with vague and/or imprecise knowledge, data analysis, machine learning, and knowledge

discovery ([11,12]). The algebraic approach to rough sets was studied in [8]. Biswas and Nanda

([1]) introduced the notion of rough subgrougs, and Kuroki and Morderson ([6]) discussed the

structure of rough sets and rough groups. Kuroki and Wang ([7]) gave some properties of lower

and upper approximations with respect to the normal subgroups and the fuzzy normal subgroups,

and Kuroki ([5]) introduced the notion of rough ideals in semigroup, which is an extended notion

of ideals in semigroups, and gave some properties of such ideals. Xiao and Zhang ([13]) established

the notion of rough prime ideals and rough fuzzy prime ideals in a semigroup. Imai and Iséki

([2]) introduced two classes of abstract algebras : BCK-algebras and BCI-algebras. It is known

that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. C. R. Lim

and H. S. Kim ([8]) introduced the notion of a rough set in BCK/BCI-algebras. By introducing

the notion of a quick ideal in BCK/BCI-algebras, they obtained some relations between quick

ideals and upper(lower) rough quick ideals in BCK/BCI-algebras.

In this paper, we introduce the notion of rough ideals and rough fuzzy ideals in BCK/BCI-

algebras, and we give some properties of such ideals. Also, we discuss the relations between the

upper(lower) rough ideals and the upper (lower) approximations of their homomorphic images.
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2. Preliminaries

A BCI-algebra ([9]) is a non-empty set X with a constant 0 and a binary operation “ ∗ ”

satisfying the axioms, for all x, y, z ∈ X:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCK-algebra is a BCI-algebra satisfying the axiom:

(v) 0 ∗ x = 0 for all x ∈ X.

We can define a partial ordering ≤ on X by x ≤ y if and only x ∗ y = 0. In any BCI-algebra

X, the following hold: for any x, y, z ∈ X,

(1) x ∗ 0 = x,

(2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(3) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,
(4) (x ∗ z) ∗ (y ∗ z) ≤ (x ∗ z).

Let X be a BCK/BCI-algebra and let 0 ∈ I ⊆ X. A set I is called an ideal of X if for all

x, y ∈ X, x ∗ y ∈ I and y ∈ I imply x ∈ I. An ideal I is said to be closed if 0 ∗ x ∈ I whenever

x ∈ I. Let S be a non-empty subset of X. Then S is called a subalgebra of X if, for any x, y ∈ S,

x∗y ∈ S. A closed ideal of a BCK/BCI-algebra X is a subalgebra of X. An equivalence relation

ρ on X is called a congruence relation on X if (x ∗ u, y ∗ v) ∈ ρ for any (x, y), (u, v) ∈ ρ. We

denote by [a]ρ the ρ-congruence class containing the element a ∈ X. Let X/ρ be the set of all

ρ-equivalence classes on X, i.e., X/ρ := {[a]ρ|a ∈ X}. For any [x]ρ, [y]ρ ∈ X/ρ, if we define

[x]ρ ∗ [y]ρ := [x ∗ y]ρ = {z ∈ X|(z, x ∗ y) ∈ ρ},

then it is well defined, since ρ is a congruence relation. A congruence relation ρ on a BCK/BCI-

algebra X is said to be regular if [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ implies [x]ρ = [y]ρ for any

[x]ρ, [y]ρ ∈ X/ρ.

Theorem 2.1. ([9]) Let X be a BCK-algebra and let ρ be a congruence relation on X. Then ρ

is regular if and only if X/ρ is a BCK-algebra.

Let I be an ideal of X. We define a relation ρI on X as follows:

ρI := {(x, y)|x ∗ y, y ∗ x ∈ I}. (*)

Then ρI is a regular congruence relation ([4]). Let Con(X) be the set of all congruences on X.

We define a subset Iρ of X from ρ ∈ Con(X) by Iρ := {x ∗ y|(x, y) ∈ ρ}.
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Proposition 2.2. ([4]) Let A be an ideal. If A is closed, then A = IρA .

Let X be a BCK/BCI-algebra and let ρ be a congruence relation on X. Let P(X) denote the

power set of X and P∗(X) = P(X) \ {∅}. Define the functions ρ, ρ− : P(X) → P(X) as follows:

for any ∅ ̸= A ∈ P(X), ρ−(A) := {x ∈ X|[x]ρ ⊆ A} and ρ−(A) := {x ∈ X|[x]ρ ∩A ̸= ∅}. The set

ρ−(A) is called the ρ-lower approximation of A, while ρ−(A) is called the ρ-upper approximation

of A. For a non-empty subset A of X, ρ(A) = (ρ−(A), ρ
−(A)) is called a rough set with respect to

ρ of P(X)×P(X) if ρ−(A) ̸= ρ−(A). A subset A of X is said to be definable if ρ−(A) = ρ−(A).

The pair (X, ρ) is called an approximation space. A congruence relation ρ on a set X is called

complete if [x]ρ ∗ [y]ρ = [x ∗ y]ρ for any x, y ∈ X.

3. Rough ideals in BCK/BCI-algebras

Let X be a BCK/BCI-algebra and let ∅ ̸= A ⊆ X. Let ρ be a congruence relation on X.

Then A is called an upper (a lower, respectively) rough ideal of X if ρ−(A) (ρ−(A), respectively)

is an ideal of X.

Theorem 3.1. Let ρI be a congruences relation on a BCK/BCI-algebra X as in (∗). If A is a

closed ideal of X, then it is an upper rough ideal of X.

Proof. Since A is an ideal of X, 0 ∈ A. Hence A ∩ [0]ρI ̸= ∅. Therefore 0 ∈ ρI
−(A).

Let x, y ∈ X with x∗y, y ∈ ρI
−(A). Then ([x]ρI ∗[y]ρI )∩A = ([x∗y]ρI )∩A ̸= ∅ and [y]ρI∩A ̸= ∅.

Hence there exist α, β ∈ A such that α ∈ [x]ρI ∗ [y]ρI = [x∗y]ρI and β ∈ [y]ρI . Therefore α = p∗ q
for some p ∈ [x]ρI , q ∈ [y]ρI . Since β, q ∈ [y]ρI , we have (β, y), (y, q) ∈ ρI and so (β, q) ∈ ρI .

Hence [β]ρI = [q]ρI . Since (q ∗ β, q ∗ q) = (q ∗ β, 0) ∈ ρI , we have (q ∗ β) ∗ 0 = q ∗ β ∈ A by

Proposition 2.2. Using β ∈ A, we have q ∈ A. Since p ∗ q, q ∈ A and A is an ideal of X, we

obtain p ∈ A. Therefore p ∈ [x]ρI ∩ A ̸= ∅. Thus x ∈ ρI
−(A), completing the proof. □

Theorem 3.1 shows that the notion of an upper rough ideal is an extended notion of a closed

ideal in BCK/BCI-algebras.

Example 3.2. Let X := {0, 1, 2, 3} be a BCK-algebra with the following Cayley table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 1 0 1

3 3 3 3 0

If we take A := {0, 2}, then it is not an ideal of X, since 1 ∗ 2 = 0 ∈ A, but 1 /∈ A. On the

while, let ρ be a congruence relation on X such that {0, 1, 2}, {3} are all ρ-congruence classes of

X. Then ρ−(A) = {0, 1, 2} is an ideal of X.
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Theorem 3.3. Let X be a BCK/BCI-algebra and let A be a closed ideal of X. Then ρ−(A),

if it is non-empty, is an ideal of X.

Proof. Since A is a closed ideal of X, it is a subalgebra of X. Since ρ−(A) ̸= ∅, ρ−(A) is a

subalgebra of X. Hence 0 ∈ ρ−(A). Let x, y ∈ X with x ∗ y, y ∈ ρ−(A). Then [x]ρ ∗ [y]ρ =

[x ∗ y]ρ ⊆ A, [y]ρ ⊆ A. If α ∈ [x]ρ, then (α, x) ∈ ρ. Since ρ is a congruence relation on X, we

have (α ∗ y, x ∗ y) ∈ ρ and so α ∗ y ∈ [x ∗ y]ρ ⊆ A. Since A is an ideal of X and y ∈ A, we get

α ∈ A, i.e., [x]ρ ⊆ A, proving that x ∈ ρ−(A). □

Let ρ be a regular congruence relation on a BCK-algebra X and let ∅ ̸= A ⊆ X. The lower

and upper approximations can be presented in an equivalent form as shown below:

ρ−(A)/ρ ={[x]ρ ∈ X/ρ | [x]ρ ⊆ A}
ρ−(A)/ρ ={[x]ρ ∈ X/ρ | [x]ρ ∩ A ̸= ∅}.

Proposition 3.4. Let ρ be a regular congruence relation on a BCK-algebra X. If A is a

subalgebra of X, then ρ−(A)/ρ is a subalgebra of the quotient BCK-algebra X/ρ.

Proof. Since A is a subalgebra of X, there exists an element x ∈ A such that [x]ρ ∩ A ̸= ∅, i.e.,
ρ−(A)/ρ ̸= ∅. Let [x]ρ and [y]ρ be any elements of ρ−(A)/ρ. Then [x]ρ ∩A ̸= ∅ and [y]ρ ∩A ̸= ∅.
This means that there exist a, b ∈ X such that a ∈ [x]ρ∩A and b ∈ [y]ρ∩A. Then a∗b ∈ [x]ρ∗[y]ρ.
Since A is a subalgebra of X, a ∗ b ∈ A. This means that [x]ρ ∗ [y]ρ ∈ ρ−(A)/ρ, completing the

proof. □

Proposition 3.5. Let ρ be a regular congruence relation on a BCK-algebra X. If A is a

subalgebra of X, then ρ−(A)/ρ is, if it is non-empty, a subalgebra of the quotient BCK-algebra

X/ρ.

Proof. Straightforward. □

Theorem 3.6. Let ρI be a regular congruence relation on a BCK-algebra X as in (∗). If A is

an ideal of X, then ρI
−(A)/ρI is an ideal of the quotient BCK-algebra X/ρI .

Proof. Since 0 ∈ ρI
−(A), we have [0]ρI∩A ̸= ∅ and hence [0]ρI ∈ ρI

−(A)/ρI . Let [x]ρI ∗[y]ρI , [y]ρI ∈
ρI

−(A)/ρI . Then ([x]ρI ∗ [y]ρI )∩A = [x ∗ y]ρI ∩A ̸= ∅ and [y]ρI ∩A ̸= ∅. Hence there exist α ∈ A

with α ∈ [x]ρI ∗ [y]ρI = [x ∗ y]ρI and β ∈ A for some β ∈ [y]ρI . Therefore α = p ∗ q for some

p ∈ [x]ρI , q ∈ [y]ρI . Since β, q ∈ [y]ρI , we have (β, y), (y, q) ∈ ρI and so (β, q) ∈ ρI . Hence

[β]ρI = [q]ρI . Since (q ∗ β, q ∗ q) = (q ∗ β, 0) ∈ ρI , we have (q ∗ β) ∗ 0 = q ∗ β ∈ A by Proposition

2.2. Using β ∈ A, we have q ∈ A. Since A is an ideal of X and q ∈ A, we have p ∈ A. Thus

p ∈ [x]ρI ∩ A, proving [x]ρI ∈ ρI
−(A)/ρI . □

Theorem 3.7. Let ρ be a regular congruence relation on a BCK-algebra X. If A is an ideal of

X, then ρ−(A)/ρ, if it is non-empty, an ideal of the quotient BCK-algebra X/ρ.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

78 Sun Shin Ahn et al 75-84



Rough fuzzy ideals in BCK/BCI-algebras

Proof. Since ρ−(A)/ρ ̸= ∅, ρ−(A)/ρ is a subalgebra of X/ρ. Hence [0]ρ ∈ ρ−(A)/ρ. Let [x]ρ ∗
[y]ρ, [y]ρ ∈ ρ−(A)/ρ for some [x]ρ ∈ X/ρ. Hence [x ∗ y]ρ ⊆ A and [y]ρ ⊆ A. Therefore x ∗ y ∈
ρ−(A), y ∈ ρ−(A). If α ∈ [x]ρ, then (α, x) ∈ ρ. Since ρ is a congruence relation on X, we have

(α ∗ y, x ∗ y) ∈ ρ. Hence α ∗ y ∈ [x∗ y]ρ ⊆ A. Hence α ∈ A, because A is an ideal of X and y ∈ A.

Therefore [x]ρ ⊆ A, proving that [x]ρ ∈ ρ−(A)/ρ. □

Theorem 3.8. Let ρ be a regular congruence relation on a BCK-algebra X. If A is an upper

rough ideal of X, then ρ−(A)/ρ is an ideal of the quotient algebra X/ρ.

Proof. Since 0 ∈ ρ−(A), we have [0]ρ ∩ A ̸= ∅ and hence [0]ρ ∈ ρ−(A)/ρ. Let [x]ρ ∗ [y]ρ =

[x ∗ y]ρ, [y]ρ ∈ ρ−(A)/ρ for some [x]ρ ∈ X/ρ. Then ([x]ρ ∗ [y]ρ) ∩ A = [x ∗ y]ρ ∩ A ̸= ∅ and

[y]ρ ∩ A ̸= ∅. Hence x ∗ y, y ∈ ρ−(A). Since ρ−(A) is an ideal of X, we have x ∈ A. Thus

x ∈ [x]ρ ∩ A ̸= ∅, proving [x]ρ ∈ ρ−(A)/ρ. □

Theorem 3.9. Let ρ be a regular congruence relation on a BCK-algebra X. If A is a lower

rough ideal of X, then ρ−(A)/ρ is, if it is non-empty, an ideal of the quotient BCK-algebra X/ρ.

Proof. Since ρ−(A)/ρ ̸= ∅, ρ−(A)/ρ is a subalgebra of X/ρ and hence [0]ρ ∈ ρ−(A)/ρ. Let

[x]ρ ∗ [y]ρ, [y]ρ ∈ ρ−(A)/ρ for some [x]ρ ∈ X/ρ. Hence [x ∗ y]ρ ⊆ A and [y]ρ ⊆ A. Therefore

x ∗ y ∈ ρ−(A), y ∈ ρ−(A). Since ρ−(A) is an ideal of X, we have x ∈ ρ−(A). Thus [x]ρ ⊆ A. □

4. Approximations of fuzzy sets

Let µ and λ be two fuzzy subsets of X. The inclusion λ ⊆ µ is denoted by λ(x) ≤ µ(x) for all

x ∈ X, and µ ∩ λ is defined by (µ ∩ λ)(x) = µ(x) ∧ λ(x) for all x ∈ X.

Definition 4.1. Let ρ be a congruence relation on a BCK/BCI-algebra X and µ a fuzzy subset

of X. Then we define the fuzzy sets ρ−(µ) and ρ−(µ) as follows:

ρ−(µ)(x) := ∧a∈[x]ρµ(a) and ρ−(µ)(x) := ∨a∈[x]ρµ(a).

The fuzzy sets ρ−(µ) and ρ−(µ) are called the ρ-lower approximations and ρ-upper approximations

of the fuzzy set µ, respectively. A set ρ(µ) = (ρ−(µ), ρ
−(µ)) is called a rough fuzzy set with respect

to ρ if ρ−(µ) ̸= ρ−(µ).

Definition 4.2. ([3]) A fuzzy set µ of a BCK/BCI-algebra X is called a fuzzy ideal of X if

(F1) µ(0) ≥ µ(x) for all x ∈ X,

(F2) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ X.

Let µ and ν be fuzzy ideals of a BCK/BCI-algebra X. Then µ∩ ν is also a fuzzy ideal of X.

A fuzzy subset µ of a BCK/BCI-algebra X is called an upper (a lower, respectively) rough

fuzzy ideal of X if ρ−(µ) (ρ−(µ), respectively) is a fuzzy ideal of X.
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Theorem 4.3. Let ρ be a congruence relation on a BCK/BCI-algebra X. If µ is a fuzzy ideal

of X, then ρ−(µ) is a fuzzy ideal of X.

Proof. Since µ is a fuzzy ideal of X, µ(0) ≥ µ(x) for all x ∈ X. Hence we obtain

ρ−(µ)(0) = ∨z∈[0]ρµ(z) ≥ ∨x′∈[x]ρµ(x
′) = ρ−(µ)(x).

For any x, y ∈ X, we have

ρ−(µ)(x) = ∨x′∈[x]ρµ(x
′) ≥ ∨x′∗y′∈[x]ρ∗[y]ρ,y′∈[y]ρ {min{µ(x′ ∗ y′), µ(y′)}}
= ∨x′∗y′∈[x∗y]ρ,y′∈[y]ρ {min{µ(x′ ∗ y′), µ(y′)}}
≥min{∨x′∗y′∈[x∗y]ρµ(x

′ ∗ y′),∨y′∈[y]ρµ(y
′)}

=min{ρ−(µ)(x ∗ y), ρ−(µ)(y)}.

Thus ρ−(µ) is a fuzzy ideal of X. □
Theorem 4.4. Let ρ be a congruence relation on a BCK/BCI-algebra X. If µ is a fuzzy ideal

of X, then ρ−(µ) is, if it is non-empty, a fuzzy ideal of X.

Proof. Since µ is a fuzzy ideal of X, µ(0) ≥ µ(x) for all x ∈ X. Hence for all x ∈ X, we have

ρ−(µ)(0) = ∧z∈[0]ρµ(z) ≥ ∧z′∈[x]ρµ(z
′) = ρ−(µ)(x).

For any x, y ∈ X, we obtain

ρ−(µ)(x) = ∧x′∈[x]ρµ(x
′) ≥ ∧x′∗y′∈[x]ρ∗[y]ρ,y′∈[y]ρ {min{µ(x′ ∗ y′), µ(y′)}}
= ∧x′∗y′∈[x∗y]ρ,y′∈[y]ρ {min{µ(x′ ∗ y′), µ(y′)}}
=min{∧x′∗y′∈[x∗y]ρµ(x

′ ∗ y′),∧y′∈[y]ρµ(y
′)}

=min{ρ−(µ)(x ∗ y), ρ−(µ)(y)}.

Thus ρ−(µ) is a fuzzy ideal of X. □
Let µ be a fuzzy subset of a BCK/BCI-algebra X and let (ρ−(µ), ρ

−(µ)) be a rough fuzzy

set. If ρ−(µ) and ρ−(µ) are fuzzy ideals of a BCK/BCI-algebra X, then we call (ρ−(µ), ρ
−(µ))

a rough fuzzy ideal of X. Therefore we have:

Corollary 4.5. If µ is a fuzzy ideal of a BCK/BCI-algebra X, then (ρ−(µ), ρ
−(µ)) is a rough

fuzzy ideal of X. If µ, λ are fuzzy ideals of a BCK/BCI-algebra X, then (ρ−(µ∩ λ), ρ−(µ∩ λ))

is a rough fuzzy ideal of X.

Let µ be a fuzzy subset of a BCK/BCI-algebra X. Then the sets

µt := {x ∈ X|µ(x) ≥ t}, µX
t := {x ∈ X|µ(x) > t},

where t ∈ [0, 1], are called respectively, a t-level subset and a t-strong level subset of µ.

Theorem 4.6. ([3]) Let µ be a fuzzy subset of a BCK/BCI-algebra X. Then µ is a fuzzy ideal

of X if and only if µt and µX
t are, if they are non-empty, ideals of X for every t ∈ [0, 1].
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Lemma 4.7. Let ρ be a congruence relation on a BCK/BCI-algebra X. If µ is a fuzzy subset

of X and t ∈ [0, 1], then

(1) (ρ−(µ))t = ρ−(µt),

(2) (ρ−(µ))Xt = ρ−(µX
t ).

Proof. (1) We have

x ∈ (ρ−(µ))t ⇔ ρ−(µ)(x) ≥ t ⇔ ∧a∈[x]ρµ(a) ≥ t

⇔ ∀a ∈ [x]ρ, µ(a) ≥ t ⇔ [x]ρ ⊆ µt ⇔ x ∈ ρ−(µt).

(2) Also we have

x ∈ (ρ−(µ))Xt ⇔ ρ−(µ)(x) > t ⇔ ∨a∈[x]ρµ(a) > t

⇔ ∃a ∈ [x]ρ, µ(a) > t ⇔ [x]ρ ∩ µX
t ̸= ∅ ⇔ x ∈ ρ−(µX

t ).

□

Theorem 4.8. Let ρ be a congruence relation on a BCK/BCI-algebra X. Then µ is a lower

(an upper) rough fuzzy ideal of X if and only if µt, µ
X
t are, if they are non-empty, lower (upper)

rough ideals of X for every t ∈ [0, 1].

Proof. By Theorem 4.6 and Lemma 4.7, we can obtain the conclusion easily. □

5. Problems of Homomorphism

Lemma 5.1. Let f be a surjective homomorphism of a BCK/BCI-algebra X to a BCK/BCI-

algebra Y and let A be any subset of X. Let ρ2 be a congruence relation on Y , and ρ1 :=

{(x1, x2) ∈ X ×X|(f(x1), f(x2)) ∈ ρ2}. Then
(1) ρ1 is a congruence relation on X,

(2) If ρ2 is complete and f is single-valued, then ρ1 is complete,

(3) f(ρ−1 (A)) = ρ−2 (f(A)),

(4) f(ρ1−(A)) ⊆ ρ2−(f(A)). If f is single-valued, then f(ρ1−(A)) = ρ2−(f(A)).

Proof. (1) It is clear that ρ1 is a congruence relation on X.

(2) Let x′ be any element of [x1 ∗ x2]ρ1 . Since ρ2 is complete, by the definition of ρ1, we know

that f(x′) ∈ [f(x1 ∗ x2)]ρ2 = [f(x1)]ρ2 ∗ [f(x2)]ρ2 . Since f is surjective, there exist x′
1, x

′
2 ∈ X

such that f(x′
1) ∈ [f(x1)]ρ2 , f(x

′
2) ∈ [f(x2)]ρ2 , and f(x′) = f(x′

1) ∗ f(x′
2) = f(x′

1 ∗ x′
2). Since f

is single-valued, by the definition of ρ1, we have x′
1 ∈ [x1]ρ1 , x

′
2 ∈ [x2]ρ1 , such that x′ = x′

1 ∗ x′
2.

Thus x′ ∈ [x1]ρ1 ∗ [x2]ρ1 . This means that [x1 ∗ x2]ρ1 ⊆ [x1]ρ1 ∗ [x2]ρ1 . On the other hand, we have

[x1]ρ1 ∗ [x2]ρ1 ⊆ [x1 ∗ x2]ρ1 . Therefore ρ1 is complete.

(3) Let y be any element of f(ρ1
−(A)). Then there exists x ∈ ρ1

−(A) such that f(x) = y. Hence

[x]ρ1 ∩ A ̸= ∅. Then there exists x′ ∈ [x]ρ1 ∩ A. Then f(x′) ∈ f(A) and by the definition of ρ1,
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we have f(x′) ∈ [f(x)]ρ2 . So [f(x)]ρ2 ∩ f(A) ̸= ∅, which implies y = f(x) ∈ ρ2
−(f(A)). Thus

f(ρ1
−(A)) ⊆ ρ2

−(A)).

Conversely, let y ∈ ρ2
−(f(A)). Then there exists x ∈ X such that f(x) = y. Hence [f(x)]ρ2 ∩

f(A) ̸= ∅. So there exists x′ ∈ A such that f(x′) ∈ f(A) and f(x′) ∈ [f(x)]ρ2 . Then by

the definition of ρ1, we have x′ ∈ [x]ρ1 . Thus [x]ρ1 ∩ A ̸= ∅ which implies x ∈ ρ1
−(A). So

y = f(x) ∈ f(ρ1
−(A)). It means that ρ2

−(f(A)) ⊆ f(ρ1
−(A)). From the above, we have

f(ρ1
−(A)) = ρ2

−(f(A)).

(4) Let y be any element of f(ρ1−(A)). Then there exists x ∈ ρ1−(A) such that f(x) = y,

so we have [x]ρ1 ⊆ A. Let y′ ∈ [y]ρ2 . Then there exists x′ ∈ X such that f(x′) = y′ and

f(x′) ∈ [f(x)]ρ2 . Hence x
′ ∈ [x]ρ1 ⊆ A, and so y′ = f(x′) ∈ f(A). Thus [y]ρ2 ⊆ f(A) which yields

that y ∈ ρ2−(f(A)). So we have f(ρ1−(A)) ⊆ ρ2−(f(A)).

Assume that f is single-valued and suppose y ∈ ρ2−(f(A)). Then there exist x ∈ X such that

f(x) = y and [f(x)]ρ2 ⊆ f(A). Let x′ ∈ [x]ρ1 . Then f(x′) ∈ [f(x)]ρ2 ⊆ f(A), and so x′ ∈ A. Thus

[x]ρ1 ⊆ A which yields x ∈ ρ1−(A). Then y = f(x) ∈ f(ρ1(A)), and so ρ2−(f(A)) ⊆ f(ρ1−(A)).

From the above, we have f(ρ1−(A)) = ρ2−(f(A)). □

Theorem 5.2. Let f be a surjective homomorphism of a BCK/BCI-algebraX to a BCK/BCI-

algebra Y . Let ρ2 be a congruence relation on Y and A be a subset of X. If ρ1 := {(x1, x2) ∈
X ×X|(f(x1), f(x2)) ∈ ρ2}, then ρ1

−(A) is an ideal of X if and only if ρ2
−(f(A)) is an ideal of

Y .

Proof. Assume that ρ1
−(A) is an ideal of X. Since 0 ∈ ρ1

−(A), [0]ρ1 ∩A ̸= ∅. Hence there exists

x′ ∈ [0]ρ1 ∩ A. Then f(x′) ∈ f(A), and by the definition of ρ1, we have f(x′) ∈ [f(0)]ρ2 . So

[f(0)]ρ2 ∩ f(A) ̸= ∅ which means f(0) ∈ ρ2
−(f(A)). Let x′, y′ ∈ Y with x′, y′ ∗ x′ ∈ ρ2

−(f(A)).

Then there exist x, z ∈ A such that f(x) = x′ and f(z) = y′ ∗ x′. Hence [f(x)]ρ2 ∩ f(A) ̸= ∅ and

[f(z)]ρ2 ∩ f(A) ̸= ∅. Therefore there exists b ∈ A such that f(b) ∈ [f(x)]ρ2 . By the definition of

ρ1, b ∈ [x]ρ1 and so b ∈ [x]ρ1 ∩ A. Hence [x]ρ1 ∩ A ̸= ∅. Thus x ∈ ρ1
−(A). Since f is surjective,

there exists y ∈ X such that f(y) = y′. Put u := y ∗ ((y ∗ x) ∗ z). Then u ∈ X. Since

f((y ∗ x) ∗ z) =f(y ∗ x) ∗ f(z)
=f(y ∗ x) ∗ y′ ∗ x′ (∵ f(z) = y′ ∗ x′)

=(f(y) ∗ f(x)) ∗ (y′ ∗ x′)

=(y′ ∗ x′) ∗ (y′ ∗ x′) = 0′,

we have f(u) = f(y ∗ ((y ∗ x) ∗ z)) = f(y) ∗ f((y ∗ x) ∗ z) = f(y) ∗ 0′ = f(y) = y′. Since

[f(z)]ρ2 ∩ f(A) ̸= ∅, we obtain

[y′ ∗ x′]ρ2 ∩ f(A) =([y′]ρ2 ∗ [x′]ρ2) ∩ f(A)

=([f(u)]ρ2 ∗ [f(x)]ρ2) ∩ f(A)

=[f(u ∗ x)]ρ2 ∩ f(A) ̸= ∅.
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Then there exists a ∈ A such that f(a) ∈ f(A) and f(a) ∈ [f(u ∗ x)]ρ2 . By the definition of ρ1,

we have a ∈ [u ∗ x]ρ1 . Hence [u ∗ x]ρ1 ∩ A ̸= ∅ and so u ∗ x ∈ ρ1
−(A). Since ρ1

−(A) is an ideal

of X and x ∈ ρ1
−(A), we get u ∈ ρ1

−(A). Therefore f(u) = y′ ∈ f(ρ1
−(A)) = ρ2

−(f(A)). Thus

ρ2
−(f(A)) is an ideal of Y .

Conversely, suppose that ρ2
−(f(A)) is an ideal of Y . Since f(0) = 0′ ∈ ρ2

−(f(A)), [f(0)]ρ2 ∩
f(A) ̸= ∅. Hence there exists y′ ∈ [f(0)]ρ2 ∩ f(A). Since f is surjective, there exists x′ ∈ X such

that f(x′) = y′. Hence f(x′) ∈ [f(0)]ρ2 ∩ f(A). Therefore f(x′) ∈ f(A). By the definition of ρ1,

x′ ∈ [0]ρ1 and x′ ∈ A. Hence [0]ρ1 ∩ A ̸= ∅, which means 0 ∈ ρ1
−(A).

Let x1, x2 ∈ X with x1 ∗ x2, x2 ∈ ρ1
−(A). By Lemma 5.1, we obtain that f(x1 ∗ x2) =

f(x1) ∗ f(x2), f(x2) ∈ f(ρ1
−(A)) = ρ2

−(f(A)). Since ρ2
−(f(A)) is an ideal of Y , we have

f(x1) ∈ ρ2
−(f(A)). Hence [f(x1)]ρ2 ∩ f(A) ̸= ∅. Therefore y′ ∈ [f(x1)]ρ2 ∩ f(A). Since f

is surjective, there exists x′ ∈ X such that f(x′) = y′. Hence f(x′) = y′ ∈ [f(x1)]ρ2 ∩ f(A).

Therefore f(x′) ∈ f(A). By the definition of ρ1, there exists x′ ∈ [x1]ρ1 and x′ ∈ A. Therefore

[x1]ρ1 ∩ A ̸= ∅, which means x1 ∈ ρ1
−(A). Thus ρ1

−(A) is an ideal of X. □

Theorem 5.3. Let f be an isomorphism of a BCK/BCI-algebra X to a BCK/BCI-algebra Y .

Let ρ2 be a complete congruence relation on Y and let A be a subset of X. If ρ1 := {(x1, x2) ∈
X ×X|(f(x1), f(x2)) ∈ ρ2}, then ρ1−(A) is an ideal of X if and only if ρ2−(f(A)) is an ideal of

Y .

Proof. By Lemma 5.1, we have f(ρ1−(A)) = ρ2−(f(A)). The proof is similar to the proof of

Theorem 5.2. □

By Theorem 5.2 and Theorem 5.3, we can obtain the following conclusion easily in quotient

BCK/BCI-algebras.

Corollary 5.4. Let f be an isomorphism of a BCK/BCI-algebra X to a BCK/BCI-algebra

Y . Let ρ2 be a complete congruence relation on Y and let A be a subset of X. If ρ1 := {(x1, x2) ∈
X ×X|(f(x1), f(x2)) ∈ ρ2}, then ρ1−(A)/ρ1( resp. ρ1

−(A)/ρ1) is an ideal of X/ρ1 if and only if

ρ2−(f(A))/ρ2(resp. ρ2
−(f(A))/ρ2) is an ideal of Y/ρ2.

Theorem 5.5. Let f be a surjective homomorphism of a BCK/BCI-algebraX to a BCK/BCI-

algebra Y . Let ρ2 be a complete congruence relation on Y and let A be a fuzzy subset of X. If

ρ1 := {(x1, x2) ∈ X ×X|(f(x1), f(x2)) ∈ ρ2}, then
(1) ρ1

−(A) is a fuzzy ideal of X if and only if ρ2
−(f(A)) is a fuzzy ideal of Y.

(2) If f is single-valued, then ρ1−(A) is a fuzzy ideal of X if and only if ρ2−(f(A)) is a fuzzy

ideal of X.

Proof. (1) By Theorem 4.6, we obtain that ρ1
−(A) is a fuzzy ideal of X if and only if (ρ1

−(A))Xt is,

if it is non-empty, an ideal ofX for every t ∈ [0, 1]. By Lemma 4.7, we have (ρ1
−(A))Xt = ρ1

−(AX
t ).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

83 Sun Shin Ahn et al 75-84



Sun Shin Ahn and Jung Mi Ko

By Theorem 5.2, we obtain that ρ1
−(AX

t ) is an ideal of X if and only if ρ2
−(f(AX

t )) is an ideal

of Y . It is clear that f(AX
t ) = (f(A))Xt . From this and Lemma 4.7, we have

ρ2
−(f(AX

t )) = ρ2
−(f(A)Xt ) = (ρ2

−(f(A)))Xt .

By Theorem 4.6, we obtain that (ρ2
−(f(A)))Xt is an ideal of Y for every t ∈ [0, 1] if and only if

ρ2
−(f(A)) is a fuzzy ideal of Y . Thus the conclusion holds.

(2) Since f is single valued, by Lemma 5.1, we have f(ρ1−(A)) = ρ2−(f(A)). The proof is similar

to that of (1). □
Corollary 5.6. Let f be an isomorphism of a BCK/BCI-algebra X to a BCK/BCI-algebra

Y . Let ρ2 be a complete congruence relation on Y and A a fuzzy subset of X. If ρ1 := {(x1, x2) ∈
X ×X|(f(x1), f(x2)) ∈ ρ2}, then ρ1−(At)/ρ1 (resp. ρ1

−(AX
t )/ρ1) is an ideal of X/ρ1 if and only

if ρ2−(f(At))/ρ2 (resp. ρ2
−(f(AX

t ))/ρ2) is an ideal of Y/ρ2.
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A Lebesgue integrable space of Boehmians for a

class of Dκ transformations
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October 28, 2016

Abstract Boehmians are objects obtained by an abstract algebraic construc-
tion similar to that of field of quotients and it in some cases just gives the field
of quotients. As Boehmian spaces are represented by convolution quotients,
integral transforms have a natural extension onto appropriately defined spaces
of Boehmians. In this paper, we have defined convolution products and a class
of delta sequences and have examined the axioms necessary for generating the
Dκ spaces of Boehmians. The extended Dκ transformation has therefore been
defined as a one-to-one onto mapping continuous with respect to ∆ and δ con-
vergences. Over and above, it has been asserted that the necessary and sufficient
conditions for an integrable sequence to be in the range of the Dκ transforma-
tion is that the class of quotients belongs to the range of the representative.
Further results related to the inverse problem are also discussed.

keywords: Integral transform; analogue system; generalized integral; discrete
system; Boehmian.

∗ Correspondence : Email: s.k.q.alomari@fet.edu.jo

1 Introduction

As some physical situations were determined by initial value problems which are
not smoothly enough but are generalized functions, numerous integral trans-
forms were defined in a context of distributions, ultradistributions, tempered
distributions, tempered ultradistributions and Boehmian spaces. The Laplace
transform method of right-side distributions was treated in [17] and [18] to solve
various types of ordinary differential equations. In [19] Loonker and Banerji have
given a solution of Volterra-Abel integral equations by aid of a distributional
wavelet transform. Indeed, if the differential equation ú = w , w being the
heaviside step function, is considered then no classical conclusion can be drawn
at this point. But, on generalized sense, if S denotes a space of rapid descents

(rapidly decreasing functions) and S
′

be its dual of slow growth, then for every

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

85 Al-Omari et al 85-95



v ∈ S we write

ú (v) = −u (v́)

= −
∫ ∞
−∞

u (x) v́ (x) dx

= −
∫ 0

−∞
αv́ (x) dx−

∫ ∞
0

(x+ α) v́ (x) dx

= −αv (0) + αv (0)−
∫ ∞
0

xv́ (x) dx

=

∫ ∞
0

v (x) dx

=

∫ ∞
−∞

w (x) v (x) dx

= w (v)

where α is some suitable constant.
Let κ be a sampling period and vα be an analogue function. In some engi-

neering applications, the classical D transform was presented as an equivalence
between discrete and analogue systems as [8]

Dvα (r, κ) := Dvα (r) :=
1

r!

∫
R+

vα (t) e−tκ
−1 (

tκ−1
)r
dt (1)

where D (vα ∗ yα) (r, κ) =
r∑
0
Dyα (r − k, κ)Dvα (r, κ) , ∗ being the Fourier con-

volution product defined by [7]

(vα ∗ yα) (t) :=

∫
R+

vα (τ) yα (t− τ) dt. (2)

Let xα be an analogue function and κ be a sampling period. Then, treating r
as a positive real number, say ξ, then the existed integral, denoted by Dκ, is
given as

Dκvα (ξ, κ) =
1

ξ!

∫
R+

vα (t) e−tκ
−1 (

tκ−1
)ξ
dt, (3)

where ξ ∈ R+; R+ := (0,∞) .
In this paper, without reading the efficiency of this integral in discrete and

analogue systems, we attempt to investigate the extension of this integral to a
class of Boehmians, being recent in the space of generalized functions. We derive
virtuous products, give definitions and derive some properties of the existence
of the given integral in the class of generalized functions.
Boehmian spaces were inaugurated by the idea of regular operators which is a

2
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subalgebra of Mikusiński operators. According to literature, we briefly recall the
general construction of Boehmian spaces. Let G be a group and S be a subgroup
of G. We assume to each pair of elements f ∈ G and ω ∈ S, is assigned the
product f ∗ g such that :

(1) ω, ψ ∈ S implies ω ∗ ψ ∈ S and ω ∗ ψ = ψ ∗ ω.
(2) f ∈ G and ω, ψ ∈ S implies (f ∗ ω) ∗ ψ = f ∗ (ω ? ψ) .
(3) f, g ∈ G, ω ∈ S and λ ∈ R, implies (f + g)∗ω = f ∗ω+g∗ω, λ (f ∗ ω) =

(λf) ∗ ω.Let ∆ be a family of sequences from S such that:
(1) f, g ∈ G, (δn) ∈ ∆ and f ∗ δn = g ∗ δn (n = 1, 2, ...) implies f = g, n ∈ N.
(2) (ωn) , (δn) ∈ ∆ implies (ωn ∗ ψn) ∈ ∆.

