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Abstract

In the present note we will introduce a Binomial distribution series and obtain
necessary and sufficient conditions for this series belonging to the classes T (λ, α) and
C(λ, α). An integral operator related to this series is also considered.

2010 Mathematics Subject Classification: 30C45, 30C55

Key words and phrases: analytic function, binomial distribution, univalent

1 Introduction

Consider a class A consisting of functions of the form

g(z) = z +

∞
∑

n=2

anzn. (1.1)

Every g ∈ A is analytic in the open unit disk D and satisfy the normalization condition
g(0) = g′(0) − 1 = 0. Let S be a subclass of A consisting of functions of the form (1.1),

which are also univalent in D. Furthermore, consider T be the subclass of S containing
the functions of the form

g(z) = z +

∞
∑

n=2

|an|z
n. (1.2)

∗ Corresponding author
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Let T (γ, δ) be a subclass of T having the functions which satisfy the following condition

Re

{

zg′(z)

γzg′(z) + (1− γ)g(z)

}

> δ (1.3)

for all δ (0 ≤ δ < 1), γ (0 ≤ γ < 1) and z ∈ D. Also, we consider C(γ, δ) be an other

subclass of T containing the functions which satisfy the following condition

Re

{

g′(z) + zg′′(z)

g′(z) + γzg′′(z)

}

> δ (1.4)

for all δ (0 ≤ δ < 1), γ (0 ≤ γ < 1) and z ∈ D.

From (1.2) and (1.4) one can draw the following conclusion

g(z) ∈ C(γ, δ) ⇐⇒ zg′(z) ∈ T (γ, δ). (1.5)

Both T (γ, δ) and C(γ, δ) are extensively studied by Altinates and Owa [1] and certain
conditions for hypergeometric function and generalized Bessel function g for these classes

were studied by Mostafa [8] and Porwal and Dixit [11].
Let g(l, p) be a binomial distribution defined by

g(l, p) = Pr(X = n) =
l!

(n − l)!n!
pn(1− p)l−n, n = 0, 1, 2, . . . , l

when n > l, then f(l, p) = 0.

Consider a power series defined as:

K(l, p, z) = z +
∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1 − p)l−nzn.

Now, we introduce the series

F (l, p, z) = z −

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1− p)l−nzn.

In [3], Carlson and Shaffer studied starlike and prestarlike hypergeometric functions.

The sufficient condition for a (Gaussian) hypergeometric function to be uniformly convex
of order δ, which is also necessary condition under additional restrictions is given by Cho

et al. [4]. Starlike hypergeometric functions were studied by Merkes and Scott [6] and
Carlson and Shaffer [3].

Motivated by results on connection between various subclasses of analytic functions by
using the hypergeometric function by many author particularly the authors (see [3, 4, 6,

12, 13]) and generalized Bessel functions (see [2, 7]), Porrwal [10] obtained the necessary
and sufficient conditions for a functions F (l, p, z) defined by using the poisson distribution

belong to the class T (δ, γ) and C(δ, γ).
In this article, we give the analogous conditions for the functions F (l, p, z) and integral

operator H(l, p, z) defined by the binomial distribution belong to the T (δ, γ) and C(δ, γ).

To establish our main results, we will require the following lemmas due to Altintas and
Owa [1].

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

12 Waqas Nazeer et al 11-17



Lemma 1.1. A function g(z) characterize by (1.2) belong to the class T (δ, γ) if and only

if
∞
∑

n=2

[n − γδn− δ + γδ]|an| ≤ 1 − δ.

Lemma 1.2. A function g(z) characterize by (1.2) belong to the class C(δ, γ) if and only

if
∞
∑

n=2

n[n − γδn− δ + γδ]|an| ≤ 1 − δ.

2 Main results

Theorem 2.1. The function F (k, p, z) belong to the class T (δ, γ) if and only if

p(1− δγ)(l− 1) + (1 − δ)A ≤ 1 − δ,

where

A =

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1.

Proof. Since

F (l, p, z) = z −

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1− p)l−nzn,

according to the Lemma 1.1 we must show that

∞
∑

n=2

[n − γδn− δ + γδ]
(l − 1)!

(l− n)(n − 1)!
pn−1(1 − p)l−n ≤ 1 − δ.

Now
∞
∑

n=2

[n(1 − γδ)− δ(1 − γ)]
(l − 1)!

(l− n)(n − 1)!
pn−1(1 − p)l−n

=

∞
∑

n=2

[(n − 1)(1− γδ) + (1− δ)]
(l − 1)!

(l− n)(n − 1)!
pn−1(1− p)l−n

= (1− γδ)

∞
∑

n=2

(l − 1)!

(l − n)(n − 2)!
pn−1(1− p)l−n + (1− δ)

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1 − p)l−n

= (1− γδ)

∞
∑

n=0

(l − 1)!

(l − n − 2)n!
pn+1(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1− p)l−n−1

= (1− γδ)p

∞
∑

n=0

(l − 1)(l− 2)!

(l − n − 2)n!
pn(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1

= p(1− γδ)(l− 1) + (1− δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1

≤ 1 − δ.

This completes the proof.
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Theorem 2.2. The function F (l, p, z) belong to the class C(γ, δ) if and only if

p2(1 − δγ)(l− 1)(l− 2) + p(3− 2γδ − δ)(l − 1) + (1− δ)B ≤ 1 − δ,

where

B =

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1− p)l−n−1.

Proof. As

F (l, p, z) = z −

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1− p)l−nzn,

therefore according to the Lemma 1.2 we must show that

∞
∑

n=2

n[n − γδn− δ + γδ]
(l − 1)!

(l− n)(n − 1)!
pn−1(1 − p)l−n ≤ 1 − δ.

Now
∞
∑

n=2

n[n(1− γδ)− δ(1− γ)]
(l − 1)!

(l− n)(n − 1)!
pn−1(1− p)l−n

=

∞
∑

n=2

[(1− γδ)(n− 1)(n− 2) + (3− 2δγ − δ)(n − 1) + (1− δ)]

×
(l − 1)!

(l − n − 2)(n − 1)!
pn−1(1− p)l−n

= (1 − γδ)

∞
∑

n=3

(l − 1)!

(l − n)(n − 3)!
pn−1(1 − p)l−n + (3 − 2δγ − δ)

×
∞

∑

n=2

(l − 1)!

(l − n)(n − 2)!
pn−1(1− p)l−n + (1 − δ)

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1 − p)l−n

= (1 − γδ)

∞
∑

n=0

(l − 1)!

(l − n − 3)n!
pn+2(1 − p)l−n−3 + (3 − 2δγ − δ)

×

∞
∑

n=0

(l − 1)!

(l − n − 2)n!
pn+1(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1− p)l−n−1

= p2(1 − γδ)

∞
∑

n=0

(l − 1)!

(l − n − 3)n!
pn(1− p)l−n−3 + p(3− 2δγ − δ)

×

∞
∑

n=0

(l − 1)!

(l − n − 2)n!
pn(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n)n!
pn(1 − p)l−n

= p2(1 − γδ)(l− 1)(l − 2)

∞
∑

n=0

(l − 3)!

(l − n − 3)n!
pn(1− p)l−n−3 + p(3− 2δγ − δ)(l − 1)

×

∞
∑

n=0

(l − 2)!

(l − n − 2)n!
pn(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1

= p2(1 − γδ)(l− 1)(l − 2) + p(3 − 2δγ − δ)(l− 1) + (1− δ)B

≤ 1 − δ.
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This completes the proof.

In the following theorem, we obtain the analogous results in connection with the par-

ticular integral operator H(l, p, z) as follow:

H(l, p, z) =

∫ z

0

F (l, p, z)

t
dt. (2.1)

Theorem 2.3. The operator H(l, p, z) characterized by (2.1) is in the class C(γ, δ) if and

only if

p(1− δγ)(l− 1) + (1 − δ)C ≤ δ − 1,

where

C =

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1.

Proof. Since

H(l, p, z) = z −

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1− p)l−nzn,

according to the Lemma 1.2 we must show that

∞
∑

n=2

n[n − γδn− δ + γδ]
(l − 1)!

(l− n)(n)!
pn−1(1 − p)l−n ≤ 1 − δ.

Now

∞
∑

n=2

[n(1 − γδ)− δ(1 − γ)]
(l − 1)!

(l− n)(n − 1)!
pn−1(1 − p)l−n

=

∞
∑

n=2

[(n − 1)(1− γδ) + (1− δ)]
(l − 1)!

(l− n)(n − 1)!
pn−1(1− p)l−n

= (1− γδ)

∞
∑

n=2

(l − 1)!

(l − n)(n − 2)!
pn−1(1− p)l−n + (1− δ)

∞
∑

n=2

(l − 1)!

(l − n)(n − 1)!
pn−1(1 − p)l−n

= (1− γδ)

∞
∑

n=0

(l − 1)!

(l − n − 2)n!
pn+1(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1− p)l−n−1

= (1− γδ)p

∞
∑

n=0

(l − 1)!

(l − n − 2)n!
pn(1 − p)l−n−2 + (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1 − p)l−n−1

= (1− γδ)p(1− l)

∞
∑

n=0

(l − 2)!

(l − n − 2)n!
pn(1 − p)l−n−2

+ (1 − δ)

∞
∑

n=1

(l − 1)!

(l − n − 1)n!
pn(1− p)l−n−1

= (1− γδ)(1− l)p + (1− δ)C

≤ 1 − γ.

This completes the proof.
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Theorem 2.4. The operator H(l, p, z) defined by (2.1) is in the class T (γ, δ) if and only

if

p(1 − δγ)D + (1 − δ)E ≤ δ − 1,

where

D =

∞
∑

n=0

(l − 1)(l− 2)!

(l − n − 2)(n + 2)n!
pn(1− p)l−n−2

and

E =

∞
∑

n=2

(l − 1)!

(l − n)n!
pn−1(1 − p)l−n.

Proof. As we know that

F (l, p, z) = z −

∞
∑

n=2

(l − 1)!

(l − n)n!
pn−1(1 − p)l−nzn,

therefore according to the Lemma 1.1 we must show that

∞
∑

n=2

[n − γδn − δ + γδ]
(l − 1)!

(l− n)n!
pn−1(1 − p)l−n ≤ 1 − δ.

Now

∞
∑

n=2

[n(1 − γδ)− δ(1 − γ)]
(l − 1)!

(l− n)n!
pn−1(1− p)l−n

=

∞
∑

n=2

[(n − 1)(1− γδ) + (1− δ)]
(l − 1)!

(l− n)n!
pn−1(1 − p)l−n

= (1− γδ)

∞
∑

n=2

(l − 1)!(n− 1)

(l − n)n!
pn−1(1 − p)l−n + (1− δ)

∞
∑

n=2

(l − 1)!

(l − n)n!
pn−1(1 − p)l−n

= (1− γδ)

∞
∑

n=2

(l − 1)!

(l − n)n(n − 2)!
pn−1(1− p)l−n + (1− δ)

∞
∑

n=2

(l − 1)!

(l − n)(n)!
pn−1(1 − p)l−n

= (1− γδ)p(l− 1)
∞

∑

n=0

(l − 2)!

(l − n − 2)(n + 2)n!
pn(1 − p)l−n−2

+ (1 − δ)

∞
∑

n=2

(l − 1)!

(l − n)(n)!
pn−1(1− p)l−n

= (1− γδ)p

∞
∑

n=0

(l − 1)(l − 2)!

(l − n − 2)(n + 2)n!
pn(1− p)l−n−2

+ (1 − δ)

∞
∑

n=2

(l − 1)!

(l − n)n!
pn−1(1 − p)l−n

= p(1− γδ)D + (1− δ)E

≤ 1 − γ.

This completes the proof.
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Soft rough approximation operators via ideal
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Abstract

Soft rough approximation were introduced by Feng[7]. This paper extend soft rough approxima-
tion model by defining new soft rough approximation operators via ideal. An ideal on a set X is a
non empty collection of subsets of X with heredity property which is also closed under finite unions.
When I is the least ideal of ℘(U), these two approximations coincide. We present the essential prop-
erties of new opertors via ideal and supported by illustrative examples. The notion of soft rough
equal relations via ideal is proposed and related examples are examined. We also show that rough
set via ideal [26] can be viewed as a special case of soft rough set via ideal, and these two notions will
coincide provided that the underlaying soft set is a partition soft set. We obtain the structure of soft
rough set via ideal, gives the structure of topologies induced by soft set and an ideal. Moreover, an
example containing a comparative analysis between rough sets via ideal and soft rough sets via ideal
is given. We show that soft rough approximation via ideal could provide a better approximation than
rough set via ideal.

keywords: soft sets, rough approximations via ideal, soft rough sets via ideal, rough sets via ideal.

1. Introduction

In recent years vague concepts have been used in different areas as medical applications, pharmacology,
economics, engineering since the classical mathematics methods are inadequate to solve many complex
problems in these areas. Traditionally crisp (well-defined) property P(x) is used in mathematics, i.e.,
properties that are either true or false and each property defines a set: {x : x has a property P}[19].
Researchers have proposed many methods for vague notions. The most successful theoretical approach
to the vagueness is undoubtedly fuzzy set theory [33] proposed by Zadeh in 1965. The basic idea of fuzzy
set theory hinges on fuzzy membership function, which allows partial membership of elements to a set,
i.e., it allows elements to belong to a set to a degree.

Rough set theory [20] is an extension of set theory for the analysis of a vague and inexact description
of objects. Pawlak rough approximations are based on equivalence relation or their induced partition and
subsystem, this requirement is not satisfied in many situations and thus limits the application domain of
the rough set model. To solve this issue, generalizations of rough sets were considered. There are at least
two approaches to generalize rough sets. One is to consider similarity, tolerance or general binary relation
(see e.g.[30], [31],[32], Zhu [36]) rather than equivalence relation. The other is to extend the partition
to cover (see e.g.[2, 3, 34, 36, 37]). Furthermore, as generalizations, rough sets were defined by fuzzy
relation (see e.g.[5, 11, 12, 21, 22, 23, 24]) or a mapping [9, 26]. However, many of these generalizations
have not been interconnected with each other.

All these theories have their own difficulties (see [23]). For example, theory of probabilities can deal

1
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only with stochastically stable phenomena. To overcome these kinds of difficulties, Molodtsov [16] pro-
posed a completely new approach, which is called soft set theory, for modelling uncertainty. Molodtsov
initiated a novel concept of soft set theory [16], which is a completely new approach for modeling vague-
ness in 1999. A soft set is a collection of approximate descriptions of an object. Molodtsov [16, 17]
presented the fundamental results of the new theory and successfully applied it to several directions
such as smoothness of functions, game theory, operations research, Riemann-integration, Perron integra-
tion,theory of probability etc. He also showed that how soft set theory is free from the parametrization
inadequacy syndrome of fuzzy set theory, rough set theory and etc. Soft systems provide a very general
framework with the involvement of parameters. It has been found that fuzzy sets, rough sets and soft
sets are closely related [1].

Maji et al. investigated the concept of fuzzy soft set in 2001 [13], a more generalized concept, which
is a combination of fuzzy set and soft set and also studied some of its properties. This line of exploration
was further investigated by several researchers [14, 28, 29]. Soft set and fuzzy soft set theories have rich
potential for applications in several directions.

Feng et al. investigated the concept of soft rough set in 2010 [6] which is a combination of soft set
and rough set. In [6, 7] basic properties of soft rough approximations were presented and supported by
some illustrative examples. In fact, as soft set instead of an equivalence relation was used to granulate
the universe of discourse. A new approach was introduced to soft rough sets which is called modified
soft rough set (MSR-set) and some basic properties of MSR-sets were investigated in [25]. In [10] a
new concept of soft class and soft class operations based on decision makers set are defined and some
fundamental properties of soft class operations are investigated. In [18] soft rough sets and soft rough
approximation operators on a complete atomic Boolean lattice are defined. Feng discussed soft set based
group decision making in [8]. This study can be seen as a first attempt toward the possible application
of soft rough approximations in multicriteria group decision making under vagueness.

It is well known that (fuzzy) ideal is an important tool for investigating rough sets (see e.g.[4, 27]).
In Pawlak rough set model, any vague concept of a universe can be defined by a pair of precise concepts
called the lower and upper approximations. Particularly, the empty set φ is a concept and the set {φ} is
a special ideal. Hence, we have the following equivalent description of Pawlaks approximations. That is,
the lower approximation contains all objects which the intersections between equivalence classes and the
complement of the concept belong to {φ}, and the upper approximation consists of all objects which the
intersections between equivalence classes and the concept do not belong to {φ}. It is a natural question
to ask what does happen if we substitute a general ideal instead of the particular one. Here, the role of
the ideal is to bring together some knowable and interrelated concepts of the universe, through which
we can approximately obtain the imprecise concept. Since a given ideal has more concepts than that of
{φ}, the approximations based on ideals seem to enrich the Pawlaks approximations. In [27] we define
new approximation operators in more general setting of complete atomic Boolean lattice by using an ideal.

The aim of this paper is to define new soft rough approximation operators in terms of an ideal. Our
approach can be viewed as a generalization of several approaches that can be found in the literature.
The reminder of this paper is organized as follows. In the following section, we recall some fundamental
notions and propositions to be used in the present paper. In Section 3, the definition of soft rough
approximations via ideal is proposed and basic properties are examined. These decrease the soft lower
approximation and increase the soft upper approximation and hence increase the accuracy measure. We
show by example that soft rough approximation via ideal reduce the soft boundary in comparison of soft
rough approximation and the accuracy measure is better than the soft accuracy measure. So soft rough
approximation via ideal could provide a better approximation than soft rough set. We also define soft
rough equal relations in termes of soft rough approximation via ideal and explore some related proper-
ties. Finally, through an example we present a comparative analysis between rough set via ideal and
soft rough set via ideal. In sction 4 we investigate the relationships between soft sets, topologies and an
ideal, obtain the structure of topologies induced by a soft set and an ideal. In section 5 we investigate
the relation between soft rough via ideal and rough set via ideal [27]. We show that rough set via ideal
may be considered as a special case of soft rough set via ideal. Also, we define a new pair of soft rough
approximation operators via ideal and giving the relationship between this pair and previous one.
Soft rough set approximation via ideal is a worth considering alternative to the soft rough set approxi-
mation and rogh approximation via ideal.
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2. Preliminaries

In this section, we present the basic definitions and results of soft set theory which may found in
earlier studies [15, 16, 17]. Throughout this paper, U refers to an initial universe, the complement of X
in U is denoted by X ′, E is a set of parameters, ℘(U) is the power set of X, and A ⊆ E.

Definition 2.1 [16] Let U be a universal set and E be a set of parameters. Let A be a non empty
subset of E. A soft set over A, with support A ,denoted by fA on U is defined by the set of ordered pairs

fA = {(e, fA(e)) : e ∈ E, fA(e) ∈ ℘(U)},

or is a function fA : E → ℘(U) s.t

fA(e) 6= φ ∀ e ∈ A ⊆ E and fA(e) = φ if e 6∈ A.

.

From now on, we will use S(U,E) instead of all soft sets over U .

Definition 2.2 [16] The soft set fφ ∈ S(U,E) is called null soft set, denoted by Φ, Here Fφ(e) =
φ,∀ e ∈ E.

Definition 2.3 [15] Let fA ∈ S(U,E). If fA(e) = X,∀ e ∈ A, then fA is called A-absolute soft

set, denoted by Ã.
If A = E, then the A-absolute soft set is called absolute soft set denoted by ẼU .

Definition 2.4 [15] Let fA, gB ∈ S(U,E). fA is a soft subset of gB , denoted fA v gB if fA(e) ⊆
gB(e),∀ e ∈ E.

Definition 2.5 [15] Let fA, gB ∈ S(U,E). Union of fA and gB , is a soft set hC defined by
hC(e) = fA(e)

⋃
gB(e),∀ e ∈ E, where C = A ∪B. That is,

hC = fA t gB

Definition 2.6 [15] Let fA, gB ∈ S(U,E). Intersection of fA and gB , is a soft set hC defined by
hC(e) = fA(e)

⋂
gB(e),∀ e ∈ E where C = A ∩B. That is

hC = fA u gB .

Definition 2.7 [15] Let fA ∈ S(U,E). The complement of fA, denoted by f ′A is defined by
f ′A(e) = (f(e))′,∀ e ∈ E.

Definition 2.8 [7] Let fA ∈ S(U,E).

i) fE is called full, if
⋃
a∈Af(a) = U ;

iv) fE is called partition of B if {f(a) : a ∈ A} forms a partition of U.

Obviously, every partition soft set is full.

Definition 2.9 [35] Let fA ∈ S(U,E).

i) fA is called keeping intersection, if for any a, b ∈ A, there exists c ∈ A such that f(a) ∩ f(b) = f(c);
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ii) fA is called keeping union, if for any a, b ∈ A, there exists c ∈ A such that f(a) ∨ f(b) = f(c);

ii) fA is called topological, if {f(a) : a ∈ A} forms a topology on U.

Definition 2.10 [7]Let fA ∈ S(U,E). Then the Pair P = (U, fA) is called soft approximation space.
We define a pair of operators apr

P
, aprP : ℘(U)→ ℘(U) as follows:

apr
P

(X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a) ⊆ X},

aprP (X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X 6= ∅}

The elements apr
P

(X) and aprP (X) are called the soft P-lower and the soft P-upper approximations
of X. Moreover, the sets

PosP (X) = apr
P

(X)

NegP (X) = (aprP (X))′

BndP (X) = aprP (X)− apr
P

(X)

are called the soft P-positive region, the soft P-negative region and the soft P-boundary region of X,
respectively. If apr

p
(X) = aprP (X), X is said to be soft P -definable; otherwise X is called a soft P -rough

set.

Definition 2.11[26] Let B = (B,≤) be a bounded distributive lattice. A non empty subset I of
B is called an ideal of B if for all x, y ∈ B

(i) x, y ∈ I imply x ∨ y ∈ I;

(ii) If x ∈ I with y ≤ x, then y ∈ B.

Definition 2.12[26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B)→ B be
any mapping. Let I be any ideal on B. For any element x ∈ B, let

x∇I =
∨
{x ∧ a : a ∈ A(B), ϕ(a) ∧ x′ ∈ I and a 6= 0}, and

x4I =
∨
{x ∨ a : a ∈ A(B), ϕ(a) ∧ x 6∈ I and a 6= 1}.

The elements x∇I and x4I are called the lower and the upper approximations of x via ideal I with
respect to ϕ respectively. Two elements x and y are called equivalent via ideal I if they have the same up-
per and lower approximations via ideal I. The resulting equivalence classes are called rough sets via ideal I.

Proposition 2.13[26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B) → B
be any mapping. Let I be any ideal on B, then for all a ∈ A(B) and x ∈ B,

i) a ≤ x∇I ⇐⇒ ϕ(a) ∧ x′ ∈ I and a ≤ x;

ii) a ≤ x4I ⇐⇒ ϕ(a) ∧ x 6∈ I or a ≤ x.

Proposition 2.14 [26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B) → B
be any mapping. Let I be any ideal on B, then

i) 04I=0 and 1∇I=1;

ii) x ≤ y implies x∇I ≤ y∇I and x4I ≤ y4I .

Remark 2.15[26](1) In general, x∇I ≤ x ≤ x4I .
(2) The two operations suggested in Definition 2.12 are suitable also for other operators based on binary
relations. If U is any universal set, then ℘(U) is a complete atomic boolean lattice whose atoms are
singleton subsets of U. Let R and be a general relation on U and I any ideal on U. We define a mapping
ϕ : A(B) −→ B : U −→ ℘(U), x −→ R(x) where R(x) = {y ∈ U : xRy}. Then for any X ⊆ U ,
X∇I = ∪{x ∈ U : R(x) ∩X ′ ∈ I} ∩X and X4I = ∪{x ∈ U : R(x) ∩X 6∈ I} ∪X
If X∇I = X4I , X is said to be R-I-definable; otherwise X is called R-I-rough set.
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Table 1: Tabular representation of the soft set FA
u1 u2 u3 u4 u5 u6

e1 0 1 1 0 0 0
e2 0 0 0 0 1 0
e3 1 0 0 1 0 0
e4 0 1 0 0 0 1

3. Soft Rough Approximation operators via ideal

In this section we introduce soft rough approximations via ideal and soft rough set via ideal.

Definition 3.1 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. The triple
(U, fA, I) is called soft approximation space via ideal. We define a pair of operators apr

I
, aprI : ℘(U)→

℘(U) as follows:

apr
I
(X) = {u ∈ X : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I},

aprI(X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X 6∈ I}

The elements apr
I
(X) and aprI(X) are called the soft I-lower and the soft I-upper approximations of

X via ideal. In general, we refer to apr
I
(X) and aprI(X) as soft rough approximations of X with respect

to P via ideal. Moreover, the sets

PosI(X) = apr
I
(X)

NegI(X) = (aprI(X))′

BndI(X) = aprI(X)− apr
I
(X)

are called the soft I-positive region, the soft I-negative region and the soft I-boundary region of X, re-
spectively. If apr

I
(X) = aprI(X), X is said to be soft I-definable; otherwise X is called a soft I-rough set.

Proposition 3.2 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then apr

I
(X) ⊆ aprI(X).

Proof: Let u ∈ apr
I
(X), then ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. If f(a) ∩ X ∈ I. So, (f(a) ∩

X)∪ (f(a)∩X ′) ∈ I by properties of ideal. Thus f(a)∩ (X ∪X ′) = f(a)∩U = f(a) ∈ I a contradiction.
Hence f(a) ∩X 6∈ I and consequently apr

I
(X) ⊆ aprI(X).

By Definition 3.1, we immediately have that X ⊆ U is soft I-definable if the soft I-boundary region
BndI(X) of X is empty. Also, By Proposition 3.2, we have apr

I
(X) ⊆ aprI(X) for all X ⊆ U . Never-

theless, it is worth noticing that X ⊆ aprI(X) does not hold in general.

Example 3.3 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
Let fA be a soft over U given by Table 1. Let I be an ideal on U defined as follows
I = {φ, {u1}, {u3}, {u6}, {u1, u3}, {u1, u6}, {u3, u6}, {u1, u3, u6}}. Let X = {u3, u4, u5} ⊆ U . So X ′ =
{u1, u2, u6}. Thus we have apr

I
(X) = {u4, u5} , and aprI(X) = {u1, u4, u5}. So apr

I
(X) 6= aprI(X)

and X is soft I-rough set. In this case X = {u3, u4, u5} 6⊆ aprI(X). Moreover, it is easy to see that
PosI(X) = {u4, u5}, NegI(X) = {u2, u3, u6} and BndI(X) = {u1}. On the other hand, one can con-
sider X1 = {u1, u4, u6} ⊆ U . Since apr

I
(X1) = {u1, u4} = aprI(X1), then X1 is a soft I-definable set.

Proposition 3.4 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X ⊆ U

i) apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I};
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Table 2: Tabular representation of the soft set FA
u1 u2 u3 u4 u5 u6

e1 1 0 0 0 0 1
e2 0 0 0 0 1 0
e3 0 0 0 1 0 0
e4 1 1 0 0 1 0

ii) aprI(X) =
⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}.

Proof: i) Let u ∈ apr
I
(X). So u ∈ X and ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. Hence x ∈

X ∩
⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. The other inclusion can be proved similarly.

Definition 3.5 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. For any X ⊆ U measure of accuracy for soft set with respect to
X denoted by AP (X) is defined by

AP (X) =
|apr

P
(X)|

|aprP (X)|
where |apr

P
(X)| and |aprP (X)|, denotes the cardinalities of the sets apr

P
(X) and aprP (X) respectively.

Also, measure of accuracy for soft set with respect to X via ideal denoted by AI(X) is defined by

AI(X) =
|apr

I
(X)|

|aprI(X)|
where |apr

I
(X)| and |aprI(X)|, denotes the cardinalities of the sets apr

I
(X) and aprI(X) respectively

Now, we show in the next example that soft rough approximation via ideal provide a better approxima-
tion than soft rough approximation which provide a better approximation than rough sets.

Example 3.6 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
Let fA be a soft over U given by Table 2. Let I be an ideal on U defined as follows
I = {φ, {u1}, {u2}, {u3}, {u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}}. Let X = {u1, u5} ⊆ U . So X ′ =
{u2, u3, u4, u6}. Thus apr

P
(X) = {u5} , apr

I
(X) = {u1, u5} ∩ {u1, u2, u5} = {u1, u5}, aprP (X) =

{u1, u2, u5, u6} and aprI(X) = {u1, u2, u5}. So apr
P

(X) ⊆ apr
I
(X) ⊆ X ⊆ aprI(X) ⊆ aprP (X). There-

fore AP (X) =
apr

P
(X)

aprP (X) = 1
4 and AI(X) =

apr
I
(X)

aprI(X) = 2
3 . Consequently, AI(X) > AP (X). Consequently

accuracy measure via ideal is better than accuracy measure for soft sets.

Proposition 3.7 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal.

i) apr
I
(φ) = φ = aprI(φ)

ii) apr
I
(U) = aprI(U) =

⋃
a∈A

f(a);

iii) X ⊆ Y implies apr
I
(X) ⊆ apr

I
(Y ) and aprI(X) ⊆ aprI(Y ).

iv) I ⊆ J implies apr
I
(X) ⊆ apr

J
(X)

Proof: (i)Clearly, apr
I
(φ) = φ. Also, aprI(φ) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ 6∈ I} =

⋃
{f(a) : a ∈ A and φ 6∈ I} =

φ .
(ii) apr

I
(U) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ ∈ I} =

⋃
{f(a) : a ∈ A and φ ∈ I} =

⋃
a∈A

f(a). Also, since

f(a) 6∈ I ∀a ∈ A, then aprI(U) =
⋃

a∈A

f(a)

(iii) Assume that X ⊆ Y and u ∈ apr
I
(X). So u ∈ X and ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. Since

Y ′ ⊆ X ′, then f(a) ∩ Y ′ ∈ I by properties of ideal. Consequently, u ∈ apr
I
(Y ). The other part can be

proved similarly.
(iv) Obvious

Proposition 3.8 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X,Y ⊆ U

i) apr
I
(X ∪ Y ) ⊇ apr

I
(X) ∪ apr

I
(Y )
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ii) apr
I
(X ∩ Y ) ⊆ apr

I
(X) ∩ apr

I
(Y )

iii) If fA is keeping intersections, then apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y )

iv) If fA is partition, then apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y )

v) aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y )

vi) aprI(X ∩ Y ) ⊆ aprI(X) ∪ aprI(Y )

Proof: (i) and (ii) follow immediately by Proposition 3.7.
(iii) By (i), apr

I
(X ∩ Y ) ⊆ apr

I
(X) ∩ apr

I
(Y ). Let u ∈ apr

I
(X) ∩ apr

I
(Y ), then u ∈ X ∩ Y and

there exists a, b ∈ A such that u ∈ f(a), f(a) ∩X ′ ∈ I, u ∈ f(b), and f(b) ∩X ′ ∈ I. Since fA is
keeping intersections, then there exists c ∈ A, such that f(a) ∩ f(b) = f(c). By properties of ideal,
f(a) ∩ f(b) ∩X ′ ∈ I. So we prove that there exists c ∈ A, such that u ∈ f(c) and f(c) ∩X ′ ∈ I. Hence
u ∈ apr

I
(X ∩ Y ) and consequently, apr

I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y ).

(iv) Let u ∈ apr
I
(X)∩apr

I
(Y ), then u ∈ X ∩ Y and there exists a, b ∈ A such that u ∈ f(a), f(a) ∩X ′ ∈

I, u ∈ f(b), and f(b) ∩X ′ ∈ I. Since fA is partition, then f(a) = f(b). So, Therefore u ∈ apr
I
(X ∩ Y ).

Consequently, apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y ).

(v)By Proposition 3.7, aprI(X ∪ Y ) ⊇ aprI(X) ∪ aprI(Y ). On the other hand, let u ∈ aprI(X ∪ Y ),
then there exists a ∈ A such that u ∈ f(a), f(a) ∩ (X ∪ Y ) = (f(a) ∩ X) ∪ (f(a) ∩ Y ) 6∈ I. Hence
either f(a) ∩X 6∈ I or f(a) ∩ Y 6∈ I by properties of ideal. So u ∈ aprI(X) ∪ aprI(Y ) and consequently,
aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y ).

(vi) Follows immediately by Proposition 3.7.

Proposition 3.9 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X ⊆ U

i) aprI(X) = apr
I
(aprI(X))

ii) apr
I
(X) ⊆ aprI(aprI(X))

iii) apr
I
(X) = apr

I
(apr

I
(X))

iv) aprI(X) ⊆ aprI(aprI(X))

Proof:(i) Let Y = aprI(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X 6∈ I for some a ∈ A. By
Proposition 3.4(ii), Y = aprI(X) =

⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}. So there exists a ∈ A such that

u ∈ f(a) ⊆ Y . Hence f(a)∩ Y ′ = φ ∈ I and consequently, u ∈ apr
I
(Y ). Therefore Y ⊆ apr

I
(Y ). On the

other hand, since apr
I
(Y ) ⊆ Y for any Y ⊆ U , then Y = apr

I
(Y ) as required.

(ii)Let Y = apr
I
(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X ′ ∈ I for some a ∈ A. But Y =

apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. We deduce that u ∈ f(a) and f(a)∩Y = f(a)∩X ∩⋃

{f(a) : a ∈ A and f(a) ∩X ′ ∈ I} = f(a) ∩ X. If f(a) ∩ X ∈ I, then (f(a) ∩ X) ∪ (f(a) ∩ X ′) ∈ I
(by properties of ideal) i.e f(a) ∩ (X ∪′ X) = f(a) ∩ U = f(a) ∈ I a contradiction. Therefore,
f(a) ∩X = f(a) ∩ Y 6∈ I. Hence u ∈ aprI(Y ) and so Y ⊆ aprI(Y ).

(iii) Let Y = apr
I
(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X ′ ∈ I for some a ∈ A. But

Y = apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. We deduce that f(a) ∩X ⊆ Y . Hence

f(a) ∩ X ∩ Y ′ = (f(a) ∩ Y ′) ∩ X = φ. Hence f(a) ∩ Y ′ ⊆ X ′ and thus f(a) ∩ Y ′ ⊆ f(a) ∩ X ′.
Since f(a) ∩X ′ ∈ I, then f(a) ∩ Y ′ ∈ I. Consequently, u ∈ apr

I
(Y ). So Y ⊆ apr

I
(Y ).

(iv) Let Y = aprI(X) and u ∈ Y . Then u ∈ f(a) and f(a)∩X 6∈ I for some a ∈ A. But Y = aprI(X) =⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}. It follows that u ∈ f(a) and f(a) ∩ Y = f(a) ⊇ f(a) ∩X 6∈ I by

properties of ideal. So u ∈ aprI(Y ) and hence Y ⊆ aprI(Y ).
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Example 3.10 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
Let FA be a soft over U given by Table 2. Let I be an ideal on U defined as follows
I = {φ, {u2}, {u3}, {u2, u3}}.Let X = {u1, u5, u6} ⊆ U . So we have X ′ = {u2, u3, u4}, and hence
apr

I
(X) = X ∩ {u1, u2, u5, u6} = {u1, u5, u6} = {u1, u5, u6} and aprI(X) = {u1, u2, u5, u6} = f(e1) ∪

f(e2) ∪ f(e4). Let Y = aprI(X). Then we have

apr
I
(aprI(X)) = apr

I
(Y ) = f(e1) ∪ f(e2) ∪ f(e4) = aprI(X) = Y .

Also, we have aprI(aprI(X)) = aprI(X) = Y⊃
6=
X = apr

I
(X), which suggests that the inclusion (ii) in

Proposition may hold strictly. Moreover, it is easy to see that apr
I
(apr

I
(X)) = apr

I
(X).

Let X1 = {u4, u6}, then aprI(X1) = {u1, u4, u6}. If Y = aprI(X1), then

aprI1(aprI(X1)) = aprI(Y1) = {u1, u2, u4, u5, u6}⊃
6=
Y1 = aprI(X1)

which indicates that the inclusion in Proposition may be strict.

Proposition 3.11 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then the following properties hold

i) If fA is keeping union, then

a) for any X ⊆ U , there exists a ∈ A such that apr
I
(X) = f(a) ∩X

a) for any X ⊆ U , there exists a ∈ A such that aprI(X) = f(a)

ii) If fA is full and keeping union, then

aprI(X) = U for any X ⊆ U such that X 6∈ I

Proof:i) This holds by Proposition 3.4.
ii) Since fA is full and keeping union, then U =

⋃
a∈A

f(a) = f(a∗) for some a∗ ∈ A. For each X ⊆ U

such that X 6∈ I and each u ∈ U , u ∈ f(a∗) and f(a∗) ∩X = X 6∈ I. Therefore aprI(X) = U .

Proposition 3.12 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for any X ⊆ U , X is soft I-definable if and only
if aprI(X) ⊆ X.

Proof: If X is soft I-definable, then aprI(X) = apr
I
(X) ⊆ X. Conversely, suppose that aprI(X) ⊆ X

for X ⊆ U . Since f(a) 6∈ I ∀a ∈ A, then apr
I
(X) ⊆ aprI(X) by Proposition 3.2. To show that X is

soft I-definable, it remains to prove that aprI(X) ⊆ apr
I
(X). Let u ∈ aprI(X). Then ∃a ∈ A, s.t u ∈

f(a), f(a) ∩X 6∈ I. It follows that u ∈ f(a) ⊆ aprI(X) ⊆ X. So u ∈ X, u ∈ f(a) and f(a)∩X ′ = φ ∈ I.
Therefore u ∈ apr

I
(X) and so aprI(X) ⊆ apr

I
(X) as required.

Example 3.13 To illustrate the above result, we revisit Example 3.6. Let X = {u2, u4} ⊆ U .
So X ′ = {u1, u3, u5, u6}, aprI(X) = {u4} = aprI(X). Hence aprI(X) ⊆ X and X is soft I-definable set.

On the other hand, for X1 = {u4, u6} ⊆ U , X1
′ = {u1, u2, u3, u5}, aprI(X1) = {u4, u6} ∩ {u1, u4, u6} =

{u4, u6} and aprI(X1) = {u1, u4, u6}. Thus aprI(X1) 6⊆ X and X1 is soft I-rough set.

Proposition 3.14 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. The following conditions are equivalent

i) S is a full soft set.

ii) apr
I
(U) = U

iii) aprI(U) = U
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Proof: apr
I
(U) = U ∩ (

⋃
{f(a) : a ∈ A and f(a) ∩ U ′ ∈ I}) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ ∈ I}) =⋃

{f(a) : a ∈ A and φ ∈ I}) =
⋃

a∈A

f(a).

Hence by definition, S = (f,A) is a full soft set if and only if apr
I
(U) = U . That is, conditions (i) and

(ii) are equivalent. Similarly, we can show that (i) and (iii) are equivalent conditions.

Proposition 3.15 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. The following conditions are equivalent

i) X ⊆ aprI(X) ∀ X ⊆ U

ii) aprI({u}) 6= φ ∀ u ∈ U

Proof: Assume that (i) holds, then {u} ⊆ aprI({u}) ∀ u ∈ U i.e, aprI({u}) 6= φ.
Assume that (ii) holds. Let u ∈ X, so by (ii)aprI({u}) 6= φ. Let v ∈ aprI({u}), then ∃a ∈ A, s.t v ∈
f(a)and f(a) ∩ {u} 6∈ I. So f(a) ∩ {u} 6= φ. It follows that u = v ∈ f(a). Since f(a) ∩ {u} 6∈ I and
{u} ⊆ X, then f(a) ∩X 6∈ I. Consequently, u ∈ aprI(X).

Proposition 3.16 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. If aprI({u}) 6= φ ∀ u ∈ U , then for any X ⊆ U

i) (apr
I
(X))′ ⊆ aprI(X ′)

ii) NegI(X) = (aprI(X))′ ⊆ apr
I
(X ′)

Proof:If (apr
I
(X))′ is empty, then clearly we have the inclusion (i). Suppose (apr

I
(X))′ 6= φ. Let

u ∈ (apr
I
(X))′. Since fA is full, then ∃ao ∈ A, s.t u ∈ f(ao). Note also that

(apr
I
(X))′ = {u ∈ U : ∀a ∈ A, u ∈ f(a) ⇒ f(a) ∩X ′ 6∈ I} ∪ X ′. Thus it follows that either u ∈ X ′

or f(ao) ∩ X ′ 6∈ I since u ∈ f(ao). If u ∈ X ′, since aprI({u}) 6= φ ∀ u ∈ U , then X ′ ⊆ apr
I
(X ′)

by Proposition 3.15. Therefore u ∈ aprI(X
′). If f(ao) ∩ X ′ 6∈ I, then u ∈ aprI(X

′). Consequently,
(apr

I
(X))′ ⊆ aprI(X ′).

(ii)It is clear that the inclusion NegI(X) = (aprI(X))′ ⊆ apr
I
(X ′) holds when the set (aprI(X))′ is

empty. So suppose that (aprI(X))′ 6= φ. Let u ∈ (aprI(X))′. Since aprI({u}) 6= φ ∀ u ∈ U , then
X ⊆ aprI(X) by Proposition 3.15 and thus u ∈ X ′. Since fA is full, then ∃ao ∈ A, s.t u ∈ f(ao). But
we have that
NegI(X) = (aprI(X))′ = {u ∈ U : ∀a ∈ A, u ∈ f(a) ⇒ f(a) ∩X ∈ I}. Thus it follows that
f(ao) ∩ (X ′)′ ∈ I since u ∈ f(ao). Therefore u ∈ apr

I
(X ′).

Definition 3.17 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Let X ⊆ U , We define the following seven types of soft rough
sets via ideal

i) X is roughly soft I-definable if apr
I
(X) 6= φ and aprI(X) 6= U

ii) X is internally soft I-definable if apr
I
(X) = φ and aprI(X) 6= U

iii) X is externally soft I-definable if apr
I
(X) 6= φ and aprI(X) = U

iv) X is totally soft I-definable if apr
I
(X) = φ and aprI(X) = U

iv) X is externally soft P-I-definable if apr
I
(X) 6= φ and aprP (X) = U

iv) X is internally soft P-I-definable if apr
P

(X) = φ and aprI(X) 6= U

Proposition 3.18 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Let X ⊆ U .

i) If X is roughly soft P-definable, then it is roughly soft I-definable.

ii) If X is totally soft I-definable, then it is totally soft P-definable.
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Proof: Obvious.

Definition 3.19 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. For any X,Y ⊆ U we define

i) X ∼I Y ⇐⇒ apr
I
(X) = apr

I
(Y )

ii) X ∼I Y ⇐⇒ aprI(X) = aprI(Y )

iii) X ≈I Y ⇐⇒ X ∼I Y and X ∼I Y

These binary relations are called the lower soft rough equal relation via ideal,the upper soft rough equal
relation via ideal, and the soft rough equal relation via idea, respectively.
It is easy to verify that the relations defined above are all equivalence relations over ℘(U).

Proposition 3.20 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. For any X,Y ⊆ U we have

i) X ∼I Y ⇐⇒ X ∼I (X ∪ Y ) ∼I Y

ii) X ∼I X1,Y ∼I Y1=⇒ (X ∪ Y ) ∼I (X1 ∪ Y1)

iii) X ∼I Y =⇒ X ∪ (Y ′) ∼I U

iv) X ⊆ Y , Y ∼I φ ⇐⇒ X ∼I φ

v) X ⊆ Y , X ∼I U ⇐⇒ Y ∼I U

Proof:(i)If X ∼I Y , then aprI(X) = aprI(Y ). Since aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y ), we deduce
aprI(X ∪ Y ) = aprI(X) = aprI(Y ) and so X ∼I (X ∪ Y ) ∼I Y . Conversely, if X ∼I (X ∪ Y ) ∼I Y ,
then we immediately have that X ∼I Y by using the transitivity of the relation ∼I .
(ii) Assume that X ∼I X1 and Y ∼I Y1. Then by definition, we know that aprI(X) = aprI(X1) and
aprI(Y ) = aprI(Y1). Since aprI(X ∪Y ) = aprI(X)∪aprI(Y ) and aprI(X1 ∪Y1) = aprI(X1)∪aprI(Y1),
we deduce that aprI(X ∪ Y ) = aprI(X1 ∪ Y1), whence (X ∪ Y ) ∼I (X1 ∪ Y1).
(iii) Suppose that X ∼I Y . Then by definition, aprI(X) = aprI(Y ). Since aprI(X ∪ Y ′) = aprI(X) ∪
aprI(Y

′) and aprI(U) = aprI(Y )∪aprI(Y ′), it follows that aprI(X∪Y ′) = aprI(U); henceX ∪ (Y ′) ∼I U
as required.
(iv) Let X ⊆ Y and Y ∼I φ. Then we deduce aprI(X) ⊆ aprI(Y ) = aprI(φ) = φ.
Hence aprI(X) = φ = aprI(φ), and so we have that X ∼I φ.
(v) Suppose that X ⊆ Y and X ∼I U . Then we deduce aprI(Y ) ⊇ aprI(X) = aprI(U). Since Y ⊆ U ,
then aprI(Y ) ⊇ aprI(U). Therefore aprI(Y ) = aprI(U), and so Y ∼I Y as required.

Proposition 3.21 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. If fA is keeping intersection, then for any X,Y ⊆ U
we have

i) X ∼I Y ⇐⇒ X ∼I (X ∩ Y ) ∼I Y

ii) X ∼I X1,Y ∼I Y1=⇒ (X ∩ Y ) ∼I (X1 ∩ Y1)

iii) X ∼I Y =⇒ X ∩ (Y ′) ∼I φ

iv) X ⊆ Y , Y ∼I φ =⇒ X ∼I φ

v) X ⊆ Y , X ∼I U ⇐⇒ Y ∼I U

Proposition 3.22 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Then for any X ⊆ U

apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }
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Table 3: An information table
u1 u2 u3 u4 u5 u6

Sex Woman Woman Man Man Man Man
Age category Young Young Matureage Old Mature age Baby
Living area City City City V illage City V illage

Habits NSND NSND Smoke SD Smoke NSND

Proof: Let u ∈ apr
I
(X). If X ∼I Y , then by definition apr

I
(X) = apr

I
(Y ). But apr

I
(Y ) ⊆ Y for any

Y ⊆ U . It follows that u ∈ apr
I
(X) = apr

I
(Y ) ⊆ Y .

Hence u ∈
⋂
{Y ⊆ U : X ∼I Y }, and so apr

I
(X) ⊆

⋂
{Y ⊆ U : X ∼I Y }. Next, we show that the reverse

inclusion
⋂
{Y ⊆ U : X ∼I Y } ⊆ apr

I
(X) also holds. Let u ∈

⋂
{Y ⊆ U : X ∼I Y }. Then by Propo-

sition 3.9, we have apr
I
(X) = apr

I
(apr

I
(X)). Thus X ∼I aprI(X), and it follows that u ∈ apr

I
(X).

Consequently, we conclude that apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }.

Example 3.23 As in Example 3.6. Let X = {u4, u5, u6} ⊆ U . So we have X ′ = {u1, u2, u3},
and hence apr

I
(X) = X ∩ {u1, u2, u4, u5, u6} = {u4, u5, u6} = X. It is easy to see that

apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }.

Example 3.24 Let us consider the following soft set S = fE which describes life expectancy. Suppose
that the universe U = {u1, u2, u3, u4, u5, u6} consists of six persons and E = {e1, e2, e3, e4} is a set of de-
cision parameters. The ei (i = 1,2,3,4) stands for ”under stress”, ”young”, ”drug addict” and ”healthy”.
Set f(e1) = {u1, u6}, f(e2) = {u5}, f(e3) = {u4} ; and f(e4) = {u1, u2, u6}. The soft set fE can be
viewed as the following collection of approximations:
fE = {(understress, {u1, u6}); (young, {u5}); (drugaddict, {u4}); (healthy; {u1, u2, u6})}.
On the other hand, ”life expectancy” topic can also be described using rough sets as follows: The evalu-
ation will be done in terms of attributes: ”sex”, ”age category”, ”living area”, ”habits”, characterized by
the value sets ”{man, woman}”, ”{baby, young, mature age, old}”, ”{village, city}”, ”{smoke, drinking,
smoke and drinking, no smoke and no drinking}”. We denote ”smoke and drinking” by SD and ”no
smoke and no drinking” by NSND. The information will be given by Table 3, where the rows are labeled
by attributes and the table entries are the attribute values for each person. From here we obtain the
following equivalence classes, induced by the above mentioned attributes:
[u1]

R
= [u2]

R
= {u1, u2}, [u3]

R
= [u5]

R
= {u3, u5}, [u4]

R
= {u4}, [u6]

R
= {u6}.

Let I be an ideal on U defined as follows
I = {φ, {u2}, {u3}, {u2, u3}}.
Let X be a target subset of U, that we wish to represent using the above equivalence classes. Hence we
analyze the upper and lower approximations of X, in some particular cases:
1. Let X = {u5}. It follows that
X∇I = {u5}, X4I = {u3, u5}. So X is R-I-rough.
Let us calculate now the soft I-lower and I-upper approximations of X. We obtain
apr

I
(X) = {u5} = X, aprI(X) = {u5} = X

hence X is soft I-definable.
2. Let X = {u2, u5}. It follows that apr

I
(X) = {u5} = aprI(X). So X is soft I-definable. On the other

hand, apr
P

(X) = {u5}, aprP (X) = {u1, u2, u5, u6}, hence X is soft P -rough.

The above results show that soft rough set approximation via ideal is a worth considering alternative to
the rough set approximation via ideal. Soft rough sets via ideal could provide a better than rough sets
via ideal do, depending on the structure of the equivalence approximation classes and of the subsets f(e),
where e ∈ E.

.
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4. The relations among soft sets, ideal and topologies

In this section, we investigate the relationship between topological soft sets, topologies and an ideal.

Theorem 4.1 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be
a soft approximation space via ideal. If fA is full, then

i) τf = {X ⊆ U : X = apr
I
(X)} is a generalized topology on U.

ii) If fA is keeping intersections, then τf is a topology on U.

Proof: Since apr
I
(φ) = φ, then φ ∈ τf . Let = ⊆ τf . Denote = = {Xα : α ∈ Γ} where Γ is an index set.

