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SOME COMPANIONS OF QUASI GRÜSS TYPE INEQUALITIES FOR COMPLEX

FUNCTIONS DEFINED ON UNIT CIRCLE

JIAN ZHU AND QIAOLING XUE

Abstract. Several companions of quasi Grüss type inequalities for the Riemann-Stieltjes integral of
continuous complex valued integrands defined on the complex unit circle C(0, 1) are given. Our results

in special cases recapture some known results, and moreover, give a smaller estimator than that of these
known results.

1. Introduction

Riemann-Stieltjes integral

∫ b

a

f(t)du(t), where f is called the integrand and u the integrator, is an

important concept in Mathematics. One can approximate the Riemann-Stieltjes integral

∫ b

a

f(t)du(t)

with the following simpler quantity (see [13, 14]):

(1.1)
u(b)− u(a)

b− a

∫ b

a

f(t)dt.

In order to provide a priory sharp bounds for the approximation error, Dragonir and Fedotov established
the following functional in [13]:

(1.2) D(f ;u) :=

∫ b

a

f(t)du(t)− u(b)− u(a)

b− a

∫ b

a

f(t)dt

and proved the following inequality of Grüss type for Riemann-Stieltjes integral

|D(f ;u)| ≤ 1

2
K(b− a)

b∨
a

(u),

where u is of bounded variation on [a, b] and f is Lipschitzian with the constant K > 0, the constant
1
2 is sharp in the sense that it cannot be replaced by a smaller quantity. In [1], the author studied a
companion functional of (1.2). Introducing the functional

(1.3) GS(f ;u) :=

∫ a+b
2

a

f(x) + f(a+ b− x)

2
du(x)−

u
(
a+b
2

)
− u(a)

b− a

∫ b

a

f(t)dt,

provided that the Stieltjes integral

∫ a+b
2

a

f(x) + f(a+ b− x)

2
du(x) and the Riemann integral

∫ b

a

f(t)dt

exist, the author proved several bounds for GS(f ;u). More specifically, the integrand f is assumed to
be of r − H-Hölder’s type and the integrator u is of bounded variation, Lipschitzian and monotonic,
respectively.

For continuous functions f : C(0, 1) → C, where C(0, 1) is the unit circle from C centered in O and
u : [a, b] ⊆ [0, 2π] → C a function of bounded variation on [a, b]. In [15], Dragomir developed some
quasi Grüss type inequalities for the Riemann-Stieltjes integral of continuous complex valued integrands
defined on the complex unit circle C(0, 1).

2010 Mathematics Subject Classification. 26D15.
Key words and phrases. Grüss type inequalities, Riemann-Stieltjes integral, unit circle.
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Theorem 1.1. Assume that f : C(0, 1) → C satisfies the following Hölder’s type condition

(1.4) |f (a)− f (b)| ≤ H |a− b|r

for any a, b ∈ C(0, 1), where H > 0 and r ∈ (0, 1] are given. If [a, b] ⊆ [0, 2π] and the function
u : [a, b] → C is a function of bounded variation on [a, b], then∣∣∣∣∣

∫ b

a

f
(
eit
)
du(t)− u(b)− u(a)

b− a

∫ b

a

f
(
eit
)
dt

∣∣∣∣∣ ≤ 2rH

b− a
max
t∈[a,b]

Br(a, b; t)
b∨
a

(u)(1.5)

for any t ∈ [a, b], where

Br(a, b; t) :=

∫ t

a

∣∣∣∣sinr ( t− s

2

)∣∣∣∣ ds+ ∫ b

t

∣∣∣∣sinr (s− t

2

)∣∣∣∣ ds.
For other inequalities for the Riemann-Stieltjes integral see [2]-[12], [16]-[26] and the references therein.
Motivated by the above facts, we consider in the present paper the problem of approximating the com-

panions of Riemann-Stieltjes integral

∫ a+b
2

a

f(eit) + f(ei(a+b−t))

2
du(t). We denote the following functional

of companions of quasi Grüss type:

(1.6) Dc(f ;u, a, b) :=

∫ a+b
2

a

f(eit) + f(ei(a+b−t))

2
du(t)−

u
(
a+b
2

)
− u(a)

b− a

∫ b

a

f(eit)dt.

In this paper we establish some bounds for the magnitude of Dc(f ;u, a, b) when the integrand f :
C(0, 1) → C satisfies some Hölder’s type conditions on the circle C(0, 1) while the integrator u is of
bounded variation, Lipschitzian and monotonic, respectively.

2. The case of bounded variation integrators

Theorem 2.1. Let f : C(0, 1) → C satisfy an H-r-Hölder’s type condition on the circle C(0, 1), where
H > 0 and r ∈ (0, 1] are given. If u : [a, b] ⊆ [0, 2π] → C is a function of bounded variation on [a, b], then

|Dc(f ;u, a, b)| ≤
2rH

b− a
max

t∈[a, a+b
2 ]
Br(a, b; t)

a+b
2∨
a

(u)(2.1)

≤ H

r + 1
(b− a)r

a+b
2∨
a

(u),

where

Br(a, b; t) :=

∫ t

a

sinr
(
t− s

2

)
ds+

∫ b

t

sinr
(
s− t

2

)
ds(2.2)

≤ 1

2r
(t− a)r+1 + (b− t)r+1

r + 1

for any t ∈ [a, a+b
2 ].

In particular, if f is Lipschitzian with the constant L > 0, and [a, b] ⊂ [0, 2π] with b− a ̸= 2π, then
we have the simpler inequality

(2.3) |Dc(f ;u, a, b)| ≤
8L

b− a
sin2

(
b− a

4

) a+b
2∨
a

(u) ≤ 1

2
L(b− a)

a+b
2∨
a

(u).

If a = 0 and b = 2π and f is Lipschitzian with the constant L > 0, then

(2.4) |Dc(f ;u, 0, 2π)| ≤
4L

π

π∨
0

(u).
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Proof. We have

Dc(f ;u, a, b) =

∫ a+b
2

a

[
f(eit) + f(ei(a+b−t))

2
− 1

b− a

∫ b

a

f(eis)ds

]
du(t)(2.5)

=
1

b− a

∫ a+b
2

a

(∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

)
du(t).

It is known that if p : [c, d] → C is a continuous function and v : [c, d] → C is of bounded variation, then

the Riemann-Stieltjes integral

∫ d

c

p(t)dv(t) exists and the following inequality holds

(2.6)

∣∣∣∣∣
∫ d

c

p(t)dv(t)

∣∣∣∣∣ ≤ max
t∈[c,d]

|p(t)|
d∨
c

(v).

Utilising this property and (2.5), we have

|Dc(f ;u, a, b)| =
1

b− a

∣∣∣∣∣
∫ a+b

2

a

(∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

)
du(t)

∣∣∣∣∣(2.7)

≤ 1

b− a
max

t∈[a, a+b
2 ]

∣∣∣∣∣
∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣
a+b
2∨
a

(u).

Utilising the properties of the Riemann integral and the fact that f is of H-r-Hölder’s type on the circle
C(0, 1) we have ∣∣∣∣∣

∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣(2.8)

≤
∫ b

a

∣∣∣∣f(eit)− f(eis)

2
+
f(ei(a+b−t) − f(eis)

2

∣∣∣∣ ds
≤1

2

∫ b

a

∣∣f(eit)− f(eis)
∣∣ ds+ 1

2

∫ b

a

∣∣∣f(ei(a+b−t) − f(eis)
∣∣∣ ds

≤H
2

(∫ b

a

∣∣eis − eit
∣∣r ds+ ∫ b

a

∣∣∣eis − ei(a+b−t)
∣∣∣r ds) .

From [15], we have

(2.9)
∣∣eis − eit

∣∣r = 2r
∣∣∣∣sin(s− t

2

)∣∣∣∣r
for any s, t ∈ R. Therefore∫ b

a

∣∣eit − eis
∣∣r ds+ ∫ b

a

∣∣∣ei(a+b−t) − eis
∣∣∣r ds

=2r

(∫ b

a

∣∣∣∣sin(s− t

2

)∣∣∣∣r ds+ ∫ b

a

∣∣∣∣sin(s+ t− a− b

2
)

∣∣∣∣r ds
)

=2r

(∫ t

a

sinr
(
t− s

2

)
ds+

∫ b

t

sinr
(
s− t

2

)
ds

+

∫ a+b−t

a

sinr
(
a+ b− t− s

2

)
ds+

∫ b

a+b−t

sinr
(
s+ t− a− b

2

)
ds

)
.
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Utilising the variable substitution u = a+ b− s, we have∫ a+b−t

a

sinr
(
a+ b− t− s

2

)
ds =

∫ b

t

sinr
(
s− t

2

)
ds

and ∫ b

a+b−t

sinr
(
s+ t− a− b

2

)
ds =

∫ t

a

sinr
(
t− s

2

)
ds.

So

(2.10)

∫ b

a

∣∣eit − eis
∣∣r ds+ ∫ b

a

∣∣∣ei(a+b−t) − eis
∣∣∣r ds = 2r+1

[∫ t

a

sinr
(
t− s

2

)
ds+

∫ b

t

sinr
(
s− t

2

)
ds

]
for any t ∈ [a, a+b

2 ]. Making use of (2.8) and (2.10), we have

max
t∈[a, a+b

2 ]

∣∣∣∣∣
∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣ ≤ 2rH max
t∈[a, a+b

2 ]
Br(a, b; t)

and the first inequality in (2.1) is proved.
Utilising the elementary inequality |sin(x)| ≤ |x|, x ∈ R, we have

(2.11) Br(a, b; t) ≤
∫ t

a

(
t− s

2

)r

ds+

∫ b

t

(
s− t

2

)r

ds =
1

2r
(t− a)r+1 + (b− t)r+1

r + 1

for any t ∈ [a, a+b
2 ], and the inequality (2.2) is proved.

If we consider the auxiliary function φ : [a, a+b
2 ] → R,

φ(t) = (t− a)r+1 + (b− t)r+1, r ∈ (0, 1],

then

φ′(t) = (r + 1)[(t− a)r − (b− t)r]

and

φ′′(t) = (r + 1)r[(t− a)r−1 + (b− t)r−1].

We have φ′(t) = 0 iff t = a+b
2 and φ′(t) < 0 for t ∈ (a, a+b

2 ). We also have φ′′(t) > 0 for any t ∈ (a, a+b
2 ),

which shows that φ is strictly decreasing on (a, a+b
2 ). In addition, we have

min
t∈[a, a+b

2 ]
φ(t) = φ

(
a+ b

2

)
=

(b− a)r+1

2r

and

max
t∈[a, a+b

2 ]
φ(t) = φ(a) = (b− a)r+1.

Taking the maximum over t ∈ [a, a+b
2 ] in (2.11) we deduce the second inequality in (2.1).

For r = 1 we have

B(a, b; t) :=

∫ t

a

sin

(
t− s

2

)
ds+

∫ b

t

sin

(
s− t

2

)
ds = 4

[
sin2(

t− a

4
) + sin2(

b− t

4
)

]
for any t ∈ [a, a+b

2 ].
Now, if we take the derivative in the first equality, we have

B′(a, b; t) = sin

(
t− a

2

)
− sin

(
b− t

2

)
= 2 sin

(
t− a+b

2

2

)
cos

(
b− a

4

)
,

for [a, b] ⊂ [0, 2π] and b− a ̸= 2π.
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We observe that B′(a, b; t) = 0 iff t = a+b
2 , B′(a, b; t) < 0 for t ∈ (a, a+b

2 ). The second derivation of
B(a, b; t) is given by

B′′(a, b; t) = cos

(
t− a+b

2

2

)
cos

(
b− a

4

)
and we observe that B′′(a, b; t) > 0 for t ∈ (a, a+b

2 ).

Therefore the function B(a, b; t) is strictly decreasing on (a, a+b
2 ). It is also a strictly convex function

on (a, a+b
2 ). We have

min
t∈[a, a+b

2 ]
B(a, b; t) = B

(
a, b;

a+ b

2

)
= 8 sin2

(
b− a

8

)
and

max
t∈[a, a+b

2 ]
B(a, b; t) = B(a, b; a) = 4 sin2

(
b− a

4

)
.

This proves the bound (2.3).
If a = 0 and b = 2π, then

B(0, 2π; t) := 4

[
sin2

(
t

4

)
+ sin2

(
2π − t

4

)]
= 4

and by (2.1) we get (2.4).
The proof is complete. �

3. The case of Lipschitzian integrators

The following result also holds.

Theorem 3.1. Let f : C(0, 1) → C satisfy an H-r-Hölder’s type condition on the circle C(0, 1), where
H > 0 and r ∈ (0, 1] are given. If u : [a, b] ⊆ [0, 2π] → C is a function of Lipschitz type with the constant
K > 0 on [a, b], then

(3.1) |Dc(f ;u, a, b)| ≤
2rHK

b− a
Cr(a, b) ≤

HK(b− a)r+1

(r + 1)(r + 2)
,

where

Cr(a, b) :=

∫ a+b
2

a

∫ t

a

sinr
(
t− s

2

)
dsdt+

∫ a+b
2

a

∫ b

t

sinr
(
s− t

2

)
dsdt(3.2)

≤ (b− a)r+2

2r(r + 1)(r + 2)
.

In particular, if f is Lipschitzian with the constant L > 0, then we have the simpler inequality

|Dc(f ;u, a, b)| ≤
8LK

b− a

[
b− a

2
− sin

(
b− a

2

)]
(3.3)

≤LK(b− a)2

6
.

Proof. It is known that if p : [c, d] → C is a Riemann integrable function and v : [c, d] → C is Lipschitzian

with the constant M > 0, then the Riemann-Stieltjes integral

∫ d

c

p(t)dv(t) exists and the following

inequality holds

(3.4)

∣∣∣∣∣
∫ d

c

p(t)dv(t)

∣∣∣∣∣ ≤M

∫ d

c

|p(t)| d(t).
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Utilising the equality (2.5) and this property, we have

|Dc(f ;u, a, b)| =
1

b− a

∣∣∣∣∣
∫ a+b

2

a

(∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)]ds

)
du(t)

∣∣∣∣∣(3.5)

≤ K

b− a

∫ a+b
2

a

∣∣∣∣∣
∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣ dt.
From (2.8) and (2.10) we have∣∣∣∣∣

∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣(3.6)

≤2rH

[∫ t

a

sinr
(
t− s

2

)
ds+

∫ b

t

sinr
(
s− t

2

)
ds

]
,

and by (3.5) we deduce the first part of (3.1).
By (2.11) we have

Cr(a, b) ≤
∫ a+b

2

a

[∫ t

a

(
t− s

2

)r

ds+

∫ b

t

(
s− t

2

)r

ds

]
dt

=
1

2r

∫ a+b
2

a

(t− a)r+1 + (b− t)r+1

r + 1
dt =

(b− a)r+2

2r(r + 1)(r + 2)
,

which proves the inequality (3.2).
For r = 1 we have

C1(a, b) :=

∫ a+b
2

a

[∫ t

a

sin

(
t− s

2

)
ds+

∫ b

t

sin

(
s− t

2

)
ds

]
dt

=

∫ a+b
2

a

[
4− 2 cos

(
t− a

a

)
− 2 cos

(
b− t

a

)]
dt = 4

[
b− a

2
− sin

(
b− a

2

)]
,

which by (3.1) produces the desired inequality (3.3). �

Remark 1. For the case a = 0 and b = 2π the inequality (3.3) is deduced to the simple inequality

(3.7) |Dc(f ;u, 0, 2π)| ≤ 4Lk.

4. The case of monotonic integrators

Theorem 4.1. Let f : C(0, 1) → C satisfy an H-r-Hölder’s type condition on the circle C(0, 1), where
H > 0 and r ∈ (0, 1] are given. If u : [a, b] ⊆ [0, 2π] → C is a monotonically nondecreasing function on
[a, b], then

|Dc(f ;u, a, b)| ≤
2rH

b− a
Dr(a, b) ≤

H

(r + 1)(b− a)

∫ a+b
2

a

[
(t− a)r+1 + (b− t)r+1

]
du(t)(4.1)

≤ H

r + 1
(b− a)r

[
u

(
a+ b

2

)
− u(a)

]
,

where

(4.2) Dr(a, b) :=

∫ a+b
2

a

Br(a, b; t)du(t)

and Br(a, b; t) is given by (2.2).
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In particular, if f is Lipschitzian with the constant L > 0, then we have the simpler inequality

|Dc(f ;u, a, b)| ≤
8L

b− a

∫ a+b
2

a

[
sin2

(
t− a

4

)
+ sin2

(
b− t

4

)]
du(t)(4.3)

≤2L(b− a)

[
u

(
a+ b

2

)
− u(a)

]
.

Proof. It is well known that if p : [c, d] → C is a continuous function and v : [c, d] → R is monotonically

nondecreasing on [c, d], then the Riemann-Stieltjes integral

∫ d

c

p(t)dv(t) exists and the following inequality

holds

(4.4)

∣∣∣∣∣
∫ d

c

p(t)dv(t)

∣∣∣∣∣ ≤
∫ d

c

|p(t)| dv(t).

Utilising this property and the identities (2.5) and (2.10) we have

|Dc(f ;u, a, b)| =
1

b− a

∣∣∣∣∣
∫ a+b

2

a

(∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

)
du(t)

∣∣∣∣∣(4.5)

≤ 1

b− a

∫ a+b
2

a

∣∣∣∣∣
∫ b

a

[
f(eit) + f(ei(a+b−t))

2
− f(eis)

]
ds

∣∣∣∣∣ du(t)
≤ 2rH

b− a

∫ a+b
2

a

Br(a, b; t)du(t) =
2rH

b− a
Dr(a, b)

≤ H

b− a

∫ a+b
2

a

(t− a)r+1 + (b− t)r+1

r + 1
du(t)

and the first part of the inequality (4.1) is proved.
Since max

t∈[a, a+b
2 ]

[(t− a)r+1 + (b− t)r+1] = (b− a)r+1, the last part of (4.1) is also proved.

For r = 1 we have

D1(a, b) :=

∫ a+b
2

a

B1(a, b; t)du(t) = 4

∫ a+b
2

a

[
sin2

(
t− a

4

)
+ sin2

(
b− t

4

)]
du(t),

and the inequality (4.3) is obtained. �

Remark 2. For the case a = 0, b = 2π the inequality (4.3) can be stated as

(4.6) |Dc(f ;u, 0, 2π)| ≤
4L

π
[u(π)− u(0)].

Indeed, by (4.3) we have

|Dc(f ;u, 0, 2π)| ≤
8L

2π

∫ π

0

[
sin2

(
t

4

)
+ sin2

(
2π − t

4

)]
du(t)

=
4L

π

∫ π

0

du(t) =
4L

π
[u(π)− u(0)].
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A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC

(ρ1, ρ2)-FUNCTIONAL INEQUALITIES

SUNGSIK YUN

Abstract. In this paper, we introduce and solve the following quadratic (ρ1, ρ2)-functional
inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.1)

≤
∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥
+

∥∥∥ρ2 (4f
(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥ ,
where ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|

2
+ |ρ2| < 1, and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.2)

≤
∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖ ,

where ρ1 and ρ2 are fixed nonzero complex numbers with |ρ1|
2

+ 2|ρ2| < 1.
Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-

functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [29] con-
cerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [12] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [2] for additive mappings and by Rassias [21] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Găvruta [11] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach. The stability of quadratic functional equation was
proved by Skof [28] for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach
space. Cholewa [8] noticed that the theorem of Skof is still true if the relevant domain E1 is
replaced by an Abelian group.

Park [16, 17] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability
of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.
The stability problems of various functional equations have been extensively investigated by a
number of authors (see [1, 3, 7, 10, 15, 18, 19, 22, 23, 24, 25, 26, 27, 30]).

We recall a fundamental result in fixed point theory.

Theorem 1.1. [4, 9] Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X,
either

d(Jnx, Jn+1x) =∞

2010 Mathematics Subject Classification. Primary 39B62, 47H10, 39B52.
Key words and phrases. Hyers-Ulam stability; quadratic (ρ1, ρ2)-functional inequality; fixed point; Banach

space.
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for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [13] were the first to provide applications of stability theory of
functional equations for the proof of new fixed point theorems with applications. By using fixed
point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [5, 6, 20]).

In Section 2, we solve the quadratic (ρ1, ρ2)-functional inequality (0.1) and prove the Hyers-
Ulam stability of the quadratic (ρ1, ρ2)-functional inequality (0.1) in Banach spaces by using
the fixed point method.

In Section 3, we solve the quadratic (ρ1, ρ2)-functional inequality (0.2) and prove the Hyers-
Ulam stability of the quadratic (ρ1, ρ2)-functional inequality (0.2) in Banach spaces by using
the fixed point method.

Throughout this paper, let X be a real or complex normed space with norm ‖ · ‖ and Y a
complex Banach space with norm ‖ · ‖.

2. Quadratic (ρ1, ρ2)-functional inequality (0.1)

Throughout this section, assume that ρ1 and ρ2 are fixed nonzero complex numbers with
|ρ1|
2 + |ρ2| < 1.

In this section, we solve and investigate the quadratic (ρ1, ρ2)-functional inequality (0.1) in
complex Banach spaces.

Lemma 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.1)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
=

∥∥∥∥ρ12 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥
+ ‖ρ2 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

=

( |ρ1|
2

+ |ρ2|
)
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖
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for all x, y ∈ X. Since |ρ1|2 + |ρ2| < 1, f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X. Thus
f is quadratic. �

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-
functional inequality (2.1) in complex Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2

)
≤ L

4
ϕ (x, y) (2.3)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.4)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥ + ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. Letting y = x in (2.4), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (2.5)

for all x ∈ X.
Consider the set S := {h : X → Y, h(0) = 0} and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [14]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then ‖g(x) − h(x)‖ ≤ εϕ (x, x) for all x ∈ X.
Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥4g

(
x

2

)
− 4h

(
x

2

)∥∥∥∥ ≤ 4εϕ

(
x

2
,
x

2

)
≤ 4ε

L

4
ϕ (x, x) = Lεϕ (x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (2.5) that∥∥∥∥f(x)− 4f

(
x

2

)∥∥∥∥ ≤ ϕ(
x

2
,
x

2

)
≤ L

4
ϕ(x, x)

for all x ∈ X. So d(f, Jf) ≤ L
4 .

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q

(
x

2

)
(2.6)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
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This implies that Q is a unique mapping satisfying (2.6) such that there exists a µ ∈ (0,∞)
satisfying ‖f(x)−Q(x)‖ ≤ µϕ (x, x) for all x ∈ X;

(2) d(J lf,Q)→ 0 as l→∞. This implies the equality liml→∞ 4nf
(
x
2n

)
= Q(x) for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x)

for all x ∈ X.
It follows from (2.3) and (2.4) that

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖

= lim
n→∞

4n
∥∥∥∥f (

x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)∥∥∥∥
≤ lim

n→∞
4n|ρ1|

∥∥∥∥2f

(
x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− f

(
x

2n

)
− f

(
y

2n

)∥∥∥∥
+ lim
n→∞

4n|ρ2|
∥∥∥∥4f

(
x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)∥∥∥∥ + lim
n→∞

4nϕ

(
x

2n
,
y

2n

)
=

∥∥∥∥ρ1 (2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. So

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖

≤
∥∥∥∥ρ1 (2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping Q : X → Y is quadratic. �

Corollary 2.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.7)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+

∥∥∥∥ρ2 (4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥ + θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 22−r, we obtain the desired result. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ

(
x

2
,
y

2

)
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for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.4). Then there exists
a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (2.5) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (2.7). Then there exists a unique quadratic mapping Q : X → Y such
that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 2r−2, we obtain the desired result. �

Remark 2.6. If ρ is a real number such that |ρ1|2 + |ρ2| < 1 and Y is a real Banach space, then
all the assertions in this section remain valid.

3. Quadratic (ρ1, ρ2)-functional inequality (0.2)

Throughout this section, assume that ρ1 and ρ2 are fixed nonzero complex numbers with
|ρ1|
2 + 2|ρ2| < 1.

In this section, we solve and investigate the quadratic (ρ1, ρ2)-functional inequality (0.2) in
complex Banach spaces.

Lemma 3.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (3.1)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting y = x in (3.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (3.2)

for all x ∈ X.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

593 SUNGSIK YUN 589-596



S. YUN

It follows from (3.1) and (3.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖

=

∥∥∥∥ρ12 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))

∥∥∥∥
+ ‖2ρ2 (f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

=

( |ρ1|
2

+ 2|ρ2|
)
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

for all x, y ∈ X. Since |ρ1|2 + 2|ρ2| < 1, f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X.
Thus f is quadratic. �

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-
functional inequality (3.1) in complex Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2

)
≤ L

4
ϕ (x, y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (3.3)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖+ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. Letting y = x in (3.3), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (3.4)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g

(
x

2

)
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (3.5)

≤
∥∥∥∥ρ1 (2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
+ ‖ρ2 (2f (x+ y) + 2f (x− y)− f(2x)− f(2y))‖+ θ(‖x‖r + ‖y‖r)
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for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 22−r, we obtain the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ

(
x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then there exists
a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (3.4) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 3.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (3.5). Then there exists a unique quadratic mapping Q : X → Y such
that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
Choosing L = 2r−2, we obtain the desired result. �

Remark 3.6. If ρ is a real number such that |ρ1|2 + 2|ρ2| < 1 and Y is a real Banach space, then
all the assertions in this section remain valid.
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A COMPARISON BETWEEN CAPUTO AND CANAVATI

FRACTIONAL DERIVATIVES

AMMAR KHANFER

Abstract. We investigate some properties of Caputo and Canavati fractional
derivatives, and study some connections and comparisons between them. It
turns out that the Canavati-type de�nition works more e�ciently than the
Caputo-type, and overcomes all the pitfalls of Caputo-type.

1. Introduction

The purpose of this paper is to make a comparison study between two of the
important fractional derivatives, namely the Caputo derivative and the Canavati
derivative. The Caputo-type has been proposed by Caputo and has been used in a
wide spectrum of research for a long time and became popular among researchers
due to some of its nice properties. The Canavati type has been proposed by Cana-
vati [6], and has appeared in the work of Anastassiou [1,2,3] and in the work of M.
Andric et al [4,5], and others.

2. Background

De�nition 1. Riemann - Liouville derivative: For n−1 ≤ α < n, the αth derivative
of f is de�ned as

Dαf(x) =
1

Γ(n− α)
· d

n

dxn

xˆ

a

f(t)

(x− t)α−n+1
dt,

where Γ is the gamma function.

For simplicity, throughout this paper we will consider a = 0. The major draw-
backs of the R-L derivative are summarized into the following: 1. Dα(1) = xα

Γ(1−α) ̸=
0, i.e. D1/21 ̸= 0 and D3/21 ̸= 0. 2. Taking the Laplace transform of the derivative

gives L{Dαf} = SαF (s)−
n∑

k=1

sn−k[Dα−n+k−1f(t)](0). So the initial conditions ac-

company the fractional di�erential equations of R-L type are usually expressed in
terms of fractional derivatives, which have no obvious physical interpretation.

De�nition 2. Caputo derivative: For n − 1 ≤ α < n, the αth derivative of f is
de�ned as

CDαf(x) =
1

Γ(n− α)

xˆ

0

f (n)(t)

(x− t)α−n+1
dt.

Key words and phrases. fractional derivative, Canavati-type de�nition, Caputo-type de�nition,
fractional di�erential equations.
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One of the advantages of this derivative, is that taking the Laplace transform

gives: L{CDαf} = SαF (s) −
n∑

k=1

sα−kf (k−1)(0), i.e., the initial conditions are ex-

pressed in terms of derivatives of integer order, which is fortunate to the physicists
and engineers in their applications. However, the following are the major issues
with the Caputo derivative:

(1) The Caputo de�nition �nds the αth derivative in terms of the nth derivative
for α < n, i.e. we need to obtain the higher order derivatives in order to
obtain the lower derivatives, which is the backward direction opposite to the
natural process of di�erentiation. This also presumes the n- di�erentiability
of f , so if n − 1 < α < n then f needs to be nth di�erentiable in order to
be αth di�erentiable.

(2) It's not always correct that CD0f(x) = f(x), unless f(0) = 0. For example,
CD0(x2+1) = x2. This is due to the fact that the Caputo derivative obeys
the formula lim

α→n−1

CDαf = f (n−1)(t)−f (n−1)(0) for any n−1 < α < n ∈ N.
Nevertheless, subtracting from the function the value of the function at the
lower terminal means that the function can be recovered with a di�erence
by a constant term.

(3) CDα1 = 0 for all α ≥ 0. Although this may be fortunate when α ≥ 1, it's
not the case for α < 1.

De�nition 3. Canavati derivative. Let n ≥ 1 be an integer number, and n− 1 ≤
α < n. Then the αth derivative of f(x) is given by

(2.1) ⋆Dαf(x) =
1

Γ(n− α)

d

dx

xˆ

0

f (n−1)(t)

(x− t)α−n+1
dt,

where f (n−1) is the (n − 1)th derivative of f. In the next section we will see that
this de�nition overcomes all the aforementioned issues.

3. Properties

We state some results that discuss properties and relations between the three
types of derivatives.

Proposition 4. Assume that f has su�cient regularity on [a, b]. Then

(1) ⋆Dα1 = 0 for all α ≥ 1.
(2) ⋆Dα(f ′(x)) = d

dx (
CDαf(x)).

Proof. Immediate consequence from the de�nitions of derivatives. �

If both Dαf and CDαf exist, then is well known in the literature that

(3.1) CDαf(t) = Dαf(t)−
n−1∑
k=0

tk−α

Γ(k + 1− α)
f (k)(0),

for n− 1 ≤ α < n and t > 0. The proof can be found in [8] and [10]. Formula (4.1)
shows that the R-L derivative and Caputo derivative are identical if the derivatives
of the function up to (n−1)th derivative are vanished at zero or whatever the lower
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terminal of the de�nition is. The next result gives a simple su�cient condition for
the existence of Canavati derivative and it's connection with the Caputo derivative.

Theorem 5. Let n−1 ≤ α < n and f ∈ An[0, b] with f (n−1)(0) exists. Then ⋆Dαf
and CDαf exist a.e., and

(3.2) ⋆Dαf(x) =C Dαf(x) +
1

Γ(n− α)
· f

(n−1)(0)

xα−n+1
.

Proof. Let Dαf(x) = 1
Γ(n−α)

d
dx

´ x
0

f(n−1)(t)
(x−t)α−n+1 dt. Since f

(n−1) is absolutely contin-

uous on [0, b], then

⋆Dαf =
1

Γ(n− α)

d

dx

xˆ

0

[f (n−1)(0) +

tˆ

0

f (n)(u)du](x− t)n−α−1dt

But this is just equal to

⋆Dαf =
1

Γ(n− α)

f (n−1)(0)

xα−n+1
+

1

Γ(n− α)

d

dx

xˆ

0

tˆ

0

f (n)(u)(x− t)n−α−1dudt.

Interchanging the order of integration using Fubini's theorem, this gives

⋆Dαf =
1

Γ(n− α)

f (n−1)(0)

xα−n+1
+

1

Γ(n− α)

d

dx

xˆ

0

xˆ

u

f (n)(u)(x− t)n−α−1dtdu.

=
1

Γ(n− α)

f (n−1)(0)

xα−n+1
+

1

Γ(n− α)

d

dx

xˆ

0

f (n)(u)
(x− u)n−α

n− α
dtdu.

We then use Leibniz integral formula in the integral or results from classical
measure theory, and this completes the proof. �

An immediate corollary which can be proved using (4.1) and (4.2) is the following.

Corollary 6. Let n− 1 ≤ α < n. Then

(3.3) ⋆Dαf(t) = Dαf(t)−
n−2∑
k=0

tk−α

Γ(k + 1− α)
f (k)(0).

Example 7. Let f(x) = x2 + x+ 1. Then f ′(x) = 2x+ 1. Consider the following
two cases: First, let α = 1/2, then n = 1. We calculate CD1/2f using each one

of the de�nitions, we get CD1/2f = 1
Γ(1/2)

x́

0

2t+1
(x−t)1/2

dt. Performing integration by

parts, gives 1√
π
·(2

√
x+ 8

3x
3/2). Similarly, KD1/2f = 1

Γ(1/2) ·
d
dx

x́

0

t2+t+1
(x−t)1/2

dt = D1/2f.

Performing integration by parts gives: 1√
π
.(2

√
x+ 8

3x
3/2+ 1√

x
) = D

1/2
C f+ 1√

πx
. Note

that the second term is in the form of 1
Γ(n−α) ·

f(n−1)(0)
xα−n+1 which is indeed the second

term in (3.2). Let α = 3/2. We calculate the αth derivative of f using all three
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de�nitions, we obtainDαf = 4
√
x

Γ(1/2)+
1

Γ(1/2)
√
x
+ x−3/2

Γ(−1/2) ,
KDαf = 4

√
x

Γ(1/2)+
1

Γ(1/2)
√
x
,

and CDαf = 4
√
x

Γ(1/2) . It's clear that all three derivatives satisfy (3.1) and (3.2).

Another property that needs to be discussed is the compatibility condition. The
condition reads: Dαf(x) → f (n)(x) as α → n for any α ≥ 0. If n = 0 then the
condition reduces to the identity condition: D0f(x) → f(x) as α ↓ 0. The property
is essential in the theory as it demonstrates that the fractional derivative is the
natural extension of the classical derivative.

Theorem 8. Let f be such that Dαf(x) exists, and n− 1 ≤ α < n. Then

(1) lim
α→n

CDαf(x) = f (n)(x), and lim
α→n−1

CDαf(x) = f (n−1)(x)− f (n−1)(0).

(2) lim
α→n

⋆Dαf(x) = f (n)(x), and lim
α→n−1

⋆Dαf(x) = f (n−1)(x).

Proof. For (1) see [7] or [8]. To prove (2), we perform integration by parts in the
de�nition of ⋆Dα to obtain

(3.4) ⋆Dαf(x) =
1

Γ(n− α+ 1)
[(n−α) · f (n−1)(0) · xn−α−1 +

d

dx

xˆ

0

f (n)(t)

(x− t)α−n
dt.

Take α→ n, we get

lim
α→n

⋆Dαf(x) =
d

dx
[f (n)(x)− f (n−1)(0)] = f (n)(x).

Also, take α→ n− 1 in (3.4) to get

⋆Dαf(x) = f (n−1)(0) +
d

dx

xˆ

0

(x− t)f (n)(t)dt.

Perform integration by parts in the integral in the right hand side of the equation,
then di�erentiate with respect to x gives the result. �

The theorem shows that the R-L and Canavati de�nitions works better than the
Caputo type in terms of backward compatibility.

De�nition 9. Let f be a function, and D be a derivative operator. If Drf = 0 for
some r ∈ R, then we say that Dr is an �f−annihilator �. If Dr0f = 0 and Drf ̸= 0
for every r < r0, then the number r0 is called: �the least order of f− annihilator �,
and Dr0 is called: �f−annihilator of least order �.

The following theorem discusses the least order of an annihilator.

Theorem 10. Let f ∈ Cn and n − 1 ≤ α < n. If f (n−1) ̸= 0, and f (n) = 0, then
⋆Dαf ̸= 0.

Proof. Suppose on the contrary that ⋆Dαf ≡ 0. Then

(3.5)

x̂

0

f (n−1)(t)

(x− t)α−n+1
dt = c
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for some constant c ∈ R. Performing integration by parts, and taking into account

that f (n)(t) ≡ 0, we obtain f(n−1)(0)xn−α

n−α = c, which is impossible unless f (n−1)(0) =

c = 0, but this implies from (3.5) that f (n−1) ≡ 0, contradicting the fact that
f (n−1) ̸= 0. �
Example 11. Let f(x) = 1. Then D1/21 =⋆ D1/21 = 1√

πx
, but CD1/21 = 0. Let

α = 1−δ, for some δ > 0. Then ⋆D1−δ1 = 1
Γ(δ) t

δ−1 = δ
Γ(δ+1) t

δ−1. Taking the limit as

δ ↓ 0, we obtain ⋆D11 = 0. So, the order 1 serves as the least order of f−annihilator.
Recall that CDα1 = 0, and ∗D3/21 =C D3/21 = 0, while D3/21 = −1

2
√
πx3/2 for the

R-L type.

Theorem 10 shows that in the ⋆D case, the least order of a function annihilator
cannot be noninteger, so it must be of integer order. This is not the case in the
Caputo type. Another result that supports this idea is the following:

Theorem 12. Let f ∈ Cn[a, b], f (n) be integrable, and ⋆Dαf(x) exists on [a, b] for
n− 1 ≤ α < n. Then ⋆Dαf(x)(0) = 0 if and only if f (n−1)(0) = 0.

Proof. Let ⋆Dαf(x)(0) = 0. Multiply both sides of (3.4) by xα−n+1 we obtain

0 =
f (n−1)(0)

Γ(n− α)
+

xα−n+1

Γ(n− α+ 1)

d

dx

xˆ

0

f (n)(t)

(x− t)α−n
dt.

Letting x → 0 gives f (n−1)(0) = 0. For the other direction, let f (n−1)(0) = 0.
Then substituting in (3.4) and taking x→ 0 gives the result. �

The corresponding result for the R-L type is that Dαf(x)(0) = 0 if and only
if f (k)(0) = 0 for k = 0, 1, · · · , n − 1 (See [11] for the details of the proof). This
explains why the derivative of a nonzero constant function is not zero in the R-L
type.

4. Applications to FDEs

The Mittag-Le�er function is de�ned to be Eα,β(t) =
∞∑
k=0

tk

Γ(αk+β) . The follow-

ing is well known in the literature (See for example [7], [8], [10], [11], or [12])

L−1{ sα−1

sα−λ} = Eα,1(λt
α), from which one can derive the following

(4.1) L−1{ sα−β

sα − λ
} = tβ−1Eα,β(λt

α).

Proposition 13. Let L{f(x); s} = F (s). Then

L{⋆Dαf} = SαF (s)−
n−1∑
k=1

sα−kf (k−1)(0).

Proof. Let g(x) =
x́

0

f (n−1)(t) · (x − t)n−α−1dt. Taking the Laplace transform of g

gives: L{g(x)} = L{f (n−1)(x)} · L{xn−α−1}. Applying the n−Laplacian transform

for nth derivative function, and the fact that L{tn−α−1} = Γ(n−α)
sn−α , we obtain

(4.2) L{g′(x)} = sL{g(x)} − g(0) = sαF (s)− sα−1f(0)− · · · sα−n+1f (n−2)(0).
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Performing the calculations, taking into account that g(0) = 0, we obtain the
result. �

It is worth mentioning the following two observations.

(1) To �nd a solution of a fractional initial value problem of order α between
n − 1 and n using the Laplace transform, we need n − 1 conditions to
perform the Canavati derivative while n conditions is required to perform
Caputo derivative. Let 1 < α < 2, then we obtain L{CDαf} = sαF (s) −
sα−1f(0)−sα−2f ′(0), and L{⋆Dαf} = sαF (s)−sα−1f(0). This shows that
the Laplace transform for both de�nitions coincide when f(0) = f ′(0) = 0.
Otherwise, we need two conditions for the Caputo and one condition for
Canavati de�nition. This gives two fundamental solutions for the Caputo
type and only one solution for Canavati type for the case 1 < α < 2. This is
due to the fact that ⋆Dα1 ̸= 0 and CDα1 = 0. This shows that we need less
conditions to employ the Canavati de�nition. In fact, we need no conditions
for the case 0 < α < 1.

(2) If n− 1 < α < n then according to Theorem 8 we can study convergence of
the Caputo solution in the case α→ n, not α→ n− 1. In case of Canavati
derivative, we can study convergence for α → n − 1 so that L{⋆Dαf} →
L{⋆Dn−1f}. The advantage of Canavati derivative comes from the fact
that we cannot study convergence of the Caputo solution when α→ 0.

For the sake of simplicity, we denote the solution to a fractional di�erential equation
by yf , the solution with respect to Caputo type by Cyf , and the solution with
respect to Canavati type by ⋆yf .

Example 14. Let D4/3y = 0, y(0) = 1. Applying the Laplace transform for the
Canavati de�nition, making use of (4.1), we obtain Y (s) = 1

s from which we get
⋆yf (t) = 1. To apply the Caputo derivative we need another initial condition, say

y′(0) = 1. Then y(t) = t−1/3

Γ(−1/3) + 1. In general, let Dαy = 0 for 1 < α < 2. Then
⋆yf (t) = 1 and Cyf (t) = t + 1. As shown above, Theorem 8 suggests that letting
α→ 1 won't lead to a convergence of Cyf (t) to the solution of the classical equation
y′ = 0. If ⋆Dαy = 0 for 0 < α < 1, then sαY = 0, which implies that ⋆yf (t) = 0.
For the Caputo type we need the condition y(0) = 1, then we have sαY −sα−1 = 0,
which implies that Cyf (t) = 1. The Canavati solution in the 0 < α < 1 case doesn't
require any initial conditions.

Example 15. Let Dαy = λy and y(0) = a for 0 < α < 1. Applying Laplace

transform for the Caputo type we have Y (s) = c sα−1

sα−λ . Thus we have Cyf (t) =

a.Eα,1(λt
α), where E is the Mittag-Le�er function. Taking α → 1 for the Caputo

case, we get Cyf → y where y is the solution to the classical equation y′ = λy.
Theorem 8 won't allow the convergence α→ 0. Now we apply the Laplace transform
for Canavati type to get ⋆yf (t) = 0. This shows that no function can be the αth

derivative of itself for any α < 1 in Canavati type. Let α→ 0, we get the algebraic
equation y = λy which has the solution y = 0 as well.

Example 16. Consider the fractional equation Dαy + y = xe−x for 1 < α < 2
with the zeroth initial conditions. Applying Laplace transform for the Canavati
type and then taking the Laplace inverse gives
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⋆yf (x) =
´ x
0
K(x − t)te−tdt, where K(x) = xα−1Eα,α(−xα), which is in full

agreement with the result with respect to the R-L derivative shown by [13]. Now
consider the nonhomogeneous problem, i.e. the same equation with y(0) = a and
y′(0) = b. We obtain ⋆yf (x) = a.Eα,1(−xα) +

´ x
0
K(x − t)te−tdt, where K(x) =

xα−1Eα,α(−xα). To study convergence, let α→ 1, then K(x) → e−x, which implies

that yf (x) → x2

2 e
−x+ae−x which is the solution to the classical di�erential equation

y′ + y = xe−x. Let α → 2 then we use both initial conditions to get ⋆yf (x) =
a.Eα,1(−xα) + bx.Eα,2(−xα) +

´ x
0
K(x− t)te−tdt,

and so K(x) → sinx, and yf (x) → a cosx+ b sinx+
´ x
0
te−t sin(x− t)dt, which

is the solution to the corresponding classical equation of order 2.
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Abstract

In this paper, some qualitative properties are discussed such as
the boundedness, the periodicity and the global stability of the positive

solutions of the nonlinear difference equation

ym+1 = Aym +
α1ym−1 + α2ym−2 + α3ym−3 + α4ym−4 + α5ym−5

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5
,

where the coefficients A,αi, βi ∈ (0,∞), i = 1, ..., 5, while the initial
conditions y−5,y−4,y−3,y−2, y−1, y0 are arbitrary positive real numbers.
Some numerical examples will be given to illustrate our results.

Keywords and Phrases: Difference equations, prime period two
solution, boundedness character, locally asymptotically stable, global
attractor, global stability, high orders.

AMS subject classifications:39A10,39A11,39A99,34C99.

1 Introduction

The study of difference equations is a diverse field that affects most
aspects of mathematics including both applied and pure. Every dynami-
cal system an+1 = f(an) determines a difference equation and vice versa.

1
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Recently, there has been a significant increase in the study of difference equa-
tion. One of the reasons for this is a necessity for some techniques which can
be used in investigating equations arising in mathematical models describ-
ing real life situations in population biology, economic, probability theory,
genetics and psychology [2,3,21,24]. Note that most of these equation often
show increasingly complex behavior such as the existence of a bounded.