Members of ∆ are called delta sequences.
LetA be a pair of sequences defined byA =

{
((fn) , (ωn)) : (fn) ⊆ GN , (ωn) ∈ ∆

}
,

where n ∈ N, then members of ((fn) , (ωn)) ∈ A are called quotient of se-
quences, denoted by [fn/ωn] , if fn ∗ ωm = fm ∗ ωn,∀n,m ∈ N. Two quotients
of sequences fn/ωn and gnψn are equivalent, fn/ωn ∼ gnψn, if fn ∗ ψm =
gm ∗ ωn,∀n,m ∈ N.

The relation ∼ is an equivalent relation on A. The equivalence class contain-
ing fn/ωn is denoted by [fn/ωn] . These equivalence classes are called Boehmi-
ans. The space of all Boehmians is denoted by β1. The sum of two Boehmi-
ans and multiplication by a scalar can be defined in a natural way [fn/ωn] +
[gn/ψn] = [(fn ∗ ψn + gn ∗ ωn) / (ωn ∗ ψn)] , α [fn/ωn] = [αfn/ωn] ,α ∈ C, space
of complex numbers.

The operations ∗ andDα are given by [fn/ωn]∗[gn/ψn] = [(fn ∗ gn) / (ωn ∗ ψn)]
and Dα [fn/ωn] = [Dαfn/ωn] whereas, ∗ can be extended to β × S in the form
that If [fn/ωn] ∈ β1 and ω ∈ S, then [fn/ωn] ∗ ω = [fn ∗ ω/ωn] .

However, soon after the topic has been initiated, numerous integral trans-
forms were extended to Boehmian spaces by many authors in [1] , [2] , [6], [9− 16] ,
[20− 23] and many others.

Definition 1 The Mellin type convolution product � between two signals xα
and yα is defined by the integral equation ( see [4])

(vα � yα) (x) =

∫
R+

vα
(
y−1x

)
yα (x) y−1dy (4)

when the integral exists.

The Lebesgue space of integrable functions defined on R2
+ is denoted by l1

(
R2

+

)
and the set of smooth functions of bounded supports over R+ is denoted by
ϑ (R+) (see [3] for definition, properties and convergence in ϑ (R+)).

2 Convolution products and Boehmians

In this section, we establish the prerequisite axioms of the Boehmian space
B
(
l1
(
R2

+

)
, ϑ,�, •

)
with the operations � and • where • is a convolution prod-

uct defined as follows.

3
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Definition 2 Let the casual analogue signals vα, yα ∈ l1
(
R2

+

)
be given. Then,

between vα and yα, we define a product • given as

(vα • yα) (ξ, κ) =

∫
R+

vα
(
ξ, y−1κ

)
yα (y) dy (5)

provided the above integral exists.

Proving axioms of the space B
(
l1
(
R2

+

)
, ϑ,�, •

)
begins with the following the-

orem.

Theorem 3 Given vα ∈ l1
(
R2

+

)
and yα ∈ ϑ (R+) . Then we get vα • yα ∈

l1
(
R2

+

)
.

Proof The hypothesis that vα ∈ l1
(
R2

+

)
implies

∫
R2

+

∣∣vα (ξ, y−1κ)∣∣ dξdκ <

M1 (y > 0) . Hence, with the aid of the Fubini’s theorem together with the hy-
pothesis that yα ∈ ϑ (R+) we confirm

∫
R2

+

|(vα • yα) (ξ, κ)| dξdκ =

∫
R2

+

∣∣∣∣∣∣∣
∫
R+

vα
(
ξ, y−1κ

)
yα (y) dy

∣∣∣∣∣∣∣ dξdκ
≤

∫
R2

+

∫
P

∣∣vα (ξ, y−1κ)∣∣ |yα (y)| dydξdκ

≤ M1

∫
P

|yα (y)| dy <∞

where P is an interval in R+ including the support of yα.

Hence the theorem is finished.

Theorem 4 Let vα ∈ l1
(
R2

+

)
and that yα, zα ∈ ϑ (R+) be analogue signals.

Then
vα • (yα � zα) = (vα • yα) • zα.

Proof On account of (4) and (5) we are permitted to write

(vα • (yα � zα)) (ξ, κ) =

∫
R2

+

vα
(
ξ, y−1κ

)
yα
(
t−1y

)
dyzα (t) t−1dt. (6)

The substitution u = yt−1 implies dy = tdu. Therefore, (6) can be expressed as

(vα • (yα � zα)) (ξ, κ) =

∫
R2

+

vα
(
ξ, u−1

(
t−1κ

))
yα (u) zα (t) dudt

=

∫
R+

(vα • yα)
(
ξ, t−1κ

)
zα (t) dt.

4
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The proof is therefore finished.

Theorem 5 Given vα ∈ l1
(
R2

+

)
. For every yα ∈ ϑ (R+) , we get

Dκ (vα � yα) (ξ, κ) = ((Dκvα) • yα) (ξ, κ)

Proof Applying (3) to (4) gives

Dκ (vα • yα) (ξ, κ) =
1

ξ!

∫
R2

+

vα
(
y−1x

)
yα (y) y−1dy

(
e−xκ

−1
) (
xκ−1

)ξ
dx

=
1

ξ!

∫
R2

+

vα
(
y−1x

) (
e−xκ

−1
) (
xκ−1

)ξ
yα (y) y−1dxdy.(7)

Let zy = x, then dx = ydz. Therefore, on account of (7) we obtain that

Dκ (vα � yα) (ξ, κ) =
1

ξ!

∫
R2

+

vα (x)
(
e−yzκ

−1
) (
xκ−1

)ξ
yα (y) dzdy. (8)

Hence, by the Fubini’s theorem, we finish the proof of the theorem.

Theorem 6 Given r̆ ∈ C, vα ∈ l1
(
R2

+

)
and yα ∈ ϑ (R+) . We get

(r̆vα) • yα = r̆ (vα • yα) .

Proof of this theorem is straightforward follows from definitions. Hence it is
omitted.

Theorem 7 Given vα, zα ∈ l1
(
R2

+

)
. For every yα ∈ ϑ (R+) , we get

(vα + zα) • yα = vα • yα + zα • yα.

Proof of above theorem follows from simple integration. Details are therefore
omitted.

Theorem 8 Given vα,n → vα as n → ∞ in l1
(
R2

+

)
. For every yα ∈ ϑ (R+) ,

we get vα,n • yα → vα • yα as n→∞.
Proof of above theorem is a direct conclusion of Theorem 4. Hence it is avoided.

By ∆ we mean the subset of ϑ (R+) such that for every sequence (µα,n)
∞
0 ∈

ϑ (R+), n ∈ N , we have.

i
′

:
∫
R+

µα,ndy = 1; i
′′

:
∫
R+

|µα,n| dy <∞; i
′′′

: suppµα,n ⊆ (0, an) , limn→∞ an =

0.
Elements of ∆ are said to be delta sequences or approximating identities.

Theorem 9 Given vα ∈ l1
(
R2

+

)
. For every (µα,n) ∈ ϑ (R+) , we get limn→∞ vα•

µα,n = vα.

5
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Proof Let vα ∈ l1
(
R2

+

)
and ϑ

(
R2

+

)
be the set of smooth functions of bounded

supports over R2, then ϑ
(
R2

+

)
is dense in l1

(
R2

+

)
. Hence, for a given ε > 0, we

can find ψα ∈ ϑ
(
R2

+

)
such that

‖vα − ψα‖ < ε. (9)

Define gα (y) = ψα
(
ξ, y−1κ

)
, then gα (y) is uniformly continuous mapping in

ϑ (R+) for every ξ, κ > 0. Therefore, for each ε > 0 we find δ > 0 so that
−ε < gα (y1)− gα (y2) < ε wherever −δ < y − y−1 < δ.
Since y and y−1 belong to R+ and that gα ∈ ϑ (R+) , we get

−ε < gα (y)− gα
(
y−1

)
< ε (10)

when −δ < y − y−1 < δ.
Also, since ψα is of bounded support in ϑ

(
R2

+

)
it follows suppψα

(
ξ, y−1κ

)
⊆

[a1, a2]× P for some compact subset P of R+. Hence

ψα
(
ξ, y−1κ

)
= 0,

(
ξ, y−1κ

)
/∈ [a1 − δ, a2 + δ]× P. (11)

The hypothesis that suppµα,n → 0, n → ∞ asserts that we can find N ∈ N
such that

suppµα,n (y) ⊂ [0, δ] (12)

for every n ≥ N. By the property
∫
R+

µα,ndy = 1 we write

‖(ψα • µα,n)− ψα‖ =

∫
R2

+


∣∣∣∣∣∣∣
∫
R+

(
ψα
(
ξ, y−1κ

)
− ψα (ξ, κ)µα,n (y)

)
dy

∣∣∣∣∣∣∣
 dξdκ

≤
∫
R3

+

(∣∣gα (y)− gα
(
y−1

)∣∣ |µα,n (y)|
)
dydξdκ

=

∫
P

a2+δ∫
a1

δ∫
0

(∣∣gα (y)− gα
(
y−1

)∣∣ |µα,n (y)|
)
dydξdκ.

By virtue of (10) and (12) and the assumption that
∫
R+

|µα,n| dy < M we have

‖ψα • µα,n − ψα‖ < ε (a2 + δ)

a2+δ∫
a1

 δ∫
0

|µα,n (y)| dy

 dξ

= ε (a2 + δ)M (a2 − a1 + δ) (13)

Finally, we write

‖(vα • µα,n)− vα‖ ≤ ‖(vα − ψα) • µα,n‖+ ‖(ψα • µα,n)− ψα‖+ ‖ψα − vα‖ .
(14)

6
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Hence, on account of (9) , (10) and (13) , (14) yields

‖(vα • µn)− vα‖ ≤ ε (M +M (a2 − a1 + 2δ) + 1) .

This finishes the proof of our result.

The Boehmian space B
(
l1
(
R2

+

)
, ϑ,�, •

)
is therefore entirely performed. Simi-

larly, one can proceed to generate the space B
(
l1
(
R2

+

)
, ϑ,�,�

)
.

We introduce addition in B
(
l1
(
R2

+

)
, ϑ,�, •

)
as [(un) / (εn)] + [(vn) / (εn)] =

[((un • εn) + (vn • εn)) / (εn � εn)] . In B
(
l1
(
R2

+

)
, ϑ,�, •

)
we define scalar mul-

tiplication as Ω [(un) / (εn)] = [Ω (un) / (εn)] = [(Ωun) / (εn)] ,Ω ∈ C. We de-
fine the convolution • in B

(
l1
(
R2

+

)
, ϑ,�, •

)
as [(ϕn) / (εn)] • [(vn) / (εn)] =

[(ϕn • vn) / (εn � εn)] . Also, we define differentiation in B
(
l1
(
R2

+

)
, ϑ,�, •

)
as

Dα [(un) / (εn)] = [(Dαun) / (εn)] , α is a real number. For B
(
l1
(
R2

+

)
, ϑ,�, •

)
•

l1
(
R2

+

)
the product is given as [(un) / (εn)] • ϕ = [((un) • ϕ) / (εn)] where

[(un)(δn)] ∈ B
(
l1
(
R2

+

)
, ϑ,�, •

)
and ϕ ∈ l1

(
R2

+

)
.

(βn) of B
(
l1
(
R2

+

)
, ϑ,�, •

)
is δ convergent to β in B

(
l1
(
R2

+

)
, ϑ,�, •

)
; i.e.(βn→β) ,

if we can find (εn) in ∆ such that βn • εk;β • εk ∈ l1
(
R2

+

)
(∀k, n ∈ N) , where

limn→∞ βn • εk = β • εk in l1
(
R2

+

)
(∀k ∈ N) .

(βn) of B
(
l1
(
R2

+

)
, ϑ,�, •

)
is ∆-convergent to β in B

(
l1
(
R2

+

)
, ϑ,�, •

)
; i.e.

(βn→β) , if (εn) ∈ ∆, with (βn − β)•εn ∈ l1
(
R2

+

)
(∀n ∈ N) , and limn→∞ (βn − β)•

εn = 0 in l1
(
R2

+

)
.

3 Dκ transform of Boehmians

Let β = [(vα,n) / (µα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�,�

)
. Then we present the general-

ized transform D̂κ of β as

D̂κβ = [(Dκvα,n) / (µα,n)] (15)

in the space B
(
l1
(
R2

+

)
, ϑ,�, •

)
.

Theorem 10 The mapping D̂κβ : B
(
l1
(
R2

+

)
, ϑ,�,�

)
→ B

(
l1
(
R2

+

)
, ϑ,�, •

)
is well-defined and linear.

Proof Given [(vα,n) / (rα,n)] = [(yα,n) / (ψα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�,�

)
. Then it

follows that vα,n� yα,m = yα,n� rα,m. Employing Dκ for the previous equation
directly gives Dκvα,n • yα,m = Dκyα,n • rα,m, (∀n,m ∈ N) . That is,

Dκvα,n/rα,n ∼ Dκyα,n/ψα,n. (16)

Finally, let the Boehmians [(vα,n) / (rα,n)] and [(yα,n) / (ψα,n)] be equivalent in
the space B

(
l1
(
R2

+

)
, ϑ,�,�

)
. Then by definitions and Theorem 5 the proof of

our result follows.

Theorem 11 The extended D̂κ integral is consistent with Dκ : l1
(
R2

+

)
→

l1
(
R2

+

)
.
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Proof For every vα ∈ l1
(
R2

+

)
, let β be its representative in B

(
l1
(
R2

+

)
, ϑ,�,�

)
.

Then indeed β = [(vα � (ϕα,n)) / (ϕα,n)] where (ϕα,n) ∈ ∆ (∀n ∈ N) . On the
other hand, its clear that (ϕα,n) and its representative are independent for n ∈
N . Therefore by Theorem 5 we deduce D̂κ (β) = [(Dκ (vα � (ϕα,n))) / (ϕα,n)] =
[(Dκ (vα • (ϕα,n))) / (ϕα,n)] ; that is the representative of Dκf in l1

(
R2

+

)
.

Hence the proof is finished.

Theorem 12 Given [(gα,n) / (ψα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�, •

)
. Then [(gα,n) / (ψα,n)]

is in the range of D̂κ iff gα,n is in the range of Dκ (∀n ∈ N) .

Proof Indeed, when [(gα,n) / (ψα,n)] is in the range of D̂κ; then it is obvious
that gα,n is in the range of Dκ (∀n ∈ N) .
On the other hand, if gα,n is in the range of Dκ (∀n ∈ N), then it can be ob-
tained an element vα,n ∈ l1

(
R2

+

)
satisfying Dκvα,n = gα,n (∀n ∈ N) . Due to the

assumption that [(gα,n) / (ψα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�, •

)
, we have gα,n • ψα,m =

gα,m•ψα,n (∀m,n ∈ N) . That is, Dκ (vα,n � ϕα,n) = Dκ (vα,m � ϕα,n) (m,n ∈ N),
where vα,n ∈ l1

(
R2

+

)
and ϕα,n ∈ ∆, ∀n ∈ N.

Now, injectivity of Dκ leads to vα,n � ϕα,m = vα,m � ϕα,n (m,n ∈ N) .
Hence, the quotient vα,n/ϕα,n defines a quotient in B

(
l1
(
R2

+

)
, ϑ,�,�

)
. There-

fore, we write [(vα,n) / (ϕα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�,�

)
and D̂κ ([(vα,n) / (ϕα,n)]) =

[(gα,n) / (ψα,n)] .
Hence the proof is finished.

Theorem 13 D̂κ : B
(
l1
(
R2

+

)
, ϑ,�,�

)
→ B

(
l1
(
R2

+

)
, ϑ,�, •

)
is an isomor-

phism.
Proof Let D̂κ [(vα,n) / (ϕα,n)] ∼= D̂κ [(gα,n) / (ψα,n)] in of B

(
l1
(
R2

+

)
, ϑ,�, •

)
.

By aid of Theorem 5 and the idea involving quotients of B
(
l1
(
R2

+

)
, ϑ,�, •

)
we

deduce thatDκvα,n•ψα,m = Dκvα,m•ψα,n. Theorem 5 reveals Dκ (vα,n � ψα,m) =
Dκ (gα,m � ψα,n) . Properties of Dκ implies vα,n � ψα,m = gα,m � φα,n. There-
fore, the idea of quotients of B

(
l1
(
R2

+

)
, ϑ,�,�

)
leads to [(vα,n) / (ϕα,n)] =

[(gα,n) / (ψα,n)] .Surjectivity of D̂κ can be derived as in the following man-
ner. Let [(Dκvα,n) / (φα,n)] ∈ B

(
l1
(
R2

+

)
, ϑ,�, •

)
be given arbitrary. Then

Dκvα,n • φα,m = Dκvα,m • φα,n for every m,n ∈ N.
Once again, Theorem 5 leads to Dκ (vα,n � ϕα,m) = Dκ (vα,m � ϕα,n). Hence
the proof is finished.
Theorem 14 Given δ1, δ2 ∈ B

(
l1
(
R2

+

)
, ϑ,�,�

)
. We get D̂κ (δ1 � δ2) = D̂κδ1•

δ2.
Proof Let δ1 = [(vα,n) / (ϕα,n)] ∈ B

(
l1
(
R2

+

)
, ϑ,�,�

)
. By (15) and calcula-

tions, we get D̂κ ([(vα,n) / (ϕα,n)]� [(κα,n) / (φα,n)]) =
[(
D̂κ (vα,n)

)
/ (ϕα,n)

]
•

[(κα,n) / (φα,n)] .
This finishes the proof of the theorem.

Definition 15 Given
[(
D̂κ (vα,n)

)
/ (ϕα,n)

]
∈ B

(
l1
(
R2

+

)
, ϑ,�, •

)
. We define

D̂κ
−1

as the inverse integral of D̂κ as

D̂κ
−1 [(

D̂κ (vα,n)
)
/ (ϕα,n)

]
= [(vα,n) / (ϕα,n)] , (17)
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(φα,n) ∈ ∆.
Theorem 16 Given [(vα,n) / (ϕα,n)] ∈ B

(
l1
(
R2

+

)
, ϑ,�, •

)
. For every φα ∈

ϑ (R+) we get D̂κ ([(vα,n) / (ϕα,n)]� φα) =
[(
D̂κ (vα,n)

)
/ (ϕα,n)

]
• φα.

Proof Let [(vα,n) / (ϕα,n)] ∈ B
(
l1
(
R2

+

)
, ϑ,�, •

)
and φα ∈ ϑ (R+) . Applying

(15) and Theorem 5 give D̂κ ([(vα,n) / (ϕα,n)]� φα) = D̂κ ([(vα,n) / (ϕα,n)] • φα) .
Hence the proof is finished.

Theorem 17 D̂κ and D̂κ
−1

are continuous in terms of convergence of δ and ∆
types.

Proof We now confirm that D̂κ and D̂κ
−1

are continuous in terms of δ. Let
βn→β ∈ B

(
l1
(
R2

+

)
, ϑ,�,�

)
as n → ∞. By virtue of Theorem 1 we can

find vα,n,k and vα,k ∈ l1
(
R2

+

)
such that βn = [(vα,n,k) / (φα,k)] and β =

[(vα,k) / (φα,k)] with limn→∞ vα,n,k = vα,k (∀k ∈ N) . Continuity of Dκ trans-
form yields limn→∞Dκvα,n,k = Dκvα,k in l1

(
R2

+

)
. Thus [(Dκvα,n,k) / (φα,k)]→

[(Dκvα,k) / (φα,k)] ∈ B
(
l1
(
R2

+

)
, ϑ,�, •

)
as n→∞. in the sense of δ .

On the other hand, we show continuity of the inverse integral with respect to δ
convergence. Let ga,n→ga in B

(
l1
(
R2

+

)
, ϑ,�, •

)
as n→∞. Then, a parity of

Theorem 1 implies that we can write ga,n = [(Dκvα,n,k) / (φα,k)] and that ga =
[(Dκvα,k) / (φα,k)] with the property that Dκvα,n,k → Dκvα,k as n→∞. Hence
vα,n,k → vα,k as n→∞. Therefore, [(vα,n,k) / (φα,k)]→ [(vα,k) / (φα,k)] as n→
∞. By using (17) we get D̂κ

−1
[(Dκvα,n,k) / (φα,k)] → D̂κ

−1
[(Dκvα,k) / (φα,k)]

as n→∞.
Now, we establish continuity of D̂κ and D̂κ

−1
with respect to ∆ convergence.

Let βn → β ∈ B
(
l1
(
R2

+

)
, ϑ,�,�

)
as n → ∞. Then there exist vα,n ∈

l1
(
R2

+

)
and (φα,n) ∈ ∆ such that (βn − β) � φα,n = [((vα,n)� φα,k) / (φα,k)]

and vα,n → 0 as n → ∞. Employing (16) reveals D̂κ ((βn − β)� φα,n) =
[(Dκ ((vα,n)� φα,k)) / (φα,k)] . Hence, it follows

D̂κ ((βn − β)� φα,n) = [(Dκ (vα,n,k • φα,k)) / (φα,k)] = Dκ (vα,n)→ 0

as n→∞ in l1
(
R2

+

)
.

Therefore, D̂κ ((βn − β)� φα,n) =
(
D̂κβn − D̂κβ

)
• φα,n as n → ∞. Hence,

D̂κβn → D̂κβ as n→∞ in ∆ convergence.
Finally, let gα,n→gα in B

(
l1
(
R2

+

)
, ϑ,�, •

)
as n → ∞ then by Theorem 1 we

find Dκvα,k ∈ l1
(
R2

+

)
such that (gα,n − gα) • φα,n = [(Dκvα,k • φα,k) / (φα,k)]

where Dκvα,k → 0 as n→∞ for some (φα,n) ∈ ∆.
Using (17) , we obtain

D̂κ
−1

((gα,n − gα) • φα,n) =
[(
D̂κ
−1

(Dκvα,k • φα,k)
)
/ (φα,k)

]
.

Theorem 5 implies D̂κ
−1

((gα,n − gα) • φα,n) = [((vα,k)� φα,k) / (φα,k)] ∼ vα,n →
0 as n → ∞. Thus, D̂κ

−1
((gα,n − gα) • φα,n) =

(
D̂κ
−1
gα,n − D̂κ

−1
gα

)
� φα,n
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as n→∞. Hence, we get

D̂κ
−1
gα,n→gα ∈ B

(
l1
(
R2

+

)
, ϑ,�,�

)
as n→∞. (18)

This finishes the proof of the theorem.
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STABILITY OF THE SINE-COSINE FUNCTIONAL EQUATION IN

HYPERFUNCTIONS

CHANG-KWON CHOI and JEONGWOOK CHANG∗

Abstract. Let D′L∞ (R2n) and A′L∞ (R2n) be the spaces of bounded distributions and bounded

hyperfunctions respectively. In this paper we consider the Ulam’s stability of the sine-cosine

functional equation

u ◦ T − u⊗ v + v ⊗ u ∈ D′L∞ (R2n) [resp. A′L∞ (R2n)],

where u, v are Gelfand hyperfunctions, T : R2n → Rn such that T (x, y) = x− y for all x, y ∈ Rn ,

and ◦, ⊗ denote pullback and tensor product of generalized functions respectively.

1. Introduction

A certain formula or equation is applicable to model a physical process if a small change in the

formula or equation gives rise to a small change in the corresponding result. When this happens

we say the formula or equation is stable. In an application, a functional equation like the additive

Cauchy functional equation f(x+ y)− f(x)− f(y) = 0 may not be true for all x, y ∈ R but it may

be true approximately, that is

f(x+ y)− f(x)− f(y) ≈ 0

for all x, y ∈ R. This can be stated mathematically as

(1.1) |f(x+ y)− f(x)− f(y)| ≤ ε

for some small positive ε and for all x, y ∈ R. We would like to know when small changes in

a particular equation like the additive Cauchy functional equation have only small effects on its

solutions. This is the essence of stability theory. In 1940, S.M. Ulam asked the following question:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such that

d(f(xy), f(x)f(y)) ≤ ε.

Then does there exist a group homomorphism h and δε > 0 such that

d(f(x), h(x)) ≤ δε

for all x ∈ G1?

This problem was solved affirmatively by D. H. Hyers under the assumption that G2 is a Banach

space (see Hyers [19], Hyers-Isac-Rassias [20]). Since then Ulam problems of many other functional

2010 Mathematics Subject Classification. 46F99, 39B82.

Key words and phrases. convolution, distribution, hyperfunction, heat kernel, sine addition formula, Ulam

problem.
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2 CHANG-KWON CHOI and JEONGWOOK CHANG∗

equations have been investigated [13, 14, 15, 21, 23, 24, 25, 26, 27, 28]. Among the results, Székelyhidi

has developed his idea of using invariant subspaces of functions defined on a group or semigroup he

prove the Ulam-Hyers stability problem for functional equation

f(x+ y) = f(x)g(y) + g(x)f(y), x, y ∈ Rn,(1.2)

which arises from the sine addition formula [30, 31]. Using his elegant idea, Chung and Chang [7]

prove the parallel Ulam-Hyers stability problem for functional equation

f(x− y) = f(x)g(y)− g(x)f(y), x, y ∈ Rn,(1.3)

which arises from the sine subtraction formula. As a result it was proved that if f, g : Rn → C
satisfy

|f(x− y)− f(x)g(y) + g(x)f(y)| ≤M, x, y ∈ Rn(1.4)

for some M > 0, then either there exist λ1, λ2 ∈ C, not both zero, and L > 0 such that

(1.5) |λ1f(x)− λ2g(x)| ≤ L

for all x ∈ Rn, or else

(1.6) f(x− y) = f(x)g(y)− g(x)f(y)

for all x, y ∈ Rn. Also in the sequel, the functions f and g satisfying both (1.4) and (1.5) were

investigated.

Schwartz introduced the theory of distributions in his monograph Théorie des distributions [29]

in which Schwartz systematizes the theory of generalized functions, basing it on the theory of linear

topological spaces, relates all the earlier approaches, and obtains many important results. After his

elegant theory appeared, many important concepts and results on the classical spaces of functions

have been generalized to the space of distributions. For example, the space L∞(Rn) of bounded

measurable functions on Rn has been generalized to the space D′L∞(Rn) of bounded distributions as a

subspace of distributions and later the space D′L∞(Rn) is further generalized to the space A′L∞(Rn)

of bounded hyperfunctions. It is very natural to consider the following stability problem for the

functional equation in distributions and hyperfunctions u, v with respect to bounded distributions

and bounded hyperfunctions

u ◦ T − u⊗ v + v ⊗ u ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(1.7)

where D′L∞(R2n) and A′L∞(R2n) are the spaces of bounded distributions and bounded hyperfunc-

tions, T : R2n → Rn such that T (x, y) = x − y for all x, y ∈ Rn , and ◦, ⊗ denote pullback and

tensor product of generalized functions respectively. In [10] the distributional version of the stability

of (1.2) was proved. In this paper, as a parallel result we prove the stability of (1.7). As in [10] the

main tool is the heat kernel method initiated by T. Matsuzawa [22] which represents the generalized

functions in some class as the initial values of solutions of the heat equation with appropriate growth
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STABILITY OF THE SINE-COSINE FUNCTIONAL EQUATION IN HYPERFUNCTIONS 3

conditions [12, 22]. Making use of the heat kernel method we can convert (1.7) to the classical Ulam-

Hyers stability problem of the functional inequality; there exist C > 0 and N ≥ 0[ resp. for every

ε > 0 there exists Cε > 0 ] such that

(1.8) |ũ(x− y, t+ s)− ũ(x, t)ṽ(y, s) + ṽ(x, t)ũ(y, s)| ≤ C
(

1

t
+

1

s

)N
[ resp. Cεe

ε(1/t+1/s) ]

for all x, y ∈ Rn, t, s > 0, where ũ, ṽ, w̃, k̃ : Rn × (0,∞) → C are solutions of the heat equation

whose initial values are u, v, w, k respectively. In Section 3, we consider the stability problem (1.8)

with a more general setting, which will be used, combined with the heat kernel method [12, 22], to

prove the stability problem of (1.7).

2. Distributions and hyperfunctions

We first introduce the spaces S ′ of Schwartz tempered distributions and G′ of Gelfand hy-

perfunctions(see [16, 17, 18, 22, 29] for more details of these spaces). We use the notations:

|α| = α1 + · · · + αn, α! = α1! · · ·αn!, |x| =
√
x21 + · · ·x2n, xα = xα1

1 · · ·xαn
n and ∂α = ∂α1

1 · · · ∂αn
n ,

for x = (x1, · · · , xn) ∈ Rn, α = (α1, · · · , αn) ∈ Nn0 , where N0 is the set of non-negative integers and

∂j = ∂
∂xj

.

Definition 2.1. [29] We denote by S or S(Rn) the Schwartz space of all infinitely differentiable

functions ϕ in Rn such that

(2.1) ‖ϕ‖α,β = sup
x
|xα∂βϕ(x)| <∞

for all α, β ∈ Nn0 , equipped with the topology defined by the seminorms ‖ · ‖α,β. The elements of

S are called rapidly decreasing functions and the elements of the dual space S ′ are called tempered

distributions.

Definition 2.2. [16, 17] We denote by G or G(Rn) the Gelfand space of all infinitely differentiable

functions ϕ in Rn such that

‖ϕ‖h,k = sup
x∈Rn, α, β∈Nn

0

|xα∂βϕ(x)|
h|α|k|β|α!1/2β!1/2

<∞

for some h, k > 0. We say that ϕj −→ 0 as j →∞ if ||ϕj ||h,k −→ 0 as j →∞
for some h, k, and denote by G′ the strong dual space of G and call its elements Gelfand hyperfunc-

tions.

As a generalization of the space L∞ of bounded measurable functions, L. Schwartz introduced

the space D′L∞ of bounded distributions as a subspace of tempered distributions.

Definition 2.3. [29] We denote by DL1(Rn) the space of smooth functions on Rn such that ∂αϕ ∈
L1(Rn) for all α ∈ Nn0 equipped with the topology defined by the countable family of seminorms

‖ϕ‖m =
∑
|α|≤m

‖∂αϕ‖L1 , m ∈ N0.

We denote by D′L∞ the strong dual space of DL1 and call its elements bounded distributions.
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As a generalization of bounded distributions, the space A′L∞ of bounded hyperfunctions has been

introduced as a subspace of G′.

Definition 2.4. [12] We denote by AL1 the space of smooth functions on Rn satisfying

‖ϕ‖h = sup
α

‖∂αϕ‖L1

h|α|α!
<∞

for some constant h > 0. We say that ϕj → 0 in AL1 as j → ∞ if there is a positive constant h

such that

sup
α

‖∂αϕj‖L1

h|α|α!
→ 0 as j →∞.

We denote by A′L∞ the strong dual space of AL1 .

It is well known that the following topological inclusions hold:

G ↪→ S ↪→ DL1 , D′L∞ ↪→ S ′ ↪→ G′,

G ↪→ AL1 ↪→ DL1 , D′L∞ ↪→ A′L∞ ↪→ G′.

It is known that the space G(Rn) consists of all infinitely differentiable functions ϕ(x) on Rn

which can be extended to an entire function on Cn satisfying

(2.2) |ϕ(x+ iy)| ≤ C exp(−a|x|2 + b|y|2), x, y ∈ Rn

for some a, b, C > 0(see [16]).

Definition 2.5. Let uj ∈ G′(Rnj ) for j = 1, 2. Then the tensor product u1 ⊗ u2 of u1 and u2,

defined by

〈u1 ⊗ u2, ϕ(x1, x2)〉 = 〈u1 , 〈u2 , ϕ(x1, x2)〉 〉

for ϕ(x1, x2) ∈ G(Rn1 × Rn2), belongs to G′(Rn1 × Rn2).

3. Stability of (1.8)

Throughout this paper 〈G,+〉 is a 2-divisible commutative group, f, g : G × (0,∞) → C and N

denotes a fixed nonnegative real number. We consider the stability problems of each of the following

functional inequalities;

there exist C > 0 and d > 0 such that

|f(x− y, t+ s)− f(x, t)g(y, s) + g(x, t)f(y, s)| ≤ C
(

1

t
+

1

s

)N
+ d, ∀x, y ∈ G, t, s > 0;

(3.1)

for every ε > 0, there exists Cε > 0 which depends on ε such that

|f(x− y, t+ s)− f(x, t)g(y, s) + g(x, t)f(y, s)| ≤ Cεeε(1/t+1/s), ∀x, y ∈ G, t, s > 0.
(3.2)

From now on, a function a from a semigroup 〈S,+〉 to the field C of complex numbers is said to

be an additive function provided a(x+ y) = a(x) + a(y) for all x, y ∈ S and m : S → C is said to be

an exponential function provided m(x+ y) = m(x)m(y) for all x, y ∈ S.
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We introduce the following conditions (3.3) and (3.4) on f : G× (0,∞)→ C and N ;

there exist C > 0 and d > 0 such that

|f(x, t)| ≤ Ct−N + d, ∀x ∈ G, t > 0;
(3.3)

for every ε > 0, there exists Cε > 0 which depends on ε such that

|f(x, t)| ≤ Cεeε/t, ∀x ∈ G, t > 0.
(3.4)

Using the idea in [20, p. 104] we obtain the following (See [10] for the proofs).

Lemma 3.1. Let f, g : G× (0,∞)→ C satisfy the inequality; for each y ∈ G and s > 0 there exist

positive constants C = C(y, s) and d = d(y, s) [resp. for each y ∈ G, s > 0 and ε > 0 there exists a

positive constant Cε = Cε(y, s) ] such that

(3.5) |f(x− y, t+ s)− f(x, t)g(y, s)| ≤ Ct−N + d [resp. Cεe
ε/t ]

for all x ∈ G, t > 0. Then either f satisfies (3.3) [resp.(3.4)] or g is an exponential function.

Lemma 3.2. Let m : G× (0,∞)→ C be a nonzero exponential function satisfying (3.3) [resp.(3.4)].

Then m can be written in the form

m(x, t) = m1(x)m2(t),

where m1 : G→ C, m2 : (0,∞)→ C is exponential functions satisfying |m1(x)| = 1 for all x ∈ G.

Lemma 3.3. Let m be a nonzero exponential function satisfying (3.3) [resp.(3.4)]. Suppose that

f : G × (0,∞) → C satisfies the inequality; there exist positive constants C and d [resp. for each

ε > 0, there exists a positive constant Cε ] such that

(3.6) |f(x+ y, t+ s)− f(x, t)m(y, s)− f(y, s)m(x, t)| ≤ C
(

1

t
+

1

s

)N
+ d [resp. Cεe

ε/t ]

for all x, y ∈ G, t, s > 0. Then we have

f(x, t) = a(x)m1(x)m2(t) + 2f

(
0,
t

2

)
m1(x)m2

(
t

2

)
+R(x, t),

where a : G → C is an additive function, m : (0,∞) → C is an exponential function, λ ∈ C and

R : G× (0,∞)→ C satisfies

|R(x, t)| ≤ Ct−N + d [ resp.(3.4)]

for all x ∈ G, t > 0.

Theorem 3.4. Suppose that f, g : G × (0,∞) → C satisfy the inequality (3.1) [resp.(3.2)]. Then

either

(3.7) f(x− y, t+ s)− f(x, t)g(y, s) + g(x, t)f(y, s) = 0

for all x, y ∈ G, t, s > 0, or else there exist λ1, λ2 ∈ C, not both zero, such that λ1f(x, t)−λ2g(x, t)

satisfies (3.1) [resp.(3.2)].
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Proof. It suffices to prove that f, g satisfies (3.7) when λ1f(x, t)−λ2g(x, t) satisfies (3.3) [resp.(3.4)]

only for λ1 = λ2 = 0. Let

(3.8) F (x, y, t, s) = f(x− y, t+ s)− f(x, t)g(y, s) + g(x, t)f(y, s).

Choosing y1 and s1 with f(y1, s1) 6= 0 we have

(3.9) g(x, t) = k1f(x, t) + k2f(x− y1, t+ s1)− k2F (x, y1, t, s1),

where k1 = g(y1,s1)
f(y1,s1)

and k2 = −1
f(y1,s1)

. From (3.8) and (3.9) we have

f
(
(x− y)− z, (t+ s) + r)

)
(3.10)

=f(x− y, t+ s)g(z, r)− g(x− y, t+ s)f(z, r) + F (x− y, z, t+ s, r)

=f(x− y, t+ s)g(z, r)

−
(
k1f(x− y, t+ s) + k2f(x− y − y1, t+ s+ s1)− k2F (x− y, y1, t+ s, s1)

)
f(z, r)

+ F (x− y, z, t+ s, r)

=
(
f(x, t)g(y, s)− g(x, t)f(y, s) + F (x, y, t, s)

)
g(z, r)

− k1
(
f(x, t)g(y, s)− g(x, t)f(y, s) + F (x, y, t, s)

)
f(z, r)

+ k2

(
f(x, t)g(y + y1, s+ s1)− g(x, t)f(y + y1, s+ s1)

+ F (x, y + y1, t, s+ s1)− F (x− y, y1, t+ s, s1)
)
f(z, r)

+ F (x− y, z, t+ s, r),

and also we have

(3.11) f
(
x− (y+ z), t+ (s+ r)

)
= f(x, t)g(y+ z, s+ r)− g(x, t)f(y+ z, s+ r) +F (x, y+ z, t, s+ r).

