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Fixed point theorems for F-contractions on closed ball in partial metric spaces
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Abstract. In this paper, we present new fixed point theorems for Kannan type Fp-contraction and Kannan type
(α, η,GFp)-contraction on a closed ball contained in a complete partial metric space. Some comparative examples
are constructed to illustrate the significance of these results. Our results provide substantial generalizations and
improvements of several well known results existing in the comparable literature.

1. Introduction and preliminaries

The recent study in Fixed Point Theory is due to a Polish mathematician Stefan Banach who, in 1922, presented a

revolutionary contraction principle known as Banach’s Contraction Principle. He proved that every contraction T in a

complete metric space X has a unique fixed point (T (x) = x; x ∈ X). After the appearance of this remarkable result

many generalizations of this result have appeared in literature (see for example [1–3,6–11,13,14,16,19,20,22,24,25,29]).

One of these generalizations is known as F-contraction presented by Wardowski [30]. Wardowski [30] evinced that every

F-contraction defined on a complete metric space has a unique fixed point. The concept of F-contraction proved another

milestone in fixed point theory and numerous research papers on F-contraction have been published (see [21,23,28,31]).

Hussain et al. [12] introduced an α-GF-contraction with respect to a general family of functions G and established

Wardowski type fixed point results in ordered metric spaces. Batra et al. [4, 5] extended the concept of F-contraction

on graphs and altered distances and proved some fixed point and coincidence point results.

Motivated by Kannan [15], Wardowski [30], Matthews [18] and Kryeyszig [17], in this paper, we introduce Kannan

type F-contraction and Kannan type (α, η,GF )-contraction on a closed ball contained in a complete partial metric

space and present related fixed point theorems. We construct examples to illustrate these results. F-contraction on

partial metric spaces is more general than F-contraction defined on metric spaces.

The notion of a partial metric space (PMS) was introduced in 1992 by Matthews [18] to model computation over a

metric space. The PMS is a generalization of the usual metric space in which the self-distance is no longer necessarily

zero.

Definition 1. [18] Let X be a nonempty set and p : X ×X → R+
0 satisfy the following properties: for all x, y, z ∈ X,

(p1) x = y ⇔ p (x, x) = p (x, y) = p (y, y) ,

(p2) p (x, x) ≤ p (x, y) ,

(p3) p (x, y) = p (y, x) ,

(p4) p (x, z) + p (y, y) ≤ p (x, y) + p (y, z) .

02010 Mathematics Subject Classification: 47H09; 47H10; 54H25
0Keywords: partial metric space; fixed point; F-contraction; closed ball.

∗Corresponding author.
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Then (X, p) is called PMS. We present some new nontrivial examples of PMS.

Example 1. Let the set of rational numbers be Q = {x1, x2, · · · }. We define p : R× R→ R+ by

p(x, y) =



1 if x = y ∈ R−Q;

3
2

if x 6= y ∈ R−Q;

1
3

if x = y ∈ Q;

1 + 1
m

+ 1
n

if x = xm, y = xn and m 6= n;

1 + 1
n

if {x, y} ∩Q = {xn} and {x, y} −Q 6= φ.

Clearly p satisfies (p1)− (p3). To prove p4, let x, y, z ∈ R−Q and m 6= n. Then

p (x, y) + p (z, z) ≤ p (x, z) + p (y, z) ;

p (xn, y) + p (z, z) = 2 +
1

n
≤ p (xn, z) + p (y, z) ;

p (xn, xn) + p (z, z) =
4

3
< p (xn, z) + p (xn, z) ;

p (xm, xn) + p (z, z) = 2 +
1

m
+

1

n
= p (xm, z) + p (xn, z) ;

p (x, y) + p (xk, xk) < 2 < p (x, xk) + p (y, xk) ;

p (xn, y) + p (xk, xk) =
4

3
+

1

n
< 2 +

1

n
+

2

k
= p (xn, xk) + p (y, xk) ;

p (xn, xn) + p (xk, xk) =
2

3
≤ p (xn, xk) + p (xn, xk) ;

p (xm, xn) + p (xk, xk) =
4

3
+

1

m
+

1

n
≤ p (xm, xk) + p (xn, xk) .

Example 2. Let X be uncountable, a ∈ X and T = {A ⊂ X : a ∈ A} be a topology on X. It is easy to show that

(X, T ) is a PMS with the partial metric p defined by
p(a, a) = 0,
p(a, x) = p(x, x) = 1 if x 6= a,
p(x, y) = 2 if x = y and x, y ∈ X − {a}.

Example 3. Let X = {xi : i ∈ N} be a countably infinite set. Define p : X ×X → [0,∞) by

p(x, y) =


0 if x = y = x0,∑n
k=1

1
2k

if (x, y) ∈ {(xm, xn); 0 ≤ m ≤ n and n ≥ 1.

Then (X, p) is a PMS.

Example 4. Let A = {ai : i ∈ N} and B = {bi : i ∈ N} be two disjoint infinitely countable sets, and let X = A ∪ B.

Define p : X ×X → [0,∞) by

p(x, y) =


1 if x = y ∈ A,

0 if x = y ∈ B,

1 + 1
i

+ 1
j

if x = y and {x, y} ∈ {{ai, aj}, {ai, bj}, {bi, bj}}.

Then (X, p) is a PMS.

In [18], Matthews proved that every partial metric p on M induces a metric dp : M ×M → R+
0 defined by

dp (r1, r2) = 2p (r1, r2)− p (r1, r1)− p (r2, r2)
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for all r1, r2 ∈M . Matthews described that if p(r1, r2) = max{r1, r2}, then dp(r1, r2) = |r1 − r2| a usual metric on M.

Notice that every metric d on a set M is a partial metric p such that p(r, r) = 0 for all r ∈M and p(r1, r2) = 0 implies

r1 = r2 (using (p1) and (p2)) but not conversely. The notions such as convergence, completeness, Cauchy sequence in

the setting of partial metric spaces, can be found in [18] and references there in.

Definition 2. [18] Let (M,p) be a partial metric space.

(1) A sequence {rn}n∈N in (M,p) is called a Cauchy sequence if limn,m→∞ p(rn, rm) exists and is finite.

(2) A partial metric space (M,p) is said to be complete if every Cauchy sequence {rn}n∈N in M converges, with

respect to τ(p), to a point r ∈ X such that p(r, r) = limn,m→∞ p(rn, rm).

The following lemma will be helpful in the sequel.

Lemma 1. [18]

(1) A sequence rn is a Cauchy sequence in a partial metric space (M,p) if and only if it is a Cauchy sequence in

metric space (M,dp)

(2) A partial metric space (M,p) is complete if and only if the metric space (M,dp) is complete.

(3) A sequence {rn}n∈N in M converges to a point r ∈M , with respect to τ(dp) if and only if limn→∞ p(r, rn) =

p(r, r) = limn,m→∞ p(rn, rm).

(4) If limn→∞ rn = υ such that p(υ, υ) = 0 then limn→∞ p(rn, r) = p(υ, r) for all r ∈M .

Remark 1. Since
(
Bp(x0, r), p

)
⊆ (X, p), Lemma 1 holds for

(
Bp(x0, r), p

)
.

Let Fd denote F-contraction on metric spaces and Fp denote F-contraction on partial metric spaces. Wardowski [30]

investigated a nonlinear function F : R+ → R complying with the following axioms:

(F1) F is strictly increasing;

(F2) For each sequence {rn} of positive numbers limn→∞ rn = 0 if and only if limn→∞ F (rn) = −∞;

(F3) There exists θ ∈ (0, 1) such that limξ→0+(ξ)θF (ξ) = 0.

We denote by ∆F the set of all functions satisfying the conditions (F1)− (F3).

Example 5. Let F : R+ → R be defined by

(a) F (r) = ln(r),

(b) F (r) = r + ln(r),

(c) F (r) = ln(r2 + r),

(d) F (r) = − 1√
r

.

It is easy to check that (a),(b),(c) and (d) are members of ∆F .

Wardowski utilized function F in an excellent manner and gave the following remarkable result.

Theorem 1. [30] Let (M,d) be a complete metric space and T : M →M be a mapping satisfying

(d(T (r1), T (r2)) > 0⇒ τ + F (d(T (r1), T (r2)) ≤ F (d(r1, r2)))

for all r1, r2 ∈M and some τ > 0. Then T has a unique fixed point υ ∈M and for every r0 ∈M the sequence {Tn(r0)}
for all n ∈ N is convergent to υ.

Remark 2. [30, Remark 2.1] In metric spaces a mapping giving fulfillment to F-contraction, is always a Banach

contraction and hence a continuous map.

Example 6 explains that Fp-contraction is more general than Fd-contraction.
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Example 6. Let M = [0, 1] and define partial metric by p(r1, r2) = max {r1, r2} for all r1, r2 ∈ M . The metric d

induced by partial metric p is given by d(r1, r2) = |r1 − r2| for all r1, r2 ∈M . Define F : R+ → R by F (r) = ln(r) and

T by

T (r) =


r

5
if r ∈ [0, 1),

0 if r = 1.

Note that for all r1, r2 ∈M with r1 ≤ r2 or r2 ≤ r1

τ + F (p(T (r1), T (r2))) ≤ F (p(r1, r2)) implies

τ + F
(r1

5

)
≤ F (r1) or τ + F

(r2
5

)
≤ F (r2) .

But T is neither continuous and nor satisfies F -contraction in a metric space (M,d). Indeed, for r1 = 1 and r2 = 5
6
,

d(T (r1), T (r2)) > 0 and we have

τ + F (d(T (r1), T (r2))) ≤ F (d(r1, r2)) ,

τ + F

(
d(T (1), T (

5

6
))

)
≤ F

(
d(1,

5

6
)

)
,

τ + F

(
d(0,

1

6
)

)
≤ F

(
1

6

)
,

1

6
<

1

6
,

which is a contradiction for all possible values of τ .

The following result plays a vital role regarding the existence of the fixed point of the mapping satisfying a contractive

condition on the closed ball.

Theorem 2. [17, Theorem 5.1.4] Let (X, d) be a complete metric space, T : X → X be a mapping, r > 0 and x0 be

an arbitrary point in X. Suppose there exists k ∈ [0, 1) with

d(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r)

and d(x0, T (x0)) < (1− k)r. Then there exists a unique point x∗ in B(x0, r) such that x∗ = T (x∗).

Definition 3. [15] Let (X, p) be a partial metric space. A mapping T : X → X is said to be a Kannan contraction if

it satisfies the following condition:

p (T (x) , T (y)) ≤ k

2
[p (x, T (x)) + p (y, T (y))]

for all x, y ∈ X and some k ∈ [0, 1[.

2. Kannan type Fp-contraction on closed ball

Definition 4. Let (X, p) be a partial metric space, r > 0 and x0 be an arbitrary point in X. The mapping T : X → X

is called Kannan type Fp-contraction on closed ball if for all x, y ∈ Bp(x0, r) ⊆ X we have

τ + F (p(T (x), T (y))) ≤ F
(
k

2
[p(x, T (x)) + p(y, T (y))]

)
, (2.1)

where 0 ≤ k < 1, F ∈ ∆F and τ > 0.

Remark 3. (1) Fp-contraction and Kannan type Fp-contraction are independent.

(2) Let F be a Kannan type Fp-contraction. From (2.1), for all x, y ∈ Bp(x0, r) with T (x) 6= T (y), we have

F (p(T (x), T (y))) ≤ τ + F (p(T (x), T (y))) ≤ F
(
k

2
[p(x, T (x)) + p(y, T (y))]

)
.
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Due to (F1), we obtain

p(T (x), T (y)) <
k

2
[p(x, T (x)) + p(y, T (y))] for all x, y ∈ X,T (x) 6= T (y).

Theorem 3. Let (X, p) be a complete partial metric space, r > 0 and x0 be an arbitrary point in X. Assume that

T : X → X is a Kannan type Fp-contraction on closed ball Bp(x0, r) ⊆ X with

p(x0, T (x0)) ≤ (1− λ)[r + p(x0, x0)], λ =
k

2− k . (2.2)

If T or F is continuous, then there exists a point x∗ in Bp(x0, r) such that T (x∗) = x∗ with p(x∗, x∗) = 0.

Proof. Let x0 be an initial point in X such that x1 = T (x0), x2 = T (x1) = T 2(x0). Continuing in this way we can

construct an iterative sequence {xn} such that xn+1 = T (xn) = Tn(x0), for all n ≥ 0. We show that xn ∈ Bp(x0, r)
for all n ∈ N. From (2.2), we have

p(x0, x1) = p(x0, T (x0)) ≤ (1− λ)[r + p(x0, x0)] < r + p(x0, x0),

which shows that x1 ∈ Bp(x0, r). From (2.1) and (F1), we get

F (p(x1, x2)) = F (p(T (x0), T (x1))) ≤ F
(
k

2
[p(x0, x1) + p(x1, x2)]

)
− τ,

which implies

p(x1, x2) <
k

2
[p(x0, x1) + p(x1, x2)] < λp(x0, x1) ≤ λ[r + p(x0, x0)]

p(x0, x2) ≤ p(x0, x1) + p(x1, x2)− p(x1, x1) < (1− λ)[r + p(x0, x0)] + λ[r + p(x0, x0)] = r + p(x0, x0).

This shows that x2 ∈ Bp(x0, r). Inductively, we obtain that xn ∈ Bp(x0, r), for all n ∈ N and hence from the contractive

condition (2.1), we have

F (p(xn, xn+1)) ≤ F

(
k

2
[p(xn−1, xn) + p(xn, xn+1)]

)
− τ

≤ F

(
k

2

[
p(xn−1, xn) +

k

2− k p(xn−1, xn)

])
− τ

≤ F

(
k

2− k p(xn−1, xn)

)
− τ (2.3)

and also

F (p(xn−1, xn)) ≤ F (λp(xn−2, xn−1))− τ.

From (2.3), we obtain

F (p(xn, xn+1)) ≤ F (λp(xn−2, xn−1))− 2τ.

Repeating these steps, we get

F (p(xn, xn+1)) ≤ F (p(x0, x1))− nτ. (2.4)

From (2.4), we obtain limn→∞ F (p(xn, xn+1)) = −∞. Since F ∈ ∆F ,

lim
n→∞

p(xn, xn+1) = 0. (2.5)

From the property (F3) of F-contraction, there exists κ ∈ (0, 1) such that

lim
n→∞

((p(xn, xn+1))κ F (p(xn, xn+1))) = 0. (2.6)

Following (2.4), for all n ∈ N, we obtain

(p(xn, xn+1))κ (F (p(xn, xn+1))− F (p(x0, x1))) ≤ − (p(xn, xn+1))κ nτ ≤ 0. (2.7)

Considering (2.5), (2.6) and letting n→∞ in (2.7), we have

lim
n→∞

(n (p(xn, xn+1))κ) = 0. (2.8)
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Since (2.8) holds, there exists n1 ∈ N such that n (p(xn, xn+1))κ ≤ 1 for all n ≥ n1 or

p(xn, xn+1) ≤ 1

n
1
κ

for all n ≥ n1. (2.9)

Using (2.9), we get for m > n ≥ n1,

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+3) + · · ·+ p(xm−1, xm)−
m−1∑
j=n+1

p(xj , xj)

≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+3) + · · ·+ p(xm−1, xm)

=

m−1∑
i=n

p(xi, xi+1) ≤
∞∑
i=n

p(xi, xi+1) ≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∑∞
i=n

1

i
1
κ

entails that limn,m→∞ p(xn, xm) = 0. Hence {xn} is a Cauchy sequence in(
Bp(x0, r), p

)
. By Lemma 1, {xn} is a Cauchy sequence in

(
B(x0, r), dp

)
. Moreover, since

(
Bp(x0, r), p

)
is a complete

partial metric space, by Lemma 1,
(
B(x0, r), dp

)
is also a complete metric space. Thus there exists x∗ ∈ (B(x0, r), dp)

such that xn → x∗ as n→∞ and using Lemma 1, we have

lim
n→∞

p(x∗, xn) = p(x∗, x∗) = lim
n,m→∞

p(xn, xm). (2.10)

Due to limn,m→∞ p(xn, xm) = 0, we infer from (2.10) that p(x∗, x∗) = 0 and {xn} converges to x∗ with respect to

Tp. In order to show that x∗ is a fixed point of T , we have two cases.

Case (1). T is continuous. We have

x∗ = lim
n→∞

xn = lim
n→∞

Tn(x0) = lim
n→∞

Tn+1(x0) = T ( lim
n→∞

Tn(x0)) = T (x∗).

Hence x∗ = T (x∗), that is, x∗ is a fixed point of T .

Case (2). F is continuous. We complete this case in two steps. First, if for each n ∈ N there exists bn ∈ N such that

xbn+1 = T (x∗) and bn > bn−1 with b0 = 1. Then we have

x∗ = lim
n→∞

xbn+1 = lim
n→∞

T (x∗) = T (x∗).

This shows that x∗ is a fixed point of T. Second, there exists n0 ∈ N such that xn+1 6= T (x∗) for all n ≥ n0. Using

contractive condition (2.1), we obtain

F (p(T (xn), T (x∗))) ≤ F
(
k

2
[p (xn, xn+1) + p (x∗, T (x∗))]

)
− τ.

On taking limit as n→∞ and using the continuity of F and the fact that limn→∞ p(xn, xn+1) = 0, we have

F (p(x∗, T (x∗))) < F (
k

2
p (x∗, T (x∗))).

Since F is strictly increasing, the above inequality leads us to conclude that p(x∗, T (x∗)) = 0. Thus, by using the

properties (p1) and (p2), we obtain x∗ = T (x∗), which completes the proof.

To prove the uniqueness of x∗, assume on contrary, that y∗ ∈ Bp(x0, r) is another fixed point of T , that is, y∗ = T (y∗).

From (2.1), we have

τ + F (p(T (x∗), T (y∗))) ≤ F
(
k

2
[p(x∗, T (x∗)) + p(y∗, T (y∗))]

)
≤ F

(
k

2
× 2p(x∗, y∗)

)
. (2.11)

The inequality (2.11) leads to a contradiction. Hence p(x∗, y∗) = 0. Thus, due to (p1) and (p2), we obtain x∗ = y∗. �

The following example explains the significance of Theorem 3.

Example 7. Let X = R+. Define p : X2 → [0,∞) by p (x, y) = max {x, y} for all (x, y) ∈ X2. Then (X, p) is a

complete partial metric space. Define the mapping T : X → X by

T (x) =

{
x
14

if x ∈ [0, 1],
x− 1

2
if x ∈ (1,∞).
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Set k = 2
5
, x0 = 1

2
, r = 1

2
and p(x0, x0) = 1

2
. Then Bp(x0, r) = [0, 1] and

p(x0, T (x0)) = max

{
1

2
,

1

28

}
=

1

2
< (1− λ)[r + p(x0, x0)].

For all x, y ∈ Bp(x0, r), we note that

p(T (x), T (y)) = max
{ x

14
,
y

14

}
=

1

14
max {x, y}

<
1

5
[x+ y] =

1

5

[
max

{
x,

x

14

}
+ max

{
y,

y

14

}]
=

k

2
[p(x, T (x)) + p(y, T (y)]

Thus

τ + ln (p(T (x), T (y))) ≤ ln

(
k

2
[p(x, T (x)) + p(y, T (y)]

)
.

If F (α) = ln(α), α > 0 and τ > 0, then

τ + F (p(T (x), T (y))) ≤ F
(
k

2
[p(x, T (x)) + p(y, T (y)]

)
.

However, for x = 100, y = 10 ∈ (1,∞) ,

p(T (x), T (y)) = max

{
x− 1

2
, y − 1

2

}
≥ 1

5
[x+ y] =

k

2
[p(x, T (x)) + p(y, T (y)] .

Consequently, the contractive condition (2.1) does not hold on X. Hence, all the hypotheses of Theorem 3 are satisfied

on closed ball and so x = 0 is a fixed point of T .

3. Kannan type (α, η,GFp)-contraction on closed ball

Definition 5. [27]. Let T : X → X and α : X ×X → [0,+∞) be two functions. We say that T is an α-admissible if

for all x, y ∈ X, α(x, y) ≥ 1 implies α(T (x), T (y)) ≥ 1.

Example 8. Let X = R. Define α : X ×X → [0,∞) and f : X → X by

α (x, y) =

{
ex+y if x, y ∈ [0, 1],
0 otherwise .

f (x) =

{
x2

7
if x ∈ [0, 1],

ln(x) if x ∈ (1,∞).

Apparently, α(x, y) ≥ 1 implies α(fx, fy) ≥ 1.

Definition 6. [26]. Let T : X → X and α, η : X ×X → [0,+∞) be two functions. We say that T is an α-admissible

mapping with respect to η if for all x, y ∈ X, α(x, y) ≥ η(x, y) implies α(T (x), T (y)) ≥ η(T (x), T (y)).

Example 9. Let X = R. Define α, η : X ×X → [0,∞) and f : X → X by

α (x, y) =

{
πx+y if x, y ∈ [0, 1],
0 otherwise ,

η (x, y) =

{
ex+y if x, y ∈ [0, 1],
0 otherwise .

f (x) =

{
x2

7
if x ∈ [0, 1],

ln(x) if x ∈ (1,∞).

Apparently, α(x, y) ≥ η(x, y) implies α(fx, fy) ≥ η(fx, fy).

If η(x, y) = 1, then the above definition reduces to Definition 5.

We begin by introducing the following family of new functions.

Let ∆G denote the set of all functions G : (R+)4 → R+ which satisfy the property

(G): for all p1, p2, p3, p4 ∈ R+, if
p1 + p2 + p3 + p4

4
≤ pi + pi+1

2
, i = 1, 2, 3, 4,

then there exists τ > 0 such that G(p1, p2, p3, p4) = τ .
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Definition 7. Let (X, p) be a partial metric space and T be a self mapping on X. Suppose that α, η : X×X → [0,+∞)

are two functions. The mapping T is said to be an (α, η,GFp)-contraction if for all x, y ∈ X, with η(x, y) ≤ α(x, y) and

d(T (x), T (y)) > 0, we have

G(p(x, T (x)), p(y, T (y)), p(x, T (y)), p(y, T (x))) + F (p(T (x), T (y))) ≤ F (p(x, y)) ,

where G ∈ ∆G and F ∈ ∆F .

Definition 8. Let (X, p) be a partial metric space and T : X → X and α, η : X ×X → [0,+∞) be two functions. T

is said to be an (α, η)-continuous mapping on (X, p) if for a given x ∈ X, and the sequence {xn}n∈N converging to x

α(xn, xn+1) ≥ η(xn, xn+1) implies T (xn)→ T (x).

Example 10. Let X = [0,∞) and p : X ×X → [0,∞) be defined by p(r1, r2) = max{r1, r2} for all r1, r2 ∈ X. Define

T (r) =

{
sin(πr) if r ∈ [0, 1],
cos(πr) + 2 if r ∈ (1,∞),

α(r1, r2) =

{
r31 + r32 + 1 if r1, r2 ∈ [0, 1],
0 otherwise,

η(r1, r2) =

{
r31 + r32 if r1, r2 ∈ [0, 1],
0 otherwise.

Then apparently, T is not continuous on X, however T is an (α, η)-continuous.

Definition 9. Let (X, p) be a partial metric space and α, η : X ×X → [0,+∞) are two functions, r > 0 and x0 be an

arbitrary point in X. The mapping T : X → X is said to be a Kannan type (α, η,GFp)-contraction on closed ball if

for all x, y ∈ Bp(x0, r) ⊆ X with η(x, y) ≤ α(x, y) and p(T (x), T (y)) > 0, we have

τ(G) + F (p(T (x), T (y))) ≤ F
(
k

2
[p(x, T (x)) + p(y, T (y)]

)
, (3.1)

where τ(G) = G(p(x, T (x)), p(y, T (y)), p(x, T (y)), p(y, T (x))), 0 ≤ k < 1, G ∈ ∆G and F ∈ ∆F .

Theorem 4. Let (X, p) be a complete metric space and T : X → X be a Kannan type (α, η,GFp)-contraction mapping

on a closed ball Bp(x0, r) satisfying the following assertions

(1) T is an α-admissible mapping with respect to η,

(2) there exists x0 ∈ X such that α(x0, T (x0)) ≥ η(x0, T (x0)),

(3) there exist r > 0 and x0 ∈ X such that p(x0, T (x0)) ≤ (1− λ)[r + p(x0, x0)], where λ = k
2−k .

Then there exists a point x∗ in Bp(x0, r) such that T (x∗) = x∗ with p(x∗, x∗) = 0.

Proof. Suppose that x0 is an initial point of X, we can construct a sequence {xn}∞n=1 such that xn+1 = T (xn) =

Tn+1(x0) for all n ∈ N. By assumption (2) there exists x0 ∈ X such that α(x0, T (x0)) ≥ η(x0, T (x0)). Since T is an

α-admissible mapping with respect to η,

α(x0, T (x0)) ≥ η(x0, T (x0)) implies α(x1, x2) ≥ η(x1, x2), which implies α(x2, x3) ≥ η(x2, x3).

In general, we have

η(xn−1, xn) ≤ α(xn−1, xn), for all n ∈ N.

If there exists n0 ∈ N such that p(xn0 , T (xn0)) = 0, then xn0 is a fixed point of T . We assume that p(xn, T (xn)) > 0

for all n ∈ N. We show that xn ∈ Bp(x0, r) for all n ∈ N . Assumption (3) implies

p(x0, x1) = p(x0, T (x0)) ≤ (1− λ)[r + p(x0, x0)] < [r + p(x0, x0)]

and thus x1 ∈ Bp(x0, r). Note that τ(G) = τ . Indeed, τ(G) = G(p(x0, x1), p(x1, x2), p(x0, x2), p(x1, x1)) satisfies

p(x0, x1) + p(x1, x2) + p(x0, x2) + p(x1, x1)

4
≤ p(x0, x1) + p(x1, x2)

2
.

By the property (G), there exists τ > 0 such that

G(p(x0, x1), p(x1, x2), p(x0, x2), p(x1, x1)) = τ.
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Due to (3.1) and (F1), we have

F (p(x1, x2)) = F (p(T (x0), T (x1))) ≤ F
(
k

2
[p(x0, x1) + p(x1, x2)]

)
− τ(G)

≤ F

(
k

2
[p(x0, x1) + p(x1, x2)]

)
− τ.

This implies p(x1, x2) <
k

2
[p(x0, x1) + p(x1, x2)] < λp(x0, x1) ≤ λ[r + p(x0, x0)],

p(x0, x2) ≤ p(x0, x1) + p(x1, x2)− p(x1, x1)

< (1− λ)[r + p(x0, x0)] + λ[r + p(x0, x0)] = r + p(x0, x0).

This shows that x2 ∈ Bp(x0, r). Inductively, we obtain that xn ∈ Bp(x0, r) for all n ∈ N and hence from the contractive

condition (3.1), we have

F (p(xn, xn+1)) ≤ F
(
k

2
[p(xn−1, xn) + p(xn, xn+1)]

)
− τ(G). (3.2)

Note that τ(G) = G(p(xn−1, xn), p(xn, xn+1), p(xn−1, xn+1), p(xn, xn)) satisfies

p(xn−1, xn) + p(xn, xn+1) + p(xn−1, xn+1) + p(xn, xn)

4
≤ p(xn−1, xn) + p(xn, xn+1)

2
,

and so by the property (G), there exists τ > 0 such that

G(p(xn−1, xn), p(xn, xn+1), p(xn−1, xn+1), p(xn, xn)) = τ.

Thus, from (3.2), we get

F (p(xn, xn+1)) ≤ F

(
k

2

[
p(xn−1, xn) +

k

2− k p(xn−1, xn)

])
− τ

≤ F

(
k

2− k p(xn−1, xn)

)
− τ = F (λp(xn−1, xn))− τ (3.3)

but

F (p(xn−1, xn)) ≤ F (λp(xn−2, xn−1))− τ.

From (3.3), we obtain

F (p(xn, xn+1)) ≤ F (λp(xn−2, xn−1))− 2τ.

Continuing in the same way we obtain

F (p(xn, xn+1)) ≤ F (p(x0, x1))− nτ.

By the same reasoning as in the proof of Theorem 3, there exists x∗ ∈ Bp(x0, r) such that p(x∗, x∗) = 0 and {xn}
converges to x∗ with respect to Tp. We show that x∗ is a fixed point of T . We have two cases.

Case (1). T is an (α, η)-continuous.

Since xn → x∗ as n→∞ and η(xn−1, xn) ≤ α(xn−1, xn) for all n ∈ N, (α, η)-continuity of T implies xn+1 = T (xn)→
T (x∗) as n→∞. That is, x∗ = T (x∗). Hence x∗ is a fixed point of T .

Case (2). F is continuous. We complete this case in two steps. First, if for each n ∈ N there exists bn ∈ N such that

xbn+1 = T (x∗) and bn > bn−1 with b0 = 1, then we have

x∗ = lim
n→∞

xbn+1 = lim
n→∞

T (x∗) = T (x∗).

This shows that x∗ is a fixed point of T. Second, there exists n0 ∈ N such that xn+1 6= T (x∗) for all n ≥ n0. Using the

contractive condition (3.1), we obtain

F (p(xn, T (x∗))) ≤ F
(
k

2
[p (xn−1, xn) + p (x∗, T (x∗))]

)
− τ(G),
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where τ(G) = G(p(xn−1, xn), p(x∗, T (x∗)), p(xn−1, T (x∗)), p(x∗, xn)). Using the continuity of F and the property (G),

we have

F
(

lim
n→∞

p(xn, T (x∗))
)
≤ F

(
k

2

[
lim
n→∞

p (xn−1, xn) + lim
n→∞

p (x∗, T (x∗))
])
− τ.

Since F is strictly increasing, the above inequality leads us to conclude that p(x∗, T (x∗)) = 0. Thus, by using properties

(p1) and (p2), we obtain x∗ = T (x∗), which completes the proof. �

Example 11. Let X = R+. Define p : X2 → [0,∞) by p (x, y) = max {x, y} . Then (X, p) is a complete partial metric

space. Define T : X → X, α : X ×X → [0,+∞), η : X ×X → R+, G : (R+)4 → R+ and F : R+ → R by

T (x) =

{
5x
19

if x ∈ [0, 1],
x− 1

3
if x ∈ (1,∞),

α(x, y) =

{
ex+y if x ∈ [0, 1],
1
3

otherwise,

η(x, y) = 1
2

for all x, y ∈ X, G(t1, t2, t3, t4) = τ > 0 and F (t) = ln(t) with t > 0. Set k = 4
5
x0 = 1

2
, r = 1

2
and

p(x0, x0) = 1
2
. Then B(x0, r) = [0, 1], α(0, T (0)) ≥ η(0, T (0)) and

p

(
1

2
, T

(
1

2

))
= max

{
1

2
,

5

38

}
< (1− λ)[r + p(x0, x0)].

For if x, y ∈ B(x0, r), then α(x, y) = ex+y ≥ 1
2

= η(x, y). On the other hand, T (x) ∈ [0, 1] for all x ∈ [0, 1] and so

α(T (x), T (y)) ≥ η(T (x), T (y)) for x 6= y, p(T (x), T (y)) =
{

5x
19
, 5y
19

}
> 0. For all x, y ∈ Bp(x0, r), we have

p(T (x), T (y)) =

{
5x

19
,

5y

19

}
=

5

19
max {x, y} ,

5

19
max {x, y} < k

2

[
max

{
x,

5x

19

}
+ max

{
y,

5y

19

}]
=

14k

38
[x+ y].

Thus

p(T (x), T (y)) <
k

2
[p(x, T (x)) + p(y, T (y)] .

Consequently,

τ + ln (p(T (x), T (y))) ≤ ln

(
k

2
[p(x, T (x)) + p(y, T (y)]

)
leads to

τ + F (p(T (x), T (y))) ≤ F
(
k

2
[p(x, T (x)) + p(y, T (y)]

)
.

If x /∈ Bp(x0, r) or y /∈ Bp(x0, r), then α(x, y) = 1
3
� 1

2
= η(x, y). Moreover, if x = 100, y = 10 ∈ (1,∞) , then

p(T (x), T (y)) = max

{
x− 1

3
, y − 1

3

}
≥ k

2
[p(x, T (x)) + p(y, T (y)] .

Hence, all the hypotheses of Theorem 4 are satisfied on closed ball and x = 0 is a unique fixed point of T .

4. Conclusion

In this paper, the main aim of our paper is to present new concepts of F-contraction on closed ball which are different

from those given in [12,23,30]. Existence and uniqueness of a fixed point of such type of F-contractions on closed ball

in complete partial metric space are discussed. The study of such results is very useful in the sense that it requires

the F-contraction mapping defined only on the closed ball instead the whole space. These new concepts shall lead the

readers for further investigations and applications. It will also be interesting to apply these concepts in different metric

spaces.
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Abstract

We introduce lacunary sequence spaces over n-normed space defined by Euler transform

and Musielak-Orlicz functions with the help of an infinite matrix. We also make an effort

to study some topological properties and prove some inclusion relations. Finally, we study

the notion of statistical convergence over mentioned sequence space.

Keywords and phrases: Musielak-Orlicz function; matrix transformation; Euler transformation; sta-

tistical convergence.
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1 Introduction and preliminaries

Euler transform is used for improving the convergence of certain series which is widely used

in numerical analysis. These techniques are useful in computer science especially in making

graphics. We may find the application of the results to physical chemistry and crystallography.

Further, we may use these results in the accelerated convergence techniques to find eigenvalues

and eigenvectors of the dynamical systems.

Let
∑∞

k=0 ak be an infinite series with sequence of partial sums (sk) and q > 0 be any

real number. The Euler transform (E, q) of the sequence S = (sn) is defined by Eq
n(S) =

1
(1+q)n

∑n
v=0

(

n

v

)

qn−vsv . A series
∑∞

n=0 an is said to be summable (E, q) to the number s if

Eq
n(S) = 1

(1+q)n

∑n
v=0

(

n

v

)

qn−vsv → s as n → ∞, and is said to be absolutely summable

(E, q) or summable |E, q|, if
∑

k |E
q
k(S)−Eq

k−1(S)| < ∞. Let x = (xn) be a sequence of scalars,

for k ≥ 1 we will denote by Nn(x) the difference Eq
n(x)−Eq

n−1(x), where Eq
n is defined as above.

Using Abel’s transform we have

Nn(x) = −
1

(1 + q)n−1

n−2
∑

k=0

xk+1Ak +
sn−1An−1

(1 + q)n−1
+

sn

(1 + q)n
−

qn−1

(1 + q)n
s0,
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where

Ak =

k
∑

i=0

[ q

1 + q

(

n

i

)

−

(

n − 1

i

)

]

qn−i−1.

Clearly, for any sequence x = (xn), y = (yn) and scalar λ, we have: Nn(x + y) = Nn(x) + Nn(y)

and Nn(λx) = λNn(x).

Let

M = [mij] =















p1 w
(1)
1 w

(2)
1 . . .

w
(−1)
1 p2 w

(1)
2 . . .

w
(−2)
1 w

(−1)
2 p3 . . .

...
...

...
...















,

where p = (pi) and w(t) = (wi)
(t) are some fixed numerical sequences t ∈ Z\{0}. For a fixed

kf ∈ N, we define a finite sequence tn with kf terms as tn =

{

n+1
2 , n is odd

−n
2 , n is even

. We construct

a matrix M(p,wt,kf ) = M, wti = 0 ∀ i > kf and for i = 1, 2, . . . , kf we have some fixed sequences

wti and p.

Example 1.1. For kf = 2 we have t1 = 1, t2 = −1, we define pi = −1 ∀ i and

w
(t)
i =

{

1, for t = 1,−1

0, ∀ t ∈ Z\{0, 1,−1}
,

then we have

M(p,wt,2)x =

〈

∞
∑

j=1

mijξj

〉

n

=< −ξ1 + ξ2, ξ1 − ξ2 + ξ3, ξ2 − ξ3 + ξ4, ξ3 − ξ4 + ξ5 · · · > .

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-decreasing

and convex with M(0) = 0, M(x) > 0 as x > 0 and M(x) → ∞ (x → ∞). Clerly, if M is a

convex function and M(0) = 0, then M(λx) ≤ λM(x) for all λ ∈ (0, 1). Using the idea of Orlicz

function, Lindenstrauss and Tzafriri [15] constructed the sequence space

`M =

{

(xk) ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

,

is called Orlicz sequence space and showed that `M is a Banach space with the following norm:

||x|| = inf

{

ρ > 0 :
∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

.

The space `M is closely related to the space `p which is an Orlicz sequence space with M(t) = |t|p

for 1 ≤ p < ∞.

A sequence M = (Mk) of Orlicz functions is said to be a Musielak-Orlicz function [22]. A

sequence V = (Vk) is defined by Vk(v) = sup{|v|u − (Mk) : u ≥ 0} (k = 1, 2, · · · ) is said to
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complementary function of M. For a given M, the Musielak-Orlicz sequence space tM and its

subspace hM are defined by

tM =
{

x ∈ w : IM(cx) < ∞ for some c > 0
}

,

hM =
{

x ∈ w : IM(cx) < ∞ for all c > 0
}

,

where IM denotes the convex modular and is defined by

IM(x) =

∞
∑

k=1

(Mk)(xk) (x = (xk) ∈ tM).

It is noted that tM equipped with the Luxemburg norm or equipped with the Orlicz norm,

where Luxemburg and Orlicz norms are given by

||x|| = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

and ||x||0 = inf
{1

k

(

1 + IM(kx)
)

: k > 0
}

,

respectively.

Kızmaz [14] was the first who introduced the idea of difference sequence spaces and studied

Z(∆) = {x = (xk) ∈ w : ∆x ∈ Z} (Z = l∞, c, c0), where ∆x = xk − xk+1 for all k ∈ N (N

and w denote the set of natural numbers and the set of all real and complex sequences) and the

standard notations l∞, c and c0 denote bounded, convergent and null sequences respectively. Et

and Çolak [7] presented a generalization of these difference sequence spaces and introduced the

space Z(∆n) (n ∈ N), in this case, ∆nx is given by ∆nx = ∆(∆n−1x) = ∆n−1xk − ∆n−1xk+1

for n ≥ 2, which is equivalent to the following binomial representation

∆nxk =

n
∑

v=0

(−1)v

(

n

v

)

xk+v .

We remark that if we take n = 1, then difference sequence space Z(∆n) is reduced to Z(∆).

Gähler [12] extended the usual notion of normed spaces into 2-normed spaces while the

notion was again extended to n-normed spaces by Misiak [16]. Assume that X is a linear space

over the field K of real or complex numbers of dimension d ≥ n ≥ 2, n ∈ N (N denotes the set

of natural numbers). A real valued function ||·, · · · , ·|| on Xn satisfying the conditions:

(N1) ||x1, x2, · · · , xn|| = 0 if and only if x1, · · · , xn are linearly dependent in X ;

(N2) ||x1, x2, · · · , xn|| is invariant under permutation;

(N3) ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K;

(N4) ||x1 + x′
1, x2, · · · , xn|| ≤ ||x1, x2, · · · , xn||+ ||x′

1, x2, · · · , xn||

is called a n-norm on X , and the pair (X, ||·, · · · , ·||) is called a n-normed space over K.

For more details about these notions we refer to [3–5,13,18,19,21,23] and references therein.

We used the standard notation θ = (kr) to denotes the lacunary sequence, where θ is a

sequence of positive integers such that k0 = 0, 0 < kr < kr+1 and hr = kr−kr−1 → ∞ (r → ∞).

The intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1 by qr (see [9]).
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2 Main results

Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of positive real

numbers and u = (uk) a sequence of strictly positive numbers. We define the following sequence

space in the present paper:

Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) =

{

x = (xk) : lim
r

1

hr

∞
∑

k=1

k−s

×

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞, s ≥ 0, for some ρ > 0

}

.

We will use the following inequality to prove our results. If 0 ≤ pk ≤ sup pk = H , K =

max(1, 2H−1) then

|ak + bk|
pk ≤ K{|ak|

pk + |bk|
pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence

of positive real numbers and u = (uk) be a sequence of strictly positive real numbers. Then the

space E
q
n(M, u, p, s,M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) is linear over the field R of real numbers.

Proof. Let x = (xk), y = (yk) ∈ Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) and α, β ∈ R. Then

there exist positive integers ρ1 and ρ2 such that

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞

and

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
ry)

ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk

< ∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since (Mk) is nondecreasing and convex function so we have

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )(α∆rx + β∆ry))

ρ3
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )α∆rx)

ρ3
, z1, · · · , zn−1

∥

∥

∥

)

+

(

∥

∥

∥

ukNk(M(p,wt,kf )β∆ry)

ρ3
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ K lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ1
, z1, · · · , zn−1

∥

∥

∥

)]pk

+ K lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
ry)

ρ2
, z1, · · · , zn−1

∥

∥

∥

)]pk
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< ∞.

Therefore, αx + βy ∈ Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ||·, · · · , ·||). This proves that Eq
n(M, u, p,

s, M(p,wt,kf ), ∆
r, ||·, · · · , ·||) is a linear space.

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence

of positive real numbers and u = (uk) be a sequence of strictly positive real numbers. Then, the

space Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) is paranormed space with the paranorm defined by

g(x) = inf

{

ρpn/H :

(

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤ 1

}

,

where H = max(1, supk pk).

Proof. Clearly g(x) = g(−x) and g(x+y) ≤ g(x)+g(y). Since Mk(0) = 0, we get inf{ρpn/H} = 0

for x = 0. Finally, we prove that multiplication is continuous. Let λ be any number then,

g(λx) = inf

{

ρpn/H : lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

λukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1

}

implies that

g(λx) = inf

{

(λs)pn/H : lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

s
, z1, · · · , zn−1

∥

∥

∥

)]pk

≤ 1

}

,

where s = ρ
|λ| . Since |λ|pk ≤ max(1, |λ|H), then |λ|pk/H ≤

(

max
(

1, |λ|H
)

)
1
H

. Hence

g(λx) ≤
(

max
(

1, |λ|H
)

)
1
H

inf

{

(s)pn/H :

(

lim
r

1

hr

×

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk) 1
H

≤ 1

}

and therefore, g(x) converges to zero when g(x) converges to zero in

Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖). Now suppose that λn → 0 as n → ∞ and

x ∈ Eq
n(M, u, p, s,M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖). For arbitrary ε > 0, let n0 be a positive

integer such that

lim
r

1

hr

∞
∑

k=n0+1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

<
ε

2

for some ρ > 0. This implies that

(

lim
r

1

hr

∞
∑

k=n0+1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

≤
ε

2
.
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Let 0 < |λ| < 1, then using convexity of (Mk), we get

lim
r

1

hr

∞
∑

k=n0+1

k−s

[

Mk

(

∥

∥

∥

λukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

< |λ| lim
r

1

hr

∞
∑

k=n0+1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

<
( ε

2

)H
.

Since (Mk) is continuous everywhere in [0,∞), so

h(t) = lim
r

1

hr

n0
∑

k=1

k−s

[

Mk

(

∥

∥

∥

tukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

is continuous at 0. Hence, there is 0 < δ < 1 such that |h(t)| < ε/2 for 0 < t < δ. Let K be

such that |λn| < δ for n > K we have

(

lim
r

1

hr

n0
∑

k=1

k−s

[

Mk

(

∥

∥

∥

λnukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk
)

1
H

<
ε

2
.

Thus, for n > K,

(

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

λnukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk) 1
H

< ε.

Hence, g(λx) → 0 as λ → 0. This completes the proof of the theorem.