In particular, there has been a huge development in studying of the
boundedness character, the global attractivity and the periodicity nature of
nonlinear difference equations. For example, in the articles [1, 6–9], closely
related global convergence results were obtained which can be applied to
nonlinear difference equations in proving that every solution of these equa-
tions converges to a period two solution. For other closely related results,
(see [10–15 ]) and the references are cited therein. The study of these
equations is challenging and rewarding and still actively investigated by
researchers. Note that these results for nonlinear difference equations can
be used to prove similar results for the case of non-linear rational difference
equations.

The main focus of this article is to discuss some qualitative behavior of
the solutions of the nonlinear difference equation

ym+1 = Aym+
α1ym−1 + α2ym−2 + α3ym−3 + α4ym−4 + α5ym−5
β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

, m = 0, 1, 2, ...,

(1.1)
where the coefficients A,αi, βi ∈ (0,∞), i = 1, ..., 5, while the initial condi-
tions y−5,y−4,y−3,y−2, y−1, y0 are arbitrary positive real numbers. Note that
the special case of Eq.(1.1) has been discussed in [4] when α3 = β3 = α4 =
β4 = α5 = β5 = 0 and Eq.(1.1) has been studied in [8] in the special case
when α4 = β4 = α5 = β5 = 0 and Eq.(1.1) has been discussed in [5] in the
special case when α5 = β5 = 0.

Aboutaleb et al. [1] studied the global attractivity of the positive equi-
librium of the rational recursive equation

ym+1 =
A− βym
P + ym−1

, m = 0, 1, 2, ...,

where the coefficients A, β, P are non-negative real numbers.
E. M. Elabbasy et al. [2] investigated the periodic character and the

global stability of all positive solutions of the equation

ym+1 = aym −
bym

cym − dym−1
, m = 0, 1, 2, ...,

2
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where the parameters a, b, c and d and the initial conditions y−1, y0 are
positive real numbers.

E. M. Elabbasy et al. [3] investigated the periodic character and the
global stability of all positive solutions of the equation

ym+1 =
αym−l + βym−k
Aym−l +Bym−k

, m = 0, 1, 2, ...,

where the parameters α, β,A and B are positive real numbers and the initial
conditions y−r,y−r+1, ..., y−1 and y0 ∈ (0,∞) where r = max {l, k} .

Li and Sun [7] investigated the periodic character and the global stability
of all positive solutions of the equation

ym+1 =
pym + ym−k
q + ym−k

, m = 0, 1, 2, ...,

where the parameters p and q and the initial conditions y−k,..., y−1, y0 are
positive real numbers, k = {1, 2, 3, ...} .

M. Saleh et al. [9] investigated the periodic character and the global
stability of all positive solutions of the equation

ym+1 =
βym + γym−k
Bym + Cym−k

, m = 0, 1, 2, ...,

where the parameters β, γ and B,C and the initial conditions y−k,..., y−1, y0
are positive real numbers, k = {1, 2, 3, ...} .

Our main current objective is to examine the behavior of the solutions
of Eq.(1.1) (for related work, (see [16-25])).

Definition 1 Let
H : V k+1 → V,

where H is a continuously differentiable function. Then, for every set of
initial conditions y−k,y−k+1, ..., y−1, y0 ∈ V, the difference equation of order
(k + 1) is an equation of the form

ym+1 = H(ym, ym−1, ...., ym−k), m = 0, 1, 2, ... (1.2)

and it has a unique solution {ym}∞m=−k. An equilibrium point ỹ of Eq.(1.2) is
a point that satisfies the condition ỹ = H (ỹ, ỹ, ...., ỹ) . That is, the constant
sequence {ym} with ym = ỹ for all m ≥ 0 is a solution of Eq.(1.2) or
equivalently, ỹ is a fixed point of H.

3
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Definition 2 Let ỹ ∈ V, be an equilibrium point of Eq.(1.2). Then, we have

(i) An equilibrium point ỹ of Eq.(1.2) is called locally stable if for every
ε > 0 there exists δ > 0 such that, if y−k,y−k+1, ..., y−1, y0 ∈ V with
|y−k − ỹ|+ |y−k+1 − ỹ|+ ...+ |y−1 − ỹ|+ |y0 − ỹ| < δ, then |ym − ỹ| < ε for
all m ≥ −k.

(ii) An equilibrium point ỹ of Eq.(1.2) is called locally asymptotically stable
if it is locally stable and there exists γ > 0 such that, if y−k,y−k+1, ..., y−1,
y0 ∈ V with |y−k − ỹ|+ |y−k+1 − ỹ|+ ...+ |y−1 − ỹ|+ |y0 − ỹ| < γ, then

lim
m→∞

ym = ỹ.

(iii) An equilibrium point ỹ of Eq.(1.2) is called a global attractor if for every
y−l, ...,y−k, ..., y−1, y0 ∈ (0,∞) we have

lim
m→∞

ym = ỹ.

(iv) An equilibrium point ỹ of Eq.(1.2) is called globally asymptotically stable
if it is locally stable and a global attractor.

(v) An equilibrium point ỹ of Eq.(1.2) is called unstable if it is not locally
stable.

Definition 3 A sequence {ym}∞m=−k is said to be periodic with period r if
ym+r = ym for all m ≥ −p. A sequence {ym}∞m=−k is said to be periodic with
prime period r if r is the smallest positive integer having this property.

Definition 4 Eq.(1.2) is called permanent and bounded if there exists num-
bers n and N with 0 < n < N < ∞ such that for any initial conditions
y−k,y−k+1, ..., y−1, y0 ∈ V there exists a positive integer M which depends
on these initial conditions such that

n ≤ ym ≤ N for all m ≥M.

Definition 5 The linearized equation of Eq.(1.2) about the equilibrium point
ỹ is defined by the equation

zm+1 = ρ0zm + ρ1zm−1 + ρ2zm−2 + ρ3zm−3 + ... = 0, (1.3)

where

ρ0 =
∂H(ỹ, ỹ, ..., ỹ)

∂ym
, ρ1 =

∂H(ỹ, ỹ, ..., ỹ)

∂ym−1
, ρ2 =

∂H(ỹ, ỹ, ..., ỹ)

∂ym−2
, ρ3 =

∂H(ỹ, ỹ, ..., ỹ)

∂ym−3
, ...

4
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Theorem 1 ([6]). Assume that pi ∈ R, i = 1, 2, ..., k . Then,

k∑
i=1

|pi| < 1, (1.4)

is a sufficient condition for the asymptotic stability of the difference equation

ym+k + p1ym+k−1 + .....+ pkym = 0, m = 0, 1, 2, .... (1.5)

Theorem 2 ([6]). Let H : [a, b]k+1 → [a, b] be a continuous function, where
k is a positive integer, and where [a, b] is an interval of real numbers. Con-
sider the difference equation (1.2). Suppose that H satisfies the following
conditions:

1. For each integer i with 1 ≤ i ≤ k + 1; the function H(z1, z2, ..., zk+1)
is weakly monotonic in zi for fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.

2. If (d,D) is a solution of the system

d = H(d1, d2, ..., dk+1) and D = H(D1, D2, ..., Dk+1),

then d = D, where for each i = 1, 2, ..., k + 1, we set

di =

{
d if F is non− decreasing in zi
D if F is non− increasing in zi

and

Di =

{
D if F is non− decreasing in zi
d if F is non− increasing in zi.

Then there exists exactly one equilibrium ỹ of Eq.(1.2), and every solution
of Eq.(1.2) converges to ỹ.

2 The local stability of the solutions

In this section, the local stability of the solutions of Eq.(1.1) is investigated.
The equilibrium point ỹ of Eq.(1.1) is the positive solution of the equation

ỹ = Aỹ +

∑5
i=1 αi∑5
i=1 βi

. (2.6)

5
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Then, the only positive equilibrium point ỹ of Eq.(1.1) is given by

ỹ =

∑5
i=1 αi

(1−A)
( ∑5

i=1 βi

) , (2.7)

provided that A < 1. Now, let us introduce a continuous function H :
(0,∞)6 −→ (0,∞) which is defined by

H(u0, ..., u5) = Au0 +

∑5
i=1(αiui)∑5
i=1(βiui)

. (2.8)

Therefore, it follows that

H(u0,...,u5)
∂u0

= A,

H(u0,...,u5)
∂u1

=
α1 [

∑5
i=2(βiui)] − β1 [

∑5
i=2(αiui)]

(
∑5
i=1(βiui))

2 ,

H(u0,...,u5)
∂u2

=
α2 [β1u1+

∑5
i=3(βiui)] − β2 [α1u1+

∑5
i=3(αiui)]

(
∑5
i=1(βiui))

2 ,

H(u0,...,u5)
∂u3

=
α3 [

∑2
i=1(βiui)+

∑5
i=4(βiui)] − β3 [

∑2
i=1(αiui)+

∑5
i=4(αiui)]

(
∑5
i=1(βiui))

2 ,

H(u0,...,u5)
∂u4

=
α4 [

∑3
i=1(βiui)+β5u5] − β4 [

∑3
i=1(αiui)+α5u5]

(
∑5
i=1(βiui))

2 ,

H(u0,...,u5)
∂u5

=
α5 [

∑4
i=1(βiui)] − β5 [

∑4
i=1(αiui)]

(
∑5
i=1(βiui))

2 ,

.

6
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Consequently, we get

∂H(ỹ,...,ỹ)
∂u0

= A = − ρ5,

∂H(ỹ,...,ỹ)
∂u1

=
(1−A)[α1 (

∑5
i=2 βi) − β1 (

∑5
i=2 αi)]

(
∑5
i=1 αi)(

∑5
i=1 βi)

= − ρ4,

∂H(ỹ,...,ỹ)
∂u2

=
(1−A)[α2 ( β1+

∑5
i=3 βi) − β2 (α1+

∑5
i=3 αi)]

(
∑5
i=1 αi)(

∑5
i=1 βi)

= − ρ3,

∂H(ỹ,...,ỹ)
∂u3

=
(1−A)[α3 (

∑2
i=1 βi+

∑5
i=4 βi) − β3 (

∑2
i=1 αi+

∑5
i=4 αi)]

(
∑5
i=1 αi)(

∑5
i=1 βi)

= − ρ2,

∂H(ỹ,...,ỹ)
∂u4

=
(1−A)[α4 (β5 +

∑3
i=1 βi) − β4 (α5+

∑5
i=3 αi)]

(
∑5
i=1 αi)(

∑5
i=1 βi)

= − ρ1,

∂H(ỹ,...,ỹ)
∂u4

=
(1−A)[α5 (

∑4
i=1 βi) − β5 (

∑4
i=1 αi)]

(
∑5
i=1 αi)(

∑5
i=1 βi)

= − ρ0.

(2.9)
Hence, the linearized equation of Eq.(1.1) about ỹ takes the form

ym+1 +ρ5ym+ρ4ym−1 +ρ3ym−2 +ρ2ym−3 +ρ1ym−4 +ρ0ym−5 = 0, (2.10)

where ρ0, ρ1, ρ2, ρ3, ρ4 and ρ5 are given by (2.9).
The characteristic equation associated with Eq.(2.10) is

λ6 + ρ5λ
5 + ρ4λ

4 + ρ3λ
3 + ρ2λ

2 + ρ1λ+ ρ0 = 0, (2.11)

Theorem 3 Let A < 1 and∣∣∣∣∣α1

(
5∑
i=2

βi

)
− β1

(
5∑
i=2

αi

)∣∣∣∣∣+
∣∣∣∣∣α2

(
β1 +

5∑
i=3

βi

)
− β2

(
α1 +

5∑
i=3

αi

)∣∣∣∣∣+∣∣∣∣∣α3

(
2∑
i=1

βi +
5∑
i=4

βi

)
− β3

(
2∑
i=1

αi +
5∑
i=4

αi

)∣∣∣∣∣
+

∣∣∣∣∣α4

(
β5 +

3∑
i=1

βi

)
− β4

(
α5 +

5∑
i=3

αi

)∣∣∣∣∣
+

∣∣∣∣∣α5

(
4∑
i=1

βi

)
− β5

(
4∑
i=1

αi

)∣∣∣∣∣ <
(

5∑
i=1

αi

)(
5∑
i=1

βi

)
, (2.12)

then the positive equilibrium point (2.7) of Eq.(1.1) is locally asymp-
totically stable.

7
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proof: It follows by Theorem 1 that Eq.(2.10) is asymptotically stable if
all roots of Eq.(2.11) lie in the open disk is |λ| < 1 that is if

∑5
i=0 |pi| < 1,

|A|+

∣∣∣∣∣∣
(1−A)

[
α1

( ∑5
i=2 βi

)
− β1

( ∑5
i=2 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α2

(
β1 +

∑5
i=3 βi

)
− β2

(
α1 +

∑5
i=3 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α3

( ∑2
i=1 βi +

∑5
i=4 βi

)
− β3

(∑2
i=1 αi +

∑5
i=4 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α4

(
β5 +

∑3
i=1 βi

)
− β4

(
α5 +

∑5
i=3 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣ ,

+

∣∣∣∣∣∣
(1−A)

[
α5

(∑4
i=1 βi

)
− β5

(∑4
i=1 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣ < 1.

and so ∣∣∣∣∣∣
(1−A)

[
α1

( ∑5
i=2 βi

)
− β1

( ∑5
i=2 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α2

(
β1 +

∑5
i=3 βi

)
− β2

(
α1 +

∑5
i=3 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α3

( ∑2
i=1 βi +

∑5
i=4 βi

)
− β3

(∑2
i=1 αi +

∑5
i=4 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
(1−A)

[
α4

(
β5 +

∑3
i=1 βi

)
− β4

(
α5 +

∑5
i=3 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣ ,

+

∣∣∣∣∣∣
(1−A)

[
α5

(∑4
i=1 βi

)
− β5

(∑4
i=1 αi

)]
( ∑5

i=1 αi

)( ∑5
i=1 βi

)
∣∣∣∣∣∣ (1−A) , A < 1,

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

611 A. M. Alotaibi ET AL 604-627



or∣∣∣∣∣α1

(
5∑
i=2

βi

)
− β1

(
5∑
i=2

αi

)∣∣∣∣∣+
∣∣∣∣∣α2

(
β1 +

5∑
i=3

βi

)
− β2

(
α1 +

5∑
i=3

αi

)∣∣∣∣∣+∣∣∣∣∣α3

(
2∑
i=1

βi +
5∑
i=4

βi

)
− β3

(
2∑
i=1

αi +
5∑
i=4

αi

)∣∣∣∣∣
+

∣∣∣∣∣α4

(
β5 +

3∑
i=1

βi

)
− β4

(
α5 +

5∑
i=3

αi

)∣∣∣∣∣
+

∣∣∣∣∣α5

(
4∑
i=1

βi

)
− β5

(
4∑
i=1

αi

)∣∣∣∣∣ <
(

5∑
i=1

αi

)(
5∑
i=1

βi

)
.

Thus, the proof is complete.

3 Boundedness of the solutions

In this section, the boundedness of the positive solutions of Eq.(1.1) is
determined.

Theorem 4 Every solution of Eq.(1.1) is bounded if A < 1.

proof Let {ym}∞m=−5 be a solution of Eq.(1.1). It follows from Eq.(1.1)
that

ym+1 = Aym +
α1ym−1 + α2ym−2 + α3ym−3 + α4ym−4 + α5ym−5
β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

= Aym +
α1ym−1

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

+
α2ym−2

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

+
α3ym−3

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

+
α4ym−4

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

+
α5ym−5

β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5
.

Then

ym+1 ≤ Aym +
α1ym−1
β1ym−1

+
α2ym−2
β2ym−2

+
α3ym−3
β3ym−3

+
α4ym−4
β4ym−4

+
α5ym−5
β5ym−5

=

9
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Aym +
α1

β1
+
α2

β2
+
α3

β3
+
α4

β4
+
α5

β5
for all m ≥ 1.

By using a comparison, we can write the right hand side as follows

ym+1 = Aym +
α1

β1
+
α2

β2
+
α3

β3
+
α4

β4
+
α5

β5
.

then
ym = amy0 + constant,

and this equation is locally asymptotically stable because A < 1, and con-
verges to the equilibrium point

ỹ =
α1β2β3β4β5 + α2β1β3β4β5 + α3β1β2β4β5 + α4β1β2β3β5 + α5β1β2β3β4

β1β2β3β4β5 (1−A)
.

Therefore,

lim
m→∞

sup ym ≤
α1β2β3β4β5 + α2β1β3β4β5 + α3β1β2β4β5 + α4β1β2β3β5 + α5β1β2β3β4

β1β2β3β4β5 (1−A)
.

Thus, the solution of Eq.(1.1) is bounded and the proof is complete.

Theorem 5 Every solution of Eq.(1.1) is unbounded if A > 1.

proof: Let {yn}∞n=−5 be a solution of Eq.(1.1). Then from Eq.(1.1) we
see that

yn+1 = Ayn+
α1yn−1 + α2yn−2 + α3yn−3 + α4yn−4 + α5yn−5
β1yn−1 + β2yn−2 + β3yn−3 + β4yn−4 + β5yn−5

> Ayn for all n ≥ 1.

We can see that the right hand side can be written as follows

xn+1 = axn ⇒ xn = anx0,

and this equation is unstable because A > 1, and

lim
n→∞

xn =∞.

Then, by using the ratio test {yn}∞n=−5 is unbounded from above. Thus, the
proof is now obtained.

10
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4 Periodic solutions

The following theorem states the necessary and sufficient conditions for the
equation to have periodic solutions of prime period two.

Theorem 6 If (α1 + α3 + α5) > (α2 + α4) and (β1 + β3 + β5) > (β2 + β4) ,
then the necessary and sufficient condition for Eq.(1.1) to have positive so-
lutions of prime period two is that the inequality

[(A+ 1) ((β1 + β3 + β5)− (β2 + β4))] [(α1 + α3 + α5)− (α2 + α4)]
2

+4 [(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)] > 0.

(4.13)

is valid.

proof: Suppose there exist positive distinctive solutions of prime period
two

......., P,Q, P,Q, ........

of Eq.(1.1). From Eq.(1.1) we have

ym+1 = Aym +
α1ym−1 + α2ym−2 + α3ym−3 + α4ym−4 + α5ym−5
β1ym−1 + β2ym−2 + β3ym−3 + β4ym−4 + β5ym−5

P = AQ+
(α1 + α3 + α5)P + (α2 + α4)Q

(β1 + β3 + β5)P + (β2 + β4)Q
, Q = AP+

(α1 + α3 + α5)Q+ (α2 + α4)P

(β1 + β3 + β5)Q+ (β2 + β4)P
.

(4.14)
Consequently, we get

(β1 + β3 + β5)P
2 + (β2 + β4)PQ = A (β1 + β3 + β5)PQ+A (β2 + β4)Q

2

+ (α1 + α3 + α5)P + (α2 + α4)Q,

(4.15)

and

(β1 + β3 + β5)Q
2 + (β2 + β4)PQ = A (β1 + β3 + β5)PQ+A (β2 + β4)P

2

+ (α1 + α3 + α5)Q+ (α2 + α4)P.

(4.16)

By subtracting (4.15) from (4.16), we obtain

[(β1 + β3 + β5) +A (β2 + β4)]
(
P 2 −Q2

)
= [(α1 + α3 + α5)− (α2 + α4)] (P −Q) .

11
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Since P 6= Q, it follows that

P +Q =
[(α1 + α3 + α5)− (α2 + α4)]

[(β1 + β3 + β5) +A (β2 + β4)]
, (4.17)

while, by adding (4.15) and (4.16) and by using the relation

P 2 +Q2 = (P +Q)2 − 2PQ for all P,Q ∈ R,

we have

PQ =
[(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

[(β1 + β3 + β5) +A (β2 + β4)]
2 [((β2 + β4)− (β1 + β3 + β5)) (A+ 1)]

(4.18)
Let P and Q are two distinct real roots of the quadratic equation

t2 − ( P +Q) t+ PQ = 0.

[(β1 + β3 + β5) +A (β2 + β4)] t
2 − [(α1 + α3 + α5)− (α2 + α4)] t

+
[(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

[(β1 + β3 + β5) +A (β2 + β4)] [((β2 + β4)− (β1 + β3 + β5)) (A+ 1)]

= 0, (4.19)

and so
[(α1 + α3 + α5)− (α2 + α4)]

2

−4 [(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

[((β2 + β4)− (β1 + β3 + β5)) (A+ 1)]
> 0,

or
[(α1 + α3 + α5)− (α2 + α4)]

2

+
4 [(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

[((β1 + β3 + β5)− (β2 + β4)) (A+ 1)]
> 0.

(4.20)
From (4.20), we get

[((β1 + β3 + β5)− (β2 + β4)) (A+ 1)] [(α1 + α3 + α5)− (α2 + α4)]
2

+4 [(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)] > 0.

Therefore, the condition (4.13) is valid. Alternatively, if we imagine that the
condition (4.13) is valid where (α1 + α3 + α5) > (α2 + α4) and (β1 + β3 + β5) >
(β2 + β4) . Then, we can immediately discover that the inequality stands.
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There exist two positive distinctive real numbers P and Q representing two
positive roots of Eq.(4.19) such that

P =
[(α1 + α3 + α5)− (α2 + α4)] + δ

2 [(β1 + β3 + β5) +A (β2 + β4)]
(4.21)

and

Q =
[(α1 + α3 + α5)− (α2 + α4)]− δ
2 [(β1 + β3 + β5) +A (β2 + β4)]

(4.22)

where

δ =

√
[(α1 + α3 + α5)− (α2 + α4)]

2 − η,

and

η =
4 [(α1 + α3 + α5)− (α2 + α4)] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

[((β2 + β4)− (β1 + β3 + β5)) (A+ 1)]
.

Now, let us prove that P and Q are positive solutions of prime period two of
Eq.(1.1). To this end, we assume that y−5 = P, y−4 = Q, y−3 = P, y−2 =
Q, y−1 = P, y0 = Q. Now, we are going to show that y1 = P and y2 = Q.

From Eq.(1.1) we deduce that

y1 = Ay0 +
α1y−1 + α2y−2 + α3y−3 + α4y−4 + α5y−5
β1y−1 + β2y−2 + β3y−3 + β4y−4 + β5y−5

= AQ+
(α1 + α3 + α5)P + (α2 + α4)Q

(β1 + β3 + β5)P + (β2 + β4)Q
. (4.23)
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Substituting (4.21) and (4.22) into (4.23) we deduce that

y1 − P = AQ+
(α1 + α3 + α5)P + (α2 + α4)Q

(β1 + β3 + β5)P + (β2 + β4)Q
− P

=
[A (β1 + β3 + β5)− (β2 + β4)]PQ+A (β2 + β4)Q

2 − (β1 + β3 + β5)P
2

(β1 + β3 + β5)P + (β2 + β4)Q

+
(α1 + α3 + α5)P + (α2 + α4)Q

(β1 + β3 + β5)P + (β2 + β4)Q

=

(
[A(β1+β3+β5)−(β2+β4)][S1][(β1+β3+β5)(α2+α4)+A(β2+β4) (α1+α3+α5)]

[(β1+β3+β5)+A(β2+β4)]
2[((β2+β4)−(β1+β3+β5))(A+1)]

)
(β1 + β3 + β5)

(
[(α1+α3+α5)−(α2+α4)]+δ
2[(β1+β3+β5)+A(β2+β4)]

)
+ (β2 + β4)

(
[(α1+α3+α5)−(α2+α4)]−δ
2[(β1+β3+β5)+A(β2+β4)]

)
+
A (β2 + β4)

(
[(α1+α3+α5)−(α2+α4)]−δ
2[(β1+β3+β5)+A(β2+β4)]

)2
− (β1 + β3 + β5)

(
[(α1+α3+α5)−(α2+α4)]+δ
2[(β1+β3+β5)+A(β2+β4)]

)2
(β1 + β3 + β5)

(
[(α1+α3+α5)−(α2+α4)]+δ
2[(β1+β3+β5)+A(β2+β4)]

)
+ (β2 + β4)

(
[(α1+α3+α5)−(α2+α4)]−δ
2[(β1+β3+β5)+A(β2+β4)]

)
+

(α1 + α3 + α5)
(
[(α1+α3+α5)−(α2+α4)]+δ
2[(β1+β3+β5)+A(β2+β4)]

)
+ (α2 + α4)

(
[(α1+α3+α5)−(α2+α4)]−δ
2[(β1+β3+β5)+A(β2+β4)]

)
(β1 + β3 + β5)

(
[(α1+α3+α5)−(α2+α4)]+δ
2[(β1+β3+β5)+A(β2+β4)]

)
+ (β2 + β4)

(
[(α1+α3+α5)−(α2+α4)]−δ
2[(β1+β3+β5)+A(β2+β4)]

)
(4.24)

Multiplying the denominator and numerator of (4.24) by 4 [(β1 + β3 + β5) +A (β2 + β4)]
2

we get

y1 − P =

4[A(β1+β3+β5)−(β2+β4)][S1][(β1+β3+β5)(α2+α4)+A(β2+β4) (α1+α3+α5)]
[((β2+β4)−(β1+β3+β5))(A+1)]

S

+
A (β2 + β4) (S1 − δ)2 − (β1 + β3 + β5) (S1 + δ)2

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α1 + α3 + α5) (S1 + δ)

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α2 + α4) (S1 − δ)

S

=

4[A(β1+β3+β5)−(β2+β4)][S1][(β1+β3+β5)(α2+α4)+A(β2+β4) (α1+α3+α5)]
[((β2+β4)−(β1+β3+β5))(A+1)]

S

+
A (β2 + β4) [S1]

2 − (β1 + β3 + β5) [S1]
2

S

+
[A (β2 + β4)− (β1 + β3 + β5)]δ

2

S
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+
2[(β1 + β3 + β5) +A (β2 + β4)] (α2 + α4) [S1]

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α1 + α3 + α5) [S1]

S

−2A (β2 + β4) [(α1 + α3 + α5)− (α2 + α4)] δ + 2 (β1 + β3 + β5) [S1] δ

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α1 + α3 + α5) δ − 2[(β1 + β3 + β5) +A (β2 + β4)] (α2 + α4) δ

S

=

4[A(β1+β3+β5)−(β2+β4)][S1][(β1+β3+β5)(α2+α4)+A(β2+β4)(α1+α3+α5)]
[((β2+β4)−(β1+β3+β5))(A+1)]

S

−
4[S1][(β1+β3+β5)(α2+α4)+A(β2+β4)(α1+α3+α5)][A(β2+β4)−(β1+β3+β5)]

[((β2+β4)−(β1+β3+β5))(A+1)]

S

+
A (β2 + β4) [S1]

2 − (β1 + β3 + β5) [S1]
2

S

+
[A (β2 + β4)− (β1 + β3 + β5)] [S1]

2

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α2 + α4) [S1]

S

+
2[(β1 + β3 + β5) +A (β2 + β4)] (α1 + α3 + α5) [S1]

S

−2 [S1] [(β1 + β3 + β5) +A (β2 + β4)]δ

S

+
2 [S1] [(β1 + β3 + β5) +A (β2 + β4)]δ

S

=
4 [S1] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

S

−4 [S1] [(β1 + β3 + β5) (α2 + α4) +A (β2 + β4) (α1 + α3 + α5)]

S

−2[(α1 + α3 + α5)− (α2 + α4)][(β1 + β3 + β5) +A (β2 + β4)]δ

S

+
2[(α1 + α3 + α5)− (α2 + α4)][(β1 + β3 + β5) +A (β2 + β4)]δ

S
= 0.

where

S = 2 [(β1 + β3 + β5) +A (β2 + β4)]×
[(β1 + β3 + β5) (S1 + δ) + (β2 + β4) (S1 − δ)]
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and

S1 = [(α1 + α3 + α5)− (α2 + α4)].

Similarly, we can show that

y2 = Ay1+
α1y0 + α2y−1 + α3y−2 + α4y−3 + α5y−4
β1y0 + β2y−1 + β3y−2 + β4y−3 + β5y−4

= AP+
(α1 + α3 + α5)Q+ (α2 + α4)P

(β1 + β3 + β5)Q+ (β2 + β4)P
= Q.

By using the mathematical induction, we have ym = P and ym+1 =
Q, m ≥ −5.

5 Global stability

In this section, the global asymptotic stability of the positive solutions of
Eq.(1.1) is discussed.

Theorem 7 For any values of the quotient
∑5

i=1
αi
βi
, If A < 1, then the

positive equilibrium point ỹ of Eq.(1.1) is a global attractor and the following
conditions hold

α1β2 ≥ α2β1, α1β3 ≥ α3β1, α1β4 ≥ α4β1, α1β5 ≥ α5β1, α2β3 ≥ α3β2, α2β4 ≥ α4β2,

α2β5 ≥ α5β2, α3β4 ≥ α4β3, α3β5 ≥ α5β3, α4β5 ≥ α5β4 and α5 ≥ (α1 + α2 + α3 + α4) .

(5.25)

proof: Let {ym}∞m=−5 be a positive solution of Eq.(1.1). and let H :
(0,∞)6 −→ (0,∞) be a continuous function which is defined by

H(u0, ..., u5) = Au0 +

∑5
i=1(αiui)∑5
i=1(βiui)

.

By differentiating the function H(u0, ..., u5) with respect to ui (i = 0, ..., 5),
we obtain

Hu0 = A, (5.26)

Hu1 =
(α1β2 − α2β1)u2 + (α1β3 − α3β1)u3 + (α1β4 − α4β1)u4 + (α1β5 − α5β1)u5(∑5

i=1(βiui)
)2 ,

(5.27)

Hu2 =
− (α1β2 − α2β1)u1 + (α2β3 − α3β2)u3 + (α2β4 − α4β2)u4 + (α2β5 − α5β2)u5(∑5

i=1(βiui)
)2 ,

(5.28)
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Hu3 =
− (α1β3 − α3β1)u1 − (α2β3 − α3β2)u2 + (α3β4 − α4β3)u4 + (α3β5 − α5β3)u4(∑5

i=1(βiui)
)2 ,

(5.29)

Hu4 =
− (α1β4 − α4β1)u1 − (α2β4 − α4β2)u2 − (α3β4 − α4β3)u3 + (α4β5 − α5β4)u5(∑5

i=1(βiui)
)2 ,

(5.30)
and

Hu5 =
− (α1β5 − α5β1)u1 − (α2β5 − α5β2)u2 − (α3β5 − α5β3)u3 − (α4β5 − α5β4)u4(∑5

i=1(βiui)
)2 .

(5.31)
It is observed that the function H(u0, ..., u5) is non-decreasing in u0,u1

and non-increasing in u5. Now, we consider four cases:
Case 1. Let the function H(u0, ..., u5) is non-decreasing in u0,u1,u2,u3,u4

and non-increasing in u5. Suppose that (d,D) is a solution of the system

D = H(D,D,D,D,D, d) and d = H(d, d, d, d, d,D).

Then we get

D = AD+
α1D + α2D + α3D + α4D + α5d

β1D + β2D + β3D + β4D + β5d
and d = Ad+

α1d+ α2d+ α3d+ α4d+ α5D

β1d+ β2d+ β3d+ β4d+ β5D
,

or

D (1−A) =
(α1 + α2 + α3 + α4)D + α5d

(β1 + β2 + β3 + β4)D + β5d
and d (1−A) =

(α1 + α2 + α3 + α4) d+ α5D

(β1 + β2 + β3 + β4) d+ β5D
.

From which we have

(α1 + α2 + α3 + α4)D+α5d−(1−A) (β1 + β2 + β3 + β4)D
2 = (1−A)β5Dd

(5.32)
and

(α1 + α2 + α3 + α4) d+α5D−(1−A) (β1 + β2 + β3 + β4) d
2 = (1−A)β5Dd

(5.33)
From (5.32) and (5.33), we obtain

(d−D) {[(α1 + α2 + α3 + α4)− α5]− (1−A) (β1 + β2 + β3 + β4) (d+D)} = 0.
(5.34)

Since A < 1 and α5 ≥ (α1 + α2 + α3 + α4) , we deduce from (5.34) that
D = d. It follows by Theorem 2, that ỹ of Eq.(1.1) is a global attractor.
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Case 2. Let the function H(u0, ..., u5) is non-decreasing in u0,u1 and
non-increasing in u2, u3, u4, u5.

Suppose that (d,D) is a solution of the system

D = H(D,D, d, d, d, d) and d = H(d, d,D,D,D,D).

Then we get

D = AD+
α1D + α2d+ α3d+ α4d+ α5d

β1D + β2d+ β3d+ β4d+ β5d
and d = Ad+

α1d+ α2D + α3D + α4D + α5D

β1d+ β2D + β3D + β4D + β5D
,

or

D (1−A) =
α1D + (α2 + α3 + α4 + α5) d

β1D + (β2 + β3 + β4 + β5) d
and d (1−A) =

α1d+ (α2 + α3 + α4 + α5)D

β1d+ (β2 + β3 + β4 + β5)D
.

From which we have

α1D+(α2 + α3 + α4 + α5) d−β1 (1−A)D2 = (1−A) (β2 + β3 + β4 + β5)Dd
(5.35)

and

α1d+(α2 + α3 + α4 + α5)D−β1 (1−A) d2 = (1−A) (β2 + β3 + β4 + β5)Dd.
(5.36)

From (5.35) and (5.36), we obtain

(d−D) {[α1 − (α2 + α3 + α4 + α5)]− β1 (1−A) (d+D)} = 0. (5.37)

Since A < 1 and (α2 + α3 + α4 + α5) ≥ α1, we deduce from (5.37) that
D = d. It follows by Theorem 2, that ỹ of Eq.(1.1) is a global attractor.

Case 3. Let the function H(u0, ..., u5) is non-decreasing in u0,u1,u2 and
non-increasing in u3, u4, u5.

Suppose that (d,D) is a solution of the system

D = H(D,D,D, d, d, d) and d = H(d, d, d,D,D,D).

Then we get

D = AD+
α1D + α2D + α3d+ α4d+ α5d

β1D + β2D + β3d+ β4d+ β5d
and d = Ad+

α1d+ α2d+ α3D + α4D + α5D

β1d+ β2d+ β3D + β4D + β5D
,

or

D (1−A) =
(α1 + α2)D + (α3 + α4 + α5) d

(β1 + β2)D + (β3 + β4 + β5) d
and d (1−A) =

(α1 + α2) d+ (α3 + α4 + α5)D

(β1 + β2) d+ (β3 + β4 + β5)D
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From which we have

(α1 + α2)D + (α3 + α4 + α5) d−(1−A) (β1 + β2)D
2 = (1−A) (β3 + β4 + β5)Dd

(5.38)
and

(α1 + α2) d+ (α3 + α4 + α5)D−(1−A) (β1 + β2) d
2 = (1−A) (β3 + β4 + β5)Dd

(5.39)
From (5.38) and (5.39), we obtain

(d−D) {[(α1 + α2)− (α3 + α4 + α5)]− (1−A) (β1 + β2) (d+D)} = 0.
(5.40)

Since A < 1 and (α3 + α4 + α5) ≥ (α1 + α2) , we deduce from (5.40) that
D = d. It follows by Theorem 2, that ỹ of Eq.(1.1) is a global attractor.

Case 4. Let the function H(u0, ..., u5) is non-decreasing in u0,u1,u3 and
non-increasing in u2, u4, u5.

Suppose that (d,D) is a solution of the system

D = H(D,D, d,D, d, d) and d = H(d, d,D, d,D,D).

Then we get

D = AD+
α1D + α2d+ α3D + α4d+ α5d

β1D + β2d+ β3D + β4d+ β5d
and d = Ad+

α1d+ α2D + α3d+ α4D + α5D

β1d+ β2D + β3d+ β4D + β5D
,

or

D (1−A) =
(α1 + α3)D + (α2 + α4 + α5) d

(β1 + β3)D + (β2 + β4 + β5) d
and d (1−A) =

(α1 + α3) d+ (α2 + α4 + α5)D

(β1 + β3) d+ (β2 + β4 + β5)D

From which we have

(α1 + α3)D + (α2 + α4 + α5) d−(1−A) (β1 + β3)D
2 = (1−A) (β2 + β4 + β5)Dd

(5.41)
and

(α1 + α3) d+ (α2 + α4 + α5)D−(1−A) (β1 + β3) d
2 = (1−A) (β2 + β4 + β5)Dd

(5.42)
From (5.41) and (5.42), we obtain

(d−D) {[(α1 + α3)− (α2 + α4 + α5)]− (1−A) (β1 + β3) (d+D)} = 0.
(5.43)

Since A < 1 and (α2 + α4 + α5) ≥ (α1 + α3) , we deduce from (5.43) that
D = d. It follows by Theorem 2, that ỹ of Eq.(1.1) is a global attractor.

It follows by Theorem 2, that ỹ of Eq.(1.1) is a global attractor and the
proof is now completed.
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6 Numerical examples

Some numerical examples are stated in this section in order to strengthen our
theoretical results. These examples represent different types of qualitative
behavior of solutions of Eq.(1.1).

Example 1. Figure 1, shows that the solution of Eq.(1.1) is unbounded
if y−5 = 1, y−4 = 2, y−3 = 3, y−2 = 4, y−1 = 5, y0 = 6, A = 1.1, α1 =
10, α2 = 1, α3 = 12, α4 = 4, α5 = 6, β1 = 2, β2 = 3, β3 = 40, β4 =
50, β5 = 60.
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Figure 1: (ym+1 = 1.1ym + 10ym−1+ym−2+12ym−3+4ym−4+6ym−5

2ym−1+3ym−2+40ym−3+50ym−4+60ym−5
)

Example 2. Figure 2, shows that Eq.(1.1) has prime period two so-
lutions if y−5 = y−3 = y−1 ' 0.519, y−4 = y−2 = y0 ' −0.0938,
A = 1, α1 = 10, α2 = 3, α3 = 30, α4 = 8, α5 = 45, β1 = 20, β2 =
5, β3 = 40, β4 = 9, β5 = 100.
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Figure 2: (ym+1 = ym + 10ym−1+3ym−2+30ym−3+8ym−4+45ym−5

20ym−1+5ym−2+40ym−3+9ym−4+100ym−5
)
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Example 3. Figure 3, shows that Eq.(1.1) is globally asymptotically
stable if y−5 = 1, y−4 = 2, y−3 = 3, y−2 = 4, y−1 = 5, y0 = 6, A =
0.5, α1 = 10, α2 = 1, α3 = 12, α4 = 4, α5 = 30, β1 = 2, β2 = 3, β3 =
40, β4 = 50, β5 = 400.
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plot of y(n+1)=W*y(n)+(((A*y(n−1)+B*y(n−2)+C*y(n−3)+D*y(n−4)+E*y(n−5))/(a*y(n−1)+b*y(n−2)+c*y(n−3)+d*y(n−4)+e*y(n−5))))

Figure 3: (ym+1 = 0.5ym + 10ym−1+ym−2+12ym−3+4ym−4+30ym−5

2ym−1+3ym−2+40ym−3+50ym−4+400ym−5
)

Example 4. Figure 4, shows that Eq.(1.1) is not globally asymptotically
stable if y−5 = 1, y−4 = 2, y−3 = 3, y−2 = 4, y−1 = 5, y0 = 6, A =
100, α1 = 10, α2 = 1, α3 = 12, α4 = 4, α5 = 6, β1 = 2, β2 = 3, β3 =
40, β4 = 50, β5 = 400.
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Figure 4: (ym+1 = 100ym + 10ym−1+ym−2+12ym−3+4ym−4+6ym−5

2ym−1+3ym−2+40ym−3+50ym−4+400ym−5
)
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7 Conclusion

We have discussed some properties of the nonlinear rational difference equa-
tion (1.1), such as the periodicity, the boundedness and the global stability
of the positive solutions of this equation. We gave some figures to illustrate
the behavior of these solutions, as generalization of the results obtained in
Refs.[4,5,8]. Note that example 1 illustrates Theorem 5 which shows that
the solution of Eq.(1.1) is unbounded and example 2 illustrates Theorem
6 which shows that Eq.(1.1) has prime period two solutions, while exam-
ple 3 illustrates Theorems 3 and 7 which shows that Eq.(1.1) is globally
asymptotically stable. But example 4 shows that Eq.(1.1) is not globally
asymptotically stable if A > 1.
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Abstract

This article develops the existence theory for sequential fractional di¤erential equations involving
Caputo fractional derivative of order 1 < � � 2 with nonlocal integral boundary conditions. An example
is given to demonstrate application of our results.

Keywords: fractional di¤erential equations; mixed boundary value problem; �xed point theorem.
2010 AMS Subject Classi�cation: 34A08; 34B

1 Introduction

The theory of fractional-order di¤erential equations involving di¤erent kinds of boundary conditions has been
a �eld of interest in pure and applied sciences. In addition to the classical two-point boundary conditions,
great attention is paid to non-local multipoint and integral boundary conditions. Nonlocal conditions are
used to describe certain features of physical, chemical or other processes occurring in the internal positions of
the given region, while integral boundary conditions provide a plausible and practical approach to modeling
the problems of blood �ow. For more details and explanation, see, for instance [2], [1]. Some recent results
on fractional-order boundary value problem can be found in a series of papers [3]-[20] and the references cited
therein. Sequential fractional di¤erential equations have also received considerable attention, for instance see
[4]-[9]. To the best of our knowledge, the study of sequential fractional di¤erential equations supplemented
with nonlocal integral fractional boundary conditions has yet to be initiated.
We study the following nonlinear sequential fractional di¤erential equation subject to nonseparated non-

local integral fractional boundary conditions8><>:
�
CD� + � CD��1�u (t) = f (t; u (t)) ; 1 < � � 2; 0 � t � T;

�1u (�) + �1u (T ) = 
1
R �
0
u (s) ds;

�2
CD��1u (�) + �2

CD��1u (T ) = 
2
R T
�
u (s) ds;

(1)

where 0 < � < T; 0 < � < � < T; � 2 R+; �1; �2; �1; �2; 
1; 
2 2 R:
The rest of the paper is organized as follows. In Section 2, we recall some basic concepts of fractional

calculus and obtain the integral solution for the linear variants of the given problems. Section 3 contains
the existence results for problem (1) obtained by applying Leray-Schauder�s nonlinear alternative, Banach�s
contraction mapping principle and Krasnoselskii�s �xed point theorem. In Section 4, the main result is
illustrated with the aid of an example.
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2 Preliminaries

De�nition 1 The Riemann-Liouville fractional integral of order � > 0 for a function f : [0;+1) ! R is
de�ned as

I�0+f(t) =
1

�(�)

tZ
0

(t� s)��1f(s)ds;

provided that the right hand side of the integral is pointwise de�ned on (0;+1) and � is the gamma function.