Put X =
⋃
{Xα : α ∈ Γ}. Since Xα ⊆ X for each α ∈ Γ, then Xα = apr

I
(Xα) ⊆ apr

I
(X) by Proposition

3.7. So X =
⋃
{Xα : α ∈ Γ} ⊆ apr

I
(X). Thus apr

I
(X) = X. This implies

⋃
{Xα : α ∈ Γ} ∈ τf . Hence

τf is a generalized topology on U.
(ii) By Propositions and apr

I
(U) = U and thus U ∈ τf . Let X,Y ∈ τf , then apr

I
(X ∩ Y ) =

apr
I
(X) ∩ apr

I
(Y ) = X ∩ Y by Proposition 3.8. So X ∩ Y ∈ τf . By (i) τf is a generalized topol-

ogy on U. Thus τf is a topology on U.

Definition 4.2 Let fA ∈ S(U,E) be full and keeping intersections and I be an ideal on U such
that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Then τf is called the
topology induced by fA and an ideal I on U.

The following Theorem gives the topological structure on soft sets and an ideal(i.e. the structure of
topologies induced by soft sets and an ideal).

Theorem 4.3 Let fA ∈ S(U,E) be full and keeping intersections and I be an ideal on U such
that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Then

i) {aprI(X) : X ⊆ U} ⊆ τf = {apr
I
(X) : X ⊆ U}

ii) τf ⊇ {f(a) : a ∈ A}

iii) apr
I
(X) is an interior operator of τf

Proof: (i) Since aprI(X) = apr
I
(aprI(X)) by Proposition 3.9, then {aprI(X) : X ⊆ U} ⊆ τf .

Obviously,

τf ⊆ {aprI(X) : X ⊆ U}

Let Y ∈ {apr
I
(X) : X ⊆ U}. Then Y = apr

I
(X) for some X ⊆ U . By Proposition 3.9, apr

I
(X) =

apr
I
(apr

I
(X)). So Y ∈ τf . Thus τf ⊇ {aprI(X) : X ⊆ U}. Hence {aprI(X) : X ⊆ U} ⊆ τf =

{apr
I
(X) : X ⊆ U} as required.

(ii) For each a ∈ A, by Proposition 3.4 apr
I
(f(a)) = f(a)∩

⋃
{f(a∗) : a∗ ∈ A, f(a∗)∩(f(a))′ ∈ I} ⊆ f(a).

Since f(a) ∩ (f(a))′ = φ ∈ I, then f(a) ⊆ f(a) ∩
⋃
{f(a∗) : a∗ ∈ A, f(a∗) ∩ (f(a))′ ∈ I} = apr

I
(f(a)).

Hence f(a) = apr
I
(f(a)) and so f(a) ∈ τf . Therefore {f(a) : a ∈ A} ⊆ τf .

(iii)It suffices to show that apr
I
(X) = int(X) ∀X ⊆ U . By (i) apr

I
(X) ∈ τf and since apr

I
(X) ⊆ X, then

apr
I
(X) ⊆ int(X). Conversely, let Y ∈ int(X), then Y ∈ τf and Y ⊆ X. So Y = apr

I
(Y ) ⊆ apr

I
(X).

Thus int(X) =
⋃
{Y : Y ∈ τf , Y ⊆ X} ⊆ aprI(X). Consequently, apr

I
(X) = int(X).

Definition 4.4 Let τ be a topology on U and I be an ideal on U. Put τ = {Ua : a ∈ A and Ua 6∈ I}
where A is the set of indexes. Define a mapping fτ : A→ ℘(U) by fτ (a) = Ua for each a ∈ A. Then, the
soft set (fτ )A over U is called the soft set induced by τ on U and an ideal I on U.

Proposition 4.5 (1)Let τ be a topology on U and I be an ideal on U. Let (fτ )A be the soft set
induced by τ and I on U. Then, (fτ )A is a full, keeping intersection, keeping union soft over U and
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(fτ )A 6∈ I for each a ∈ A.
(2) Let τ1 and τ2 be two topologies on U and I1 and I2 be two ideals on U. Let (fτ1)A1

and (fτ2)A2

be two soft sets induced, respectively, by τ1 and I1 and, τ2 and I2 on U.
If τ1 ⊆ τ2, then

(fτ1)A1 ⊇ (fτ2)A2

Proof: Obvious.

Proposition 4.6 Let τ be a topology on U, let I be an ideal on U such that G 6∈ I ∀G ∈ τ .
Then there exists a full, keeping intersection, and keeping union soft set fA with fA(a) 6∈ I for each a ∈ A
such that apr

I
(X) ⊇ int(X) for each X ∈ ℘(U) where (U, fA, I) be a soft approximation space via ideal.

Proof: Put τ = {Ua : a ∈ A}, where A is the set of indexes. Define a mapping f : A → ℘(U)
by

f(a) = Ua for each a ∈ A

By Proposition 4.5 fA is full, keeping intersection, and keeping union and fA(a) 6∈ I for each a ∈ A.
Now, we show that apr

I
(X) ⊇ int(X) for each X ∈ ℘(U). Let X ∈ ℘(U) and x ∈ int(X), then ∃ open

neighbourhood W of x s.t W ⊆ X. So, W = Ua for some a ∈ A. This implies x ∈ Ua = f(a) and
f(a) ∩X ′ = φ ∈ I. Therefore x ∈ apr

I
(X). Consequently, apr

I
(X) ⊇ int(X).

Theorem 4.7 Let fA be full and keeping intersections soft set over U and I be an ideal on U
such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Let τf be the topology
induced by fA and I on U. Let (fτf )B be the soft set induced by τf and I on U. Then

fA ⊆ (fτf )B

Proof: By Theorem 4.3 τf ⊇ {f(a) : a ∈ A}. Let τf = {Ua : Ua 6∈ I, a ∈ B}, where A ⊆ B, Ua = f(a) ∀
a ∈ A. Therefore fτf : B → ℘(U), where fτf (a) = Ua for each a ∈ B. Hence fA ⊆ (fτf )B .

5. The relations between soft rough approximation via ideal and
rough approximation via ideal

In this section we will describe the relationship between rough sets via ideal and soft rough sets via ideal.

Definition 5.1 Let R be a binary relation on U and I be an ideal on U such that R(a) 6∈ I ∀a ∈ U . .
Define a mapping fR : U → ℘(U) by

fR(a) = R(a)

for each a ∈ A, where A = U . Then, (fR)A is called the soft set induced by R and I on U.

Theorem 5.2 Let R be an equivalence relation on U, (fR)A) be the soft set induced by R on U.
Let I be an ideal on U and PR = (U, (fR)A, I) be a soft approximation space via ideal. If aprI({u}) 6= φ
∀ u ∈ U , then for all X ⊆ U , X∇I = apr

I
(X) and X4I = aprI(X).

Thus in this case,

i) X ⊆ U is R-I-definable iff X is a soft I-definable set.

ii) X ⊆ U is R-I-rough iff X is a soft I-rough set.
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Proof: Let X ⊆ U and u ∈ U . We show that X∇I = apr
I
(X). If u ∈ RI(X) = {x ∈ X : [x]R ∩X ′ ∈ I},

then [u]R ∩ X ′ ∈ I. So, ∃ u ∈ X s.t u ∈ [u]R = fR(u) ∩ X ′ ∈ I. Therefore u ∈ apr
I
(X), and so

X∇I ⊆ apr
I
(X). Conversely, assume that u ∈ apr

I
(X). So,u ∈ X and ∃ v ∈ U s.t u ∈ fR(v) = [v]R,

[v]R ∩X ′ ∈ I. It follows that [u]R = [v]R. Thus [u]R ∩X ′ = [v]R ∩X ′ ∈ I and u ∈ X∇I . Consequently,
X∇I = apr

I
(X).

Now we show that X4I = aprI(X). Let u ∈ X4I , then either u ∈ X or [u]R ∩ X 6∈ I. If u ∈ X ,
then u ∈ aprI(X) by Proposition 3.15 since aprI({u}) 6= φ ∀ u ∈ U . If [u]R ∩ X 6∈ I, then ∃ u ∈ U
s.t u ∈ [u]R = fR(u) ∩ X 6∈ I and therefore u ∈ aprI(X). Therefore X4I ⊆ aprI(X). Conversely, let
u ∈ aprI(X). Then ∃ v ∈ U s .t u ∈ fR(v) = [v]R, [v]R ∩X 6∈ I. Thus [u]R = [v]R and [u]R ∩X 6∈ I .
Hence u ∈ X4I and consequently X4I = aprI(X).

Definition 5.3 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A
(i) Define a binary relation Rf on U by

xRfy ⇔ ∃ a ∈ A , {x, y} ⊆ f(a)

for each x, y ∈ U . Then Rf is called the binary relation induced by fA and I on U.
(ii) For each x ∈ U , define a successor neighbourhood (Rf )s(x) = {y ∈ U : xRfy}

Proposition 5.4 [35] Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
Rf be the binary relation induced by fA on U. Then, the following properties hold.

i) Rf is a symmetric relation.

ii) If fA is full, then Rf is a reflexive relation.

iii) If fA is a partition, then Rf is an equivalence relation.

Proposition 5.5 [35] Let Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
Rf be the binary relation induced by fA on U. Then, the following properties hold.

i) If u ∈ f(a) for a ∈ A, then f(a) ⊆ Rf (u).

ii) If fA is a partition and u ∈ f(a) for a ∈ A, then f(a) = Rf (u).

iii) If fA is keeping union, then for all u ∈ U ∃a ∈ A, s.t Rf (u) = f(a).

Next, we define a new pair of soft rough approximation operators via ideal and giving the relationship
between this pair and previous one.

Definition 5.6 Let Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. We define a pair of operators apr′

P
, apr′P : ℘(U) → ℘(U) as

follows:

apr′
I
(X) = {x ∈ X : Rf (x) ∩X ′ ∈ I},

apr′I(X) = {x ∈ U : Rf (x) ∩X 6∈ I}
⋃
X

Proposition 5.7 Let Let fA ∈ S(U,E) be partition and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A.
Let (U, fA, I) be a soft approximation space via ideal. Let Rf be a binary relation induced by fA on U.
Then, the following properties hold for any X ⊆ U

i) If fA is full, then

apr
I
(X) ⊇ apr′

I
(X)

ii) If fA is full, keeping union and X 6∈ I, then

aprI(X) ⊇ apr′I(X)
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iii) If fA is partition, then

a) apr
I
(X) = apr′

I
(X)

b) If aprI({u}) 6= φ ∀ u ∈ U , then aprI(X) = apr′I(X)

Proof: i) Suppose that x ∈ apr′
I
(X). Then x ∈ X and Rf (x) ∩X ′ ∈ I. Since fA is full, then x ∈ f(a)

for some a ∈ A. By Proposition 5.5 f(a) ⊆ Rf (x). Thus, x ∈ f(a) and f(a) ∩X ′ ∈ I by properties of
ideal. Consequently, x ∈ apr

I
(X). So,

apr
I
(X) ⊇ apr′

I
(X)

ii)Since X 6∈ I, then X 6= φ. By Proposition 3.11(ii), aprI(X) = U . Thus

aprI(X) ⊇ apr′I(X)

iii) a) Suppose that x ∈ apr
I
(X). Then, x ∈ X and ∃ a ∈ A s.t x ∈ f(a) and f(a) ∩ X ′ ∈ I. Since

fA is partition and x ∈ f(a), then f(a) = Rf (x) by Proposition 3.11. This implies that x ∈ apr′
I
(X).

Therefore

apr
I
(X) ⊆ apr′

I
(X)

Since every partition soft set is full, then by i)

apr
I
(X) = apr′

I
(X)

iii) b) Suppose that x ∈ aprI(X). Then, ∃ a ∈ A s.t x ∈ f(a) and f(a) ∩X 6∈ I. Since fA is partition
and x ∈ f(a), then f(a) = Rf (x) by Proposition 3.11. This implies that x ∈ apr′I(X). Therefore

aprI(X) ⊆ apr′I(X)

Suppose that x ∈ apr′I(X). Then, either x ∈ X or Rf (x)∩X 6∈ I. If x ∈ X, since aprI({u}) 6= φ ∀ u ∈ U ,
then X ⊆ aprI(X) by Proposition 3.15 and therefore x ∈ aprI(X). If Rf (x) ∩ X 6∈ I, since fA is full,
then x ∈ f(a) for some a ∈ A. Since fA is partition and x ∈ f(a), then f(a) = Rf (x) by Proposition
3.11. This implies that x ∈ aprI(X). Therefore

apr′I(X) ⊆ aprI(X)

Hence aprI(X) = apr′I(X).

Theorem 5.8 Let fA ∈ S(U,E) be partition and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A.
Let (U, fA, I) be a soft approximation space via ideal. Let Rf be a binary relation induced by fA on U.
Then, for all X ⊆ U , X∇I = apr

I
(X) = apr′

I
(X) and X4I = aprI(X) = apr′I(X).

where X∇If and X4If are the rough approximations operators of X via ideal.
Proof: Follows immediately by Propositions 5.5 and 5.7.

Remark 5.9 Theorems 5.2 and 5.8 illustrate that rough set models via ideal can be viewed as a
special case of soft rough sets via ideal.

Proposition 5.10 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal and Rf be a binary relation induced by fA on U.

i) If X ⊆ U is R-I- definable, then X is soft I-definable.

ii) If X ⊆ U is R-I- Rough, then X is soft I-Rough.

Proof: (i) If X = φ, then X is soft I-definable by Proposition 3.7. Let φ 6= X ∈ ℘(U) be R-I-definable.
by Proposition 3.2, apr

I
(X) ⊆ aprI(X). It remains to show that aprI(X) ⊆ apr

I
(X). Let u ∈ aprI(X),

then there exists a ∈ A such that u ∈ f(a) and f(a) ∩X 6∈ I. By Proposition 5.5, f(a) ⊆ Rf (u). Since
f(a) ∩X 6∈ I, then Rf (u) ∩X 6∈ I by Properties of ideal. But u ∈ Rf (u), so u ∈ X4I = X∇I . Hence
u ∈ X and Rf (u) ∩ X ′ ∈ I. Therefore f(a) ∩ X ′ ∈ I by Properties of ideal and thus u ∈ apr

I
(X).

Consequently, aprI(X) ⊆ apr
I
(X). So X is soft I-definable.
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(ii)Follows immediately by (i).

The following example shows that the converse of the above proposition is not true in general.

Example 5.11 Let U = {h1, h2, h3, h4, h5} . Let I be an ideal on U and let R be a binary rela-
tion on U, defined as follows:

I = {{h1}, {h2}, {h1, h2}, φ} and let fA be a soft set over U defined as follows

f(a1) = {h1, h4}, f(a2) = {h4}, f(a3) = {h2, h3, h5}, f(a4) = {h1, h2, h4}.
Let R be the binary relation induced by fA. Then

R(h1) = {h1, h2, h4}, R(h2) = {h1, h2, h3, h4, h5}, R(h3) = {h2, h3, h5}, R(h4) = {h1, h2, h4}, R(h5) =
{h2, h3, h5}.
Let X = {h2, h3, h5} ⊆ U . So X ′ = {h1, h4}. Thus X∇I = {h3, h5}, and X4I = {h2, h3, h5}. Also,
apr

I
(X) = {h2, h3, h5} , aprI(X) = {h2, h3, h5}.

Then X is an R-I-rough set. But X is soft I-definable set.

6. Conclusion

In this paper, we have proposed the new concept of soft rough sets via ideal. We presented important
properties of soft rough approximations via ideal based on soft approximation spaces via ideal, giving
interesting examples. The accuracy measure is one of the ways of characterizing soft rough theory. Our
approach makes the accuracy measures higher than the existing approximations. Soft rough relations via
ideal were discussed. We researched relationships among soft sets, soft rough sets via ideal and topologies,
obtained the structure of soft rough sets via ideal. Furthermore, we examined the relationship between
soft rough sets via ideal and rough sets via ideal, and compared these two different models.
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Abstract. In this paper, we define C∗-ternary quadratic 3-homomorphisms associated with the quadratic

mapping f(x + y) + f(x − y) = 2f(x) + 2f(y), and prove the Hyers-Ulam stability of C∗-ternary quadratic

3-homomorphisms.

1. Introduction and preliminaries

As it is extensively discussed in [18], the full description of a physical system S implies the knowledge of

three basic ingredients: the set of the observables, the set of the states and the dynamics that describes the

time evolution of the system by means of the time dependence of the expectation value of a given observable

on a given statue. Originally the set of the observables were considered to be a C∗-algebra [10].

We say that a functional equation (Q) is stable if any function g satisfying the equation (Q) approximately

is near to true solution of (Q).

The stability problem of functional equations originated from a question of Ulam [19] concerning the stability

of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach

spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Th.M. Rassias [17] for linear

mappings by considering an unbounded Cauchy difference.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called quadratic functional equation. In

addition, every solution of the above equation is said to be a quadratic mapping. Czerwik [5] proved the

Cauchy-Rassias stability of the quadratic functional equation. Since then, the stability problems of various

functional equation have been extensively investigated by a number of authors (for instances, [3, 7]).

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists

(see [13]). As an application in physics, the quark model inspired a particular brand of ternary algebraic

systems. The so-called Nambu mechanics which has been proposed by Nambu [6] in 1973, is based on such

structures. There are also some applications, although still hypothetical, in the fractional quantum Hall effect,

the non-standard statistics (the anyons), supersymmetric theories, Yang-Baxter equation, etc ([1, 20]). The

comments on physical applications of ternary structures can be found in ([4, 8, 9, 12, 14, 15, 16]).

02010 Mathematics Subject Classification. Primary 39B52; 39B82; 46B99; 17A40.
0Keywords: Hyers-Ulam stability; C∗-ternary algebra; quadratic functional equation; C∗-ternary quadratic

3-homomorphism.
∗Corresponding authors.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

36 Hossein Piri et al 36-41



Stability of C∗-ternary quadratic 3-homomorphisms

A ternary algebra is a complex Banach space, equipped with a ternary product (x, y, z)→ [x, y, z] of A3 into

A, which is C-linear in the outer variables, conjugate C-linear in the middle variable, and associative in the

sense that
[
x, y, [z, u, v]

]
=
[
x, [y, z, u]v

]
=
[
[x, y, z], u, v

]
and satisfies ‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖. A C∗-ternary

algebra is a complex Banach space A equipped with a ternary product which is associative and C-linear in the

outer variables, conjugate C-linear in the middle variable, and ‖[x, x, x]‖ = ‖x‖3 (see [21]). If a C∗-ternary

algebra (A, [. · .·, ·]) has an identity, that is, an element e ∈ A such that x = [x, e, e] = [e, e, x] for all x ∈ A, then

it is routine to verify that A, endowed with xoy := [x, e, y], x∗ := [e, x, e], is a unital C∗-algebra. Conversely,

if (A, o) is a unital C∗-algebra, then [x, y, z] := xoy∗oz makes A into a C∗-ternary algebra.

Throughout this paper, let A and B be Banach ternary algebras.

A quadratic mapping Q : A→ B is called a C∗-ternary quadratic homomorphism if

Q([x, y, z]) = [Q(x), Q(y), Q(z)]

for all x, y, z ∈ A.

Definition 1.1. Let A and B be C∗-ternary algebras. A quadratic mapping Q : A→ B is called a C∗-ternary

quadratic 3-homomorphism if it satisfies

Q([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]]) = [Q([x1, x2, x3]), Q([y1, y2, y3]), Q([z1, z2, z3])]

for all x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ A.

In this paper, we prove the Hyers-Ulam stability of C∗-ternary quadratic 3-homomorphisms in C∗-ternary

algebras.

2. Stability of C∗-ternary quadratic 3-homomorphisms

In this section, we prove the Hyers-Ulam stability of C∗-ternary quadratic 3-homomorphisms for the qua-

dratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y).

Theorem 2.1. Let f : A→ B be a mapping for which there exists a function ϕ : A9 → [0,∞) such that
∞∑
i=0

49iϕ(
x1
2i
,
x2
2i
,
x3
2i
,
y1
2i
,
y2
2i
,
y3
2i
,
z1
2i
,
z2
2i
,
z3
2i

) <∞,

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y, 0, 0, 0, 0, 0, 0, 0) (2.1)∥∥∥f([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]])− [f([x1, x2, x3]), f([y1, y2, y3]), f([z1, z2, z3])]
∥∥∥ (2.2)

≤ ϕ(x1, x2, x3, y1, y2, y3, z1, z2, z3)

for all x, y, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then there exists a unique C∗-ternary quadratic 3-homomorphism

Q : A→ B such that

‖f(x)−Q(x)‖ ≤ ϕ̃(
x

2
,
x

2
, 0, 0, 0, 0, 0, 0, 0) (2.3)

for all x ∈ A, where

ϕ̃(x1, x2, x3, y1, y2, y3, z1, z2, z3) :=
∞∑
i=0

4iϕ(
x1
2i
,
x2
2i
,
x3
2i
,
y1
2i
,
y2
2i
,
y3
2i
,
z1
2i
,
z2
2i
,
z3
2i

)

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A.
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Proof. It follows from (2.1) that f(0) = 0.

Letting y = x in (2.1), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x, 0, 0, 0, 0, 0, 0, 0) (2.4)

for all x ∈ A. So

‖f(x)− 4f(
x

2
)‖ ≤ ϕ(

x

2
,
x

2
, 0, 0, 0, 0, 0, 0, 0)

for all x ∈ A. Hence∥∥∥4lf(
x

2l
)− 4mf(

x

2m
)
∥∥∥ ≤

m−1∑
i=1

∥∥∥4if(
x

2i
)− 4i+1f(

x

2i+1
)
∥∥∥ (2.5)

≤
m−1∑
i=0

4iϕ
( x

2i+1
,
x

2i+1
, 0, 0, 0, 0, 0, 0, 0

)
≤

m−1∑
i=0

49iϕ
( x

2i+1
,
x

2i+1
, 0, 0, 0, 0, 0, 0, 0

)
for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.5) that the sequence

{4nf( x
2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence {4nf( x

2n )} converges. So

one can define the mapping Q : A→ B by

Q(x) = lim
n→∞

4nf(
x

2n
)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m→∞ in (2.5), we get (2.3).

It follows from (2.1) that

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖ = lim
n→∞

4n
∥∥∥f(

x+ y

2n
) + f(

x− y
2n

)− 2f(
x

2n
)− 2f(

y

2n
)
∥∥∥

≤ lim
n→∞

4nϕ
( x

2n
,
y

2n
, 0, 0, 0, 0, 0, 0, 0

)
≤ lim

n→∞
49nϕ

( x
2n
,
y

2n
, 0, 0, 0, 0, 0, 0, 0

)
= 0

and so

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ A.

It follows from (2.2) and the continuity of the ternary product that∥∥∥Q([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]])− [Q([x1, x2, x3]), Q([y1, y2, y3]), Q([z1, z2, z3])]
∥∥∥

= lim
n→∞

49n
∥∥∥f([[

x1
2n
,
y1
2n
,
z1
2n

], [
x2
2n
,
y2
2n
,
z2
2n

], [
x3
2n
,
y3
2n
,
z3
2n

]])− [f([
x1
2n
,
x2
2n
,
x3
2n

]), f([
y1
2n
,
y2
2n
,
y3
2n

]), f([
z1
2n
,
z2
2n
,
z3
2n

])]
∥∥∥

≤ lim
n→∞

49nϕ
(x1

2n
,
x2
2n
,
x3
2n
,
y1
2n
,
y2
2n
,
y3
2n
,
z1
2n
,
z2
2n
,
z3
2n

)
= 0

and so

Q([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]]) = [Q([x1, x2, x3]), Q([y1, y2, y3]), Q([z1, z2, z3])]

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A.

Now, let T : A→ B be another quadratic mapping satisfying (2.3). Then we have

‖Q(x)− T (x)‖ = 4n
∥∥∥Q(

x

2n
)− T (

x

2n
)
∥∥∥

≤ 4n
(∥∥∥Q(

x

2n
)− f(

x

2n
)
∥∥∥+

∥∥∥T (
x

2n
)− f(

x

2n
)
∥∥∥)

≤ 2 · 4nϕ
( x

2n
,
x

2n
, 0, 0, 0, 0, 0, 0, 0

)
≤ 2 · 49nϕ

( x
2n
,
x

2n
, 0, 0, 0, 0, 0, 0, 0

)
,
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which tends to zero as n → ∞ for all x ∈ A. So we can conclude that Q(x) = T (x) for all x ∈ A. This

proves the uniqueness of Q. Thus the quadratic mapping Q : A → B is a unique C∗-ternary quadratic

3-homomorphism satisfying (2.3). �

Corollary 2.2. Let r, θ be nonnegative real numbers with r > 18 and let f : A→ B be a mapping satisfying

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(‖x‖r + ‖y‖r), (2.6)∥∥∥f([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]])− [f([x1, x2, x3]), f([y1, y2, y3]), f([z1, z2, z3])]
∥∥∥ (2.7)

≤ θ(‖x1‖r + ‖x2‖r + ‖x3‖r + ‖y1‖r + ‖y2‖r + ‖y3‖r + ‖z1‖r + ‖z2‖r + ‖z3‖r)

for all x, y, x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then there exists a unique C∗-ternary quadratic 3-homomorphism

Q : A→ B such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ A.

Proof. Defining

ϕ(x1, x2, x3, y1, y2, y3, z1, z2, z3) = θ(‖x1‖r + ‖x2‖r + ‖x3‖r + ‖y1‖r + ‖y2‖r + ‖y3‖r + ‖z1‖r + ‖z2‖r + ‖z3‖r)

in Theorem 2.1, we get the desired result. �

Theorem 2.3. Let f : A→ B be a mapping for which there exists a function ϕ : A9 → [0,∞) satisfying (2.1)

and (2.2) such that

ϕ̃(x1, x2, x3, y1, y2, y3, z1, z2, z3) :=

∞∑
i=0

1

4i
ϕ(2ix1, 2

ix2, 2
ix3, 2

iy1, 2
iy2, 2

iy3, 2
iz1, 2

iz2, 2
iz3) <∞

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A. Then there exists a unique C∗-ternary quadratic 3-homomorphisms

Q : A→ B such that

‖f(x)−Q(x)‖ ≤ 1

4
ϕ̃(x, x, 0, 0, 0, 0, 0, 0, 0) (2.8)

for all x ∈ A

Proof. It follows from (2.4) that

‖f(x)− 1

4
f(2x)‖ ≤ 1

4
ϕ(x, x, 0, 0, 0, 0, 0, 0, 0)

for all x ∈ A

‖ 1

4l
f(2lx)− 1

4m
f(2mx)‖ ≤

m−1∑
j=l

‖ 1

4j
f(2jx)− 1

4j+1
f(2j+1x)‖ ≤

m−1∑
j=l

1

4j+1
ϕ(2jx, 2jx, 0, 0, 0, 0, 0, 0, 0) (2.9)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.9) that the sequence

{( 1
4n )f(2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence {( 1

4n )f(2nx)} converges.

So one can define the mapping Q : A→ B by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.8).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

39 Hossein Piri et al 36-41



H. Piri, S. H. Aslani, V. Keshavarz, C. Park, S. Jang

It follows from (2.2) and the continuity of the ternary product that∥∥∥Q([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]])− [Q([x1, x2, x3]), Q([y1, y2, y3]), Q([z1, z2, z3])]
∥∥∥

= lim
n→∞

1

49n

∥∥∥f([[2nx1, 2
ny1, 2

nz1], [2nx2, 2
ny2, 2

nz2], [2nx3, 2
ny3, 2

nz3]])

− [f([2nx1, 2
nx2, 2

nx3]), f([2ny1, 2
ny2, 2

ny3]), f([2nz1, 2
nz2, 2

nz3])]
∥∥∥

≤ lim
n→∞

1

49n
ϕ
(

2nx1, 2
nx2, 2

nx3, 2
ny1, 2

ny2, 2
ny3, 2

nz1, 2
nz2, 2

nz3

)
≤ lim

n→∞

1

4n
ϕ
(

2nx1, 2
nx2, 2

nx3, 2
ny1, 2

ny2, 2
ny3, 2

nz1, 2
nz2, 2

nz3

)
= 0

and so

Q([[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]]) = [Q([x1, x2, x3]), Q([y1, y2, y3]), Q([z1, z2, z3])]

for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ A.

The rest of the proof is similar to the proof of Theorem 2.1 �

Corollary 2.4. Let r, θ be nonnegative real numbers with r < 2 and let f : A → B be a mapping satisfying

(2.6) and (2.7). Then there exists a unique C∗-ternary quadratic 3-homomorphism Q : A→ B such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ A.

Proof. Defining

ϕ(x1, x2, x3, y1, y2, y3, z1, z2, z3) = θ(‖x1‖r + ‖x2‖r + ‖x3‖r + ‖y1‖r + ‖y2‖r + ‖y3‖r + ‖z1‖r + ‖z2‖r + ‖z3‖r)

in Theorem 2.3, we get the desired result. �
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Abstract: In this paper, we investigate the uniform version and non-uniform version of the Hyers-

Ulam stability of the additive functional equation f(3x+ y) + f(x+ 3y) = 4f(x) + 4f(y) in Šerstnev

probabilistic normed spaces with a triangle function.
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1. Introduction

In 1940, Ulam gave a talk before the Mathematics Club of the University of Wisconsin in which he
discussed a number of unsolved problems. The stability problem of functional equations originated
from a question of Ulam [26] concerning the stability of group homomorphisms.

In 1941, Hyers [7] considered the case of approximately additive mappings f : X → Y such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and for some ε > 0, where X and Y are Banach spaces. Then there exists a unique
additive function A : X → Y such that

‖f(x)−A(x)‖ ≤ ε

for all x ∈ X.
Aoki [1] and Rassias [14] provided a generalization of the Hyers theorem for additive and linear

mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1. ([14]) Let f : X → Y be a mapping from a normed vector space X into a Banach
space Y subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ X, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique
additive mapping A : X → Y defined by A(x) = limn→∞ 2−nf(2nx) is the unique additive mapping
which satisfies
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‖f(x)−A(x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ X. If p < 0 then (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.

The above theorem has provided a lot of influence during the last three decades in the development
of a generalization of the Hyers-Ulam stability concept (see [4, 8]).

In 1994, a generalization of Rassias theorem was obtained by Găvruta [6] by replacing the bound
ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). During the last three decades a number of
papers and research monographs have been published on various generalizations and applications of
the Hyers-Ulam stability to a number of functional equations and functions (see [2]–[13], [15]–[22]
and [27, 28]).

A PN space wwas first defined by Šerstnev in 1963 (see [25]).
We recall the definition of probabilistic space given in [23].

Definition 1.2. ([23]) A probabilistic normed space (briefly, PN space) is a quadruple (X, ν, τ, τ∗),
where X is a real vector space, τ and τ∗ are continuous triangle functions with τ ≤ τ∗ and ν is a
mapping (the probabilistic norm) from V into ∆+ such that for every choice of p and q in V the
following hold:

(N1) νp = ε0 if and only if p = θ (θ is the null vector in X);
(N2) ν−p = νp;
(N3) νp+q ≥ τ(νp, νq);
(N4) νp ≤ τ∗(νλp, ν(1−λ)p) for every λ ∈ [0, 1].

A PN space is called a Šerstnev space if it satisfies (N1), (N3) and the following condition:

ναp(x) = νp

(
x

|α|

)
holds for every α 6= 0 ∈ R and x > 0. When T is a continuous t-norm such that τ = ΠT and
τ∗ = ΠT ∗ , the PN space (X, ν, τ, τ∗) is called a Menger PN space (briefly, MPN space), and is
denoted by (X, ν, τ).

Let (X, ν, τ) be an MPN space and let {xn} be a sequence in X. Then {xn} is said to be
convergent if there exists x ∈ X such that

lim
n→∞

ν(xn − x)(t) = 1

for all t > 0. In this case x is called the limit of {xn}. The sequence {xn} in MPN space (X, ν, τ)
is called Cauchy if for each ε > 0 and δ > 0, there exists some n0 such that ν(xn − xm)(δ) > 1 − ε
for all m,n ≥ n0. Clearly, every convergent sequence in an MPN space is Cauchy. If each Cauchy
sequence is convergent in an MPN space (X, ν, τ), then (X, ν, τ) is called a Menger probabiistic
Banach space (briefly, MPB space). Recently, the stability of functional equations in PN spaces
and MPN spaces has been investigated by some authors; see [5, 24] and references therein.

In this paper, we investigate the stability of additive functional equations in Šerstnev probabilistic
normed space endowed with ΠM triangle function.

2. Main results

We begin our work with uniform version of the Hyers-Ulam stability in Šerstnev PN spaces in
which we uniformly approximate a uniform approximate additive mapping.
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Theorem 2.1. Let X be a linear space and (Y, ν,ΠM ) be a Šerstnev PB space. Let ϕ : X×X → [0,∞)
be a control function such that

ϕ̃n(x, y) = 3−n−1ϕ(3nx, 3ny) (x, y ∈ X) (2.1)

converges to zero. Let f : X → Y be a uniformly approximately additive function with respect to ϕ
in the sense that

lim
t→∞

ν (f(3x+ y) + f(x+ 3y)− 4f(x)− 4f(y)) (tϕ(x, y)) = 1 (2.2)

uniformly on X ×X. Then A(x) := limn→∞
1
3n f(3nx) for each x ∈ X exists and defines an additive

mapping A : X → Y such that if for some δ > 0, α > 0

ν (f(3x+ y) + f(x+ 3y)− 4f(x)− 4f(y)) (δϕ(x, y)) > α (2.3)

for all x, y ∈ X, then
ν (A(x)− f(x)) (δϕ̃n(x, 0)) > α

for all x ∈ X.

Proof. Given ε > 0, by (2.2), we can choose some t0 such that

ν (f(3x+ y) + f(x+ 3y)− 4f(x)− 4f(y)) (tϕ(x, y)) > 1− ε (2.4)

for all x, y ∈ X and all t ≥ t0. Subsituting y = 0 in (2.4) , we obtain

ν (f(3x)− 3f(x)) (tϕ(x, 0)) > 1− ε
and replacing x by 3nx, we get

ν
(
3−n−1f(3n+1x)− 3−nf(3nx)

) (
t3−n−1ϕ(3nx, 0)

)
> 1− ε.

Allowing to a nonincreasing subequence, if necessary, we assume that
{

3−n−1ϕ(3nx, 3ny)
}

is nonin-
creasing.

Thus for each n > m we have

ν
(
3−mf(3mx)− 3−nf(3nx)

) (
t3−m−1ϕ(3mx, 0)

)
(2.5)

= ν

(
n−1∑
k=m

(
3−kf(3kx)− 3−k−1f(3k+1x)

))(
t3−m−1ϕ(3mx, 0)

)
≥ ΠM

{
ν
(
3−mf(3mx)− 3−nf(3nx)

)
,

ν

(
n−1∑

k=m+1

(
3−kf(3kx)− 3−k−1f(3k+1x)

))}
(t3−m−1ϕ(3mx, 0))

≥ ΠM

{
1− ε; ΠM

{
ν
(
3−mf(3mx)− 3−nf(3nx)

)
,

ν

(
n−1∑

k=m+2

(
3−kf(3kx)− 3−k−1f(3k+1x)

))}(
t3−m−2ϕ(3m+1x, 0)

)}
≥ 1− ε

for all x ∈ X.
The convergence of (2.1) implies that for given δ > 0 there is n0 ∈ N such that

t03
−n−1ϕ(3nx, 0) < δ ∀n ≥ n0.
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Thus by (2.5) we deduce that

ν(3−mf(3mx)− 3−nf(3nx))(δ) (2.6)

≥ ν(3−mf(3mx)− 3−nf(3nx))(t03
−m−1ϕ(3mx, 0)) ≥ 1− ε

for each n ≥ n0. Hence 1
3n f(3nx) is a Cauchy sequence in Y . Since (Y, ν,ΠM ) is complete, this

sequence converges to some A(x) ∈ Y . Therefore, we can define a mapping A : X → Y by A(x) :=
limn→∞

1
3n f(3nx), namely, for each t > 0 and x ∈ X,

ν(A(x)− 3−nf(3nx))(t) = 1.

Next, let x, y ∈ X. Temporarily fix t > 0 and 0 < ε < 1. Since 1
3nϕ (3nx, 0) converges to zero,

there is some n1 > n0 such that t0ϕ (3nx, 0) < t3n+1 for all n > n1, we have

ν (A(3x+ y) +A(x+ 3y)− 4A(x)− 4A(y)) (t)

≥ ΠM (ΠM (ν(A(3x+ y)− 3−n−1f(3n+1(3x+ y)))(t),

ν(A(x+ 3y)− 3−n−1f(3n+1(x+ 3y)))(t), ν4(A(x)− 3n−1f(3n+1x))(t)

ν4(A(y)− 3n−1f(3n+1y))(t), ν(f(3n+1(3x+ y)) + f(3n+1(x+ 3y))− 4f(3n+1x)

−4f(3n+1y)))(3n+1t))

and so we have

lim
n→∞

ν
(
A(3x+ y)− 3−n−1f(3n+1(3x+ y)

)
(t) = 1,

lim
n→∞

ν
(
A(x+ 3y)− 3−n−1f(3n+1(x+ 3y)

)
(t) = 1,

lim
n→∞

4ν
(
A(x)− 3−n−1f(3n+1x)

)
(t) = 1,

lim
n→∞

4ν
(
A(y)− 3−n−1f(3n+1y)

)
(t) = 1

and, by (2.4), for large enough n, we have

ν
(
f(3n+1(3x+ y)) + f(3n+1(x+ 3y))− 4f(3n+1x)− 4f(3n+1y)

)
(3n+1t)

≥ ν(f(3n+1(3x+ y)) + f(3n+1(x+ 3y))− 4f(3n+1x)− 4f(3n+1y))(t0ϕ(3nx, 0)) ≥ 1− ε.
Thus

ν (A(3x+ y) +A(x+ 3y)− 4A(x)− 4A(y)) (t) ≥ 1− ε ∀t > 0, 0 < ε < 1.

It follows that ν (A(3x+ y) +A(x+ 3y)− 4A(x)− 4A(y)) (t) = 1 for all t > 0 and by N(1), we have
A(3x+ y) +A(x+ 3y) = 4A(x) + 4A(y).

For some positive δ and α, let us assume that (2.3) holds. Let x ∈ X. Setting m = 0 and α = 1− ε
in (2.6), we get

ν(f(3nx)− 3nf(x))(δ) ≥ α
for all positive integers n ≥ n0. For large enough n, we have

ν(f(x)−A(x))(δ3−n−1ϕ(3nx, 0))

≥ ΠM

{
ν(f(x)− 3−nf(3nx)), ν(3−nf(3nx)−A(x))

}
(δ3−n−1ϕ(3nx, 0)) ≥ α,

which implies
ν(A(x)− f(x))(δϕ̃n(x, 0)) > α,

as desired. �
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Corollary 2.2. Let X be a linear space and (Y, ν,ΠM ) a Šerstnev PB space. Let ϕ : X×X → [0,∞)
be a control function satisfying (2.2). Let f : X → Y be a uniformly approximately additive function
with respect to ϕ. Then there is a unique additive mapping A : X → Y such that

lim
n→∞

ν(f(x)−A(x))(tϕ̃n(x, 0)) = 1 (2.7)

uniformly on X.

Proof. The existence of uniform limit (2.7) immediately follows from Theorem 2.1. It remans to
prove the uniqueness assertion.

Let S be another additive mapping satisfying (2.7). Fix c > 0. Given ε > 0, by (2.7), for T and
S, we can find some t0 > 0 such that

ν(f(x)−A(x))(tϕ̃n(x, 0)) > 1− ε,
ν(f(x)− S(x))(tϕ̃n(x, 0)) > 1− ε

for all x ∈ X and t ≥ t0. Fix for some x ∈ X and find some integer n0 such that

t03
−nϕ(3n+1x, 0) > c∀n ≥ n0.

Then we have

ν (S(x)−A(x)) (c) ≥ ΠM

{
ν
(
3−nf(3nx)−A(x)

)
, ν
(
S(x)− 3−nf(3nx)

)}
(c)

= ΠM {ν (f(3nx)−A(3nx)) , ν (S(3nx)− f(3nx))} (3nc)

≥ ΠM {ν (f(3nx)−A(3nx)) , ν (S(3nx)− f(3nx))}
(
t0ϕ

(
3n+1x, 0

))
≥ 1− ε.

It follows that ν (S(x)−A(x)) (c) = 1 for all c > 0. Thus A(x) = S(x) for all x ∈ X. �

Now we present a non-uniform version of the Hyers-Ulam theorem in Šerstnev PN spaces.

Theorem 2.3. Let X be a linear space. Let (Z, ω,ΠM ) be a Šerstnev MPN space. Let ψ : X×X →
Z be a function such that for all 0 < α < 3,

ω(ψ(3x, 3y))(t) ≥ ω(ψ(x, y))(t) (2.8)

for all x, y ∈ X and t > 0. Let (Y, ν,ΠM ) be a Šerstnev PB space and let f : X → Y be a ψ-
approximately additive mapping in the sense that

ν(f(3x+ y) + f(x+ 3y)− 4f(x)− 4f(y))(t) ≥ ω(ψ(x, y))(t) (2.9)

for each t > 0 and x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

ν(f(x)−A(x))(t) ≥ ω
(

1

3
ψ(x, 0)(t)

)
for all x ∈ X and t > 0.

Proof. Putting y = 0 in (2.9), we get

ν(f(3x)− 3f(x))(t) ≥ ω(ψ(x, 0))(t) (x ∈ X, t > 0). (2.10)

Using (2.8) and using induction on n, we obtain

ω(ψ(3nx, 3nx))(t) ≥ ω(αnψ(x, 0))(t) (2.11)
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for all x ∈ X and t > 0. Replacing x by 2n−1x in (2.10) and using (2.11), we get

ν(f(3nx)− 3f(3n−1x))(t) ≥ ω
(
(αn−1ψ(x, 0)

)
(t) (2.12)

for all x ∈ X and t > 0. It follows from (2.12) that

ν(3−nf(3nx)− 3−n+1f(3n−1x))(3−nt) ≥ ω
((

1

α

)
ψ(x, 0)

)
(α−nt)

and so

ν
(
3−nf(3nx)− 3−n+1f(3n−1x)

)((αn
3n

)
t

)
≥ ω

(
1

α
ψ(x, 0)

)
(t)

for all n > m ≥ 0, x ∈ X and t > 0. So

ν(3−nf(3nx)− 3−mf(3mx))

((
αm+1

3m+1

)
t

)

= ν

(
k=m+1∑

n

3−kf(3kx)− 3−k+1f(3k−1x)

)((
αm+1

3m+1

)
t

)
≥ ω

(
1

α
ψ(x, 0)

)
(t)

and hence

ν(3−nf(3nx)− 3−mf(3mx))(t) ≥ ω
((

1

α

)
ψ(x, 0)

)((
αm+1

3m+1

)
t

)
(2.13)

for all n > m ≥ 0, x ∈ X and t > 0. Fix x ∈ X. Since

lim
s→∞

ω

(
1

α
ψ(x, 0)

)
(s) = 1,

3−nf(3nx) is a Cauchy sequence in (Y, ν,ΠM ). Since (Y, ν,ΠM ) is complete, this sequence converges
to some point A(x) ∈ γ. It follows from (2.9) that

ν(f(3n(3x+ y)) + f(3n(x+ 3y))− 4f(3nx)− 4f(3ny))(t) ≥ ω(ψ(3nx, 3ny))(t)

≥ ω(αnψ(x, y))(t)

≥ ω(ψ(x, y))(α−nt)

and hence

ν(3−nf(3n(3x+ y)) + 3−nf(3n(x+ 3y))− 3−n4f(3nx)− 3−n4f(3ny)

≥ ω(ψ(x, y))

((
3

α

)n
t

)
. (2.14)

So we have

ν (A(3x+ y) +A(x+ 3y)− 4A(x)− 4A(y)) (t)

≥ ΠM

{
ΠM

{
ν(A(3x+ y)− 3−nf(3n(3x+ y))), ν(A(x+ 3y)− 3−nf(3n(x+ 3y)))

}
(t),

ΠM

{
4ν(A(x)− 3−nf(3nx)), 4ν(A(y)− 3−nf(3ny)),

ν
(
3−nf(3n(3x+ y)) + 3−nf(3n(x+ 3y))− 3−nf(3nx)− 3−nf(3ny))

}
(t)
}
.

By (2.14) and the fact that

lim
n→∞

ν(A(z)− 3−nf(3nz)) = 1
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for all z ∈ X and r > 0, each term on the rignt-hand side tends to 1 as n→∞. Hence

ν(A(3x+ y) +A(x+ 3y)− 4A(x)− 4T (y))(t) = 1.

By (N1), we have

A(3x+ y) +A(x+ 3y) = 4A(x) + 4A(y).

Let x ∈ X and t > 0. Using (2.13) with m = 0, we get

ν(A(x)− f(x))(t) ≥ ΠM

{
ν(A(x)− 3−nf(3nx), ν(3−nf(3nx)− f(x))

}
(t)

≥ ΠM

{
ν(A(x)− 3−nf(3nx), ω

(
1

3
ψ(x, 0)

)}
(t).

Hence

ν(A(x)− f(x))(t) ≥ ΠM

{
lim
n→∞

ν(A(x)− 3−nf(3nx), ω

(
1

3
ψ(x, 0)

)}
(t)

≥ ω

(
1

3
ψ(x, 0)

)
(t).

The uniqueness of A can be proved in a similar manner as in the proof of Corollary 2.2. �
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1 Introduction and Definitions
Let A denote the class of functions having the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Further, denote by S , the class of all univalent
functions in A. Also, let S∗,K,Sp and UCV denote the subclasses of S which are starlike, convex, parabolic starlike
and uniformly convex functions respectively. (For more details see [3], [17]). Kanas and Wiśniowska [6] introduced
the subclasses of univalent functions called k- uniformly convex functions and k-starlike functions with 0 ≤ k <∞,
and denoted by k − UCV and k − ST respectively. The analytic characterization of these classes are following(for
more details one may refer to [5], [7], [8], [9], [10], [11]), [20]

k − UCV :=

{
f ∈ S : <

(
1 +

zf ′′(z)

f ′(z)

)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , (z ∈ U)

}
(1.2)

k − ST :=

{
f ∈ S : <

(
zf ′(z)

f(z)

)
> k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ , (z ∈ U)

}
. (1.3)

A function f is subordinate to the function g, written as f ≺ g, provided that there is an analytic function w(z)
defined on U with w(0) = 0 and |w(z)| < 1 such that f(z) = g[w(z)] for z ∈ U . In particular if the function g
is univalent in U then f ≺ g is equivalent to f(0) = g(0) and f(U) ⊂ g(U). For any non-negative integer n , the
q-integer number n denoted by [n]q , (See for example [2], [4],[13], [15]) is defined as

[n]q =
1− qn

1− q
= 1 + q + q2 + ...+ qn−1, [0]q = 0. (1.4)
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2

The q-number shifted factorial is defined by [0]q! = 1 and [n]q! = [1]q[2]q[3]q · · · [n]q . We have, limq→1− [n]q = n and
limq→ 1− [n]q! = n!. The q-derivative operator or q- difference operator is defined as

∂qf (z) =
f (z)− f (qz)

z (1− q)
, z ∈ U, where U = {z ∈ C and |z| < 1}. (1.5)

It is easy to see that

∂qz
z = [n]qz

n−1, ∂q

{ ∞∑
n=1

anz
n

}
=
∞∑
n=1

[n]qanz
n−1 (1.6)

One can easily verify that ∂qf(z) → f ′(z) as q → 1−. In general, for a non-integer number t, [t] is defined by

[t] =
1− qt

1− q
. Throughout this paper, we will assume q to be a fixed number between 0 and 1. For f ∈ A, let the

Sãlãgean q-differential operator ( [2], [4],[13], [15], [19]) be defined by

S0q f(z) = f(z), S1q f(z) = z∂qf(z), Smq f(z) = z∂q(Sm−1q f(z)).

A simple calculation yields,

Smq f(z) = f(z) ∗Gq,m(z) (z ∈ U,m ∈ N ∪ {0} = N0), (1.7)

where,

Gq,m(z) = z +
∞∑
n=2

[n]mq z
n (z ∈ U,m ∈ N0). (1.8)

Making use of (1.7) and (1.8), the power series of Smq f(z) for f of the form (1.1) is given by

Smq f(z) = z +
∞∑
n=2

[n]mq anz
n (z ∈ U). (1.9)

Note that limq→1− Gq,m(z) = z +
∑∞
n=2 n

mzn and limq→1− Smq f(z) = f(z) ∗ (z +
∑∞
n=2 n

mzn),
which is the familiar Sãlãgean derivative operator [18]. Motivated by the works of Mahmood and Sokol [15] and

Kanas and Yaguchi [12], we define the following class of functions using the theory of q-calculus.

Definition 1. Let 0 ≤ k <∞, γ ∈ C \ 0, q ∈ (0, 1) andm ∈ N0. A function f ∈ A is the class Sq(k, γ,m), if it satisfies the
condition

<

{
1 +

1

γ

(
Sm+1
q f(z)

Smq f(z)
− 1

)}
> k

∣∣∣∣∣ 1γ
(
Sm+1
q f(z)

Smq f(z)
− 1

)∣∣∣∣∣ , (z ∈ U). (1.10)

Geometric Interpretation

A function f ∈ A is in the classSq(k, γ,m) if and only if
Sm+1
q f(z)

Smq f(z)
takes all values in the conic domainΩk,γ = pk,γ(U)

such thatΩk,γ = γΩk + (1− γ),where Ωk = {u+ iv : u2 > k2(u− 1)2 + k2v2} or equivalently

Sm+1
q f(z)

Smq f(z)
≺ pk,γ(z), Ωk,γ = pk,γ (U). (1.11)

The boundary ∂Ωk,γ of the above set becomes the imaginary axis when k = 0,while hyperbolic when 0 < k < 1. In
this case 0 ≤ k < 1, we have pk,γ(z) = 1 + 2γ

1−k2 sinh2
{(

2
π arccos k arctanh

√
z
)}

(z ∈ U). For k = 1, the boundary ∂Ωk,γ , becomes a parabola and pk,γ(z) = 1 + 2γ
π2

(
1+
√
z

1−
√
z

)2
(z ∈ U). It is an ellipse

when k > 1 and in this case pk,γ(z) = 1 + γ
k2−1 sin

(
π

2κ(t)

∫ u(z)√
t

0
dx√

1−x2
√
1−t2x2

)
+ γ

k2−1 ), with u(z) = z−
√
t

1−
√
tz

(0 <

t < 1, z ∈ U),where t is chosen such that k = cosh πκ′(t)
4κ(t) , and κ(t) is Legendre’s complete elliptic integral of the first

kind and κ′(t) complementary integral of κ(t). Moreover , pk,γ(z)(U) is convex univalent in U [ see [6], [8], [13]].