Theorem 2.3. If M′ = (M ′
k) and M′′ = (M ′′

k ) are two Musielak-Orlicz functions and s, s1, s2

be non-negative real numbers, then we have

(i) Eq
n(M′, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ∩ Eq
n(M′′, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ⊆

Eq
n(M′ + M′′, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

(ii) If the inequality s1 ≤ s2 holds, then Eq
n(M′, u, p, s1, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ⊆

Eq
n(M′, u, p, s2, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

(iii) If M′ and M′′ are equivalent, then E
q
n(M′, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) =

Eq
n(M′′, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

Proof. It is obvious so we omit the details.

Theorem 2.4. Suppose that 0 < rk ≤ pk < ∞ for each k. Then

Eq
n(M, u, r, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ⊆ Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

Proof. Let x ∈ Eq
n(M, u, r, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖). Then there exists some ρ > 0 such that

lim
r

1

hr

∞
∑

k=1

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]rk

< ∞.
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This implies that

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)

≤ 1

for sufficiently large value of k, say k ≥ k0 for some fixed k0 ∈ N. Since (Mk) is nondecreasing,

we have

lim
r

1

hr

∞
∑

k≥k0

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∣

∣

∣

)]pk

≤ lim
r

1

hr

∞
∑

k≥k0

k−s

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)

ρ
, z1, · · · , zn−1

∥

∥

∥

)]rk

< ∞.

Hence, x ∈ Eq
n(M, u, p, s,M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

Theorem 2.5. (i) If 0 < pk ≤ 1 for each k, then Eq
n(M, u, p, s,M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ⊆

Eq
n(M, u, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

(ii) If pk ≥ 1 for all k, then Eq
n(M, u, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖) ⊆

Eq
n(M, u, p, s, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖).

Proof. It is easy to prove by using above so we omit the details.

3 Applications to statistical convergence

Fast [8] extended the notion of usual convergence of a sequence of real or complex numbers and

called it statistical convergence. This notion turned out to be one of the most active areas of

research in summability theory after the works of Fridy [10] and S̆alát [24]. Fridy and Orhan [11]

defined and studied the notion of lacunary statistical convergence. Some recent related work

and applications we refer to [1, 2, 6, 17, 20]. We are now ready to define following notions:

Definition 3.1. Let θ = (kr) be a lacunary sequence. Then, the sequence x = (xk) is Nk(u)-

lacunary statistically convergent to the number l provided that for every ε > 0,

lim
r

1

hr

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1 · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

= 0.

In symbols, we shall write [Nk, u, M(p,wt,kf ), S, ∆r]θ- limx = l or xk →

l([Nk, u, M(p,wt,kf ), S, ∆r]θ). If we take θ = (2r), then we shall write [Nk, u, M(p,wt,kf ), S, ∆r]

instead of [Nk, u, M(p,wt,kf ), S, ∆r]θ.

Definition 3.2. Let θ = (kr) be a lacunary sequence, M = (Mk) be a Musielak-Orlicz function,

u = (uk) be a sequence of strictly positive real numbers and p = (pk) be a bounded sequence of

positive real numbers. We say that x = (xk) is strongly Nk(u, M(p,wt,kf ), ∆
r)-lacunary convergent

to l with respect to M provided that

lim
r

1

hr

∑

k∈Ir

[

Mk

(

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥

)]pk

= 0.
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The set of all strongly Nk(u, M(p,wt,kf ), ∆
r)-lacunary convergent sequences to l with respect

to M is denoted by [Nk, u,M, p,M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ. In symbols, we shall write xk →

l([Nk, u,M, p,M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ).

Note that, in the special case, M(x) = x, pk = p0 for all k ∈ N, we shall write

[Nk, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ instead of [Nk, u,M, p, M(p,wt,kf ), ∆

r, ‖·, · · · , ·‖]θ.

Theorem 3.3. Let θ = (kr) be a lacunary sequence.

(i) If a sequence x = (xk) is strongly Nk(u, M(p,wt,kf ), ∆
r)-lacunary convergent to l, then it is

Nk(u, M(p,wt,kf ), ∆
r)-lacunary statistically convergent to l.

(ii) If a bounded sequence x = (xk) is Nk(u, M(p,wt,kf ), ∆
r)-lacunary statistically convergent to

l, then it is strongly Nk(u, M(p,wt,kf ), ∆
r)-lacunary convergent to l.

Proof. (i) Let ε > 0 and xk → l([Nk, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ). Then, we have

∑

k∈Ir

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥

p0

≥
∑

k∈Ir
∥

∥

ukNk(M
(p,wt,kf )

∆rx)−l

ρ
,z1,··· ,zn−1

∥

∥≥ε

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)− l

ρ
, z1, · · · , zn−1

∥

∥

∥

p0

≥ εp0

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

.

Hence, xk → l([Nk, u, M(p,wt,kf ), S, ∆r]θ).

(ii) Suppose that xk → l([Nk, u, M(p,wt,kf ), S, ∆r]θ) and let x ∈ l∞. Let ε > 0 be given and

take Nε such that

lim
r

1

hr

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)− l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥
( ε

2

)
1

p0

}
∣

∣

∣

∣

≤
ε

2Kp0

for all r > Nε and set

Tr =

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥
( ε

2

)
1

p0

}

,

where K = supk |xk| < ∞. Now for all r > Nε we have

lim
r

1

hr

∑

k∈Ir

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)− l

ρ
, z1, · · · , zn−1

∥

∥

∥

p0

= lim
r

1

hr

∑

k∈Ir
k∈Tr

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥

p0
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+ lim
r

1

hr

∑

k∈Ir

k/∈Tr

∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)− l

ρ
, z1, · · · , zn−1

∥

∥

∥

p0

≤ lim
r

1

hr

( hrε

2Kp0

)

Kp0 +
ε

2hr
hr = ε.

Thus, (xk) ∈ [Nk, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ.

Theorem 3.4. For any lacunary sequence θ, if limr→∞ inf qr > 1 then

[Nk, u, M(p,wt,kf ), S, ∆r] ⊂ [Nk, u, M(p,wt,kf ), S, ∆r]θ.

Proof. If limr→∞ inf qr > 1, then there exists a δ > 0 such that 1+δ ≤ qr for sufficiently large r.

Since hr = kr − kr−1, we have kr

hr
≤ 1+δ

δ . Let xk → l([Nk, u, M(p,wt,kf ), S, ∆r]). Then for every

ε > 0, we have

1

kr

∣

∣

∣

∣

{

k ≤ kr :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

≥
1

kr

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx) − l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

≥
( δ

1 + δ

) 1

hr

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥

ukNk(M(p,wt,kf )∆
rx)− l

ρ
, z1, · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

.

Hence, [Nk, u, M(p,wt,kf ), S, ∆r] ⊂ [Nk, u, M(p,wt,kf ), S, ∆r]θ.

In the next results we denote the quantity
ukNk(M(p,wt,kf )∆

rx)−l

ρ by xl,ρ
k .

Theorem 3.5. Let θ = (kr) be a lacunary sequence, M = (Mk) be a Musielak-Orlicz func-

tion and 0 < h = infk pk ≤ pk ≤ supk pk = H . Then [Nk,M, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ ⊂

[Nk, u, M(p,wt,kf ), S, ∆r]θ.

Proof. Let x ∈ [Nk,M, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ. Then there exists a number ρ > 0 such

that limr
1
hr

∑

k∈Ir

[

Mk

(

‖xl,ρ
k , z1, · · · , zn−1‖

)]pk

→ 0, as r → ∞. Then given ε > 0, we have

lim
r

1

hr

∑

k∈Ir

[

Mk

(

∥

∥

∥
xl,ρ

k , z1, · · · , zn−1

∥

∥

∥

)]pk

≥ lim
r

1

hr

∑

k∈Ir

‖xl,ρ
k

,z1,··· ,zn−1‖≥ε

[

Mk

(

∥

∥

∥
xl,ρ

k , z1, · · · , zn−1

∥

∥

∥

)]pk

≥ lim
r

1

hr

∑

k∈Ir

‖x
l,ρ
k ,z1,··· ,zn−1‖≥ε

[Mk(ε1)]
pk , where ε/ρ = ε1

≥ lim
r

1

hr

∑

k∈Ir

min
{

[Mk(ε1)]
h, [Mk(ε1)]

H
}
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≥ lim
r

1

hr

∣

∣

∣

∣

{

k ∈ Ir :
∥

∥

∥
xl,ρ

k , z1, · · · , zn−1

∥

∥

∥
≥ ε

}
∣

∣

∣

∣

. min
{

[Mk(ε1)]
h, [Mk(ε1)]

H
}

.

Hence, x ∈ [Nk, u, M(p,wt,kf ), S, ∆r]θ. This completes the proof of the theorem.

Theorem 3.6. Let θ = (kr) be a lacunary sequence, M = (Mk) be a Musielak-

Orlicz function and p = (pk) be a bounded sequence, then [Nk, u, M(p,wt,kf ), S, ∆r]θ ⊂

[Nk,M, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ.

Proof. Let x ∈ l∞ and xk → l([Nk, u, M(p,wt,kf ), S, ∆r]θ). Since x ∈ l∞, there is a constant

T > 0 such that ‖xl,ρ
k , z1, · · · , zn−1‖ ≤ T and given ε > 0 we have

lim
r

1

hr

∑

k∈Ir

[

Mk

(

∥

∥xl,ρ
k , z1, · · · , zn−1

∥

∥

)]pk

= lim
r

1

hr

∑

k∈Ir

‖xl,ρ
k

,z1,··· ,zn−1‖≥ε

[

Mk

(

∥

∥xl,ρ
k , z1, · · · , zn−1

∥

∥

)]pk

+ lim
r

1

hr

∑

k∈Ir

‖x
l,ρ
k ,z1,··· ,zn−1‖<ε

[

Mk

(

∥

∥xl,ρ
k , z1, · · · , zn−1

∥

∥

)]pk

≤ lim
r

1

hr

∑

k∈Ir

‖xl,ρ
k

,z1,··· ,zn−1‖≥ε

max

{[

Mk

(

T

ρ

)]h

,

[

Mk

(

T

ρ

)]H}

+ lim
r

1

hr

∑

k∈Ir

‖xl,ρ
k

,z1,··· ,zn−1‖<ε

[

Mk

(

ε

ρ

)]pk

≤ max
{

[Mk(K)]h, [Mk(K)]H
}

lim
r

1

hr

∣

∣

∣

{

k ∈ Ir :
∥

∥x
l,ρ
k , z1, · · · , zn−1

∥

∥ ≥ ε
}
∣

∣

∣

+ max
{

[Mk(ε1)]
h, [Mk(ε1)]

H
}

,

(

T

ρ
= K,

ε

ρ
= ε1

)

.

Hence, x ∈ [Nk,M, u, M(p,wt,kf ), ∆
r, ‖·, · · · , ·‖]θ.
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OSCILLATION ANALYSIS FOR HIGHER ORDER DIFFERENCE
EQUATION WITH NON-MONOTONE ARGUMENTS

ÖZKAN ÖCALAN AND UMUT MUTLU ÖZKAN

Abstract. The aim of this paper is to obtain the some new oscillatory condi-
tions for all solutions of higher order di¤erence equation with general argument

(?) �mx(n) + p(n)x (�(n)) = 0; n = 0; 1; � � � ;
where (p(n)) is a sequence of nonnegative real numbers and (�(n)) is a sequence
of integers and non-monotone.

1. Introduction

Oscillation theory of di¤erence equations has attracted many researchers. In
recent years there has been much research activity concerning the oscillation and
nonoscillation of solutions of delay di¤erence equations. For these oscillatory and
nonoscillatory results, we refer, for instance, [1� 22].
Consider the higher order di¤erence equation with general argument

(1.1) �mx(n) + p(n)x (�(n)) = 0; n = 0; 1; � � � ;

where (p(n))n�0 is a sequence of nonnegative real numbers and (�(n))n�0 is a
sequence of integers such that

(1.2) �(n) � n� 1 for all n � 0 and lim
n!1

�(n) =1:

� denotes the forward di¤erence operator �x(n) = x(n+ 1)� x(n):
De�ne

r = �min
n�0

�(n): (Clearly, k is a positive integer.)

By a solution of the di¤erence equation (1:1), we mean a sequence of real numbers
(x(n))n��r which satis�es (1:1) for all n � 0.
A solution (x(n))n��r of the di¤erence equation (1:1) is called oscillatory, if the

terms x(n) of the sequence are neither eventually positive nor eventually negative.
Otherwise, the solution is said to be nonoscillatory.
If m = 1; then Eq.(1:1) take the form

(1.3) �x(n) + p(n)x (�(n)) = 0; n = 0; 1; � � � :

In particular, if we take �(n) = n� l where l > 0; then Eq.(1:3) reduces to

(1.4) �x(n) + p(n)x (n� l) = 0:

Key words and phrases. Delay di¤erence equation, higher order, oscillation, non-monotone
arguments.
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In 1989, Erbe and Zhang [8] proved that each one of the conditions

(1.5) lim inf
n!1

p(n) >
ll

(l + 1)l+1

and

(1.6) lim sup
n!1

nX
j=n�l

p(j) > 1

is su¢ cient for all solutions of (1:4) to be oscillatory.
In the same year, 1989, Ladas, Philos and S�cas [11] established that all solutions

of (1:4) are oscillatory if

(1.7) lim inf
n!1

[
1

l

n�1X
j=n�l

p(j)] >
ll

(l + 1)l+1
:

Clearly, condition (1:6) improves to (1:4).
In 1991, Philos [14] extended the oscillation criterion (1:7) to the general case of

the Eq.(1:3), by establishing that, if the sequence (�(n))n�0 is increasing, then the
condition

(1.8) lim inf
n!1

24 1

n� �(n)

n�1X
j=�(n)

p(j)

35 > lim sup
n!1

(n� �(n))n��(n)

(n� �(n) + 1)n��(n)+1

su¢ ces for the oscillation of all solutions of Eq.(1:3).
In 1998, Zhang and Tian [19] obtained that if (�(n)) is non-decreasing,

(1.9) lim
n!1

(n� �(n)) =1

and

(1.10) lim inf
n!1

n�1X
j=�(n)

p(j) >
1

e
;

then all solutions of Eq.(1:3) are oscillatory.
Later, in 1998, Zhang and Tian [20] obtained that if (�(n)) is non-decreasing or

non-monotone,

(1.11) lim sup
n!1

p(n) > 0

and (1:10) holds, then all solutions of Eq.(1:3) are oscillatory.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [3] proved that if (�(n)) is

non-decreasing or non-monotone, h(n) = max0�s�n �(s);

(1.12) lim sup
n!1

nX
j=�(n)

p(j) > 1;

then all solutions of Eq.(1:3) are oscillatory.
In the same year, Chatzarakis, Koplatadze and Stavroulakis [4] proved that if

(�(n)) is non-decreasing or non-monotone, h(n) = max0�s�n �(s);

(1.13) lim sup
n!1

nX
j=�(n)

p(j) <1

and (1:10) holds, then all solutions of Eq.(1:3) are oscillatory.
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In 2006, Yan, Meng and Yan [17] obtained that if (�(n)) is non-decreasing,

(1.14) lim inf
n!1

n�1X
j=�(n)

p(j) > 0

and

(1.15) lim inf
n!1

n�1X
j=�(n)

p(j)

�
j � �(j) + 1
j � �(j)

�j��(j)+1
> 1;

then all solutions of Eq.(1:3) are oscillatory.
Finally, in 2016, Öcalan [16] proved that if (�(n)) is non-decreasing or non-

monotone, h(n) = max0�s�n �(s) and (1:15) holds, then all solutions of Eq.(1:3)
are oscillatory.
Set

(1.16) k(n) =

�
n� �(n) + 1
n� �(n)

�n��(n)+1
; n � 1:

Clearly

(1.17) e � k(n) � 4; n � 1:
Observe that, it is easy to see that

n�1X
j=�(n)

p(j)k(j) � e
n�1X
j=�(n)

p(j)

and therefore condition (1:15) is better than condition (1:10).
In 2006, Zhou [22] studied the following delay di¤erence equation with constant

delays

(1.18) �mx(n) +

lX
i=1

pi(n)x(n� ki) = 0; n = 0; 1; � � � ;

where (pi(n))n�0 are sequences of nonnegative real numbers and ki is a positive
integer for i = 1; 2; � � � ; l: He obtained some new criteria for all solutions of Eq.(1.18)
to be oscillatory.

2. Main Results

In this section we investigated the oscillatory behavior of all solutions of Eq.(1:1).
Further, we need the following lemmas proved in [1; 2]:

Lemma 2.1. (Discrete Kneser�s Theorem) Let x(n) be de�ned for n � n0, and
x(n) > 0 with �mx(n) of constant sing for n � n0 and not identically zero. Then,
there exists an integer j, 0 � j � m with (m+ j) odd for �mx(n) � 0 or (m+ j)
even for �mx(n) � 0 and such that

j � m� 1 implies (�1)j+i�ix(n) > 0, for all n � n0, j � i � m� 1,
and

j � 1 implies �ix(n) > 0; for all large n � n0; 1 � i � j � 1:
Specially, if �mx(n) � 0 for n � n0; and (x(n)) is bounded, then

(�1)i+1�m�ix(n) � 0; for all n � n0; 1 � i � m� 1,
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4 ÖZKAN ÖCALAN AND UMUT MUTLU ÖZKAN

and
lim
n!1

�ix(n) = 0; 1 � i � m� 1:

Lemma 2.2. Let x(n) be de�ned for n � n0, and x(n) > 0 with �mx(n) � 0 for
n � n0 and not identically zero. Then, there exists a large n1 � n0 such that

x(n) � (n� n1)m�1
(m� 1)! �m�1x(2m�j�1n) ; n � n1;

where j is de�ned in Lemma 2:1. Further, if x(n) is increasing, then

x(n) � 1

(m� 1)!

� n

2m�1

�m�1
�m�1x(n) ; n � 2m�1n1:

Set

(2.1) h(n) = max
0�s�n

�(s)

Clearly, h(n) is nondecreasing, and �(n) � h(n) for all n � 0: We note that if �(n)
is nondecreasing, then we have �(n) = h(n) for all n � 0:

Theorem 2.3. Assume that (1:2) holds. If (�(n)) is non-decreasing or non-
monotone,

(2.2) lim inf
n!1

n�1X
j=�(n)

p(j)k(j) > (m� 1)!;

where k(n) is de�ned by (1:16), then every solution of Eq.(1:1) either oscillates or
limn!1 x(n) = 0:

Proof. Assume, for the sake of contradiction, that (x(n)) is an eventually positive
solution of (1:1) and limn!1 x(n) > 0. Then there exists n1 � n0 such that
x(n); x (�(n)) ; x (h(n)) > 0; for all n � n1: Thus, from Eq.(1:1) we have

(2.3) �mx(n) = �p(n)x(�(n)) � 0; for all n � n1:

By Lemma 2:1, �ix(n) are eventually of one sign for every i 2 f1; 2; : : : ;m � 1g;
and �m�1x(n) > 0 holds for large n; and there exist two cases to consider: (A)
�x(n) > 0 and (B) �x(n) < 0:
Case A: This says that (x(n)) is increasing. By Lemma 2:2, there exists an

integer n2 � n1 such that

x(n) � 1

(m� 1)!

� n

2m�1

�m�1
�m�1x(n) ; n � n2

and

(2.4) x(�(n)) � 1

(m� 1)!

�
�(n)

2m�1

�m�1
�m�1x(�(n)) ; n � n2

Letting y(n) = �m�1x(n): So, we have

y(n) > 0; y (�(n)) > 0 for n � n2;

which implies that

(2.5) �y(n) + p(n)x(�(n)) = 0; n � n2:
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On the other hand, by (2:4) and since limn!1 �(n) = 1; there exists an integer
n3 � n2 such that

x(�(n)) � 1

(m� 1)!

�
�(n)

2m�1

�m�1
y (�(n)) (2.6)

� 1

(m� 1)!y (�(n)) ; n � n3:

In view of (2:6), Eq.(2:5) gives

(2.7) �y(n) +
1

(m� 1)!p(n)y (�(n)) � 0; n � n3:

Taking into account that y(n) is nonincreasing and h(n) is nondecreasing, �(n) �
h(n) for all n � 0; from (2:7) we get

(2.8) �y(n) +
1

(m� 1)!p(n)y (h(n)) � 0; n � n3:

It follows that

(2.9) �y(n) +
�
p(n)y (h(n)) � 0; n � n3;

where
�
p(n) = p(n)

(m�1)! ; which means that inequality (2:9) has an eventually positive
solution.
On the other hand, we know from Lemma 2:3 in [16] that

(2.10) lim inf
n!1

n�1X
j=�(n)

p(j)k(j) = lim inf
n!1

n�1X
j=h(n)

p(j)k(j);

where h(n) is de�ned by (2:1).
Therefore, condition (2:2) and (2:10) imply that

(2.11) lim inf
n!1

n�1X
j=h(n)

�
p(j)k(j) =

1

(m� 1)! lim infn!1

n�1X
j=h(n)

p(j)k(j) > 1

Thus, by Theorem 1 in [16], Eq.(2:9) has no eventually positive solution. This is a
contradiction.
Case B: Note that, by Lemma 2:1, it is impossible that the case that m is even.

In what follows, we only consider the case that m is odd. Case B says that x(n) is
decreasing and bounded, and so, (x(n)) converges a constant a: By Lemma 2:1, we
get

(2.12) (�1)i+1�m�ix(n) > 0; for all large n � n1; 1 � i � m� 1,

and

(2.13) lim
n!1

�m�1x(n) = 0:

By (2:13), there exists an integer n4 � n1 such that

(2.14) 0 � �m�1x(n) � "; for any " > 0; n � n4:

It is obvious that a > 0: So, there exists an integer n5 � n4 such that

(2.15) x(n) >
1

2
a; x(�(n)) >

1

2
a; n � n5:
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Thus, Eq.(1:1) implies that

(2.16) �mx(n) +
a

2
p(n) � 0; n � n5:

Summing both sides of (2:16) from n5 to n, we obtain

(2.17) �m�1x(n+ 1)��m�1x(n5) +
a

2

nX
s=n5

p(s) � 0; n � n5:

Letting n!1; we have

(2.18)
a

2

nX
s=n5

p(s) � "; for large n:

On the other hand, condition (2:2) says that there exist an integer n6 � n5 such
that

(2.19)
n�1X
s=�(n)

p(s)k(s) >
(m� 1)!

2
; n � n6:

Since k(n) � 4 for n � 1; by (2:19) we get

(2.20)
a

2

n�1X
s=�(n)

p(s) � a(m� 1)!
8

; for large n;

which contradicts (2:18) and (2:20). The proof is completed. �

Theorem 2.4. Assume that m is even and (1:2) holds. If (�(n)) is non-decreasing
or non-monotone,

(2.21) lim inf
n!1

n�1X
j=�(n)

�m�1(j)p(j)k(j) > 2(m�1)
2

(m� 1)!;

where k(n) is de�ned by (1:16), then every solution of Eq.(1:1) oscillates.

Proof. Assume, for the sake of contradiction, that (x(n)) is an eventually positive
solution of (1:1). Then there exists n1 � n0 such that x(n); x (�(n)) ; x (h(n)) >
0; for all n � n1: According to the proof of Theorem 2:3, there exists a positive
integer n1 such that (2:3) holds. By Lemma 2:1, we have

�x(n) > 0

which implies x(n) is increasing. In view of proof of Theorem 2:3, we have

(2.22) x(�(n)) � 1

(m� 1)!

�
�(n)

2m�1

�m�1
y (�(n)) ;

where y(n) = �m�1x(n): Therefore, from Eq.(2:5) and (2:22), we obtain

(2.23) �y(n) +
1

(m� 1)!

�
�(n)

2m�1

�m�1
p(n)y (�(n)) � 0; n � n2:

Taking into account that y(n) is nonincreasing and h(n) is nondecreasing, �(n) �
h(n) for all n � 0; from (2:23) we get,

(2.24) �y(n) +
1

(m� 1)!

�
�(n)

2m�1

�m�1
p(n)y (h(n)) � 0; n � n3:
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It follows that

(2.25) �y(n) +
�
p(n)y (h(n)) � 0; n � n3;

where
�
p(n) =

�
�(n)
2m�1

�m�1
p(n)

(m�1)! ; which means that inequality (2:25) has an even-

tually positive solution.
On the other hand, we know from Lemma 2.3 in [16] that

(2.26) lim inf
n!1

n�1X
j=�(n)

p(j)k(j) = lim inf
n!1

n�1X
j=h(n)

p(j)k(j);

where h(n) is de�ned by (2:1).
Therefore, condition (2:21) and (2:26) imply that

(2.27)

lim inf
n!1

n�1X
j=h(n)

�
p(j)k(j) =

1

(m� 1)!
1

2(m�1)2
lim inf
n!1

n�1X
j=h(n)

�m�1(j)p(j)k(j) > 1

Thus, by Theorem 1 in [16], Eq.(2:25) has no eventually positive solution. This
contradiction completes the proof. �

Now, using (1.16), (1.17), Theorem 2.3 and Theorem 1 in [16], we have the
following results immediately.

Corollary 2.5. Assume that (1:2) holds. If (�(n)) is non-decreasing or non-

monotone,

(2.28) lim inf
n!1

n�1X
j=�(n)

p(j) >
1

e
(m� 1)!;

then every solution of Eq.(1:1) either oscillates or limn!1 x(n) = 0:

Corollary 2.6. Assume that m is even and (1:2) holds. If (�(n)) is non-decreasing
or non-monotone,

(2.29) lim inf
n!1

n�1X
j=�(n)

�m�1(j)p(j) >
2(m�1)

2

e
(m� 1)!;

then every solution of Eq.(1:1) oscillates.

Finally, using the proofs of Theorem 2.3 and Theorem 2.4, and from the Theorem
2.1 in [3], we obtain the following results by removing the proofs.

Theorem 2.7. Assume that (1:2) and (1:14) hold. If (�(n)) is non-decreasing or

non-monotone,

(2.30) lim sup
n!1

nX
j=h(n)

p(j) > (m� 1)!;

where h(n) is de�ned by (2:1), then every solution of Eq.(1:1) either oscillates or
limn!1 x(n) = 0:
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Theorem 2.8. Assume that m is even and (1:2) holds. If (�(n)) is non-decreasing
or non-monotone,

(2.31) lim sup
n!1

nX
j=h(n)

�m�1(j)p(j) > 2(m�1)
2

(m� 1)!;

where h(n) is de�ned by (2:1), then every solution of Eq.(1:1) oscillates.

we present an example to show the signi�cance of our new result.

Example 2.1. Consider the retarded di¤erence equation

(2.32) �3x(n) +
3

e
x(�(n)) = 0; n � 0,

with

�(n) =

�
n� 3; if n is even
n� 1; if n is odd

:

Here, it is clear that (1:2) is satis�ed. By (2:1), we see that

h(n) = max
0�s�n

�(s) =

�
n� 2; if n is even
n� 1; if n is odd

:

Computing, we get
n�1X
j=�(n)

p(j) =

�
6=e; if n is even
3=e; if n is odd

:

Thus

lim inf
n!1

n�1X
j=�(n)

p(j) =
3

e
>
1

e
(m� 1)! = 2

e
;

that is, condition (2:28) of Corollary 2:5 is satis�ed and therefore every solution of
Eq.(2:32) either oscillates or limn!1 x(n) = 0:
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On Orthonormal Wavelet Bases

Richard A. Zalik ∗

Abstract

Given a multiresolution analysis with one generator in L2(Rd), we give a characteri-
zation in closed form and in the frequency domain, of all orthonormal wavelets associated
to this MRA. Examples are given. This theorem corrects a previous result of the author.

1 Introduction

In what follows Z will denote the set of integers, and R the set of real numbers. We will
always assume that A is a dilation matrix preserving the lattice Zd; that is, AZd ⊂ Zd
and all its eigenvalues have modulus greater than 1; A∗ will denote the transpose of
A and B := (A∗)−1. The underlying space will be L2(Rd), where d ≥ 1 is an integer
and I will stand for the identity matrix. Boldface lowcase letters will denote elements
of Rd, which will be represented as column vectors; x · y will stand for the standard dot
product of the vectors x and y; ||x||2 := x · x.

Let A ∈ Rd×d and a := |detA|. For every j ∈ Z and k ∈ Zd the dilation operator
DA and the translation operator Tk are defined on L2(Rd) by

DAf(t) := a1/2f(At) and Tkf(t) := f(t + k)

respectively.
Let u = {u1, . . . , um} ⊂ L2(Rd); then T (u1, . . . , um) = T (u), S(u1, . . . , um) = S(u)

and S(A;u1, . . . , um) = S(A;u) are respectively defined by

T (u) := {Tku;u ∈ u,k ∈ Zd}, S(u) := spanT (u),

and
S(A,u) := span {DATku;u ∈ u,k ∈ Zd}.

In [5] we formulated a representation theorem for multiresolution analyses having
an arbitrary set u1, . . . , un of scaling functions, i.e., the set of translates of all these
functions constitutes an orthonormal basis of V0. However the proof was based on the
implicit (and incorrect) assumption that any such function u` is contained in S(A, u`),
and it is therefore not valid. The purpose of this paper is to apply the method of proof

∗Department of Mathematics and Statistics, Auburn University, AL 36849-5310, zalik@auburn.edu
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employed in [5] to prove a representation theorem for MRA’s having a single scaling
function, and to provide some examples.

A function f will be called Zd–periodic if it is defined on Rd and Tkf = f for every
k ∈ Zd .

The Fourier transform of a function f will be denoted by f̂ or F(f). If f ∈ L(Rd),

f̂(x) :=

∫
Rd

e−i2πx·tf(t) dt.

The Fourier transform is extended to L2(Rd) in the usual way.
Our starting point and motivation is the following well known characterization in

Fourier space of affine MRA orthonormal wavelets in L2(R) (see e.g. Hernández and
Weiss [2], Wojtaszczyk [4]) which, with the definition of Fourier transform we have
adopted, may be stated as follows.

Theorem A. Let ϕ be a scaling function for a multiresolution analysis M with associated
low pass filter p. The following propositions are equivalent:
(a) ψ is an MRA orthonormal wavelet associated with M .
(b) There is a measurable unimodular Z–periodic function µ(x) such that

ψ̂(2x) = ei2πxµ(2x)p(x+ 1/2)ϕ̂(x) a.e.

Recall that a multiresolution analysis (MRA) in L2(Rd) (generated by A) is a se-
quence {Vj ; j ∈ Z} of closed linear subspaces of L2(Rd) such that:

(i) Vj ⊂ Vj+1 for every j ∈ Z.

(ii) For every j ∈ Z, f(t) ∈ Vj if and only if f(At) ∈ Vj+1.

(iii)
⋃
j∈Z Vj is dense in L2(Rd).

(iv)
⋂
j∈Z Vj = ∅.

(v) There is a function u (called the scaling function of the MRA) such that T (u) is an
orthonormal basis of V0.

A finite set of functions ψ = {ψ1, · · · , ψm} ∈ L2(Rd) is called an orthonormal wavelet
system if the affine sequence

{DA
j Tkψ`; j ∈ Z,k ∈ Zd, ` = 1, · · · ,m}

is an orthonormal basis of L2(Rd).
Let ψ := {ψ1, · · · , ψm} be an orthonormal wavelet system in L2(Rd) generated by a

matrix A; for j ∈ Z we define

Vj =
∑
r<j

S(Ar;ψ).
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We say that ψ is associated with an MRA, if M := {Vj ; j ∈ Z} is a multiresolution
analysis. If this is the case, we also say that ψ is associated with M . Let Wj denote
the orthogonal complement of Vj in Vj+1. Then it is esily seen that ψ is an orthonormal
wavelet associated with M if and only if T (ψ) is an orthonormal basis of W0.

Let e := (1, 0, · · · , 0)T ∈ Rm and let diag {−eiω, 1, · · · , 1}m denote the m ×m diag-
onal matrix with −eiω, 1, · · · , 1 as its diagonal entries. The following proposition was
implicitly established by Jia and Shen in the discussion that follows the proof of [3,
Lemma 3.3] (we adopt the convention that Arg 0 = 0).

Theorem B. Let b = (b1, · · · , bm)T ∈ Cm be unimodular, ω := Arg b1 and q := b+eiωe.
Then the matrix

Q = (qr,k)
m
r,k=1 := diag {−eiω, 1, · · · , 1}m

[
I− 2qq∗/q∗q

]
is unitary. Moreover

qr,k =



bk if r = 1, 1 ≤ k ≤ m

−breiω if 1 < r ≤ m, k = 1

δr,k −
brbk

1 + |b1|
if 1 < r ≤ m, 1 < k ≤ m,

where δr,k is Krönecker’s delta.
The following proposition is a particular case of [5, Theorem 3].

Lemma C. Let u ∈ L2(Rd) and assume that T (u) is an orthonormal sequence. Let
A be a dilation matrix preserving the lattice Zd, let {j1, . . . , ja} be a full collection of
representatives of Zd/AZd, and let

vk(t) := a1/2u(At+ jk), k = 1, . . . a. (1)

Then T (v1, · · · , va) is an orthonormal basis of S(A;u).
Since v̂k(x) = ei2πBx·jk û(Bx), a straightforward consequence of Lemma C and [5,

Lemma E] is the following

Corollary 1. Let u ∈ L2(Rd) and assume that T (u) is an orthonormal sequence. Let
A be a dilation matrix preserving the lattice Zd, B := (A∗)−1, let {j1, . . . , ja} be a full
collection of representatives of Zd/AZd, and let vk(t) be defined by (1). If u ∈ S(A, u),
then there are Zd–periodic functions qk ∈ L2(Td) such that

a∑
k=1

|qk(x)|2 = 1 a.e., (2)

and

û(x) =
a∑
k=1

qk(x)v̂k(x) =
a∑
k=1

qk(x)ei2πBx·jk û(Bx) = p(Bx)û(Bx), (3)
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where

p(x) := a−1/2
a∑
k=1

qk(A
∗x)ei2πx·jk .

We can now prove

Theorem 1. Let M be a multiresolution analysis generated by A with scaling function
u, let vk(t) be defined by (1), B := (A∗)−1, and let the functions qk(x) be Zd–periodic,
in L2(Td), and satisfy (2) and (3). Let

α(x) := Arg q1(x), (4)

wr,k(x) :=



qk(x) if r = 1, 1 ≤ k ≤ a

−qr(x)eiα(x) if 1 < r ≤ a, k = 1

δr,k −
qr(x)qk(x)

1 + |q1(x)|
if 1 < r ≤ a, 1 < k ≤ a

(5)

and

ẑr(x) :=

a∑
k=1

wr,k(x)v̂k(x),

and let
Z(x) := (ẑ2(x), . . . , ẑa(x))T .

Then
{ψ1, . . . , ψ(a−1)}

is an orthonormal wavelet system associated with M if and only if there exists an (a −
1)× (a− 1) unitary matrix function U(x) such that

(ψ̂1(x), . . . , ψ̂(a−1)(x))T = U(x)Z(x).

Proof. The existence of functions qk(x) satisfying (2) and (3) is a consequence of Corol-
lary 1. Setting

v̂(x) := (v̂1(x), · · · , v̂a(x))T

and applying Theorem B, we see that

(ẑ1(x), · · · ẑa(x))T = Q(x)v̂(x),

and that Q(x) has (q1(x), · · · , qa(x)) as its first row. Therefore [5, Theorem 8] implies
that {z2, . . . za} is an orthonormal wavelet system associated with M , which is equivalent
to saying that S(z2, . . . za) is an orthonormal basis generator of W0. Applying now [5,
Theorem 5], the assertion follows.
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Example 1. Let us verify that Theorem A is a particular case of Theorem 1.
For d = 1 and A = 2 we have j1 = 0 and j2 = 1, and Corollary 1 implies that

p(x) = 2−1/2[q1(2x) + ei2πxq2(2x)],

whence the periodicity of q1(x) and q2(x) implies that

p(x+ 1/2) = 2−1/2[q1(2x)− ei2πxq2(2x)].

On the other hand, since |q1(x)|2+|q2(x)|2 = 1 a.e., (5) implies that w2,1(x) = −q2(x)eiα(x)

and

w2,2(x) = 1− |q2(x)|2

1 + |q1(x)|
= 1− |q2(x)|2(1− |q1(x)|)

|q2(x)|2
= |q1(x)|.

Since B = 1/2, it follows that v̂1(x) = 2−1/2û(x/2) and v̂2(x) = 2−1/2e−iπxû(x/2), and
Theorem 1 implies that

ẑ2(x) = 2−1/2[−eiα(x)q2(x) + eiπx|q1(x)|]û(x/2) =

2−1/2eiπxeiα(x)[−q2(x)e−iπx + e−iα(x)|q1(x)|]û(x/2) =

2−1/2e−iπxeiα(x)[q1(x)− eiπxq2(x)]û(x/2),

and therefore

ẑ2(2x) = 2−1/2e−i2πxeiα(2x)[q1(2x)− ei2πxq2(2x)]û(x) = e−i2πxµ(2x)p(x+ 1/2)û(x),

where µ(x) := eiα(x) is unimodular and Z-periodic.

Example 2. Let

A :=

(
0 2
−1 0

)
and let φ(t) be the characteristic function of [0, 1] × [0, 1]. Gröchenig and Madych [1]
have shown that φ is a scaling function of an MRA generated by the dilation matrix A
and that the function ψ defined by

ψ(t) :=


1 if t ∈ [0, 1]× [0, 1/2]

−1 if t ∈ [0, 1]× [1/2, 1]

0 otherwise

is a wavelet associated with this MRA. Let us see how this assertion follows from Theorem
1.

Since {(0, 0)T , (1, 0)T } is a a full collection of representatives of A/AZ2, from Lemma
C we deduce that if v1(t) := 2−1/2φ(At) and v2(t) := 2−1/2φ(At+(1, 0)T ), then T (v1, v2)
is an orthonormal basis of S(A, φ), and a straightforward computation shows that

φ(t) = 2−1/2
(
v1(t− (1, 0)T ) + v2(t− (1, 1)T

)
,

which implies that if x = (x1, x2)
T , then

φ̂(x) = 2−1/2
(
e−i2πx1 v̂1(x) + e−i2π(x1+x2)v̂2(x)

)
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

794 Zalik 790-797



Thus q1(x) = 2−1/2e−i2πx1 , q2(x) = 2−1/2e−i2π(x1+x2) and α(x) = i2πx1, and proceeding
as in Example 1 we see that

w2,1(x) = −q2(x)eiα(x) = 2−1/2e−i2πx2 and w2,2(x) = |q1(x)| = 2−1/2.

Thus,

ẑ2(x) = w2,1(x)v̂1(x) + w2,2(x)v̂2(x) = 2−1/2
(
v̂2(x)− e−i2πx2 v̂1(x)

)
,

which by Theorem 1 implies that σ(t) is a wavelet associated with A if and only if there
is a measurable unimodular Z2–periodic function µ(x) such that

σ̂(x) = µ(x)ẑ2(x).

In particular, ψ̂(x) = e−i2πx1 ẑ2(x).

Example 3. Gröchenig and Madych have also shown in [1] that the characteristic
function φ of [0, 1]× [0, 1] which we considered in the previous example is also a scaling
function of an MRA generated by the dilation matrix

A := 2I =

(
2 0
0 2

)
.

Since a = 4, from e.g. [5, Theorem H] we know that any orthonormal wavelet associated
with this MRA has exactly three generators.. Let us construct an orthonormal wavelet
basis using Theorem 1. The vectors j1 := (0, 0)T , j2 := (1, 0)T , j3 := (0, 1)T and j4 :=
(1, 1)T are a full collection of representatives of A/AZ2. Let

vk(t) := 2φ(At + jk) = 2φ(2t + jk).

Lemma C implies that T (v1, v2, v3, v4) is an orthonormal basis of S(A, φ). Moreover, it
is easily verified that

φ(t) =

4∑
k=1

φ(2t− jk) = (1/2)

4∑
k=1

vk(t− jk).

Since
F{vk(· − jk)}(x) = e−i2πx·jk v̂k(x)

we see that

φ̂(x) = (1/2)

4∑
k=1

e−i2πx·jk v̂k(x),

and therefore
qk(x) = (1/2)e−i2πx·jk , k = 1, . . . 4.
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Since α(x) = 0, (5) implies that

wr,k(x) :=



1
2e
−i2πx·jk if r = 1, 1 ≤ k ≤ 4

−1
2e
i2πx·jr if 1 < r ≤ 4, k = 1

−1
6e
i2πx·(jk−jr) if 1 < r ≤ 4, 1 < k ≤ 4, k 6= r.

5
6 if 1 < r ≤ 4, 1 < k ≤ 4, k = r.

Thus,

ẑ2(x) = −1

2
ei2πx·j2 v̂1(x) +

5

6
v̂2(x)− 1

6
ei2πx·(j3−j2)v̂3(x)− 1

6
ei2πx·(j4−j2)v̂4(x)

ẑ3(x) = −1

2
ei2πx·j3 v̂1(x)− 1

6
ei2πx·(j2−j3)v̂2(x) +

5

6
v̂3(x)− 1

6
ei2πx·(j4−j3)v̂4(x)

and

ẑ4(x) = −1

2
ei2πx·j4 v̂1(x)− 1

6
ei2πx·(j2−j4)v̂2(x)− 1

6
ei2πx·(j3−j4)v̂3(x) +

5

6
v̂4(x).

i.e.,

z2(t) = −1

2
v1(t + j2) +

5

6
v2(t)−

1

6
v3(t + (j3 − j2))−

1

6
v4(t + (j4 − j2)),

z3(t) = −1

2
v1(t + j3)−

1

6
v2(t + (j2 − j3)) +

5

6
v3(t)−

1

6
v4(t + (j4 − j3)),

and

z4(t) = −1

2
v1(t + j4)−

1

6
v2(t + (j2 − j4))−

1

6
v3(t + (j3 − j4)) +

5

6
v4(t).

Applying Theorem 1 we conclude that {z2, z3, z4} is an orthonormal wavelet system
associated with the dilation matrix A, and that {ψ1, ψ2, ψ3} is an orthonormal wavelet
system associated with A if and only if there exists a 3×3 unitary matrix function U(x)
such that

(ψ̂1(x), ψ̂2(x), ψ̂3(x))T = U(x)(ẑ2(x), ẑ3(x), ẑ4(x))T .
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Neutrosophic sets applied to mighty filters in BE-algebras
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Abstract. The notion of a neutrosophic subalgebra of a BE-algebra is introduced and consider characterizations

of a neutrosophic subalgebra and a neutrosophic filter. We defined the notion of a neutrosophic mighty filter of

a BE-algebra, and investigated some properties of it. We provide conditions for a neutrosophic filter to be a

neutrosophic mighty filter.

1. Introduction

In 2007, Kim and Kim [6] introduced the notion of a BE-algebra, and investigated several properties. In [1],

Ahn and So introduced the notion of ideals in BE-algebras. They gave several descriptions of ideals in BE-

algebras. Y. B. Jun et. al [4] introduced the notions of hesitant fuzzy subalgebras and hesitant fuzzy filters of

BE-algebras and investigated their relations and properties. J. S. Han et. al [3] defined the notion of hesitant

fuzzy implicative filter of a BE-algebra, and considered some properties of it.

Zadeh [11] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a general-

ization of fuzzy sets, Atanassov [2] introduced the degree of nonmembership/falsehood (f) in 1986 and defined

the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality (i) as independent

component in 1995 (published in 1998) and defined the neutrosophic set on three components (t, i, f) = (truth,

indeterminacy, falsehood). In 2015, neutrosophic set theory is applied to BE-algebra, and the notion of neutro-

sophic filter is introduced [9]. A new definition of neutrosopic filter is established and some basic properties are

presented [12].

