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Abstract

This paper studies the stability of a mathematical model for within-host Chikungunya virus (CHIKV)

infection. The model incorporates (i) two types of infected monocytes, latently infected monocytes which do

not generate CHIKV until they have been activated and actively infected monocytes, (ii) antibody immune

response, and (iii) saturated incidence rate. We derive a biological threshold number R0. Using the method

of Lyapunov function, we established the global stability of the steady states of the model. We have proven

that, when R0 ≤ 1, then Q0 is globally asymptotically stable and when R0 > 1, the endemic equilibrium

Q1 is globally asymptotically stable. The theoretical results have been supported by numerical simulations.

Keywords: Chikungunya virus infection; Latency; Lyapunov function; Global stability.

1 Introduction

In recent past, many mathematicians have been presented and developed mathematical models in order to

describe the interaction between viruses (such as HIV, HCV, HBV, HTLV and Chikungunya virus) and human

cells (see e.g. [1]-[22]) Mathematical models of human viruses can lead to develop antiviral drugs and to

understand the virus-host interaction. Moreover it can help to predict the disease progression. Studying the

stability analysis of the models is also important to understand the behavior of the virus.

Chikungunya virus (CHIKV) is an alphavirus and is transmitted to humans by Aedes aegypti and Aedes

albopictus mosquitos. In the CHIKV literature, most of the mathematical models have been presented to

describe the disease transmission in mosquito and human populations (see e.g. [23]-[30]). However, only few

works have devoted for mathematical modeling of the dynamics of the CHIKV within host. In 2017, Wang and

Liu [22] have presented a mathematical model for in host CHIKV infection model as:

Ṡ = µ− dS − bSV, (1)

İ = bSV − εI, (2)

V̇ = mI − rV − qBV, (3)

Ḃ = η + cBV − δB, (4)

where S, I, V , and B are the concentrations of uninfected monocytes, infected monocytes, CHIKV particles and

B cells, respectively. Parameters d and µ represent the death rate and birth rate constants of the uninfected

monocytes, respectively. The uninfected monocytes become infected at rate bSV , where b is rate constant

of the CHIKV-target incidence. The infected monocytes and free CHIKV particles die are rates εI and rV ,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC
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respectively. An actively infected monocytes produces an average number m of CHIKV particles. The CHIKV

particles are attacked by the B cells at rate qV B. The B cells are produced at constant rate η, proliferated at

rate cBV and die at rate δB.

In system (1)-(4) it is assumed that when the CHIKV contacts the uninfected monocytes it becomes infected

and viral producer in the same time. However, this is unrealistic assumption. Therefore our objective in the

present paper is to incorporate such delay by adding latently infected monocytes as another compartment to

model (1)-(4). Moreover, we replace the bilinear incidence by saturated incidence which is suitable to model the

nonlinear dynamics of the CHIKV especially when its concentration is high. We investigate the nonnegativity

and boundedness of the solutions of the CHIKV dynamics model. We show that the CHIKV dynamics is

governed by one bifurcation parameter (the basic reproduction numbers R0).We use Lyapunov direct method

to establish the global stability of the model’s steady states.

2 The CHIKV dynamics model

We cosider the following within-host CHIKV dynamics model with latently infected monocytes and saturated

incidence rate:

Ṡ = µ− dS − bSV

1 + πV
, (5)

L̇ = (1− p) bSV

1 + πV
− (θ + λ)L, (6)

İ = p
bSV

1 + πV
+ λL− εI, (7)

V̇ = mI − rV − qBV, (8)

Ḃ = η + cBV − δB, (9)

where L is the concentration of latently infected monocytes, while I is the concentration of the actively infected

monocytes. A fraction (1 − p) of infected monocytes is assumed to be latently infected monocytes and the

remaining p becomes actively infected monocytes, where 0 < p < 1. The latently infected monocytes are

transmitted to actively infected monocytes at rate λL and die at rate θL.

3 Properties of solutions

The nonnegativity and boundedness of the solutions of model (5)-(9) are established in the following lemma:

Lemma 1.

There exist M1,M2,M3 > 0, such that the following compact set is positively invariant for system (5)-(9)

Φ = {(S,L, I, V,B) ∈ R5
≥0 : 0 ≤ S,L, I ≤M1, 0 ≤ V ≤M2, 0 ≤ B ≤M3}

Proof. Since

Ṡ
∣∣∣
S=0

= µ > 0, L̇
∣∣∣
L=0

= (1− p) bSV

1 + πV
≥ 0 for all S, V ≥ 0,

İ
∣∣∣
I=0

= p
bSV

1 + πV
+ λL ≥ 0 for all S, V.L ≥ 0, V̇

∣∣∣
V=0

= mI ≥ 0 for all I ≥ 0,

Ḃ
∣∣∣
B=0

= η > 0.

Then, R5
≥0 = {(x1, x2, ..., x5, ) ∈ R, xi ≥ 0, i = 1, 2, ..., 5} is positively invariant for system (5)-(9).
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We consider

T1(t) = S(t) + L(t) + I(t),

T2(t) = V (t) +
q

c
B(t), (10)

then from Eqs. (5)-(9) we get

Ṫ1(t) = µ− dS − θL− εI ≤ µ− σ1T1

where σ1 = min{d, θ, ε}. Hence T1(t) ≤ M1, if T1(0) ≤ M1, where M1 = µ
σ1
. The non-negativity of S(t), L(t)

and I(t) implies that 0 ≤ S(t), L(t), I(t) ≤M1 if 0 ≤ S(0) + L(0) + I(0) ≤M1. Moreover, we have

Ṫ2(t) = mI − rV +
q

c
η − δq

c
B ≤ mM1 +

q

c
η − σ2(V +

q

c
B) = mM1 +

q

c
η − σ2T2,

where σ2 = min{r, δ}. Hence T2(t) ≤M2, if T2(0) ≤M2, where M2 =
mM1+

q
c η

σ2
. We have V (t) ≥ 0 and B(t) ≥ 0,

therefore, 0 ≤ V (t) ≤M2 and 0 ≤ B(t) ≤M3 if 0 ≤ V (0) + q
cB(0) ≤M2, where M3 = cM2

q .�

3.1 Steady States

System (5)-(9) always admits a virus-free steady state Q0 = (S0, L0, I0, V0, B0) = (µd , 0, 0, 0,
η
δ ). To calculate the

other steady states we let the R.H.S of system (5)-(9) be equal zero

0 = µ− dS − bSV

1 + πV
, (11)

0 = (1− p) bSV

1 + πV
− (θ + λ)L, (12)

0 =
pbSV

1 + πV
+ λL− εI, (13)

0 = mI − rV − qV B, (14)

0 = η + cBV − δB. (15)

From Eq. (11)-(15) we obtain

S =
µ (1 + πV )

bV + d (1 + πV )
, L =

(1− p)bSV
(1 + πV ) (θ + λ)

, I =
bSV (λ+ θp)

ε (1 + πV ) (θ + λ)
, B =

η

δ − cV
. (16)

Substituting Eq. (16) into Eq. (14) we have[
mpbµ

ε(bV + d (1 + πV ))
+

mλ(1− p)bµ
ε(bV + d (1 + πV )) (θ + λ)

− r − qη

δ − cV

]
V = 0.

If V 6= 0, then

P1V
2 − P2V + P3 = 0,

where

P1 = rεc(θ + λ)(b+ πd),

P2 = −εrcd(θ + λ) +mbµc(λ+ θp) + (rεδ) (θ + λ)(b+ πd) + (qεη)(θ + λ)(b+ πd),

P3 = mbµδ(λ+ θp)− εd (rδ + qη) (θ + λ).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

779 Elaiw ET AL 777-790



P1, P2 and P3 can be re-written as:

P1 = (rεc) (θ + λ)(b+ πd),

P2 =
εcd (rδ + qη) (θ + λ)

δ
(R0 − 1) + (rεδ) (θ + λ)(b+ πd) + (qεη)(θ + λ)(b+ πd)

+
cd (qεη) (θ + λ)

δ
,

P3 = εd (rδ + qη) (θ + λ)(R0 − 1),

where

R0 =
bmδµ(λ+ θp)

εd(rδ + qη)(θ + λ)
.

Let

F (V ) = P1V
2 − P2V + P3 = 0. (17)

If R0 > 1, then we have

F (0) = εd (rδ + qη) (θ + λ)(R0 − 1) > 0,

F

(
δ

c

)
= −(qεη)(θ + λ)

(
(b+ πd)δ

c
+ d

)
< 0,

F ′(0) =
εcd (rδ + qη) (θ + λ)

δ
(1−R0)− (rεδ) (θ + λ)(b+ πd)− (qεη)(θ + λ)(b+ πd)−

(
cd (qεη) (θ + λ)

δ

)
< 0.

Then, Eq. (17) has two positive roots

V1 =
P2 −

√
P 2
2 − 4P1P3

2P1
<
δ

c
and V2 =

P2 +
√
P 2
2 − 4P1P3

2P1
>
δ

c
.

If V = V2, then from Eq. (16) we get B2 = η
δ−cV2

< 0. Thus, if R0 > 1, then system (5)-(9) has a unique

endemic steady state Q1 = (S1, L1, I1, V1, B1), where

S1 =
µ (1 + πV1)

bV1 + d (1 + πV1)
, L1 =

(1− p)bµV1
(θ + λ)(bV1 + d (1 + πV1))

, I1 =
(λ+ θp)bµV1

ε(θ + λ)(bV1 + d (1 + πV1))
,

V1 =
P2 −

√
P 2
2 − 4P1P3

2P1
, B1 =

η

δ − cV1
.

Therefore, R0 represents the basic reproduction number of system (5)-(9).

Clearly Q0 ∈ Φ. From Eqs. (11)-(13) we have

dS1 + θL1 + εI1 = µ.

⇒ S1 <
µ

d
≤M1, L1 <

µ

θ
≤M1, I1 <

µ

ε
≤M1.

Moreover, from Eqs. (14)-(15) we have

mI1 − rV1 − qV1B1 +
q

c
(η + cB1V1 − δB1) = 0

⇒ rV1 +
δq

c
B1 = mI1 +

q

c
η < mM1 +

q

c
η

⇒ V1 <
mM1 + q

cη

r
≤M2, B1 <

c

q

mM1 + q
cη

δ
≤ cM2

q
= M3.

It follows that Q1 ∈ Φ̊, where Φ̊ is the interior of the set Φ.
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3.2 Global stability

In the following theorems we establish the global stability of the two steady states of system (5)-(9) by con-

structing suitable Lyapunov functions. Let us define

H(x) = x− lnx− 1.

Clearly, H(x) ≥ 0 for x > 0 and H(1) = 0.

Theorem 1. Suppose that R0 ≤ 1, then Q0 is globally asymptotically stable (GAS) in Φ.

Proof. Construct a Lyapunov function W0 as:

W0(S,L, I, V,B) = S0H

(
S

S0

)
+

λ

λ+ θp
L+

θ + λ

λ+ θp
I +

ε(θ + λ)

m(λ+ θp)
V +

εq(θ + λ)

mc(λ+ θp)
B0H

(
B

B0

)
. (18)

Note that, W0(S,L, I, V,B) > 0 for all S,L, I, V,B > 0 and W0(S0, 0, 0, 0, B0) = 0. Calculating
dW0

dt
along the

trajectories of (5)-(9) we get

dW0

dt
=

(
1− S0

S

)(
µ− dS − bSV

1 + πV

)
+

λ

λ+ θp

(
(1− p) bSV

1 + πV
− (θ + λ)L

)
+

θ + λ

λ+ θp

(
pbSV

1 + πV
+ λL− εI

)
+

ε(θ + λ)

m(λ+ θp)
(mI − rV − qV B)

+
εq(θ + λ)

mc(λ+ θp)

(
1− B0

B

)
(η + cBV − δB)

= −d (S − S0)2

S
+

bS0V

1 + πV
− ε(θ + λ)rV

m(λ+ θp)
− ε(θ + λ)qB0V

m(λ+ θp)
+

εq(θ + λ)

mc(λ+ θp)

(
1− B0

B

)
(δB0 − δB)

= −d (S − S0)2

S
− εq(θ + λ)δ

mc(λ+ θp)

(B −B0)2

B
+
ε(rδ + qη)(θ + λ)

mδ(λ+ θp)

(
bmδµ(λ+ θp)

εd(rδ + qη)(θ + λ)(1 + πV )
− 1

)
V

= −d (S − S0)2

S
− εq(θ + λ)δ

mc(λ+ θp)

(B −B0)2

B
− (rεδ + qεη)(θ + λ)R0πV

2

mδ(λ+ θp)(1 + πV )
+
ε(rδ + qη)(θ + λ)

mδ(λ+ θp)
(R0 − 1)V.

(19)

Therefore,
dW0

dt
≤ 0 holds ifR0 ≤ 1. Furthermore,

dW0

dt
= 0 if and only if S = S0, B = B0, V = 0. The solutions

of system (5)-(9) converge to Γ, the largest invariant set of {(S,L, I, V,B) :
dW0

dt
= 0}. For any element in Γ

satisfies V (t) = V̇ (t) = 0. Then from Eq. (8) we have I(t) = 0, and from Eq. (7) we get L(t) = 0. By the

LaSalle’s invariance principle, Q0 is GAS. �

Theorem 2. Suppose that R0 > 1, then Q1 is GAS in Φ̊.

Proof. Construct a Lyapunov function

W1(S,L, I, V,B) = S1H

(
S

S1

)
+

λ

λ+ θp
L1H

(
L

L1

)
+

θ + λ

λ+ θp
I1H

(
I

I1

)
+

ε(θ + λ)

m(λ+ θp)
V1H

(
V

V1

)
+

εq(θ + λ)

mc(λ+ θp)
B1H

(
B

B1

)
.

We have W1(S,L, I, V,B) > 0 for all S,L, I, V,B > 0 and W1(S1, L1, I1, V1, B1) = 0. Calculating
dW1

dt
along

the trajectories of (5)-(9) we get

dW1

dt
=

(
1− S1

S

)(
µ− dS − bSV

1 + πV

)
+

λ

λ+ θp

(
1− L1

L

)(
(1− p) bSV

1 + πV
− (θ + λ)L

)
+

θ + λ

λ+ θp

(
1− I1

I

)(
pbSV

1 + πV
+ λL− εI

)
+

ε(θ + λ)

m(λ+ θp)

(
1− V1

V

)
(mI − rV − qV B)

+
εq(θ + λ)

mc(λ+ θp)

(
1− B1

B

)
(η + cBV − δB) . (20)
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Applying

µ = dS1 +
bS1V1

1 + πV1
, η = δB1 − cB1V1,

we obtain

dW1

dt
=

(
1− S1

S

)
(dS1 − dS) +

bS1V1
1 + πV1

(
1− S1

S

)
+

bS1V

1 + πV
− λ(1− p)bSV L1

(λ+ θp)(1 + πV )L

+
λ(θ + λ)L1

(λ+ θp)
− (θ + λ)pbSV I1

(λ+ θp)(1 + πV )I
− λ(θ + λ)LI1

(λ+ θp)I
+
ε(θ + λ)I1
(λ+ θp)

− ε(θ + λ)IV1
(λ+ θp)V

− rε(θ + λ)V

m(λ+ θp)
+
rε(θ + λ)V1
m(λ+ θp)

+
εq(θ + λ)BV1
m(λ+ θp)

+
εq(θ + λ)

mc(λ+ θp)

(
1− B1

B

)
(δB1 − δB)

− εq(θ + λ)B1V

m(λ+ θp)
− εq(θ + λ)B1V1

m(λ+ θp)
+
εq(θ + λ)B1V1
m(λ+ θp)

(
B1

B

)
.

Using the steady state conditions for Q1:

(1− p) bS1V1
1 + πV1

= (θ + λ)L1,
pbS1V1
1 + πV1

+ λL1 = εI1, mI1 = rV1 + qB1V1,

we get

ε(θ + λ)I1
(λ+ θp)

=
bS1V1

1 + πV1
=
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

+
(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

,

rε(θ + λ)V1
m(λ+ θp)

=
bS1V1

1 + πV1
− εq(θ + λ)B1V1

m(λ+ θp)
.

and

dW1

dt
= −d (S − S1)2

S
+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

(
1− S1

S

)
+

(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

(
1− S1

S

)
+

bS1V1
1 + πV1

(
(1 + πV1)V

(1 + πV )V1
− V

V1

)
− λ(1− p)

(λ+ θp)

bS1V1
1 + πV1

SV L1(1 + πV1)

S1V1L(1 + πV )

+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

− (θ + λ)

(λ+ θp)

pbS1V1
1 + πV1

SV I1(1 + πV1)

S1V1I(1 + πV )
− λ(1− p)

(λ+ θp)

bS1V1
1 + πV1

I1L

L1I

+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

+
(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

− λ(1− p)
(λ+ θp)

bS1V1
1 + πV1

IV1
I1V

− (θ + λ)

(λ+ θp)

pbS1V1
1 + πV1

IV1
I1V

+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

+
(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

− 2εq(θ + λ)B1V1
m(λ+ θp)

+
εq(θ + λ)BV1
m(λ+ θp)

+
εq(θ + λ)B1V1
m(λ+ θp)

(
B1

B

)
− εq(θ + λ)δ

mc(λ+ θp)

(B −B1)2

B
. (21)

Eq. Eq.(21) can be simplified as

dW1

dt
= −d (S − S1)2

S
+

bS1V1
1 + πV1

(
−1 +

(1 + πV1)V

(1 + πV )V1
− V

V1
+

1 + πV

1 + πV1

)
+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

[
5− S1

S
− (1 + πV1)SV L1

(1 + πV )S1V1L
− I1L

L1I
− IV1
I1V

− 1 + πV

1 + πV1

]
+

(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

[
4− S1

S
− (1 + πV1)SV I1

(1 + πV )S1V1I
− IV1
I1V

− 1 + πV

1 + πV1

]
− εq(θ + λ)δ

mc(λ+ θp)

(B −B1)2

B
− εq(θ + λ)B1V1

m(λ+ θp)

[
2− B

B1
− B1

B

]
,
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and then

dW1

dt
= −d (S − S1)2

S
− πbS1(V − V1)2

(1 + πV )(1 + πV1)2
− εq(θ + λ)η

mc(λ+ θp)B1

(B −B1)2

B

+
λ(1− p)
(λ+ θp)

bS1V1
(1 + πV1)

[
5− S1

S
− (1 + πV1)SV L1

(1 + πV )S1V1L
− LI1
L1I
− IV1
I1V

− 1 + πV

1 + πV1

]
+

(θ + λ)

(λ+ θp)

pbS1V1
(1 + πV1)

[
4− S1

S
− (1 + πV1)SV I1

(1 + πV )S1V1I
− IV1
I1V

− 1 + πV

1 + πV1

]
. (22)

The relation between the geometrical mean and the arithmetical mean implies that

5 ≤ S1

S
+

(1 + πV1)SV L1

(1 + πV )S1V1L
+
LI1
L1I

+
IV1
I1V

+
1 + πV

1 + πV1
,

4 ≤ S1

S
+

(1 + πV1)SV I1
(1 + πV )S1V1I

+
IV1
I1V

+
1 + πV

1 + πV1
.

Then
dW1

dt
≤ 0 and

dW1

dt
= 0 if and only if S = S1, L = L1, I = I1, V = V1 and B = B1. It follows from

LaSalle’s invariance principle, Q1 is GAS in Φ̊. �

4 Numerical simulations

In order to illustrate our theoretical results, we perform numerical simulations for system (5)-(9) with parameters

values given in Table 1. In the figures we show the evolution of the five states of the system S, L, I, V and B.

We have used MATLAB for all computations.

• Effect of b on the stability of steady states: To show the global stability results we consider three

different initial conditions as:

IC1: S(0) = 2.0, L(0) = 0.2, I(0) = 0.4, V (0) = 0.4 and B(0) = 1.0,

IC2: S(0) = 1.7, L(0) = 0.4, I(0) = 0.6, V (0) = 0.6 and B(0) = 1.6,

IC3: S(0) = 1.4, L(0) = 0.6, I(0) = 0.8, V (0) = 0.8 and B(0) = 2.4.

We fix the value p = 0.5 and consider two sets of the values of parameter b as follows:

Set (I): We choose b = 0.1. Using these data, we compute R0 = 0.5469 < 1, then the system has one steady

state Q0. From Figures 1-5 we can see that, the concentrations of the uninfected monocytes and B cells return

to their values S0 = µ
d = 2.2885 and B0 = η

δ = 1.1207, respectively. On the other hand, the concentrations of

latently infected monocytes, actively infected monocytes and CHIKV particles are decaying and approaching

zero for all the three initial conditions IC1-IC3. It means that, Q0 is GAS and the CHIKV will be removed.

This result support the result of Theorem 1.

Set (II): We take b = 0.5. Then, we calculate R0 = 2.7347 > 1. Then the system has two positive steady

states Q0 and Q1. It is clear from Figures 1-5 that, both the numerical results and the theoretical results

given in Theorem 2 are consistent. It is seen that, the solutions of the system converge to the steady state

Q1 = (1.67881, 0.405396, 0.638994, 0.6152, 2.77721) for all the three initial conditions IC1-IC3.
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Table 1: The value of the parameters of model (5)-(9).

Parameter Value Parameter Parameter

µ 1.826 m 2.02

π varied q 0.5964

c 1.2129 r 0.4418

d 0.79791 η 1.402

θ 0.5 δ 1.251

λ 0.1 b varied

ε 0.4441 p varied
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Figure 1: The Evolution of uninfected monocytes.

• Effect of the saturation infection on the CHIKV dynamics

In this case, we fix the values p = 0.5 and b = 0.5. We note that, the value of R0 does not depend on the

value of the saturation parameter π. This means that, saturation can play a significant role in reducing the

infection progress but do not play a role in clearing the CHIKV from the body. The simulation were performed

using the initial condition IC2. Figures 6-10 show the effect of saturation infection. We observe that, as π is

increased, the incidence rate of infection is decreased, and then the concentration of the uninfected monocytes

are increased, while the concentrations of latently infected monocytes, actively infected monocytes, free CHIKV

particles and B cells are decreased.

• Effect of p on the basic reproduction number:

In this case we take π = 0.1 and b = 0.3. From Figure 11, we can observed that as p is increased then R0 is

increased. Let pcr be the critical value of the parameter p, such that

R0 =
bmδµ(θpcr + λ)

εd(rδ + qη)(θ + λ)
= 1.

Using the data given in Table 1 we obtain pcr = 0.226612, and we get the following:

(i) 0 < p ≤ 0.226612.Then the trajectory of the system will converge to Q0 and this will suppress the

CHIKV replication and clear the CHIKV from the body.
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Figure 2: The Evolution of latently infected monocytes.
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Figure 3: The Evolution of actively infected monocytes.
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Figure 4: The Evolution of free CHIKV particles.
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Figure 5: The Evolution of B cells.
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Figure 6: The concentration of uninfected monocytes.
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Figure 7: The concentration of latently infected monocytes.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

786 Elaiw ET AL 777-790



0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

A
ct

iv
el

y 
in

fe
ct

ed
 m

on
oc

yt
es

π=0.0

π=0.5

π=1.0

π=2.0

π=5.0

Figure 8: The concentration of actively infected monocytes.
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Figure 9: The concentration of free CHIKV particles.
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(ii) 0.226612 < p < 1. Then the trajectory will converge to Q1 and then the infection will be chronic. It

means that, the factor 1− p plays the role of a controller which can be applied to stabilize the system around

Q0. From a biological point of view, the factor 1− p plays a similar role as the drug dose of antiviral treatment

which can be used to eliminate the CHIKV. We observe that, sufficiently small p will suppress the CHIKV

replication and clear the CHIKV. This gives us some suggestions on new drugs to decrease the fraction p.
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Quotient B-algebras induced by an int-soft normal subalgebra
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Abstract. The notions of an intersectional soft subalgebra and an intersectional soft normal subalgebra of a

B-algebra are introduced, and related properties are investigated. A quotient structure of a B-algebra using an

intersectional soft normal subalgebra is constructed. The fundamental homomorphism of a quotient B-algebra is

established.

1. Introduction

Molodtsov [11] introduced the concept of soft set as a new mathematical tool for dealing with

uncertainties that is free from the difficulties that have troubled the usual theoretical approaches.

Molodtsov pointed out several directions for the applications of soft sets. Worldwide, there has

been a rapid growth in interest in soft set theory and its applications in recent years. Evidence

of this can be found in the increasing number of high-quality articles on soft sets and related

topics that have been published in a variety of international journals, symposia, workshops, and

international conferences in recent years. Maji et al. [10] described the application of soft set

theory to a decision making problem. Jun [5] discussed the union soft sets with applications

in BCK/BCI-algebras. We refer the reader to the papers [3, 4, 14] for further information

regarding algebraic structures/properties of soft set theory. On the while, Y. B. Jun, E. H. Roh

and H. S. Kim [6] introduced a new notion, called a BH-algebra. J. Neggers and H. S. Kim [12]

introduced a new notion, called a B-algebra. C. B. Kim and H. S. Kim [8] introduced the notion

of a BG-algebra which is a generalization of B-algebras. S. S. Ahn and H. D. Lee [1] classified

the subalgebras by their family of level subalgebras in BG-algebras.

In this paper, we discuss applications of the an intersectional soft set in a (normal) subalgebra of

a B-algebra. We introduce the notion of an intersectional (normal) soft subalgebra of a B-algebra,

and investigated related properties. We consider a new construction of a quotient B-algebra

induced by an int-soft normal subalgebra. Also we establish the fundamental homomorphism of

a quotient B-algebra.

2. Preliminaries
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0Keywords: γ-inclusive set, int-soft (normal) subalgebra, B-algebra.
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A B-algebra ([12]) is a non-empty set X with a constant 0 and a binary operation “∗” satisfying
axioms:

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))
for any x, y, z in X. For brevity we call X a B-algebra. In X we can define a binary relation

“ ≤ ” by x ≤ y if and only if x ∗ y = 0.

An algebra (X; ∗, 0) of type (2, 0) is called a BH-algebra if it satisfies (B1), (B2) and

(BH) x ∗ y = y ∗ x = 0 imply x = y for any x, y ∈ X.

An algebra (X; ∗, 0) of type (2, 0) is called a BG-algebra if it satisfies (B1), (B2) and

(BG) (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ X.

Proposition 2.1.([2, 12]) Let (X; ∗, 0) be a B-algebra. Then

(i) the left cancellation law holds in X, i.e., x ∗ y = x ∗ z implies y = z,

(ii) if x ∗ y = 0, then x = y for any x, y ∈ X,

(iii) if 0 ∗ x = 0 ∗ y, then x = y for any x, y ∈ X,

(iv) 0 ∗ (0 ∗ x) = x, for all x ∈ X,

(v) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y for all x, y, z ∈ X.

Theorem 2.2.([8]) If (X; ∗, 0) is a B-algebra, then it is a BG-algebra.

Proposition 2.3.([8]) Every BG-algebra is a BH-algebra.

Let (X; ∗X , 0X) and (Y ; ∗Y , 0Y ) be B-algebras. A mapping φ : X → Y is called a homomor-

phism if φ(x ∗X y) = φ(x) ∗Y φ(y) for any x, y ∈ X. A homomorphism φ : X → Y is called an

isomorphism if φ is a bijection, and denote it by X ∼= Y . Let φ : X → Y be a homomorphism.

Then the subset {x ∈ X|φ(x) = 0Y } of X is called the kernel of the homomorphism φ, and

denote it by Ker φ. A non-empty subset S of X is called a subalgebra of X if x ∗ y ∈ S for any

x, y ∈ X.

A non-empty subset N of X is said to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y, a ∗ b ∈ N .

Then any normal subset N of a B-algebra X is a subalgebra of X, but the converse need not be

true ([13]). A non-empty subset X of a B-algebra X is a called a normal subalgebra of X if it is

both a subalgebra and normal.

Let X be a B-algebra and let N be a normal subalgebra of X. Define a relation ∼N on X

by x ∼N y if and only if x ∗ y ∈ N , where x, y ∈ X. Then it is a congruence relation on X

([13]). Denote the equivalence class containing x by [x]N , i.e., [x]N := {y ∈ X|x ∼N y} and let

X/N := {[x]N |x ∈ X}.
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Theorem 2.4.([13]) Let N be a normal subalgebra of a B-algebra X. Then X/N is a B-algebra.

The B-algebra X/N is discussed in Theorem 2.4 is called the quotient B-algebra of X by N .

Theorem 2.5.([13]) Let N be a normal subalgebra of a B-algebra X. Then the mapping γ :

X → X/N given by γ(x) := [x]N is a surjective homomorphism, and Kerγ = N .

Theorem 2.6.([13]) Let φ : X → Y be a homomorphism of B-algebras. Then Kerφ is a normal

subalgebra of X.

Theorem 2.7.([13]) Let φ : X → Y be a homomorphism of B-algebras. Then X/Kerφ ∼= Imφ.

In particular, if φ is surjective, then X/Kerφ ∼= Y .

Molodtsov [12] defined the soft set in the following way: Let U be an initial universe set and

let E be a set of parameters. We say that the pair (U,E) is a soft universe. Let P(U) denotes

the power set of U and A,B,C, · · · ⊆ E.

A fair (f̃ , A) is called a soft set over U , where f̃ is a mapping given by f̃ : X → P(U). In

other words, a soft set over U is parameterized family of subsets of the universe U . For ε ∈ A,

f̃(ε) may be considered as the set of ε-approximate elements of the set (f̃ , A). A soft set over U

can be represented by the set of ordered pairs:

(f̃ , A) = {(x, f̃(x))|x ∈ A, f̃(x) ∈ P(U)},

where f̃ : X → P(U) such that f̃(x) = ∅ if x /∈ A. Clearly, a soft set is not a set.

For a soft set (f̃ , A) of X and a subset γ of U , the γ-inclusive set of (f̃ , A), defined to be the

set

iA(f̃ ; γ) := {x ∈ A|γ ⊆ f̃(x)}.

3. Int-soft subalgebra

In what follows let X denote a B-algebra X unless otherwise specified.

Definition 3.1. A soft set (f̃ , X) over U is called an intersectional soft subalgebra (briefly,

int-soft subalgebra) of a B-algebra X if it satisfies:

(3.1) f̃(x) ∩ f̃(y) ⊆ f̃(x ∗ y) for all x, y ∈ X.

Proposition 3.2. Every int-soft subalgebra (f̃ , X) of a B-algebra X satisfies the following

inclusion:

(3.2) f̃(x) ⊆ f̃(0) for all x ∈ X.

Proof. Using (3.1) and (B1), we have f̃(x) = f̃(x) ∩ f̃(x) ⊆ f̃(x ∗ x) = f̃(0) for all x ∈ X. □
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Example 3.3. Let (U = Z, X) where X = {0, 1, 2, 3} is a B-algebra ([9]) with the following

table:
∗ 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Let (f̃ , X) be a soft set over U defined as follows:

f̃ : X → P(U), x 7→


Z if x = 0,

3Z if x = 3,

9Z if x ∈ {1, 2}.

It is easy to check that (f̃ , X) is an int-soft subalgebra over U .

Theorem 3.4. A soft set (f̃ , X) of a B-algebra X over U is an int-soft subalgebra of X over U if

and only if the γ-inclusive set iX(f̃ ; γ) is a subalgebra of X for all γ ∈ P(U) with iX(f̃ ; γ) ̸= ∅.

Proof. Assume that (f̃ , X) is an int-soft subalgebra over U . Let x, y ∈ X and γ ∈ P(U) be such

that x, y ∈ iX(f̃ ; γ). Then γ ⊆ f̃(x) and γ ⊆ f̃(y). It follows from (3.1) that γ ⊆ f̃(x) ∩ f̃(y) ⊆
f̃(x ∗ y) Hence x ∗ y ∈ iX(f̃ ; γ). Thus iX(f̃ ; γ) is a subalgebra of X.

Conversely, suppose that iX(f̃ ; γ) is a subalgebra X for all γ ∈ P(U) with iX(; γ) ̸= ∅. Let
x, y ∈ X, be such that f̃(x) = γx and f̃(y) = γy. Take γ = γx ∩ γy. Then x, y ∈ iX(f̃ ; γ) and so

x ∗ y ∈ iX(f̃ ; γ) by assumption. Hence f̃(x) ∩ f̃(y) = γx ∩ γy = γ ⊆ f̃(x ∗ y). Thus (f̃ , X) is an

int-soft subalgebra over U . □

Theorem 3.5. Every subalgebra of a B-algebra can be represented as a γ-inclusive set of an

int-soft subalgebra.

Proof. Let A be a subalgebra of a B-algebra X. For a subset γ of U , define a soft set (f̃ , X) over

U by

f̃ : X → P(U), x 7→
{
γ if x ∈ A,

∅ if x /∈ A.

Obviously, A = iX(f̃ ; γ). We now prove that (f̃ ; γ) is an int-soft subalgebra over U . Let x, y ∈ X.

If x, y ∈ A, then x ∗ y ∈ A because A is a subalgebra of X. Hence f̃(x) = f̃(y) = f̃(x ∗ y) = γ,

and so f̃(x)∩ f̃(y) ⊆ f̃(x ∗ y). If x ∈ A and y /∈ A, then f̃(x) = γ and f̃(y) = ∅ which imply that

f̃(x) ∩ f̃(y) = γ ∩ ∅ = ∅ ⊆ f̃(x ∗ y). Similarly, if x /∈ A and y ∈ A, then f̃(x) ∩ f̃(y) ⊆ f̃(x ∗ y).
Obviously, if x /∈ A and y /∈ A, then f̃(x) ∩ f̃(y) ⊆ f̃(x ∗ y). Therefore (f̃ , X) is an int-soft

subalgebra over U . □
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Any subalgebra of a B-algebra X may not be represented as a γ-inclusive set of an int-soft

subalgebra (f̃ , X) over U in general (see Example 3.6).

Example 3.6. Let E = X be the set of parameters, and let U = X be the initial universe set

where X = {0, 1, 2, 3} is a B-algebra with the following table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Consider a soft set (f̃ , X) which is given by

f̃ : X → P(U), x 7→
{

{0, 2} if x = 0,

{2} if x ∈ {1, 2, 3}.

It is easy to show that (f̃ , X) is an int-soft subalgebra over U . The γ-inclusive set of (f̃ , X) are

described as follows:

iX(f̃ ; γ) =


X if γ ∈ {∅, {2}},
{0} if γ ∈ {{0}, {0, 2}},
∅ otherwise.

The subalgebra {0, 1} cannot be a γ-inclusive set iX(f̃ ; γ) since there is no γ ⊆ U such that

iX(f̃ ; γ) = {0, 1}.

Definition 3.7. A soft set (f̃ , X) over U is said to be intersectional soft normal (briefly, int-soft

normal) of a B-algebra X if it satisfies:

(3.3) f̃(x ∗ y) ∩ f̃(a ∗ b) ⊆ f̃((x ∗ a) ∗ (y ∗ b)) for all x, y, a, b ∈ X.

A soft set (f̃ , X) over U is called an intersectional soft normal subalgebra (briefly, int-soft normal

subalgebra) of a B-algebra X if it satisfies (3.1) and (3.3).

Example 3.8. Let (U = Z, X) where X = {0, 1, 2, 3} is a B-algebra as in Example 3.3. Let

(f̃ , X) be a soft set over U defined as follows:

f̃ : X → P(U), x 7→
{

Z if x ∈ {0, 3},
7Z if x ∈ {1, 2}.

It is easy to check that (f̃ , X) is int-soft normal over U .

Proposition 3.9. Every int-soft normal (f̃ , X) of a B-algebra X is an int-soft subalgebra of X.
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Proof. Put y := 0, b := 0 and a := y in (3.3). Then f̃(x ∗ 0) ∩ f̃(y ∗ 0) ⊆ f̃((x ∗ y) ∗ (0 ∗ 0)) for
any x, y ∈ X. Using (B2) and (B1), we have f̃(x) ∩ f̃(y) ⊆ f̃(x ∗ y). Hence (f̃ , X) is an int-soft

subalgebra of X. □

The converse of Proposition 3.9 may not be true in general (see Example 3.10).

Example 3.10. Let E = X be the set of parameters, and let U = X be the initial universe set,

where X = {0, 1, 2, 3, 4, 5} is a B-algebra ([13]) with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Let (f̃ , X) be a soft set over U defined as follows:

f̃ : X → P(U), x 7→


γ3 if x = 0,

γ2 if x = 5,

γ1 if x ∈ {1, 2, 3, 4}.

where γ1, γ2 and γ3 are subsets of U with γ1 ⊊ γ2 ⊊ γ3. It is easy to check that (f̃ , X) is an int-soft

subalgebra over U . But it is not int-soft normal over U since f̃(1 ∗ 4) ∩ f̃(3 ∗ 2) = f̃(5) ∩ f̃(5) =
γ2 ⊈ γ1 = f̃(1) = f̃((1 ∗ 3) ∗ (4 ∗ 2)).

Theorem 3.11. A soft set (f̃ , X) of a B-algebra X over U is an int-soft normal subalgebra of

X over U if and only if the γ-inclusive set iX(f̃ ; γ) is a normal subalgebra of X for all γ ∈ P(U)

with iX(f̃ ; γ) ̸= ∅.

Proof. Similar to Theorem 3.4. □

Proposition 3.12. Let a soft set (f̃ , X) over U of a B-algebra X be int-soft normal. Then

f̃(x ∗ y) = f̃(y ∗ x) for any x, y ∈ X.

Proof. Let x, y ∈ X. By (B1) and (B2), we have f̃(x∗y) = f̃((x∗y)∗(x∗x)) ⊇ f̃(x∗x)∩f̃(y∗x) =
f̃(0) ∩ f̃(y ∗ x) = f̃(y ∗ x). Interchanging x with y, we obtain f̃(y ∗ x) ⊇ f̃(x ∗ y), which proves

the proposition. □

Theorem 3.13. Let (f̃ , X) be an int-soft normal subalgebra of a B-algebra X. Then the set

Xf̃ = {x ∈ X|f̃(x) = f̃(0)}

is a normal subalgebra of X.
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Proof. It is sufficient to show that Xf̃ is normal. Let a, b, x, y ∈ X be such that x ∗ y ∈ Xf̃

and a ∗ b ∈ Xf̃ . Then f̃(x ∗ y) = f̃(0) = f̃(a ∗ b). Since (f̃ , X) is an int-soft normal subalgebra

of X, we have f̃((x ∗ a) ∗ (y ∗ b)) ⊇ f̃(x ∗ y) ∩ f̃(a ∗ b) = f̃(0). Using (3.2), we conclude that

f̃((x ∗ a) ∗ (y ∗ b)) = f̃(0). Hence (x ∗ a) ∗ (y ∗ b) ∈ Xf̃ . This completes the proof. □

Theorem 3.14. The intersection of any set of an int-soft normal subalgebra of a B-algebra X

is also an int-soft normal subalgebra.

Proof. Let {f̃α|α ∈ Λ} be a family of int-soft normal subalgebras of a B-algebra X and let

a, b, x, y ∈ X. Then

∩α∈Λf̃α((x ∗ a) ∗ (y ∗ b)) = inf
α∈Λ

f̃α((x ∗ a) ∗ (y ∗ b))

≥ inf
α∈Λ

{f̃α(x ∗ y) ∩ f̃α(a ∗ b)}

=[inf
α∈Λ

f̃α(x ∗ y)] ∩ [ inf
α∈Λ

f̃α(a ∗ b)]

=((∩α∈Λf̃α)(x ∗ y)) ∩ ((∩α∈Λf̃α)(a ∗ b))

which shows that ∩α∈Λf̃α is int-soft normal. By Proposition 3.9, ∩α∈Λf̃α is an int-soft normal

subalgebra of X. □

The union of any set of int-soft normal subalgebra of a B-algebra X need not be an int-soft

normal subalgebra of X.

Example 3.15. Let X := {0, 1, 2, 3, 4, 5} be a B-algebra as in Example 3.10. Let (f̃ , X) and

(g̃, X) be soft sets over U := Z defined as follows:

f̃ : X → P(U), x 7→
{

Z if x ∈ {0, 4},
7Z if x ∈ {1, 2, 3, 5},

and

g̃ : X → P(U), x 7→
{

Z if x ∈ {0, 5},
2Z if x ∈ {1, 2, 3, 4}.

It is easy to check that (f̃ , X) and (g̃, X) are int-soft subalgebras over U . But f̃ ∪ g̃ is not an

int-soft subalgebra of X because

(f̃ ∪ g̃)(4) ∩ (f̃ ∪ g̃)(5) =(f̃(4) ∪ g̃(4)) ∩ (f̃(5) ∪ g̃(5))
=(Z ∪ 2Z) ∩ (7Z ∪ Z) = Z

⊈7Z ∪ 2Z = f̃(2) ∪ g̃(2)

=(f̃ ∪ g̃)(2) = (f̃ ∪ g̃)(4 ∗ 5).
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Since every int-soft normal of a B-algebra X is an int-soft subalgebra of X, the union of int-soft

normal subalgebra need not be an int-soft normal subalgebra of a B-algebra.

4. Quotient B-algebras induced by an int-soft normal subalgebra

Let (f̃ , X) be an int-soft normal subalgebra of a B-algebra X. For any x, y ∈ X, we define a

binary operation “ ∼f̃ ” on X as follows:

x ∼f̃ y ⇔ f̃(x ∗ y) = f̃(0).

Lemma 4.1. The operation “ ∼f̃ ” is an equivalence relation on a B-algebra X.

Proof. Obviously, it is reflexive. Let x ∼f̃ y. Then f̃(x ∗ y) = f̃(0). It follows from Proposition

3.12 that f̃(0) = f̃(x∗ y) = f̃(y ∗x). Hence ∼f̃ is symmetric. Let x, y, z ∈ X be such that x ∼f̃ y

and y ∼f̃ z. Then f̃(x ∗ y) = f̃(0) and f̃(y ∗ z) = f̃(0). Using Proposition 3.12, (3.3), (B1), (B2)

and (3.2), we have

f̃(0) = f̃(x ∗ y)∩f̃(y ∗ z) = f̃(x ∗ y) ∩ f̃(z ∗ y)

⊆f̃((x ∗ z) ∗ (y ∗ y))

=f̃((x ∗ z) ∗ 0) = f̃(x ∗ z) ⊆ f̃(0).

Hence f̃(x∗z) = f̃(0), i.e., ∼f̃ is transitive. Therefore “ ∼f̃ ” is an equivalence relation on X. □

Lemma 4.2. For any x, y, p, q ∈ X, if x ∼f̃ y and p ∼f̃ q, then x ∗ p ∼f̃ y ∗ q.

Proof. Let x, y, p, q ∈ X be such that x ∼f̃ y and p ∼f̃ q. Then f̃(x ∗ y) = f̃(y ∗ x) = f̃(0) and

f̃(p ∗ q) = f̃(q ∗ p) = f̃(0). Using (3.3) and (3.2), we have

f̃(0) =f̃(x ∗ y) ∩ f̃(p ∗ q)

⊆f̃((x ∗ p) ∗ (y ∗ q)) ⊆ f̃(0).

Hence f̃((x ∗ p) ∗ (y ∗ q)) = f̃(0). By similar way, we get f̃((y ∗ q) ∗ (x ∗ p)) = f̃(0). Therefore

x ∗ p ∼f̃ y ∗ q. Thus “ ∼f̃ ” is a congruence relation on X. □

Denote by f̃x and X/f̃ the equivalent class containing x and the set of all equivalent classes of

X, respectively, i.e.,

f̃x := {y ∈ X|y ∼f̃ x} and X/f̃ := {f̃x|x ∈ X}.
Define a binary relation • on X/f̃ as follows:

f̃x • f̃y := f̃x∗y

for all f̃x, f̃y ∈ X/f̃ . Then this operation is well-defined by Lemma 4.2.

Theorem 4.3. If (f̃ , X) is an int-soft normal subalgebra of a B-algebra X, then the quotient

X/f̃ := (X/f̃, •, f̃0) is a B-algebra.
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Proof. Straightforward. □
Proposition 4.4. Let µ : X → Y be a homomorphism of B-algebras. If (f̃ , Y ) is an int-soft

normal subalgebra of Y , then (f̃ ◦ µ,X) is an int-soft normal subalgebra of X.

Proof. For any x, y, a, b ∈ X, we have

(f̃ ◦ µ)((x ∗ a) ∗ (y ∗ b)) =f̃(µ((x ∗ a) ∗ (y ∗ b)))

=f̃((µ(x) ∗ µ(a)) ∗ (µ(y) ∗ µ(b)))

⊇f̃(µ(x) ∗ µ(y)) ∩ f̃(µ(a) ∗ µ(b))

=f̃(µ(x ∗ y)) ∩ f̃(µ(a ∗ b))

=(f̃ ◦ µ)(x ∗ y) ∩ (f̃ ◦ µ)(a ∗ b).

Hence f̃ ◦ µ is int-soft normal. By Proposition 3.9, (f̃ ◦ µ,X) is an int-soft normal subalgebra of

X. □
Proposition 4.5. Let (f̃ , X) be an int-soft normal subalgebra of a B-algebra X. The mapping

γ : X → X/f̃ , given by γ(x) := f̃x, is a surjective homomorphism, and Kerγ = {x ∈ X|γ(x) =
f̃0} = Xf̃ .

Proof. Let f̃x ∈ X/f̃ . Then there exists an element x ∈ X such that γ(x) = f̃x. Hence γ is

surjective. For any x, y ∈ X, we have

γ(x ∗ y) = f̃x∗y = f̃x • f̃y = γ(x) • γ(y).

Thus γ is a homomorphism. Moreover, Ker γ = {x ∈ X|γ(x) = f̃0} = {x ∈ X|x ∼f̃ 0} = {x ∈
X|f̃(x) = f̃(0)} = Xf̃ . □
Example 4.6. Let E = X be the set of parameters, and let U := Z be the initial universe set

where X = {0, 1, 2, 3} is a B-algebra ([7]) with the following table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

Let (f̃ , X) be a soft set over U := Z defined as follows:

f̃ : X → P(U), x 7→
{

Z if x ∈ {0, 2},
5Z if x ∈ {1, 3}.

It is easy to show that Xf̃ = {x ∈ X|f̃(x) = f̃(0)} = {0, 2}. Define x ∼f̃ y if and only if

f̃(x ∗ y) = f̃(0). Then f̃0 = {x ∈ X|x ∼f̃ 0} = {x ∈ X|f̃(x ∗ 0) = f̃(0)} = {0, 2} and f̃1 = {x ∈
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X|x ∼f̃ 1} = {x ∈ X|f̃(x∗1) = f̃(0)} = {1, 3} HenceX/f̃ = {f̃0, f̃1}. Let φ : X → X/f̃ be a map

defined by φ(0) = φ(2) = f̃0 and φ(1) = φ(3) = f̃1. It is easy to check that φ is a homomorphism

and Kerφ = {x ∈ X|φ(x) = f̃0} = {x ∈ X|x ∼f̃ 0} = {x ∈ X|f̃(x) = f̃(0)} = Xf̃ .

Theorem 4.7. Let X := (X; ∗X , 0X) be a B-algebra and Y := (Y ; ∗Y , 0Y ) be a B-algebra and

let µ : X → Y be an epimorphism. If (f̃ , Y ) is an int-soft normal subalgebra of Y , then the

quotient algebra X/(f̃ ◦ µ) := (X/(f̃ ◦ µ), •X , (f̃ ◦ µ)0X ) is isomorphic to the quotient algebra

Y/f̃ := (Y/f̃ , •Y , f̃0Y ).

Proof. By Theorem 4.3 and Proposition 4.4, X/f̃ ◦ µ : (X/(f̃ ◦ µ), •X , (f̃ ◦ µ)0X ) is a B-algebra

and Y/f̃ := (Y/f̃ , •Y , f̃0Y ) is a B-algebra. Define a map

η : X/(f̃ ◦ µ) → Y/f̃ , (f̃ ◦ µ)x 7→ f̃µ(x)

for all x ∈ X. Then the function η is well-defined. In fact, assume that (f̃ ◦ µ)x = (f̃ ◦ µ)y for all

x, y ∈ X. Then we have

f̃(µ(x) ∗Y µ(y)) =f̃(µ(x ∗X y)) = (f̃ ◦ µ)(x ∗X y)

=(f̃ ◦ µ)(0X) = f̃(µ(0X)) = f̃(0Y ).

Hence f̃µ(x) = f̃µ(y), by Proposition 2.1(ii).

For any (f̃ ◦ µ)x, (f̃ ◦ µ)y ∈ X/(f̃ ◦ µ), we have

η((f̃ ◦ µ)x •X (f̃ ◦ µ)y) =η((f̃ ◦ µ)x∗y) = f̃µ(x∗Xy)

=f̃µ(x)∗Y µ(y) = f̃µ(x) • f̃µ(y)
=η((f̃ ◦ µ)x) •Y η((f̃ ◦ µ)y)).

Therefore η is a homomorphism.

Let f̃a ∈ Y/f̃ . Then there exists x ∈ X such that µ(x) = a since µ is surjective. Hence

η((f̃ ◦ µ)x) = f̃µ(x) = f̃a and so η is surjective.

