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Nonlinear evolution equations with delays

satisfying a local Lipschitz condition

Jin-Mun Jeong1 and Ah-ran Park2

1,2 Department of Applied Mathematics, Pukyong National University

Busan 608-737, Korea

Abstract

In this paper, we establish the maximal regularity for the nonlinear functional
differential equations with time delay and establish a variation of constant formula for
solutions of the given equations. We make use of the regularity of the linear differential
equations that appears on given Gelfand triple spaces.

Keywords: Nonlinear evolution equation, regularity, local Lipschtiz continuity, de-
lay, analytic semigroup

AMS Classification Primary 35K58; Secondary 76B03

1 Introduction

In this paper, we consider the following nonlinear functional differential equation with
time delays in a Hilbert space H:{

x
′
(t) +Ax(t) =

∫ 0
−h g(t, s, x(t), x(t+ s))µ(ds) + k(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0).
(1.1)

Here, k is a forcing term, and A0 is the operator associated with a sesquilinear form
defined on V × V satisfying G̊arding’s inequality, where V is another Hilbert space such
that V ⊂ H ⊂ V ∗. The nonlinear term g, which is a locally Lipschitz continuous operator
from L2(−h, T ;V ) to L2(0, T ;H), is a semilinear version of the quasilinear one considered
in Yong and Pan [13]. Precise assumptions are given in the next section.

It is well known that the future state realistic models in the natural sciences, biology
economics and engineering depends not only on the present but also on the past state.
Such applications are used to study the stability, controllability and the time optimal
control problems of hereditary systems. The regular problems the semilinear functional

Email: 1jmjeong@pknu.ac.kr( Corresponding author), 2alanida@naver.com
This work was supported by a Research Grant of Pukyong National University(2017Year).

1
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2

differential equations with unbounded delays has been surveyed in Vrabie [12] and Jeong
et al. [8].

As for the regularity results for a class of nonlinear evolution equations with the non-
linear operator A were developed in many references [1-4]. Ahmed and Xiang [1] gave
some existence results for the initial value problem in case where the nonlinear term is not
monotone, which improved Hirano’s result [7].

In this paper, we will establish a variation of constant formula for solutions of the
given equation with a general condition of the local Lipschitz continuity of the nonlinear
operator , which is reasonable and widely used in case of the nonlinear system. The main
research direction is to find conditions on the nonlinear term such that the regularity result
of (1.1) is preserved under perturbation. In order to prove the solvability of the initial
value problem (1.1) in Section 3, we establish necessary estimates applying the result of
Di Blasio et al. [6] to (1.1) considered as an equation in H as well as in V ∗ in Section 2.
The important technique used is a successive approach method using the regularity and a
variation of solutions of the corresponding linear equations without nonlinear terms.

2 Preliminaries and Assumptions

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the corre-
sponding injections are continuous. The norm on V , H and V ∗ will be denoted by || · ||, | · |
and || · ||∗, respectively. The duality pairing between the element v1 of V ∗ and the element
v2 of V is denoted by (v1, v2), which is the ordinary inner product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as element
of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for brevity, we may
regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying G̊arding’s
inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, (2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = a(u, v), u, v ∈ V.

Then −A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem. The
realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ C|Au| |u|+ ω2|u|2 ≤ max{C,ω2}||u||D(A)|u|,
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where
||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.3)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.4)

where each space is dense in the next one which continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗([5], Section 1.3.3
of [11], ).

It is also well known that A generates an analytic semigroup S(t) in both H and
V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the closed half plane
{λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measurable square
integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the set of all absolutely con-
tinuous functions on [0, T ] such that their derivative belongs to L2(0, T ;X). C([0, T ];X)
will denote the set of all continuously functions from [0, T ] into X with the supremum
norm. If X and Y are two Banach space, L(X,Y ) is the collection of all bounded linear
operators from X into Y , and L(X,X) is simply written as L(X). Let the solution spaces
W(T ) and W1(T ) of strong solutions be defined by

W(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant M0 > 0 such that

||x||C([0,T ];V ) ≤M0||x||W(T ), ||x||C([0,T ];H) ≤M0||x||W1(T ). (2.5)

The semigroup generated by −A is denoted by S(t) and there exists a constant M such
that

|S(t)| ≤M, ||S(t)||∗ ≤M.

The following Lemma is from Lemma 3.6.2 of [10].
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Lemma 2.2. There exists a constant M > 0 such that the following inequalities hold for
all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

First of all, consider the following linear system{
x
′
(t) +Ax(t) = k(t),

x(0) = x0.
(2.6)

By virtue of Theorem 3.3 of [6](or Theorem 3.1 of [8], [10]), we have the following
result on the corresponding linear equation of (2.6).

Lemma 2.3. Suppose that the assumptions for the principal operator A stated above are
satisfied. Then the following properties hold:
1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 2.1) and k ∈ L2(0, T ;H), T > 0, there exists
a unique solution x of (2.6) belonging to W(T ) ⊂ C([0, T ];V ) and satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (2.7)

where C1 is a constant depending on T .
2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution x of (2.6)
belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.8)

where C1 is a constant depending on T .

Lemma 2.4. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0 S(t − s)k(s)ds for 0 ≤ t ≤ T .

Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (2.9)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.10)

and
||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.11)

Proof. The assertion (2.9) is immediately obtained by (2.7). Since

||x||2L2(0,T ;H) =
∫ T
0 |
∫ t
0 S(t− s)k(s)ds|2dt ≤M

∫ T
0 (
∫ t
0 |k(s)|ds)2dt

≤M
∫ T
0 t
∫ t
0 |k(s)|2dsdt ≤M T 2

2

∫ T
0 |k(s)|2ds

it follows that
||x||L2(0,T ;H) ≤ T

√
M/2||k||L2(0,T ;H).
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From (2.3), (2.9), and (2.10) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

the proof is complete.

3 Semilinear differential equations

In this Section, we consider the maximal regularity of the following nonlinear functional
differential equation{

x
′
(t) +Ax(t) =

∫ 0
−h g(t, s, x(t), x(t+ s))µ(ds) + k(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0),
(3.1)

where A is the operator mentioned in Section 2. We need to impose the following condi-
tions.
Assumption (F). Let L and B be the Lebesgue σ-field on [0,∞) and the Borel σ-field on
[−h, 0], respectively. Let µ be a Borel measure on [−h, 0] and g : [0,∞)×[−h, 0]×V ×V →
H be a nonlinear mapping satisfying the following:

(i) For any x, y ∈ V the mapping g(·, ·, x, y) is strongly L × B-measurable.

(ii) g(t, s, x, y) is locally Lipschitz continuous in x and y, uniformly in (t, s) ∈ [0,∞)×
[−h, 0], i.e., there exist positive constants L0, L1(r) and L2 such that

|g(t, s, x, y)− g(t, s, x̂, ŷ)| ≤ L1(r)|x− x̂|+ L2||y − ŷ||,

for all (t, s) ∈ [0,∞)× [−h, 0], y, ŷ ∈ V , |x| ≤ r and |x̂| ≤ r.

(iii) There exists a real number L0 such that

|g(t, s, x, y)| ≤ L0(1 + |x|+ |y|), |g(t, s, 0, 0)| ≤ L0,

for any (t, s) ∈ [0,∞)× [−h, 0], x ∈ H, and y ∈ V.

Remark 3.1. The above operator g is the semilinear case of the nonlinear part of quasi-
linear equations considered by Yong and Pan [13].

For x ∈ L2(−h, T ;V ), T > 0 we set

G(t, x) =

∫ 0

−h
g(t, s, x(t), x(t+ s))µ(ds). (3.2)

Here, as in [13] we consider the Borel measurable corrections of x(·).
Let U be a Banach space and the controller operator B be a bounded linear operator

from the Banach space L2(0, T ;U) to L2(0, T ;H).
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Lemma 3.1. Let x ∈ L2(−h, T ;V ), T > 0 and ||x||C([0,T ],H) ≤ r. Then the nonlinear
term G(·, x) defined by (3.2) belongs to L2(0, T ;H) and

‖G(·, x)‖L2(0,T ;H) ≤ µ([−h, 0])
{
L0

√
T+(L1(r)+L2)‖x‖L2(0,T ;V )+L2‖g1‖L2(−h,0;V )

}
(3.3)

Moreover, if x1, x2 ∈ L2(−h, T ;V ), then

‖G(·, x1)−G(·, x2)‖L2(0,T ;H) ≤ µ([−h, 0])

×
{

(L1(r) + L2)‖x1 − x2‖L2(0,T ;V ) + L2‖x1 − x2‖L2(−h,0;V )

}
(3.4)

Proof. From (ii) of Assumption (F), it is easily seen that

‖G(·, x)‖L2(0,T ;H) ≤ µ([−h, 0])
{
L0

√
T + L1(r)‖x‖L2(0,T,V ) + ‖x‖L2(−h,T,V )

}
≤ µ([−h, 0])

{
L0

√
T + (L1(r) + L2)‖x‖L2(0,T,V ) + L2‖x‖L2(−h,0;v)

}
.

The proof of (3.4) is similar.

From now on, we establish the following results on the local solvability of (3.1) repre-
sented by {

x
′
(t) +Ax(t) = G(t, x) + k(t), t ∈ (0, T ]

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0].

Theorem 3.1. Let Assumption (F) be satisfied. Assume that (g0, g1) ∈ H×L2(−h, 0;V ),
k ∈ L2(0, T ;V ∗). Then, there exists a time T0 ∈ (0, T ) such that the equation (3.1) admits
a solution

x ∈ L2(−h, T0;V ) ∩W 1,2(0, T0;V
∗) ⊂ C([0, T0];H). (3.5)

Proof. For a solution of (3.1) in the wider sense, we are going to find a solution of the
following integral equation

x(t) = S(t)g0 +

∫ t

0
S(t− s){G(s, x) + k(s)}ds. (3.6)

To prove a local solution, we will use the successive iteration method. First, put

x0(t) = S(t)g0 +

∫ t

0
S(t− s)k(s)ds

and define xj+1(t) as

xj+1(t) = x0(t) +

∫ t

0
S(t− s)G(·, xj)ds. (3.7)

By virtue of Lemma 2.3, we have x0(·) ∈ W1(t), so that

||x0||W1(t) ≤ C1(|x0|+ ||k||L2(0,t;V ∗)),
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where C1 is a constant in Lemma 2.3. Choose r > C1M
−1
0 (|x0|+ ||k||L2(0,t;V ∗)), where M0

is the constant of (2.5). Putting p(t) =
∫ t
0 S(t− s)G(·, x0)ds, by (2.11) of Lemma 2.4, we

have

||p||L2(0,t;V ) ≤ C2

√
t||G(·, x0)||L2(0,t;H)

≤ C2

√
t
{
µ([−h, 0])L0

√
t+ (L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )

}
= C2µ([−h, 0])L0t+ C2µ([−h, 0])

[
(L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )

]√
t.

(3.8)

So that, from(3.5) and (3.6),

||x1||L2(0,t;V )

≤ r + C2µ([−h, 0])t+ C2µ([−h, 0]){(L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )}
√
t

≤ 3r

for any

m = min{r(C2µ([−h, 0]))−1,

r{(C2µ([−h, 0]))
(
(L1(r) + L2)‖x‖L2(0,T ;v) + ‖g1‖L2(−h,0;V )

)
}−2},

0 ≤ t ≤ m. By induction, it can be shown that for all j = 1, 2, ...

||xj ||L2(0,t;V ) ≤ 3r, 0 ≤ t ≤ m. (3.9)

Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0
S(t− s){G(t, xj)−G(t, xj−1)}ds

From (2.11), (3.7) and Assumption (F), we can observe that the inequality

||xj+1 − xj ||L2(0,t;V ) ≤ C2

√
t||G(·, xj)−G(·, xj−1)||L2(0,t;H)

≤
{
C2µ([−h, 0])(L1(3r) + L2)

√
t
}j

j!
||x1 − x0||L2(0,t;V )

holds for any 0 ≤ t ≤ m. Choose T0 > 0 satisfying

T0 < min{m, {C2µ([−h, 0])(L1(3r) + L2)}−2}. (3.10)

Then {xj} is strongly convergent to a function x in L2(0, T0;V ) uniformly on 0 ≤ t ≤ T0.
By letting j →∞ in (3.7), we obtain (3.6). Next, we prove the uniqueness of the solution.
Let ε > 0 be given. For ε ≤ t ≤ T0, set

xε(t) = S(t)g0 +

∫ t−ε

0
S(t− s){G(s, xε) + k(s)}ds. (3.11)
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Then we have xε ∈ W1(T0) and for xε, yε ∈ Br(T0) which is a ball with radius r in
L2(0, T0;V ), since

x(t)− xε(t) =

∫ t

0
S(t− s){G(s, x)−G(s, xε)}ds

+

∫ t

t−ε
S(t− s){G(s, xε) + k(s)}ds,

with aid of Lemma 2.4,

||x− xε||L2(0,T0;V ) ≤ C2µ([−h, 0])(L1(r) + L2)
√
T0||x− xε||L2(0,T0;V )

+ C2

√
εµ([−h, 0]){(L0

√
T 0 + (L1 + L2)||x||L2(0,T0;V ) +

√
T 0||k||L2(0,T0;H)}.

we have xε → x as ε → 0 in L2(0, T0;V ). Suppose y is another solution of (3.1) and
yε is defined as (3.11) with the initial data (g0, g1). Let xε, yε ∈ Br. Then From Lemma
2.2, it follows that

||xε − yε||L2(0,T0;V ) ≤
[ ∫ T0

0
||
∫ s−ε

0
S(s− τ){(G(·, xε)−G(·, yε))}dτ ||2ds

]1/2
≤M

[ ∫ T0

0

( ∫ s−ε

0
(s− τ)−1/2|G(·, xε)−G(·, yε)|dτ

)2
ds
]1/2

≤Mµ([−h, 0])L1(r)
[ ∫ T0

0

∫ s−ε

0
(s− τ)−1dτ

∫ s−ε

0
||xε(τ)− yε(τ)||2dτds

]1/2
≤Mµ([−h, 0])L1(r) log

T0
ε

∫ T0

0
||xε − yε||L2(0,s;V )ds,

so that by using Gronwall’s inequality, independently of ε, we get xε = yε in L2(0, T0;V ),
which proves the uniqueness of solution of (3.1) in W1(T0).

From now on, we give a norm estimation of the solution of (3.3) and establish the
global existence of solutions with the aid of norm estimations.

Theorem 3.2. Under the Assumption (F) for the nonlinear mapping G, there exists a
unique solution x of (3.1) such that

x ∈ W1(T ) ⊂ C([0, T ];H). (3.12)

for any (g0, g1) ∈ H ×L2(0, T ;V ), k ∈ L2(0, T ;V ∗). Moreover, there exists a constant C3

such that
||x||W1 ≤ C3(|x0|+ ||k||L2(0,T ;V ∗)), (3.13)

where C3 is a constant depending on T .

Proof. Let y ∈ Br be the solution of the following linear functional differential equation
parabolic type; {

y
′
(t) +Ay(t) = k(t), t ∈ (0, T1].

y(0) = g0.
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Let the constant T1 satisfy (3.10) and the following inequality:

C0C1(
T1√

2
)
1
2µ([−h, 0])(L1(r) + L2) < 1. (3.14)

Then we have {
d(x− y)(t)/dt+A((x− y)(t)) = G(t, x), t ∈ (0, T1].

(x− y)(0) = 0.

Hence, in view of (F) and Lemmas 2.3 and 3.1,

||x− y||L2(0,T1;D(A))∩W 1,2(0,T1;H) ≤ C1||G(·, x)||L2(0,T1;H)

≤ C1µ([−h, 0])
{
L0

√
T1 + (L1(r) + L2)‖x‖L2(0,T1;V ) + L2‖g1‖L2(−h,0;V )

}
≤ C1µ([−h, 0])(L1(r) + L2)

(
||x− y||L2(0,T1:V ) + ||y||L2(0,T1;V )

)
+ C1µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
.

Thus, by the above inequality and arguing and (2.3),

||x− y||L2(0,T1;V ) ≤ C0||x− y||
1
2

L2(0,T1;D(A))
||x− y||

1
2

L2(0,T1;H)

≤ C0||x− y||
1
2

L2(0,T1;D(A))
{ T1√

2
||x− y||W 1,2(0,T1;H)}

1
2

≤ C0(
T1√

2
)
1
2 ||x− y||L2(0,T1;D(A))∩W 1,2(0,T1;H)

≤ C0(
T1√

2
)
1
2
{
C1µ([−h, 0])(L1(r) + L2)||y||L2(0,T1;V )

+ C1µ([−h, 0])
(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)}
+ C0C1(

T1√
2

)
1
2µ([−h, 0])(L1(r) + L2)||x− y||L2(0,T1:V ).

Therefore, since

||x− y||L2(0,T1;V ) ≤
C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

1− C0C1(
T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

||y||L2(0,T1;V )

+
C0C1(

T1√
2
)
1
2µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
1− C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

,

we have

||x||L2(0,T1;V ) ≤
1

1− C0C1(
T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

||y||L2(0,T1;V )

C0C1(
T1√
2
)
1
2µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
1− C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

,
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and hence, with the aid of (2.8) in Lemma 2.3 and Lemma 3.1, we obtain

||x||L2(0,T1;V )∩W 1,2(0,T1;V ∗) (3.15)

≤C1(|g0|+ ||G(·, x)||L2(0,T1;V ∗) + ||k||L2(0,T1:V ∗))

≤C1

[
|g0|+ µ([−h, 0])

{
L0

√
T1 + (L1(r) + L2)‖x‖L2(0,T1;V ) + L2‖g1‖L2(−h,0;V )

}
+ ||k||L2(0,T1:V ∗)

]
≤C3(|g0|+ ||k||L2(0,T1:V ∗)).

for some constant C3. Now from (2.5) and (3.15), it follows that

|x(T1)| ≤ ||x||C([0,T1];H) ≤M0C3(|g0|+ ||k||L2(0,T1;V ∗)). (3.16)

So, we can solve the equation in [T1, 2T1] with the initial data (x(T1), xT1), and obtain an
analogous estimate to (3.15). Since the condition (3.14) is independent of initial values,
the solution of (3.1) can be extended the internal [0, nT1] for a natural number n, i.e., for
the initial u(nT1) in the interval [nT1, (n + 1)T1], as analogous estimate (3.15) holds for
the solution in [0, (n+ 1)T1].

By the similar way to Theorems 3.1 and 3.2, we also obtain the following results for
(3.1) under Assumption (F) corresponding to 1) of Lemma 2.3.

Corollary 3.1. Let (g0, g1) ∈ V ×L2(−h, 0;D(A)) and k ∈ L2(0, T ;H). Then there exists
a unique solution x of (3.1) such that

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ).

Moreover, there exists a constant C3 such that

||x||L2(0,T ;D(A)∩W 1,2(0,T ;H) ≤ C3(||g0||+ ||k||L2(0,T ;H)),

where C3 is a constant depending on T .
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[4] H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un
Espace de Hilbert, North Holland, 1973.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

402 Jin-Mun Jeong ET AL 393-403



11

[5] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-
verlag, Belin-Heidelberg-NewYork, 1967.

[6] G. Di Blasio, K. Kunisch and E. Sinestrari, L2−regularity for parabolic partial inte-
grodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl.
102 (1984), 38–57.

[7] N. Hirano, Nonlinear evolution equations with nonmonotonic perturbations, Nonlinear
Analysis, T. M. A. 13(6) (1989), 599-609.

[8] J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability for semilinear
retarded functional differential equations, J. Dynamics and Control Systems 5(3) 1999,
329-346.

[9] K. Naito, Controllability of semilinear control systems dominated by the linear part,
SIAM J. Control Optim. 25 (1987), 715-722.

[10] H. Tanabe, Equations of Evolution, Pitman-London, 1979.

[11] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-
Holland, 1978.

[12] I. I. Vrabie, An existence result for a class of nonlinear evolution equations in Banach
spaces, Nonlinear Analysis, T. M. A. 7 (1982), 711-722.

[13] J. Yong and L. Pan, Quasi-linear parabolic partial differential equations with delays
in the highest order spartial derivatives, J. Austral. Math. Soc. 54 (1993), 174-203.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

403 Jin-Mun Jeong ET AL 393-403



Investigation of α-C-class functions with applications

Aftab Hussaina, Arslan Hojat Ansarib, Sumit Chandokc, Dong Yun Shind∗ and Choonkil Parke∗

Abstract: In this paper, we introduce the new idea of α-C-class function and establish new fixed point results

in a complete metric space. It can be stated that the results that have come into being give substantial

generalizations and improvements of several well known results in the existing comparable literature.

1 Introduction and preliminaries

In 1973, Geraghty [7] studied a generalization of Banach contraction principle. In 2012, Samet et al. [20]

introduced a concept of α-ψ-contractive type mappings and established various fixed point theorems for

mappings in complete metric spaces. The notion of an α-admissible mapping has been characterized in

many direction. For details, see [2, 4, 8, 9, 10, 11, 12, 14, 16, 17, 18, 21, 22, 23] and references therein.

Now, we give some basic definitions, examples and fundamental results which play an essential role in

proving our results.

Definition 1 [20] Let S : X → X be a self mapping and let α : X ×X → [0,∞) be a function. We say that

S is α-admissible if x, y ∈ X with α(x, y) ≥ 1 ⇒ α(Sx, Sy) ≥ 1.

Example 2 [15] Consider X = [0,∞) and define S : X → X and α : X ×X → [0,∞) by Sx = 2x and

α (x, y) =

{
e

y
x , x ≥ y, x 6= 0,

0, x < y.

Then S is α-admissible.

Definition 3 [1] Let S, T : X → X be self mappings and let α : X × X → [0,+∞) be a function. We

say that the pair (S, T ) is α-admissible if x, y ∈ X such that α(x, y) ≥ 1, then we have α(Sx, Ty) ≥ 1 and

α(Tx, Sy) ≥ 1.

Example 4 Let X = [0,∞) and define a pair of self mappings S, T : X → X and α : X ×X → [0,∞) by

Sx = 2x, Tx = x2 and

α (x, y) =

{
exy, x, y ≥ 0,

0, otherwise.

Then a pair (S, T ) is α-admissible.

Definition 5 [13] Let S : X → X be a self mapping and let α : X ×X → [0,+∞) be a function. We say

that S is triangular α-admissible if x, y ∈ X with α(x, z) ≥ 1 and α(z, y) ≥ 1⇒ α(x, y) ≥ 1.

Example 6 [13] Let X = [0,∞), Sx = x2 + ex and

α (x, y) =

{
1, x, y ∈ [0, 1],

0, otherwise.

Hence S is a triangular α-admissible mapping.

0*Corresponding authors.
0Keywords: fixed point; contraction type mapping; α-C-class function; metric space.
0Mathematics Subject Classification 2010: Primary 46S40; 47H10; 54H25.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

404 Aftab Hussain ET AL 404-414



Definition 7 [13] Let S : X → X be a self mapping and let α : X ×X → R be a function. We say that S

is a triangular α-admissible mapping if

(T1) α(x, y) ≥ 1 implies α(Sx, Sy) ≥ 1, x, y ∈ X;

(T2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1, x, y, z ∈ X.

Example 8 [13] Let X = R, Sx = 3
√
x and α(x, y) = ex−y. Then S is a triangular α-admissible mapping.

Indeed, if α(x, y) = ex−y ≥ 1, then x ≥ y which implies Sx ≥ Sy. That is, α(Sx, Sy) = eSx−Sy ≥ 1. Also,

if α(x, z) ≥ 1 and α(z, y) ≥ 1, then x− z ≥ 0, z − y ≥ 0. That is, x− y ≥ 0 and so α(x, y) = ex−y ≥ 1.

Definition 9 [1] Let S, T : X → X be self mappings and let α : X ×X → R be a function. We say that a

pair (S, T ) is triangular α-admissible if

(T1) α(x, y) ≥ 1 implies α(Sx, Ty) ≥ 1 and α(Tx, Sy) ≥ 1, x, y ∈ X;

(T2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1, x, y, z ∈ X.

Example 10 Let X = R and define a pair of self mappings S, T : X → X and α : X×X → R by Sx =
√
x,

Tx = x2 and α(x, y) = exy for all x, y ∈ X. Then a pair (S, T ) is a triangular α-admissible mapping.

Definition 11 [19] Let S : X → X be a self mapping and let α, η : X ×X → [0,+∞) be two functions. We

say that S is an α-admissible mapping with respect to η if x, y ∈ X with α(x, y) ≥ η(x, y) ⇒ α(Sx, Sy) ≥
η(Sx, Sy).

Note that if we take η(x, y) = 1, then this definition reduces to the definition in [20]. Also if we take

α(x, y) = 1, then we say that S is an η-subadmissible mapping.

Example 12 Let X = [0,∞) and S : X → X be defined by Sx = x
2 . Define α, η : X × X → [0,+∞) by

α(x, y) = 3 and η(x, y) = 1 for all x, y ∈ X. Then S is an α-admissible mapping with respect to η.

Lemma 13 [6] Let S : X → X be a triangular α-admissible mapping. Assume that there exists x0 ∈ X

such that α(x0, Sx0) ≥ 1. Define a sequence {xn} by xn+1 = Sxn. Then we have α(xn, xm) ≥ 1 for all

m,n ∈ N ∪ {0} with n < m.

Lemma 14 Let S, T : X → X be a pair of triangular α-admissible. Assume that there exists x0 ∈ X such

that α(x0, Sx0) ≥ 1. Define a sequence x2i+1 = Sx2i, and x2i+2 = Tx2i+1, where i = 0, 1, 2, · · ·. Then we

have α(xn, xm) ≥ 1 for all m,n ∈ N ∪ {0} with n < m.

We denote by Ω the family of all functions β : [0,+∞)→ [0, 1) such that, for any bounded sequence {tn}
of positive reals, β(tn)→ 1 implies tn → 0.

Theorem 15 [7] Let (X, d) be a metric space. Let S : X → X be a self mapping. Suppose that there exists

β ∈ Ω such that, for all x, y ∈ X,
d(Sx, Sy) ≤ β (d(x, y)) d(x, y).

Then S has a fixed unique point p ∈ X and {Snx} converges to p for each x ∈ X.

In 2014, Ansari [3] introduced the concept of C-class functions which cover a large class of contractive

conditions.

Definition 16 [3] A continuous function f : [0,∞)2 → R is called a C-class function if for all s, t ∈ [0,∞),

the following conditions hold:

(1) f(s, t) ≤ s;
(2) f(s, t) = s implies that either s = 0 or t = 0.
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An extra condition on f that f(0, 0) = 0 could be imposed in some cases if required. The letter C will

denote the class of all C-class functions.

Example 17 [3] The following examples show that the class C is nonempty:

1. f(s, t) = s− t.

2. f(s, t) = ms for some m ∈ (0, 1).

3. f(s, t) = s
(1+t)r for some r ∈ (0,∞).

4. f(s, t) = log(t+ as)/(1 + t) for some a > 1.

5. f(s, t) = ln(1 + as)/2 for e > a > 1. Indeed, f(s, t) = s implies that s = 0.

6. f(s, t) = (s+ l)(1/(1+t)r) − l, l > 1 for r ∈ (0,∞).

7. f(s, t) = s logt+a a for a > 1.

8. f(s, t) = s− ( 1+s
2+s )( t

1+t ).

9. f(s, t) = sβ(t), where β : [0,∞)→ [0, 1) is continuous.

10. f(s, t) = s− t
k+t .

11. f(s, t) = s− ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t) = 0 if and only if

t = 0.

12. f(s, t) = sh(s, t), where h : [0,∞)× [0,∞) → [0,∞) is a continuous function such that h(t, s) < 1 for

all t, s > 0.

13. f(s, t) = s− ( 2+t
1+t )t.

14. f(s, t) = n
√

ln(1 + sn).

15. f(s, t) = φ(s), where φ : [0,∞) → [0,∞) is a upper semicontinuous function such that φ(0) = 0 and

φ(t) < t for t > 0.

16. f(s, t) = s
(1+s)r , r ∈ (0,∞).

Let Φu denote the class of functions ϕ : [0,∞)→ [0,∞) which satisfy the following conditions:

(a) ϕ is continuous;

(b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Lemma 18 [5] Suppose (X, d) is a metric space. Let {xn} be a sequence in X such that d(xn, xn+1) → 0

as n → ∞. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and sequences of positive integers

{m(k)} and {n(k)} with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε;

(ii) limk→∞ d(xm(k), xn(k)) = ε;

(iii) limk→∞ d(xm(k)−1, xn(k)) = ε.

We can also show that limk→∞ d(xm(k)+1, xn(k)+1) = ε and limk→∞ d(xm(k), xn(k)−1) = ε.
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2 Main results

In this section, we prove some fixed point theorems satisfying α-Geraghty contraction type mappings in a

complete metric space.

Let (X, d) be a metric space and α : X ×X → R be a function. Two self mappings S, T : X → X are

called a pair of generalized α-Geraghty contraction type mappings if there exists β ∈ Ω such that, for all

x, y ∈ X,

α(x, y)d(Sx, Ty) ≤ β (M(x, y))M(x, y),

where

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(y, Sx) + d(x, Ty)

2

}
.

If S = T , then T is called a generalized α-Geraghty contraction type mapping if there exists β ∈ Ω such

that, for all x, y ∈ X,

α(x, y)d(Sx, Ty) ≤ β (N(x, y))N(x, y),

where

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Let (X, d) be a metric space and let α : X ×X → R be a function. Two self mappings S, T : X → X are

called a pair of generalized α-C-class function contraction type mappings if there exists F ∈C such that, for

all x, y ∈ X,

α(x, y)d(Sx, Ty) ≤ F (M(x, y), ϕ(M(x, y))), (1)

where

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(y, Sx) + d(x, Ty)

2

}
.

If S = T , then T is called a generalized α-C-class function contraction type mapping if there exists F ∈C
such that, for all x, y ∈ X,

α(x, y)d(Tx, Ty)) ≤ F (N(x, y), ϕ(N(x, y))),

where

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Theorem 19 Let (X, d) be a complete metric space and let α : X×X → R be a function. Let S, T : X → X

be two self mappings. Suppose that the following hold:

(i) (S, T ) is a pair of generalized α-C-class function contraction type mappings;

(ii) (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) S and T are continuous.

Then (S, T ) has a common fixed point.

Proof. Let x1 ∈ X be such that x1 = Sx0 and x2 = Tx1. Continuing this process, we construct a sequence

xn of points in X such that

x2i+1 = Sx2i and x2i+2 = Tx2i+1, where i = 0, 1, 2, · · · .

By assumption, α(x0, x1) ≥ 1 and a pair (S, T ) is α-admissible. By Lemma 14, we have

α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}.
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Then we have

d(x2i+1, x2i+2) = d(Sx2i, Tx2i+1) ≤ α(x2i, x2i+1)d(Sx2i, Tx2i+1)

≤ F (M(x2i, x2i+1), ϕ(M(x2i, x2i+1)))≤M(x2i, x2i+1)

for all i ∈ N ∪ {0}. Now

M(x2i, x2i+1) = max

{
d(x2i, x2i+1), d(x2i, Sx2i), d(x2i+1, Tx2i+1),

d(x2i, Tx2i+1) + (x2i+1, Sx2i)

2

}
= max

{
d(x2i, x2i+1), d(x2i, x2i+1), d(x2i+1, x2i+2),

d(x2i, x2i+2)

2

}
≤ max

{
d(x2i, x2i+1), d(x2i+1, x2i+2),

d(x2i, x2i+1) + d(x2i+1, x2i+2)

2

}
= max {d(x2i, x2i+1), d(x2i+1, x2i+2)} .

Thus

d(x2i+1, x2i+2) ≤ F (M(x2i, x2i+1), ϕ(M(x2i, x2i+1)))

≤ F (d(x2i, x2i+1), ϕ(d(x2i, x2i+1))) ≤ d(x2i, x2i+1), (2)

which implies that

d(xn+1, xn+2) ≤ d(xn, xn+1) ∪ {0}

for all n ∈ N. So the sequence {d(xn, xn+1)} is nonnegative and nonincreasing.

Now, we prove that d(xn, xn+1)→ 0. It is clear that {d(xn, xn+1)} is a decreasing sequence. Therefore,

there exists some positive number r such that limn→∞ d(xn, xn+1) = r. From (2), by taking limit n → ∞,

we have

r ≤ F (r, ϕ(r)),

that is,

r = 0 or ϕ(r) = 0.

Therefore, we have

lim
n→∞

d(xn, xn+1) = 0. (3)

Now, we show that the sequence {xn} is a Cauchy sequence. Suppose on contrary that {xn} is not a Cauchy

sequence. Then there exist ε > 0 and sequences {xmk
} and {xnk

} such that, for all positive integers k, we

have mk > nk > k such that

d(xmk
, xnk

) ≥ ε

and

d(xmk
, xnk−1

) < ε.

By the triangle inequality, we have

ε ≤ d(xmk
, xnk

)

≤ d(xmk
, xnk−1

) + d(xnk−1
, xnk

)

< ε+ d(xnk−1
, xnk

) (4)

for all k ∈ N. In the view of (3) and (4), we have

lim
k→∞

d(xmk
, xnk

) = ε. (5)
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Again using the triangle inequality, we have

d(xmk
, xnk

) ≤ d(xmk
, xmk+1

) + d(xmk+1
, xnk+1

) + d(xnk+1
, xnk

)

and

d(xmk+1
, xnk+1

) ≤ d(xmk+1
, xmk

) + d(xmk
, xnk

) + d(xnk
, xnk+1

).

Taking limit as k → +∞ and using (3) and (5), we obtain

lim
k→+∞

d(xmk+1
, xnk+1

) = ε.

By Lemma 14 and α(xnk
, xmk+1

) ≥ 1, we have

d(xnk+1
, xmk+2

)) = d(Sxnk
, Txmk+1

)) ≤ α(xnk
, xmk+1

)d(Sxnk
, Txmk+1

))

≤ F (M(xnk
, xmk+1

), ϕ(M(xnk
, xmk+1

))).

Keeping (3) in mind and letting k → +∞ in the above inequality, we obtain

ε ≤ F (ε, ϕ(ε)),

that is,

ε = 0 or ϕ(ε) = 0.

So ε = 0, which is a contradiction. Using a similar technique for other cases, it can be easily seen that {xn}
is a Cauchy sequence. Since X is complete, there exists p ∈ X such that xn → p implies that x2i+1 → p and

x2i+2 → p. Since S and T are continuous, we get Tx2i+1 → Tp and Sx2i+2 → Sp. Thus p = Sp. Similarly,

p = Tp and so we have Sp = Tp = p. Then (S, T ) has a common fixed point.

In the following theorem, we drop the continuity.

Theorem 20 Let (X, d) be a complete metric space and let α : X×X → R be a function. Let S, T : X → X

be two self mappings. Suppose that the following hold:

(i) (S, T ) is a pair of generalized α-C-class function contraction type mappings;

(ii) (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → p ∈ X as

n→ +∞, then there exists a subsequence{xnk
} of {xn} such that α(xnk

, p) ≥ 1 for all k.

Then (S, T ) has a common fixed point.

Proof. The proof follows from similar lines of Theorem 19. Define a sequence x2i+1 = Sx2i and x2i+2 =

Tx2i+1, where i = 0, 1, 2, · · · , which converges to p ∈ X. By the hypotheses of (iv) there exists a subsequence

{xnk
} of {xn} such that α(x2nk

, p) ≥ 1 for all k. Now by using (1), for all k, we have

d(x2nk+1, Tp)) = d(Sx2nk
, Tp)) ≤ α(x2nk

, p)d(Sx2nk
, Tp))

≤ F (M(x2nk
, p), ϕ(M(x2nk

, p))).

On the other hand, we obtain

M(x2nk
, p) = max

{
d(x2nk

, p), d(x2nk
, Sx2nk

), d(p, Tp),
d(x2nk

, Tp) + d(p, Sx2nk
)

2

}
.

Letting k →∞, we have

lim
k→∞

M(x2nk
, p) = d(p, Tp).
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Suppose that d(p, Tp) > 0. Letting k →∞ in the above inequality, we have

d(p, Tp) ≤ F (d(p, Tp), ϕ(d(p, Tp)))

and so we obtain that d(p, Tp) = 0, which is a contradiction. Thus we find that d(p, Tp) = 0 implies p = Tp.

Similarly, p = Sp. Thus p = Tp = Sp.

If M(x, y) = max
{
d(x, y), d(x, Sx), d(y, Sy), d(y,Sx)+d(x,Sy)

2

}
and S = T in Theorems 19 and 20, then

we have the following corollaries.

Corollary 21 Let (X, d) be a complete metric space and let S be an α-admissible mapping such that the

following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, T0) ≥ 1;

(iv) S is continuous.

Then S has a fixed point p ∈ X, and S is a Picard operator, that is, {Snx0} converges to p.

Corollary 22 Let (X, d) be a complete metric space and let S be an α-admissible mapping such that the

following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → p ∈ X as

n→ +∞, then there exists a subsequence {xnk
} of {xn} such that α(xnk

, p) ≥ 1 for all k.

Then S has a fixed point p ∈ X, and S is a Picard operator, that is, {Snx0} converges to p.

If M(x, y) = max {d(x, y), d(x, Sx), d(y, Sy)} and S = T in Theorems 19 and 20, then we obtain the

following corollaries.

Corollary 23 [6] Let (X, d) be a complete metric space and let α : X×X → R be a function. Let S : X → X

be a mapping. Suppose that the following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) S is continuous.

Then S has a fixed point p ∈ X, and S is a Picard operator, that is, {Snx0} converges to p.

Corollary 24 [6] Let (X, d) be a complete metric space and let α : X×X → R be a function. Let S : X → X

be a mapping. Suppose that the following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → p ∈ X as

n→ +∞, then there exists a subsequence {xnk
} of {xn} such that α(xnk

, p) ≥ 1 for all k.

Then S has a fixed point p ∈ X, and S is a Picard operator, that is, {Snx0} converges to p.

Let (X, d) be a metric space and α, η : X ×X → R be two functions. Two self mappings S, T : X → X

are called a pair of generalized α-η-Geraghty contraction type mappings if there exists β ∈ Ω such that, for

all x, y ∈ X,

α(x, y) ≥ η(x, y)⇒ d(Sx, Ty) ≤ β (M(x, y))M(x, y),
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where

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(y, Sx) + d(x, Ty)

2

}
.

Let (X, d) be a metric space and α, η : X ×X → R be two functions. Two self mappings S, T : X → X

are called a pair of generalized α-η-C-class function contraction type mappings if there exists F ∈ C such

that, for all x, y ∈ X,

α(x, y) ≥ η(x, y)⇒ d(Sx, Ty) ≤ F (M(x, y), ϕ(M(x, y)),

where

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(y, Sx) + d(x, Ty)

2

}
.

Theorem 25 Let (X, d) be a complete metric space. Let S be an α-admissible mapping with respect to η

such that the following hold:

(i) (S, T ) is a pair of generalized α-η-C-class function contraction type mappings;

(ii) (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) S and T are continuous.

Then (S, T ) has a common fixed point.

Proof. Let x1 in X be such that x1 = Sx0 and x2 = Tx1. Continuing this process, we construct a sequence

xn of points in X such that

x2i+1 = Sx2i, and x2i+2 = Tx2i+1, wherei = 0, 1, 2, . . . .

By assumption α(x0, x1) ≥ η(x0, x1) and a pair (S, T ) is α-admissible with respect to η, we have, α(Sx0, Tx1) ≥
η(Sx0, Tx1) from which we deduce that α(x1, x2) ≥ η(x1, x2) which also implies that α(Tx1, Sx2) ≥
η(Tx1, Sx2). Continuing in this way we obtain α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N ∪ {0}.

d(x2i+1, x2i+2) = d(Sx2i, Tx2i+1) ≤ α(x2i, x2i+1)d(Sx2i, Tx2i+1)

≤ F (M(x2i, x2i+1), ϕ(M(x2i, x2i+1))

for all i ∈ N ∪ {0}. Now

M(x2i, x2i+1) = max

{
d(x2i, x2i+1), d(x2i, Sx2i), d(x2i+1, Tx2i+1),

d(x2i, Tx2i+1) + (x2i+1, Sx2i)

2

}
= max

{
d(x2i, x2i+1), d(x2i, x2i+1), d(x2i+1, x2i+2),

d(x2i, x2i+2)

2

}
≤ max

{
d(x2i, x2i+1), d(x2i+1, x2i+2),

d(x2i, x2i+1) + d(x2i+1, x2i+2)

2

}
= max {d(x2i, x2i+1), d(x2i+1, x2i+2)} .

Therefore, we have

d(x2i+1, x2i+2) ≤ F (M(x2i, x2i+1), ϕ(M(x2i, x2i+1))

≤ F (d(x2i, x2i+1), ϕ(d(x2i, x2i+1)) ≤ d(x2i, x2i+1).

This implies that

d(xn+1, xn+2) ≤ d(xn, xn+1), foralln ∈ N ∪ {0}.
The rest of the proof follows from similar lines of Theorem 19.

Hence p is a common fixed point of S and T.
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Theorem 26 Let (X, d) be a complete metric space and let (S, T ) be a pair of α-admissible mappings with

respect to η such that the following hold:

(i) (S, T ) is a pair of generalized α-C-class function contraction type mappings;

(ii) (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N∪{0} and xn → p ∈ X
as n→ +∞, then there exists a subsequence {xnk

} of {xn} such that α(xnk
, p) ≥ η(xnk

, p) for all k.

Then S and T have a common fixed point.

Proof. The proof follows from similar lines of Theorem 20.

If M(x, y) = max
{
d(x, y), d(x, Sx), d(y, Sy), d(y,Sx)+d(x,Sy)

2

}
and S = T in Theorems 25 and 26, then

we get the following corollaries.

Corollary 27 Let (X, d) be a complete metric space and let S be an α-admissible mapping with respect to

η such that the following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) S is continuous.

Then S has a fixed point p ∈ X, and S is a Picard operator, that is, {Snx0} converges to p.

Corollary 28 Let (X, d) be a complete metric space and let S be an α-admissible mapping with respect to

η such that the following hold:

(i) S is a generalized α-Geraghty contraction type mapping;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N∪ {0} and xn → p ∈ X
as n→ +∞, then there exists a subsequence {xnk

} of {xn} such that α(xnk
, p) ≥ η(xnk

, p) for all k.

Then S has a fixed point p ∈ X and S is a Picard operator, that is, {Snx0} converges to p.

Example 29 Let X = {a, b, c} with metric

d(x, y) =


0 if x = y
5
7 if x, y ∈ X − {b}
1 if x, y ∈ X − {c}
4
7 if x, y ∈ X − {a}.

α (x, y) =

{
1 if x, y ∈ X
0 otherwise

.

Define a mapping T : X → X as follows:

T (x) =

{
a if x 6= b

c if x = b

and β : [0,+∞)→ [0, 1). Then

α(x, y)d(Tx, Ty) � β(M(x, y))M(x, y).
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Indeed, let x = b and y = c. Then

M(b, c) = max

{
d(b, c), d(b, T (b)), d(c, T (c)),

d(b, T (c)) + d(c, T (b))

2

}
= max

{
4

7
,

4

7
,

5

7
,

1

2

}
=

5

7
.

[6, Theorem 2.1] is not valid to get a fixed point of T , since

α(b, c)d (T (b), T (c)) � β(M(b, c))M(b, c).