In this paper, we introduce the notion of a neutrosophic subalgebra of a BE-algebra and consider characteri-

zations of a neutrosophic subalgebra and a neutrosophic filter. We defined the notion of a neutrosophic mighty

filter of a BE-algebra, and investigated some properties of it. We provide conditions for a neutrosophic filter to

be a neutrosophic mighty filter.

2. Preliminaries

By a BE-algebra ([6]) we mean a system (X; ∗, 1) of type (2, 0) which the following axioms hold:

(BE1) (∀x ∈ X) (x ∗ x = 1),
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(BE2) (∀x ∈ X) (x ∗ 1 = 1),

(BE3) (∀x ∈ X) (1 ∗ x = x),

(BE4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z) (exchange).

We introduce a relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies: for any x, y, z ∈ X, y ∗ z ≤ (x ∗ y) ∗ (x ∗ z). A
BE-algebra (X; ∗, 1) is said to be self distributive if it satisfies: for any x, y, z ∈ X, x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).
Note that every self distributive BE-algebra is transitive, but the converse is not true in general ([6]).

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(2.1) (∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z),
(2.2) (∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y),
(2.3) (∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)),

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F is a filter of X

([6]) if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

F is a mighty filter ([8]) of X if it satisfies (F1) and

(F3) (∀x, y, z ∈ X)(z ∗ (y ∗ x), z ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Theorem 2.2. ([8]) A filter F of a BE-algebra X is mighty if and only if

(2.4) (∀x, y ∈ X)(y ∗ x ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Definition 2.3. Let X be a space of points (objects) with generic elements in X denoted by x. A simple valued

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership

function IA(x), and a falsity-membership function FA(x). Then a simple valued neutrosopic set A can be denoted

by

A := {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore the sum of TA(x), IA(x), and FA(x) satisfies

the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For convenience, “simple valued neutrosophic set” is abbreviated to “neutrosophic set” later.

Definition 2.4. ([10]) A neutrosophic set A is contained in the other neutrosophic B, denoted by A ⊆ B, if and

only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x) for any x ∈ X. Two neutrosophic sets A and B are

equal, written as A = B, if and only if A ⊆ B and B ⊆ A.

Definition 2.5. ([12]) Let A be a neutrosophic set in a BE-algebra X and α, β, γ ∈ [0, 1] with 0 ≤ α+ β+ γ ≤ 3

and an (α, β, γ)-level set of X denoted by A(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≤ β, FA(x) ≤ γ}.
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3. Neutrosophic subalgebras in BE-algebras

Definition 3.1. A neutrosophic set A in a BE-algebra X is called a neutrosophic subalgebra of X if it satisfies:

(NSS) min{TA(x), TA(y)} ≤ TA(x∗y),max{IA(x), IA(y)} ≥ IA(x∗y), and max{FA(x), FA(y)} ≥ FA(x∗y), for
any x, y ∈ X.

Example 3.2. Let X := {1, a, b, c} be a BE-algebra ([4]) with the following table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.83, if x ∈ {1, a}
0.13, otherwise,

IA(x) =

{
0.15, if x ∈ {1, a}
0.82, otherwise,

FA(x) =

{
0.15, if x ∈ {1, a}
0.82, otherwise.

It is easy to check that A is a neutrosophic subalgebra of X.

Definition 3.3. ([12]) A neutrosophic set A in a BE-algebra X is called a neutrosophic filter of X if it satisfies:

(NSF1) TA(x) ≤ TA(1), IA(x) ≥ IA(1), and FA(x) ≥ FA(1), for any x ∈ X;

(NSF2) min{TA(x), TA(x∗y)} ≤ TA(y),max{IA(x), IA(x∗y)} ≥ IA(y), and max{FA(x), FA(x∗y)} ≥ FA(y), for

any x, y ∈ X.

Proposition 3.4. Every neutrosophic filter of a BE-algebra X is a neutrosophic subalgebra of X.

Proof. Let A be a neutrosophic filter of X. For any x, y ∈ X, we have min{TA(x), TA(y)} ≤ min{TA(1), TA(y)} =

min{TA(y ∗ (x ∗ y)), TA(y)} ≤ TA(x ∗ y), max{IA(x), IA(y)} ≥ max{IA(1), IA(y)} = max{IA(y ∗ (x ∗ y)), IA(y)} ≥
IA(x ∗ y), and max{FA(x), FA(y)} ≥ max{FA(1), FA(y)} = max{FA(y ∗ (x ∗ y)), FA(y)} ≥ FA(x ∗ y). Hence A is

a neutrosophic subalgebra of X. □

The converse of Proposition 3.4 may not be true in general (see Example 3.5).

Example 3.5. Let X := {1, a, b} be a BE-algebra with the following table:

∗ 1 a b

1 1 a b

a 1 1 a

b 1 1 1
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Define a neutrosophic set A inX as follows: TA = {(1, 0.83), (a, 0.13), (b, 0.16)}, IA = {(1, 0.15), (a, 0.15), (b, 0.82)},
and FA = {(1, 0.15), (a, 0.15), (b, 0.82)}. It is easy to check that A is a neutrosophic subalgebra of X. But it is not

a neutrosophic filter of X, since min{TA(b ∗ a), TA(b)} = min{TA(1), TA(b)} = 0.16 ≰ 0.13 = TA(a).

Theorem 3.6. Let A be a neutrosophic set in a BE-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.

Then A is a neutrosophic subalgebra of X if and only if all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic subalgebra of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α+ β + γ ≤ 3 and

A(α,β,γ) ̸= ∅. Let x, y ∈ A(α,β,γ). Then TA(x) ≥ α, TA(y) ≥ α, IA(x) ≤ β, IA(y) ≤ β and FA(x) ≤ γ, FA(y) ≤ γ.

Using (NSS), we have α ≤ min{TA(x), TA(y)} ≤ TA(x ∗ y), β ≥ max{IA(x), IA(y)} ≥ IA(x ∗ y), and γ ≥
max{FA(x), FA(y)} ≥ FA(x ∗ y). Hence x ∗ y ∈ A(α,β,γ). Therefore A(α,β,γ) is a subalgebra of X.

Conversely, all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when A(α,β,γ) ̸= ∅. Assume that there exist

at, bt, ai, bi ∈ X and af , bf ∈ X such that min{TA(at), TA(bt)} > TA(at ∗ bt),max{IA(ai), IA(bi)} < IA(ai ∗ bi),
and max{FA(af ), FA(bf )} < FA(af ∗ bf ). Then min{TA(at), TA(bt)} ≥ tα1 > TA(at ∗ bt),max{IA(ai), IA(bi)} ≤
tα2 < IA(ai ∗ bi), and max{FA(af ), FA(bf )} ≤ tα3 < FA(af ∗ bf ) for some tα1 ∈ (0, 1], and tα2 , tα3 ∈ [0, 1).

Hence at, bt, ai, bi, af , bf ∈ A(tα1 ,tα2 ,tα3 ), but at ∗ bt, ai ∗ bi, af ∗ bf /∈ A(tα1 ,tα2 ,tα3 ), which is a contradiction. Hence

min{TA(x), TA(y)} ≤ TA(x ∗ y),max{IA(x), IA(y)} ≥ IA(x ∗ y), and max{FA(x), FA(y)} ≥ FA(x ∗ y) for any

x, y ∈ X. Therefore A is a neutrosophic subalgebra of X. □

Since [0, 1] is a completely distributive lattice with respect to the usual ordering, we have the following theorem.

Theorem 3.7. If {Ai|i ∈ N} is a family of neutrosopic subalgebras of a BE-algebra X, then ({Ai|i ∈ N},⊆)

forms a complete distributive lattice.

Proposition 3.8. If A is a neutrosopic subalgebra of a BE-algebra X, then TA(x) ≤ TA(1), IA(x) ≥ IA(1), and

FA(x) ≥ FA(1) for all x ∈ X.

Proof. Straightforward. □

Theorem 3.9. Let A be a neutrosophic subalgebra of a BE-algebra X. If there exists a sequence {an} in X

such that limn→∞ TA(an) = 1, limn→∞ IA(an) = 0, and limn→∞ FA(an) = 0, then TA(1) = 1, IA(1) = 0, and

FA(1) = 0.

Proof. By Proposition 3.8, we have TA(x) ≤ TA(1), IA(x) ≥ IA(1), and FA(x) ≥ FA(1) for all x ∈ X. Hence

we have TA(an) ≤ TA(1), IA(an) ≥ IA(1), and FA(an) ≥ FA(1) for every positive integer n. Therefore 1 =

limn→∞ TA(an) ≤ TA(1) ≤ 1, 0 = limn→∞ IA(an) ≥ IA(1) ≥ 0, and 0 = limn→∞ FA(an) ≥ FA(1) ≥ 0. Thus we

have TA(1) = 1, TA(1) = 0, and FA(1) = 0. □

Proposition 3.10. If every neutrosophic subalgebra A of a BE-algebra X satisfies the condition

(3.1) TA(x ∗ y) ≥ TA(x), IA(x ∗ y) ≤ IA(x), FA(x ∗ y) ≤ FA(x), for any x, y ∈ X,

then TA, IA, and FA are constant functions.
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Proof. It follows from (3.1) that TA(x) = TA(1 ∗ x) ≥ TA(1), IA(x) = IA(1 ∗ x) ≤ IA(1), and FA(x) = FA(1 ∗ x) ≤
FA(1) for any x ∈ X. By Proposition 3.8, we have TA(x) = TA(1), IA(x) = IA(1), and FA(x) = FA(1) for any

x ∈ X. Hence TA, IA, and FA are constant functions. □

Proposition 3.11. Let A be a neutrosophic filter of a BE-algebra X. Then

(i) min{TA(x ∗ (y ∗ z)), TA(y)} ≤ TA(x ∗ z),max{IA(x ∗ (y ∗ z)), IA(y)} ≥ IA(x ∗ z), and max{FA(x ∗ (y ∗
z)), FA(y)} ≥ FA(x ∗ z) for any x, y ∈ X.

(ii) TA(a) ≤ TA((a ∗ x) ∗ x), IA(a) ≥ IA((a ∗ x) ∗ x), and FA(a) ≥ FA((a ∗ x) ∗ x) for any a, x ∈ X.

Proof. (i) Using (BE4) and (NSF2), we have TA(x ∗ z) ≥ min{TA(y ∗ (x ∗ z)), TA(y)} = min{TA(x ∗ (y ∗
z)), TA(y)}, IA(x ∗ z) ≤ max{IA(y ∗ (x ∗ z)), IA(y)} = max{IA(x ∗ (y ∗ z)), IA(y)}, and FA(x ∗ z) ≤ max{FA(y ∗
(x ∗ z)), FA(y)} = max{FA(x ∗ (y ∗ z)), FA(y)} for any x, y ∈ X.

(ii) Taking y := (a ∗ x) ∗ x and x := a in (NSF2), we have TA((a ∗ x) ∗ x) ≥ min{TA(a ∗ ((a ∗ x) ∗ x)), TA(a)} =

min{TA((a∗x)∗ (a∗x)), TA(a)} = min{TA(1), TA(a)} = TA(a), IA((a∗x)∗x) ≤ max{IA(a∗ ((a∗x)∗x)), IA(a)} =

max{IA((a ∗ x) ∗ (a ∗ x)), IA(a)} = max{IA(1), IA(a)} = IA(a), and FA((a ∗ x) ∗ x) ≤ max{FA(a ∗ ((a ∗ x) ∗
x)), FA(a)} = max{FA((a ∗ x) ∗ (a ∗ x)), FA(a)} = max{FA(1), FA(a)} = FA(a) for any a, x ∈ X.

□
Theorem 3.12. ([12]) Let A be a neutrosophic set in a BE-algebra. Then A is a neutrosophic filter of X if and

only if it satisfies (NSF1) and

(3.2) if x ≤ y ∗ z for any x, y ∈ X, then min{TA(x), TA(y)} ≤ TA(z),max{IA(x), IA(y)} ≥ IA(z), and

max{FA(x), FA(y)} ≥ FA(z).

Theorem 3.13. If every neutrosophic set of a BE-algebra X satisfies (NSF1) and Proposition 3.11(i), then it is

a neutrosophic filter of X.

Proof. Taking x := 1 in Proposition 3.11(i) and using (BE3), we get TA(z) = TA(1 ∗ z) ≥ min{TA(1 ∗ (y ∗
z)), TA(y)} = min{TA(y ∗ z), TA(y)}, IA(z) = IA(1 ∗ z) ≤ max{IA(1 ∗ (y ∗ z)), TA(y)} = max{IA(y ∗ z), IA(y)},
and FA(z) = FA(1 ∗ z) ≤ max{FA(1 ∗ (y ∗ z)), FA(y)} = max{FA(y ∗ z), FA(y)} for any y, z ∈ X. Hence A is a

neutrosophic filter of X. □

Corollary 3.14. Let A be a neutrosophic set of a BE-algebra X. Then A is a neutrosophic filter of X if and

only if it satisfies (NSF1) and Proposition 3.11(i).

Theorem 3.15. Let A be a neutrosophic set of a BE-algebra X. Then A is a neutrosophic filter of X if and

only if it satisfies the following conditions:

(i) TA(y ∗ x) ≥ TA(x), IA(y ∗ x) ≤ IA(x), and FA(y ∗ x) ≤ FA(x);

(ii) TA((a∗(b∗x))∗x) ≥ min{TA(a), TA(b)}, IA((a∗(b∗x))∗x) ≤ max{IA(a), IA(b)}, and FA((a∗(b∗x))∗x) ≤
max{FA(a), FA(b)} for any a, b, x ∈ X.

Proof. Assume that A is a neutrosophic filter of X. Using (NSF2), we have TA(y ∗ x) ≥ min{TA(x ∗ (y ∗
x)), TA(x)} = min{TA(1), TA(x)} = TA(x), IA(y ∗ x) ≤ max{IA(x ∗ (y ∗ x)), IA(x)} = max{IA(1), IA(x)} = IA(x),

and FA(y ∗ x) ≤ max{FA(x ∗ (y ∗ x)), FA(x)} = max{FA(1), FA(x)} = FA(x), for any x, y ∈ X. It follows
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from Proposition 3.11 that TA((a ∗ (b ∗ x)) ∗ x) ≥ min{TA((a ∗ (b ∗ x)) ∗ (b ∗ x)), TA(b)} ≥ min{TA(a), TA(b)},
IA((a ∗ (b ∗ x)) ∗ x) ≤ max{IA((a ∗ (b ∗ x)) ∗ (b ∗ x)), IA(b)} ≤ max{IA(a), IA(b)}, and FA((a ∗ (b ∗ x)) ∗ x) ≤
max{FA((a ∗ (b ∗ x)) ∗ (b ∗ x)), FA(b)} ≤ max{FA(a), FA(b)} for any x, a, b ∈ X.

Conversely, assume that A is a neutrosophic set of X satisfying conditions (i) and (ii). Taking y := x in (i),

we have TA(1) = TA(x ∗ x) ≥ TA(x), IA(1) = IA(x ∗ x) ≤ IA(x) and FA(1) = FA(x ∗ x) ≤ FA(x) for any x ∈ X.

Using (ii), we get TA(y) = TA(1 ∗ y) = TA(((x ∗ y) ∗ (x ∗ y)) ∗ y) ≥ min{TA(x ∗ y), TA(x)}, IA(y) = IA(1 ∗ y) =
IA(((x∗y)∗(x∗y))∗y) ≤ max{IA(x∗y), IA(x)}, FA(y) = FA(1∗y) = FA(((x∗y)∗(x∗y))∗y) ≤ max{FA(x∗y), FA(x)}
for any x, y ∈ X. Hence A is a neutrosophic filter of X. □

4. Neutrosophic mighty filters in BE-algebras

Definition 4.1. A neutrosophic set A in a BE-algebra X is called a neutrosophic mighty filter of X if it satisfies

(NSF1) and

(NSF3) min{TA(z ∗ (y ∗ x)), TA(z)} ≤ TA(((x ∗ y) ∗ y) ∗ x)),max{IA(z ∗ (y ∗ x)), IA(z)} ≥ IA(((x ∗ y) ∗ y) ∗ x), and
max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(((x ∗ y) ∗ y) ∗ x) for any x, y, z ∈ X.

Example 4.2. Let X := {1, a, b, c, d, 0} be a BE-algebra ([8]) with the following table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 b c b c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

0 1 1 1 1 1 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.83, if x ∈ {1, b, c}
0.12, otherwise,

IA(x) =

{
0.14, if x ∈ {1, b, c}
0.81, otherwise,

FA(x) =

{
0.14, if x ∈ {1, b, c}
0.81, otherwise.

It is easy to check that A is a neutrosophic mighty filter of X.

Proposition 4.3. Every neutrosophic mighty filter of a BE-algebra X is a neutrosophic filter of X.

Proof. Let A be a neutrosophic mighty filter ofX. Putting y := 1 in (NSF3), we obtain min{TA(z∗(1∗x)), TA(z)} =

min{TA(z ∗ x), TA(z)} ≤ TA(((x ∗ 1) ∗ 1) ∗ x) = TA(x),max{IA(z ∗ (1 ∗ x)), IA(z)} = max{IA(z ∗ x), IA(z)} ≥
IA(((x∗1)∗1)∗x) = IA(x), and max{FA(z∗(1∗x)), FA(z)} = max{FA(z∗x), FA(z)} ≥ FA(((x∗1)∗1)∗x) = FA(x)

for any x, y, z ∈ X. Hence A is a neutrosophic filter of X. □

The converse of Proposition 4.3 may be not true in general (see Example 4.4).
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Example 4.4. Let X := {1, a, b, c, d} be a BE-algebra ([5]) with the following table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.84, if x = 1

0.11, otherwise,

IA(x) =

{
0.13, if x = 1

0.81, otherwise,

FA(x) =

{
0.13, if x = 1

0.81, otherwise.

Then A is a neutrosophic filter of X, but not a neutrosophic mighty filter of X, since min{TA(1∗ (c∗a)), TA(1)} =

TA(1) = 0.84 ≰ TA(((a ∗ c) ∗ c) ∗ a) = TA(a) = 0.11.

Theorem 4.5. Any neutrosophic filter A of a BE-algebra X is mighty if and only if it satisfies the following

conditions:

(4.1) TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x), IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x), and FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for
any x, y ∈ X.

Proof. Suppose that a neutrosophic filter A of a BE-algebra X satisfies the condition (4.1). Using (NSF2) and

(4.1), we have min{TA(z ∗ (y ∗ x)), TA(z)} ≤ TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x),max{IA(z ∗ (y ∗ x)), IA(z)} ≥
IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x), and max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for any

x, y ∈ X. Hence A is a neutrosophic mighty filter of X.

Conversely, assume that the neutrosophic filter A of X is mighty. Setting z := 1 in (NSF3), we have min{TA(1∗
(y ∗ x)), TA(1)} = TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x),max{IA(1 ∗ (y ∗ x)), IA(1)} = IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x),
and max{FA(1 ∗ (y ∗ x)), FA(1)} = FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for any x, y ∈ X. Hence (4.1) holds. □

Proposition 4.6. Let A be a neutrosophic mighty filter of a BE-algebra X. Denote that XT := {x ∈ X|TA(x) =
TA(1)}, XI := {x ∈ X|IA(x) = IA(1)}, and XF := {x ∈ X|FA(x) = FA(1)}. Then XT , XI , and XF are mighty

filters of X.

Proof. Clearly, 1 ∈ XT , XI , XF . Let z ∗ (y ∗ x), z ∈ XT . Then TA(z ∗ (y ∗ x)) = TA(1), TA(z) = TA(1). Hence

min{TA(z ∗ (y ∗ x)), TA(z)} = TA(1) ≤ TA(((x ∗ y) ∗ y) ∗ x) and so TA((x ∗ y) ∗ y) ∗ x) = TA(1). Therefore

((x ∗ y) ∗ y) ∗ x ∈ XT . Thus XT is a mighty filter of X. Similarly, XI , XF are mighty filters of X. □

Theorem 4.7. Let A,B be neutrosophic filters of a transitive BE-algebra X such that A ⊆ B and TA(1) =

TB(1), IA(1) = IB(1), FA(1) = FB(1). If A is mighty, then B is mighty.
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Proof. Let x, y ∈ X. Since A is a neutrosophic mighty filter of a BE-algebra X, by (4.1) and A⊆B we have

TA(1) = TA(y∗((y∗x)∗x)) ≤ TA(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)) ≤ TB(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)). Since
TA(1) = TB(1), we get TB((y ∗ x) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)) = TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)) = TB(1).

It follows from (NSF1) and (NSF2) that

TB(y ∗ x) =min{TB(1), TB(y ∗ x)}

=min{TB((y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)), TB(y ∗ x)}

≤TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x).

(4.2)

Since X is transitive, we get

[((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x]∗[((x ∗ y) ∗ y) ∗ x]

≥ ((x ∗ y) ∗ y) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y)

≥ (((y ∗ x) ∗ x) ∗ y) ∗ (x ∗ y)

≥ x ∗ ((y ∗ x) ∗ x)

= (y ∗ x) ∗ (x ∗ x)

= (y ∗ x) ∗ 1 = 1.

It follows from Theorem 3.12 that min{TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x), TB(1)} = TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x) ≤
TB(((x∗y)∗y)∗x). Using (4.2), we have TB(y ∗x) ≤ TB(((((y ∗x)∗x)∗y)∗y)∗x) ≤ TB(((x∗y)∗y)∗x). Therefore
TB(y∗x) ≤ TB(((x∗y)∗y)∗x). Similarly, we have IB(y∗x) ≥ TB(((x∗y)∗y)∗x) and FB(y∗x) ≥ FB(((x∗y)∗y)∗x).
By Theorem 4.5, B is a neutrosophic mighty filter of X. □

Theorem 4.8. Let A be a neutrosophic set in a BE-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.

Then A is a neutrosophic mighty filter of X if and only if all of (α, β, γ)-level set A(α,β,γ) are mighty filters of X

when A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic mighty filter of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α + β + γ ≤ 3

and A(α,β,γ) ̸= ∅. Let z ∗ (y ∗ x), z ∈ A(α,β,γ). Then TA(z ∗ (y ∗ x)) ≥ α, TA(z) ≥ α, IA(z ∗ (y ∗ x)) ≤ β, IA(z) ≤ β,

and FA(z ∗ (y ∗ x)) ≤ γ, FA(z) ≤ γ. By Definition 4.1, we have TA(1) ≥ TA(((x ∗ y) ∗ y) ∗ x) ≥ min{TA(z ∗ (y ∗
x)), TA(z)} ≥ α, IA(1) ≤ IA(((x∗y)∗y)∗x) ≤ max{IA(z ∗ (y ∗x)), IA(z)} ≤ β, and FA(1) ≤ FA(((x∗y)∗y)∗x) ≤
max{FA(z ∗ (y ∗ x)), FA(z)} ≤ γ. Hence 1, ((x ∗ y) ∗ y) ∗ x ∈ A(α,β,γ). Therefore A(α,β,γ) are mighty filters of X.

Conversely, suppose that there exist a, b, c ∈ X such that TA(a) > TA(1), IA(b) < IA(1), and FA(c) < FA(1).

Then there exist at ∈ (0, 1] and bt, ct ∈ [0, 1) such that TA(a) ≥ at > TA(1), IA(b) ≤ bt < IA(1) and FA(c) ≤
ct < FA(1). Hence 1 /∈ A(at,bt,ct), which is a contradiction. Therefore TA(x) ≤ TA(1), IA(x) ≥ IA(1) and

FA(x) ≥ FA(1) for all x ∈ X. Assume that there exist at, bt, ct, ai, bi, ci ∈ X and af , bf , cf ∈ X such that

TA(((at ∗ bt) ∗ bt) ∗ at) < min{TA(ct ∗ (bt ∗ at)), TA(ct)}, IA(((ai ∗ bi) ∗ bi) ∗ ai) > max{IA(ci ∗ (bi ∗ ai)), IA(ci)}, and
FA(((af ∗ bf ) ∗ bf ) ∗af ) > max{FA(cf ∗ (bf ∗af )), FA(cf )}. Then there exist st ∈ (0, 1] and si, sf ∈ [0, 1) such that

TA(((at∗bt)∗bt)∗at) < st ≤ min{TA(ct∗(bt∗at)), TA(ct)}, IA(((ai∗bi)∗bi)∗ai) > si ≥ max{IA(ci∗(bi∗ai)), IA(ci)},
and FA(((af ∗bf )∗bf )∗af ) > sf ≥ max{FA(cf ∗(bf ∗af )), FA(cf )}. Hence ct∗(bt∗at), ct, ci∗(bi∗ai), ci ∈ A(st,si,sf )

and cf ∗(bf ∗af ), cf ∈ A(st,si,sf ) but ((at∗bt)∗bt)∗at, ((ai∗bi)∗bi)∗ai /∈ A(st,si,sf ), and ((af ∗bf )∗bf )∗af /∈ A(st,si,sf ),
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which is a contradiction. Therefore min{TA(z∗(y∗x)), TA(z)} ≤ TA(((x∗y)∗y)∗x)),max{IA(z∗(y∗x)), IA(z)} ≥
IA(((x ∗ y) ∗ y) ∗ x)), and max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(((x ∗ y) ∗ y) ∗ x)) for any x, y, z ∈ X. Thus A is a

neutrosophic mighty filter of X □
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Abstract

We study the weak convergence of Mann’s explicit iteration processes to common coupled fixed point

of firmly nonexpansive coupled mappings in Hilbert spaces.Our results extend and generalized the results

due to Nabil and Soliman for coupled fixed point approach (T. Nabil and A. H. Soliman, weak convergence

theorems of explicit iteration process with errors and applications in optimization, J. Ana. Num. Theor.,

5(2017) 81: 89).
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1 Introduction

The study of finding the fixed point of iterative processes has attracted the interest of many researchers due

to its applications in physics, optimization, image processing and economics can be recast in terms of a fixed

point problem of nonlinear mappings in Hilbert space [[1],[2], [3], [4], [5], [6]]. A lot of this studies consider

this mappings as nonexpansive which is defined as: let H be a real Hilbert space and K be a nonempty closed

convex subset of H. Then, a mapping R of K into H is called nonexpansive if ‖Rx − Ry‖ ≤ ‖x − y‖ for all

x, y ∈ K. R is called firmly nonexpansive if

||Rx−Ry||2 + ||(Id−R)x− (Id−R)y||2 ≤ ||x− y||2 (1)

1t−3bdelsadek@yahoo.com
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for all x, y ∈ K, where Id : K → K denote the identity operator. We have known that every firmly nonexpansive

mapping is a nonexpansive mapping. The finding of common fixed point for iteration process have been

investigated since the early 1953 by Mann [7] which consider the following iteration scheme
x1 ∈ C is chosen arbitrarily

xn+1 = αnxn + (1− αn)Rxn,∀ n ∈ N

where {αn} is a sequence in [0,1]. Several authors studied another types of iteration process such as: Halpern

[8] , Bauschke [9] and Xu and Ori [10] . In 2005, Kimura et al. [11], studied the convergence of an iterative

scheme to a common fixed point of a finite family of nonexpansive mappings in Banach space.

The problem of finding a common fixed point of families of nonlinear mappings has been investigated by many

researchers; see, for instance, ([12]-[17]).

Recently, Chuang and Takahashi [18] defined the new Mann’s type iteration process by metric projection

from H to K and gave weak convergence theorems for finding a common fixed point of a sequence of firmly

nonexpansive mappings in a Hilbert space. More recently, in 2017 Nabil and Soliman [19] studied the weak

convergen theorem f a new Mann iterative proesses with errors.

The idea of coupled fixed point was started in 1987 by Guo and Lakshmikantham [20]. Several authors studied

the coupled fixed point Theorem See [[21],[22], [23], [24], [25]]

In this work, we prove the weak convergence theorem for finding the coupled fixed points of iteration processes

for the families of nonlinear coupled mappings in Hilbert spaces.

2 Firmly nonexpansive coupled mappings

Throughout this paper we denote by N the set of positive integers and strongly (respectively weak) conver-

gence of {xn} to x ∈ H by xn → x (respectively xn ⇀ x). Let H be a Hilbert space . The inner product and

the induced norm on H are denoted by < ., . > and ‖ . ‖ respectively. Consider F (T ) be the set of fixed points

of T (i.e., F (T ) = {x ∈ C : Tx = x}).

Let C 6= ∅ be a closed and convex subset of a real Hilbert space H, and consider the coupled mapping

2
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T : C × C → H. Then (w1, w2) ∈ C × C is said to be coupled fixed point of T if T (w1, w2) = w1 and

T (w2, w1) = w2, thus we can define the set of all coupled fixed points of T ( denoted by CF (T ) ) as :

CF (T ) = {(x, y) ∈ C × C : T (x, y) = x, T (y, x) = y}.

T : C × C → C is said to be nonexpansive coupled mapping ( denoted by NCM ) if for every (x, y) and

(u, v) ∈ C × C,

‖T (x, y)− T (u, v)‖ ≤ 1
2
[‖x− u‖+ ‖y − v‖]

;T is said to be firmly nonexpansive coupled mapping ( denoted ny FNCM) if,

‖T (x, y)− T (u, v)‖2 ≤ 1
2
[〈x− u, T (x, y)− T (u, v)〉+ 〈y − v, T (x, y)− T (u, v)〉],

equivalent;

‖T (x, y)− T (u, v)‖2 ≤ 1
2
〈x− u + y − v, T (x, y)− T (u, v)〉,

for all (x, y), (u, v) ∈ C × C. The following lemma give the relation between NCM and FNCM.

Lemma 2.1 Let C 6= ∅ be subset of real Hilbert space H. If T : C × C → H be FNCM. Then T is NCM

Proof. Since T is FNCM, for all (x, u), (u, v) ∈ C × C we get that,

‖T (x, y)− T (u, v)‖2 ≤ 1
2
[〈x− u, T (x, y)− T (u, v)〉+ 〈y − v, T (x, y)− T (u, v)〉]

≤ 1
2
[‖x− u‖‖T (x, y)− T (u, v)‖+ ‖y − v‖‖T (x, y)− T (u, v)‖].

Therefore, we get that;

‖T (x, y)− T (u, v)‖ ≤ 1
2
[‖x− u‖+ ‖y − v‖].

Thus , T is NCM.

The following example show that the converse of lemma 2.1 is may not be true.

Example 2.1 Let H = <, and consider T : <×< → < such as:for all (x, y) ∈ <×<, define T (x, y) = 1
2x. Let,

(x, y), (u, v) ∈ < × <, then we have that:

‖T (x, y)− T (u, v)‖ = ‖1
2
(x− u)‖ ≤ 1

2
[‖x− u‖+ ‖y − v‖].

Thus, T is NCM. However,

〈1− 0− 2− 0, T (1,−2)− T (0, 0)〉 =
−1
2

< 2‖T (1,−2)− T (0, 0)‖2.

3
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Hence, T is not FNCM.

Let C 6= ∅ be closed convex subset of H. Let us recall that : the metric projection of H onto C ( denoted by

PC) is defined as the mapping PC : H → C such that: for each x ∈ H , there exist a unique y ∈ C such that:

PCx = y if and only if ‖x − y‖ ≤ ‖x− z‖ for every z ∈ C. A mapping PC satisfied some important properties

such as:‖PCx− PCy‖ ≤ ‖x− y‖ for all x, y ∈ H. Also ‖PCx− PCy‖2 ≤ 1
2 〈x− y, PCx− PCy〉, for all x, y ∈ H.

The following lemma give one of useful properties of metric projection mapping.

Lemma 2.2 [18]. Let C 6= φ be closed and convex subset of a Hilbert space H, and let PC be the metric

projection from H onto C. Then 〈x− PCx, PCx− y〉 ≥ 0,∀x ∈ H, y ∈ C.

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let {Tn : C × C → H} be a

FNCM. Then we say that {Tn} satisfies then resolvent coupled property ( denoted by RCP ) if there exist a

NCM, T : C × C → H and two natural numbers n0 and k such that: ||x − T (x, y)|| ≤ k||x − Tn(x, y)|| and

||y − T (y, x)|| ≤ k||y − Tn(y, x)|| for all x, y ∈ C and n ∈ N with n ≥ n0 and CF (T ) = ∩∞n=1CF (Tn). The next

example give sequence of mapping which satisfy FRCP.

Example 2.2. Let H = < and C = [0, 2.] Define T1 : C × C → < and T2 : C × C → < such as:

T1(x, y) =


0 if x ∈ [0, 3

2 ], y ∈ [0, 2],

0 if x ∈ [0, 2], y ∈ [0, 3
2 ],

1
2 (x + y)− 3

2 if x ∈ ( 3
2 , 2], y ∈ ( 3

2 , 2],

and

T2(x, y) =


0 if x ∈ [0, 1], y ∈ [0, 2],

0 if x ∈ [0, 2], y ∈ [0, 1],

1
2 (x + y)− 1 if x ∈ (1, 2], y ∈ (1, 2],

let T2n−1(x, y) = T1(x, y) and T2n(x, y) = T2(x, y) for all n ∈ N. Therefore,it is clear that: CF (T1) = CF (T2) =

{(0, 0)}. Now , If (x, y), (u, v) ∈ [ 32 , 2]× [ 32 , 2] , we get that,

4
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‖T1(x, y)− T1(u, v)‖2 = ‖1
2
(x + y)− 1

2
(u− v)‖2

=
1
4
‖x− u + y − v‖2 =

1
4
〈x− u + y − v, x− u + y − v〉

=
1
2
〈x− u + y − v,

1
2
(x− u) +

1
2
(y − v)〉

=
1
2
〈x− u + y − v, T1(x, y)− T1(u, v)〉. (2)

In the other hand, If (x, y), (u, v) in other region , we get that the same result. Also, if (x, y), (u, v) ∈ [1, 2]×[1, 2],

we have that:

‖T2(x, y)− T2(u, v)‖2 = ‖1
2
(x + y)− 1

2
(u + v)‖2

=
1
4
‖(x− u) + (y − v)‖2 =

1
2
〈x− u + y − v,

1
2
(x− u) +

1
2
(y − v)〉

=
1
2
〈x− u + y − v,

1
2
(x + y − 1)− 1

2
(u + v − 1)〉.

=
1
2
〈x− u + y − v, T2(x, y)− T2(u, v)〉. (3)

By the same method, we can prove that: if (x, y), (u, v) in other regions of the mapping T2 we get the same

above results. Thus, T1 and T2 are FNCM . Let T (x, y) = T1(x, y). Thus, T is NCM , CFT = {(0, 0)} and:

‖x− T (x, y)‖ ≤ 2‖x− Tn(x, y)‖

Also, we get that:

‖y − T (y, x)‖ ≤ 2‖y − Tn(y, x)‖

Then {Tn} satisfies a RCP .

Lemma 2.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H and let T : C ×C → C

be even mapping in the second variable (i.e. T (x,−y) = T (x, y), for all (x, y) ∈ C × C) and FNCM with

CF (T ) 6= ∅. Then 〈x− T (x, y), T (x, y)− w1〉 ≥ 0 and 〈y − T (y, x), T (y, x)− w2〉 ≥ 0 for all (x, y ∈ C × C and

(w1, w2) ∈ CF (T )).

Proof. Since (w1, w2) ∈ CF (T ) ,we get that: for all (x, y) ∈ C × C,

‖T (x, y)− T (w1, w2)‖2 = ‖T (x, y)− w1‖2 ≤ 1
2
〈x− w1 + y − w2, T (x, y)− w1〉.

5
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Therefore,

‖T (x,−y)− T (w1,−w2)‖2 = ‖T (x, y)− w1‖2 ≤ 1
2
〈x− w1 − y + w2, T (x, y)− w1〉.

Thus, we have that:

〈x− T (x, y), T (x, y)− w1〉 = 〈x− w1 + y − w2 − T (x, y) + w1 − y + w2, T (x, y)− w1〉

= 〈x− w1 + y − w2, T (x, y)− w1〉+ 〈−T (x, y) + w1 − y + w2, T (x, y)− w1〉

≥ 2‖T (x, y)− w1‖2 + 〈−T (x, y) + w1 − y + w2, T (x, y)− w1〉

= 〈2T (x, y)− 2w1, T (x, y)− w1〉+ 〈−T (x, y) + w1 − y + w2, T (x, y)− w1〉

= 〈T (x, y) + w1 − y + w2, T (x, y)− w1〉

= 〈T (x, y)− x, T (x, y)− w1〉+ 〈x− w1 − y + w2, T (x, y)− w1〉 (4)

Hence , we get that:

2〈x− T (x, y), T (x, y)− w1〉 ≥ 〈x− w1 + y − w2, T (x, y)− w1〉 ≥ 2‖T (x, y)− w1‖2 ≥ 0. (5)

Similarly, we can prove that: 〈y − T (y, x), T (y, x)− w2〉 ≥ 0.

Definition 2.1 [26]. A space X is said to satisfy Opial’s condition if for each sequence {xn} in X which xn ⇀ x,

we have ∀ y ∈ X, y 6= x the following:

(i) lim inf
n→∞

||xn − x|| < lim inf
n→∞

||xn − y||,

(ii) lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||.

We recall that: every Hilbert space has Opial’s property [26] .

3 Main results

In this section, we prove the main weak convergence theorems for families of FNCM in Hilbert spaces. To

prove it, we use the following Lemma.

6
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Lemma 3.1.([27]) Let T be a closed convex subset of a real Hilbert space H. Let T be a nonexpansive non

self-mapping of K into H such that F (T ) 6= ∅. Then F (T ) = F (PKT ).

Now, we prove the main theorem in this paper.

Theorem 3.1. Let C 6= φ be closed and convex subset of a Hilbert space H. Consider {Tn} : C × C → H

be a sequence of FNCM and be even mappings in the second variable (i.e. Tn(x,−y) = Tn(x, y), for all

(x, y) ∈ C × C) with S :=
⋂∞

n=1 CF (Tn) 6= φ. Let {αn} be a sequence of real numbers in (0,2). Let {(xn, yn)}

be a sequence in C × C defined by:
(x1, y1) ∈ C is chosen arbitrarily

xn+1 := Pc((1− αn)xn + αnTn(xn, yn)),∀ n ∈ N,

yn+1 := Pc((1− αn)yn + αnTn(yn, xn)),∀ n ∈ N.

If {Tn} satisfies RCP and lim infn→∞ αn(2− αn) > 0, then (xn, yn) ⇀ (x, y) where (x, y) ∈
⋂∞

n=1 CF (Tn).

Proof. Let (w1.w2) ∈ S, now we will prove that : PC(w1) = w1, and PC(w2) = w2. Consider the mapping :

fw2 : C → H such that: fw2 = T1(x, w2). Thus, we have that: fw2(w1) = T1(w1, w2) = w1. Then, w1 is fixed

point of fw2 . Therefore, let x, y ∈ C. Then, we get that:

‖fw2(x)− fw2(y)‖2 = ‖T1(x, w2)− T2(y, w2)‖2

=
1
2
〈x− y, fw2(x)− fw2(y)〉

≤ 1
2
‖x− y‖‖fw2(x)− fw2(y)‖ (6)

Hence, we have that:

‖fw2(x)− fw2(y)‖ ≤ 1
2
‖x− y‖ ≤ ‖x− y‖.

Then, fw2 is nonexpansive mapping . By applying lemma 3.1 , we get that: PC(w1) = w1. By the same method,

let fw1 : C → H, which defined as: fw1(x) = T1(x, w1). It is clear that: fw1(w2) = T1(w2, w1) = w2. Thus, w2

is fixed point of the mapping fw1 and therefore fw1 is nonexpansive. Then , we get that: PC(w2) = w2.

Also, by applying lemma 2.3, we get that: 〈xn − Tn(xn, yn), Tn(xn, yn)− w1〉 ≥ 0 and

7
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〈yn − Tn(yn, xn), Tn(yn, xn)− w2〉 ≥ 0, for all n ∈ N. Then, we get that:

‖xn+1 − w1‖2 = ‖PC((1− αn)xn + αnTn(xn, yn))− PC(w1)‖2 ≤ ‖(1− αn)xn + αnTn(xn, yn)− w1‖2

= ‖(xn − w1) + αn(Tn(xn, yn)− xn)‖2

= 〈(xn − w1) + αn(Tn(xn, yn)− xn), (xn − w1) + αn(Tn(xn, yn)− xn)〉

= 〈xn − w1, xn − w1〉+ 2αn〈xn − w1, Tn(xn, yn)− xn〉+ α2
n〈Tn(xn, yn)− xn, Tn(xn, yn)− xn〉

= ‖xn − w1‖2 + α2
n‖xn − Tn(xn, yn)‖2 − 2αn〈xn − w1, Tn(xn, yn)− xn〉

= ‖xn − w1‖2 + α2
n‖xn − Tn(xn, yn)‖2 + 2αn〈xn − Tn(xn, yn), Tn(xn, yn)− xn〉

−2αn〈Tn(xn, yn)− w1, Tn(xn, yn)− xn〉

≤ ‖xn − w1‖2 − αn(2− αn)‖xn − Tn(xn, yn)‖2

for all n ∈ N. By doing the same steps , we get also:

‖yn+1 − w2‖2 ≤ ‖yn − w2‖2 − αn(2− αn)‖yn − Tn(yn, xn)‖2;

for all n ∈ N. Then we have that, {xn} and {yn} are bounded sequence in C, , therefore, limn→∞ ‖xn − w1‖

exist and limn→∞ ‖yn − w2‖ exist. Therefore, we get that:

lim
n→∞

αn(2− αn)‖xn − Tn(xn, yn)‖ = 0.

Also, we have that:

lim
n→∞

αn(2− αn)‖yn − Tn(yn, xn)‖ = 0,

and since limn→∞ αn(2− αn) > 0 , then, we have that:

lim
n→∞

‖xn − Tn(xn, yn)‖ = 0, lim
n→∞

‖yn − Tn(yn, xn)‖ = 0.

Since {Tn} satisfies the RCP , then there exist NCM T : C × C → C and n0, k ∈ N such that:

‖x− T (x, y)‖ ≤ k‖x− Tn(x, y)‖, ‖y − T (y, x)‖ ≤ k‖y − Tn(y, x)‖,

therefore , we get that:

‖xn − T (xn, yn)‖ ≤ k‖xn − Tn(xn, yn)‖, ‖yn − T (yn, xn)‖ ≤ k‖yn − Tn(yn, xn)‖,
8
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for every n ≥ 0. Then we have that :

lim
n→∞

‖xn − T (xn, yn)‖ = 0, lim
n→∞

‖yn − T (yn, xn)‖ = 0.

Since {xn} and {yn} are bounded, then there exist subsequences {xnk1
} of {xn} , {ynk2

} of {yn} and (u1, u2) ∈

C × C such that : xnk1
⇀ u1 and ynk2

⇀ u2. By applying one of the useful property of the Hilbert space , we

get:

‖T (u1, u2)− xn‖2 = ‖T (u1, u2)− u1‖2 + 2〈T (u1, u2)− u1, u1 − xn〉+ ‖u1 − xn‖2

Since, {xn} convergent weakly to u1, then we obtain that:

lim
n→∞

〈T (u1, u2)− u1, u1 − xn〉 = 0.

Hence, we find that:

lim
n→∞

sup ‖T (u1, u2)− xn‖2 = ‖T (u1, u2)− u1‖2 + lim
n→∞

sup ‖u1 − xn‖2.

Also , using the condition of coupled firmly non-expansive , we get that:

lim
n→∞

‖T (u1, u2)− xn‖ ≤ lim
n→∞

‖T (u1, u2)− T (xn, yn)‖+ lim
n→∞

‖xn − T (xn, yn)‖ ≤ lim
n→∞

‖ u1 − xn ‖ .

