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Shift and invert weighted Golub-Kahan-Lanczos
bidiagonalization algorithm for linear response eigenproblem

Hong-xiu Zhong1, Guo-liang Chen2, Wan-qiang Shen3.

Abstract: Weighted Golub-Kahan-Lanczos bidiagonalization algorithm(wGKLu) is used
to solving the linear response eigenproblem. In this paper, we present an improvement to wGKLu

based on the shift-and-invert strategy. Due to the interior eigenproblem being transformed to the
exterior eigenproblem, our new algorithm saves lots of calculus. Numerical examples illustrates
the behaviors.

Keywords: Linear response eigenproblem, Golub-Kahan-Lanczos, Shift and invert.
AMS classifications: 65F15, 15A18, 81Q15.

1 Introduction

In this paper, we consider the eigenvalue problem of the form

Hz =

[
0 K
M 0

] [
u
v

]
= λ

[
u
v

]
= λz, (1.1)

where K,M ∈ Cn×n, are hermitian positive definite.
Such a problem is referred as the linear response eigenvalue problem(LREP)[1, 14, 20]. It

arises from linear response problem that computes excitation states (energies) of physical systems
in the study of collective motion of many particle systems [3, 9, 11, 14, 8]. In the linear response
problem, although there are cases that one of K and M may be indefinite [12], however, usually
both of them are positive definite [14]. So in this paper, we consider the case that both of K
and M are positive definite. There are a great deal of excellent work in developing efficient
numerical algorithms for linear response problem [1, 2, 10, 15, 16, 18, 20].

As we all known, the classical Lanczos method is efficient and easy to execute for symmetric
eigenvalue problem [13]. In order to take advantage of the classical Lanczos method, in [20],
Tsiper proposed a Lanczos-type method for the linear response problem, and based on reducing
both K and M to tridiagonal matrices. While in [18], Teng and Li presented another Lanczos-
type method which can be viewed as a natural and elegant extension of the classical Lanczos
method. It is based on reducing one of K and M to a tridiagonal matrix and the other to a
diagonal matrix. We can see, both the above two methods reduce the original H to a unsymmet-
ric matrix. Thus the calculation of its eigenpairs can not use any advantages from symmetric
matrix eigenvalue calculation, consequently, it may generate extra computation and storage.

Recently, to avoid this problem, the weighted Golub-Kahan-Lanczos(wGKL) [21] was pro-
posed for solving LREP, denoted by wGKL-LREP. It aims to generate a projection matrix

Bk =

[
0 Bk

BT
k 0

]
of H at kth iteration, where Bk is an upper or lower bidiagonal matrix. Due

1Corresponding author. School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China. E-mail:
zhonghongxiu@126.com.

2Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai,
200241, P.R. China. E-mail: glchen@math.ecnu.edu.cn.

3School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China. E-mail: wq shen@163.com.

1
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to the symmetry of Bk, the eigenpairs of H can be constructed just from Bk, not the whole Bk.
In the following discussion, we focus on Bk is an upper bidiagonal matrix, the corresponding
algorithm of which is wGKLu-LREP, the lower case can be similarly discussed.

Since often in linear response eigenvalue problem, the first l smallest positive eigenvalues λi
for i = 1, 2, · · · , l are of interest. They lie in the middle of the spectrum of H, and often crowd
together, thus it is not easy to get them with the above algorithms. Fortunately, we can apply
the preconditioning technique, the notion of which is better known for linear systems than for
eigenvalue problems. A typical preconditioned iterative method for linear systems amounts to
replacing the original linear system Ax = b by the equivalent system P−1Ax = P−1b, where P
is a matrix close to A in some sense. For eigenvalue problems, the best known preconditioning is
the so-called shift-and-invert technique. If the shift σ is suitably chosen, the shifted and inverted
matrix P = (A− σI)−1 will have a spectrum with much better separation properties than that
of the original matrix A, and this will result in faster convergence. In this paper, we consider
the shift-and-invert technique of weighted Golub-Kahan-Lanczos bidiagonalization algorithms.
Since we are particularly interested in the smallest eigenvalues with the positive sign of H, thus
σ = 0 is often an obvious choice.

The paper is organized as follows. In section 2, we will give an outline of wGKLu-LREP.
The shift-and-invert version of wGKLu-LREP will be described in section 3. In section 4, some
numerical examples are illustrated the numerical behavior of our new algorithm. In the end, the
conclusion will be given in section 5.

2 Preliminary

In this section, we will give some preliminary of the weighted Golub-Kahan-Lanczos upper
bidiagonalization algorithm (wGKLu) and its application algorithm (wGKLu-LREP) for Linear
response eigenvalue problem. Lemma 2.1 [21] is the basic theory of the above algorithms.

Lemma 2.1. Suppose 0 < K,M ∈ Cn×n. Then there exist an M -orthogonal matrix X ∈ Cn×n

and a K-orthogonal matrix Y ∈ Cn×n such that

MX = Y B, KY = XBT , (2.1)

where B is upper bidiagonal.

Let X = [x1, · · · , xn], Y = [y1, · · · , yn], and

B =


α1 β1

α2
. . .
. . . βn−1

αn

 ,
then from Lemma 2.1, wGKLu can be described as follows.

Algorithm 1 (wGKLu).
Choose x1 satisfying ∥x1∥M = 1, and set β0 = 1, y0 = 0. Compute g1 =Mx1.
For j = 1, 2, · · ·

sj = gj/βj−1 − βj−1yj−1

2
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fj = Ksj

αj = (sTj fj)
1
2

yj = sj/αj

tj+1 = fj/αj − αjxj
gj+1 =Mtj+1

βj = (tTj+1gj+1)
1
2

xj+1 = tj+1/βj
End

Suppose Algorithm 1 runs k iterations, we have the following relation

MXk = YkBk, KYk = XkB
T
k + βkxk+1e

T
k = Xk+1

[
Bk βkek

]T
, (2.2)

and
XH

k MXk = Ik = Y H
k KYk. (2.3)

Define

Xj =

[
Xj 0
0 Yj

]
Bj =

[
0 BT

j

Bj 0

]
.

Then from (2.2) and (2.3), we obtain

HXk = XkBk + βk

[
xk+1

0

]
eT2k (2.4)

with XH
k MXk = Ik, here M =

[
M 0
0 K

]
.

Consequently, the first l smallest positive eigenvalues of H together with their corresponding
eigenvectors can be approximately constructed from Bk, which is obviously symmetric.

Since K and M are hermitian positive definite, all eigenvalues of KM (and MK) are real
and positive. Denote these eigenvalues by λ2i (1 ≤ i ≤ n) in descending order, i.e.,

λ21 ≥ λ22 ≥ · · · ≥ λ2n ≥ 0,

where all λi ≥ 0 and thus λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. From Theorem 2.1 [1], we know the
eigenvalues of H are ±λi, 1 ≤ i ≤ n.

Suppose Bk has an SVD
Bk = ΦkΣkΨ

T
k , (2.5)

where Φk = [ϕ1, · · · , ϕk] ∈ Rk×k, Ψk = [ψ1, · · · , ψk] ∈ Rk×k, Σk = diag(σ1, · · · , σk), with
σ1 ≥ · · · ≥ σk > 0, ΦT

kΦk = Ik and ΨT
kΨk = Ik, then from (2.4), by using an orthogonal matrix

J = 1√
2

[
Ik Ik
Ik −Ik

]
, the following equation is hold

H
1√
2

[
XkΨk XkΨk

YkΦk −YkΦk

]
=

1√
2

[
XkΨk XkΨk

YkΦk −YkΦk

] [
Σk 0
0 −Σk

]
+
βk√
2

[
xk+1

0

]
eT2k

[
Ψk Ψk

Φk −Φk

]
.

3
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Thus we may take ±σ1, · · · ,±σk as Ritz values of H and

ẑ±j =
1√
2

[
Xkψj

±Ykϕj

]
, j = 1, . . . , k

as corresponding M-orthonormal right Ritz vectors. Meanwhile, using the residual norm

∥Hẑ±j ± σj ẑ
±
j ∥M =

βk|ϕjk|√
2

as the stopping criterion, here ϕjk is the kth component of ϕj .

Algorithm 2 (wGKLu-LREP).
1. Run k steps of Algorithm 1 with an initial x1 satisfying ∥x1∥M = 1 and an appropriate

integer k to generate Bk, Xk, and Yk;
2. Compute an SVD of Bk as in (2.5), select l(≤ k) smallest singular value σj, and the

associated left and right singular vector ϕj and ψj, j = 1, · · · , l;

3. Form σj, ẑj =
1√
2

[
Xkψj

Ykϕj

]
, j = 1, · · · , l;

4. If βk = 0, break.

3 Shift and invert weighted Golub-Kahan-Lanczos bidiagonal-
ization algorithm

Usually, the first l smallest positive eigenvalues λi of H for i = 1, 2, · · · , l are of interest. They
lie in the middle of the spectrum of H, and often crowd together. Thus it is necessary to present
an accelerating strategy for wGKLu when applying it for linear response eigenvalue problem. In
this section, we will propose a shift-and-invert version of wGKLu for solving the eigenproblems
of H.

Choosing a shift σ, the shift-and-invert strategy is simply transformed the original problem
Ax = λx into (A−σI)−1x = αx. The simplest possible scheme is to run Arnoldi’s method on the
matrix (A− σI)−1. Thus, the eigenvalue of the original problem is λ = 1

α + σ, the eigenvectors
of A and (A− σI)−1 are identical.

For linear response eigenvalue problem Hz = λz, where H is from (1.1). As the above
discussion, using the shift-and-invert strategy, is running the weighted Golub-Kahan-Lanczos
upper bidiagonalization algorithm(wGKLu) on matrix (H − σI)−1. Since we are interested in
the smallest eigenvalues with the positive sign of H, thus σ = 0 is often an obvious choice. It

is clear that the inverse matrix of H is H−1 =

[
0 M−1

K−1 0

]
. Because K−1 and M−1 are

also both hermitian definite, thus we can directly apply wGKLu to H−1. Theorem 3.1 gives
the theoretical relations of our new algorithm. Here, we still use the same denotation without
misunderstanding.

Theorem 3.1. Suppose 0 < K, M ∈ Cn×n. Then there exist an M−1-orthogonal matrix
X ∈ Cn×n and a K−1-orthogonal matrix Y ∈ Cn×n such that

M−1X = Y B, K−1Y = XBT , (3.1)

where B is upper bidiagonal.

4
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Proof. Since K, M > 0, then K−1, M−1 > 0. Suppose K−1 = LLH , M−1 = RRH are the
Cholesky decomposition of K−1 and M−1. From [7], we can assume

LHR = UBV H , (3.2)

where U, V ∈ Cn×n are unitary matrices, B is upper bidiagonal. Thus let X = R−HV , Y =
L−HU , from (3.2), we have

LHRRHX = LHY B, RHLLHY = RHXBT .

By multiplying L−H and R−H , respectively, and (3.1) holds obviously. Clearly, XHM−1X = I,
Y HK−1Y = I.

From Theorem 3.1, we can get the following algorithm.

Algorithm 3 (wGKLu on H−1).
Choose x1 satisfying ∥x1∥M−1 = 1, and set β0 = 1, y0 = 0. Compute g1 =M−1x1.
For j = 1, 2, · · ·

sj = gj/βj−1 − βj−1yj−1

fj = K−1sj

αj = (sTj fj)
1
2

yj = sj/αj

tj+1 = fj/αj − αjxj
gj+1 =M−1tj+1

βj = (tTj+1gj+1)
1
2

xj+1 = tj+1/βj
End

Remark 1. In Algorithm 3, we need to solve linear system Kf = s and Mg = t. Here we
use LU decomposition to solve it. After lots of experiments, we found it is not suitable to
use iterative methods to solve these linear system, because iterative methods are not the exact
methods generally. Even LU decomposition is an accurate method for linear system problems,
but it will encounter some problems, such as more time and more memory, especially for large
scale problems. Fortunately, because we transform the interior eigenproblem to the exterior
eigenproblem, thus compared to the methods in the numerical examples, our algorithm still shows
its superiority.

Let Xk, Yk, Bk be generated by Algorithm 3 after k iterations, we have

M−1Xk = YkBk, K−1Yk = XkB
T
k + βkxk+1e

T
k = Xk+1

[
Bk βkek

]T
, (3.3)

and
XH

k M
−1Xk = Ik = Y H

k K−1Yk. (3.4)

Define

Yj =

[
Yj 0
0 Xj

]
Bj =

[
0 Bj

BT
j 0

]
.

Then from (3.3) and (3.4), one has

H−1Yk = YkBk + βk

[
0

xk+1

]
eTk , (3.5)

5
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with YH
k KYk = I2k, where ek = I2k(:, k), K =

[
K−1 0
0 M−1

]
.

Similar as the discussion in section 2, suppose Bk has an SVD

Bk = ΦkΣkΨ
T
k , (3.6)

where Φk = [ϕ1, · · · , ϕk], Ψk = [ψ1, · · · , ψk], Σk = diag{σ1, · · · , σk}, with σ1 ≥ · · · ≥ σk > 0,
ΦT
kΦk = Ik, Ψ

T
kΨk = Ik. From (3.5), we may take ±σ1, . . . ,±σk as Ritz values of H−1, i.e.,

approximate eigenvalues of H−1,

ẑ±j =
1√
2

[
Ykϕj

±Xkψj

]
j = 1, . . . , k,

as corresponding K-orthonormal Ritz vectors. Meanwhile, using the residual norm

∥H−1ẑ±j ± σj ẑ
±
j ∥K =

βk|ψjk|√
2

(3.7)

as the stopping criterion, here ψjk is the kth component of ψj . Consequently, ± 1
σ1
, . . . ,± 1

σk
are

approximate eigenvalues of H, ẑ±j , j = 1, . . . , k, are the corresponding approximate eigenvectors.
The following is the shift-and-invert version of wGKLu for solving LREP of H.

Algorithm 4 (Shift-and-invert-wGKLu-LREP).
1. Run k steps of Algorithm 3 with an initial x1 satisfying ∥x1∥M−1 = 1 and an appropriate

integer k to generate Bk, Xk, and Yk;
2. Compute an SVD of Bk as in (3.6), select l(≤ k) largest singular value σj, and the

associated left and right singular vector ϕj and ψj, j = 1, · · · , l;

3. Form 1
σj
, ẑj =

1√
2

[
Ykϕj
Xkψj

]
, j = 1, · · · , l;

4. If βk = 0, break.

Remark 2. Generally, (3.7) is hold for the approximate eigenpairs (σj , ẑj) of H
−1, but not H.

While, we need to solve the approximate eigenpairs of H. Thus for fairness and accuracy, we
don’t use (3.7) as the stopping criterion in actual algorithm, instead, we take normalized 1-norm
of the residual. It will be elaborated in numerical examples.

4 Convergence analysis

5 Numerical examples and results

In this section, we test Algorithm 2 (wGKLu-LREP) and Algorithm 4 (Shift-and-invert-wGKLu-
LREP) with several numerical examples for solving the eigenvalue problem of H, where the
initial vector are x1/∥x1∥M and x1/∥x1∥M−1 , respectively, here, x1 is randomly selected. The
numerical results are labeled with Alg-3 and Alg-4 respectively. In fact, Alg-4 is Alg-3 added
with the precondition strategy, it’s the accelerated version of Alg-3. For comparison we tested
the first algorithm presented in [18] with the initial vector x1/∥x1∥2. The numerical results are
labeled with Alg-TL. We also tested the block Chebyshev-Davidson method (BChevbyDLR)
presented in [19], and the locally optimal block preconditioned 4-D CG method (LOBP4DCG)

6
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in [2]. The experiments have been carried out in double precision (Digits=64) floating point
arithmetic in Matlab R2014a with a PC-Intel(R)Core(TM)i5-6200U CPU 2.4GHz, 8GB RAM.

The same as in [19], for the LOBP4DCG method, we use the generic preconditioner

Φ = H−1 =

(
0 K−1

M−1 0

)
.

The preconditioned search vectors qi and pi in [2] are computed by using the linear CG method
[5] with maximal 5 iterations. The initial block size in BChevbyDLR and LOBP4DCG are
chosen to be l, the methods are denoted by BChevbyDLR(l), and LOBP4DCG(l), respectively.

We only compute the approximate eigenvalues with positive sign. For illustrating the quality
of computed approximations, we report the normalized residual 1-norms for the jth approximate
eigenpair (σj , ẑ

+
j ):

r(σj) :=
∥Hẑ+j − σj ẑ

+
j ∥1

(∥H∥1 + σj)∥ẑ+j ∥1
,

if r(σj) ≤ tol = 10−8, the eigenpair (σj , ẑ
+
j ) is considered as converged. The “exact” eigenvalues

λj are computed with MATLAB code eig.
In this example, we tested the above algorithms with five problems. Table 1 lists the com-

posed 5 problems. The matrices K and M of Test 1 come from the linear response analysis for
Na2, which is generated by the turboTDDFT code in QUANTUM ESPRESSO-an electronic
structure calculation code that implements density functional theory (DFT) using plane-waves
as the basis set and pseudopotentials [6, 18]. The matrices K and M of the other test, are ex-
tracted from the University of Florida sparse matrix collection [4]. All K and M are symmetric
positive definite.

We compute the first 10 smallest approximate eigenvalues with positive sign. For block size l
of BChebyDLR(l), we choose l as 5 and 10. For LOBP4DCG, we set 10 as the initial block size.
The two algorithms are both applied with a deflation procedure. We report the total number
of matrix-vetor products (denoted by “MV”), iteration number (denoted by “iter”), and CPU
time in seconds. And we count the K−1y or M−1x in Alg.4 as one matrix-vector products. The
numerical results are listed in Table 1 and 2. “–” denotes the algorithm didn’t converged in
1000 iterations.

From Table 2, we can see, since Alg-3 and Alg-TL didn’t use any acceleration strategy, thus
they can’t converge within 1000 iterations. Alg-4 converged faster than the other algorithms,
because of the least number of matrix-vector products, and this phenomenon also happens in
some other tests not reported here, where the matricesK andM have a relatively large condition
number. However, we also observe that for some other problems not reported here, where most
of the K and M are both well-conditioned, even though Alg-4 used the least number of matrix-
vector products, much lower than BChebyDLR and LOBP4DCG, it still converged slower than
BChebyDLR and LOBP4DCG.

There are three main reasons for this phenomenon. The first is that BChebyDLR and
LOBP4DCG are both block type methods, while Alg-4 is not. Usually block type methods with
relatively small block sizes are more competitive than non-block versions, especially when the
desired eigenvalues have clusters or even multiples. The second reason is that we use Cholesky
decomposition of K and M to solve K−1y and M−1x, while K and M are very sparse, their
Cholesky factor may be a full lower triangular matrix, which will cost much time to solve.
Thus in Alg-4, the CPU time used for one matrix-vector products must be more than the time

7
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used in BChebyDLR and LOBP4DCG. Consequently, it is necessary to consider a inverse free
precondition strategy to accelerate Alg-3. The third reason is that BChebyDLR method refined
the basis matrices at every step, which can make eigenvectors converge in fewer iterations [13, 17],
since the refined basis matrices contains the information of the wanted eigenvectors. While in
Alg-4, we don’t use any refined restart. Above all, Further reseach is required to make Alg-4
more effective.

Table 1 Test problems

Problem Test 1 Test 2 Test 3 Test 4 Test 5

n 1862 8032 9801 23052 73752
K Na2 bcsstk38 fv2 bcsstk36 oilpan
M Na2 msc23052 fv3 bcsstk36 oilpan

Table 2

Alg-4 BChebyshev(5) BChebyshev(10) LOBP4DCG(10) Alg-3 Alg-TL

MV 240 4680 6760 4592 – –
Test 1 iter 19 18 13 47 – –

CPU 0.905 3.3906 2.3696 8.7745 – –
MV 42 – – 6824 – –

Test 2 iter 10 – – 40 – –
CPU 0.6080 – – 3.5316 – –
MV 42 10920 24440 5114 – –

Test 3 iter 10 42 41 50 – –
CPU 0.5531 1.5495 2.8754 2.2148 – –
MV 214 – – – – –

Test 4 iter 18 – – – – –
CPU 14.3342 – – – – –
MV 42 – – – – –

Test 5 iter 10 – – – – –
CPU 45.4148 – – – – –

Example 2: The number of matrix-vector products (MV), number of iterations (iter), and CPU time in
seconds for computing 10 smallest positive eigenpairs. For BChebyDLR(l) the filter degree used is 25,
and the block size is l = 5, 10. For LOBP4DCG(l) the initial block size l = 10. Here “–” stands for the
algorithm does not converge within 1000 iterations.

6 Conclusion

We propose a shift-and-invert weighted Golub-Kahan-Lanczos bidiagonal algorithm for solving
the linear response eigenproblem(LREP). This algorithm can effectively calculate the smallest
positive eigenvalues and associated eigenvectors of LREP. Numerical examples show that our
new algorithm can appears faster than Alg.TL, BChebyDLR and LOBP4DCG, especially for
the case of K and M have a relatively large condition number.
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ABSTRACT

This paper is mindful with the solution of the nonlinear di¤erence equation

xn+1 =
xn¡1xn¡6

xn¡4(§1 § xn¡1xn¡6)
, n = 0, 1, ...,

where the initial conditions x¡6, x¡5, x¡4, x¡3, x¡2, x¡1, x0 are arbitrary non zero real numbers and we
study the behaviors of the solutions. Also, we gained the equilibrium points of the previous equations.

Keywords: stability, periodicity, solution of di¤erence equation.

Mathematics Subject Classi…cation: 39A10.

——————————————————————

1. INTRODUCTION

In this paper we deal with the behavior of the solution of the following di¤erence equations

xn+1 =
xn¡1xn¡6

xn¡4(§1 § xn¡1xn¡6)
, n = 0, 1, ..., (1.1)

where the initial conditions x¡6, x¡5, x¡4, x¡3, x¡2, x¡1, x0 are arbitrary non zero real numbers.

Here, we display some basic de…nitions and some theorems which will be bene…cial in our research.

Let I be some interval of real numbers and let f : Ik+1 ! I, be a continuously di¤erentiable function. Then
for every set of initial conditions x¡k, x¡k+1, ..., x0 2 I, the di¤erence equation

xn+1 = f(xn, xn¡1, ..., xn¡k), n = 0, 1, ..., (1.2)

has a unique solution fxng1
n=¡k [39].

De…nition 1.1. (Equilibrium Point)

A point x 2 I is called an equilibrium point of Eq.(1.2) if

x = f(x, x, ..., x).

That is, xn = x for n ¸ 0, is a solution of Eq.(1.2), or equivalently, x is a …xed point of f.

De…nition 1.2. (Stability)

(i) The equilibrium point x of Eq.(1.2) is locally stable if for every ε> 0, there exists δ > 0 such that for all
x¡k, x¡k+1, ..., x¡1, x0 2 I with
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jx¡k ¡ xj + jx¡k+1 ¡ xj + ... + jx0 ¡ xj < δ,

we have
jxn ¡ xj < ε for all n ¸ ¡k.

(ii) The equilibrium point x of Eq.(1.2) is locally asymptotically stable if x is locally stable solution of Eq.(1.2)
and there exists γ> 0, such that for all x¡k, x¡k+1, ..., x¡1, x0 2 I with

jx¡k ¡ xj + jx¡k+1 ¡ xj + ... + jx0 ¡ xj < γ,

we have
lim

n!1 xn = x.

(iii) The equilibrium point x of Eq.(1.2) is global attractor if for all x¡k, x¡k+1, ..., x¡1, x0 2 I, we have

lim
n!1 xn = x.

(iv) The equilibrium point x of Eq.(1.2) is globally asymptotically stable if x is locally stable, and x is also a
global attractor of Eq.(1.2).

(v) The equilibrium point x of Eq.(1.2) is unstable if x is not locally stable.

The linearized equation of Eq.(1.2) about the equilibrium x is the linear di¤erence equation

yn+1 =
kX

i=0

∂f(x, x, ..., x)

∂xn¡i
yn¡i.

Theorem A [38]: Assume that p, q 2 R and k 2 f0, 1, 2, ...g. Then

jpj + jqj < 1,

is a su¢cient condition for the asymptotic stability of the di¤erence equation

xn+1 + pxn + qxn¡k = 0, n = 0, 1, ... .

Remark: Theorem A can be easily extended to a general linear equations of the form

xn+k + p1xn+k¡1 + ... + pkxn = 0, n = 0, 1, ..., (1.3)

where p1, p2, ..., pk 2 R and k 2 f1, 2, ...g. Then Eq.(1.3) is asymptotically stable provided that

kX
i=1

jpij < 1.

De…nition 1.3. (Periodicity)

A sequence fxng1
n=¡k is said to be periodic with period p if xn+p = xn for all n ¸ ¡k.

In recent years, the study of di¤erence equations has acquired a new signi…cance, due in large part to their
use in the formulation and analysis of discrete-time systems and the study of deterministic chaos.

However, there have not been any e¤ective general methods to deal with the global behavior of rational
di¤erence equations of order greater than one so far. From the known work, one can see that it is so complicated
to understand thoroughly the global behaviors of solutions of rational di¤erence equations although they have
simple forms (or expressions). One can refer to [1], [5–14] for examples to illustrate this. Therefore, the study of
rational di¤erence equations of order greater than one is worth further consideration. The behavior of solutions
di¤erential equations has been studied by many researchers for example:
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El-Metwally and Elsayed [9] has obtained the solutions of the di¤erence equation

xn+1 =
xnxn¡3

xn¡2(§1 § xnxn¡3)
.

Elsayed [13] studied the behavior of the solutions of the di¤erence equation

xn+1 =
xn¡7

§1 § αxn¡1xn¡3xn¡5xn¡7
.

Cinar [2]-[3] has got the solutions of the following di¤erence equation

xn+1 =
xn¡1

§1 + axnxn¡1
.

In [4], Cinar and Yalcinkaya studied the behavior of the following di¤erence equation

xn+1 =
xn¡3

1 + xn¡1
.

Elabbasy et al. [6] investigated the global stability, boundedness, periodicity character and gave the solution of
some special cases of the di¤erence equation

xn+1 =
αxn¡k

β+ γ
Qk

i=0 xn¡i

.

In [29] Erdogan and Uslu investigated the global behavior of the following recursive sequence

xn+1 =
1 ¡ xn

A +
kP

i=1
xn¡i

.

Karatas et al. [35] gave that the solution of the di¤erence equation

xn+1 =
xn¡5

1 + xn¡2xn¡5
.

See also [15]-[37]. Other related results on rational di¤erence equations can be found in refs. [40]–[51].

2. ON THE EQUATION XN+1 = XN¡1XN¡6/(XN¡4(1 + XN¡1XN¡6))
In this section we realize a form of the solutions of the equation

xn+1 =
xn¡1xn¡6

xn¡4(1 + xn¡1xn¡6)
, n = 0, 1, ..., (2.1)

where the initial values are arbitrary positive real numbers.

Theorem 2.1. Let fxng1
n=¡6 be a solution of Eq.(2.1). Then for n = 0, 1, 2, ...

x10n¡6 =

anfn(
nQ

i=1

[(5i)bg + 1])

bngn¡1(
nQ

i=1
[(5i ¡ 3)af + 1])

, x10n¡5 =

bngn(
n¡1Q
i=0

[(5i)af + 1])

anfn¡1(
n¡1Q
i=0

[(5i + 3)bg + 1])

,

x10n¡4 =

anfne(
n¡1Q
i=0

[(5i + 1)bg + 1])

bngn(
n¡1Q
i=0

[(5i + 3)af + 1])

, x10n¡3 =

bngnd(
n¡1Q
i=0

[(5i + 1)af + 1])

anfn(
n¡1Q
i=0

[(5i + 4)bg + 1])

,
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x10n¡2 =

anfnc

µ
nQ

i=1

[(5i ¡ 3)bg + 1]

¶

bngn

µ
n¡1Q
i=0

[(5i + 4)af + 1]

¶ , x10n¡1 =

gnbn+1

µ
nQ

i=1

[(5i ¡ 3)af + 1]

¶

anfn

µ
nQ

i=1
[(5i)bg + 1]

¶ ,

x10n =

an+1fn

µ
n¡1
¦

i=1
[(5i + 3)bg + 1]

¶

bngn

µ
n

¦
i=1

[(5i)af + 1]

¶ , x10n+1 =

bn+1gn+1

µ
n¡1
¦

i=0
[(5i + 3)af + 1]

¶

anfne

µ
n

¦
i=0

[(5i + 1)bg + 1]

¶ ,

x10n+2 =

an+1fn+1

µ
n¡1

¦
i=0

[(5i + 4)bg + 1]

¶

bngnd

µ
n
¦

i=0
[(5i + 1)af + 1]

¶ , x10n+3 =

bn+1gn+1

µ
n¡1

¦
i=0

[(5i + 4)af + 1]

¶

anfnc

µ
n
¦

i=0
[(5i + 2)bg + 1]

¶ ,

where x¡6 = g, x¡5 = f, x¡4 = e, x¡3 = d, x¡2 = c, x¡1 = b, x0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n ¡ 1. That is;

x10n¡16 =

an¡1fn¡1

µ
n¡2

¦
i=1

[(5i)bg + 1]

¶

bn¡1 gn¡2

µ
n¡1
¦

i=1
[(5i ¡ 3)af + 1]

¶ , x10n¡15 =

bn¡1gn¡1

µ
n¡2

¦
i=1

[(5i)af + 1]

¶

an¡1 fn¡2

µ
n¡2
¦

i=0
[(5i + 3)bg + 1]

¶ ,

x10n¡14 =

an¡1fn¡1 e

µ
n¡2

¦
i=0

[(5i + 1)bg + 1]

¶

bn¡1 fn¡1

µ
n¡2

¦
i=0

[(5i + 3)af + 1]

¶ , x10n¡13 =

bn¡1gn¡1 d

µ
n¡2

¦
i=0

[(5i + 1)af + 1]

¶

an¡1 fn¡1

µ
n¡2

¦
i=0

[(5i + 4)bg + 1]

¶ ,

x10n¡12 =

an¡1fn¡1 c

µ
n¡1

¦
i=1

[(5i ¡ 3)bg + 1]

¶

bn¡1 gn¡1

µ
n¡2
¦

i=0
[(5i + 4)af + 1]

¶ , x10n¡11 =

bngn¡1

µ
n¡1

¦
i=1

[(5i ¡ 3)af + 1]

¶

an¡1fn¡1

µ
n¡1
¦

i=1
[(5i)bg + 1]

¶ ,

x10n¡10 =

anfn¡1

µ
n¡2

¦
i=0

[(5i + 3)bg + 1]

¶

bn¡1gn¡1

µ
n¡1
¦

i=1
[(5i)af + 1]

¶ , x10n¡9 =

bngn

µ
n¡2

¦
i=0

[(5i + 3)af + 1]

¶

an¡1f n¡1e

µ
n¡1
¦

i=0
[(5i + 1)bg + 1]

¶ ,

x10n¡8 =

anfn

µ
n¡2

¦
i=0

[(5i + 4)bg + 1]

¶

bn¡1gn¡1d

µ
n¡1

¦
i=0

[(5i + 1)af + 1]

¶ , x10n¡7 =

bngn

µ
n¡2

¦
i=0

[(5i + 4)af + 1]

¶

an¡1fn¡1c

µ
n¡1

¦
i=0

[(5i + 2)bg + 1]

¶ .

Now, it follows from Eq.(2.1) that

x10n¡6 =
x10n¡8x10n¡13

x10n¡11(1 + x10n¡8x10n¡13)

=

0
@ anfn

(
n¡2

¦
i=0

[(5i+4)bg+1]

)
bn¡1 gn¡1d

(
n¡1

¦
i=0

[(5i+1)af+1]

)
1
A

0
@ bn¡1gn¡1 d

(
n¡2

¦
i=0

[(5i+1)af+1]

)
an¡1 fn¡1

(
n¡2

¦
i=0

[(5i+4)bg+1]

)
1
A

0
@ bngn¡1

(
n¡1

¦
i=1

[(5i¡3)af+1]

)
an¡1 fn¡1

(
n¡1
¦

i=1
[(5i)bg+1]

)
1
A

0
@1 +

anfn

(
n¡2

¦
i=0

[(5i+4)bg+1]

)
bn¡1 gn¡1d

(
n¡1
¦

i=0
[(5i+1)af+1]

) bn¡1gn¡1 d

(
n¡2

¦
i=0

[(5i+1)af+1]

)
an¡1 fn¡1

(
n¡2
¦

i=0
[(5i+4)bg+1]

)
1
A
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=

0
@af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1

¦
i=0

[(5i+1)af+1]

)
1
A µ

an¡1 fn¡1

µ
n¡1

¦
i=1

[(5i)bg + 1]

¶¶

µ
bngn¡1

µ
n¡1

¦
i=1

[(5i ¡ 3)af + 1]

¶¶0
@1 +

af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1

¦
i=0

[(5i+1)af+1]

)
1
A

=

0
@af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1

¦
i=0

[(5i+1)af+1]

)
1
A µ

an¡1 fn¡1

µ
n¡1
¦

i=1
[(5i)bg + 1]

¶¶

µ
bngn¡1

µ
n¡1
¦

i=1
[(5i ¡ 3)af + 1]

¶¶0
@

(
n¡1

¦
i=0

[(5i+1)af+1]

)
+af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1

¦
i=0

[(5i+1)af+1]

)
1
A

=

anfn

µ
n¡2
¦

i=0
[(5i + 1)af + 1]

¶µ
n¡1
¦

i=1
[(5i)bg + 1]

¶

bngn¡1

µ
n¡1

¦
i=1

[(5i ¡ 3)af + 1]

¶µ
n¡2

¦
i=0

[(5i + 1)af + 1]

¶
([5(n ¡ 1) + 1]af + 1 + af )

=

0
@af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1

¦
i=0

[(5i+1)af+1]

)
1
A µ

an¡1 fn¡1

µ
n¡1
¦

i=1
[(5i)bg + 1]

¶¶

µ
bngn¡1

µ
n¡1
¦

i=1
[(5i ¡ 3)af + 1]

¶¶ 0
@1 +

af

(
n¡2

¦
i=0

[(5i+1)af+1]

)
(

n¡1
¦

i=0
[(5i+1)af+1]

)
1
A

=

anfn

µ
n¡1

¦
i=1

[(5i)bg + 1]

¶

bngn¡1

µ
n¡1

¦
i=1

[(5i ¡ 3)af + 1]

¶
((5n ¡ 3)af + 1 )

=

anfn

µ
n¡1

¦
i=1

[(5i)bg + 1]

¶

bngn¡1

µ
n

¦
i=1

[(5i ¡ 3)af + 1]

¶ .

Similarly

x10n¡5 =
x10¡7x10n¡12

x10n¡10(1 + x10¡7x10n¡12)

=

0
@ bngn

(
n¡2
¦

i=0
[(5i+4)af+1]

)
an¡1 fn¡1c

(
n¡1
¦

i=0
[(5i+2)bg+1]

)
1
A

0
@ an¡1fn¡1 c

(
n¡1
¦

i=1
[(5i¡3)bg+1]

)
bn¡1 gn¡1

(
n¡2
¦

i=0
[(5i+4)af+1]

)
1
A

0
@ anfn¡1

(
n¡2
¦

i=0
[(5i+3)bg+1]

)
bn¡1 gn¡1

(
n¡1

¦
i=0

[(5i)af+1]

)
1
A (1 +

bg

(
n¡1
¦

i=1
[(5i¡3)bg+1]

)
(

n
¦

i=1
[(5i¡3)bg+1]

) )

=
bngn

(
n¡1
¦

i=0
[(5i)af+1]

)
anfn¡1

(
n¡2
¦

i=0
[(5i+3)bg+1]

)
((5n¡2)bg+1)

=

bngn

µ
n¡1

¦
i=0

[(5i)af + 1]

¶

anfn¡1

µ
n¡1
¦

i=1
[(5i ¡ 2)bg + 1]

¶
((5n ¡ 2)bg + 1)

=

bngn

µ
n¡1

¦
i=0

[(5i)af + 1]

¶

anfn¡1

µ
n

¦
i=1

[(5i ¡ 2)bg + 1]

¶ =

bngn

µ
n¡1

¦
i=0

[(5i)af + 1]

¶

anfn¡1

µ
n¡1

¦
i=0

[(5i + 3)bg + 1]

¶ .

The other relations can be proved similarly. Hence, the proof is completed.
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Theorem 2.2. Eq.(2.1) has a unique equilibrium point which is the number zero and this equilibrium point is
not locally asymptotically stable.

Proof: For the equilibrium points on Eq.(2.1), we can say

x =
x2

x(1 + x2)
,

then, we get x4 = 0. Therefore, the equilibrium point of Eq.(2.1) is x = 0. Let f : (0, 1)3 ¡! (0, 1) be a
function de…ned by f(u, v, w) = uw

v(1+uw)
. We see that

fu(u, v, w) =
w

v(1 + uw)2
, fv(u, v,w) = ¡ uw

v2(1 + uw)
, fw(u, v,w) =

u

v(1 + uw)2
.

Consequently,
fu(¹x, ¹x, ¹x) = 1, fv(¹x, ¹x, ¹x) = 1, fw(u, v,w) = 1.

The proof follows by using Theorem A.

Numerical Examples:
For con…rming the results of this section, we consider numerical examples which represent di¤erent type of

solutions to Eq. (2.1).

Example 2.3. We take x¡6 = ¡7, x¡5 = 1.5, x¡4 = ¡3, x¡3 = 2, x¡2 = 12, x¡1 = 2/7, x0 = 9. (See …gure
1).

Example 2.4. See …gure 2, since x¡6 = 2.1, x¡5 = 4, x¡4 = 3, x¡3 = .8, x¡2 = 1.2, x¡1 = 7, x0 = 4.
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plot of x(n+1)=x(n-1)x(n-6)/(x(n-4)(1+x(n-1)x(n-6))

Figure 1.
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Figure 2.
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3. ON THE EQUATION XN+1 = XN¡1XN¡6/(XN¡4(1 ¡ XN¡1XN¡6))
In this section we obtain a speci…c form of the solution of the second equation in the following form :

xn+1 =
xn¡1xn¡6

xn¡4(1 ¡ xn¡1xn¡6)
, n = 0, 1, ..., (3.1)

where the initial values are arbitrary nonzero real numbers with x¡1x¡6 6= 1.

Theorem 3.1. Let fxng1
n=¡6 be a solution of Eq.(3.1). Then for n = 0, 1, 2, ...

x10n¡6 =
anfn(

n¡1

1 ¡ ¦
i=1

(5i)bg)

bn gn¡1 (
n

1 ¡ ¦
i=1

(5i ¡ 3)af)
, x10n¡5 =

bngn(1 ¡
n¡1

¦
i=1

(5i)af)

an fn¡1( 1 ¡ n¡1
¦

i=0
(5i + 3)bg)

,

x10n¡4 =
anfne (1 ¡

n¡1

¦
i=0

(5i + 1)bg)

bn gn (1 ¡
n¡1

¦
i=0

(5i + 3)af)

, x10n¡3 =
bngnd (1 ¡

n¡1

¦
i=1

(5i + 1)af)

anf n(1 ¡
n¡1

¦
i=0

(5i + 4)bg)

,

x10n¡2 =

anfn c

µ
1 ¡ n

¦
i=1

(5i ¡ 3)bg

¶

bn gn

µ
1 ¡ n¡1

¦
i=0

(5i + 4)af

¶ , x10n¡1 =

gnbn+1

µ
1 ¡ n

¦
i=1

(5i ¡ 3)af

¶

an fn

µ
1 ¡ n

¦
i=1

(5i)bg

¶ ,

x10n =

an+1fn

µ
1 ¡

n¡1

¦
i=1

(5i + 3)bg

¶

bn gn

µ
1 ¡

n

¦
i=1

(5i)af

¶ , x10n+1 =

bn+1gn+1

µ
[1 ¡

n¡1

¦
i=0

(5i + 3)]af

¶

an fn e

µ
[1 ¡

n

¦
i=0

(5i + 1)]bg

¶ ,

x10n+2 =

an+1fn+1

µ
[1 ¡ n¡1

¦
i=0

[(5i + 4)]bg

¶

bn gnd

µ
[1 ¡ n

¦
i=0

[(5i + 1)]af

¶ , x10n+3 =

bn+1gn+1

µ
[1 ¡ n¡1

¦
i=0

[(5i + 4)]af

¶

an fnc

µ
[1 ¡ n

¦
i=0

[(5i + 2)]bg

¶ .

Proof: The proof as in the previous section so it will be left to the readers.

Theorem 3.2. Eq. (3.1) has a unique equilibrium point which is the number zero and this equilibrium point is
not locally asymptotically stable.

Example 3.3. We put x¡6 = 1.7, x¡5 = 8, x¡4 = 3, x¡3 = 9.8, x¡2 = 1.2, x¡1 = 7.2, x0 = 3.5. (See …gure
3).

Example 3.4. See …gure 4, since x¡6 = 7, x¡5 = ¡2, x¡4 = 3, x¡3 = 2.5, x¡2 = 12, x¡1 = 5, x0 = ¡7.
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Figure 3.
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Figure 4.

4. ON THE EQUATION XN+1 = XN¡1XN¡6/(XN¡4(¡1 + XN¡1XN¡6))
In this section we realize a form of the solutions of the equation

xn+1 =
xn¡1xn¡6

xn¡4(¡1 + xn¡1xn¡6)
, n = 0, 1, ..., (4.1)

where the initial values are arbitrary positive real numbers with x¡1x¡6 6= 1.

Theorem 4.1. Let fxng1
n=¡6 be a solution of Eq.(4.1). Then for n = 0, 1, 2, ...

x20n¡9 =
g2nb2n(af ¡ 1)n

a2n¡1f2n¡1e(bg ¡ 1)n
, x20n¡8 =

a2nf2n(bg ¡ 1)n¡1

b2n¡1g2n¡1d(af ¡ 1)n
, x20n¡7 =

g2nb2n(af ¡ 1)n¡1

a2n¡1f2n¡1c(bg ¡ 1)n
,

x20n¡6 =
a2nf2n(bg ¡ 1)n

b2ng2n¡1(af ¡ 1)n
, x20n¡5 =

g2nb2n(af ¡ 1)n

a2nf2n¡1(bg ¡ 1)n
, x20n¡4 =

a2nf2ne(bg ¡ 1)n

b2ng2n(af ¡ 1)n
,

x20n¡3 =
g2nb2nd(af ¡ 1)n

a2nf2n(bg ¡ 1)n
, x20n¡2 =

a2nf2nc(bg ¡ 1)n

b2ng2n(af ¡ 1)n
, x20n¡1 =

g2nb2n+1(af ¡ 1)n

a2nf 2n(bg ¡ 1)n
,

x20n =
a2n+1f2n(bg ¡ 1)n

b2ng2n(af ¡ 1)n
, x20n+1 =

g2n+1b2n+1(af ¡ 1)n

a2nf2ne(bg ¡ 1)n+1
, x20n+2 =

a2n+1f2n+1(bg ¡ 1)n

b2n g2nd (af ¡ 1)n+1
,

x20n+3 =
g2n+1b2n+1(af ¡ 1)n

a2nf2nc(bg ¡ 1)n
, x20n+4 =

a2n+1f2n+1(bg ¡ 1)n

b2n+1g2n(af ¡ 1)n
, x20n+5 =

g2n+1b2n+1(af ¡ 1)n

a2n+1f2n(bg ¡ 1)n+1
,

x20n+6 =
a2n+1f2n+1e(bg ¡ 1)n+1

b2n+1g2n+1(af ¡ 1)n+1
, x20n+7 =

g2n+1b2n+1d (af ¡ 1)n+1

a2n+1f2n+1(bg ¡ 1)n
, x20n+8 =

a2n+1f2n+1c(bg ¡ 1)n

b2n+1g2n+1(af ¡ 1)n
,

x20n+9 =
g2n+1b2n+2(af ¡ 1)n

a2n+1f2n+1(bg ¡ 1)n+1
, x20n+10 =

a2n+2f2n+1(bg ¡ 1)n+1

b2n+1g2n+1(af ¡ 1)n+1
.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n ¡ 1. That is;

x20n¡17 =
g2n¡1b2n¡1(af ¡ 1)n¡1

a2n¡2f2n¡2c(bg ¡ 1)n¡1
, x20n¡16 =

a2n¡1f2n¡1(bg ¡ 1)n¡1

b2n¡1g2n¡2(af ¡ 1)n¡1
, x20n¡15 =

g2n¡1b2n¡1(af ¡ 1)n¡1

a2n¡1f2n¡2(bg ¡ 1)n
,

x20n¡14 =
a2n¡1f2n¡1e(bg ¡ 1)n

b2n¡1g2n¡1(af ¡ 1)n
, x20n¡13 =

g2n¡1b2n¡1d(af ¡ 1)n

a2n¡1f2n¡1(bg ¡ 1)n¡1
, x20n¡12 =

a2n¡1f2n¡1c(bg ¡ 1)n¡1

b2n¡1g2n¡1(af ¡ 1)n¡1
,

x20n¡11 =
g2n¡1b2n(af ¡ 1)n¡1

a2n¡1f2n¡1(bg ¡ 1)n
, x20n¡10 =

a2nf2n¡1(bg ¡ 1)n

b2n¡1g2n¡1(af ¡ 1)n
.