Now, we prove that Theorem 19 can be applied to a common fixed point of S and T.

Now, consider a mapping S : X → X be such that Sx = a for each x ∈ X,
where

M(b, c) = max

{
d(b, c), d(b, S(b)), d(c, T (c)),

d(b, T (c)) + d(c, S(b))

2

}
= max

{
4

7
, 1,

5

7
,

12

14

}
= 1,

d(Sb, T c) = d(a, a) = 0,

α(x, y)d(Sx, Ty) ≤ F (M(x, y)), ϕ (M(x, y)) ≤M(x, y).

Hence the hypothesis of Theorem 19 is satisfied, So S and T have a common fixed point.
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Abstract

We establish a new extended Hua’s inequality in the setting of Hilbert
C*-modules. As for its application, we get several generalizations of norm
Hua’s inequality and more generalized inequalities of the Hua inequality
type.
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1 Introduction and Preliminaries

The classical Hua’s inequality states that for any α, δ > 0 and real numbers
x1, x2, · · · , xn,

(δ − x1 − · · · − xn)2 + α(x21 + · · ·+ x2n) ≥ α

n+ α
δ2, (1)

and the equality holds iff x1 = x2 = · · · = xn = δ
n+α .

This inequality has been generalized by Wang [14] as follows. If α, δ > 0 and
p ≥ 1, then

(δ − x1 − · · · − xn)p + αp−1(xp1 + · · ·+ xpn) ≥ (
α

n+ α
)p−1δp (2)

for all non-negative numbers x1, x2, · · · , xn with x1 + · · · + xn ≤ δ. A number
of researchers discussed the above inequality from different angles [1, 2, 6–15].
In [8], the Hua’s inequality for real convex function was given. Dragomir and

∗The research is supported by the National Natural Science Foundation of China
(11301155), (11271112), IRTSTHN (14IRTSTHN023) and the Natural Science Foundation
of the Department of Education, Henan Province (16A110003).
†Corresponding author e-mail address: hongguoqing16@126.com

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

415 F. G. Gao ET AL 415-420



Yang [1] have proved Hua’s inequality in the framework of real inner product
spaces. Their result was generalized by Pečarić [9]. Drnovšek [2] give an operator
version of Hua’s inequality for positive conjugate exponents p, q ∈ R. We also
infer to another interesting Radas and Šikić [10] of this type. In particular,
Moslehian [6] extended an operator Hua’s inequality in Hilbert C*-modules,
which is equivalent to operator convexity of given continuous real function. In
recent years, Su, Miao and Li [11] generalize a new Hua’s inequality and apply it
to proof the boundedness of composition operator. Moslehian and Fujii [7] have
shown another type of Hua’s operator inequality. There are other interpretation
of Hua’s inequality [13] and references therein.

In this paper, we establish an extended Hua’s inequality in the setting of
Hilbert C*-modules. As for its application, we get several generalizations of
norm Hua’s inequality and more generalized inequalities of the Hua inequality
type. For this purpose, we first set up some notations.

Throughout the paper, we assume that X and Y are Hilbert A-modules.
The notations B(X ,Y) denote the space of all bounded linear operators from
X to Y. Let g : [0, ∞)→ (0,∞) be a function such that g(t) ≥ t+M for some
M > 0.

Recall that an element a ∈ A is positive if a is selfadjoint with a positive real
spectrum or a is the form of u∗u for some u ∈ A. We write a ≥ 0 if a is positive.
For more information on the theory of C*-algebra and Hilbert C*-module the
reader is referred to [5] and [4], respectively.

2 Hua type inequality in Hilbert C*-modules

Before prove the main results, we need following auxiliary result.

Lemma 1. [12] Let (G, +) be a semigroup, and let ϕ and ψ be nonnegative
functions on G. Suppose ϕ is subadditive on G and there is a positive constant
λ such that ϕ(x) ≤ λψ(x) for x ∈ G. If f is a nondecreasing convex function
on [0, ∞), then

f(ϕ(a)) + λf(ψ(b)) ≥ (1 + λ)f(
ϕ(a+ b)

1 + λ
) (3)

holds for any a, b ∈ G. When f is strictly convex, the equality holds in (3) iff

ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(b) = λψ(b), ϕ(a) = ψ(b).

We now state our main result, which is an extended Hua’s inequality in the
setting of Hilbert C*-modules.

Theorem 1. Let p, q > 1 be conjugate components. Then

‖δ − x(g(c)− c) 1
2 ‖p + ‖c‖p−1‖x‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2

)p−1‖δ‖p (4)

2
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for all x, δ ∈ X and all positive c ∈ A. The equality holds iff

‖x(g(c)− c) 1
2 ‖ = ‖x‖‖g(c)− c‖ 1

2 , ‖x‖ =
‖δ‖‖g(c)− c‖

q−1
2

‖g(c)− c‖ q
2 + ‖c‖

.

Proof. By the functional calculus, g(c) − c is positive and invertible. Put G =

X . Let’s define ϕ : X → C by ϕ(x) = ‖x(g(c) − c)
1
2 ‖ and ψ : X → C by

ψ(x) = ‖c‖‖g(c) − c‖
1−q
2 ‖x‖ for any x ∈ X . So ϕ(x) = ‖x(g(c) − c)

1
2 ‖ ≤

λψ(x)(x ∈ X ), where λ = ‖g(c)−c‖
q
2

‖c‖ . Moreover, putting f(t) = tp (t ≥ 0), clear

f is nondecreasing and convex on [0, ∞). Hence, Lemma 1 yields that

‖a(f(c)− c) 1
2 ‖p + ‖c‖p−1‖b‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2 ]
)p−1‖(a+ b)(g(c)− c) 1

2 ‖p

(5)
holds for a, b ∈ X . The equality holds iff

‖(a+ b)(g(c)− c) 1
2 ‖ = ‖a(g(c)− c) 1

2 ‖+ ‖b(g(c)− c) 1
2 ‖, (6)

‖b(g(c)− c) 1
2 ‖ = ‖b‖‖g(c)− c‖ 1

2 , (7)

‖a(g(c)− c) 1
2 ‖ = ‖c‖‖b‖‖g(c)− c‖

1−q
2 . (8)

By choosing z ∈ X such that z(g(c) − c) 1
2 = δ and replacing a and b by z − x

and x, therefore we can get (4). The equality holds in (4) iff

‖δ‖ = ‖δ − x(g(c)− c) 1
2 ‖+ ‖x(g(c)− c) 1

2 ‖, (9)

‖x(g(c)− c) 1
2 ‖ = ‖x‖‖g(c)− c‖ 1

2 , (10)

‖δ − x(g(c)− c) 1
2 ‖ = ‖c‖‖x‖‖g(c)− c‖

1−q
2 . (11)

Observe that an easy computation shown that ‖x‖ = ‖δ‖‖g(c)−c‖
q−1
2

‖g(c)−c‖
q
2 +‖c‖

from above

three equations. Consequently, we have

‖x(g(c)− c) 1
2 ‖ = ‖x‖‖g(c)− c‖ 1

2 , ‖x‖ =
‖δ‖‖g(c)− c‖

q−1
2

‖g(c)− c‖ q
2 + ‖c‖

. (12)

The simple computation shows that (12) implies (9), (10) and (11). Now this
observation completes the proof.

Example 1. Let H and K be Hilbert spaces, then B(H,K) becomes a B(H)-
module via 〈T, S〉 = T ∗S. Replacing x, δ in (4) by T, S and taking p=2 we
get

‖(S − T (g(c)− c) 1
2 )∗(S − T (g(c)− c) 1

2 )‖+ c‖T ∗T‖ ≥ c

g(c)
‖S∗S‖

for all c > 0 and all T, S ∈ B(H,K). The equality holds iff ‖T‖ = ‖S‖
g(c) .

3
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If X is a Hilbert space H, which is a Hilbert C-module, then we have the
following corollary.

Corollary 1. Let p, q > 1 be conjugate components. Then

‖δ − (g(c)− c) 1
2x‖p + cp−1‖x‖p ≥ (

c

c+ (g(c)− c) q
2

)p−1‖δ‖p (13)

for any c > 0, x, δ ∈ H.

We also have the following extension of Hua’s inequality in the framework
of Hilbert C*-module.

Theorem 2. Let p, q > 1 be conjugate components. Then

‖δ−T (x)(g(c)−c) 1
2 ‖p+‖c‖p−1‖T‖p‖x‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2

)p−1‖δ‖p (14)

for all x ∈ X , δ ∈ Y, all positive c ∈ A, and all operators T ∈ B(X ,Y).

Proof. Substituting T (x) for x in (4) we get

‖δ − T (x)(g(c)− c) 1
2 ‖p + ‖c‖p−1‖Tx‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2

)p−1‖δ‖p

utilizing the facts that ‖T (x)‖ ≤ ‖T‖‖x‖ we obtain

‖δ − T (x)(g(c)− c) 1
2 ‖p + ‖c‖p−1‖T‖p‖x‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2

)p−1‖δ‖p.

Recall that the operator T = u
⊗
v is defined by T (x) = u〈v, x〉(u, v, x ∈ X )

and noting the fact that ‖T‖ = ‖u‖‖v‖ we get the following corollary.

Corollary 2. Let p, q > 1 be conjugate components. Then

‖δ−u〈v, x〉(g(c)−c) 1
2 ‖p+‖c‖p−1‖u‖p‖v‖p‖x‖p ≥ (

‖c‖
‖c‖+ ‖(g(c)− c)‖ q

2

)p−1‖δ‖p

(15)
for all x, δ, u, v ∈ X and all positive c ∈ A.

When X and Y are normed spaces, let A ∈ B(X ,Y), g(t) = t+1, c = ‖A‖
p

1−p ,
δ = y, the Theorem 2 reduces to Theorem 2 of [2].

Corollary 3. Let p, q > 1 with 1
p + 1

q = 1. Let X and Y be normed spaces, and
let A be a bounded operator from X to Y. If x ∈ X and y ∈ Y, then

‖y −A(x)‖p + ‖x‖p ≥ ‖y‖p

(1 + ‖A‖q)p−1
.

4
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If we set p = q=2 and take δ = y(g(c)−c)− 1
2 in Theorem 2 then the following

corollary is obtained.

Corollary 4. Let p, q > 1 be conjugate components. Then

‖y(g(c)− c)− 1
2 − T (x)(g(c)− c) 1

2 ‖2 + ‖c‖‖T‖2‖x‖2 ≥ ‖c‖‖y(g(c)− c)− 1
2 ‖2

‖c‖+ ‖(g(c)− c)‖

for all x ∈ X , y ∈ Y, all positive c ∈ A and all operators T ∈ B(X ,Y).

Next consider inner spaces H and K, then A = C. Let A ∈ B(H,K),
g(t) = t+1 and c = α

‖A‖2 , then we deduce the main result of [10] from Corollary

4 as follows.

Corollary 5. Suppose that H and K are inner product spaces, A: H → K is a
bounded linear operator and α > 0. Then

‖y −Ax‖2 + α‖x‖2 ≥ α‖y‖2

‖A‖2 + α
(16)

for all x ∈ H and y ∈ K.

Remark 1. Applying Corollary 5 for elements of the n-fold inner product space
Hn, then inequality 16 can be restated as the following form which is, as noted
in [6], a generalization of the main theorem of [1].

‖y −
n∑
i=1

wixi‖2 + α

n∑
i=1

(|wi|2‖xi‖
2

) ≥ α‖y‖2∑n
i=1 |wi|2 + α

,

where wi ∈ C(1 ≤ i ≤ n), A(x1, · · · , xn) =
∑n
i=1 wixi and ‖A‖2 =

∑n
i=1 |wi|2.

The special case, where H = C and wi = 1(1 ≤ i ≤ n), give rise to the classical
Hua’s inequality.
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FOURIER SERIES OF FUNCTIONS RELATED TO

HIGHER-ORDER GENOCCHI POLYNOMIALS

TAEKYUN KIM1, DAE SAN KIM2, GWAN-WOO JANG3, AND JONGKYUM KWON4,∗

Abstract. In this paper, we consider three types of functions related to
higher-order Genocchi functions and derive their Fourier series expansions.

In addition, we express each of them in terms of Bernoulli functions.

1. Introduction

The Genocchi polynomials G
(r)
n (x) of order r (r ∈ Z>0) are defined by the

generating function(
2t

et + 1

)r

ext =
∞∑

m=0

G(r)
m (x)

tm

m!
, (see [2-5,8,16,17,20,22]). (1.1)

When x = 0, G
(r)
m = G

(r)
m (0) are called the Genocchi numbers of order r. For

r = 1, Gm(x) = G
(1)
m (x), and Gm = G

(1)
m are called the Genocchi polynomials and

Genocchi numbers, respectively.

Clearly, G
(r)
m (x) = 0, for 0 ≤ m ≤ r − 1, and G

(r)
r (x) = r!. Thus we will assume

that m ≥ r + 1 ≥ 2. Also, as G
(r)
m (x) = m!

(m−r)!E
(r)
m−r(x), (m ≥ r), degG

(r)
m (x) =

m− r, (m ≥ r) , and G
(r)
m = m!

(m−r)!E
(r)
m−r.

From (1.1), we see that

d

dx
G(r)

m (x) = mG
(r)
m−1(x), (m ≥ 0),

G(r)
m (x+ 1) = 2mG

(r−1)
m−1 (x)−G(r)

m (x), (m ≥ 0).

(1.2)

In turn, these imply that

G(r)
m (1) = 2mG

(r−1)
m−1 −G(r)

m , (m ≥ 0),∫ 1

0

G(r)
m (x)dx =

2

m+ 1

(
(m+ 1)G(r−1)

m −G
(r)
m+1

)
, (m ≥ 0).

(1.3)

2010 Mathematics Subject Classification. 11B68, 11B83, 42A16.

Key words and phrases. Fourier series, Bernoulli functions, higher-order Genocchi polynomials.
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2 Fourier series of functions involving higher-order Genocchi polynomials

We also recall from [14] that, for 0 ̸= n ∈ Z,

∫ 1

0

G(r)
m (x)e−2πinxdx

= −
m−1∑
k=1

2(m)k−1

(2πin)k

(
(m− k + 1)G

(r−1)
m−k −G

(r)
m−k+1

)
.

(1.4)

For any real number x, we let

< x >= x− ⌊x⌋ ∈ [0, 1), (1.5)

denote the fractional part of x.
The Bernoulli polynomials Bm(x) are defined by the generating function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
. (1.6)

We are going to use the following facts about Bernoulli functions Bm(< x >)
later:

(a) for m ≥ 2,

Bm(< x >) = −m!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)m
, (1.7)

(b) for m = 1,

−
∞∑

n=−∞,n̸=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(1.8)

Here we will consider the following three types of functions αm(< x >), βm(<
x >), and γm(< x >) involving higher-order Genocchi polynomials. We will derive
their Fourier series expansions and in addition express them in terms of Bernoulli
functions.

(1) αm(< x >) =
∑m

k=r G
(r)
k (< x >) < x >m−k, (m ≥ r + 1);

(2) βm(< x >) =
∑m

k=r
1

k!(m−k)!G
(r)
k (< x >) < x >m−k, (m ≥ r + 1);

(3) γm(< x >) =
∑m−1

k=r
1

k(m−k)G
(r)
k (< x >) < x >m−k, (m ≥ r + 1).

The reader may refer to any book for elementary facts about Fourier analysis (for
example, see [1,18,23]).

As to γm(< x >), we note that the polynomial identity (1.9) follows immedi-
ately from Theorems 4.1 and 4.2, which is in turn derived from the Fourier series
expansion of γm(< x >).
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m−1∑
k=r

1

k(m− k)
G

(r)
k (x)xm−k

=
1

m

m−r∑
s=0

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(x)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(x),

(1.9)

where Hm =
∑m

j=1
1
j are the harmonic numbers and Λl =

∑l−1
k=r

1
k(l−k)

(
2kG

(r−1)
k−1 −

G
(r)
k

)
. The obvious polynomial identities can be derived also for αm(< x >)

and βm(< x >) from Theorems 2.1 and 2.2, and Theorems 3.1 and 3.2, respec-
tively. It is remarkable that from the Fourier series expansion of the function∑m−1

k=1
1

k(m−k)Bk(⟨x⟩)Bm−k(⟨x⟩) we can derive the Faber-Pandharipande-Zagier

identity (see [7,12,13]) and the Miki’s identity (see [6,9,12,13,19,21]). Recent works
on Fourier series expansions for analogous functions can be found in the papers
[10,11,15]. From now on, we will assume that r ≥ 2.

2. The function αm(< x >)

Let αm(x) =
∑m

k=r G
(r)
k (x)xm−k, (m ≥ r + 1). Then we will consider the

function

αm(< x >) =
m∑

k=r

G
(r)
k (< x >) < x >m−k, (2.1)

defined on R, which is periodic with period 1.
The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.2)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.3)
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4 Fourier series of functions involving higher-order Genocchi polynomials

Before proceeding further, we need to observe the following.

α′
m(x) =

m∑
k=r

(
kG

(r)
k−1(x)x

m−k + (m− k)G
(r)
k (x)xm−k−1

)
=

m∑
k=r+1

kG
(r)
k−1(x)x

m−k +
m−1∑
k=r

(m− k)G
(r)
k (x)xm−k−1

=
m−1∑
k=r

(k + 1)G
(r)
k (x)xm−1−k +

m−1∑
k=r

(m− k)G
(r)
k (x)xm−1−k

= (m+ 1)αm−1(x).

(2.4)

From this, we obtain (
αm+1(x)

m+ 2

)′

= αm(x), (2.5)

and ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.6)

For m ≥ r + 1, we put

∆m = αm(1)− αm(0)

=
m∑

k=r

(
G

(r)
k (1)−G

(r)
k δm,k

)
=

m∑
k=r

(
2kG

(r−1)
k−1 −G

(r)
k −G

(r)
k δm,k

)
=

m∑
k=r

(
2kG

(r−1)
k−1 −G

(r)
k

)
−G(r)

m .

(2.7)

Now, we see that
αm(1) = αm(0) ⇐⇒ ∆m = 0, (2.8)

and ∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.9)

Now, we would like to determine the Fourier coefficients A
(m)
n .

Case 1 : n ̸= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin
[αm(x)e−2πinx]10 +

1

2πin

∫ 1

0

α′
m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e
−2πinxdx

=
m+ 1

2πin
A(m−1)

n − 1

2πin
∆m,

(2.10)
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from which by induction on m, we can easily show

A(m)
n = −

m−r∑
j=1

(m+ 1)j−1

(2πin)j
∆m−j+1

= − 1

m+ 2

m−r∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1.

(2.11)

Case 2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.12)

αm(< x >), (m ≥ r+1) is piecewise C∞. Moreover, αm(< x >) is continuous for
those integers m ≥ r+1 with ∆m = 0, and discontinuous with jump discontinuities
at integers for those integers m ≥ r + 1 with ∆m ̸= 0.

Assume first that ∆m = 0, for an integer m ≥ r + 1. Then αm(0) = αm(1).
Hence αm(< x >) is piecewise C∞ , and continuous. Thus the Fourier series of
αm(< x >) converges uniformly to αm(< x >) , and

αm(< x >) =
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−r∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m−r∑
j=1

(
m+ 2

j

)
∆m−j+1

−j!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m−r∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+ ∆m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.13)

Now, we can state our first result.

Theorem 2.1. For each integer l ≥ r + 1, we put

∆l =

l∑
k=r

(
2kG

(r−1)
k−1 −G

(r)
k

)
−G

(r)
l .

Assume that ∆m = 0 , for an integer m ≥ r + 1. Then we have the following.

(a)
∑m

k=r G
(r)
k (< x >) < x >m−k has the Fourier series expansion

m∑
k=r

G
(r)
k (< x >) < x >m−k

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−r∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

(2.14)
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6 Fourier series of functions involving higher-order Genocchi polynomials

for all x ∈ R, where the convergence is uniform.

(b)

m∑
k=r

G
(r)
k (< x >) < x >m−k=

1

m+ 2

m−r∑
j=0,j ̸=1

(
m+ 2

j

)
∆m−j+1Bj(< x >),

(2.15)
for all x in R, where Bj(< x >) is the Bernoulli function.

Assume next that ∆m ̸= 0, for an integer m ≥ r + 1. Then αm(0) ̸= αm(1).
Hence αm(< x >) is piecewise C∞ , and discontinuous with jump discontinuities
at integers.
The Fourier series of αm(< x >) converges pointwise to αm(< x >) , for x /∈ Z,
and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m, (2.16)

for x ∈ Z.

We now state our second result.

Theorem 2.2. For each integer l ≥ r + 1, we put

∆l =
l∑

k=r

(
2kG

(r−1)
k−1 −G

(r)
k

)
−G

(r)
l .

Assume that ∆m ̸= 0 , for an integer m ≥ r + 1. Then we have the following.

(a)
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

− 1

m+ 2

m−r∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{∑m
k=r G

(r)
k (< x >) < x >m−k, for x /∈ Z,

G
(r)
m + 1

2∆m, for x ∈ Z.

(2.17)

(b)
1

m+ 2

m−r∑
j=0

(
m+ 2

j

)
∆m−j+1Bj(< x >) =

m∑
k=r

G
(r)
k (< x >) < x >m−k, for x /∈ Z;

(2.18)

1

m+ 2

m−r∑
j=0,j ̸=1

(
m+ 2

j

)
∆m−j+1Bj(< x >) = G(r)

m +
1

2
∆m, for x ∈ Z. (2.19)

3. The function βm(< x >)

Let βm(x) =
∑m

k=r
1

k!(m−k)!G
(r)
k (x)xm−k, (m ≥ r + 1). Then we will consider

the function

βm(< x >) =
m∑

k=r

1

k!(m− k)!
G

(r)
k (< x >) < x >m−k,

defined on R, which is periodic with period 1.
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The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx.

To proceed further, we need to observe the following.

β′
m(x) =

m∑
k=r

{
k

k!(m− k)!
G

(r)
k−1(x)x

m−k +
(m− k)

k!(m− k)!
G

(r)
k (x)xm−k−1

}

=

m∑
k=r+1

1

(k − 1)!(m− k)!
G

(r)
k−1(x)x

m−k +

m−1∑
k=r

1

k!(m− k − 1)!
G

(r)
k (x)xm−k−1

=

m−1∑
k=r

1

k!(m− 1− k)!
G

(r)
k (x)xm−1−k +

m−1∑
k=r

1

k!(m− 1− k)!
G

(r)
k (x)xm−1−k

= 2βm−1(x).

(3.1)
From this, we get (

βm+1(x)

2

)′

= βm(x),

and ∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
.

For m ≥ r + 1, we let

Ωm = βm(1)− βm(0)

=
m∑

k=r

1

k!(m− k)!

(
G

(r)
k (1)−G

(r)
k δm,k

)
=

m∑
k=r

1

k!(m− k)!

{
2kG

(r−1)
k−1 −G

(r)
k −G

(r)
k δm,k

}
=

m∑
k=r

1

k!(m− k)!

(
2kG

(r−1)
k−1 −G

(r)
k

)
− 1

m!
G(r)

m .

(3.2)

From this, we now see that

βm(0) = βm(1) ⇐⇒ Ωm = 0, (3.3)

and

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.4)
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8 Fourier series of functions involving higher-order Genocchi polynomials

We are now ready to determine the Fourier coefficients B
(m)
n .

Case 1:n ̸= 0

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

β′
m(x)e−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

2

2πin

∫ 1

0

βm−1(x)e
−2πinxdx

=
2

2πin
B(m−1)

n − 1

2πin
Ωm,

from which by induction on m we can easily derive

B(m)
n = −

m−r∑
j=1

2j−1

(2πin)j
Ωm−j+1.

Case 2: n = 0

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1.

βm(< x >), (m ≥ r+1) is piecewise C∞. Moreover, βm(< x >) is continuous for
those integers m ≥ r+1 with Ωm = 0 and discontinuous with jump discontinuities
at integers for those integers m ≥ r + 1 with Ωm ̸= 0 .

Assume first that Ωm = 0, for an integerm ≥ r+1. Then βm(0) = βm(1). Hence
βm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of βm(< x >)
converges uniformly to βm(< x >), and

βm(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m−r∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m−r∑
j=1

2j−1

j!
Ωm−j+1

(
−j!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)j

)

=
1

2
Ωm+1 +

m−r∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

Now, we are going to state our first result.

Theorem 3.1. For each positive integer l ≥ r + 1 , we set

Ωl =
l∑

k=r

1

k!(l − k)!

(
2kG

(r−1)
k−1 −G

(r)
k

)
− 1

l!
G

(r)
l .

Assume that Ωm = 0, for an integer m ≥ r + 1 . Then we have the following.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

428 T. KIM ET AL 421-437



T. Kim, D. S. Kim, G.-W. Jang, J. Kwon 9

(a)
∑m

k=r
1

k!(m−k)!G
(r)
k (< x >) < x >m−k has the Fourier series expansion

m∑
k=r

1

k!(m− k)!
G

(r)
k (< x >) < x >m−k

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m−r∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,

(3.5)

for all x ∈ R, where the convergence is uniform.

(b)
m∑

k=r

1

k!(m− k)!
G

(r)
k (< x >) < x >m−k

=
1

2
Ωm+1 +

m−r∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

(3.6)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next that Ωm ̸= 0, for an integers m ≥ r + 1 . Then, βm(0) ̸= βm(1).
Hence βm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
integers. Thus the Fourier series of βm(< x >) converges pointwise to βm(< x >),
for x /∈ Z, and convergence to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm,

for x ∈ Z.
Now, we are going to state our second result.

Theorem 3.2. For each positive integer l ≥ r + 1 , we set

Ωl =

l∑
k=r

1

k!(l − k)!

(
2kG

(r−1)
k−1 −G

(r)
k

)
− 1

l!
G

(r)
l .

Assume that Ωm ̸= 0, for an integer m ≥ r + 1 . Then we have the following.

(a)
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m−r∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m
k=r

1
k!(m−k)!G

(r)
k (< x >) < x >m−k, for x /∈ Z,

1
m!G

(r)
m + 1

2Ωm, for x ∈ Z.

(b)
m−r∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >)

=

m∑
k=r

1

k!(m− k)!
G

(r)
k (< x >) < x >m−k, for x /∈ Z;

m−r∑
j=0,j ̸=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
1

m!
G(r)

m +
1

2
Ωm, for x ∈ Z.
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10 Fourier series of functions involving higher-order Genocchi polynomials

4. The function γm(< x >)

Let γm(x) =
∑m−1

k=r
1

k(m−k)G
(r)
k (x)xm−k, (m ≥ r + 1). Then we will consider

the function

γm(< x >) =
m−1∑
k=r

1

k(m− k)
G

(r)
k (< x >) < x >m−k,

defined on R, which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx,

where C
(m)
n =

∫ 1

0
γm(< x >)e−2πinxdx =

∫ 1

0
γm(x)e−2πinxdx. Before proceeding

further, we need to observe the following.

γ′m(x) =

m−1∑
k=r+1

1

m− k
G

(r)
k−1(x)x

m−k +

m−1∑
k=r

1

k
G

(r)
k (x)xm−k−1

=
m−2∑
k=r

1

m− 1− k
G

(r)
k (x)xm−1−k +

m−1∑
k=r

1

k
G

(r)
k (x)xm−1−k

=
m−2∑
k=r

( 1

m− 1− k
+

1

k

)
G

(r)
k (x)xm−1−k +

1

m− 1
G

(r)
m−1(x)

= (m− 1)γm−1(x) +
1

m− 1
G

(r)
m−1(x),

from which we see that(
1

m
(γm+1(x)−

1

m(m+ 1)
G

(r)
m+1(x))

)′

= γm(x). (4.1)

This entails that∫ 1

0

γm(x)dx =
1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
(G

(r)
m+1(1)−G

(r)
m+1)

)
=

1

m

(
γm+1(1)− γm+1(0)−

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
.

For m ≥ r + 1, we put

Λm = γm(1)− γm(0)

=

m−1∑
k=r

1

k(m− k)

(
G

(r)
k (1)−G

(r)
k δm,k

)
=

m−1∑
k=r

1

k(m− k)

(
2kG

(r−1)
k−1 −G

(r)
k −G

(r)
k δm,k

)
=

m−1∑
k=r

1

k(m− k)

(
2kG

(r−1)
k−1 −G

(r)
k

)
.
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Note here that

γm(0) = γm(1) ⇔ Λm = 0,

and

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
.

We are now ready to determine the Fourier coefficients C
(m)
n .

Case 1: n ̸= 0

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin

[
γm(x)e−2πinx

]1
0
+

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+

1

2πin

∫ 1

0

(
(m− 1)γm−1(x) +

1

m− 1
G

(r)
m−1(x)

)
e−2πinxdx

=
m− 1

2πin
C(m−1)

n − 1

2πin
Λm +

1

2πin(m− 1)

∫ 1

0

G
(r)
m−1(x)e

−2πinxdx

=
m− 1

2πin
C(m−1)

n − 1

2πin
Λm − 1

2πin(m− 1)
Θm,

where

Θm =
m−2∑
k=1

2(m− 1)k−1

(2πin)k

(
(m− k)G

(r−1)
m−k−1 −G

(r)
m−k

)
.

By proceeding induction on m we can show that

C(m)
n = −

m−r∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1 −

m−r∑
j=1

(m− 1)j−1

(2πin)j(m− j)
Θm−j+1.

Here we note that

m−r∑
j=1

(m− 1)j−1

(2πin)j(m− j)
Θm−j+1

=
m−r∑
j=1

(m− 1)j−1

(2πin)j(m− j)

m−j−1∑
k=1

2(m− j)k−1

(2πin)k

(
(m− j − k + 1)G

(r−1)
m−j−k −G

(r)
m−j−k+1

)

=

m−r∑
j=1

1

m− j

m−j−1∑
k=1

2(m− 1)j+k−2

(2πin)j+k

(
(m− j − k + 1)G

(r−1)
m−j−k −G

(r)
m−j−k+1

)

=
m−r∑
j=1

1

m− j

m−1∑
s=j+1

2(m− 1)s−2

(2πin)s

(
(m− s+ 1)G

(r−1)
m−s −G

(r)
m−s+1

)
(4.2)
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12 Fourier series of functions involving higher-order Genocchi polynomials

=
m−r∑
s=1

2(m− 1)s−2

(2πin)s

(
(m− s+ 1)G

(r−1)
m−s −G

(r)
m−s+1

)
(Hm−1 −Hm−s)

+
m−1∑

s=m−r+1

2(m− 1)s−2

(2πin)s

(
(m− s+ 1)G

(r−1)
m−s −G

(r)
m−s+1

)
(Hm−1 −Hr−1)

=
1

m

m−r∑
s=1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
(Hm−1 −Hm−s)

+
1

m

m−1∑
s=m−r+1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
(Hm−1 −Hr−1) .

(4.3)

Also, we note that

m−r∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1

=
1

m

m−r∑
s=1

(m)s
(2πin)s

Λm−s+1.

(4.4)

Putting everything altogether, we have:

C(m)
n = − 1

m

m−r∑
s=1

(m)s
(2πin)s

(
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

)
− 1

m

m−1∑
s=m−r+1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
(Hm−1 −Hr−1) .

(4.5)

Case 2: n = 0

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
.

γm(< x >), (m ≥ r+1) is piecewise C∞. Moreover, γm(< x >) is continuous for
those integers m ≥ r+1 with Λm = 0, and discontinuous with jump discontinuities
at integers for those integer m ≥ r + 1 with Λm ̸= 0.

Assume first that Λm = 0, for an integer m ≥ r+1. Then γm(0) = γm(1). Hence
γm(< x >) is piecewise C∞ and continuous. Thus the Fourier series of γm(< x >)
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converges uniformly to γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

∞∑
n=−∞,n̸=0

{
− 1

m

m−r∑
s=1

(m)s
(2πin)s

(
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

)}
e2πinx

+
∞∑

n=−∞,n̸=0

{
− 1

m

m−1∑
s=m−r+1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
× (Hm−1 −Hr−1)

}
e2πinx

=
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

1

m

m−r∑
s=1

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}(
−s!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)s

)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

×
(
−s!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)s

)
=

1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

1

m

m−r∑
s=2

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(< x >)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z

=
1

m

m−r∑
s=0,s̸=1

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(< x >)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(< x >)
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14 Fourier series of functions involving higher-order Genocchi polynomials

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

Now, we get the following theorem.

Theorem 4.1. For each integer l ≥ r + 1 , we let

Λl =

l−1∑
k=r

1

k(l − k)

(
2kG

(r−1)
k−1 −G

(r)
k

)
.

Assume that Λm = 0, for an integer m ≥ r + 1 . Then we have the following.

(a)
∑m−1

k=r
1

k(m−k)G
(r)
k (< x >) < x >m−k has the Fourier series expansion

m−1∑
k=r

1

k(m− k)
G

(r)
k (< x >) < x >m−k

=
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

∞∑
n=−∞,n̸=0

{
− 1

m

m−r∑
s=1

(m)s
(2πin)s

(
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

)}
e2πinx

+
∞∑

n=−∞,n̸=0

{
− 1

m

m−1∑
s=m−r+1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
× (Hm−1 −Hr−1)

}
e2πinx,

(4.6)

for all x ∈ R, where the convergence is uniform.

(b)

m−1∑
k=r

1

k(m− k)
G

(r)
k (< x >) < x >m−k

=
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

1

m

m−r∑
s=0,s̸=1

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(< x >)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(< x >),

(4.7)

for all x ∈ R, where Bs(< x >) is the Bernoulli function.

Assume next that Λm ̸= 0, for an integer m ≥ r + 1 . Then γm(0) ̸= γm(1).
Hence γm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
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integers. Thus the Fourier series of γm(< x >) converges pointwise to γm(< x >),
for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm,

for x ∈ Z.
Now, we have the following theorem.

Theorem 4.2. For each integer l ≥ r + 1 , we let

Λl =
l−1∑
k=r

1

k(l − k)

(
2kG

(r−1)
k−1 −G

(r)
k

)
.

Assume that Λm ̸= 0, for an integer m ≥ r + 1 . Then we have the following.

(a)
1

m

(
Λm+1 −

2

m(m+ 1)
((m+ 1)G(r−1)

m −G
(r)
m+1)

)
+

∞∑
n=−∞,n̸=0

{
− 1

m

m−r∑
s=1

(m)s
(2πin)s

(
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

)}
e2πinx

+
∞∑

n=−∞,n̸=0

{
− 1

m

m−1∑
s=m−r+1

2(m)s
(2πin)s

(
G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1

)
× (Hm−1 −Hr−1)

}
e2πinx

=

{∑m−1
k=r

1
k(m−k)G

(r)
k (< x >) < x >m−k, for x /∈ Z,

1
2Λm, for x ∈ Z.

(b)
1

m

m−r∑
s=0

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(< x >)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(< x >)

=

m−1∑
k=r

1

k(m− k)
G

(r)
k (< x >) < x >m−k, for x /∈ Z;

1

m

m−r∑
s=0,s̸=1

(
m

s

){
2(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)

× (Hm−1 −Hm−s) + Λm−s+1

}
Bs(< x >)

+
2

m
(Hm−1 −Hr−1)

m−1∑
s=m−r+1

(
m

s

)
(G

(r−1)
m−s − 1

m− s+ 1
G

(r)
m−s+1)Bs(< x >)

=
1

2
Λm, for x ∈ Z.
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Value distribution and uniqueness of certain types of

q-difference polynomials ∗
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Abstract: In this paper, we consider certain types of q-difference poly-
nomials in the complex plane by using the Nevanlinna’s theory. Some
results about the value distribution and uniqueness are obtained, which
are the counterparts of the properties of the general difference polyno-
mials.
Keywords: Value distribution; q-Difference; Share fixed-points.
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1. Introduction and Results

Throughout this paper, we assume f(z), g(z) be non-constant meromorphic (or entire)
functions in the complex plane and use the basic notations of the Nevanlinna’s theory
[1,2,12]. In particular, the order of growth of f(z) is represented by σ(f) and the exponent
of convergence of the zeros of f(z) is represented by λ(f). In addition, S(r, f) represents
any quantify which satisfies S(r, f) = o(T (r, f))( r → ∞), possibly outside a set of finite
logarithmic measure.

If f(z)− 1 and g(z)− 1 assume the same zeros with the same multiplicities, then we
say that f(z) and g(z) share 1 CM. If f(z)− z and g(z)− z assume the same zeros with
the same multiplicities, then we say that f(z) and g(z) share z CM, or say that f(z) and
g(z) have the same fixed-points[9].

In the past decade, many scholars have focused on complex difference and difference
equations and presented many results[3-5] on value distribution theory of meromorphic
functions. Meanwhile, q-difference is also becoming an important topic in complex anal-
ysis, so the research of it is very meaningful. The aim of this paper is to investigate the
value distribution and uniqueness of certain types of q-difference polynomials.

We now introduce some related results. Liu and Laine [3] discussed the problem when
a difference polynomial assumes a nonzero small function, and showed the following result.
Theorem A Let f(z) be a transcendental entire function of finite order, not of period c,
where c is a nonzero complex constant, and let s(z) be a nonzero function, small compared

∗This research was supported by the National Natural Science Foundation of China, under grant
No.11171013 and No.11371225.

†The corresponding author. Email address: yunfeidu@yeah.net.
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to f(z). Then the difference polynomial f(z)n+ f(z+ c)− f(z)− s(z) has infinitely many
zeros in the complex plane, provided that n ≥ 3.

Chen [4] investigated the value distribution of a certain difference and obtained the
following theorem.
Theorem B Let f(z) be a transcendental entire function of finite order, and let a, c ∈
C \ {0} be constants, with such that f(z + c) ̸≡ f(z). Set ψn(z) = ∆f(z)− af(z)n, where
∆f(z) = f(z + c) − f(z) and n ≥ 3 is an integer. Then ψn(z) assumes all finite values
infinitely often, and for every b ∈ C one has λ(ψn(z)− b) = σ(f).

Laine and Yang [5] analyzed the difference f(z)nf(z + c), and presented the following
result.
Theorem C Let f(z) be a transcendental entire function of finite order and c be non-zero
complex constant. Then for n ≥ 2, f(z)nf(z + c) assumes every non-zero value a ∈ C
infinitely often.

In this paper, we first prove the analogous results in q-difference type as follows.
Theorem 1 Let f(z) be a transcendental meromorphic (entire) function of zero order and
let α(z) be a non-zero function, small compared to f(z), q is a non-zero complex constant.
Then for n ≥ 6(n ≥ 2), f(z)nf(qz)−α(z) has infinitely many zeros in the complex plane.
Corollary 1 Let f(z) be a transcendental meromorphic (entire) function of zero order
and q is a non-zero complex constant. Then for n ≥ 6(n ≥ 2), f(z)nf(qz) = 1 has
infinitely many solutions in the complex plane.
Corollary 2 Let f(z) be a transcendental meromorphic (entire) function of zero order and
q is a non-zero complex constant. Then for n ≥ 6(n ≥ 2), the f(z)nf(qz) has infinitely
many fixed-points in the complex plane.
Theorem 2 Let f(z) be a transcendental entire function of zero order, and let α(z) be
a non-zero function, small compared to f(z). q ∈ C \ {0} is a complex constant. Set
ψn(z) = f(z)n + ∆qf(z), where ∆qf(z) = f(qz) − f(z) and n ≥ 2 is an integer. Then
ψn(z)− α(z) has infinitely zeros in the complex plane and λ(ψn(z)− α(z)) = 0.

We now recall the following Theorem D[6].
Theorem D Let f(z) and g(z) be two nonconstant meromorphic(entire) functions, n ≥
11(n ≥ 6) a positive integer. If f(z)nf(z)′ and g(z)ng(z)′ share z CM, then either f(z) =
c1e

cz2 , g(z) = c2e
−cz2, where c1, c2 and c are three constants satisfying 4(c1c2)

n+1c2 = −1
or f(z) ≡ tg(z) for a constant such that tn+1 = 1.

Naturally, we ask whether there is a corresponding uniqueness theorem in q-difference
polynomials. In this paper we give an affirmative answer to this question, and obtain the
following results.
Theorem 3 Let f(z) and g(z) be two transcendental meromorphic (entire) functions of
zero order. Suppose that q is a non-zero complex constant and n is an integer n ≥ 8(n ≥
4). If f(z)nf(qz) and g(z)ng(qz) share z CM, then f(z) ≡ tg(z) for tn+1 = 1.
Theorem 4 Let f(z) and g(z) be two transcendental meromorphic (entire) functions of
zero order. Suppose that q is a non-zero complex constant and n is an integer n ≥ 8(n ≥
4). If f(z)n(f(z)− 1)f(qz) and g(z)n(g(z)− 1)g(qz) share z CM, then f(z) ≡ g(z).

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

439 Yunfei Du ET AL 438-448



2. Some Lemmas

In this section, we summarize some lemmas, which will be used to prove our main results.
Lemma 2.1[7] Let f(z) be a non-constant zero-order meromorphic function and q ∈
C \ {0}. Then

m

(
r,
f(qz)

f(z)

)
= o(T (r, f(z))). (2.1)

on a set of logarithmic density 1.
Lemma 2.2[8] Let f(z) be a non-constant zero-order meromorphic function and q ∈
C \ {0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f(z)). (2.2)

on a set of logarithmic density 1.
Remark 2.1 Equation (2.2) implies that

T (r, f(qz)) = T (r, f(z)) + S(r, f). (2.3)

Lemma 2.3[8] Let f(z) be a non-constant zero-order meromorphic function and q ∈
C \ {0}. Then

N(r, f(qz)) = (1 + o(1))N(r, f(z)). (2.4)

on a set of logarithmic density 1.
Lemma 2.4 Let f(z) be a transcendental entire function of zero order and q be non-zero
complex constant. Then for n ≥ 2, f(z)nf(qz) is not a constant.
Proof Let F (z) = f(z)nf(qz). If F (z) is a constant c. Then f(z)n = c

f(qz)
. From the

Lemma 2.2 and an identity due to Valiron-Mohon’ko [10, 11], we get

nT (r, f(z)) = T (r, f(z)n)

= T

(
r,

c

f(qz)

)
= T (r, f(z)) + S(r, f),

which is a contradiction for n ≥ 2. Therefore F (z) is not a constant.

3. Proof of Theorem 1

Proof Denote F (z) = f(z)nf(qz). We claim that F (z) − α(z) is transcendental if n ≥
2. Otherwise, we suppose that F (z) − α(z) = β(z), where β(z) is a rational function.
Combining Lemma 2.2 and the identity of Valiron-Mohon’ko, we have

nT (r, f(z)) = T (r, f(z)n)

= T

(
r,
α(z) + β(z)

f(qz)

)
≤ T (r, α(z)) + T (r, β(z)) + T (r, f(qz)) + S(r, f)

= T (r, f(z)) + S(r, f).

3
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This contradicts the fact that n ≥ 2. Hence F (z) − α(z) is transcendental. Then, we
consider the following two cases.
Case 1. Suppose that f(z) is a meromorphic function. From Lemma 2.2, Lemma 2.3
and the second main Theorem for three small targets [2], we get

nT (r, f(z)) = T (r, f(z)n)

= T (r, F (z)
f(qz)

)

≤ T (r, F (z)) + T (r, f(z)) + S(r, f)

≤ N(r, F (z)) +N
(
r, 1

F (z)

)
+N

(
r, 1

F (z)−α(z)

)
+ T (r, f(z)) + S(r, f),

(3.1)

N(r, F (z)) = N(r, f(z)nf(qz))
≤ N(r, f(z)n) +N(r, f(qz))
= N(r, f(z)) +N(r, f(qz))
≤ 2T (r, f(z)) + S(r, f),

(3.2)

and
N
(
r, 1

F (z)

)
= N

(
r, 1

f(z)nf(qz))

)
≤ N

(
r, 1

f(z)

)
+N

(
r, 1

f(qz)

)
≤ T

(
r, 1

f(z)

)
+ T

(
r, 1

f(qz)

)
= 2T (r, f(z)) + S(r, f).