From (3.10) and (3.11) we have

f(x, t)
(
g(y, s)g(z, r)− k1g(y, s)f(z, r) + k2g(y + y1, s+ s1)f(z, r)− g(y + z, s+ r)

)
(3.12)

+ g(x, t)
(
− f(y, s)g(z, r) + k1f(y, s)f(z, r)− k2f(y + y1, s+ s1)f(z, r) + f(y + z, s+ r)

)
=F (x, y + z, t, s+ r)− F (x− y, z, t+ s, r)− F (x, y, t, s)g(z, r) + k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s+ s1)− F (x− y, y1, t+ s, s1)

)
f(z, r).

Fixing y, z, s, r in (3.12), using (3.1) and (3.8) we have∣∣F (x, y + z, t, s+ r)− F (x− y, z, t+ s, r)− F (x, y, t, s)g(z, r) + k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s+ s1)− F (x− y, y1, t+ s, s1)

)
f(z, r)

∣∣
≤ 2C

(
1

t
+

1

r

)N
+ 2d+ C1

(
1

t
+

1

s

)N
+ d1 + C2

(
1

t
+

1

s1

)N
+ d2

≤ C ′t−N + d′,

where C ′ = 2N (2C + C1 + C2), d′ = 2N (2Cr−N + C1s
−N + C2s

−N
1 ) + 2d+ d1 + d2.
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Similarly, using (3.2) we obtain that for every ε > 0 there exists Cε > 0 such that∣∣F (x, y + z, t, s+ r)− F (x− y, z, t+ s, r)− F (x, y, t, s)g(z, r) + k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s+ s1)− F (x− y, y1, t+ s, s1)

)
f(z, r)

∣∣
≤ 2Cεe

ε(1/t+1/r) + C1Cεe
ε(1/t+1/s) + C2Cεe

ε(1/t+1/s1)

≤ C ′εeε/t,

where C ′ε = Cε(2e
ε/r + C1e

ε/s + C2e
ε/s1).

Thus, by the assumption that λ1f(x, t)− λ2g(x, t) satisfies (3.3) [resp.(3.4)] only for λ1 = λ2 = 0

we have

g(y, s)g(z, r)− k1g(y, s)f(z, r) + k2g(y + y1, s+ s1)f(z, r)− g(y + z, s+ r)

= f(y, s)g(z, r)− k1f(y, s)f(z, r) + k2f(y + y1, s+ s1)f(z, r)− f(y + z, s+ r) = 0.

Thus, it follows that

F (x, y + z, t, s+ r)− F (x− y, z, t+ s, r)(3.13)

=
(
− k1F (x, y, t, s) + k2F (x, y + y1, t, s+ s1)− k2F (x− y, y1, t+ s, s1)

)
f(z, r)

+ F (x, y, t, s)g(z, r).

Now, if we fix x, y, t, s, the left hand side of (3.13) satisfies (3.3) [resp. (3.4)] as a function of z

and r. From the right hand side of (3.13), using the assumption that λ1f(x, t) − λ2g(x, t) satisfies

(3.3) [resp.(3.4)] only for λ1 = λ2 = 0 it follows that F ≡ 0. This completes the proof. �

Theorem 3.5. Let f, g : G× (0,∞)→ C satisfy (3.1) [resp. (3.2)]. Then (f, g) satisfies one of the

following :

(i) both f and g satisfy (3.3) [resp.(3.4)],

(ii) f(x, t) = a(x)m(t) + R(x, t), g(x, t) = λf(x, t) + m(t) for all x ∈ G, t > 0, where a : G → C
is an additive function, m : (0,∞)→ C is an exponential function, λ ∈ C and R : G× (0,∞)→ C
satisfies |R(x, t)| ≤ Ct−2N + d [ resp.(3.4)] for all x ∈ G, t > 0 and for some C, d > 0,

(iii) f(x− y, t+ s)− f(x, t)g(y, s) + g(x, t)f(y, s) = 0 for all x, y ∈ G, t, s > 0.

Proof. Assume that (f, g) does not satisfy (iii). Then by Lemma 3.4 there exist λ1, λ2 ∈ C, not

both zero, such that λ1f(x, t)− λ2g(x, t) satisfies (3.3) [resp.(3.4)].

(Case 1) f(6= 0) satisfies (3.3) [resp.(3.4)].

Assume that f(6= 0) satisfies (3.3). Choosing y0 ∈ G, s0 > 0 such that f(y0, s0) 6= 0, dividing

|f(y0, s0)| in both sides of (3.1) and using the triangle inequality we have

|g(x, t)| ≤ 1

|f(y0, s0)|

(
|f(x− y0, t+ s0)|+ |f(x, t)g(y0, s0)|+ C

(
1

t
+

1

s0

)N
+ d

)

≤ C1(t+ s0)−N + d1 + C2t
−N + d2 + C3

(
1

t
+

1

s0

)N
+ d3

≤ C ′t−N + d′
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for all x ∈ G, t > 0 and for some positive constants C1, C2, C3, d1, d2, d3, C
′ and d′. Similarly, if f

satisfies (3.4) we can show that for every ε > 0 there exists C ′ε > 0 such that

|g(x, t)| ≤ C ′εeε/t

for all x ∈ G, t > 0. Thus, we obtain the case (ii).

(Case 2) f does not satisfy (3.3) [resp. (3.4)].

Assume that f does not satisfy (3.3). In this case we must have λ2 6= 0 and we can write

(3.14) g(x, t) = −λ1
λ2
f(x, t) +B(x, t) := λf(x, t) +B(x, t)

for all x ∈ G, t > 0, where R satisfies (3.3) [resp. (3.4)]. Putting (3.14) in (3.1) we have

(3.15) |f(x− y, t+ s)− f(x, t)B(y, s) +B(x, t)f(y, s)| ≤ C
(

1

t
+

1

s

)N
+ d

for all x, y ∈ G, t, s > 0. Using the triangle inequality and fixing y and s in (3.15) we have

|f(x− y, t+ s)− f(x, t)B(y, s)| ≤ |B(x, t)f(y, s)|+ C

(
1

t
+

1

s

)N
+ d ≤ C ′t−N + d′

for all x, y ∈ G, t, s > 0 and for some positive constants C ′ and d′. Applying Lemma 3.1 we have

(3.16) B(x, t) = m(x, t)

for all x ∈ G, t > 0, where m is an exponential function on G× (0,∞). Now, applying Lemma 3.2

we have

(3.17) R(x, t) = m(x, t) = m1(x)m2(t)

for all x ∈ G, t > 0, where m1 : G→ C, m2 : (0,∞)→ C are exponential functions. Replacing (x, t)

by (y, s) in (3.15) we have

(3.18) |f(−x+ y, t+ s)− f(y, s)B(x, t) +B(y, s)f(x, t)| ≤ C
(

1

t
+

1

s

)N
+ d

for all x, y ∈ G, t, s > 0. From (3.15) and (3.18), using the triangle inequality, putting y = 0 and

replacing t, s by t
2 we have

(3.19) |f(x, t) + f(−x, t)| ≤ C22N+1t−N + 2d

for all x ∈ G, t > 0. Replacing x by −x, y by −y in (3.15), we have

(3.20) |f(−x+ y, t+ s)− f(−x, t)B(−y, s) +B(−x, t)f(−y, s)| ≤ C
(

1

t
+

1

s

)N
+ d

for all x, y ∈ G, t, s > 0. From (3.20) and using (3.19) with fixing y and s we have

(3.21) |f(−x+ y, t+ s)− f(x, t)B(−y, s) +B(−x, t)f(y, s)| ≤ C1t
−N + d1

for all x ∈ G, t > 0. From (3.20) and (3.21) with fixing y and s we have

(3.22) |f(x, t) (B(y, s)−B(−y, s))− f(y, s) (B(x, t)−B(−x, t)) | ≤ C2t
−N + d2
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for all x, y ∈ G, t, s > 0. Since f does not satisfy (3.3), it follows from (3.22) that

B(y, s) = B(−y, s)

for all y ∈ G, s > 0 and hence m1(y) = 1 for all y ∈ G. Thus, we have

(3.23) g(x, t) = λf(x, t) +m2(t)

for all x ∈ G, t > 0. From (3.15), (3.17) and (3.19) we have

|f(x+ y, t+ s)− f(x, t)m2(s)− f(y, s)m2(t)| ≤ |f(y, s) + f(−y, s)||m2(t)|+ C

(
1

t
+

1

s

)N
+ d

(3.24)

≤ (C22N+1t−N + 2d)Ct−N + C

(
1

t
+

1

s

)N
+ d

≤ C ′
(

1

t
+

1

s

)2N

+ d′

for all x, y ∈ G, t, s > 0 and for some C ′ > 0, d′ > 0.

Similarly, if f satisfies (3.4) we can show that for every ε > 0 there exists C ′ε > 0 such that

|f(x+ y, t+ s)− f(x, t)m2(s)− f(y, s)m2(t)| ≤ C ′εeε/t(3.25)

for all x ∈ G, t > 0. Applying Lemma 3.3 with (3.23) and (3.24) we have

(3.26) f(x, t) = a(x)m2(t) + 2f

(
0,
t

2

)
m2

(
t

2

)
+R(x, t)

for all x ∈ G, t > 0, where a is an additive mapping and R satisfies (3.3)[resp. (3.4)]. Replacing

(y, s) by (x, t) in (3.1) we see that f(0, t) satisfies (3.3). Thus, 2f
(
0, t2
)
m2

(
t
2

)
+ R(x, t) satisfies

(3.3)[resp. (3.4)]. Replacing 2f
(
0, t2
)
m2

(
t
2

)
+R(x, t) by R(x, t) and m2 by m we get the case (iii).

This completes the proof.

�

4. Main results

In this section as a main result of the paper we consider the stability of (1.6). The main tools of our

proof are based on structure theorems for generalized functions and the heat kernel method initiated

by T. Matsuzawa [22] which represents the generalized functions as initial values of solutions of the

heat equation with appropriate growth conditions [8, 9, 11, 12, 22]. For the proof of our theorem we

employ the n-dimensional heat kernel Et(x) given by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.

In view of (2.2), we can see that the heat kernel Et belongs to the Gelfand space G(Rn) for each

t > 0. Thus, for each u ∈ G′(Rn), the convolution (u ∗Et)(x) := 〈uy, Et(x− y)〉 is well defined. We

call (u ∗Et)(x) the Gauss transform of u. From now on we denote by ũ(x, t) the Gauss transform of
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u. It is well known that the Gauss transform ũ(x, t) is a smooth solution of the heat equation such

that ũ(x, t)→ u in weak star topology as t→ 0+, i.e.,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x)dx

for all ϕ ∈ G.

We first discuss the solutions of the corresponding trigonometric functional equations in the space

G of Gelfand generalized functions.

Lemma 4.1. The solutions u, v ∈ G′ of the equation

u ◦ T − u⊗ v + v ⊗ u = 0(4.1)

are either

u = λ(ec·x − e−c·x), v = γec·x + (1− γ)e−c·x(4.2)

or else

u = c · x, v = 1 + λc · x.(4.3)

Proof. As a consequence of the results in [4, 15] the solutions (u, v) of (4.1) are equal to the smooth

solutions (f, g) of the equation

f(x− y)− f(x)g(y) + f(y)g(x) = 0(4.4)

for all x, y ∈ Rn. By [2, Theorem 11] all solutions of (4.4) are given by

f(x) = λ(m(x)−m(−x)), g(x) = γm(x) + (1− γ)m(−x)(4.5)

or else

f(x) = a(x), g(x) = 1 + λa(x),(4.6)

where m is an exponential function and a is an additive function. From (4.5) and (4.6) m and a are

smooth functions and hence m(x) = ec·x and a(x) = c · x for some c ∈ Cn. Thus, we get (4.2) and

(4.3). This completes the proof. �

The proof of Theorem 2.3 of [11] works even when p =∞, i.e., we obtain the following.

Lemma 4.2. [11] The Gauss transform ũ(x, t) := (u∗E)(x, t) of u ∈ D′L∞(Rn) is a smooth solution

of the heat equation (∆− ∂/∂t)ũ = 0 satisfying:

(i)There exist constants C > 0, N ≥ 0 such that

(4.7) |ũ(x, t)| ≤ Ct−N for all x ∈ Rn, t > 0.

(ii) ũ(x, t)→ u as t→ 0+ in the sense that for every ϕ ∈ DL1 ,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every smooth solution ũ(x, t) of the heat equation satisfying the estimate (4.7) can be

uniquely expressed as ũ(x, t) = (u ∗ E)(x, t) for some u ∈ D′L∞(Rn).
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The following lemma is a special case of Theorem 3.5 of [12] when p = ∞ where the space

A′L∞(Rn) is denoted by BL∞(Rn).

Lemma 4.3. [12] The Gauss transform ũ(x, t) := (u∗E)(x, t) of u ∈ A′L∞(Rn) is a smooth solution

of the heat equation (∆− ∂/∂t)ũ = 0 satisfying :

(i) For every ε > 0 there exists a constant Cε > 0 such that

(4.8) |ũ(x, t)| ≤ Cεeε/t for all x ∈ Rn, t > 0.

(ii) ũ(x, t)→ u as t→ 0+ in the sense that for every ϕ ∈ AL1 ,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every smooth solution ũ(x, t) of the heat equation satisfying the estimate (4.8) can be

uniquely expressed as ũ(x, t) = (u ∗ E)(x, t) for some u ∈ D′L∞(Rn).

The following structure theorem for bounded distributions is well known.

Lemma 4.4. [29] Every u ∈ D′L∞(Rn) can be expressed as

(4.9) u =
∑
|α|≤p

∂αfα

for some p ∈ N0 where fα are bounded continuous functions on Rn. The equality (4.9) implies that

〈u, ϕ〉 =
∑
|α|≤p

(−1)|α|
∫
fα(x)∂αϕ(x)dx

for all ϕ ∈ DL1 .

As a special case of Theorem 3.4 of [12] when p = ∞ where the space A′L∞(Rn) is denoted by

BL∞(Rn) we obtain the following.

Lemma 4.5. [12] Every u ∈ A′L∞(Rn) can be expressed by

(4.10) u =

( ∞∑
k=0

ak ∆k

)
g + h

where ∆ denotes the Laplacian, g, h are bounded continuous functions on Rn and ak, k = 0, 1, 2, . . .

satisfy the following estimates; for every L > 0 there exists C > 0 such that

|ak| ≤ CLk/k!2

for all k = 0, 1, 2, . . ..

The following properties of the heat kernel will be useful, which can be found in [22].

Proposition 4.6. [22] For each t > 0, Et(·) is an entire function and the following estimate holds;

there exists C > 0 such that

(4.11) |∂αxEt(x)| ≤ C |α|t−(n+|α|)/2α!1/2 exp(−|x|2/8t).

Also for each t, s > 0 we have

(4.12) (Et ∗ Es)(x) :=

∫
Et(x− y)Es(y)dy = Et+s(x).
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Now, we state and prove the main theorem.

Theorem 4.7. Let u, v ∈ G′(Rn). Then (u, v) satisfies (4.1) if and only if (u, v) satisfies one of the

followings:

(i) u, v ∈ D′L∞(Rn) [resp. A′L∞(Rn)],

(ii) u = c · x+ r, v = 1 + λc · x for some c ∈ Cn, λ ∈ C and r ∈ D′L∞(Rn) [resp. A′L∞(Rn)],

(iii) u = λ(ec·x − e−c·x), v = γec·x + (1− γ)e−c·x for some c ∈ Cn, λ, γ ∈ C.

Proof. We use the same method as in the proof of [10, Theorem 4.6]. Here we give the proof for the

reader. Convolving the tensor product Et(x)Es(y) of n-dimensional heat kernels in the left hand

side of (4.1), in view of the semigroup property (Et ∗ Es)(x) = Et+s(x) of the heat kernel we have

[(u ◦ T ) ∗ (Et(ξ)Es(η))](x, y) = 〈uξ,
∫
Et(x− ξ − η)Es(y − η) dη〉(4.13)

= 〈uξ, (Et ∗ Es)(x− y − ξ)〉

= 〈uξ, Et+s(x− y − ξ)〉

= ũ(x− y, t+ s).

Similarly we have

[(u⊗ v) ∗ (Et(ξ)Es(η))](x, y) = ũ(x, t)ṽ(y, s),(4.14)

[(v ⊗ u) ∗ (Et(ξ)Es(η))](x, y) = ṽ(x, t)ũ(y, s),

where ũ(x, t), ṽ(x, t) are the Gauss transforms of u, v, respectively. Let w := u ◦ T − u⊗ v + v ⊗ u.

Then w ∈ D′L∞(R2n) [resp. A′L∞(R2n)]. First, we suppose that w ∈ D′L∞(R2n). Using (4.9) and

(4.11) we have

|[w ∗ (Et(ξ)Es(η))](x, y)| ≤
∑
|α|≤p

|[∂αfα ∗ (Et(ξ)Es(η))](x, y)|

≤
∑
|α|≤p

|[fα ∗ ∂αξ,η(Et(ξ)Es(η))](x, y)|

≤
∑
|α|≤p

‖fα‖L∞‖∂αξ,η(Et(ξ)Es(η))‖L1

≤ C1

∑
|β|+|γ|≤p

‖∂βξ Et(ξ)‖L1‖∂γηEs(η)‖L1

≤ C2

∑
|β|+|γ|≤p

t−(n+|β|)/2s−(n+|γ|)/2

≤ C
(

1

t
+

1

s

)N
+ d,
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where N = n + p/2 and the constants C and d depend only on p. Secondly we suppose that

w ∈ A′L∞(R2n). Then, using (4.11) we have

‖∆k(Et(ξ)Es(η))‖L1 ≤
∑
|α|=k

k!

α!
‖∂2α(Et(ξ)Es(η))‖L1

≤
∑

|β|+|γ|=k

k!

β!γ!
‖∂2βξ Et(ξ)‖L1‖∂2γη Es(η)‖L1

≤
∑

|β|+|γ|=k

k!(2β)!1/2(2γ)!1/2M2k

β! γ!
t−n/2−|β|s−n/2−|γ|

≤
∑

|β|+|γ|=k

k!(2M)2kt−n/2−|β|s−n/2−|γ|

≤ k!(2
√
nM)2k (1/t+ 1/s)

n+k
.

Now, by the structure (4.10) of bounded hyperfunctions together with the growth condition of

ak, k = 0, 1, 2, . . . we have

|[w ∗ (Et(ξ)Es(η))](x, y)| ≤
∞∑
k=0

‖ak(∆kg) ∗ (Et(ξ)Es(η))‖L∞ + ‖h ∗ (Et(ξ)Es(η))‖L∞

≤ ‖g‖L∞
∞∑
k=0

‖ak∆k(Et(ξ)Es(η))‖L1 + ‖h‖L∞‖Et(ξ)Es(η)‖L1

≤ C1

∞∑
k=0

1

k!
(4nM2L)k (1/t+ 1/s)

n+k
+ ‖h‖L∞

≤ C2

∞∑
k=0

1

k!
εk (1/t+ 1/s)

n+k
+ ‖h‖L∞

≤ Cε eε(1/t+1/s),

where L is taken so that 4nM2L < ε and the constant Cε depends only on w and ε. Thus, we have

the inequality; there exist C > 0 and d > 0 [resp. for every ε > 0 there exists Cε > 0 ] such that

(4.15) |ũ(x− y, t+ s)− ũ(x, t)ṽ(y, s) + ṽ(x, t)ũ(y, s)| ≤ C
(

1

t
+

1

s

)N
+ d [resp. Cεe

ε(1/t+1/s) ]

where ũ, ṽ are the Gauss transforms of u, v, respectively, given in Lemma 4.2. Replacing f by ũ, g

by ṽ in Theorem 3.5 and using the continuity of ũ and ṽ we obtain one of the followings (I) ∼ (III):

(I) both ũ and ṽ satisfy (3.3) [resp.(3.4)],

(II) ũ(x, t) = c · xebt +R(x, t), ṽ(x, t) = λũ(x, t) + ebt,

where c ∈ Cn, b, λ ∈ C and R : Rn × (0,∞)→ C satisfies

|R(x, t)| ≤ Ct−2N + d [ resp.(3.4)]

for all x ∈ Rn, t > 0 and for some C, d > 0,

(III) ũ(x− y, t+ s)− ũ(x, t)ṽ(y, s) + ṽ(x, t)ũ(y, s) = 0 for all x, y ∈ Rn, t, s > 0.

By Lemma 4.2, case (I) implies (i). For the case (II), since ũ, ṽ are solutions of the heat equation

we must have b = 0 and so is R(x, t) = ũ(x, t) − c · x. Letting t → 0+ in (II) we obtain case (ii).
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Finally, letting t→ 0+ in (III) we have

(4.16) u ◦ T − u⊗ v + v ⊗ u = 0.

The nontrivial solutions of the equation (4.16) are given by (iii) or u = c · x, v = 1 + λc · x which is

included in the case (ii). This completes the proof. �
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[31] L. Székelyhidi, The stability of d’Alembert type functional equations, Acta Sci. Math. Szeged. 44(1982c), 313–320.

[32] S. M. Ulam, Problems in modern mathematics, Chapter VI, Wiley, New York, 1964.

[33] D.V. Widder, The heat equation, Academic Press, New York, 1975.

Chang-Kwon Choi

Department of Mathematics, Jeonbuk National University, Jeonju, 561-756, Republic of Korea

E-mail address: ck38@jbnu.ac.kr

Jeongwook Chang

Department of Mathematics Education, Dankook University, Yongin 448-701, Republic of Korea

E-mail address: jchang@dankook.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

110 CHANG-KWON CHOI et al 96-110



Effect of cytotoxic T lymphocytes on HIV-1 dynamics

Shaimaa A. Azoza and Abdelmonem M. Ibrahimb

aDepartment of Mathematics and Institute of Applied Mathematics,

University of British Columbia, Canada.
bElectrical and Computer Engineering, University of British Columbia, Canada.

Email: azoz@math.ubc.ca

Abstract

The purpose of this paper is to study the effect of the cytotoxic T lymphocytes (CTLs) on an HIV-1

dynamics. The model considers that the virus infects the macrophages in addition to the CD4+ T cells. The

role of the CTLs is to kill the infected macrophages and CD4+ T cells. The time delay which accounts the

time of infection and the time of producing new active HIV-1 is modeled. The HIV-1 dynamics is modeled

as a 6-dimensional nonlinear delay differential equations. The incidence rate of infection and killer rate of

infected cells are given by general nonlinear functions. We study the qualitative behavior of the system. The

global stability analysis has been established using Lyapunov method and LaSalle invariance principle. We

present an example and perform numerical simulations to emphasize our theoretical results.

Keywords: Global stability; HIV infection; time delay; Immune response; Direct Lyapunov method.

1 Introduction

Recently, the study of Human Immunodeficiency Virus type-1 (HIV-1) and Acquired Immunodeficiency Syn-

drome (AIDS) has become a topic of interest in the mathematical literature. In the pursuit of understanding

the interaction between the HIV-1 and immune system, several mathematical models have been proposed.

The following is the basic model of HIV-1 infection dynamics that has been described and studied in [1]:

ẋ = λ− dx− βxv,

ẏ = βxv − δy,

v̇ = ky − rv.

Here, the concentrations of uninfected CD4+ T cells, infected CD4+ T cells and virus are represented by x, y

and v, respectively. The production rate of CD4+ T cells is represented by λ, while the infection rate, and

thus the infected CD4+ T cell production rate, is represented by βxv, where β is the infection rate constant.

The uninfected cells and infected cells are die with rate dx and δy, respectively. k represents the rate constant

of virion generation by CD4+ T cells while r represents the rate constant of viral particle emptying from the

plasma.

Replication models assume cytotoxic T lymphocyte cells (CTLs) to be the main host defence restricting

viral replication in vivo and thus the main determinant of viral load. Nowak and Bangham [2] constructed the

first model of HIV taking into account CTLs as:

ẋ = λ− dx− βxv,

ẏ = βxv − δy − pyz,

v̇ = ky − rv,

ż = cyz − bz.
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where z represent the concentration of CTLs which multiply at a rate cyz when stimulated by infected cells,

while bz represents the death rate of this population of CTLs.

Delay differential equations are used to introduce delays into the infection equations and/or equations for

virus production to account for the intracellular phase of the viral life cycle. This delay is defined as period

between infection of a CD4+ T-cell and the point at which the infected cell begins to produce viral particles

(see, e.g. [3], [5], [6], [7], [8], [9], [10]). Complications have been shown to occur ([11], [12], [13]) when time

delays are introduced into infection models with immune responses. Such complications include stable periodic

solutions and chaos. The use of general kernel function to represent distributed intracellular delays has been

motivated by the argument that constant delays may not biologically realistic ([22],[23],[24]). In contrast to

Nakata’s [17] investigation of the stability of an immunity mediated HIV-1 model with two finite distributed

intracellular delays, Wang et al. [16] and Li and Shu [14] examined the stability of an infection model with

infinite distributed intracellular delays by constructing Lyapunov functionals. Yuan and Zou [15] proposed and

developed an appropriate mathematical model for HIV-1 infection by incorporating distributed delay into the

cell infection equation and another virus production equation and nonlinear incidence rate and a nonlinear

removal rate for the infected cells. However, the presence of the macrophages has been neglected.

Our aim in this paper is to study the effect of the CTL immune response of the global dynamics of a

distributed delayed HIV-1 model which describe the interaction between the virus and two target cells, CD4+

T cells and macrophages. The motivation for considering the two target cell model is the observation that the

rate of viral load decline was considerably lower after the rapid first phase of decay during the 1-2 weeks after

antiretroviral treatment ([3],[4],[18]). The model is a 6-dimensional nonlinear ODES that takes into account

cytotoxic T lymphocyte cells (CTLs) with nonlinear incidence rate and distributed delays using distributed

kernels reflecting the variance in time required for viral entry into cells and the variability in time required for

intracellular virion reproduction. The positive invariance properties and the boundedness of the solutions for

the model are studied. By constructing explicit Lyapunov functionals and using the LaSalle invariance principle,

which are extensions and modified forms of the Lyapunov functionals given in [15], we prove that the steady

states of the model are globally asymptotically stable (GAS) and the dynamics of the system is fully determined

by the basic reproduction number R0.

2 Mathematical model

We shall examine a deterministic model of HIV infection, which represents the interaction of HIV with two

co-circulation populations of target cells, representing CD4+ T and macrophages cells. The system takes into

consideration the distributed invasion and production delays and (i) We assume that the incidence rate is given

by a nonlinear form. (ii) The model takes into consideration cytotoxic T lymphocyte cells (CTLs) immune

response:

ẋ1(t) = µ1 − k1x1(t)− α1x1(t)f1(v(t)), (1)

ẏ1(t) = α1

∞∫
0

e−m1τG1(τ)x1(t− τ)f1(v(t− τ))dτ − ry1(t)− βy1(t)h1(z(t)), (2)

ẋ2(t) = µ2 − k2x2(t)− α2x2(t)f2(v(t)), (3)

ẏ2(t) = α2

∞∫
0

e−m2τG2(τ)x2(t− τ)f1(v(t− τ))dτ − ry2(t)− βy2(t)h2(z(t)), (4)

v̇(t) = Nr

 ∞∫
0

e−n1τΨ1(τ)y1(t− τ)dτ +

∞∫
0

e−n2τΨ2(τ)y2(t− τ)dτ

− dv(t), (5)

ż(t) = λ (y1(t) + y2(t))− qz(t). (6)
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The state variables describes the plasma concentrations of: x1, y1, represent the uninfected and infected CD4+

T cells; x2, y2, represent the uninfected and infected macrophages. Eq. (1) and (3) describe the populations of

target cells, where µ1 and µ2 perform the rates of new generations of CD4+ T cell and macrophages from sources

within the body, k1, k2 are the death rate constants, and α1, α2 are the infection rate constants. Equation

(2) and (4) represent the population dynamics of the infected target cells, where r represent the clearance

rate and it killed at rate βy1(t)h1(z(t)) and βy2(t)h2(z(t)), respectively. The CTL cells are produced at a rate

λ(y1 + y2)z and are decayed at a rate qz . Assume the kernel functions Gi and Ψi, i = 1, 2 satisfy Gi(τi) > 0,

Ψi(τi) > 0. Let us denote ai =
∞∫
0

e−miτGi(τ)dτ, bi =
∞∫
0

e−niτ
i Ψi(τ)dτ , i = 1, 2. Thus 0 < ai ≤ 1, 0 < bi ≤ 1

All parameters are assumed to be positive. The function fi(v) and hi(z) are continuously differentiable and

guarantee this conditions are met:

(C1): fi(0) = 0, f ′i(ξi) exists and satisfies f ′i(ξi) ≥ 0 and
(
fi(ξi)
ξi

)′
6 0 in (0,∞),

(C2): hi(0) = 0, hi(ζi) is strictly increasing in (0,∞),

2.1 Positively and Boundedness

To prove the positively and the boundedness of the solutions, it is biologically reasonable to consider the

following non-negative initial conditions for the system (1-6), define the Banach space of fading memory type

Cα = {ϕ ∈ C ((−∞, 0], R) : ϕ(θ)eαθ is uniformly continuous for θ ∈ (−∞, 0] and ‖ϕ‖ <∞}

where α is a positive constant and ‖ϕ‖ = supθ≤0 |ϕ(θ)| eαθ. Let C+
α = {ϕ ∈ Cα : ϕ(θ) ≥ 0 for θ ∈ (−∞, 0]}.

The initial conditions for system (1-6) are given as:

x1(θ) = ϕ1(θ), y1(θ) = ϕ2(θ), x2(θ) = ϕ3(θ), y2(θ) = ϕ4(θ), v(θ) = ϕ5(θ),

z(θ) = ϕ6(θ) for θ ∈ [−∞, 0] , ϕi ∈ C+
α , i = 1, 2, ..., 6. (7)

By the fundamental theory of functional differential equations (see [20] and [21]), model (1-6) with initial

conditions (7) has a unique solution and the following lemma establishes the positivity and boundedness of the

solutions.

Lemma 1. Let (x1(t), y1(t), x2(t), y2(t), v(t), z(t)) be the solution of system (1-6) with the initial conditions

(7), then x1(t), y1(t), x2(t), y2(t), v(t) and z(t) are all positive and bounded for all t > 0.

Proof. First, we will prove that xi(t) > 0, i = 1, 2, for all t ≥ 0. Assume that xi(t) loses its nonnegativity

on some local existence interval [0, υ] for some constant υ and let t∗ ∈ [0, υ] be such that xi(t
∗) = 0. From (1)

and (3) we have xi(t
∗) = µi > 0. Hence xi(t

∗) > 0 for some t ∈ (t∗, t∗ + ε), where ε > 0 is sufficiently small.

This leads to a contradiction and hence xi(t) > 0, for all t ≥ 0. Further by using the variation of parameters

method and Eq. (2), (4) and (5) we have

yi(t) = yi(0)e−
∫ t
0

(r+βh(z(s)))ds

+ αi

∫ t

0

e−
∫ t
s

(r+h(z(η)))dη

∫ ∞
0

e−miηGi(η)x(s− η)fi(v(s− η))dηds; i = 1, 2.

v(t) = v(0)e−dt +Nr

∫ t

0

e−d(t−s)
∫ ∞

0

2∑
i=1

e−niηΨi(η)yi(s− η)dηds,

confirming that yi(t) ≥ 0, i = 1, 2, and v(t) ≥ 0 for all t ≥ 0. Now from (6) we get

z(t) = z(0)e−qt + λ

∫ t

0

e−q(t−s)
2∑
i=1

yi(s)ds.

Then z(t) ≥ 0, for all t ≥ 0, and this prove the positively of the solution. Now we shall prove that the solution

are bounded, from Eq.(1) and (3), we have ẋi(t) 6 µi− kixi(t), this implies lim supt→∞xi(t) ≤ µi

ki
, i = 1, 2, let
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Ui(t) =
∫∞

0
e−miτGi(τ)xi(t− τ)dτ + yi(t), then

U̇i(t) =
∫∞

0
e−miτGi(τ)ẋi(t− τ)dτ + ẏi(t),

=
∫∞

0
e−miτGi(τ)(µi − kixi(t− τ)− αixi(t− τ)fi(v(t− τ)))dτ

+ αi

∞∫
0

e−miτGi(τ)xi(t− τ)fi(v(t− τ))dτ − ryi(t)− βyi(t)hi(z(t)),

= µiai − αi
∫∞

0
e−miτGi(τ)xi(t− τ)dτ − ryi(t)− βyi(t)hi(z(t)),

≤ µiai − piUi(t).

It follows that lim sup
t→∞

Ui(t) ≤ µiai
pi

, where pi = min{α1, α2, r}. Since xi(t) > 0, yi(t) ≥ 0 and z(t) ≥ 0

then lim sup
∑2
i=1 yi(t)t→∞ ≤ Li, lim sup yi(t)t→∞ ≤ Li, i = 1, 2. On the other hand,

v̇(t) ≤ Nr(b1L1 + b2L2)− dv(t) ≤ NrbL− dv(t).

where bi =
∫∞

0
e−niτΨi(τ)dτ. From Eq.(6) we get ż(t) ≤ λL − qz(t). Then lim supt→∞ v(t) ≤ NrbL

d and lim

supt→∞ z(t) ≤ λL
q . Therefore, x1(t), y1(t), x2(t), y2(t), v(t), and z(t) are ultimately bounded and this complete

the proof of boundedness of solutions.

2.2 Basic reproduction number and steady state

To obtain the equilibrium points of model (1)-(6), we consider the following equations:

µ1 − k1x1 − α1x1f1(v) = 0,

α1a1x1f1(v)− ry1 − βy1h1(z) = 0,

µ2 − k2x2 − α2x2f2(v) = 0,

α2a2x2f2(v)− ry2 − βy2h2(z) = 0,

Nr (b1y1 + b2y2)− dv = 0,

λ (y1 + y2)− qz = 0.

We find that if z 6= 0, there is two steady states E0 = (x0
1, 0, x

0
2, 0, 0, 0) where x0

1 = µ1

k1
, x0

2 = µ2

k2
, and

E∗ = (x∗1, y
∗
1 , x
∗
2, y
∗
2 , v
∗, z∗) satisfies the equations:

x∗i =
µi

ki + αifi(v∗)
,

∑2
i=1y

∗
i =

d

Nrb
v∗,

z∗ =
λ

q

∑2
i=1y

∗
i =

λd

Nrbq
v∗, y∗i =

αiaifi(v
∗)

r + βhi(z∗)
x∗i .

The basic reproduction number, R0, for system (1)-(6) is given by:

R0 =
µ1α1a1Nb1f

′
1(0)

k1d
+
µ2α2a2Nb2f

′
2(0)

k2d
= R1 +R2,

where, R1 and R2 are the basic reproduction numbers for CD4+ T cells and macrophages cells, severally.

Now, we shall prove that R0 > 1 is a sufficient condition to ensure the existence of an infected steady state

E∗ = (x∗1, y
∗
1 , x
∗
2, y
∗
2 , v
∗, z∗). Using the above calculations the existence of an infected equilibrium is equivalent

to the existence of a positive root of the equation L(v) = 0, where

L(v∗) = α1a1f1(v∗)
µ1

k1 + α1f1(v∗)
+ α2a2f2(v∗)

µ2

k2 + α2f2(v∗)
− rd

Nrb
v∗ − βd

Nrb
v∗h

(
λdv∗

Nrbq

)
,
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and it satisfies L(0) = 0, L(+∞) = −∞, and

L′(0) = α1a1f
′
1(0)

µ1

k1
+ α2a2f

′
2(0)

µ2

k2
− rd

Nrb

=
d

Nb

α1a1µ1Nbf
′
1(0)

k1d
+
α2a2µ2Nbf

′
2(0)

k2d
− 1 =

d

Nb
(R0 − 1) > 0.

It follows from the continuity of the function L(v) in [0,∞) that L(v) = 0 has at least one positive root. Hence,

we see that the condition at least has one infected equilibrium E∗ when R0 > 1. We can rewrite the model as:

ẋ1(t) = µ1 − k1x1(t)− α1x1(t)f1(v(t)), (8)

ẏ1(t) = ϑ1

∞∫
0

e−m1ζg1(ζ)x1(t− ζ)f1(v(t− ζ))dζ − ry1(t)− βy1(t)h(z(t)), (9)

ẋ2(t) = µ2 − k2x2(t)− α2x2(t)f2(v(t)), (10)

ẏ1(t) = ϑ2

∞∫
0

e−m2ζg2(ζ)x2(t− ζ)f1(v(t− ζ))dζ − ry2(t)− βy2(t)h(z(t)), (11)

v̇(t) = γ1

∞∫
0

e−n1ζψ1(ζ)y1(t− ζ)dζ + γ2

∞∫
0

e−n2ζψ2(ζ)y2(t− ζ)dζ − dv(t), (12)

ż(t) = λ (y1(t) + y2(t))− qz(t). (13)

For simplify, we taked h1 = h2 = h, ϑi = αiai, γi = Nrbi, gi(ζ) = Gi(ζ)
ai

, ψi(ζ) = Ψi(ζ)
bi

.