Let x, y ∈ X be such that f̃µ(x) = f̃µ(y). Then we have

(f̃ ◦ µ)(x ∗X y) =f̃(µ(x ∗X y)) = f̃(µ(x) ∗Y µ(y))

=f̃(0Y ) = f̃(µ(0X)) = (f̃ ◦ µ)(0X).

It follows that (f̃ ◦ µ)x = (f̃ ◦ µ)y. Thus η is injective. This completes the proof. □

The homomorphism π : X → X/f̃ , x → f̃X , is called the natural homomorphism of X onto

X/f̃ . In Theorem 4.7, if we define natural homomorphisms πX : X → X/f̃ ◦µ and πY : Y → Y/f̃

then it is easy to show that η ◦ πX = πY ◦ µ, i.e., the following diagram commutes.
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X
µ−−−→ Y

πX

y πY

y
X/(f̃ ◦ µ) η−−−→ Y/f̃ .

Proposition 4.8. Let a soft set (f̃ , X) over U of a B-algebra X be an int-soft normal subalgebra

of X. If J is a normal subalgebra of X, then J/f̃ is a normal subalgebra of X/f̃ .

Proof. Let a soft set (f̃ , X) over U of a B-algebra X be an int-soft normal subalgebra of X and

let J be a normal subalgebra of X. Then for any x, y ∈ J , x ∗ y ∈ J . Let f̃x, f̃y ∈ J/f̃ . Then

f̃x • f̃y = f̃x∗y ∈ J/f̃ . Hence J/f̃ = {f̃x|x ∈ J} is a subalgebra of X/f̃ .

For any x ∗ y, a ∗ b ∈ J , (x ∗ a) ∗ (y ∗ b) ∈ J , so for any f̃x • f̃y, f̃a • f̃b ∈ J/f̃ , we have

(f̃x • f̃a) • (f̃y • f̃b) = f̃x∗a • f̃y∗b = f̃(x∗a)∗(y∗b) ∈ J/f̃ . Thus J/f̃ is a normal subalgebra of X/f̃ . □

Theorem 4.9. If J∗ is a normal subalgebra of a B-algebra X/f̃ , then there exists a normal

subalgebra J = {x ∈ X|f̃x ∈ J∗} in X such that J/f̃ = J∗.

Proof. Since J∗ is a normal subalgebra of X/f̃ , so f̃x • f̃y = f̃x∗y ∈ J∗ for any f̃x, f̃y ∈ J∗. Thus

x ∗ y ∈ J for any x, y ∈ J . And f̃x∗a • f̃y∗b = f̃(x∗a)∗(y∗b) ∈ J∗ for any f̃x∗y, f̃a∗b ∈ J∗. Thus

(x ∗ a) ∗ (y ∗ b) ∈ J for any x ∗ y, a ∗ b ∈ J . Therefore J is a normal subalgebra of X. By

Proposition 4.5, we have

J/f̃ ={f̃j|j ∈ J}

={f̃j|∃f̃x ∈ J∗ such that j ∼f̃ x}

={f̃j|∃f̃x ∈ J∗ such that f̃x = f̃j}

={f̃j|f̃j ∈ J∗} = J∗.

□

Theorem 4.10. Let a soft set (f̃ , X) over U be an int-soft normal subalgebra of a B-algebra X.

If J is a normal subalgebra of X, then
X/f̃

J/f̃
∼= X/J .

Proof. Note that
X/f̃

J/f̃
= {[f̃x]J/f̃ |f̃x ∈ X/f̃}. If we define φ :

X/f̃

J/f̃
→ X/J by φ([f̃x]J/f̃ ) =

[x]J = {y ∈ X|x ∼J y}, then it is well defined. In fact, suppose that [f̃x]J/f̃ = [f̃y]J/f̃ . Then

f̃x ∼J/f̃ f̃y and so f̃x∗y = f̃x • f̃y ∈ J/f̃ . Hence x ∗ y ∈ J . Therefore x ∼J y, i.e., [x]J = [y]J .
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Given [f̃x]J/f̃ , [f̃y]J/f̃ ∈ X/f̃

J/f̃
, we have

φ([f̃x]J/f̃ • [f̃y]J/f̃ ) =φ([f̃x • f̃y]J/f̃ )
=[x ∗ y]J = [x]J ∗ [y]J
=φ([f̃x]J/f̃ ) ∗ φ([f̃y]J/f̃ ).

Hence φ is a homomorphism.

Obviously, φ is onto. Finally, we show that φ is one-to-one. If φ([f̃x]J/f̃ ) = φ([f̃y]J/f̃ ), then

[x]J = [y]J , i.e., x ∼J y. If f̃a ∈ [f̃x]J/f̃ , then f̃a ∼J/f̃ f̃x and hence f̃a∗x ∈ J/f̃ . It follows that

a ∗ x ∈ J , i.e., a ∼J x. Since ∼J is an equivalence relation, a ∼J y and so Ja = Jy. Hence

a ∗ y ∈ J and so f̃a∗y ∈ J/f̃ . Therefore f̃a ∼J/f̃ f̃y. Hence f̃a ∈ [f̃y]J/f̃ . Thus [f̃x]J/f̃ ⊆ [f̃y]J/f̃ .

Similarly, we obtain [f̃y]J/f̃ ⊆ [f̃x]J/f̃ . Therefore [f̃x]J/f̃ = [f̃y]J/f̃ . It is completes the proof. □
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Abstract: In this paper, we develop some fixed point theorems by using auxiliary functions for

maps satisfying a rational type contractive condition in partially ordered S−metric spaces. Conditions

for uniqueness of fixed point are also discussed. Our results generalize some existing results in the

literature of S-metric spaces.
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1. Introduction and Preliminaries

Fixed point theory is one of the most powerful and most important tools in nonlinear analysis and

applied sciences. Its core subject is concerned with the conditions for the existence of one or more

fixed points of a mapping T from a nonempty set X into itself, that is, to find a point x ∈ X such

that Tx = x.

In 1922, Banach’s contraction principle [1] ensures the existence and uniqueness of a unique fixed

point for a self-mapping satisfying a contractive condition, which is called Banach’s contractive map-

ping. After that, many authors have extended, improved and generalized Banach’s contraction prin-

ciple in several ways.

Especially, Banach’s contractive mapping is continuous, which is used to prove Banach’s contrac-

tion principle. Thus it is natural to consider the following question:

Do there exist some contractive conditions which do not force the mapping T to be continuous?

In 1968, Kannan [4] gave the positive answer for this question and he proved the following fixed

point theorem for the following contractive condition:

Theorem K. Let (E, d) be a complete metric space and T : E → E be a mapping such that there

exists a number h ∈ (0, 12 ) such that

d(Tx, Ty) ≤ h[d(Tx, x) + d(Ty, y)]

for all x, y ∈ X. Then T has a unique fixed point in E.

Also, some authors have introduced some kinds of contractive mappings, for example, Meir-Keeler

∗Corresponding Author.

Full list of author information is available at the end of the article.
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contraction, Caristi’s contraction, Hardy-Roages contractions, Chatterjea’s contraction, Berinde’s con-

traction, Reich’s contraction, Ćirić’s contraction and others (see [2]-[9]).

Another one to study Banach’s contraction principle in metric spaces is to extend Banach’s contrac-

tion principle to the classes of various kinds of metric spaces. Recently, some authors have introduced

some extensions of metric spaces in several ways and have studied fixed point theory and its applica-

tions, for example, 2-metric spaces [10], D-metric spaces [11], G-metric spaces [12], D∗-metric spaces

[13], S-metric spaces [14]-[17] and some others.

On the other hand, Ran and Reurings [18], Bhaskar and Lakshmikantham [19], Lakshmikantham

and Ćirić [20], Neito and Lopéz [21], Harjani et al. [22], Harjani et al. [23] and Zhou et al. [24]-[25]

studied fixed point problem in partially ordered sets.

Definition 1.1. [14] Let X be a nonempty set. A S-metric on X is a mapping S : X3 7→ [0,∞) that

satisfies the following conditions: for all x, y, z, a ∈ X,

(S1) S(x, y, z) ≥ 0;

(S2) S(x, y, z) = 0 if and only if x = y = z;

(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Immediate examples of such S−metric spaces are as follows:

(1) Let R be a real line and define S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R. Then S is an

S-metric on R. This S-metric is called the usual S-metric on R.

(2) Let X = R+ with a norm ‖ ·‖ and define S(x, y, z) = ‖2x+y−3z‖+‖x−z‖ for all x, y, z ∈ X.

Then S is an S-metric on X.

(3) Let X be a nonempty set and d be the ordinary metric on X. If we define Sd(x, y, z) =

d(x, z) + d(y, z) for all x, y, z ∈ X, then S is an S-metric on X.

Definition 1.2. [14] Let (X,S) be an S-metric space.

(1) A sequence {xn} in X is said to convergent to a point x ∈ X if S(xn, xn, x) → 0 as n → ∞,

that is, for any ε > 0, there exists n0 ∈ N such that, for all n ≥ n0, S(xn, xn, x) < ε.

(2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm)→ 0 as n,m→∞, that is,

for any ε > 0, there exists n0 ∈ N such that, for all n,m ≥ n0, S(xn, xn, xm) < ε.

(3) An S-metric space (X,S) is said to be complete if every Cauchy sequence in X converges to a

point in X.

Lemma 1.1. [14] Let (X,S) be an S-metric space. Then S(x, x, y) = S(y, y, x), for all x, y ∈ X.

Lemma 1.2. [14] Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z)

for all x, y, z ∈ X.

Lemma 1.3. [14] Let (X,S) be an S-metric space. If a sequence {xn} in X converges to a point

x ∈ X, then {xn} is a Cauchy sequence.
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Lemma 1.4. Let (X,S) be an S-metric space. Then, for all x, y, z ∈ X, it follows that

(1) S(x, y, y) ≤ S(x, x, y);

(2) S(x, y, x) ≤ S(x, x, y);

(3) S(x, y, z) ≤ S(x, x, z) + S(y, y, z);

(4) S(x, y, z) ≤ S(y, y, z) + S(x, x, z);

(5) S(x, y, z) ≤ S(y, y, x) + S(z, z, x);

(6) S(x, x, z) ≤ 3
2 [S(y, y, z) + S(y, y, x)];

(7) S(x, y, z) ≤ 2
3 [S(x, x, y) + S(y, y, z) + S(z, z, x)].

Proof. It follows from (S3) and Lemma 1.2, one can easily obtain (1)-(5).

Now, we prove (6) and (7) also hold. By Lemma 1.1 and Lemma 1.2, we have

2S(x, x, z) = S(x, x, z) + S(z, z, x)

≤ [2S(x, x, y) + S(y, y, z)] + [2S(z, z, y) + S(x, x, y)]

= 3[S(y, y, z) + S(y, y, x)]

and hence S(x, x, z) ≤ 3
2 [S(y, y, z) + S(y, y, x)]. Thus (6) holds. By virtue of (3)-(5) and Lemma 1.2,

we have

3S(x, y, z) = 2[S(x, x, y) + S(y, y, z) + S(z, z, x)],

which implies (7) holds. This completes the proof.

Lemma 1.5. [15] Let (X,S) be an S-metric space and {xn} be a sequence in X such that

lim
n→∞

S(xn+1, xn+1, xn) = 0.

If {xn} is not a S-Cauchy sequence, then there exists ε > 0 and two sequences {mk} and {nk} of

positive integers with nk > mk > k such that the following sequences tend to ε when k →∞:

S(xmk
, xmk

, xnk
), S(xmk

, xmk
, xnk+1), S(xmk−1, xmk−1, xnk

),

S(xmk−1, xmk−1, xnk+1), S(xmk+1, xmk+1, xnk+1).

Definition 1.3. [26] A mapping F : [0,∞)2 → R is called a C-class function if it is continuous and

satisfies the following conditions:

(C1) F (s, t) ≤ s for all s, t ∈ [0,∞);

(C2) F (s, t) = s implies that either s = 0 or t = 0.

Let C denote the set of C-class functions.

Example 1.1. [26] The following functions F : [0,∞)2 7→ R are elements of C. For each s, t ∈ [0,∞),

1. F (s, t) = s− t.

2. F (s, t) = ms for some m ∈ (0, 1).

3. F (s, t) = s
(1+t)r for some r ∈ (0,∞).

4. F (s, t) = log(t+ as)/(1 + t) for some a > 1.
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5. F (s, t) = ln(1 + as)/2 if e > a > 1. Indeed, f(s, t) = s implies that s = 0.

6. F (s, t) = (s+ l)(1/(1+t)
r) − l if l > 1 and r ∈ (0,∞).

7. F (s, t) = s logt+a a for all a > 1.

8. F (s, t) = s− ( 1+s
2+s )( t

1+t ).

9. F (s, t) = sβ(s) if a function β : [0,∞)→ [0, 1) and is continuous.

10. F (s, t) = s− t
k+t .

11. F (s, t) = s− ϕ(s) if ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t) = 0 if and only

if t = 0.

12. F (s, t) = sh(s, t) if h : [0,∞)× [0,∞)→ [0,∞) is a continuous function such that h(t, s) < 1 for

all t, s > 0.

13. F (s, t) = s− ( 2+t
1+t )t.

14. F (s, t) = n
√

ln(1 + sn).

15. F (s, t) = φ(s), where φ : [0,∞)→ [0,∞) is a upper semicontinuous function such that φ(0) = 0

and φ(t) < t for all t > 0.

16. F (s, t) = s
(1+s)r for all r ∈ (0,∞).

Definition 1.4. [27] A function ψ : [0,∞) → [0,∞) is called an altering distance function if the

following conditions are satisfied:

(AD1) ψ is strictly increasing and continuous,

(AD2) ψ(t) = 0 for all t ∈ [0,∞) if and only if t = 0.

Let Φ denote the class of all continuous and strictly increasing functions φ : [0,∞) 7→ [0,∞) and

Ψ the set of all functions such that lim
t→r

ψ(t) > 0 for all r > 0 and ψ(t) = 0 if and only if t = 0.

In [28], Mashina proved the following results:

Theorem 1.1. [28] Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space.

Let T : X 7→ X be a continuous and nondecreasing mapping with respect to � such that

S(Tx, Tx, Ty) ≤ α · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ β · S(x, x, y) (1)

for all x, y ∈ X with x 6= y and for some α, β ∈ [0, 1) with α + β < 1. If there exists x0 � Tx0, then

T has a unique fixed point in X.

Theorem 1.2. [28] Let (X,�) be a partial ordered set and (X,S) is a complete S-metric space.

Assume that X satisfies the following condition:

(C1) If {xn} is a nondecreasing sequence such that xn → x with x∗ = supn≥1{xn} with respect

to �.
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Let T : X 7→ X be a nondecreasing mapping with respect to � such that

S(Tx, Tx, Ty) ≤ α · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ β · S(x, x, y)

for all x, y ∈ X with x 6= y and for some α, β ∈ [0, 1) with α + β < 1. If there exists x0 � Tx0, then

T has a unique fixed point in X.

Also, Mashina [28] added the following assumption to Theorem 1.1 and Theorem 1.2 to guarantee

the uniqueness of the fixed point of the given mapping.

(C2) For all x, y ∈ X, there exists u ∈ X which is comparable to x and y.

The main aim of this paper is to generalize the results of Mashina [28] by using the auxiliary

functions in the setting of S-metric spaces.

2. Main Results

Now, we give one definition for our main results in this paper.

Definition 2.1. Let (X,�) be a partially ordered set and T : X 7→ X. We say that T is a nonde-

creasing mapping with respect to � if for x, y ∈ X,x � y ⇒ Tx � Ty.

Theorem 2.1. Let (X,�) be a partial ordered set and (X,S) is a complete S-metric space. Let

T : X → X be a continuous and nondecreasing mapping with respect to � satisfying the following

condition:

φ(S(Tx, Tx, Ty))

≤ F
(
φ
( 1

α+ β

[
α · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ β · S(x, x, y)

])
, (2)

ψ
( 1

α+ β

[
α · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ β · S(x, x, y)

]))
for all x, y ∈ X with x 6= y, for some α, β ∈ [0,∞) with α + β > 0 and F ∈ C, φ ∈ Φ, ψ ∈ Ψ. If there

exists x0 � Tx0, then T has a fixed point in X.

Proof. Let x0 ∈ X such that x0 � Tx0. Since T is nondecreasing with respect to �, by induction, we

obtain

x0 � Tx0 � T 2x0 � · · · � Tnx0 � Tn+1x0 � · · · .

Let xn+1 = Txn for each n ≥ 1. If there exists n0 ≥ 1 such that xn0+1 = xn0
, then xn0+1 = Txn0

=

xn0
and so xn0

is a fixed point of T .

So, we assume that xn+1 6= xn for each n ∈ {0} ∪N. Putting x = xn+1 and y = xn for each n ≥ 1
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in (2.1), we have

φ(S(xn+1, xn+1, xn))

= φ(S(Txn, Txn, Txn−1))

≤ F
(
φ
( 1

α+ β
α
[S(xn, xn, Txn) · S(xn−1, xn−1, Txn−1)

S(xn, xn, xn−1)
+ βS(xn, xn, xn−1)

])
,

ψ
( 1

α+ β
α
[S(xn, xn, Txn) · S(xn−1, xn−1, Txn−1)

S(xn, xn, xn−1)
+ βS(xn, xn, xn−1)

]))
= F

(
φ
( 1

α+ β
[αS(xn, xn, xn+1) + βS(xn, xn, xn−1)]

)
,

ψ
( 1

α+ β
[αS(xn, xn, xn+1) + βS(xn, xn, xn−1)]

))
≤ φ

( 1

α+ β
[αS(xn, xn, xn+1) + βS(xn, xn, xn−1)]

)
.

Since φ is strictly increasing, we have

S(xn+1, xn+1, xn) ≤ S(xn, xn, xn−1)

for all n ≥ 1. Hence the sequence {S(xn, xn, xn+1)} is a monotone decreasing and bounded below.

Therefore, there exists r ≥ 0 such that lim
n→∞

S(xn, xn, xn−1) = r.

Now, we prove that r = 0. Assume that r > 0. Using Definition 1.3, we know that, when

F (s, t) = s, then s = 0 or t = 0 and F (s, t) < s when s > 0 and t > 0. Using the properties of φ

and ψ, we have φ(r) > φ(0) ≥ 0 and lim
n→∞

φ(S(xn, xn, xn−1)) > 0. Therefore, by taking the limit as

n→∞ and using the properties of F , we have

φ(r) ≤ F
(
φ
( 1

α+ β
[α · r + β · r]

)
,

lim
n→∞

ψ
( 1

α+ β
[αS(xn, xn, xn+1) + βS(xn, xn, xn−1)]

))
< φ(r),

which is a contradiction. Thus we have r = 0 and

lim
n→∞

S(xn, xn, xn−1) = 0.

Next, we prove that {S(xn, xn, xn−1) is a Cauchy sequence. Suppose that a sequence {S(xn, xn, xn−1)}
is not a Cauchy sequence. From Lemma 1.5, there exists ε > 0 and {mk} and {nk} of positive integers

such that

lim
k→∞

S(xmk
, xnk

, xnk
) = ε.
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Putting x = xmk
and y = xnk

for each k ≥ 1 in (2.1), we have

φ(S(xmk+1, xmk+1, xnk+1))

= φ(S(Txmk
, Txmk

, Txnk
))

≤ F
(
φ
( 1

α+ β

[
α · S(xmk

, xmk
, Txmk

) · S(xnk
, xnk

, Txnk
)

S(xmk
, xmk

, xnk
)

+β · S(xmk
, xmk

, xnk
)
])
,

ψ
( 1

α+ β

[
α · S(xmk

, xmk
, Txmk

) · S(xnk
, xnk

, Txnk
)

S(xmk
, xmk

, xnk
)

+β · S(xmk
, xmk

, xnk
)
]))

= F
(
φ
( 1

α+ β

[
α · S(xmk

, xmk
, xmk+1) · S(xnk

, xnk
, xnk+1)

S(xmk
, xmk

, xnk
)

+β · S(xmk
, xmk

, xnk
)
])
,

ψ
( 1

α+ β

[
α · S(xmk

, xmk
, xmk+1) · S(xnk

, xnk
, xnk+1)

S(xmk
, xmk

, xnk
)

+β · S(xmk
, xmk

, xnk
)
]))

.

Using the properties of φ and ψ, we have φ(ε) > 0 and

lim
k→∞

ψ
( 1

α+ β

[
α · S(xmk

, xmk
, xmk+1) · S(xnk

, xnk
, xnk+1)

S(xmk
, xmk

, xnk
)

+β · S(xmk
, xmk

, xnk
)
])

> 0.

Taking the limit k →∞ in the above inequality, we have

φ(ε) ≤ F
(
φ
( βε

α+ β

)
, ψ
( βε

α+ β

))
< φ

( βε

α+ β

)
< φ(ε),

which is a contradiction. Hence the sequence {S(xn, xn, xn−1)} is a Cauchy sequence. By the com-

pleteness of X, there exists x∗ ∈ X such that xn → x∗ as n→∞. Also, the continuity of T implies

Tx∗ = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗,

which implies that x∗ is a fixed point of T . This completes the proof.

Remark 2.1. (1) If define F (s, t) = (α+ β)s for some α, β ∈ [0,∞) with α+ β > 0 and φ(t) = t for

all t > 0 in Theorem 2.1, then Theorem 2.1 reduces to Theorem 1.1 of [28].

(2) In Theorem 2.1, we use the auxiliary function F ∈ C and C is a class of more general functions

than the gauge function used in Theorem 2.1 and 2.2 of [23]. Indeed, the gauge function F (s, t) = s−t
in Theorem 2.1 and 2.2 of [23] is an element of C.

(3) We note that, if ψ is an alerting distance function, then ψ ∈ Ψ. But the reverse is not true in

general.

Taking F (s, t) = s− t in Theorem 2.1, we obtain the following:

Corollary 2.1. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Let

T : X → X be a continuous and nondecreasing mapping with respect to � satisfying the following
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condition:

φ(S(Tx, Tx, Ty)) ≤ φ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
−ψ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
for all x, y ∈ X with x 6= y, for some a, b ∈ [0, 1) with a + b < 1 and φ ∈ Φ, ψ ∈ Ψ. If there exists

x0 � Tx0, then T has a fixed point in X.

In addition, taking φ(t) = kt for all t > 0 and ψ(t) = (k− 1)t for all t > 0 with k > 1 in Corollary

2.1, we have the following:

Corollary 2.2. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Let

T : X 7→ X be a continuous and nondecreasing mapping with respect to � satisfying the following

condition:

S(Tx, Tx, Ty) ≤ a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

for all x, y ∈ X with x 6= y, some a, b ∈ [0, 1) with a+ b < 1 . If there exists x0 � Tx0. Then T has a

fixed point in X.

Now, we present some examples to verify Theorem 2.1 and Corollary 2.2.

Example 2.1. Let X = [0,∞) with the S-metric defined by

S(x, y, z) = |x− z|+ |y − z|

for all x, y, z ∈ X and ≤ be the natural ordering of real numbers. Then X is a complete S-metric

space. Let T : X → X be a mapping defined by Tx = 1
8 (1 + x) and φ ∈ Φ, ψ ∈ Ψ be defined by

φ(t) = t+
1

4
, ψ(t) =

t

2
.

Define a mapping F ∈ C by F (s, t) = s− t and take α = 3 and β = 1.

First, we note that, for all x0 ∈ [0, 17 ], we have x0 ≤ Tx0. Second, we verify the condition (2.1).

Without loss of generality, we assume that x > y. Then we have

φ(S(Tx, Tx, Ty)) = φ(2(Tx− Ty))

= φ
(

2
[1

8
(1 + x)− 1

8
(1 + y)

])
= φ

(1

4
(x− y)

)
=

1

4
(x− y) +

1

4
.

On the other hand, we have

φ
( 1

α+ β

[
α · S(x, x, Tx)S(y, y, Ty)

S(x, x, y)
+ βS(x, x, y)

])
= φ

(1

4

[
3

4[x− 1
8 (1 + x)][y − 1

8 (1 + y)]

2(x− y)
+ 2(x− y)

])
= φ

(1

4

[6( 7
8x−

1
8 )( 7

8y −
1
8 )

(x− y)
+ 2(x− y)

])
=

6( 7
8x−

1
8 )( 7

8y −
1
8 )

4(x− y)
+

1

2
(x− y) +

1

4
.
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and

ψ
( 1

α+ β

[
α · S(x, x, Tx)S(y, y, Ty)

S(x, x, y)
+ βS(x, x, y)

])
= ψ

(1

4

[
3

4[x− 1
8 (1 + x)][y − 1

8 (1 + y)]

2(x− y)
+ 2(x− y)

])
= ψ

(1

4

[6( 7
8x−

1
8 )( 7

8y −
1
8 )

(x− y)
+ 2(x− y)

])
=

1

8

[6( 7
8x−

1
8 )( 7

8y −
1
8 )

(x− y)
+ 2(x− y)

]
.

Thus we have

F (φ, ψ) =
1

8

6( 7
8x−

1
8 )( 7

8y −
1
8 )

(x− y)
+

1

4
(x− y) +

1

4
.

Hence the condition (2.1) holds for y < x ≤ 1
7 . Therefore, all the assumptions of Theorem 2.1 are

satisfied and, further, x = 1
7 is the fixed point of T .

Example 2.2. Let X = [1,∞) be an S-metric space with the S-metric defined by

S(x, y, z) = |x− y|+ |y − z|

for all x, y, z ∈ X and ≤ be the natural ordering of real numbers. Then (X,S) is a complete S-metric

space. For 0 < k < 1, consider the self-mapping T : X → X defined by Tx = 3x+2
2x+3 for all x ∈ X.

First, there exists x0 = 1 ∈ X such that x0 ≤ Tx0. Second, we have

S(Tx, Tx, Ty) =
∣∣∣3x+ 2

2x+ 3
− 3y + 2

2y + 3

∣∣∣
=

5|x− y|
(2x+ 3)(2y + 3)

≤ |x− y|
5

=
1

5
S(x, x, y).

So, we have

S(Tx, Tx, Ty) ≤ a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

for all x, y ∈ X with x 6= y and a ∈ [0, 45 ) and b = 1
5 . Hence all the assumptions of Corollary 2.2 are

satisfied. Therefore, T has a fixed point in X and, further, x = 1 is a fixed point of T .

In the next theorem, we omit the continuity of T and assume that the following condition, which

has been stated in [22].

(C1) If {xn} is a nondecreasing sequence such that xn → x∗ with x∗ = sup{xn} with respect to

�.

Theorem 2.2. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Assume

that X satisfies the condition (C1). Let T : X → X be a nondecreasing mapping with respect to �
satisfying the condition (2.1). If there exists x0 � Tx0, then T has a fixed point in X.
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Proof. Following the proof of Theorem 2.1, we only need to verify Tx∗ = x∗. Since {xn} is a nonde-

creasing sequence in X and xn → x∗, by the condition (C1), it follows that xn � x∗. Since T is a

nondecreasing mapping with respect to �, we have Txn = xn+1 � Tx∗ for all n ∈ N. Moreover, since

x0 � Tx0 � Tx∗ and x∗ = sup{xn}, we have x∗ � Tx∗.
Using the similar arguments as in the proof of Theorem 2.1, for x∗ � Tx∗, it follows that {Tnx∗}

is a nondecreasing sequence and lim
n→∞

Tnx∗ = z for some z ∈ X. Again, using the condition (C1), we

have z = sup{Tnx∗}. Moreover, from x0 � x∗, we have xn = Tnx0 � Tnx∗ for each n ≥ 1. Applying

x = xn and y = x∗ for each n ≥ 1 in (2.1), we have

φ(S(xn+1, xn+1, T
n+1x∗))

= φ(S(Txn, Txn, T (Tnx∗)))

≤ F
(
φ
( 1

α+ β

[
α · S(xn, xn, Txn) · S(Tnx∗, Tnx∗, T (Tnx∗))

S(xn, xn, Tnx∗)

+β · S(xn, xn, T
nx∗)

])
,

ψ
( 1

α+ β

[
α · S(xn, xn, Txn) · S(Tnx∗, Tnx∗, T (Tnx∗))

S(xn, xn, Tnx∗)

+β · S(xn, xn, T
nx∗)

]))
= F

(
φ
( 1

α+ β

[
α · S(xn, xn, xn+1) · S(Tnx∗, Tnx∗, T (Tnx∗))

S(xn, xn, Tnx∗)

+β · S(xn, xn, T
nx∗)

])
,

ψ
( 1

α+ β
[α · S(xn, xn, xn+1) · S(Tnx∗, Tnx∗, T (Tnx∗))

S(xn, xn, Tnx∗)

+β · S(xn, xn, T
nx∗)

]))
.

Letting the limit n→∞ in the above inequality, by the properties of φ, ψ, F , we have

φ(S(x∗, x∗, z)) ≤ F
(
φ
(αS(x∗, x∗, z)

α+ β

)
, ψ
(βS(x∗, x∗, z)

α+ β

))
≤ φ

(βS(x∗, x∗, z)

α+ β

)
,

which yields βS(x∗,x∗,z)
α+β = 0 or ψ

(
βS(x∗,x∗,z)

α+β

)
= 0. Thus we have S(x∗, x∗, z) = 0. Especially,

x∗ = z = sup{xn} and so Tx∗ � x∗, which is a contradiction. Hence x∗ = Tx∗. This completes the

proof.

Taking F (s, t) = s− t in Theorem 2.2, we obtain the following:

Corollary 2.3. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Assume

that X satisfies the condition (C1). Let T : X → X be a nondecreasing mapping with respect to �
satisfying the following condition:

φ(S(Tx, Tx, Ty)) ≤ φ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
−ψ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
for all x, y ∈ X with x 6= y, for some a, b ∈ [0, 1) with a + b < 1 and φ ∈ Φ, ψ ∈ Ψ. If there exists

x0 � Tx0, then T has a fixed point in X.
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In addition, taking φ(t) = kt for all t > 0 and ψ(t) = (k− 1)t for all t > 0 with k > 1 in Corollary

2.3, we have the following:

Corollary 2.4. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Assume

that X satisfies the condition (C1). Let T : X → X be a nondecreasing mapping with respect to �
satisfying the following condition:

S(Tx, Tx, Ty) ≤ a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

for all x, y ∈ X with x 6= y and for some a, b ∈ [0, 1) with a+ b < 1. If there exists x0 � Tx0, then T

has a fixed point in X.

Now, we give an example to illustrate Theorem 2.2.

Example 2.3. Let X = [0,∞) with the S-metric S defined by

S(x, y, z) = |x− z|+ |y − z|

for all x, y, z ∈ X and ≤ be the natural ordering of real numbers. Then X is a complete S-metric

space. Let T : X → X be a mapping defined by Tx = 4 − 1
2x for all x ∈ X and φ ∈ Φ, ψ ∈ Ψ be

defined by

φ(t) = t+
1

4
, ψ(t) =

t

2
,

respectively. Define a mapping F ∈ C by F (s, t) = s− t and take α = 3 and β = 1.

First, we note that there exists x0 ∈ [0,
√
2+1
2 ] ⊆ [0,∞) such that x0 ≤ Tx0. It is easily to verify

that the sequence {xn} defined by xn = Txn−1 with x0 =
√
2+1
2 is nondecreasing and converges to

x∗ = 3+
√
14

2 with x∗ = supn≥1{xn} with respect to ≤. Second, we verify the condition (2.1). Without

loss of generality, we assume that x > y. Then we have

φ(S(Tx, Tx, Ty)) = φ(2(Tx− Ty))

= φ
(

2
[(

4− 1

2x

)
−
(

4− 1

2y

)])
= φ

(1

y
− 1

x

)
=

1

y
− 1

x
+

1

4
.

On the other hand, we have

φ
( 1

α+ β

[
α · S(x, x, Tx)S(y, y, Ty)

S(x, x, y)
+ βS(x, x, y)

])
= φ

(1

4

[6(x+ 1
2x − 4)(y + 1

2y − 4)

(x− y)
+ 2(x− y)

])
=

6(x+ 1
2x − 4)(y + 1

2y − 4)

4(x− y)
+

1

2
(x− y) +

1

4
,

ψ
( 1

α+ β

[
α · S(x, x, Tx)S(y, y, Ty)

S(x, x, y)
+ βS(x, x, y)

])
= ψ

(1

4

[6(x+ 1
2x − 4)(y + 1

2y − 4)

(x− y)
+ 2(x− y)

])
=

1

8

6(x+ 1
2x − 4)(y + 1

2y − 4)

(x− y)
+

1

4
(x− y)
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and

F (φ, ψ) =
1

8

6(x+ 1
2x − 4)(y + 1

2y − 4)

(x− y)
+

1

4
(x− y) +

1

4
.

Hence the condition (2.1) holds for y < x ∈ [0,
√
2+1
2 ]. Therefore, all the assumptions of Theorem 2.2

are satisfied and, further, x = 3+
√
14

2 is the fixed point of T .

For the uniqueness of the fixed point, we consider the following condition stated in [22].

(C2) For all x, y ∈ X, there exists u ∈ X which is comparable to x and y.

Theorem 2.3. If you give the condition (C2) to the hypotheses of Theorem 2.1 (or Theorem 2.2),

then the fixed point of the mapping T is unique.

Proof. Suppose that x∗ and y∗ ∈ X are fixed points of the mapping T . Then we consider two cases.

Case 1: If x∗ and y∗ are comparable and x∗ 6= y∗, then, using the condition (2.1), we have

φ(S(x∗, x∗, y∗))

= φ(S(Tx∗, Tx∗, T y∗))

≤ F
(
φ
( 1

α+ β

[
α
S(x∗, x∗, Tx∗) · S(y∗, y∗, T y∗)

S(x∗, x∗, y∗)
+ βS(x∗, x∗, y∗)

])
,

ψ
( 1

α+ β

[
α
S(x∗, x∗, Tx∗) · S(y∗, y∗, Ty∗)

S(x∗, x∗, y∗)
+ βS(x∗, x∗, y∗)

]))
= F

(
φ
( β

α+ β
S(x∗, x∗, y∗)

)
, ψ
( β

α+ β
S(x∗, x∗, y∗)

))
≤ φ

( β

α+ β
S(x∗, x∗, y∗)

)
,

which yields β
α+βS(x∗, x∗, y∗) = 0 or ψ( β

α+βS(x∗, x∗, y∗)) = 0. Thus we have S(x∗, x∗, y∗) = 0.

Therefore, x∗ = y∗.

Case 2: If x∗ is not comparable to y∗, then, by the condition (C2), there exists u ∈ X comparable

to x∗ and y∗. The monotonicity implies that Tnu is comparable to Tnx∗ = x∗ and Tny∗ = y∗ for each

n ≥ 0. If there exists n0 ≥ 1 such that Tn0u = x∗, then, since x∗ is a fixed point of T , the sequence

{Tnu : n ≥ n0} is constant and so lim
n→∞

Tnu = x∗.

On the other hand, if Tnu 6= x∗ for each n ≥ 1, then, using the condition (2.1), it follows that, for
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each n ≥ 2,

φ(S(Tnu, Tnu, x∗))

= φ(S(Tnu, Tnu, Tnx∗))

≤ F
(
φ
( 1

α+ β

[
α
S(Tn−1u, Tn−1u, Tnu) · S(Tn−1x∗, Tn−1x∗, Tnx∗)

S(Tn−1u, Tn−1u, Tn−1x∗)

+βS(Tn−1u, Tn−1u, Tn−1x∗)
])
,

ψ
( 1

α+ β

[
α
S(Tn−1u, Tn−1u, Tnu) · S(Tn−1x∗, Tn−1x∗, Tnx∗)

S(Tn−1u, Tn−1u, Tn−1x∗)

+βS(Tn−1u, Tn−1u, Tn−1x∗)
]))

= F
(
φ
( 1

α+ β

[
α
S(Tn−1u, Tn−1u, Tnu) · S(x∗, x∗, x∗)

S(Tn−1u, Tn−1u, Tn−1x∗)

+βS(Tn−1u, Tn−1u, x∗)
])
,

ψ
( 1

α+ β

[
α
S(Tn−1u, Tn−1u, Tnu) · S(x∗, x∗, x∗)

S(Tn−1u, Tn−1u, Tn−1x∗)

+βS(Tn−1u, Tn−1u, x∗)
]))

= F
(
φ
( 1

α+ β
βS(Tn−1u, Tn−1u, x∗)

)
, ψ
(
βS(Tn−1u, Tn−1u, x∗)

))
≤ φ

( 1

α+ β
βS(Tn−1u, Tn−1u, x∗)

)
< φ(S(Tn−1u, Tn−1u, x∗)),

which implies that S(Tnu, Tnu, x∗) < S(Tn−1u, Tn−1u, x∗). Therefore, the sequence {S(Tnu, Tnu, x∗)}
is monotone decreasing, bounded below and converges to d ≥ 0. Taking the limit as n → ∞ in the

above inequality, we have

φ(d) ≤ F
(
φ
( β

α+ β
d
)
, φ
( β

α+ β
d
))

< φ(d),

which yields β
α+βd = 0 or φ

(
β

α+βd
)

= 0. Thus we have d = 0 and

lim
n→∞

Tnu = x∗.

It can be shown that lim
n→∞

Tnu = y∗ by the similar arguments mentioned above. Thus we can conclude

that x∗ = y∗ and hence fixed point of the mapping T is unique. This completes the proof.

Taking F (s, t) = s− t in Theorem 2.3, we obtain the following:

Corollary 2.5. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Assume

that X satisfies the condition (C2). Let T : X → X be a nondecreasing mapping with respect to �
satisfying the following condition:

φ(S(Tx, Tx, Ty)) ≤ φ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
−ψ
(
a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

)
for all x, y ∈ X with x 6= y, for some a, b ∈ [0, 1) with a + b < 1 and φ ∈ Φ, ψ ∈ Ψ. If there exists

x0 � Tx0, then T has a unique fixed point in X.
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In addition, taking φ(t) = kt for all t > 0 and ψ(t) = (k− 1)t for all t > 0 with k > 1 in Corollary

2.5, we have the following:

Corollary 2.6. Let (X,�) be a partial ordered set and (X,S) be a complete S-metric space. Assume

that X satisfies the condition (C2). Let T : X → X be a nondecreasing mapping with respect to �
satisfying the following condition:

S(Tx, Tx, Ty) ≤ a · S(x, x, Tx) · S(y, y, Ty)

S(x, x, y)
+ b · S(x, x, y)

for all x, y ∈ X with x 6= y and for some a, b ∈ [0, 1) with a+ b < 1. If there exists x0 � Tx0, then T

has a unique fixed point in X.
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Abstract

The purpose of this research is to study the stochastic pantograph differential equations
(SPDEs) in the G-framework. We determine that any solution Z(t) of stochastic pantograph
differential equation in the G-framework is bounded i.e., in particular Z(t) ∈ M2

G([0, T ]; Rn).
Subject to growth and Lipschitz conditions, we prove that SPDEs in the G-framework admit
unique solution. Some useful inequalities, such as the Hölder’s inequality, Doobs martingale’s
inequality, Burkholder-Davis-Gundy’s (BDG) inequalities and Gronwall’s inequality are utilized
to derive our results. In addition, we obtain the asymptotic estimates for the solutions to SPDEs
in the G-framework.

Keywords: Existence, uniqueness, asymptotic estimates, G-Brownian motion, stochastic
pantograph differential equations.

MSC2010 Classification: 60G10, 60G17, 60G20, 60H05, 60H10, 60H20.

1 Introduction

The stochastic differential equations (SDEs) theory is used in different disciplines of engineering
and sciences. For instance, in physics, SDEs are used to study and model the influence of random
changes on various physical phenomena. These equations describe the transport of cosmic rays in
space. The percolation of fluid through absorbent structures and water catchment can be modeled
by SDEs [15]. They are used to find out the problems of stochastic volatility and risk measures
in finance and economics. In biology, they model the accomplishment of stochastic changes in
reproduction on populations procedures [32, 33]. The weather and climate can also be modeled by
these equations. A huge literature is available on the applications of SDEs in various discipline of
engineering such as mechanical engineering [25, 27, 28], wave processes [26], stability theory [24]
and random vibrations [3, 23]. In general, we can not find the explicit solutions for non-linear SDEs,

∗Author e-mail: faiz
¯

math@ceme.nust.edu.pk
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so we have to present and study the analysis for the solutions of these equations. By virtue of the
Lipschitz and growth conditions, the existence theory for solutions to SDEs in the G-framework was
given by Peng [20, 21] and later by Gao [14]. The said theory with integral Lipschitz coefficients
was developed by Bai and Lin [1]. While Faizullah generalized the existence of solutions for SDEs
in the G-framework with discontinuous coefficients [10]. In view of the Picard approximation
technique, the existence-uniqueness results for stochastic functional differential equations (SFDEs)
in the G-framework were commenced by Ren, Bi and Sakthivel [22]. The stated theory with
Caratheodory approximation scheme was developed by Faizullah [9]. He presented the pth moment
estimates for the solutions to SFDEs in the G-framework [6, 7]. Recently, Faizullah generalized the
existence theory for SFDEs in the G-framework with non-Lipschitz conditions [5]. The pantograph
differential equations arise in different fields such as quantum mechanics, number theory, dynamical
systems, electrodynamics and probability. These equations were utilized by Taylor and Ockendon
to investigate the collection of electric current [19]. The stochastic version of pantograph differential
equations were introduced by Backer and Buckwar [2]. They studied the existence theory for linear
stochastic pantograph differential equations (SPDEs). While Xiao, Song and Liu determined that
the Euler scheme for linear SPDEs is convergent [30]. The existence theory for solutions to non-
linear SPDEs were developed by Fan, Liu and Cao [11], in which the convergence of Euler scheme
was established by Xiao and Zhang [31]. However, up to the best of our knowledge, no one has
studied SPDEs in the G-framework. The current paper will fill the mentioned gap. Consider an m-
dimensional G-Brownian motion W (t) = (W1(t)),W2(t)),W3(t)), ...,Wm(t))T defined on a complete
probability space (Ω,Ft, P ). Let W (t) is adopted to the filtration {Ft; t ≥ 0} and fulfilling the usual
conditions. Assume 0 ≤ t0 ≤ t ≤ T <∞. Suppose the coefficients κ, λ and µ be Borel measurable
such that κ : [0, T ]×Rd×Rd → Rd, λ : [0, T ]×Rd×Rd → Rd×m and µ : [0, T ]×Rd×Rd → Rd×m. We
study the following d-dimensional stochastic pantograph differential equation in the G-framework

dZ(t) = κ(t, Z(t), Z(qt))dt+λ(t, Z(t), Z(qt))d〈W,W 〉(t)+µ(t, Z(t), Z(qt))dW (t), 0 ≤ t ≤ T, (1.1)

where q ∈ (0, 1), the initial condition Z0 ∈ Rd is given and κ, λ, µ are given mappings satisfy-
ing κ, λ, µ ∈ M2

G([0, T ]; Rd). We denote the quadratic variation process of G-Brownian motion
{W (t)}t≥0 by {〈W,W 〉(t)}t≥0. The integral form of equation (1.1) is given as the following

Z(t) = Z0 +
∫ t

0
κ(s, Z(s), Z(qs))ds+

∫ t

0
λ(s, Z(s), Z(qs))d〈W,W 〉(s) +

∫ t

0
µ(s, Z(s), Z(qs))dW (s).

(1.2)

Definition 1.1. Let t ∈ [0, T ]. A stochastic process Z(t) ∈ Rd is known as solution of problem
(1.1) if the below characteristics hold.

(i) {Z(t)}0≤t≤T is Ft-adapted and continuous.

(ii) The coefficients κ(t, Z(t), Z(qt)) ∈ L1([0, T ]; Rd), λ(t, Z(t), Z(qt)) ∈ L2([0, T ]; Rd×m) and
µ(t, Z(t), Z(qt)) ∈ L2([0, T ]; Rd×m).

(iii) For each t ∈ [0, T ], equation (1.2) holds q.s.

2
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A solution Z(t) of problem (1.1) is said to be unique if for any other solution Y (t) of (1.1) we
have

E[ sup
0≤t≤T

| Z(t)− Y (t) |2] = 0,

which means that Z(t) and Y (t) are identical. For all t ∈ [t0, T ] and all z, y, u, v ∈ Rn, throughout
the current paper the following two conditions are assumed.

|κ(t, z, y)|2 + |λ(t, z, y)|2 + |µ(t, z, y)|2 ≤ C(1 + |z|2 + |y|2), (1.3)

where C is a positive constant. This condition (1.3) is known as a linear growth condition and the
below (1.4) is called the Lipschitz condition.

|κ(t, z, y)− κ(t, u, v)|2 + |λ(t, z, y)− λ(t, u, v)|2 + |µ(t, z, y)− µ(t, u, v)|2

≤ C(| z − u |2 + | y − v |2),
(1.4)

where C is a positive constant. We organize the present article in the forthcoming fashion. Section
2 presents several fundamental notions, definitions and results, which are required for our research
work. In section 3 we determine that Z(t) is bounded and belongs to the space M2

G([0, T ]; Rn).
This section also contains the existence and uniqueness theorem for the solutions to SPDEs in the
G-framework. Finally, we derive the path-wise estimates for the solutions to the said equations in
section 4.

2 Preliminaries

Building on the previous notions of G-Brownian motion theory, this section presents the funda-
mental definitions and results required for the further discussion of the subject. For more details
on the concepts briefly discussed, readers are suggested to consult the more depth oriented papers
[8, 13, 17, 20, 21]. Let Ω be a given fundamental non-empty set. Suppose H be a space of linear
real functions defined on Ω satisfying that (i) 1 ∈ H (ii) for every d ≥ 1, X1, X2, ..., Xd ∈ H and
ϕ ∈ Cb.Lip(Rd) it holds ϕ(X1, X2, ..., Xd) ∈ H i.e., with respect to Lipschitz bounded functions, H
is stable. Then (Ω,H, E) is a sub-expectation space, where E is a sub-expectation defined as the
following.

Definition 2.1. A functional E : H → R satisfying the below four features is known as a sub-
expectation. Let Z, Y ∈ H, then

(1) E[Z] ≤ E[Y ] if Z ≤ Y .

(2) E[K] = K, for all K ∈ R.

(3) E[αZ] = αE[Z], for all α ∈ R+.

(4) E[Z] + E[Y ] ≥ E[Z + Y ].
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The above properties (1), (2), (3) and (4) are known as monotonicity, constant preserving, pos-
itive homogeneity and sub-additivity respectively. Moreover, let Ω be the space of all Rd-valued
continuous paths (wt)t≥0 starting from zero. Also, suppose that associated with the below distance,
Ω is a metric space

ρ(w1, w2) =
∞∑
i=1

1
2i

( max
t∈[0,k]

|w1
t − w2

t | ∧ 1).

Fix T ≥ 0 and set

L0
ip(ΩT ) = {φ(Bt1 , Bt2 , ..., Btm) : m ≥ 1, t1, t2, ..., tm ∈ [0, T ], φ ∈ Cb.Lip(Rm×d))},

where B is the canonical process, L0
ip(Ωt) ⊆ L0

ip(ΩT ) for t ≤ T and L0
ip(Ω) = ∪∞n=1L

0
ip(Ωn). The

completion of L0
ip(Ω) under the Banach norm E[|.|p]

1
p , p ≥ 1 is denoted by LpG(Ω), where LpG(Ωt) ⊆

LpG(ΩT ) ⊆ LpG(Ω) for 0 ≤ t ≤ T < ∞. We indicate the filtration generated by the canonical
process {W (t)}t≥0, as Ft = σ{Ws, 0 ≤ s ≤ t} and F = {Ft}t≥0. Suppose πT = {t0, t1, ..., tN},
0 ≤ t0 ≤ t1 ≤ ... ≤ tN ≤ ∞ be a partition of [0, T ]. Set p ≥ 1, then Mp,0

G (0, T ) indicates a collection
of the below type processes

αt(w) =
N−1∑
i=0

βi(w)I[ti,ti+1](t), (2.1)

where βi ∈ LpG(Ωti), i = 0, 1, ..., N − 1. Furthermore, the completion of Mp,0
G (0, T ) with the below

given norm is indicated by Mp
G(0, T ), p ≥ 1

‖α‖ = {
∫ T

0
E[|αs|p]ds}1/p.

Definition 2.2. A stochastic process {W (t)}t≥0 of d-dimensional satisfying the below properties
is called a G-Brownian motion

(1) W (0) = 0.

(2) For any t,m ≥ 0, the increment Wt+m −Wt is G-normally distributed and independent from
Wt1 ,Wt2 , ........Wtn , for n ∈ N and 0 ≤ t1 ≤ t2 ≤, ...,≤ tn ≤ t,

Definition 2.3. Let αt ∈M2,0
G (0, T ) having the form (2.1). Then the G-quadratic variation process

{〈W 〉t}t≥0 and G-Itô’s integral I(α are respectively defined by

〈W 〉t = W 2
t − 2

∫ t

0
WsdWs,

I(α) =
∫ T

0
αsdWs =

N−1∑
i=0

βi(Wti+1 −Wti).