(3.3)

It follows from (3.1), (3.2) and (3.3) that

N

(
r,

1

F (z)− α(z)

)
≥ (n− 5)T (r, f(z)) + S(r, f).

The assertion follows by n ≥ 6.
Case 2. Suppose that f(z) is an entire function. Applying Lemma 2.1 − 2.3 and the
second main Theorem for three small targets, we obtain

(n+ 1)T (r, f(z)) = T (r, f(z)n+1)
= m(r, f(z)n+1)

≤ m
(
r, f(z)

f(qz)

)
+m(r, F (z)) + S(r, f)

= T (r, F (z)) + S(r, f)

≤ N(r, F (z)) +N
(
r, 1

F (z)

)
+N

(
r, 1

F (z)−α(z)

)
+ S(r, f),

(3.4)

Since f(z) is a zero-order entire function, F (z) = f(z)nf(qz) is an entire function with
zero-order, then

N(r, F (z)) = 0. (3.5)

It follows from (3.3)− (3.5) that

N

(
r,

1

F (z)− α(z)

)
+ S(r, f) ≥ (n− 1)T (r, f(z)).

This holds for n ≥ 2. The proof of Theorem 1 is completed.

4
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4. Proof of Theorem 2

Proof We claim that ψn(z)−α(z) is transcendental if n ≥ 2. On the contrary, we suppose
that ψn(z)− α(z) = β(z), here β(z) is a rational function. Then

f(z)n = α(z) + β(z)−∆q(z).

An application of Lemma 2.1 and the identity due to Valiron-Mohon’ko yields

T (r, f(z)n) = nT (r, f(z)) + S(r, f)

= T (r, α(z) + β(z)−∆q(z))

≤ T (r, α(z)) + T (r, β(z)) + T (r, f(qz)− f(z)) + S(r, f)

≤ m

(
r,
f(qz)− f(z)

f(z)

)
+m(r, f(z)) + S(r, f)

= T (r, f(z)) + S(r, f).

This contradicts the fact that n ≥ 2. Hence ψn(z) − α(z) is transcendental. Thus we
discuss the following two cases.
Case 1. Suppose that α(z) is an entire function. Clearly, ψn(z)−α(z) is a transcendental
entire function for n ≥ 2.
Case 2. Suppose that α(z) is a meromorphic function. Set α(z) = h(z)

g(z)
, where g(z) and

h(z) are entire functions with T (r, g(z)) = o(T (r, f(z))) and T (r, h(z)) = o(T (r, f(z))),
respectively. Then

ψn(z)− α(z) = f(z)n + f(qz)− f(z)− h(z)

g(z)
=

(f(z)n + f(qz)− f(z))g(z)− h(z)

g(z)
.

If ψn(z)− α(z) has finitely many zeros, then (f(z)n + f(qz)− f(z))g(z)− h(z) must
be a polynomial. Denote by p(z) = (f(z)n + f(qz) − f(z))g(z) − h(z), where p(z) is a
polynomial. From Lemma 2.1 , we have

T (r, f(z)n) = nT (r, f(z)) + S(r, f)

= T

(
r,
p(z) + h(z)

g(z)
− f(qz) + f(z)

)
≤ T (r, p(z)) + T (r, g(z)) + T (r, α(z)) + T (r, f(qz)− f(z))

≤ m

(
r,
f(qz)− f(z)

f(z)

)
+m(r, f(z)) + S(r, f)

= T (r, f(z)) + S(r, f),

which gives a contradiction since n ≥ 2. Hence ψn(z)− α(z) has infinitely many zeros in
the complex plane.

Moreover, by the fact 0 ≤ λ(ψn(z) − α(z)) ≤ σ(f(z)) = 0, it follows that λ(ψn(z) −
α(z)) = 0. We finish the proof of Theorem 2.

5
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5. Proof of Theorem 3

Proof From f(z)nf(qz) and g(z)ng(qz) share z CM, we know that f(z)nf(qz)
z

and g(z)ng(qz)
z

share 1 CM.
By the assumption of Theorem 3, there exists an entire function p(z) such that

f(z)nf(qz)
z

− 1
g(z)ng(qz)

z
− 1

= ep(z). (5.1)

Since the order of f(z) and g(z) is of zero, then ep(z) is a non-zero constant, let it be c.
Rewriting the equation (5.1), it follows that

c
g(z)ng(qz)

z
=
f(z)nf(qz)

z
− 1 + c. (5.2)

Denote F (z) = f(z)nf(qz)
z

and G(z) = g(z)ng(qz)
z

.
First, assume that c ̸= 1. We take into account the following two cases.

Case 1. Suppose that f(z) and g(z) are meromorphic functions. Combing Lemma 2.2,
Lemma 2.3 and equation (5.2), we obtain

T (r, F (z)) ≤ N(r, F (z)) +N

(
r,

1

F (z)

)
+N

(
r,

1

F (z)− 1 + c

)
+ S(r, f), (5.3)

N(r, F (z)) = N
(
r, f(z)

nf(qz)
z

)
≤ N(r, f(z)n) +N(r, f(qz)) +N

(
r, 1

z

)
= N(r, f(z)) +N(r, f(qz)) + S(r, f)
< 2T (r, f(z)) + S(r, f),

(5.4)

and
N
(
r, 1

F (z)

)
= N

(
r, z

f(z)nf(qz)

)
≤ N

(
r, 1

f(z)n

)
+N

(
r, 1

f(qz)

)
+N(r, z)

= N
(
r, 1

f(z)

)
+N

(
r, 1

f(qz)

)
< 2T (r, f(z)) + S(r, f).

(5.5)

Similarly,

N

(
r,

1

F (z)− 1 + c

)
= N

(
r,

1

cG(z)

)
≤ 2T (r, g(z)) + S(r, g). (5.6)

By substituting (5.4)− (5.6) into (5.3), it follows that

T (r, F (z)) ≤ 4T (r, f(z)) + 2T (r, g(z)) + S(r, f) + S(r, g). (5.7)

6
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On the other hand, from Lemma 2.2, we have

T (r, f(z)n) = nT (r, f(z)) + S(r, f)

= T

(
r,
zF (z)

f(qz)

)
≤ T (r, z) + T (r, F (z)) + T

(
r,

1

f(qz)

)
= T (r, f(qz)) + T (r, F (z)) + S(r, f)

= T (r, f(z)) + T (r, F (z)) + S(r, f),

which means
(n− 1)T (r, f(z)) ≤ T (r, F (z)) + S(r, f). (5.8)

Substituting (5.8) into (5.7), we have

(n− 5)T (r, f(z)) ≤ 2T (r, g(z)) + S(r, f) + S(r, g). (5.9)

Similarly, we can get

(n− 5)T (r, g(z)) ≤ 2T (r, f(z)) + S(r, f) + S(r, g). (5.10)

Combining the above two inequalities (5.9) and (5.10), we obtain

(n− 7)(T (r, f(z)) + T (r, g(z))) ≤ S(r, f) + S(r, g),

which contradicts with the assumption n ≥ 8.
Case 2. Suppose that f(z) and g(z) are entire functions. From N(r, f(z)) = N(r, g(z)) =
0, then we have

N(r, F (z)) = N

(
r,
f(z)nf(qz)

z

)
≤ N(r, f(z)n) +N(r, f(qz)) +N

(
r,
1

z

)
= S(r, f).

(5.11)
Substituting (5.11), (5.5), (5.6) into (5.3), we obtain

T (r, F (z)) ≤ 2T (r, f(z)) + 2T (r, g(z)) + S(r, f) + S(r, g). (5.12)

On the other hand, by using Lemma 2.1 to obtain

T (r, f(z)n+1) = (n+ 1)T (r, f(z)) + S(r, f)

= m(r, f(z)n+1)

= m

(
r,
f(z)

f(qz)
zF (z)

)
≤ m(r, F (z)) +m

(
r,
f(z)

f(qz)

)
+ S(r, f)

≤ T (r, F (z)) + S(r, f),

which implies
(n+ 1)T (r, f(z)) ≤ T (r, F (z)) + S(r, f). (5.13)

7
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By substituting (5.13) into (5.12), we get

(n− 1)T (r, f(z)) ≤ 2T (r, g(z)) + S(r, f) + S(r, g). (5.14)

Similarly, we can obtain

(n− 1)T (r, g(z)) ≤ 2T (r, f(z)) + S(r, f) + S(r, g). (5.15)

Combining (5.14) and (5.15) yields

(n− 3)(T (r, f(z)) + T (r, g(z))) ≤ S(r, f) + S(r, g),

this is impossible when n ≥ 4.
Then, assume that c = 1. From (5.2), we can get

f(z)nf(qz)

z
=
g(z)ng(qz)

z
.

Let h(z) = f(z)
g(z)

, then we have

h(z)nh(qz) = 1. (5.16)

From Lemma 2.2, we obtain

T (r, h(z)n) = nT (r, h(z)) + S(r, h) = T

(
r,

1

h(qz)

)
= T (r, h(z)) + S(r, h).

So h(z) must be constant from n ≥ 4. Suppose that h(z) ≡ t. We conclude that tn+1 = 1
from (5.16). Thus, Theorem 3 is proved.

6. Proof of Theorem 4

Proof From f(z)n(f(z) − 1)f(qz) and g(z)n(g(z) − 1)g(qz) share z CM, we know that
f(z)n(f(z)−1)f(qz)

z
and g(z)n(g(z)−1)g(qz)

z
share 1 CM.

Denote

F (z) =
f(z)n(f(z)− 1)f(qz)

z
and G(z) =

g(z)n(g(z)− 1)g(qz)

z
. (6.1)

It follows from Lemma 2.1 that

T (r, f(z)n+1(f(z)− 1)) = (n+ 2)T (r, f(z)) + S(r, f)

= m(r, f(z)n+1(f(z)− 1))

= m

(
r,
f(z)

f(qz)
zF (z)

)
≤ m(r, F (z)) +m

(
r,
f(z)

f(qz)

)
+ S(r, f)

≤ T (r, F (z)) + S(r, f),

8
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which implies
(n+ 2)T (r, f(z)) ≤ T (r, F (z)) + S(r, f). (6.2)

Since F (z) and G(z) share 1 CM, then by the same arguments in the proof of Theorem
3, there exists a non-zero constant c such that

F (z)− 1 = c(G(z)− 1). (6.3)

Assume that c ̸= 1. By using Lemma 2.2, Lemma 2.3, (6.1), (6.3) and the second main
theorem to F (z), we deduce that

T (r, F (z)) ≤ N(r, F (z)) +N

(
r,

1

F (z)

)
+N

(
r,

1

F (z)− 1 + c

)
+ S(r, f), (6.4)

N(r, F (z)) = N
(
r, f(z)

n(f(z)−1)f(qz)
z

)
≤ N(r, f(z)n) +N(r, f(z)− 1) +N(r, f(qz)) +N

(
r, 1

z

)
= S(r, f),

(6.5)

and

N
(
r, 1

F (z)

)
= N

(
r, z

f(z)n(f(z)−1)f(qz)

)
≤ N

(
r, 1

f(z)n

)
+N

(
r, 1

f(qz)

)
+N(r, z) +N

(
r, 1

f(z)−1

)
≤ 3T (r, f(z)) + S(r, f).

(6.6)

Similarly, we can get

N

(
r,

1

F (z)− 1 + c

)
= N

(
r,

1

cG(z)

)
≤ 3T (r, g(z)) + S(r, g). (6.7)

Substituting (6.5)− (6.7) into (6.4), we have

T (r, F (z)) ≤ 3T (r, f(z)) + 3T (r, g(z)) + S(r, f) + S(r, g). (6.8)

It follows from (6.2) and (6.8) that

(n− 1)T (r, f(z)) ≤ 3T (r, g(z)) + S(r, f) + S(r, g). (6.9)

Similarly,
(n− 1)T (r, g(z)) ≤ 3T (r, f(z)) + S(r, f) + S(r, g). (6.10)

Combing (6.9) and (6.10) yields

(n− 4)(T (r, f(z)) + T (r, g(z))) ≤ S(r, f) + S(r, g).

Clearly, it isn’t established for n ≥ 6.
Assume that c = 1, this means

f(z)n(f(z)− 1)f(qz)

z
=
g(z)n(g(z)− 1)g(qz)

z
.

9
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Denote h(z) = f(z)
g(z)

, we obtain

g(z)(h(z)n+1h(qz)− 1) = h(z)nh(qz)− 1. (6.11)

Assume h(z) is not a constant. By using Lemma 2.4, we know that h(z)n+1h(qz) is
also not a constant. If there exists a point z0 such that h(z0)

n+1h(qz0) = 1. Combing
(6.11) and g(z) is an entire function, we obtain h(z0)

nh(qz0) = 1. Hence h(z0) = 1, then
it follows that

N

(
r,

1

h(z)n+1h(qz)− 1

)
= N

(
r,

g(z)

h(z)nh(qz)− 1

)
≤ N(r, g(z)) +N

(
r,

1

h(z)nh(qz)− 1

)
≤ N

(
r,

1

h(z)− 1

)
≤ T (r, h(z)) + S(r, h),

i.e.,

N

(
r,

1

h(z)n+1h(qz)− 1

)
≤ T (r, h(z)) + S(r, h). (6.12)

We now set H(z) = h(z)n+1h(qz). Applying the second main Theorem to H(z), we
have

T (r,H(z)) ≤ N(r,H(z)) +N

(
r,

1

H(z)

)
+N

(
r,

1

H(z)− 1

)
+ S(r, h). (6.13)

Combing Lemma 2.2 and Lemma 2.3 yields

N(r,H(z)) ≤ 2T (r, h(z)) + S(r, h) (6.14)

and

N

(
r,

1

H(z)

)
≤ 2T (r, h(z)) + S(r, h). (6.15)

Substituting (6.12), (6.14), (6.15) into (6.13), we get

T (r,H(z)) ≤ 5T (r, h(z)) + S(r, h). (6.16)

It follows from Lemma 2.2 and (6.16) that

T (r, h(z)n+1) = (n+ 1)T (r, h(z)) + S(r, h)

= T

(
r,
H(z)

h(qz)

)
≤ T (r,H(z)) + T (r, h(z)) + S(r, h)

≤ 6T (r, h(z)) + S(r, h).

Obviously, it is a contradiction with the assumption n ≥ 6. Thus, h(z) is a constant, let
it be t. Then, substituting it into (6.11), we have

g(z)(tn+2 − 1) = tn+1 − 1. (6.17)

Since g(z) is a transcendental entire function, from (6.17), we know that tn+2 = 1 and
tn+1 = 1, which means t = 1. Consequently, f(z) ≡ g(z). The proof of Theorem 4 is
completed.
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Abstract. In this paper, in order to solve a class of nonlinear bilevel programming
problems, we equivalently transform the nonlinear bilevel programming problem-
s into corresponding single level nonlinear programming problems by using the
Karush-Kuhn-Tucker optimality condition. Then, based on penalty function theo-
ry, we construct a smooth approximation method for obtaining optimal solutions
of classic l1-exact penalty function optimality problems, which is equivalent to the
single level nonlinear programming problems. Furthermore, using ϵ-approximate
optimal solution theory, we prove convergence of a simple ϵ-approximate optimal
algorithm. Finally, through adding parameters in the constraint set of objective
function, we prove some perturbation convergence results for solving the nonlinear
bilevel programming problems.

Key Words and Phrases: Nonlinear bilevel programming problem, new exact
penalty function method, smooth approximation, ϵ-approximate algorithm, pertur-
bation convergence.

AMS Subject Classification: 49K30, 65K05, 90C30, 90C59.

1 Introduction

Since 1980s, bilevel programming problems had been very widely used in supply chain management,
engineering design, network planning and other fields [1]. The theory and algorithms for bilevel
programming problems have been deeply explored by many researchers. See, for example, [2, 3] and
the reference therein. Recently, there are quite mature theoretical support and algorithm design on
how to solve bilevel programming problems. For instance, by using the most famous pole search
method, the global optimal solution of the problems can ultimately be obtained (see [4]). Zheng
et al. [5] pointed out that a class of exact penalty function methods to solve the weak linear
bilevel programming problem is feasible. But the present research to nonlinear bilevel programming
problems is mainly focused on some special structure problems, and the proposed methods for solving
the problems are mostly applied to aim at some particular examples which are of special properties
or structure. In 2010, replacing the lower level problem with its Kuhn-Tucker optimality condition,
Pan et al. [6] transformed a class of nonlinear bilevel programming problems into normal nonlinear
programming problems with the complementary slackness constraint condition, and introduced and
studied a penalty function method to solve the problems. Through appending the duality gap of the
lower level problem to the upper level objective with a penalty and obtaining a penalized problem,
Lv [7] presented an exact penalty function method for finding solutions of a class of special nonlinear
bilevel programs, i.e. the lower level problem is linear programs. Gupta et al. [8] provided a fuzzy
goal programming approach to solve a multivariate stratified population problem which was turned
out to be a non-linear bilevel programming problem.

∗The corresponding author: hengyoulan@163.com (H.Y. Lan)
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Very recently, based on definition of partial calmness for a single level optimization problem,
Lü and Wan [9] constructed an exact penalized problem of a semi-vectorial bilevel programming
problem by using the dual theory of linear programming. Based on approximate approach, Hos-
seini [10] attempted to develop an effective method for solving a nonlinear bilevel programming
problem in virtue of transforming the nonlinear bilevel programming problem into a smooth single
problem via using the Karush-Kuhn-Tucker conditions and Fischer-Burmeister functions. Hosseini
and Kamalabadi [11] proposed a modified genetic algorithm combining particle swarm optimization
using a heuristic function and constructed an effective hybrid approach, which is a fast approximate
method for solving the non-linear bilevel programming problems. Based on a novel coding scheme,
Li [12] developed a genetic algorithm with global convergence to solve a class of nonlinear bilevel
programming problems where the follower is a linear fractional program. Moreover, Miao et al.
[13] introduced and studied a bilevel genetic algorithms to solve a class of particular mixed integer
nonlinear bilevel programming problems, which have been widely appeared in product family prob-
lems. Based on exact penalty function method, Di Pillo [14] proposed an efficient derivative-free
unconstrained global minimization technique and proved that for every global minimum point, there
exists a neighborhood of attraction for the local search under suitable assumptions. By using a
simple exact penalty function method, Gao [15] studied an optimal control problem subject to the
terminal state equality constraint and continuous inequality constraints on the control and the state.
However, a general method to solve nonlinear bilevel programming problems has not yet been dealt
with in the literature.

Motivated and inspired by the above works and this work is organized as follows: In Section 2,
a class of nonlinear bilevel programming problems are equivalently transformed into corresponding
single level nonlinear programming problems by using the Karush-Kuhn-Tucker optimality condi-
tion. Further, based on penalty function theory, we construct a smooth approximation method
for obtaining optimal solutions of classic l1-exact penalty function optimality problems. By using
ϵ-approximate optimal solution theory, convergence of a simple ϵ-approximate optimal algorithm is
proved in Section 3. In Section 4, by adding parameters in the constraint set of objective function,
we discuss some perturbation convergence results for solving the nonlinear bilevel programming
problems.

2 Smooth approximation method

In this section, by using penalty function theory and Karush-Kuhn-Tucker optimality condition, we
shall construct a smooth approximation method for solving a class of nonlinear bilevel programming
problems.

In this paper, we consider the following nonlinear bilevel programming problem:

min
(x,y)∈Rn+m

f(x, y)

min
(x,y)∈Rn+m

F (x, y)

s.t. gi(x, y) ≤ 0, i = 1, 2, · · · , l,

(2.1)

where f(x, y), F (x, y), gi(x, y) : R
n+m → R are continuously differentiable mappings for i = 1, 2, · · · , l.

By using Karush-Kuhn-Tucker optimality condition (see [16]), the lower level programming problem
in (2.1) can be rewritten as follows:

∇yF (x, y) +
l∑

i=1

λi∇ygi(x, y) = 0,

l∑
i=1

λigi(x, y) = 0,

gi(x, y) ≤ 0, i = 1, 2, · · · , l
λi ≥ 0, i = 1, 2, · · · , l.

2
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Thus the problem (2.1) can be expressed as the following single level nonlinear programming problem:

min
(x,y)∈Rn+m

f(x, y)

s.t. gi(x, y) ≤ 0, i = 1, 2, · · · , l,

∇yF (x, y) +
l∑

i=1

λi∇ygi(x, y) = 0,

λigi(x, y) = 0, i = 1, 2, · · · , l,
− λi ≤ 0 i = 1, 2, · · · , l.

(2.2)

Let z = (x, y, λ1, λ2, ...λl) ∈ Rn+m+l. Then we have

h1(z) : = ∇yF (x, y) +
l∑

i=1

λi∇ygi(x, y) = 0,

h1+i(z) : = λigi(x, y) = 0, i = 1, 2, · · · , l
h1+l+i(z) : = gi(x, y) ≤ 0, i = 1, 2, · · · , l
h1+2l+i(z) : = −λi ≤ 0, i = 1, 2, · · · , l.

(2.3)

It follows from (2.3) that the problem (2.2) can be stated as

min
z∈Rn+m+l

f(z)

s.t. hi(z) = 0, i = 1, 2, · · · , 1 + l,

hj(z) ≤ 0, j = 1, 2, · · · , 2l,

(2.4)

where f(z) : Rn+m+l → R is a continuously differentiable mapping. Let D = {z|hj(z) ≤ 0} be
the feasible set of the single level nonlinear programming problem (2.4). According to theory of the
penalty function, we give the following l1-exact penalty function programming problem:

min
(z,µ)∈Rn+m+l×R+

l1(z, µ) = f(z) + µ
1+3l∑
j=1

[hj(z)]
+
, (2.5)

where µ is called a penalty factor and [hj(z)]
+
= max {0, hj(z)} for j = 1, 2, · · · , 1 + 3l.

Now we prove that the problem (2.5) is equivalent to the problem (2.4).

Theorem 2.1 Suppose that (z∗, µ) ∈ Rn+m+l × R+ is optimal solution of the l1-exact penalty
function programming problem (2.5), where R+ = (0,+∞) and µ is large enough. Then, z∗ must be
the optimal solution of the single level nonlinear programming problem (2.4).

Proof. Let z∗1 be an optimal solution of the problem (2.4), and (z∗2 , µz∗
2
) be an optimal solution of

the problem (2.5), where penalty parameter µz∗
2
∈ R+ must exist. Then we get

[hj(z
∗
1)]

+
= 0, (2.6)

and
l1(z

∗
2 , µz∗

2
) ≤ l1(z

∗
1 , µz∗

2
). (2.7)

By (2.7) and (2.5), now we know that

f(z∗2) +
1+3l∑
j=1

µz∗
2
[hj(z

∗
2)]

+ ≤ f(z∗1) +
1+3l∑
j=1

µz∗
2
[hj(z

∗
1)]

+
,

and so it follows from (2.6) that
f(z∗2) ≤ f(z∗1). (2.8)

3
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If z∗2 ∈ D, then we have
f(z∗1) ≤ f(z∗2). (2.9)

Otherwise, there must exists a j
′ ∈ J such that hj′ (z

∗
2) > 0 holds. Thus, we have µhj′ (z

∗
2) → +∞

with µ→ +∞. Hence, z∗2 may not be an optimal solution of the single level nonlinear programming
problem (2.4). Therefore, z∗2 ∈ D must be satisfied.

Combining (2.8) and (2.9), we know that the result of Theorem 2.1 is right. It completes the
proof.

Next, we establish a new smooth function for equivalently approximating the l1-exact penalty
function in (2.5).

Theorem 2.2 Give the following programming problem:

min
(z,µ,r)∈Rn+m+l×R+×R+

L(z, µ, r) = f(z) +
1+3l∑
j=1

ln

[
1 + e

µhj(z)

r

]r
, (2.10)

where µ, r > 0 are two parameters. Then smooth approximation of optimal solution for the L-exact
penalty function programming problem (2.10) is the optimal solution of the l1-exact penalty function
programming problem (2.5) as r → 0.

Proof. For all j = 1, 2, · · · , 3l, if hj(z) ≤ 0, then

[hj(z)]
+
= 0, (2.11)

where [hj(z)]
+
is the same as in (2.5). Further, letting t = 1

r , then we have t→ +∞ as r → 0+ and

lim
r→0+

ln

[
1 + e

µhj(z)

r

]r
= lim

t→+∞

ln
[
1 + etµhj(z)

]
t

= 0. (2.12)

By (2.11) and (2.12), one can see that the optimal solution of the problem (2.10) is equivalent to
the optimal solution of the problem (2.5) as r → 0+.

If hj(z) > 0, then taking r = 1
t , and we get

lim
r→0+

ln

[
1 + e

µhj(z)

r

]r
= lim

t→+∞

ln
[
1 + etµhj(z)

]
t

= µhj(z) · lim
t→+∞

[
1− 1

1 + etµhj(z)

]
= µhj(z) > 0. (2.13)

Thus, it follows from (2.13) that ln
[
1 + e

µhj(z)

r

]r
= µ [hj ]

+
as r → 0+, where [hj ]

+
is the same as

in (2.5), and so limr→0+ L(z, µ, r) = l1(z, µ).
From the above, it completes the proof.

3 ϵ-approximation algorithm

In this section, we shall construct an ϵ-approximation algorithm to solve the nonlinear bilevel pro-
gramming problem (2.1) via using ϵ-approximate optimal solution theory.

Definition 3.1 Let z̄ be an optimal solution of the nonlinear bilevel programming problem (2.1).
Then a point z0 is called ϵ-approximate optimal solution of the problem (2.1), if for given constant
ϵ > 0, the following inequality holds:

f(z̄)− f(z0) < ϵ, (3.1)

where f(z) is defined as in (2.4) for any z ∈ Rn+m+l.
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Lemma 3.2 Let φ(z, µ) = limr→0+
∑1+3l

j=1 ln
[
1 + e

µhj(z)

r

]r
be a nonlinear function for all z ∈

Rn+m+l and µ ∈ R+, and let (z̄, µ̄) be an optimal solution of the l1-exact penalty function pro-
gramming problem (2.5) with enough large µ̄. If there exists (z∗, µ∗) ∈ Rn+m+l × R+ such that for
each ϵ > 0,

φ(z∗, µ∗) < ϵ, (3.2)

then z∗ must be an ϵ-approximate optimal solution of the nonlinear bilevel programming problem
(2.1).

Proof. Since (z̄, µ̄) is an optimal solution of the problem (2.5), we have

l1(z̄, µ̄) ≤ l1(z
∗, µ∗),

i.e.,

f(z̄) + µ̄

1+3l∑
j=1

[hj(z̄)]
+ ≤ f(z∗) + µ∗

1+3l∑
j=1

[hj(z
∗]

+
. (3.3)

By Theorem 2.1, we have

µ̄
1+3l∑
j=1

[hj(z̄)]
+
= 0. (3.4)

Thus, it follows from Theorem 2.2 and (3.2) that

µ∗
1+3l∑
j=1

[hj(z
∗)]

+
= lim

r→0+

1+3l∑
j=1

ln

[
1 + e

µ∗hj(z
∗)

r

]r
= φ(z∗, µ∗) < ϵ. (3.5)

Combining (3.4) and (3.5) into (3.3), we get

f(z̄)− f(z∗) < ϵ, (3.6)

which implies that the point z∗ is an ϵ-approximate optimal solution of the nonlinear bilevel pro-
gramming problem (2.1).

By Lemma 3.2, now we propose the following ϵ-approximation algorithm.

Algorithm 3.3 Step 1. Give a constant ϵ > 0, initial points µ1 > 0 and r1 ∈ (0, 0.01), a positive
integer N > 1, k := 1.

Step 2. Find optimal solution of the following smooth programming problem with the gradient
descent method for (µk, rk), and denote by (zk, µk, rk):

min
(z,µ,r)∈Rn+m+l×R+×R+

L(z, µk, rk) = f(z) +
1+3l∑
j=1

ln

[
1 + e

µkhj(z)

rk

]rk
. (3.7)

Step 3. Let φ̄(z, µ, r) =
∑1+3l

j=1 ln
[
1 + e

µhj(z)

r

]r
. If the point (zk, µk, rk) satisfies

φ̄(zk, µk, rk)− φ̄(z, µk, rk) ≤ ϵ, ∀ z ∈ D,

then stop. Otherwise, let rk+1 =
(
rk
)N

and µk+1 = Nµk, k := k + 1, and go to Step 2.

Theorem 3.4 Assume that {(zk, µk, rk)} is a sequence generated by Algorithm 3.3, and the feasible
region D = {z|hj(z) ≤ 0, j = 1, 2, ..., 1+ 3l} of the single level nonlinear programming problem (2.4)
is nonempty. Then the following results hold:

(i) If zk ∈ D, then
L(zk, µk, rk) ≥ L(zk+1, µk+1, rk+1).

(ii) when zk ̸∈ D, we have
lim
k→∞

L(zk, µk, rk) → +∞.
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Proof. By Algorithm 3.3, we know that zk and zk+1 are the minimum points of the L-exact penalty
function (3.7) with respect to (µk, rk) and (µk+1, rk+1), respectively. Thus, we have

L(zk+1, µk+1, rk+1) = f(zk+1) +
1+3l∑
j=1

ln

[
1 + e

µk+1hj(z
k+1)

rk+1

]rk+1

≤ f(zk) +
1+3l∑
k=1

ln

[
1 + e

µk+1hj(z
k)

rk+1

]rk+1

= f(zk) + rk+1
1+3l∑
j=1

ln

[
1 + e

µk+1hj(z
k)

rk+1

]
. (3.8)

Let φ̄(z, µ, r) =
∑1+3l

j=1 ln[1 + e
µhj(z)

r ]r. For z ∈ D, it follows that −µhj(z)
r > 0 and

∂φ̄(z, µ, r)

∂r
=

[
1 + e

µhj(z)

r

]
ln
[
1 + e

µhj(z)

r

]
− µhj(z)

r e
µhj(z)

r

1 + e
µhj(z)

r

> 0. (3.9)

Further, if zk ∈ D, then it follows from rk+1 < rk, (3.9) and µk+1 > µk that for any j = 1, 2, · · · , 1+
3l, hj(z

k) < 0, µk+1hj(z
k) < µkhj(z

k) and

f(zk) + rk+1
1+3l∑
j=1

ln

[
1 + e

µk+1hj(z
k)

rk+1

]

≤ f(zk) + rk
1+3l∑
j=1

ln

[
1 + e

µk+1hj(z
k)

rk

]

≤ f(zk) + rk
1+3l∑
j=1

ln

[
1 + e

µkhj(z
k)

rk

]
= L(zk, µk, rk). (3.10)

Thus, by (3.8) and (3.10), we know that for zk ∈ D,

L(zk+1, µk+1, rk+1) ≤ L(zk, µk, rk). (3.11)

Moreover, if zk ̸∈ D, then there must exists a positive integer ja ∈ {1, 2, ..., 1 + 3l} such that
hja(z

k) > 0. It follows from Theorem 2.2 that rk → 0 and µk → +∞ as k → ∞, and

lim
k→∞

L(zk, µk, rk) = lim
k→∞

f(zk) +
1+3l∑
j=1

ln

[
1 + e

µkhj(z
k)

rk

]rk
= lim

k→∞
f(zk) + lim

k→∞

1+3l∑
j=1

ln

[
1 + e

µkhj(z
k)

rk

]rk
≥ lim

k→∞
f(zk) + lim

k→∞

[
µkhja(z

k)
]

= +∞. (3.12)

It completes the proof.
From Theorem 3.4, we have the following result.

Theorem 3.5 Let the feasible region of the single level nonlinear programming problem (2.4) denoted
by D = {z|hj(z) ≤ 0} be nonempty. Let {(zk, µk, rk)} be a sequence generated by Algorithm 3.3.
Then there must exists a subsequence of sequence {(zk, µk, rk)} to converge to an optimal solution
of the nonlinear bilevel programming problem (2.1).
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Proof. Let f(z) ≥ 0 always hold. Otherwise, let f(z) := ef(z) + 1. Let {(zkt , µkt , rkt)} be a
subsequence of the sequence {(zk, µk, rk)} with zkt ∈ D. Thus, from Theorem 3.4, it follows that
L(zkt , µkt , rkt) is monotone and bounded. Let z∗ be an optimal solution of the nonlinear bilevel

programming problem (2.1). Since rk > 0 and ln[1 + e
µkhj(z

k)

rk ] > ln1 = 0 for every k ≥ 1 and

j = 1, 2, · · · , 1 + 3l, we have rkln[1 + e
µkhj(z

k)

rk ] > 0 and

L(zkt , µkt , rkt) = f(zkt) +

1+3l∑
j=1

rkt ln

[
1 + e

µkthj(z
kt )

rkt

]
> f(zkt) ≥ f(z∗). (3.13)

From (2.12), we have for rkt → 0+ as kt → +∞ and

lim
rkt→0+

1+3l∑
j=1

ln

[
1 + e

µkthj(z
kt )

rkt

]rkt

= 0. (3.14)

It follows from (i) of Theorem 3.4 that L(zkt , µkt , rkt) is monotone decreasing and bounded for all
zkt ∈ D. Combining (3.13) and (3.14), we get

lim
kt→∞

L(zkt , µkt , rkt) = lim
kt→∞

f(zkt) + lim
rkt→0+

1+3l∑
j=1

ln

[
1 + e

µkthj(z
kt )

rkt

]rkt

= lim
kt→∞

f(zkt) = f(z∗). (3.15)

Thus, from the above, we have that L(zkt , µkt , rkt) and zkt converge to f(z∗) and z∗ as kt → ∞,
respectively. Combining the equivalence relation between the single level nonlinear programming
problem (2.4) and the nonlinear bilevel programming problem (2.1), it completes the proof.

4 Perturbation theorem

By adding parameters in the constraint set of objective function, we will discuss some perturbation
convergence results for solving the nonlinear bilevel programming problems (2.1) in this section. Let
Ωα be a set defined by

Ωα = {z ∈ Rn+m+l|hj(z) ≤ α}, (4.1)

where α ≥ 0. If α = 0, we can obtain that Ω0 is a feasible set of the single level nonlinear program-
ming problem (2.4). Let ϕf (α) be perturbation function of the single level nonlinear programming
problem (2.4) defined as follows

ϕf (α) = inf
z∈Ωα

f(z), ∀α > 0, (4.2)

where f is the same function as in (2.4). By (4.2), we know that ϕf (α) is monotone decreasing at
α > 0, and so ϕf (α) is a upper semi-continuous function at α = 0+. Denote

ϕf (0) = inf
z∈Ω0

f(z), (4.3)

and
ψf (0) = min

z∈Ω0

f(z). (4.4)

It is easy to see that the optimization problem (4.4) is equivalent to the single level nonlinear
programming problem (2.4).

Theorem 4.1 If ϕf (α) defined in (4.2) is a lower semi-continuous function at α = 0+, then (4.3)
is equivalent to the nonlinear bilevel programming problem (2.1).

7
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Proof. From (4.1) and (4.2), it follows that ϕf (α) is a upper semi-continuous function at α = 0+.
If ϕf (α) is also a lower semi-continuous function at α = 0+, then ϕf (α) is continuous at α = 0+.
Hence, ϕf (0) = ψf (0).

On the other hand, the optimization problem (4.4) is equivalent to the single level nonlinear
programming problem (2.4). Combining the equivalence relation between the nonlinear bilevel pro-
gramming problem (2.1) and the single level nonlinear programming problem (2.4), we know that
(4.3) is equivalent to the original programming problem (2.1). It completes the proof.

Theorem 4.2 Let {(zk, µk, rk)} be a sequence generated by Algorithm 3.3. Assume that feasible

set D = {zRn+m+l |hj(z) ≤ 0} of the single level nonlinear programming problem (2.4) is nonempty.
Then, there must exists a subsequence {(zkp , µkp , rkp)} of the sequence {(zk, µk, rk)} such that for
zkp ∈ D

lim
kp→∞

1+3l∑
j=1

ln

[
1 + e

µ
kphj(z

kp )

r
kp

]rkp

= 0. (4.5)

Proof. By (3.9), we know that for z ∈ D,

∂φ̄(z, µ, r)

∂r
> 0. (4.6)

Let {(zkp , µkp , rkp)} be a subsequence of the sequence {(zk, µk, rk)} generated by Algorithm 3.3 with
zkp ∈ D. From (4.6), one can know that for each zkp ,

φ̄(zkp , µk, rk) =
1+3l∑
j=1

ln

[
1 + e

µkhj(z
kp )

rk

]rk

>
1+3l∑
j=1

ln

[
1 + e

µk+1hj(z
kp )

rk+1

]rk+1

= φ̄(zkp , µk+1, rk+1). (4.7)

Since φ̄(zkp , µk+1, rk+1) > 0 holds invariably, it follows from (4.7) that

lim
k→∞

φ̄(zkp , µk, rk) = 0. (4.8)

Taking µk := µkp and rk := rkp , then it follows from (4.8) that

lim
kp→∞

φ̄(zkp , µkp , rkp) = 0,

and so

lim
kp→∞

1+3l∑
j=1

ln

[
1 + e

µ
kp

r
kp

]rkp

= 0.

It completes the proof.

Theorem 4.3 If ϕf (α) defined in (4.2) is a lower semi-continuous function at α = 0+, and a
subsequence {zkp , µkp , rkp} is the same as in Theorem 4.2, then zkp converges to an optimal solution
of the nonlinear bilevel programming problem (2.1).

Proof. If there exists a subsequence {zkp , µkp , rkp} satisfying (4.5), then we know that for each
z ∈ D,

lim
kp→∞

φ̄(zkp , µkp , rkp) = lim
kp→∞

φ̄(z, µkp , rkp) = 0,

and so for any positive number ϵ, there exists a positive integer M such that when kp ≥M , we have

φ̄(z, µkp , rkp)− φ̄(zkp , µkp , rkp) ≤ ϵ. (4.9)

8
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By (3.7), we know for each z ∈ D

L(zkp , µkp , rkp) ≤ L(z, µkp , rkp),

i.e.,
f(zkp) + φ̄(zkp , µkp , rkp) ≤ f(z) + φ̄(z, µkp , rkp). (4.10)

Combining (4.9) into (4.10), we have for kp ≥M ,

f(zkp) ≤ f(z) + φ̄(z, µkp , rkp)− φ̄(zkp , µkp , rkp)

≤ f(z) + ϵ. (4.11)

If ϕf (α) is a lower semi-continuous function at α = 0+, from Theorem 4.1, it follows that infz∈D f(z) =
ϕf (0). Let f(z) = ϕf (0). By (4.11), now we know that

f(zkp) ≤ ϕf (0) + ϵ,

which implies
ϕf (0) ≤ f(zkp) ≤ ϕf (0) + ϵ. (4.12)

Thus, when ϵ→ 0, it follows from (4.12) that there exists an accumulation ẑ for the sequence {zkp}
such that f(ẑ) = ϕf (0). Hence, from Theorem 4.1, we know that zkp converges to an optimal
solution of the nonlinear bilevel programming problem (2.1).
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APPROXIMATE n-JORDAN ∗-DERIVATIONS ON INDUCED FUZZY

C∗-ALGEBRAS

GANG LU, JINCHENG XIN, CHOONKIL PARK∗, AND YUANFENG JIN

Abstract. Using the fixed point alternative theorem, we investigate the Hyers-Ulam stability of
of n-Jordan ∗-derivations on induced fuzzy C∗-algebras associated with the following functional
equation f (x− y + z) + f (x− z) + f (2x+ y) = f (4x).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [39] concerning

the stability of group homomorphisms. Hyers [19] gave a first affirmative partial answer to the

question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive

mappings and by Rassias [34] for linear mappings by considering an unbounded Cauchy difference.

Those results have been recently complemented in [7]. A generalization of the Aoki and Rassias

theorem was obtained by Găvruta [18], who used a more general function controlling the possibly

unbounded Cauchy difference in the spirit of Rassias’ approach. The stability problems for several

functional equations or inequalities have been extensively investigated by a number of authors and

there are many interesting results concerning this problem (see [6, 12, 13], [20]–[28], [35]–[37]).

We recall a fundamental result in fixed point theory.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [11, 15]). Let (X, d) be a complete generalized metric space and let J : X → X

be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element

x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

2010 Mathematics Subject Classification. Primary 39B62, 39B52, 47H10, 46B25.
Key words and phrases. Fuzzy normed space; additive functional equation; Hyers-Ulam stability; fixed point

alternative; induced fuzzy C∗-algebra.
∗Corresponding author.
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By using the fixed point method, the stability problems of several functional equations have

been extensively investigated by a number of authors (see [8, 10, 11, 9, 16, 25, 29, 30, 33, 42]).

In 1984, Katsaras [24] defined a fuzzy norm on a linear space and at the same year Wu and Fang

[40] also introduced a notion of fuzzy normed space and gave the generalization of the Kolmogoroff

normalized theorem for fuzzy topological linear space. In [5], Biswas defined and studied fuzzy

inner product spaces in linear space. Since then some mathematicians have defined fuzzy metrics

and norms on a linear space from various points of view [4, 17, 27, 38, 41]. In 1994, Cheng

and Mordeson introduced a definition of fuzzy norm on a linear space in such a manner that

the corresponding induced fuzzy metric is of Kramosil and Michalek type [26]. In 2003, Bag and

Samanta [4] modified the definition of Cheng and Mordeson [14] by removing a regular condition.

They also established a decomposition theorem of a fuzzy norm into a family of crisp norms and

investigated some properties of fuzzy norms (see [3]). Following [2], we give the employing notion

of a fuzzy norm.

Let X be a real linear space. A function N : X × R → [0, 1](the so-called fuzzy subset) is said

to be a fuzzy norm on X if for all x, y ∈ X and all a, b ∈ R:

(N1) N(x, a) = 0 for a ≤ 0;

(N2) x = 0 if and only if N(x, a) = 1 for all a > 0;

(N3) N(ax, b) = N(x, b
|a|) if a 6= 0;

(N4) N(x+ y, a+ b) ≥ min{N(x, a), N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima→∞N(x, a) = 1;

(N6) For x 6= 0, N(x, .) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a) as the truth value

of the statement the norm of x is less than or equal to the real number a
′
.

Definition 1.2. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X. Then xn
is said to be convergent if there exists x ∈ X such that limn→∞N(xn − x, a) = 1 for all a > 0. In

that case, x is called the limit of the sequence xn and we denote it by N -limn→∞ xn = x.

Definition 1.3. A sequence xn in X is called Cauchy if for each ε > 0 and each a > 0 there exists

n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, a) > 1− ε.

It is known that every convergent sequence in fuzzy normed space is Cauchy. If each Cauchy

sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is

called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector space X,Y is continuous at

point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence {f(xn)} converges

to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous on

X (see [2])

Definition 1.4. [32] Let X be a ∗-algebra and (X,N) a fuzzy normed space.

(1) The fuzzy normed space (X,N) is called a fuzzy normed ∗-algebra if

N(xy, st) ≥ N(x, s) ·N(y, t) and N(x∗, t) = N(x, t).