De�nition 2 The Caputo derivative of order � > 0 for a function f : [0;+1)! R is written as

D�
0+f(t) =

1

�(n� �)

tZ
0

(t� s)n���1f (n)(s)ds;

where n = [�] + 1; [�] is integral part of �:

Lemma 3 Let � > 0: Then the di¤erential equation D�
0+f(t) = 0 has solutions

f(t) = c0 + c1t+ c2t
2 + :::+ cn�1t

n�1;

and
I�0+D

�
0+f(t) = f(t) + c0 + c1t+ c2t

2 + :::+ cn�1t
n�1;

where ci 2 R and i = 1; 2; :::; n = [�] + 1:

In what follows we use the following notations:

a11 := �1e
��� + �1e

��T � 
1
�

�
1� e���

�
; a12 := �1 + �1 � 
1�;

a21 := �2
�

� (2� �)

Z �

0

(� � s)1�� e��sds+ �2
�

� (2� �)

Z T

0

(T � s)1�� e��sds+ 
2
Z T

�

e��tdt;

a22 := 
2 (T � �) ; � := a11a22 � a12a21; � 6= 0;

'1 (t) =
a21 � a22e��t

�
; '2 (t) =

a11 � a12e��t
�

;

K1 (t; s) =
1

� (�� 1)

Z t

s

e��(t�r) (r � s)��2 dr; K2 (t; r) =
1

� (2� �)

Z t

r

(t� s)1��K1 (s; r) ds:

It is clear that

j'1 (t)j � max
 
ja21 � a22j

j�j ;

��a21 � a22e��T ��
j�j

!
:= �1;

j'2 (t)j � max
 
ja11 � a12j

j�j ;

��a11 � a12e��T ��
j�j

!
:= �2;

and Z t

0

e��(t�r)I��1h (r) dr =

Z t

0

K1 (t; s)h (s) ds;

1

� (2� �)

Z t

0

(t� s)1��
Z s

0

e��(s�r)I��1h (r) drds =

Z t

0

K2 (t; r)h (r) dr:
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Lemma 4 Let h 2 C ([0; T ] ;R) : The the following boundary value problem8><>:
�
CD� + � CD��1�u (t) = h (t) ; 1 < � � 2; 0 � t � T;

�1u (�) + �1u (T ) = 
1
R �
0
u (s) ds;

�2
CD��1u (�) + �2

CD��1u (T ) = 
2
R T
�
u (s) ds;

(2)

is equivalent to the fractional integral equation

u (t) =

Z t

0

K1 (t; s)h (s) ds

+ �1'1 (t)

Z �

0

K1 (�; s)h (s) ds+ �1'1 (t)

Z T

0

K1 (T; s)h (s) ds

� 
1'1 (t)
Z �

0

Z r

0

K1 (r; s)h (s) dsdr � 
2'2 (t)
Z T

�

Z t

0

K1 (t; s)h (s) dsdt

� ��2'2 (t)
Z �

0

K2 (�; s)h (s) ds� ��2'2 (t)
Z T

0

K2 (T; s)h (s) ds

+ �2'2 (t)

Z �

0

h (s) ds+ �2'2 (t)

Z T

0

h (s) ds: (3)

Proof. Applying I��1 to both sides of (2) we get

I��1 CD��1 (D + �)u (t) = I��1h (t) ;

(D + �)u (t)� c0 = I��1h (t) :

We solve the above linear di¤erential equation

u (t) = (u (0)� c0) e��t + c0 +
Z t

0

e��(t�s)I��1h (s) ds;

u (t) = c1e
��t + c0 +

Z t

0

e��(t�s)I��1h (s) ds: (4)

It is clear that

CD��1u (t) =
��c1

� (2� �)

Z t

0

(t� s)1�� e��sds

+
1

� (2� �)

Z t

0

(t� s)1��
�
I��1h (s)� �

Z s

0

e��(s�r)I��1h (r) dr

�
ds:

The �rst boundary condition implies that

�1u (�) + �1u (T )

= �1c1e
��� + �1c0 + �1

Z �

0

e��(��s)I��1h (s) ds

+ �1c1e
��T + �1c0 + �1

Z T

0

e��(T�s)I��1h (s) ds

= 
1

Z �

0

�
c1e

��r + c0 +

Z r

0

e��(r�s)I��1h (s) ds

�
dr

=

1c1
�

�
1� e���

�
+ 
1c0� + 
1

Z �

0

Z r

0

e��(r�s)I��1h (s) dsdr;
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�
�1e

��� + �1e
��T � 
1

�

�
1� e���

��
c1 + (�1 + �1 � 
1�) c0

= 
1

Z �

0

Z r

0

e��(r�s)I��1h (s) dsdr � �1
Z �

0

e��(��s)I��1h (s) ds� �1
Z T

0

e��(T�s)I��1h (s) ds:

The second boundary condition implies that 
�2

�

� (2� �)

Z �

0

(� � s)1�� e��sds+ �2
�

� (2� �)

Z T

0

(T � s)1�� e��sds+ 
2
Z T

�

e��tdt

!
c1 + 
2 (T � �) c0

= �2
1

� (2� �)

Z �

0

(� � s)1��
�
I��1h (s)� �

Z s

0

e��(s�r)I��1h (r) dr

�
ds

+ �2
1

� (2� �)

Z T

0

(T � s)1��
�
I��1h (s)� �

Z s

0

e��(s�r)I��1h (r) dr

�
ds� 
2

Z T

�

Z t

0

e��(t�s)I��1h (s) dsdt:

Thus

a11c1 + a12c0 = 
1

Z �

0

Z r

0

K1 (r; s)h (s) dsdr � �1
Z �

0

K1 (�; s)h (s) ds� �1
Z T

0

K1 (T; s)h (s) ds;

a21c1 + a22c0 = �2

Z �

0

h (s) ds+ �2

Z T

0

h (s) ds� ��2
Z �

0

K2 (�; s)h (s) ds

� ��2
Z T

0

K2 (T; s)h (s) ds� 
2
Z T

�

Z t

0

K1 (t; s)h (s) dsdt:

Solving the above system of equations for c0 and c1, we get

c0 =
a11
�
�2

Z �

0

h (s) ds+
a11
�
�2

Z T

0

h (s) ds� a11
�
��2

Z �

0

K2 (�; s)h (s) ds

� a11
�
��2

Z T

0

K2 (T; s)h (s) ds�
a11
�

2

Z T

�

Z t

0

K1 (t; s)h (s) dsdt

� a21
�

1

Z �

0

Z r

0

K1 (r; s)h (s) dsdr +
a21
�
�1

Z �

0

K1 (�; s)h (s) ds+
a21
�
�1

Z T

0

K1 (T; s)h (s) ds

c1 =
a22
�

1

Z �

0

Z r

0

K1 (r; s)h (s) dsdr �
a22
�
�1

Z �

0

K1 (�; s)h (s) ds�
a22
�
�1

Z T

0

K1 (T; s)h (s) ds

� a12
�
�2

Z �

0

h (s) ds� a12
�
�2

Z T

0

h (s) ds+
a12
�
��2

Z �

0

K2 (�; s)h (s) ds

+
a12
�
��2

Z T

0

K2 (T; s)h (s) ds+
a12
�

2

Z T

�

Z t

0

K1 (t; s)h (s) dsdt:

Inserting c0 and c1 in (4) we obtain the desired formula (3).
Conversely, assume that u satis�es (3). By a direct computation, it follows that the solution given by

(3) satis�es (2).

Lemma 5 For any g; h 2 C ([0; T ] ;R) we have����Z t

0

K1 (t; s) g (s) ds�
Z t

0

K1 (t; s)h (s) ds

���� � t��1

�� (�)

�
1� e��t

�
kg � hkC ;����Z t

0

K2 (t; s) g (s) ds�
Z t

0

K2 (t; s)h (s) ds

���� � t

�

�
1� e��t

�
kg � hkC :
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Proof. Indeed, ����Z t

0

K1 (t; s) g (s) ds�
Z t

0

K1 (t; s)h (s) ds

����
�
Z t

0

K1 (t; s) jg (s)� h (s)j ds �
Z t

0

K1 (t; s) ds kg � hkC

� 1

� (�� 1)

Z t

0

�Z t

s

e��(t�r) (r � s)��2 dr
�
ds kg � hkC

=
1

� (�� 1)

Z t

0

Z r

0

e��(t�r) (r � s)��2 dsdr kg � hkC

� t��1

� (�� 1) � (�� 1)
�
1� e��t

�
kg � hkC

� T��1

�� (�)

�
1� e��T

�
kg � hkC :

On the other hand����Z t

0

K2 (t; s) g (s) ds�
Z t

0

K2 (t; s)h (s) ds

����
=

���� 1

� (2� �)

Z t

0

(t� s)1��
Z s

0

e��(s�r)I��1 (g (r)� h (r)) drds
����

=
1

� (2� �) � (�� 1)

����Z t

0

(t� s)1��
Z s

0

e��(s�r)
Z r

0

(r � l)��2 (g (l)� h (l)) dldrds
����

� 1

(�� 1) � (2� �) � (�� 1)

Z t

0

(t� s)1��
Z s

0

e��(s�r)r��1drds kg � hkC

� 1

(�� 1) � (2� �) � (�� 1)

Z t

0

(t� s)1�� s��1
Z s

0

e��(s�r)drds kg � hkC

=

�
1� e��t

�
� (�� 1) � (2� �) � (�� 1)

Z t

0

(t� s)1�� s��1ds kg � hkC

=

�
1� e��t

�
t

� (�� 1) � (2� �) � (�� 1)

Z 1

0

(1� s)1�� s��1ds kg � hkC

=

�
1� e��t

�
t

� (�� 1) � (2� �) � (�� 1)B (�; 2� �) kg � hkC

=

�
1� e��t

�
t

� (�� 1) � (2� �) � (�� 1)
� (�) � (2� �)

� (2)
kg � hkC

=
t

�

�
1� e��t

�
kg � hkC :
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3 Main results

We introduce a �xed point problem associated with the problem as follows:

(Fu) (t) =

Z t

0

K1 (t; s) f (s; u (s)) ds

+ �1'1 (t)

Z �

0

K1 (�; s) f (s; u (s)) ds+ �1'1 (t)

Z T

0

K1 (T; s) f (s; u (s)) ds

� 
1'1 (t)
Z �

0

Z r

0

K1 (r; s) f (s; u (s)) dsdr � 
2'2 (t)
Z T

�

Z t

0

K1 (t; s) f (s; u (s)) dsdt

� ��2'2 (t)
Z �

0

K2 (�; s) f (s; u (s)) ds� ��2'2 (t)
Z T

0

K2 (T; s) f (s; u (s)) ds

+ �2'2 (t)

Z �

0

f (s; u (s)) ds+ �2'2 (t)

Z T

0

f (s; u (s)) ds: (5)

Let

R :=
T��1

�� (�)

�
1� e��T

�
+ j�1j�1

���1

�� (�)

�
1� e���

�
+ j�1j�1

T��1

�� (�)

�
1� e��T

�
+ j
1j�1

Z �

0

r��1

�� (�)

�
1� e��r

�
dr

+ j
2j�2
Z T

�

t��1

�� (�)

�
1� e��t

�
dt+ � j�2j�2

�

�

�
1� e���

�
+ � j�2j�2

T

�

�
1� e��T

�
+ j�2j�2� + j�2j�2T;

R� := R� T��1

�� (�)

�
1� e��T

�
:

Theorem 6 Let f: [0; T ]� R! R be a continuous function such that the following conditions hold:

(A1) there exists Lf > 0 such that

jf (t; u)� f (t; v)j � Lf ju� vj ; 8 (t; u) ; (t; v) 2 [0; T ]� R;

(A2) LfR < 1:
Then the problem (1) has a unique solution in C ([0; T ] ;R) :

Proof. Consider a ball
Br := fu 2 C ([0; T ] ;R) : kukC � rg

with r � MfR
1�LfR , where Mf := sup fjf (t; 0)j : 0 � t � Tg : It is clear that

jf (t; u)j � Lf juj+Mf ; u 2 R:
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Using this inequality and Lemma 5 from (5) it follows that

j(Fu) (t)j � t��1

�� (�)

�
1� e��t

�
kf (�; u (�))kC + j�1j j'1 (t)j

���1

�� (�)

�
1� e���

�
kf (�; u (�))kC

+ j�1j j'1 (t)j
T��1

�� (�)

�
1� e��T

�
kf (�; u (�))kC + j
1j j'1 (t)j

Z �

0

r��1

�� (�)

�
1� e��r

�
dr kf (�; u (�))kC

+ j
2j j'2 (t)j
Z T

�

t��1

�� (�)

�
1� e��t

�
dt kf (�; u (�))kC + � j�2j j'2 (t)j

�

�

�
1� e���

�
kf (�; u (�))kC

+ � j�2j j'2 (t)j
T

�

�
1� e��T

�
kf (�; u (�))kC + j�2j j'2 (t)j � kf (�; u (�))kC + j�2j j'2 (t)jT kf (�; u (�))kC

� (Lfr +Mf )R � r:

This shows that FBr � Br. Next, using the condition (A1), we obtain

kFu� FvkC � LfR ku� vkC :

By (A2) the operator F is a contraction. Thus by the Banach �xed point theorem has F a unique �xed point
in C ([0; T ] ;R).

Theorem 7 Let f: [0; T ]� R! R be a continuous function such that the following condition holds:

(A3) there exists 
 2 C ([0; T ] ;R+) and a nondecreasing function  : R+ ! R+ such that

jf (t; u)j � 
 (t) (juj) ; 8 (t; u) 2 [0; T ]� R:

(A4) There exists M > 0 such that
M

 (M) k
kC R
> 1:

Then the BVP (1) has at least one solution.

Proof. Step 1: Show that F : C ([0; T ] ;R) ! C ([0; T ] ;R) maps bounded sets into bounded sets and is
continuous.
Let Br be a bounded set in C ([0; T ] ;R) :Then jf (t; u (t))j � k
k (ju (t)j) � k
k (r) and by Lemma 5

j(Fu) (t)j � t��1

�� (�)

�
1� e��t

�
kf (�; u (�))kC + j�1j j'1 (t)j

���1

�� (�)

�
1� e���

�
kf (�; u (�))kC

+ j�1j j'1 (t)j
T��1

�� (�)

�
1� e��T

�
kf (�; u (�))kC + j
1j j'1 (t)j

Z �

0

t��1

�� (�)

�
1� e��t

�
dt kf (�; u (�))kC

+ j
2j j'2 (t)j
Z T

�

t��1

�� (�)

�
1� e��t

�
dt kf (�; u (�))kC + � j�2j j'2 (t)j

�

�

�
1� e���

�
kf (�; u (�))kC

+ � j�2j j'2 (t)j
T

�

�
1� e��T

�
kf (�; u (�))kC + j�2j j'2 (t)j � kf (�; u (�))kC + j�2j j'2 (t)jT kf (�; u (�))kC

� k
kC  (r)R:

Step 2: Next we show that F maps bounded sets into equicontinuous sets of C ([0; T ] ;R) :
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Let t1; t2 2 [0; T ] with t1 < t2 and u 2 Br. Then we obtain

j(Fu) (t1)� (Fu) (t2)j

�
����Z t1

0

(K1 (t1; s)�K2 (t1; s)) f (s; u (s)) ds

����+ ����Z t2

t1

K2 (t1; s) f (s; u (s)) ds

����
+ j�1j (j'1 (t1)� '1 (t2)j)

���1

�� (�)

�
1� e���

�
k
kC  (r)

+ j�1j (j'1 (t1)� '1 (t2)j)
T��1

�� (�)

�
1� e��T

�
k
kC  (r)

+ j
1j (j'1 (t1)� '1 (t2)j)
Z �

0

r��1

�� (�)

�
1� e��r

�
dr k
kC  (r)

+ j
2j j'2 (t1)� '2 (t2)j
Z T

�

t��1

�� (�)

�
1� e��t

�
dt k
kC  (r)

+ � j�2j j'2 (t1)� '2 (t2)j
�

�

�
1� e���

�
k
kC  (r)

+ � j�2j j'2 (t1)� '2 (t2)j
T

�

�
1� e��T

�
k
kC  (r)

+ � j�2j j'2 (t1)� '2 (t2)j k
kC  (r) + T j�2j j'2 (t1)� '2 (t2)j k
kC  (r) :

Obviously, the right-hand side of the above inequality tends to zero independently of u 2 Br as t1 ! t2.As
F satis�es the above assumptions, therefore it follows by the Arzelá-Ascoli theorem that F : C ([0; T ] ;R)!
C ([0; T ] ;R) is completely continuous.
The result will follow from the Leray-Schauder nonlinear alternative once we have proved the boundedness

of the set of all solutions to equations u = �Fu for 0 � � � 1.
Let u be a solution. Then using the computations employed in proving that F is bounded, we have

ju (t)j = � j(Fu) (t)j � k
kC  (kukC)R:

Consequently, we have
kukC

k
kC  (kukC)R
� 1:

In view of (A4), there exists M such that kukC 6=M . Let us set

U = fu 2 C ([0; T ] ;R) : kukC < M g :

Note that the operator F : U ! C ([0; T ] ;R) is continuous and completely continuous. From the choice of
U, there is no u 2 @U such that u = �Fu for some 0 < � < 1. Consequently, by the nonlinear alternative
of Leray-Schauder type, we deduce that F has a �xed point u 2 U which is a solution of problem (1). This
completes the proof.
Now, we result based on the Krasnoselskii theorem.

Theorem 8 Let f: [0; T ]� R! R be a continuous function such that the following conditions hold:

(A1) there exists Lf > 0 such that

jf (t; u)� f (t; v)j � Lf ju� vj ; 8 (t; u) ; (t; v) 2 [0; T ]� R;

(A5) there exists 
 2 C ([0; T ] ;R+) such that

jf (t; u)j � 
 (t) ; 8 (t; u) 2 [0; T ]� R:
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(A6) LfR� < 1:
Then the boundary value problem (1) has at least one solution in C ([0; T ] ;R) :

Proof. Consider the closed set Br := fu 2 C ([0; T ] ;R) : kukC � rg with r � R k
kC and de�ne the
operators F1 and F2 on Br as follows:

(F1u) (t) :=

Z t

0

K1 (t; s) f (s; u (s)) ds;

(F2u) (t) := �1'1 (t)

Z �

0

K1 (�; s) f (s; u (s)) ds+ �1'1 (t)

Z T

0

K1 (T; s) f (s; u (s)) ds

� 
1'1 (t)
Z �

0

Z r

0

K1 (r; s) f (s; u (s)) dsdr � 
2'2 (t)
Z T

�

Z t

0

K1 (t; s) f (s; u (s)) dsdt

� ��2'2 (t)
Z �

0

K2 (�; s) f (s; u (s)) ds� ��2'2 (t)
Z T

0

K2 (T; s) f (s; u (s)) ds

+ �2'2 (t)

Z �

0

f (s; u (s)) ds+ �2'2 (t)

Z T

0

f (s; u (s)) ds:

For u; v 2 Br, it is easy to verify that kF1u+ F2vkC � R k
kC : Thus, F1u+F2v 2 Br. One can easily show
that

kF2u� F2vkC � LfR
� ku� vkC :

By (A6) F2 is contraction. On the other hand, (i) continuity of f implies that the operator F1 is continuous,
(ii) F1 is uniformly bounded on Br :

kF1ukC �
T��1

�� (�)

�
1� e��T

�
k
kC ;

(iii) F1 is equicontinuous on Br. These imply that F1 is compact on Br. Thus all the assumptions of Kras-
noselskii�s theorem are satis�ed. In consequence, It follows from the conclusion of Krasnoselskii�s theorem
that the problem (1) has at least one solution on [0; T ].

4 Examples

Example 1. Consider the following problem8><>:
�
CD

3
2 + 2 CD

1
2

�
u (t) = 1p

t2+49

�
t sinu(t)

49 + e�t cos t
�
; 0 � t � 4;

2u (1) + 3u (4) = �
R 2
0
u (s) ds;

CD
1
2u (1) + 5 CD

1
2u (4) = �

R 2
0
u (s) ds;

(6)

where f (t; u) = 1p
t2+49

�
t sinu
49 + e�t cos t

�
; T = 4; � = 3

2 ; �1 = 2; �2 = 1; �1 = 3; �2 = 5; 
1 = �1; 
2 =
5; � = 1; � = 2; � = 3; � = 2:
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A simple calculations show that

a11 = �1e
��� + �1e

��T � 
1
�

�
1� e���

� �= 0:761;
a21 = �2

�

� (2� �)

Z �

0

(� � s)1�� e��sds+ �2
�

� (2� �)

Z T

0

(T � s)1�� e��sds

+
2

Z T

�

e��tdt�2
�

� (2� �)

Z �

0

(� � s)1�� e��sds+ �2
�

� (2� �)

Z T

0

(T � s)1�� e��sds+ 
2
Z T

�

e��tdt �= 24:8;

a22 = 
2 (T � �) �= 5; a12 = �1 + �1 � 
1� = 6; � = �145

'1 = max

�
24:8� 5
145

;
24:8� 5e�8

145

�
�= 0:17;

'2 = max

�
0:76� 6
�145 ;

0:76� 6e�8
145

�
�= 0:036;

R < 2:083:

To apply Theorem 6 we need to show conditions (A1)and (A2) are satis�ed. Indeed,

(A1) jf (t; u)� f (t; v)j =
��� 1p

t2+49
t
49 (sinu� sin v)

��� � 1
49 ju� vj ;

(A2) LfR < 1
492:083 < 0:043 < 1:

Therefore, according to Theorem 6 the BVP (6) has a unique solution on [0; 4] :
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1 Introduction

Let A be the class of functions f , defined by f(z) = z + a2z
2 + a3z

3 + · · · , that are analytic in the
open unit disc D = {z : |z| < 1} and Ω be the family of functions w which are analytic in D and
satisfy the conditions w(0) = 0, |w(z)| < 1 for all z ∈ D. If f1 and f2 are analytic functions in D,
then we say that f1 is subordinate to f2, written as f1 ≺ f2 if there exists a Schwarz function w ∈ Ω
such that f1(z) = f2(w(z)), z ∈ D. We also note that if f2 univalent in D , then f1 ≺ f2 if and
only if f1(0) = f2(0), f1(D) ⊂ f2(D) implies f1(Dr) ⊂ f2(Dr), where Dr = {z : |z| < r, 0 < r < 1}
(see [7]). Let f1(z) = z +

∑∞
n=2 anz

n and f2(z) = z +
∑∞

n=2 bnz
n be elements in A. Then the

convolution of these functions is defined by

f1(z) ∗ f2(z) = z +
∞∑

n=2

anbnz
n. (1.1)

Denote by P the family of functions p of the form p(z) = 1 + c1z + c2z
2 + c3z

3 + · · · , analytic in D
such that p is in P if and only if

p(z) ≺ 1 + z

1− z
⇔ p(z) =

1 + w(z)

1− w(z)
, z ∈ D (1.2)
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for some function w ∈ Ω and for all z ∈ D. It is well known that a function f in A is called starlike
(f ∈ S∗), convex (f ∈ C) and close-to-convex (f ∈ CC) if there exists a function p in P such that p
may be expressed, respectively, by the following relations:

p(z) = z
f ′(z)

f(z)
, p(z) = 1 + z

f ′′(z)

f ′(z)
, p(z) =

f ′(z)

g′(z)

for all z ∈ D. For definitions and properties of these classes, one may refer to [1] and [7].
The problem of maximizing the absolute value of a3 − µa22 is called Fekete-Szegö problem [3]

when µ is a real number. Later, Pfluger [14] considered the problem when µ is complex. Many
authors have considered the Fekete-Szegö problem for various subclasses of A (see [5, 12, 16]).

In 1909 and 1910, Jackson [8, 9, 10] initiated a study of q− difference operator Dq defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z
for z ∈ B�{0}, (1.3)

where B is a subset of complex plane C, called q− geometric set if qz ∈ B, whenever z ∈ B.
Note that if a subset B of C is q− geometric, then it contains all geometric sequences {zqn}∞0 ,
zq ∈ B. Obviously, Dqf(z) → f ′(z) as q → 1−. The q− difference operator (1.3) is also called
Jackson q− difference operator. Note that such an operator plays an important role in the theory
of hypergeometric series and quantum physics (see for instance [2, 4, 6, 11]).

Also, note that Dqf(0) → f ′(0) as q → 1− and D2
qf(z) = Dq(Dqf(z)). In fact, q− calculus is

ordinary classical calculus without the notion of limits. Recent interest in q− calculus is because
of its applications in various branches of mathematics and physics. For definition and properties of
q− difference operator and q− calculus, one may refer to [2, 4, 6, 11]. In particular, we recall the
following definitions and properties:

Since

Dqz
n =

1− qn

1− q
zn−1 = [n]qz

n−1,

where [n]q = 1−qn
1−q , it follows that for any f ∈ A we have

Dqf(z) = 1 +
∞∑

n=2

[n]qanz
n−1, (1.4)

Dq(zDqf(z)) = 1 +
∞∑

n=2

[n]2qanz
n−1. (1.5)

The q− analogue of the factorial function is defined for positive integer n by

[n]q! =
n∏

k=1

[k]q,

where q ∈ (0, 1). Clearly, as q → 1−, [n]q → n and [n]q!→ n!. For notations, one may refer to [6].
We introduce a new generalized class of q− convex functions as follows:

Definition 1.1. A function f ∈ A is said to be in the Cq such that

Cq =

{
f ∈ A : Re

(
Dq(zDqf(z))

Dqf(z)

)
> 0, q ∈ (0, 1), z ∈ D

}
.

When q → 1− in the limiting sense, then the class Cq reduces to the traditional class C.
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We also introduce a new generalized class of q− close-to-convex functions associated with q−
convex functions in D.

Definition 1.2. A function f ∈ A is said to be in the CCq if there exists a function g in class Cq
such that

Re

(
Dqf(z)

Dqg(z)

)
> 0, (1.6)

where q ∈ (0, 1), z ∈ D. As Dqf(z) → f ′(z) and Dqg(z) → g′(z), when q → 1− in the limiting
sense, then the inequality (1.6) reduces to the traditional class CC.

Definition 1.1 and Definition 1.2 are equivalent to the following classes

Cq =

{
f ∈ A :

(
Dq(zDqf(z))

Dqf(z)

)
≺ 1 + z

1− z
, q ∈ (0, 1), z ∈ D

}
,

CCq =

{
f ∈ A :

(
Dqf(z)

Dqg(z)

)
≺ 1 + z

1− z
, g(z) ∈ Cq

}
.

In this paper, we investigate the Bieberbach-de Branges inequalities for the class Cq and CCq. We
also obtain the Fekete-Szegö inequalities for both these classes.

2 The Bieberbach-De Branges Theorems

In order to find the Bieberbach-de Branges theorem for the class Cq, we need the following result:

Lemma 2.1. [7](Caratheodory’s lemma) If p ∈ P and p(z) = 1 +
∑∞

n=1 cnz
n, then |cn| ≤ 2 for

n ≥ 1. This inequality is sharp for each n.

Theorem 2.2. If f ∈ Cq and f(z) = z +
∑∞

n=2 anz
n, then

|an| ≤
1

[n]q!

n−2∏
k=0

(
[k]q +

2

q

)
. (2.1)

This result is sharp for all n ≥ 2.

Proof. In view of Definition 1.1 and subordination principle, we can write

Dq(zDqf(z))

Dqf(z)
= p(z)

where p ∈ P, p(0) = 1 and Rep(z) > 0.
In view of (1.4), (1.5) and p(z) = 1 + c1z + c2z

2 + ..., we get(
1 +

∞∑
n=2

[n]2qanz
n−1
)

=

(
1 +

∞∑
n=2

[n]qanz
n−1
)(

1 +
∞∑

n=1

cnz
n

)
.

This equation yields,

1 + [2]2qa2z + [3]2qa3z
2 + ... = 1 + ([2]qa2 + c1)z + ([3]qa3 + [2]qa2c1 + c2)z2 + ... (2.2)

3
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Comparing the coefficients of zn on both sides, we obtain

[n+ 1]q([n+ 1]q − 1)an+1 = [n]qanc1 + [n− 1]qan−1c2 + ...+ [2]qa2cn−1 + cn

or equivalently

q[n]q[n+ 1]qan+1 = [n]qanc1 + [n− 1]qan−1c2 + ...+ [2]qa2cn−1 + cn.

In view of Lemma 2.1, we get

q[n]q[n+ 1]q|an+1| ≤ 2

[
[n]q|an|+ [n− 1]q|an−1|+ ...+ [2]q|a2|+ 1

]
.

This shows that we have

q[n]q[n+ 1]q|an+1| ≤ 2

( n∑
k=1

[k]q|ak|
)
, |a1| = 1.

This inequality is equivalent to

q[n− 1]q[n]q|an| ≤ 2

( n−1∑
k=1

[k]q|ak|
)
, |a1| = 1 (2.3)

or

|an| ≤
2

q[n− 1]q[n]q

( n−1∑
k=1

[k]q|ak|
)
, |a1| = 1. (2.4)

In order to prove (2.1), we will use the process of iteration. We first plug-in n = 2 and use our
assumption |a1| = 1 in (2.4). On simplification, we get

|a2| ≤
1

[2]q!

2

q
. (2.5)

This is equivalent to

|a2| ≤
1

[2]q!

2−2∏
k=0

(
[k]q +

2

q

)
.

Next by substituting n = 3 and using the output (2.5) in (2.4), we obtain

|a3| ≤
1

[3]q!

2

q
(1 +

2

q
).

This is equivalent to

|a3| ≤
1

[3]q!

3−2∏
k=0

(
[k]q +

2

q

)
. (2.6)

By repeating the above process by letting n = 4 and in view of (2.4), it is a routine process to prove

|a4| ≤
1

[4]q!

2

q
(1 +

2

q
)(1 + q +

2

q
),

4
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that is,

|a4| ≤
1

[4]q!

4−2∏
k=0

(
[k]q +

2

q

)
. (2.7)

By continuing the process of iterations, we get (2.1). The result in (2.1) is sharp for the functions

f(z) =
∫

(1− z)−
2
q

1−q

logq−1 dqz.

Remark 2.3. If we take limit for q → 1− in inequality (2.1), we get

|an| ≤ 1

for all n ≥ 2. This is the well known coefficient inequality for convex functions.

Theorem 2.2 helps us to establish the Bieberbach-de Branges theorem for the class CCq in the
next result.

Theorem 2.4. If f ∈ CCq and f(z) = z +
∑∞

n=2 anz
n, then

|an| ≤
1

[n]q!

n−2∏
k=0

A(k, q) +
2

[n]q

n−1∑
r=1

(
[n− r]q

1

[n− r]q!

n−r−2∏
k=−1

A(k, q)

)
, (2.8)

where A(k, q) =
(
[k]q + 2

q

)
. Extremal function is given by

f(z) =

∫
1 + z

1− z
(1− z)−

2
q

1−q

logq−1 dqz.

Proof. In view of Definition 1.2 and subordination principle, we can write

Dqf(z)

Dqg(z)
= p(z) (2.9)

for some g ∈ Cq, where g(z) = z+
∑∞

n=2 bnz
n, z ∈ D. Since p(0) = 1 and Rep(z) > 0, it shows that

p ∈ P, where p(z) = 1 +
∑∞

n=1 cnz
n. In view of (1.4), we have

Dqf(z) = 1 +
∞∑

n=2

[n]qanz
n−1 and Dqg(z) = 1 +

∞∑
n=2

[n]qbnz
n−1.

Therefore, (2.9) is equivalent to(
1 +

∞∑
n=2

[n]qanz
n−1
)

=

(
1 +

∞∑
n=2

[n]qbnz
n−1
)(

1 +
∞∑

n=1

cnz
n

)
.

This equation yields,

1 + [2]qa2z + [3]qa3z
2 + ... = 1 + ([2]qb2 + c1)z + ([3]qb3 + [2]qb2c1 + c2)z2 + ... (2.10)

Comparing the coefficients of zn−1 on both sides, we obtain

[n]qan = [n]qbn + [n− 1]qbn−1c1 + [n− 2]qbn−2c2 + ...+ [2]qb2cn−2 + cn−1.
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Using Lemma 2.1, we get

[n]q|an| ≤ [n]q|bn|+ 2

[
[n− 1]q|bn−1|+ ...+ [2]q|b2|+ 1

]
or equivalently,

[n]q|an| ≤ [n]q|bn|+ 2

( n−1∑
r=1

[n− r]q|bn−r|
)
, |b1| = 1. (2.11)

Using Theorem 2.2, (2.11) yields,

|an| ≤
1

[n]q!

n−2∏
k=0

(
[k]q +

2

q

)
+

2

[n]q

n−1∑
r=1

(
[n− r]q

1

[n− r]q!

n−r−2∏
k=−1

(
[k]q +

2

q

))
.

This inequality gives (2.8), where A(k, q) =
(
[k]q + 2

q

)
. Thus the proof is completed.

Remark 2.5. If we take limit for q → 1− in inequality (2.8), we get

|an| ≤ n

for all n ≥ 2. This is the well known coefficient inequality for close-to-convex functions.

3 Fekete-Szegö Inequalities

We now investigate Fekete-Szegö inequalities for the class Cq and CCq . For our main theorems we
need the following result:

Lemma 3.1. ([15]) If p ∈ P with p(z) = 1 + c1z + c2z
2 + ..., then∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|
2

2
.

Theorem 3.2. If f belongs to the class Cq, then

|a2| ≤
2

[2]qq
, (3.1)

|a3| ≤
2

[3]q[2]qq

(
1 +

2

q

)
, (3.2)∣∣∣∣a3 − [2]q

[3]q
a22

∣∣∣∣ ≤ 2

[3]q[2]qq
. (3.3)

These results are sharp.

Proof. Using equation (2.2), we obtain

a2 =
c1

[2]q([2]q − 1)
=

c1
[2]q[1]qq

(3.4)

6
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and

a3 =
1

[3]q([3]q − 1)

(
c2 +

c21
[2]q − 1

)
=

1

[3]q[2]qq

(
c2 +

c21
q

)
. (3.5)

Taking into account Lemma 2.1 and Lemma 3.1, we obtain

|a2| =
∣∣∣∣ c1[2]qq

∣∣∣∣ ≤ 2

[2]qq

and

|a3| =
∣∣∣∣ 1

[3]q[2]qq

(
c2 +

c21
q

)∣∣∣∣ ≤ 2

[3]q[2]qq

(
1 +

2

q

)
.

Furthermore, using (3.4) and (3.5), we obtain∣∣∣∣a3 − [2]q
[3]q

a22

∣∣∣∣ =

∣∣∣∣ c2
[3]q[2]qq

∣∣∣∣ ≤ 2

[3]q[2]qq
.

These results are sharp for the functions

Dq(zDqf(z))

Dqf(z)
=

1 + z

1− z
⇒ f(z) =

∫
(1− z)−

2
q

1−q

logq−1 dqz, (3.6)

Dq(zDqf(z))

Dqf(z)
=

1 + z2

1− z2
⇒ f(z) =

∫
(1− z2)

− 2
[2]qq

1−q

logq−1 dqz. (3.7)

In fact, Theorem 3.2 gives a special case of Fekete-Szegö problem for real µ = [2]q/[3]q which obtain
the naturally and simple estimate. Thus the proof is completed.

Motivated by the above-mentioned special case of Fekete-Szegö problem, we now find the next
estimate of |a3 − µa22| for complex µ.

Theorem 3.3. Let µ be a nonzero complex number and let f ∈ Cq, then

|a3 − µa22| ≤
2

[3]q[2]qq
max

{
1,

∣∣∣∣1 +
2

q

(
1− [3]q

[2]q
µ

)∣∣∣∣}. (3.8)

This result is sharp.

Proof. Applying (3.4) and (3.5), we have

a3 − µa22 =
1

[3]q[2]qq

[
c2 −

c21
2

+
c21
2

(
1 +

2

q

)]
− µ c21

([2]q)2q2

=
1

[3]q[2]qq

[
c2 −

c21
2

+
c21
2

(
1 +

2

q

(
1− [3]q[2]qq

([2]q)2q
µ

))]
In view of Lemma 2.1 and Lemma 3.1, we get

|a3 − µa22| ≤
1

[3]q[2]qq

[
2− |c1|

2

2
+
|c1|2

2

(∣∣∣∣1 +
2

q

(
1− [3]q

[2]q
µ

)∣∣∣∣)]
=

1

[3]q[2]qq

[
2 +
|c1|2

2

(∣∣∣∣1 +
2

q

(
1− [3]q

[2]q
µ

)∣∣∣∣− 1

)]
≤ 2

[3]q[2]qq
max

{
1,

∣∣∣∣1 +
2

q

(
1− [3]q

[2]q
µ

)∣∣∣∣}.
7
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This result is sharp for the functions f(z) =
∫

(1−z)−
2
q

1−q

logq−1 dqz and f(z) =
∫

(1−z2)
− 2

[2]qq
1−q

logq−1 dqz.

We next consider the case, when µ is real. Then we have:

Theorem 3.4. If f belongs to the class Cq, then for µ ∈ R, we have

|a3 − µa22| ≤


2

[3]q [2]qq

(
1 + 2

q

(
1− [3]q

[2]q
µ
))
, µ ≤ [2]q

[3]q

2
[3]q [2]qq

,
[2]q
[3]q
≤ µ ≤ q(2+ 2

q )[2]q

2[3]q

2
[3]q [2]qq

(
2
q
[3]q
[2]q

µ− 1− 2
q

)
, µ ≥ q(2+ 2

q )[2]q

2[3]q

These results are sharp.

Proof. First, let µ ≤ [2]q
[3]q

. In this case (3.4), (3.5), Lemma 2.1 and Lemma 3.1 give

|a3 − µa22| ≤
1

[3]q[2]qq

(
2− |c1|

2

2
+
|c1|2

2

(
1 +

2

q
− 2

q

[3]q
[2]q

µ

))
≤ 2

[3]q[2]qq

(
1 +

2

q

(
1− [3]q

[2]q
µ

))
.

Let, now
[2]q
[3]q
≤ µ ≤ q(2+ 2

q )[2]q

2[3]q
. Then using the above calculations, we have

|a3 − µa22| ≤
2

[3]q[2]qq
.

Finally, if µ ≥ q(2+ 2
q )[2]q

2[3]q
, then

|a3 − µa22| ≤
1

[3]q[2]qq

(
2− |c1|

2

2
+
|c1|2

2

(
2

q

[3]q
[2]q

µ− 1− 2

q

))
≤ 1

[3]q[2]qq

(
2 +
|c1|2

2

(
2

q

[3]q
[2]q

µ− 2− 2

q

))
≤ 2

[3]q[2]qq

(
2

q

[3]q
[2]q

µ− 1− 2

q

)
.

Equality is attained for the second case on choosing c1 = 0, c2 = 2 in (3.6) and for the first and
third case on choosing c1 = 2, c2 = 2, c1 = 2i, c2 = −2 in (3.7), respectively. Thus the proof is
completed.

Remark 3.5. Taking q → 1− in Theorem 3.4, we get Fekete-Szegö inequality for convex functions
which was found by Keogh and Merkes [13].

Theorem 3.6. If f belongs to the class CCq, then

|a2| ≤
2

[2]q
(1 +

1

q
), (3.9)

8
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|a3| ≤
2

[2]qq

(
1 +

2

q

)
, (3.10)∣∣∣∣a3 − 1

[2]q
a22

∣∣∣∣ ≤ 2

[2]qq
. (3.11)

These results are sharp.

Proof. Using equation (2.10), we obtain

a2 = b2 +
c1

[2]q
(3.12)

and

a3 = b3 +
[2]q
[3]q

b2c1 +
c2

[3]q
. (3.13)

Since b2, b3 ∈ Cq, applying equations (3.4) and (3.5) in (3.12) and (3.13), respectively, we get

a2 =
c1

[2]qq
+

c1
[2]q

(3.14)

and

a3 =
1

[2]qq

(
c2 +

c21
q

)
. (3.15)

Taking into account Lemma 2.1 and Lemma 3.1, we obtain

|a2| =
∣∣∣∣ c1[2]qq

+
c1

[2]q

∣∣∣∣ ≤ 2

[2]q
(1 +

1

q
)

and

|a3| =
∣∣∣∣ 1

[2]qq

(
c2 +

c21
q

)∣∣∣∣ ≤ 2

[2]qq
(1 +

2

q
).

Furthermore, using (3.14) and (3.15), we obtain∣∣∣∣a3 − 1

[2]q
a22

∣∣∣∣ =

∣∣∣∣ c2[2]qq

∣∣∣∣ ≤ 2

[2]qq
.

These results are sharp for the functions

Dqf(z)

Dqg(z)
=

1 + z

1− z
⇒ f(z) =

∫
1 + z

1− z
(1− z)−

2
q

1−q

logq−1 dqz, (3.16)

Dqf(z)

Dqg(z)
=

1 + z2

1− z2
⇒ f(z) =

∫
1 + z2

1− z2
(1− z2)

− 2
[2]qq

1−q

logq−1 dqz. (3.17)

This completes the proof.

Theorem 3.7. Let µ be a nonzero complex number and let f ∈ CCq, then

|a3 − µa22| ≤
2

[2]qq
max

{
1,

∣∣∣∣1 +
2

q

(
1− [2]qµ

)∣∣∣∣}. (3.18)

This result is sharp.

9
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Proof. Applying (3.14) and (3.15), we have

a3 − µa22 =
1

[2]qq

[
c2 −

c21
2

+
c21
2

(
1 +

2

q

)]
− µ

(
c1

[2]qq
+

c1
[2]q

)2

=
1

[2]qq

[
c2 −

c21
2

+
c21
2

(
1 +

2

q

(
1− [2]qq

q
µ

))]
In view of Lemma 2.1 and Lemma 3.1, we obtain

|a3 − µa22| ≤
1

[2]qq

[
2− |c1|

2

2
+
|c1|2

2

(∣∣∣∣1 +
2

q

(
1− [2]qµ

)∣∣∣∣)]
=

1

[2]qq

[
2 +
|c1|2

2

(∣∣∣∣1 +
2

q

(
1− [2]qµ

)∣∣∣∣− 1

)]
≤ 2

[2]qq
max

{
1,

∣∣∣∣1 +
2

q

(
1− [2]qµ

)∣∣∣∣}.
This result is sharp for the functions given in (3.16) and (3.17). Thus the proof is completed.

Remark 3.8. Taking q → 1− in Theorem 3.3 and Theorem 3.7, we obtain

|a3 − µa22| ≤
1

3
max{1, |1 + 2(1− 3

2
µ)|},

|a3 − µa22| ≤ max{1, |1 + 2(1− 2µ)|}.

These results are sharp.
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Bilinear θ-Type Calderón-Zygmund Operators on
Non-homogeneous Generalized Morrey Spaces
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Abstract: Let (X , d, µ) be a non-homogeneous metric measure space which
satisfies the geometrically doubling and the upper doubling conditions in the sense of
Hytönen. In this paper, the authors prove that the bilinear θ-type Calderón-Zygmund
operator and its corresponding commutator are bounded on the generalized Morrey
space Lp,φ(µ) for 1 < p < ∞. As an application, the authors also obtain that the
bilinear θ-type Calderón-Zygmund operator and its commutator are bounded on the
Morrey space Mq

p (µ).

Keywords: Non-homogeneous metric measure space, commutator, bilinear
θ-type Calderón-Zygmund operator, RBMO(µ), generalized Morrey space.

2010 MR Subject Classification: 42B20, 42B35, 30L99.

1 Introduction

As we all know, in 2010, Hytönen [7] firstly introduced the non-homogeneous metric
measure spaces including the upper doubling and the geometrically doubling conditions
(see Definitions 1.1 and 1.2, respectively), to unify the homogeneous type spaces (see [1-3])
and the non-doubling measure spaces [9, 16, 18-22, 24, 27]. Since then, some properties for
various of the singular integral operators and function spaces on non-homogeneous metric
measure spaces have been obtained by researchers, for example, see [4-6, 8, 10-13, 17, 23,
25, 28-29] and their references.

In 1985, Yabuta [26] gave out the definition of the θ-type Calderón-Zygmund opera-
tor. Later, some researchers paid much attention to study the properties of the operator
on different function spaces, for example, Ri and Zhang [16, 17] obtained the bounded-
ness of the θ-type Calderón-Zygmund on Hardy spaces with non-doubling measures and
non-homogeneous metric measure spaces, respectively. Besides, in 2009, Maldonado and
Naibo [14] developed a theory of the bilinear Calderón-Zygmund operator of type ω(t)
and generalized the consequences of Yabuta [26]. About the further development of the
bilinear Calderón-Zygmund operator of type ω(t), we can see [28-29].

*Corresponding author and Email: taosp@nwnu.edu.cn (by S. Tao); lghwmm1989@126.com (by G. Lu).
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2 Guanghui Lu, Shuangping Tao

In this paper, let (X , d, µ) be a non-homogeneous metric measure space in the sense of
Hytönen [7]. The definition of the generalized Morrey space on (X , d, µ) was given out by
Lu and Tao in [11], furthermore, we also obtained the boundedness of some classical singu-
lar integral operators on generalized Morrey space. In [25], Xie et al. got the boundedness
of the commutators generated by the bilinear θ-type Calderón-Zygmund operator and the
spaces RBMO(µ). Inspired by this, we will study the boundedness of the bilinear θ-type
Calderón-Zygmund operator and its commutator on generalized Morrey space. Moreover,
as an application, we also study the boundedness of the bilinear θ-type Calderón-Zygmund
operator and its commutator on Morrey space.

