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Common fixed point theorems in Gb-metric space
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, Zhaoqi Wu
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jillshen123@163.com (Y. Q. Shen), chuanxizhu@126.com (C. X. Zhu)

Abstract In this paper, we introduce a new type of common fixed point for three mappings in

Gb-complete Gb-metric space. On the other hand, we prove that the theory is also established in

G-metric space and several corollaries and examples are listed.

Keywords: Gb-metric space; common fixed point; G-metric space

1 Preliminaries

Mustafa and Sims [1] generalized the concept of metric space and Mustafa [2,3,7] obtained some fixed point

theorems in his papers. After that, many authors established fixed point and common fixed point theorems for

different contractive-type condition in G-metric space. In 1998, Czerwik [10] introduced the notion of b-metric

space, and then Aghajani [12] based on the notion gave the concept of Gb-metric space and some authors

obtained the existence and uniqueness fixed point in Gb-metric space [7,11].

Fixed point theory has a large number of applications in many branches of nonlinear analysis and has been

extended in many different directions. Let A,B and C are self mappings of a nonempty set X, if there exists a

p ∈ X, such that Ap = Bp = Cp = p, then we call p is a common fixed point of A,B and C. For a mapping T

on nonempty set X to itself, we have Tx = x, and x is unique then we call x is a Picard operator.

In this paper, we mainly obtain a unique common fixed point for three mappings in Gb-metric space. First,

we recall some basic properties of Gb-metric space.

Let R = (−∞,∞), R+ = [0,∞) and N be the set of all natural numbers. Denote N+ the set of all positive

integers.

Definition 1.1 ([12]) Let X be a nonempty set and s ≥ 1 be a given real number, and let the function

G : X ×X ×X → [0,∞) satisfy the following properties:

(Gb1) G(x, y, z) = 0 if x = y = z whenever x, y, z ∈ X ;

(Gb2) 0 ≤ G(x, x, y) for all x, y ∈ X with x ̸= y;

(Gb3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;

(Gb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z;

(Gb5) G(x, y, z) ≤ s(G(x, a, a) +G(a, y, z)) for all x, y, z ∈ X.

†∗Correspondence author. Chuanxi Zhu. Email address: chuanxizhu@126.com. Tel:+8613970815298.

1
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Then G is called a Gb-metric on X, and (X,G) is called a Gb-metric space.

Definition 1.2 ([12]) A Gb-metric space G is said to be symmetric if G(x, x, y) = G(y, x, x) for all x, y ∈ X.

Proposition 1.3 ([12]) Let X be a Gb-metric space, then for each x, y, z, a ∈ X it follows that:

(1) if G(x, y, z) = 0 then x = y = z;

(2) G(x, y, z) ≤ sG(G(x, y, y) +G(x, x, z));

(3) G(x, y, y) ≤ 2s(G(y, x, x));

(4) G(x, y, z) ≤ s(G(x, a, a) +G(a, y, z)).

Definition 1.4 ([12]) Let X be a Gb-metric space. A sequence {xn} in X is said to be:

(1)Gb-Cauchy if for each ε > 0, there exists a positive integer n0 such that for allm,n, l ≥ n0, G(xn, xm, xl) <

ε;

(2) Gb-convergent to a point x ∈ X if for each ε > 0, there exists a positive integer n0 such that for all

m,n,≥ n0, G(xn, xm, x) < ε;

Definition 1.5 ([12]) A Gb-metric space X is called complete if every Gb-Cauchy sequence is Gb-convergent

in X.

lemma 1.6 ([11]) Let (X, ,G) be a Gb-metric space with s > 1.

(1) Suppose that {xn}, {yn} and {zn} are Gb-convergent to x, y and z, respectively. Then we have

1

s3
G(x, y, z) ≤ lim inf

n→∞
G(xn, yn, zn) ≤ lim sup

n→∞
G(xn, yn, zn) ≤ s3G(x, y, z).

(2) If {zn} = c is constant, then

1

s2
G(x, y, c) ≤ lim inf

n→∞
G(xn, yn, c) ≤ lim sup

n→∞
G(xn, yn, c) ≤ s2G(x, y, c).

(3) If {yn} = b and {zn} = c are constant, then

1

s
G(x, b, c) ≤ lim inf

n→∞
G(xn, b, c) ≤ lim sup

n→∞
G(xn, b, c) ≤ sG(x, b, c).

2 Common fixed point theorems in Gb-metric space

Theorem 2.1 Let (X,G) be a Gb-complete Gb-metric space and A,B and C are mappings from X to itself.

Suppose that A,B and C satisfy the following condition:

G(Ax,By,Cz) ≤ G(x,Ax,Ax) +G(x,By,By) +G(z, Cz, Cz)

G(x,Ax,By) +G(y,By,Cz) +G(z, Cz,Ax) + 1
)G(x, y, z) (2.1)

for all x, y, z ∈ X. Then either one of A,B and C has a fixed point, or, A,B and C have a unique common

fixed point.

Proof. Define the sequence {xn} as x3n+1 = Ax3n, x3n+2 = Bx3n+1, x3n+3 = Bx3n+2 for all n = 0, 1, 2, · · · .

2
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If x3n = x3n+1, then x3n is a fixed point of A.

If x3n+1 = x3n+2, then x3n+1 is a fixed point of B.

If x3n+2 = x3n+3, then x3n+2 is a fixed point of C.

If the above conclusions are not true, then we assume that xn ̸= xn+1 for all n. Let dn = G(xn, xn+1, xn+2),

then for (2.1) we have

G(Ax3n, Bx3n+1, Cx3n+2)

≤ G(x3n, Ax3n, Ax3n) +G(x3n+1, Bx3n+1, Bx3n+1) +G(x3n+2, Cx3n+2, Cx3n+2)

G(x3n, Ax3n, Bx3n+1) +G(x3n+1, Bx3n+1, Cx3n+2) +G(x3n+2, Cx3n+2, Ax3n) + 1
)G(x3n, x3n+1, x3n+2)

=
G(x3n, x3n+1, x3n+1) +G(x3n+1, x3n+2, x3n+2) +G(x3n+2, x3n+3, , x3n+3)

G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3) +G(x3n+2, x3n+3, x3n+1) + 1
)G(x3n, x3n+1, x3n+2)

≤ G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3) +G(x3n+1, x3n+2, , x3n+3)

G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3) +G(x3n+2, x3n+3, x3n+1) + 1
)G(x3n, x3n+1, x3n+2)

so we have

d3n+1 ≤ d3n + 2d3n+1

d3n + 2d3n+1 + 1
d3n

Let

α3n =
d3n + 2d3n+1

d3n + 2d3n+1 + 1

so we have

d3n+1 ≤ α3nd3n

by introduction, we have

d3n+1 ≤ α3nα3n−1 · · ·α1d1

It is obvious that for any natural number n ∈ N, we have 0 < αn < 1,and so

dn ≤ dn−1

then we have

dn ≤ dn−1 ⇒ dn + dn+1 ≤ dn−1 + dn

⇒ 1 +
1

dn−1 + 2dn
≤ 1 +

1

dn + 2dn+1

⇒ 1

αn−1
≤ 1

αn

Hence, we can get

αn−1 ≥ αn

so we can obtain

α3nα3n−1 · · ·α1 ≤ α1
3n

3
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taking the limit as n→ ∞, so we have

lim
n→∞

d3n+1 ≤ lim
n→∞

α3nα3n−1 · · ·α1d1 ≤ lim
n→∞

α1
3nd1 = 0

so

lim
n→∞

G(xn, xn+1, xn+2) = 0.

Next,we will show that {xn} is a Gb-Cauchy sequence. on the other hand, according to (Gb3) we have

lim
n→∞

G(xn, xn+1, xn+1) ≤ lim
n→∞

G(xn, xn+1, xn+2) = 0 (2.2)

for any n,m ∈ N, m > n, using (Gb5), so we have

G(xn, xm, xm) ≤ sG(xn, xn+1, xn+1) + sG(xn+1, xm, xm)

≤ sG(xn, xn+1, xn+1) + s2G(xn+1, xn+2, xn+2) + s2G(xn+2, xm, xm)

≤ sG(xn, xn+1, xn+1) + s2G(xn+1, xn+2, xn+2) + · · ·+ sm−nG(xm−1, xm−1, xm)

≤ sG(xn, xn+1, xn+2) + s2G(xn+1, xn+2, xn+3) + · · ·+ sm−nG(xm−1, xm, xm+1)

= d1(sα1
n + s2α1

n+1 + · · ·+ sm−nα1
m−1)

= d1
sα1

n(1− (sα)m−n−1)

1− sα1
n

taking the limit as n→ ∞, then we have

lim
n→∞

G(xn, xm, xm) ≤ lim
n→∞

d1
sα1

n(1− (sα)m−n−1)

1− sα1
n

= 0

so {xn} is a Gb-Cauchy sequence.

Since X is complete, so there exists a p ∈ X, such that {xn} is a Gb-Cauchy sequence and Gb-converges to

p such that

lim
n→∞

x3n+1 = lim
n→∞

Ax3n = lim
n→∞

x3n+2 = lim
n→∞

Bx3n+1

= lim
n→∞

x3n+3 = lim
n→∞

Cx3n+2 = p.

Now we prove that p is a common fixed point of A,B and C.

Using Lemma 1.6 and (2.1), taking the upper limit as n→ ∞, we get

G(Ap, p, p)

≤ s2 lim
n→∞

supG(Ap,Bx3n+1, Cx3n+2)

≤ s2 lim
n→∞

sup
G(p,Ap,Ap) +G(x3n+1, Bx3n+1, Bx3n+1) +G(x3n+2, Cx3n+2, Cx3n+2)

G(p,Ap,Bx3n+1) +G(x3n+1, Bx3n+1, Cx3n+2) +G(x3n+2, Cx3n+2, Ap) + 1
G(p, x3n+1, x3n+1)

≤ s4 lim
n→∞

sup
G(p,Ap,Ap) +G(x3n+1, Bx3n+1, Bx3n+1) +G(x3n+2, Cx3n+2, Cx3n+2)

G(p,Ap,Bx3n+1) +G(x3n+1, Bx3n+1, Cx3n+2) +G(x3n+2, Cx3n+2, Ap) + 1
G(p, p, p)

= 0

then we get G(Ap, p, p) = 0. Hence by (1) of Proposition 1.1, we can get Ap = p. Similarly, letting x = x3n,

y = p, z = x3n+2 and x = x3n, y = x3n+1, z = p we can get Bp = p and Cp = p respectively, so we have

Ap = Bp = Cp = p.

4
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Now, we show that the common fixed point of A,B and C is unique. Assume on contrary that q is another

fixed point, i.e. Aq = Bq = Cq = q such that p ̸= q. Then, by our assumption, we apply (2.1) to obtain

G(p, p, q) = G(Ap,Bp,Cq)

≤ G(p,Ap,Ap) +G(p,Bp,Bp) +G(q, Cq, Cq)

G(p,Ap,Bp) +G(p,Bp,Cq) +G(q, Cq,Ap) + 1
G(p, p, q)

=
G(p, p, p) +G(p, p, p) +G(q, q, q)

G(p, p, p) +G(p, p, q) +G(q, q, p) + 1
G(p, p, q)

= 0

so by the Proposition 1.1, we have G(p, p, q) = 0, then p = q.

Corollary 2.2 Let (X,G) be a Gb-complete Gb-metric space and T be a mapping from X to itself. Suppose

that T satisfy the following condition:

G(Tx, Ty, Tz) ≤ G(x, Tx, Tx) +G(x, Tx, Tx) +G(x, Tx, Tx)

G(x, Tx, Ty) +G(y, Ty, Tz) +G(z, Tz, Tx) + 1
)G(x, y, z)

for all x, y, z ∈ X. Then T has a unique fixed point.

Proof. Taking A = B = C = T , the result follow from Theorem 2.1.

Theorem 2.3 Let (X,G) be a Gb-complete Gb-metric space and A,B and C are mappings from X to itself.

Suppose that A,B and C satisfy the following condition:

G(Ax,By,Cz) ≤ α
min{G(y,By,By), G(z, Cz, Cz)}

G(z, Cz,Ax) + 1
G(x,Ax,Ax) + βG(x, y, z) (2.3)

for all x, y, z ∈ X, where α+ β ≤ 1.

Then either one of A,B and C has a fixed point, or, A,B and C have a unique common fixed point.

Proof. Let dn = G(xn, xn+1, xn+2), then for (2.3) we have

G(Ax3n, Bx3n+1, Cx3n+2) ≤ α
min{G(x3n+1, Bx3n+1, Bx3n+1), G(x3n+2, Cx3n+2, Cx3n+2)}

G(x3n+2, Cx3n+2, Ax3n) + 1
)

G(x3n, Ax3n, Ax3n) + βG(x3n, x3n+1, x3n+2)

= α
min{G(x3n+1, x3n+2, x3n+2), G(x3n+2, x3n+3, x3n+3)}

G(x3n+2, x3n+3, x3n+1) + 1
)

G(x3n, x3n+1, x3n+1) + βG(x3n, x3n+1, x3n+2)

≤ α
d3n+1

d3n+1 + 1
d3n + βd3n

= (α
d3n+1

d3n+1 + 1
+ β)d3n

Since α d3n+1

d3n+1+1 + β ≤ 1, the following proof is similar to Theorem 2.1.

Corollary 2.4 Let (X,G) be a Gb-complete Gb-metric space and T be mapping from X to itself. Suppose

that T satisfy the following condition:

G(Tx, Ty, Tz) ≤ α(
min{G(y, Ty, Ty), G(z, Tz, Tz)}

G(z, Tz, Tx) + 1
)G(x, Tx, Tx) + βG(x, y, z)

for all x, y, z ∈ X, where α+ β ≤ 1.

5
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Then T has a unique fixed point.

Proof. Taking A = B = C = T , the result follow from Theorem 2.4.

Theorem 2.5 Let (X,G) be a G-complete G-metric space and A,B and C are mappings from X to itself.

Suppose that A,B and C satisfy the following condition:

G(Ax,By,Cz) ≤ G(x,Ax,Ax) +G(y,By,By) +G(z, Cz, Cz)

G(x,Ax,By) +G(y,By,Cz) +G(z, Cz,Ax) + 1
)G(x, y, z)

for all x, y, z ∈ X. Then either one of A,B and C has a fixed point, or, A,B and C have a unique common

fixed point.

Proof. The proof is similar to Theorem 2.1. There is a little difference between them.

First, when we prove that {xn} is a Gb-Cauchy sequence, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xm, xm)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) +G(xn+2, xm, xm)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · ·+G(xm−1, xm−1, xm)

≤
m−n∑
i=0

G(xn+i, xn+i+1, xn+i+1)

so we can get

G(xn, xm, xm) ≤
m−n∑
i=0

G(xn+i, xn+i+1, xn+i+1)

≤
m−n∑
i=0

G(xn+i, xn+i+1, xn+i+2)

=

m−n∑
i=0

dn+i

taking the limit as n→ ∞, then we have

lim
n→∞

G(xn, xm, xm) ≤ lim
n→∞

m−n∑
i=0

α1
n+id1 = 0

so {xn} is a G-Cauchy sequence.

Secondly, since that G-metric space is continuous so when we prove that p is a common fixed point in

G-metric space we have

G(Ap, p, p) ≤ G(p,Ap,Ap) +G(p,Bp,Bp) +G(p, Cp,Cp)

G(p,Ap,Bp) +G(p,Bp,Cp) +G(p, Cp,Ap) + 1
G(p, p, p) = 0

Corollary 2.6 Let (X,G) be a G-complete G-metric space and T be a mapping from X to itself. Suppose

that T satisfy the following condition:

G(Tx, Ty, Tz) ≤ G(x, Tx, Tx) +G(x, Tx, Tx) +G(x, Tx, Tx)

G(x, Tx,By) +G(y, Ty, Tz) +G(z, Tz, Tx) + 1
)G(x, y, z)

for all x, y, z ∈ X. Then T has a unique fixed point.

Proof. Taking A = B = C = T , the result follow from Theorem 2.6.

6
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3 An example

Example 3.1 Let G(x, y, z) = (max{|x − y|, |y − x|, |z − x|})2 for all x, y, z ∈ X then G is a Gb-metric on

X where s = 2. Define self-mappings A,B and C on x by

A(x) = 1, B(x) = 1, C(x) =
7 + x

8

Then we have

G(Ax,By,Cz) = (max{|1− 1|, |1− 7 + z

8
|, |1− 7 + z

8
|})2

= (
1

8
− z

8
)2

and we also have

G(x,Ax,Ax) = (1− x)2, G(y,By,By) = (1− y)2

G(z, Cz, Cz) = (
7− 7z

8
)2, G(x,Ax,By) = (1− x)2

G(y,By,Cz) = max{(1− y)2, (
1− z

8
)2, (

7 + z

8
− y)2}

G(z, Cz,Ax) = (1− z)2

G(x, y, z) = max{|x− y|2, |y − z|2, |z − x|2}

Case1: when z ≤ x, z ≤ y α ≥ 1
64 , β = 0 and y ≤ 1+7z

8 , we have the (2.3) established. Then x = y = z = 1

is a common fixed point.

Case2: when y ≥ 1+7z
8 α = 1, β = 0 and z ≥ −6 + 7x, we have the (2.3) established. Then x = y = z = 1 is

a common fixed point.
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Abstract

In this paper, a collocation method with high precision by using the poly-
nomial basis functions is proposed to solve the Fredholm integral equation of
second kind with weakly singular kernel. We introduce the polynomial basis
functions and use it to reduce the given equation to a system of linear alge-
braic equation. Thus, we can simplify the solving of the equation. The error
analysis are given. Numerical examples are given to illustrate the efficiency
of our method.

Keyword : Weakly Singular · Fredholm Integral Equation · Polynomial
basis function Method

AMS subject classification : 65D10 · 65D32

1 Introduction

This paper is concerned with collocation method for weakly singular Fredholm in-
tegral equations of the second kind as follows
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G. Zeng et al.: Numerical solution of singular integral equation

φ(x) + λ

∫ b

a

κ(x, t)φ(t)dt = f(x), 0 ≤ x ≤ 1, (1.1)

where κ(x, t) = H(x,t)
|x−t|α , 0 < α < 1, H(x, t), f(x) are continue and bounded functions

and φ(x) is the function to be determined.
Numerical methods for weakly singular Fredholm integral equations of the sec-

ond kind have been developed by many scholars in recent years because of their
important applications in science and engineering. These methods can be classi-
fied into two types. One type is through making approximations to the analytical
solutions directly. For instance, Tricomi used successive approximations method
to solve the integral equations in his book [1]. Variational iteration method and
Adomian decomposition method were introduced in [2] and [3] respectively. Also,
The homotopy analysis method was proposed by Liao [4] and has applied it in [5]
et. Another type is through shifting the equations into a form which easier to solve
than the original equations. For example, Taylor expansion collocation methods are
presented to solve integral equations in [6-8]. In [9], the orthogonal triangular basis
functions were used by Babolian et al. to solve some integral equations systems.
And Legendre wavelets method was proposed by Jafari et al. in [10] to find the
numerical solutions of linear integral equations systems. Moreover, in [12] architec-
ture artificial neural networks was suggested to approximate the solutions of linear
integral equations systems. Furthermore, Jafarian et al. [13] using the Bernstein
polynomials to obtain the numerical solutions of linear Fredholm and Volterra inte-
gral equations systems of the second kind. And application of Bernstein polynomial
have been made by scholar for solving both differential equations and integral equa-
tions, see [11]. And piecewise polynomial collocation method were applied to solve
the Volterra integro-differential equations with weakly singular kernel in [14] respec-
tively. And the stability of piecewise polynomial collocation methods for solving
weakly singular integral equations of the second kind has been discussed by Kangro
et al. in [15]. Besides, Baratella et al. [16] had proposed an approach with product
integration to solve the weakly singular Volterra integral equations. Kolk et al. And
Pallaw et al. [17] used the quadratic spline collocation to solve the smoothed weakly
singular Fredholm integral equations. However, these methods introduced above do
not provide a good accuracy in the solution near the singular points.

In this paper, we are going to use polynomial basis functions collocation method
to approximate the solution of singular Fredholm integral equations of the second
kind. The proposed approach converted the given equation with unique solution into
a system of linear algebraic equations in general case. To do this, first the polynomial
basis functions of certain degree n of unknown functions are substituted in the given
integral equations. So that the solution of the unknown function of given equations
have converted into the solutions of the coefficients of the unknown polynomial basis
functions, such that we can solve the integral equations in a convenient way.
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G. Zeng et al.: Numerical solution of singular integral equation

The layout of this paper is as follows: In section 2 we presented the procedure
of the polynomial basis functions collocation method to obtain the approximate
solution of the weakly singular Fredholm integral equation. In section 3, we had
demonstrated that the proposed method is convergent to all the weakly singular
Fredholm integral equations of second kind. In section 4, we give numerical example
to test the effectiveness and efficiency of the method. Finally, Numerical examples
are given to illustrate the efficiency of our method.

2 The Polynomial Basis Function Method

We are going to use the polynomial basis functions to solve the eq.(1.1). The form
of the functions are as follows:

U =
m−1∑
k=0

xk,

where the polynomial basis functions 1, x, x2, · · · , xm−1 are linear independent.
Since eq.(1.1) is a weakly singular integral equation, the singularity of the e-

quation must be removed such that the procedure of solving the problem can be
move on. But since the proposed method of this paper is belong to the colloca-
tion method, which can smooth the singular points of the discretion, so that we
can use the method directly. Then we provided the procedure of using polynomial
basis functions to solve the kind of the integral equations proposed in this paper
concretely as follows:

Step 1. Choosing the basis functions u = [1, x, x2, ..., xk], (k = 0, 1, 2, ...,m− 1)
the unknown function φ(x) is substituted by the following polynomials

φ(x) ≈ φm(x) =
m−1∑
k=0

akx
k, (2.1)

Step 2. Substituting (2.1) into (1.1) we have

m−1∑
k=0

akx
k + λ

m−1∑
k=0

akx
k

∫ b

a

κ(x, t)tkdt = f(x), (2.2)

Step 3. Discrete the interval [a,b] into n sections uniformly, we obtained the
systems of the coefficient ak as follows

m−1∑
k=0

akx
k
j + λ

m−1∑
k=0

akx
k
j

∫ b

a

κ(x, t)tkdt = f(xj), (2.3)
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where j = 1, 2, ..., n, xj = a + j(b − a)/n. We transformed the equations into the
form of linear matrix as follows

(U +KU)A = f, (2.4)

where

U =

 1 x1 · · · xm−11
...

...
. . .

...
1 xn · · · xm−1n

 , A =

 a0
...

am−1

 , f =

 f1
...
fn

, (2.5)

and K =
∫ b
a
κ(x, t)dt which is the integral operator.

Step 4. Solve the system we obtained the solutions of the coefficients of ak as
follows

a0, a1, ..., am−1.

Substituting them into eq.(2.1) we obtained the approximate solution φm(x).

3 Convergence and Error Analysis

In this section, we are going to prove that the approximate method we proposed in
this paper is convergent to the analytic solution of eq.(1.1).

Firstly, we rewrite the form of the weakly singular kernel as follows

K(x, t) =
H(x, t)

|x− t|α
.

Let 0 < α ≤ 1
2
, and H(x, t) is continuously bounded. Then the eigenvalue

integral equation with weakly singular kernel is as follows

λφ(x) =

∫ b

a

K(x, t)φ(t)dt, 0 ≤ x ≤ 1, (3.1)

where K(x, t) is the weakly singular kernel, λ is the eigenvalue of the K(x, t), φ(x)
is the eigenfunction of λ.

Lemma 3.1 [14]. If x1, x2 ∈ Cm,v(0, T ],m ∈ N, v < 1, then x1x2 ∈ Cm,v(0, T ],
and

‖x1x2‖m,v ≤ c‖x1‖m,v‖x2‖m,v
with a constant c which is independent of x1 and x2.

Proof. See [14].
Lemma 3.2 [18] Suppose that the function φm(x) obtained by the polynomi-

al basis function is the approximation of eq.(1) and eq.(1) is with bounded first
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derivative, then eq.(1) can be expanded as an infinite sum of the polynomial basis

functions, that is, φ(x) =
m−1∑
k=0

ckx
k, and the coefficients ck are bounded as

ck <
K

(m+ 1)2
3k
2

where K is a constant.
Proof. See [18].
Let the linear operator K : L1

[0,1] → L1
[0,1]

(Kφ)(x) =

∫ 1

0

K(x, t)φ(t)dt, 0 ≤ x ≤ 1

then (3.1) can be written as
Kφ = λφ, (3.2)

using K operating two sides of (3.2) we yield

K2φ = λ2φ

where

K2φ(x) =

∫ 1

0

K2(x, t)φ(t)dt

and K2(x, t) is the iterative kernel of K(x, t)

K2(x, t) =

∫ 1

0

K1(x, r)K1(r, t)dr

K1(x, r) = K(x, r).

Theorem 3.3. Let φm(x) be the polynomial basis function of degree m − 1
and whose coefficients has been obtained by solving linear system (2.4), the given
polynomial basis function is converge to the analytical solution of the weak singular
Fredholm integral equations of the second kind (1.1), when m→∞.

Proof. Since
φ(x) = lim

m→∞
φm(x),

substitute φm(x) into eq.(1.1), we have

φm(x) + λ

∫ b

a

K(x, t)φm(t)dt = f(x), 0 ≤ x ≤ 1. (3.3)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1095 Guang Zeng ET AL 1091-1102



G. Zeng et al.: Numerical solution of singular integral equation

We defined the error function ‖em‖ by subtracting (2.1) and (2.5) as follows

‖em‖ = ‖φm(x)− φ(x)‖+ |λ|‖
∫ 1

0

‖K(x, t)‖ · ‖φm(t)− φ(t)‖dt‖,

According to lemma 3.1 and 3.2, since the subinterval of integral equation is compact
and the coefficients obtained by the polynomial basis functions are bounded and the
kernel K(x, t) can be continuous and bounded through iteration, therefore, whether

‖em‖ → 0

depends on
‖φm(x)− φ(x)‖ → 0,

since
φ(x) = lim

m→∞
φm(x),

that is,
‖em‖ → 0

when m→∞.
Thus, the proof is completed. 2

Remark 3.4. When we use this method we can find that it is similar to the
piecewise linear spline function interpolation method which is convergent and nu-
merical stable. The speed of the convergency is accelerated with the increasing of
the degree m of the polynomial basis function.

4 Numerical Experiments

Example 1: Consider the following Fredholm integral equations of the second kind
with weakly singular kernel

φ(x)− 1

10

∫ 1

0

K(x, t)φ(t)dt = f(x), 0 ≤ x ≤ 1, (4.1)

where K(x, t) = |x− t|− 1
3 ,

f(x) = x2(1− x)2 − 27

30800
[x

8
3 (54x2 − 126x+ 77) + (1− x)

8
3 (54x2 + 18x+ 5)].

the exact solution of eq.(4.1) is φ(x) = x2(1− x)2.
Using the method we proposed in section 2 and the successive approximation

method and using MATLAB writing the program codes we obtained the figures and
tables so that we can make a comparison for the accuracy of the two methods.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1096 Guang Zeng ET AL 1091-1102



G. Zeng et al.: Numerical solution of singular integral equation

Figure 1: The nodes are 11, iterations are 6, The result of Successive approximation method and the
analytical solutions.

Figure 2: The nodes are 11, k=4, The result of Polynomial basis function method and the analytical
solutions.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1097 Guang Zeng ET AL 1091-1102



G. Zeng et al.: Numerical solution of singular integral equation

Firstly, we obtained the figures of the results of the Polynomial basis function
method and the successive approximation method

From the figures we can find that both of the curves of successive approximation
method and the polynomial basis functions method are simulated very well, but
there is a defection of the numerical solution of successive approximation method
that the singular point in the function can not be removed. But the polynomial
basis functions method almost accordant with the analytical solutions. Namely,
the accuracy of polynomial basis functions method is better than the successive
approximation methods.

Table 1: The comparison of the solutions of the two kinds of methods.
Exact Successive Polynomial Basis

Node Solution Approximation Function Method
0 0 -2.8235e-04 -1.136e-016

0.1 8.1000e-003 7.7634e-03 8.1000e-003
0.2 2.5600e-002 2.5228e-02 2.5600e-002
0.3 4.4100e-002 4.3685e-02 4.4100e-002
0.4 5.7600e-002 5.7144e-02 5.7600e-002
0.5 6.2500e-002 NaN 6.2500e-002
0.6 5.7600e-002 5.7144e-02 5.7600e-002
0.7 4.4100e-002 4.3685e-02 4.4100e-002
0.8 2.5600e-002 2.5228e-02 2.5600e-002
0.9 8.1000e-003 7.7634e-03 8.1000e-003
1 0 -2.8235e-04 0

The Table 1 shows the results of the solutions of the example 1 using successive
approximation method with the iterations k=8 and the polynomial basis function
method with the orders m=5 of the polynomial basis function, respectively. From
the table we can find that the results of the polynomial basis function method is
more approximate to the exact solutions than the successive approximation method.