Now, it follows from Eq. (4.1), we get:

x20n¡9 =
x20n¡11x20n¡16

x20n¡14(¡1 + x20n¡11x20n¡16)
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=

³
g2n¡1b2n(af¡1)n¡1

a2n¡1 f 2n¡1(bg¡1)n

´³
a2n¡1f 2n¡1(bg¡1)n¡1

b2n¡1 g 2n¡2(af¡1)n¡1

´
³

a2n¡1f 2n¡1e (bg¡1)n

b2n¡1 g 2n¡1 (af¡1)n

´
(¡1 +

³
g2n¡1b2n(af¡1)n¡1

a2n¡1 f 2n¡1(bg¡1)n

´³
a2n¡1f 2n¡1(bg¡1)n¡1

b2n¡1 g 2n¡2(af¡1)n¡1

´
)

=

³
g2n¡1b2n(af¡1)n¡1

a2n¡1 f 2n¡1(bg¡1)n

´³
a2nf 2n¡1(bg¡1)n

b2n¡1 g 2n¡1 (af¡1)n

´
³

a2n¡1f 2n¡1e (bg¡1)n

b2n¡1 g 2n¡1 (af¡1)n

´
(¡1 + bg

(bg¡1)
)

=
b2n g 2n (af ¡ 1)n

a2n¡1f 2n¡1e (bg ¡ 1)n
.

Also, we obtain

x20n¡8 =
x20n¡10x20n¡15

x20n¡13(¡1 + x20n¡10x20n¡15)
=

(
a2nf2n¡1(bg¡1)n

b2n¡1g2n¡1(af¡1)n

)(
g2n¡1b2n¡1(af¡1)n¡1

a2n¡1f2n¡2(bg¡1)n

)
(

g2n¡1b2n¡1d(af¡1)n

a2n¡1f2n¡1(bg¡1)n¡1

)(
¡1+

(
a2nf2n¡1(bg¡1)n

b2n¡1g2n¡1(af¡1)n

)(
g2n¡1b2n¡1(af¡1)n¡1

a2n¡1f2n¡2c(bg¡1)n

))

=

³
af

af¡1

´
a2n¡1 f 2n¡1(bg ¡ 1)n¡1

g2n¡1b2n¡1d (af ¡ 1)n(¡1 + af
af¡1)

=
a2n f 2n(bg ¡ 1)n¡1

g2n¡1b2n¡1d (af ¡ 1)n
.

Thus, the proof of the other relations is similar.

Theorem 4.2. Eq.(4.1) has a periodic solution of period ten i¤ af = bg = 2 and will be taken the form
f2

e
, 2

d
, 2

c
, g, f, e, d, c, b, a, 2

e
, 2

d
, ...g.

Proof: First suppose that there exists a prime period twenty solution

2

e
,
2

d
,
2

c
, g, f, e, d, c, b, a,

2

e
,
2

d
, ...,

of Eq.(4.1), we see from the form of the solution of Eq.(4.1) that

g2nb2n(af ¡ 1)n

a2n¡1f2n¡1e(bg ¡ 1)n
=

2

e
,

a2nf2n(bg ¡ 1)n¡1

b2n¡1g2n¡1d(af ¡ 1)n
=

2

d
,

g2nb2n(af ¡ 1)n¡1

a2n¡1f2n¡1c(bg ¡ 1)n
=

2

c
,

a2nf2n(bg ¡ 1)n

b2ng2n¡1(af ¡ 1)n
= g , ... ,

a2n+2f2n+1(bg ¡ 1)n+1

b2n+1g2n+1(af ¡ 1)n+1
= a.

Then
af = bg = 2.

Second assume that af = bg = 2. Then we see from the form of the solution of Eq.(4.1) that

x20n¡9 =
2

e
, x20n¡8 =

2

d
, x20n¡7 =

2

c
, x20n¡6 = g, x20n¡5 = f, x20n¡4 = e, x20n¡3 = d,

x20n¡2 = c, x20n¡1 = b, x20n = a, x20n+1 =
2

e
, x20n+2 =

2

d
, ..., x20n+9 = b, x20n+10 = a.

Thus we have a periodic solution of period ten and the proof is complete.

Theorem 4.3. Eq.(4.1) has a periodic solution of period twenty i¤ af = bg = ¡2 and will be taken the form
f¡2

e , ¡2
d , 2

3c , g, f, e, d, c, b, a, 2
3e , 2

3d , ¡2
c , g, f

¡3 , e, ¡3d, c, b
¡3 , a, ¡2

e , ¡2
d ...g.

Proof: The proof as the proof of the previous theorem and so it will be omitted.

Theorem 4.4. Eq. (4.1) has three equilibrium points which are 0, §p
2 and there equilibrium points are not

locally asymptotically stable.

Example 4.5. See Figure 5 if we put x¡6 = 5, x¡5 = ¡.4, x¡4 = ¡3, x¡3 = 4.6, x¡2 = ¡6, x¡1 = ¡2/5, x0 =
5. (See …gure 5).

Example 4.6. Figure 6 shows the solutions where x¡6 = 2.1, x¡5 = .4, x¡4 = ¡3, x¡3 = 4.6, x¡2 =
1.2, x¡1 = .6, x0 = 9.
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The proof of the theorems in the following section as in this section so it will be left to the readers.

5. ON THE EQUATION XN+1 = XN¡1XN¡6/(XN¡4(¡1 ¡ XN¡1XN¡6))
In this section we realize a form of the solutions of the equation

xn+1 =
xn¡1xn¡6

xn¡4(¡1 ¡ xn¡1xn¡6)
, n = 0, 1, ..., (5.1)

where the initial values are arbitrary positive real numbers.

Theorem 5.1. Let fxng1
n=¡6 be a solution of Eq.(5.1). Then for n = 0, 1, 2, ...

x20n¡9 =
g2nb2n(¡1 ¡ af)n

a2n¡1f2n¡1e(¡1 ¡ bg)n
, x20n¡8 =

a2nf2n(¡1 ¡ bg)n¡1

b2n¡1g2n¡1d(¡af ¡ 1)n
, x20n¡7 =

g2nb2n(¡1 ¡ af)n¡1

a2n¡1f2n¡1c(¡1 ¡ bg)n
,

x20n¡6 =
a2nf 2n(¡1 ¡ bg)n

b2n g 2n¡1(¡1 ¡ af)n
, x20n¡5 =

g2nb2n(¡1 ¡ af)n

a2n f 2n¡1(¡1 ¡ bg)n
, x20n¡4 =

a2nf 2ne(¡1 ¡ bg)n

b2n g 2n (¡1 ¡ af)n
,

x20n¡3 =
g2nb2nd (¡1 ¡ af)n

a2n f 2n(¡1 ¡ bg)n
, x20n¡2 =

a2nf 2nc(¡1 ¡ bg)n

b2n g 2n(¡1 ¡ af)n
, x20n¡1 =

g2nb2n+1(¡1 ¡ af)n

a2n f 2n(¡1 ¡ bg)n
,

x20n =
a2n+1f 2n(¡1 ¡ bg)n

b2n g 2n (¡1 ¡ af)n
, x20n+1 =

g2n+1b2n+1(¡af ¡ 1)n

a2n f 2ne(¡bg ¡ 1)n+1
, x20n+2 =

a2n+1f 2n+1(¡bg ¡ 1)n

b2n g 2nd (¡af ¡ 1)n+1
,

x20n+3 =
g2n+1b2n+1(¡1 ¡ af)n

a2n f 2nc(¡1 ¡ bg)n
, x20n+4 =

a2n+1f 2n+1(¡1 ¡ bg)n

b2n+1 g 2n(¡1 ¡ af)n
, x20n+5 =

g2n+1b2n+1(¡1 ¡ af)n

a2n+1 f 2n(¡1 ¡ bg)n+1
,

x20n+6 =
a2n+1f2n+1e(¡1 ¡ bg)n+1

b2n+1g2n+1(¡1 ¡ af)n+1
, x20n+7 =

g2n+1b2n+1d(¡1 ¡ af)n+1

a2n+1f2n+1(¡1 ¡ bg)n
, x20n+8 =

a2n+1f2n+1c(¡1 ¡ bg)n

b2n+1g2n+1(¡1 ¡ af)n
,
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x20n+9 =
g2n+1b2n+2(¡1 ¡ af)n

a2n+1 f 2n+1(¡1 ¡ bg)n+1
, x20n+10 =

a2n+2f 2n+1(¡1 ¡ bg)n+1

b2n+1 g 2n+1 (¡1 ¡ af)n+1
.

Theorem 5.2. Eq.(5.1) has a periodic solution of period ten i¤ af = bg = ¡2 and will be taken the form
f¡2

e , ¡2
d , ¡2

c , g, f, e, d, c, b, a, ¡2
e , ¡2

d , ...g.

Theorem 5.3. Eq.(5.1) has a periodic solution of period twenty i¤ af = bg = 2 and will be taken the form
f2

e , 2
d , 2

¡3c , g, f, e, d, c, b, a, ¡2
3e , ¡2

3d , 2
c , g, f

¡3 , e,¡3d, c, b
¡3 , a, 2

e , 2
d ...g.

Theorem 5.4. Eq. (5.1) has a unique equilibrium point which is the number zero, and this equilibrium point is
not locally asymptotically stable.

Example 5.5. We take x¡6 = 3, x¡5 = 7.4, x¡4 = ¡2.3, x¡3 = ¡13, x¡2 = 6, x¡1 = ¡2, x0 = 2. (See …gure
7).
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Abstract

In this paper, we, motivated by Mihet [2], give the concept of two nonlinear contractions

((φ, ε−λ)-contraction and (φ, bn)-contraction) in KM-fuzzy metric spaces, and obtained some

fixed point theorems. We answer the open question posed by Mihet in [2, open question 2].

Finally, an example can be used to be exemplify our results.

Keywords: Fuzzy metric space; fixed point; fuzzy contraction

1 Introduction and preliminaries

In 1975, Kramosil and Michalek [6] gave a notion of fuzzy metric space (KM-fuzzy metric space),

which was modified later by George and Veeramani [4]. Since then, many authors have contributed to

the study of these concepts of fuzzy metric, fixed point theory is one of the most important topics of

research. The first attempt to extend the well-known Banach contraction theorem to KM-fuzzy metrics

was done by Grabiec in [8]. Later, Gregori and Sapena [5] gave another notion of fuzzy contractive

mapping and studied its applicability to fixed point theory in both contexts of fuzzy metrics above

mentioned. In their study, the authors needed to demand additional conditions to the completeness

of the fuzzy metric in order to obtain a fixed point theorem, which constitutes a significant difference

with the classical theory. Later, this notion of fuzzy contractive mapping and others that appeared

in the literature were generalized by D. Mihet in [7] introducing the concept of fuzzy ψ-contractive

mapping and he obtained a fixed point theorem for the class of complete non-Archimedean KM-fuzzy

metrics.

†Corresponding author: Chuanxi Zhu. Email: chuanxizhu@126.com.Tel:+8613970815298.
†Supported by the National Natural Science Foundation of China (11361042,11071108,11461045) and the Provincial
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Program of the Provinical Education Department of Jiangxi(150008) and the Innovation Program of the Graduate

student of Nanchang University(colonel-level project).
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Recently, D. Wardowski [9] has provided a new contribution to the study of fixed point theory in

fuzzy metric spaces. In [9], the author introduced the concept of fuzzy H-contractive mappings, which

constitutes a generalization of the concept given by V. Gregori and A. Sapena, and he obtained the

next fixed point theorem for complete fuzzy metric spaces in the sense of George and Veeramani.

In this paper, we, motivated by Mihet [2], give the definition of three nonlinear contractions ((φ, ε−

λ)-contraction and (φ, bn)-contraction) in Km-fuzzy metric spaces, and obtained some fixed point

theorems. Finally, an example can be used to be exemplify our main results.

Throughout this paper, let R+ := [0,+∞), N be the set of all positive integers, Φω:={for each

t > 0, there exists r ≥ t such that limn→∞ φn(t) = 0}.

A mapping F : R → R+ is said to be a distribution function if it is non-decreasing and left

continuous with inft∈RF (t) = 0, supt∈RF (t) = 1.

Let D+ the set of all distribution functions, while H ∈ D+ will always denote the specific distri-

bution function defined by

H(t) =

0, if t ≤ 0,

1, if t > 0.

A mapping ∆ : [0, 1]× [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following

conditions are satisfied: (a, 1) = a; (a, b) = (b, a); a ≥ b, c ≥ d ⇒ (a, c) ≥ (b, d); (a, (b, c)) = ((a, b), c).

Definition 1.1 [11] A t-norm is said to be of H-type if the family of functions {∆m(t)}m∈N is e-

quicontinuous at t = 1, where ∆1(t) = ∆(t, t), ∆m(t) = ∆(t,∆m−1(t)).m = 1, 2, · · · , t ∈ [0, 1](∆0(t) =

t).

Definition 1.2 [12] A fuzzy metric space in the sense of Kramosil and Michlek (briefly, a KM-fuzzy

metric space) is a triple (X,M,∆) where X is a nonempty set, ∆ is a t-norm and M is a fuzzy set on

X2 × [0,∞) satisfying the following conditions for all x, y, z ∈ X ands, t > 0:

(FM-1) M(x, y, 0) = 0;

(FM-2) M(x, y, t) = 1, for t > 0 if and only if x = y;

(FM-3) M(x, y, t) =M(y, x, t);

(FM-4) M(x, z, t+ s) ≥ ∆(M(x, y, t),M(y, z, s));

(FM-5) M(x, y, ) : R+ → [0, 1] is left continuous.

Lemma 1.1 [1] If (X,M,∆) is a KM-fuzzy metric space satisfying the condition:

(FM-6) limt→∞M(x, y, t) = 1 for all x, y ∈ X,

2
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then (X,F,∆) is a Menger space, where F is defined by

Fx,y(t) =

M(x, y, t), if t ≥ 0,

0, if t < 0.
(1.1)

On the other hand, if (X,M,∆) is a Menger space, then (X,M,∆) is a KM-fuzzy metric space

with (FM-6), where M is defined by M(x, y, t) = Fx,y(t) for t ≥ 0.

Definition 1.3 [1] Let (X,M,∆) be a complete KM-fuzzy metric space with a t-norm ∆ of H-type,

T : X → X be a mapping satisfied

M(Tx, Ty, φ(t)) ≥M(x, y, t) ∀ x, y ∈ X and t > 0 (1.2)

where φ ∈ Φω. Then T is said to be a fuzzy φ-contraction.

Lemma 1.2 [1] Let (X,M,∆) be a complete KM-fuzzy metric space with a t-norm ∆ of H-

type, T : X → X be a mapping satisfied (1.2). Suppose that there exists some x0 ∈ X such that

limt→∞M(x0, Tx0, t) = 1. Then T has a unique fixed point x∗ in Y0 = {y ∈ X| limt→∞M(x0, y, t) =

1}.

In Fang [1] has given the definition of fuzzy φ-contraction and obtained some fixed point theorems

in KM-fuzzy metric spaces. In this paper, we also obtain some fixed point results in KM-fuzzy metric

spaces by cocerning nonliner contractions.

2 Fuzzy (φ, ε− λ)-contractions

In this section, we give the definition of fuzzy (φ, ε−λ)-contraction in KM-fuzzy metric spaces and

obtain some fixed point theorems.

Definition 2.1 Let (X,M,∆) be a KM-fuzzy metric spaces. A mapping T : X → X is called a

fuzzy contraction of (ε− λ)-type, if for some k ∈ (0, 1),

M(x, y, ε) > 1− λ⇒M(Tx, Ty, kε) > 1− kλ, ∀ε > 0,∀λ ∈ (0, 1).

More generally one defines the concept of fuzzy (φ, ε− λ)-contraction.

Definition 2.2 Let (X,M,∆) be a KM-fuzzy metric spaces and φ ∈ Φw. A mapping T : X → X

is said to be a fuzzy (φ, ε− λ)-contraction if the following implication holds:

M(x, y, ε) > 1− λ⇒M(Tx, Ty, φ(ε)) > 1− φ(λ), ∀ε > 0,∀λ ∈ (0, 1). (2.1)

Theorem 2.1 Let (X,M,∆) be a KM-fuzzy metric space with ∆ of H-type and φ : [0,∞) → [0,∞)

be a function with the properties:

3
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i) φ((0, 1)) ⊂ (0, 1);

ii) limn→∞ φn(t) = 0, ∀ t > 0.

Then every fuzzy (φ, ε− λ)-contraction on X have a unique fixed point.

Proof We show that every fuzzy (φ, ε− λ)-contraction T : X → X with φ satisfying i) and ii)is a

fuzzy φ-contraction.

Indeed, let us assume by contradiction that T is a fuzzy (φ, ε − λ)-contraction, but it is not a

fuzzy φ-contraction. Then M(Tx, Ty, φ(t)) < M(x, y, t), for some x, y ∈ X, t > 0, and φ(λ) >

1−M(Tx, Ty, φ(t)), for every λ ∈ (1−M(x, y, t), 1). In particular

φ(λ) > 1−M(Tx, Ty, φ(t)), ∀λ ∈ (1−M(Tx, Ty, φ(t)), 1).

Let α = 1 −M(Tx, Ty, φ(t)). From M(Tx, Ty, φ(t)) < M(x, y, t), it follows that α > 0 and from

i) we obtain 0 < α < 1. Hence φ((0, 1)) ⊆ (0, 1), which contradicts ii).

By Lemma 1.2, it follows that T have a unique fixed point.

If the assumption φ((0, 1)) ⊂ (0, 1) in Theorem 2.1 is replaced by the stronger condition φ(t) <

t,∀t ∈ (0, 1), we can consider φ ∈ Φω.

Theorem 2.2 Let (X,M,∆) be a KM-fuzzy metric space with ∆ of H-type and φ : [0,∞) → [0,∞)

be a function with the properties:

i) φ : [0,∞) → [0,∞) ;

ii) φ ∈ Φω .

Then every fuzzy (φ, ε− λ)-contraction on X have a unique fixed point.

For the proof it suffices to see that any fuzzy (φ, ε − λ)-contraction T satisfying i) is a fuzzy φ-

contraction: if we suppose that M(Tx, Ty, φ(ε)) < M(x, y, ε) for some x, y ∈ X, ε > 0, then we reach

a contradiction by choosing λ ∈ (0, 1) such that M(Tx, Ty, φ(ε)) < 1− λ < M(x, y, ε).

3 Fuzzy (φ, bn)-contractions

Definition 3.1 Let (X,M,∆) be a KM-fuzzy metric space and bn be an increasing sequence in

(0, 1) converging to 1. A mapping T : X → X is called a fuzzy bn-contraction if

(∀n ∈ N , ∃kn ∈ (0, 1), ∀x, y ∈ X, t > 0) M(x, y, t) > bn ⇒M(Tx, Ty, knt) > bn.

As a natural extension, we introduce the notion of fuzzy (φ, bn)-contraction.

4
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Definition 3.2 Let (X,M,∆) be a KM-fuzzy metric space and bn be an increasing sequence in

(0, 1) converging to 1, φ : [0,∞) → [0,∞) be a given function. A mapping T : X → X is said to be a

fuzzy (φ, bn)-contraction if

(∀n ∈ N , ∀x, y ∈ X, t > 0) M(x, y, t) ≥ bn ⇒M(Tx, Ty, φ(t)) ≥ bn. (3.1)

Lemma 3.1 Let (X,M,∆) be a KM-fuzzy metric space and T be a fuzzy (φ, bn)-contraction

on X with φ ∈ Φω. Let x0 ∈ X and (xn)n ⊂ X be defined by xn+1 = Txn for n ∈ N . Then

limn→∞M(xn, xn+1, t) = 1 for all t > 0.

Proof Let t > 0 and ε ∈ (0, 1) be given, m ∈ N be such that bm > 1− ε.

By the definition of fuzzy metric spaces, there exists s > 0 such thatM(x0, x1, s) ≥ bm. As φ ∈ Φω,

there exists r ≥ s with limn→∞ φn(r) = 0. By the monotonicity ofM(x, y, ·), we getM(x0, x1, r) ≥ bm

and, inductively,

M(xn, xn+1, φ
n(r)) ≥ bm, ∀n ∈ N .

Let n0 ∈ N such that φn(r) < t for n > n0. Then

M(xn, xn+1, t) ≥M(xn, xn+1, φ
n(r)) ≥ bm > 1− ε, ∀n > n0.

So limn→∞M(xn, xn+1, t) = 1, concluding our proof.

In Theorem 3.3 of Mihet [2], the t-norm is releated to the sequence (bn)n. Now, we consider △ is

an arbitrary t-norm of H-type, whether the conclusion of Theorem 3.3 in [2] remain holds? we can see

the following consequence.

Lemma 3.2 [2] Let (X,F,∆) be a probabilistic metric space and T be a probabilistic (φ, bn)-

contraction on X with φ ∈ Φω. Let x0 ∈ X and (xn)n ⊂ X be defined by xn+1 = Txn for n ∈ N .

Then limn→∞ Fxn,xn+1(t) = 1 for all t > 0.

Lemma 3.3 [1] Let (X,M,∆) be a KM-fuzzy metric space, where the t-norm △ is continuous at

(1, 1). Suppose that there exists x0, x1 ∈ X such that limt→∞M(x0, x1, t) = 1. Define Y0 = {y ∈

X| limt→∞M(x0, y, t) = 1}. Then (Y0, F,△) is a Menger space, where F defined by (1.1). If (X,M,∆)

is complete, then (Y0, F,△) is a Menger space.

Theorem 3.1 Let (X,F,△) be a complete Menger PM space with a t-norm of H-type, and

T : X → X be a probabilistic (φ, bn)-contraction, where bn ∈ (0, 1) and limn→∞ bn = 1,and φ ∈ Φω.

Then T is a Picard mapping.

Proof Because of in whole proof of Theorem 3.3 in [2], t-norm only be used to show that xn is a

Cauchy sequence, so we only need to prove xn is a Cauchy sequence under the condition of Theorem

3.1.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1196 Dangdang Wang ET AL 1192-1199



For given ε > 0, by (PM-4) we get

Fxn,xn+p(t) ≥ △(Fxn,xn+1(
ε

p
),△(Fxn+1,xn+2(

ε

p
), · · · , Fxn+p−1,xn+p(

ε

p
))), for x ∈ X.

By Lemma 3.2, we know limn→∞ Fxn,xn+1(t) = 1, for t > 0, n ∈ N . Therefore, Fxn,xn+p(t) →

1, n→ ∞, for n, p ∈ N , t > 0, so the sequence (xn)n is a Cauchy sequence.

In fact, above Theorem improve the Theorem 3.3 in Mihet [2], at the same time, the reader could

find in this Theorem a way of addressing the recent open question posed by Mihet in [2. open question

2].

Theorem 3.2 Let (X,M,∆) be a complete KM-fuzzy metric space with a t-norm ∆ of H-type,

T : X → X be a fuzzy (φ, bn)-contraction, where (bn)n ⊂ (0, 1) and limn→∞ bn = 1, φ ∈ Φω. Suppose

that there exists some x0 ∈ X such that limt→∞M(x0, Tx0, t) = 1. Then T has a unique fixed point

x∗ in Y0 = {y ∈ X| limt→∞M(x0, y, t) = 1}, and {Tn(y0)} converges to x∗ for each y0 ∈ Y0. In

particular, {Tnx0} converges to x∗.

Proof We define a mapping F : Y0 × Y0 → D+ by (1.1). Since (X,M,∆) be a complete KM-fuzzy

metric space and there exists some x0 ∈ X such that limt→∞M(x0, Tx0, t) = 1, by Lemma 3.3 we

know that (Y0,M,△) is a complete Menger space.

We can prove that (3.1) implies that

M(Tx, Ty, t) ≥ bn. (3.2)

In fact, since φ ∈ Φω, for each t > 0, there exists r ≥ t such that φ(r) < t and M(x, y, r) ≥ bn. By

definition of fuzzy (φ, bn)-contraction, we get

M(Tx, Ty, t) ≥M(Tx, Ty, φ(r)) ≥ bn.

It is not difficult to prove that T is a self-mapping on Y0. In fact, if y ∈ Y0, then limt→∞M(x0, y,
t
2) =

1. By the hypothesis limt→∞M(x0, Tx0,
t
2) = 1. In addition, using (FM-4), we get

M(x0, T y, t) ≥ △(M(x0, Tx0,
t

2
),M(Tx0, T y,

t

2
)) ≥ △(M(x0, Tx0,

t

2
), bn).

Let n → ∞, t → ∞ in the above inequality. From the continuity of △ at (1, 1), we obtain

limt→∞M(x0, T y, t) = 1. i.e.,Ty ∈ Y0. This show that T is a mapping of Y0 into itself.

Clearly (3.1) implies that

Fx,y(t) ≥ bn ⇒ FTx,Ty(φ(t)) ≥ bn, for x, y ∈ Y0, t > 0 and n ∈ N ,

where F is defined by (1.1). This show that T is a probabilistic (φ, bn)-contraction in (Y0, F,△). Thus,

by Theorem 3.1, we conclude that T has a unique fixed point x∗ in Y0, and {Tn(y0)} converges to x∗

for each y0 ∈ Y0. In particular, {Tnx0} converges to x∗. This complete the proof.

6
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4 An example

Example 4.1 Let X = [0,∞) and M(x, y, t) = min{x,y}
max{x,y} for all x, y ∈ X and t > 0. Then

(X,M,△p) is a complete KM-fuzzy metric space. Let Tx = x
2 for x ∈ X, φ(t) = t

2 for t > 0. Define

function bn = n−1
n , n ∈ N .

It is easy to see that (bn)n ⊂ (0, 1), limn→∞ bn = 1, φ ∈ Φω. T is a fuzzy (φ, bn)-contraction on X.

In fact, since M(x, y, t) ≥ bn, so

M(Tx, Ty, φ(t)) =M(
x

2
,
y

2
,
t

2
) =

min{x
2 ,

y
2}

max{x
2 ,

y
2}

=
min{x, y}
max{x, y}

≥ bn.

By the Theorem 3.2, we know T has a unique fixed point. And 0 is the unique fixed point of T .
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ON SUBCLASSES OF ANALYTIC FUNCTIONS

WITH FIXED SECOND COEFFICIENTS

A. Y. LASHIN1 AND F.Z. EL-EMAM2

Abstract. Let A be the class of analytic functions in the open unit disc U

with normalization f(0) = f
′
(0) − 1 = 0. The purpose of the present paper is

to obtain several sufficient conditions of starlikeness and strongly starlikeness

for some subclasses of A with fixed second coefficients that satisfy certain

conditions for the quotient of the representations of convexity and starlikeness.

AMS (2010) Subject Classification. 30 C45.
Key Words. Univalent functions, Starlike functions, Convex functions, Strongly

starlike functions, Fixed second coefficients.

1. Introduction

Let A denote the class of all functions f which are analytic in the open unit disc
U = {z : |z| < 1} and normalized by the conditions f(0) = f

′
(0) − 1 = 0. Further

let

S∗(α) :=

{
f ∈ A : <

(
zf

′
(z)

f(z)

)
> α , 0 ≤ α < 1, z ∈ U

}
,

and

S(α) :=

{
f ∈ A :

∣∣∣∣∣arg

(
zf

′
(z)

f(z)

)∣∣∣∣∣ < α
π

2
, 0 ≤ α < 1, z ∈ U

}
,

be the subspaces of A consisting of starlike functions of order α and strongly starlike
functions of order α, respectively. Note that S∗(0) = S(1) = S∗ is the well-known
space of normalized functions starlike (univalent) with respect to the origin. we
denote by K, the family of all convex functions in U defined as:

K :=

{
f ∈ A : f

′
(0) 6= 0, <(1 +

zf
′′
(z)

f ′(z)
) > 0 , z ∈ U

}
In [11] Silverman investigated an expression involving the quotient of the analytic
representations of convex and starlike functions. Precisely, for 0 < b ≤ 1 he consid-
ered the class

Gb :=

{
f ∈ A :

∣∣∣∣∣1 + zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)
− 1

∣∣∣∣∣ < b , z ∈ U

}
and proved that Gb ⊂ S∗(2/(1+

√
1 + 8b). Obradovic´ and Tuneski in [10] improved

this result by showingGb ⊆ S∗(h(z)) ⊆ S∗(2/(1+
√

1 + 8b), where h(z) = 1/(1+bz).
Tuneski in [14] gave a sufficient conditions for a function f ∈ Gb to be in the
class S∗( 1+Az

1+Bz ) and its subclasses, where −1 ≤ B < A ≤ 1. Sokol in [12] gave a

generalization of main theorem contained in [14] . Further Obradovic and Owa [9],
1
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2 A. Y. LASHIN1 AND F.Z. EL-EMAM2

Nunokawa [6, 7] and Kamali [3] obtained a sufficient conditions for starlikeness of
functions which satisfies a certain conditions for the modulus of

1 + zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)

Let A(β) consists of analytic functions f ∈ A of the form

(1.1) f(z) = z + βz2 + a3z
3 + ...,

where the second coefficient β ∈ C (C the complex plane) is fixed constant. Several
authors have investigated functions with fixed second coefficient and these include,
for example, by Ali et al. [1, 2] and Nagpal and Ravichandran [5]. In this paper,
we prove several sufficient conditions for starlikeness and strongly starlikeness of
some subclasses of A with fixed second coefficients that satisfy certain conditions
for the quotient of the representations of convexity and starlikeness .

To derive our main theorem, we need the following lemma due to Kwon [4],
which is an extension of a very popular lemma of Nunokawa [8].

Lemma 1. Let p(z) = 1 + βz + p2z
2 + ... be analytic in U , and p(z) 6= 0 (z ∈ U).

If there exists a point z0 ∈ U, such that

|arg (p(z))| < π

2
α for |z| < |z0|

and

|arg (p(z0))| = π

2
α (α > 0),

then we have
z0p

′
(z0)

p(z0)
= ikα,

where

k ≥ 2

2 + |β|

(
a+

1

a

)
,when arg (p(z0)) =

π

2
α,

k ≤ − 2

2 + |β|

(
a+

1

a

)
when arg (p(z0)) = −π

2
α(1.2)

with {p(z0)}
1
α = ±ia.

2. Main Results

Theorem 1. If f ∈ A(β) defined by (1.1) satisfies∣∣∣∣∣arg

(
1 + zf

′′
(z)/f

′
(z)

zf ′(z)/f(z)

)∣∣∣∣∣ < π

2
δ ,

where

δ =
2

π
arctan

(
4η sin (π(1− η)/2)

(2 + |β|) (1− η)
1
2 (1−η)(1 + η)

1
2 (1+η) + 4η cos (π(1− η)/2)

)
then we have ∣∣∣∣∣arg

(
zf

′
(z)

f(z)

)∣∣∣∣∣ < π

2
η .
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ON SUBCLASSES OF ANALYTIC FUNCTIONS 3

Proof. Let p(z) = zf
′
(z)

f(z) = 1 + βz + p2z
2 + ..., then we have

1 +
zp

′
(z)

p2(z)
=

1 + zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)
.

If there exists a point z0 ∈ U, such that

|arg (p(z))| < π

2
η for |z| < |z0| and |arg (p(z0))| = π

2
η (η > 0),

then from Lemma 1, for the case arg (p(z0)) = π
2 η,

arg

(
1 + z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

)
= arg

(
1 +

z0p
′
(z0)

p2(z0)

)
= arg

(
1 +

iηk

(ia)η

)

= arctan

 ηk
aη sin

(
π(1−η)

2

)
1 + ηk

aη cos
(
π(1−η)

2

)
 .

Since ηk
aη ≥

2η
2+|β|

(
a1−η + a−1−η

)
. Now, we define a function g : (0,∞) → R by

g(a) = a1−η + a−1−η, then g
′
(a) = 1−η

2aη+2

(
a2 − 1+η

1−η

)
. Hence g(a) takes the mini-

mum value at a =
(

1+η
1−η

) 1
2

. Therefore ηk
aη ≥

2η
2+|β|

[(
1+η
1−η

) 1
2 (1−η)

+
(

1−η
1+η

) 1
2 (1+η)

]
.Thus

we have

arg

(
1 + z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

)

≥ arctan


2η

2+|β|

[(
1+η
1−η

) 1
2 (1−η)

+
(

1−η
1+η

) 1
2 (1+η)

]
sin
(
π(1−η)

2

)
1 + 2η

2+|β|

[(
1+η
1−η

) 1
2 (1−η)

+
(

1−η
1+η

) 1
2 (1+η)

]
cos

(
π(1−η)

2

)


= arctan

(
4η sin (π(1− η)/2)

(2 + |β|) (1− η)
1
2 (1−η)(1 + η)

1
2 (1+η) + 4η cos (π(1− η)/2)

)
=
π

2
δ

This contradicts our condition in the theorem. For the case p(z0) = (−ia)η(a > 0),
using the same method, we can obtain a contradiction to the assumption. �

Theorem 2. If f ∈ A(β) defined by (1.1) satisfies

(2.1)

∣∣∣∣∣1 + zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)
− 1

∣∣∣∣∣ < 2

1 + |β|
,

then we have

(2.2)
∣∣∣f(z)/zf

′
(z)− 1

∣∣∣ < 1 or <

(
zf

′
(z)

f(z)

)
> 0.

Proof. Letting

(2.3)
f(z)

zf ′(z)
− 1 =

1− p(z)
1 + p(z)

,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1202 LASHIN ET AL 1200-1207
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we know that p(z) = 1+2βz+p2z
2 + ..., analytic in U, P (0) = 1, P (z) 6= 0 (z ∈ U)

and
f(z)

zf ′(z)
=

2

1 + p(z)
, z ∈ U.

Furthermore, we have

1 + zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)
= 1 +

2p

(1 + p(z))
2

zp
′
(z)

p(z)
.

Suppose that there exists a point z0 ∈ U, such that

< (p(z)) > 0 for |z| < |z0| and < (p(z0)) = 0.

Then applying Lemma 1, we have,

z0p
′
(z0)

p(z0)
= ik,

where k is real number and

k ≥ 1

1 + |β|

(
a+

1

a

)
, when p(z0) = ia (a > 0),

k ≤ − 1

1 + |β|

(
a+

1

a

)
when p(z0) = −ia (a > 0).(2.4)

It follows that

<

(
1 + z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

− 1

)
= <

(
∓2ak

(1± ia)2

)
=
∓2ak(1− a2)

(1 + a2)2
.

Moreover, we have

=

(
z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

− 1

)
=

4a2k
(1+a2)2

.

Therefore by (2.4) we have,∣∣∣∣∣z0f
′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

− 1

∣∣∣∣∣
2

=

(
<

(
z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

− 1

))2

+

(
=

(
z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)

− 1

))2

=
4a2k2

(1 + a2)2
>

4

(1 + |β|)2
.

This contradicts the hypothesis (2.1) and therefore, we have <{p(z)} > 0 for |z| <
1. or ∣∣∣∣1− p(z)1 + p(z)

∣∣∣∣ < 1 for |z| < 1.

Therefore, by (2.3) so we obtain (2.2). It completes the proof of Theorem 2. �

Theorem 3. If f ∈ A(β) defined by (1.1) satisfies

(2.5)

∣∣∣∣∣ zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)− 1

∣∣∣∣∣ <
(

1 +
1

1 + |β|

)
,
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then we have

(2.6)
∣∣∣zf ′

(z)/f(z)− 1
∣∣∣ < 1

Proof. The following equation

(2.7)
zf

′
(z)

f(z)
− 1 =

1− p(z)
1 + p(z)

.

Defines the function p(z) = 1− 2βz + p2z
2 + ..., analytic in U, P (0) = 1, P (z) 6=

0 (z ∈ U). Then it follows that

zf
′
(z)

f(z)
=

2

1 + p(z)
, z ∈ U.

Furthermore, we have

zf
′′
(z)/f

′
(z)

zf ′(z)/f(z)− 1
= 1− p

1− p(z)
zp

′
(z)

p(z)
.

If there exists a point z0 ∈ U, such that

< (p(z)) > 0 for |z| < |z0| and < (p(z0)) = 0,

then Lemma 1, gives that,

z0p
′
(z0)

p(z0)
= ik,

where the real number k is given by (2.4) and p(z0) = ±ia (a > 0). It follows that

<

(
z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)− 1

)
= <

(
1± ak

(1∓ ia)

)
=

(
1± ak

1 + a2

)
,

and

=

(
z0f

′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)− 1

)
=

a2k

1 + a2
.

Therefore, ∣∣∣∣∣ z0f
′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)− 1

∣∣∣∣∣
2

= 1± 2ak

1 + a2
+ (1 + a2)

(
ak

1 + a2

)2

.

By (2.4) we get∣∣∣∣∣ z0f
′′
(z0)/f

′
(z0)

z0f
′(z0)/f(z0)− 1

∣∣∣∣∣
2

> 1 +
2

1 + |β|
+ (1 + a2)

(
1

1 + |β|

)2

>

(
1 +

1

1 + |β|

)2

This contradicts the hypothesis (2.5). And the proof completed as in Theorem
2. �

Theorem 4. If f ∈ A(β) defined by (1.1) satisfies

(2.8) <

(
1 +

zf
′′
(z)

f ′(z)

)
> 2(1 + |β|)

∣∣∣∣∣zf
′′

(z)

f ′(z)

∣∣∣∣∣ ,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1204 LASHIN ET AL 1200-1207



6 A. Y. LASHIN1 AND F.Z. EL-EMAM2

then we have

(2.9) <
(
f

′
(z)
)
> 0

Proof. We define the function p(z) by

(2.10) f
′
(z) =

2p(z)

1 + p(z)
.

Then we see that p(z) = 1 + 4βz + p2z
2 + ..., is analytic in U,P (0) = 1, P (z) 6=

0 (z ∈ U). If there exists a point z0 ∈ U, such that

< (p(z)) > 0 for |z| < |z0| and < (p(z0)) = 0.

Then applying Lemma 1, for the case p(z0) = ia and a > 0, we have

(2.11)
z0p

′
(z0)

p(z0)
= ik,

where k is real number and

(2.12) k ≥ 1

1 + 2 |β|

(
a+

1

a

)
.

The calculations give

1 + z0f
′′
(z0)

f ′ (z0)∣∣∣ z0f ′′ (z0)

f ′ (z0)

∣∣∣ =
1 + z0p

′
(z0)

p(z0)

(
1− p(z0)

1+p(z0)

)
∣∣∣ z0p′ (z0)p(z0)

(
1− p(z0)

1+p(z0)

)∣∣∣ .
Therefore, by (2.11) and (2.12), we have

<

1 + z0f
′′
(z0)

f ′ (z0)∣∣∣ z0f ′′ (z0)

f ′ (z0)

∣∣∣
 = <

1 + ik(1− ia
1+ia )∣∣∣ik(1− ia

1+ia )
∣∣∣


=

√
1 + a2

|k|

(
(1 + a2) + ak

1 + a2

)
(k > 0)

<

√
1 + a2

1
1+2|β|

(
a+ 1

a

) +
a√

1 + a2
=

2 (1 + |β|) a√
1 + a2

< 2 (1 + |β|)

This contradicts the hypothesis (2.8) and therefore, we have

(2.13) < (p(z)) > 0 for |z| < 1.

Applying the same method as above, for the case p(z0) = −ia and a > 0, we can
obtain,

<

1 + z0f
′′
(z0)

f ′ (z0)∣∣∣ z0f ′′ (z0)

f ′ (z0)

∣∣∣
 =

√
1 + a2

|k|

(
(1 + a2)− ak

1 + a2

)
(k < 0)

=

√
1 + a2

|k|
+

a√
1 + a2

< 2 (1 + |β|) .

This contradicts the hypothesis (2.8) , So we have (2.13). Furthermore,

<

(
zf

′
(z)

f(z)

)
= <

(
2p(z)

1 + p(z)

)
> 0 (see [13])
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It completes the proof . �

Theorem 5. If f ∈ A(β) defined by (1.1) satisfies

(2.14) <

(
zf

′
(z)

f(z)

)
>

(
2 + |β|

4

) ∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ ,
then we have

(2.15) <
(
f(z)

z

)
> 0

Proof. The following equation

(2.16)
f(z)

z
= p(z).

Defines the function p(z) = 1 + βz + p2z
2 + ..., is analytic in U,P (0) = 1, P (z) 6=

0 (z ∈ U) . If there exists a point z0 ∈ U, such that

< (p(z)) > 0 for |z| < |z0| and < (p(z0)) = 0.

Then applying Lemma 1, for p(z0) = ±ia and a > 0, we have

(2.17)
z0p

′
(z0)

p(z0)
= ik,

where the real number k is given by (1.2). The calculations give

z0f
′
(z0)

f(z0)∣∣∣ z0f ′ (z0)
f(z0)

− 1
∣∣∣ =

1 + z0p
′
(z0)

p(z0)∣∣∣ z0p′ (z0)p(z0)

∣∣∣ =
1 + ik

|k|
.

Therefore, by (2.17) and (1.2), we have

<

 z0f
′
(z0)

f(z0)∣∣∣ z0f ′ (z0)
f(z0)

− 1
∣∣∣
 =

1

|k|
<

a
2

2+|β| (a
2 + 1)

<
2 + |β|

4

This contradicts the hypothesis (2.14) and therefore, we have

< (p(z)) > 0 for |z| < 1.

�
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Abstract

The purpose of this article is to establish a kind of non-convex hybrid iteration

algorithms and to prove relevant strong convergence theorems of common fixed points

for a uniformly closed asymptotically family of countable quasi-Lipschitz mappings

in Hilbert spaces. We establish a new non-convex hybrid algorithm and prove strong

convergence theorem of common fixed points for a uniformly closed asymptotically

family of countable quasi-Lipschitz mappings in the domains of Hilbert spaces.

2010 Mathematics Subject Classification: 47H05, 47H09, 47H10

Key words and phrases: hybrid algorithm, nonexpansive mapping, quasi-Lipschitz

mapping, quasi-nonexpansive mapping

1 Introduction

In mathematics, a fixed point theorem is a result saying that a function f will have at

least one fixed point (a point x for which f(x) = x), under some conditions on f that can
be stated in general terms [3]. Results of this kind are amongst the most generally useful

in mathematics [7].

∗ Corresponding author
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The Banach fixed point theorem gives a general criterion guaranteeing that, if it is

satisfied, the procedure of iterating a function yields a fixed point [6]. By contrast, the
Brouwer fixed point theorem is a non-constructive result: it says that any continuous

function from the closed unit ball in n-dimensional Euclidean space to itself must have
a fixed point [24] but it doesn’t describe how to find the fixed point (See also Sperner’s
lemma). For example, the cosine function is continuous in [−1, 1] and maps it into [−1, 1],

and thus must have a fixed point. This is clear when examining a sketched graph of the
cosine function; the fixed point occurs where the cosine curve y = cos(x) intersects the

line y = x. Numerically, the fixed point is approximately x = 0.73908513321516 (thus
x = cos(x) for this value of x). The Lefschetz fixed point theorem [11] (and the Fenchel-

Nielsen fixed point theorem) [4] from algebraic topology is notable because it gives, in
some sense, a way to count fixed points. There are a number of generalisations to Banach

fixed point theorem and further; these are applied in partial differential equation theory.
See fixed point theorems in infinite-dimensional spaces. The collage theorem in fractal

compression proves that, for many images, there exists a relatively small description of
a function that, when iteratively applied to any starting image, rapidly converges on the
desired image [1].

Fixed point theory of special mappings like nonexpansive, asymptotically nonexpan-
sive, contractive and other mappings is an active area of interest and finds applications

in many related fields like image recovery, signal processing and geometry of objects [23].
From time to time, some versions of theorems relating to fixed points of functions of spe-

cial nature keep on appearing in almost in all branches of mathematics. Consequently, we
apply them in industry, toy making, finance, aircrafts and manufacturing of new model

cars. For example, a fixed point iteration scheme has been applied in intensity modu-
lated radiation therapy optimization to pre-compute dose-deposition coefficient matrix,
see [22]. Because of its vast range of applications almost in all directions, the research in

it is moving rapidly and an immense literature is present currently.

The Construction of fixed point theorems (e.g., Banach fixed point theorem) which

not only claim the existence of a fixed point but yield an algorithm, too (in the Banach
case fixed point iteration xn+1 = f(xn)). Any equation that can be written as x = f(x)

for some map f that is contracting with respect to some (complete) metric on X will
provide such a fixed point iteration. Mann’s iteration method was the stepping stone in

this regard and is invariably used in most of the occasions see [?]. But it only ensures
weak convergence, see [5] but more often then not, we require strong convergence in many
real world problems relating to Hilbert spaces, see [2]. So mathematician are in search

for the modifications of the Mann’s process to control and ensure the strong convergence,
(see [10, 15, 17–20], and references therein).