Before stating the main results of this article, we first recall some necessary notions.
In [7], Hytönen originally introduced the following definition of the upper doubling metric
measure space.

Definition 1.1. A metric measure space (X , d, µ) is said to be upper doubling if µ is a
Borel measure on X and there exist a dominating function λ : X × (0,∞)→ (0,∞) and a
positive constant Cλ such that, for each x ∈ X , r → λ(x, r) is non-decreasing and, for all
x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x,
r

2
). (1.1)

Hytönen et al. [10] have showed that, there is another dominating function λ̃ such that
λ̃ ≤ λ, Cλ̃ ≤ Cλ and

λ̃(x, r) ≤ Cλ̃λ̃(y, r), (1.2)

where x, y ∈ X and d(x, y) ≤ r. If there is no special instruction in this article, we always
assume λ that in (1.1) satisfies (1.2).

Coifaman and Weiss in [2] firstly introduced the notion of the geometrically doubling
as follows, which is well known in analysis on metric spaces.

Definition 1.2. A metric space (X , d) is said to be geometrically doubling, if there exists
some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi,

r
2)}i of B(x, r) such that the cardinality of this covering is at most N0.

Assume (X , d) is a metric space. In [7], Hytönen proved the following statements are
mutually equivalent:

(1) (X , d) is geometrically doubling.
(2) For any ε ∈ (0, 1) and any ball B(x, r) ⊂ X , there is a finite ball covering {B(xi, εr)}i

of B(x, r) such that the cardinality of this covering is at most N0ε
−n, where n := log2N0.

(3) For any ε ∈ (0, 1), any ball B(x, r) ⊂ X contains at most N0ε
−n centers of disjoint

balls {B(xi, εr)}i.
(4) There is M ∈ N such that any ball B(x, r) ⊂ X contains at most M centers {xi}i

of disjoint balls {B(xi,
r
4)}Mi=1.

Now we recall the definition of the coefficient KB,S given in [7], which is analogous to
the number KQ,R introduced by Tolsa in [20, 21], i.e., for any two balls B ⊂ S in X , set

KB,S := 1 +

∫
2S\B

1

λ(cB, d(x, cB))
dµ(x), (1.3)
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where cB is the center of the ball B.
Though the measure doubling condition is not assumed uniformly for all balls on (X , d,

µ), it was showed in [7] that there are many balls satisfying the property of the (α, η)-
doubling, i.e., a ball B ⊂ X is said to belong to (α, η)-doubling if µ(αB) ≤ ηµ(B), for α,
η > 1. In the latter of this paper, unless α and ηα are specified, otherwise, by an (α, ηα)-

doubling ball we mean a (6, β6)-doubling ball with a fixed number η6 > max{C3 log2 6
λ , 6n},

where n := log2N0 is viewed as a geometric dimension of the space. In addition, the
smallest (6, η6)-doubling ball of the from 6jB with j ∈ N is denoted by B̃6, and B̃6 is
simply denoted by B̃.

Now we need to recall the following definition of RBMO(µ) from [7].

Definition 1.3. Let ρ ∈ (1,∞). A function f ∈ L1
loc(µ) is said to be in the space

RBMO(µ) if there exist a positive constant and, for any ball B ⊂ X , a number fB such
that

1

µ(ρB)

∫
B
|f(x)− fB|dµ(x) ≤ C (1.4)

and, for any two balls B and S such that B ⊂ S

|fB − fS | ≤ CKB,S . (1.5)

The infimum of the positive constants C satisfying both (1.4) and (1.5) is defined to be
the RBMO(µ) norm of f and denoted by ‖f‖RBMO(µ).

The following notion of the bilinear θ-type Calderón-Zygmund operator is given in [25].

Definition 1.4. Let θ be a non-negative and non-decreasing function on (0,∞) satisfying∫ 1

0

θ(t)

t
dt <∞.

A kernel K(·, ·, ·) ∈ L1
loc(X 3 \ {(x, y1, y2) : x = y1 = y2}) is called the bilinear θ-type

Calderón-Zygmund kernel if it satisfies the following conditions:
(1) for all (x, y1, y2) ∈ X 3 with x 6= yi for i = 1, 2,

|K(x, y1, y2)| ≤ C

[
2∑
i=1

λ(x, d(x, yi))

]−2
; (1.6)

(2) there exists a positive constant C such that, for all x, x′, y1, y2 ∈ X with Cd(x, x′) ≤
max1≤i≤2 d(x, yi),

|K(x, y1, y2)−K(x′, y1, y2)| ≤ θ

(
d(x, x′)∑2
i=1 d(x, yi)

)[
2∑
i=1

λ(x, d(x, yi))

]−2
. (1.7)

Let L∞b (µ) be the space of all L∞(µ) functions with bounded support. A bilinear
operator Tθ is called a bilinear θ-type Calderón-Zygmund operator with kernel K satisfying
(1.6) and (1.7) if, for all f1, f2 ∈ L∞b (µ) and x /∈

⋂2
i=1 suppfi,

Tθ(f1, f2)(x) :=

∫
X

∫
X
K(x, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2). (1.8)
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4 Guanghui Lu, Shuangping Tao

The commutator closely related to the bilinear θ-type Calderón-Zygmund operator Tθ
and b1, b2 ∈ RBMO(µ) is defined by

[b1, b2, Tθ](f1, f2)(x) := b1(x)b2(x)Tθ(f1, f2)(x)− b1(x)Tθ(f1, b2f2)(x)

−b2(x)Tθ(b1f1, f2)(x) + Tθ(b1f1, b2f2)(x). (1.9)

Also, [b1, Tθ] and [b2, Tθ] are defined as follows, respectively:

[b1, Tθ](f1, f2)(x) = b1(x)Tθ(f1, f2)(x)− Tθ(b1f1, f2)(x), (1.10)

[b2, Tθ](f1, f2)(x) = b2(x)Tθ(f1, f2)(x)− Tθ(f1, b2f2)(x). (1.11)

Now we recall the definition of the generalized Morrey space Lp,φ(µ) from [11].

Definition 1.5. Let κ > 1 and 1 ≤ p < ∞. Suppose that φ : (0,∞) → (0,∞) is an
increasing function. Then the generalized Morrey space Lp,φ(µ) is defined by

Lp,φ(µ) := {f ∈ Lploc(µ) : ‖f‖Lp,φ(µ) <∞},

where

‖f‖Lp,φ(µ) := sup
B

(
1

φ(µ(κB))

∫
B
|f(x)|pdµ(x)

) 1
p

. (1.12)

From [11, Remark 1.7], it follows that the generalized Morrey space Lp,φ(µ) is indepen-
dent of the choice of κ > 1.

The following definition of the ε-weak reverse doubling condition is from [5].

Definition 1.6. Let ε ∈ (0,∞). A dominating function λ is said to satisfy the ε-weak
reverse doubling condition if, for all s ∈ (0, 2diam(X )) and a ∈ (1, 2diam(X )/s), there
exists a number C(a) ∈ [1,∞), depending only a and X , such that,

λ(x, as) ≥ C(a)λ(x, s), x ∈ X , (1.13)

and, moreover,
∞∑
k=1

1

[C(ak)]ε
<∞. (1.14)

Now we can state the main theorems of this article as follows.

Theorem 1.7. Let 1 < p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, K satisfy (1.6) and (1.7), λ satisfy the

ε-weak reverse doubling condition, and let φ : (0,∞) → (0,∞) be an increasing function.
Suppose that Tθ is a bilinear Calderón-Zygmund operator and is bounded from L1(µ) ×
L1(µ) to L

1
2
,∞(µ), the mapping t 7→ φ(t)

t is almost decreasing and there is a constant C > 0
such that

φ(t)

t
≤ Cφ(s)

s
(1.15)
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for s ≥ t, in addition, φ also satisfies the following condition∫ ∞
r

φ(t)

t

dt

t
≤ Cφ(r)

r
, for all r > 0.

Then there exists a positive constant C, such that, for all fi ∈ Lpi,φ(µ) with i = 1, 2,

‖Tθ(f1, f2)‖Lp,φ(µ) ≤ C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

Theorem 1.8. Under the same assumption of Theorem 1.7. Suppose that b1, b2 ∈ RBMO(µ),
and [b1, b2, Tθ](f1, f2) is as in (1.9). Then there is a positive constant C, such that, for all
fi ∈ Lpi,φ(µ) with i = 1, 2,

‖[b1, b2, Tθ](f1, f2)‖Lp,φ(µ) ≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

In particular, if we take φ(t) = t
1− p

q with 1 ≤ p ≤ q < ∞ and t > 0 in Definition 1.5,
the generalized Morrey space is just Morrey space which was established by Cao and Zhou
in [4], that is, for k > 1 and 1 ≤ p ≤ q <∞, the Morrey space M q

p (µ) is defined as

M q
p (µ) := {f ∈ Lploc(µ) : ‖f‖Mq

p (µ)
<∞}

with the norm

‖f‖Mq
p (µ)

:= sup
B

[µ(kB)]
1
q
− 1
p

(∫
B
|f(x)|pdµ(x)

) 1
p

. (1.16)

Furthermore, based on the results of Theorems 1.7-1.8, it is not hard to find that the
bilinear θ-type Calderón-Zygmund operator also holds on the Morrey space M q

p (µ).

Theorem 1.9. Assume that Tθ is a bilinear θ-type Calderón-Zygmund operator, and K
satisfies (1.6) and (1.7). Suppose that Tθ is a bounded operator from L1(µ) × L1(µ) to

L
1
2
,∞(µ), then there exists a positive constant C, such that, for all fi ∈ M qi

pi (µ) with
i = 1, 2,

‖Tθ(f1, f2)‖Mq
p (µ)
≤ C‖f1‖Mq1

p1
(µ)‖f2‖Mq2

p2
(µ),

where 1 < pi ≤ qi and 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

.

Theorem 1.10. Let b1, b2 ∈ RBMO(µ), K satisfy (1.6) and (1.7). Assume λ satisfy the
ε-weak reverse doubling condition, f1 ∈ M q1

p1 (µ) and f2 ∈ M q2
p2 (µ). If Tθ is a bounded

operator from L1(µ)× L1(µ) to L
1
2
,∞(µ), then there is a constant C > 0 such that

‖[b1, b2, Tθ](f1, f2)‖Mq
p (µ)
≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1

p1
(µ)‖f2‖Mq2

p2
(µ).

where 1 < pi ≤ qi <∞ for i = 1, 2, 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

.

Throughout the paper C will denote a positive constant whose value may change at
each appearance. For a µ-measurable set E, χE denotes its characteristic function. For
any p ∈ [1,∞], we denote by p′ its conjugate index, that is, 1

p + 1
p′ = 1.
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2 Preliminaries

In this section, we need to recall some preliminary lemmas which will be used in the
proofs of our main theorems. Firstly, we recall the following useful properties of KB,S

from [7].

Lemma 2.1. (1) For all balls B ⊂ R ⊂ S, it holds true that KB,R ≤ KB,S .

(2) For any ξ ∈ [1,∞), there exists a positive constant Cξ, depending on ξ, such that,
for all balls B ⊂ S with rS ≤ ξrB,KB,S ≤ Cξ.

(3) For any % ∈ (1,∞), there exists a positive constant C%, depending on %, such that,
for all balls B,K

B,B̃%
≤ C%.

(4) There is a positive constant c such that, for all balls B ⊂ R ⊂ S,KB,S ≤ KB,R +
cKR,S . In particular, if B and R are concentric, then c = 1.

(5) There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S,KB,R ≤ c̃KB,S;
moreover, if B and R are concentric, then KR,S ≤ KB,S.

Next, we need recall the boundedness of the bilinear θ-type Calderón-Zygmund Tθ and
its commutator [b1, b2, Tθ](f1, f2) on Lebesgue space Lp(µ), see [28, 25], respectively.

Lemma 2.2. Let K satisfy (1.6) and (1.7), 1 < p1, p2 <∞, 1
p = 1

p1
+ 1

p2
, f1 ∈ Lp1(µ) and

f2 ∈ Lp2(µ). If Tθ is bounded from L1(µ)× L1(µ) to L
1
2
,∞(µ), then there exists a positive

constant C such that

‖Tθ(f1, f2)‖Lp(µ) ≤ C‖f1‖Lp1 (µ)‖f2‖Lp2 (µ).

Lemma 2.3. Let 1 < p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, b1, b2 ∈ RBMO(µ). Assume that

f1 ∈ Lp1(µ), f2 ∈ Lp2(µ) with
∫
X Tθ(f1, f2)(x)dµ(x) = 0,

∫
X [b1, Tθ](f1, f2)(x)dµ(x) = 0,∫

X [b2, Tθ](f1, f2)(x)dµ(x) = 0,
∫
X [b1, b2, Tθ](f1, f2)(x)dµ(x) = 0 if ‖µ‖ < ∞. If Tθ is a

bounded from L1(µ)× L1(µ) to L
1
2
,∞(µ), then there exists a constant C > 0 such that

‖[b1, b2, Tθ](f1, f2)‖Lp(µ) ≤ C‖f1‖Lp1 (µ)‖f2‖Lp2 (µ).

Nakai [15] introduced the following lemma which ensures that the integrability of the
functions can be boostered automatically.

Lemma 2.4. Suppose that ψ : (0,∞)→ (0,∞) be a function satisfying∫ ∞
r

ψ(s)
ds

s
≤ Cψ(r) for all r > 0.

Then there exists ε > 0 such that
∫∞
r ψ(s)sε dss ≤ Cψ(r)rε for all r > 0. In particular, for

every η ≤ 1, there exists c > 0 such that
∫∞
r [ψ(s)]η dss ≤ C[ψ(r)]η for all r > 0.

Finally, we recall the following equivalent characterization of RBMO(µ) in [6].
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Lemma 2.5. Suppose that 1 ≤ r < ∞ and 1 < ρ <∞. Then f ∈ RBMO(µ) if and only
if for any ball B ⊂ X ,(

1

µ(ρB)

∫
B
|f(x)−m

B̃
(f)|rdµ(x)

)r
≤ C‖b‖RBMO(µ), (2.1)

and for any doubling B ⊂ S,

|mB(f)−mS(f)| ≤ C‖f‖RBMO(µ), (2.2)

where mB(f) is the mean value of f on B, namely,

mB(f) :=
1

µ(B)

∫
B
f(x)dµ(x).

Moreover, the infimum of the positive constants C satisfying both (2.1) and (2.2) is an
equivalent RBMO(µ) norm of f .

3 Proofs of the main results

Proof of Theorem 1.7. Without loss of generality, we may assume that κ = 6 in (1.12).
Fix a doubling ball B ∈ X , and decompose each fi as fi = f0i + f∞i for i = 1, 2, where
f0i := fiχ6B and f∞i := fiχX\6B. Then, by Minkowski inequality, we have(

1

φ(µ(6B))

∫
B
|Tθ(f1, f2)(x)|pdµ(x)

) 1
p

≤

(
1

φ(µ(6B))

∫
B
|Tθ(f01 , f02 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|Tθ(f01 , f∞2 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|Tθ(f∞1 , f02 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|Tθ(f∞1 , f∞2 )(x)|pdµ(x)

) 1
p

=: D1 + D2 + D3 + D4.

By applying Lemma 2.2 and Definition 1.5, one has

D1 =

(
1

φ(µ(6B))

∫
B
|Tθ(f01 , f02 )(x)|pdµ(x)

) 1
p

≤C 1

[φ(µ(6B))]
1
p1

+ 1
p2

‖f01 ‖Lp1 (µ)‖f02 ‖Lp2 (µ)

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

Now let us turn to estimate D2. For any x ∈ B, y1 ∈ 6B and y2 ∈ X \ 6B, we have
λ(x, d(x, y1)) ≤ λ(x, d(x, y2)). By (1.6), (1.12), Hölder inequality and (1.13), one has

|Tθ(f01 , f∞2 )(x)| ≤
∫
6B
|f1(y1)|

∫
X\6B

|K(x, y1, y2)||f2(y)|dµ(y2)dµ(y1)
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≤C
∫
6B
|f1(y1)|

∫
X\6B

|f2(y)|
[λ(x, d(x, y1)) + λ(x, d(x, y2))]2

dµ(y2)dµ(y1)

≤C
∫
6B
|f1(y1)|

∫
X\6B

|f2(y)|
[λ(x, d(x, y2))]2

dµ(y2)dµ(y1)

≤C
∫
6B
|f1(y1)|

∫
X\6B

|f2(y)|
[λ(x, d(x, y2))]2

dµ(y2)dµ(y1)

≤C
∫
6B
|f1(y1)|dµ(y1)

( ∞∑
k=1

∫
6k+1B\6kB

|f2(y)|
[λ(x, d(x, y2))]2

dµ(y2)

)

≤C

(∫
6B
|f1(y1)|p1dµ(y1)

) 1
p1

[µ(6B)]
1− 1

p1

×

{ ∞∑
k=1

1

[λ(x, 6kr)]2

(∫
6k+1B

|f2(y)|p2dµ(y2)

) 1
p2

[µ(6k+1B)]
1− 1

p2

}

≤C 1

λ(x, r)

(∫
6B
|f1(y1)|p1dµ(y1)

) 1
p1

[µ(6B)]
1− 1

p1

×

{ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

(∫
6k+1B

|f2(y)|p2dµ(y2)

) 1
p2

[µ(6k+1B)]
1− 1

p2

}

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p1

×

{ ∞∑
k=1

1

[C(6k)]ε

[
φ(µ(6k+2B))

µ(6k+2B)

] 1
p2

}
,

further, by condition (1.14), (1.15) and 1
p = 1

p1
+ 1

p2
, it follows that

D2≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p
[
φ(µ(6B))

µ(6B)

] 1
p1

×

{ ∞∑
k=1

1

[C(6k)]ε

[
φ(µ(6k+2B))

µ(6k+2B)

] 1
p2

}
≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

With an argument similar to that used in the proof of D2, we can easily obtain

D3 ≤ C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

It remains to estimate D4. Firstly, consider |Tθ(f∞1 , f∞2 )(x)|, for any x ∈ B, by condition
(1.6), we have

|Tθ(f∞1 , f∞2 )(x)| ≤
∫
X

∫
X
|K(x, y1, y2)||f∞1 (y1)||f∞2 (y2)|dµ(y1)dµ(y2)
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≤ C
∫
X\6B

∫
X\6B

|f1(y1)||f2(y2)|
[λ(x, d(x, y1)) + λ(x, d(x, y2))]2

dµ(y1)dµ(y2)

≤ C
∞∑
k=1

∫
6k+1B\6kB

( ∞∑
j=1

∫
6j+1B\6jB

|f1(y1)||f2(y2)|
[λ(x, d(x, y1)) + λ(x, d(x, y2))]2

dµ(y1)

)
dµ(y2)

≤ C
∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|
[λ(x, d(x, y2))]2

(
k−1∑
j=1

∫
6j+1B\6jB

|f1(y1)|dµ(y1)

)
dµ(y2)

+C
∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|

( ∞∑
j=k

∫
6j+1B\6jB

|f1(y1)|
[λ(x, d(x, y1))]2

dµ(y1)

)
dµ(y2)

=: E1 + E2.

For E1. By applying the Hölder inequality and (1.12), we have

E1≤C
∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|
λ(x, d(x, y2))

(
k−1∑
j=1

∫
6j+1B\6jB

|f1(y1)|
λ(x, d(x, y1))

dµ(y1)

)
dµ(y2)

≤C
∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|
λ(x, d(x, y2))

(
k−1∑
j=1

1

λ(x, 6jr))

∫
6j+1B\6jB

|f1(y1)|dµ(y1)

)
dµ(y2)

≤C
∞∑
k=1

1

λ(x, 6kB)

(∫
6k+1B

|f2(y2)|p2dµ(y2)

) 1
p2

[µ(6k+1B)]
1− 1

p2

×

{
k−1∑
j=1

1

λ(x, 6jr))

(∫
6j+1B

|f1(y1)|p1dµ(y1)

)
[µ(6j+1B)]

1− 1
p1

}

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p2

}{
k−1∑
j=1

[
φ(µ(6j+1B))

µ(6j+1B)

] 1
p1

}

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p2

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p1

}

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p
}

An argument similar to that used in the above proof, it is not difficult to obtain

E2 ≤ C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p
}
.

Moreover, by applying the assumption
∫∞
r

φ(t)
t

dt
t ≤ C

φ(r)
r and Lemma 2.4, lead to

∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p

≤ C

[
φ(µ(62B))

µ(62B)

] 1
p

,
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combining the estimates for E1 and E2, and condition (1.15), it follows that

D4≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p
{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p
}

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p
[
φ(µ(62B))

µ(62B)

] 1
p

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ),

which, summing up the estimates for D1, D2 and D3, the proof of Theorem 1.7 is finished.

Proof of Theorem 1.8. We decompose fi as fi = f0i + f∞i in the proof of Theorem 1.7,
where f0i := fiχ6B, i = 1, 2. Then(

1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f1, f2)(x)|pdµ(x)

) 1
p

≤

(
1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f01 , f02 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f01 , f∞2 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f∞1 , f02 )(x)|pdµ(x)

) 1
p

+

(
1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f∞1 , f∞2 )(x)|pdµ(x)

) 1
p

=: F1 + F2 + F3 + F4.

From Lemma 2.3, Definition 1.5 and 1
p = 1

p1
+ 1

p2
, it follows that,

F1≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)
1

[φ(µ(6B))]
1
p

‖f01 ‖Lp1 (µ)‖f02 ‖Lp2 (µ)

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

In order to estimate F2, we firstly consider [b1, b2, Tθ](f
0
1 , f

∞
2 )(x). For any x ∈ B, write

|[b1, b2, Tθ](f01 , f∞2 )(x)|

≤
∫
6B
|b1(x)− b1(y1)||f1(y1)|

∫
X\6B

|K(x, y1, y2)||b2(x)− b2(y2)||f2(y2)|dµ(y2)dµ(y1)

≤ C
∫
6B
|b1(x)− b1(y1)||f1(y1)|

∫
X\6B

|b2(x)− b2(y2)||f2(y2)|
[λ(x, d(x, y1)) + λ(x, d(x, y2))]2

dµ(y2)dµ(y1)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

659 Guanghui Lu ET AL 650-670



11

≤ C
∫
6B
|b1(x)− b1(y1)||f1(y1)|

( ∞∑
k=1

∫
6k+1B\6kB

|b2(x)− b2(y2)||f2(y2)|
[λ(x, d(x, y2))]2

dµ(y2)

)
dµ(y1)

≤ C|b1(x)−m
6̃B

(b1)||b2(x)−m
6̃B

(b2)|

×
∫
6B
|f1(y1)|

( ∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|
[λ(x, d(x, y2))]2

dµ(y2)

)
dµ(y1)

+C|b1(x)−m
6̃B

(b1)|

×
∫
6B
|f1(y1)|

( ∞∑
k=1

∫
6k+1B\6kB

|b2(y2)−m6̃B
(b2)||f2(y2)|

[λ(x, d(x, y2))]2
dµ(y2)

)
dµ(y1)

+C|b2(x)−m
6̃B

(b2)|

×
∫
6B
|b1(y1)−m6̃B

(b1)||f1(y1)|

( ∞∑
k=1

∫
6k+1B\6kB

|f2(y2)|
[λ(x, d(x, y2))]2

dµ(y2)

)
dµ(y1)

+C

∫
6B
|b1(y1)−m6̃B

(b1)||f1(y1)|

×

( ∞∑
k=1

∫
6k+1B\6kB

|b2(y2)−m6̃B
(b2)||f2(y2)|

[λ(x, d(x, y2))]2
dµ(y2)

)
dµ(y1)

=: G1 + G2 + G3 + G4.

With an argument similar to that used in the proof of D2 in Theorem 1.7, it follows
that

G1≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)|b1(x)−m
6̃B

(b1)||b2(x)−m
6̃B

(b2)|

×

[
φ(µ(6B))

µ(6B)

] 1
p1

{ ∞∑
k=1

1

[C(6k)]ε

[
φ(µ(6k+2B))

µ(6k+2B)

] 1
p2

}
.

By applying the Hölder inequality, (1.14), (2.1), we have

G2≤C|b1(x)−m
6̃B

(b1)|
1

λ(x, r)

∫
6B
|f1(y1)|dµ(y1)

×

( ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr))

∫
6k+1B

|b2(y2)−m6̃B
(b2)||f2(y2)|dµ(y2)

)

≤C|b1(x)−m
6̃B

(b1)|[µ(12B)]
− 1
p1

(∫
6B
|f1(y1)|p1dµ(y1)

) 1
p1

×

[ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr))

∫
6k+1B

(
|b2(y2)−m

6̃k+1B
(b2)|

+|m
6̃k+1B

(b2)−m6̃B
(b2)|

)
|f2(y2)|dµ(y2)

]

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

660 Guanghui Lu ET AL 650-670



12 Guanghui Lu, Shuangping Tao

≤C‖f1‖Lp1,φ(µ)|b1(x)−m
6̃B

(b1)|

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr))

×
∫
6k+1B

(
|b2(y2)−m

6̃k+1B
(b2)|+ k‖b2‖RBMO(µ)

)
|f2(y2)|dµ(y2)

]

≤C‖f1‖Lp1,φ(µ)|b1(x)−m
6̃B

(b1)|

[
φ(µ(12B))

µ(12B)

] 1
p1

{ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr))

×

[(∫
6k+1B

|f2(y2)|p2dµ(y2)

) 1
p2

(∫
6k+1B

|b2(y2)−m
6̃k+1B

(b2)|p
′
2dµ(y2)

) 1
p′2

+k‖b2‖RBMO(µ)‖f2‖Lp2,φ(µ)µ(6k+1B)

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]}

≤C‖f1‖Lp1,φ(µ)|b1(x)−m
6̃B

(b1)|

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

k + 1

[C(6k)]ε
1

λ(x, 6kr))

×‖b2‖RBMO(µ)‖f2‖Lp2,φ(µ)µ(6k+1B)

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]

≤C‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)|b1(x)−m
6̃B

(b1)|

[
φ(µ(12B))

µ(12B)

] 1
p1

×

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]
,

where we have used the following fact that

|m
6̃k+1B

(b2)−m6̃B
(b2)| ≤ C(k + 1)‖b2‖RBMO(µ). (3.1)

By applying (1.12), the Hölder inequality, (1.14) and (2.1), one has

G3≤C|b2(x)−m
6̃B

(b2)|
1

λ(x, r)

∫
6B
|b1(y1)−m6̃B

(b1)||f1(y1)|dµ(y1)

×

( ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

∫
6k+1B

|f2(y2)|dµ(y2)

)

≤C‖b1‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)|b2(x)−m
6̃B

(b2)|

[
φ(µ(12B))

µ(12B)

] 1
p1

×

[ ∞∑
k=1

1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]
.
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It remains to estimate G4. By (1.12), the Hölder inequality, (1.14), (2.1) and (3.1), we
have

G4≤C
1

λ(x, r)

∫
6B
|b1(y1)−m6̃B

(b1)||f1(y1)|dµ(y1)

×

( ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

∫
6k+1B

|b2(y2)−m6̃B
(b2)||f2(y2)|dµ(y2)

)

≤C‖b1‖RBMO(µ)‖f1‖Lp1,φ(µ)

[
φ(µ(12B))

µ(12B)

] 1
p1

×

[ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

(∫
6k+1B

|b2(y2)−m
6̃k+1B

(b2)||f2(y2)|dµ(y2)

+|m
6̃k+1B

(b2)−m6̃B
(b2)|

∫
6k+1B

|f2(y2)|dµ(y2)

)]

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(12B))

µ(12B)

] 1
p1

×

[ ∞∑
k=1

k + 1

[C(6k)]ε
µ(6k+1B)

λ(x, 6kr)

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(12B))

µ(12B)

] 1
p1

×

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]
.

Thus, by applying the estimates of G1, G2, G3 and G4, the Hölder inequality and the fact
that φ(t)

t ≤ C
φ(s)
s with s ≥ t, it follows that

F2 =

(
1

φ(µ(6B))

∫
B
|[b1, b2, Tθ](f01 , f∞2 )(x)|pdµ(x)

) 1
p

≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

(∫
B
|b1(x)−m

6̃B
(b1)|p|b2(x)−m

6̃B
(b2)|pdµ(x)

) 1
p

×[φ(µ(6B))]
− 1
p

[
φ(µ(6B))

µ(6B)

] 1
p1

{ ∞∑
k=1

1

[C(6k)]ε

[
φ(µ(6k+2B))

µ(6k+2B)

] 1
p2

}

+C‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

(
1

φ(µ(6B))

∫
B
|b1(x)−m

6̃B
(b1)|pdµ(x)

) 1
p
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×

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]

+C‖b1‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

(
1

φ(µ(6B))

∫
B
|b2(x)−m

6̃B
(b2)|pdµ(x)

) 1
p

×

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]

+C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p

×

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p

×

[
φ(µ(6B))

µ(6B)

] 1
p1

{ ∞∑
k=1

1

[C(6k)]ε

[
φ(µ(6k+2B))

µ(6k+2B)

] 1
p2

}

+C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
µ(6B)

φ(µ(6B))

] 1
p

×

[
φ(µ(12B))

µ(12B)

] 1
p1

[ ∞∑
k=1

k + 1

[C(6k)]ε

(
φ(µ(6k+1B))

µ(6k+1B)

) 1
p2

]
≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ),

where 1
p = 1

p1
+ 1

p2
.

Similarly, it is not difficult to obtain

F3 ≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

Now let us turn to estimate F4. For any x ∈ B, write

|[b1, b2, Tθ](f∞1 , f∞2 )(x)|
≤ |b1(x)−m

B̃
(b1)||b2(x)−m

B̃
(b2)||Tθ(f∞1 , f∞2 )(x)|

+|b1(x)−m
B̃

(b1)||Tθ(f∞1 , (b2 −mB̃
(b2)f

∞
2 )(x)|

+|b2(x)−m
B̃

(b2)||Tθ((b1 −mB̃
(b1)f

∞
1 , f∞2 )(x)|

+|Tθ((b1 −mB̃
(b1)f

∞
1 , (b2 −mB̃

(b2)f
∞
2 )(x)|

=: H1 + H2 + H3 + H4.
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An argument similar to that used in the proof of D4 in the Theorem 1.7, we have

H1 ≤ C|b1(x)−m
B̃

(b1)||b2(x)−m
B̃

(b2)|‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p
}
.

With a slight modified argument similar to that used in the proof of J21 in [25], it is
not difficult to obtain that

H2 + H3 + H4≤C|b1(x)−m
B̃

(b1)|‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p

+C|b2(x)−m
B̃

(b2)|‖b1‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p

+C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p

.

Further, by applying the Hölder inequality, Definition 1.5 and (2.1), we can deduce that

F4≤C‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

{ ∞∑
k=1

[
φ(µ(6k+1B))

µ(6k+1B)

] 1
p
}

×

(
1

φ(µ(6B))

∫
B
|b1(x)−m

B̃
(b1)|p|b2(x)−m

B̃
(b2)|pdµ(x)

) 1
p

+C‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p

×

(
1

φ(µ(6B))

∫
B
|b1(x)−m

B̃
(b1)|pdµ(x)

) 1
p

+C‖b1‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p

×

(
1

φ(µ(6B))

∫
B
|b1(x)−m

B̃
(b1)|pdµ(x)

) 1
p

+C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ)

[
φ(µ(6B))

µ(6B)

] 1
p
[
φ(µ(6B))

µ(6B)

]− 1
p

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Lp1,φ(µ)‖f2‖Lp2,φ(µ).

Which, combining the estimates of F1, F2 and F3, the proof of Theorem 1.8 is finished.
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Remark 3.1. With an argument similar to those used in the proof of Theorem 1.6 in
[28] and Remarks 6-7 in [25], it is not difficult to obtain Theorem 1.9. Thus, we omit the
details in this article.

Proof of Theorem 1.10. Without loss of generality, we assume that k = 6 in (1.16), and
decompose f1 as fi = f0i + f∞i as in Theorem 1.7, where f0i := fiχ6B. Then

[µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f1, f2)(x)|pdµ(x)

) 1
p

≤ [µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f01 , f02 )(x)|pdµ(x)

) 1
p

+[µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f01 , f∞2 )(x)|pdµ(x)

) 1
p

+[µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f∞1 , f02 )(x)|pdµ(x)

) 1
p

+[µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f∞1 , f∞2 )(x)|pdµ(x)

) 1
p

=: I1 + I2 + I3 + I4.

By applying Lemma 2.3, 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

, we have

I1≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)[µ(6B)]
1
q
− 1
p ‖f01 ‖Lp1 (µ)‖f02 ‖Lp2 (µ)

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
1
q
− 1
p [µ(6B)]

1
p
− 1
q

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ).

To estimate I2. For any x ∈ B, we firstly consider |[b1, b2, Tθ](f01 , f∞2 )(x)|. Write

|[b1, b2, Tθ](f01 , f∞2 )(x)| ≤ |b1(x)−m
B̃

(b1)||b2(x)−m
B̃

(b2)||Tθ(f01 , f∞2 )(x)|
+|b1(x)−m

B̃
(b1)||Tθ(f01 , (b2 −mB̃

(b2)f
∞
2 )(x)|

+|b2(x)−m
B̃

(b2)||Tθ((b1 −mB̃
(b1)f

0
1 , f

∞
2 )(x)|

+|Tθ((b1 −mB̃
(b1)f

0
1 , (b2 −mB̃

(b2)f
∞
2 )(x)|

=: J1 + J2 + J3 + J4.

With an argument similar to that used in the proof of H2 in [28], it is not difficult to
obtain that

J1 ≤ C|b1(x)−m
B̃

(b1)||b2(x)−m
B̃

(b2)|‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
q .
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By applying (1.6), (1.13), (1.14), the Hölder inequality, (2.1) and (3.1), we can deduce

J2≤C|b1(x)−m
B̃

(b1)|
∫
6B
|f1(y1)|

∫
X\6B

|b2(y1)−mB̃
(b2)||f2(y2)|

[λ(x, d(x, y2))]2
dµ(y2)dµ(y1)

≤C|b1(x)−m
B̃

(b1)|
∫
6B
|f1(y1)|dµ(y1)

×

( ∞∑
k=1

∫
6k+1B\6kB

|b2(y1)−mB̃
(b2)||f2(y2)|

[λ(x, d(x, y2))]2
dµ(y2)

)

≤C|b1(x)−m
B̃

(b1)|
1

λ(x, r)

∫
6B
|f1(y1)|dµ(y1)

×

( ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

∫
6k+1B

|b2(y1)−mB̃
(b2)||f2(y2)|dµ(y2)

)

≤C‖f1‖Mq1
p1

(µ)|b1(x)−m
B̃

(b1)|[µ(6B)]
− 1
q1

{ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

×
∫
6k+1B

[|b2(y1)−m
6̃k+1B

(b2)|+ |m
6̃k+1B

(b2)−mB̃
(b2)|]|f2(y2)|dµ(y2)

}

≤C‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)|b1(x)−m
B̃

(b1)|[µ(6B)]
− 1
q1

{ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

×(k + 1)‖b2‖RBMO(µ)[µ(6k+1B)]
1− 1

q2

}
≤C‖b2‖RBMO(µ)‖f1‖Mq1

p1
(µ)‖f2‖Mq2

p2
(µ)|b1(x)−m

B̃
(b1)|[µ(6B)]

− 1
q

Similarly, we have

J3 ≤ C‖b1‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)|b2(x)−m
B̃

(b2)|[µ(6B)]
− 1
q .

Now let us turn to estimate J4. With (1.6), (1.13), (1.14), the Hölder inequality, (2.1)
and (3.1), lead to

|Tθ((b1 −mB̃
(b1)f

0
1 , (b2 −mB̃

(b2)f
∞
2 )(x)|

≤ C
∫
6B
|b1(y1)−mB̃

(b1)||f1(y1)|
∫
X\6B

|b2(y2)−mB̃
(b2)||f2(y2)|

[λ(x, d(x, y2))]2
dµ(y2)dµ(y1)

≤ C‖b1‖RBMO(µ)[µ(6B)]
1− 1

p1

(∫
6B
|f1(y1)|p1dµ(y1)

) 1
p1

×

{ ∞∑
k=1

1

[λ(x, 6kr)]2

∫
6k+1B

|b2(y2)−mB̃
(b2)||f2(y2)|dµ(y2)

}
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≤ C‖b1‖RBMO(µ)‖f1‖Mq1
p1

(µ)[µ(6B)]
− 1
q1

{ ∞∑
k=1

1

[C(6k)]ε
1

λ(x, 6kr)

[∫
6k+1B

|f2(y2)|

×|b2(y2)−m
6̃k+1B

(b2)|dµ(y2) + (k + 1)‖b2‖RBMO(µ)

∫
6k+1B

|f2(y2)|dµ(y2)

]}
≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1

p1
(µ)‖f2‖Mq2

p2
(µ)[µ(6B)]

− 1
q .

Combining the estimates of J1, J2, J3 and J4, we have

I2 = [µ(6B)]
1
q
− 1
p

(∫
B
|[b1, b2, Tθ](f01 , f∞2 )(x)|pdµ(x)

) 1
p

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
1
p
− 1
q [µ(6B)]

1
q
− 1
p

+C‖b1‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
p

(∫
6B
|b2(x)−m

B̃
(b2)|pdµ(x)

) 1
p

+C‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
p

(∫
6B
|b1(x)−m

B̃
(b1)|pdµ(x)

) 1
p

+C‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
p

(∫
6B
|b2(x)−m

B̃
(b2)|p|b1(x)−m

B̃
(b1)|pdµ(x)

) 1
p

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ) + C‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
p

×

{(∫
6B
|b1(x)−m

B̃
(b1)|p1dµ(x)

) p
p1

(∫
6B
|b2(x)−m

B̃
(b2)|p2dµ(x)

) p
p2

} 1
p

≤C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ).

By an argument similar to that used in the I2, we have

I3 ≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ).

It remains to estimate I4. For any x ∈ B, write

|[b1, b2, Tθ](f∞1 , f∞2 )(x)| ≤ |b1(x)−m
B̃

(b1)||b2(x)−m
B̃

(b2)||Tθ(f∞1 , f∞2 )(x)|
+|b1(x)−m

B̃
(b1)||Tθ(f∞1 , (b2 −mB̃

(b2)f
∞
2 )(x)|

+|b2(x)−m
B̃

(b2)||Tθ((b1 −mB̃
(b1)f

∞
1 , f∞2 )(x)|

+|Tθ((b1 −mB̃
(b1)f

∞
1 , (b2 −mB̃

(b2)f
∞
2 )(x)|

=: U1 + U2 + U3 + U4.

For U1, U2, U3 and U4, by some arguments similar to those used in the proofs of H4 in
[28] and U′2 and U′′2 in [23], we can obtain

U1 + U2 + U3 + U4≤C|b1(x)−m
B̃

(b1)||b2(x)−m
B̃

(b2)|‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)
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+C‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)|b1(x)−m
B̃

(b1)|[µ(6B)]
− 1
q

+C‖b1‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)|b2(x)−m
B̃

(b2)|[µ(6B)]
− 1
q

+C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ)[µ(6B)]
− 1
q .

Further, by a way similar to that used in the estimate of I2, we can deduce

I4 ≤ C‖b1‖RBMO(µ)‖b2‖RBMO(µ)‖f1‖Mq1
p1

(µ)‖f2‖Mq2
p2

(µ).

Combining the estimates I1 − I4, we complete the proof of Theorem 1.10.
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Abstract In the current work, using the fixed point theorems due to Brzdȩk and Ciepliński, we
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1 Introduction and preliminaries

Throughout this paper, N stands for the set of all positive integers, R+ := [0,∞) and N0 := N ∪ {0}.

Let us recall (see, for instance, [9]) some basic definitions and facts concerning non-Archimedean normed

spaces.

A non-Archimedean valuation on a field K is a function | · | : K → R such that

(1) |r| ≥ 0 and equality holds if and only if r = 0;

(2) |rs| = |r||s|, r, s ∈ K;

(3) |r + s| ≤ max{|r|, |s|}, r, s ∈ K.

Any field endowed with a non-Archimedean valuation is said to be a non-Archimedean field. In any non-

Archimedean field we have |1| = | − 1| = 1 and |n| ≤ 1 for n ∈ N0. The most important examples of non-

Archimedean fields are p-adic numbers which have gained the interest of physicists for their research in some

problems coming from quantum physics, p-adic strings and superstrings (see [9]).

Let X be a linear space over a field K with a non-Archimedean valuation | · |. A function ∥ · ∥ : X → R+ is a

non-Archimedean norm if it satisfies the following conditions:

(1) ∥x∥ = 0 if and only if x = 0;

(2) ∥rx∥ = |r|∥x∥ for all r ∈ K and x ∈ X;

(3) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for all x, y ∈ X.

Then (X, ∥ · ∥) is called a non-Archimedean normed space.

Let X be a non-Archimedean normed space and {xn} be a sequence in X. Then {xn} is said to be convergent

∗Corresponding author. E-mail: xutianzhou@bit.edu.cn
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if there exists x ∈ X such that lim
n→∞

∥xn − x∥ = 0. In that case, x is called the limit of the sequence {xn} and

we denote it by lim
n→∞

xn = x. A sequence {xn} in X is said to be a Cauchy sequence if lim
n→∞

∥xn+p − xn∥ = 0 for

all p = 1, 2, . . .. Due to the fact that

∥xn − xm∥ ≤ max{∥xj+1 − xj∥ : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean normed space.

The first work on the Ulam-Hyers stability of functional equations in complete non-Archimedean normed

spaces is [10]. After it, a lot of papers on the stability for various classes of functional equations in such spaces

have been published, and there are many interesting results concerning this problem, see for instance [2–8,12–15]

and the references therein. The fixed point method is one of the most effective tools in studying these problems.

In this paper, we consider the decic functional equations which was introduced in [1, 11] as follows:

f(x+ 5y)− 10f(x+ 4y) + 45f(x+ 3y)− 120f(x+ 2y) + 210f(x+ y)− 252f(x)

+210f(x− y)− 120f(x− 2y) + 45f(x− 3y)− 10f(x− 4y) + f(x− 5y) = 10!f(y).
(1.1)

Since f(x) = x10 is a solutions of (1.1), we say that it is a decic functional equation. Every solution of the

decic functional equation is said to be a decic mapping. Indeed, general solution of the equation (1.1) was found

in [11]. In this paper, we study some stability results concerning the functional equation (1.1) in the setting of

non-Archimedean normed spaces.

2 Stability of the decic functional equation (1.1)

In this section, we show the generalized Ulam-Hyers stability of equation (1.1) in complete non-Archimedean

normed spaces (its stability in quasi-β-Banach spaces was proved in [11]). The proof of our main resut is based

on the following fixed point result obtained in [5, Theorem 1] (see also [2, Theorem 2.3] and [3, Theorem 2.2]).