From the Table 2 we can easily find that with the increasing of the iterations
of k, there is little increasing of the error accuracy of the successive approximation
method. And it is obvious that there is a singular point of the discrete interval.

The Table 3 shows the errors accuracy results of the polynomial basis function
method when the orders of the polynomials are n=3,4,5,6, respectively. We can
find that the results is much superior than the successive approximation method.
The best error effectiveness of successive approximation is O(10−4), but we obtained
the high accuracy of the polynomial basis function method when the orders of the
polynomial basis functions is n = 5 and the effective errors have reached O(10−16),
which is much better than the successive approximation methods.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1098 Guang Zeng ET AL 1091-1102



G. Zeng et al.: Numerical solution of singular integral equation

Table 2: The error comparison of Successive Approximation methods.
Node Exact solution k=2 k=4 k=6 k=8

0 0 9.2298e-03 6.6592e-05 2.7807e-04 2.8225e-04
0.1 8.1000e-03 1.0586e-02 7.7066e-05 3.3105e-04 3.3646e-04
0.2 2.5600e-02 1.1068e-02 1.1413e-04 3.6606e-04 3.7179e-04
0.3 4.4100e-02 1.1342e-02 1.5033e-04 4.0921e-04 4.1510e-04
0.4 5.7600e-02 1.1480e-02 1.8759e-04 4.4996e-04 4.5593e-04
0.5 6.2500e-02 NaN NaN NaN NaN
0.6 5.7600e-02 1.1480e-02 1.8759e-04 4.4996e-04 4.5593e-04
0.7 4.4100e-02 1.1342e-02 1.5033e-04 4.0921e-04 4.1510e-04
0.8 2.5600e-02 1.1068e-02 1.1413e-04 3.6606e-04 3.7179e-04
0.9 8.1000e-03 1.0586e-02 7.7066e-05 3.3105e-04 3.3646e-04
1 0 9.2298e-03 6.6592e-05 2.7807e-04 2.8225e-04

Table 3: The error comparison of Polynomial basis function methods.
Node Exact solution n=3 n=4 n=5 n=6

0 0 6.7365e-03 6.7365e-03 2.0322e-16 3.6580e-16
0.1 8.1000e-03 7.5301e-03 7.5301e-03 8.3267e-17 2.9490e-16
0.2 2.5600e-02 7.4263e-03 7.4263e-03 4.1633e-17 2.1164e-16
0.3 4.4100e-02 1.3522e-03 1.3522e-03 6.2450e-17 1.8041e-16
0.4 5.7600e-02 4.6922e-03 4.6922e-03 4.8572e-17 1.3184e-16
0.5 6.2500e-02 7.1071e-03 7.1071e-03 1.3878e-17 9.7145e-17
0.6 5.7600e-02 4.6922e-03 4.6922e-03 2.7756e-17 8.3267e-17
0.7 4.4100e-02 1.3522e-03 1.3522e-03 3.4694e-17 1.3878e-17
0.8 2.5600e-02 7.4263e-03 7.4263e-03 1.4572e-16 1.5613e-16
0.9 8.1000e-03 7.5301e-03 7.5301e-03 2.2204e-16 2.7756e-16
1 0 6.7365e-03 6.7365e-03 0 1.5260e-16

Example 2: Consider the following Fredholm integral equations of the second
kind with weakly singular kernel

φ(x)− 1

10

∫ 1

0

K(x, t)φ(t)dt = f(x), 0 ≤ x ≤ 1, (4.2)

where K(x, t) = |x− t|− 1
2 ,

f(x) = x2(1− x)2 − 27

30800
[x

8
3 (54x2 − 126x+ 77) + (1− x)

8
3 (54x2 + 18x+ 5)].

We have not the exact solutions of the example 2, but we compared the accura-
cy of the two methods through the error accuracy when the iterations increased of
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Table 4: The error comparison of succcessive approximation methods.
Node n=2 n=4 n=6 errors of (c3-c2) errors of (c4-c3)
0.0139 5.5529e-04 7.8461e-04 7.9539e-04 2.2932e-04 1.0780e-05
0.0556 3.3207e-03 3.5784e-03 3.5903e-03 2.5772e-04 1.1917e-05
0.1250 1.2872e-02 1.3386e-02 1.3399e-02 5.1414e-04 1.2785e-05
0.2222 3.2102e-02 3.2388e-02 3.2402e-02 2.8611e-04 1.3450e-05
0.3472 5.4893e-02 5.5188e-02 5.5202e-02 2.9552e-04 1.3437e-05
0.5000 NaN NaN NaN NaN NaN
0.6528 5.4893e-02 5.5188e-02 5.5202e-02 2.9552e-04 1.3437e-05
0.7778 3.2102e-02 3.2388e-02 3.2402e-02 2.8611e-04 1.3450e-05
0.8750 1.2872e-02 1.3386e-02 1.3399e-02 5.1414e-04 1.2785e-05
0.9444 3.3207e-03 3.5784e-03 3.5903e-03 2.5772e-04 1.1917e-05
0.9861 5.5529e-04 7.8461e-04 7.9539e-04 2.2932e-04 1.0780e-05

the successive approximation method and when the orders of the polynomial basis
function increased, respectively. The column 2 to column 4 of Table 4 shows the
solutions of the method when the iterations k=2,4,6, respectively, and it shows the
error accuracy of the solutions of column 3 minus column 2 and column 4 minus
column 3 and we get column 5 and column 6, respectively. From the Table 4 we can
easily find that, with the increasing of the iterations of the successive approximation
method, the error accuracy increased accordingly.

Table 5: The error comparison of polynomial basis function methods.
Node n=4 n=5 n=6 errors of (c3-c2) errors of (c4-c3)
0.0139 -1.2677e-04 6.3355e-03 6.3355e-03 6.4623e-03 1.8388e-16
0.0556 1.1224e-02 9.5719e-03 9.5719e-03 -1.6520e-03 3.1225e-17
0.1250 2.7883e-02 2.0391e-02 2.0391e-02 -7.4917e-03 -1.3878e-17
0.2222 4.6462e-02 4.0972e-02 4.0972e-02 -5.4890e-03 9.7145e-17
0.3472 6.2217e-02 6.5462e-02 6.5462e-02 3.2455e-03 1.8041e-16
0.5000 6.9050e-02 7.8091e-02 7.8091e-02 9.0411e-03 6.9389e-17
0.6528 6.2217e-02 6.5462e-02 6.5462e-02 3.2455e-03 -1.8041e-16
0.7778 4.6462e-02 4.0972e-02 4.0972e-02 -5.4890e-03 -1.0408e-16
0.8750 2.7883e-02 2.0391e-02 2.0391e-02 -7.4917e-03 2.0470e-16
0.9444 1.1224e-02 9.5719e-03 9.5719e-03 -1.6520e-03 4.5103e-17
0.9861 -1.2677e-04 6.3355e-03 6.3355e-03 6.4623e-03 -8.5001e-17

Table 5 shows the results of the solutions of the method we proposed in this
paper. It shows the results of the solutions of the proposed method from the column
2 to column 4, and the error accuracy results obtained by column 3 minus column
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2 and column 4 minus column 3 and we get column 5 and column 6, respectively.
From the data of the table 5 we can easily find that the polynomial basis function
method is much superior than the successive approximation method. The best error
effectiveness of successive approximation we finally obtained is O(10−5), but we
obtained the high accuracy of the polynomial basis function method when we let
n = 5 and the effective errors have reached O(10−16), which is much nearly to the
exact solutions.
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SHARP COEFFICIENT ESTIMATES FOR NON-BAZILEVIČ FUNCTIONS

JI HYANG PARK, VIRENDRA KUMAR, AND NAK EUN CHO

Abstract. The class B̄(α) of non-Bazilevič functions was introduced by Obradović. Later,
estimates on the second coefficient and Fekete–Szegö functional for normalized analytic func-
tions in the class B̄(α) were investigated by Tuneski and Darus. In the present work,
sharp estimate on third to eighth coefficients for normalized analytic functions f(z) =
z + a2z

2 + a3z
3 + · · · ∈ B̄(α) are investigated. Further sharp estimate on the functional

|a2a3 − a4| is also obtained.

1. Introduction

The class of analytic functions defined in the unit disk D := {z ∈ C : |z| < 1} and having
the Taylor series expansion of the form

f(z) = z + a2z
2 + a3z

3 + · · · (1.1)

is denoted by A. The subclass of A consisting of univalent functions is denoted by S.
De Branges, in 1984, proved that if f ∈ S, then |an| ≤ n. This result was put be-
fore by Bieberbach in 1916 and is popularly known as the Bieberbach conjecture. Among
the many subclasses of S, the class of starlike and convex functions are the most inves-
tigated. The class of starlike and convex functions are defined, respectively, by S∗ :=
{f ∈ S : Re(zf ′(z)/f(z)) > 0} and K := {f ∈ S : Re(1 + zf ′′(z)/f ′(z)) > 0}. Thomas [15],
in 1967, introduced a general form of the class of starlike functions. Thomas [15], for a
starlike functions g, defined the class Bα := {f ∈ S : Re(zf ′(z)f(z)α−1/g(z)α) > 0}. This
class is popularly known as the class of Bazilevič functions of type α. In 1973, Singh [12]
investigated a special case of Bα. For α ≥ 0 and setting g(z) = z, he considered a subclass
of Bα defined by

B1(α) :=

{
f ∈ A : Re

(
f ′(z)

(
f(z)

z

)α−1)
> 0

}
.

In his paper, he obtained the sharp radius estimates for certain integral operator to be a
member of the class B1(α) and he also obtained the sharp upper bound on the first four
initial coefficients. He also investigated the sharp bound on the Fekete-Szegö functional for
functions in this class. It should be noted that the class B1(1) is a subclass of close-to-convex

2010 Mathematics Subject Classification. 30C45, 30C50.
Key words and phrases. Univalent function, Coefficient bound, Hankel determinant.
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functions and hence univalent in D. Moreover, B1(0) = S∗. In 2015, Thomas [13] proved the
sharp bound |a2a4 − a23| ≤ 4/(2 + α)2 for functions in the class B1(α) for α ∈ [0, 1]. In 2017,
Marjono et al. [6] investigated the sharp upper bound on fifth and sixth coefficients. They
also conjectured that if f ∈ B1(α), then

|an| ≤
2

n− 1 + α
(n = 2, 3, 4, · · · )

holds for all α ≥ 1. This conjecture for the fifth coefficient, for certain range of α, was recently
settled by Cho and Kumar [1]. For many results related to the Bazilevič functions we refer
the reader to the papers [11,14,15,17] and the references cited therein. A class B(α, β) with
stronger conditions was considered by Ponnusamy [8]. For α > 0 and 0 < β < 1, he defined

B(α, β) :=

{
f ∈ A :

∣∣∣∣∣f ′(z)

(
f(z)

z

)α−1
− 1

∣∣∣∣∣ < β

}
.

For the negative value of α ∈ (−1, 0), the class B(α, β) can be rewritten as

B̄(α, β) :=

{
f ∈ A :

∣∣∣∣∣f ′(z)

(
z

f(z)

)α+1

− 1

∣∣∣∣∣ < β

}
.

This class was introduced and investigated by Obradović, in 1998. He obtained the conditions
on the parameter β that embeds this class into the class of starlike functions. Later in 2002,
Tuneski and Darus [16], for 0 < α < 1, considered the class

B̄(α) :=

{
f ∈ A : Re

(
f ′(z)

(
z

f(z)

)α+1
)
> 0

}
.

This class, as mentioned by Obradović in the conference “Computational Methods and Func-
tion Theory 2001” is called to be class of functions of non-Bazilevič type, see [16]. Tuneski
and Darus investigated the sharp bounds on |a2| and the Fekete-Szegö functional |a3 − µa22|.
Some typographical errors in the result [16, Theorem 1, p. 64] were reported by Kumar
and Kumar [5]. For a more general result and the correct version of their result one can
refer to [5]. Starlikeness of multivalent non-Bazilevič functions were investigated by Guo et
al. [2]. Estimate on the second Hankel determinant for the class of functions f ∈ A satisfying
Re (f ′(z) (z/f(z))α) > 0 for α ∈ (0, 1/3] was obtained by Krishna and Reddy [4].

Motivated by the above works, in this paper, sharp bound on the third to eighth coefficients
of functions in the class B̄(α) are investigated. Moreover, sharp bound on the functional
|a2a3 − a4| for functions in the class B̄(α) is also obtained.

Let P be the class of analytic functions having the Taylor series of the form p(z) =
1 + p1z + p2z

2 + p3z
3 + · · · and mapping the unit disk D onto the right-half of the complex

plane i.e. satisfying the condition Re p(z) > 0 (z ∈ D). Let B be the class of Schwarz
functions consisting of analytic functions of the form w(z) = c1z + c2z

2 + c3z
3 + · · · (z ∈ D)
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and satisfying the condition |w(z)| < 1 for z ∈ D. The following correspondence between the
classes B and P holds:

p ∈ P if and only if w(z) =
p(z)− 1

p(z) + 1
∈ B. (1.2)

Comparing coefficients in (1.2), we have

c1 =
p1
2
, c2 =

2p2 − p21
4

, c3 =
4p3 − 4p1p2 + p31

8
, c4 =

8p4 − 8p1p3 − 4p22 + 6p21p2 − p41
16

. (1.3)

Lemma 1.1. [3](see also [10]) If p ∈ P, then, for any complex number ν,

|p2 − νp21| ≤ 2 max{1; |2ν − 1|}
and the equality holds for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
.

Consider the functional Ψ(µ, ν) = |c3+µc1c2+νc31| for w ∈ B and µ, ν ∈ R. Let us assume
that the symbols Ωk’s are defined as follows:

Ω1 :=
{

(µ, ν) ∈ R2 : |µ| ≤ 1/2, |ν| ≤ 1
}
,

Ω2 :=

{
(µ, ν) ∈ R2 :

1

2
≤ |µ| ≤ 2,

4

27
(|µ|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1

}
,

Ω3 :=

{
(µ, ν) ∈ R2 : |µ| ≤ 1

2
, ν ≤ −1

}
,Ω4 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 1/2, ν ≤ −2

3
(|µ|+ 1)

}
,

Ω5 :=
{

(µ, ν) ∈ R2 : |µ| ≤ 2, ν ≥ 1
}
,Ω6 :=

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4, ν ≥ 1

12
(µ2 + 8)

}
,

Ω7 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4, ν ≥ 2

3
(|µ| − 1)

}
,

Ω8 :=

{
(µ, ν) ∈ R2 :

1

2
≤ |µ| ≤ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 4

27
(|µ|+ 1)3 − (|µ|+ 1)

}
,

Ω9 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4

}
,

Ω10 :=

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4,

2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4
≤ ν ≤ 1

12
(µ2 + 8)

}
,

Ω11 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4
≤ ν ≤ 2|µ|(|µ| − 1)

µ2 − 2|µ|+ 4

}
,

Ω12 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ| − 1)

µ2 − 2|µ|+ 4
≤ ν ≤ 2

3
(|µ| − 1)

}
.
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The following result is due to Prokhorov and Szynal [9] which we need in our investigation.

Lemma 1.2. [9, Lemma 2, p. 128] If w ∈ B, then for any real numbers µ and ν, we have

|Ψ(µ, ν)| ≤



1, (µ, ν) ∈ Ω1 ∪ Ω2 ∪ {(2, 1)};

|ν|, (µ, ν) ∈
7⋃

k=3

Ωk;

2
3
(|µ|+ 1)

(
|µ|+1

3(|µ|+ν+1)

)1/2
, (µ, ν) ∈ Ω8 ∪ Ω9;

1
3
ν
(
µ2−4
µ2−4ν

)(
µ2−4
3(ν−1)

)1/2
, (µ, ν) ∈ Ω10 ∪ Ω11 \ {(2, 1)};

2
3
(|µ| − 1)

(
|µ|−1

3(|µ|−ν−1)

)1/2
, (µ, ν) ∈ Ω12.

The extremal functions, up to rotations, are of the form

w1(z) = z3, w2(z) = z, w3(z) =
z(t1 − z)

1− t1z
, w4(z) =

z(t2 + z)

1 + t2z

and w5(z) = c1z + c2z
2 + c3z

3 + · · · , where the parameters t1, t2 and the coefficients ci are
given by

t1 =

(
|µ|+ 1

3(|µ|+ ν + 1)

)1/2

, t2 =

(
|µ| − 1

3(|µ| − ν − 1)

)1/2

, c1 =

(
2ν(µ2 + 2)− 3µ2

3(ν − 1)(µ2 − 4ν)

)1/2

,

c2 = (1− c21)eiθ0 , c3 = −c1c2eiθ0 , θ0 = ± arccos

[
µ

2

(
ν(µ2 + 8)− 2(µ2 + 2)

2ν(µ2 + 2)− 3µ2

)1/2
]
.

2. Coefficient Estimates

The following theorem gives the sharp estimates on |a3|, |a4| and on the functional |a2a3−
a4| for functions in the class B̄(α).

Theorem 2.1. Let α0 ≈ 2.36, α1 ≈ 2.68 and α2 ≈ 2.71 are the smallest positive roots of the
equations 3α4− 11α3 +α2 + 11α+ 20 = 0, α6− 11α5 + 56α4− 138α3 + 151α2− 7α− 148 = 0
and α3 − 5α2 + 11α − 13 = 0, respectively. Let f ∈ B̄(α) has the from (1.1). Then, the
following sharp inequalities hold:

|a3| ≤

{
2

α−2 , if α ∈ (0, 3] \ {1, 2};
2(α−3)

(α−2)(α−1)2 , if α > 3,
(2.1)

|a4| ≤


2(α4−5α3+11α2−19α+36)

3(α−1)(α−2)(α−3) , if α ∈ (0, α0] \ {1, 2} or α2 ≤ α < 3;
4(|a|−1)3/2

3(α−3)(|a|−b−1)1/2 , if α0 ≤ α ≤ α1;
2(α−1)2(a2−4)3/2

(α−3)(a2−4b)(3(b−1))1/2 , if α1 ≤ α ≤ α2;
2

α−3 , if 3 < α,

(2.2)
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where a and b are given by

a := − 2(α− 5)

(α− 1)(α− 2)
and b :=

α4 − 5α3 + 11α2 − 19α + 36

3(α− 1)3(α− 2)
.

Proof. Since f ∈ B̄(α), it follows that there exists p(z) = 1 +p1z+p2z
2 +p3z

3 + · · · ∈ P such
that

f ′(z)

(
z

f(z)

)α+1

= p(z). (2.3)

Comparing coefficients of like-power terms in (2.3), we get

a2 = − p1
α− 1

and a3 =
(α− 2)(α + 1)p21 − 2(α− 1)2p2

2(α− 2)(α− 1)2
. (2.4)

Now consider

a3 =
(α− 2)(α + 1)p21 − 2(α− 1)2p2

2(α− 2)(α− 1)2

= − 1

α− 2

[
p2 −

(α− 2)(α + 1)

2(α− 1)2
p21

]
. (2.5)

An application of Lemma 1.1 on (2.5), gives

|a3| ≤
2

α− 2
max

{
1;
|α− 3|

(α− 1)2

}
which equivalently can be written as

|a3| ≤

{
2

α−2 , α ∈ (0, 3] \ {1, 2};
2(α−3)

(α−2)(α−1)2 , α > 3.

This is the required bound on third coefficient as stated in the theorem. In the first case of
(2.1), equality occurs for the function f0 ∈ B̄(α) defined by

f ′0(z)

(
z

f0(z)

)α+1

=
1 + z2

1− z2
, (2.6)

whereas in the second case of (2.2), equality holds for the function f̃0 ∈ B̄(α) defined by

f̃0
′
(z)

(
z

f̃0(z)

)α+1

=
1 + z

1− z
. (2.7)

Next we shall find the estimate on |a4|. From (2.3), we have

a4 =
−(α− 3)(α− 2)(α + 1)(2α + 1)p31 + 6(α− 1)2(α− 3)(α + 1)p1p2 − 6(α− 2)(α− 1)3p3

6(α− 1)3(α− 2)(α− 3)
.

(2.8)
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In view of the interconnections in (1.2) and (1.3), Eqn. (2.8) can be rewritten as:

a4 = −2 [(α4 − 5α3 + 11α2 − 19α + 36) c31 − 6(α− 5)(α− 1)2c1c2 + 3(α− 2)(α− 1)3c3]

3(α− 1)3(α− 2)(α− 3)
(2.9)

or equivalently

a4 = − 2

α− 3

[
c3 + ac1c2 + bc31

]
,

where the parameters a and b are given by

a := − 2(α− 5)

(α− 1)(α− 2)
and b :=

α4 − 5α3 + 11α2 − 19α + 36

3(α− 1)3(α− 2)
. (2.10)

Assume that Ωi’s are defined as in Lemma 1.2 with the settings µ = a and ν = b. We now
proceed further in the proof with the following steps:

(1) Assume that α ≥ (
√

73− 1)/2 ≈ 3.772. In this case, we see that −1/2 ≤ a ≤ 1/2 holds.
Moreover, b ≤ 1 holds if and only if α4 − 5α3 + 8α2 − α − 15 ≥ 0, which holds for all
α ≥ 3. Thus for all α ≥ (

√
73− 1)/2, we conclude that (a, b) ∈ Ω1.

(2) Next assume that 3 < α ≤ (
√

73− 1)/2. Then, we see that the condition −1/2 ≤ a ≤ 2
holds for all such α and (4/27)(a + 1)3 − (a + 1) ≤ b ≤ 1 all α > 3. Therefore, for
3 < α ≤ (

√
73− 1)/2, we must have (a, b) ∈ Ω2.

(3) Let

α2 :=
1

3

(
3

√
53 + 9

√
41− 8

3
√

53 + 9
√

41
+ 5

)
≈ 2.71

and

α0 :=
11

12
+

1

12

√
4 (22/3)

3

√
8989 + 9

√
14717 + 4

3

√
35956− 36

√
14717 + 113− 1

2

√
Ĉ + D̂ ≈ 2.36

with

Ĉ :=
113

18
− 1

9
(22/3)

3

√
8989 + 9

√
14717− 1

9

3

√
35956− 36

√
14717,

and

D̂ :=
407

18

√
4 (22/3)

3
√

8989 + 9
√

14717 + 4
3
√

35956− 36
√

14717 + 113

are the smallest positive roots of the equations α3 − 5α2 + 11α − 13 = 0 and 3α4 −
11α3 + α2 + 11α + 20 = 0, respectively. Now assume that 0 < α < 1 or 2 < α ≤ α0.
Then a ≥ 4 and b ≥ 2(a − 1)/3 hold and hence (a, b) ∈ Ω7. Moreover, a ≤ −1/2 and
b ≤ −2(−a + 1)/3 holds whenever 1 < α < 2. Therefore, (a, b) ∈ Ω4 whence 1 < α < 2.
Also it can be easily seen that 2 ≤ a ≤ 4 and b ≥ (a2 + 8)/12 hold for α2 ≤ α < 3.
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(4) Let 2.69 ≈ (5 +
√

33)/4 ≤ α ≤ α0. Then a and b satisfy 2 ≤ a ≤ 4 and

2a(a+ 1)

a2 + 2a+ 4
≤ b ≤ a2 + 8

12
.

Therefore, for this range of α, we see that (a, b) ∈ Ω10. Let α1 ≈ 2.68 is the smallest
positive root of α6 − 11α5 + 56α4 − 138α3 + 151α2 − 7α − 148 = 0. Further, when
α1 ≤ α ≤ (

√
33 + 5)/4, the parameters a and b satisfy a ≥ 4 and

2a(a+ 1)

a2 + 2a+ 4
≤ b ≤ 2a(a− 1)

a2 − 2a+ 4
.

Hence, in view of Lemma 1.2, we have (a, b) ∈ Ω11.
(5) Assume that α0 ≤ α ≤ α1. In this case, it is a simple matter to check that a ≥ 4 and

2a(a− 1)

a2 − 2a+ 4
≤ b ≤ 2(a− 1)

3
.

Therefore, Lemma 1.2 gives (a, b) ∈ Ω12.

In the light of the above discussions, an application of Lemma 1.2 gives the desired esti-
mates on |a4|. In the first case of (2.2), the equality holds for the function f0 defined in (2.6),

whereas in the forth case of (2.2), the equality holds for the function function f̃0 defined in
(2.7). In the case third of (2.2), the extremal function f1 is given by

f ′1(z)

(
z

f1(z)

)α+1

=
1 + w(z)

1− w(z)
(2.11)

with choice of the Schwarz function (up to rotation) w(z) = c1z + c2z
2 + c3z

3 + · · · ∈ B,
where the coefficients ci are given by

c1 =

(
2b(a2 + 2)− 3a2

3(b− 1)(a2 − 4b)

)1/2

, c2 = (1− c21)eiθ0 , c3 = −c1c2eiθ0 ,

with

θ0 = ± arccos

[
a

2

(
b(a2 + 8)− 2(a2 + 2)

2b(a2 + 2)− 3a2

)1/2
]
,

where a and b are given by (2.10). Finally, in the second case of (2.2), the equality holds for

the function f̃1 defined by

f̃ ′1(z)

(
z

f̃1(z)

)α+1

=
1 + w(z)

1− w(z)
(2.12)

with the Schwarz function given by w(z) = z(κ+ z)/(1 + κz), where

κ :=

(
|a| − 1

3 (|a| − b− 1)

)1/2

.

This completes the proof.
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The following theorem provides sharp bound on the fifth, sixth, seventh and eighth coeffi-
cients for functions in the class B̄(α).

Theorem 2.2. Let us denote

Ψ := 2α6 − 28α5 + 137α4 − 331α3 + 437α2 − 433α + 360,

Ψ̂ := −6α9+96α8−674α7+2836α6−8942α5+22504α4−40886α3+45124α2−30132α+21600,

χ := 23α12 − 756α11 + 10218α10 − 77686α9 + 376014α8 − 1243398α7 + 2969824α6

− 5401638α5 + 7729083α4 − 8432486α3 + 6389238α2 − 3333636α + 1360800,

and

χ̂ := −(45α15− 1530α14 + 23641α13− 221500α12 + 1438032α11− 7061480α10 + 27696314α9

− 88000680α8 + 222370901α7 − 435300650α6 + 653299149α5 − 763502860α4

+ 703545502α3 − 473136900α2 + 206026416α− 76204800).

If f ∈ B̄(α) has the from (1.1), then for 0 < α < 1, the following sharp inequalities hold:

|a5| ≤
2Ψ

3(α− 4)(α− 3)(α− 2)2(α− 1)4
,

|a6| ≤
Ψ̂

15(α− 5)(α− 4)(α− 3)(α− 2)2(α− 1)5
,

|a7| ≤
2χ

45(α− 6)(α− 5)(α− 4)(α− 3)2(α− 2)3(α− 1)6

and

|a8| ≤
2χ̂

315(α− 7)(α− 6)(α− 5)(α− 4)(α− 3)2(α− 2)3(α− 1)7
.

Proof. From (2.3), on comparing the coefficients, we have

a5 =
τ1p4 + τ2p

2
1p2 + τ3p

2
2 + τ4p1p3 + τ5p

4
1

24(α− 4)(α− 3)(α− 2)2(α− 1)4
, (2.13)

where τi’s are given by

τ1 := −24(α− 3)(α− 2)2(α− 1)4, τ2 := −12(α− 4)(α− 3)(α− 2)(α− 1)2(α + 1)(2α + 1),

τ3 := 12(α− 3)(α− 4)(α− 1)4(α + 1), τ4 := 24(α− 4)(α− 2)2(α− 1)3(α + 1),

τ5 := (α− 4)(α− 3)(α− 2)2(α + 1)(2α + 1)(3α + 1).

Similarly, the sixth coefficient is given by

a6 = − τ̂1p5 + τ̂2p
2
2p1 + τ̂3p2p3 + τ̂4p

3
1p2 + τ̂5p

2
1p3 + τ̂6p1p4 + τ̂7p

5
1

120(α− 5)(α− 4)(α− 3)(α− 2)2(α− 1)5
, (2.14)
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where τ̂i’s are defined by

τ̂1 := 120(α− 4)(α− 3)(α− 2)2(α− 1)5, τ̂2 := 60(α− 5)(α− 4)(α− 3)(α− 1)4(α+ 1)(2α+ 1),

τ̂3 := −120(α− 5)(α− 4)(α− 2)(α− 1)5(α + 1),

τ̂4 := −20(α− 5)(α− 4)(α− 3)(α− 2)(α− 1)2(α + 1)(2α + 1)(3α + 1),

τ̂5 := 60(α− 5)(α− 4)(α− 2)2(α− 1)3(α + 1)(2α + 1),

τ̂6 := −120(α− 5)(α− 3)(α− 2)2(α− 1)4(α + 1),

τ̂7 := (α− 5)(α− 4)(α− 3)(α− 2)2(α + 1)(2α + 1)(3α + 1)(4α + 1).