The below two results are taken from the book [18]. They are called as Hölder’s and Gronwall’s
inequalities respectively, .

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

822 Faiz Faizullah 819-831



Lemma 2.4. Assume m,n > 1 such that 1
m + 1

n = 1 and ξ ∈ L2 then ηξ ∈ L1 and

∫ b

a
ηξ ≤

(∫ b

a
|η|m

) 1
m
(∫ b

a
|ξ|n
) 1

n

.

Lemma 2.5. Let η(t) ≥ 0 and ξ(t) be continuous real functions defined on [a, b]. If for all t ∈ [a, b],

ξ(t) ≤ K +
∫ b

a
η(s)ξ(s)ds,

where K ≥ 0, then
ξ(t) ≤ Ke

∫ t
a η(s)ds,

for all t ∈ [a, b].

Definition 2.6. Suppose that the group of entire probability measures on (Ω,B(Ω) is indicated by
P. The capacity is denoted by Ĉ and is given by

Ĉ(D) = sup
P∈P

P (D),

where D ∈ B(Ω) is Borel σ-algebra of Ω.

Definition 2.7. A set D ∈ B(Ω) is called polar if

Ĉ(D) = 0.

A characteristic fulfills quasi-surely (in short q.s.) if it fulfills outer a polar set.

Now we state the following result [4].

Theorem 2.8. Let Z ∈ L2. Then for every ε > 0,

Ĉ(|Z|2 > ε) ≤ E[|Z|2]
ε

.

The following lemma, known as Doob’s martingale inequality, can be found in [14].

Lemma 2.9. Assume [a, b] be a bounded interval of R+. Consider an Rd valued G-martingale
{Z(t)}t≥0. Then

E[ sup
a≤t≤b

|Z(t)|p] ≤ (
p

p− 1
)pE[|Z(b)|P ],

where p > 1 and Z(t) ∈ LpG(Ω,Rd). In particular, if p = 2 then E[supa≤t≤b |Z(t)|2] ≤ 4E[|Z(b)|2].

The following lemma, known as Banach contraction mapping principle, is borrowed from the
book [12].

Lemma 2.10. Assume Z is a complete metric space. Let L : Z → Z is a contraction mapping.
Then L holds a unique fixed point in Z.

5
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3 Existence and uniqueness results

Firstly, we demonstrate a useful lemma. This lemma will be utilized in the upcoming existence-
uniqueness result. This will also be used in the proof of path wise asymptotic estimates for the
solutions to SPDEs in the G-framework.

Lemma 3.1. Let equation (1.1) admits a solution Z(t). Suppose (1.3) holds. Then

E[ sup
0≤s≤T

|Z(s)|2] ≤
(
1 + 4E|Z0|2

)
e16C(T+2)T ,

where the constant C > 0 is already defined.

Proof. Let k ≥ 1 be an arbitrary integer. Set the following stopping time

τk = T ∧ inf{t ∈ [0, T ] :‖ Z(t) ‖≥ k} and Zk(t) = Z(t ∧ τk).

Clearly, τk ↑ T a.s. as k →∞ and Zk(t) satisfies the following equation

Zk(t) = Z0 +
∫ t

0
κ(s, Zk(s), Zk(qs))I[0,τk]ds+

∫ t

0
λ(s, Zk(s), Zk(qs))I[0,τk]d〈W,W 〉(s)

+
∫ t

0
µ(s, Zk(s), Zk(qs))I[0,τk]dW (s).

By virtue of the basic inequality |
∑4

i+1 ci|2 ≤ 4
∑4

i+1 |ci|2, we have

|Zk(t)|2 ≤ 4|Z0|2 + 4
∣∣∣∣∫ t

0
κ(s, Zk(s), Zk(qs))I[0,τk]ds

∣∣∣∣2 + 4
∣∣∣∣∫ t

0
λ(s, Zk(s), Zk(qs))I[0,τk]d〈W,W 〉(s)

∣∣∣∣2
+ 4

∣∣∣∣∫ t

0
µ(s, Zk(s), Zk(qs))I[0,τk]dW (s)

∣∣∣∣2 .
Taking sub-expectation on both sides, we have

E[ sup
0≤s≤t

|Zk(s)|2] ≤ 4E|Z0|2 + 4E[ sup
0≤s≤t

∣∣∣∣∫ t

0
κ(s, Zk(s), Zk(qs))I[0,τk]ds

∣∣∣∣2]

+ 4E[ sup
0≤s≤t

∣∣∣∣∫ t

0
λ(s, Zk(s), Zk(qs))I[0,τk]d〈W,W 〉(s)

∣∣∣∣2]

+ 4E[ sup
0≤s≤t

∣∣∣∣∫ t

0
µ(s, Zk(s), Zk(qs))I[0,τk]dW (s)

∣∣∣∣2].

Use the Hölder’s, Doob’s martingale’s and Burkholder-Davis-Gundy’s (BDG) inequalities [14].

6
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Then by applying condition (1.4) we get

E[ sup
0≤s≤t

|zk(s)|2] ≤ 4E|Z0|2 + 4TC
∫ t

0

(
1 + E|Zk(s)|2 + E|Zk(qs)|2

)
ds

+ 4TC
∫ t

0

(
1 + E|Zk(s)|2 + E|Zk(qs)|2

)
ds

+ 16C
∫ t

0

(
1 + E|Zk(s)|2 + E|Zk(qs)|2

)
ds

≤ 4E|Z0|2 + 8C(T + 2)
∫ t

0

(
1 + 2E[ sup

0≤r≤s
E|Zk(r)|2]

)
ds,

which yields

1 + E[ sup
0≤s≤t

|Zk(s)|2] ≤ 1 + 4E|Z0|2 + 8C(T + 2)
∫ t

0

(
1 + 2E[ sup

0≤r≤s
E|Zk(r)|2]

)
ds

≤ 1 + 4E|Z0|2 + 16C(T + 2)
∫ t

0

(
1 + E[ sup

0≤r≤s
E|Zk(r)|2]

)
ds.

In view of the Gronwall inequality we obtain

1 + E[ sup
0≤s≤T

|Zk(s)|2] ≤
(
1 + 4E|Z0|2

)
e16C(T+2)T .

Consequently,
E[ sup

0≤s≤T
|Z(s)|2] ≤

(
1 + 4E|Z0|2

)
e16C(T+2)T .

The proof stands completed.

Remark 3.2. Lemma 3.1 indicates that if problem (1.1) admits a solution Z(t), then it must be
bounded i.e. in particular Z(t) ∈M2

G([0, T ]; Rn).

Theorem 3.3. Let (1.3) and (1.4) hold. Then equation (1.1) admits at most one solution Z(t) ∈
M2
G([0, T ]; Rd).

Proof. Assume T > 0, 12KT (T + 2) < 1 and Z(t) ∈M2
G([0, T ]; Rd). Define the mapping

(LZ)(t) = Z0 +
∫ t

0
κ(s, Z(s), Z(qs))ds+

∫ t

0
λ(s, Z(s), Z(qs))d〈W,W 〉(s)

+
∫ t

0
µ(s, Z(s), Z(qs))dW (s),

t ∈ [0, T ]. It is clear that LZ is a continuous measurable {Ft}-adapted process. Taking sub-
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expectation on both sides

E[ sup
0≤t≤T

|(LZ)(t)|2] = E|Z0 + sup
0≤t≤T

(
∫ t

0
κ(s, Z(s), Z(qs))ds)

+ sup
0≤t≤T

(
∫ t

0
λ(s, Z(s), Z(qs))d〈W,W 〉(s))

+ sup
0≤t≤T

(
∫ t

0
µ(s, Z(s), Z(qs))dW (s))|2

≤ 4E|Z0|2 + 4E[ sup
0≤t≤T

|
∫ t

0
κ(s, Z(s), Z(qs))ds|2]

+ 4E[ sup
0≤t≤T

|
∫ t

0
λ(s, Z(s), Z(qs))d〈W,W 〉(s)|2]

+ 4E[ sup
0≤t≤T

|
∫ t

0
µ(s, Z(s), Z(qs))dW (s)|2].

Use Hölder’s, Doob martingale and BDG [14] inequalities. Then apply (1.4) to obtain

E[ sup
0≤t≤T

|(LZ)(t)|2] ≤ 4E|Z0|2 + 4TC
∫ t

0

(
1 + E|Z(s)|2 + E|Z(qs)|2

)
ds

+ 4TC
∫ t

0

(
1 + E|Z(s)|2 + E|Z(qs)|2

)
ds

+ 16C
∫ t

0

(
1 + E|Z(s)|2 + E|Z(qs)|2

)
ds

≤ 4E|Z0|2 + 8C(T + 2)
∫ t

0

(
1 + 2 sup

0≤t≤T
E|Z(t)|2

)
ds

≤ 4E|Z0|2 + 8C(T + 2)T + 8C(T + 2)
∫ t

0
E[ sup

0≤t≤T
|Z(t)|2]ds

≤ 4E|Z0|2 + 4CT (2T + 1) + 8CT (2T + 1)
(
1 + 4E|Z0|2

)
e8C(T+2)T <∞.

Thus ‖LZ‖ <∞ and LZ ∈M2
G([0, T ]; Rd). This shows that L is a function from M2

G([0, T ]; Rd) to
itself. Now we have to derive that L is a contraction function. Let Z, Y ∈M2

G([0, T ]; Rd), then

E[ sup
0≤t≤T

|(LY )(t)− (LZ)(t)|2] = E( sup
0≤t≤T

|
∫ t

0
[κ(s, Y (s), Y (qs))− κ(s, Z(s), Z(qs))]ds

+
∫ t

0
[λ(s, Y (s), Y (qs))− λ(s, Z(s), Z(qs))]d〈W,W 〉(s)

+
∫ t

0
[µ(s, Y (s), Y (qs))− µ(s, Z(s), Z(qs))]dW (s)|2)

By the basic inequality |
∑3

i=1 ci|2 ≤ 3
∑3

i=1 |ci|2 and monotonic property of sub-expectation we

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

826 Faiz Faizullah 819-831



obtain

E[ sup
0≤t≤T

|(LY )(t)− (LZ)(t)|2] ≤ 3E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
[κ(s, Y (s), Y (qs))− κ(s, Z(s), Z(qs))]ds

∣∣∣∣2
)

+ 3E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
[λ(s, Y (s), Y (qs))− λ(s, Z(s), Z(qs))]d〈W,W 〉(s)

∣∣∣∣2
)

+ 3E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
[µ(s, Y (s), Y (qs))− µ(s, Z(s), Z(qs))]dW (s)

∣∣∣∣2
)
.

Next we use the Hölder’s inequality, BDG inequalities [14], Doob’s martingale inequality and Lip-
schitz condition (1.4) as follows

E[ sup
0≤t≤T

|(LY )(t)− (LZ)(t)|2] ≤≤ 3TE
(∫ t

0
|κ(s, Y (s), Y (qs))− κ(s, Z(s), Z(qs))|2ds

)
+ 3TE

(∫ t

0
|λ(s, Y (s), Y (qs))− λ(s, Z(s), Z(qs))|2ds

)
+ 12E

(∫ t

0
|µ(s, Y (s), Y (qs))− µ(s, Z(s), Z(qs))|2ds

)
≤ 3TK

∫ t

0
E(|Y (s)− Z(s)|2 + |Y (qs)− Z(qs)|2)ds

+ 3TK
∫ t

0
E(|Y (s)− Z(s)|2 + |Y (qs)− Z(qs)|2)ds

+ 12K
∫ t

0
E(|Y (s)− Z(s)|2 + |Y (qs)− Z(qs)|2)ds

= 6K(T + 2)
∫ t

0
E(|Y (s)− Z(s)|2 + |Y (qs)− Z(qs)|2)ds

≤ 12K(T + 2)
∫ t

0
E( sup

0≤t≤T
|Y (t)− Z(t)|2)ds

≤ 12KT (T + 2)E( sup
0≤t≤T

|Y (t)− Z(t)|2)

In view of 12KT (T + 2) < 1 and lemma 2.10, the function L admits a unique fixed point in
M2
G([0, T ]; Rd), i.e., there is a unique stochastic process Z(t, w), which fulfills

E( sup
0≤t≤T

|Y (t)− Z(t)|2) = 0.

Thus problem (1.1) admits a unique solution Z(t) in [0, T ]. Assume T0 = T , Tj = min{T +
Tj−1,

Tj−1

q }, where j = 1, 2, 3, ... Then it is clear that Tj → ∞ as j → ∞ and M2
G([Tj−1, Tj ]; Rd)

is a Banach space. Now suppose that (1.1) admits a unique solution ψj−1(t) in [0, Tj−1], let
Z ∈M2

G([Tj−1, Tj ]; Rd) and define

(LZ)(t) = ψj−1(Tj−1) +
∫ t

Tj−1

κ(s, Z(s), ψj−1(qs))ds+
∫ t

Tj−1

λ(s, Z(s), ψj−1(qs))d〈W,W 〉(s)

+
∫ t

Tj−1

µ(s, Z(s), ψj−1(qs))dW (s),

9
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t ∈ [Tj−1, Tj ]. Obviously, LZ ∈ M2
G([Tj−1, Tj ]; Rd). Using identical arguments as above one can

derive that E[sup0≤t≤T |(LY )(t) − (LZ)(t)|2] ≤ 12KT (T + 2)E(sup0≤t≤T |Y (t) − Z(t)|2) i.e., the
mapping L admits a fixed point Z in M2

G([Tj−1, Tj ]; Rd) and Z(Tj−1) = ψj−1(Tj−1). Thus

ψj(t) =

{
ψj−1(t), if t ∈ [0, Tj−1) ;

Z(t), if t ∈ [Tj−1, Tj ]

is the solution of problem (1.1) in [0, Tj ]. Hence by induction, the proof stands completed.

4 Path-wise asymptotic estimate

This section presents the path-wise asymptotic estimate for the solution to problem (1.1). We use

lemma 3.1 to determine that the second moment of Lyapunov exponent lim
t→∞

sup
1
t
log|Z(t)| [16] is

bounded.

Theorem 4.1. Let the linear growth condition (1.3) is satisfied. Then

lim
t→∞

sup
1
t
log|Z(t)| ≤ 8C(T + 2), q.s.

Proof. Using lemma 3.1, for each j = 1, 2, ...,

E( sup
j−1≤t≤j

|Z(t)|2) ≤ K1e
K2j ,

where K1 =
(
1 + 4E|X0|2

)
and K2 = 16C(T + 2). For any arbitrary ε > 0, in view of theorem 2.8

we obtain

Ĉ(w : sup
j−1≤t≤j

|Z(t)|2 > e(K2+ε)j) ≤
E[supj−1≤t≤j |Z(t)|2]

e(K2+ε)j

≤ K1e
K2j

e(K2+ε)j

= K1e
−εj .

For almost all w ∈ Ω, the Borel-Cantelli lemma follows that a random integer j0 = j0(w) exists
such that

sup
j−1≤t≤j

|Z(t)|2 ≤ e(K2+ε)j whenever j ≥ j0,

which yields,

lim
t→∞

sup
1
t
log|Z(t)| ≤ K2 + ε

2

=
1
2

[16C(T + 2)] +
ε

2
= 8C(T + 2) +

ε

2
, q.s.

10
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But ε is arbitrary, so

lim
t→∞

sup
1
t
log|Z(t)| ≤ 8C(T + 2), q.s.

The proof stands completed.

5 Conclusion

The current investigation presents the study of stochastic pantograph differential equations in
the G-framework. The Gronwall’s, Burkholder-Davis-Gundy’s (in short BDG), Doobs martingale
and Hölder’s inequalities are utilized to obtain the results. By virtue of the growth condition,
it is revealed that solutions of the stated equations are bounded. The existence and uniqueness
results for G-SPDEs are derived. In addition, the path-wise asymptotic estimates for the solutions
to SPDEs in the G-framework are determined. The results of the current paper open several
new research directions. For example, what are the p-moment estimates for SPDEs in the G-
framework? How to develop the existence-uniqueness results with non-linear and non-Lipschitz
conditions? What about the stability of solutions for these equations? etc. We hope this article
will play a key role to provide framework for the concepts briefly discussed.
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Abstract. In this paper, we present some properties of dual partial metric (abbreviation, pmetric)
topology and investigate a fixed point result for self mappings in dual pmetric space. This result gener-
alizes Banach contraction principle in a different way than in the known results from the literature. The
article includes an example which shows the validity of our result.

1. Introduction

Metric spaces are inevitably Hausdorff and so cannot, for example, be used to study non-Hausdorff
topologies such as those required in the Tarskian approach to programming language semantics. Matthews
[3] presented a symmetric generalized metric for such topologies, an approach which sheds new light on
how metric tools such as Banach’s Theorem can be extended to non-Hausdorff topologies. Matthews [3]
defined the partial metric (pmetric) p on nonempty set X (p : X ×X → [0,∞)) and generalized Banach
fixed point theorem (see [2, 7]). Essentially, the partial metric generalization is that the distance of a
point from itself is not necessarily zero anymore. The axioms were first introduced in [3], where the range
of a pmetric was restricted to [0,∞). Neill [5] extended the range to (−∞,∞) and called this functional
a dual partial metric denoted by p∗, since this is both natural (in that there is no difficulty in extending
the results from [3]) and essential for a natural dual pmetric. The natural context in which to view a
partial metric space (X, p) is as a bitopological space (X, τ(p), τ(d)). Neill [5] showed that successive
conditions on a valuation can ensure that the pmetric topology is first of all order consistent (with the
underlying poset), then equivalent to the Scott topology, and finally that the induced metric topology is
equivalent to the patch topology. Neill also established some topological properties of functional p∗ but
did not give any fixed point result in p∗. However, Oltra et al. [4] established the criteria of convergence
of sequences and completeness in p∗ and generalized the fixed point result presented by Matthews.

In this paper, we present some more topological properties of p∗ and establish fixed point results for
self mappings in dual pmetric space. These results generalize Banach contraction principle in a different
way than in the known results from the literature. The article includes an example which shows the
validity of our results.

2. Valuation and dual pmetric

Throughout this paper the letters R+
0 , R and N will represent the set of nonnegative real numbers,

real numbers and natural numbers, respectively.

Definition 1. (Consistent Semilattice) Let (X,�) be a poset such that

(1) for all x, y ∈ X x ∧ y ∈ X,

02010 Mathematics Subject Classification: 47H09; 47H10; 54H25
0Keywords: fixed point, dual pmetric topology; complete dual pmetric space.
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(2) if {x, y} ⊆ X is consistent, then x ∨ y ∈ X.

Then (X,�) with (1) and (2) is called a consistent semilattice.

Definition 2. (Valuation Space) A valuation space is a consistent semilattice (X,�) and a function
µ : X → R, called valuation, such that

(1) if x � y and x 6= y, µ(x) < µ(y) and
(2) if {x, y} ⊆ X is consistent, then

µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y).

Matthews pmetric is defined as follws.

Definition 3. [3] Let X be a nonempty set and p : X ×X → R+
0 satisfy the following properties: for

all x, y, z ∈ X
(p1) x = y ⇔ p (x, x) = p (x, y) = p (y, y) ,
(p2) p (x, x) ≤ p (x, y) ,
(p3) p (x, y) = p (y, x) ,
(p4) p (x, z) + p (y, y) ≤ p (x, y) + p (y, z) .

Then p is called a pmetric.

Definition 4. Let p be a pmetric defined on a nonempty set X. The functional p∗ : X×X → R defined
by

p∗(x, y) = p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X
is called a dual partial metric (dual pmetric) on X and (X, p∗) is known as a dual partial metric space.
Moreover, it can easily be proved that the expression

d∗(x, y) = 2p∗(x, y)− p∗ (x, x)− p∗ (y, y)

defines a metric on X.

Note that the function p : X ×X → R+
0 satisfies (p1)− (p4), that is,

(p∗1) x = y ⇔ p∗ (x, x) = p∗ (x, y) = p∗ (y, y) ,
(p∗2) p∗ (x, x) ≤ p∗ (x, y) ,
(p∗3) p∗ (x, y) = p∗ (y, x) ,
(p∗4) p∗ (x, z) + p∗ (y, y) ≤ p∗ (x, y) + p∗ (y, z).

Unlike other generalized metrics (such as the quasimetrics) this duality is not a consequence of a lack
of symmetry in the axioms. Indeed it is perhaps one of the strengths of the partial metric generalization
that symmetry is preserved as an axiom.

Remark 1. We observe that, as in the metric case, if p∗ is a dual pmetric then p∗(x, y) = 0 implies x = y
but converse may not be true. p∗(x, x) referred to as the size or weight of x, is a feature used to describe
the amount of information contained in x. It is obvious that if p is a partial metric then p∗ is a dual
partial metric but converse is not true. Note that p∗ (x, x) ≤ p∗ (x, y) does not imply p (x, x) ≤ p (x, y).
Nevertheless, the restriction of p∗ to R+

0 is a partial metric.

Lemma 1. Suppose that (X,�, µ) is a valuation space. Then p∗(x, y) = µ(x∨ y) defines a dual pmetric
on X.

Proof. The axioms (p∗2) and (p∗3) are immediate. For (p∗1), we proceed as

if p∗ (x, x) = p∗ (x, y) = p∗ (y, y) , then µ(x ∨ y) = µ(x) = µ(y) implies x = y.

The converse is obvious. We prove (p∗4):

p∗(x, z) + p∗(y, y) = µ(x ∨ z) + µ(y)

≤ µ(x ∨ y ∨ z) + µ[(x ∨ y) ∧ (y ∨ z)]
= µ(x ∨ y ∨ z) + µ(x ∨ y) + µ(y ∨ z)− µ(x ∨ y ∨ z)
= µ(x ∨ y) + µ(y ∨ z) = p∗(x, y) + p∗(y, z),

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

833 Nazam ET AL 832-840



as desired. �

Example 1. Let p be a pmetric defined on a nonempty set X = {[a, b] ; a ≤ b}. The functional p∗ :
X ×X → R defined by

p∗ ([a, b] , [c, d]) =

{
c− d if max {b, d} = b,min {a, c} = a
a− b if max {b, d} = d,min {a, c} = c

defines a daul pmetric on X.

Example 2. Let d be a metric and p be a pmetric defined on a nonempty set X and c > 0 be a real
number. The functional p∗ : X ×X → R defined by

p∗(x, y) = d(x, y)− c for all x, y ∈ X

is a dual pmetric on X.

For a partial metric space (X, p), we immediately have a natural definition (although slightly different
from the one given in [3]) for the open balls:

Bε(x; p) = {y ∈ X|p(x, y) < p(x, x) + ε} for all x ∈ X.ε > 0. (2.1)

The set T [p] = {Bε(x; p), x ∈ X.ε > 0} defines a pmetric topology on X. It can easily be seen that T [p]
is a T0 topology. The equation (2.1) naturally implies that

B∗ε (x; p∗) = {y ∈ X|p∗(x, y) < p∗(x, x) + ε} for all x ∈ X, ε > 0,

which gives a structure for open balls in dual pmetric space (X, p∗). Unlike their metric counterpart,
some dual pmetric open balls may be empty. For example, if p∗(x, x) 6= 0, then

B∗p∗(x,x)(x; p∗) = {y ∈ X|p∗(x, y) < 2p∗(x, x)}
= {y ∈ X|p(x, y)− p(x, x)− p(y, y) < −2p(x, x)}
= {y ∈ X|p(x, y) + p(x, x) < p(y, y)} = Φ.

We prove that the set {B∗ε (x; p∗); for all x ∈ X, ε > 0} of open balls forms the basis for dual pmetric
topology denoted by T [p∗]. Each dual pmetric topology is T0 topology and every open ball in a dual
pmetric space is an open set.

Theorem 1. The set {B∗ε (x; p∗); for all x ∈ X, ε > 0} of open balls forms the basis for dual pmetric
topology denoted by T [p∗].

Proof. It is obvious that

X = ∪x∈XB∗ε (x; p∗)

and for any two open balls B∗ε (x; p∗) and B∗δ (y; p∗), we note that

B∗ε (x; p∗) ∩B∗δ (y; p∗) = ∪{B∗κ(c; p∗)| c ∈ B∗ε (x; p∗) ∩B∗δ (y; p∗)}

where, κ = p∗(c, c) + min {ε− p∗(x, c), δ − p∗(y, c)} ,
as desired. �

Theorem 2. Each dual pmetric topology is a T0 topology.

Proof. Suppose p∗ : X ×X → R is a dual pmetric and x 6= y. Then without loss of generality, we have
p∗ (x, x) < p∗ (x, y) for all x, y ∈ X. Choose ε = p∗ (x, y)− p∗ (x, x). Since

p∗ (x, x) < p∗ (x, x) + ε = p∗ (x, y) ,

x ∈ B∗ε (x; p∗) and y /∈ B∗ε (x; p∗) because otherwise we obtain an absurdity (p∗ (x, y) < p∗ (x, y)). �

Theorem 3. Every open ball in a dual pmetric space is an open set.
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Proof. Let (X, p∗) be a dual pmetric space and B∗ε (v; p∗) be an open ball, centered at v, of radius ε > 0.
We show that for x 6= v,

x ∈ B∗δ (x; p∗) ⊆ B∗ε (v; p∗).

Suppose that x ∈ B∗ε (v; p∗). Using (p∗1) and (p∗2), we have

p∗(x, x) < p∗(x, v) < p∗(v, v) + ε. (2.2)

Take δ = ε+ p∗(v, v)− p∗(x, x). (2.2) implies p∗(x, x) < p∗(x, x) + δ. Thus x ∈ B∗δ (x; p∗).
Next we show that

B∗δ (x; p∗) ⊆ B∗ε (v; p∗).

Suppose that y ∈ B∗δ (x; p∗). Then

p∗(x, y) < p∗(x, x) + δ,

p∗(x, y) < p∗(x, x) + ε+ p∗(v, v)− p∗(x, x) = ε+ p∗(v, v),

which implies that y ∈ B∗ε (v; p∗). �

Remark 2. (1) To see in what sense p∗ is dual to p, we recall that the specialization order induced by
a T0-topology T , is defined by

x �T y if and only if for all O ∈ T , x ∈ O implies y ∈ O.

Then, for a partial metric space (X, p), it is not difficult to check that:

x �T [p] y ⇔ p(x, y) = p(x, x)

⇔ p∗(x, y) = p∗(x, x)

⇔ y �T [p∗] x.

It is also clear that p∗∗ = p. Now if (X, p) is a partial metric space, then

d(x, y) = p(x, y) + p∗(x, y), for all x, y ∈ X,

defines a metric on X, which we call the induced metric. If we denote the metric topology by T [d], then
T [d] = T [p] ∨ T [p∗].

(2) For complete valuation space T [p] = σp = Scott topology, moreover, if the valuation space is
compact then T [p∗] = σ∗p = dual Scott topology.

If (X, p∗) is a dual pmetric space, then the function dp∗ : X ×X → R+
0 defined by

dp∗(x, y) = p∗(x, y)− p∗(x, x), (2.3)

is a quasi metric on X such that T [p∗] = T [dp∗ ] where Bε(x; dp∗) = {y ∈ X|dp∗(x, y) < ε}. In this case,
dsp∗(x, y) = max{dp∗(x, y), dp∗(y, x)} defines a metric on X, known as induced metric.

A dual pmetric p∗ can quantify the amount of information in an object x using the numerical measure
p∗(x, x) and also that p∗ has an open ball topology. This would not be of much use in Computer Science
without a partial ordering. Therefore, we define a partial ordering and obtain some related results.

Definition 5. Let (X, p∗) be a dual pmetric space. We define the relation �p∗ on X2 such that

∀x, y ∈ X, x �p∗ y if and only if p∗(x, x) = p∗(x, y).

Lemma 2. For each dual pmetric p∗, �p∗ is a partial ordering.

Proof. We prove that �p∗ is reflexive, antisymmetric and transitive.

(O1) Since, p∗(x, x) = p∗(x, x) for all x ∈ X, x �p∗ x.
(O2) Suppose that x �p∗ y and y �p∗ x. Then

p∗(x, x) = p∗(x, y) and p∗(y, y) = p∗(y, x).

Using (p∗3), we have p∗(x, x) = p∗(x, y) = p∗(y, y) and then by (p∗1) we obtain x = y.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

835 Nazam ET AL 832-840



(O3) For all x, y, z ∈ X, assume that x �p∗ y and y �p∗ z then

p∗(x, x) = p∗(x, y) and p∗(y, y) = p∗(y, z).

Due to (p∗4) we have

p∗ (x, z) ≤ p∗ (x, y) + p∗ (y, z)− p∗ (y, y)

= p∗ (x, x) + p∗ (y, y)− p∗ (y, y) ,

p∗ (x, z) ≤ p∗ (x, x) ,

but also due to (p∗2) we have p∗ (x, x) ≤ p∗ (x, z). Thus p∗ (x, x) = p∗ (x, z) which implies that
x �p∗ z.

Hence (O1), (O2) and (O3) ensure that �p∗ defines a partial order on X. �

Theorem 4. For each dual pmetric p∗, T [p∗] is weakly order consistent topology over �p∗ .

Proof. We show that T [p∗] ⊆ T [�p∗ ]. For this purpose it is sufficient to show that for all x ∈ X and
ε > 0

B∗ε (x; p∗) = ∪{{z|y �p∗ z} |y ∈ B∗ε (x; p∗)} .
Suppose that x, y, z ∈ X and ε > 0 are such that y �p∗ z and y ∈ B∗ε (x; p∗). Consider

p∗(x, z) ≤ p∗(x, y) + p∗(y, z)− p∗(y, y) by (p∗4)

= p∗(x, y), since y �p∗ z,
< p∗(x, x) + ε, since y ∈ B∗ε (x; p∗).

This shows that z ∈ B∗ε (x; p∗), which completes the proof. �

Thus T [p∗] is a dual Scott-like topology over �p∗ if each chain X has a least upper bound l and if

lim
n→∞

p∗(xn, xn) = p∗(l, l).

Now we present a theorem containing conditions under which T [p∗] = T [�p∗ ].

Theorem 5. Let p∗ : X2 → R be a dual pmetric. Then

T [p∗] = T [�p∗ ]⇔ ∀ x ∈ X, ∃ ε > 0 such that B∗ε (x; p∗) = {y|x �p∗ y} .

Proof. Suppose that B∗ε (x; p∗) = {y|x �p∗ y} for all x ∈ X, ε > 0 and for all U ∈ T [�p∗ ], we have

U = ∪x∈U {y|x �p∗ y} = ∪x∈UB∗ε (x; p∗) ∈ T [p∗].

Thus T [�p∗ ] ⊆ T [p∗]. Using Theorem 4, we conclude that T [p∗] = T [�p∗ ].
Conversely, suppose that T [p∗] = T [�p∗ ]. Then for all x ∈ X {y|x �p∗ y} ∈ T [p∗]. Thus there exists

ε > 0 such that x ∈ B∗ε (x; p∗) ⊆ {y|x �p∗ y}. Now if x ∈ B∗ε (x; p∗), then {y|x �p∗ y} ⊆ B∗ε (x; p∗). As a
result, B∗ε (x; p∗) = {y|x �p∗ y}. �

3. Convergence criteria in dual pmetric space

The following definition and lemma describe the convergence criteria established by Oltra et al. [4].

Definition 6. [4] Let (X, p∗) be a dual partial metric space.

(1) A sequence {xn}n∈N in (X, p∗) is called a Cauchy sequence if
limn,m→∞ p∗(xn, xm) exists and is finite.

(2) A dual partial metric space (X, p∗) is said to be complete if every Cauchy sequence {xn}n∈N in
X converges, with respect to T [p∗], to a point υ ∈ X such that

p∗(x, x) = lim
n,m→∞

p∗(xn, xm).

Lemma 3. [4]

(1) Every Cauchy sequence in (X, dsp∗) is also a Cauchy sequence in (X, p∗).
(2) A dual partial metric (X, p∗) is complete if and only if the metric space (X, dsp∗) is complete.
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(3) A sequence {xn}n∈N in X converges to a point υ ∈ X with respect to T [(dsp∗)] if and only if

lim
n→∞

p∗(υ, xn) = p∗(υ, υ) = lim
n→∞

p∗(xn, v).

(4) If limn→∞ xn = υ such that p∗(υ, υ) = 0, then limn→∞ p∗(xn, k) = p∗(υ, k) for every k ∈ X.

4. Fixed point theorem

In this section, by establishing Theorem 8 in dual pmetric space, we show that Banach’s contraction
mapping theorem can be generalized to many T0 topologies for applications in program verification and
domain theory. Let B denote the set of all functions β : [0,∞)→ [0, 1) which satisfy the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

The following generalization of Banach’s contraction principle, proved in 1973, is due to Geraghty [1].

Theorem 6. [1] Let (M,d) be a complete metric space and T : M →M be a mapping. If there exists
β ∈ B such that, for all j, k ∈M ,

d(T (j), T (k)) ≤ β(d(j, k))d(j, k).

Then T has a unique fixed point υ ∈ M and, for any choice of the initial point j0 ∈ M , the sequence
{jn} defined by jn = T (jn−1) for each n ≥ 1 converges to the point υ.

In [6], La Rosa and Vetro extended the notion of Geraghty contraction mappings to the context of
partial metric spaces and proved partial metric version of Theorem 6, stated below:

Theorem 7. [6, Theorem 3.5] Let (M,p) be a complete partial metric space. If the self mapping
T : M → M is a Ciŕıc type Geraghty contraction, then T has a unique fixed point j ∈ M and the
Picard iterative sequence {Tn(j0)}n∈N converges to υ with respect to τ(ps), for any j0 ∈M . Moreover,
p(υ, υ) = 0.

We prove the same in dual pmetric space.

Theorem 8. Let (M,p∗) be a complete dual pmetric space and T : M →M be a mapping such that for
all j, k ∈M and β ∈ B

|p∗(T (j), T (k))| ≤ β (Q(j, k))Q(j, k), (4.1)

where

Q(j, k) = max {|p∗(j, k)| , |p∗(j, T (j))| , |p∗(k, T (k))|} .
Then T has a unique fixed point υ∗ in M .

Proof. Let j0 be an initial point in M and jn = T (jn−1), n ≥ 1, an iterative sequence starting with j0.
If there exists a positive integer r such that jr+1 = jr, then jr is the fixed point of T and it completes
the proof. Suppose that jn 6= jn+1 for all n ∈ N and by (4.1), we have

|p∗(jn+1, jn+2)| = |p∗(T (jn), T (jn+1))|
≤ β (Q(jn, jn+1))Q(jn, jn+1) (4.2)

= β (|p∗(jn, jn+1)|) |p∗(jn, jn+1)|,
|p∗(jn+1, jn+2)| < |p∗(jn, jn+1)|, since β ∈ B, (4.3)

where

Q(jn, jn+1) = max {|p∗(jn, jn+1)| , |p∗(jn, jn+1)| , |p∗(jn+1, jn+2)|} = |p∗(jn, jn+1)| .
For if Q(jn, jn+1) = |p∗(jn+1, jn+2)| then we get a contradiction from (4.2). The inequality (4.3) implies
that {|p∗(jn, jn+1)|}∞n=1 is a monotone and bounded above sequence and hence it is convergent and
converges to a point α1, that is, limn→∞ |p∗(jn, jn+1)| = α1 ≥ 0. If α1 = 0, then we have done but if
α1 > 0, then from (4.3) we have

|p∗(jn+1, jn+2)| ≤ β(|p∗(jn, jn+1)|)|p∗(jn, jn+1)|,
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which implies that ∣∣∣∣p∗(jn+1, jn+2)

p∗(jn, jn+1)

∣∣∣∣ ≤ β(|p∗(jn, jn+1)|).

Taking limit we have

lim
n→∞

β(|p∗(jn, jn+1)|) = 1.

Since β ∈ B, limn→∞ |p∗(jn, jn+1)| = 0 entails α1 = 0. Hence

lim
n→∞

p∗(jn, jn+1) = 0.

Similarly, using (4.1) we can prove that

lim
n→∞

p∗(jn, jn) = 0.

Now since dp∗(jn, jn+1) = p∗(jn, jn+1) − p∗(jn, jn), we deduce that limn→∞ dp∗(jn, jn+1) = 0 for all
n ≥ 1. Now, we show that the sequence {jn} is a Cauchy sequence in (M,dsp∗). Suppose on contrary
that {jn} is not a Cauchy sequence. Then given ε > 0, we will construct a pair of subsequences {jmr

}
and {jnr} violating the following condition for least integer nr such that mr > nr > r where r ∈ N

dp∗(jmr
, jnr

) ≥ ε. (4.4)

In addition, upon choosing the smallest possible mr, we may assume that

dp∗(jmr
, jnr−1

) < ε.

By the triangle inequality, we have

ε ≤ dp∗(jmr
, jnr

)

≤ dp∗(jmr
, jnr−1

) + dp∗(jnr−1
, jnr

)

< ε+ dp∗(jnr−1
, jnr

).

That is,

ε < ε+ dp∗(jnr−1 , jnr ) (4.5)

for all r ∈ N. In the view of (4.5) and (2.3), we have

lim
r→∞

dp∗(jmr
, jnr

) = ε. (4.6)

Again using the triangle inequality, we have

dp∗(jmr , jnr ) ≤ dp∗(jmr , jmr+1) + dp∗(jmr+1 , jnr+1) + dp∗(jnr+1 , jnr )

and

dp∗(jmr+1
, jnr+1

) ≤ dp∗(jmr+1
, jmr

) + dp∗(jmr
, jnr

) + dp∗(jnr
, jnr+1

).

Taking limit as r → +∞ and using (2.3) and (4.6), we obtain

lim
r→+∞

dp∗(jmr+1
, jnr+1

) = ε.

Now from contractive condition (4.1), we have

|p∗(jnr+1
, jmr+2

)| = |p∗(T (jnr
), T (jmr+1

))|,
≤ β(|p∗(jnr

, jmr+1
)|)|p∗(jnr

, jmr+1
)|.

We conclude that ∣∣∣∣p∗(jnr+1
, jmr+2

)

p∗(jnr
, jmr+1

)

∣∣∣∣ ≤ β(|p∗(jnr
, jmr+1

)|).

By using (2.3), letting r → +∞ in the above inequality, we obtain

lim
r→∞

β(|p∗(jnr , jmr+1)|) = 1.

Since β ∈ B, limr→∞ |p∗(jnr
, jmr+1

)| = 0 and hence limr→∞ dp∗(jnr
, jmr+1

) = 0 < ε which contradicts
our assumption (4.4). Arguing like above, we can have limr→∞ dp∗(jmr

, jnr+1
) = 0 < ε. Hence {jn} is
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a Cauchy sequence in (M,dsp∗), that is, limn,m→∞ dsp∗(jn, jm) = 0. Since (M,dsp∗) is a complete metric
space, {jn} converges to a point υ in M , i.e., limn→∞ dsp∗(jn, υ) = 0. Then from Lemma 3, we get

lim
n→∞

p∗(υ, jn) = p∗(υ, υ) = lim
n,m→∞

p∗(jn, jm) = 0. (4.7)

We are left to prove that υ is a fixed point of T . For this purpose, using contractive condition (4.2) and
(4.7), we get

|p∗(jn+1, T (υ))| = |p∗(T (jn), T (υ))|
≤ β(|p∗(jn, υ)|)|p∗(jn, υ)|,

lim
n→∞

|p∗(jn+1, T (υ))| ≤ lim
n→∞

β(p∗(jn, υ))p∗(jn, υ).

This shows that p∗(υ, T (υ)) = 0. So from (p∗1) and (p∗2) we deduce that υ = T (υ) and hence υ is a fixed
point of T . Uniqueness is obvious. �

Corollary 1. Let (M,p) be a complete partial metric space and T : M → M be a mapping. If for any
j, k ∈M and β ∈ B, T satisfies the condition

p(T (j), T (k)) ≤ β (Q(j, k))Q(j, k), (4.8)

where Q(j, k) = max {p(j, k), p(j, T (j)), p(k, T (k))}, then T has a unique fixed point υ∗ in M .

Proof. Since the restriction of p∗ to R+
0 , that is, p∗|R+

0
, is a partial metric p, the result is obvious. �

The following example illustrates Theorem 8 and shows that condition (4.1) in dual pmetric space is
more general than contractivity condition (4.8) in partial metric space. This example also emphasis the
use of absolute value function in contractive condition (4.1).

Example 3. Let M = [−1, 0] and define the functional p∗∨ : M ×M →M by p∗∨(j, k) = max{j, k} for
all j, k ∈M . Then (X, p∗∨) is a complete dualistic partial metric space. Define the mapping T : X → X
and β by

T (j) =
j

2
and β(|j|) =

9

10
, for all j ∈M.

Without loss of generality we may assume that j ≥ k and then,

|p∗∨(T (j), T (k))| =

∣∣∣∣ j2 ∨ k2
∣∣∣∣ =

∣∣∣∣ j2
∣∣∣∣ ,

|p∗∨(j, k)| = |j| ,

|p∗∨(j, T (j))| =

∣∣∣∣j ∨ j2
∣∣∣∣ =

∣∣∣∣ j2
∣∣∣∣ ,

|p∗∨(k, T (k))| =

∣∣∣∣k ∨ k2
∣∣∣∣ =

∣∣∣∣k2
∣∣∣∣ .

Thus Q(j, k) = max
{
|j|,

∣∣k
2

∣∣} and consider

|p∗∨(T (j), T (k))| ≤ β (Q(j, k))Q(j, k)∣∣∣∣ j2
∣∣∣∣ ≤ β(|j|)|j| if Q(j, k) = |j|∣∣∣∣ j2
∣∣∣∣ ≤ β

(∣∣∣∣k2
∣∣∣∣) ∣∣∣∣k2

∣∣∣∣ if Q(j, k) =

∣∣∣∣k2
∣∣∣∣ .

The above inequalities are true for all j, k ∈ X. Therefore, the contractive condition (4.1) holds true.
Thus all the conditions of Theorem 8 are satisfied by the mapping T . Note that j = 0 is the unique
fixed point of T . Moreover, the contractive condition (4.8) in the statement of Corollary 1 does not exist
for this particular case and hence the contractive condition (4.1) cannot be replaced with contractive
condition (4.8) in Theorem 8 and as a result, Corollary 1 fails to ensure the fixed point of T .
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Abstract

One purpose of this paper is to investigate the growth of analytic function represented by
Laplace-Stieltjes transform which is of infinite order and converges in the half plane, and a
necessary and sufficient conditions on the growth of Laplace-Stieltjes transforms of finite XU -
order was obtained. Besiders, we further investigate the error in approximating on Laplace-
Stieltjes transform of finite XU -order, and obtained some relations between the error and
growth of Laplace-Stieltjes transforms of finite XU -order.
Key words: approximation, XU -order, Laplace-Stieltjes transform.
2010 Mathematics Subject Classification: 44A10, 30E10.

1 Introduction and basic notes

Laplace-Stieltjes transform

G(s) =

∫ +∞

0

e−sxdα(x), s = σ + it, (1)

where α(x) is a bounded variation on any finite interval [0, Y ](0 < Y < +∞), and σ and t are real
variables, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform
similar to the Laplace transform. It can be used in many fields of mathematics, such as functional
analysis, and certain areas of theoretical and applied probability.

For Laplace-Stieltjes transform (1), Widder in [18] pointed out that G(s) can become the
classical Laplace integral form

G(s) =

∫ ∞
0

e−stϕ(t)dt,

when α(t) is absolutely continuous. Moreover, if α(t) is a step-function, we can choose a sequence
{λn}∞0 satisfying

0 ≤ λ1 < λ2 < · · · < λn < · · · , λn →∞ as n→∞, (2)

∗The authors were supported by the National Natural Science Foundation of China (11561033, 61662037), the
Natural Science Foundation of Jiangxi Province in China (20132BAB211001,20151BAB201008), and the Foundation
of Education Department of Jiangxi (GJJ150902, GJJ160914) of China.
†Corresponding author
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and

α(x) =


a1 + a2 + · · ·+ an, λn ≤ x < λn+1;

0, 0 ≤ x < λ1;

α(x+) + α(x−)

2
, x > 0,

by Theorem 1 in [18, Page 36], then G(s) becomes a Dirichlet series

G(s) =
∞∑
n=1

ane
−λns, s = σ + it. (3)

(σ, t are real variables), an are nonzero complex numbers.
Yu J. R. in 1963 [25] first investigated the growth and value distribution of Laplace-Stieltjes

transform (1), and obtained the Valiron-Knopp-Bohr formula of the associated abscissas of bounded
convergence, absolute convergence and uniform convergence and the Borel line of Laplace-Stieltjes
transforms. After his works, many mathematicians further studied some properties on the growth
and value distribution of Laplace-Stieltjes transforms, and there were a number of results about
this subject, such as: Batty C. J. K., M. N. Sheremeta, Kong Y. Y., Sun D. C., Huo Y. Y. and
Xu H. Y. investigated the growth of analytic functions with kinds of order defined by Laplace-
Stieltjes transforms (see [1, 3, 4, 5, 6, 19, 22]), and Yu J. R., Shang L. N., Gao Z. S., and Xu
H. Y. investigated the value distribution of such functions (see [11, 20, 21, 25]). Moreover, as for
Dirichlet series (3), a special form of Laplace-Stieltjes transform, considerable attention has been
paid to the growth and the value distribution of analytic functions defined by Dirichlet series and
lots of interesting results can be founded in (see [2, 9, 10, 12, 15, 16, 17, 23, 24]).

Luo and Kong [7, 8] in 2012 and 2014 studied the growth of the following form of Laplace-
Stieltjes transform

F (s) =

∫ +∞

0

esxdα(x), s = σ + it, (4)

where α(x) is stated as in (1), and {λn} satisfy (2) and

lim sup
n→+∞

(λn+1 − λn) = h < +∞, lim sup
n→∞

n

λn
= E < +∞. (5)

Set

A∗n = sup
λn<x≤λn+1,−∞<t<+∞

∣∣∣∣∫ x

λn

eitydα(y)

∣∣∣∣ ,
by using the same argument as in [25], we can get the similar results about the abscissa of uniformly
convergent of F (s) easily. If

lim sup
n→+∞

logA∗n
λn

= 0, (6)

by (2), (5), (6) and Ref. [25], one can get that σFu = 0, i.e., F (s) is analytic in the half plane.
Set

Mu(σ, F ) = sup
0<x<+∞,−∞<t<+∞

∣∣∣∣∫ x

0

e(σ+it)ydα(y)

∣∣∣∣ , µ(σ, F ) = max
n∈N
{A∗neλnσ}(σ < +∞),

and

Definition 1.1 If the Laplace-Stieltjes transform (4) satisfies σFu = 0 (the sequence {λn} satisfy
(2),(5) and (6)) and

lim sup
σ→+∞

log+ log+Mu(σ, F )

− log(−σ)
= ρ,

2
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we call F (s) is of order ρ in the half plane; If ρ ∈ (0,+∞), the type of F (s) is defined by

τ = lim sup
σ→0−

log+Mu(σ, F )

(− 1
σ )ρ

,

where log+ x =

{
log x, x ≥ 1
0, x < 1.

Remark 1.1 For ρ = 0, 0 < ρ <∞, ρ =∞, F (s) can be called Laplace-Stieltjes transform of zero
order, finite order, infinite order, respectively.

For ρ = ∞, we will give the definition of the X-order of Laplace-Stieltjes transform (4) as
follows.

Definition 1.2 If Laplace-Stieltjes transform (4) of infinite order satisfies

lim sup
σ→0−

X(log+Mu(σ, F ))

− log(−σ)
= ρX ,

where X(x) ∈ F, then ρ∗ is called the X-order of F (s), and F is the class of all functions X(x)
satisfies the following conditions:

(i) X(x) is defined on [a,+∞), a > 0, and positive, strictly increasing, differentiable and tends
to +∞ as x→ +∞;

(ii) xX ′(x) = o(1) as x→ +∞.

We investigate the growth of Laplace-Stieltjes transform F (s) with finite X-order, and obtain
the following theorem.

Theorem 1.1 Let F (s) ∈ L be of X-order ρX(0 < ρX <∞), then

lim sup
σ→0−

X(logµ(σ, F ))

− log(−σ)
= lim sup

σ→0−

X(logMu(σ, F ))

− log(−σ)
, (7)

and

lim sup
n→∞

X(λn)

log λn − log+ log+A∗n
= ρX = lim sup

σ→0−

X(logMu(σ, F ))

− log(−σ)
. (8)

Thus, a question arises naturally: what may happen when ρX = ∞ in Theorem 1.1? Inspired
by this question, we will further investigate the growth of Laplace-Stieltjes transform (4) by using
the type function of Sun [15], and obtain the following results.

Theorem 1.2 If Laplace-Stieltjes transform F (s) ∈ L is of infinite X-order, then

lim sup
σ→0−

X(log+Mu(σ, F ))

logU
(
− 1
σ

) = τX ⇐⇒ lim sup
σ→0−

X(log+ µ(σ, F ))

logU
(
− 1
σ

) = τX .

where 0 < τX <∞ and U(x) = xρ(x) satisfies the following conditions
(i) ρ(x) is monotone and limx→∞ ρ(x) =∞;

(ii) limx→∞
U(x′)
U(x) = 1, where x′ = x+ x log x

logU(x) log2 logU(x)
.