First noticeable modification of Mann’s Iteration process was suggested by Nakajo
and Takahashi [16] in 2003. They introduced this modification for only one nonexpansive

mapping in the context of Hilbert spaces where as Kim and Xu [9] introduced a vari-
ant for asymptotically nonexpansive mapping in the same context in 2006. In the same

year Martinez-Yanes and Xu [14] introduced a variant of the Ishikawa Iteration process
for a nonexpansive mapping. They also gave variant of Halpern iteration method. Su
and Qin [21] proposed a monotone hybrid iteration process for nonexpansive mapping

in a Hilbert space. Liu et al. [12] proposed a novel iteration method for finite family of
quasi-asymptotically pseudo-contractive mapping in the realm of Hilbert spaces. Guan et
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al. [8] established the first non-convex hybrid algorithm and proved some strong conver-

gence results relating to common fixed points for a uniformly closed asymptotic family of
countable quasi-Lipschitz mappings in H.

In this article, we establish a non-convex hybrid algorithms corresponding to Picard
iteration scheme. Then we also establish strong convergence theorem of common fixed

points for uniformly closed asymptotically family of countable quasi-Lipschitz mappings
in Hilbert spaces. Applications of this algorithm is also given.

2 Preliminaries

Let H be the fixed notation for a Hilbert space and C be a nonempty closed convex subset

of H . First we recall some basic definitions that will accompany us throughout this paper.

Let Pc(·) be the metric projection onto C. A mapping T : C → C is said to be

nonexpensive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. And T : C → C is said to be
quasi-Lipschitz if Fix(T ) 6= φ and For all p ∈ Fix(T ), ‖Tx− p‖ ≤ L‖x− p‖, where L is a

constant 1 ≤ L < ∞.

If L = 1, then T is known as quasi-nonexpansive. It is well-known that T is said to be

closed if for n → ∞, xn → x and ‖Txn − xn‖ → 0 implies Tx = x. T is said to be weak

closed if xn ⇀ x and ‖Txn − xn‖ → 0 implies Tx = x as n → ∞. It is admitted fact that

a mapping which is weak closed should be closed but converse is no longer true.

Let {Tn} be a sequence of mappings having the nonempty fixed points set F . Then

{Tn} is defined to be uniformly closed if for all convergent sequences {zn} ⊂ C with
conditions ‖Tnzn − zn‖ → 0, n → ∞ implies the limit of {zn} belongs to F.

Definition 2.1. Let C be a closed convex subset of a Hilbert space H and let {Tn} be a

family of countable quasi-Ln-Lipschitz mapping from C into itself. Then {Tn} is said to
be asymptotic if limn→∞ Ln = 1.

Lemma 2.2. Let C be a non-empty closed subset of a Hilbert space H. For x ∈ H and

z ∈ C, z = PCx if and only if we have 〈x − z, z − y〉 ≥ 0 for all y ∈ C.

Lemma 2.3. ([8]) Let C be a closed convex subset of a Hibbert space H and let {Tn} be

a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mapping from C

into itself. Then the common fixed point set F is closed and convex.

Lemma 2.4. Let C be a closed convex subset of a Hilbert space H, for any given x ∈ H.

Then we have p = PCx0 if and only if 〈p − z, x0 − p〉 ≥ 0 for all z ∈ C.

3 Main Results

This section contains main results.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H and let {Tn} be

uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from C

into itself. Suppose that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N . Then {xn} generated
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by



















































x0 ∈ C = Q0, choosen arbitrarily,

yn = Tnzn, n ≥ 0,

zn = (1− αn)Tnxn + αnTntn, n ≥ 0,

tn = (1− βn) + βnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ L2
n(1 + (Ln − 1)αnβn)‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. We give our proof in following steps.

Step 1. We know that coCn and Qn are closed and convex for all n ≥ 0. Next, we

show that F ∩ A ⊂ coCn for all n ≥ 0. Indeed, for each p ∈ F ∩ A, we have

‖yn − p‖ = ‖Tnzn − p‖

= ‖Tn[(1− αn)Tnxn + αnTntn] − p‖

= ‖Tn[(1− αn)Tnxn + αnTn((1− βn) + βnTnxn)]− p‖

= ‖(1− αnβn)(T 2
nxn − p) + (αnβn)(T 3

nxn)‖

≤ (1− αnβn)‖T 2
nxn − p‖+ (αnβn)‖T 3

nxn‖

= L2
n(1 + (Ln − 1)αnβn)‖xn − p‖

and p ∈ A, so p ∈ Cn which implies that F ∩A ⊂ Cn for all n ≥ 0. therefore, F ∩A ⊂ coCn

for all n ≥ 0.

Step 2. We show that F ∩ A ⊂ coCn ∩ Qn for all n ≥ 0. it suffices to show that

F ∩ A ⊂ Qn for all n ≥ 0. We prove this by mathematical induction. For n = 0 we have
F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since xn+1 is the projection of x0 onto

coCn ∩ Qn, from Lemma 2.2, we have

〈xn+1 − z, xn+1 − x0〉 ≤ 0, ∀z ∈ coCn ∩ Qn

as F ∩ A ⊂ coCn ∩ Qn, the last inequality holds, in particular, for all z ∈ F ∩ A. This
together with the definition of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence the F ∩ A ⊂
coCn ∩ Qn holds for all n ≥ 0.

Step 3. We prove {xn} is bounded. Since F is a nonempty, closed, and convex subset
of C, there exists a unique element z0 ∈ F such that z0 = PF x0. From xn+1 = PcoCn∩Qn

x0,

we have

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ coCn ∩ Qn. As z0 ∈ F ∩ A ⊂ coCn ∩ Qn, we get

‖xn+1 − x0‖ ≤ ‖z0 − x0‖

for each n ≥ 0. This implies that {xn} is bounded.
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Step 4. We show that {xn} converges strongly to a point of C (we show that {xn} is

a cauchy sequence). As xn+1 = PcoCn∩Qn
x0 ⊂ Qn and xn = PQn

x0 (Lemma 2.4), we have

‖xn+1 − x0‖ ≥ ‖xn − x0‖

for every n ≥ 0, which together with the boundedness of ‖xn−x0‖ implies that there exsists

the limit of ‖xn−x0‖. On the other hand, from xn+m ∈ Qn, we have 〈xn−xn+m, xn−x0〉 ≤
0 and hence

‖xn+m − xn‖
2 = ‖(xn+m − x0) − (xn − x0)‖

2

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+m − xn, xn − x0〉

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 → 0, n → ∞

for any m ≥ 1. Therefore {xn} is a cauchy sequence in C, then there exists a point q ∈ C

such that limn→∞ xn = q.
Step5. We show that yn → q, as n → ∞. Let

Dn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + L4
n(Ln − 1)(Ln + 1)}.

From the definition of Dn, we have

Dn = {z ∈ C : 〈yn − z, yn − z〉 ≤ 〈xn − z, xn − z〉 + L4
n(Ln − 1)(Ln + 1)}

= {z ∈ C : ‖yn‖
2 − 2〈yn, z〉+ ‖z‖2 ≤ ‖xn‖

2 − 2〈xn, z〉+ ‖z‖2

+ L4
n(Ln − 1)(Ln + 1)}

= {z ∈ C : 2〈xn − yn, z〉 ≤ ‖xn‖
2 − ‖yn‖

2 + L4
n(Ln − 1)(Ln + 1)}

This shows that Dn is convex and closed, n ∈ Z
+ ∪ {0}.

Next, we want to prove that Cn ⊂ Dn, n ≥ 0.

In fact, for any z ∈ Cn, we have

‖yn − z‖2 ≤ [L2
n(1 + (Ln − 1)αnβn)]2‖xn − z‖2

= ‖xn − z‖2L4
n + L4

n[2(Ln − 1)αnβn + (Ln − 1)2α2
nβ2

n]‖xn − z‖2

≤ ‖xn − z‖2L4
n + L4

n[2(Ln − 1) + (Ln − 1)2]‖xn − z‖2

= ‖xn − z‖2L4
n + L4

n(Ln − 1)(Ln + 1)‖xn − z‖2.

From

Cn = {z ∈ C : ‖yn − z‖ ≤ [L2
n(1 + (Ln − 1)αnβn)]‖xn − z‖} ∩ A, n ≥ 0,

we have Cn ⊂ A, n ≥ 0. Since A is convex, we also have coCn ⊂ A, n ≥ 0. Consider
xn ∈ coCn−1, we know that

‖yn − z‖ ≤ ‖xn − z‖2L4
n + L4

n(Ln − 1)(Ln + 1)‖xn − z‖2

≤ ‖xn − z‖2 + L4
n(ln − 1)(Ln + 1).

This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Since Dn is convex, we have
co(Cn) ⊂ Dn, n ≥ 0. Therefore

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + L4
n(Ln − 1)(Ln − 1) → 0
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as n → ∞. That is, yn → q as n → ∞.

Step 6. We show that q ∈ F . From the definition of yn, we have

(1 + αnβnTn)‖Tnxn − xn‖ = ‖yn − xn‖ → 0

as n → ∞. Since αn ∈ (a, 1] ⊂ [0, 1], from the above limit we have

lim
n

→ ∞‖Tnxn − xn‖ = 0.

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .

Step 7. We claim that q = z0 = PF x0, if not, we have that ‖x0−p‖ > ‖x0−z0‖. There
must exist a positive integer N , if n > N then ‖x0 − xn‖ > ‖x0 − z0‖, which leads to

‖z0 − xn‖
2 = ‖z0 − xn + xn − x0‖

2

= ‖z0 − xn‖
2 + ‖xn − x0‖

2 + 2〈z0 − xn, xn − x0〉.

It follows that 〈z0 − xn, xn − x0〉 < 0 which implies that z0∈Qn, so that z0∈F , this is
a contradiction. This completes the proof.

Now, we present an example of Cn which does not involve a convex subset.

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H , and let T be a closed

quasi-nonexpansive mapping from C into itself. Assume that αn ∈ (0, 1], and βn ∈ [0, 1]
for all n ∈ N . Then {xn} generated by



















































x0 ∈ C = Q0, choosen arbitrarily,

yn = Tzn, n ≥ 0,

zn = (1 − αn)Txn + αnTtn, n ≥ 0,

tn = (1 − βn) + βnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0

converges strongly to PF x0.

Proof. Take Tn ≡ T , Ln ≡ 1 in Theorem 3.1, in this case, Cn is convex and closed and ,

for all n ≥ 0, by using Theorem 3.1, we obtain Corollary 3.2.

Corollary 3.3. Let C be a closed convex subset of a Hilbert space H , and let T be a

nonexpansive mapping from C into itself. Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all

n ∈ N . Then {xn} generated by


















































x0 ∈ C = Q0, choosen arbitrarily,

yn = Tzn, n ≥ 0,

zn = (1 − αn)Txn + αnTtn, n ≥ 0,

tn = (1 − βn) + βnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0

converges strongly to PF x0.
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4 Applications

Here, we give an application of our result for the following case of finite family of asymp-
totically quasi-nonexpansive mappings {Tn}

N−1
n=0 . Let

‖T j
i x − p‖ ≤ ki,j‖x− p‖, ∀x ∈ C, p ∈ F,

where F is common fixed point set of {Tn}
N−1
n=0 , limj→∞ ki,j = 1 for all 0 ≤ i ≤ N − 1.

The finite family of asymptotically quasi-nonexpansive mappings {Tn}
N−1
n=0 is uniformly

L-Lipschitz if

‖T j
i x − T

j
i y‖ ≤ Li,j‖x − y‖, ∀x, y ∈ C

for all i ∈ {0, 1, 2, ..., N − 1}, j ≥ 1, where L ≥ 1.

Theorem 4.1. Let C be a closed convex subset of a Hilbert space H , and {Tn}
N−1
n=0 : C → C

be finite uniformly L-Lipschitz family of asymptotically quasi-nonexpansive mappings with

the nonempty common fixed point set F . Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all

n ∈ N . Then {xn} generated by






























































x0 ∈ C = Q0, choosen arbitrarily,

yn = T
j(n)
i(n)

zn, n ≥ 0,

zn = (1− αn)T
j(n)
i(n)

xn + αnT
j(n)
i(n)

tn, n ≥ 0,

tn = (1− βn) + βnT
j(n)
i(n) xn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ki(n),j(n)

(1 + (ki(n),j(n) − 1)αnβ)‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1, n = (j(n)− 1)N + i(n) for all n ≥ 0 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. We can drive the prove from the following two conclusions.
Conclusion 1 {TN−1

n=0 }∞n=0 is a uniformly closed asymptotically family of countable

quasi-Ln-Lipschitz mappings from C into itself.
Conclusion 2

F =
⋂N

n=0 F (Tn) =
⋂

∞

n=0 F (T
j(n)
i(n) ), where F (Tn) denotes the fixed point set of the map-

pings Tn.

Corollary 4.2. Let C be a closed convex subset of a Hilbert space H , and T : C → C be a

L-Lipschitz asymptotically quasi-nonexpansive mapping with the nonempty common fixed

point set F . Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N . Then {xn} generated

by


















































x0 ∈ C = Q0, choosen arbitrarily,

yn = T nzn, n ≥ 0,

zn = (1− αn)T nxn + αnT nzn, n ≥ 0,

tn = (1− βn) + βnT nxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ kn(1 + (kn − 1)αnβ)‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0
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converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1, A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. Take Tn ≡ T in Theorem 4.1, we get the desired result.
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SOME COMMON FIXED POINT THEOREMS IN
ω-ORBITALLY COMPLETE MODULAR METRIC SPACES

VIA C-CLASS FUNCTIONS AND APPLICATION

BAHMAN MOEINI1, ARSLAN HOJAT ANSARI2, CHOONKIL PARK3∗

Abstract. In this paper, some notions are introduced in modular metric spaces. Next
some common fixed points are established in ω-orbitally complete modular metric spaces
by employing C-class functions that extend and generalize the results of [10, 18]. Finally,
for usibility of our results an application is provided to show the existence of solutions for
certain system of integral equations.

1. Introduction

In 1976, Jungck [8] initiated a study of common fixed points of commuting mappings. On
the other hand, in 1982, Sessa [17] initiated the tradition of improving commutativity in fixed
point theorems by introducing the notion of weakly commuting maps in metric spaces. After
this, Jungck [7] gave the concept of weakly compatible mappings.

In 2008, Chistyakov [5] introduced the notion of modular metric spaces generated by F -
modular and developed the theory of this space. In 2010, Chistyakov [6] defined the notion of
modular on an arbitrary set and developed the theory of metric spaces generated by modular,
which are called the modular metric spaces. Recently, Mongkolkeha et al. [11,12] and Parya
et al. [14] have introduced some notions and established some fixed point results in modular
metric spaces. See [2, 4] for more information on fixed point results.

In this paper, some notions such as “ω-orbit, ω-orbitally complete modular metris space,
ω-asymptotically regular mapping” are introduced. Continuation, existence and uniqueness
results are proved for common fixed points of three self-mappings in ω-orbitally complete
modular metric spaces via C-class functions. Also, suitable examples are provided to demon-
strate the usability of the hypotheses of our results. Finally, these results are applied to prove
the existence of solutions of a system of integral equations.

2. Basic notions

Definition 2.1. [14] Let X be a vector space over R (or C). A functional ρ : X → [0,∞)
is called a modular if it satisfies the following three conditions:

(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1 and x, y ∈ X;

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y), whenever α, β ≥ 0 and α+ β = 1.
If we replace (iii) by

(iv) ρ(αx+ βy) ≤ αsρ(x) + βsρ(y) whenever α, β ≥ 0 and αs + βs = 1 with an s ∈ (0, 1],

Date: Received: xxxxxx; Revised: yyyyyy; Accepted: zzzzzz.
∗Corresponding author.
2010 Mathematics Subject Classification. Primary 47H10; 54H25.
Key words and phrases. ω-orbit, modular metric space, C-class function, common fixed point, system of

integral equations.
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then the modular ρ is called an s-convex modular and if s = 1, then ρ is called a convex
modular.

If ρ is modular in X, then the set, defined by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0+},
is called a modular space. Xρ is a vector subspace of X and it can be equipped with an
F -norm defined by setting

‖x‖ρ = inf{λ > 0 : ρ(
x

λ
) ≤ λ}, x ∈ X.

In addition, if ρ is convex, then the modular space Xρ coincides with

X∗ρ = {x ∈ X : ∃λ = λ(x) > 0 such that ρ(λx) <∞} (2.1)

and the functional ‖x‖∗ρ = inf{λ > 0 : ρ(xλ) ≤ 1} is an ordinary norm on X∗ρ which is
equivalent to ‖x‖ρ (see [13]).

Let X be a nonempty set and λ ∈ (0,∞). A function ω : (0,∞)×X ×X → [0,∞] will be
written as ωλ(x, y) = ω(λ, x, y) for all λ > 0 and x, y ∈ X.

Definition 2.2. [5] Let X be a nonempty set. A function ω : (0,∞) ×X ×X → [0,∞] is
said to be a modular metric on X if it satisfies the following three axioms:

(i) given x, y ∈ X, ωλ(x, y) = 0 for all λ > 0 if and only if x = y;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ > 0 and x, y, z ∈ X.

If, instead of (i), we have the condition
(i′) ωλ(x, x) = 0 for all λ > 0 and x ∈ X, then ω is said to be a (metric) pseudo modular on
X. Assume that ω satisfies (i′), (iii) and
(i′′) given x, y ∈ X, if there exists a number λ > 0, possibly depending on x and y, such that
ωλ(x, y) = 0, then x = y. Then ω is called a strict modular metric on X.

A modular (pseudo modular, strict modular) on X is said to be convex if, instead of (iii),
we replace the following condition:

(iv) ωλ+µ(x, y) � λ
λ+µωλ(x, z) + µ

λ+µωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

Clearly, if ω is a strict modular metric, then ω is a modular metric, which in turn implies
that ω is a pseudo modular metric on X, and similar implications hold for convex ω. The
essential property of a (pseudo) modular metric ω on a set X is as follows: given x, y ∈ X,
the function 0 < λ→ ωλ(x, y) ∈ [0,∞] is nonincreasing on (0,∞). In fact, if 0 < µ < λ, then
we have

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

It follows that at each point λ > 0 the right limit ωλ+0(x, y) := limε→+0 ωλ+ε(x, y) and the
left limit ωλ−0(x, y) := limε→+0 ωλ−ε(x, y) exist in [0,∞] and the following two inequalities
hold:

ωλ+0(x, y) ≤ ωλ(x, y) ≤ ωλ−0(x, y).

It can be checked that if x0 ∈ X, then the set

Xω = {x ∈ X : lim
λ→∞

ωλ(x, x0) = 0}

is a metric space, called a modular space, whose metric is given by

d0
ω = inf{λ > 0 : ωλ(x, y) ≤ λ} for all x, y ∈ Xω.

Moreover, if ω is convex, then the modular set Xω is equal to

X∗ω = {x ∈ X : ∃ λ = λ(x) > 0 such that ωλ(x, x0) <∞}
and metrizable by

d∗ω = inf{λ > 0 : ωλ(x, y) ≤ 1} for all x, y ∈ X∗ω.
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We know that if X is a real linear space, ρ : X → [0,∞) and

ωλ(x, y) = ρ(
x− y
λ

) for all λ > 0 and x, y ∈ X,

then ρ is modular (convex modular) on X if and only if ω is modular metric (convex modular
metric, respectively) on X.

On the other hand, assume that ω satisfies the following two conditions:

(i) ωλ(µx, 0) = ωλ
µ

(x, 0) for all λ, µ > 0 and x ∈ X;

(ii) ωλ(x+ z, y + z) = ωλ(x, y) for all λ > 0 and x, y, z ∈ X.

If we set ρ(x) = ω1(x, 0) with (2.1), x ∈ X, then Xρ = Xω is a linear subspace of X and the
functional ‖x‖ρ = d0

ω(x, 0), x ∈ Xρ, is an F -norm on Xρ. If ω is convex, then X∗ρ ≡ X∗ω = Xρ

is a linear subspace of X and the functional ‖x‖ρ = d∗ω(x, 0), x ∈ X∗ρ , is a norm on X∗ρ .
Similar assertions hold if we replace the word modular by pseudo modular. If ω is modular

metric in X, then the set Xω is called a modular metric space.
By the idea of property in metric spaces and modular spaces, we define the following:

Definition 2.3. Let Xω be a modular metric space.

(1) The sequence (xn)n∈N in Xω is said to be ω-convergent to x ∈ Xω if
ωλ(xn, x)→ 0 as n→∞ for all λ > 0.

(2) The sequence (xn)n∈N in Xω is said to be ω-Cauchy if
ωλ(xm, xn)→ 0 as m,n→∞ for all λ > 0.

(3) A subset C of Xω is said to be ω-closed with if the limit of a convergent sequence of
C always belongs to C.

(4) A subset C of Xω is said to be ω-complete if any ω-Cauchy sequence in C is a
convergent sequence and its limit is in C.

(5) A subset C of Xω is said to be ω-bounded if for all λ > 0
δω(C) = sup{ωλ(x, y);x, y ∈ C} <∞.

Example 2.4. Let (X, ‖.‖) be a norm space. Then a function ω : (0,∞)×X ×X → [0,∞],
defined by

ωλ(x, y) = ‖x− y‖, for all x, y ∈ X and λ > 0,

is a modular metric.

Example 2.5. Let (X, ‖.‖) be a norm space. Then a function ω : (0,∞)×X ×X → [0,∞]
defined by

ωλ(x, y) = ‖x− y
λ
‖k, for all x, y ∈ X, k ≥ 1 and λ > 0,

is a modular metric.

Example 2.6. Let

ρ(f) =

∫
Ω
ϕ(v, |f(v)|)dµ(v),

where µ is a σ-finite measure on Ω and ϕ : Ω × [0,∞) → [0,∞) satisfies the following
conditions:

(i) ϕ(v, u) is a continuous even function of u which is nondecreasing for u > 0, such that
ϕ(v, 0) = 0, ϕ(v, u) > 0 for u 6= 0 and ϕ(v, u)→∞ as u→∞.

(ii) ϕ(v, u) is a measurable function of v for each u ∈ R. The corresponding modular
space is called a Musielak-Orlicz (or a generalized Orlicz) modular function space
and is denoted by Lϕ. If ϕ does not depend on the first variable, then Lϕ is called
an Orlicz space. Then Lϕ is isomorphic to LP .

An example of functions which satisfy the above conditions is given by

ϕ(u) = |u|p, for p > 0.
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Now, if we define ω : (0,∞)×X ×X → [0,∞] by

ωλ(f, g) =

∫
Ω
ϕ(v, |f(v)− g(v)|)dµ(v),

where µ and ϕ satisfy the above coditions, then ω is a modular metric. Also, if
ω : (0,∞)×X ×X → [0,∞] is defined by

ωλ(f, g) =

∫
Ω
ϕ(v, |f(v)− g(v)

λ
|)dµ(v),

then ω is a modular metric.

In the following, we give some useful notions in modular metric space that will be needed
to prove our results.

Definition 2.7. Let Xω be a modular metric space. Let f, g be self-mappings of Xω. A
point x in Xω is called a coincidence point of f and g if and only if fx = gx. We shall call
w = fx = gx a point of coincidence of f and g.

Let C(f, S) and PC(f, S) denote the set of coincidence points and points of coincidence,
respectively, of the pair (f, S).

Definition 2.8. Let Xω be a modular metric space. Two self-mappings f and g of Xω are
said to be compatible if and only if limn→∞ ωλ(fSxn, Sfxn) = 0, whenever {xn} is a sequence
in Xω such that limn→∞ fxn = limn→∞ Sxn = z for some z ∈ Xω.

Definition 2.9. Let Xω be a modular metric space. Two self-mappings f and g of Xω are
said to be weakly compatible if they commute at coincidence points.

Lemma 2.10. Let Xω be a modular metric space and {yn} be a sequence in Xω such that
limn→∞ ωλ(yn, yn+1) = 0 for each λ > 0. If {yn} is not an ω-Cauchy sequence in Xω, then
there exist ε0 > 0, λ0 > 0 and two sequences {mi} and {ni} of positive integers such that

(i) mi > ni + 1 and ni →∞ as i→∞,
(ii) ω2λ0(ymi , yni) > ε0 and ω2λ0(ymi−1, yni) ≤ ε0, i = 1, 2, 3, · · · .

Proof. If {yn} is not an ω-Cauchy sequence in Xω, then there exist ε0 > 0, λ0 > 0 such that
for each positive integers i, there exist positive integers mi, ni with mi > ni such that

ω2λ0(ymi , yni) > ε0. (2.2)

For i = 1, 2, ..., let mi be the least positive integer exceeding ni satisfying (2.2), that is,
for i = 1, 2, ...,

ω2λ0(ymi , yni) > ε0, ω2λ0(ymi−1, yni) ≤ ε0.
Since limi→∞ ωλ(yni , yni+1) = 0 for all λ > 0, ω2λ0(yni , yni+1) ≤ ε0 and thus
mi > ni + 1 and ni →∞ as i→∞. �

In the following, we present C-class functions and some examples of them.

Definition 2.11. [3] A mapping F : [0,∞)2 → R is called a C-class function if it is
continuous and satisfies the following axioms:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0,∞).

Note for some F we have that F (0, 0) = 0.
We denote the set of C-class functions by C.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1220 BAHMAN MOEINI ET AL 1217-1228



FIXED POINT THEOREMS IN ω-ORBITALLY MODULAR METRIC SPACES

Example 2.12. [3] The following functions F : [0,∞)2 → R are elements of C, for all
s, t ∈ [0,∞):

(1) F (s, t) = s− t, F (s, t) = s⇒ t = 0;
(2) F (s, t) = ms, 0<m<1, F (s, t) = s⇒ s = 0;
(3) F (s, t) = s

(1+t)r ; r ∈ (0,∞), F (s, t) = s ⇒ s = 0 or t = 0;

(4) F (s, t) = log(t+ as)/(1 + t), a > 1, F (s, t) = s ⇒ s = 0 or t = 0;
(5) F (s, t) = ln(1 + as)/2, a > e, F (s, t) = s ⇒ s = 0;

(6) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞), F (s, t) = s ⇒ t = 0;
(7) F (s, t) = s logt+a a, a > 1, F (s, t) = s⇒ s = 0 or t = 0;

(8) F (s, t) = s− (1+s
2+s)(

t
1+t), F (s, t) = s⇒ t = 0;

(9) F (s, t) = sβ(s), β : [0,∞)→ [0, 1), and is continuous, F (s, t) = s⇒ s = 0;
(10) F (s, t) = s− t

k+t , F (s, t) = s⇒ t = 0;

(11) F (s, t) = s − ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a continuous
function such that ϕ(t) = 0⇔ t = 0;

(12) F (s, t) = sh(s, t), F (s, t) = s⇒ s = 0, here h : [0,∞)×[0,∞)→ [0,∞) is a continuous
function such that h(t, s) < 1 for all t, s > 0;

(13) F (s, t) = s− (2+t
1+t)t, F (s, t) = s⇒ t = 0;

(14) F (s, t) = n
√

ln(1 + sn), F (s, t) = s⇒ s = 0;
(15) F (s, t) = φ(s), F (s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a continuous function

such that φ(0) = 0, and φ(t) < t for t > 0;
(16) F (s, t) = s

(1+s)r ; r ∈ (0,∞), F (s, t) = s ⇒ s = 0.

Definition 2.13. [9] A function ψ : [0,∞) → [0,∞) is called an altering distance function
if the following properties are satisfied:

(i) ψ is nondecreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

Remark 2.14. We denote by Ψ the set of altering distance functions.

Definition 2.15. [3] An ultra altering distance function is a continuous, nondecreasing
mapping ϕ : [0,∞)→ [0,∞) such that ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Remark 2.16. We denote by Φu the set of ultra altering distance functions.

Definition 2.17. A tripled (ψ,ϕ, F ) where ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C, is said to be monotone
if for all x, y, z, t ∈ [0,∞)

x 6 y =⇒ F (ψ(x), ϕ(x)) 6 F (ψ(y), ϕ(y)).

Example 2.18. Let F (s, t) = s− t, ϕ(x) =
√
x and

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2 if x > 1.

Then (ψ,ϕ, F ) is monotone.

Example 2.19. Let F (s, t) = s− t, ϕ(x) = x2 and

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2 if x > 1.

Then (ψ,ϕ, F ) is not monotone.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1221 BAHMAN MOEINI ET AL 1217-1228



B. MOEINI, A.H. ANSARI, C. PARK

3. Main results

In this section, we present and introduce some notions in modular metric spaces which
extend the same notions of Phaneendra [15], Sastry et al. [16], Aamri and Mountawaki [1].
Next by idea of Liu et al. [10] and Swatmaram et al. [18] and using C-class functions, some
common fixed point theorems will be established in ω

Definition 3.1. Let Xω be a modular metric space. For given x0 ∈ Xω and self-mappings
f, S and T on Xω, if there exists a sequence {xn}∞n=0 in Xω such that

Sx2n = fx2n+1, Tx2n+1 = fx2n+2,

then O(S, T, f, x0) = {fxn : n = 0, 1, 2, · · · } is called an (S, T )-ω-orbit at x0 with respect to
f .

Definition 3.2. The space Xω is called ω-orbitally complete at x0 if and only if every ω-
Cauchy sequence in O(S, T, f, x0) converges in Xω.

Definition 3.3. The pair (S, T ) is ω-asymptotically regular at x0 with respect to f if
there exists a sequence {xn}∞n=0 in Xω such that Sx2n = fx2n+1, Tx2n+1 = fx2n+2 and
ωλ(fxn, fxn+1)→ 0 as n→∞ for all λ > 0.

Definition 3.4. Self-mappings f and S satisfy property (E.A) if there exists a sequence
{xn}∞n=1 in Xω such that limn→∞ ωλ(fxn, z) = limn→∞ ωλ(Sxn, z) = 0 for some z ∈ Xω and
all λ > 0.

Theorem 3.5. Let f, S and T be self-mappings on a modular metric space Xω satisfying the
inequality

ψ(ωλ(Sx, Ty) ≤ F
(
ψ(M(x, y)), ϕ(W (M(x, y)))

)
, ∀λ > 0, (3.1)

for all x, y ∈ Xω, where ψ ∈ Ψ, ϕ ∈ Φu, F ∈ C,

M(x, y) = max{ωλ(fx, fy), ωλ(fx, Sx), ωλ(fy, Ty), ωλ(fx, Ty), ωλ(fy, Sx)}

and W : [0,∞)→ [0,∞) is a continuous mapping such that W (t) < t for t > 0.
Suppose that

(a) either (f, S) or (f, T ) satisfies the property (E.A);
(b) f(Xω) is an ω-orbitally complete subspace of Xω;
(c) (f, S) or (f, T ) is weakly compatible.

Then f, S and T have a unique common fixed point.

Proof. By the property (E.A) for the pair (f, S), we have

lim
n→∞

ωλ(fxn, z) = lim
n→∞

ωλ(Sxn, z) = 0, for some z ∈ Xρ and all λ > 0. (3.2)

Let limn→∞ ωλ(Txn, p) = 0 for all λ > 0. Now we prove that p = z. By using (3.1) for
x = xn and y = xn, we have

ψ(ωλ(Sxn, Txn) ≤ F
(
ψ(max{ωλ(fxn, fxn), ωλ(fxn, Sxn),

ωλ(fxn, Txn), ωλ(fxn, Txn), ωλ(fxn, Sxn)}),
ϕ(W (max{ωλ(fxn, fxn), ωλ(fxn, Sxn),

ωλ(fxn, Txn), ωλ(fxn, Txn), ωλ(fxn, Sxn)}))
)
, ∀λ > 0.
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Applying the limit as n→∞ and then using (3.2), we get

ψ(ωλ(z, p) ≤ F
(
ψ(max{0, 0, ωλ(z, p), ωλ(z, p), 0}), ϕ(W (max{0, 0, ωλ(z, p), ωλ(z, p), 0)})

)
= F

(
ψ(ωλ(z, p)), ϕ(W (ωλ(z, p))

)
≤ ψ(ωλ(z, p)), ∀λ > 0

and so, for all λ > 0, ψ(ωλ(z, p)) = 0 or ϕ(W (ωλ(z, p))) = 0. Thus z = p and hence

lim
n→∞

ωλ(fxn, z) = lim
n→∞

ωλ(Sxn, z) = lim
n→∞

ωλ(Txn, z) = 0, ∀λ > 0. (3.3)

(3.3) can also be obtained in similar lines whenever (f, T ) satisfies the property (E.A). From
the ω-orbital completeness f(Xω), we see that z ∈ f(Xω) so that z = fu for some u ∈ Xω.
Now, taking x = u and y = xn in (3.1), we get

ψ(ωλ(Su, Txn) ≤ F
(
ψ(max{ωλ(fu, fxn), ωλ(fu, Su),

ωλ(fxn, Txn), ωλ(fu, Txn), ωλ(fxn, Su)}),
ϕ(W (max{ωλ(fu, fxn), ωλ(fu, Su),

ωλ(fxn, Txn), ωλ(fu, Txn), ωλ(fxn, Su)}))
)
, ∀λ > 0.

Applying the limit as n→∞ and then using (3.3) and fu = z, we get

ψ(ωλ(Su, fu) ≤ F
(
ψ(max{0, ωλ(fu, Su), 0, 0, ωλ(fu, Su)}),

ϕ(W (max{0, ωλ(fu, Su), 0, 0, ωλ(fu, Su)})
)

= F
(
ψ(ωλ(fu, Su)), ϕ(W (ωλ(fu, Su))

)
≤ ψ(ωλ(fu, Su)), ∀λ > 0

and so, for all λ > 0, ψ(ωλ(fu, Su)) = 0 or ϕ(W (ωλ(fu, Su))) = 0. Therefore, fu = Su = z.
Then from the weak compatibility of (f, S), we see that fSu = Sfu or fz = Sz.
Again letting x = y = z in (3.1) and using fz = Sz, we obtain

ψ(ωλ(Sz, Tz) ≤ F
(
ψ(ωλ(Sz, Tz)), ϕ(W (ωλ(Sz, Tz))

)
≤ ψ(ωλ(Sz, Tz)), ∀λ > 0.

That is,

fz = Sz = Tz. (3.4)

Again, taking x = xn, y = z in (3.1), we get

ψ(ωλ(Sxn, T z) ≤ F
(
ψ(max{ωλ(fxn, fz), ωλ(fxn, Sxn),

ωλ(fz, Tz), d(fxn, T z), ωλ(fz, Sxn)}),
ϕ(W (max{ωλ(fxn, fz), ωλ(fxn, Sxn),

ωλ(fz, Tz), ωλ(fxn, T z), ωλ(fz, Sxn)}))
)
, ∀λ > 0.

As n→∞, this along with (3.3) and (3.4) implies that

ψ(ωλ(z, Tz) ≤ F
(
ψ(ωλ(z, Tz)), ϕ(W (ωλ(z, Tz))

)
≤ ψ(ωλ(z, Tz)), ∀λ > 0.

That is, z = Tz. Thus z is a common fixed point of self-mappings f, S and T .
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On the other hand, with minor changes in the above proof, we can prove that fu = Tu = z.
Suppose that the pair (f, T ) is weakly compatible. Then fTu = Tfu or fz = Tz. Proceeding
as in the previous steps, we get that fz = Tz = Sz = z.

Let z, z′ be two common fixed points of f, S and T . Then from (3.1) with x = z and y = z,
we get

ψ(ωλ(z, z′) = ψ(ωλ(Sz, Tz′) ≤ F
(
ψ(max{ωλ(fz, fz′), ωλ(fz, Sz),

ωλ(fz′, T z′), ωλ(fz, Tz′), ωλ(fz′, Sz)}),
ϕ(W (max{ωλ(fz, fz′), ωλ(fz, Sz),

ωλ(fz′, T z′), ωλ(fz, Tz′), ωλ(fz′, Sz)}))
)
, ∀λ > 0,

and thus

ψ(ωλ(z, z′) ≤ F
(
ψ(ωλ(z, z′)), ϕ(W (ωλ(z, z′))

)
≤ ψ(ωλ(z, z′)), ∀λ > 0,

which implies that z = z′. Hence the fixed point is unique. �

With the same proof of Theorem 3.5, we have the following corollaries.

Corollary 3.6. If in Theorem 3.5, we replace (3.1) with

ψ(ωλ(Sx, Ty)) ≤ F
(
ψ(M(x, y)−W (M(x, y))), ϕ(M(x, y)−W (M(x, y)))

)
, ∀λ > 0,

then f, S and T have a unique common fixed point.

Corollary 3.7. If in Theorem 3.5, we replace (3.1) with

ψ(ωλ(Sx, Ty)) ≤ F
(
ψ(M(x, y)), ϕ(M(x, y))

)
, ∀λ > 0,

then f, S and T have a unique common fixed point.

Theorem 3.8. Let f, S and T be self-mappings on a modular metric space Xω satisfying the
inequality

ψ(ωλ(Sx, Ty) ≤ F
(
ψ(N(x, y)), ϕ(N(x, y))

)
, ∀λ > 0, (3.5)

for all x, y ∈ Xω, where ψ ∈ Ψ, ϕ ∈ Φu, F ∈ C, such that (ψ,ϕ, F ) is monotone and

N(x, y) = max{ω2λ(fx, fy), ω2λ(fx, Sx), ω2λ(fy, Ty), ω2λ(fx, Ty), ω2λ(fy, Sx)}.
Suppose that at some x0 ∈ Xω,

(a) the pair (S, T ) is ω-asymptotically regular with respect to f ;
(b) the space Xω is ω-orbitally complete;
(c) (f, S) or (f, T ) is a commuting pair.

Then f, S and T have a unique common fixed point.

Proof. Since (S, T ) is ω-asymptotically regular with respect to f at x0, there exists a sequence
{xn} in Xω such that

Sx2n = fx2n+1, Tx2n+1 = fx2n+2 for n = 0, 1, 2, · · ·
and

ωλn = ωλ(fxn, fxn+1)→ 0 as n→∞, ∀λ > 0. (3.6)

We will show that {fxn} is an ω-Cauchy sequence. Suppose that the result is not true.
Then there exist ε0 > 0, λ0 > 0 and two sequences {mi} and {ni} of positive integers such
that
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(A) mi > ni + 1 and ni →∞ as i→∞,
(B) ω2λ0(fxmi , fxni) > ε0 and ω2λ0(fxmi−1, fxni) ≤ ε0, i = 1, 2, 3, · · · .
We have

ε0 < ω2λ0(fxmi , fxni) ≤ ωλ0(fxmi , fxni+1) + ωλ0(fxni+1, fxni). (3.7)

Then

ε0 ≤ ωλ0(fxmi , fxni+1), as i→∞. (3.8)

Now consider ωλ0(fxmi , fxni+1) in (3.7) and assume that both mi and ni are even. Then by
(3.5), we get

ψ(ωλ0(fxni+1, fxmi)) = ψ(ωλ0(Sxni , Txmi−1))

≤ F
(
ψ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , Sxni), ω2λ0(fxmi−1, Txmi−1),

ω2λ0(fxni , Txmi−1), ω2λ0(fxmi−1, Sxni)}),
ϕ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , Sxni), ω2λ0(fxmi−1, Txmi−1),

ω2λ0(fxni , Txmi−1), ω2λ0(fxmi−1, Sxni)})
)

= F
(
ψ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , fxni+1), ω2λ0(fxmi−1, fxmi),

ω2λ0(fxni , fxmi), ω2λ0(fxmi−1, fxni+1)}),
ϕ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , fxni+1), ω2λ0(fxmi−1, fxmi),

ω2λ0(fxni , fxmi), ω2λ0(fxmi−1, fxni+1)})
)

≤ F
(
ψ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , fxni+1), ω2λ0(fxmi−1, fxmi),

ωλ0(fxni , fxni+1) + ωλ0(fxni+1, fxmi), ωλ0(fxmi−1, fxmi) + ωλ0(fxni+1, fxmi)}),
ϕ(max{ω2λ0(fxni , fxmi−1), ω2λ0(fxni , fxni+1), ω2λ0(fxmi−1, fxmi),

ωλ0(fxni , fxni+1) + ωλ0(fxni+1, fxmi), ωλ0(fxmi−1, fxmi) + ωλ0(fxni+1, fxmi)})
)
.

By (3.6), (B), (3.8) and taking limit as i→∞, we get

lim
i→∞

ψ(ωλ0(fxni+1, fxmi))

≤ lim
i→∞

F
(
ψ(max{ε0, 0, 0, ωλ0(fxni+1, fxmi), ωλ0(fxni+1, fxmi)}),

ϕ(max{ε0, 0, 0, ωλ0(fxni+1, fxmi), ωλ0(fxni+1, fxmi)})
)

≤ lim
i→∞

F
(
ψ(ωλ0(fxni+1, fxmi)), ϕ(ωλ0(fxni+1, fxmi))

)
≤ lim

i→∞
ψ(ωλ0(fxni+1, fxmi)).

Thus

lim
i→∞

ψ(ωλ0(fxni+1, fxmi)) = 0 or lim
i→∞

ϕ(ωλ0(fxni+1, fxmi)) = 0

and so limi→∞ ωλ0(fxni+1, fxmi) = 0 and then by (3.8) we conclude that ε0 = 0, which is
a contradiction. Hence {fxn} is an ω-Cauchy sequence. Thus by the ω-orbital complete-
ness of Xω at x0, we can find some z ∈ Xω such that limn→∞ fx2n+1 = limn→∞ Sx2n =
limn→∞ fx2n+2 = limn→∞ Tx2n+1 = z, which immediately implies that the pairs (f, T ) and
(S, T ) satisfy the property (E.A). Also every commuting pair is weakly compatible. Since
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the function 0 < λ→ ωλ(x, y) ∈ [0,∞] is nonincreasing on (0,∞), N(x, y) ≤ M(x, y) for all
x, y ∈ Xω and hence

ψ(ωλ(Sx, Ty) ≤ F
(
ψ(N(x, y)), ϕ(N(x, y))

)
≤ F

(
ψ(M(x, y)), ϕ(M(x, y))

)
, ∀λ > 0,

for all x, y ∈ Xω. Therefore, by Corollary 3.7, f, S and T have a unique common fixed
point. �

Example 3.9. Let X = [0, 1) ∪ {2} and ω : (0,∞)×X ×X → [0,∞] be defined by

ωλ(x, y) = |x−y|
λ for all λ > 0.

Then Xω is an ω-complete modular metric space.
Define f, S, T : Xω → Xω by Sx = Tx = 1

3x, fx = x for x ∈ X, F (s, t) = s− t, ψ(t) = 2t

and ϕ(t) = t. Take x0 = 2 and w(t) = 1
2 t for t ≥ 0. Then O(x0, S, T, f) = { 2

3n : n =
0, 1, 2, · · · }, f(Xω) = Xω is ω-orbitally complete at x0, (f, S) or (f, T ) satisfy the property
(E.A), (f, S) or (f, T ) is weakly compatible and for all x, y ∈ Xω, we have

ψ(ωλ(Sx, Ty)) =
2

3λ
|x− y| ≤ 3

2λ
max{|x− y|, 2

3
x,

2

3
y, |x− 1

3
y|, |y − 1

3
x|}

= F
(
ψ(M(x, y)), ϕ(W (M(x, y)))

)
.

Therefore, all the conditions of Theorem 3.5 are satisfied and x = 0 is the unique common
fixed point of f, S and T .

4. Application to systems of integral equations

Consider the following system of integral equations:{
u(a) =

∫ A
0 k1(a, b, u(b))db+ q(a),

u(a) =
∫ A

0 k2(a, b, u(b))db+ q(a),
(4.1)

a ∈ J = [0, A], where A > 0. The purpose of this section is to give an existence theorem for
a solution of the system (4.1) by using Theorem 3.5.

Let X := C(J,Rn) with the usual supremum norm, i.e., ‖x‖X = maxa∈J ‖x(a)‖ for x ∈
C(J,Rn). Define ω : (0,∞)×X ×X → [0,∞] by ωλ(x, y) = maxa∈J

‖x(a)−y(a)‖
λ . Then it can

be checked that Xω is an ω-complete modular metric space.
Define f, S, T : Xω → Xω by

fx(a) = x(a), Sx(a) =

∫ A

0
k1(a, b, x(b))db+ q(a), a ∈ [0, A],

and

Tx(a) =

∫ A

0
k2(a, b, x(b))db+ q(a), a ∈ [0, A].

Theorem 4.1. Consider the integral equations (4.1). Assume the following hypotheses:

(i) K1,K2 : [0, A]× [0, A]×Rn → Rn and q : [0, A]→ Rn are continuous;
(ii) There exists x ∈ X such that

x(a) =

∫ A

0
k1(a, b, x(b))db+ q(a), a, b ∈ [0, A],

or

x(a) =

∫ A

0
k2(a, b, x(b))db+ q(a), a, b ∈ [0, A];
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(iii) There exists a sequence {xn} in X such that

lim
n→∞

xn(a) = lim
n→∞

∫ A

0
k1(a, b, xn(b))db+ q(a) = z, a, b ∈ [0, A], z ∈ X ,

or

lim
n→∞

xn(a) = lim
n→∞

∫ A

0
k1(a, b, xn(b))db+ q(a) = z, a, b ∈ [0, A], z ∈ X ;

(iv) For each a, b ∈ J and u, v ∈ Xω,∫ A

0
‖k1(a, b, u(b))− k2(a, b, v(b))‖db

≤ 3

4
max{‖u(a)− v(a)‖, ‖u(a)− Su(a)‖, ‖v(a)− Tv(a)‖, ‖u(a)− Tv(a)‖,

‖v(a)− Su(a)‖}.