To find the estimate on |a5|, we observe from (2.13) that the coefficients τi (i = 1, 2, 3,
4, 5, 6, 7) of p4, p

2
1p2, p

2
2, p1p3 and p41 are positive. Hence applying triangle inequality in (2.13)

and using the fact that |pj| ≤ 2, we get the required estimate on |a5|. A similar argument
can be used to obtained the estimates on |a6|, |a7| and |a8|. In all the cases, equality hold

for the function f̃0 given by (2.7). This completes the proof.

The following theorem gives the sharp bound on the functional |a2a3−a4| for the functions
in the class B̄(α).

Theorem 2.3. Let f ∈ B̄(α) has the form (1.1). Then, the following sharp result holds:

|a2a3 − a4| ≤


2(α3−4α2+α+18)

3(α−1)2(α−2)(α−3) , if α ∈ (0, 2) \ {1};
2(α3−4α2+α+18)

3(α−1)2(α−2)(3−α) , if 2 < α < 3;
2

α−3 , if α > 3.

(2.15)

Proof. Proceeding as in the proof of previous theorem and using (2.4) and (2.9), we can write

a2a3 − a4 =
2 [(α3 − 4α2 + α + 18) c31 + 12(α− 1)c1c2 + 3(α− 2)(α− 1)2c3]

3(α− 3)(α− 2)(α− 1)2
. (2.16)

By setting

s :=
4

(α− 1)(α− 2)
and t :=

α3 − 4α2 + α + 18

3(α− 2)(α− 1)2

the expression in (2.16) can be written as

a2a3 − a4 =
2

α− 3

[
c3 + sc1c2 + tc31

]
.

Assume that the symbols Ωi’s are as defined in Lemma 1.2 with the settings µ = s and
ν = t. Now the proof is accomplished in the following steps:
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(1) Let (3 +
√

33)/2 ≤ α. Then it can be easily verified that

−1

2
≤ s ≤ 1

2
and − 1 ≤ t ≤ 1.

Therefore, for the range (3 +
√

33)/2 ≤ α, we have (s, t) ∈ Ω1. Further, when 3 < α ≤
(3 +

√
33)/2, wee see that (s, t) ∈ Ω2.

(2) Let 0 < α < 1 or 1 < α < 2. Then in a similar way we have (s, t) ∈ Ω4. Further if
(3 +

√
5)/2 ≤ α < 3, then (s, t) ∈ Ω6 and when 2 < α ≤ (3 +

√
5)/2, then (s, t) ∈ Ω7.

In the light of the above discussions, an application of Lemma 1.2, establish the required
estimate on |a2a3 − a4|. In the first two cases of (2.15), the equality hold for the function

f̃0 ∈ B̄(α) defined by (2.7). In the third case of (2.15), the equality holds for the function f2
defined by

f ′2(z)

(
z

f2(z)

)α+1

=
1 + z3

1− z3
. (2.17)

This completes the proof.

Remark 2.4. It would be interesting to find out the sharp bound on |ai| (i = 5, 6, 7, 8) for the

functions f̃ ∈ B̄(α) in the case when α > 1.

Acknowledgement

The second author was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (No. 2016R1D1A1A09916450).

References

[1] N. E. Cho and V. Kumar, On a coefficient conjecture for Bazilevič functions, preprint.
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[7] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329–335.
[8] S. Ponnusamy, Convolution properties of some classes of meromorphic univalent functions, Proc. Indian

Acad. Sci. Math. Sci. 103 (1993), no. 1, 73–89.
[9] D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae

Curie-Sk lodowska Sect. A 35 (1981), 125–143.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1112 JI HYANG PARK ET AL 1103-1113



SHARP COEFFICIENT ESTIMATES FOR NON-BAZILEVIČ FUNCTIONS 11
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A new extragradient method for the split feasibility

and fixed point problems ∗

Ming Zhao1†and Yunfei Du2

1School of Science, China University of Geosciences(Beijing), Beijing 100083, China

2LMIB-School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

Abstract: In this paper, we propose a new extragradient method with regular-
ization for finding a common element of the solution set Γ of the split feasibility
problem and the set Fix(S) of fixed points of a nonexpansive mapping S in infinite-
dimensional Hilbert spaces, combining the regularization method and the technique
of averaged operator, we prove the sequences generated by the proposed algorithm
converge weakly to an element of Fix(S)

∩
Γ under mild conditions.

Keywords: split feasibility problem , extragradient, regularization.

1. Introduction
Throughout this paper, let H be a Hilbert space, ⟨·, ·⟩ denotes the inner product, and

∥ · ∥ denotes for the corresponding norm. The split feasibility problem (SFP) which was first
introduced by Censor and Elfving [1] in 1994 for modeling inverse problems arising from phase
retrievals and in medical image reconstruction. Let C and Q be closed convex sets in the
infinite-dimensional real Hilbert spaces H1 and H2, respectively. The SFP is to find a vector x∗

satisfying
x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where A ∈ B(H1,H2) which denotes the family of all bounded linear operators from H1 to H2.
Some related work in the infinite-dimensional setting can be found in [2, 3, 4, 5, 9, 10, 12] and
the references therein.

Many methods have been developed to solve the SFP, The basic algorithm have CQ algorithm
proposed by Byrne [2], the relaxed CQ algorithm proposed by Yang [9], the half-space relaxation
projection method proposed by Qu and Xiu [11], the variable Krasnosel skii-Mann algorithm
proposed by Xu [12]. The projections of a point onto C and Q are difficult to compute when
C and Q fail to have closed-form expressions, though theoretically we can prove the (weak)
convergence of the algorithm.

Very recently, Xu [6] gave a continuation of the study on the CQ algorithm and its conver-
gence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm which
was proved to be weakly convergent to a solution of the SFP. On the other hand, Korpelevich

∗This work was supported by the Fundamental Research Funds for the Central Universities.
†Corresponding Author. Email address: mingzhao@cugb.edu.cn(M.Zhao)
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[7] introduced the so-called extragradient method for finding a solution of a saddle point prob-
lem. He proved that the sequences generated by the proposed iterative algorithm converge to a
solution of a saddle.

Motivated by the idea of an extragradient method, Nadezhina and Takahashi [8] introduced
an iterative algorithm for finding a common element of the set of fixed points of a nonexpansive
mapping and the solution set of a variational inequality problem [13] for a monotone, Lipschitz
continuous mapping in a real Hilbert space. They obtained a weak convergence theorem for two
sequence generated by the proposed algorithm.

In our paper, we introduce and analyze a new extragradient iterative algorithm to find a
common element of the solution set Γ of the split feasibility problem and the set Fix(S) of fixed
points of a nonexpansive mapping S in infinite-dimensional Hilbert spaces, furthermore, we
prove its convergence. The results of this paper represent the improvement of the corresponding
results in [6] and [14].

2. Preliminaries
Throughout this paper, we use xn → x and xn ⇀ x to denote strong and weak convergence

to x of the sequence xn, respectively. Let K be a nonempty closed convex subset of H. Recall
that the projection (nearest point or metric) from H onto K, denoted by PK , is defined in such
a way that, for each x ∈ H, PKx is the unique point in K with the property

∥ x− PKx ∥= inf
y∈K

∥ x− y ∥=: d(x,K),

i.e.
PK(x) = argmin{∥ x− y ∥| y ∈ K}.

Some important properties of projections are gathered in the following Lemma.
Lemma 2.1 For given x ∈ H and z ∈ K, the following properties hold:
(1) x ∈ K ⇔ PK(x) = x;
(2) ⟨x− PK(x), z − PK(x)⟩ ≤ 0, ∀x ∈ H and ∀z ∈ K;
(3) ⟨x− y, PK(x)− PK(y)⟩ ≥ ∥PK(x)− PK(y)∥2, ∀x, y ∈ H;
(4) ∥PK(x)− z∥2 ≤ ∥x− z∥2 − ∥PK(x)− x∥2, ∀x ∈ H and ∀z ∈ K;
(5) ∥PK(x)− PK(y)∥ ≤ ∥x− y∥, ∀x, y ∈ H.
Proof. See Facchinei and Pang [15].
Definition 2.1 Let T be a mapping from K ⊆ H into H, then
(a) T is called monotone on K if

⟨T (x)− T (y), x− y⟩ ≥ 0, ∀ x, y ∈ K.

(b) T is called strongly monotone on K if there is a µ > 0, such that

⟨T (x)− T (y), x− y⟩ ≥ µ∥x− y∥2, ∀ x, y ∈ K.

(c) F is called co-coercive (or ν-inverse strongly monotone) on K if there is a ν > 0, such that

⟨T (x)− T (y), x− y⟩ ≥ ν∥T (x)− T (y)∥2, ∀ x, y ∈ K.

(d) F is called pseudo-monotone on K if

⟨T (y), x− y⟩ ≥ 0 ⇒ ⟨T (x), x− y⟩ ≥ 0, ∀ x, y ∈ K.

(e) T is called Lipschitz continuous on K if there exists a constant L > 0 such that

∥T (x)− T (y)∥ ≤ L∥x− y∥, ∀ x, y ∈ K.
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Definition 2.2 A mapping T : H → H is said to be:
(a) nonexpansive if

∥ Tx− Ty ∥≤∥ x− y ∥, ∀x, y ∈ H;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

⟨x− y, Tx− Ty⟩ ≥∥ Tx− Ty ∥, ∀x, y ∈ H,

or alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S)

where S : H → H is nonexpansive.
Remark 2.1 From Lemma 2.1 and Definition 2.1-2.2, we can infer that if S is nonexpansive,
then I-S is monotone; A monotone mapping is pseudo-monotone mapping; An inverse strongly
monotone mapping is monotone and Lipschitz continuous; A Lipschitz continuous and strongly
monotone mapping is an inverse strongly monotone mapping; The projection operator is 1-ism
and nonexpansive.
Lemma 2.2 A mapping T is 1-ism if and only if the mapping I-T is 1-ism, where I is the
identity operator.
Proof. See [16, Lemma 2.3].
Remark 2.2 If T is an inverse strongly monotone mapping, then T is a nonexpansive mapping.

Definition 2.3 A mapping T : H → H is said to be an averaged mapping if it can be written
as the average of the identity I and a nonexpansive mapping S, that is,

T = (1− α)I + αS (2.1)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (2.1) holds, we say that
T is α-averaged. Thus firmly nonexpansive mappings (for example, projections) are 1

2 -averaged
mappings.
Proposition 2.1 ([16]). Let T : H → H be a given mapping:
(1) T is nonexpansive if and only if the complement I-T is 1

2 -ism.
(2) If T is µ-ism, then for γ > 0, γT is ν

γ -ism.

(3) T is averaged if and only if the complement I-T is ν-ism for some ν > 1
2 . Indeed, for

α ∈ (0, 1), T is α-averaged if and only if I-T is 1
2α -ism.

Proposition 2.2 ([16, 17]). Let S, T, V : H → H be given operators.
(1) If T = (1− α)S + αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive, then
T is averaged.
(2) T is firmly nonexpansive if and only if the complement I-T is firmly nonexpansive.
(3) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive and V is
nonexpansive, then T is averaged.
(4) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {Ti}Ni=1 is averaged, then so is the composite T1 ◦ · · · ◦ TN . In particular, if T1 is α1-
averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the composite T1 ◦T2 is α-averaged,
where α = α1 + α2 − α1α2.
(5) If the mapping {Ti}Ni are averaged and have a common fixed point, then

N∩
i=1

Fix(Ti) = Fix(T1 ◦ · · · ◦ TN ).
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The notation Fix(T ) denotes the set of all fixed points of the mapping T , that is Fix(T ) = {x ∈
H : Tx = x}.

The so-called demiclosedness principle plays an important role in our argument.
Definition 2.4 Let T : H → H be an operator. We say that I-T is demiclosed (at zero), if for
any sequence xn in H, there holds the following implication:

xn ⇀ x and (I-T )xn → 0 ⇒ (I-T )x = 0.

Lemma 2.3 ([18]). Let H be a Hilbert space. Then for all x, y ∈ H and λ ∈ [0, 1],

∥ λx+ (1− λ)y ∥2= λ ∥ x ∥2 +(1− λ) ∥ y ∥2 −λ(1− λ) ∥ x− y ∥2 .

Lemma 2.4 ([19]). Let {an}∞n=1, {bn}∞n=1 and {δn}∞n=1 be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then limn→∞ an exists.
Corollary 2.1 ([20]). Let {an}∞n=1 and {bn}∞n=1 be two sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 1.

If
∑∞

n=1 bn <∞, then limn→∞ an exists.
Recall that a Banach space X is said to satisfy the Opial condition [22] if for any sequence

{xn} in X the condition that {xn} converges weakly to x ∈ X implies that the inequality

lim inf
n→∞

∥ xn − x ∥< lim inf
n→∞

∥ xn − y ∥

holds for every y ∈ X with y ̸= x.
It is well-known that every Hilbert space satisfies the Opial condition.

3. Main results
Throughout this paper, we assume that the SFP is consistent, that is, the solution set Γ of

the SFP is nonempty.
It is easy to see that SFP is equivalent to the following minimization problem

min
x∈C

f(x) :=
1

2
∥Ax− PQAx∥2, (3.1)

where f : H1 → R is a continuous differentiable function, however it is ill-posed. Therefore, Xu
[6] considered the following Tikhonov regularized problem:

min
x∈C

fα(x) :=
1

2
∥Ax− PQAx∥2 +

1

2
α∥x∥2, (3.2)

where α > 0 is the regularization parameter.
We observe that the gradient

∇fα(x) = ∇f(x) + αI = A∗(I − PQ)A+ αI (3.3)

is (α+ ∥A∥2)-Lipschitz continuous and α-strongly monotone.
Proposition 3.1 ([21]) Given x∗ ∈ H1, the following statements are equivalent:
(1) x∗ solves the SFP;
(2) x∗ solves the fixed point equation

PC(I − λ∇f) = PC [I − λA∗(I − PQ)A]x
∗ = x∗ (3.4).
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(3) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C, (3.5)

where ∇f = A∗(I − PQ)A and A∗ is the adjoint of A.
Remark 3.1. It is clear from Proposition 3.1 that

Γ = Fix(PC(I − λ∇f)) = V I(C,∇f)

for any λ > 0, where Fix(PC(I −λ∇f)) and V I(C,∇f) denote the set of fixed points of PC(I −
λ∇f) and the solution set of VIP(3.5).

Next, we will present our method for solving the SFP and prove its convergence.
Theorem 3.1 Let S : C → C be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅ in Hilbert
space. Let {xn}, {yn} and {zn} be the sequences in C generated by the following extragradient
algorithm: 

x0 ∈ C chosen arbitrarily,
zn = (1− γn)xn + γnPC(I − λn∇fαn)xn,
yn = (1− βn)zn + βnSPC(I − λnfαn)zn,
xn+1 = (1− µn)yn + µnSPC(I − λn∇fαn)yn, ∀n > 0,

(3.6)

where the sequences of parameters {αn}, {βn}, {γn} and {µn} satisfy the following conditions:
(a)

∑∞
n=1 αn <∞;

(b) {λn} ⊂
(
0, 1

∥A∥2
)
and 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

1
∥A∥2 ;

(c) {γn} ⊂ (0, 1), and 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(d) {βn} ⊂ (0, 1), and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(e) {µn} ⊂ (0, 1), and 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 1.
Then, the sequences {xn}, {yn} and {zn} are all converge weakly to an element x̄ ∈ Fix(S)

∩
Γ.

Proof. It [21] has been proved PC(I − λ∇fα) is ζ-averaged for each λ ∈
(
0, 2

α+∥A∥2
)
, where

ζ =
2+λ(α+∥A∥2)

4 , so PC(I−λ∇fα) is nonexpansive. Furthermore, for {λn} ⊂
(
0, 1

∥A∥2
)
, we have

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥A∥2
= lim

0→∞

1

αn + ∥A∥2
.

Without loss of generality, we may assume that

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

αn + ∥A∥2
, ∀n ≥ 0.

Consequently, PC(I − λn∇fαn) is ζn-averaged for each integer n ≥ 0, where

ζn =
2 + λn(αn + ∥A∥2)

4
∈ (0, 1).

This implies that PC(I − λn∇fαn) is nonexpansive for all n ≥ 0.
Next, we show the sequences {xn}, {yn}, {zn} generated in Theorem 3.1 are bounded.

Indeed, take a fixed p ∈ Fix(S)
∩
Γ arbitrarily. Then, we get Sp = p and PC(I − λ∇f)p = p for
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λ ∈
(
0, 1

∥A∥2
)
. From (3.6), it follows that

∥zn − p∥ = ∥(1− γn)(xn − p) + γn[PC(I − λn∇fαn)xn − p]∥
≤ (1− γn)∥xn − p∥+ γn∥PC(I − λn∇fαn)xn − p∥
= (1− γn)∥xn − p∥+ γn∥PC(I − λn∇fαn)xn − PC(I − λn∇f)p∥
= (1− γn)∥xn − p∥+ γn∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p

+PC(I − λn∇fαn)p− PC(I − λn∇f)p∥
≤ (1− γn)∥xn − p∥+ γn(∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p∥

+∥PC(I − λn∇fαn)p− PC(I − λn∇f)p∥)
≤ (1− γn)∥xn − p∥+ γn(∥xn − p∥+ ∥(I − λn∇fαn)p− (I − λn∇f)p∥)
= ∥xn − p∥+ λnαnγn∥p∥,

(3.7)

∥yn − p∥ = ∥(1− βn)(zn − p) + βn[SPC(I − λn∇fαn)zn − p]∥
≤ (1− βn)∥zn − p∥+ βn∥PC(I − λn∇fαn)zn − p∥
= (1− βn)∥zn − p∥+ βn∥PC(I − λn∇fαn)zn − PC(I − λn∇f)p∥
= (1− βn)∥zn − p∥+ βn∥PC(I − λn∇fαn)zn − PC(I − λn∇fαn)p

+PC(I − λn∇fαn)p− PC(I − λn∇f)p∥
≤ (1− βn)∥zn − p∥+ βn(∥PC(I − λn∇fαn)zn − PC(I − λn∇fαn)p∥

+∥PC(I − λn∇fαn)p− PC(I − λn∇f)p∥)
≤ (1− βn)∥zn − p∥+ βn(∥zn − p∥+ ∥(I − λn∇fαn)p− (I − λn∇f)p∥)
= ∥zn − p∥+ λnαnβn∥p∥,

(3.8)

and

∥xn+1 − p∥ = ∥(1− µn)(yn − p) + µn[SPC(I − λn∇fαn)yn − p]∥
≤ (1− µn)∥yn − p∥+ µn∥PC(I − λn∇fαn)yn − p∥
= (1− µn)∥yn − p∥+ µn∥PC(I − λn∇fαn)yn − PC(I − λn∇f)p∥
= (1− µn)∥yn − p∥+ µn∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p
+PC(I − λn∇fαn)p− PC(I − λn∇f)p∥

≤ (1− µn)∥yn − p∥+ µn(∥PC(I − λn∇fαn)zn − PC(I − λn∇fαn)p∥
+∥PC(I − λn∇fαn)p− PC(I − λn∇f)p∥)

≤ (1− µn)∥yn − p∥+ µn(∥yn − p∥+ ∥(I − λn∇fαn)p− (I − λn∇f)p∥)
= ∥yn − p∥+ λnαnµn∥p∥
≤ ∥xn − p∥+ λnαn(γn + βn + µn)∥p∥,

(3.9)

where the last inequality follows from (3.7) and (3.8).
Since Σ∞

n=1αn < ∞, and {λn}, {γn}, {βn}, {µn} are bounded, then from Corollary 2.1, we
conclude that

lim
n→∞

∥xn − p∥ exists for each p ∈ Fix(S)
∩

Γ. (3.10)

Hence {xn} is bounded and so are {yn} and {zn}.
In the following, we will show

lim
n→∞

∥xn − yn∥ = lim
n→∞

∥yn − zn∥ = lim
n→∞

∥xn − un∥ = lim
n→∞

∥yn − Swn∥ = lim
n→∞

∥zn − Svn∥ = 0,

where un = PC(I − λn∇fαn)xn, vn = PC(I − λn∇fαn)zn, wn = PC(I − λn∇fαn)yn.
Note that

∥un − p∥ = ∥PC(I − λn∇fαn)xn − p∥
= ∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p

+PC(I − λn∇fαn)p+ PC(I − λn∇f)p∥
≤ ∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p∥

+∥PC(I − λn∇fαn)p+ PC(I − λn∇f)p∥
≤ ∥xn − p∥+ λnαn∥p∥.

(3.11)
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Similarly, we can obtain that

∥vn − p∥ ≤ ∥zn − p∥+ λnαn∥p∥ (3.12)

and
∥wn − p∥ ≤ ∥yn − p∥+ λnαn∥p∥. (3.13)

Indeed, observe that

∥zn − p∥2 = ∥(1− γn)(xn − p) + γn(un − p)∥2
= (1− γn)∥xn − p∥2 + γn∥un − p)∥2 − γn(1− γn)∥xn − un∥2
≤ (1− γn)∥xn − p∥2 + γn(∥xn − p∥+ λnαn∥p∥)2 − γn(1− γn)∥xn − un∥2
= (1− γn)∥xn − p∥2 + γn(∥xn − p∥2 + 2λnαn∥p∥∥xn − p∥+ λ2nα

2
n∥p∥2)

−γn(1− γn)∥xn − un∥2
= ∥xn − p∥2 + αnγn(2λn∥p∥∥xn − p∥+ αnλ

2
n∥p∥2)− γn(1− γn)∥xn − un∥2

≤ ∥xn − p∥2 + αnM1 − γn(1− γn)∥xn − un∥2,
(3.14)

where M1 = supn≥0{γn(2λn∥p∥∥xn−p∥+αnλ
2
n∥p∥2)} <∞ and the first inequality follows from

(3.11).
Also, observe that

∥yn − p∥2 = ∥(1− βn)(zn − p) + βn(Svn − p)∥2
= (1− βn)∥zn − p∥2 + βn∥Svn − p)∥2 − βn(1− βn)∥zn − Svn∥2
≤ (1− βn)∥zn − p∥2 + βn∥vn − p)∥2 − βn(1− βn)∥zn − Svn∥2
≤ (1− βn)∥zn − p∥2 + βn(∥zn − p∥+ λnαn∥p∥)2 − βn(1− βn)∥zn − Svn∥2
= (1− βn)∥zn − p∥2 + βn(∥zn − p∥2 + 2λnαn∥p∥∥zn − p∥+ λ2nα

2
n∥p∥2)

−βn(1− βn)∥zn − Svn∥2
= ∥zn − p∥2 + αnβn(2λn∥p∥∥zn − p∥+ αnλ

2
n∥p∥2)− βn(1− βn)∥zn − Svn∥2

≤ ∥zn − p∥2 + αnM2 − βn(1− βn)∥zn − Svn∥2,
(3.15)

where M2 = supn≥0

{
βn(2λn∥p∥∥zn − p∥+ αnλ

2
n∥p∥2)

}
< ∞ and the second inequality follows

from (3.12).
And

∥xn+1 − p∥2 = ∥(1− µn)(yn − p) + µn(Swn − p)∥2
= (1− µn)∥yn − p∥2 + µn∥Swn − p)∥2 − µn(1− µn)∥yn − Swn∥2
≤ (1− µn)∥yn − p∥2 + µn∥wn − p)∥2 − µn(1− µn)∥yn − Swn∥2
≤ (1− µn)∥yn − p∥2 + µn(∥yn − p∥+ λnαn∥p∥)2 − µn(1− µn)∥yn − Swn∥2
= (1− µn)∥yn − p∥2 + µn(∥yn − p∥2 + 2λnαn∥p∥∥yn − p∥+ λ2nα

2
n∥p∥2)

−µn(1− µn)∥yn − Swn∥2
= ∥yn − p∥2 + αnµn(2λn∥p∥∥yn − p∥+ αnλ

2
n∥p∥2)− µn(1− µn)∥yn − Swn∥2

≤ ∥yn − p∥2 + αnM3 − µn(1− µn)∥yn − Swn∥2,
(3.16)

where M3 = supn≥0{µn(2λn∥p∥∥yn − p∥ + αnλ
2
n∥p∥2)} < ∞ and the second inequality follows

from (3.13).
Substitute (3.14) and (3.15) into (3.16), we have

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + αn(M1 +M2 +M3)− γn(1− γn)∥xn − un∥2
−βn(1− βn)∥zn − Svn∥2 − µn(1− µn)∥yn − Swn∥2.

(3.17)
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Hence, it follows that

γn(1− γn)∥xn − un∥2 + βn(1− βn)∥zn − Svn∥2 + µn(1− µn)∥yn − Swn∥2
≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn(M1 +M2 +M3).

(3.18)

Since Σ∞
n=1αn < ∞, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1, 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1, and 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 1, we deuce from the exis-
tence of limn→∞ ∥xn − p∥ that

lim
n→∞

∥xn − un∥ = lim
n→∞

∥yn − Swn∥ = lim
n→∞

∥zn − Svn∥ = 0. (3.19)

Then, utilizing (3.6) we get

lim
n→∞

∥zn − xn∥ = lim
n→∞

γn∥un − xn∥ = 0, (3.20)

lim
n→∞

∥yn − zn∥ = lim
n→∞

βn∥Svn − zn∥ = 0, (3.21)

and
lim
n→∞

∥xn − yn∥ = lim
n→∞

µn∥Swn − yn∥ = 0. (3.22)

This implies that

lim
n→∞

∥xn − yn∥ = lim
n→∞

∥yn − zn∥ = lim
n→∞

∥xn − un∥ = lim
n→∞

∥yn − Swn∥ = lim
n→∞

∥zn − Svn∥ = 0.

Furthermore, note that

∥Svn − vn∥ ≤ ∥Svn − zn∥+ ∥zn − xn∥+ ∥xn − un∥+ ∥un − vn∥
= ∥Svn − zn∥+ ∥zn − xn∥+ ∥xn − un∥

+∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)zn∥
≤ ∥Svn − zn∥+ ∥zn − xn∥+ ∥xn − un∥+ ∥xn − zn∥.

From (3.20-3.22), we can get that

lim
n→∞

∥un − vn∥ = lim
n→∞

∥Svn − vn∥ = 0. (3.23)

Similarly, we can prove

lim
n→∞

∥un − wn∥ = lim
n→∞

∥Swn − wn∥ = 0. (3.24)

As {xn} is bounded, there is a subsequence {xni} of {xn} that converges weakly to some x̄.
Next, we will show x̄ ∈ Fix(S)

∩
Γ. We first show x̄ ∈ Γ, let T = PC(I − λn∇f), then

∥xn − Txn∥ ≤ ∥xn − un∥+ ∥un − Txn∥
= ∥xn − un∥+ ∥PC(I − λn∇fαn)xn − PC(I − λn∇f)xn∥
≤ ∥xn − un∥+ ∥(I − λn∇fαn)xn − (I − λn∇f)xn∥
= ∥xn − un∥+ λnαn∥xn∥.

(3.25)

From limn→∞ ∥xn − un∥ = 0, limn→∞ ∥αn∥ = 0 and {λn}, {xn} are bounded, we can get that
limn→∞ ∥xn − Txn∥ = 0.

Taking into account xni ⇀ x̄ and Definition 2.4, we obtain x̄ ∈ Fix(T ). Thus, utilizing
Remark 3.1, we have x̄ ∈ Γ. On the other hand, since

lim
n→∞

∥xn − un∥ = lim
n→∞

∥un − vn∥ = lim
n→∞

∥Svn − vn∥ = 0,
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there is subsequence vnj of vn that converges weakly to x̄ and limn→∞ ∥Svnj − vnj∥ = 0. Then
from Definition 2.4, we have x̄ ∈ Fix(S). Therefore, we get x̄ ∈ Fix(S)

∩
Γ.

Let {xnj} be another subsequence of {xn} such that xnj ⇀ x̃. Then, x̃ ∈ Fix(S)
∩
Γ. Next,

we prove x̃ = x̄. Assume that x̃ ̸= x̄. From the Opial condition [22], we have

limn→∞ ∥xn − x̃∥ = lim infi→∞ ∥xni − x̃∥ < lim infi→∞ ∥xni − x̄∥
= limn→∞ ∥xn − x̄∥ = lim infj→∞ ∥xnj − x̄∥
< lim infj→∞ ∥xnj − x̃∥ = limn→∞ ∥xn − x̃∥,

which is a contradiction. Thus, we have x̃ = x̄. This implies xn ⇀ x̄ ∈Fix(S)
∩
Γ. Furthermore,

from limn→∞ ∥xn − yn∥ = limn→∞ ∥zn − xn∥ = 0, we can get yn ⇀ x̄ and zn ⇀ x̄. This shows
that the sequences {xn}, {yn} and {zn} are all converge weakly to an element x̄ ∈ Fix(S)

∩
Γ.