Thus, we have that:

‖ T (u1, u2)− u1 ‖2 + lim
n→∞

sup ‖u1 − xn‖2 ≤ lim
n→∞

sup ‖ u1 − xn ‖2 .

Then, we have that:

‖ T (u1, u2)− u1 ‖2= 0.

Therefore, we get that: T (u1, u2) = u1 and similarly we can prove that: T (u2, u1) = u2 . Thus , it clear

that : (u1, u2) ∈ S. Now we prove that {(xn, yn)} ⇀ (x, y) ∈ S. Let, {xnl
} and {xnm

} be subsequences of {xn}

which converge weakly to u, v ∈ C respectively. If u 6= v , from the the Opial property,

lim
l→∞

‖xnl
− u‖ < lim

l→∞
‖xnl

− v‖ = lim
m→∞

‖xnm − v‖

< lim
m→∞

‖xnm − u‖ = lim
l→∞

‖xnl
− u‖|. (7)

9
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This is contradiction. Therefore, xn ⇀ x. By the same method, we can prove yn ⇀ y. Thus (xn, yn) ⇀ (x, y) ∈ S.

Corollary 3.1. Let C 6= φ be closed and convex subset of a Hilbert space H. Consider T : C × C → H be

FNCM and even mapping in the second variable (i.e. T (x,−y) = T (x, y), for all (x, y) ∈ C × C) with

CF (T ) 6= φ. Let {αn} be a sequence of real numbers in (0,2). Let {(xn, yn)} be a sequence in C × C defined

by: 
(x1, y1) ∈ C is chosen arbitrarily

xn+1 := Pc((1− αn)xn + αnT (xn, yn)),∀ n ∈ N,

yn+1 := Pc((1− αn)yn + αnT (yn, xn)),∀ n ∈ N.

If lim infn→∞ αn(2− αn) > 0, then (xn, yn) ⇀ (x, y) where (x, y) ∈ CF (T ).

Lemma 3.2.Let C 6= φ be closed and convex subset of a Hilbert space H. Consider {Tn} : C × C → H be a

sequence of FNCM and be even mappings in the second variable (i.e. Tn(x,−y) = Tn(x, y), for all (x, y) ∈

C × C). Suppose that :
∑n=∞

n=1 sup{‖Tn+1(x, y)− Tn(x, y)‖ < ∞ : (x, y) ∈ C × C}. Then {Tn(x, y)} converges

strongly to some point of C × C. In the other hand, if T : C × C → C defined by: T (x, y) = limn→∞ Tn(x, y),

for all (x, y) ∈ C × C. Then limn→∞ sup{‖T (x, y)− Tn(x, y)‖ : (x, y) ∈ C × C} = 0.

Proof. First, we will prove that {Tn(x, y)} is Cauchy sequence for all (x, y) ∈ C × C. Let i, j ∈ N and i > j.

we get that:

‖Ti(x, y)− Tj(x, y)‖ ≤ ‖ sup{‖Ti(x, y)− Tj(x, y)‖ : (x, y) ∈ C × C}

≤ sup{‖Ti(x, y)− Ti−1(x, y)‖ : (x, y) ∈ C × C}+ sup{‖Ti−1(x, y)− Tj(x, y)‖ : (x, y) ∈ C × C} ≤ ....

≤
∞∑

i=1

sup{‖Tn+i(x, y)− Tn(x, y)‖ : (x, y) ∈ C × C}

Let i → ∞, Then we get that {Tn(x, y)} is a Cauchy sequence. Thus {Tn(x, y)} converges strongly to some

point of C × C. Also, we have :

‖T (x, y)− Tj(x, y)‖ ≤
∞∑

i=1

sup{‖Tn+i(x, y)− Tn(x, y)‖ : (x, y) ∈ C × C}

Thus, we have that: limj→∞ sup{‖T (x, y)− Tj(x, y)‖ : (x, y) ∈ C × C} = 0.

Theorem 3.2. Let C 6= φ be closed and convex subset of a Hilbert space H. Consider {Tn} : C × C → H

be a sequence of FNCM and be even mappings in the second variable (i.e. Tn(x,−y) = Tn(x, y), for all

10
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(x, y) ∈ C × C) with S :=
⋂∞

n=1 CF (Tn) 6= φ. Let {αn} be a sequence of real numbers in (0,2). Let {(xn, yn)}

be a sequence in C × C defined by:
(x1, y1) ∈ C is chosen arbitrarily

xn+1 := Pc((1− αn)xn + αnTn(xn, yn)),∀ n ∈ N,

yn+1 := Pc((1− αn)yn + αnTn(yn, xn)),∀ n ∈ N.

If {Tn} satisfies the property:
∑n=∞

n−1 sup{‖Tn+1(x, y)−Tn(x, y)‖ < ∞ : (x, y) ∈ C×C} and lim infn→∞ αn(2−

αn) > 0, then (xn, yn) ⇀ (x, y) where (x, y) ∈
⋂∞

n=1 CF (Tn).

Proof. First, we will apply lemma 3.2. Define T : C × C → H by T (x, y) = limn→∞ Tn(x, y)

‖T (x, y)− T (u, v)‖ = ‖ lim
n→∞

Tn(x, y)− lim
n→∞

Tn(u, v)‖

= lim
n→∞

‖Tn(x, y)− Tn(u, v)‖ ≤ lim
n→∞

1
2
(‖x− u‖+ ‖y − v‖). (8)

For all (x, y), (u, v) ∈ C × C. Hence T is a NCM . Therefore, we get that:

lim
n→∞

sup{‖T (x, y)− Tn(x, y)‖ : (x, y) ∈ B} = 0, (9)

for each bounded subset B of C × C. Then by doing the same steps as in Theorem 3.1, we get that

‖xn − w1‖2 ≤ ‖xn − w1‖2 − αn(2− αn)‖xn − Tn(xn, yn)‖2. (10)

therefore,

‖yn − w2‖2 ≤ ‖yn − w2‖2 − αn(2− αn)‖yn − Tn(yn, xn)‖2

Thus , we have that:

lim
n→∞

‖T (xn, yn)− Tn(xn, yn)‖ = 0. (11)

Then, we get the following:

‖xn − T (xn, yn)‖ ≤ ‖xn − Tn(xn, yn)‖+ ‖T (xn, yn)− Tn(xn, yn)‖.

therefore, we get that:

lim
n→∞

‖xn − T (xn, yn)‖ = 0. (12)

11
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By doing the same step we can prove that:

lim
n→∞

‖yn − T (yn, xn)‖ = 0.

Agian , by doing the same steps as the proof of Theorem 3.1, we get the proof of Theorem 3.2.

Let C be a nonempty closed convex subset of a Hilbert space H and let {Tn} and Γ be two families of NCM

mappings of C × C into C and even in the second variable, such that: ∅ 6= CF (Γ) =
⋂∞

n=1 CF (Tn), where

CF (Tn) is the set of all coupled fixed points of {Tn} and CF (Γ) is the set of all common coupled fixed points

of Γ. We gave the following Condition.

Condition 3.1. For each bounded sequence {(xn, yn)} of C×C, if we have that: limn→∞ ‖xn−Tn(xn, yn)‖ = 0

and limn→∞ ‖yn − Tn(yn, xn)‖ = 0, then limn→∞ ‖xn − T (xn, yn)‖ = 0 and limn→∞ ‖yn − T (yn, xn)‖ = 0 for

all T ∈ Γ.

Theorem 3.3. Let H be a Hilbert space, C be a nonempty, closed and convex subset of H. Consider {Tn} :

C × C → C be a sequence of FNCM mappings. Let Γ be a family of NCM of C × C into C , which satisfies

∅ 6= CF (Γ) ⊆
⋂∞

n=1 CF (Tn) and condition (3.1). Let {αn} be a sequence of real numbers in (0,2), and {(xn, yn)}

be a sequence in C × C defined by:
(x1, y1) ∈ C is chosen arbitrarily

xn+1 := Pc((1− αn)xn + αnTn(xn, yn)),∀ n ∈ N,

yn+1 := Pc((1− αn)yn + αnTn(yn, xn)),∀ n ∈ N.

If lim infn→∞ αn(2− αn) > 0, then (xn, yn) ⇀ (x, y) where (x, y) ∈
⋂∞

n=1 CF (Tn).

Proof. By doing the same steps as in the proof of Theorem 3.1, we get {(xn, yn)} is bounded and

lim
n→∞

‖xn − Tn(xn, yn)‖ = 0,

also,

lim
n→∞

‖yn − Tn(yn, xn)‖ = 0.

By condition (3.1),

lim
n→∞

‖xn − T (xn, yn)‖ = 0, lim
n→∞

‖yn − T (yn, xn)‖ = 0,

12
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for all T ∈ Γ. Since {(xn, yn)} is bounded , there exist a subsequence {(xnk
, ynk

)} of {(xn, yn)} and (u1, u2) ∈

C × C such that: xnk
→ u1 and ynk

→ u2. By lemma 2.6, we have that (u1, u2) ∈ CF (T ) for all T ∈ Γ. Thus

we have that: (u1, u2) ∈ CF (Γ) ⊆
⋂∞

n=1 CF (Tn). Then the same steps as in the proof of Theorem 3.1 lead to

(xn, yn) ⇀ (x, y), where (x, y) ∈
⋂∞

n=1 CF (Tn).
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Abstract : In this paper we study that the second kind q-Euler numbers En,q and q-Euler Euler

polynomials En,q(x) are analytic continued to Eq(s) and Eq(s, w). We investigate the new concept

of dynamics of the zeros of analytic continued polynomials. Finally, we observe an interesting

phenomenon of ‘scattering’ of the zeros of Eq(s, w).

Key words : Second kind Euler polynomial, Euler Zeta function, Analytic Continuation, complex

zeros, dynamics.
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1. Introduction

Several mathematicians have studied the Bernoulli numbers and polynomials, Euler numbers

and polynomials, q-Bernoulli numbers and polynomials, q-Euler numbers and polynomials, the sec-

ond kind Euler numbers and polynomials(see [1-11]). These numbers and polynomials posses many

interesting properties and arising in many areas of mathematics and physics. Throughout this paper,

we always make use of the following notations:N = {1, 2, 3, · · · } denotes the set of natural numbers,

N0 = {0, 1, 2, 3, · · · } denotes the set of nonnegative integers, Z denotes the set of integers, R denotes

the set of real numbers, C denotes the set of complex numbers. We introduced the second kind

q-Euler numbers En,q and polynomials En,q(x) and investigate their properties(see [6]). Let q be a

complex number with |q| < 1. We define the second kind q-Euler numbers En,q and polynomials

En,q(x) as follows:

Fq(t) =
2et

qe2t + 1
=

∞∑
n=0

En,q
tn

n!
, (1)

Fq(x, t) =

(
2et

qe2t + 1

)
ext =

∞∑
n=0

En,q(x)
tn

n!
. (2)

By the above definition (2) and Cauchy product, we have

∞∑
l=0

El,q(x)
tl

l!
=

(
2et

e2t + 1

)
ext =

∞∑
n=0

En,q
tn

n!

∞∑
m=0

xm
tm

m!

=

∞∑
l=0

(
l∑

n=0

En,q
tn

n!
xl−n tl−n

(l − n)!

)
=

∞∑
l=0

(
l∑

n=0

(
l

n

)
En,qx

l−n

)
tl

l!
.

By using comparing coefficients
tl

l!
, we have the following theorem.

Theorem 1. For n ∈ N0, one has

En,q(x) =
n∑

k=0

(
n

k

)
Ek,qx

n−k.
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By Theorem 1 and some calculations, we have∫ b

a

En,q(x)dx =
n∑

l=0

(
n

l

)
El,q

∫ b

a

xn−ldx =
n∑

l=0

(
n

l

)
El,q

xn−l+1

n− l + 1

∣∣∣∣b
a

=
1

n+ 1

n+1∑
l=0

(
n+ 1

l

)
El,q x

n−l+1
∣∣b
a
.

By Theorem 1, we get ∫ b

a

En,q(x)dx =
En+1,q(b)− En+1,q(a)

n+ 1
. (3)

Since En,q(0) = En,q, by (3), we have the following theorem.

Theorem 2. For n ∈ N, one has

En,q(x) = En,q + n

∫ x

0

En−1,q(t)dt.

By using computer, the second kind q-Euler polynomials En,q(x) can be determined explicitly.

A few of them are

E0,q(x) =
2

1 + q
,

E1,q(x) =
2

(1 + q)2
− 2q

(1 + q)2
+

2x

(1 + q)
,

E2,q(x) =
4

(1 + q)3
− 8q

(1 + q)3
+

4q2

(1 + q)3
− 2

(1 + q)2
− 2q

(1 + q)2
+

4x

(1 + q)2
− 4qx

(1 + q)2
+

2x2

(1 + q)
.

2. Analytic Continuation of the second kind q-Euler numbers and the q-Euler Zeta

function

By using the second kind q-Euler numbers and polynomials, the second kind q-Euler zeta

function and Hurwitz q-Euler zeta functions are defined. From (1), we note that

dk

dtk
Fq(t)

∣∣∣∣
t=0

= 2
∞∑

n=0

(−1)nqn(2n+ 1)k = Ek,q, (k ∈ N).

By using the above equation, we are now ready to define the second kind q-Euler zeta functions.

Definition 3. For s ∈ C with Re(s) > 0, define the second kind q-Euler zeta function by

ζE(s) = 2

∞∑
n=0

(−1)nqn

(2n+ 1)s
.

Notice that the Euler zeta function can be analytically continued to the whole complex plane,

and these q-zeta function have the values of the q-Euler numbers at negative integers. That is, the

second kind q-Euler numbers are related to the second kind q-Euler zeta function as

ζE,q(−k) = Ek,q.
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By using (2), we note that

dk

dtk
Fq(x, t)

∣∣∣∣
t=0

= 2
∞∑

n=0

(−1)nqn(2n+ x+ 1)k, (k ∈ N), (4)

and (
d

dt

)k
( ∞∑

n=0

En,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Ek,q(x), for k ∈ N. (5)

By (4) and (5), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 4. We define the Hurwitz q-zeta function ζE,q(s, x) for s ∈ C with Re(s) > 0 by

ζE,q(s, x) = 2
∞∑

n=0

(−1)nqn

(2n+ x+ 1)s
.

Note that ζE,q(s, x) is a meromorphic function on C. Relation between ζE,q(s, x) and Ek,q(x) is

given by the following theorem.

Theorem 5. For k ∈ N, we have

ζE,q(−k, x) = Ek,q(x). (6)

We now consider the function Eq(s) as the analytic continuation of the second kind q-Euler

numbers. From the above analytic continuation of the second kind q-Euler numbers, we consider

En,q 7→ Eq(s),

ζE,q(−n) = En,q 7→ ζE,q(−s) = Eq(s).
(7)

All the second kind q-Euler number En,q agree with Eq(n), the analytic continuation of the second

0 1 2 3 4 5 6 7

s

-60

-40

-20

0

20

40

EqHsL

Figure 1: The curve Eq(s) runs through the points of all En,q

kind q-Euler numbers evaluated at n(see Figure 1). Consider

En,q = Eq(n) for n ≥ 0 (8)
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In Figure 1, we choose q = 1/3. In fact, we can express E′
q(s) in terms of ζ ′E,q(s), the derivative of

ζE,q(s). Consider

Eq(s) = ζE,q(−s),

E′
q(s) = −ζ ′E,q(−s)

E′
q(2n+ 1) = −ζ ′E,q(−2n− 1) for, n ∈ N0.

(9)

From the relation (9), we can define the other analytic continued half of the second kind q-Euler

numbers
Eq(s) = ζE,q(−s), Eq(−s) = ζE,q(s)

⇒ Eq(−n) = ζE,q(n), n ∈ N.
(10)

By (10), we have

lim
n→∞

Eq(−n) = ζE,q(n) = 2.

The curve Eq(s) runs through the points E−n,q = Eq(−n) and grows ∼ 2 asymptotically as −n →
∞(see Figure 2).

-12 -10 -8 -6 -4 -2 0

s

1.6

1.7

1.8

1.9

2

EqHsL

Figure 2: The curve Eq(s) runs through the points E−n,q for q = 1
3

3. Dynamics of the zeros of analytic continued polynomials

Our main purpose in this section is to investigate the new concept of dynamics of the zeros of

analytic continued polynomials. Let Γ(s) be the gamma function. The analytic continuation can be

then obtained as

n 7→ s ∈ R, x 7→ w ∈ C,

Ek,q 7→ Eq(k + s− [s]) = ζE,q(−(k + (s− [s]))),(
n

k

)
7→ Γ(1 + s)

Γ(1 + k + (s− [s]))Γ(1 + [s]− k)

⇒ En,q(w) 7→ Eq(s, w) =

[s]∑
k=−1

Γ(1 + s)Eq(k + s− [s])w[s]−k

Γ(1 + k + (s− [s]))Γ(1 + [s]− k)

=

[s]+1∑
k=0

Γ(1 + s)Eq((k − 1) + s− [s])w[s]+1−k

Γ(k + (s− [s]))Γ(2 + [s]− k)
,

(11)
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where [s] gives the integer part of s, and so s − [s] gives the fractional part. By (11), we obtain

analytic continuation of the second kind q-Euler polynomials for q = 1/3. Consider

E0,q(w) ≈ 1.5,

Eq(1, w) ≈ 0.75 + 1.5w,

Eq(2, w) ≈ −0.75 + 1.5w + 1.5w2,

Eq(2.2, w) ≈ −1.14137 + 1.13863w + 1.84171w2 + 0.15595w3,

Eq(2.4, w) ≈ −1.54674 + 0.60395w + 2.13491w2 + 0.38568w3,

Eq(2.6, w) ≈ −1.94844− 0.12719w + 2.33741w2 + 0.69096w3,

Eq(2.8, w) ≈ −2.32024− 1.07449w + 2.39690w2 + 1.06697w3,

Eq(3, w) ≈ −2.625− 2.25w + 2.25w2 + 1.5w3.

(12)

By using (12), we plot the deformation of the curve Eq(2, w) into the curve of Eq(3, w) via the real

analytic continuation Eq(s, w), 2 ≤ s ≤ 3, w ∈ R(see Figure 3). In [6], we observe that Eq(n,w), w ∈

-0.2 0 0.2 0.4 0.6 0.8 1

w

-3

-2

-1

0

1

2

EqHs,wL

EqH2,wL

EqH3,wL

Figure 3: The curve of Eq(s, w), 2 ≤ s ≤ 3,−0.3 ≤ w ≤ 1

C, has Im(w) = 0 reflection symmetry analytic complex functions(see Figure 4). The zeros of

Eq(n,w) will also inherit these symmetries.

If Eq(n,w0) = 0, then Eq(n,w
∗
0) = 0,

where ∗ denotes complex conjugation.

For n ∈ N0, it is easy to deduce that the second kind q-Euler polynomials En,q(x) satisfy

∞∑
n=0

En,q−1(−x) (−t)
n

n!
=

2e−t

q−1e−2t + 1
e(−x)(−t) =

2qet

e2t + 1
ext = q

∞∑
n=0

En,q(x)
tn

n!
.

By using comparing coefficients
tn

n!
in the above equation, we have the following theorem.

Theorem 6 (Theorem of complement). For any positive integer n, we have

En,q(x) = (−1)nq−1En,q−1(−x). (13)

The question is as follows: what happens with the reflexive symmetry (13), when one considers

the second kind q-Euler polynomials? Prove that Eq(n,w), w ∈ C, has not Re(w) = 0 reflection
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symmetry analytic complex functions(see Figure 4). Next, we investigate the beautiful zeros of the

Eq(s, w) by using a computer. We plot the zeros of Eq(s, w) for s = 9, 9.3, 9.7, 10, q = 1/3, and

w ∈ C(Figure 4). In Figure 4(top-left), we choose s = 9. In Figure 4(top-right), we choose s = 9.3.

-10 -7.5 -5 -2.5 0 2.5 5
ReHwL

-2

-1

0

1

2

ImHwL

-10 -7.5 -5 -2.5 0 2.5 5
ReHwL

-2

-1

0

1

2

ImHwL

-10 -7.5 -5 -2.5 0 2.5 5
ReHwL

-2

-1

0

1

2

ImHwL

-10 -7.5 -5 -2.5 0 2.5 5
ReHwL

-2

-1

0

1

2

ImHwL

Figure 4: Zeros of Eq(s, w) for s = 9, 9.3, 9.7, 10

In Figure 4(bottom-left), we choose s = 9.7. In Figure 4(bottom-right), we choose s = 10.

Stacks of zeros of Eq(s, w) for s = n + 1/3, 1 ≤ n ≤ 50, forming a 3D structure are pre-

sented(Figure 5).

In Figure 5(top-right), we draw y and z axes but no x axis in three dimensions. In Figure

5(bottom-left), we draw x and y axes but no z axis in three dimensions. In Figure 5(bottom-right),

we draw x and z axes but no y axis in three dimensions. However, we observe that Eq(n,w), w ∈ C,
has Im(w) = 0 reflection symmetry analytic complex functions(see Figure 4 and Figure 5).

Our numerical results for approximate solutions of real zeros of Eq(s, w), q = 1/3, are displayed.

We observe a remarkably regular structure of the complex roots of the second kind q-Euler polyno-

mials. We hope to verify a remarkably regular structure of the complex roots of the second kind

q-Euler polynomials(Table 1).
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-2.5

0

2.5

5

ImHwLL

-5 0 5
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0

20

40

s

-5 5

H L

Figure 5: Stacks of zeros of Eq(s, w) for 1 ≤ n ≤ 50

Table 1. Numbers of real and complex zeros of Eq(s, w)

s real zeros complex zeros

1.5 2 0

2.5 3 0

3.5 4 0

4.5 3 2

5.5 4 2

6.5 5 2

7.5 6 2

8.5 3 6

9 3 6

9.3 4 6

9.5 4 6

9.8 4 6

10 4 6

Next, we calculated an approximate solution satisfying Eq(s, w), q = 1/3, w ∈ R. The results
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are given in Table 2.

Table 2. Approximate solutions of Eq(s, w) = 0, w ∈ R

s w

6 −2.25291, −0.499167, 1.50121, 2.89899

6.5 −8.19021, −1.97235, −0.106447, 1.90361, 3.03711

7 −2.65744, −1.71446, 0.286584, 2.31062, 3.2536

7.5 −9.25827, −2.51685, −1.32105, 0.679634, 2.83991, 3.19538

8 −0.927418, 1.07258

8.5 −10.3265, −0.534533, 1.46541

9 −2.1399, −0.141641, 1.85831

9.2 −35.7141, −1.98173, 0.0155236, 2.01523

9.5 −11.3949, −1.74785, 0.251276, 2.2499

9.7 −6.68645, −1.59132, 0.408446, 2.40587

10 −3.09896, −1.3558, 0.644202, 2.64146

In Figure 6, we plot the real zeros of the the second kind q-Euler polynomials Eq(s, w) for

s = n +
1

3
, 1 ≤ n ≤ 30, q = 1/3, and w ∈ C (Figure 7). In Figure 6(right), we choose Eq(s, w) for

-4 -2 0 2

ReHxL

0

10

20

30

n

-4 2 -2 -1 0 1 2

ReHxL

0

10

20

30

n

-2 2

Figure 6: Real zeros of Eq(s, w)

s = n+
1

3
, 1 ≤ n ≤ 30. In Figure 6(left), we choose Eq(n,w) for 1 ≤ n ≤ 30.

The second kind q-Euler polynomials En,q(w) is a polynomials of degree n. Thus, En,q(w) has n

zeros and En+1,q(w) has n+1 zeros. When discrete n is analytic continued to continuous parameter

s, it naturally leads to the question: How does Eq(s, w), the analytic continuation of En,q(w), pick

up an additional zero as s increases continuously by one? This introduces the exciting concept of

the dynamics of the zeros of analytic continued polynomials-the idea of looking at how the zeros
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move about in the w complex plane as we vary the parameter s. To have a physical picture of the

motion of the zeros in the complex w plane, imagine that each time, as s increases gradually and

continuously by one, an additional real zero flies in from positive infinity along the real positive axis,

gradually slowing down as if ” it is flying through a viscous medium ”. More studies and results in

this subject we may see references [5], [6], [7], [10].
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Remarks on the blow-up for damped Klein-Gordon equations

with a gradient nonlinearity ∗
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Abstract We consider initial boundary value problem for a class of damped Klein-Gordon

type wave equations with a gradient nonlinearity and derive sufficient conditions for finite time

blow-up of its solutions. To prove blow-up of the solution, we use eigenfunction method com-

bining with a modification of Glassey’s inequality. This extend the early results.

Keywords Klein-Gordon equations; blow-up; initial-boundary value problem; gradient

nonlinearity

AMS Classification (2010): 35L20,35B44.

1 Introduction

The aim of this paper is to give some sufficient conditions for blow-up of solutions to the following

damped Klein-Gordon type wave equations with a gradient nonlinearity

utt −∆u+ cut = f(u,∇u), in Ω× (0, T ), (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω; (1.3)

where Ω is a bounded domain inRn with sufficiently smooth boundary ∂Ω, f(u,∇u) = a|u|p−1u+

b|∇u|q,p, q > 1, a, b ∈ R, ab < 0, and c > 0.

Nonlinear wave equations of the form (1.1) arise in differential geometry, controllability

theory of partial differential equations, and in various areas of physics(see [1] and its references).

The derivative Klein-Gordon type wave problem (1.1)-(1.3) can be viewed as a simplification of

the Boussinesq equation [2, 3, 4, 1] with higher order spatial derivative terms appearing neither

in the linear part nor in the nonlinearity. It belongs to the family of nonlinear wave equations of

the form utt+Au = ρ(u)∇u+g(u). This family of wave equations have as an important subclass

the Yang-Mills-type equations with ρ(u) = u and g(u) = u3. Yang-Mills-type wave equations

have the same scaling as the cubic nonlinear wave equation, but are more difficult technically

because of the derivative term u∇u. Other important examples of the type equations include

the Maxwell-Klein-Gordon and Yang-Mills-Higgs equations in the Lorenz gauge at least, as well

as the simplified model equations of these (see [1]). If b = 0 and a 6= 0, then equation (1.1) is the

standard Klein-Gordon wave problem. The standard Klein-Gordon wave problem in the critical

exponent has been studied by many authors. In this case, the blowup behavior of solutions is by

∗Corresponding author:Zhang H.W., Email: whz661@163.com
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now fairly well understood, and various sufficient conditions for blowup have been provided and

qualitative properties have also been investigated (see for example [5, 6, 7, 8, 9, 10, 11, 12, 13, 14],

to cite just a few). However, very little is known in literature concerning the asymptotic dynamics

exhibited by the derivative Klein-Gordon type wave equations of the form (1.1) and in space

dimensions greater than one or two (see [1]). Recently, D’Abbicco [15] proved global existence of

small data solutions to the following Cauchy problem for the doubly dissipative wave equation

with power nonlinearity |∇u|p:

utt −∆u+ ut −∆ut = |∇u|p,

for p > 1 + 1
n+1 , in any space dimension n ≥ 1, and he also derive optimal energy estimates

and L1−L1 estimates for the solution to the semilinear problems. Willie[1] studied a nonlinear

wave problem of the form

utt −∆u+ dut = −ρ|∇u|2 + γ|u|p−1u, ρ ≥ 0, γ > 0,

its linear problem well-posedness, behaviour of the spectrum of the wave differential operator

in varied damping and diffusion constants, as well as the asymptotic dynamics defined by the

derivative Klein-Gordon type wave problem.

We mention also some related mathematical work involving the derivative nonlinearity term

in the literature. Ebihara [16, 17, 18] established global existence of classical solutions and

asymptotic behavior of solutions of the following nonlinear wave equation

utt −∆u = f(u, ut,∇u), (1.4)

where f(u, ut,∇u) = −up − |∇u|2r − uqt (or f(u, ut,∇u) = −up|∇u|qurt , here p, q, r > 0). When

f(u, ut,∇u) = −a(x)β(ut,∇u) in (1.4), where β(λ1, λ2, ..., λn)λ1 ≥ 0, Slemrod [19], Vancosteno-

ble [20] and Haraux [21] proved the weak asymptotic stabilization of solutions. Quite recently,

Nakao [22, 23, 24, 25, 26] considered the nonlinear wave equations of the form

utt −∆u+ ρ(x, ut) = f(u, ut,∇u), (1.5)

and he proved the global existence and decay of solutions.

On the other hand, relatively little is known on the blowup for nonlinearities with a de-

pendence on spatial derivatives of u. As far as we know, the previous studies of blow-up of

solutions of (1.1) were performed in [27, 28, 29, 30]. In [27], Sideris gives blow-up of small

data solutions in finite time for the Cauchy problem in three dimensions when the nonlinear

gradient term a|u|p−1u+ b|∇u|q in (1.1) is replaced with term f(u, ut,∇u) = a2|∇u|2 + b2|∆u|2.

To our knowledge, this is the first blow-up result for nonlinear wave equation when the non-

linear perturbation term depends on the derivatives of u. Then the result was extended by

Schaeffer [28] and Rammaha [29, 30]. However, very little is known in the literature concerning

the blow-up of solutions for initial boundary problem of equation (1.1) and such a method in

[27, 28, 29, 30] cannot applied this case. Levine [7] has pointed that the eigenfunction method

can easily be modified to include nonlinear terms of the form f(u,∇u) provided that for all

s ∈ R1, p ∈ Rn,f(s, p) ≥ G(s), where G(s) is a convex function and the function G(s) satisfy the

2
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following conditions:(1)G(s) − (λ + 1)s is nonnegative and nondecreasing on (s0,∞) for some

s0 > 0; (2)
∫ s

0 G(ρ)dρ − 1
2s

2 is nondecreasing on (s0,∞);(3)[
∫ s

0 G(ρ)dρ − 1
2s

2]
−1
2 is integrable at

+∞ for s. However, when f(u,∇u) = a|u|p−1u + b|∇u|q, a, b ∈ R, we can’t find any function

G(s) such that f(s, p) ≥ G(s).

Motivated by the eigenfunction method in [5, 7], the main purpose of this paper is to give

sufficient conditions for finite time blow-up of solutions for the initial boundary value problem of

equation (1.1) under certain conditions. We will generalize Glassey’s inequality (Lemma 1.1 in

[5],and see also [7]), and get sufficient conditions for blow-up of solutions to problem (1.1)-(1.3)

for various a, b ∈ R and ab < 0 by eigenfunction method. In this sense, we extend the result

[5, 7]. This method applies also to the case of the equation (1.1) with Neumann boundary

condition and it remains valid for more general equation

utt −∆u+ cut = |u|p−1u+ f(u, |∇u|), (1.6)

where f is locally Lipschitz continuous and satisfies certain growth condition (see remark 2.4).

2 Main results

Throughout this paper we assume all function spaces are considered over real field and their

notations and definitions are same as those [31]. By the usual Galerkin method and similar to

the proof in [16], we can obtain regular solution in the local sense. Now we extend Lemma 1.1

in [5](see also [7]) to the following lemma, which play an essential role in this paper.

Lemma 1 Let φ(t) ∈ C2 satisfy

φtt + k1φt ≥ h(φ), t ≥ 0 (2.1)

with φ(0) = α > 0, φt(0) = β > 0, where k1 > 0. Suppose that h(s) ≥ 0 for all s ≥ α. If

δ0 = k1

∫ +∞
α [β2 + 2

∫ s
α h(ρ)dρ]−

1
2ds < 1, then φt(t) > 0 where φt(t) exists and lim

t→T−
φ(t) = +∞

where T ≤ T ∗ = − 1
k1
ln(1− δ0).

Proof Because φ(0) = α > 0 and φt(0) = β > 0 then there exist an interval [0, T0) such that

φt(t) > 0 and φ(t) > α for t ∈ [0, T0). If it is false, let

t1 = inf{t : φ(t) = α}, t2 = inf{t : φt(t) = 0}.

If t2 < t1, taking into account the condition (2.1) and the fact that h(s) ≥ 0 for all s ≥ α, we

have

d

dt
(ek1tφt) = ek1t(φtt + k1φt) ≥ ek1th(φ) > 0.

Thus φt(t2) > e−k1t2φt(0) > 0, which contradicts φt(t2) = 0, and so we have t2 ≥ t1. Further-

more, we have φt(t) > 0 for t ∈ [0, t1). In this case, we get that φ(t1) = φ(0) +
∫ t1

0 φt(s)ds >

φ(0) = α > 0, this is a contradiction of the fact φ(t1) = α. Thus, there exist an interval [0, T0)

such that φt(t) > 0 and φ(t) > α for t ∈ [0, T0).

A multiplication of (2.1) by 2e2k1tφt(t) gives

2e2k1tφtφtt + 2k1e
2k1t(φt)

2 ≥ 2e2k1th(φ)φt,

3
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that is,

d
dt [e

2k1t(φt)
2] ≥ 2e2k1th(φ)φt ≥ 2h(φ)φt = 2 d

dt

∫ φ
α h(s)ds. (2.2)

Integrating (2.2) from 0 to t yields

e2k1t(φt)
2 − (φt(0))2 ≥ 2

∫ φ
α h(s)ds,

since φt > 0, hence

φt ≥ e−k1t(β2 + 2

∫ φ

α
h(s)ds)−

1
2 . (2.3)

We may separate variables and integrate over (0, t) to obtain

1− e−k1t ≤ k1

∫ +∞

α
(β2 + 2

∫ y

α
h(s)ds)−

1
2dy = δ0.

Therefore we get the result.

We consider the following spectral problem

∆w + λw = 0 in Ω, (2.4)

w = 0, on ∂Ω. (2.5)

It is well known that problem (2.4)-(2.5) has the smallest eigenvalue λ1 > 0 and the correspond-

ing normalized eigenfunction w1 > 0 in Ω,
∫

Ωw1(x)dx = 1. Then we denote

k0 = (

∫
Ω

|∇w1|
q

q−1

w
1/(q−1)
1

dx)
q−1
q . (2.6)

Theorem 2 Suppose q > 1, a = 0 and b > 0. Let u(x, t) be a regular solution of problem

(1.1)-(1.3). Suppose that the following conditions are satisfied:∫
Ω
u0(x)w1(x)dx = α,

∫
Ω
u1(x)ψ1(x)dx = β,

where α >
k
q/(q−1)
0
λ1

> 0, β > 0, and that (λ1k0 )qsq − λ1s is a nongeative, nondecreasing function

for s ≥ α. If δ1 = c
∫ +∞
α [β2 + 2

∫ s
α [(λ1k0 )qρq − λ1ρ]dρ]−

1
2ds < 1, then the solution of problem

(1.1)-(1.3) blows up in a finite time.

Proof Let

U(t) =

∫
Ω
u(x, t)w1(x)dx.

Then U(0) = α > 0, Ut(0) = β > 0 and as it follows from (1.1)-(1.3), U(t) satisfies

Utt + cUt + λ1U =

∫
Ω
|∇u|qw1dx. (2.7)

By (2.4) and Holder inequality, we get

λ1U ≤ |
∫

Ω u(x, t)λ1w1(x)dx| = |
∫

Ω u(x, t)∆w1(x)dx|

= |
∫

Ω∇u∇w1dx| ≤
∫

Ω |∇u||∇w1|dx =
∫

Ω(|∇u|w1/q
1 ) |∇w1|

w
1/q
1

dx

≤ (
∫

Ω
|∇w1|

q
q−1

w
1/(q−1)
1

dx)
q−1
q (

∫
Ω |∇u|

qw1dx)
1
q = k0(

∫
Ω |∇u|

qw1dx)
1
q ,

4
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that is to say ∫
Ω
|∇u|qw1dx ≥ (

λ1

k0
)qU q. (2.8)

Therefore, from (2.7) and inequality(2.2), we obtain the ordinary differential inequality

Utt + cUt ≥ (
λ1

k0
)qU q − λ1U, (2.9)

with U(0) = α > 0, Ut(0) = β > 0. Denote h(s) = (λ1k0 )qsq − λ1s, since h(s) > 0 for s ≥ α, it

follows from Lemma 6 that lim
t→T−

0

U(t) = ∞, for some T0 ≤ T ∗ = −1
c ln(1 − δ1). Furthermore,

since U(t) > 0, we have U(t) = |U(t)| ≤ supΩ|u(x, t)|
∫

Ωw1dx ≤ supΩ|u(x, t)|, and we get

lim
t→T−

0

||u||pp =∞,∀1 ≤ p ≤ ∞, for some T0 ≤ T ∗ = −1
c ln(1− δ1), which proves the theorem.

Theorem 3 Suppose q ≥ 2, 0 < p < 2, a < 0 and b > 0. Let u(x, t) be a regular solution of

problem (1.1)-(1.3). Suppose that the following conditions are satisfied:∫
Ω
u0(x)w1(x)dx = α0,

∫
Ω
u1(x)ψ1(x)dx = β0,

where β0 > 0 and α0 is the positive root of the equation b(λ1k0 )qsq − |a|sp − λ1s = 0. If δ2 =

c
∫ +∞
α [β2 +2

∫ s
α [(λ1k0 )qρq−|a|ρp−λ1ρ]dρ]−

1
2ds < 1, then the solution of problem (1.1)-(1.3) blows

up in a finite time.

Proof Let

U(t) =

∫
Ω
u(x, t)w1(x)dx.

Then U(0) = α0 > 0, Ut(0) = β0 > 0 and as it follows from (1.1)-(1.3), U(t) satisfies

Utt + cUt + λ1U = a

∫
Ω
|u|pw1dx+ b

∫
Ω
|∇u|qw1dx. (2.10)

Then (2.8) and the inequality
∫

Ω |u|
pw1dx ≥ Up yield the ordinary differential inequality

Utt + cUt ≥ b(
λ1

k0
)qU q − |a|Up − λ1U = h2(U), (2.11)

with U(0) = α0 > 0, Ut(0) = β0 > 0. Since h2(s) > 0 for s ≥ α0, then the rest of the proof is

similar to the proof of Theorem 2 and the proof is complete.

Theorem 4 Suppose p ≥ 2, 0 < q < 2, b < 0 and a > 0. Let u(x, t) be a regular solution of

problem (1.1)-(1.3). Suppose that the following conditions are satisfied:∫
Ω
u0(x)w1(x)dx = α1,

∫
Ω
u1(x)ψ1(x)dx = β1,

where β1 > 0 and α1 is the positive root of the equation asp − |b|(λ1k0 )qsq − λ1s = 0. If δ3 =

c
∫ +∞
α [β2 + 2

∫ s
α [aρp − |b|(λ1k0 )qρq − λ1ρ]dρ]−

1
2ds < 1, then the solution of problem (1.1)-(1.3)

blows up in a finite time.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

835 Zhang ET AL 831-837



Proof Similar to the proof Theorem 3, U(t) satisfies

Utt + cUt + λ1U = a

∫
Ω
|u|pw1dx+ b

∫
Ω
|∇u|qw1dx, (2.12)

with U(0) = α1 > 0, Ut(0) = β1 > 0, and then we have

Utt + cUt ≥ aUp − |b|(
λ1

k0
)qU q − λ1U = h3(U), (2.13)

with U(0) = α1 > 0, Ut(0) = β1 > 0. Since h3(s) > 0 for s ≥ α0, then the rest of the proof is

similar to the proof of Theorem 3 and the proof is complete.

Remark 1 By Theorem 2-Theorem 4, we can also prove that the blowup result holds under the

similar initial conditions for the case a > 0, p > 2, p > q or b > 0, q > 2, q > p.

Remark 2 The same results hold if the boundary condition is of the form a∂u∂n + bu = 0.

Remark 3 The results remain true when 4u is replaced by p-Laplace operator div(|∇u|p∇u).

Remark 4 The method remains valid for more general equation (1.6), where f is locally Lips-

chitz continuous and satisfies the growth condition f(u, |∇u|) ≤ C(1 + |u|k + |∇u|q).
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The γ-fuzzy topological semigroups and

γ-fuzzy topological ideals

Cheng-Fu Yang

(School of Mathematics and Statistics of Hexi University, Zhangye Gansu,734000, P. 
R. China)

Abstract: Based on the concepts of semigroup and Chang's fuzzy topological space, this paper 

gives the defines of the γ-fuzzy topological semigroups, γ-fuzzy topological left ideals (γ-fuzzy 

topological right ideals, γ-fuzzy topological intrinsic ideals and γ-fuzzy topological double ideals) 

and discusses the fuzzy continuous homomorphic image and the fuzzy continuous homomorphic 

inverse image of them.

Keywords: Fuzzy topological space; γ-fuzzy topological semigroup; γ-fuzzy topological ideal; 

F-continuous; homomorphic image and homomorphic inverse image

1.Introduction

Since Zadeh [15] introduced fuzzy sets and fuzzy set operations in 1965. The 
concept of fuzzy sets has been widely used in various fields. For example, in 1968, 
Chang [2] applied the fuzzy set to topological space to give fuzzy topological space. 
After that, Pu and Liu [9,10] introduced neighborhood structure of a fuzzy point, 
moore-smith convergence and product and quotient spaces in fuzzy topological space. 
Afterwards Rosenfeld [12] formulated the elements of the theory of fuzzy groups and 
Foster [4] introduced the fuzzy topological groups. In 2011, Tanay et al. [13] gave the 
notion of fuzzy soft topological spaces and studied neighborhood and interior of a 
fuzzy soft set and then used these to characterize fuzzy soft open sets. Then Nazmul 
and Samanta [8] introduced the fuzzy soft topological groups. Subsequently, Coker 
[3] used the notion of intuitionistic fuzzy sets gave by Atanassov in [1] to introduce 
the notion of intuitionistic fuzzy topological spaces and obtained several preservation 
properties and some characterizations concerning fuzzy compactness and fuzzy 
connectedness. After that, Kul [6] introduced the intuitionistic fuzzy topological 
groups.

Recently, Rajesh gave the notion of γ-fuzzy topological group in [11] and 
discussed the connection between fuzzy topological group and γ-fuzzy topological 
group. Based on this idea, in this paper, we give the concepts of the γ-fuzzy 
topological semigroups, γ-fuzzy topological left ideals (right ideals, intrinsic ideals 
and double ideals) and then discuss the homomorphic image and inverse image of 
them.

2.Preliminary

Definition 2.1.[15] A fuzzy set A  in X is a set of ordered pairs:

{( , ( )) : }A x A x x X  
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Where ( ) : [0,1]A x X I   is a mapping and ( )A x states the grade of belongness 

of x in A . The family of all fuzzy sets in X is denoted by IX .
Particularly, the fuzzy set

,
( ) ,

0,

if x y
x y y X

otherwise

 
  


is called a fuzzy point in X, denoted by x .

Deflnition 2.2.[15] Let A , B  be two fuzzy sets of  IX

1) A  is contained in B  if and only if ( ) ( )A x B x   for every x X .

2)The union of A  and B  is a fuzzy set C , denoted by A B C  , whose 

membership function ( ) ( ) ( )C x A x B x     for every x X .

3)The intersection of A  and B  is a fuzzy set C , denoted by A B C  , whose 

membership function ( ) ( ) ( )C x A x B x     for every x X . 

4)The complement of A is a fuzzy set, denoted by cA , whose membership function 

( ) 1 ( )cA x A x    for every x X .

Definition 2.3.[2] Let X, Y be two nonempty sets, f a function from X to Y and B  a 
fuzzy set in Y with membership function B (y). Then the inverse of B , written as f
-1( B ), is a fuzzy set in X whose membership function is defined by f -1( B )(x) = B  (f 
(x)) for all x in X.