All of these curves have the vertex at the point (k + γ)

(k + 1)
. Therefore the domain Ωk,γ is elliptic for k > 1, hyperbolic

when 0 < k < 1, parabolic for k = 1 and right half plane when k = 0, symmetric with respect to real axis. Because
pk,γ(U) = Ωk,γ , the functions pk,γ play the role of extremal functions for several problems in this class Sq(k, γ,m).
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2 Preliminary Lemmas
In the present investigation, we also need the following lemmas.

Lemma 1. [16] Let p(z) =
∑∞
n=1 pnz

n ≺ F (z) =
∑∞
n=1 dnz

n in C. If F (z) is convex univalent in U, then

|pn| ≤ |d1|, (n ≥ 1). (2.1)

Lemma 2. [5] Let 0 ≤ k <∞ be fixed and pk,γ be the Riemann map of U onto Ωk,γ . If

pk,γ(z) = 1 +Q1z +Q2z
2 + · · · (z ∈ U), (2.2)

then

Q1 =



2γA2

1− k2
0 ≤ k < 1,

8γ

π2
k = 1,

π2γ

4(k2−1)κ2(t)
√
t(1+t)

k > 1,

(2.3)

and

Q2 =



(A2 + 2)

3
Q1 0 ≤ k < 1,

2

3
Q1 k = 1,

(4κ2(t)(t2 + 6t+ 1)− π2)

24κ2(t)
√
t(1 + t)

Q1 k > 1,

(2.4)

where
A =

2

π
arccos k,

and κ(t) is the complete elliptic integral of the first kind(for details see [1]).

3 Properties of the class Sq(k, γ,m)

In this section, we discuss certain sufficient condition for a class of functions f to be in the class Sq(k, γ,m).

Theorem 1. Let f ∈ A be given by (1.1). If the inequality
∞∑
n=2

{
[n]mq ((k + 1)([n]q − 1) + |γ|)

}
|an| < |γ|, (3.1)

holds true for some k (0 ≤ k <∞),m ∈ N0 and γ ∈ C \ 0, then f ∈ Sq(k, γ,m).

Proof. In view of definition (1.10), it suffices to prove that

k

γ

∣∣∣∣∣Sm+1
q f(z)

Smq f(z)
− 1

∣∣∣∣∣−<
{

1

γ

(
Sm+1
q f(z)

Smq f(z)
− 1

)}
< 1.

We have,

k

γ

∣∣∣∣∣Sm+1
q f(z)

Smq f(z)
− 1

∣∣∣∣∣−<
{

1

γ

(
Sm+1
q f(z)

Smq f(z)
− 1

)}
≤ (k + 1)

|γ|

∣∣∣∣∣Sm+1
q f(z)

Smq f(z)
− 1

∣∣∣∣∣
=

(k + 1)

|γ|

∣∣∣∣∣
∑∞
n=2[n]mq ([n]q − 1)anz

n−1

1 +
∑∞
n=2[n]mq anz

n−1

∣∣∣∣∣
<

(k + 1)

|γ|

∑∞
n=2[n]mq ([n]q − 1)|an|
1−

∑∞
n=2[n]mq |an|

.

The last expression is bounded by 1, if inequality (3.1) holds.
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The next few corollaries can be easily obtained from Theorem 1.

Corollary 1. Let f(z) = z + anz
n. If

|an| ≤
|γ|

[n]mq ((k + 1)([n]q − 1) + |γ|)
zn (n ≥ 2),

then f ∈ Sq(k, γ,m).

For the choice ofm = 0, Theorem 1 reduces to the following.

Corollary 2. A function f ∈ A of the form (1.1) is in the class Sq(k, γ, 0),if it satisfies the condition
∞∑
n=2

{(k + 1)([n]q − 1) + |γ|} |an| < |γ|. (3.2)

For the choices ofm = 0 and k = 0, Theorem 1 reduces to the following.

Corollary 3. A function f ∈ A of the form (1.1) is in the class Sq(0, γ, 0),if it satisfies the condition
∞∑
n=2

{([n]q − 1) + |γ|} |an| < |γ|. (3.3)

Theorem 2. Let f ∈ Sq(k, γ,m). Then

Smq f(z) ≺
∫ z

0

pk,γ(ω(ξ))− 1

ξ
dξ, (3.4)

where ω(z) is analytic in U with ω(0) = 0 and |ω(z)| < 1. Moreover, for |z| = ρ, we have

exp

(∫ z

0

pk,γ(−ρ)− 1

ρ
dρ

)
≤
∣∣∣∣Smq f(z)

z

∣∣∣∣ ≤ exp

(∫ z

0

pk,γ(ρ)− 1

ρ
dρ

)
,

where pk,γ(z) is given by (1.11).

Proof. Let f ∈ Sq(k, γ,m), then using the relation (1.11), we obtain

∂qSmq f(z)

Smq f(z)
− 1

z
=
pk,γ(ω(z))− 1

z
, (3.5)

for some function ω(z), analytic in Uwith ω(0) = 0 and |ω(z)| < 1. Integrating (3.5), we have

Smq f(z) ≺ z exp

∫ z

0

pk,γ(ω(ξ))− 1

ξ
dξ. (3.6)

This proves (3.4). Noting that the univalent function pk,γ(z) maps the disk |z| < ρ (0 < ρ ≤ 1) onto a region which
is convex and symmetric with respect to the real axis, we get

pk,γ(−ρ|z|) ≤ <{pk,γ(ω(ρz))} ≤ pk,γ(ρ|z|) (0 < ρ ≤ 1, z ∈ U). (3.7)

Using (3.7), we have ∫ z

0

pk,γ(−ρ|z|)− 1

ρ
dρ ≤ <

∫ z

0

pk,γ(ω(ρz))− 1

ρ
dρ ≤

∫ z

0

pk,γ(ρ|z|)− 1

ρ
dρ.

Consequently, the subordination (3.6) leads to∫ z

0

pk,γ(−ρ|z|)− 1

ρ
dρ ≤ log

∣∣∣∣Smq f(z)

z

∣∣∣∣ ≤ ∫ z

0

pk,γ(ρ|z|)− 1

ρ
dρ,

which implies that

exp

(∫ z

0

pk,γ(−ρ)− 1

ρ
dρ

)
≤
∣∣∣∣Smq f(z)

z

∣∣∣∣ ≤ exp

(∫ z

0

pk,γ(ρ)− 1

ρ
dρ

)
.

This completes the proof.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

53 R. Vijaya et al 50-57



5

Theorem 3. If f ∈ Sq(k, γ,m), then

|a2| ≤
σ

[2]mq
, |an| ≤

σ

[n− 1]q[n]m

n−2∏
µ=1

(
1 +

σ

[µ]q

)
, (n ≥ 3) (3.8)

where σ = |Q1|/q with Q1 is given by (2.3).

Proof. Let
z∂qSmq f(z)

Smq f(z)
= p(z),

where p(z) is analytic in U. This can be written as

z∂qSmq f(z) = p(z)Smq f(z). (3.9)

Let p(z) = 1 +
∑∞
n=1 pnz

n and Smq f(z) be given by (1.9) . Then (3.9) becomes

z +
∞∑
n=2

[n]m+1
q anz

n =

( ∞∑
n=0

pnz
n

)(
z +

∞∑
n=2

[n]mq anz
n

)
.

Now comparing the coefficients of zn, we obtain

[n]m+1
q an = [n]mq an +

n−1∑
µ=1

[µ]mq aµpn−µ,

which implies that

an =
1

q[n− 1]q[n]mq

n−1∑
µ=1

[µ]mq aµpn−µ.

Using Lemma [16], we obtain,

|an| ≤
|Q1|

q[n− 1]q[n]mq

n−1∑
µ=1

[µ]mq |aµ|.

Now take σ = |Q1|
q . Then, we have

|an| ≤
σ

[n− 1]q[n]mq

n−1∑
µ=1

[µ]mq |aµ|. (3.10)

So for n = 2, we have from (3.10)
|a2| ≤

σ

[2]mq
, (3.11)

which shows that (3.8) holds for n = 2. To prove (3.8), we apply mathematical inductions for n = 3. We have from
(3.10)

|a3| ≤
σ

[3]mq [2]q

(
1 + [2]mq |a2|

)
,

Using (3.11), we have

|a3| ≤
σ

[3]mq [2]q
(1 + σ) =

σ([1]q + σ)

[3]mq [2]q
,

which shows that (3.8) holds for n = 3. Assume that (3.8) is true for n ≤ t, that is

|at| ≤
σ

[t− 1]q[t]m

t−2∏
µ=1

(
1 +

σ

[µ]q

)
.
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Consider

|at+1| ≤ σ

[t]q[t+ 1]mq

[
1 + [1]mq |a2|+ [2]mq |a3|+ · · ·+ [t− 1]mq |at|

]
≤ σ

[t]q[t+ 1]mq

[
1 + σ + σ

(
1 +

σ

[1]q

)
+ σ

(
1 +

σ

[1]q

)(
1 +

σ

[2]q

)

+ · · ·+ σ
t−2∏
µ=1

(
1 +

σ

[µ]q

)]

≤ σ

[t]q[t+ 1]mq

t−1∏
µ=1

(
1 +

σ

[µ]q

)
.

Therefore the result is true for n = t + 1. Consequently, using mathematical induction, we have proved that (3.8)
holds true for all n, n ≥ 2. This completes the proof of the theorem.

Theorem 4. Let f(z) ∈ Sq(k, γ,m). Then f(U) contains an open disk of radius

q[2]mq
2q[2]mq + |Q1(k)|

, (3.12)

where Q1(k) is defined by (2.3).

Proof. Let ω0 6= 0 be a complex number such that f(z) 6= ω0 for z ∈ U. Then

f1(z) =
ω0f(z)

ω0 − f(z)
= z +

(
a2 +

1

ω0

)
z2 + · · · . (3.13)

Since f1(z) is univalent, so ∣∣∣∣a2 +
1

ω0

∣∣∣∣ ≤ 2.

Now using Theorem 3, we have ∣∣∣∣ 1

ω0

∣∣∣∣ ≤ 2 +
|Q1(k)|
q[2]mq

. (3.14)

Therefore,

|ω0| ≥
q[2]mq

2q[2]mq + |Q1(k)|
. (3.15)

4 A coefficient inequality for the class Sq(k, γ,m)

To obtain the coefficient inequality over the class Sq(k, γ,m), we need the following lemmas.

Lemma 3. [14] If q(z) = 1 + c1z + c2z
2 + · · · is an analytic function with positive real part in U, then

|c2 − vc21| ≤ 2 max{1; |2v − 1|}. (4.1)

In particular, if v is a real number, then

|c2 − vc21| ≤


−4v + 2 if v ≤ 0

2 if 0 ≤ v ≤ 1

4v − 2 if v ≥ 1.

(4.2)

when v < 0 or v > 1,the equality holds true if and only if q(z) =
1 + z

1− z
or one of its rotations. If 0 < v < 1, then the equality

holds true if and only if q(z) =
1 + z2

1− z2
or one of its rotations. If v = 0, the the equality holds true if and only if

g(z) =

(
1

2
+
λ

2

)
1 + z

1− z
+

(
1

2
− λ

2

)
1− z
1 + z

(0 ≤ λ ≤ 1)
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or one of its rotations. If v = 1,then the equality is true if q(z) is a reciprocal of one of the functions such that the equality is
true in the case, when v = 0.
Theorem 5. Let 0 ≤ k < ∞, γ ∈ C \ 0, q ∈ (0, 1) andm ∈ N0. Suppose that the function f of the form (1.1) belongs to the
class Sq(k, γ,m). Then, for a complex number µ

|a3 − µa22| ≤
γQ1

q(1 + q)(1 + q + q2)m
max

{
1;

∣∣∣∣γµQ1(1 + q)(1 + q + q2)m

q(1 + q)2m
− Q2

Q1
− γQ1

q

∣∣∣∣} . (4.3)

Proof. If f ∈ Sq(k, γ,m), then there exists a Schwarz function ω(z) with ω(0) = 0 and |ω(z)| < 1 such that

1 +
1

γ

(
Sm+1
q f(z)

Smq f(z)
− 1

)
= pk,γ(ω(z)) (z ∈ C). (4.4)

Define the function h(z), by h(z) =
1 + ω(z)

1− ω(z)
= 1 + c1z + c2z

2 + · · · . Since ω(z) is a Schwarz function, we see that

<(h(z)) > 0 and h(0) = 1. We also have,

ω(z) =
h(z)− 1

h(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 + · · ·

]
.

This gives,

pk,γ(ω(z)) = 1 +
1

2
c1Q1z +

(
1

2
c2Q1 +

1

4
c21(Q2 −Q1)

)
z2 + · · · . (4.5)

From (4.4), we get,

1 +
1

γ

(
Sm+1
q f(z)

Smq f(z)
− 1

)
= 1 +

1

γ
[q(1 + q)ma2z (4.6)

+
{
q(1 + q)(1 + q + q2)ma3 − q(1 + q)2ma22

}
z2 + · · ·

]
.

Comparing the coefficients of z and z2 in (4.5) and (4.6), we get

a2 =
γc1Q1

2q(1 + q)m
. (4.7)

a3 =
γ

2q(1 + q)(1 + q + q2)m

(
c2Q1 +

c21Q2

2
− c21Q1

2
+
γc21Q

2
1

2q

)
. (4.8)

This implies that,

a3 − µa22 =
γQ1

2q(1 + q)(1 + q + q2)m
[
c2 − vc21

]
,

where
v =

1

2

(
1 +

γµQ1(1 + q)(1 + q + q2)m

q(1 + q)2m
− Q2

Q1
− γQ1

q

)
.

It is easy to see that Theorem 6 directly follows from (4.2).
Theorem 6. Let 0 ≤ k < ∞, γ ∈ C \ 0, q ∈ (0, 1) andm ∈ N0. Suppose that the function f of the form (1.1) belongs to the
class Sq(k, γ,m). Then, for a real number µ,

|a3 − µa22| ≤
γ

q(1 + q)(1 + q + q2)m


P2 +

γP 2
1

q
− γµP 2

1 (1 + q)(1 + q + q2)m

q(1 + q)2m
if µ ≤ σ1

P1 if σ1 ≤ µ ≤ σ2

−P2 −
γP 2

1

q
+
γµP 2

1 (1 + q)(1 + q + q2)m

q(1 + q)2m
if µ ≥ σ2,

(4.9)

where

σ1 =
q(1 + q)2m

γP 2
1 (1 + q)(1 + q + q2)m

(
P2 +

γP 2
1

q
− P1

)
σ2 =

q(1 + q)2m

γP 2
1 (1 + q)(1 + q + q2)m

(
P2 +

γP 2
1

q
+ P1

)
.
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FOURIER SERIES OF SUMS OF PRODUCTS OF ORDERED BELL AND

GENOCCHI FUNCTIONS

TAEKYUN KIM, DAE SAN KIM, LEE CHAE JANG, AND D. V. DOLGY

Abstract. In this paper, we will study three types of sums of products of ordered Bell and Genocchi

functions and derive their Fourier series expansions. Further, we will express those functions in terms
of Bernoulli functions.

1. Introduction

The Genocchi polynomials Gm(x) are given by the generating function

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
, (see [2, 6, 11, 12, 17, 21]). (1.1)

The first few Genocchi polynomials are as follows:

G0(x) = 0, G1(x) = 1, G2(x) = 2x− 1,

G3(x) = 3x2 − 3x, G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x, G6(x) = 6x5 − 15x4 + 15x2 − 3.

(1.2)

The Genocchi polynomials are related to the Euler polynomials as

Gm(x) = mEm−1(x) (m ≥ 1). (1.3)

From this, we have

degGm(x) = m− 1 (m ≥ 1), Gm = mEm−1 (m ≥ 1),

G0 = 0, G1 = 1, G2m+1 = 0 (m ≥ 1), and G2m 6= 0 (m ≥ 1).
(1.4)

In addition, by (1.1) we obtain

d

dx
Gm(x) = mGm−1(x) (m ≥ 1),

Gm(x+ 1) +Gm(x) = 2mxm−1 (m ≥ 0).
(1.5)

From these, we also get

Gm(1) +Gm(0) = 2δm,1, (m ≥ 0), (1.6)

and ∫ 1

0

Gm(x)dx =
1

m+ 1
(Gm+1(1)−Gm+1(0))

=

{
0, if m is even,
− 2
m+1Gm+1, if m is odd.

(1.7)

2010 Mathematics Subject Classification. 11B83, 42A16.
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2 Fourier series of sums of products of ordered Bell and Genocchi functions

The ordered Bell polynomials bm(x) are a natural companion to ordered Bell numbers and defined by
the generating function

1

2− et
ext =

∞∑
m=0

bm(x)
tm

m!
. (1.8)

The first few ordered Bell polynomials are as follows:

b0(x) = 1, b1(x) = x+ 1, b2(x) = x2 + 2x+ 3,

b3(x) = x3 + 3x2 + 9x+ 13, b4(x) = x4 + 4x3 + 18x2 + 52x+ 75,

b5(x) = x5 + 5x4 + 30x3 + 130x2 + 375x+ 541.

(1.9)

The ordered Bell numbers bm = bm(0) have been studied in many counting problems in enumerative
combinatorics and number theory, the first appearance of which goes back to as early as 1859,, (see
[3-5,7-8,13,16,19,20]). The ordered Bell polynomials are monic polynomials with integral coefficients as
we can see from

b0(x) = 1, bm(x) = xm +
m−1∑
l=0

(
m

l

)
bl(x), (m ≥ 1). (1.10)

Also, the ordered Bell numbers are positive integers, as we can notice from

bm =
m∑
n=0

n!S2(m,n) =
∞∑
n=0

nm

2n+1
, (m ≥ 0). (1.11)

From (1.8), we can derive

d

dx
bm(x) = mbm−1(x), (m ≥ 1),

− bm(x+ 1) + 2bm(x) = xm, (m ≥ 0).
(1.12)

In turn, from these we obtain

−bm(1) + 2bm = δm,0, (m ≥ 0), (1.13)

and ∫ 1

0

bm(x)dx =
1

m+ 1
(bm+1(1)− bm+1(0)) =

1

m+ 1
bm+1. (1.14)

For any real number x, we let < x >= x − [x] ∈ [0, 1) denote the fractional part of x. We recall the
following facts about Bernoulli functions Bm(< x >):

(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n6=0

e2πinx

(2πin)m
, (1.15)

(b) for m = 1,

−
∞∑

n=−∞,n6=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z, (1.16)

where Zc = R− Z.
In this paper, we will study three types of sums of products of oredered Bell and Genocchi functions,

and derive their Fourier expansions. Further, we will express those functions in terms of Bernoulli
functions as follows:

(1) αm(< x >) =
∑m−1
k=0 bk(< x >)Gm−k(< x >), (m ≥ 2);
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(2) βm(< x >) =
∑m−1
k=0

1
k!(m−k)!bk(< x >)Gm−k(< x >), (m ≥ 2);

(3) γm(< x >) =
∑m−1
k=1

1
k(m−k)bk(< x >)Gm−k(< x >), (m ≥ 2).

For elementary facts on Fourier analysis and some related recent works, the reader may refer to [1,8,22])
and [9,10,14,15], respectively.

2. Fourier series of functions of the first type

In this section, we will derive the Fourier series of sums of products of oredered Bell and Genocchi
functions of the first type. Let

αm(x) =

m−1∑
k=0

bk(x)Gm−k(x), (m ≥ 2). (2.1)

Then we will consider the function αm(< x >) =
∑m−1
k=0 bk(< x >)Gm−k(< x >), (m ≥ 2) defined on

R, which is periodic with period 1. The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.2)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e−2πinxdx.

(2.3)

Before proceeding further, we need to observe the following.

α′m(x) =

m−1∑
k=0

{kbk−1(x)Gm−k(x) + (m− k)bk(x)Gm−k−1(x)}

=
m−1∑
k=1

kbk−1(x)Gm−k(x) +
m−2∑
k=0

(m− k)bk(x)Gm−k−1(x)

=
m−2∑
k=0

(k + 1)bk(x)Gm−1−k(x) +
m−2∑
k=0

(m− k)bk(x)Gm−1−k(x)

= (m+ 1)
m−2∑
k=0

bk(x)Gm−1−k(x)

= (m+ 1)αm−1(x).

(2.4)

From this, we have (
αm+1(x)

m+ 2

)′
= αm(x), (2.5)

and ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)). (2.6)
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4 Fourier series of sums of products of ordered Bell and Genocchi functions

For m ≥ 2, we put ∆m = αm(1)− αm(0). Then we have

∆m = αm(1)− αm(0)

=
m−1∑
k=0

(bk(1)Gm−k(1)− bkGm−k)

=
m−1∑
k=0

((2bk − δk,0)(−Gm−k + 2δm−1,k)− bkGm−k)

=
m−1∑
k=0

(−3bkGm−k + 4bkδm−1,k + δk,0Gm−k − 2δk,0δm−1,k)

= −3
m−1∑
k=0

bkGm−k + 4bm−1 +Gm − 2δm,1

= −3
m−2∑
k=0

bkGm−k + bm−1 +Gm.

(2.7)

Note that

αm(0) = αm(1)⇐⇒ ∆m = 0, (2.8)

and ∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1

=
1

m+ 2
(−3

m−1∑
k=0

bkGm+1−k + bm +Gm+1).

(2.9)

We are now ready to determine the Fourier coefficients A
(m)
n .

Case 1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n − 1

2πin
∆m.

(2.10)

From this by induction on m we can deduce

A(m)
n = − 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1. (2.11)

Case 2: n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.12)

αm(< x >), (m ≥ 1) is piecewise C∞. In addition, αm(< x >) is continuous for those integers (m ≥ 2)
with ∆m = 0 and discontinuous with jump discontinuities at integers for those integers (m ≥ 2) with
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∆m 6= 0. Assume first that m is an integer m ≥ 2 with ∆m = 0. Then αm(0) = αm(1). Hence
αm(< x >) is piecewise C∞, and continuous. Thus, the Fourier series of αm(< x >) converges uniformly
to αm(< x >), and

αm(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1

−j! ∞∑
n=−∞,n6=0

e2πin

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+ ∆m ×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(2.13)

We now state our first result.

Theorem 2.1. For each integer l, with l ≥ 2, we put

∆l = −3
l−2∑
k=0

bkGl−k + bl−1 +Gl. (2.14)

Assume that ∆m = 0, for an integer m ≥ 2. Then we have the following.
(a)

∑m−1
k=0 bk(< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=0

bk(< x >)Gm−k(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

(2.15)

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=0

bk(< x >)Gm−k(< x >)

=
1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >),

(2.16)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next that ∆m 6= 0, for an integer m ≥ 2. Then αm(0) 6= αm(1). Thus αm(< x >) is piecewise
C∞, and discontinuous with jump discontinuities at integers. The Fourier series of αm(< x >) converges
pointwise to αm(< x >), for x ∈ Zc, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m, (2.17)

for x ∈ Z. We can now state our second result.
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6 Fourier series of sums of products of ordered Bell and Genocchi functions

Theorem 2.2. For each integer l, with l ≥ 2, we let

∆l = −3
l−2∑
k=0

bkGl−k + bl−1 +Gl. (2.18)

Assume that ∆m 6= 0, for an integer m ≥ 2. Then we have the following.
(a)

1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{ ∑m−1
k=0 bk(< x >)Gm−k(< x >), for x ∈ Zc,∑m−1
k=0 bkGm−k + 1

2∆m, for x ∈ Z.

(2.19)

(b)

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m−1∑
k=0

bk(< x >)Gm−k(< x >), for x ∈ Zc;

(2.20)

1

m+ 2
∆m+1 +

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m−1∑
k=0

bkGm−k +
1

2
∆m, x ∈ Z.

(2.21)

3. Fourier series of functions of the second type

Let βm(x) =
∑m−1
k=0

1
k!(m−k)!bk(x)Gm−k(x), (m ≥ 2). Then we will investigate the function

βm(< x >) =

m−1∑
k=0

1

k!(m− k)!
bk(< x >)Gm−k(< x >), (m ≥ 2), (3.1)

defined on R, which is periodic with period 1. The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx, (3.2)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx

=

∫ 1

0

βm(x)e−2πinxdx.

(3.3)
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Before proceeding further, we need to notice the following.

β′m(x) =
m−1∑
k=0

{
k

k!(m− k)!
bk−1(x)Gm−k(x) +

m− k
k!(m− k)!

bk(x)Gm−k−1(x)

}

=
m−1∑
k=1

1

(k − 1)!(m− k)!
bk−1(x)Gm−k(x) +

m−2∑
k=0

1

k!(m− k − 1)!
bk(x)Gm−k−1(x)

=
m−2∑
k=0

1

k!(m− 1− k)!
bk(x)Gm−1−k(x) +

m−2∑
k=0

1

k!(m− 1− k)!
bk(x)Gm−1−k(x)

= 2βm−1(x).

(3.4)

From this, we note that (
βm+1(x)

2

)′
= βm(x), (3.5)

and ∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)). (3.6)

For m ≥ 2, we set

Ωm = βm(1)− βm(0)

=

m−1∑
k=0

1

k!(m− k)!
(bk(1)Gm−k(1)− bkGm−k)

=

m−1∑
k=0

1

k!(m− k)!
((2bk − δk,0)(−Gm−k + 2δm−1,k)− bkGm−k)

=

m−1∑
k=0

1

k!(m− k)!
(−3bkGm−k + 4bkδm−1,k + δk,0Gm−k − 2δk,0δm−1,k)

= −3
m−1∑
k=0

1

k!(m− k)!
bkGm−k +

4

(m− 1)!
bm−1 +

1

m!
Gm −

2

m!
δm,1

= −3
m−2∑
k=0

1

k!(m− k)!
bkGm−k +

1

(m− 1)!
bm−1 +

1

m!
Gm.

(3.7)

From this, we see that

βm(0) = βm(1)⇐⇒ Ωm = 0, (3.8)

and ∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.9)

Next, we want to determine the Fourier coefficients B
(m)
n .
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Case 1: n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

= − 1

2πin
(βm(1)− βm(0)) +

2

2πin

∫ 1

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)
n − 1

2πin
Ωm,

(3.10)

from which by induction we have

B(m)
n = −

m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1. (3.11)

Case 2: n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.12)

βm(< x >), (m ≥ 2) is piecewise C∞. Moreover, βm(< x >) is continuous for those integers m ≥ 2 with
Ωm = 0 and discontinuous with jump discontinuities at integers for those integers m ≥ 2 with Ωm 6= 0.

Assume first that m is an integer m ≥ 2 with Ωm = 0. Then βm(0) = βm(1). Hence βm(< x >) is
piecewise C∞, and continuous. Thus the Fourier series of βm(< x >) converges uniformly to βm(< x >),
and

βm(< x >) =
1

2
Ωm+1 +

∞∑
n=−∞,n6=0

−m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=
1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1

−j! ∞∑
n=−∞,n6=0

e2πinx

(2πin)j


=

1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >) + Ωm ×

{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(3.13)

We are now ready to state our first result.

Theorem 3.1. For each integer l ≥ 2, we let

Ωl = −3
l−2∑
k=0

1

k!(l − k)!
bkGl−k +

1

(l − 1)!
bl−1 +

1

l!
Gl. (3.14)

Assume that Ωm = 0, for an integer m ≥ 2. Then we have the following.
(a)

∑m−1
k=0

1
k!(m−k)!bk(< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=0

1

k!(m− k)!
bk(< x >)Gm−k(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n6=0

−m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx,

(3.15)
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for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=0

1

k!(m− k)!
bk(< x >)Gm−k(< x >)

=
1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

(3.16)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next that Ωm 6= 0, for an integer m ≥ 2. Then βm(0) 6= βm(1). Thus βm(< x >) is piecewise
C∞, and discontinuous with jump discontinuities at integers. The Fourier series of βm(< x >) converges
pointwise to βm(< x >), for x ∈ Zc, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm, (3.17)

for x ∈ Z. Now, we are ready to state our second result.

Theorem 3.2. For each integer l, with l ≥ 2, we let

Ωl = −3
l−2∑
k=0

1

k!(l − k)!
bkGl−k +

1

(l − 1)!
bl−1 +

1

l!
Gl. (3.18)

Assume that Ωm 6= 0, for an integer m ≥ 2. Then we have the following.
(a)

1

2
Ωm+1 +

∞∑
n=−∞,n6=0

−m−1∑
j=1

2j−1

(2πin)j
Ωm−j+1

 e2πinx

=

{ ∑m−1
k=0

1
k!(m−k)!bk(< x >)Gm−k(< x >), for x ∈ Zc,∑m−1

k=0
1

k!(m−k)!bkGm−k + + 1
2Ωm, for x ∈ Z.

(3.19)

(b)

1

2
Ωm+1 +

m−1∑
j=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
bk(< x >)Gm−k(< x >),

(3.20)

for x ∈ Zc;

1

2
Ωm+1 +

m−1∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

=
m−1∑
k=0

1

k!(m− k)!
bkGm−k +

1

2
Ωm,

(3.21)

for x ∈ Z.
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4. Fourier series of functions of the third type

Let γm(x) =
∑m−1
k=1

1
k(m−k)bk(x)Gm−k(x), (m ≥ 2). Then we will consider the function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
bk(< x >)Gm−k(< x >), (m ≥ 2), (4.1)

defined on R, which is periodic with period 1. The Fourier series of γm(< x >) is
∞∑

n=−∞
C(m)
n e2πinx, (4.2)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx

=

∫ 1

0

γm(x)e−2πinxdx.

(4.3)

Before proceeding further, we would like to observe the following.

γ′m(x) =
m−1∑
k=1

1

m− k
bk−1(x)Gm−k(x) +

m−1∑
k=1

1

k
bk(x)Gm−k−1(x)

=
m−2∑
k=0

1

m− 1− k
bk(x)Gm−1−k(x) +

m−2∑
k=1

1

k
bk(x)Gm−1−k(x)

=
m−2∑
k=1

(
1

m− 1− k
+

1

k

)
bk(x)Gm−1−k(x) +

1

m− 1
Gm−1(x)

= (m− 1)
m−2∑
k=1

1

k(m− 1− k)
bk(x)Gm−1−k(x) +

1

m− 1
Gm−1(x)

= (m− 1)γm−1(x) +
1

m− 1
Gm−1(x).

(4.4)

Thus we have γ′m(x) = (m− 1)γm−1(x) + 1
m−1Gm−1(x), and from this, we see that(

1

m

(
γm+1(x)− 1

m(m+ 1)
Gm+1(x)

))′
= γm(x), (4.5)

and ∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)− 1

m(m+ 1)
Gm+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
(Gm+1(1)−Gm+1(0)

)
=

1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
(−2Gm+1(0) + 2δm,0)

)
=

1

m

(
γm+1(1)− γm+1(0) +

2

m(m+ 1)
Gm+1

)
.

(4.6)
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For m ≥ 2, we put

Λm = γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)
(bk(1)Gm−k(1)− bkGm−k)

=
m−1∑
k=1

1

k(m− k)
((2bk − δk,0)(−Gm−k + 2δm−1,k)− bkGm−k)

=
m−1∑
k=1

1

k(m− k)
(−3bkGm−k + 4bkδm−1,k + δk,0Gm−k − 2δk,0δm−1,k)

= −3
m−1∑
k=1

1

k(m− k)
bkGm−k +

4

m− 1
bm−1.

(4.7)

Then

γm(0) = γm(1)⇐⇒ Λm = 0, (4.8)

and ∫ 1

0

γm(x)dx =
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
. (4.9)

Now, we are going to determine the Fourier coefficients C
(m)
n . For this, we first observe that, for l ≥ 2,∫ 1

0

Gl(x)e−2πinxdx =

{
2
∑l−1
k=1

(l)k−1Gl−k+1

(2πin)k
, for n 6= 0,

− 2Gl+1

l+1 , for n = 0.
(4.10)

Case 1: n 6= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin
[γm(x)e−2πinx]10 +

1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin
(γm(1)− γm(0)) +

1

2πin

∫ 1

0

{
(m− 1)γm−1(x) +

1

m− 1
Gm−1(x)

}
e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm +

2

2πin(m− 1)
Θm,

(4.11)

where Θm =
∑m−2
k=1

(m−1)k−1Gm−k

(2πin)k
. From the recurrence relation

C(m)
n =

m− 1

2πin
C(m−1)
n − 1

2πin
Λm +

2

2πin(m− 1)
Θm, (4.12)

by induction we can show that

C(m)
n = −

m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 + 2
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1. (4.13)
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We note here that
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Θm−j+1

=
m−2∑
j=1

1

m− j

m−j−1∑
k=1

(m− 1)j+k−2Gm−j−k+1

(2πin)j+k

=
m−2∑
j=1

1

m− j

m−1∑
s=j+1

(m− 1)s−2Gm−s+1

(2πin)s

=
m−1∑
s=2

(m− 1)s−2Gm−s+1

(2πin)s

s−1∑
j=1

1

m− j

=
1

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s).

(4.14)

Putting everything altogether, we have

C(m)
n = − 1

m

m−1∑
s=1

(m)s
(2πin)s

{
Λm−s+1 − 2

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

}
. (4.15)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
. (4.16)

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for those integers m ≥ 2
with Λm = 0, and discontinuous with jump discontinuities at integers for those integers m ≥ 2 with
Λm 6= 0.

Assume first that Λm = 0. Then γm(0) = γm(1). Hence γm(< x >) is piecewise C∞, and continuous.
Thus the Fourier series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
+

∞∑
n=−∞,n6=0

{
− 1

m

m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)}
e2πinx

=
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)

+
1

m

m−1∑
s=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)−s! ∞∑
n=−∞,n6=0

e2πinx

(2πin)s


=

1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
+

1

m

m−1∑
s=2

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

+ Λm ×
{
B1(< x >), for x ∈ Zc,
0, for x ∈ Z.

(4.17)
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We are now ready to state our first result.

Theorem 4.1. For each integer l, with l ≥ 2, we let

Λl = −3
l−1∑
k=1

1

k(l − k)
bkGl−k +

4

l − 1
bl−1. (4.18)

Assume that Λm = 0, for an integer m ≥ 2. Then we have the following.
(a)

∑m−1
k=1

1
k(m−k)bk(< x >)Gm−k(< x >) has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
bk(< x >)Gm−k(< x >)

=
1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
+

∞∑
n=−∞,n6=0

{
− 1

m

m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)}
e2πinx,

(4.19)

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=1

1

k(m− k)
bk(< x >)Gm−k(< x >)

=
1

m

m−1∑
s=0,s6=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >),

(4.20)

for all x ∈ R, where Bs(< x >) is the Bernoulli function.

Assume next that m is an integer ≥ 2 with Λm 6= 0. Then γm(0) 6= γm(1). Hence γm(< x >)
is piecewise C∞, and discontinuous with jump discontinuities at integers. Then the Fourier series of
γm(< x >) converges pointwise to γm(< x >), for x ∈ Zc, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm, (4.21)

for x ∈ Z. Now, we are ready to state our second result.

Theorem 4.2. For each integer l, with l ≥ 2, we let

Λl = −3
l−1∑
k=1

1

k(l − k)
bkGl−k +

4

l − 1
bl−1. (4.22)

Assume that Λm 6= 0, for an integer m ≥ 2. Then we have the following.
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(a)

1

m

(
Λm+1 +

2

m(m+ 1)
Gm+1

)
+

∞∑
n=−∞,n6=0

{
− 1

m

m−1∑
s=1

(m)s
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)}
e2πinx

=

{ ∑m−1
k=1

1
k(m−k)bk(< x >)Gm−k(< x >), for x ∈ Zc,∑m−1

k=0
1

k(m−k)bkGm−k + 1
2∆m, for x ∈ Z.

(4.23)

(b)

1

m

m−1∑
s=0

(
m

s

)
(2πin)s

(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
bk(< x >)Gm−k(< x >), for x ∈ Zc;

(4.24)

1

m

m−1∑
s=0,s6=1

(
m

s

)(
Λm−s+1 −

2Gm−s+1

m− s+ 1
(Hm−1 −Hm−s)

)
Bs(< x >)

m−1∑
k=0

1

k(m− k)
bkGm−k +

1

2
∆m, x ∈ Z.

(4.25)
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TWO TRANSFORMATION FORMULAS ON THE BILATERAL
BASIC HYPERGEOMETRIC SERIES

QING ZOU

Abstract. In this paper, the author first proves a transformation formula for the
very-well-poised bilateral basic hypergeometric 3ψ3 series by using the relationship
between the bilateral basic hypergeometric 5ψ5 series and basic hypergeometric

4φ3 series. Then, the author proves a transformation formula for the well-poised
bilateral basic hypergeometric 4ψ4 series by using the relationship between the
bilateral basic hypergeometric 5ψ5 series and basic hypergeometric 8φ7 series.

1. Introduction

One of the main parts of the theory of basic hypergeometric series is bilateral
series. The general bilateral basic hypergeometric series in base q with r numerator
and s denominator parameters is defined by

rψs

[
a1,
b1,

a2,
b2,
· · · ,
· · · ,

ar
bs

; q, z

]
=

∞∑
n=−∞

(a1, a2, · · · , ar; q)n
(b1, b2, · · · , bs; q)n

[(−1)nq(
n
2)]s−rzn,

where the denominator factors are never zero, q 6= 0 if s < r, and z 6= 0 if the power
of z is negative.

To understand this definition better, we need to define the following notations.
Assume |q| < 1. Define

(x)0 := (x; q)0 = 1,

(x)n := (x; q)n :=
n−1∏
k=0

(1− xqk),

(x1, · · · , xm)n := (x1, · · · , xm; q)n := (x1; q)n · · · (xm; q)n,

(x; q)−k =
(−q/x)kq(

n
2)

(q/x; q)k
.

2010 Mathematics Subject Classification. Primary 33D15; Secondary 05A30, 33D05.
Key words and phrases. Basic hypergeometric series; Bilateral basic hypergeometric series; Very-
well-poised; Well-poised.
This paper was typeset using AMS-LATEX.
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2 Q. ZOU

By some algebraic computations of the terms with negative n, we can obtain

rψs

[
a1,
b1,

a2,
b2,
· · · ,
· · · ,

ar
bs

; q, z

]
=
∞∑
0

(a1, a2, · · · , ar; q)n
(b1, b2, · · · , bs; q)n

[(−1)nq(
n
2)]s−rzn

+
∞∑
n=1

(q/b1, q/b2, · · · , q/bs; q)n
(q/a1, q/a2, · · · , q/ar; q)n

(
b1b2 · · · bs
a1a2 · · · arz

)n

.

(1.1)

The convergence of each series in (1.1) can be seen in [1].
An rψr is said to be well-poised if

a1b1 = a2b2 = · · · = arbr,

and very-well-poised if it is well-poised and

a1 = −a2 = qb1 = −qb2.
When it comes to basic hypergeometric series, it is unavoidable to talk about

basic hypergeometric series because they are closely related. So, let us introduce the
basic hypergeometric series next. Generally speaking, basic hypergeometric series
are series

∑
cn with cn+1/cn a rational function of qn for a fixed parameter q, which

is usually taken to satisfy |q| < 1, but at other times is a power of a prime. More
precisely, we can define an rφs basic hypergeometric series as

rφs

[
a1,
b1,

a2,
b2,
· · · ,
· · · ,

ar
bs

; q, z

]
=
∞∑
n=0

(a1, a2, · · · , ar; q)n
(q, b1, b2, · · · , bs; q)n

[(−1)nq(
n
2)]1+s−rzn,

where q 6= 0 when r > s + 1. This definition is an extension of Heine’s series (cf.
[2, 3, 4]).

We say a basic hypergeometric series r+1φr is well-poised if

qa1 = a2b1 = a3b2 = · · · = ar+1br,

and very-well-poised if it is well-poised and

a2 = qa1/2, a3 = −qa1/21 .

An rφs series terminates if one of its numerator parameters is of the form q−m

with m = 0, 1, 2, · · · and q 6= 0. Basic hypergeometric series is very useful. Case
in point [1], Gauss used a basic hypergeometric series identity in his first proof of
the determination of the sign of the Gauss sum, and Jacobi used some to determine
the number of ways an integer can be written as the sum of two, four, six and eight
squares.

From the definition of rψs and rφs, we can easily deduce that the results of these
two series have nothing to do with the orders of a1, a2, · · · , ar and b1, b2, · · · , bs.
This point is very important. Furthermore, in the second appendix of [1], Gasper
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and Rahman showed several sums of bilateral basic series, namely, Ramanujan’s 1ψ1

sum, the sum of a well-poised 2ψ2 series, Bailey’s sum of a well-poised 3ψ3, and etc..
In [5], Zhang and Hu provided two transformation formulas on the bilateral series

5ψ5. In this paper, we would like to show a transformation formula for the very-well-
poised bilateral basic hypergeometric 3ψ3 series and a a transformation formula for
the well-poised bilateral basic hypergeometric 4ψ4 series.

2. Main Lemmas

In order to prove the main results of this paper, we need to introduce the following
two lemmas first.

Lemma 2.1. Let b, c, d, e and f be indeterminate. Then

5ψ5

[
b,

q2/b,
c,

q2/c,
d,

q2/d,
e,

q2/e,
f

q2/f
; q,

q4

bcdef

]
(2.1)

=(1− q) 8φ7

[
q, q3/2, −q3/2, b, c, d, e, f

q1/2, −q1/2, q2/b, q2/c, q2/d, q2/e, q2/f
; q,

q4

bcdef

]
.

provided | q4

bcdef
| < 1.

The proof of this lemma can be seen in [5].

Lemma 2.2. For def − cq4−n and
c

f
= − 1

q2
, n ∈ N, we have

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

c,
q2/c,

dqn,
e,

eqn

d
; q,−q

5/2

d

]
=

(q2, q5/f 2; q2)∞
(1− q/f)(1− q2/f)(1− q3/f)(q8/f 2; q2)∞

4φ3

[
−q3/2, q3/2, c, q−n

d, e, f
; q, q

]
,

provided |q| < 1.

Proof. According to Lemma 2.1 and [1, Appendix III (III.20)], we can infer that

5ψ5

[
a,

q2/a,
b,

q2/b,
c,

q2/c,
dqn,
e,

eqn

d
; q,

efqn

bc

]
=

(1− q)(aq/f, bq/f, cq/f, q2; q)∞
(abq/f, acq/f, bcq/f, q/f ; q)∞

4φ3

[
q−n, a, b, c
d, e, f

; q, q

]
, (2.2)

where abcq1−n = def and
abc

f
= q.

Let a = −q3/2, b = q3/2 in (2.2) and simplfy the result, we can obtain our conclu-
sion. �
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These two lemmas are very useful. Let us give two examples to illustrate this
point.

Corollary 2.1. Let d, e and f be indeterminate. Then

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

d,
q2/d,

e,
q2/e,

f
q2/f

; q,− q

def

]
=

(q, q2/de, q2/df, q2/ef ; q)∞
(q2/d, q2/e, q2/f, q2/def ; q)∞

4φ3

[
−1/q, d, e, f
−q1/2, q1/2, def/q

; q, q

]
,

provided max{|q|, | q
def
|} < 1 and 4φ3 terminates.

Proof. In [6], Watson showed the Watson’s transformation formula (a new proof of
this formula can be seen in [7]),

8φ7

[
a, qa1/2, −qa1/2, b, c, d, e, f

a1/2, −a1/2, aq/b, aq/c, aq/d, aq/e, aq/f
; q,

a2q2

bcdef

]
=

(aq, aq/de, aq/df, aq/ef ; q)∞
(aq/d, aq/e, aq/f, aq/def ; q)∞

4φ3

[
aq/bc, d, e, f

aq/b, aq/c, def/a
; q, q

]
, (2.3)

whenever the 8φ7 series converges and the 4φ3 series terminates.
By Lemma 2.1 and (2.3), we derive that

5ψ5

[
b,

q2/b,
c,

q2/c,
d,

q2/d,
e,

q2/e,
f

q2/f
; q,

q4

bcdef

]
=

(q, q2/de, q2/df, q2/ef ; q)∞
(q2/d, q2/e, q2/f, q2/def ; q)∞

4φ3

[
q2/bc, d, e, f
q2/b, q2/c, def/q

; q, q

]
.

Sunstituting b and c by −q3/2 and q3/2, respectively, the conclusion follows. This
completes the proof. �

If we let f = q−n, n ∈ N in Corollary 2.1 (a new proof of f = q−n of the q-analogue
of Watson’s 3F2 summation formula can also be found in [7]), we will arrive at

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

d,
q2/d,

e,
q2/e,

q−n

qn+2 ; q,−q
n+1

de

]
=

(q; q)n+1(q
2/de; q)n

(q2/d, q2/e; q)n
4φ3

[
−1/q, d, e, q−n

−q1/2, q1/2, deq−n−1
; q, q

]
.

Or equivalently,

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

f,
q2/d,

g,
q2/e,

q−n

qn+2 ; q,−q
n+1

fg

]
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=
(1− q)(h, h/fg; q)n

(h/f, h/g; q)n
4φ3

[
−1/q, f, g, q−n

−q1/2, q1/2, h
; q, q

]
,

where h = fgq−n−1.
With Lemma 2.2 in hand, we can obtain the following transformation formula

for 5ψ5 by using Sears’ transformations of terminating balanced 4φ3 series [8], [1,
Appendix III (III.15), (III.16)] (for the generalization of [1, Appendix III (III.15)],
cf. [9])

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

c,
q2/c,

dqn,
e,

eqn

d
; q,−q

5/2

d

]
=

(1− q)(aq/f, bq/f, cq/f, q2; q)∞
(abq/f, acq/f, bcq/f, q/f ; q)∞

(−eq−3/2,−fq−3/2; q)n
(e, f ; q)n

(−q3/2)n

×4 φ3

[
−q3/2, dq−3/2, d/c, q−n

d, −q5/2−n/e, −q5/2−n/f ; q, q

]
=

(1− q)(aq/f, bq/f, cq/f, q2; q)∞
(abq/f, acq/f, bcq/f, q/f ; q)∞

(−q3/2,−efq−3,−q−3/2ef/c; q)n
(e, f,−q−3ef/c; q)n

×4 φ3

[
−q3/2e, q−3/2f, −q−3ef/c, q−n

−efq−3, −q3/2ef/c, −q3/2def ; q, q

]
,

where d, e and f are indeterminate and |q| < 1.
With these two lemmas in hand, we are ready to show our main results.

3. transformation formula for the very-well-poised 3ψ3

In this section, we would like to prove a transformation formula for the very-well-
poised bilateral basic hypergeometric 3ψ3 series by using the relationship between
the bilateral basic hypergeometric 5ψ5 series and basic hypergeometric 4φ3 series.
The main conclusion can be summarized as the following conclusion.

Theorem 3.1. For n ∈ N and |q| < 1,

3ψ3

[
−q3/2,
−q1/2,

q3/2,
q1/2,

q
3
4
+n

2

q
5
4
−n

2
; q, q

]
=

(q2, qn+
5
2 ; q2)∞

(1 + q
n
2
− 1

4 )(1 + q
n
2
+ 3

4 )(1 + q
n
2
+ 7

4 )(qn+
11
2 ; q2)∞

×4 φ3

[
−q3/2, q3/2, q

3
4
−n

2 , q−n

q
5
4
−n

2 , q
3
4
−n

2 , −q 5
4
−n

2
; q, q

]
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=
(q2, qn+

5
2 ; q2)∞

(1 + q
n
2
− 1

4 )(1 + q
n
2
+ 3

4 )(1 + q
n
2
+ 7

4 )(qn+
11
2 ; q2)∞

×4 φ3

[
q3, q3/2, q−

3
2
−n, q−n

q
5
2
−n, q

3
4
−n

2 , −q 7
4
−n

2
; q2, q2

]
.

Proof. Let

c = q
3
4
−n

2 , d = q
5
4
−n

2 , e = q
3
4
−n

2 , f = −q
5
4
−n

2

in Lemma 2.2, we get that

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

q
3
4
−n

2 ,

q
5
4
+n

2 ,

q
5
4
+n

2 ,

q
3
4
−n

2 ,

q
3
4
+n

2

q
5
4
−n

2
; q, q

]
=

(q2, qn+
5
2 ; q2)∞

(1 + q
n
2
− 1

4 )(1 + q
n
2
+ 3

4 )(1 + q
n
2
+ 7

4 )(qn+
11
2 ; q2)∞

×4 φ3

[
−q3/2, q3/2, q

3
4
−n

2 , q−n

q
5
4
−n

2 , q
3
4
−n

2 , −q 5
4
−n

2
; q, q

]
Note that

5ψ5

[
−q3/2,
−q1/2,

q3/2,
q1/2,

q
3
4
−n

2 ,

q
5
4
+n

2 ,

q
5
4
+n

2 ,

q
3
4
−n

2 ,

q
3
4
+n

2

q
5
4
−n

2
; q, q

]
= 3ψ3

[
−q3/2,
−q1/2,

q3/2,
q1/2,

q
3
4
+n

2

q
5
4
−n

2
; q, q

]
.

Thus the first equation holds.
Askey and Wilson [10] proved

4φ3

[
a2, b2, c, d

abq1/2, −abq1/2, −cd ; q, q

]
=4 φ3

[
a2, b2, c2, d2

a2b2q, −cd, −cdq ; q2, q2
]

(3.1)

provided that both series terminate. This formula is called Singh’s quadratic trans-
formation formula since this formula can be traced back to [11], which was written
by Singh.

Let

a = q−
n
2 , b = q

3
4 , c = q−

3
4
−n

2 , d = −q
3
2

in (3.1), we can arrive at the second equation.
This completes the proof. �

4. transformation formula for the well-poised 4ψ4

In this section, we would like to prove a transformation formula for the very-well-
poised bilateral basic hypergeometric 4ψ4 series by using the relationship between
the bilateral basic hypergeometric 5ψ5 series and basic hypergeometric 8φ7 series.
The main conclusion can be summarized as the following conclusion.
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Theorem 4.1. For |q| < 1, we have

4ψ4

[
a,

q2/a,
q/a,
qa,

−d,
−q2/d,

−q/d
−qd ; q,−q

]
=

(q; q)2∞(−adq,−aq2/d,−dq2/a,−q3/ad; q2)∞
(−qd,−q2/d, aq, q2/a; q)∞

.