3 Global stability

In this section, we going to show that the steady states satisfy the global stability condition:

Theorem 1. Let Conditions C1 and C2 hold true and R0 ≤ 1, then the infection-free equilibrium E0 is

globally asymptotically stable.

Proof. Define Hi(t) =
∫∞
t
gi(ζ)dζi, Pi(t) =

∫∞
t
ψi(ζ)dζ, and consider laypunov function W (t) =

∑3
i=1Wi(t),

where,

W1(t) =
2∑
i=1

1

2

(
xi(t)−

µi
ki

)2

+
αiµi
ϑiki

yi(t) +
αiµir

ϑ1ϑ2ki
v(t) +

αiµiβ

ϑikiλ

∫ z(t)
0

h(ζ)dζ,

W2(t) =
2∑
i=1

αiµi
ki

∞∫
0

Hi(ζi)xi(t− ζi)fi(v(t− ζi))dζi,

W3(t) =
2∑
i=1

αiµir

kiϑi

∞∫
0

Pi(ζi)yi(t− ζi)dζi,

It clear that, W (t) ≥ 0 and W (t) = 0 if and only if xi(t) = µi

ki
and yi(t) = v(t) = z(t) = 0. The derivative Wi(t)

of along the solution is:

Ẇ1(t) =

2∑
i=1

(xi(t)− µi
ki

)
(µi − kixi(t)− αixi(t)f(v(t))) +

αiµi
ki

∞∫
0

gi(ζi)xi(t− ζi)fi(v(t− ζi))dζi

−αiµir
kiϑi

yi(t)−
αiµiβ

kiϑi
yi(t)h(z(t)) +

αiµir

kiϑi

∞∫
0

ψi(ζi)yi(t− ζi)dζi −
αiµird

kiϑiγi
v(t)

+
αiµiβ

kiλϑi
h(z(t)) [λyi(t)− qz(t)]

]
,
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Note that Hi(0) = 1, Hi(∞) = 0 and dHi(t) = −gi(t)dt. Using integration by parts, we calculate the derivative

of W2:

Ẇ2(t) =
2∑
i=1

αiµi
ki

∞∫
0

Hi(ζi)
d (xi(t− ζi)fi(v(t− ζi)))

dt
dζi = −

2∑
i=1

αiµi
ki

∞∫
0

Hi(ζi)
d (xi(t− ζi)fi(v(t− ζi)))

dζi
dζi,

= −
2∑
i=1

αiµi
ki

Hi(ζi)xi(t− ζi)fi(v(t− ζi)) p∞ζ=0 +
αiµi
ki

∞∫
0

xi(t− ζi)fi(v(t− ζi))dHi (ζi)

 ,

=
2∑
i=1

αiµi
ki

xi(t)fi(v(t))− αiµi
ki

∞∫
0

gi(ζi)xi(t− ζi)fi(v(t− ζi))dζi

 .

Similarly

Ẇ3(t) =
2∑
i=1

αiµir
kiϑi

yi(t)−
αiµir

kiϑi

∞∫
0

ψi(ζi)yi(t− ζi)dζi

 ,

Therefore

Ẇ (t) =
2∑
i=1

[
−ki

(
xi(t)−

µi
ki

)2

− αix2
i (t)fi(v(t)) +

αiµi
ki

xi(t)fi(v(t))

+
αiµi
ki

∞∫
0

gi(ζi)xi(t− ζi)fi(v(t− ζi))dζi −
αiµir

kiϑi
yi(t)−

αiµiβ

kiηi
yi(t)h(z(t))

+
αiµir

kiϑi

∞∫
0

ψi(ζi)yi(t− ζi)dζi −
αiµird

kiϑiγi
v(t) +

αiµiβ

kiϑi
yi(t)h(z(t))

−αiµiβq
kiλϑi

z(t)h(z(t)) +
αiµi
ki

xi(t)fi(v(t))− αiµi
ki

∞∫
0

gi(ζi)xi(t− ζi)fi(v(t− ζi))dζi

+
αiµir

kiϑi
yi(t)−

αiµir

kiϑi

∞∫
0

ψi(ζi)yi(t− ζi)dζi

 .

Ẇ (t) =
2∑
i=1

[
−ki

(
xi(t)−

µi
ki

)2

− αifi(v(t))

(
x2
i (t)−

2µi
ki
xi(t) +

µ2
i

k2
i

)
+
αiµ

2
i

k2
i

fi(v(t))− αiµird

kiηiγi
v(t)− αiµiβq

kiληi
z(t)h(z(t))

]
.

Hence

Ẇ (t) =
2∑
i=1

[
−ki

(
xi(t)−

µi
ki

)2

− αifi(v(t))

(
xi(t)−

µi
ki

)2

− αiµiβq

kiλϑi
z(t)h(z(t))

+
αiµird

kiϑiγi
v(t)

(
µiϑiγi
kird

fi(v(t))

v(t)
− 1

)]
.

But from Condition (C1), we have fi(v(t))
v(t) 6 f ′i(0). Hence

Ẇ (t) ≤
2∑
i=1

[
−ki

(
xi(t)−

µi
ki

)2

− αifi(v(t))

(
xi(t)−

µi
ki

)2

+
αiµird

kiϑiγi
(R0 − 1) v(t)− αiµiβq

kiλϑi
z(t)h(z(t))

]
.

If R0 ≤ 1, then, Ẇ1 ≤ 0. To prove the global stability of the infected equilibrium, we need to use this lemma:
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Lemma 2. If satisfies Condition (C1), then g (F (σ)) ≤ g(σ), σ > 0 with the equality holding only at

σ = 1, where F (σ) = f(v∗σ)
f(v∗) , and g(u) = u − 1 − lnu and with g : (0,∞) → [0,∞) has the global minimum

g(1) = 0 and positive elsewhere for ζi ∈ (0,∞).

Proof. Since F (1) = 1 and the derivative of g(σ) has the same sign as σ − 1 for σ > 0, we need only to

prove that σ ≤ F (σ) ≤ 1 for σ ∈ (0, 1) and 1 ≤ F (σ) ≤ σ for σ ∈ [1,∞) . The proof of case σ ∈ [1,∞) is

similar to that case of σ ∈ (0, 1) , so we will only consider the case when σ ∈ (0, 1) . Note that σ ≤ F (σ) ≤ 1 is

equivalent to f(v∗)
v∗ ≤

f(v∗σ)
v∗σ ≤ f(v∗)

v∗σ for σ ∈ (0, 1) , from Condition (C1) we completed the proof.

Theorem 2. Let conditions C1 and C2 hold true and R0 > 1, then the chronic infection equilibrium E∗ is

globally asymptotically stable for all positive solution.

Proof. Define

V1 =
2∑
i=1

gi

(
xi (t)

x∗i

)
, V2 =

2∑
i=1

∞∫
0

Hi(ζi)gi

(
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

)
dζi,

V3 =
2∑
i=1

gi

(
yi (t)

y∗i

)
, V4 =

2∑
i=1

gi

(
v (t)

v∗

)
,

V5 =

z(t)∫
z∗

[h (ζi)− h (z∗)] dζi, , V6 =
2∑
i=1

∞∫
0

Ψi (ζi) gi

(
yi (s)

y∗i

)
ds.

with the infected steady state conditions:

µi = kix
∗
i + αix

∗
i fi (v∗) , γiy

∗
i = dv∗,

ϑix
∗
i fi (v∗) = ry∗i + βy∗i h (z∗) , λy∗i = qz∗. (14)

we will let the function V (t) and study the derivative of the Lyapunov functional as:

V (t) = x∗i V1i (t) + αix
∗
i fi (v∗)V2i (t) +

αiy
∗
i

ϑi
V3i (t) +

αirv
∗

ϑiγi
V4i (t) +

αiβ

λϑi
V5i (t) +

αiβy
∗
i h (z∗)

dϑi
V4i (t)

+ αix
∗
i fi (v∗)V6i (t) .

satisfies V (t) ≥ 0 with the equality holding if and only xi (t) = x∗i , yi (t) = y∗i , v (t) = v∗, z (t) = z∗ and

xi(t− ζi)fi(v(t− ζi)) = x∗i fi (v∗) , yi(t− ζi) = y∗i . We get

V̇1i (t) =
1

x∗i

(
1− x∗i

xi (t)

)
(kix

∗
i + αix

∗
i fi (v∗)− kixi(t)− αixi(t)fi(v(t))) ,

=
−ki (xi (t)− x∗i )

2

x∗i xi (t)
+ αi fi (v∗)

[
1− x∗i

xi (t)
− xi(t)f(v(t))

x∗i fi (v∗)
+
fi(v(t))

fi (v∗)

]
. (15)

V̇2i (t) =
xi(t)fi(v(t))

x∗i fi(v
∗)

− ln

(
xi(t)fi(v(t))

x∗i fi(v
∗)

)
−
∞∫

0

gi (ζi)
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

dζi

+

∞∫
0

gi (ζi) ln

(
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

)
dζi,

where

Hi(0) = 1, Hi(∞) = 0, dHi(t) = −gi (t) dt.

V̇3i (t) =
1

y∗i

(
1− y∗i

yi (t)

)ηi ∞∫
0

gi(ζi)xi(t− ζi)fi(v(t− ζi))dζi − ryi(t)− βyi(t)h(z(t))

 .
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Using Eq. (14)

V̇3i (t) =
ϑix
∗
i fi(v

∗)

y∗i

∞∫
0

gi (ζi)
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

dζi −
ϑix
∗
i fi(v

∗)

y∗i

∞∫
0

gi (ζi)
xi(t− ζi)y∗i fi(v(t− ζi))

x∗i yi (t) fi(v∗)
dζi,

− ϑix
∗
i fi(v

∗)

y∗i

[
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]
+ r

[
1− yi (t)

y∗i
+
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]
. (16)

V̇4i (t) =
1

y∗i

(
1− v∗

v (t)

)γ1

∞∫
0

ψ1(ζ1)y1(t− ζ1)dζ1 + γ2

∞∫
0

ψ2(ζ2)y2(t− ζ2)dζ2 − dv(t)

 ,

Using Eq. (14)

V̇4i (t) = d

1− v (t)

v∗
+

∞∫
0

ψi(ζi)
yi(t− ζi)

y∗i
dζi −

∞∫
0

ψi(ζi)
v∗yi(t− ζi)
v (t) y∗i

dζi

 ,
V̇5i (t) = [h (z (t))− h (z∗)] [λyi (t)− qz (t)] .

Using Eq. (14)

V̇5i (t) = −q [h (z (t))− h (z∗)] [z (t)− z∗] + λy∗i h (z∗)

[
1− yi (t)

y∗i
+
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]
.

Similar to V̇2i (t) the derivative of V̇6i (t),differentiating gives

V̇6i (t) =
yi (t)

y∗i
−
∞∫

0

ψi(ζi)
yi(t− ζi)

y∗i
dζi +

∞∫
0

ψi(ζi) ln

(
yi(t− ζi)
yi (t)

)
dζi,

It follows that

V̇ (t) =
∑2
i=1

[
−ki (xi (t)− x∗i )

2

xi (t)
+ αi x

∗
i fi (v∗)

[
1− x∗i

xi (t)
+
fi(v(t))

fi (v∗)

]

+αi x
∗
i fi (v∗)

∞∫
0

gi (ζi) ln

(
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

)
dζi − αi x∗i fi (v∗)

∞∫
0

gi (ζi)
xi(t− ζi)y∗i fi(v(t− ζi))

x∗i yi (t) fi(v∗)
dζi

+
αiry

∗
i

ϑi

[
1− yi (t)

y∗i
+
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]
− αi x∗i fi (v∗)

[
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]

+
αirv

∗d

ϑiγi

1− v (t)

v∗
+

∞∫
0

ψi(ζi)
yi(t− ζi)

y∗i
dζi −

∞∫
0

ψi(ζi)
v∗yi(t− ζi)
v (t) y∗i

dζi


+
αiβy

∗
i h (z∗)

ϑi

1− v (t)

v∗
+

∞∫
0

ψi(ζi)
yi(t− ζi)

y∗i
dζi −

∞∫
0

ψi(ζi)
v∗yi(t− ζi)
v (t) y∗i

dζi


−αiβq
λϑi

[h (z (t))− h (z∗)] [z (t)− z∗] +
αiβy

∗
i h (z∗)

ϑi

[
1− yi (t)

y∗i
+
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]

+αi x
∗
i fi (v∗)

yi (t)

y∗i
− αi x∗i fi (v∗)

∞∫
0

ψi(ζi)
yi(t− ζi)

y∗i
dζi + αi x

∗
i fi (v∗)

∞∫
0

ψi(ζi) ln

(
yi(t− ζi)
yi (t)

)
dζi

 ,
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We have rdv∗

γi
= ry∗i = ϑi x

∗
i fi (v∗)− βy∗i h (z∗), then

V̇ (t) =
∑2
i=1

−ki (xi (t)− x∗i )
2

xi (t)
+ αi x

∗
i fi (v∗)

[
3− x∗i

xi (t)
+
fi(v(t))

fi (v∗)

]
− αi x∗i fi (v∗)

v (t)

v∗

− αi x∗i fi (v∗)

∞∫
0

gi (ζi)
xi(t− ζi)y∗i fi(v(t− ζi))

x∗i yi (t) fi(v∗)
dζi + αi x

∗
i fi (v∗)

∞∫
0

gi (ζi) ln

(
xi(t− ζi)fi(v(t− ζi))

x∗i fi(v
∗)

)
dζi

− αi x∗i fi (v∗)

[
yi (t)h (z (t))

y∗i h (z∗)
− h (z (t))

h (z∗)

]
− αi x∗i fi (v∗)

∞∫
0

ψi(ζi)
yi(t− ζi)

y∗i
dζi

− αiβq

λϑi
[h (z (t))− h (z∗)] [z (t)− z∗] + αi x

∗
i fi (v∗)

∞∫
0

ψi(ζi) ln

(
yi(t− ζi)
yi (t)

)
dζi,

We can write

3 = 2

∞∫
0

gi (ζi) dζi +

∞∫
0

ψi (ζi) dζi.

Hence

V̇ (t) =
∑2
i=1

[
−ki (xi (t)− x∗i )

2

xi (t)
− αiβq

λϑi
[h (z (t))− h (z∗)] [z (t)− z∗]

+αi x
∗
i fi (v∗)

 ∞∫
0

gi (ζi)

(
−g
(

x∗i
xi(t)

)
− g

(
xi(t− ζi)y∗i fi(v(t− ζi))

x∗i yi (t) fi(v∗)

)
− ln

x∗

x(t)

− ln
x(t− ζi)y∗fi(v(t− ζi))

x∗i yi(t)fi(v
∗)

+ ln
xi(t− ζi)f(v(t− ζi))

xi(t)fi(v(t))

)
dζi +

∞∫
0

ψi(ζi)

(
−g
(
v∗yi(t− ζi)
v (t) y∗i

)

− ln
v∗yi(t− ζi)
v(t)y∗i

+ ln
yi(t− ζi)
yi(t)

)
dζi −

fi(v(t))

fi (v∗)
− v(t)

v∗

]]
,

≤
∑2
i=1

[
αi x

∗
i fi (v∗)

[
fi(v(t))

fi (v∗)
− ln

(
fi(v(t))

fi (v∗)

)
− v(t)

v∗
+ ln

(
v (t)

v∗

)]]
,

=
∑2
i=1 [αi x

∗
i fi (v∗) (g(F (σ))− g(σ))] ,

where σ = v(t)
v∗ and using Lemma 2, we get V̇ (t) ≤ 0 and V̇ (t) = 0 if and only if xi (t) = x∗i , z(t) =

z∗, y∗i fi(v(t− ζi)) = yi(t)fi(v
∗), v∗yi(t− ζi) = v(t)y∗i and v(t) = v∗ for ζi ∈ [0,∞). Then the solutions converge

to Γ, which is the largest invariant subset of {V̇ (t) = 0} and by conforming LaSalle’s invariance principle, we

get that E∗ is GAS in Γ.

4 Numerical simulations

In this section, we present an instance to explain the main results given in Theorem 1 and 2 by using the

Lyapunov direct method. We have determined a set of conditions which guarantee that the steady states of

model (1)-(6) are GAS. Table 1 have the estimate values of model (1)-(6) parameters. The effects of two main

factors on the qualitative behavior of the system which include therapy efficacy ε and time delay τ will be

studied below in details. Using MATLAB we have implemented all computations. This example is obtained

from the model (1)-(6) by choosing particular template of the functions fi(v(t)) and hi(z(t)) as follow:

f1(v(t)) =
v

1 + ω1v
, f2(v(t)) =

v

1 + ω2v
, h1(z(t)) = z(t), h2(z(t)) = z(t) ,

where ω1, ω2 ≥ 0 are constants. Further more, we are going to choose a particular form of the probability

distribution functions Gi(τ) and Ψi(τ) as Gi(τ) = δ(τ − τi), Ψi(τ) = δ(τ − τi), i = 1, 2, where δ(.) is the
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Dirac delta function, τ1 and τ2 are constants where τi ∈ [0,∞], i = 1, 2. are constants where
∫∞

0
Gi(τ)dτ =∫∞

0
Ψi(τ)dτ = 1. Using Dirac delta function properties we get:

gi =

∞∫
0

e−miτδ(τ − τi)dτ = e−miτi

∞∫
0

δ(τ − τi)dτ = e−miτi

ψi =

∞∫
0

e−niτδ(τ − τi)dτ = e−niτi

∞∫
0

δ(τ − τi)dτ = e−niτi ,

∞∫
0

δ(τ − τi)e−miτxi(t− τ)fi(v(t− τ))dτ = e−miτixi(t− τi)fi(t− τi),

∞∫
0

δ(τ − τi)yi(t− τi)dτ = e−niτiyi(t− τi).

Referring to the previous relations, we can rewrite model (1)-(6) as follows

ẋ1(t) = µ1 − k1x1(t)− α1x1(t)
v(t)

1 + ω1v(t)
, (17)

ẏ1(t) = α1e
−m1τ1x1(t− τ1)

v(t− τ1)

1 + ω1v(t− τ1)
− ry1(t)− βy1(t)z(t), (18)

ẋ2(t) = µ2 − k2x2(t)− α2x2(t)
v(t)

1 + ω2v(t)
(19)

ẏ1(t) = α2e
−m2τ2F2x2(t− τ2)

v(t− τ2)

1 + ω2v(t− τ2)
− ry2(t)− βy2(t)z(t), (20)

v̇(t) = Nr
(
e−n1τ1y1(t− τ1) + e−n2τ2y2(t− τ2)

)
− dv(t), (21)

ż(t) = λ (y1(t) + y2(t))− qz(t). (22)

To study the effect of drug efficacy, we choose α1 = (1 − ε)a0 and α2 = (1 − ε)b0. We have chosen the initial

conditions:

IC: ϕ1(u) = 600, ϕ2(u) = 1, ϕ3(u) = 500, ϕ4(u) = 1, ϕ5(u) = 10 and ϕ6(u) = 40, u ∈ [−∞, 0].

Table 1: We define the parameter values of model (17-22) as follow:

Parameter Value Parameter Value

µ1 10 cells mm−3day−1 µ2 6 cells mm−3day−1

k1 0.01 day−1 k2 0.01 day−1

a0 0.004 day−1 b0 0.001 day−1

ω1 0.05 virus−1 mm3 ω2 0.05 cells−1 mm3

r 0.3 day−1 m1 1 day−1

β 0.001 m2 1 day−1

N 5 virus cells−1 n1 1 day−1

d 3 day−1 n2 1 day−1

λ 3 day−1 τ1 = τ2 varied

q 0.1 day−1 ε varied

Case I: Effect of drug efficacy on the dynamical behavior of the system:

In this case, we fix the delay parameter τ1 = τ2 = τ = 0.5. Figures 1-6 show the effect of drug efficacy on

the stability of the steady states and the evolution of the uninfected and infected for each CD4+ T cells and

macrophages, free virus particles and immune response. We observe that, as the drug efficacy is increased from
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ε = 0 to ε = 0.8, E1 still exists and is a globally asymptomatically stable. Moreover the concentrations of

uninfected CD4+T cells and macrophages are increasing and converging to their normal values µ1

k1
= 1000 cells

mm−3, µ2

k2
= 600 cells mm−3, respectively. While the concentrations of CD4+T, macrophages infected cells

and free viruses are decaying and tend to zero when ε = 0.8. The concentration of cytotoxic T lymphocytes

(CTLs) immune response is increasing for the values of equal to 0, 0.2, 0.5 and tend to zero when ε equal to

0.8. It means that the numerical results are consistent with the theoretical results that are given in theorem

1,2. We can see from the simulation results that the treatment with such drug efficacy succeeded to eliminate

the HIV virus from the blood.

Case II: Effect of time delay on the dynamical behavior of the system:

In this case, we confirm the effect of delay parameter in pre-treatment case where ε = 0.0. Figures 7-12 show

the effect of time delay on the stability of the steady states and the evolution of the uninfected and infected

for each CD4+ T cells and macrophages, free virus particles and immune response. We observe that, as time

delay is increased from τ = 0.1 to 0.9, E1 still exists and is a globally asymptomatically stable. Moreover the

concentrations of uninfected CD4+T cells and macrophages are increasing for the values of τ except τ = 0.1.

The concentrations of CD4+T, macrophages infected cells and free viruses are decaying with the increasing of

time delay values and tend to zero when τ = 0.9. While the concentration of cytotoxic T lymphocytes (CTLs)

immune response is increasing for the values of equal to 0.1, 0.3, 0.5 and it tend to zero when τ equal to 0.9.

It means that the numerical results are consistent with the theoretical results that are given in theorem 1,2.

Moreover from a biological point of view, the intracellular delay plays a similar role as an antiviral treatment

in eliminating the virus. Where, sufficiently large delay repress viral replication and works on virus clearance.

This awaken us to the significance of medications running on the prolong of intracellular delay period.
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Figure 1: The evolution of uninfected CD4+T cells

against time with constant time delay τ = 0.5.

Time(days)
0 50 100 150 200 250 300 350 400 450 500

In
fe

ct
ed

 C
D

4 
T

 c
el

ls

0

1

2

3

4

5

6

7

8

9

eps = 0
eps = 0.2
eps = 0.5
eps = 0.8

Figure 2: The evolution of infected CD4+T cells

against time with constant time delay τ = 0.5.
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Figure 3: The evolution of uninfected macrophages

cells against time with constant time delay τ = 0.5.
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Figure 4: The evolution of infected macrophages

cells against time with constant time delay τ = 0.5.
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Figure 5: The evolution of free viruses against time

with constant time delay τ = 0.5.
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Figure 6: The evolution of immune response against

time with constant time delay τ = 0.5.
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Figure 7: The pre-treatment evolution of uninfected

CD4+T cells against time.
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Figure 8: The pre-treatment evolution of infected

CD4+T cells against time.
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Figure 9: The pre-treatment evolution of uninfected

macrophages cells against time.
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Figure 10: The pre-treatment evolution of infected

macrophages cells against time.
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Figure 11: The pre-treatment evolution of free

viruses against time.
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Figure 12: The pre-treatment evolution of immune

response against time.
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5 Conclusion

In this paper, we suggested a distributed delayed human immunodeficiency virus (HIV) models with CTL

and two target cells as a system of nonlinear ODES. We demonstrated the positively and boundedness of the

solutions and calculate the steady states of the model. Besides we have used suitable Lyapunov functions to

set the global asymptotic stability of the steady states. We have derived the basic reproduction number R0

and established that the global dynamics are completely established by the value of the related reproduction

number.
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Abstract

By applying Ahlfors’ theory of covering surfaces, we prove that for quasi-meromorphic
mapping f satisfying lim supr→∞

T (r,f)

(log r)2
= +∞, there exists at least one pseudo-T -direction

of f . We also prove that there exists at least one pseudo-Nevanlinna direction of f which is
also pseudo-T -direction of f under the same condition.
Key words: K-quasi-meomrophic mapping; pseudo-T-direction; pseudo-Nevanlinna direction
2000 Mathematics Subject Classification : 30D 60.

1 Introduction, definitions and results

It is very interesting topic on singular directions of meromorphic functions in the fields of complex
analysis([3, 6, 8, 13, 10, 14]), such as Julia direction, Borel direction, T-direction, Hayman direc-
tion, and so on. In 1997, Sun and Yang [7] extended the value distribution theory of meromorphic
functions (see [3, 13] for standard references) to the corresponding theory of quasi-meromorphic
mappings [1, 7]. In fact, for value distribution of quasi-meromorphic mappings f , the singular
direction for f is also one of the main research objects. In [7], Sun and Yang obtained an existence
theorem of the Borel direction by using the filling disc theorem of quasi-meromorphic mappings.
Later, there were some important results about singular directions for quasi-meromorphic map-
pings. In 1999, Chen and Sun [1] gave the definition of Nevanlinna directions of quasi-meromorphic
mappings on the complex plane and proved that there exists at least one Nevanlinna direction for
quasi-meromorphic mappings of infinite order by using type function, and they also obtained that
the Nevanlinna direction for quasi-meromorphic mappings of infinite order is also one Borel direc-
tion with respect to the type function. In 2004, Liu and Yang [4] studied the relationship between
the Julia direction and the Nevanlinna direction of quasi-meromorphic mappings by applying a
fundamental inequality of quasi-meromorphic mappings on an angular domain.

For a meromorphic function f , Zheng [14] introduced a new singular direction called a T -
direction conjectured that a transcendental meromorphic function f must have at least one T -

direction and proved that lim sup
r→∞

T (r,f)
(log r)2 = +∞. Later, H. Guo, J. H. Zheng and T. W. Ng [2]

proved that the conjecture is true by using Ahlfors-Shimizu character T (r,Ω) of a meromorphic
function in an angular domain Ω. Xuan [12] studied the existence of T -direction of algebroid
function dealing with multiple values. In 2006, Li and Gu [5] proved that there exists at least one

Nevanlinna direction for a K-quasi-meromorphic mapping f under the condition lim sup
r→∞

T (r,f)
(log r)2 =

∗The author was supported by the NSF of China(11561033,11561031), the Natural Science Foundation of
Jiangxi Province in China (20151BAB201008), and the Foundation of Education Department of Jiangxi of Chi-
na (GJJ150902).
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+∞. In this paper we will further investigate some new singular direction of K-quasi-meromorphic
mapping f . Before stating our main results, we will introduce some definitions and notations, which
can be found in [7, 11].

Definition 1.1 (see [7]). Let f be a complex and continuous functions in a region D. If for any
rectangle R = {x+ iy; a < x < b, c < y < d} in D, f(x+ iy) is an absolutely continuous function
of y for almost every x ∈ (a, b), and f(x+ iy) is an absolutely continuous function of x for almost
every y ∈ (c, d), then f is said to be absolutely continuous on lines in the region D. We also call
that f is ACL in D.

Definition 1.2 (see [7, Definition 1.1]). Let f be a homemorphism from D to D′. If
(i) f is ACL in D,
(ii) there exists K ≥ 1 such that f(z) = u(x, y) + iv(x, y) satisfies |fz| + |fz̄| ≤ K(|fz| − |fz̄|)

a. e. in D, then f is called an univalent K-quasiconformal mapping in D. If D′ is a region on
Riemann sphere V , then f is named an univalent K-quasi-meromorphic mapping in D.

Definition 1.3 (see [7, Definition 1.2]) Let f be a complex and continuous function in the region
D. For every point z0 in D, if there is a neighborhood U(⊂ D) and a positive integer n depending
on z0, such that

F (z) =

{
(f(z))

1
n , f(z0) =∞,

(f(z)− f(z0))
1
n + f(z0), f(z0) 6=∞.

is an univalent K-quasi-meromorphic mapping, then f is named n-valent K-quasi-meromorphic
mapping at point z0. If f is n-valent K-quasi-meromorphic at every point of D, then f is called a
K-quasi-meromorphic mapping in D.

Let V be the Riemann sphere whose diameter is 1. For any complex number a, let n(r, a) be
the number of zero points of f(z) − a in disc |z| < r, counted according to their multiplicities,
nl)(r, a) be the number of zeros of f(z)− a with multiplicity ≤ l in disc |z| < r, counted according
to their multiplicities. Let Fr be the covering surface f(z) = u(x, y) + iv(x, y) on sphere V and
S(r, f) be the average covering times of Fr to V ,

S(r, f) =
|Fr|
|V |

=
1

π

∫ r

0

∫ 2π

0

|fz|2 − |fz̄|2

(1 + |f |2)2
rdϕdr,

where |Fr| and |V | are the areas of Fr and V respectively,

T (r, f) =

∫ r

0

S(r, f)

r
dr,

N(r, a) =

∫ r

0

n(t, a)− n(0, a)

t
dt+ n(0, a) log r,

N l)(r, a) =

∫ r

0

nl)(t, a)− nl)(0, a)

t
dt+ nl)(0, a) log r.

Let Ω(ϕ1, ϕ2) = {z ∈ C : ϕ1 < arg z < ϕ2}(0 ≤ ϕ1 < ϕ2 ≤ 2π), we denote

S(r, ϕ1, ϕ2; f) =
|Fr|
|V |

=
1

π

∫ r

0

∫ ϕ2

ϕ1

|fz|2 − |fz̄|2

(1 + |f |2)2
rdϕdr,

T (r, ϕ1, ϕ2; f) =

∫ r

0

S(r, ϕ1, ϕ2; f)

r
dr,

when ϕ1 = 0, ϕ2 = 2π, we note S(r, 0, 2π; f) = S(r, f), T (r, 0, 2π; f) = T (r, f).
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For any complex number a, let n(r, ϕ1, ϕ2; a) be the number of zero points of f(z)−a in sector
Ω(ϕ1, ϕ2) ∩ {z : |z| < r}, counted according to their multiplicities, nl)(r, ϕ1, ϕ2; a) be the number
of zeros of f(z)− a with multiplicity ≤ l in sector Ω(ϕ1, ϕ2) ∩ {z : |z| < r}, counted according to
their multiplicities. We define

N(r, ϕ1, ϕ2; a) =

∫ r

0

n(t, ϕ1, ϕ2; a)− n(0, ϕ1, ϕ2; a)

t
dt+ n(0, ϕ1, ϕ2; a) log r,

N l)(r, ϕ1, ϕ2; a) =

∫ r

0

nl)(t, ϕ1, ϕ2; a)− nl)(0, ϕ1, ϕ2; a)

t
dt+ nl)(0, ϕ1, ϕ2; a) log r.

Next we give the definitions concerning the Nevanlinna direction of K-quasi-meromorphic map-
pings dealing with multiple values .

Definition 1.4 Let f be a K-quasi-meromorphic mapping and l be a positive integer. Then we
call δl)(a, ϕ0) the deficiency of the value a in the direction ∆(ϕ0): arg z = ϕ0, 0 ≤ ϕ0 < 2π. We
call a the deficiency value of f in the direction ∆(ϕ0) if δl)(a, ϕ0) > 0, where

δl)(a, ϕ0) = 1− lim sup
ε→+0

lim sup
r→∞

N l)(r, ϕ0 − ε, ϕ0 + ε; a)

T (r, ϕ0 − ε, ϕ0 + ε; f)
.

Definition 1.5 We call ∆(ϕ0) : arg z = ϕ0 the pseudo-Nevanlinna direction of f if, for any system
aj ∈ C ∪ {∞}(j = 1, 2, . . . , q) of distinct values and any system kj(j = 1, 2, . . . , q) such that kj is
a positive integer or +∞ such that

q∑
j=1

(
1− 1

kj + 1

)
> 2, (1)

and
q∑
j=1

kj
kj + 1

δkj (aj , ϕ0) ≤ 2.

Similarly, we give the pseudo-T-direction of K-quasi-meromorphic mapping as follows.

Definition 1.6 Let f be the K-quasi-meromorphic mapping. A direction B : arg z = ϕ0(0 ≤ ϕ0 ≤
2π) is called a T -direction of f if, for any ε(0 < ε < π

2 ), and any system aj ∈ C ∪ {∞}(j =
1, 2, . . . , q) of distinct values and any system kj(j = 1, 2, . . . , q) such that kj is a positive integer
or +∞ satisfying (2), there exists at least one integer j(1 ≤ j ≤ q) such that

lim sup
r→∞

Nkj)(r, ϕ0 − ε, ϕ0 + ε, aj)

T (r, f)
> 0.

Now, we will give an existence theorem of pseudo-T -direction of K-quasi-meromorphic mapping
f as follows.

Theorem 1.1 Let f be the K-quasi-meromorphic mapping satisfying

lim sup
r→∞

T (r, f)

(log r)2
= +∞, (2)

then there exists at least one pseudo-T -direction of f .

We also investigate the problem on the relationship between pseudo-Nevanlinna direction and

pseudo-T -direction of f under the condition lim sup
r→∞

T (r,f)
(log r)2 = +∞, and obtain the following result:

Theorem 1.2 Let f be the K-quasi-meromorphic mapping satisfying (2). Then there exists at
least one direction which is both one pseudo-Nevanlinna direction of f and one pseudo-T -direction
of f .
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2 Some Lemmas

Let F be a finite covering surface of F1, F is bounded by a finite number of analytic closed Jordan
curves, its boundary is denoted by ∂F . We call the part of ∂F , which lies the interior of F1, the
relative boundary of F , and denote its length by L. Let D be a domain of F1, its boundary consists
of finite number of points or analytic closed Jordan curves, and F (D) be the part of F , which lies
above D. We denote the area of F, F1, F (D) and D by |F |, |F1|, |F (D)| and |D|, respectively. We
call

S =
|F |
|F1|

, S(D) =
|F (D)|
|D|

the mean covering numbering of F relative to F1, D, respectively.

Lemma 2.1 (see [9, Theorem 3]) Let F be a simply connected finite covering surface on the unit
sphere V , and let kj(j = 1, 2, . . . , q) be q positive integers. Let Dj(j = 1, 2, . . . , q) be q(≥ 2) disjoint
spherical disks with radius δ/3(> 0) on V and without a pair of Dj such that their spherical distance

is less than δ and let n
kj)
j be the number of simply connected islands in F (Dj), which consist of

not more than kj sheets, then

q∑
j=1

kj
kj + 1

n
kj)
j ≥

 q∑
j=1

(
1− 1

kj + 1

)
− 2

S − C + 9πh

δ3
L,

where L is the length of the relative boundary of F .

By applying Lemma 2.1, we can get an important inequality of K-quasi-meromorphic mapping
in an angular domain as follows.

Lemma 2.2 Suppose that f(z) is a K-quasi-meromorphic mapping, and let kj(j = 1, 2, . . . , q) be
q positive integers, and {aj} are q(≥ 3) distinct points on V and without a pair of {aj} such that

their spherical distance is less than δ + 2δ/3, n
kj)
j be the number of zeros of f(z) − aj, which are

consisted of not more than kj multiplicities, then

q∑
j=1

kj
kj + 1

n
kj)
j ≥

 q∑
j=1

(
1− 1

kj + 1

)
− 2

S − C + 9πh

δ3
L.

Lemma 2.3 (see [5, Lemma 2.2]). Let f(z) be a K-quasi-meromorphic mapping on the angular
domain Ω(ϕ0 − δ, ϕ0 + δ), a1, . . . , aq(q ≥ 3) are distinct points on the unit sphere V and the
spherical distance of any two points is no smaller than γ ∈ (0, 1

2 ). Let F0 = V \ {a1, a2, . . . , aq},
D = Ω(r, ϕ0 −ϕ,ϕ0 +ϕ)∩ {z : |z| > 1} \ {f−1(a1), f−1(a2), . . . , f−1(a1)} and Dr = D ∩ {z : |z| <
r}(r > 1), Fr = f(Dr) ⊂ V , then for any positive number ϕ satisfying 0 < ϕ < δ, we have

L(∂f(Dr)) ≤
√

2Kπ

[
d(S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f))

dϕ

] 1
2

(log r)
1
2 (3)

+
√

2Kδrµ
1
2 (r, ϕ0 − δ, ϕ0 + δ) +

√
2Kδµ

1
2 (1, ϕ0 − δ, ϕ0 + δ).

where Fr is the covering surface of F0 and L(∂f(Dr)) is the length of the relative boundary of Fr
relative to F0, and

µ(r, ϕ0 − δ, ϕ0 + δ) =

∫ ϕ0+δ

ϕ0−δ

|fz|2 − |fz̄|2

(1 + |f(reiϕ|2)2
rdϕ.
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Lemma 2.4 Let f(z) be a K-quasi-meromorphic mapping on the angular domain Ω(ϕ0−δ, ϕ0+δ),
and kj(j = 1, 2, . . . , q) q positive integers. If a1, . . . , aq(q ≥ 3) are distinct points on the unit sphere
V and the spherical distance of any two points is no small than γ ∈ (0, 1

2 ). Then q∑
j=1

(
1− 1

kj + 1

)
− 2

S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)

≤
q∑
j=1

kj
kj + 1

nkj)(r, ϕ0 − δ, ϕ0 + δ; aj) +
2C2γ−6π2K(∑q

j=1

(
1− 1

kj+1

)
− 2
)

(δ − ϕ)
log r

+

 q∑
j=1

(
1− 1

kj + 1

)
− 2

S(1, ϕ0 − ϕ,ϕ0 + ϕ; f) + 2Cγ−3δ
1
2K

1
2 r

1
2µ

1
2 (r, ϕ0 − δ, ϕ0 + δ)

+ 2Cγ−3δ
1
2K

1
2µ

1
2 (1, ϕ0 − δ, ϕ0 + δ) (4)

and  q∑
j=1

(
1− 1

kj + 1

)
− 2

T (r, ϕ0 − ϕ,ϕ0 + ϕ; f)

≤
q∑
j=1

kj
kj + 1

Nkj)(r, ϕ0 − δ, ϕ0 + δ; aj) +
2C2γ−6π2K(∑q

j=1

(
1− 1

kj+1

)
− 2
)

(δ − ϕ)
(log r)2

+

 q∑
j=1

(
1− 1

kj + 1

)
− 2

T (1, ϕ0 − ϕ,ϕ0 + ϕ; f)

+

 q∑
j=1

(
1− 1

kj + 1

)
− 2

S(1, ϕ0 − ϕ,ϕ0 + ϕ; f) log r

+ 2Cγ−3δ
1
2K

1
2µ

1
2 (1, ϕ0 − δ, ϕ0 + δ) log r + λ(r, ϕ0 − δ, ϕ0 + δ) (5)

for any ϕ, 0 < ϕ < δ, where C is a constant depending only on {a1, a2, . . . , aq}. λ(r, ϕ0−δ, ϕ0+δ) =

2Cγ−3δ
1
2K

1
2

∫ r
1

(µ(r,ϕ0−δ,ϕ0+δ)
r )

1
2 dr, (µ(r, ϕ0 − δ, ϕ0 + δ) =

∫ ϕ0+δ

ϕ0−δ
|fz|2−|fz̄|2

(1+|f(reiϕ|2)2 rdϕ)

λ(r, ϕ0 − δ, ϕ0 + δ) ≤ 2Cγ−3δ
1
2π

1
2K

1
2 (T (r, ϕ0 − δ, ϕ0 + δ; f))

1
2 log T (r, ϕ0 − δ, ϕ0 + δ; f) (6)

outside a set Eδ of r at most, where Eδ consists of a series of intervals and satisfies
∫
Eδ

(r log r)−1dr
< +∞.