Remark 1.2 If Laplace-Stieltjes transform F (s) of infinite order has infinite X-order and satisfies

lim sup
σ→0−

X(log+Mu(σ, F ))

logU
(
− 1
σ

) = τX ,

then τX is called the XU -order of Laplace-Stieltjes transform F (s).

3
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Theorem 1.3 Let F (s) ∈ L are of infinite X-order, then

lim sup
σ→0−

X(logMu(σ, F ))

logU(− 1
σ )

= τX ⇐⇒ lim sup
n→∞

X(log+A∗n)

logU( λn
log+ A∗n

)
= τX , (9)

where 0 < τX <∞ and U(x) is stated as in Theorem 1.2.

We denote Lβ to be the class of all the functions F (s) of the form (4) which are analytic in
the half plane <s < β(−∞ < α < ∞) and the sequence {λn} satisfies (2) and (5), and denote
L to be the class of all the functions F (s) of the form (4) which are analytic in the half plane
<s < 0 and the sequence {λn} satisfies (2), (5) and (6). Thus, if −∞ < β < 0 and F (s) ∈ L,
then F (s) ∈ Lβ ; if 0 < β < +∞ and F (s) ∈ Lβ , then F (s) ∈ L. If A∗n = 0 for n ≥ k + 1, and
A∗n 6= 0, then F (s) will be called an exponential polynomial of degree k usually denoted by pk,

i.e., pk(s) =
∫ λk

0
exp(sy)dα(y). When we choice a suitable function α(y), the function pk(s) may

be reduced to a polynomial in tems of exp(sλi), that is,
∑k
i=1 bi exp(sλi) and we use Πn to denote

the class of exponential polynomials of degree n. For F (s) ∈ Lβ ,−∞ < β < +∞, we denote
En(F, α) to be the error in approximating the function F (s) by exponential polynomials of degree
n in uniform norm as

En(F, β) = inf
p∈Πn

‖ F − p ‖β , n = 1, 2, . . . ,

where
‖ F − p ‖β= max

−∞<t<+∞
|F (β + it)− p(β + it)|.

In 2015 and 2017, C. Singhal and G. S. Srivastava [13, 14] investigated the approximation of
analytic functions defined by Laplace-Stieltjes transforms of finite order, and obtained the following
results.

Theorem 1.4 (see [13, Theorem 3.5]). Let F (s) ∈ L be of the order ρ and −∞ < β < 0. Then

ρ = lim sup
n→+∞

log+ log+[En(F, β) exp(−βλn+1)]

log λn+1 − log+ log+[En(F, β) exp(−βλn+1)]
.

Theorem 1.5 (see [13, Theorem 3.6]). Let F (s) ∈ L, belongs to the class L(−∞ < β < 0) having
order ρ(0 < ρ <∞). Then F (s) is of type τ if and only if

τ =
ρρ

(ρ+ 1)ρ+1
lim sup
n→+∞

{
log+[En(F, β) exp(−βλn+1)]

}ρ+1

(λn+1)ρ
.

In this paper, we further investigated the approximation of analytic function defined by Laplace-
Stieltjes transform and obtained the relations between the error En(F, β) and the growth order of
F (s) when F (s) is of infinite order as follows.

Theorem 1.6 Let F (s) ∈ L be of finite X-order ρX , then for any real number −∞ < β < 0, we
have

lim sup
n→+∞

X(λn)

log λn − log+ log+[En−1(F, β)e−βλn ]
= ρX .

Theorem 1.7 If F (s) ∈ L is of infinite X-order, then for any fixed real number −∞ < β < 0, we
have

lim sup
σ→0−

X(log+M(σ, F ))

logU
(
− 1
σ

) = τX ⇐⇒ lim sup
n→+∞

Ψn(F, β, λn) = τX ;

where

Ψn(F, β, λn) =
X
(
log+[En−1(F, β)e−βλn ]

)
logU

(
λn

log+[En−1(F,β)e−βλn ]

) .

4
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2 Proofs of Theorems 1.1-1.3

To prove Theorems 1.1-1.3, we require some lemmas as follows.

Lemma 2.1 Let X(x) ∈ F and c be a constant, and ϕ(x) be the function such that

lim sup
x→+∞

log+ ϕ(x)

log x
= %, (0 ≤ % <∞),

and if the real function M(x) satisfies lim sup
x→+∞

X(logM(x))
log x = ν(> 0). Then we have

lim sup
x→+∞

X(logM(x) + c)

log x
= ν, lim sup

x→+∞

X(ϕ(x) logM(x))

log x
= ν.

Proof: From the properties of X(x), we can easily prove

lim sup
x→+∞

X(logM(x) + c)

log x
= ν.

Next, we will divide into two cases to prove

lim sup
x→+∞

X(ϕ(x) logM(x))

log x
= ν.

Case 1. If ϕ(x) is not a constant. From the assumptions of Lemma 2.1, it follows that
ϕ(x) → ∞ as x → ∞. Then, for sufficiently large x, we have ϕ(x) > 1. From X(x) ∈ F, we have
limx→+∞ logM(x) = ∞. Then from the Cauchy mean value theorem, there exists ξ(logM(x) <
ξ < X(x) logM(x)) satisfying

X(ϕ(x) logM(x))−X(logM(x))

log(ϕ(x) logM(x))− log logM(x)
=

X ′(ξ)

(log ξ)′
= ξX ′(ξ),

that is,
X(ϕ(x) logM(x)) = X(logM(x)) + logϕ(x)ξX ′(ξ). (10)

Since xX ′(x) = o(1) as x → +∞ and lim sup
x→+∞

logϕ(x)
log x = %, (0 ≤ % < ∞), by (10), we can get the

conclusion of Lemma 2.1.
Case 2. If ϕ(x) is a constant. By using the same argument as in Case 1, we can prove that

the conclusion of Lemma 2.1 is true.
Thus, this completes the proof of Lemma 2.1. 2

2.1 The proof of Theorem 1.1

Set

I(x;σ + it) =

∫ x

λn

exp{(σ + it)y}dα(y).

From (5), there exists η > 0 satisfying 0 < λn+1 − λn ≤ η (n = 1, 2, 3, . . .). When σ is sufficiently
close to 0−, it follows e−ησ < 2. When x > λn, it follows∫ x

λn

exp{ity}dα(y) =

∫ x

λn

e−σydyI(y;σ + it)

= I(y;σ + it)e−σy|xλn + σ

∫ x

λn

e−σyI(y;σ + it)dy.

5
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Then, for σ < 0, it follows∣∣∣∣∫ x

λn

exp{ity}dα(y)

∣∣∣∣ ≤Mu(σ, F )
[
|e−σx + e−σλn |+ |e−σx − e−σλn |

]
≤ 2Mu(σ, F )e−σx.

Thus, for any σ < 0 and any x ∈ (λn, λn+1], we have∣∣∣∣∫ x

λn

exp{ity}dα(y)

∣∣∣∣ ≤ 2Mu(σ, F )e−σλne−ση ≤ 4Mu(σ, F )e−σλn ,

that is,
µ(σ, F ) ≤ 4Mu(σ, F ). (11)

Let Ik(x; it) =
∫ x
λk

exp(ity)dα(y)(λk < x ≤ λk+1), then for λk < x ≤ λk+1,−∞ < t < +∞, we

have |Ik(x; it)| ≤ A∗k ≤ µ(σ, F )e−λkσ. Thus, for ε > 0, λn < x ≤ λn+1 and σ < 0, we have∫ x

0

exp{(σ + it)y}dα(y) =
n−1∑
k=1

∫ λk+1

λk

exp{(σ + it)y}dα(y) +

∫ x

λn

exp{(σ + it)y}dα(y)

=
n−1∑
k=1

∫ λk+1

λk

exp{σy}dyIk(y; it) +

∫ x

λn

exp{σy}dyIn(y; it)

=
n−1∑
k=1

[
exp(λk+1σ)Ik(λk+1; it)− σ

∫ λk+1

λk

exp{σy}Ik(y; it)dy

]

+ exp(xσ)In(x; it)− σ
∫ x

λn

exp{σy}In(y; it)dy.

Hence, ∣∣∣∣∫ x

0

exp{(σ + it)y}dα(y)

∣∣∣∣ ≤ n∑
k=1

A∗ke
λkσ ≤ µ((1− ε)σ, F )

∞∑
k=1

eλkεσ.

From the second equation of (5), for the above ε > 0, there exists a positive integer N such that
λn ≥ n

E+ε for n ≥ N . Thus, for sufficiently small σ < 0, we have

Mu(σ, F ) ≤ µ((1− ε)σ, F )

(
N +

∞∑
k=N+1

exp

[
kε

E + ε
σ

])
≤ K(ε)µ((1− ε)σ, F )(− 1

σ
). (12)

From (11)-(12) and by Lemma 2.1, we can prove (7) easily.
By using the same argument as in [20, Theorem 4], we prove (8) easily.
Therefore, this completes the proof of Theorem 1.1.

2.2 The Proof of Theorem 1.2

By Lemma 2.1 and from (11)-(12), the conclusion of Theorem 1.2 can be proved easily.

2.3 The proof of Theorem 1.3

We firstly prove the sufficiency of Theorem 1.3. Let W (x) be the inverse function of X(x), and
V (x) be the inverse function of U(x). Next, we will divide into two steps as follows.

Step One. Suppose that

lim sup
n→+∞

X(log+A∗n)

logU
(

λn
log+ A∗n

) = τX , (13)
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thus for any small ε(> 0) and sufficiently large n, we have

log+A∗n < W

[
(τX + ε) logU

(
λn

log+A∗n

)]
,

it follows

λn

log+A∗n
> V

[
exp

{
1

τX + ε
X(log+A∗n)

}]
, log+A∗n <

λn

V
[
exp

{
1

τX+εX(log+A∗n)
}] .

Thus, we have

log+A∗ne
λnσ ≤ λn

((
V

[
exp

{
1

τX + ε
X(log+A∗n)

}])−1

+ σ

)
. (14)

For σ → 0−, set

I = W

[
(τX + ε) logU

(
− 1

σ
− 1

σ

1

log2 U
(
− 1
σ

))] (15)

< W

[
(τX + ε) logU

(
− 1

σ
+

− 1
σ log(− 1

σ )

logU(− 1
σ ) log2 logU

(
− 1
σ

))] ,
then it follows

− 1

σ
− 1

σ

1

log2 U
(
− 1
σ

) = V

(
exp

{
1

τX + ε
X(I)

})
. (16)

If log+A∗n ≤ I, then for σ → 0−, it follows from (14)-(16) and the properties of U(x) that

log+A∗ne
λnσ ≤ log+A∗n ≤ I = W

[
(τX + ε) logU

(
− 1

σ
− 1

σ

1

log2 U
(
− 1
σ

))]

≤W
[
(τX + 2ε) logU(− 1

σ
)

]
. (17)

If log+A∗n > I, then from (14)-(16), we have

log+A∗ne
λnσ ≤ λn

((
V

[
exp

{
1

τX + ε
X(log+A∗n)

}])−1

+ σ

)

≤ λn

((
V

[
exp

{
1

τX + ε
X(I)

}])−1

+ σ

)
= λn

σ

1 + log2 U(− 1
σ )

< 0. (18)

Hence, it follows from (17) and (18) that

logµ(σ, F ) ≤W
[
(τX + 2ε) logU(− 1

σ
)

]
. (19)

From (19) and Theorem 1.2, and let ε→ 0, it follows

lim sup
σ→0−

X(logMu(σ, F ))

logU(− 1
σ )

≤ lim sup
n→+∞

X(log+A∗n)

logU( λn
log+ A∗n

)
= τX .
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Step Two. Suppose that

lim sup
σ→0−

X(logMu(σ, F ))

logU(− 1
σ )

= J < lim sup
n→+∞

X(log+A∗n)

logU( λn
log+ A∗n

)
= τX . (20)

Take η > 0 such that τX = J + 5η, then for any n ∈ N+ and sufficiently small σ(< 0), from (11)
and (20), and by Lemma 2.1 we have

log+A∗ne
λnσ ≤ logMu(σ, F ) + 2 log 2 < W

(
(J + η) logU(− 1

σ
)

)
, (21)

and from (20), there exists a subsequence {n(ν)} such that

X(log+A∗n(ν)) > (τX − η) logU(
λn(ν)

log+A∗n(ν)

). (22)

Take the sequence {σν} such that

W

(
(J + η) logU(− 1

σν
)

)
=

log+A∗n(ν)

1 + logU(
λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)
. (23)

Thus, it follows form (21)-(23) that

log+A∗n(ν)e
λn(ν)σν <

log+A∗n(ν)

1 + logU(
λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)
,

=⇒ − 1

σν
≤

λn(ν)

log+A∗n(ν)

1 +
1

logU(
λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)

 ,

=⇒ U(− 1

σν
) ≤ U

 λn(ν)

log+A∗n(ν)

1 +
1

logU(
λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)

 (24)

≤ (1 + η)U

(
λn(ν)

log+A∗n(ν)

)
.

From (23), we have

log+A∗n(ν) = W

(
(J + η) logU(− 1

σν
)

)(
1 + logU(

λn(ν)

log+A∗n(ν)

) log2 logU(
λn(ν)

log+A∗n(ν)

)

)
.

Thus, from the Cauchy mean value theorem and (24), there exists a real number ξ between

W ((J + η) logU(− 1
σν

)) and W
(

(J + η) logU(− 1
σν

)
)(

1 + logU(
λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)

)
such that

X
(

log+A∗n(ν)

)
= X

(
1 + log2 U

(
λn(ν)

log+A∗n(ν)

)
W

(
(J + η) logU(− 1

σν
)

))

= X

(
W

(
(J + η) logU(− 1

σν
)

))
+ log

(
1 + logU(

λn(ν)

log+A∗n(ν)

) log2 logU(
λn(ν)

log+A∗n(ν)

)

)
ξX ′(ξ),

8
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and since

lim
ν→+∞

log

(
1 + logU(

λn(ν)

log+ A∗
n(ν)

) log2 logU(
λn(ν)

log+ A∗
n(ν)

)

)
logU(

λn(ν)

log+ A∗
n(ν)

)
= 0,

then for sufficiently large ν and from (24), it follows

X
(

log+A∗n(ν)

)
= (J + η) logU(− 1

σν
) +KξX ′(ξ) logU(

λn(ν)

log+A∗n(ν)

)

= (J + 3η) logU(
λn(ν)

log+A∗n(ν)

), (25)

where K is a constant.
From (20) and (25), we obtain a contradiction with the condition η = τX−J

5 > 0. Thus, we
have

lim sup
σ→0−

X(logMu(σ, f))

logU(− 1
σ )

= lim sup
n→+∞

X(log+A∗n)

logU( λn
log+ A∗n

)
= τX .

Therefore, this completes the proof of the sufficiency of Theorem 1.3.
By using the similar argument as in the above discussion, we can prove the necessity of Theorem

1.3.
Hence, this completes the proof of Theorem 1.3.

3 Proofs of Theorem 1.6 and Theorem 1.7

Here we only give the proof of Theorem 1.7 because the proof of Theorem 1.6 is similarly.

3.1 The Proof of Theorem 1.7

First of all, we prove ”⇐= ” of Theorem 1.7. Next, we will divide into two steps as follows.
Step One. For convenience, hereinafter let En−1 := En−1(F, β). Suppose that

lim sup
n→+∞

Ψn(F, β, λn) = lim sup
n→+∞

X(log+[En−1e
−βλn ])

logU
(

λn
log+[En−1e−βλn ]

) = τX . (26)

Then for sufficiently large positive integer n and any positive real number ε > 0, we have

log+[En−1e
−βλn ] < W

(
(τX + ε) logU

(
λn

log+[En−1e−βλn ]

))
.

By using the same argument as in the proof of Theorem 1.3, we have

log+[En−1e
(σ−β)λn ] ≤ λn

((
V

(
exp

{
1

τX + ε
X(log+[En−1e

−βλn ])

}))−1

+ σ

)
. (27)

For any fixed and sufficiently small σ < 0, set

G = W

(
(τX + ε) logU

(
− 1

σ
− 1

σ log2 U
(
− 1
σ

))) ,
that is,

1

−σ
+

1

−σ log2 U
(
− 1
σ

) = V

(
exp

{
1

τX + ε
X(G)

})
. (28)
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If log+[En−1e
−βλn ] ≤ G, for sufficiently large positive integer n, let

V

(
exp

{
1

τX + ε
X(log+[En−1e

−βλn ])

})
≥ 1,

since σ < 0, and from (27),(28) and the definition of U(x), we have

log+[En−1e
(σ−β)λn ] ≤ λn

((
V

(
exp

{
1

τX + ε
X(log+[En−1e

−βλn ])

}))−1

+ σ

)

≤ G = W

(
(τX + ε) logU

(
− 1

σ
− 1

σ log2 U
(
− 1
σ

)))

≤W
(

(τX + ε) log

[
(1 + o(1))U

(
− 1

σ

)])
. (29)

If log+[En−1e
−βλn ] > G, it follows from (27) and (28) that

log+[En−1e
(σ−β)λn ] ≤ λn

((
V

(
exp

{
1

τX + ε
X(G)

}))−1

+ σ

)

≤ λn

( 1

−σ
+

1

−σ log2 U
(
− 1
σ

))−1

+ σ

 < 0. (30)

Hence, it follows from (29) and (30) that for sufficiently large positive integer n

log+[En−1e
(σ−β)λn ] ≤W

(
(τX + ε) log

[
(1 + o(1))U

(
− 1

σ

)])
. (31)

For any β < 0, then from the definition of Ek(F, β), there exists p1 ∈ Πn−1 satisfying

‖F − p1‖ ≤ 2En−1. (32)

And since

A∗n exp{βλn} = sup
λn<x≤λn+1,−∞<t<+∞

∣∣∣∣∫ x

λn

exp{ity}dα(y)

∣∣∣∣ exp{βλn}

≤ sup
λn<x≤λn+1,−∞<t<+∞

∣∣∣∣∫ x

λn

exp{(β + it)y}dα(y)

∣∣∣∣
≤ sup
−∞<t<+∞

∣∣∣∣∫ ∞
λn

exp{(β + it)y}dα(y)

∣∣∣∣ ,
then for any p ∈ Πn−1, we have

A∗n exp{βλn} ≤ |F (β + it)− p(β + it)| ≤ ‖F − p‖β . (33)

Hence for any β < 0 and F (s) ∈ L, it follows from (32) and (33) that

A∗n exp{βλn} ≤ 2En−1, A∗n ≤ 2En−1 exp{−βλn}.

that is,
A∗ne

σλn ≤ 2En−1e
(σ−β)λn . (34)

Thus, from (31) and (34), and by Lemma 2.1 and Theorem 1.2, let ε→ 0 we have

lim sup
σ→0−

X(log+Mu(σ, F ))

logU(− 1
σ )

≤ τX .
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Step Two. Suppose that

lim sup
σ→0−

X(log+Mu(σ, F ))

logU(− 1
σ )

= ϑ < τX .

Then there exists any real number ε(0 < ε < τX−ϑ
4 ), and for any sufficiently small σ < 0 we have

logMu(σ, F ) ≤W
(

(ϑ+ ε) logU(− 1

σ
)

)
. (35)

Since

En−1(F, β) ≤‖ F − pn−1 ‖β≤ |F (β + it)− pn−1(β + it)|

≤

∣∣∣∣∣
∫ +∞

0

exp{(β + it)y}dα(y)−
∫ λn

0

exp{(β + it)y}dα(y)

∣∣∣∣∣
=

∣∣∣∣∫ ∞
λn

exp{(β + it)y}dα(y)

∣∣∣∣ , (36)

for β < σ < 0, and∣∣∣∣∫ ∞
λk

exp{(βγ + it)y}dα(y)

∣∣∣∣ = lim
b→+∞

∣∣∣∣∣
∫ b

λk

exp{(β + it)y}dα(y)

∣∣∣∣∣ .
Set

Ij+k(b; it) =

∫ b

λj+k

exp{ity}dα(y), (λj+k < b ≤ λj+k+1),

then we have |Ij+k(b; it)| ≤ A∗j+k. Thus, it follows∣∣∣∣∣
∫ b

λk

exp{(β + it)y}dα(y)

∣∣∣∣∣
=

∣∣∣∣∣∣
n+k−1∑
j=k

∫ λj+1

λj

exp{βy}dyIj(y; it) +

∫ b

λn+k

exp{βy}dyIn+k(y; it)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n+k−1∑

j=k

eλj+1βIj(λj+1; it)− β
∫ λj+1

λj

eβyIj(y; it)dy


+eβbIn+k(b; it)− β

∫ b

λn+k

eβyIj(y; it)dy

∣∣∣∣∣
≤
n+k−1∑
j=k

[
A∗je

λj+1β +A∗j (e
λj+1β − eλjβ)

]
+ 2eβλn+k+1A∗n+k − eβλn+kA∗n+k

≤2

n+k∑
j=k

A∗ne
λn+1β .

Because b→ +∞ as n→ +∞, thus it follows∣∣∣∣∫ ∞
λk

exp{(β + it)y}dα(y)

∣∣∣∣ ≤ 2
+∞∑
n=k

A∗n exp{βλn+1}. (37)
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Hence from (11), (36) and (37), we have

En−1 ≤ 2
∞∑
k=n

A∗k−1 exp{βλk} ≤ 8Mu(σ, F )
∞∑
k=n

exp{(β − σ)λk}. (38)

From (5), we can take h′(0 < h′ < h) such that (λn+1 − λn) ≥ h′ for n ≥ 0. Then from (38), for
σ ≥ β

2 , we have

En−1 ≤ 8Mu(σ, F ) exp{λn(β − σ)}
∞∑
k=n

exp{(λk − λn)(β − σ)}

≤ 8Mu(σ, F ) exp{λn(β − σ)} exp{−β
2
h′n}

∞∑
k=n

(exp{β
2
h′k})

= 8Mu(σ, F ) exp{λn(β − σ)}
(

1− exp{β
2
h′}
)−1

,

that is,
En−1 ≤ KMu(σ, F ) exp{λn(β − σ)}, (39)

where K is a constant. Then for sufficiently small σ < 0 and −∞ < β < σ < 0, we have

Mu(σ, F ) ≥ K1En−1(F, β)e−λn(β−σ) = K1En−1 exp{−βλn}eλnσ, (40)

where K3 = 1− e
β
2 h
′
. Hence it follows from (35) and (40) that

log+
[
K1En−1 exp{−βλn}eλnσ

]
≤ logMu(σ, F ) ≤W

(
(ϑ+ 2ε) logU(− 1

σ
)

)
. (41)

From the assumption, there exists a subsequence {λn(p)} such that for sufficiently large p

X(log+[En(p−1) exp{−βλn(p)}]) > (τX − ε) logU

(
λn(p)

log+[En(p−1) exp{−βλn(p)}]

)
. (42)

Take a sequence {σp} satisfying

W

(
(ϑ+ 2ε) logU(− 1

σp
)

)
=

log+[En(p−1) exp{−βλn(p)}]
1 + logU(

λn(p)

log+[En(p−1) exp{−βλn(p)}]
) log2 logU(

λn(p)

log+[En(p−1) exp{−βλn(p)}]
)
. (43)

From (41) and (43), by using the same argument as in the proof of Theorem 1.3, we get

log+[En(p−1)e
−βλn(p) ]

=W

(
(ϑ+ 2ε) logU(− 1

σp
)

)1 +
1

logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

) log2 logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

)

 .

Then by applying the Cauchy mean value theorem, there exists a real number ξ ∈ (ζ1, ζ2) where

ζ1 = W

(
(ϑ+ 2ε) logU(− 1

σp
)

)
,
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and

ζ2 = ζ1

(
1 + logU(

λn(p)

log+[En(p−1)e
−βλn(p) ]

) log2 logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

)

)
,

such that

X
(
log+[En(p−1)e

−βλn(p) ]
)

=X

(
W

(
(ϑ+ 2ε)(1 + o(1)) logU(

λn(p)

log+[En(p−1)e
−βλn(p) ]

)

))

+ log

(
1 + logU(

λn(p)

log+[En(p−1)e
−βλn(p) ]

) log2 logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

)

)
ξX ′(ξ),

Since

lim
p→∞

log

(
1 + logU(

λn(p)

log+[En(p−1)e
−βλn(p) ]

) log2 logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

)

)
logU(

λn(p)

log+[En(p−1)e
−βλn(p) ]

)
= 0,

then for p→ +∞ and let σ → 0−, it follows

X
(
log+[En(p−1)e

−βλn(p) ]
)

= (ϑ+ 2ε)(1 + o(1)) logU(
λn(p)

log+[En(p−1)e
−βλn(p) ]

) + o(1). (44)

From (41) and (44), by applying Lemma 2.1, we can obtain a contradiction with the assumption
0 < ε < τX−ϑ

4 . Hence

lim sup
σ→0−

X(log+Mu(σ, F ))

logU(− 1
σ )

= τX .

Hence, we complete the proof of the sufficiency of Theorem 1.7. By using the similar argument
as in the above, we can prove the necessity of Theorem 1.7.

Therefore, this completes the proof of Theorem 1.7.
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q-ANALOGUE OF MODIFIED DEGENERATE CHANGHEE

POLYNOMIALS AND NUMBERS

JONGKYUM KWON1 AND JIN-WOO PARK2,∗

Abstract. The Changhee polynomials and numbers are introduced in [3], and

some interesting identities and properties of these polynomials are found by
many researcher. In this paper, we consider the q-analogue of modified degen-

erated Changhee polynomials and derive some new and interesting identities

and properties of those polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will
respectively denote the ring of p-adic rational integers, the field of p-adic rational
numbers and the completions of algebraic closure of Qp. The p-adic norm | · |p is
defined normally as |p|p = 1

p .

Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the p-adic
invariant integral on Zp is defined by T. Kim as follows :

I−q(f) =

∫
Zp
f(x)dµ−q(x) = lim

N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (see [3-8, 10-12, 16, 17, 19]).

(1.1)
If we put fn(x) = f(x + n), then, by (1.1), we can derive the following very

useful integral identity;

qnI−q(fn) + (−1)n−1I−q(f) = [2]q

n−1∑
l=0

(−1)n−1−lf(l)ql, (1.2)

where

[x]−q =
1− (−q)x

1− (−q)
and [x]q =

1− qx

1− q
.

Note that limq→1[x]q = x for each x ∈ Zp. In particular, if n = 0, then

qI−q(f1) + I−q(f) = [2]qf(0). (1.3)

The Stirling numbers of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =
n∑
l=0

S1(n, l)xl (x ≥ 0), (1.4)

2010 Mathematics Subject Classification. 11B68, 11S40, 11S80.
Key words and phrases. p-adic invariant integral on Zp, degenerate Changhee polynomials,

modified degenerate Changhee polynomials.
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and the Stirling numbers of the second kind is defined by the generating function
to be

(et − 1)n = n!
∞∑
l=n

S2(l, n)
tl

l!

(see [1, 20]). Note that

(log(x+ 1))
n

= n!
∞∑
l=n

S1(l, n)
xl

l!
, (n ≥ 0),

(see [1, 20]).
As is well-known, q-Euler polynomials of order r are defined by the generating

function to be(
[2]q

1 + qdedt

)r d−1∑
a=0

(−1)aqaeat =
∞∑
n=0

E(r)
n,q

tn

n!
, , (see [3-6, 9, 15-17, 19]). (1.5)

In the special case, x = 0, E
(r)
n = E

(r)
n (0) are called the Euler numbers of order r.

From (1.1), we note that

∞∑
n=0

E(r)
n (x)

tn

n!
=

(
2

et + 1

)r
ext

=ext
∫
Zp
· · ·
∫
Zp
e(x1+···+xr)tdµ−1(x1) · · · dµ−1(xr),

(1.6)

and by (1.6), we have

E(r)
n (x) =

∫
Zp
· · ·
∫
Zp

(x1 + · · ·+ xr + x)ndµ−1(x1) · · · dµ−1(xr), (n ≥ 0), (1.7)

(see [3-6, 9, 15-17, 19]).
In [3], authors defined the Changhee polynomials as follows:

∞∑
n=0

Chn(x)
tn

n!
=

2

2 + t
(1 + t)x,

and, in [17], authors defined the modified degenerate Euler of order r polynomials
as follows:

∞∑
n=0

ξ
(r)
n,λ(x)

tn

n!
=

(
2

(1 + λ)
t
λ + 1

)r
(1 + λ)

t
λx. (1.8)

Recently, Changhee numbers and polynomials are introduced by Kim et. al. in
[3], and by many mathematicians, which are generalized and obtained many new
and interesting properties(see [2, 9-14, 16, 18, 19]). In this paper, we consider
the modified degenerate Changhee polynomials and numbers by using the p-adic
invariant integral, and derive some new and interesting identities and properties of
those polynomials.
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2. q-analogue of Modified degenerate Changhee polynomials and
numbers

From now on, we assume that t ∈ C with |t|p < p−
1
p−1 and λ ∈ Zp.

The modified degenerate q-Changhee polynomials are defined by the generating
function to be

[2]q

1 + q(1 + λ)
1
λ log(1+t)

(1 + λ)
x
λ log(1+t) =

∞∑
n=0

MChn,λ,q(x)
tn

n!
. (2.1)

In the special case, x = 0, MChn,λ,q = MChn,λ,q(0) are called q-modified degener-
ate Changhee numbers.

Note that

lim
λ→0

[2]q

1 + q(1 + λ)
1
λ log(1+t)

(1 + λ)
x
λ log(1+t) =

[2]q
q(1 + t) + 1

(1 + t)x

=
∞∑
n=0

Chn,q(x)
tn

n!
.

Since

(1 + λ)
x+y
λ log(1+t) =elog(1+λ)

x+y
λ

log(1+t)

=
∞∑
n=0

(
log(1 + λ)

λ

)n
(x+ y)n (log(1 + t))

n 1

n!

=
∞∑
n=0

(
log(1 + λ)

λ

)n
(x+ y)n

1

n!
n!
∞∑
l=n

S1(l, n)
tl

l!

=
∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
(x+ y)mS1(n,m)

tn

n!
,

(2.2)

and

∞∑
n=0

MChn,λ,q(x)
tn

n!
=

[2]q

1 + q(1 + λ)
1
λ log(1+t)

(1 + λ)
x
λ log(1+t)

=

( ∞∑
n=0

MChn,λ,q
tn

n!

)( ∞∑
m=0

m∑
l=0

(
log(1 + λ)

λ

)l
S1(m, l)xl

tm

m!

)

=
∞∑
n=0

n∑
m=0

m∑
l=0

(
n

m

)(
log(1 + λ)

λ

)l
S1(m, l)xlMChn−m,λ,q

tn

n!
,

(2.3)

by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For each n ∈ N ∪ {0}, we have

MChn,λ,q(x) =
n∑

m=0

m∑
l=0

(
n

m

)(
log(1 + λ)

λ

)l
S1(m, l)MChn−m,λ,qx

l.
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Note that, by (1.3), we have∫
Zp

(1 + λ)
x+y
λ log(1+t)dµ−q(y) =

[2]q

1 + q(1 + λ)
1
λ log(1+t)

(1 + λ)
x
λ log(1+t)

=
∞∑
n=0

MChn,λ,q(x)
tn

n!
,

(2.4)

and, by (2.2) and (1.7),∫
Zp

(1 + λ)
x+y
λ log(1+t)dµ−q(y)

=
∞∑
n=0

∫
Zp

n∑
m=0

(
log(1 + λ)

λ

)m
(x+ y)mS1(n,m)dµ−q(y)

tn

n!

=
∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
S1(n,m)Em,q(x)

tn

n!
.

(2.5)

Therefore, by (2.4) and (2.5), we obtain the following theorem.

Theorem 2.2. For each n ∈ N ∪ {0},
∞∑
n=0

MChn,λ,q(x)
tn

n!
=

∫
Zp

(1 + λ)
x+y
λ log(1+t)dµ−q(y),

and

MChn,λ(x) =
n∑

m=0

(
log(1 + λ)

λ

)m
S1(n,m)Em,q(x).

By replacing t as et − 1 in (2.1), we have

[2]q

1 + q(1 + λ)
t
λ

(1 + λ)
t
λx =

∞∑
n=0

MChn,λ,q(x)
1

n!

(
et − 1

)m
=

∞∑
n=0

MChn,λ,q(x)
1

n!
n!

∞∑
l=n

S2(l, n)
tl

l!

=
∞∑
n=0

n∑
m=0

MChm,λ,q(x)S2(n,m)
tn

n!
,

(2.6)

and

[2]q

1 + q(1 + λ)
1
λ log(1+(et−1))

(1 + λ)
x
λ log(1+(et−1)) =

[2]q

1 + q(1 + λ)
t
x

(1 + λ)
xt
λ

=
∞∑
n=0

ξn,λ,q(x)
tn

n!
.

(2.7)

By (2.6) and (2.7), we obtain the following corollary.

Corollary 2.3. For each nonnegative integer n,

ξn,λ,q(x) =
n∑

m=0

MChm,λ(x)S2(n,m).
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By (1.3), we note that

[2]q =q

∫
Zp

(1 + λ)
y+1
λ log(1+t)dµ−1(y) +

∫
Zp

(1 + λ)
y
λ log(1+t)dµ−1(y)

=q
∞∑
n=0

MChn,λ,q(1)
tn

n!
+
∞∑
n=0

MChn,λ,q
tn

n!

=
∞∑
n=0

(qMChn,λ,q(1) +MChn,λ,q)
tn

n!
.

(2.8)

By (2.8), we obtain the following theorem.

Theorem 2.4. For each positive integer n, we have

MCh0,λ,q = 1, qMChn,λ(1) +MChn,λ = [2]qδ0,n,

where δi,j is the Kronecker’s symbols.

For each n ∈ N with n ≡ 1 (mod 2), by (1.2), we have

qn
∫
Zp

(1 + λ)
y+n
λ log(1+t)dµ−1(y) +

∫
Zp

(1 + λ)
y
λ log(1+t)dµ−1(y)

=[2]q

n−1∑
a=0

(−1)aqa(1 + λ)
a
λ log(1+t)

=
∞∑
l=0

(
[2]q

l∑
m=0

n−1∑
a=0

(−1)aqaam
(

log(1 + λ)

λ

)m
S1(l,m)

)
tl

l!

(2.9)

and

qn
∫
Zp

(1 + λ)
y+n
λ log(1+t)dµ−1(y) +

∫
Zp

(1 + λ)
y
λ log(1+t)dµ−1(y)

=
∞∑
l=0

(qnMChl,λ,q(n) +MChl,λ,q)
tl

l!
.

(2.10)

Hence, by (2.9) and (2.10), we obtain the following theorem.

Theorem 2.5. For each nonnegative odd integer n and each nonnegative integer
l, we have

qnMChl,λ,q(n) +MChl,λ,q = [2]q

l∑
m=0

n−1∑
a=0

(−1)aqaam
(

log(1 + λ)

λ

)m
S1(l,m).

From now on, we consider the modified degenerate q-Changhee polynomials of
order r are defined as by the generating function to be

∞∑
n=0

MCh
(r)
n,λ,q(x)

tn

n!
=

∫
Zp
· · ·
∫
Zp

(1 + λ)
x1+···+xr+x

λ log(1+t)dµ−q(xq) · · · dµ−q(xr).

(2.11)

When x = 0, MCh
(r)
n,λ,q = MCh

(r)
n,λ,q(0) are called modified degenerate q-Changhee

numbers of order r.
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Note that, by (1.1) and (2.2),

∞∑
n=0

MCh
(r)
n,λ,q(x)

tn

n!

=

(
[2]q

1 + q(1 + λ)
1
λ log(1+t)

)r
(1 + λ)

x
λ log(1+t)

=

( ∞∑
n=0

MChn,λ,q
tn

n!

)r ( ∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
xmS1(n,m)

tn

n!

)

=

 ∞∑
n=0

∞∑
n1,...,nr≥0
n1+···+nr=n

MChn1,λ,q · · ·MChnr,λ,q
tn1

n1!
· · · t

nr

nr!


×

( ∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
xmS1(n,m)

tn

n!

)

=

∞∑
n=0

 n∑
m=0

∑
n1,...,nr≥0
n1+···+nr=m

n−m∑
k=0

(
m

n1, · · · , nr

)(
n

m

)
MChn1,λ,q · · ·MChnr,λ,q

×
(

log(1 + λ)

λ

)k
xkS1(n−m, k)

)
tn

n!
,

(2.12)

where
(

m
n1,...,nr

)
are the multinomial coefficients.

In addition, by (1.1) and (2.2), we have∫
Zp
· · ·
∫
Zp

(1 + λ)
x1+···+xr+x

λ log(1+t)dµ−q(x1) · · · dµ−q(xr)

=
∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
S1(n,m)

∫
Zp
· · ·
∫
Zp

(x1 + · · ·+ xr + x)mdµ−q(x1) · · · dµ−q(xr)
tn

n!

=

∞∑
n=0

n∑
m=0

(
log(1 + λ)

λ

)m
S1(n,m)E(r)

m,q(x)
tn

n!
.

(2.13)

By (2.11), (2.12) and (2.13), we obtain the following theorem.

Theorem 2.6. For each nonnegative integer n, we have

MCh
(r)
n,λ,q(x) =

n∑
m=0

∑
n1,...,nr≥0
n1+···+nr=m

n−m∑
k=0

(
m

n1, · · · , nr

)(
n

m

)
MChn1,λ,q · · ·MChnr,λ,q

×
(

log(1 + λ)

λ

)k
S1(n−m, k)xk,

and

MCh
(r)
n,λ,q(x) =

n∑
m=0

(
log(1 + λ)

λ

)m
S1(n,m)E(r)

m,q(x).
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By replacing t as et − 1 in (2.12), we get(
[2]q

1 + q(1 + λ)
t
λ

)r
(1 + λ)

t
λx =

∞∑
n=0

MCh
(r)
n,λ,q(x)

1

n!

(
et − 1

)m
=
∞∑
n=0

MCh
(r)
n,λ,q(x)

1

n!
n!
∞∑
l=n

S2(l, n)
tl

l!

=
∞∑
n=0

n∑
m=0

MCh
(r)
m,λ,q(x)S2(n,m)

tn

n!
,

(2.14)

and (
[2]q

1 + q(1 + λ)
1
λ log(1+(et−1))

)r
(1 + λ)

x
λ log(1+(et−1))

=

(
[2]q

1 + q(1 + λ)
t
x

)r
(1 + λ)

xt
λ

=
∞∑
n=0

ξ
(r)
n,λ,q(x)

tn

n!
.

(2.15)

By (2.14) and (2.15), we obtain the following theorem.

Theorem 2.7. For each n ≥ 0, we have

ξ
(r)
n,λ,q(x) =

n∑
m=0

MCh
(r)
m,λ,q(x)S2(n,m).

By (2.12), we observe that

∞∑
n=0

(
qMCh

(r)
n,λ(x+ 1) +MCh

(r)
n,λ(x)

) tn
n!

=q

(
[2]q

1 + q(1 + λ)
1
λ log(1+t)

)r
(1 + λ)

x+1
λ log(1+t) +

(
[2]q

1 + q(1 + λ)
1
λ log(1+t)

)r
(1 + λ)

x
λ log(1+t)

=[2]q

(
[2]q

1 + q(1 + λ)
1
λ log(1+t)

)r−1
(1 + λ)

x
λ log(1+t)

=[2]q

∞∑
n=0

MCh
(r−1)
n,λ,q (x)

tn

n!
.

(2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.8. For each n ≥ 0 and r ∈ N, we have

qMCh
(r)
n,λ(x+ 1) +MCh

(r)
n,λ,q(x) = [2]qMCh

(r−1)
n,λ,q (x).
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QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES

CHOONKIL PARK, YUNTAK HYUN, AND JUNG RYE LEE∗

Abstract. In this paper, we solve the following quadratic ρ-functional inequalities∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (0.1)

−4f(x)− 4f(y)− 4f(z))‖,
where ρ is a fixed complex number with |ρ| < 1

8
, and

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖ (0.2)

≤
∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z))‖ ,

where ρ is a fixed complex number with |ρ| < 4.
Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional

inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of
quadratic ρ-functional equations associated with the quadratic ρ-functional inequalities (0.1)
and (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [20] con-

cerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,

every solution of the Cauchy equation is said to be an additive mapping. Hyers [7] gave a

first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem

was generalized by Aoki [1] for additive mappings and by Rassias [13] for linear mappings by

considering an unbounded Cauchy difference. A generalization of the Rassias theorem was

obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control

function in the spirit of Rassias’ approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called the quadratic functional equation. In particular, every solution of the quadratic

functional equation is said to be a quadratic mapping. The stability of quadratic functional
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equation was proved by Skof [19] for mappings f : E1 → E2, where E1 is a normed space and

E2 is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant

domain E1 is replaced by an Abelian group.

The functional equation

2f

(
x+ y

2

)
+ 2

(
x− y

2

)
= f(x) + f(y)

is called a Jensen type quadratic equation. See [8, 9, 10, 11, 12, 15, 16, 17, 18] for more

information on functional equations and their stability.

In [5], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.2)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [14]. Gilányi [6] and Fechner [3] proved the Hyers-Ulam stability of the functional

inequality (1.2). Park, Cho and Han [10] proved the Hyers-Ulam stability of additive functional

inequalities.

In Section 3, we solve the quadratic ρ-functional inequality (0.1) and prove the Hyers-Ulam

stability of the quadratic ρ-functional inequality (0.1) in complex Banach spaces. We more-

over prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with the

quadratic ρ-functional inequality (0.1) in complex Banach spaces.

In Section 4, we solve the quadratic ρ-functional inequality (0.2) and prove the Hyers-Ulam

stability of the quadratic ρ-functional inequality (0.2) in complex Banach spaces. We more-

over prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with the

quadratic ρ-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, assume that X is a complex normed space and that Y is a complex

Banach space.

2. Quadratic functional equation

Theorem 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f

(
x+ y + z

2
+
x− y − z

2
+
y − x− z

2
+
z − x− y

2

)
= f(x) + f(y) + f(z) (2.1)

if and only if the mapping f : X → Y is a quadratic mapping.

Proof. Sufficiency. Assume that f : X → Y satisfies (2.1)

Letting x = y = z = 0 in (2.1), we have 4f(0) = 3f(0). So f(0) = 0.

Letting y = z = 0 in (2.1), we get

2f

(
x

2

)
+ 2f

(
−x

2

)
= f(x), (2.2)

2f

(
−x

2

)
+ 2f

(
x

2

)
= f(−x)

for all x ∈ X, which imply that f(x) = f(−x) for all x ∈ X.
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From this and (2.2), we obtain 4f
(
x
2

)
= f(x) or f(2x) = 4f(x) for all x ∈ X.

Putting z = 0 in (2.1), we obtain

1

2
f(x+ y) +

1

2
f(x− y) = f(x) + f(y)

for all x, y ∈ X, which means that f : X → Y is a quadratic mapping.

Necessity. Assume that f : X → Y is quadratic.

By f(x + y) + f(x − y) = 2f(x) + 2f(y), one can easily get f(0) = 0, f(x) = f(−x) and

f(2x) = 4f(x) for all x ∈ X. So

f
(x+ y + z

2

)
+ f

(x− y − z
2

)
+ f

(y − x− z
2

)
+ f

(z − x− y
2

)
=
[
2f
(x

2

)
+ 2f

(y + z

2

)]
+
[
2f
(
− x

2

)
+ 2f

(y − z
2

)]
= 4f

(
x

2

)
+ f

(y + z + y − z
2

)
+ f

(y + z − y + z

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X, which is the functional equation (2.1) and the proof is complete. �

Corollary 2.2. Let X and Y be vector spaces. An even mapping f : X → Y satisfies

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) = 4f(x) + 4f(y) + 4f(z) (2.3)

for all x, y, z ∈ X. Then the mapping f : X → Y is a quadratic mapping.

Proof. Assume that f : X → Y satisfies (2.3)

Letting x = y = z = 0 in (2.3), we have 4f(0) = 12f(0). So f(0) = 0.

Letting z = 0 in (2.3), we get

2f(x+ y) + 2f(x− y) = 4f(x) + 4f(y)

and so f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X. �

3. Quadratic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1
8 .

In this section, we solve and investigate the quadratic ρ-functional inequality (0.1) in complex

normed spaces.

Lemma 3.1. An even mapping f : X → Y satisfies∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.1)

−4f(x)− 4f(y)− 4f(z))‖

for all x, y, z ∈ X if and only if f : X → Y is quadratic.
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Proof. Assume that f : X → Y satisfies (3.1).

Letting x = y = z = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖. So f(0) = 0.

Letting y = z = 0 in (3.1), we get ‖4f
(
x
2

)
− f(x)‖ ≤ 0 and so 4f(x2 ) = f(x) for all x ∈ X.

Thus

f

(
x

2

)
=

1

4
f(x) (3.2)

for all x ∈ X.

It follows from (3.1) and (3.2) that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖

= |ρ|
∥∥∥∥4f (x+ y + z

2

)
+ 4f

(
x− y − z

2

)
+ 4f

(
y − x− z

2

)
+ 4f

(
z − x− y

2

)
−4f(x)− 4f(y)− 4f(z)‖

≤ 4|ρ|
∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖

and so

f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X.

The converse is obviously true. �

Corollary 3.2. An even mapping f : X → Y satisfies

f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

= ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z))(3.3)

for all x, y, z ∈ X if and only if f : X → Y is quadratic.

The functional equation (3.3) is called a quadratic ρ-functional equation.

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in complex

Banach spaces.

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be an even mapping such

that

Ψ(x, y, z) :=
∞∑
j=0

4jϕ(
x

2j
,
y

2j
,
z

2j
) <∞, (3.4)

∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.5)

−4f(x)− 4f(y)− 4f(z))‖+ ϕ(x, y, z)
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for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ Ψ(x, 0, 0) (3.6)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (3.5), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖. So f(0) = 0.

Letting y = z = 0 in (3.5), we get∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0, 0) (3.7)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥ ≤ m−1∑
j=l

4jϕ

(
x

2j
, 0, 0

)
(3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the

sequence {4nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{4nf( x
2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.6).

It follows from (3.4) and (3.5) that∥∥∥∥h(x+ y + z

2

)
+ h

(
x− y − z

2

)
+ h

(
y − x− z

2

)
+ h

(
z − x− y

2

)
− h(x)− h(y)− h(z)

∥∥∥∥
= lim

n→∞
4n
∥∥∥∥f (x+ y + z

2n+1

)
+ f

(
x− y − z

2n+1

)
+ f

(
y − x− z

2n+1

)
+ f

(
z − x− y

2n+1

)
−f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
≤ lim

n→∞
4n|ρ|

∥∥∥∥f (x+ y + z

2n

)
+ f

(
x− y − z

2n

)
+ f

(
y − x− z

2n

)
+ f

(
z − x− y

2n

)
−4f

(
x

2n

)
− 4f

(
y

2n

)
− 4f

(
z

2n

)∥∥∥∥+ lim
n→∞

4nϕ

(
x

2n
,
y

2n
,
z

2n

)
= ‖ρ(h(x+ y + z) + h(x− y − z) + h(y − x− z) + h(z − x− y)

−4h(x)− 4h(y)− 4h(z))‖

for all x, y, z ∈ X. So∥∥∥∥h(x+ y + z

2

)
+ h

(
x− y − z

2

)
+ h

(
y − x− z

2

)
+ h

(
z − x− y

2

)
− h(x)− h(y)− h(z)

∥∥∥∥
≤ ‖ρ(h(x+ y + z) + h(x− y − z) + h(y − x− z) + h(z − x− y)− 4h(x)− 4h(y)− 4h(z))‖

for all x, y, z ∈ X. By Lemma 3.1, the mapping h : X → Y is quadratic.
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Now, let T : X → Y be another quadratic mapping satisfying (3.6). Then we have

‖h(x)− T (x)‖ =

∥∥∥∥4qh( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥4qh( x2q
)
− 4qf

(
x

2q

)∥∥∥∥+

∥∥∥∥4qT ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥
≤ 2 · 4qΨ

(
x

2q
, 0, 0

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for all

x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique quadratic

mapping satisfying (3.6). �

Corollary 3.4. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (3.9)

−4f(x)− 4f(y)− 4f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2rθ

2r − 4
‖x‖r (3.10)

for all x ∈ X.

Theorem 3.5. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 and let f : X → Y be an

even mapping satisfying (3.5) and

Ψ(x, y, z) :=
∞∑
j=1

1

4j
ϕ(2jx, 2jy, 2jz) <∞ (3.11)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ Ψ(x, 0, 0) (3.12)

for all x ∈ X.

Proof. It follows from (3.7) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(2x, 2x, 2x)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx

)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥ ≤ m−1∑
j=l

1

4j+1
ϕ(2j+1x, 0, 0)(3.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.13) that the

sequence { 1
4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)
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for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.13), we get (3.12).

The rest of the proof is similar to the proof of Theorem 3.3. �

Corollary 3.6. Let r < 2 and θ be positive real numbers, and let f : X → Y be an even

mapping satisfying (3.9). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2rθ

4− 2r
‖x‖r (3.14)

for all x ∈ X.