Proof. According to Lemma 2.1, we have

4ψ4

[
a,

q2/a,
q/a,
qa,

−d,
−q2/d,

−q/d
−qd ; q,−q

]
=5ψ5

[
a,

q2/a,
q/a,
qa,

−q,
−q,

−d,
−q2/d,

−q/d
−qd ; q,−q

]
=(1− q) 8φ7

[
q, q3/2, −q3/2, a, q/a, −q, −d, −q/d
q1/2, −q1/2, q2/a, qa, −q, −q2/d, −qd ; q,−q

]
, (4.1)

provided |q| < 1.
In [12, 3.4(1)], Bailey showed Whipples 3F2 formula. In [13], Gasper and Rahman

proved the following q-analogue of Whipples formula as follows,

8φ7

[
−c, q(−c)1/2, −q(−c)1/2, a, q/a, c, −d, −q/d
(−c)1/2, −(−c)1/2, −cq/a, −ac, −q, cq/d, cd

; q, c

]

=
(−c,−cq; q)∞(acd, acq/d, cdq/a, cq2/ad; q2)∞

(cd, cq/d,−ac,−cq/a; q)∞
. (4.2)

Note that
(1− q) · (q, q2; q)∞ = (q; q)2∞.

Then let c = −q in (4.2) and then substitute it into (4.1), the conclusion can be
obtained. �
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Abstract

The neutral stochastic functional differential equations have attracted much attention be-
cause of their practical applications in various fields such as biology, physics, medicine, fi-
nance, telecommunication networks and population dynamics. In this note, we investigate the
p-moment estimates of solutions to neutral stochastic functional differential equations (NSFDEs)
in the framework of G-Brownian motion. Under non-linear growth condition, the Lp estimates
of solutions to NSFDEs in the G-framework are given. The Gronwall’s inequality, Hölder’s
inequality, G-Itô’s formula and Burkholder-Davis-Gundy (BDG) inequalities are utilized to es-
tablish the above stated theory. Moreover, the asymptotic estimates for the solutions to these
equations are studied and the Lyapunov exponent is estimated for NSFDEs in the G-framework.

Key words: G-Brownian motion, p-moment estimates, neutral stochastic functional
differential equations, non-linear growth condition, Lyapunov exponent.

1 Introduction

The multifaceted usage of stochastic dynamical models has proved to be tantamount to indispens-
able due to their reliability and authenticity in natural sciences, engineering and economics. The
ever-developing field of medical science, which is always on the lookout for such mathematically
accurate tools for the investigation of a variety of maladies, is no exception in using these mod-
els. Among others, the efficacy of these models has been established to generate optimal dynamic
health policies for controlling spreads of infectious diseases [15]. Such is the quantitative accuracy
and efficiency of stochastic differential equation (SDE) models that the prediction of the growth of
bacterial populations from a small number of pathogens [1] can be calculated through these models.
Besides, these models have the highly-cherished reliability to the extent that control and navigation
systems are also using them as must-have tool. Various kinds of disturbances in telecommunica-
tions systems and the effect of thermal noise in electrical circuits are modeled by SDEs. Moreover,
stock prices can also be modeled using stochastic differential equations. Stochastic differential
equations in the framework of G-Brownian motion were instigated by Peng [11, 12]. Afterward,
SDEs in the G-frame were studied by Bai and Li with integral Lipschitz coefficients [2] and then
with discontinuous coefficients by Faizullah [4]. The stochastic functional differential equations
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(SFDEs) in the framework of G-Brownian motion were initiated by Ren, Bi and Sakthivel [14].
Later on, Faizullah developed the existence and uniqueness theory for SFDEs in the framework
of G-Brownian motion with Cauchy-Maruyama approximation scheme [5]. Recently, the existence
theory for neutral stochastic functional differential equations (NSFDEs) in the G-framework were
established by Faizullah [7]. Moment estimate is a useful and fundamental method of analyzing
and exploring dynamic behavior of NSFDEs in the G-framework. However, the pth moment esti-
mates for the solutions of NSFDEs in the framework of G-Brownian motion with non-linear growth
condition have not been utterly investigated, which remains a motivating and attractive research
theme. This paper will fill the stated gap. The topic of our analysis is neutral stochastic functional
differential equations in the G-framework of the form

d(Z(t)−D(Zt)) = κ(t, Zt)dt+ λ(t, Zt)d〈B,B〉(t) + µ(t, Zt)dB(t), (1.1)

with initial data Zt0 = ζ = {ζ(s) : −τ ≤ s ≤ 0} such that ζ(s) is F0- measurable, BC([−τ, 0]; Rn)-
valued random variable and belongs to M2

G ([−τ, 0]; R). The coefficients κ, λ, µ ∈ M2
G([−τ, T ]; R),

Z(t) is the value of stochastic process at time t and Zt = {Z(t + θ) : −τ ≤ θ ≤ 0, τ > 0} is a
bounded continuous real valued stochastic process defined on [−ρ, 0] [6]. An Ft-adapted process
Z = {Z(t) : −τ ≤ t ≤ T} is called the solution of NSFDE (1.1) if it satisfies the above initial data
and for all t ≥ 0 the following integral equation holds q.s.

Z(t)−D(Zt) = ζ(0)−D(Zt0) +
∫ t

0
κ(v, Zv)dv+

∫ t

0
λ(v, Zv)d〈B,B〉(v) +

∫ t

0
µ(v, Zv)dB(v). (1.2)

All through this article, we suppose that the following non-linear growth condition satisfies. Assume
that Υ(.) : R+ → R+ is a concave and increasing function in such a way that Υ(z) > 0 for z > 0,
Υ(0) = 0 and ∫

0+

dz

Υ(z)
=∞. (1.3)

Then for each χ ∈ BC([−τ, 0]; R) ,

|κ(t, χ)|2 + |λ(t, χ)|2 + |µ(t, χ)|2 ≤ Υ(1 + |χ|2), t ∈ [0, T ]. (1.4)

Since Υ(0) = 0 and the function Υ is concave so for all z ≥ 0 we have

Υ(z) ≤ α+ βz, (1.5)

where α and β are positive constants. The remaining article is arranged in the following manner.
In section 2, preliminaries are given. In section 3, the p-moment estimates for the solutions to
neutral stochastic functional differential equations in the G-framework are studied. In section 4,
asymptotic estimates for the solutions to NSFDEs in the G-framework are obtained.

2 Preliminaries

This section presents some basic notions and results of G-expectation and G-Brownian motion
[3, 6, 13]. They are used in the forthcoming research work of this article.

Definition 2.1. Assume Ω be a nonempty basic space. Let H be a space of linear real valued
functions defined on Ω. Then a real valued functional E defined on H fulfilling the following
characteristics is called a sub-linear expectation

2
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(a) If X ≥ Y then E[X] ≥ E[Y ], where X,Y ∈ H.

(b) E[α] = α, where α is a real constant.

(c) E[βX] = βE[X], where β > 0.

(d) E[X + Y ] ≤ E[X] + E[Y ], for all X,Y ∈ H.

Let Cb.Lip(Rl×d) denotes the set of bounded Lipschitz functions on Rl×d and

LpG(ΩT ) = {φ(Bt1 , Bt2 , ..., Btl/l ≥ 1, t1, t2, ..., tl ∈ [0, T ], φ ∈ Cb.Lip(Rl×d))}.

Let ρi ∈ LpG(Ωti), i = 0, 1, ..., N−1 then the collection of the following kind of processes is expressed
by M0

G(0, T )

ηt(w) =
N−1∑
i=0

ρi(w)I[ti,ti+1](t),

where the above process is defined on a partition πT = {t0, t1, ..., tN} of [0, T ]. Associated with norm
‖η‖ = {

∫ T
0 E[|ηu|p]du}1/p, Mp

G(0, T ), p ≥ 1, is the completion of M0
G(0, T ). For all ηt ∈M2,0

G (0, T ),
the G-Itô’s integral I(η) and G-quadratic variation process {〈B〉t}t≥0 are respectively given by

I(η) =
∫ T

0
ηudBu =

N−1∑
i=0

ρi(Bti+1 −Bti),

〈B〉t = B2
t − 2

∫ t

0
BudBu.

The book [10] is a good reference for the following six lemmas. The first two inequalities are known
as Hölder’s inequality and Gronwall’s inequality respectively.

Lemma 2.2. If 1
p + 1

q = 1 for all p, q > 1, g ∈ L2 and h ∈ L2 then gh ∈ L1 and∫ d

c
gh ≤ (

∫ d

c
|g|p)

1
p (

∫ d

c
|h|q)

1
q . (2.1)

Lemma 2.3. Let K ≥ 0, H(t) : [c, d]→ R be a continuous function, h(t) ≥ 0 and for all t ∈ [c, d],
H(t) ≤ K +

∫ d
c h(s)H(s)ds, then

H(t) ≤ Ke
∫ t

c h(s)ds,

for all c ≤ t ≤ d.

Lemma 2.4. Let δ ∈ (0, 1) and c, d ≥ 0. Then

(c+ d)2 ≤ c2

δ
+

d2

1− δ
.

Lemma 2.5. Let p ≥ 1 and let |D(ζ)| ≤ δ‖ζ‖. Then for ζ ∈ CB([−τ, 0]; Rn),

|ζ(0)−D(ζ)|p ≤ (1 + δ)p‖ζ‖p.

Lemma 2.6. Let δ̂, c, d > 0 and p ≥ 2. Then the below results hold

3
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(i) cp−1d ≤ (p−1)δ̂cp

p + dp

pδ̂p−1
.

(ii) cp−2d2 ≤ (p−2)δ̂cp

p + 2dp

pδ̂
p−2
2

.

Lemma 2.7. Let p ≥ 1 and |D(ζ)| ≤ δ‖ζ‖, δ ∈ (0, 1). Then

sup
0≤u≤t

|X(u)|p ≤ δ

1− δ
‖ζ‖p +

1
(1− δ)p

sup
0≤u≤t

|X(u)−D(Xu)|p.

Theorem 2.8. Let Z ∈ Lp. Then for every ε > 0,

Ĉ(|Z|p > ε) ≤ E[|Z|p]
ε

,

where Ĉ is called the capacity.

The capacity is defined by Ĉ(A) = supP∈P P (A). A collection of all probability measures on
(Ω,B(Ω) is denoted by P and A ∈ B(Ω), which is Borel σ-algebra of Ω. Set A is known as a polar
set if Ĉ(A) = 0. A property holds quasi-surely (q.s. in short) if it holds outside a polar set.

3 The pth moment estimates for NSFDEs in the G-framework

This section discusses the exponential estimate of the solution to NSFDE in the framework of
G-Brownian motion (1.1) with the given initial data. Let equation (1.1) admit a unique solution
Z(t). Suppose the non-linear growth condition (1.4) holds. In addition, assume that |D(ζ)| ≤ δ‖ζ‖,
where δ ∈ (0, 1).

Theorem 3.1. Let the non-linear growth condition holds. Let p ≥ 2 and E‖ζ‖p <∞. Then

E[ sup
−τ≤s≤t

|Z(s)|p] ≤ K1e
K2T ,

where K1 = 1
(1−δ)p [(1−δ)p+ ε(1−δ)p−1 +2(1+δ)p]E‖ζ‖p+ 1

(1−δ)p [(2+pc23 +2c2)γ1 + c2(p−1)γ3]T ,

K2 = 1
(1−δ)p [(2 + pc23 + 2c2)γ2 + (p − 1)γ4], γ1 = (2)

p
2−1(α+β)

p
2

δ̂p−1
, γ2 = [(p − 1)δ̂(1 + δ)p + (2)

p
2−1β

p
2

δ̂p−1
],

γ3 = (2)
p
2−1(α+β)

p
2

δ̂
p
2−1

, γ4 = [(p− 1)δ̂(1 + δ)p + (2)
p
2−1β

p
2

δ̂
p
2−1

] and c2, c3 are positive constants.

Proof. Apply the G-Itô’s formula to U(t, Z(t)) = |Z(t)−D(Zt)|p, p ≥ 2, we obtain

U(t, Z(t)) = U(0, Z(0)) +
∫ t

0
[Uu(u, Z(u)) + UZ(u, Z(u))κ(Zu, u)]du+

∫ t

0
UZ(u, Z(u))µ(Zu, u)dB(u)

+
∫ t

0
[UZ(u, Z(u))λ(Zu, u) +

1
2
traceµT (Zu, u)UZZ(u, Z(u))µ(Zu, u)]d〈B,B〉(u),
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Next we apply G-expectation on both side and use lemma 2.5. We also use the Hölder’s (2.1) and
BDG inequalities [8] to get

E[ sup
0≤u≤t

|Z(u)−D(Zu)|p] ≤ E|ζ(0)−D(ζ)|p + E[ sup
0≤u≤t

p

∫ t

0
|Z(u)−D(Zu)|p−1|κ(u, Zu)|]du

+ E[ sup
0≤u≤t

∫ t

0
p|Z(u)−D(Zu)|p−1|µ(u, Zu)|dB(u)]

+ E[ sup
0≤u≤t

∫ t

0
[p|Z(u)−D(Zu)|p−1|λ(u, Zu)|

+
p(p− 1)

2
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2]d〈B,B〉(u)]

≤ (1 + δ)pE‖ζ‖p + Ji + Jii + Jiii,

(3.1)

where

Ji = E[ sup
0≤u≤t

∫ t

0
p|Z(u)−D(Zu)|p−1|κ(u, Zu)|du],

Jii = E[ sup
0≤u≤t

∫ t

0
p|Z(u)−D(Zu)|p−1|µ(u, Zu)|dB(u)],

Jiii = E[ sup
0≤u≤t

∫ t

0
[p|Z(u)−D(Zu)|p−1|λ(u, Zu)|+ p(p− 1)

2
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2]d〈B,B〉(u)].

(3.2)

We use lemma 2.5, Lemma 2.6 and the non-linear growth condition (1.4), for any δ̂ > 0,

p|Z(t)−D(Zt)|p−1|κ(t, Zt)| ≤ (p− 1)δ̂|Z(t)−D(Zt)|p +
|κ(t, Zt)|p

δ̂p−1

≤ (p− 1)δ̂(1 + δ)p‖Z‖p +
[Υ(1 + ‖Z‖2)]

p
2

δ̂p−1

≤ (p− 1)δ̂(1 + δ)p‖Z‖p +
[α+ β(1 + ‖Z‖2)]

p
2

δ̂p−1

≤ (p− 1)θ̂(1 + δ)p‖Z‖p +
(2)

p
2
−1[(α+ β)

p
2 + β

p
2 ‖Z‖p]

δ̂p−1

=
(2)

p
2
−1(α+ β)

p
2

δ̂p−1
+ [(p− 1)δ̂(1 + δ)p +

(2)
p
2
−1β

p
2

δ̂p−1
]‖Z‖p.

So,
p|Z(t)−D(Zt)|p−1|κ(t, Zt)| ≤ γ1 + γ2‖Z‖p, (3.3)

where γ1 = (2)
p
2−1(α+β)

p
2

δ̂p−1
and γ2 = [(p− 1)δ̂(1 + δ)p + (2)

p
2−1β

p
2

δ̂p−1
]. In a similar way as above,

p|Z(t)−D(Zt)|p−1|λ(t, Zt)| ≤ γ1 + γ2‖Z‖p,
p|Z(t)−D(Zt)|p−1|µ(t, Zt)| ≤ γ1 + γ2‖Z‖p,
p|Z(t)−D(Zt)|p−2|µ(t, Zt)|2 ≤ γ3 + γ4‖Z‖p,

(3.4)

5
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where γ3 = (2)
p
2−1(α+β)

p
2

δ̂
p
2−1

and γ4 = [(p− 1)δ̂(1 + δ)p + (2)
p
2−1β

p
2

δ̂
p
2−1

]. By the inequality (3.3) we obtain

Ji ≤
∫ t

0
[γ1 + γ2‖Z‖p]du

≤ γ1T + γ2

∫ t

0
‖Z‖pdu.

By using lemma 2.6, inequality (3.4), second mean value theorem, BDG inequalities [8] and funda-
mental inequality |c||d| ≤ c2

2 + d2

2 we proceed as follows

Jii = pE[ sup
0≤u≤t

|
∫ t

0
|Z(u)−D(Zu)|p−1|µ(u, Zu)|dB(u)|]

≤ pc3E[ sup
0≤u≤t

∫ t

0
|Z(u)−D(Zu)|2p−2|µ(u, Zu)|2du]

1
2

≤ pc3E[ sup
0≤u≤t

|Z(u)−D(Zu)|p
∫ t

0
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2du]

1
2

≤ 1
2
E[ sup

0≤u≤t
|Z(u)−D(Zu)|p] +

p2c23
2
E[ sup

0≤u≤t

∫ t

0
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2du]

≤ 1
2
E[ sup

0≤u≤t
|Z(u)−D(Zu)|p] +

pc23
2
E[ sup

0≤u≤t

∫ t

0
(γ1 + γ2‖Zu‖p)]du

=
1
2
E[ sup

0≤u≤t
|Z(u)−D(Zu)|p] +

pc23
2
γ1T +

pc23
2
γ2

∫ t

0
E[ sup

0≤u≤t
|Zu|p]du.

By using the BDG inequalities [8], inequality (3.4) and lemma 2.6 we get

Jiii = E[ sup
0≤u≤t

|
∫ t

0
[p|Z(u)−D(Zu)|p−1|λ(u, Zu)|+ p(p− 1)

2
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2]d〈B,B〉(u)]|

≤ c2
∫ t

0
E sup

0≤u≤t
[p|Z(u)−D(Zu)|p−1|λ(u, Zu)|+ p(p− 1)

2
|Z(u)−D(Zu)|p−2|µ(u, Zu)|2]du

≤ c2
∫ t

0
E sup

0≤u≤t
[γ1 + γ2‖Zu‖p +

(p− 1)
2

(γ3 + γ4‖Zu‖p)]du

≤ c2(γ1 +
1
2

(p− 1)γ3)T + c2(γ2 +
1
2

(p− 1)γ4)
∫ t

0
E[ sup

0≤u≤t
|Zu|p]du.

6
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Using the values of Ji, Jii and Jiii in (3.1), we have

E[ sup
0≤u≤t

|Z(u)−D(Zu)|p] ≤ (1 + δ)pE‖ζ‖p + γ1T + γ2

∫ t

0
E[ sup

0≤u≤t
|Zu|p]du

+
1
2
E[ sup

0≤u≤t
|Z(u)−D(Zu)|p] +

pc23
2
γ1T +

pc23
2
γ2

∫ t

0
E[ sup

0≤u≤t
|Zu|p]du

+ c2(γ1 +
1
2

(p− 1)γ3)T + c2(γ2 +
1
2

(p− 1)γ4)
∫ t

0
E[ sup

0≤u≤t
|Zu|p]du

= (1 + δ)pE‖ζ‖p + (1 +
1
2
pc23 + c2)γ1T +

1
2
c2(p− 1)γ3T

+
1
2
E[ sup

0≤u≤t
|Z(u)−D(Zu)|p]

+ [(1 +
1
2
pc23 + c2)γ2 +

1
2

(p− 1)γ4]
∫ t

0
E[ sup

0≤u≤t
‖Zu‖p]du,

simplification follows that

E[ sup
0≤u≤t

|Z(u)−D(Zu)|p] ≤ 2(1 + ε)pE‖ζ‖p + [(2 + pc23 + 2c2)γ1 + c2(p− 1)γ3]T

+ [(2 + pc23 + 2c2)γ2 + (p− 1)γ4]
∫ t

0
E[ sup
−τ≤r≤u

‖Z(r)‖p]du.

By using lemma (2.7), it yields

E[ sup
0≤u≤t

|Z(u)|p] ≤ δ

1− δ
E‖ζ‖p + 2

(1 + δ)p

(1− δ)p
E‖ζ‖p +

1
(1− δ)p

[(2 + pc23 + 2c2)γ1 + c2(p− 1)γ3]T

+
1

(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4]

∫ t

0
E[ sup
−τ≤r≤u

‖Z(r)‖p]du

Noting the fact sup
−τ≤u≤t

|Z(u)|p ≤ ‖ζ‖p + sup
0≤u≤t

|Z(u)|p, we have

E[ sup
−τ≤u≤t

|Z(u)] ≤ E‖ζ‖p +
δ

1− δ
E‖ζ‖p + 2

(1 + δ)p

(1− δ)p
E‖ζ‖p +

1
(1− δ)p

[(2 + pc23 + 2c2)γ1 + c2(p− 1)γ3]T

+
1

(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4]

∫ t

0
E[ sup
−τ≤r≤u

|Z(r)|p]du

=
1

(1− δ)p
[(1− δ)p + δ(1− δ)p−1 + 2(1 + δ)p]E‖ζ‖p

+
1

(1− δ)p
[(2 + pc23 + 2c2)γ1 + c2(p− 1)γ3]T

+
1

(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4]

∫ t

0
E[ sup
−τ≤r≤u

|Z(r)|p]du

= K1 +K2

∫ t

0
E[ sup
−τ≤r≤u

|Z(r)|p]du,

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

87 Faiz Faizullah et al 81-90



where K1 = 1
(1−δ)p [(1− δ)p+ δ(1− δ)p−1 + 2(1 + δ)p]E‖ζ‖p+ 1

(1−δ)p [(2 +pc23 + 2c2)γ1 + c2(p−1)γ3]T
and K2 = 1

(1−δ)p [(2 + pc23 + 2c2)γ2 + (p− 1)γ4]. Consequently, the Grownwall’s inequality gives

E[ sup
−τ≤u≤T

|Z(u)|p] ≤ K1e
K2T .

The proof stands completed.

4 Asymptotic estimates for NSFDEs in the G-framework

We now present the asymptotic estimate for the solution to NSFDE in the frame of G-Brownian
motion (1.1). Recall that limt→∞ sup 1

t log|Z(t)| is known as the Lyapunov exponent [9]. We show
that 1

p(1−δ)p [(2 + pc23 + 2c2)γ2 + (p− 1)γ4] is the upper bound for the Lyapunov exponent.

Theorem 4.1. Suppose that the non-linear growth condition (1.4) satisfies. Then

lim
t→∞

sup
1
t
log|Z(t)| ≤ 1

p(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4] q.s.

Proof. By theorem 3.1 for each l = 1, 2, ..., the following inequality holds.

E( sup
l−1≤t≤l

|Z(t)|p) ≤ K1e
K2l,

where K1 = 1
(1−δ)p [(1− δ)p+ δ(1− δ)p−1 + 2(1 + δ)p]E‖ζ‖p+ 1

(1−δ)p [(2 +pc23 + 2c2)γ1 + c2(p−1)γ3]T
and K2 = 1

(1−δ)p [(2 + pc23 + 2c2)γ2 + (p− 1)γ4]. Thus by theorem 2.8 for any arbitrary δ > 0,

Ĉ(w : sup
l−1≤t≤l

|Z(t)|p > e(K2+ε)l) ≤
E[supl−1≤t≤l |Z(t)|p]

e(K2+ε)l

≤ K1e
K2l

e(K2+ε)l

= K1e
−εl.

For almost all w ∈ Ω, the Borel-Cantelli lemma follows that there is a random integer l0 = l0(w)
so that

sup
l−1≤t≤l

|Z(t)|p ≤ e(K2+ε)l whenever l ≥ l0,

it yields,

lim
t→∞

sup
1
t
log|Z(t)| ≤ K2 + ε

p

=
1

p(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4] +

ε

p
, q.s.

Since ε is arbitrary therefore

lim
t→∞

sup
1
t
log|Z(t)| ≤ 1

p(1− δ)p
[(2 + pc23 + 2c2)γ2 + (p− 1)γ4], q.s.

The proof stands completed.
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Remark 4.2. If p = 2, then we have

lim
t→∞

sup
1
t
log|Z(t)| ≤ 1

2(1− δ)2
[(2 + 2c23 + 2c2)γ2 + γ4],

which shows that the Lyapunov exponent will not be greater than 1
2(1−δ)2 [(2 + 2c23 + 2c2)γ2 + γ4].
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Abstract

In this paper, we introduce a notion of generalized contractions in the
setting of partial rectangular metric spaces. The existence of fixed point
theorems for generalized contractions with triangular α-orbital admissible
mappings with respect to η in the complete partial rectangular metric
spaces is proven. Moreover, we also give the example for supporting our
main result.

Keywords: Partial rectangular metric spaces, triangular α-orbital admissible
mappings with respect to η, α-orbital attractive mappings with respect to η.

1 Introduction and preliminaries

In 2000, Branciari [2] presented a class of generalized (rectangular) metric spaces
and proved the interesting topological properties in such spaces. The author
[2] also assured the Banach contraction principle in the setting of complete
rectangular metric spaces. After that, many authors extended and improved
the existence of fixed point theorems in complete rectangular metric spaces, see
[4, 5, 6, 7, 8, 9, 10, 11, 15] and the references contained therein.

Recently, Arshad et al. [1] extended the results proved by Jleli et al. [6, 7] in
the setting of complete rectangular metric spaces. On the other hand, Matthew
[12] presented the concept of partial metric spaces as a part of the study of
denotational semantics of data flow network. In this space, the usual metric is
replaced by a partial metric with an interesting property that the self-distance of

∗Corresponding author.
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any point of a space may not be zero. Later on, Shukla [16] introduced the par-
tial rectangular metric spaces as a generalization of the concept of rectangular
metric spaces and extended the concept of partial metric spaces.

In this paper, we introduce a notion of generalized contractions appeared in
[1] in the setting of partial rectangular metric spaces. The existence of fixed
point theorems for generalized contractions with triangular α-orbital admissible
mappings with respect to η in the complete partial rectangular metric spaces is
proven. Moreover, we also give the example for supporting our main result.

We now recall some definitions, lemmas and propositions that will be used
in the sequel.

Definition 1.1 [2] Let X be a nonempty set. We say that a mapping d :
X ×X → R is a Branciari metric on X if d satisfies the following:

(d1) 0 ≤ d(x, y), for all x, y ∈ X;
(d2) d(x, y) = 0 if and only if x = y;
(d3) d(x, y) = d(y, x), for all x, y ∈ X;
(d4) d(x, y) ≤ d(x,w) + d(w, z) + d(z, y), for all x, y ∈ X and for all

distinct points w, z ∈ X\{x, y}.
If d is a Branciari metric on X, then a pair (X, d) is called a Branciari metric
space (or for short BMS). As mentioned before, Branciari metric spaces are
also called rectangular metric spaces in the literature. A sequence {xn} in X
converges to x ∈ X if for every ε > 0, there exists n0 ∈ N such that d(xn, x) < ε
for all n ≥ n0. A sequence {xn} is called a Cauchy sequence if for every ε > 0,
there exists n0 ∈ N such that d(xn, xm) < ε for all n,m ≥ n0. A rectangular
metric space (X, d) is called complete if every Cauchy sequence in X converges
in X.

Shukla [16] introduced a concept of the partial rectangular metric spaces as
the following:

Definition 1.2 [16] Let X be a nonempty set. We say that a mapping p :
X ×X → R is a partial rectangular metric on X if p satisfies the following:

(p1) p(x, y) ≥ 0, for all x, y ∈ X;
(p2) x = y if and only if p(x, y) = p(x, x) = p(y, y), for all x, y ∈ X;
(p3) p(x, x) ≤ p(x, y), for all x, y ∈ X;
(p4) p(x, y) = p(y, x), for all x, y ∈ X;
(p5) p(x, y) ≤ p(x,w)+p(w, z)+p(z, y)−p(w,w)−p(z, z), for all x, y ∈ X

and for all distinct points w, z ∈ X\{x, y}.
If p is a partial rectangular metric on X, then a pair (X, p) is called a partial
rectangular metric space.

Remark 1.3 [16] In a partial rectangular metric space (X, p), if x, y ∈ X and
p(x, y) = 0, then x = y but the converse may not be true.

Remark 1.4 [16] It is clear that every rectangular metric space is a partial
rectangular metric space with zero self-distance. However, the converse of this
fact need not hold.
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Example 1.5 [16] Let X = [0, d], α ≥ d ≥ 3 and define a mapping p : X×X →
[0,∞) by

p(x, y) =


x ifx = y;
3α+x+y

2 ifx, y ∈ {1, 2}, x ̸= y;
α+x+y

2 otherwise.

Then (X, p) is a partial rectangular metric space but it is not a rectangular
metric space. Moreover, (X, p) is not a partial metric space.

Proposition 1.6 [16] For each partial rectangular metric space (X, p), the pair
(X, dp) is a rectangular metric space where

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X.

Definition 1.7 [16] Let (X, p) be a partial rectangular metric space, {xn} be
a sequence in X and x ∈ X. Then,

(i) the sequence {xn} is said to converges to x ∈ X if lim
n→∞

p(xn, x) = p(x, x);

(ii) the sequence {xn} is said to be a Cauchy sequence in (X, p) if lim
n,m→∞

p(xn, xm)

exists and is finite;
(iii) (X, p) is said to be a complete partial rectangular metric space if for

every Cauchy sequence {xn} in X, there exists x ∈ X such that

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

Lemma 1.8 [16] Let (X, p) be a partial rectangular metric space and let {xn}
be a sequence in X. Then lim

n→∞
dp(xn, x) = 0 if and only if lim

n→∞
p(xn, x) =

lim
n→∞

p(xn, xn) = p(x, x).

Lemma 1.9 [16] Let (X, p) be a partial rectangular metric space and let {xn}
be a sequence in X. Then the sequence {xn} is a Cauchy sequence in (X, p) if
and only if it is a Cauchy sequence in (X, dp).

Lemma 1.10 [16] A partial rectangular metric space (X, p) is complete if and
only if a rectangular metric space (X, dp) is complete.

In 2014, Popescu [13] introduced the definitions of α-orbital admissible map-
pings and triangular α-orbital admissible mappings including α-orbital attrac-
tive mappings.

Definition 1.11 [13] Let T : X → X be a mapping and α : X ×X → [0,∞)
be a function. Then T is said to be α-orbital admissible if for all x ∈ X,

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Definition 1.12 [13] Let T : X → X be a mapping and α : X ×X → [0,∞)
be a function. Then T is said to be triangular α-orbital admissible if:

(T3) T is α-orbital admissible;
(T4) for all x, y ∈ X,α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

3
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Definition 1.13 [13] Let T : X → X be a mapping and α : X ×X → [0,∞)
be a function. Then T is said to be α-orbital attractive if for all x ∈ X,

α(x, Tx) ≥ 1 implies α(x, y) ≥ 1 or α(y, Tx) ≥ 1 for all y ∈ X.

We denote by Θ the set of all functions θ : (0,∞) → (1,∞) satisfying the
following conditions:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+;

(Θ3) there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = ℓ.

Example 1.14 [6] The following functions θ : (0,∞) → (1,∞) are in Θ:

(1) θ(t) = e
√
t;

(2) θ(t) = e
√
tet ;

(3) θ(t) = 2− 2
π arctan( 1

tγ ) where 0 < γ < 1.

Very recently Jleli et al. [6, 7] established the following generalization of
the Banach fixed point theorem in the setting of complete rectangular metric
spaces.

Theorem 1.15 [6] Let (X, d) be a complete rectangular metric space and T :
X → X be a mapping. Suppose that there exist θ ∈ Θ and λ ∈ (0, 1) such that
for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies θ(d(Tx, Ty)) ≤ [θ(d(x, y))]λ.

Then T has a unique fixed point.

Theorem 1.16 [7] Let (X, d) be a complete rectangular metric space and T :
X → X be a mapping. Suppose that there exist θ ∈ Θ and λ ∈ (0, 1) such that
for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies θ(d(Tx, Ty)) ≤ [θ(M(x, y))]λ,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point.

Later, Arshad et al. [1] extended the results proved by Jleli et al. [6, 7] by using
the concept of triangular α-orbital admissible mappings.

Theorem 1.17 [1] Let (X, d) be a complete rectangular metric space, T : X →
X be a mapping and α : X × X → [0,∞) be a function. Suppose that the
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following conditions hold :
(1) there exist θ ∈ Θ and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies α(x, y) · θ(d(Tx, Ty)) ≤ [θ(R(x, y))]λ,

where

R(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)

}
;

(2) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1 and α(x1, T
2x1) ≥ 1;

(3) T is a triangular α-orbital admissible mapping;
(4) if {Tnx1} is a sequence in X such that α(Tnx1, T

n+1x1) ≥ 1 for all n ∈ N
and xn → x ∈ X as n → ∞, then there exists a subsequence {Tn(k)x1} of
{Tnx1} such that α(Tn(k)x1, x) ≥ 1 for all k ∈ N;
(5) θ is continuous;
(6) if z is a periodic point T , then α(z, Tz) ≥ 1.
Then T has a fixed point.

Theorem 1.18 [1] Let (X, d) be a complete rectangular metric space, T : X →
X be a mapping and α : X × X → [0,∞) be a function. Suppose that the
following conditions hold :
(1) there exist θ ∈ Θ and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies α(x, y) · θ(d(Tx, Ty)) ≤ [θ(R(x, y))]λ,

where

R(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)

}
;

(2) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1 and α(x1, T
2x1) ≥ 1;

(3) T is an α-orbital admissible mapping;
(4) T is an α-orbital attractive mapping;
(5) θ is continuous;
(6) if z is a periodic point T , then α(z, Tz) ≥ 1.
Then T has a fixed point.

In 2016, Chuadchawna [3] introduced the notion of triangular α-orbital ad-
missible mappings with respect to η and proved the key lemma which will be
used for proving our main results.

Definition 1.19 [3] Let T : X → X be a mapping and α, η : X ×X → [0,∞)
be functions. Then T is said to be α-orbital admissible with respect to η if for
all x ∈ X,

α(x, Tx) ≥ η(x, Tx) implies α(Tx, T 2x) ≥ η(Tx, T 2x).

Definition 1.20 [3] Let T : X → X be a mapping and α, η : X ×X → [0,∞)
be functions. Then T is said to be triangular α-orbital admissible with respect

5
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to η if
(T1) T is α-orbital admissible with respect to η;
(T2) for all x, y ∈ X,α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty) imply

α(x, Ty) ≥ η(x, Ty).

Remark 1.21 If we suppose that η(x, y) = 1 for all x, y ∈ X, then Defini-
tion 1.19 and Definition 1.20 reduces to Definition 1.11 and Definition 1.12,
respectively.

Lemma 1.22 [3] Let T : X → X be a triangular α-orbital admissible mapping
with respect to η. Assume that there exists x1 ∈ X such that α(x1, Tx1) ≥
η(x1, Tx1). Define a sequence {xn} by xn+1 = Txn. Then we have α(xn, xm) ≥
η(xn, xm) for all m,n ∈ N with n < m.

Definition 1.23 Let T : X → X be a mapping and α, η : X × X → [0,∞)
be functions. Then T is said to be α-orbital attractive with respect to η if for
all x ∈ X,

α(x, Tx) ≥ η(x, Tx) implies α(x, y) ≥ η(x, y) or α(y, Tx) ≥ η(y, Tx) for all
y ∈ X.

2 Main results

We now prove the following lemma needed in proving our result. The idea comes
from [10] but the proof is slightly different.

Lemma 2.1 Let (X, p) be a partial rectangular metric space and {xn} be a
sequence in (X, p) such that p(xn, x) → p(x, x) as n → ∞ for some x ∈ X,
p(x, x) = 0 and lim

n→∞
p(xn, xn+1) = 0. Then p(xn, y) → p(x, y) as n → ∞ for

all y ∈ X.

Proof. Suppose that x ̸= y. If xn = y for arbitrarily large n, then p(y, x) =
p(x, x) = p(y, y). Therefore x = y. Assume that y ̸= xn for all n ∈ N. We also
suppose that xn ̸= x for infinitely many n. Otherwise, the result is complete.
It follows that we may assume that xn ̸= xm ̸= x and xn ̸= xm ̸= y for all
m,n ∈ N with m ̸= n. By the partial rectangular inequality, we have

p(y, x) ≤ p(y, xn) + p(xn, xn+1) + p(xn+1, x)− p(xn, xn)− p(xn+1, xn+1)

≤ p(y, xn) + p(xn, xn+1) + p(xn+1, x)

and

p(y, xn) ≤ p(y, x) + p(x, xn+1) + p(xn+1, xn)− p(x, x)− p(xn+1, xn+1)

≤ p(y, x) + p(x, xn+1) + p(xn+1, xn).

Since lim
n→∞

p(xn, xn+1) = 0 and taking the limit as n→ ∞ in the above inequal-

ities, we have
lim sup

n
p(y, xn) ≤ p(y, x) ≤ lim inf

n
p(y, xn).

Hence the proof is complete.
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Theorem 2.2 Let (X, p) be a complete partial rectangular metric space, T :
X → X be a mapping and let α, η : X ×X → [0,∞) be functions. Suppose that
the following conditions hold :
(1) there exist θ ∈ Θ and λ ∈ (0, 1) such that for all x, y ∈ X,

p(Tx, Ty) > 0 and α(x, y) ≥ η(x, y) imply θ(p(Tx, Ty)) ≤ [θ(R(x, y))]λ,
(2.1)

where

R(x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Tx)p(y, Ty)

1 + p(x, y)

}
;

(2) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);
(3) T is a triangular α-orbital admissible mapping with respect to η;
(4) if {Tnx1} is a sequence in X such that α(Tnx1, T

n+1x1) ≥ η(Tnx1, T
n+1x1)

for all n ∈ N and Tnx1 → x ∈ X as n → ∞, then there exists a subsequence
{Tn(k)x1} of {Tnx1} such that α(Tn(k)x1, x) ≥ η(Tn(k)x1, x) for all k ∈ N;
(5) θ is continuous;
(6) if z is a periodic point T , then α(z, Tz) ≥ η(z, Tz).
Then T has a fixed point.

Proof. By (2), there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1). Define
the sequence {xn} in X by xn = Txn−1 = Tnx1 for all n ∈ N. By Lemma 1.22,
we obtain that

α(Tnx1, T
n+1x1) ≥ η(Tnx1, T

n+1x1) for all n ∈ N. (2.2)

If Tnx1 = Tn+1x1 for some n ∈ N, then Tnx1 is a fixed point of T . Thus we
suppose that Tnx1 ̸= Tn+1x1 for all n ∈ N. That is p(Tnx1, T

n+1x1) > 0.
Applying (2.1), for each n ∈ N, we have

θ(p(Tnx1, T
n+1x1)) = θ(p(T (Tn−1x1), T (T

nx1)))

≤ [θ(R(Tn−1x1, T
nx1))]

λ, (2.3)

where

R(Tn−1x1, T
nx1) = max

{
p(Tn−1x1, T

nx1), p(T
n−1x1, T (T

n−1x1)), p(T
nx1, T (T

nx1)),

p(Tn−1x1, T (T
n−1x1))p(T

nx1, T (T
nx1))

1 + p(Tn−1x1, Tnx1)

}
= max

{
p(Tn−1x1, T

nx1), p(T
n−1x1, T

nx1), p(T
nx1, T

n+1x1),

p(Tn−1x1, T
nx1)p(T

nx1, T
n+1x1)

1 + p(Tn−1x1, Tnx1)

}
= max{p(Tn−1x1, T

nx1), p(T
nx1, T

n+1x1)}.

If R(Tn−1x1, T
nx1) = p(Tnx1, T

n+1x1). By (2.3), we have

θ(p(Tnx1, T
n+1x1)) ≤ [θ(p(Tnx1, T

n+1x1))]
λ.

7
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This implies that

ln[θ(p(Tnx1, T
n+1x1))] ≤ λ ln[θ(p(Tnx1, T

n+1x1))],

which is a contradiction with λ ∈ (0, 1). This implies that R(Tn−1x1, T
nx1) =

p(Tn−1x1, T
nx1) for all n ∈ N. From (2.3), we obtain that

θ(p(Tnx1, T
n+1x1)) ≤ [θ(p(Tn−1x1, T

nx1))]
λ for all n ∈ N.

It follows that

1 ≤ θ(p(Tnx1, T
n+1x1)) ≤ · · · ≤ [θ(p(x1, Tx1))]

λn

for all n ∈ N. (2.4)

Taking the limit as n→ ∞ in the above inequality, we obtain that

lim
n→∞

θ(p(Tnx1, T
n+1x1)) = 1. (2.5)

By using condition (Θ2), we have

lim
n→∞

p(Tnx1, T
n+1x1) = 0. (2.6)

From condition (Θ3), there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that

lim
n→∞

θ(p(Tnx1, T
n+1x1))− 1

[p(Tnx1, Tn+1x1)]r
= ℓ.

Assume that ℓ < ∞. Let B = ℓ
2 > 0. It follows that there exists n0 ∈ N such

that ∣∣∣θ(p(Tnx1, T
n+1x1))− 1

[p(Tnx1, Tn+1x1)]r
− ℓ
∣∣∣ ≤ B for all n ≥ n0.

This implies that

θ(p(Tnx1, T
n+1x1))− 1

[p(Tnx1, Tn+1x1)]r
≥ ℓ−B = B for all n ≥ n0.

Thus we have

n[p(Tnx1, T
n+1x1)]

r ≤ An[θ(p(Tnx1, T
n+1x1))− 1] for all n ≥ n0,

where A = 1
B . Assume that ℓ = ∞. Let B > 0 be an arbitrary positive number.

It follows that there exists n0 ∈ N such that

θ(p(Tnx1, T
n+1x1))− 1

[p(Tnx1, Tn+1x1)]r
≥ B for all n ≥ n0.

This implies that

n[p(Tnx1, T
n+1x1)]

r ≤ An[θ(p(Tnx1, T
n+1x1))− 1] for all n ≥ n0,
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where A = 1
B . From the above two cases, there exist A > 0 and n0 ∈ N such

that

n[p(Tnx1, T
n+1x1)]

r ≤ An[θ(p(Tnx1, T
n+1x1))− 1] for all n ≥ n0.

Using (2.4), we have

n[p(Tnx1, T
n+1x1)]

r ≤ An([θ(p(x1, Tx1))]
λn

− 1) for all n ≥ n0. (2.7)

Taking the limit as n→ ∞ in the above inequality, we get that

lim
n→∞

n[p(Tnx1, T
n+1x1)]

r = 0.

This implies that there exists n1 ∈ N such that

p(Tnx1, T
n+1x1) ≤

1

n1/r
for all n ≥ n1. (2.8)

We now prove that T has a periodic point. Suppose that T does not have pe-
riodic points. Thus Tnx1 ̸= Tmx1 for all n,m ∈ N such that n ̸= m. Using
Lemma 1.22 and (2.1), we get that

θ(p(Tnx1, T
n+2x1)) = θ(p(T (Tn−1x1), T (T

n+1x1)))

≤ [θ(R(Tn−1x1, T
n+1x1))]

λ,

where

R(Tn−1x1, T
n+1x1) = max

{
p(Tn−1x1, T

n+1x1), p(T
n−1x1, T (T

n−1x1)), p(T
n+1x1, T (T

n+1x1)),

p(Tn−1x1, T (T
n−1x1))p(T

n+1x1, T (T
n+1x1))

1 + p(Tn−1x1, Tn+1x1)

}
= max

{
p(Tn−1x1, T

n+1x1), p(T
n−1x1, T

nx1), p(T
n+1x1, T

n+2x1),

p(Tn−1x1, T
nx1)p(T

n+1x1, T
n+2x1)

1 + p(Tn−1x1, Tn+1x1)

}
= max{p(Tn−1x1, T

n+1x1), p(T
n−1x1, T

nx1), p(T
n+1x1, T

n+2x1)}.

Thus we have

θ(p(Tnx1, T
n+2x1)) ≤ [θ(max{p(Tn−1x1, T

n+1x1), p(T
n−1x1, T

nx1), p(T
n+1x1, T

n+2x1)})]λ.

It follows that

θ(p(Tnx1, T
n+2x1)) ≤ [max{θ(p(Tn−1x1, T

n+1x1)), θ(p(T
n−1x1, T

nx1)), θ(p(T
n+1x1, T

n+2x1))}]λ.
(2.9)

Let I be the set of n ∈ N such that
un := max{θ(p(Tn−1x1, T

n+1x1)), θ(p(T
n−1x1, T

nx1)), θ(p(T
n+1x1, T

n+2x1))}
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= θ(p(Tn−1x1, T
n+1x1)).

If |I| <∞, then there exists N ∈ N such that, for every n ≥ N ,

max{θ(p(Tn−1x1, T
n+1x1)), θ(p(T

n−1x1, T
nx1)), θ(p(T

n+1x1, T
n+2x1))}

= max{θ(p(Tn−1x1, T
nx1)), θ(p(T

n+1x1, T
n+2x1))}.

For all n ≥ N, from (2.9), we obtain that

1 ≤ θ(p(Tnx1, T
n+2x1)) ≤ [max{θ(p(Tn−1x1, T

nx1)), θ(p(T
n+1x1, T

n+2x1))}]λ.

Taking the limit as n→ ∞ in the above inequality and using (2.5), we get that

lim
n→∞

θ(p(Tnx1, T
n+2x1)) = 1.

If |I| = ∞, then we can find a subsequence of {un}, denoted by {un}, such that
un = θ(p(Tn−1x1, T

n+1x1)) for large n. From (2.9), we have

1 ≤ θ(p(Tnx1, T
n+2x1)) ≤ [θ(p(Tn−1x1, T

n+1x1))]
λ ≤ [θ(p(Tn−2x1, T

nx1))]
λ2

≤ · · · ≤ [θ(p(x1, T
2x1))]

λn

,

for large n. Taking the limit as n→ ∞ in the above inequality, we obtain that

lim
n→∞

θ(p(Tnx1, T
n+2x1)) = 1. (2.10)

Then in all cases, we obtain that (2.10) holds. By using (2.10) and (Θ2), we get
that

lim
n→∞

p(Tnx1, T
n+2x1) = 0.

As an analogous proof as above, from (Θ3), there exists n2 ∈ N such that

p(Tnx1, T
n+2x1) ≤

1

n1/r
for all n ≥ n2. (2.11)

Let M = max{n1, n2}. We consider the following two cases.
Case 1: If m > 2 is odd, then m = 2L+ 1 for some L ≥ 1. Using (2.8), for

all n ≥M , we get that

p(Tnx1, T
n+mx1) ≤ p(Tnx1, T

n+1x1) + p(Tn+1x1, T
n+2x1) + p(Tn+2x1, T

n+2L+1x1)−
p(Tn+1x1, T

n+1x1)− p(Tn+2x1, T
n+2x1)

≤ p(Tnx1, T
n+1x1) + p(Tn+1x1, T

n+2x1) + p(Tn+2x1, T
n+2L+1x1)

≤ p(Tnx1, T
n+1x1) + p(Tn+1x1, T

n+2x1) + p(Tn+2x1, T
n+3x1)+

p(Tn+3x1, T
n+4x1) + p(Tn+4x1, T

n+2L+1x1)

...

≤ p(Tnx1, T
n+1x1) + p(Tn+1x1, T

n+2x1) + · · ·+ p(Tn+2Lx1, T
n+2L+1x1)

≤ 1

n1/r
+

1

(n+ 1)1/r
+ · · ·+ 1

(n+ 2L)1/r
(2.12)

≤
∞∑
i=n

1

i1/r
.
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Case 2: If m > 2 is even, then m = 2L for some L ≥ 2. Using (2.8) and
(2.11), for all n ≥M , we get that

p(Tnx1, T
n+mx1) ≤ p(Tnx1, T

n+2x1) + p(Tn+2x1, T
n+3x1) + p(Tn+3x1, T

n+2Lx1)−
p(Tn+2x1, T

n+2x1)− p(Tn+3x1, T
n+3x1)

≤ p(Tnx1, T
n+2x1) + p(Tn+2x1, T

n+3x1) + p(Tn+3x1, T
n+2Lx1)

≤ p(Tnx1, T
n+2x1) + p(Tn+2x1, T

n+3x1) + p(Tn+3x1, T
n+4x1)+

p(Tn+4x1, T
n+5x1) + p(Tn+5x1, T

2Lx1)

...

≤ p(Tnx1, T
n+2x1) + p(Tn+2x1, T

n+3x1) + · · ·+ p(Tn+2L−1x1, T
n+2Lx1)

≤ 1

n1/r
+

1

(n+ 2)1/r
+ · · ·+ 1

(n+ 2L− 1)1/r
(2.13)

≤
∞∑
i=n

1

i1/r
.

From Case 1 and Case 2, we have

p(Tnx1, T
n+mx1) ≤

1

n1/r
+

1

(n+ 1)1/r
+ · · ·+ 1

(n+ 2L)1/r
for all n ≥M.

(2.14)
Since the series

∑∞
i=n

1
i1/r

is convergent (since 1
r > 1) and (2.14), we have

lim
n,m→∞

p(Tnx1, T
n+mx1) = 0.

This implies that {Tnx1} is a Cauchy sequence in (X, p). By Lemma 1.9,
we have {Tnx1} is a Cauchy sequence in (X, dp). Since (X, p) is complete,
then (X, dp) is complete. This implies that there exists z ∈ X such that
lim
n→∞

dp(T
nx1, z) = 0. Using Lemma 1.8, we have

lim
n→∞

p(Tnx1, z) = lim
n→∞

p(Tnx1, T
nx1) = p(z, z).

By applying Proposition 1.6, we obtain that

2p(Tnx1, z) = dp(T
nx1, z) + p(Tnx1, T

nx1) + p(z, z)

≤ dp(T
nx1, z) + p(Tnx1, T

n+1x1) + p(Tnx1, z).