Conversely, let A  be a fuzzy set in X with membership function A (x). The 
image of A , written as f ( A ), is a fuzzy set in Y whose membership function is given 
by

1

1

( )
( ), ( )

( )( ) for 
0, ,

x f y
A x if f y

f A y y Y
otherwise





   





where  1( ) | ( )f y x f x y   .

Proposition 2.4.[2] Let f be a function from X to Y. Then:

(1) 1 1[ ] [ ]c cf B f B   for any fuzzy set B in Y.

(2) [ ] [ ( )]c cf A f A for any fuzzy set A  in X.

(3) 1 1
1 2 1 2[ ] [ ]B B f B f B       , where 1B , 2B  are fuzzy sets in Y.

(4) 1 2 1 2[ ] [ ]A A f A f A      , where 1A , 2A  are fuzzy sets in X.
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(5) 1[ [ ]]B f f B  for any fuzzy set B  in Y.

(6) 1[ [ ]]A f f A  for any fuzzy set A  in X.

Proposition 2.5. Let f be a function from X to Y. Then:

(1) ( ) ( ) ( )f A B f A f B     and ( ) ( ) ( )f A B f A f B    for any , XA B I  .

(2) 1 1 1( ) ( ) ( )f A B f A f B       and 1 1 1( ) ( ) ( )f A B f A f B      for any

, XA B I  .

Proof. This proposition can be directly verified by the Definition 2.3.

Next example shows that ( ) ( ) ( )f A B f A f B     for any , XA B I  has not hold.

Example. Let X =  , , ,a b c d , Y =  ,x y , 
0.3 0.2 0.6 0.1

A
a b c d

    , 

0.5 0.8 0.1 0.3
B

a b c d
    . Define :f X Y as f (a) = f (b) = f (c) = x, f (d) = y. Then 

A B  
0.3 0.2 0.1 0.1

a b c d
   ,

0.3 0.1
( )f A B

x y
   ， ( )f A  0.6 0.1

x y
 ，

( )f B  0.8 0.3

x y
 ， ( ) ( )f A f B  

0.6 0.1

x y
 . Thus ( ) ( ) ( )f A B f A f B    for any 

, XA B I  has not hold.

3.Fuzzy topological space

Definition 3.1.[2] A fuzzy topology is a family  of fuzzy sets in X which satisfies 
the following conditions:

(1) 0,1 ; 

(2)If ,A B   ,then ;A B  

(3) If ,iA i   ,then ;i iA  

 is called a fuzzy topology for X, and the pair ( ,X  ) is called a fuzzy topological 

space, or fts for short. Every member of  is called a  -open fuzzy set. A fuzzy set 
is  -closed if and only if its complement is  -open. In the sequel, when no 
confusion is likely to arise, we shall call a  -open ( -closed) fuzzy set simply an 
open (closed) set.
Proposition 3.2. Let X be a nonempty set. If  and J are two fuzzy topologicals for X, 

then J   is a fuzzy topology for X, where  | ,J A B A B J     .
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Proof. Straightforward.
Proposition 3.3. Let X, Y be two nonempty sets, f be an one-to-one mapping from X

to Y. If is a fuzzy topological for X, then ( )f   is a fuzzy topology for Y, where 

 ( ) ( ) |f f A A   .

Proof. (1) Obviously, (0) 0f   , (1) 1f   ;

(2) If , ( )A B f   , then there exist 1 1,A B   such that 1( )A f A   and 1( )B f B 

respectively. y Y  ,

1 11 1 1 1 1 1( ) ( )
( )( ) ( ( ) ( ))( ) ( )( ) ( )( ) ( ( )) ( ( ))

x f y x f y
A B y f A f B y f A y f B y A x B x  

             

= 1 11 1 1 1 1 1( ) ( )
( ( ) ( )) ( )( ) ( )( ).

x f y x f y
A x B x A B x f A B y  

         

This means 1 1( )A B f A B    . Since 1 1A B   , thus 1 1( ) ( )f A B f  

(3) If ( ),iA f i   , then for any i there exists a 1A  such that 

( ).i iA f A   And then

1 1( )
( )( ) ( ( )) ( ( )( )) ( ( ))i i i i i i i x f y

A y A y f A y A x    
          

= 1 11 1( ) ( )
( ( )) (( )( )) ( )( ).i i ix f y x f y

A x A x f A y    
         

This means ( )i i iA f A     . Since i iA   , thus ( ) ( )if A f    . This 

completes the proof.
Proposition 3.4. Let X, Y be two nonempty sets and f a mapping from X to Y. If  is 

a fuzzy topological for Y, then 1( )f  is a fuzzy topology for X, where 

 1 1( ) ( ) |f f A A     .

Proof. (1) Obviously, 1(0) 0f    , 1(1) 1f    ;

(2)If 1, ( )A B f   ,then there exist 1 1,A B   , such that 1
1( )A f A   and 

1
1( )B f B  respectively. x X  ,

1 1 1 1
1 1 1 1 1 1( )( ) ( ( ) ( ))( ) ( )( ) ( )( ) ( ( )) ( ( ))A B x f A f B x f A x f B x A f x B f x              

= 1
1 1 1 1( )( ( )) ( )( ).A B f x f A B x   
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This means 1
1 1( )A B f A B    . Since 1 1A B   , thus

1 1
1 1( ) ( )A B f A B f       . 

(3) If 1( ),iA f i   , then for any i there exists a 1A  such that 

1( ).i iA f A    And then

1
1( )( ) ( ( )) ( ( )( )) ( ( ( )))i i i i i i iA x A x f A x A f x

            

1
1 1 1( ( ( ))) ( )( ( )) ( )( ).i i iA f x A f x f A x

          

This means 1
1( )i i iA f A

     . Since 1i A   , thus 

1 1
1( ) ( )i i iA f A f  

      .

This complete the proof.

Definition 3.5.[2] A function f from a fts ( ,X  ) to a fts ( ,Y U ) is F-continuous iff the 

inverse of each open set in Y is open set in X.
Definition 3.6.[9] Let A  be a fuzzy set in (X, τ) and the union of all the open sets 
contained in A  is called the interior of A , denoted by OA . Evidently OA  is the 
largest open set contained in A  and OOA = OA .
Proposition 3.7.[2] Let A  be a fuzzy set in a fts (X, τ). Then A  is open iff A = 

OA .
Definition 3.8.[9] The intersection of all the closed sets containing A  is called the 

closure of A , denoted by A . Obviously A  is the smallest closed set containing A

and A = A .

By the definitions of the interior and closure, obviously OA ⊂ A ⊂ A .

Proposition 3.9.[9] Let A  be a fuzzy set in a fts (X, τ). Then A  is closed iff A = 

A .

Proposition 3.10. Let A  be a fuzzy set in a fts (X, τ).

(1) If A ⊂ B , then OA ⊂ OB .

(2) If A ⊂ B , then A ⊂ B .

Proof. According to the definition can be directly proved.
Proposition 3.11.[10] Let f : (X, τ)  (Y, U) be a function, then the ollowing are 
equivalent:
(1) f is F-continuous.
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(2) For every closed set A  in Y, f -1( A ) is closed set in X.

(3) For any fuzzy set A  in X, f( A ) ⊂ ( )f A .

(4) For any fuzzy set B in Y, 1 1( ) ( )f B f B   .

Proposition 3.12. Let f : (X, τ)  (Y, U) be a function; then the following are 
equivalent:
(1) f is F-continuous.

(2) For any fuzzy set B  in Y, 1 1( ) ( ( ))O of B f B   .

Proof. (1)  (2). For any fuzzy set B  in Y, by the definition of the interior and f is 

F-continuous, this means 1( )Of B   is an open set in X. On the other hand, since 

OB B  , by (3) of Proposition 2.4, 1 1( ) ( )Of B f B   . Considering 1( ( ))of B    is 

the union of all the open sets contained in 1( )f B  , thus 1 1( ) ( ( ))O of B f B   .

(2)  (1). Let B  be any open fuzzy set in Y, then OB B  . By condition, 

1 1 1( ) ( ) ( ( ))O of B f B f B      . On the other hand, since 1 1( ) ( ( ))Of B f B   , thus 

1 1( ) ( ( ))of B f B   . This means 1( )f B   is an open set in X, thus f is F-continuous.

Proposition 3.13. Let (X, τ) be a fts and f : X Y be an one-to-one F-continuous
mapping, then the following are hold:

(1) For any fuzzy set A  in X, ( ) ( ( ))O of A f A  .

(2) For any fuzzy set A in X, (( ) ) ( ( ))O of A f A 

Proof. According to the previous conclusion, (Y, f(τ)) is a fts.

(1) For any fuzzy set A  in X, since  | ,OA B B A B       , by (1) of Proposition 

2.5,  ( ) ( ) | ( ) ( ), ( ) ( )Of A f B f B f A f B f       .On the other hand, by the 

definition of the interior,  ( ( )) ( ) | ( ) ( ), ( ) ( )Of A f B f B f A f B f       . Thus  

( ) ( ( ))O of A f A  .

 (2) For any fuzzy set A  in X, since  | ,OA B B A B       , by (1) of 

Proposition 2.5, thus (( ) )Of A =  ( ) | ( ) ( ), ( ) ( )f B f B f A f B f     .Considering f

is a F-continuous, thus for any ( ) ( )f B f A   and ( ) ( )f B f  , by (3) of 
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Proposition 3.11, ( ) ( ) ( )f B f A f A     holds. By the definition of the interior of

( ( ))of A and (1) of Proposition 3.10, and then ( ) ( ( )) ( ( ))O of B f B f A    , thus 

(( ) ) ( ( ))O of A f A  .

Definition 3.14.[5, 11] A fuzzy set A  in fts (X, τ) is said to be fuzzy γ-open if A ⊂

( ) ( )o OA A  . The complement of a fuzzy γ-open set is called a fuzzy γ-closed set. The 

family of all fuzzy γ-open sets of X is denoted by γO(X).
Proposition 3.15. Let (X, τ) be a fts and f : X Y be an one-to-one F-continuous
mapping. If A  is a γ-open set in X, then f( A ) is a γ-open set in Y.

Proof. Since A  is a γ-open set in X, then A ⊂ ( ) ( )o OA A   . And then ( )f A ⊂

(( ) ( ) ) (( ) ) (( ) )o O o Of A A f A f A     .By Proposition 3.11 and Proposition 3.13, 

(( ) ) ( ) ( ( ))O O Of A f A f A    and (( ) ) ( ( ))o Of A f A  . This means ( )f A ⊂

(( ) ( ) ) (( ) ) (( ) ) ( ( )) ( ( ))o O o O o of A A f A f A f A f A         . By the Definition of the 

fuzzy γ-open set, ( )f A is a γ-open set in Y.

Proposition 3.16. Let (Y，J) be a fts and f -1 : YX be an one-to-one F-continuous. If 
B is a γ-open set in Y, then f -1( B ) is a γ-open set in X.
Proof. Let f -1 as f in proposition 3.15, the proof is similar to proposition 3.15.
Definition 3.17. A fuzzy set A  in a fts (X, τ) is called a γ-neighborhood of fuzzy 

point x , if there exists a γ-open set B  such that x B A    . The family 

consisting of all γ-neighborhoods of x is called the system of γ-neighborhoods of 

x .

Definition 3.18. A fuzzy point x is said to be quasi-coincident with a fuzzy set A , 

denoted by x q A , if λ + ( )A x > 1. A fuzzy set A  is said to be a Qγ-neighborhood 

x of if there exists a γ-open set B  such that x q B A  . The family consisting 

of all the Qγ-neighborhoods of x is called the system of Qγ-neighborhoods of x .

Proposition 3.19. Let ( X , τ) be a fts and f an one-to-one F-continuous mapping from 

X  to Y . If U  is a Qγ-neighborhood of a in X , then ( )f U  is a Qγ-neighborhood 
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of ( ) [ ( )]f a f a   in fts ( , ( )Y f  ).

Proof. In order to avoid confusion, here record ( )y f a . Without losing generality, 

let ( )U O X , Since

1 ( )
( )( ( )) ( )( ) ( ) ( ) 1,

x f y
f U f a f U y U x U a  


       

this means [ ( ) ( )]f a qf U .Considering ( ) ( )f U O Y , thus ( )f U  is a 

Qγ-neighborhood of [ ( )]f a  .

Proposition 3.20. Let (Y, J) be a fts and f -1 an one-to-one F-continuous mapping 
from Y to X. If V is a Qγ-neighborhood of (f(a))λ in Y, then f -1(V) is a Qγ-neighborhood 
of aλ in fts (X, f -1(J)).

Proof. Without losing generality, let ( )V O Y , Since

f -1(V)(a) + λ = V( f(a)) + λ > 1,
this means aλq f -1(V). Considering f -1(V)γO(X), thus f -1(V) is a Qγ-neighborhood of 
aλ.

4  -Fuzzy topological semigroup

Definition 4.1.[7] Let X be a semigroup and A , B  two fuzzy sets in X. A B  is 
defined as a fuzzy set in X, which membership function is as follows:

1 2 1 2( ) ( ( ) ( ))x x xAB x A x B x     for x X .

Proposition 4.2. Let X, Y be two semigroups and f an epimorphism from X to Y. If A , 

B  are any two the fuzzy sets in X, then ( ) ( ) ( )f AB f A f B   .

Proof. For any y Y , since

1 1 1
1 2 1 2

( ) 1 2 1 2
( ) ( ) ( )

( )( ) ( ) ( ( ( ) ( ))) ( ( ( ) ( )))x
x x x x x xx f y x f y x f y

f AB y AB A x B x A x B x
     

               

=
1 1

1 2 1 21 2 1 2
1 2 1 2

( ) ( )( ) ( )
( ( ( ) ( ))) ( ( ( ) ( )))

x x x f x x f x yx x f y x x f y
A x B x A x B x

    
        

=
1 1

1 2 1 21 2 1 2
1 2 1 2

( ) ( ) ( ) ( ) ( )
( ( ( ) ( ))) ( ( ( ) ( )))

f x f x f x y y y yx x f y x x f y
A x B x A x B x

    
        

=
1 1 1

1 2 1 21 2 1 2 1 2 1 2
1 2 1 2

( ) ( ) ( )
( ( ( ) ( ))) ( ( ( ) ( )))

y y y y y yx x f y y x x f y f y
A x B x A x B x

    
        

=
1 1 1 1

1 2 1 2 1 2 1 2 1 2
1 2

( ) ( ) ( ) ( )
(( ( ( )) ( ( )))

y y y x x f y f y x x f y f y
A x B x

     
    

=
1 1

1 2 1 1 2 2
1 2

( ) ( )
(( ( ( )) ( ( )))

y y y x f y x f y
A x B x
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=
1 2

1 2( ( )( ) ( )( )) ( )( )
y y y

f A y f B y f AB y

     ，

thus ( ) ( ) ( )f AB f A f B   .

Proposition 4.3. Let X, Y be two semigroups and f a monomorphism from X to Y. 

If ,C D  are any two the fuzzy sets in Y, then 1 1 1( ) ( ) ( )f CD f C f D     .

Proof. For any x X , since

1 1
1 2 1 2

1
1 2 1 2

( ) ( ) ( )
( )( ) ( ( )) ( ( ) ( )) ( ( ) ( ))

y y f x f y f y x
f CD x CD f x C y D y C y D y

 



 
            

=
1 2 1 2

1 1 1 1
1 2 1 2( ( ( )) ( ( ))) ( ( ( )) ( ( ))) ( ( ) ( ))( ),

x x x x x x
C f x D f x f C x f D x f C f D x   

 
         

thus 1 1 1( ) ( ) ( )f CD f C f D     .

Definition 4.4. Let X be a semigroup and ( ,X  ) a fts. Then ( ,X  ) is called a 

 -fuzzy topological semigroup, or  -ftsg for short, if for all ,a b X  and any 

Qγ-neighborhood W of fuzzy point ( )ab   there exist Qγ-neighborhoods U of a

and V of b such that UV W .

Proposition 4.5. Let X, Y be two semigroups and ( ,X  ) a  -ftsg. If f is an 

one-to-one F-continuous homomorphic mapping from X to Y, then ( , ( )Y f  ) is a 

 -ftsg.

Proof. By Proposition 3.3, ( , ( )Y f  ) is a fts. For any Qγ-neighborhood W of fuzzy 

point ( )ab   in Y, according to Proposition 3.20, 1( )f W  is a Qγ-neighborhood of 

fuzzy point 1(( ) )f ab 
  in X. Since ( ,X  ) is a  -ftsg, thus there exist 

Qγ-neighborhoods U of 1( )f a
  and V of 1( )f b

  such that 1( )UV f W , and 

then ( )f UV W . By proposition 3.19, ( )f U  and ( )f V  is the Qγ-neighborhoods 

of a  and b  respectively. Again by Proposition 4.2, ( ) ( ) ( )f U f V f UV W  . 

Thus ( , ( )Y f  ) is a  -ftsg.

Proposition 4.6. Let X, Y be two semigroups and (Y, J) a  -ftsg. If 1f   is an 
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one-to-one F-continuous homomorphic mapping from X to Y, then ( 1, ( )X f J ) is a 

 -ftsg.

Proof. By Proposition 3.4, 1( )f J  is a fts. For any Qγ-neighborhood W of fuzzy 

point ( )ab   in X, according to Proposition 3.19, ( )f W  is a Qγ-neighborhood W of 

fuzzy point (( ) )f ab   in Y. Since (Y, J) is a  -ftsg, thus there exist 

Qγ-neighborhoods U of ( )f a  and V of ( )f b such that ( )UV f W , and then 

1( )f UV W  . By proposition 3.20, 1( )f U  and 1( )f V is the Qγ-neighborhoods 

of a and b respectively.Again by Proposition 4.3, 1 1 1( ) ( ) ( )f U f V f UV W    . 

Thus ( 1, ( )X f J ) is a  -ftsg.

5. -Fuzzy topological ideal

Definition 5.1. Let X be a semigroup and ( ,X  ) a fts. Then ( ,X  ) is called a -fuzzy 

topological left ideal (right ideal), if for all ,a b X  and any Qγ-neighborhood W of 

fuzzy point ( )ab   there exists Qγ-neighborhood U of b ( Qγ-neighborhood V of a ) 

such that U W  (V W ).

Definition 5.2. Let X be a semigroup and ( ,X  ) a fts. Then ( ,X  ) is called a 

 -fuzzy topological intrinsic ideal (double ideal), if for all , ,a b c X  and any 

Qγ-neighborhood W of fuzzy point ( )abc   there exists Qγ-neighborhood U of b

(Qγ-neighborhood U of a  and Q -neighborhood V of c ) such that U W  (such 

that UV W ).

Proposition 5.3. Let X, Y be two semigroups and ( ,X  ) a -fuzzy topological left ieal 

(right ieal, intrinsic ideal, double ideal). If f is an one-to-one F-continuous 

homomorphic mapping from X to Y, then ( , ( )Y f  ) is a  -fuzzy topological left ieal 

(right ieal, intrinsic ideal, double ideal).
Proof. Similar to the proof of Proposition 4.5.
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Proposition 5.4. Let X, Y be two semigroups and (Y, J) a  -fuzzy topological left ieal 

(right ieal, intrinsic ideal, double ideal). If 1f   is an one-to-one F-continuous 

homomorphic mapping from X to Y, then ( 1, ( )X f J ) is a  -fuzzy topological left 

ieal (right ieal, intrinsic ideal, double ideal).
Proof. Similar to the proof of Proposition 4.6.
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ABSTRACT: 

In this paper, we will investigate the local stability of the equilibrium points, global attractor, 

boundedness and the form of the solutions for the following equations 

x��� =
Ax�x���

Bx� + Cx���
			and 					x ��� =

Ax�x���

Bx� − Cx���
, 

where the coefficients A, B and C are real positive numbers, and the  initial  conditions	x ��, x ��, x ��,

x� are  arbitrary  non zero   real   numbers. 

Keywords: difference equations, global attractor, local stability, equilibrium point, boundedness. 

Mathematics Subject Classification: 39A10. 

1. Introduction

The study of difference equations has been growing continuously for the last decade. This is largely 

due to the fact that difference equations manifest themselves as mathematical models describing real life 

situations in probability theory ,quelling theory, statistical problems, stochastic time series. combinatorial 

analysis number theory, geometry, electrical network, quanta in radiation, genetics in biology ,economics, 

psychology. sociology, etc. In fact, now it occupies a central position in applicable analysis and will no 

doubt continue to play an important role in mathematics as a whole see [1]-[20]. The purpose of this article 

is to investigate the global attractivity of the equilibrium point, and the asymptotic behavior of the solutions 

of the following difference equations 

x��� =
Ax�x���

Bx� + Cx���
.	 			(1)  

x��� =
Ax�x���

Bx� − Cx���
.	 (2)
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Where the initial conditions x₋₃, x₋₂, x₋₁, x₀ are arbitrary positive real numbers, and A, B, C are 

positive constants. We obtain the form of the solution of some special cases of equation (1) and (2)  and 

some numerical simulation to the equation are given to illustrate our results. 

Lemma 1.1.  Let I be some interval of real numbers and let �: ���� → �, be a continuously differentiable 

function. Then for every initial conditions x��,… , x��, x� ∈ �, � ∈ {1, 2, 3,… }, the difference equation 

���� = �(��, ����,… , ����),						� = 0, 1, 2, …,																																																								(3) 

has a unique solution {��}����
� . 

Difinition 1.1. A point �̅ ∈ �	is called an equilibrium point of equation (3) if	�̅ = �(�̅, �̅, … , �̅). That is, 

�� = �̅	���	� ≥ 0,	is a solution of equation (3), or equivalently, �̅  is a fixed point of �. 

Difinition 1.2. The equilibrium point �̅ of equation (3) is called locally stable if for every � > 0 there exists 

� > 0 such that for all		x��, x����, … , x��, x� ∈ � with │x�� − �̅│ + │x���� − �̅│ + ⋯	+ │x� − �̅│ < �, 

we have │x� − �̅│ < �, ∀� ≥ −�. 

Difinition 1.3.  The equilibrium point �̅ of equation (3) is called locally asymptotically stable if it is locally 

stable and if there exists � > 0 such that for all		x��, x����, … , x��, x� ∈ � with 

│x�� − �̅│ + │x���� − �̅│ + ⋯	+ │x� − �̅│ < �, 

we have lim
�→∞

x� = �̅. 

Difinition 1.4.  The equilibrium point �̅ of equation (3) is called global attractor if for all		x��,

x����,… , x��, x� ∈ �,  we have lim
�→∞

x� = �̅. 

Difinition 1.5.  The equilibrium point �̅ of equation (3) is called global asymptotically stable if it is locally 

stable and a global attractor of equation (3). 

The equilibrium point �̅ of equation (3) is unstable if it is not locally stable. 

 The linearized equation of equation (3) about the equilibrium point �̅ is the linear difference equation 

���� = �
��(�̅, �̅, … , �̅)

�����

�

���

����																																																																	(4) 

 Now suppose that the characteristic equation associated with equation (4) is 

�(�) = ���
� + ���

��� + ⋯+ ����� + �� = 0, 

where �� =
��(�̅,�̅,… ,�̅)

�����
. 



 

Theorem A. [32] Suppose that �� ∈ �,			� = 1,2,3, … �  and  k ∈ {0,1,2,⋯ }.	Then ∑ |��|
�
��� < 1, is a 

sufficient condition for the asymptotic stability of the difference equation 

���� + �������� + ⋯+ ���� = 0,								� = 0,1, 2, …			. 

Theorem B. [33] Let [�, �] be an interval of real numbers and assume that �: [�, �]� → [�, �] is a 

continuous function satisfying the following properties: 

(a) �(�, �, �)	is non-decreasing in � and � in [�, �] for each � ∈ [�, �], and is non-increasing in � ∈

[�, �] for each x and z in [�, �]; 

(b) If (�,�) ∈ [�, �] × [�, �] is a solution of the system  

� = �(�,�,�)					���					� = �(�,�,�). 

Then	� = �. Then equation	���� = �(��, ����, ����), has a unique equilibrium �̅ ∈ [�, �] and every 

solution of this equation converges to  �̅. 

Theorem C. [33] Let [�, �] be an interval of real numbers and assume that	�: [�, �]� → [�, �] is a 

continuous function satisfying the following properties: 

(a) �(�, �, �)	is non-decreasing in � and � in [�, �] for each � ∈ [�, �], and is non-increasing in � ∈

[�, �] for each y and z in [�, �]; 

(b) If (�,�) ∈ [�, �] × [�, �] is a solution of the system 

� = �(�,�,�)				���					� = �(�,�,�). 

Then	� = �. Then equation	���� = �(��, ����, ����), has a unique equilibrium �̅ ∈ [�, �] and every 

solution of this equation converges to  �̅. 

Theorem D. [33] Let [�, �] be an interval of real numbers and assume that	�: [�, �]� → [�, �] is a 

continuous function satisfying the following properties: 

(a) �(�, �, �)	is non-decreasing in � in [�, �] for each �	���	� ∈ [�, �], and is non-increasing in �	and 

� ∈ [�, �] for each y in [�, �]; 

(b) If (�,�) ∈ [�, �] × [�, �] is a solution of the system  

� = �(�,�,�)			���			� = �(�,�,�). 

Then	� = �. Then equation	���� = �(��, ����, ����), has a unique equilibrium �̅ ∈ [�, �] and every 

solution of this equation converges to  �̅. 



 

Many researchers have investigated the behavior of the solution of difference equation for example: Cinar 

[5-7] has got the solutions of the following difference 

���� =
����

1 + �������
,					���� =

����

−1 + �������
, ���� =

����

1 + �������
. 

Elabbasy et al. [10] studied the behavior of the difference equation	 

���� = ��� −
���

��� − �����
. 

El-Metwally et al. [12] investigated the asymptotic behavior of the population model 

���� = � + ������
���. 

Karatas et al. [28] got the form of the solution of the difference equation 

���� =
����

1 + ��������
. 

Zayed and El-Moneam [45] deal with the behavior of the following rational recursive sequence 

x��� =
α + βx� + γx���

A + Bx� + Cx���
. 

Wang and Zhang [38] considered the sufficient and necessary condition for the existence and uniqueness of 

the initial value problem of difference equations of higher order. In addition, they investigated the local 

stability, asymptotic behavior, periodicity and oscillation of solutions for the same equation. See also [21]-

[47]. 

2.   The Behavior of Equation (1) 

This section will examine the behavior of solutions of equation (1). The constants A, B and C within the 

equation are real positive numbers.   

 

2.1.  Local Stability of Equation (1) 

In this subsection, we explore the local stability character of the solution of equation (1). 

Equation (1) make sure has a unique equilibrium point is set as follows: 

x =
Axx

Bx + Cx
			⇒ 			 x = 0. 



 

Then the unique equilibrium point is x = 0 if B + C ≠ A.

Theorem 2.1. Assume that	A(B	 + 	3C) 	< 	 (B + 	C)�, then the equilibrium point of equation (1) is locally 

asymptotically stable. 

Proof: Let f: (0, ∞)� → (0, ∞) be a function  define  by 

f(u, v, w) =
Auw

Bu + Cv
	.																																																																					(5) 

Thus, it follows that 

∂f

∂u
=

ACvw

(Bu + Cv)�
,				

∂f

∂v
=

−ACuw

(Bu + Cv)�
,

∂f

∂w
=

Au

Bu + Cv
. 

As it can be seen 

∂f

∂u
│

����
=

AC

(B + C)�
,

∂f

∂v
│

����
=

−AC

(B + C)�
,			

∂f

∂w
│

����
=

A

B + C
. 

Then the linearized equation associated with equation (1) about x� = 0 is 

y��� −
AC

(B + C)�
y� +

AC

(B + C)�
y��� −

A

B + C
y��� = 0, 

and it associated characteristic equation is 

λ� −
AC

(B + C)�
λ� +

AC

(B + C)�
λ −

A

B + C
= 0. 

It follows by theorem A that equation (1) is asymptotically stable if 

│
AC

(B + C)�
│ + │

AC

(B + C)�
│ + │

A

B + C
│ < 1, 

thus, 

A(B + 3C) < (B + C)�. 

Therefore, the proof is complete. 



 

 

 2.2. Global Attractivity of the Equilibrium Point of Equation (1) 

The global attractivity character  of  solutions  of  equation (1) will be investigated in this section. 

Theorem 2.2. The equilibrium point of equation (1) is global attractor if B ≠ A.  

Proof. Let p, q are real numbers and suppose that	f: [p, q]� → [p, q]  be a function define by equation 

f(u, v,w) =
���

�����
, then we can easily see that the function increasing in u, w and decreasing in v. Assume 

that (m,M) is a solution of the system 

M = f(M,m,M)				and	m = f(m,M,m). 

Then from equation (1), we see that 

M =
AM�

BM + Cm
,							m =

Am�

Bm + CM
 

⇒ BM� + CMm = AM�,				Bm� + CMm = Am�. 

Formerly 

(B − A)(M − m)(M + m) = 0. 

Then M = m if B ≠ A. Therefore, it can be concluded from Theorem B that x̄ is a global attractor. 

2.3. Boundedness of the Solutions of Equation (1) 

The boundedness of the solutions of Equation (1) will be discussed in this section. 

Theorem 2.3. Every solution of equation (1) is bounded if  
�

�
< 1. 

Proof. Let {x�}����
∞ 	be a solution of equation (1). It follows from equation (1) that 

x��� =
Ax�x���

Bx� + Cx���
≤

Ax�x���

Bx�
=

A

B
x���, for	all	n ≥ 1. 

By using a comparison, we can write the right hand side as follows	y��� =
�

�
y���. 

So	y� = �
�

�
�
�
K,						K		is	constant, and this equation is locally asymptotically stable if 

�

�
< 1, and converges 

to the equilibrium point y� = 0. Thus the solution of equation (1) is bounded.  

2.4. Special Case of Equation (1) 

In this subsection, the solution of the fourth order difference equation will be presented here 

x��� =
x�x���

x� + x���
.																																																																																		(6) 

 Such  that  the  initial  conditions  x��, x��, x��, x� are  arbitrary  non zero   real   numbers. 

Theorem 2.4. The solution of equation (6) is given by the following formulas for n = 0,1,2, … 

	x����� =
(abc)�d���

(a + c)�(b + d)�(ab + ad + bc)�
, x����� =

(abd)�c���

(a + c)�(b + d)�(ab + ad + bc)�
, 



 

 

x����� =
(acd)�b���

(a + c)�(b + d)�(ab + ad + bc)�
, x��� =

(bcd)�a���

(a + c)�(b + d)�(ab + ad + bc)�
, 

x����� =
(ad)���(bc)�

(a + c)���(b + d)�(ab + ad + bc)�
, x����� =

(acd)���b�

(a + c)�(b + d)�(ab + ad + bc)���
, 

x����� =
(cbd)���a�

(a + c)���(b + d)���(ab + ad + bc)�
, x����� =

(bca)���d�

(a + c)�(b + d)�(ab + ad + bc)���
, 

x����� =
(abd)���c�

(a + c)���(b + d)���(ab + ad + bc)�
, x����� =

(cd)���b�a���

(a + c)���(b + d)�(ab + ad + bc)���
, 

where x�� = d, x�� = c, x�� = b, x� = a  . 

Proof. By using mathematical induction, we can prove as follow. For  n = 0 the result holds. Assume that the 

result holds for n − 1, as follows 

x����� =
(cbd)�a���

(a + c)�(b + d)�(ab + ad + bc)���
, x����� =

(bca)�d���

(a + c)���(b + d)���(ab + ad + bc)�
 

x����� =
(abd)�c���

(a + c)�(b + d)�(ab + ad + bc)���
, x����� =

(cd)�b���a���

(a + c)�(b + d)���(ab + ad + bc)�
. 

We see from equation (6) that 

x����� =
x�����x�����

x����� + x�����
 

													=
(cd)�b���a(acbd)�a���

(a + c)��(b + d)����(ab + ad + bc)����
÷ [

(acbd)�b��a(a + c)�� + (bcad)�d��

(a + c)���(b + d)���(ab + ad + bc)�
] 

	=
(cd)�b���a� ÷ [b��d��(a + c)��(da + b(a + c)]

(a + c)���(b + d)�(ab + ad + bc)���
=

(acb)�d���

(a + c)�(b + d)�(ab + ad + bc)�
. 

x����� =
x�����x�����

x����� + x�����
 

											=
(acbd)��

(a + c)����(b + d)����(ab + ad + bc)��
÷ [

(acbd)�d(ab + ad + bc)�� + (abcd)�c��

(a + c)�(b + d)�(ab + ad + bc)���
] 

						=
(acbd)� ÷ (ab + ad + bc)��c��[dc + (ab + ad + bc)]

(a + c)���(b + d)���(ab + ad + bc)���
=

(abd)�c���

(a + c)�(b + d)�(ab + ad + bc)�
. 



 

 

Also, the other relations can be proved similarly. The proof is completed. 

 

2.5.   Numerical Examples 

In this subsection, numerical examples which represent different types of solutions to equation (1). Are 

considered to confirm the results. 

Example 5.1. We assume the initial condition as follows:	x�� = 14, x�� = 2, x�� = 7, x� = 5 and the 

constants	� = 2, � = 4, � =1. See Fig. 1. 

 
Figure 1. 

Example 5.2. See Fig. 2 since we put x�� = 4, x�� = 2, x�� = 7, x� = 5 and the constants	� = 12, � =

4, � = 3. 

 
Figure 2. 

3.  The Behavior of Equation (2) 

This section will examine the behavior of solutions of equation (2). The constants A, B and C within the 

equation are real positive numbers.   



 

 

3.1. Local Stability of Equation (2) 

In this subsection, we explore the local stability character of the solution of equation (2). Equation (2) make 

sure a unique equilibrium point is set as follows: 

x =
Axx

Bx − Cx
				⇒ 				 x = 0. 

Then the unique equilibrium point is x = 0 if A + C ≠ B. 

Theorem 3.1. Assume that A(B − 	3C) 	< 	 (B − 	C)�, then the equilibrium point of equation (2) is locally 

asymptotically stable. 

Proof: Let f: (0, ∞)� → (0, ∞)  be a   function define by 

f(u, v, w) =
Auw

Bu − Cv
	.																																																							(7) 

Thus, it follows that 

∂f

∂u
=

−ACvw

(Bu − Cv)�
,

∂f

∂v
=

ACuw

(Bu − Cv)�
,

∂f

∂w
=

Au

Bu − Cv
. 

As it can be seen 

∂f

∂u
│

����
=

−AC

(B − C)�
,

∂f

∂v
│

����
=

AC

(B − C)�
,

∂f

∂w
│

����
=

A

B − C
. 

Then the linearized equation associated with equation (2) about x� = 0 is 

y��� +
AC

(B − C)�
y� −

AC

(B − C)�
y��� −

A

B − C
y��� = 0, 

and it associated characteristic equation is 

λ� +
AC

(B − C)�
λ� −

AC

(B − C)�
λ −

A

B − C
= 0.



 

 

It follows by theorem A that equation (2) is asymptotically stable if 

│
AC

(B − C)�
│ + │

AC

(B − C)�
│ + │

A

B − C
│ < 1, 

or 

A(B − 3C) < (B − C)�. 

Therefore, the proof is complete. 

 

3.2. Global Attractivity of the Equilibrium Point of Equation (2) 

The global attractivity  character  of  solutions  of  equation (2) will be investigated in this section. 

Theorem 3.2. The equilibrium point of equation (2) is global attractor if C ≠ A.  

Proof. Let p, q are real  numbers and  suppose  that	f: [p, q]� → [p, q]  be a function define by f(u, v,w) =
���

�����
.	 Then we can easily see that the function f(u, v, w)	decreasing in u and increasing in v. So we have 

two cases we prove case (1) and case (2) is similar and so will be omitted. 

Case (1):- If Bu − Cv > 0,	 then we can easily see that the function f(u, v, w)	increasing in w. Assume that 

(m,M) is a solution of the system 

M = f(m,M,M)				and	m = f(M,m,m). 

Then from equation (2), we see that 

M =
A��

Bm − CM
,							m =

���

BM − Cm
 

⇒ BMm − CM� = AMm,					BMm − Cm� = AMm. 

Formerly	C(M − m)(M + m) = 0.  Then M = m. Therefore, it can be concluded from Theorem C that �̅ 

is a global attractor. 

3.3. Special Case of Equation (2) 

In this section, we study the following special cases of equation (2) where the constants A, B	and	C are 

integers numbers. The solution of the fourth order difference equation will be presented here 

x��� =
x�x���

x� − x���
.																																																																										(8) 

 Such  that  the  initial  conditions  x��, x��, x��, x� are arbitrary  nonzero   real  numbers. 

Theorem 3.3. The solution of equation (8) is given by the following formulas for n = 0,1,2, … 

x����� =
(abc)�d���

(a − c)�(b − d)�(bc − ab + ad)�
, x����� =

(abd)�c���

(a − c)�(b − d)�(bc − ab + ad)�
, 



 

 

x����� =
(acd)�b���

(a − c)�(b − d)�(bc − ab + ad)�
, x��� =

(bcd)�a���

(a − c)�(b − d)�(bc − ab + ad)�
, 

x����� =
(ad)���(bc)�

(a − c)���(b − d)�(bc − ab + ad)�
, x����� =

(acd)���b�

(a − c)�(b − d)�(bc − ab + ad)���
, 

x����� =
(cbd)���a�

(a − c)���(b − d)���(bc − ab + ad)�
, x����� =

(bca)���d�

(a − c)�(b − d)�(bc − ab + ad)���
, 

x����� =
(abd)���c�

(a − c)���(b − d)���(bc − ab + ad)�
, x����� =

(cd)���b�a���

(a − c)���(b − d)�(bc − ab + ad)���
. 

Proof. As the proof of Theorem 2.4 and will be omitted. 

3.4.   Numerical Examples 

Example 3.4. We suppose that initial condition are taken as follows: x�� = 14, x�� = 32, x�� = −7, x� = 5 

and the constants	� = 12, � = 3, � = 8. See Fig. 3. 

 
Figure 3. 

Example 3.5. The Figure 4 shows the behavior of the solutions of equation (2) when x�� = 1.55, x�� =

2.20, x�� = 5.45, x� = 7 and the constants	� = 4, � = 2, � = 3. See Fig. 4. 



 

 

 
Figure 4. 
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Abstract

We investigate the convexity and the monotonicity of certain maps
involving Hadamard products and Bochner integrals for continuous fields
of Hilbert space operators. Their special cases and consequences are then
discussed. In particular, we obtain certain arithmetic mean-harmonic
mean, Jensen, and Fiedler type inequalities.

Keywords: Hadamard product, tensor product, continuous field of operators,
Bochner integral
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1 Introduction

Throughout, let B(H) be the algebra of bounded linear operators on a complex
separable Hilbert space H. The positive cone B(H)+ of B(H) consists of all
positive operators on H. The identity operator is denoted by I, where the
underlying space should be clear from contexts. The spectrum of A ∈ B(H)
is written as sp(A). For self-adjoint operators A and B, the situation A > B
means that A − B ∈ B(H)+. If A is an invertible positive operator, we write
A > 0. The operator norm of A ∈ B(H) is denoted by ∥A∥. The notation
∥·∥∞,X is used for the supremum norm on the set X.

The Hadamard product of A and B in B(H) is defined to be the bounded
linear operator A ◦B satisfying

⟨(A ◦B)e, e⟩ = ⟨Ae, e⟩⟨Be, e⟩ for all e ∈ E . (1.1)

∗Corresponding author. Email: pattrawut.ch@kmitl.ac.th
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Here, E is a fixed countable orthonormal basis for H. This definition is indepen-
dent on a choice of the orthonormal basis. In [7], it was shown that there is a
positive linear map Φ taking the tensor product A⊗B to the Hadamard product
A ◦ B for any A,B ∈ B(H). Indeed, the map Φ is given by Φ(X) = Z∗XZ
where Z : H → H⊗H is the isometry defined on the basis E by

Ze = e⊗ e for all e ∈ E . (1.2)

From the condition (1.1), the Hadamard product is commutative, bilinear, and
positivity preserving. When H is the finite-dimensional space Cn, the Hadamard
product for square complex matrices is just a principal submatrix of their Kro-
necker product, and it can be computed easily as the entrywise product.

In the literature, there are many results concerning Hadamard products for
matrices/operators, see e.g. [5, 8, 10]. A well known result is Fiedler’s inequality:

Theorem 1.1 ([6]). For any positive definite matrix A, we have

A ◦A−1 > I.

Theorem 1.1 can be extended in the following way:

Theorem 1.2 ([11]). For each i = 1, 2, . . . , n, let Ai be a positive definite matrix
and Xi a positive semidefinite matrix of the same size. Then the map

α 7→
n∑

i=1

X
1/2
i Aα

i X
1/2
i ◦

n∑
i=1

X
1/2
i A−α

i X
1/2
i

is increasing on [0,∞).

In this paper, we shall investigate the convexity and the monotonicity of an
integral map

α 7→
∫
Ω

X∗
t A

α
t Xt dµ(t) ◦

∫
Ω

X∗
t A

−α
t Xt dµ(t) (1.3)

where α is a real constant. Here, (At)t∈Ω and (Xt)t∈Ω are two operator-valued
maps parametrized by a locally compact Hausdorff space Ω. Some interesting
special cases of this map are discussed. Moreover, we obtain certain arithmetic
mean - harmonic mean (AM-HM), Jensen, and Fiedler type inequalities as con-
sequences. When we set Ω to be a finite space endowed with the counting
measure, our results are reduced to the corresponding discrete inequalities. In
particular, these include Theorems 1.1 and 1.2.

The paper is structured as follows. In Section 2, we set up basic notations,
and discuss Bochner integrability of continuous field of operators on a locally
compact Hausdorff space. The main part of the paper, Section 3, discusses
convexity and monotonicity of the map (1.3) and its interesting special cases. As
consequences, we obtain certain AM-GM, Jensen, and Fielder type inequalities
in the last section.
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2 Continuous field of operators on a locally com-
pact Hausdorff space

In this section, we provide fundamental background on continuous fields of op-
erators and their integrability. See, e.g., [1, 3, 12] for more information.

Let Ω be a locally compact Hausdorff space endowed with a Radon measure
µ. A family (At)t∈Ω of operators in B(H) is said to be a continuous field of
operators if the parametrization t 7→ At is norm-continuous on Ω. If, in addition,
the norm function t 7→ ∥At∥ is Lebesgue integrable on Ω, then we can form the
Bochner integral

∫
Ω
At dµ(t) which is the unique operator in B(H) such that

ϕ

(∫
Ω

At dµ(t)

)
=

∫
Ω

ϕ(At) dµ(t)

for every bounded linear functional ϕ on B(H) (see e.g. [14, pp. 75-78]).
In what follows, suppose further that the measure µ on Ω is finite. Next,

we shall prove the Bochner integrability of an operator-valued map involving
a continuous field of operators (Proposition 2.3). To do this we need some
auxiliary results about functional calculus and vector-valued integration.

Lemma 2.1. Let ∆ be a nonempty compact subset of C and f : ∆ → C a
continuous function. Let A be the subset of B(H) consisting of all normal
operators whose spectra are contained in ∆. Then the map Ψ : A → B(H),
A 7→ f(A) is continuous. Here, f(A) is the continuous functional calculus of f
on the spectrum of A.

Proof. See [4, Lemma 2.1].

Lemma 2.2. Let (X, ∥·∥X) be a Banach space, and let (Γ, ν) be a finite measure
space. Suppose that f : Γ → X is a measurable function. Then f is Bochner
integrable if and only if its norm function ∥f∥ is Lebesgue integrable, i.e.,∫

Γ

∥f∥ dν < ∞.

Here, ∥f∥ is defined by ∥f∥(x) = ∥f(x)∥X for any x ∈ X.