(2) A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.
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Example 1.5. Let (X, ‖.‖) be a normed ∗-algebra. Let

N(x, a) =

{ a
a+‖x‖ , a > 0 , x ∈ X,
0, a ≤ 0, x ∈ X.

Then N(x, t) is a fuzzy norm on X and (X,N(x, t)) is a fuzzy normed ∗-algebra.

Definition 1.6. Let (X, ‖ · ‖) be a C∗-algebra and N a fuzzy norm on X.

(1) The fuzzy normed ∗-algebra (X,N) is called an induced fuzzy normed ∗-algebra.

(2) The fuzzy Banach ∗-algebra (X,N) is called an induced fuzzy C∗-algebra.

Definition 1.7. Let (X, ‖ · ‖) be an induced fuzzy normed ∗-algebra. Then a C-linear mapping

D : (X,N)→ (X,N) is called a fuzzy n-Jordan ∗-derivation if

D(xn) = D(x)xn−1 + xD(x)xn−2 + · · ·+ xn−2D(x)x+ xn−1D(x),

D(x∗) = D(x)∗

for all x ∈ X.

Throughout this paper, assume that (X,N) is an induced fuzzy C∗-algebra.

2. Main results

Lemma 2.1. Let (Z,N) be a fuzzy normed vector space and f : X → Z be a mapping such that

N (f (x− y + z) + f (x− z) + f (2x+ y) , t) ≥ N
(
f (4x) ,

t

2

)
(2.1)

for all x, y, z ∈ X and all t > 0. Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get

N(3f(0), t) = N

(
f(0),

t

3

)
≥ N

(
f(0),

t

2

)
for all t > 0. By (N5) and (N6), N(f(0), t) = 1 for all t > 0. It follows from (N2) that f(0) = 0.

Letting x = y = 0 in (2.1), we get

N(f(z) + f(−z) + f(0), t) ≥ N
(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that f(−z) + f(z) = 0 for all z ∈ X. Thus

f(−z) = −f(z)

for all z ∈ X.

Letting x = 0 in (2.1), we get

N(f(z − y) + f(−z) + f(y), t) ≥ N
(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that

f(y) + f(−z) + f(−y + z) = 0

for all y, z ∈ X. Thus

f(y + z) = f(y) + f(z)

for all y, z ∈ X, as desired. �
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Theorem 2.2. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

φ
(x

2
,
y

2
,
z

2

)
≤ L

2
φ(x, y, z) (2.2)

for all x, y, z ∈ X. Let f : X → X be a mapping such that

N (f (µ(x− y + z)) + f (µ(x− z)) + f (µ(2x+ y))− µf (4x) , t)

≥ t

t+ φ(x, y, z)
,

(2.3)

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ φ(w, v, 0)

(2.4)

for all x, y, z, w, v ∈ X, all t > 0 and all µ ∈ T1 := {c ∈ C : |c| = 1}. Then the limit A(x) =

N − limn→∞ 2nf
(
x
2n

)
exists for each x ∈ X and the mapping A : X → X is a fuzzy n-Jordan

∗-derivation satisfying

N(f(x)−A(x), t) ≥ 2(1− L)t

2(1− L)t+ Lφ (x, 0, x)
(2.5)

for all x ∈ X and all t > 0.

Proof. Letting µ = 1, y = 0 , z = x in (2.3), we have

N (2f (x)− f(2x), t) ≥ t

t+ φ
(
x
2 , 0,

x
2

) (2.6)

and so

N
(

2f
(x

2

)
− f(x), t

)
≥ t

t+ φ
(
x
4 , 0,

x
4

) ≥ t

t+ L
4 φ (x, 0, x)

for all x ∈ X. Thus

N

(
2f
(x

2

)
− f(x),

L

4
t

)
≥

L
4 t

L
4 t+ L

4 φ (x, 0, x)
=

t

t+ φ (x, 0, x)
(2.7)

for all x ∈ X.

Consider the set

G := {g : X → X}
and introduce the generalized metric on G:

d(g, h) := inf{a ∈ R+ : N(g(x)− h(x), at) ≥ t

t+ φ
(
x
2 , 0,

x
2

)}
for all x ∈ X and all t > 0, where inf φ = +∞. It is easy to show that (S, d) is complete (see the

proof of [?, Lemma 2.1]

Now, we consider the linear mapping Q : G→ G such that

Qg(x) := 2g
(x

2

)
for all x ∈ X.

Let g, h ∈ G be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ (x, 0, x)
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for all x ∈ X and all t > 0. Hence

N(Qg(x)−Qh(x), Lεt) = N
(

2g
(x

2

)
− 2h

(x
2

)
, Lεt

)
= N

(
g
(x

2

)
− h

(x
2

)
,
L

2
εt

)
≥

Lt
2

Lt
2 + φ

(
x
2 , 0,

x
2

) ≥ Lt
2

Lt
2 + L

2 φ (x, 0, x)

=
t

t+ φ (x, 0, x)

for all x ∈ X and all t > 0. Thus d(g, h) = ε implies that d(Qg,Qh) ≤ Lε. This means that

d(Qg,Qh) ≤ Ld(g, h)

for all g, h ∈ G.

It follows from (2.7) that d(f,Qf) ≤ L
4 .

By Theorem 1.1, there exists a mapping A : X → X satisfying the following:

(1) A is a fixed point of Q, i.e.,

A
(x

2

)
=

1

2
A(x) (2.8)

for all x ∈ X. The mapping A is a unique fixed point of Q in the set

M = {g ∈ G : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.8) such that there exists an a ∈ (0,∞)

satisfying

N(f(x)−A(x), at) ≥ t

t+ φ (x, 0, x)

for all x ∈ X.

(2) d(Qkf,A)→ 0 as k →∞. This implies the equality

N − lim
k→∞

2kf
( x

2k

)
= A(x)

for all x ∈ X;

(3) d(f,A) ≤ 1
1−Ld(f,Qf), which implies the inequality

d(f,A) ≤ L

4(1− L)
.

This implies that the inequality (2.5) holds.

Next we show that A is additive. It follows from (2.2) that

∞∑
k=0

2kφ
( x

2k
,
y

2k
,
z

2k

)
= φ(x, y, z) + 2φ

(x
2
,
y

2
,
z

2

)
+ 22φ

( x
22
,
y

22
,
z

22

)
+ · · ·

≤ φ(x, y, z) + Lφ(x, y, z) + L2φ(x, y, z) + · · ·

=
1

1− L
φ(x, y, z) <∞

for all x, y, z ∈ X.
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By (2.3),

N

(
2kf

(
µ
x− y + z

2k

)
+ 2kf

(
µ
x− z

2k

)
+ f

(
µ

2x+ y

2k

)
− 2kµf

(
4

2k
x

)
, 2kt

)
≥ t

t+ φ
(
x
2k
, y
2k
, z
2k

)
and so

N

(
2kf

(
µ
x− y + z

2k

)
+ 2kf

(
µ
x− z

2k

)
+ 2kf

(
µ

2x+ y

2k

)
− 2kµf

(
4

2k
x

)
, t

)
≥

t
2k

t
2k

+ φ
(
x
2k
, y
2k
, z
2k

) =
t

t+ 2kφ
(
x
2k
. y
2k
, z
2k

)
for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. Since limk→∞

t

t+2kφ
(

x

2k
, y

2k
, z

2k

) = 1 for all x, y, z ∈ X

and all t > 0,

N (A (µ(x− y + z)) +A (µ(x− z)) +A (µ(2x+ y))− µA (4x) , t) = 1

for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. So

A (µ(x− y + z)) +A (µ(x− z)) +A (µ(2x+ y)) = µA (4x) (2.9)

for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. Letting x = y = z = 0 in (2.9), we have A(0) = 0. Let

µ = 1, x = 0 in (2.9), by the same reasoning as in the proof of Lemma 2.1, one can easily show

that A is additive. Letting y = 2x, z = 0 in (2.9), we get

µA(x) = 2A
(
µ
x

2

)
= A(µx)

for all x ∈ X and µ ∈ T1. The mapping A : X → X is C-linear by [31, Theorem 2.1].

By (2.4) and letting v = 0 in (2.4), we get

N

(
2nkf

(
wn

2nk

)
− 2nkf

( w
2k

)( w
2k

)n−1
− 2nk

w

2k
f
( w

2k

)( w
2k

)n−2
− · · ·

−2nk
( w

2k

)n−2
f
( w

2k

)
w − 2nk

( w
2k

)n−1
f
( w

2k

)
, 2nkt

)
≥ t

t+ φ( w
2k
, 0, 0)

for all w ∈ X and all t > 0. Thus

N

(
2nkf

(
wn

2nk

)
− 2nkf

( w
2k

)( w
2k

)n−1
− 2nk

w

2k
f
( w

2k

)( w
2k

)n−2
− · · ·

−2nk
( w

2k

)n−2
f
( w

2k

)
w − 2nk

( w
2k

)n−1
f
( w

2k

)
, t

)
≥

t
2nk

t
2nk + φ( w

2k
, 0, 0)

≥ t

t+ (2n−1L)kφ(w, 0, 0)

for all w ∈ X and all t > 0. Since limk→∞
t

t+(2n−1L)kφ(w,0,0)
= 1 for all w ∈ X and all t > 0, we get

N(D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w), t) = 1

for all x ∈ X and all t > 0. So

D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w) = 0
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for all w ∈ X.

Letting w = 0 in (2.4), similarly, we get D(v∗)−D(v)∗ = 0 for all v ∈ X.

Therefore, the mapping D : X → X is a fuzzy n-Jordan ∗-derivation. �

Corollary 2.3. Let p be a real number with p > 1 , θ ≥ 0, and X be a normed vector space with

norm ‖ · ‖. Let f : X → X be a mapping satisfying

N (f (µ(x− y + z)) + f (µ(x− z)) + f (µ(2x+ y))− µf (4x) , t)

≥ t

t+ θ(‖x‖p + ‖y‖p + ‖z‖p)
,

(2.10)

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ θ(‖w‖p + ‖v‖p)
(2.11)

for all x, y, w, v ∈ X, all t > 0 and all µ ∈ T1. Then the limit A(x) = N − limn→∞ 2nf
(
x
2n

)
exists

for each x ∈ X and the mapping A : X → X is a fuzzy n-Jordan ∗-derivation satisfying

N(f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)
and L = 31−p. �

Theorem 2.4. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

3Lφ
(x

2
,
y

2
,
z

2

)
≤ φ(x, y, z)

for all x, y, z ∈ X. Let f : X → X be a mapping satisfying (2.3) and (2.4). Then the limit

A(x) = N − limn→∞
1
2n f (2nx) exists for each x ∈ X and the mapping A : X → X is a fuzzy

n-Jordan ∗-derivation satisfying

N(f(x)−A(x), t) ≥ 2(1− L)t

2(1− L)t+ φ (x, 0, x)
(2.12)

for all x ∈ X and all t > 0.

Proof. Let (G, d) be a generalized metric space defined in the proof of Theorem 2.2. Consider the

linear mapping Q : G→ G such that

Qg(x) :=
1

2
g(2x)

for all x ∈ X.

It follow from (2.6) that

N

(
f(x)− 1

2
f(2x),

1

2
t

)
≥ t

t+ φ (x, 0, x)

for all x ∈ X and all t > 0. Thus d(f,Qf) ≤ 1
2 . Hence

d(f,A) ≤ 1

2(1− L)
,
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which implies that the inequality (2.12) holds.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a positive real number with p < 1. Let X be a normed

vector space with normed ‖ · ‖. Let f : X → X be a mapping satisfying (2.10) and (2.11). Then

A(x) = N − limn→∞
1
3n f(3nx) exists for each x ∈ X and defines a fuzzy n-Jordan ∗-derivation

A : X → X such that

N(f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ θ‖x‖p
for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)
and L = 3p−1. �
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[10] L. Cădariu, L. Găvruta and P. Găvruta, Fixed points and generalized Hyers-Ulam stability, Abs. Appl. Anal.

2012, Article ID 712743 (2012).
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[18] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math.

Anal. Appl. 184 (1994), 431–436.
[19] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
[20] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser,
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RECURRENCE FORMULAS FOR EULERIAN POLYNOMIALS

OF TYPE B AND TYPE D

DAN-DAN SU AND YUAN HE

Abstract. We perform a further investigation for the Eulerian polynomials

of type B and type D. By making use of the generating function methods and
Padé approximation techniques, we establish some new recurrence formulas for

the Eulerian polynomials of type B and type D. Some of these results presented

here are the corresponding extensions of some known formulas.

1. Introduction

When computing values of the alternating ζ-function (also called Dirichlet eta
function)

η(s) =
∞∑

n=1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+ · · · (Re(s) > 0) (1.1)

at negative integers, Leonhard Euler introduced the Eulerian polynomials An(t)
given by the following generating function

t− 1

t− ex(t−1)
=
∞∑

n=0

An(t)
xn

n!
, (1.2)

and determined η(−n) = 2−n−1An(−1) for positive integer n. It is interesting to
point out that the Eulerian polynomials can be computed by the recurrence relation
(see, e.g., [7])

A0(t) = 1, An(t) = [1 + (n− 1)t]An−1(t) + t(1− t) ∂
∂t

(An−1(t)) (n ≥ 1), (1.3)

and some classical polynomials and numbers can be expressed by the Eulerian
polynomials (see [15] for details). The Eulerian polynomials are also called the
Eulerian polynomials of type A, and various combinatorial identities for them have
been explored by many authors (see, e.g., [8, 10, 12, 13, 14, 15, 16, 20]). Perhaps
the best known result is Leonhard Euler’s recurrence formula (see, e.g., [7])

A0(t) = 1, An(t) =
n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k (n ≥ 1). (1.4)

2010 Mathematics Subject Classification. 11B83; 05A19.
Keywords. Eulerian polynomials of type B; Eulerian polynomials of type D; Padé approxi-

mants; Recurrence formulas.
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2 DAN-DAN SU AND YUAN HE

We now turn to the Eulerian polynomials of type B and the Eulerian polynomials
of type D, which are defined by means of the generating function (see, e.g., [3, 6])

(1− t)ex(1−t)

1− te2x(1−t)
=
∞∑

n=0

Bn(t)
xn

n!
, (1.5)

and
(1− t)ex(1−t) − xt(1− t)e2x(1−t)

1− te2x(1−t)
=
∞∑

n=0

Dn(t)
xn

n!
, (1.6)

respectively. Like the recurrence relation (1.3) of the Eulerian polynomials of type
A, the Eulerian polynomials of type B satisfy the recurrence relation (see, e.g., [3])

B0(t) = 1, Bn(t) = [1+(2n−1)t]Bn−1(t)+2(t−t2)
∂

∂t
(Bn−1(t)) (n ≥ 1), (1.7)

and the Eulerian polynomials of type D obey the recurrence relation (see, e.g., [6]):
D0(t) = D1(t) = 1,

Dn+2(t) = [n(1 + 5t) + 4t]Dn+1(t) + 4t(1− t) ∂
∂t

(Dn+1(t))

+[(1− t)2 − n(1 + 3t)2 − 4n(n− 1)t(1 + 2t)]Dn(t)

−[4nt(1− t)(1 + 3t) + 4t(1− t)2]
∂

∂t
(Dn(t))− 4t2(1− t)2 ∂

2

∂2t
(Dn(t))

+[2n(n− 1)t(3 + 2t+ 3t2)− 4n(n− 1)(n− 2)t2(1 + t)]Dn−1(t)

+[2nt(1− t)2(3 + t) + 8n(n− 1)t2(1− t)(1 + t)]
∂

∂t
(Dn−1(t))

+4nt2(1− t)2(1 + t)
∂2

∂2t
(Dn−1(t)) (n ≥ 1). (1.8)

In the year 2016, Hyatt [11] discovered the corresponding recurrence formulas anal-
ogous to (1.4) for the Eulerian polynomials of type B and type D, as follows,

Bn(t) =
n−1∑
k=0

(
n

k

)
Bk(t)(t− 1)n−1−k + tn

n−1∑
k=0

(
n

k

)
Bk

(
1

t

)(
1

t
− 1

)n−1−k

= Pn(t) + tnPn(1/t) (n ≥ 1), (1.9)

and

Dn(t) =
n−1∑
k=0

(
n

k

)
Dk(t)(t− 1)n−1−k + tn

n−1∑
k=0

(
n

k

)
Dk

(
1

t

)(
1

t
− 1

)n−1−k

= Qn(t) + tnQn(1/t) (n ≥ 2), (1.10)

say, and interpreted them combinatorially. It is worth mentioning that the polyno-
mials Pn(t), tnPn(1/t), Qn(t), tnQn(1/t) were introduced by Savage and Visontai
[21] and used to prove Brenti’s [3] conjecture that the Eulerian polynomials of type
D have only real roots. See also [11] for a further exploration for Pn(t), tnPn(1/t),
Qn(t), tnQn(1/t).

Motivated and inspired by the work of Hyatt [11], in this paper we establish
some new recurrence formulas for the Eulerian polynomials of type B and type
D by making use of the generating function methods and Padé approximation
techniques. Some of these results presented here are the corresponding extensions
of Hyatt’s recurrence formulas (1.9) and (1.10).
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FORMULAS FOR EULERIAN POLYNOMIALS OF TYPE B AND TYPE D 3

This paper is organized as follows. In the second section, we recall Padé approxi-
mation to general series and their expression in the case of the exponential function.
In the third section, we give some recurrence formulas for Eulerian polynomials of
type B, and show the recurrence formula (1.9) is obtained as a special case. In the
fourth section, we establish some recurrence formulas for Eulerian polynomials of
type D, by virtue of which the recurrence formula (1.10) is deduced.

2. Padé approximants

It is well known that Padé approximants provide rational approximations to
functions formally defined by a power series expansion, and have played important
roles in many fields of mathematics, physics and engineering (see, e.g., [4, 17]).
We here recall the definition of Padé approximation to general series and their
expression in the case of the exponential function.

Let m,n be non-negative integers and let Pk be the set of all polynomials of
degree ≤ k. Given a function f with a Taylor expansion

f(t) =
∞∑
k=0

ckt
k (2.1)

in a neighborhood of the origin, a Padé form of type (m,n) is a pair (P,Q) such
that

P =
m∑

k=0

pkt
k ∈ Pm, Q =

n∑
k=0

qkt
k ∈ Pn (Q 6≡ 0), (2.2)

and

Qf − P = O(tm+n+1) as t→ 0. (2.3)

It is clear that every Padé form of type (m,n) for f(t) always exists and satisfies
the same rational function, and the uniquely determined rational function P/Q is
called the Padé approximant of type (m,n) for f(t); see for example, [1, 5]. For
nonnegative integers m,n, the Padé approximant of type (m,n) for the exponential
function et is the unique rational function (see, e.g., [9, 18])

Rm,n(t) =
Pm(t)

Qn(t)
(Pm ∈ Pm, Qn ∈ Pn, Qn(0) = 1), (2.4)

which obeys the property

et −Rm,n(t) = O(tm+n+1) as t→ 0. (2.5)

In fact, the explicit formulas for Pm and Qn can be expressed as follows (see, e.g.,
[2, 19]):

Pm(t) =
m∑

k=0

(m+ n− k)! ·m!

(m+ n)! · (m− k)!
· t

k

k!
, (2.6)

Qn(t) =
n∑

k=0

(m+ n− k)! · n!

(m+ n)! · (n− k)!
· (−t)k

k!
, (2.7)

and

Qn(t)et − Pm(t) = (−1)n
tm+n+1

(m+ n)!

∫ 1

0

xn(1− x)mextdx, (2.8)

where Pm(t) and Qn(t) is called the Padé numerator and denominator of type
(m,n) for et, respectively.
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We shall use the above properties of Padé approximants to the exponential func-
tion to establish some new recurrence formulas for the Eulerian polynomials of type
B and type D in next sections.

3. Recurrence formulas for Eulerian polynomials of type B

Let m,n be non-negative integers. It is easily seen that if we denote the right
hand side of (2.8) by Sm,n(t) then we have

et =
Pm(t) + Sm,n(t)

Qn(t)
. (3.1)

By multiplying the numerator and denominator in the left hand side of (1.5) by
ex(t−1) and then respectively substituting x(t − 1) and x(1 − t) for t in (3.1), we
discover(

Pm(x(t− 1)) + Sm,n(x(t− 1))

Qn(x(t− 1))

− tPm(x(1− t)) + Sm,n(x(1− t))
Qn(x(1− t))

) ∞∑
n=0

Bn(t)
xn

n!
= 1− t, (3.2)

which means

[Pm(x(t− 1)) + Sm,n(x(t− 1))]Qn(x(1− t))
∞∑

n=0

Bn(t)
xn

n!

− t[Pm(x(1− t)) + Sm,n(x(1− t))]Qn(x(t− 1))
∞∑

n=0

Bn(t)
xn

n!

= (1− t)Qn(x(t− 1))Qn(x(1− t)). (3.3)

We now apply the exponential series ext =
∑∞

k=0 x
ktk/k! in the right hand side of

(2.8). With the help of the beta function, we obtain

Sm,n(t) = (−1)n
tm+n+1

(m+ n)!

∞∑
k=0

tk

k!

∫ 1

0

xn+k(1− x)mdx

=
∞∑
k=0

(−1)n ·m! · (n+ k)!

(m+ n)! · (m+ n+ k + 1)!
· t

m+n+k+1

k!
. (3.4)

Let pm,n;k, qm,n;k and sm,n;k be the coefficients of the polynomials Pm(t), Qn(t)
and Sm,n(t) given by

Pm(t) =
m∑

k=0

pm,n;kt
k, Qn(t) =

n∑
k=0

qm,n;kt
k, Sm,n(t) =

∞∑
k=0

sm,n;kt
m+n+k+1.

(3.5)
It follows from (2.6), (2.7) and (3.4) that

pm,n;k =
m! · (m+ n− k)!

k! · (m+ n)! · (m− k)!
, qm,n;k =

(−1)k · n! · (m+ n− k)!

k! · (m+ n)! · (n− k)!
, (3.6)

and

sm,n;k =
(−1)n ·m! · (n+ k)!

k! · (m+ n)! · (m+ n+ k + 1)!
. (3.7)
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If we apply (3.5) to (3.3) then we get( m∑
i=0

pm,n;ix
i(t− 1)i +

∞∑
i=0

sm,n;ix
m+n+i+1(t− 1)m+n+i+1

)

×
n∑

j=0

qm,n;jx
j(1− t)j

∞∑
k=0

Bk(t)
xk

k!

−t
( m∑

i=0

pm,n;ix
i(1− t)i +

∞∑
i=0

sm,n;ix
m+n+i+1(1− t)m+n+i+1

)

×
n∑

j=0

qm,n;jx
j(t− 1)j

∞∑
k=0

Bk(t)
xk

k!

= (1− t)
( n∑

i=0

qm,n;ix
i(t− 1)i

)( n∑
j=0

qm,n;jx
j(1− t)j

)
, (3.8)

which together with the Cauchy product yields

∞∑
l=0

∑
i+j+k=l
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Bk(t)

k!
xl

+

∞∑
l=0

∑
i+j+k=l−m−n−1

i,j,k≥0

sm,n;i(t− 1)m+n+i+1qm,n;j(1− t)j
Bk(t)

k!
xl

−t
∞∑
l=0

∑
i+j+k=l
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Bk(t)

k!
xl

−t
∞∑
l=0

∑
i+j+k=l−m−n−1

i,j,k≥0

sm,n;i(1− t)m+n+i+1qm,n;j(t− 1)j
Bk(t)

k!
xl

= (1− t)
∞∑
l=0

∑
i+j=l
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)jxl. (3.9)

Comparing the coefficients of xl in (3.9) gives that for non-negative integer l with
0 ≤ l ≤ m+ n, ∑

i+j+k=l
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Bk(t)

k!

−t
∑

i+j+k=l
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Bk(t)

k!

= (1− t)
∑
i+j=l
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)j . (3.10)
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Observe that

(1− t)ex(1−t)

1− te2x(1−t)
=

(1− 1
t )ext(1−

1
t )

1− 1
t e

2xt(1− 1
t )
. (3.11)

It follows from (1.5) and (3.11) that

Bn(t) = tnBn

(
1

t

)
(n ≥ 0). (3.12)

By applying (3.12) to (3.10), we get∑
i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j(t− 1)i+jBk(t)

k!

−tl+1
∑

i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j

(
1

t
− 1

)i+jBk( 1
t )

k!

= −(t− 1)l+1
∑
i+j=l
i,j≥0

(−1)jqm,n;iqm,n;j . (3.13)

Thus, applying (3.6) to (3.13) gives the following result.

Theorem 3.1. Let m,n be non-negative integers. Then, for non-negative integer
l with 0 ≤ l ≤ m+ n,∑

i+j+k=l
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jBk(t)

k!

− tl+1
∑

i+j+k=l
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jBk( 1
t )

k!

= −(t− 1)l+1
l∑

i=0

(
n

i

)(
n

l − i

)
(−1)i(m+ n− i)! · (m+ n+ i− l)!. (3.14)

We next discuss some special cases of Theorem 3.1. By taking l = m + n in
Theorem 3.1, we have

Corollary 3.2. Let m,n be non-negative integers. Then∑
i+j+k=m+n

i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jBk(t)

k!

− tm+n+1
∑

i+j+k=m+n
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jBk( 1
t )

k!

= −(t− 1)m+n+1
m+n∑
i=0

(
n

i

)(
n

m+ n− i

)
(−1)i(m+ n− i)! · i!. (3.15)

If we take n = 0 in Theorem 3.1 then we have
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Corollary 3.3. Let m be non-negative integer. Then, for non-negative integer l
with 0 ≤ l ≤ m,

∑
i+k=l
i,k≥0

(
m

i

)
(m− i)! · (t− 1)i

Bk(t)

k!
− tl+1

∑
i+k=l
i,k≥0

(
m

i

)
(m− i)! ·

(
1

t
− 1

)iBk( 1
t )

k!

= −(t− 1)l+1

(
0

l

)
· (m− l)!. (3.16)

In particular, by taking l = m and substituting n for m in Corollary 3.3, we have

Corollary 3.4. Let n be a positive integer. Then

n∑
k=0

(
n

k

)
Bk(t)(t− 1)n−k = tn+1

n∑
k=0

(
n

k

)
Bk

(
1

t

)(
1

t
− 1

)n−k

. (3.17)

The above Corollary 3.4 can be easily used to give Hyatt’s recurrence formula
(1.9). For example, by multiplying the both sides of (3.17) by 1/(t − 1), we get
that for positive integer n,

n∑
k=0

(
n

k

)
Bk(t)(t− 1)n−1−k = −tn

n∑
k=0

(
n

k

)
Bk

(
1

t

)(
1

t
− 1

)n−1−k

, (3.18)

which means

Bn(t)

t− 1
+

n−1∑
k=0

(
n

k

)
Bk(t)(t− 1)n−1−k

= −tn
n−1∑
k=0

(
n

k

)
Bk

(
1

t

)(
1

t
− 1

)n−1−k

+
tn+1

t− 1
Bn

(
1

t

)
. (3.19)

Hence, applying (3.12) to (3.19) gives the recurrence formula (1.9) immediately.
We next consider the case l being a positive integer with l ≥ m+ n+ 1 in (3.9).

By comparing the coefficients of xl in (3.9), we obtain∑
i+j+k=l
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Bk(t)

k!

+
∑

i+j+k=l−m−n−1
i,j,k≥0

sm,n;i(t− 1)m+n+i+1qm,n;j(1− t)j
Bk(t)

k!

−t
∑

i+j+k=l
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Bk(t)

k!

−t
∑

i+j+k=l−m−n−1
i,j,k≥0

sm,n;i(1− t)m+n+i+1qm,n;j(t− 1)j
Bk(t)

k!

= (1− t)
∑
i+j=l
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)j , (3.20)
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which together (3.12) gives∑
i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j(t− 1)i+jBk(t)

k!

+(t− 1)m+n+1
∑

i+j+k=l−m−n−1
i,j,k≥0

(−1)jsm,n;iqm,n;j(t− 1)i+jBk(t)

k!

−tl+1
∑

i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j

(
1

t
− 1

)i+jBk( 1
t )

k!

−tl+1

(
1

t
− 1

)m+n+1 ∑
i+j+k=l−m−n−1

i,j,k≥0

(−1)jsm,n;iqm,n;j

(
1

t
− 1

)i+jBk( 1
t )

k!

= −(t− 1)l+1
∑
i+j=l
i,j≥0

(−1)jqm,n;iqm,n;j . (3.21)

Thus, by taking l = m + n + 1 and applying (3.6) and (3.7) to (3.21), in view of
B0(t) = 1, we get the following result.

Theorem 3.5. Let m,n be non-negative integers with m ≥ n. Then∑
i+j+k=m+n+1

i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jBk(t)

k!

− tm+n+2
∑

i+j+k=m+n+1
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jBk( 1
t )

k!

= −[(−1)mt+ (−1)n](t− 1)m+n+1 m! · n!

m+ n+ 1
. (3.22)

If we take n = 0 and substitute n for m in Theorem 3.5, we have

Corollary 3.6. Let n be a non-negative integer. Then

n∑
k=0

(
n

k

)
Bk+1(t)

k + 1
(t− 1)n−k − tn+2

n∑
k=0

(
n

k

)
Bk+1( 1

t )

k + 1

(
1

t
− 1

)n−k

= −[(−1)nt+ 1]
(t− 1)n+1

n+ 1
. (3.23)

If we multiply the both sides of (3.23) by 1/(t− 1), we get that for non-negative
integer n,

n∑
k=0

(
n

k

)
Bk+1(t)

k + 1
(t− 1)n−1−k + tn+1

n∑
k=0

(
n

k

)
Bk+1( 1

t )

k + 1

(
1

t
− 1

)n−1−k

= −[(−1)nt+ 1]
(t− 1)n

n+ 1
, (3.24)
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which implies

n−1∑
k=0

(
n

k

)
Bk+1(t)

k + 1
(t− 1)n−1−k + tn+1

n−1∑
k=0

(
n

k

)
Bk+1( 1

t )

k + 1

(
1

t
− 1

)n−1−k

=
tn+2

t− 1
·
Bn+1( 1

t )

n+ 1
− 1

t− 1
· Bn+1(t)

n+ 1
− [(−1)nt+ 1]

(t− 1)n

n+ 1
. (3.25)

It follows from (3.12) and (3.25) that

Bn+1(t)

n+ 1
=

n−1∑
k=0

(
n

k

)
Bk+1(t)

k + 1
(t− 1)n−1−k

+ tn+1
n−1∑
k=0

(
n

k

)
Bk+1( 1

t )

k + 1

(
1

t
− 1

)n−1−k

+ [(−1)nt+ 1]
(t− 1)n

n+ 1
(n ≥ 1), (3.26)

which can be regarded as an analogous version to Hyatt’s recurrence formula (1.9).

4. Recurrence formulas for Eulerian polynomials of type D

We now multiply the numerator and denominator in the left hand side of (1.6)
by ex(t−1), we have

(1− t)− xt(1− t)ex(1−t)

ex(t−1) − tex(1−t)
=

∞∑
n=0

Dn(t)
xn

n!
, (4.1)

which together with (3.1) gives(
Pm(x(t− 1)) + Sm,n(x(t− 1))

Qn(x(t− 1))

− tPm(x(1− t)) + Sm,n(x(1− t))
Qn(x(1− t))

) ∞∑
n=0

Dn(t)
xn

n!

= (1− t)− xt(1− t)Pm(x(1− t)) + Sm,n(x(1− t))
Qn(x(1− t))

. (4.2)

It is obvious that (4.2) can be rewritten as

[Pm(x(t− 1)) + Sm,n(x(t− 1))]Qn(x(1− t))
∞∑

n=0

Dn(t)
xn

n!

− t[Pm(x(1− t)) + Sm,n(x(1− t))]Qn(x(t− 1))
∞∑

n=0

Dn(t)
xn

n!

= (1− t)Qn(x(t− 1))Qn(x(1− t))
− xt(1− t)[Pm(x(1− t)) + Sm,n(x(1− t))]Qn(x(t− 1)). (4.3)
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If we apply (3.5) to (4.3) then we have( m∑
i=0

pm,n;ix
i(t− 1)i +

∞∑
i=0

sm,n;ix
m+n+i+1(t− 1)m+n+i+1

)

×
n∑

j=0

qm,n;jx
j(1− t)j

∞∑
k=0

Dk(t)
xk

k!

−t
( m∑

i=0

pm,n;ix
i(1− t)i +

∞∑
i=0

sm,n;ix
m+n+i+1(1− t)m+n+i+1

)

×
n∑

j=0

qm,n;jx
j(t− 1)j

∞∑
k=0

Dk(t)
xk

k!

= (1− t)
( n∑

i=0

qm,n;ix
i(t− 1)i

)( n∑
j=0

qm,n;jx
j(1− t)j

)

−xt(1− t)
( m∑

i=0

pm,n;ix
i(1− t)i +

∞∑
i=0

sm,n;ix
m+n+i+1(1− t)m+n+i+1

)

×
n∑

j=0

qm,n;jx
j(t− 1)j . (4.4)

It follows from (4.4) and the Cauchy product that

∞∑
l=0

∑
i+j+k=l
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Dk(t)

k!
xl

+
∞∑
l=0

∑
i+j+k=l−m−n−1

i,j,k≥0

sm,n;i(t− 1)m+n+i+1qm,n;j(1− t)j
Dk(t)

k!
xl

−t
∞∑
l=0

∑
i+j+k=l
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Dk(t)

k!
xl

−t
∞∑
l=0

∑
i+j+k=l−m−n−1

i,j,k≥0

sm,n;i(1− t)m+n+i+1qm,n;j(t− 1)j
Dk(t)

k!
xl

= (1− t)
∞∑
l=0

∑
i+j=l
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)jxl

−t(1− t)
∞∑
l=0

∑
i+j=l−1
i,j≥0

pm,n;i(1− t)iqm,n;j(t− 1)jxl

−t(1− t)
∞∑
l=0

∑
i+j=l−m−n−2

i,j,k≥0

sm,n;i(1− t)m+n+i+1qm,n;j(t− 1)jxl. (4.5)
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By comparing the coefficients of xl in (4.5), we get that for non-negative integer l
with 0 ≤ l ≤ m+ n, ∑

i+j+k=l
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Dk(t)

k!

−t
∑

i+j+k=l
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Dk(t)

k!

= (1− t)
∑
i+j=l
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)j

−t(1− t)
∑

i+j=l−1
i,j≥0

pm,n;i(1− t)iqm,n;j(t− 1)j . (4.6)

Observe that

(1− t)ex(1−t) − xt(1− t)e2x(1−t)

1− te2x(1−t)
=

(1− t)ex(1−t)

1− te2x(1−t)
− xt t− 1

t− e2x(t−1)
. (4.7)

Applying (1.2), (1.5) and (1.6) to (4.7) gives

Dn(t) = Bn(t)− n2n−1tAn−1(t) (n ≥ 0). (4.8)

It follows from (3.12) and (4.8) that

Dn(t) = tnDn

(
1

t

)
+n2n−1tn−1An−1

(
1

t

)
−n2n−1tAn−1(t) (n ≥ 0). (4.9)

Hence, in light of (4.9), we can rewrite (4.6) as∑
i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j(t− 1)i+jDk(t)

k!

−tl+1
∑

i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j

(
1

t
− 1

)i+jDk( 1
t )

k!

= t
∑

i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j(1− t)i+j k2k−1(tk−1Ak−1( 1
t )− tAk−1(t))

k!

−(t− 1)l+1
∑
i+j=l
i,j≥0

(−1)jqm,n;iqm,n;j − t(1− t)l
∑

i+j=l−1
i,j≥0

(−1)jpm,n;iqm,n;j

= t
∑

i+j+k=l−1
i,j,k≥0

(−1)jpm,n;iqm,n;j(1− t)i+j 2k(tkAk( 1
t )− tAk(t))

k!

−(t− 1)l+1
∑
i+j=l
i,j≥0

(−1)jqm,n;iqm,n;j

−t(1− t)l
∑

i+j=l−1
i,j≥0

(−1)jpm,n;iqm,n;j . (4.10)
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Noticing that from (1.2) we have

1− t =
(1− t)ex(t−1)

ex(t−1) − tex(1−t)
− t(1− t)ex(1−t)

ex(t−1) − tex(1−t)

=
∞∑

n=0

[
(2t)nAn

(
1

t

)
−2ntAn(t)

]
xn

n!
, (4.11)

which implies

20
(
t0A0

(
1

t

)
−tA0(t)

)
= 1− t, 2n

(
tnAn

(
1

t

)
−tAn(t)

)
= 0 (n ≥ 1). (4.12)

So from (4.10) and (4.12), we obtain∑
i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j(t− 1)i+jDk(t)

k!

−tl+1
∑

i+j+k=l
i,j,k≥0

(−1)jpm,n;iqm,n;j

(
1

t
− 1

)i+jDk( 1
t )

k!

= −(t− 1)l+1
∑
i+j=l
i,j≥0

(−1)jqm,n;iqm,n;j . (4.13)

Thus, applying (3.6) to (4.13) gives the following result.

Theorem 4.1. Let m,n be non-negative integers. Then, for non-negative integer
l with 0 ≤ l ≤ m+ n,∑

i+j+k=l
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jDk(t)

k!

− tl+1
∑

i+j+k=l
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jDk( 1
t )

k!

= −(t− 1)l+1
l∑

i=0

(
n

i

)(
n

l − i

)
(−1)i(m+ n− i)! · (m+ n+ i− l)!. (4.14)

It becomes obvious that taking l = m + n in Theorem 4.1 gives the following
result.

Corollary 4.2. Let m,n be non-negative integers. Then∑
i+j+k=m+n

i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jDk(t)

k!

− tm+n+1
∑

i+j+k=m+n
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jDk( 1
t )

k!

= −(t− 1)m+n+1
m+n∑
i=0

(
n

i

)(
n

m+ n− i

)
(−1)i(m+ n− i)! · i!. (4.15)
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If we take n = 0 in Theorem 4.1 then we have

Corollary 4.3. Let m be non-negative integer. Then, for non-negative integer l
with 0 ≤ l ≤ m,∑

i+k=l
i,k≥0

(
m

i

)
(m− i)! · (t− 1)i

Dk(t)

k!
− tl+1

∑
i+k=l
i,k≥0

(
m

i

)
(m− i)! ·

(
1

t
− 1

)iDk( 1
t )

k!

= −(t− 1)l+1

(
0

l

)
· (m− l)!. (4.16)

In particular, by taking l = m and substituting n for m in Corollary 4.3, we have

Corollary 4.4. Let n be a positive integer. Then
n∑

k=0

(
n

k

)
Dk(t)(t− 1)n−k = tn+1

n∑
k=0

(
n

k

)
Dk

(
1

t

)(
1

t
− 1

)n−k

. (4.17)

We now use Corollary 4.4 to give Hyatt’s recurrence formula (1.10). By multi-
plying the both sides of (4.17) by 1/(t− 1), we get that for positive integer n,

n∑
k=0

(
n

k

)
Dk(t)(t− 1)n−1−k = −tn

n∑
k=0

(
n

k

)
Dk

(
1

t

)(
1

t
− 1

)n−1−k

, (4.18)

which is equivalent to

Dn(t)

t− 1
+

n−1∑
k=0

(
n

k

)
Dk(t)(t− 1)n−1−k

= −tn
n−1∑
k=0

(
n

k

)
Dk

(
1

t

)(
1

t
− 1

)n−1−k

+
tn+1

t− 1
Dn

(
1

t

)
. (4.19)

Noticing that from (4.9) and (4.12) we have

Dn(t) = tnDn

(
1

t

)
(n ≥ 2). (4.20)

Hence, applying (4.20) to (4.19) gives Hyatt’s recurrence formula (1.10) immedi-
ately.

We next consider the case l = m + n + 1 in (4.5). By taking l = m + n + 1 in
(4.5), in view of D0(t) = 1, we discover∑

i+j+k=m+n+1
i,j,k≥0

pm,n;i(t− 1)iqm,n;j(1− t)j
Dk(t)

k!
+ (t− 1)m+n+1sm,n;0qm,n;0

−t
∑

i+j+k=m+n+1
i,j,k≥0

pm,n;i(1− t)iqm,n;j(t− 1)j
Dk(t)

k!
− t(1− t)m+n+1sm,n;0qm,n;0

= (1− t)
∑

i+j=m+n+1
i,j≥0

qm,n;i(t− 1)iqm,n;j(1− t)j

−t(1− t)
∑

i+j=m+n
i,j≥0

pm,n;i(1− t)iqm,n;j(t− 1)j . (4.21)
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So if we apply (4.9) to (4.21), in light of (4.12), we get∑
i+j+k=m+n+1

i,j,k≥0

(−1)jpm,n;iqm,n;j(t− 1)i+jDk(t)

k!

−tm+n+2
∑

i+j+k=m+n+1
i,j,k≥0

(−1)jpm,n;iqm,n;j

(
1

t
− 1

)i+jDk( 1
t )

k!

= −(t− 1)m+n+2
∑

i+j=m+n+1
i,j≥0

(−1)jqm,n;iqm,n;j

+t(1− t)m+n+1sm,n;0qm,n;0 − (t− 1)m+n+1sm,n;0qm,n;0. (4.22)

Thus, applying (3.6) and (3.7) to (4.22) gives the following result.

Theorem 4.5. Let m,n be non-negative integers with m ≥ n. Then∑
i+j+k=m+n+1

i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! · (t− 1)i+jDk(t)

k!

− tm+n+2
∑

i+j+k=m+n+1
i,j,k≥0

(
m

i

)(
n

j

)
(m+ n− i)! · (m+ n− j)! ·

(
1

t
− 1

)i+jDk( 1
t )

k!

= −[(−1)mt+ (−1)n](t− 1)m+n+1 m! · n!

m+ n+ 1
. (4.23)

If we take n = 0 and substitute n for m in Theorem 4.5, we have

Corollary 4.6. Let n be a non-negative integer. Then

n∑
k=0

(
n

k

)
Dk+1(t)

k + 1
(t− 1)n−k − tn+2

n∑
k=0

(
n

k

)
Dk+1( 1

t )

k + 1

(
1

t
− 1

)n−k

= −[(−1)nt+ 1]
(t− 1)n+1

n+ 1
. (4.24)

We now multiply the both sides of (4.24) by 1/(t − 1) to obtain that for non-
negative integer n,

n−1∑
k=0

(
n

k

)
Dk+1(t)

k + 1
(t− 1)n−1−k + tn+1

n−1∑
k=0

(
n

k

)
Dk+1( 1

t )

k + 1

(
1

t
− 1

)n−1−k

=
tn+2

t− 1
·
Dn+1( 1

t )

n+ 1
− 1

t− 1
· Dn+1(t)

n+ 1
− [(−1)nt+ 1]

(t− 1)n

n+ 1
. (4.25)

It follows from (4.20) and (4.25) that

Dn+1(t)

n+ 1
=

n−1∑
k=0

(
n

k

)
Dk+1(t)

k + 1
(t−1)n−1−k +tn+1

n−1∑
k=0

(
n

k

)
Dk+1( 1

t )

k + 1

(
1

t
−1

)n−1−k

+ [(−1)nt+ 1]
(t− 1)n

n+ 1
(n ≥ 1), (4.26)

which is very analogous to Hyatt’s recurrence formula (1.10).
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CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER
ASSOCIATED WITH THE GENERALIZED MEIXNER-POLLACZEK

POLYNOMIALS

C. RAMACHANDRAN1, T. SOUPRAMANIEN2, AND NAK EUN CHO3

ABSTRACT. In the present paper, we introduce and investigate two new subclasses of the func-
tion class Σ of bi-univalent functions of complex order defined in the open unit disk, which are
associated with the one of the orthogonal polynomial namely Generalized Meixner-Pollaczek
polynomials, and satisfying subordinate conditions. Taylor-MacLaurin coefficients |a2| and |a3|
were estimated for functions in new subclass. Furthermore, several known consequences are also
investigated.