Theorem 2.1 Let the following three hypotheses be valid :

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean field of the

characteristic different from 2, j ∈ N, f1, . . . , fj : E → E and L1, . . . , Lj : E → R+ ;

(H2) T : Y E → Y E is an operator satisfying the inequality

∥T ξ(x)− T µ(x)∥ ≤ max
i∈{1,...,j}

Li(x)∥ξ(fi(x))− µ(fi(x))∥, ξ, µ ∈ Y E , x ∈ E; (2.1)

(H3) Λ : RE
+ → RE

+ is an operator defined by

Λδ(x) := max
i∈{1,...,j}

Li(x)δ(fi(x)), δ ∈ RE
+, x ∈ E. (2.2)

Assume that the functions ε : E → R+ and φ : E → Y fulfill the following two conditions :

∥T φ(x)− φ(x)∥ ≤ ε(x), x ∈ E, (2.3)

and

lim
l→∞

Λlε(x) = 0, x ∈ E. (2.4)

Then there exists a unique fixed point ψ of T with

∥φ(x)− ψ(x)∥ ≤ sup
l∈N0

Λlε(x), x ∈ E. (2.5)
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Moreover,

ψ(x) := lim
l→∞

T lφ(x), x ∈ E. (2.6)

Let (X,+) is a commutative group and Y is a complete non-Archimedean normed space. Given f : X →
Y, x, y ∈ X, put

D10(f)(x, y) := f(x+ 5y)− 10f(x+ 4y) + 45f(x+ 3y)− 120f(x+ 2y) + 210f(x+ y)− 252f(x)

+210f(x− y)− 120f(x− 2y) + 45f(x− 3y)− 10f(x− 4y) + f(x− 5y)− 10!f(y).
(2.7)

Theorem 2.2 Assume that X be a commutative group uniquely divisible by 2 and let Y be a complete non-

Archimedean normed space over a non-Archimedean field of the characteristic different from 210. Let f : X → Y

and φ : X2 → R+ be mappings satisfying the inequality

∥D10(f)(x, y)∥ ≤ φ(x, y), x, y ∈ X. (2.8)

Assume also that there is an s ∈ {−1, 1} such that

lim
l→∞

(
1

|2|10s

)l

φ
(
2slx, 2sly

)
= 0, x, y ∈ X. (2.9)

Then there exists a decic mapping F : X → Y such that

∥f(x)− F (x)∥ ≤ sup
l∈N0

1

|2|5(s+1)

(
1

|2|10s

)l

δ(2sl+
s−1
2 x), x ∈ X, (2.10)

where

δ(x) =
1

|10!|
max {|252|φ(0, x), |252|A(5x), |11340|A(3x), D(x)} ,

D(x) = max {|90|φ(3x, x), |240|φ(2x, x), |420|φ(x, x), |420|A(4x), |240|A(3x), |4200|A(3x),

|90|A(2x), |2400|A(2x), B(x)} ,

B(x) = max {|2|φ(5x, x), |20|φ(4x, x), φ(0, 2x), |2|C,A(10x), |10|A(8x),

|45|A(6x), |120|A(4x), |210|A(2x), |20|A(x)} ,

A(x) =
1

|10!|
max{φ(x, x), φ(x,−x)}, C =

1

|10!|
φ(0, 0).

(2.11)

Proof. Replacing x = y = 0 in (2.8), we get

∥f(0)∥ ≤ 1

|10!|
φ(0, 0) := C. (2.12)

Replacing x and y by x and x in (2.8), respectively, we get

∥f(6x)− 10f(5x) + 45f(4x)− 120f(3x) + 210f(2x)− 252f(x)

+210f(0)− 120f(−x) + 45f(−2x)− 10f(−3x) + f(−4x)− 10!f(x)∥ ≤ φ(x, x)
(2.13)

for all x ∈ X. Replacing x and y by x and −x in (2.8), respectively, we have

∥f(−4x)− 10f(−3x) + 45f(−2x)− 120f(−x) + 210f(0)− 252f(x) + 210f(2x)

−120f(3x) + 45f(4x)− 10f(5x) + f(6x)− 10!f(−x)∥ ≤ φ(x,−x)
(2.14)

for all x ∈ X. By (2.13) and (2.14), we obtain

∥f(x)− f(−x)∥ ≤ 1

|10!|
max{φ(x, x), φ(x,−x)} := A(x) (2.15)
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for all x ∈ X. Replacing x and y by 0 and 2x in (2.8), respectively, and using (2.12) and (2.15), we find

∥2f(10x)− 20f(8x) + 90f(6x)− 240f(4x)− (10!− 420)f(2x)∥

≤ max {φ(0, 2x), A(10x), |10|A(8x), |45|A(6x), |120|A(4x), |210|A(2x), |252|C}
(2.16)

for all x ∈ X. Replacing x and y by 5x and x in (2.8), respectively, we get

∥f(10x)− 10f(9x) + 45f(8x)− 120f(7x) + 210f(6x)− 252f(5x) + 210f(4x)

−120f(3x) + 45f(2x)− (10! + 10)f(x)∥ ≤ max {φ(5x, x), C}
(2.17)

for all x ∈ X. By (2.16) and (2.17), we obtain

∥20f(9x)− 110f(8x) + 240f(7x)− 330f(6x) + 504f(5x)− 660f(4x)

+240f(3x)− (10!− 330)f(2x) + (2 · 10! + 20)f(x)∥

≤ max {|2|φ(5x, x), φ(0, 2x), |2|C,A(10x), |10|A(8x), |45|A(6x), |120|A(4x), |210|A(2x)}

(2.18)

for all x ∈ X. Replacing x and y by 4x and x in (2.8), respectively, and using (2.12) we have

∥f(9x)− 10f(8x) + 45f(7x)− 120f(6x) + 210f(5x)− 252f(4x) + 210f(3x)

−120f(2x)− (10!− 46)f(x)∥ ≤ max {φ(4x, x), |10|C,A(x)}
(2.19)

for all x ∈ X. By (2.18) and (2.19), we get

∥90f(8x)− 660f(7x) + 2070f(6x)− 3696f(5x) + 4380f(4x)

−3960f(3x)− (10!− 2730)f(2x) + (22 · 10!− 900)f(x)∥

≤ max {|2|φ(5x, x), |20|φ(4x, x), φ(0, 2x), |2|C,A(10x), |10|A(8x),

|45|A(6x), |120|A(4x), |210|A(2x), |20|A(x)} := B(x)

(2.20)

for all x ∈ X. Replacing x and y by 3x and x in (2.8), respectively, then using (2.12) and (2.15), we have

∥f(8x)− 10f(7x) + 45f(6x)− 120f(5x) + 210f(4x)− 252f(3x) + 211f(2x)− (10! + 130)f(x)∥

≤ max {φ(3x, x), |45|C,A(2x), |10|A(x)}
(2.21)

for all x ∈ X. By (2.20) and (2.21), we get

∥240f(7x)− 1980f(6x) + 7104f(5x)− 14520f(4x)

+18720f(3x)− (10! + 16260)f(2x) + (112 · 10! + 10800)f(x)∥

≤ max {|90|φ(3x, x), |90|A(2x), B(x)}

(2.22)

for all x ∈ X. Replacing x and y by 2x and x in (2.8), respectively, then using (2.12) and (2.15), we have

∥f(7x)− 10f(6x) + 45f(5x)− 120f(4x) + 211f(3x)− 262f(2x)− (10!− 255)f(x)∥

≤ max {φ(2x, x), A(3x), |10|A(2x), |45|A(x), |120|C}
(2.23)

for all x ∈ X. By (2.22) and (2.23), we get

∥420f(6x)− 3696f(5x) + 14280f(4x)− 31920f(3x)− (10!− 46620)f(2x)

+(352 · 10!− 50400)f(x)∥

≤ max {|90|φ(3x, x), |240|φ(2x, x), |240|A(3x), |90|A(2x), |2400|A(2x), B(x)}

(2.24)
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for all x ∈ X. Replacing x and y by x and x in (2.8), respectively, then using (2.12) and (2.15), we have

∥f(6x)− 10f(5x) + 46f(4x)− 130f(3x) + 255f(2x)− (10! + 372)f(x)∥

≤ max {φ(x, x), |210|C, |120|A(x), |45|A(2x), |10|A(3x), A(4x)}
(2.25)

for all x ∈ X. By (2.24) and (2.25), we get

∥504f(5x)− 5040f(4x) + 22680f(3x)− (10! + 60480)f(2x) + (772 · 10! + 105840)f(x)∥

≤ max {|90|φ(3x, x), |240|φ(2x, x), |420|φ(x, x), |420|A(4x), |240|A(3x), |4200|A(3x),

|90|A(2x), |2400|A(2x), B(x)} := D(x)

(2.26)

for all x ∈ X. Replacing x and y by 0 and x in (2.8), respectively, then using (2.12) and (2.15), we have

∥2f(5x)− 20f(4x) + 90f(3x)− 240f(2x)− (10!− 420)f(x)∥

≤ max {φ(0, x), |252|C,A(5x), |10|A(4x), |45|A(3x), |120|A(2x), |210|A(x)}
(2.27)

for all x ∈ X. By (2.26) and (2.27), we get

∥f(2x)− 210f(x)∥ ≤ 1

|10!|
max{|252|φ(0, x), |252|A(5x), |11340|A(3x), D(x)} := δ(x) (2.28)

for all x ∈ X. Thus ∥∥∥∥ 1

210
f(2x)− f(x)

∥∥∥∥ ≤ 1

|2|10
δ(x), x ∈ X. (2.29)

Similarly, ∥∥∥210f (x
2

)
− f(x)

∥∥∥ ≤ δ
(x
2

)
, x ∈ X. (2.30)

Fix an x ∈ X and write

T ξ(x) := 1

210s
ξ(2sx), ξ ∈ Y X , (2.31)

ε(x) :=


1

|2|10
δ(x), if s = 1,

δ
(x
2

)
, if s = −1.

(2.32)

Then, by (2.29) and (2.30), we obtain

∥T f(x)− f(x)∥ ≤ ε(x), x ∈ X. (2.33)

Next, put

Λη(x) :=
1

|2|10s
η(2sx), η ∈ RX

+ , x ∈ X. (2.34)

It is easily seen that Λ has the form described in (H3) with E = X, j = 1 and f1(x) = 2sx, L1(x) = 1
|2|10s for

x ∈ X. Moreover, for any ξ, µ ∈ Y X and x ∈ X we have

∥T ξ(x)− T µ(x)∥ =

∥∥∥∥ 1

210s
ξ(2sx)− 1

210s
µ(2sx)

∥∥∥∥
≤ L1(x)∥ξ(f1(x))− µ(f1(x))∥,

(2.35)

so hypothesis (H2) is also valid.

Finally, using induction, one can check that for any l ∈ N0 and x ∈ X we have

Λlε(x) =

(
1

|2|10s

)l

ε(2slx)

=

(
1

|2|10 s+1
2

)(
1

|2|10s

)l

ε(2sl+
s−1
2 x),

(2.36)
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which, together with (2.9), shows that all assumptions of Theorem 2.1 are satisfied. Therefore, there exists a

function F : X → Y such that

F (x) =

(
1

|2|10s

)l

F (2slx), x ∈ X, (2.37)

and (2.10) holds. Moreover,

F (x) = lim
l→∞

T lf(x), x ∈ X. (2.38)

One can now show, by induction, that

∥D10(T lf)(x, y)∥ ≤
(

1

|2|10s

)l

φ(2slx, 2sly) (2.39)

for l ∈ N0, x, y ∈ X. Letting l → ∞ in (2.39) and using (2.9), we obtain

D10(f)(x, y) = 0, (2.40)

which means that the function F satisfies equation (1.1). Thus the mapping T : X → Y is decic. �

Theorem 2.2 with φ(x, y) = ϵ > 0, ϵ(∥x∥p + ∥y∥p), ϵ∥x∥p · ∥y∥q, respectively, and s = −1 yields the following

results.

Corollary 2.1 Let ϵ be a positive real number, X be a commutative group uniquely divisible by 2 and Y be a

complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from 210

such that |2| < 1. If f : X → Y be a mapping satisfying

∥D10(f)(x, y)∥ ≤ ϵ (2.41)

for x, y ∈ X, then there exists a decic mapping F : X → Y such that

∥f(x)− F (x)∥ ≤ ϵ

|10!|2
(2.42)

for all x ∈ X.

Corollary 2.2 Let p, ϵ be positive real numbers with p < 10, X be a non-Archimedean normed space and Y be

a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from 210

such that |2| < 1. If f : X → Y be a mapping satisfying

∥D10(f)(x, y)∥ ≤ ϵ(∥x∥p + ∥y∥p) (2.43)

for x, y ∈ X, then there exists a decic mapping F : X → Y such that

∥f(x)− F (x)∥ ≤ 2ϵ∥x∥p

|10!|2
(2.44)

for all x ∈ X.

Corollary 2.3 Let p, q, ϵ be positive real numbers with p+q < 10, X be a non-Archimedean normed space and Y

be a complete non-Archimedean normed space over a non-Archimedean field of the characteristic different from

210 such that |2| < 1. If f : X → Y be a mapping satisfying

∥D10(f)(x, y)∥ ≤ ϵ∥x∥p · ∥y∥q (2.45)

for x, y ∈ X, then there exists a decic mapping F : X → Y such that

∥f(x)− F (x)∥ ≤ ϵ∥x∥p+q

|10!|2
(2.46)

for all x ∈ X.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

676 Yali Ding ET AL 671-677



References

[1] M. Arunkumar, A. Bodaghi, J.M. Rassias, E. Sathya, The general solution and approximations of a decic

type function equation in various normed spaces, J. of the Chungcheong Math. Soc., 29(2016), 287–328.
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boundary value problems ∗
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Abstract

In this paper, we are concerned with the existence of positive solutions of the

fully third-order boundary value problem{
−u′′′(t) = f(t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0,

where f : [0, 1] × R+ × R+ × R → R is continuous. Some inequality conditions

on f to guarantee the existence of positive solution are presented. These inequality

conditions allow that f(t, x, y, z) may be superlinear or sublinear growth on x, y

and z as |(x, y, z)| → 0 and |(x, y, z)| → ∞.

Key Words: fully third-order boundary value problem; Nagumo-type growth con-

dition; positive solution; cone; fixed point index.

AMS Subject Classification: 34B18; 47H11; 47N20.

1 Introduction

In this paper we discuss existence of positive solution for third-order boundary value

problem(BVP) with fully nonlinear term{
−u′′′(t) = f(t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0,
(1.1)

where f : [0, 1]× R+ × R+ × R→ R+ is continuous.
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The boundary value problems of third order ordinary differential equations arise in a

variety of different areas of applied mathematics and physics, as the deflection of a curved

beam having a constant or varying cross section, three layer beam, electromagnetic waves

or gravity driven flows and so on [1,2]. These problems have attracted many authors’

attention and concern, and some theorems and methods of nonlinear functional analysis

have been applied to research the solvability of these problem, such as the topological

transversality [3], the monotone iterative technique [4-6], the method of upper and lower

solutions[7-9], Leray-Schauder degree [10-13], the fixed point theory of increasing oper-

ator[14,15]. Especially, in recent years the fixed-point theorem of Krasnoselskii’s cone

expansion or compression type have been availably applied to some special third-order

boundary problems that nonlinearity f doesn’t contain derivative terms u′ and u′′, and

some results of existence and multiplicity of positive solutions have been obtained, see

[16-18]. However, few people consider the existence of the positive solutions for the more

general third-order boundary problems that nonlinearity explicitly contains first-order or

second-order derivative term.

The purpose of this paper is to obtain existence result of positive solution for B-

VP (1.1) with full nonlinearity. We will use the fixed point index theory in cones to

discuss this problem. We present some inequality conditions on f to guarantee the ex-

istence of positive solution. These inequality conditions allow that f(t, x, y, z) may be

superlinear or sublinear growth on x, y and z as |(x, y, z)| → 0 and |(x, y, z)| → ∞,

where |(x, y, z)| =
√
x2 + y2 + z2. For the superlinear growth case as |(x, y, z)| → ∞, a

Nagumo-type condition is presented to restrict the growth of f on z. We choose a proper

cone K in the work space C2[0, 1] and convert the BVP(1.1) to a fixed point problem

of a completely continuous cone mapping A : K → K, then apply the fixed point index

theory in cones and a-priori estimates in C2[0, 1] to prove our existence results.

Let I = [0, 1], G = I × R+ × R+ × R. Our main results as follows:

Theorem 1.1 Let f : I × R+ × R+ × R → R+ be continuous and satisfy the following

conditions

(F1) There exist constants a, b, c ≥ 0 and δ > 0, 0 < a√
2π2 + b

π2 + c
π < 1, such that

f(t, x, y, z) ≤ a x+ b y + c |z|, for (t, x, y, z) ∈ G such that (x, y, z)| < δ;

(F2) there exists constants a1, b1 ≥ 0 and H > δ, a1
12π2 + 2b1

π4 > 1, such that

f(t, x, y, z) ≥ a1 x+ b1 y, for (t, x, y, z) ∈ G such that |(x, y, z)| > H;

2
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(F3) Given any M > 0, there is a positive continuous function gM (ρ) on R+ satisfying∫ +∞

0

ρ dρ

gM (ρ) + 1
= +∞, (1.2)

such that

f(t, x, y, z) ≤ gM (|z|), (t, x, y, z) ∈ [0, 1]× [0, M ]× [0, M ]× R. (1.3)

Then BVP(1.1) has at least one positive solution.

Theorem 1.2 Let f : I × R+ × R+ × R → R+ be continuous and satisfy the following

conditions

(F4) there exists constants a, b ≥ 0 and δ > 0, a
12π2 + 2b

π4 > 1, such that

f(t, x, y, z) ≥ a x+ b y, for (t, x, y, z) ∈ G such that |(x, y, z)| < δ;

(F5) There exist constants a1, b1, c1 ≥ 0 and H > δ, 0 < a1√
2π2 + b1

π2 + c1
π < 1, such that

f(t, x, y, z) ≤ a1x+ b1y + c1|z|, for (t, x, y, z) ∈ G such that |(x, y, z)| > H;

Then BVP(1.1) has at least one positive solution.

In Theorem 1.1, the condition (F1) and (F2) allow that f(t, x, y, z) is superlinear

growth on x, y and z as |(x, y, z)| → 0 and |(x, y, z)| → ∞, respectively. The condition

(F3) is a Nagumo type growth condition on z which restricts the growth of f on z is

quadric. For example, the power function

f(t, x, y, z) = |x|α + |y|β + |z|γ (1.4)

satisfies Condition (F1) and (F2) when α, β, γ > 1. But only when γ ≤ 2, Condition

(F3) holds. In Theorem 2.2, the condition (F4) and (F5) allow that f(t, x, y, z) is

sublinear growth on on x, y and z as |(x, y, z)| → 0 and |(x, y, z)| → ∞, respectively.

For example, the power function defined by (1.4) satisfies Condition (F4) and (F5) when

0 < α, β, γ < 1.

The conditions (F1)-(F2) and (F4)-(F5) also allow that f may be asymptotically

linear on x, y and z as |(x, y, z)| → 0 and |(x, y, z)| → ∞. Indeed, we have the following

results:

Corollary 1.3 Let f : I × R+ × R+ × R→ R+ be continuous and satisfy the following

conditions

3
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(H1) There exist constants a, b, c ≥ 0, a√
2π2 + b

π2 + c
π < 1, such that

f(t, x, y, z) = a x+ b y + c |z|+ o(|(x, y, z)|), as |(x, y, z)| → 0;

(H2) there exists constants a1, b1, c1 > 0, a1
12π2 + 2b1

π4 > 1, such that

f(t, x, y, z) = a1x+ b1y + c1|z|+ o(|(x, y, z)|), as |(x, y, z)| → ∞.

Then BVP(1.1) has at least one positive solution.

Corollary 1.4 Let f : I × R+ × R+ × R→ R+ be continuous and satisfy the following

conditions

(H4) There exist constants a, b, c > 0, a
12π2 + 2b

π4 > 1, such that

f(t, x, y, z) = a x+ b y + c |z|+ o(|(x, y, z)|), as |(x, y, z)| → 0;

(H5) There exist constants a1, b1, c1 ≥ 0, a1√
2π2 + b1

π2 + c2
π < 1, such that

f(t, x, y, z) = a1x+ b1y + c1|z|+ o(|(x, y, z)|), as |(x, y, z)| → ∞.

Then BVP(1.1) has at least one positive solution.

In (H2) and (H5), o(|(x, y, z)|) denote a term of f which is less than |(x, y, z)| as

|(x, y, z)| → ∞, that is, lim|(x,y,z)|→∞
o(|(x,y,z)|)
|(x,y,z)| = 0. We can easily obtain the following

facts:
(H1) =⇒ (F1) holds, (H2) =⇒ (F2) and (F3) hold;

(H4) =⇒ (F4) holds, (H5) =⇒ (F5) holds.

Hence, by Theorem 1.1 and Theorem 1.2, the conclusions of Corollary 1.3 and 1.4 hold.

The proofs of Theorem 1.1 and 1.2 will be given in Section 3. Some preliminaries to

discuss BVP(1.1) are presented in Section 2. In section 4, we use Theorem 1.1 and 1.2

to induce two new existence results.

2 Preliminaries

Let C(I) denote the Banach space of all continuous function u(t) on I with the nor-

m ‖u‖C = maxt∈I |u(t)|. Generally, for n ∈ N, we use Cn(I) to denote the Banach

space of all nth-order continuous differentiable function on I with the norm ‖u‖Cn =

max{ ‖u‖C , ‖u′‖C , · · · , ‖u(n)‖C}. Let C+(I) be the cone of nonnegative functions in

C(I). Let H = L2(I) be the usual Hilbert space with the inner product (u, v) =

4
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∫ 1
0 u(t)v(t)dt and the norm ‖u‖2 =

( ∫ 1
0 |u(t)|2dt

)1/2
. Let Hn(I) be the usual Sobolev

space. u ∈ Hn(I) means that u ∈ Cn−1(I), u(n−1)(t) is absolutely continuous on I and

u(n) ∈ L2(I). In Hn(I), we use the norm ‖u‖Hn = max{ ‖u‖2, ‖u′‖2, · · · , ‖u(n)‖2}.

To discuss BVP(1.1), we firstly consider the corresponding linear boundary value

problem (LBVP) {
−u′′′(t) = h(t) , t ∈ I,

u(0) = u′(0) = u′(1) = 0 ,
(2.1)

where h ∈ L2(I).

Lemma 2.1 For every h ∈ L2(I), LBVP(2.1) has a unique solution u := Sh ∈ H3(I),

which satisfies

‖u‖2 ≤
1√
2
‖u′‖2, ‖u′‖2 ≤

1

π
‖u′′‖2, ‖u′′‖2 ≤

1

π
‖u′′′‖2. (2.2)

Moreover, the solution operator S : L2(I)→ H3(I) is a bounded linear operator. When

h ∈ C(I), the solution u = Sh ∈ C3(I), and the solution operator S : C(I) → C2(I) is

completely continuous.

Proof. Let h ∈ H2(I). It is well-known the linear second-order boundary value

problem {
−v′′(t) = h(t) , t ∈ [0, 1],

v(0) = v(1) = 0 ,
(2.3)

has a unique solution v ∈ H2(I) given by

v(t) =

∫ 1

0
G(t, s)h(s) ds, (2.4)

where G(t, s) is the corresponding Green function

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1 ,

s(1− t), 0 ≤ s ≤ t ≤ 1 .
(2.5)

Hence,

u(t) =

∫ t

0
v(τ)dτ =

∫ t

0

∫ 1

0
G(τ, s)h(s)dsdτ := Sh(t) (2.6)

belongs to H3(I) and is a unique solution of LBVP(2.1).

Since sine system { sin kπt | k ∈ N } is a complete orthogonal system of L2(I), every

h ∈ L2(I) can be expressed by the Fourier series expansion

h(t) =

∞∑
k=1

bk sin kπt , (2.7)

5
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where bk = 2
∫ 1
0 h(s) sin kπs ds, k = 1, 2, · · · , and the Paserval equality

‖h‖22 =
1

2

∞∑
k=1

|bk|2 (2.8)

holds. Since u = Sh ∈ H3(I), u′ and u′′′ belong to L2(I) and they can also be expressed

by the Fourier series expansion of the sine system. Since u′′′ = −h, by the integral

formula of Fourier coefficient, we have

u′(t) =
∞∑
k=1

bk
k2π2

sin kπt . (2.9)

On the other hand, since cosine system { cos kπt | k = 0, 1, 2, · · · } is another complete

orthogonal system of L2(I), every w ∈ L2(I) can be expressed by the cosine series

expansion

w(t) =
a0
2

+

∞∑
k=1

ak cos kπt ,

where ak = 2
∫ 1
0 w(s) cos kπs ds, k = 0, 1, 2, · · · . For the u′′ ∈ L2(I), by the integral

formula of the coefficient of cosine series, we obtain its cosine series expansion:

u′′(t) =

∞∑
k=1

bk
kπ

cos kπt . (2.10)

By (2.7), (2.9), (2.10) and Paserval equality, we obtain that

‖u′‖22 =
1

2

∞∑
k=1

∣∣∣∣ bkk2π2

∣∣∣∣2 ≤ 1

2π2

∞∑
k=1

∣∣∣∣ bkkπ
∣∣∣∣2 =

1

π2
‖u′′‖22 ,

‖u′′‖22 =
1

2

∞∑
k=1

∣∣∣∣ bkkπ
∣∣∣∣2 ≤ 1

2π2

∞∑
k=1

|bk|2 =
1

π2
‖h‖22 =

1

π2
‖u′′′‖22 .

In addition, since u(t) =
∫ t
0 u
′(s)ds, by Hölder inequality,

‖u‖22 =

∫ 1

0

∣∣∣ ∫ t

0
u′(s)ds

∣∣∣2dt ≤ ∫ 1

0
t

∫ t

0
|u(s)|2dsdt ≤ 1

2
‖u′‖22.

Hence (2.2) holds.

By the expression (2.6) of the solution u = Sh, S : L2(I) → H3(I) is a bounded

linear operator. When h ∈ C(I), by (2.4) and (2.6), u ∈ C3(I) and the solution operator

S : C(I) → C3(I) is bounded. By the compactness of the embedding C3(I) ↪→ C2(I),

S : C(I)→ C2(I) is completely continuous. 2

6
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Lemma 2.2 Let h ∈ C+(I). Then the solution u of LBVP(2.1) belongs to C3(I) and

has the following properties:

(1) u ≥ 0, u′ ≥ 0, u′′′ ≤ 0 and ‖u‖C ≤ ‖u′‖C ≤ ‖u′′‖;

(2) u′(t) ≥ t(1− t) ‖u′‖C , ∀ t ∈ I; ‖u′‖C ≤ π3

4

∫ 1
0 u
′(t) sinπt dt;

(3) u(t) ≥ 1
6 t

2(3− 2t) ‖u′‖C , ∀ t ∈ I; ‖u′‖C ≤ 6π
∫ 1
0 u(t) sinπt dt;

(4) there exists ξ ∈ (0, 1) such that u′′(ξ) = 0, u′′(t) ≥ 0 for t ∈ [0, ξ] and u′′(t) ≤ 0 for

t ∈ [ξ, 1]. Moreover, ‖u′′‖C = max{u′′(0), −u′′(1)}.

Proof. Let h ∈ C+(I) and u = Sh be the unique solution of BVP(2.1). By Lemma

2.1, u ∈ C3(I) and u′′′ = −h ≤ 0. Set v = u′, then v ∈ C2(I) is a unique solution of

LBVP(2.3) and given by (2.4). Hence, v ≥ 0. For every t ∈ I, we have u(t) =
∫ 1
0 v(s)ds ≥

0, and

|u(t)| =
∫ t

0
v(s) ds ≤ t ‖v‖C ≤ ‖u′‖C .

Hence, ‖u‖C ≤ ‖u′||C . By the boundary conditions of LBVP(2.1), there exists ξ ∈ (0, 1)

such that u′′(ξ) = 0, and for every t ∈ I, u′(t) =
∫ t
ξ u
′′(s) ds. Hence,

|u′(t)| =
∣∣∣ ∫ t

ξ
u′′(s) ds

∣∣∣ ≤ |t− ξ| ‖u′′‖C ≤ ‖u′′‖C ,
so we have ‖u′‖C ≤ ‖u′′‖C . Hence, the conclusion of Lemma 2.2(1) holds.

From the expression (2.5) we easily see that the Green function G(t, s) has the fol-

lowing properties

(i) 0 ≤ G(t, s) ≤ G(s, s) ∀ t, s ∈ I ;

(ii) G(t, s) ≥ G(t, t)G(s, s), ∀ t, s ∈ I .

For every t ∈ I, by (2.4) and the property (i) of G we have

v(t) =

∫ 1

0
G(t, s)h(s) ds ≤

∫ 1

0
G(s, s)h(s) ds.

Hence

‖v‖C ≤
∫ 1

0
G(s, s)h(s) ds.

By the property (ii) of G and this inequality, we have

v(t) =

∫ 1

0
G(t, s)h(s) ds ≥ G(t, t)

∫ 1

0
G(s, s)h(s) ds

≥ G(t, t) ‖v‖C = t(1− t) ‖v‖C , t ∈ I. (2.11)

7
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Multiplying this inequality by sinπt and integrating on I, we have∫ 1

0
v(t) sinπt dt ≥ ‖v‖C

∫ 1

0
t(1− t) sinπt dt =

4

π3
‖v‖C .

Thus, the conclusion (2) holds.

By (2.11), we have

u(t) =

∫ t

0
v(s) ds ≥

∫ t

0
s(1− s)‖v‖Cds =

1

6
t2(3− 2t)‖u′‖C , t ∈ I.

Multiplying this inequality by sinπt and integrating on I, we obtain that∫ 1

0
u(t) sinπt dt ≥ ‖u

′‖C
6

∫ 1

0
t2(3− 2t) sinπt dt =

‖u′‖C
6π

.

Hence, the conclusion (3) holds.

Since u′ ≥ 0, from the boundary conditions of LBVP(2.1) we see that u′′(0) ≥ 0

and u′′(1) ≥ 0. Since u′′′(t) = −h(t) ≥ 0 for every t ∈ I, it follows that u′′(t) is a

monotone increasing function on I. From these we conclude that, there exists ξ ∈ (0, 1)

such that u′′(ξ) = 0, u′′(t) ≥ 0 for t ∈ [0, ξ] and u′′(t) ≥ 0 for t ∈ [ξ, 1]. Moreover

‖u′′‖C = maxt∈I |u′′(t)| = max{u′′(0), −u′′(1)}. Hence, the conclusion of Lemma2.2(4)

holds. 2

Now, we define a closed convex cone K in C2(I) by

K =
{
u ∈ C2(I) : u(t) ≥ 0, u′(t) ≥ 0, ∀ t ∈ I

}
. (2.12)

By Lemma 2.2(1), we have that S(C+(I)) ⊂ K. Let f : I × R+ × R+ × R → R+ be

continuous. For every u ∈ K, set

F (u)(t) := f(t, u(t), u′(t), u′′(t)), t ∈ I. (2.13)

Then F : K → C+(I) is continuous and it maps every bounded in K into a bounded set

in C+(I). Define a mapping A : K → K by

A = S ◦ F. (2.14)

By Lemma 2.1, A : K → K is a completely continuous mapping. By the definitions of S

and K, the positive solution of BVP(1.1) is equivalent to the nonzero fixed point of A.

We will find the nonzero fixed point of A by using the fixed point index theory in cones.

Let E be a Banach space and K ⊂ E be a closed convex cone in E. Assume Ω is a

bounded open subset of E with boundary ∂Ω, and K ∩ Ω 6= ∅. Let A : K ∩ Ω → K be

a completely continuous mapping. If Au 6= u for any u ∈ K ∩ ∂Ω, then the fixed point

index i (A,K ∩Ω,K) is well defined. The following lemmas in [19, 20] are needed in our

discussion.

8
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Lemma 2.3 Let Ω be a bounded open subset of E with θ ∈ Ω, and A : K ∩ Ω → K a

completely continuous mapping. If µAu 6= u for every u ∈ K ∩ ∂Ω and 0 < µ ≤ 1, then

i (A, K ∩ Ω, K) = 1.

Lemma 2.4 Let Ω be a bounded open subset of E and A : K ∩ Ω → K a completely

continuous mapping. If there exists v0 ∈ K \ {θ} such that u − Au 6= τ v0 for every

u ∈ K ∩ ∂Ω and τ ≥ 0, then i (A, K ∩ Ω, K) = 0.

Lemma 2.5 Let Ω be a bounded open subset of E, and A, A1 : K ∩ Ω → K be two

completely continuous mappings. If (1 − s)Au + sA1u 6= u for every u ∈ K ∩ ∂Ω and

0 ≤ s ≤ 1, then i (A, K ∩ Ω, K) = i (A1, K ∩ Ω, K).

3 Proof of the Main Results

In this section, we use the fixed point index theory in cones to prove Theorem 1.1

and 1.2. Let E = C2(I), K ⊂ C2(I) be the closed convex cone defined by (2.12) and

A : K → K be the completely continuous mapping defined by (2.14). Then the positive

solution of BVP(1.1) is equivalent to the nontrivial fixed point of A. We use Lemma

2.3-2.5 to find the nontrivial fixed point of A.

Proof of Theorem 1.1. Let 0 < r < R < +∞ and set

Ω1 = {u ∈ C2(I) | ‖u‖C2 < r}, Ω2 = {u ∈ C2(I) | ‖u‖C2 < R}. (3.1)

We show that A has a fixed point in K ∩ (Ω2 \ Ω1) when r is small enough and R large

enough.

Choose r ∈ (0, δ/
√

3), where δ is the positive constant in Condition (F1). We prove

that A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω1, namely

µAu 6= u, ∀ u ∈ K ∩ ∂Ω1, 0 < µ ≤ 1. (3.2)

In fact, if (3.2) doesn’t hold, there exist u0 ∈ K ∩ ∂Ω1 and 0 < µ0 ≤ 1 such that

µ0Au0 = u0 . Since u0 = S(µ0F (u0)), by the definition of S, u0 ∈ C3(I) is the unique

solution of LBVP(2.1) for h = µ0F (u0) ∈ C+(I). Hence, u0 ∈ C2(I) satisfies the

differential equation{
−u0′′′(t) = µ0 f(t, u0(t), u0

′(t), u0
′′(t)), t ∈ [0, 1],

u0(0) = u0
′(0) = u0

′(1) = 0 .
(3.3)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

(t, u0(t), u0
′(t), u0

′′(t)) ∈ G, |(u0(t), u0′(t), u0′′(t))| < δ, t ∈ I.

9
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Hence by Condition (F1), we have

0 ≤ f(t, u0(t), u0
′(t), u0

′′(t)) ≤ a u0(t) + b u0
′(t) + c |u0′′(t)|, t ∈ I,

Combining this inequality with Equation (3.3), we obtain that

|u0′′′(t)| = µ0 f(t, u0(t), u0
′(t), u0

′′(t))

≤ f(t, u0(t), u0
′(t), u0

′′(t))

≤ a |u0(t)|+ b |u0′(t)|+ c |u0′′(t)|, t ∈ I.

From this inequality and Lemma 2.1 it follows that

‖u0′′′‖2 ≤ a‖u0‖2 + b‖u0′‖2 + c‖u0′′‖2 ≤
( a√

2π2
+

b

π2
+
c

π

)
‖u0′′′‖2. (3.4)

Since ‖u0‖C2 > 0, from boundary condition in Equation (3.3) we easily see that ‖u0′′′‖2 >
0. Hence by (3.5) we obtain that a√

2π2 + b
π2 + c

π ≥ 1, which contradicts the assumption

in Condition (F1). Hence (3.2) holds, namely A satisfies the condition of Lemma 2.3 in

K ∩ ∂Ω1. By Lemma 2.3, we have

i (A, K ∩ Ω1, K) = 1. (3.5)

Set C0 = max{ |f(t, x, y, z)−(a1 x+b1 y)| : (t, x, y, z) ∈ G, |(x, y, z)| ≤ H}+1, where

H is the constant in Condition (F2). By Condition (F2), we have

f(t, x, y, z) ≥ a1 x+ b1 y − C0, ∀ (t, x, y, z) ∈ G. (3.6)

Define a mapping F1 : K → C+(I) by

F1(u)(t) := f(t, u(t), u′(t), u′′(t)) + C0 = F (u)(t) + C0, t ∈ I, (3.7)

and set

A1 = S ◦ F1. (3.8)

Then A1 : K → K is a completely continuous mapping.

Let R > δ. We show that A1 satisfies that

i (A1, K ∩ Ω2, K) = 0. (3.9)

Choose v0 = 1 − cosπt and w0 = π3 sinπt. since −v0′′′(t) = π3 sinπt = w0, by the

definition of S and Lemma 2.2(1), v0 = S(w0) ∈ K \ {θ}. We show that A1 satisfies the

condition of Lemma 2.4 in K ∩ ∂Ω2, namely

u−A1u 6= τ v0, ∀ u ∈ K ∩ ∂Ω2, τ ≥ 0. (3.10)

10
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In fact, if (3.10) doesn’t hold, there exist u1 ∈ K ∩∂Ω2 and τ1 ≥ 0 such that u1−A1u1 =

τ1v0. Since u1 = A1u1 + τ1v0 = S(F (u1) + C0 + τ1w0), by the definition of S, u1 is the

unique solution of LBVP(2.1) for h = F (u1) + C0 + τ1w0 ∈ C+(I). Hence, u1 ∈ C3(I)

satisfies the differential equation{
−u1′′′(t) = f(t, u1(t), u1

′(t), u1
′′(t)) + C0 + τ1w0(t), t ∈ I,

u1(0) = u1
′(0) = u1

′(1) = 0 .
(3.11)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K, (t, u1(t), u1
′(t), u1

′′(t)) ∈ G, t ∈ I. Hence

by (3.6), we have

f(t, u1(t), u1
′(t), u1

′′(t)) ≥ a1 u1(t) + b1 u1
′(t)− C0, t ∈ I.

From this inequality and Equation (3.11), we conclude that

−u1′′′(t) = f(t, u1(t), u1
′(t), u1

′′(t)) + C0 + τ1w0(t)

≥ a1 u1(t) + b1 u1
′(t) + τ1w0(t)

≥ a1 u1(t) + b1 u1
′(t), t ∈ I.

Multiplying this inequality by sinπt and integrating on I, then using integration by parts

for the left side, we have

π2
∫ 1

0
u1
′(t) sinπt dt ≥ a1

∫ 1

0
u1(t) sinπt dt+ b1

∫ 1

0
u1
′(t) sinπt dt. (3.12)

By Lemma 2.2 (2) and (3),∫ 1

0
u1(t) sinπt dt ≥ 1

6π
‖u1′‖C ,

∫ 1

0
u1
′(t) sinπt dt ≥ 4

π3
‖u1′‖C . (3.13)

Since π2
∫ 1
0 u1

′(t) sinπt dt ≤ 2π‖u1′‖C , from (3.12) and (3.13) it follows that

2π‖u1′‖C ≥ π2
∫ 1

0
u1
′(t) sinπt dt

≥ a1
∫ 1

0
u1(t) sinπt dt+ b1

∫ 1

0
u1
′(t) sinπt dt

≥
( a1

6π
+

4b1
π3

)
‖u1′‖C .

Since ‖u1′‖C > 0, by this inequality we obtain that a1
12π2 + 2b1

π4 ≤ 1, which contradicts the

assumption in (F2). Hence (3.10) holds, namely A1 satisfies the condition of Lemma 2.4

in K ∩ ∂Ω2. By Lemma 2.4, (3.9) holds.

11
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Next, we show that A and A1 satisfy the condition of Lemma 2.5 in K ∩ ∂Ω2 when

R is large enough, namely

(1− s)Au+ sA1u 6= u, ∀ u ∈ K ∩ ∂Ω2, 0 ≤ s ≤ 1. (3.14)

If (3.14) is not valid, there exist u2 ∈ K ∩ ∂Ω2 and s0 ∈ [0, 1], such that (1 − s0)Au2 +

s0A1u2 = u2. Since u2 = S((1 − s0)F (u2) + s0F1(u2)), by the definition of S, u2 is the

unique solution of LBVP(2.1) for h = (1−s0)F (u2)+s0F1(u2) = F (u2)+s0C0 ∈ C+(I).

Hence, u2 ∈ C3(I) satisfies the differential equation{
−u2′′′(t) = f(t, u2(t), u2

′(t), u2
′′(t)) + s0C0, t ∈ I,

u2(0) = u2
′(0) = u2

′(1) = 0 .
(3.15)

Since u2 ∈ K ∩ ∂Ω2, by the definition of K, (t, u2(t), u2
′(t), u2

′′(t)) ∈ G, t ∈ I. Hence

by (3.6), we have

f(t, u2(t), u2
′(t), u2

′′(t)) ≥ a1 u2(t) + b1 u2
′(t)− C0, t ∈ I.

From this inequality and Equation (3.15), we obtain that

−u2′′′(t) = f(t, u2(t), u2
′(t), u2

′′(t)) + s0C0

≥ a1 u2(t) + b1 u2
′(t)− (1− s0)C0,

≥ a1 u2(t) + b1 u2
′(t)− C0, t ∈ I.

Multiplying this inequality by sinπt and integrating on I, then using integration by parts

for the left side, we have

π2
∫ 1

0
u2
′(t) sinπt dt ≥ a1

∫ 1

0
u2(t) sinπt dt+ b1

∫ 1

0
u2
′(t) sinπt dt− 2C0

π
.

Using this inequality and Lemma 2.2 (2) and (3), we obtain that

2π‖u2′‖C ≥ π2
∫ 1

0
u2
′(t) sinπt dt

≥ a1
∫ 1

0
u2(t) sinπt dt+ b1

∫ 1

0
u2
′(t) sinπt dt− 2C0

π

≥
( a1

6π
+

4b1
π3

)
‖u2′‖C −

2C0

π
.

From this inequality it follows that

‖u2′‖C ≤
C0

( a1
12π2 + 2b1

π4 − 1)π2
:= M .

12
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Hence, by Lemma 2.2(1) we obtain that

‖u2‖C ≤ ‖u2′‖C ≤M. (3.16)

For this M > 0, by Assumption (F3), there is a positive continuous function gM (ρ) on

R+ satisfying (1.2) such that (1.3) holds. By (3.16) and definition of K, 0 ≤ u2(t) ≤M ,

0 ≤ u2′(t) ≤M , t ∈ I. Hence from (1.3) it follows that

f(t, u2(t), u2
′(t), u2

′′(t)) ≤ gM (|u2′′(t)|), t ∈ I.

Combining this inequality with Equation (3.15), we obtain that

−u2′′′(t) ≤ gM (|u2′′(t)|) + C0, t ∈ I. (3.17)

From (1.3) we easily obtain that∫ +∞

0

ρ dρ

gM (ρ) + C0
= +∞.

Hence there exists a positive constant M1 ≥M such that∫ M1

0

ρ dρ

gM (ρ) + C0
> M. (3.18)

By Lemma 2.2(4), there exists ξ ∈ (0, 1) such that u2
′′(ξ) = 0, u2

′′(t) ≥ 0 for t ∈ [0, ξ],

u2
′′(t) ≤ 0 for t ∈ [ξ, 1], and ‖u2′′‖C = max{u2′′(0), −u2′′(1)}. Hence ‖u2′′‖C = u2

′′(0)

or ‖u2′′‖C = −u2′′(1). We only consider the case of that ‖u2′′‖C = u2
′′(0), and the other

case can be treated with a same way.

Since u2
′′(t) ≥ 0 for t ∈ [0, ξ], multiplying both sides of the inequality (3.17) by

u2
′′(t), we obtain that

−u2′′′(t)u2′′(t)
gM (u2′′(t)) + C0

≤ u2
′′(t), t ∈ [0, ξ].

Integrating both sides of this inequality on [0, ξ] and making the variable transformation

ρ = u2
′′(t) for the left side, we have∫ u2′′(0)

0

ρ dρ

gM (ρ) + C0
≤ u2′(ξ)− u2′(0) ≤ ‖u2′‖C .

Since ‖u2′′‖C = u2
′′(0), from this inequality and (3.16) it follows that∫ ‖u2′′‖C

0

ρ dρ

gM (ρ) + C0
≤M.

13
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Using this inequality and (3.18), we conclude that

‖u2′′‖C ≤M1. (3.19)

Hence, from this inequality and (3.16) it follows that

‖u2‖C2 ≤M1. (3.20)

Let R > max{M1, δ}. Since u2 ∈ K∩∂Ω2, by the definition of Ω2, ‖u2‖C2 = R > M1.

This contradicts (3.20). Hence, (3.14) holds, namely A and A1 satisfy the condition of

Lemma 2.5 in K ∩ ∂Ω2. By Lemma 2.5, we have

i (A, K ∩ Ω2, K) = i (A1, K ∩ Ω2, K). (3.21)

Hence, from (3.21) and (3.9) it follows that

i (A, K ∩ Ω2, K) = 0. (3.22)

Now using the additivity of the fixed point index, from (3.5) and (3.22), we conclude

that

i (A, K ∩ (Ω2 \ Ω1), K) = i (A, K ∩ Ω2, K)− i (A, K ∩ Ω1, K) = −1.