Therefore p(Tnx1, z) ≤ dp(T
nx1, z)+p(T

nx1, T
n+1x1) for all n ∈ N. Taking the

limit as n→ ∞, we obtain that p(z, z) = lim
n→∞

p(Tnx1, z) = 0. We now suppose

that p(z, Tz) > 0. By condition (4), there exists a subsequence {Tn(k)x1} of
{Tnx1} such that α(Tn(k)x1, z) ≥ η(Tn(k)x1, z) for all k ∈ N. Since Tnx1 ̸=
Tmx1 for all n,m ∈ N with m ̸= n, without loss of generality, we can assume
that Tn(k)+1x1 ̸= Tz. And applying the condition (2.1), we obtain that

θ(p(Tn(k)+1x1, T z)) = θ(p(T (Tn(k)x1), T z))

≤ [θ(R(Tn(k)x1, z))]
λ,
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where

R(Tn(k)x1, z) = max
{
p(Tn(k)x1, z), p(T

n(k)x1, T (T
n(k)x1)), p(z, Tz),

p(Tn(k)x1, T (T
n(k)x1))p(z, Tz)

1 + p(Tn(k)x1, z)

}
= max

{
p(Tn(k)x1, z), p(T

n(k)x1, T
n(k)+1x1), p(z, Tz),

p(Tn(k)x1, T
n(k)+1x1)p(z, Tz)

1 + p(Tn(k)x1, z)

}
.

Thus we have

θ(p(Tn(k)+1x1, T z)) ≤
[
θ
(
max

{
p(Tn(k)x1, z), p(T

n(k)x1, T
n(k)+1x1), p(z, Tz),

p(Tn(k)x1, T
n(k)+1x1)p(z, Tz)

1 + p(Tn(k)x1, z)

})]λ
. (2.15)

Taking the limit as k → ∞ in (2.15), using the continuity of θ and Lemma 2.1,
we obtain that

θ(p(z, Tz)) ≤ [θ(p(z, Tz))]λ < θ(p(z, Tz)),

which is a contradiction. Thus we obtain that p(z, Tz) = 0. By Remark 1.3,
we have Tz = z, which contradicts to the assumption that T does not have a
periodic point. Thus T has a periodic point, say z of period q. Suppose that
the set of fixed points of T is empty. Then we have q > 1 and p(z, Tz) > 0. By
using (2.1) and condition (6), we get that

θ(p(z, Tz)) = θ(p(T qz, T q+1z)) ≤ [θ(p(z, Tz))]λ
q

< θ(p(z, Tz)),

which is a contradiction. This implies that the set of fixed points of T is non-
empty. Hence T has at least one fixed point.

Example 2.3 Let X = {0, 1, 2, 3, 4, 5} and define p : X × X → [0,+∞) such
that

p(x, y) =


x if x = y;
2x+y

2 if x, y ∈ {0, 1, 2}, x ̸= y;
2+x+2y

2 otherwise.

Then (X, p) is a complete partial rectangular metric space. Since, for all x ∈ X
and x > 0, then we have p(x, x) = x > 0. Therefore (X, p) is not a rectangular
metric space. Define a mapping T : X → X by

T0 = T1 = T4 = 0, T2 = T3 = 2, and T5 = 4.

We can see that 0 and 2 are periodic points of T . Let α, η : X ×X → [0,+∞)
be functions defined by

α(x, y) =

{
1 if x, y ∈ {0, 1, 2, 3};
0 otherwise.

12
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η(x, y) =

{
1
2 if x, y ∈ {0, 1, 2, 3};
1 otherwise.

Also define θ : (0,∞) → (1,∞) by θ(t) = e
√
t. We next illustrate that all

conditions in Theorem 2.1 hold. Taking x1 = 1, we have α(1, T1) = α(1, 0) =
1 ≥ 1

2 = η(1, 0) = η(1, T1). Next, we prove that T is α-orbital admissible
with respect to η. Let α(x, Tx) ≥ η(x, Tx). Thus x, Tx ∈ {0, 1, 2, 3}. By
the definitions of a, η, we obtain that α(Tx, T 2x) ≥ η(Tx, T 2x) for all x ∈
{0, 1, 2, 3}. It follows that T is α-orbital admissible with respect to η. Let
α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty). By definitions of α, η, we have
x, y, Ty ∈ {0, 1, 2, 3}. This yields α(x, Ty) ≥ η(x, Ty) for all x, y ∈ {0, 1, 2, 3}.
This implies that T is triangular α-orbital admissible with respect to η. Let
x, y ∈ X be such that p(Tx, Ty) > 0. We could observe that if x, y ∈ {0, 1, 4},
then Tx = Ty = 0. This implies that p(Tx, Ty) = 0. So we consider the
following cases:

• x ∈ {0, 1, 4} and y ∈ {2, 3} or

• x ∈ {0, 1, 4} and y = 5 or

• x = {2, 3} and y = 5.

If x = 4 and y ∈ {2, 3} or x ∈ {0, 1, 4} and y = 5 or x = {2, 3} and y = 5, then
we have α(x, y) � η(x, y). We divide the proof into four cases as follows:
(1) If (x, y) ∈ {(0, 2), (2, 0)}, then

R(0, 2) = max
{
p(0, 2), p(0, 0), p(2, 2),

p(0, 0)p(2, 2)

1 + p(0, 2)

}
= max

{
1, 0, 2, 0

}
= 2.

This implies that

ψ(p(T0, T2)) = ψ(p(0, 2)) = ψ(1) = e
√
1 ≤ [e

√
2]0.71 = [ψ(2)]0.71 ≤ [ψ(R(0, 2))]0.71.

(2) If (x, y) ∈ {(1, 2), (2, 1)}, then

R(1, 2) = max
{
p(1, 2), p(1, 0), p(2, 2),

p(1, 0)p(2, 2)

1 + p(1, 2)

}
= max

{
2, 1, 2,

2

3

}
= 2.

This implies that

ψ(p(T1, T2)) = ψ(p(0, 2)) = ψ(1) = e
√
1 ≤ [e

√
2]0.71 = [ψ(2)]0.71 ≤ [ψ(R(1, 2))]0.71.

(3) If (x, y) ∈ {(0, 3), (3, 0)}, then

R(0, 3) = max
{
p(0, 3), p(0, 0), p(3, 2),

p(0, 0)p(3, 2)

1 + p(0, 3)

}
= max

{
4, 0,

9

2
, 0
}
=

9

2
.

This implies that

ψ(p(T0, T3)) = ψ(p(0, 2)) = ψ(1) = e
√
1 ≤ [e

√
9
2 ]0.5 = [ψ(

9

2
)]0.5 ≤ [ψ(R(0, 3))]0.5.
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(4) If (x, y) ∈ {(1, 3), (3, 1)}, then

R(1, 3) = max
{
p(1, 3), p(1, 0), p(3, 2),

p(1, 0)p(3, 2)

1 + p(1, 3)

}
= max

{9
2
, 1,

9

2
,
9

11

}
=

9

2
.

This implies that

ψ(p(T1, T3)) = ψ(p(0, 2)) = ψ(1) = e
√
1 ≤ [e

√
9
2 ]0.5 = [ψ(

9

2
)]0.5 ≤ [ψ(R(1, 3))]0.5.

It follows that ψ(p(Tx, Ty)) ≤ [ψ(R(x, y))]λ. Hence all assumptions in Theorem
2.1 are satisfied and thus T has a fixed point which are x = 0 and x = 2.

We now prove the existence of the fixed point theorem by replacing triangular
mappings and condition (4) in Theorem 2.2 by α-orbital attractive mappings.

Theorem 2.4 Let (X, p) be a complete partial rectangular metric space, T :
X → X be a mapping and let α, η : X ×X → [0,∞) be functions. Suppose that
the following conditions hold :
(1) there exist θ ∈ Θ and λ ∈ (0, 1) such that for all x, y ∈ X,

p(Tx, Ty) > 0 and α(x, y) ≥ η(x, y) imply θ(p(Tx, Ty)) ≤ [θ(R(x, y))]λ,
(2.16)

where

R(x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Tx)p(y, Ty)

1 + p(x, y)

}
;

(2) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1) and α(x1, T
2x1) ≥

η(x1, T
2x1);

(3) T is an α-orbital admissible mapping with respect to η;
(4) T is an α-orbital attractive mapping with respect to η;
(5) θ is continuous;
(6) if z is a periodic point of T , then α(z, Tz) ≥ η(z, Tz).
Then T has a fixed point.

Proof. By (2), there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1) and
α(x1, T

2x1) ≥ η(x1, T
2x1). Define the iterative sequence {xn} in X such that

xn = Txn−1 = Tnx1 for all n ∈ N. Since T is an α-orbital admissible mapping
with respect to η, we obtain that

α(x1, Tx1) ≥ η(x1, Tx1) implies α(Tx1, T
2x1) ≥ η(Tx1, T

2x1)
and

α(x1, T
2x1) ≥ η(x1, T

2x1) implies α(Tx1, T
3x1) ≥ η(Tx1, T

3x1).
By continuing this process, we get that

α(Tnx1, T
n+1x1) ≥ η(Tnx1, T

n+1x1) for all n ∈ N (2.17)

and
α(Tnx1, T

n+2x1) ≥ η(Tnx1, T
n+2x1) for all n ∈ N. (2.18)

14
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If Tnx1 = Tn+1x1 for some n ∈ N, then Tnx1 is a fixed point of T . Thus we
suppose that Tnx1 ̸= Tn+1x1 for all n ∈ N. That is p(Tnx1, T

n+1x1) > 0.
Applying (2.16) and (2.17), for each n ∈ N, we obtain that

θ(p(Tnx1, T
n+1x1)) = θ(p(T (Tn−1x1), T (T

nx1)))

≤ [θ(R(Tn−1x1, T
nx1))]

λ, (2.19)

where

R(Tn−1x1, T
nx1) = max

{
p(Tn−1x1, T

nx1), p(T
n−1x1, T

nx1), p(T
nx1, T

n+1x1),

p(Tn−1x1, T
nx1)p(T

nx1, T
n+1x1)

1 + p(Tn−1x1, Tnx1)

}
= max{p(Tn−1x1, T

nx1), p(T
nx1, T

n+1x1)}.

If R(Tn−1x1, T
nx1) = p(Tnx1, T

n+1x1). By using (2.19), we get that

θ(p(Tnx1, T
n+1x1)) ≤ [θ(p(Tnx1, T

n+1x1))]
λ.

This implies that

ln[θ(p(Tnx1, T
n+1x1))] ≤ λ ln[θ(p(Tnx1, T

n+1x1))],

which is a contradiction with λ ∈ (0, 1). It follows that R(Tn−1x1, T
nx1) =

p(Tn−1x1, T
nx1) for all n ∈ N. From (2.19), we obtain that

θ(p(Tnx1, T
n+1x1)) ≤ [θ(p(Tn−1x1, T

nx1))]
λ for all n ∈ N.

It follows that

1 ≤ θ(p(Tnx1, T
n+1x1)) ≤ · · · ≤ [θ(p(x1, Tx1))]

λn

for all n ∈ N. (2.20)

Taking the limit as n→ ∞, we obtain that

lim
n→∞

θ(p(Tnx1, T
n+1x1)) = 1. (2.21)

By using condition (Θ2), we have

lim
n→∞

p(Tnx1, T
n+1x1) = 0.

As in the proof of Theorem 2.2, we can prove that there exists n1 ∈ N such that

p(Tnx1, T
n+1x1) ≤

1

n1/r
for all n ≥ n1. (2.22)

We now prove that T has a periodic point. Suppose that T does not have
periodic points. Thus Tnx1 ̸= Tmx1 for all n,m ∈ N such that n ̸= m. Using
(2.16) and (2.18), we get that

θ(p(Tnx1, T
n+2x1)) = θ(p(T (Tn−1x1), T (T

n+1x1)))

≤ [θ(R(Tn−1x1, T
n+1x1))]

λ,

15
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where

R(Tn−1x1, T
n+1x1) = max

{
p(Tn−1x1, T

n+1x1), p(T
n−1x1, T

nx1), p(T
n+1x1, T

n+2x1),

p(Tn−1x1, T
nx1)p(T

n+1x1, T
n+2x1)

1 + p(Tn−1x1, Tn+1x1)

}
= max{p(Tn−1x1, T

n+1x1), p(T
n−1x1, T

nx1), p(T
n+1x1, T

n+2x1)}.

By the analogous proof in Theorem 2.2, we have

lim
n→∞

p(Tnx1, T
n+2x1) = 0

and there exists n2 ∈ N such that

p(Tnx1, T
n+2x1) ≤

1

n1/r
for all n ≥ n2. (2.23)

Let h = max{n1, n2}. We consider the following two cases.
Case 1: If m > 2 is odd, then m = 2L+1 for some L ≥ 1. By using (2.22),

for all n ≥ h, we obtain that

p(Tnx1, T
n+mx1) ≤ p(Tnx1, T

n+1x1) + p(Tn+1x1, T
n+2x1) + p(Tn+2x1, T

n+2L+1x1)−
p(Tn+1x1, T

n+1x1)− p(Tn+2x1, T
n+2x1)

...

≤ p(Tnx1, T
n+1x1) + p(Tn+1x1, T

n+2x1) + · · ·+ p(Tn+2Lx1, T
n+2L+1x1)

≤ 1

n1/r
+

1

(n+ 1)1/r
+ · · ·+ 1

(n+ 2L)1/r

≤
∞∑
i=n

1

i1/r
.

Case 2: If m > 2 is even, then m = 2L for some L ≥ 2. By using (2.22)
and (2.23), for all n ≥ h, we get that

p(Tnx1, T
n+mx1) ≤ p(Tnx1, T

n+2x1) + p(Tn+2x1, T
n+3x1) + p(Tn+3x1, T

n+2Lx1)−
p(Tn+2x1, T

n+2x1)− p(Tn+3x1, T
n+3x1)

...

≤ p(Tnx1, T
n+2x1) + p(Tn+2x1, T

n+3x1) + · · ·+ p(Tn+2L−1x1, T
n+2Lx1)

≤ 1

n1/r
+

1

(n+ 2)1/r
+ · · ·+ 1

(n+ 2L)1/r

≤
∞∑
i=n

1

i1/r
.

16
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From Case 1 and Case 2, we obtain that

p(Tnx1, T
n+mx1) ≤

1

n1/r
+

1

(n+ 1)1/r
+ · · ·+ 1

(n+ 2L)1/r
for all n ≥ h.

(2.24)
Since the series

∑∞
i=n

1
i1/r

is convergent (since 1
r > 1) and (2.24), we have

lim
n,m→∞

p(Tnx1, T
n+mx1) = 0.

This implies that {Tnx1} is a Cauchy sequence in (X, p). By Lemma 1.9,
we have {Tnx1} is a Cauchy sequence in (X, dp). Since (X, p) is complete,
then (X, dp) is complete. This implies that there exists z ∈ X such that
lim
n→∞

dp(T
nx1, z) = 0. Using Lemma 1.8, we have

lim
n→∞

p(Tnx1, z) = lim
n→∞

p(Tnx1, T
nx1) = p(z, z).

By applying Proposition 1.6, we obtain that

2p(Tnx1, z) = dp(T
nx1, z) + p(Tnx1, T

nx1) + p(z, z)

≤ dp(T
nx1, z) + p(Tnx1, T

n+1x1) + p(Tnx1, z).

Therefore p(Tnx1, z) ≤ dp(T
nx1, z)+p(T

nx1, T
n+1x1) for all n ∈ N. Taking the

limit as n → ∞, we obtain that p(z, z) = lim
n→∞

p(Tnx1, z) = 0. We now prove

that z = Tz. Suppose that z ̸= Tz. Since T is α-orbital attractive with respect
to η, we obtain that for all n ∈ N,

α(Tnx1, z) ≥ η(Tnx1, z) or α(z, T
n+1x1) ≥ η(z, Tn+1x1).

We divide the proof in two cases as follows.
(1) There exists an infinite subset J of N such that α(Tn(k)x1, z) ≥ η(Tn(k)x1, z)
for every k ∈ J .
(2) There exists an infinite subset L of N such that α(z, Tn(k)+1x1) ≥ η(z, Tn(k)+1x1)
for every k ∈ L.
For the case (1), since Tnx1 ̸= Tmx1 for all n,m ∈ N with n ̸= m, without loss
of the generality, we can assume that Tn(k)+1x1 ̸= z for all k ∈ J . Applying the
condition (2.16), we get that

θ(p(Tn(k)+1x1, T z)) = θ(p(T (Tn(k)x1), T z))

≤ [θ(R(Tn(k)x1, z))]
λ,

where

R(Tn(k)x1, z) = max
{
p(Tn(k)x1, z), p(T

n(k)x1, T (T
n(k)x1)), p(z, Tz),

p(Tn(k)x1, T (T
n(k)x1))p(z, Tz)

1 + p(Tn(k)x1, z)

}
= max

{
p(Tn(k)x1, z), p(T

n(k)x1, T
n(k)+1x1), p(z, Tz),

p(Tn(k)x1, T
n(k)+1x1)p(z, Tz)

1 + p(Tn(k)x1, z)

}
.

17
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Then we have

θ(p(Tn(k)+1x1, T z)) ≤
[
θ
(
max

{
p(Tn(k)x1, z), p(T

n(k)x1, T
n(k)+1x1), p(z, Tz),

p(Tn(k)x1, T
n(k)+1x1)p(z, Tz)

1 + p(Tn(k)x1, z)

})]λ
.

Taking the limit as k → ∞ in the above equality, using the continuity of θ and
Lemma 2.1, we obtain that

θ(p(z, Tz)) ≤ [θ(p(z, Tz))]λ < θ(p(z, Tz)),

which is a contradiction. For the case (2), the proof is similar. Therefore z = Tz,
which is a contradiction with the assumption that T does not have a periodic
point. Thus T has a periodic point, say z of period q. Suppose that the set of
fixed points of T is empty, Then we have q > 1 and p(z, Tz) > 0. Applying
(2.16) and condition (6), we get that

θ(p(z, Tz)) = θ(p(T qz, T q+1z)) ≤ [θ(p(z, Tz))]λ < θ(p(z, Tz)),

which is a contradiction. Thus the set of fixed points of T is non-empty. Hence
T has at least one fixed point.

Since a rectangular metric space is a partial rectangular metric space, we
immediately obtain Theorem 17 and Theorem 19 in [1] by applying Theorem
2.2 and Theorem 2.4, respectively.
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On stability problems of a functional equation deriving from a
quintic function

D. Kang and H. Koh∗

Abstract. In this paper, we obtain a solution of new type quintic functional equations and prove the
Hyers-Ulam-Rassias stability for a quintic functional equation by the directed method and a subaddtive
function approach and also, present a counterexample. Finally, we investigate the Hyers-Ulam-Rassias
stability for a quintic functional equation with an involution by the fixed point method.

1. Introduction and preliminaries

The concept of stability problem of a functional equation was first posed by Ulam [18] concerning

the stability of group homomorphisms. In 1941, Hyers [6] solved the problem of Ulam. This result

was generalized by Aoki [1] for additive mappings and by Rassias [13] for linear mappings by con-

sidering an unbounded Cauchy difference. The paper of Rassias [13] has provided a lot of influence

in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. Since

then, several stability problems for various functional equations have been investigated by numerous

mathematicians; c.f e.g. [5], [20], [14], [2], [21] and [11].

In [4], Cho and et al. introduced the following quintic functional equation

2f(2x+ y) + 2f(2x− y) + f(x+ 2y) + f(x− 2y) = 20{f(x+ y) + f(x− y)}+ 90f(x) . (1.1)

Since f(x) = x5 is a solution of the equation (1.1), the equation (1.1) is called a quintic functional

equation.

Stetkær [17] introduced the following quadratic functional equation with an involution

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(σ(y))

and solved the general solution, Belaid and et al. [3] established generalized Hyers-Ulam stability in

Banach space for this functional equation.

In this paper we consider the following another type quintic functional equation

f(5x+ y) + f(5x− y) + 3[f(x+ y) + f(x− y)] = 2[f(4x+ y) + f(4x− y)] + 2f(5x)− 4090f(x) (1.2)

for all x, y ∈ X . Here our purpose is to find out a solution and to prove the generalized Hyers-Ulam-

Rassias stability problem and give a counterexample for the equation (1.2). Also, we introduce a

quintic functional equation with an involution σ as follows;

f(3x+y)+f(3x+σ(y))+5[f(x+y)+f(x+σ(y))] = 4[f(2x+y)+f(2x+σ(y))]+2f(3x)−246f(x) (1.3)

for all x, y ∈ X . We will investigate the generalized Hyers-Ulam-Rassias stability for this functional

equation by using a fixed point method.

02010 Mathematics Subject Classification: 39B52
0Keywords and phrases: Hyers-Ulam-Rassias stability; functional equation; quintic mapping; sub-

additive function; involution
0∗Corresponding author: khjmath@dankook.ac.kr (H. Koh)
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2 Quintic Mapping

2. Solutions of Equations (1.2) and (1.3)

In this section let X and Y be vector spaces and we will obtain the result that the functional

equations (1.2) and (1.3) are solutions of a quintic functional equation by using 5-additive symmetric

mapping. Before we proceed, we will introduce some basic concepts concerning 5-additive symmetric

mappings. A mapping A5 : X 5 → Y is called 5-additive if it is additive in each variable. A mapping A5

is said to be symmetric if A5(x1, x2, x3, x4, x5) = A5(xσ(1), xσ(2), xσ(3), xσ(4), xσ(5)) for every permu-

tation {σ(1), σ(2), σ(3), σ(4), σ(5)} of {1, 2, 3, 4, 5} . If A5(x1 , x2 , x3 , x4 , x5) is a 5-additive symmetric

mapping, then A5(x) will denote the diagonal A5(x , x , x , x , x) and A5(qx) = q5A5(x) for all x ∈ X
and all q ∈ Q . A mapping A5(x) is called a monomial function of degree 5 (assuming A5 6≡ 0). On

taking x1 = x2 = · · · = xs = x and xs+1 = xs+2 = · · · = x5 = y in A5(x1 , x2 , x3 , x4 , x5) , it is denoted

by As,5−s(x , y) . We note that the generalized concepts of n-additive symmetric mappings are found

in [16] and [19].

Theorem 2.1. A function f : X → Y is a solution of the functional equation (1.2) if and only if f is

of the form f(x) = A5(x) for all x ∈ X , where A5(x) is the diagonal of the 5-additive symmetric map

A5 : X 5 → Y .

Proof. Suppose f satisfies the functional equation (1.2). Letting x = 0 and replacing y by x in the

equation (1.2), we have f(x) = −f(−x) , for all x ∈ X . Hence f is an odd mapping and also we have

f(0) = 0 . Putting y = 0 in the equation (1.2), we get f(4x) = 45f(x) , for all x ∈ X . Hence we have

f(4nx) = 45nf(x) , (2.1)

for all x ∈ X and n ∈ N . Note that f(x) = 1
45n f(4nx) , for all x ∈ X and n ∈ N .

On the other hand, we can rewrite the functional equation (1.2) in the following form

f(x) +
1

4090
f(5x+ y) +

1

4090
f(5x− y)− 1

2045
f(4x+ y)− 1

2045
f(4x− y)

+
3

4090
f(x+ y) +

3

4090
f(x− y)− 1

2045
f(5x) = 0 ,

for all x ∈ X . By [19, Theorem 3.5 and Theorem 3.6] f is a general polynomial function of degree at

most 6, that is, f is of the following form

f(x) = A5(x) +A4(x) +A3(x) +A2(x) +A1(x) +A0(x)

for all x ∈ X . Note that A0(x) = A0 is an arbitrary element of Y and Ai(x) is the diagonal of the

i-additive symmetric map Ai : X i → Y for i = 1, 2, 3, 4, 5 . Since f(0) = 0 and f is odd, we have

A0(x) = A0 = 0 and A4(x) = A2(x) = 0 . It follows that f(x) = A5(x) +A3(x) +A1(x) , for all x ∈ X .
By (2.1) and An(rx) = rnAn(x) whenever x ∈ X and r ∈ Q , we obtain

45A5(x) + 43A3(x) + 4A1(x) = f(4x) = 45f(x) = 45A5(x) + 45A3(x) + 45A1(x) ,

for all x ∈ X . Then A1(x) = − 16
17A

3(x) , for all x ∈ X . Hence A3(x) = A1(x) = 0 , for all x ∈ X .
Thus f(x) = A5(x) . Conversely, suppose f(x) = A5(x) for all x ∈ X , where A5(x) is the diagonal of

the 5-additive symmetric map A5 : X5 → Y . We note that

A5(ax+ by) = a5A5(x) + b5A5(y) + 5a4bA4,1(x, y) + 10a3b2A3,2(x, y)

+ 10a2b3A2,3(x, y) + 5ab4A1,4(x, y) ,

for all x , y ∈ X and a , b ∈ Q . The remains of the proof can be easily checked. �
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Theorem 2.2. Let σ(x) = −x , for all x ∈ X . A function f : X → Y is a solution of the functional

equation (1.3) if and only if f is of the form f(x) = A5(x) for all x ∈ X , where A5(x) is the diagonal

of the 5-additive symmetric map A5 : X 5 → Y .

Proof. Suppose f satisfies the functional equation (1.3). Letting x = y = 0 in the equation (1.3), we

have f(0) = 0 . Putting y = 0 in the equation (1.3), we get f(2x) = 25f(x) , for all x ∈ X . The remains

are similar to the proof of Theorem 2.1. �

3. Hyers-Ulam-Rassias stability of (1.2) in Banach spaces

In this section, we investigate the generalized Hyers-Ulam-Rassias stability problem for the func-

tional equation (1.2). Throughout this section, we assume that X is a normed real linear space with

norm ‖ · ‖X and Y is a real Banach space with norm ‖ · ‖Y .

We use the abbreviation for the given mapping f : X → Y as follows:

Df(x, y) := f(5x+y)+f(5x−y)+3[f(x+y)+f(x−y)]−2[f(4x+y)+f(4x−y)]−2f(5x)+4090f(x)

for all x, y ∈ X .

Theorem 3.1. Suppose that there exists a mapping φ : X 2 → R+ := [0,∞) for which a mapping

f : X → Y satisfies f(0) = 0 ,

||Df(x, y)||Y ≤ φ(x, y) (3.1)

and the series
∑∞
j=0

1
45j φ(4jx, 4jy) converges for all x, y ∈ X . Then there exists a unique quintic

mapping Q : X → Y which satisfies the equation (1.2) and the inequality

||f(x)−Q(x)||Y ≤
1

46

∞∑
j=0

1

45j
φ(4jx, 0) , (3.2)

for all x ∈ X .

Proof. By letting y = 0 in the inequality (3.1), we have

||Df(x, 0)||Y = 46||f(x)− 1

45
f(4x)||Y ≤ φ(x, 0) ,

that is,

||f(x)− 1

45
f(4x)||Y ≤

1

46
φ(x, 0) , (3.3)

for all x ∈ X . For any positive integer k replacing x by 4kx and multiplying 1
45k

in the inequality (3.3) ,

|| 1

45k
f(4kx)− 1

45(k+1)
f(4k+1x)||Y ≤

1

46
1

45k
φ(4kx, 0) , (3.4)

for all x ∈ X . For any positive integers n and m with n > m ,

|| 1

45m
f(4mx)− 1

45n
f(4nx)||Y ≤

1

46

n−1∑
j=m

1

45j
φ(4jx, 0) , (3.5)

for all x ∈ X . As n→∞ , the right-hand side in the inequality (3.5) close to 0. Hence { 1
45n f(4nx)} is

a Cauchy sequence in the Banach space Y . Thus we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

1

45n
f(4nx) ,

for all x ∈ X .
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4 Quintic Mapping

By letting m = 0 in the inequality (3.5), we have

||f(x)− 1

45n
f(4nx)||Y ≤

1

46

n−1∑
j=0

1

45j
φ(4jx, 0) , (3.6)

for all x ∈ X , n ∈ N . As n→∞ in the inequality (3.6),

||f(x)−Q(x)||Y ≤
1

46

∞∑
j=0

1

45j
φ(4jx, 0) , (3.7)

for all x ∈ X . It satisfies the inequality (3.2). Now, replacing x and y by 4nx and 4ny respectively

and dividing by 45n in the inequality (3.1) , we have

||DQ(x, y)||Y =
1

45n
||Df(4nx, 4ny)||Y ≤

1

45n
φ(4nx, 4ny) ,

for all x, y ∈ X . By taking n→∞ , the definition of Q implies that Q satisfies (1.2) for all x, y ∈ X ,
that is, Q is the quintic mapping. Next, it remains to show the uniqueness. Assume that there

exists T : X → Y satisfying (1.2) and (3.2). The Theorem 2.1 implies that T (4nx) = 45nT (x) and

Q(4nx) = 45nQ(x) , for all x ∈ X . Then

||T (x)−Q(x)||Y =
1

45n
||T (4nx)−Q(4nx)||Y

≤ 1

45n

(
||T (4nx)− f(4nx)||Y + ||f(4nx)−Q(4nx)||Y

)
≤ 2

46

∞∑
j=0

1

45(n+j)
φ(4n+jx, 0) ,

for all x ∈ X . By letting n→∞ , we immediately have the uniqueness of Q . �

Corollary 3.2. Let θ , r be positive real numbers with r < 5 and let f : X → Y be a mapping with

f(0) = 0 such that

||Df(x, y)||Y ≤ θ(||x||rY + ||y||rY) (3.8)

for all x, y ∈ X . Then there exists a unique quintic mapping Q : X → Y satisfying

||f(x)−Q(x)||Y ≤
θ||x||rY

4(45 − 4r)

for all x ∈ X .

Proof. On taking φ(x, y) = θ(||x||rY + ||y||rY) for all x, y ∈ X , it is easy to show that the inequality

(3.8) holds. Similar to the proof of Theorem 3.1, we have

||f(x)−Q(x)||Y ≤ 1

46

∞∑
j=0

1

45j
φ(4jx, 0)

=
θ

46

∞∑
j=0

4r

45j
||x||rY

=
θ ||x||rY

4

1

45 − 4r

for all x ∈ X and r < 5 . �

Now, we will investigate the stability of the given quintic functional equation (1.2) using the subad-

ditive function method under the condition that the space Y is a p-Banach space. Before proceeding the

proof, we will state the the basic definition of subadditive function. It follows from the reference [12].
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A function φ : A → B having a domain A and a codomain (B,≤) that are both closed under

addition is called

(1) a subadditive function if φ(x+ y) ≤ φ(x) + φ(y) , for all x, y ∈ A .
(2) a contractively subadditive function if there exists a constant L with 0 < L < 1 such that

φ(x+ y) ≤ L(φ(x) + φ(y)) , for all x, y ∈ A .
We note that φ satisfies the following properties φ(2x) ≤ 2Lφ(x) and so φ(2nx) ≤ (2L)nφ(x) .

It follows by the contractively subadditive condition of φ that

φ(λx) ≤ λLφ(x) , and so φ(λjx) ≤ (λL)jφ(x), i ∈ N ,

for all x ∈ A and all positive integer λ ≥ 2 .

(3) a expansively superadditive function if there exists a constant L with 0 < L < 1 such that

φ(x+ y) ≥ 1
L (φ(x) + φ(y)) , for all x, y ∈ A .

We note that φ satisfies the following properties φ(x) ≤ L
2 φ(2x) and so φ( x2n ) ≤ L

2nφ(x) . We

observe that an expansively superadditive mapping φ satisfies the following properties

φ(λx) ≥ λ

L
φ(x) and so φ(

x

λj
) ≤ (

L

λ
)jφ(x), j ∈ N,

for all x ∈ A and all positive integer λ ≥ 2 .

Theorem 3.3. Suppose that there exists a mapping φ : X 2 → R+ := [0,∞) for which a mapping

f : X → Y satisfies f(0) = 0 and

||Df(x, y)||Y ≤ φ(x, y) (3.9)

for all x, y ∈ X and the map φ is contractively subadditive with a constant L such that 4L
45 < 1 . Then

there exists a unique quintic mapping Q : X → Y which satisfies the equation (1.2) and the inequality

||f(x)−Q(x)||Y ≤
φ(x, 0)

4 p
√

45p − (4L)p
, (3.10)

for all x ∈ X .

Proof. By the inequalities (3.3) and (3.5) of the proof of Theorem 3.1, we have

|| 1

45m
f(4mx)− 1

45n
f(4nx)||pY

≤ 1

46p

n−1∑
j=m

1

45jp
||f(4jx)− 1

45
f(4j+1x)||pY

≤ 1

46p

n−1∑
j=m

1

45jp
φ(4jx, 0)p

≤ 1

46p

n−1∑
j=m

1

45jp
(4L)jpφ(x, 0)p

=
φ(x, 0)p

46p

n−1∑
j=m

(4L

45

)jp
,

that is,

|| 1

45m
f(4mx)− 1

45n
f(4nx)||pY ≤

φ(x, 0)p

46p

n−1∑
j=m

(4L

45

)jp
, (3.11)
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6 Quintic Mapping

for all x ∈ X , and for all m and n with m < n . Hence { 1
45n f(4nx)} is a Cauchy sequence in the space

Y . Thus we may define

Q(x) = lim
n→∞

1

45n
f(4nx) ,

for all x ∈ X . Now, we will show that the map Q : X → Y is a generalized quintic mapping. Then

||DQ(x, y)||pY = lim
n→∞

||Df(4nx, 4ny)||pY
45pn

≤ lim
n→∞

φ(4nx, 4ny)p

45pn

≤ lim
n→∞

φ(x, y)p(
4L

45
)pn = 0 ,

for all x ∈ X . Hence the mapping Q is a quintic mapping. Note that the inequality (3.11) implies the

inequality (3.10) by letting m = 0 and taking n→∞ . Assume that there exists T : X → Y satisfying

(1.2) and (3.10). We know that T (4nx) = 45nT (x) , for all x ∈ X . Then

||T (x)− 1

45n
f(4nx)||pY =

1

45pn
||T (4nx)− f(4nx)||pY

≤ 1

45pn
φ(4nx, 0)p

4p(45p − (4L)p)

≤
(4L

45

)pn φ(x, 0)p

4p(45p − (4L)p)
,

that is,

||T (x)− 1

45n
f(4nx)||Y ≤

(4L

45

)n φ(x, 0)

4 p
√

45p − (4L)p
,

for all x ∈ X . By letting n→∞ , we immediately have the uniqueness of Q . �

4. Counterexample

In this section, we will present a counterexample to show that the functional equation (1.2) is not

stable for r = 5 in Corollary 3.2.

Example 4.1. Let φ : R→ R be a mapping defined by

φ(x) =

{
θx5 for |x| < 1
θ otherwise

where θ > 0 is a constant and a mapping f : R→ R by

f(x) =
∞∑
i=0

φ(kix)

k5i
(4.1)

for all x ∈ R . Then the mapping f satisfies the inequality

|Df(x, y)| ≤ 4092
415θ

45 − 1
(|x|5 + |y|5) (4.2)

for all x ∈ R . Then there does not exist a quintic mapping Q : R→ R and a constant β > 0 such that

|f(x)−Q(x)| ≤ β|x|5 (4.3)

for all x ∈ R .
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Proof. The definitions of φ and f imply that

|f(x)| =
∣∣∣ ∞∑
i=0

φ(4ix)

45i

∣∣∣ ≤ ∞∑
i=0

θ

45i
=

θ45

45 − 1

for all x ∈ R . Hence f is bounded by θ45

45−1 . If |x|5 + |y|5 ≥ 1 , then the inequality (4.2) holds. Now, we

suppose that 0 < |x|5 + |y|5 < 1 . Then there exists a positive integer t such that

1

45(t+2)
≤ |x|5 + |y|5 < 1

45(t+1)
. (4.4)

Since |x|5 + |y|5 < 1
45(t+1) we have

45tx5 <
1

45
and 45ty5 <

1

45
.

That is,

4tx <
1

4
and 4ty <

1

4
.

These imply that 4t−1x, 4t−1y, 4t−15x, 4t−1(x + y), 4t−1(x − y), 4t−1(4x + y), 4t−1(4x − y), 4t−1(5x +

y), 4t−1(5x− y) ∈ (−1, 1) . Hence we obtain that 4jx, 4jy, 4j5x, 4j(x+ y), 4j(x− y), 4j(4x+ y), 4j(4x−
y), 4j(5x+ y), 4j(5x− y) ∈ (−1, 1) for each j = 0, 1, · · · , t− 1 . Also, for each j = 0, 1, · · · , t− 1 ,

φ(4j(5x+ y)) + φ(4j(5x− y)) + 3[φ(4j(x+ y)) + φ(4j(x− y))]

−2[φ(4j(4x+ y)) + φ(4j(4x− y))]− 2φ(4j5x) + 4090φ(4jx) = 0 .

From the definition of f and the inequality (4.4), we have

|Df(x, y)| ≤
∞∑
j=0

{
φ(4j(5x+ y)) + φ(4j(5x− y))

+3[φ(4j(x+ y)) + φ(4j(x− y))]

−2[φ(4j(4x+ y)) + φ(4j(4x− y))]

−2φ(4j5x) + φ(4jx)
}

≤
∞∑
j=t

4092θ

45j

≤ 4092θ
45 45·2

45 − 1

1

45(t+2)

≤ 4092 · 415θ
45 − 1

(|x|5 + |y|5) ,

for all x, y ∈ R . We claim that the quintic functional equation (1.2) is not stable in Corollary 3.2.

Assume that there exists a quintic mapping Q : R→ R and a constant β > 0 satisfying the inequality

(4.3). Since f is bounded and continuous for all x ∈ R, Q is bounded on any open interval containing

the origin and continuous at the origin. In the view of Corollary 3.2, Q(x) must have the form

Q(x) = γx5 for all x ∈ R . Hence we have that

|f(x)| ≤ (β + |γ|)|x|5 . (4.5)

But we can choose a positive integer m with mθ > β+ |γ| . If x ∈ (0 , 1
45(m−1) ) , then 45t ∈ (0 , 1) for all

t = 0, 1, · · · ,m− 1 . For this x , we have

f(x) =
∞∑
i=0

φ(4ix)

45i
≥
m−1∑
i=0

θ(4ix)5

45i
= mθx5 > (β + |γ|)x5
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8 Quintic Mapping

This implies that it is a contradiction to the inequality (4.5). Therefore the quintic functional equation

(1.2) is not stable. �

5. Hyers-Ulam-Rassias stability with an involution via a fixed point method

In this section, we will investigate the Hyers-ulam-Rassias stability of a quintic functional equation

with a involution over a non-Archimedean normed space X .
A non-Archimedean field is a field K equipped with a (valuation) function from K into [0, ∞)

satisfying the following properties: (1) |a| ≥ 0 and equality holds if and only if a = 0 , (2) |ab| = |a| |b| ,
(3) |a + b| ≤ max{|a| , |b|} for all a, b ∈ K . Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N . An

example of a non-Archimedean valuation is the function | · | taking everything except 0 into 1 and

|0| = 0 ; see [10]. Also, the most important examples of non-Archimedean spaces are p-adic numbers;

see [8]. We will reproduce the following definitions due to Moslehian and Sadeghi [9] and Mirmostafaee

and Moslehian [8].

Definition 5.1. [9] Let X be a linear space over a field K with a non-Archimedean valuation | · | . A

function || · || : X × X −→ [0, ∞) is said to be a non-Archimedean norm if it satisfies the following

properties:

(1) ||x|| = 0 if and only if x = 0

(2) ||rx|| = |r| · ||x|| (r ∈ K)

(3) ||x+ y|| ≤ max {||x|| , ||y||} ,
for all x, y ∈ X and r ∈ K . Then (X , || · ||) is called a non-Archimedean normed space.

Before proceed the proof, we will introduce a notion of an involution. For an additive mapping

σ : X → X with σ(σ(x)) = x for all x ∈ X , then σ is called an involution of X ; see [3] and [17].

Let (Y, || · ||) be a non-Archimedean normed space. We use the abbreviation for the given mapping

f : X −→ Y as follows:

Dσf(x, y) := f(3x+ y) + f(3x+ σ(y)) + 5[f(x+ y) + f(x+ σ(y))]

−4[f(2x+ y) + f(2x+ σ(y))]− 2f(3x) + 246f(x)

for all x, y ∈ X .

The following statements are relative to the alternative of fixed point; see [7] and [15]. By using

this method, we will prove the Hyers-Ulam-Rassias stability.

Theorem 5.2 ( The alternative of fixed point [7], [15] ). Suppose that we are given a complete

generalized metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz constant

l . Then for each given x ∈ Ω , either

d(Tnx, Tn+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;

(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;

(3) y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) <∞} ;

(4) d(y, y∗) ≤ 1
1−l d(y, Ty) for all y ∈ 4 .
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Theorem 5.3. Suppose that φ : X 2 → [0, 1) is a mapping and there exists a real number l with

0 < l < 1 such that

φ(2x , 2y) ≤ |2|lφ(x , y) , φ(x+ σ(x) , y + σ(y)) ≤ |2|lφ(x , y) (5.1)

for all x , y ∈ X . Let f : X → Y be a mapping such that f(0) = 0 and

||Dσf(x, y)|| ≤ φ(x , y) (5.2)

for all x , y ∈ X . Then there exists a unique quintic mapping Q : X → Y with an involution such that

||f(x)−Q(x)|| ≤ 1 + |2|3 l
|2|8(1− l)

Φ(x) (5.3)

where Φ(x) = max{φ(x , 0) , φ(0 , x)} for all x ∈ X .

Proof. We will consider the following set

Ω = {g | g : X → X , g(0) = 0} .

Then there is the generalized metric on Ω ,

d(g, h) = inf {λ ∈ (0,∞) | ‖ g(x)− h(x) ‖≤ λΦ(x) , for all x ∈ X} .

It is not hard to prove that (Ω, d) is a complete space. A function T : Ω→ Ω is defined by

T (g)(x) =
1

25
{g(2x) + g(x+ σ(x))} (5.4)

for all x ∈ X . We know that there is an arbitrary positive constant λ with d(g, h) ≤ λ , for all g, h ∈ Ω .

Then

||g(2x)− h(2x)|| ≤ |2|λ lΦ(x) and ||g(x+ σ(x))− h(x+ σ(x))|| ≤ |2|λ lΦ(x) (5.5)

for all x ∈ X . Hence we have

||T (g)(x)− T (h)(x)|| =
1

|2|5
||g(2x)− h(2x) + g(x+ σ(x))− h(x+ σ(x))||

≤ 1

|2|5
max {||g(2x)− h(2x)|| , ||g(x+ σ(x))− h(x+ σ(x))||}

≤ l

|2|4
λΦ(x) ≤ l λΦ(x) ,

for all x ∈ X . This implies that d(T (g) , T (h)) ≤ l d(g , h) for all g , h ∈ Ω and hence T is a strictly

contractive mapping with Lipschitz constant 0 < l < 1 . Now, letting y = 0 and x = 0 in the inequality

(5.2), respectively we have

||f(2x)− 25f(x)|| ≤ 1

|2|3
φ(x, 0) (5.6)

and

||2f(y) + 2f(σ(y))|| ≤ φ(0, y) (5.7)

for all x , y ∈ X . Replacing y by x+ σ(x) in the inequality (5.7), we get

||f(x+ σ(x))|| ≤ 1

|2|
φ(0, x+ σ(x)) ≤ l φ(0, x) (5.8)

for all x ∈ X . The inequalities (5.6) and (5.7) imply that

||T (f)(x)− f(x)|| = 1

|2|5
||f(2x)− 25f(x) + f(x+ σ(x))|| ≤ 1 + |2|3 l

|2|8
Φ(x) (5.9)
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10 Quintic Mapping

for all x ∈ X . Hence we have d(T (f) , f) ≤ 1+|2|3 l
|2|8 < ∞ . By Theorem 5.2, there exits a mapping

Q : X → Y such that limn→∞ d(Tn(f) ,Q) = 0 . Using mathematical induction, we may define

Tn(f)(x) = lim
n→∞

1

25n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))}

for all x ∈ X and n ∈ N . Since limn→∞ d(Tn(f) ,Q) = 0 , there exists a sequence {λn} in R such that

λn → 0 as n→∞ and d(Tnf ,Q) ≤ λn for n ∈ N . The definition of d implies that

||Tn(f)(x)−Q(x)|| ≤ λnΦ(x)

for all x ∈ X . For each fixed x ∈ X , we have

lim
n→∞

||Tn(f)(x)−Q(x)|| = 0 .

Thus we may conclude that

Q(x) = lim
n→∞

1

25n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))} (5.10)

for all x ∈ X and n ∈ N . Then

||DσQ(x , y)|| ≤ lim
n→∞

1

|2|5n
max {φ(2nx , 2ny) , |2n − 1|φ(2n−1(x+ σ(x)) , 2n−1(y + σ(y))}

≤ lim
n→∞

ln

|2|4n
max {φ(x , y) , |2n − 1|φ(x , y)}

≤ lim
n→∞

lnφ(x , y) = 0

for all x , y ∈ X . The mapping Q satisfies the Theorem 2.2. This means that Q is a quintic mapping.

By Theorem 5.2, we have

d(f ,Q) ≤ 1

1− l
d(T (f) , f) ≤ 1 + |2|3 l

|2|8(1− l)
.

This implies that the inequality (5.3) holds for all x ∈ X . The uniqueness of the quintic mapping

follows from (3) in Theorem 5.2. �
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Comparisons of isolation numbers and semiring ranks of fuzzy

matrices

Seok-Zun Song1,∗ and Young Bae Jun2

1Department of Mathematics, Jeju National University, Jeju 63243, Korea
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Abstract. Let F be the fuzzy semiring and A be an m × n fuzzy matrix over F. The semiring rank of a fuzzy
matrix A is the smallest k such that A can be factored as an m× k fuzzy matrix times a k×n fuzzy matrix. The
isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any
column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is
a lower bound on the semiring rank of A. We also compare the isolation number with the Boolean rank of the
support of A, and determine the equal cases of them.

1. Introduction

There are many papers on the study of rank of matrices over several semirings containing binary Boolean

algebra, fuzzy semiring, semiring of nonegative integers, and so on ([2], [3], [6], and [7]). But there are few papers

on isolation numbers of matrices. Gregory et al ([7]) introduced set of isolated entries and compared Boolean

rank with biclique covering number. Recently Beasley ([2]) introduced isolation number of Boolean matrix and

compare it with Boolean rank.

In this paper, we investigate the possible isolation number of fuzzy matrix and compare it with semiring rank

of fuzzy matrix and the Boolean rank of the support of the fuzzy matrix.

2. Preliminaries

A semiring is a binary system (S,+, ·) such that (S,+) is an abelian monoid with identity 0, (S, ·) is a monoid

with identity 1, · distributes over + from both sides and 0 · s = s · 0 = 0 for all s ∈ S and 1 6= 0. We use

juxtaposition for · for convenience. If (S, ·) is abelian then we say S is commutative. If 0 is the only element

of S that has an additive inverse then S is antinegative. Note that all rings with unity are semirings, but none

are antinegative. The set, Z+, of nonnegative integers with usual addition and multiplication is an example of

combinatorially interesting antinegative semiring.

Let Mm,n(S) denote the set of all m × n matrices with entries in S with matrix addition and multiplication

following the usual rules. Let Mn(S) = Mm,n(S) if m = n, let Im denote the m×m identity matrix, Om,n denote

the zero matrix in Mm,n(S), Jm,n denote the matrix of all ones in Mm,n(S). The subscripts are usually omitted

if the order is obvious, and we write I,O, J .

02010 Mathematics Subject Classification: 15A23; 15A03; 15B15.
0Keywords: semiring rank; fuzzy semiring; chain semiring; isolation number.

∗ The corresponding author.
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The matrix A ∈Mm,n(S) is said to be of semiring rank k if there exist matrices B ∈ Mm,k(S) and C ∈ Mk,n(S)

such that A = BC and k is the smallest positive integer that such a factorization exists. We denote rS(A) = k.

We say that a matrix A dominates a matrix B if ai,j = 0 implies bi,j = 0.

Given a matrix X, we let x(j) denote the jth column of X and x(i) denote the ith row. Now if rS(A) = k and

A = BC is a factorization of A ∈Mm,n(S), then A = b(1)c(1) + b(2)c(2) + · · ·+ b(k)c(k). Since each of the terms

b(i)c(i) is a semiring rank one matrix, the semiring rank of A is also the minimum number of semiring rank one

matrices whose sum is A.

Let S be any set of two or more elements. If S is totally ordered by <, that is, S is a chain under <(i.e. x < y

or y < x for all distinct x, y in S), then define x + y as max(x, y) and xy as min(x, y) for all x, y in S. If S has a

universal lower bound and a universal upper bound then S becomes a semiring: a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 =
⋂

x∈H x and 1 =
⋃

x∈H x. Then S = H
⋃
{0, 1}

is a chain semiring.

Let α, ω be real numbers with α < ω. Define SR = {β ∈ R : α ≤ β ≤ ω}. Then SR is a chain semiring with

α = ”0” and ω = ”1”. It is isomorphic to the chain semiring H = {[α, β] : α ≤ β ≤ ω}.
If in particular we choose the real numbers 0 and 1 as α and ω in the previous example SR, then the chain

semiring F = {β ∈ R : 0 ≤ β ≤ 1} is called fuzzy semiring and the m × n matrices over F is called the fuzzy

matrices.

Now let Mm,n(F) denote the set of all m×n fuzzy matrices with entries in F. The fuzzy rank of A ∈Mm,n(F)

is the semiring rank over F and denoted rF(A).

If we take H to be a sington, say {a}, and denote empty subset by 0 and {a} by 1, the resulting chain semiring

is called a Boolean algebra B = {0, 1}, and the m × n matrices over B is called Boolean matrices. This Boolean

algebra is a subsemiring of every chain semiring.

Now let Mm,n(B) denote the set of all m × n Boolean matrices with entries in B. The Boolean rank of

D ∈Mm,n(B) is the semiring rank over B and denoted b(D) or rB(D). Also, rS(O) = 0, and O is the only matrix

of semiring rank 0 over any semiring S.

The Boolean rank has many applications in combinatorics, especially graph theory, for example, if A ∈Mm,n(B)

is the adjacency matrix of the bipartite graph G with bipartition (X, Y ), the Boolean rank of A is the minimum

number of bicliques that cover the edges of G, called the biclique covering number.

Given a matrix A ∈ Mm,n(S), a set of isolated entries ([7]) is a set of entries, usually written as E = {ai,j}
such that ai,j 6= 0, no two entries in E are in the same row, no two entries in E are in the same column, and,

if ai,j , ak,l ∈ E then, ai,l = 0 or ak,j = 0. That is, isolated entries are independent entries and any two isolated

entries ai,j and ak,l do not lie in a submatrix of A of the form
[

ai,j ai,l

ak,j ak,l

]
with all entries nonzero. The isolation

number of A, ι(A), is the maximum size of a set of isolated entries. Note that ι(A) = 0 if and only if A = O.