By the triangle inequality, we have∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
−‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖

≤
∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)− ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z)

+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖.

As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results for the

quadratic ρ-functional equation (3.3) in complex Banach spaces.

Corollary 3.7. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be an even mapping

satisfying (3.4) and∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
(3.15)

−f(x)− f(y)− f(z)− ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z)
+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (3.6).

Corollary 3.8. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
(3.16)

−f(x)− f(y)− f(z)− ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z)
+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (3.10).

Corollary 3.9. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 and let f : X → Y be

an even mapping satisfying (3.11) and (3.15). Then there exists a unique quadratic mapping

h : X → Y satisfying (3.12).

Corollary 3.10. Let r < 2 and θ be positive real numbers, and let f : X → Y be an even

mapping satisfying (3.16). Then there exists a unique quadratic mapping h : X → Y satisfying

(3.14).
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Remark 3.11. If ρ is a real number such that −1
8 < ρ < 1

8 and Y is a real Banach space, then

all the assertions in this section remain valid.

4. Quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 4.

In this section, we solve and investigate the quadratic ρ-functional inequality (0.2) in complex

normed spaces.

Lemma 4.1. An even mapping f : X → Y satisfies

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
(4.1)

−f(x)− f(y)− f(z))‖

for all x, y, z ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (4.1).

Letting x = y = z = 0 in (4.1), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.

Letting x = y, z = 0 in (4.1), we get

‖2f (2x)− 8f(x)‖ ≤ 0 (4.2)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.

It follows from (4.1) and (4.2) that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z))‖

=

∥∥∥∥ρ(1

4
f(x+ y + z) +

1

4
f(x− y − z) +

1

4
f(y − x− z) +

1

4
f(z − x− y)

−f(x)− f(y)− f(z))‖

=
|ρ|
4
‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

and so

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) = 4f(x) + 4f(y) + 4f(z)

for all x, y, z ∈ X. So f is quadratic.

The converse is obviously true. �

Corollary 4.2. An even mapping f : X → Y satisfies

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)
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= ρ

(
f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.3)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)
for all x, y, z ∈ X and only if f : X → Y is quadratic.

The functional equation (4.3) is called a quadratic ρ-functional equation.

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (4.1) in complex

Banach spaces.

Theorem 4.3. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be an even mapping

satisfying

Ψ(x, y, z) :=
∞∑
j=1

4jϕ

(
x

2j
,
y

2j
,
z

2j

)
<∞, (4.4)

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.5)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥+ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 1

8
Ψ(x, x, 0) (4.6)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (4.5), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.

Letting x = y, z = 0 in (4.5), we get∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ 1

2
ϕ

(
x

2
,
x

2
, 0

)
(4.7)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

22j−1ϕ

(
x

2j+1
,
x

2j+1
, 0

)
(4.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.8) that the

sequence {4nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{4nf( x
2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (4.8), we get (4.6).

The rest of the proof is similar to the proof of Theorem 3.3. �
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Corollary 4.4. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.9)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 1

2r − 4
θ‖x‖r (4.10)

for all x ∈ X.

Theorem 4.5. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 and let f : X → Y be an

even mapping satisfying (4.5) and

Ψ(x, y, z) :=
∞∑
j=0

1

4j
ϕ(2jx, 2jy, 2jz) <∞ (4.11)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 1

8
Ψ(x, x, 0) (4.12)

for all x ∈ X.

Proof. It follows from (4.7) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

8
ϕ(x, x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx

)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤ 1

8

m−1∑
j=l

1

4j
ϕ(2jx, 2jx, 0) (4.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.13) that the

sequence { 1
4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (4.13), we get (4.12).

The rest of the proof is similar to the proof of Theorem 3.3. �

Corollary 4.6. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be an even

mapping satisfying (4.9). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 1

4− 2r
θ‖x‖r (4.14)
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for all x ∈ X.

By the triangle inequality, we have

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖

−
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥
≤ ‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)

−ρ
(
f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥ .
As corollaries of Theorems 4.3 and 4.5, we obtain the Hyers-Ulam stability results for the

quadratic ρ-functional equation (4.3) in complex Banach spaces.

Corollary 4.7. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be an even mapping

satisfying (4.4) and

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)

−ρ
(
f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
(4.15)

−f(x)− f(y)− f(z))‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (4.6).

Corollary 4.8. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be an even

mapping such that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)− 4f(x)− 4f(y)− 4f(z)

−ρ
(
f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
(4.16)

−f(x)− f(y)− f(z))‖ ≤ θ(‖x‖r + ‖y‖r + ‖y‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (4.10).

Corollary 4.9. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 and let f : X → Y be

an even mapping satisfying (4.11) and (4.15). Then there exists a unique quadratic mapping

h : X → Y satisfying (4.12).

Corollary 4.10. Let r < 2 and θ be positive real numbers, and let f : X → Y be an even

mapping satisfying (4.16). Then there exists a unique quadratic mapping h : X → Y satisfying

(4.14).

Remark 4.11. If ρ is a real number such that −4 < ρ < 4 and Y is a real Banach space, then

all the assertions in this section remain valid.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

873 CHOONKIL PARK ET AL 863-874



C. PARK, Y. HYUN, AND J. R. LEE

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950),
64–66.

[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.
[3] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equa-

tion, Aequationes Math. 71 (2006), 149–161.
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ON A SUBCLASS OF p -VALENT ANALYTIC FUNCTIONS OF COMPLEX

ORDER INVOLVING A LINEAR OPERATOR

N. E. CHO 1,∗ AND A. K. SAHOO 2

Abstract. Using the linear operator Lp(a, c) , we introduce a class Rbp,n(µ, a, c, A,B) of mul-

tivalent analytic functions with complex order. For this class, a sufficient condition in terms of

the coefficients for f is obtained, the Fekete-Szego problem and determination of sharp upper

bound for the second Hankel determinant is completely solved. Relevant connections of the

results presented here with those obtained in earlier works are pointed out.

1. Introduction and preliminaries

We denote by Ap(n) the family of functions of the form:

f(z) = zp +
∞∑
k=n

ap+kz
p+k (p, n ∈ N = {1, 2, . . . }) (1.1)

which are analytic and p -valent in the unit disk U = {z ∈ C : |z| < 1} . For n = 1 and

n = 1, p = 1, we symbolise the above class by Ap and A , respectively.

For the functions f1 and f2 analytic in U , we say that f1 is subordinate to f2 , written as

f1 ≺ f2 or f1(z) ≺ f2(z) (z ∈ U) if there exists a Schwarz function ω , which (by defintion) is

analytic in U with ω(0) = 0, |ω(z)| < 1 and f1(z) = f2(ω(z)) for z ∈ U . If the function f2 is

univalent in U , then we have the following equivalence relation (cf., e.g., [23]; see also [24]).

f1(z) ≺ f2(z)⇐⇒ f1(0) = f2(0) and f1(U) ⊂ f2(U).

If we have two functions hj(z) =
∑∞

k=0 ak,jz
k (j = 1, 2) which are analytic in U , we define

the Hadamard product (or convolution) of f1 and f2 by

(h1 ? h2)(z) =
∞∑
k=0

ak,1ak,2z
k = (h2 ? h1)(z) (z ∈ U).

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. p -valent analytic functions, Complex order, Inclusion relationships, Hadamard prod-

uct, Subordination, Neighborhood.
∗ Corresponding author.
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2 N. E. CHO AND A. K. SAHOO

The classes S∗p,n(b, ρ) and Cp,n(b, ρ) are called p -valently starlike and convex of complex

order b and type ρ which consists f of Ap(n) and f satisfies the following inequalities, re-

spectively:

Re

{
p+

1

b

(
zf ′(z)

f(z)
− p
)}

> ρ (b ∈ C∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U), (1.2)

Re

{
p+

1

b

(
1 +

zf ′′(z)

f ′(z)
− p
)}

> ρ (b ∈ C∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U). (1.3)

From (1.1) and (1.3), it follows that

f ∈ Cp,n(b, ρ)⇐⇒ zf ′(z)

p
∈ S∗p,n(b, ρ).

In particular, for p = n = 1, the classes S∗p,n(b, ρ) and Cp,n(b, ρ) reduces to the classes S∗(b, ρ)

and C(b, ρ) of starlike functions of complex order b and type ρ , and convex function of complex

order b and type ρ (b ∈ C∗; 0 ≤ ρ < p) , respectively, which were introduced by Frasin [8].

Setting ρ = 0 in S∗(b, ρ) and C(b, ρ) , we get the classes S∗(b) and C(b) . These classes

of starlike and convex functions of order b were considered earlier by Nasr and Aouf [27] and

Wiatrowski [37], respectively (see also [5] and [36]). We further observe that S∗p,1(1, ρ) = S∗p (ρ)

and Cp,1(1, ρ) = Cp(ρ) are, respectively, the classes of p -valently starlike and p -valently convex

functions of order ρ (0 ≤ ρ < p) in U . Also, we note that S∗1 (ρ) = S∗(ρ) and C1(ρ) = C(ρ)

are the usual classes of starlike and convex functions of order ρ (0 ≤ ρ < 1) in U . In the special

cases, S∗(0) = S∗ and C(0) = C are the familiar classes of starlike and convex functions in U .

Furthermore, let Rp,n(b, ρ) denote the class of functions in Ap(n) satisfying the condition:

Re

{
p+

1

b

(
f ′(z)

zp−1
− p
)}

> ρ (b ∈ C∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U).

We note that Rp,n(1, ρ) is a subclass of p -valently close-to-convex functions of order ρ (0 ≤
ρ < p) in the unit disk U.

Let ϕp be the incomplete beta function defined by

ϕp(a, c; z) = zp +
∞∑
k=1

(a)k
(c)k

zp+k (z ∈ U), (1.4)

where a ∈ R, c ∈ R \ Z−0 ,Z
−
0 = {0,−1,−2, . . . } and the symbol (x)k denotes the Pochhammer

symbol (or shifted factorial) given by

(x)k =

{
1, (k = 0, x ∈ C∗ = C \ {0})
x(x+ 1) · · · (x+ k − 1), (k ∈ N, x ∈ C).

With the aid of the function ϕp , given by (1.4) and the Hadamard product, we consider the

linear operator Lp(a, c) : Ap(n) −→ Ap(n) defined by

Lp(a, c)f(z) = ϕp(a, c; z) ? f(z) (z ∈ U). (1.5)
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If f is given by (1.1), then from (1.5), it readily follows that

Lp(a, c)f(z) = zp +
∞∑
k=n

(a)k
(c)k

ap+kz
p+k (z ∈ U). (1.6)

The linear operator Lp(a, c) on the class Ap was introduced and studied by Saitoh [33], which

generalizes the linear operator L1(a, c) = L(a, c) introduced by Carlson and Shaffer [4] in their

systematic investigations of certain interesting subclasses of starlike, convex and prestarlike

hypergeometric functions.

We also note that for f ∈ Ap ,

(i) Lp(a, a)f(z) = f(z) ;

(ii) Lp(p+ 1, p)f(z) = z2f ′′(z) + 2zf ′(z)/p(p+ 1) ;

(iii) Lp(p+ 2, p)f(z) = zf ′(z)/p ;

(iv) Lp(m + p, 1)f(z) = Dm+p−1f(z) (m ∈ Z,m > −p) , the operator studied by Goel and

Sohi [9]. In the case p = 1, Dmf is the familiar Ruscheweyh derivative [32] of f ∈ A .

(v) Lp(ν + p, 1)f(z) = Dν,pf(z) (ν > −p) , the extended linear derivative operator of

Rusheweyh type introduced by Raina and Srivastava [31]. In particular, when ν = m ,

we get operator Dm+p−1f(z) (m ∈ Z,m > −p) , studied by Goel and Sohi [9].

(vi) Lp(p+ 1,m+ p)f(z) = Im,pf(z) (m ∈ Z,m > −p), the extended Noor integral operator

considered by Liu and Noor [19].

(vii) Lp(p + 1, p + 1 − λ)f(z) = Ω
(λ,p)
z f(z) (−∞ < λ < p + 1) , the extended fractional

differintegral operator considered by Patel and Mishra [30].

Note that

Ω0,p
z f(z) = f(z), Ω1,p

z f(z) =
zf ′(z)

p
and Ω2,p

z f(z) =
z2f ′′(z)

p(p− 1)
(p ≥ 2; z ∈ U).

Now, by using the operator Lp(a, c) , we introduce the following new subclasses of p -valent

analytic functions in the unit disk U .

Definition 1.1. Rbp,n(µ, a, c, A,B) is the subclass of analytic p−valent functions, which con-

sists of f given in the form of (1.1) and satisfies the subordination condition:

1 +
1

b

{
p(1− µ)

Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)′ (z)

zp−1
− p
}
≺ 1 +Az

1 +Bz
, (1.7)

where −1 ≤ B < A ≤ 1, p ∈ N , b ∈ C∗, 0 ≤ µ ≤ 1 and z ∈ U . Equivalently, we say f ∈ Ap(n)

is a member of Rbp,n(µ, a, c, A,B) , if∣∣∣∣ p(1− µ)Lp(a, c)f(z) + µz(Lp(a, c)f)′(z)− pzp

b(A−B)zp −B {p(1− µ)Lp(a, c)f(z) + µz(Lp(a, c)f)′(z)− pzp)}

∣∣∣∣ < 1 (z ∈ U). (1.8)
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For n = 1 we denote the class by Rbp(µ, a, c, A,B) . It may be noted that by suitably choosing

the parameters involved in Definition 1.1, the class Rbp,n(a, c, λ, ρ) extends several subclasses of

p -valent analytic functions in U .

Example 1.1. For n = 1, b = pe−iθ cos θ, A = 1− 2ρ/p, B = −1 in Definition 1.1, we get

Rpe
−iθ cos θ

p

(
µ, a, c, 1− 2ρ

p
,−1

)
= Rp(µ, a, c, θ, ρ)

=

{
f ∈ Ap : Re

[
eiθ
(
p(1− µ)

Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)′(z)

zp−1

)]
> ρ cos θ

}
,

where 0 ≤ ρ < p, |θ| < π/2 and z ∈ U .

• Putting µ = 0, p = 1, a = α and c = β in Example 1.1, we get the class Rα,β(θ, ρ) considered

by Mishra and Kund [26].

• Taking a = c in Example 1.1, we get

Rp(µ, a, c, θ, ρ) = Rp(µ, θ, ρ) =

{
f ∈ Ap : Re

[
eiθ
(
p(1− µ)

f(z)

zp
+ µ

f ′(z)

zp−1

)]
> ρ cos θ

}
.

We write

Rp(0, θ, ρ) = Rp,θ(ρ) =

{
f ∈ Ap : Re

[
eiθ
(
f(z)

zp

)]
>
ρ

p
cos θ

}
and

Rp(1, θ, ρ) = Rp,θ(ρ) =

{
f ∈ Ap : Re

[
eiθ
(

(f)′(z)

zp−1

)]
>
ρ

p
cos θ

}
,

where (0 ≤ ρ < p, |θ| < π/2, z ∈ U) which reduces to the class R (see, MacGregor [21]) for p = 1

and θ = ρ = 0.

• Taking a = p+ 1, c = p+ 1− λ in Example 1.1, we obtain

Rpe
−iθ cos θ

p

(
µ, p+ 1, p+ 1− λ, 1− 2ρ

p
,−1

)
= Rp,λ(µ, θ, ρ)

=

{
f ∈ Ap : Re

[
eiθ

(
p(1− µ)

Ωλ,p
z (a, c)f(z)

zp
+ µ

(Ωλ,p
z (a, c)f)′(z)

zp−1

)]
> ρ cos θ

}
,

where 0 ≤ ρ < p, −∞ < λ < p + 1, |θ| < π/2 and z ∈ U . We write Rp,λ(0, θ, ρ) = Rp,λ(θ, ρ)

and the class R1,λ(θ, ρ) = Rλ(θ, ρ) was investigated by Mishra and Gochhayat [25].

•

R

2pβ(1−α
p )e−iθ cos θ

1+β
p (µ, p+ 1, p, 1,−β) = Rθ, µp,α,β (0 ≤ α < p, 0 ≤ β < 1, |θ| < π/2)

=

{
f ∈ Ap :

∣∣∣∣∣ (1− µ+ µ
p )f ′(z) + µ

p zf
′′(z)− pzp−1

(1− µ+ µ
p )f ′(z) + µ

p zf
′′(z)− pzp−1 + 2(p− α)e−iθ cos θ zp−1

∣∣∣∣∣ < β; z ∈ U

}
.

We note that Rθ,01,α,β = Rθα,β is the subclass of A investigated by Makowka [22],

R0,0
1,α,β = R(α, β) is the class studied by Juneja and Mogra [12] and R0,0

1,0,β = R(β) is the class

considered by Padmanabhan [29] (see also [3]).
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Example 1.2. For µ = 0, n = 1 and replacing b by bp , we get subclass Rbp(a, c, A,B) of Ap
which satisfies the following subordination condition:

1 +
1

b

(
Lp(a, c)f(z)

zp
− 1

)
≺ 1 +Az

1 +Bz
(z ∈ U), (1.9)

where a ∈ R, c ∈ R \ Z−0 ,
(
Z−0 = {...,−2,−1, 0}

)
and 0 6= b ∈ C .

The sub class of Rbp(a, c, A,B) is recently studied by Sahoo and Patel [35].

Recently, Janteng et al. [11], Mishra and Gochhayat [25] and Mishra and Kund [26] have ob-

tained sharp upper bounds to the second Hankel determinant H2(2) for the families R, Rλ(θ, ρ)

and Rα,β(θ, ρ) , respectively.

Further, taking A = p − ρ, B = 0 in Definition 1.1, we get the following subclass

Rbp,n(µ, a, c, ρ) of Ap(n) studied by Sahoo and Patel [34]

• A function f ∈ Ap(n) is said to be in the class Rbp,n(µ, a, c, ρ) , if it satisfies the following

inequality: ∣∣∣∣1b
{
p(1− µ)

Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)′ (z)

zp−1
− p
}∣∣∣∣ < p− ρ (1.10)

(b ∈ C∗, 0 ≤ µ ≤ 1, 0 ≤ ρ < p; z ∈ U).

• Rbp,n(µ, p+ 1, p+ 1− λ, ρ) = Rbp,n(µ, λ, ρ) (b ∈ C∗,−∞ < λ < p, 0 ≤ µ) , which yields the class

considered by Aouf [2] for ρ = p− β (0 < β ≤ 1, 0 ≤ ρ < p).

Special cases of the parameters p, λ and ρ in the class Rbp,n (µ, λ, ρ) yields the following

subclasses of Ap .

(i) Rbp,n(µ, 0, ρ) = Rbp,n(µ, ρ)

=

{
f ∈ Ap :

∣∣∣∣1b
(
p(1− µ)

f(z)

zp
+ µ

f ′(z)

zp−1
− p
)∣∣∣∣ < p− ρ, µ ≥ 0, 0 ≤ ρ < p; z ∈ U

}
.

(ii) Rbp,n(µ, 1, ρ) = Pbp,n(µ, ρ)

=

{
f ∈ Ap :

∣∣∣∣1b
(

(µ+ µ(1− p)) f
′(z)

pzp−1
+ µ

f ′′(z)

pzp−2
− p
)∣∣∣∣ < p− ρ, µ ≥ 0, 0 ≤ ρ < p; z ∈ U

}
.

(iii) Rb1,n(µ, 1, 1− β) = Rbn(µ, β)

=

{
f ∈ Ap :

∣∣∣∣1b (f ′(z) + µzf ′′(z)− 1
)∣∣∣∣ < β, µ ≥ 0, 0 < β ≤ 1; z ∈ U

}
.

The class Rbn(µ, β) was studied by Altintas et al. [1].

Let P denote the class of analytic functions φ normalized by

φ(z) = 1 + p1z + p2z
2 + · · · (z ∈ U) (1.11)

such that Re{φ(z)} > 0 in U .
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Noonan and Thomas [28] defined the q -th Hankel determinant of a sequence an, an+1, an+2, · · ·
of real or complex numbers by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (n ∈ N, q ∈ N \ {1}).

This determinant has been studied by several authors with the subject of inquiry ranging from

the rate of growth of Hq(n) (as n → ∞) to the determination of precise bounds with specific

values of n and q for certain subclasses of analytic functions in the unit disk U . Ehrenborg [6]

studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer

sequence and some of its properties were discussed by Layman [16].

In particular, when n = 1, q = 2, a1 = 1 and n = q = 2, the Hankel determinant simplifies

to

H2(1) = |a3 − a22| and H2(2) = |a2a4 − a23|.
We refer to H2(2) as the second Hankel determinant. It is known [5] that if

f(z) = z +
∞∑
k=2

akz
k (z ∈ U) (1.12)

is analytic and univalent in U , then the sharp inequality H2(1) = |a3 − a22| ≤ 1 holds. For a

family F of analytic functions of the form (1.7), the more general problem of finding the sharp

upper bounds for the functionals |a3 − µa22| (µ ∈ R/C) is popularly known as Fekete-Szegö

problem for the class F . The Fekete-Szegö problem for the known classes of univalent functions,

starlike functions, convex functions and close-to-convex functions has been completely settled

[7, 10, 13, 14, 15].

Recently, Janteng et al. [11], Mishra and Gochhayat [25] and Mishra and Kund [26] have ob-

tained sharp upper bounds on the second Hankel determinant H2(2) for the families R, Rλ(θ, ρ)

and Rα,β(θ, ρ) , respectively.

In our present investigation, by following the techniques devised by Libera and Zlotkiewicz

[17, 18], we derive sharp upper bound for the Fekete-Szegö problem and for the second Hankel de-

terminant as well of the functions belonging to the class Rbp(µ, a, c, A,B) . Relevant connections

of the results obtained here with some earlier known work are also pointed out.

To establish our main results, we shall need the followings lemmas.

Lemma 1.1. [5, 17, 18, 20] Let the function φ , given by (1.2) be a member of the class P .

Then

(i) |pk| ≤ 2 (k ≥ 1) and the estimate is sharp for the function

t(z) =
1 + z

1− z
(z ∈ U).

(ii)
∣∣p2 − ν p21∣∣ ≤ 2 max{1, |2ν − 1|}, where ν ∈ C and the result is sharp for the functions
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given by

q(z) =
1 + z2

1− z2
and s(z) =

1 + z

1− z
(z ∈ U).

(iii)

p2 =
1

2

{
p21 + (4− p21)x

}
and

p3 =
1

4

{
p31 + 2(4− p21)p1x− (4− p21)p1x2 + 2(4− p21)(1− |x|2)z

}
for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

2. Main results

Unless otherwise mentioned, we assume throughout the sequel that

b ∈ C∗, 0 ≤ µ ≤ 1, p ∈ N, a > 0, c > 0,−1 ≤ B < A ≤ 1, z ∈ U

and the powers appearing in different expression are understood as principal values.

At the outset, we obtain a sufficient condition for a function f ∈ Ap to be in the class

Rbp,n(µ, a, c, A,B) .

Theorem 2.1. If f given by (1.1) satisfies
∞∑
k=n

(a)k
(c)k
|ap+k|(p+ µk) ≤ |b|(A−B)

(1 + |B|)
, (2.1)

then f ∈ Rbp,n(µ, a, c, A,B) .

Proof. To prove that f given by (1.1) is a member of Rbp,n(µ, a, c, A,B) , it need to satisfy (1.8).

For |z| = 1, we have∣∣∣∣ p(1− µ)Lp(a, c)f(z) + µz(Lp(a, c)f)′(z)− pzp

b(A−B)zp −B {p(1− µ)Lp(a, c)f(z) + µz(Lp(a, c)f)′(z)− pzp)}

∣∣∣∣
=

∣∣∣∣∑∞k=n (a)k
(c)k

ap+k(p+ µk)zk
∣∣∣∣∣∣∣∣b(A−B)−B

∑∞
k=n

(a)k
(c)k
|ap+k|(p+ µk)zk

∣∣∣∣
≤

∑∞
k=n

(a)k
(c)k
|ap+k|(p+ µk)zk

|b|(A−B)− |B|
∑∞

k=n

(a)k
(c)k
|ap+k|(p+ µk)zk

(z ∈ U).

The last expression is needed to be bounded above by 1 , which requires
∞∑
k=n

(a)k
(c)k
|ap+k|(p+ µk) ≤ |b|(A−B)

(1 + |B|)

Thus by maximum modulus theorem the assertion (1.8) is satisfied for z ∈ U and the proof of

Theorem 2.1 is completed. �
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Remark 2.1. Putting n = 1, µ = 0 in Theorem 2.1, we get Theorem 1 of Sahoo and Patel

[35].

Taking n = 1, b = pe−iθ , we get following result.

Corollary 2.1. For f ∈ Ap, |θ| < π
2 , 0 ≤ ρ < p ,

∑∞
k=1

(a)k
(c)k
|ap+k|(p + µk) ≤ (p − ρ) cos θ is

the sufficient condition to be a member of Rp(µ, θ, a, c, ρ) .

Theorem 2.2. If the function f , given by (1.1) belongs to the class Rbp,n(µ, a, c, A,B), then

|ap+k| ≤
|b|(A−B)(c)k
(p+ µk)(a)k

(k ≥ n ∈ N). (2.2)

The estimate (2.2) is sharp.

Proof. Since f ∈ Rbp,n(µ, a, c, A,B) , we have

p(1− µ)Lp(a, c)f(z) + µz(Lp(a, c)f)′(z)− pzp

zp
=
b(A−B)ω(z)

1 +Bω(z)
(z ∈ U), (2.3)

where ω(z) = w1z+w2z
2 + · · · is analytic in U satisfying the condition |ω(z)| ≤ |z| for z ∈ U .

Substituting the series expansion of f and ω in (2.3) followed by simplification, we deduce that

∞∑
k=n

(a)k
(c)k

ap+k(kµ+ p)zk =

{
b(A−B)−B

∞∑
k=n

(a)k
(c)k

ap+k(kµ+ p)zk

} ∞∑
k=1

wkz
k (z ∈ U). (2.4)

Equating the corresponding coefficient on both side of (2.4), we find that the coefficient ap+k
on the left hand side of (2.4) depends only on ap+n, ap+(n+1), · · · , ap+k−1, k ≥ n ∈ N on the

right hand side of (2.4). Hence, for k ≥ n , it follows from (2.4) that

t∑
k=n

(a)k
(c)k

(kµ+ p)ap+kz
k +

∞∑
k=t+1

dkz
k =

{
b(A−B)−B

t−1∑
k=n

(a)k
(c)k

(kµ+ p)ap+kz
k

}
ω(z),

where the series
∑∞

k=t+1 dkz
k converges in U. Since |ω(z)| < 1 for z ∈ U , we get∣∣∣∣∣

t∑
k=n

(a)k
(c)k

(kµ+ p)ap+kz
k +

∞∑
k=t+1

dkz
k

∣∣∣∣∣ ≤
∣∣∣∣∣
{
b(A−B)−B

t−1∑
k=n

(a)k
(c)k

(kµ+ p)ap+kz
k

}∣∣∣∣∣ . (2.5)

Writing z = reiθ (r < 1) , squaring both sides of (2.5) and then integrating, we obtain

t∑
k=n

(a)2k
(c)2k

(kµ+ p)2|ap+k|2r2k +
∞∑

k=t+1

|dk|2r2k ≤ |b|2(A−B)2 + |B|2
t−1∑
k=n

(a)2k
(c)2k

(kµ+ p)2|ap+k|2r2k.

Letting r → 1− in the above inequality, we get

(a)2t
(c)2t

(tµ+ p)2|ap+t|2 ≤ |b|2(A−B)2 − (1− |B|2)
t−1∑
k=1

(a)2k
(c)2k

(kµ+ p)2|ap+k|2 ≤ |b|2(A−B)2,

where we have used the fact that |B| ≤ 1. Thus, it follows that

|ap+t| ≤
|b|(A−B)(c)t
(tµ+ p)(a)t

(t ≥ n ∈ N). (2.6)
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It is easily seen that the estimate (2.6) is sharp for the functions

fk(z) = φp(c, a; z) ? zp
[

(kµ+ p) + {B(kµ+ p) + b(A−B)}zk

(kµ+ p)(1 +Bzk)

]
(k ∈ N; z ∈ U).

�

From the above theorem 2.2 we can draw the following result.

Corollary 2.2.

Rbp,n(µ, a+ 1, c, A,B) ⊂ Rbp,n(µ, a, c, A,B)

and

Rbp,n(µ, a, c, A,B) ⊂ Rbp,n(µ, a, c+ 1, A,B).

Letting b = pe ∗ −iθ, A = 1− 2ρ/p, B = −1 in Theorem 2.1, we get

Corollary 2.3. If the function f ∈ Ap is in the class Rp(µ, a, c, θ, ρ) , then

|ap+k| ≤
2p(1− ρ

p)(c)k

(p+ µk)(a)k
(k ≥ n ∈ N).

3. Hankel determinant

In this section, we solve the Fekete-Szegö problem and also determine the sharp upper bound

to the second Hankel determinant for the class Rbp(µ, a, c, A,B) .

We first prove

Theorem 3.1. If the function f ∈ Ap , belongs to the class Rbp(µ, a, c, A,B), then for any

λ ∈ C

|ap+2 − λa2p+1| ≤
|b|(A−B)

(p+ 2µ)

(c)2
(a)2

max

{
1,

∣∣∣∣B +
λb(A−B)(p+ 2µ)

(p+ µ)2
c(a+ 1)

a(c+ 1)

∣∣∣∣} . (3.1)

The estimate (3.1) is sharp.

Proof. Since f ∈ Rbp(µ, a, c, A,B), we can find ϕ ∈P of the form (1.4) such that

p(1− µ)
Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)′(z)

zp−1
− p =

b(A−B)(ϕ(z)− 1)

(1−B) + (1 +B)ϕ(z)
(z ∈ U). (3.2)

Writing the series expansion of both sides, we obtain( ∞∑
k=1

(a)p+k
(b)p+k

(p+ µk)ap+kz
k

)(
2 + (1 +B)

∞∑
k=1

qkz
k

)
= b(A−B)

∞∑
k=1

qkz
k. (3.3)

Equating coefficient of z, z2 and z3 , we get

ap+1 =
c

a

b(A−B)q1
2(p+ µ)

, (3.4)

ap+2 =
(c)2
(a)2

b(A−B)

2(p+ 2µ)

{
q2 −

(
1 +B

2

)
q21

}
, (3.5)
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and

ap+3 =
(c)3
(a)3

b(A−B)

2(p+ 3µ)

{
q3 −

(
1 +B

2

)
q1q2 +

(
1 +B

2

)2

q31

}
. (3.6)

Now for any µ ∈ C , we have

ap+2 − λ a2p+1 =
b(A−B)

2(p+ 2µ)

(c)2
(a)2

{
q2 −

[
1 +B

2
+
λb(A−B)(p+ 2µ)

2(p+ µ)2
c(a+ 1)

a(c+ 1)

]
q21

}
.

From the above expression with the aid of Lemma 1.1, we get

2γ − 1 = B +
λb(A−B)(p+ 2µ)

(p+ µ)2
c(a+ 1)

a(c+ 1)
,

which yields the required estimate (3.1). Equality in (3.1) is attained for the function f , defined

in U by

f(z) =


φp(c, a; z) ? zp


1 +

(
B + b

(A−B)

p+ 2µ

)
z2

1 +Bz2

 , if

∣∣∣∣B + λ
b(A−B)(p+ 2µ)(a+ 1)c

(p+ µ)2a(c+ 1)

∣∣∣∣ ≤ 1

φp(c, a; z) ? zp
{

(p+ 2µ) + (B(p+ µ) + b(A−B)) z

(p+ 2µ) +B(p+ µ)z

}
, if

∣∣∣∣B + λ
b(A−B)(p+ 2µ)(a+ 1)c

(p+ µ)2a(c+ 1)

∣∣∣∣ > 1.

This completes the proof of Theorem 3.1. �

For λ to be real, we get the following result.

Corollary 3.1. If the function f ∈ Ap , belongs to the class Rbp(µ, a, c, A,B), then for any

λ ∈ R

|ap+2−λa2p+1| ≤


|b|(A−B)

(p+ 2µ)

(c)2
(a)2

, for
−(1 +B)(p+ µ)2a(c+ 1)

b(A−B)(p+ 2µ)c(a+ 1)
≤ λ ≤ (1−B)(p+ µ)2a(c+ 1)

b(A−B)(p+ 2µ)
|b|(A−B)

(p+ 2µ)

(c)2
(a)2

{
B +

λb(A−B)(p+ 2µ)

(p+ µ)2
c(a+ 1)

a(c+ 1)

}
, Otherwise.

Remark 3.1. Taking µ = 0 and substituting b by bp in Theorem 3.1, we get Theorem 3 of

Sahoo and Patel [35].

Putting b = pe−iθ cos θ, A = 1− 2ρ/p, B = −1 in Theorem3.1, we get the following result.

Corollary 3.2. If f ∈ Rpe
−iθ cos θ

p, (µ, a, c, 1− 2ρ

p
,−1), then

|ap+2 − λa2p+1| ≤
2(p− ρ) cos θ

(p+ 2µ)

(c)2
(a)2

max

{
1,

∣∣∣∣2λe−iθ cos θ(p− ρ)(p+ 2µ)

(p+ µ)2
c(a+ 1)

a(c+ 1)
− 1

∣∣∣∣} .
The estimate is sharp.

Theorem 3.2. If f ∈ Rbp(µ, a, c, A,B) and a ≥ c > 0 , then

|ap+3ap+1 − a2p+2| ≤
{
|b|(A−B)(c)2
(p+ 2µ)(a)2

}2

. (3.7)
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Proof. Using equation (3.4), (3.5) and (3.6), we get

ap+3ap+1 − a2p+2 =
b2(A−B)2

4

c(c)2
a(a)2

{
1

(p+ 3µ)(p+ µ)

c+ 2

a+ 2
q1q3 −

(c+ 1)

(a+ 1)(p+ 2µ)2
q22

+

[
(c+ 1)

(a+ 1)(p+ 2µ)2
− 1

(p+ 3µ)(p+ µ)

c+ 2

a+ 2

]
(1 +B)q21q2

+

[
1

(p+ 3µ)(p+ µ)

c+ 2

a+ 2
− (c+ 1)

(a+ 1)(p+ 2µ)2

](
1 +B

2

)2

q41

}
.

Also,from Lemma 1.1, we get

ap+3ap+1 − a2p+2 =

b2(A−B)2

4

c(c)2
a(a)2

{
1

4(p+ 3µ)(p+ µ)

c+ 2

a+ 2

[
q41 + 2(4− q21)q21x− (4− q21)q21x

2 + 2q1(4− q21)(1− |x|2z)
]

− (c+ 1)

(a+ 1)(p+ 2µ)2
[
q41 + 2(4− q21)q21x+ (4− q21)x2

]
+

[
(c+ 1)

(a+ 1)(p+ 2µ)2
− 1

(p+ 3µ)(p+ µ)

c+ 2

a+ 2

]
(1 +B)

2

[
q41 + (4− q21)q21x

]
+

[
1

(p+ 3µ)(p+ µ)

c+ 2

a+ 2
− (c+ 1)

(a+ 1)(p+ 2µ)2

](
1 +B

2

)2

q41

}
.

For simplicity in the expression, we put

α =
b2(A−B)2

4

c(c)2
a(a)2

, β =
c+ 2

4(p+ 3µ)(p+ µ)(a+ 2)

and

Γ =
(c+ 1)

4(a+ 1)(p+ 2µ)2
.

Then by simple calculation, it can be observed that 0 < Γ < β < 2Γ . Using above notation and

triangle inequality, we can write

|ap+3ap+1 − a2p+2| ≤ |α|
{

1

8
[(β − Γ)(8 +B(1 +B))] q41

+
1

8
[(β − Γ)(15−B)] (4− q21)q21x

+
(
βq21 + Γ(4− q21)

)
(4− q21)x2

+
(
2βq1(4− q21)(1− x2)

)}
. (3.8)

Since the functions φ(z) and φ(eiθz) (θ ∈ R) belong to the class P , we can assume q1 > 0 , by

which generality is not lost. Taking x = v, q1 = u in (3.8), we get the the function T (u, v) (say)

T (u, v) =|α|
{

1

8
[(β − Γ)(8 +B(1 +B))]u4 +

1

8
[(β − Γ)(15−B)] (4− u2)u2v

+
(
βu2 + Γ(4− u2)

)
(4− u2)v2 +

(
2βu(4− u2)(1− v2)

)}
.
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We need to find maximum value of T (u.v) in the interval 0 ≤ u ≤ 2, 0 ≤ v ≤ 1 . We can see

by using the fact 0 < Γ < β < 2Γ ,

∂T

∂v
= |α|(4− u2)

{
1

8
[(β − Γ)(15−B)] + 2(β − Γ)u2v + 4(2Γ− βu)v

}
> 0 (0 ≤ u ≤ 2, 0 ≤ v ≤ 1).

So T (u, v) can not attain its maximum value within 0 < u < 2, 0 < v < 1 . Moreover, for fixed

u ∈ [0, 2] ,

M(u) = max
0≤v≤1

T (u, v) = T (u, 1) = |α|
{

1

8
[(β − Γ)(8 +B(1 +B))]u4

+
1

8
[(β − Γ)(15−B)] (4− u2)u2 +

(
βu2 + Γ(4− u2)

)
(4− u2)

}
and

M ′(u) = |α|
{

1

2
(β − Γ)

[
B2 + 2B − 15

]
u3 + ((β − Γ)(23−B)− 8Γ)u

}
.

Since M ′(u) > 0 , the maximum value occurs at u = 0, v = 1. Therefore

|ap+3ap+1 − a2p+2| ≤
{
|b|(A−B)(c)2
(p+ 2µ)(a)2

}2

.

�

Taking b = pe−iθ cos θ, A = 1− 2ρ/p, B = −1 in Theorem3.2 we get the following result.

Corollary 3.3. If f ∈ Rpe
−iθ cos θ

p, (µ, a, c, 1− 2ρ/p,−1), then

|ap+3ap+1 − a2p+2| ≤
{

2 cos θ(p− ρ)(c)2
(p+ 2µ)(a)2

}2

. (3.9)

The estimate (3.9) is sharp.

Remark 3.2. Taking µ = 0, p = 1, a = α, b = β in Corollary3.3, we get the result of Theorem

3.1 of Mishra and Kund [26].

Putting a = p+ 1, c = p+ 1 + λ in Corollary 3.3, we get following result.

Corollary 3.4. If f ∈ Rp,λ(µ, θ, ρ), then

|ap+3ap+1 − a2p+2| ≤
{

2 cos θ(p− ρ)(p+ 1− λ)2
(p+ 2µ)(p+ 1)2

}2

. (3.10)

The estimate (3.10) is sharp.

Remark 3.3. Putting µ = 0, p = 1, θ = α in Corollary 3.4, we get the result obtained in

theorem 3.1 of Mishra and Gochhayat [25]
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A GENERALIZATION OF SOME RESULTS FOR APPELL

POLYNOMIALS TO SHEFFER POLYNOMIALS

TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, AND LEE-CHAE JANG

Abstract. Recently, Mihoubi and Taharbouchet gave some interesting method of obtain-
ing certain identities for Appell polynomials of arbitrary orders starting from the given
identities for Appell polynomials of fixed orders. In addition, they illustrated their method
with several examples. The purpose of this paper is to note that their method can be gen-

eralized so as to include any Sheffer polynomials. Also, we will provide many examples
that illustrate our results.

1. Introduction and Preliminaries

Here we will go over very briefly some basic facts about umbral calculus. The reader is
advised to refer to [12] for a complete treatment. Let F be the algebra of all formal power
series in the variable t with the coefficients in the field C of complex numbers:

F =

{
f(t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
. (1)

Let P = C[x] be the ring of polynomials in x with coefficients in C, and let P∗ denote the
vector space of all linear functionals on P. For L ∈ P∗, p(x) ∈ P, < L|p(x) > denotes the
action of the linear functional L on p(x). The linear functional < f(t)|· > on P is defined by

< f(t)|xn >= an, (n ≥ 0), (2)

where f(t) =
∑∞

k=0 ak
tk

k! ∈ F. For L ∈ P∗, let us set fL(t) =
∑∞

k=0 < L|xk > tk

k! ∈ F. Then
we see that < fL(t)|xn >=< L|xn >, and the map L 7−→ fL(t) is a vector space isomorphism
from P∗ to F. Thus F may be viewed as the vector space of all linear functionals on P as well
as the algebra of formal power series in t, and so an element f(t) ∈ F will be thought of as
both a formal power series and a linear functional on P. F is called the umbral algebra, the
study of which is the umbral calculus(see [1-12]).

The order ◦(f(t)) of 0 ̸= f(t) ∈ F is the smallest integer k such that the coefficient of tk

does not vanish. In particular, 0 ̸= f(t) ∈ F is called an invertible series if ◦(f(t)) = 0 and
a delta series if ◦(f(t)) = 1. For f(t), g(t) ∈ F with ◦(g(t)) = 0, ◦(f(t)) = 1, there exists a
unique sequence sn(x) (deg sn(x) = n) such that < g(t)f(t)k|sn(x) >= n!δn,k, for n, k ≥ 0.
Such a sequence is called the Sheffer sequence for the Sheffer pair (g(t), f(t)), which is denoted
by sn(x) ∼ (g(t), f(t)). Further, it is known that sn(x) ∼ (g(t), f(t)) if and only if

1

g(f(t))
exf(t) =

∞∑
n=0

sn(x)
tn

n!
, (see[ 1-12]), (3)

2010 Mathematics Subject Classification. 05A19, 05A40, 11B83.
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2 A generalization of some results for Appell polynomials to Sheffer polynomials

where f(t) is the compositional inverse of f(t) satisfying f(f(t)) = f(f(t)) = t. In particular,
sn(x) is called the Appell sequence for g(t) if sn(x) ∼ (g(t), t).

Assume now that sn(x) ∼ (g(t), f(t)). Thus sn(x) is the Sheffer sequence for the Sheffer
pair (g(t), f(t)), and

∞∑
n=0

sn(x)
tn

n!
=

1

g(f(t))
exf(t), (see [12, 13]). (4)

Here we will assume that g(0) = 1, though it is not necessary. So, for any α ∈ C and

g(t) = 1 +
∞∑
k=1

ak
xk

k!
, (5)

g(t)α =
∞∑

n=0

(α)n

(∑∞
k=1 ak

tk

k!

)n
n!

, (6)

where (α)n = α(α − 1) · · · (α − n + 1) for n ≥ 1, and (α)0 = 1. Let s
(α)
n (x) ∼ (g(t)α, f(t)).

Then
∞∑

n=0

s(α)n (x)
tn

n!
=

(
1

g(f(t))

)α

exf(t). (7)

Also, we set

s̃n(x) ∼ (g(t), t), s̃(α)n (x) = (g(t)α, t). (8)

Thus s̃n(x) and s̃
(α)
n (x) are Appell polynomials and

∞∑
n=0

s̃n(x)
tn

n!
=

1

g(t)
ext,

∞∑
n=0

s̃(α)n (x)
tn

n!
=

(
1

g(t)

)α

ext. (9)

We observe here that
∞∑

n=0

s̃n(x)
(f(t))n

n!
=

1

g(f(t))
exf(t) =

∞∑
n=0

sn(x)
tn

n!
,

∞∑
n=0

s̃(α)n (x)
(f(t))n

n!
=

(
1

g(f(t))

)α

exf(t) =
∞∑

n=0

s(α)n (x)
tn

n!
. (10)

Adopting the conventional notation used in [10], we let 1
g(t) = eAt. So if 1

g(t) =
∑∞

n=0 an
tn

n! ,

then an = An. Moreover,
∞∑

n=0

s̃n(x)
tn

n!
= e(A+x)t =

∞∑
n=0

(A+ x)n
tn

n!
, (11)

so that s̃n(x) = (A+ x)n.
Recently, Mihoubi and Taharbouchet [10] gave some interesting method of obtaining certain

identities for Appell polynomials of arbitrary orders starting from the given identities for
Appell polynomials of fixed orders. In addition, they illustrated their method with several
examples. The purpose of this paper is to note that their method can be generalized so as
to include any Sheffer polynomials. Also, we will provide many examples that illustrate our
results.
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2. Main results

We will prove Theorem 2, which includes Propositions 2 and 3 in [10] as special cases, after
showing a lemma corresponding to Lemma 1 in [10].

Lemma 2.1. Let sn(x) ∼ (g(t), f(t)), and let α ∈ C.

(a) s(α)n (A+ x) = s(α+1)
n (x),

(b) (α+ 1)(A+ x)s(α)n (A+ x) =
n∑

l=0

(
n

l

)
θn−ls

(α+1)
l+1 (x) + αxs(α+1)

n (x), (12)

where 1

f
′
(t)

=
∑∞

n=0 θn
tn

n! , with f
′
(t) = d

dtf(t).

Proof. (a)
∞∑

n=0

s(α)n (A+ x)
tn

n!
=

(
1

g(f(t))

)α

e(A+x)f(t)

=

(
1

g(f(t))

)α

eAf(t)exf(t)

=

(
1

g(f(t))

)α
1

g(f(t))
exf(t)

=

(
1

g(f(t))

)α+1

exf(t)

=
∞∑

n=0

s(α+1)
n

tn

n!
. (13)

(b) Using Lemma 1 of [10] and replacing t by f(t), we obtain
∞∑

n=0

(A+ x)s̃(α)n (A+ x)
(f(t))n

n!

=
∞∑

n=0

{
1

α+ 1
s̃
(α+1)
n+1 (x) +

αx

α+ 1
s̃(α+1)
n (x)

}
(f(t))n

n!
. (14)

The LHS of (14) is obviously equal to
∞∑

n=0

(A+ x)s(α)n (A+ x)
tn

n!
. (15)

Applying d
dt on both sides of

∞∑
n=0

s̃(α+1)
n (x)

(f(t))n

n!
=

∞∑
n=0

s(α+1)
n (x)

tn

n!
, (16)

we get
∞∑

n=0

s̃
(α+1)
n+1 (x)

(f(t))n

n!

(
d

dx
f(t)

)
=

∞∑
n=0

s
(α+1)
n+1 (x)

tn

n!
. (17)

Noting that f
′
(t) is invertiable, we have

∞∑
n=0

s̃
(α+1)
n+1 (x)

(f(t))n

n!
=

1

f
′
(t)

∞∑
l=0

s
(α+1)
l+1 (x)

tl

l!
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=

( ∞∑
m=0

θm
tm

m!

)( ∞∑
l=0

s
(α+1)
l+1 (x)

tl

l!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
θn−ls

(α+1)
l+1 (x)

)
tn

n!
. (18)

In view of (18), we now see that the RHS of (14) is

∞∑
n=0

{
1

α+ 1

n∑
l=0

(
n

l

)
θn−ls

(α+1)
l+1 (x) +

αx

α+ 1
s(α+1)
n (x)

}
tn

n!
. (19)

�

For the next theorem, we keep the notations in Proposition 2 of [8].

Theorem 2.2. Let n, a, b ∈ Z≥0 , sn(x) ∼ (g(t), f(t)), and let (uk), (vk), (U(n, k) : 0 ≤ k ≤
n), (V (n, k) : 0 ≤ k ≤ n) be sequences of complex numbers. Assume that

n∑
k=0

U(n, k)s
(a)
k (x+ uk) =

n∑
k=0

V (n, k)s
(b)
k (x+ vk). (20)

Then, for any α ∈ C, we have
(a)

n∑
k=0

U(n, k)s
(α+a−b)
k (x+ uk) =

n∑
k=0

V (n, k)s
(α)
k (x+ vk). (21)

(b)

n∑
k=0

U(n, k)

{
α

k∑
l=0

(
k

l

)
θk−ls

(α+a−b)
l+1 (x+ uk) + ((a− b− 1)x− αuk)s

(α+a−b)
k (x+ uk)

}

=

n∑
k=0

V (n, k)

{
(α+ a− b)

k∑
l=0

(
k

l

)
θk−ls

(α)
l+1(x+ vk)− (x+ (α+ a− b)vk)s

(α)
k (x+ vk)

}
,

(22)

where 1

f
′
(t)

=
∑∞

n=0 θn
tn

n! , with f
′
(t) = d

dtf(t).

Proof. (a) As was shown in [1], s̃
(α)
n (x) is a polynomial in α of degree α ≤ n. Since∑∞

n=0 s̃
(α)
n (x) = (f(t))n

n! =
∑∞

n=0 s
(α)
n (x) t

n

n! , s
(α)
n is also a polynomial in α of degree ≤ n.

Let

Φ(α) =
n∑

k=0

U(n, k)s
(α+a−b)
k (x+ uk)−

n∑
k=0

V (n, k)s
(α)
k (x+ vk). (23)

By assumption, Φ(b) = 0. In 0 = Φ(b) =
∑n

k=0 U(n, k)s
(a)
k (x+uk)−

∑n
k=0 V (n, k)s

(b)
k (x+vk),

replace x by A+ x. Then

0 =
n∑

k=0

U(n, k)s
(a)
k (A+ x+ uk)−

n∑
k=0

V (n, k)s
(b)
k (A+ x+ vk)

=
n∑

k=0

U(n, k)s
(a+1)
k (x+ uk)−

n∑
k=0

V (n, k)s
(b+1)
k (x+ vk).