Hence A has a fixed point in K ∩ (Ω2 \ Ω1), which is a positive solution of BVP(1.1).

The proof of Theorem 1.1 is completed. 2

Proof of Theorem 1.2. Let Ω1, Ω2 ⊂ C2(I) be defined by (3.1). We prove that

the completely continuous mapping A : K → K defined by (2.14) has a fixed point in

K ∩ (Ω2 \ Ω1) when r is small enough and R large enough.

Let r ∈ (0, δ/
√

3), where δ is the positive constant in Condition (F4). Choose v0 =

1 − cosπt and w0 = π3 sinπt. Then S(w0) = v0, and v0 ∈ K \ {θ}. We show that A

satisfies the condition of Lemma 2.4 in K ∩ ∂Ω1, namely

u−Au 6= τ v0, ∀ u ∈ K ∩ ∂Ω1, τ ≥ 0. (3.23)

In fact, if (3.23) is not valid, there exist u0 ∈ K∩∂Ω1 and τ0 ≥ 0 such that u0−Au0 = τ0v0.

Since u0 = Au0 + τ0v0 = S(F (u0) + τ0w0), by definition of S, u0 is the unique solution

of LBVP(2.1) for h = F (u0) + τ0w0 ∈ C+(I). Hence u0 ∈ C3(I) satisfies the differential

equation {
−u0′′′(t) = f(t, u0(t), u0

′(t), u0
′′(t)) + τ0w0(t), t ∈ I,

u0(0) = u0
′(0) = u0

′(1) = 0 .
(3.24)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

(t, u0(t), u0
′(t), u0

′′(t)) ∈ G, |(u0(t), u0′(t), u0′′(t))| < δ, t ∈ I.

14
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Hence by Condition (F5) we have

f(t, u0(t), u0
′(t), u0

′′(t)) ≥ a u0(t) + b u0
′(t), t ∈ I.

From this inequality and Equation (3.24) it follows that

−u0′′′(t) ≥ a u0(t) + b u0
′(t), t ∈ I.

Multiplying this inequality by sinπt and integrating on I, then using integration by parts

for the left side, we have

π2
∫ 1

0
u0
′(t) sinπt dt ≥ a

∫ 1

0
u0(t) sinπt dt+ b

∫ 1

0
u0
′(t) sinπt dt.

Using this inequality and Lemma 2.2 (2) and (3), we obtain that

2π‖u0′‖C ≥ π2
∫ 1

0
u0
′(t) sinπt dt

≥ a1
∫ 1

0
u0(t) sinπt dt+ b1

∫ 1

0
u0
′(t) sinπt dt

≥
( a1

6π
+

4b1
π3

)
‖u0′‖C .

Since ‖u0‖C > 0, from this inequality it follows that a1
12π2 + 2b1

π4 ≤ 1, which contradicts

the assumption in (F4). Hence (3.23) holds, namely A satisfies the condition of Lemma

2.4 in K ∩ ∂Ω1. By Lemma 2.4, we have

i (A, K ∩ Ω1, K) = 0. (3.25)

Let R > δ be large enough. We show that A satisfies the condition of Lemma 2.3 in

K ∩ ∂Ω2, namely

µAu 6= u, ∀ u ∈ K ∩ ∂Ω2, 0 < µ ≤ 1. (3.26)

In fact, if (3.26) is not valid, there exist u1 ∈ K∩∂Ω2 and 0 < µ1 ≤ 1 such that µ1Au1 =

u1 . Since u1 = S(µ1F (u1)), by the definition of S, u1 ∈ C3(I) is the unique solution

of LBVP(2.1) for h = µ1F (u1) ∈ C+(I). Hence u1 ∈ C3(I) satisfies the differential

equation {
−u1′′′(t) = µ1f(t, u1(t), u1

′(t), u1
′′(t)), t ∈ I,

u1(0) = u1
′(0) = u1

′(1) = 0 .
(3.27)

Set C1 = max{|f(t, x, y, z) − (a1 x + b1 y + c1|z|)| : (t, x, y, z) ∈ G, |(x, y, z)| ≤ H} + 1,

where H is the constant in Condition (F5). Then by Condition (F5), we have

f(t, x, y, z) ≤ a1 x+ b1 y + c1|z|+ C1, ∀ (t, x, y, z) ∈ G. (3.28)

15
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Since u1 ∈ K ∩ ∂Ω2, by the definition of K, (t, u1(t), u1
′(t), u1

′′(t)) ∈ G, t ∈ I. Hence

by (3.28), we have

f(t, u1(t), u1
′(t), u1

′′(t)) ≤ a1 u1(t) + b1 u1
′(t) + c1|u1′′(t)|+ C1, t ∈ I.

From this inequality with Equation (3.3), we obtain that

|u1′′′(t)| = µ1 f(t, u1(t), u1
′(t), u1

′′(t))

≤ f(t, u1(t), u1
′(t), u1

′′(t))

≤ a1 u1(t) + b1 u1
′(t) + c1|u1′′(t)|+ C1, t ∈ I.

Using this inequality and Lemma 2.1, we have

‖u1′′′‖2 ≤ a1‖u1‖2 + b1‖u1′‖2 + c1‖u1′′‖2 + C1

≤
( a1√

2π2
+
b1
π2

+
c1
π

)
‖u1′′′‖2 + C1.

Consequently,

‖u1′′′‖2 ≤
C1

1−
(

a1√
2π2 + b1

π2 + c1
π

) := R1.

Hence by (2.2), we have

‖u1‖H3 = max{‖u1‖2, ‖u1′‖2, ‖u1′′‖2, ‖u1′′′‖2} = ‖u1′′′‖2 ≤ R1.

By this estimate and the boundedness of Sobolev embedding H3(I) ↪→ C2(I), we have

‖u1‖C2 ≤ C ‖u1‖H3 ≤ CR1 := R2, (3.29)

where C is the Sobolev embedding constant.

Choose R > max{R2, δ}. Since u1 ∈ K ∩ ∂Ω2, by the definition of Ω2, we see that

‖u1‖C2 = R > R2, which contradicts (3.29). Hence, (3.26) holds, namely A satisfies the

condition of Lemma 2.3 in K ∩ ∂Ω2. By Lemma 2.3, we have

i (A, K ∩ Ω2, K) = 1. (3.30)

Now, from (3.25) and (3.30) it follows that

i (A, K ∩ (Ω2 \ Ω1), K) = i (A, K ∩ Ω2, K)− i (A, K ∩ Ω1, K) = 1.

Hence A has a fixed-point in K ∩ (Ω2 \ Ω1), which is a positive solution of BVP(1.1).

The proof of Theorem 1.2 is completed. 2

16

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

693 Yongxiang Li ET AL 678-696



4 Applications

In Theorem 1.1 and Theorem 1.2, we use the inequality conditions to describe the

growth of the nonlinearity f as |(x, y, z)| → 0 and |(x, y, z)| → ∞. These inequality

conditions can be replaced by the following upper and lower limits:

f0 = lim inf
|(x,y,z)|→0

min
t∈I

f(t, x, y, z)

|(x, y, z)|
, f0 = lim sup

|(x,y,z)|→0
max
t∈I

f(t, x, y, z)

|(x, y, z)|
,

f∞ = lim inf
|(x,y,z)|→∞

min
t∈I

f(t, x, y, z)

|(x, y, z)|
, f∞ = lim sup

|(x,y,z)|→∞
max
t∈I

f(t, x, y, z)

|(x, y, z)|
.

(4.1)

Set

A =

√
2π2

1 +
√

2(1 + π)
, B =

12
√

3π4

π2 + 6
. (4.2)

By the definition (4.1), we can verify that

f0 < A =⇒ (F1) holds;

f∞ > B =⇒ (F2) holds;

f0 > B =⇒ (F4) holds;

f∞ < A =⇒ (F5) holds.

We only show the third assertion, and the other assertions can be showed with a similar

way. Since f0 > B, we may choose positive constant σ > 0 such that f0 > B + σ. By

definition f0, there exists δ > 0 such that

f(t, x, y, z)

|(x, y, z)|
> B + σ, t ∈ I, 0 < |(x, y, z)| < δ.

This implies that

f(t, x, y, z) >
B + σ√

3
(|x|+ |y|+ |z|), t ∈ I, 0 < |(x, y, z)| < δ.

Choose a = b = B+σ√
3

. Then a
12π2 + 2b

π4 = π2+6
12
√
3π4 (B+σ) > 1. The above inequality means

that (F4) holds for these a, b and δ.

Hence, by Theorem 1.1 and Theorem 1.2, we obtain that

Theorem 4.1 Let f : I ×R+ ×R+ ×R→ R+ be continuous. If f satisfies Assumption

(F3) and the following condition

(C1) f0 < A, f∞ > B,

then BVP(1.1) has at least one positive solution.
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Theorem 4.2 Let f : I × R+ × R+ × R → R+ be continuous and satisfy the following

condition

(C2) f0 > B, f∞ < A.

Then BVP(1.1) has at least one positive solution.

Example 4.1 Consider the superlinear third-order boundary value problem{
−u′′′(t) = u4(t) + (u′(t))4 + (u′′′(t))2, t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0 .
(4.3)

We easily verify that the corresponding nonlinearity

f(t, x, y, z) = z4 + y4 + z2

satisfies the conditions (F3) and (C1). By Theorem 4.1, the equation (4.3) has at least

one positive solution.

Example 4.2 Consider the sublinear third-order boundary value problem −u′′′(t) = 3

√
|u(t)|2 + |u′(t)|2 + |u′′(t)|2, t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0 .
(4.4)

It is easy to see that the corresponding nonlinearity

f(t, x, y, z) = 3
√
|x|2 + |y|2 + |z|2

satisfies the condition (C2). By Theorem 4.2, the equation (4.4) has at least one positive

solution.
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Abstract

The purpose of this paper is to characterize the conditions for the convergence

of the iterative scheme in the sense of Alghamdi et al. [The implicit midpoint rule

for nonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), Article ID 96, 9

pages] associated with φ-hemicontractive mappings in a nonempty convex subset of

an arbitrary Banach space.
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nach spaces

1 Introduction and Preliminaries

Let K be a nonempty subset of an arbitrary Banach space X and X∗ be its dual space.

The symbols D(T ) and F (T ) stand for the domain and the set of fixed points of T (for a

single-valued map T : X → X, x ∈ X is called a fixed point of T iff Tx = x). We denote

by J the normalized duality mapping from E to 2E∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}.

∗Corresponding author
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Let T : D(T ) ⊆ X → X be an operator.

Definition 1.1. T is called Lipshitzian if there exists L > 1 such that

‖Tx − Ty‖ 6 L ‖x − y‖ ,

for all x, y ∈ K. If L = 1, then T is called non-expansive and if 0 6 L < 1, T is called

contraction.

Definition 1.2. ( [2, 4, 6]) (1) T is said to be strongly pseudocontractive if there exists a

t > 1 such that for each x, y ∈ D(T ), there exists j(x− y) ∈ J(x − y) satisfying

Re 〈Tx − Ty, j(x− y)〉 ≤
1

t
‖x − y‖2

.

(2) T is said to be strictly hemicontractive if F (T ) 6= ∅ and if there exists a t > 1 such

that for each x ∈ D(T ) and q ∈ F (T ), there exists j(x− y) ∈ J(x − y) satisfying

Re 〈Tx − q, j(x− q)〉 ≤
1

t
‖x − q‖2

.

(3) T is said to be φ-strongly pseudocontractive if there exists a strictly increasing

function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x, y ∈ D(T ), there exists

j(x− y) ∈ J(x − y) satisfying

Re 〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2 − φ(‖x − y‖) ‖x − y‖ .

(4) T is said to be φ-hemicontractive if F (T ) 6= ∅ and if there exists a strictly increasing

function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x ∈ D(T ) and q ∈ F (T ),

there exists j(x− y) ∈ J(x − y) satisfying

Re 〈Tx − q, j(x− q)〉 ≤ ‖x − q‖2 − φ(‖x − q‖) ‖x − q‖ .

Clearly, each strictly hemicontractive operator is φ-hemicontractive.

For a nonempty convex subset K of a normed space X, T : K → K is an operator

(a) the Mann iteration scheme [9] is defined by the following sequence {xn} :

{

x1 ∈ K,

xn+1 = (1 − bn) xn + bnTxn, n ≥ 1,

where {bn} is a sequence in [0, 1].

(b) the sequence {xn} defined by















x1 ∈ K,

yn = (1 − b′n) xn + b′nTxn,

xn+1 = (1 − bn)xn + bnTyn, n ≥ 1,

where {bn} and {b′n} are sequences in [0, 1] is known as the Ishikawa iteration scheme [4].
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Chidume [2] established that the Mann iteration sequence converges strongly to the

unique fixed point of T in case T is a Lipschitz strongly pseudo-contractive mapping

from a bounded closed convex subset of Lp (or lp) into itself. Afterwards, several authors

generalized this result of Chidume in various directions [3, 5–8, 11, 12, 15, 16].

For a finite family of nonexpansive mappings {Ti : i ∈ {1, 2, . . . , N}} with a real se-

quence {tn} ∈ (0, 1), and %0 ∈ X, where X is an arbitrary Banach space, the following

implicit iteration process is due to Xu and Ori [14]:

x1 = (1− t1)x0 + t1T1x1,

x2 = (1− t2)x1 + t2T2x2,

...

xN = (1− tN )xN−1 + tNTNxN ,

xN+1 = (1− tN+1)xN + tN+1TN+1xN+1,

...

which can be written in the following compact form:

xn = (1 − tn)xn−1 + tnTnxn, for all n ≥ 1, (XO)

where Tn = Tn(mod N∈{1,2,...,N}). For the common fixed point of the finite family of nonex-

pansive mappings defined in a Hilbert space, Xu and Ori [14] proved the weak convergence

of the implicit iteration process.

Lately Alghamdi et al. [1] introduced the following iteration process in a Hilbert space

H :

Algorithm 1.3. Initialize x0 ∈ H arbitrarily and define

xn+1 = (1− tn)xn + tnT

(

xn + xn+1

2

)

,

where tn ∈ (0, 1) for all n ∈ N ∪ {0}

For the approximation of fixed points of nonexpansive mappings under the setting of

Hilbert spaces, they proved the following results:

Lemma 1.4. Let {xn} be the sequence generated by Algorithm 1.3. Then

(i) ‖xn+1 − p‖ ≤ ‖xn − p‖ for all n ≥ 0 and p ∈ F (T ),

(ii)
∑∞

n=1 tn‖xn − xn+1‖
2 < ∞,

(iii)
∑∞

n=1 tn(1− tn)‖xn − T (xn+xn+1

2 )‖2 < ∞.

Lemma 1.5. Let {xn} be the sequence generated by Algorithm 1.3. Suppose that t2n+1 ≤

atn for all n ≥ 0 and a > 0. Then

lim
n→∞

‖xn+1 − xn‖ = 0.

3
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Lemma 1.6. Assume that

(i) t2n+1 ≤ atn for all n ≥ 0 and a > 0,

(ii) lim infn→∞ tn > 0.

Then the sequence {xn} generated by Algorithm 1.3 satisfies the property

lim
n→∞

‖xn − Txn‖ = 0.

Theorem 1.7. Let H be a Hilbert space and T : H → H be a nonexpansive mapping with

F (T ) 6= ∅. Assume that {xn} is generated by Algorithm 1.3, where the sequence {tn} of

parameters satisfies the conditions (i) and (ii) of Lemma 1.6.

Then {xn} converges weakly to a fixed point of T .

The purpose of this paper is to characterize conditions for the convergence of the

iterative scheme in the sense of Alghamdi et al. [1] associated with φ-hemicontractive

mappings in a nonempty convex subset of an arbitrary Banach space. Our results improve

and generalize most results in recent literature [1–3, 6–8, 15, 16].

2 Main results

The following result is now well known.

Lemma 2.1. [13] For all x, y ∈ X and j(x + y) ∈ J(x + y),

‖x + y‖2 ≤ ‖x‖2 + 2Re 〈y, j(x + y)〉 .

Now we prove our main results.

Theorem 2.2. Let K be a nonempty closed and convex subset of an arbitrary Banach

space X and T : K → K be continuous φ-hemicontractive mappings. For any x1 ∈ K,

define the sequence {xn}∞n=1 inductively as follows:

xn = (1 − tn)xn−1 + tnT

(

xn−1 + xn

2

)

, n ≥ 1, (2.1)

where {tn}
∞
n=1 is a sequence in [0, 1] satisfying the following conditions

(i) limn→∞ tn = 0 and

(ii)
∑∞

n=1 tn = ∞.

Then the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the fixed point q of T .

(b)
{

T
(

xn−1+xn

2

)}∞

n=1
is bounded.

Proof. First we prove that (a) implies (b).

Since T is φ-hemicontractive, it follows that F (T ) is a singleton. Let F (T ) = {q} for

some q ∈ K.

Suppose that limn→∞ xn = q. Then the continuity of T yield that

lim
n→∞

T

(

xn−1 + xn

2

)

= q.

4
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Therefore
{

T
(

xn−1+xn

2

)}∞

n=1
is bounded.

Second we need to show that (b) implies (a).

Put

M1 = ‖x0 − q‖ + sup
n≥1

∥

∥

∥

∥

T

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

.

Obviously M1 < ∞. It is clear that ‖x0 − q‖ ≤ M1. Let ‖xn−1 − q‖ ≤ M1. Next we will

prove that ‖xn − q‖ ≤ M1.

Consider

‖xn − q‖ =

∥

∥

∥

∥

(1 − tn)xn−1 + tnT

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

=

∥

∥

∥

∥

(1 − tn)(xn−1 − q) + tn(T

(

xn−1 + xn

2

)

− q)

∥

∥

∥

∥

≤ (1 − tn) ‖xn−1 − q‖ + tn

∥

∥

∥

∥

T

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

≤ (tn + (1 − tn))M1

= M1.

So, from the above discussion, we can conclude that the sequence {xn −p}n≥0 is bounded.

Thus there is a constant M2 > 0 satisfying

M2 = sup
n≥1

‖xn − q‖ + sup
n≥1

∥

∥

∥

∥

T

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

. (2.2)

Denote M = M1 + M2. Obviously M < ∞.

Let wn =
∥

∥Txn − T
(

xn−1+xn

2

)∥

∥ for each n ≥ 1. The continuity of T ensures that

lim
n→∞

wn = 0, (2.3)

because
∥

∥

∥

∥

xn −
xn−1 + xn

2

∥

∥

∥

∥

=
1

2
‖xn−1 − xn‖

=
1

2
tn

∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

≤ Mtn

→ 0

as n → ∞.
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By virtue of Lemma 3 and (2.1), we infer that

‖xn − q‖2 =

∥

∥

∥

∥

(1 − tn)xn−1 + tnT

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

=

∥

∥

∥

∥

(1 − tn)(xn−1 − q) + tn(T

(

xn−1 + xn

2

)

− q)

∥

∥

∥

∥

2

≤ (1 − tn)2 ‖xn−1 − q‖2 + 2tnRe

〈

T

(

xn−1 + xn

2

)

− q, j(xn − q)

〉

≤ (1 − tn)2 ‖xn−1 − q‖2 + 2tnRe

〈

Txn − T

(

xn−1 + xn

2

)

, j(xn − q)

〉

+ 2tnRe 〈Txn − q, j(xn − q)〉

≤ (1 − tn)2 ‖xn−1 − q‖2 + 2tn

∥

∥

∥

∥

Txn − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

‖xn − q‖

+ 2tn ‖xn − q‖2 − 2tnφ(‖xn − q‖) ‖xn − q‖

≤ (1 − tn)2 ‖xn−1 − q‖2 + 2Mtnwn + 2tn ‖xn − q‖2

− 2tnφ(‖xn − q‖) ‖xn − q‖ .

(2.4)

Also

‖xn − q‖2 =

∥

∥

∥

∥

(1 − tn)xn−1 + tnT

(

xn−1 + xn

2

)

− q

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(1 − tn)(xn−1 − q) + tn(T

(

xn−1 + xn

2

)

− q)

∥

∥

∥

∥

2

≤

(

(1− tn) ‖xn−1 − p‖+ tn

∥

∥

∥

∥

T

(

xn−1 + xn

2

)

− p

∥

∥

∥

∥

)2

≤ (1 − tn) ‖xn−1 − p‖2 + tn

∥

∥

∥

∥

T

(

xn−1 + xn

2

)

− p

∥

∥

∥

∥

2

≤ (1 − tn) ‖xn−1 − p‖2 + M2tn,

(2.5)

where the second inequality holds by the convexity of ‖·‖2 .

By substituting (2.5) in (2.4), we get

‖xn − q‖2 ≤
(

(1− tn)2 + 2tn (1 − tn)
)

‖xn−1 − p‖2 + 2Mtn (wn + Mtn)

− 2tnφ(‖xn − q‖) ‖xn − q‖

=
(

1− t2n
)

‖xn−1 − p‖2 + 2Mtn (wn + Mtn)

− 2tnφ(‖xn − q‖) ‖xn − q‖

≤ ‖xn−1 − p‖2 + 2Mtn (wn + Mtn)

− 2tnφ(‖xn − q‖) ‖xn − q‖

= ‖xn−1 − q‖2 + tnln − 2tnφ(‖xn − q‖) ‖xn − q‖ ,

(2.6)

where

ln = 2M (wn + Mtn) → 0 (2.7)

as n → ∞.
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Let δ = inf{‖xn − q‖ : n ≥ 0}.

We claim that δ = 0. Otherwise δ > 0. Thus (2.7) implies that there exists a positive

integer N1 > N0 such that ln < φ(δ)δ for each n ≥ N1. In view of (2.6), we conclude that

‖xn − q‖2 ≤ ‖xn−1 − q‖2 − φ(δ)δtn, n ≥ N1,

which implies that

φ(δ)δ
∞
∑

n=N1

tn ≤ ‖xN1
− q‖2

, (2.8)

which contradicts (ii). Therefore δ = 0. Thus there exists a subsequence {xni
}∞n=1 of

{xn}
∞
n=1such that

lim
i→∞

xni
= q. (2.9)

Let ε > 0 be a fixed number. By virtue of (2.7)and (2.9), we can select a positive integer

i0 > N1 such that
∥

∥xni0
− q

∥

∥ < ε, ln < φ(ε)ε, n ≥ ni0. (2.10)

Let p = ni0. By induction, we show that

‖xp+m − q‖ < ε, m ≥ 1. (2.11)

Observe that (2.6) means that (2.11) is true for m = 1. Suppose that (2.11) is true for

some m ≥ 1. If ‖xp+m − q‖ ≥ ε, by (2.6) and (2.10) we know that

ε2 ≤ ‖xp+m − q‖2

≤ ‖xp+m−1 − q‖2 + tp+mlp+m − 2tp+mφ(‖xp+m − q‖) ‖xp+m − q‖

< ε2 + tp+mφ(ε)ε − 2tp+mφ(ε)ε

= ε2 − tp+mφ(ε)ε

< ε2,

which is impossible. Hence ‖xp+m − q‖ < ε. That is, (2.11) holds for all m ≥ 1. Thus

(2.11) ensures that limn→∞ xn = q. This completes the proof.

Taking xn−1 ' xn in Theorem 2.2, we get

Theorem 2.3. Let K be a nonempty closed and convex subset of an arbitrary Banach

space X, T : K → K be continuous φ-hemicontractive mapping. For any x1 ∈ K, define

the sequence {xn}
∞
n=1 inductively as follows:

xn = (1− tn)xn−1 + tnTxn, n ≥ 1,

where {tn}
∞
n=1 is a sequence in [0, 1] satisfying the conditions (i) and (ii) of Theorem 2.2.

Then the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the fixed point q of T .

(b) {Txn}
∞
n=1 is bounded.
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Remark 2.4. 1. All the results can also be proved for the same iterative scheme with

error terms.

2. The known results for strongly pseudocontractive mappings are weakened by the

φ-hemicontractive mappings.

3. Our results hold in arbitrary Banach spaces, where as other known results are

restricted for Lp (or lp) spaces and q-uniformly smooth Banach spaces.

4. Theorem 2.2 is more general in comparison to the results of Alghamdi et al. [1] and

Sahu et al. [10] in the context of the class of φ-hemicontractive mappings.

3 Applications

Theorem 3.1. Let X be an arbitrary real Banach space and let T : X → X be continuous

φ-strongly accretive operators. For any x1 ∈ X, define the sequence {xn}
∞
n=1 inductively

as follows:

xn = (1 − tn)xn−1 + tn(f + (I − T )xn), n ≥ 1,

where {tn}∞n=1 be the sequence in [0, 1] satisfying the conditions (i) and (ii) of Theorem

2.2.

Then the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the solution of the system f = Tx.

(b) {(I − T )xn}
∞
n=1 is bounded.

Proof. Suppose that x∗ is the solution of the system f = Tx. Define G : X → X by

Gx = f + (I − S)x. Then x∗ is the fixed point of G. Thus Theorem 3.1 follows from

Theorem 2.2.

Example 3.2. Let X = R be the reals with the usual norm and K = [0, 1]. Define

T : K → K by

Tx = x − tanx for all x ∈ K.

By mean value theorem, we have

|Tx− Ty| ≤ sup
c∈(0,1)

|T ′c||x− y| for all x, y ∈ K.

Noticing that T ′c = c − sec2 c and 1 < supc∈(0,1) |T
′c| = 2.4255. Hence

|Tx − Ty| ≤ L|x − y| for all x, y ∈ K,

where L = 2.4255. It is easy to verify that T is φ-hemicontractive mapping with φ :

[0,∞) → [0,∞) defined by φ(t) = tan t for all t ∈ [0,∞). Moreover, 0 is the fixed point of

T.

Acknowledgement

This work was supported by the Dong-A University research fund, Korea.

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

704 Shin Min Kang ET AL 697-706



References

[1] M. A. Alghamdi, M. A. Alghamdi, N. Shahzad. and H.-K. Xu, The implicit midpoint

rule for nonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), Article ID

96, 9 pages.

[2] C. E. Chidume, Iterative approximation of fixed point of Lipschitz strictly pseudo-

contractive mappings, Proc. Amer. Math. Soc., 99 (1987), 283–288.

[3] L. B. Ciric and J. S. Ume, Ishikawa iterative process for strongly pseudocontractive

operators in Banach spaces, Math. Commun., 8 (2003), 43–48.

[4] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc., 44

(1974), 147–150.

[5] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly

accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114–125.

[6] L. W. Liu, Approximation of fixed points of a strictly pseudocontractive mapping,

Proc. Amer. Math. Soc., 125 (1997), 1363–1366.

[7] Z. Liu, J. K. Kim and S. M. Kang, Necessary and sufficient conditions for convergence

of Ishikawa iterative schemes with errors to φ-hemicontractive mappings, Commun.

Korean Math. Soc., 18 (2003), 251–261.

[8] Z. Liu, Y. Xu and S. M. Kang, Almost stable iteration schemes for local strongly pseu-

docontractive and local strongly accretive operatorsin real uniformly smooth Banach

spaces, Acta Math. Univ. Comenian., 77 (2008), 285–298.

[9] W. R. Mann, Mean value methods in iteraiton, Proc. Amer. Math. Soc., 4 (1953),

506–510.

[10] D. R. Sahu, K. K. Singh and V. K. Singh, Some Newton-like methods with sharper

error estimates for solving operator equations in Banach spaces, Fixed Point Theory

Appl., 2012 (2012), Article ID 78, 20 pages.

[11] K. K. Tan and H. K. Xu, Iterative solutions to nonlinear equations of strongly accre-

tive operators in Banach spaces, J. Math. Anal. Appl., 178 (1993), 9–21.

[12] Y. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly ac-

cretive operator equations, J. Math. Anal. Appl., 224 (1998), 91–101.

[13] H. K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991)

1127–1138.

[14] H. K. Xu and R. Ori, An implicit iterative process for nonexpansive mappings, Numer.

Funct. Anal. Optim. 22 (2001), 767–773.

[15] Z. Xue, Iterative approximation of fixed point for φ-hemicontractive mapping without

Lipschitz assumption, Int. J. Math. Math. Sci., 17 (2005), 2711–2718.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

705 Shin Min Kang ET AL 697-706



[16] H. Y. Zhou and Y. J. Cho, Ishikawa and Mann iterative processes with errors for

nonlinear φ-strongly quasi-accretive mappings in normed linear spaces, J. Korean

Math. Soc., 36 (1999), 1061–1073.

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

706 Shin Min Kang ET AL 697-706



Lyapunov-type inequalities for fractional differential
equations under multi-point boundary conditions

Youyu WangB and Qichao Wang

Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China

Abstract. In this work, we establish new Lyapunov-type inequalities for fractional dif-
ferential equations with multi-point boundary conditions. Our conclusions cover many
results in the literature.

Keywords: Lyapunov inequality, fractional differential equation, multi-point boundary
value problem, Green’s function.

2010 Mathematics Subject Classification: 34A40, 26A33, 34B05.

1 Introduction

The well-known result of Lyapunov [9] states that if u(t) is a nontrivial solution of the differ-
ential system

u′′(t) + r(t)u(t) = 0, t ∈ (a, b),
u(a) = 0 = u(b),

(1.1)

where r(t) is a continuous function defined in [a, b], then
∫ b

a
|r(t)|dt >

4
b− a

, (1.2)

and the constant 4 cannot be replaced by a larger number.
Lyapunov inequality (1.2) is a useful tool in various branches of mathematics including

disconjugacy, oscillation theory, and eigenvalue problems. Many improvements and general-
izations of the inequality (1.2) have appeared in the literature. A thorough literature review
of continuous and discrete Lyapunov-type inequalities and their applications can be found in
the survey articles by Cheng [3], Brown and Hinton [1] and Tiryaki [12].

The study of Lyapunov-type inequalities for the differential equation depends on a frac-
tional differential operator was initiated by Rui A. C. Ferreira [4]. He first obtained a Lyapunov-
type inequality when the differential equation depends on the Riemann-Liouville fractional
derivative, the main result is as follows.

Theorem 1.1. If the following fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, (1.3)

u(a) = 0 = u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then
∫ b

a
|q(s)|ds > Γ(α)

(
4

b− a

)α−1

. (1.5)
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Recently, some Lyapunov-type inequalities were obtained for different fractional boundary
value problems. In this direction, we refer to Ferreira [5], Jleli and Samet [6, 7], O’Regan and
Samet [10], Rong and Bai [11] and Cabrera, Sadarangani, and Samet [2].

For example, Cabrera, Sadarangani, and Samet [2] obtain some Lyapunov-type inequali-
ties for a higher-order nonlocal fractional boundary value problem, they give the following
Lyapunov inequalities.

Theorem 1.2. If the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3, (1.6)

u(a) = u′(a) = 0, u′(b) = βu(ξ), (1.7)

has a nontrivial solution, where q is a real and continuous function, a < ξ < b, 0 ≤ β(ξ − a)α−1 <

(α− 1)(b− a)α−2, then

∫ b

a
(b− s)α−2(s− a)|q(s)|ds ≥

(
1 +

β(b− a)α−1

(α− 1)(b− a)α−2 − β(ξ − a)α−1

)−1

Γ(α). (1.8)

Theorem 1.3. If the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3, (1.9)

u(a) = u′(a) = 0, u′(b) = βu(ξ), (1.10)

has a nontrivial solution, where q is a real and continuous function, a < ξ < b, 0 ≤ β(ξ − a)α−1 <

(α− 1)(b− a)α−2, then

∫ b

a
|q(s)|ds ≥ Γ(α)(α− 1)α−1

(b− a)α−1(α− 2)α−2

(
1 +

β(b− a)α−1

(α− 1)(b− a)α−2 − β(ξ − a)α−1

)−1

. (1.11)

Motivated by [2], in this paper, we study the problem of finding some Lyapunov-type
inequalities for the fractional differential equations with multi-point boundary conditions.

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3, (1.12)

u(a) = u′(a) = 0, (Dβ+1
a+ u)(b) =

m−2

∑
i=1

bi(Dβ
a+ u)(ξi), (1.13)

where Dα
a+ denotes the standard Riemann-Liouville fractional derivative of order α, α > β +

2, 0 ≤ β < 1, a < ξ1 < ξ2 < · · · < ξm−2 < b, bi ≥ 0(i = 1, 2, · · · , m− 2), 0 ≤ ∑m−2
i=1 bi(ξi −

a)α−β−1 < (α− β− 1)(b− a)α−β−2 and q : [a, b] → R is a continuous function.

2 Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral, the Riemann-
Liouville fractional derivative of order α ≥ 0.

Definition 2.1. [8] Let α ≥ 0 and f be a real function defined on [a, b]. The Riemann-Liouville
fractional integral of order α is defined by (I0

a+ f ) ≡ f and

(Iα
a+ f )(t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t ∈ [a, b].
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Definition 2.2. [8] The Riemann-Liouville fractional derivative of order α ≥ 0 is defined by
(D0

a+ f ) ≡ f and

(Dα
a+ f )(t) = (Dm Im−α

a+ f )(t) =
1

Γ(m− α)

( d
dt

)m ∫ t

a
(t− s)m−α−1 f (s)ds,

for α > 0, where m is the smallest integer greater or equal to α.

Lemma 2.3. [8] Assume that u ∈ C(a, b) ∩ L(a, b) with a fractional derivative of order α > 0 that
belongs to C(a, b) ∩ L(a, b). Then

Iα
a+(Dα

a+ u)(t) = u(t) + c1(t− a)α−1 + c2(t− a)α−2 + · · ·+ cn(t− a)α−n,

where ci ∈ R, i = 1, 2, · · · , n, and n = [α] + 1.

Lemma 2.4. For 2 < α ≤ 3, 0 ≤ β < 1, we have

(Dβ
a+(s− a)α−1)(t) =

Γ(α)
Γ(α− β)

(t− a)α−β−1,

(Dβ+1
a+ (s− a)α−1)(t) =

Γ(α)
Γ(α− β− 1)

(t− a)α−β−2.

3 Main Results

We begin by writing problems (1.12)-(1.13) in its equivalent integral form.

Lemma 3.1. We have that u ∈ C[a, b] is a solution to the boundary value problem (1.12)-(1.13) if and
only if u satisfies the integral equation

u(t) =
∫ b

a
G(t, s)q(s)u(s)ds + T(t)

∫ b

a

(
m−2

∑
i=1

bi H(ξ, s)q(s)u(s)

)
ds, (3.1)

where G(t, s), H(t, s) and T(t) defined by

G(t, s) =
1

Γ(α)





(t−a)α−1(b−s)α−β−2

(b−a)α−β−2 − (t− s)α−1, a ≤ s ≤ t ≤ b,
(t−a)α−1(b−s)α−β−2

(b−a)α−β−2 , a ≤ t ≤ s ≤ b.

H(t, s) =
1

Γ(α)





(t−a)α−β−1(b−s)α−β−2

(b−a)α−β−2 − (t− s)α−β−1, a ≤ s ≤ t ≤ b,
(t−a)α−β−1(b−s)α−β−2

(b−a)α−β−2 , a ≤ t ≤ s ≤ b,

T(t) =
(t− a)α−1

(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1

, t ≥ a.

Proof. From Lemma 2.3, u ∈ C[a, b] is a solution to the boundary value problem (1.12)-(1.13)
if and only if

u(t) = c1(t− a)α−1 + c2(t− a)α−2 + c3(t− a)α−3 − (Iα
a+ qu)(t),

for some real constants c1, c2, c3. Using the boundary condition u(a) = u′(a) = 0, we obtain
c2 = c3 = 0. Thus

u(t) = c1(t− a)α−1 − (Iα
a+ qu)(t).
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Applying Lemma 2.4, we obtain

(Dβ
a+ u)(t) = c1

Γ(α)
Γ(α− β)

(t− a)α−β−1 − (Iα−β
a+ qu)(t),

(Dβ+1
a+ u)(t) = c1

Γ(α)
Γ(α− β− 1)

(t− a)α−β−2 − (Iα−β−1
a+ qu)(t),

the boundary condition (Dβ+1
a+ u)(b) = ∑m−2

i=1 bi(Dβ
a+ u)(ξi) imply that

c1
Γ(α)

Γ(α− β− 1)
(b− a)α−β−2 − 1

Γ(α− β− 1)

∫ b

a
(b− s)α−β−2q(s)u(s)ds

=
m−2

∑
i=1

bi

[
c1

Γ(α)
Γ(α− β)

(ξi − a)α−β−1 − 1
Γ(α− β)

∫ ξi

a
(ξi − s)α−β−1q(s)u(s)ds

]
,

thus

c1 =
α− β− 1

[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]Γ(α)

∫ b

a
(b− s)α−β−2q(s)u(s)ds

− 1
[(α− β− 1)(b− a)α−β−2 −∑m−2

i=1 bi(ξi − a)α−β−1]Γ(α)

m−2

∑
i=1

bi

∫ ξi

a
(ξi − s)α−β−1q(s)u(s)ds.

By the relation

1
(α− β− 1)(b− a)α−β−2 −∑m−2

i=1 bi(ξi − a)α−β−1
=

1
(α− β− 1)(b− a)α−β−2

+
∑m−2

i=1 bi(ξi − a)α−β−1

(α− β− 1)(b− a)α−β−2[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]

,

we obtain

c1 =
1

Γ(α)

∫ b

a

(b− s)α−β−2

(b− a)α−β−2 q(s)u(s)ds

+
∑m−2

i=1 bi
∫ b

a
(ξi−a)α−β−1(b−s)α−β−2

(b−a)α−β−2 q(s)u(s)ds

[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]Γ(α)

− ∑m−2
i=1 bi

∫ ξi
a (ξi − s)α−β−1q(s)u(s)ds

[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]Γ(α)

,

therefore

u(t) =c1(t− a)α−1 − 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

=
(t− a)α−1

Γ(α)

∫ b

a

(b− s)α−β−2

(b− a)α−β−2 q(s)u(s)ds− 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

+
(t− a)α−1 ∑m−2

i=1 bi
∫ b

a
(ξi−a)α−β−1(b−s)α−β−2

(b−a)α−β−2 q(s)u(s)ds

[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]Γ(α)

− (t− a)α−1 ∑m−2
i=1 bi

∫ ξi
a (ξi − s)α−β−1q(s)u(s)ds

[(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1]Γ(α)

=
∫ b

a
G(t, s)q(s)u(s)ds + T(t)

∫ b

a

(
m−2

∑
i=1

bi H(ξ, s)q(s)u(s)

)
ds,

which concludes the proof.
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Lemma 3.2. The function G defined in Lemma 3.1 satisfy the following properties:
(i) G(t, s) ≥ 0, for all (t, s) ∈ [a, b]× [a, b];
(ii) G(t, s) is non-decreasing with respect to the first variable;
(iii) 0 ≤ G(a, s) ≤ G(t, s) ≤ G(b, s) = 1

Γ(α) (b − s)α−β−2[(b − a)β+1 − (b − s)β+1], (t, s) ∈
[a, b]× [a, b].

(iv) For any s ∈ [a, b],

max
s∈[a,b]

G(b, s) =
β + 1
α− 1

·
(

α− β− 2
α− 1

) α−β−2
β+1 (b− a)α−1

Γ(α)
.

Proof. Let us define two functions

g1(t, s) =
(t− a)α−1(b− s)α−β−2

(b− a)α−β−2 − (t− s)α−1, a ≤ s ≤ t ≤ b,

g2(t, s) =
(t− a)α−1(b− s)α−β−2

(b− a)α−β−2 , a ≤ t ≤ s ≤ b.

(i) It is clear that for a ≤ t ≤ s ≤ b, G(t, s) = 1
Γ(α) g2(t, s) ≥ 0. On the other hand, for

a ≤ s ≤ t ≤ b, by the relation b−s
b−a ≥ t−s

t−a , β ≥ 0, α > 2, we obtain

Γ(α)G(t, s) = g1(t, s)

=
(t− a)α−1(b− s)α−β−2

(b− a)α−β−2 − (t− s)α−1

= (t− a)α−1

[(
b− s
b− a

)α−β−2

−
(

t− s
t− a

)α−1
]

= (t− a)α−1

[(
b− a
b− s

)β+1 (
b− s
b− a

)α−1

−
(

t− s
t− a

)α−1
]

≥ (t− a)α−1

[(
b− s
b− a

)α−1

−
(

t− s
t− a

)α−1
]

≥ 0.

Then (i) is proved.
(ii) For a ≤ t ≤ s ≤ b, we have

Γ(α)
∂G(t, s)

∂t
=

∂g2(t, s)
∂t

=
(α− 1)(t− a)α−2(b− s)α−β−2

(b− a)α−β−2 ≥ 0.

For a ≤ s ≤ t ≤ b, by the relation b−s
b−a ≥ t−s

t−a , β ≥ 0, α − 2 > 0, we have
(

b−s
b−a

)α−β−2 −
( t−s

t−a

)α−2 =
(

b−a
b−s

)β (
b−s
b−a

)α−2 − ( t−s
t−a

)α−2 ≥
(

b−s
b−a

)α−2 − ( t−s
t−a

)α−2 ≥ 0, so we obtain

Γ(α)
∂G(t, s)

∂t
=

∂g1(t, s)
∂t

= (α− 1)

[(
b− s
b− a

)α−β−2

(t− a)α−2 − (t− s)α−2

]

= (α− 1)(t− a)α−2

[(
b− s
b− a

)α−β−2

−
(

t− s
t− a

)α−2
]

≥ 0.
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Then we proved that G(t, s) is non-decreasing with respect to the first variable t.
(iii) The result follows immediately from (ii).
(iv) Let

ϕ(s) = Γ(α)G(b, s) = (b− a)β+1(b− s)α−β−2 − (b− s)α−1, s ∈ [a, b].

We have

ϕ′(s) = −(α− β− 2)(b− a)β+1(b− s)α−β−3 + (α− 1)(b− s)α−2

= (b− s)α−β−3[(α− 1)(b− s)β+1 − (α− β− 2)(b− a)β+1].

Moreover,

ϕ′(s) = 0, s ∈ (a, b) ⇔ (b− s∗)β+1 =
α− β− 2

α− 1
(b− a)β+1.

It is not difficult to observe that ϕ′(s) ≥ 0, if s ≤ s∗ and ϕ′(s) < 0, if s > s∗. Therefore,

max
s∈[a,b]

ϕ(s) = ϕ(s∗) =
β + 1
α− 1

·
(

α− β− 2
α− 1

) α−β−2
β+1

(b− a)α−1.

Lemma 3.3. The function H defined in Lemma 3.1 satisfy the following properties:
(i) H(t, s) ≥ 0, for all (t, s) ∈ [a, b]× [a, b];
(ii) H(t, s) is non-decreasing with respect to the first variable;
(iii) 0 ≤ H(a, s) ≤ H(t, s) ≤ H(b, s) = 1

Γ(α) (b− s)α−β−2(s− a), (t, s) ∈ [a, b]× [a, b].
(iV)

max
s∈[a,b]

H(b, s) = H(b, s∗) =
(α− β− 2)α−β−2

Γ(α)

(
b− a

α− β− 1

)α−β−1

.

where s∗ = α−β−2
α−β−1 a + 1

α−β−1 b.

Proof. Let us define two functions

h1(t, s) =
(t− a)α−β−1(b− s)α−β−2

(b− a)α−β−2 − (t− s)α−β−1, a ≤ s ≤ t ≤ b,

h2(t, s) =
(t− a)α−β−1(b− s)α−β−2

(b− a)α−β−2 , a ≤ t ≤ s ≤ b.