Example 2.1. Let

A =


1 1 0.2 0 0

0.2 1 0 1 0
1 0 0 0 0.2
0 0.2 0 1 1
0 0 1 0.2 1


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be a fuzzy matrix and E1 = {a1,3, a2,1, a3,5, a4,2, a5,4}. The entries (0.2’s) of A in E1 are isolated entries and hence

ι(A) = 5. But the entries of A in the position in E2 = {a1,1, a2,2, a3,5, a4,4, a5,3} are not isolated.

Suppose that A ∈Mm,n(S) and rS(A) = k. Then there are k semiring rank one matrices Ai such that

A = A1 + A2 + · · ·+ Ak. (2.1)

Because each semiring rank one matrix can be permuted to a matrix of the form
[

N O

O O

]
with N = J , it is

easily seen that the matrix consisting of two isolated entries of A cannot be dominated by any one Ai among the

semiring rank one summand of A in (1.1). Thus

i(A) ≤ rS(A). (2.2)

Many functions, sets and relations concerning matrices do not depend upon the magnitude or nature of the

individual entries of a matrix, but rather only on whether the entry is zero or nonzero. These combinatorially

significant matrices have become increasingly important in recent years. Of primary interest is the Boolean rank.

Finding the Boolean rank of a (0, 1)-matrix is an NP-Complete problem ([8]), and consequently finding bounds

on the Boolean rank of a matrix is of interest to those researchers that would use Boolean rank in their work.

If the (0, 1)-matrix is the reduced adjacency matrix of a bipartite graph, the isolation number of the matrix is

the maximum size of a non-competitive matching in the bipartite graph. This is related to the study of such

combinatorial problems as the patient hospital problem, the stable marriage problem, etc. An additional reason

for studying the isolation number is that it is a lower bound on the rank of a matrix over S. While finding the

isolation number as well as finding the semiring rank of a matrix is an NP-Complete problem ([1]), for some

matrices finding the isolation number can be easier than finding the semiring rank especially if the matrix is

sparse:

Example 2.2. Let

F =



1 1 1 0.2 0 1 1 1 1
1 1 1 1 0.2 1 1 1 1
1 1 1 0 0 0.2 1 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0

0.2 1 0 0 0 0 0 0 0
0 0.2 1 0 0 0 0 0 0
1 0 0.2 0 0 0 0 0 0


be a fuzzy matrix.

Then we can easily see rF(F ) 5 6 from first 3 rows and columns, however to find that fuzzy rank is not 5,

requires much calculation if the isolation number is not considered. However, the isolation number is easily seen

to be 6, both computationally and visually, the 0.2’s in the matrix represent a set of isolated entries. Thus we

have rF(F ) = 6 by (2.2).

Note that if any of the 1’s in F are replaced by zeros, the resulting matrix still has fuzzy rank 6 as well as

isolation number 6.

Terms not specifically defined here can be found in Brualdi and Ryser [5] for matrix terms, or Bondy and Murty

[4] for graph theoretic terms.
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For our use in the next section, we define the support matrix of a fuzzy matrix. If A ∈ Mm,n(F), then the

support of A is the Boolean matrix A = (ai,j) ∈Mm,n(B) such that ai,j = 1 if ai,j 6= 0 and ai,j = 0 if ai,j = 0.

3. Comparisons between isolation numbers and semiring ranks of fuzzy matrices

In this section, we compare the isolation number with semiring rank of fuzzy matrix, and also we compare the

isolation number with Boolean rank of the support of fuzzy matrix.

Lemma 3.1. For A,B ∈Mm,n(F), rF(A+B) ≤ rF(A)+ rF(B). And for A,B ∈Mm,n(B), b(A+B) ≤ b(A)+b(B).

Proof. It follows from the definition of fuzzy (and Boolean) rank and equation (2.1).

Lemma 3.2. For A,B ∈Mm,n(F), A + B = A + B in Mm,n(B).

Proof. It follows from the facts that all the entries of A,B ∈Mm,n(B) are nonnegative and 1 + 1 = 1 in B.

Lemma 3.3. For A ∈Mm,n(F), b(A) ≤ rF(A).

Proof. If rF(A) = k, then A has a fuzzy rank one factorization such that A = b(1)c(1) + b(2)c(2) + · · · + b(k)c(k)

with B = [b(1)b(2) · · ·b(k)] ∈ Mm,k(F) and C = [c(1)c(2) · · · c(k)]t ∈ Mk,n(F) from (2.1). Therefore

b(A) = b(b(1)c(1) + b(2)c(2) + · · ·+ b(k)c(k)) = b(b(1)c(1) + b(2)c(2) + · · ·+ b(k)c(k)) ≤ k, from Lemma 3.2.

Hence b(A) ≤ rF(A).

We may have strict inequality in Lemma 3.3 as we see in the following example.

Example 3.4. Consider A =
[

1 0.2
0.3 0.4

]
and B =

[
1 0.2

0.6 0.6

]
in Mm,n(F). Then rF(A) = 2 but b(A) =

b(
[

1 1
1 1

]
) = 1. Hence b(A) < rF(A). But rF(B) = b(B) = 1 since B =

[
1

0.6

][
1 0.2

]
over F.

Lemma 3.5. For A = [ai,j ] ∈Mm,n(F), ι(A) = ι(A).

Proof. If ai,j and ak,l are any isolated entries in A, then i 6= k and j 6= l, and that ai,l = 0 or ak,j = 0. Hence ai,j

and ak,l are isolated entries in A, so we have ι(A) ≤ ι(A).

Conversely, if ai,j and ak,l are any isolated entries in A, then ai,j 6= 0 and ak,l 6= 0 and that ai,l = ai,l = 0 or

ak,j = ak,j = 0. Hence ai,j and ak,l are isolated entries in A, so we have ι(A) ≤ ι(A).

Theorem 3.6. If A ∈Mm,n(F), then ι(A) = 1 if and only if b(A) = 1.

Proof. Let A ∈ Mm,n(F). If b(A) = 1 then A 6= O so that ι(A) 6= 0 and since ι(A) = ι(A) ≤ b(A) by (2.2), we

have ι(A) = 1.

Conversely, suppose that ι(A) = 1 and that b(A) ≥ 2. Then, for some P and Q, permutation matrices of

the appropriate orders, PAQ =
[

Jr,s O

O O

]
+ A2 for some r, s with either r < m or s < n. Partition A2 as

A2 =
[

A2,1 A2,2

A2,3 A2,4

]
, where A2,1 is r × s. Since b(PAQ) = b(A) ≥ 2, we have A 6= J , and hence, one of
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A2,2, A2,3, A2,4 has a zero entry. Further, one of A2,2, A2,3, A2,4 has an entry of 1 since PAQ 6=
[

Jr,s O

O O

]
.

Thus, in PAQ, there is some zero entry, say ai,j = 0, which lies in a nonzero column j and a nonzero row i. Then,

any of the ones in that column j together with a one in the nonzero row i form a set of two isolated entries, a

contradiction, thus b(A) = 1.

It follows that the subset of Mm,n(F) of matrices with isolation number one is the same as the set of matrices

whose support has Boolean rank one.

For A = A1 + A2 + · · ·+ Ak with rF(A) = k, let Ri denote the indices of the nonzero rows of Ai and Cj denote

the indices of the nonzero columns of Aj , i, j = 1. · · · , k. Let ri = |Ri|, the number of nonzero rows of Ai and

cj = |Cj |, the number of nonzero columns of Aj .

Lemma 3.7. Let A ∈Mm,n(F). Then if rF(A) ≥ b(A) = 2 then ι(A) = 2, and if ι(A) = 2 then b(A) 6= 3.

Proof. If b(A) = 2, then ι(A) > 1 by Theorem 3.6. Since ι(A) = ι(A) ≤ b(A) from Lemma 3.5 and (2.2), we have

that ι(A) = ι(A) = 2.

Now, suppose that ι(A) = 2 and that b(A) = 3. Let A = A1 + A2 + A3 where b(Ai) = 1.

Permute the rows of A so that R1 = {1, 2, · · · , r1} and permute the columns of A so that C2 = {1, 2, · · · , c2}
and C3 = {k + 1, k + 2, · · · , k + c3} where k ≤ c2.

Note that Ri 6= Rj and Ci 6= Cj unless i = j otherwise Ai + Aj would be Boolean rank 1.

Suppose that R1 ⊂ R2. Permute the remaining rows so that R2 = {1, 2, · · · , r2}, and R3 = {a+1, a+2, · · · , a+

b + c, r2 + 1, r2 + 2 · · · , r2 + e} where a + b ≤ r1, r1 ≤ a + b + c ≤ a + b + c + d ≤ r2 and r2 ≤ a + b + c + d + e.

Thus, we have that

A =



Ja,k Ja,g Ja,h Oa,u Ja,v Oa,w

Jb,k Jb,g Jb,h Jb,u Jb,v Ob,w

Jc,k Jc,g Jc,h Jc,u Oc,v Oc,w

Jd,k Jd,g Od,h Od,u Od,v Od,w

Oe,k Je,g Je,h Je,u Oe,v Oe,w

Of,k Of,g Of,h Of,u Of,v Of,w


,

for some a, b, c, d, e, f, g, h, k, u, v and w. Thus, with this notation,

A1 =

 Ja,k Ja,g Ja,h Oa,u Ja,v O

Jb,k Jb,g Jb,h Ob,u Jb,v O

O O O O O O

 ,

A2 =


Ja,k Ja,g O

Jb,k Jb,g O

Jc,k Jc,g O

Jd,k Jd,g O

O O O

 , and A3 =



Oa,k Oa,g Oa,h Oa,u Oa,v+w

Ob,k Jb,g Jb,h Jb,u Ob,v+w

Oc,k Jc,g Jc,h Jc,u Oc,v+w

Od,k Od,g Od,h Od,u Od,v+w

Oe,k Je,g Je,h Je,u Oe,v+w

Of,k Of,g Of,h Of,u Of,v+w


.
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Now, if A[r1 + 1, · · · ,m|1, · · · , n] = A2[r1 + 1, · · · ,m|1, · · · , n] + A3[r1 + 1, · · · ,m|1, · · · , n] has Boolean rank 1

then d = e = 0 and hence A has the form

A =


Ja,k Ja,g Ja,h Oa,u Ja,v Oa,w

Jb,k Jb,g Jb,h Jb,u Jb,v Ob,w

Jc,k Jc,g Jc,h Jc,u Oc,v Oc,w

Of,k Of,g Of,h Of,u Of,v Of,w

 ,

=

 Ja,k Ja,g Ja,h Oa,u Ja,v O

Jb,k Jb,g Jb,h Ob,u Jb,v O

O O O O O O

 +


O O O O O O

Jb,k Jb,g Jb,h Jb,u Ob,v O

Jc,k Jc,g Jc,h Jc,u Oc,v O

O O O O O O

 ,

so that b(A) = 2, a contradiction to the assumption b(A) = 3. Thus, A[r1 + 1, · · · ,m|1, · · · , n] must have Boolean

rank 2, and hence it has two isolated entries, say i2 and i3. If C1 6⊆ C2 ∪C3 then without loss of generality we have

that a1,x 6= 0 for x = k + g + h + u + 1, but then, {a1,x, i2, i3} is a set of three isolated entries, a contradiction to

ι(A) = ι(A) = 2. Thus, v = 0 and hence, C1 ⊆ C2 ∪ C3. Further, C1 6= C2 ∪ C3, otherwise, A can be expressed as

A =


Ja,k Ja,g O

Jb,k Jb,g O

Jc,k Jc,g O

Jd,k Jd,g O

O O O

 +



Oa,k Ja,g Ja,h O

Ob,k Jb,g Jb,h O

Oc,k Jc,g Jc,h O

Od,k Od,g Od,h O

Oe,k Je,g Je,h O

Of,k Of,g Of,h O


,

so that b(A) = 2, contradiction to the assumption b(A) = 3.

Note that a, u, d 6= 0, for otherwise b(A) = 2. If e = 0 then b + c 6= 0 so that {a1,c1 , aa+1,k+c3 , ar2,1} is a set of

three isolated entries, a contradiction to ι(A) = ι(A) = 2. If e 6= 0, then {a1,c1 , ar2,1, ar2+e,k+c3} is a set of three

isolated entries, contradicting that ι(A) = ι(A) = 2. Thus, R1 6⊂ R2.

By renumbering and/or transposing we have proved that Ri 6⊂ Rj and Ci 6⊂ Cj for any pair i and j.

Now, permute the rows and columns of A so that R1 = {1, 2, · · · , r1}, R2 = {a + 1, a + 2, · · · , a + b, a + b + c +

1, a + b + c + 2, · · · , a + b + c + d + e + f}, and R3 = {a + b + 1, a + b + 2, · · · , a + b + c + d + e, a + b + c + e + f +

1, a + b + c + e + f + 2 · · · , a + b + c + e + f + g} for some a, b, c, d, e, f, g where a + b + c + d = r1, so that A has

the form:

A =



Ja,k Oa,l Ja,p Oa,q Ja,r Oa,s Ja,v Oa,w

Jb,k Jb,l Jb,p Jb,q Jb,r Ob,s Jb,v Ob,w

Jc,k Oc,l Jc,p Jc,q Jc,r Jc,s Jc,v Oc,w

Jd,k Jd,l Jd,p Jd,q Jd,r Jd,s Jd,v Od,w

Je,k Je,l Je,p Je,q Je,r Je,s Oe,v Oe,w

Jf,k Jf,l Jf,p Jf,q Of,r Of,s Of,v Of,w

Og,k Og,l Jg,p Jg,q Jg,r Jg,s Og,v Og,w

Oh,k Oh,l Oh,p Oh,q Oh,r Oh,s Oh,v Oh,w


, (3.1)
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for some a, b, c, d, e, f, g, h, k, l, p, q, r, s, v, and w, so that

A1 =


Ja,k Oa,l Ja,p Oa,q Ja,r Oa,s Ja,v Oa,w

Jb,k Ob,l Jb,p Ob,q Jb,r Ob,s Jb,v Ob,w

Jc,k Oc,l Jc,p Oc,q Jc,r Oc,s Jc,v Oc,w

Jd,k Od,l Jd,p Od,q Jd,r Od,s Jd,v Od,w

O O O O O O O O

 ,

A2 =



Oa,k Oa,l Oa,p Oa,q O

Jb,k Jb,l Jb,p Jb,q O

Oc,k Oc,l Oc,p Oc,q O

Jd,k Jd,l Jd,p Jd,q O

Je,k Je,l Je,p Je,q O

Jf,k Jf,l Jf,p Jf,q O

O O O O O


, and

A3 =



Oa,k Oa,l Oa,p Oa,q Oa,r Oa,s O

Ob,k Ob,l Ob,p Ob,q Ob,r Ob,s O

Oc,k Oc,l Jc,p Jc,q Jc,r Jc,s O

Od,k Od,l Jd,p Jd,q Jd,r Jd,s O

Oe,k Oe,l Je,p Je,q Je,r Je,s O

Of,k Of,l Of,p Of,q Of,r Of,s O

Og,k Og,l Jg,p Jg,q Jg,r Jg,s O

Oh,k Oh,l Oh,p Oh,q Oh,r Oh,s O


.

Suppose that v 6= 0 and A[r1 +1, · · · ,m|1, · · · , n] = A2[r1 +1, · · · ,m|1, · · · , n]+A3[r1 +1, · · · ,m|1, · · · , n] has

Boolean rank 1. Then, f = g = 0 and we must have l, s 6= 0, for otherwise b(A) = 2, a contradiction. Further, if

b = c = 0 then b(A) = 2, again a contradiction. Thus, using a 1 from each of the blocks subscripted (a, v), (b, l)

and (e, s) of A or a 1 from each of the blocks subscripted (a, v), (e, l) and (c, s) of A we have three isolated entries,

a contradiction since ι(A) = ι(A) = 2. Thus the Boolean rank of A[r1 + 1, · · · ,m|1, · · · , n] must be 2, and hence

has two isolated entries, say i2 and i3. If C1 6⊆ C2 ∪ C3 then a1,x 6= 0 for x = k + l + p + q + r + s + 1 then,

{a1,x, i2, i3} is a set of three isolated entries, a contradiction to ι(A) = ι(A) = 2. Thus, C1 ⊆ C2 ∪ C3. Further,

C1 6= C2 ∪ C3, otherwise, A would have Boolean rank 2. Thus, v = 0, and hence, C1 ⊂ C2 ∪ C3.

Since the choice of rows versus columns can be changed by transposition and the index of Ri and Cj by

renumbering, we have shown that if {i, j, k} = {1, 2, 3} then Ri ⊂ Rj ∪Rk and Ci ⊂ Cj ∪ Ck.

Consider the matrix (3.1). Since R1 ⊂ R2 ∪ R3 we have that a = 0; since R2 ⊂ R1 ∪ R3 we have that

f = 0; since C2 ⊂ C1 ∪ C3 we have that l = 0; and since C3 ⊂ C1 ∪ C2 we have that s = 0. That is, since

a = f = l = s = v = 0, A has the form

A =



J J J J O

J J J J O

J J J J O

J J J J O

O J J J O

O O O O O


,

where the indices have been omitted. Thus b(A) = 2, a contradiction. Thus, if ι(A) = 2 then b(A) 6= 3.

Theorem 3.8. Let A ∈Mm,n(F). Then, ι(A) = 2 if and only if b(A) = 2.
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Proof. From Lemma 3.7, we have the sufficiency. So we only need show the necessity.

Suppose there exists A ∈ Mm,n(F) with ι(A) = ι(A) = 2 and b(A) > 2. By Lemma 3.7, b(A) 6= 3, and hence

b(A) ≥ 4. Thus we choose A such that if b(A) > rB(C) > 2 then ι(C) > 2. Suppose that A = A1 + A2 + · · ·+ Ak

for k = b(A) where each Ai is Boolean rank one, i.e., k is the minimum k such that b(A) = k and ι(A) = 2.

Suppose that A1 has the fewest number of nonzero rows of the Ai’s. As in the proof of the above lemma 3.7,

permute the rows of A so that A1 has nonzero rows 1, 2, · · · , r1. For j = 1, · · · , r1, let Bj be the matrix whose

first j rows are the first j rows of A and whose last m − j rows are all zero. Let Cj be the matrix whose first

j rows are all zero and whose last m − j rows are the last m − j rows of A. Then A = Bj + Cj . Further any

set of isolated entries of Cj is a set of isolated entries for A. Now, from b(A) ≤ b(Bj) + b(Cj), and the fact that

b(Cj) = b(Cj−1) or b(Cj) = b(Cj−1)− 1, there is some t such that b(Ct) = b(A)− 1. Since b(Ct) < k by the choice

of A, for this t, we have that ι(Ct) > 2 since b(Ct) ≥ 3. That is, ι(A) = ι(A) > 2, a contradiction.

Now, as we can see in the following example, there is a matrix A ∈ Mm,n(F) such that ι(A) = 3 and b(A) is

relative large, depending on m and n.

Example 3.9. For n ≥ 3, let Dn = J \ I ∈ Mn(B). Then, it is easily shown that ι(Dn) = 3 while b(Dn) = k

where k = min

{
k : n ≤

(
k
k
2

)}
, see [6](Corollary 2). So, ι(D20) = 3 while b(D20) = 6.

A tournament matrix [T ] ∈ Mn(B) is the adjacency matrix of a directed graph called a tournament, T . It is

characterized by [T ] ◦ [T ]t = O and [T ] + [T ]t = J − I.

Now, for each k = 1, 2, · · · ,min{m,n}, can we characterize the matrices in Mm,n(F) for which ι(A) = b(A) ?

Of course it is done if k = 1 or k = 2 in the above theorems, but only in those cases. For k = m we can also find

a characterization:

Theorem 3.10. Let 1 ≤ m ≤ n and A ∈Mm,n(F). Then, ι(A) = b(A) = m if and only if there exist permutation

matrices P ∈Mm(B) and Q ∈Mn(B) such that PAQ = [B|C] where B = Im + T ∈Mm(B) where T ∈Mm(B)

is dominated by a tournament matrix. (There are no restrictions on C.)

Proof. Suppose that ι(A) = m. Then we permute A by permutation matrices P and Q so that the set of isolated

entries are in the (d, d) positions, d = 1, · · · ,m. That is, if X = PAQ then I = {x1,1, x2,2, · · · , xm,m} is the set

of isolated entries in X. Therefore X = [B|C], with bi,i = xi,i = 1 and bi,j · bj,i = 0 for every i and j 6= i from

the definition of the isolated entries. Thus, B = Im + T where T is an m square matrix which is dominated by a

tournament matrix. Thus, PAQ = [B|C] where B = Im + T and clearly there are no conditions on C.

Conversely, if PAQ = [B|C] and B = Im + T where T is an m square matrix which is dominated by a

tournament matrix, then the diagonal entries of B form a set of isolated entries for PAQ and hence A has a set

of m isolated entries. Thus ι(A) = b(A) = m.

Corollary 3.11. Let 1 ≤ m ≤ n and A ∈ Mm,n(F). If there exist permutation matrices P ∈ Mm(B) and

Q ∈Mn(B) such that PAQ = [B|C] where B ∈Mm(F) is a diagonal matrix or a triangular matrix with nonzero

diagonal entries, then ι(A) = b(A) = m.
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Some properties of certain
difference polynomials

Yong Liu, Yuqing Zhang and Xiaoguang Qi

Abstract

This research is a continuation of a recent paper [16]. In this paper, we utilize
Nevanlinna value distribution theory to study some properties of difference polynomial
Yn(z) =

∑k
j=1 vjy(z + ηj)− ayn(z).

Keywords: Meromorphic functions; Difference; Fixed point; Finite order.

1 Introduction and main results

In this article, we assume familiarity with the basics of Nevanlinna theory (see, e.g., [12,
17]). In addition, we will use the notation σ(y) to denote the order of the meromorphic
function y(z), and λ(f) and λ( 1y ) to denote, respectively, the exponent of convergence of
zeros and poles of y(z).

In 1959, Hayman [11] obtained the following famous theorem.

Theorem A [11]. Let y(z) be a transcendental meromorphic function and a 6= 0, b be
finite complex constants. Then yn(z) + ay′(z) − b has infinitely many zeros for n ≥ 5. If
y(z) is transcendental entire, this holds for n ≥ 3, resp. n ≥ 2, if b = 0.

Recently, several articles (see, e.g., [1-3, 5-10, 13-15]) have focused on complex difference
equations and difference analogues of Nevanlinna’s theory.

In 2013, the first author and Yi [16] established partial difference polynomial counter-
parts of Theorem A, and obtained the following result:

Theorem B [16]. Let y(z) be a transcendental entire function of finite order ρ(y), let
a, b, aj , cj(j = 1, 2, · · · , k) be complex constants. Set Yn(z) =

∑k
j=1 ajy(z + cj) − ayn(z),
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where n ≥ 3 is an integer. Then Yn(z) have infinitely many zeros and λ(Fn(z)− b) = ρ(f)
provided that

∑k
j=1 aj(z)y(z + cj) 6≡ b.

Theorem C [16]. Suppose that y(z) be a finite order transcendental entire function with
a Borel exceptional value d. Let a(z)(6≡ 0), b(z), aj(z)(j = 1, 2, · · · , k) be polynomials, and

let cj(j = 1, 2, · · · , k) be complex constants. If either d = 0 and
∑k

j=1 aj(z)y(z + cj) 6≡ 0,

or, d 6= 0 and
∑k

j=1 daj(z)− d2a(z)− b(z) 6≡ 0, then F2(z)− b(z) =
∑k

j=1 aj(z)f(z + cj)−
a(z)y2(z)− b(z) has infinitely many zeros and λ(Y2(z)− b(z)) = ρ(y).

In this paper, we will improve the above results from entire functions to meromorphic
functions.

Theorem 1.1. Suppose y(z) is a transcendental meromorphic function with exponent of
convergence of poles λ( 1y ) < ρ(y) < ∞, suppose ηj(j = 1, 2, · · · , k) are complex constants,
and a(z), vj(j = 1, 2, · · · , k) be polynomials, and ϕ(z) be a meromorphic function, small

compared to y(z). Suppose Yn(z) =
∑k

j=1 vjy(z + ηj) − ayn(z), where n ≥ 3 is an integer,

and
∑k

j=1 vj(z)y(z + ηj) 6≡ ϕ(z). Then λ(Yn(z)− ϕ(z)) = ρ(y).

In Theorem 1.1, we consider difference polynomial Yn(z) with n ≥ 3. The following
result is about the case n = 2 :

Theorem 1.2. Suppose that y(z) is a finite order transcendental meromorphic function with
two Borel exceptional value d,∞. Suppose a(z)(6≡ 0), vj(z)(j = 1, 2, · · · , k) are polynomials,
ϕ(z) is a meromorphic function, small compared to y(z), and suppose ηj(j = 1, 2, · · · , k)

are complex constants. If either d = 0 and
∑k

j=1 vj(z)y(z + ηj) 6≡ 0, or, d 6= 0 and∑k
j=1 dvj(z) − d2a(z) − ϕ(z) 6≡ 0, then λ(Y2(z) − ϕ(z)) = ρ(y), where Y2(z) − ϕ(z) =∑k
j=1 vj(z)y(z + ηj)− a(z)y2(z)− ϕ(z).

Example 1.3. Let y(z) = exp{z}−1
exp{z}+1 , a(z) = −1, η1 = 3πi, η2 = πi, η3 = 0, η4 = 5πi, η5 =

7πi, v1(z) = 1, v2(z) = −3, v3(z) = −1, v4(z) = 2, v5(z) = 1, v6(z) = · · · = vk(z) = 0, ϕ(z) =
−1. Then we have

Y2(z)− ϕ(z) =

k∑
j=1

vj(z)y(z + ηj)− a(z)y2(z)− ϕ(z) =
8 exp{z}

(exp{z}+ 1)2(exp{z} − 1)
.

Here y(z) has no two Borel exceptional values, but Y2(z) − ϕ(z) has no zeros. Hence the
condition that y(z) has two Borel exceptional value cannot be omitted in Theorem 1.2.

2 Preliminary lemmas

In order to prove Theorem 1.1 and Theorem 1.2, we need the following lemmas.The following
lemma is a generalisation of Borel’s Theorem on linear combinations of entire functions.

Lemma 2.1 [17, pp.79 − 80] Let fj(z)(j = 1, 2, · · · , n)(n ≥ 2) be meromorphic function,
gj(z)(j = 1, 2, · · · , n) be entire functions, and let them satisfy
(i) f1(z)e

g1(z) + · · ·+ fk(z)e
gk(z) ≡ 0;

2
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(ii) when 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant.
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure. Then fj ≡ 0(j =
1, · · · , n).

Let cj , (j = 1, · · · , n) be a finite collection of complex numbers. Then a difference poly-
nomial in f(z) is a function which is polynomial in f(z+ cj) with meromorphic coefficients
aλ(z) such that T (r, aλ) = S(r, f) for all λ. As for difference counterparts of the Clunie
lemma, see [4; Corollary 3.3]. The following lemma due to Laine and Yang [14] is a more
general version.

Lemma 2.2 [14] Let f(z) be a transcendental meromorphic solution of finite order of a
difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), and Q(z, f) are difference polynomials such that the total degree
degU(z, f) = n in f(z) and its shifts, and degQ(z, f) ≤ n. Moreover, we assume that
U(z, f) contains just one term of maximal total degree in f(z) and its shifts. Then

m(r, P (z, f)) = o
(T (r + |c|, f)

rδ
)

+ o(T (r, f)).

The following lemma is a difference analogue of the logarithmic derivative lemma.

Lemma 2.3 [8, 10] Let f(z) be a meromorphic function of finite order and let c be a non-zero
complex number. Then we have

m
(
r,
f(z + c)

f(z)

)
= S(r, f).

Lemma 2.4 [8, 10] If f(z) is a transcendental meromorphic function with exponent of
convergence of poles λ( 1

f ) = λ < ∞, and let c be a non-zero complex number. Then for
each ε > 0, we have

N(r, f(z + c)) = N(r, f) +O(rλ−1+ε) +O(log r).

3
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3 Proof of Theorem 1.1

Combining Lemma 2.3 and Yn(z)− ϕ(z) =
∑k

j=1 vjy(z + ηj)− ayn(z)− ϕ(z), we have

nm(r, y(z)) = m(r, ayn(z)) +O(log r)

= m
(
r,

k∑
j=1

vjy(z + ηj)− ϕ(z)− (Yn(z)− ϕ(z))
)

+O(log r)

≤ m
(
r, y(z)

∑k
j=1 vjy(z + ηj)

y(z)

)
+m(r, Yn(z)− ϕ(z)) +m(r, ϕ(z)) +O(log r)

≤ m(r, y(z)) +
k∑
j=1

m
(
r,
y(z + ηj)

y(z)

)
+

k∑
j=1

m(r, vj(z))

+m(r, Yn(z)− ϕ(z)) +O(log r)

= m(r, y(z)) +m(r, Yn(z)− ϕ(z)) + S(r, y).

(1)

By λ( 1y ) < ρ(y), we obtain

N(r, y) = O(rρ−1+ε). (2)

Hence, by (1) and (2), we have

(n− 1)T (r, y) ≤ m(r, Yn(z)− ϕ(z)) +O(rρ−1+ε) + S(r, y).

On the other hand, Lemma 2.3 and Yn(z)−ϕ(z) =
∑k

j=1 vjy(z+ ηj)− ayn(z)−ϕ(z) imply
that

T (r, Yn(z)− ϕ(z)) = m(r, Yn(z)− ϕ(z)) +N(r, Yn(z)− ϕ(z))

= m
(
r,

k∑
j=1

vjy(z + ηj)− ayn(z)− ϕ(z)
)

+N
(
r,

k∑
j=1

vjy(z + ηj)− ayn(z)− ϕ(z)
)

≤ m(r, y(z)) +

k∑
j=1

m
(
r,
y(z + ηj)

y(z)

)
+

k∑
j=1

T (r, vj)

+m(r, ayn(z)) + (k + n)N(r, y) + T (r, ϕ(z))

≤ (k + n)T (r, y(z)) + S(r, y).

(3)

Together (1) with (3), we can obtain ρ(y) = ρ(Yn − ϕ(z)). We next break the rest of the
proof into two parts.

Case 1. If ρ(y) = 0, then by 0 ≤ λ(Yn − ϕ(z)) ≤ ρ(Yn − ϕ(z)) = ρ(y) = 0, we have
λ(Yn − ϕ(z)) = ρ(y), we have proved Theorem 1.1.

4
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Case 2. If ρ(y) > 0, then we assume λ(Yn − ϕ(z)) < ρ(y). By this and ρ(Yn − ϕ(z)) =
ρ(y), Yn(z)− ϕ(z) can be written as

Yn(z)− ϕ(z) =
k∑
j=1

vjy(z + ηj)− ayn(z)− ϕ(z)

=
r1(z)

r2(z)
exp{q(z)} = p(z) exp{q(z)},

(4)

where q(z) is a nonzero polynomial, r1(z) is an entire function with ρ(r1) < ρ(y), and r2(z)
is the canonical product formed with the poles Yn(z) − ϕ(z). So ρ(r2) = λ(r2) = λ(1p) ≤
λ( 1y ) < ρ(y), and ρ(p) ≤ max{ρ(r1), ρ(r2)} < ρ(y). Differentiating (3) and eliminating
exp{q(z)}, we get

y(n−1)(z)
(
anp(z)y′(z)− a(p′(z) + q′(z)p(z))y(z)

)
= p(z)[

k∑
j=1

vjy
′(z + ηj)− ϕ′(z)]− {p′(z) + p(z)q′(z)}[

k∑
j=1

vjy(z + ηj)− ϕ(z)].
(5)

We assume that

anp(z)y′(z)− a(p′(z) + q′(z)p(z))y(z) ≡ 0. (6)

Integrating (6)

yn(z) = dp(z) exp{q(z)}, (7)

where d ∈ C \ {0} is a constant. Therefore, by (4) and (7), we obtain that

Yn(z)− ϕ(z) =
k∑
j=1

vjy(z + ηj)− ayn(z)− ϕ(z) =
1

d
yn(z), (8)

by computing (8), we have

d
( k∑
j=1

vjy(z + ηj)− ϕ(z)
)

= (ad+ 1)yn(z). (9)

By the condition of theorem 1.1, we know
∑k

j=1 vjy(z+ηj) 6≡ ϕ(z), hence we have ad 6= −1.
Differentiating (9) and then dividing by y′(z), we obtain

d
( k∑
j=1

vjy
′(z + ηj)

y′(z)

)
− dϕ

′(z)

y′(z)
= n(ad+ 1)yn−1(z). (10)

5
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We have from (10) and Lemma 2.3 that

(n− 1)m(r, y) = m(r, (ad+ 1)yn−1(z)) +O(1)

= m(r, d
( k∑
j=1

vjy
′(z + ηj)

y′(z)

)
− dϕ

′(z)

y′(z)
) +O(1)

≤
k∑
j=1

m(r,
vjy
′(z + ηj)

y′(z)
) +m(r, ϕ′(z)) +m(r,

1

y′
) +O(1)

= S(r, y′) +m(r, ϕ′) +m(r,
1

y′
) ≤ S(r, y′) + T (r, y′) = S(r, y) + T (r, y),

On the other hand, by (7), we know that the poles of y(z) comes from the poles of p(z),
hence we obtain

(n− 1)N(r, y) ≤ O(N(r, p))

so
(n− 2)T (r, y) ≤ O(T (r, p)) + S(r, y)

we can obtain ρ(y) ≤ ρ(p), a contradiction, since n ≥ 3. Hence p(z, y) 6≡ 0. Since n ≥ 3,
Lemma 2.2 and (5) imply that

m(r, anp(z)y′(z)− a(p′(z) + q′(z)p(z))y(z))

= o
(T (r + |c|, y)

rδ
)

+ o(T (r, y)) +O(m(r, p(z))),
(11)

and

m(r, y(z)(anp(z)y′(z)− a(p′(z) + q′(z)p(z))y(z)))

= o
(T (r + |c|, y)

rδ
)

+ o(T (r, y)) +O(m(r, p(z))),
(12)

for all r outside of an exceptional set of finite logarithmic measure. From (11) and (12), we
obtain

m(r, y) = o
(T (r + |c|, y)

rδ
)

+ o(T (r, y)) +O(m(r, p(z))) (13)

for all r outside of an exceptional set of finite logarithmic measure. (13) and N(r, y) ≤
O(N(r, p)) yield that ρ(y) ≤ ρ(p). A contradiction. So λ(Yn(z) − ϕ(z)) = ρ(y). The proof
of Theorem 1.1 is complete.

4 Proof of Theorem 1.2

Since y(z) has a Borel exceptional value d, we see that y(z) takes the form

y(z) = d+
x(z)

q(z)
exp{µzk}, (14)

6
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where µ ∈ C\{0}, k ∈ N\{0}, and x(z) is an entire function such that x(z)(6≡ 0), ρ(x) < k,
and q(z) is the canonical product formed with the poles of y(z) satisfying ρ(q) = λ(q) =
λ( 1y ) < ρ(y). (14) implies that

y(z + ηj) = d+
x(z + ηj)

q(z + ηj)
xj(z) exp{µzk}, (j = 1, 2, · · · , k) (15)

where xj(z) are entire functions, and ρ(xj) = k − 1. If Y2(z)− ϕ(z) is a rational function,
then

k∑
j=1

vj(z)y(z + ηj)− a(z)y2(z)− ϕ(z) = p(z), (16)

where p(z) is a rational function, we deduce from Lemma 2.3 and (16)

m(r, a(z)y2(z)) = m
(
r,

k∑
j=1

vj(z)y(z + ηj)− ϕ(z)− p(z)
)

≤ m(r, y(z)) +
k∑
j=1

m
(
r,
y(z + ηj)

y(z)

)
+m(r, ϕ(z))

+m(r, p(z)) +
k∑
j=1

m(r, vj(z)) + S(r, y)

= m(r, y(z)) + S(r, y),

(17)

We obtain form Lemma 2.4

N(r, a(z)y2(z)) = N
(
r,

k∑
j=1

vj(z)y(z + ηj)− ϕ(z)− p(z)
)

= kN(r, y) +O(rλ−1+ε) + S(r, y).

(18)

Together (17) and (18), we have

T (r, a(z)y2(z)) = T
(
r,

k∑
j=1

vj(z)y(z + ηj)− ϕ(z)− p(z)
)

≤ T (r, y) + (k − 1)N(r, y) +O(rλ−1+ε) + S(r, y).

(19)

(16), (19) and T (r, ay2) = 2T (r, y(z)) + S(r, y) imply that

T (r, y) ≤ (k − 1)N(r, y) +O(rλ−1+ε) + S(r, y).

A contradiction, since λ( 1y ) < ρ(y). Hence Y2(z) − ϕ(z) is transcendental. (14) and (15)
imply that

Y2(z)− ϕ(z) = (
k∑
j=1

vj(z)
x(z + ηj)

q(z + ηj)
xj(z)− 2da(z)

x(z)

q(z)
) exp{µzk}

− a(z)
x2(z)

q2(z)
exp{2µzk}+

k∑
j=1

dvj(z)− d2a(z)− ϕ(z).

(20)

7
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By x(z)
q(z) 6≡ 0, we obtain ρ(Y2(z)− ϕ(z)) = ρ(y) = k. Suppose λ(Y2(z)− ϕ(z)) < ρ(y). Then

Y2(z)− ϕ(z) =
l(z)

m(z)
exp{βzk} = l ∗ (z) exp{βzk}, (21)

where β ∈ C\{0}, l(z) is an entire function satisfying ρ(l) < k, and ρ(m) = λ(m) = λ( 1y ) <
ρ(y) = k. We obtain from (14), (15) and (21)

(

k∑
j=1

vj(z)
x(z + ηj)

q(z + ηj)
xj(z)− 2da(z)

x(z)

q(z)
) exp{µzk} − a(z)

x2(z)

q2(z)
exp{2µzk}

= l ∗ (z) exp{βzk}+
k∑
j=1

dvj(z)− d2a(z) + ϕ(z).

(22)

We divided the discussion into the following three cases.

Case I. β 6= µ and β 6= 2µ, Lemma 2.1 and (22) imply that x2(z)
q2(z)

≡ 0, by (14) and this,

we have y(z) ≡ d. A contradiction.

Case II. β = µ and β 6= 2µ. By Lemma 2.1 and (22), we can obtain x2(z)
q2(z)

≡ 0, we use

the similar method as case I, we also get a contradiction.

Case III. β = 2µ and β 6= µ, we divided this into the following two subcases.

Subcase I. If d = 0, then we obtain from (14), (15) and (20)

k∑
j=1

vj(z)
x(z + ηj)

q(z + ηj)
xj(z) exp{µzk} − a(z)

x2(z)

q2(z)
exp{2µzk} − ϕ(z) = l ∗ (z) exp{βzk}. (23)

Since x(z)
q(z) 6≡ 0, (23) implies that β = 2µ. Hence we can write (22) as follows

k∑
j=1

vj(z)
x(z + ηj)

q(z + ηj)
xj(z) exp{µzk} − (a(z)

x2(z)

q2(z)
+ l ∗ (z)) exp{2µzk} − ϕ(z) = 0. (24)

Combing Lemma 2.1 and (24), we have
∑k

j=1 vj(z)x(z + ηj)xj(z) ≡ 0. This is impossible,

sicne
∑k

j=1 vj(z)y(z + ηj) 6≡ 0.

Subcase II. Suppose that d 6= 0. Using the similar method as above, we also obtain∑k
j=1 dvj(z)− d2a(z)− ϕ(z) ≡ 0, a contradiction. So λ(Y2(z)− ϕ(z)) = k.
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Abstract. In this paper, we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on C∗-ternary

algebras for bi-Jensen functional equation.

1. Introduction and preliminaries

The stability problem of functional equations had been first raised by Ulam [15]. In 1941, Hyers [8] gave
a first affirmative answer to the question of Ulam for Banach spaces. The generalizations of this result have
been published by Aoki [1] and Rassias [14] for additive mappings and linear mappings, respectively. Several
stability problems for various functional equations have been investigated in [3, 4, 6, 7, 11, 12, 13].

Let A be a C∗-ternary algebra (see [16]). An additive mapping D : A → A is called a ternary ring
derivation if

D([x, y, z]) = [D(x), y, z] + [x,D(y), z] + [x, y,D(z)]

for all x, y, z ∈ A. An additive mapping D : A→ A is called a ternary Jordan ring derivation if

D([x, x, x]) = [D(x), x, x] + [x,D(x), x] + [x, x,D(x)]

for all x ∈ A.
The following definition was defined by Eshaghi Gordji et al. [5].

Definition 1.1. ([5]) Let A be a C∗-ternary algebra. A bi-additive mapping D : A × A → A is called a
ternary bi-derivation if it satisfies

D([x, y, z], w) = [D(x,w), y, z] + [x,D(y, w∗), z] + [x, y,D(z, w)],

D(x, [y, z, w]) = [D(x, y), z, w] + [y,D(x∗, z), w] + [y, z,D(x,w)]

for all x, y, z, w ∈ A.
A bi-additive mapping D : A×A→ A is called a ternary Jordan bi-derivation if it satisfies

D([x, x, x], w) = [D(x,w), x, x] + [x,D(x,w∗), x] + [x, x,D(x,w)],

D(x, [w,w,w]) = [D(x,w), w, w] + [w,D(x∗, w), w] + [w,w,D(x,w)]

for all x,w ∈ A.

Let A and B be C∗-ternary algebras. A mapping J : A→ A is called a Jensen mapping if J satisfies the

functional equation 2J
(

x+y
2

)
= J(x) + J(y). For a given mapping f : A×A→ B , we define

Jf(x, y, z, w) = 4f
(x+ y

2
,
z + w

2

)
− f(x, z)− f(x,w)− f(y, z)− f(y, w)

0*Corresponding authors.
0Keywords: Hyers-Ulam stability; bi-Jensen mapping; C∗-ternary algebra; ternary Jordan bi-derivation.
0Mathematics Subject Classification 2010: Primary 17A40, 39B52, 39B82, 47Jxx, 46K70, 46B99.
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for all x, y, z, w ∈ A. A mapping f : A × A → B is called a bi-Jensen mapping if f satisfies the equation
Jf(x, y, z, w) = 0 and the functional equation Jf = 0 is called a bi-Jensen functional equation. For more
details about the result concerning such problems, see ([2, 9]).

In this paper, we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on C∗-ternary algebras
for the bi-Jensen functional equation.

2. Stability of ternary Jordan bi-derivations on C∗-ternary algebras for the bi-Jensen
functional equation

Throughout this section, assume that A is a ternary C∗-algebra. We need the following lemmas to prove
the main theorems.

The following lemma was proved in [7].

Lemma 2.1. ([7]) Let f : A→ A be an additive mapping. Then

f([a, a, a], w) = [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)],

f(a, [w,w,w]) = [f(a,w), a, a] + [a, f(a,w∗), a] + [a, a, f(a,w)]

hold for all a,w ∈ A if and only if

f([a, b, c] + [b, c, a] + [c, a, b], [w,w,w]) = [f(a,w), b, c] + [a, f(b, w∗), c] + [a, b, f(c, w)] + [f(b, w), c, a]

+[b, f(c, w∗), a] + [b, c, f(a,w)] + [f(c, w), a, b] + [c, f(a,w∗), b] + [c, a, f(b, w)],

f([a, a, a], [b, c, w] + [c, w, b] + [w, b, c]) = [f(a, b), c, w] + [b, f(a∗, c), w] + [b, c, f(a,w)] + [f(a, c), w, b]

+[c, f(a∗, w), b] + [c, w, f(a, b)] + [f(a,w), b, c] + [w, f(a∗, b), c] + [w, b, f(a,w)]

hold for all a, b, c, w ∈ A.

The following lemma was proved in [10].

Lemma 2.2. ([10]) Let f : A × A → A be a bi-Jensen mapping and let n be a positive integer. Then the
following are equivalent:

(1) f(x, y) =
1

4n
f(2nx, 2ny) + (

1

2n
− 1

4n
)(f(2nx, 0) + f(0, 2ny)) + (1− 1

2n
)2f(0, 0)

holds for all x, y ∈ A.

(2) f(x, y) =
1

4n
f(2nx, 2ny) + (2n − 1)(f(2nx, 0) + f(0, 2ny)) + (2n+1 − 3 +

1

4n
)2f(0, 0)

holds for all x, y ∈ A.

(3) f(x, y) = 4nf(
1

2n
x,

1

2n
y) + (2n − 4n)(f(

1

2n
x, 0) + f(0,

1

2n
y)) + (2n − 1)2f(0, 0)

holds for all x, y ∈ A.

(4) f(x, y) =
1

2n
f(2nx, y) +

1

2n
(1− 1

2n
)f(0, 2ny)) + (1− 1

2n
)2f(0, 0)

holds for all x, y ∈ A.

(5) f(x, y) =
1

2n
f(2nx, y) +

1

2n+1
(1− 1

2n
)(f(x, 2ny) + f(−x, 2ny)) + (1− 1

2n
)2f(0, 0)

holds for all x, y ∈ A.
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Theorem 2.3. Let p ∈ (0, 1) and θ > 0. Let f : A×A→ A be a mapping such that

‖Jf(x, y, z, w)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p), (2.1)

‖f([x, y, z] + [y, z, x] + [z, x, y], w)− [f(x,w), y, z] + [x, f(y, w∗), z]− [x, y, f(z, w)]− [f(y, w), z, x]

−[y, f(z, w∗), x]− [y, z, f(x,w)]− [f(z, w), x, y]− [z, f(x,w∗), y]− [z, x, f(y, w)]‖ (2.2)

+‖f(x, [y, z, w] + [z, w, y] + [w, y, z])− [f(x, y), z, w]− [y, f(x∗, z), w]− [y, z, f(x∗, w)]

−[f(x, z), w, y]− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]‖
≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all x, y, z, w ∈ A. Then there exists a unique ternary Jordan bi-derivation D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤
( 2p

2(2− 2p)
+

2 · 2p

4− 2p

)
θ(‖x‖p + ‖y‖p) (2.3)

for all x, y, z, w ∈ A with D(0, 0) = f(0, 0). The mapping D : A×A→ A is given by

D(x, y) := lim
j→∞

1

4j
f(2jx, 2jy) + lim

j→∞

1

2j
f(2jx, 0) + lim

j→∞

1

2j
f(0, 2jy) + f(0, 0)

for all x, y ∈ A

Proof. By the same reasoning as in the proof of [10, Theorem 2], there exists a unique bi-Jensen mapping
D : A×A→ A satisfying (2.3). The mapping D : A×A→ A is given by

D(x, y) := lim
n→∞

1

4n
f(2nx, 2ny),

lim
n→∞

1

2n
f(2nx, 0) = lim

n→∞

1

2n
f(0, 2ny) = 0

for all x, y ∈ A. It follows from (2.2) that∥∥∥D([x, y, z] + [y, z, x] + [z, x, y], w)− [D(x,w), y, z]− [x,D(y, w∗), z]− [x, y,D(z, w)]

−[D(y, w), z, x]− [y,D(z, w∗), x]− [y, z,D(x,w)]− [D(z, w), x, y]− [z,D(x,w∗), y]− [z, x,D(y, w)]
∥∥∥

+
∥∥∥D(x, [y, z, w] + [z, w, y] + [w, y, z])− [D(x, y), z, w]− [y,D(x∗, z), w]− [y, z,D(x∗, w)]

−[D(x, z), w, y]− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]
∥∥∥

= lim
n→∞

(∥∥∥ 1

16n
f(23n[x, y, z] + 23n[y, z, x] + 23n[z, x, y], 2nw)

−[
1

4n
f(2nx, 2nw), y, z]− [x,

1

4n
f(2ny, 2nw∗), z]− [x, y,

1

4n
f(2nz, 2nw)]

−[
1

4n
f(2ny, 2nw), z, x]− [y,

1

4n
f(2nz, 2nw∗), x]− [y, z,

1

4n
f(2nx, 2nw)]

−[
1

4n
f(2nz, 2nw), x, y]− [z,

1

4n
f(2nx, 2nw∗), y]− [z, x,

1

4n
f(2ny, 2nw)]

∥∥∥)
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+ lim
n→∞

(∥∥∥ 1

16n
f(2nx, 23n[y, z, w] + 23n[z, w, y] + 23n[z, w, y])

− [
1

4n
f(2nx, 2ny), z, w]− [y,

1

4n
f(2nx∗, 2nz), w]− [y, z,

1

4n
f(2nx, 2nw)]

− [
1

4n
f(2nx, 2nz), w, y]− [z,

1

4n
f(2nx∗, 2nw), y]− [z, w,

1

4n
f(2nx, 2ny)]

− [
1

4n
f(2nx, 2nw), y, z]− [w,

1

4n
f(2nx∗, 2ny), z]− [w, y,

1

4n
f(2nx, 2nz)]

∥∥∥)
≤ lim

n→∞

2np

16n
θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) = 0

for all x, y, z, w ∈ A. So

D([x, y, z] + [y, z, x] + [z, x, y], w) = [D(x,w), y, z] + [x,D(y, w∗), z] + [x, y,D(z, w)] + [D(y, w), z, x]

+ [y,D(z, w∗), x] + [y, z,D(x,w)] + [D(z, w), x, y] + [z,D(x,w∗), y] + [z, x,D(y, w)]

and

D(x, [y, z, w] + [z, w, y] + [w, y, z]) = [D(x, y), z, w] + [y,D(x∗, z), w] + [y, z,D(x∗, w)] + [D(x, z), w, y]

+ [z, f(x∗, w), y][z, w, f(x, y)] + [f(x,w), y, z] + [w, f(x∗, y), z] + [w, y, f(x, z)]

for all x, y, z, w ∈ A. Therefore, the mapping D is a unique ternary Jordan bi-derivation satisfying (2.3). �

Now we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on C∗-ternary algebras for the
bi-Jensen mapping for the case p > 2 in the following theorem.

Theorem 2.4. Let p > 2 and θ > 0. Let f : A×A→ A be a mapping satisfying (2.1) and (2.2). Then there
exists a unique ternary Jordan bi-derivation D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤
( 2p

2(2p − 2)
+

2 · 2p

2p − 4

)
θ(‖x‖p + ‖y‖p) (2.4)

for all x, y ∈ A.