Theorem 3.2 Let S : C → C be a nonexpansive mapping such that Fix(S) ∩ Γ ̸= ∅ in Hilbert
space. Let {xn}, {yn} and {zn} be the sequences in C generated by the following extragradient
algorithm: 

x0 ∈ C chosen arbitrarily,
zn = (1− γn)xn + γnPC(I − λn∇f)xn,
yn = (1− βn)zn + βnSPC(I − λn∇f)zn,
xn+1 = (1− µn)yn + µnSPC(I − λn∇f)yn, ∀n > 0,

(3.26)

where the sequences of parameters {βn}, {γn} and {µn} satisfy the following condition:

(a) {λn} ⊂
(
0, 1

∥A∥2
)
and 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

1
∥A∥2 ;

(b) {γn} ⊂ (0, 1), and 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;
(c) {βn} ⊂ (0, 1), and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) {µn} ⊂ (0, 1), and 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 1.
Then, the sequences {xn}, {yn} and {zn} are all converge weakly to an element x̄ ∈ Fix(S)

∩
Γ.

Proof. Let αn=0 in Theorem 3.1, then we can obtain the desired result.
Remark 3.2. Our iteration method improves the corresponding results of [6], [8] and [14].
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Abstract In view of Nevanlinna value distribution theory, we will in-
vestigate the behavior of meromorphic solutions of four types of com-
posite functional-difference equations, and a type of system of composite
functional-difference equations, some results are obtained. Moreover, we
also give some examples to show that the conditions of our theorems are
accurate.
Key words: meromorphic solutions; composite functional-difference e-
quations; behavior; growth order
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1.Introduction

Recently, with the establishment of the difference analogues of Nevanlinna value dis-
tribution theory, researchers obtained many interesting theorems about the existence and
growth of solutions of difference equations, functional equations and so on([3-6]). To
state the results, a number of basic definition and standard notations should be intro-
duced. We shall assume that the reader is familiar with the standard notations and re-
sults of Nevanlinna value distribution theory such as m(r, f(z)), n(r, f(z)), N(r, f(z)) and
T (r, f(z))([15,18,22]) denote the proximity function, the non-integrated counting function,
the counting function and the characteristic function of f(z), respectively. For the inte-
grated counting function for distinct poles of f(z) we use the notations N(r, f(z)), and
N1(r, f) = N(r, f)−N(r, f).

In this article, a meromorphic function means meromorphic in the whole complex
plane. Given a meromorphic function f(z), recall that a meromorphic function h(z) is
said to be a small function of f(z), if T (r, h(z)) = S(r, f),where S(r, f) is used to denote

∗This work was partially supported by NSFC of China(No.11271227,11271161), PCSIRT(No.IRT1264),
and the Fundamental Research Funds of Shandong University (No.2017JC019).
†Corresponding author:Gao Lingyun
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any quantity that satisfies S(r, f) = o(T (r, f)) as r →∞, possibly outside of a set of r of
finite logarithmic measure.

Let c be a fixed, non-zero complex number, ∆cf(z) = f(z + c)− f(z), and ∆n
c f(z) =

∆c(∆
n−1
c f(z)) = ∆n−1

c f(z + c)−∆n−1
c f(z) for each integer n ≥ 2.Equations written with

the above difference operators ∆n
c f(z) are difference equations. Let E be a subset on the

positive real axis. We define the logarithmic measure of E to be

log(E) =

∫
E∩(1,+∞)

dr

r
.

A set E ∈ (1,+∞) is said to have finite logarithmic measure if log(E) <∞.
Difference equations have been studied in many aspects see e.g.,[1],[5-6],[17]. Some

expositions consider (system of) difference equations in real domains, or discrete domain.
So far, the previous researches are only on complex differential equations (systems) or
difference equations (systems)[5,6], but not on composite functional-difference equations
(systems). Therefore, it is very important and meaningful to study the cases of composite
functional-difference equations (systems). That will be an innovative contribution of this
paper.

The remainder of the paper is organised as follows. In section 2, we will study the
existence of meromorphic solutions or the form on some type of composite functional-
difference equations, and obtain three theorems, some examples are give to show that our
results hold. In section 3, we will discuss the growth order of meromorphic solutions on
some types of composite functional-difference equations or system of composite functional-
difference equations, which extend the result of Theorem B.

2. Existence of meromorphic solutions of difference equations
and form of difference equations

In 2003, H.Silvennoinen[21] was devoted to considering many types of composite functional
equations, he got some good results, for example, the following theorem A is one of his
results.

Theorem A([21]) The composite functional equation

f(p(z)) =
a0(z) + a1(z)f(z)

b0(z) + b1(z)f(z)

where the coefficients ai, bj are of growth S(r, f) such that a0(z)b1(z)−a1(z)b0(z) 6= 0 and
p(z) is a polynomial of deg p(z) = k ≥ 2, does not have meromorphic solutions.

A question is,whether or not the assertion of Theorem A remains valid, if we replace
the equation

f(p(z)) =
a0(z) + a1(z)f(z)

b0(z) + b1(z)f(z)

with the following form

∑
(i)

a(i)(z)(f(z))i0(∆cf(z))i1 · · · (∆n
c f(z))in =

a0(z) + a1(z)f(p(z))

b0(z) + b1(z)f(p(z))
.

2
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In this section, the authors will pay attention to considering the properties of mero-
morphic solutions on three types of composite functional difference equations in complex
domain, and extend the results obtained by H.Silvennoinen [21] to types of composite
functional-difference equations (1)-(3) of the following forms, which are different from the
complex differential equations or systems of complex difference equations.

At this point we pause briefly to introduce the notation used in this paper. Let I be a
finite set of multi-indexes i = (i0, ..., in),J be a finite set of multi-indexes j = (j0, ..., jn).
Difference polynomials Ω1(z, f),Ω2(z, f) of a meromorphic function f(z) are defined as

Ω1(z, f) =
∑

(i)∈I
a(i)(f(z))i0(∆cf(z))i1 · · · (∆n

c f(z))in ,

Ω2(z, f) =
∑

(j)∈J
b(j)(f(z))j0(∆cf(z))j1 · · · (∆n

c f(z))jn ,

where each {a(i)(z)}, {b(j)(z)} is a small meromorphic function with respect to f .
We denote that

u1 = max{
n∑
l=0

(l + 1)il}, u2 = max{
n∑
l=0

(l + 1)jl}.

First, we will investigate the existence of meromorphic solutions of a type of composite
functional-difference equations of the form

∑
(i)

a(i)(z)(f(z))i0(∆cf(z))i1 · · · (∆n
c f(z))in =

a0(z) + a1(z)f(p(z))

b0(z) + b1(z)f(p(z))
, (1)

where the coefficients {ai(z)},{bj(z)}(i, j = 0, 1) and {a(i)(z)} are of growth S(r, f) such

that a0(z)b1(z)− a1(z)b0(z) 6≡ 0, p(z) = ckz
k + · · ·+ c0,deg p(z) ≥ 2.

For the composite functional-difference equations (1), the main theorem can be stated
as follows.

Theorem 2.1 Let u1 < k. The composite function-difference equation (1) does not
have meromorphic solutions.

Remark 1 The example 1 shows that Theorem 2.1 does not hold if at least ai(z), bj(z)
and a(i)(z) are not of growth S(r, f),there may exist a rational solution.

Example 1 Let p(z) = z2, c = 1.Then function f(z) = 1
z−1 is a solution of the

following equation
1− z2f(p(z))

(1 + (z − 1)f(p(z))
=
z(z − 1)

2 + z
f∆cf.

Second, we will study the properties of p(z) of composite functional-difference equa-
tions of the following

l∑
i=0

ai(z)f(p(z))i =
Ω1(z, f)

Ω2(z, f)
, (2)

where p(z) is an entire function,{ai(z)}, {a(i)(z)}, {b(j)(z)} are small functions.
We obtain the following result
Theorem 2.2 Let f be a non-constant meromorphic solution of the composite

functional-difference equations (2).Then p(z) is a polynomial.

3
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Third, we shall consider the growth and characteristic estimate of meromorphic solu-
tions of the following composite functional-difference equation

∑
(i)∈I

a(i)(z)f
i0(∆cf)i1 · · · (∆n

c f)in =
m∑
i=0

ai(z)(f(p(z)))i, (3)

where {ai(z)} are meromorphic functions, a(i) 6≡ 0, am(z) 6= 0, p(z) is a polynomial of
degree k ≥ 2.

We get the main result below.
Theorem 2.3 Let f(z) be a finite order transcendental meromorphic solution of

(3),{a(i)(z)} be polynomials,

T (r, ai) < KT (rs, f), i = 0, 1, 2, · · · ,m,

where K and s are positive constants, r is large enough. If s < k, then for given ε > 0,

T (r, f) = O((log r)α+ε),

where

α =
log((m+ 1)K + u1

ms)

log k
s

, if 1 ≤ s < k,

and

α =
log u1+m(m+1)Ks

m

log k
, if s < 1 < k,

where u1 = max{
n∑
l=0

(l + 1)il}.

Remark 2 The example 2 shows that the condition s < k in Theorem 2.3 is best
possible.

Example 2 Let p(z) = ckz
k + · · ·+ c0,deg p(z) ≥ 2,

ai(z) = Cim
e2z

(1 + ep(z))m
, i = 0, 1, 2, ...,m.

Then
m∑
i=0

ai(z)f(p(z))i =
e2z

(1 + ep(z))m

m∑
i=0

Cimf(p(z))i,

f = ez is a transcendental meromorphic solution of the composite functional-difference
equation of the form

1+z(ec−1)2

(ec−1)3
(∆cf)(∆2

cf)2 − f(∆cf)2 − z(∆cf)2(∆2
cf) + (ec − 1)3f2(∆cf)

−f(∆2
cf)2 + f2 =

m∑
i=0

ai(z)(f(p(z)))i.

In this case, f(z) satisfirs

T (r, f(z)) =
r

π
+O(1).

However, by k ≥ 2,we have

T (r, ai(z)) = (1 + o(1))
m|ck|rk

π
,

4
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it shows that Theorem 2.3 does not hold if s = k.

To prove Theorem 2.1-2.3, we need some lemmas as follows.
Lemma 2.1([13]) Let f be a transcendental meromorphic function and p(z) =

akz
k + ak−1z

k−1 + . . . + a1(z) + a0, ak 6= 0, k ≥ 1,be a polynomial of degree k.Given
0 < δ < |ak|,let λ = |ak|+ δ, µ = |ak| − δ.Then, given ε > 0,for any a ∈ C ∪ {∞} and for
r large enough,we have

kn(µrk,
1

f − a
) ≤ n(r,

1

f(p)− a
) ≤ kn(λrk,

1

f − a
),

N(µrk,
1

f − a
) +O(log r) ≤ N(r,

1

f(p)− a
) ≤ N(λrk,

1

f − a
) +O(log r),

(1− ε)T (µrk, f) ≤ T (r, f(p)) ≤ (1 + ε)T (λrk, f).

Lemma 2.2([12]) Let ψ:[r0,+∞)→ (0,+∞) be positive and bounded in every finite
interval. Suppose that

ψ(µrm) ≤ Aψ(r) +B, (r ≥ r0),

where µ > 0,m > 1, A > 1 and B are real constants.Then

ψ(r) = O((log r)α),

where

α =
logA

logm
.

Lemma 2.3([18]) Let R(z, f) =

p∑
i=0

ai(z)f
i

q∑
j=0

bj(z)fj
be an irreducible rational function in

f(z) with the meromorphic coefficients {ai(z)} and {bj(z)}.If f(z) is a meromorphic func-
tion,then

T (r,R(z, f)) = max{p, q}T (r, f) +O{
∑

T (r, ai) +
∑

T (r, bj)}.

Lemma 2.4([3]) Let f be a non-constant meromorphic function and let g be a
transcendental entire function.Then there exists an increasing sequence,rn →∞,such that

T (r, f(g(z))) ≥ T ((M(
r

4
, g))

1
30 , f)

holds for r = rn.
Lemma 2.5([18]) Let g:(0,+∞)→ R, h:(0,+∞)→ R be monotone increasing func-

tions such that g(r) ≤ h(r) outside of an exceptional set E of finite linear measure.Then,for
any α > 1,there exists r0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 2.6([17]) Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous
function,let δ ∈ (0, 1),and let s ∈ (0,∞).If T is of finite order,i.e.,

lim
r→∞

log T (r)

log r
<∞,

5
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then

T (r + s) = T (r) + o(
T (r)

rδ
),

where r runs to infinity outside of a set of finite logarithmic measure.
Lemma 2.7 Let f be a meromorphic function of finite order,

Ω1(z, f) =
∑

(i)∈I
a(i)(z)f

i0(∆cf)i1 · · · (∆n
c f)in ,

Ω2(z, f) =
∑

(j)∈I
b(j)(z)f

j0(∆cf)j1 · · · (∆n
c f)jn .

Then
T (r,Ω1(z, f)) ≤ u1T (r, f) + S1(r, f) +

∑
(i)∈I

T (r, a(i)),

and

T (r,
Ω1(z, f)

Ω2(z, f)
) ≤ (u1 + u2)T (r, f) + S1(r, f) +

∑
(i)∈I

T (r, a(i)) +
∑

(j)∈J
T (r, b(j)),

where u1 = max{
n∑
l=0

(l+ 1)il}, u2 = max{
n∑
l=0

(l+ 1)jl}, the exceptional set E associated to

S(r, f) is of finite logarithmic measure
∫
E
dr
r < +∞.

Proof It follows from

∆n
c f(z) = ∆c(∆

n−1
c f(z)) = ∆n−1

c f(z + c)−∆n−1
c f(z)

that

∆m
c f(z) =

m∑
i=0

Cim(−1)m−if(z + ci).

Similar to the proof of Lemma 4.2 in [16](pp. 181-182), we have

m(r,Ω(z, f)) = λm(r, f) + S(r, f),

where λ =
n∑
l=0

il.

In order to estimate the poles of Ω(z, f), we consider the term of

Ω(i)(z, f) = a(i)(z)f
i0(∆cf)i1 · · · (∆n

c f)in .

Noting that

n(r, f(z + c)) ≤ n(r + C, f) + S(r, f) = n(r, f) + S(r, f), C = |lc|,

it is easy to get that

n(r,Ω(i)(z, f)) ≤
n∑
l=0

il(l + 1)n(r, f(z + lc)) + n(r, a(i)(z)).

6
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Hence, we get

n(r,Ω(z, f)) ≤ max(
n∑
l=0

il(l + 1))n(r, f(z)) + S(r, f) +
∑
(i)

n(r, a(i)(z)).

By the above equality, we get

T (r,Ω1(z, f)) ≤ uT (r, f) + S(r, f) +
∑
(i)

T (r, a(i)(z)),

where u1 = max{
n∑
l=0

(l+1)il},r runs to infinity outside of a set of finite logarithmic measure.

Further,we have

T (r,Ω2(z, f)) ≤ u2T (r, f) + S(r, f) +
∑

(j)∈J
T (r, b(j)),

where u2 = max{
n∑
l=0

(l + 1)jl}.

Hence,we obtain

T (r, Ω1(z,f)
Ω2(z,f)) ≤ T (r,Ω1(z, f)) + T (r, 1

Ω2(z,f))

≤ (u1 + u2)T (r, f) + S(r, f) +
∑

(i)∈I
T (r, a(i)) +

∑
(j)∈I

T (r, b(j)).

Lemma 2.8([21]) Let P (z, f) =
p∑
i=0

ai(z)f
i be polynomial in f(z) with the mero-

morphic coefficients {ai(z)}.If f(z) is a meromorphic function,then

T (r, P (z, f)) ≤ pT (r, f) +
p∑
i=0

T (r, ai) +O(1),

T (r, P (z, f)) ≥ p(T (r, f)−
p∑
i=0

T (r, ai)) +O(1).

Lemma 2.9([21]) Let f be a meromorphic function.Then T (r, f) is an increasing

function of log r and convex function of log r,T (r,f)
log r is an incresing function of r.

Proof of Theorem 2.1 First, we suppose that there is a transcendental meromor-
phic solution f(z) of composite functional-difference equation (1) .

For a sufficiently small ε > 0, by Lemma 2.1, Lemma 2.3 and Lemma 2.7, we get

(1− ε)T (µrk, f) ≤ T (r, f(p(z))) ≤ (u1 + ε)T (r, f),

where u1 = max{
n∑
l=0

(l + 1)il}, µ = |ck|(1 − ε), outside a possible exceptional set of finite

logarithmic measure.
Hence, for α > 1 and for r large enough

(1− ε)T (µrk, f) ≤ (u1 + ε)T (αr, f).

7
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Set t = αr. Then

T (
µ

αk
tk, f) ≤ u1 + ε

(1− ε)
T (t, f).

By Lemma 2.2 we obtain
T (t, f) = O((log t)α1),

where

α1 =
log u1+ε

(1−ε)
log k

< 1,

there is a contradiction.
Second, we suppose that f(z) is a rational solution of (1). Then the coefficients

a(i)(z), a0(z), a1(z), b0(z), b1(z) must be constants.
Set

f(z) =
P (z)

Q(z)
=
αpz

p + αp−1z
p−1 + · · ·+ α0

βqzq + βq−1zq−1 + · · ·+ β0
,

where αp 6= 0, βq 6= 0,degw(z) = max{p, q} = l.

If p 6= q, we immediately have deg(a0(z)+a1(z)f(p(z))
b0(z)+b1(z)f(p(z)) ) = kl.

If p = q, we have

a0(z)+a1(z)f(p(z))
b0(z)+b1(z)f(p(z)) = a0+a1f(p(z))

b0+b1f(p(z)) =
a0+a1

αp(p(z))
p+αp−1(p(z))

p−1+···+α0
βq(p(z))q+βq−1(p(z))

q−1+···+β0

b0+b1
αp(p(z))p+αp−1(p(z))

p−1+···+α0
βq(p(z))q+βq−1(p(z))

q−1+···+β0

=
(a0βq+a1αp)(p(z))p+(a0βq−1+a1αp−1)(p(z))p−1+···+(a0β0+a1α0)
(b0βq+b1αp)(p(z))p+(b0βq−1+b1αp−1)(p(z))p−1+···+(b0β0+b1α0)

.

It follows from the equation above that a0βq + a1αp = 0 and b0βq + b1αp = 0 can not

hold at the same time. Otherwise a0(z)+a1(z)w(p(z))
b0(z)+b1(z)w(p(z)) = c, c is a constant.

Hence, we get

kl = deg(a0(z)+a1(z)f(p(z))
b0(z)+b1(z)f(p(z)) )

= deg(
∑

(i) a(i)(z)(f(z))i0(∆cf(z))i1 · · · (∆n
c f(z))in)

≤ max{i0 + 2i1 + · · ·+ (n+ 1)in}l = u1l.

So, u1 ≥ k, there is also a contradiction. Thus, f(z) is not a rational solution of (1).
Combined with the first and second steps above, the assertion follows.

Proof of Theorem 2.2 Suppose that p(z) is transcendental entire function, we have

lim inf
r→∞

logM(r, p(z))

log r
=∞.

Hence, for any given K > 30 and for r large enough

M(r, p) > rK .

There exists an increasing sequence rn →∞, as in Lemma 2.4, for any n such that

M(
rn
4
, p) > (

rn
4

)K .

8
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Applying Lemma 2.3 and Lemma 2.7 to equation (2), we have

lT (r, f(p(z))) ≤ (u1 + u2)T (r, f) + S(r, f),

outside a possible exceptional set of finite linear measure. According to Lemma 2.5, for
∀α > 1, r ≥ rα, we obtain

T (r, f(p(z))) ≤ (u1 + u2)(1 + o(1))

l
T (αr, f). (4)

It follows from Lemma 2.4 that

T (rn, f(p(z))) ≥ T ((
rn
4

)
K
30 , f). (5)

Note that T (r,f)
log r is an increasing function of r. As

(
rn
4

)
K
30 > αrn,

for sufficiently large n, we have

T ((
rn
4

)
K
30 , f) >

K/30(log rn − log 4)

log rn + logα
T (αrn, f) >

K

40
T (αrn, f), (6)

as n→∞. By (4),(5) and (6), we get

(u1 + u2)(1 + o(1))

l
T (αrn, f) ≥ T ((

rn
4

)
K
30 , f) >

K

40
T (αrn, f), (7)

as n→∞.
Because K can be arbitrarily large, this is a contradiction in (7). This shows that p(z)

is a polynomial.

Proof of Theorem 2.3 By the equation (3), Lemma 2.7 and Lemma 2.8, we have

mT (r, f(p(z)))−m
m∑
i=0

T (r, ai(z)) ≤ (u1 + ε)T (r, f),

i.e.,

mT (r, f(p(z))) ≤ (u1 + ε)T (r, f) +m
m∑
i=0

T (r, ai(z)). (8)

Combining (8) and

T (r, ai(z)) < KT (rs, f), i = 0, 1, 2, · · · ,m,

we obtain

T (r, f(p(z))) ≤ u1 + ε

m
T (r, f) + (m+ 1)KT (rs, f), (9)

where K is a positive constant.

9
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Case (1): If s ≥ 1, by Lemma 2.9, we have T (r,f)
log r is increasing functions of r, we can

obtain for any positive constant C and any t ≥ 1

T (Crt, f)

T (r, f)
≥ logC + t log r

log r
> (1− ε)t.

Hence, for r sufficiently large,

T (r, f) <
1

(1− ε)t
T (Crt, f).

Let s = t, C = 1. Then

T (r, f) <
1

(1− ε)s
T (rs, f). (10)

It follows from (9)and (10) that

T (r, f(p)) ≤ (m+ 1)KT (rs, f) + u1+ε
(1−ε)msT (rs, f)

≤ ((m+ 1)K + u1
ms + ε1)T (rs, f).

By Lemma 2.1

(1− ε)T (µrk, f) ≤ ((m+ 1)K +
u1

ms
+ ε1)T (rs, f).

From the above inequality we further get

(1− ε)T (µr
k
s , f) ≤ ((m+ 1)K +

u1

ms
+ ε2)T (r, f). (11)

Since k > s, then by (11) and Lemma 2.2, we obtain

T (r, f(z)) = O((log r)α1+ε),

where

α1 =
log((m+ 1)K + u1

ms)

log k
s

.

Case (2):If s < 1, by Lemma 2.9, since T (r,f)
log r is increasing function of r, we obtain

T (r, f)

log r
≥ T (rs, f)

log rs
,

i.e.
T (r, f)

T (rs, f)
≥ 1

s
. (12)

From (9) and (12) we get

T (r, f(p(z))) ≤ (
u1 +m(m+ 1)Ks+ ε3

m
)T (r, f).

According to Lemma 2.1, we obtain

T (µrk, f) ≤ (
u1 +m(m+ 1)Ks+ ε4

m
)T (r, f).

We obtain from Lemma 2.2

T (r, f(z)) = O((log r)α2+ε),

where

α2 =
log u1+m(m+1)Ks

m

log k
.

Combining case (1) and case (2), we get the proof of Theorem 2.3.

10
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3. Growth of meromorphic solutions

Since the 1970’s, R.Goldstein[10-13], W.Bergweiler[2-4], J.Heittokangas[16] et al had in-
vestigated the existence and growth of meromorphic solutions on composite functional
equations in the whole complex plane and a number of important results were obtained.
Particularly, J.Rieppo [20] discussed the growth on meromorphic solutions of many types
of functional equations, he also obtained some interesting results, for example, the follow-
ing theorem B is one of his some results.

For the following functional equations

Q(z, f(az + b)) = R(z, f(z)), (∗)

where Q(z, f), R(z, f) are rational functions in f with small meromorphic coefficients
relative to f such that 0 < q = degQf ≤ d = degRf and a, b ∈ C, a 6= 0 and |a| 6= 1.

He obtained
Theorem B([20]) Suppose that f is a transcendental meromorphic solution of the

equation (∗). Then

µ(f) = ρ(f) =
log d− log q

log |a|
.

It is known that when treating the meromorphic solutions of difference equations,
the basic task is to estimate their growth order, while in the case of complex composite
functional difference equations, considering the growth order of them is also an interesting
task. Hence, this section is devoted to investigating the growth order of meromorphic
solutions on two types of composite functional-difference equations (3), (13) and systems
of difference equations (14) in complex domain.

As regards the growth order of meromorphic solutions of complex composite functional-
difference equations (3), we obtain Theorem 3.1.

Theorem 3.1 Let {ai(z)}, {a(i)(z)} be of growth order of S(r, f), u1 ≥ km. Then
the lower order and the order of meromorphic solution f of the equation (3) satisfy

ρ(f) = µ(f) = 0.

In the following, we will also investigate the growth of meromorphic solutions about a
type of composite functional-difference equations of the form

l∑
i=0

dif(a1iz + b1i)
i

t∑
j=0

ejf(a2jz + b2j)j
=

Ω1(z, f)

Ω2(z, f)
, (13)

where {a1i}, {a2i}, {b1j}, {b2j}, {di}, {ej} are constants ,{a(i)(z)}, {b(j)(z)} are small func-
tions and a(i)(z) 6≡ 0, b(j)(z) 6≡ 0.

For complex composite functional-difference equations (13), we obtain the following
main result.

Theorem 3.2 Suppose that f is a transcendental meromorphic solution of composite
functional-difference equations (13), a1i, a2j , b1i, b2j ∈ C, |a1i| > 1, |a2j | > 1, and the
coefficients a(i)(z) are of growth S(r, f).

11
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(i). If l > t, then

ρ(f) ≤
log u1+u2

l

log |a1l|
;

(ii). If l < t, then

ρ(f) ≤
log u1+u2

t

log |a2t|
;

(iii). If l = t, then

ρ(f) ≤
log u1+u2

l

log |a|
,

where |a| = max{|a1l|, |a2t|}.
Remark 3 The example 3 shows that the upper bound in Theorem 3.2 can be reached.
Example 3 f(z) = ez is a meromorphic solution of the following equation

(ec − 1)2f(6z + c)

ecf(5z + c)
=

f∆2
cf

∆cf + f
.

We see that u1 = 4, u2 = 2, ρ(f) = 1 =
log

u1+u2
max{l,t}

log |a12| =
log 6

1
log 6 = log 6

log 6 .
By using the Nevanlinna value distribution theory of meromorphic functions, difference

equation theory, a large number of papers also have considered the properties of mero-
morphic solutions of some types of system of functional equations, and obtained some
results([7-9]). Now, we consider the problem of the growth order on a class of system of
composite functional equations as follows

l∑
i=0

dif1(c1iz + d1i)
i =

m1∑
µ=0

a1µ(z)f2(z)µ

n1∑
ν=0

a2ν(z)f2(z)ν
,

t∑
j=0

ejf2(c2jz + d2j)
j =

m2∑
s=0

b1s(z)f1(z)s

n2∑
k=0

b2k(z)f1(z)k
,

(14)

where {c1i}, {c2j}, {d1i}, {d2j}, di, ej are constants,{a1µ(z)}, {a2ν(z)}, {b1s(z)}, {b2k(z)} are
small functions,|c1l| > 1, |c2t| > 1.

The growth order of meromorphic solutions (f1, f2) of (14) is defined by

ρ(f1, f2) = max{ρ(f1), ρ(f2)},

ρ(fk) = lim sup
r→∞

log+ T (r, fk)

log r
, k = 1, 2.

The lower order of meromorphic function fi, i = 1, 2 are defined by

µ(fk) = lim inf
r→∞

log+ T (r, fk)

log r
, k = 1, 2.

As regards the complex composite functional-difference equation (14), we obtain The-
orem 3.3 and Theorem 3.4 as follows.
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Theorem 3.3 Suppose that f is a transcendental meromorphic solution of the system
(14), cij , dij ∈ C, |c1l| > 1, |c2t| > 1, and the coefficients aij(z) and bij(z) are of growth
S(r, fi).Then

ρ(f1, f2) ≤
log max{m1,n1}max{m2,n2}

lt

log |c1l||c2t|
.

Example 4 Let b ∈ C be a constant such that b 6= mπ
2 ,where m ∈ Z. We see

that (f1(z), f2(z)) = (tan z,− tan z) is a meromorphic solution of the following system of
composite functional equations of the form f1(2z + b) =

−2f2(z)−C(1−f22 )

1−f22−2Cf2
,

f2(2z + b) =
2f1(z)−C(1−f21 )

1−f21 +2Cf1
,

where C = − tan b 6= 0,∞.
In this case, |a1l||a2t| = 4,max{m1, n1}max{m2, n2}} = 4, lt = 1, thus,

ρ(f1, f2) = 1 =
log max{m1,n1}max{m2,n2}

lt

log |a1l||a2t|
=

log 4

log 4
.

It shows that the upper bound in Theorem 3.3 can be reached.
Theorem 3.4 Let (f1, f2) be a transcendental meromorphic solution of the system

(14), and µ(f1), µ(f2) be the lower order of f1, f2, respectively. Then

µ(f1) + µ(f2) ≥
log max{m1,n1}max{m2,n2}

lt

log |c1l||c2t|
,

where {a1µ(z)}, {a2ν(z)}, {b1s(z)}, {b2k(z)} are small functions are small functions.