Then the system of integral equations (4.1) has a unique solution u∗ in C(J,Rn)ω.

Proof. By (i), f, S and T are self-mappings on Xω.
By (ii), (f, S) or (f, T ) is weakly compatible, since f is the identity mapping on Xω.
By (iii), either (f, S) or (f, T ) satisfies the property (E.A).
Also for each u, v ∈ Xω, a, b ∈ J , by (iv), we have

‖Su(a)− Tv(a)‖ ≤
∫ A

0
‖k1(a, b, u(b))− k2(a, b, v(b))‖db

≤ 3

4
max{‖u(a)− v(a)‖, ‖u(a)− Su(a)‖, ‖v(a)− Tv(a)‖, ‖u(a)− Tv(a)‖,

‖v(a)− Su(a)‖}

and so

‖Su(a)− Tv(a)‖
λ

≤ 3

4
max{‖u(a)− v(a)‖

λ
,
‖u(a)− Su(a)‖

λ
,
‖v(a)− Tv(a)‖

λ
,
‖u(a)− Tv(a)‖

λ
,

‖v(a)− Su(a)‖
λ

}, ∀λ > 0.

On routine calculations, we get

ψ(ωλ(Su, Tv)) ≤ F
(
ψ(M(u, v)), ϕ(W (M(u, v)))

)
, ∀λ > 0,

where ψ(t) = 2t, ϕ(t) = t, F (s, t) = s− t and W (t) = 1
2 t.

Since Xω is an ω-complete modular metric space, every ω-Cauchy sequence inO(S, T, f, x0) =
{xn : n = 0, 1, 2, · · · } (for some x0 ∈ Xω) converges in Xω. Hence f(Xω) = Xω is ω-orbitaly
complete at x0. Then Theorem 3.5 is applicable, where f is the identity mapping. So S and
T have a common fixed point. Thus there exists a u∗ ∈ C(J,Rn)ω, a common fixed point of
S and T , that is, u∗ is a unique solution to (4.1). �

Acknowledgments

This work was supported by Basic Science Research Program through the National Re-
search Foundation of Korea funded by the Ministry of Education, Science and Technology
(NRF-2017R1D1A1B04032937).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1227 BAHMAN MOEINI ET AL 1217-1228



B. MOEINI, A.H. ANSARI, C. PARK

References

[1] M. Aamri and E.I. Mountawaki, Some new common fixed point theorems under strict contractive condi-
tions, J. Math. Anal. Appl. 270 (2002), 181–188.

[2] G.A. Anastassiou and I.K. Argyros, Approximating fixed points with applications in fractional calculus,
J. Comput. Anal. Appl. 21 (2016), 1225–1242.

[3] A.H. Ansari, Note on “ϕ-ψ-contractive type mappings and related fixed point”, The 2nd Regional Confer-
ence on Mathematics and Applications, Payame Noor University, 2014, pp. 377–380.

[4] A. Batool, T. Kamran, S. Jang and C. Park, Generalized ϕ-weak contractive fuzzy mappings and related
fixed point results on complete metric space, J. Comput. Anal. Appl. 21 (2016), 729–737.

[5] V.V. Chistyakov, Modular metric spaces generated by F -modulars, Folia Math. 14 (2008), 3–25.
[6] V.V. Chistyakov, Modular metric spaces I: basic concepts, Nonlinear Anal. 72 (2010), 1–14.
[7] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math.

Sci. 04 (1996), 199–215.
[8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 73 (1976), 261–263.
[9] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull.

Austral. Math. Soc. 30 (1984), 1–9.
[10] Z. Liu, M.S. Khan and H.K. Pathak, On common fixed points, Georgian Math. J. 9 (2002), 325–330.
[11] C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings in

modular metric spaces, Fixed Point Theory Appl. 2011, 2011:93.
[12] C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings in

modular metric spaces, Fixed Point Theory Appl. 2012, 2012:103.
[13] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
[14] A. Parya, P. Pathak, V.H. Badshah and N. Gupta, Common fixed point theorems for generalized contrac-

tion mappings in modular metric spaces, Adv. Inequal. Appl. 2017, 2017:9.
[15] T. Phaneendra, Orbital continuity and common fixed point, Buletini Shkencor 3 (2011), 375–380.
[16] K.P.R. Sastry, S.V.R. Naidu, I.H.N. Rao and K.P.R. Rao, Common fixed points for asymptotically regular

mappings. Indian J. Pure Appl. Math. 15 (1984), 849–854.
[17] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math.

32 (1982), 149–153.
[18] Swatmaram, K.K. Swamy and T. Phaneendra, A common fixed point theorem without orbital continuity,

Int. J. Appl. Eng. Research 11 (2016), 7622–7623.

1Department of Mathematics, Hidaj Branch, Islamic Azad University, Hidaj, Iran
E-mail address: moeini145523@gmail.com

2Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
E-mail address: analsisamirmath2@gmail.com

3Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
E-mail address: baak@hanyang.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1228 BAHMAN MOEINI ET AL 1217-1228



Trapezoidal interval type-2 hesitant fuzzy sets
associated with new operations

N. O. Alshehri and H. A. Alshehri
Departement of Mathematics, Faculty of Science, King Abdulaziz University,

Jeddah, Saudi Arabia

Abstract
This paper proposes the concept of trapezoidal interval type-2 hesitant fuzzy

set (TIT2HFS), which is a generalization of trapezoidal interval type-2 and
hesitant fuzzy set. Also, we study some of its operation laws and corresponding
proprties are discussed.
Key words: Trapezoidal interval type-2 hesitant fuzzy set, Operation laws.

1 Introduction

Type-2 fuzzy set was proposed by Zadeh (1975) [19] which is an extension of
Type-1 fuzzy set [18]. The principal di¤erence between the two kinds of fuzzy
sets is that the memberships of a type-1 fuzzy set are crisp numbers while the
memberships of a type-2 fuzzy set are type-1 fuzzy sets [14]; hence, type-2 fuzzy
sets include more vulnerabilities than type-1 fuzzy sets. Since its presentation,
type-2 fuzzy sets are getting increasingly consideration. Since the computational
multifaceted nature of using general type-2 fuzzy sets is very high, to date ,
interval type-2 fuzzy sets [8] are the most widely used type-2 fuzzy sets and have
been e¤ectively connected to numerous useful �elds [1; 3; 6; 7; 9; 10; 15; 16]:
IT2FS [6] can be viewed as a special case of general T2FS where all the values of
secondary membership are equal to 1: In particular, interval type-2 trapezoidal
fuzzy numbers, as a special case of interval type-2 fuzzy sets, can pro�ciently
express subjective assessments or evaluations. The concept of Hesitant fuzzy set
was proposed by Torra (2010) [12] and Torra and Narukawa (2009) [13] to deal
with the problems where membership of element to a give set includes several
di¤erent values. In this paper, by proposing the concept of TIT2HFS based on
HFS and IT2TFS. Furthermore, we introduce some operation laws and their
properties are investigated.

2 Preliminaries

In this subsection, we brie�y describe some fundamental ideas and essential
operation laws identi�ed with HFSs that we need in our work.

1
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2.1 Hesitant fuzzy set

De�nition 1: [12; 13]
Let X be a reference set. A hesitant fuzzy set on X is de�ned in terms of a

funcation h that returns a subset of [0; 1] : To make it understood easily, a HFS
can be represented by a mathematical symbol :

M := f< x; hM (x) >j x 2 Xg

where hM (x) is a set of some valiues in [0; 1]; denoting the possible mem-
bership degrees of the element x 2 X to the set M . For convenience, [17]call
h = hM (x) a hesitant fuzzy element (HFE) and H the set of all HFEs.

De�nition 2: [12; 13]
Let h; h1 and h2 be three HFEs then:
(1)hc = [


2h
f1� 
g :

(2)h1 [ h2 = [

12h1;
22h2

max f
1; 
2g :
(3)h1 \ h2 = [


12h1;
22h2
min f
1; 
2g :

De�nition 3: [17]
Let h; h1 and h2 be three HFEs; and � > 0 then:
(1)h� = [


2h

�

�
	
:

(2)�h = [

2h

�
1� (1� 
)�

	
:

(3)h1 � h2 = [

12h1;
22h2

f
1 + 
2 � 
1
2g :
(4)h1 
 h2 = [


12h1;
22h2
f
1
2g :

2.2 Interval type-2 fuzzy set

The theory of type-1 fuzzy set interdused by Zadeh [18] where the membership
value of an element is a real value between 0 and 1. A trapezoidal type-1 fuzzy
number ~A = (a1; a2; a3; a4;H1(A);H2(A)) in the universe of discourse, where
0 � H1(A) � H2(A) � 1 is shown in Fig.1

Fig.1 Atrapezoidal type-1 fuzzy number.

2
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Type-2 fuzzy set were introduced as the extension of type-1 fuzzy set which
is de�ned as follows.
De�nition 4:[5; 7; 8]
A type-2 fuzzy set ~A in the universe of discourse X can be represented by a

type-2 membership function � ~A, shown as follows:

~A = f((x; u) ; � ~A(x; u)) j8x 2 X;8u 2 Jx � [0; 1]g ;

where 0 � � ~A(x; u) � 1: The type-2 fuzzy set ~A also can be represented as
follows:

~A =
R

x2X

R
u2Jx

� ~A(x; u)=(x; u) =
R

x2X

" R
u2Jx

� ~A(x; u)=u

#
=x);

where x is the primary variable, Jx � [0; 1] is the primary membership of
x; u is the secondary variable and

R
u2Jx

� ~A(x; u)=u is the secondary membership

function (MF) at x:
R
denotes union among all admissible x and u: For discrete

universe of discourse,
R
is replaced by

P
:

De�nition 5:[5; 8]
Let ~A be a type-2 fuzzy set ~A in the universe of discourse X represented by

the type-2 membership function � ~A(x; u): If all � ~A(x; u) = 1, then ~A is called
an interval type-2 fuzzy set. An interval type-2 fuzzy set ~A can be regarded as
a special case of a type-2 fuzzy set, shown as follows:

~A =
R

x2X

R
u2Jx

1=(x; u) =
R

x2X

" R
u2Jx

1=u

#
=x);

where x is the primary variable, Jx � [0; 1] is the primary membership of x;
u is the secondary variable and

R
u2Jx

1=u is the secondary membership function

(MF) at x:
If X is a set of real numbers, then a type-2 fuzzy set and an interval type-2

fuzzy set in X are called a type-2 fuzzy number and an interval type-2 fuzzy
number, respectively.

De�nition 6:[5]
Let ~Ai be a trapezoidal interval type-2 fuzzy number in the universe of

discourse X. It can represented by

~Ai =
�
~AUi ; ~A

L
i

�
=
��
aUi1; a

U
i2; a

U
i3; a

U
i4;H1(A

U
i );H2(A

U
i )
�
;
�
aLi1; a

L
i2; a

L
i3; a

L
i4;H1(A

L
i );H2(A

L
i )
��

where AUi and ALi are T1FSs, a
U
i1; a

U
i2; a

U
i3; a

U
i4; a

L
i1; a

L
i2; a

L
i3 and a

L
i4 are the ref-

erence points of the IT2FSs ~Ai;Hj(AUi ) denotes the membership value of the
element aUi(j+1) in the upper trapezoidal membership function A

U
i ; 1 � j �

3
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2;Hj(A
L
i ) denotes the membership value of the element a

L
i(j+1)in the lower

trapezoidal membership function ALi ; 1 � j � 2;H1(AUi );H2(AUi );H1(ALi ) and
H2(A

L
i ) 2 [0; 1] ; 1 � i � n as shown in Fig.2

Fig.2 A trapezoidal interval type-2 fuzzy number.

3 Trapezoidal interval type-2 hesitant fuzzy set

3.1 The concept and operation laws of TIT2HFS

De�nition 7:
Let X be a �xed set. A trapezoidal interval type-2 hesitant fuzzy set

(TIT2HFS) on X is in terms of function that return of some trapezoidal in-
terval type-2 fuzzy numbers (TIT2FNs) when applied to each x in X:
To make it easily understood, we express the TIT2HFS by a mathematical

symbol:

E :=
n
< x; ~hE(x) > jx 2 X

o
where ~hE(x) is a set of some TIT2FNs denoting the possible membership

degrees of the element x 2 X to the set E: for convenience, we call ~hE(x) = ~h =n
~Ai 2 ~hj ~Ai =

��
aUi1; a

U
i2; a

U
i3; a

U
i4;H1(A

U
i

�
;H2(A

U
i

�
);
�
aLi1; a

L
i2; a

L
i3; a

L
i4;H1(A

L
i

�
;H2(A

L
i )))

o
an trapezoidal interval type-2 hesitant fuzzy element (TIT2HFE).

Example 8:
A hesitant among di¤erent TIT2FNs for a decision making, he / she proviedes

a TIT2HFS ~hij =

�
(0:35; 0:45; 0:55; 0:65; 1; 1) ; (0:4; 0:5; 0:6; 0:7; 0:8; 0:8) ;
(0; 0; 0:2; 0:3; 0:8; 0:8) ; (0:72; 0:77; 0:78; 0:89; 1; 1)

�
:

4
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De�nition 9:
Let ~h1 =

n
~A 2 ~h1j ~A =

��
aU1 ; a

U
2 ; a

U
3 ; a

U
4 ;H1(A

U
�
;H2(A

U
�
);
�
aL1 ; a

L
2 ; a

L
3 ; a

L
4 ;H1(A

L
�
;H2(A

L)))
o

and ~h2 =
n
~B 2 ~h2j ~B =

��
bU1 ; b

U
2 ; b

U
3 ; b

U
4 ;H1(B

U
�
;H2(B

U
�
);
�
bL1 ; b

L
2 ; b

L
3 ; b

L
4 ;H1(B

L
�
;H2(B

L)))
o

are two TIT2HFEs. Then, we introduce the follow operations:
(1) The union of ~h1 and ~h2which is denoted by ~h1[ ~h2 can be de�ned as:

~h1[~h2 = [
~A2~h1; ~B2~h2

8>><>>:
�
max

�
aU1 ; b

U
1

	
;max

�
aU2 ; b

U
2

	
;max

�
aU3 ; b

U
3

	
;max

�
aU4 ; b

U
4

	
;

min
�
H1(A

U );H1(B
U )
	
;min

�
H2(A

U );H2(B
U )
	 �

;�
max

�
aL1 ; b

L
1

	
;max

�
aL2 ; b

L
2

	
;max

�
aL3 ; b

L
3

	
;max

�
aL4 ; b

L
4

	
;

min
�
H1(A

L);H1(B
L)
	
;min

�
H2(A

L);H2(B
L)
	 �

9>>=>>;
(2) The intersection of ~h1 and ~h2which is denoted by ~h1\ ~h2 can be de�ned

as:

~h1\~h2 = [
~A2~h1; ~B2~h2

8>><>>:
�
min

�
aU1 ; b

U
1

	
;min

�
aU2 ; b

U
2

	
;min

�
aU3 ; b

U
3

	
;min

�
aU4 ; b

U
4

	
;

min
�
H1(A

U );H1(B
U )
	
;min

�
H2(A

U );H2(B
U )
	 �

;�
min

�
aL1 ; b

L
1

	
;min

�
aL2 ; b

L
2

	
;min

�
aL3 ; b

L
3

	
;min

�
aL4 ; b

L
4

	
;

min
�
H1(A

L);H1(B
L)
	
;min

�
H2(A

L);H2(B
L)
	 �

9>>=>>;
(3) The complement of ~h1 denoted by ~hc1 can be de�ned as:

~hc1 =

�
~A 2 ~hc1j ~A =

��
1� aU1 ; 1� aU2 ; 1� aU3 ; 1� aU4 ;H1(AU

�
;H2(A

U
�
);�

1� aL1 ; 1� aL2 ; 1� aL3 ; 1� aL4 ;H1(AL
�
;H2(A

L)))

�
:

we note that can be replaced max and min by _ and ^ respectively.

Example 10:
Let ~h1 = f(0:2; 0:3; 0:4; 0:5; 1; 1) ; (0:25; 0:35; 0:35; 0:45; 0:8; 0:8)g and ~h2 =

f(0:5; 0:6; 0:7; 0:8; 1; 1) ; (0:55; 0:65; 0:65; 0:75; 0:8; 0:8)g are two TIT2HFEs, then:
(1) ~h1 [ ~h2 = f(0:5; 0:6; 0:7; 0:8; 1; 1) ; (0:55; 0:65; 0:65; 0:75; 0:8; 0:8)g :
(2) ~h1 \ ~h2 = f(0:2; 0:3; 0:4; 0:5; 1; 1) ; (0:25; 0:35; 0:35; 0:45; 0:8; 0:8)g :
(3) ~hc1 = f(0:8; 0:7; 0:6; 0:5; 1; 1) ; (0:75; 0:65; 0:65; 0:55; 0:8; 0:8)g

Proposition 11: (De Morgan�s laws in TIT2HFS )
Let ~h1 and ~h2 be two TIT2HFNs, then we have :

(1)
�
~h1 [ ~h2

�c
= ~hc1 \ ~hc2:

(2)
�
~h1 \ ~h2

�c
= ~hc1 [ ~hc2:

Proof:

(1)
�
~h1 [ ~h2

�c
= [

~A2~h1; ~B2~h2

8>><>>:
�
max

�
aU1 ; b

U
1

	
;max

�
aU2 ; b

U
2

	
;max

�
aU3 ; b

U
3

	
;max

�
aU4 ; b

U
4

	
;

min
�
H1(A

U );H1(B
U )
	
;min

�
H2(A

U );H2(B
U )
	 �

;�
max

�
aL1 ; b

L
1

	
;max

�
aL2 ; b

L
2

	
;max

�
aL3 ; b

L
3

	
;max

�
aL4 ; b

L
4

	
;

min
�
H1(A

L);H1(B
L)
	
;min

�
H2(A

L);H2(B
L)
	 �

9>>=>>;
c

= [
~A2~h1; ~B2~h2

8>><>>:
�
1�max

�
aU1 ; b

U
1

	
; 1�max

�
aU2 ; b

U
2

	
; 1�max

�
aU3 ; b

U
3

	
; 1�max

�
aU4 ; b

U
4

	
;

min
�
H1(A

U );H1(B
U )
	
;min

�
H2(A

U );H2(B
U )
	 �

;�
1�max

�
aL1 ; b

L
1

	
; 1�max

�
aL2 ; b

L
2

	
; 1�max

�
aL3 ; b

L
3

	
; 1�max

�
aL4 ; b

L
4

	
;

min
�
H1(A

L);H1(B
L)
	
;min

�
H2(A

L);H2(B
L)
	 �

9>>=>>;
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= [
~A2~h1; ~B2~h2

8>><>>:
�

min
�
1� aU1 ; 1� bU1

	
;min

�
1� aU2 ; 1� bU2

	
;min

�
1� aU3 ; 1� bU3

	
;

min
�
1� aU4 ; 1� bU4

	
;min

�
H1(A

U );H1(B
U )
	
;min

�
H2(A

U );H2(B
U )
	 � ;�

min
�
1� aL1 ; 1� bL1

	
;min

�
1� aL2 ; 1� bL2

	
;min

�
1� aL3 ; 1� bL3

	
;

min
�
1� aL4 ; 1� bL4

	
;min

�
H1(A

L);H1(B
L)
	
;min

�
H2(A

L);H2(B
L)
	 �

9>>=>>;
= ~hc1 \ ~hc2:
Similarly, we can prove that

�
~h1 \ ~h2

�c
= ~hc1 [ ~hc2:�

Hu et al.(2015) [2] proposed the concept of interval type-2 hesitant fuzzy
set (IT2HFS). Also, de�ned operation laws and corresponding properties are
discussed. In this subsection, we brie�y review some de�nitions of t-norm and
t-conorm. Moreover, some other relationships can be established.

3.2 Operation laws of TIT2HFEs based on Archimedean
t-norm and Archimedean t-conorm can be de�ned as
follows:

De�nition 12:[4; 11]
A function T : [0; 1] � [0; 1] ! [0; 1] is called a t-norm if it satis�es the

following four conditions:
(1)T (1; x) = x, for all x 2 [0; 1] :
(2)T (x; y) = T (y; x), 8 x; y 2 [0; 1] :
(3)T (x; T (y; z)) = T (T (x; y) ; z),8 x; y; z 2 [0; 1] :
(4) If x � �x and y � �y , then T (x; y) � T (�x; �y) :

De�nition 13:[4; 11]
A function S : [0; 1] � [0; 1] ! [0; 1] is called a t-conorm if it satis�es the

following four conditions:
(1)S (0; x) = x, for all x 2 [0; 1] :
(2)S (x; y) = T (y; x), 8 x; y 2 [0; 1] :
(3)S (x; S (y; z)) = S (S (x; y) ; z),8 x; y; z 2 [0; 1] :
(4) If x � �x and y � �y , then S (x; y) � S (�x; �y) :

De�nition 14:[4; 11]
A t-norm function T (x; y) is called Archimedean t-norm if it is continuous

and T (x; x) < x for all x 2 (0; 1) : An Archimedean t-norm is called strictly
Archimedean t-norm if it is strictly increasing in each variable for x; y 2 (0; 1) :

De�nition 15:[4; 11]
A t-conorm function S (x; y) is called Archimedean t-conorm if it is contin-

uous and S (x; x) > x for all x 2 (0; 1) : An Archimedean t-conorm is called
strictly Archimedean t-conorm if it is strictly increasing in each variable for
x; y 2 (0; 1) :
It is well known [11]that a strict Archimedean t-norm is expressed via its

additive generator k as T (x; y) = k�1(k(x) + k(y)); and similarly applied to
the t-conorm S (x; y) = l�1(l(x) + l(y)) with l(t) = k(1� t): It is noted that an

6
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additive generator of a continuous Archimedean t-norm is a strictly decreasing
function k : [0; 1]! [0;1] such that k(1) = 0:

De�nition 16:[2]
Suppose
~h1 =

n
~A1 2 ~h1j ~A1 =

��
aU11; a

U
12; a

U
13; a

U
14;H1(A

U
1

�
;H2(A

U
1

�
);
�
aL11; a

L
12; a

L
13; a

L
14;H1(A

L
1

�
;H2(A

L
1 )))

o
and ~h2 =

n
~A2 2 ~h2j ~A2 =

��
aU21; a

U
22; a

U
23; a

U
24;H1(A

U
2

�
;H2(A

U
2

�
);
�
aL21; a

L
22; a

L
23; a

L
24;H1(A

L
2

�
;H2(A

L
2 )))

o
are two IT2HFEs and � > 0: On the basis of De�nition 15, we de�ne the op-
eration laws of IT2HFEs as follows :

(1) ~h�1 = [
~A12~h1

� ��
k�1(�k(aU11); k

�1(�k(aU12); k
�1(�k(aU13); k

�1(�k(aU14);H1(A
U
1

�
;H2(A

U
1

�
);�

k�1(�k(aL11); k
�1(�k(aL12); k

�1(�k(aL13); k
�1(�k(aL14);H1(A

L
1

�
;H2(A

L
1 )))

�
(2)�~h1 = [

~A12~h1

� ��
l�1(�l(aU11); l

�1(�l(aU12); l
�1(�l(aU13); l

�1(�l(aU14);H1(A
U
1

�
;H2(A

U
1

�
);�

l�1(�l(aL11); l
�1(�l(aL12); l

�1(�l(aL13); l
�1(�l(aL14);H1(A

L
1

�
;H2(A

L
1 )))

�
:

(3) ~h1�~h2 = [
~A12~h1; ~A22~h2

8>><>>:
(l�1(l(aU11) + l(a

U
21)); l

�1(l(aU12) + l(a
U
22)); l

�1(l(aU13) + l(a
U
23));

l�1(l(aU14) + l(a
U
24));min(H1(A

U
1 );H1(A

U
2 ));min(H2(A

U
1 );H2(A

U
2 )))

(l�1(l(aL11) + l(a
L
21)); l

�1(l(aL12) + l(a
L
22)); l

�1(l(aL13) + l(a
L
23));

l�1(l(aL14) + l(a
L
24));min(H1(A

L
1 );H1(A

L
2 ));min(H2(A

L
1 );H2(A

L
2 )))

9>>=>>; :

(4) ~h1
~h2 = [
~A12~h1; ~A22~h2

8>><>>:
(k�1(k(aU11) + k(a

U
21)); k

�1(k(aU12) + k(a
U
22)); k

�1(k(aU13) + k(a
U
23));

k�1(k(aU14) + k(a
U
24));min(H1(A

U
1 );H1(A

U
2 ));min(H2(A

U
1 );H2(A

U
2 )))

(k�1(k(aL11) + k(a
L
21)); k

�1(k(aL12) + k(a
L
22)); k

�1(k(aL13) + k(a
L
23));

k�1(k(aL14) + k(a
L
24));min(H1(A

L
1 );H1(A

L
2 ));min(H2(A

L
1 );H2(A

L
2 )))

9>>=>>; :
Theorem 17:
Let ~h1 =

n
~A1 2 ~h1j ~A1 =

��
aU11; a

U
12; a

U
13; a

U
14;H1(A

U
1

�
;H2(A

U
1

�
);
�
aL11; a

L
12; a

L
13; a

L
14;H1(A

L
1

�
;H2(A

L
1 )))

o
;

~h2 =
n
~A2 2 ~h2j ~A2 =

��
aU21; a

U
22; a

U
23; a

U
24;H1(A

U
2

�
;H2(A

U
2

�
);
�
aL21; a

L
22; a

L
23; a

L
24;H1(A

L
2

�
;H2(A

L
2 )))

o
and ~h3 =

n
~A3 2 ~h3j ~A3 =

��
aU31; a

U
32; a

U
33; a

U
34;H1(A

U
3

�
;H2(A

U
3

�
);
�
aL31; a

L
32; a

L
33; a

L
34;H1(A

L
3

�
;H2(A

L
3 )))

o
are three TIT2HFEs, then the associative for operations � and 
 are vaild as
follows:
(1) ~h1 �

�
~h2 � ~h3

�
=
�
~h1 � ~h2

�
� ~h3

(2) ~h1 

�
~h2 
 ~h3

�
=
�
~h1 
 ~h2

�

 ~h3:

Proof:
we prove part (1), similarly we can be proven (2) :

(1) ~h1 �
�
~h2 � ~h3

�
= ~h1�

[
~A22~h2; ~A32~h3

8>>>>>><>>>>>>:

�
l�1(l(aU21 + l(a

U
31

�
); l�1(l(aU22 + l(a

U
32));

l�1(l(aU23 + l(a
U
33)); l

�1(l(aU24 + l(a
U
34));

min
�
H1(A

U
2

�
;H1(A

U
3 ));min

�
H2(A

U
2

�
;H2(A

U
3 )));�

l�1(l(aL21 + l(a
L
31

�
); l�1(l(aL22 + l(a

L
32));

l�1(l(aL23 + l(a
L
33)); l

�1(l(aL24 + l(a
L
34));

min
�
H1(A

L
2

�
;H1(A

L
3 ));min

�
H2(A

L
2

�
;H2(A

L
3 )))

9>>>>>>=>>>>>>;
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= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>><>>>>>>:

l�1(l(aU11) + l
�
l�1(l(aU21 + l(a

U
31

�
)); l�1(l(aU12) + l(l

�1(l(aU22 + l(a
U
32)));

l�1(l(aU13) + l(l
�1(l(aU23 + l(a

U
33))); l

�1(l(aU14) + l(l
�1(l(aU24 + l(a

U
34));

min((H1(A
U
1 );min

�
H1(A

U
2

�
;H1(A

U
3 )));min((H1(A

U
1 );min

�
H2(A

U
2

�
;H2(A

U
3 )));

l�1(l(aL11) + l(
�
l�1(l(aL21 + l(a

L
31

�
)); l�1(l(aL12) + l(l

�1(l(aL22 + l(a
L
32)));

l�1(l(aU13) + l(l
�1(l(aL23 + l(a

L
33))); l

�1(l(aU14) + l(l
�1(l(aL24 + l(a

L
34)));

min((H1(A
L
1 );min

�
H1(A

L
2

�
;H1(A

L
3 )));min((H1(A

L
1 );min

�
H2(A

L
2

�
;H2(A

L
3 )))

9>>>>>>=>>>>>>;

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>><>>>>>>:

l�1(l(aU11) + l(a
U
21) + l(a

U
31)); l

�1(l(aU12) + l(a
U
22) + l(a

U
32));

l�1(l(aU13) + l(a
U
23) + l(a

U
33)); l

�1(l(aU14) + l(a
U
24) + l(a

U
34));

min(H1(A
U
1 );H1(A

U
2 );H1(A

U
3 ));min(H1(A

U
1 );H2(A

U
2 );H2(A

U
3 ));

l�1(l(aL11) + l(a
L
21) + l(a

L
31)); l

�1(l(aL12) + l(a
L
22) + l(a

L
32));

l�1(l(aU13) + l(a
L
23) + l(a

L
33)); l

�1(l(aU14) + l(a
L
24) + l(a

L
34));

min(H1(A
L
1 );H1(A

L
2 );H1(A

L
3 ));min(H1(A

L
1 );H2(A

L
2 );H2(A

L
3 ))

9>>>>>>=>>>>>>;

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>><>>>>>>:

l�1(l(l�1l(aU11) + l(a
U
21))) + l(a

U
31)); l

�1(l(l�1(l(aU12) + l(a
U
22))) + l(a

U
32));

l�1(l(l�1(l(aU13) + l(a
U
23))) + l(a

U
33)); l

�1(l(l�1(l(aU14) + l(a
U
24))) + l(a

U
34));

min(min(H1(A
U
1 );H1(A

U
2 ));H1(A

U
3 ));min(min(H1(A

U
1 );H2(A

U
2 ));H2(A

U
3 ));

l�1(l(l�1(l(aL11) + l(a
L
21))) + l(a

L
31)); l

�1(l(l�1(l(aL12) + l(a
L
22))) + l(a

L
32));

l�1(l(l�1(l(aU13) + l(a
L
23))) + l(a

L
33)); l

�1(l(l�1(l(aU14) + l(a
L
24))) + l(a

L
34));

min(min(H1(A
L
1 );H1(A

L
2 ));H1(A

L
3 ));min(min(H1(A

L
1 );H2(A

L
2 ));H2(A

L
3 ))

9>>>>>>=>>>>>>;
=
�
~h1 � ~h2

�
� ~h3:�

Theorem 18:
Let ~h1 =

n
~A1 2 ~h1j ~A1 =

��
aU11; a

U
12; a

U
13; a

U
14;H1(A

U
1

�
;H2(A

U
1

�
);
�
aL11; a

L
12; a

L
13; a

L
14;H1(A

L
1

�
;H2(A

L
1 )))

o
;

~h2 =
n
~A2 2 ~h2j ~A2 =

��
aU21; a

U
22; a

U
23; a

U
24;H1(A

U
2

�
;H2(A

U
2

�
);
�
aL21; a

L
22; a

L
23; a

L
24;H1(A

L
2

�
;H2(A

L
2 )))

o
and ~h3 =

n
~A3 2 ~h3j ~A3 =

��
aU31; a

U
32; a

U
33; a

U
34;H1(A

U
3

�
;H2(A

U
3

�
);
�
aL31; a

L
32; a

L
33; a

L
34;H1(A

L
3

�
;H2(A

L
3 )))

o
are three TIT2HFEs, then:

(1)
�
~h1 [ ~h2

�
� ~h3 =

�
~h1 � ~h3

�
[
�
~h2 � ~h3

�
(2)

�
~h1 \ ~h2

�
� ~h3 =

�
~h1 � ~h3

�
\
�
~h2 � ~h3

�
(3)

�
~h1 [ ~h2

�

 ~h3 =

�
~h1 
 ~h3

�
[
�
~h2 
 ~h3

�
(4)

�
~h1 \ ~h2

�

 ~h3 =

�
~h1 
 ~h3

�
\
�
~h2 
 ~h3

�
(5) ~h1 �

�
~h2 [ ~h3

�
=
�
~h1 � ~h2

�
[
�
~h1 � ~h3

�
(6) ~h1 �

�
~h2 \ ~h3

�
=
�
~h1 � ~h2

�
\
�
~h1 � ~h3

�
(7) ~h1 


�
~h2 [ ~h3

�
=
�
~h1 
 ~h2

�
[
�
~h1 
 ~h3

�
(8) ~h1 


�
~h2 \ ~h3

�
=
�
~h1 
 ~h2

�
\
�
~h1 
 ~h3

�
Proof:
We prove (1) and (3) : similarly, we can the others.

(1)
�
~h1 [ ~h2

�
� ~h3 =

8
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[
~A12~h1; ~A22~h2

8>><>>:
�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;
�~h3

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>><>>>>>>>>>>:

0BB@
l�1(l(max

�
aU11; a

U
21

	
) + l(aU31)); l

�1(l(max
�
aU12; a

U
22

	
) + l(aU32));

l�1(l(max
�
aU13; a

U
23

	
+ l(aU33)); l

�1(l(max
�
aU14; a

U
24

	
) + l(aU34));

min(min
�
H1(A

U
1 );H1(A

U
2 )
	
;H1(A

U
3 ));

min(min
�
H2(A

U
1 );H2(A

U
2 )
	
;H2(A

U
3 ))

1CCA ;0BB@
l�1(l(max

�
aL11; a

L
21

	
) + l(aL31)); l

�1(l(max
�
aL12; a

L
22

	
) + l(aL32));

l�1(l(max
�
aL13; a

L
23

	
) + l(aL33)); l

�1(l(max
�
aL14; a

L
24

	
) + l(aL34));

min(min
�
H1(A

L
1 );H1(A

L
2 )
	
;H1(A

L
3 ));

min(min
�
H2(A

L
1 );H2(A

L
2 )
	
;H2(A

L
3 ))

1CCA

9>>>>>>>>>>=>>>>>>>>>>;

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0BBBBBB@
l�1(maxfl(aU11) + l(aU31); l(aU21) + l(aU31)g);
l�1(maxfl(aU12) + l(aU32); l(aU22) + l(aU32)g);
l�1(maxfl(aU13) + l(aU33); l(aU23) + l(aU33)g);
l�1(maxfl(aU14) + l(aU34); l(aU24) + l(aU34)g);

min(minfH1(AU1 );H1(AU3 )g;minfH1(AU2 );H1(AU3 )g);
min(minfH2(AU1 );H2(AU3 )g;minfH2(AU2 );H2(AU3 )g)

1CCCCCCA ;0BBBBBB@
l�1(maxfl(aL11) + l(aL31); l(aL21) + l(aL31)g);
l�1(maxfl(aL12) + l(aL31); l(aL22) + l(aL32)g);
l�1(maxfl(aL13) + l(aL33); l(aL23) + l(aL33)g);
l�1(max l(aL14) + l(a

L
34); l(a

L
24) + l(a

L
34)g);

min(minfH1(AL1 );H1(AL3 )g;minfH1(AL2 );H1(AL3 )g);
min(minfH2(AL1 );H2(AL3 )g;minfH2(AL2 );H2(AL3 )g)

1CCCCCCA

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0BBBBBB@
maxfl�1(l(aU11) + l(aU31)); l�1(l(aU21) + l(aU31))g;
maxfl�1(l(aU12) + l(aU32)); l�1(l(aU22) + l(aU32))g;
maxfl�1(l(aU13) + l(aU33)); l�1(l(aU23) + l(aU33))g;
maxfl�1(l(aU14) + l(aU34)); l�1(l(aU24) + l(aU34))g;

min(minfH1(AU1 );H1(AU3 )g;minfH1(AU2 );H1(AU3 )g);
min(minfH2(AU1 );H2(AU3 )g;minfH2(AU2 );H2(AU3 )g)

1CCCCCCA ;0BBBBBB@
maxfl�1(l(aL11) + l(aL31)); l�1(l(aL21) + l(aL31))g;
maxfl�1(l(aL12) + l(aL31)); l�1(l(aL22) + l(aL32))g;
maxfl�1(l(aL13) + l(aL33)); l�1(l(aL23) + l(aL33))g;
maxfl�1(l(aL14) + l(aL34)); l�1(l(aL24) + l(aL34))g;

min(minfH1(AL1 );H1(AL3 )g;minfH1(AL2 );H1(AL3 )g);
min(minfH2(AL1 );H2(AL3 )g;minfH2(AL2 );H2(AL3 )g)

1CCCCCCA

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

=

8>>>>>><>>>>>>:
[

~A12~h1; ~A32~h3

0@ l�1(l(aU11) + l(a
U
31)); l

�1(l(aU12) + l(a
U
32));

l�1(l(aU13) + l(a
U
33)); l

�1(l(aU14) + l(a
U
34));

minfH1(AU1 );H1(AU3 )g;minfH2(AU1 );H2(AU3 )g

1A ;0@ l�1(l(aL11) + l(a
L
31)); l

�1(l(aL12) + l(a
L
31));

l�1(l(aL13) + l(a
L
33)); l

�1(l(aL14) + l(a
L
34));

minfH1(AL1 );H1(AL3 )g;minfH2(AL1 );H2(AL3 )g

1A

9>>>>>>=>>>>>>;
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[

8>>>>>><>>>>>>:
[

~A22~h2; ~A32~h3

0@ l�1(l(aU21) + l(a
U
31)); l

�1(l(aU22) + l(a
U
32));

l�1(l(aU23) + l(a
U
33)); l

�1(l(aU24) + l(a
U
34));

minfH1(AU2 );H1(AU3 )g;minfH2(AU2 );H2(AU3 )g

1A ;0@ l�1(l(aL21) + l(a
L
31)); l

�1(l(aL22) + l(a
L
31));

l�1(l(aL23) + l(a
L
33)); l

�1(l(aL24) + l(a
L
34));

minfH1(AL2 );H1(AL3 )g;minfH2(AL2 );H2(AL3 )g

1A

9>>>>>>=>>>>>>;
=
�
~h1 � ~h3

�
[
�
~h2 � ~h3

�
:

(3)
�
~h1 [ ~h2

�

 ~h3 =

[
~A12~h1; ~A22~h2

8>><>>:
�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;

~h3

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>><>>>>>>>>>>:

0BB@
k�1(k(max

�
aU11; a

U
21

	
) + k(aU31)); k

�1(k(max
�
aU12; a

U
22

	
) + k(aU32));

k�1(k(max
�
aU13; a

U
23

	
+ k(aU33)); k

�1(k(max
�
aU14; a

U
24

	
) + k(aU34));

min(min
�
H1(A

U
1 );H1(A

U
2 )
	
;H1(A

U
3 ));

min(min
�
H2(A

U
1 );H2(A

U
2 )
	
;H2(A

U
3 ))

1CCA ;0BB@
k�1(k(max

�
aL11; a

L
21

	
) + k(aL31)); k

�1(k(max
�
aL12; a

L
22

	
) + k(aL32));

k�1(k(max
�
aL13; a

L
23

	
) + k(aL33)); k

�1(k(max
�
aL14; a

L
24

	
) + k(aL34));

min(min
�
H1(A

L
1 );H1(A

L
2 )
	
;H1(A

L
3 ));

min(min
�
H2(A

L
1 );H2(A

L
2 )
	
;H2(A

L
3 ))

1CCA

9>>>>>>>>>>=>>>>>>>>>>;

= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0BBBBBB@
k�1(maxfk(aU11) + k(aU31); k(aU21) + k(aU31)g);
k�1(maxfk(aU12) + k(aU32); k(aU22) + k(aU32)g);
k�1(maxfk(aU13) + k(aU33); k(aU23) + k(aU33)g);
k�1(maxfk(aU14) + k(aU34); k(aU24) + k(aU34)g);

min(minfH1(AU1 );H1(AU3 )g;minfH1(AU2 );H1(AU3 )g);
min(minfH2(AU1 );H2(AU3 )g;minfH2(AU2 );H2(AU3 )g)

1CCCCCCA ;0BBBBBB@
k�1(maxfk(aL11) + k(aL31); k(aL21) + k(aL31)g);
k�1(maxfk(aL12) + k(aL31); k(aL22) + k(aL32)g);
k�1(maxfk(aL13) + k(aL33); k(aL23) + k(aL33)g);
k�1(max k(aL14) + k(a

L
34); k(a

L
24) + k(a

L
34)g);

min(minfH1(AL1 );H1(AL3 )g;minfH1(AL2 );H1(AL3 )g);
min(minfH2(AL1 );H2(AL3 )g;minfH2(AL2 );H2(AL3 )g)

1CCCCCCA

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;
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= [
~A12~h1; ~A22~h2; ~A32~h3

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0BBBBBB@
maxfk�1(k(aU11) + k(aU31)); k�1(k(aU21) + k(aU31))g;
maxfk�1(k(aU12) + k(aU32)); k�1(k(aU22) + k(aU32))g;
maxfk�1(k(aU13) + k(aU33)); k�1(k(aU23) + k(aU33))g;
maxfk�1(k(aU14) + k(aU34)); k�1(k(aU24) + k(aU34))g;

min(minfH1(AU1 );H1(AU3 )g;minfH1(AU2 );H1(AU3 )g);
min(minfH2(AU1 );H2(AU3 )g;minfH2(AU2 );H2(AU3 )g)

1CCCCCCA ;0BBBBBB@
maxfk�1(k(aL11) + k(aL31)); k�1(k(aL21) + k(aL31))g;
maxfk�1(k(aL12) + k(aL31)); k�1(k(aL22) + k(aL32))g;
maxfk�1(k(aL13) + k(aL33)); k�1(k(aL23) + k(aL33))g;
maxfk�1(k(aL14) + k(aL34)); k�1(k(aL24) + k(aL34))g;
min(minfH1(AL1 );H1(AL3 )g;minfH1(AL2 );H1(AL3 )g);
min(minfH2(AL1 );H2(AL3 )g;minfH2(AL2 );H2(AL3 )g)

1CCCCCCA

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

=

8>>>>>><>>>>>>:
[

~A12~h1; ~A32~h3

0@ k�1(k(aU11) + k(a
U
31)); k

�1(k(aU12) + k(a
U
32));

k�1(k(aU13) + k(a
U
33)); k

�1(k(aU14) + k(a
U
34));

minfH1(AU1 );H1(AU3 )g;minfH2(AU1 );H2(AU3 )g

1A ;0@ k�1(k(aL11) + k(a
L
31)); k

�1(k(aL12) + k(a
L
31));

k�1(k(aL13) + k(a
L
33)); k

�1(k(aL14) + k(a
L
34));

minfH1(AL1 );H1(AL3 )g;minfH2(AL1 );H2(AL3 )g

1A

9>>>>>>=>>>>>>;

[

8>>>>>><>>>>>>:
[

~A22~h2; ~A32~h3

0@ l�1(l(aU21) + l(a
U
31)); l

�1(l(aU22) + l(a
U
32));

k�1(k(aU23) + k(a
U
33)); k

�1(k(aU24) + k(a
U
34));

minfH1(AU2 );H1(AU3 )g;minfH2(AU2 );H2(AU3 )g

1A ;0@ k�1(k(aL21) + k(a
L
31)); k

�1(k(aL22) + k(a
L
31));

k�1(k(aL23) + k(a
L
33)); k

�1(k(aL24) + k(a
L
34));

minfH1(AL2 );H1(AL3 )g;minfH2(AL2 );H2(AL3 )g

1A

9>>>>>>=>>>>>>;
=
�
~h1 
 ~h3

�
[
�
~h2 
 ~h3

�
:�

Theorem 19:
Let ~h1and ~h2 be two TIT2HFEs, then:

(1)
�
~h1 [ ~h2

�
�
�
~h1 \ ~h2

�
= ~h1 � ~h2:

(2)
�
~h1 [ ~h2

�


�
~h1 \ ~h2

�
= ~h1 
 ~h2:

Proof:
(1) We know that for any two real numbers a and b, it follows that:

max fa; bg+min fa; bg = a+ b
max fa; bg :min fa; bg = a:b

Then we have:
(1)

�
~h1 [ ~h2

�
�
�
~h1 \ ~h2

�
=8>><>>: [

~A12~h1; ~A22~h2

�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;
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�

8>><>>: [
~A12~h1; ~A22~h2

�
min

�
aU11; a

U
21

	
;min

�
aU12; a

U
22

	
;min

�
aU13; a

U
23

	
;min

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
min

�
aL11; a

L
21

	
;min

�
aL12; a

L
22

	
;min

�
aL13; a

L
23

	
;min

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

[
~A12~h1; ~A22~h2

0BBBB@
l�1(l(max

�
aU11; a

U
21

	
) + l(min

�
aU11; a

U
21

	
));

l�1(l(max
�
aU12; a

U
22

	
) + l(min

�
aU12; a

U
22

	
));

l�1(l(max
�
aU13; a

U
23

	
) + l(min

�
aU13; a

U
23

	
));

l�1(l(max
�
aU14; a

U
24

	
) + l(min

�
aU14; a

U
24

	
));

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	

1CCCCA ;0BBBB@
l�1(l(max

�
aL11; a

L
21

	
) + l(min

�
aL11; a

L
21

	
));

l�1(l(max
�
aL12; a

L
22

	
) + l(min

�
aL12; a

L
22

	
));

l�1(l(max
�
aL13; a

L
23

	
) + l(min

�
aL13; a

L
23

	
))

; l�1(l(max
�
aL14; a

L
24

	
) + l(min

�
aL14; a

L
24

	
));

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	

1CCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

[
~A12~h1; ~A22~h2

0BBBB@
l�1(max

�
l(aU11); l(a

U
21)
	
+min

�
l(aU11); l(a

U
21)
	
);

l�1(max
�
l(aU12); l(a

U
22)
	
+min

�
l(aU12); l(a

U
22)
	
);

l�1(max
�
l(aU13); l(a

U
23)
	
+min

�
l(aU13); l(a

U
23)
	
);

l�1(max
�
l(aU14); l(a

U
24)
	
+min

�
l(aU14); l(a

U
24)
	
);

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	

1CCCCA ;0BBBB@
l�1(max

�
l(aL11); l

�
aL21
�	
+min

�
l
�
aL11
�
; l
�
aL21
�	
);

l�1(max
�
l
�
aL12
�
; l
�
aL22
�	
+min

�
l
�
aL12
�
; l
�
aL22
�	
);

l�1(max
�
l
�
aL13
�
; l
�
aL23
�	
+min

�
l
�
aL13
�
; l
�
aL23
�	
);

l�1(max
�
l
�
aL14
�
; l
�
aL24
�	
+min

�
l
�
aL14
�
; l
�
aL24
�	
);

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	

1CCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

=

8>>>>>><>>>>>>:
[

~A12~h1; ~A22~h2

0@ l�1
�
l(aU11) + l(a

U
21)
	
; l�1

�
l(aU12) + l(a

U
22)
	
;

l�1
�
l(aU13) + l(a

U
23)
	
; l�1

�
l(aU14) + l(a

U
24)
	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	
1A ;0@ l�1

�
l(aL11) + l

�
aL21
�	
; l�1

�
l
�
aL12
�
+ l
�
aL22
�	
;

l�1
�
l
�
aL13
�
+ l
�
aL23
�	
; l�1

�
l
�
aL14
�
+ l
�
aL24
�	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	
1A

9>>>>>>=>>>>>>;
= ~h1 � ~h2:
Similarly, we can proven (2) :�

Theorem 20:
Let ~h1and ~h2 be two TIT2HFEs and � > 0, then:

(1) �
�
~h1 [ ~h2

�
= �~h1 [ �~h2:

(2) �
�
~h1 \ ~h2

�
= �~h1 \ �~h2:

(3)
�
~h1 [ ~h2

��
= ~h�1 [ ~h�2 :

(4)
�
~h1 \ ~h2

��
= ~h�1 \ ~h�2 :

Proof:
In the following, we prove (1) and (3), the rest can be proven analogously:
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(1) �
�
~h1 [ ~h2

�
=

�

8>><>>: [
~A12~h1; ~A22~h2

�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;
= l�1

8>><>>:�l
0BB@ [

~A12~h1; ~A22~h2

�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

1CCA
9>>=>>;

=

8>>>>>><>>>>>>:
[

~A12~h1; ~A22~h2

0@ l�1(�l(max
�
aU11; a

U
21

	
); l�1(�l(max

�
aU12; a

U
22

	
);

l�1(�l(max
�
aU13; a

U
23

	
); l�1(�l(max

�
aU14; a

U
24

	
);

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	
1A ;0@ l�1(�l(max

�
aL11; a

L
21

	
); l�1(�l(max

�
aL12; a

L
22

	
);

l�1(�l(max
�
aL13; a

L
23

	
); l�1(�l(max

�
aL14; a

L
24

	
);

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	
1A

9>>>>>>=>>>>>>;

=

8>>>>>><>>>>>>:
[

~A12~h1; ~A22~h2

0@ max
�
l�1(�l(aU11); l

�1(�l(aU21)
	
;max

�
l�1(�l(aU12); l

�1(�l(aU22)
	
;

max
�
l�1(�l(aU13); l

�1(�l(aU23)
	
;max

�
l�1(�l(aU14); l

�1(�l(aU24)
	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	

1A ;0@ max
�
l�1(�l(aL11); l

�1(�l(aL21)
	
;max

�
l�1(�l(aL12); l

�1(�l(aL22)
	
;

max
�
l�1(�l(aL13); l

�1(�l(aL23)
	
;max

�
l�1(�l(aL14); l

�1(�l(aL24)
	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	

1A

9>>>>>>=>>>>>>;
= �~h1 [ �~h2:

(3)
�
~h1 [ ~h2

��
=8>><>>: [

~A12~h1; ~A22~h2

�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a

U
24

	
;

min
�
H1(A

U
1 );H1(A

U
2 )
	
;min

�
H2(A

U
1 );H2(A

U
2 )
	 �

;�
max

�
aL11; a

L
21

	
;max

�
aL12; a

L
22

	
;max

�
aL13; a

L
23

	
;max

�
aL14; a

L
24

	
;

min
�
H1(A

L
1 );H1(A

L
2 )
	
;min

�
H2(A

L
1 );H2(A

L
2 )
	 �

9>>=>>;
�

= k�1

8>><>>:�k
0BB@ [

~A12~h1; ~A22~h2

�
max

�
aU11; a

U
21

	
;max

�
aU12; a

U
22

	
;max

�
aU13; a

U
23

	
;max

�
aU14; a
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4 Conclusions

We introduced the notions of Trapezoidal interval type-2 hesitant fuzzy set. At
the same time, some operation laws of TIT2HFS were provided to complete its
theory.
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MENGER PROBABILISTIC NORMED RIESZ SPACES AND STABILITY OF

LATTICE PRESERVING FUNCTIONAL EQUATION

SEYED MOHAMMAD SADEGH MODARRES MOSADEGH, EHSAN MOVAHEDNIA, JUNG RYE LEE∗,
AND CHOONKIL PARK

Abstract. The purpose of this paper is to introduce the concept of a Menger probabilistic
normed Riesz space. We study some properties of these spaces and compare normed Riesz spaces
with Menger probabilistic normed Riesz spaces. Next, we investigate the Hyers-Ulam stability of
lattice homomorphisms in Menger probabilistic normed Riesz spaces.