Proof: Under the condition of Lemma 2.3 and Lemma 2.2, we have

S(Dr) = S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f). (7)

Using Lemma 2.1, we easily obtain

 q∑
j=1

(
1− 1

kj + 1

)
− 2

 [S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f)]

≤
q∑
j=1

kj
kj + 1

nkj)(r, ϕ0 − δ, ϕ0 + δ; aj) + Cγ−3L(∂(Dr)). (8)
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where C is a constant depending only on {a1, a2, . . . , aq}.
Taking (3) into (8), we have q∑

j=1

(
1− 1

kj + 1

)
− 2

 [S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f)]

−
q∑
j=1

kj
kj + 1

nkj)(r, ϕ0 − δ, ϕ0 + δ; aj)− Cγ−3
√

2Kδrµ
1
2 (r, ϕ0 − δ, ϕ0 + δ)

− Cγ−3
√

2Kδµ
1
2 (1, ϕ0 − δ, ϕ0 + δ)

≤Cγ−3
√

2Kπ

[
d(S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f))

dϕ

] 1
2

(log r)
1
2 . (9)

We denote

A(r, ϕ) =

 q∑
j=1

(
1− 1

kj + 1

)
− 2

 [S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f)]

−
q∑
j=1

kj
kj + 1

nkj)(r, ϕ0 − δ, ϕ0 + δ; aj)− Cγ−3
√

2Kδrµ
1
2 (r, ϕ0 − δ, ϕ0 + δ)

− Cγ−3
√

2Kδµ
1
2 (1, ϕ0 − δ, ϕ0 + δ). (10)

By (9) and (10), we have

A(r, ϕ) ≤ Cγ−3
√

2Kπ

[
d(S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f))

dϕ

] 1
2

(log r)
1
2 . (11)

And from (10), it follows that A(r, ϕ) is an increasing function of ϕ. Thus, there exists δ0 > 0,
such that A(r, ϕ) ≤ 0 for 0 < ϕ ≤ δ0 and A(r, ϕ) > 0 for ϕ > δ0.

Now, two following cases will be considered:
Case 1. For ϕ > δ0, by (11) we have

[A(r, ϕ)]2 ≤ 2C2γ−6Kπ2 d(S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f))

dϕ
log r. (12)

By (10) we have

dA(r, ϕ)

dϕ
=

 q∑
j=1

(
1− 1

kj + 1

)
− 2

 d(S(r, ϕ0 − ϕ,ϕ0 + ϕ; f)− S(1, ϕ0 − ϕ,ϕ0 + ϕ; f))

dϕ
. (13)

From (12) and (13) we have

[A(r, ϕ)]2 ≤ 2C2γ−6Kπ2 log r∑q
j=1

(
1− 1

kj+1

)
− 2
· dA(r, ϕ)

dϕ
,

i.e.,

dϕ ≤ 2C2γ−6Kπ2 log r∑q
j=1

(
1− 1

kj+1

)
− 2
· dA(r, ϕ)

[A(r, ϕ)]2
.

For the above inequality, by integrating its two sides, we have

δ − ϕ =

∫ δ

ϕ

dϕ ≤ 2C2γ−6Kπ2 log r∑q
j=1

(
1− 1

kj+1

)
− 2

∫ δ

ϕ

dA(r, ϕ)

[A(r, ϕ)]2
≤ 2C2γ−6Kπ2 log r∑q

j=1

(
1− 1

kj+1

)
− 2
· 1

A(r, ϕ)
.
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Thus

A(r, ϕ) ≤ 2C2γ−6Kπ2 log r(∑q
j=1

(
1− 1

kj+1

)
− 2
)

(δ − ϕ)
. (14)

Case 2. Because A(r, ϕ) ≤ 0 when 0 < ϕ ≤ δ0, the above inequality also holds.
From Case 1 and Case 2, we can easily get

A(r, ϕ) ≤ 2C2γ−6Kπ2 log r(∑q
j=1

(
1− 1

kj+1

)
− 2
)

(δ − ϕ)
,

for any ϕ, 0 < ϕ < δ. Thus, from (10) we can get (4) easily.
Then, by dividing r and integrating from 1 to r on each sides of (4) we get q∑

j=1

(
1− 1

kj + 1

)
− 2

T (r, ϕ0 − ϕ,ϕ0 + ϕ; f)

≤
q∑
j=1

kj
kj + 1

Nkj)(r, ϕ0 − δ, ϕ0 + δ; aj) +
2C2γ−6π2K(∑q

j=1

(
1− 1

kj+1

)
− 2
)

(δ − ϕ)
(log r)2

+

 q∑
j=1

(
1− 1

kj + 1

)
− 2

T (1, ϕ0 − ϕ,ϕ0 + ϕ; f)

+

 q∑
j=1

(
1− 1

kj + 1

)
− 2

S(1, ϕ0 − ϕ,ϕ0 + ϕ; f) log r

+ 2Cγ−3δ
1
2K

1
2µ

1
2 (1, ϕ0 − δ, ϕ0 + δ) log r + 2Cγ−3δ

1
2K

1
2

∫ r

1

[
µ(r, ϕ0 − δ, ϕ0 + δ)

r

] 1
2

dr.

From the definitions of S(r, ϕ1, ϕ2; f), µ(r, ϕ0−δ, ϕ0 +δ) and λ(r, ϕ0−δ, ϕ0 +δ), and Schwarz’s
inequality we get

(λ(r, ϕ0 − δ, ϕ0 + δ))2 = 4C2γ−6δK

[∫ r

1

(
µ(r, ϕ0 − δ, ϕ0 + δ)

r

) 1
2

dr

]2

≤ 4C2γ−6δK

∫ r

1

µ(r, ϕ0 − δ, ϕ0 + δ)dr

∫ r

1

r−1dr

≤ 4C2γ−6πδK log r

∫ r

1

dS(r, ϕ0 − δ, ϕ0 + δ; f)

≤ 4C2γ−6πδKS(r, ϕ0 − δ, ϕ0 + δ; f) log r

= 4C2γ−6πδK
dT (r, ϕ0 − δ, ϕ0 + δ; f)

dr
r log r. (15)

Choosing r0, r0 > 0 such that T (r0, ϕ0 − δ, ϕ0 + δ; f) > 1, and setting Eδ = {r0 < r < ∞ :
(λ(r, ϕ0 − δ, ϕ0 + δ))2 > 4C2γ−6πδKT (r, ϕ0 − δ, ϕ0 + δ; f)(log T (r, ϕ0 − δ, ϕ0 + δ; f))2}, thus we
have ∫

Eδ

dr

r log r
≤
∫
Eδ

dT (r, ϕ0 − δ, ϕ0 + δ; f)

T (r, ϕ0 − δ, ϕ0 + δ; f)[log T (r, ϕ0 − δ, ϕ0 + δ; f)]2

≤ [log T (r0, ϕ0 − δ, ϕ0 + δ; f)]−1 < +∞. (16)

Then for r > r0 and r 6∈ Eδ, we have (5).
Thus, the proof of Lemma 2.4 is completed. 2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

132 Hong Yan Xu 126-137



Lemma 2.5 (see [11, Lemma 2.4] or [12]). Let F (r) be a positive nondecreasing function defined
for 1 < r < +∞ and satisfy

lim sup
r→∞

F (r)

(log r)2
= +∞. (17)

Then, for any subset E ⊂ (1,+∞) satisfying
∫
E

dr
r log r <

1
℘ (℘ ≥ 2),

lim sup
r→∞,r∈(1,+∞)\E

F (r)

(log r)2
= +∞.

Lemma 2.6 Let f(z) be the K-quasi-meromorphic mapping and m(m > 1) be a positive integer.
Put ϕ0 = 0, ϕ1 = 2π

m , . . . , ϕm−1 = (m− 1) 2π
m . Let

∆(ϕi) =

{
z | | arg z − ϕi| <

2π

m

}
(0 ≤ i ≤ m− 1).

Then among these m angular domains {∆(ϕi)}, there exists at least an angular domain ∆(ϕi)
such that for any system aj(j = 1, 2, . . . , q) of distinct values and any system kj(j = 1, 2, . . . , q
such that kj is a positive integer or +∞ and that

q∑
j=1

(
1− 1

kj + 1

)
> 2,

there exists at least one integer j(1 ≤ j ≤ q) such that

lim sup
r→∞

Nkj)(r,∆(ϕi), a)

T (r, f)
> 0.

Proof: Suppose that the conclusion is false. Then for any ∆(ϕi)(i = 0, 1, . . . ,m − 1), there is
a system aij(j = 1, 2, . . . , q) of distinct values and a system kij(j = 1, 2, . . . , q) such that kij is a
positive integer or +∞ and that

q∑
j=1

(1− 1

kij + 1
) > 2,

for any j(1 ≤ j ≤ q), we have

lim sup
r→∞

Nkij)(r,∆(ϕi), a
i
j)

T (r, f)
= 0. (18)

Let β be any positive integer. Put ϕi,k = 2π
m i+ 2kπ

βm , 0 ≤ i ≤ m− 1, 0 ≤ k ≤ β − 1. For any given
number r > 1, writing

∆i,k(r) = {z||z| < r, ϕi,k < ϕi,k+1} .

Then

{|z| < r} =

β−1∑
k=0

m−1∑
i=0

∆i,k(r).

Put

∆i =

{
z|ϕi,0 + ϕi,1

2
≤ argz ≤ ϕi+1,0 + ϕi+1,1

2

}
,

∆0
i = {z|ϕi,0 < argz < ϕi+1,1}, 0 ≤ i ≤ m− 1,

q∑
j=1

(
1− 1

kj + 1

)
= min

1≤i≤m


q∑
j=1

(
1− 1

kij + 1

) > 2.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

133 Hong Yan Xu 126-137



From Lemma 2.4 we have q∑
j=1

(
1− 1

kj + 1

)
− 2

S(r,∆i, f) ≤
q∑
j=1

kij
kij + 1

nk
i
j)(r,∆0

i , a
i
j)+O(log r)+hir

1
2µ

1
2 (r, ϕi,0, ϕi+1,1).

Add from i = 0 to m− 1 and divide both sides of this inequality by r and integrate both sides
from 1 to r, and since T (r, f) =

∑m−1
i=0 T (r,∆i, f), then the following inequality can be obtained q∑

j=1

(
1− 1

kj + 1

)
− 2

T (r, f)

≤
m−1∑
i=0

q∑
j=1

kij
kij + 1

Nkij)(r,∆0
i , a

i
j) +O((log r)2) +

m−1∑
i=0

λ(r, ϕi,0, ϕi+1,1), (19)

where

λ(r, ϕi,0, ϕi+1,1) ≤ hi
[

2π

m
(1 +

1

β
)

] 1
2

(T (r, ϕi,0, ϕi+1,1; f))
1
2 log T (r, ϕi,0, ϕi+1,1; f)

at most outside a set Ei of r, where Ei satisfies
∫
Ei

(r log r)−1dr < +∞(i = 0, 1, . . . ,m− 1).

For any i ∈ {0, 1, . . . ,m−1} and ℘ ≥ 2, there exists ri > 0 such that T (ri, ϕi,0, ϕi+1,1; f) > e℘m

for r > ri. Then it follows from (16) that∫
Ei

1

r log r
dr ≤ 1

log T (r, ϕi,0, ϕi+1,1; f)
<

1

℘m
<

1

℘
.

Put E = ∪m−1
i=0 Ei, then∫

E

1

r log r
dr ≤

m−1∑
i=0

∫
Ei

1

r log r
dr ≤ m max

0≤i≤m−1

∫
Ei

1

r log r
dr < m · 1

℘m
<

1

℘
.

By applying Lemma 2.5 to this set E and T (r, f), we obtain that

lim sup
r→∞,r∈(1,∞)\E

T (r, f)

(log r)2
= +∞.

There exists {rn} ∈ (r,+∞)\E,

lim
n→∞

T (rn, f)

(log rn)2
= +∞.

For this sequence {rn}, by (19) we have q∑
j=1

(
1− 1

kj + 1

)
− 2

T (rn, f)

≤
m−1∑
i=0

q∑
j=1

kij
kij + 1

Nkij)(rn,∆
0
i , a

i
j) +O((log rn)2) +

m−1∑
i=0

λ(rn, ϕi,0, ϕi+1,1).

From (18), by dividing both sides of the above inequality by T (rn, f) and letting n→∞, we obtain∑q
j=1

(
1− 1

kj+1

)
− 2 ≤ 0 that is,

∑q
j=1

(
1− 1

kj+1

)
≤ 2, a contradict.

Thus, this completes the proof of Lemma 2.6. 2
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3 The Proof of Theorem 1.1

Proof: By Lemma 2.6, we can choose subsequence of {θm}, assume that θm → θ0 when m → ∞.
Then B : arg z = θ0 is a pseudo-T-direction of f .

In fact, for any ε(0 < ε < π
2 ), when m is sufficiently large, we have ∆(θm) ⊂ Ω(θ0, ε). By

Lemma 2.6, we have

lim sup
r→∞

Nkj)(r, θ0, ε, aj)

T (r, f)
≥ lim sup

r→∞

Nkj)(r,∆(θm), aj)

T (r, f)
> 0.

Thus, we complete the proof of Theorem 1.1. 2

4 The Proof of Theorem 1.2

Proof: Suppose δ ∈ (0, 2π), we can choose r0 > 0 such that T (r0, ϕ0 − δ, ϕ + δ; f) > e℘. Then it
follows from (16) that ∫

Eδ

1

r log r
dr ≤ 1

log T (r0, ϕ0 − δ, ϕ+ δ; f)
<

1

℘
.

By applying Lemma 2.4 for the set Eδ and T (r, f), it follows that

lim sup
r→∞,r∈(1,∞)\Eδ

T (r, f)

(log r)2
= +∞.

So, there exists a sequence {rn} ∈ (r,+∞)\Eδ,

lim
n→∞

T (rn, f)

(log rn)2
= +∞. (20)

By applying the finite covering theorem at [0, 2π], there exists some ϕ0 such that ϕ0 ∈ [0, 2π] and

lim sup
n→∞

T (rn, ϕ0 − ϕ,ϕ0 + ϕ; f)

T (rn, f)
> 0 (21)

for an arbitrary ϕ, 0 < ϕ < ϕ0. Thus, we will prove that the direction ∆(ϕ0) : arg z = ϕ0 is one
pseudo-Nevanlinna direction of f(z) which is also the pseudo-T -direction of f(z).

Step one. We firstly prove that the direction ∆(ϕ0) : arg z = ϕ0 is one pseudo-Nevanlinna
direction of f(z).

Otherwise, for an arbitrary positive number ε0 > 0, there exists a system aj ∈ C ∪ {∞}(j =
1, 2, . . . , q) of distinct values and a system kj(j = 1, 2, . . . , q) such that kj is a positive integer or
+∞ and that

q∑
j=1

(
1− 1

kj + 1

)
> 2, (22)

the following inequality holds

q∑
j=1

kj
kj + 1

δkj (aj , ϕ0) > 2 + ε0.

From the definition of δkj (aj , ϕ0), we get

lim sup
ϕ→+0

lim sup
r→+∞

q∑
j=1

kj
kj + 1

Nkj)(r, ϕ0 − ϕ,ϕ0 + ϕ; aj)

T (r, ϕ0 − ϕ,ϕ0 + ϕ; f)
<

q∑
j=1

(1− 1

kj + 1
)− 2− ε0.
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Thus, there exists some ϕ′(> 0), and for any ϕ, 0 < ϕ < ϕ′, we have

lim sup
r→+∞

q∑
j=1

kj
kj + 1

Nkj)(r, ϕ0 − ϕ,ϕ0 + ϕ; aj)

T (r, ϕ0 − ϕ,ϕ0 + ϕ; f)
<

q∑
j=1

(1− 1

kj + 1
)− 2− ε0. (23)

Then for any ϕ, 0 < ϕ < ϕ′, set

T (ϕ) = lim sup
n→+∞

T (rn, ϕ0 − ϕ,ϕ0 + ϕ; f)

T (rn, f)
. (24)

Obviously, T (ϕ) is an increasing function in interval [0, ϕ′]. From (21) we have T (ϕ) > 0. So,
0 < T (ϕ) ≤ 1. Since the increasing of T (ϕ) in interval [0, ϕ′] and the continuous theorem for
monotonous functions, we can see that all discontinuous points of T (ϕ) constitute a countable set
at most. Then, by Lemma 2.4, we can get q∑

j=1

(1− 1

kj + 1
)− 2

T (rn, ϕ0 − ϕ,ϕ0 + ϕ; f)

≤
q∑
j=1

kj
kj + 1

Nkj)(rn, ϕ0 − δ, ϕ0 + δ; aj) +O(log rn)2

+O((T (rn, ϕ0 − δ, ϕ0 + δ; f))
1
2 log T (rn, ϕ0 − δ, ϕ0 + δ; f)) (25)

for 0 < ϕ < δ < ϕ′ and rn 6∈ Eδ.
Thus, it follows from (23)-(25) that q∑

j=1

(1− 1

kj + 1
)− 2

T (ϕ) <

 q∑
j=1

(1− 1

kj + 1
)− 2− ε0

T (δ). (26)

Then, we get from (26)
T (ϕ)→ T (δ), ϕ→ δ. (27)

By combining (26) with (27), we can obtain T (δ) = 0, which is a contradiction to T (δ) > 0. Then
∆(ϕ0) : argz = ϕ0 is the pseudo-Nevanlinna direction of f(z).

Step two. We will prove that ∆(ϕ0) : argz = ϕ0 is the pseudo-T -direction of f(z).
Otherwise, there exists ε0 > 0 and there is a system aj(j = 1, 2, . . . , q) of distinct values and a

system kj(j = 1, 2, . . . , q) such that kj is a positive integer or +∞ and that

q∑
j=1

(1− 1

kj + 1
) > 2,

for any j(1 ≤ j ≤ q), we have

lim sup
r→∞

Nkj)(r, ϕ0 − ε0, ϕ0 + ε0, aj)

T (r, f)
= 0.

Then there exists a sequence {rn} such that

lim
r→∞

Nkj)(rn, ϕ0 − ε0, ϕ0 + ε0, aj)

T (rn, f)
= 0. (28)

For ϕ ∈ (0, ε0), similar to (24), we define T (ϕ), then 0 < T (ϕ) ≤ 1. By Lemma 2.4, for the above
sequence {rn} ⊂ (1,+∞)\Eδ and 0 < ϕ < ϕ′ < δ, we have q∑
j=1

(1− 1

kij + 1
)− 2

T (rn, ϕ0−ϕ,ϕ0+ϕ; f) ≤
q∑
j=1

kj
kj + 1

Nkj)(rn, ϕ0−ε0, ϕ0+ε0; aji )+O((log rn)2)
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+O((T (rn, ϕ0 − ε0, ϕ0 + ε0; f))
1
2 log T (rn, ϕ0 − ε0, ϕ0 + ε0; f)). (29)

By (21), (28), (29) and
∑q
j=1(1− 1

kj+1 ) > 2, we can obtain T (ϕ) ≤ 0 which is a contradiction with

T (ϕ) > 0. Therefore ∆(ϕ0) : argz = ϕ0 is the pseudo-T -direction of f(z).
Thus, this completes the proof of Theorem 1.2.

2
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Abstract

In this paper, we firstly establish the second main theorem about meromorphic functions on
annuli concerning small functions. Then, by using this theorem, we deal with the uniqueness
of meromophic functions sharing some small functions on annuli and obtain the results of
meromporphic functions sharing five small functions on annuli, which is an answer to the
question of Cao and Yi. In addition, we investigate the properties of meromorphic functions
on annuli, and obtain a form of Yang’s inequality on annuli by reducing the coeffcients of
Hayman’s inequality. Moreover, we also study Hayman’s inequality in different forms, and
obtain accurate estimates of sums of deficiencies.
Key words: Small function, Nevanlinna theory, the annulus.
Mathematical Subject Classification (2010): 30D30, 30D35.

1 Introduction

Firstly, we always assumed that the reader is familiar with the notations of the Nevanlinna theory
such as T (r, f),m(r, f), N(r, f) and so on (see [6, 22, 23]).

In 1920s, R. Nevanlinna (see [17]) first established the famous Nevanlinna characteristic of mero-
morphic functions. It is well known that the Nevanlinna characteristic is powerful, and Nevanlinna
theory of value distribution play an important role in the research of complex analysis, which has
been used to deal with various complex problems, such as: complex differential equation, complex
difference equation, uniqueness of meromorphic functions, complex dynamic systems, etc. Among
many basic theorems in Nevanlinna theory, the second main theorem is very important to study
the value distribution, uniqueness, singular direction, which is listed as follows.

Theorem 1.1 (see [6, 23]). Let f(z) be a non-identically-constant meromorphic function, let
a1, . . . , aq be distinct complex numbers, one of which can be equal to ∞. Then

q∑
j=1

m(r,
1

f − aj
) < 2T (r, f)−N1(r, f) + S(r, f),

∗The authors were supported by the NSF of China (11561033,11561031), the Natural Science Foundation of
Jiangxi Province in China (20151BAB201008), and the Foundation of Education Department of Jiangxi (GJJ150902)
of China.
†Corresponding author.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

138 Hua Wang et al 138-150



(q − 2)T (r, f) <

q∑
j=1

N(r,
1

f − aj
) + S(r, f),

where

N1(r, f) = N(r,
1

f ′
) + 2N(r, f)−N(r, f

′
),

and S(r, f) = O(log r) as r → ∞, if f is of finite order, S(r, f) = O(log(rT (r, f)) as r → ∞,
excluding, possibly, some set of segments in [0,∞) with finite total length, if f is of infinite order.

As a corollary we get the following result about deficiencies∑
a∈C

δ(a, f) ≤ 2,

where

δ(a, f) = lim inf
r→∞

m(r, 1
f−a )

T (r, f)
= 1− lim sup

r→∞

N(r, 1
f−a )

T (r, f)
.

Nevanlinna asked whether Theorem 1.1 is still true when we replace constants ai to arbitrary
collection of distinct small functions ai(z) with respect to f . This question is very interesting and
attracted many investigations (for references, see [5, 18]). In 2004, Yamanoi [21] extended the
second main theorem to the case of small functions and obtained the following result

Theorem 1.2 (see [21]). Let f(z) be a non-constant meromorphic function and a1(z), a2(z), . . . ,
aq(z) be q distinct small functions of f(z). Then, for all ε > 0

(q − 2− ε)T (r, f) <

q∑
j=1

N(r,
1

f − aj
),

as r → ∞, r 6∈ E, where E is a subset of [0,∞) such that E is of finite linear measure, and the
defect relation: ∑

δ(a(z), f) ≤ 2.

After theirs theorems, there are vast references on the value distribution of meromorphic func-
tions in the whole complex plane (see [6, 13, 14, 19, 23]). Moreover, it is an interesting topic how
to extend some important results of Nevanlinna value distribution in the complex plane to some
subset of the whole complex plane, such as, the unit disc, the angular domain, the annuli. In 2003,
J. H. Zheng firstly took into account the value distribution of meromorphic functions in an angular
domain and extended the second main theorem in the complex plane to an angular domain (see
[24, 25]).

Theorem 1.3 (see [26, pp.59 and pp.85]). Let f be a nonconstant meromorphic functions in an
angular domain Ω(α, β) = {z : α < arg z < β}(0 < β − α < 2π) let a1, . . . , aq be distinct complex
numbers, one of which can be equal to ∞. Then

(q − 2)Tα,β(r, f) <

q∑
j=1

Nα,β(r,
1

f − aj
) +Qα,β(r, f),

where Qα,β(r, f) = O(log r + log+ Tα,β(r, f)) as r → ∞, possibly except some set of r with finite
linear measure.

Theorem 1.4 (see [26, Theorem 2.3.2]). Let f be a nonconstant meromorphic functions in an
angular domain Ω(α, β) = {z : α < arg z < β}(0 < β − α < 2π) let a1, . . . , aq(q ≥ 3) be distinct
small functions with respect to f(z). Then, for any positive number ε, we have

(q − 2− ε)Tα,β(r, f) <

q∑
j=1

Nα,β(r,
1

f − aj
) +Qα,β(r, f).
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In recent, there have some results on the Nevannlina Theory of meromorphic functions on
annulus (see [8, 9, 11, 15, 16, 20]). In 2005, Khrystiyanyn and Kondratyuk [8, 9] proposed the
Nevanlinna theory for meromorphic functions on annuli (see also [10]). Later, the other forms of
the second fundamental theorem on annuli were given by Cao, Yi and Xu [3].

Theorem 1.5 (see [3, Theorem 2.3]). (The second fundamental theorem) Let f be a nonconstant
meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 ≤ +∞. Let a1, a2,

. . . , aq be q distinct complex numbers in the extended complex plane C. Let k1, k2, . . . , kq be q
positive integers, and let λ ≥ 0. Then

(q − 2)T0(r, f) <

q∑
j=1

N0(r,
1

f − aj
)−N (1)

0 (r, f) + S1(r, f),

(q − 2)T0(r, f) <

q∑
j=1

N0(r,
1

f − aj
) + S1(r, f),

where

N
(1)
0 (r, f) = N0(r,

1

f ′
) + 2N0(r, f)−N0(r, f

′
),

and S1(r, f) is stated as in Lemma 2.1.

The basic notions of the Nevanlinna theory on annuli will be showed in the next section. Lund
and Ye [15] in 2009 studied functions meromorphic on the annuli with the form {z : R1 < |z| <
R2}, where R1 ≥ 0 and R2 ≤ ∞. In 2009 and 2011, Cao [2, 3] investigated the uniqueness
of meromorphic functions on annuli sharing some values and some sets, and obtained an analog
of Nevanlinna’s famous five-value theorem. From Theorems 1.1-1.4, we can pose the following
question

Question 1.1 Whether Theorem 1.5 is still true when we replace constants ai to arbitrary collec-
tion of distinct small functions ai(z) with respect to f?

In [6], W. K. Hayman obtained the following well-known theorem by investigating the charac-
teristic functions of meromorphic function and its derivative in the complex plane.

Theorem 1.6 (see [6, Hayman inequality]). Let f be a transcendental meromorphic function on
complex plane, then for any positive integer k, we have

T (r, f) <

(
2 +

1

k

)
N

(
r,

1

f

)
+

(
2 +

2

k

)
N

(
r,

1

f (k) − 1

)
+ S(r, f).

W. K. Hayman [6] gave a question: whether the coefficients of two counting functions N(r, 1f )

and N(r, 1
f(k)−1 ) are best in Theorem 1.1? Hayman’s question attracted many investigations (for

references, see [23, 27, 4]). In [23], Yang Lo studied the above question and established the well-
known Yang Lo’s inequality, in which the coefficients of the counting functions is more precise than
the ones of Hayman inequality.

Theorem 1.7 (see [23]). Let f be a transcendental meromorphic function on the complex plane,
then for any ε > 0 and positive integer k, we have

T (r, f) <

(
1 +

1

k

)
N(r,

1

f
) +

(
1 +

1

k

)
N(r,

1

f (k) − 1
)−N

(
r,

1

f (k+1)

)
+εT (r, f) + S(r, f).
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2 Conclusions

The main purpose of this paper is to extend Theorem 1.5 to the case of small functions and obtained
the following result.

Theorem 2.1 Let f be a nonconstant meromorphic function on the annulus A = {z : 1
R0

< |z| <
R0}, where 1 < R0 ≤ +∞. let a1, . . . , aq(q ≥ 3) be distinct small functions with respect to f(z).
Then, for any positive number ε, we have

(q − 2− ε)T0(r, f) <

q∑
j=1

N0(r,
1

f − aj
) + S1(r, f).

From Theorem 2.1, we can get the following result immediately.

Theorem 2.2 Let f1 and f2 be two transcendental or admissible meromorphic functions on the
annulus A = {z : 0 < |z| < ∞}. Let aj(z) (j = 1, 2, 3, 4, 5) be five distinct small functions with
respect to f1 and f2. If f1, f2 share aj(z) CM for j = 1, 2, 3, 4, 5, then f1(z) ≡ f2(z).

The other purpose of this paper is to study the Hayman inequality of meromorphic function
on annuli. We obtain:

Theorem 2.3 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| <∞}, then for any ε > 0 and positive integer k, we have

T0(r, f) <

(
1 +

1

k

)
N0

(
r,

1

f

)
+

(
1 +

1

k

)
N0

(
r,

1

f (k) − 1

)
−N0

(
r,

1

f (k+1)

)
+ εT0(r, f) + S1(r, f).

Furthermore, when a, b are two finite complex number, a 6= b and b 6= 0. Then we have

δ0(a, f) + δk0 (b, f (k)) ≤ k + 2

k + 1
.

Remark 2.1 For a ∈ Ĉ, we define

δ0(a, f) = 1− lim sup
r→∞

N0

(
r, 1
f−a

)
T0(r, f)

, δk0 (a, f (k)) = 1− lim sup
r→∞

N0(r, 1
f(k)−a )

T0(r, f)
.

Definition 2.1 Let f(z) be a non-constant meromorphic function on the annulus A = {z : 1
R0

<
|z| < R0}, where 1 < R0 ≤ +∞. The function f is called a transcendental or admissible meromor-
phic function on the annulus A provided that

lim sup
r→∞

T0(r, f)

log r
=∞, 1 < r < R0 = +∞

or

lim sup
r→R0

T0(r, f)

− log(R0 − r)
=∞, 1 < r < R0 < +∞,

respectively.

Moreover, we also investigated other kind of precise inequalities, and obtained accurate esti-
mation of the sum of deficiencies as follows.
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Theorem 2.4 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| < ∞}, then for any finite complex numbers a, b(a 6= b), ε > 0 and positive integer k,
we have

T0(r, f (k)) <

(
1 +

1

2k

)
N0

(
r,

1

f (k) − a

)
+

(
1 +

1

2k

)
N0

(
r,

1

f (k) − b

)
−N0

(
r,

1

f (k)

)
+ εT0(r, f) + S1(r, f (k)),

Furthermore, we have

δ0(a, f (k)) + δ0(b, f (k)) ≤ 1 +
1

2k + 1
.

3 Preliminaries and some lemmas

Now, we will introduce the basic notations and conclusion about meromorphic functions on annuli
(see [8, 9, 10]). From the Doubly Connected Mapping Theorem [1], we can get that each doubly
connected domain is conformally equivalent to the annulus {z : r < |z| < R}, 0 ≤ r < R ≤ +∞.
For two cases: r = 0, R = +∞ simultaneously and 0 < r < R < +∞, the latter case the homothety

z 7→ z√
rR

reduces the given domain to the annulus {z : 1
R0

< |z| < R0}, where R0 =
√

R
r . Thus,

every annulus is invariant with respect to the inversion z 7→ 1
z in two cases.

Let f be a meromorphic function on the annulus A = {z : 1
R0

< |z| < R0}, where 1 < r < R0 ≤
+∞, the Nevanlinna characteristic of f on the annulus A is defined by

T0(r, f) = m0(r, f) +N0(r, f).

Some basic conclusions and properties of T0(r, f), N0(r, f),m0(r, f) had been introduced in (see
[3, 8, 9, 10]).

In 2005, the lemma on the logarithmic derivative on the the annulus A was obtained by Khrys-
tiyanyn and Kondratyuk [9].

Lemma 3.1 (see [9, Lemma on the logarithmic derivative]). Let f be a nonconstant meromorphic
function on the annulus A = {z : 1

R0
< |z| < R0}, where R0 ≤ +∞, and let λ > 0. Then

m0

(
r,
f ′

f

)
= S1(r, f),

where (i) in the case R0 = +∞,

S1(r, ∗) = O(log(rT0(r, ∗)))

for r ∈ (1,+∞) except for the set 4r such that
∫
4r r

λ−1dr < +∞;

(ii) if R0 < +∞, then

S1(r, ∗) = O(log(
T0(r, ∗)
R0 − r

))

for r ∈ (1, R0) except for the set 4′r such that
∫
4′r

dr
(R0−r)λ−1 < +∞.

Remark 3.1 If f is a transcendental or admissible meromorphic function on the annulus A, then
S1(r, f) = o(T0(r, f)) holds for all 1 < r < R0 except for the set 4r or the set 4′r mentioned in
Theorem 3.1, respectively.

By using the same argument as in (Valiron-Mohon’ko) ([12]), we can get the following lemma.
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Lemma 3.2 Let f be a nonconstant meromorphic function on the annulus A. Then for all irre-
ducible rational functions in f ,

R(z, f(z)) =

∑m
i=0 ai(z)f(z)i∑n
j=0 bj(z)f(z)j

,

where meromorphic coefficients ai(z), bj(z) are small functions with respect of f , then the charac-
teristic function of R(z, f(z)) satisfies that

T0(r,R(z, f(z))) = dT0(r, f) + S1(r, f),

where d = max{m,n} .

In order to prove the following lemma, we firstly give the definition of Wronskian determinant
of a1(z), . . . , ap(z)

W (a1(z), . . . , ap(z)) =

∣∣∣∣∣∣∣∣∣
a1(z) a2(z) · · · ap(z)
a′1(z) a′2(z) · · · a′p(z)

...
...

...

a
(p−1)
1 (z) a

(p−1)
2 (z) · · · a

(p−1)
p (z)

∣∣∣∣∣∣∣∣∣ ,
where a1(z), . . . , ap(z) are meromorphic in annuli.

Lemma 3.3 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| <∞} and ε > 0. Then for p = 1, 2, . . . ., we have

(p− 1)N0(r, f) ≤ (1 + ε)N0

(
r,

1

f (p)

)
+ (1 + ε)N1

0 (r, f) + S1(r, f), (1)

where N1
0 (r, f) = N0(r, f)−N0(r, f).

Proof: For any given ε > 0 and positive integer n, we choose a positive integer n(> p
ε ), and consider

for all z ∈ A. Let W (z) = W (1, z, z2, · · · , zp+n−1, f, zf, · · · , znf) as the Wronskian determinant
of 1, z, z2, · · · , zp+n−1, f, zf, · · · , znf . Since f is a transcendental meromorphic function, we can
suppose that W (z) 6= 0. It is easy to see that W (z) is a homogeneous differential polynomial of
degree p+1 in f with polynomial coefficients of z and without f (j)(z)(j < p) in each term of W (z).

Let B(z) = W (z) · (f (p)(z))−n−1, from Lemma 3.1, it follows

m0(r,B) = S1(r, f).

From the first fundamental theorem for meromorphic function on annuli, we have

N0(r,
1

B
) ≤ T0(r,B) +O(1) = N0(r,B) +m0(r,B) +O(1) (2)

≤ N0(r,B) + S1(r, f).

Next, we will estimate the number of zeros and poles of B on A. From the definition of W (z),
we have

W (z) = fp+2n+1W (f−1, zf−1, · · · , zp+n−1f−1, 1, z, · · · , zn).

If z0 is a pole of f of order t, then

W (z) = O((z − z0)−t(p+2n+1)), z → z0.

Hence

B(z) = O
(

(z − z0)(n+1)(p+t)−t(p+2n+1)
)

(3)

= O
(

(z − z0)n(p−1)−(p+n)(t−1)
)
,
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as z → z0.