Proof. See e.g. [1, Theorem 11.44].

Now we are in a position to prove the Bochner integrability of a map related
to the map (1.3).

Proposition 2.3. Let (At)t∈Ω be a continuous field of normal operators in
B(H) such that sp(At) ⊆ [m,M ] for all t ∈ Ω. Let (Xt)t∈Ω be a bounded con-
tinuous field of operators in B(H). For any continuous function f : [m,M ] → C,
we can form the Bochner integral∫

Ω

X∗
t f(At)Xt dµ(t).

In addition, if f([m,M ]) ⊆ [0,∞), then this operator is positive.
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Proof. LetK > 0 be such that ∥Xt∥ 6 K for all t ∈ Ω. By Lemma 2.2, it suffices
to prove the Lebesgue integrability of the norm function t 7→ ∥X∗

t f(At)Xt∥.
We shall show that the map t 7→ X∗

t f(At)Xt is continuous and bounded. Since
t 7→ At is continuous, the map t 7→ f(At) is continuous on Ω by Lemma 2.1,
and hence so is the map t 7→ X∗

t f(At)Xt. For boundedness, we have that for
each t ∈ Ω,

∥X∗
t f(At)Xt∥ 6 ∥X∗

t ∥ · ∥f(At)∥ · ∥Xt∥
6 ∥Xt∥2 · ∥f∥∞,[m,M ]

6 K2∥f∥∞,[m,M ].

Now, suppose that f is positive on [m,M ]. Then f(At) is a positive operator
for all t ∈ Ω. Hence the resulting integral is positive since the integrand is
positive.

Remark 2.4. For convenience to all results in this paper, we may assume that
Ω is a compact Hausdorff space. In this case, any Radon measure on Ω is always
finite. It follows that every continuous field of operators on Ω is automatically
bounded, and hence is Bochner integrable.

Lemma 2.5. Let X and Y be Banach spaces and let (Γ, ν) be a measure space.
Suppose that a function f : Γ → X is Bochner integrable. If T : X → Y be a
bounded linear operator, then the composition T ◦ f is Bochner integrable and∫

Γ

(T ◦ f) dν = T

(∫
Γ

f dν

)
.

Proof. See e.g. [1, Lemma 11.45].

The next property will be used to prove the main result of the paper.

Proposition 2.6. Let (At)t∈Ω be a bounded continuous field of operators in
B(H). For any X ∈ B(H), we have∫

Ω

At dµ(t) ◦X =

∫
Ω

(At ◦X) dµ(t). (2.1)

Proof. By Lemma 2.2, the map t 7→ At is Bochner integrable on Ω since it is
continuous and bounded. Note that the map T 7→ T ◦ X is a bounded linear
operator fromB(H) to itself. It follows from Lemma 2.5 that the map t 7→ At◦X
is Bochner integrable on Ω and the property (2.1) holds.

3 Convexity and Monotonicity of certain maps
for Hadamard products of operators

In this section, we consider convexity and monotonicity of the map

α 7→
∫
Ω

X∗
t A

α
t Xt dµ(t) ◦

∫
Ω

X∗
t A

−α
t Xt dµ(t)

where α is a real constant. We start with an auxiliary result.

4
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Lemma 3.1. For each A > 0, the map α 7→ Aα+A−α is convex on R, increasing
on [0,∞), decreasing on (−∞, 0] and attaining its minimum at α = 0.

Proof. The convexity of the map F (α) = Aα+A−α means that for each α, β ∈ R
and ω ∈ (0, 1), we have F ((1−ω)α+ωβ) 6 (1−ω)F (α)+ωF (β) or equivalently,

A(1−ω)α+ωβ +A−((1−ω)α+ωβ) 6 (1− ω)(Aα +A−α) + ω(Aβ +A−β). (3.1)

Indeed, for each fixed x > 0, consider the function f(α) = xα + x−α in a real
variable α. Then

f ′′(α) = (lnx)2(xα + x−α) > 0, α ∈ R.

It follows that f is convex on R, i.e., for each α, β ∈ R and ω ∈ (0, 1) we have

x(1−ω)α+ωβ + x−((1−ω)α+ωβ) 6 (1− ω)(xα + x−α) + ω(xβ + x−β). (3.2)

Applying the functional calculus on the spectrum of A yields the desired in-
equality (3.1). Note also that f ′(α) = α(xα−1 − x−α−1) for each α ∈ R. Hence,
f is increasing on [0,∞), decreasing on (−∞, 0] and attaining its minimum at
α = 0. Similarly, applying the functional calculus yields the desired results.

A proof of a part of this fact in matrix context was given in [13], using
diagonalization.

Theorem 3.2. Let (At)t∈Ω be a continuous field of positive operators in B(H)
such that sp(At) ⊆ [m,M ] ⊆ (0,∞) for all t ∈ Ω. Let (Xt)t∈Ω be a bounded
continuous field of operators in B(H). Then the map

α 7→
∫
Ω

X∗
t A

α
t Xt dµ(t) ◦

∫
Ω

X∗
t A

−α
t Xt dµ(t) (3.3)

is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

Proof. Denote this map by F . Proposition 2.3 asserts the Bochner integrability
of the map t 7→ X∗

t A
α
t Xt for each α ∈ R. For each α ∈ R, we have by Proposition

2.6 and Fubini’s theorem for Bochner integrals [2] that

F (α) =

∫
Ω

(
X∗

t A
α
t Xt ◦

∫
Ω

X∗
sA

−α
s Xs dµ(s)

)
dµ(t)

=

∫∫
Ω2

(X∗
t A

α
t Xt ◦X∗

sA
−α
s Xs) dµ(s) dµ(t) (3.4)

=
1

2

∫∫
Ω2

(X∗
t A

α
t Xt ◦X∗

sA
−α
s Xs) + (X∗

t A
−α
t Xt ◦X∗

sA
α
sXs) dµ(s) dµ(t).

5
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Then, appealing the isometry Z defined by (1.2), we have

F (α) =
1

2

∫∫
Ω2

Z∗ [(X∗
t A

α
t Xt ⊗X∗

sA
−α
s Xs) + (X∗

t A
−α
t Xt ⊗X∗

sA
α
sXs)

]
Z

dµ(s) dµ(t)

=
1

2

∫∫
Ω2

Z∗(Xt ⊗Xs)
∗ [(At ⊗A−1

s )α + (At ⊗A−1
s )−α

]
(Xt ⊗Xs)Z

dµ(s) dµ(t). (3.5)

Now, for each α, β ∈ R and ω ∈ (0, 1), we have from Lemma 3.1 and (3.5) that

F ((1− ω)α+ ωβ)

6 1

2

∫∫
Ω2

Z∗(Xt ⊗Xs)
∗[(1− ω){(At ⊗A−1

s )α + (At ⊗A−1
s )−α}

+ ω{(At ⊗A−1
s )β + (At ⊗A−1

s )−β}
]
(Xt ⊗Xs)Zdµ(s) dµ(t)

=
1

2

∫∫
Ω2

Z∗[(1− ω)(X∗
t A

α
t Xt ⊗X∗

sA
−α
s Xs +X∗

t A
−α
t Xt ⊗X∗

sA
α
sXs)

+ ω(X∗
t A

β
tXt ⊗X∗

sA
−β
s Xs +X∗

t A
−β
t Xt ⊗X∗

sA
β
sXs)

]
Zdµ(s) dµ(t)

=
1− ω

2

∫∫
Ω2

(X∗
t A

α
t Xt ◦X∗

sA
−α
s Xs +X∗

t A
−α
t Xt ◦X∗

sA
α
sXs)dµ(s) dµ(t)

+
ω

2

∫∫
Ω2

(X∗
t A

β
tXt ◦X∗

sA
−β
s Xs +X∗

t A
−β
t Xt ◦X∗

sA
β
sXs)dµ(s) dµ(t)

= (1− ω)F (α) + ωF (β).

Therefore, F is convex. In the rest, it suffices to show that F is increasing on
[0,∞) since the Hadamard product is commutative. It follows from (3.5) and
Lemma 3.1 that for 0 6 α 6 β,

F (α) 6 1

2

∫∫
Ω2

Z∗(Xt ⊗Xs)
∗ [(At ⊗A−1

s )β + (At ⊗A−1
s )−β

]
(Xt ⊗Xs)Z dµ(s) dµ(t)

=
1

2

∫∫
Ω2

Z∗
[
(X∗

t A
β
tXt ⊗X∗

sA
−β
s Xs) + (X∗

t A
−β
t Xt ⊗X∗

sA
β
sXs)

]
Z dµ(s) dµ(t)

=

∫∫
Ω2

(X∗
t A

β
tXt ◦X∗

sA
−β
s Xs) dµ(s) dµ(t).

From (3.4), the right-hand side is equal to F (β). Thus, F is increasing on
[0,∞).

In the rest of section, we discuss certain special cases of Theorem 3.2.

Corollary 3.3. Let (At)t∈Ω and (Bt)t∈Ω be two bounded continuous field of
positive operators in B(H) such that sp(At) ⊆ [m,M ] ⊆ (0,∞) and AtBt =
BtAt for all t ∈ Ω. Then the map

α 7→
∫
Ω

Aα
t Bt dµ(t) ◦

∫
Ω

A−α
t Bt dµ(t) (3.6)

6
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is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

Proof. Set Xt = B
1/2
t for each t ∈ Ω. Then (Xt)t∈Ω is a continuous field by

Lemma 2.1. The family (Xt)t∈Ω is bounded due to the boundedness of (Bt)t∈Ω.
The result now follows from Theorem 3.2.

An interesting special case of Corollary 3.3 is when Bt = f(At) where f is
a complex-valued continuous function on [m,M ]. In this case, the field (Bt)t∈Ω

is bounded since
∥f(At)∥ 6 ∥f∥∞,[m,M ]

for all t ∈ Ω. Hence we obtain monotonicity information of the map

α 7→
∫
Ω

Aα
t f(At) dµ(t) ◦

∫
Ω

A−α
t f(At) dµ(t).

In particular, when f(x) = xλ, we get the following result.

Corollary 3.4. For any λ ∈ R, the map

α 7→
∫
Ω

Aλ+α
t dµ(t) ◦

∫
Ω

Aλ−α
t dµ(t)

is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

The next result is also a special case of Theorem 3.2 in which the weights
are scalars.

Corollary 3.5. Let (At)t∈Ω be a continuous field of positive operators in B(H)
such that sp(At) ⊆ [m,M ] ⊆ (0,∞) for all t ∈ Ω. For any bounded continuous
function w : Ω → [0,∞), the map

α 7→
∫
Ω

w(t)Aα
t dµ(t) ◦

∫
Ω

w(t)A−α
t dµ(t) (3.7)

is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

Proof. Set Xt =
√
w(t)I for all t ∈ Ω in Theorem 3.2. We see that (Xt)t∈Ω is

a bounded continuous field of operators.

Corollary 3.6. Let f : Ω → C and g : Ω → [0,∞) be bounded continuous
functions such that Range(f) ⊆ [m,M ] ⊆ (0,∞). Then the map

α 7→
∫
Ω

gfα dµ

∫
Ω

gf−α dµ

is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

7
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Proof. Set H = C in Corollary 3.3.

A discrete version of Theorem 3.2 is obtained in the next corollary, which is
an operator extension of Theorem 1.2.

Corollary 3.7. For each i = 1, 2, . . . , n, let Ai, Xi ∈ B(H) be such that Ai is
positive and invertible. Then the map

α 7→
n∑

i=1

X∗
i A

α
i Xi ◦

n∑
i=1

X∗
i A

−α
i Xi

is convex on R, increasing on [0,∞), decreasing on (−∞, 0] and attaining its
minimum at α = 0.

Proof. In Theorem 3.2, set Ω to be the finite space {1, 2, . . . , n} equipped with
the counting measure.

4 AM-GM, Jensen, and Fiedler type inequali-
ties

From the main result (Theorem 3.2), we get three interesting inequalities. The
first consequence is an integral version of the weighted arithmetic-harmonic
mean inequality for bounded continuous function defined on a locally compact
Hausdorff space:

Corollary 4.1. Let f be a bounded continuous function defined on Ω such that
Range(f) ⊆ [m,M ] ⊆ (0,∞). Let w : Ω → [0,∞) be a weight function, i.e.,∫
Ω
w dµ = 1. We obtain the following bound for the weight integral of f :

∥wf∥1 > 1

∥w/f∥1
. (4.1)

Here, ∥·∥1 denotes the L1-norm on Ω.

Proof. Setting H = C in Corollary 3.5 yields that the function

α 7→
∫
Ω

wfα dµ

∫
Ω

w

fα
dµ

is increasing on [0,∞). In particular, this implies that∫
Ω

wf dµ

∫
Ω

w

f
dµ >

(∫
Ω

w dµ

)2

= 1.

Now, since
∫

w
f dµ >

∫
wM−1 dµ = M−1 > 0, the inequality (4.1) follows.

The second consequence is a Jensen type inequality for a continuous field of
strictly positive operators.

8
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Corollary 4.2. Let (At)t∈Ω be a continuous field of positive operators in B(H)
such that sp(At) ⊆ [m,M ] ⊆ (0,∞) for all t ∈ Ω. Suppose that µ(Ω) = 1. Then∫

Ω

A2
t dµ(t) ◦ I >

∫
Ω

At dµ(t) ◦
∫
Ω

At dµ(t).

Proof. Form Corollary 3.4, the map

G(α) ≡
∫
Ω

At
1+α dµ(t) ◦

∫
Ω

At
1−α dµ(t)

is increasing on [0,∞). In particular, we have G(1) > G(0), which is the desired
inequality.

Corollary 4.2 may be regarded as a Jensen type inequality for continuous field
of operators (cf. [9]). Indeed, the case H = C of this corollary can be described
as follows. Suppose that (Ω, µ) is a probability space. For any continuous
function f : Ω → (0,∞), we have∫

Ω

f2 dµ >
(∫

Ω

f dµ

)2

,

which is Jensen’s inequality for the convex function ϕ(x) = x2.
The final result is an operator extension of Fiedler’s inequality (Theorem

1.1).

Corollary 4.3. For each invertible positive operator A, we have

A ◦A−1 > I. (4.2)

Proof. The case n = 1 in Corollary 3.7 says that the map α 7→ Aα ◦A−α has a
minimum at α = 0. It follows that Aα ◦ A−α > I for any α ∈ R. Replacing A
with A1/α yields the inequality (4.2).
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[5] R. Drnovšek, Inequalities on the spectral radius and the operator norm of
Hadamard products of positive operators on sequence spaces. Banach J.
Math. Anal., 10(4), 800-814 (2016).

[6] M. Fiedler, Uber eine ungleichung fur positiv definite matrizen. Math.
Nachr., 23, 197-199 (1961)

[7] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math-
ematica Japonica, 41, 531-535 (1995).

[8] J. I. Fujii, M. Nakamura, Y. Seo, Ando’s theorem for Hadamard products
and operator means. Sci. Math. Jpn., e-2006, 603-608 (2006).

[9] F. Hansen, J. Pečarić, I. Perić, Jensen’s operator inequality and its con-
verses. Math. Scand., 100, 61-73 (2007).

[10] K. Kitamura, R. Nakamoto, Schwarz inequalities on Hadamard products.
Sci. Math. Jpn., 1(2), 243-246 (1998).

[11] J. S. Matharu, J. S. Aujla, Hadamard product versions of the Chebyshev
and Kantorovich inequalities, J. Inequal. Pure Appl. Math., 10, Article 51
(2009).

[12] M. S. Moslehian, Chebyshev type inequalities for Hilbert space operators.
J. Math. Anal. Appl., 420(1), 737-749 (2014).

[13] M. S. Moslehian, J. S. Matharu, J. S. Aujla, Non-commutative Callebaut
inequality. Linear Algebra Appl., 436(9), 3347-3353 (2012).

[14] G. K. Pedersen, Analysis Now, Springer-Verlag, New York, 1989.

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

873 Chansangiam 864-873



Fibonacci periodicity and Fibonacci frequency

Hee Sik Kim1, J. Neggers2 and Keum Sook So3,∗

1Department of Mathematics, Research Institute for Natural Sciences, Hanyang University,

Seoul, 04763, Korea
2Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U. S. A

3,∗Department of Statistics and Financial Informatics, Hallym University, Chuncheon, 24252,

Korea

Abstract. In this paper we introduce the notion of Fibonacci periodicity modulo n, denoting this period by

the function F̂ (n). We note that F̂ (n) is an integral multiple of a fundamental frequency f̂(n), where the ratio

F̂ (n)/f̂(n) is a power of 2 for a collection of observed values of n. It is demonstrated that if a, b are natural

numbers with gcd(a, b) = 1, then F̂ (n) = lcm{F̂ (a), F̂ (b)} and thus that F̂ is a non-trivial example of a function

which we refer to as radical. From observations it also seems clear that F̂ (ps+1)

F̂ (ps)
= p for primes p.

1. Introduction and Preliminaries

Fibonacci-numbers have been studied in many different forms for centuries and the literature on the subject is

consequently incredibly vast. One of the amazing qualities of these numbers is the variety of mathematical models

where they play some sort of role and where their properties are of importance in elucidating the ability of the

model under discussion to explain whatever implications are inherent in it. The fact that the ratio of successive

Fibonacci numbers approaches the Golden ratio (section) rather quickly as they go to infinity probably has a

good deal to do with the observation made in the previous sentence. Surveys and connections of the type just

mentioned are provided in [1] and [2] for a very minimal set of examples of such texts, while in [3] an application

(observation) concerns itself with a theory of a particular class of means which has apparently not been studied in

the fashion done there by two of the authors the present paper. Surprisingly novel perspectives are still available.

Kim and Neggers [6] showed that there is a mapping D : M → DM on means such that if M is a Fibonacci

mean so is DM , that if M is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean,

then limn→∞DnM is the golden section mean.

In [5] Han et al. discussed Fibonacci functions on the real numbers R, i.e., functions f : R→ R such that for all

x ∈ R, f(x+2) = f(x+1)+f(x), and developed the notion of Fibonacci functions using the concept of f -even and

f -odd functions. Moreover, they showed that if f is a Fibonacci function then limx→∞
f(x+1)
f(x) = 1+

√
5

2 . The present

authors [8] discussed Fibonacci functions using the (ultimately) periodicity and we also discuss the exponential

Fibonacci functions. Especially, given a non-negative real-valued function, we obtain several exponential Fibonacci

functions.

The present authors [9] introduced the notions of Fibonacci (co-)derivative of real-valued functions, and found

general solutions of the equations 4(f(x)) = g(x) and (4 + I)(f(x)) = g(x). Moreover, they [10] defined and

studied a function F : [0,∞) → R and extensions F : R → C, F̃ : C → C which are continuous and such

that if n ∈ Z, the set of all integers, then F (n) = Fn, the nth Fibonacci number based on F0 = F1 = 1. If

x is not an integer and x < 0, then F (x) may be a complex number, e.g., F (−1.5) = 1
2 + i. If z = a + bi,

0∗ Correspondence: Tel.: +82 33 248 2011, Fax: +82 33 256 2011 (K. S. So).
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then F̃ (z) = F (a) + iF (b − 1) defines complex Fibonacci numbers. In connection with this function (and in

general) they defined a Fibonacci derivative of f : R → R as (4f)(x) = f(x + 2) − f(x + 1) − f(x) so that if

(4f)(x) ≡ 0 for all x ∈ R, then f is a (real) Fibonacci function. A complex Fibonacci derivative 4̃ is given as

4̃f(a+ bi) = 4f(a) + i4 f(b− 1) and its properties are discussed in same detail.

The notion of Fibonacci means was introduced by

M(x, y) =
a(x+ y) + 2bxy

2a+ b(x+ y)

where M(x, x) =
2ax+ 2bx2

2a+ 2bx
= x provided 2a+ 2bx 6= 0 ([6]).

Particular cases are a > 0, b = 0,M(x, y) = x+y
2 , the average (arithmetic mean), a = 0, b > 0,M(x, y) = 2xy

x+y ,

the harmonic mean, and if q = 1+
√
5

2 , Mq(x, y) = q(x+y)+2xy
2q+(x+y) , the golden section mean. Hence both the harmonic

mean, the arithmetic mean and golden section mean are special cases of the Fibonacci mean.

The golden section mean Mq(x, y) is defined by Mq(x, y) = q(x+y)+2xy
2q+(x+y) where q = 1+

√
5

2 , and we define Mq∗(x, y)

by q∗(x+y)+2xy
2q∗+(x+y) where q∗ = 1−

√
5

2 , which is called a conjugate golden section mean.

It was shown that: if M(x, y) = a(x+y)+2bxy
2a+b(x+y) is a Fibonacci mean and if M(x, y) = DM(x, y), then either

M(x, y) = Mq(x, y) or M(x, y) = Mq∗(x, y).

2. Fibonacci frequency

Given a positive integer n ≥ 2, let F̂ (n) = m provided Fk ≡ Fk+m (mod n) for all positive integers k, where m

is the smallest positive integer with this property and Fk is the kth Fibonacci number relative to arbitrary inputs

F1 = a, F2 = b, non-negative integers.

For example, for n = 2 we have with inputs a = 1, b = 1:

1, 1, 0, 1, 1, 0, · · ·

whence F̂ (2) ≥ 3. Also, a, b, a + b, a, b, a + b, · · · shows that F̂ (2) ≤ 3. Thus, combining these observations we

establish that:

Proposition 2.1. F̂ (2) = 3.

For n = 3, a = 1, b = 1 yields a lower bound computation is:

1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, · · ·

and F̂ (3) ≥ 8. Also, a, b, a+ b, a+ 2b, 2a, 2b, 2a+ 2b, 2a+ b, a, b, · · · and F̂ (3) ≤ 8. Hence, it follows that:

Proposition 2.2. F̂ (3) = 8.

When we consider the method of proof of the above two propositions, we note that the pattern 0, 1, 1, 2, · · ·
corresponds to a pattern αa + βb, a, b, a + b, · · · in the second sequence where α + β ≡ 0 (mod n), and that

if · · · , s, · · · is any term in the a = 1, b = 1 sequence, then · · · , s, · · · corresponds to · · · , λa + µb, · · · where

λ + µ ≡ s (mod n). Hence if s = 1, then we have λ ≡ 1 (mod n), µ ≡ 0 (mod n) or λ ≡ 0 (mod n), µ ≡ 1

(mod n), i.e., in the first case we find the input a, whereas in the second case we find the input b. Notice that

αa+βb, a, b, a+b, · · · with α+β ≡ 0 (mod n) means (α+1)a+βb ≡ b (mod n), β ≡ −α (mod n), (α+1)(a−b) ≡ 0
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(mod n), and a − b arbitrary means α + 1 ≡ 0 (mod n), i.e., α ≡ n − 1 (mod n), β ≡ 1 (mod n). Hence, the

sequence looks like (n − 1)a + b, a, b, · · · . If we continue the construction by including one more term, then

λa + µb, (n − 1)a + b, a, b, · · · yields (λ + (n − 1))a + (µ + 1)b ≡ a (mod n) and (λ + n − 2)a + (µ + 1)b ≡ 0

(mod n). Hence a = 0 yields µ ≡ n − 1 (mod n) and λ + n − 2 ≡ λ − 2 ≡ 0 (mod n), i.e., λ ≡ 2 (mod n),

i.e., the sequence is · · · , 2a + (n − 1)b, (n − 1)a + b, a, b, · · · . Letting a = b = 1, the corresponding pattern is

· · · , 2 + (n − 1) ≡ 1, (n − 1) + 1 ≡ 0, 1, 1, · · · . Thus, if this occurs at the mth location, then F̂ (n) ≥ m from

a = 1, b = 1 and F̂ (n) ≤ m from a, b unspecified, whence F̂ (n) = m. We thus obtain:

Theorem 2.3. To determine F̂ (n) it suffices to take a = 1, b = 1, and construct the Fibonacci sequence

modulo n until the pattern · · · , 1, 0 is obtained. If the sequence has m terms, then F̂ (n) = m.

Suppose for example that we wish to determine F̂ (4). Using Theorem 2.3 we let a = 1, b = 1, whence the

sequence is

1, 1, 2, 3, 1, 0,

and F̂ (4) = 6. Note that F̂ (4)/F̂ (2) = 6/3 = 2.

As another example consider the computation of F̂ (9). Again, using Theorem 3.3 and a = 1, b = 1, we obtain

the following sequence:

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0

and F̂ (9) = 24. Note that F̂ (9)/F̂ (3) = 24/8 = 3.

In this case we also note that the first 0 shows up after 12 steps. Accordingly we take f̂(9) = 12 and F̂ (9) =

f̂(9)m̂(9), F̂ (9) = 2. We consider f̂(9) to be the fundamental frequency and m̂(9) to be the multiplicity, with F̂ (9)

the Fibonacci frequency of the integer 9 (≥ 2).

Fibonacci numbers have been studied in great detail over many years and the literature on the subject is

quite substantial with entire books on the subject dedicated to their study and the study of these numbers also

meriting chapters in books on number theory ([1, 2]). Recently, two of the authors of this paper were able to

make a different but not entirely surprising connection between Fibonacci numbers and the Golden Section than

the usual one ([3]).

If a = b = 1, then it is well-known that Fm |Fn if and only if m |n for example. Another known result is the

following: For any prime p, there are infinitely many Fibonacci numbers which are divisible by p and these are

equally spaced in the Fibonacci sequence. The case f̂(3) = 4 is an instance of this observation. Our point of view

allows us to consider a more general situation and obtain some results on relationships connecting various values

of F̂ (n) and to make some conjectures on these relationships which appear to be interesting.

3. Radical functions

In the number-theoretical setting, a function f on the natural numbers is multiplicative if gcd(a, b) = 1 implies

f(ab) = f(a)f(b). Certainly any function for which f(xy) = f(x)f(y) is multiplicative. The Euler-phi-function is

multiplicative in the number-theoretical sense without being multiplicative in the strict sense.
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Given a natural number m = pr11 · · · prnn , where the pi’s are distinct primes in the factorization of m, we let

rad(m) = p1 · · · pn, according to conventional ring-theoretical practice. Thus, for natural numbers m1,m2, we

find that rad(m1m2) = lcm{rad(m1), rad(m2)}. This function is an example of functions on the natural numbers

satisfying the following “multiplicative” condition: a function f on the natural numbers is a radical function if

gcd(a, b) = 1 implies f(ab) = lcm{f(a), f(b)}.

When we check the table in the previous section, we observe that in the available examples it is true that

gcd(a, b) = 1 implies F̂ (ab) = lcm{F̂ (a), F̂ (b)}. For example, F̂ (4) = 6, F̂ (5) = 20, F̂ (20) = 60, gcd(4, 5) = 1 and

F̂ (20) = lcm{6, 20} 6= 120, i.e., F̂ is not a multiplicative function in the number-theoretical sense. Thus, it is our

goal in this section to prove that F̂ is a radical function in the sense described above.

Lemma 3.1. If d|n, then F̂ (d) ≤ F̂ (n).

Proof. Since d|n, there exists an integer q such that n = dq. If we let F̂ (n) = m, then Fk ≡ Fk+m (mod n)

for any integer k, so that Fk+m − Fk = nu = dqu for some u ∈ Z, i.e., d|Fk+m − Fk. This means that

F̂ (d) ≤ m = F̂ (n). �

Lemma 3.2. If d|n, then F̂ (d)|F̂ (n).

Proof. Using Division Algorithm, we have F̂ (n) = F̂ (d)q + r for some q, r ∈ Z, where 0 ≤ r < F̂ (d). Let

F̂ (n) := m and F̂ (d) := t. Then m = qt+ r and hence Fk ≡ Fk+m (mod n), so that n|Fk+m − Fk. Since d|n, we

have d|Fk+m − Fk. We claim that Fk+r ≡ Fk+qt+r (mod d). Since F̂ (d) := t,

Fk ≡ Fk+t (mod d) (1)

for any natural number k ∈ N . If we take k := k+ t in (1), then Fk+t ≡ F(k+t)+t ≡ Fk+2t (mod d). Similarly, we

obtain

Fk ≡ Fk+(q−1)t (mod d) (2)

for any natural number k ∈ N and natural number q > 1. If we replace k by k+r in (2), then Fk+r ≡ Fk+r+(q−1)t ≡
Fk+r+qt (mod d). Hence Fk ≡ Fk+m ≡ Fk+qt+r ≡ Fk+r (mod d). Since F̂ (d) = t is the smallest positive integer

with this property and 0 ≤ t < t, we have r = 0, i.e., m = qt, proving the assertion. �

Theorem 3.3. If n = ab, where a, b are natural numbers with gcd(a, b) = 1, then F̂ (n) = lcm{F̂ (a), F̂ (b)}.

Proof. Suppose that n = ab, where a, b are natural numbers with gcd(a, b) = 1. Then F̂ (a)|F̂ (n), F̂ (b)|F̂ (n)

by Lemma 4. Hence lcm{F̂ (a), F̂ (b)} ≤ F̂ (n). If we let m := lcm{F̂ (a), F̂ (b)}, then there exists natural numbers

r, s such that m = rF̂ (a) = sF̂ (b) where gcd(r, s) = 1. Let α := m
r , β := m

s . Then Fk ≡ Fk+α (mod a),

Fk ≡ Fk+β (mod b) for any positive integer k. Hence Fk ≡ Fk+rα ≡ Fk+rm
r
≡ Fk+m (mod a). Similarly,

Fk ≡ Fk+sβ ≡ Fk+sm
s
≡ Fk+m (mod b) for any positive integer k. This means that a|Fk − Fk+m, b|Fk − Fk+m.

Since gcd(a, b) = 1, it follows that Fk ≡ Fk+m (mod ab), i.e., Fk+m ≡ Fk (mod n), so that F̂ (n) ≤ m by the

minimality property of F̂ , proving the theorem. �

Corollary 3.4. Let a, b, c are natural numbers which are relatively prime. Then F̂ (abc) = lcm{F̂ (a), F̂ (b), F̂ (c)}.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

877 Hee Sik Kim ET AL 874-881



Fibonacci periodicity and Fibonacci frequency

Corollary 3.5. Let a, b are natural numbers which are relatively prime. Then

gcd{F̂ (a), F̂ (b)} =
F̂ (a)F̂ (b)

F̂ (ab)

Example 3.6. F̂ (1147) = F̂ (1517) = 760 using the table above along with Theorem 3.3. Indeed, 1147 = 31 ·37

and 1517 = 41 · 37, F̂ (31) = F̂ (41) = 40, F̂ (37) = 76 and lcm{40, 76} = 760. It is of course true that F760 is not

a small integer.

4. Powers of primes

From the table given above, it is not immediately clear that there is any pattern to the values of F̂ (p), where

p is a prime. However, in all cases we have seen, the following properties holds:

Conjecture 4.1. For any prime p,

F̂ (ps+1)

F̂ (ps)
= p

Thus, for example F̂ (27)/F̂ (9) = 72/24 = 3 and F̂ (25)/F̂ (5) = 5. Accepting Conjecture 4.1 as true, we note that

if η(n) = F̂ (n)/n, then η(ps+1) = F̂ (ps+1)/ps+1 = pF̂ (ps)/ps+1 = F̂ (ps)/ps = η(ps) = · · · = η(p). For example,

η(27) = η(3) = F̂ (3)/3 = 8/3 = 72/27. If n = pr+1qs+1, then

F̂ (n) = lcm{F̂ (pr+1, F̂ (qs+1}

= lcm{prF̂ (p), qsF̂ (q)}

=
prqsF̂ (p)F̂ (q)

gcd{prF̂ (p), qsF̂ (q)}

=
nF̂ (p)F̂ (q)

gcd{F̂ (pr+1), F̂ (qs+1)}pq
and thus

η(n) =
F̂ (p)F̂ (q)

pq gcd{F̂ (pr+1), F̂ (qs+1)}
Now, pq = rad(n). Continuing in the same fashion, if m = pr11 · · · prnn , then we find that

η(m) =
F̂ (p1) · · · F̂ (pn)

rad(m) gcd{F̂ (pr11 ), · · · , F̂ (prnn )}

Global properties of the function F̂ (n) may then be gathered in the function:

Zη(s) =
∞∑
n=2

F̂ (n)

ns
,

so that Zη(1) =
∑∞
n=2

F̂ (n)
n =

∑∞
n=2 η(n), which does not appear to converge for s = 1, but may well converge

for complex variables with Re(s) sufficiently large. Other generating functions may also be constructed such as∑∞
n=2 F̂ (n)zn,

∑∞
n=2 η(n)zn,

∑∞
n=2 F̂ (n) z

n

n! , etc..
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Given F̂ (n) for n ≥ 2, define F̂ (1) = 1 and for positive integers a, b with gcd(a, b) = 1, let F̂ (ab ) satisfying the

following equation:

F̂ (
a

b
) =

lcm{F̂ (a), F̂ (b)}
lcm{F̂ (b), F̂ (b2)}

Thus, if b = 1, then F̂ (a1 ) = F̂ (a)/1 = F̂ (a). Also, F̂ ( 1
b ) = F̂ (b)/lcm{F̂ (b), F̂ (b2)}. Thus, if b = p is a prime and

if Conjecture 4.1 is accepted, then F̂ ( 1
p ) = F̂ (p)/pF̂ (p) = 1/p. The meaning or interpretation of the values of F̂

on fractions is not quite clear. It does however demonstrate that the function F̂ defined on integers n ≥ 2 has

extensions to the positive rationals, the one described here being one of them. Since mn = (−m)(−n), it makes

sense to define F̂ (q) = F̂ (−q) for rationals q > 0. Also, since we expect F̂ (ab ) to be “near zero” if ab is “near zero”,

F̂ (0) = 0 appears to be a sensible decision also.

For irrational values α, the definition of F̂ (α) could be as follows: if we define S(n, α) := sup{F (q) | q ∈ Q∩ [α−
1
n , α+ 1

n ]}, then 0 ≤ S(n+1, α) ≤ S(n, α) and hence limn→∞ S(n, α) = infn∈ω S(n, α). Since ∩n∈ωS(n, α) = {α},
it follows that this permits us to define F̂ (α) for α an irrational number. If F̂ (α) =∞, then S(n, α) =∞ for all

integers n. Thus, if this is the case, there is a sequence of rational numbers {qi}∞i=1 such that limi→∞ qi = α and

at the same time limi→∞ F̂ (qi) = α and at the same time limi→∞ F̂ (qi) =∞. We conjecture the following:

Conjecture 4.2. There is no sequence {qi}∞i=1 of rational numbers such that limi→∞ qi = α and limi→∞ F̂ (qi) =

∞.

Given that the conjecture holds, F̂ (α) is defined for irrational values of α as well, i.e., the domain of F̂ is the

real numbers.

5. Comments

In this paper we have considered several aspects of the sequence of Fibonacci numbers with inputs a, b arbitrary

related to the periodicity of such a sequence modulo n. Because of the plenitude of relations known to exist among

various Fibonacci numbers it was not surprising that patterns would be observed. We were pleased to discover that

there were numerous relationships to be found, even if not all of them are explainable. The most mysterious values

are those for F̂ (p) where p is an arbitrary prime. Thus, F̂ (29) = 14, F̂ (31) = 40, which insists on announcing

that from the “Fibonacci point of view” there is a “big difference’ between these two primes in the twin-prime

couple. Also, given an integer n, then fact that F̂ (n2)/F̂ (n) 6= n, suffices to identify it as a composite number

without knowing anything about any factorization of n. Thus, e.g., F̂ (36)/F̂ (6) = 24/24 = 1. Since Fibonacci

numbers grow rather quickly, this observation may prove useful in the exercise of primality testing. Also, if

F̂ (n2)/F̂ (n) = n, then, although this does not guarantee (maybe) that n is a prime, it seems that it ought to

greatly improve the probability that it is.
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6. Appendix

n F̂ (n) f̂(n) n F̂ (n) f̂(n) n F̂ (n) f̂(n) n F̂ (n) f̂(n)

2 3 3 3 8 4 4 6 6 5 20 5

6 24 12 7 16 8 8 12 6 9 24 12

10 60 15 11 10 10 12 24 12 13 28 7

14 48 24 15 40 20 16 24 12 17 36 9

18 24 12 19 18 18 20 60 30 21 16 8

22 30 30 23 48 24 24 24 12 25 100 25

26 84 21 27 72 36 28 48 24 29 14 14

30 120 60 31 30 30 32 48 24 33 40 20

34 36 9 35 80 40 36 24 12 37 76 19

38 18 18 39 56 28 40 60 30 41 40 20

42 48 24 43 88 44 44 30 30 45 120 60

46 48 24 47 32 16 48 24 12 49 112 56

50 300 75 51 72 36 52 84 42 53 108 27

54 72 36 55 20 10 56 48 24 57 72 36

58 42 42 59 58 58 60 120 60 61 60 15

62 30 30 63 48 24 64 96 48 65 140 35

66 120 60 67 136 68 68 36 18 69 48 24

70 240 120 71 70 70 72 24 12 73 148 37

74 228 57 75 200 100 76 18 18 77 80 40

78 168 84 79 78 78 80 120 60 81 216 108

82 120 60 83 168 84 84 48 24 85 180 45

86 264 132 87 56 28 88 60 30 89 44 11

90 120 60 91 112 56 92 48 24 93 120 60

94 96 48 95 180 90 96 48 24 97 196 49

98 336 168 99 120 60 100 300 150

Table 1
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The weighted moving averages for a series of fuzzy
numbers based on non-additive measures with σ − λ rules†
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Abstract Non-additive measure theory is an important mathematical tool to deal with inter-dependent
or interactive information. The concept of fuzzy number provides an effective means of describing vague
and uncertain system. The aim of this study is to integrate moving average with non-additive measures
with σ − λ rules under fuzzy environment. That is, the moving average for a series of fuzzy numbers
based on non-additive measures with σ− λ rules is proposed. Further, its specific calculation is invested
and some properties are discussed. In particular, triangular fuzzy numbers about this method are also
discussed. Finally, an example is given to illustrate our results.
Keywords: Fuzzy number; Fuzzy measure; Moving average.

1. Introduction

Non-additive measure theory, as an extension of classical measure theory for the study of inter-
dependent or interactive information, was proposed by Sugeon [18] by replacing additivity with mono-
tonicity. Many studies have focused on theoretical aspects and applications of non-additive measures.
Asahina [1] studied implication relationship among six continuity conditions and two null-additivity con-
ditions with respect to non-additive measures. Li [8] discussed four versions of Egoroff’s theorem in
non-additive measure theory by using special condition. In particular, the Choquet integral with respect
to non-additive measures has lbeen successfully applied in decision-making [23, 19], information fusion
[6], economic theory [17] and so on.

Considering the inherent uncertain and imprecise of information in practical life, another key mathe-
matical structure is introduced to model uncertain and incomplete systems, which is called fuzzy number,
proposed by Zadeh [25], on the basis of fuzzy sets [24]. Fuzzy number has been investigated intensively by
researches from various aspects. Gong [5] generalized convexity from vector-valued maps to n-dimensional
fuzzy number-valued functions. Saeidifar [16] introduced the concepts of nearest weighted interval and
point approximations of a fuzzy number. And Wang [22] applied triangular fuzzy number to study
management knowledge performance evaluation.

Moving average is that, given a series of numbers and fixed subset size, the first element of the
moving average is obtained by taking the average of the initial fixed subset of the number series [2].
The moving average has been widely applied in time series analysis [20], cloud computing [14] signal
processing and financial mathematics, etc. However, when we use moving average to make forecasting,
it is not reasonable to assume that all data are real data before we elicit them from practical data, fuzzy
data may exit, such as in financial and sociological application. So we need to take the vagueness of the
universe of importance. Furthermore, there is interaction among data in real application. The aim of
this paper is to propose the moving average for a series of fuzzy numbers based on non-additive measures
with σ − λ rules. In particular, triangular fuzzy numbers about this method are also discussed.

The structure of this paper is as follows. In Section 2, we review some basic cponcepts and properties
about non-additive measure with σ− λ rules and fuzzy numbers. And the definition of conduct between
a non-negative matrix and fuzzy number vector is given to make our analysis possible. In Section 3, we
propose the moving average for a series of fuzzy numbers based on non-additive measures with σ−λ rules.

†Supported by National Natural Science Fund of China (61763044, 11461062).
∗Corresponding author. Tel.: +8613993196400.
Email addresses: zt-gong@163.com(Zeng-Tai Gong), leiwenjingbz@163.com(Wen-Jing Lei).
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In Section 4, the calculation of the weighted moving averages for fuzzy-number based on a non-additive
measure with σ − λ rules is invested and some properties are discussed. The paper ends with conclusion
in In Section 5.

2. Preliminaries

Throughout this study, Rm denotes the m-dimension real Euclidean space and R+ = (0,∞).
Definition 2.1 [18, 10, 3]. Let X denote a nonempty set and A a σ− algebra on the X. A set function
µ is referred to as a regular fuzzy measure if

(1) µ(∅) = 0;
(2) µ(X) = 1;
(3) for every A and B ∈ A such that A ⊆ B, µ(A) ≤ µ(B).

Definition 2.2 [18, 10, 3]. gλ is called a fuzzy measure based on σ − λ rules if it satisfies

gλ

( ∞⋃
i=1

Ai

)
=



1

λ

{ ∞∏
i=1

[1 + λgλ(Ai)]− 1

}
, λ 6= 0,

∞∑
i=1

gλ(Ai), λ = 0,

where λ ∈ (− 1
supµ ,∞)

⋃
{0} , {Ai} ⊂ A , Ai ∩Aj = ∅ for all i, j = 1, 2, · · · and i 6= j.

Particularly, if λ = 0, then gλ is a classic probability measure.
A regular fuzzy measure µ is called Sugeno measure based on σ − λ rules if µ satisfies σ − λ rules,

briefly denoted as gλ. The fuzzy measure denoted in this paper is Sugeno measure.
Remark 2.1. In the Definition, if n = 2, then

µ (A ∪B) =

{
µ(A) + µ(B) + λµ(A)µ(B), λ 6= 0,

µ(A) + µ(B), λ = 0.

Remark 2.2. If X be a finite set, for any subset A of X, then

gλ (A) =



1

λ

{∏
x∈A

[1 + λgλ({x})]− 1

}
, λ 6= 0,

∞∑
i=1

gλ({x}), λ = 0.

Remark 2.3 [3]. If X be a finite set, then the parameter λ of a regular Sugeno measure based on σ− λ
rules is determined by the equation

n∏
i=1

(1 + λgλi) = 1 + λ.

Let gλ({xi}) = gi, i = 1, 2, ...,m, then gλ(Ai) is obtained from the following recurrence relation

gλ(Am) = gλ({xm}) = gm, gλ(Ai) = gλ(Ai+1) + λgigλ(Ai+1), 1 ≤ i < m.

Let Ã(x) ∈ Ẽ, r ∈ (0, 1] and [Ã]r = {x ∈ R : uÃ(X) ≥ r}. If Ã satisfies

(1) Ã is a normal fuzzy set, i.e., an x0 ∈ R exists such that uÃ(x0) = 1;

(2) Ã is a convex fuzzy set, i.e., uÃ(λx + (1 − λ)y) ≥ min {uÃ(x), uÃ(y)} for any x, y ∈ R, and
λ ∈ (0, 1];

(3) Ã is a upper semicontinuous fuzzy set;

(4) [A]0 = X ∈ R : uÃ(x) > 0 =
⋃
r∈(0,1][A]r is compact, where Ā denotes the closure of A.

Then, Ã is called a fuzzy number. We use Ẽ to denote the fuzzy number space [9].
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It is clear that each x ∈ R can be consider as a fuzzy number Ã defined by

uÃ(x) =

{
1, x = A,

0, otherwise.