1. Introduction

Riesz spaces are named after Frigyes Riesz who first defined them in 1930 [20]. Riesz spaces
are real vector spaces equipped with a partial order. Under this partial order the Riesz space
must satisfy some axioms, including the axiom that it is a lattice.

The theory of probabilistic normed spaces (briefly, PN spaces) was born as a “natural conse-
quence of the theory of probabilistic metric spaces. For the basic theory of vector lattices (Riesz
spaces) and Banach lattices and for unexplained terminology we refer to [2, 17, 27].

The theory of probabilistic metric spaces was introduced in 1951 by Menger [11]. He replaced
the number d(p, q), which gives the distance between two points p and q in a nonempty set S,
by a distribution function Fpq whose value Fp,q(t) at t ∈ [0,+∞) is interpreted as the probability
that the distance between the points p and q is smaller than t. Menger’s idea was developed by
the authors in [6, 7, 10].

The theory of PN spaces was introduced by Serstnev [23]. It were redefined by Alsina, Schweizer
and Sklar [3, 4].

A classical question in the theory of functional equations is the following: When is it true
that a function which approximately satisfies a functional equation D must be close to an exact
solution of D? If the problem accepts a solution, we say that the equation D is stable. The first
stability problem concerning group homomorphisms was raised by Ulam [26] in 1940. In 1941,
Hyers [8] solved this stability problem for additive mappings subject to the Hyers condition on
approximately additive mappings. The result of Hyers was generalized by Rassias [18] for linear
mapping by considering an unbounded Cauchy difference. The stability problems of several
functional equations have been extensively investigated by a number of authors, and there are
many interesting results concerning this problem ([1, 9]). Recently, considerable attention has
been increasing to the problem of fuzzy stability of functional equations. Several fuzzy stability
results concerning Cauchy, Jensen, simple quadratic, and cubic functional equations have been
investigated in [12, 13, 14, 15, 16, 19, 24, 25].

In this paper, Riesz fuzzy normed spaces are defined and the stability conditions are verified.

2010 Mathematics Subject Classification. 54A40, 46S40, 39B62, 39B52.
Key words and phrases. Menger probabilistic normed Riesz space; Hyers-Ulam stability; lattice preserving func-

tional equation; lattice homomorphism.
∗Corresponding author.
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A nonempty set V with a relation “≤” is said to be an ordered set whenever the following
conditions are satisfied:

1. x ≤ x for all x ∈ V.
2. x ≤ y and y ≤ x imply that x = y.
3. x ≤ y and y ≤ z imply that x ≤ z.
If, in addition, for all x, y ∈ V either x ≤ y or y ≤ x, then V is called a totally ordered set.

Let A be subset of an ordered set V . x ∈ V is called an upper bound of A if y ≤ x for all y ∈ A.
z ∈ V is called a lower bound of A if y ≥ z for all y ∈ A. Moreover, if there is an upper bound of
A, then A is said to be bounded from above. If there is a lower bound of A, then A is said to be
bounded from below. If A is bounded from above and from below, then we will briefly say that
A is order bounded.

An order set (V,≤) is called a lattice if any two elements x, y ∈ V have a least upper bound
denoted by x ∨ y = sup{x, y} and a greatest lower bound denoted by x ∧ y = inf{x, y}.

A real vector space V which is also an order set is an order vector space if the order and the
vector space structure are compatible in the following sense:

1. If x, y ∈ V such that x ≤ y then x+ z ≤ y + z for all z ∈ V.
2. If x, y ∈ V such that x ≤ y, then αx ≤ αy for all α ≥ 0.
(V,≤) is called a Riesz space if (V,≤) is a lattice and an order vector space.
A norm ‖ · ‖ on a Riesz space V is called a lattice norm if ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|. In

the latter case, (V, ‖ · ‖) is called a normed Riesz space.
(V, ‖ · ‖) is called a Banach lattice if for all x, y ∈ V
1. (V, ‖ · ‖) is a Banach space;
2. V is a Riesz space;
3. ‖ · ‖ is a lattice norm.
Let V be a Riesz space and the positive cone V + of V consist of all x ∈ V such that x ≥ 0.

For every x ∈ V , let

x+ = x ∨ 0, x− = −x ∨ 0, |x| = x ∨ −x.
Let V be a Riesz space. For all x, y, z ∈ V , the following assertions hold:
1. x+ y = x ∨ y + x ∧ y , −(x ∨ y) = −x ∧ −y;
2. x+ (y ∨ z) = (x+ y) ∨ (x+ z) , x+ (y ∧ z) = (x+ y) ∧ (x+ z);
3. |x| = x+ + x− , |x+ y| ≤ |x|+ |y|;
4. x ≤ y is equivalent to x+ ≤ y+ and y− ≤ x−;
5. (x ∨ y) ∧ z = (x ∧ y) ∨ (y ∧ z) , (x ∧ y) ∨ z = (x ∨ y) ∧ (y ∨ z).
A Riesz space V is Archimedean if x ≤ 0 holds whenever the set {nx : n ∈ N} is bounded

from above.

Definition 1.1. [17] Let V be a Riesz space. The sequence {xn} is called uniformly bounded if
there exist e ∈ V + and {an} ∈ l1 such that xn ≤ an · e.

Definition 1.2. [17] A Riesz space V is called uniformly complete if sup{
∑n

i=1 xi : n ∈ N}
exists for every uniformly bounded sequence {xn}, where xn ∈ V +.

Definition 1.3. [17] Let V,W be Archimedean Riesz spaces. The function P : V → W is called
positive if P (V +) = {P (|x|) : x ∈ V } ⊂W+.

Theorem 1.1. [2] For a function P : V →W between two Riesz spaces, the following statements
are equivalent:

1. P is a lattice homomorphism;

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1245 MOSADEGH ET AL 1244-1257



MENGER PROBABILISTIC NORMED RIESZ SPACES

2. P (x+) = P (x)+ for all x ∈ V ;
3. P (x ∧ y) = P (x) ∧ P (y);
4. if x ∧ y = 0 in V , then P (x) ∧ P (y) = 0 holds in W ;
5. P (|x|) = |P (x)|.

Definition 1.4. [1] Let V and W be Banach lattices and P : V → W a positive mapping. We
define

(P1) a lattice homomorphism functional equation:

P (|x| ∨ |y|) = P (|x|) ∨ P (|y|);

(P2) a semi-homogeneity: for all x ∈ V and every number α ∈ R+

P (α|x|) = αP (|x|).

Remark 1.1. [1] Given two Banach lattices V and W and P : V → W be a positive function
satisfying the property (P1). Then the following statements are valid.

1. P (|x ∨ y|) ≤ P (|x|) ∨ P (|y|) for all x, y ∈ V.
2. The semi-homogeneity implies that P (0) = 0.
3. P is an increasing operator, in the sense that if x, y ∈ V are such that |x| ≤ |y|, then

P (|x|) ≤ P (|y|).

A distance distribution function (briefly, d.d.f.) is a non-decreasing function F defined on R+

that satisfies F (0) = 0 and F (+∞) = 1, and is left continuous on (0,∞). The set of all d.d.f’s
will be denoted by ∆+; and the set of all F in ∆+ for which limx→+∞− F (x) = 1 by D+. The
elements of ∆+ are partially ordered via F ≤ G if and only if F (x) ≤ G(x) for all x ∈ R+.

The space ∆+ has both maximal element ε0 and a minimal element ε∞ defined by

ε0(x) =

 0 if x ≤ 0

1 if x > 0,
ε∞(x) =

 0 if x < +∞

1 if x =∞.
Let [F,G;h] denote the condition

G(x) ≤ F (x+ h) + h ∀x ∈
(

0,
1

h

)
.

For any F,G ∈ ∆+ and h in (0, 1], the function dL defined on ∆+ ×∆+ by

dL(F,G) = inf {h | both [F,G;h] and [G,F ;h] hold }

is called the modified levy metric on ∆+. Convergence with respect to this metric is to week
convergence of distribution function, i.e., for any sequence {Fn} in ∆+ and any F in ∆+, we have
dL(Fn, F )→ 0 if and only if the sequence {Fn(x)} converges to F (x) at each continuity point x
of F . Moreover, the metric space (∆+, dL) is compact. If F and G are in ∆+ and F ≤ G, then
dL(G, ε0) ≤ dL(F, ε0). The supremum of any set of d.d.f.’s in ∆+ is in ∆+ (see [5]).

Definition 1.5. [5] A triangle norm (t-norm, for short) is a binary operation on the unit interval
[0, 1], i.e., a function T : [0, 1] × [0, 1] → [0, 1] such that for all x, y, z ∈ [0, 1] the following four
axioms are satisfied:

(T1) T (x, y) = T (y, x);
(T2) T (x, T (y, z)) = T (T (x, y), z);
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z;
(T4) T (x, 1) = x.
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A t-norm T is continuous if and only if it is continuous in the first component, i.e., if for each
y ∈ [0, 1] the one place function

T (·, y) : [0, 1]→ [0, 1], x 7−→ T (x, y),

is continuous. A continuous t-conorm T ∗ is a continuous binary operation on [0, 1] which is related
to the continuous t-norm T through T ∗(x, y) = 1 − T (1 − x, 1 − y). A continuous t-norm T is
Archimedean if T (x, x) < x for all x ∈ (0, 1) (see [21]).

Definition 1.6. A triangle function is a binary operation on ∆+, namely, a function τ : ∆+ ×
∆+ → ∆+ that is associative, commutative, nondecreasing in each argument and which has ε0 as
unit, viz, for all F,G,H ∈ ∆+,

1. τ(τ(F,G), H) = τ(F, τ(G,H));
2. τ(F,G) = τ(G,F );
3. F ≤ G ⇒ τ(F,H) ≤ τ(G,H);
4. τ(F, ε0) = F.

A triangle function τ is Archimedean on ∆+ if τ(F,G) < F for all F,G ∈ ∆+ and F 6= ε∞,
G 6= ε0. Moreover, a triangle function is continuous if it is continuous in the metric space (∆+, dL).
Typical continuous triangle functions are

τT (F,G)(x) = sup
s+t=x

T (F (s), G(t)) τT ∗(F,G)(x) = infs+t=x T
∗(F (s), G(t)),

where T and T ∗ are t-norm and t-conorm respectively. If T and T ∗ are continuous t-norm and
t-conorm, respectively, then τT and τT ∗ are uinformly continuous on (∆+, dL) (see [21]).

Theorem 1.2. [21] Let T be an Archmidean continuous t-norm. Then τT is a triangle function
having no nontrivial idempotent in ∆+, that is, τT is Archimedean triangle function (there is a
similar theorem for τT ∗).

Definition 1.7. [5] A probabilistic normed space, which will henceforth be called briefly a PN
space, is a quadruple (V, ν, τ, τ∗), where V is a linear space, τ and τ∗ are continuous triangle
functions with τ ≤ τ∗, and the mapping ν : V → ∆+ satisfies, for all p and q in V , the conditions

(N1) νp = ε0 if and only if p = θ (θ is the null vector in X);
(N2) ν−p = νp;
(N3) νp+q ≥ τ(νp, νq);
(N4) νp ≤ τ∗(ναp, ν(1−α)p) for every α ∈ [0, 1].

The function ν is called the probabilistic norm, a PN space is called a Serstnev space if it
satisfies (N1), (N3) and the following condition:

ναp(x) = νp

(
x

|α|

)
holds for all α ∈ R \ {0} and x > 0. If τ = τT and τ∗ = τT ∗ for some continuous t-norm T and its
t-conorm T ∗ then (V, ν, τ, τ∗) is denoted by (V, ν, T ) and is a Menger PN space. For p ∈ V and
t > 0, the strong t-neighbourhood of p is defined by the set

Np(t) = {q ∈ V : dL(νp−q, ε0) < t} = {q ∈ V : νp−q(t) > 1− t}.

Since τ is continuous, the system of neighbourhood {Np(t) : p ∈ V and t > 0} determines a
Hausdorff and first countable topology on V , called a strong topology.
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A sequence {pn} in (V, ν, τ, τ∗) is said to be strongly convergent (convergent with respect to

the probabilistic norm) to a point p in V , and we will write pn
PN−−→ p, if for any t > 0, there

is a positive integer N such that pn is in Np(t) whenever n ≥ N . Thus pn
PN−−→ p if and only if

limn→∞ dL(νpn−p, ε0) = 0. We will call p the strong limit of {pn}.
A sequence {pn} in (V, ν, τ, τ∗) is said to be strong Cauchy if for any t > 0, there is an integer

N such that pn is in Npm(t) whenever n,m ≥ N . If every strong Cauchy sequence is strongly
convergent to a point p in V , then we say that (V, ν, τ, τ∗) is complete in the strong topology.

Theorem 1.3. [5] Let (V, ν, τ, τ∗) be a PN space in which τ∗ is Archimedean and νp 6= ε∞ for
all p ∈ V . Then for every p ∈ V , the mapping R 3 α 7−→ αp is uniformly continuous.

Theorem 1.4. [5] Let (V, ν, τ, τ∗) be a PN space with τ continuous. If V is endowed with
the strong topology and ∆+ with the topology of levy metric dL, then the probabilistic norm
ν : V → ∆+ is uniformly continuous.

Note that if T is an Archmidean continuous t-norm, we use the above theorems in Menger PN
space (V, ν, T ).

Definition 1.8. [22] Let (V,≤) be a (real) Riesz space equipped with a probabilistic norm ν,
and continuous triangle functions τ and τ∗ such that τ ≤ τ∗. The probabilistic norm on V is a
probabilistic Riesz norm provided that |x| ≤ |y| in V implies νx ≥ νy. Any Riesz space, equipped
with probabilistic Riesz norm is a probabilistic normed Riesz space (PNR space, briefly). If a
PNR space V is complete with respect to the strong topology, then V is a probabilistic Banach
lattice (PBL, in short).

Remark 1.2. In classical Riesz space theory, it is known that every normed Riesz space is
Archimedean. In general, a PNR space V need not be Archimedean (see [22]). Nevertheless, if
the condition that the triangle function τ∗ of the PNR space V is Archimedean and νp 6= ε∞ for
all p ∈ V is satisfied, then V is also Archimedean (see [5]).

2. Main results

Definition 2.1. A Menger probabilistic normed Riesz space (MPNR- space, for short) is a qua-
ternary (V, ν, T,≤) where (V,≤) is a real Riesz space, T is a continuous t-norm and ν : V → D+

(for x ∈ V the distribution function ν(x) is denoted by νx and νx(t) is the value of νx at t ∈ R)
satisfies the following conditions:

(M1) νx(0) = 0 for all x ∈ V ;
(M2) νx = ε0 if and only if x = θ (θ is the null vector in V );
(M3) ναx(t) = νx( t

|α|) for all x ∈ V and α ∈ R \ {0};
(M4) νx+y(t1 + t2) ≥ T (νx(t1), νy(t2)), for all x, y ∈ V and t1, t2 ∈ R+;
(M5) norm Riesz Menger property: νx(t) ≥ νy(t) whenever |x| ≤ |y| for all x, y ∈ V and t ∈ R+.

Example 2.1. Let (V, ‖.‖,≤) be a normed Riesz space. Define ν : V → D+ by

νx(t) =


t

t+ ‖x‖
if t > 0,

0 if t ≤ 0.

Then (V, ν, T,≤) is a Menger PN space. It is clear that (M1)− (M4) hold. Suppose that |x| ≤ |y|
for all x, y ∈ V . Then ‖x‖ ≤ ‖y‖ since (V, ‖ · ‖,≤) is a normed Riesz space. Therefore,
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t

t+ ‖x‖
≥ t

t+ ‖y‖
and so νx(t) ≥ νy(t) for all t > 0.

Lemma 2.1. If (R, ν, T ) is a Menger PN-space, then (R, ν, T,≤) is a Menger probabilistic normed
Riesz space.

We show that norm Riesz Menger property is satisfied in (R, ν, T,≤). Let |x| ≤ |y| for x, y ∈
R \ {0}. Then

νx(t) = νx
y
.y(t) = νy

(
t

|xy |

)
≥ νy(t)

for all t ∈ R+.

Definition 2.2. Let (V, ν, T,≤) be an Menger probabilistic normed Riesz space. Let {xn} be a
sequence in V . Then {xn} is said to be convergent if there exists x ∈ V such that

lim
n→∞

νxn−x(t) = 1.

In this case, x is called the limit of {xn}.

Definition 2.3. The sequence {xn} in a Menger probabilistic normed Riesz space (V, ν, T,≤) is
called Cauchy if for each ε > 0 and δ > 0, there exists some n0 such that

νxn−xm(δ) > 1− ε
for all m,n ≥ n0.

Clearly, every convergent sequence in a Menger probabilistic normed Riesz space is Cauchy.
If each Cauchy sequence is convergent in a Menger probabilistic normed Riesz space (V, ν, T,≤),
then (V, ν, T,≤) is called a Menger probabilistic Banach Riesz space (briefly, MPBR- space).

Definition 2.4. A sequence {xn} in a Menger probabilistic normed Riesz space (V, ν, T,≤) is
called order Menger convergent to x as n→∞ if there exists a sequence {yn} ↓ 0 as n→∞ and
νxn−x(t) ≥ νyn(t) for all n ∈ N and t > 0. We write x = OM − limn→∞ xn.

Theorem 2.1. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. Then each lattice
operator is continuous.

Proof. Assume that

lim
n→∞

νxn−x(t) = 1 & lim
n→∞

νyn−y(s) = 1

for all t, s > 0. Then

νxn∧yn−x∧y(t+ s) = νxn∧yn−xn∧y+xn∧y−x∧y(t+ s)

≥ T (νxn∧yn−xn∧y(t), νxn∧y−x∧y(s))

≥ T (νyn−y(t), νxn−x(s)) .

As n→∞, we have
lim
n→∞

νxn∧yn−x∧y(t+ s) = 1.

So
lim
n→∞

xn ∧ yn = x ∧ y.
It is easy to see that the other lattice operations are continuous. �
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Theorem 2.2. Let (V, ν, T,≤) be a Menger PNR space and T be an Archimedean continuous
t-norm and νx 6= ε∞ for all x ∈ V . Then V is Archimedean Menger PNR space.

Proof. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. Consider x, y ∈ V + such
that nx ≤ y for all n ∈ N. Then

νnx(t) ≥ νy(t), ∀t > 0

and so

νx

(
t

n

)
≥ νy(t), ∀t > 0.

Replacing t by nt, we get

νx(t) ≥ νy(nt) = ν y
n

(t) ∀t > 0.

Since T is an Archimedean continuous t-norm and νx 6= ε∞, the probabilistic norm ν is continuous
(see Theorem 1.3) and we have x = 0. Hence V has Archimedean property (see Theorems 1.4
and 1.2). �

Throughout this article we will assume that Menger PN space (V, ν, T,≤) has an Archimedean
continuous t-norm T and νx 6= ε∞.

Proposition 2.1. Assume that {xn} and {yn} are sequences in Menger probabilistic normed
Riesz space (V, ν, T,≤) such that xn → x and yn → y in order Menger as n→∞. Then

OM − lim
n→∞

(xn + yn) = x+ y,

OM − lim
n→∞

(xn ∨ yn) = x ∨ y,

OM − lim
n→∞

(xn ∧ yn) = x ∧ y.

Theorem 2.3. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. If xn → x (in order
Menger or in norm) and xn ≥ y for all n, then x ≥ y. If xn → x and xn ≥ 0 for all n ∈ N, then
x ≥ 0. This shows that the positive cone V + is closed.

Proof. It may be assumed that y = 0. Since |x− − x−n | ≤ |x− xn|,
νx−−x−n (t) ≥ νx−xn(t)

and so the sequence {xn} converges to x as n → ∞. Thus νx−−x−n (t) ≥ 1, which means that

x− = 0 and hence x ≥ 0. �

Theorem 2.4. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. Every increasing
convergent sequence {xn} ⊂ V is convergent to u = sup{xn : n ∈ N}.

Proof. Suppose that {xn} is an increasing convergent sequence and

lim
n→∞

νxn−x(t) = 1 for all t > 0 for all n ∈ N.

Since for every m ≥ n, we have xm − xn ∈ V +, it follows from Theorem 2.3 that x ≥ xn and
xn ≤ u ≤ x for all n ∈ N . So by (M4)

νu−xn(t) ≥ νx−xn(t) for all t > 0.

Therefore, we have
lim
n→∞

νxn−u(t) = 1 for all t > 0.

Hence u = x. �
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Theorem 2.5. Every Menger probabilistic Banach Riesz space is uniformly complete.

Proof. Let (V, ν, T,≤) be a Menger probabilistic Banach Riesz space and {xn} ⊂ V + be a se-
quence such that xn ≤ ane for a suitable sequence {an} ∈ l1 and some e ∈ V +. We show that
sup{

∑n
i=1 xi : n ∈ N} exists. Let

yn = x1 + x2 + ...+ xn and bn =
∞∑

j=n+1

aj .

By Theorem 2.1 and (PN4), we have

νyn+p−yn(t) = νxn+1+...+xn+p(t) ≥ ν∑∞j=1 an+j .e
(t) = νbn·e(t)

for all t > 0. As n→∞, we get

lim
n→∞

νyn+p−yn(t) = 1.

So {yn} is a Cauchy sequence in Menger probabilistic Banach Riesz space and therefore there
exists y ∈ V such that yn → y. Since yn is increasing and convergence sequence, by Theorem 2.4,
we have

lim
n→∞

νyn−∨yn(t) = 1,

that is, yn → sup{
∑∞

i=1 xi : n ∈ N}. Using a unique limit, we have

y = sup{
∞∑
i=1

xi : n ∈ N}.

Thus the proof is complete. �

Definition 2.5. (i) Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. The subset A
of V is said to be solid if the following conditions hold:

(1) x ∈ A if and only if |x| ∈ A;
(2) 0 ≤ x ∈ A and y ∈ V + imply that x ∧ y ∈ A.
(ii) The subset A of V is called an ideal in V if A is a solid linear subspace of V .
(iii) An order Menger closed ideal A of V is called a band.

Theorem 2.6. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. The closure solid
subset of V is solid.

Proof. Suppose that A ⊆ V is a solid and x ∈ A. Assume that {xn} ⊆ A is a sequence such that
xn → x as n→∞. It follows from (M5) that

ν|xn|−|x|(t) ≥ ν|xn−x|(t) = νxn−x(t).

Therefore |xn| → |x| as n→∞ and so |x| ∈ A, since A is a solid.
On the other hand, suppose that |x| ∈ A. Then there exists xn ⊂ A+ such that xn → |x|. It

follows from Theorem 2.1 that
xn ∧ x→ x ∧ |x| = x,

as n→∞ and hence x ∈ A.
Finally, suppose that 0 ≤ x ∈ A and y ∈ V +. Then there exists xn ⊂ A+ such that xn → x as

n→∞. It follows from Theorem 2.1 that

xn ∧ y → x ∧ y.
Therefore, x ∧ y ∈ A. Thus the proof is complete. �
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Theorem 2.7. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. Then every band
in V is closed.

Proof. Suppose that B is a band and assume that {xn} ⊂ B is a sequence such that xn −→ x for
some x ∈ V . It follows from Theorem 2.1 that

|xn| ∧ |x| −→ |x|
as n→∞. For every n ∈ N, let

yn = (|xn| ∨ ... ∨ |x1|) ∧ |x|.
Then {yn} is an increasing sequence and

yn = (|xn| ∧ |x|) ∨ ... ∨ (|x1| ∧ |x|)
and so |xn| ∧ |x| ≤ yn ≤ |x|. By (M4), we have

ν|x|−yn(t) ≥ ν|x|−|xn|∧|x|(t)
for all t > 0. Hence yn −→ |x| as n→∞. Theorem 2.4 implies that |x| = sup{yn : n ∈ N} ∈ B.
Hence x ∈ B. �

Theorem 2.8. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. We define the
function ‖ · ‖ by

‖x‖ = inf{t ≥ 0, νx(t) = 1} for all x ∈ V.
Then ‖ · ‖ is a lattice norm on V and (E, ‖ · ‖,≤) is a normed Riesz space.

Proof. It suffices to show that ‖ · ‖ satisfies the lattice norm conditions.
(1) From (M1) and (M2) it is easy to see that ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
(2) From (M3), for any α ∈ R \ {0},

‖αx‖ = inf{t ≥ 0, ναx(t) = 1} = inf

{
t ≥ 0, νx

(
t

α

)
= 1

}
= |α| inf{t ≥ 0, νx(t) = 1}
= |α| · ‖x‖,

and if α = 0, then the above equality still holds.
(3) By definition of ‖ · ‖, for any ε > 0, we have

∃ t1 ∈ A such that t1 ≤ ‖x‖+
ε

2
,

where A = {t ≥ 0; νx(t) = 1}. Therefore

νx

(
‖x‖+

ε

2

)
= 1 , νy

(
‖y‖+

ε

2

)
= 1.

Hence from (M4) it follows that

νx+y (‖x‖+ ‖y‖+ ε) = 1⇒ ‖x‖+ ‖y‖+ ε ∈ A
for all x, y ∈ V . By definition of A,

‖x+ y‖ ≤ ‖x‖+ ‖y‖+ ε.

Letting ε→ 0, we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.
So ‖ · ‖ is a norm on V .

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1252 MOSADEGH ET AL 1244-1257



S.M.S.M. MOSADEGH, E. MOVAHEDNIA, J. LEE, AND C. PARK

(4) Finally, assume that |x| ≤ |y| for all x, y ∈ V . Then νx(t) ≥ νy(t). We define

‖x‖ = inf A2 = inf{t ≥ 0; νx(t) = 1};
‖y‖ = inf A1 = inf{t ≥ 0; νy(t) = 1}.

If t1 ∈ A1, then νx(t1) = 1 and so A1 ⊆ A2. Therefore ‖y‖ ≥ ‖x‖. Thus the proof is complete. �

Theorem 2.9. Let (V, ν, T,≤) be a Menger probabilistic normed Riesz space. We define the
function ‖ · ‖α by

‖x‖α = inf{t ≥ 0, νx(t) > 1− α} for all x ∈ V , α ∈ (0, 1).

Then ‖ · ‖α is a lattice semi-norm.

Proof. The proof is the same as in the proof of the above theorem. �

Theorem 2.10. Let (E, ‖ · ‖α,≤) be a normed Riesz space. We define the function νx(t) by

νx(t) = sup{α ∈ (0, 1) : ‖x‖α ≤ t}.
Then (V, ν, T,≤) is a Menger probabilistic normed Riesz space, where T is a t-norm.

Proof. The proof is the same as in the prrof of Theorem 2.8. �

Corollary 2.1. Let (V, ν, T,≤) be a Menger probabilistic Banach Riesz space, and ‖ · ‖ be defined
in Theorem 2.8. If P : E → E is a positive linear operator then P is continuous.

Proof. Assume that P fails to be continuous. Hence for every n ∈ N there exists xn ∈ V such
that ‖xn‖ ≤ 2−n and n ≤ ‖Pxn‖, i.e., xn → θ but Pxn 9 θ, where θ is a null vector in V . Since
P is a positive linear operator, Px ≤ P |x| then νPx(t) ≥ νP |x|(t). So

‖P |x|‖ = inf{t ≥ 0, νP |x|(t) = 1} ≥ inf{t ≥ 0, νPx(t) = 1} = ‖Px‖
for all x ∈ V . We may assume that xn ≥ 0. Let

x =
∑
n

xn ∈ V +.

Then x ≥ xn and so ‖Px‖ ≥ ‖Pxn‖ ≥ n for all n ∈ N. This is a contradiction. �

3. Hyers-Ulam stability of lattice homomorphisms in Menger PNR spaces

Using the direct method, we investigate the Hyers-Ulam stability of lattice homomorphisms in
Menger probabilistic normed Riesz spaces.

Theorem 3.1. Let f be a positive function from a Menger probabilistic normed Riesz space
(V, ν, T,≤) to a Menger probabilistic Banach Riesz space (W,µ, T,≤), where T is an Archimedean
continuous t-norm and νp, µq 6= ε∞, for all p ∈ V and q ∈W . Let

µf(τx∨ηy)−τf(x)∨ηf(y)(t) ≥ νϕ(τx∨ηy,τx∧ηy)(t)(3.1)

for all x, y ∈ V and t > 0. Here ϕ : V × V → V is a mapping such that

(3.2) ϕ(x, y) ≤ (τη)
α
2 ϕ(xτ ,

y
η )

for all τ, η ≥ 1 and for some α ∈ [0, 1). Then there exists a unique positive function T : V → W
which satisfies the properties (P1),(P2) and inequality

µT(x)−f(x)(t) ≥ νϕ(x,x)
(
τ − τα

τα
t

)
for all x ∈ V +.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1253 MOSADEGH ET AL 1244-1257



MENGER PROBABILISTIC NORMED RIESZ SPACES

Proof. Putting y = x and τ = η in (3.1), we have

µf(τx)−τf(x)(t) ≥ νϕ(τx,τx)(t).
By (M5) and (3.2), we obtain

µ 1
τ f(τx)−f(x)

(τα−1t) ≥ νϕ(x,x)(t).(3.3)

Replacing x by τx in (3.3) and using (3.2) and (M5), we have

µ 1
τ f(τ

2x)−f(τx)
(τα−1t) ≥ νϕ(τx,τx)(t) ≥ νταϕ(x,x)(t) = νϕ(x,x)(

t
τα ).

Hence

µ 1
τ2
f(τ2x)− 1

τ f(τx)
(τ2α−2t) ≥ νϕ(x,x)(t).(3.4)

By comparing (3.3) and (3.4) and using (M4), we have

µ 1
τ2
f(τ2x)−f(x)

(
(τα−1 + τ2(α−1))t

)
≥ νϕ(x,x)(t).(3.5)

Again, replacing x by τx in (3.5), we get

µ 1
τ2
f(τ3x)−f(τx)

(
(τα−1 + τ2(α−1))t

)
≥ νϕ(τx,τx)(t) ≥ νταϕ(x,x)(t) ≥ νϕ(x,x)

(
t
τα

)
and so

µ 1
τ3
f(τ3x)− 1

τ f(τx)

(
(τ2(α−1) + τ3(α−1))t

)
≥ νϕ(x,x)(t).(3.6)

By comparing (3.3) and (3.6), we obtain

µ 1
τ3
f(τ3x)−f(x)

(
(τ (α−1) + τ2(α−1) + τ3(α−1))t

)
≥ νϕ(x,x)(t).

With this process, we have

µ 1
τn f(τ

nx)−f(x)

(
n∑
k=1

τk(α−1)t

)
≥ νϕ(x,x)(t)(3.7)

for all n ∈ N. If m ∈ N and n > m, then n−m ∈ N. Replacing n by n−m in (3.7), we get

µ 1
τn−m f(τn−mx)−f(x)

(
n−m∑
k=1

τk(α−1)t

)
≥ νϕ(x,x)(t).(3.8)

Replacing x by τmx in (3.8) and using (M5), we obtain

µ 1
τn f(τ

nx)− 1
τm f(τmx)

(
n∑

k=m+1

τk(α−1)t

)
≥ νϕ(x,x)(t).(3.9)

Let c > 0 and ε > 0 be given. Since νϕ(x,x)(t) ∈ D+, limt→∞ νϕ(x,x)(t) = 1. Therefore, there is
some t0 > 0 such that

νϕ(x,x)(t0) ≥ 1− ε.
Fix some t ≥ t0. The convergence of

∑∞
k=1 τ

k(α−1)t guarantees that there exists some n0 ≥ 0 such
that for each n > m > n0, the inequality

n∑
k=m+1

τk(α−1)t < c
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holds. It follows that

µ 1
τn f(τ

nx)− 1
τm f(τmx)

(c) ≥ µ 1
τn f(τ

nx)− 1
τm f(τmx)

(
n∑

k=m+1

τk(α−1)t0

)
≥ νϕ(x,x)(t0)

≥ 1− ε.
So
{

1
τn f(τnx)

}
is a Cauchy sequence in the Menger probabilistic Banach Riesz space (W,µ, T,≤)

and thus this sequence converges to T(x) ∈W . It means that

lim
n→∞

µ 1
τn f(τ

nx)−T(x)
(t) = 1.

Furthermore, by putting m = 0 in (3.9), we obtain

µ 1
τn f(τ

nx)−f(x)

(
n∑
k=1

τk(α−1)t

)
≥ νϕ(x,x)(t).

So

µ 1
τn f(τ

nx)−f(x)
(t) ≥ νϕ(x,x)

(
t∑n

k=1 τ
k(α−1)

)
.

Since νp, µq 6= ε∞ and T is an Archimedean continuous t-norm, norm probabilistic is continuous
(see Theorems 1.3 and 1.4 ). Thus we have

µT(x)−f(x)(t) ≥ νϕ(x,x)
(
τ − τα

τα
t

)
.

Next, we show that T satisfies (P1). Putting τ = η = τn in (3.1), we get

µf(τnx∨τny)−τnf(x)∨τnf(y)(t) ≥ νϕ(τnx∨τny,τnx∧τny)(t) ≥ νϕ(x∨y,x∧y)
(

t

τnα

)
.

Replacing x by τnx and y by τny in the last inequality, one can get

µf(τn(τnx∨τny))−τnf(τnx)∨τnf(τny)(t) ≥ νϕ(τnx∨τny,τnx∧τny)

(
t

τnα

)
≥ νϕ(x∨y,x∧y)

(
t

τ2nα

)
,

which implies

µf(τ2n(x∨y))
τ2n

−f(τ
nx)

τnx ∨
f(τny)
τn

(t) ≥ ντ2n(α−1)ϕ(x∨y,x∧y)(t).

Since norm probabilistic is continuous, the term on the right-hand side of the above inequality
tends to 1 as n→∞. By Theorem 2.1, we obtain

µT(x∨y)−T(x)∨T(y)(t) ≥ 1

for all x, y ∈ V . This means that

T(x ∨ y) = T(x) ∨T(y).

Consequently, the property (P1) holds. We show that T(τx) = τT(x) for all x ∈ V + and τ ≥ 1.
In fact, in the inequality (3.1), we choose η = τ and y = 0 and substitute 2nτ for τ and consider
Remark 1.1. Then

µ(f(2nτx)−2nτf(x))(t) ≥ νϕ(2nτx,0)(t)(3.10)
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for all x ∈ V +. Now, replacing x by 2nx in (3.10), we obtain

µ(f(4nτx)
4n − τf(2

nx)
2n

) ( t
4n

)
≥ νϕ(4nτx,0)(t) ≥ ν4nαταϕ(x,0)(t).

Therefore,

µf(4nτx)
4n − τf(2

nx)
2n

(t) ≥ ν4n(α−1)ταϕ(x,0)(t).

Since norm probabilistic is continuous, the term on the right-hand side of the above inequality
tends to 1 as n→∞. Thus

T(τx) = τT(x),

as desired. �

Corollary 3.1. Let f be a positive function from a Menger probabilistic normed Riesz space
(V, ν, T,≤) to a Menger probabilistic Banach Riesz space (W,µ, T,≤), where T is an Archimedean
continuous t-norm and νp, µq 6= ε∞, for all p ∈ V and q ∈ W . Let ρ : [0,∞) → [0,∞) be a
continuous function, for which there are numbers η ∈ R and 0 ≤ r < 1 such that

(3.11) µ(
f(α|x|∨β|y|)−αρ(α)f(|x|)∨βρ(β)f(|y|)ρ(α)∨ρ(β)

)(t) ≥ ν(η(xr∨yr))(t)

for all x, y ∈ V and α, β ∈ R+. Then there exists an unique positive mapping T : V → W which
satisfies the properties (P1), (P2) and the inequality

µ(F (|x|)−T(|x|)(t) ≥ ν( 2ηx
2−2r

)(t)

for all x ∈ V +.

Proof. Putting α = β = 2 and x = y in (3.11), we get

µ(
f(2|x|)−2ρ(2)f(|x|)∨2ρ(2)f(|x|)

ρ(2)∨ρ(2)

)(t) ≥ ν(ηxr)(t)

for all x ∈ X and r ∈ [0, 1). Therefore,

µ(f(2|x|)−2f(|x|))(t) ≥ ν(ηxr)(t),

µ(1
2f(2|x|)−f(|x|)

)(t) ≥ ν(ηxr)(2t).

The rest of the proof is similar to the previous one. �
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FOURIER SERIES OF SUMS OF PRODUCTS OF

POLY-GENOCCHI AND POLY-BERNOULLI FUNCTIONS

TAEKYUN KIM1, DAE SAN KIM2, DMITRY V. DOLGY3, AND JONGKYUM KWON4,∗

Abstract. In this paper, we consider three types of functions given by the
sums of products of poly-Genocchi and poly-Bernoulli functions and derive

their Fourier series expansions. Moreover, we will express each of them in
terms of Bernoulli functions.

1. Introduction

Let r be any integer. The following series

Lir(x) =
∞∑

m=1

xm

mr
(1.1)

is the rth polylogarithm function for r ≥ 1, and a rational function for r ≤ 0. Then
it is easy to see that

d

dx
(Lir+1(x)) =

1

x
Lir(x). (1.2)

The poly-Bernoulli polynomials B
(r)
m (x) of index r are given by (see [5–7])

Lir(1− e−t)

et − 1
ext =

∞∑
m=0

B(r)
m (x)

tm

m!
. (1.3)

When x = 0, B
(r)
m = B

(r)
m (0) are called poly-Bernoulli numbers of index r. In

particular, if r = 1, Bm(x) = B
(1)
m (x) are the Bernoulli polynomials defined by

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
. (1.4)

We note here, in passing, that this definition of poly-Bernoulli polynomials are
slightly different from the original definition (see [4–6]). As to poly-Bernoulli poly-
nomials, we need to note the following:

B
(r)
0 (x) = 1, B(0)

m (x) = xm, B(0)
m = δm,0,

d

dx
B(r)

m (x) = mB
(r)
m−1(x), B

(r+1)
m (1)−B(r+1)

m = B
(r)
m−1, (m ≥ 1).