1. INTRODUCTION

Let A denote the class of all functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z|< 1}.

Let S be the class of functions which are subclass of A and is univalent in U. Some of the
essential and well-scrutinized subclasses of the class S include, for example, the class S∗(α) of
starlike functions of order α in U, and the class K(α) of convex functions of order α in U, with
0 ≤ α < 1.

It is prominent that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w|< r0(f), r0(f) ≥ 1

4

)
,

2010 Mathematics Subject Classification. Primary 30C45, 33C50; Secondary 30C80.
Key words and phrases. Analytic functions, Univalent functions, Bi-univalent functions, Bi-starlike functions,

Bi-convex functions, Generalized Meixner-Pollaczek polynomials, Gaussian hypergeometric function.
1
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where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · (1.2)

A function f ∈ A is said to be bi-univalent in U if f(z) and f−1(w) are univalent in U, and let
Σ denote the class of bi-univalent functions in U.

The convolution or Hadamard product of two function f, h ∈ A is denoted by f ∗ h, and is
defined by

(f ∗ h)(z) := z +
∞∑
n=2

anbnz
n,

where f is given by (1.1) and h(z) = z +
∞∑
n=2

bnz
n.

For complex numbers αi (i = 1, 2, . . . , p) and βj (j = 1, 2, . . . , q) where βj 6= 0,−1,−2, . . . ;
j = 1, 2, . . . , q, the generalized hypergeometric function pFq(z) is defined by

pFq(z) =p Fq(α1, . . . , αp; β1, . . . , βq; z) =
∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
, (1.3)

where p ≤ q + 1,

(λ)n =
Γ(λ+ n)

Γ(n)
=

1 if n = 0

λ(λ+ 1)(λ+ 2) . . . (λ+ n− 1) if n ∈ N = {1, 2, . . . }.

The series given by (1.3) converges absolutely for |z|< ∞ if p < q + 1 and for z in the
open unit disk U = {z : |z|< 1} if p = q + 1. For relevant values αi and βj , the class
of hypergeometric functions pFq is proximately cognate to classes of analytic and univalent
functions. It is well-known that hypergeometric and univalent functions play significant roles
in a large variety of problems undergone in applied mathematics, probability and statistics,
operations research, signal theory, moment problems, and other areas of science (e.g., see Exton
[6, 7], Miller and Mocanu [16] and Rönning [23]). In this sequel, we construct a new pathway
for studying the connection between classes of hypergeometric and analytic univalent functions
and also derive some new bounds for their respected Fekete-Szegö coefficients.

2. PRELIMINARIES

For p = q + 1 = 2, the series defined by (1.3) gives rise to the Gaussian hypergeometric series

2F1(a, b; c; z). This reduces to the elementary Gaussian geometric series 1 + z + z2 + · · · if (i)
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a = c and b = 1 or (ii) a = 1 and b = c. For <(c) > <(b) > 0, we obtain

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt.

As a special case, we observe that

2F1(1, 1; a; z) = (a− 1)

∫ 1

0

tb−1(1− t)a−2

1− tz
dt

and

2F1(a, 1; 1; z) =
1

(1− z)a

so that

2F1(a, 1; 1; z) ∗ 2F1(a, 1; 1; z) =
1

1− z
= 2F1(1, 1; 1; z).

The classical Koebe function is a function holomorphic in U = {z ∈ C : |z|< 1} and given by
the formula

k2(z) =
z

(1− z)2
=

1

4

{(
1 + z

1− z

)2

− 1

}
= z + 2z2 + 3z3 + . . . , z ∈ U.

The important function k2(z) follows from extremality for the famous Bieberbach conjecture.
The Koebe function is univalent and starlike in U and maps the unit disk U onto the complex
plane minus a slit

(
−∞,−1

4

]
.

Certain generalizations of k2 were appeared in the literature. Robertson [22] proved that

k2(1−α)(z) =
z

(1− z)2(1−α)
(0 ≤ α < 1)

is the extremal function for the functions starlike of order α. The function

kα(z) =
1

2α

{(
1 + z

1− z

)α
− 1

}
(α ∈ R\{0}, z ∈ U)

was widely studied by Pommerenke [21], who investigated a universal invariant family Uα.
The definition of kα was extended for a non-zero complex number α by Yamashita [27]. From
the classical result of Hille [11], we see that kα is univalent in U if and only if α 6= 0 is the
union A of the closed disks {|z + 1|≤ 1} and {|z − 1|≤ 1}. Making use of the geometric
properties, Yamashita [27] described how kα tends to be univalent in the whole U as α tends to
each boundary point of A from outside.
On the other hand, The properties of log k′c, where

kc(z) =
1

2c

{(
1 + z

1− z

)c
− 1

}
(c ∈ C\{0}) and k0(z) =

1

2
log

(
1 + z

1− z

)
(z ∈ U), (2.1)
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were studied by Campbell and Pflatzgraff [4]. Pommerenke [21] studied the special case of
(2.1), that is,

kiγ(z) =
1

2iγ

{(
1 + z

1− z

)iγ
− 1

}
(γ > 0, z ∈ U),

for which

k′iγ(z) =
1

(1 + z)1−iγ(1− z)1−iγ .

An obvious and consequential extension of (2.1) was given by the following formula.

kc(θ, ψ; z) =
1

(eiψ − eiθ) c

{(
1− zeiθ

1− zeiψ

)c
− 1

}
(c ∈ C\{0}, eiθ 6= eiψ, θ, ψ ∈ R, z ∈ U)

and for the case when c = 0,

k0(θ, ψ; z) =
1

(eiψ − eiθ)
log

(
1− zeiθ

1− zeiψ

)
(eiθ 6= eiψ, θ, ψ ∈ R, z ∈ U).

We have

k′c(θ, ψ; z) =
1

(1− zeiθ)1−c (1− zeiψ)1+c (c ∈ C).

Comparing

k′iγ(θ, ψ; z) =
1

(1− zeiθ)1−iγ (1− zeiψ)1+iγ

with the generating function for Meixner-Pollaczek polynomial P λ
n (x; θ) [13], we obtain

Gλ(x; θ,−θ; z) =
1

(1− zeiθ)λ−iγ (1− ze−iθ)λ+iγ
=
∞∑
n=0

P λ
n (x; θ)zn,

where λ > 0, θ ∈ (0, π) and x ∈ R.

Definition 2.1. For λ > 0, θ ∈ (0, π) and x ∈ R

zGλ(x; θ,−θ; z) =
z

(1− zeiθ)λ−iγ (1− ze−iθ)λ+iγ
=
∞∑
n=0

P λ
n (x; θ)zn+1

=
∞∑
n=0

(2λ)n
n!

einθ2F1

(
−n, λ+ ix, 2λ; 1− e−2iθ

)
zn+1

=
∞∑
n=0

Fn+1z
n+1

= z +
∞∑
n=2

Fnz
n, (2.2)

where Fn+1 = (2λ)n
n!

einθ2F1

(
−n, λ+ ix, 2λ; 1− e−2iθ

)
and z ∈ U
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To note the significance of the class, we list the following special cases for various values of λ,
x and θ:

(1) Lαn(x) = lim
φ→0

P
α+1
2

n

(
− x

2φ
, φ

)
, called the Laguerre polynomial.

(2) Hn(x) = lim
λ→∞

n!λ
−n
2 P λ

n

(
x
√
λ− λ cosφ

sinφ
, φ

)
, called the Hermite polynomial.

(3) Un(x) = lim
λ→0

P λ
n

(
x

2
,
φ

2

)
, called the symmetric Meixner-Pollaczek polynomial.

(4) P 0
n(x) = lim

λ→0
P λ
n (x), shows that these polynomials are orthogonal polynomials in a strip

−1 ≤ =(z) ≤ 1.

(5) Wn(x) = lim
λ→0

P
3
4
n

(x
2
,
π

2

)
, arises as the the Mellin transform of the odd Hermite orthog-

onal functions.

For λ > 0, θ ∈ (0, π) and x ∈ R, using the Generalised Meixner-Pollaczek polynomial (2.2),
we introduce convolution operator Fλx,θ : A → A, by

Fλx,θf(z) :=
(
zGλ(x; θ,−θ; z) ∗ f(z)

)
= z +

∞∑
n=2

Fnanz
n, (2.3)

where

Fn =
(2λ)(n−1)

(n− 1)!
ei(n−1)θ

2F1

(
−(n− 1), λ+ ix, 2λ; 1− e−2iθ

)
(z ∈ U). (2.4)

Let f be the class of analytic functions w, normalized by w(0) = 0, satisfying the condition
|w(z)|< 1. For analytic functions f and g, we say that f is subordinate to g in U, denoted by
f ≺ g, if there exists a function w ∈ f so that f(z) = g(w(z)) in U. In particular, if g is
univalent in U, then f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Recently there has been triggering interest to study bi-univalent function class Σ and obtained
non-sharp coefficient estimates on the first two coefficients |a2| and |a3| of (1.1). But the coef-
ficient problem for each of the following Taylor-MacLaurin coefficients |an| ((n ≥ 3) is still an
open problem (see [2, 1, 3, 14, 17, 26]). Many researchers (see [8, 10, 15, 24]) have recently
introduced and investigated several interesting subclasses of the bi-univalent function class Σ

and they have found non-sharp estimates on the first two Taylor-MacLaurin coefficients |a2| and
|a3|.

In [18], the authors defined the classes of functions Pm(β) as follows:
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Definition 2.2. [18] Let Pm(β), with m ≥ 2 and 0 ≤ β < 1, denote the class of univalent
analytic functions P , normalized with P (0) = 1, and satisfying∫ 2π

0

∣∣∣∣ReP (z)− β
1− β

∣∣∣∣ dθ ≤ mπ,

where z = reiθ ∈ U.

For β = 0, we denote Pm := Pm(0), hence the class Pm represents the class of functions p
analytic in U, normalized with p(0) = 1, and having the representation

p(z) =

∫ 2π

0

1− zeit

1 + zeit
dµ(t),

where µ is a real-valued function with bounded variation, which satisfies∫ 2π

0

dµ(t) = 2π and
∫ 2π

0

|dµ(t)|≤ m, m ≥ 2.

Remark that P := P2 is the well-known class of Carathéodory functions, i.e. the normalized
functions with positive real part in the open unit disk U.

Motivated by the earlier work of Deniz [5], Peng et al. [20] (see also [19, 25]) and Goswami
et al. [9], in the present paper, we introduce new subclasses of the function class Σ of complex
order γ ∈ C∗ := C\{0}, involving Generalised Meixner-Pollaczek polynomial operator Fλx,θ,
and we find estimates on the coefficients |a2| and |a3| for the functions that belong to these
new subclasses of functions of the class Σ. Several related classes are also considered, and
connection to earlier known results are made.

Definition 2.3. For 0 ≤ α ≤ 1 and 0 ≤ β < 1, a function f ∈ Σ is said to be in the class
Sλ,x,θΣ (γ, α, β) if the following two conditions are satisfied:

1 +
1

γ

[
z
(
Fλx,θf(z)

)′
(1− α)z + αFλx,θf(z)

− 1

]
∈ Pm(β) (2.5)

and

1 +
1

γ

[
w
(
Fλx,θg(w)

)′
(1− α)w + αFλx,θg(w)

− 1

]
∈ Pm(β), (2.6)

where γ ∈ C∗, the function g is given by (1.2), and z, w ∈ U.

Definition 2.4. For 0 ≤ α ≤ 1 and 0 ≤ β < 1, a function f ∈ Σ is said to be in the class
Kλ,x,θΣ (γ, α, β) if the following two conditions are satisfied:

1 +
1

γ

[
z
(
Fλx,θf(z)

)′
+ z2

(
Fλx,θf(z)

)′′
(1− α)z + αz

(
Fλx,θf(z)

)′ − 1

]
∈ Pm(β) (2.7)
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and

1 +
1

γ

[
w
(
Fλx,θg(w)

)′
+ w2

(
Fλx,θg(w)

)′′
(1− α)w + αw

(
Fλx,θg(w)

)′ − 1

]
∈ Pm(β), (2.8)

where γ ∈ C∗, the function g is given by (1.2), and z, w ∈ U.

On specializing the parameters α, one can state the various new subclasses of Σ as illustrated
in the following examples. Thus, taking α = 1 in the above two definitions, we obtain:

Example 2.1. Suppose that 0 ≤ β < 1 and γ ∈ C∗.

(i) A function f ∈ Σ is said to be in the class Sλ,x,θΣ (γ, β) if the following conditions are satisfied:

1 +
1

γ

[
z
(
Fλx,θf(z)

)′
Fλx,θf(z)

− 1

]
∈ Pm(β) and 1 +

1

γ

[
w
(
Fλx,θg(w)

)′
Fλx,θg(w)

− 1

]
∈ Pm(β),

where g = f−1 and z, w ∈ U.

(ii) A function f ∈ Σ is said to be in the class Kλ,x,θΣ (γ, β) if the following conditions are
satisfied:

1 +
1

γ

[
z
(
Fλx,θf(z)

)′′(
Fλx,θf(z)

)′
]
∈ Pm(β) and 1 +

1

γ

[
w
(
Fλx,θg(w)

)′′(
Fλx,θg(w)

)′
]
∈ Pm(β)

where g = f−1 and z, w ∈ U.

Taking α = 0 in the previous two definitions, we obtain the next special cases:

Example 2.2. Suppose that 0 ≤ β < 1 and γ ∈ C∗.

(i) A function f ∈ Σ is said to be in the class Hλ,x,θ
Σ (γ, β) if the following conditions are satis-

fied:

1 +
1

γ

[(
Fλx,θf(z)

)′ − 1
]
∈ Pm(β) and 1 +

1

γ

[(
Fλx,θg(w)

)′ − 1
]
∈ Pm(β)

where g = f−1 and z, w ∈ U.

(ii) A function f ∈ Σ is said to be in the class Qλ,x,θΣ (γ, β) if the following conditions are
satisfied:

1 +
1

γ

[(
Fλx,θf(z)

)′
+ z

(
Fλx,θf(z)

)′′ − 1
]
∈ Pm(β),

and
1 +

1

γ

[(
Fλx,θg(w)

)′
+ w

(
Fλx,θg(w)

)′′ − 1
]
∈ Pm(β)

where g = f−1 and z, w ∈ U.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

490 C. RAMACHANDRAN ET AL 484-498



8 C. RAMACHANDRAN, T. SOUPRAMANIEN, AND NAK EUN CHO

In order to derive our main results, we shall need the following lemma.

Lemma 2.1. [9] Let the function Φ(z) = 1 +
∞∑
n=1

hnz
n (z ∈ U), such that Φ ∈ Pm(β). Then,

|hn|≤ m(1− β) (n ≥ 1).

By employing the techniques which used earlier by Deniz [5], in the following section, we
find estimates of the coefficients |a2| and |a3| for functions of the above-defined subclasses
Sλ,x,θΣ (γ, α, β) and Kλ,x,θΣ (γ, α, β) of the function class Σ.

3. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS Sλ,x,θΣ (γ, α, β)

We begin by finding the estimates on the coefficients |a2| and |a3| for the functions f given by
(1.1) belonging to the class Sλ,x,θΣ (γ, α, β).

Supposing that the functions p, q ∈ Pm(β), with

p(z) = 1 +
∞∑
k=1

pkz
k (z ∈ U) (3.1)

and

q(w) = 1 +
∞∑
k=1

qkw
k (w ∈ U), (3.2)

from Lemma 2.1, it follows that

|pk| ≤ m(1− β) and (3.3)

|qk| ≤ m(1− β) (for all k ≥ 1). (3.4)

Theorem 3.1. If the function f given by (1.1) belongs to the class Sλ,x,θΣ (γ, α, β), then

|a2|≤ min

{√
m|γ|(1− β)

|(α2 − 2α)F 2
2 + (3− α)F3|

;
m|γ|(1− β)

(2− α)F2

}
(3.5)

and

|a3| ≤ min

{
m|γ|(1− β)

(3− α)F3

+
m|γ|(1− β)

|(α2 − 2α)F 2
2 + (3− α)F3|

;

m|γ|(1− β)

(3− α)F3

(
1 +m|γ|(1− β)

α

2− α

)
;

m|γ|(1− β)

(3− α)F3

(
1 +m|γ|(1− β)

|(α2 − 2α)F 2
2 + 2(3− α)F3|

(2− α)2F 2
2

)}
, (3.6)

where F2 and F3 are given by (2.4).
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Proof. Since f ∈ Sλ,x,θΣ (γ, α, β), from the definition relations (2.5) and (2.6), it follows that

1 +
1

γ

[
z
(
Fλx,θf(z)

)′
(1− α)z + αFλx,θf(z)

− 1

]

= 1 +
2− α
γ

F2a2z +

[
α2 − 2α

γ
F 2

2 a
2
2 +

3− α
γ

F3a3

]
z2 + · · · =: p(z) (3.7)

and

1 +
1

γ

[
w
(
Fλx,θg(w)

)′
(1− α)w + αFλx,θg(w)

− 1

]

= 1− 2− α
γ

F2a2w +

[
α2 − 2α

γ
F 2

2 a
2
2 +

3− α
γ

F3(2a2
2 − a3)

]
w2 + · · · =: q(w), (3.8)

where p, q ∈ Pm(β), and are of the form (3.1) and (3.2), respectively.

Now, equating the coefficients in (3.7) and (3.8), we get
2− α
γ

F2a2 = p1, (3.9)

α2 − 2α

γ
F 2

2 a
2
2 +

3− α
γ

F3a3 = p2, (3.10)

−2− α
γ

F2a2 = q1, (3.11)

α2 − 2α

γ
F 2

2 a
2
2 +

3− α
γ

F3(2a2
2 − a3) = q2. (3.12)

From (3.9) and (3.11), we find that

a2 =
γp1

(2− α)F2

=
−γq1

(2− α)F2

, (3.13)

which implies

|a2|≤
|γ|m(1− β)

(2− α)F2

. (3.14)

Adding (3.10) and (3.12), by using (3.13) we obtain[
2(α2 − 2α)F 2

2 + 2(3− α)F3

]
a2

2 = γ(p2 + q2).

Now, by using (3.3) and (3.4), we get

|a2|2=
m|γ|(1− β)

|(α2 − 2α)F 2
2 + (3− α)F3|

,

and hence

|a2|≤

√
m|γ|(1− β)

|(α2 − 2α)F 2
2 + (3− α)F3|

,
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which gives the bound on |a2| as asserted in (3.5).

Next, in order to find the upper-bound for |a3|, by subtracting (3.12) from (3.10), we get

2(3− α)F3a3 = γ(p2 − q2) + 2(3− α)F3a
2
2. (3.15)

It follows from (3.3), (3.4), (3.14) and (3.15), that

|a3|≤
m|γ|(1− β)

(3− α)F3

+
m|γ|(1− β)

|(α2 − 2α)F 2
2 + (3− α)F3|

.

From (3.9) and (3.10), we have

a3 =
1

(3− α)F3

(
γp2 −

γ2(α2 − 2α)p2
1

(2− α)2

)
.

and hence

|a3|≤
m|γ|(1− β)

(3− α)F3

(
1 +m|γ|(1− β)

α

(2− α)

)
.

Further, from (3.9) and (3.12) we deduce that

|a3|≤
m|γ|(1− β)

(3− α)F3

(
1 +m|γ|(1− β)

|(α2 − 2α)F 2
2 + 2(3− α)F3|

(2− α)2F 2
2

)
,

and thus we obtain the conclusion (3.6) of our theorem. �

For the special cases α = 1 and α = 0, Theorem 3.1 reduces to the following corollaries,
respectively:

Corollary 3.1. If the function f given by (1.1) belongs to the class Sλ,x,θΣ (γ, β), then

|a2|≤ min

{√
m|γ|(1− β)

|2F3 − F 2
2 |

;
m|γ|(1− β)

F2

}
and

|a3| ≤ min

{
m|γ|(1− β)

|2F3 − F 2
2 |

+
m|γ|(1− β)

2F3

;
m|γ|(1− β)

2F3

(1 +m|γ|(1− β)) ;

m|γ|(1− β)

2F3

(
1 +

m|γ|(1− β)|4F3 − F 2
2 |

F 2
2

)}
,

where F2 and F3 are given by (2.4).

Corollary 3.2. If the function f given by (1.1) belongs to the class Gλ,x,θΣ (γ, β), then

|a2|≤ min


√
m|γ|(1− β)

3F3

;
m|γ|(1− β)

2F2


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and

|a3|≤ min

{
2
m|γ|(1− β)

3F3

;
m|γ|(1− β)

3F3

;
m|γ|(1− β)

3F3

(
1 +m|γ|(1− β)

6F3

4F 2
2

)}
,

where F2 and F3 are given by (2.4).

4. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS Kλ,x,θΣ (γ, α, β)

Theorem 4.1. If the function f given by (1.1) belongs to the class Kλ,x,θΣ (γ, α, β), then

|a2|≤ min

{√
m|γ|(1− β)

|4(α2 − 2α)F 2
2 + 3(3− α)F3|

;
m|γ|(1− β)

2(2− α)F2

}
(4.1)

and

|a3| ≤ min

{
m|γ|(1− β)

3(3− α)F3

(
1 +m|γ|(1− β)

α

2− α

)
;

m|γ|(1− β)

3(3− α)F3

+
m|γ|(1− β)

|4(α2 − 2α)F 2
2 + 3(3− α)F3|

;

m|γ|(1− β)

3(3− α)F3

+
m2|γ|2(1− β)2

3(3− α)F3

(
α

2− α
+

3(3− α)F3

2(2− α)2F 2
2

)}
, (4.2)

where F2 and F3 are given by (2.4).

Proof. Since f ∈ Kλ,x,θΣ (γ, α, β), from the definition relations (2.7) and (2.8), it follows that

1 +
1

γ

[
z
(
Fλx,θf(z)

)′
+ z2

(
Fλx,θf(z)

)′′
(1− α)z + αz

(
Fλx,θf(z)

)′ − 1

]

= 1 +
2(2− α)

γ
F2a2z +

[
4(α2 − 2α)

γ
F 2

2 a
2
2 +

3(3− α)

γ
F3a3

]
z2 + · · · =: p(z) (4.3)

and

1 +
1

γ

[
w
(
Fλx,θg(w)

)′
+ w2

(
Fλx,θg(w)

)′′
(1− α)w + αw

(
Fλx,θg(w)

)′ − 1

]

= 1− 2(2− α)

γ
F2a2w +

[
4(α2 − 2α)

γ
F 2

2 a
2
2 +

3(3− α)

γ
F3(2a2

2 − a3)

]
w2 + · · · =: q(w),

(4.4)

where p, q ∈ Pm(β), and are of the form (3.1) and (3.2), respectively.
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Now, equating the coefficients in (4.3) and (4.4), we get

2(2− α)

γ
F2a2 = p1, (4.5)

1

γ

[
4(α2 − 2α)F 2

2 a
2
2 + 3(3− α)F3a3

]
= p2, (4.6)

−2(2− α)

γ
F2a2 = q1, (4.7)

1

γ

[
4(α2 − 2α)F 2

2 a
2
2 + 3(3− α)F3(2a2

2 − a3)
]

= q2. (4.8)

From (4.5) and (4.7), we find that

a2 =
γp1

2(2− α)F2

=
−γq1

2(2− α)F2

, (4.9)

which implies

|a2|≤
|γ|m(1− β)

2(2− α)F2

. (4.10)

Adding (4.6) and (4.8), by using (4.9), we obtain[
8(α2 − 2α)F 2

2 + 6(3− α)F3

]
a2

2 = γ(p2 + q2).

Now, by using (3.3) and (3.4), we get

|a2|2=
m|γ|(1− β)

|4(α2 − 2α)F 2
2 + 3(3− α)F3|

,

and hence

|a2|≤

√
m|γ|(1− β)

|4(α2 − 2α)F 2
2 + 3(3− α)F3|

,

which gives the bound on |a2| as asserted in (4.1).

Next, in order to find the upper-bound for |a3|, by subtracting (4.8) from (4.6), we get

6(3− α)F3a3 = γ(p2 − q2) + 6(3− α)F3a
2
2. (4.11)

It follows from (3.3), (3.4), (4.10) and (4.11), that

|a3|≤
m|γ|(1− β)

3(3− α)F3

+
m|γ|(1− β)

|4(α2 − 2α)F 2
2 + 3(3− α)F3|

.

From (4.5) and (4.6), we have

a3 =
1

3(3− α)F3

(
γp2 −

γ2(α2 − 2α)p2
1

(2− α)2

)
.

and hence

|a3|≤
m|γ|(1− β)

3(3− α)F3

(
1 +m|γ|(1− β)

α

2− α

)
.
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Further, from (4.5) and (4.8), we deduce that

|a3|≤
m|γ|(1− β)

3(3− α)F3

(
1 +m|γ|(1− β)

(
α

2− α
+

3(3− α)F3

2(2− α)2F 2
2

))
,

and thus we obtain the conclusion (4.2) of our theorem. �

For the special cases α = 1 and α = 0, the Theorem 4.1 reduces to the following corollaries,
respectively:

Corollary 4.1. If the function f given by (1.1) belongs to the class Kλ,x,θΣ (γ, β), then

|a2|≤ min

{√
m|γ|(1− β)

|6F3 − 4F 2
2 |

;
m|γ|(1− β)

2F2

}
and

|a3| ≤ min

{
m|γ|(1− β)

|6F3 − 4F 2
2 |

+
m|γ|(1− β)

6F3

;
m|γ|(1− β)

6F3

(1 +m|γ|(1− β)) ;

m|γ|(1− β)

6F3

(
1 +m|γ|(1− β)

(
1 +

6F3

2F 2
2

))}
,

where F2 and F3 are given by (2.4).

Corollary 4.2. If the function f given by (1.1) belongs to the class Qλ,x,θΣ (γ, β), then

|a2|≤ min


√
m|γ|(1− β)

9F3

;
m|γ|(1− β)

4F2


and

|a3|≤ min

{
2
m|γ|(1− β)

9F3

;
m|γ|(1− β)

9F3

;
m|γ|(1− β)

9F3

(
m|γ|(1− β)

9F3

4F 2
2

)}
,

where F2 and F3 are given by (2.4).

Remark that, various other interesting corollaries and consequences of our main results, which
are asserted by Theorem 3.1 and Theorem 4.1 above, can be derived similarly. The details
involved may be left as exercises for the interested reader.
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In the paper, the authors introduce a new concept “strongly extended (s,m)-convex func-
tion” and establish some integral inequalities of Simpson’s type for strongly extended (s,m)-
convex functions.
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1 Introduction

The following definitions are well known in the literature.

Definition 1.1. A function f : I ⊆ R = (−∞,∞)→ R is said to be convex if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 1.2 ([13]). For f : [0, b]→ R with b > 0 and m ∈ (0, 1], if

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

is valid for all x, y ∈ [0, b] and t ∈ [0, 1], then we say that f is an m-convex function on [0, b].

Definition 1.3 ([6]). Let s ∈ (0, 1] be a real number. A function f : R → R0 = [0,∞) is said to
be s-convex (in the second sense) if the inequality

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ I and λ ∈ [0, 1].
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If s = 1, the s-convex function becomes a convex function on R0.

Definition 1.4 ([15]). For some s ∈ [−1, 1], a function f : I ⊆ R → R is said to be extended
s-convex if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

is valid for all x, y ∈ I and λ ∈ (0, 1).

Definition 1.5 ([9]). A function f : [a, b]→ R is said to be strongly convex with modulus c > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2

is valid for all x, y ∈ [a, b] and t ∈ [0, 1].

Definition 1.6 ([5]). A function f : I ⊆ R → R0 is said to be strongly s-convex with modulus
c > 0 and s ∈ (0, 1] if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)− ct(1− t)(x− y)2

is valid for all x, y ∈ I and t ∈ [0, 1].

The following theorems for some kinds of convex functions were obtained in recent years.

Theorem 1.1 ([2, Theorem 2.2]). Let f : I◦ ⊆ R → R be a differentiable mapping on I◦ and
a, b ∈ I◦ with a < b. If |f ′| is convex on [a, b], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)(|f ′(a)|+ |f ′(b)|)
8

.

Theorem 1.2 ([8, Theorems 1 and 2]). Let f : I ⊆ R→ R be differentiable on I◦ and a, b ∈ I with
a < b. If |f ′|q is convex on [a, b] and q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

)1/q

and ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

)1/q

.

Theorem 1.3 ([1, Theorems 2.2 to 2.3]). Let f : I ⊆ R→ R be differentiable on I◦, a, b ∈ I with
a < b, and f ′ ∈ L1([a, b]).

1. If |f ′| is s-convex on [a, b] for some s ∈ (0, 1], then

∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4(s+ 1)(s+ 2)

[
|f ′(a)|+ |f ′(b)|+ 2(s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣]
≤
(
22−s + 1

)
(b− a)

4(s+ 1)(s+ 2)

[
|f ′(a)|+ |f ′(b)|

]
.
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2. If |f ′|p/(p−1) is s-convex on [a, b] for p > 1 and some fixed s ∈ (0, 1], then

∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
1

p+ 1

)1/p(
1

s+ 1

)2/q{[(
21−s + s+ 1

)
|f ′(a)|q

+ 21−s|f ′(b)|q
]1/q

+
[
21−s|f ′(a)|q +

(
21−s + s+ 1

)
|f ′(b)|q

]1/q}
,

where 1
p + 1

q = 1.

Theorem 1.4 ([5, Theorems 3.1]). Let f : I ⊆ R → R be a 2-times differentiable function on I◦

and a, b ∈ I◦ with a < b such that f ′′ ∈ L1([a, b]). If |f ′′|q is strongly s-convex on [a, b] for q ≥ 1
and s ∈ (0, 1], then∣∣∣∣16

[
f(a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ 61/q(b− a)2

324

{[
(s− 3)3s+2 + (s+ 7)2s+2

(s+ 1)(s+ 2)(s+ 3)3s
|f ′′(a)|q +

1

(s+ 2)(s+ 3)3s
|f ′′(b)|q

− c(b− a)2

45

]1/q
+

[
(s− 1)2s+2 + s+ 5

(s+ 1)(s+ 2)(s+ 3)3s
(
|f ′′(a)|q + |f ′′(b)|q

)
− 11c(b− a)2

270

]1/q
+

[
1

(s+ 2)(s+ 3)3s
|f ′′(a)|q +

(s− 3)3s+2 + (s+ 7)2s+2

(s+ 1)(s+ 2)(s+ 3)3s
|f ′′(b)|q − c(b− a)2

45

]1/q}
.

For more information on this topic, please refer to the papers [3, 4, 5, 7, 10, 11, 12, 14, 16, 17]
and the closely related references therein.

In this paper, we will introduce a new concept “strongly extended (s,m)-convex function” and
establish some integral inequalities of the Hermite-Hadamard type for strongly extended (s,m)-
convex functions.

2 Definition and Lemmas

Now we give a definition of strongly extended (s,m)-convex functions.

Definition 2.1. A function f : [0, b∗] ⊆ R0 → R0 is said to be strongly extended (s,m)-convex
with modulus c > 0 and (s,m) ∈ [−1, 1]× (0, 1] if

f(tx+m(1− t)y) ≤ tsf(x) +m(1− t)sf(y)− ct(1− t)(x− y)2

is valid for all x, y ∈ [0, b∗] and t ∈ (0, 1).

Remark 1. If f is strongly extended (s,m)-convex on [0, b∗] and m = 1, then we say that f is
strongly extended s-convex on [0, b∗].

If f is strongly extended s-convex on [0, b∗] and s ∈ (0, 1], then it is strongly s-convex on [0, b∗].

To establish new Hermite-Hadamard type inequalities for strongly extended (s,m)-convex func-
tions, we need the following lemmas.
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Lemma 2.1. Let f : I ⊆ R→ R be n-times differentiable function on I◦, a, b ∈ I◦ with a < b, and
n ∈ N+. If f (n) ∈ L1([a, b]), then

1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

=
(b− a)n

2(n!)

∫ 1

0

[
tn + (t− 1)n

]
f (n)(ta+ (1− t)b) d t.

Proof. By integration by parts, it follows that

(b− a)n+1

2(n!)

∫ 1

0

tnf (n)(ta+ (1− t)b) d t

= − (b− a)n

2(n!)
f (n−1)(a) +

(b− a)n

2[(n− 1)!]

∫ 1

0

tn−1f (n−1)(ta+ (1− t)b) d t

= − (b− a)n

2(n!)
f (n−1)(a)− (b− a)n−1

2[(n− 1)!]
f (n−2)(a) +

(b− a)n−1

2[(n− 2)!]

∫ 1

0

tn−2f (n−2)(ta+ (1− t)b) d t

= −
n−1∑
k=1

(b− a)k+1f (k)(a)

2[(k + 1)!]
+

(b− a)2

2

∫ 1

0

tf ′(ta+ (1− t)b) d t

= −
n∑
k=1

(b− a)kf (k−1)(a)

2(k!)
+

1

2

∫ b

a

f(x) dx

and

(b− a)n+1

2(n!)

∫ 1

0

(t− 1)nf (n)(ta+ (1− t)b) d t

=
(b− a)n

2(n!)
(−1)nf (n−1)(b) +

(b− a)n

2[(n− 1)!]

∫ 1

0

(t− 1)n−1f (n−1)(ta+ (1− t)b) d t

=
(b− a)n

2(n!)
(−1)nf (n−1)(b) +

(b− a)n−1

2[(n− 1)!]
(−1)n−1f (n−2)(b)

+
(b− a)n−1

2[(n− 2)!]

∫ 1

0

(t− 1)n−2f (n−2)(ta+ (1− t)b) d t

=
n∑
k=1

(−1)k(b− a)kf (k−1)(b)

2(k!)
+

1

2

∫ b

a

f(x) dx.

Adding these two equations leads to Lemma 2.1.

Lemma 2.2. Let f : I ⊆ R→ R be n-times differentiable function on I◦, a, b ∈ I◦ with a < b, and
n ∈ N+. If f (n) ∈ L1([a, b]), then

1

b− a

∫ b

a

f(x) dx−
n∑
k=1

[
1 + (−1)k−1

]
(b− a)k−1

2k−1(k!)
f (k−1)

(
a+ b

2

)

=
(b− a)n

n!

[∫ 1/2

0

(−t)nf (n)((1− t)a+ tb) d t+

∫ 1

1/2

(1− t)nf (n)(ta+ (1− t)b) d t

]
.
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Proof. This follows from integration by parts immediately.

3 Some new integral inequalities of Simpson’s type

In this section, we establish integral inequalities of Simpson’s type for strongly extended (s,m)-
convex functions.

Theorem 3.1. Let f : [0, b∗] ⊆ R0 → R0 be n-times differentiable on [0, b∗], a, b ∈ [0, b∗] with
a < b, and f (n) ∈ L1([a, b]). If |f (n)|q is strongly extended (s,m)-convex on

[
0, bm

]
for c ≥ 0,

(s,m) ∈ (−1, 1]× (0, 1], and q ≥ 1, then

∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣ ≤ (b− a)n

2(n!)

(
2

n+ 1

)1−1/q

×
{

1− nB(n, s+ 1)

n+ s+ 1

[∣∣f (n)(a)
∣∣q +m

∣∣∣∣f (n)( b

m

)∣∣∣∣q]− 2c

(n+ 2)(n+ 3)

(
b

m
− a
)2}1/q

,

where B(α, β) denotes the well known beta function which can be defined by

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 d t, α, β > 0.

Proof. Since |f (n)|q is strongly extended (s,m)-convex on
[
0, bm

]
, from Lemma 2.1 and Hölder’s

integral inequality, it follows that∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

2(n!)

∫ 1

0

[
tn + (1− t)n

]∣∣f (n)(ta+ (1− t)b)
∣∣ d t

≤ (b− a)n

2(n!)

[∫ 1

0

[
tn + (1− t)n

]
d t

]1−1/q[∫ 1

0

[
tn + (1− t)n

]∣∣f (n)(ta+ (1− t)b)
∣∣q d t

]1/q
≤ (b− a)n

2(n!)

(
2

n+ 1

)1−1/q{∫ 1

0

[
tn + (1− t)n

][
ts
∣∣f (n)(a)

∣∣q
+m(1− t)s

∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2]

d t

}1/q

=
(b− a)n

2(n!)

(
2

n+ 1

)1−1/q{
1− nB(n, s+ 1)

n+ s+ 1

[∣∣f (n)(a)
∣∣q +m

∣∣∣∣f (n)( b

m

)∣∣∣∣q]
− 2c

(n+ 2)(n+ 3)

(
b

m
− a
)2}1/q

.

The proof of Theorem 3.1 is thus completed.

Corollary 3.1.1. Under conditions of Theorem 3.1,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

503 Jun Zhang ET AL 499-508



1. when q = 1, we have∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

2(n!)

{
1− nB(n, s+ 1)

n+ s+ 1

[∣∣f (n)(a)
∣∣+m

∣∣∣∣f (n)( b

m

)∣∣∣∣]− 2c

(n+ 2)(n+ 3)

(
b

m
− a
)2}

;

2. when q = 1 and m = 1, we have∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

2(n!)

{
1− nB(n, s+ 1)

n+ s+ 1

[∣∣f (n)(a)
∣∣+ |f (n)(b)|

]
− 2c

(n+ 2)(n+ 3)
(b− a)2

}
.

Corollary 3.1.2. Under conditions of Theorem 3.1,

1. when s = 1, we have∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

21/q[(n+ 1)!]

[
|f ′(a)|q +m

∣∣∣∣f ′( b

m

)∣∣∣∣q− 2c(n+ 1)

(n+ 2)(n+ 3)

(
b

m
− a
)2]1/q

;

2. when s = 0, we have∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

(n+ 1)!

[
|f ′(a)|q +m

∣∣∣∣f ′( b

m

)∣∣∣∣q− c(n+ 1)

(n+ 2)(n+ 3)

(
b

m
− a
)2]1/q

.

Theorem 3.2. Let f : [0, b∗] ⊆ R0 → R0 be n-times differentiable on [0, b∗], a, b ∈ [0, b∗] with
a < b, and f (n) ∈ L1([a, b]). If |f (n)|q is strongly extended (s,m)-convex on

[
0, bm

]
for c ≥ 0,

(s,m) ∈ (−1, 1]× (0, 1], and q > 1, then∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

2(n!)

(
2

n+ 1

)1−1/q[∣∣f (n)(a)
∣∣q +m

∣∣f (n)( bm)∣∣q
s+ 1

− c

6

(
b

m
− a
)2]1/q

. (3.1)

Proof. From Lemma 2.1 and Hölder’s integral inequality, it follows that∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
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≤ (b− a)n

2(n!)

∫ 1

0

[
tn + (1− t)n

]∣∣f (n)(ta+ (1− t)b)
∣∣d t

≤ (b− a)n

2(n!)

[∫ 1

0

[
tn + (1− t)n

]q/(q−1)
d t

]1−1/q[∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t

]1/q
.

Since tn + (1− t)n ≤ 1 for t ∈ [0, 1], we have∫ 1

0

[
tn + (1− t)n

]q/(q−1)
d t ≤

∫ 1

0

[
tn + (1− t)n

]
d t =

2

n+ 1
.

Since |f (n)|q is a strongly extended (s,m)-convex function, it follows that∫ 1

0

∣∣f (n)(ta+ (1− t)b)
∣∣q d t ≤

∫ 1

0

[
ts
∣∣f (n)(a)

∣∣q +m(1− t)s
∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2]

d t

=

∣∣f (n)(a)
∣∣q +m

∣∣f (n)( bm)∣∣q
s+ 1

− c

6

(
b

m
− a
)2

.

Substituting the last two inequalities into the first inequality above and rearranging yield the
inequality (3.1). The proof of Theorem 3.2 is thus complete.

Corollary 3.2.1. Under the assumptions of Theorem 3.2, we have

1. if s = 1, then∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

(n+ 1)!

(
n+ 1

)1/q[∣∣f (n)(a)
∣∣q +m

∣∣f (n)( b
m

)∣∣q − c

3

(
b

m
− a
)2]1/q

;

2. if s = 0, then∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ (b− a)n

2(n!)

(
2

n+ 1

)1−1/q[∣∣f (n)(a)
∣∣q +m

∣∣f (n)( b
m

)∣∣q − c

6

(
b

m
− a
)2]1/q

.

Theorem 3.3. Let f : [0, b∗] ⊆ R0 → R0 be n-times differentiable on [0, b∗], a, b ∈ [0, b∗] with
a < b, and f (n) ∈ L1([a, b]). If |f (n)|q is strongly extended (−1,m)-convex on

[
0, bm

]
for c ≥ 0,

m ∈ (0, 1] and q ≥ 1, then∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣
≤ 2(b− a)n

n!

[
1

2n+1(n+ 1)

]1−1/q[(n−1∑
k=0

1

2k+1(k + 1)
+ ln 2

)∣∣f (n)(a)
∣∣q

+m
1

2nn

∣∣∣∣f (n)( b

m

)∣∣∣∣q− c(n+ 4)

2n+3(n+ 2)(n+ 3)

(
b

m
− a
)2
]1/q

.
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Proof. Using Lemma 2.2 and Hölder’s integral inequality and considering that |f (n)|q is the strongly
extended (−1,m)-convex function, it follows that∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

[
1 + (−1)k−1

]
(b− a)k−1

2k−1(k!)
f (k−1)

(
a+ b

2

)∣∣∣∣
≤ (b− a)n

n!

[∫ 1/2

0

tn|f (n)((1− t)a+ tb)|d t+

∫ 1

1/2

(1− t)n|f (n)(ta+ (1− t)b)|d t
]

d t

≤ (b− a)n

n!

{(∫ 1/2

0

tn d t

)1−1/q[∫ 1/2

0

tn
(

(1− t)−1
∣∣f (n)(a)

∣∣q
+mt−1

∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2)

d t

]1/q
+

[∫ 1

1/2

(1− t)n d t

]1−1/q[∫ 1

1/2

(1− t)n
(
t−1
∣∣f (n)(a)

∣∣q
+m(1− t)−1

∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2)

d t

]1/q}
=

2(b− a)n

n!

(
1

2n+1(n+ 1)

)1−1/q[(n−1∑
k=0

1

2k+1(k + 1)
+ ln 2

)∣∣f (n)(a)
∣∣q

+m
1

2nn

∣∣∣∣f (n)( b

m

)∣∣∣∣q− c(n+ 4)

2n+3(n+ 2)(n+ 3)

(
b

m
− a
)2)]1/q

.

The proof of Theorem 3.3 is thus complete.

Theorem 3.4. Let f : [0, b∗] ⊆ R0 → R0 be n-times differentiable on [0, b∗], a, b ∈ [0, b∗] with
a < b, and f (n) ∈ L1([a, b]). If |f (n)|q is strongly extended (−1,m)-convex on

[
0, bm

]
for c ≥ 0,

m ∈ (0, 1], and q > 1, then∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

(b− a)k−1
[
f (k−1)(a) + (−1)k−1f (k−1)(b)

]
2(k!)