Proof. By the same reasoning as in the proof of [10, Theorem 2], there exists a unique bi-Jensen mapping
D : A×A→ A satisfying (2.4). By Lemma 2.2, the mapping D : A×A→ A is given by

D(x, y) := lim
j→∞

4j
(
f(
x

2j
,
y

2j
)− f(

x

2j
, 0)− f(0,

y

2j
) + f(0, 0)

)
+ lim

j→∞
2j
(
f(
x

2j
, 0) + f(0, 0)

)
+ lim

j→∞
2j
(
f(0,

y

2j
) + f(0, 0)

)
+ f(0, 0)

for all x, y ∈ A. It follows from (2.2) that∥∥∥D([x, y, z] + [y, z, x] + [z, x, y], w)− [D(x,w), y, z]− [x,D(y, w∗), z]− [x, y,D(z, w)]

−[D(y, w), z, x]− [y,D(z, w∗), x]− [y, z,D(x,w)]− [D(z, w), x, y]− [z,D(x,w∗), y]− [z, x,D(y, w)]
∥∥∥

+
∥∥∥D(x, [y, z, w] + [z, w, y] + [w, y, z])− [D(x, y), z, w]− [y,D(x∗, z), w]− [y, z,D(x∗, w)]

−[D(x, z), w, y]− [z, f(x∗, w), y]− [z, w, f(x, y)]− [f(x,w), y, z]− [w, f(x∗, y), z]− [w, y, f(x, z)]
∥∥∥
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= lim
n→∞

(∥∥∥ 1

16n
f(23n[x, y, z] + 23n[y, z, x] + 23n[z, x, y], 2nw)

− [
1

4n
f(2nx, 2nw), y, z]− [x,

1

4n
f(2ny, 2nw∗), z]− [x, y,

1

4n
f(2nz, 2nw)]

− [
1

4n
f(2ny, 2nw), z, x]− [y,

1

4n
f(2nz, 2nw∗), x]− [y, z,

1

4n
f(2nx, 2nw)]

− [
1

4n
f(2nz, 2nw), x, y]− [z,

1

4n
f(2nx, 2nw∗), y]− [z, x,

1

4n
f(2ny, 2nw)]

∥∥∥)
+ lim

n→∞

(∥∥∥ 1

16n
f(2nx, 23n[y, z, w] + 23n[z, w, y] + 23n[z, w, y])

− [
1

4n
f(2nx, 2ny), z, w]− [y,

1

4n
f(2nx∗, 2nz), w]− [y, z,

1

4n
f(2nx, 2nw)]

− [
1

4n
f(2nx, 2nz), w, y]− [z,

1

4n
f(2nx∗, 2nw), y]− [z, w,

1

4n
f(2nx, 2ny)]

− [
1

4n
f(2nx, 2nw), y, z]− [w,

1

4n
f(2nx∗, 2ny), z]− [w, y,

1

4n
f(2nx, 2nz)]

∥∥∥)
≤ lim

n→∞

2np

16n
θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) = 0

for all x, y, z, w ∈ A. So

D([x, y, z] + [y, z, x] + [z, x, y], w) = [D(x,w), y, z] + [x,D(y, w∗), z] + [x, y,D(z, w)]

+ [D(y, w), z, x] + [y,D(z, w∗), x] + [y, z,D(x,w)] + [D(z, w), x, y] + [z,D(x,w∗), y] + [z, x,D(y, w)]

and

D(x, [y, z, w] + [z, w, y] + [w, y, z]) = [D(x, y), z, w] + [y,D(x∗, z), w] + [y, z,D(x∗, w)]

+ [D(x, z), w, y] + [z, f(x∗, w), y][z, w, f(x, y)] + [f(x,w), y, z] + [w, f(x∗, y), z] + [w, y, f(x, z)]

for all x, y, z, w ∈ A.
Now, let δ : A × A → A be another bi-Jensen mapping satisfying (2.4). By Lemma 2.2 and D(0, 0) =

f(0, 0) = δ(0, 0), we have∥∥∥D(x, y)− δ(x, y)
∥∥∥ = 4n

∥∥∥D(
x

2j
,
y

2j
)− δ( x

2j
,
y

2j
)
∥∥∥

≤ 4n
∥∥∥D(

x

2j
,
y

2j
)− f(

x

2j
,
y

2j
)
∥∥∥ +

∥∥∥f(
x

2j
,
y

2j
)− δ( x

2j
,
y

2j
)
∥∥∥

≤ 4nθ

2(n−1)p

( 2

2p − 2
+

8

2p − 4

)
(‖x‖p + ‖y‖p),

which tends to zero as n → ∞ for all x, y ∈ A. So we can conclude that D(x, y) = δ(x, y) for all x, y ∈ A.
Thus the bi-Jensen mapping D : A×A→ A is unique. �

Now we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on C∗-ternary algebras for the
bi-Jensen mapping for the case p ∈ (1, 2) in the following theorem.

Theorem 2.5. Let p ∈ (1, 2) and θ > 0. Let f : A× A → A be a mapping satisfying (2.1) and (2.2). Then
there exists a unique ternary Jordan bi-derivation D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤
( 2p

2p − 2
+

4 · 2p

4− 2p

)
θ(‖x‖p + ‖y‖p)

for all x, y ∈ A.

Proof. The rest of the proof is similar to the proof of Theorem 2.3. �

Finally, we prove the Hyers-Ulam stability of ternary Jordan bi-derivations on C∗-ternary algebras for the
bi-Jensen mapping for the case p ∈ (0, 1) in the following theorem.
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Theorem 2.6. Let p ∈ (0, 1), θ > 0 and δ > 0. Let f : A× A→ A be a mapping satisfying (2.1), (2.2) and
D(0, 0) = f(0, 0). Then there exists a unique ternary Jordan bi-derivation D : A×A→ A such that

‖f(x, y)−D(x, y)‖ ≤ 2pθ

2(2− 2p)
‖x‖p + (

2pθ

2(2− 2p)
+ θ)‖y‖p + δ

for all x, y ∈ A with D(0, 0) = f(0, 0). The mapping D : A×A→ A is given by

D(x, y) := lim
j→∞

1

2j
(f(2jx, y) + f(0, 2jy)) + f(0, 0)

for all x, y ∈ A.

Proof. The rest of the proof is similar to the proof of Theorem 2.3. �
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Abstract The circular cone complementarity problem (CCCP) is a particular nonsymmetric

cone optimization problem, which is widely used in real engineering problems. In this paper,

we first reformulate the CCCP as a nonlinear system of equations by a one-parametric class of

smoothing functions, and then propose a nonmonotone smoothing Newton method for solving

the CCCP. A new nonmonotone line search scheme is used in the proposed algorithm, which

can help to improve the convergence speed of the algorithm and find the optimal solution more

rapidly. Under suitable assumptions, the global convergence and local quadratic convergence

are achieved. Finally, numerical results of the force optimization problem for a quadruped

robot and random generated CCCPs illustrate the effectiveness of our new algorithm.

† Corresponding author, E-mail: chixiaoni@126.com.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

146 Xiaoni Chi et al 146-162



2

Keywords circular cone complementarity problem, smoothing Newton method, nonmono-
tone line search, local quadratic convergence

2010 Mathematics Subject Classification: 90C25, 90C33

1 Introduction

The circular cone (CC) [1] is a pointed closed convex cone having hyper-spherical sections
orthogonal to its axis of revolution about which the cone is invariant to rotation. The ni-
dimensional circular cone Cni

θi
(i = 1, . . . ,m) is given by

Cni

θi
:= {xi = (xi0, xi1) ∈ R×Rni−1| cos θi‖xi‖ ≤ xi0} (1)

with the rotation angle θi ∈ (0, π2 ), where ‖·‖ represents the Euclidean norm. And (Cni

θi
)∗(i =

1, . . . ,m) is the dual cone of Cni

θi
(i = 1, . . . ,m) defined by

(Cni

θi
)∗ := {xi = (xi0, xi1) ∈ R×Rni−1| sin θi‖xi‖ ≤ xi0}.

When θi = π
4 , the circular cone Cni

θi
becomes the second-order cone (SOC) Kni(i = 1, . . . ,m)

[2] given by
Kni := {xi = (xi0, xi1) ∈ R×Rni−1 | ‖xi1‖ ≤ xi0}, (2)

and the interior of the SOC Kni is expressed as

(Kni)◦ := {xi = (xi0, xi1) ∈ R×Rni−1|‖xi1‖ < xi0}.

In this paper, we consider the circular cone complementarity problem (CCCP), that is to find
a pair of vectors (x, y) ∈ Rn ×Rn satisfying

x ∈ Cnθ , y = f(x) ∈ (Cnθ )∗, 〈x, y〉 = 0, (3)

where 〈·, ·〉 refers to the Euclidean inner product, f : Rn → Rn is a continuously differentiable
function, and Cnθ ⊂ Rn is the Cartesian product of circular cones, i.e.,

Cnθ = Cn1

θ1
× Cn2

θ2
× · · · × Cnm

θm

with n = n1+n2+ · · ·+nm. Thus, the second-order cone complementarity problem (SOCCP)
is a special class of the CCCP.

Recently, the CCCP is widely used in real engineering problems. For example, it is easy
to find that circular cone constraints are involved in force optimization problems for legged
robots, the optimal grasping force manipulation for the multifingered hand-arm robot, and
the control for quadruped robots [3, 4]. Furthermore, the nonsymmetric cone optimization
plays an important role in combinatorial NP-hard problems and nonconvex quadratic prob-
lems [5]. Therefore, it is meaningful to study theories and algorithms for the CCCP. Zhou
and Chen [6] studied the properties and spectral decomposition of the CC. In order to solve
convex quadratic circular cone optimization problem, Wang et al. [7] proposed a primal-dual
interior-point algorithm, and proved polynomial convergence of the proposed algorithm. Bai
et al. [8] proposed interior-point methods for circular cone programming by kernel functions.
Miao et al. [9] constructed some complementarity functions for the CCCP and proposed some
merit functions for the CCCP. However, the algorithms for the CCCP are still rare at the
moment.

In contrast to nonsymmetric cone complementarity problems, there are many numerical
methods [10-14] for solving symmetric cone complementarity problems, such as interior-point
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methods [11], merit functions methods [12] and smoothing Newton methods [13, 14]. Among
them, people pay more attention to smoothing Newton methods. Since Cnθ and (Cnθ )∗ in (3)
are usually not the same cone with θ 6= 45◦, we can not directly adopt smoothing Newton
methods for the SOCCP to solve the CCCP (3).

Note that in [6], for any xi = (xi0, xi1) ∈ R×Rni−1 (i = 1, . . . ,m) and yi = (yi0, yi1) ∈
R×Rni−1, the algebraic relationship between the CC and the SOC is as follows:

xi ∈ Kni ⇔ H−1i xi ∈ Cni

θi
, yi ∈ Kni ⇔ Hiy

i ∈ (Cni

θi
)∗, (4)

where Hi =

 tan θi 0T

0 Ini−1

 , and H−1i denotes the inverse matrix of Hi.

Based on the algebraic relationship (4), the CCCP (3) can be rewritten as the SOCCP:
find vectors (x, y) ∈ Rn ×Rn satisfying

x ∈ Kn, y = H−1f(H−1x) ∈ Kn, 〈x, y〉 = 0, (5)

where Kn = Kn1 ×Kn2 × · · ·×Knm with n = n1 +n2 + · · ·+nm is the Cartesian product of
SOCs, and H = H1 ⊕H2 ⊕ · · ·Hm. Thus a smoothing Newton method can be used to solve
the SOCCP (5). Recently, in order to find the optimal solution more rapidly and improve the
convergence speed of the algorithm, the nonmonotone line search has been adopted to solve
symmetric cone complementarity problems [13, 14]. Therefore, we ask whether we can use a
nonmonotone smoothing Newton method to solve the CCCP.

We propose a nonmonotone smoothing Newton algorithm for solving the CCCP in this
paper. Without restrictions regarding its starting point, the proposed algorithm performs one
line search and solves one linear system of equations approximately at each iteration. The
global convergence and local quadratic convergence are achieved without strict complemen-
tarity. Moreover, numerical results about the force optimization problem for a quadruped
robot and random generated CCCPs illustrate the effectiveness of our new algorithm.

For simplicity, in the following analysis, we assume that m = 1, i.e., Cnθ = Cn1

θ1
. This

does not lose any generality, because we can easily extended our analysis to the general case.

The organization of this paper is as follows. We briefly review the Euclidean Jordan
algebra and some basic concepts in the next section. In Section 3, a smoothing function and
its properties are given. In Section 4, we present a nonmonotone smoothing Newton method
for solving the CCCP, and show its well-definedness under suitable assumptions. In Section
5, the global convergence and local quadratic convergence of the proposed algorithm are in-
vestigated. Some preliminary numerical results are reported in Section 6. Finally, we close
this paper with some conclusions in Section 7.

We use the following notations. Rn and R denote the set of n-dimensional real column
vectors and real numbers, respectively. ‖x‖ :=

√
xTx is the Euclidean norm for any x ∈ Rn.

For convenience, we use x = (x0, x1) instead of x = (x0, (x1)T )T ∈ R × Rn−1. Given two
matrices C and D, we define

C ⊕D =

 C 0

0 D

 .
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When % → 0, we write ν = o(%) (respectively, ν = O(%)) to mean that ν/% tends to zero
(respectively, is uniformly bounded) for any ν, % > 0.

2 Preliminaries

The Euclidean Jordan algebra associated with the SOC Kn [2] plays an important role
in this paper. For any x = (x0, x1) ∈ R × Rn−1 and y = (y0, y1) ∈ R × Rn−1, we have the
following Jordan algebra associated with the SOC Kn

x ◦ y = (xT y, x0y1 + y0x1).

The unit element of this algebra is e = (1, 0, · · · , 0) ∈ Rn. For any x = (x0, x1) ∈ R×Rn−1,
the symmetric matrix is defined by

W(x) =

 x0 (x1)T

x1 x0In−1

 .

It is easy to verify that

x ◦ y = W(x)y = W(y)x, ∀x, y ∈ Rn.

Furthermore, W(x) is invertible if and only if x ∈ (Kn)◦.

Given x = (x0, x1) ∈ R × Rn−1, the spectral factorization of vectors in Rn associated
with the SOC Kn can be decomposed as

x = λ1(x)u(1)(x) + λ2(x)u(2)(x),

where
λi(x) = x0 + (−1)i‖x1‖, i = 1, 2,

and

u(i)(x) =


1
2 (1, (−1)i x1

‖x1‖ ), if x1 6= 0,

1
2 (1, (−1)i$), otherwise,

i = 1, 2,

with any $ ∈ Rn−1 satisfying ‖$‖ = 1.

Lemma 1 [11] Let a, b, r, g ∈ Rn and a�Kn0, b�Kn0, a ◦ b�Kn0. If 〈r, g〉 ≥ 0 and
a ◦ r + b ◦ g = 0, then r = g = 0.

The concept of semismoothness is closely related to the local convergence of the proposed
algorithm. Mifflin [15] originally introduced the concept of semismoothness for functionals.
Then Qi and Sun [16] extended it to vector-valued functions.

Definition 1 A locally Lipschitz function H : Rn → Rm, if H is directionally differen-
tiable at x and for any V ∈ ∂H(x+ ∆x),

H(x+ ∆x)−H(x)− V (∆x) = o(‖∆x‖),
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where ∂H stands for the generalized Jacobian of H [17], then it is said to be semismooth at
x. If H is semismooth at x and

H(x+ ∆x)−H(x)− V (∆x) = O(‖∆x‖2),

then H is said to be strongly semismooth at x. Suppose a function H : Rn → Rm is (strongly)
semismooth everywhere in Rn, then it is a (strongly) semismooth function.

Next, we introduce the concept of a monotone function, which will be used in our sub-
sequent analysis.

Definition 2 [18] If a nonlinear mapping f : Rn → Rn for any x, y ∈ Rn with x 6= y
satisfies

〈x− y, f(x)− f(y)〉 ≥ 0,

then it is said to be a monotone function. Moreover, if there exists ξ > 0 such that

〈x− y, f(x)− f(y)〉 ≥ ξ‖x− y‖2,

we say f is a strongly monotone function. When f is continuously differentiable, we have
that f is monotone (respectively, strongly monotone) if and only if ∇f is positive-semidefinite
(respectively, positive definite) for all x ∈ Rn.

3 A smoothing function and its properties

Given any (x, y) ∈ Rn ×Rn, we know that a one-parametric class of functions [12]

ϑτ (x, y) := x+ y −
√

(x− y)2 + 4τ(x ◦ y) (6)

with τ ∈ (0, 1) is an SOC complementarity function, i.e.,

ϑτ (x, y) = 0⇔ x ∈ Kn, y ∈ Kn, xT y = 0. (7)

However, ϑτ (x, y) is not continuously differentiable at (0, 0) ∈ Rn ×Rn, and thus it is nons-
mooth.

In this paper, we introduce the following smoothing function [19] of the SOC comple-
mentarity function (6)

ϑτ (µ, x, y) := x+ y −
√

(x− y)2 + 4τ(x ◦ y) + 4µ2e , (8)

where τ ∈ [0, 1) is a given constant. It is easy to see that (8) is continuously differentiable at
any (µ, x, y) ∈ R++×Rn×Rn. When τ = 0, ϑτ (µ, x, y) reduces to the well-known smoothing
Chen-Harker-Kanzow-Smale function [20]

ϑ0(µ, x, y) := x+ y −
√

(x− y)2 + 4µ2e .

When τ = 1
2 , ϑτ (µ, x, y) becomes the smoothing Fischer-Burmeister function [21]

ϑ 1
2
(µ, x, y) := x+ y −

√
x2 + y2 + 4µ2e . (9)

Define Φτ (ω) by

Φτ (ω) :=


µ

y −H−1f(H−1x)

ϑτ (µ, x, y)


(10)
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with ω := (µ, x, y) ∈ R+ × Rn × Rn, where ϑτ (µ, x, y) is defined by (8). It follows from
(3),(4),(5),(7) and (10) that

Φτ (ω) = 0⇔(x, y) solves the SOCCP (5) ⇔(H−1x,Hy) solves the CCCP (3).

Therefore, when µ > 0, we can use the Newton’s method to solve the nonlinear system of
equations Φτ (ω) = 0 approximately at each iteration. By driving ‖Φτ (ω)‖ → 0, we can find
a solution of the SOCCP (5). Thus by the algebraic relationship (4), a solution of the CCCP
(3) can be obtained.

Theorem 1 Let the function Φτ (ω) be given as in (10). Then we have the following
results.

(i) Φτ (ω) is continuously differentiable at any ω = (µ, x, y) ∈ R++ × Rn × Rn with its
Jacobian

Φ′τ (ω) =


1 0 0

0 −H−1f ′(H−1x)H−1 I

Cτ (ω) Dτ (ω) Eτ (ω)


, (11)

where
Cτ (ω) = (ϑτ )′µ(ω) = −4µW−1(ψτ )e ,

Dτ (ω) = (ϑτ )′x(ω) = I −W−1(ψτ )W [x+ (2τ − 1)y], (12)

Eτ (ω) = (ϑτ )′y(ω) = I −W−1(ψτ )W [y + (2τ − 1)x], (13)

ψτ :=
√

(x− y)2 + 4τ(x ◦ y) + 4µ2e .

(ii) Suppose a function f is continuously differentiable and monotone, then Φ′τ (ω) is
invertible for any ω = (µ, x, y) ∈ R++ ×Rn ×Rn.

Proof (i) According to the proof of Proposition 2.1 [19], it is not difficult to see that (i)
holds.

(ii) Let an arbitrary vector ∆ω := (∆µ,∆x,∆y) ∈ R × Rn × Rn satisfy Φ′τ (ω)∆ω = 0.
It is sufficient to show ∆ω = 0. By (11), Φ′τ (ω)∆ω = 0 gives

∆µ = 0, (14)

−H−1f ′(H−1x)H−1∆x+ ∆y = 0, (15)

Dτ (ω)∆x+ Eτ (ω)∆y = 0. (16)

Since f is a continuously differentiable and monotone function, we have by (15)

〈∆x,∆y〉 = 〈∆x,H−1f ′(H−1x)H−1∆x〉 = 〈H−1∆x, f ′(H−1x)H−1∆x〉 ≥ 0. (17)

By (12), (13) and (16), we obtain

{I −W−1(ψτ )W [x+ (2τ − 1)y]}∆x+ {I −W−1(ψτ )W [y + (2τ − 1)x]}∆y = 0. (18)

Applying W (ψτ ) to both sides of (18) and using W (x)y = x ◦ y for any x, y ∈ Rn yield

{ψτ − [x+ (2τ − 1)y]} ◦∆x+ {ψτ − [y + (2τ − 1)x]} ◦∆y = 0. (19)

On the other hand, from the definition of ψτ , we have

ψ2
τ − [x+ (2τ − 1)y]2 = 4τ(1− τ)y2 + 4µ2e�Kn0,
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ψ2
τ − [y + (2τ − 1)x]2 = 4τ(1− τ)x2 + 4µ2e�Kn0.

Thus it follows from Proposition 3.4 [21] that

ψτ − [x+ (2τ − 1)y]�Kn0, {ψτ − [y + (2τ − 1)x]}�Kn0. (20)

Furthermore, note that

{ψτ − [x+ (2τ − 1)y]} ◦ {ψτ − [y + (2τ − 1)x]}

= τ(ψτ − x− y)2 + 4(1− τ)µ2e�Kn0.

(21)

Therefore, from (17), (19)-(21) and Lemma 1, we have ∆x = ∆y = 0. The proof is completed.

4 A nonmonotone smoothing Newton algorithm for CCCP

Let Φτ be defined by (10). We define

Ψτ (ω) := ‖Φτ (ω)‖2 = µ2 +
∥∥y −H−1f(H−1x)

∥∥2 + ‖ϑτ (µ, x, y)‖2. (22)

Algorithm 1 (A nonmonotone smoothing Newton algorithm for CCCP)
Step 0 Choose θ ∈ (0, π2 ), δ ∈ (0, 1), τ ∈ [0, 1), σ ∈ (0, 12 ) and µ0 > 0 . And choose

γ ∈ (0, 1) such that γµ0 < 1. Let u := (µ0, 0, 0) ∈ R++ × Rn × Rn and (x0, y0) ∈ Rn × Rn
be an arbitrary point. Let ω0 := (µ0, x

0, y0), Υ0 := Ψτ (ω0) and φτ (ω0) := γmin{1,Ψτ (ω0)}.
Choose an integer P ≥ 0. Set k := 0, m(0) = 0.

Step 1 If
∥∥Φτ (ωk)

∥∥ = 0, stop. Otherwise, let

φτ (ωk) := min γ{1,Ψτ (ω0), ...,Ψτ (ωk)}. (23)

Step 2 Compute ∆ωk := (∆µk,∆x
k,∆yk) ∈ R×Rn ×Rn by

Φτ (ωk) + Φ′τ (ωk)∆ωk = φτ (ωk)u. (24)

Step 3 Let λk = max{δl| l = 0, 1, 2, . . .} such that

Ψτ (ωk + λk∆ωk) ≤ [1− 2σ(1− γµ0)λk]Υk. (25)

Step 4 Set ωk+1 := ωk + λk∆ωk, k := k + 1.
Step 5 Set m(k) = min {m(k − 1) + 1, P} and

Ψτ (ωl(k)) := max
0≤j≤m(k)

{Ψτ (ωk−j)}, Υk :=
(k −m(k))Ψτ (ωl(k)) + Ψτ (ωk)

k −m(k) + 1
. (26)

Go to Step 1.
Remark 1
(i) In Algorithm 1, we employ a new nonmonotone line search, which can be used to

find the optimal solution more rapidly and improve the convergence speed of the algorithm.
If we choose P = 0 or P to be sufficiently large, then (25) is the monotone line search.

(ii) If P is a given positive integer, there are the following two cases in the iteration
process:

(a) if k < P , then m(k) = k and Υk = Ψτ (ωk), i.e., we use a monotone line search
in Algorithm 1. In fact, smoothing Newton algorithms with a monotone line search possess
local fast convergence when

∥∥Φτ (ωk)
∥∥ is small enough [22]. So now it is not necessary to use

the nonmonotone line search in Algorithm 1;
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(b) if k ≥ P , then m(k) = P and

Υk :=
(k − P )Ψτ (ωl(k)) + Ψτ (ωk)

k − P + 1
=

(k − P )Ψτ (ωl(k))

k − P + 1
+

Ψτ (ωk)

k − P + 1
, (27)

i.e., we use a nonmonotone line search in Algorithm 1.

Let φτ (ω) be given by (23), and denote

Γ = {ω = (µ, x, y) ∈ R++ ×Rn ×Rn : µ ≥ φτ (ω)µ0}. (28)

Lemma 2 Suppose that a function f is continuously differentiable and monotone, and
consider the sequence {ωk = (µk, x

k, yk)} generated by Algorithm 1. Then
(i) {φτ (ωk)} is monotonically decreasing.
(ii) For any k ≥ 0, we have µk > 0 and ωk ∈ Γ.
(iii) {µk} is monotonically decreasing.
Proof The proof is similar to Lemma 4.1 [14]. We omit the details for brevity.

Lemma 3 Suppose that a function f is continuously differentiable and monotone, and
consider the sequence {ωk = (µk, x

k, yk)} generated by Algorithm 1. Then we have Ψτ (ωk) ≤
Υk ≤ Ψτ (ωl(k)).

Proof We obtain from (26)

Υk =
(k −m(k))Ψτ (ωl(k)) + Ψτ (ωk)

k −m(k) + 1
≤ (k −m(k))Ψτ (ωl(k)) + Ψτ (ωl(k))

k −m(k) + 1
= Ψτ (ωl(k)),

and

Υk =
(k −m(k))Ψτ (ωl(k)) + Ψτ (ωk)

k −m(k) + 1
≥ (k −m(k))Ψτ (ωk) + Ψτ (ωk)

k −m(k) + 1
= Ψτ (ωk).

This completes the proof.

Theorem 2 Assume that a function f is continuously differentiable and monotone, and
consider the sequence {ωk = (µk, x

k, yk)} generated by Algorithm 1. Then Algorithm 1 is
well defined.

Proof Since Φ′τ (ω) is invertible for any µ > 0 by Theorem 1, then Step 2 is well defined.
Next we show that Step 3 is well defined. From the definition of φτ (ωk) in (23), we have
φτ (ωk) ≤ γmin{1,Ψτ (ωk)} for any k ≥ 0. If Ψτ (ωk) ≥ 1, then φτ (ωk) ≤ γ ≤ γ

√
Ψτ (ωk); If

Ψτ (ωk) < 1, then φτ (ωk) ≤ γΨτ (ωk) ≤ γ
√

Ψτ (ωk). Therefore, we obtain for any k ≥ 0,

φτ (ωk) ≤ γ
√

Ψτ (ωk) = γ
∥∥Φτ (ωk)

∥∥ . (29)

For any λ ∈ (0, 1], denote

rkτ (λ) := Ψτ (ωk + λ∆ωk)−Ψτ (ωk)− λΨ′τ (ωk)∆ωk. (30)

Since Ψτ (·) is continuously differentiable at any ωk ∈ R1+2n, we have

|rkτ (λ)| = o(λ). (31)
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It follows from (22), (24), (29)-(31) and Lemma 3 that

Ψτ (ωk + λ∆ωk) = Ψτ (ωk) + λΨ′τ (ωk)∆ωk + rkτ (λ)

= Ψτ (ωk) + 2λΦτ
T (ωk)Φτ

′(ωk)∆ωk + o(λ)

= Ψτ (ωk) + 2λΦτ
T (ωk)φτ (ωk)u− 2λ

∥∥Φτ (ωk)
∥∥2 + o(λ)

≤ (1− 2λ)Ψτ (ωk) + 2λγµ0Ψτ (ωk) + o(λ)

≤ [1− 2(1− γµ0)λ]Υk + o(λ).

(32)

Since γµ0 < 1, there exists λ̄ ∈ (0, 1) such that for any λ ∈ (0, λ̄] and σ ∈ (0, 12 ),

Ψτ (ωk + λ∆ωk) ≤ [1− 2σ(1− γµ0)λ]Υk.

This demonstrates that Step 3 is well defined. We complete the proof.

Lemma 4 Assume that a function f is continuously differentiable and monotone, and
consider the sequence {ωk = (µk, x

k, yk)} generated by Algorithm 1. Then {Ψτ (ωl(k))} is
monotonically decreasing.

Proof We have Υk ≤ Ψτ (ωl(k)) for any k ≥ 0 by Lemma 3. Thus, it follows from (25)
that

Ψτ (ωk + λk∆ωk) ≤ [1− 2σ(1− γµ0)λk]Υk ≤ [1− 2σ(1− γµ0)λk]Ψτ (ωl(k)). (33)

Since γµ0 < 1, it follows from (33) that Ψτ (ωk+1) ≤ Ψτ (ωl(k)). We obtain from (26)

Ψτ (ωl(k+1)) = max
0≤j≤m(k+1)

{Ψτ (ωk+1−j)}

≤ max
0≤j≤m(k)+1

{Ψτ (ωk+1−j)} = max{Ψτ (ωl(k)),Ψτ (ωk+1)},

Therefore, we have Ψτ (ωl(k+1)) ≤ Ψτ (ωl(k)) for any k ≥ 0. We complete the proof.

5 Convergence Analysis

The global convergence and local quadratic convergence of Algorithm 1 will be analyzed
in this section. In order to establish the global convergence of Algorithm 1, we first give the
coerciveness of the function Ψτ (ω) given by (22).

From the proof of Theorem 4.1 [22], we have the result as follows.

Lemma 5 Let ϑτ (µ, x, y) be given by (8), and s, t ∈ R++ with s < t. Suppose that
{ωk = (µk, x

k, yk)} is a sequence satisfying
(a) µk ∈ [s, t], and {(xk, yk)} is unbounded; and
(b) there is a bounded sequence {(uk, vk)} such that {〈xk − uk, yk − vk〉} is bounded below.
Then {ϑτ (µk, x

k, yk)} is unbounded.

By Lemma 5, it is not difficult to obtain the coerciveness of the function Ψτ (ω) given in
(22).
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Lemma 6 Assume that a function f is continuously differentiable and monotone, and
consider the sequence Ψτ (ω) given by (22). Then Ψτ (µ, x, y) is coercive in (x, y) for each
µ > 0, that is, lim‖(x,y)‖→∞Ψτ (µ, x, y) = +∞.

Proof The proof is similar to Lemma 5.3 [22]. We omit it here for brevity.

Theorem 3 Suppose that a function f is continuously differentiable and monotone,
and consider {ωk = (µk, x

k, yk)} generated by Algorithm 1. Then {µk} and {‖ Φτ (ωk) ‖}
converge to zero as k → ∞, and any accumulation point (H−1x∗, Hy∗) is a solution of the
CCCP (3).

Proof From Lemma 2, we know that {φτ (ωk)} is convergent, i.e., there exists a scalar
β̄ ≥ 0 such that lim

k→∞
φτ (ωk) = β̄. Suppose that β̄ > 0. Then it follows from Lemma 2 (ii)

that 0 < µ0β̄ ≤ µ∗ = lim
k→∞

µk. By (22), Lemma 3 and Lemma 4,

µk
2 ≤ Ψτ (ωk) ≤ Υk ≤ Ψτ (ωl(k)) ≤ Ψτ (ωl(k−1)) ≤ · · · ≤ Ψτ (ω0). (34)

Therefore we obtain from Lemma 6 that {ωk} is bounded, and hence there exists a convergent
sequence {ωk}k∈J , where J ⊆ {0, 1, ..., k, ...}. Let ω∗ := (µ∗, x

∗, y∗) = lim
J3k→∞

(µk, x
k, yk) such

that Ψτ (ω∗) = lim
J3k→∞

Ψτ (ωk) = lim supk→∞Ψτ (ωk) and φτ (ω∗) = lim
J3k→∞

φτ (ωk) = β̄. It

follows from (34) and β̄ > 0 that Ψτ (ω∗) > 0. We now prove that Theorem 3 holds by
considering the following two cases.

(1) Assume that there is a constant ρ such that λk ≥ ρ > 0 for any k ∈ J . Then we
obtain from (25)

Ψτ (ωk + λk∆ωk) ≤ [1− 2σ(1− γµ0)λk]Υk ≤ [1− 2σ(1− γµ0)ρ]Υk. (35)

By letting J 3 k →∞ in (35), we have

Ψτ (ω∗) ≤ [1− 2σ(1− γµ0)ρ]Υ∗. (36)

It is not difficult to verify that Υ∗ := lim supJ3k→∞Υk = Ψτ (z∗) > 0 by (26). Thus we get
1 ≤ 1− 2σ(1− γµ0)ρ, which contradicts the fact that γµ0 < 1.

(2) Suppose that lim
J3k→∞

λk = 0. Then the stepsize λ̂k := λk/δ does not satisfy (25) for

any sufficiently large k ∈ J , i.e.

Ψτ (ωk + λ̂k∆ωk) > [1− 2σ(1− γµ0)λ̂k]Υk ≥ [1− 2σ(1− γµ0)λ̂k]Ψτ (ωk),

which implies

Ψτ (ωk + λ̂k∆ωk)−Ψτ (ωk)

λ̂k
≥ −2σ(1− γµ0)Ψτ (ωk). (37)

Since 0 < µ0φτ (ω∗) ≤ µ∗, we have that Ψτ (ω) is continuously differentiable at ω∗ ∈ R1+2n.
By taking the limit on both sides of (37), we obtain

−2σ(1− γµ0)Ψτ (ω∗) ≤ 2Φτ
T (ω∗)Φ′τ (ω∗)∆ω∗

= 2Φτ
T (ω∗)[−Φτ (ω∗) + φτ (ω∗)u]

= −2Φτ
T (ω∗)Φτ (ω∗) + 2φτ (ω∗)Φτ

T (ω∗)u

≤ −2(1− γµ0)Ψτ (ω∗).
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Since Ψτ (ω∗) > 0 and γµ0 < 1, we have σ ≥ 1, which contradicts the fact that 0 < σ <
1
2 . Thus we have β̄ = 0. It follows from (23) that there is a sequence {ωkn} such that

lim
kn→∞

Ψτ (ωkn) = 0 holds. By (26) and Lemma 4, we have lim
kn→∞

Ψτ (ωl(kn)) = lim
k→∞

Ψτ (ωl(k)) =

Ψτ (ωl(∗)) = 0. Then, we obtain from (34) that lim
k→∞

Ψτ (ωk) = Ψτ (ω∗) = 0 and hence

‖Φτ (ω∗)‖ = 0. Thus (H−1x∗, Hy∗) is a solution of the CCCP (3). This completes the proof.

Next the local convergence of Algorithm 1 will be analyzed. It is easy to see that Φτ (ω)
is strongly semismooth at any ω ∈ R1+2n by Theorem 1. Then by the proof of Theorem 8
[23], we obtain the local quadratic convergence of Algorithm 1 for the CCCP.

Lemma 7 Suppose that a function f is continuously differentiable and monotone, and
the solution set of the CCCP is nonempty and bounded. Let the sequence {ωk} be generated
by Algorithm 1 and ω∗ := (µ∗, x∗, y∗) be an accumulation point of {ωk}. If all V ∈ ∂Φτ (ω∗)
are nonsingular, then the sequence {ωk} converges to ω∗ quadratically, i.e.,

‖ωk+1 − ω∗‖ = O(‖ωk − ω∗‖2) and µk+1 = O((µk)2).

6 Numerical examples

In this section, we have conducted some numerical experiments of Algorithm 1 for solving
the CCCP. All the experiments were done on a PC with Intel(R) Celeron(R) CPU N2930
1.83 GHz×2 and 4.0 GB memory. Algorithm 1 was implemented in MATLAB 8.1.0.604
(R2013a). We chose the following parameters in all the numerical experiments:

µ0 = 0.1, δ = 0.75, σ = 0.3, γ = 0.45, τ = 0.4.

We used Ψτ (ωk) ≤ 10−8 as the stopping criterion.

In the following tables, n denote the size of problems; ACPU and AIter denote the CPU
time in seconds and the number of iterations, respectively.

Firstly, we use Algorithm 1 to solve the force optimization problem for a quadruped
robot [4, 7], which can be expressed as the circular cone programming:

(P ) min
{
cTx : Ax = b, x ∈ C12

θ

}
, (38)

where c = (c1, c2, c3, c4) ∈ R12, and C12
θ = C3

θ × C3
θ × C3

θ × C3
θ . The dual problem of (38) is

defined by

(D) max
{
bT s : AT s+ y = c, y ∈ (C12

θ )∗
}
.

If F ◦(P )× F ◦(D) 6= ∅, then (x∗, s∗, y∗) is the solution of (P) and (D) if and only if it is the
solution of

Ax = b, x ∈ C12
θ , y = c−AT s ∈ (C12

θ )∗, xT y = 0. (39)

According to the algebraic relationship between the CC and the SOC (4), we reformulate (39)
as

AH−1x = b, x ∈ K, AT s+Hy = c, y ∈ K, xT y = 0 (40)
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with K = K3 ×K3 ×K3 ×K3. Let

Φτ (µ, x, s, y) :=



µ

AH−1x− b

AT s+Hy − c

ϑτ (µ, x, y)


. (41)

We adopt Algorithm 1 to solve Φτ (µ, x, s, y) = 0, where ϑτ (µ, x, y) is defined by (8). We use
parameters:
A1 = [5 1 1; 1 1 1; 4 6 3; 1 4 3; 3 3 5; 3 3 3]; A2 = [3 6 6; 1 6 2; 6 2 1; 5 4 1; 6 5 1; 4 3 4];
A3 = [4 3 6; 3 2 6; 2 5 1; 1 5 2; 5 6 5; 4 3 3]; A4 = [3 3 1; 6 1 2; 6 2 6; 5 2 5; 4 4 5; 6 1 6];
b = (43, 32, 51, 39, 54, 44)T ; ci = (2, 1, 0)T , i = 1, 2, 3, 4;

The initial points are x0 = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)T and s0 = (0, 0, 0, 0, 0, 0)T .
Let θ = π

4 ,
π
5 ,

π
8 , or π

12 , respectively. Table 1 shows the value x∗ and the objective function
value Z∗ = (c∗)Tx∗ of the force optimization problem for a quadruped robot.

Moreover, we solve the randomly generated linear CCCP with different problem sizes n
and m = 1 by Algorithm 1. In details, let a random vector q = rand(n, 1) and a random
matrix A = rand(n, n) be generated, and M := ATA. Since the matrix M is semidefinite
positive, the generated problem (3) with f(x) = Mx + q is the monotone CCCP, i.e, the
generated problem (5) with H−1f(H−1x) = H−1[MH−1x+ q] is the monotone SOCCP. The
random problems of each size are generated 10 times. Choose initial points x0 = e ∈ Rn,
y0 = 0 ∈ Rn, and e denotes the unit element in Kn.

Table 2 reveals that the AIter and ACPU for the CCCP with different rotation angles
and problem sizes. It shows that Algorithm 1 can be used efficiently to solve the CCCP with
different rotational angles.

Table 3 reveals that the AIter and ACPU of Algorithm 1 with a monotone line search
or a nonmonotone line search for the SOCCP with different problem sizes. It shows that
our algorithm usually works worse with the monotone line search than the nonmonotone line
search.

From the numerical results in Tables 1-3, we see that the nonmonotone smoothing New-
ton algorithm is successful for solving the CCCP. Moreover, we can use Algorithm 1 to solve
the force optimization problem for a quadruped robot. Furthermore, we also find that our
algorithm usually works worse with the monotone line search than the nonmonotone line
search, in the sense that the former tends to require more AIter and more ACPU than the
latter in most cases.

7 Conclusions

In this paper, a smoothing Newton method for the CCCP with a new nonmonotone
line is proposed. Under suitable assumptions, the global convergence and local quadratic
convergence are achieved. From the numerical experiments, we can see that Algorithm 1
can effectively solve the CCCP with different problem sizes and different rotation angles,
and also can be applied to real-world problems, such as the force optimization problem for
a quadruped robot. And the nonmonotone smoothing Newton method is better than the
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Table 1 Numerical results of the force optimization problem for a quadruped robot.

θ θ = π
4 θ = π

5 θ = π
8 θ = π

12

x∗



2.42056

2.27904

0.81553

1.34655

1.34503

−0.06425

1.21045

0.40717

1.13991

0.72928

0.08791

0.72395





2.41022

1.64542

0.59920

1.70622

1.23334

−0.12509

1.21569

0.28628

0.83560

1.22722

0.62921

0.63169





2.40052

0.76492

0.63521

2.52821

1.03455

−0.16275

1.22029

0.17841

0.47297

1.99630

0.82427

0.06585





2.10235

0.50586

0.24776

3.50136

0.91945

−0.18712

1.59579

0.14573

0.40209

2.22975

0.43971

−0.40467



Z∗ 15.53282 16.91290 19.09283 20.86925
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Table 2 Results for the CCCP with different θ and problem sizes.

θ = π
3 θ = π

4 θ = π
5 θ = π

6

n ACPU AIter ACPU AIter ACPU AIter ACPU AIter

100 0.0700 5.0 0.0863 6.0 0.0900 6.2 0.0951 6.9

200 0.2783 5.0 0.3343 6.0 0.3804 7.0 0.4107 7.5

300 0.7516 5.9 0.9180 6.9 1.0528 8.0 1.0323 7.9

400 1.6756 6.0 1.9657 7.0 2.2717 8.1 2.5356 9.0

500 2.9128 6.0 3.4351 7.6 3.8557 8.2 4.3882 8.9

600 4.7698 6.0 5.7232 7.7 6.6746 9.0 7.2381 9.2

700 6.6911 6.0 8.9254 8.0 10.0183 9.0 10.5241 9.5

800 9.5330 6.0 12.6333 8.0 14.3293 9.3 16.4956 10.5

900 13.1500 6.2 16.7760 8.0 19.4508 9.3 22.5813 10.8

1000 18.4252 6.6 22.2793 8.0 26.5724 9.5 30.5843 11.0

1100 28.179 7.0 36.036 8.8 40.461 10.0 53.848 11.4

1200 37.528 7.0 48.298 9.0 63.445 10.2 67.497 11.2

1300 45.091 7.0 57.184 9.0 80.317 10.2 82.146 11.2

1400 54.362 7.0 71.051 9.0 89.219 10.0 103.418 11.0

1500 66.070 7.0 86.972 9.0 100.303 10.6 132.516 11.4
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Table 3 Numerical results for SOCCP with a nonmonotone or monotone line search.

P=3 P=0

n ACPU AIter ACPU AIter

100 0.0872 6.0 0.0882 6.0

200 0.3844 6.0 0.3961 6.1

300 1.0185 6.9 1.0305 7.0

400 2.2106 7.0 2.3637 7.4

500 4.0018 7.4 4.3376 8.0

600 6.4876 7.6 6.9378 8.1

700 8.9622 8.0 10.3067 8.8

800 12.7327 8.0 14.7962 9.0

900 16.8958 8.0 20.1800 9.2

1000 22.4432 8.0 29.7001 9.7

1100 34.8014 8.5 44.9750 9.9

1200 47.9557 9.0 57.4256 10.0

1300 57.1843 9.0 70.5862 10.0
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monotone smoothing Newton method for solving the CCCP. Therefore, the smoothing New-
ton method with a nonmonotone line search is promising for solving the CCCP.
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Duality in nondifferentiable multiobjective fractional programming
problems involving second order (F, b, ϕ, ρ, θ)− univex functions
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Abstract

In the present paper a nondifferentiable multiobjective fractional pro-
gramming problem is considered in which every component of objective
functions includes a term involving the support function of a compact
convex set. Finally a second order Mond-weir type dual is formulated and
weak, strong and converse duality results are proved under (F, b, ϕ, ρ, θ)−
univexity types assumptions.
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1 Introduction

In recent years, the concept of convexity and generalized convexity is well
recognized in optimization theory and play an imperative role in mathematical
economics, management science and optimization theory. Therefore, the re-
search on convexity and generalized convexity is one of the most important tool
in mathematical programming. The differential convex function f : Rn → R is
characterized by the following inequality

f(x)− f(y) ≥ ∇f(y)t(x− y)

for all x, y ∈ Rn, where ∇ denotes the gradient of f. In general a function f(x)
is said to be convex on a convex set X ⊆ Rn if for any x, y ∈ X,λ ∈ [0, 1], f(x)
satisfies the following inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

In 1981, Hanson [15] generalized convex functions to introduce the concept
of invex functions, which was a significant landmark in the optimization theory.
Normally, a differentiable function f : Rn → R is said to be invex function if
there exits a vector valued function η : Rn × Rn → Rn such that the following
inequality

f(x)− f(y) ≥ ∇f(y)ηt(x, y)

holds, for all x, y ∈ Rn.

Consequently, several classes of generalized convexity and invexity have
been introduced. More specifically, Preda [28] introduced the concept of (F, ρ)−
convexity as an extension of F− convexity [14] and ρ− convexity [13] and he
used this concept to investigate some duality for Wolfe vector dual, Mond-
weir dual and general Mond-weir dual for multiobjective programming problem.
Gulati and Islam [26] and Ahmad [9] deliberate optimality and duality results
for multiobjective programming problems involving F−convexity and (F, ρ)−
convexity assumptions respectively.
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Mangasarian [19] first formulated the second order dual for a nonlinear
programming problem and obtained duality results under generalized convex
type assumptions. Mond [3] reproved the second order duality results under
some easier assumptions than those used by Mangasarian [19].

The class of (F, ρ)−convex functions was extended to the second order
(F, ρ)−convex functions by [12] and they obtained the duality results for Man-
gasarian type, Mond-weir type and general Mond-weir type multiobjective pro-
gramming problem. Motivated by different concepts of generalized convexity,
Liang et al. [30, 31] formulated the (F, α, ρ, d)−convexity and acquired some
optimality conditions and duality results for the multiobjective problems.

Further, stimulated by Liang et al. [30] and Aghezzaf [4], I. Ahmad and Z.
Husain [10] introduced the notion of second order (F, α, ρ, d)−convex functions
and their generalization and they developed weak, strong and strict converse du-
ality theorems for the second order Mond-weir type multiobjective dual. More-
over, Bector et al. [4] introduced the concept of univex functions and considered
optimality and duality for multiobjective optimization problem. Rueda et al.
[18] studied optimality and duality results for several mathematical program-
ming problems by combining the concepts of type I and univex functions. A
step ahead Zalmai [7] introduced the notion of second order (F, b, ϕ, ρ, θ)−univex
functions and obtained optimality and duality results for multiobjective pro-
gramming problems.

On the other hand, the optimization problems in which the objective func-
tion is a ratio of two functions usually identified as fractional programming
problems. Basically, these types of problems occur in design of electronic cir-
cuits, engineering design, portfolio selection problems [1, 6, 11, 20]. Due to
the fact that minimax fractional problems has wide varieties of applications in
real life problems, so it becomes a fascinating and interesting topic for research.
Necessary and sufficient optimality conditions for minimax fractional program-
ming problems first developed by Schmittendorf [29]. Tonimoto [25] used the
necessary conditions formulated in [29] and construct a dual problem for mini-
max fractional programming problems. Recently, Ramu Dubey et al. [21] and
S. K. Mishra et al. [22] taken up the nondifferentiable multi objective fractional
problem and obtained the optimality and duality results under higher order
(C,α, γ, ρ, d)− convexity and (C,α, ρ, d)− convexity type assumptions. More
recently, many articles in this direction have been appeared in the literature
[see 17, 23, 24, 27, 32].

In this paper, a class of nondifferentiable multiobjective fractional pro-
gramming problem is considered in which the numerator as well as denominator
of every component of objective function contains a term concerning the sup-
port functions. Further, we prove sufficient optimality conditions and duality
theorems for nondifferentiable minimax fractional programming problems with
support functions under the second order (F, b, ρ, α, θ)− univex functions.

2 Notations and Preliminaries

In this paper following generalized nondifferentiable multiobjective mini-
max fractional problem is considered

(GMFP) min
x∈Rn

sup
y∈Y

F (x, y)

G(x, y)
= min

x∈Rn
sup
y∈Y

f(x, y) + s(x|C)
g(x, y)− s(x|D)
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Subject to hj(x) + s(x|Ej) ≤ 0, j = 1, 2, . . . ,m,

where Y is a compact subset of Rm, f, g : Rn × Rm → R and hj : Rn →
Rm (j = 1, 2, . . . ,m) are continuously differentiable functions of Rn×Rm. C,D
and Ej(j = 1, . . . ,m) are compact convex sets of Rm and s(x|C), s(x|D) and
s(x|Ej), (j = 1, . . . ,m) represent the support functions of the compact sets and
f(x, y) + s(x|C) ≥ 0 and g(x, y) − s(x|D) > 0 for all feasible x. Let S be the
set of all feasible solutions of (GMFP). We define the following sets for every
x ∈ S.

J(x) = {j ∈ J : hj(x) + s(x|Ej) = 0},

Y (x) = {y ∈ Y :
f(x, y) + s(x|C)
g(x, y)− s(x|D)

= sup
z∈Y

f(x, z) + s(x|C)
g(x, z)− s(x|D)

}.

K(x) = {(s, t, ȳ) ∈ N ×Rs
+ ×Rm : 1 ≤ s ≤ n+1, t = (t1, t2, . . . , ts} ∈ R+

with
∑s

i=1 ti = 1, ȳ = (ȳ1, . . . ȳs) and ȳi ∈ Y (x), i = 1, 2, . . . s}.

Since f and g are continuously differentiable functions and Y is compact
subset of Rm, it follows that for each x∗ ∈ S Y (x∗) ̸= ϕ. Thus for any ȳi ∈ Y (x̄),
we have a positive constant

λ0 =
f(x∗, ȳi) + s(x∗|C)
g(x∗, ȳi)− s(x∗|D)

.

Definition 2.1 [2]. LetK be a compact convex set in Rn. The support function
s(x|K) is defined as

s(x|K) = max{xty : y ∈ K}.

The support function s(.|K) has a subdifferential. The subdifferential of s(.|K)
at x is defined as

∂s(x|K) = {z ∈ K|ztx = s(x|K)}.

Consistently, we can write
ztx = s(x|K).