Let N
0

t (r), N
∞
t (r) and N

∗
t (r) be the counting functions for those poles of f of order t on A,

where B(z) has a zero, pole or finite nonzero value, respectively, each pole being counted only
once. From (2) and (3), we get

∞∑
t=1

(n(p− 1)− (p+ n)(t− 1))N
0

p(r) ≤ N0(r,
1

B
) ≤ N0(r,B) + S1(r, f)

≤
∞∑
t=1

((p+ n)(t− 1)− n(p− 1))N
∞
t (r)

+ (n+ 1)N0

(
r,

1

f (p)

)
+ S1(r, f). (4)

If a pole of f contributes to N
∗
t (r), then from (3) it follows n(p− 1)− (p+ n)(t− 1) ≤ 0 and

n(p− 1)N
∗
t (r) ≤ (p+ n)(t− 1)N

∗
t (r).

Summing for t = 1, 2, · · · in above and substituting to (4), we obtain

n(p− 1)

∞∑
t=1

N t(r) ≤(p+ n)
∞∑
t=1

(t− 1)N t(r) + (n+ 1)N0

(
r,

1

f (p)

)
+ S1(r, f), (5)

where N t(r) = N
0

t (r) +N
∞
t (r) +N

∗
t (r).

Noting

∞∑
t=1

(t− 1)N t(r) =
∞∑
t=1

[
tN t(r)−N t(r)

]
=
∞∑
t=1

[
Nt(r)−N t(r)

]
= N0(r, f)−N0(r, f),

since n > p
ε and (5), we have proved Lemma 3.3. 2

By using the same argument as in the proof of Lemma 3.3, we can get the following lemma.

Lemma 3.4 Let f(z) and aj(z)(j = 1, 2, . . . , p; p ≥ 3) be stated as in Theorem 2.1. Set W (f) =
W (a1(z), a2(z), . . . , ap(z), f(z)). If aj(z)(j = 1, 2, . . . , p; p ≥ 3) are linearly independent, then for
ε > 0, we have

pN0(r, f) ≤ N0

(
r,

1

W (f)

)
+ (1 + ε)N0(r, f) + S1(r, f).

Lemma 3.5 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| <∞}. Then for any ε > 0 and positive integer k, we have

N0(r, f) <
1

k
N0

(
r,

1

f (k)

)
+

1

k
N0(r, f) + εT0(r, f) + S1(r, f). (6)

Proof: Replacing ε with ε
3 in Lemma 3.3, it follows

N0(r, f) <
1

k
N0

(
r,

1

f (k)

)
+

1

k
N0(r, f) +

ε

3k
N0

(
r,

1

f (k)

)
(7)

+
ε

3k
N0(r, f) + S1(r, f).
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Since

N0

(
r,

1

f (k)

)
≤ T0(r, f (k)) +O(1)

≤ m0

(
r,
f (k)

f

)
+m0(r, f) +N0(r, f (k)) +O(1)

≤ m0(r, f) +N0(r, f) + kN0(r, f) + S1(r, f)

≤ (k + 1)T0(r, f) + S1(r, f),

from (7), we have

ε

3k
N0

(
r,

1

f (k)
)

+
ε

3k
N0(r, f) ≤ k + 2

3k
εT0(r, f) + S1(r, f) (8)

≤ εT0(r, f) + S1(r, f).

From (7) and (8), we get (6) easily. 2

Lemma 3.6 (see [7, Theorem 2]). Let f be a transcendental or admissible meromorphic function
on the annulus A = {z : 0 < |z| <∞}, and k be a positive integers. Then

T0(r, f) < N0(r, f) +N0(r,
1

f
) +N0(r,

1

f (k) − 1
)−N0(r,

1

f (k+1)
) + S1(r, f).

Lemma 3.7 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| <∞}. Then for any ε > 0 and positive integer k, we have

N0(r, f) <
1

k
N0

(
r,

1

f

)
+

1

k
N0

(
r,

1

f (k) − 1

)
+ εT0(r, f) + S1(r, f). (9)

Proof: From Lemma 3.5 we have

N0

(
r,

1

f (k+1)

)
> (k + 1)N0(r, f)−N0(r, f)− k + 1

2
εT0(r, f)− S1(r, f).

Substituting the above inequality back into Lemma 3.6, we obtain

kN0(r, f) < N0

(
r,

1

f

)
+N0

(
r,

1

f (k) − 1

)
+ (N0(r, f)− T0(r, f))

+
k + 1

2
εT0(r, f) + S1(r, f).

Therefore

N0(r, f) <
1

k
N0

(
r,

1

f

)
+

1

k
N0

(
r,

1

f (k) − 1

)
+
k + 1

2k
εT1(r, f) + S1(r, f)

<
1

k
N0

(
r,

1

f

)
+

1

k
N0

(
r,

1

f (k) − 1

)
+ ε′T0(r, f) + S1(r, f).

Thus, this completes the proof of Lemma 3.7. 2

From Theorem 1.5, we get the following conclusion easily.

Lemma 3.8 Let f be a transcendental or admissible meromorphic function on the annulus A =
{z : 0 < |z| <∞}. Then for any finite complex number a, b(a 6= b), we have

T0(r, f) ≤ N0(r, f) +N0

(
r,

1

f − a

)
+N0

(
r,

1

f − b

)
−N0

0 (r) + S1(r, f),

where N0
0 (r) = 2N0(r, f)−N0(r, f ′) +N0

(
r, 1
f ′

)
.
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Lemma 3.9 Let f be a transcendental or admissible meromorphic functions on the annulus A =
{z : 0 < |z| < ∞}. Then for any finite complex numbers a, b(a 6= b), positive number ε > 0 and
positive integer k, we have

N0(r, f) <
1

2k
N0

(
r,

1

f (k) − a

)
+

1

2k
N0

(
r,

1

f (k) − b

)
+ εT0(r, f) + S1(r, f).

Proof: By using Lemma 3.8 for f (k) and three distinct complex numbers a, b,∞, we have

T0

(
r, f (k)

)
≤N0

(
r, f (k)

)
+N0

(
r,

1

f (k) − a

)
+N0

(
r,

1

f (k) − b

)
−N0

0 (r) + S1

(
r, f (k)

)
,

where N0
0 (r) = 2N0

(
r, f (k)

)
−N0

(
r, f (k+1)

)
+N0

(
r, 1
f(k+1)

)
.

Thus, we get

T0

(
r, f (k)

)
≤N0(r, f) +N0

(
r,

1

f (k) − a

)
+N0

(
r,

1

f (k) − b

)
(10)

−N0

(
r,

1

f (k+1)

)
+ S1

(
r, f (k)

)
.

Since T0(r, f (k)) = m0(r, f (k)) + N0(r, f) + kN0(r, f), then by applying Lemma 3.7 for f (k+1), it
follows

N0

(
r,

1

f (k+1)

)
>(k + 1)N0(r, f)−N0(r, f)− (k + 1)εT0(r, f)− (k + 1)S1(r, f).

Substituting the two above inequalities back into (10) , we get

N0(r, f) <
1

2k
N0

(
r,

1

f (k) − a

)
+

1

2k
N0

(
r,

1

f (k) − b

)
+
k + 1

2k
εT0(r, f)

+
k + 2

2k
S1(r, f (k))

<
1

2k
N0

(
r,

1

f (k) − a

)
+

1

2k
N0

(
r,

1

f (k) − b

)
+ ε′T0(r, f)

+S1(r, f (k)).

From the definition of S1(r, ∗) and T0(r, f) ≤ T0(r, f (k)) ≤ (k+1)T0(r, f)+S1(r, f), where S1(r, f)
is as stated in Lemma 3.1, we can get the conclusion of Lemma 3.9.

Thus, we can complete the proof of Lemma 3.9. 2

4 Proofs of Theorem 2.1 and Theorem 2.2

4.1 The proof of Theorem 2.1

Without any loss of generalities, suppose that {a1(z), a2(z), . . . , ap(z)} is a maximum linearly
independent subset of aj(z)(j = 1, 2, . . . , q), then p ≤ q and each aj(z)(j = 1, 2, . . . , q) can be
linearly expressed in terms of aj(z)(j = 1, 2, . . . , p). Set W (f) = W (a1, a2, . . . , ap(z), f), then

W (f) = bpf
(p) + bp−1f

(p−1) + · · ·+ b1f
′ + b0f, (11)

where bj(j = 1, 2, . . . , p) are small functions with respect to f . It follows from (11) that

N0(r,W (f)) = pN0(r, f) +N0(r, f) + S1(r, f) (12)
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and

m0(r,W (f)) ≤ m0(r, f) +m0(r,
W (f)

f
) = m0(r, f) + S1(r, f). (13)

Thus from (12), (13) it follows that

T0(r,W (f)) ≤ pN0(r, f) + T0(r, f) + S1(r, f). (14)

From the definition of W (f), we have W (f − aj) = W (f) for j = 1, 2, . . . , q. Thus, it follows by
Lemma 3.1 that

m0(r,
W (f)

f − aj
) = m0(r,

W (f − aj)
f − aj

) = S1(r, f). (15)

Set

F (z) =

q∑
j=1

1

f(z)− aj(z)
.

Then it follows from (14),(15) and by Lemma 3.4 that

m0(r, F ) ≤ m0(r,
1

W (f)
) +m0(r, FW (f))

≤ T0(r,W (f))−N0(r,
1

W (f)
) + S1(r, f)

≤ pN0(r, f) + T0(r, f)−N0(r,
1

W (f)
) + S1(r, f)

≤ T0(r, f) + (1 + ε)N0(r, f) + S1(r, f).

Then it follows by Lemma 3.2 that

qT0(r, f) = T0(r, F ) + S1(r, f)

≤
q∑
j=1

N0(r,
1

f − aj
) + T0(r, f) + (1 + ε)N0(r, f) + S1(r, f)

≤
q∑
j=1

N0(r,
1

f − aj
) + (2 + ε)T0(r, f) + S1(r, f).

Hence, this completes the proof of Theorem 2.1.

4.2 The proof of Theorem 2.2

Suppose f(z) 6≡ g(z). By applying Theorem 2.1, since f and g share a1, . . . , a5 CM , we have

(3− ε)T0(r, f) ≤
5∑
j=1

N0(r,
1

f − aj
) + S1(r, f) ≤ N0(r,

1

f − g
) + S1(r, f)

≤ T0(r, f) + T0(r, g) + S1(r, f),

that is,
(2− ε)T0(r, f) ≤ T0(r, g) + S1(r, f). (16)

Similarly, we have
(2− ε)T0(r, g) ≤ T0(r, f) + S1(r, g). (17)

Thus for any small number ε(> 0), it follows from (16) and (17) that

(1− ε) [T0(r, f) + T0(r, g)] ≤ S1(r, f) + S1(r, g),

which is a contradiction with the assumption that f, g are transcendental or admission.
Therefore, we have f ≡ g.
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5 Proofs of Theorem 2.3 and Theorem 3.4

5.1 The proof of Theorem 2.3

From Lemma 3.4 and Lemma 3.7, we get

T0(r, f) <

(
1 +

1

k

)
N0

(
r,

1

f

)
+

(
1 +

1

k

)
N0

(
r,

1

f (k) − 1

)
−N0

(
r,

1

f (k+1)

)
+ εT0(r, f) + S1(r, f).

Now, we will prove the inequality of the sum of deficiencies as follows. First, by using the above
inequality for the function f−a

b , then it follows

T0(r, f) <

(
1 +

1

k

)
N0

(
r,

1

f − a

)
+

(
1 +

1

k

)
N0

(
r,

1

f (k) − b

)
−N0

(
r,

1

f (k+1)

)
+ εT0(r, f) + S1(r, f)

<

(
1 +

1

k

)
N0

(
r,

1

f − a

)
+

(
1 +

1

k

)
N0

(
r,

1

f (k) − b

)
+ εT0(r, f) + S1(r, f).

Dividing the both sides of the above inequality by T0(r, f), we have

(
1 +

1

k

)1−
N0

(
r, 1
f−a

)
T0(r, f)

+ 1−
N0

(
r, 1
f(k)−b

)
T0(r, f)

 < 1 +
2

k
+ ε+

S1(r, f)

T0(r, f)
. (18)

From the definitions of δ0(a, f), δk0 (a, f (k)), then it follows from (18) that(
1 +

1

k

)(
δ0(a, f) + δk0 (b, f (k))

)
≤
(

1 +
1

k

)
lim inf
r→∞

1−
N0

(
r, 1
f−a

)
T0(r, f)

+ 1−
N0

(
r, 1
f(k)−b

)
T0(r, f)


≤ lim sup

r→∞

(
1 +

2

k
+ ε

)
+ lim inf

r→∞

S1(r, f)

T0(r, f)
.

Since f is a transcendental or admission on annuli, we have

lim
r→∞

S1(r, f)

T0(r, f)
= 0. (19)

Hence,

δ0(a, f) + δk0 (b, f (k)) ≤ k + 2

k + 1
.

Thus, this completes the proof of Theorem 2.3.

5.2 The proof of Theorem 2.4

By Lemma 3.9, it follows from (10) that

T0

(
r, f (k)

)
≤

(
1 +

1

2k

)
N0

(
r,

1

f (k) − a

)
+

(
1 +

1

2k

)
N0

(
r,

1

f (k) − b

)
−N0

(
r,

1

f (k+1)

)
+ εT0(r, f) + S1

(
r, f (k)

)
.
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The above inequality implies

(
1 +

1

2k

)2−
N0

(
r, 1
f(k)−a

)
T0(r, f (k))

−
N0

(
r, 1
f(k)−b

)
T0(r, f (k))

 < 1 +
1

k
+ ε+

S1(r, f (k))

T0(r, f (k))
. (20)

Thus, it follows from (20) and the definition of δα,β(a, f) that(
1 +

1

2k

)(
δ0(a, f (k)) + δ0(b, f (k))

)
≤

(
1 +

1

2k

)
lim inf
r→∞

1−
N0

(
r, 1
f(k)−a

)
T0(r, f (k))

+ 1−
N0

(
r, 1
f(k)−b

)
T0(r, f (k))


≤ lim sup

r→∞

(
1 +

1

k
+ ε

)
+ lim inf

r→∞

S1(r, f (k))

T0(r, f (k))
.

Since f is a transcendental or admission on annuli, we have the following equalities easily

lim inf
r→∞

S1(r, f (k))

T0(r, f (k))
= 0. (21)

Since ε is arbitrary, it follows from (21) that

δ0(a, f (k)) + δ0(b, f (k)) ≤ 1 +
1

2k + 1
.

Therefore, we complete the proof of Theorem 2.4.
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WEIGHTED COMPOSITION OPERATORS BETWEEN

WEIGHTED HILBERTIAN BERGMAN SPACES IN THE

UNIT POLYDISK

NING CAO, GANG WANG AND CEZHONG TONG∗

Abstract. In this paper, we prove that the topology spaces of nonze-
ro weighted composition operators acting on some Hilbert spaces of

holomorphic functions in the unit polydisk are path connected, which

generalized Hosokawa, Izuchi and Ohno’s results in single complex vari-
ables’ case [9].

Keywords: Weighted Hilbertian Bergman spaces, weighted composi-

tion operator, polydisk, norm topology, Hilbert-Schmidt topology.

1. Introduction

Let H(DN ) be the space of analytic functions on the open unit polydisk

DN := {z = (z1, . . . , zN ) ∈ CN : |zi| < 1, i = 1, 2, . . . , N}
and H∞ the space of bounded analytic functions on DN with the supremum
norm ‖ · ‖∞. When N = 1, the unit polydisk reduces to the unit open disc
D in the complex plane C. Let S(DN ) be the set of analytic self-maps of
DN . Every ϕ = (ϕ1, · · · , ϕN ) ∈ S(DN ) induces the composition operator Cϕ
defined by Cϕf = f ◦ ϕ for f ∈ H

(
DN
)
. If u ∈ H(DN ), the multiplication,

Mu : H(DN )→ H(DN ), is defined by

Mu(f)(z) = u(z) · f(z)

for any f ∈ H(DN ) and z ∈ DN . If u ∈ H(DN ) and ϕ ∈ S(DN ), we call the
operator MuCϕ to be the weighted composition operator.

Much effort has been expended on characterizing those analytic maps which
induce bounded or compact composition operators between those classic s-
paces of analytic functions. Readers interested in this topic can refer to the
books [16] by Shapiro, [7] by Cowen and MacCluer, and [23, 24] by Zhu.

An active topic is the topological structure of the space of composition op-
erators acting on function spaces. If X is a Banach space of analytic functions,

2010 Mathematics Subject Classification. Primary: 47B33; Secondary: 47B38.
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2 N. CAO, G. WANG, C. TONG

we employ the symbol C(X) to represent the space of composition operators
on X equipped with the operator norm topology. In 1981, Berkson [3] firstly
studied the topological structure of C(H2(D)). Central problem focuses on
both the structure of C(H2(D)) and the compact differences of its members.

In 1989, MacCluer [12] showed that, on the weighted Bergman space A2
s(D)

for s ≥ −1, all the compact composition operators can be connected by path-
s, and she gave necessary conditions for two composition operators to have
compact difference. At about the same time, Shapiro and Sundberg [17] gave
further results on compact difference and isolation and they believe that the
compact composition operators should form a connected component of the set
C(H2(D)).

In 2008, Gallardo-Gutiërrez and co-workers [8] showed that there exists
noncompact composition operators in the component generated by all com-
pact composition operators. In 2005, Moorhouse [13] characterized compact
difference for composition operators acting on A2

λ(D), λ > −1, and gave a
partial answer to the component structure of C(A2

λ(D)). Later, Kriete and
Moorhouse [11] extended that results to linear combinations. In 2012, Saukko
[14, 15] obtained a complete characterization of bounded and compact differ-
ences between standard weighted Bergman spaces. Recently, Choe, Koo and
Park [5, 6] extend Moorhouses characterization to the Bergman spaces in unit
polydisk and unit ball. In 2015, Hosokawa, Izuchi and Ohno [9] investigate
the topology space of weighted composition operators acting between some
Hilbert spaces on D in general, and they also consider the Hilbert-Schmidt
norm topology. Readers interested in those related topic can refer recent
papers [19, 20, 21, 22] and the references therein.

Generally speaking, theory of composition operators on the spaces of holo-
morphic functions in the unit polydisk are far from complete. To completely
characterize the boundedness and compactness of composition operators on
Hardy spaces and weighted Bergman spaces is still open. In [2], Bayart showed
that the study of boundedness of composition operators on the polydisk is a
difficult problem, and many obstacles are caused by differences between the
torus of DN (distinguishing boundary of DN ) and the whole boundary. Stessin
and Zhu [18] characterized the boundedness of composition operators between
different weighted Bergman spaces in the polydisk. Inspired by [2, 9, 18], we
continue to investigate the topology spaces of weighted composition operators
between different weighted Bergman spaces in the unit polydisk. On those
spaces, we will also consider the Hilbert Schmidt topology spaces of weighed
composition operators.

2. Preliminaries

Let dA(z) = dxdy/π denote the normalized area measure of D. For s >
−1 the weighted Hilbertian Bergman space A2

s(DN ) consists of all functions
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WEIGHTED COMPOSITIONS IN THE POLYDISK 3

f ∈ H(DN ) such that

‖f‖2s =

∫
DN
|f(z)|2dvs(z) <∞,

where dvs(z) = dAs(z1) · · · dAs(zN ) and dAs(zj) = (s+ 1)(1− |zj |2)sdA(zj).
The inner product of A2

s(DN ) is given by

〈f, g〉s =

∫
DN

f(z)g(z)dvs(z),

where f, g ∈ A2
s. And the reproducing kernel of A2

s(DN ) is given by

kA2
s,w

(z) =
N∏
j=1

1

(1− w̄jzj)2+s
.

When s = 0, A2
0(DN ) is the classical Bergman space. It is well known that

‖zα‖2s =

∫
DN
|zα|2dvs(z) =

N∏
j=1

∫
D
|zαjj |

2dAs(zj) = ΓN (s+ 1)

N∏
j=1

Γ(αj + 1)

Γ(αj + s+ 2)

where α = (α1, . . . , αN ) and zα = zα1
1 · · · z

αN
N .

We believe the following pointwise esitmate is well known, and we list it
with a simple proof for the completeness.

Lemma 2.1. Let p > 0 and s > −1. If f ∈ Aps(DN ), then

|f(w)| ≤ ‖f‖s
N∏
i=1

(1− |wi|2)
2+α
p

for each w = (w1, . . . , wN ) ∈ DN .

Proof. Fixing w2, . . . , wN , function f(ζ1, w2, . . . , wN ) is analytic with respect
to ζ1 ∈ D. It is well known that

|f(w1, w2, . . . , wN )|p ≤ ‖f(ζ1, w2, . . . , wN )‖ps
(1− |w1|2)2+s

=

∫
D |f(ζ1, w2, . . . , wN )|pdAs(ζ1)

(1− |w1|2)2+s
.
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We can also estimate |f(ζ1, w2, . . . , wN )|p by the similar inequality with re-
spect to w2, and then up to wN , hence we have

|f(w1, w2, . . . , wN )|p

≤
∫
D |f(ζ1, w2, . . . , wN )|pdAs(ζ1)

(1− |w1|2)2+s

≤
∫
D
∫
D |f(ζ1, ζ2, . . . , wN )|pdAs(ζ2)dAs(ζ1)

(1− |w1|2)2+s(1− |w2|2)2+s

. . .

≤
∫
D · · ·

∫
D |f(ζ1, ζ2, . . . , ζN )|pdAs(ζN ) . . . dAs(ζ2)dAs(ζ1)

(1− |w1|2)2+s . . . (1− |wN |2)2+s

That is

|f(w)| ≤ ‖f‖s
N∏
i=1

(1− |wi|2)
2+α
p

.

�

It is an obvious consequence that the point evaluation εw : f 7→ f(w) =
f(w1, . . . , wN ) is a bounded linear functional on Aps(DN ), and

max
i=1,...,N

sup
|wi|≤r

‖εw‖Aps <∞

for every 0 < r < 1.
If −1 < s′ < s, we can immediately have that A2

s′ ⊂ A2
s by a direct

computation ‖f‖s ≤ C‖f‖s′ where the constant C depends only on s and
s′. Let Cw(A2

s′ , A
2
s) be the space of nonzero bounded weighted composition

operators from a weighted Hilbertian Bergman space A2
s′ to another A2

s with
the operator norm topology, that is,

Cw(A2
s′ , A

2
s) = {MuCϕ : MuCϕ : A2

s′ → A2
s is bounded, u 6= 0}.

And Cw(A2
s) = Cw(A2

s, A
2
s). For a bounded linear operator T : X ′ → X, we

write ‖T‖X′,X its operator norm. If −1 < s′ < s, for MuCϕ ∈ Cw(A2
s), we

have

‖MuCϕf‖A2
s
≤ ‖MuCϕ‖A2

s
‖f‖s ≤ C · ‖MuCϕ‖A2

s
‖f‖s′

for every f ∈ A2
s′ . Hence MuCϕ : A2

s′ → A2
s is bounded and

(2.1) ‖MuCϕ‖A2
s′ ,A

2
s
≤ ‖MuCϕ‖A2

s
for every MuCϕ ∈ Cw(A2

s).

Restricting MuCϕ ∈ Cw(A2
s) on A2

s′ , we may consider that MuCϕ is also a
bounded linear operator from A2

s′ to A2
s. We note that

Cw(A2
s′ , A

2
s) = Cw(A2

s)

as sets, and if MuCϕ ∈ Cw(A2
s′ , A

2
s), then u ∈ A2

s.
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3. Operator norm topology spaces

Now we discuss the operator norm topology spaces Cw(A2
s′ , A

2
s).

Lemma 3.1. If ϕ = (ϕ1, . . . , ϕN ) ∈ S(DN ) and ‖ϕ‖∞ := max
i=1,...,N

‖ϕi‖∞ < 1,

then Cϕf ∈ H∞ for every f ∈ A2
s and

‖Cϕf‖∞ ≤ ‖f‖s max
i=1,...,N

sup
|wi|≤‖ϕ‖∞

‖εw‖A2
s
.

Proof. For f ∈ H and z ∈ DN , we have

|(Cϕf)(z)| = |f(ϕ(z))| ≤ ‖f‖s‖εϕ(z)‖A2
s
≤ ‖f‖s max

i=1,...,N
sup

|wi|≤‖ϕ‖∞
‖εw‖A2

s
,

so we get the assertion. �

The main result is following.

Theorem 3.2. If −1 < s′ < s, then the space Cw(A2
s′ , A

2
s) is path connected.

Proof. Let MuCϕ ∈ Cw(A2
s′ , A

2
s). Since Cw(A2

s′ , A
2
s) = Cw(A2

s) as sets, we have
u ∈ A2

s and ‖MuCϕ‖A2
s
< ∞. Let 0 ≤ r < 1. For f ∈ A2

s, by Lemma 3.1 we
have f ◦ rϕ = f(rϕ1, . . . , rϕN ) ∈ H∞ and by Lemma 2.1,

‖MuCrϕf‖s = ‖u(f ◦ rϕ)‖s ≤ ‖f ◦ rϕ‖∞‖u‖s
≤ ‖u‖s‖f‖s max

i=1,...,N
sup
|wi|≤r

‖εw‖A2
s
.

Hence MuCrϕ ∈ Cw(A2
s), so MuCrϕ ∈ Cw(A2

s′ , A
2
s).

Fixing 0 ≤ t0 ≤ 1, we apply the similar method in [9] to show that
‖MuCt0ϕ −MuCtϕ‖A2

s′ ,A
2
s
→ 0 as t → t0. Let g(z) =

∑
α cαz

α ∈ A2
s′ . For

each 0 ≤ t ≤ 1, let

gt(z) =
∑
α

cα(t
|α|
0 − t|α|)zα.

Since A2
s′ ⊂ A2

s, we have g ∈ A2
s. Note that

‖gt‖2s = 〈gt, gt〉s =

∫
DN

∑
α

cα(t
|α|
0 − t|α|)zα

∑
α

cα(t
|α|
0 − t|α|)zαdvs(z)

=
∑
α

(t
|α|
0 − t|α|)2

∫
DN
|cα|2|z|αdvs(z)

≤ 4
∑
α

∫
DN
|cα|2|z|αdvs(z) = 4‖g‖2s,
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we have gt ∈ A2
s. Hence

‖(MuCt0ϕ −MuCtϕ)g‖2s

=

∥∥∥∥∥u∑
α

cα(t
|α|
0 − t|α|)ϕα

∥∥∥∥∥
2

s

= ‖MuCϕgt‖2s ≤ ‖MuCϕ‖2A2
s
‖gt‖2s

= ‖MuCϕ‖2A2
s

∑
α

|cα|2|t|α|0 − t|α||2‖zα‖2s

≤ ‖MuCϕ‖2A2
s

sup
|α|>0

(
|t|α|0 − t|α||2

‖zα‖2s
‖zα‖2s′

)∑
α

|cα|2‖zα‖2s′

≤ ‖MuCϕ‖2A2
s

sup
|α|>0

(
|t|α|0 − t|α||

‖zα‖s
‖zα‖s′

)2

‖g‖2s′ .

Then

‖MuCt0ϕ −MuCtϕ‖A2
s′ ,A

2
s
≤ ‖MuCϕ‖A2

s
sup
|α|>0

(
|t|α|0 − t|α||

‖zα‖s
‖zα‖s′

)
.

For any positive integer n, we have

sup
|α|>0

(∣∣∣t|α|0 − t|α|
∣∣∣ ‖zα‖s‖zα‖s′

)
≤

∑
|α|<n2

(∣∣∣t|α|0 − t|α|
∣∣∣ ‖zα‖s‖zα‖s′

)
+ 2 sup

|α|≥n2

‖zα‖s
‖zα‖s′

.

Hence

(3.1) lim sup
t→t0

‖MuCt0ϕ −MuCtϕ‖A2
s′ ,A

2
s
≤ 2‖MuCϕ‖A2

s
sup
|α|≥n2

‖zα‖s
‖zα‖s′

.

According to the Stirling’s approximation, we have

sup
|α|≥n2

‖zα‖s
‖zα‖s′

= sup
|α|≥n2

ΓN (s+ 1)
N∏
j=1

Γ(αj+1)
Γ(αj+s+2)

ΓN (s′ + 1)
N∏
j=1

Γ(αj+1)
Γ(αj+s′+2)

≤ C · sup
|α|≥n2

N∏
j=1

(
αj + s′ + 2

αj + s+ 2

)αj+s′+2

·
(

1

αj + s+ 2

)s−s′
Since |α| ≥ n, there is at least one αj ≥ n. Considering that(

αj + s′ + 2

αj + s+ 2

)αj+s′+2

is bounded for j = 1, . . . , N , we getMuCtϕ →MuCt0ϕ as t→ t0 in Cw(A2
s′ , A

2
s)

by letting n→∞ in (3.1).
�
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4. Hilbert-Schmidt norm topology spaces

We will consider the topology spaces of Hilbert-Schmidt weighted composi-
tion operators. If X is a separable Hilbert spaces with orthonormal bases {em}
and X ′ is another Hilbert space, recall that a linear operator T : X → X ′ is
said to be Hilbert-Schmidt if

‖T‖2X,X′,HS :=
∞∑
m=0

‖Tem‖2X′ ≤ ∞

Since {zα/‖zα‖s} is an orthonomal bases of A2
s, MuCϕ ∈ Cw(A2

s) is Hilbert-
Schmidt if and only if

‖MuCϕ‖2A2
s,HS

:=
∑
|α|≥0

‖MuCϕ(zα)‖2s
‖zα‖2s

=
∑
|α|≥0

‖uϕα1
1 · · ·ϕ

αN
N ‖2s

‖zα1
1 · · · z

αN
N ‖2s

<∞.

We denote by Cw,HS(A2
s) the space of Hilbert-Schmidt operators MuCϕ in

Cw(A2
s) with the Hilbert-Schmidt norm topology.

We have that MuCϕ ∈ Cw(A2
s′ , A

2
s) is Hilbert-Schmidt if and only if

‖MuCϕ‖2A2
s′ ,A

2
s,HS

:=
∑
α

‖uϕα‖2s
‖zα‖2s′

<∞.

We denote by Cw,HS(A2
s′ , A

2
s) the space of MuCϕ ∈ Cw(A2

s′ , A
2
s) which are

Hilbert-Schmidt operators. We consider the Hilbert-Schmidt norm topology
on Cw,HS(A2

s′ , A
2
s). The topology on Cw,HS(A2

s′ , A
2
s) is stronger than the oper-

ator norm one. So a path connected set in Cw,HS(A2
s′ , A

2
s) is so in Cw(A2

s′ , A
2
s).

Since

‖MuCϕ‖2A2
s′ ,A

2
s,HS

≤ C
∑
α

‖uϕα‖2s
‖zα‖2s

= C‖MuCϕ‖2A2
s,HS

,

we have Cw,HS(H) ⊂ Cw,HS(A2
s′ , A

2
s). Next lemma will be employed in the

main result of this section.

Lemma 4.1. Let s′, s > −1. For each 0 ≤ r ≤ 1, if the operator MuCϕ :
A2
s′ → A2

s is a Hilbert-Schmidt operator for some nonzero u ∈ A2
s and ϕ ∈

S(DN ), then MuCrϕ is also a Hilbert-Schmidt operator from A2
s′ to A

2
s.

Proof. The Lemma follows immediately from the computations that

‖MuCrϕ‖2A2
s′ ,A

2
s,HS

=
∑
α≥0

‖MuCrϕ(zα)‖2s
‖zα‖2s′

=
∑
α≥0

r2|α| ‖uϕα‖2s
‖zα‖2s′

≤ ‖MuCϕ‖2A2
s′ ,A

2
s,HS

<∞.

�

Theorem 4.2. If −1 < s′ < s, then the topology space Cw,HS(A2
s′ , A

2
s) is path

connected.
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Proof. If MuCϕ ∈ Cw,HS(A2
s′ , A

2
s), recall that {zα/‖zα‖ : α} is an orhonomal

basis, and we have

(4.1) ‖MuCϕ‖2A2
s′ ,A

2
s,HS

=
∑
|α|≥0

‖uϕα‖2s
‖zα‖2s′

<∞.

Besides, MuCtϕ ∈ Cw,HS(A2
s′ , A

2
s) for every 0 ≤ t ≤ 1 by Lemma 4.1.

If we fix 0 ≤ t0 ≤ 1. we can also prove ‖MuCt0ϕ −MuCtϕ‖A2
s′ ,A

2
s,HS

→ 0

as t→ t0 as following statements. For any positive integer N , we have

‖MuCt0ϕ −MuCtϕ‖2A2
s′ ,A

2
s,HS

=
∑
|α|≥0

‖u(t
|α|
0 − t|α|)ϕα‖2s
‖zα‖2s′

≤
∑
|α|≤N

∣∣∣t|α|0 − t|α|
∣∣∣2 ‖uϕα‖2s‖zα‖2s′

+
∑
|α|>N

‖uϕα‖2s
‖zα‖2s′

.

Take ε > 0 arbitrary. Then by (4.1), we may take N large enough so that∑
|α|>N

‖uϕα‖2s
‖zα‖2s′

< ε.

Hence

‖MuCt0ϕ −MuCtϕ‖2A2
s′ ,A

2
s,HS

< ε+
∑
|α|≤N

∣∣∣t|α|0 − t|α|
∣∣∣2 ‖uϕα‖2s‖zα‖2s′

By letting t→ t0, we have

lim sup
t→t0

‖MuCt0ϕ −MuCtϕ‖2A2
s′ ,A

2
s,HS

< ε.

Let ε→ 0 then, we have the topology space Cw,HS(A2
s′ , A

2
s) is path connected.

�

5. Final remarks

Lemma 5.1. Let s > −1. If ‖ϕ‖∞ < 1 and u ∈ A2
s, then MuCϕ ∈ Cw(A2

s)
and is compact.

Proof. By the first paragraph of the proof in Theorem 3.2, we have MuCϕ ∈
Cw(A2

s).
To show thatMuCϕ is compact, let {fn} be a sequence inA2

s such that there
is a positive constant K satisfying ‖fn‖s < K for every n. By the pointwise
estimate (Lemma 2.1), we may assume that fn converges to some f ∈ H(DN )
uniformly on compact subsets of DN . By the assumption, fn ◦ ϕ → f ◦ ϕ in
H∞. Hence both u(fn ◦ ϕ) and u(f ◦ ϕ) are in A2

s, and

‖MuCϕfn − u(f ◦ ϕ)‖s ≤ ‖u‖s‖fn ◦ ϕ− f ◦ ϕ‖∞ → 0, n→∞.
Thus MuCϕ ∈ Cw(A2

s) is compact. �
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Proposition 5.2. If −1 < s′ < s, then Cw(A2
s′ , A

2
s) consists of all compact

weighted composition operators.

Proof. For 0 < r < 1, by Lemma 5.1 MuCrϕ ∈ Cw(A2
s) is compact. Hence

MuCrϕ : A2
s → A2

s, which can be regarded as the composition of id : A2
s′ → A2

s

and MuCrϕ : A2
s → A2

s, is compact. Since the algebra of compact operators is
closed in norm topology, we getMuCϕ is compact since it can be approximated
by compact operators MuCrϕ by Theorem 3.2. �

We note that on many spaces, the compact (weighted) composition opera-
tors form a path connected subset in the topology space of bounded (weighted)
composition operators. The compactness has played an important role in the
proof of the main result.
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On the L∞ convergence of a nonlinear difference

scheme for Schrödinger equations
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Abstract

In this article, a nonlinear difference scheme for Schrödinger equations
is studied. The existence of the difference solution is proved by Brouwer
fixed point theorem. With the aid of the fact that the difference solution
satisfies two conservation laws, the difference solution is proved to be
bounded in the L∞ norm. Then, the difference solution is shown to be
unique and second order convergent in the L∞ norm. Finally, a convergent
iterative algorithm is presented.
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1 Introduction

The Schrödinger equation is one of the most important equations in quantum
mechanics. This model equation also arises in many other branches of science
and technology, e.g. optics, seismology and plasma physics. Recently, a growing
interest is on the numerical solution to the nonlinear Schrödinger equations.
Many authors investigated the finite difference methods for solving this kind of
equations, including the conservation, solvability, stability, convergence and the
symplectic geometry (see [1]− [8]).

Consider nonlinear Schrödinger equations

i
∂u

∂t
+
∂2u

∂x2
+ q|u|2u = 0, 0 < x < 1, 0 < t ≤ T, (1.1)

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (1.2)

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ T, (1.3)

1Corresponding author: X.M. Liu, email: 230159429@seu.edu.cn

1
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On the L∞ convergence of a nonlinear difference scheme 2

where q is a real constant, φ(x) is a known function and φ(0) = φ(1) = 0, u(x, t)
is an unknown function. Take two positive integers m and n. Denote h =
1/m, τ = T/n, so we have

xj = jh, 0 ≤ j ≤ m, tk = kτ, 0 ≤ k ≤ n.

Denote Ωhτ = {(xj , tk) | 0 ≤ j ≤ m, 0 ≤ k ≤ n}. Suppose u = {ukj | 0 ≤
j ≤ m, 0 ≤ k ≤ n} be a discrete grid function on Ωhτ . Introduce the following
notations:

u
k+ 1

2
j =

1

2

(
uk+1
j + ukj

)
, δtu

k+ 1
2

j =
1

τ

(
uk+1
j − ukj

)
, Dtu

k
j =

1

2τ

(
uk+1
j − uk−1

j

)
,

δxu
k
j+ 1

2
=

1

h

(
ukj+1 − ukj

)
, δ2xu

k
j =

1

h

(
δxu

k
j+ 1

2
− δxu

k
j− 1

2

)
.