(24)
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Thus Φ(b+ 1) = 0. Proceeding inductively, we see that Φ(m) = 0, for all integers m ≥ b. As
Φ(α) is a polynomial in α of degree ≤ n, Φ(α) is identically zero as a polynomial in α. This
shows (a).

(b) Replacing α by α− 1 in (a), multiplying both sides by x, substituting A+ x for x, and
multiplying the resulting equation by α(α+ a− b), we obtain

α(α+ a− b)

n∑
k=0

U(n, k)
{
(A+ x+ uk)s

(α+a−b−1)
k (A+ x+ uk)− uks

(α+a−b−1)
k (A+ x+ uk)

}
= α(α+ a− b)

n∑
k=0

V (n, k)
{
(A+ x+ vk)s

(α−1)
k (A+ x+ vk)− vks

(α−1)
k (A+ x+ vk)

}
.

(25)

Using (a) and (b) of Lemma 1, (26) becomes

n∑
k=0

U(n, k)

{
α

k∑
l=0

(
k

l

)
θk−ls

(α+a−b)
l+1 (x+ uk)

+α(α+ a− b− 1)(x+ uk)s
(α+a−b)
k (x+ uk)− α(α+ a− b)uks

(α+a−b)
k (x+ uk)

}
=

n∑
k=0

V (n, k)

{
(α+ a− b)

k∑
l=0

(
k

l

)
θk−ls

(α)
l+1(x+ vk)

+(α+ a− b)(α− 1)(x+ vk)s
(α)
k (x+ vk)− α(α+ a− b)vks

(α)
k (x+ vk)

}
. (26)

Substracting

{
α2 + (α− 1)(a− b− 1)

}
x

n∑
k=0

U(n, k)s
(α+a−b)
k (x+ uk) (27)

=
{
α2 + (α− 1)(a− b− 1)

}
x

n∑
k=0

V (n, k)s
(α)
k (x+ vk) (28)

from both sides of (27), we get the desired result. �

Remark 2.3. When a = b = 0, the assumption in Theorem 2

n∑
k=0

U(n, k)s
(0)
k (x+ uk) =

n∑
k=0

V (n, k)s
(0)
k (x+ vk) (29)

depends only on f(t), since

∞∑
n=0

s(0)n (x)
tn

n!
= exf(t). (30)

Thus we have, for any sn(x) ∼ (g(t), f(t)), with any g(t) but with the same f(t),

n∑
k=0

U(n, k)s
(α)
k (x+ uk) =

n∑
k=0

V (n, k)s
(α)
k (x+ vk), (31)
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n∑
k=0

U(n, k)

{
α

k∑
l=0

(
k

l

)
θk−ls

(α)
l+1(x+ uk)− (x+ αuk)s

(α)
k (x+ uk)

}

=
n∑

k=0

V (n, k)

{
α

k∑
l=0

(
k

l

)
θk−ls

(α)
l+1(x+ vk)− (x+ αvk)s

(α)
k (x+ vk)

}
.

(32)

3. Examples

Here we will illustrate our results with many interesting examples.

Example 3.1. Let sn(x) ∼ (g(t), f(t) = et − 1), for some invertible series g(t). Here f(t) =
log(1 + t), and hence 1

f
′
(t)

= 1 + t. So, θ0 = θ1 = 1, and θm = 0, for m ≥ 2. Observe here

that s
(0)
n (x) = (x)n. This applies to many special polynomials.

• Bernoulli polynomials of the second kind bn(x) given by (see [9])

t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
, bn(x) ∼

(
t

et − 1
, et − 1

)
. (33)

.
• Daehee polynomials of the first kind Dn(x) given by (see [5])

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
, Dn(x) ∼

(
et − 1

t
, et − 1

)
. (34)

• Daehee polynomials of the second kind D̂n(x) given by (see [5])

(1 + t)log(1 + t)

t
(1 + t)x =

∞∑
n=0

D̂n(x)
tn

n!
, D̂n(x) ∼

(
et − 1

tet
, et − 1

)
. (35)

• Boole polynomials Bln,λ(x) given by (see [6])

(1 + (1 + t)λ)−1(1 + t)x =
∞∑

n=0

Bln,λ(x)
tn

n!
, Bln,λ(x) ∼

(
1 + eλt, et − 1

)
. (36)

Note here that the higher-order Boole polynomials Bl
(α)
n,λ(x) are called Peters polynomials.

• Korobov polynomials of the first kind Kn(λ, x) given by (see [2])

λt

(1 + t)λ − 1
(1 + t)x =

∞∑
n=0

Kn(λ, x)
tn

n!
,Kn(λ, x) ∼

(
eλt − 1

λ(et − 1)
, et − 1

)
. (37)

• degenerate poly-Bernoulli polynomials of the second kind Bn,k(λ, x) with the index k
given by (see [3])

λLik(1− e−t)

(1 + t)λ − 1
(1 + t)x =

∞∑
n=0

Bn,k(λ, x)
tn

n!
,Bn,k(λ, x) ∼

(
eλt − 1

λLik(1− e−(et−1))
, et − 1

)
, (38)

where Lik(x) =
∑∞

m=1
xm

mk is the kth polylogarithmic function for k ≥ 1 and a rational
function for k ≤ 0.
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• λ-Daehee polynomials of the first kind Dn,λ(x) given by (see [8])

λlog(1 + t)

(1 + t)λ − 1
(1 + t)x =

∞∑
n=0

Dn,λ(x)
tn

n!
, Dn,λ(x) ∼

(
eλt − 1

λt
, et − 1

)
. (39)

• The polynomials IAn(x) given by (see [12])

(1 + t)−1(1 + t)x =
∞∑

n=0

IAn(x)
tn

n!
, IAn(x) ∼

(
et, et − 1

)
. (40)

Note here that IA
(α)
n (x) is the inverse, under umbral composition, of a

(α)
n (−x), where a(α)n (x)

is the actuarial polynomial with a
(α)
n (x) ∼ ((1− t)−α, log(1− t)).

(a) We recall Gould’s identity 640 from [11], page 10:

n∑
k=0

(−1)k

k!
(x)k =

(−1)n

n!
(x− 1)n. (41)

From Theorem 2, we have the following identities
n∑

k=0

(−1)k

k!
s
(α)
k (x) =

(−1)n

n!
s(α)n (x− 1), (42)

n∑
k=0

(−1)k

k!
(αs

(α)
k+1(x)− (x− αk)s

(α)
k (x))

=
(−1)n

n!
(αs

(α)
n+1(x− 1)− (x− (n+ 1)α)s(α)n (x− 1)), (n ≥ 0). (43)

(b) The Vandermonde convolution formula can be written as

n∑
k=0

(
n

k

)
(y)n−k(x)k = (x+ y)n. (44)

Then Theorem 2 implies the following identities
n∑

k=0

(
n

k

)
(y)n−ks

(α)
k (x) = s

(α)
k (x+ y), (45)

n∑
k=0

(
n

k

)
(y)n−k(αs

(α)
k+1(x)− (x− αk)s

(α)
k (x))

= αs
(α)
n+1(x+ y)− (x+ (y − n)α)s(α)n (x+ y), (n ≥ 0). (46)

(c) For any sn(x) ∼ (g(t), et − 1), the Sheffer identity says

sn(x+ y) =
n∑

k=0

(
n

k

)
sn−k(y)(x)k. (47)

From Theorem 2 with a = 1, b = 0,, we obtain the following identities

s(α+1)
n (x+ y) =

n∑
k=0

(
n

k

)
sn−k(y)s

(α)
k (x), (48)

αs
(α+1)
n+1 (x+ y) + α(n− y)s(α+1)

n (x+ y)
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=

n∑
k=0

(
n

k

)
sn−k(y)((α+ 1)s

(α)
k+1(x) + ((α+ 1)k − x)s

(α)
k (x)), (n ≥ 0). (49)

(d) Let A(n, k)(0 ≤ k ≤ n) be the Eulerian numbers determined by

1− t

e(t−1)x − t
=

∞∑
n=0

An(t)
xn

n!
, An(t) =

n∑
k=0

A(n, k)tk, (50)

Worpitzky’s identity is given by

xn =
n−1∑
k=0

A(n, k)

(
x+ k

n

)
, (51)

which can be rewritten as

n∑
k=0

S2(n, k)(x)k =

n∑
k=0

 1

k!

n−1∑
j=0

A(n, j)

(
j

n− k

) (x)k, (52)

with S2(n, k) denoting the Stirling numbers of the second kind. Now, Theorem 2 yields the
following identities

n∑
k=0

S2(n, k)s
(α)
k (x) =

n∑
k=0

1

k!

n−1∑
j=0

A(n, j)

(
j

n− k

)
s
(α)
k (x), (53)

n∑
k=0

S2(n, k)(αs
(α)
k+1(x)− (x− αk)s

(α)
k (x))

=
n∑

k=0

1

k!

n−1∑
j=0

A(n, j)

(
j

n− k

)
(αs

(α)
k+1(x)− (x− αk)s

(α)
k (x)), (n ≥ 0). (54)

Example 3.2. Let sn(x) ∼ (g(t), 1
λ (e

λt − 1)), for some invertiable series g(t). Here f(t) =
1
λ log(1 + λt), and hence 1

f
′
(t)

= 1 + λt. Thus θ0 = 1, θ1 = λ, and θm = 0, for m ≥ 2.

Observe here that s
(0)
n (x) = (x|λ)n, where (x|λ)n = x(x−λ) · · · (x− (n− 1)λ), for n ≥ 1, and

(x|λ)0 = 1. This includes many special polynomials:
• degenerate Bernoulli polynomials βn(λ, x) given by (see [1])

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(λ, x)
tn

n!
, βn(λ, x) ∼

(
λ(et − 1)

eλt − 1
,
1

λ
(eλt − 1)

)
. (55)

• degenerate Euler polynomials En(λ, x) given by (see [1])

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

En(λ, x)
tn

n!
, En(λ, x) ∼

(
et + 1

2
,
1

λ
(eλt − 1)

)
. (56)

• degenerate poly-Bernoulli polynomials βn,k(λ, x) given by (see [7])

Lik(1−e−t)

(1+λt)
1
λ −1

(1 + λt)
x
λ =

∑∞
n=0 βn,k(λ, x)

tn

n! ,

βn,k(λ, x) ∼
(

et−1

Lik(1−e−
1
λ

(eλt−1))
, 1
λ (e

λt − 1)

)
. (57)

(a) For any sn(x) ∼ (g(t), 1
λ (e

λt − 1)), the Sheffer identity says

sn(x+ y) =
n∑

k=0

(
n

k

)
sn−k(y)(x|λ)k (58)
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From Theorem 2, we get the following identities.

s
(α+1)
n (x+ y) =

∑n
k=0

(
n
k

)
sn−k(y)s

(α)
k (x),

αs
(α+1)
n+1 (x+ y) + α(nλ− y)s

(α+1)
n (x+ y)

=
∑n

k=0

(
n
k

)
sn−k(y)((α+ 1)s

(α)
k+1(x) + ((α+ 1)kλ− x)s

(α)
k (x)), (n ≥ 0). (59)

(b) From the identity (1 + λt)
x
λ (1 + λt)

y
λ = (1 + λt)

x+y
λ , we have the convolution formula

n∑
k=0

(
n

k

)
(y|λ)n−k(x|λ)k = (x+ y|λ)n (60)

We can deduce the following identities from Theorem 2.
n∑

k=0

(
n

k

)
(y|λ)n−ks

(α)
k (x) = s(α)n (x+ y), (61)

n∑
k=0

(
n

k

)
(y|λ)n−k(αs

(α)
k+1(x)− (x− αkλ)s

(α)
k (x))

= αs
(α)
n+1(x+ y)− (x+ (y − nλ)α)s(α)n (x+ y), (n ≥ 0). (62)

(c) In [4], Hsu and Shiue introdued Stirling-type pair {S(n, k;α, β, r), S(n, k;β, α,−r)} by
the inverse relations

(x|α)n =
n∑

k=0

S(n, k;α, β, r)(x− r|β)k, (63)

(x|β)n =
n∑

k=0

S(n, k;β, α,−r)(x+ r|α)k. (64)

They showed that S(n, k) = S(n, k;α, β, r) satisfies the recurrence relation

S(n+ 1, k) = S(n, k − 1) + (kβ − nα+ r)S(n, k), (n ≥ k ≥ 1), (65)

which together with the obvious facts S(n, 0) = (r|α)n, S(n, n) = 1, (n ≥ 0), completely
determines S(n, k). Clearly, S1(n, k) = S(n, k; 1, 0, 0), S2(n, k) = S(n, k; 0, 1, 0),

(
n
k

)
=

S(n, k; 0, 0, 1), and hence the Stirling-type pair are nothing but far-reaching generalization
of the classical Stirling numbers of the first kind and of the second kind.

Remark 3.1. We now apply Theorem 2 by choosing α = β = λ. Then

(x|λ)n =

n∑
k=0

S(n, k;λ, λ, r)(x− r|λ)k, (66)

where S(n, k) = S(n, k;λ, λ, r) satisfies the relation

S(n+ 1, k) = S(n, k − 1) + ((k − n)λ+ r)S(n, k), (n ≥ k ≥ 1), (67)

S(n, 0) = (r|λ)n, S(n, n) = 1, (n ≥ 0). (68)

Applying Theorem 2 to (66), we obtain the following identities

s(α)n (x) =
n∑

k=0

S(n, k;λ, λ, r)s
(α)
k (x− r),

αs
(α)
n+1(x)− (x− nλα)s(α)n (x)

=
n∑

k=0

S(n, k;λ, λ, r)(αs
(α)
k+1(x− r)− (x− (r + kλ)α)s

(α)
k (x− r)), (n ≥ 0). (69)
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New Two-step Viscosity Approximation Methods of Fixed
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Abstract. The purpose of this paper is to introduce and study a class of new
two-step viscosity iteration methods for approximating fixed points of set-valued
nonexpansive mappings in CAT(0) spaces. Here, the fixed point is unique solution
of a variational inequality with a contraction mapping. Further, we prove strong
convergence theorem of the two-step viscosity iterations with some general condi-
tions in a complete CAT(0) space. The presented results improve and unify the
corresponding results in the literature.

Key Words and Phrases: New two-step viscosity approximation method, fixed
point, strong convergence, set-valued nonexpansive mapping, CAT(0) space.

AMS Subject Classification: 47H09, 47H10, 54E70.

1 Introduction

As all we know, Kirk [1] first introduced and studied fixed point theory in CAT(0) spaces, and showed
that every (single-valued) nonexpansive mapping on a bounded closed convex subset of a complete
CAT(0) space (called also Hadamard space) always has a fixed point. On the other hand, fixed
point theory for set-valued mappings has many useful applications in applied sciences, game theory
and optimization theory. Since then, fixed point theory of single-valued and set-valued mapping in
CAT(0) spaces has been rapidly developed, and it is natural and particularly meaningful to extend
research of the known fixed point results for single-valued mappings to the setting of set-valued
mappings.

Recalled that a mapping f : X → X on a metric space (X, d) is said to be a contraction if there
exists a constant k ∈ (0, 1] such that

d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ X. (1.1)

Here, f is called nonexpansive when k = 1 in (1.1). Denote by Fix(f) the set of all fixed points
of f , i.e., Fix(f) = {x|x = f(x)}. Further, a set-valued mapping T : E → BC(X) is said to be
nonexpansive if and only if

H(Tx, Ty) ≤ d(x, y),

where E is a nonempty subset of X, BC(X) is the family of nonempty bounded closed subsets of
X, and H(·, ·) is Hausdorff distance on BC(X), i.e., for any A,B ∈ BC(X),

H(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)}.

If x ∈ Tx for all x ∈ E, then x is called a fixed point of set-valued mapping T . We shall denote by
F (T ) the set of all fixed points of T . A set-valued mapping T is said to satisfy endpoint condition

∗The corresponding author: hengyoulan@163.com (H.Y. Lan)
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C (see [2]) if F (T ) ̸= ∅ and Tx = {x} for any x ∈ F (T ). We note that Panyanak and Suantai [3]
pointed out “the condition C must be needed for set-valued mapping in the CAT(0) spaces”.

Indeed, using contractions to approximate nonexpansive mappings is a classical way for studying
a nonexpansive mapping g : X → X. More precisely, take α ∈ (0, 1) and define a contraction
gα : E → E by

gα(x) = αu+ (1− α)g(x), ∀x ∈ E,

where u ∈ E ⊆ X is an arbitrary fixed element. By Banach′s contraction mapping principle, gα
has a unique fixed point xα ∈ E. It is unclear, in general, what the behavior of xα is as α → 0,
even if g has a fixed point. However, in the case of g having a fixed point, Browder [4] proved
that xα converges strongly to a fixed point of g, which is nearest to u in the frame work of Hilbert
spaces. Further, Reich [5] extended Browder′s result in [4] to the setting of Banach spaces and
proved that xα converges strongly to a fixed point of g in a uniformly smooth Banach space, and the
limit defines the unique sunny nonexpansive retraction from E onto Fix(g). Halpern [6] introduced
and investigated the following explicit iterative scheme {xn} for a nonexpansive mapping g on a
nonempty subset E of a Hilbert space: for any taken points u, x1 ∈ E, and every αn ∈ (0, 1),

xn+1 = αnu+ (1− αn)g(xn). (1.2)

In 2010, Saejung [7] studied some convergence theorems of the following Halpern′s iterations for
a nonexipansive mapping g : E → E in a Hadamard space:

xα = αu⊕ (1− α)g(xα) (1.3)

and
xn+1 = αnu⊕ (1− αn)g(xn), n ≥ 1, (1.4)

where u is an any fixed element, x1 ∈ E are arbitrarily chosen and αn ∈ (0, 1), and xα ∈ E is
called the unique fixed point of the contraction x 7→ αu ⊕ (1 − α)g(x) for all α ∈ (0, 1). In [7],
Saejung showed that {xα} and {xn} converges strongly to x̃ ∈ Fix(g) as α → 0 and n → ∞ under
certain appropriate conditions on {αn}, respectively. Here, x̃ is nearest to u, i.e. x̃ = PFix(g)u, here
PE : X → E is a metric projection from X onto E, i.e.,

PE(x) = x0 ∈ E,

where x0 is satisfied with d(x, x0) < d(x, y) for any y ∈ E and y ̸= x0 and E is a nonempty closed
convex subset of (X, d).

Moreover, Shi and Chen [8] first studied convergence theorems of the following Moudafi′s vis-
cosity iterative methods for a nonexpansive mapping g : E → E with Fix(g) ̸= ∅ and a contraction
mapping f : E → E in CAT(0) space X:

xα = αf(xα)⊕ (1− α)g(xα), (1.5)

and
xn+1 = αnf(xn)⊕ (1− αn)g(xn), n ≥ 1, (1.6)

where α ∈ (0, 1), αn ∈ (0, 1), x1 is an any given element in a nonempty closed convex subset E ⊆ X.
xα ∈ E is called unique fixed point of contraction x 7→ αf(x)⊕(1−α)g(x). We remark that (1.5) and
(1.6) is a extension case of (1.3) and (1.4), respectively. Shi and Chen [8] proved that {xα} defined
by (1.5) converges strongly as α → 0 to x̃ ∈ Fix(g) such that x̃ = PFix(g)f(x̃) in the framework of
CAT(0) space (X, d) satisfying the following property P: For every x, u, y1, y2 ∈ X,

d(x,m1)d(x, y1) ≤ d(x,m2)d(x, y2) + d(x, u)d(y1, y2),

where mi = P[x,yi]u for i = 1, 2. Furthermore, the authors also found that the sequence {xn}
generated by (1.6) converges strongly to x̃ ∈ Fix(g) under certain appropriate conditions imposing
on {αn}. By using the concept of quasi-linearization due to Berg and Nikolaev [9], Wangkeeree and
Preechasilp [10] studied strong convergence theorems for (1.5) and (1.6) in CAT(0) spaces without
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the property P, and presented that the iterative processes (1.5) and (1.6) converge strongly to
x̃ ∈ Fix(g), where x̃ = PFix(g)f(x̃) is unique solution of variational inequality

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ Fix(g).

Recently, Panyanak and Suantai [3] extended (1.5) and (1.6) to T being a set-valued nonexpansive
mapping from E to BC(X). That is, for each α ∈ (0, 1), let a set-valued contraction Gα on E define
by

Gα(x) = αf(x)⊕ (1− α)Tx, ∀x ∈ E.

By Nadler′s theorem [11], one can easy to see that Gα has a (not necessarily unique) fixed point
xα ∈ E such that

xα ∈ αf(xα)⊕ (1− α)Txα,

i.e., for each xα, there exists yα ∈ Txα such that

xα = αf(xα)⊕ (1− α)yα. (1.7)

Correspondingly, there is an explicit approximation method. More precisely, let T : E → C(E)
be a nonexpansive mapping, where C(E) denotes the family of nonempty compact subsets of E,
f : E → E be a contraction and {αn} ⊆ (0, 1). For any given x1 ∈ E and y1 ∈ Tx1, let

x2 = α1f(x1)⊕ (1− α1)y1.

By the definition of Hausdorff distance and the nonexpansiveness of T , one can choose y2 ∈ Tx2
such that d(y1, y2) ≤ d(x1, x2). Inductively, we obtain

xn+1 = αnf(xn)⊕ (1− αn)yn, yn ∈ T (xn), (1.8)

and d(yn, yn+1) ≤ d(xn, xn+1) for all n ∈ N. Then, Panyanak and Suantai [3] proved strong
convergence of one-step viscosity approximation method defined by (1.7) and (1.8) for set-valued
nonexpansive mapping T in CAT(0) spaces when the contraction constant coefficient of f is k ∈ [0, 12 )
and {αn} ⊂ (0, 1

2−k ) satisfying some suitable conditions. Further, Chang et al.[12] affirmatively
answered the open question [3, Question 3.6] proposed by Panyanak and Suantai:“If k ∈ [0, 1) and
{αn} ⊂ (0, 1) satisfying the same conditions, does {xn} converge to x̃ = PF (T )f(x̃)?”

Moreover, Kaewkhao et al. [13] proved strong convergence of a two-step viscosity iteration
method in complete CAT(0) spaces defined as follows:

yn = αnf(xn)⊕ (1− αn)g(xn),

xn+1 = βnxn ⊕ (1− βn)yn, ∀n ≥ 1,
(1.9)

where x1 ∈ E is an arbitrary fixed element and {αn}, {βn} ⊆ (0, 1). (1.9) is also considered and
studied by Chang et al.[14] when the property P is not satisfied and k ∈ [0, 1), which dues to the
open questions in [13].

Motivated and inspired mainly by Panyanak and Suantai [3] and Kaewkhao et al. [13], The
purpose of this paper is to consider the following two-step viscosity iteration approximation for set-
valued nonexpansive mapping T : E → C(E) on a nonempty closed convex subset E of a complete
CAT(0) space (X, d):

xn+1 = βnxn ⊕ (1− βn)yn,

yn = αnf(xn)⊕ (1− αn)zn, ∀n ≥ 1,
(1.10)

where x1 ∈ E is an arbitrary fixed element and {αn}, {βn} ⊆ (0, 1), f : E → E is a contraction
mapping and zn ∈ T (xn) satisfying d(zn, zn+1) ≤ d(xn, xn+1) for all n ∈ N, which can be inducted
from the definition of Hausdorff distance and the nonexpansiveness of T (see [11]). We shall prove the
sequence {xn} proposed by (1.10) converges strongly to fixed points x̃ ∈ F (T ), where x̃ = PF (T )f(x̃)
is unique solution of the following variational inequality:

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, ∀x ∈ F (T ).

Remark 1.1. (i) When T is a nonexpansive single-valued mapping g, then (1.10) is equivalent
to (1.9).

(ii) However, (1.9) can not becomes (1.8), unless βn = 0.
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2 Preliminaries

In the sequel, (X, d) delegates a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a map ξ from a closed interval [0, l] ⊆ R to X such that
ξ(0) = x, ξ(l) = y, and d(ξ(s), ξ(t)) = |s − t| for any s, t ∈ [0, l]. In particular, ξ is a isometry and
d(x, y) = l. The image of ξ is said to be a geodesic segment (or metric) joining x and y if unique
is denoted by [x, y]. The space (X, d) is called a geodesic space when every two points in X are
joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for all x, y ∈ X. A subset E of X is said to be convex if E includes every geodesic segment
joining any two of its points. A geodesic triangle △(p, q, r) in a geodesic space (X, d) consists of
three points p, q, r in X (vertices of △) and a choice of three geodesic segments [p, q], [q, r], [r, p]
(edge of △) joining them. A comparison triangle for geodesic triangle △(p, q, r) in X is a triangle
△(p̄, q̄, r̄) in Euclidean plane R2 such that

dR2(p̄, q̄) = d(p, q), dR2(q̄, r̄) = d(q, r), dR2(r̄, p̄) = d(r, p).

A point ū ∈ [p̄, q̄] is said to be a comparison point for u ∈ [p, q] if d(p, u) = dR2(p̄, ū). Similarly, we
can give the definitions to comparison points on [q̄, r̄] and [r̄, p̄].

Recalled that a geodesic space is called CAT(0) space if all geodesic triangles of appropriate
size satisfy the following comparison axiom: Let △ be a geodesic triangle in (X, d) and △ be a
comparison triangle for △. Then △ is said to satisfy CAT(0) inequality if for any u, v ∈ △ and for
their comparison points ū, v̄ ∈ △,

d(u, v) ≤ dR2(ū, v̄).

Complete CAT(0) spaces are often called Hadamard spaces (see [15]). For other equivalent definitions
and basic properties of CAT(0) spaces, we refer to [16]. It is well known that every CAT(0) space
is uniquely geodesic and any complete, simply connected Riemannina manifold having non-positive
sectional curvature is a CAT(0) space. Other examples for CAT(0) spaces include Pre-Hilbert spaces
[16], R−trees [17], Euclidean buildings [18] and complex Hilbert ball with a hyperbolic metric [19]
as special case .

Let E be a nonempty closed convex subset of a complete CAT(0) space (X, d). It follows from
Proposition 2.4 of [16] that for each x ∈ X, there exists a unique point x0 ∈ E such that

d(x, x0) = inf{d(x, y) : y ∈ E}.

In this case, x0 is called unique nearest point of x in E.
Let (X, d) be a CAT(0) space. For each x, y ∈ X and t ∈ [0, 1], by Lemma 2.1 of Phompongsa

and Panyanak [20], there exists a unique point z ∈ [x, y] such that

d(x, z) = (1− t)d(x, y) and d(y, z) = td(x, y). (2.1)

We shall denote by tx ⊕ (1 − t)y unique point z satisfying (2.1). Now, we collect some elementary
facts about CAT(0) spaces which will be used in proof of our main results.

Lemma 2.1. ([1, 20]) Assume that (X, d) is a CAT(0) space. Then for any x, y, z ∈ X and
α ∈ [0, 1],

d(αx⊕ (1− α)y, z) ≤ αd(x, z) + (1− α)d(y, z),

d2(αx⊕ (1− α)y, z) ≤ αd2(x, z) + (1− α)d2(y, z)− α(1− α)d2(x, y),

d(αx⊕ (1− α)z, αy ⊕ (1− α)z) ≤ αd(x, y).

Lemma 2.2. ([21]) Let (X, d) be a CAT(0) space. If for any x, y ∈ X and α, β ∈ [0, 1], then

d(αx⊕ (1− α)y, βx⊕ (1− β)y) ≤ |α− β|d(x, y).

Lemma 2.3. ([22]) Let {xn} and {yn} be bounded sequences in a CAT(0) space (X, d) and let
{βn} be a sequence in [0, 1] with 0 < lim infn βn ≤ lim supn βn < 1. If xn+1 = βnxn ⊕ (1 − βn)yn
for all n ∈ N and

lim sup
n→∞

(d(yn+1, yn)− d(xn+1, xn)) ≤ 0,
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then limn→∞ d(xn, yn) = 0.
Lemma 2.4. ([23, Lemma 2.1]) Let {un} be a sequence of non-negative real numbers satisfying

un+1 ≤ (1− αn)un + αnβn, ∀ n ≥ 1,

where {αn} ⊂ [0, 1] and {βn} ⊂ R such that (i)
∑∞

n=1 αn = ∞ and (ii) lim supn→∞ βn ≤ 0 or∑∞
n=1 |αnβn| <∞. Then {un} converges to zero as n→ ∞.
Lemma 2.5. ([24, Lemma 3.1]) Let E be a closed convex subset of a complete CAT(0) space

(X, d) and T : E → BC(X) be a nonexpansive mapping. If T satisfies endpoint condition C, then
F (T ) is closed and convex.

The concept of quasi-linearization was introduced by Berg and Nikolaev [9]. Let us denote a pair

(a, b) in X×X by
−→
ab and call it a vector. The quasi-linearization is a map ⟨·, ·⟩: (X×X)×(X×X) →

R defined by

⟨
−→
ab,

−→
cd⟩ = 1

2

[
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

]
for all a, b, c, d ∈ X.

It is easy to see that ⟨
−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, ⟨

−→
ab,

−→
cd⟩ = −⟨

−→
ba,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ + ⟨

−→
ad,

−→
bc⟩ = ⟨−→ac,

−→
bd⟩ and

⟨−→ax,
−→
cd⟩ + ⟨

−→
xb,

−→
cd⟩ = ⟨

−→
ab,

−→
cd⟩ for all a, b, c, d, x ∈ X. We say that a geodesic metric space (X, d)

satisfies Cauchy-Schwarz inequality if∣∣∣⟨−→ab,−→cd⟩∣∣∣ ≤ d(a, b)d(c, d) for all a, b, c, d ∈ X.

It is known from [9, Corollary 3] that a geodesic space (X, d) is a CAT(0) space if and only if X
satisfies Cauchy-Schwarz inequality. Some other properties of quasi-linearization are included as
follows.

Lemma 2.6. ([25, Theorem 2.4]) Let E be a nonempty closed convex subset of a complete
CAT(0) space (X, d), u ∈ X and x ∈ E. Then

x = PEu if and only if ⟨−→xu,−→yx⟩ ≥ 0, ∀y ∈ E.

Lemma 2.7. ([10, Lemma 2.9]) Let (X, d) be a CAT(0) space. Then

d2(x, u) ≤ d2(y, u) + 2⟨−→xy,−→xu⟩, ∀u, x, y ∈ X.

Lemma 2.8. ([10, Lemma 2.10]) Let u and v be two points in a CAT(0) space (X, d). For each
α ∈ [0, 1], setting uα = αu⊕ (1− α)v, then, for each x, y ∈ X, we have

(i) ⟨−−→uαx,−−→uαy⟩ ≤ α⟨−→ux,−−→uαy⟩+ (1− α)⟨−→vx,−−→uαy⟩;
(ii) ⟨−−→uαx,−→uy⟩ ≤ α⟨−→ux,−→uy⟩+ (1− α)⟨−→vx,−→uy⟩ and ⟨−−→uαx,−→vy⟩ ≤ α⟨−→ux,−→vy⟩+ (1− α)⟨−→vx,−→vy⟩.
Lemma 2.9. ([13, Lemma 2.10]) Let (X, d) be a CAT(0) space. If for any x, y, z ∈ X and

α ∈ [0, 1], then

d2(αx⊕ (1− α)y, z) ≤ α2d2(x, z) + (1− α)2d2(y, z) + 2α(1− α)⟨−→xz,−→yz⟩.

Recalled that a continuous linear functional µ is said to be Banach limit on ℓ∞, if ∥µ∥ =
µ(1, 1, · · · ) = 1 and µn(un) = µn(un+1) for all {un} ∈ ℓ∞.

Lemma 2.10. ([26, Proposition 2]) Let α be a real number and let (u1, u2, · · · ) ∈ ℓ∞ satisfy
µn(un) ≤ α for all Banach limits µ and lim supn(un+1 − un) ≤ 0. Then lim supn un ≤ α.

3 Main theorem

In this section, we will prove strong convergence theorem of a class of new two-step viscosity
iterations for approximating fixed points of set-valued nonexpansive mappings with some general
conditions in a complete CAT(0) space.

5
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Lemma 3.1. ([3, Theorem 3.1]) Let E be a nonempty closed convex subset of a complete
CAT(0) space (X, d), T : E → C(E) be a nonexpansive mapping satisfying endpoint condition C,
and f : E → E be a contraction with k ∈ [0, 1). Then the following statements hold:

(i) {xα} defined by (1.7) converges strongly to x̃ as α→ 0, where x̃ = PF (T )f(x̃).
(ii) If {xn} is a bounded sequence in E such that limn→∞ d(xn, T (xn)) = 0, Then for any Banach

limits µn,
d2(f(x̃), x̃) ≤ µnd

2(f(x̃), xn).

Now, we are ready to prove our main theorem.
Theorem 3.1. Let E be a nonempty closed convex subset of a complete CAT(0) space (X, d),

T : E → C(E) be a nonexpansive mapping satisfying endpoint condition C. Let f : E → E be a
contraction with k ∈ [0, 1), and {αn} be a sequence in (0, 1− k), and {βn} be a sequences in (0, 1)
satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} defined by (1.10) converges strongly to x̃, which satisfies

x̃ = PF (T )f(x̃), ⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, ∀x ∈ F (T ).

Proof. We divide proof into three steps.
Step 1. We show that {xn}, {zn}, {yn} and {f(xn)} are bounded sequences. Let p ∈ F (T ). By

Lemma 2.1, we have

d(yn, p) ≤ αnd(f(xn), p) + (1− αn)dist(zn, T (p))

≤ αnd(f(xn), p) + (1− αn)H(T (xn), T (p))

≤ αnd(f(xn), p) + (1− αn)d(xn, p)

≤ αnd(f(xn), f(p)) + αnd(f(p), p) + (1− αn)d(xn, p)

≤ [1− (1− k)αn]d(xn, p) + αnd(f(p), p),

and

d(xn+1, p) ≤ βnd(xn, p) + (1− βn)d(yn, p)

≤ [1− (1− k)(1− βn)αn]d(xn, p) + (1− k)(1− βn)αn
d(f(p), p)

1− k

≤ max

{
d(xn, p),

d(f(p), p)

1− k

}
.

By induction, we also have

d(xn, p) ≤ max

{
d(x1, p),

d(f(p), p)

1− k

}
.

Hence, {xn} is bounded and so are {zn}, {yn} and {f(xn)}.
Step 2. limn→∞ dist(xn, T (xn)) = limn→∞ d(zn, xn) = limn→∞ d(xn, xn+1) = 0. In fact, by

applying Lemmas 2.1 and 2.2, we obtain

d(yn, yn+1) ≤ d(αnf(xn)⊕ (1− αn)zn, αn+1f(xn+1)⊕ (1− αn+1)zn+1)

≤ d(αnf(xn)⊕ (1− αn)zn, αnf(xn)⊕ (1− αn)zn+1)

+d(αnf(xn)⊕ (1− αn)zn+1, αnf(xn+1)⊕ (1− αn)zn+1)

+d(αnf(xn+1)⊕ (1− αn)zn+1, αn+1f(xn+1)⊕ (1− αn+1)zn+1)

≤ αnd(f(xn), f(xn+1)) + (1− αn)d(zn, zn+1)

+|αn − αn+1|d(f(xn+1), zn+1)

≤ αnkd(xn, xn+1) + (1− αn)d(xn, xn+1)

+|αn − αn+1|d(f(xn+1), zn+1)

≤ (1− αn(1− k))d(xn, xn+1) + |αn − αn+1|d(f(xn+1), zn+1),

6
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which implies

d(yn, yn+1)− d(xn, xn+1) ≤ |αn − αn+1|d(f(xn+1), zn+1)− (1− k)αnd(xn, xn+1).

Since limn→∞ αn = 0, lim supn→∞ [d(yn+1, yn)− d(xn+1, xn)] ≤ 0. By Lemma 2.3, we know that
limn→∞ d(xn, yn) = 0. Thus,

dist(xn, T (xn)) ≤ d(xn, zn) ≤ d(xn, yn) + αnd(f(xn), zn) → 0 as n→ ∞. (3.1)

By (3.1), now we know that

lim
n→∞

d(zn, xn) = 0. (3.2)

Moreover,
d(xn, xn+1) = (1− βn)d(xn, yn) → 0 as n→ ∞.

Step 3. {xn} converges strongly to x̃ which satisfies x̃ = PF (T )f(x̃) and

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ F (T ).

Above all, since T (x) is compact for any x ∈ E, T (x) ∈ BC(X). It follows from Lemma 2.5 that
F (T ) is closed and convex. This implies that PF (T )u is well defined for any u ∈ X. By Lemma 3.1 (i),
we know that {xα} defined by (1.7) converges strongly to x̃ as α → 0, where x̃ = PF (T )f(x̃). Thus
applying Lemma 2.6, one can see that x̃ is unique solution of the following variational inequatity

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ F (T ).

Next, by using Lemma 3.1 (ii), we have

d2(f(x̃), x̃) ≤ µnd
2(f(x̃), xn) for each Banach limit µn,

and so
µn(d

2(f(x̃), x̃)− d2(f(x̃), xn)) ≤ 0.

Moreover, since limn→∞ d(xn, xn+1) = 0,

lim sup
n→∞

[(d2(f(x̃), x̃)− d2(f(x̃), xn+1))− (d2(f(x̃), x̃)− d2(f(x̃), xn))] = 0.

It follows from Lemma 2.10 that

lim sup
n→∞

(d2(f(x̃), x̃)− d2(f(x̃), xn)) ≤ 0. (3.3)

Finally, we show xn → x̃ as n→ ∞. It follows from Lemma 2.1 and Lemmas 2.7-2.9 that

d2(xn+1, x̃) ≤ βnd
2(xn, x̃) + (1− βn)d

2(yn, x̃)

≤ βnd
2(xn, x̃) + (1− βn)

[
α2
nd

2(f(xn), x̃) + (1− αn)
2d2(zn, x̃)

]
+2αn(1− αn)(1− βn)⟨

−−−−→
f(xn)x̃,

−−→
znx̃⟩

≤ βnd
2(xn, x̃) + (1− βn)(1− αn)

2dist2(zn, T (x̃))

+α2
n(1− βn)

[
d2(xn+1, f(xn)) + 2⟨−−−−→x̃xn+1,

−−−−→
x̃f(xn)⟩

]
+2αn(1− αn)(1− βn)

[
⟨
−−−−→
f(xn)x̃,

−−−→znxn⟩+ ⟨
−−−−→
f(xn)x̃,

−−→
xnx̃⟩

]
≤ βnd

2(xn, x̃) + (1− βn)(1− αn)
2H2(T (xn), T (x̃))

+α2
n(1− βn)d

2(xn+1, f(xn)) + 2α2
n(1− βn)⟨

−−−−→
x̃xn+1,

−−−−→
x̃f(xn)⟩

+2αn(1− αn)(1− βn)⟨
−−−−→
f(xn)x̃,

−−−→znxn⟩

+2αn(1− αn)(1− βn)⟨
−−−−→
f(xn)x̃,

−−→
xnx̃⟩

7
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≤ βnd
2(xn, x̃) + (1− βn)(1− αn)

2d(xn, x̃)

+α2
n(1− βn)d

2(xn+1, f(xn))

+2α2
n(1− βn)

[
⟨
−−−−−−−→
f(xn)f(x̃),

−−−−→
xn+1x̃⟩+ ⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩

]
+2αn(1− αn)(1− βn)⟨

−−−−→
f(xn)x̃,

−−−→znxn⟩

+2αn(1− αn)(1− βn)
[
⟨
−−−−−−−→
f(xn)f(x̃),

−−→
xnx̃⟩+ ⟨

−−−→
f(x̃)x̃,

−−→
xnx̃⟩

]
≤
[
βn + (1− βn)(1− αn)

2
]
d2(xn, x̃) + α2

n(1− βn)d
2(xn+1, f(xn))

+2α2
n(1− βn)

[
⟨
−−−−−−−→
f(xn)f(x̃),

−−−−→
xn+1x̃⟩+ ⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩

]
+2αn(1− αn)(1− βn)⟨

−−−−→
f(xn)x̃,

−−−→znxn⟩

+2αn(1− αn)(1− βn)
[
⟨
−−−−−−−→
f(xn)f(x̃),

−−→
xnx̃⟩+ ⟨

−−−→
f(x̃)x̃,

−−→
xnx̃⟩

]
≤
[
βn + (1− βn)(1− αn)

2
]
d2(xn, x̃) + α2

n(1− βn)d
2(xn+1, f(xn))

+2α2
n(1− βn)d(f(xn), f(x̃))d(xn+1, x̃)

+2α2
n(1− βn)⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩

+2αn(1− αn)(1− βn)d(f(xn), x̃)d(zn, xn)

+2αn(1− αn)(1− βn)d(f(xn), f(x̃))d(xn, x̃)

+2αn(1− αn)(1− βn)⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩

≤
[
βn + (1− βn)(1− αn)

2
]
d2(xn, x̃) + α2

n(1− βn)d
2(xn+1, f(xn))

+2kα2
n(1− βn)d(xn, x̃)d(xn+1, x̃)

+α2
n(1− βn)

[
d2(xn+1, x̃) + d2(f(x̃), x̃)− d2(f(x̃), xn+1)

]
+2αn(1− αn)(1− βn)d(f(xn), x̃)d(zn, xn)

+2kαn(1− αn)(1− βn)d
2(xn, x̃)

+αn(1− αn)(1− βn)
[
d2(xn, x̃) + d2(f(x̃), x̃)− d2(f(x̃), xn)

]
≤
[
βn + (1− βn)(1− αn)

2
]
d2(xn, x̃) + α2

n(1− βn)d
2(xn+1, f(xn))

+kα2
n(1− βn)

[
d2(xn, x̃) + d2(xn+1, x̃)

]
+α2

n(1− βn)
[
d2(xn+1, x̃) + d2(f(x̃), x̃)− d2(f(x̃), xn+1)

]
+2αn(1− αn)(1− βn)d(f(xn), x̃)d(zn, xn)

+2kαn(1− αn)(1− βn)d
2(xn, x̃)

+αn(1− αn)(1− βn)
[
d2(xn, x̃) + d2(f(x̃), x̃)− d2(f(x̃), xn)

]
.

This implies that

d2(xn+1, x̃) ≤
[
βn + (1− βn)(1− αn) + kαn(1− βn)(2− αn)

1− (1 + k)α2
n(1− βn)

]
d2(xn, x̃)

+
α2
n(1− βn)

1− (1 + k)α2
n(1− βn)

d2(xn+1, f(xn))

+
2αn(1− αn)(1− βn)

1− (1 + k)α2
n(1− βn)

d(f(xn), x̃)d(zn, xn)

+
α2
n(1− βn)

1− (1 + k)α2
n(1− βn)

(d2(f(x̃), x̃)− d2(f(x̃), xn+1))

+
αn(1− αn)(1− βn)

1− (1 + k)α2
n(1− βn)

(d2(f(x̃), x̃)− d2(f(x̃), xn)).

Thus,
d2(xn+1, x̃) ≤ (1− α′

n)d
2(xn, x̃) + α′

nβ
′
n, (3.4)

8
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where α′
n = 2αn(1−βn)(1−k−αn)

1−(1+k)α2
n(1−βn)

and

β′
n =

αn

2(1− k − αn)
d2(xn+1, f(xn)) +

1− αn

1− k − αn
d(f(xn), x̃)d(zn, xn)

+
αn

2(1− k − αn)
(d2(f(x̃), x̃)− d2(f(x̃), xn+1))

+
1− αn

2(1− k − αn)
(d2(f(x̃), x̃)− d2(f(x̃), xn)).

Since k ∈ [0, 1) and αn ∈ (0, 1 − k), then α′
n ∈ (0, 1). Applying Lemma 2.4 to the inequality (3.4)

(also combining (3.2) and (3.3)), we have xn → x̃ as n→ ∞. This completes the proof. 2

From Theorem 3.1, we have the following result.
Theorem 3.2. Let E be a nonempty closed convex subset of a complete CAT(0) space (X, d),

T : E → C(E) be a nonexpansive mapping satisfying endpoint condition C. Suppose that u, x1 ∈ E
are arbitrarily given elements and {xn} is defined by

yn = αnu⊕ (1− αn)zn, xn+1 = βnxn ⊕ (1− βn)yn, ∀n ≥ 1,

where zn ∈ T (xn) such that d(zn, zn+1) ≤ d(xn, xn+1) for all n ∈ N, and {αn}, {βn} ⊆ (0, 1)
satisfying (C1), (C2) and (C3) in Theorem 3.1. Then the sequence {xn} converges strongly to
unique nearest point x̃ of u in F (T ); i.e., x̃ = PF (T )u and x̃ also satisfies

⟨−→̃xu,−→xx̃⟩ ≥ 0, x ∈ F (T ).

Proof. We define f : E → E by f(x) = u for all x ∈ E, then f is a contrction with k = 0. The
conclusion follows immediately from Theorem 3.1. 2

If T : E → C(E) be a nonexpansive mapping satisfying endpoint condition C, then, replacing
by g : E → E be a nonexpansive singie-valued mapping with Fix(g) ̸= ∅, and we have the following
two corollaries.

Corollary 3.1. Let E be a nonempty closed convex subset of a complete CAT(0) space (X, d),
g : E → E be a nonexpansive mapping with Fix(g) ̸= ∅. Let f : E → E be a contraction with
k ∈ [0, 1), and {αn} be a sequence in (0, 1− k), and {βn} be a sequences in (0, 1) satisfying (C1),
(C2) and (C3) in Theorem 3.1. Then sequence {xn} defined by (1.9) converges strongly to x̃ such
that x̃ = PFix(g)f(x̃) and x̃ also satisfies

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ Fix(g).

Corollary 3.2. ([3, Theorem 3.3]) Let E be a nonempty closed convex subset of a complete
CAT(0) space (X, d), T : E → C(E) be a nonexpansive mapping satisfying endpoint condition C.
Let f : E → E be a contraction with k ∈

[
0, 12

)
, and {αn} be a sequence in

(
0, 1

2−k

)
satisfying (C1)

and (C2) in Theorem 3.1 and the following condition:
(C4)

∑∞
n=1 |αn−αn+1| <∞ or limn→∞

αn

αn+1
= 1. Then sequence {xn} defined by (1.8) converges

strongly to x̃, where x̃ = PF (T )f(x̃) and x̃ also satisfies

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ F (T ).

By corollary 3.1, the following result can be obtained.
Corollary 3.3. Let E be a nonempty closed convex subset of a complete R−tree (X, d), and

T : E → BCC(E) be a nonexpansive mapping with F (T ) ̸= ∅, where BCC(E) is the family of
nonempty bounded closed convex subsets of E. Let f : E → E be a contraction with k ∈ [0, 1), and
{αn} be a sequence in (0, 1− k), and {βn} be a sequences in (0, 1) satisfying (C1), (C2) and (C3) in
Theorem 3.1.Then sequence {xn} defined by (1.10) converges strongly to x̃ such that x̃ = PF (T )f(x̃)
and x̃ also satisfies

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ F (T ).

9
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Proof. By Theorem 4.1 given by Aksoy and Khamsi [27], there exists a single-valued nonexpansive
mapping h : E → E such that h(x) ∈ T (x) and d(h(x), h(y)) ≤ H(T (x), T (y)) for all x, y ∈ E.
Hence, zn = h(xn) ∈ T (x) for (1.10). Again, it follows from [27, Theorem 4.2] (also Theorem 4.2 in
[3]) that Fix(h) = F (T ) ̸= ∅. The conclusion follows from Corollary 3.1. 2

Remark 3.1. The results presented in this paper improve and unify corresponding results in
Panyanak and Suantai [3], Kaewkhao et al. [13] and many others. In this regard, we show as follows:

(i) Corollary 3.1 extends Theorem 3.2 of [13] from k ∈ [0, 12 ) to k ∈ [0, 1).

(ii) When T in Theorem 3.1 is a single-value mapping, then our main results in Theorem 3.1
become to corresponding results of Theorem 3.3 in [3] for a contraction f from k ∈

[
0, 12

)
to

k ∈ [0, 1), and αn ∈
(
0, 1

2−k

)
to αn ∈ (0, 1− k). Further, the condition (C4) is not needed.

(iii) If we add condition (C4), and change αn ∈
(
0, 1

2−k

)
as αn ∈ (0, 1− k), then Theorem 4.2 of

[3] happens to be Corollary 3.3.
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Abstract

In this paper we introduce a generalized form of the well known
ToDD’s difference equation and give the closed form expressions for
this generalized form . In other words , we have the following nonlinear
rational partial difference equation

T 〈X1, X2, X3, ..., Xn〉

=
1 + T 〈X1 − 1, X2 − 1, ..., Xn − 1〉+ T 〈X1 − 2, X2 − 2, ..., Xn − 2〉

T 〈X1 − 3, X2 − 3, X3 − 3, ..., Xn − 3〉
where X1, X2, ...., Xn ∈ N,and the initial values T 〈p1, p2, ...., pn〉

,T 〈p2, p1, p3, p4, ..., pn〉 ,T 〈p2, p3, p1, p4, ..., pn〉,...
...,T 〈p2, p3, p4, ...p1, pn〉,T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 are real
numbers with p1 ∈ {0,−1,−2} and p2, p3, ..., pn ∈ N such that
T 〈p1, p2, ...., pn〉 6= 0 ,T 〈p2, p1, p3, p4, ..., pn〉 6= 0 ,
T 〈p2, p3, p1, p4, ..., pn〉 6= 0,...,T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 6= 0.