∣∣∣∣ ≤ 2(b− a)n

n!

×

(
q − 1

2
(n+1)q−2

q−1 [(n+ 1)q − 2]

)1−1/q[
ln 4− 1

2

∣∣f (n)(a)
∣∣q +

m

2

∣∣∣∣f (n)( b

m

)∣∣∣∣q− 5c

192

(
b

m
− a
)2]1/q

.

Proof. Using Lemma 2.2 and Hölder’s integral inequality and considering that |f (n)|q is strongly
extended (−1,m)-convex, it follows that∣∣∣∣ 1

b− a

∫ b

a

f(x) dx−
n∑
k=1

[
1 + (−1)k−1

]
(b− a)k−1

2k−1(k!)
f (k−1)

(
a+ b

2

)∣∣∣∣
≤ (b− a)n

n!

{(∫ 1/2

0

t
nq−1
q−1 d t

)1−1/q[∫ 1/2

0

t

(
(1− t)−1

∣∣f (n)(a)
∣∣q

+mt−1
∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2)

d t

]1/q
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+

[∫ 1

1/2

(1− t)
nq−1
q−1 d t

]1−1/q[∫ 1

1/2

(1− t)
(
t−1
∣∣f (n)(a)

∣∣q
+m(1− t)−1

∣∣∣∣f (n)( b

m

)∣∣∣∣q−ct(1− t)( b

m
− a
)2)

d t

]1/q}

=
2(b− a)n

n!

(
q − 1

2
(n+1)q−2

q−1 [(n+ 1)q − 2]

)1−1/q

×
[

ln 4− 1

2

∣∣f (n)(a)
∣∣q +

m

2

∣∣∣∣f (n)( b

m

)∣∣∣∣q− 5c

192

(
b

m
− a
)2)]1/q

.

The proof of Theorem 3.4 is thus completed.
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FIXED POINTS OF MULTIVALUED NONEXPANSIVE
MAPPINGS IN KOHLENBACH HYPERBOLIC SPACE

BIROL GUNDUZ, EBRU AYDOĞDU, AND HALIS AYGÜN

Abstract. In this paper, we give a multivalued version of Picard-Mann hybrid
iterative process of Khan [4] in Kohlenbach hyperbolic space. This process
converges faster than all of Picard, Mann and Ishikawa iterative processes.
By using an idea of Shahzad and Zegeye [8] which removes a restriction on
the mapping and the method of direct construction of Cauchy sequence as
illustrated by Song and Cho [9], we obtain strong and ∆-convergence theorems
of this process for a multivalued mapping. Our results improve corresponding
results of Shazad and Zegeye [8], Song and Cho [9] and many other in the
contemporary literature in terms of faster iteration, more general space and
weaker condition on mapping T .

1. Introduction and Preliminaries

Throughout the paper, we denote the set of positive integers by N. Let (E, d)
be a metric space and K be a nonempty subset of E. Then K is called proximinal
if for each x ∈ E, there exists an element k ∈ K such that

d(x, k) = inf{d(x, y) : y ∈ K} = d(x,K)

We shall denote the closed and bounded subsets, compact subsets and proximinal
bounded subsets of K by CB(K), C(K) and P (K), respectively. Let H be a
Hausdorff metric induced by the metric d of E, that is

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for every A,B ∈ CB(E). A multivalued mapping T : K −→ P (K) is said to be a
contraction if there exists a constant k ∈ [0, 1) such that for any x, y ∈ K,

H(Tx, Ty) ≤ kd(x, y),

and T is said to be nonexpansive if

H(Tx, Ty) ≤ d(x, y)

for all x, y ∈ K. A point x ∈ K is called a fixed point of T if x ∈ Tx. Denote the
set of all fixed points of T by F (T ) and PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}.
Markin [1] started the study of fixed points for multivalued contractions and

nonexpansive mappings using the Hausdorff metric (see also [2]). Moreover, Lim
[26] proved the existence of fixed points for multivalued nonexpansive mappings un-
der suitable conditions in uniformly convex Banach spaces. Later on, an interesting
and rich fixed point theory for such maps was developed which has applications in

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. common fixed point, hyperbolic space, multivalued nonexpansive map,

strong convergence, ∆-convergence.
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2 BIROL GUNDUZ, EBRU AYDOĞDU, AND HALIS AYGÜN

control theory, convex optimization, differential inclusion and economics (see, [3]
and references cited therein). Since then different authors have discussed on the
existence and convergence of fixed points for this class of maps in convex metric
spaces. For example, Shimizu and Takahashi [18] generalized result of Lim [26]
given above from uniformly convex Banach spaces to convex metric spaces.
On the other hand, given x0 in K (a subset of Banach space), we know that

Picard, Mann and Ishikawa iteration processes for a single valued map T : K → K
defined as follows:

(Picard) xn+1 = Txn,

(Mann) xn+1 = (1− αn)xn + αnTxn,

and

(Ishikawa)
xn+1 = (1− αn)xn + αnTyn
yn = (1− βn)xn + βnTxn

where {αn} and {βn} are in (0, 1).
Very recently, Khan [4] introduced a new iterative process which can be seen

as a hybrid of Picard and Mann iterative processes. He also proved that the new
process converges faster than all of Picard, Mann and Ishikawa iterative processes
for contractions. Iteration scheme of Khan [4] defined as follows:

(1.1)
xn+1 = Tyn
yn = (1− αn)xn + αnTxn

where {αn} is a sequence in (0, 1).
It is well know that the theory of multivalued nonexpansive mappings is harder

than according to the theory of single valued nonexpansive mappings. Sastry and
Babu [5] defined Mann and Ishikawa iterative processes for a multivalued mapping
as follows:
Let K be a nonempty convex subset of E and T : K → P (K) a multivalued

mapping with p ∈ Tp.
(i) Mann iterate sequence is defined by x1 ∈ K,

xn+1 = (1− an)xn + anyn,

where yn ∈ Txn is such that ‖yn − p‖ = d(p, Txn), and {an} is a sequence in (0, 1)
satisfying lim

n→∞
an = 0 and

∑
an =∞.

(ii) Ishikawa iterate sequence is defined by x1 ∈ K,{
yn = (1− bn)xn + bnzn,

xn+1 = (1− an)xn + anun,

where zn ∈ Txn, un ∈ Tyn are such that ‖zn − p‖ = d(p, Txn) and ‖un − p‖ =
d(p, Tyn), and {an}, {bn} are real sequences with 0 ≤ an, bn < 1 satisfying lim

n→∞
bn =

0 and
∑
anbn =∞.

Sastry and Babu [5] proved that these iterates converge to a fixed point q of
T under certain conditions. Moreover, they illustrated that fixed point q may be
different from p.
The following is a useful Lemma due to Nadler [2].

Lemma 1.1. Let A,B ∈ CB (E) and a ∈ A. If η > 0, then there exists b ∈ B such
that d (a, b) ≤ H (A,B) + η.
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FIXED POINTS OF MULTIVALUED NONEXPANSIVE MAPPINGS 3

In 2007, Panyanak [6] proved a convergence theorem of Mann iterates for a
mapping defined on a noncompact domain and generalized results of Sastry and
Babu [5] to uniformly convex Banach spaces. Furthermore, he gave an open question
which was answered by Song and Wang [7].
Later, Shahzad and Zegeye [8] proved strong convergence theorems for the Ishikawa

iteration scheme involving quasi-nonexpansive multivalued maps. They also re-
moved compactness of the domain of T and constructed an iteration scheme which
removes the restriction of T , namely, Tp = {p} for any p ∈ F (T ).
To achieve this, they defined PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)} for a multi-

valued mapping T : K → P (K). They also proved strong convergence results using
Ishikawa type iteration process.
In this paper, we first define a multivalued version of the faster iteration scheme of

Khan (1.1) in Kohlenbach hyperbolic spaces and then use weaker condition PT (x) =
{y ∈ Tx : d(x, y) = d(x, Tx)} instead of Tp = {p} for any p ∈ F (T ) due to Shahzad
and Zegeye [8] to approximate fixed points of a multivalued nonexpansive mapping
T. Moreover, we use the method of direct construction of Cauchy sequence as
indicated by Song and Cho [9] (and opposed to [8]) but used also by many other
authors including [10],[11] and [13]. The algorithm we use in this paper read as
under.
Let E be a Kohlenbach hyperbolic space and K be a nonempty convex subset

of E. Let T : K → P (K) be a multivalued map and PT (x) = {y ∈ Tx : d(x, y) =
d(x, Tx)}. Choose x0 ∈ K and define {xn} as

(1.2)

{
xn+1 = vn

yn = W (un, xn, αn)
,

where un ∈ PT (xn), vn ∈ PT (yn) = PT (W (un, xn, αn)) and {αn} is a real se-
quence such that 0 < a ≤ αn ≤ b < 1 for all n ∈ N. The iterative sequence
(1.2) is called the modifed Picard-Mann hybrid iterative process for a multivalued
nonexpansive mapping in a Kohlenbach hyperbolic space. In this way, we com-
pute fixed points of a multivalued nonexpansive mapping by modifed Picard-Mann
hybrid iterative process in a Kohlenbach hyperbolic space. Our results improve
corresponding results of Shazad and Zegeye [8], Song and Cho [9] and many other
in the contemporary literature in terms of faster iteration, more general space and
weaker condition on mapping T .
Different definitions of hyperbolic space can be found in the literature, we refer

the readers to [14] for a detailed discussion. We will study under more general setup
Kohlenbach hyperbolic spaces which introduced by Kohlenbach [15] as follows:

Definition 1.2. A metric space (E, d) is said to be Kohlenbach hyperbolic space
if there exists a map W : E2 × [0, 1] → E satisfying:

W1. d (u,W (x, y, α)) ≤ (1− α) d (u, x) + αd (u, y)
W2. d (W (x, y, α) ,W (x, y, β)) = |α− β| d (x, y)
W3. W (x, y, α) = W (y, x, (1− α))
W4. d (W (x, z, α) ,W (y, w, α)) ≤ (1− α) d (x, y) + αd (z, w)

for all x, y, z, w ∈ E and α, β ∈ [0, 1].
A metric space (E, d) is called a convex metric space introduced by Takahashi

[16] if it satisfieses only W1. Every normed space (and Banach space) is a special
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4 BIROL GUNDUZ, EBRU AYDOĞDU, AND HALIS AYGÜN

convex metric space, but the converse of this statement is not true, in general (see
[11]).
In the sequel, we shall use the term hyperbolic space instead of Kohlenbach

hyperbolic space in view of simplicity. The class of hyperbolic spaces includes
normed spaces and convex subsets thereof, the Hilbert ball (see [17] for a book
treatment) as well as CAT (0)-spaces.
A hyperbolic space (E, d,W ) is said to be uniformly convex [18] if for all u, x, y ∈

E, r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that

d (x, u) ≤ r
d (y, u) ≤ r
d (x, y) ≥ εr

⇒ d

(
W

(
x, y,

1

2

)
, u

)
≤ (1− δ) r.

A map η : (0,∞) × (0, 2] → (0, 1] which provides such a δ = η (r, ε) for given
r > 0 and ε ∈ (0, 2], is called modulus of uniform convexity. We call η monotone if
it decreases with r (for a fixed ε). A subset K of a hyperbolic space E is convex if
W (x, y, α) ∈ K for all x, y ∈ K and α ∈ [0, 1].
Now, we discourse concept of ∆-convergence which coined by Lim [19] in general

metric spaces. To give the definition of ∆-convergence, we first recall the notions
of asymptotic radius and asymptotic center. Let {xn} be a bounded sequence in a
metric space E. For x ∈ E, define a continuous functional r (., {xn}) : E → [0,∞)
by r (x, {xn}) = lim supn→∞ d (x, xn) . Then the asymptotic radius ρ = r ({xn})
of {xn} is given by ρ = inf {r (x, {xn}) : x ∈ E} and the asymptotic center of a
bounded sequence {xn} with respect to a subset K of E is defined as follows:

AK ({xn}) = {x ∈ E : r (x, {xn}) ≤ r (y, {xn}) for any y ∈ K} .

The set of all asymptotic centers of {xn} is denoted by A({xn}).
It has been shown in [22] that bounded sequences have unique asymptotic center

with respect to closed convex subsets in a complete and uniformly convex hyperbolic
space with monotone modulus of uniform convexity.
A sequence {xn} in E is said to∆-converge to x ∈ E if x is the unique asymptotic

center of {un} for every subsequence {un} of {xn} [20]. In this case, we write ∆
-limn xn = x.
We want to point out that ∆−convergence coincides with weak convergence in

Banach spaces with Opial’s property [23].
Kirk and Panyanak [20] specialized this concept to CAT(0) spaces and showed

that many Banach space results involving weak convergence have precise analogs
in this setting. Dhompongsa and Panyanak [21] continued to work in this direction
and studied the ∆-convergence of Picard, Mann and Ishikawa iterates in CAT (0)
spaces (Theorems 3.1, 3.2 and 3.3 respectively in [21]). Khan et al. [24] was studied
this concept in hyperbolic spaces and they gave a couple of helpful lemma as follows.

Lemma 1.3. [24] Let (E, d,W ) be a uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Let x ∈ E and {αn} be a sequence in [b, c] for some
b, c ∈ (0, 1). If {xn} and {yn} are sequences in E such that lim supn→∞ d (xn, x) ≤
r, lim supn→∞ d (yn, x) ≤ r and limn→∞ d (W (xn, yn, αn) , x) = r for some r ≥ 0,
then limn→∞ d (xn, yn) = 0.

Lemma 1.4. [24] Let K be a nonempty closed convex subset of a uniformly convex
hyperbolic space and {xn} be a bounded sequence in K such that A ({xn}) = {y} and
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r ({xn}) = ρ. If {ym} is another sequence in K such that limm→∞ r (ym, {xn}) = ρ,
then limm→∞ ym = y.

The following useful lemma can be found in [9] gives some properties of PT in
metric (and hence hyperbolic) spaces.

Lemma 1.5. [9] Let T : K → P (K) be a multivalued mapping and PT (x) =
{y ∈ Tx : d(x, y) = d(x, Tx)} .Then the following are equivalent.

(1) x ∈ F (T ), that is, x ∈ Tx,
(2) PT (x) = {x}, that is, x = y for each y ∈ PT (x),
(3) x ∈ F (PT ), that is, x ∈ PT (x).
Moreover, F (T ) = F (PT ).

2. Main Results

Before giving our main results, we show that the modifed Picard-Mann hybrid
iterative process (1.2) can be employed for the approximation of fixed points of a
multivalued nonexpansive mapping in hyperbolic spaces.
Define f : K → K by f(x) = v for some v ∈ PT (y) = PT (W (u, x0, α0)) and

for some u ∈ PT (x). Suppose that PT is nonexpansive multivalued mappings on
K. Existence of x1 is guaranteed if f has a fixed point. For any m,n ∈ K, let
z ∈ PT (m), z′ ∈ PT (n) such that d(z, z′) = d(z, Tn), and y ∈ PT (W (z, x0, α0)),
y′ ∈ PT (W (z′, x0, α0)) such that d(y, y′) = d(y, T (W (z′, x0, α0))).
On using definition of condition W4 in hyperbolic sapaces, we have

d (f(m), f(n)) = d(y, y′)

≤ H (PT (W (z, x0, α0)) , PT (W (z′, x0, α0)))

≤ d (W (z, x0, α0),W (z′, x0, α0))

≤ (1− α0)d(z, z′)

= (1− α0)d(z, Tn)

≤ (1− α0)d(z, PT (n))

≤ (1− α0)H(PT (m), PT (n))

≤ (1− α0)d(m,n).

Since αn ∈ (0, 1), f is a contraction. By Banach contraction principle, f has a
unique fixed point. Thus the existence of x1 is established. Similarly, the existence
of x2, x3, . . . is established. Thus the modifed Picard-Mann hybrid iterative process
(1.2) is well defined.
We start with the following couple of important lemmas.

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space E
and let T : K → P (K) be a multivalued map such that PT is a nonexpansive map
and F 6= ∅. Then for the modifed Picard-Mann hybrid iterative process {xn} in
(1.2), limn→∞ d (xn, p) exists for each p ∈ F .
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Proof. Let p ∈ F . Then p ∈ PT (p) = {p}. Using (1.2) and Lemma 1.5, we have

d (xn+1, p) = d (vn, p)(2.1)

≤ H (PT (yn) , PT (p))

≤ d (yn, p)

= d (W (un, xn, αn), p)

≤ αnd (p, un) + (1− αn) d (p, xn)

≤ αnd (xn, p) + (1− αn) d (xn, p)

= d (xn, p)

That is,
d (xn+1, p) ≤ d (xn, p) .

Hence limn→∞ d (xn, p) exists. �

Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex
hyperbolic space E with monotone modulus of uniform convexity η and let T : K →
P (K) be a multivalued map such that PT is a nonexpansive map and F 6= ∅. Let
{αn} satisfy 0 < a ≤ αn ≤ b < 1. Then for the modifed Picard-Mann hybrid itera-
tive process {xn} in (1.2), we have limn→∞ (xn, PT (xn)) = limn→∞ (xn, PT (yn)) =
0.

Proof. By Lemma 2.1, limn→∞ d (xn, p) exists for each p ∈ F . Assume that
lim
n→∞

d (xn, p) = c for some c ≥ 0. For c = 0, the result is trivial. Suppose c > 0.

Now limn→∞ d (xn+1, p) = c can be rewritten as limn→∞ d (vn, p) = c.
Since PT is nonexpansive, we have

d (un, p) = d (un, PT (p))

≤ H (PT (xn) , PT (p))

≤ d (xn, p) .

Hence

(2.2) lim
n→∞

sup d (un, p) ≤ c

Next

d (vn, p) = d (vn, PT (p))

≤ H (PT (yn) , PT (p))

≤ d (yn, p)

= d (W (un, xn, αn) , p)

≤ (1− αn) d (un, p) + αnd (xn, p)

≤ (1− αn)H (PT (xn) , PT (p)) + αnd (xn, p)

≤ (1− αn) d (xn, p) + αnd (xn, p)

= d (xn, p)

and so
lim
n→∞

sup d (vn, p) ≤ c.
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Further

d (W (un, xn, αn), p) ≤ (1− αn) d (un, p) + αnd (xn, p)

≤ (1− αn) d (xn, p) + αnd (xn, p)

= d (xn, p) .

Taking lim sup, we have

lim
n→∞

sup d (W (un, xn, αn), p) ≤ c.

Now (2.1) can be rewritten as

d (xn+1, p) ≤ d (W (un, xn, αn) , p)

and so

c ≤ lim
n→∞

inf d (W (un, xn, αn) , p) .

Hence

(2.3) lim
n→∞

d (W (un, xn, αn) , p) = c.

From limn→∞ d (xn, p) = c, (2.2), (2.3) and Lemma 1.3, it follows

lim
n→∞

d (xn, un) = 0.

Similarly we can show that

lim
n→∞

d (xn, vn) = 0.

Since d (x, PT (x)) = infz∈PT (x) d (x, z) , therefore

d (xn, PT (xn)) ≤ d (xn, un)→ 0.

Similarly

d (xn, PT (yn)) ≤ d (xn, vn)→ 0.

�

Now we approximate fixed points of the mapping T through ∆-convergence of
the modifed Picard-Mann hybrid iterative process defined in (1.2).

Theorem 2.3. Let K be a nonempty closed and convex subset of a uniformly convex
hyperbolic space E with monotone modulus of uniform convexity η. Let T, PT and
{αn} be as in Lemma 2.2. Then the modifed Picard-Mann hybrid iterative process
{xn} ∆-converges to a fixed point of T (or PT ).

Proof. Let p ∈ F (T ) = F (PT ). From the proof of Lemma 2.1, lim
n→∞

d (xn, p) ex-

ists and {xn} is bounded. Thus {xn} has a unique asymptotic center. Therefore
A({xn}) = {x}. Let {vn} be any subsequence of {xn} such that A({vn}) = {v}.
By Lemma 2.2, we have limn→∞ (xn, PT (xn)) = 0. We claim that v is a fixed point
of PT .
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To prove this, take {zm} in PT (v). Then

r(zm, {vn}) = lim
n→∞

sup d(zm, vn)

≤ lim
n→∞

sup {d(zm, PT (vn)) + d(PT (vn) , vn)}

≤ lim
n→∞

supH(PT (v), PT (vn))

≤ lim
n→∞

sup d (v, vn)

= r (v, {vn}) .
This gives |r(zm, {vn} − r (v, {vn})| → 0 as m → ∞. By Lemma 1.4, we get
limm→∞ zm = v. Note that Tv ∈ P (K) being proximinal is closed, hence PT (v)
is closed. Moreover, PT (v) is bounded. Consequently limm→∞ zm = v ∈ PT (v).
Hence v ∈ F (PT ) and so v ∈ F (T ). Since limn→∞ d(xn, v) exists from Lemma 2.1,
therefore by the uniqueness of asymptotic center, we have

lim
n→∞

sup d (vn, v) < lim
n→∞

sup d (vn, x)

≤ lim
n→∞

sup d (xn, x)

< lim
n→∞

sup d (xn, v)

= lim
n→∞

sup d (vn, v)

a contradiction. Hence x = u. Therefore A({vn}) = {v} for every subsequence
{vn} of {xn}. Hence {xn} ∆-converges to a fixed point of T (or PT ). �

We now prove some strong convergence theorems. Our first strong convergence
theorem is valid in a complete hyperbolic space. Then we apply this theorem to
obtain two results in a complete and uniformly convex hyperbolic space. We also
use the method of direct construction of Cauchy sequence as indicated by Song and
Cho [9] (and opposed to [8]) but used also by many other authors including [10],[11]
and [13].

Theorem 2.4. Let K be a nonempty closed and convex subset of a complete hy-
perbolic space E and, T, PT and {αn} be as in Lemma 2.2. Let {xn} be the mod-
ifed Picard-Mann hybrid iterative process as defined in (1.2) , then {xn} converges
strongly to a point of F (T ) if and only if lim infn→∞ d(xn, F (T )) = 0.

Proof. The necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F (T )) =
0. By similar methot in Lemma 2.1, we get

d(xn+1, p) ≤ d(xn, p),

which implies
d(xn+1, F (T )) ≤ d(xn, F (T )).

This gives that lim
n→∞

d(xn, F (T )) exists and so by the hypothesis of our theorem,

lim inf
n→∞

d(xn, F (T )) = 0. Therefore we must have lim
n→∞

d(xn, F (T )) = 0.

We now we prove that {xn} is a Cauchy sequence in K. Let m,n ∈ N and
assume m > n. Then it follows (along the lines similar to Lemma 2.1) that

d(xm, p) ≤ d (xn, p)

for all p ∈ F . Thus we have
d (xm, xn) ≤ d (xm, p) + d (p, xn) ≤ 2d (xn, p) .
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Taking inf on the set F , we have d (xm, xn) ≤ d (xn, F (T )). On letting m →
∞, n → ∞ the inequality d (xm, xn) ≤ d (xn, F (T )) shows that {xn} is a Cauchy
sequence in K and hence converges, say to q ∈ K. Now it is left to show that
q ∈ F (T ). Indeed, by d (xn, F (PT )) = infy∈F (PT ) d (xn, y) . So for each ε > 0,

there exists p(ε)n ∈ F (PT ) such that,

d
(
xn, p

(ε)
n

)
< d (xn, F (PT )) +

ε

2
.

This implies limn→∞ d
(
xn, p

(ε)
n

)
≤ ε

2 . From d
(
p
(ε)
n , q

)
≤ d

(
xn, p

(ε)
n

)
+ d (xn, q) it

follows that

lim
n→∞

d
(
p(ε)n , q

)
≤ ε

2
.

Finally,

d (PT (q) , q) ≤ d
(
q, p(ε)n

)
+ d

(
p(ε)n , PT (q)

)
≤ d

(
q, p(ε)n

)
+H

(
PT

(
p(ε)n

)
, PT (q)

)
≤ 2d

(
p(ε)n , q

)
yields d (PT (q) , q) < ε. Since ε is arbitrary, therefore d (PT (q) , q) = 0. Since F is
closed, q ∈ F as required. �

As appropriate our goal, we give the following definitions. The first is the multi-
valued version of condition (I) of Senter and Dotson [25] and second is semi-compact
map.

Definition 2.5. A multivalued nonexpansive mappings T : K → CB(K) where
K a subset of E, are said to satisfy condition (I) if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that
d(x, Tx) ≥ f(d(x, F )) for all x ∈ K.

Definition 2.6. A map T : K → P (K) is called semi-compact if any bounded
sequence {xn} satisfying d(xn, Txn)→ 0 as n→∞ has a convergent subsequence.

We now obtain the following theorem by applying the above theorem in a com-
plete and uniformly convex hyperbolic space where T : K → P (K) satisfies condi-
tion (I).

Theorem 2.7. Let K be a nonempty closed convex subset of a complete and uni-
formly convex hyperbolic space E with monotone modulus of uniform convexity η
and, T, PT and {αn} be as in Lemma 2.2. Suppose that PT satisfy condition (I),
then the modifed Picard-Mann hybrid iterative process {xn} defined in (1.2) con-
verges strongly to p ∈ F .

Proof. By Lemma 2.1, limn→∞ d (xn, p) exists for all p ∈ F (T ). We call it c for
some c ≥ 0.
If c = 0, there is nothing to prove.
Assume c > 0. Now d (xn+1, p) ≤ d (xn, p) gives that

inf
p∈F (T )

d (xn+1, p) ≤ inf
p∈F (T )

d (xn, p) ,
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which means that d(xn+1, F (T )) ≤ d(xn, F (T )).Hence lim
n→∞

d(xn, F (T )) exists.

By using condition (I) and Lemma 2.2,we get

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0.

and so
lim
n→∞

f(d(xn, F (T ))) = 0.

By properties f, we obtain that lim
n→∞

d(xn, F (T )) = 0. Finally applying Theorem

2.4, we get the result. �

The proof of follow theorem is also easy and omitted.

Theorem 2.8. Let K be a nonempty closed convex subset of a uniformly convex
hyperbolic space E with monotone modulus of uniform convexity η and, T, PT and
{αn} be as in Lemma 2.2. Suppose that PT is semi-compact, then the modifed
Picard-Mann hybrid iterative process {xn} defined in (1.2) converges strongly to
p ∈ F .

Remark 2.9. (1) Theorem 2.4 and Theorem 2.7 extends the corresponding results
Khan [4] in three ways: (i) from single valued maps to multivalued maps (ii) from
bounded domain to unbounded domain (ii) from uniformly convex Banach space
to general setup of uniformly convex hyperbolic spaces.
(2) Our theorems sets analogue corresponding results of Khan [4], for multivalued

nonexpansive maps on unbounded domain in a uniformly convex hyperbolic space
X.
(3) Since Picard-Mann hybrid iterative process converges faster than Mann and

Ishikawa iterative processes, our theorems are better than results of Fukhar-ud-din
et al. [27].
(4) Since CAT(0)-spaces are uniformly convex hyperbolic spaces with a ’nice’

monotone modulus of uniform convexity η(r, ε) := ε2

8 , then our results valid in
CAT(0) spaces besides Banach spaces.
(5) Iteration process (1.2) has not been studied in CAT(0) spaces and Banach

spaces for multivalued nonexpansive map so far. Due to hyperbolic spaces are more
general than CAT(0) spaces as well as Banach spaces, the iteration process (1.2)
does not need to be studied for this class of mappings in CAT(0) spaces or Banach
spaces.
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Abstract.

The notions of double-framed soft subalgebras/filters in BE-algebras are introduced and related properties are

investigated. We consider characterizations of double-framed soft subalgebras/filters, and establish a new double-

framed soft subalgebra/filter from old one. Also, we show that the int-uni double-framed soft of two double framed

soft subalgebras/filters is a double framed soft subalgebra/filter.

1. Introduction

In 1966, Imai and Iséki [3] and Iséki [4] introduced two classes of abstract algebras: BCK-

algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of

the class of BCI-algebras. As a generalization of a BCK-algebra, Kim and Kim [10] introduced

the notion of a BE-algebra, and investigated several properties. In [2], Ahn and So introduced

the notion of ideals in BE-algebras. They gave several descriptions of ideals in BE-algebras.

Molodtsov [12] introduced the concept of soft set as a new mathematical tool for dealing with

uncertainties that is free from the difficulties that have troubled the usual theoretical approaches.

Molodtsov pointed out several directions for the applications of soft sets. Worldwide, there has

been a rapid growth in interest in soft set theory and its applications in recent years. Evidence

of this can be found in the increasing number of high-quality articles on soft sets and related

topics that have been published in a variety of international journals, symposia, workshops, and

international conferences in recent years. Maji et al. [11] described the application of soft set

theory to a decision making problem. Jun and Park [9] studied applications of soft sets in ideal

theory of BCK/BCI-algebras. Jun et al. [8] introduced the notion of intersectional soft sets, and

considered its applications to BCK/BCI-algebras. Also, Jun [5] discussed the union soft sets

with applications in BCK/BCI-algebras. Jun et al. [6] introduced the notion of double-framed

soft sets, and applied it to BCK/BCI-algebras. They discussed double-frame soft algebras and

investigated related properties. Jun et al. [7] studied applications of soft sets in BE-algebras.

Ahn et al. [1] introduced the notion of int-soft filters of BE-algebras and investigated related

properties.
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In this paper, we introduce the notions of double-framed soft subalgebras/filters in BE-algebras

and investigated related properties. We consider characterizations of double-framed soft subal-

gebras/filters, and establish a new double-framed soft subalgebra/filter from old one. Also, we

show that the int-uni double-framed soft of two double framed soft subalgebras/filters is a double

framed soft subalgebra/filter.

2. Preliminaries

We recall some definitions and results discussed in [10].

An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X;

(BE2) x ∗ 1 = 1 for all x ∈ X;

(BE3) 1 ∗ x = x for all x ∈ X;

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange)

We introduce a relation “≤” on a BE-algebra X by x ≤ y if and only if x ∗ y = 1. A non-empty

subset S of a BE-algebra X is said to be a subalgebra of X if it is closed under the operation

“ ∗ ”. Noticing that x ∗ x = 1 for all x ∈ X, it is clear that 1 ∈ S.

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F

is called a filter of X if

(F1) 1 ∈ F ;

(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F for all x, y ∈ X.

Proposition 2.2. Let (X; ∗, 1) be a BE-algebra and let F be a filter of X. If x ≤ y and x ∈ F

for any y ∈ X, then y ∈ F .

A soft set theory is introduced by Molodtsov [12]. In what follows, let U be an initial universe

set and X be a set of parameters. Let P(U) denotes the power set of U and A,B,C, · · · ⊆ X.

Definition 2.3. A soft set (f, A) of X over U is defined to be the set of ordered pairs

(f, A) := {(x, f(x)) : x ∈ X, f(x) ∈ P(U)} ,

where f : X → P(U) such that f(x) = ∅ if x /∈ A.

3. Double-framed soft subalgebras

In what follows, we take E = X, as a set of parameters, which is a BE-algebra unless otherwise

specified.

Definition 3.1. A double-framed pair ⟨(α, β);X⟩ is called a double-framed soft set over U, where

α and β are mappings from X to P(U).
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Definition 3.2. A double-framed soft set ⟨(α, β);X⟩ over U is called a double-framed soft

subalgebra over U if it satisfies :

(3.1) (∀x, y ∈ X) (α(x ∗ y) ⊇ α(x) ∩ α(y), β(x ∗ y) ⊆ β(x) ∪ β(y)) .

Example 3.3. Let X be the set of parameters where X := {1, a, b, c, d} is a BE-algebra [7] with

the following Cayley table:
∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 1

d 1 1 1 1 1

Let ⟨(α, β);X⟩ be a double-framed soft set over U defined as follows:

α : X → P(U), x 7→


τ3 if x = 1,

τ1 if x ∈ {a, c, d},
τ2 if x = b,

and

β : X → P(U), x 7→


γ3 if x = 1,

γ1 if x ∈ {a, c, d},
γ2 if x = b

where τ1, τ2, τ3, γ1, γ2 and γ3 are subsets of U with τ1 ⊊ τ2 ⊊ τ3 and γ1 ⊋ γ2 ⊋ γ3 It is routine to

verify that ⟨(α, β);X⟩ is a double-framed soft subalgebra over U.

Lemma 3.4. Every double-framed soft subalgebra ⟨(α, β);X⟩ over U satisfies the following

condition:

(3.2) (∀x ∈ X) (α(x) ⊆ α(1), β(x) ⊇ β(1)) .

Proof. Straightforward. □
Proposition 3.5. For a double-framed soft subalgebra ⟨(α, β);X⟩ over U, the following are

equivalent:

(i) (∀x ∈ X) (α(x) = α(1), β(x) = β(1)) .

(ii) (∀x, y ∈ X) (α(y) ⊆ α(y ∗ x), β(y) ⊇ β(y ∗ x)) .

Proof. Assume that (ii) is valid. Taking y := 1 in (ii) and using (BE3), we have α(1) ⊆ α(1∗x) =
α(x) and β(1) ⊇ β(1 ∗ x) = β(x). It follows from Lemma 3.4 that α(x) = α(1) and β(x) = β(1).

Conversely, suppose that α(x) = α(1) and β(x) = β(1) for all x ∈ X. Using (3.1), we have

α(y) = α(y) ∩ α(1) = α(y) ∩ α(x) ⊆ α(y ∗ x),
β(y) = β(y) ∪ β(1) = β(y) ∪ β(x) ⊇ β(y ∗ x)

for all x, y ∈ X. This completes the proof. □
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For two double-framed soft sets ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U, the double-framed soft int-

uni set of ⟨(α, β);X⟩ and ⟨(f, g);X⟩ is defined to be a double-framed soft set ⟨(α∩̃f, β∪̃g);X⟩
where

α∩̃f : X → P(U), x 7→ α(x) ∩ f(x),
β∪̃g : X → P(U), x 7→ β(x) ∪ g(x).

It is denoted by ⟨(α, β);X⟩ ⊓ ⟨(f, g);X⟩ = ⟨(α∩̃f, β∪̃g);X⟩ .

Theorem 3.6. The double-framed soft int-uni set of two double-framed soft subalgebras ⟨(α, β);X⟩
and ⟨(f, g);X⟩ over U is a double-framed soft subalgebra over U.

Proof. For any x, y ∈ X, we have

(α∩̃f)(x ∗ y) =α(x ∗ y) ∩ f(x ∗ y) ⊇ (α(x) ∩ α(y)) ∩ (f(x) ∩ f(y))
=(α(x) ∩ f(x)) ∩ (α(y) ∩ f(y)) = (α∩̃f)(x) ∩ (α∩̃f)(y)

and

(β∪̃g)(x ∗ y) =β(x ∗ y) ∪ g(x ∗ y) ⊆ (β(x) ∪ β(y)) ∪ (g(x) ∪ g(y))
=(β(x) ∪ g(x)) ∪ (β(y) ∪ g(y)) = (β∪̃g)(x) ∪ (β∪̃g)(y).

Therefore ⟨(α, β);X⟩ ⊓ ⟨(f, g);X⟩ is a double-framed soft subalgebra over U. □

For two double-framed soft sets ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U, the double-framed soft uni-

int set of ⟨(α, β);X⟩ and ⟨(f, g);X⟩ is defined to be a double-framed soft set ⟨(α∪̃f, β∩̃g);X⟩
where

α∪̃f : X → P(U), x 7→ α(x) ∪ f(x),
β∩̃g : X → P(U), x 7→ β(x) ∩ g(x).

It is denoted by ⟨(α, β);X⟩ ⊔ ⟨(f, g);X⟩ = ⟨(α∪̃f, β∩̃g);X⟩ .

The following example shows that the double-framed soft uni-int set of two double-framed soft

subalgebras ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U may not be a double-framed soft subalgebra over

U.

Example 3.7. Let X be the set of parameters where X := {1, a, b, c, d} is a BE-algebra [2] with

the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1
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Let ⟨(α, β);X⟩ and ⟨(f, g);X⟩ be double-framed soft sets over U defined, respectively, as follows:

α : X → P(U), x 7→


τ5 if x = 1,

τ2 if x = a,

τ1 if x = b,

τ3 if x = c,

β : X → P(U), x 7→


γ5 if x = 1,

γ2 if x = a,

γ1 if x = b,

γ3 if x = c,

f : X → P(U), x 7→


τ4 if x = 1,

τ2 if x = a,

τ3 if x = b,

τ1 if x = c,

and

g : X → P(U), x 7→


γ4 if x = 1,

γ2 if x = a,

γ3 if x = b,

γ1 if x = c,

where γ1, γ2, γ3, γ4, γ5, τ1, τ2, τ3, τ4 and τ5 are subsets of U with τ1 ⊊ τ2 ⊊ τ3 ⊊ τ4 ⊊ τ5 and

γ1 ⊋ γ2 ⊋ γ3 ⊋ γ4 ⊋ γ5. It is routine to verify that ⟨(α, β);X⟩ and ⟨(f, g);X⟩ are double-framed

soft subalgebras over U. But ⟨(α, β);X⟩⊔⟨(f, g);X⟩ = ⟨(α∪̃f, β∩̃g);X⟩ is not a double-framed soft

subalgebra over U , since (α∪̃f)(c∗ b) = (α∪̃f)(a) = α(a)∪f(a) = τ2 ⊉ τ3 = (α∪̃f)(c)∩ (α∪̃f)(b)
and/or (β∩̃g)(c ∗ b) = (β∩̃g)(a) = β(a) ∩ g(a) = γ2 ⊈ γ3 = (β∩̃g)(c) ∪ (β∩̃g)(b).

For a double-framed soft set ⟨(α, β);X⟩ over U and two subsets γ and δ of U, the γ-inclusive set

and the δ-exclusive set of ⟨(α, β);X⟩, denoted by iX(α; γ) and eX(β; δ), respectively, are defined

as follows: iX(α; γ) := {x ∈ X | γ ⊆ α(x)} and eX(β; δ) := {x ∈ X | δ ⊇ β(x)} , respectively.
The set DFX (α, β)(γ,δ) := {x ∈ X | γ ⊆ α(x), δ ⊇ β(x)} is called a double-framed including set

of ⟨(α, β);X⟩ . It is clear that DFX (α, β)(γ,δ) = iX(α; γ) ∩ eX(β; δ).

Theorem 3.8. For a double-framed soft set ⟨(α, β);X⟩ over U, the following are equivalent:

(i) ⟨(α, β);X⟩ is a double-framed soft subalgebra over U.

(ii) For every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), the γ-inclusive set and

the δ-exclusive set of ⟨(α, β);X⟩ are subalgebras of X.

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft subalgebra over U. Let x, y ∈ X be such

that x, y ∈ iX(α; γ) and x, y ∈ eX(β; δ) for every subsets γ and δ of U with γ ∈ Im(α) and

δ ∈ Im(β). It follows from (3.1) that

α(x ∗ y) ⊇ α(x) ∩ α(y) ⊇ γ and β(x ∗ y) ⊆ β(x) ∪ β(y) ⊆ δ.
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Hence x ∗ y ∈ iX(α; γ) and x ∗ y ∈ eX(β; δ), and therefore iX(α; γ) and eX(β; δ) are subalgebras

of X.

Conversely, suppose that (ii) is valid. Let x, y ∈ X be such that α(x) = γx, α(y) = γy, β(x) = δx
and β(y) = δy. Taking γ = γx ∩ γy and δ = δx ∪ δy imply that x, y ∈ iX(α; γ) and x, y ∈ eX(β; δ).

Hence x∗y ∈ iX(α; γ) and x∗y ∈ eX(β; δ), which imply that α(x∗y) ⊇ γ = γx∩γy = α(x)∩α(y)
and β(x∗y) ⊆ δ = δx∪δy = β(x)∪β(y). Therefore ⟨(α, β);X⟩ is a double-framed soft subalgebra

over U. □

Corollary 3.9. If ⟨(α, β);X⟩ is a double-framed soft subalgebra over U, then the double-framed

including set of ⟨(α, β);X⟩ is a subalgebra of X.

For any double-framed soft set ⟨(α, β);X⟩ over U, let ⟨(α∗, β∗);X⟩ be a double-framed soft set

over U defined by

α∗ : X → P(U), x 7→
{
α(x) if x ∈ iX(α; γ),

η otherwise,

β∗ : X → P(U), x 7→
{
β(x) if x ∈ eX(β; δ),

ρ otherwise,

where γ, δ, η and ρ are subsets of U with η ⊊ α(x) and ρ ⊋ β(x).

Theorem 3.10. If ⟨(α, β);X⟩ is a double-framed soft subalgebra over U, then so is ⟨(α∗, β∗);X⟩ .

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft subalgebra over U. Then iX(α; γ) and

eX(β; δ) are subalgebras of X for every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), by

Theorem 3.8. Let x, y ∈ X. If x, y ∈ iX(α; γ), then x ∗ y ∈ iX(α; γ). Thus

α∗(x ∗ y) = α(x ∗ y) ⊇ α(x) ∩ α(y) = α∗(x) ∩ α∗(y).

If x /∈ iX(α; γ) or y /∈ iX(α; γ), then α
∗(x) = η or α∗(y) = η. Hence

α∗(x ∗ y) ⊇ η = α∗(x) ∩ α∗(y).

Now, if x, y ∈ eX(β; δ), then x ∗ y ∈ eX(β; δ). Thus

β∗(x ∗ y) = β(x ∗ y) ⊆ β(x) ∪ β(y) = β∗(x) ∪ β∗(y).

If x /∈ eX(β; δ) or y /∈ eX(β; δ), then β
∗(x) = ρ or β∗(y) = ρ. Hence

β∗(x ∗ y) ⊆ ρ = β∗(x) ∪ β∗(y).

Therefore ⟨(α∗, β∗);X⟩ is a double-framed soft subalgebra over U. □

Let ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ be double-framed soft sets over U, where X, Y are BE-algebras.

The (α∧, β∨)-product of ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ is defined to be a double-framed soft set

⟨(αX∧Y , βX∨Y );X × Y ⟩ over U in which

αX∧Y : X × Y → P(U), (x, y) 7→ α(x) ∩ α(y),

βX∨Y : X × Y → P(U), (x, y) 7→ β(x) ∪ β(y).
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Theorem 3.11. For any BE-algebras X and Y as sets of parameters, let ⟨(α, β);X⟩ and

⟨(α, β);Y ⟩ be double-framed soft subalgebras over U. Then the (α∧, β∨)-product of ⟨(α, β);X⟩
and ⟨(α, β);Y ⟩ is also a double-framed soft subalgebra over U.

Proof. Note that (X × Y, ⊛; (1, 1)) is a BE-algebra. For any (x, y), (a, b) ∈ X × Y, we have

αX∧Y ((x, y)⊛ (a, b)) = αX∧Y (x ∗ a, y ∗ b)
= α(x ∗ a) ∩ α(y ∗ b) ⊇ (α(x) ∩ α(a)) ∩ (α(y) ∩ α(b))
= (α(x) ∩ α(y)) ∩ (α(a) ∩ α(b))
= αX∧Y (x, y) ∩ αX∧Y (a, b)

and

βX∨Y ((x, y)⊛ (a, b)) = βX∨Y (x ∗ a, y ∗ b)
= β(x ∗ a) ∪ β(y ∗ b) ⊆ (β(x) ∪ β(a)) ∪ (β(y) ∪ β(b))
= (β(x) ∪ β(y)) ∪ (β(a) ∪ β(b))
= βX∨Y (x, y) ∪ βX∨Y (a, b)

Hence ⟨(αX∧Y , βX∨Y );E × F ⟩ is a double-framed soft subalgebra over U. □

4. Double-framed soft filters

Definition 4.1. A double-framed soft set ⟨(α, β);X⟩ over U is called a double-framed soft filter

over U if it satisfies :

(4.1) (∀x ∈ X) (α(1) ⊇ α(x), β(1) ⊆ β(x)) .