Given any two fuzzy numbers Ã1, Ã2, k, k1k2 ≥ 0, the operational rules are as follows:
(1) k(Ã1 + Ã2) = kÃ1 + kÃ2,
(2) k1(k2Ã1) = (k1k2)Ã1,
(3) (k1 + k2)Ã1) = k1Ã1 + k2Ã1.

Lemma 2.1 [11, 12, 9]. For a fuzzy set Ã, it satisfy the following equation

Ã =
⋃

r∈[0,1]

(r∗
⋂

[Ã]r),

where r∗ denotes the fuzzy set whose membership function is constant function r.
Let Ã, B̃ ∈ Ẽ, k ∈ R, the addition and scalar conduct are defined by

[Ã+ B̃]r = [Ã]r + [B̃]r, [kÃ]r = k[Ã]r,

respectively, where [Ã]r = {x : uÃ(x) > r} = [A−(r), A+(r)], for any r ∈ (0, 1].

Lemma 2.2 [11, 12, 9]. If Ã ∈ Ẽ, then
(1) [Ã]r is a nonempty bounded closed interval for any r ∈ (0, 1];
(2) [Ã]r1 ⊃ [Ã]r2 where 0 6 r1 6 r2 6 1;
(3) if rn > 0 and {rn} converging increasingly to r ∈ (0, 1], then

∞⋂
n=1

[Ã]rn = [Ã]r.

Conversely, if for any r ∈ [0, 1], there exists Br ⊂ R satisfying (1) − (3), then there exists a unique

Ã ∈ Ẽ such that [Ã]r = Ar, r ∈ (0, 1], and [Ã]0 =
⋃
r∈(0,1][Ã]r ⊂ B0.

Definition 2.3 [21]. A triangle fuzzy number Ã is a fuzzy number with piecewise linear membership
function Ã defined by

uÃ(x) =


x− al
am − al

, al ≤ x ≤ am,

an − x
an − am

, am < x ≤ an,
0, otherwise,

which can be indicated as a triplet (al, am, an).
Given any two triangle fuzzy numbers x̃i = (xi − δi,1, xi, xi + δi,1), x̃j = (xj − δj,1, xj , xj + δj,1)), and

k ≥ 0, the operational rules are as follows:
(1) x̃i + x̃j = (xi − δi,1 + xj − δj,1, xi + xj , xi + δi,1 + xj + δj,1),
(2) k · x̃i = (kxi − kδi,1, kxi, kxi + kδi,2).

Definition 2.4. Given a nonnegative matrix P = [pij ] and a fuzzy-number vector X̃, if P ∈ Rm×m+ and

X̃ = [x̃1, x̃2, · · · , x̃m]ᵀ ∈ Ẽm(The ᵀ denotes the conjugate transpose of a vector or a matrix.), then the
product of P and X is defined as follows:

PX̃n−1 =


m∑
j=1

pij x̃j

...
m∑
j=1

pmj x̃j

 .
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3. The weighted moving averages for fuzzy-number based on a non-additive measure with
σ − λ rules

Definition 3.1. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ−λ rules. Denote Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅. Then the weighted moving averages
for fuzzy-number based on a non-additive measure with σ − λ rules is defined as follows:

x̃n = (gλ(A1)− gλ(A2))x̃n−m + (gλ(A2)− gλ(A3))x̃n−m+1 + · · ·+ (gλ(Am)− gλ(Am+1))x̃n−1,

where n > m.
When we use moving average to make forecasting, it is not reasonable to assume that all data are real

data before we elicit them from practical data, fuzzy data may exit, such as in financial and sociological
application. So we need to take the vagueness of the universe of importance. Furthermore, there is
interaction among data in real application.
Remark 3.1. If λ = 0, and x̃i is a special fuzzy number, namely, real number, i = 1, 2, · · · , the weighted
moving averages for a series of fuzzy numbers based on non-additive measures with σ−λ rules degenerates
to the classic weighted moving average in Ref. [2].
Theorem 3.1. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ − λ rules. Let Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅, X̃n = [x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ, then

X̃n = PX̃n−1 = P2X̃n−2 = · · · = Pn−1X̃1,

n = 1, 2, 3, ..., where

P =


0 1 0 · · · 0
0 0 1 · · · 0
... · · · · · · · · ·

...
0 0 0 · · · 1

gλ(A1)− gλ(A2) gλ(A2)− gλ(A3) gλ(A3)− gλ(A4) · · · gλ(Am)− gλ(Am+1)

 .

Proof. Based on Definition 3.1 and the operational rules of fuzzy numbers, we have

PX̃n−1 =


0 1 · · · 0
0 0 · · · 0
... · · · · · ·

...
0 0 · · · 1

gλ(A1)− gλ(A2) gλ(A2)− gλ(A3) · · · gλ(Am)− gλ(Am+1)




x̃n−1
x̃n
...

x̃n+m−3
x̃n+m−2

 =

[x̃n, x̃n+1, · · · , x̃n+m−3, (gλ(A1)−gλ(A2))x̃n−1+(gλ(A2)−gλ(A3))x̃n+· · ·+(gλ(Am)−gλ(Am+1))x̃n+m−2]
ᵀ.

And we know that

(gλ(A1)− gλ(A2))x̃n−1 + (gλ(A2)− gλ(A3))x̃n + · · ·+ (gλ(Am)− gλ(Am+1))x̃n+m−2 = x̃n+m−1,

This follows that
PX̃n−1 = X̃n.

The proof is complete. �
Theorem 3.1. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ − λ rules. Let Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅, X̃n = [x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ, and
X̃−n (r) and X̃+

n (r) as follows

X̃−n (r) = [x̃−n (r), x̃−n+1(r), · · · , x̃
−
n+m−1(r)]

ᵀ,

X̃+
n (r) = [x̃+n (r), x̃+n+1(r), · · · , x̃

+
n+m−1(r)]

ᵀ,

where [x̃i]r = [x−i (r), x+i (r)]. Then

X̃−n (r) = PX̃−n−1(r) = P2X̃−n−2(r) = · · · = Pn−1X̃−1 (r),
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X̃+
n (r) = PX̃+

n−1(r) = P2X̃+
n−2(r) = · · · = Pn−1X̃+

1 (r),

where n = 1, 2, 3, ..., and P is the same matrix in Theorem 3.1.
Proof. Based on Theorem 3.1, we have

PX̃−n−1(r) =


0 1 · · · 0
0 0 · · · 0
... · · · · · ·

...
0 0 · · · 1

gλ(A1)− gλ(A2) gλ(A2)− gλ(A3) · · · gλ(Am)− gλ(Am+1)




x̃−n−1(r)
x̃−n (r)

...
x̃−n+m−3(r)
x̃−n+m−2(r)

 =

[x̃−n (r), · · · , x̃−n+m−3(r), (gλ(A1)− gλ(A2))x̃
−
n−1(r) + · · ·+ (gλ(Am)− gλ(Am+1))x̃

−
n+m−2(r)]

ᵀ.

By Definition 3.1, we get

(gλ(A1)− gλ(A2))x̃n−1 + (gλ(A2)− gλ(A3))x̃
−
n (r) + · · ·+ (gλ(Am)− gλ(Am+1))x̃

−
n+m−2(r) = x̃−n+m−1(r).

This follows that
PX̃−n−1(r) = X̃−n (r).

Similarly, we can prove that
PX̃+

n−1(r) = X̃+
n (r).

The proof is complete. �
Theorem 3.2. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ − λ rules. Let Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅, X̃n = [x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ,

If x̃i is a triangle fuzzy number, and x̃i = (xi − δi,1, xi, xi + δi,2), i = 1, 2, · · · , then

X̃−n (r) = [x̃−n (r), x̃−n+1(r), · · · , x̃
−
n+m−1(r)]

ᵀ

= [δn,1r + xn − δn,1, δn+1,1r + xn − δn+1,1, · · · , δn+m−1,,1r + xn+m−1 − δn+m−1,1]ᵀ,

X̃+
n (r) = [x̃+n (r), x̃+n+1(r), · · · , x̃

+
n+m−1(r)]

ᵀ

= [−δn,2r + xn + δn,2,−δn+1,2r + xn+1 + δn+1,2, · · · ,−δn+m−1,2r + xn+m−1 + δn+m−1,2]
ᵀ.

Proof. Based on the operational rules we have

X̃−n (r) = [x̃−n (r), x̃−n+1(r), · · · , x̃
−
n+m−1(r)]

ᵀ

= [δn,1r + xn − δn,1, δn,1r + xn − δn,1, · · · , δn+m−1,1r + xn+m−1 − δn+m−1,1]ᵀ,
X̃+
n (r) = [x̃+n (r), x̃+n+1(r), · · · , x̃

+
n+m−1(r)]

ᵀ

= [−δn,2r + xn + δn,2,−δn,2r + xn + δn,2, · · · ,−δn+m−1,2r + xn+m−1 + δn+m−1,2]
ᵀ.

The proof is complete. �

4. The calculation of the weighted moving averages for fuzzy-number based on a non-
additive measure with σ − λ rules

Lemma 4.1 [15]. Let(d1, d2, · · · , dm) ∈ Rm+ and set

q(x) = xm − d1xm−1 − · · · − dm.

Suppose that gcd{k ∈ {1, 2, · · · ,m} : dk > 0} = 1, where the greatest common division of a set S is
denoted by gcd(S). Then q has a unique positive rootr. Moreover, the algebraic multiplicity of r is 1,
coinciding with the geometric multiplicity of r, and the modulus of every other root of q is strictly less
than r.
Lemma 4.2 [13]. LetB ∈ Cm×m, where C denotes plural numbers. Then the following holds
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(1) {Bn} converges to nonzero matrix if and only if 1 is a eigenvalue of B, whose algebraic multiplicities
and geometric multiplicities coincide, and every other eigenvalues of B has modulus strictly less than 1;

(2) If ρ(B) = max
λ∈σ(B)

|λ| = 1 is a eigenvalue of B whose algebraic multiplicity and geometric multiplicity

of 1 coincide, equal to 1, with right-hand and left-hand eigenvalue x and yᵀ respectively, then

lim
n→∞

Bn =
xyᵀ

yᵀx
,

where σ(B) is the set of eigenvalues of B.
Theorem 4.1. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ − λ rules. Let Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅, X̃n = [x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ, For the
matrix P satisfying the following recurrence relation in Theorem 3.1

X̃n = PX̃n−1 = P2X̃n−2 = · · · = Pn−1X̃1,

if gcd {i ∈ {1, 2, · · · ,m}|gλ(Ai)− gλ(Ai+1) > 0} = 1, then lim
n→∞

Pn exists, and

lim
n→∞

Pn =
eaᵀ

aᵀe
= ebᵀ,

where e =
m∑
i=1

ek = [1, 1, · · · , 1]ᵀ ∈ Rm, ek is the ith standard unit column vector,

a = [a1, a2, · · · , am]ᵀ, b = [b1, b2, · · · , bm]ᵀ, ak =
k∑
i=1

(gλ(Ai)− gλ(Ai+1)),

bk = aᵀek
aᵀe = ak

m∑
i=1

ai

=
gλ(A1)−gλ(Ak+1)

mgλ(A1)−
m∑
i=2

gλ(Ai)
, k = 1, 2, 3, ...,m.

Proof. For matrix P, its characteristic polynomial is p(t) = det(tId−P), where Id is the unit matrix of
order m . It is easy to obtain

p(t) = tm − (gλ(Am)− gλ(Am+1))t
m−1 − · · · − (gλ(A2)− gλ(A3))t− (gλ(A1)− gλ(A2)).

Since
m∑
i=1

(gλ(Ai)− gλ(Ai+1)) = gλ(A1) = 1, t = 1 is a positive root of p(t). Note that

gcd{k ∈ {1, 2, · · · ,m} : gλ(Ai)− gλ(Ai+1) > 0} = 1.

According to Lemma 4.1, we can obtain t = 1 is the unique root of p(t), whose algebraic multiplicity and
geometric multiplicity of 1 are both equal to 1, and the modulus of every other root of q is strictly less
than r.

Let x be the right-hand eigenvector of matrix P with respect to eigenvalue 1, then Px = x. By using
the elementary line transformation and the first elementary column transformation to matrix P, we can
obtain

Id−P

=


1 −1 0 · · · 0
0 1 −1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −1

gλ(A2)− gλ(A1) gλ(A3)− gλ(A2) gλ(A4)− gλ(A3) · · · 1− (gλ(Am+1)− gλ(Am))



→ · · · →


1 0 0 · · · −1
0 1 0 · · · −1
· · · · · · · · · · · · · · ·
0 0 0 · · · −1
0 0 0 · · · 0

 .

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

887 Zeng-Tai Gong ET AL 882-891



Zeng-Tai Gong, Wen-Jing Lei: The weighted moving averages for a series of fuzzy-numbers based on...

Hence, a basic systeme of solutions for homogeneous linear equation set (Id − P)x = [0, 0, · · · , 0]ᵀ is
determined. It follows that the right-hand eigenvalue of P with respect to 1 is x = [1, 1, · · · , 1]ᵀ = e.

Let yᵀ be the left-hand eigenvector of matrix P with respect to eigenvalue 1, then yᵀP = yᵀ. By using
the elementary line transformation and the first elementary column transformation to matrix Id − Pᵀ,
we can obtain

Id−Pᵀ =


1 0 0 · · · gλ(A2)− gλ(A1)
0 1 0 · · · gλ(A3)− gλ(A2)
... · · · · · · · · ·

...
0 0 0 · · · gλ(Am)− gλ(Am−1)
0 0 0 · · · 1− (gλ(Am)− gλ(Am+1))



→ · · · →


1 0 0 · · · gλ(A2)− gλ(A1)
0 1 0 · · · gλ(A3)− gλ(A1)
... · · · · · · · · ·

...
0 0 0 · · · gλ(Am)− gλ(A1)
0 0 0 · · · 0

 .
Thus, a basic system of solutions for homogeneous linear equation set (Id − Pᵀ)y = [0, 0, · · · , 0] is

determined as follows:

[gλ(A1)− gλ(A2), gλ(A1)− gλ(A3), · · · , gλ(A1)− gλ(Am)]ᵀ,

It follows that the left-hand eigenvalue of P with respect to 1 is aᵀ = [a1, a2, · · · , am], ak =
k∑
i=1

(gλ(Ai)−

gλ(Ai+1)), k = 1, 2, 3, ...,m. According to Lemma 4.2(1), we know that {Pn} converges to a nonzero
matrix. Combing Lemma 4.2(2), we can get

lim
n→∞

Pn =
eaᵀ

aᵀe
= ebᵀ.

The proof is complete. �
Theorem 4.2. Let (x̃1, x̃2, · · · , x̃m) ∈ Ẽm, (t1, t2, · · · , tm) ∈ Rm, and gλ be fuzzy measure satisfying
δ − λ rules. Let Ai = {ti, ti+1, · · · , tm}, i = 1, 2, ...,m, Am+1 = ∅, X̃n = [x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ. For the
matrix P satisfying the recurrence relation in Theorem 3.1

X̃n = PX̃n−1 = P2X̃n−2 = · · · = Pn−1X̃1,

if gcd {i ∈ {1, 2, · · · ,m} : gλ(Ai)− gλ(Ai+1) > 0} = 1, then lim
n→∞

x̃n exists, and

lim
n→∞

x̃n =

m∑
i=1

bix̃i,

where e =
m∑
i=1

ek = [1, 1, · · · , 1]ᵀ ∈ Rm×1, ek is the ith standard unit column vector,

a = [a1, a2, · · · , am]ᵀ, b = [b1, b2, · · · , bm]ᵀ, ak =
k∑
i=1

(gλ(Ai)− gλ(Ai+1)),

bk = aᵀek
aᵀe = ak

m∑
i=1

ai

=
gλ(A1)−gλ(Ak+1)

mgλ(A1)−
m∑
i=2

gλ(Ai)
, k = 1, 2, 3, ...,m.

Proof. Since
X̃n = PX̃n−1 = P2X̃n−2 = · · · = Pn−1X̃1,

we have
lim
n→∞

[x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ = lim
n→∞

Pn−1[x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ.

then, by Theorem 4.2, we can get

lim
n→∞

[x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ = erᵀ[x̃n, x̃n+1, · · · , x̃n+m−1]ᵀ,
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i.e. lim
n→∞

x̃n is determined by the operation of the first row of lim
n→∞

Pn−1 and X̃1 = [x̃1, x̃2, · · · , x̃m]ᵀ. It

follows that

lim
n→∞

x̃n =
aᵀx

aᵀe
=

m∑
i=1

aix̃i

m∑
i=1

ai

=

m∑
i=1

bix̃i.

The proof is complete. �
In moving weighted average, the weight of the information contained in the data is not the same, and

is independent of each other, so to identify the data of each phase is not reasonable. And introducing
the non-additive measure into the moving weighted average is of practical significance.
Example 4.1. Given a closing stock prices system over 5 days. The closing prices of each day is
denoted as x̃i, (x̃1, x̃2, · · · , x̃5) ∈ Ẽ5, and every x̃i is a triangle fuzzy number, x̃i = (xi− δi,1, xi, xi + δi,2),
i = 1, 2, · · · , 5. Suppose (t1, t2, · · · , t5) ∈ R5, Ai = {ti, ti+1, · · · , t5}, i = 1, 2, ..., 5, A6 = ∅. The value and
the weight of each x̃i is shown in Table 1, i = 1, 2, · · · , 5, then we can get the closing stock price over 10
days and some relevant results.

Day Closing stock price gλ
1 (19,20,21) 0.1
2 (21,22,23) 0.2
3 (23,24,25) 0.3
4 (24,25,26) 0.15
5 (22,23,24) 0.175

Table 1: The closing stock prices over 5 days.

According to Remark 2.3 again, we know that
5∏
i=1

(1 + λgλi) = 1 + λ, hence we can gain λ = 0.218.

Then, by Remark 2.3, we have

gλ(A1) = 1, gλ(A2) =
1

λ

{
5∏
i=2

[1 + λgλ({x})]− 1

}
= 0.88,

gλ(A3) =
1

λ

{
5∏
i=3

[1 + λgλ({x})]− 1

}
= 0.65, gλ(A4) =

1

λ

{
5∏
i=4

[1 + λgλ({x})]− 1

}
= 0.33,

gλ(A5) = gλ({x5}) = 0.175, gλ(A6) = 0.
By Definition 3.1, we have

x̃6 = (

5∑
i=1

((xi − δi,1)(gλ(Ai)− gλ(Ai+1)),

5∑
i=1

xi(gλ(Ai)− gλ(Ai+1)),

5∑
i=1

(xi + δi,2)(gλ(Ai)− gλ(Ai+1))),

= (22.04, 23.04, 24.04).

Similarly, we can also calculate x̃n, n = 7, 8, 9, 10, with respect to fuzzy measure gλ on A, shown in
Table 2. And by Theorem 4.1 and Theorem 4.3, we have

lim
n→∞

Pn =
eaᵀ

aᵀe

=
1

0.12 + 0.35 + 0.67 + 0.825 + 1


0.12 0.35 0.67 0.825 1
0.12 0.35 0.67 0.825 1
0.12 0.35 0.67 0.825 1
0.12 0.35 0.67 0.825 1
0.12 0.35 0.67 0.825 1
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Day Closing stock price gλ
1 (19,20,21) 0.1
2 (21,22,23) 0.2
3 (23,24,25) 0.3
4 (24,25,26) 0.15
5 (22,23,24) 0.175
6 (22.04,23.04,24.04)
7 (22.76,23.76,24.76)
8 (22.72,23,72,24.72)
9 (22.5,23.5,24.5)
10 (22.45,23.45,24.45)

Table 2: The closing stock prices over 10 days.

=


0.04 0.11 0.23 0.28 0.34
0.04 0.11 0.23 0.28 0.34
0.04 0.11 0.23 0.28 0.34
0.04 0.11 0.23 0.28 0.34
0.04 0.11 0.23 0.28 0.34

 ,

lim
n→∞

x̃n =
aᵀX̃1

aᵀe
=

1

0.12 + 0.35 + 0.67 + 0.825 + 1
(66.84, 69.865, 72.77) = (22.54, 23.56, 24.54),

where e =
5∑
i=1

ek = [1, 1, · · · , 1]ᵀ ∈ R5×1, ek is the ith standard unit column vector,

a1 = gλ(A1) − gλ(A2) = 0.12, a2 =
2∑
i=1

(gλ(Ai) − gλ(Ai+1)) = 0.35, a3 =
3∑
i=1

(gλ(Ai) − gλ(Ai+1)) =

0.67, a4 =
4∑
i=1

(gλ(Ai)− gλ(Ai+1)) = 0.825, a5 =
5∑
i=1

(gλ(Ai)− gλ(Ai+1)) = 0.1.

Here when n is infinite, the forecasting value of xn will become a stable value (22.54,23.56,24.54) by
the weighted moving averages for a series of fuzzy numbers based on non-additive measures with σ − λ
rules.

5. Conclusion

In this paper, the moving average for a series of fuzzy numbers was proposed by means of non-additive
measures with σ − λ rules and fuzzy number. Meanwhile, the special case, i,e. the moving average for a
series of triangular fuzzy numbers based on non-additive measures with σ−λ were also discussed. Further,
the calculation of the weighted moving averages for fuzzy-number based on a non-additive measure with
σ − λ rules was invested and some properties were discussed. Finally, an example was given to illustrate
the practical importance of the main results.
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A Periodic Observer Based Stabilization Synthesis Approach for

LDP Systems based on iteration ∗

Lingling Lv †, Wei He ‡, Zhe Zhang §, Lei Zhang ¶, Xianxing Liu ∥

Abstract

The stabilization problem of state observer based for linear discrete-time periodic (LDP) system
and its robust consideration are discussed in this paper. It is proved that the periodic controller and
the full-dimensional periodic state observer can be designed separately. Based on the well-known CG-
algorithm for matrix equation Ax = b as well as applying the lifting technique and algebraic operations,
an iterative algorithm for both periodic observer gains and periodic state feedback gains can be generated
simultaneously. By optimizing the free parameter matrix in the proposed algorithm, a robust stabilization
algorithm based on periodic observer for LDP systems is presented. One numerical example is worked
out to illustrate the effect of the proposed approaches.

Keywords: Linear discrete-time periodic (LDP) systems; periodic state observers; stabilization;
iterative method.

1 Introduction

The controller design requires us to master the state characteristics of the system. However, it is impractical
to direct measure all state variables precisely in practical applications. So it requires us to make reliable
estimates of the states that cannot be measured directly. The state observer is also called state reconstruction.
The basic design idea is to design a state equivalent to the original system and use the designed state
equivalent to the original state (see [1]-[2] and references therein). Especially, full-dimensional state observer
in the construction idea is based on the original observed coefficient matrix in accordance with the same
structure to establish a copy system. The difference between the observed system y and the copy system
output ŷ is taken as a fixed variable and fed back to the input of the integrator group in the copy system
to form a closed-loop system (see [3]-[5] and references therein). The design of observer has always been a
research hot topic in control theory and control engineering, one can see [6, 7, 8] and references therein for
instance.

Because of its extensive applications in cyclostationary process, multirate digital control, economics and
management, biology, etc., and advantages of improving control performance by using periodic controllers,
linear discrete periodic systems have been paid renewed attentions in the control theory community(see [9]-
[11] and the references therein). The stabilization problem of dynamic systems has a fundamental importance
in engineering, and hence it is among the most studied problems in modern control theory. Particularly, the
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stabilization of periodic motions of dynamic systems has drawn much attention over the past years (see [12]-
[16] and references therein). In [14], LMI based conditions for stabilization via static periodic state feedback
as well as via static periodic output feedback are presented, and the problem of quadratic stabilization in the
presence of either norm-bounded or polytopic parameter uncertainty is also treated. The output stabilization
problem for discrete-time linear periodic systems is solved in [15], where both the state-feedback control law
and the state-predictor are based on a suitable time-invariant state-sampled reformulation associated with a
periodic system. In addition, utilizing parametric poles assignment algorithm and robust performance index,
an algorithm of robust stabilization based on periodic observers is proposed in [16].

In this paper, the problem of stabilization of discrete-time periodic systems based on state observer is
transformed into the solution of the corresponding matrix equations, and a neat iterative algorithm is given
based on the well-known conjugate gradient algorithm. Initially, we consider the stabilization problem for
linear discrete-lime periodic systems without disturbances and give the expected algorithm. On this basis,
in case that uncertain disturbances exist in the system parameters, a robust control algorithm for purpose
of stabilization is also derived.

Notation 1 The superscripts ”T” and ”−1” stand for matrix transposition and matrix inverse, respectively;
Rn denotes the n-dimensional Euclidean space; i, j represents the integer set {i, i+ 1, . . . , j − 1, j}, tr(A)
means the trace of matrix A. Norm ∥A∥ is a Frobenius norm of matrix A. Λ(A) means the eigenvalue set
of matrix A and ΨA denotes the monodromy matrix AT−1AT−2 · · ·A0 with period T .

2 Preliminaries

Consider the completely observable and completely reachable LDP systems with the following state space
representation {

xt+1 = Atxt +Btut
yt = Ctxt

(1)

where t ∈ Z, the set of integers, xt ∈ Rn, ut ∈ Rr and yt ∈ Rm are respectively the state vector, the input
vector and the output vector, At, Bt, Ct are matrices of compatible dimensions satisfying

At+T = At, Bt+T = Bt, Ct+T = Ct.

In case that the state of system (1) can be measured, by periodic feedback control law

ut = −Ktxt + v(t), Kt+T = Kt, Kt ∈ Rr×n (2)

where vt is the reference input, we can obtain the following combined system with period T{
xt+1 = (At −BtKt)xt +Btvt
yt = Ctxt

(3)

When there exists some restrictions in practice, the state of system (1) can not be gotten by hardware, but
the input ut and the output yt can be measured. In this case, we need build another periodic system which
can give an asymptotic estimation of system states. The system with the following form can be adopted:

x̂t+1 = Atx̂t +Btut − Lt(Ctx̂− yt) (4)

where x̂ ∈ Rn and L(t) ∈ Rn×m, t ∈ Z are real matrices of period T. Obviously, equation 4 has the following
equivalent presentation:

x̂t+1 = (At − LtCt)x̂t +Btut + Ltyt (5)

Integrating (4) and (3) gives the following augmented system:
[
xt+1

x̂t+1

]
=

[
At BtKt

LtCt Ãt −BtKt

] [
xt
x̂t

]
+

[
Bt

Bt

]
vt

yt =
[
Ct 0

] [ xt
x̂t

] (6)

where Ãt = At − LtCt.

Then the problem of stabilization based on periodic observer for LDP system (1) can be represented as

2
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Problem 1 Given a completely reachable and completely observable LDP system (1), find periodic matrix
K(t) ∈ Rr×n, t ∈ 0, T − 1 and L(t) ∈ Rn×m, t ∈ 0, T − 1, such that the augmented system (6) is asymptoti-
cally stable.

When the system is disturbed by external environment, the closed loop system matrix will deviate from the
nominal matrix Ãt, which can be generally expressed as

At −BtKt 7→ At +∆a,t − (Bt +∆b,t)Kt, t ∈ 0, T − 1,

At + LtCt 7→ At +∆a,t + Lt (Ct +∆c,t) , t ∈ 0, T − 1,

in which ∆a,t ∈ Rn×n, ∆b,t ∈ Rn×r, ∆c,t ∈ Rm×n, t ∈ 0, T − 1 are random small perturbations. Thus, the
problem of robust observer design for linear discrete-time periodic system (1) can be portrayed as

Problem 2 Consider the completely observable and completely reachable linear discrete-time periodic system
(1), seek the periodic matrix K(t) ∈ Rr×n, t ∈ 0, T − 1 and Lt ∈ Rn×m, t ∈ 0, T − 1, such that the following
conditions are met:

1. The augmented system (6) is asymptotically stable;

2. Eigenvalues of the augmented system (6) are as insensitive as possible to small perturbations on systems
matrices.

3 Main result

The first thing to consider is the existence condition for a periodic state observer and a periodic state feedback
controller. To do this, we would like to give the following theorem firstly.

Theorem 1 For a given completely observable and completely reachable LDP system (1), the transfer func-
tion of the closed-loop system (6) is equal to the transfer function of the closed-loop system (3).

Proof. It is easy to calculate that the transfer function of the closed-loop system (3) is:

G(s) = Ct(sI −At −BtKt)
−1Bt (7)

Let

Pt =

[
I 0
−I I

]
.

It is easily computed that

P−1
t =

[
I 0
I I

]
.

Noticing the coefficient matrices of system (6), we can obtain that

Pt

[
At BtKt

−LtCt Ãt +BtKt

]
P−1
t =

[
At +BtKt BtKt

0 Ãt

]
,

P

[
Bt

Bt

]
=

[
Bt

0

]
,[

Ct 0
]
P−1
t =

[
Ct 0

]
.

Obviously, system (6) is algebra equivalent to the following system:([
At +BtKt BtKt

0 Ãt

]
,

[
Bt

0

]
,
[
Ct 0

])
(8)

3
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Since the systems which are algebra equivalent to each other have the same transfer function, we only need
to prove that the transfer function of system (8) is as shown in (7). By noticing[

sI −At −BtKt BtMt

0 sI − Ãt

]−1

=

[
(sI −At −BtKt)

−1 ∗
0 (sI − Ãt)

−1

]
(9)

the transfer function corresponding to (8) can be calculated as

Ḡ(s) =
[
Ct 0

] [ sI −At −BtKt BtKt

0 SI − Ãt

]−1 [
Bt

0

]
= Ct(sI −At −BtKt)

−1Bt

which is exactly equal to the transfer function of system (6). Thus the proof is accomplished.

According to theorem 1, the introduction of periodic state observer has no influence on the desired poles of
the closed-loop systems via periodic state feedback. Similarly, the introduction of periodic state feedback
has no influence on the designed poles of observer. In this point, the LDP systems keep pace with the linear
time invariant systems. Therefore, for the stabilization problem of LDP systems based on periodic observer,
the periodic state feedback controller and periodic observer can be designed separately. In the following,
poles assignment techniques are adopt to realize the desired purpose.

Let Γ1 and Γ2 be the predetermined set of poles of the close-loop system (3) and (5) respectively, which
are both symmetric with respect to the real axis. Let F̄K

j , F̄
L
j ∈ Rn×n be the T -periodic matrix satisfying

Λ(ΨF̄K) = Γ1 and Λ(ΨF̄L) = Γ2, respectively. Clearly, to make system (3) and (5) possess the pole set Γ1

and Γ2 if and only if there exists a T -periodic invertible matrix Xj and Yj such that

X−1
j+1(Aj −BjKj)Xj = −FK

j . (10)

and
Y −1
j+1(A

T
j − CT

j L
T
j )Yj = −FL

j . (11)

where FK
j = −F̄K

j , F
L
j = −F̄L

j , j ∈ 0, T − 1. Obviously, equations (10) and (11) can be rewritten as the
following periodic Sylvester matrices:

AjXj −BjKjXj = −Xj+1F
K
j , (12)

and
AT

j Yj − CT
j L

T
j Yj = −Yj+1F

L
j , (13)

Next, an iterative algorithm of stabilization problem based on periodic observer via periodic state feedback
is presented firstly, and its correctness will be strictly verified in the subsequence.

Algorithm 1 (Periodic CG-based Algorithm of problem 1)

1. Let FK
j ∈ Rn×n, FL

j ∈ Rn×n, j ∈ 0, T − 1 be a real periodic matrix, which satisfies Λ(ΨFK
j
) = Γ1

and Λ(ΨFK
j
)
∩

Λ(ΨAj ) = 0; Λ(ΨFL
j
) = Γ2 and Λ(ΨFL

j
)
∩
Λ(ΨAT

j
) = 0. Further, let Gj = KjXj ∈

Rr×n, Dj = LT
j Yj ∈ Rm×n are real parametric matrix such that periodic matrix pair (FK

j , Gj) and

(FL
j , Dj) is completely observable.

2. Set tolerance ε; Choose arbitrary initial periodic matrix Xj(0) ∈ Rn×n, Yj(0) ∈ Rn×n, j ∈ 0, T − 1;
Calculated as follows:

Qj(0) = BjGj −AjXj(0)−Xj+1(0)F
K
j ,

Wj(0) = CT
j Dj −AT

j Yj(0)− Yj+1(0)F
L
j ;

Rj(0) = AT
j Qj(0) +Qj−1(0)(F

K
j−1)

T;

Nj(0) = AjWj(0) +Wj−1(0)(F
L
j−1)

T;

Pj(0) = −Rj(0);

Hj(0) = −Nj(0);

t := 0.

4
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3. If
∑T−1

j=0 ∥Rj(t)∥ ≤ ε and
∑T−1

i=0 ∥Nj(t)∥ ≤ ε, stop; else, go to next step.

4. While
∑T−1

j=0 ∥Rj(t)∥ ≥ ε and
∑T−1

i=0 ∥Nj(t)∥ ≥ ε, calculate

αj(t) =

∑T−1
j=0 tr

[
PT
j (t)Rj(t)

]∑T−1
j=0 ∥AjPj(t) + Pj+1(t)Bj∥2

;

βj(t) =

∑T−1
j=0 tr

[
HT

j (t)Nj(t)
]∑T−1

j=0

∥∥AT
j Hj(t) +Hj+1(t)CT

j

∥∥2 ;
Xj(t+ 1) = Xj(t) + αj(t)Pj(t);

Yj(t+ 1) = Yj(t) + βj(t)Hj(t);

Qj(t+ 1) = BjGj −AjXj(t+ 1)−Xj+1(t+ 1)FK
j ;

Wj(t+ 1) = CT
j Dj −AT

j Yj(t+ 1)− Yj+1(t+ 1)FL
j ;

Rj(t+ 1) = AT
j Qj(t+ 1) +Qj−1(t+ 1)(FK

j−1)
T,

Nj(t+ 1) = AjWj(t+ 1) +Wj−1(t+ 1)(FL
j )

T;

Pj(t+ 1) = −Rj(t+ 1) +

∑T−1
j=0 ∥Rj(t+ 1)∥2∑T−1

j=0 ∥Rj(t)∥2
Pj(t);

Hj(t+ 1) = −Nj(t+ 1) +

∑T−1
j=0 ∥Nj(t+ 1)∥2∑T−1

j=0 ∥Nj(t)∥2
Hj(t);

t = t+ 1;

5. Let Xj = Xj(t),Yj = Yj(t). The real periodic matrix Kj and Lj can be obtained as

Kj = GjX
−1
j , j ∈ 0, T − 1,

Lj = (DjY
−1
j )T, j ∈ 0, T − 1.

Remark 1 The main part of the algorithm does not contain nested loops, so the computational complexity
of the algorithm is O(n).

Next, the convergence and correctness of the algorithm are proved.

Lemma 1 For sequences {Rj(k)}, {Pj}(k),{Nj(k)}, {Hj(k)}, j ∈ 0, T − 1, the following relations hold for
k ≥ 0:

T−1∑
j=0

tr
[
RT

j (k + 1)Pj(k)
]
= 0,

T−1∑
j=0

tr
[
NT

j (k + 1)Hj(k)
]
= 0, (14)

T−1∑
j=0

tr
[
RT

j (k)Pj(k)
]
+

T−1∑
j=0

∥Rj(k)∥2 = 0,
T−1∑
j=0

tr
[
NT

j (k)Hj(k)
]
+

T−1∑
j=0

∥Nj(k)∥2 = 0 (15)

∑
k>0

(∑T−1
j=0 ∥Rj(k)∥2

)2
∑T−1

j=0 ∥Pj(k)∥2
<∞,

∑
k>0

(∑T−1
j=0 ∥Nj(k)∥2

)2
∑T−1

j=0 ∥Hj(k)∥2
<∞ (16)

Proof. By the expression of Rj(k + 1) in Algorithm 1, the following deduction is established.

5
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Rj(k + 1) = AT
j Qj(k + 1) +Qj−1(k + 1)(FK

j−1)
T

= AT
j

(
CjGj −AjXj(k + 1)−Xj+1(k + 1)FK

j

)
+
(
Cj−1Gj−1 −Aj−1Xj−1(k)−Xj(k)F

K
j−1

)
(FK

j−1)
T

= AT
j

(
CjGj −AjXj(k)−XjF

K
j

)
+
(
Cj−1Gj−1 −Aj−1Xj−1 −Xj(k)F

K
j−1

)
(FK

j−1)
T

−α(k)AT
j

(
AjPj(k) + Pj+1(k)F

K
j

)
−α(k)

(
Aj−1Pj−1(k) + Pj(k)F

K
j−1

)
(FK

j−1)
T

= Rj(k)− α(k)
[
AT

j

(
AjPj + Pj+1(k)F

K
j

)
+
(
Aj−1Pj−1(k) + Pj(k)F

K
j−1

)
(FK

j−1)
T
]

Noticing the formula of α(k) in step 3 of Algorithm 1, we can obtain that

T−1∑
j=0

tr
[
RT

j (k + 1)Pj(k)
]

=
T−1∑
j=0

tr
[
RT

j (k)Pj(k)
]
− α(k)

T−1∑
j=0

[(
AjPj(k) + Pj+1(k)F

K
j

)T
AjPj(k)

]

+α(k)

T−1∑
j=0

[(
Aj−1Pj−1(k) + Pj(k)F

K
j−1

)T
Pj(k)F

K
j−1

]

=
T−1∑
j=0

tr
[
RT

j (k)Pj(k)
]

−α(k)
T−1∑
j=0

[(
AjPj(k) + Pj+1(k)F

K
j

)T (
AjPj(k) + Pj+1(k)F

K
j

)]

=
T−1∑
j=0

tr
[
RT

j (k)Pj(k)
]
− α(k)

T−1∑
j=0

∥∥AjPj(k) + Pj+1(k)F
K
j

∥∥
= 0

The second equation in (14) can be verified by similar deduction.

It is easily to check that equation (15) holds for k = 0. Then, according to the expression of Pj(k + 1) and
Equation (14), the following deduction holds.

T−1∑
j=0

tr
[
RT

j (k + 1)Pj(k + 1)
]
= −

T−1∑
j=0

tr
[
RT

j (k + 1)Rj(k + 1)
]
+

∑T−1
j=0 ∥Rj(k + 1)∥2∑T−1

j=0 ∥Rj(k)∥2
T−1∑
j=0

tr
[
RT

j (k + 1)Pj(k)
]

= −
T−1∑
j=0

∥Rj(k + 1)∥2

That’s to say Equation (15) holds. Applying Kronecker product, we get

6
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T−1∑
j=0

∥∥AjPj(k) + Pj+1(k)F
K
j

∥∥2 =
T−1∑
j=0

∥∥(E ⊗Aj) vec(Pj(k)) +
(
(FK

j )T ⊗ E
)
vec(Pj+1(k))

∥∥2

=

∥∥∥∥∥∥∥∥∥
(E ⊗A0) vec (P0 (k)) +

(
(FK

0 )T ⊗ E
)
vec (P1 (k))

(E ⊗A1) vec (P1 (k)) +
(
(FK

1 )T ⊗ E
)
vec (P2 (k))

...
(E ⊗AT−1) vec (PT−1 (k)) +

(
(FK

T−1)
T ⊗ E

)
vec (P0 (k))

∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥


E ⊗A0 (FK

0 )T ⊗ E
E ⊗A1 (FK

1 )T ⊗ E
E ⊗A2

. . . (FK
T−2)

T ⊗ E
(FK

T−1)
T ⊗ E E ⊗AT−1




vec (P0 (k))
vec (P1 (k))
vec (P2 (k))

...
vec (PT−1 (k))



∥∥∥∥∥∥∥∥∥∥∥

2

≤ Π
T−1∑
j=0

∥Pj(k)∥2 , (17)

where,

Π =

∥∥∥∥∥∥∥∥∥∥∥


E ⊗A0 (FK

0 )T ⊗ E
E ⊗A1 (FK

1 )T ⊗ E
E ⊗A2

. . . (FK
T−2)

T ⊗ E
(FK

T−1)
T ⊗ E E ⊗AT−1



∥∥∥∥∥∥∥∥∥∥∥

2

.

Define the following function:

J1(k) =
1

2

T−1∑
j=0

∥∥BjGj −AjXj(t+ 1)−Xj+1(t+ 1)FK
j

∥∥2 , (18)

J2(k) =
1

2

T−1∑
j=0

∥∥CT
j Dj −AT

j Yj(t+ 1)− Yj+1(t+ 1)FL
j

∥∥2 , (19)

By using the expression of α(k), β(k), the following relations hold for k ≥ 0:

J1 (k + 1) = J1(k)−
1

2
α(k)

T−1∑
j=0

tr
[
PT
j (k)Rj(k)

]
J2 (k + 1) = J2(k)−

1

2
α(k)

T−1∑
j=0

tr
[
HT

j (k)Nj(k)
]

Then, one has

J1 (k + 1)− J (k)

= −1

2

(
∑T−1

j=0 tr
[
PT
j (k)Rj(k)

]
)2∑T−1

j=0

∥∥AT
j Pj(k) + Pj+1(k)FK

j

∥∥2
≤ 0, (20)

which means that {J(k)} is a descent sequence, so that

J1(k + 1) ≤ J(0)

holds for all k ≥ 0. Then

∞∑
k=0

[J1(k)− J1(k + 1)] = J1(0)− lim
k→∞

J(k) (21)

< ∞.
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In view of Equation (15), (17) and (21), the following deduction holds:

∑
k≥0

(∑T−1
j=0 ∥Rj(k)∥2

)2
∑T−1

j=0 ∥Pj(k)∥2
=
∑
k≥0

(∑T−1
j=0 tr

[
RT

j (k)Pj(k)
])2

∑T−1
j=0 ∥Pj(k)∥2

≤ π
∑
k≥0

(∑T−1
j=0 tr

[
RT

j (k)Pj(k)
])2

∑T−1
j=0

∥∥AjPj(k) + Pj+1(k)FK
j

∥∥2 = 2π(J(0)− lim
k→∞

J(k))

< ∞.

Similar argument on J2(k) gives the conclusion

∑
k≥0

(∑T−1
j=0 ∥Nj(k)∥2

)2
∑T−1

j=0 ∥Hj(k)∥2
<∞.

To summarize, the Lemma 1 has been proved.

Based on the above lemma, the following conclusion could be drawn as:

Theorem 2 Consider the completely observable and completely reachable periodic discrete-time linear sys-
tem (1), the T -periodic matrix Lj , j ∈ 0, T − 1, Kj , j ∈ 0, T − 1, derived from Algorithm 1 is a solution of
Problem 1.

Proof. Let us first prove the convergence of matrix sequence {Rj(k)}, j ∈ 0, T − 1 generated from Algorithm
1.

By Lemma 1 and the expressions of Pj(k + 1) in Algorithm 1, we have

T−1∑
j=0

∥Pj(k + 1)∥2 =
T−1∑
j=0

∥∥∥∥∥−Rj(k + 1) +

∑T−1
j=0 ∥Rj(k + 1)∥2∑T−1

j=0 ∥Rj(k)∥2
Pj(k)

∥∥∥∥∥
2

=

(∑T−1
j=0 ∥Rj(k + 1)∥2∑T−1

j=0 ∥Rj(k)∥2

)2 T−1∑
j=0

∥Pj(k)∥2 +
T−1∑
j=0

∥Rj(k + 1)∥2 . (22)

Equation (22) can be written as

t(k + 1) = t(k) +
1∑T−1

j=0 ∥Rj(k + 1)∥2
(23)

equivalently, where

t(k) =

∑T−1
j=0 ∥Pj(k)∥2(∑T−1
j=0 ∥Rj(k)∥2

)2 .
Assume that

lim
k→∞

T−1∑
j=0

∥Rj(k)∥2 ̸= 0, (24)

which implies that there exists a constant δ > 0 such that

T−1∑
j=0

∥Rj(k)∥2 ≥ δ

for all k ≥ 0. It follows from (23) and (24) that

t(k + 1) ≤ t(k) +
1

δ
≤ · · · ≤ t(0) +

k + 1

δ
,

8
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which means
1

t(k + 1)
≥ δ

δt(0) + k + 1
.