(1.5)

2010 Mathematics Subject Classification. 11B83, 42A16.

Key words and phrases. Fourier series, poly-Genocchi polynomial, poly-Bernoulli polynomial.
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2 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

The poly-Genocchi polynomials G
(r)
m (x) of index r were introduced in [3] as an

analogy to poly-Bernoulli polynomials and defined by (see [8–11])

2Lir(1− e−t)

et + 1
ext =

∞∑
m=0

G(r)
m (x)

tm

m!
. (1.6)

When x = 0, G
(r)
m = G

(r)
m (0) are called poly-Genocchi numbers of index r. In the

special case of r = 1, Gm(x) = G
(1)
m (x) are the Genocchi polynomials given by

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
. (1.7)

We would like to mention here that the poly-Genocchi polynomials were named

as poly-Euler polynomials in [3] and denoted by E
(r)
m . However, for the obvious

reason it seems more appropriate to call them poly-Genocchi polynomials rather
than poly-Euler polynomials. In fact, there are other definitions for poly-Euler
numbers and polynomials. For these, the interested reader may refer to the papers
[1, 16,17].
As to poly-Genocchi polynomials, we need to note the following properties.

d

dx
G(r)

m (x) = mG
(r)
m−1(x), G

(r+1)
m (1) +G(r+1)

m = 2B
(r)
m−1, (m ≥ 1),

G
(r)
0 (x) = 0, G

(r)
1 (x) = 1, degG(r)

m (x) = m− 1, (m ≥ 1).

(1.8)

The properties in (1.8) immediately follow from the identity

∞∑
m=0

G(r)
m (x)

tm

m!
=

∞∑
m=1

(
m−1∑
l=0

(
m

l

)
am−lEl(x)

)
tm

m!
, (1.9)

where Lir(1 − e−t) =
∑∞

n=1 an
tn

n! = t +
∑∞

n=2 an
tn

n! , and Em(x) are the Euler
polynomials given by

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
. (1.10)

For any real number x, we let

< x >= x− [x] ∈ [0, 1) (1.11)

denote the fractional part of x.
We also need the following facts about Bernoulli functions Bm(< x >):
(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)m
, (1.12)

(b) for m = 1,

−
∞∑

n=−∞,n̸=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(1.13)

Here we will consider the following three types of sums of products of poly-
Genocchi and poly-Bernoulli functions αm(< x >), βm(< x >), and γm(< x >),
and derive their Fourier series expansions. In addition, we will express each of them
in terms of Bernoulli functions.
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(1) αm(< x >) =
∑m−1

k=0 B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2),

(2) βm(< x >) =
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2),

(3) γm(< x >) =
∑m−1

k=1
1

k(m−k)B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2).

For related recent works, one may refer to the papers (see [2, 12–15]).

2. The function αm(< x >)

Let αm(x) =
∑m−1

k=0 B
(r+1)
k (x)G

(s+1)
m−k (x), (m ≥ 2).

Then we now consider the function

αm(< x >) =
∑m−1

k=0 B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2),

defined on R, which is periodic with period 1.
The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.1)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx =

∫ 1

0

αm(x)e−2πinxdx. (2.2)

Before proceeding further, we need to observe the following.

α′
m(x) =

m−1∑
k=0

(
kB

(r+1)
k−1 (x)G

(s+1)
m−k (x) + (m− k)B

(r+1)
k (x)G

(s+1)
m−k−1(x)

)
=

m−1∑
k=1

kB
(r+1)
k−1 (x)G

(s+1)
m−k (x) +

m−2∑
k=0

(m− k)B
(r+1)
k (x)G

(s+1)
m−k−1(x)

=
m−2∑
k=0

(k + 1)B
(r+1)
k (x)G

(s+1)
m−k−1(x) +

m−2∑
k=0

(m− k)B
(r+1)
k (x)G

(s+1)
m−k−1(x)

= (m+ 1)

m−2∑
k=0

B
(r+1)
k (x)G

(s+1)
m−1−k(x)

= (m+ 1)αm−1(x).

(2.3)

From this, we obtain (
αm+1(x)

m+ 2

)′

= αm(x), (2.4)

and ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.5)
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4 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

For m ≥ 2, we put

∆m = αm(1)− αm(0)

=
m−1∑
k=0

(
B

(r+1)
k (1)G

(s+1)
m−k (1)−B

(r+1)
k G

(s+1)
m−k

)
=

m−1∑
k=1

(
B

(r+1)
k (1)G

(s+1)
m−k (1)−B

(r+1)
k G

(s+1)
m−k

)
+G(s+1)

m (1)−G(s+1)
m

=

m−1∑
k=1

(
(B

(r+1)
k +B

(r)
k−1)(−G

(s+1)
m−k + 2B

(s)
m−k−1)−B

(r+1)
k G

(s+1)
m−k

)
−G(s+1)

m + 2B
(s)
m−1 −G(s+1)

m

=
m−1∑
k=0

2B
(r+1)
k (−G(s+1)

m−k +B
(s)
m−k−1) +

m−1∑
k=1

B
(r)
k−1(−G

(s+1)
m−k + 2B

(s)
m−k−1).

(2.6)

Clearly, we have

αm(1) = αm(0) ⇐⇒ ∆m = 0, (2.7)

and ∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.8)

We are now going to determine the Fourier coefficients A
(m)
n .

Case 1 : n ̸= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

α′
m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e
−2πinxdx

=
m+ 1

2πin
A(m−1)

n − 1

2πin
∆m

(2.9)

from which by induction on m we can show that

A(m)
n = − 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1.

Case 2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.10)

αm(< x >), (m ≥ 2) is piecewise C∞. Moreover, αm(< x >) is continuous for
those integers m ≥ 2 with ∆m = 0, and discontinuous with jump discontinuities at
integers for those integers m ≥ 2 with ∆m ̸= 0.
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Assume first that ∆m = 0, for an integer m ≥ 2. Then αm(0) = αm(1). So
αm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of αm(< x >)
converges uniformly to αm(< x >), and

αm(< x >) =
1

m+ 2
∆m+1

+
∞∑

n=−∞,n̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1

×

−j!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+ ∆m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.11)

We can now state our first result.

Theorem 2.1. For each integer l ≥ 2, let

∆l = 2
l−1∑
k=0

B
(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+

l−1∑
k=1

B
(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(2.12)

Assume that ∆m = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1

k=0 B
(r+1)
k (< x >)G

(s+1)
m−k (< x >) has the Fourier series expansion

m−1∑
k=0

B
(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n ̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=0

B
(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >),
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6 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

for all x ∈ R.

Assume next that ∆m ̸= 0, for an integer m ≥ 2. Then αm(0) ̸= αm(1).
Hence αm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
integers. The Fourier series of αm(< x >) converges pointwise to αm(< x >) , for
x /∈ Z, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m, (2.13)

for x ∈ Z.

Now, we can state our second result.

Theorem 2.2. For each integer l ≥ 2, let

∆l = 2

l−1∑
k=0

B
(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+
l−1∑
k=1

B
(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(2.14)

Assume that ∆m ̸= 0, for an integers m ≥ 2. Then we have the following.

(a)
1

m+ 2
∆m+1

+

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{∑m−1
k=0 B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,∑m−1

k=0 B
(r+1)
k G

(s+1)
m−k + 1

2∆m, for x ∈ Z.

(b)
1

m+ 2

m−1∑
j=0

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m−1∑
k=0

B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,

1

m+ 2

m−1∑
j=0,j ̸=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m−1∑
k=0

B
(r+1)
k G

(s+1)
m−k +

1

2
∆m, for x ∈ Z.
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3. The function βm(< x >)

Let βm(x) =
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (x)G

(s+1)
m−k (x), (m ≥ 2).

Then we consider the function

βm(< x >) =
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2),

defined on R, which is periodic with period 1.
The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx, (3.1)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx. (3.2)

Before continuing our discussion, we need to note the following.

β′
m(x) =

m−1∑
k=0

( k

k!(m− k)!
B

(r+1)
k−1 (x)G

(s+1)
m−k (x) +

m− k

k!(m− k)!
B

(r+1)
k (x)G

(s+1)
m−k−1(x)

)
=

m−1∑
k=1

1

(k − 1)!(m− k)!
B

(r+1)
k−1 (x)G

(s+1)
m−k (x)

+

m−2∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)G

(s+1)
m−k−1(x)

=
m−2∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

+
m−2∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

= 2βm−1(x).

(3.3)
From this, we have (βm+1(x)

2

)′
= βm(x), (3.4)

and

∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
. (3.5)
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8 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

For m ≥ 2, we set

Ωm = βm(1)− βm(0)

=

m−1∑
k=0

1

k!(m− k)!

(
B

(r+1)
k (1)G

(s+1)
m−k (1)−B

(r+1)
k G

(s+1)
m−k

)
=

m−1∑
k=1

1

k!(m− k)!

(
B

(r+1)
k (1)G

(s+1)
m−k (1)−B

(r+1)
k G

(s+1)
m−k

)
+

1

m!
G(s+1)

m (1)− 1

m!
G(s+1)

m

=
m−1∑
k=1

1

k!(m− k)!

(
(B

(r+1)
k +B

(r)
k−1)(−G

(s+1)
m−k + 2B

(s)
m−k−1)−B

(r+1)
k G

(s+1)
m−k

)
+

1

m!
(−G(s+1)

m + 2B
(s)
m−1)−

1

m!
G(s+1)

m

=
m−1∑
k=0

2

k!(m− k)!
B

(r+1)
k (−G(s+1)

m−k +B
(s)
m−k−1)

+

m−1∑
k=1

1

k!(m− k)!
B

(r)
k−1(−G

(s+1)
m−k + 2B

(s)
m−k−1).

(3.6)
Now,

βm(0) = βm(1) ⇔ Ωm = 0, (3.7)

and ∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.8)

We are now ready to determine the Fourier coefficients B
(m)
n .

Case 1: n ̸= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

β′
m(x)e−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

2

2πin

∫ 1

0

βm−1(x)e
−2πinxdx

=
2

2πin
B(m−1)

n − 1

2πin
Ωm,

(3.9)

from which by induction on m we can easily deduce that

B(m)
n = −

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1. (3.10)

Case 2: n = 0.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1265 T. KIM ET AL 1258-1275



T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon 9

B
(m)
0 =

∫ 1

0

βm(x) =
1

2
Ωm+1. (3.11)

βm(< x >), (m ≥ 2) is piecewise C∞. Moreover, βm(< x >) is continuous
for those integers m ≥ 2 with ∆m = 0, and discontinuous at integers with jump
discontinuities for those integers m ≥ 2 with ∆m ̸= 0.

Assume first that ∆m = 0, for an integer m ≥ 2. Then βm(0) = βm(1). So
βm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of βm(< x >)
converges uniformly to βm(< x >), and

βm(< x >) =
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1 ×

(
−j!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)j

)

=
1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(3.12)

Now, we can state our first theorem.

Theorem 3.1. For each integer l ≥ 2, let

Ωl =
l−1∑
k=0

2

k!(l − k)!
B

(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+

l−1∑
k=1

1

k!(l − k)!
B

(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(3.13)

Assume that Ωm = 0, for an integer m ≥ 2. Then we have the following.

(a)
∑m−1

k=0
1

k!(m−k)!B
(r+1)
k (< x >)G

(s+1)
m−k (< x >) has the Fourier series expansion

m−1∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,

(3.14)

for all x ∈ R, where the convergence is uniform.
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(b)

m−1∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

(3.15)

for all x ∈ R.

Assume next that Ωm ̸= 0, for all integer m ≥ 2. Then βm(0) ̸= βm(1). Thus
βm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at inte-
gers. The Fourier series of βm(< x >) converges pointwise to βm(< x >), for x /∈ Z,
and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm, (3.16)

for x ∈ Z.
We can now state our second theorem.

Theorem 3.2. For each integer l ≥ 2, let

Ωl =

l−1∑
k=0

2

k!(l − k)!
B

(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+
l−1∑
k=1

1

k!(l − k)!
B

(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(3.17)

Assume that Ωm ̸= 0, for an integer m ≥ 2. Then we have the following.

(a)
1

2
Ωm+1 +

∞∑
n=−∞,n ̸=0

(
−

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m−1
k=0

1
k!(m−k)!B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,∑m−1

k=0
1

k!(m−k)!B
(r+1)
k G

(s+1)
m−k + 1

2Ωm, for x ∈ Z.

(b)
m−1∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,

m−1∑
j=0,j ̸=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
B

(r+1)
k G

(s+1)
m−k +

1

2
Ωm, for x ∈ Z.
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4. The function γm(< x >)

Let γm(x) =
∑m−1

k=1
1

k(m−k)B
(r+1)
k (x)G

(s+1)
m−k (x), (m ≥ 2).

Then we are going to consider the function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), (m ≥ 2), (4.1)

defined on R, which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.2)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.3)

Before going further, we need to observe the following.

γ′m(x) =

m−1∑
k=1

1

k(m− k)

(
kB

(r+1)
k−1 (x)G

(s+1)
m−k (x) + (m− k)B

(r+1)
k (x)G

(s+1)
m−k−1(x)

)
=

m−2∑
k=0

1

m− 1− k
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

+
m−1∑
k=1

1

k
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

=
1

m− 1
G

(s+1)
m−1 (x) +

m−2∑
k=1

1

m− 1− k
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

+
m−2∑
k=1

1

k
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

=
1

m− 1
G

(s+1)
m−1 (x) + (m− 1)

m−2∑
k=1

1

k(m− 1− k)
B

(r+1)
k (x)G

(s+1)
m−1−k(x)

=
1

m− 1
G

(s+1)
m−1 (x) + (m− 1)γm−1(x).

(4.4)
From this, we immediately see that(

1

m
(γm+1(x)−

1

m(m+ 1)
G

(s+1)
m+1 (x))

)′

= γm(x), (4.5)
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∫ 1

0

γm(x)dx

=
1

m
[γm+1(x)−

1

m(m+ 1)
G

(s+1)
m+1 (x)]10

=
1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
(G

(s+1)
m+1 (1)−G

(s+1)
m+1 (0))

)
=

1

m

(
γm+1(1)− γm+1(0) +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
.

(4.6)

For m ≥ 2, we let

Λm = γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)

(
B

(r+1)
k (1)G

(s+1)
m−k (1)−B

(r+1)
k G

(s+1)
m−k

)
=

m−1∑
k=1

1

k(m− k)

(
(B

(r+1)
k +B

(r)
k−1)(−G

(s+1)
m−k + 2B

(s)
m−k−1)−B

(r+1)
k G

(s+1)
m−k

)
=

m−1∑
k=1

2

k(m− k)
B

(r+1)
k (−G(s+1)

m−k +B
(s)
m−k−1)

+
m−1∑
k=1

1

k(m− k)
B

(r)
k−1(−G

(s+1)
m−k + 2B

(s)
m−k−1)

(4.7)

Now,

γm(0) = γm(1) ⇔ Λm = 0, (4.8)

and

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
. (4.9)

Now, we want to determine the Fourier coefficients C
(m)
n .
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Case 1: n ̸= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin

[
γm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+

1

2πin

∫ 1

0

{ 1

m− 1
G

(s+1)
m−1 (x) + (m− 1)γm−1(x)

}
e−2πinxdx

= − 1

2πin
Λm +

m− 1

2πin
C(m−1)

n +
1

2πin(m− 1)

∫ 1

0

G
(s+1)
m−1 (x)e−2πinxdx

=
m− 1

2πin
C(m−1)

n − 1

2πin
Λm +

2

2πin(m− 1)
Φm,

(4.10)

where

Φm =

m−2∑
k=1

(m− 1)k−1

(2πin)k
(G

(s+1)
m−k −B

(s)
m−k−1). (4.11)

Here we can show that∫ 1

0

G
(s+1)
l (x)e−2πinxdx

=

{
2
∑l−1

k=1
(l)k−1

(2πin)k
(G

(s+1)
l−k+1 −B

(s)
l−k), for n ̸= 0,

−2
l+1 (G

(s+1)
l+1 −B

(s)
l ), for n = 0.

From this, by induction on m we can show that

C(m)
n =

(m− 1)!

(2πin)m−2
C(2)

n −
m−2∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1

+
m−2∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1.

(4.12)

Further, we can easily show that C
(2)
n = − 1

2πinΛ2.
Thus we deduce that

C(m)
n = − 1

m

m−1∑
j=1

(m)j
(2πin)j

Λm−j+1

+
1

m

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1.

(4.13)
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14 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

Here we note that

m−2∑
j=1

2(m)j
(2πin)j(m− j)

Φm−j+1

=
m−2∑
j=1

2(m)j
(2πin)j(m− j)

m−j−1∑
k=1

(m− j)k−1

(2πin)k
(G

(s+1)
m−j−k+1 −B

(s)
m−j−k)

=
m−2∑
j=1

m−j−1∑
k=1

2(m)j+k−1

(2πin)j+k(m− j)
(G

(s+1)
m−j−k+1 −B

(s)
m−j−k)

= 2
m−2∑
j=1

1

m− j

m−1∑
a=j+1

(m)a−1

(2πin)a
(G

(s+1)
m−a+1 −B

(s)
m−a)

= 2
m−1∑
a=2

(m)a−1

(2πin)a
(G

(s+1)
m−a+1 −B

(s)
m−a)

a−1∑
j=1

1

m− j

= 2

m−1∑
a=2

(m)a−1

(2πin)a
(G

(s+1)
m−a+1 −B

(s)
m−a)(Hm−1 −Hm−a)

= 2

m−1∑
a=1

(m)a
(2πin)a

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a).

(4.14)

Putting everything altogether, we obtain

C(m)
n = − 1

m

m−1∑
a=1

(m)a
(2πin)a

Λm−a+1

+
2

m

m−1∑
a=1

(m)a
(2πin)a

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a).

= − 1

m

m−1∑
a=1

(m)a
(2πin)a

×

(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
.

(4.15)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx

=
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
.

(4.16)

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for
those integers m ≥ 2 with Λm = 0, and discontinuous with jump discontinuities at
integers m ≥ 2 with Λm ̸= 0.

Assume first that Λm = 0. Then γm(0) = γm(1). So γm(< x >) is piecewise
C∞, and continuous. Thus the Fourier series of γm(< x >) converges uniformly to
γm(< x >), and
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γm(< x >)

=
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
− 1

m

∞∑
n=−∞,n̸=0

(m−1∑
a=1

(m)a
(2πin)a

×

(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
e2πinx

=
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
+

1

m

m−1∑
a=1

(
m

a

)

×

(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)−a!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)a


=

1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
+

1

m

m−1∑
a=2

(
m

a

)

×

(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
Ba(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(4.17)

Now, we can state our first result.

Theorem 4.1. For each integer l ≥ 2, let

Λl =
l−1∑
k=1

2

k(l − k)
B

(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+

l−1∑
k=1

1

k(l − k)
B

(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(4.18)

Assume that Λm = 0, for an integers m ≥ 2. Then we have the following.

(a)
∑m−1

k=1
1

k(m−k)B
(r+1)
k (< x >)G

(s+1)
m−k (< x >) has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
− 1

m

∞∑
n=−∞,n̸=0

(m−1∑
a=1

(m)a
(2πin)a

×
(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

))
e2πinx

(4.19)

for all x ∈ R, where the convergence is uniform.
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16 Fourier series of sums of products of poly-Genocchi and poly-Bernoulli functions

(b)
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >)

=
1

m

m−1∑
a=0,a̸=1

(
m

a

)(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
×Ba(< x >),

(4.20)

for all x ∈ R.

Assume next that Λm ̸= 0, for an integers m ≥ 2. Then γm(0) ̸= γm(1).
So γm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
integers. Hence the Fourier series of γm(< x >) converges pointwise to γm(< x >),
for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm, (4.21)

for x ∈ Z.
Next, we can state our second result.

Theorem 4.2. For each integer l ≥ 2, let

Λl =

l−1∑
k=1

2

k(l − k)
B

(r+1)
k (−G(s+1)

l−k +B
(s)
l−k−1)

+
l−1∑
k=1

1

k(l − k)
B

(r)
k−1(−G

(s+1)
l−k + 2B

(s)
l−k−1).

(4.22)

Assume that Λm ̸= 0, for an integers m ≥ 2. Then we have the following.

(a)
1

m

(
Λm+1 +

2

m(m+ 1)
(G

(s+1)
m+1 −B(s)

m )

)
− 1

m

∞∑
n=−∞,n̸=0

(m−1∑
a=1

(m)a
(2πin)a

×
(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

))
e2πinx

=

{∑m−1
k=1

1
k(m−k)B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,∑m−1

k=1
1

k(m−k)B
(r+1)
k G

(s+1)
m−k + 1

2Λm, for x ∈ Z.

(b)

1

m

m−1∑
a=0

(
m

a

)(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
×Ba(< x >)

=
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)G

(s+1)
m−k (< x >), for x /∈ Z,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1273 T. KIM ET AL 1258-1275



T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon 17

1

m

m−1∑
a=0,a̸=1

(
m

a

)(
Λm−a+1 − 2

G
(s+1)
m−a+1 −B

(s)
m−a

m− a+ 1
(Hm−1 −Hm−a)

)
×Ba(< x >)

=
m−1∑
k=1

1

k(m− k)
B

(r+1)
k G

(s+1)
m−k +

1

2
Λm, for x ∈ Z.
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ADDITIVE-QUADRATIC ρ-FUNCTIONAL EQUATIONS IN

β-HOMOGENEOUS F -SPACES

SUNGSIK YUN

Abstract. Let

M1f(x, y) : =
3

4
f(x+ y)− 1

4
f(−x− y)

+
1

4
f(x− y) +

1

4
f(y − x)− f(x)− f(y),

M2f(x, y) := 2f
(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y).

We solve the additive-quadratic ρ-functional equations

M1f(x, y) = ρM2f(x, y) (0.1)

and

M2f(x, y) = ρM1f(x, y), (0.2)

where ρ is a fixed nonzero number with ρ 6= 1.
Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic

ρ-functional equations (0.1) and (0.2) in β-homogeneous F -spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [23]
concerning the stability of group homomorphisms.

The functional equation f(x+y) = f(x)+f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [2] for additive mappings and by Rassias [14] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called the quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be a
quadratic mapping. The stability of quadratic functional equation was proved by Skof [22]
for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[5] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by an
Abelian group. The stability problems of various functional equations have been extensively
investigated by a number of authors (see [1, 3, 4, 6, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21,
24, 25]).

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F -norm
if it satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.
Key words and phrases. Hyers-Ulam stability; additive-quadratic ρ-functional equation; β-homogeneous

F -space.
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(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C
(see [16]).

In Section 2, we solve the additive-quadratic ρ-functional equation (0.1) and prove the
Hyers-Ulam stability of the additive-quadratic ρ-functional equation (0.1) in β-homogeneous
F -spaces.

In Section 3, we solve the additive-quadratic ρ-functional equation (0.2) and prove the
Hyers-Ulam stability of the additive-quadratic ρ-functional equation (0.2) in β-homogeneous
F -spaces.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and β2 ≤ 1. Assume
that X is a β1-homogeneous real or complex F ∗-space with norm ‖ · ‖ and that Y is a β2-
homogeneous complex F -space with norm ‖ · ‖.

Let ρ be a nonzero number with ρ 6= 1.

2. Additive-quadratic ρ-functional equation (0.1) in β-homogeneous F -spaces

We solve and investigate the additive-quadratic ρ-functional equation (0.1) in β-homogeneous
F ∗-spaces.

Lemma 2.1.
(i) If a mapping f : X → Y satisfies M1f(x, y) = 0, then f = fo+fe, where fo(x) := f(x)−f(−x)

2

is the Cauchy additive mapping and fe(x) := f(x)+f(−x)
2 is the quadratic mapping.

(ii) If a mapping f : X → Y satisfies M2f(x, y) = 0, then f = fo + fe, where fo(x) :=
f(x)−f(−x)

2 is the Cauchy additive mapping and fe(x) := f(x)+f(−x)
2 is the quadratic mapping.

Proof. (i)

M1fo(x, y) = fo(x+ y)− fo(x)− fo(y) = 0

for all x, y ∈ X. So fo is the Cauchy additive mapping.

M1fe(x, y) =
1

2
fe(x+ y) +

1

2
fe(x− y)− fe(x)− fe(y) = 0

for all x, y ∈ X. So fo is the quadratic mapping.
(ii)

M2fo(x, y) = 2fo

(
x+ y

2

)
− fo(x)− fo(y) = 0

for all x, y ∈ X. Since M2f(0, 0) = 0, f(0) = 0 and fo is the Cauchy additive mapping.

M2fe(x, y) = 2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x)− fe(y) = 0

for all x, y ∈ X. Since M2f(0, 0) = 0, f(0) = 0 and fe is the quadratic mapping.
Therefore, the mapping f : X → Y is the sum of the Cauchy additive mapping and the

quadratic mapping. �

From now on, for a given mapping f : X → Y , define fo(x) := f(x)−f(−x)
2 and fe(x) :=

f(x)+f(−x)
2 for all x ∈ X. Then fo is an odd mapping and fe is an even mapping.
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Lemma 2.2. If a mapping f : X → Y satisfies f(0) = 0 and

M1f(x, y) = ρM2f(x, y) (2.1)

for all x, y ∈ X, then f : X → Y is the sum of the Cauchy additive mapping fo and the
quadratic mapping fe.

Proof. Letting y = x in (2.1) for fo, we get fo(2x)− 2fo(x) = 0 and so fo(2x) = 2fo(x) for all
x ∈ X. Thus

fo

(
x

2

)
=

1

2
fo(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

fo(x+ y)− fo(x)− fo(y) = ρ

(
2fo

(
x+ y

2

)
− fo(x)− fo(y)

)
= ρ(fo(x+ y)− fo(x)− fo(y))

and so
fo(x+ y) = fo(x) + fo(y)

for all x, y ∈ X.
Letting y = x in (2.1) for fe, we get 1

2fe(2x) − 2fe(x) = 0 and so fe(2x) = 4fe(x) for all
x ∈ X. Thus

fe

(
x

2

)
=

1

4
fe(x) (2.3)

for all x ∈ X.
It follows from (2.1) and (2.3) that

1

2
fe(x+ y) +

1

2
fe(x− y)− fe(x)− fe(y)

= ρ

(
2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x)− fe(y)

)
= ρ

(
1

2
fe(x+ y) +

1

2
fe(x− y)− fe(x)− fe(y)

)
and so

fe(x+ y) + fe(x− y) = 2fe(x) + 2fe(y)

for all x, y ∈ X.
Therefore, the mapping f : X → Y is the sum of the Cauchy additive mapping fo and the

quadratic mapping fe. �

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equation (2.1) in
β-homogeneous F -spaces.

Theorem 2.3. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be a

mapping satisfying f(0) = 0 and

‖M1f(x, y)− ρM2f(x, y)‖ ≤ θ(‖x‖r + ‖y‖r) (2.4)

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

‖fo(x)−A(x)‖ ≤ 4θ

2β2(2β1r − 2β2)
‖x‖r, (2.5)
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‖fe(x)−Q(x)‖ ≤ 4θ

2β1r − 4β2
‖x‖r (2.6)

for all x ∈ X.

Proof. Letting y = x in (2.4) for fo, we get

‖fo(2x)− 2fo(x)‖ ≤ 4θ

2β2
‖x‖r (2.7)

for all x ∈ X. So ∥∥∥∥fo(x)− 2fo

(
x

2

)∥∥∥∥ ≤ 4θ

2β2+β1r
‖x‖r

for all x ∈ X. Hence∥∥∥∥2lfo ( x2l
)
− 2mfo

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jfo ( x2j
)
− 2j+1fo

(
x

2j+1

)∥∥∥∥
≤ 4θ

2β2+β1r

m−1∑
j=l

2β2j

2β1rj
‖x‖r (2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.8) that the
sequence {2kfo( x2k )} is Cauchy for all x ∈ X. Since Y is complete, the sequence {2kfo( x2k )}
converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kfo

(
x

2k

)
for all x ∈ X. Since fo is an odd mapping, A is an odd mapping. Moreover, letting l = 0 and
passing the limit m→∞ in (2.8), we get (2.5).

It follows from (2.4) that∥∥∥∥A(x+ y)−A(x)−A(y)− ρ
(

2A

(
x+ y

2

)
−A(x)−A(y)

)∥∥∥∥
= lim

n→∞

∥∥∥∥2n (fo (x+ y

2n

)
− fo

(
x

2n

)
− fo

(
y

2n

))
−2nρ

(
2fo

(
x+ y

2n+1

)
− fo

(
x

2n

)
− fo

(
y

2n

))∥∥∥∥ ≤ 4θ

2β2
lim
n→∞

2β2n

2β1rn
‖x‖r = 0

for all x, y ∈ X. So

A(x+ y)−A(x)−A(y) = ρ

(
2A

(
x+ y

2

)
−A(x)−A(y)

)
for all x, y ∈ X. By Lemma 2.2, the mapping A : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖A(x)− T (x)‖ =

∥∥∥∥2qA( x2q
)
− 2qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥2qA( x2q
)
− 2qfo

(
x

2q

)∥∥∥∥+

∥∥∥∥2qT ( x2q
)
− 2qfo

(
x

2q

)∥∥∥∥
≤ 8θ

2β2(2β1r − 2β2)

2β2q

2β1rq
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all
x ∈ X. This proves the uniqueness of A.
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Letting y = x in (2.4) for fe, we get∥∥∥∥1

2
fe(2x)− 2fe(x)

∥∥∥∥ ≤ 4θ

2β2
‖x‖r (2.9)

for all x ∈ X. So ∥∥∥∥fe(x)− 4fe

(
x

2

)∥∥∥∥ ≤ 4θ

2β1r
‖x‖r

for all x ∈ X. Hence∥∥∥∥4lfe ( x2l
)
− 4mfe

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jfe ( x2j
)
− 4j+1fe

(
x

2j+1

)∥∥∥∥
≤ 4θ

2β1r

m−1∑
j=l

4β2j

2β1rj
‖x‖r (2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.10) that the
sequence {4kfe( x2k )} is Cauchy for all x ∈ X. Since Y is complete, the sequence {4kfe( x2k )}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kfe

(
x

2k

)
for all x ∈ X. Since fe is an even mapping, Q is an even mapping. Moreover, letting l = 0
and passing the limit m→∞ in (2.10), we get (2.6).

It follows from (2.4) that∥∥∥∥1

2
Q

(
x+ y

2

)
+

1

2
Q

(
x− y

2

)
−Q(x)−Q(y)

− ρ
(

2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
= lim

n→∞

∥∥∥∥4n (1

2
fe

(
x+ y

2n

)
+

1

2
fe

(
x− y

2n

)
− fe

(
x

2n

)
− fe

(
y

2n

))
− 4nρ

(
2fe

(
x+ y

2n+1

)
+ 2fe

(
x− y
2n+1

)
− fe

(
x

2n

)
− fe

(
y

2n

))∥∥∥∥
≤ 4θ

2β2
lim
n→∞

4β2n

2β1rn
‖x‖r = 0

for all x, y ∈ X. So

1

2
Q

(
x+ y

2

)
+

1

2
Q

(
x− y

2

)
−Q(x)−Q(y)

= ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)
for all x, y ∈ X. By Lemma 2.2, the mapping Q : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.6). Then we have

‖Q(x)− T (x)‖ =

∥∥∥∥4qQ( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥4qQ( x2q
)
− 4qfe

(
x

2q

)∥∥∥∥+

∥∥∥∥4qT ( x2q
)
− 4qfe

(
x

2q

)∥∥∥∥
≤ 8θ

2β1r − 4β2
4β2q

2β1rq
‖x‖r,
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which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all
x ∈ X. This proves the uniqueness of Q, as desired. �

Theorem 2.4. Let r < β2
β1

and θ be nonnegative real numbers and let f : X → Y be a mapping

satisfying f(0) = 0 and (2.4). Then there exist a unique additive mapping A : X → Y and a
unique quadratic mapping Q : X → Y such that

‖fo(x)−A(x)‖ ≤ 4θ

2β2(2β2 − 2β1r)
‖x‖r, (2.11)

‖fe(x)−Q(x)‖ ≤ 4θ

4β2 − 2β1r
‖x‖r (2.12)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥fo(x)− 1

2
fo(2x)

∥∥∥∥ ≤ 4θ

4β2
‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

2l
fo(2

lx)− 1

2m
fo(2

mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
fo
(
2jx

)
− 1

2j+1
fo
(
2j+1x

)∥∥∥∥
≤ 4θ

4β2

m−1∑
j=l

2β1rj

2β2j
‖x‖r (2.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.13) that the
sequence { 1

2n fo(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n fo(2

nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
fo(2

nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.13), we get (2.11).
It follows from (2.9) that ∥∥∥∥fe(x)− 1

4
fe(2x)

∥∥∥∥ ≤ 4θ

4β2
‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

4l
fe(2

lx)− 1

4m
fe(2

mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
fe
(
2jx

)
− 1

4j+1
fe
(
2j+1x

)∥∥∥∥
≤ 4θ

4β2

m−1∑
j=l

2β1rj

4β2j
‖x‖r (2.14)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.14) that the
sequence { 1

4n fe(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n fe(2

nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
fe(2

nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.14), we get (2.12).
The rest of the proof is similar to the proof of Theorem 2.3. �
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3. Additive-quadratic ρ-functional equation (0.2) in β-homogeneous F -spaces

We solve and investigate the additive-quadratic ρ-functional equation (0.2) in β-homogeneous
F ∗-spaces.

Lemma 3.1. If a mapping f : X → Y satisfies f(0) = 0 and

M2f(x, y) = ρM1f(x, y) (3.1)

for all x, y ∈ X, then f : X → Y is the sum of the Cauchy additive mapping fo and the
quadratic mapping fe.

Proof. Letting y = 0 in (3.1) for fo, we get

fo

(
x

2

)
=

1

2
fo(x) (3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

fo(x+ y)− fo(x)− fo(y) = 2fo

(
x+ y

2

)
− fo(x)− fo(y)

= ρ(fo(x+ y)− fo(x)− fo(y))

and so
fo(x+ y) = fo(x) + fo(y)

for all x, y ∈ X.
Letting y = 0 in (3.1) for fe, we get

fe

(
x

2

)
=

1

4
fe(x) (3.3)

for all x ∈ X.
It follows from (3.1) and (3.3) that

1

2
fe(x+ y) +

1

2
fe(x− y)− fe(x)− fe(y)

= 2fe

(
x+ y

2

)
+ 2fe

(
x− y

2

)
− fe(x)− fe(y)

= ρ

(
1

2
fe(x+ y) +

1

2
fe(x− y)− fe(x)− fe(y)

)
and so

fe(x+ y) + fe(x− y) = 2fe(x) + 2fe(y)

for all x, y ∈ X. �

We prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equation (3.1) in
β-homogeneous F -spaces.

Theorem 3.2. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be a

mapping satisfying f(0) = 0 and

‖M2f(x, y)− ρM1f(x, y)‖ ≤ θ(‖x‖r + ‖y‖r) (3.4)

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

‖fo(x)−A(x)‖ ≤ 2 · 2β1rθ
2β2(2β1r − 2β2)

‖x‖r, (3.5)
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‖fe(x)−Q(x)‖ ≤ 2 · 2β1rθ
2β2(2β1r − 4β2)

‖x‖r (3.6)

for all x ∈ X.

Proof. Letting y = 0 in (3.4) for fo, we get∥∥∥∥fo(x)− 2fo

(
x

2

)∥∥∥∥ =

∥∥∥∥2fo (x2
)
− fo(x)

∥∥∥∥ ≤ 2θ

2β2
‖x‖r (3.7)

for all x ∈ X. So∥∥∥∥2lfo ( x2l
)
− 2mfo

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jfo ( x2j
)
− 2j+1fo

(
x

2j+1

)∥∥∥∥
≤ 2θ

2β2

m−1∑
j=l

2β2j

2β1rj
‖x‖r (3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the
sequence {2kfo( x2k )} is Cauchy for all x ∈ X. Since Y is complete, the sequence {2kfo( x2k )}
converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kfo

(
x

2k

)
for all x ∈ X. Since fo is an odd mapping, A is an odd mapping. Moreover, letting l = 0 and
passing the limit m→∞ in (3.8), we get (3.5).

Letting y = 0 in (3.4) for fe, we get∥∥∥∥fe(x)− 4fe

(
x

2

)∥∥∥∥ =

∥∥∥∥4fe (x2
)
− fe(x)

∥∥∥∥ ≤ 2θ

2β2
‖x‖r (3.9)

for all x ∈ X. So∥∥∥∥4lfe ( x2l
)
− 4mfe

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jfe ( x2j
)
− 4j+1fe

(
x

2j+1

)∥∥∥∥
≤ 2θ

2β2

m−1∑
j=l

4β2j

2β1rj
‖x‖r (3.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.10) that the
sequence {4kfe( x2k )} is Cauchy for all x ∈ X. Since Y is complete, the sequence {4kfe( x2k )}
converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kfe

(
x

2k

)
for all x ∈ X. Since fe is an even mapping, Q is an even mapping. Moreover, letting l = 0
and passing the limit m→∞ in (3.10), we get (3.6).

The rest of the proof is similar to the proof of Theorem 2.3. �

Theorem 3.3. Let r < β2
β1

and θ be nonnegative real numbers and let f : X → Y be a mapping

satisfying f(0) = 0 and (3.4). Then there exist a unique additive mapping A : X → Y and a
unique quadratic mapping Q : X → Y such that

‖fo(x)−A(x)‖ ≤ 2 · 2β1rθ
2β2(2β2 − 2β1r)

‖x‖r, (3.11)
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‖fe(x)−Q(x)‖ ≤ 2 · 2β1rθ
2β2(4β2 − 2β1r)

‖x‖r (3.12)

for all x ∈ X.

Proof. It follows from (3.7) that∥∥∥∥fo(x)− 1

2
fo(2x)

∥∥∥∥ ≤ 2 · 2β1rθ
4β2

‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

2l
fo(2

lx)− 1

2m
fo(2

mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
fo
(
2jx

)
− 1

2j+1
fo
(
2j+1x

)∥∥∥∥
≤ 2 · 2β1rθ

4β2

m−1∑
j=l

2β1rj

2β2j
‖x‖r (3.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.13) that the
sequence { 1

2n fo(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n fo(2

nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
fo(2

nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.13), we get (3.11).
It follows from (3.9) that∥∥∥∥fe(x)− 1

4
fe(2x)

∥∥∥∥ ≤ 2 · 2β1rθ
8β2

‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

4l
fe(2

lx)− 1

4m
fe(2

mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
fe
(
2jx

)
− 1

4j+1
fe
(
2j+1x

)∥∥∥∥
≤ 2 · 2β1rθ

8β2

m−1∑
j=l

2β1rj

4β2j
‖x‖r (3.14)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.14) that the
sequence { 1

4n fe(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n fe(2

nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
fe(2

nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.14), we get (3.12).
The rest of the proof is similar to the proof of Theorem 2.3. �
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Abstract

In our present investigation, we obtain several differential subordination results in-
volving leaf-like domains. Moreover, certain sharp coefficient estimates are investi-
gated when the class of functions lies in leaf-like domains.
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1. Introduction and Definitions

Let A denote the class of all analytic functions f of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

in the open disk U = {z : |z| < 1} normalized by f(0) = 0 and f ′(0) = 1. A function f is
subordinate to the function g, written as f ≺ g or f(z) ≺ g(z), provided that there is an analytic
function w(z) defined on U with w(0) = 0 and |w(z)| < 1 such that f(z) = g[w(z)] for z ∈ U.
In particular, if the function g is univalent in U, then f ≺ g is equivalent to f(0) = g(0) and
f(U) ⊂ g(U). For two functions f, g ∈ A, the Hadamard product is defined by

f(z) ∗ g(z) = z +

∞∑
n=2

anbnz
n (z ∈ U),

where an and bn are the coefficients of f and g, respectively.
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2 S. Sivasubramanian et al.

Let P denote the class of analytic functions of the form p(z) = 1 + p1z + p2z
2 + · · · such that

<(p(z)) > 0 in U.
Let S denote the subclass of A consisting of univalent functions. Let S∗(γ) and K(γ) be the

class of all starlike functions of order γ and convex functions of order γ(0 ≤ γ < 1), respectively.
A function f ∈ A is in the class R(γ), if it satisfies the inequality:

<(f ′(z)) > γ (z ∈ U, 0 ≤ γ < 1).

We write R(0) = R, the familiar class of functions in A which are of bounded turning in U. It is
well known that S∗ 6⊂ R and R 6⊂ S∗ (see [13]).

The class of k-starlike functions is introduced and studied by Kanas and Wísniowska ([6], [7])(For
more details, see [5],[8],[9],[10]) as defined by f ∈ k − ST , if and only if

<
(
zf ′(z)

f(z)

)
> k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ (0 ≤ k <∞, z ∈ U). (1.2)

One may be easily see that the conditions (1.2) may be rewritten into the form

<(p(z)) > k|p(z)− 1| (z ∈ U).

Also, it is easy to see that p(U) is a conical domain

Ωk = {ω ∈ C : <(ω) > k|ω − 1|} ,
or

Ωk =
{
ω = u+ iv : u > k

√
(u− 1)2 + v2

}
,

where 0 ≤ k <∞. For k > 1, the curve ∂Ωk is the ellipse defined by

∂Ωk =
{
ω = u+ iv : u2 = k2(u− 1)2 + k2v2

}
.

For k ≥ 2 +
√

2, this ellipse lies entirely inside L, where L =
{
ω ∈ C :

∣∣ω2 − 1
∣∣ < 1

}
is the interior

of the right half of the lemniscate of Bernoulli (u2 + v2)2 = 2(u2 − v2). Therefore k − ST ⊂ SL∗
for k ≥ 2 +

√
2.

Recently, Sokó l and Stankiewicz [18] defined the class SL∗ given by

SL∗ =

{
f ∈ S :

∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1, z ∈ U

}
. (1.3)

It is easy to see that

f ∈ SL∗ ⇔ zf ′(z)

f(z)
≺ q0(z) =

√
1 + z (q0(0) = 1)

and L ⊂
{
ω :
∣∣ω −√2/2

∣∣ < √2/2
}

.

Analogous to the class SL∗, recently Patel and Sahoo [16] defined a class R̃. A function f ∈ S
is said to be in the class R̃, if it satisfies the condition

R̃ =
{
f ∈ S :

∣∣∣(f ′(z))2 − 1
∣∣∣ < 1 (z ∈ U)

}
. (1.4)

It follows from (1.4) and the definition of subordination that a function f ∈ R̃ satisfies the subor-
dinate relation

f ′(z) ≺
√

1 + z (z ∈ U). (1.5)
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Sokó l and Paprocki [14] studied the class of analytic and univalent functions defined by

S∗(α, b) =

{
f ∈ S :

∣∣∣∣(zf ′(z)f(z)

)α
− b
∣∣∣∣ < b,

(
zf ′(z)

f(z)

)α
z=0

= 1 (z ∈ U)

}
, (1.6)

where α ≥ 1, b ≥ 1
2 . For the choice of α = 1, the class of S∗(1, b) investigated by Janowski [3].

For the choice of α = 2, b = 1, the class S∗(2, 1) investigated by Sokó l [14]. It is easy to see that
f ∈ S∗(α, b) if and only if

zf ′(z)

f(z)
≺ q0(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(q0(0) = 1). (1.7)

Note that the set,

Ω(α, b) =

{
ω ∈ C : |ωα − b| < b, | arg(ω)| ≤ π

2α
, α ≥ 1, b ≥ 1

2

}
(1.8)

is connected with the class S∗(α, b) and is a leaf-like set. The concept of leaf-like domain was
investigated by Sokó l and Paprocki [14]. For more details related to the leaf-like domain, one may
refer to the recent papers (see [1, 4, 17, 18, 19, 20, 21, 22, 23]).

Motivated essentially by the work of Sokó l and Paprocki [14] and Sahoo and Patel [16], we

introduce the class R̃(α, b) related to the concept of leaf-like domain as given below.

A function f ∈ S is said to be in the class R̃(α, b), if it satisfies the condition∣∣(f ′(z))α − b∣∣ < b (z ∈ U). (1.9)

Let

Q =

{
ω ∈ C : 0 < <(ω), |ωα − b| < b for z ∈ U, α ≥ 1, b ≥ 1

2

}
.

It is easy to see that, the set Q represents all points on the right half plane such that the product
of the distances from each point to the end points −b and b is less than b. It follows from (1.9) and

the definition of subordination that a function f ∈ R̃(α, b) satisfies the subordinate relation

f ′(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α (

α ≥ 1, b ≥ 1

2

)
. (1.10)

All powers are principle one. In the present investigation, the authors obtain several differential
subordination results involving in the classes R̃(α, b) and S∗(α, b). Apart from the differential
subordination results, certain sharp coefficient estimates are obtained for the class of functions
R̃(α, b) and S∗(α, b).

2. Main Results

To prove main results, we need the following lemmas.

Lemma 2.1. [12] Let q be univalent in U and let ϕ be analytic in a domain containing q(U). Let
zq′(z)ϕ(q(z)) be starlike. If p is analytic in U, p(0) = q(0) and satisfies

zp′(z)ϕ(p(z)) ≺ zq′(z)ϕ(q(z)), (2.1)

then p(z) ≺ q(z) and q is the best dominant.
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4 S. Sivasubramanian et al.