The author of [9] developed the following nonlinear difference scheme for
(1.1)-(1.3)

iδtu
k+ 1

2
j + δ2xu

k+ 1
2

j + q
2

(∣∣ukj ∣∣2 + ∣∣uk+1
j

∣∣2)uk+ 1
2

j = 0,

1 ≤ j ≤ m− 1, 0 < k ≤ n− 1,
(1.4)

u0j = φ(xj), 1 ≤ j ≤ m− 1, (1.5)

uk0 = 0, ukm = 0, 0 < k ≤ n. (1.6)

The contents in [9] pointed out that the difference scheme preserves the densities
and the energy of the solution, and the author also proved that the difference
scheme is uniquely solvable and convergent with the convergence order of (τ2 +
h2) in L2 norm under some constraints on the stepsizes. On this basis, we proof
further that this difference scheme is convergent with the convergence order of
(τ2 + h2) in L∞ norm.

In this paper, we will analyze the difference scheme (1.4)-(1.6). The re-
mainder of the paper is arranged as follows. In Section 2, the existence of the
difference solution is shown by the Brouwer fixed point theorem. Then with
the aid of the conversations of the difference solution, the boundedness and u-
niqueness of difference solution are proved. In Section 3, the convergence of the
difference scheme is discussed. The difference scheme is proved to be convergent
with the convergence order of O(τ2+h2) in L∞ norm. In Section 4, an iterative
algorithm for the difference scheme with the proof of the convergence is given.
A short conclusion section ends the paper.

2 The existence of the difference solution

In this section, we will prove that the finite difference scheme (1.4)-(1.6) exists
a solution.
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On the L∞ convergence of a nonlinear difference scheme 3

Let H = {v | v = (v0, v1, . . . , vm), vj ∈ C, 0 ≤ j ≤ m, v0 = vm = 0} be
the space of complex grid functions on Ωh. Given any complex grid functions
v, w ∈ H, denote the inner product

(v, w) = h
m−1∑
j=1

vjw̄j .

The discrete Lp norm ∥·∥p, maximum-norm ∥·∥∞ and H1
0 norm | · |1 are defined

respectively as follows

∥v∥p = p

√√√√h

m−1∑
j=1

|vj |p, p ≥ 1, ∥v∥∞ = max
0≤i≤m

|vi|,

|v|1 =

√√√√h

m−1∑
j=0

∣∣∣∣vj+1 − vj
h

∣∣∣∣2.
For abbreviation, we write ∥ · ∥2 as ∥ · ∥.

In order to illustrate the existence of the difference solution, we need the
following lemma.

Lemma 2.1. (Brouwer Fixed Point Theorem [10]) Let (H, (·, ·)) be a finite
dimensional inner product space, ∥ · ∥ the associated norm, and Π : H → H be
continuous. Assume moreover that

∃α > 0, ∀z ∈ H, ∥z∥ = α, Re(Π(z), z) ≥ 0.

Then, there exists an element z∗ ∈ H such that Π(z∗) = 0 and ∥z∗∥ ≤ α.

Theorem 2.2. The solution of difference scheme (1.4)− (1.6) exists.

Proof. Suppose
{
ukj | 0 ≤ j ≤ m

}
be the numerical solution. Using the notation

introduced before, we rewrite the difference scheme (1.4)-(1.6) in the following
form

i 2τ

(
u
k+ 1

2
j − ukj

)
+ δ2xu

k+ 1
2

j + q
2

(∣∣ukj ∣∣2 + ∣∣∣2uk+ 1
2

j − ukj

∣∣∣2)uk+ 1
2

j = 0,

1 ≤ j ≤ m− 1,
(2.1)

u
k+ 1

2
0 = 0, u

k+ 1
2

m = 0. (2.2)

Let
vj = u

k+ 1
2

j , 0 ≤ j ≤ m,

then (2.1)-(2.2) can be written as

i
2

τ

(
vj − ukj

)
+ δ2xvj +

q

2

(
|ukj |2 + |2vj − ukj |2

)
vj = 0, 1 ≤ j ≤ m− 1, (2.3)
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v0 = 0, vm = 0. (2.4)

Define the mapping Π : H → H,

(Π(v))j =

{
0, j = 0,m,
vj − ukj − i 2τ

[
δ2xvj +

q
2 (|u

k
j |2 + |2vj − ukj |2)vj

]
, 1 ≤ j ≤ m− 1.

Computing the inner product of Π(v) and v, we obtain

(Π(v), v) = h
m−1∑
j=1

[
vj − ukj − i τ2 δ

2
xvj − i τq4 (|ukj |2 + |2vj − ukj |2)vj

]
v̄j

= ∥v∥2 − (uk, v)− i τ2h
m−1∑
j=1

(
δ2xvj)v̄j − i τq4 (|ukj |2 + |2vj − ukj |2

)
|vj |2

= ∥v∥2 − (uk, v)− i τ2h
m∑
j=1

∣∣∣δxvj− 1
2

∣∣∣2 − i τq4
(
|ukj |2 + |2vj − ukj |2

)
|vj |2.

So taking the real part of the inner product

Re(Π(v), v) = ∥v∥2 −Re(uk, v)

= ∥v∥2 −Re

(
h

m−1∑
j=1

ukj v̄j

)

≥ ∥v∥2 −Re

h
2

(
m−1∑
j=1

ukj

)2

+

(
m−1∑
j=1

v̄j

)2


= ∥v∥2 − 1
2

(
∥uk∥2 + ∥v∥2

)
= 1

2

(
∥v∥2 − ∥uk∥2

)
When ∥v∥ = ∥uk∥, Re(Π(v), v) ≥ 0. Using Lemma 2.1, we have ∀v ∈ H, ∥v∥ =

∥uk+ 1
2 ∥ = ∥uk∥ > 0, Re(Π(v), v) ≥ 0. Then there exists an element v∗ ∈ H

such that Π(v∗) = 0 and ∥v∗∥ ≤ ∥uk∥. Hence, it is easily seen that the solution
{vj | 0 ≤ j ≤ m} satisfies the difference scheme (2.3)-(2.4). The proof is
complete.

3 The uniqueness of the difference solution

Theorem 3.1. ([9])The solution of difference scheme (1.4) − (1.6) is conser-
vative. In more precisely, let

{
ukj | 0 ≤ j ≤ m, 0 ≤ k ≤ n

}
be the solution of

(1.4)− (1.6), we have

∥uk∥2 = ∥u0∥2, Ek = E0, 1 ≤ k ≤ n,

where

Ek = h
m−1∑
j=0

∣∣∣δxukj+ 1
2

∣∣∣2 − q

2
h

m−1∑
j=1

∣∣ukj ∣∣4 .
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Theorem 3.2. ([9])The difference solution of (1.4) − (1.6) is bounded in the
discrete L∞ norm. In more precisely, let

{
ukj | 0 ≤ j ≤ m, 0 ≤ k ≤ n

}
be the

solution of (1.4)− (1.6), we have

∥uk∥2∞ ≤ 1

2

(
1

8
|q|2∥u0∥6 + |u0|21 −

q

2
∥u0∥44

)
, 1 ≤ k ≤ n,

Using Theorems 3.1 and 3.2, we can obtain

Theorem 3.3. The difference solution of (1.4)− (1.6) is unique.

Proof. To proof this theorem, we can prove the solution of difference scheme
(2.3)-(2.4) is unique.

Let {vj | 0 ≤ j ≤ m} and {wj | 0 ≤ j ≤ m} be the solutions of (2.3)-(2.4).
Then we have

i
2

τ
(wj − ukj ) + δ2xwj +

q

2

(
|ukj |2 + |2wj − ukj |2

)
wj = 0, 1 ≤ j ≤ m− 1, (3.1)

w0 = 0, wm = 0. (3.2)

Denote
θj = vj − wj , 0 ≤ j ≤ m.

Subtracting (3.1)-(3.2) from (2.3)-(2.4) respectively, we obtain the following
equations

i 2τ θj + δ2xθj +
q
2 |u

k
j |2θj +

q
2

(
|2vj − ukj |2vj − |2wj − ukj |2wj

)
= 0,

1 ≤ j ≤ m− 1,
(3.3)

θ0 = 0, θm = 0. (3.4)

Multiplying (3.3) by −ihθ̄j , summing up for j from 1 to m−1, we can obtain

2
τ h

m−1∑
j=1

|θj |2 − ih
m−1∑
j=1

(
δ2xθj

)
θ̄j − i q2h

m−1∑
j=1

|ukj |2|θj |2

−i q2h
m−1∑
j=1

(
|2vj − ukj |2vj − |2wj − ukj |2wj

)
θ̄j = 0.

(3.5)

Adding the term −|2vj − ukj |2wj to the part of the forth term in (3.5).

Meanwhile, noticing the equality |a|2 − |b|2 = (a− b)ā+ b(a− b) where both a
and b are complex functions, we have

|2vj − ukj |2vj − |2wj − ukj |2wj

= |2vj − ukj |2(vj − wj) + (|2vj − ukj |2 − |2wj − ukj |2)wj

= |2vj − ukj |2θj +
[
2(vj − wj)2vj − ukj + 2(vj − wj)(2wj − ukj )

]
wj

= |2vj − ukj |2θj + 2
[
θj2vj − ukj + θ̄j(2wj − ukj )

]
wj .
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Thus, taking the real part of (3.5) with the rewritten forth term, we obtain

2

τ
∥θ∥2 − Im

q

2
h

m−1∑
j=1

2
[
|θj |2(2vj − ukj ) + (2wj − ukj )wj

] = 0.

According to Theorem 3.2 which illustrates that the solution v, w are bounded-
ness, we easily get that |v|, |w| ≤ ∥uk∥∞. So using Theorem 3.2 and Cauchy-
Schwarz inequality, we have

2
τ ∥θ∥

2 ≤ |q|h
m−1∑
j=1

(
|2vj − ukj |+ |2wj − ukj |

)
|θj |2|wj |

≤ |q|h
m−1∑
j=1

(
2|vj |+ |ukj |+ 2|wj |+ |ukj |

)
∥θ∥2|wj |

≤ 6|q| · ∥uk∥2∞∥θ∥2

Denote the right term of the inequality in Theorem 3.2 be a constant c1, we
have

2

τ
∥θ∥2 ≤ 6c21|q| · ∥θ∥2.

When τ < 1
3c21|q|

, we get ∥θ∥2 = 0. Hence, vj = wj , 0 ≤ j ≤ m. The proof is

complete.

4 The convergence of the finite difference scheme

Suppose that the continuous problem (1.1)-(1.3) has a smooth solution u, and
Uk
j = {u(xj , tk) | 0 ≤ j ≤ m, 0 ≤ k ≤ n} is the solution u under the mapping

Ωhτ . In this section, we will illustrate that the solution ukj of the difference

scheme (1.4)-(1.6) is convergent to the solution Uk
j with the convergence order

of O(τ2 + h2) in the L∞ norm.
Denote

c0 = max
0≤t≤T

∥u(·, t)∥∞, (4.1)

ekj = Uk
j − ukj , 0 ≤ j ≤ m, 0 ≤ k ≤ n.

Lemma 4.1. (Gronwall Inequality [9]) Assume {Gn | n ≥ 0} is a nonnegative
sequence, and satisfies

Gn+1 ≤ (1 + cτ)Gn + τg, n = 0, 1, 2, . . . ,

where c and g are nonnegative constants. Then G satisfies

Gn ≤ ecnτ
(
G0 +

g

c

)
, n = 0, 1, 2, . . . .

Lemma 4.2. ([11]) For any complex functions U, V, u, v, one has

| |U |2V − |u|2v| ≤ (max {|U |, |V |, |u|, |v|})2 · (2|U − u|+ |V − v|).
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Lemma 4.3. ([9]) Denote

Vh = {v | v = {vi | 0 ≤ i ≤ m} is the grid function on Ωh} ,
V̇h = {v | v = {vi | 0 ≤ i ≤ m} ∈ Vh, v0 = vm = 0}.

(1) Suppose v ∈ V̇h, so there is

∥v∥∞ ≤ 1

2
|v|1.

(2) Suppose v ∈ V̇h. For any ε > 0, there is

∥v∥2∞ ≤ ε|v|21 +
1

4ε
∥v∥2.

Theorem 4.4. Suppose that the difference scheme (1.4)−(1.6) has the solution
ukj and the equations (1.1)− (1.3) has the solution Uk

j . When τ is small enough,
there exists a constant C independent of h, τ such that

∥ek∥∞ ≤ C(τ2 + h2), 0 ≤ k ≤ n. (4.2)

Proof. Subtracting(1.4)-(1.6) from (1.1)-(1.3) respectively, we obtain the error
equations

iδte
k+ 1

2
i + δ2xe

k+ 1
2

i + q
2

[
(|Uk

j |2 + |Uk+1
j |2)Uk+ 1

2
j − (|ukj |2 + |uk+1

j |2)uk+
1
2

j

]
= Rk

j , 1 ≤ j ≤ m− 1, 0 ≤ k ≤ n− 1,
(4.3)

e0j = 0, 1 ≤ j ≤ m− 1, (4.4)

ek0 = 0, ekm = 0, 0 ≤ k ≤ n. (4.5)

In using the Taylor expansion with Lagrange remainder, we can get

Rk
j =

τ2

24

∂3u

∂t3
(xj , ηjk)+

h2

24

[
∂4u

∂x4
(ξjk, tk) +

∂4u

∂x4
(ξ′j,k+1, tk+1)

]
+
τ2

8

∂4u

∂x2∂t2
(xj , ζjk),

where
ηjk, ζjk ∈ (tk, tk+1), ξjk, ξ

′
j,k+1 ∈ (xj−1, xj+1).

Therefore there exists a constant c2 such that

|Rk
j | ≤ c2(τ

2 + h2), 1 ≤ j ≤ m− 1, 0 < k ≤ n− 1. (4.6)

Let G
k+ 1

2
j = (|Uk

j |2 + |Uk+1
j |2)Uk+ 1

2
j − (|ukj |2 + |uk+1

j |2)uk+
1
2

j , and add the

term −(|Uk
j |2 + |Uk+1

j |2)uk+
1
2

j to the G
k+ 1

2
j , we obtain

G
k+ 1

2
j = (|Uk

j |2 + |Uk+1
j |2)ek+

1
2

j +
(
|Uk

j |2 + |Uk+1
j |2 − |ukj |2 − |uk+1

j |2
)
u
k+ 1

2
j

= (|Uk
j |2 + |Uk+1

j |2)ek+
1
2

j + [(Uk
j − ukj )Ū

k
j + ukj (U

k
j − ukj )

+(Uk+1
j − uk+1

j )Ūk+1
j + uk+1

j (Uk+1
j − uk+1

j )]u
k+ 1

2
j

= (|Uk
j |2 + |Uk+1

j |2)ek+
1
2

j + (ekj Ū
k
j + ukj ē

k
j + ek+1

j Ūk+1
j + uk+1

j ēk+1
j )u

k+ 1
2

j .
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Noticing the initial-boundary value conditions (1.2)-(1.3) and (1.5)-(1.6), we
have

G
k+ 1

2
0 =

(
|Uk

0 |2 + |Uk+1
0 |2

)
U

k+ 1
2

0 −
(
|uk0 |2 + |uk+1

0 |2
)
u
k+ 1

2
0 = 0,

G
k+ 1

2
m =

(
|Uk

m|2 + |Uk+1
m |2

)
U

k+ 1
2

m −
(
|ukm|2 + |uk+1

m |2
)
u
k+ 1

2
m = 0.

According to Lemma 4.2, we get

|Gk+ 1
2

j | ≤
(
max

{
|Uk

j |, |U
k+ 1

2
j |, |ukj |, |u

k+ 1
2

j |
})2

·
(
2|ekj |+ |ek+

1
2

j |
)
,

or we can say there exists a positive constant c3 such that

∥Gk+ 1
2 ∥2 ≤ c3

(
∥ek∥2 + ∥ek+1∥2

)
, 0 < k ≤ n− 1, (4.7)

|Gk+ 1
2 |21 ≤ c3

(
∥ek∥2 + ∥ek+1∥2 + |ek|21 + |ek+1|21

)
, 0 < k ≤ n− 1. (4.8)

Multiplying the (4.3) by hē
k+ 1

2
j , summing j from 1 to m− 1, we have

ih
m−1∑
j=1

(δte
k+ 1

2
j )ē

k+ 1
2

j + h
m−1∑
j=1

(δ2xe
k+ 1

2
j )ē

k+ 1
2

j + q
2h

m−1∑
j=1

G
k+ 1

2
j ē

k+ 1
2

j = h
m−1∑
j=1

Rk
j ē

k+ 1
2

j ,

i 1
2τ (∥e

k+1∥2 − ∥ek∥2)− h
m∑
j=1

|δxe
k+ 1

2

j− 1
2

|2 + q
2h

m−1∑
j=1

(
|Uk

j |2 + |Uk+1
j |2

)
|ek+

1
2

j |2

+ q
2h

m−1∑
j=1

(
ekj Ū

k
j + ukj ē

k
j + ek+1

j Ūk+1
j + uk+1

j ēk+1
j

)
u
k+ 1

2
j ē

k+ 1
2

j = h
m−1∑
j=1

Rk
j ē

k+ 1
2

j .

Taking the imaginary part and then using (4.1), (4.6) and Theorem 3.2, we can
get

1
2τ

(
∥ek+1∥2 − ∥ek∥2

)
≤ |q|

2 h
m−1∑
j=1

|
(
ekj Ū

k
j + ukj ē

k
j + ek+1

j Ūk+1
j + uk+1

j ēk+1
j

)
·uk+

1
2

j ē
k+ 1

2
j |+ h

m−1∑
j=1

|Rk
j ē

k+ 1
2

j |

≤ |q|
2 h

m−1∑
j=1

(
|ekj |c0 + c1|ekj |+ |ek+1

j |c0 + c1|ek+1
j |

)
·c1|e

k+ 1
2

j |+ h
m−1∑
j=1

|Rk
j ||ē

k+ 1
2

j |

≤ |q|
2 h(c0 + c1)c1

m−1∑
j=1

(|ekj |+ |ek+1
j |) · 1

2 (|e
k
j |+ |ek+1

j |)

+1
2c

2
2(τ

2 + h2)2 + h
2

m−1∑
j=1

[
1
2 (|e

k
j |2 + |ek+1

j |2)
]

≤
[
|q|
2 (c0 + c1)c1 +

1
4

]
(∥ek∥2 + ∥ek+1∥2)

+1
2c

2
2(τ

2 + h2)2, 0 ≤ k ≤ n− 1.

Thus,(
1− τ

(
|q|(c0 + c1)c1 +

1
2

))
∥ek+1∥2

≤
(
1 + τ

(
|q|(c0 + c1)c1 +

|q|
2

))
∥ek∥2 + τc22(τ

2 + h2)2, 0 ≤ k ≤ n− 1.
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Let β = τ
(
|q|(c0 + c1)c1 +

1
2

)
. When β ≤ 1

3 , we have

∥ek+1∥2 ≤ (1 + 3β)∥ek∥2 + 1

1− β
τc22(τ

2 + h2)2,

or we can say

∥ek+1∥2 ≤
[
1 + 3τ

(
|q|(c0 + c1)c1 +

1

2

)]
∥ek∥2+ 3

2
τc22(τ

2+h2)2, 0 ≤ k ≤ n−1.

According to Gronwall Inequality in Lemma 4.1, we obtain

∥ek∥2 ≤ exp

[
3kτ

(
|q|(c0 + c1)c1 +

1

2

)]
·
[
∥e0∥2 + c22(τ

2 + h2)2

2|q|(c0 + c1)c1 + 1

]
,

1 ≤ k ≤ n.

By the initial-boundary value conditions, we could easily know ∥e0∥ = 0, so

∥ek∥ ≤ exp
[
3
2T (|q|(c0 + c1)c1 +

1
2 )
]

c2√
2|q|(c0+c1)c1+1

(τ2 + h2)

= c4(τ
2 + h2), 0 ≤ k ≤ n.

(4.9)

Multiplying the (4.3) by −hδtē
k+ 1

2
j , summing j from 1 to m− 1 and taking

the real part, we have

−Re

{
h

m−1∑
j=1

(
δ2xe

k+ 1
2

j

)(
δtē

k+ 1
2

j

)}

= q
2Re

{
h

m−1∑
j=1

G
k+ 1

2
j

(
δtē

k+ 1
2

j

)}
−Re

{
h

m−1∑
j=1

Rk
j

(
δtej

k+ 1
2

)}
.

(4.10)

Now, we estimate each term of (4.10).
Firstly, simplifying the left of (4.10), we obtain

−Re

{
h

m−1∑
j=1

(
δ2xe

k+ 1
2

j

)(
δtē

k+ 1
2

j

)}
= h

m∑
j=1

(
δxe

k+ 1
2

j− 1
2

)
· δx

(
δtē

k+ 1
2

j− 1
2

)
= h

m∑
j=1

(
δxe

k+ 1
2

j− 1
2

)
· δt
(
δxē

k+ 1
2

j− 1
2

)
= h

m∑
j=1

1
2

(
δxe

k+1
j− 1

2

+ δxe
k
j− 1

2

)
· 1
τ

(
δxē

k+1
j− 1

2

− δxē
k
j− 1

2

)
= 1

2τ h
m∑
j=1

(
|δxek+1

j− 1
2

|2 − |δxekj− 1
2

|2
)
,

that is

−Re

h
m−1∑
j=1

(
δ2xe

k+ 1
2

j

)(
δtē

k+ 1
2

j

) =
1

2τ

(
|ek+1|21 − |ek|21

)
. (4.11)
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Let the right term of (4.10) be A1, A2 separately. By the error equation
(4.3), we have

δtē
k+ 1

2
j = −iδ2xē

k+ 1
2

j − q

2
iḠ

k+ 1
2

j + iR̄k
j . (4.12)

Substituting (4.12) into A1, we obtain

Re

{
h

m−1∑
j=1

G
k+ 1

2
j

(
δtē

k+ 1
2

j

)}

= Re

{
h

m−1∑
j=1

G
k+ 1

2
j

(
−iδ2xē

k+ 1
2

j − q
2 iḠ

k+ 1
2

j + iR̄k
j

)}

= Re

{
−ih

m−1∑
j=1

δ2xē
k+ 1

2
j G

k+ 1
2

j − i q2∥G
k+ 1

2 ∥2 + ih
m−1∑
j=1

R̄k
jG

k+ 1
2

j

}

= Im

{
−h

m−1∑
j=1

δ2xē
k+ 1

2
j G

k+ 1
2

j + h
m−1∑
j=1

R̄k
jG

k+ 1
2

j

}
= B1 +B2,

where

B1 ≤ |h
m−1∑
j=1

δ2xē
k+ 1

2
j G

k+ 1
2

j | ≤ | − h
m∑
j=1

δxē
k+ 1

2

j− 1
2

δxG
k+ 1

2

j− 1
2

| ≤ 1

2

(
|ek+ 1

2 |21 + |Gk+ 1
2 |21
)
,

B2 ≤ |h
m−1∑
j=1

R̄k
jG

k+ 1
2

j | ≤ h

2

m−1∑
j=1

|R̄k
j |2 +

m−1∑
j=1

|Gk+ 1
2

j |2
 ≤ 1

2

(
∥R̄k∥2 + ∥Gk+ 1

2 ∥2
)
.

Then according to (4.6)-(4.8), we can estimate the first right term A1 as follow

A1 ≤ q
4

(
|ek+ 1

2 |21 + |Gk+ 1
2 |21 + ∥R̄k∥2 + ∥Gk+ 1

2 ∥2
)

≤ q
4 |e

k+ 1
2 |21 +

q
4c3
(
∥ek∥2 + ∥ek+1∥2 + |ek|21 + |ek+1|21

)
+ q

4c
2
2(τ

2 + h2)2 + q
4c3
(
∥ek∥2 + ∥ek+1∥2

)
= q

4

[
|ek+ 1

2 |21 + c22(τ
2 + h2)2

]
+ q

2c3
(
∥ek∥2 + ∥ek+1∥2

)
+ q

4c3
(
|ek|21 + |ek+1|21

)
≤ q

4

[
|ek+ 1

2 |21 + c22(τ
2 + h2)2

]
+ qc3c

2
4(τ

2 + h2)2 + q
4c3
(
|ek|21 + |ek+1|21

)
= q

4c3
(
|ek|21 + |ek+1|21

)
+ q

4 |e
k+ 1

2 |21 +
(
qc3c

2
4 +

q
4c

2
2

)
(τ2 + h2)2.

According to (4.6), we can also estimate the second right term A2 as follow

A2 ≤ 1

2

(
∥Rk∥2 + |ek+ 1

2 |21
)
≤ 1

2

(
c21(τ

2 + h2)2 + |ek+ 1
2 |21
)
.

Now, substituting the three estimations just represented before into (4.10),
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we obtain
1
2τ

(
|ek+1|21 − |ek|21

)
≤ q

4c3
(
|ek|21 + |ek+1|21

)
+ q

4 |e
k+ 1

2 |21 +
(
qc3c

2
4 +

q
4c

2
2

)
(τ2 + h2)2

+ 1
2c

2
2(τ

2 + h2)2 + 1
2 |e

k+ 1
2 |21

≤ q
4c3
(
|ek|21 + |ek+1|21

)
+ q+2

4 |ek+ 1
2 |21 +

(
qc3c

2
4 +

q+2
4 c22

)
(τ2 + h2)2

≤ q
4c3
(
|ek|21 + |ek+1|21

)
+ q+2

4
1
2 (|e

k|21 + |ek+1|21) +
(
qc3c

2
4 +

q+2
4 c22

)
(τ2 + h2)2

= 2qc3+q+2
8

(
|ek|21 + |ek+1|21

)
+
(
qc3c

2
4 +

q+2
4 c22

)
(τ2 + h2)2,

that is(
1− τ 2qc3+q+2

4

)
|ek+1|21 ≤

(
1 + τ 2qc3+q+2

4

)
|ek|21

+
(
2qc3c

2
4 +

q+2
2 c22

)
(τ2 + h2)2, 0 ≤ k ≤ n− 1.

Let β = τ 2qc3+q+2
4 . When β ≤ 1

3 , we have

|ek+1|21 ≤
(
1 + 3τ

2qc3 + q + 2

4

)
|ek|21 +

3

2
τ

(
2qc3c

2
4 +

q + 2

2
c22

)
(τ2 + h2)2,

0 ≤ k ≤ n− 1.

Denote

c5 =
2qc3 + q + 2

4
, c6 = 2qc3c

2
4 +

q + 2

2
c22,

then we rewrite the inequality as follow

|ek+1|21 ≤ (1 + 3τc5)|ek|21 +
3

2
τc6(τ

2 + h2)2, 0 ≤ k ≤ n− 1.

Using Gronwall inequality, we get

|ek|21 ≤ exp(3kτc5) ·
(
|e0|21 +

c6(τ
2 + h2)2

2c5

)
, 1 ≤ k ≤ n.

By the initial-boundary value conditions, we also know |e0|21 = 0, so

|ek|21 ≤ exp(3kτc5) · c6(τ
2+h2)2

2c5
≤ exp(3c5T )

c6
2c5

(τ2 + h2)2, 0 ≤ k ≤ n.
(4.13)

According to (1) in Lemma 4.3, we have

∥ek∥2∞ ≤ 1
4 |e

k|21
≤ c6

8c5
exp(3c5T )(τ

2 + h2)2, 0 ≤ k ≤ n.

Denote

C =

√
c6
8c5

exp(3c5T ).

Therefore, when τ is small enough, there exists a constant C independent of
h, τ such that

∥ek∥∞ ≤ C(τ2 + h2), 0 ≤ k ≤ n. (4.14)

This completes the proof.
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5 Iterative algorithm

There are some discrete methods about the nonlinear Schrödinger equations
[12]-[13]. In this section, we use an iterative method [9] to compute the solution
of the difference scheme (2.3)-(2.4).

Define the following iterative method

i 2τ

(
v
(l)
j − ukj

)
+ δ2xv

(l)
j + q

2

(
|ukj |2 + |2v(l−1)

j − ukj |2
)
v
(l)
j = 0,

1 ≤ j ≤ m− 1, 0 ≤ k ≤ n− 1,
(5.1)

v
(l)
0 = 0, vm(l) = 0, (5.2)

where v
(0)
j = ukj , 0 ≤ j ≤ m, l = 1, 2, . . ..

Multiplying the (5.1) by hv̄
(l)
j , summing j from 1 to m − 1 and taking the

imaginary part, we have

2

τ
∥v(l)∥2 −Reh

m−1∑
j=1

ukj v̄
(l)
j = 0,

that is

2
τ ∥v

(l)∥2 = Reh
m−1∑
j=1

ukj v̄
(l)
j

≤ h

(
m−1∑
j=1

(ukj )
2 ·

m−1∑
j=1

(v̄
(l)
j )2

) 1
2

=

(
h

m−1∑
j=1

(ukj )
2

) 1
2

·

(
h

m−1∑
j=1

(v̄
(l)
j )2

) 1
2

= ∥uk∥ · ∥v(l)∥.

Thus,
∥v(l)∥ ≤ ∥uk∥, l = 1, 2, . . . . (5.3)

Denote
ε
(l)
j = vj − v

(l)
j , 0 ≤ j ≤ m.

Theorem 5.1. Suppose that the solution is {ukj | 0 ≤ j ≤ m}, τ is sufficiently
small enough, then the iterative method (5.1)− (5.2) is convergent.

Proof. Subtracting (5.1)-(5.2) from (2.3)-(2.4), we obtain

i 2τ ε
(l)
j + δ2xε

(l)
j + q

2

[
(|ukj |2 + |2vj − ukj |2)vj − (|ukj |2 + |2v(l−1)

j − ukj |2)v
(l)
j

]
= 0, 1 ≤ j ≤ m− 1,

(5.4)

ε
(l)
0 = ε(l)m = 0. (5.5)
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Multiplying the (5.4) by hε̄j
(l), summing j from 1 to m− 1, we have

i 2τ h
m−1∑
j=1

|ε(l)j |2 + h
m−1∑
j=1

(δ2xε
(l)
j )ε̄j

(l) + q
2h

m−1∑
j=1

|ukj |2|ε
(l)
j |2

+ q
2h

m−1∑
j=1

[
|2vj − ukj |2vj − |2v(l−1)

j − ukj |2v
(l)
j

]
ε̄j

(l) = 0.

(5.6)

Noticing the term in brackets, we add |2v(l−1)
j − ukj |2vj to this term as follow

|2vj − ukj |2vj − |2v(l−1)
j − ukj |2v

(l)
j

= |2v(l−1)
j − ukj |2

(
vj − v

(l)
j

)
+
(
|2vj − ukj |2 − |2v(l−1)

j − ukj |2
)
vj

= |2v(l−1)
j − ukj |2ε

(l)
j +

(
2ε

(l−1)
j (2vj − ukj ) + (2v

(l−1)
j − ukj )2ε̄j

(l−1)
)
vj .

Then, substituting this rewritten term into (5.6) and taking the imaginary part,
we have

2
τ ∥ε

(l)∥2

≤ |q|
2 h

m−1∑
j=1

∣∣∣(2ε(l−1)
j (2vj − ukj ) + (2v

(l−1)
j − ukj )2ε̄j

(l−1)
)
vj ε̄j

(l)
∣∣∣

≤ |q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ · h
m−1∑
j=1

(
|2vj − ukj |+ |2v(l−1)

j − ukj |
)
|vj |

≤ |q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ ·
(
∥2v∥+ ∥uk∥+ ∥2v(l−1)∥+ ∥uk∥

)
∥v∥

≤ |q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ · 6∥v∥2.

According to (5.3) and Theorem 3.1, we obtain

∥ε(l)∥2 ≤ 3τ |q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ · ∥uk∥2
= 3τ |q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ · ∥u0∥2. (5.7)

Similarly, taking the real part of (5.6), we have

|ε(l)|21
≤ |q|

2 ∥uk∥2 · ∥ε(l)∥2∞ + |q|
2 ∥ε(l)∥2∞ · h

m−1∑
j=1

[
4(v

(l−1)
j )2 + (ukj )

2 − 4v
(l−1)
j ukj

]
+|q| · ∥ε(l−1)∥∞ · ∥ε(l)∥∞ · 6∥v∥2

≤ |q|
2 ∥uk∥2∥ε(l)∥2∞ + |q|

2 ∥ε(l)∥2∞ ·
(
4∥uk∥2 + ∥uk∥2 + 4∥uk∥2

)
+6|q| · ∥uk∥2∥ε(l−1)∥∞∥ε(l)∥∞

≤ 5|q| · ∥uk∥2∥ε(l)∥2∞ + 6|q| · ∥uk∥2∥ε(l−1)∥∞∥ε(l)∥∞
≤ 5|q| · ∥u0∥2∥ε(l)∥2∞ + 6|q| · ∥u0∥2∥ε(l−1)∥∞∥ε(l)∥∞.

According to (2) in Lemma 4.3, for any α > 0, there is

∥ε(l)∥2∞ ≤ α|ε(l)|21 + 1
4α∥ε

(l)∥2
≤ α

(
5|q| · ∥u0∥2∥ε(l)∥2∞ + 6|q| · ∥u0∥2∥ε(l−1)∥∞∥ε(l)∥∞

)
+ 1

4α · 3τ |q| · ∥u0∥2∥ε(l−1)∥∞∥ε(l)∥∞.
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That is

∥ε(l)∥∞ ≤ α
(
5|q| · ∥u0∥2∥ε(l)∥∞ + 6|q| · ∥u0∥2∥ε(l−1)∥∞

)
+ 1

4α · 3τ |q| · ∥u0∥2∥ε(l−1)∥∞.

Taking α = 1/(12|q| · ∥u0∥2), we get

∥ε(l)∥∞ ≤ 5

12
∥ε(l)∥∞ +

1

2
∥ε(l−1)∥∞ + 9τq2∥u0∥4∥ε(l−1)∥∞,

that is

∥ε(l)∥∞ ≤ 12

7

(
1

2
+ 9τq2∥u0∥4

)
∥ε(l−1)∥∞.

When τq2∥u0∥4 ≤ 1
144 , we have

∥ε(l)∥∞ ≤ 12

7

(
1

2
+

9

144

)
∥ε(l−1)∥∞ =

27

28
∥ε(l−1)∥∞.

This completes the proof.

6 Conclusion

In this paper, we consider a nonlinear finite difference scheme for the Schrödinger
equations. We prove that the difference scheme has a unique and bounded
solution and the finite difference solution is convergent with the convergence
order of O(τ2+h2) in L∞ norm. Finally we give a convergent iterative method
to compute the solution of the difference scheme.
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SINGLE POINT V.S. TOTAL BLOW-UP FOR A REACTION

DIFFUSION EQUATION WITH NONLOCAL SOURCE

DENGMING LIU

Abstract. In this paper, we consider the following initial-boundary value

problem of a semilinear parabolic equation with local and nonlocal sources

ut = ∆u + up +

∫
B
uq (x, t) dx, (x, t) ∈ B × (0, T ) ,

where p, q > 0, B =
{
x ∈ RN : |x| < R

}
. We completely classify blow-up

solutions into total blow-up case and single point blow-up case according to
the different values of the nonlinear parameters, and give the blow-up rates of

solutions near the blow-up time.

1. Introduction

In this paper, we deal with the property of the blow-up solution of the following
reaction-diffusion equation with local and nonlocal sources

ut = ∆u+ up +
∫
B
uq (x, t) dx, (x, t) ∈ B × (0, T ) ,

u (x, t) = 0, (x, t) ∈ ∂B × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ B,

(1.1)

where p, q > 0, B =
{
x ∈ RN : |x| < R

}
. Throughout this paper, we assume

that the initial data u0 ∈ C2(B) ∩ C(B), u0 (x) = u (r) ≥ 0 with r = |x|, and
u′0 (r) < 0 for r ∈ (0, R]. Moreover, we assume that there exists a positive constant δ
such that ∆u0+up0+

∫
B
uq0dx ≥ δ. When min {p, q} ≥ 1, we can easily show the local

existence and uniqueness of classical solution of problem (1.1). If min {p, q} < 1,
the existence of maximal solution can be proved. Moreover, if max {p, q} > 1, we
can prove that the solution of (1.1) blows up in finite time for large initial data. In
this paper, we consider the blow-up set of problem (1.1) and denote the blow-up
time by T . We now begin with the definition of the blow-up point for a blow-up
solution.

Definition 1.1. A point x ∈ B is called a blow-up point if there exists a sequence
(xn, tn) such that xn → x, tn ↗ T and u (xn, tn)→∞ as n→∞.

The set of all blow-up points is called the blow-up set. For simplification, we
denote the blow-up set by S. When S = B, we call this phenomenon “total blow-
up” and when the blow-up set include only one point, we call this “single point
blow-up”.

2000 Mathematics Subject Classification. 35K55, 35K65.
Key words and phrases. Nonlocal source; Single point blow-up; Total blow-up.
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In 1984, Weissler(see [1]) considered the property of the blow-up solution for the
following one-dimensional initial-boundary value problem

ut = ∆u+ up, (x, t) ∈ (−R,R)× (0, T ) ,

u (x, t) = 0, (x, t) ∈ {−R,R} × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ [−R,R] ,

(1.2)

where p > 1, and obtained the single point blow-up phenomenon under some suit-
able conditions. In [2], Friedman and McLeod generalized Weissler’s results to
N -dimensional case, and showed that the blow-up point is only the origin, namely,
S = {0}.