In order to prove Theorems 3.1-3.4, we need the following Lemmas.
Lemma 3.1([14]) Let Φ : (1,∞) → (0,∞) be a monotone increasing function,and

let f be a nonconstant meromorphic function.If for some real constant α ∈ (0, 1),there
exist real constants K1 > 0 and K2 ≥ 1 such that

T (r, f) ≤ K1Φ(αr) +K2T (αr, f) + S(αr, f),

then

ρ(f) ≤ logK2

− logα
+ lim sup

r→∞

log Φ(r)

log r
.

Lemma 3.2([3]) Suppose that a meromorphic function f has finite lower order λ.Then
for every constant c > 1 and a given ε there exists a sequence rn = rn(c, ε)→∞ such that

T (crn, f) ≤ cλ+εT (rn, f).

Proof of Theorem 3.1 For a sufficiently small ε > 0, by Lemma 2.1 and Lemma 2.3,
we get

m(1− ε)T (µrk, f) ≤ mT (r, f(p(z))) ≤ (u1 + ε)T (r, f),

13
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where µ = |ck|(1 − ε), u1 = max{
n∑
l=0

(l + 1)il}, outside a possible exceptional set of finite

logarithmic measure of r.
Hence, for α > 1 and for r large enough

m(1− ε)T (µrk, f) ≤ (u1 + ε)T (αr, f).

Set t = αr. Then

T (
µ

αk
tk, f) ≤ u1 + ε

m(1− ε)
T (t, f).

By Lemma 2.2 we obtain
T (t, w) = O((log t)α1),

where

α1 =
log u1

m

log k
+ ε1.

From the above equation, we can obtain that

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
= 0,

µ(f) = lim inf
r→∞

log+ T (r, f)

log r
= 0.

Thus, we have completed the proof of Theorem 3.1.

Proof of Theorem 3.2 Applying Lemma 2.3 and Lemma 2.7 to equation (13),we get

max{l, t}T (r, f(askz + bsk)) = T (r,

l∑
i=0

dif(a1iz + b1i)
i

t∑
j=0

ejf(a2jz + b2j)j
) ≤ (u1 + u2)T (r, f) + S(r, f),

where s = 1 or 2, k = max{l, t}.
Applying Lemma 2.1 to equation (13), we get

(1− ε) max{l, t}T (µr, f) ≤ (u1 + u2)T (r, f) + S(r, f),

that is

T (µr, f) ≤ u1 + u2

(1− ε) max{l, t}
T (r, f) + S(r, f),

where µ = |a| − δ > 1, |a| = max{|a1k|, |a2k|}, δ > 0. Denoting α = 1
µ , we have 0 < α < 1,

and we deduce that

T (r, f) ≤ u1 + u2

(1− ε) max{l, t}
T (αr, f) + S(αr, f).

By Lemma 3.1, we obtain

ρ(f) ≤
log u1+u2

(1−ε) max{l,t}
− logα

.
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Let ε→ 0 and δ → 0. Then

ρ(f) ≤
log u1+u2

max{l,t}
log |a|

.

Proof of Theorem 3.3 Applying Lemma 2.3 to system (14), we get

lT (r, f1(c1lz + d1l)) = max{m1, n1}T (r, f2) + S(r, f2). (15)

tT (r, f2(c2tz + d2t)) = max{m2, n2}T (r, f1) + S(r, f1). (16)

Applying Lemma 2.1 to equations (15) and (16), we get

(1− ε)lT (µ1r, f1) ≤ max{m1, n1}T (r, f2) + S(r, f2),

(1− ε)tT (µ2r, f2) ≤ max{m2, n2}T (r, f1) + S(r, f1),

that is

T (µ1r, f1) ≤ max{m1, n1}
(1− ε)l

T (r, f2) + S(r, f2),

T (µ2r, f2) ≤ max{m2, n2}
(1− ε)t

T (r, f1) + S(r, f1),

where µ1 = |c1l| − δ1 > 1, δ1 > 0,µ2 = |c2t| − δ2 > 1, δ2 > 0.
Denoting α1 = 1

µ1
, α2 = 1

µ2
, we have 0 < α1 < 1, 0 < α2 < 1, and we deduce that

T (r, f1) ≤ max{m1, n1}
(1− ε)l

T (α1r, f2) + S(α1r, f2), (17)

T (r, f2) ≤ max{m2, n2}
(1− ε)t

T (α2r, f1) + S(α2r, f1), (18)

outside a possible exceptional set of finite logarithmic measure of r.
Combining (17) and (18), it yields

T (r, f1) ≤ (1 + o(1)) max{m1, n1}max{m2, n2}
(1− ε)2lt

T (α1α2r, f1) + S(α1α2r, f1),

outside a possible exceptional set of finite logarithmic measure of r.
By Lemma 3.1, we obtain

ρ(f1) ≤
log max{m1,n1}max{m2,n2}

(1−ε)2lt
− logα1α2

.

By a similar reasoning as to above, we also can get

ρ(f2) ≤
log max{m1,n1}max{m2,n2}

(1−ε)2lt
− logα1α2

.

Let ε→ 0 and δi → 0, i = 1, 2. Then Theorem 3.3 is proved.
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Proof of Theorem 3.4 We assume conversely that f1, f2 are transcendental mero-
morphic functions.

By Lemma 2.3 and T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f) + M([17]), where M is a
constant, we have

max{m1, n1}T (r, f2) ≤ lT (r, f1(c1l(z + d1l
c1l

))) + S(r, f2)

≤ (1 + o(1))lT (|c1l|r + |d1lc1l |, f1) + S(r, f2),

max{m2, n2}T (r, f1) ≤ tT (r, f2(c2t(z + d2t
c2t

))) + S(r, f1)

≤ (1 + o(1))tT (|c2t|r + |d2tc2t |, f2) + S(r, f1).

(19)

There are two constants c1 = |c1l|+ ε1, c2 = |c2t|+ ε2, εi > 0, i = 1, 2, such that

T (|c1l|r + |d1l

c1l
|, f1) ≤ T (c1r, f1), T (|c2t|r + |d2t

c2t
|, f2) ≤ T (c2r, f2). (20)

When r is large enough, we can obtain from (19) and (20){
max{m1, n1}T (r, f2) ≤ (1 + o(1))lT (c1r, f1) + S(r, f2),
max{m2, n2}T (r, f1) ≤ (1 + o(1))tT (c2r, f2) + S(r, f1),

outside a possible exceptional set of finite linear measure of r.
According to Lemma 2.5, for given σ1 > 1, σ2 > 1,{

max{m1, n1}T (r, f2) ≤ (1 + o(1))lT (σ1c1r, f1) + S(r, f2),
max{m2, n2}T (r, f1) ≤ (1 + o(1))tT (σ2c2r, f2) + S(r, f1).

(21)

Let µ(f1), µ(f2) be the finite lower order in f1, f2,respectively. By Lemma 3.2, for any
given εi > 0, i = 1, 2, there exists a sequence rn →∞ such that for rn > r0

T (c1rn, f1) ≤ cµ(f1)+ε1
1 T (rn, f1), T (c2rn, f2) ≤ cµ(f2)+ε2

2 T (rn, f2).

By (21){
max{m1, n1}T (rn, f2) ≤ (1 + o(1))l(σ1c1)µ(f1)+ε1T (rn, f1) + S(rn, f2),

max{m2, n2}T (rn, f1) ≤ (1 + o(1))t(σ2c2)µ(f2)+ε2T (rn, f2) + S(rn, f1).
(22)

From (22), we get max{m1, n1} ≤ (1 + o(1))l(σ1c1)µ(f1)+ε1 T (rn,f1)
T (rn,f2) + S(rn,f2)

T (rn,f2) ,

max{m2, n2} ≤ (1 + o(1))t(σ2c2)µ(f2)+ε2 T (rn,f2)
T (rn,f1) + S(rn,f1)

T (rn,f1) .
(23)

Taking lower limit as n→∞, and lim
n→∞

inf S(rn,fi)
T (rn,fi)

= 0, i = 1, 2. Then (23) becomes

max{m1, n1}max{m2, n2} ≤ lt(σ1c1)µ(f1)+ε3(σ2c2)µ(f2)+ε3 ,

where ε3 = max{ε, ε1, ε2}, ε3 → 0, σ1 → 1, σ2 → 1. Hence

µ(f1) + µ(f2) ≥
log max{m1,n1}max{m2,n2}

lt

log |c1l||c2t|
.

Thus, we have completed the proof of Theorem 3.4.
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Locally and globally small Riemann sums and

Henstock-Stieltjes integral for n-dimensional

fuzzy-number-valued functions

Muawya Elsheikh Hamida,b∗
a School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

b Faculty of Engineering, University of Khartoum, Khartoum, Sudan

Abstract: In this paper, we study locally and globally small Riemann sums with respect to α for n-dimensional fuzzy-
number-valued functions. And we prove that a fuzzy-number-valued functions in n-dimensional is Henstock-Stieltjes
(HS) integrable on [a, b] if and only if it has (LSRS) with respect to α on [a, b]. Also we shall prove that a fuzzy-
number-valued functions in n-dimensional is Henstock-Stieltjes (HS) integrable on [a, b] if and only if it has (GSRS)
with respect to α on [a, b].
Keywords: Fuzzy-number-valued functions in En; Henstock-Stieltjes integral (HS); locally small Riemann sums (LSRS);
globally small Riemann sums (GSRS).

1 Introduction

Since the concept of fuzzy sets was firstly introduced by Zadeh in 1965 [13], it has been studied extensively from
many different aspects of the theory and applications, such as fuzzy topology, fuzzy analysis, fuzzy decision making and
fuzzy logic, information science and so on.

The locally and globally small Riemann sums have been introduced by many authors from different points of views
including [3, 4, 5, 7, 8, 10, 11]. In 1986, Schurle characterized the Lebesgue integral in (LSRS) (locally small Riemann
sums) property [10]. The (LSRS) property has been used to characterized the Perron (P ) integral on [a, b] [11]. By
considering the equivalency between the (P ) integral and the Henstock-Kurzweil (HK) integral, the (LSRS) property
has been used to characterized the (HK) integral on [a, b] [8]. In 2015, Indrati [7] introduced a countably Lipschitz
condition of a function which is simpler than the ACG∗, and proved that the (HK) integrable function or it,s primitive
could be characterized in countably Lipschitz condition. Also, by considering the characterization of the (HK) integral
in the (GSRS) property, it showed that the relationship between (GSRS) property and countably Lipschitz condition of
an (HK) integrable function on [a, b]. In 2018, Hamid et al. [5] introduced locally and globally small Riemann sums for
fuzzy-number-valued functions and established two main theorems: (i) A fuzzy-number-valued functions f̃(x) is (HS)
integrable on [a, b] iff f̃(x) has (LSRS). (ii) A fuzzy-number-valued functions f̃(x) is (HS) integrable on [a, b] iff f̃(x)
has (GSRS).

In this paper, the concept of locally small Riemann sums for n-dimensional fuzzy-number-valued functions with
respect to α is introduced and discussed. Furthermore, we provide a characterizations of globally small Riemann sums
in n-dimensional fuzzy-number-valued functions with respect to α.

The rest of this paper is organized as follows. To make our analysis possible, in Section 2 we shall review the relevant
concepts and properties of fuzzy-number-valued functions in En and the definition of Henstock-Stieltjes (HS) integral for
fuzzy-number-valued functions in En. In Section 3, we introduce the support function characterizations of locally small
Riemann sums and (HS) integral for fuzzy-number-valued functions in En. In section 4, we shall discuss the support
function characterizations of globally small Riemann sums and (HS) integral for fuzzy-number-valued functions in En.
The last section provides the Conclusions.

2 Preliminaries

In this paper the close interval [a, b] denotes a compact interval on R. The set of intervals-point
{

([a1, b1], ξ1),
([a2, b2], ξ2), · · · , ([ak, bk], ξk)

}
is called a division of [a, b] that is ξ1, ξ2, · · · , ξk ∈ [a, b], intervals [a1, b1], [a2, b2], · · · , [ak, bk]

are non-intersect and
k⋃
i=1

[ai, bi] = [a, b].Marking the division of [a, b] as P =
{

([a1, b1], ξ1), ([a2, b2], ξ2), · · · , ([ak, bk], ξk)
}
,

shortening as P =
{

[u, v]; ξ
}

[9].

∗Corresponding author. Tel.: +8613218977118. E-mail address: mowia-84@hotmail.com, muawya.ebrahim@gmail.com (M.E.
Hamid).
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Definition 2.1 [6, 8] Let δ : [a, b] → R+ be a positive real-valued function. P = {[xi−1, xi]; ξi} is said to be a δ-fine
division, if the following conditions are satisfied:

(1) a = x0 < x1 < x2 < ... < xn = b;
(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi))(i = 1, 2, · · · , n).
For brevity, we write P = {[u, v]; ξ}, where [u, v] denotes a typical interval in P and ξ is the associated point of [u, v].

Definition 2.2 [12] En is said to be a fuzzy number space if En = {u : Rn → [0, 1] : u satisfies (1)-(4) below}:
(1) u is normal, i.e., there exists a x0 ∈ Rn such that u(x0) = 1;
(2) u is a convex fuzzy set, i.e., u(rx+ (1− r)y) > min(u(x), u(y)), x, y ∈ Rn, r ∈ [0, 1];
(3) u is upper semi-continuous;
(4) [u]0 = {x ∈ Rn : u(x) > 0} is compact, for 0 < r ≤ 1, denote [u]r = {x : x ∈ Rn and u(x) > r}, [u]0 =

⋃
r∈(0,1][u]r.

From (1)-(4), it follows that for any u ∈ En and r ∈ [0, 1] the r−level set [u]r is a compact convex set. For any
u, v ∈ En

D(u, v) = sup
r∈[0,1]

d([u]r, [v]r), (1)

where d is Hausdorff metric. It is well known that (En, d) is an metric space [12]. The norm of fuzzy number u ∈ En is
defined by

‖u‖ = D(u, 0̃) = sup
α∈[u]0

|α|, (2)

where the ‖ · ‖ is norm on En, 0̃ is fuzzy number on En and 0̃ = χ{0}.

Definition 2.3 [12] For A ∈ Pk(Rn), x ∈ Sn−1, define the support function of A as σ(x,A) = sup
y∈A
〈y, x〉, where Sn−1 is

the unit sphere of Rn, i.e., Sn−1 = {x ∈ Rn : ‖x‖ = 1}, 〈·, ·〉 is the inner product in Rn.

Definition 2.4 [2] Let α : [a, b]→ R be an increasing function. A fuzzy-number-valued function f̃ : [a, b]→ En is said
to be fuzzy Henstock-Stieltjes (FHS) integrable with respect to α on [a, b], if there exists Ã ∈ En, for every ε > 0, there
is a function δ(ξ) > 0, such that for any δ-fine division P = {[u, v], ξ} of [a, b], we have

D
(∑

(P )

f̃(ξ)[α(v)− α(u)], Ã
)
< ε. (3)

We write (FHS)
b∫
a

f̃(x)dα = Ã.

Lemma 2.1 [12] If u, v ∈ En, k ∈ R, for any r ∈ [0, 1], we have

[u+ v]r = [u]r + [v]r, [ku]r = k[u]r. (4)

Lemma 2.2 [12] Suppose u ∈ En, then
(1) u∗(r, x+ y) ≤ u∗(r, x) + u∗(r, y),
(2) if u, v ∈ En, r ∈ [0, 1], then

d([u]r, [v]r) = sup
x∈Sn−1

|u∗(r, x)− v∗(r, x)|, (5)

(3) (u+ v)∗(r, x) = u∗(r, x) + v∗(r, x),
(4) (ku)∗(r, x) = ku∗(r, x), k ≥ 0.

Lemma 2.3 [1, 12] Given u, v ∈ En the distance D : En × En → [0,+∞) between u and v is defined by the equation
D(u, v) = sup

r∈[0,1]
d([u]r, [v]r), then

(1) (En, D) is a complete metric space,
(2) D(u+ w, v + w) = D(u, v),
(3) D(u+ v, w + e) 6 D(u,w) +D(v, e),
(4) D(ku, kv) = |k|D(u, v), k ∈ R,
(5) D(u+ v, 0̃) 6 D(u, 0̃) +D(v, 0̃),
(6) D(u+ v, w) 6 D(u,w) +D(v, 0̃).

Where u, v, w, e, 0̃ ∈ En, 0̃ = X({0}).

Lemma 2.4 [2] Let α : [a, b]→ R be an increasing function. A fuzzy-number-valued function F̃ : [a, b]→ En is (FHS)
integrable with respect to α on [a, b] if and only if F ∗(t)(r, x) is (RHS) integrable with respect to α on [a, b] uniformly
for any r ∈ [0, 1] and x ∈ Sn−1, we have(

(FHS)

b∫
a

F̃ (t)dα

)∗
(r, x) = (RHS)

b∫
a

F ∗(t)(r, x)dα. (6)

Uniformly for any r ∈ [0, 1].
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3 Support function characterizations of locally small Riemann sums
and (HS) integral for fuzzy-number-valued functions in En

In this section, we shall define locally small Riemann sums or in short (LSRS) with respect to α on [a, b] by using
support function f∗(ξ)(r, x) and show that it is the necessary and sufficient condition for f̃ to be (HS) integrable with
respect to α on [a, b].

Definition 3.1 Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃ : [a, b] → En is said to
be have locally small Riemann sums or (LSRS) with respect to α on [a, b] if for every ε > 0 there is a δ(ξ) > 0 such that
for every t ∈ [a, b], we have ∥∥∥∥∑ f̃(ξ)[α(v)− α(u)]

∥∥∥∥
En

< ε, (7)

whenever P = {[u, v]; ξ} is a δ-fine division of an interval C ⊂ (t − δ(t), t + δ(t)), t ∈ C and Σ sums over P . (Where
C = [y, z]).

The following Theorem 3.1 shows that f̃ has (LSRS) with respect to α on [a, b] is equal to the type of it,s support
functions.

Theorem 3.1 Let α : [a, b] → R be an increasing function and let f̃ : [a, b] → En be a fuzzy-number-valued function,
the support-function-wise f∗(ξ)(r, x) of f̃ has locally small Riemann sums or (LSRS) with respect to α on [a, b] if and
only if for every ε > 0, there is a δ(ξ) > 0 such that for every t ∈ [a, b], we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε, (8)

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, whenever P = {[u, v]; ξ} is a δ-fine division of an interval C ⊂ (t−δ(t), t+δ(t)),
t ∈ C and Σ sums over P.

Proof Let 0̃ ∈ En denote the (FHS) integral of f̃ with respect to α on [a, b]. Given ε > 0 there is a δ(ξ) > 0 such that
for any δ-fine division P = {[u, v]; ξ} of [a, b], we have

D

(∑
f̃(ξ)[α(v)− α(u)], 0̃

)
< ε. (9)

That is

sup
r∈[0,1]

d

([∑
f̃(ξ)[α(v)− α(u)]

]r
, ˜[0]

r
)
< ε. (10)

By Lemma 2.2 we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣(∑ f̃(ξ)[α(v)− α(u)]
)∗

(r, x)− σ(x, 0)

∣∣∣∣ < ε. (11)

Furthermore, by σ(x,A) = sup
y∈A
〈y, x〉, we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− σ(x, 0)

∣∣∣∣ < ε. (12)

Hence, for any r ∈ [0, 1], x ∈ Sn−1 and for any δ-fine division P we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε. (13)

Where σ(x, 0) = 0.
This completes the proof. �

Lemma 3.1 (Henstock Lemma). Let α : [a, b]→ R be an increasing function and let f̃ : [a, b]→ En be a fuzzy-number-
valued function and (HS) integrable to Ã with respect to α on [a, b]. Then, the support-function-wise f∗(ξ)(r, x) of f̃
on [a, b] is (HS) integrable to A∗(r, x) with respect to α on [a, b] uniformly for any r ∈ [0, 1], x ∈ Sn−1 and Ã ∈ En ,
i.e., for every ε > 0 there is a positive function δ(ξ) > 0, for δ-fine division P = {[u, v]; ξ} of [a, b] and for any x ∈ Sn−1,
we have ∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]−A∗(r, x)

∣∣∣∣ < ε. (14)

Furthermore, for any sum of parts
∑
1

from
∑

we have∣∣∣∣∑
1

f∗(ξ)(r, x)[α(v)− α(u)]−A∗(r, x)

∣∣∣∣ < ε. (15)
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Proof Let Ã ∈ En denote the (FHS) integral of f̃ with respect to α on [a, b]. Given ε > 0 there is a δ(ξ) > 0 such that
for any δ-fine division P = {[u, v]; ξ} of [a, b], we have

D

(∑
f̃(ξ)[α(v)− α(u)], Ã

)
< ε. (16)

That is

sup
r∈[0,1]

d

([∑
f̃(ξ)[α(v)− α(u)]

]r
, ˜[A]

r
)
< ε. (17)

By Lemma 2.2 we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣(∑ f̃(ξ)[α(v)− α(u)]
)∗

(r, x)−A∗(r, x)

∣∣∣∣ < ε. (18)

Furthermore, by A∗(r, x) = sup
y∈[A]r

〈y, x〉, we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]−A∗(r, x)

∣∣∣∣ < ε. (19)

Hence, for any r ∈ [0, 1], x ∈ Sn−1 and for any δ-fine division P we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]−A∗(r, x)

∣∣∣∣ < ε. (20)

For proof ∣∣∣∣∑
1

f∗(ξ)(r, x)[α(v)− α(u)]−A∗(r, x)

∣∣∣∣ < ε, (21)

the proof is similar to the Theorem 3.7 in [8].
This completes the proof. �

Theorem 3.2 Let α : [a, b]→ R be an increasing function and let f̃ : [a, b]→ En be a fuzzy-number-valued function. If
f̃ is (HS) integrable to F̃ ([a, b]) with respect to α on [a, b], then f̃ has LSRS with respect to α on [a, b].

Proof Since f̃ is (HS) integrable to F̃ ([a, b]) with respect to α on [a, b], by Theorem 3.1 the support-function-wise
f∗(ξ)(r, x) of f̃ on [a, b] is (HS) integrable to F ∗([a, b])(r, x) with respect to α on [a, b] uniformly for any r ∈ [0, 1], x ∈
Sn−1, i.e., for every ε > 0 there is a positive function δ(ξ) > 0, for δ-fine division P = {[u, v]; ξ} of [a, b] and for any
x ∈ Sn−1, we have ∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗([a, b])(r, x)

∣∣∣∣ < ε

2
. (22)

For each t ∈ [a, b], there is a closed interval C = [y, z] ⊂ (t− δ(t), t+ δ(t)) such that∣∣∣∣F ∗([y, z])(r, x)

∣∣∣∣ < ε

2
. (23)

According to Henstock Lemma, for each t ∈ [a, b] and δ-fine division P = {[u, v]; ξ} of C ⊂ (t− δ(t), t+ δ(t)), we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ ≤ ∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗([a, b])(r, x)

∣∣∣∣+

∣∣∣∣F ∗([y, z])(r, x)

∣∣∣∣
< ε.

Applies Theorem 3.1 again f̃ has LSRS with respect to α on [a, b].
This completes the proof. �

Lemma 3.2 Let α : [a, b] → R be an increasing function and let f̃ : [a, b] → En be a fuzzy-number-valued function. If
f̃ is (FHS) integrable with the F̃ as primitive then for each number ε > 0 there is a positive function δ(ξ) > 0, such
that for any [u, v] ⊂ [a, b] with

(
α(v)− α(u)

)
< δ(ξ), we have∥∥∥∥F̃ ([u, v])

∥∥∥∥
En

=

∥∥∥∥(FHS)

∫
[u,v]

f̃dα

∥∥∥∥
En

< ε. (24)

Proof The continuity follows from Lemma 3.1 and the following inequality:∥∥∥∥F̃ ([u, v])

∥∥∥∥
En

= D

(
F̃ (u), F̃ (v)

)
≤ D

(
F̃ ([u, v]), f̃(ξ)[α(v)− α(u)]

)
+

∥∥∥∥f̃(ξ)[α(v)− α(u)]

∥∥∥∥
En

< ε.

We only need set δ(ξ) < ε

2(‖f̃(ξ)‖En+1)
.

This completes the proof. �
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Theorem 3.3 Let α : [a, b] → R be an increasing function and let a fuzzy-number-valued function f̃ : [a, b] → En has
LSRS with respect to α on [a, b], then f̃ is (FHS) integrable with respect to α on [a, b].

Proof Given any ε > 0 and P = {([a, b], ξ)} = {([a1, b1], ξ1), ([a2, b2], ξ2), · · · , ([an, bn], ξn)} is a δ-fine partition of [a, b].
For each i(i = 1, 2, · · · , n) there is a positive function δi with Pi = {([ui, vi], ξi)} is a δi-fine partition of [ai, bi]. Since f̃
has LSRS with respect to α on [ai, bi], then we have∥∥∥∥∑

Pi

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
En

<
ε

2n
. (25)

Taken η = max{δ(ξ), ξ ∈ [a, b]}, according to the Lemma 3.2 we have∥∥∥∥F̃ ([ai, bi])

∥∥∥∥
En

=

∥∥∥∥(FHS)

∫
[ai,bi]

f̃dα

∥∥∥∥
En

<
ε

2n
. (26)

Therefore, for any δi-fine partition Pi = {([ui, vi], ξi)} of [ai, bi], we have(∑
Pi

f̃(ξ)[α(v)− α(u)], F̃ ([ai, bi])

)
≤

∥∥∥∥∑
Pi

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
En

+

∥∥∥∥F̃ ([ai, bi])

∥∥∥∥
En

<
ε

2n
+

ε

2n
=
ε

n
,

for each i.

Subsequently taken δ∗(ξ) = min{δ(ξ), δi(ξ)}, then P =
n⋃
i=1

Pi denote δ∗-fine partition of [a, b].

Therefore we have(∑
P

f̃(ξ)[α(v)− α(u)], F̃ ([a, b])

)
=

n∑
i=1

D

(∑
Pi

f̃(ξ)[α(v)− α(u)], F̃ ([ai, bi])

)
< n · ε

n
= ε.

Then f̃ is (FHS) integral with respect to α on [a, b].
This completes the proof. �

4 Support function characterizations of globally small Riemann sum-
s and (HS) integral for fuzzy-number-valued functions in En

In this section, we shall define globally small Riemann sums or in short (GSRS) integral with respect to α on [a, b] by
using support function f∗(ξ)(r, x) and show that it is the necessary and sufficient condition for f̃ to be (HS) integrable
on [a, b].

Definition 4.1 Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃ : [a, b] → En is said to
be have globally small Riemann sums or (GSRS) with respect to α on [a, b] if for every ε > 0 there exists a positive
integer N such that for every n > N there is a δn(ξ) > 0 and for every δn-fine division P = {[u, v]; ξ} of [a, b], we have∥∥∥∥ ∑

‖f̃(ξ)‖En>n

f̃(ξ)[α(v)− α(u)]

∥∥∥∥
En

< ε, (27)

where the
∑

is taken over P and for which
∥∥f̃(ξ)

∥∥
En >n.

The following Theorem 4.1 shows that f̃ has (GSRS) with respect to α on [a, b] is equal to the type of it,s support
functions.

Theorem 4.1 Let α : [a, b] → R be an increasing function and let f̃ : [a, b] → En be a fuzzy-number-valued function,
the support-function-wise f∗(ξ)(r, x) of f̃ has globally small Riemann sums or (GSRS) with respect to α on [a, b] if and
only if for every ε > 0, there exists a positive integer N such that for every n > N there is a δn(ξ) > 0 and for every
δn-fine division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣ ∑

|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε, (28)

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, where the
∑

is taken over P and for which
∣∣f∗(ξ)(r, x)

∣∣ > n.
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Proof First, we can prove the following statements are equivalent:
(1)

∥∥f̃(ξ)
∥∥
En > n.

(2)
∣∣f∗(ξ)(r, x)

∣∣ > n.
In fact ∥∥f̃(ξ)

∥∥
En > n = sup

r∈[0,1]
d
(
[f̃(ξ)]r, [0̃]r

)
= sup

r∈[0,1]
sup

x∈Sn−1

∣∣f∗(ξ)(r, x)
∣∣.