(i) It is clear that for a ≤ t ≤ s ≤ b, H(t, s) = 1
Γ(α) h2(t, s) ≥ 0. On the other hand, for

a ≤ s ≤ t ≤ b, by the relation b−s
b−a ≥ t−s

t−a , β ≥ 0, α > β + 2, we obtain

Γ(α)H(t, s) = h1(t, s)

=
(t− a)α−β−1(b− s)α−β−2

(b− a)α−β−2 − (t− s)α−β−1

= (t− a)α−β−1

[(
b− s
b− a

)α−β−2

−
(

t− s
t− a

)α−β−1
]

= (t− a)α−β−1

[(
b− a
b− s

) (
b− s
b− a

)α−β−1

−
(

t− s
t− a

)α−β−1
]

≥ (t− a)α−β−1

[(
b− s
b− a

)α−β−1

−
(

t− s
t− a

)α−β−1
]

≥ 0.
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Then (i) is proved.
(ii) For a ≤ t ≤ s ≤ b, we have

Γ(α)
∂H(t, s)

∂t
=

∂h2(t, s)
∂t

=
(α− β− 1)(t− a)α−β−2(b− s)α−β−2

(b− a)α−β−2 ≥ 0.

For a ≤ s ≤ t ≤ b, by the relation b−s
b−a ≥ t−s

t−a , β ≥ 0, α− β− 2 > 0, we obtain

Γ(α)
∂H(t, s)

∂t
=

∂h1(t, s)
∂t

= (α− β− 1)

[(
b− s
b− a

)α−β−2

(t− a)α−β−2 − (t− s)α−β−2

]

= (α− β− 1)(t− a)α−β−2

[(
b− s
b− a

)α−β−2

−
(

t− s
t− a

)α−β−2
]

≥ 0.

Then we proved that H(t, s) is non-decreasing with respect to the first variable t.
(iii) The result follows immediately from (ii).
(iv) Let

ψ(s) = Γ(α)H(b, s) = (b− s)α−β−2(s− a), s ∈ [a, b].

We have

ψ′(s) = −(α− β− 2)(b− s)α−β−3(s− a) + (b− s)α−β−2

= (b− s)α−β−3[(b− s)− (α− β− 2)(s− a)].

Moreover,

ψ′(s) = 0, s ∈ (a, b) ⇔ s = s∗ =
α− β− 2
α− β− 1

a +
1

α− β− 1
b.

It is not difficult to observe that ψ′(s) ≥ 0, if s ≤ s∗ and ψ′(s) < 0, if s > s∗. Therefore,

max
s∈[a,b]

ψ(s) = ψ(s∗) = (α− β− 2)α−β−2
(

b− a
α− β− 1

)α−β−1

.

Now, we are ready to prove our first Lyapunov-type inequality.

Theorem 3.4. If a nontrivial continuous solution of the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

u(a) = u′(a) = 0, (Dβ+1
a+ u)(b) =

m−2

∑
i=1

bi(Dβ
a+ u)(ξi),

exists, then

∫ b

a
(b− s)α−β−2

[
(b− a)β+1 − (b− s)β+1 +

m−2

∑
i=1

biT(b)(s− a)

]
|q(s)|ds ≥ Γ(α),

where

T(b) =
(b− a)α−1

(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1

.
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Proof. Let B = C[a, b] be the Banach space endowed with norm ‖u‖ = supt∈[a,b] |u(t)|. It
follows from Lemma 3.1 that a solution u to the boundary value problem satisfies the integral
equation

u(t) =
∫ b

a
G(t, s)q(s)u(s)ds + T(t)

∫ b

a

(
m−2

∑
i=1

bi H(ξ, s)q(s)u(s)

)
ds.

Now, using Lemma 3.2, we obtain

‖u‖ ≤ ‖u‖
∫ b

a
G(b, s)|q(s)|ds + ‖u‖

m−2

∑
i=1

biT(b)
∫ b

a
H(b, s)|q(s)|ds,

which yields

‖u‖ ≤ ‖u‖
∫ b

a

(
G(b, s) +

m−2

∑
i=1

biT(b)H(b, s)

)
|q(s)|ds,

as

Γ(α)

[
G(b, s) +

m−2

∑
i=1

biT(b)H(b, s)

]

= (b− a)β+1(b− s)α−β−2 − (b− s)α−1 +
m−2

∑
i=1

biT(b)(b− s)α−β−2(s− a)

= (b− s)α−β−2

[
(b− a)β+1 − (b− s)β+1 +

m−2

∑
i=1

biT(b)(s− a)

]
,

therefore, if u is a nontrivial continuous solution to (1.12)-(1.13), we have

∫ b

a
(b− s)α−β−2

[
(b− a)β+1 − (b− s)β+1 +

m−2

∑
i=1

biT(b)(s− a)

]
|q(s)|ds ≥ Γ(α).

Now, from Theorem 3.4 and Lemma 3.2 (iv), Lemma 3.3 (iv), we have

Γ(α)

[
G(b, s) +

m−2

∑
i=1

biT(b)H(b, s)

]

≤ Γ(α)

[
max
s∈[a,b]

G(b, s) +
m−2

∑
i=1

biT(b) max
s∈[a,b]

H(b, s)

]

=
β + 1
α− 1

·
(

α− β− 2
α− 1

) α−β−2
β+1

(b− a)α−1 +
m−2

∑
i=1

biT(b)(α− β− 2)α−β−2
(

b− a
α− β− 1

)α−β−1

.

So, if problem (1.12)-(1.13) has a nontrivial continuous solution, then we have the following
result.

Corollary 3.5. If a nontrivial continuous solution of the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

u(a) = u′(a) = 0, (Dβ+1
a+ u)(b) =

m−2

∑
i=1

bi(Dβ
a+ u)(ξi),
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exists, then
∫ b

a
|q(s)|ds ≥ Γ(α)

β+1
α−1 ·

(
α−β−2

α−1

) α−β−2
β+1 (b− a)α−1 + ∑m−2

i=1 biT(b)(α− β− 2)α−β−2
(

b−a
α−β−1

)α−β−1
.

Let β = 0 in Theorem 3.4, we obtain

Corollary 3.6. If a nontrivial continuous solution of the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

u(a) = u′(a) = 0, u′(b) =
m−2

∑
i=1

biu(ξi),

exists, then
∫ b

a
(b− s)α−2(s− a)|q(s)|ds

≥ Γ(α)
1 + ∑m−2

i=1 biT(b)

=
(α− β− 1)(b− a)α−β−2 −∑m−2

i=1 bi(ξi − a)α−β−1

(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1 + ∑m−2

i=1 bi(b− a)α−1
Γ(α).

Let β = 0 in Corollary 3.5, we have the following result.

Corollary 3.7. If a nontrivial continuous solution of the fractional boundary value problem

(Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

u(a) = u′(a) = 0, u′(b) =
m−2

∑
i=1

biu(ξi),

exists, then

∫ b

a
|q(s)|ds ≥ Γ(α)

1 + ∑m−2
i=1 biT(b)

· (α− 1)α−1

(b− a)α−1(α− 2)α−2

=
(α− β− 1)(b− a)α−β−2 −∑m−2

i=1 bi(ξi − a)α−β−1

(α− β− 1)(b− a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1 + ∑m−2

i=1 bi(b− a)α−1
· Γ(α)(α− 1)α−1

(b− a)α−1(α− 2)α−2 .

Remark 3.8. Let b1 = δ, b2 = b3 = · · · = bm−2 = 0, ξ1 = ξ in Corollary 3.6, we obtain (1.8), let
b1 = δ, b2 = b3 = · · · = bm−2 = 0, ξ1 = ξ in Corollary 3.7, we obtain (1.11).
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On a new generalized integral-type operator from

mixed-norm spaces to Bloch-type spaces
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Abstract Let ϕ be an analytic self-map of unit disk D, H(D) the space
of analytic functions on D, and g ∈ H(D). For an analytic function

f(z) =
∑∞

n=0 anzn on D, the generalized integral-type operator C
[β]
ϕ,g is

defined by

(

C [β]
ϕ,gf

)

(z) =

∫ z

0

f [β](ϕ(w))g(w)dw, z ∈ D,

where β ≥ 0, f [β](z) =
∞
∑

n=0

Γ(n+1+β)
Γ(n+1) anzn and f [0](z) = f(z).

The boundedness and compactness of C
[β]
ϕ,g from mixed-norm spaces

H(p, q, µ) to Bloch-type spaces B
ω are discussed in this paper.

Keywords. Generalized integral-type operator; Mixed-norm space;
Bloch-type space
2010 Mathematics Subject Classification. 47G10, 46E15; 47B38.

1 Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C, and
H(D) the set of all analytic functions on D. The Pochhammer’s symbol/shifted
factorial is defined by

(a)n := a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
, n ∈ N,

and (a)0 = 1 for a 6= 0. Here a is a complex number such that a 6= −m, m =
0, 1, 2, . . . . The classical/Gaussian hypergeometric series is defined by the power
series expansion

F (a, b; c; z) =
∞
∑

n=0

(a)n(b)n

(c)n(1)n
zn, |z| < 1.

∗Corresponding author. Email: 6019820099@jsnu.edu.cn
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For two analytic functions f(z) =
∑∞

n=0 anzn, g(z) =
∑∞

n=0 bnzn in |z| < R,
the Hadamard product (or convolution) of f and g denoted by f ∗ g and is
defined as follows

(f ∗ g)(z) =

∞
∑

n=0

anbnzn, |z| < R2.

Furthermore,

(f ∗ g)(z) =
1

2πi

∫

|w|=ρ

f(w)g
( z

w

) dw

w
, |z| < ρR < R2.

In particular, if f, g ∈ H(D), we have

(f ∗ g)(ρz) =
1

2π

∫ 2π

0

f(ρeit)g(ze−it)dt, 0 < ρ < 1,

(see, e.g. [1]).
If f(z) =

∑∞
n=0 anzn ∈ H(D) and β > 0, then the fractional derivative f [β]

of order β which introduced by Hardy and Littlewood [4], is defined as follows

f [β](z) =
∞
∑

n=0

Γ(n + 1 + β)

Γ(n + 1)
anzn.

It is easy to check that

f [β](z) = Γ(1 + β) (f(z) ∗ F (1, 1 + β; 1; z)) .

For β = 0, we defined f [0](z) = f(z). It is obvious to find that the fractional
derivative and the ordinary derivative satisfy

f [k](z) =
dk

dzk

(

zkf(z)
)

, k = 0, 1, 2, . . . .

A positive continuous function µ on the interval [0,1) is called normal (see,
e.g. [22]) if there exist positive numbers s, t (0 < s < t) and δ ∈ [0, 1), such that

µ(r)

(1 − r)s
is decreasing for δ ≤ r < 1 and lim

r→1

µ(r)

(1 − r)s
= 0;

µ(r)

(1 − r)t
is increasing for δ ≤ r < 1 and lim

r→1

µ(r)

(1 − r)t
= ∞.

From now on we always assume that µ is a normal function on [0, 1).
Let 0 ≤ r < 1, f ∈ H(D), we set

Mq(f, r) =

(

1

2π

∫ 2π

0

|f(reiθ)|qdθ

)1/q

, 0 < q < ∞,

M∞(f, r) = sup
0≤θ≤2π

|f(reiθ)|.
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For 0 < p, q ≤ ∞, a function f ∈ H(D) is said to belong to the mixed-norm
space H(p, q, µ) if

‖f‖H(p,q,µ) =

(
∫ 1

0

Mp
q (f, r)

µp(r)

1 − r
dr

)1/p

< ∞.

The Bloch-type space (or ω-Bloch space), denoted by Bω = Bω(D), consists
of those functions f ∈ H(D) such that

Bω(f) = sup
z∈D

ω(z)|f ′(z)| < ∞,

where ω(z) is a continuous nonincreasing function such that

ω(z) = ω(|z|), z ∈ D and lim
|z|→1

ω(z) = 0. (1.1)

Functions ω that satisfy condition (1.1) are called almost classic weights.
With the norm ‖f‖Bω = |f(0)|+Bω(f), the ω-Bloch space becomes a Banach

space. The little ω-Bloch space B
ω
0 is the subspace of B

ω consisting of those
f ∈ Bω such that

lim
|z|→1

ω(z)|f ′(z)| = 0.

For ω(z) = (1 − |z|2)α, α > 0, ω-Bloch space becomes the α-Bloch space (see,
e.g. [6, 19, 23, 29]).

Let u ∈ H(D) and ϕ be an analytic self-map of D. For β ≥ 0, we introduce

a new generalized integral-type operator C
[β]
ϕ,g as follows:

(

C [β]
ϕ,gf

)

(z) =

∫ z

0

f [β](ϕ(w))g(w)dw, z ∈ D, f ∈ H(D).

The operator C
[β]
ϕ,g is a generalization of the operator Cn

ϕ,g, which is defined as

(

Cn
ϕ,gf

)

(z) =

∫ z

0

f (n)(ϕ(w))g(w)dw, f ∈ H(D).

The operator Cn
ϕ,g was introduced in [32] and studied in [3, 5, 14, 20, 21, 28].

When n = 1, then

(

C1
ϕ,gf

)

(z) =
(

Cg
ϕf
)

(z) =

∫ z

0

f ′(ϕ(ξ))g(ξ)dξ,

which is the generalized composition operator defined by Li and Stević in [11,
13], and studied in [9, 10, 12, 13, 24, 25, 26, 27, 30, 31, 33]. When n = 0,

then C
[β]
ϕ,g = C0

ϕ,g is the Volterra composition operator defined by Li in [7], and
studied in [8, 12, 15, 16]. In [17], Long and Wu characterized the boundedness
and compactness of the integral-type operator Cn

ϕ,g from mixed-norm spaces
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to the ω-Bloch spaces. Besides, Borgohain and Naik [2] initiated a generalized
integral type operator as follows:

(

Cβ
ϕ,gf

)

(z) =

∫ z

0

fβ(ϕ(ξ))g(ξ)dξ,

where fβ is the fractional derivative of order β (β > 0) defined as

fβ(z) =

∞
∑

n=0

Γ(n + 1)

Γ(n + 1 − β)
anzn−β.

They discussed the boundedness and compactness of the operator Cβ
ϕ,g from

Zygmund spaces to Bloch type spaces in [2].
In [1], Borgohain and Naik defined an operator Dβ

ϕ,u, called a weighted
fractional differentiation composition operator, by

(

Dβ
ϕ,uf

)

(z) = u(z)f [β](ϕ(z)).

They discussed the boundedness and compactness of Dβ
ϕ,u from mixed-norm

space H(p, q, φ) to weighted-type space H∞
µ .

Motivated by [1, 2, 17, 32], we consider the boundedness and compactness of

the operator C
[β]
ϕ,g from mixed-norm spaces to the ω-Bloch spaces in this paper.

Our results can be viewed as generalizations of the results in [17].
Throughout this paper, we will use the symbol C to denote a finite positive

number, and it may differ from one occurrence to another.

2 Auxiliary results

In order to formulate our main results, we need some auxiliary results which are
incorporated in the following lemmas.

The fisrt lemma is important. It gave an estimate which involves fractional
derivative f [β] of f ∈ H(p, q, µ).

Lemma 2.1 ([1]) Assume 0 < p ≤ ∞, 1 ≤ q ≤ ∞, µ is normal, and f ∈
H(p, q, µ). Then for every β ≥ 0, there is a positive constant C independent of
f such that

∣

∣

∣
f [β](z)

∣

∣

∣
≤ C

‖f‖H(p,q,µ)

(1 − |z|2)β+1/qµ(|z|)
, ∀z ∈ D.

The following lemma, can be proved in a standard way (see, e.g. [18]).

Lemma 2.2 Assume β ≥ 0, 0 < p ≤ ∞, 1 ≤ q ≤ ∞, g ∈ H(D), µ is normal,

ω is a almost classic weight, and ϕ is an analytic self-map of D. Then C
[β]
ϕ,g :

H(p, q, µ) → Bω is compact if and only if C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded and

for any bounded sequence fk in H(p, q, µ) which converges to zero uniformly on

compact subsets of D as k → ∞, we have ‖C
[β]
ϕ,gfk‖Bω → 0 as k → ∞.
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Lemma 2.3 ([24]) Assume that ω is an almost classic weight. A closed set K
in Bω

0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

ω(z)|f ′(z)| = 0.

3 Main results and proofs

In this section we consider the boundedness and the compactness of the operator

C
[β]
ϕ,g : H(p, q, µ) → Bω (or Bω

0 ).

Theorem 3.1 Assume β ≥ 0, 0 < p ≤ ∞, 1 ≤ q ≤ ∞, g ∈ H(D), µ is
normal, ω is an almost classic weight, and ϕ is an analytic self-map of D. Then

C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded if and only if

sup
z∈D

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
< ∞. (3.1)

Proof Suppose that (3.1) holds. For any z ∈ D and f ∈ H(p, q, µ), by
Lemma 2.1 we have

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gf

)′

(z)

∣

∣

∣

∣

= ω(z)|g(z)|
∣

∣

∣
f [β](ϕ(z))

∣

∣

∣

≤ C‖f‖H(p,q,µ)
ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
,

and (C
[β]
ϕ,gf)(0) = 0. This shows that C

[β]
ϕ,g is bounded.

Conversely, assume that C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded. Fix a ∈ D, we

take the test functions

fa(z) =
(1 − |a|2)t+1F (1

q + β + t + 1, 1; 1 + β; az)

µ(|a|)
, (3.2)

where the constant t is from the definition of the function µ. By elementary
calculations similar to those outlined in Theorem 5 of [1], we see that fa ∈
H(p, q, µ). In addition,

f [β]
a (z) =

Γ(1 + β)(1 − |a|2)t+1

µ(|a|)(1 − az)β+t+1+1/q
. (3.3)

By the boundedness of C
[β]
ϕ,g, for every λ ∈ D, we get

∞ > C‖C [β]
ϕ,g‖H(p,q,µ)→Bω

≥ ‖C [β]
ϕ,gfϕ(λ)‖Bω

≥ sup
z∈D

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gfϕ(λ)

)′

(z)

∣

∣

∣

∣

≥
Γ(1 + β)ω(λ)|g(λ)|(1 − |ϕ(λ)|2)t+1

µ(|ϕ(λ)|)(1 − |ϕ(λ)|2)β+t+1+1/q

=
Γ(1 + β)ω(λ)|g(λ)|

µ(|ϕ(λ)|)(1 − |ϕ(λ)|2)β+1/q
.
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Therefore

sup
z∈D

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
< ∞.

Theorem 3.2 Assume β ≥ 0, 0 < p ≤ ∞, 1 ≤ q ≤ ∞, g ∈ H(D), µ is
normal, ω is an almost classic weight, and ϕ is an analytic self-map of D. Then

C
[β]
ϕ,g : H(p, q, µ) → Bω

0 is bounded if and only if C
[β]
ϕ,g : H(p, q, µ) → Bω is

bounded and

lim
|z|→1

ω(z)|g(z)| = 0. (3.4)

Proof Suppose that C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded and (3.4) holds. For

each polynomial p(z), we get

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gp

)′

(z)

∣

∣

∣

∣

= ω(z)|g(z)|
∣

∣

∣
p[β](ϕ(z))

∣

∣

∣
.

Let p(z) =
∑k

n=0 anzn, k ∈ N. From the proof of Theorem 7 in [1], we see that

p[β](z) = Γ(1 + β)

(

k
∑

n=0

(1 + β)n

(1)n
anzn

)

.

Then we have p[β](z) is bounded in |z| < 1. From (3.4), we see that C
[β]
ϕ,gp ∈

Bω
0 . Since the set of all polynomials is dense in H(p, q, µ), we have that for

every f ∈ H(p, q, µ), there is a sequence of polynomials (pk)k∈N such that ‖f −

pk‖H(p,q,µ) → 0 as k → ∞. Hence by the boundedness of the operator C
[β]
ϕ,g :

H(p, q, µ) → Bω, we have

‖C [β]
ϕ,gf − C [β]

ϕ,gpk‖Bω ≤ ‖C [β]
ϕ,g‖H(p,q,µ)→Bω‖f − pk‖H(p,q,µ) → 0,

as k → ∞. Since Bω
0 is the closed subset of Bω, we see that C

[β]
ϕ,gf ∈ Bω

0 , and

consequently C
[β]
ϕ,g(H(p, q, µ)) ⊂ Bω

0 , so C
[β]
ϕ,g : H(p, q, µ) → Bω

0 is bounded.

For the converse, suppose that C
[β]
ϕ,g : H(p, q, µ) → Bω

0 is bounded. It is

clear that C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded. We take the test functions

f(z) = 1
Γ(1+β) ∈ H(p, q, µ) for z ∈ D, it follows that

f [β](z) = Γ(1 + β) (f(z) ∗ F (1, 1 + β; 1, z))

= Γ(1 + β)

(

1

Γ(1 + β)
∗

∞
∑

n=0

(1 + β)n

(1)n
zn

)

= Γ(1 + β)

(

1

Γ(1 + β)
·
(1 + β)0

(1)0

)

= 1.
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By the assumption, we have

lim
|z|→1

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gf

)′

(z)

∣

∣

∣

∣

= lim
|z|→1

ω(z)|g(z)|
∣

∣

∣
f [β](ϕ(z))

∣

∣

∣

= lim
|z|→1

ω(z)|g(z)|

= 0.

Theorem 3.3 Assume β ≥ 0, 0 < p ≤ ∞, 1 ≤ q ≤ ∞, g ∈ H(D), µ is
normal, ω is an almost classic weight, and ϕ is an analytic self-map of D. Then

C
[β]
ϕ,g : H(p, q, µ) → Bω is compact if and only if C

[β]
ϕ,g : H(p, q, µ) → Bω is

bounded and

lim
|ϕ(z)|→1

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
= 0. (3.5)

Proof. Assume that C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded and (3.5) holds.

Let {fn} be a bounded sequence in H(p, q, µ) with ‖fn‖H(p,q,µ) ≤ 1 and fn → 0
uniformly on compact subsets of D. In light of Lemma 2.2, we only need to
show that

‖C [β]
ϕ,gfn‖Bω → 0, (n → ∞).

From (3.5), we have that for every ε > 0, there exists a constant δ, 0 < δ < 1,
such that δ < |ϕ(z)| < 1 implies

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
< ε.

Since C
[β]
ϕ,g : H(p, q, µ) → Bω is bounded, taking f(z) = 1

Γ(1+β) , we see that

M1 = sup
z∈D

ω(z)|g(z)| < ∞. Since

sup
z∈D

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gfn

)′

(z)

∣

∣

∣

∣

≤ sup
{|ϕ(z)|≤δ}

w(zn)|g(zn)|
∣

∣

∣
f [β]

n (ϕ(zn))
∣

∣

∣
+ sup

{|ϕ(z)|>δ}

w(zn)|g(zn)|
∣

∣

∣
f [β]

n (ϕ(zn))
∣

∣

∣

≤ M1 sup
{|ϕ(z)|≤δ}

∣

∣

∣
f [β]

n (ϕ(zn))
∣

∣

∣
+ C‖fn‖H(p,q,µ) sup

{|ϕ(z)|>δ}

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q

< M1 sup
{|ϕ(z)|≤δ}

∣

∣

∣
f [β]

n (ϕ(zn))
∣

∣

∣
+ Cε.

From the proof of Theorem 10 in [1], {f
[β]
n } converges uniformly to 0 on compact

subsets of D. Then
‖C [β]

ϕ,gfn‖Bω → 0 as n → ∞.
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Conversely, suppose that C
[β]
ϕ,g is compact from H(p, q, µ) to Bω. From which

we can easily obtain the boundedness of C
[β]
ϕ,g : H(p, q, µ) → Bω . Next we only

need to show that (3.5) holds. Let {zn} be a sequence in D such that |ϕ(zn)| → 1
as n → ∞. We now consider the function

hn(z) =
(1 − |ϕ(zn)|2)t+1F

(

β + t + 1 + 1/q, 1; 1 + β; ϕ(zn)z
)

µ(|ϕ(zn)|)
. (3.6)

It is easy to check that hn ∈ H(p, q, µ). Moreover, from (3.3)

h[β]
n (ϕ(zn)) = f

[β]
ϕ(zn)(ϕ(zn)) =

Γ(1 + β)(1 − |ϕ(zn)|2)t+1

µ(|ϕ(zn)|)(1 − ϕ(zn)z)t+1+1/q
. (3.7)

It is easy to show that {hn} converges to 0 uniformly on compact subsets of D

as n → ∞. Therefore, using Lemma 2.2, we have lim
n→∞

‖C
[β]
ϕ,ghn‖Bω = 0. From

this and since

‖C [β]
ϕ,ghn‖Bω ≥ sup

z∈D

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,ghn

)′

(z)

∣

∣

∣

∣

≥ w(zn)|g(zn)|
∣

∣

∣
h[β]

n (ϕ(zn))
∣

∣

∣

=
Γ(1 + β)ω(zn)|g(zn)|

µ(|ϕ(zn)|)(1 − |ϕ(zn)|2)β+1/q
,

it follows that

lim
|ϕ(z)|→1

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
= 0.

Theorem 3.4 Assume β ≥ 0, 0 < p ≤ ∞, 1 ≤ q ≤ ∞, g ∈ H(D), ω is

an almost classic weight, and ϕ is an analytic self-map of D. Then C
[β]
ϕ,g :

H(p, q, µ) → Bω
0 is compact if and only if

lim
|z|→1

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
= 0. (3.8)

Proof Suppose that (3.8) holds. Then, from Lemma 2.3, C
[β]
ϕ,g : H(p, q, µ) →

Bω
0 is compact if and only if

lim
|z|→1

sup
‖f‖H(p,q,µ)≤1

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gf

)′

(z)

∣

∣

∣

∣

= 0. (3.9)

For any z ∈ D and f ∈ H(p, q, µ), by Lemma 2.1 we have

ω(z)

∣

∣

∣

∣

(

C [β]
ϕ,gf

)′

(z)

∣

∣

∣

∣

≤ C‖f‖H(p,q,µ)
ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
. (3.10)
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From (3.9) and (3.10), the implication follows.

Conversely, assume that C
[β]
ϕ,g : H(p, q, µ) → Bω

0 is compact. Then C
[β]
ϕ,g :

H(p, q, µ) → Bω is compact, and C
[β]
ϕ,g : H(p, q, µ) → Bω

0 is bounded. Hence,
by Theorems 3.2 and 3.3, we see that (3.4) and (3.5) hold. By (3.5), for every
ε > 0 there exists an r ∈ (0, 1) such that

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
< ε,

when r < |ϕ(z)| < 1. By (3.4), there exists a δ ∈ (0, 1) such that

ω(z)|g(z)| < ε inf
t∈[0,δ]

µ(t)(1 − t2)β+1/q,

when σ < |z| < 1. Therefore, when σ < |z| < 1 and r < |ϕ(z)| < 1, we have
that

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
< ε. (3.11)

If σ < |z| < 1 and |ϕ(z)| ≤ r, then we obtain

ω(z)|g(z)|

µ(|ϕ(z)|)(1 − |ϕ(z)|2)β+1/q
<

ω(z)|g(z)|

inft∈[0,δ] µ(t)(1 − t2)β+1/q
< ε. (3.12)

Combining (3.11) with (3.12), we obtain (3.9).
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Abstract

First we characterize a conformal automorphism for exact locally conformally cal-

ibrated G̃2-structures and give Lie derivative of the fundamental 3-form defining G̃2-

structures for this class of manifolds. In the end we prove some nice properties for

this class.

2010 Mathematics Subject Classification: 53C15, 53C10

Key words and phrases: conformal automorphism, locally conformally calibrated

G̃2-manifolds, lie derivative.

1 Introduction

Recently, the theory of special G-structures on smooth manifolds has been an astonishing

success story among mathematicians and physicist as they exhibit some nice properties.

For example G2-structure can be geometric models in the theory of super strings with

torsion [19]. Also Donaldson and Segal [10] suggested recently that manifolds with non-

vanishing torsion G2-structure can be the right framework for guage theory in dimension 7.

Main computable models for manifolds with G2-structure are homogeneous spaces having

co-homogeneity one [9, 25, 29].

∗ Corresponding author
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Historically the first sign of gC
2 (remarkable exceptional simple Lie algebra) appeared

in 1884, when Killing gave a proof of its existence. In 1907, Reichel [28], a student of

Engel [11], proved that Lie groups G2 and G̃2 are two real forms of GC
2 . In 1914, Cartan

proved that G2 and G̃2 can be regarded as the automorphism group of octonions and split-

octonions respectively in 1914. Later these groups appeared in the Bereger’s celebrated

list of potential holonomy of pseudo-Riemannian mertic (see [2]). Quest for examples of

metrics having holonomy G2 and G̃2 remained unsuccessful until 1989 when Bryant and

Salamon [6] constructed first complete but non-compact Riemannian manifolds having

holonomy G2. The construction of first compact example by Joyce [20] in 1994 was a huge

breakthrough.

We recall that a smooth manifold M7 is said to have a G̃2-structure if it has a section

of the bundle F (M7)/G̃2 on M7, where F (M7) is the frame bundle on M7. It is noted that

the automorphism group of a 3-form ϕ̃ over R
7 is G̃2 which is called a 3-form of G̃2-type

[15]. It is known that GL(R7)-orbit of ϕ̃ is an open orbit of the GL(R7)-action on Λ3(R7).

A 3-form in that open orbit is known as indefinite 3-form. The presence of a G̃2-structure

on a manifold M7 is equivalent to the presence of an indefinite differential 3-form ϕ̃ over

M7. A G̃2-structure ϕ̃ on a manifold is called parallel if ∇ϕ̃ = 0 or dϕ̃ = d ∗ ϕ̃ = 0 and

almost parallel or calibrated if dϕ̃ = 0, locally conformal calibrated if dϕ̃ = θ ∧ ϕ̃ with a

differential 1-form θ on M and θ = 1
4 (∗(∗dϕ̃∧ ϕ̃) [4, 8, 12, 13].

We say that a locally conformal calibrated G2-structure is dθ-exact with ϕ̃ = dθω =

dω − θ ∧ ω, where θ is 1-form and ω is a 2-form on M . Manifold carrying these special

structure have been extensively studies for some nice properties. In [1] Bangaya described

locally conformal symplectic manifolds. In [14] authors discussed locally conformal cali-

brated G2-manifolds.

Fernández and Gray [15] classified all G2-structures in 16 classes in 1982 by decom-

posing the covariant derivative of the 3-form defining the G2-structures in 4 irreducible

components. A lot has already been said about these different classes. For example, in [18]

Friedrich et al. discussed special properties of nearly parallel G2-structures and proved that

they carry Einstein metrics. In [16] Fernández and Ugrate gave a differential sub-copmlex

of de Rham complex for locally conformal calibrated G̃2-manifolds and determined its

ellipticity. A deep insight about these classes were described by Cabrera et al. [8]. In [7]

Cabrrera discussed the inclusion relations of these classes and discovered strict inclusion

in particular two classes. Kath [21] started the study of psudo-Riemannian 7-manifolds

with a G̃2-structure. Munir and Nizami in [27] gave classification of G̃2-structures based

on intrinsic torsion with sixteen classes of algebraic types of G̃2-structures and also proved

some strict inclusion relations among the classes of these structures. Generally speaking,

manifold with G̃2-structures are relatively less understood as compared to those admitting

G2. To our knowledge there are only a few papers discussing about them, (see for example

[5, 21, 22, 23, 25, 27]).

In this paper, we study manifolds endowed with a locally conformal calibrated G̃2-

structure which constitute the class W2 ⊕W4 of [27]. We focus on its subspace where we
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have exact locally conformal calibrated G̃2-structure. However it is worth mentioning that

we study these manifolds for two particular reasons. First, they have striking similarities

with those admitting a G2-structure and secondly, because of their interesting class in

pseudo-Riemannian geometry, see [7, 30].

2 Locally conformal calibrated G̃2-structure

Here we first introduce the basic representations for G̃2-manifolds. Then we give simple

characterizations of locally conformal calibrated G̃2-manifolds. These results are known

facts see for example [25, 27]. These fact will help a lot to prove our main results in next

part. Let Λq(M) be the space of differential q-forms on M and Bq(M) is the subspace of

Λq(M) defined by

Bq(M) = {βεΛq(M) | β ∧ ϕ̃ = 0}.

A G̃2-manifold is defined as a 7-dimensional Riemannian manifold M (in which a Rieman-

nian metric gϕ̃ = (1, 1, 1,−1,−1,−1,−1) is defined) endowed with a 2-fold vector cross

product P satisfying the following axioms

1. 〈P (X1, X2), X1〉 = 〈P (X1, X2), X2〉 = 0,

2. ‖P (X1, X2)‖
2 = ‖X1‖

2‖X2‖
2 − 〈X1, X2〉

2

for X1, X2 ∈ X(M). The fundamental 3-form on M is then defined as

ϕ̃(X1, X2, X3) = 〈P (X1, X2), X3〉

for X1, X2, X3 ∈ X(M) and inner product for x, y ∈ ∧q(M) is defined as

〈x, y〉VM = x ∧ ∗y, (2.1)

where VM is the volume form on M . It is proved that ∧q(M) splits orthogonally into G̃2-

irreducible components ∧q
l of dimension l [4]. An isometry known as Hodge star operator

defined as ∗ : ∧q(M) −→ ∧7−q(M) make two irreducible component isomorphic. For

example the representation of G̃2 on ∧1(M) and ∧7(M) are isomorphic. So it is sufficient

to describe the representation of G̃2 on ∧2(M) and ∧3(M) as follows







































∧2
7(M) = {∗(α∧ ∗ϕ̃) | α ∈ ∧1(M)}

∧2
14(M) = {β ∈ ∧2(M) | β ∧ ∗ϕ̃ = 0}

∧3
1(M) = {fϕ̃ | f ∈ F(M)}

∧3
7(M) = {∗(α∧ ϕ̃) | α ∈ ∧1(M)}

∧3
27(M) = {γ ∈ ∧3(M) | γ ∧ ϕ̃ = γ ∧ ∗ϕ̃ = 0.

(2.2)

From above, it is easy to compute

∧3
1(M) ⊕∧3

27(M) = {γ ∈ ∧3(M) | γ ∧ ϕ̃ = 0}. (2.3)
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∧4
7(M)⊕ ∧4

27(M) = {λ ∈ ∧4(M) | λ ∧ ϕ̃ = 0}. (2.4)

For M7, most general G̃2-structure can be distinguished by a globally defined 3-form ϕ̃,

which has local representation

ϕ̃ = e123 + e145 + e167 + e246 − e257 + e347 + e356 (2.5)

with respect to some local co frame e1, e2, ..., e7 see [3]. It induces gϕ̃ and dVgϕ̃ on M given

by

gϕ̃(X, Y ) =
1

6
iXϕ̃ ∧ iY ϕ̃ ∧ ϕ̃

for all vector fields X, Y on M , where gϕ̃ is a Riemannian metric and dVgϕ̃ is a volume

form.

Now we have the following result.

Proposition 2.1. Let M be a manifold endowed a G̃2-structure ϕ̃. Then

(1) For any differential 1-form α on M , ∗(∗(α∧ ϕ̃) ∧ ϕ̃) = 4α

(2) If there is a differential 1-form η on M such that dϕ̃ = η∧ϕ̃, then η = 1
4 (∗(∗dϕ̃∧ϕ̃)

and M is locally conformal calibrated.

Proof. (1) Let ϕ̃ be 3-form given as in (2.5), and α =
∑7

i=1 ei be a 1-form on M then from

simple computation it can be easily verified that

∗(∗(α∧ ϕ̃) ∧ ϕ̃) = 4α.

(2) Let η be a differential 1-form on M and dϕ̃ = η ∧ ϕ̃ then ∗dϕ̃ = ∗(η ∧ ϕ̃).

By taking wedge product by ϕ̃, we get

∗dϕ̃ ∧ ϕ̃ = ∗(η ∧ ϕ̃) ∧ ϕ̃.

Applying ∗ on both sides

∗(∗dϕ̃ ∧ ϕ̃) = ∗(∗(η ∧ ϕ̃) ∧ ϕ̃) = 4η.

From above η = 1
4 ∗ (∗dϕ̃ ∧ ϕ̃), which implies M is locally conformal calibrated.

Definition 2.2. Let M be a G̃2 manifold having 3-form ϕ̃. For each l, 0 ≤ l ≤ 7, we

denote the space Bl(M) = {λ ∈ Λl(M)|λ ∧ ϕ̃ = 0}. Also, the orthogonal compliment of

Bl(M) in Λq(M) is denoted by Al(M).

Lemma 2.3. Let M be a G̃2-manifold. Then we have the following

Bl(M) = {0} for 0 ≤ l ≤ 2,

B3(M) = Λ3
1(M)⊕ Λ3

27(M),

B4(M) = Λ4
7(M)⊕ Λ4

27(M),

Bl(M) = Λl(M) for 5 ≤ l ≤ 7.
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Therefore,

Al(M) = Λl(M) for 0 ≤ l ≤ 2,

A3(M) = Λ3
7(M),

A4(M) = Λ4
1(M),

Aq(M) = {0} for 5 ≤ l ≤ 7.

Proposition 2.4. Let M be a G̃2 manifold endowed with fundamental 3-form ϕ̃. Then

M is locally conformal calibrated if and only if for any differential 3-form ρ ∈ Λ3
1(M) ⊕

Λ3
27(M), the exterior differential dρ ∈ Λ4

7(M)⊕ Λ4
27(M).

Proof. Let M be a locally conformal calibrated G2 and dϕ̃ = θ∧ ϕ̃. Also let ρ ∈ Λ3
1(M)⊕

Λ3
27(M). From equation (2.4) follows that

dρ ∧ ϕ̃ = d(ρ ∧ ϕ̃)− ρ ∧ dϕ̃ = −ρ ∧ θ ∧ ϕ̃ = 0

using equation (2.4) dρ ∈ Λ4
7(M)⊕ Λ4

27(M).

Conversely, let dϕ̃ ∈ Λ4
7(M) ⊕ Λ4

27(M) because ϕ̃ ∈ Λ3
1(M). Also we have

ϕ̃ = θ ∧ ϕ̃ ∧ ∗ρ, (2.6)

where θ ∧ ϕ̃ ∈ Λ4
7(M) and ρ ∈ Λ3

27(M). Thus dρ ∧ ϕ̃ = 0, and we deduce that

ρ ∧ dϕ̃ = dρ ∧ ϕ̃− d(ρ ∧ ϕ̃) = 0 (2.7)

Taking wedge product by y in equation (2.6), and using equation (2.7), we get

0 = y ∧ dϕ̃

= y ∧ θ ∧ ϕ̃ + y ∧ ∗y

= y ∧ ∗y,

which implies that y = 0. Then equation (2.6) becomes

dϕ̃ = θ ∧ ϕ̃,

which, by Proposition 2.1, proves that M is locally conformal calibrated.

3 Exact locally conformal calibrated G̃2-structure

In this part we mainly use the concept developed in previous section. In [1] on locally

conformally symplectic manifolds, authors found some characterizations, so on following

similar track we find for dθ-exact locally conformal calibrated G̃2-structures ϕ̃ having 1-

form θ, called Lee form. Then we give some characterization of conformal automorphisms

for exact locally conformal calibrated G̃2-structures and derive some new useful properties

for these manifolds.

We already know that Y ∈ X(M), smooth vector fields on M is a conformal infinites-

imal automorphism of ϕ̃ iff there exists a function ρY which is smooth on M satisfying

Lϕ̃ = ρY ϕ̃ and vector field Y is said to be conformal automorphism of ϕ̃ if ρY ≡ 0.

First we have the following proof.
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Proposition 3.1. Let ϕ̃ be a G̃2-structure on M7. Let Y ∈ X(M) be a vector field and ω

(a 2-form) satisfying ω = iY ϕ̃. Then we have

|ω|2 = 3|Y |2

Proof. The identity implies that ϕ̃∧ (iY ϕ̃) = 2 ∗ (iY ϕ̃),our case becomes ϕ̃∧ω = 2 ∗ω and

|ω|2 ∗ 1 = ω ∧ ∗ω

=
1

2
ω ∧ ϕ̃ ∧ ω

=
1

2
(iY ϕ̃) ∧ (iY ϕ̃) ∧ ϕ̃

= 3|Y |2 ∗ 1.

Which leads to the desired conclusion.

Proposition 3.2. Let (M, ϕ̃) be a locally conformal calibrated G̃2-structure having Lee

form θ.

(1) A vector field Y ∈ X(M) is a conformal infinitesimal automorphism of ϕ̃ if and

only if there exists a function which is smooth fY ∈ C∞(M) satisfying dθω = fY ϕ̃, where

ω = iY ϕ̃.

(2) For M to be connected, fY is constant.

Proof. (1) Here we have by the following expression

LY ϕ = d(iY ϕ̃) + iY (dϕ̃)

= dω + iY (θ ∧ ϕ̃)

= dω + θ(Y )ϕ̃− θ ∧ (iY ϕ̃)

= dω − θ ∧ ω + θ(Y )ϕ̃

= dθω + θ(Y )ϕ̃,

where ω = iY ϕ̃. Hence, Y is a conformal infinitesimal automorphism of ϕ̃ with LY ϕ̃ = ρY ϕ̃

iff dθω = fY ϕ̃, where fY = a function which is smooth on M and fY = ρY + θ(Y ).

(2) If we take M be a connected and Y a conformal infinitesimal automorphism of ϕ̃.

As dθω = fY ϕ̃ for some fY ∈ C∞(M). We have

0 = dθ(dθω)

= dθ(fY ϕ̃)

= d(fY ϕ̃)θ ∧ (fY ϕ̃)

= dfY ∧ ϕ̃ + fY dϕ̃− fY (θ ∧ ϕ̃)

= dfY ∧ ϕ̃ + fY dϕ̃− fY dϕ̃

= dfY ∧ ϕ̃.

As we know that the mapping ∧ϕ̃ : Λ1(M) → Λ4(M) is a linear injective mapping and

we obtain dfY = 0 consequently as M is connected so fY is constant.
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Proposition 3.3. If Y be a conformal infinitesimal automorphism of ϕ̃ with fY 6= 0, then

ϕ̃ is dθ-exact.

Proof.

ϕ̃ =
1

fY

dθω = dθ

(

ω

fY

)

.

So ϕ̃ is dθ-exact.

Now we give an important result that can evaluate some integrals of a conformal

infinitesimal automorphism of ϕ̃. We have

∫

M

LY ϕ̃ ∧ ∗fϕ̃ = −3

∫

M

df ∧ ∗Y b

for a compact M7,f ∈ C∞(M), Y as a conformal infinitesimal automorphism of ϕ̃ with

LY ϕ̃ = ρY ϕ̃.

Proposition 3.4. Let Y be a conformal infinitesimal automorphism of ϕ̃ with LY ϕ̃ = ρY ϕ̃

we have
∫

M
fY dVgϕ̃ = 0

Proof. For the case of G̃2-structure we modify the result of [26], that says, for a compact

manifold (M7, φ̃) where φ̃ is any general G̃2-structure with

∫

M

LY ϕ̃ ∧ ∗fϕ̃ = −3

∫

M

df ∧ ∗Y b

where f ∈ C∞(M), Y as a conformal infinitesimal automorphism of ϕ̃ with LY ϕ̃ = ρY ϕ̃.

Take f ≡ 1, we arrive at
∫

M

ρY dVgϕ̃ = 0.

Using Proposition 3.3, we get

∫

M

θ(Y )dVgϕ̃ =

∫

M

fY dVgϕ̃ = fY V ol(M)

this confirms the constancy of Riemann integeral of θ(Y ) over M .

As the consequences of above results, now we are able to give important characteriza-

tions of exact locally conformal calibrated G̃2-structures.

Proposition 3.5. Let (M7, ϕ̃) be a connected locally conformal calibrated G̃2-manifold

and θ be associated Lee form. Let gϕ̃ be a dual vector field of θ denoted by Y satisfying

θ(·) = gϕ̃(Y, ·), and ω := iY ϕ̃, where ω is a 2-form. Then we have the following results

(1) LY ϕ̃ = 0 if and only if θ(Y )ϕ̃ = dθω.

(2) If LY ϕ̃ = 0, then θ(Y ) = |Y |2 6= 0 (a constant).
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Proof. (1) Here it is

LY ϕ̃ = d(iY ϕ̃) + iY dϕ̃

= dω + iY (θ ∧ ϕ̃)

= dω + θ(Y )ϕ̃ − θ ∧ ω.