(4.2) (∀x, y ∈ X) (α(x ∗ y) ∩ α(x) ⊆ α(y), β(y) ⊆ β(x ∗ y) ∪ β(x)) .

Example 4.2. Let E = X be the set of parameters where X := {1, a, b, c} is a BE-algebra [1]

with the following Cayley table:
∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

Let ⟨(α, β);X⟩ be a double-framed soft set over U defined, respectively, as follows:

α : X → P(U), x 7→
{
γ2 if x ∈ {1, c},
γ1 if x ∈ {a, b},

and

β : X → P(U), x 7→
{
τ2 if x ∈ {1, c},
τ1 if x ∈ {a, b},

where γ1, γ2, τ1 and τ2 are subsets of X with γ1 ⊊ γ2 and τ2 ⊊ τ1. Then ⟨(α, β);X⟩ is a double-

framed soft filter of X over U .
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Example 4.3. Let E = X be the set of parameters where X := {1, a, b, c} is a BE-algebra with

the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 c

c 1 a b 1

Let ⟨(α, β);X⟩ be a double-framed soft set over U defined as follows:

α : X → P(U), x 7→
{
τ2 if x ∈ {1, a},
τ1 if x ∈ {b, c},

and

β : X → P(U), x 7→
{
δ1 if x ∈ {1, a},
δ2 if x ∈ {b, c},

where τ1, τ2, δ1 and δ2 are subsets of U with τ1 ⊊ τ2 and δ1 ⊊ δ2. Then ⟨(α, β);X⟩ is a double-

framed soft subalgebra over U . But ⟨(α, β);X⟩ is not a double-framed soft filter of X over U ,

since α(a ∗ b) ∩ α(a) = τ2 ⊈ τ1 = α(b) and/or β(b) = δ2 ⊈ δ1 = β(a ∗ b) ∪ β(a).

Theorem 4.4. For a double-framed soft set ⟨(α, β);X⟩ over U, the following are equivalent:

(i) ⟨(α, β);X⟩ is a double-framed soft filter over U.

(ii) For every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), the γ-inclusive set and

the δ-exclusive set of ⟨(α, β);X⟩ are filters of X.

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft filter over U. Let x, y ∈ X be such that

x ∗ y, x ∈ iX(α; γ) and x ∗ y, x ∈ eX(β; δ) for every subsets γ and δ of U with γ ∈ Im(α) and

δ ∈ Im(β). It follows from Definition 4.1 that

α(1) ⊇ α(x) ⊇ γ, δ ⊇ β(x) ⊇ β(1),

α(y) ⊇ α(x ∗ y) ∩ α(x) ⊇ γ and β(y) ⊆ β(x ∗ y) ∪ β(x) ⊆ δ.

Hence 1, y ∈ iX(α; γ) and 1, y ∈ eX(β; δ), and therefore iX(α; γ) and eX(β; δ) are filters of X.

Conversely, suppose that iX(α; γ) and eX(β; δ) are filters of X for all γ, δ ∈ P(U) with

iX(α; γ) ̸= ∅ and eX(β; δ) ̸= ∅. Put α(x) = γ for any x ∈ X. Then x ∈ iX(α; γ). Since

iX(α; γ) is a filter of X, we have 1 ∈ iX(α; γ) and so α(x) = γ ⊆ α(1). For any x, y ∈ X, let

α(x ∗ y) = γx∗y and α(x) = γx. Take γ = γx∗y ∩ γx. Then x ∗ y ∈ iX(α; γ) and x ∈ iX(α; γ) which

imply y ∈ iX(α; γ). Hence α(y) ⊇ γ = γx∗y ∩ γx = α(x ∗ y) ∩ α(x).
For any x ∈ X, let β(x) = δ. Then x ∈ eX(β; δ). Since eX(β; δ) is a filter of X, we have

1 ∈ eX(β; δ) and so β(x) = δ ⊇ β(1). For any x, y ∈ X, let β(x ∗ y) = δx∗y and β(x) = δx.

Take δ = δx∗y ∪ δx. Then x ∗ y ∈ eX(β; δ) and x ∈ eX(β; δ) which imply y ∈ eX(β; δ). Hence

β(y) ⊆ δ = δx∗y ∪ δx = β(x ∗ y) ∪ β(x). Therefore ⟨(α, β);X⟩ is a double-framed soft filter over

U. □
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Proposition 4.5. Every double-framed soft filter ⟨(α, β);X⟩ over U satisfies the following con-

dition:

(i) (∀x, y ∈ X) (x ≤ y ⇒ α(x) ⊆ α(y), β(x) ⊇ β(y)) ,

(ii) (∀a, x ∈ X) (α(a) ⊆ α((a ∗ x) ∗ x), β(a) ⊇ β((a ∗ x) ∗ x)) .

Proof. (i) Assume that x ≤ y for all x, y ∈ X. Then x ∗ y = 1. Hence we have α(x) =

α(1) ∩ α(x) = α(x ∗ y) ∩ α(x) ⊆ α(y) and β(x) = β(1) ∪ β(x) = β(x ∗ y) ∪ β(x) ⊇ β(y).

(ii) Taking y := (a∗x)∗x and x := a in Definition 4.1, we have α((a∗x)∗x) ⊇ α(a∗((a∗x)∗x))∩
α(a) = α((a∗x)∗(a∗x))∩α(a) = α(1)∩α(a) = α(a) and β((a∗x)∗x) ⊆ β(a∗((a∗x)∗x))∪β(a) =
β((a ∗ x) ∗ (a ∗ x)) ∪ β(a) = β(1) ∪ β(a) = β(a). □

Theorem 4.6. Let ⟨(α, β);X⟩ be a double-framed soft set over U. Then ⟨(α, β);X⟩ is a double-

framed soft filter over U if and only if it satisfies the following condition:

(4.3) (∀x, y, z ∈ X)(z ≤ x ∗ y ⇒ α(y) ⊇ α(x) ∩ α(z) and β(y) ⊆ β(x) ∪ β(z)).

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft filter over U . Let x, y, z ∈ X be such

that z ≤ x ∗ y. By Proposition 4.5(i), we have α(y) ⊇ α(x ∗ y) ∩ α(x) ⊇ α(z) ∩ α(x) and

β(y) ⊆ β(x ∗ y) ∪ β(x) ⊆ β(z) ∪ β(x).
Conversely, suppose that ⟨(α, β);X⟩ satisfies (4.3). By (BE2), we have x ≤ x ∗ 1 = 1. Using

(4.3), we obtain α(1) ⊇ α(x) and β(1) ⊆ β(x) for all x ∈ X. By (BE1) and (BE4), we get

x ≤ (x ∗ y) ∗ y for all x, y ∈ X. It follows from (4.3) that α(y) ⊇ α(x ∗ y) ∩ α(x) and β(y) ⊆
β(x ∗ y) ∩ β(x). Therefore ⟨(α, β);X⟩ is a double-framed soft filter over U . □

For any double-framed soft set ⟨(α, β);X⟩ over U, let ⟨(α∗, β∗);X⟩ be a double-framed soft set

over U defined by

α∗ : X → P(U), x 7→
{
α(x) if x ∈ iX(α; γ),

∅ otherwise,

β∗ : X → P(U), x 7→
{
β(x) if x ∈ eX(β; δ),

U otherwise,

where γ, δ are nonempty subsets of U .

Theorem 4.7. If ⟨(α, β);X⟩ is a double-framed soft filter over U, then so is ⟨(α∗, β∗);X⟩ .

Proof. Assume that ⟨(α, β);E⟩ is a double-framed soft filter over U. Then iX(α; γ)(̸= ∅) and

eX(β; δ)(̸= ∅) are filters of X for every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β),

by Theorem 4.4. Hence 1 ∈ iX(α; γ), 1 ∈ eX(β; δ) and so α∗(1) = α(1) ⊇ α(x) = α∗(x), β∗(1) =

β(1) ⊆ β(x) = β∗(x) for all x ∈ X. Let x, y ∈ X. If x ∗ y ∈ iX(α; γ) and x ∈ iX(α; γ), then

y ∈ iX(α; γ). Hence α
∗(y) = α(y) ⊇ α(x ∗ y) ∩ α(x) = α∗(x ∗ y) ∩ α∗(x). If x ∗ y /∈ iX(α; γ) or

x /∈ iX(α; γ), then α
∗(x ∗ y) = ∅ or α∗(x) = ∅. Therefore

α∗(y) ⊇ ∅ = α∗(x ∗ y) ∩ α∗(x).
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Now, if x ∗ y, x ∈ eX(β; δ), then y ∈ eX(β; δ). Thus

β∗(y) = β(y) ⊆ β(x ∗ y) ∪ β(x) = β∗(x ∗ y) ∪ β∗(x).

If x ∗ y /∈ eX(β; δ) or x /∈ eX(β; δ), then β
∗(x ∗ y) = U or β∗(x) = U. Hence

β∗(y) ⊆ β∗(x ∗ y) ∪ β∗(x).

Therefore ⟨(α∗, β∗);X⟩ is a double-framed soft filter over U. □

Theorem 4.8. A double-framed soft set ⟨(α, β);X⟩ over U is a double-framed soft filter over U

if and only if it satisfies the following conditions:

(i) (∀x, y ∈ X)(α(y ∗ x) ⊇ α(x), β(y ∗ x) ⊆ β(x)),

(ii) (∀x, a, b ∈ X)(α((a ∗ (b ∗ x)) ∗ x) ⊇ α(a) ∩ α(b), β((a ∗ (b ∗ x)) ∗ x) ⊆ β(a) ∩ β(b)).

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft filter algebra over U . It follows from

Definition 4.1 that α(y ∗ x) ⊇ α(x ∗ (y ∗ x)) ∩ α(x) = α(1) ∩ α(x) = α(x) and β(y ∗ x) ⊆
β(x ∗ (y ∗ x)) ∪ β(x) = β(1) ∪ β(x) = β(x) for all x, y ∈ X. Using Proposition 4.5(ii), we have

α((a ∗ (b ∗ x)) ∗ x) ⊇ α(b ∗ ((a ∗ (b ∗ x)) ∗ x))∩α(b) = α((a ∗ (b ∗ x)) ∗ (b ∗ x))∩α(b) ⊇ α(a)∩α(b)
and β((a∗ (b∗x))∗x) ⊆ β(b∗ ((a∗ (b∗x))∗x))∪β(b) = β((a∗ (b∗x))∗ (b∗x))∪β(b) ⊆ β(a)∪β(b)
for any a, b, x ∈ X.

Conversely, let ⟨(α, β);X⟩ be a double-framed soft set over U satisfying conditions (i) and (ii).

If y := x in (i), then α(1) = α(x ∗ x) ⊇ α(x) and β(x ∗ x) = β(1) ⊆ β(x) for all x ∈ X. Using

(ii), we have α(y) = α(1 ∗ y) = α(((x ∗ y) ∗ (x ∗ y)) ∗ y) ⊇ α(x ∗ y) ∩ α(x) and β(y) = β(1 ∗ y) =
β(((x ∗ y) ∗ (x ∗ y)) ∗ y) ⊆ β(x ∗ y) ∩ α(x) for all x, y ∈ X. Hence ⟨(α, β);X⟩ is a double-framed

soft filter of X. □

Theorem 4.9. The double-framed soft int-uni set of two double-framed soft filters ⟨(α, β);X⟩
and ⟨(f, g);X⟩ over U is a double-framed soft filter over U.

Proof. For any x, y ∈ X, we have (α∩̃f)(1) = α(1)∩ f(1) ⊇ α(x)∩ f(x) = (α∩̃f)(x), (β∪̃g)(1) =
β(1) ∪ g(1) ⊆ β(x) ∪ g(x) = (β∪̃g)(x) and

(α∩̃f)(y) =α(y) ∩ f(y)
⊇(α(x ∗ y) ∩ α(x)) ∩ (f(x ∗ y) ∩ f(x))
=(α(x ∗ y) ∩ f(x ∗ y)) ∩ (α(x) ∩ f(x))
=(α∩̃f)(x ∗ y) ∩ (α∩̃f)(x)

and

(β∪̃g)(y) =β(y) ∪ g(y)
⊆(β(x ∗ y) ∪ β(x)) ∪ (g(x ∗ y) ∪ g(x))
=(β(x ∗ y) ∪ g(x ∗ y)) ∪ (β(x) ∪ g(x))
=(β∪̃g)(x ∗ y) ∪ (β∪̃g)(x).

Therefore ⟨(α, β);X⟩ ⊓ ⟨(f, g);X⟩ is a double-framed soft filter over U. □
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The following example shows that the double-framed soft uni-int set of two double-framed soft

filter ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U may not be a double-framed soft filter over U.

Example 4.10. Let E = X be the set of parameters where X := {1, a, b, c, d, 0} is a BE-algebra

[2] with the following Cayley table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Let ⟨(α, β);X⟩, ⟨(f, g);X⟩ be double-framed soft sets over U defined as follows:

α : X → P(U), x 7→
{
γ3 if x ∈ {1, c},
γ1 if x ∈ {a, b, d, 0},

β : X → P(U), x 7→
{
τ3 if x ∈ {1, c},
τ1 if x ∈ {a, b, d, 0},

f : X → P(U), x 7→
{
γ4 if x ∈ {1, a, d},
γ2 if x ∈ {c, d, 0},

and

g : X → P(U), x 7→
{
τ4 if x ∈ {1, a, b},
τ2 if x ∈ {c, d, 0},

where γ1, γ2, γ3, γ4, τ1, τ2, τ3 and τ4 are subsets of U with γ1 ⊊ γ2 ⊊ γ3 ⊊ γ4 and τ1 ⊋ τ2 ⊋ τ3 ⊋ τ4.

Then ⟨(α, β);X⟩, ⟨(f, g);X⟩ are double-framed soft filters over U . But ⟨(α, β);X⟩⊔ ⟨(f, g);X⟩ =
⟨(α∪̃f, β∩̃g);X⟩ is not a double-framed soft filter over U , since

(α∪̃f)(c ∗ d) ∩ (α∪̃f)(c) =(α∪̃f)(a) ∩ (α∪̃f)(c)
=(α(a) ∪ f(a)) ∩ (α(c) ∪ f(c))
=γ4 ∩ γ3 = γ3 ⊈ γ2 = γ1 ∪ γ2
=α(d) ∪ f(d) = (α∪̃f)(d)

and/or

(β∩̃g)(c ∗ d) ∪ (β∩̃g)(c) =(β∩̃g)(a) ∪ (β∩̃g)(c)
=(β(a) ∩ g(a)) ∪ (β(c) ∩ g(c))
=(τ1 ∩ τ4) ∪ (τ3 ∩ τ2) = τ4 ∪ τ3 = τ3

⊉τ2 = τ1 ∩ τ2 = β(d) ∩ g(d) = (β∩̃g)(d).
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HYERS-ULAM STABILITY OF ADDITIVE FUNCTION EQUATIONS IN

PARANORMED SPACES

CHOONKIL PARK, SU MIN KWON, AND JUNG RYE LEE∗

Abstract. In this paper, we prove the Hyers-Ulam stability of the following additive functional
equations

f
(
x+ y

2
+ z + w

)
=

1

2
f(x) +

1

2
f(y) + f(z) + f(w),

f
(
x+ y + z

3
+ w

)
=

1

3
f(x) +

1

3
f(y) +

1

3
f(z) + f(w)

in paranormed spaces.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast
[5] and Steinhaus [23] independently and since then several generalizations and applications of
this notion have been investigated by various authors (see [6, 9, 11, 12, 18]). This notion was
defined in normed spaces by Kolk [10].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [25] Let X be a vector space. A paranorm P : X → [0,∞) is a function on X
such that

(1) P (0) = 0;
(2) P (−x) = P (x) ;
(3) P (x+ y) ≤ P (x) + P (y) (triangle inequality)
(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0, then

P (tnxn − tx)→ 0 (continuity of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X.
The paranorm is called total if, in addition, we have
(5) P (x) = 0 implies x = 0.
A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a question of Ulam [24] con-

cerning the stability of group homomorphisms. Hyers [8] gave a first affirmative partial answer
to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [16] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Th.M. Rassias theorem was obtained by Găvruta
[7] by replacing the unbounded Cauchy difference by a general control function in the spirit of
Th.M. Rassias’ approach. See [2, 3, 4, 13, 14, 15, 17, 19, 20, 21, 22] for more information on
the stability problems of functional equations.

2010 Mathematics Subject Classification. Primary 35A17; 39B52; 39B72.
Key words and phrases. Hyers-Ulam stability, paranormed space; functional equation.
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Using the direct method, we prove the Hyers-Ulam stability of the following additive func-
tional equations

f

(
x+ y

2
+ z + w

)
=

1

2
f(x) +

1

2
f(y) + f(z) + f(w), (1.1)

f

(
x+ y + z

3
+ w

)
=

1

3
f(x) +

1

3
f(y) +

1

3
f(z) + f(w) (1.2)

in paranormed spaces.
Throughout this paper, assume that (X,P ) is a Fréchet space and that (Y, ‖ · ‖) is a Banach

space.

2. Hyers-Ulam stability of the functional equation (1.1)

In this section, we prove the Hyers-Ulam stability of the functional equation (1.1) in para-
normed spaces.

Note that P (3x) ≤ 3P (x) for all x ∈ Y .

Theorem 2.1. Let r, θ be positive real numbers with r > 1, and let f : Y → X be an odd
mapping such that

P

(
f

(
x+ y

2
+ z + w

)
− 1

2
f(x)− 1

2
f(y)− f(z)− f(w)

)
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) (2.1)

for all x, y, w, z ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ 4θ

3r − 3
‖x‖r (2.2)

for all x ∈ Y .

Proof. Letting w = z = y = x in (2.1), we get

P (f(3x)− 3f(x)) ≤ 4θ‖x‖r

for all x ∈ Y . So

P

(
f(x)− 3f

(
x

3

))
≤ 4

3r
θ‖x‖r

for all x ∈ Y . Hence

P

(
3lf

(
x

3l

)
− 3mf

(
x

3m

))
≤

m−1∑
j=l

P

(
3jf

(
x

3j

)
− 3j+1f

(
x

3j+1

))
≤ 4

3r

m−1∑
j=l

3j

3rj
θ‖x‖r (2.3)

for all nonnegative integers m and l with m > l and all x ∈ Y . It follows from (2.3) that the
sequence {3nf( x

3n )} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence
{3nf( x

3n )} converges. So one can define the mapping A : Y → X by

A(x) := lim
n→∞

3nf(
x

3n
)

for all x ∈ Y . Moreover, letting l = 0 and passing the limit m→∞ in (2.3), we get (2.2).
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It follows from (2.1) that

P

(
A

(
x+ y

2
+ z + w

)
− 1

2
A(x)− 1

2
A(y)−A(z)−A(w)

)
= lim

n→∞
P

(
3n
(
f

(
x+ y

2 · 3n
+
z + w

3n

)
− 1

2
f

(
x

3n

)
− 1

2
f

(
y

3n

)
− f

(
z

3n

)
− f

(
w

3n

)))
≤ lim

n→∞
3nP

(
f

(
x+ y

2 · 3n
+
z + w

3n

)
− 1

2
f

(
x

3n

)
− 1

2
f

(
y

3n

)
− f

(
z

3n

)
− f

(
w

3n

))
≤ lim

n→∞
3nθ

3nr
(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) = 0

for all x, y, z, w ∈ Y . HenceA
(
x+y
2 + z + w

)
= 1

2A(x)+1
2A(y)+A(z)+A(w) for all x, y, z, w ∈ Y

and so the mapping A : Y → X is additive.
Now, let T : Y → X be another additive mapping satisfying (2.2). Then we have

P (A(x)− T (x)) = P

(
3n
(
A

(
x

3n

)
− T

(
x

3n

)))
≤ 3nP

(
A

(
x

3n

)
− T

(
x

3n

))
≤ 3n

(
P

(
A

(
x

3n

)
− f

(
x

3n

))
+ P

(
T

(
x

3n

)
− f

(
x

3n

)))
≤ 8 · 3n

(3r − 3)3nr
θ‖x‖r,

which tends to zero as n → ∞ for all x ∈ Y . So we can conclude that A(x) = T (x) for all
x ∈ Y . This proves the uniqueness of A. Thus the mapping A : Y → X is a unique additive
mapping satisfying (2.2). �

Theorem 2.2. Let r be a positive real number with r < 1, and let f : X → Y be an odd
mapping such that∥∥∥∥f (x+ y

2
+ z + w

)
− 1

2
f(x)− 1

2
f(y)− f(z)− f(w)

∥∥∥∥ ≤ P (x)r + P (y)r + P (z)r + P (w)r (2.4)

for all x, y, w, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 4

3− 3r
P (x)r (2.5)

for all x ∈ X.

Proof. Letting w = z = y = x in (2.4), we get

‖3f(x)− f(3x)‖ ≤ 4P (x)r

and so ∥∥∥∥f(x)− 1

3
f(3x)

∥∥∥∥ ≤ 4

3
P (x)r

for all x ∈ X. Hence∥∥∥∥ 1

3l
f(3lx)− 1

3m
f(3mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

3j
f(3jx)− 1

3j+1
f(3j+1x)

∥∥∥∥ ≤ 4

3

m−1∑
j=l

3rj

3j
P (x)r (2.6)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6) that the
sequence { 1

3n f(3nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
3n f(3nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

3n
f(3nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.5).
It follows from (2.4) that∥∥∥∥A(x+ y

2
+ z + w

)
− 1

2
A(x)− 1

2
A(y)−A(z)−A(w)

∥∥∥∥
= lim

n→∞
1

3n

∥∥∥∥f (3n
(
x+ y

2
+ z + w

))
− 1

2
f (3nx)− 1

2
f (3ny)− f (3nz)− f (3nw)

∥∥∥∥
≤ lim

n→∞
3nr

3n
(P (x)r + P (y)r + P (z)r + P (w)r) = 0

for all x, y, z, w ∈ X. Thus A
(
x+y
2 + z + w

)
= 1

2A(x)+ 1
2A(y)+A(z)+A(w) for all x, y, z, w ∈ X

and so the mapping A : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖A(x)− T (x)‖ =
1

3n
‖A (3nx)− T (3nx)‖

≤ 1

3n
(‖A (3nx)− f (3nx)‖+ ‖T (3nx)− f (3nx)‖)

≤ 8 · 3nr

(3− 3r)3n
P (x)r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all
x ∈ X. This proves the uniqueness of A. Thus the mapping A : X → Y is a unique additive
mapping satisfying (2.5). �

Similarly, one obtains the following.

Theorem 2.3. Let r, θ be positive real numbers with r > 1
4 , and let f : Y → X be an odd

mapping such that

P

(
f

(
x+ y

2
+ z + w

)
− 1

2
f(x)− 1

2
f(y)− f(z)− f(w)

)
≤ θ‖x‖r‖y‖r‖z‖r‖w‖r

for all x, y, z, w ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ θ

81r − 3
‖x‖4r

for all x ∈ Y .

Theorem 2.4. Let r be a positive real number with r < 1
4 , and let f : X → Y be an odd

mapping such that∥∥∥∥f (x+ y

2
+ z + w

)
− 1

2
f(x)− 1

2
f(y)− f(z)− f(w)

∥∥∥∥ ≤ P (x)rP (y)rP (z)rP (w)r

for all x, y, w, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

3− 81r
P (x)4r

for all x ∈ X.
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3. Hyers-Ulam stability of the functional equation (1.2)

In this section, we prove the Hyers-Ulam stability of the functional equation (1.2) in para-
normed spaces.

Note that P (2x) ≤ 2P (x) for all x ∈ Y .

Theorem 3.1. Let r, θ be positive real numbers with r > 1, and let f : Y → X be an odd
mapping such that

P

(
f

(
x+ y + z

3
+ w

)
− 1

3
f(x)− 1

3
f(y)− 1

3
f(z)− f(w)

)
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) (3.1)

for all x, y, w, z ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ 4θ

2r − 2
‖x‖r

for all x ∈ Y .

Proof. Letting w = z = y = x in (3.1), we get

P (f(2x)− 2f(x)) ≤ 4θ‖x‖r

for all x ∈ Y . So

P

(
f(x)− 2f

(
x

2

))
≤ 4

2r
θ‖x‖r

for all x ∈ Y . Hence

P

(
2lf

(
x

2l

)
− 2mf

(
x

2m

))
≤

m−1∑
j=l

P

(
2jf

(
x

2j

)
− 2j+1f

(
x

2j+1

))
≤ 4

2r

m−1∑
j=l

2j

2rj
θ‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ Y .
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 3.2. Let r be a positive real number with r < 1, and let f : X → Y be an odd
mapping such that∥∥∥∥f (x+ y + z

3
+ w

)
− 1

3
f(x)− 1

3
f(y)− 1

3
f(z)− f(w)

∥∥∥∥ ≤ P (x)r + P (y)r + P (z)r + P (w)r(3.2)

for all x, y, w, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 4

2− 2r
P (x)r

for all x ∈ X.

Proof. Letting w = z = y = x in (3.2), we get

‖2f(x)− f(2x)‖ ≤ 4P (x)r

and so ∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 2P (x)r

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥ ≤ 2
m−1∑
j=l

2rj

2j
P (x)r

for all nonnegative integers m and l with m > l and all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �
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Similarly, one obtains the following.

Theorem 3.3. Let r, θ be positive real numbers with r > 1
4 , and let f : Y → X be an odd

mapping such that

P

(
f

(
x+ y + z

3
+ w

)
− 1

3
f(x)− 1

3
f(y)− 1

3
f(z)− f(w)

)
≤ θ‖x‖r‖y‖r‖z‖r‖w‖r

for all x, y, z, w ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ θ

16r − 2
‖x‖4r

for all x ∈ Y .

Theorem 3.4. Let r be a positive real number with r < 1
4 , and let f : X → Y be an odd

mapping such that ∥∥∥∥f (x+ y + z

3
+ w

)
− 1

3
f(x)− 1

3
f(y)− 1

3
f(z)− f(w)

∥∥∥∥
≤ P (x)rP (y)rP (z)rP (w)r

for all x, y, w, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2− 16r
P (x)4r

for all x ∈ X.
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New Uzawa-type method for nonsymmetric saddle point problems

Shu-Xin Miao1 Juan Li

College of Mathematics and Statistics,Northwest Normal University, Lanzhou, 730070, China

Abstract

In this paper, based on the Hermitian and skew-Hermitian splitting of the non-Hermitian positive definite (1, 1)-
block of the saddle point matrix, a new Uzawa-type iteration method is proposed for solving a class of nonsymmetric
saddle point problems. The convergence properties of this iteration method are analyzed. Numerical results verify the
effectiveness and robustness of the proposed method.

Keywords: Saddle-point problem, Uzawa-type iteration method, Convergence
2000 MSC: 65F10, 65F50

1. Introduction

Consider the nonsymmetric saddle point problems of the form

Au =
[

A B
B∗ 0

] [
x
y

]
=

[
f
g

]
= b, (1)

where A ∈ Cn×n is a non-Hermitian positive definite matrix, B ∈ Cn×m is a rectangular matrix of full column rank,
f ∈ Cn and g ∈ Cm are given vectors, with m ≤ n.

The saddle point problem (1) arises in a variety of scientific and engineering applications, such as computational
fluid dynamics, constrained optimization, optimal control, weighted least squares problems, electronic networks and
computer graphics, and typically result from mixed or hybrid finite element approximation of second-order elliptic
problems or the Stokes equations; see [1, 12] and the references therein.

Since matrix blocks A and B are large and sparse, (1) is suitable for being solved by the iterative methods. Most
efficient iterative methods have been studied in many literatures, including Uzawa-type methods [10, 11, 14, 16], Her-
mitian and skew-Hermitian splitting (HSS) iterative method and its variant schemes [3, 5, 6, 7, 9, 17], preconditioned
Krylov subspace iterative methods [3, 15] and so on. See [1, 12] and the references therein for a comprehensive survey
about iterative methods and preconditioning techniques.

Within these methods, Uzawa method received wide attention and obtained considerable achievements in recent
years. The iteration scheme of Uzawa method can be described, for a positive parameter τ, as{

xk+1 = A−1( f − Byk),
yk+1 = yk + τ(B∗xk+1 − g).

Note that there is a linear system Ax = q needs to be solved at each step of Uzawa method, we prefer to use iterative
method to approximate its solution since matrix A is always large and sparse. When A is Hermitian positive definite,
by using classical splitting iteration to approximate xk+1 in each step of Uzawa method, a class of Uzawa-type iteration
methods for solving the Hermitian saddle-point problems are studied in [21, 22]. When A is no-Hermitian positive
definite, we can split A as

A = H + S , with H =
1
2

(A + A∗), S =
1
2

(A − A∗), (2)

1Corresponding author. Email: shuxinmiao@gmail.com.
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and then approximate xk+1 in each step of Uzawa method by using the efficient HSS method [7], then the Uzawa-HSS
method for solving nonsingular non-Hermitian saddle point problem is propsed; see [19, 20].

The HSS method received much attentions as it is an efficient and robust method for solving non-Hermitian
positive definite systems of linear equations; see for example [2, 4, 7, 8, 9, 13, 18]. There are two linear subsystems
with αIn + H and αIn + S needs to be solved at each step of the HSS method. Here and in the sequence of the paper
Ii denotes the identity matrix with order i. The solution of linear subsystem with αIn + H can be easily obtained by
CG method, however, the solution of linear subsystem with αIn + S is not easy to obtain. To avoid solving a shift
skew-Hermitian linear subsystem with αIn + S , based on the splitting (2), a new iteration method is presented for
solving non-Hermitian positive definite system of linear equations [18] recently. The iteration scheme of new method
used for solving Ax = q can be written as{

Hxk+1/2 = −S xk + q,
(αIn + H)xk+1 = (αIn − S )xk+1/2 + q. (3)

Theoretical analysis as well as numerical experiments show that the new method (3) is also an efficient and robust
method for solving non-Hermitian positive definite and normal linear system with strong Hermitian parts [18].

In this paper, to avoid solving a shift skew-Hermitian linear subsystem at each step of Uzawa method, we use
the iteration (3) to approximate xk+1, then a new Uzawa-type method is established. The convergence properties
of this novel method for saddle point problem (1) will be carefully analyzed. In addition, we test the effectiveness
and robustness of the proposed method by comparing its iteration number and elapsed CPU time with those of the
Uzawa-HSS [19, 20] and the GMRES methods.

2. A Uzawa-type method

The iteration scheme (3) in [18] used for solving non-Hermitian positive definite and normal linear system Ax = q
can be written equivalently as

xk+1 = T (α)xk + N(α)q,

here α is a positive iteration parameter,
T (α) = (αIn + H)−1(αIn − S )H−1(−S )

= (αIn + H)−1H−1(αIn − S )(−S )
N(α) = (αIn + H)−1

(
In + (αIn − S )H−1

)
= (αIn + H)−1H−1(αIn + H − S ).

In this paper, we assumption that the (1, 1)-block matrix A of (1) is normal, i.e., AA∗ = A∗A.
Introducing a Hermitian positive definite preconditioning matrix Q for the iteration scheme, and using iteration

(3) to approximate xk+1, then we present the following Uzawa-type method for solving the saddle point problem (1):

Method 2.1. (New Uzawa-type method). Given initial guesses x0 ∈ Cn and y0 ∈ Cm, for k = 0, 1, 2 · · ·, until xk and
yk convergence

(i) compute xk+1 from iteration scheme xk+1 = T (α)xk + N(α)( f − Byk);
(ii) compute yk+1 from iteration scheme yk+1 = yk + τQ−1(B∗xk+1 − g).

The Method 2.1 can be equivalently written in matrix-vector form as:[
xk+1
yk+1

]
= G(α, τ)

[
xk

yk

]
+ M(α, τ)

[
f
g

]
. (4)

where

G(α, τ) =
[

T (α) − N(α)B
τQ−1B∗T (α) Im − τQ−1B∗N(α)B

]
(5)

is the iteration matrix of Method 21 and

M(α, τ) =
[

N(α) 0
τQ−1B∗N(α) − τQ−1

]
.
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Notice that Method 2.1 possess the same iteration scheme as the Uzawa-HSS method [20, 19], hence the efficiency
and robustness of the Uzawa-HSS method may be followed by Method 2.1. Moreover, Method 2.1 use iteration (3) to
approximate xk+1, the solution of the shift skew-Hermitian subsystem is avoided, we may hope that Method 2.1 uses
less CPU time and iteration number comparing with the Uzawa-HSS method.

3. Convergence of Method 2.1

In this section, we study the convergence of Method 2.1 used for solving saddle-point problem (1). It is well
known that Method 2.1 is convergent if and only if the spectral radius of G(α, τ) is less than 1, i.e., ρ(G(α, τ)) < 1.
Let λ be an eigenvalue of G(α, τ) and [u∗, v∗]∗ be the corresponding eigenvector. Then we have{

(αIn − S )(−S )u − (αIn + H − S )Bv = λH(αIn + H)u,
λB∗u − λ

τ
Qv = − 1

τ
Qv. (6)

To study the convergence of Method 2.1, a lemma is given first.

Lemma 3.1. [11] Both roots of the complex quadratic equation λ2 − ϕλ + ψ = 0 have modulus less than one if and
only if |ϕ − ϕψ| + |ψ|2 < 1, where ϕ denotes the conjugate complex of ϕ.

For the convergence of Method 2.1, we have the following results.

Lemma 3.2. Let A be non-Hermitian positive definite and normal, and B be of full column rank. If λ is an eigenvalue
of iteration matrix G(α, τ), and [u∗, v∗]∗ is the corresponding eigenvector with u ∈ Cn and v ∈ Cm, then λ , 1 and
u , 0.

Proof. If λ = 1, noticing that τ is a positive parameter, then from (6) we have{
Au + Bv = 0,
B∗u = 0.

It is easy to see that the coefficient matrix
[

A B
B∗ 0

]
is nonsingular, hence we have u = 0 and v = 0, which contradicts

the assumption that [u∗, v∗]∗ is an eigenvector of the iteration matrix G(α, τ), so λ , 1.
If u = 0 then the first equality in (6) reduce to Bv = 0. Because B is a matrix of full column rank, we can obtain

v = 0, which is a contradiction. Hence u , 0. �

Theorem 3.1. Let A be non-Hermitian positive definite and normal, B be of full column rank, Q be Hermitian pos-
itive definite. Then Method 2.1 used for solving nonsingular saddle-point problem (1) is convergent if and only if
parameters α and τ satisfy

α > max


−ω3

1 +

√
µ2

n(ω4
n + µ

2
nω

2
n − µ4

1)

ω2
1 − µ2

n
, 0

 , when ω2
1 > µ

2
n

or

0 < α <
ω3

1 +

√
µ2

1(ω4
1 + ω

2
1µ

2
1 − µ4

n)

µ2
n − ω2

1

, when ω2
1 < µ

2
n

or
α > 0, when ω2 = µ2

and

0 < τ <
2[(αω1 + ω

2
1)2 − α2µ2

n − µ4
n][ω1(α + ω1)2 + ω1µ

2
1]

tnω2
n[(α + ωn)2 + µ2

n]2 + tnµ2
n[α2 + µ2

n − ω2
1]2

.

where ω = u∗Hu
u∗u , t = u∗BQ−1B∗u

u∗u , and iµ = u∗(−S )u
u∗u , i is the imaginary unit, µ1 and µn are the minimum and the maximum

value of µ, ω1 and ωn are the minimum and the maximum value of ω, t1 and tn are the minimum and the maximum
value of t, respectively.
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Proof Due to the result of Lemma 3.2 that λ , 1 and the assumption Q is Hermitian positive definite, solving v
from the second equality of (6) and then taking it into the first equality of (6), we have

(αIn − S )(−S )u +
τλ

1 − λ (αIn + H − S )BQ−1B∗v = λH(αIn + H)u. (7)

From Lemma 3.2, we known that u , 0. Multiplying u∗/(u∗u) to the both sides of (7) from left gives

u∗(αIn − S )(−S )u
u∗u

+
λτ

1 − λ
u∗(αIn + H − S )BQ−1B∗u

u∗u
= λ

u∗H(αIn + H)u
u∗u

. (8)

Denote

ω =
u∗Hu
u∗u

, t =
u∗BQ−1B∗u

u∗u
, iµ =

u∗(−S )u
u∗u

,

where i is the imaginary unit. It is easy to see that ω, t > 0, and (8) can be rewritten as

λ2 − ϕλ + ψ = 0, (9)

where

ϕ =
αω + ω2 − µ2 − ατt − ωτt + (αµ − τµt)i

αω + ω2 , ψ =
αµi − µ2

αω + ω2 .

It follows from Lemma 3.1 that |λ| < 1 if and only if |ϕ − ϕψ| + |ψ|2 < 1. After some careful calculations we have

|ϕ − ϕψ| + |ψ|2 =
ζ1(α) +

√
ζ2(α, τ)

ζ3(α)
,

where
ζ1(α) = (αµ)2 + (µ2)2,
ζ2(α, τ) = [(αω + ω2)2 − µ4 − α2µ2 − (ατt + ωτt)(αω + ω2) − µ2ωτt]2

+ [α2µτt − ω2µτt + µ3τt]2,
ζ3(α) = (αω + ω2)2.

Therefore, |ϕ − ϕψ| + |ψ|2 < 1 if and only if{
ζ3(α) − ζ1(α) > 0,
ζ2(α, τ) < [ζ3(α) − ζ1(α)]2.

(10)

Solving (10) yields

α > max


−ω3

1 +

√
µ2

n(ω4
n + µ

2
nω

2
n − µ4

1)

ω2
1 − µ2

n
, 0

 , when ω2
1 > µ

2
n

or

0 < α <
ω3

1 +

√
µ2

1(ω4
1 + ω

2
1µ

2
1 − µ4

n)

µ2
n − ω2

1

, when ω2
1 < µ

2
n

or
α > 0, when ω2 = µ2

and

0 < τ <
2[(αω1 + ω

2
1)2 − α2µ2

n − µ4
n][ω1(α + ω1)2 + ω1µ

2
1]

tnω2
n[(α + ωn)2 + µ2

n]2 + tµ2
n[α2 + µ2

n − ω2
1]2

,

where µ1 and µn are the minimum and the maximum value of µ, ω1 and ωn are the minimum and the maximum value
of ω, t1 and tn are the minimum and the maximum value of t, respectively.

Noticing that α, τ > 0, the proof is completed. �
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4. Numerical results

In this section, we verify the feasibility and efficiency of the Method 2.1 used for solving nonsingular saddle point
problems. In the implementation, all the tested methods are started from zero vector and terminated once the current
iterate xk satisfies

RES =

√
∥ f − Axk − Byk∥22 + ∥g − B∗xk∥22

∥ f ∥22 + ∥g∥22
< 10−6. (11)

All codes were run in MATLAB [version 7.11.0.584 (R2010b)] in double precision and all experiments were per-
formed on a personal computer with 3.10 GHz central processing unit [Intel(R) Core(TM) i5-2400] and 4.00G mem-
ory.

To test the efficiency of Method 2.1, we compare the numerical results including iteration steps (denoted as IT),
elapsed CPU time in seconds (denoted as CPU) and relative residuals (denoted as RES) of Method 2.1 with those of
the Uzawa-HSS method and the GMRES method. The parameters α and τ involved in the Uzawa-HSS method and
Method 2.1 are chosen to be the experimentally found optimal ones, which result in the least number of iteration steps
of iteration methods. In actual computations, we choose right-hand-side vector [ f ∗, g∗]∗ such that the exact solution
of (1) is x∗ with all elements 1.

Example 4.1. Let us consider the nonsingular saddle-point problem (1) with coefficient matrix as

A =
[

Il ⊗ T + T ⊗ Il 0
0 Il ⊗ T + T ⊗ Il

]
∈ R2l2×2l2

and

B =
[

Il ⊗ F
F ⊗ Il

]
∈ R2l2×l2 ,

where
T =

1
h2 tridiag(−1, 2, 1) +

1
2h

tridiag(−1, 0, 1) ∈ Rl×l, F =
1
h

tridiag(−1, 1, 0) ∈ Rl×l,

⊗ denotes the Kronecker product symbol and h = 1/(l + 1) is the discretization mesh-size, see [10].

Table 1: Numerical results for Example 4 with Q = tridiag(B∗diag(A)−1B)

Method α τ IT CPU RES

l = 16 Method 2.1 2.33 0.55 75 0.2184 9.7244e-7
Uzawa–HSS 466.67 0.35 130 0.2184 9.2829e-7

GMRES – – 140 0.2184 9.3640e-7
l = 32 Method 2.1 0.33 0.50 126 0.9204 9.6381e-7

Uzawa–HSS 966.67 0.20 363 2.1060 9.9231e-7
GMRES – – 280 5.7720 9.1950e-7

l = 64 Method 2.1 0.33 0.50 191 5.1012 9.7577e-7
Uzawa–HSS > 1000

GMRES – – 579 63.2116 9.9990e-7

In Table 1, we report the numerical results for Example 4, respectively. The experimentally optimal parameters,
α and τ of Method 21 and Uzawa-HSS method, the iteration steps, the elapsed CPU time in seconds and the relative
residuals, of Method 21, the Uzawa-HSS method and GMRES methods are listed.

From Table 1, we see that all of the three testing methods can converge to the approximate solution of saddle point
problem (1). The Uzawa-HSS and GMRES methods needs more iteration steps and CPU time than Method 2.1 to
converges. The proposed method, i.e., Method 2.1, is the most efficient one, which use least iteration steps and CPU
times than the Uzawa-HSS and GMRES methods to achieve stopping criterion (11).
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5. Conclusions

In this work, based on the Hermitian and skew-Hermitian splitting of the non-Hermitian positive (1, 1)-block of the
saddle point matrix, we propose a new Uzawa-type iteration method to solve nonsymmetric saddle point problems (1).
We demonstrate the convergence properties of the proposed method for saddle point problem (1) when the parameters
satisfy some moderate conditions. Numerical results verified the effectiveness of the proposed method.

However, the proposed method involves two iteration parameters α and τ. The choices of the two parameters
was not discussed in this work since it is a very difficult and complicated task. Considering that the efficiency of the
proposed method largely depends on the choices of the two parameters, how to determine efficient and easy calculated
parameters should be a direction for future research.
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FUZZY HYERS-ULAM STABILITY FOR GENERALIZED ADDITIVE

FUNCTIONAL EQUATIONS

SUNG JIN LEE, HASSAN AZADI KENARY AND CHOONKIL PARK∗

Abstract. In this paper, we prove the Hyers-Ulam stability of the following additive functional
equation ∑

1≤i<j≤m

f

xi + xj

2
+

m−2∑
l=1,kl ̸=i,j

xkl

 =
(m− 1)2

2

m∑
i=1

f(xi)

in fuzzy Banach spaces, where m is a positive integer greater than 3.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [35] concerning the

stability of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of

Ulam for Banach spaces. Hyers’ Theorem was generalized by Th. M. Rassias [28] for linear mappings

by considering an unbounded Cauchy difference.