Second, let 0̃ ∈ En denote the (FHS) integral of f̃ with respect to α on [a, b]. Given ε > 0 there exists a positive
integer N such that for every n > N there is a δn(ξ) > 0 and for every δn-fine division P = {[u, v]; ξ} of [a, b], we have

D

( ∑
‖f̃(ξ)‖En>n

f̃(ξ)[α(v)− α(u)], 0̃

)
< ε. (29)

That is

sup
r∈[0,1]

d

([ ∑
‖f̃r(ξ)‖En>n

f̃(ξ)[α(v)− α(u)]
]r
,
[
0̃
]r)

< ε. (30)

By Lemma 2.2 we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣( ∑
|f∗(ξ)(r,x)|>n

f(ξ)[α(v)− α(u)]
)∗

(r, x)− σ(x, 0)

∣∣∣∣ < ε. (31)

Furthermore, by σ(x,A) = sup
y∈A
〈y, x〉, we have

sup
r∈[0,1]

sup
x∈Sn−1

∣∣∣∣ ∑
|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]− σ(x, 0)

∣∣∣∣ < ε. (32)

Hence, for any r ∈ [0, 1], x ∈ Sn−1 and for any δ-fine division P we have∣∣∣∣ ∑
|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε. (33)

Where σ(x, 0) = 0.
This completes the proof. �

Theorem 4.2 Let α : [a, b]→ R be an increasing function and let f̃ : [a, b]→ En be a fuzzy-number-valued function. If
f̃ has GSRS with respect to α on [a, b] then f̃ is (HS) integrable with respect to α on [a, b].

Proof Because f̃ has GSRS with respect to α on [a, b], then by Theorem 4.1 for every ε > 0, there exists a positive
integer N such that for every n > N there is a δn(ξ) > 0 and for every δn-fine division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣ ∑

|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε. (34)

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, where the
∑

is taken over P and for which
∣∣f∗(ξ)(r, x)

∣∣ > n.
For each two δ-fine divisions P1 = {[u1, v1]; ξ1}, P2 = {[u2, v2]; ξ2} of [a, b], we have∣∣∣∣∑ f∗(ξ1)(r, x)[α(v1)− α(u1)]−

∑
f∗(ξ2)(r, x)[α(v2)− α(u2)]

∣∣∣∣
≤

∣∣∣∣∑ f∗(ξ1)(r, x)[α(v1)− α(u1)]

∣∣∣∣+

∣∣∣∣∑ f∗(ξ2)(r, x)[α(v2)− α(u2)]

∣∣∣∣
≤

∣∣∣∣ ∑
|f∗(ξ1)(r,x)|>n

f∗(ξ1)(r, x)[α(v1)− α(u1)]

∣∣∣∣+

∣∣∣∣ ∑
|f∗(ξ1)(r,x)|≤n

f∗(ξ1)(r, x)[α(v1)− α(u1)]

∣∣∣∣
+

∣∣∣∣ ∑
|f∗(ξ2)(r,x)|>n

f∗(ξ2)(r, x)[α(v2)− α(u2)]

∣∣∣∣+

∣∣∣∣ ∑
|f∗(ξ2)(r,x)|≤n

f∗(ξ2)(r, x)[α(v2)− α(u2)]

∣∣∣∣
< 4ε.

According to the properties of Cauchy, f̃ is (HS) integrable on [a, b].
This completes the proof. �

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1147 HAMID 1142-1149



M.E. Hamid: Locally and globally small Riemann sums and Henstock-Stieltjes integral for n-dimensional...

Theorem 4.3 Let α : [a, b] → R be an increasing. Given a fuzzy-number-valued function f̃ : [a, b] → En, for each
r ∈ [0, 1] and x ∈ Sn−1 defined the support function f∗n(ξ)(r, x) of f̃n by the formula:

f∗n(ξ)(r, x) =

{
f∗(ξ)(r, x), ξ ∈ [a, b] if |f∗(ξ)(r, x)| ≤ n,
0, others.

A fuzzy-number-valued function f̃ is (HS) integrable with respect to α on [a, b] if and only if f̃ has GSRS with
respect to α on [a, b] and F̃n([a, b]) → F̃ ([a, b]) as n → ∞. (Where F̃ ([a, b]) and F̃n([a, b]) the integral of f̃ and f̃n with
respect to α on [a, b] respectively).

Proof First we shall prove the necessity. Because a fuzzy-number-valued function f̃ is (HS) integrable with respect
to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1, i.e., for every ε > 0 there is a positive function δ∗, for δ∗-fine
division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗([a, b])(r, x)

∣∣∣∣ < ε

3
. (35)

For each n ∈ N, there is a positive function δn, for δn-fine division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣∑ f∗n(ξ)(r, x)[α(v)− α(u)]− F ∗n([a, b])(r, x)

∣∣∣∣ < ε

3
, (36)

for each r ∈ [0, 1] and x ∈ Sn−1.
Because {F ∗n([a, b])(r, x)} converge to F ∗([a, b])(r, x) of [a, b] then there is a positive number N so if n ≥ N we have∣∣∣∣F ∗n([a, b])(r, x)− F ∗([a, b])(r, x)

∣∣∣∣ < ε

3
. (37)

For n ≥ N, defined a positive function δ on [a, b] by the formula:

δ(ξ) = min{δ∗(ξ), δn(ξ)}. (38)

Therefor, for each δ-fine division P = {[u, v]; ξ} of [a, b], we have∣∣∣∣ ∑
|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
=

∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]−
∑

f∗n(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
≤

∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗([a, b])(r, x)

∣∣∣∣+

∣∣∣∣F ∗n([a, b])(r, x)− F ∗([a, b])(r, x)

∣∣∣∣
+

∣∣∣∣F ∗([a, b])(r, x)−
∑

f∗n(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
<

ε

3
+
ε

3
+
ε

3
= ε.

Then f̃ has GSRS with respect to α on [a, b].
Second we shall prove the sufficiency. Because f̃ has GSRS with respect to α on [a, b], then by Theorem 4.1 for every

ε > 0, there exists a positive integer N such that for every n > N there is a δn(ξ) > 0 and for every δn-fine division
P = {[u, v]; ξ} of [a, b], we have ∣∣∣∣ ∑

|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣ < ε, (39)

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, where the
∑

is taken over P and for which
∣∣f∗(ξ)(r, x)

∣∣ > n.

Note that f̃n, is Henstock-Stieltjes integrable with respect to α on [a, b] for all n. Choose N so that whenever n,m > N
we have ∣∣∣∣F ∗n([a, b])(r, x)− F ∗m([a, b])(r, x)

∣∣∣∣ < ε. (40)

Then for n,m > N and a suitably chosen δ-fine division P = {[u, v]; ξ}, we have∣∣∣∣F ∗n([a, b])(r, x)− F ∗m([a, b])(r, x)

∣∣∣∣
≤

∣∣∣∣F ∗n([a, b])(r, x)−
∑

|f∗(ξ)(r,x)|≤n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣+

∣∣∣∣ ∑
|f∗(ξ)(r,x)|>n

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
+

∣∣∣∣ ∑
|f∗(ξ)(r,x)|≤m

f∗(ξ)(r, x)[α(v)− α(u)]− F ∗m([a, b])(r, x)

∣∣∣∣+

∣∣∣∣ ∑
|f∗(ξ)(r,x)|>m

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
< 4ε.
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That is, {F ∗n([a, b])(r, x)} converge to F ∗([a, b])(r, x), as n→∞. Again, for suitably chosen N and δ(ξ) and for every
δ-fine division P = {[u, v]; ξ}, we have∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗([a, b])(r, x)

∣∣∣∣
≤

∣∣∣∣∑ f∗(ξ)(r, x)[α(v)− α(u)]− F ∗N ([a, b])(r, x)

∣∣∣∣+

∣∣∣∣F ∗N ([a, b])(r, x)− F ∗([a, b])(r, x)

∣∣∣∣
≤

∣∣∣∣ ∑
|f∗(ξ)(r,x)|≤N

f∗(ξ)(r, x)[α(v)− α(u)]− F ∗N ([a, b])(r, x)

∣∣∣∣+

∣∣∣∣ ∑
|f∗(ξ)(r,x)|>N

f∗(ξ)(r, x)[α(v)− α(u)]

∣∣∣∣
+

∣∣∣∣F ∗N ([a, b])(r, x)− F ∗([a, b])(r, x)

∣∣∣∣
< 3ε.

That is, f̃ is (HS) integrable on [a, b].
This completes the proof. �

5 conclusions

In this paper, the notions of locally and globally small Riemann sums modifications with respect to fuzzy-number-
valued functions in En are introduced and studied. The basic properties and characterizations are presented. In
particular, it is proved that a fuzzy-number-valued functions in En is (HS) integrable on [a, b] iff it has (LSRS), and
also it is proved that a fuzzy-number-valued functions in En is (HS) integrable on [a, b] iff it has (GSRS).
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Abstract

In this paper, we investigate systems of nonhomogeneous coupled lin-
ear matrix differential equations. Applying Kronecker products, the vec-
tor operator, and matrix convolution product, we obtain explicit formula
of the general solution to this system in terms of matrix series concerning
exponentials and Mittag-Leffler functions.

Keywords: linear matrix differential equation, Kronecker product, vector op-
erator, matrix convolution product, Mittag-Leffler function.
Mathematics Subject Classifications 2010: 15A16, 15A69, 33E12, 34A30,
44A35.

1 Introduction

Theory of linear matrix differential equations can be applied in a broad range of
scientific fields, e.g. statistics [2, 6, 8], game theory [4], ecometrics and Leondief
model [6, 8, 11], control and system theory [3, 7]. The simplest first-order
homogeneous linear matrix differential equation with time-invariant coefficient
is given by

X ′(t) = AX(t). (1.1)

Here, A is a given square matrix and X(t) is an unknown matrix-valued function
to be solved. The system (1.1) has been widely studied, and the solution relies on
the computation of etA; see more information in [12, 13]. The nonhomogeneous
case appears in the form

X ′(t) = AX(t) + U(t), (1.2)
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here U(t) is a given matrix-valued function. In fact, the equation (1.2) has a
general solution given by a one-parameter matrix-valued function

X(t) = e(t−t0)AX(t0) + etA ∗ U(t), (1.3)

where ∗ denotes the matrix convolution product. See related works on nonho-
mogeneous case in [10, 15] and references therein.

Coupled matrix differential equations have numerous applications in pure
and applied mathematics. For example, to obtain the solution of an optimal
control problem with performance index we need to solve the system [7]

X ′(t) = AX(t) +BY (t),

Y ′(t) = CX(t)−ATY (t).

A general system of nonhomogeneous coupled linear matrix differential equa-
tions with time-invariant coefficient takes the form

X ′(t) = AX(t)B + CY (t)D + U(t),

Y ′(t) = EX(t)F +GY (t)H + V (t).
(1.4)

In [5], a homogeneous case of (1.4) when E = C, F = D, G = A, H =
B was investigated under the assumption that AC = CA and BD = DB.
In this case, the solution is given in terms of Kronecker products, the vector
operator, and matrix series concerning exponentials and hyperbolic functions.
A nonhomogeneous case of (1.4) was discussed in [1].

In this work, we investigate the system (1.4) under the assumption that
AC = CG, GE = EA, DB = HD, FH = BF . We apply Kronecker products
and the vector operator to reduce our complex system to the simplest form.
Thus, an explicit formula of the general solution to this system is obtained
in terms of Mittag-Leffler matrix functions. In particular, we obtain general
solution of several special cases of the main system. When initial conditions are
imposed to these problems, its solution is uniquely determined. Our results also
include the previous works [1, 5].

This paper is structured as follows. In Section 2, we supply useful facts for
solving linear matrix differential equations, including matrix functions defined
by power series, Kronecker product, vector operator, and matrix convolution
product. The main part of the paper, Section 3, deals with solving the system
(1.4) and its interesting special cases. In Sections 4, we treat an initial value
problem related to (1.4) and illustrate it with a numerical example.

2 Preliminaries

In this section, we provide adequate tools for solving system of linear matrix
differential equations. We shall denote the set of all m-by-n complex matrices
by Mm,n, and we set Mn =Mn,n.

2
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2.1 Functions of a matrix defined by power series

Consider A ∈ Mn and a holomorphic function f defined on a region in the
complex plane containing the origin and the spectrum of A. Let R > 0 be such
that f admits the Taylor series expansion

f(z) =
∞∑
k=0

akz
k for |z| < R,

where a0 = f(0) and ak = f (k)(0)/k! for any k ∈ N. If the spectral radius of A
is less than R, then the matrix power series

∑∞
k=0 akA

k converges, denoted by
f(A). Hence if f is an entire function then f(A) is a well-defined matrix for any
A ∈Mn. In particular, the following matrix series converge for any A ∈Mn:

sinh(A) =
∞∑
k=0

1

(2k + 1)!
A2k+1, cosh(A) =

∞∑
k=0

1

(2k)!
A2k.

Recall that the two-parameter Mittag-Leffler functions (e.g. [14]) is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
(2.1)

where Γ is the Gamma function. The power series (2.1) converges for all complex
numbers z.

The Mittag-Leffler function of a matrix A ∈Mn with parameters α > 0 and
β > 0 is defined by

Eα,β(A) =
∞∑
k=0

1

Γ(αk + β)
Ak = In +

1

Γ(α+ β)
A+

1

Γ(2α+ β)
A2 + · · · .

The class of matrix Mittag-Leffler functions include the following functions:

E1,1(A) =
∞∑
k=0

1

k!
Ak = eA, E2,1(A

2) =
∞∑
k=0

1

(2k)!
A2k = cosh(A).

An expansion shows that
(
E2,2(A

2)
)
A =

∑∞
k=0

1

(2k + 1)!
A2k+1 = sinh(A).

Lemma 2.1 (see e.g. [9]). If (A,B) is a pair of commuting complex matrices,
then eA+B = eAeB.

The next lemma is useful for deriving explicit formulas of solutions for system
of linear matrix differential equations in Section 3.

Lemma 2.2. For any A ∈Mn(C) andB ∈Mn(C), we have

e

 0 A
B 0


=

[
E2,1(AB)

(
E2,2(AB)

)
A(

E2,2(BA)
)
B E2,1(BA)

]
.

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1152 Kongyaksee ET AL 1150-1160



Proof. A computation using matrix analysis reveals that

e

 0 A
B 0


=

∞∑
k=0

1

k!

[
0 A
B 0

]k
=

∞∑
k=0

1

(2k)!

[
(AB)k 0

0 (BA)k

]
+

∞∑
k=0

1

(2k + 1)!

[
0 (AB)kA

(BA)kB 0

]

=


∞∑
k=0

1

(2k)!
(AB)k 0

0
∞∑
k=0

1

(2k)!
(BA)k



+


0

∞∑
k=0

1

(2k + 1)!
(AB)kA

∞∑
k=0

1

(2k + 1)!
(BA)kB 0



=


∞∑
k=0

1

Γ(2k + 1)
(AB)k

∞∑
k=0

1

Γ(2k + 2)
(AB)kA

∞∑
k=0

1

Γ(2k + 2)
(BA)kB

∞∑
k=0

1

Γ(2k + 1)
(BA)k


=

[
E2,1(AB)

(
E2,2(AB)

)
A(

E2,2(BA)
)
B E2,1(BA)

]
.

2.2 Kronecker product and vector operator

Given two matrices A = [aij ] ∈ Mm,n and B = [bij ] ∈ Mp,q the Kronecker
product of A and B is defined by

A⊗B = [aijB]ij ∈Mmp,nq.

The the vector operator Vec :Mm,n → Cmn is defined for each A = [aij ] by

VecA = [a11 . . . am1 . . . a12 . . . am2 . . . a1m . . . amn]
T .

It is clear that Vec is a linear isomorphism. Algebraic properties of the Kronecker
product and the vector operator used in this paper are as follows:

Lemma 2.3 (see e.g. [9]). The map (A,B) 7→ A⊗B is bilinear. The following
properties hold for matrices of appropriate sizes:

1. Im ⊗ In = Imn,

2. (A⊗B)(C ⊗D) = AC ⊗BD,

3. Vec(AXB) = (BT ⊗A)VecX.

4
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The Kronecker product is compatible with holomorphic functions in the
following sense.

Lemma 2.4 (see e.g.[9]). Let f be a holomorphic function defined on a region
including the origin and the spectrum of A ∈ Mn. Then f(I ⊗ A) = I ⊗ f(A)
and f(A ⊗ I) = f(A) ⊗ I. In particular, the following relations hold for any
A ∈Mn :

Eα,β(A⊗ I) = Eα,β(A)⊗ I and Eα,β(I ⊗A) = I ⊗ Eα,β(A),
sinh(A⊗ I) = sinh(A)⊗ I and sinh(I ⊗A) = I ⊗ sinh(A),
cosh(A⊗ I) = cosh(A)⊗ I and cosh(I ⊗A) = I ⊗ cosh(A).

2.3 Matrix convolution product

Let Ω = [0,∞) or Ω = [0, b] for some b > 0. The convolution is a binary
operation assigned to each pair of integrable function f and g defined by

(f ∗ g)(t) =
∫ t

0

f(τ)g(t− τ)dτ, t ∈ Ω.

The convolution is bilinear and commutative. Given two integrable matrix-
valued functions A : Ω → Mm,n(R), A(t) = [aij(t)] and B : Ω → Mn,p(R),
B(t) = [bij(t)], we define the matrix convolution product of A and B by

(A ∗B)(t) =

[
n∑

k=1

aik(t) ∗ bkj(t)

]
∈Mm,p(R), t ∈ Ω.

We may write A(t) ∗ B(t) for (A ∗ B)(t). The matrix convolution product is
bilinear, but not commutative in general.

3 General solutions of systems of nonhomoge-
neous coupled linear matrix differential equa-
tions

From now on, let A,B,C,D,E, F,G,H, J,K ∈ Mn(C) be given constant ma-
trices and let U, V : Ω →Mn(C) be given matrix-valued functions. We wish to
solve certain systems of linear matrix differential equations in unknown matrix-
valued functions X,Y : Ω →Mn(C).

Theorem 3.1. Assume that DB = HD, AC = CG, FH = BF , GE = EA.
Then the general solution of the system of nonhomogeneous coupled linear matrix
differential equations:

X ′(t) = AX(t)B + CY (t)D + U(t),

Y ′(t) = EX(t)F +GY (t)H + V (t)
(3.1)

5
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is given by

VecX(t) = e(t−t0)(B
T⊗A)

{(
E2,1((t− t0)

2M)
)
VecX(t0)

+
(
t− t0

)(
E2,2((t− t0)

2M)
)(
DT ⊗ C

)
VecY (t0)

+
(
E2,1((t− t0)

2M)
)
∗VecU(t)

+
(
t− t0

)(
E2,2((t− t0)

2M)
)(
DT ⊗ C

)
∗VecV (t)

}
,

VecY (t) = e(t−t0)(H
T⊗G)

{
(t− t0)

(
E2,2((t− t0)

2N
)(
FT ⊗ E

)
VecX(t0)

+
(
E2,1((t− t0)

2N)
)
VecY (t0)

+
(
t− t0

)(
E2,2((t− t0)

2N)
)(
FT ⊗ E

)
∗VecU(t)

+
(
E2,1((t− t0)

2N)
)
∗VecV (t)

}
,

(3.2)
where M = (FD)T ⊗ CE and N = (DF )T ⊗ EC.

Proof. Using Lemma 2.3, we can transform the system (3.1) into the vector
form:[

VecX ′(t)
VecY ′(t)

]
=

[
BT ⊗A DT ⊗ C
FT ⊗ E HT ⊗G

] [
VecX(t)
VecY (t)

]
+

[
VecU(t)
VecV (t)

]
.

Let us denote P=

[
BT ⊗A 0

0 HT ⊗G

]
and Q=

[
0 DT ⊗ C

FT ⊗ E 0

]
.

From (1.3), this system has the following solution:[
VecX(t)
VecY (t)

]
= e(t−t0)S

[
VecX(t0)
VecY (t0)

]
+ e(t−t0)S ∗

[
VecU(t)
VecV (t)

]
,

where S=P + Q. Now, we will compute eS . Since DB = HD, AC = CG,
FH = BF and GE = EA, by Lemma 2.3 we have PQ = QP . From which
it follows from Lemma 2.1 that eS = eP+Q = eP eQ. By expanding the power
series of matrix exponential, we have

eP =

[
eB

T⊗A 0

0 eH
T⊗G

]
.

By Lemma 2.2, we have

eQ =

[
E2,1(M)

(
E2,2(M)

)(
DT ⊗ C

)(
E2,2(N)

)(
FT ⊗ E

)
E2,1(N)

]
.

Thus

eS =

[
eB

T⊗A 0

0 eH
T⊗G

][
E2,1(M)

(
E2,2(M)

)(
DT ⊗ C

)(
E2,2(N)

)(
FT ⊗ E

)
E2,1(N)

]

=

[
eB

T⊗AE2,1(M) eB
T⊗A

(
E2,2(M)

)(
DT ⊗ C

)
eH

T⊗G
(
E2,2(N)

)(
FT ⊗ E

)
eH

T⊗GE2,1(N)

]
.

6
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Denoting

R1 = e(t−t0)(B
T⊗A)E2,1((t− t0)

2M),

R2 = e(t−t0)(B
T⊗A)

(
t− t0

)(
E2,2((t− t0)

2M)
)(
DT ⊗ C

)
,

R3 = e(t−t0)(H
T⊗G)

(
t− t0

)(
E2,2((t− t0)

2N)
)(
FT ⊗ E

)
,

R4 = e(t−t0)(H
T⊗G)E2,1((t− t0)

2N),

we obtain

e(t−t0)S

[
VecX(t0)
VecY (t0)

]
=

[
R1 R2

R3 R4

] [
VecX(t0)
VecY (t0)

]
=

[
R1 VecX(t0) +R2 VecY (t0)
R3 VecX(t0) +R4 VecY (t0)

]
.

We also have

e(t−t0)S∗
[
VecU(t)
VecV (t)

]
=

[
R1 R2

R3 R4

]
∗
[
VecU(t)
VecV (t)

]
=

[
R1 ∗VecU(t) +R2 ∗VecV (t)
R3 ∗VecU(t) +R4 ∗VecV (t)

]
.

Therefore, the general solution of (3.1) is given by (3.2).

Corollary 3.2. Assume that DB = HD, AC = CG, FH = BF , GE = EA.
Then the general solution of the system

X ′(t) = AX(t)B + CY (t)D,

Y ′(t) = EX(t)F +GY (t)H

is given by

VecX(t) = e(t−t0)(B
T⊗A)

{(
E2,1((t− t0)

2M)
)
VecX(t0)

+
(
t− t0

)(
E2,2((t− t0)

2M)
)(
DT ⊗ C

)
VecY (t0),

VecY (t) = e(t−t0)(H
T⊗G)

{(
t− t0

)(
E2,2((t− t0)

2N)
)(
FT ⊗ E

)
VecX(t0)

+
(
E2,1((t− t0)

2N)
)
VecY (t0)

}
(3.3)

where M = (FD)T ⊗ CE and N = (DF )T ⊗ EC.

Proof. Put U(t) = V (t) = 0 in (3.2) and then use Lemma 2.3.

The next result was firstly established in [1].

Corollary 3.3. The general solution of the system

X ′(t) = AX(t)B + CY (t)D + U(t),

Y ′(t) = CX(t)D +AY (t)B + V (t)
(3.4)

under the assumption that AC = CA and BD = DB, is given by

VecX(t) =e(t−t0)(B
T⊗A)

{
coshLVecX(t0) + sinhLVecY (t0)

+ coshL ∗VecU(t) + sinhL ∗VecV (t)
}
,

VecY (t) =e(t−t0)(B
T⊗A)

{
sinhLVecX(t0) + coshLVecY (t0)

+ sinhL ∗VecU(t) + coshL ∗VecV (t)
}
,

(3.5)

7
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where L = (t− t0)(D
T ⊗ C).

Proof. Put E = C, F = D, G = A and H = B in (3.2), and use Lemma 2.3.

The corresponding homogeneous system of (3.4) is given by

X ′(t) = AX(t)B + CY (t)D,

Y ′(t) = CX(t)D +AY (t)B.
(3.6)

If AC = CA and BD = DB, then the general solution of (3.6) is reduced to

VecX(t) = e(t−t0)(B
T⊗A)

{
coshLVecX(t0) + sinhLVecY (t0)

}
,

VecY (t) = e(t−t0)(B
T⊗A)

{
sinhLVecX(t0) + coshLVecY (t0)

}
.

This result was firstly obtained in [5].

Corollary 3.4. The general solution of the system

X ′(t) = AX(t)B + CY (t) + U(t),

Y ′(t) = EX(t) +GY (t)B + V (t)

under the condition AC = CG,GE = EA, is given by

VecX(t) = e(t−t0)(B
T⊗A) Vec

{(
E2,1(K1)

)
X(t0) +

(
t− t0

)(
E2,2(K1)

)
CY (t0)

}
+ e(t−t0)(B

T⊗A)
{(
In ⊗ E2,1(K1)

)
∗VecU(t)

+
(
In ⊗

(
t− t0

)(
E2,2(K1)

)
C
)
∗VecV (t)

}
,

VecY (t) = e(t−t0)(B
T⊗G) Vec

{(
t− t0

)(
E2,2(K2)

)
EX(t0) +

(
E2,1(K2)

)
Y (t0)

}
+ e(t−t0)(B

T⊗G)
{(
In ⊗

(
t− t0

)(
E2,2(K2)

)
E
)
∗VecU(t)

+
(
In ⊗ E2,1(K2)

)
∗VecV (t)

}
,

where K1 = (t− t0)
2CE and K2 = (t− t0)

2EC.

Proof. Put H = B, D = F = In in (3.2) and then use Lemmas 2.3 and 2.4.

Corollary 3.5. The general solution of the system

X ′(t) = AX(t)B + Y (t) + U(t),

Y ′(t) = X(t) +AY (t)B + V (t)

is given by

VecX(t) = e(t−t0)(B
T⊗A)

{
cosh(t− t0)VecX(t0) + sinh(t− t0)VecY (t0)

+ cosh(t− t0)
(
In2 ∗VecU(t)

)
+ sinh(t− t0)

(
In2 ∗VecV (t)

)}
,

VecY (t) = e(t−t0)(B
T⊗A)

{
sinh(t− t0)VecX(t0) + cosh(t− t0)VecY (t0)

+ sinh(t− t0)
(
In2 ∗VecU(t)

)
+ cosh(t− t0)

(
In2 ∗VecV (t)

)}
.

8
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Proof. Put C = D = In in (3.5) and then use Lemma 2.3.

Corollary 3.6. The general solution of the system

X ′(t) = AX(t)B + U(t),

Y ′(t) = EX(t)F +GY (t)H + V (t)

under the condition FH = BF and GE = EA, is given by

VecX(t) = e(t−t0)(B
T⊗A)

{
VecX(t0) + I ∗VecU(t)

}
,

VecY (t) = e(t−t0)(H
T⊗G) Vec

{
(t− t0)EX(t0)F + Y (t0)

}
+ e(t−t0)(H

T⊗G)
{
(t− t0)(F

T ⊗ E) ∗VecU(t) + I ∗VecV (t)
}
.

Proof. Put C = D = 0 in (3.2) and then use Lemma 2.3.

Corollary 3.7. The general solution of equation X ′(t) = AX(t)B + U(t) is

given by VecX(t) = e(t−t0)(B
T⊗A)

{
VecX(t0) + I ∗VecU(t)

}
.

Proof. Put E = F = 0 in Corollary 3.6.

4 Unique solution of initial value problem and
a numerical example

Consider the following initial value problem associated with the system (3.1):

X ′(t) = AX(t)B + CY (t)D + U(t),

Y ′(t) = EX(t)F +GY (t)H + V (t)

subject to initial conditions X(0) = J and Y (0) = K. Suppose DB = HD,
AC = CG, FH = BF , GE = EA. In this case, the solution of this problem is
unique and given by

VecX(t) = et(B
T⊗A)

{(
E2,1(t

2M)
)
Vec J + t

(
E2,2(t

2M)
)(
DT ⊗ C

)
VecK

+
(
E2,1(t

2M)
)
∗VecU(t) + t

(
E2,2(t

2M)
)(
DT ⊗ C

)
∗VecV (t)

}
,

VecY (t) = et(H
T⊗G)

{
t
(
E2,2(t

2N
)(
FT ⊗ E

)
VecJ +

(
E2,1(t

2N)
)
VecK

+ t
(
E2,2(t

2N)
)(
FT ⊗ E

)
∗VecU(t) +

(
E2,1(t

2N)
)
∗VecV (t)

}
,

where M = (FD)T ⊗ CE and N = (DF )T ⊗ EC.
Let us see a numerical example.

Example 4.1. The initial value problem

X ′(t) = AX(t)B + Y (t) + U(t),

Y ′(t) = X(t) +AY (t)B + V (t)

X(0) = J and Y (0) = K

9
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with A =

[
1 2
3 4

]
, B =

[
0 −1
1 1

]
, J =

[
2 −1
1 0

]
,K =

[
3 1
1 −1

]
,

U(t) =

[
−e2t 1
1 sin t

]
, V (t) =

[
1 e2t

cos t sin 2t

]
has a unique solution given by

VecX(t) = etW Vec

[
w1(t) cosh t+ w2(t) sinh t w3(t) cosh t+ w4(t) sinh t
w5(t) cosh t+ w6(t) sinh t w7(t) cosh t+ w8(t) sinh t

]
,

VecY (t) = etW Vec

[
w2(t) cosh t+ w1(t) sinh t w4(t) cosh t+ w3(t) sinh t
w6(t) cosh t+ w5(t) sinh t w8(t) cosh t+ w7(t) sinh t

]
.