Lemma 2.2. [2] If a function ω is analytic for |z| ≤ |z0| < 1, ω(0) = 0, and |ω(z0)| = max {|ω(z)| : |z| ≤ |z0|},
then

z0ω
′(z0)

ω(z0)
≥ 1. (2.2)

Theorem 2.1. Let function f ∈ A. Then

<
(
zf ′′(z)

f ′(z)

)
<

1

4
⇒ zf ′′(z)

f ′(z)
≺ q0(z) =

√
1 + z. (2.3)

Proof. Let us denote Q(f, z) = f ′(z). Suppose that Q(f, z) 6≺ q0(z). The function q0 is univalent in
U so there exist z0, ζ0 such that |z0| = r0 < 1, |ζ0| = 1, Q(f, z) (|z| < r0) ⊂ q0(U) and Q(f, z0) ≺
q0(ζ0). Then the function ω(z) = q−10 (Q(f, z)) is analytic in |z| < r0 and ω(0) = 0, ω(z0) = ζ0.
Thus |ω(z)| assumes at z0 its maximum in |z| ≤ |z0| and by Lemma 2.2, z0ω

′(z0) = mω(z0), m ≥ 1.
Differentiating q0(ω(z)) = Q(f, z) we obtain

zω′(z)

ω(z)

ω(z)

2(1 + ω(z))
=
zf ′′(z)

f ′(z)
. (2.4)

Then we have
z0f
′′(z0)

f ′(z0)
=
z0ω

′(z0)

ω(z0)

ω(z0)

2(1 + ω(z0))
=
m

4
≥ 1

4
, (2.5)

which contradicts the hypothesis of the theorem. Hence zf ′′(z)
f ′(z) ≺ q0(z) =

√
1 + z. �

Theorem 2.2. A function f ∈ R̃(α, b) if and only if there exist an analytic function q with q(0) = 1
and q(U) ⊂ Ω(α, b) such that

f(z) =

∫ z

0
q(t)dt (z ∈ U). (2.6)

Proof. Let f ∈ R̃(α, b) and let q(z) = f ′(z). If f is given by (2.6) with an analytic q satisfying
q(0) = 1 and q(U) ⊂ Ω(α, b), then

q(z) ≺ q0(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

.

Now differentiating (2.6), we obtain f ′(z) = q(z). Therefore

f ′(z) ≺ q0(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

and hence f ∈ R̃(α, b). �

Next we determine the lower bound for β so that

1 +
βzp′(z)

p(z)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

implies that

p(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1289 Sivasubramanian ET AL 1286-1301



Differential subordination 5

Lemma 2.3. Let

β0 =
2α

(2b− 1)

[
(2b)

1
α − 1

] (
α ≥ 1, b ≥ 1

2

)
.

If

1 +
βzp′(z)

p(z)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.7)

then

p(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

. (2.8)

The lower bound β0 is the best possible.

Proof. Define the function q : U→ C by

q(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

with q(0) = 1. Since

q(U) =
{
ω ∈ C : |ωα − b| < b, | arg(ω)| ≤ π

2α

}
is the right half of leaf-like set, q(U) is a convex set and hence q is a convex. Let us take the
subordination,

1 +
βzp′(z)

p(z)
≺ 1 +

βzq′(z)

q(z)
. (2.9)

Performing a calculation, one can find that

βzp′(z)

p(z)
=
βz(2b− 1)

α

[
1

(1 + z)(b+ (1− b)z)

]
(2.10)

is convex in U (and hence starlike). Thus, in view of Lemma 2.1, it follows that p(z) ≺ q(z). To
conclude the proof, it is left to show that,

q(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

≺ 1 +
βzq′(z)

q(z)
= 1 +

βz(2b− 1)

α

[
1

(1 + z)(b+ (1− b)z)

]
=: h(z). (2.11)

Since

h(U) =

{
ω : <(ω) < 1 +

β(2b− 1)

2α

}
and

q(U) = {ω : |ωα − b| < b} ⊂
{
ω : <(ω) < (2b)

1
α

}
,

it follows that q(U) ⊂ h(U) if

(2b)
1
α ≤ 1 +

β(2b− 1)

2α
.

Thus q(z) ≺ p(z) for

β ≥ 2α

2b− 1

[
(2b)

1
α − 1

]
and this completes the proof of Lemma 2.3. �

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1290 Sivasubramanian ET AL 1286-1301



6 S. Sivasubramanian et al.

Theorem 2.3. Let β0 be given in Lemma 2.3 and f ∈ A. If f satisfies

1 + β

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.12)

then f ∈ S∗(α, b).

Proof. Define the function p : U→ C by

p(z) =
zf ′(z)

f(z)
(z ∈ U). (2.13)

Then the analytic function p satisfies p(0)= 1. A simple calculation yields,

zp′(z)

p(z)
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
. (2.14)

Therefore an application of Lemma 2.3 gives Theorem 3. �

Similarly by taking p(z) = z2f ′(z)/f2(z) and p(z) = f ′(z) in Lemma 2.3, we have the following
results, respectively.

Theorem 2.4. Let β0 be given in Lemma 2.3 and f ∈ A. If f satisfies

1 + β

(
1 +

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.15)

then

z2f ′(z)

f2(z)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

.

Theorem 2.5. Let β0 be given in Lemma 2.3 and f ∈ A. If f satisfies

1 + β

(
1 +

zf ′′(z)

f ′(z)

)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.16)

then

f ′(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

.

Lemma 2.4. Let

β0 =
α(3− 2b)

(2b− 1)

[
(2b)

1
α − 1

](
α ≥ 1, b ≥ 1

2

)
.

If

1 +
βzp′(z)

p1−α(z)
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.17)

then

p(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

. (2.18)

The lower bound β0 is the best possible.
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Proof. Let q be a convex function given by

q(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(z ∈ U).

Then we obtain

1 +
βzp′(z)

p1−α(z)
≺ 1 +

βzq′(z)

q1−α(z)
. (2.19)

A simple computation implies that

βzp′(z)

p1−α(z)
=
βz(2b− 1)

αb

[
1

1 + (
(
1−b
b

)
z)2

]
(2.20)

is convex in U(and hence starlike). Thus, in view of Lemma 2.1, it follows that p(z) ≺ q(z). To
conclude the proof, it is left to show that,

q(z) =

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

≺ 1 +
βzq′(z)

q1−α(z)
= 1 +

βz(2b− 1)

αb

[
1

1 + (
(
1−b
b

)
z)2

]
=: h(z). (2.21)

Since

h(U) =

{
ω : <(ω) < 1 +

β(2b− 1)

α(3− 2b)

}
,

and
q(U) = {ω : |ωα − b| < b} ⊂

{
ω : <(ω) < (2b)

1
α

}
,

it follows that q(U) ⊂ h(U) if

(2b)
1
α ≤ 1 +

β(2b− 1)

α(3− 2b)
.

Thus q(z) ≺ p(z) for

β ≥ α(3− 2b)

2b− 1

[
(2b)

1
α − 1

]
and this completes the proof of Lemma 2.4. �

By taking p(z) = zf ′(z)/f(z) and p(z) = f ′(z) in Lemma 2.4, we state the following Theorems
2.6 and 2.7, respectively as below.

Theorem 2.6. Let β0 be given in Lemma 2.4 and f ∈ A. If

1 +
β
(
z2f ′′(z)
f(z) + zf ′(z)

f(z) − ( zf
′(z)

f(z) )2
)

(
zf ′(z)
f(z)

)1−α ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.22)

then f ∈ S∗(α, b)

Theorem 2.7. Let β0 be given in Lemma 2.4 and f ∈ A. If

1 +
βzf ′′(z)

(f ′(z))1−α
≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

(β ≥ β0), (2.23)

then

f ′(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

.
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For the function

q(z) =

(
1 + z)

1 +
(
1−b
b

)
z

) 1
α

= 1 +
2b− 1

αb
z +

2b− 1

2αb

(
2b− 1

αb
− 1

b

)
z2 + · · · , (2.24)

we have q(U) = Ω(α, b) and from (2.6) we can obtain a function f0, related to q of the form

f0(z) =

∫ z

0
q(t)dt (z ∈ U) (2.25)

= z +
2b− 1

αb
z2 +

2b− 1

2αb

(
2b− 1

αb
− 1

b

)
z3 + · · · , (2.26)

It is easy to see that
P(α, b) = {p ∈ P : p(z) ≺ q(z)} . (2.27)

Corollary 2.1. A function f belongs to the class R̃(α, b)
(
α ≥ 1, b ≥ 1

2

)
if and only if

f ′(z) ≺ q(z). (2.28)

Theorem 2.8. A function f ∈ R̃(α, b)
(
α ≥ 1, b ≥ 1

2

)
if and only if there exist an analytic function

p satisfying

p(z) ≺ pα,b :=

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

such that

f(z) =

∫ z

0
p(t)dt (p(0) = 1, z ∈ U). (2.29)

Moreover, if for the function fα,b ∈ R̃(α, b), it takes the form

fα,b(z) =

[√
b+

(√
1 + b− 1

)
z
] 2+α

α − (
√
b)

2+α
α(√

1 + b− 1
) (

2+α
α

) (z ∈ U), (2.30)

then
f(z)

z
≺
fα,b(z)

z
. (2.31)

Proof. Let f ∈ R̃(α, b) and let p(z) = f ′(z). Integration of this equation yields (2.29). If f is
given by (2.29) with an analytic function then p(z) ≺ pα,b(z). Now differentiating (2.29), we obtain
f ′(z) = p(z). Therefore

f ′(z) ≺

(
1 + z

1 +
(
1−b
b

)
z

) 1
α

and consequently f ∈ R̃(α, b).

Now we proceed to prove that fα,b ∈ R̃(α, b). For this purpose we will show that the inclusion
relation

Qα,b =

{
ω ∈ C : 0 < <(ω),

∣∣∣ω α
2 − b

1
2

∣∣∣ < √1 + b− 1, α ≥ 1, b ≥ 1

2

}
⊂ Q. (2.32)

Let ω ∈ Qα,b. Then ∣∣∣ω α
2 − b

1
2

∣∣∣ < √1 + b− 1⇒
∣∣∣ω α

2 + b
1
2

∣∣∣ < √1 + b+ 1. (2.33)
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By multiplying these inequalities, we obtain

|ωα − b| < b⇒ ω ∈ Q. (2.34)

Denoting

qα,b(z) =
[√

b+
(√

1 + b− 1
)
z
] 2

α
,

we pose that

ω
α
2 := [qα,b(z)] =

√
b+

(√
1 + b− 1

)
z. (2.35)

Then

qα,b(U) =

{
ω ∈ C : 0 < <(ω),

∣∣∣ω α
2 − b

1
2

∣∣∣ < √1 + b− 1, α ≥ 1, b ≥ 1

2

}
⊂ Q. (2.36)

Hence qα,b(z) ≺ pα,b(z), by putting qα,b(z) in (2.29) implies (2.30). To prove the subordination
relation (2.31), firstly we show that fα,b(z)/z is convex univalent function. We observe that

fα,b(z) =

[√
b+

(√
1 + b− 1

)
z
] 2+α

α − (
√
b)

2+α
α(√

1 + b− 1
) (

2+α
α

)
=

(
√
b)

2+α
α

[
1 +

(
2+α
α

) (
√
1+b−1)z√

b
+
(
2+α
α

) (
√
1+b−1)

2
z2

αb + · · ·
]
− (
√
b)

2+α
α(√

1 + b− 1
) (

2+α
α

)
(
√
b)

2
α

= z +

(√
1 + b− 1

)
α
√
b

z2 + · · ·

= z +

∞∑
n=2

λ (α, b) zn ∈ A.

Let us consider the function

Fα,b(z) =
α
√
b√

1 + b− 1

[
fα,b(z)

z
− 1

]
∈ A. (2.37)

A simple computation gives,

F ′α,b(z) =
α
√
b√

1 + b− 1

[
f ′α,b(z)

z
−
fα,b(z)

z2

]
(2.38)

and

F ′′α,b(z) =
α
√
b√

1 + b− 1

[
zf ′′α,b(z)− f ′α,b(z)

z2
−
z2f ′α,b(z)− 2zfα,b(z)

z4

]
. (2.39)

Then we obtain

fα,b(z) =

[√
b+

(√
1 + b− 1

)
z
] 2+α

α − (
√
b)

2+α
α(√

1 + b− 1
) (

2+α
α

) ,

f ′α,b(z) =
[√

b+
(√

1 + b− 1
)
z
] 2

α
, (2.40)

f ′′α,b(z) =
2
(√

1 + b− 1
)

α

[√
b+

(√
1 + b− 1

)
z
] 2

α
−1
.
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The aim of our calculation is to show that 1 + zF ′′α,b(z)/F
′
α,b(z) has a positive real part in the unit

disk. Let z ∈ Qα,b, that is, <(z) > 0. Since 0 <
√

1 + b− 1 < 1, then by using (2.40), we have

<

(
1 +

zF ′′α,b(z)

F ′α,b(z)

)
= <

(
z2f ′′α,b(z)

zf ′α,b(z)− fα,b(z)
− 1

)
> 0. (2.41)

Hence for choosing suitable parameter α, β(α ≥ 1, b ≥ 1
2), we have

<

(
1 +

zF ′′α,b(z)

F ′α,b(z)

)
> 0. (2.42)

Consequently, we obtain that Fα,b ∈ K, where K is the class of convex functions. Therefore fα,b(z)/z
is a convex function. Now by using the fact that if for F,G ∈ K, satisfy f ≺ F and g ≺ G, then
f ∗g ≺ F ∗G and k(z) = z/(1− z) is a convex function, then we immediately establish (2.31). This
completes proof of the theorem. �

As a consequence of the subordination (2.31), we obtain the following result.

Theorem 2.9. If f ∈ R̃(α, b) and |z| = r, then

|fα,b(−r)| ≤ |f(z)| ≤ |fα,b(r)| (2.43)

and

|f ′α,b(−r)| ≤ |f ′(z)| ≤ |f ′α,b(r)|. (2.44)

Let f ∈ R̃(α, b). Then

f ′(z) =

(
1 + ω(z)

1 +Bω(z)

) 1
α

B =
b− 1

b
∈ [−1, 1) (z ∈ U), (2.45)

where ω satisfies Schwarz’s Lemma, so ω(0) = 0 and |ω(z)| < |z| (z ∈ U) and

|ω′(z)| ≤ 1− |ω(z)|2

1− |z|2
(z ∈ U). (2.46)

Then from (2.45) and (2.46), we get

<
{

1 +
zf ′′(z)

f ′(z)

}
= 1 + <

{
(1 +B)zω′(z)

α(1 + ω(z))(1−Bω(z))

}
≥ 1− (1 +B)|z|(1− |ω(z)|2)

α(1− |z|2)(1− |ω(z)|)(1− |B||ω(z)|)

≥ 1− (1 +B)|z|(1 + |ω(z)|
α(1− |z|2)(1− |B||ω(z)|)

≥ 1− (1 +B)|z|
α(1− |z|)(1− |B||z|)

≥ 1− (1 +B)r

α(1− r)(1− |B|r)
.

Therefore we can easily obtain the following result.
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Theorem 2.10. Let r0 denotes the smallest positive root of the equation

1− (1 +B)r

α(1− r)(1− |B|r)
= 0. (2.47)

If the function belongs to the class R̃(α, b), then it maps disc Ur0 = {z ∈ C : |z| < r0} onto a convex
set. For B = 0, this result is sharp.

Proof. The function

h(r) = 1− (1 +B)r

α(1− r)(1− |B|r)
with h(0) = 1 and h(r) → ∞ as r → 1 is an decreasing function in [0, 1). Therefore (2.47) has
positive solution in [0, 1). If B = 0, then (2.47) has form

1− r

α(1− r)
= 0. (2.48)

and for the function

f(z) =

∫ z

0
(1 + t)

1
αdt (z ∈ U),

we have

<
{

1 +
zf ′′(z)

f ′(z)

}
= 1 + <

{
z

α(1 + z)

}
≥ 1−

∣∣∣∣ z

α(1 + z)

∣∣∣∣
≥ 1− |z|

α(1− |z|)
.

�

3. Coefficient inequalities

Lemma 3.1. [11] Let the function ω ∈ B0 be given by

ω(z) = d1z + d2z
2 + · · · (z ∈ U), (3.1)

where

B0 = {ω ∈ A : ω(0) = 0, |ω(z)| < 1 (z ∈ U)} (3.2)

Then for every complex number s,

|d2 − sd21| ≤ 1 + (|s| − 1)|d1|2. (3.3)

Now we determine an sharp upper bound for the class R̃(α, b).

Theorem 3.1. If the function f given by (1.1) belong to the class R̃(α, b), then for −∞ < µ <∞

|a3 − µa22| ≤



−
(

2b− 1

6αb

)[(
3µ

2
− 1

)(
2b− 1

αb

)
+

1

b

]
, µ < σ1(α, b)

2b− 1

3αb
, σ1(α, b) ≤ µ ≤ σ2(α, b)(

2b− 1

3αb

)[(
3µ

2
− 1

)(
2b− 1

αb

)
+

1

b

]
, µ > σ2(α, b),

(3.4)
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where σ1(α, b) and σ2(α, b) is given by

σ1(α, b) =
4αb

3(2b− 1)

[(
2b− 1

2αb

)
− 1

2b
− 1

]
(3.5)

and

σ2(α, b) =
4αb

3(2b− 1)

[(
2b− 1

2αb

)
− 1

2b
+ 1

]
(3.6)

The estimates in (3.4) are sharp.

Proof. By the definition of subordination, there exists a function ω ∈ B0 such that

f ′(z) =

(
1 + ω(z)

1 +
(
1−b
b

)
ω(z)

) 1
α

(z ∈ U),

Suppose that ω(z) is given by the series (3.1). A simple calculation shows that

a2 =

(
2b− 1

αb

)
d1
2

(3.7)

and

a3 =

(
2b− 1

3αb

)[(
2b− 1

2αb
− 1

2b

)
d21 + d2

]
. (3.8)

Then, by using (3.7) and (3.8), easily we get

a3 − µa22 =

(
2b− 1

3αb

)[
d2 +

(
2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb

)
d21

]
. (3.9)

Suppose that µ < σ1(α, b), then (3.9) gives

|a3 − µa22| ≤
(

2b− 1

3αb

)[
|d2|+

(
2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb

)
|d1|2

]
.

Applying the estimates |d2| ≤ 1− |d1|2 of Lemma 3.1 and the well known estimate |d1| ≤ 1 of the
Schwarz lemma, we have

|a3 − µa22| ≤
(

2b− 1

3αb

)[
1 +

(
2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb
− 1

)]
≤
(

2b− 1

3αb

)(
2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb

)
(3.10)

which proves the first inequality in (3.4).
From (3.9) we have,

|a3 − µa22| =
(

2b− 1

3αb

) ∣∣∣∣d2 − d21 +

{
2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb

}
d21

∣∣∣∣ .
On the other hand if µ > σ2(α, b); then using the estimates |d2 − d21| ≤ 1 from Lemma 3.1 and

|p1| ≤ 1, we get

|a3 − µa22| ≤
(

2b− 1

3αb

)[
1 +

{
3µ

4

2b− 1

αb
+

1

2b
− 2b− 1

2αb
− 1

}]
=

(
2b− 1

3αb

)[
3µ

4

2b− 1

αb
+

1

2b
− 2b− 1

2αb

]
(3.11)
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which is precisely the last inequality in (3.4).
Finally , if σ1(α, b) ≤ µ ≤ σ2(α, b), then∣∣∣∣2b− 1

2αb
− 1

2b
− 3µ

4

2b− 1

αb

∣∣∣∣ ≤ 1.

Therefore we obtain

|a3 − µa22| ≤
(

2b− 1

3αb

)
, (3.12)

which proves the middle inequality in (3.4).
Next, we discuss sharpness of the inequality (3.4). Suppose µ < σ1(α, b). Then equality holds in

(3.4), that is, in (3.10) if |d1| = 1 (and hence d2 = 0). Thus ω(z) is a rotation of z and the extremal
function is a rotation of qα,b (z). Next, if µ > σ2(α, b), equality holds in (3.4), that is, in (3.11) if
d21 = −1 and hence |d2−d21| = 1. Therefore ω(z) = iz and the extremal function is qα,b (iz). Lastly,
if σ1(α, b) ≤ µ ≤ σ2(α, b), then equality holds in (3.4) if d1 = 0 and |d2| = 1. Therefore ω(z) is a
rotation of z2 and f ′(z) = qα,b

(
eiθz2

)
. This completes proof of Theorem 3.1. �

Letting µ = 0 (or µ = 1, respectively) in Theorem 3.1, we get the following result.

Corollary 3.1. If the function f given by (1.1) belong to the class R̃(α, b), then

|a3| ≤
(

2b− 1

3αb

)
and |a3 − a22| ≤

(
2b− 1

3αb

)
(α ≥ 1, b ≥ 1

2
) (3.13)

The estimates in (3.13) are sharp for the function f0 ∈ A defined by

f ′0(z) =

(
1 + z2

1 +
(
1−b
b

)
z2

) 1
α

(z ∈ U). (3.14)

For the choice of α = 2, b = 1 in Theorem 3.1, we have the following corollary.

Corollary 3.2. If the function f given by (1.1) belong to the class R̃(2, 1), then

|a3 − µa22| ≤



−3µ+ 2

48
, µ < −10

3

1

6
, −10

3 ≤ µ ≤ 2

3µ+ 2

48
, µ > 2.

(3.15)

If we take α = 2, b = 1 and µ = 0, and α = 1, b = 1 and µ = 1 in Theorem 3.1, then we have
the following corollaries, respectively.

Corollary 3.3. If the function f given by (1.1) belong to the class R̃(2, 1), then

|a3| ≤
1

6
. (3.16)

Corollary 3.4. If the function f given by (1.1) belong to the class R̃(1, 1), then

|a3 − a22| ≤
1

6
. (3.17)

Next we prove a sharp coefficient inequalities for the class S∗(α, b).
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Theorem 3.2. If the function f given by (1.1) belong to the class S∗(α, b)
(
α ≥ 1, b ≥ 1

2

)
, then

for −∞ < µ <∞,

|a3 − µa22| ≤



−
(

2b− 1

2αb

)[
(2µ− 3

2
)

(
2b− 1

αb

)
+

1

2b

]
, µ < σ3(α, b)

2b− 1

2αb
, σ3(α, b) ≤ µ ≤ σ4(α, b)(

2b− 1

2αb

)[
(2µ− 3

2
)

(
2b− 1

αb

)
+

1

2b

]
, µ > σ4(α, b),

(3.18)

where σ3(α, b) and σ4(α, b) is given by

σ3(α, b) =
αb

2(2b− 1)

[
3

2

(
2b− 1

αb

)
− 1

2b
− 1

]
(3.19)

and

σ4(α, b) =
αb

2(2b− 1)

[
3

2

(
2b− 1

αb

)
− 1

2b
+ 1

]
. (3.20)

The estimates in (3.18) are sharp.

Proof. From (1.7), it follows that,

zf ′(z)

f(z)
=

(
1 + ω(z)

1 +
(
1−b
b

)
ω(z)

) 1
α

(z ∈ U), (3.21)

where ω(z) is given by (3.1). From (3.21), we have

zf ′(z)

f(z)
= 1 +

(
2b− 1

αb

)
d1z +

{(
2b− 1

αb

)
d2 +

(
2b− 1

2αb

)(
2b− 1

αb
− 1

b

)
d21

}
z2 + · · · . (3.22)

Since
zf ′(z)

f(z)
= 1 + a2z + (2a3 − a22)z2 + (3a4 + a32 − 3a3a2)z

3 + . . . , (3.23)

comparing the coefficients of z and z2 in (3.22) and (3.23), we reduce that

a2 =

(
2b− 1

αb

)
d1 (3.24)

and

a3 =

(
2b− 1

2αb

)[
d2 +

(
3

2

2b− 1

αb
− 1

2b

)
d21

]
(3.25)

Following a similar method adopted for Theorem 3.1, one can easily show that inequality (3.18) is
satisfied and is sharp for the functions as in similar lines mentioned in Theorem 3.1. �

Letting µ = 0 (or µ = 1, respectively) in Theorem 3.2, we get the following result.

Corollary 3.5. If the function f given by (1.1) belong to the class S∗(α, b), then

|a3| ≤
(

2b− 1

2αb

)
and |a3 − a22| ≤

(
2b− 1

2αb

)
(α ≥ 1, b ≥ 1

2
). (3.26)

The estimates in (3.26) are sharp for the function f0 ∈ A defined by

f ′0(z) =

(
1 + z2

1 +
(
1−b
b

)
z2

) 1
α

(z ∈ U). (3.27)
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For the choice of α = 2, b = 1 in Theorem 3.2, we have the following result.

Corollary 3.6. If the function f given by (1.1) belong to the class S∗(2, 1), then

|a3 − µa22| ≤



1− 4µ

16
, µ < −3

4

1

4
,−34 ≤ µ ≤

5
4

4µ− 1

16
, µ > 5

4 .

(3.28)

If we take α = 2, b = 1 and µ = 0, and α = 2, b = 1 and µ = 1 in Theorem 3.2, then we have the
following corollaries, respectively.

Corollary 3.7. If the function f given by (1.1) belong to the class S∗(2, 1), then

|a3| ≤
1

4
. (3.29)

Corollary 3.8. If the function f given by (1.1) belong to the class S∗(2, 1), then

|a3 − a22| ≤
1

4
. (3.30)
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Abstract

In this paper, we introduce a viscosity rule for common fixed points of two non-
expansive mappings in Hilbert spaces. The strong convergence of this technique is
proved under certain assumptions imposed on the sequence of parameters.
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1 Introduction

Fixed points of special mappings like nonexpansive, asymptotically nonexpansive, contrac-
tive and other mappings has become a field of interest and has a variety of applications
in related fields like image recovery, signal processing and geometry of objects. Almost
in all branches of mathematics we see some versions of theorems relating to fixed points
of functions of special nature. As a result we apply them in industry, toy making, fi-
nance, aircrafts and manufacturing of new model cars. A fixed-point iteration scheme has
been applied in intensity modulated radiation therapy optimization to pre-compute dose-
deposition coefficient matrix, see [15]. Because of its vast range of applications almost in
all directions, the research in it is moving rapidly and an immense literature is present
now. Constructive fixed point theorems (e.g., Banach fixed point theorem) which not only
claim the existence of a fixed point but yield an algorithm, too (in the Banach case fixed
point iteration xn+1 = f(xn)). Any equation that can be written as x = f(x) for some
map f that is contracting with respect to some (complete) metric on X will provide such a
fixed point iteration. Mann’s iteration method was the stepping stone in this regard and

∗ Corresponding author
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is invariably used in most of the occasions see [6]. But it only ensures weak convergence,
see [2] but more often then not, we require strong convergence in many real world problems
relating to Hilbert spaces, see [1]. So mathematician are in search for the modifications
of the Mann’s process to control and ensure the strong convergence. For literature review
we refer to the readers (see [3, 4, 8–12], and references therein).

In this paper, we shall take H as a real Hilbert space, 〈·, ·〉 as inner product, ‖ · ‖ as
the induced norm, and C as a nonempty closed subset of H .

Definition 1.1. Let T : H → H be a mapping. Then T is called nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x − y‖, ∀x, y ∈ H.

Definition 1.2. A mapping f : H → H is called a contraction if for all x, y ∈ H and
θ ∈ [0, 1)

‖f(x)− f(y)‖ ≤ θ‖x − y‖.

Definition 1.3. Pc : H → C is called a metric projection if for every x ∈ H there exists
a unique nearest point in C, denoted by Pcx, such that

‖x− Pcx‖ ≤ ‖x− y‖, ∀y ∈ C.

In order to verify the weak convergence of an algorithm to a fixed point of a non-
expansive mapping we need the demiclosedness principle:

Theorem 1.4. ([5]) (The demiclosedness principle) Let C be a nonempty closed convex
subset of the real Hilbert space H and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. Here → and ⇀) denotes strong and weak convergence, respectively.

Moreover, the following result gives the conditions for the convergence of a nonnegative
real sequence.

Theorem 1.5. Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1− γn)an + δn, ∀n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a sequence
with

(1)
∑

∞

n=0 γn = ∞.

(2) limn→∞ sup δn

γn

≤ 0 or
∑

∞

n=0 |δn| < ∞.

Then an → 0.

The following strong convergence theorem, which is also called the viscosity approxi-
mation method, for non-expansive mappings in real Hilbert spaces is given by Moudafi [7]
in 2000.

Theorem 1.6. ([7]) Let C be a non-empty closed convex subset of the real Hilbert space
H . Let T be a non-expansive mapping of C into itself such that F (T ) is nonempty. Let f
be a contraction of C into itself. Consider the sequence

xn+1 =
εn

1 + εn

f(xn) +
1

1 + εn

T (xn), n ≥ 0,

where the sequence {εn} in (0, 1) satisfies
(1) limn→∞ εn = 0,
(2)

∑

∞

n=0 εn = ∞, and
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(3) limn→∞ | 1
εn+1

− 1
εn

| = 0.

Then {xn} converges strongly to a fixed point x∗ of the non-expansive mapping T ,
which is also the unique solution of the variational inequality

〈(I − f)x, y − x〉 ≥ 0, ∀ ∈ F (T ).

In 2015, Xu et al. [13] applied viscosity method on the midpoint rule for nonexpansive
mappings and give the generalized viscosity implicit rule:

xn+1 = αnf(xn) + (1− αn)T

(

xn + xn+1

2

)

, ∀n ≥ 0.

They also proved that the sequence generated by the generalized viscosity implicit rule
converges strongly to a fixed point of T . Ke et al. [14], motivated and inspired by the idea
of Xu et al. [13], proposed two generalized viscosity implicit rules:

xn+1 = αnf(xn) + (1− αn)T (snxn + (1− sn)xn+1) ,

xn+1 = αnxn + βf(xn) + γnT (snxn + (1− sn)xn+1).

In this paper, we give a viscosity approximation method for common fixed point of
two nonexpansive mappings in Hilbert spaces. Our contribution in this direction is the
following viscosity rule

εn+1 = αnf(εn) + βnS(εn) + γnT (εn). (1.1)

We prove strong convergence of (1.1) under certain assumptions. We also solve some
examples to check the validity of (1.1).

2 Main result

Following Theorem 2.1 is about convergence of our proposed viscosity technic.

Theorem 2.1. Let S and T be two non-expansive mappings from a closed convex subset
X of real Hilbert space H into X with U := F (T )∩F (S) 6= ∅. Also let that f : X → X be
a contraction with coefficient θ ∈ [0, 1). Assume that the sequence {εn} in X is generated
by (1.1), where {αn}, {βn} and {γn} are sequences in (0, 1) satisfying

(1) αn + βn + γn = 1,

(2) limn→∞ αn = 0,

(3)
∑

∞

n=0 |αn+1 − αn| < ∞ and
∑

∞

n=0 |βn+1 − βn| < ∞,

(4)
∑

∞

n=0 αn = ∞,

(5) limn→∞ ‖T (εn) − S(εn)‖ = 0.

Then {εn} converges strongly to ε∗ ∈ U , which satisfy the variational inequality

〈ε∗ − f(ε∗), y − ε∗〉 ≥ 0, ∀y ∈ U.

Proof. We will prove this theorem into the following five steps.
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Step 1. In this step, we show εn is bounded. Take ζ ∈ U arbitrarily, we have

‖εn+1 − ζ‖ = ‖αnf(εn) + βnS(εn) + γnT (εn) − ζ‖

= ‖αnf(εn) + βnS(εn) + γnT (εn) − (αn + βn + γn)ζ‖

≤ αn‖f(εn) − ζ‖ + βn‖S(εn)− ζ‖ + γn‖T (εn)− ζ‖

= αn‖f(εn) − f(ζ) + f(ζ) − ζ‖ + βn‖S(εn) − ζ‖ + γn‖T (εn) − ζ‖

≤ αn‖f(εn) − f(ζ)‖ + αn‖f(ζ)− ζ‖ + βn‖εn − ζ‖ + γn‖εn − ζ‖

≤ θαn‖εn − ζ‖ + αn‖f(ζ) − ζ‖ + (βn + γn)‖εn − ζ‖

= θαn‖εn − ζ‖ + αn‖f(ζ) − ζ‖ + (1− αn)‖εn − ζ‖

= (1− αn + αnθ)‖εn − ζ‖ + αn‖f(ζ) − ζ‖

= [1− αn(1 − θ)]‖εn − ζ‖ + αn(1 − θ)

[

1

(1 − θ)
‖f(ζ) − ζ‖

]

.

Thus,

‖εn+1 − ζ‖ ≤ max

{

‖εn − ζ‖,
1

1 − θ
‖f(ζ) − ζ‖

}

.

Similarly

‖εn − ζ‖ ≤ max

{

‖εn−1 − ζ‖,

(

1

1 − θ
‖f(ζ) − ζ‖

)}

.

From this

‖εn+1 − ζ‖ ≤ max

{

‖εn − ζ‖,

(

1

1 − θ
‖f(ζ)− ζ‖

)}

≤ max

{

‖εn−1 − ζ‖,

(

1

1 − θ
‖f(ζ)− ζ‖

)}

...

≤ max

{

‖ε0 − ζ‖,

(

1

1 − θ
‖f(ζ) − ζ‖

)}

.

We obtain

‖εn+1 − ζ‖ ≤ max

{

‖ε0 − ζ‖,
1

1 − θ
‖f(ζ) − ζ‖

}

.

Hence, we concluded that {εn} is a bounded sequence. Consequently, {f(εn)}, {S(εn)}
and {T (εn)} are bounded.

Step 2. Now, we prove that ‖εn+1 − εn‖ → 0 as n → ∞

‖εn+1 − εn‖

= ‖αnf(εn) + βnS(εn) + γnT (εn) − {αn−1f(εn−1) + βn−1S(εn−1) + γn−1T (εn−1)} ‖

= ‖αn {f(εn) − f(εn−1)}+ (αn − αn−1)f(εn−1) + βn(S(εn) − S(εn−1))

+ (βn − βn−1)S(εn−1) + γn{T (εn) − T (εn−1)}+ (γn − γn−1)T (εn−1)‖
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= ‖αn{f(εn)− f(εn−1)}+ (αn − αn−1)f(εn−1) + βn{S(εn) − S(εn−1)}

+ (βn − βn−1)S(εn−1) + γn{T (εn) − T (εn−1)} + (αn − αn−1 + βn − βn−1)T (εn−1)‖

= ‖αn{f(εn)− f(εn−1)}+ (αn − αn−1){f(εn−1) − T (εn−1)} + βn{S(εn) − S(εn−1)}

+ (βn − βn−1){S(εn−1) − T (εn−1)} + γn{T (εn) − T (εn−1)}‖

≤ αn‖f(εn) − f(εn−1)‖+ |αn − αn−1|‖f(εn−1) − T (εn−1)‖ + βn‖S(εn) − S(εn−1)‖

+ |βn − βn−1|‖S(εn−1) − T (εn−1)‖ + γn‖T (εn) − T (εn−1)‖

≤ αnθ‖εn − εn−1‖ + βn‖εn − εn−1‖ + γn‖εn − εn−1‖

+ (|αn − αn−1| + |βn − βn−1|)M2

= (αnθ + βn + γn)‖εn − εn−1‖ + (|αn − αn−1| + |βn − βn−1|)M2

= (αnθ + 1 − αn)‖εn − εn−1‖ + (|αn − αn−1| + |βn − βn−1|)M2

= (1− αn(1 − θ))‖εn − εn−1‖ + (|αn − αn−1| + |βn − βn−1|)M2,

where

M2 ≥ max

{

sup
n≥0

‖f(εn) − T (εn)‖ , sup
n≥0

‖S(εn)− T (εn)‖

}

.

Note that
∑

∞

n=0 |αn+1 − αn| < ∞,
∑

∞

n=0 |βn+1 − βn| < ∞ and
∑

∞

n=0 αn = ∞.
Using Theorem 1.5, we have limn→∞ ‖εn+1 − εn‖ = 0.
Step 3. Now, we will show that limn→∞ ‖εn−S(εn)‖ = 0 and limn→∞ ‖εn−T (εn)‖ = 0.
Consider

‖εn − S(εn)‖ = ‖εn − εn+1 + εn+1 − S(εn)‖

≤ ‖εn − εn+1‖ + ‖εn+1 − S(εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + βnS(εn) + γnT (εn) − S(εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + γnT (εn) − (1 − βn)S(εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + γnT (εn) − (αn + γn)S(εn)‖

≤ ‖εn+1 − εn‖ + αn‖f(εn) − S(εn)‖+ γn‖T (εn)− S(εn)‖.

Then by limn→∞ αn = limn→∞ ‖T (εn)−S(εn)‖ = 0, and limn→∞ ‖εn+1 − εn‖ → 0, we get
‖εn − S(εn)‖ → 0 as n → ∞.

Now, consider

‖εn − T (εn)‖ = ‖εn − εn+1 + εn+1 − T (εn)‖

≤ ‖εn − εn+1‖ + ‖εn+1 − T (εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + βnS(εn) + γnT (εn) − T (εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + βnS(εn)− (1− γn)T (εn)‖

= ‖εn − εn+1‖ + ‖αnf(εn) + βnS(εn)− (αn + βn)T (εn)‖

≤ ‖εn+1 − εn‖ + αn‖f(εn) − T (εn)‖+ βn‖T (εn) − S(εn)‖.

Then by limn→∞ αn = limn→∞ ‖T (εn) − S(εn)‖ = 0, and limn→∞ ‖εn+1 − εn‖ → 0,
we get ‖εn − Tεn‖ → 0 as n → ∞.

Step 4. In this step, we will show that lim supn→∞
〈ε∗ − f(ε∗), ε∗ − εn〉 ≤ 0, where

ε∗ = PUf(ε∗).
Indeed, we take a subsequence {εni

} of {εn} which converges weakly to a fixed point
ζ ∈ U = F (T ) ∩ F (S). From limn→∞ ‖εn − S(εn)‖ = 0 , limn→∞ ‖εn − T (εn)‖ = 0 and
Theorem 1.4 we have ζ = Sζ and ζ = Tζ. This together with the property of the metric
projection implies that

lim sup
n→∞

〈ε∗ − f(ε∗), ε∗ − εn〉 = lim sup
n→∞

〈ε∗ − f(ε∗), ε∗ − εni
〉

= 〈ε∗ − f(ε∗), ε∗ − ζ〉 ≤ 0.
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Step 5. Finally, we show that limn→∞ εn = ε∗ as. Now we again take ε∗ ∈ U is the
unique fixed point of the contraction PUf .

Consider

‖εn+1 − εn‖
2

= ‖αnf(εn) + βnS(εn) + γnT (εn) − ε∗‖2

= ‖αnf(εn) + βnS(εn) + γnT (εn) − (αn + βn + γn)ε∗‖2

= ‖αn{f(εn) − ε∗} + βn{S(εn) − ε∗}+ γn{T (εn) − ε∗}‖2

= α2
n‖f(εn) − ε∗‖2 + β2

n‖S(εn) − ε∗‖2 + γ2
n‖T (εn) − ε∗)‖2

+ 2αnβn〈f(εn) − ε∗, S(εn)− ε∗〉 + 2αnγn〈f(εn) − ε∗, T (εn) − ε∗〉

+ 2βnγn〈S(εn) − ε∗, T (εn) − ε∗〉

≤ α2
n‖f(εn) − ε∗‖2 + β2

n‖εn − ε∗‖2 + γ2
n‖εn − ε∗)‖2

+ 2αnβn〈f(εn) − f(ε∗), S(εn) − ε∗〉+ 2αnβn〈f(ε∗) − ε∗, S(εn)− ε∗〉

+ 2αnγn〈f(εn) − f(ε∗), T (εn) − ε∗〉 + 2αnγn〈f(ε∗) − ε∗, T (εn) − ε∗〉

+ 2βnγn〈S(εn) − ε∗, T (εn) − ε∗〉

≤ (β2
n + γ2

n)‖εn − ε∗)‖2 + 2αnβn‖f(εn) − f(ε∗)‖ · ‖S(εn) − ε∗‖

+ 2αnγn‖f(εn) − f(ε∗)‖ · ‖T (εn)− ε∗‖ + 2βnγn‖S(εn) − ε∗‖ · ‖T (εn) − ε∗‖+ Ln

≤ (β2
n + γ2

n)‖εn − ε∗‖2 + 2αnβnθ‖εn − ε∗‖ · ‖εn − ε∗‖

+ 2αnγnθ‖εn − ε∗‖ · ‖εn − ε∗‖ + 2βnγn‖εn − ε∗‖ · ‖εn − ε∗‖ + Ln

= (β2
n + γ2

n + 2βnγn + 2αnγnθ + 2αnβnθ)‖εn − ε∗‖2 + Ln

= [(βn + γn)2 + 2αnθ(γn + βn)]‖εn − ε∗‖2 + Ln

= (βn + γn)[βn + γn + 2αnθ]‖εn − ε∗‖2 + Ln

= (1− αn)[1− αn + 2αnθ]‖εn − ε∗‖2 + Ln,

where

Ln = α2
n‖f(εn) − ε∗‖2 + 2αnβn〈f(ε∗)− ε∗, S(εn) − ε∗〉 + 2αnγn〈f(ε∗) − ε∗, T (εn) − ε∗〉.

Note that since αnθ < 1 (2αnθ < 2), 1 − αn + 2αnθ < 2 + 1 − αn < 3, using this in
(1.1) we have

‖εn+1 − ε∗‖2 < 3(1 − αn)‖εn − ε∗‖2 + Ln. (2.1)

Also we get

lim sup
n→∞

Ln

αn

= lim sup
n→∞

1

αn

[

α2
n‖f(εn) − ε∗‖2 + 2αnβn〈f(ε∗) − ε∗, S(εn) − ε∗〉

+2αnγn〈f(ε∗) − ε∗, T (εn) − ε∗〉
]

= lim sup
n→∞

[

αn‖f(εn) − ε∗‖2 + 2βn〈f(ε∗) − ε∗, S(εn) − ε∗〉

+ 2γn〈f(ε∗) − ε∗, T (εn) − ε∗〉
]

≤ 0.

(2.2)

From (2.1), (2.2) and Theorem 1.5 we have

lim
n→∞

‖εn+1 − ε∗‖2 = 0,

which implies that εn → ε∗ as n → ∞. This completes the proof.
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BEST PROXIMITY POINTS INVOLVING F -CONTRACTION ON A

CLOSED BALL

AFTAB HUSSAIN AND CHOONKIL PARK∗

Abstract. In this paper, we introduce a new idea of best proximity point of F -contraction on
a closed ball and obtain new theorems in a complete metric space. That is why this outcome
becomes useful for contraction of a mapping on a closed ball instead of the whole space. At the
same time, some comparative examples are constructed which establish the superiority of our
results. Our results that have come into being give a proof of extension as well as substantial
generalizations and improvements of several well known results in the existing comparable
literature.

1. Introduction and preliminaries

Let A and B be two nonempty subsets of a metric space (X, d) and T : A → B. A point

x ∈ A is said to be a fixed point of T provided that Tx = x. A point x∗ ∈ A, where

inf{d(x, Tx∗) : x ∈ A} is attained, is a best approximation to Tx∗ ∈ B in A. Such a point is

called an approximate fixed point of T .

Clearly, T (A) ∩ A 6= ∅ is a necessary but not sufficient condition for the existence of a fixed

point of T . If T (A) ∩ A = ∅, then d(x, Tx) > 0 for all x ∈ A and hence an operator equation

Tx = x does not admit a solution. In such situations, it is a reasonable demand to settle down

with a point x∗ in A which is closest to Tx∗ in B. Thus instead of having d(x∗, Tx∗) = 0, one

finds a point x∗ in A such that d(x∗, Tx∗) ≤ d(x, Tx∗) holds for all x in A. Such point is called

a best approximate point of T or approximate fixed point of T. The study of conditions that

assure existence and uniqueness of approximate fixed point of a mapping T is an active area of

research.

Suppose that d(A,B) = inf({d(a, b) : a ∈ A, b ∈ B}) is the measure of a distance between

two sets A and B. A point x∗ is called a best proximity point of T if d(x∗, Tx∗) = d(A,B).

Thus a best proximity point problem defined by a mapping T and a pair of sets (A,B) is to

find a point x∗ in A such that d(x∗, Tx∗) = d(A,B). As d(x, Tx) ≥ d(A,B) holds for all x ∈ A,

so the global minimum of the mapping x → d(x, Tx) is attained at a best proximity point. If

we take A = B, then a best proximity point problem reduces to fixed point problem. From

this perspective, best proximity point problem can be viewed as a natural generalization of

fixed point problem. The aim of best proximity point theory is to study sufficient conditions

that assure the existence of best proximity points of mappings satisfying certain contractive

conditions on its domain equipped with some distance structure. For more results in this

direction, we refer to [1, 2, 4, 5, 6, 7, 9, 20] and references therein.

Fixed point results of mappings satisfying certain contractive conditions on the entire domain

have been at the centre of rigorous research activity and it has a wide range of applications in

2010 Mathematics Subject Classification. Primary 46S40; 47H10; 54H25.
Key words and phrases. best proximity point; non-self-mapping; α-proximal F -contraction; closed ball.
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different areas such as nonlinear and adaptive control systems, and parameterized estimation

problems, fractal image decoding, computing magnetostatic fields in a nonlinear medium and

convergence of recurrent networks. From the application point of view, the situation is not yet

completely satisfactory because it frequently happens that a mapping T is a contraction not

on the entire space X. Arshad et al. [3] established fixed point results of a pair of contractive

dominated mappings on a closed ball in an ordered complete dislocated metric space. Hussain

et al. [10] introduced the concept of an α-admissible mappings with respect to η and modified

(α,ψ)-contractive condition for a pair of mappings and established common fixed point results

of four mappings on a closed ball in complete dislocated metric space.