Chadam et al. in [3] studied the following problem with localized reaction term
ut = ∆u+ uq (x∗, t) , (x, t) ∈ B × (0, T ) ,

u (x, t) = 0, (x, t) ∈ ∂B × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ B,

(1.3)

and proved that total blow-up occurs whenever a solution blows up, that is, S = B.
Souplet [4,5] extended the results in [3] to the case for the moving source x∗ (t) and
obtained the precise blow-up profiles of the total blow-up solution.

Recently, Okada and Fukuda in [7] dealt with the single point and total blow-up
for the following problem

ut = ∆u+ up + uq (x∗, t) , (x, t) ∈ B × (0, T ) ,

u (x, t) = 0, (x, t) ∈ ∂B × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ B.

(1.4)

They showed that p = q + 1 is a cut off between the single point blow-up and the
total blow-up for x∗ = 0, and p = q is the critical exponent of the single point
blow-up and the total blow-up for x∗ 6= 0.

Motivated by above works, we investigate problem (1.1). Similar to [7], the main
purpose of this article is to evaluate the effect of the competition between up and∫
B
uqdx on the single blow-up and total blow-up. Motivated by the idea of Souplet

in [6], through modifying the construction of auxiliary functions used in [7], we
completely classify blow-up solutions into total blow-up case and single point blow-
up case according to the different values of p and q, and give the blow-up rates of
solutions near the blow-up time.

In order to state our results, we first let ϕ be a solution of
ϕt = ∆ϕ, (x, t) ∈ B × (0, T ) ,

ϕ (x, t) = 0, (x, t) ∈ ∂B × (0, T ) ,

ϕ (x, 0) = ϕ0 (x) ≥ 0, x ∈ B,

(1.5)

where ϕ0 ∈ C2(B) ∩ C(B), ϕ0 (x) = ϕ (r) with r = |x|, and ϕ′0 (r) < 0 for r ∈
(0, R]. The main results of this article are stated as follows.
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Theorem 1.2. Suppose q > p and q > 1, and let u be a solution of (1.1) with u0 =
λϕ0 (λ > 0), then there exists a positive constant λ0 (ϕ0) such that if λ > λ0 (ϕ0),
then u blows up on the whole domain, that is, S = B; Moreover, the following
estimate

C1 (T − t)−
1

q−1 ≤ u (x, t) ≤ C2 (T − t)−
1

q−1 , t→ T (1.6)

holds for any compact subset of B, here C1, C2 are positive constants.

Theorem 1.3. Suppose p ≥ q and p > 1, then all blow-up solutions of problem
(1.1) blow up only at the origin, namely, S = {0}; Moreover, there exist positive
constants C3 and C4 such that

C3 (T − t)−
1

p−1 ≤ u (0, t) ≤ C4 (T − t)−
1

p−1 , t→ T. (1.7)

Remark 1.4. From Theorems 1.1 and 1.2, we know that p = q is the critical
exponent for single point blow-up and total blow-up.

This paper is organized as follows. In the next section, we will give some lemmas.
In section 3, we concern with the single point blow-up and the total blow-up, and
give the proofs of Theorems1.1 and 1.2, respectively.

2. Preliminary

In this section, we will state two important lemmas, which will be used in the
sequel.

Lemma 2.1. Suppose q > 1 and q > p, let u (x, t) be a solution of (1.1) with
u0 (x) = λϕ0 (x), then there exists a positive constant λ0 (ϕ0) such that

u (x, t) ≥ ϕ (x, t)

2ϕ0 (0)
u (0, t) ≡ ψ (x, t)u (0, t) , (x, t) ∈ B × [0, T ), (2.1)

holds if λ > λ0 (ϕ0).

Proof. Using maximum principle (see [4]), we have

0 ≤ ϕ (x, t) ≤ ϕ0 (x) ≤ ϕ0 (0) .

Because of q > p and u0 (0) = λϕ0 (0), we can choose λ large enough such that

2ψ (x, t)up−q0 (0) ≤ {λϕ0 (0)}p−q ≤
∫
B

ψq (x, t) dx. (2.2)

Now, letting

U = u (x, t)− ψ (x, t)u (0, t) ,

after a series of simple computation, we have

Ut −∆U = up +

∫
B

uqdx− ψ (x, t)

(
∆u (0, t) + up (0, t) +

∫
B

uqdx

)
≥ 1

2

∫
B

uqdx− ψ (x, t)up (0, t) .

(2.3)

On the other hand, ∆u0 + up0 +
∫
B
uq0dx ≥ δ means ut ≥ 0, thus, for any t ∈ [0, T ),

we see

u (0, t) ≥ u0 (0) . (2.4)
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Combining (2.2), (2.3) with (2.4), we know

Ut −∆U ≥ 1

2

(∫
B

uqdx− 2ψ (x, t)up−q0 (0)uq (0, t)

)
≥ 1

2

(∫
B

uqdx−
∫
B

ψquq (0, t) dx

)
=
q

2

∫
B

UΦdx,

(2.5)

where

Φ =

∫ 1

0

[θu+ (1− θ)ψu (0, t)]
q−1

dθ.

In addition, for any (x, t) ∈ ∂B × (0, T ), we have

U (x, t) = 0, (2.6)

and

U (x, 0) = u0 (x)−ψ (x, 0)u0 (0) = λϕ0 (x)− ϕ0 (x)

2ϕ0 (0)
λϕ0 (0) =

λϕ0 (x)

2
≥ 0. (2.7)

From (2.5), (2.6), (2.7) and maximum principle, it follows that

U (x, t) ≥ 0, (x, t) ∈ B × [0, T ),

which leads to (2.1). The proof of Lemma 2.1 is complete. �

Lemma 2.2. Suppose p > 1 and q ≥ 0, let u (x, t) be a solution of (1.1), then there
exists a positive constant η such that

ut ≥ ηϕ (x, t)

(
up +

∫
B

uqdx

)
, (x, t) ∈ B × [0, T ). (2.8)

Proof. Putting

J (x, t) = ut (x, t)− ηϕ (x, t)

(
up +

∫
B

uqdx

)
,

where η will be chosen later. Computing directly, we obtain

Jt −∆J − pup−1J ≥ ηpϕup−1
(
up +

∫
B

uqdx− ut + ∆u

)
− η (ϕt −∆ϕ)

(
up +

∫
B

uqdx

)
+ q (1− ηϕ)

∫
B

uq−1utdx

+ 2ηpup−1∇u · ∇ϕ+ ηp (p− 1)ϕup−2 |∇u|2

≥ 2ηpup−1∇u · ∇ϕ+ q (1− ηϕ)

∫
B

uq−1utdx.

(2.9)

Since u and ϕ are radially symmetric and monotone decreasing with respect to r,
we have

∇u · ∇ϕ = ur

(x1
r
,
x2
r
, · · · , xn

r

)
· ϕr

(x1
r
,
x2
r
, · · · , xn

r

)
= urϕr ≥ 0.

On the other hand, by maximum principle, the assumption ∆u0 +up0 +
∫
B
uq0dx ≥ δ

implies that ut ≥ 0. Choosing η small enough such that

1− ηϕ (x, t) ≥ 0, (2.10)
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we then have

Jt −∆J − pup−1J ≥ 0. (2.11)

Moreover, we can verify that

J (x, 0) = ut (x, 0)− ηϕ0 (x)

(
up0 (x) +

∫
B

uq0 (x) dx

)
= ∆u0 (x) + up0 (x) +

∫
B

uq0 (x) dx− ηϕ0 (x)

(
up0 (x) +

∫
B

uq0 (x) dx

)
≥ µ− ηϕ0 (0)

(
up0 (0) +

∫
B

uq0 (0) dx

)
≥ 0,

(2.12)

holds for sufficiently small η. In addition, for any (x, t) ∈ ∂B × (0, T ), we have

J (x, t) = 0. (2.13)

From (2.11), (2.12), (2.13) and maximum principle, it follows that

J (x, t) ≥ 0, (x, t)B × [0, T ),

which yields (2.8). The proof of Lemma 2.2 is complete. �

3. Proof of Theorems 1.1 and 1.2

In this section, we will discuss the single point and total blow-up phenomena
according to the different values of p and q. Firstly, we give the proof of Theorem
1.1.

Proof of Theorem 1.1. Since

lim
t→T

u (0, t) = +∞,

we can easily show the total blow-up result under the condition q > p from Lemma
2.1.

Moreover, noticing the fact that

max
x∈B

u (x, t) = u (0, t) ,

we have

∆u (0, t) ≤ 0.

On the other hand, thanks to q > p and q > 1, there exists t1 ∈ (0, T ) such that

ut (0, t) = ∆u (0, t) + up (0, t) +

∫
B

uq (0, t) dx

≤ up (0, t) +

∫
B

uq (0, t) dx

≤ (|B|+ 1)uq (0, t) , t ∈ (t1, T ) .

(3.1)

Combining (3.1) with Lemma 2.1, we obtain

C1 (T − t)−
1

q−1 ≤ Cu (0, t) ≤ u (x, t) , (x, t) ∈ K × (t1, T ) , (3.2)

where K is any compact subset of B.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

180 DENGMING LIU 176-183



6 D. LIU

Furthermore, it follows that, from (2.1) and (2.8),

ut (0, t) ≥ ηϕ (0, t)

∫
B

uqdx ≥ η |B|ϕ (0, t)ψq (0, t)uq (0, t) . (3.3)

Integrating (3.3) from 0 to t, we conclude

u (x, t) ≤ u (0, t) ≤ C2 (T − t)−
1

q−1 , (x, t) ∈ B × (0, T ) . (3.4)

Combining (3.2) with (3.3), we get (1.6). The proof of Theorem 1.1 is complete. �

Now, by the method of contradiction, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Using mean value theorem, and noticing the fact that u (x, t)
is radially symmetric and monotone decreasing with respect to r, we know that
there exists a unique point x∗ such that∫

B

uqdx = |B|uq (x∗, t) , x∗ 6= 0 and x∗ 6∈ ∂B.

We suppose that, on the contrary, there is a blow-up point x0 6= 0 (|x0| ≤ |x∗| = r0).
Since u (x, t) is radially symmetric and monotone decreasing on r, then for any
r1 ∈ [0, r0], we see

lim
t→T

u (r1, t) =∞.

Letting 0 < µ1 < µ < µ2 < r0, and

S0 (µ, γ) =
{
x = (x1, x2, · · · , xN ) ∈ RN : µ < x1 < µ+ γ, 0 < xj < γ (j = 2, · · ·N)

}
,

here γ is a sufficiently small constant such that

S0 (µ, γ) ∈ B (µ2) \B (µ1).

Defining an auxiliary function as the form

F (x, t) = ux1 (x, t) + εb (x)um (x, t) , (x, t) ∈ S0 × [0, T ), (3.5)

where ε, m will be determined later, and

b (x) = sin
π (x1 − µ)

γ

N∏
j=2

sin
πxj
γ
.

Calculating directly, we obtain

Ft −∆F −
(
pup−1 − 2εm∇b · ∇u

ux1

um−1
)
F

= ε (m− p) bup+m−1 + εmbum−1
∫
B

uqdx+
επ2N

γ2
bum

= ε (m− p) bup+m−1 + εmb |B|um−1uq (x∗, t) +
επ2N

γ2
bum

− εm (m− 1) bum−2 |∇u|2 +
2mε2∇b · ∇u

ux1

bu2m−1

≤ ε (m− p) bup+m−1 + εmb |B|um+q−1 +
επ2N

γ2
bum +

2mε2∇b · ∇u
ux1

bu2m−1.

On the other hand, it is easy to verify that

0 <
2mε∇b · ∇u

ux1

<
2mπεNµ2

γµ1
.
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For the case p = q, we can choose m < p
1+|B| and τ1 large enough such that

Ft −∆F −
(
pup−1 − 2εm∇b · ∇u

ux1

um−1
)
F

≤ −εbum−1
{

[p−m (1 + |B|)]up − π2N

γ2
u− 2mπεNµ2

γµ1
um
}

≤ 0,

(3.6)

holds for every (x, t) ∈ S0 × [τ1, T ).
For the case p > q, we can take m < p and τ2 large enough such that, for any

(x, t) ∈ S0 × [τ2, T ), the following inequality holds

Ft −∆F −
(
pup−1 − 2εm∇b · ∇u

ux1

um−1
)
F

≤ −εbum−1
{

(p−m)up −m |B|uq − π2N

γ2
u− 2mπεNµ2

γµ1
um
}

≤ 0.

(3.7)

Next, putting τ = max {τ1, τ2}, and taking ε small enough, such that

F (x, τ) = ux1
(x, τ) + εb (x)um (x, τ)

≤ max
x∈S0

ux1
(x, τ) + εmax

x∈S0

um (x, τ) < 0. (3.8)

In addition, we can easily check that,

F (x, t) = ux1 (x, t) < 0, (x, t) ∈ ∂S0 × [τ, T ). (3.9)

Combining (3.6), (3.7) and (3.8) with (3.9), we conclude immediately that

F (x, t) ≤ 0, for any (x, t) ∈ S0 × [τ, T ),

which implies

− u−mux1
≥ εb (x) . (3.10)

Fixing

a′ = (a2, · · · aN ) ∈ RN−1,
and denoting

a1 = (µ+ γ, a2, · · · aN ) .

Integrating (3.10) by x1 from µ to µ+ γ, we have

0 <

∫ µ+γ

µ

εb (x) dx1 =
2εγ

π

N∏
j=2

sin
πxj
γ
≤ 1

(m− 1)um−1 (a1, t)
. (3.11)

Since

lim
t→T

u (a1, t) = +∞,

from (3.11), we have a contradiction. Hence, u (x, t) blows up only at the origin.
In light of

max
x∈B

u (x, t) = u (0, t) ,

then similar to the process of the derivation of (3.1) and (3.2), we find that

C3 (T − t)−
1

p−1 ≤ u (0, t) , t→ T. (3.12)
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Now, using Lemma 2.2, we get

ut (0, t) ≥ ηϕ (0, t)up (0, t) . (3.13)

From (3.13), it follows immediately that

u (0, t) ≤ C4 (T − t)−
1

p−1 , t→ T. (3.14)

Combining (3.12) with (3.14), we arrive at (1.7). The proof of Theorem 1.2 is
complete. �
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COMMON FIXED POINT RESULTS FOR WEAKLY COMPATIBLE

MAPPINGS USING C-CLASS FUNCTIONS

GENO KADWIN JACOB1, ARSLAN HOJAT ANSARI2, CHOONKIL PARK∗3, N. ANNAMALAI4

Abstract. In this paper, using the concept of C -class fuction, we prove the existence of com-
mon fixed point for generalized Zamfirescu-type mappings and generalized weakly Zamfirescu-
type mappings. Our results generalize so many results in the literature.

1. Introduction

In 1922, Banach proved the existence of fixed point on complete metric space (X, d). A

mapping f has been considered to be a contraction and a self-mapping.

Definition 1.1. Let (X, d) be a metric space. A mapping f : X → X is said to be a contraction

mapping if there exists k ∈ [0, 1) such that

d(f(x), f(y)) ≤ kd(x, y).

Later many authours have proved fixed point existence on several type of generalized con-

tractions. Kannan type and Chatterjea type mappings were significant type of mappings since

they provided existence of fixed point for non-continuous mappings in literature (see [4, 6]).

In 1972, Zamfirescu [7] generalized functions of Banach, Kannan and Chatterjea by intro-

ducing a new kind of mapping and proved the existence of fixed points for mappings.

Definition 1.2. Let (X, d) be a metric space. A mapping f : D → X is said to be a Zamfirescu

mapping if for all x, y ∈ X it satisfies the condition

d(f(x), f(y)) ≤ kMf (x, y)

for some k ∈ [0, 1), where

Mf (x, y) := max
{
d(x, y),

1

2

[
d(x, f(x)) + d(y, f(y))

]
,
1

2

[
d(x, f(y)) + d(y, f(x))

]}
.

Apart all these generalizations, Dugundji and Granas [5] in 1978 generalized the contraction

mapping as follows.

Definition 1.3. [5] Let (X, d) be a metric space and D ⊂ X. A mapping f : D → X

is said to be a weakly contraction mapping if there exists α : D × D → [0, 1] such that

Θ(a, b) := sup
{
α(x, y) : a ≤ d(x, y) ≤ b

}
< 1 for every 0 < a ≤ b and for all x, y ∈ D,

d(f(x), f(y)) ≤ α(x, y)d(x, y).

2010 Mathematics Subject Classification. Primary 47H10; 54H25.
Key words and phrases. cyclic coupled contraction; best proximity point; multivalued mapping; fixed point;

C-class function.
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In 2014, the concept of C-class functions was introduced by Ansari [2]. By using this concept,

we can generalize many fixed point theorems in the literature.

Definition 1.4. [2] A function F : [0,∞)2 → R is called a C-class function (also denoted as

C ) if it is continuous and satisfies the following:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0

for all s, t ∈ [0,∞).

Example 1.5. [2] The following functions f : [0,∞)2 → R are elements of C, for all s, t ∈
[0,∞):

(1) f(s, t) = s− t, f(s, t) = s⇒ t = 0;

(2) f(s, t) = ms, 0<m<1, f(s, t) = s⇒ s = 0;

(3) f(s, t) = s
(1+t)r ; r ∈ (0,∞), f(s, t) = s ⇒ s = 0 or t = 0;

(4) f(s, t) = log(t+ as)/(1 + t), a > 1, f(s, t) = s ⇒ s = 0 or t = 0;

(5) f(s, t) = ln(1 + as)/2, a > e, f(s, 1) = s ⇒ s = 0.

Definition 1.6. Let Ψ denote all the functions ψ : [0,∞)→ [0,∞) which satisfy

(i) ψ(t) = 0 if and only if t = 0,

(ii) ψ is continuous,

(iii) ψ(s) ≤ s, ∀s > 0.

Definition 1.7. Let (X, d) be a metric space. Then f, g : X → X are said to be weakly

compatible if fg(x) = gf(x) for x ∈ X whenever f(x) = g(x).

Lemma 1.8. ( [3]) Suppose that (X, d) is a metric space. Let {xn} be a sequence in X such

that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence, then there exist an

ε > 0 and sequences of positive integers {m(k)} and {n(k)} with m(k) > n(k) > k such that

d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε;

(ii) limk→∞ d(xm(k), xn(k)) = ε;

(iii) limk→∞ d(xm(k)−1, xn(k)) = ε.

In this paper, we prove the existence of common fixed point for two weakly compatible

mappings on a complete metric space.

2. Main results

Definition 2.1. Let (X, d) be a metric space. Consider two self-mappings f and g on X and

let α : X × X → [0, 1] be a function. Then g is an f -weakly generalized Zamfirescu type

mapping if, for all F ∈ C, ψ ∈ Ψ and for all x, y ∈ X,

d(g(x), g(y)) ≤F
(
α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
,

ψ
(
α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}))
.
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Theorem 2.2. Let (X, d) be a complete metric space and f, g : X → X mappings such that

g is an f -weakly generalized Zamfirescu type mapping. Then f and g have a unique common

fixed point on X if the following conditions are satisfied:

(1) g(X) ⊂ f(X);

(2) f(X) is complete;

(3) f, g are weakly compatible.

Proof. Choose x0 ∈ Y arbitrarily and xn ∈ X such that f(xn) = g(xn−1). Then

d(f(xn), f(xn+1)) = d(g(xn−1), g(xn)) (2.1)

≤ F
(
α
(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), g(xn−1)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(xn−1)) + d(f(xn−1), g(xn))

]}
,

ψ
(
α
(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), g(xn−1)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(xn−1)) + d(f(xn−1), g(xn))

]}))
≤ α

(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), g(xn−1)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(xn−1)) + d(f(xn−1), g(xn))

]}
≤ α

(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), f(xn)) + d(f(xn), f(xn+1))

]
,

1

2

[
d(f(xn), f(xn)) + d(f(xn−1), f(xn+1))

]}
≤ α

(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), f(xn)) + d(f(xn), f(xn+1))

]
,

1

2

[
d(f(xn−1), f(xn)) + d(f(xn), f(xn+1))

]}
≤ α

(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), f(xn)) + d(f(xn), f(xn+1))

]}
.

Claim: d(f(xn), f(xn+1)) ≤ α(f(xn−1), f(xn))d(f(xn−1), f(xn)).

Suppose that

d(f(xn), f(xn+1)) ≤ α(f(xn−1),f(xn))
2 [d(f(xn−1), f(xn)) + d(f(xn), f(xn+1))]

=⇒ d(f(xn), f(xn+1)) ≤
α(f(xn−1), f(xn))

2− α(f(xn−1), f(xn))
d(f(xn−1), f(xn))

≤ α(f(xn−1), f(xn))d(f(xn−1), f(xn)).

Then {d(f(xn), f(xn+1))} is positive, decreasing and converges to some d ∈ [0,∞).

Now, letting n→∞ in (2.1), we get

d ≤ lim
n→∞

α
(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)),

1

2

[
d(f(xn−1), g(xn−1)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(xn−1)) + d(f(xn−1), g(xn))

]}
≤d,
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which implies that

d = lim
n→∞

α
(
f(xn−1), f(xn)

)
max

{
d(f(xn−1), f(xn)), (2.2)

1

2

[
d(f(xn−1), g(xn−1)) + d(f(xn), g(xn))

]
,
1

2

[
d(f(xn), g(xn−1)) + d(f(xn−1), g(xn))

]}
.

Again, letting n→∞ in (2.1) and using (2.2), we get

d ≤ F (d, ψ(d)) ≤ d.

Thus F (d, ψ(d)) = d, which implies that d = 0.

Next, we prove that {f(xn)} is Cauchy. Suppose not. Then by Lemma 1.8, there exist se-

quences of positive integers {m(k)} and {n(k)} withmk > nk ≥ k such that d(f(xmk−1
), f(xnk

))

and d(f(xmk
), f(xnk

)) converge to some δ > 0. So

d(f(xmk
), f(xnk

)) = d(g(xmk−1), g(xnk−1
)) (2.3)

≤ F
(
α
(
f(xmk−1), f(xnk−1)

)
max

{
d(f(xmk−1), f(xnk−1)),

1

2

[
d(f(xmk−1), g(xmk−1)) + d(f(xnk−1), g(xnk−1))

]
,

1

2

[
d(f(xmk−1), g(xnk−1)) + d(f(xnk−1), g(xmk−1))

]}
,

ψ
(
α
(
f(xmk−1), f(xnk−1)

)
max

{
d(f(xmk−1), f(xnk−1)),

1

2

[
d(f(xmk−1), g(xmk−1)) + d(f(xnk−1), g(xnk−1))

]
,

1

2

[
d(f(xmk−1), g(xnk−1)) + d(f(xnk−1), g(xmk−1))

]}))
≤ α

(
f(xmk−1), f(xnk−1)

)
max

{
d(f(xmk−1), f(xnk−1)),

1

2

[
d(f(xmk−1), g(xmk−1)) + d(f(xnk−1), g(xnk−1))

]
,

1

2

[
d(f(xmk−1), g(xnk−1)) + d(f(xnk−1), g(xmk−1))

]}
≤ max

{
d(f(xmk−1), f(xnk−1)),

1

2

[
d(f(xmk−1), g(xmk−1)) + d(f(xnk−1), g(xnk−1))

]
,

1

2

[
d(f(xmk−1), g(xnk−1)) + d(f(xnk−1), g(xmk−1))

]}
≤ max

{[
d(f(xmk−1), f(xnk

)) + d(f(xnk
), f(xnk−1

))
]
, d(f(xnk−1

), f(xnk
)),

1

2

[
d(f(xmk−1), f(xnk

)) + d(f(xnk−1
), f(xnk

)) + d(f(xnk
), f(xmk

))
]}
.

Letting n→∞ in (2.3), we get

δ = lim
k→∞

α
(
f(xmk−1), f(xnk−1)

)
max

{
d(f(xmk−1), f(xnk

)),

1

2

[
d(f(xmk−1), g(xmk−1)) + d(f(xnk

), g(xnk
))
]
,

1

2

[
d(f(xmk−1), g(xnk

)) + d(f(xnk
), g(xmk−1))

]}
.

(2.4)
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Again, letting n→∞ in (2.3) and using (2.4),

δ ≤ F (δ, ψ(δ)) ≤ δ.

Thus F (δ, ψ(δ)) = δ, which implies that δ = 0, which is a contradiction.

Therefore, {f(xm)} is Cauchy and converges to x = f(u) for some x ∈ X.

Next, we prove that d(f(u), g(u)) = 0.

d(g(u), x) = lim
n→∞

d(g(u), g(xn))

≤ lim
n→∞

F
(
α(f(u), f(xn))max

{
d(f(u), f(xn)),

1

2

[
d(f(u), g(u)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(u)) + d(f(u), g(xn))

]}
,

ψ
(
α(f(u), f(xn))max

{
d(f(u), f(xn)),

1

2

[
d(f(u), g(u)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(u)) + d(f(u), g(xn))

]}))
≤ lim

n→∞
α(f(u), f(xn))max

{
d(f(u), f(xn)),

1

2

[
d(f(u), g(u)) + d(f(xn), g(xn))

]
,

1

2

[
d(f(xn), g(u)) + d(f(u), g(xn))

]}
= lim

n→∞
α(f(u), f(xn))max

{
d(f(u), f(xn)),

1

2

[
d(f(u), g(u)) + d(f(xn), f(xn+1))

]
,

1

2

[
d(f(xn), g(u)) + d(f(u), f(xn+1)

]}
≤ 1

2
d(f(u), g(u)) ≤ 1

2
d(x, g(u)).

So x = g(u) = f(u) on X. Therefore, by the weak compatiblity of f and g, we have f(x) =

fg(u) = gf(u) = g(x).

Claim: x is a common fixed point of f and g.

d(x, g(x)) = d(g(u), g(x))

≤ F
(
α(f(u), f(x))max

{
d(f(u), f(x)),

1

2

[
d(f(u), g(u)) + d(f(x), g(x)),

1

2

[
d(f(u), g(x)) + d(f(x), g(u))

]}
,

ψ
(
α(f(u), f(x))max

{
d(f(u), f(x)),

1

2

[
d(f(u), g(u)) + d(f(x), g(x)),

1

2

[
d(f(u), g(x)) + d(f(x), g(u))

]}))
≤ α(f(u), f(x))max

{
d(f(u), f(x)),

1

2

[
d(f(u), g(u)) + d(f(x), g(x)),

1

2

[
d(f(u), g(x)) + d(f(x), g(u))

]}
≤ d(x, g(x)).

Thus F (d(x, g(x)), ψ(d(x, g(x)))) = d(x, g(x)), which implies d(x, g(x)) = 0. So x is a common

fixed point of f and g on X.

Uniqueness of common fixed point:
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Suppose that x and x′ are common fixed points of f and g. Then

d(x, x′) = (f(x), f(x′)) = d(g(x), g(x′))

≤ F
(
α(f(x), f(x′))max

{
d(f(x), f(x′)),

1

2

[
d(f(x), g(x)) + d(f(x′), g(x′))

]
,

1

2

[
d(f(x), g(x′)) + d(f(x′), g(x))

]}
,

ψ
(
α(f(x), f(x′))max

{
d(f(x), f(x′)),

1

2

[
d(f(x), g(x)) + d(f(x′), g(x′))

]
,

1

2

[
d(f(x), g(x′)) + d(f(x′), g(x))

]}))
≤ α(f(x), f(x′))max

{
d(f(x), f(x′)),

1

2

[
d(f(x), g(x)) + d(f(x′), g(x′))

]
,

1

2

[
d(f(x), g(x′)) + d(f(x′), g(x))

]}
≤ α(f(x), f(x′)) max

{
d(x, x′),

1

2

[
d(x, x′) + d(x′, x)

]}
≤ d(x, x′).

Therefore, F (d(x, x′), ψ(d(x, x′)) = d(x, x′), which implies d(x, x′) = 0. So x is the unique

common fixed point of f and g on X. �

Definition 2.3. Let (X, d) be a metric space. Consider two self-mappings f and g on X and

let α : X × X → [0, 1] be a function. Then g is said to satisfy condition (A) on f if, for all

F ∈ C, ψ ∈ Ψ, k ∈ [0, 1) and for all x, y ∈ X,

d(g(x), g(y)) ≤ k α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
.

Corollary 2.4. Let (X, d) be a complete metric space and f, g : X → X mappings such that g

satisfies the condition (A) on f . Then f and g have a unique common fixed point on X if the

following conditions are satisfied:

(1) g(X) ⊂ f(X);

(2) f(X) is complete;

(3) f, g are weakly compatible.

Proof. Choose x0 ∈ Y arbitrarily. Let xn ∈ X be the element such that f(xn) = g(xn−1) and

define a function F1 : [0,∞)2 → R as F1(s, t) = ks for all k ∈ [0, 1) which is a C-class function.

Since f and g satisfy the condition (A),

d(g(x), g(y)) ≤ k α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
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= F1

(
α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
ψ
(
α
(
f(x), f(y)

)
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}))
.

Hence by Theorem 2.2, f and g have a unique common fixed point in X. �

Definition 2.5. Let (X, d) be a metric space. Let f and g be two self-mappings on X. Then

g is said to satisfy condition (B) on f if, for all F ∈ C, ψ ∈ Ψ and for all x, y ∈ X,

d(g(x), g(y))

≤ F
(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,
1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
,

ψ
(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,
1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}))
.

Corollary 2.6. Let (X, d) be a complete metric space and f, g : X → X mappings such that g

satisfies the condition (B) on f . Then f and g have a unique common fixed point on X if the

following conditions are satisfied:

(1) g(X) ⊂ f(X);

(2) f(X) is complete;

(3) f, g are weakly compatible.

Proof. By Theorem 2.2, if α(x, y) = 1 for all x, y ∈ X, then the mappings f and g have a

unique common fixed point on X . �

Definition 2.7. Let (X, d) be a metric space and f, g be two self-mappings on X. Then g is

said to satisfy condition (C) on f if, for all x, y ∈ X and a, b, c ∈ [0, 1),

d(g(x), g(y)) ≤max
{
a(d(f(x), f(y)),

b

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

c

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
.

Remark 2.8. If we choose f = IX (IX is the identity mapping in the condition (C), then we

obtain the definition of Zamfierscu mapping [7].

Corollary 2.9. Let (X, d) be a complete metric space and f, g : X → X mappings such that g

satisfies the condition (C) on f . Then f and g have a unique common fixed point on X if the

following conditions are satisfied:

(1) g(X) ⊂ f(X);

(2) f(X) is complete;

(3) f, g are weakly compatible.
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Proof. Choose x0 ∈ Y arbitrarily. Let xn ∈ X be elements such that f(xn) = g(xn−1) and

define a function F1 : [0,∞)2 → R as F1(s, t) = ks for all k ∈ [0, 1) which is a C-class function.

Since f and g satisfy the condition (C),

d(g(x), g(y)) ≤ max
{
a(d(f(x), f(y)),

b

2
d(f(x), g(x)) + d(f(y), g(y))

]
,

c

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
≤ k max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
= F1

(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
,

ψ
(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}))
.

Hence by Corollary 2.6, f and g have a unique common fixed point in X. �

Definition 2.10. Let (X, d) be a metric space and f and g two self-mappings on X. Then g

is said to satisfy condition (D) on f if, for all x, y ∈ X,

d(g(x), g(y)) ≤ max
{

(d(f(x), f(y)),
1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
−Ψ

(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]})
Corollary 2.11. Let (X, d) be a complete metric space and f, g : X → X mappings such that

g satisfies the condition (D) on f . Then f and g have a unique common fixed point on X if

the following conditions are satisfied:

(1) g(X) ⊂ f(X);

(2) f(X) is complete;

(3) f, g are weakly compatible.

Proof. Choose x0 ∈ Y arbitrarily. Let xn ∈ X be elements such that f(xn) = g(xn−1) and

define a function F2 : [0,∞)2 → R as F2(s, t) = s− t which is a C-class function. Since f and

g satisfies the condition (D),

d(g(x), g(y)) ≤ max
{

(d(f(x), f(y)),
1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.1, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

191 KADWIN JACOB et al 184-194



COMMON FIXED POINT RESULTS FOR WEAKLY COMPATIBLE MAPPINGS

−Ψ
(

max
{

(d(f(x), f(y)),
1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]})
= F2

(
max

{
(d(f(x), f(y)),

1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}
,

ψ
(

max
{

(d(f(x), f(y)),
1

2

[
d(f(x), g(x)) + d(f(y), g(y))

]
,

1

2

[
d(f(x), g(y)) + d(f(y), g(x))

]}))
.

Hence by Corollary 2.6, f and g have a unique common fixed point in X. �

Definition 2.12. [1] Let X be a normed linear space. Then a set Y ∈ X is called q-starshaped

with q ∈ Y if the segment [q, x] = {(1− k)q+ kx : 0 ≤ k ≤ 1} joining q to x is contained in Y

for all x ∈ Y .

Definition 2.13. Let (X, d) be a metric space, f, T two self-mappings on X and let α :

X ×X → [0, 1] be a function. Then T is said to be a f -weakly generalized almost Zamfirescu

mapping if, for all x, y ∈ X and a, b, c ∈ (0, 1),

‖T (x)− T (y)‖

≤F
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

Ψ
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}))
.

Theorem 2.14. Let f and T be self-mappings on a nonempty q-starshaped subset Y of a

Banach space X, where T is a f -weakly generalized almost Zamfirescu mapping and satisfies

the following conditions:

(1) f is linear and q = f(q);

(2) T (X) ⊂ f(X);

(3) f(X) is complete;

(4) f, T are weakly compatible.

Define a mapping Tn on Y by

Tn(x) = (1− βn)q + βnT (x),

where {βn} is a sequence of numbers in (0, 1). Then for each n, Tn and f have exactly one

common fixed point xn in Y such that f(xn) = xn = (1− βn)q + βnT (xn). Also T and f have

a common fixed point x ∈ Y . Moreover, if {xn} is Cauchy and lim
n→∞

βn = 1, then xn → x.

Proof. By definition,

‖T (x)− T (y)‖

≤F
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,
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c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

Ψ
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}))
≤α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

≤max
{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

≤max
{
a‖f(x)− f(y)‖, b

2

[
‖f(x)− T (x)‖+ ‖f(y)− T (y)‖

]
,

c

2

[
‖f(x)− T (y)‖+ ‖f(y)− T (x)‖

]}
.

Therefore, by Corollary 2.9, T and f have a common fixed point x ∈ Y .

By definition,

‖Tn(x)− Tn(y)‖ = βn‖T (x)− T (y)‖

≤βnF
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

Ψ
(
α
(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}))
≤βnα

(
f(x)− f(y)

)
max

{
a‖f(x)− f(y)‖, b

2

[
dist(f(x), [q, T (x)]) + dist(f(y), [q, T (y)])

]
,

c

2

[
dist(f(x), [q, T (y)]) + dist(f(y), [q, T (x)])

]}
,

≤βnα
(
f(x)− f(y)

)
max

{
‖f(x)− f(y)‖, 1

2

[
‖f(x)− T (x)‖+ ‖f(y)− T (y)‖

]
,

1

2

[
‖f(x)− T (y)‖+ ‖f(y)− T (x)‖

]}
.

Therefore, by Corollary 2.4, Tn and f have a common fixed point x ∈ Y .

By the assumption that {xn} is Cauchy, let us consider {xn} → y. If lim
n→∞

βn = 1, then

‖xn − x‖ = ‖Tn(xn)− T (x)‖
= ‖(1− βn)p+ βnT (xn)− T (x)‖
≤ ‖(1− βn)p‖+ βn‖T (xn)− T (x)‖
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≤ ‖(1− βn)p‖+ βnF
(
α
(
f(x)− f(y)

)
max

{
a‖f(xn)− f(x)‖,

b

2

[
dist(f(xn), [q, T (xn)]) + dist(f(x), [q, T (x)])

]
,

c

2

[
dist(f(xn), [q, T (x)]) + dist(f(x), [q, T (xn)])

]}
,

Ψ
(
α
(
f(x)− f(y)

)
max

{
a‖f(xn)− f(x)‖,

b

2

[
dist(f(xn), [q, T (xn)]) + dist(f(x), [q, T (x)])

]
,

c

2

[
dist(f(xn), [q, T (x)]) + dist(f(x), [q, T (xn)])

]}))
≤ ‖(1− βn)p‖+ βn max

{
a‖f(xn)− f(x)‖,

b

2

[
‖f(xn)− T (xn)‖+ ‖f(x)− T (x)‖

]
,

c

2

[
‖f(xn)− T (x)‖+ ‖f(x)− T (xn)‖

]}
≤ ‖(1− βn)p‖+ βn max

{
a‖xn − x‖,

b

2

(1− βn
βn

)∥∥xn − p‖,
c

2

[
‖xn − x‖+ ‖x− 1

βn
xn +

(1− βn
βn

)
p‖
]}
.

Letting n→∞, we obtain

‖y − x‖ ≤ max
{
a‖y − x‖, 0, c

2

[
‖y − x‖+ ‖x− y‖

]}
≤ k‖y − x‖,

where k = max{a, c}. Therefore, x = y and so xn → x. �
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