Here, W =


0 0 1 2
0 0 3 4

−1 −2 1 2
−3 −4 3 4

,
w1(t) = 1

2 (5 − e2t), w2(t) = 3 + t, w3(t) = −1 + t, w4(t) = 1
2 (1 + e2t),

w5(t) = 1 + t, w6(t) = 1 + sin t, w7(t) = 1− cos t, w8(t) = −1
2 (1 + cos 2t).
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ABSTRACT

In this paper, we deal with the form of the solutions and the periodicity character of the following systems of
nonlinear di¤erence equations of order two

+1 =
¡1

§ § ¡1
 +1 =

¡1
§ § ¡1



where the initial conditions ¡1 0 ¡1 and 0 are nonzero real numbers.

Keywords: recursive sequences, di¤erence equations, periodic solution, solution of di¤erence equation, sys-
tem of di¤erence equations.

Mathematics Subject Classi…cation: 39A10.

———————————————————

1. INTRODUCTION

Through this paper, we will obtain the form of the solutions of some nonlinear di¤erence equations systems of
order two of the following form

+1 =
¡1

§§¡1
 +1 =

¡1
§§¡1



where the initial conditions ¡1 0 ¡1 and 0 are nonzero real numbers. We will then investigate the periodicity
character of the solutions of the systems under study. Finally we will present some numerical examples and some
…gures will be given to explain the behavior of the obtained solutions.

The study of di¤erence equations is a very rich research …eld, and di¤erence equations have been applied
in several mathematical models in biology, population dynamics, genetics, economics, medicine, and so forth.
Solving di¤erence equations and studying the asymptotic behavior of their solutions has attracted the attention
of many authors, see for example [1-39].

El-Dessoky et al. [6] studied the periodic nature and the form of the solutions of nonlinear di¤erence equations
systems of order four

+1 =
¡3

¡2(§1§¡3)
 +1 =

¡3
¡2(§1§¡3)



Grove et al. [7] obtained the existence and behavior of solutions of the rational system

+1 =


+ 


 +1 =



+ 




Mansour et al. [8] investigated the periodic nature and get the form of the solutions of the following systems
of rational di¤erence equations

+1 =
¡1

§¡1¡
 +1 =

¡1
§¡1¡


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El-Dessoky [9] studied the solutions of the rational equation systems

+1 =
¡1¡2

(§1§¡1¡2)
 +1 =

¡1¡2
(§1§¡1¡2)



Touafek et al. [10] investigated the periodic nature and gave the form of the solutions of the following systems
of rational second order di¤erence equations

+1 =


¡1(§1§)
 +1 =


¡1(§1§)



Yang et al. [11] studied global behavior of the system of the two nonlinear di¤erence equations

+1 =

1+

 +1 =

1+



Din et al. [6] studied the behavior of the solutions of the following system of di¤erence equations

+1 =
¡3

+¡1¡2¡3
 +1 =

1¡3
1+1¡1¡2¡3



De…nition 1. (Periodicity)

A sequence fg
1
=¡ is said to be periodic with period  if + =  for all  ¸ ¡

De…nition 2. (Fibonacci Sequence)

The sequence fg
1
=1 = f1 2 3 5 8 13 21 g i.e. +1 =  + ¡1  ¸ 0 ¡1 = 0 0 = 1 is

called Fibonacci Sequence.

2. THE FIRST SYSTEM: +1 =
¡1
¡¡1

 +1 =
¡1
¡¡1

In this section, we investigate the solutions of the two di¤erence equations system

+1 =
¡1
¡¡1

 +1 =
¡1
¡¡1

 (1)

where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary nonzero real numbers

Theorem 2.1. Assume that f g are solutions of system (1). Then for  = 0 1 2  we see that all
solutions of system (1) are given by the following formulae

2¡1 = ¡1

¡1Y

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)
(2¡10¡2¡1)(20¡2+1¡1)

 2 = 0

¡1Y

=0

(20¡2+1¡1)(2¡10¡2¡1)
(2+10¡2+2¡1)(20¡2+1¡1)



and

2¡1 = ¡1

¡1Y

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)
(20¡2+1¡1)(2¡10¡2¡1)

 2 = 0

¡1Y

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)



where fg
1
=¡2 = f1 0 1 1 2 3 5 8 13 g

Proof: For  = 0 the result holds. Now suppose that   0 and that our assumption holds for ¡ 1. that is,

2¡3 = ¡1

¡2Y

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)
(2¡10¡2¡1)(20¡2+1¡1)

 2¡2 = 0

¡2Y

=0

(20¡2+1¡1)(2¡10¡2¡1)
(2+10¡2+2¡1)(20¡2+1¡1)



2¡3 = ¡1

¡2Y

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)
(20¡2+1¡1)(2¡10¡2¡1)

 2¡2 = 0

¡2Y

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)


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Now we …nd from system (1) that

2¡1 = 2¡22¡3
2¡2¡2¡3

=



0
¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)



¡1
¡2

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)





0
¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(20¡2+1¡1)(2+10¡2+2¡1)



¡



¡1
¡2

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)



=
0¡1

¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)



0
¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(2+10¡2+2¡1)(2¡20¡2¡1¡1)



¡¡1

=
0¡1

¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)


0

(¡10¡0¡1)(2¡40¡2¡3¡1)

(2¡30¡2¡2¡1)(¡20¡¡1¡1)


¡¡1

=
0

¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)

¡
(2¡40¡2¡3¡1)

(2¡30¡2¡2¡1)
¡1

³
2¡30¡2¡2¡1
2¡30¡2¡2¡1

´

=
0

¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)
(2¡30¡2¡2¡1)

¡2¡40+2¡3¡1¡2¡30+2¡2¡1

= 0

¡2Y

=0

(20¡2+1¡1)(2¡10¡2¡1)
(2+10¡2+2¡1)(20¡2+1¡1)

(2¡30¡2¡2¡1)
(¡2¡20+2¡1¡1)

= ¡1

¡1Y

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)
(2¡10¡2¡1)(20¡2+1¡1)



2¡1 = 2¡22¡3
2¡2¡2¡3

=



0
¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(20¡2+1¡1)(2+10¡2+2¡1)



¡1
¡2

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)





0
¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)



¡



¡1
¡2

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)



=

¡10
¡2Q

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)

0
¡2Q

=0

(2¡10¡2¡1)(20¡2+1¡1)
(2+10¡2+2¡1)(2¡20¡2¡1¡1)

¡ ¡1

=

¡10
¡2Q

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)

0
(¡10¡0¡1)(2¡40¡2¡3¡1)
(2¡30¡2¡2¡1)(¡20¡¡1¡1)

¡ ¡1

=

0
¡2Q

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)

¡ (2¡40¡2¡3¡1)
(2¡30¡2¡2¡1)

¡ 1

µ
2¡30 ¡ 2¡2¡1
2¡30 ¡ 2¡2¡1

¶

=
0

¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(20¡2+1¡1)(2+10¡2+2¡1)
(2¡30¡2¡2¡1)

¡2¡40+2¡3¡1¡2¡30+2¡2¡1

= 0

¡2Y

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)

(2¡30¡2¡2¡1)
(¡2¡20+2¡1¡1)

= ¡1

¡1Y

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)
(20¡2+1¡1)(2¡10¡2¡1)


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Also, we infer from system (1) that

2 = 2¡12¡2
2¡1¡2¡2

=



¡1
¡1

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)



0
¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(20¡2+1¡1)(2+10¡2+2¡1)





¡1
¡1

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)



¡



0
¡2

=0

(2¡10¡2¡1)(20¡2+1¡1)

(20¡2+1¡1)(2+10¡2+2¡1)



=
¡1

¡1

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)


¡
¡1

=0

(2¡10¡2¡1)

(20¡2+1¡1)

¡2

=0

(20¡2+1¡1)

(2¡10¡2¡1)



¡1

=
¡1

¡1

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)

¡
(2¡30¡2¡2¡1)

(2¡20¡2¡1¡1)
¡1

³
(2¡20¡2¡1¡1)
(2¡20¡2¡1¡1)

´

=

¡1
¡1Q

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)
(2¡10¡2¡1)(20¡2+1¡1)

(2¡20 ¡ 2¡1¡1)

¡2¡30 + 2¡2¡1 ¡ 2¡20 + 2¡1¡1

= ¡1

¡1Y

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)
(2¡10¡2¡1)(20¡2+1¡1)

(2¡20¡2¡1¡1)
(¡2¡10+2¡1)

= 0

¡1Y

=0

(20¡2+1¡1)(2¡10¡2¡1)
(2+10¡2+2¡1)(20¡2+1¡1)



and so,

2 = 2¡12¡2
2¡1¡2¡2

=



¡1
¡1

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)



0
¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)





¡1
¡1

=0

(2¡20¡2¡1¡1)(2¡10¡2¡1)

(2¡10¡2¡1)(20¡2+1¡1)



¡



0
¡2

=0

(20¡2+1¡1)(2¡10¡2¡1)

(2+10¡2+2¡1)(20¡2+1¡1)



=



¡1
¡1

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)





¡
¡1

=0

(2¡10¡2¡1)

(20¡2+1¡1)

¡2

=0

(20¡2+1¡1)

(2¡10¡2¡1)



¡1

=

µ

¡1
¡1Q

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)
(20¡2+1¡1)(2¡10¡2¡1)

¶

¡ (2¡30¡2¡2¡1)
(2¡20¡2¡1¡1)

¡ 1

³
(2¡20¡2¡1¡1)
(2¡20¡2¡1¡1)

´

=



¡1
¡1

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)

(20¡2+1¡1)(2¡10¡2¡1)



(2¡20¡2¡1¡1)

¡2¡30+2¡2¡1¡2¡20+2¡1¡1

= ¡1

¡1Y

=0

(2¡10¡2¡1)(2¡20¡2¡1¡1)
(20¡2+1¡1)(2¡10¡2¡1)

(2¡20¡2¡1¡1)
(¡2¡10+2¡1)

= ¡1

¡1Y

=0

(2¡20¡2¡1¡1)
2¡10¡2¡1)

(2¡20¡2¡1¡1)
(¡2¡10+2¡1)

= 0

¡1Y

=0

(2¡10¡2¡1)(20¡2+1¡1)
(20¡2+1¡1)(2+10¡2+2¡1)



The proof is complete.
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Example 1. For con…rming the results of this section, we consider numerical example for the di¤erence system
(1) with the initial conditions ¡1 = 03 0 = 04 ¡1 = 015 and 0 = ¡01. (See Fig. 1).
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Figure 1. Plot the behavior of the solution of the system (1).

3. THE SECOND SYSTEM: +1 =
¡1
¡¡1

 +1 =
¡1

¡¡¡1

We obtain, in this section, the form of the solutions of the di¤erence equations system

+1 =
¡1
 ¡ ¡1

 +1 =
¡1

¡ ¡ ¡1
 (2)

where  2 N0 and the initial conditions ¡1 0 ¡1  0 are arbitrary non zero real numbers with ¡1 6= ¡0

Theorem 3.1. Let f g
+1
=¡1 be solutions of system (2).Then fg

+1
=¡1 and fg

+1
=¡1 are given by the

formulae for  = 0 1 2 

4 = ¡¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)



4+1 = ¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(20¡2¡1¡1)(2+10¡2¡1)



4+2 = ¡¡10¡10(0+¡1)
(2¡10+2+1¡1)(20+2+2¡1)(20¡2¡1¡1)(2+10¡2¡1)



4+3 = ¡10¡10(0+¡1)
(2¡10+2+1¡1)(20+2+2¡1)(2+10¡2¡1)(2+20¡2+1¡1)



and

4 = (2¡20+2¡1)(20¡2¡1¡1)
(0+¡1)

 4+1 =
¡(2¡10+2+1¡1)(20¡2¡1¡1)

(0+¡1)


4+2 = (2¡10+2+1¡1)(2+10¡2¡1)
(0+¡1)

 4+3 =
¡(20+2+2¡1)(2+10¡2¡1)

(0+¡1)


Proof: For  = 0 the result holds. Now suppose that   0 and that our assumption holds for ¡ 1. that is,

4¡4 = ¡¡10¡10(0+¡1)
(2¡40+2¡2¡1)(2¡30+2¡1¡1)(2¡30¡2¡4¡1)(2¡20¡2¡3¡1)



4¡3 = ¡10¡10(0+¡1)
(2¡40+2¡2¡1)(2¡30+2¡1¡1)(2¡20¡2¡3¡1)(2¡10¡2¡2¡1)



4¡2 = ¡¡10¡10(0+¡1)
(2¡30+2¡1¡1)(2¡20+2¡1)(2¡20¡2¡3¡1)(2¡10¡2¡2¡1)



4¡1 = ¡10¡10(0+¡1)
(2¡30+2¡1¡1)(2¡20+2¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)


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4¡4 = (2¡40+2¡2¡1)(2¡20¡2¡3¡1)
(0+¡1)

 4¡3 =
¡(2¡30+2¡1¡1)(2¡20¡2¡3¡1)

(0+¡1)


4¡2 = (2¡30+2¡1¡1)(2¡10¡2¡2¡1)
(0+¡1)

 4¡1 =
¡(2¡20+2¡1)(2¡10¡2¡2¡1)

(0+¡1)


Now, we obtain from system (2) that

4+1 = 44¡1
4¡4¡1

=

³
¡¡10¡10(0+¡1)

(2¡20+2¡1)(2¡10+2+1¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)

´

³
¡(2¡20+2¡1)(2¡10¡2¡2¡1)

(0+¡1)

´


(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)


¡

¡(2¡20+2¡1)(2¡10¡2¡2¡1)

(0+¡1)



=


¡10¡10(0+¡1)

(2¡20+2¡1)(2¡10+2+1¡1)(20¡2¡1¡1)



(2¡10¡2¡2¡1)+(20¡2¡1¡1)

= ¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(20¡2¡1¡1)(2+110¡2¡1)



4+1 = 44¡1
¡4¡4¡1

=

³
(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)

´

³
¡10¡10(0+¡1)

(2¡30+2¡1¡1)(2¡20+2¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)

´







¡
³

¡¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)

´
¡

³
¡10¡10(0+¡1)

(2¡30+2¡1¡1)(2¡20+2¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)

´







=


(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)



¡1+
(2¡30+2¡1¡1)

(2¡10+2+1¡1)

= ¡


(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)



1¡
(2¡30+2¡1¡1)

(2¡10+2+1¡1)

= ¡


(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)



1¡
(2¡30+2¡1¡1)

(2¡10+2+1¡1)

= ¡


(2¡20+2¡1)(20¡2¡1¡1)

(0+¡1)



(2¡20+2¡1)

(2¡10+2+1¡1)

= ¡(2¡10+2+1¡1)(20¡2¡1¡1)
(0+¡1)



Also, we can prove the other relations. This completes the proof.

Example 2. We assume that the initial conditions for the di¤erence system (2) are ¡1 = 038 0 = ¡17 ¡1 =
085 and 0 = 126. (See Fig. 2).
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Figure 2. Sketch the behavior of the solution of the system (2).
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4. PERIODICITY OF THE SYSTEMS

In this section, we study the periodicity nature of the solutions of the following systems of the di¤erence equations

+1 =
¡1
¡¡1

 +1 =
¡1
+¡1

 (3)

+1 =
¡1
+¡1

 +1 =
¡1
¡¡1

 (4)

+1 =
¡1

¡¡¡1
 +1 =

¡1
¡¡¡1

 (5)

Where  = 0 1 2  and the initial conditions ¡1 0 ¡1 and 0 are arbitrary nonzero real numbers.

Theorem 4.1. Suppose that f g are solutions of di¤erence equation system (3) with 0 6= ¡¡1 0 6= ¡1
Then all solutions of system (3) are periodic with period six and for  = 0 1 2 

6¡1 = ¡1 6 = 0 6+1 =
0¡1
0¡¡1

 6+2 =
¡1(0+¡1)
(¡1¡0)

 6+3 =
0(0+¡1)
(0¡¡1)

 6+4 =
¡10

(¡1¡0)


and

6¡1 = ¡1 6 = 0 6+1 =
¡10
0+¡1

 6+2 =
¡1(0¡¡1)
(0+¡1)

 6+3 =
0(¡1¡0)
(0+¡1)

 6+4 =
0¡1

(0+¡1)


Proof: For  = 0 the result holds. Now suppose that   0 and that our assumption holds for ¡ 1. that is,

6¡7 = ¡1 6¡6 = 0 6¡5 =
0¡1
0¡¡1

 6¡4 =
¡1(0+¡1)
(¡1¡0)

 6¡3 =
0(0+¡1)
(0¡¡1)

 6¡2 =
¡10

(¡1¡0)


and

6¡7 = ¡1 6¡6 = 0 6¡5 =
¡10
0+¡1

 6¡4 =
¡1(0¡¡1)
(0+¡1)

 6¡3 =
0(¡1¡0)
(0+¡1)

 6¡2 =
0¡1

(0+¡1)


Now, we obtain from system (3) that

6¡1 = 6¡26¡3
6¡2¡6¡3

=


¡10

(¡1¡0)


0(¡1¡0)
(0+¡1)




0¡1

(0+¡1)



¡


0(¡1¡0)
(0+¡1)

 = ¡100
0¡1¡0(¡1¡0)

= ¡100
00

= ¡1

6¡1 = 6¡26¡3
6¡2+6¡3

=


0¡1

(0+¡1)


0(0+¡1)
(0¡¡1)




¡10

(¡1¡0)



+


0(0+¡1)
(0¡¡1)

 = 0¡10
¡¡10+0(0+¡1)

= 0¡10
00

= ¡1

6 = 6¡16¡2
6¡1¡6¡2

=
¡1

0¡1
(0+¡1)

¡1¡
0¡1

(0+¡1)

= ¡10¡1
¡1(0+¡1)¡0¡1

= 0

6 = 6¡16¡2
6¡1+6¡2

=
¡1

¡10
(¡1¡0)

¡1+
¡10

(¡1¡0)

= ¡1¡10
¡1(¡1¡0)+¡10

= 0

We can prove the other relations similarly. The proof is completed.

Theorem 4.2. If f g are solutions of system (4) with 0 6= ¡1 0 6= ¡¡1 Then all solutions of system
(4) are periodic with period six and given by the formulae

6¡1 = ¡1 6 = 0 6+1 =
0¡1
0+¡1

 6+2 =
¡1(0¡¡1)
(0+¡1)

 6+3 =
0(¡1¡0)
(0+¡1)

 6+4 =
¡10
0+¡1



6¡1 = ¡1 6 = 0 6+1 =
¡10
0¡¡1

 6+2 =
¡1(0+¡1)
(¡1¡0)

 6+3 =
0(0+¡1)
(0¡¡1)

 6+4 =
0¡1
¡1¡0


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Theorem 4.3. Assume that f g are solutions of di¤erence equation system (5) with 0 6= ¡¡1 0 6= ¡¡1
Then all solutions of system (5) are periodic with period six and for  = 0 1 2 

6¡1 = ¡1 6 = 0 6+1 = ¡
0¡1
0+¡1

 6+2 =
¡1(0+¡1)
(0+¡1)

 6+3 =
0(0+¡1)
(0+¡1)

 6+4 = ¡
¡10
0+¡1



6¡1 = ¡1 6 = 0 6+1 = ¡
¡10
0+¡1

 6+2 =
¡1(0+¡1)
(0+¡1)

 6+3 =
0(¡1+0)
(0+¡1)

 6+4 = ¡
0¡1
0+¡1



Example 3. See Figure (3) where we take system (3) with the initial conditions ¡1 = 018 0 = 017 ¡1 = 05
and 0 = 086.
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Figure 3. Draw the behavior of the solution of the system (3).

5. OTHER SYSTEMS

In this section, we obtain the form of the solutions of the follwing systems of the di¤erence equations.

Theorem 5.1. If f g are solutions of system

+1 =
¡1

¡+¡1
 +1 =

¡1
¡¡¡1

 (6)

where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers, then for
 = 0 1 2 

2¡1 = ¡1

¡1Y

=0

(2¡20+2¡1¡1)(2¡10¡2¡1)
(2¡10+2¡1)(20¡2+1¡1)

 2 = 0

¡1Y

=0

(20+2+1¡1)(2¡10¡2¡1)
(2+10+2+2¡1)(20¡2+1¡1)



2¡1 = ¡1

¡1Y

=0

(2¡10+2¡1)(2¡1¡1¡2¡20)
(20+2+1¡1)(2¡1¡2¡10)

 2 = 0

¡1Y

=0

(2¡10+2¡1)(20¡2+1¡1)
(20+2+1¡1)(2+10¡2+2¡1)



such that
¡1Q

=0
 = 1.
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Theorem 5.2. The solutions of system

+1 =
¡1

¡¡¡1
 +1 =

¡1
¡+¡1

 (7)

are given by the relations

2¡1 = ¡1

¡1Y

=0

(2¡1¡1¡2¡20)(2¡10+2¡1)
(2¡1¡2¡10)(20+2+1¡1)

 2 = 0

¡1Y

=0

(20¡2+1¡1)(2¡10+2¡1)
(2+10¡2+2¡1)(20+2+1¡1)



2¡1 = ¡1

¡1Y

=0

(2¡10¡2¡1)(2¡20+2¡1¡1)
(20¡2+1¡1)(2¡10+2¡1)

 2 = 0

¡1Y

=0

(2¡10¡2¡1)(20+2+1¡1)
(20¡2+1¡1)(2+10+2+2¡1)



where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers and
¡1Q

=0
 = 1.

Theorem 5.3. Suppose that f g
+1
=¡1 are solutions of system

+1 =
¡1

¡¡¡1
 +1 =

¡1
+¡1

 (8)

where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers with ¡1 6= ¡0.
Then fg

+1
=¡1 and fg

+1
=¡1 are given by the formula for  = 0 1 2 

4 = ¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(2¡1¡1+2¡20)(2¡1+2¡10)



4+1 = ¡¡10¡10(0+¡1)
(2¡20+2¡1)(2¡10+2+1¡1)(2¡1+2¡10)(2+1¡1+20)



4+2 = ¡10¡10(0+¡1)
(2¡10+2+1¡1)(20+2+2¡1)(2¡1+2¡10)(2+1¡1+20)



4+3 = ¡¡10¡10(0+¡1)
(2¡10+2+1¡1)(20+2+2¡1)(2+1¡1+20)(2+2¡1+2+10)



and

4 = (2¡20+2¡1)(20+2¡1¡1)
(0+¡1)

 4+1 =
(2¡10+2+1¡1)(20+2¡1¡1)

(0+¡1)


4+2 = (2¡10+2+1¡1)(2+10+2¡1)
(0+¡1)

 4+3 =
(20+2+2)(2+10+2¡1)

(0+¡1)


Theorem 5.4. Let f g
+1
=¡1 be solutions of system

+1 =
¡1

¡+¡1
 +1 =

¡1
¡¡1

 (9)

Then fg
+1
=¡1 and fg

+1
=¡1 are given by the following expressions for  = 0 1 2 

4 = ¡10¡10(0¡¡1)
(2¡20¡2¡1)(2¡10¡2+1¡1)(2¡10¡2¡2¡1)(20¡2¡1¡1)



4+1 = ¡10¡10(0¡¡1)
(2¡20¡2¡1)(2¡10¡2+1¡1)(20¡2¡1¡1)(2+10¡2¡1)



4+2 = ¡¡10¡10(0¡¡1)
(2¡10¡2+1¡1)(20¡2+2¡1)(20¡2¡1¡1)(2+10¡2¡1)



4+3 = ¡¡10¡10(0¡¡1)
(2¡10¡2+1¡1)(20¡2+2¡1)(2+10¡2¡1)(2+20¡2+1¡1)



and

4 = (2¡20¡2¡1)(20¡2¡1¡1)
(0¡¡1)

 4+1 =
¡(2¡10¡2+1¡1)(20¡2¡1¡1)

(0¡¡1)


4+2 = (2¡10¡2+1¡1)(2+10¡2¡1)
(0¡¡1)

 4+3 =
¡(20¡2+2)(2+10¡2¡1)

(0¡¡1)

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where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers with ¡1 6= 0.

Theorem 5.5. Let f g
+1
=¡1 be solutions of system

+1 =
¡1

¡¡¡1
 +1 =

¡1
¡¡1

 (10)

where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers with ¡1 6= ¡0.
Then fg

+1
=¡1 and fg

+1
=¡1 are given by the following relations for  = 0 1 2 

4 = (20¡2¡1¡1)(2¡20+2¡1)
0+¡1

 4+1 =
(20¡2¡1¡1)(2¡10+2+1¡1)

0+¡1


4+2 = (2+10¡2¡1)(2¡10+2+1¡1)
0+¡1

 4+3 =
(2+10¡2¡1)(20+2+2¡1)

0+¡1


and

4 = ¡0¡10¡1(0+¡1)
(2¡10¡2¡2¡1)(20¡2¡1¡1)(2¡20+2¡1)(2¡10+2+1¡1)



4+1 = 0¡10¡1(0+¡1)
(20¡2¡1¡1)(2+10¡2¡1)(2¡20+2¡1)(2¡10+2+1¡1)



4+2 = ¡0¡10¡1(0+¡1)
(20¡2¡1¡1)(2+10¡2¡1)(2¡10+2+1¡1)(20+2+2¡1)



4+3 = 0¡10¡1(0+¡1)
(2+10¡2¡1)(2+20¡2+1¡1)(2¡10+2+1¡1)(20+2+2¡1)



Theorem 5.6. Suppose that f g
+1
=¡1 be solutions of system

+1 =
¡1
¡¡1

 +1 =
¡1

¡+¡1
 (11)

Then fg
+1
=¡1 and fg

+1
=¡1 are given by the following relations for  = 0 1 2 

4 = (20¡2¡1¡1)(2¡20¡2¡1)
0¡¡1

 4+1 =
¡(20¡2¡1¡1)(2¡10¡2+1¡1)

0¡¡1


4+2 = (2+10¡2¡1)(2¡10¡2+1¡1)
0¡¡1

 4+3 =
¡(2+10¡2¡1)(20¡2+2¡1)

0¡¡1


and

4 = ¡0¡10¡1(0¡¡1)
(2¡10¡2¡2¡1)(20¡2¡1¡1)(2¡20¡2¡1)(2¡10¡2+1¡1)



4+1 = 0¡10¡1(0¡¡1)
(20¡2¡1¡1)(2+10¡2¡1)(2¡20¡2¡1)(2¡10¡2+1¡1)



4+2 = ¡0¡10¡1(0¡¡1)
(20¡2¡1¡1)(2+10¡2¡1)(2¡10¡2+1¡1)(20¡2+2¡1)



4+3 = 0¡10¡1(0¡¡1)
(2+10¡2¡1)(2+20¡2+1¡1)(2¡10¡2+1¡1)(20¡2+2¡1)



where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers with ¡1 6= 0.

Theorem 5.7. Let f g
+1
=¡1 be solutions of system

+1 =
¡1
+¡1

 +1 =
¡1

¡¡¡1
 (12)

Then fg
+1
=¡1 and fg

+1
=¡1 are given by the following relations for  = 0 1 2 

4 = (20+2¡1¡1)(2¡20+2¡1)
0+¡1

 4+1 =
(20+2¡1¡1)(2¡10+2+1¡1)

0+¡1


4+2 = (2+10+2¡1)(2¡10+2+1¡1)
0+¡1

 4+3 =
(2+10+2¡1)(20+2+2¡1)

0+¡1


J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1170 El-Dessoky ET AL 1161-1172



and

4 = ¡0¡10¡1(0+¡1)
(2¡10+2¡2¡1)(20+2¡1¡1)(2¡20+2¡1)(2¡10+2+1¡1)



4+1 = 0¡10¡1(0+¡1)
(20+2¡1¡1)(2+10+2¡1)(2¡20+2¡1)(2¡10+2+1¡1)



4+2 = ¡0¡10¡1(0+¡1)
(20+2¡1¡1)(2+10+2¡1)(2¡10+2+1¡1)(20+2+2¡1)



4+3 = 0¡10¡1(0+¡1)
(2+10+2¡1)(2+20+2+1¡1)(2¡10+2+1¡1)(20+2+2¡1)



where  2 N0 and the initial conditions ¡1 0 ¡1 and 0 are arbitrary non zero real numbers with ¡1 6= ¡0.
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Abstract

Here we present Hardy type integral inequalities for Choquet inte-
grals. These are very general inequalities involving convex and increasing
functions. Initially we collect a rich machinery of results about Choquet
integrals needed next, and we prove also results of their own merit such
as, Choquet-Hölder�s inequalities for more than two functions and a mul-
tivariate Choquet-Fubini�s theorem. The main proving tool here is the
property of comonotonicity of functions. We �nish with independent es-
timates on left and right Riemann-Liouville-Choquet fractional integrals.