We will use a novel technique to prove the results by using what we
call ‘piecewise n-dimensional mathematical induction’ which we intro-
duce here for the first time . We will obvious that this new concept
represents generalized form for many types of mathematical induction .
As a direct consequences , we investigate and drive the explicit solutions
for the well known ordinary ToDD’s difference Equation .
AMS Subject Classification: 39A10, 39A14.
Key Words and Phrases: (partial)difference equations, solutions ,
piecewise n-dimesional mathematical induction.
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2

1 Introduction

We know that the studying of ordinary difference equations has been widely
treated in the past . However , partial difference equations (P∆Es) have not
received the same full attentiveness . Both of ordinary and partial differ-
ence equations may be found in the study of dynamics ,probability and other
branches of mathematical physics .Moreover,partial difference equations arise
in applications involving finite difference schemes ,population dynamics with
spatial migrations and chemical reactions . Indeed Lagrange and Laplace took
into consideration the solution of partial difference equations in their treatises
of dynamics and probability.

An example can get if we suppose initially, the probability of finding a
particle at one of the integral coordinates j of the x-axis is P (j, 0). At the
end of each time interval, the particle makes a decision to stay at its present
position or move one unit in the positive direction along the x-axis. Assume
that the probability that the particle does not move in a given unit of time is
p, and the probability that the particle moves in a given unit of time is q. Let
is P (j, t)be the probability that the particle is at the point is x = j at the end
of the t-th interval of time. Then by Bayes’ formula, it is easy to see that the
following partial difference equation holds:

P (j, t) = pP (j, t− 1) + P (j − 1, t− 1)

An another example of a partial difference equation is the following well
known relation

B(n)
m = B

(n−1)
m−1 +B(n−1)

m , 1 ≤ m < n.

The solution of this equation is the celebrated binomial coefficient function
B

(n)
m defined by

B(n)
m =

n!

m!(n−m)!
, 0 ≤ m < n.

Some authors investigate the closed form solutions for certain partial dif-
ference equations .
For instance , Heins [[2] ] considered the solution of the partial difference equa-
tion

y(p+ 1, q) + y(p− 1, q) = 2y(p, q + 1)

under some conditions
Ibrahim in [[10]] studied the closed form solution for higher order nonlinear

rational partial difference equation in the form

S{n,m} =
S{n− r,m− r}

Ψ +
r∏

i=1

S{n− i,m− i}
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3

where n,m ∈ N and the initial values S{n, t},S{t,m − r} are real numbers

with t ∈ {0,−1,−2, ......,−r+1} such that
r−1∏
j=0

S{j− r+1, i+ j− r+1} 6= −Ψ

and
r−1∏
j=0

S{i+ j − r + 2, j − r + 1} 6= −Ψ , i ∈ N0.

For more results about partial difference equations we refer to ( [1], [3],[4],
[5]-[9],[11]-[15]).

In this paper we introduce a generalized form of the well known ToDD’s
difference equation and give the closed form expressions for this generalized
form. In other words , we have the following nonlinear rational partial differ-
ence equation

T 〈X1, X2, X3, ..., Xn〉

=
1 + T 〈X1 − 1, X2 − 1, ..., Xn − 1〉+ T 〈X1 − 2, X2 − 2, ..., Xn − 2〉

T 〈X1 − 3, X2 − 3, X3 − 3, ..., Xn − 3〉
(1)

where X1, X2, ...., Xn ∈ N,and the initial values T 〈p1, p2, ...., pn〉 ,
T 〈p2, p1, p3, p4, ..., pn〉 ,T 〈p2, p3, p1, p4, ..., pn〉,...
...,T 〈p2, p3, p4, ...p1, pn〉,T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 are real
numbers with p1 ∈ {0,−1,−2} and p2, p3, ..., pn ∈ N such that
T 〈p1, p2, ...., pn〉 6= 0 ,T 〈p2, p1, p3, p4, ..., pn〉 6= 0 ,
T 〈p2, p3, p1, p4, ..., pn〉 6= 0,...,T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 6= 0.

We,ll use a novel technique to prove the results by using what we call
‘piecewise n-dimesional mathematical induction’ which we introduce here for
the first time . We’ll obvious that this new concept represents generalized
form for many types of mathematical induction . As a direct consequences
, we investigate and drive the explicit solutions for the well known ToDD’s
ordinary Difference Equation .

Now let us firstly introduce some important concepts .
Ibrahim [10] constructed a new concept who call it “’piecewise double mathe-
matical induction’ which represented a generalization for some kinds of induc-
tions. The definition was formulated as the following form:

Definition 1. (Piecewise Double Mathematical Induction of r-pieces)
Let S(m,n) be a statement involving two positive integer variables m and n.
Beside , we suppose that the statement S(m,n) is piecewise with r-pieces .
Then the statement S(m,n) holds if

1. S(k1 + α, k2 + β)

2. If S(m, k2 + β) , then S(m+ r, k2 + β)

3. If S(m,n) , then S(m,n+ r)
where α, β ∈ {0, 1, 2, .......r− 1} and k1 and k2 are the smallest values of
m and n .
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4

We briefly call this concept “r-double mathematical induction” .We can
call this concept “’piecewise two-dimesional mathematical induction’

Here we will construct an another notion which we call it ‘piecewise triple
mathematical induction’ or ‘piecewise three-dimensional mathematical induc-
tion’ which offer an another generalization for some kinds of inductions .

Definition 2. (Piecewise Triple Mathematical Induction of r-pieces)
Let H(n,m, l) be a statement involving three positive integer variables n, m
and l. Beside , we suppose that the statement H(n,m, l) is piecewise with
r-pieces . Then the statement H(n,m, l) holds if

1. H(α1 + β1, α2 + β2, α3 + β3)

2. If H(α1 + β1,m, l) , then H(α1 + β1,m+ r, l)
If H(n,m, α3 + β3) , then H(n+ r,m, α3 + β3)

3. If H(n,m, l) , then H(n,m, l + r)
where β1, β2, β3 ∈ {0, 1, 2, .......r − 1} and α1,α2 and α3 are the smallest
values of n , m and l respectively .

We briefly call this concept “r-triple mathematical induction”

Remark 1. We can see that the previous concept contains many types
of mathematical induction. For instances ,

1. If r = 1 , we have β1 = β2 = β3 = 0 , thus we have a triple mathematical
induction .

2. If r = 2 , we have β1, β2, β3 ∈ {0, 1} , thus we have the odd-even triple
mathematical induction .

3. If we put n = m = l we have a special case of the above definition
which introduce an another new concept. This type of mathematical
induction called “Piecewise single Mathematical Induction of r-pieces” .
In this case , if we put r = 1 with n = m = l we easily get the basic
mathematical induction . Also if we put r = 2 with n = m = l,we get
easily the odd-even mathematical induction .

Finally we can introduce a generalized concept ‘piecewise n-dimesional
mathematical induction’ as a generalization for the above definitions .

Definition 3. (Piecewise n-dimesional Mathematical Induction of r-
pieces)
Let H(N1, N2, ..., Nn) be a statement involving positive integer variables
N1, N2, ..., Nn. Beside , we suppose that the statement H(N1, N2, ..., Nn) is
piecewise with r-pieces . Then the statement H(N1, N2, ..., Nn) holds if
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1. H(α1 + β1, α2 + β2, ......, αn + βn)

2. If H(α1 + β1, N2, N3, ..., Nn) , then H(α1 + β1, N2 + r,N3, ..., Nn)
If H(N1, α2 + β2, N3, ..., Nn) , then H(N1, α2 + β2, , N3 + r, ..., Nn)
.
.
.
If H(N1, N2, ..., αn−1+βn−1, Nn) , then H(N1, N2, ..., αn−1+βn−1, Nn+r)

3. If H(N1, N2, ..., Nn) , then H(N1 + r,N2, ..., Nn)
where βi ∈ {0, 1, 2, .......r − 1} ,i ∈ {1, 2, .......n} and αi are the smallest
values of N1, N2, ..., Nn respectively .

We briefly call this concept “(r,n)-dimensional mathematical induction”

Remark 2. We can easy see that both of r-double mathematical induction
and r-triple mathematical induction are special cases of “(r,n)-dimensional
mathematical induction” .

2 Forms of Solutions

In this section we shall give explicit forms of solutions of the partial difference
equation (1) of order three .

2.1 Form of Solutions for P∆E (1) when n = 2

In this subsection we introduce a generalized form of ToDD’s difference equa-
tion with two discrete variables X1and X2 and give the closed form expressions
for this generalized form . In other words , we have the following nonlinear
rational partial difference equation

T 〈X1, X2〉 =
1 + T 〈X1 − 1, X2 − 1〉+ T 〈X1 − 2, X2 − 2〉

T 〈X1 − 3, X2 − 3〉
(2)

Here we give the closed form solution of the partial difference equation (2).

Theorem 4. Let {T 〈X1, X2〉}∞X1,X2=−k be a solution of the partial dif-
ference equation (2) , where X1, X2 ∈ N ,and the initial values T 〈p, q〉 and
T 〈q, p− 3〉 are real numbers with q ∈ {0,−1,−2} and p ∈ N such that
T 〈p, q〉 6= 0 and T 〈q, p− 3〉 6= 0 . Then, the form of solutions of (2) ,for
X1 ≤ X2 are as follows:
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T 〈X1, X2〉 =



1+T 〈−1,X2−(X1+1)〉+T 〈0,X2−X1〉
T 〈−2,X2−(X1+2)〉 , X1 = L1;

1+T 〈−1,X2−(X1+1)〉+T 〈0,X2−X1〉+T 〈−2,X2−(X1+2)〉(1+T 〈0,X2−X1〉)
T 〈−1,X2−(X1+1)〉T 〈−2,X2−(X1+2)〉 , X1 = L2;

(1+T 〈−1,X2−(X1+1)〉+T 〈−2,X2−(X1+2)〉)(1+T 〈−1,X2−(X1+1)〉+T 〈0,X2−X1〉)
T 〈0,X2−X1〉)T 〈−1,X2−(X1+1)〉T 〈−2,X2−(X1+2)〉 , X1 = L3;

1+T 〈−1,X2−(X1+1)〉+T 〈0,X2−X1〉+T 〈−2,X2−(X1+2)〉(1+T 〈0,X2−X1〉)
T 〈−1,X2−(X1+1)〉T 〈0,X2−X1〉 , X1 = L4;

1+T 〈−1,X2−(X1+1)〉+T 〈−2,X2−(X1+2)〉
T 〈0,X2−X1〉 , X1 = L5;

T 〈−2, X2 − (X1 + 2)〉 , X1 = L6;

T 〈−1, X2 − (X1 + 1)〉 , X1 = L7;

T 〈0, X2 −X1〉 , X1 = L8;

(3)

T 〈X2, X1〉 =



1+T 〈X2−(X1+1),−1〉+T 〈X2−X1,0〉
T 〈X2−(X1+2),−2〉 , X1 = L1;

1+T 〈X2−(X1+1),−1〉+T 〈X2−X1,0〉+T 〈X2−(X1+2),−2〉(1+T 〈X2−X1,0〉)
T 〈X2−(X1+1),−1〉T 〈X2−(X1+2),−2〉 , X1 = L2;

(1+T 〈X2−(X1+1),−1〉+T 〈X2−(X1+2),−2〉)(1+T 〈X2−(X1+1),−1〉+T 〈X2−X1,0〉)
T 〈X2−X1,0〉)T 〈X2−(X1+1),−1〉T 〈X2−(X1+2),−2〉 , X1 = L3;

1+T 〈X2−(X1+1),−1〉+T 〈X2−X1,0〉+T 〈X2−(X1+2),−2〉(1+T 〈X2−X1,0〉)
T 〈X2−(X1+1),−1〉T 〈X2−X1,0〉 , X1 = L4;

1+T 〈X2−(X1+1),−1〉+T 〈X2−(X1+2),−2〉
T 〈X2−X1,0〉 , X1 = L5;

T 〈X2 − (X1 + 2),−2〉 , X1 = L6;

T 〈X2 − (X1 + 1),−1〉 , X1 = L7;

T 〈X2 −X1, 0〉 , X1 = L8;

(4)
where Li = 8k + i , 1 ≤ i ≤ 8 , i ∈ N.

Proof. We shall use the principle of piecewise double mathematical induc-
tion defined in definition (1) . Firstly , we shall prove that the relations (3)
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and (4) hold for T 〈p, q〉. where p, q ∈ {1, 2, , ...8} . From equation (2)we can
see

T 〈1, 1〉 =
1 + T 〈0, 0〉+ T 〈−1,−1〉

T 〈−2,−2〉
=

1 + T 〈0, 1− 1〉+ T 〈−1, 1− (1 + 1)〉
T 〈−2, 1− (1 + 2)〉

T 〈2, 2〉 =
1 + T 〈1, 1〉+ T 〈0, 0〉

T 〈−1,−1〉

=
1 + T 〈0, 0〉+ T 〈−1,−1〉+ T 〈−2,−2〉 (1 + T 〈0, 0〉)

T 〈−2,−2〉T 〈−1,−1〉

=
1 + T 〈0, 2− 2〉+ T 〈−1, 2− (2 + 1)〉+ T 〈−2, 2− (2 + 2)〉 (1 + T 〈0, 2− 2〉)

T 〈−2, 2− (2 + 2)〉T 〈−1, 2− (2 + 1)〉

T 〈1, 2〉 =
1 + T 〈0, 1〉+ T 〈−1, 0〉

T 〈−2,−1〉
=

1 + T 〈0, 2− 1〉+ T 〈−1, 2− (1 + 1)〉
T 〈−2, 2− (1 + 2)〉

T 〈2, 3〉 =
1 + T 〈1, 2〉+ T 〈0, 1〉

T 〈−1, 0〉

=
1 + T 〈0, 1〉+ T 〈−1, 0〉+ T 〈−2,−1〉 (1 + T 〈0, 1〉)

T 〈−2,−1〉T 〈−1, 0〉

=
1 + T 〈0, 3− 2〉+ T 〈−1, 3− (2 + 1)〉+ T 〈−2, 3− (2 + 2)〉 (1 + T 〈0, 3− 2〉)

T 〈−2, 3− (2 + 2)〉T 〈−1, 3− (2 + 1)〉
Similarly we can prove the remaining values for p and q .
Now suppose that the relations (3) and (4) hold for X1 = 1, 2, .., 8 with X2 ∈ N.
We try to prove that relations (3) and (4) hold for X1 = 1, 2, ..., 8 with X2 + 8.

T 〈X2 + 8, 1〉 =
1 + T 〈X2 + 8− 1, 1− 1〉+ T 〈X2 + 8− 2, 1− 2〉

T 〈X2 + 8− 3, 1− 3〉

=
1 + T 〈X2 + 8− (1), 0〉+ T 〈X2 + 8− (1 + 1),−1〉

T 〈X2 + 8− (1 + 2),−2〉

T 〈X2 + 8, 2〉 =
1 + T 〈X2 + 8− 1, 2− 1〉+ T 〈X2 + 8− 2, 2− 2〉

T 〈X2 + 8− 3, 2− 3〉

=
1 + T 〈X2 + 7, 1〉+ T 〈X2 + 6, 0〉

T 〈X2 + 5,−1〉

=
1 + (1+T 〈X2+5,−1〉+T 〈X2+6,0〉

T 〈X2+4,−2〉 ) + T 〈X2 + 6, 0〉
T 〈X2 + 5,−1〉

1 + T 〈X2 + 8− (2 + 1),−1〉+ T 〈X2 + 8− 2, 0〉
T 〈X2 + 8− (2 + 1),−1〉T 〈X2 + 8− (2 + 2),−2〉
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+
T 〈X2 + 8− (2 + 2),−2〉 (1 + T 〈X2 + 8− 2, 0〉)
T 〈X2 + 8− (2 + 1),−1〉T 〈X2 + 8− (2 + 2),−2〉

Similarly we can prove the other cases for for X1 = 3, ..., 8 with X2 + 8. .

Finally , we suppose that relations (3) and (4) hold for X2, X1 ∈ N .
We shall prove that relations (3) and (4) hold for X2, X1 + 8 ∈ N .

From equation (2)we have

T 〈X2, X1 + 8〉 =
1 + T 〈X2 − 1, X1 + 8− 1〉+ T 〈X2 − 2, X1 + 8− 2〉

T 〈X2 − 3, X1 + 8− 3〉

=
1 + T 〈X2 − 1, X1 + 7〉+ T 〈X2 − 2, X1 + 6〉

T 〈X2 − 3, X1 + 5〉
There are sixteen cases :

(1) When X2 > 8(k + 1) + i , i = 1, 2, ...., 8 .
We take the cases when i = 3 and i = 7 .The other cases for i =
1, 2, 4, 5, 6, 8 can be given by the same way .
In order to simplify the calculations we consider the following notations:
T 〈X2 −X1 − 8, 0〉 = T 〈0〉 , T 〈X2 −X1 − 9,−1〉 = T 〈−1〉 ,
T 〈X2 −X1 − 10,−2〉 = T 〈−2〉 ,
Now if X2 > 8(k + 1) + 3 :

T 〈X2, X1 + 8〉 =
1 + T 〈X2 − 1, X1 + 7〉+ T 〈X2 − 2, X1 + 6〉

T 〈X2 − 3, X1 + 5〉

=
1 + 1+T 〈−1〉+T 〈0〉+T 〈−2〉(1+T 〈0〉)

T 〈−1〉T 〈−2〉 + 1+T 〈−1〉+T 〈0〉
T 〈−2〉

T 〈0〉

=
(1 + T 〈−1〉)2 + T 〈0〉 (1 + T 〈−1〉) + T 〈−2〉 (1 + T 〈0〉+ T 〈−1〉)

T 〈0〉T 〈−1〉T 〈−2〉

=
(1 + T 〈−1〉+ T 〈−2〉)(1 + T 〈−1〉+ T 〈0〉)

T 〈0〉)T 〈−1〉T 〈−2〉
If X2 > 8(k + 1) + 7 we have :

T 〈X2, X1 + 8〉 =
1 + T 〈X2 − 1, X1 + 7〉+ T 〈X2 − 2, X1 + 6〉

T 〈X2 − 3, X1 + 5〉

=
1 + T 〈−2〉+ 1+T 〈−1〉+T 〈−2〉

T 〈0〉
1+T 〈−1〉+T 〈0〉+T 〈−2〉(1+T 〈0〉)

T 〈−1〉T 〈0〉

= T 〈−1〉
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(2) When X2 < 8(k + 1) + i , i = 1, 2, ...., 8 . We take the cases when i = 4
and i = 6 .The other cases for i = 1, 2, 3, 5, 7, 8 can be given by the same
way.
In order to simplify the calculations we consider the following notations:
T 〈0, X1 −X2 + 8〉 = T 〈0〉∗ , T 〈−1, X1 −X2 + 7〉 = T 〈−1〉∗ ,
T 〈−2, X1 −X2 + 6〉 = T 〈−2〉∗ ,
Now if X2 < 8(k + 1) + 4 :

T 〈X2, X1 + 8〉 =
1 + T 〈X2 − 1, X1 + 7〉+ T 〈X2 − 2, X1 + 6〉

T 〈X2 − 3, X1 + 5〉

=
1 + (1+T 〈−1〉∗+T 〈−2〉∗)(1+T 〈−1〉∗+T 〈0〉∗)

T 〈0〉∗T 〈−1〉∗T 〈−2〉∗ + 1+T 〈−1〉∗+T 〈0〉∗+T 〈−2〉∗(1+T 〈0〉∗)
T 〈−1〉∗T 〈−2〉∗

1+T 〈−1〉∗+T 〈0〉∗
T 〈−2〉∗

=
(1 + T 〈−1〉∗ + T 〈0〉∗)(1 + T 〈−1〉∗ + T 〈0〉∗ + T 〈−2〉∗ (1 + T 〈0〉∗))

(1 + T 〈−1〉∗ + T 〈0〉∗)(T 〈−1〉∗ T 〈0〉∗)

=
1 + T 〈−1〉∗ + T 〈0〉∗ + T 〈−2〉∗ (1 + T 〈0〉∗)

T 〈−1〉∗ T 〈0〉∗

If X2 < 8(k + 1) + 8 we have :

T 〈X2, X1 + 8〉 =
1 + T 〈X2 − 1, X1 + 7〉+ T 〈X2 − 2, X1 + 6〉

T 〈X2 − 3, X1 + 5〉

=
1 + T 〈−1〉∗ + T 〈−2〉∗

1+T 〈−1〉∗+T 〈−2〉∗
T 〈0〉∗

= T 〈0〉∗

Remark 3. If we take into account that X1 = X2 = n in equation (2),
we have the ordinary ToDD’s difference equation in the form

T 〈n〉 =
1 + T 〈n− 1〉+ T 〈n− 2〉

T 〈n− 3〉
(5)

We can obtain the solutions for equation (5) from theorem (4) and we will
formulate the closed form solutions in the following corollary .

Corollary 5. Let {T 〈n〉}∞n=−k be a solution of the ordinary difference
equation (5) , where n ∈ N ,and the initial values T 〈q〉 and are real numbers
with q ∈ {0,−1,−2} such that T 〈q〉 6= 0 . Then, the form of solutions of (5)
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are as follows:

T 〈n〉 =



1+T 〈−1〉+T 〈0〉
T 〈−2〉 , X1 = L1;

1+T 〈−1〉+T 〈0〉+T 〈−2〉(1+T 〈0〉)
T 〈−1〉T 〈−2〉 , X1 = L2;

(1+T 〈−1〉+T 〈−2〉)(1+T 〈−1〉+T 〈0〉)
T 〈0〉)T 〈−1〉T 〈−2〉 , X1 = L3;

1+T 〈−1〉+T 〈0〉+T 〈−2〉(1+T 〈0〉)
T 〈−1〉T 〈0〉 , X1 = L4;

1+T 〈−1〉+T 〈−2〉
T 〈0〉 , X1 = L5;

T 〈−2〉 , X1 = L6;

T 〈−1〉 , X1 = L7;

T 〈0〉 , X1 = L8;

where Li = 8k + i , 1 ≤ i ≤ 8 , i ∈ N.

Remark 4. It is easy to see that all solutions of (5) are periodic with
period eight.

2.2 Form of Solutions for P∆E (1) when n = 3

In this subsection we introduce a generalized form of ToDD’s difference equa-
tion with three discrete variables X1 ,X2 and X3 and give the closed form
expressions for this generalized form . In other words , we have the following
nonlinear rational partial difference equation

T 〈X1, X2, X3〉 =
1 + T 〈X1 − 1, X2 − 1, X3 − 1〉+ T 〈X1 − 2, X2 − 2, X3 − 2〉

T 〈X1 − 3, X2 − 3, X3 − 3〉
(6)

where X1, X2, X3 ∈ N .
Here we give the closed form solution of the partial difference equation (6).

Theorem 6. Let {T 〈X1, X2, X3〉}∞X1,X2,X3=−k be a solution of the partial
difference equation (6) ,whereX1, X2, X3 ∈ N,and the initial values T 〈p1, p2, p3〉
,T 〈p2, p3, p1〉 and T 〈p2 − 3, p1, p3 − 3〉 are real numbers with p1 ∈ {0,−1,−2}
and p2, p3 ∈ N such that T 〈p1, p2, p3〉 6= 0 ,T 〈p2, p1, p3〉 6= 0 and
T 〈p2 − 3, p3 − 3, p1〉 6= 0 . Then, the form of solutions of (6) ,
for X1 ≤ X2 ≤ X3 are as follows:
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T 〈X1, X2, X3〉 =



1+T3〈(−1)23〉+T3〈(0)23〉
T3〈(−2)23〉 , X1 = L1;

1+T3〈(−1)23〉+T3〈(0)23〉+T3〈(−2)23〉(1+T3〈(0)23〉)
T3〈(−1)23〉T3〈(−2)23〉 , X1 = L2;

(1+T3〈(−1)23〉+T3〈(−2)23〉)(1+T3〈(−1)23〉+T3〈(0)23〉)
T3〈(0)23〉)T3〈(−1)23〉T3〈(−2)23〉 , X1 = L3;

1+T3〈(−1)23〉+T3〈(0)23〉+T3〈(−2)23〉(1+T3〈(0)23〉)
T3〈(−1)23〉T3〈(0)23〉 , X1 = L4;

1+T3〈(−1)23〉+T3〈(−2)23〉
T3〈(0)23〉 , X1 = L5;

T3 〈(−2)23〉 , X1 = L6;

T3 〈(−1)23〉 , X1 = L7;

T3 〈(0)23〉 , X1 = L8;

T 〈X1, X3, X2〉 =



1+T3〈(−1)32〉+T3〈(0)32〉
T3〈(−2)32〉 , X1 = L1;

1+T3〈(−1)32〉+T3〈(0)32〉+T3〈(−2)32〉(1+T3〈(0)32〉)
T3〈(−1)32〉T3〈(−2)32〉 , X1 = L2;

(1+T3〈(−1)32〉+T3〈(−2)32〉)(1+T3〈(−1)32〉+T3〈(0)32〉)
T3〈(0)32〉)T3〈(−1)32〉T3〈(−2)32〉 , X1 = L3;

1+T3〈(−1)32〉+T3〈(0)32〉+T3〈(−2)32〉(1+T3〈(0)32〉)
T3〈(−1)32〉T3〈(0)32〉 , X1 = L4;

1+T3〈(−1)32〉+T3〈(−2)32〉
T3〈(0)32〉 , X1 = L5;

T3 〈(−2)32〉 , X1 = L6;

T3 〈(−1)32〉 , X1 = L7;

T3 〈(0)32〉 , X1 = L8;
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T 〈X3, X1, X2〉 =



1+T3〈3(−1)2〉+T3〈3(0)2〉
T3〈3(−2)2〉 , X1 = L1;

1+T3〈3(−1)2〉+T3〈3(0)2〉+T3〈3(−2)2〉(1+T3〈3(0)2〉)
T3〈3(−1)2〉T3〈3(−2)2〉 , X1 = L2;

(1+T3〈3(−1)2〉+T3〈3(−2)2〉)(1+T3〈3(−1)2〉+T3〈3(0)2〉)
T3〈3(0)2〉)T3〈3(−1)2〉T3〈3(−2)2〉 , X1 = L3;

1+T3〈3(−1)2〉+T3〈3(0)2〉+T3〈3(−2)2〉(1+T3〈3(0)2〉)
T3〈3(−1)2〉T3〈3(0)2〉 , X1 = L4;

1+T3〈3(−1)2〉+T3〈3(−2)2〉
T3〈3(0)2〉 , X1 = L5;

T3 〈3(−2)2〉 , X1 = L6;

T3 〈3(−1)2〉 , X1 = L7;

T3 〈3(0)2〉 , X1 = L8;

T 〈X3, X2, X1〉 =



1+T3〈32(−1)〉+T3〈32(0)〉
T3〈32(−2)〉 , X1 = L1;

1+T3〈32(−1)〉+T3〈32(0)〉+T3〈32(−2)〉(1+T3〈32(0)〉)
T3〈32(−1)〉T3〈32(−2)〉 , X1 = L2;

(1+T3〈32(−1)〉+T3〈32(−2)〉)(1+T3〈32(−1)〉+T3〈32(0)〉)
T3〈32(0)〉)T3〈32(−1)〉T3〈32(−2)〉 , X1 = L3;

1+T3〈32(−1)〉+T3〈32(0)〉+T3〈32(−2)〉(1+T3〈32(0)〉)
T3〈32(−1)〉T3〈32(0)〉 , X1 = L4;

1+T3〈32(−1)〉+T3〈32(−2)〉
T3〈32(0)〉 , X1 = L5;

T3 〈32(−2)〉 , X1 = L6;

T3 〈32(−1)〉 , X1 = L7;

T3 〈32(0)〉 , X1 = L8;
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T 〈X2, X1, X3〉 =



1+T3〈2(−1)3〉+T3〈2(0)3〉
T3〈2(−2)3〉 , X1 = L1;

1+T3〈2(−1)3〉+T3〈2(0)3〉+T3〈2(−2)3〉(1+T3〈2(0)3〉)
T3〈2(−1)3〉T3〈2(−2)3〉 , X1 = L2;

(1+T3〈2(−1)3〉+T3〈2(−2)3〉)(1+T3〈2(−1)3〉+T3〈2(0)3〉)
T3〈2(0)3〉)T3〈2(−1)3〉T3〈2(−2)3〉 , X1 = L3;

1+T3〈2(−1)3〉+T3〈2(0)3〉+T3〈2(−2)3〉(1+T3〈2(0)3〉)
T3〈2(−1)3〉T3〈2(0)3〉 , X1 = L4;

1+T3〈2(−1)3〉+T3〈2(−2)3〉
T3〈2(0)3〉 , X1 = L5;

T3 〈2(−2)3〉 , X1 = L6;

T3 〈2(−1)3〉 , X1 = L7;

T3 〈2(0)3〉 , X1 = L8;

T 〈X2, X3, X1〉 =



1+T3〈23(−1)〉+T3〈23(0)〉
T3〈23(−2)〉 , X1 = L1;

1+T3〈23(−1)〉+T3〈23(0)〉+T3〈23(−2)〉(1+T3〈23(0)〉)
T3〈23(−1)〉T3〈23(−2)〉 , X1 = L2;

(1+T3〈23(−1)〉+T3〈23(−2)〉)(1+T3〈23(−1)〉+T3〈23(0)〉)
T3〈23(0)〉)T3〈23(−1)〉T3〈23(−2)〉 , X1 = L3;

1+T3〈23(−1)〉+T3〈23(0)〉+T3〈23(−2)〉(1+T3〈23(0)〉)
T3〈23(−1)〉T3〈23(0)〉 , X1 = L4;

1+T3〈23(−1)〉+T3〈23(−2)〉
T3〈23(0)〉 , X1 = L5;

T3 〈23(−2)〉 , X1 = L6;

T3 〈23(−1)〉 , X1 = L7;

T3 〈23(0)〉 , X1 = L8;

where
T3 〈(0)23〉 = T 〈0, X2 −X1, X3 −X1〉 ,
T3 〈(−1)23〉 = T 〈−1, X2 − (X1 + 1), X3 − (X1 + 1)〉 ,
T3 〈(−2)23〉 = T 〈−2, X2 − (X1 + 2), X3 − (X1 + 2)〉 ,
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T3 〈(0)32〉 = T 〈0, X3 −X1, X2 −X1〉 ,
T3 〈(−1)32〉 = T 〈−1, X3 − (X1 + 1), X2 − (X1 + 1)〉 ,
T3 〈(−2)32〉 = T 〈−2, X3 − (X1 + 2), X2 − (X1 + 2)〉 ,
T3 〈3(0)2〉 = T 〈X3 −X1, 0, X2 −X1〉 ,
T3 〈3(−1)2〉 = T 〈X3 − (X1 + 1),−1, X2 − (X1 + 1)〉 ,
T3 〈3(−2)2〉 = T 〈X3 − (X1 + 2),−2, X2 − (X1 + 2)〉 ,
T3 〈32(0)〉 = T 〈X3 −X1, X2 −X1, 0〉 ,
T3 〈32(−1)〉 = T 〈X3 − (X1 + 1), X2 − (X1 + 1),−1〉 ,
T3 〈32(−2)〉 = T 〈X3 − (X1 + 2), X2 − (X1 + 2),−2〉 ,
T3 〈2(0)3〉 = T 〈X2 −X1, 0, X3 −X1〉 ,
T3 〈2(−1)3〉 = T 〈X2 − (X1 + 1),−1, X3 − (X1 + 1)〉 ,
T3 〈2(−2)3〉 = T 〈X2 − (X1 + 2),−2, X3 − (X1 + 2)〉 ,
T3 〈23(0)〉 = T 〈X2 −X1, X3 −X1, 0〉 ,
T3 〈23(−1)〉 = T 〈X2 − (X1 + 1), X3 − (X1 + 1),−1〉 ,
T3 〈23(−2)〉 = T 〈X2 − (X1 + 2), X3 − (X1 + 2),−2〉 ,
,Li = 8k + i , 1 ≤ i ≤ 8 , i ∈ N.

Proof. We can prove this theorem by using the concept of piecewise triple
mathematical induction which stated in definition (2) similar to what has been
done in theorem (4) by using piecewise double mathematical induction stated
in definition (1) .

2.3 Form of Solutions for P∆E (1) for any value n

In this subsection we introduce the generalized form of ToDD’s difference equa-
tion with n discrete variables X1, X2, ..., Xn and give the closed form expres-
sions for it .

Theorem 7. Let {T 〈X1, X2, ..., Xn〉}∞X1,X2,...Xn=−k be a solution of the
partial difference equation (1) ,where X1, X2, ...., Xn ∈ N,and the initial values
T 〈p1, p2, ...., pn〉 ,T 〈p2, p1, p3, p4, ..., pn〉 ,T 〈p2, p3, p1, p4, ..., pn〉,...
...,T 〈p2, p3, p4, ...p1, pn〉,T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 are real numbers
with p1 ∈ {0,−1,−2} and p2, p3, ..., pn ∈ N such that T 〈p1, p2, ...., pn〉 6= 0
,T 〈p2, p1, p3, p4, ..., pn〉 6= 0 ,T 〈p2, p3, p1, p4, ..., pn〉 6= 0,...,
T 〈p2 − 3, p3 − 3, p4 − 3, ...pn − 3, p1〉 6= 0 . Then, the form of solutions of (1)
,for X1 ≤ X2 ≤ X3 ≤ ... ≤ Xn are as follows:
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q
pTn =



1+q
pT

(−1)
n +q

pT
(0)
n

q
pT

(−2)
n

, X1 = L1;

1+q
pT

(−1)
n +q

pT
(0)
n +q

pT
(−2)
n (1+q

pT
(0)
n )

q
pT

(−1)
n .qpT

(−2)
n

, X1 = L2

(1+q
pT

(−1)
n +q

pT
(−2)
n )(1+q

pT
(−1)
n +q

pT
(0)
n )

q
pT

(0)
n .qpT

(−1)
n .qpT

(−2)
n

, X1 = L3

1+q
pT

(−1)
n +q

pT
(0)
n +q

pT
(−2)
n (1+q

pT
(0)
n )

q
pT

(−1)
n .qpT

(0)
n

, X1 = L4;

1+q
pT

(−1)
n +q

pT
(−2)
n

q
pT

(0)
n

, X1 = L5;

q
pT

(−2)
n , X1 = L6;

q
pT

(−1)
n , X1 = L7;

q
pT

(0)
n , X1 = L8;

where

q
pTn = T

〈
Xi1 , Xi2 , .., X1︸ ︷︷ ︸

p−times

, .., Xin

〉

q
pT

(0)
n = T

〈
Xi1 , Xi2 , .., 0︸ ︷︷ ︸

p−times

, .., Xin

〉

q
pT

(−1)
n = T

〈
Xi1 , Xi2 , .., (−1)︸ ︷︷ ︸

p−times

, .., Xin

〉

q
pT

(−2)
n = T

〈
Xi1 , Xi2 , .., (−2)︸ ︷︷ ︸

p−times

, .., Xin

〉

i1, i2, i3, ..., in ∈ {1, 2, 3....n}, , p = 1, 2, ....n , q = 1, 2, ....n− 1
,Li = 8k + i , 1 ≤ i ≤ 8 , i ∈ N.

Proof. We can prove this theorem by using the concept of piecewise n-
dimensional mathematical induction which stated in definition (3) similar to
what has been done in theorem (4) by using piecewise double mathematical
induction stated in definition (1) .
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Remark 5. we can note that the the number of equations for solutions
q
pTn is n! . For example , if n = 2 we find that p = 1, 2 , q = 1 and then
the number of equations for solutions is 2!=2 (see theorem (4) ). That is
1
1T2 = T 〈X1, X2〉 and 1

2T2 = T 〈X2, X1〉 . So if we put n = 2 in theorem (7) we
can get the solutions of equation (2)
Another example , if n = 3 we find that p = 1, 2, 3 , q = 1, 2 and then
the number of equations for solutions is 3!=6 (see theorem (6) ). That is
1
1T3 = T 〈X1, X2, X3〉, 1

2T3 = T 〈X3, X1, X2〉, 1
3T3 = T 〈X3, X2, X1〉 ,

2
1T3 = T 〈X1, X3, X2〉, 2

2T3 = T 〈X2, X1, X3〉 and 2
3T3 = T 〈X2, X3, X1〉 . So if

we put n = 3 in theorem (7) we can get the solutions of equation (6).
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Abstract: Using Nevanlinna theory of the value distribution of mero-
morphic functions, we investigate the problem of the existence of mero-
morphic solutions of some types of systems of complex differential-
difference equations and some properties of meromorphic solutions, and
we obtain some results, which are the improvements and extensions of
some results in references. Example shows that our results are precise.
Key words: value distribution; meromorphic solutions; systems of com-
plex differential-difference equation
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1 Introduction and Notation

Throughout the article, we assume that the reader is familiar with the standard notation
and basic results of the Nevanlinna theory of meromorphic functions, see, for example [1-3].

Let w(z) be a non-constant meromorphic function of finite order, if meromorphic func-
tion g(z) satisfies T (r, g) = o {T (r, w)} = S(r, w), for all r outside of a possible exceptional

set E with finite logarithmic measure

∫
E

dr

r
<∞, then g(z) is called small function of w(z).

Using the Nevanlinna theory of the distribution of meromophic functions, many authors
investigate solutions of some types of complex differential equations, and obtain some
results, see [4-8]. Especially, J Malmquist has investigated the problem of existence of
complex differential equation and has obtained a result as follows.

Theorem A (Malmquist Theorem) (see [1]) Let P (z, w(z)) and Q (z, w(z)) are
relatively prime polynomials in w(z). If the complex differential equation

dw

dz
= R(z, w) =

P (z, w)

Q(z, w)
=

p∑
k=0

ak(z)w
k

q∑
j=0

bj(z)w
j

∗The project is supported by the National Natural Science Foundation of China (11171013, 11461054),
Natural Science Foundation of Hebei Province (A2015207007), and Key Project of Science and Research
of Hebei University of Economics and Business(2017KYZ04).
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with coefficients of rational functions a0(z), . . . , ap(z), b0(z), . . . , bq(z), admits a transcen-
dental meromorphic solution, then

q = 0, p ≤ 2.

Theorem B (see [1]) Let Ω(z, w) =
∑
(i)∈I

a(i)(z)w
i0(w′)i1 · · · (w(n))in , P (z, w(z)) and

Q (z, w(z)) are relatively prime polynomials in w(z). If w(z) is a transcendental meromor-
phic solution of the complex differential equation

Ω(z, w) = R(z, w) =
P (z, w)

Q(z, w)
=

p∑
k=0

ak(z)w
k

q∑
j=0

bj(z)w
j

with coefficients a(i)(z)((i) ∈ I), ak(z)(k = 0, 1, . . . , p) and bj(z)(j = 0, 1, . . . , q), which
are rational functions, where I is a finite index set, then

q = 0, p ≤ min{4, λ+ µ(1−Θ(∞))},

where ∆ = max{
n∑

α=0

(α + 1)iα}, λ = max{
n∑

α=0

iα}, µ = max{
n∑

α=1

αiα}, Θ(∞) = 1 −

lim
r→∞

N(r,w)
T (r,w) .

Recently, meromorphic solutions of complex difference equations have become a sub-
ject of great interest. Many authors, such as I Laine, R Korhonen, Chiang Y M, Chen
Zongxuan and Gao Lingyun, investigate complex difference equations, and obtain many
results, see [9-24]. Especially, in 2000, M J Ablowitz, R Halburd and B Herbst have inves-
tigated the problem of existence of meromorphic solutions of complex difference equations
and have obtained a result as follows.

Theorem C (see [9]) If the complex difference equation

w(z + 1) + w(z − 1) =
a0(z) + a1(z)w(z) + · · ·+ ap(z)w

p(z)

b0(z) + b1(z)w(z) + · · ·+ bq(z)wq(z)
,

with polynomial coefficients ai(z)(i = 0, 1, . . . , p) and bj(z)(j = 0, 1, . . . , q), admits a
transcendental meromorphic solution of finite order, then

d = max{p, q} ≤ 2.

I Laine, J Rieppo and H Silvennoinen generalized the above result, and obtained the
following result.

Theorem D (see [22]) Let c1, c2, . . . , cn be distinct nonzero complex numbers. If w(z)
is a finite order transcendental meromorphic solution of the following complex difference
equation ∑

{J}

αJ(z)(
∏
j∈J

w(z + cj)) =
a0(z) + a1(z)w(z) + · · ·+ ap(z)w

p(z)

b0(z) + b1(z)w(z) + · · ·+ bq(z)wq(z)
,

2
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with coefficients αJ(z), ai(z)(i = 0, 1, . . . , p) and bj(z)(j = 0, 1, . . . , q), which are small
functions relative to w(z), where J is a collection of all subsets of {1, 2, . . . , n}, then

d = max{p, q} ≤ n.

In [22], I Laine, J Rieppo and H Silvennoinen also obtained the following result.
Theorem E (see [22]) Suppose that c1, c2, . . . , cn are distinct, non-zero complex

numbers, and that w(z) is a transcendental meromorphic solution of

n∑
j=1

αj(z)w(z + cj) = R(z, w(z)) =
P (z, w(z))

Q(z, w(z))
,

where the coefficients αj(z) are non-vanishing small functions relative to w(z), and where
P (z, w(z)), Q(z, w(z)) are relatively prime polynomials in w(z) over the field of small
functions relative to w(z). Moreover, we assume that q = degQw > 0,

n = max{p, q} := max{degPw ,degQw},

and that, without restricting generality, Q(z, w(z)) is a monic polynomial. If there exists
α ∈ [0, n) such that for all r sufficiently large,

N(r,
n∑
j=1

αj(z)w(z + cj)) ≤ αN(r + c, w(z)) + S(r, w),

where c = max{|c1|, |c2|, . . . , |cn|}, then either the order ρ(w) = +∞, or

Q(z, w(z)) ≡ (w(z) + h(z))q,

where h(z) is a small meromorphic function relative to w(z).
Further, I Laine, J Rieppo and H Silvennoinen also obtained the following Theorem.
Theorem F (see [22]) Suppose that w(z) is a transcendental meromorphic solution

of the equation ∑
{J}

αJ(z)(
∏
j∈J

w(z + cj)) = w(p(z))

where p(z) is a polynomial of degree k ≥ 2, J is a collection of all subsets of {1, 2, . . . , n}.
Moreover, we assume that the coefficients αJ(z) are small functions relative to w(z) and
that n ≥ k. Then

T (r, w) = O((log r)α+ε),

where α =
log n

log k
, ε > 0 is arbitrarily small.

After some authors investigate complex difference equations, solutions of system of
complex difference equations are also investigated, naturally, see [13].

Let c1, c2, . . . , cn are distinct non-zero complex numbers, differential-difference polyno-
mials Ω1(z, w1),Ω2(z, w1),Ω3(z, w2),Ω4(z, w2) can be expressed as

Ω1(z, w1) =
∑
i1∈I1

ai1(z)(w
(t)
1 (z+c1))

li1,1(w
(t)
1 (z+c2))

li1,2 . . . (w
(t)
1 (z+cn))li1,n , t ≥ 1, t ∈ N,

3
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Ω2(z, w1) =
∑
j1∈J1

bj1(z)(w
(t)
1 (z+c1))

mj1,1(w
(t)
1 (z+c2))

mj1,2 . . . (w
(t)
1 (z+cn))mj1,n , t ≥ 1, t ∈ N,

Ω3(z, w2) =
∑
i2∈I2

ci2(z)(w
(t)
2 (z+c1))

li2,1(w
(t)
2 (z+c2))

li2,2 . . . (w
(t)
2 (z+cn))li2,n , t ≥ 1, t ∈ N,

Ω4(z, w2) =
∑
j2∈J2

dj2(z)(w
(t)
2 (z+c1))

mj2,1(w
(t)
2 (z+c2))

mj2,2 . . . (w
(t)
2 (z+cn))mj2,n , t ≥ 1, t ∈ N,

where coefficients {ai1(z)}, {bj1(z)} are small functions relative to w1, coefficients {ci2(z)},
{dj2(z)} are small functions relative to w2. I1 = {i1 = (li1,1, li1,2, . . . , li1,n) : li1,k ∈ N, k =
1, 2, . . . , n}, J1 = {j1 = (mj1,1,mj1,2, . . . ,mj1,n) : mj1,k ∈ N, k = 1, 2, . . . , n}, I2 = {i2 =
(li2,1, li2,2, . . . , li2,n) : li2,k ∈ N, k = 1, 2, . . . , n}, J2 = {j2 = (mj2,1,mj2,2, . . . ,mj2,n) :
mj2,k ∈ N, k = 1, 2, . . . , n} are four finite index sets.

Existence of solutions of complex differential-difference equations is investigated, see[16].
In this article, we will investigate the problem of the existence of solutions of some

types of systems of complex differential-difference equations.
The remainder of the article is organized as follows. In §2, we study meromorphic so-

lutions of systems of complex differential-difference equations, and obtain three theorems.
Example that we give shows that our results in §2 are precise. In §3, we give a series of
lemmas for the proof of theorems 2.1-2.3. In §4, we prove theorems 2.1-2.3 for systems of
complex differential-difference equations by lemma given in §3.

2 Main results

We obtain the following results about systems of complex differential-difference equa-
tions.

Theorem 2.1. Let (w1(z), w2(z)) be a finite order transcendental meromorphic solu-
tion of 

Ω1(z, w1)

Ω2(z, w1)
= R1(z, w2) =

P1(z, w2)

Q1(z, w2)
,

Ω3(z, w2)

Ω4(z, w2)
= R2(z, w1) =

P2(z, w1)

Q2(z, w1)
,

(2.1)

where P1(z, w2), Q1(z, w2) are relatively prime polynomials in w2 over the field of small
functions relative to w2, P2(z, w1), Q2(z, w1) are relatively prime polynomials in w1 over
the field of small functions relative to w1. Then

max{p1, q1}max{p2, q2} ≤ (t+ 1)2λ1λ2,

where λ1k = max
i1∈I1,j1∈J1

{li1,k,mj1,k}, k = 1, 2, . . . , n. λ2k = max
i2∈I2,j2∈J2

{li2,k,mj2,k}, k =

1, 2, . . . , n. λ1 =

n∑
k=1

λ1k, λ2 =

n∑
k=1

λ2k, p1 = degP1
w2
, q1 = degQ1

w2
, p2 = degP2

w1
, q2 =

degQ2
w1
.

Example 2.1 shows the upper in Theorem 2.1 can be reached.

4
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Example 2.1. (w1(z), w2(z)) = (e−z + z2, ez + z) is a finite order transcendental
meromorphic solution of the following system of complex differential-difference equations

w′1(z + 1) =
P1(z, w2)

Q1(z, w2)
,

w′2(z + 1) =
P2(z, w1)

Q2(z, w1)
,

where

P1(z, w2) = (2z+2)w2
2(z)− (8z2 +8z+e−1)w2(z)−z2(2z+2)+z(8z2 +8z+e−1)+2ze−1,

Q1(z, w2) = w2
2(z)− 4zw2(z) + 3z2,

P2(z, w1) = w2
1(z)− [2z2 − e− 3z + 1]w1(z) + z4 − z2(e+ 3z − 1) + (3z − 1)e,

Q2(z, w1) = w2
1(z)− [2z2 − 3z + 1]w1(z) + z4 − z2(3z − 1).

In this case
max{p1, q1} = 2,max{p2, q2} = 2, t = 1, λ1 = λ2 = 1.

Thus

max{p1, q1}max{p2, q2} = 4 = (t+ 1)2λ1λ2.

Theorem 2.2. Suppose that (w1(z), w2(z)) is a transcendental meromorphic solution
of the following system of complex differential-difference equations

Ω1(z, w1)

Ω2(z, w1)
= R1(z, w2) =

P1(z, w2)

Q1(z, w2)
,

Ω3(z, w2)

Ω4(z, w2)
= R2(z, w1) =

P2(z, w1)

Q2(z, w1)
,

(2.1)

where P1(z, w2), Q1(z, w2) are relatively prime polynomials in w2 over the field of small
functions relative to w2, P2(z, w1), Q2(z, w1) are relatively prime polynomials in w1 over
the field of small functions relative to w1. Moreover, we assume that q1 = degQ1

w2
> 0,

q2 = degQ2
w1

> 0, p1 = degP1
w2
, p2 = degP2

w1
, Q1(z, w2) and Q2(z, w1) are respectively

monic polynomials. λ1(t + 1) = max{p1, q1}, λ2(t + 1) = max{p2, q2}, λ′ = min{λ1, λ2},
c = max{|c1|, |c2|, . . . , |cn|}. If there exists α, β ∈ [0, λ′(t+1)), such that for all r sufficiently
large, 

N(r,
Ω1(z, w1)

Ω2(z, w1)
) ≤ αN(r + c, w1(z)) + S(r, w1),

N(r,
Ω3(z, w2)

Ω4(z, w2)
) ≤ βN(r + c, w2(z)) + S(r, w2),

(2.2)

and 

n∑
k=1

λ1k(t+ 1)N(r, w1(z + ck)) ≤ αN(r + c, w1(z)) + S(r, w1),

n∑
k=1

λ2k(t+ 1)N(r, w2(z + ck)) ≤ βN(r + c, w2(z)) + S(r, w2).