Jleli et al. [12] obtained best proximity point results of (α,ψ)-proximal contractive type

mappings in complete metric space. For more work in this direction, we refer to [11, 14, 16, 17,

18, 19].

In this paper, we obtain best proximity point results of α-η-proximal F -contractive mappings

on a closed ball in complete metric spaces. Our results extend, unify and generalize various

comparable results in [5, 6, 12].

In the sequel, the letter N will denote the set of all natural numbers. The following definitions,

notations and results will also be needed in the sequel.

Let (X, d) be a metric space and A and B be nonempty subsets of X. For x0 ∈ X and ε > 0,

the set B(x0, ε) = {y ∈ X : d(x0, y) ≤ ε} is a closed ball in X.

In 2012, Wardowski [21] introduced a concept of F -contraction as follows:

Definition 1. [21] Let (X, d) be a metric space. A self mapping T is said to be an F -contraction

if there exists τ > 0 such that

∀x, y ∈ X, d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) ,

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all x, y ∈ R+ such that x < y, F (x) < F (y);

(F2) For each sequence {αn}∞n=1 of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn) =

−∞;

(F3) There exists κ ∈ (0, 1) such that limα→ 0+αkF (α) = 0.

We denote by ∆F the set of all functions satisfying the conditions (F1)-(F3).

Suppose that

A0 : = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B} ,
B0 : = {b ∈ B : d(a, b) = d(A,B) for some a ∈ A} ,

and CB(B) is the set of all nonempty closed and bounded subsets of B. A point x ∈ X is said

to be a best proximity point of T : A→ CB(B) if d(x, Tx) = dist(A,B). The set B is said to

be approximatively compact with respect to the set A if each {vn} in B with d(x, vn)→ d(x,B)

for some x in A has a convergent subsequence [8].

Definition 2. Let α, η : A× A→ [0,∞). A mapping T : A→ B is (α-η)-proximal admissible

if for any x1, x2, u1, u2 ∈ A,
α(x1, x2) ≥ η(x1, x2)
d(u1, Tx1) = d(A,B)
d(u2, Tx2) = d(A,B)

imply that α(u1, u2) ≥ η(u1, u2),
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Note that if A = B and T is (α-η)-proximal admissible then T is α-admissible with respect

to η.

Definition 3. [13] A mapping T : A → CB(B) is said to be an αF - proximal contraction of

Ciric type if there exist two functions α : A × A → [0,∞), F ∈ ∆F and τ > 0 such that for

each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2 with α(x1, x2) ≥ 1 and d(u1, v1) = dist(A,B) =

d(u2, v2) we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (M(x1, x2)) ,

whenever min {d(u1, u2),M(x1, x2)} > 0, where

M(x1, x2) = max

{
d(x1, x2), d(x1, u1), d(x2, u2),

d(x1, u2) + d(x2, u1)

2

}
.

Definition 4. A mapping T : A→ CB(B) is said to be an α-η-proximal F -contraction of Ciric

type on a closed ball if there exist two functions α : A× A→ [0,∞), F ∈ ∆F and r > 0, τ > 0

such that for each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2 with α(x1, x2) ≥ η(x1, x2) and

d(u1, v1) = dist(A,B) = d(u2, v2) we have

α(u1, u2) ≥ η(u1, u2) and τ + F (d(u1, u2)) ≤ F (kM(x1, x2)) (1.1)

for all x1, x2 ∈ Y = B(x1, r) and

d(x1, Tx1) < (1− k)r, where 0 ≤ k < 1, (1.2)

whenever min {d(u1, u2),M(x1, x2)} > 0, where

M(x1, x2) = max

{
d(x1, x2), d(x1, u1), d(x2, u2),

d(x1, u2) + d(x2, u1)

2

}
.

2. Main results

We start with the following result.

Theorem 5. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A → CB(B) is an α-η-proximal F -contraction of Ciric

type mapping on a closed ball satisfying the following assertion:

(i) for each x ∈ A0, we have Tx ⊆ B0;

(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ η(x1, x2) and d(x2, v1) =

dist(A,B);

(iii) T is continuous;

(iv) B is approximatively compact with respect to A.

Then there exists an element x∗ ∈ B(x0, r) such that d (x∗, Tx∗) = dist(A,B).

Proof. From (ii), there exist x1, x2 in A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ η(x1, x2) and

d(x2, v1) = dist(A,B). Since v2 ∈ Tx2 ⊆ B0, there exists x3 ∈ A0 satisfying d(x3, v2) =

dist(A,B). From (1.1), we have α(x2, x3) ≥ η(x2, x3) and

τ + F (d(x2, x3)) ≤ F

(
kmax

{
d(x1, x2), d(x1, x2), d(x2, x3),

d(x1, x3) + d(x2, x2)

2

})
≤ F (kmax {d(x1, x2), d(x2, x3)})
= F (kd(x1, x2)) . (2.1)
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Otherwise we have a contradiction. From above we get x2, x3 ∈ A0 and v2 ∈ Tx2 satisfying

α(x2, x3) ≥ η(x2, x3) and d(x3, v2) = dist(A,B).

Since v3 ∈ Tx3 ⊆ B0, there exists x4 ∈ A0 satisfying d(x4, v3) = dist(A,B).

From (1.1), we can obtain α(x3, x4) ≥ η(x3, x4) and

τ + F (d(x3, x4)) ≤ F

(
kmax

{
d(x2, x3), d(x2, x3), d(x3, x4),

d(x2, x4) + d(x3, x3)

2

})
≤ F (kmax {d(x2, x3), d(x3, x4)})
= F (kd(x2, x3)) . (2.2)

Otherwise we have a contradiction. From (2.1) and (2.2), we have

τ + F (d(x3, x4)) ≤ F
(
k2d(x1, x2)

)
− 2τ.

Continuing this way, we can obtain a sequence {xn} in A0 and v3 in B0 such that vn ∈
Txn, α(xn, xn+1) ≥ η(xn, xn+1), d(xn+1, vn) = dist(A,B) and it satisfies

F (d(xn, xn+1)) ≤ F (knd(x1, x2))− nτ for each n ∈ N \ {1},

which implies

F (d(xn, xn+1)) ≤ F (d(x1, x2))− nτ for each n ∈ N \ {1}. (2.3)

Now we show that xn ∈ B(x1, r) for all n ∈ N. By (1.2), we have d(x1, Tx1)) ≤ r and hence

x1 ∈ B(x0, r). Let x2, · · · , xj ∈ B(x0, r) for some j ∈ N. Note that α(xi−1, xi) ≥ η(xi−1, xi−1)

and T is an α-η-proximal F -contraction of Ciric type mapping on a closed ball. Since F is

strictly increasing,

d(x1, xj+1) = d(x1, x2) + d(x2, x3) + d(x3, x4) + ...+ d(xj , xj+1)

≤ (1− k)r + (1− k)kr + (1− k)k2r + ...+ (1− k)kj−1r

= (1− k)r
[
1 + k + k2 + · · ·+ kj−1

]
= (1− k)r

(
1− kj

)
(1− k)

≤ r,

which implies that xj+1 ∈ B(x1, r) and hence xn ∈ B(x1, r) for all n ∈ N \ {1}. From (2.3), we

obtain limn→∞ F (d(xn, xn+1)) = −∞. Since F ∈ ∆F , we have

lim
n→∞

d(xn, xn+1) = 0. (2.4)

From (F3), there exists K ∈ (0, 1) such that

lim
n→∞

(
(d(xn, xn+1))

K F (d(xn, xn+1))
)

= 0. (2.5)

From (2.3), for all n ∈ N, we obtain

(d(xn, xn+1))
K (F (d(xn, xn+1))− F (d(x0, x1))) ≤ − (d(xn, xn+1))

K nτ ≤ 0. (2.6)

Using (2.4), (2.5) and letting n→∞ in (2.6), we have

lim
n→∞

(
n (d(xn, xn+1))

K
)

= 0. (2.7)

By (2.7), there exists n1 ∈ N such that n (d(xn, xn+1))
K ≤ 1 for all n ≥ n1. So we get

d(xn, xn+1) ≤
1

n
1
K

for all n ≥ n1. (2.8)
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Now, m,n ∈ N such that m > n ≥ n1. Then by the triangle inequality and from (2.8) we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + ...+ d(xm−1, xm)

=
m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) (2.9)

≤
∞∑
i=n

1

i
1
k

.

The series
∑∞

i=n
1

i
1
K

is convergent. By taking limit as n→∞ in (2.9), we have limn,m→∞ d(xn, xm) =

0. Hence {xn} is a Cauchy sequence in A. Since A is closed subset of a complete metric space,

there exists x∗ in A and x∗ ∈ B(x1, r) such that xn → x∗ as n→∞. As d(xn+1, vn) = dist(A,B)

we have limn→∞ d(x∗, vn) = dist(A,B). Since B is approximatively compact with respect to

A, we get a subsequence {vnk
} of {vn} with vnk

∈ Tvnk
that converges to v∗.

Thus

d(x∗, v∗) = lim
n→∞

d(xnk
, vnk

) = dist(A,B).

By (iii), when T is continuous, we get v∗ ∈ Tx∗ and hence dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, v∗) =

dist(A,B). Therefore, d(x∗, Tx∗) = dist(A,B). �

In the following theorem, the assumption of continuity is replaced with the following suitable

condition:

(H) If {xn} is a sequence in A such that xn → x∗ ∈ A0 as n → ∞, and α(xn, xn+1) ≥
η(xn, xn+1) for all n, then we have α(xn, x

∗) ≥ η(xn, x
∗) for all n.

Theorem 6. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A → CB(B) is an α-η-proximal F -contraction of Ciric

type mapping on a closed ball satisfying the following assertion:

(i) for each x ∈ A0, we have Tx ⊆ B0;

(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ η(x1, x2) and d(x2, v1) =

dist(A,B);

(iii) (H) holds;

(iv) B is approximatively compact with respect to A.

Then there exists an element x∗ ∈ B(x0, r) such that d (x∗, Tx∗) = dist(A,B).

Proof. The proof follows from similar lines of Theorem 5. From the condition (H), assume that

we have

α(xn, x
∗) ≥ η(xn, x

∗)

for all n ∈ N ∪ {1} and xn → x∗ ∈ B(x0, r) as n → ∞. For each x∗ ∈ A0, we have Tx∗ ⊆ B0.

This implies that for z∗ ∈ Tx∗, we have w∗ ∈ A0 such that d(w∗, z∗) = dist(A,B). Further

note that d(xn+1, vn) = dist(A,B). We claim that d(w∗, z∗) = 0. On contrary assume that

d(w∗, z∗) 6= 0. Now from (1.1), we get

τ + F (d(xn+1, w
∗)) ≤ F

(
kmax

{
d(xn, x

∗), d(xn, xn+1), d(x∗, w∗),
d(xn, w

∗) + d(xn+1, x
∗)

2

})
.

Letting n→∞, we obtain

τ + F (d(x∗, w∗)) ≤ F (kd(x∗, w∗)) ≤ F (d(x∗, w∗)) .
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This implies

τ + F (d(x∗, w∗)) ≤ F (d(x∗, w∗)) ,

which is not possible. Hence d(x∗, w∗) = 0. Thus we get

dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, z∗) = dist(A,B)

and hence d(x∗, Tx∗) = d(A,B). �

If we take η(x, y) = 1 for all x, y ∈ X in Theorems 5 and 6, then we obtain the following

results.

Corollary 7. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A → CB(B) is an αF -proximal F -contraction of Ciric

type mapping on a closed ball satisfying the following assertion:

(i) for each x ∈ A0, we have Tx ⊆ B0;

(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ 1 and d(x2, v1) = dist(A,B);

(iii) T is continuous;

(iv) B is approximatively compact with respect to A.

Then there exists an element x∗ ∈ B(x0, r) such that d (x∗, Tx∗) = dist(A,B).

Corollary 8. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A → CB(B) is an αF -proximal F -contraction of Ciric

type mapping on a closed ball satisfying the following assertion:

(i) for each x ∈ A0, we have Tx ⊆ B0;

(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ η(x1, x2) and d(x2, v1) =

dist(A,B);

(iii) (H) holds;

(iv) B is approximatively compact with respect to A.

Then there exists an element x∗ ∈ B(x0, r) such that d (x∗, Tx∗) = dist(A,B).

Example 9. Let X = R×R be endowed with a metric d ((x1, x2) , (y1, y2)) = |x1 − y1|+|x2 − y2|
for each x, y ∈ B(x1, r) ⊂ X. Define the mapping T : A→ CB(B) by

T (0, x) =

{ (
1, x3

)
,
(
1, x2

)
if x ≥ 0

(1, x) ,
(
1, x2

)
otherwise,

where A = {(0, x) : −1 ≤ x ≤ 1} and B = {(1, x) : −1 ≤ x ≤ 1}, and α, η : A×A→ R+

α ((0, x), (0, y)) =

{
1 if x, y ∈ [0, 1]
0 otherwise.

and η((0, x), (0, y)) =

{ 1
2 if x, y ∈ [0, 1]
0 otherwise.

.

Take F (x) = lnx for each x ∈ R+ and τ = 2
3 . It is easy to see that T is an α-η-proximal

F -contraction of Ciric type mapping on a closed ball. For each x ∈ A0, we have Tx ⊆ B0. Also

for x1 = (0, 12) ∈ A0 and v1 = (1, 14) ∈ Tx1, we have x2 = (0, 14) such that α(x1, x2) ≥ η(x1, x2)

and d(x2, v1) = dist(A,B).Moreover {xn} is a sequence in A such that xn → x ∈ A0 as n→∞,

and α(xn, xn+1) ≥ η(xn, xn+1) for all n, we have α(xn, x
∗) ≥ η(xn, x

∗) for all n. Further note

that B is approximatively compact with respect to A. Therefore, all the conditions of Theorems

5 and 6 hold. Hence T has a best proximity point.
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Abstract

The Euler difference scheme for a two-dimensional Lotka-Volterra competition model is
considered. Recently, we have shown that the difference scheme has positive and bounded
solutions, and that the solutions of the scheme converge to the equilibrium points under
some sufficient conditions. In this paper, we find asymptotic lines of the solutions of the
Euler discrete scheme in two categories of partitions of domain. We present sufficient
conditions under which the line between the two equilibrium points of the scheme is the
asymptotic line of the solutions of the scheme in each category. Numerical examples are
given to verify the results.

Keywords: Euler difference scheme, competition model, asymptotic line

1. Introduction

The two-dimensional Lokta-Volterra competition model is given by

dx

dt
= x(t)(r1 − a11x(t)− a12y(t)),

dy

dt
= y(t)(r2 − a21x(t)− a22y(t)), (1)

where ri > 0 and aij > 0. Here x(t) and y(t) denote the population sizes or population
density in two species x and y at time t, which are competing for a common resource.
The parameters ri are the intrinsic growth rates and aii (i = 1, 2) measure the inhibiting
effect on the two species x and y, respectively, where a12 and a21 are the interspecific
acting coefficients.

The dynamics of the model (1) is well-known [1–4]. Many reseachers have studied the
Lokta-Volterra models; the solutions of (1) are positive and bounded, and the system (1)
is stable. There are a number of works on investigating continuous time models [5–10].
But relatively few theoretical papers are published on their discretized models [11–14].

Recently, we have studied the global stability of the discrete-time Lokta-Volterra
model. In [15], Choo has introduced a method to present global stability in the dis-
crete Lokta-Volterra predator-prey model for the case that all species coexist at a unique
equilibrium. In [16], we have shown the global stability of the Euler difference scheme for
a three-dimensional predator-prey model using a new approach.

∗Corresponding author
Email addresses: yhkim@kw.ac.kr (Young-Hee Kim), smchoo@ulsan.ac.kr (Sang-Mok Choo)
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In this paper, we consider the Euler difference scheme for the two-dimensional Lokta-
Volterra competition model given by

xn+1 = xn{1 + f(xn, yn)∆t}, yn+1 = yn{1 + g(xn, yn)∆t}, (2)

where
f(x, y) = r1 − a11x− a12y, g(x, y) = r2 − a21x− a22y, (3)

and ∆t is a time step size, xn = x0 + n∆t and yn = y0 + n∆t with (x0, y0) = (x(0), y(0)).
In [17], we have shown the Euler difference scheme has positive and bounded solutions,

and have presented sufficient conditions for the global stability of the fixed points of the
discrete competition model with two species. The main idea of our approach has been
to divide the domain used for the boundedness of solutions of the discrete model and to
describe how to trace the trajectories with respect to each partition. We have obtained
the following global convergences to (0, r2a

−1
22 ) in Figure 1-(a) and (r1a

−1
11 , 0) in Figure

1-(b). In the numerical results the line between the two points (0, r2a
−1
22 ) and (r1a

−1
11 , 0)

looks like the asymptotic line in the two cases: one is r1a
−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22

as in Figure 1-(a), and the other is r1a
−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 as in Figure 1-(b).

Figure 1: Trajectories for different initial points. (a) r1 = 1, a11 = 1, a12 = 2, r2 = 3.5, a21 = 3, a22 = 2.
(b) r1 = 1, a11 = 1, a12 = 1, r2 = 1.5, a21 = 3, a22 = 5. The box and circle symbols denote initial and
equilibrium points, respectively.

Therefore the goal of this paper is to find some conditions under which the line between
the two points plays a role as the boundary dividing the convergence region surrounded
by the four lines f(x, y) = 0, g(x, y) = 0, x = 0 and y = 0.

The paper is organized as follows. In Section 2, we give some conditions under which
the solutions of (2) are positive and bounded, and converge to equilibrium points of
(2) starting in the partitioned regions of the domain. In Section 3, we have sufficient
conditions under which the line between the two equilibrium points of the scheme (2) is
the asymptotic line of the solutions of the scheme. In Section 4, some numerical examples
are presented to verify our results.

2. Positivity, boundedness and stability of the discrete solutions

For the positivity and boundedness of the solutions (xn, yn) of (2), we assume

∆t < 1/max{r1, r2} (4)
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and consider constants x∗ and y∗ such that

r1a
−1
11 ≤ x∗ ≤ U1(y

∗), r2a
−1
22 ≤ y∗ ≤ U2(x

∗), (5)

where

U1(τ2) =
1 + r1∆t− a12τ2∆t

2a11∆t
, U2(τ1) =

1 + r2∆t− a21τ1∆t
2a22∆t

. (6)

Then we have the positivity and boundedness of (xn, yn) using x∗ and y∗ in (5) as follows
(see [17]).

Theorem 1. Let (xn, yn) be the solution of (2). Assume that (4) and (5) hold.

If (x0, y0) ∈ (0, x∗)× (0, y∗), then (xn, yn) ∈ (0, x∗)× (0, y∗) for all n.

Let D = (0, x∗) × (0, y∗) for x∗ and y∗ defined in (5). To discuss the stability of the
Euler difference scheme (2) for each initial position (x0, y0) contained in D, we partition
D by two lines f(x, y) = 0 and g(x, y) = 0 into the four regions

I = {x ∈ D | f(x) ≥ 0, g(x) > 0}, II = {x ∈ D | f(x) < 0, g(x) ≥ 0},
III = {x ∈ D | f(x) ≤ 0, g(x) < 0}, IV = {x ∈ D | f(x) > 0, g(x) ≤ 0},

(7)

where x = (x, y), and f(x, y) and g(x, y) are given in (3).
Since the location of the regions depends on the x and y-intercepts of the two lines,

there are four categories Ci(1 ≤ i ≤ 4) of partition in D as in Figure 2; we use the
symbol C1 for the two conditions r1a

−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22 , the symbol C2 for

r1a
−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 , the symbol C3 for r1a

−1
11 > r2a

−1
21 and r1a

−1
12 < r2a

−1
22 ,

and finally the symbol C4 for r1a
−1
11 < r2a

−1
21 and r1a

−1
12 > r2a

−1
22 . The magenta circles in

Figure 2 denote the stable points of the difference model (2) in the categories.

0 0.5 1 1.5
0

0.5

1

1.5

(a)
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II III
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g = 0

0 0.5 1 1.5
0

0.5

1

(b)

x

y

IV
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IV III
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Figure 2: Two lines f = 0 and g = 0 and regions with stable points. The values of the parameters are
(a) r2 = 3.5, a21 = 3.0, a22 = 2 in the category C1. (b) r2 = 1.5, a21 = 3, a22 = 5 in the category C2. (c)
r2 = 1.7, a21 = 3, a22 = 1 in the category C3. (d) r2 = 3.5, a21 = 2.5, a22 = 5 in the category C4.

For the stability we assume

1 > ∆t (a11x
∗ + a22y

∗ + x∗y∗|a12a21 − a11a22|∆t) . (8)

Then we have the following lemma (see [17]).
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Lemma 1. Let (xn, yn) be the solution of (2). Assume that (4), (5) and (8) hold. Then
we have

(i) If (xk, yk) ∈ I for some k, then (xk+1, yk+1) is not contained in III.
(ii) If (xk, yk) ∈ III for some k, then (xk+1, yk+1) is not contained in I.
(iii) If (xk, yk) ∈ II for some k, then (xn, yn) ∈ II for all n ≥ k.
(iv) If (xk, yk) ∈ IV for some k, then (xn, yn) ∈ IV for all n ≥ k.

In the following theorem, we have the global stability of the solutions of (2) for the
category C1 and C2 as in Figure 2-(a) and Figure 2-(b), respectively (see [17]).

Theorem 2. Let (xn, yn) be the solution of (2). Assume that (4), (5) and (8) hold. Then
we have

(i) If r1a
−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22 , then

(
0, r2a

−1
22

)
is globally stable.

(ii) If r1a
−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 , then

(
r1a
−1
11 , 0

)
is globally stable.

Remark 1. Under the same conditions as in Theorem 2, we have the convergence of
the solutions (xn, yn) of (2) for the category C3 as in Figure 2-(c). If r1a

−1
11 > r2a

−1
21

and r1a
−1
12 < r2a

−1
22 , then the solutions converge with the limit (r1a

−1
11 , 0) or (0, r2a

−1
22 ).

We have the global stability of the solutions for the category C4 as in Figure 2-(d)
where each component of the equilibrium point is positive. If a11a22 − a12a21 6= 0,
r1a
−1
11 < r2a

−1
21 and r1a

−1
12 > r2a

−1
22 , then (θ1, θ2) is globally stable, where (θ1, θ2) =

(a11a22 − a12a21)−1 (r1a22 − r2a12,−r1a21 + r2a11) with f(θ1, θ2) = g(θ1, θ2) = 0. See [17]
in detail.

Remark 2. Using the results in this section, we present the asymptotic lines of the dis-
crete solutions in C1 and C2 in the next section. In the case of C3 and C4, the corresponding
asymptotic lines will be treated in the future work.

3. Asymptotic lines of the discrete solutions in C1 and C2

In this section, we give sufficient conditions under which the line between the two
equilibrium points of the scheme (2) is the asymptotic line of the solutions of the scheme
in the two categories C1 and C2.

First, we consider the category C1 as in Figure 1-(a), which is the case

r1a
−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 . (9)

By Theorem 2, (0, r2a
−1
22 ) is the unique equibrium point in this case.

Denote the line between the two points (r1a
−1
11 , 0) and (0, r2a

−1
22 ) as h(x, y) = 0, where

h(x, y) = r1r2 − r2a11x− r1a22y. (10)

The condition that (xk, yk) is located between two lines h(x, y) = 0 and g(x, y) = 0 is
equivalent that

r1r2 − r2a11xk − r1a22yk < 0 (11)

and
r2 − a21xk − a22yk > 0. (12)

The equation (12) implies (xk, yk) ∈ II, which gives (xk+1, yk+1) ∈ II due to Lemma 1-(iii).
Therefore r2 − a21xk+1 − a22yk+1 > 0. In this case, we have the following lemma.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1319 Young-Hee Kim ET AL 1316-1329



Lemma 2. Assume that for some αk > 0

r1r2 − r2a11xk − r1a22yk = −α2
k < 0. (13)

Then we have

r1r2 − r2a11xk+1 − r1a22yk+1 = α2
k{−1 + ∆t

[
α2
k

1

r1
+ p(xk)

]
}

+ xk∆t
( r2
r1a22

)
{r1a22(a11 − a21)− r2a11(a12 − a22)}(xka11 − r1),

(14)

where

p(x) =
(r2a11a12
r1a22

− 2r2a11
r1

+ a21
)
x+ r2. (15)

Proof. We have from (2) and (3) that

r1r2 − r2a11xk+1 − r1a22yk+1 = r1r2 − r2a11xk − r1a22yk
− r2a11xk∆t(r1 − a11xk − a12yk)− r1a22yk∆t(r2 − a21xk − a22yk).

(16)

Then, by (13) and (15), we have from (16) that

r1r2 − r2a11xk+1 − r1a22yk+1

= −α2
k − r2a11xk∆t

(
r1 − a11xk − a12

r1r2 − r2a11xk + α2
k

r1a22

)
− (r1r2 − r2a11xk + α2

k)∆t
(
− a21xk −

−r2a11xk + α2
k

r1

)
= α4

k(∆t
1

r1
) + α2

k{−1− r2a11xk∆t
(
− a12
r2a22

)
− (r1r2 − r2a11xk) ·

(
−∆t

1

r1

)
−∆t(−a21xk +

r2a11xk
r1

)}+ α0
k{−r2a11xk∆t

(
r1 − a11xk − a12

r1r2 − r2a11xk
r1a22

)
− (r1r2 − r2a11xk)∆t(−a21xk +

r2a11xk
r1

)}

= α2
k{−1 + ∆t

[
α2
k

1

r1
+ p(xk)

]
}+G(xk).

(17)

Here the last term in (17) is

G(xk) =− r2a11xk∆t
(
r1 − a11xk − a12

r1r2 − r2a11xk
r1a22

)
− (r1r2 − r2a11xk)∆t

(
− a21xk +

r2a11xk
r1

)
=x2k{(−r2a11)∆t

(
− a11 +

r2a11a12
r1a22

)− (−r2a11)∆t(−a21 +
r2a11
r1

)
}

+ xk{−r2a11∆t
(
r1 −

r2a12
a22

)
− (r1r2)∆t

(
− a21 +

r2a11
r1

)
}

=x2k{(−r2a11)∆t
( a11
r1a22

)
+ r2a11∆t

1

r1
(−r1a21 + a11r2)}

− xk∆t
(r2a11
a22

)
{a11(r1a22 − r2a12) + a22(−r1a21 + r2a11)}

=xk∆t
( r2
r1a22

)
{r1a22(a11 − a21)− r2a11(a12 − a22)}(xka11 − r1).

(18)

Hence we obtain the result.
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In the following lemma, we consider the case that the point (xk, yk) is located between
two lines h(x, y) = 0 and f(x, y) = 0. It is equivalent to the case that (xk, yk) satisfies

r1r2 − r2a11xk − r1a22yk > 0 (19)

and
r1 − a11xk − a12yk < 0. (20)

The equation (19) and (20) implie (xk, yk) ∈ II, which gives (xk+1, yk+1) ∈ II due to
Lemma 1-(iii). Therefore r1− a11xk+1− a12yk+1 < 0. We have the following result in this
case.

Lemma 3. Assume that for some αk > 0

r1r2 − r2a11xk − r1a22yk = α2
k > 0. (21)

Then we have

r1r2 − r2a11xk+1 − r1a22yk+1 = α2
k{1 + ∆t[α2

k

1

r1
+ q(xk)]}

+ xk∆t(
r2
r1a22

){r1a22(a11 − a21)− r2a11(a12 − a22)}(xka11 − r1),
(22)

where
q(x) =

(
− r2a11a12

r1a22
+ a21

)
x− r2. (23)

Proof. By a similar way in the proof of Lemma 2, we have from (16), (21), (23) and (18)
that

r1r2 − r2a11xk+1 − r1a22yk+1

= α2
k − r2a11xk∆t

(
r1 − a11xk − a12

r1r2 − r2a11xk − α2
k

r1a22

)
− (r1r2 − r2a11xk − α2

k)∆t
(
− a21xk +

r2a11xk + α2
k

r1

)
= α4

k

(
∆t

1

r1

)
− α2

k{−1− r2a11xk∆t
(
− a12
r2a22

)
− (r1r2 − r2a11xk) ·

(
−∆t

1

r1

)
−∆t

(
− a21xk +

r2a11xk
r1

)
}+ α0

k{−r2a11xk∆t
(
r1 − a11xk − a12

r1r2 − r2a11xk
r1a22

)
− (r1r2 − r2a11xk)∆t

(
− a21xk +

r2a11xk
r1

)
}

= α2
k{1 + ∆t

[
α2
k

1

r1
+ q(xk)

]
}+G(xk).

(24)

Hence we obtain the result.

Since the solution (xk, yk) of (2) and α2
k = |r1r2−r2a11xk−r1a22yk| in (13) and (21) are

bounded by Theorem 1, it is possible to take ∆t so small, which satisfies the inequalities

∆t{α2
k

1

r1
+ p(xk)} < 1, 1 + ∆t{α2

k

1

r1
+ q(xk)} > 0. (25)
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We divide the region II based on the two lines h(x, y) = 0 and x = r1a
−1
11 , and then

the region is partitioned into three parts II0, IIu and IId (see Figure 3).
II0 is the region with the three boundaries g(x, y) = 0, y = 0 and x = r1a

−1
11 .

IIu is the region with the three boundaries g(x, y) = 0, h(x, y) = 0 and x = r1a
−1
11 .

IId is the region with the three boundaries f(x, y) = 0, h(x, y) = 0 and x = 0.

In the following theorems, we have the results that if the solution (xn, yn) of (2) starts
at IIu or IId, it remains in the same region.

Theorem 3. Let the conditions (4), (5), (8) and (25) hold. Let (xn, yn) be the solution
of (2) with r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) ≥ 0. (26)

If for some k
(xk, yk) ∈ IIu,

then for all i ≥ k
(xi, yi) ∈ IIu,

where IIu is the the region with the three boundaries

g(x, y) = 0, h(x, y) = 0 and x = r1a
−1
11 .

Proof. Since xn > 0 and yn > 0 for all n in Theorem 1, g(x, y) = r2 − a21x − a22y and
h(x, y) = r1r2 − r2a11x− r1a22y, the inclusion (xk, yk) ∈ IIu is equivalent to

r2 − a21xk − a22yk > 0, r1r2 − r2a11xk − r1a22yk < 0.

Then it is enough to show that for all i ≥ k

r2 − a21xi − a22yi > 0, (27)

r1r2 − r2a11xi − r1a22yi < 0. (28)

Note that due to Lemma 1-(iii)

if (xk, yk) ∈ II, then (xi, yi) ∈ II for all i ≥ k. (29)

Since (xk, yk) ∈ IIu and IIu ⊂ II, we have (xi, yi) ∈ II for all i ≥ k due to (29), so that the
definition of II yields the inequality (27).

Now it remains to show the inequality (28), which can be proved using the equality
(14) in Lemma 2:

r1r2 − r2a11xk+1 − r1a22yk+1 = α2
k{−1 + ∆t[α2

k

1

r1
+ p(xk)]}

+ xk∆t(
r2
r1a22

){r1a22(a11 − a21)− r2a11(a12 − a22)}(xka11 − r1),
(30)

where

p(x) =
(r2a11a12
r1a22

− 2r2a11
r1

+ a21
)
x+ r2
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and
α2
k = −(r1r2 − r2a11xk − r1a22yk) > 0

due to r1r2−r2a11xk−r1a22yk < 0. Applying both (25) and (26) into (30) with xi < r1a
−1
11

for all i ≥ k obtained from (29), we have that

r1r2 − r2a11xk+1 − r1a22yk+1 < 0.

Using mathematical induction, we can obtain the desired result.

Theorem 4. Let the conditions (4), (5), (8) and (25) hold. Let (xn, yn) be the solution
of (2) with r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) ≤ 0. (31)

If for some k
(xk, yk) ∈ IId,

then for all i ≥ k
(xi, yi) ∈ IId,

where IId is the the region with the three boundaries

f(x, y) = 0, h(x, y) = 0 and x = 0.

Proof. Since xn > 0 and yn > 0 for all n in Theorem 1, f(x, y) = r1 − a11x − a12y and
h(x, y) = r1r2 − r2a11x− r1a22y, the inclusion (xk, yk) ∈ IId is equivalent to

r1 − a11xk − a12yk < 0, r1r2 − r2a11xk − r1a22yk > 0.

Then it is enough to show that for all i ≥ k

r1 − a11xi − a12yi < 0, (32)

r1r2 − r2a11xi − r1a22yi > 0. (33)

Since (xk, yk) ∈ IId and IId ⊂ II, we have (xi, yi) ∈ II for all i ≥ k due to (29), so that the
definition of II yields the inequality (32).

Now it remains to show the inequality (33), which can be proved using the equality
(22) in Lemma 3:

r1r2 − r2a11xk+1 − r1a22yk+1 = α2
k{1 + ∆t[α2

k

1

r1
+ q(xk)]}

+ xk∆t(
r2
r1a22

){r1a22(a11 − a21)− r2a11(a12 − a22)}(xka11 − r1),
(34)

where
q(x) =

(
− r2a11a12

r1a22
+ a21

)
x− r2

and
α2
k = r1r2 − r2a11xk − r1a22yk > 0

due to r1r2−r2a11xk−r1a22yk > 0. Applying both (25) and (31) into (34) with xi < r1a
−1
11

for all i ≥ k obtained from (29), we have that

r1r2 − r2a11xk+1 − r1a22yk+1 > 0.

Using mathematical induction, we can obtain the desired result.
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Remark 3. In C1, we have from Theorem 3 that if r1a22(a11− a21)− r2a11(a12− a22) ≥ 0
in (3), then the sequence (xk, yk) in IIu defined by (2) remains in IIu as follows:

(i) If (xk, yk) ∈ I ∪ III for some k, then there exists a positive integer l such that
(xk+l, yk+l) ∈ II.

(ii) If (xk, yk) ∈ II for some k, then (xk+i, yk+i) ∈ II for all i ≥ 1 and limk→∞(xk, yk) =
(0, r2a

−1
22 ) by Lemma 1-(iii) and Theorem 2-(i).

(iii) By (ii), if (xk, yk) ∈ II, then there exists a nonnegative integer l such that (xk+l, yk+l) ∈
IIu ∪ IId. If there exists m such that (xk+l+m, yk+l+m) ∈ IIu, then (xk+l+i, yk+l+i) ∈IIu

(i ≥ m) by Theorem 3. Otherwise, (xk+l+i, yk+l+i) ∈ IId for all i ≥ 1.

Also we have from Theorem 4 that if r1a22(a11 − a21)− r2a11(a12 − a22) ≤ 0 in (3), then
the sequence (xk, yk) in IId defined by (2) remains in IId.

In the case of C2, we divide the region IV into two parts IVu and IVd by the line
h(x, y) = 0 (see Figure 4).

IVu is the region with the three boundaries f(x, y) = 0, h(x, y) = 0 and x = 0.
IVd is the region with the three boundaries g(x, y) = 0, h(x, y) = 0 and y = 0.
In the following theorems, we have the result that if the solution (xn, yn) of (2) starts

at any part of IV, it remains in the same part.

Theorem 5. Let the conditions (4), (5), (8) and (25) hold. Let (xn, yn) be the solution
of (2) with r1a

−1
11 > r2a

−1
21 , r1a

−1
12 > r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) ≥ 0. (35)

If for some k
(xk, yk) ∈ IVu,

then for all i ≥ k
(xi, yi) ∈ IVu,

where IVu is the the region with the three boundaries

f(x, y) = 0, h(x, y) = 0 and x = 0.

Proof. Since xn > 0 and yn > 0 for all n in Theorem 1, f(x, y) = r1 − a11x − a12y and
h(x, y) = r1r2 − r2a11x− r1a22y, the inclusion (xk, yk) ∈ IVu is equivalent to

r1 − a11xk − a12yk > 0, r1r2 − r2a11xk − r1a22yk < 0.

Then it is enough to show that for all i ≥ k

r1 − a11xi − a12yi > 0, (36)

r1r2 − r2a11xi − r1a22yi < 0. (37)

Note that due to Lemma 1-(iv)

if (xk, yk) ∈ IV, then (xi, yi) ∈ IV for all i ≥ k. (38)

Since (xk, yk) ∈ IVu and IVu ⊂ IV, we have (xi, yi) ∈ IV for all i ≥ k due to (38), so that
the definition of IV yields the inequality (36).
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As in the proof of Theorem 3, we use the equality (14) in Lemma 2 with α2
k > 0 to

show the inequality (37). Applying both (25) and (35) into (14) with xi < r1a
−1
11 for all

i ≥ k obtained from (38), we have that

r1r2 − r2a11xk+1 − r1a22yk+1 < 0.

Using mathematical induction, we can obtain the desired result.

Theorem 6. Let the conditions (4), (5), (8) and (25) hold. Let (xn, yn) be the solution
of (2) with r1a

−1
11 > r2a

−1
21 , r1a

−1
12 > r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) ≤ 0. (39)

If for some k
(xk, yk) ∈ IVd,

then for all i ≥ k
(xi, yi) ∈ IVd,

where IVd is the the region with the three boundaries

g(x, y) = 0, h(x, y) = 0 and y = 0.

Proof. Since xn > 0 and yn > 0 for all n in Theorem 1, g(x, y) = r2 − a21x − a22y and
h(x, y) = r1r2 − r2a11x− r1a22y, the inclusion (xk, yk) ∈ IVd is equivalent to

r2 − a21xk − a22yk < 0, r1r2 − r2a11xk − r1a22yk > 0.

Then it is enough to show that for all i ≥ k

r1 − a11xi − a12yi < 0, (40)

r1r2 − r2a11xi − r1a22yi > 0. (41)

Since (xk, yk) ∈ IVd and IVd ⊂ IV, we have (xi, yi) ∈ IV for all i ≥ k due to (38), so that
the definition of IV yields the inequality (40).

As in the proof of Theorem 4, we use the equality (22) in Lemma 3 with α2
k > 0 to

show the inequality (41). Applying both (25) and (39) into (22) with xi < r1a
−1
11 for all

i ≥ k obtained from (38), we have that

r1r2 − r2a11xk+1 − r1a22yk+1 > 0.

Using mathematical induction, we can obtain the desired result.

Remark 4. We have similar results as Remark 3. In the case of C2, we have from Theorem
5 that if r1a22(a11 − a21)− r2a11(a12 − a22) ≥ 0 in (3), then the sequence (xk, yk) defined
by (2) remains in IVu as follows:

(i) If (xk, yk) ∈ I ∪ III for some k, then there exists l such that(xk+l, yk+l) ∈ IV.
(ii) If (xk, yk) ∈ IV for some k, then (xk+i, yk+i) ∈ IV for all i ≥ 1 and limk→∞(xk, yk) =

(r1a
−1
11 , 0) by Lemma 1-(iv) and Theorem 2-(ii).

(iii) By (ii), if (xk, yk) ∈ IV, then (xk, yk) ∈ IVu ∪ IVd. If there exists m such that
(xk+m, yk+m) ∈ IVu, then (xk+i, yk+i) ∈IVu (i ≥ m) by Theorem 5. Otherwise,
(xk+i, yk+i) ∈ IVd for all i ≥ 1.

As a similar way, we have from Theorem 6 that if r1a22(a11 − a21)− r2a11(a12 − a22) ≤ 0
in (3), then the sequence (xk, yk) in IVd defined by (2) remains in IVd.
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4. Numerical examples

In this section, we provide simulations that illustrate our results in Theorem 3-
Theorem 6 for the difference scheme (2) with ∆t = 0.001 and (x∗, y∗) = (r1a

−1
11 +50, r2a

−1
22 +

50). The values of parameters used in the following examples satisfy the conditions in
(4), (5), (8) and (25). From the following examples, we verify the result that the line
h(x, y) = r1r2− r2a11x− r1a22y = 0 is the asymptotic line of the solutions (xn, yn) of (2).

Example 1. Let (r1, a11, a12, r2, a21, a22) = (1, 0.5, 1, 4, 1, 2), which satisfies the three
conditions r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = 1 > 0

in Theorem 3. Then the solutions (xn, yn) of (2) converge to (0, r2a
−1
22 = 2) as displayed

in Figure 3-(a). The sequence of the solutions in IIu remains in IIu.

Example 2. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 1, 5, 4, 2), which satisfies the condi-
tions r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = −1 < 0

in Theorem 4. Then the solutions (xn, yn) of (2) converge to (0, r2a
−1
22 = 2.5) as displayed

in Figure 3-(b). The sequence of the solutions in IId remains in IId.

Figure 3: Trajectories for different initial points in the regions I, II, III in the category C1 with (a)
r1 = 1, a11 = 0.5, a12 = 1, r2 = 4, a21 = 1, a22 = 2. (b) r1 = 1, a11 = 1, a12 = 1, r2 = 5, a21 = 4, a22 = 2.
The box and circle symbols denote initial and equilibrium points, respectively. The green line segment is
x = r1a

−1
11 in the region II.

Example 3. Let (r1, a11, a12, r2, a21, a22) = (3, 1, 1.5, 1, 0.5, 1), which satisfies the three
conditions r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = 1 > 0

in Theorem 5. Then the solutions (xn, yn) of (2) converge to (r1a
−1
11 = 3, 0) as displayed

in Figure 4-(a). The sequence of the solutions in IVu remains in IVu.
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Example 4. Let (r1, a11, a12, r2, a21, a22) = (4, 1, 2, 1, 1, 1), which satisfies the condi-
tions r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = −1 < 0

in Theorem 6. Then the solutions (xn, yn) of (2) converge to (r1a
−1
11 = 4, 0) as displayed

in Figure 4-(b). The sequence of the solutions in IVd remains in IVd.

Figure 4: Trajectories for different initial points in the regions I, III, IV in the category C2 with (a)
r1 = 3, a11 = 1, a12 = 1.5, r2 = 1, a21 = 0.5, a22 = 1, (b) r1 = 4, a11 = 1, a12 = 2, r2 = 1, a21 = 1, a22 = 1.
The box and circle symbols denote initial and equilibrium points, respectively.

Example 5. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 1, 2.5, 1, 1), which satisfies the three
conditions r1a

−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = 0

in Theorem 3 and Theorem 4. Then the solutions (xn, yn) of (2) converge to (0, r2a
−1
22 =

2.5) as displayed in Figure 5-(a). For the trajectory of the solutions from III to II, if
(xk, yk) in IIu, then (xk+i, yk+i) ∈ for all i ≥ 0 remains in IIu. Also for the trajectory of
the solutions (xk, yk) from I to II, if (xk, yk) in IId, then (xk+i, yk+i) ∈ for all i ≥ 0 remains
in IId. Therefore the line h(x, y) = 0 is the asymptotic line of the solutions.

Example 6. Let (r1, a11, a12, r2, a21, a22) = (2.5, 1, 1, 1, 1, 1), which satisfies the condi-
tions r1a

−1
11 > r2a

−1
21 , r1a

−1
12 > r2a

−1
22 and

r1a22(a11 − a21)− r2a11(a12 − a22) = 0

in Theorem 5 and Theorem 6. Then the solutions (xn, yn) of (2) converge to (r1a
−1
11 =

2.5, 0) as displayed in Figure 5-(b). For the trajectory of the solutions from III to IV,
the sequence of the solutions in IVu does not cross the line h(x, y) = 0, which is the
asymptotic line of the solutions. Also for the trajectory of the solutions (xn, yn) from I to
IV, the sequence of the solutions in IVd remains in IVd.
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Figure 5: (a) Trajectories for different initial points in the regions I, II, III with r1 = 1, a11 = 1, a12 =
1, r2 = 2.5, a21 = 1, a22 = 1 in the category C1. The green line segment is x = r1a

−1
11 in the region II.

(b) Trajectories for different initial points in the regions I, III, IV with r1 = 2.5, a11 = 1, a12 = 1, r2 =
1, a21 = 1, a22 = 1 in the category C2. The box and circle symbols denote initial and equilibrium points,
respectively.

5. Conclusions

In this paper, we have found sufficient conditions under which the line h(x, y) = 0
between the two equilibrium points of the scheme (2) is the asymptotic line of the solutions
of the scheme in C1 and C2, respectively. In these conditions, the line h(x, y) = 0 plays
a role as the boundary dividing the convergence region surrounded by the four lines
f(x, y) = 0, g(x, y) = 0, x = 0 and y = 0, and the sequence of the solutions of (2) starting
in the partitioned regions of the domain does not cross the line h(x, y) = 0. Some
numerical examples are presented to verify our results. We have obtained the results in
the two categories C1 and C2, but the methods used in this paper can be applied to find
the asymptotic lines of the solutions of (2) in the other categories C3 and C4, which will
be shown in the future work.
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