2010 AMSMathematics Subject Classi�cation: 26A33, 26D10 26D15,
26E50, 28E10.
Keywords and Phrases: Choquet integral, Hardy inequality, comonotonic-

ity, fractional integral, convexity.

1 Introduction

To motivate the work in this article we mention the Riemann-Liouville fractional
integrals, see [9]. Let [a; b], (�1 < a < b <1) be a �nite interval on the real
axis R. The left and right Riemann-Liouville fractional integrals I�a+f and I�b�f
(respectively) of order � > 0 are de�ned by

�
I�a+f

�
(x) =

1

� (�)

Z x

a

f (t) (x� t)��1 dt, (x > a) ;

�
I�b�f

�
(x) =

1

� (�)

Z b

x

f (t) (t� x)��1 dt; (x < b) ;

where � is the Gamma function.
We mention a basic property of the operators I�a+f and I

�
b�f of order � > 0,

see also [11]: It holds that the fractional integral operators I�a+f and I
�
b�f are

1
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bounded in Lp (a; b), 1 � p � 1, that is

I�a+f

p � K kfkp , 

I�b�f

p � K kfkp ;
where

K =
(b� a)�

�� (�)
:

The �rst inequality that is the result involving the left-sided fractional integral,
was proved by H.G. Hardy in one of his �rst papers, see [7]. He did not write
down the constant, but the calculation of the constant was hidden inside his
proof.
General Hardy inequalities of the above type were derived also in [8] and

[1]. We continue this kind of research for Choquet integrals based on the
comonotonicity property of functions and convexity. We derive a wide range
of Choquet integral inequalities of Hardy type.

2 Background

In this section we give some de�nitions and basic properties of Choquet integral
essential for this work.

De�nition 1 ([15]) Let X be a non-empty set, F be a �-algebra of subsets of
X and � : F ! [0;1] be a nonnegative real-valued set function, � is said to be
a fuzzy measure i¤:
(1) � (?) = 0;
(2) for any A;B 2 F , A � B implies � (A) � � (B) (monotonicity),
(3) for fAng � F , A1 � A2 � ::: � An � :::, implies lim

n!1
� (An) =

� ([1n=1An) (continuity from below)
(4) for fAng � F , A1 � A2 � ::: � An � :::, � (A1) < 1; implies

lim
n!1

� (An) = � (\1n=1An) (continuity from above).

If � is a fuzzy measure from F to [0; 1] with � (X) = 1, � is called a regular
fuzzy measure. If � is a fuzzy measure, (X;F ; �) is called a fuzzy measure space
and (X;F) is a fuzzy measurable space. Clearly � is not necessarily an additive
measure. Let F be the set of all real-valued nonnegative measurable functions
de�ned on X.

De�nition 2 ([10]) Let (X;F ; �) be a fuzzy measure space, � is said to be
submodular (supermodular) if

� (A \B) + � (A [B) � (�)� (A) + � (B) ; 8 A;B � F : (1)

De�nition 3 ([4]) Let f; g 2 F , f and g are said to be comonotonic i¤ f (x) <
f (x0) implies g (x) � g (x0), 8 x; x0 2 X:

2
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De�nition 4 ([5], [16]) Let (X;F ; �) be a fuzzy measure space, f 2 F and
A 2 F . The Choquet integral of f with respect to � on A is de�ned by

(C)

Z
A

fd� =

Z 1

0

� (A \ fxjf (x) � �g) d�: (2)

If (C)
R
X
fd� < 1, we call f (C)-integrable, L1 (�) is the set of all (C)-

integrable function.
Clearly (C)

R
X
fd� <1, implies (C)

R
A
fd� <1:

Theorem 5 ([14]) Let (X;F ; �) be a fuzzy measurable space, ff1; f2; fg � F ,
A;B 2 F and c � 0 constant. Then,
(1) if � (A) = 0, then (C)

R
A
fd� = 0;

(2) (C)
R
A
cd� = c� (A) ;

(3) if f1 � f2, then

(C)

Z
A

f1d� � (C)
Z
A

f2d�; (3)

(4) if A � B, then (C)
R
A
fd� � (C)

R
B
fd�;

(5) (C)
R
A
(f + c) d� = (C)

R
A
fd�+ c� (A) ;

(6) (C)
R
A
cfd� = c

�
(C)

R
A
fd�

�
:

Theorem 6 ([5]) Let (X;F ; �) be a fuzzy measure space and f; g 2 F . Then
(1) if f; g are comonotonic, then for any A 2 F ,

(C)

Z
A

(f + g) d� = (C)

Z
A

fd�+ (C)

Z
A

gd�; (4)

(2) if � is submodular, then for any A 2 F ,

(C)

Z
A

(f + g) d� � (C)
Z
A

fd�+ (C)

Z
A

gd�: (5)

The Jensen�s inequality for Choquet integrals follows:

Theorem 7 ([13]) Let (X;F ; �) be a fuzzy measure space and f 2 L1 (�). If �
is a regular fuzzy measure and � : [0;1)! [0;1) is a convex function, then

�

�
(C)

Z
X

fd�

�
� (C)

Z
X

� (f) d�: (6)

Corollary 8 ([13]) Let (X;F ; �) be a fuzzy measure space and f 2 L1 (�). If
� is a regular fuzzy measure, then�

(C)

Z
X

fd�

�p
� (C)

Z
X

fpd�; (7)

for any 1 < p <1:

3
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Theorem 9 ([13]) (Hölder�s inequality) Let (X;F ; �) be a fuzzy measure space
and f; g 2 F . If � is a submodular fuzzy measure and 1 < p; q < 1 with
1
p +

1
q = 1, then

(C)

Z
X

fgd� �
�
(C)

Z
X

fpd�

� 1
p
�
(C)

Z
X

gqd�

� 1
q

: (8)

Theorem 10 ([13]) (Minkowski inequality) Let (X;F ; �) be a fuzzy measure
space and f; g 2 F . If � is a submodular fuzzy measure and 1 � p <1, then�

(C)

Z
X

(f + g)
p
d�

� 1
p

�
�
(C)

Z
X

fpd�

� 1
p

+

�
(C)

Z
X

gpd�

� 1
p

: (9)

We give

Theorem 11 (Hölder�s inequality for three functions) Let (X;F ; �) be a fuzzy
measure space and f1; f2; f3 2 F . If � is a submodular fuzzy measure and
1 < p1 � p2 � p3 <1 with 1

p1
+ 1

p2
+ 1

p3
= 1, then

(C)

Z
X

f1f2f3d� �
�
(C)

Z
X

fp11 d�

� 1
p1
�
(C)

Z
X

fp22 d�

� 1
p2
�
(C)

Z
X

fp33 d�

� 1
p3

:

(10)

Proof. Let p = p3
p3�1 > 1 and q = p3. Notice that

1
p +

1
q = 1:

We apply (8) as follows

(C)

Z
X

f1f2f3d� �
�
(C)

Z
X

(f1f2)
p
d�

� 1
p
�
(C)

Z
X

fp33 d�

� 1
p3

: (11)

We see that

p

p1
+
p

p2
= p

�
1

p1
+
1

p2

�
= p

�
1� 1

p3

�
= p

�
p3 � 1
p3

�
= 1: (12)

Clearly it holds p1
p ;

p2
p > 1.

Therefore we get

(C)

Z
X

fp1 f
p
2 d�

(8)
�
�
(C)

Z
X

f
p
p1
p

1 d�

� p
p1
�
(C)

Z
X

f
p
p2
p

2 d�

� p
p2

= (13)

�
(C)

Z
X

fp11 d�

� p
p1
�
(C)

Z
X

fp22 d�

� p
p2

:

That is�
(C)

Z
X

(f1f2)
p
d�

� 1
p

�
�
(C)

Z
X

fp11 d�

� 1
p1
�
(C)

Z
X

fp22 d�

� 1
p2

: (14)

Combining (11) and (14), we produce (10).
In general we have

4
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Theorem 12 (Hölder�s inequality for n functions) Let (X;F ; �) be a fuzzy mea-
sure space and fi 2 F , i = 1; :::; n 2 N. If � is a submodular fuzzy measure and
1 < p1 � p2 � ::: � pn <1 with

nP
i=1

1
pi
= 1, then

(C)

Z
X

nY
i=1

fid� �
nY
i=1

�
(C)

Z
X

fpii d�

� 1
pi

: (15)

Proof. By induction.

Remark 13 Let A be a �-algebra, and let fAkgk2N � A be a family of pairwise
disjoint sets. Here P is a probability measure on (X;A) with only the �nite
additivity property valid: i.e.,

P ([nk=1Ak) =
nX
k=1

P (Ak) , 8 n 2 N.

We observe that

P ([1k=1Ak) = lim
n!1

P ([nk=1Ak) = lim
n!1

nX
k=1

P (Ak) =

1X
k=1

P (Ak) : (16)

That is, the countable additivity property holds, hence P is a usual probability
measure.

Notice that a �-algebra on X is also an algebra of subsets of X.

De�nition 14 ([3], [6]) For every space 
 and algebra A of subsets of 
 a set-
function � : A ! R is called a (normalized) capacity if it satis�es the following:
(i)

� (?) = 0; � (
) = 1; (17)

(ii) 8 A;B 2 A : A � B ) � (A) � � (B) :
From (i) and (ii) we get that the range of � is contained in [0; 1] :

In general the Choquet integral is de�ned as follows:

De�nition 15 ([3], [12]) Let (
;A) be an algebra and f : 
! R is a bounded
A-measurable function and � is any (normalized) capacity on 
 we de�ne the
Choquet integral of f with respect to � to be the number

(C)

Z



f (!) d� (!) =

Z 1

0

� (f! 2 
 : f (!) � �g) d�+ (18)

Z 0

�1
[� (! 2 
 : f (!) � �g)� 1] d�;

5
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where the integrals are taken in the sense of Riemann.
A (normalized) capacity � is called probability ([6]) i¤

8 A;B 2 A : � (A [B) + � (A \B) = � (A) + � (B) : (19)

Notice that since the integrands are monotone, the Choquet integral always ex-
ists, and if � is a probability it collapses to a usual Lebesgue integral.

De�nition 16 ([6]) Let f; g : 
 ! R be two bounded A-measurable functions.
We say that f and g are comonotonic, if for every !; !0 2 
,

(f (!)� f (!0)) (g (!)� g (!0)) � 0: (20)

A class of functions F� is said to be comonotonic if for every f; g 2 F�, f and
g are comonotonic.

Proposition 17 ([6]) If � and � are (normalized) capacities on the algebra
(
;A) ; and f; g : 
! R are bounded A-measurable functions then:
(i)

(C)

Z



1Ad� = � (A) , 8 A 2 A; (21)

where 1A is the characteristic function on A,
(ii) (positive homogeneity)

(C)

Z



pfd� = p

�
(C)

Z



fd�

�
, for every p � 0; (22)

(iii) (monotonicity) f � g implies

(C)

Z



fd� � (C)
Z



gd�; (23)

(iv)

(C)

Z



(f + p) d� = (C)

Z



fd� + p, 8 p 2 R, (24)

(v) (comonotonic additivity) If f; g are comonotonic then

(C)

Z



(f + g) d� = (C)

Z



fd� + (C)

Z



gd�. (25)

We need the very important

Lemma 18 ([6]) Let (
;A) be an algebra. Suppose that F� is a comonotonic
class of bounded and A-measurable functions from 
 into R and � is a (normal-
ized) capacity on (
;A). Then there exists a probability measure P on (
;A)
such that for every f 2 F� Z




fd� =

Z



fdP: (26)

Here
R


fdP is a standard integral of Lebesgue type.

6
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Based on Remark 13, Lemma 18 is still valid in case that (
;A) is a �-
algebra.

De�nition 19 ([6]) Let X;Y be two sets and Z = X � Y . Let f : Z ! R. We
say that f has comonotonic x-sections if for every x; x0 2 X, f (x; �) : Y ! R,
and f (x0; �) : Y ! R are comonotonic functions. Comonotonicity of y-sections
is similarly de�ned. We call f slice-comonotonic if it has both comonotonic
x-sections and y-sections.

Remark 20 Notice that De�nitions 14-16 and Proposition 17, are still valid
when (
;A) is a �-algebra.

Next we mention Fubini�s theorem for Choquet integrals.

Theorem 21 ([2]) Let (
1;�1), (
2;�2) be �-algebras. Let ui, i = 1; 2 be
submodular (or supermodular) regular fuzzy measures on 
i, respectively. Let

 = 
1 � 
2 be endowed with the product �-algebra � = �1 
 �2. Let f :

1 � 
2 ! R be a slice-comonotonic bounded �-measurable mapping, then:
1) f (�; !2) is �1-measurable and !2 2 
2 ! (C)

R

1
f (s; !2) du1 (s) is

bounded and �2-measurable,
f (!1; �) is �2-measurable and !1 2 
1 ! (C)

R

2
f (!1; t) du2 (t) is bounded

and �1-measurable,
2) the iterated integrals (C)

R

2

R

1
fdu1du2, (C)

R

1

R

2
fdu2du1 exist and

are equal:

(C)

Z

2

�
(C)

Z

1

f (!1; !2) du1

�
du2 = (C)

Z

1

�
(C)

Z

2

f (!1; !2) du2

�
du1:

(27)

We give

De�nition 22 Let f :
nQ
i=1


i ! R, n 2 N. If the i-sections

f (x1; :::; xi�1; �; xi+1; :::; xn) and f
�
x01; :::; x

0
i�1; �; x0i+1; :::; x0n

�
are comonotonic

functions, for all i = 1; :::; n; where the vectors (x1; :::; xi�1; xi+1; :::; xn) ;�
x01; :::; x

0
i�1; x

0
i+1; :::; x

0
n

�
2
n�1Q
j=1
j 6=i


j are di¤erent, for all i = 1; 2; :::; n; we call f

slice-n-comonotonic function.
We denote by � a permutation of the set f1; 2; :::; ng into itself, n 2 N. There

are n! permutations.

In [2] is mentioned that Theorem 21 can be generalized for n spaces. Next
we state in brief Fubini�s theorem for n Choquet iterated integrals.

7
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Theorem 23 Let (
i;�i) be �-algebras, i = 1; 2; :::; n 2 N. Let ui, i = 1; 2; :::; n
be submodular (or supermodular) regular fuzzy measures on 
i, respectively. Let


 =
nQ
i=1


i be endowed with the product �-algebra � = 
ni=1�i. Let f :
nQ
i=1


i !

R be a slice-comonotonic bounded �-measurable mapping, then

(C)

Z

n

Z

n�1

:::

Z

1

fdu1du2:::dun =

(C)

Z

�(n)

Z

�(n�1)

:::

Z

�(1)

fdu�(1)du�(2):::du�(n); (28)

for any permutation � on the set f1; :::; ng. All the iterated Choquet integrals in
(28) exist and are equal.

Proof. By induction, (23) and using Theorem 21.

Remark 24 If � is a countably additive bounded measure, then the Choquet
integral (C)

R
A
fd� reduces to the usual Lebesgue type integral (see, e.g. [5], p.

62, or [17], p. 226), above it is A � 
:

3 Main Results

This section is motivated by [8].
Let the fuzzy measure spaces (
1;�1; �1) and (
2;�2; �2), where �1; �2 are

regular fuzzy measures, furthermore �1; �2 are assumed to be submodular.
Let k : 
1 � 
2 ! R+ which is a bounded measurable function and k (x; y)

is slice�comonotonic and belongs to a comonotonic class F �1 as a function of
y:

Consider the function

K (x) = (C)

Z

2

k (x; y) d�2 (y) , x 2 
1; (29)

and assume that K (x) > 0:
Notice that K is bounded.
Denote by W (k) the class of functions g : 
1 ! R+, such that

g (x) = (C)

Z

2

k (x; y) f (y) d�2 (y) ; (30)

where f : 
2 ! R+ is a bounded measurable function, such that k (x; y) f (y) is
slice�comonotonic and belongs to a comonotonic class F �2 as a function of y:
Notice that g is also bounded.
We give

8
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Theorem 25 Let u be a nonnegative measurable function on 
1. Assume that
u(x)
K(x) is bounded on 
1. De�ne � on 
2 by

� (y) = (C)

Z

1

u (x)

K (x)
k (x; y) d�1 (x) ; (31)

which is bounded. Let � : R+ ! R+ be a convex and increasing function,
such that k (x; y) � (f (y)) is x-section comonotonic with comonotonic class F �3 .
Assume here that (F �1 [ F �2 [ F �3 ) � F �, where F � is one comonotonic class of
functions on 
2. Assume further that u (x) (K (x))

�1
k (x; y) � (f (y)) is slice-

comonotonic. Then

(C)

Z

1

u (x) �

�
g (x)

K (x)

�
d�1 (x) � (C)

Z

2

� (y) � (f (y)) d�2 (y) ; (32)

holds for all g 2W (k), with f as in (30).

Proof. We observe that

(C)

Z

1

u (x) �

�
g (x)

K (x)

�
d�1 (x) =

(C)

Z

1

u (x) �

�
1

K (x)
(C)

Z

2

k (x; y) f (y) d�2 (y)

�
d�1 (x) = (33)

(next we use Lemma 18, where P is a probability measure on 
2)

(C)

Z

1

u (x)�

�
1

K (x)
(C)

Z

2

k (x; y) f (y) dP (y)

�
d�1 (x) �

(we can also write K (x) =
R

2
k (x; y) dP (y) ; hence by classic Jensen�s inequal-

ity)

(C)

Z

1

u (x) (K (x))
�1
�
(C)

Z

2

k (x; y) � (f (y)) dP (y)

�
d�1 (x) = (34)

(again by Lemma 18)

(C)

Z

1

u (x) (K (x))
�1
�
(C)

Z

2

k (x; y) � (f (y)) d�2 (y)

�
d�1 (x) =

(C)

Z

1

�
(C)

Z

2

u (x) (K (x))
�1
k (x; y) � (f (y)) d�2 (y)

�
d�1 (x) =

(since the functions � (f (y)) and u (x) (K (x))�1 k (x; y) � (f (y)) are bounded
and the second one is slice-comonotonic, we can apply Fubini�s Theorem 21)

(C)

Z

2

�
(C)

Z

1

u (x) (K (x))
�1
k (x; y) � (f (y)) d�1 (x)

�
d�2 (y) =

9
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(C)

Z

2

� (f (y))

�
(C)

Z

1

u (x) (K (x))
�1
k (x; y) d�1 (x)

�
d�2 (y)

(31)
= (35)

(C)

Z

2

� (f (y)) � (y) d�2 (y) ;

proving the claim.
We also give

Corollary 26 All as in Theorem 25, with � = identity mapping. Then

(C)

Z

1

u (x)

K (x)
g (x) d�1 (x) � (C)

Z

2

� (y) f (y) d�2 (y) ; (36)

holds for all g 2W (k), with f as in (30).

Corollary 27 All as in Theorem 25, with � (x) = xp, 8 x 2 R+, p > 1. Then

(C)

Z

1

u (x)

Kp (x)
gp (x) d�1 (x) � (C)

Z

2

� (y) fp (y) d�2 (y) ; (37)

holds for all g 2W (k), with f as in (30).

Corollary 28 All as in Theorem 25, with � (x) = ex, 8 x 2 R+. Then

(C)

Z

1

u (x) e
g(x)
K(x) d�1 (x) � (C)

Z

2

� (y) ef(y)d�2 (y) ; (38)

holds for all g 2W (k), with f as in (30).

Corollary 29 All as in Theorem 25, with � = identity mapping and u (x) =
K (x). Then

(C)

Z

1

g (x) d�1 (x) � (C)
Z

2

� (y) f (y) d�2 (y) ; (39)

holds for all g 2W (k), with f as in (30). Here � (y) = (C)
R

1
k (x; y) d�1 (x) is bounded:

Corollary 30 All as in Theorem 25, with � (x) = xp, 8 x 2 R+, p > 1, and
u (x) = Kp (x). Then

(C)

Z

1

gp (x) d�1 (x) � (C)
Z

2

� (y) fp (y) d�2 (y) ; (40)

holds for all g 2W (k), with f as in (30). Here

� (y) = (C)

Z

1

Kp�1 (x) k (x; y) d�1 (x) is bounded: (41)

10
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Remark 31 (on Corollary 30) Let us assume that k (x; y) � M , M > 0, 8
(x; y) 2 
1 � 
2, then K (x) �M . And from (41), � (y) �Mp.
Consequently, from (40), it holds

(C)

Z

1

gp (x) d�1 (x) �Mp

�
(C)

Z

2

fp (y) d�2 (y)

�
; (42)

and even better written�
(C)

Z

1

gp (x) d�1 (x)

� 1
p

�M
�
(C)

Z

2

fp (y) d�2 (y)

� 1
p

: (43)

Next we rewrite the result of (43) in detail.

Theorem 32 Assume that k (x; y) � M , M > 0, 8 (x; y) 2 
1 � 
2, and let
p > 1. De�ne

� (y) = (C)

Z

1

Kp�1 (x) k (x; y) d�1 (x) , (44)

which is bounded. Here k (x; y) (f (y))p is x-section comonotonic with comonotonic
class F �3 . Assume that (F

�
1 [ F �2 [ F �3 ) � F �, where F � one comonotonic class

on 
2. Assume further that (K (x))p�1 k (x; y) (f (y))p is slice-comonotonic.
Then �

(C)

Z

1

gp (x) d�1 (x)

� 1
p

�M
�
(C)

Z

2

fp (y) d�2 (y)

� 1
p

; (45)

holds for all g 2W (k), with f as in (30).

Remark 33 Assume that k (x; y) � M , M > 0, 8 (x; y) 2 
1 � 
2. Hence
directly by (30) we get

g (x) �M
�
(C)

Z

2

f (y) d�2 (y)

�
, 8 x 2 
1:

Therefore Z

1

g (x) d�1 (x) �M
�
(C)

Z

2

f (y) d�2 (y)

�
; (46)

holds for all g 2W (k), with f as in (30).

Theorem 34 De�ne � on 
2 by � (y) = (C)
R

1
k (x; y) d�1 (x) ; which is bounded.

Let p > 1. Here k (x; y) (f (y))p is slice�comonotonic and belongs to a comonotonic
class F �3 as a function of y. Assume that (F

�
1 [ F �2 [ F �3 ) � F �, where F � one

comonotonic class on 
2. Then

(C)

Z

1

(K (x))
1�p

gp (x) d�1 (x) � (C)
Z

2

� (y) fp (y) d�2 (y) ; (47)

holds for all g 2W (k), with f as in (30).
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Proof. By Theorem 25, take f (x) = xp, x � 0, p > 1, and u (x) = K (x) :

Corollary 35 All as in Theorem 34. Then�
(C)

Z

1

gp (x) d�1 (x)

� 1
p

�M
�
(C)

Z

2

fp (y) d�2 (y)

� 1
p

: (48)

holds for all g 2 W (k), with f as in (30). Here k (x; y) � M , M > 0, 8
(x; y) 2 
1 � 
2:

Proof. Since p > 1, 1 � p < 0. Hence the left hand side of (47) is greater
equal toM1�p

�
(C)

R

1
gp (x) d�1 (x)

�
, by K (x) �M and (K (x))1�p �M1�p.

And the right hand side of (47) is less equal to M
�
(C)

R

2
fp (y) d�2 (y)

�
, by

� (y) �M . Therefore

M1�p
�
(C)

Z

1

gp (x) d�1 (x)

�
�M

�
(C)

Z

2

fp (y) d�2 (y)

�
; (49)

proving the claim.

4 Appendix

Here B stands for the Borel �-algebra on [a; b] :
Let the fuzzy measure spaces ([a; b] ;B; �1) and ([a; b] ;B; �2), where [a; b] � R

and �1; �2 are bounded fuzzy measures with �2 submodular. Let p; q > 1 such
that 1

p +
1
q = 1. Let f : [a; b]! R+ which is bounded and B-measurable.

We de�ne the left and right Riemann-Liouville-Choquet fractional integrals
of order � > 1 (respectively):�

I�a+f
�
(x) =

1

� (�)
(C)

Z x

a

(x� t)��1 f (t) d�2 (t) ; (50)

and �
I�b�f

�
(x) =

1

� (�)
(C)

Z b

x

(t� x)��1 f (t) d�2 (t) ; (51)

8 x 2 [a; b], where � is the gamma function.
We assume that

�
I�a+f

�
and

�
I�b�f

�
are B-measurable functions. Clearly

I�a+f; I
�
b�f are nonnegative and bounded over [a; b] :

Remark 36 By Theorem 9 we obtain

�
I�a+f

�
(x) � 1

� (�)

�
(C)

Z x

a

(x� t)p(��1) d�2 (t)
� 1

p
�
(C)

Z x

a

fq (t) d�2 (t)

� 1
q

�

(52)

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1184 ANASTASSIOU 1173-1188



1

� (�)

�
(b� a)p(��1) �2 ([a; b])

� 1
p

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

:

Hence it holds

��
I�a+f

�
(x)
�p � 1

(� (�))
p (b� a)p(��1) �2 ([a; b])

 
(C)

Z b

a

fq (t) d�2 (t)

! p
q

;

(53)
8 x 2 [a; b] :
Therefore

(C)

Z b

a

��
I�a+f

�
(x)
�p
d�1 (x) �

�1 ([a; b])

(� (�))
p (b� a)p(��1) �2 ([a; b])

 
(C)

Z b

a

fq (t) d�2 (t)

! p
q

: (54)

We have proved that 
(C)

Z b

a

��
I�a+f

�
(x)
�p
d�1 (x)

! 1
p

�

(�1 ([a; b])�2 ([a; b]))
1
p (b� a)(��1)

� (�)

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

: (55)

Similarly, we have

�
I�b�f

�
(x)

(8)
� 1

� (�)

 
(C)

Z b

x

(t� x)p(��1) d�2 (t)
! 1

p
 
(C)

Z b

x

fq (t) d�2 (t)

! 1
q

(56)

� 1

� (�)

�
(b� a)p(��1) �2 ([a; b])

� 1
p

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

:

As before we obtain  
(C)

Z b

a

��
I�b�f

�
(x)
�p
d�1 (x)

! 1
p

�

(�1 ([a; b])�2 ([a; b]))
1
p (b� a)(��1)

� (�)

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

: (57)

We have proved

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.7, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1185 ANASTASSIOU 1173-1188



Theorem 37 Here � > 1 and the rest are as in this section. It holds

max

8<:
 
(C)

Z b

a

��
I�a+f

�
(x)
�p
d�1 (x)

! 1
p

;

 
(C)

Z b

a

��
I�b�f

�
(x)
�p
d�1 (x)

! 1
p

9=;
� (�1 ([a; b])�2 ([a; b]))

1
p (b� a)(��1)

� (�)

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

: (58)

Remark 38 From (52) we get

�
I�a+f

�
(x) � 1

� (�)

�
(x� a)p(��1) �2 ([a; x])

� 1
p

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

;

(59)
and from (56) we derive (by exchanging the roles of p and q)

�
I�b�f

�
(x) � 1

� (�)

�
(b� x)q(��1) �2 ([x; b])

� 1
q

 
(C)

Z b

a

fp (t) d�2 (t)

! 1
p

: (60)

Therefore by multiplying (59), (60) we get

�
I�a+f

�
(x)
�
I�b�f

�
(x) � 1

(� (�))
2

�
(x� a)p(��1) �2 ([a; x])

� 1
p � (61)

�
(b� x)q(��1) �2 ([x; b])

� 1
q

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q
 
(C)

Z b

a

fp (t) d�2 (t)

! 1
p

(using Young�s inequality for a; b � 0, a
1
p b

1
q � a

p +
b
q )

� 1

(� (�))
2

 
(x� a)p(��1) �2 ([a; x])

p
+
(b� x)q(��1) �2 ([x; b])

q

!
�

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q
 
(C)

Z b

a

fp (t) d�2 (t)

! 1
p

: (62)

We have that �
I�a+f

�
(x)
�
I�b�f

�
(x)h

(x�a)p(��1)�2([a;x])
p + (b�x)q(��1)�2([x;b])

q

i �
1

(� (�))
2

 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q
 
(C)

Z b

a

fp (t) d�2 (t)

! 1
p

: (63)

Notice that the denominator of left hand side of (63) is never zero.
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Integrating (63) with respect to x we obtain:

Theorem 39 Here � > 1 and the rest are as in this section. It holds

(C)

Z b

a

�
I�a+f

�
(x)
�
I�b�f

�
(x) d�1 (x)h

(x�a)p(��1)�2([a;x])
p + (b�x)q(��1)�2([x;b])

q

i �
�1 ([a; b])

(� (�))
2

 
(C)

Z b

a

fp (t) d�2 (t)

! 1
p
 
(C)

Z b

a

fq (t) d�2 (t)

! 1
q

: (64)

Inequality (64) is a Hilbert-Pachpatte type inequality for Choquet fractional in-
tegrals.
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