(2.3)

5
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Then, either at least one of

ρ(w1) = +∞, ρ(w2) = +∞

will be true, or at least one of

Q1(z, w2) ≡ (w2(z) + h2(z))
q1 , Q2(z, w1) ≡ (w1(z) + h1(z))

q2

will be true, where h1(z) is a small meromorphic function relative to w1(z), h2(z) is a
small meromorphic function relative to w2(z).

Theorem 2.3. Suppose that (w1(z), w2(z)) is a transcendental meromorphic solution
of the following system of complex differential-difference equations

Ω1(z, w1)

Ω2(z, w1)
= w2(p(z)),

Ω3(z, w2)

Ω4(z, w2)
= w1(p(z)),

(2.4)

where p(z) is a polynomial of degree d ≥ 2. λ1k = max
i1∈I1,j1∈J1

{li1,k,mj1,k}, k = 1, 2, . . . , n.

λ2k = max
i2∈I2,j2∈J2

{li2,k,mj2,k}, k = 1, 2, . . . , n. λ1 =
n∑
k=1

λ1k, λ2 =
n∑
k=1

λ2k, λ = max{λ1, λ2}.

Moreover, we assume that λ(t+ 1)2 ≥ d. Then

T (r, w1) = O((log r)α+ε),

T (r, w2) = O((log r)α+ε),

where α =
log λ(t+ 1)2

log d
, and ε > 0 is arbitrarily small.

3 Some Lemmas for the Proof of Theorems

We need the following lemmas to proof theorems.
Lemma 3.1 (see [23]) Let

R (z, w(z)) =
a0(z) + a1(z)w(z) + · · ·+ ap(z)w

p(z)

b0(z) + b1(z)w(z) + · · ·+ bq(z)wq(z)

be an irreducible rational function in w(z) with the meromorphic coefficients {ai(z)} and
{bj(z)}. If w(z) is a meromorphic function, then

T (r,R(z, w(z))) = max{p, q}T (r, w(z)) +O{
∑

T (r, ai(z)) +
∑

T (r, bj(z))}.

Lemma 3.2 (see [3]) Let w(z) be a transcendental meromorphic function, then

T (r, w(k)) ≤ (k + 1)T (r, w) + S(r, w).

Lemma 3.3 (see [11]) Let w(z) be a non-constant meromorphic function of finite
order, c is a non-zero complex constant, then

T (r, w(z + c)) = T (r, w) + S(r, w),

6
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for all r outside of a possible exceptional set with finite logarithmic measure.
Lemma 3.4 (see [6]) Let f1, f2, . . . , fp be distinct meromorphic functions and

F (z) =
P (z)

Q(z)
=

∑
K∈K0

fk11 fk22 · · · f
kp
p∑

I∈I0

f i11 f
i2
2 · · · f

ip
p

.

If sv = max{max
K∈K0

kv,max
I∈I0

iv}, v = 1, 2, . . . , p. Then

m(r, F ) ≤
p∑
v=1

svm(r, fv) +N(r,Q)−N(r,
1

Q
) +O(1),

T (r, F ) ≤
p∑
v=1

svT (r, fv) +O(1),

where Q(z) 6= 0, K0 = {K = (k1, k2, . . . , kp) : kv ∈ N
⋃
{0}, v = 1, 2, . . . , p}, I0 = {I =

(i1, i2, . . . , ip) : iv ∈ N
⋃
{0}, v = 1, 2, . . . , p} are two finite index sets.

Lemma 3.5 (see [24]) Let w(z) be a meromorphic function and let Φ be given by

Φ = wn + an−1w
n−1 + · · ·+ a0,

T (r, aj) = S(r, w), j = 0, 1, ..., n− 1.

Then either
Φ ≡ (w +

an−1
n

)n,

or

T (r, w) ≤ N(r,
1

Φ
) +N(r, w) + S(r, w).

Lemma 3.6 (see [22]) Let w(z) be a non-constant meromorphic function and let
P (z, w), Q(z, w) be two polynomials in w(z) with meromorphic coefficients small relative
to w(z). If P (z, w) and Q(z, w) have no common factors of positive degree in w(z) over
the field of small functions relative to w(z), then

N(r,
1

Q(z, w)
) ≤ N(r,

P (z, w)

Q(z, w)
) + S(r, w).

Lemma 3.7 (see [21]) Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous
function, δ ∈ (0, 1), s ∈ (0,+∞). If T is of finite order, i.e

lim
r→∞

log T (r)

log r
= ρ <∞,

then

T (r + s) = T (r) + o(
T (r)

rδ
),

outside an exceptional set of finite logarithmic measure.
Lemma 3.8 (see [14]) Let w(z) be a transcendental meromorphic function, and

p(z) = akz
k + ak−1z

k−1 + · · ·+ a1z + a0, ak 6= 0, be a non-constant polynomial of degree

7
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k. Given 0 < δ < |ak|, denote λ = |ak| + δ and µ = |ak| − δ. Then given ε > 0 and
a ∈ C ∪ {∞}, we have

kn(µrk, a, w) ≤ n(r, a, w(p(z))) ≤ kn(λrk, a, w),

N(µrk, a, w) +O(log r) ≤ N(r, a, w(p(z))) ≤ N(λrk, a, w) +O(log r),

(1− ε)T (µrk, w) ≤ T (r, w(p(z))) ≤ (1 + ε)T (λrk, w).

Lemma 3.9 (see [2]) Let g : (0,+∞)→ R, h : (0,+∞)→ R be monotone increasing
functions such that g(r) ≤ h(r) outside of an exceptional set E of finite linear measure.
Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 3.10 (see [15]) Let φi : [r0,+∞)→ (0,+∞)(i = 1, 2) be positive and bounded
in every finite interval, and suppose that

φ1(µr
m) ≤ A1φ1(r) +B1φ2(r) + d1,

φ2(µr
m) ≤ A2φ1(r) +B2φ2(r) + d2,

holds for all r large enough, where µ > 0,m > 1, Ai > 1, Bi > 1, (i = 1, 2), and d1, d2 are
real constants. Then

φ1(r) = O((log r)α), φ2(r) = O((log r)α)

where α =
log 2A

logm
,A = max

i=1,2
{Ai, Bi}.

4 Proof of Theorems 2.1-2.3

Proof of Theorem 2.1. Suppose that (w1(z), w2(z)) is a set of finite order
transcendental meromorphic solution of system of complex differential-difference equations
(2.1). Using Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, we obtain

max{p1, q1}T (r, w2) = T (r,R1(z, w2)) + S(r, w2)

= T (r,
Ω1(z, w1)

Ω2(z, w1)
) + S(r, w2)

≤
n∑
k=1

λ1kT (r, w
(t)
1 (z + ck)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)T (r, w1(z + ck)) + S(r, w1) + S(r, w2)

=
n∑
k=1

λ1k(t+ 1)T (r, w1(z)) + S(r, w1) + S(r, w2)

= λ1(t+ 1)T (r, w1) + S(r, w1) + S(r, w2).

Thus, we have

max{p1, q1}T (r, w2) ≤ λ1(t+ 1)T (r, w1) + S(r, w1) + S(r, w2). (4.1)

Similarly, we obtain

max{p2, q2}T (r, w1) ≤ λ2(t+ 1)T (r, w2) + S(r, w1) + S(r, w2). (4.2)

8
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It follows from (4.1) and (4.2) that

max{p1, q1}max{p2, q2} ≤ (t+ 1)2λ1λ2.

Theorem 2.1 is proved.

Proof of Theorem 2.2. Suppose that (w1(z), w2(z)) is a set of transcendental
meromorphic solution of (2.1) and the second alternative of the conclusion is not true. It
follows from Lemma 3.5, Lemma 3.6, (2.1) and (2.2) that

T (r, w2) ≤ N(r,
1

Q1(z, w2)
) +N(r, w2) + S(r, w2)

≤ N(r,
P1(z, w2)

Q1(z, w2)
) +N(r, w2) + S(r, w2)

= N(r,
Ω1(z, w1)

Ω2(z, w1)
) +N(r, w2) + S(r, w2)

≤ αN(r + c, w1) +N(r, w2) + S(r, w1) + S(r, w2).

Thus, we obtain

T (r, w2)−N(r, w2) ≤ αN(r + c, w1) + S(r, w1) + S(r, w2). (4.3)

where α ∈ [0, λ′(t+1)), λ′ = min{λ1, λ2}, λ1(t+1) = max{p1, q1}, λ2(t+1) = max{p2, q2}.
Similarly, we have

T (r, w1)−N(r, w1) ≤ βN(r + c, w2) + S(r, w1) + S(r, w2). (4.4)

where β ∈ [0, λ′(t+1)), λ′ = min{λ1, λ2}, λ1(t+1) = max{p1, q1}, λ2(t+1) = max{p2, q2}.
Assuming, contrary to the assertion, that ρ(wi) < +∞, i = 1, 2. Then it implies that

S(r, wi(z + ck)) = S(r, wi(z)), i = 1, 2, k = 1, 2, . . . , n.

By (4.3) and (4.4), we obtain

T (r, w2(z + ck))−N(r, w2(z + ck)) ≤ αN(r + c, w1(z + ck)) + S(r, w1) + S(r, w2). (4.5)

T (r, w1(z + ck))−N(r, w1(z + ck)) ≤ βN(r + c, w2(z + ck)) + S(r, w1) + S(r, w2). (4.6)

where k = 1, 2, . . . , n.
Applying Lemma 3.1, Lemma 3.2, Lemma 3.4 and Lemma 3.7, and using (2.3) and

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

935 WANG Yue ET AL 927-942



(4.6), we conclude that

λ1(t+ 1)T (r, w2) = T (r,
Ω1(z, w1)

Ω2(z, w1)
) + S(r, w2)

≤
n∑
k=1

λ1kT (r, w
(t)
1 (z + ck)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)T (r, w1(z + ck)) + S(r, w1) + S(r, w2)

=
n∑
k=1

λ1k(t+ 1)[T (r, w1(z + ck))−N(r, w1(z + ck))] +
n∑
k=1

λ1k(t+ 1)N(r, w1(z + ck))

+S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)βN(r + c, w2(z + ck)) + αN(r + c, w1(z)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)βN(r + 2c, w2(z)) + αN(r + c, w1(z)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)βN(r + 2c, w2(z)) + αN(r + 2c, w1(z)) + S(r, w1) + S(r, w2)

≤ λ1(t+ 1)βN(r + 2c, w2(z)) + αN(r + 2c, w1(z)) + S(r, w1) + S(r, w2).

Therefore, we have

T (r, w2)−N(r, w2) ≤ βN(r + 2c, w2) +
α

λ1(t+ 1)
N(r + 2c, w1)

−N(r, w2) + S(r, w1) + S(r, w2).
(4.7)

Similarly, applying Lemma 3.1, Lemma 3.2, Lemma 3.4 and Lemma 3.7, and using (2.3)
and (4.5), we conclude that

T (r, w1)−N(r, w1) ≤ αN(r + 2c, w1) +
β

λ2(t+ 1)
N(r + 2c, w2)

−N(r, w1) + S(r, w1) + S(r, w2).
(4.8)

Applying Lemma 3.7, and using (4.8), we obtain

λ1(t+ 1)T (r, w2) ≤
n∑
k=1

λ1k(t+ 1)[T (r, w1(z + ck))−N(r, w1(z + ck))] +
n∑
k=1

λ1k(t+ 1)N(r, w1(z + ck))

+S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)[αN(r + 3c, w1) +
β

λ2(t+ 1)
N(r + 3c, w2)−N(r − c, w1)]

+αN(r + c, w1(z)) + S(r, w1) + S(r, w2)

≤ λ1α(t+ 1)N(r + 3c, w1) +
λ1β

λ2
N(r + 3c, w2)− λ1(t+ 1)N(r − c, w1)

+αN(r, w1(z)) + S(r, w1) + S(r, w2).

Namely,

T (r, w2) ≤ αN(r + 3c, w1) +
β

λ2(t+ 1)
N(r + 3c, w2)−N(r, w1)

+
α

λ1(t+ 1)
N(r, w1(z)) + S(r, w1) + S(r, w2).
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Thus, we obtain

T (r, w2)−N(r, w2) ≤ αN(r + 3c, w1) +
β

λ2(t+ 1)
N(r + 3c, w2)−N(r, w1)

+
α

λ1(t+ 1)
N(r, w1(z))−N(r, w2) + S(r, w1) + S(r, w2).

Similarly, applying Lemma 3.7, and using (4.8), we have

T (r, w1)−N(r, w1) ≤ βN(r + 3c, w2) +
α

λ1(t+ 1)
N(r + 3c, w1)−N(r, w1)

+
β

λ2(t+ 1)
N(r, w2(z))−N(r, w2) + S(r, w1) + S(r, w2).

This implies that

T (r, w2)−N(r, w2) ≤ αN(r + 3c, w1) +
β

λ2(t+ 1)
N(r + 3c, w2)−N(r, w1)

+
α

λ1(t+ 1)
N(r, w1(z))−N(r, w2) + S(r, w1) + S(r, w2),

T (r, w1)−N(r, w1) ≤ βN(r + 3c, w2) +
α

λ1(t+ 1)
N(r + 3c, w1)−N(r, w1)

+
β

λ2(t+ 1)
N(r, w2(z))−N(r, w2) + S(r, w1) + S(r, w2).

(4.9)
We now proceed, inductively, to prove

T (r, w2)−N(r, w2) ≤ αN(r + (2m+ 1)c, w1) +
mβ

λ2(t+ 1)
N(r + (2m+ 1)c, w2)−mN(r, w1)

+
mα

λ1(t+ 1)
N(r, w1(z))−mN(r, w2) + S(r, w1) + S(r, w2),

T (r, w1)−N(r, w1) ≤ βN(r + (2m+ 1)c, w2) +
mα

λ1(t+ 1)
N(r + (2m+ 1)c, w1)−mN(r, w1)

+
mβ

λ2(t+ 1)
N(r, w2(z))−mN(r, w2) + S(r, w1) + S(r, w2).

(4.10)
The case m = 1 has been proved. We assume that (4.10) holds when m = l.

λ1(t+ 1)T (r, w2) ≤
n∑
k=1

λ1k(t+ 1)[T (r, w1(z + ck))−N(r, w1(z + ck))]

+

n∑
k=1

λ1k(t+ 1)N(r, w1(z + ck)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)[βN(r + (2l + 1)c, w2(z + ck)) +
lα

λ1(t+ 1)
N(r + (2l + 1)c, w1(z + ck))

−lN(r, w1(z + ck)) +
lβ

λ2(t+ 1)
N(r, w2(z + ck))− lN(r, w2(z + ck))]

+αN(r + c, w1(z)) + S(r, w1) + S(r, w2)

≤ λ1(t+ 1)[βN(r + (2l + 2)c, w2(z)) +
lα

λ1(t+ 1)
N(r + (2l + 2)c, w1(z))

−lN(r − c, w1(z)) +
lβ

λ2(t+ 1)
N(r + c, w2(z))− lN(r − c, w2(z))]

+αN(r + c, w1(z)) + S(r, w1) + S(r, w2).
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Therefore

T (r, w2) ≤ βN(r + (2l + 2)c, w2(z)) +
lα

λ1(t+ 1)
N(r + (2l + 2)c, w1(z))

−lN(r, w1(z)) +
lβ

λ2(t+ 1)
N(r, w2(z))− lN(r, w2(z))

+
α

λ1(t+ 1)
N(r, w1(z)) + S(r, w1) + S(r, w2).

Namely,

T (r, w2)−N(r, w2) ≤ βN(r + (2l + 2)c, w2(z)) +
lα

λ1(t+ 1)
N(r + (2l + 2)c, w1(z))

−lN(r, w1(z)) +
lβ

λ2(t+ 1)
N(r, w2(z))− lN(r, w2(z))

−N(r, w2) +
α

λ1(t+ 1)
N(r, w1(z)) + S(r, w1) + S(r, w2).

Similarly,

T (r, w1)−N(r, w1) ≤ αN(r + 2(l + 1)c, w1(z)) +
lβ

λ2(t+ 1)
N(r + 2(l + 1)c, w2(z))

−lN(r, w2(z)) +
lα

λ1(t+ 1)
N(r, w1(z))− lN(r, w1(z))

−N(r, w1) +
β

λ2(t+ 1)
N(r, w2(z)) + S(r, w1) + S(r, w2).

λ1(t+ 1)T (r, w2) ≤
n∑
k=1

λ1k(t+ 1)[T (r, w1(z + ck))−N(r, w1(z + ck))]

+

n∑
k=1

λ1k(t+ 1)N(r, w1(z + ck)) + S(r, w1) + S(r, w2)

≤
n∑
k=1

λ1k(t+ 1)[αN(r + 2(l + 1)c+ c, w1(z)) +
lβ

λ2(t+ 1)
N(r + 2(l + 1)c+ c, w2(z))

−lN(r − c, w2(z)) +
lα

λ1(t+ 1)
N(r + c, w1(z))− lN(r − c, w1(z))−N(r − c, w1(z))

+
β

λ2(t+ 1)
N(r + c, w2(z))] + αN(r + c, w1) + S(r, w1) + S(r, w2).

This implies that

T (r, w2) ≤ αN(r + [2(l + 1) + 1]c, w1) +
(l + 1)β

λ2(t+ 1)
N(r + [2(l + 1) + 1]c, w2)

−lN(r, w2) +
(l + 1)α

λ1(t+ 1)
N(r, w1(z))− (l + 1)N(r, w1(z))

+S(r, w1) + S(r, w2).

Thus

T (r, w2)−N(r, w2) ≤ αN(r + [2(l + 1) + 1]c, w1) +
(l + 1)β

λ2(t+ 1)
N(r + [2(l + 1) + 1]c, w2)

−(l + 1)N(r, w2) +
(l + 1)α

λ1(t+ 1)
N(r, w1(z))− (l + 1)N(r, w1(z))

+S(r, w1) + S(r, w2).
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Similarly,

T (r, w1)−N(r, w1) ≤ βN(r + [2(l + 1) + 1]c, w2) +
(l + 1)α

λ1(t+ 1)
N(r + [2(l + 1) + 1]c, w1)

−(l + 1)N(r, w2) +
(l + 1)β

λ2(t+ 1)
N(r, w2(z))− (l + 1)N(r, w1(z))

+S(r, w1) + S(r, w2).

The above two inequalities shows that (4.10) holds for m = l + 1. We complete the
induction.

Applying Lemma 3.7, and using (4.10), we obtain
N(r, w1) +N(r, w2) ≤ (

α

m
+

α

λ1(t+ 1)
)N(r, w1) +

β

λ2(t+ 1)
N(r, w2) + S(r, w1) + S(r, w2),

N(r, w1) +N(r, w2) ≤ (
β

m
+

β

λ2(t+ 1)
)N(r, w2) +

α

λ1(t+ 1)
N(r, w1) + S(r, w1) + S(r, w2).

(4.11)
Noting that α, β ∈ [0, λ′(t+ 1)), λ′ = min{λ1, λ2}. Let m be large enough such that

1

η1
:=

α

m
+

α

λ1(t+ 1)
= α(

1

m
+

1

λ1(t+ 1)
) < 1,

β

λ2(t+ 1)
< 1.

1

η2
:=

β

m
+

β

λ2(t+ 1)
= β(

1

m
+

1

λ2(t+ 1)
) < 1,

α

λ1(t+ 1)
< 1.

By (4.11), we have
(1− 1

η1
)N(r, w1) + (1− β

λ2(t+ 1)
)N(r, w2) ≤ S(r, w1) + S(r, w2),

(1− 1

η2
)N(r, w2) + (1− α

λ1(t+ 1)
)N(r, w1) ≤ S(r, w1) + S(r, w2).

(4.12)

Using (4.12), for m large enough, we conclude that

N(r, w1) = S(r, w1) + S(r, w2).

N(r, w2) = S(r, w1) + S(r, w2).

Applying Lemma 3.7, and using (4.3) and (4.4), we have

T (r, w1) = S(r, w1) + S(r, w2).

T (r, w2) = S(r, w1) + S(r, w2).

Thus
[1 + o(1)]T (r, w1) = S(r, w2).

[1 + o(1)]T (r, w2) = S(r, w1).

Therefore
[1 + o(1)]T (r, w1)T (r, w2) = S(r, w1)S(r, w2).

Then we obtain 1 = 0, which is a contradiction. Therefore, we conclude that at least one
of ρ(w1) = +∞, ρ(w2) = +∞ will be true.
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This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. Suppose that (w1(z), w2(z)) is a set of transcendental
meromorphic solution of (2.4). Applying Lemma 3.2, Lemma 3.4 and Lemma 3.8, and the
first equation of (2.4), we have

(1− ε2)T (µrd, w2) ≤ T (r, w2(pz))

= T (r,
Ω1(z, w1)

Ω2(z, w1)
)

≤
n∑
k=1

λ1kT (r, w
(t)
1 (z + ck)) + S(r, w1)

≤
n∑
k=1

λ1k(t+ 1)T (r, w1(z + ck)) + S(r, w1)

≤
n∑
k=1

λ1k(t+ 1)T (r + c, w1(z)) + S(r, w1),

where ε2 > 0 is arbitrarily small.
For every β1 > 1, and for r large enough, we obtain

T (r + c, w1) ≤ T (β1r, w1).

Suppose that r to be large enough, outside of a possible exceptional set with finite
logarithmic measure, we conclude that

(1− ε2)T (µrd, w2) ≤ λ1(t+ 1)(1 + ε1)T (β1r, w1),

where ε1 > 0 is arbitrarily small.
By Lemma 3.9, whenever γ1 > 1, for all r large enough, we obtain

(1− ε2)T (µrd, w2) ≤ λ1(t+ 1)(1 + ε1)T (β1γ1r, w1). (4.13)

Similarly,

(1− ε1)T (µrd, w1) ≤ λ2(t+ 1)(1 + ε2)T (β2γ2r, w2). (4.14)

Denote β = max{β1, β2}, γ = max{γ1, γ2}, ε = max{ε1, ε2, ε1, ε2}. Then (4.13), (4.14)
may become

(1− ε)T (µrd, w2) ≤ λ1(t+ 1)(1 + ε)T (βγr, w1). (4.15)

(1− ε)T (µrd, w1) ≤ λ2(t+ 1)(1 + ε)T (βγr, w2). (4.16)

Let t = βγr, then the above two inequalities become

T (
µ

(βγ)d
t
d
, w2) ≤

λ1(t+ 1)(1 + ε)

1− ε
T (t, w1). (4.17)

T (
µ

(βγ)d
t
d
, w1) ≤

λ2(t+ 1)(1 + ε)

1− ε
T (t, w2). (4.18)
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Noting that λ = max{λ1, λ2}, by means of Lemma 3.10, we obtain

T (r, w1) = O((log r)s),

T (r, w2) = O((log r)s),

where s =
log (t+1)2λ(1+ε)

1−ε

log d
=

log(t+ 1)2λ

log d
+ o(1). Let α =

log(t+ 1)2λ

log d
.

This completes the proof of Theorem 2.3.
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Abstract: In this paper, we mainly investigate a certain type of difference
equation of the form fn(z) + p(z)(∆f)m = r(z)eq(z), where p(z), r(z), q(z) are
nonzero polynomials and n,m are two positive integers satisfying n > m. Some
examples are also structured to show that our results are sharp.
Key words and phrases: meromorphic; difference equation; small function.
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1 Introduction and main results

In this paper, a meromorphic function always means it is meromorphic in the
whole complex plane C. We assume that the reader is familiar with the standard
notations in the Nevanlinna theory. We use the following standard notations in
value distribution theory (see [5, 7, 11, 12]):

T (r, f),m(r, f), N(r, f), N(r, f), · · · .

And we denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}, as r →
∞, possibly outside of a set E with finite linear or logarithmic measure, not
necessarily the same at each occurrence. A polynomial Q(z, f) is called a dif-
ference polynomial in f if Q is a polynomial in f , its derivatives and shifts with
small meromorphic coefficients, say {aλ|λ ∈ I}, such that T (r, aλ) = S(r, f) for
all λ ∈ I. We define the difference operator ∆f = f(z + 1)− f(z).

One of the most important results in the value distribution theory is the follow-
ing theorem due to Hayman.

∗Corresponding author. This research was supported by the Fundamental Research Funds
for the Central Universities (No. 2015QNA52).
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Theorem 1 If g is a transcendental meromorphic function, then either g itself
assumes every finite complex value infinitely often, or g(k) assumes every finite
non-zero value infinitely often.

As a consequence of Theorem 1, we have

Theorem 2 If f is a transcendental entire function, then f2+af ′ has infinitely
many zeros for each finite non-zero complex value a.

In fact, if f is an entire function, then g = 1
f has not any zero. It follows from

Theorem 1 that g′ − 1
a has infinitely many zeros, namely f2 + af ′ has infinitely

many zeros.

It is well known that ∆f can be considered as the difference counterpart of
f ′. The difference analogue of the lemma on the logarithmic derivative and
Nevanlinna theory for the difference operator have been established recently
(see [1, 2, 3, 4, 6], which brings about a number of papers focusing on difference
topics. And so here one nature question arise, that is what can be said if we
replace f2 + af ′ with f2 + a∆f in Theorem 2? Here we shall deal with this
problem and obtain the following main result.

Theorem 3 If f is a transcendental entire solution of finite order of the fol-
lowing non-linear difference equation

f2(z) + p(z)∆f = r(z)eq(z), (1)

where p(z), r(z), q(z) are nonzero polynomials such that deg p(z) ≤ 1, then

∆f ≡ 0,

and f must be of the form
f(z) = ce2kπiz,

where c 6= 0 and k ∈ Z.

Example 1 For the following non-linear difference equation

f2(z) + (z − 1)2∆f =
(
z(z − 1)

)2
e4πiz,

it admits a finite order transcendental entire solution

f(z) = z(z − 1)e2πiz − (z − 1).

But ∆f 6≡ 0.

This example shows that the assumption deg p(z) ≤ 1 is necessary for our result
in Theorem 3. And from Theorem 3, we also obtain the following corollary
corresponding to Theorem 2.
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Corollary 1 Let f be a transcendental entire function of finite order and ∆f 6≡
0, then f2(z) + p(z)∆f has infinitely many zeros, where p(z) is a nonzero poly-
nomial whose degree is at most 1.

This corollary can be regarded as the general case of the following result (see
Theorem 1.1 in [9]) due to Liu and Laine in some sense.

Theorem 4 [9] Let f be a transcendental entire function of finite order ρ, not of
period c, where c is a nonzero complex constant. Then the difference polynomial
fn(z) + f(z+ c)− f(z) has infinitely many zeros in the complex plane, provided
that n ≥ 2.

In 1970, C. C. Yang [13] obtained the following well known theorem.

Theorem 5 Let m,n be two positive integers satisfying 1
m + 1

n < 1. Then there
are no transcendental entire solutions f(z) and g(z) satisfying the equation

a(z)fn(z) + b(z)gm(z) = 1

with a(z), b(z) being small functions of f(z).

People have obtained quite a number of results by considering special functions
f, g in Theorem 5. For example, J. Zhang [14] obtained the following result.

Theorem 6 For the following difference equation

fn(z) + fm(z + 1) = p(z),

where p(z) is a nonzero polynomial with deg p(z) = k , suppose it admits a
transcendental entire function f(z) of finite order. Then holds
(i) m = n = 2, p(z) is a nonzero constant and f(z) has form of f(z) = aeAz +
be−Az, where eA = −i and a, b are two constants such that 4ab = p.
(ii) m = n = 1 and f (k+1)(z) is a periodic entire function with period 2.

Here we consider the non-linear difference equation of the following form

fn(z) + p(z)(∆f)m = r(z)eq(z), (2)

where p(z), r(z), q(z) are nonzero polynomials and n > m, and obtain the fol-
lowing theorem, which can be considered as the more general case in Theorem
3.

Theorem 7 If equation (2) admits a transcendental entire solution f with finite
order such that ∆f 6≡ 0 , then n = 2 and m = 1.

Example 2 For the following non-linear difference equation

f(z) + ∆f = eez,

it admits a finite order transcendental entire solution

f(z) = ez.

But ∆f 6≡ 0.

3
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Example 3 For the following non-linear difference equation

f(z)− 1

4
(∆f)2 = eπiz,

it admits a finite order transcendental entire solution

f(z) = e2πiz + eπiz.

But ∆f 6≡ 0.

Examples 2-3 show that the assumption n > m is necessary for our result in
Theorem 7. Combining Theorem 3 and Theorem 7, we can obtain the following
corollary.

Corollary 2 For the non-linear difference equation of the form

fn(z) + p(z)(∆f)m = r(z)eq(z), (3)

where p(z), r(z), q(z) are nonzero polynomials satisfying deg p(z) ≤ 1 and n,m
are two positive integers satisfying n > m, the equation (3) admits no finite
order transcendental entire solution f such that ∆f 6≡ 0.

2 Some lemmas

To prove our results, we need some lemmas as follows.

Lemma 1 (see[1]) Let f(z) be a transcendental meromorphic function with fi-
nite order σ. Then for each ε > 0, we have

m
(
r,
f(z + c)

f(z)

)
= O(rσ−1+ε).

Lemma 1 has another form as follows.

Lemma 2 (see [3]) Let f be a meromorphic function with a finite order σ, and
η be a nonzero constant. Then

m(r,
f(z + η)

f(z)
) = S(r, f).

Lemma 3 (see [10]) Let f be a transcendental meromorphic function and

F = anf
n + an−1f

n−1 + · · ·+ a0 (an 6≡ 0)

be a polynomial in f with coefficients being small functions of f . Then either

F = an(f +
an−1

nan
)n or T (r, f) ≤ N(r,

1

F
) +N(r, f) + S(r, f).

4
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Lemma 4 (see[8]) Let f(z) be a transcendental meromorphic solution of finite
order σ of a difference equation of the form

H(z, f)P (z, f) = Q(z, f),

where H(z, f), P (z, f), Q(z, f) are difference polynomials in f(z) such that the
total degree of H(z, f) in f(z) and its shifts is n and that the corresponding total
degree of Q(z, f) is at most n. If H(z, f) just contains one term of maximal
total degree, then for any ε > 0,

m(r, P (z, f)) = O(rσ−1+ε) + S(r, f)

holds possibly outside of an exceptional set of finite logarithmic measure.

Remark 1 From Lemmas 1-2, we can obtain m
(
r, P (z, f)

)
= S(r, f) in Lemma

4.

3 The proofs of main theorems

1. Proof of theorem 3.
First of all, suppose equation (1) admits a transcendental entire solution f with
finite order. We may assume q(z) is not any constant. Otherwise if q(z) is a
constant, then we rewrite equation (1) as the following form

f2 = req − p∆f.

By Lemma 2, we see

2T (r, f) = m(r, f2) = m(r,∆f) + S(r, f) ≤ m(r, f) + S(r, f),

which is impossible. By differentiating equation (1) and eliminating eq(z), we
obtain

f [2f ′ − (
r′

r
+ q′)f ] + p∆f ′ + p′∆f − p(r

′

r
+ q′)∆f = 0. (4)

Set H = 2f ′ −Bf , where B = r′

r + q′. Since q(z) is not any constant, we see B
is a nonzero rational function with deg∞B ≥ 0, specially, lim

z→∞
B(z) is nonzero

constant or ∞. Thus we rewrite equation (4) as the following form.

fH + p∆f ′ + (p′ −Bp)∆f = 0. (5)

By applying Lemma 4 to equation (5), we see

m(r,H) = S(r, f),

which means T (r,H) = S(r, f). From the definition of H, we get

f ′ =
1

2
(H +Bf). (6)

5
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It follows equation (6) that

∆f ′ =
1

2
[∆H +B(z + 1)∆f + ∆B · f ]. (7)

From equation (5), we see

∆f ′ = −1

p
[Hf + (p′ − pB)∆f ]. (8)

If pB(z + 1) + 2(p′ − pB) ≡ 0, then

1← B(z + 1)

B
= 2(1− p′

p

1

B
)→ 2, as z →∞,

which is impossible. Thus we can assume pB(z + 1) + 2(p′ − pB) 6≡ 0. By
eliminating ∆f ′ in equations (7)- (8), we get

∆f = a1f + a0, (9)

where

a1 = − 2H + p∆B

pB(z + 1) + 2(p′ − pB)
and a0 = − p∆H

pB(z + 1) + 2(p′ − pB)

are two small functions of f . Substituting equation (9) into equation (1), we
get

f2(z) + p(z)a1(z)f + p(z)a0(z) = r(z)eq(z).

That is to say f2(z) + p(z)a1(z)f + p(z)a0(z) has just only finitely many zeros.
It follows from Lemma 3 that there exists a small function β with respect to f
such that

f2(z) + p(z)a1(z)f + p(z)a0(z) = (f + β)2 = r(z)eq(z). (10)

From equation (10), we get pa1 = 2β, pa0 = β2 and

f = ReQ − β, (11)

where R =
√
r and Q = q

2 are two nonzero polynomials. Thus from (11), we
get β is an entire function and

∆f = [R(z + 1)e∆Q −R]eQ −∆β. (12)

Thus from (9), (11) and (12), we obtain

[R(z + 1)e∆Q −R− 2βR

p
]eQ = ∆β − β2

p
. (13)

It is obvious that T (r, f) = T (r, eQ) + S(r, f) from equation (11), which means

R(z+ 1)e∆Q−R− 2βR
p and ∆β− β2

p are small functions of eQ. Therefore from

equation (13), we see

6
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∆β − β2

p
= R(z + 1)e∆Q −R− 2βR

p
= 0. (14)

Thus p∆β = β2, where β = ReQ−f is an entire function. If β is a transcendental
entire function, then from Lemma 2, we see

2T (r, β) = m(r, β2) = m(r,∆β) + S(r, β) ≤ m(r, β) + S(r, β),

which is impossible. If β is a polynomial, then

2 deg β = deg β2 = deg(p∆β) = deg p+ deg ∆β = deg p+ deg β − 1,

which implies deg β = deg p − 1 ≤ 0. Thus it follows from equation (14) that
β ≡ 0 and R(z + 1)e∆Q = R. It means e∆Q is a constant, which leads to
Q(z) = mz + n. Then

em = e∆Q =
R

R(z + 1)
→ 1, as z →∞.

Therefore R(z) = R(z + 1), that is to say R is a constant. By pa1 = 2β,
pa0 = β2, we see a1 = a0 = 0, which means ∆f = 0 from equation (9).
Thus we have f = emz+n = cemz and then ∆f = c(em − 1)emz, which implies
m = 2kπi, k ∈ Z.
The proof of Theorem 3 is completed.

2. The Proof of Theorem 7.
First of all, suppose equation (2) admits a transcendental entire solution f with
finite order. We may assume q(z) is not any constant. Otherwise if q(z) is a
constant, then we rewrite equation (2) as the form

fn = req − p(∆f)m.

By Lemma 2, we see

nT (r, f) = m(r, fn) = mm(r,∆f) + S(r, f) ≤ mm(r, f) + S(r, f),

which is impossible when n > m. By differentiating equation (2) and eliminating
eq(z), we obtain

fn−1[nf ′ −Bf ] = (Bp− p′)(∆f)m −mp(∆f)m−1∆f ′, (15)

where B is defined as same as in Theorem 3. Set H = nf ′−Bf . If H ≡ 0, then
f must be form of

f(z) = cR(z)eQ(z), (16)

where R = n
√
r and Q = q

n are two polynomials. From equation (16), we see

∆f = AeQ(z), (17)

7
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where A = c
(
R(z + 1)e∆Q − R

)
. It is obvious that T (r,A) = S(r, eQ). By

our assumption ∆f 6≡ 0, we see A 6≡ 0. Substituting equations (16)-(17) into
equation (2), we see

(cn − 1)Rn = −pAme(m−n)Q,

which contradicts our assumption that q is a nonconstant polynomial. ThusH 6≡
0. Next we shall consider the following two cases separately to our discussion.
Case 1 n > m+ 1. By applying Lemma 4 to equation (15), we see

m(r,H) = S(r, f)

and
m(r,Hf) = S(r, f),

From the two equations above, we obtain

T (r, f) = m(r, f) ≤ m(r,Hf) +m(r,
1

H
) ≤ S(r, f) +m(r,H) = S(r, f),

which is impossible.
Case 2 n=m+1. We rewrite equation (2) as the following form

1

r

(
fe−

q
n

)n
+
p

r

(
e−

q
m ∆f

)m
= 1.

If m > 1, then
1

m
+

1

n
=

1

m
+

1

m+ 1
≤ 1

2
+

1

3
< 1.

From Theorem 4, we obtain that fe−
q
n and e−

q
m ∆f are two polynomials. Thus

f = se
q
n (18)

and

∆f = te
q
m , (19)

where s, t are two nonzero polynomials. From equation (18), we see

∆f =
(
s(z + 1)e

∆q
n − s

)
e

q
n . (20)

It follows from equations (19)-(20) that

s(z + 1)e
∆q
n − s = te( 1

m−
1
n )q,

which is impossible. Thus m = 1 and n = 2.
The proof of Theorem 7 is completed.

8
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A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC

(ρ1, ρ2)-FUNCTIONAL INEQUALITIES IN MATRIX BANACH SPACES

AFSHAN BATOOL, TAYYAB KAMRAN, CHOONKIL PARK∗, AND DONG YUN SHIN∗

Abstract. By using the fixed point method, we solve the Hyer-Ulam stability of the following
quadratic (ρ1, ρ2)-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.1)

≤
∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥
+

∥∥∥ρ2 (4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥ ,
where ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|

2
+ |ρ2| < 1, and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.2)

≤
∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖ ,

where ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|
2

+2|ρ2| < 1, in matrix Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [30] concerning
the stability of group homomorphisms.

The functional equation f(x+y) = f(x)+f(y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [12] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[2] for additive mappings and by Rassias [22] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [11] by
replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. The stability of quadratic functional equation was proved by Skof [29] for mappings
f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [8] noticed that the
theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian group.

Park [17, 18] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of
the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The
stability problems of various functional equations have been extensively investigated by a number
of authors (see [1, 3, 7, 10, 16, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32]).

We recall a fundamental result in fixed point theory.

Theorem 1.1. [4, 9] Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X,

2010 Mathematics Subject Classification. Primary 39B62, 47H10, 39B52, 46L07, 47L25.
Key words and phrases. Hyers-Ulam stability; quadratic (ρ1, ρ2)-functional inequality; fixed point; matrix Banach

space.
∗Corresponding authors.
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either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [13] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By using
fixed point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [5, 6, 21]).

We will use the following notations:
Mn(X) is the set of all n× n-matrices in X;
ej ∈M1,n(C) is that j-th component is 1 and the other components are zero;
Eij ∈Mn(C) is that (i, j)-component is 1 and the other components are zero;
Eij ⊗ x ∈Mn(X) is that (i, j)-component is x and the other components are zero;
For x ∈Mn(X), y ∈Mk(X),

x⊕ y =

(
x 0
0 y

)
.

Note that (X, {‖ ·‖n}) is a matrix normed space if and only if (Mn(X), ‖ ·‖n) is a normed space for
each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for A ∈ Mk,n(C), x = (xij) ∈ Mn(X)
and B ∈ Mn,k(C), and that (X, {‖ · ‖n}) is a matrix Banach space if and only if X is a Banach
space and (X, {‖ · ‖n}) is a matrix normed space. A matrix Banach space (X, {‖ · ‖n} is called a
matrix Banach algebra if X is an algebra.

A matrix normed space (X, {‖ · ‖n}) is called an L∞-matrix normed space if ‖x ⊕ y‖n+k =
max{‖x‖n, ‖y‖k} holds for all x ∈Mn(X) and all y ∈Mk(X).

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n, define
hn : Mn(E)→Mn(F ) by

hn([xij ]) = [h(xij)]

for all [xij ] ∈Mn(E) (see [14]).

Lemma 1.2. ([14]) Let (X, {‖.‖n}) be a matrix normed space.

(1) ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X.
(2) ‖xkl‖ ≤ ‖[xij ]‖n ≤

∑n
i,j=1 ‖xij‖ for [xij ] ∈Mn(X).

(3) limn→∞xn = x if and only if limn→∞xnij = xij for xn = [xnij ], x = [xij ] ∈Mk(X).
In Section 2, we solve the quadratic (ρ1, ρ2)-functional inequality (0.1) and prove the Hyers-Ulam

stability of the quadratic (ρ1, ρ2)-functional inequality (0.1) in matrix Banach spaces by using the
fixed point method.

In Section 3, we solve the quadratic (ρ1, ρ2)-functional inequality (0.2) and prove the Hyers-Ulam
stability of the quadratic (ρ1, ρ2)-functional inequality (0.2) in matrix Banach spaces by using the
fixed point method.

Throughout this paper, let X be a real or complex matrix normed space with norm ‖ · ‖n and
Y a complex matrix Banach space with norm ‖ · ‖n.
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QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY

2. Quadratic (ρ1, ρ2)-functional inequality (0.1) in matrix normed spaces

Throughout this section, assume that ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|2 +
|ρ2| < 1.

In this section, we solve and investigate the quadratic (ρ1, ρ2)-functional inequality (0.1) in
matrix Banach spaces.

Lemma 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.1)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Letting y = x in (2.1), we get ‖f(2x) − 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X.
Thus

f

(
x

2

)
=

1

4
f(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
=

∥∥∥∥ρ12 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥
+ ‖ρ2 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

=

( |ρ1|
2

+ |ρ2|
)
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

for all x, y ∈ X. Since |ρ1|2 + |ρ2| < 1, f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X. Thus
f is quadratic. �

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-
functional inequality (0.1) in matrix Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2

)
≤ L

4
ϕ (x, y) (2.3)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖fn([xij + yij ]) + fn([xij − yij ])− 2fn([xij ])− 2fn([yij ])‖n (2.4)

≤
∥∥∥∥ρ1 (2fn

(
[xij + yij ]

2

)
+ 2fn

(
[xij − yij ]

2

)
− fn([xij ])− fn([yij ])

)∥∥∥∥
n

+

∥∥∥∥ρ2 (4fn

(
[xij + yij ]

2

)
+ fij ([xij − yij ])− 2fn([xij ])− 2fn([yij ])

)∥∥∥∥
n

+
n∑

i,j=1

ϕ(xij , yij)
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for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y
such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

L

4(1− L)
ϕ (xij , xij)

for all x = [xij ] ∈Mn(X).

Proof. Putting n = 1 in (2.4), we get

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.5)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥+ ϕ(x, y)

for all x, y ∈ X.
Letting y = x in (2.5), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (2.6)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [15]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥4g (x2
)
− 4h

(
x

2

)∥∥∥∥ ≤ 4εϕ

(
x

2
,
x

2

)
≤ 4ε

L

4
ϕ (x, x) = Lεϕ (x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.6) that∥∥∥∥f(x)− 4f

(
x

2

)∥∥∥∥ ≤ ϕ(x2 , x2
)
≤ L

4
ϕ(x, x)

for all x ∈ X. So d(f, Jf) ≤ L
4 .

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q

(
x

2

)
(2.7)
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for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.7) such that there exists a µ ∈ (0,∞)
satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, x)

for all x ∈ X;
(2) d(J lf,Q)→ 0 as l→∞. This implies the equality

lim
l→∞

4nf

(
x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x) (2.8)

for all x ∈ X.
It follows from (2.3) and (2.5) that

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖

= lim
m→∞

4m
∥∥∥∥f (x+ y

2m

)
+ f

(
x− y
2m

)
− 2f

(
x

2m

)
− 2f

(
y

2m

)∥∥∥∥
≤ lim

m→∞
4m|ρ1|

∥∥∥∥2f (x+ y

2m+1

)
+ 2f

(
x− y
2m+1

)
− f

(
x

2m

)
− f

(
y

2m

)∥∥∥∥
+ lim
m→∞

4m|ρ2|
∥∥∥∥4f (x+ y

2m+1

)
+ f

(
x− y
2m

)
− 2f

(
x

2m

)
− 2f

(
y

2m

)∥∥∥∥+ lim
m→∞

4mϕ

(
x

2m
,
y

2m

)
=

∥∥∥∥ρ1 (2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. So

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖

≤
∥∥∥∥ρ1 (2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping Q : X → Y is quadratic.

It follows from Lemma 1.2 and (2.8) that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

‖f(xij)−Q(xij)‖ ≤
n∑

i,j=1

L

4(1− L)
ϕ (xij , xij)

for all x = [xij ] ∈Mn(X). �
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Corollary 2.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖fn([xij + yij ]) + fn([xij − yij ])− 2fn([xij ])− 2fn([yij ])‖n (2.9)

≤
∥∥∥∥ρ1 (2fn

(
[xij + yij ]

2

)
+ 2fn

(
[xij − yij ]

2

)
− fn([xij ])− fn([yij ])

)∥∥∥∥
n

+

∥∥∥∥ρ2 (4fn

(
[xij + yij ]

2

)
+ fn ([xij − yij ])− 2fn([xij ])− 2fn([yij ])

)∥∥∥∥
n

+
n∑

i,j=1

θ(‖xij‖r + ‖yij‖r)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y
such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

2r − 4
‖xij‖r

for all x = [xij ] ∈Mn(X).

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 22−r, we obtain the desired result. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ

(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists a
unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

1

4(1− L)
ϕ (xij , xij)

for all x = [xij ] ∈Mn(X).

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (2.5) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (2.7). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

4− 2r
‖xij‖r

for all x = [xij ] ∈Mn(X).

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 2r−2, we obtain the desired result. �
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Remark 2.6. If ρ is a real number such that |ρ1|2 + |ρ2| < 1 and Y is a real matrix Banach algebra,
then all the assertions in this section remain valid.

3. Quadratic (ρ1, ρ2)-functional inequality (0.2) in matrix normed spaces

Throughout this section, assume that ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|2 +
2|ρ2| < 1.

In this section, we solve and investigate the quadratic (ρ1, ρ2)-functional inequality (0.2) in
matrix Banach spaces.

Lemma 3.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (3.1)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Letting y = x in (3.1), we get ‖f(2x) − 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X.
Thus

f

(
x

2

)
=

1

4
f(x) (3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖

=

∥∥∥∥ρ12 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥
+ ‖2ρ2 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

=

( |ρ1|
2

+ 2|ρ2|
)
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

for all x, y ∈ X. Since |ρ1|2 + 2|ρ2| < 1, f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X. �

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-
functional inequality (0.2) in matrix Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2

)
≤ L

4
ϕ (x, y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖fn([xij + yij ]) + fn([xij − yij ])− 2fn([xij ])− 2fn([yij ])‖n (3.3)

≤
∥∥∥∥ρ1 (2fn

(
[xij + yij ]

2

)
+ 2fn

(
[xij − yij ]

2

)
− fn([xij ])− fn([yij ])

)∥∥∥∥
n

+ ‖ρ2 (2fn ([xij + yij ]) + 2fn ([xij − yij ])− fn(2[xij ])− fn(2[yij ]))‖n +
n∑

i,j=1

ϕ(xij , yij)
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for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y
such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

L

4(1− L)
ϕ (xij , xij)

for all x = [xij ] ∈Mn(X).

Proof. Putting n = 1 in (3.3), we get

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (3.4)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖+ ϕ(x, y)

for all x, y ∈ X.
Letting y = x in (3.4), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (3.5)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖fn([xij + yij ]) + fn([xij − yij ])− 2fn([xij ])− 2fn([yij ])‖n (3.6)

≤
∥∥∥∥ρ1 (2fn

(
[xij + yij ]

2

)
+ 2fn

(
[xij − yij ]

2

)
− fn([xij ])− fn([yij ])

)∥∥∥∥
n

+ ‖ρ2 (2fn ([xij + yij ]) + 2fn ([xij − yij ])− fn(2[xij ])− fn(2[yij ]))‖n +
n∑

i,j=1

θ(‖xij‖r + ‖yij‖r)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y
such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

2r − 4
‖xij‖rn

for all x = [xij ] ∈Mn(X).

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 22−r, we obtain the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ

(
x

2
,
y

2

)
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for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then there exists a
unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

1

4(1− L)
ϕ (xij , xij)

for all x = [xij ] ∈Mn(X).

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (3.5) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (3.6). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

4− 2r
‖xij‖rn

for all x = [xij ] ∈Mn(X).

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 2r−2, we obtain the desired result. �

Remark 3.6. If ρ is a real number such that |ρ1|2 + 2|ρ2| < 1 and Y is a real Banach space, then
all the assertions in this section remain valid.
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