Theorem 1.1. ([28]) Let f : E → E′ be a mapping from a normed vector space E into a Banach

space E′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)
for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and 0 ≤ p < 1. Then the limit L(x) =

limn→∞
f(2nx)

2n exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥f(x)− L(x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is linear.

In this paper, we consider the following functional equation∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

 =
(m− 1)2

2

m∑
i=1

f(xi) (1)

and prove the Hyers-Ulam stability of the functional equation (1) in fuzzy Banach spaces.

First, we introduce the following lemma due to Najati and Ramjbar [20] with n = 3 in (1).

Lemma 1.2. Let X and Y be linear spaces. A mapping f : X → Y satisfies the equation

f

(
x+ y

2
+ z

)
+ f

(
x+ z

2
+ y

)
+ f

(
y + z

2
+ x

)
= 2[f(x) + f(y) + f(z)] (2)

for all x, y, z ∈ X if and only if f is additive.

2010 Mathematics Subject Classification: 39B52; 46S40; 26E50
Key words and phrases: Hyers-Ulam stability; Cauchy-Jensen additive functional equation; fuzzy normed space.

∗Corresponding author.
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

545 SUNG JIN LEE ET AL 545-558



S. Lee, H. A.Kenary, C. Park

It is noted that the following equation with z = 0 in (2)

f

(
x+ y

2

)
+ f

(x
2
+ y
)
+ f

(
x+

y

2

)
= 2f(x) + 2f(y)

is equivalent to f(x+ y) = f(x) + f(y) for all x, y ∈ X.

We introduce the following lemma due to J.M. Rassias and Kim [27].

Lemma 1.3. Let X and Y be linear spaces and let m ≥ 3 be a fixed positive integer. A mapping

f : X → Y satisfies the functional equation

∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

 =
(m− 1)2

2

m∑
i=1

f(xi)

for all x1, x2, · · · , xm ∈ X if and only if f is an additive mapping.

The stability problems of several functional equations have been extensively investigated by a

number of authors, and there are many interesting results concerning this problem (see [5]–[7], [9,

10, 12, 19], [21]–[25], [29]–[31], [32]–[34]).

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector topological

structure on the space. Some mathematicians have defined fuzzy norms on a vector space from

various points of view (see [8], [15]–[18], [26]). In particular, Bag and Samanta [1], following Cheng

and Mordeson [3], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric

is of Karmosil and Michalek type [13]. They established a decomposition theorem of a fuzzy norm

into a family of crisp norms and investigated some properties of fuzzy normed spaces [2].

2. Preliminaries

Definition 2.1. ([1, 17, 18]) Let X be a real vector space. A function N : X × R → [0, 1] is called

a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N
(
x, t

|c|

)
if c ̸= 0;

(N4) N(x+ y, c+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and limt→∞N(x, t) = 1;

(N6) for x ̸= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space. The properties of fuzzy normed vector

space and examples of fuzzy norms are given in [17, 18].

Example 2.2. Let (X, ∥.∥) be a normed linear space and α, β > 0. Then

N(x, t) =

{ αt
αt+β∥x∥ t > 0, x ∈ X

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 2.3. ([1, 17, 18]) Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X

is said to be convergent or converge if there exists an x ∈ X such that limt→∞N(xn − x, t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn} in X and we denote it by

N − limt→∞ xn = x.
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Definition 2.4. ([1, 17, 18]) Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is

called Cauchy if for each ϵ > 0 and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all

p > 0, we have N(xn+p − xn, t) > 1− ϵ.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each

Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed

vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at

a point x ∈ X if for each sequence {xn} converging to x0 ∈ X, then the sequence {f(xn)} converges

to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous on X

(see [2]).

Definition 2.5. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X

if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 2.6. ([4]) Let (X, d) be a complete generalized metric space and J : X → X be a strictly

contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

3. Fuzzy stability of the functional equation (1): a direct method

In this section, using the direct method, we prove the Hyers-Ulam stability of the functional

equation (1) in fuzzy Banach spaces. Throughout this section, we assume that X is a linear space,

(Y,N) is a fuzzy Banach space and (Z,N ′) is a fuzzy normed space. Moreover, we assume that

N(x, .) is a left continuous function on R.

Theorem 3.1. Assume that a mapping f : X → Y satisfies the inequality

N

 ∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t


≥ N ′(φ(x1, · · · , xm), t) (3)

for all x1, · · · , xm ∈ X, t > 0 and φ : Xm → Z is a mapping for which there is a constant r ∈ R
satisfying 0 < |r| < 1

m−1 such that

N ′
(
φ

(
x1

m− 1
,

x2
m− 1

, · · · , xm
m− 1

)
, t

)
≥ N ′

(
φ(x1, · · · , xm),

t

|r|

)
(4)

for all x1, · · · , xm ∈ X and all t > 0. Then there is a unique additive mapping A : X → Y satisfying

(1) and the inequality

N(f(x)−A(x), t) ≥ N ′
(

2|r|φ(x, x, · · · , x)
m(m− 1)(1− |r|(m− 1))

, t

)
(5)
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for all x ∈ X and all t > 0.

Proof. It follows from (4) that

N ′
(
φ

(
x1

(m− 1)j
,

x2
(m− 1)j

, · · · , xm
(m− 1)j

)
, t

)
≥ N ′

(
rj−1φ(x1, · · · , xm),

t

|r|

)
= N ′

(
φ(x1, x2, · · · , xm),

t

|r|j

)
, (6)

and so

N ′
(
φ

(
x1

(m− 1)j
,

x2
(m− 1)j

, · · · , xm
(m− 1)j

)
, |r|jt

)
≥ N ′ (φ(x1, x2, · · · , xm), t)

for all x1, · · · , xm ∈ X and all t > 0.

Substituting x1 = x2 = · · · = xm = x in (3), we obtain

N

(
m(m− 1)

2
f((m− 1)x)− m(m− 1)2

2
f(x), t

)
≥ N ′(φ(x, x, · · · , x), t), (7)

and so

N

(
f(x)− (m− 1)f

(
x

m− 1

)
,

2t

m(m− 1)

)
≥ N ′

(
φ

(
x

m− 1
,

x

m− 1
, · · · , x

m− 1

)
, t

)
(8)

for all x ∈ X and all t > 0. Replacing x by x
(m−1)j

in (8), we have

N

(
(m− 1)j+1f

(
x

(m− 1)j+1

)
− (m− 1)jf

(
x

(m− 1)j

)
,
2(m− 1)j−1t

m

)
(9)

≥ N ′
(
φ

(
x

(m− 1)j+1
,

x

(m− 1)j+1
, · · · , x

(m− 1)j+1

)
, t

)
≥ N ′

(
φ(x, x, · · · , x), t

|r|j+1

)
for all x ∈ X, all t > 0 and all integer j ≥ 0. So

N

f(x)− (m− 1)nf

(
x

(m− 1)n

)
,
n−1∑
j=0

2(m− 1)j |r|j+1t

m(m− 1)


= N

n−1∑
j=0

[
(m− 1)j+1f

(
x

(m− 1)j+1

)
− (m− 1)jf

(
x

(m− 1)j

)]
,
n−1∑
j=0

2(m− 1)j |r|j+1t

m(m− 1)


≥ min

0≤j≤n−1

{
N

(
(m− 1)j+1f

(
x

(m− 1)j+1

)
− (m− 1)jf

(
x

(m− 1)j

)
,
2(m− 1)j |r|j+1t

m(m− 1)

)}
≥ N ′(φ(x, x, · · · , x), t)

which implies

N

(m− 1)n+pf

(
x

(m− 1)n+p

)
− (m− 1)pf

(
x

(m− 1)p

)
,

n−1∑
j=0

2(m− 1)j+p|r|j+1t

m(m− 1)


≥ N ′

(
φ

(
x

(m− 1)p
,

x

(m− 1)p
, · · · , x

(m− 1)p

)
, t

)
≥ N ′

(
φ(x, x, · · · , x), t

|r|p

)
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for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. So

N

(m− 1)n+pf

(
x

(m− 1)n+p

)
− (m− 1)pf

(
x

(m− 1)p

)
,
n−1∑
j=0

2(m− 1)j+p|r|j++p+1t

m(m− 1)


≥ N ′(φ(x, x, · · · , x), t)

for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. Hence one obtains

N

(
(m− 1)n+pf

(
x

(m− 1)n+p

)
− (m− 1)pf

(
x

(m− 1)p

)
, t

)
(10)

≥ N ′

(
φ(x, x, · · · , x), t

2(m−1)p−1|r|p+1

m

∑n−1
j=0 (m− 1)j |r|j

)

for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. Since the series
∑∞

j=0(m− 1)j |r|j is a convergent

series, we see by taking the limit p→ ∞ in the last inequality that a sequence
{
(m−1)nf

(
x

(m−1)n

)}
is a Cauchy sequence in the fuzzy Banach space (Y,N) and so it converges in Y .

Therefore, a mapping A : X → Y defined by A(x) := N − limn→∞(m − 1)nf
(

x
(m−1)n

)
is well

defined for all x ∈ X. It means that

lim
n→∞

N

(
A(x)− (m− 1)nf

(
x

(m− 1)n

)
, t

)
= 1 (11)

for all x ∈ X and all t > 0. In addition, it follows from (10) that

N

(
f(x)− (m− 1)nf

(
x

(m− 1)n

)
, t

)
≥ N ′

φ(x, x, · · · , x), t
2|r|

m(m−1)

∑n−1
j=0 (m− 1)j |r|j


for all x ∈ X and all t > 0. So

N(f(x)−A(x), t)

≥ min

{
N

(
f(x)− (m− 1)nf

(
x

(m− 1)n

)
, (1− ϵ)t

)
, N

(
A(x)− (m− 1)nf

(
x

(m− 1)n

)
, ϵt

)}

≥ N ′

φ(x, x, · · · , x), t
2|r|

m(m−1)

∑n−1
j=0 (m− 1)j |r|j


≥ N ′

(
φ(x, x, · · · , x), m(m− 1)(1− |r|(m− 1))ϵt

2|r|

)
for sufficiently large n and for all x ∈ X, t > 0 and ϵ with 0 < ϵ < 1. Since ϵ is arbitrary and N ′ is

left continuous, we obtain

N(f(x)−A(x), t) ≥ N ′
(
φ(x, x, · · · , x), m(m− 1)(1− |r|(m− 1))t

2|r|

)
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for all x ∈ X and t > 0. It follows from (3) that

N

(
(m− 1)n

[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+
m−2∑

l=1,kl ̸=i,j

xkl
(m− 1)n

− (m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
, t

)

≥ N ′
(
φ

(
x1

(m− 1)n
,

x2
(m− 1)n

, · · · , xm
(m− 1)n

)
,

t

(m− 1)n

)
≥ N ′

(
φ(x1, x2, · · · , xm),

t

(m− 1)n|r|n

)
for all x1, x2, · · · , xm ∈ X, t > 0 and all n ∈ N. Since

lim
n→∞

N ′
(
φ(x1, x2, · · · , xm),

t

(m− 1)n|r|n

)
= 1,

N

(
(m− 1)n

[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+

m−2∑
l=1,kl ̸=i,j

xkl
(m− 1)n

− (m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
, t

)
→ 1

for all x1, x2, · · · , xm ∈ X and all t > 0. Therefore, we obtain, in view of (11),

N

 ∑
1≤i<j≤m

A

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

A(xi), t


≥ min

{
N

( ∑
1≤i<j≤m

A

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

A(xi)

−(m− 1)n
[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+

m−2∑
l=1,kl ̸=i,j

xkl
(m− 1)n

− (m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
,
t

2

)
,

N

(
(m− 1)n

[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+
m−2∑

l=1,kl ̸=i,j

xkl
(m− 1)n

− (m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
,
t

2

)}

= N

(
(m− 1)n

[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+

m−2∑
l=1,kl ̸=i,j

xkl
(m− 1)n

− (m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
,
t

2

)

≥ N ′
(
φ(x1, x2, · · · , xm),

t

2(m− 1)n|r|n

)
→ 1 as n→ ∞

which implies

∑
1≤i<j≤m

A

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

 =
(m− 1)2

2

m∑
i=1

A(xi)

for all x1, x2, · · · , xm ∈ X. Thus A : X → Y is a mapping satisfying (1) and (5).
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To prove the uniqueness, assume that there is another mapping L : X → Y which satisfies the

inequality (5). Since L((m− 1)nx) = (m− 1)nL(x) for all x ∈ X, we have

N(A(x)− L(x), t)

= N

(
(m− 1)nA

(
x

(m− 1)n

)
− (m− 1)nL

(
x

(m− 1)n

)
, t

)
≥ min

{
N

(
(m− 1)nA

(
x

(m− 1)n

)
− (m− 1)nf

(
x

(m− 1)n

)
,
t

2

)
N

(
(m− 1)nf

(
x

(m− 1)n

)
− (m− 1)nL

(
x

(m− 1)n

)
,
t

2

)}
,

≥ N ′
(
φ

(
x1

(m− 1)n
,

x2
(m− 1)n

, · · · , xm
(m− 1)n

)
,
m(m− 1)(1− |r|(m− 1))t

4|r|(m− 1)n

)
≥ N

(
φ(x, x, · · · , x), m(m− 1)(1− |r|(m− 1))t

4|r|n+1(m− 1)n

)
→ 1 as n→ ∞ by (N5)

for all t > 0. Therefore, A(x) = L(x) for all x ∈ X, which completes the proof. □

Corollary 3.2. Let X be a normed spaces and (R, N ′) a fuzzy Banach space. Assume that there

exist real numbers θ ≥ 0 and 0 < p < 2 such that a mapping f : X → Y with f(0) = 0 satisfies the

following inequality

N

 ∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t

 ≥ N ′

θ
 m∑

j=1

∥xj∥p
 , t


for all x1, x2, · · · , xm ∈ X and t > 0. Then there is a unique additive mapping A : X → Y that

satisfying (1) and the inequality

N(f(x)−A(x), t) ≥ N ′
(

2θ∥x∥p

m3 − 4m2 + 5m− 2
, t

)
Proof. Let φ(x1, x2, · · · , xm) := θ

(∑m
j=1 ∥xj∥p

)
and |r| = 1

(m−1)2
. Applying Theorem 3.1, we get

the desired result. □

Theorem 3.3. Assume that a mapping f : X → Y with f(0) = 0 satisfies the inequality (3) and

φ : Xm → Z is a mapping for which there is a constant r ∈ R satisfying 0 < |r| < m− 1 such that

N ′ (φ(x1, · · · , xm), |r|t) ≥ N ′
(
φ

(
x1

m− 1
,

x2
m− 1

, · · · , xm
m− 1

)
, t

)
(12)

for all x1, · · · , xm ∈ X and all t > 0. Then thers is a unique additive mapping A : X → Y that

satisfying (1) and the following inequality

N(f(x)−A(x), t) ≥ N ′
(

2φ(x, x, · · · , x)
m(m− 1)(m− 1− |r|)

, t

)
(13)

for all x ∈ X and all t > 0.

Proof. It follows from (7) that

N

(
f((m− 1)x)

m− 1
− f(x),

2t

m(m− 1)2

)
≥ N ′(φ(x, x, · · · , x), t) (14)
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for all x ∈ X and all t > 0. Replacing x by (m− 1)nx in (14), we obtain

N

(
f((m− 1)n+1x)

(m− 1)n+1
− f((m− 1)nx)

(m− 1)n
,

2t

m(m− 1)n+2

)
(15)

≥ N ′(φ((m− 1)nx, (m− 1)nx, · · · , (m− 1)nx), t) ≥ N ′
(
φ(x, x, · · · , x), t

|r|n

)
and so

N

(
f((m− 1)n+1x)

(m− 1)n+1
− f((m− 1)nx)

(m− 1)n
,

2|r|nt
m(m− 1)n+2

)
≥ N ′(φ(x, x, · · · , x), t) (16)

for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 3.1, we obtain that

N

f(x)− f((m− 1)nx)

(m− 1)n
,

n−1∑
j=0

2|r|jt
m(m− 1)j+2

 ≥ N ′(φ(x, x, · · · , x), t)

for all x ∈ X, all t > 0 and any integer n > 0. So

N

(
f(x)− f((m− 1)nx)

(m− 1)n
, t

)
≥ N ′

φ(x, x, · · · , x), t∑n−1
j=0

2|r|j
m(m−1)j+2


≥ N ′

(
φ(x, x, · · · , x), m(m− 1)(m− 1− |r|)t

2

)
. (17)

The rest of the proof is similar to the proof of Theorem 3.1. □

Corollary 3.4. Let X be a normed spaces and (R, N ′) a fuzzy Banach space. Assume that there

exist real numbers θ ≥ 0 and 0 < p =
∑m

j=1 pj < 2 such that a mapping f : X → Y satisfies the

following inequality

N

 ∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t

 ≥ N ′

θ
 m∏

j=1

∥xj∥pj

 , t


for all x1, x2, · · · , xm ∈ X and t > 0. Then there is a unique additive mapping A : X → Y that

satisfying (1) and the inequality

N(f(x)−A(x), t) ≥ N ′
(

2θ∥x∥p

m(m− 1)
, t

)
Proof. Let φ(x1, x2, · · · , xm) := θ

(∏m
j=1 ∥xj∥pj

)
and r = m− 2. Applying Theorem 3.3, we get the

desired result. □

4. Fuzzy stability of the functional equation (1): a fixed point method

In this section, using the fixed point alternative approach, we prove the Hyers-Ulam stability of

the functional equation (1) in fuzzy Banach spaces. Throughout this paper, assume that X is a

vector space and that (Y,N) is a fuzzy Banach space.

Theorem 4.1. Let φ : Xm → [0,∞) be a function such that there exists an L < 1 with

φ

(
x1

m− 1
,

x2
m− 1

, · · · , xm
m− 1

)
≤ Lφ(x1, x2, · · · , xm)

m− 1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.3, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

552 SUNG JIN LEE ET AL 545-558



Fuzzy Hyers-Ulam stability for generalized additive functional equations

for all x1, x2, · · · , xm ∈ X. Let f : X → Y with f(0) = 0 be a mapping satisfying

N

 ∑
1≤i<j≤m

f

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t

 ≥ t

t+ φ(x1, x2, · · · , xm)
(18)

for all x1, x2, · · · , xm ∈ X and all t > 0. Then the limit

A(x) := N - lim
n→∞

(m− 1)nf

(
x

(m− 1)n

)
exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥ (m(m− 1)2 −m(m− 1)2L)t

(m(m− 1)2 −m(m− 1)2L)t+ 2Lφ(x, x, · · · , x)
. (19)

Proof. Putting x1 = x2 = · · · = xm = x in (18), we have

N

(
m(m− 1)f((m− 1)x)

2
− m(m− 1)2f(x)

2
, t

)
≥ t

t+ φ(x, x, · · · , x)
(20)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y ; g(0) = 0} and the generalized metric d

in S defined by

d(f, g) = inf
{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, x, · · · , x)
, ∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [16, Lemma 2.1]). Now we consider

a linear mapping J : S → S such that

Jg(x) := (m− 1)g

(
x

m− 1

)
for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ϵ. Then

N(g(x)− h(x), ϵt) ≥ t

t+ φ(x, x, · · · , x)

for all x ∈ X and t > 0. Hence

N(Jg(x)− Jh(x), Lϵt) = N

(
(m− 1)g

(
x

m− 1

)
− (m− 1)h

(
x

m− 1

)
, Lϵt

)
= N

(
g

(
x

m− 1

)
− h

(
x

m− 1

)
,
Lϵt

m− 1

)
≥

Lt
m−1

Lt
m−1 + φ

(
x

m−1 ,
x

m−1 , · · · ,
x

m−1

)
≥

Lt
m−1

Lt
m−1 + Lφ(x1,x2,··· ,xm)

m−1

=
t

t+ φ(x, x, · · · , x)

for all x ∈ X and t > 0. Thus d(g, h) = ϵ implies that d(Jg, Jh) ≤ Lϵ. This means that d(Jg, Jh) ≤
Ld(g, h) for all g, h ∈ S. It follows from (20) that

N

(
m(m− 1) [f((m− 1)x)− (m− 1)f(x)]

2
, t

)
≥ t

t+ φ(x, x, · · · , x)
.
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So

N

(
f(x)− (m− 1)f

(
x

m− 1

)
,

2t

m(m− 1)

)
≥ t

t+ φ
(

x
m−1 ,

x
m−1 , · · · ,

x
m−1

) (21)

≥ t

t+ Lφ(x,x,··· ,x)
m−1

=
(m−1)t

L
(m−1)t

L + φ(x, x, · · · , x)
.

Therefore,

N

(
f(x)− (m− 1)f

(
x

m− 1

)
,

2Lt

m(m− 1)2

)
≥ t

t+ φ(x, x, · · · , x)
. (22)

This means that

d(f, Jf) ≤ 2L

m(m− 1)2
.

By Theorem 2.6, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A

(
x

m− 1

)
=

A(x)

m− 1
(23)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈ S : d(g, h) < ∞}.
This implies that A is a unique mapping satisfying (23) such that there exists µ ∈ (0,∞) satisfying

N(f(x)−A(x), µt) ≥ t

t+ φ(x, x, · · · , x)
for all x ∈ X and t > 0.

(2) d(Jnf,A) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

(m− 1)nf

(
x

(m− 1)n

)
= A(x)

for all x ∈ X.

(3) d(f,A) ≤ d(f,Jf)
1−L with f ∈ Ω, which implies the inequality

d(f,A) ≤ 2L

m(m− 1)2 −m(m− 1)2L
.

This implies that the inequality (19) holds. Furthermore, since

N

 ∑
1≤i<j≤m

A

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

A(xi), t


= N − lim

n→∞

(
(m− 1)n

[ ∑
1≤i<j≤m

f

 xi + xj
2(m− 1)n

+

m−2∑
l=1,kl ̸=i,j

xkl
(m− 1)n


−(m− 1)2

2

m∑
i=1

f

(
xi

(m− 1)n

)]
, t

)

≥ lim
n→∞

t
(m−1)n

t
(m−1)n + φ

(
x1

(m−1)n ,
x2

(m−1)n , · · · ,
xm

(m−1)n

)
≥ lim

n→∞

t
(m−1)n

t
(m−1)n + Lnφ(x1,x2,··· ,xm)

(m−1)n
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for all x1, x2, · · · , xm ∈ X, t > 0 and all n ∈ N. Since

lim
n→∞

t
(m−1)n

t
(m−1)n + Lnφ(x1,x2,··· ,xm)

(m−1)n

= 1

for all x1, x2, · · · , xm ∈ X and all t > 0, we deduce that

N

 ∑
1≤i<j≤m

A

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

A(xi), t

 = 1

for all x1, x2, · · · , xm ∈ X and all t > 0. Thus the mapping A : X → Y is additive, as desired. □

Corollary 4.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space

with norm ∥.∥. Let f : X → Y with f(0) = 0 be a mapping satisfying the following inequality

N

 ∑
1≤i<j≤m

f

xi + xj
2

+

m−2∑
l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t

 ≥ t

t+ θ (
∑m

i=1 ∥xi∥p)

for all x1, x2, · · · , xm ∈ X and all t > 0. Then the limit

A(x) := N - lim
n→∞

(m− 1)nf

(
x

(m− 1)n

)
exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥ ((m− 1)p − 1)t

((m− 1)p − 1)t+ 2(m− 1)−2θ∥x∥p

for all x ∈ X.

Proof. The proof follows from Theorem 4.1 by taking φ(x1, x2, · · · , xm) := θ (
∑m

i=1 ∥xi∥p) for all

x1, x2, · · · , xm ∈ X. Then we can choose L = (m− 1)−p and we get the desired result. □

Theorem 4.3. Let φ : Xm → [0,∞) be a function such that there exists an L < 1 with

φ(x1, x2, · · · , xm) ≤ (m− 1)Lφ

(
x

m− 1
,

x2
m− 1

, · · · , xm
m− 1

)
for all x1, x2, · · · , xm ∈ X. Let f : X → Y be a mapping with f(0) = 0 satisfying (18). Then

A(x) := N - lim
n→∞

f((m− 1)nx)

(m− 1)n

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥ m(m− 1)2(1− L)t

m(m− 1)2(1− L)t+ 2φ(x, x, · · · , x)
(24)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined as in the proof of Theorem 4.1. Consider

the linear mapping J : S → S such that Jg(x) := g((m−1)x)
m−1 for all x ∈ X. Let g, h ∈ S be such that

d(g, h) = ϵ. Then

N(g(x)− h(x), ϵt) ≥ t

t+ φ(x, x, · · · , x)
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for all x ∈ X and t > 0 . Hence

N(Jg(x)− Jh(x), Lϵt) = N

(
g((m− 1)x)

m− 1
− h((m− 1)x)

m− 1
, Lϵt

)
= N

(
g((m− 1)x)− h((m− 1)x), (m− 1)Lϵt

)
≥ (m− 1)Lt

(m− 1)Lt+ φ((m− 1)x, , (m− 1)x, · · · , (m− 1)x)

≥ (m− 1)Lt

(m− 1)Lt+ (m− 1)Lφ(x, x, · · · , x)
=

t

t+ φ(x, x, · · · , x)
for all x ∈ X and t > 0. Thus d(g, h) = ϵ implies that d(Jg, Jh) ≤ Lϵ. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S. It follows from (20) that

N

(
m(m− 1)2

2

[
f((m− 1)x)

m− 1
− f(x)

]
, t

)
≥ t

t+ φ(x, x, · · · , x)
(25)

for all x ∈ X and t > 0. So

N

(
f((m− 1)x)

m− 1
− f(x),

2t

m(m− 1)2

)
≥ t

t+ φ(x, x, · · · , x)
.

Therefore,

d(f, Jf) ≤ 2

m(m− 1)2
.

By Theorem 2.6, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

(m− 1)A(x) = A((m− 1)x) (26)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) <∞}.

This implies that A is a unique mapping satisfying (26) such that there exists µ ∈ (0,∞) satisfying

N(f(x)−A(x), µt) ≥ t

t+ φ(x, x, · · · , x)
for all x ∈ X and t > 0.

(2) d(Jnf,A) → 0 as n→ ∞. This implies A(x) = N - limn→∞
f((m−1)nx)

(m−1)n for all x ∈ X.

(3) d(f,A) ≤ d(f,Jf)
1−L with f ∈ Ω, which implies the inequality

d(f,A) ≤ 2

m(m− 1)2(1− L)
.

This implies that the inequality (24) holds.

The rest of the proof is similar to that of the proof of Theorem 4.1. □

Corollary 4.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1
m . Let X be a normed vector

space with norm ∥.∥. Let f : X → Y be a mapping with f(0) = 0 satisfying

N

 ∑
1≤i<j≤m

f

xi + xj
2

+
m−2∑

l=1,kl ̸=i,j

xkl

− (m− 1)2

2

m∑
i=1

f(xi), t

 ≥ t

t+ θ (
∏m

i=1 ∥xi∥p)
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for all x1, x2, · · · , xm ∈ X and all t > 0. Then

A(x) := N - lim
n→∞

f((m− 1)nx)

(m− 1)n

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥ m((m− 1)p+2 − (m− 1)2)t

m((m− 1)p+2 − (m− 1)2)t+ 2(m− 1)pθ∥x∥mp
.

for all x ∈ X.

Proof. The proof follows from Theorem 4.2 by taking φ(x1, x2, · · · , xm) := θ (
∏m

i=1 ∥xi∥p) for all

x1, x2, · · · , xm ∈ X. Then we can choose L = (m− 1)−p and we get the desired result. □
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n-JORDAN ∗-DERIVATIONS ON INDUCED C∗-ALGEBRAS

YINHUA CUI, GANG LU, XIAOHONG ZHANG, AND CHOONKIL PARK∗

Abstract. Using the fixed point alternative theorem, we investigate the Hyers-Ulam stability of
of n-Jordan ∗-derivations on induced fuzzy C∗-algebras associated with the following functional
equation f (my − x) + f (x−mz) +mf (x− y + z) = f (mx), where m is a fixed integer greater
than 1.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [42] con-
cerning the stability of group homomorphisms. Hyers [16] gave a first affirmative partial answer
to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Rassias [33] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Aoki and Rassias theorem was obtained by Găvruta [15],
who used a more general function controlling the possibly unbounded Cauchy difference in the
spirit of Rassias’ approach. The stability problems for several functional equations or inequalities
have been extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [8, 9], [17]–[25], [30, 31], [34]–[38], [40, 41]).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [7, 12]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element
x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

By using the fixed point method, the stability problems of several functional equations have
been extensively investigated by a number of authors (see [6, 7, 11, 13, 22, 27, 32]).

2010 Mathematics Subject Classification. Primary 39B62, 39B52, 46B25.
Key words and phrases. Fuzzy normed space; additive functional equation; Hyers-Ulam stability; induced fuzzy

C∗-algebra.
∗Corresponding author.
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In 1984, Katsaras [21] defined a fuzzy norm on a linear space and at the same year Wu and
Fang [43] also introduced a notion of fuzzy normed space and gave the generalization of the
Kolmogoroff normalized theorem for fuzzy topological linear space. In [5], Biswas defined and
studied fuzzy inner product spaces in linear space. Since then some mathematicians have defined
fuzzy metrics and norms on a linear space from various points of view [4, 14, 24, 39, 44]. In
1994, Cheng and Mordeson introduced a definition of fuzzy norm on a linear space in such a
manner that the corresponding induced fuzzy metric is of Kramosil and Michalek type [23]. In
2003, Bag and Samanta [4] modified the definition of Cheng and Mordeson [10] by removing a
regular condition. They also established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy norms (see [3]). Following [2], we give
the employing notion of a fuzzy norm.

Let X be a real linear space. A function N : X × R→ [0, 1](the so-called fuzzy subset) is said
to be a fuzzy norm on X if for all x, y ∈ X and all a, b ∈ R:
(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 if and only if N(x, a) = 1 for all a > 0;
(N3) N(ax, b) = N(x, b

|a|) if a 6= 0;

(N4) N(x+ y, a+ b) ≥ min{N(x, a), N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima→∞N(x, a) = 1;
(N6) For x 6= 0, N(x, .) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a) as the truth value

of the statement the norm of x is less than or equal to the real number a
′
.

Definition 1.2. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X. Then
xn is said to be convergent if there exists x ∈ X such that limn→∞N(xn−x, a) = 1 for all a > 0.
In that case, x is called the limit of the sequence xn and we denote it by N -limn→∞ xn = x.

Definition 1.3. A sequence xn in X is called Cauchy if for each ε > 0 and each a > 0 there
exists n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, a) > 1− ε.

It is known that every convergent sequence in fuzzy normed space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space
is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector space X,Y is continuous
at point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence {f(xn)}
converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be
continuous on X(see [2]).

Definition 1.4. [29] Let X be a ∗-algebra and (X,N) a fuzzy normed space.

(1) The fuzzy normed space (X,N) is called a fuzzy normed ∗-algebra if

N(xy, st) ≥ N(x, s) ·N(y, t) and N(x∗, t) = N(x, t).

(2) A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Example 1.5. Let (X, ‖.‖) be a normed ∗-algebras. Let

N(x, a) =

{ a
a+‖x‖ , a > 0 , x ∈ X,
0, a ≤ 0, x ∈ X.

Then N(x, t) is a fuzzy norm on X and (X,N(x, t)) is a fuzzy normed ∗-algebra.
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Definition 1.6. Let (X, ‖ · ‖) be a C∗-algebra and N a fuzzy norm on X.

(1) The fuzzy normed ∗-algebra (X,N) is called an induced fuzzy normed ∗-algebra.
(2) The fuzzy Banach ∗-algebra (X,N) is called an induced fuzzy C∗-algebra.

Definition 1.7. Let (X, ‖ · ‖) be an induced fuzzy normed ∗-algebra. Then a C-linear mapping
D : (X,N)→ (X,N) is called a fuzzy n-Jordan ∗-derivation if

D(xn) = D(x)xn−1 + xD(x)xn−2 + · · ·+ xn−2D(x)x+ xn−1D(x),

D(x∗) = D(x)∗

for all x ∈ X.

Throughout this paper, assume that (X,N) is an induced fuzzy C∗-algebra and that m is a
fixed integer greater than 1.

2. Main results

Lemma 2.1. Let (Z,N) be a fuzzy normed vector space and f : X → Z be a mapping such that

N (f (my − x) + f (x−mz) +mf (x− y + z) , t) ≥ N
(
f (mx) ,

t

2

)
(2.1)

for all x, y, z ∈ X and all t > 0. Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get

N((m+ 2)f(0), t) = N

(
f(0),

t

m+ 2

)
≥ N

(
f(0),

t

2

)
for all t > 0. By (N5) and (N6), N(f(0), t) = 1 for all t > 0. It follows from (N2) that f(0) = 0.

Letting x = 0 and y = z in (2.1), we get

N(f(my) + f(−my), t) ≥ N
(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that f(my) + f(−my) = 0 for all y ∈ X. Thus

f(−y) = −f(y)

for all y ∈ X.
Letting x = z = 0 in (2.1), we get

N(f(my)−mf(y), t) = N(f(my) +mf(−y), t) ≥ N
(
f(0),

t

2

)
= 1

for all t > 0. So f(my) = mf(y) for all y ∈ X.
Letting x = 0 and replacing z by −z in (2.1), we get

N(f(my) + f(mz) +mf(−y − z), t) = N(mf(y) +mf(z)−mf(y + z), t) ≥ N
(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that

mf(y) +mf(z)−mf(y + z) = 0

for all y, z ∈ X. Thus

f(y + z) = f(y) + f(z)

for all y, z ∈ X, as desired. �
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Theorem 2.2. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

φ
( x
m
,
y

m
,
z

m

)
≤ L

m
φ(x, y, z) (2.2)

for all x, y, z ∈ X. Let f : X → X be an odd mapping such that

N (f (µ(my − x)) + f (µ(x−mz)) +mf (µ(x− y + z))− µf (mx) , t) ≥ t

t+ φ(x, y, z)
, (2.3)

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ φ(w, v, 0)

(2.4)

for all x, y, z, w, v ∈ X, all µ ∈ T1 := {c ∈ C : |c| = 1} and all t > 0. Then the limit
D(x) = N − limn→∞m

nf
(
x
mn

)
exists for each x ∈ X and the mapping D : X → X is a fuzzy

n-Jordan ∗-derivation satisfying

N(f(x)−D(x), t) ≥ m(1− L)t

m(1− L)t+ Lφ (x, 0, 0)
(2.5)

for all x ∈ X and all t > 0.

Proof. Since f is odd, f(0) = 0 and f(−x) = −f(x) for all X.
Letting µ = 1 and y = z = 0 in (2.3), we have

N (mf (x)− f(mx), t) ≥ t

t+ φ (x, 0, 0)
(2.6)

and so

N
(
mf

( x
m

)
− f(x), t

)
≥ t

t+ φ
(
x
m , 0, 0

) =
t

t+ L
mφ (x, 0, 0)

for all x ∈ X and all t > 0. Thus

N

(
mf

( x
m

)
− f(x),

L

m
t

)
≥

L
m t

L
m t+ L

mφ (x, 0, 0)
=

t

t+ φ (x, 0, 0)
(2.7)

for all x ∈ X and all t > 0.
Consider the set

G := {g : X → X}
and introduce the generalized metric on G:

d(g, h) := inf{a ∈ R+ : N(g(x)− h(x), at) ≥ t

t+ φ (x, 0, 0)
}

for all x ∈ X and all t > 0, where inf φ = +∞. It is easy to show that (S, d) is complete (see the
proof of [26, Lemma 2.1]

Now, we consider the linear mapping Q : G→ G such that Qg(x) := mg
(
x
m

)
for all x ∈ X.

Let g, h ∈ G be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ (x, 0, 0)
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for all x ∈ X and all t > 0. Hence

N(Qg(x)−Qh(x), Lεt) = N
(
mg
( x
m

)
−mh

( x
m

)
, Lεt

)
= N

(
g
( x
m

)
− h

( x
m

)
,
L

m
εt

)
≥

Lt
m

Lt
m + φ

(
x
m , 0, 0

) ≥ Lt
m

Lt
m + L

mφ (x, 0, 0)
=

t

t+ φ (x, 0, 0)

for all x ∈ X and all t > 0. Thus d(g, h) = ε implies that d(Qg,Qh) ≤ Lε. This means that

d(Qg,Qh) ≤ Ld(g, h)

for all g, h ∈ G.
It follows from (2.7) that d(f,Qf) ≤ L

m .
By Theorem 1.1, there exists a mapping D : X → X satisfying the following:
(1) D is a fixed point of Q, i.e.,

D
( x
m

)
=

1

m
D(x) (2.8)

for all x ∈ X. The mapping D is a unique fixed point of Q in the set

M = {g ∈ G : d(f, g) <∞}.

This implies that D is a unique mapping satisfying (2.8) such that there exists an a ∈ (0,∞)
satisfying

N(f(x)−D(x), at) ≥ t

t+ φ (x, 0, 0)

for all x ∈ X.
(2) d(Qkf,D)→ 0 as k →∞. This implies the equality

N − lim
k→∞

mkf
( x

mk

)
= D(x)

for all x ∈ X;
(3) d(f,D) ≤ 1

1−Ld(f,Qf), which implies the inequality

d(f,D) ≤ L

m(1− L)
.

This implies that the inequality (2.5) holds.
Next we show that D is additive. It follows from (2.2) that

∞∑
k=0

mkφ
( x

mk
,
y

mk
,
z

mk

)
= φ(x, y, z) +mφ

( x
m
,
y

m
,
z

m

)
+m2φ

( x

m2
,
y

m2
,
z

m2

)
+ · · ·

≤ φ(x, y, z) + Lφ(x, y, z) + L2φ(x, y, z) + · · · = 1

1− L
φ(x, y, z) <∞

for all x, y, z ∈ X.
By (2.3),

N

(
mkf

(
µ
my − x
mk

)
+mkf

(
µ
x−mz
mk

)
+mk+1f

(
µ
x− y + z

mk

)
−mkµf

( m
mk

x
)
,mkt

)
≥ t

t+ φ
(
x
mk ,

y
mk ,

z
mk

)
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and so

N

(
mkf

(
µ
my − x
mk

)
+mkf

(
µ
x−mz
mk

)
+m ·mkf

(
µ
x− y + z

mk

)
−mkµf

( m
mk

x
)
, t

)
≥

t
mk

t
mk + φ

(
x
mk ,

y
mk ,

z
mk

) =
t

t+mkφ
(
x
mk .

y
mk ,

z
mk

)
for all x, y, z ∈ X, all µ ∈ T1 and all t > 0. Since limk→∞

t

t+mkφ
(

x

mk ,
y

mk ,
z

mk

) = 1 for all x, y, z ∈ X

and all t > 0,

N (D (µ(my − x)) +D (µ(x−mz)) +mD (µ(x− y + z))− µD (mx) , t) = 1

for all x, y, z ∈ X, all µ ∈ T1 and all t > 0. So

D (µ(my − x)) +D (µ(x−mz) +mD (µ(x− y + z)) = µD (mx)) (2.9)

for all x, y, z ∈ X and all µ ∈ T1. Let µ = 1 in (2.9). By the same reasoning as in the proof of
Lemma 2.1, one can easily show that D is additive.

Since f is odd, it is easy to show that D is odd. Letting µ = 1 and y = z = 0 in (2.9), we get
mD(x) = D(mx) for all x ∈ X. Letting y = z = 0 in (2.9), we get mD(µx) = µD(mx) = mµD(x)
and so

D(µx) = µD(x)

for all x ∈ X and all µ ∈ T1. Thus the mapping D : X → X is C-linear by [28, Theorem 2.1].
By (2.4) and letting v = 0 in (2.4), we get

N

(
mnkf

(
wn

mnk

)
−mnkf

( w
mk

)( w
mk

)n−1
−mnk w

mk
f
( w
mk

)( w
mk

)n−2
− · · ·

−mnk
( w
mk

)n−2
f
( w
mk

)
w −mnk

( w
mk

)n−1
f
( w
mk

)
,mnkt

)
≥ t

t+ φ( w
mk , 0, 0)

for all w ∈ X and all t > 0. Thus

N

(
mnkf

(
wn

mnk

)
−mnkf

( w
mk

)( w
mk

)n−1
−mnk w

mk
f
( w
mk

)( w
mk

)n−2
− · · ·

−mnk
( w
mk

)n−2
f
( w
mk

)
w −mnk

( w
mk

)n−1
f
( w
mk

)
, t

)
≥

t
mnk

t
mnk + φ( w

mk , 0, 0)

≥ t

t+ (mn−1L)kφ(w, 0, 0)

for all w ∈ X and all t > 0. Since limk→∞
t

t+(mn−1L)kφ(w,0,0)
= 1 for all w ∈ X and all t > 0, we

get

N(D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w), t) = 1

for all x ∈ X and all t > 0. So

D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w) = 0

for all w ∈ X.
Similarly, letting w = 0 in (2.4), we get D(v∗)−D(v)∗ = 0 for all v ∈ X.
Therefore, the mapping D : X → X is a fuzzy n-Jordan ∗-derivation. �
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Corollary 2.3. Let p be a real number with p > 1, θ ≥ 0, and X be a normed vector space with
norm ‖ · ‖. Let f : X → X be an odd mapping satisfying

N (f (µ(my − x)) + f (µ(x−mz)) +mf (µ(x− y + z))− µf (mx) , t) (2.10)

≥ t

t+ θ(‖x‖p + ‖y‖p + ‖z‖p)
,

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ θ(‖w‖p + ‖v‖p)
(2.11)

for all x, y, w, v ∈ X, all µ ∈ T1 and all t > 0. Then the limit D(x) = N − limn→∞m
nf
(
x
mn

)
exists for each x ∈ X and the mapping D : X → X is a fuzzy n-Jordan ∗-derivation satisfying

N(f(x)−D(x), t) ≥ (mp −m)t

(mp −m)t+ θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)

and L = m1−p. �

Theorem 2.4. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

mLφ
( x
m
,
y

m
,
z

m

)
≤ φ(x, y, z) (2.12)

for all x, y, z ∈ X. Let f : X → X be an odd mapping satisfying (2.3) and (2.4). Then the limit
D(x) = N − limn→∞

1
mn f (mnx) exists for each x ∈ X and the mapping D : X → X is a fuzzy

n-Jordan ∗-derivation satisfying

N(f(x)−D(x), t) ≥ m(1− L)t

m(1− L)t+ φ (x, 0, 0)
(2.13)

for all x ∈ X and all t > 0.

Proof. Let (G, d) be generalized metric space defined in the proof of Theorem 2.2. Consider the
linear mapping Q : G→ G such that

Qg(x) :=
1

m
g(mx)

for all x ∈ X.
It follow from (2.6) that

N

(
f(x)− 1

m
f(mx),

1

m
t

)
≥ t

t+ φ (x, 0, 0)

for all x ∈ X and all t > 0. Thus d(f,Qf) ≤ 1
m . Hence

d(f,D) ≤ 1

m(1− L)
,

which implies that the inequality (2.13) holds.
The rest of the proof is similar to the proof of Theorem 2.2. �
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Corollary 2.5. Let θ ≥ 0 and let p be a positive real number with p < 1. Let X be a normed vector
space with normed ‖ · ‖. Let f : X → X be an odd mapping satisfying (2.10) and (2.11). Then
D(x) = N − limn→∞

1
mn f(mnx) exists for each x ∈ X and defines a fuzzy n-Jordan ∗-derivation

D : X → X such that

N(f(x)−D(x), t) ≥ (m−mp)t

(m−mp)t+ θ‖x‖p
for every x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)

and L = mp−1. �
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