Hence, LY ϕ̃ vanishes if and ony if θ(Y )ϕ̃ = −dθω.

(2) From Proposition 3.2, If LY ϕ̃ = 0 then θ(Y ) = |Y |2 6= 0 (a constant). Since

θ(Y )ϕ̃ = dθω and Y = θt, where the map t : Λ1(M) → Y(M) is an isomorphism.
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[24] H.V. Lê, Geometric structures associated with a simple Cartan 3-form, J. Geom.

Phys., 70 (2013), 205–223.
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FOURIER SERIES OF FINITE PRODUCTS OF BERNOULLI

AND EULER FUNCTIONS

TAEKYUN KIM1,2, DAE SAN KIM3, DMITRY V. DOLGY4, AND JIN-WOO PARK5,∗

Abstract. In this paper, we will consider three types of sums of finite prod-

ucts of Bernoulli and Euler functions, and derive the Fourier series expansions

of them. In addition, we will express each of them in terms of Bernoulli func-
tions.

1. Introduction

Let Bm(x) be the Bernoulli polynomials given by the generating function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
, (see [7, 13, 23]).

For x = 0, Bm = Bm(0) are called Bernoulli numbers.
Also, let Em(x) be the Euler polynomials defined by he generating function

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
, (see [4, 19, 23]).

For x = 0, Em = Em(0) are called Euler numbers.
It is well known that the Bernoulli and Euler polynomials have the following

properties

d

dx
Bm(x) = mBm−1(x),

d

dx
Em(x) = mEm−1(x), (m ≥ 1),

Bm(1) = Bm + δ1,m, Em(1) = −Em + 2δ0,m, (m ≥ 0).

For any real number x, we let

〈x〉 = x− bxc ∈ [0, 1)

denote the fractional part of x.
We will need the following facts about Bernoulli functions Bm(〈x〉) :

(i) for m ≥ 2,

Bm(〈x〉) = −m!
∞∑

n=−∞
n6=0

e2πinx

(2πin)m
,

2010 Mathematics Subject Classification. 11B68, 42A16.
Key words and phrases. Fourier series, Bernoulli polynomial, Bernoulli function, Euler poly-

nomial, Euler function.
∗ Corresponding author.
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2 Fourier series of finite products of Bernoulli and Euler functions

(ii) for m = 1,

−
∞∑

n=−∞
n6=0

e2πinx

2πin
=

{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Throughout this paper, we will assume that r, s are nonnegative integers with
r+ s ≥ 1. Here we will consider three types of sums of finite products of Bernoulli
and Euler functions αm(〈x〉), βm(〈x〉), and γm(〈x〉) and derive the Fourier series
expansions of them. In addition, we will express each of them in terms of Bernoulli
functions.

(1)

αm(〈x〉) =
∑

i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)

×Ej1(〈x〉) · · ·Ejs(〈x〉), (m ≥ 1);

(2)

βm(〈x〉) =
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)

×Ej1(〈x〉) · · ·Ejs(〈x〉), (m ≥ 1);

(3)

βm(〈x〉) =
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1(〈x〉) · · ·Bir (〈x〉)

×Ej1(〈x〉) · · ·Ejs(〈x〉), (m ≥ r + s).

Here the sums for (1) and (2) are over all nonnegative integers i1, . . . , ir, j1, . . . , js
with i1 + · · · + ir + j1 + · · · + js = m, and the sums for (3) are over all positive
integers i1, . . . , ir, j1, . . . , js with i1 + · · ·+ ir + j1 + · · ·+ js = m.

For elementary facts about Fourier analysis, the reader may refer to any book
(for example, see [1,20,24]). As to αm(〈x〉), we note that the polynomial identity
(1.1) follows immediately from Theorems 2.1 and 2.2, which is in turn derived from
the Fourier series expansion of αm(〈x〉):∑

i1+···+ir+j1+···+js=m

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=
1

m+ r + s

m∑
j=0

(
m+ r + s

j

)
∆m−j+1Bj(x),

(1.1)

where, for each positive integer l,

∆l =
∑

0≤a≤r
0≤c≤s
r−l≤a≤r

(
r

a

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+j1+···+jc=a+l−r

Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs .

The obvious polynomial identities can be derived also for βm(〈x〉) from Theo-
rems 3.1 and 3.2. It is noteworthy that from the Fourier series expansion of the
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function
∑m−1
k=1

1
k(m−k)Bk(〈x〉)Bm−k(〈x〉) we can derive the Faber-Pandharipande-

Zagier identity (see [5,6,9-12,21,22]) and the Miki’s identity (see [3,9-12]). The
reader may refer to the recent papers [8,14-16,18] for the related results.

2. Sums of finite products of Bernoulli and Euler functions of the
first type

Let

αm(x) =
∑

i1+···+ir+j1+···+js=m

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x), (m ≥ 1),

where the sum runs over all nonnegative integers i1, . . . , ir, j1, . . . , js satisfying i1 +
· · ·+ ir + j1 + · · ·+ js = m. Then we will consider the function

αm(〈x〉) =
∑

i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉),

defined on R which is periodic with period 1.
The Fourier series of αm(〈x〉) is

∞∑
n=−∞

A(m)
n e2πinx,

where

A(m)
n =

∫ 1

0

αm(〈x〉)e−2πinxdx =

∫ 1

0

αm(x)e−2πinxdx.

To continue our discussion, we need to observe the following.

α′m(x)

=
∑

i1+···+ir+j1+···+js=m
i1≥1

i1Bi1−1(x)Bi2(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m
ir≥1

Bi1(x) · · ·Bir−1
(x)irBir−1(x)Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m
j1≥1

Bi1(x)Bi2(x) · · ·Bir (x)j1Ej1−1(x)Ej2(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m
js≥1

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs−1
(x)jsEjs−1(x)

=
∑

i1+···+jr+j1+···+js=m−1

(i1 + 1)Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+jr+j1+···+js=m−1

(ir + 1)Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+
∑

i1+···+jr+j1+···+js=m−1

(j1 + 1)Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+jr+j1+···+js=m−1

(js + 1)Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=(m+ r + s− 1)αm−1(x).
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4 Fourier series of finite products of Bernoulli and Euler functions

From this, we obtain (
αm+1(x)

m+ r + s

)′
= αm(x),

and ∫ 1

0

αm(x)dx =
1

m+ r + s
(αm+1(1)− αm+1(0)) .

For m ≥ 1, we set

∆m = αm(1)− αm(0)

=
∑

i1+···+ir+j1+···+js=m

(Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1)−Bi1 · · ·BirEj1 · · ·Ejs)

=
∑

i1+···+ir+j1+···+js=m

(Bi1 + δ1,i1) · · · (Bir + δ1,ir )(−Ej1 + 2δ0,j1) · · · (−Ejs + 2δ0,js)

−
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs

=
∑

0≤a≤r
0≤c≤s

r−m≤a≤r

(
r

a

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+j1+···+jc=a+m−r

Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs .

Note here that the sum over all i1 + · · ·+ ir + j1 + · · ·+ js = m of any term with
a of Bie , r − a of δ1,if (1 ≤ e, f ≤ r), c of −Eju , and s− c of 2δ0,jv (1 ≤ u, v ≤ s)
all give the same sum∑
i1+···+ir+j1+···+js=m

Bi1 · · ·Biaδ1,ia+1 · · · δ1,ir (−Ej1) · · · (−Ejc)(2δ0,jc+1) · · · (2δ0,js)

=
∑

i1+···+ia+j1+···+jc=m+a−r
(−1)c2s−cBi1 · · ·BiaEj1 · · ·Ejc ,

which is not an empty sum as long as m+ a− r ≥ 0.
We now see that

αm(0) = αm(1)⇐⇒ ∆m = 0,

and ∫ 1

0

αm(x)dx =
1

m+ r + s
∆m+1.

We are now going to determine the Fourier coefficients A
(m)
n .

Case 1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

=− 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

=− 1

2πin
(αm(1)− αm(0)) +

m+ r + s− 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ r + s− 1

2πin
A(m−1)
n − 1

2πin
∆m,
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from which by induction we can easily deduce

A(m)
n =−

m∑
j=1

(m+ r + s− 1)j−1

(2πin)j
∆m−j+1

=− 1

m+ r + s

m∑
j=1

(m+ r + s)j
(2πin)j

∆m−j+1.

Case 2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ r + s
∆m+1.

αm(〈x〉), (m ≥ 1) is piecewise C∞. In addition, αm(〈x〉) is continuous for those
positive integers with ∆m = 0 and discontinuous with jump discontinuities at inte-
gers for those positive integers with ∆m 6= 0.

Assume first that m is a positive integer with ∆m = 0. Then αm(0) = αm(1).
Hence αm(〈x〉) is piecewise C∞ and continuous. Thus the Fourier series of αm(〈x〉)
converges uniformly to αm(〈x〉), and

αm(〈x〉)

=
1

m+ r + s
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ r + s

m∑
j=1

(m+ r + s)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ r + s
∆m+1 +

1

m+ r + s

m∑
j=1

(
m+ r + s

j

)
∆m−j+1

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

m+ r + s
∆m+1 +

1

m+ r + s

m∑
j=2

(
m+ r + s

j

)
∆m−j+1Bj(〈x〉)

+ ∆m ×
{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Now, we are ready to state our first result.

Theorem 2.1. For each positive integer l, we let

∆l =
∑

0≤a≤r
0≤c≤s
r−l≤a≤r

(
r

a

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+j1+···+jc=a+l−r

Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=l

Bi1 · · ·BirEj1 · · ·Ejs .

Assume that m is a positive integer with ∆m = 0. Then we have the following.

(a) ∑
i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)
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has the Fourier expansion∑
i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

=
1

m+ r + s
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ r + s

m∑
j=1

(m+ r + s)j
(2πin)j

∆m−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b) ∑

i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

=
1

m+ r + s
∆m+1 +

1

m+ r + s

m∑
j=2

(
m+ r + s

j

)
∆m−j+1Bj(〈x〉),

for all x ∈ R, where Bj(〈x〉) is the Bernoulli function.

Assume next that ∆m 6= 0, for a positive integer m. Then αm(0) 6= αm(1).
Hence αm(〈x〉) is piecewise C∞ and discontinuous with jump discontinuities at
integers. The Fourier series of αm(〈x〉) converges pointwise to αm(〈x〉), for x /∈ Z,
and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m,

for x ∈ Z.
We are now ready to state our second result.

Theorem 2.2. For each positive integer l, we let

∆l =
∑

0≤a≤r
0≤c≤s
r−l≤a≤r

(
r

a

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+j1+···+jc=a+l−r

Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=l

Bi1 · · ·BirEj1 · · ·Ejs .

Assume that m is a positive integer with ∆m 6= 0. Then we have the following.

(a)

1

m+ r + s
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ r + s

m∑
j=1

(m+ r + s)j
(2πin)j

∆m−j+1

 e2πinx

=

{ ∑
i1+···+ir+j1+···+js=mBi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉), for x /∈ Z,∑

i1+···+ir+j1+···+js=mBi1 · · ·BirEj1 · · ·Ejs + 1
2∆m, for x ∈ Z.

(b)

1

m+ r + s

m∑
j=0

(
m+ r + s

j

)
∆m−j+1Bj(〈x〉)

=
∑

i1+···+ir+j1+···+js=m

Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉), for x /∈ Z;
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1

m+ r + s

m∑
j=0
j 6=1

(
m+ r + s

j

)
∆m−j+1Bj(〈x〉)

=
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs +
1

2
∆m, for x ∈ Z.

3. Sums of finite products of Bernoulli and Euler functions of the
second type

Let

βm(x) =
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x),

(m ≥ 1),

where the sum runs over all nonnegative integers i1, . . . , ir, j1, . . . , js satisfying i1 +
· · ·+ ir + j1 + · · ·+ js = m.

Then we consider function

βm(〈x〉) =
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)

× Ej1(〈x〉) · · ·Ejs(〈x〉),

defined on R, which is periodic with period 1.
The Fourier series of βm(〈x〉) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(〈x〉)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx.

To proceed further, we need to observe the following.

β′m(x) =
∑

i1+···+ir+j1+···+js=m
i1≥1

1

(i1 − 1)!i2! · · · ir!j1! · · · js!
Bi1−1(x)Bi2(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m
ir≥1

1

i1! · · · ir−1!(ir − 1)!j1! · · · js!
Bi1(x) · · ·Bir−1

(x)Bir−1(x)

× Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m
j1≥1

1

i1! · · · ir!(j1 − 1)!j2! · · · js!
Bi1(x) · · ·Bir (x)

× Ej1−1(x)Ej2(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m
js≥1

1

i1! · · · ir!j1! · · · js−1!(js − 1)!
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs−1(x)Ejs−1(x)
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=
∑

i1+···+ir+j1+···+js=m−1

1

i1! · · · ir!j1! · · · js!
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m−1

1

i1! · · · ir!j1! · · · js!
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m−1

1

i1! · · · ir!j1! · · · js!
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m−1

1

i1! · · · ir!j1! · · · js!
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs(x)

=(r + s)βm−1(x).

From this, we have (
βm+1(x)

r + s

)′
= βm(x),

and ∫ 1

0

βm(x)dx =
1

r + s
(βm+1(1)− βm+1(0)) .

For m ≥ 1, we put

Ωm = βm(1)− βm(0)

=
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!

× (Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1)−Bi1 · · ·BirEj1 · · ·Ejs)

=
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!

× (Bi1 + δ1,i1) · · · (Bir + δ1,ir )(−Ej1 + 2δ0,j1) · · · (−Ejs + 2δ0,js)

−
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs
i1! · · · ir!j1! · · · js!

=
∑

0≤a≤r
0≤c≤s

r−m≤a≤r

(
r

a

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+j1+···+jc=m+a−r

Bi1 · · ·BiaEj1 · · ·Ejc
i1! · · · ia!j1! · · · jc!

−
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs
i1! · · · ir!j1! · · · js!

.

We now see that

βm(0) = βm(1)⇐⇒ Ωm = 0,

and ∫ 1

0

βm(x)dx =
1

r + s
Ωm+1.

Now, we would like to determine the Fourier coefficients B
(m)
n .
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Case 1 : n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

=− 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β
′

m(x)e−2πinxdx

=− 1

2πin
(βm(1)− βm(0)) +

r + s

2πin

∫ 1

0

βm−1(x)e−2πinxdx

=
r + s

2πin
B(m−1)
n − 1

2πin
Ωm,

from which we can deduce that

B(m)
n =

m∑
j=1

(r + s)j−1

(2πin)j
Ωm−j+1.

Case 2 : n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

r + s
Ωm+1.

βm(〈x〉), (m ≥ 1) is piecewise C∞. Furthermore, βm(〈x〉) is continuous for those
positive integers m with Ωm = 0, and discontinuous with jump discontinuities at
integers for those positive integers m with Ωm 6= 0.

Assume first that Ωm = 0, for a positive integer m. Then βm(0) = βm(1).
Hence βm(〈x〉) is piecewise C∞, and continuous. Thus the Fourier series of βm(〈x〉)
converges uniformly to βm(〈x〉), and

B(m)
n =

1

r + s
Ωm+1 +

∞∑
n=−∞
n6=0

− m∑
j=1

(r + s)j−1

(2πin)j
Ωm−j+1

 e2πinx

=
1

r + s
Ωm+1 +

m∑
j=1

(r + s)j−1

j!
Ωm−j+1

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

r + s
Ωm+1 +

m∑
j=2

(r + s)j−1

j!
Ωm−j+1Bj(〈x〉)

+ Ωm ×
{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Now, we are ready to state our first result.

Theorem 3.1. For each positive integer l, we let

Ωl =
∑

0≤a≤r
0≤c≤s
r−l≤a≤r

(
r

u

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+i1+···+jc=l+a−r

Bi1 · · ·BiaEj1 · · ·Ejc
i1! · · · ia!j1! · · · jc!

−
∑

i1+···+ir+j1+···+js=l

Bi1 · · ·BirEj1 · · ·Ejs
i1! · · · ir!j1! · · · js!

.

Assume that m is a positive integer with Ωm = 0. Then we have the following.
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(a) ∑
i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

has the Fourier series expansion∑
i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

=
1

r + s
Ωm+1 +

∞∑
n=−∞
n6=0

− m∑
j=1

(r + s)j−1

(2πin)j
Ωm−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b) ∑
i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

=
m∑
j=0
j 6=1

(r + s)j−1

j!
Ωm−j+1Bj(〈x〉),

for all x ∈ R, where Bj(〈x〉) is the Bernoulli function.

Assume next that m is a positive integer with Ωm 6= 0. Then βm(0) 6= βm(1).
Hence βm(〈x〉) is piecewise C∞, and discontinuous with jump discontinuities at
integers. Thus the Fourier series of βm(〈x〉) converges pointwise to βm(〈x〉), for
x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm,

for x ∈ Z.
Now, we are ready to state our second result.

Theorem 3.2. For each positive integer l, we let

Ωl =
∑

0≤a≤r
0≤c≤s
r−l≤a≤r

(
r

u

)(
s

c

)
(−1)c2s−c

∑
i1+···+ia+i1+···+jc=l+a−r

Bi1 · · ·BiaEj1 · · ·Ejc
i1! · · · ia!j1! · · · jc!

−
∑

i1+···+ir+j1+···+js=l

Bi1 · · ·BirEj1 · · ·Ejs
i1! · · · ir!j1! · · · js!

.

Assume that m is a positive integer with Ωm 6=0, for a positive integer m. Then we
have the following.

(a)
m∑
j=0

(r + s)j−1

j!
Ωm−j+1Bj(〈x〉)

=
∑

i1+···+ir+j1+···+js=m

1

i1! · · · ir!j1! · · · js!
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉),

for x /∈ Z;
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m∑
j=0
j 6=1

(r + s)j−1

j!
Ωm−j+1Bj(〈x〉)

=
∑

i1+···+ir+j1+···+js=m

Bi1 · · ·BirEj1 · · ·Ejs
i1! · · · ir!j1! · · · js!

+
1

2
Ωm, for x ∈ Z.

(b)

1

r + s
Ωm+1 +

∞∑
n=−∞
n6=0

− m∑
j=1

(r + s)j−1

(2πin)j
Ωm−j+1

 e2πinx

=


∑
i1+···+ir+j1+···+js=m

1
i1!···ir!j1!···js!Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉),

for x /∈ Z,∑
i1+···+ir+j1+···+js=m

Bi1
···BirEj1

···Ejs

i1!···ir!j1!···js! + 1
2Ωm,

for x ∈ Z.

4. Sums of finite products of Bernoulli and Euler functions of the
Third type

Let

γr,s,m(x) =
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x),

(m ≥ r + s),

where the sum runs over all positive integers i1, · · · ir, j1, · · · js satisfying i1 + · · · ir+
j1 · · ·+ js = m.

Then we consider function

γr,s,m(〈x〉)

=
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉),

defined on R, which is periodic with period 1.
The Fourier series of γr,s,m(〈x〉) is

∞∑
n=−∞

C(r,s,m)
n (x)e2πinx,

where

C(r,s,m)
n =

∫ 1

0

γm(〈x〉)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx.
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To continue our discussion, we need to observe the following.

γ′r,s,m(x) =
∑

i1+···+ir+j1+···+js=m

1

i2 · · · irj1 · · · js
Bi1−1(x)Bi2(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m

1

i1 · · · ir−1j1 · · · js
Bi1(x) · · ·Bir−1

(x)Bir−1(x)

× Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj2 · · · js
Bi1(x) · · ·Bir (x)

× Ej1−1(x)Ej2(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js−1
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs−1
(x)Ejs−1(x)

=
∑

i2+···+ir+j1+···+js=m−1

1

i2 · · · irj1 · · · js
Bi2(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m−1

1

i2 · · · irj1 · · · js
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir−1+j1+···+js=m−1

1

i1 · · · ir−1j1 · · · js
Bi1(x) · · ·Bir−1

(x)

× Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m−1

1

i1 · · · ir−1j1 · · · js
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+
∑

i1+···+ir+j2+···+js=m−1

1

i1 · · · irj2 · · · js
Bi1(x) · · ·Bir (x)Ej2(x) · · ·Ejs(x)

+
∑

i1+···+ir+j1+···+js=m−1

1

i1 · · · irj2 · · · js
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

+ · · ·+
∑

i1+···+ir+j1+···+js−1=m−1

1

i1 · · · irj1 · · · js−1
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs−1
(x)

+
∑

i1+···+ir+j1+···+js=m−1

1

i1 · · · irj1 · · · js−1
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=rγr−1,s,m−1(x) + sγr,s−1,m−1(x)

+
∑

i1+···+ir+j1+···+js=m−1

{
1

i2 · · · irj1 · · · js
+ · · ·+ 1

i1 · · · ir−1j1 · · · js−1

+
1

i1 · · · irj2 · · · js
+ · · ·+ 1

i1 · · · irj1 · · · js−1

}
Bi1(x) · · ·Bir (x)

× Ej1(x) · · ·Ejs(x)

=rγr−1,s,m−1(x) + sγr,s−1,m−1(x) + (m− 1)γr,s,m−1(x).
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So we obtained that

γ′r,s,m(x) = rγr−1,s,m−1(x) + sγr,s−1,m−1(x) + (m− 1)γr,s,m−1(x), (4.1)

with γr,s,r+s−1(x) = 0.
For m ≥ r + s, let us put

Λr,s,m = γr,s,m(1)− γr,s,m(0)

=
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js

× (Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1)−Bi1 · · ·BirEj1 · · ·Ejs)

=
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
((Bi1 + δ1,i1) · · · (Bir + δ1,ir )

× (−Ej1 + 2δ0,j1) · · · (−Ejs + 2δ0,js)−Bi1 · · ·BirEj1 · · ·Ejs)

=
r∑
a=0

(
r

a

) ∑
i1+···+ia+j1+···+js=m+a−r

(−1)s

i1 · · · iaj1 · · · js
Bi1 · · ·BiaEj1 · · ·Ejs

−
∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1 · · ·BirEj1 · · ·Ejs .

Note here that m+ a− r ≥ a+ s and hence that none of the inner sum for each a
(0 ≤ a ≤ r) are empty.

Let us denote
∫ 1

0
γr,s,m(x)dx by ar,s,m. Then. from (4.1) we have

γr,s,m(x) = − r

m
γr−1,s,m(x)− s

m
γr,s−1,m(x) +

1

m
γ′r,s,m+1(x),

and hence obtain

ar,s,m = − r

m
ar−1,s,m −

s

m
ar,s−1,m +

1

m
Λr,s,m+1. (4.2)

In [2], we showed that

ar,0,m =

∫ 1

0

γr,0,m(x)dx =
r∑
j=1

(−1)j−1(r)j−1

mj
Λr−j+1,0,m+1, (r ≥ 1). (4.3)

Also, in [17], we derived that

a0,s,m =

∫ 1

0

γ0,s,m(x)dx =
s∑
j=1

(−1)j−1(s)j−1

mj
Λ0,s−j+1,m+1, (s ≥ 1). (4.4)

We now observe that (4.2) together with (4.3) and (4.4) determines ar,s,m recur-
sively for all r, s,m, with m ≥ r + s ≥ 1.

Also, we note that

γr,s,m(0) = γr,s,m(1)⇐⇒ Λr,s,m = 0.

Now, we would like to determine the Fourier coefficients C
(r,s,m)
n .
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14 Fourier series of finite products of Bernoulli and Euler functions

Case 1 : n 6= 0. Note that

C(r,s,r+s)
n =

∫ 1

0

γr,s,r+s(x)e−2πinxdx

=

∫ 1

0

B1(x)rE1(x)se−2πinxdx

=

∫ 1

0

(
x− 1

2

)r+s
e−2πinxdx

=− 1

2πin

[(
x− 1

2

)r+s
e−2πinx

]1

0

+
r + s

2πin

∫ 1

0

(
x− 1

2

)r+s−1

e−2πinxdx

=− 1

2πin

((
1

2

)r+s
−
(
−1

2

)r+s)
+
r + s

2πin

∫ 1

0

(
x− 1

2

)r+s−1

e−2πinxdx,

(4.5)

C(r−1,s,r+s−1)
n = C(r,s−1,r+s−1)

n =

∫ 1

0

(
x− 1

2

)r+s−1

e−2πinxdx, (4.6)

and

Λr,s,r+s = B1(x)rE1(x)s −Br1Es1 =

(
1

2

)r+s
−
(
−1

2

)r+s
. (4.7)

By (4.5), (4.6) and (4.7),

C(r,s,m)
n =

∫ 1

0

γr,s,m(x)e−2πinxdx

=− 1

2πin

[
γr,s,m(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′r,s,m(x)e−2πinxdx

=− 1

2πin
(γr,s,m(1)− γr,s,m(0))

+
1

2πin

∫ 1

0

{rγr−1,s,m−1(x) + sγr,s−1,m−1(x) + (m− 1)γr,s,m−1(x)} e−2πinxdx

=− 1

2πin
Λr,s,m +

1

2πin

(
rC(r−1,s,m−1)

n + sC(r,s−1,m−1)
n + (m− 1)C(r,s,m−1)

n

)
=
m− 1

2πin
C(r,s,m−1)
n +

r

2πin
C(r−1,s,m−1)
n +

s

2πin
C(r,s−1,m−1)
n − 1

2πin
Λr,s,m

=
m− 1

2πin

(m− 1

2πin
C(r,s,m−2)
n +

r

2πin
C(r−1,s,m−2)
n +

s

2πin
C(r,s−1,m−2)
n

− 1

2πin
Λr,s,m−1

)
+

r

2πin
C(r−1,s,m−1)
n +

s

2πin
C(r,s−1,m−1)
n − 1

2πin
Λr,s,m

=
(m− 1)2

(2πin)2
C(r,s,m−2)
n +

2∑
j=1

r(m− 1)j − 1

(2πin)j
C(r−1,s,m−j)
n

+
2∑
j=1

s(m− 1)j−1

(2πin)j
C(r,s−1,m−j)
n −

2∑
j=1

(m− 1)j−1

(2πin)j
Λr,s,m−j+1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.4, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

751 T. KIM ET AL 738-755



T. Kim, D. S. Kim, D. V. Dolgy, J.-W. Park 15

= · · ·

=
(m− 1)m−(r+s)

(2πin)m−(r+s)
C(r,s,r+s)
n +

m−(r+s)∑
j=1

r(m− 1)j−1

(2πin)j
C(r−1,s,m−j)
n

+

m−(r+s)∑
j=1

s(m− 1)j−1

(2πin)j
C(r,s−1,m−j)
n −

m−(r+s)∑
j=1

(m− 1)j−1

(2πin)j
Λr,s,m−j+1

=

m−(r+s)+1∑
j=1

r(m− 1)j−1

(2πin)j
C(r−1,s,m−j)
n +

m−(r+s)+1∑
j=1

s(m− 1)j−1

(2πin)j
C(r,s−1,m−j)
n

−
m−(r+s)+1∑

j=1

(m− 1)j−1

(2πin)j
Λr,s,m−j+1.

So we have shown that

C(r,s,m)
n =

m−(r+s)+1∑
j=1

r(m− 1)j−1

(2πin)j
C(r−1,s,m−j)
n

+

m−(r+s)+1∑
j=1

s(m− 1)j−1

(2πin)j
C(r,s−1,m−j)
n −

m−(r+s)+1∑
j=1

(m− 1)j−1

(2πin)j
Λr,s,m−j+1.

(4.8)

Also, we recall from [2] and [17] that

C(r,0,m)
n =

m−r+1∑
j=1

r(m− 1)j−1

(2πin)j
C(r−1,0,m−j)
n −

m−r+1∑
j=1

(m− 1)j−1

(2πin)j
Λr,0,m−j+1, (r ≥ 2),

(4.9)

C(1,0,m)
n = − (m− 1)!

(2πin)m
, (4.10)

C(0,s,m)
n =

m−s+1∑
j=1

s(m− 1)j−1

(2πin)j
C(0,s−1,m−j)
n −

m−s+1∑
j=1

(m− 1)j−1

(2πin)j
Λ0,s,m−j+1, (s ≥ 2),

(4.11)

C(0,1,m)
n =

2

m

m∑
j=1

(m)j−1

(2πin)j
Em−j+1. (4.12)

Now, we see that C
(r,s,m)
n (n 6= 0) can be determined for all m ≥ r + s ≥ 1 from

(4.8)-(4.12).
Case 2 : n = 0.

C
(r,s,m)
0 =

∫ 1

0

γr,s,m(x)dx

can be determined for all m ≥ r + s ≥ 1 from (4.2)-(4.4).
γr,s,m(〈x〉), (m ≥ r + s ≥ 1) is piecewise C∞. In addition, γr,s,m(〈x〉) is contin-

uous for those r, s,m with Λr,s,m = 0 and discontinuous with jump discontinuities
at integers for those r, s,m with Λr,s,m 6= 0.
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16 Fourier series of finite products of Bernoulli and Euler functions

Assume first that Λr,s,m = 0, for some integers r, s,m with m ≥ r+ s ≥ 1. Then
γr,s,m(0) = γr,s,m(1). γr,s,m(〈x〉) is piecewise C∞, and continuous. So the Fourier
series of γr,s,m(〈x〉) converges uniformly to γr,s,m(〈x〉), and

γr,s,m(〈x〉) = C
(r,s,m)
0 +

∞∑
n=−∞
n6=0

C(r,s,m)
n e2πinx,

where C
(r,s,m)
0 are determined by (4.2)-(4.4) and C

(r,s,m)
n (n 6= 0) by (4.8)-(4.12).

Now, we are ready to state our first result.

Theorem 4.1. For all integers r, s, l with l ≥ r + s ≥ 1, we let

Λr,s,l =
r∑
a=0

(
r

a

) ∑
i1+···+ia+j1+···+js=l+a−r

(−1)s

i1 · · · iaj1 · · · js
B1 · · ·BiaEj1 · · ·Ejs

−
∑

i1+···+ir+j1+···+js=l

1

i1 · · · irj1 · · · js
Bi1 · · ·BirEj1 · · ·Ejs .

Assume that Λr,s,m = 0, for some integers r, s,m with m ≥ r + s ≥ 1. Then we
have the following.∑

i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

has the Fourier series expansion∑
i1+···+ir+j1+···+js=m

1

i1 · · · irj1 · · · js
Bi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉)

=C
(r,s,m)
0 +

∞∑
n=−∞
n6=0

C(r,s,m)
n e2πinx,

where C
(r,s,m)
0 are determined by (4.2)-(4.4) and C

(r,s,m)
n (n 6= 0) by (4.8)-(4.12).

Here the convergence is uniform.

Next, assume that Λr,sm 6= 0, for some integers r, s,m with m ≥ r+s ≥ 1. Then
γr,1,m(0) 6= γr,s,m(1). Hence γr,s,m(〈x〉) is piecewise C∞ and discontinuous with
jump discontinuities at integers. Then the Fourier series of γr,s,m(〈x〉) converges
pointwise to γr,s,m(〈x〉), for x /∈ Z, and converges to

1

2
(γr,s,m(0) + γr,s,m(1)) = γr,s,m(0) +

1

2
Λr,s,m,

for x ∈ Z.
Now, we can state our second result.

Theorem 4.2. For all integers r, s, l with l ≥ r + s ≥ 1, we let

Λr,s,l =
r∑
a=0

(
r

a

) ∑
i1+···+ia+j1+···+js=l+a−r

(−1)s

i1 · · · iaj1 · · · js
B1 · · ·BiaEj1 · · ·Ejs

−
∑

i1+···+ir+j1+···+js=l

1

i1 · · · irj1 · · · js
Bi1 · · ·BirEj1 · · ·Ejs .
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Assume that Λr,s,m 6= 0, for some integers r, s,m with m ≥ r + s ≥ 1. Then we
have the following.

C
r,s,m)
0 +

∞∑
n=−∞
n6=0

C(r,s,m)
n e2πinx

=


∑
i1+···+ir+j1+···+js=m

1
i1···irj1···jsBi1(〈x〉) · · ·Bir (〈x〉)Ej1(〈x〉) · · ·Ejs(〈x〉),

for x /∈ Z,∑
i1+···+ir+j1+···+js=m

1
i1···irj1···jsBi1 · · ·BirEj1 · · ·Ejs + 1

2Λr,s,m,

for x ∈ Z,

where C
(r,s,m)
0 are determined by (4.2)-(4.4) and C

(r,s,m)
n (n 6= 0) by (4.8)-(4.12).
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A NOTE ON APPELL-TYPE DEGENERATE q-BERNOULLI

POLYNOMIALS AND NUMBERS

JONGKYUM KWON AND JIN-WOO PARK2,∗

Abstract. Recently, several researchers have studied for Appell-type of
various polynomials (see [18-20,22]). In this paper, we consider some fami-

lies of Appell-type q-Bernoulli polynomials and numbers. In particular, we
derive some interesting identities for the Appell-type degenerate q-Bernoulli

polynomials by using the some properties of those polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp and Cp will
denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of algebraic closure of Qp. The p-adic norm | · |p is normalized as

|p|p = 1
p . Let q be an indeterminate in Cp such that |q − 1|p < p−

1
p−1 . The

q-analogue of number x is defined as [x]q = 1−qx
1−q . Note that limq→1[x]q = x.

As is well known, the Bernoulli polynomials are defined by the generating
function to be(

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
, (see [1-10,12-17,21,23,24]). (1.1)

When x = 0, Bn = Bn(0) are called Bernoulli numbers.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For

f ∈ UD(Zp), the p-adic q-integral on Zp is defined by

Iq(f) =

∫
Zp
f(x)dµq(x) = lim

N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx, (see [4,7-13]), (1.2)

2010 Mathematics Subject Classification. 11B68; 11S80.
Key words and phrases. Appell-type polynomials, Appell-type degenerate q-Bernoulli poly-

nomials and numbers.
∗ corresponding author.
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where [x]q = 1−qx
1−q .

From (1.2), we note that

qnI−q(fn)− I−q(f) = (q − 1)
n−1∑
l=0

qlf(l) +
q − 1

log q

n−1∑
l=0

f
′
(l)ql, (1.3)

L. Carlitz considered the degenerate Bernoulli polynomials which are defined
by the generating function to be

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(x | λ)
tn

n!
, (see [2-4]) (1.4)

when x = 0, βn(0|λ) = βn(λ) are called Carlitz’s q-Bernoulli numbers.
In [15], T. Kim introduced the degenerate Carlitz q-Bernoulli polynomials

which are defined by the generating function to be∫
Zp

(1 + λt)
1
λ [x+y]qdµq(y) =

∞∑
n=0

βn,q(x | λ)
tn

n!
, (1.5)

when x = 0, βn,q(0|λ) = βn,q(λ) are called the degenerate Carlitz’s q-Bernoulli
numbers.

It is well known that the Bell polynomials are defined by the generating
function to be

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
, (see [22]). (1.6)

As is well known, the Apostol-Bernoulli polynomials are defined by the gen-
erating function to be(

t

qet − 1

)
ext =

∞∑
n=0

Bn(x | q) t
n

n!
, (see [5]). (1.7)

When x = 0, Bn = Bn(0 | q) are called Apostol-Bernoulli numbers.
The Stirling numbers of the second kind are defined by

(et − 1)n = n!
∞∑
l=n

S2(n, l)
tl

l!
, (see [20]). (1.8)

The gamma and beta function are defined by the following definite integrals:
for (α > 0, β > 0),

Γ(α) =

∫ ∞
0

e−ttα−1dt (1.9)
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and

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

=

∫ ∞
0

tα−1

(1 + t)α+β
dt, (see [22]).

(1.10)

Thus by (1.9) and (1.10), we get

Γ(α+ 1) = αΓ(α), B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (1.11)

Recently, several researchers have studied for Appell-type of various polyno-
mials (see [18-20,22]). In this paper, we consider the Appell-type degenerate
q-Bernoulli polynomials and derive some properties of those polynomials.

2. The Appell-type degenerate q-Bernoullli polynomials

In this section, we define the Appell-type degenerate q-Bernoulli polynomials
which are given by

t

q(1 + λt)
1
λ − 1

ext =

∞∑
n=0

B̃n,λ,q(x)
tn

n!
, (2.1)

when x = 0, the Appell-type degenerate degenerate Bernoulli numbers B̃n,λ =

B̃n,λ(0) are equal to the degenerate q-Bernoulli numbers.

From (2.1), we have

B̃m,λ,q(x) =
n∑

m=0

(
n

m

)
B̃m,λ,qx

n−m. (2.2)

By (2.2), we obtain

d

dx
B̃n,λ,q(x) = nB̃n−1,λ,q(x), n ≥ 1. (2.3)

From (2.3), we show that∫ 1

0

B̃n,λ,q(x)dx =
1

n+ 1

∫ 1

0

d

dx
B̃n+1,λ,q(x)dx

=
1

n+ 1

(
B̃n+1,λ,q(1)− B̃n+1,λ,q

)
.

(2.4)
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We observe that∫ 1

0

ynB̃n,λ,q(x+ y)dy =
n∑

m=0

(
n

m

)
B̃n−m,λ,q(x)

∫ 1

0

yn+mdy

=
n∑

m=0

(
n

m

)
B̃n−m,λ,q(x)

n+m+ 1
.

(2.5)

On the other hand, we derive∫ 1

0

ynB̃n,λ,q(x+ y)dy =
n∑

m=0

(
n

m

)
B̃n−m,λ,q(x+ 1)(−1)m

∫ 1

0

yn(1− y)mdy

=
n∑

m=0

(
n

m

)
B̃n−m,λ,q(x+ 1)(−1)m

Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)

=

n∑
m=0

(
n

m

)
B̃n−m,λ,q(x+ 1)(−1)m

n! m!

(n+m+ 1)!
.

(2.6)

Therefore, by (2.5) and (2.6), we obtain the following theorem.

Theorem 2.1. For n ∈ N, we have

n∑
m=0

(
n

m

)
B̃n−m,λ,q(x)

n+m+ 1
=

n∑
m=0

(
n

m

)
B̃n−m,λ,q(x+ 1)(−1)m

n! m!

(n+m+ 1)!
,

when, x = 0,
∑n
m=0

(
n
m

) B̃n−m,λ,q
n+m+1 =

∑n
m=0

(
n
m

)
B̃n−m,λ,q(1)(−1)m n! m!

(n+m+1)! .

We also observe that∫ 1

0

ynB̃n,λ,q(x+ y)dy

=
B̃n,λ,q(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

yn+1B̃n−1,λ,q(x+ y)dy

=
B̃n,λ,q(x+ 1)

n+ 1
− n

n+ 1

B̃n−1,λ,q(x+ 1)

n+ 2

+ (−1)2
n(n− 1)

(n+ 1)(n+ 2)

∫ 1

0

yn+2B̃n−2,λ,q(x+ y)dy

=
B̃n,λ,q(x+ 1)

n+ 1
− nB̃n−1,λ,q(x+ 1)

(n+ 1)(n+ 2)
+ (−1)2

n(n− 1)B̃n−2,λ,q(x+ 1)

(n+ 1)(n+ 2)(n+ 3)

+ (−1)3
n(n− 1)(n− 2)

(n+ 1)(n+ 2)(n+ 3)

∫ 1

0

yn+3B̃n−3,λ,q(x+ y)dy.

(2.7)
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Continuing this process, we get∫ 1

0

y2n−1B̃1,λ,q(x+ y)dy

=
B̃1,λ,q(x+ 1)

2n
− 1

2n

∫ 1

0

y2nB̃0,λ(x+ y)dy

=
B̃1,λ,q(x+ 1)

2n
− 1

2n

1

2n+ 1
.

(2.8)

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.2. For n ∈ N, we have

n∑
m=0

(
n

m

)
B̃n−m,λ,q(x)

n+m+ 1
=

n∑
m=0

n(n− 1) · · · (n−m+ 1)

(n+ 1)(n+ 2) · · · (n+m)
(−1)mB̃n−m,λ,q(x+ 1).

For n ∈ N, we have∫ 1

0

ynB̃n,λ,q(x+ y)dy

=
B̃n+1,λ,q(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

yn−1B̃n+1,λ,q(x+ y)dy

=
B̃n+1,λ,q(x+ 1)

n+ 1
− n

n+ 1

B̃n+2,λ,q(x+ 1)

n+ 2
+ (−1)2

n

n+ 1

n− 1

n+ 2

∫ 1

0

yn−2B̃n+2,λ,q(x+ y)dy

=
B̃n+1,λ,q(x+ 1)

n+ 1
− n

n+ 1

n+1∑
m=0

(
n+ 1

m

)
B̃n+1−m,λ,q(x+ 1)(−1)m

∫ 1

0

yn−l(1− y)mdy

=
B̃n+1,λ,q(x+ 1)

n+ 1
− n

n+ 1

n+1∑
m=0

(
n+ 1

m

)
B̃n+1−m,λ,q(x+ 1)(−1)mB(n,m+ 1),

(2.9)

where B(n,m+ 1) is a beta function.

Therefore, by (2.5) and (2.9), we obtain the following theorem.

Theorem 2.3. For n ∈ N, we have

n∑
m=0

(
n

m

)
B̃n−m,λ,q(x)

n+m+ 1

=
B̃n+1,λ,q(x+ 1)

n+ 1
− n

n+ 1

n+1∑
m=0

(
n+ 1

m

)
B̃n+1−m,λ,q(x+ 1)(−1)mB(n,m+ 1).
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Now, we observe that

∫ 1

0

B̃m,λ,q(x)B̃n,λ,q(x)dx

=
n∑
l=0

(
n

l

)
B̃l,λ,q

m∑
k=0

(
m

k

)
B̃k,λ,q(1)(−1)m−k

∫ 1

0

xn−l(1− x)m−kdx

=
n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)m−kB̃k,λ,q(1)B̃l,λ,qB(n− l + 1,m− k + 1)

=
n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)m−kB̃k,λ,q(1)B̃l,λ,q

Γ(n− l + 1)Γ(m− k + 1)

Γ(n+m− l − k + 2)
.

(2.10)

On the other hand,

∫ 1

0

B̃m,λ,q(x)B̃n,λ,q(x)dx =
n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
B̃m−k,λ,qB̃n−l,λ,q

k + l + 1
. (2.11)

Therefore, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.4. For n ∈ N, we have

n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)m−kB̃k,λ,q(1)B̃l,λ,q

Γ(n− l + 1)Γ(m− k + 1)

Γ(n+m− l − k + 2)

=
n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
B̃m−k,λ,qB̃n−l,λ,q

k + l + 1
.
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By replacing t by 1
λ (eλt − 1) in (2.1), we get

1
λ (eλt − 1)

q(1 + λ 1
λ (eλt − 1))

1
λ − 1

ex
1
λ (e

λt−1)

=
1
λ (eλt − 1)

qet − 1
e
x
λ (e

λt−1)

=

(
t

qet − 1

)(
eλt − 1

λt

)(
e

1
λx(e

λt−1)
)

=

( ∞∑
n=0

Bn(x | q) t
n

n!

) ∞∑
j=0

λj
tj

j!

( ∞∑
m=0

Belm(
x

λ
)
λmtm

m!

)

=
∞∑
n=0

(
n∑

m=0

m∑
l=0

(
m

l

)(
n

m

)
λn−lBl(x | q)Beln−m(

x

λ
)

)
tn

n!
.

(2.12)

On the other hand,
∞∑
m=0

B̃m,λ,q(x)
1

m!

1

λm
(eλt − 1)m =

∞∑
m=0

B̃m,λ,q(x)
1

λm

∞∑
n=m

S2(n,m)
λntn

n!

=

∞∑
n=0

(
n∑

m=0

B̃m,λ,q(x)λn−mS2(n,m)

)
tn

n!
.

(2.13)

where S2(n,m) is the Stirling numbers of the second kind.

Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 2.5. For n ∈ N, we have
n∑

m=0

B̃m,λ,q(x)λn−mS2(n,m) =

n∑
m=0

m∑
l=0

(
m

l

)(
n

m

)
λn−lBl(x | q)Beln−m(

x

λ
).
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