Now we describe the generalized (F, b, ϕ, ρ, θ)− univex function in the fol-
lowing steps

Definition 2.3. A function F : X ×X ×Rn → R, where X ⊆ Rn is said to be
a sublinear in its third argument if for all x, x̄ ∈ X, the following conditions are
satisfied

(i) F(x, x̄, a1 + a2) ≤ F(x, x̄, a1) + F(x, x̄, a2)

(ii) F(x, x̄, αa) = αF(x, x̄, a),

∀ a1, a2, a ∈ Rn, α ∈ R+.

Definition 2.4 [7]. The function f(x) is said to be second order (F, b, ϕ, ρ, θ)−
(strict) univex at z if there exist functions b : X × X → (0,∞), ϕ : R → R,
ρ : X × X → R, θ : X × X → Rn, and a sublinear function F(x, z; .) :
Rn ×Rn ×Rn → R such that for each x ∈ X(x ̸= z) and p ∈ Rn,

ϕ(f(x)−f(z)+1

2
pt∇2f(z)p)(>) = F (x, z; b(x, z)[∇f(z)+∇2f(z)p])+ρ(x, z)∥θ(x, z)∥2,
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where ∥.∥2 is a norm on Rn.

A twice differentiable vector function f : X → Rk is said to be (F, b, ϕ, ρ, θ)−
univex at x = z, if each of its components fi is (F, b, ϕ, ρ, θ)− univex at z. Now
we define generalized second order (F, b, ϕ, ρ, θ)− univex functions.

Definition 2.5. A twice differentiable function f, over X is said to be second
order (F, b, ϕ, ρ, θ)− pseudo univex at z if there exist functions b : X × X →
(0,∞), ϕ : R → R, ρ : X ×X → R, θ : X ×X → Rn, and a sublinear function
F(x, z; .) : Rn ×Rn ×Rn → R such that for each x ∈ X(x ̸= z) and p ∈ Rn,

ϕ(f(x)− f(z) +
1

2
pT∇2f(z)p) < 0

⇒ F (x, z; b(x, z)[∇f(z) +∇2f(z)p]) < −ρ(x, z)∥θ(x, z)∥2.

A twice differentiable vector function f : X → Rk is said to be second
order (F, b, ϕ, ρ, θ)− pseudo univex at x = z, if each of its components fi is
(F, b, ϕ, ρ, θ)− pseudo univex at z.

Definition 2.6. A twice differentiable function f, over X is said to be second
order (F, b, ϕ, ρ, θ)− strictly pseudo univex at z if there exist functions b : X ×
X → (0,∞), ϕ : R → R, ρ : X × X → R, θ : X × X → Rn, and a sublinear
function F(x, z; .) : Rn × Rn × Rn → R such that for each x ∈ X(x ̸= z) and
p ∈ Rn,

F (x, z; b(x, z)[∇f(z) +∇2f(z)p]) = −ρ(x, z)∥θ(x, z)∥2.

⇒ ϕ(f(x)− f(z) +
1

2
pt∇2f(z)p) > 0,

or equivalently

ϕ(f(x)− f(z) +
1

2
pt∇2f(z)p) = 0,

⇒ F (x, z; b(x, z)[∇f(z) +∇2f(z)p]) < −ρ(x, z)∥θ(x, z)∥2.

A twice differentiable vector function f : X → Rk is said to be second
order (F, b, ϕ, ρ, θ)− strictly pseudo univex at x = z, if each of its components
fi is (F, b, ϕ, ρ, θ)− strictly pseudo univex at z.

Definition 2.7. A twice differentiable function f over X is said to be second
order (F, b, ϕ, ρ, θ)− quasi univex at z if there exist functions b : X × X →
(0,∞), ϕ : R → R, ρ : X ×X → R, θ : X ×X → Rn, and a sublinear function
F(x, z; .) : Rn ×Rn ×Rn → R such that for each x ∈ X(x ̸= z) and p ∈ Rn,

ϕ(f(x)− f(z) +
1

2
pt∇2f(z)p) = 0

⇒ F (x, z; b(x, z)[∇f(z) +∇2f(z)p]) = −ρ(x, z)∥θ(x, z)∥2.

A twice differentiable vector function f : X → Rk is said to be second
order (F, b, ϕ, ρ, θ)− quasi univex at x = z, if each of its components fi is
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(F, b, ϕ, ρ, θ)− quasi univex at z.

Definition 2.8. A twice differentiable function f, over X is said to be second
order strong (F, b, ϕ, ρ, θ)− pseudo univex at z if there exist functions b : X ×
X → (0,∞), ϕ : R → R, ρ : X × X → R, θ : X × X → Rn, and a sublinear
function F(x, z; .) : Rn × Rn × Rn → R such that for each x ∈ X(x ̸= z) and
p ∈ Rn,

ϕ(f(x)− f(z) +
1

2
pT∇2f(z)p) ≤ 0

⇒ F (x, z; b(x, z)[∇f(z) +∇2f(z)p]) ≤ −ρ(x, z)∥θ(x, z)∥2.
A twice differentiable vector function f : X → Rk is said to be second

order strong (F, b, ϕ, ρ, θ)− pseudo univex at x = z, if each of its components fi
is strong (F, b, ϕ, ρ, θ)− pseudo univex at z.

Note 2.1. Now we have the following special cases

(i) If ϕ(x) = x and θ(., .) = d(., .) : X × X → R, then the second order
(F, b, ϕ, ρ, θ)−univexity becomes the second order (F, α, ρ, d)−convexity
defined by I. Ahmad and Z. Husain [10]

(ii) If ϕ(x) = x, b(x, z) = 1 and θ(., .) : X × X → R, then second order
(F, b, ϕ, ρ, θ)− univexity becomes the second order (F, ρ)− convexity in-
troduced by Zhang and Mond [12]. Moreover, if second order terms be-
come zero i.e., p = 0, then it reduces to (F, ρ)−convexity defined in [9, 28].

Now we have the following necessary condition

Theorem 2.1 (Necessary optimal condition). Let x∗ be an optimal solution for
(GMFP) satisfying ⟨w, x⟩ > 0, ⟨v, x⟩ > 0 and if ∇(hj(x

∗) + ⟨uj , x∗⟩), j ∈ J(x∗)
are linearly independent. Then there exists (s, t∗, ȳ) ∈ K(x∗), λ0 ∈ R+, w, v ∈
Rn, uj ∈ Rm and µ∗

j ∈ Rm
+ such that

s∑
i=1

t∗i (∇(f(x∗, ȳi) + ⟨w, x∗⟩)− λ0(∇(g(x∗, ȳi)− ⟨v, x∗⟩)))

+
m∑
j=1

µ∗
j∇(hj(x

∗) + ⟨uj , x∗⟩) = 0, (2.1)

f(x∗, ȳi) + ⟨w, x∗⟩ − λ0(∇(g(x∗, ȳi)− ⟨v, x∗⟩)) = 0, (2.2)
m∑
j=1

µ∗
j∇(hj(x

∗) + ⟨uj , x∗⟩) = 0, (2.3)

⟨w, x∗⟩ = s(x∗|C) (2.4)

⟨v, x∗⟩ = s(x∗|D) (2.5)

⟨uj , x∗⟩ = s(x∗|Ej) (2.6)

t∗i ≥ 0, i = 1, . . . s,
s∑

i=1

ti = 1.
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3 Duality Model

In this section, we consider the following Mond-weir type dual to (GMFP)

max
(s,t,ȳ)∈K(z)

sup
(z,µ,λ,u,v,w,p)∈H1(s,t,ȳ)

λ, (DI)

∇
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩)) +∇2
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩

−λ(g(z, ȳi)−⟨v, z⟩))p+∇
m∑
j=1

µj(hj(z)+⟨uj , z⟩)+∇2
m∑
j=1

µj(hj(z)+⟨uj , z⟩)p = 0,

(3.1)
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))− 1

2
pt∇2

s∑
i=1

ti(f(z, ȳi) + ⟨w, z⟩

−λ(g(z, ȳi)− ⟨v, z⟩))p ≥ 0. (3.2)

m∑
j=1

µj(hj(z) + ⟨uj , z⟩)−
1

2
pt∇2

m∑
j=1

µj(hj(z) + ⟨uj , z⟩)p ≥ 0. (3.3)

Theorem 3.1( Weak duality Theorem). Suppose that x and (z, µ, λ, v, w, u, p)
are feasible solutions of (GMFP) and (DI) respectively. Let
(i) hj(.) + ⟨uj , .⟩ is second order (F, b, ϕ, ρ, θ)−quasi univex at z,

(ii) f(., ȳi)+ ⟨w, .⟩ and −g(., ȳi)+ ⟨v, .⟩ for i = 1, . . . , s are respectively strong
(F, b, ϕ, ρ, θ)− pseudo univex at z with ρ

b + ρ1

b1
= 0,

(iii) u ≤ 0 ⇒ ϕ(u) ≤ 0 and v 5 0 ⇒ ϕ(v) 5 0, for all u, v ∈ Rn.

Then

sup
y∈Y

f(x, y) + ⟨w, x⟩
g(x, y)− ⟨v, x⟩

≥ λ. (3.4)

Proof. Suppose contrary to the result

sup
y∈Y

f(x, y) + ⟨w, x⟩
g(x, y)− ⟨v, x⟩

< λ.

Then, we find
f(x, ȳi) + ⟨w, x⟩ − λ(g(x, ȳi)− ⟨v, x⟩) < 0,

for all ȳi ∈ Y.

It follows ti ≥ 0, i = 1, . . . , s with
∑s

i=1 ti = 1, that

ti(f(x, ȳi) + ⟨w, x⟩ − λ(g(x, ȳi)− ⟨v, x⟩)) ≤ 0,

since t = (t1, . . . , ts) ̸= 0, then there is at least one strict inequality. Now we
have the following

s∑
i=1

ti(f(x, ȳi) + ⟨w, x⟩ − λ(g(x, ȳi)− ⟨v, x⟩)) < 0 ≤
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩
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−λ(g(z, ȳi)− ⟨v, z⟩)− 1

2
pt∇2(f(z, yi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p),

or
s∑

i=1

ti(f(x, ȳi) + ⟨w, x⟩ − λ(g(x, ȳi)− ⟨v, x⟩)− (f(z, ȳi) + ⟨w, z⟩

−λ(g(z, ȳi)− ⟨v, z⟩)) + 1

2
pt∇2(f(z, yi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p) ≤ 0.

From the condition (iii), we get

ϕ(
s∑

i=1

ti(f(x, ȳi) + ⟨w, x⟩ − λ(g(x, ȳi)− ⟨v, x⟩)− (f(z, ȳi) + ⟨w, z⟩

−λ(g(z, ȳi)− ⟨v, z⟩)) + 1

2
pt∇2(f(z, yi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p)) ≤ 0.

By the second order strong (F, b, ϕ, ρ, θ)− pseudo univexity of f(., ȳi) + ⟨w, .⟩
and −g(.ȳi) + ⟨v, .⟩, we have

F (x, z, b1(x, z)(∇
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))

+∇2
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p)) ≤ −ρ1(x, z)∥θ(x, z)∥2,

or

F (x, z,∇
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))

+∇2
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p) ≤ −ρ1
b1

∥θ(x, z)∥2. (3.5)

By use of the sublinearity on dual constraints (3.1), we get

F (x, z;∇
m∑
j=1

µj(hj(z) + ⟨uj , z⟩) +∇2
m∑
j=1

µj(hj(z) + ⟨uj , z⟩)p

= −F (x, z;∇
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))

+∇2
s∑

i=1

ti(f(z, ȳi) + ⟨w, z⟩ − λ(g(z, ȳi)− ⟨v, z⟩))p).

Applying (3.5) in above inequality, we have

F (x, z;∇
m∑
j=1

µj(hj(z) + ⟨uj , z⟩) +∇2
m∑
j=1

µj(hj(z) + ⟨uj , z⟩)p) >
ρ1
b1

∥θ(x, z)∥2

(3.6)
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Let x and (z, µ, λ, u, v, w, p) are any feasible solutions of (GMFP) and (DI)

m∑
j=1

µj(hj(x)+⟨uj , x⟩) ≤ 0 ≤
m∑
j=1

µj(hj(z)+⟨uj , z⟩)−
1

2
pt∇2

m∑
j=1

µj(hj(z)+⟨uj , z⟩)p.

(3.7)
By using assumption (iii), equation (3.7) yields

ϕ(
m∑
j=1

µj(hj(x)+⟨uj , x⟩)−
m∑
j=1

µj(hj(z)+⟨uj , z⟩)+
1

2
pt∇2

m∑
j=1

µj(hj(z)+⟨uj , z⟩)p) ≤ 0.

Using the second order (F, b, ϕ, ρ, θ)− quasi univexity of
∑m

j=1 µj(hj(.)+⟨uj , .⟩),
we get

F (x, z; b(x, z)(∇
m∑
j=1

µj(hj(z)+⟨uj , z⟩)+∇2
m∑
j=1

µj(hj(z)+⟨uj , z⟩)p)) 5 −ρ∥θ(x, z)∥2.

(3.8)
Since b(x, z) > 0, the above inequality with the sublinearity of F give

F (x, z;∇
m∑
j=1

µj(hj(z) + ⟨uj , z⟩) +∇2
m∑
j=1

µj(hj(z) + ⟨uj , z⟩)p) 5 −ρ
b
∥θ(x, z)∥2.

(3.9)
Now utilizing the assumption −ρ

b ≤ ρ1

b1
, the equation (3.9) provides

F (x, z;∇
m∑
j=1

µj(hj(z) + ⟨uj , z⟩) +∇2
m∑
j=1

µj(hj(z) + ⟨uj , z⟩)p) 5
ρ1
b1

∥θ(x, z)∥2,

(3.10)
which contradict (3.6), hence (3.4) hold.

Theorem 3.2 (Strong duality). Assume that x∗ is an efficient solution of
(GMFP) and ∇hj(x∗) j ∈ J(x∗) are linearly independent. Then there ex-
ist (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ = 0) ∈ H1(s

∗, t∗, u∗) such
that (x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ = 0) is a feasible solution of (DI) and the two
objectives have the same values. If in addition, the assumptions of weak du-
ality (Theorem 3.1) hold for all feasible solutions of (GMFP) and (DI), then
(x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ = 0) is an optimal solution of (DI).

Proof. Since x∗ is an optimal solution of (GMFP) and ∇hj(x∗), j ∈ J(x∗)
are linearly independent, by Theorem 2.1, there exist (s∗, t∗, ȳ∗) ∈ K(x∗) and
(x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ = 0) ∈ H1(s

∗, t∗, ȳ∗) such that (x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ =
0) is a feasible solution of (DI) and the two objectives have the same value. Opti-
mality of (x∗, µ∗, λ∗, u∗, v∗, w∗, p∗ = 0) for DI follows from weak duality theorem
(Theorem 3.1).

Theorem 3.3 (Strict converse duality). Let x̄ and (z̄, µ̄, λ̄, ū, v̄, w̄, ȳ, p̄) be the
efficient solutions of (GMFP) and (DI), respectively such that

sup
y∈Y

f(x̄, ȳ) + ⟨w, x̄⟩
g(x̄, ȳ)− ⟨v, x̄⟩

= λ̄. (3.11)

Suppose
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(i) hj(.) + ⟨uj , .⟩ is second order (F, b, ϕ, ρ, θ)−quasi univex at z

(ii) f(., ȳi)+ ⟨w, .⟩ and −g(., ȳi)+ ⟨v, .⟩ for i = 1, . . . , s, are respectively strong
(F, b, ϕ, ρ, θ)− pseudo univex at z with ρ

b + ρ1

b1
= 0,

(iii) u ≤ 0 ⇒ ϕ(u) ≤ 0 and v 5 0 ⇒ ϕ(v) 5 0, for all u, v ∈ Rn.

Then
x̄ = z̄.

Proof. We assume that x̄ ̸= z̄ and reach a contradiction, since x̄ and (z̄, µ̄, λ̄, ū,
v̄, w̄, ȳ, p̄) are the feasible solutions of (GMFP) and (DI) respectively, then we
have

m∑
j=1

µ̄j(hj(x̄)+⟨ūj , x̄⟩) ≤ 0 ≤
m∑
j=1

µ̄j(hj(z̄)+⟨ūj , z̄⟩)−
1

2
p̄∇2

m∑
j=1

µj(hj(z̄)+⟨ūj , z̄⟩)p̄,

(3.12)
by assumption (iii) equation (3.12) yields

ϕ(
m∑
j=1

µ̄j(hj(x̄)+ ⟨ūj , x̄⟩− (hj(z̄)+ ⟨ūj , z̄⟩))+
1

2
p∇2

m∑
j=1

µ̄j(hj(z̄)+ ⟨ūj , z̄⟩)p) ≤ 0.

Utilizing second order (F, b, ϕ, ρ, θ)− quasi univexity of
∑m

j=1 µ̄jhj(.) + ⟨uj , .⟩,
we get

F (x̄, z̄; b(x̄, z̄)(∇
m∑
j=1

µ̄j(hj(z̄)+⟨ūj , z̄⟩)+∇2
m∑
j=1

µ̄j(hj(z̄)+⟨ūj , z̄⟩)p̄)) 5 −ρ∥θ(x̄, z̄)∥2.

(3.13)
Since b(x̄, z̄) > 0, the above inequality with the sublinearity of F gives

F (x̄, z̄;∇
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩) +∇2
m∑
j=1

µ̄j(hj(z̄) + ⟨uj , z̄⟩)p̄) 5 −ρ
b
∥θ(x̄, z̄)∥2.

(3.14)
Now utilizing the assumption −ρ

b ≤ ρ1

b1
, the inequality (3.14) yields

F (x̄, z̄;∇
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩) +∇2
m∑
j=1

µ̄j(hj(z̄) + ⟨uj , z̄⟩)p̄) 5
ρ1
b1

∥θ(x̄, z̄)∥2.

(3.15)
Suppose (3.11) does not hold, then we have

sup
y∈Y

f(x̄, ȳ) + ⟨w̄, x̄⟩
g(x̄, ȳ)− ⟨v̄, x̄⟩

< λ̄.

It is straightforward to see that

f(x̄, ȳi) + ⟨w̄, x̄⟩ − λ̄(g(x̄, ȳi)− ⟨v̄, x̄⟩) < 0,

for all ȳi ∈ Y.

It follows ti ≥ 0, i = 1, . . . , s with
∑s

i=1 ti = 1, that

ti(f(x̄, ȳi) + ⟨w̄, x̄⟩ − λ̄(g(x̄, ȳi)− ⟨v̄, x̄⟩)) ≤ 0,
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with at least one strict inequality, since t = (t1, . . . , ts) ̸= 0. Now we have

s∑
i=1

ti(f(x̄, ȳi) + ⟨w̄, x̄⟩ − λ̄(g(x̄, ȳi)− ⟨v̄, x̄⟩)) < 0 ≤
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩

−λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩)− 1

2
p̄t∇2(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z⟩))p̄),

or
s∑

i=1

ti(f(x̄, ȳi) + ⟨w̄, x̄⟩ − λ̄(g(x̄, ȳi)− ⟨v̄, x̄⟩)− (f(z̄, ȳi) + ⟨w̄, z̄⟩

−λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩)) + 1

2
p̄t∇2(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))p̄) ≤ 0.

From the condition (iii), we get

ϕ(
s∑

i=1

ti(f(x̄, ȳi) + ⟨w̄, x̄⟩ − λ̄(g(x̄, ȳi)− ⟨v̄, x̄⟩)− (f(z̄, ȳi) + ⟨w̄, z̄⟩

−λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩)) + 1

2
p̄t∇2(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))p̄)) ≤ 0.

By the second order strong (F, b, ϕ, ρ, θ)− pseudo univexity of f(., ȳi) + ⟨w̄, .⟩
and −g(., ȳi) + ⟨v̄, .⟩, we have

F (x̄, z̄, b1(x̄, z̄)(∇
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))

+∇2
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))p̄)) ≤ −ρ1(x̄, z̄)∥θ(x̄, z̄)∥2,

or

F (x̄, z̄,∇
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))

+∇2
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))p̄) ≤ −ρ1
b1

∥θ(x̄, z̄)∥2. (3.16)

Using sublinearity on dual constraints (3.1), we get

F (x̄, z̄;∇
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩) +∇2
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩)p̄)

= −F (x̄, z̄;∇
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))

+∇2
s∑

i=1

ti(f(z̄, ȳi) + ⟨w̄, z̄⟩ − λ̄(g(z̄, ȳi)− ⟨v̄, z̄⟩))p̄).

Applying (3.16) in above inequality, we have

F (x̄, z̄;∇
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩) +∇2
m∑
j=1

µ̄j(hj(z̄) + ⟨ūj , z̄⟩)p̄) >
ρ1
b1

∥θ(x̄, z̄)∥2,

(3.17)
which is a contradiction of (3.15). Hence the result follows immediately.
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4 Conclusion

On the basis of application point of view second order duality is very prac-
tical and competent as it provides tighter lower bounds. So it is very significant
to generalize the existing results to second order environment. In the present
study the notion of second order (F, b, ρ, α, θ)− univexity and its generalizations
is considered. Many generalized convexity, invexity and univexity concepts are
special cases of second order (F, b, ρ, α, θ)−univexity. This notion is appropriate
to study the weak, strong and converse duality theorems for second order dual
(DI) of a nondifferentiable fractional problem with support function (GMFP).

The results proved in this paper can be further generalized for the following
non-differentiable minimax fractional programming problem with square root
terms i.e.,

min sup
y∈Y

f(x, y) + (xtBx)1/2

g(x, y)− (xtCx)1/2
,

subject to hj(x) ≤ 0, j = 1, 2, . . . , p,

where Y is a compact subset of Rm, f(., .), g(., .) : Rn × Rm → R and h(.) :
Rn → Rp are twice differentiable functions. B and C are n × n positive semi
definite symmetric matrices.
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COUPLED COINCIDENCE POINT THEOREMS AND CONE
b-METRIC SPACES OVER BANACH ALGEBRAS

YOUNG-OH YANG* AND HONG JOON CHOI

Abstract. In this paper, we obtain some coupled coincidence point results for two
nonlinear contractive mappings in cone b-metric spaces over Banach algebras without
assumption of normality by virtue of the properties of spectral radius. Also we give
two examples as applications of the main results.

1. Introduction

In 2007 the concept of cone metric space was introduced by Huang and Zhang in

[4], where they generalized metric space by replacing the set of real numbers with an

ordering Banach space, and proved some fixed point theorems for contractive mappings

on these spaces. Recently, in ([1],[3], [4], [5], [6], [7], [9], [10]) some common fixed point

theorems have been proved for contractive maps on cone metric spaces. Gnana Bhaskar

and Lakshmikantham([2]) introduced the concept of coupled fixed point of a mapping

F : X × X → X and investigated some coupled fixed point theorems in partially

ordered sets. Since then this new concept is extended and used in various directions(

[2]).

In 2013, in order to generalize the Banach contraction principle to more general form,

Liu and Xu([7]) introduced the concept of cone metric spaces over Banach algebras, by

replacing Banach spaces with Banach algebras as the underlying spaces of cone metric

spaces, and proved some fixed point theorems of generalized Lipschitz mappings with

weaker and natural conditions on generalized Lipschitz constants by means of spectral

radius. Furthermore, they gave an example to explain that the fixed point theorems in

cone metric spaces over Banach algebras are not equivalent to those in metric spaces.

Motivated by the above works, in this paper, we obtain some coupled coincidence

point results for two nonlinear contractive mappings in cone b-metric spaces over Ba-

nach algebras without assumption of normality by virtue of the properties of spectral

radius. Our main results extends the corresponding similar results in cone metric

spaces. Also we give two examples as applications of the main results.

1991 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. cone metric spaces over Banach algebras, coupled fixed point, spectral

radius.
*Corresponding author: yangyo@jejunu.ac.kr.
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2 YOUNG-OH YANG* AND HONG JOON CHOI

Let A always be a real Banach algebra. That is, A is a real Banach space in which

an operation of multiplication is defined, subject to the following properties (for all

x, y, z ∈ A, α ∈ R):

(1) (xy)z = x(yz);

(2) x(y + z) = xy + xz and (x + y)z = xz + yz;

(3) α(xy) = (αx)y = x(αy);

(4) ‖xy‖ ≤ ‖x‖‖y‖.

In this paper, we shall assume that A is a real Banach algebra with a unit (i.e.,

a multiplicative identity) e. An element x ∈ A is said to be invertible if there is an

inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1.

Let A be a real Banach algebra with a unit e and θ the zero element of A. A

nonempty closed subset P of Banach algebra A is called a cone if

(i) {θ, e} ⊂ P ;

(ii) αP + βP ⊂ P for all nonnegative real numbers α, β ;

(iii) P 2 = PP ⊂ P ;

(iv) P ∩ (−P ) = {θ} i.e, x ∈ P and −x ∈ P imply x = θ.

For any cone P ⊆ A, we can define a partial ordering ¹ with respect to P by x ¹ y

if and only if y − x ∈ P . x ≺ y stands for x ¹ y but x 6= y. Also, we use x ¿ y to

indicate that y − x ∈ int P where int P denotes the interior of P . If int P 6= ∅ then P

is called a solid cone. A cone P is called normal if there exists a number K such that

for all x, y ∈ A,

θ ¹ x ¹ y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number K satisfying condition (1.1) is called the normal constant

of P .

In the following we always assume that P is a solid cone of A and ¹ is the partial

ordering with respect to P .

Definition 1.1. Let X be a nonempty set, s ≥ 1 be a constant and A be a real Banach

algebra. Suppose the mapping d : X ×X → A satisfies the following conditions:

(1) θ ¹ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(2) d(x, y) = d(y, x) for all x, y ∈ X ;

(3) d(x, y) ¹ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over

the Banach algebra A.

If s = 1,then every cone b-metric is a cone metric.
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COUPLED COINCIDENCE POINT THEOREMS AND CONE b-METRIC SPACES 3

Example 1.2. Let A = C[a, b] be the set of continuous functions on [a, b] with the

supremum. Define multiplication in the usual way. Then A is a Banach algebraa with

a unit 1. Set P = {x ∈ A : x(t) ≥ 0, t ∈ [a, b]} and X = R. We define a mapping

d : X ×X → A by d(x, y)(t) = |x− y|pet for all x, y ∈ X and for each t ∈ [a, b], where

p > 1 is a constant. This makes (X, d) into a cone b-metric space over Banach algebra

with the coefficient s = 2p−1. But it is not a cone metric space over Banach algebra

since it does not satisfy the triangle inequality.

Definition 1.3. Let (X, d) be a cone b-metric space over the Banach algebra A. Let

{xn} be a sequence in X and x ∈ X.

(1) If for every c ∈ A with θ ¿ c, there exists a natural number N such that

d(xn, x) ¿ c for all n > N , then {xn} is said to be convergent and {xn}
converges to x, and the point x is the limit of {xn}. We denote this by

lim
n→∞xn = x or xn → x (n →∞).

(2) If for all c ∈ A with θ ¿ c, there exists a positive integer N such that

d(xn, xm) ¿ c for all m,n > N , then {xn} is called a Cauchy sequence in

X.

(3) A cone b-metric space (X, d) is said to be complete if every Cauchy sequence

in X is convergent.

Definition 1.4. Let E be a real Banach space with a solid cone P . A sequence

{xn} ⊂ P is called a c−sequence if for any c ∈ A with θ ¿ c, there exists a positive

integer N such that xn ¿ c for all n ≥ N .

Lemma 1.5. ([5], [7]) Let E be a real Banach space with a cone P . Then

(p1) If a ¿ b and b ¿ c, then a ¿ c.

(p2) If a ¹ b and b ¿ c, then a ¿ c.

(p3) If a ¹ b + c for each θ ¿ c, then a ¹ b.

(p4) If θ ¹ u ¿ c for each θ ¿ c, then u = θ.

(p5) If {xn}, {yn} are sequences in E such that xn → x, yn → y and xn ¹ yn for all

n ≥ 1, then x ¹ y.

Lemma 1.6. ([7]) Let A ba a real Banach algebra with a unit e and P be a solid cone

in A. We define the spectral radius ρ(x) of x ∈ A by

r(x) = lim
n→∞ ‖x

n‖1/n = inf
n≥1

‖xn‖1/n.
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(1) If 0 ≤ r(x) < 1, then then e− x is invertible,

(e− x)−1 =
∞∑

i=0

xi and r((e− x)−1) ≤ 1

1− r(k)
.

(2) If r(x) < 1 then ‖xn‖ → 0 as n →∞.

(3) If x ∈ P and r(x) < 1, then (e− x)−1 ∈ P .

(4) If k, u ∈ P , r(k) < 1 and u ¹ ku, then u = θ.

(5) r(x) ≤ ‖x‖ for all x ∈ A.

(6) If x, y ∈ A and x, y commute, then the following holds:

(a) r(xy) ≤ r(x)r(y)

(b) r(x + y) ≤ r(x) + r(y) and

(c) |r(x)− r(y)| ≤ r(x− y).

Lemma 1.7. ([5], [7]) Let (X, d) be a complete cone b-metric space over a Banach

algebra A and let P be a solid cone in A. Let {xn} be a sequence in X. Then

(1) If L ‖xn‖ → 0 as n →∞, then {xn} is a c−sequence.

(2) If k ∈ P is any vector and {xn} is c−sequence in P , then {kxn} is a c−sequence.

(3) If x, y ∈ A, a ∈ P and x ¹ y, then ax ¹ ay.

(4) If {xn} converges to x ∈ X, then {d(xn, x)}, {d(xn, xn+p)} are c-sequences for

any p ∈ N.

2. Main results

Gnana Bhaskar and Lakshmikantham([2]) introduced the concept of coupled fixed

point of a mapping F : X × X → X and investigated some coupled fixed point

theorems in partially ordered sets. Since then this new concept is extended and used

in various directions.

In this section, we establish some coupled coincidence point results for a mapping

F : X × X → X satisfying certain contractive condition on cone metric spaces over

Banach algebras without assumption of normality.

Definition 2.1. ([2], [8]) Let (X, d) be a cone b-metric space over the Banach algebra

A.

(1) An element (x, y) ∈ X ×X is called a coupled fixed point of F : X ×X → X

if x = F (x, y) and y = F (y, x).

(2) An element (x, y) ∈ X × X is called a coupled coincidence point of mappings

F : X × X → Xand g : X × X if g(x) = F (x, y) and g(y) = F (y, x), and

(gx, gy) is called coupled point of coincidence;

(3) An element (x, y) ∈ X ×X is called a common coupled fixed point of mappings

F : X×X → X and g : X → X if x = g(x) = F (x, y) and y = g(y) = F (y, x).
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(4) The mappings F : X × X → X and g : X × X are called w-compatible if

g(F (x, y)) = F (gx, gy) whenever g(x) = F (x, y) and g(y) = F (y, x).

Note that if (x, y) is a coupled fixed point of F , then (y, x) is also a coupled fixed

point of F .

Theorem 2.2. Let (X, d) be a complete cone b-metric space over Banach algebra A

with the coefficient s ≥ 1 and let P be a solid cone in A. Let F : X × X → X and

g : X → X be mappings satisfying

d(F (x, y), F (u, v)) ¹ a1d(gx, gu) + a2d(F (x, y), gx) + a3d(gy, gv)

+ a4d(F (u, v), gu) + a5d(F (x, y), gu) (2.1)

+ a6d(F (u, v), gx)

for all x, y, u, v ∈ X, where ai ∈ P , aiaj = ajai (i = 1, 2, · · · , 6) and

2s(r(a1) + r(a3)) + (s + 1)(r(a2) + r(a4)) + (s2 + s)(r(a5) + r(a6)) < 2.

If F (X×X) ⊆ g(X) and g(X) is a complete subset of X, then F and g have a coupled

coincidence point in X.

Proof. Let x0, y0 be any two arbitrary points in X. Set g(x1) = F (x0, y0) and g(y1) =

F (y0, x0). This can be done because F (X × X) ⊆ g(X). Continuing this process

we obtain two sequences {xn} and {yn} in X such that g(xn+1) = F (xn, yn) and

g(yn+1) = F (yn, xn). From (2.1), we have

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn))

¹ a1d(gxn−1, gxn) + a2d(F (xn−1, yn−1), gxn−1) + a3d(gyn−1, gyn)

+ a4d(F (xn, yn), gxn) + a5d(F (xn−1, yn−1), gxn)

+ a6d(F (xn, yn), gxn−1)

= a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn)

+ a4d(gxn+1, gxn) + a5d(gxn, gxn) + a6d(gxn+1, gxn−1)

¹ a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn)

+ a4d(gxn+1, gxn) + sa6[d(gxn+1, gxn) + d(gxn, gxn−1)]

= (a1 + a2 + sa6)d(gxn−1, gxn) + a3d(gyn−1, gyn)

+ (a4 + sa6)d(gxn, gxn+1),

and so we get

(e− a4 − sa6)d(gxn, gxn+1) ¹ (a1 + a2 + sa6)d(gxn−1, gxn)

+ a3d(gyn−1, gyn) (2.2)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.1, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

180 YOUNG-OH YANG et al 176-188



6 YOUNG-OH YANG* AND HONG JOON CHOI

Similarly, we have

(e− a4 − sa6)d(gyn, gyn+1) ¹ (a1 + a2 + sa6)d(gyn−1, gyn) + a3d(gxn−1, gxn) (2.3)

Because of the symmetry in (2.1),

d(gxn+1, gxn) = d(F (xn, yn), F (xn−1, yn−1))

¹ a1d(gxn, gxn−1) + a2d(F (xn, yn), gxn) + a3d(gyn, gyn−1)

+ a4d(F (xn−1, yn−1), gxn−1) + a5d(F (xn, yn), gxn−1)

+ a6d(F (xn−1, yn−1), gxn)

= a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1)

+ a4d(gxn, gxn−1) + a5d(gxn+1, gxn−1) + a6d(gxn, gxn)

¹ a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1)

+ a4d(gxn, gxn−1) + sa5[d(gxn+1, gxn) + d(gxn, gxn−1)]

that is,

(e− a2 − sa5)d(gxn+1, gxn) ¹ (a1 + a4 + sa5)d(gxn−1, gxn) + a3d(gyn, gyn−1) (2.4)

Similarly,

(e− a2 − sa5)d(gyn+1, gyn) ¹ (a1 + a4 + sa5)d(gyn−1, gyn) + a3d(gxn, gxn−1) (2.5)

Let δn = d(gxn, gxn+1) + d(gyn, gyn+1). Now, by (2.2), (2.3),(2.4) and (2.5), we

obtain that

(e− a4 − sa6)δn ¹ (a1 + a2 + a3 + sa6)δn−1 (2.6)

(e− a2 − sa5)δn ¹ (a1 + a3 + a4 + sa5)δn−1 (2.7)

Finally, from (2.6) and (2.7) we have

(2e− a2 − a4 − sa5 − sa6)δn ¹ (2a1 + 2a3 + a2 + a4 + sa5 + sa6)δn−1

By hypothesis and Lemma 1.6,

r(a2 + a4 + sa5 + sa6) ≤ r(a2) + r(a4) + sr(a5) + sr(a6) < 1

and so 2e− (a2 + a4 + sa5 + sa6) is invertible by Lemma ??. Putting

η = (2e− a2 − a4 − sa5 − sa6)
−1(2a1 + 2a3 + a2 + a4 + sa5 + sa6),

we have, by hypothesis,

r(η) =
2r(a1) + 2r(a3) + r(a2) + r(a4) + sr(a5) + sr(a6)

2− r(a2)− r(a4)− sr(a5)− sr(a6)
<

1

s
,

and so

δn ¹ ηδn−1, r(η) < 1 (2.8)
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Consequently, we have

θ ¹ δn ¹ ηδn−1 ¹ · · · ¹ ηnδ0 (2.9)

If δ0 = θ then (x0, y0) is a coupled coincidence point of F and g. So let θ ≺ δ0. If

m > n, we have

d(gxm, gxn) ¹ s[d(gxn, gxn+1) + d(gxn+1, gxm)]

¹ sd(gxn, gxn+1) + s2[d(gxn+1, gxn+2) + d(gxn+2, gxm)]
...

¹ sd(gxn, gxn+1) + s2d(gxn+1, gxn+2) + · · · (2.10)

+sm−n−1d(gxm−2, gxm−1) + sm−nd(gxm−1, gxm)

and similarly

d(gym, gyn) ¹ sd(gyn, gyn+1) + s2d(gyn+1, gyn+2) + · · · (2.11)

+sm−n−1d(gym−2, gym−1) + sm−nd(gym−1, gym)

Adding both the above inequalities, we get

d(gxm, gxn) + d(gym, gyn) ¹ sm−nδm−1 + sm−n−1δm−2 + · · · sδn

¹ (sm−nηm−1 + sm−n−1ηm−2 + · · ·+ sηn)δ0

¹ sηn(
∞∑

i=0

(sη)i)δ0 = sηn(e− sη)−1δ0 → θ

as n → ∞. From Lemma 1.7, it follows that for θ ¿ c and large n, ηn(1 − η)−1δ0 ¿
c. Thus, according to (p2), d(gxn, gxm) + d(gyn, gym) ¿ c. Hence, by Definition,

{d(gxn, gxm)+d(gyn, gym)} is a Cauchy sequence. Since, d(gxn, gxm) ¹ d(gxn, gxm)+

d(gyn, gym) and d(gyn, gym) ¹ d(gxn, gxm) + d(gyn, gym), then again by (p2), {gxn}
and {gyn} are Cauchy sequences in g(X). Since g(X) is a complete subset of X, there

exist x and y in X such that gxn → gx and gyn → gy.
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Now, we prove that F (x, y) = gx and F (y, x) = gy. For that we have

d(F (x, y), gx) ¹ s[d(F (x, y), gxn+1) + d(gxn+1, gx)]

= s[d(F (x, y), F (xn, yn)) + d(gxn+1, gx)]

¹ sa1d(gx, gxn) + sa2d(F (x, y), gx) + sa3d(gy, gyn)

+ sa4d(F (xn, yn), gxn) + sa5d(F (x, y), gxn)

+ sa6d(F (xn, yn), gx) + sd(gxn+1, gx)

= sa1d(gx, gxn) + sa2d(F (x, y), gx) + sa3d(gy, gyn) + sa4d(gxn+1, gxn)

+ sa5d(F (x, y), gxn) + sa6d(gxn+1, gx) + sd(gxn+1, gx)

¹ sa1d(gx, gxn) + sa2d(F (x, y), gx) + sa3d(gy, gyn) + s2a4d(gxn+1, gx)

+ s2a4d(gx, gxn) + s2a5[d(F (x, y), gx) + d(gx, gxn)]

+ sa6d(gxn+1, gx) + sd(gxn+1, gx)

which further implies that

d(F (x, y), gx) ¹ (e− sa2 − s2a5)
−1(sa1 + s2(a4 + a5))d(gxn, gx) (2.12)

+ (e− sa2 − s2a5)
−1(e + s2a4 + sa6)d(gxn+1, gx)

+ (e− sa2 − s2a5)
−1sa3d(gyn, gy).

since e − sa2 − s2a5 is invertible. Since gxn → gx and gyn → gy, then for any θ ¿ c

there exists N ∈ N such that for all n ≥ N ,

d(gxn, gx) ¿ (1− sr(a2)− s2r(a5))c

3(sr(a1) + s2r(a4) + s2r(a5))
, d(gxn+1, gx) ¿ (1− sr(a2)− s2r(a5))c

3(s + s2r(a4) + sr(a6))

and

d(gyn, gy) ¿ (1− sr(a2)− s2r(a5))c

3sr(a3)
.

Thus, for all n ≥ N ,

d(F (x, y), gx) ¿ c

3
+

c

3
+

c

3
= c. (2.13)

Now, according to (p4), it follows that d(F (x, y), gx) = θ and so F (x, y) = gx. Simi-

larly, F (y, x) = gy. Hence (x, y) is a coupled coincidence point of the mappings F and

g. ¤

Corollary 2.3. Let (X, d) be a complete cone metric space over Banach algebra A

and let P be a solid cone in A. Let F : X × X → X and g : X → X be mappings

satisfying

d(F (x, y), F (u, v)) ¹ a1d(gx, gu) + a2d(F (x, y), gx) + a3d(gy, gv)

+ a4d(F (u, v), gu) + a5d(F (x, y), gu)

+ a6d(F (u, v), gx)
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for all x, y, u, v ∈ X, where ai ∈ P , aiaj = ajai (i = 1, 2, · · · , 6) and
∑6

i=1 r(ai) < 1. If

F (X ×X) ⊆ g(X) and g(X) is a complete subset of X, then F and g have a coupled

coincidence point in X.

Proof. Taking s = 1 in Theorem 2.2, we get the required result. ¤

Corollary 2.4. Let (X, d) be a complete cone b-metric space over Banach algebra A

with the coefficient s ≥ 1 and let P be a solid cone in A. Let F : X × X → X be

mappings satisfying

d(F (x, y), F (u, v)) ¹ a1d(x, u) + a2d(F (x, y), x) + a3d(y, v)

+ a4d(F (u, v), u) + a5d(F (x, y), u)

+ a6d(F (u, v), x)

for all x, y, u, v ∈ X, where ai ∈ P and aiaj = ajai (i = 1, 2, · · · , 6) If

2s(r(a1) + r(a3)) + (s + 1)(r(a2) + r(a4)) + (s2 + s)(r(a5) + r(a6)) < 2,

then F has a coupled fixed point in X.

Proof. Taking g = IX , identity mapping of X in Theorem 2.2, we get the required

result. ¤

Corollary 2.5. Let (X, d) be cone b-metric space over Banach algebra A with the

coefficient s ≥ 1 and let P be a solid cone in A. Suppose that two mappings F :

X ×X → X and g : X → X satisfy

d(F (x, y), F (u, v)) ¹ a[d(gx, gu) + d(F (x, y), gx)] + b[d(gy, gv) + d(F (u, v), gu)]

+ c[d(F (x, y), gu) + d(F (u, v), gx)]

for all x, y, u, v ∈ X, where a, b, c ∈ P commute and

(3s + 1)[r(a) + r(b)] + 2(s2 + s)r(c) < 2.

If F (X ×X) ⊆ g(X) and g(X) is complete subset of X, then F and g have a coupled

coincidence point in X.

Proof. Taking a1 = a2 = a, a3 = a4 = b, a5 = a6 = c in Theorem 2.2, we get the

required result. ¤

Corollary 2.6. Let (X, d) be a complete cone b-metric space over Banach algebra A

and let P be a solid cone in A. Suppose that F : X ×X → X satisfies the following

contractive condition for all x, y, u, v ∈ X :

d(F (x, y), F (u, v)) ¹ kd(x, u) + ld(y, v)
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where k, l ∈ P commute and s[r(k) + r(l)] < 1. Then F has a unique coupled fixed

point.

Proof. Taking a1 = k, a3 = l, a2 = a4 = a5 = a6 = θ and g = IX in Theorem 2.2, we

get the required result. ¤

Corollary 2.7. Let (X, d) be a complete cone b-metric space over Banach algebra A

and let P be a solid cone in A. Suppose F : X × X → X satisfies the following

contractive condition for all x, y, u, v ∈ X:

d(F (x, y), F (u, v)) ¹ kd(F (x, y), x) + ld(F (u, v), u)

where k, l ∈ P commute and (s + 1)[r(k) + r(l)] < 2. Then F has a unique coupled

fixed point.

Proof. Taking a2 = k, a4 = l, a1 = a3 = a5 = a6 = θ and g = IX in Theorem 2.2, we

get the required result. ¤

Corollary 2.8. Let (X, d) be a complete cone b-metric space over Banach algebra A

and let P be a solid cone in A. Suppose F : X × X → X satisfies the following

contractive condition for all x, y, u, v ∈ X:

d(F (x, y), F (u, v)) ¹ kd(F (x, y), u) + ld(F (u, v), x)

where k, l ∈ P commute and (s2 + s)[r(k) + r(l)] < 2. Then F has a unique coupled

fixed point.

Proof. Taking a5 = k, a6 = l, a1 = a2 = a3 = a5 = θ and g = IX in Theorem 2.2, we

get the required result. ¤

Now we present two examples showing that Theorem 2.2 is a proper extension of

known results. In this example, the conditions of Theorem 2.2 are fulfilled.

Example 2.9. (The case of non-normal cone) Let A = C1
R[0, 1] and define a norm on

A by ‖x‖ = ‖x‖∞ + ‖x′‖∞ for x ∈ A. Define multiplication in A as just pointwise

multiplication. Then A is a real Banach algebra with unit e = 1(e(t) = 1 for all

t ∈ [0, 1]). The set P = {x ∈ A : x ≥ 0} is a cone in A. Moreover, P is not normal.

Let X = {1, 2, 3}. Define d : X × X → A by d(1, 2)(t) = d(2, 1)(t) = d(2, 3)(t) =

d(3, 2)(t) = et, d(1, 3)(t) = d(3, 1)(t) = 3et, d(x, x)(t) = θ for all t ∈ [0, 1] and for

each x ∈ X. Then (X, d) is a solid cone b-metric space over Banach algebra with the

coefficient s = 3
2
. But it is not a cone metric space over Banach algebra since it does

not satisfy the triangle inequality.
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Define two mappings F : X ×X → X by

F (x, y) =





3, (x, y) = (3, 1)

2, otherwise

and g : X → X by g1 = 3, g2 = 2, g3 = 1. Then F (X × X) = {2, 3} ⊂ {1, 2, 3} =

g(X). Let a1, a2, a3, a4, a5, a6 ∈ P defined with

a1(t) = a3(t) = 0.03, a2(t) = 0.02, a4(t) = 0.25, a5(t) = a6(t) = 0.154

for all t ∈ [0, 1]. Then, by definition of spectral radius, r(a1) = r(a3) = 0.03, r(a2) =

0.02, r(a4) = 0.25, r(a5) = r(a6) = 0.15 and so

2s(r(a1) + r(a3)) + (s + 1)(r(a2) + r(a4)) + (s2 + s)(r(a5) + r(a6)) = 1.89 < 2.

Since d(F (x, y), F (3, 1))(t) = d(2, 3)(t) = et for any x, y ∈ X, by careful calculations,

we can get that for any x, y, u, v ∈ X, F and g satisfy the contractive condition (2.1)

of Theorem 2.2. Hence the hypotheses are satisfied and so by Theorem 2.2, F and g

have a coupled coincidence point in a complete cone b-metric space X over Banach

algebra. Since F (2, 2) = 2 = g2, F and g are w-compatible and (2, 2) is the unique

coupled coincidence point of F and g.

Example 2.10. (The case of normal cone) Let A = R2 and define a norm on A by

‖(x1, x2)‖ = |x1|+ |x2| for x = (x1, x2) ∈ A. Define the multiplication in A by

(x1, x2)(y1, y2) = (x1y1, x2y2).

Put P = {x = (x1, x2) ∈ A : x1, x2 ≥ 0}. Then P is a normal cone and A is a real

Banach algebra with unit e = (1, 1).

Let X = [0,∞). Define a mapping d : X ×X → A by d(x, y) = (|x− y|2, |x− y|2)
for each x, y ∈ X. Then (X, d) is a complete cone b-metric space over Banach algebra

with the coefficient s = 2. But it is not a cone metric space over Banach algebra since

it does not satisfy the triangle inequality.

Consider the mappings F : X ×X → X and g : X → X defined by

F (x, y) = x +
| sin y|

2
and

g(x) = 3x.

Then F (X ×X) ⊆ g(X) = X. Let a1, a2, a3, a4, a5, a6 ∈ P defined with

a1 = (
2

9
, 0), a3 = (

1

18
, 0), a2 = a4 = (0, 0), a5 = a6 = (0.07, 0).

Then, by definition of spectral radius, r(a1) = 2
9
, r(a3) = 1

18
, r(a2) = r(a4) =

0, r(a5) = r(a6) = 0.07, and so

4(r(a1) + r(a3)) + 3(r(a2) + r(a4)) + 6(r(a5) + r(a6)) < 2.
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By careful calculations, it is easy to verify that for any x, y, u, v ∈ X, F and g satisfy

the contractive condition (2.1) of Theorem 2.2. Thus by Theorem 2.2, F and g have a

coupled coincidence point in a complete cone b-metric space X over Banach algebra.

Since F (0, 0) = g0 = 0, (0, 0) is the common coupled coincidence point of F and g.

Theorem 2.11. Let F : X ×X → X and g : X → X be two mappings which satisfy

all the conditions of Theorem 2.2. If F and g are w-compatible, then F and g have

unique common coupled fixed point. Moreover, common fixed point of F and g is of

the form (u, u) for some u ∈ X.

Proof. First we claim that coupled point of coincidence is unique. Suppose that

(x, y), (x∗, y∗) ∈ X × X with g(x) = F (x, y), g(y) = F (y, x) and g(x∗) = F (x∗, y∗),
g(y∗) = F (y∗, x∗). Using (2.1), we get

d(gx, gx∗) ¹ d(F (x, y), F (x∗, y∗))

¹ a1d(gx, gx∗) + a2d(F (x, y), gx) + a3d(gy, gy∗)

+ a4d(F (x∗, y∗), gx∗) + a5d(F (x, y), gx∗) + a6d(F (x∗, y∗), gx)

= (a1 + a5 + a6)d(gx, gx∗) + a3d(gy, gy∗)

and so

d(gx, gx∗) ¹ (a1 + a5 + a6)d(gx, gx∗) + a3d(gy, gy∗). (2.14)

Similarly

d(gy, gy∗) ¹ (a1 + a5 + a6)d(gy, gy∗) + a3d(gx, gx∗). (2.15)

Thus

d(gx, gx∗) + d(gy, gy∗) ¹ (a1 + a3 + a5 + a6)(d(gx, gx∗) + d(gy, gy∗)).

Since s ≥ 1 and r(a1) + r(a3) + r(a5) + r(a6) < 1, therefore by Lemma 1.6(4), we

have d(gx, gx∗) + d(gy, gy∗) = θ, which implies that gx = gx∗ and gy = gy∗. Similarly

we prove that gx = gy∗ and gy = gx∗. Thus gx = gy. Therefore (gx, gx) is unique

coupled point of coincidence of F and g.

Now, let g(x) = u. Then we have u = g(x) = F (x, x). By w- compatibility of F

and g, we have

g(u) = g(g(x)) = g(F (x, x)) = F (gx, gx) = F (u, u). (2.16)

Then (gu, gu) is a coupled point of coincidence of F and g. Consequently gu = gx.

Therefore u = gu = F (u, u). Hence (u, u) is unique common coupled fixed point of F

and g. ¤
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