So we have
∞∑
k=1

1

t(k)
≥

∞∑
k=1

δ

δt(0) + k + 1
= ∞.

However, according to Equation (16) that
∞∑
j=1

1

t(j)
<∞.

This gives a contradiction. Thus, there holds

lim
k→∞

T−1∑
j=0

∥Rj(k)∥2 = 0,

Similarity, we have

lim
k→∞

T−1∑
j=0

∥Rj(k)∥2 = 0,

which indicates that the matrix sequence {Xj(k)}, {Yj(k)}, j ∈ 0, T − 1, generated by Algorithm 1 are
convergent to matrices {Xj}, {Yj}, j ∈ 0, T − 1, which are respectively the solutions to the two periodic
Sylvester equations (12) and (13). According to the poles assignment theory as previously mentioned, matrix
Lj , Kj derived from Algorithm 1 are solutions to Problem 1.

3.1 Minimum norm and robust consideration

In this section, we will consider robust poles assignment problem raised in problem 2. In previous work, we
have discussed the sensitivity of the closed-loop LDP systems with respect to parameter uncertainties. Here,
we revisit it in the following lemma.

Lemma 2 [17] Let Ψ = A(T −1)A(T −2) · · ·A(0) ∈ Rn×n be diagonalizable and Q ∈ Cn×n be a nonsingular
matrix such that Ψ = Q−1ΛQ ∈ Rn×n, where Λ = diag{λ1, λ2, · · · , λn} is the Jordan canonical form of
matrix Ψ. For a real scalar ε > 0, ∆i(ε) ∈ Rn×n, i ∈ 0, T − 1, are matrix functions of ε satisfying

lim
ε→0+

∆i(ε)

ε
= ∆i,

where ∆i ∈ Rn×n, i ∈ 0, T − 1 are constant matrices. Then for any eigenvalue λ of matrix

Ψ(ε) = (A(T − 1) + ∆T−1(ε)) (A(T − 2) + ∆T−2(ε)) · · · (A(0) + ∆0(ε)) ,

the following relation holds:

min
i
{|λi − λ|} ≤ εnκF(Q)

(
T−1∑
i=0

∥A(i)∥T−1
F

)
max

i
{∥∆i∥F}+O(ε2). (25)

According to Lemma 2, combining the Algorithm 1, one could take the robust performance index of problem
2 as

J(Gj , Dj) = κF(X0)
T−1∑
j=0

∥Aj +BjKj∥T−1
F + κF(Y0)

T−1∑
j=0

∥∥AT
j + CT

j L
T
j

∥∥T−1

F
(26)

Based on the above discussion, the algorithm for robust stabilization based on observer design for LDP
systems can be presented as follows.

9
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Algorithm 2 (Robust stabilization based on periodic observer)

1. Perform the operations of step 1-4 of Algorithm 1.

2. Based on gradient-based search methods and the index (26), solve the optimization problem

Minimize J(Gj , Dj),

and denote the optimal decision matrix by Gopt
j , Dopt

j , j ∈ 0, T − 1.

3. Substituting Gopt
j , Dopt

j into steps 2-4 of algorithm 1 gives optimization matrices Xopt
j , Y opt

j .

4. The robust controller and observer gains can be obtained as

Kopt
j = Gopt

j (Xopt
j )−1, Lopt

j =
(
Dopt

j (Y opt
j )−1

)T
, j ∈ 0, T − 1.

4 A Numerical Example

Consider LDP system (1) with parameters as follows:

A(0) =

[
1 2
−2 3

]
, A(1) =

[
−1 2
3 −1

]
, A(2) =

[
−2 1
1 3

]
B(0) =

[
−1
1

]
, B(1) =

[
−1
1

]
, B(2) =

[
−1
1

]
C(0) =

[
2
−1

]
, C(1) =

[
−1
−1

]
, C(2) =

[
1
2

]

This is a diverging system and it is easy to prove that the system is completely reachable and completely
observable. Hence, we can claim that it can be stabilized by a periodic state feedback law based on a
full-dimensional state observer. Without loss of generality, let the pole set the system (3) and (5) be
Γ1 = {−0.3, 0.3} and Γ2 = {−0.4, 0.4}, respectively.

According to algorithm 1, by choosing parameter matrices G and D randomly, we obtain a group of solutions
as follows:  Krand

0 =
[
1.7699 −1.8268

]
Krand

1 =
[
−1.9615 −2.3782

]
Krand

2 =
[
−1.1669 −0.8084

] ,


Lrand
0 =

[
−2.5762 −1.4737

]T
Lrand
1 =

[
0.1217 2.0509

]T
Lrand
2 =

[
−1.1765 −1.6305

]T
Furthermore, employing the robust stabilization algorithm 2, we obtain a group of solution as follows: Krobu

0 =
[
1.8432 −3.5251

]
Krobu

1 =
[
−3.1085 1.4631

]
Krobu

2 =
[
−1.1128 −2.4826

] ,


Lrobu
0 =

[
−0.6456 0.9869

]T
Lrobu
1 =

[
0.3933 1.3929

]T
Lrobu
2 =

[
−1.0894 −1.7176

]T
Let discrete reference input v(t) = 0.1 sin(π2 + t) and the initial values of state and the observer state be

x0 =
[
−1 1

]T
, x̂0 =

[
0 0

]T
. We depict the trajectory of state variable x for the original system (1),

state variable x and its estimated state of system (6) under (Krand, Lrand), state variable x and its estimated
state of system (6) under (Krobu, Lrobu) in Fig.1 respectively, where the red line denote the histories of xL
and the green line denote the histories the observed state x̂. From the simulation results, we can see the
good performance of the controller and observer generated by the proposed algorithm.

5 Conclusion

A stabilizing controller design method for LDP systems based on periodic full-dimensional state observer is
introduced in this paper. As similar with linear time variant systems, the periodic state feedback controller

10
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Figure 1: Comparison of state and the observed state under different cases

and periodic observer are designed separately, based on the periodic poles assignment technique. An iterative
algorithm is presented to generate periodic observer gains and periodic controller gains simultaneously. In
addition, robust stabilization problem is also discussed in this paper, and the corresponding algorithm is
derived. The effectiveness of the proposed algorithms are shown by simulation results on an illustrate
example.
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SUBORDINATION AND SUPERORDINATION PROPERTIES FOR
CERTAIN FAMILY OF INTEGRAL OPERATORS ASSOCIATED WITH

MULTIVALENT FUNCTIONS

M. K. AOUF, H. M. ZAYED, AND N. E. CHO

Abstract. The object of the present paper is to obtain subordination, superordination
and sandwich-type results related to a certain family of integral operators defined on
the space of multivalent functions in the open unit disk. Also we point out relevant
connections of the results presented here with those obtained in earlier.

Keywords and phrases: p−valent function, differential subordination, superordina-
tion, subordination chain, integral operator.
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1. Introduction

Let H = H(U) be the class of functions analytic in U = {z ∈ C : |z| < 1} and H[a, n] be
the subclass of H(U) consisting of functions of the form f(z) = a+ anz

n+ an+1z
n+1 + . . .

and denote H0 := H[0, 1] and H := H[1, 1].

Let P denote the class of functions

P = {h ∈ H[0, 1] : h(z)h′(z) 6= 0, z ∈ U∗ := U \ {0}} , (1)

and A(p) be the class of all functions of the form

f(z) = zp +
∞∑
k=1

ak+pz
k+p (p ∈ N = {1, 2, ...}), (2)

which are analytic in U. We note that A(1) = A.
For f, g ∈ H(U), the function f(z) is said to be subordinate to g(z) or g(z) is su-

perordinate to f(z), if there exists a function ω(z) analytic in U with ω(0) = 0 and
|ω(z)| < 1 (z ∈ U), such that f(z) = g(ω(z)). In such a case we write f(z) ≺ g(z). If g
is univalent, then f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊂ g(U) (see [14,15]).

Let φ : C2 × U → C and h (z) be univalent in U. If p (z) is analytic in U and satisfies
the first order differential subordination:

φ (p (z) , zp′ (z) ; z) ≺ h (z) , (3)

then p (z) is a solution of the differential subordination (3). The univalent function q (z)
is called a dominant of the solutions of the differential subordination (3) if p (z) ≺ q (z)

1
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2 M. K. AOUF, H. M. ZAYED, AND N. E. CHO

for all p (z) satisfying (3). A univalent dominant q̃ that satisfies q̃ ≺ q for all dominants
of (3) is called the best dominant. If p (z) and φ (p (z) , zp′ (z) ; z) are univalent in U and
if p(z) satisfies the first order differential superordination:

h (z) ≺ φ (p (z) , zp′ (z) ; z) , (4)

then p (z) is a solution of the differential superordination (4). An analytic function q (z)
is called a subordinant of the solutions of the differential superordination (4) if q (z) ≺
p (z) for all p (z) satisfying (4). A univalent subordinant q̃ that satisfies q ≺ q̃ for all
subordinants of (4) is called the best subordinant (see [14,15]).

For the functions fi(z) ∈ A(p) (p ∈ N, i = 2, 3, ...,m), h(z) ∈ P and the parameters
β, α1, α2, ..., αm ∈ C with β 6= 0, we introduce the integral operator Ip,mh;α1,αi,β

: A(p) →
A(p) as follows:

Ip,mh;α1,αi,β
[fi](z) =

 α1 + p
m∑
i=2

αi

z
α1−pβ+p

m∑
i=2

αi

z∫
0

(
m∏
i=2

fαii (t)

)
hα1−1(t)h′(t)dt


1
β

. (5)

(All powers are principal ones).

We note the next special cases of the above defined integral operator:

(i) For p = 1, m = 2, α1 = γ, α2 = β and f2(t) = f(t), we obtain

Ih;β,γ(f)(z) =

β + γ

zγ

z∫
0

fβ(t)hγ−1(t)h′(t)dt

 1
β

,

where the operator Ih;β,γ was introduced and studied by Cho and Bulboacă [6].

(ii) For p = 1, m = 2, α1 = γ, α2 = β, f2(t) = f(t) and h(t) = t, we obtain

Iβ,γ(f)(z) =

β + γ

zγ

z∫
0

fβ(t)tγ−1(t)dt

 1
β

,

where the operator Iβ,γ was introduced by Miller et al. [16] and studied by Bulboacă [3–5].

To prove our results, we need the following definitions and lemmas.

Definition 1. [14] Denote by Q the set of all functions q(z) that are analytic and injective
on U\E(q) where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Further, denote by Q(a) the subclass of
Q for which q(0) = a.
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SUBORDINATION AND SUPERORDINATION PROPERTIES 3

Definition 2. [14] A function L (z, t) (z ∈ U, t ≥ 0) is said to be a subordination chain
(or Löwner chain) if L (., t) is analytic and univalent in U for all t ≥ 0, L (z, .) is
continuously differentiable on [0,∞) for all z ∈ U and L (z, s) ≺ L (z, t) for all 0 ≤ s ≤ t.

Lemma 1. [17] The function L (z, t) : U× [0,∞) −→ C of the form

L (z, t) = a1 (t) z + a2 (t) z2 + ... (a1 (t) 6= 0; t ≥ 0)

and lim
t→∞
|a1 (t)| =∞ is a subordination chain if and only if

Re


z
∂L (z, t)

∂z
∂L (z, t)

∂t

 > 0 (z ∈ U; t ≥ 0) ,

and
|L (z, t)| ≤ K0 |a1 (t)| (|z| < r0 < 1; t ≥ 0),

for some positive constants K0 and r0.

Lemma 2. [10] Suppose that the function H : C2 → C satisfies the condition

Re {H (is; t)} ≤ 0

for all real s and for all t ≤ −n (1 + s2) /2, n ∈ N. If the function p(z) = 1 + pnz
n +

pn+1z
n+1 + ... is analytic in U and

Re {H (p(z); zp′(z))} > 0 (z ∈ U) ,

then Re {p(z)} > 0 for z ∈ U.

Lemma 3. [11] Let κ, γ ∈ C with κ 6= 0 and let h ∈ H(U) with h(0) = c. If Re {κh(z) + γ} >
0 (z ∈ U) , then the solution of the following differential equation:

q (z) +
zq′ (z)

κq(z) + γ
= h (z) (z ∈ U; q(0) = c)

is analytic in U and satisfies Re {κq(z) + γ} > 0 for z ∈ U.

Lemma 4. [14] Let p ∈ Q(a) and let q(z) = a + anz
n + an+1z

n+1 + ... be analytic in
U with q (z) 6= a and n ≥ 1. If q is not subordinate to p, then there exists two points
z0 = r0e

iθ ∈ U and ζ0 ∈ ∂U\E(q) such that

q(Ur0) ⊂ p(U), q(z0) = p(ζ0) and z0p
′
(z0) = mζ0q

′(ζ0) (m ≥ n) .

Lemma 5. [15] Let q ∈ H[a; 1] and ϕ : C2 → C. Also set ϕ (q (z) , zq′ (z)) = h (z) . If
L (z, t) = ϕ (q (z) , tzq′ (z)) is a subordination chain and q ∈ H[a, 1] ∩Q(a), then

h (z) ≺ ϕ (q (z) , zq′ (z)) ,

implies that q (z) ≺ p (z). Furthermore, if ϕ (q (z) , zq′ (z)) = h (z) has a univalent solution
q ∈ Q(a), then q is the best subordinant.
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Let c ∈ C with Re (c) > 0 and

N = N(c) =
|c|
√

1 + 2Re (c) + Im (c)

Re (c)
.

If R = R(z) = 2Nz
1−z2 is a univalent function and b = R−1(c), then the open door function

Rc(z) is defined by

Rc(z) = R

(
z + b

1 + bz

)
(z ∈ U).

The function Rc is univalent in U, Rc(0) = c and Rc(U) = R (U) is the complex plane slit
along the half lines Re (w) = 0, Im (w) ≥ N and Re (w) = 0, Im (w) ≤ −N.

Lemma 6. (Integral Existence Theorem [12–14]) Let φ,Φ ∈ H with φ(z) 6= 0, Φ(z) 6=
0 for z ∈ U. Let α, β, γ, δ ∈ C with β 6= 0, α + δ = β + γ and Re (α + δ) > 0. If the
function g(z) ∈ A and

α
zg′(z)

g(z)
+
zφ′(z)

φ(z)
+ δ ≺ Rα+δ(z),

then

G(z) =

 β + γ

zγΦ(z)

z∫
0

gα(t)φ(t)tδ−1(t)dt

 1
β

∈ A,

G(z)
z
6= 0 (z ∈ U) and

Re

(
β
zG′(z)

G(z)
+
zΦ′(z)

Φ(z)
+ γ

)
> 0 (z ∈ U) .

(All powers are principal ones).

Indeed, Lemma 6 is extended for p-valent functions as follows:

Lemma 7. [18] (see also [1]) Let p ∈ N, φ,Φ ∈ H with φ(z) 6= 0, Φ(z) 6= 0 for z ∈ U.
Let α, β, γ, δ ∈ C with β 6= 0, pα + δ = pβ + γ and Re (pα + δ) > 0. If the function
f(z) ∈ A(p) and

Ap,α,δ =

{
f(z) ∈ A(p) : α

zf ′(z)

f(z)
+
zφ′(z)

φ(z)
+ δ ≺ Rpα+δ(z)

}
,

then

F (z) =

pβ + γ

zγΦ(z)

z∫
0

fα(t)φ(t)tδ−1dt

 1
β

= zp + ... ∈ A(p),
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F (z)
zp
6= 0 (z ∈ U) and

Re

(
β
zF ′(z)

F (z)
+
zΦ′(z)

Φ(z)
+ γ

)
> 0 (z ∈ U) .

(All powers are principal ones).

2. Main results

Unless otherwise mentioned, we assume throughout this paper that h ∈ P , β, α1, α2, ..., αm ∈

C with β 6= 0 such that Re

(
α1 + p

m∑
i=2

αi

)
> 0 and all powers are principal ones.

Using similar arguments to Lemma 7, we obtain the following lemma.

Lemma 8. If fi ∈ Ap,h;α1,αi (i = 2, 3, · · · ,m), where

Ap,h;α1,αi =

{
fi(z) ∈ A(p) :

m∑
i=2

αi
zf ′i(z)

fi(z)
+ 1 +

zh′′(z)

h′(z)

+ (α1 − 1)
zh′(z)

h(z)
≺ R

α1+p
m∑
i=2

αi
(z)

}
, (6)

then Ip,mh;α1,αi,β
[fi](z) ∈ A(p),

Ip,mh;α1,αi,β
[fi](z)

zp
6= 0 and

Re

[
β
z
(
Ip,mh;α1,αi,β

[fi](z)
)′

Ip,mh;α1,αi,β
[fi](z)

+ α1 + p
m∑
i=2

αi − pβ

]
> 0 (z ∈ U) ,

where Ip,mh;α1,αi,β
is the integral operator defined by (5).

Theorem 1. Let fi, gi ∈ Ap,h;α1,αi (i = 2, 3, · · · ,m) and

Re

{
1 +

zφ′′ (z)

φ′ (z)

}
> −δ (7)(

φ (z) = z

m∏
i=2

(
gi(z)

zp

)αi (h(z)

z

)α1−1

h′(z); z ∈ U

)
,

where δ is given by

δ =
1 + |a|2 − |1− a2|

4Re{a}

(
a = α1 + p

m∑
i=2

αi − 1, Re{a} > 0

)
. (8)

Then the subordination condition:

z

m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z) ≺ φ (z) (9)
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implies that

z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[gi](z)

zp

)β
(10)

and the function z
(
Ip,mh;α1,αi,β

[gi](z)

zp

)β
is the best dominant.

Proof. Define the functions Ψ(z) and Φ(z) in U by

Ψ(z) = z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
and Φ(z) = z

(
Ip,mh;α1,αi,β

[gi](z)

zp

)β
(z ∈ U) . (11)

From Lemma 8, it follows that these two functions are well defined. We first show that, if

q (z) = 1 +
zΦ′′ (z)

Φ′ (z)
(z ∈ U) , (12)

then

Re {q (z)} > 0 (z ∈ U) .

From (5) and the definitions of the functions φ(z) and Φ(z), we obtain(
α1 + p

m∑
i=2

αi

)
φ (z) = zΦ′ (z) +

(
α1 + p

m∑
i=2

αi − 1

)
Φ (z) . (13)

Hence, it follows that

1 +
zφ′′ (z)

φ′ (z)
= q (z) +

zq
′
(z)

q (z) + α1 + p
m∑
i=2

αi − 1
= h(z) (z ∈ U) . (14)

It follows from (7) and (14) that

Re

{
h (z) + α1 + p

m∑
i=2

αi − 1

}
> 0 (z ∈ U) . (15)

Moreover, by using Lemma 3, we conclude that the differential equation (14) has a solution
q (z) ∈ H (U) with h (0) = q (0) = 1. Let

H (u, v) = u+
v

u+ α1 + p
m∑
i=2

αi − 1
+ δ,

where δ is given by (8). From (14) and (15), we obtain Re {H (q(z); zq′(z))} > 0 (z ∈ U) . To
verify the condition

Re {H (is; t)} ≤ 0

(
s ∈ R; t ≤ −1 + s2

2

)
, (16)
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we proceed as follows:

Re {H (is; t)} = Re

{
is+

t

is+ a
+ δ

}
= δ +

tRe{a}
|is+ a|2

≤ − Eδ (s)

2 |a+ is|2
,

where
Eδ (s) = (Re{a} − 2δ) s2 − 4δ (Ima) s+

(
Re{a} − 2δ |a|2

)
. (17)

For δ given by (8), the coefficient of s2 in the quadratic expression Eδ (s) given by (17)
is positive or equal to zero and Eδ (s) ≥ 0. Thus, we see that Re {H (is; t)} ≤ 0 for all

s ∈ R and t ≤ −1+s2

2
. Thus, by using Lemma 2, we conclude that

Re {q (z)} > 0 (z ∈ U) ,

that is, that Φ(z) defined by (11) is convex (univalent) in U. Next, we prove that the
subordination condition (9) implies that

Ψ (z) ≺ Φ (z) ,

for Ψ(z) and Φ(z) defined by (11). Without loss of generality, we assume that Φ(z) is
analytic, univalent on U and

Φ′(ζ) 6= 0 (|ζ| = 1) .

If not, then we replace Ψ(z) and Φ(z) by Ψ(ρz) and Φ(ρz), respectively, with 0 < ρ < 1.
These new functions have the desired properties on U, so we can use them in the proof
of our result and the result would follow by letting ρ → 1. Consider the function L (z, t)
given by

L (z, t) =

1− 1

α1 + p
m∑
i=2

αi

Φ (z) +
(1 + t)

α1 + p
m∑
i=2

αi

zΦ′ (z) (0 ≤ t <∞; z ∈ U) . (18)

We note that

∂L (z, t)

∂z

∣∣∣∣
z=0

=

1 +
t

α1 + p
m∑
i=2

αi

Φ′ (0) 6= 0 (0 ≤ t <∞; z ∈ U) .

This show that the function

L (z, t) = a1 (t) z + a2(t)z
2 + ...,

satisfy the conditions lim
t→∞
|a1 (t)| =∞ and a1 (t) 6= 0 (0 ≤ t <∞) . Further, we have

Re


z
∂L (z, t)

∂z
∂L (z, t)

∂t

 = Re

{
α1 + p

m∑
i=2

αi − 1 + (1 + t)

(
1 +

zΦ′′ (z)

Φ′ (z)

)}
> 0

(0 ≤ t <∞; z ∈ U) ,
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since Φ (z) is convex and Re

{
α1 + p

m∑
i=2

αi − 1

}
> 0, by using the well-known growth

and distortion sharp inequalities for convex functions (see [8]), the second inequality of
Lemma 1 is satisfied and so L (z, t) is a subordination chain. It follows from the definition
of subordination chain that

φ (z) =

1− 1

α1 + p
m∑
i=2

αi

Φ (z) +
1

α1 + p
m∑
i=2

αi

zΦ′ (z) = L (z, 0)

and

L (z, 0) ≺ L (z, t) (0 ≤ t <∞) ,

which implies that

L (ζ, t) /∈ L (U, 0) = φ (U) (0 ≤ t <∞; ζ ∈ ∂U) . (19)

If Ψ(z) is not subordinate to Φ(z), by using Lemma 4, we know that there exist two points
z0 ∈ U and ζ0 ∈ ∂U such that

Ψ (z0) = Φ (ζ0) and z0Ψ
′ (z0) = (1 + t) ζ0Φ

′ (ζ0) (0 ≤ t <∞) . (20)

Hence, by using (10), (18), (20) and (8), we have

L (ζ0, t) =

1− 1

α1 + p
m∑
i=2

αi

Φ (ζ0) +
(1 + t)

α1 + p
m∑
i=2

αi

ζ0Φ
′ (ζ0)

=

1− 1

α1 + p
m∑
i=2

αi

Ψ (z0) +
1

α1 + p
m∑
i=2

αi

z0Ψ
′ (z0)

= z0

m∏
i=2

(
fi(z0)

zp0

)αi (h(z0)

z0

)α1−1

h′(z0) ∈ φ (U) .

This contradicts (19). Thus, we deduce that Ψ ≺ Φ. Considering Ψ = Φ, we see that the
function Φ is the best dominant. This completes the proof of Theorem 1.

We now derive the following superordination result.

Theorem 2. Let fi, gi ∈ Ap,h;α1,αi (i = 2, 3, · · · ,m) and

Re

{
1 +

zφ′′ (z)

φ′ (z)

}
> −δ
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φ (z) = z

m∏
i=2

(
gi(z)

zp

)αi (h(z)

z

)α1−1

h′(z); z ∈ U

)
,

where δ is given by (8). If the function

z

m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z)

is univalent in U and z
(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
∈ H[0, 1]∩Q. Then the superordination condition

φ (z) ≺ z

m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z) (21)

implies that

z

(
Ip,mh;α1,αi,β

[gi](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
(22)

and the function z
(
Ip,mh;α1,αi,β

[gi](z)

zp

)β
is the best subordinant.

Proof. Suppose that the functions Ψ(z), Φ(z) and q(z) are defined by (11) and (12),
respectively. We will use similar method as in the proof of Theorem 1. As in Theorem 1,
we have

φ (z) =

1− 1

α1 + p
m∑
i=2

αi

Φ (z) +
1

α1 + p
m∑
i=2

αi

zΦ′ (z) = ϕ (G (z) , zG′ (z))

and we obtain

Re {q (z)} > 0 (z ∈ U) .

Next, to obtain the desired result, we show that Φ(z) ≺ Ψ(z). For this, we suppose that
the function

L (z, t) =

1− 1

α1 + p
m∑
i=2

αi

Φ (z) +
t

α1 + p
m∑
i=2

αi

zΦ′ (z) (0 ≤ t <∞; z ∈ U) .

We note that

∂L (z, t)

∂z

∣∣∣∣
z=0

=

1− 1

α1 + p
m∑
i=2

αi

Φ′ (0) 6= 0 (0 ≤ t <∞; z ∈ U) .
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This show that the function

L (z, t) = a1 (t) z + a2(t)z
2 + ...

satisfy the conditions lim
t→∞
|a1 (t)| =∞ and a1 (t) 6= 0 (0 ≤ t <∞) . Further, we have

Re


z
∂L (z, t)

∂z
∂L (z, t)

∂t

 = Re

{
α1 + p

m∑
i=2

αi − 1 + t

(
1 +

zΦ′′ (z)

Φ′ (z)

)}
> 0

(0 ≤ t <∞; z ∈ U) ,

since Φ (z) is convex and Re

{
α1 + p

m∑
i=2

αi − 1

}
> 0. By using the well-known growth

and distortion sharp inequalities for convex functions (see [8]), the second inequality of
Lemma 1 is satisfied and so L (z, t) is a subordination chain. Therefore, by using Lemma
5, we conclude that the superordination condition (21) must imply the superordination
given by (22). Moreover, since the differential equation has a univalent solution Φ, it is
the best subordinant. This completes the proof of Theorem 2.

Combining Theorems 1 and 2, the following sandwich-type results are derived.

Theorem 3. Let f, gj ∈ Ap,h;α1,αi , (i = 2, 3, · · · ,m; j = 1, 2) and

Re

{
1 +

zφ′′j (z)

φ′j (z)

}
> −δ

(
φj (z) = z

m∏
i=2

(
gi,j(z)

zp

)αi (h(z)

z

)α1−1

h′(z); z ∈ U

)
,

where δ is given by (8). If the function

z

m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z)

is univalent in U and z
(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
∈ H[0, 1] ∩Q. Then

φ1 (z) ≺ z

m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z) ≺ φ2 (z)

implies that

z

(
Ip,mh;α1,αi,β

[gi,1](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[gi,2](z)

zp

)β
.
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Moreover, the functions z
(
Ip,mh;α1,αi,β

[gi,1](z)

zp

)β
and z

(
Ip,mh;α1,αi,β

[gi,2](z)

zp

)β
are, respectively, the

best subordinant and the best dominant.

We note that the assumption of Theorem 3 that the functions

z
m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z) and z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
need to be univalent in U, may be replaced as in the following corollary.

Corollary 1. Let f, gj ∈ Ap,h;α1,αi , (i = 2, 3, ·,m; j = 1, 2) and

Re

{
1 +

zφ′′j (z)

φ′j (z)

}
> −δ

(
φj (z) = z

m∏
i=2

(
gi,j(z)

zp

)αi (h(z)

z

)α1−1

h′(z); z ∈ U

)
and

Re

{
1 +

zΘ′′ (z)

Θ′ (z)

}
> −δ (23)(

Θ (z) = z
m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z); z ∈ U

)
,

where δ is given by (8). Then

φ1 (z) ≺ z
m∏
i=2

(
fi(z)

zp

)αi (h(z)

z

)α1−1

h′(z) ≺ φ2 (z)

implies that

z

(
Ip,mh;α1,αi,β

[gi,1](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
≺ z

(
Ip,mh;α1,αi,β

[gi,2](z)

zp

)β
.

Proof. To prove Corollary 1, we have to show that condition (23) implies the univalence

of Θ (z) and Ψ(z) = z
(
Ip,mh;α1,αi,β

[fi](z)

zp

)β
. Since 0 ≤ δ < 1

2
, it follows that Θ (z) is close to

convex function in U (see [9]) and hence Θ (z) is univalent in U. Also, by using the same
techniques as in the proof of Theorem 1, we can prove that Ψ is convex (univalent) in
U, and so the details may be omitted. Therefore, by applying Theorem 3, we obtain the
desired result.
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Remark 1. (i) Putting p = 1, m = 2, α1 = γ, α2 = β and f2(t) = f(t) in Theorem
1, 2, 3 and Corollary 1, we obtain the results by Cho and Bulboacă [6] and the results by
Al-Kharsani et al. [2];

(ii) If we take α1 = 0 in the results mentioned above, then we have those by Aouf et.
al [1]. Moreover, putting p = 1, m = 2, α1 = 0, α2 = β and f2(t) = f(t) in Theorem
1, 2, 3 and Corollary 1, we obtain the results by Cho and Kim [7].
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[5] T. Bulboacă, A class of superordination-preserving integral operators. Indag. Math. (N. S.), 13
(2002), 301–311.
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ADDITIVE s-FUNCTIONAL INEQUALITIES AND DERIVATIONS ON

BANACH ALGEBRAS

TAEKSEUNG KIM, YOUNGHUN JO∗, JUNHA PARK, JAEMIN KIM, CHOONKIL PARK∗,
AND JUNG RYE LEE

Abstract. In this paper, we introduce the following new additive s-functional inequalities

‖f(x− y) + f(y) + f(−x)‖ ≤ ‖s (f(x+ y)− f(x)− f(y)) ‖, (0.1)

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖s (f(x− y) + f(y) + f(−x)) ‖, (0.2)

where s is a fixed complex number with |s| < 1, and prove the Hyers-Ulam stability of linear
derivations on Banach algebras associated to the additive s-functional inequalities (0.1) and
(0.2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [20] con-

cerning the stability of group homomorphisms. Hyers [6] gave a first affirmative partial answer

to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for ad-

ditive mappings and by Rassias [15] for linear mappings by considering an unbounded Cauchy

difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replac-

ing the unbounded Cauchy difference by a general control function in the spirit of Rassias’

approach. The stability problems of several functional equations have been extensively investi-

gated by a number of authors and there are many interesting results concerning this problem

(see [8, 9, 13, 14, 17, 18, 19]).

Gilányi [4] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x+ y)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x+ y) + f(x− y).

See also [16]. Fechner [2] and Gilányi [5] proved the Hyers-Ulam stability of the functional

inequality (1.1). Park, Cho and Han [12] investigated the Cauchy additive functional inequality

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖ (1.2)

and the Cauchy-Jensen additive functional inequality

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥ (1.3)

2010 Mathematics Subject Classification. Primary 39B52, 39B62.
Key words and phrases. derivation on Banach algebra; additive s-functional inequality; direct method; Hyers-

Ulam stability.
∗Corresponding authors.
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and proved the Hyers-Ulam stability of the functional inequalities (1.2) and (1.3) in Banach

spaces.

Park [10, 11] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability

of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of linear

derivations on Banach algebras associated to the additive s-functional inequality (0.1).

In Section 3, we prove the Hyers-Ulam stability of linear derivations on Banach algebras

associated to the additive s-functional inequality (0.2).

Throughout this paper, assume that s is a fixed complex number with |s| < 1.

2. Stability of linear derivations on Banach algebras associated to the

functional inequality (0.1)

In this section, we prove the Hyers-Ulam stability of linear derivations on Banach algebras

associated to the additive s-functional inequality (0.1).

Theorem 2.1. Let θ ≥ 0 and p be real numbers with p > 2. Let f : B → B be a mapping

satisfying

‖f(λ(x− y)) + λf(y) + λf(−x)‖ ≤ ‖s (f(x+ y)− f(x)− f(y)) ‖+ θ (‖x‖p + ‖y‖p) , (2.1)

‖f(xy)− xf(y)− yf(x)‖ ≤ θ (‖x‖p + ‖y‖p) (2.2)

for all λ ∈ S1 := {µ ∈ C||µ| = 1} and all x, y ∈ B. Then there exists a unique C-linear derivation
D : B → B such that

‖f(x)−D(x)‖ ≤ 2θ

(2p − 2)(1− |s|)
‖x‖p (2.3)

for all x ∈ B.

Proof. Letting x = y = 0 and λ = −1 ∈ S1 in (2.1), we get ‖f(0)‖ ≤ ‖sf(0)‖ and so we get

f(0) = 0.

Replacing y by x and letting λ = 1 in (2.1), we get

‖f(x) + f(−x)‖ ≤ ‖s (f(2x)− 2f(x)) ‖+ 2θ‖x‖p (2.4)

for all x ∈ B.

Replacing x by −x and y by x and letting λ = −1 in (2.1), we get

‖f(2x)− 2f(x)‖ ≤ ‖s (f(x) + f(−x)) ‖+ 2θ‖x‖p (2.5)

for all x ∈ B.

From (2.4) and (2.5), we get

‖f(2x)− 2f(x)‖ ≤ |s|2‖f(2x)− 2f(x)‖+ 2(1 + |s|)θ‖x‖p

and so

‖f(2x)− 2f(x)‖ ≤ 2θ

1− |s|
‖x‖p (2.6)

for all x ∈ B. So one can obtain that∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ 2θ

2p(1− |s|)
‖x‖p
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and hence ∥∥∥2nf
( x

2n

)
− 2n+1f

( x

2n+1

)∥∥∥ ≤ 2 · 2n(1−p)θ
2p(1− |s|)

‖x‖p

for all x ∈ B. So we get ∥∥∥f(x)− 2nf
( x

2n

)∥∥∥ ≤ n−1∑
l=0

2 · 2l(1−p)θ
2p(1− |s|)

‖x‖p (2.7)

for all x ∈ B.

For positive integers n and m with n > m,∥∥∥2nf
( x

2n

)
− 2mf

( x

2m

)∥∥∥ ≤ n−1∑
l=m

2 · 2l(1−p)θ
2p(1− |s|)

‖x‖p,

which tends to zero as m → ∞. So {2nf( x
2n )} is a Cauchy sequence for all x ∈ B. Since B is

complete, the sequence {2nf( x
2n )} converges for all x ∈ B. We can define a mapping D : B → B

by

D(x) = lim
n→∞

2nf
( x

2n

)
(2.8)

for all x ∈ B.

Letting x = 0 in (2.1), we get

‖f(λx) + λf(−x)‖ ≤ θ‖x‖p

for all λ ∈ S1 and all x ∈ B.

By (2.8), we get

‖D(λx) + λD(−x)‖ = lim
n→∞

∥∥∥∥2nf

(
λx

2n

)
+ 2nλf

(
− x

2n

)∥∥∥∥ ≤ lim
n→∞

2n

2pn
θ‖x‖p = 0

for all x ∈ B and all λ ∈ S1. Hence

D(λx) + λD(−x) = 0 (2.9)

for all x ∈ B and all λ ∈ S1.
Letting λ = 1 in (2.9), we get

D(x) +D(−x) = 0 (2.10)

for all x ∈ B. Hence

D(λx) = λD(x) (2.11)

for all x ∈ B and all λ ∈ S1.
Let λ = 1 in (2.1). By (2.1), (2.8) and (2.10), we get

‖D(x− y)−D(x) +D(y)‖ = lim
n→∞

∥∥∥∥2nf

(
x− y

2n

)
+ 2nf

( y
2n

)
+ 2nf

(
− x

2n

)∥∥∥∥
≤ lim

n→∞

(∥∥∥∥s(2nf

(
x+ y

2n

)
− 2nf

( x
2n

)
− 2nf

( y
2n

))∥∥∥∥+ 2n(1−p)θ(‖x‖p + ‖y‖p)
)

= ‖s (D(x+ y)−D(x)−D(y)) ‖
for all x, y ∈ B. Hence

‖D(x− y)−D(x) +D(y)‖ ≤ ‖s(D(x+ y)−D(x)−D(y))‖ (2.12)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

919 TAEKSEUNG KIM ET AL 917-924



T. KIM, Y. JO, J. PARK, J. KIM, C. PARK, AND J. R. LEE

for all x, y ∈ B.

Replacing y by −y in (2.12), we get

‖D(x+ y)−D(x)−D(y)‖ ≤ ‖s(D(x− y)−D(x) +D(y))‖ (2.13)

for all x, y ∈ B.

It follows from (2.12) and (2.13) that

‖D(x+ y)−D(x)−D(y)‖ ≤ ‖s2(D(x+ y)−D(x)−D(y))‖

for all x, y ∈ B. Since |s| < 1, we get

‖D(x+ y)−D(x)−D(y)‖ = 0

for all x, y ∈ B. So one can obtain that D is additive. Moreover, by passing to the limit in (2.7)

as n→∞, we get the inequality (2.3).

Now let S : B → B be another additive mapping satisfying

‖f(x)− S(x)‖ ≤ 2p

2p − 2
θ‖x‖p

for all x ∈ B.

‖D(x)− S(x)‖ = 2l
∥∥∥D ( x

2l

)
− S

( x
2l

)∥∥∥
≤ 2l

∥∥∥D ( x
2l

)
− f

( x
2l

)∥∥∥+ 2l
∥∥∥f ( x

2l

)
− S

( x
2l

)∥∥∥
≤ 2l+1

2lp
× 2p

2p − 2
θ‖x‖p,

which tends to zero as l →∞. Thus D(x) = S(x) for all x ∈ B. This proves the uniqueness of

D.

Now let µ ∈ C (µ 6= 0) and M an integer greater than 4|λ|. Then | λM | <
1
4 < 1 − 2

3 = 1
3 .

By [7, Theorem 1], there exist three elements µ1, µ2, µ3 ∈ S1 such that 3 λ
M = µ1 + µ2 + µ3. By

(2.11),

D(λx) = D

(
M

3
· 3 λ
M
x

)
= M ·D

(
1

3
· 3 λ
M
x

)
=
M

3
D

(
3
λ

M
x

)
=

M

3
D(µ1x+ µ2x+ µ3x) =

M

3
(D(µ1x) +D(µ2x) +D(µ3x))

=
M

3
(µ1 + µ2 + µ3)D(x) =

M

3
· 3 λ
M
D(x)

= λD(x)

for all x ∈ B. Hence

D(αx+ βy) = D(αx) +D(βy) = αD(x) + βD(y)

for all α, β ∈ C(α, β 6= 0) and all x, y ∈ B. And D(0x) = 0 = 0D(x) for all x ∈ B. So the unique

additive mapping D : B → B is a C-linear mapping.

It follows from (2.2) and (2.8) that

‖D(xy)− xD(y)− yD(x)‖ = lim
n→∞

∥∥∥22nf
( x

2n
y

2n

)
− 2nxf

( y
2n

)
− 2nyf

( x
2n

)∥∥∥
≤ lim

n→∞
2n(2−p)θ(‖x‖p + ‖y‖p) = 0
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for all x, y ∈ B. Hence

D(xy) = xD(y) + yD(x)

for all x, y ∈ B. Hence the mapping D : B → B is a C-linear derivation satisfying (2.3). �

Theorem 2.2. Let θ ≥ 0 and p be real numbers with 0 < p < 1. Let f : B → B be a mapping

satisfying (2.1) and (2.2). Then there exists a unique C-linear derivation D : B → B such that

‖f(x)−D(x)‖ ≤ 2θ

(2− 2p)(1− |s|)
‖x‖p (2.14)

for all x ∈ B.

Proof. It follows from (2.6) that
∥∥f(x)− 1

2f(2x)
∥∥ ≤ θ

1−|s|‖x‖
p and hence∥∥∥∥ 1

2n
f(2nx)− 1

2n+1
f(2n+1x)

∥∥∥∥ ≤ 2pnθ

2n(1− |s|)
‖x‖p

for all x ∈ B.

For positive integers n and m with n > m,∥∥∥∥ 1

2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥ ≤ n−1∑
l=m

2plθ

2l(1− |s|)
‖x‖p, (2.15)

which tends to zero as m → ∞. So { 1
2n f(2nx)} is a Cauchy sequence for all x ∈ B. Since B is

complete, the sequence { 1
2n f(2nx)} converges for all x ∈ B. We can define a mapping D : B → B

by D(x) = limn→∞
1
2n f(2nx) for all x ∈ B.

Moreover, by letting m = 0 and passing to the limit in (2.15) as n→∞, we get (2.14).

The rest of the proof is similar to the proof of Theorem 2.1. �

3. Stability of linear derivations on Banach algebras associated to the

functional inequality (0.2)

In this section, we prove the Hyers-Ulam stability of linear derivations on Banach algebras

associated to the additive s-functional inequality (0.2).

Theorem 3.1. Let θ ≥ 0 and p be real numbers with p > 2. Let f : B → B be a mapping

satisfying (2.2) and

‖f(λ(x+ y))− λf(x)− λf(y)‖ ≤ ‖s (f(x− y) + f(y) + f(−x)) ‖+ θ (‖x‖p + ‖y‖p) (3.1)

for all λ ∈ S1 and all x, y ∈ B. Then there exists a unique C-linear derivation D : B → B such

that

‖f(x)−D(x)‖ ≤ (2− |s|)θ
(2p − 2)(1− |s|)

‖x‖p (3.2)

for all x ∈ B.

Proof. Letting x = y = 0 and λ = −1 ∈ S1 in (3.1), we get

‖3f(0)‖ ≤ ‖3sf(0)‖
and so we get f(0) = 0.

Letting y = 0 and λ = −1 in (3.1), we get

‖f(−x) + f(x)‖ ≤ ‖s (f(x) + f(−x)) ‖+ θ‖x‖p
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and so

‖f(−x) + f(x)‖ ≤ 1

1− |s|
θ‖x‖p

for all x ∈ B.

Letting y = x and λ = 1 in (3.1), we get

‖f(2x)− 2f(x)‖ ≤ ‖s (f(x) + f(−x)) ‖+ 2θ‖x‖p (3.3)

≤ |s|
1− |s|

θ‖x‖p + 2θ‖x‖p =
2− |s|
1− |s|

θ‖x‖p

for all x ∈ B. So one can obtain that∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ (2− |s|)θ
2p(1− |s|)

‖x‖p

and hence ∥∥∥2nf
( x

2n

)
− 2n+1f

( x

2n+1

)∥∥∥ ≤ (2− |s|)2n(1−p)θ
2p(1− |s|)

‖x‖p

for all x ∈ B. So we get∥∥∥f(x)− 2nf
( x

2n

)∥∥∥ ≤ n−1∑
l=0

(2− |s|)2l(1−p)θ
2p(1− |s|)

‖x‖p (3.4)

for all x ∈ B.

For positive integers n and m with n > m,∥∥∥2nf
( x

2n

)
− 2mf

( x

2m

)∥∥∥ ≤ n−1∑
l=m

(2− |s|)2l(1−p)θ
2p(1− |s|)

‖x‖p,

which tends to zero as m → ∞. So {2nf( x
2n )} is a Cauchy sequence for all x ∈ B. Since B is

complete, the sequence {2nf( x
2n )} converges for all x ∈ B. We can define a mapping D : B → B

by

D(x) = lim
n→∞

2nf
( x

2n

)
(3.5)

for all x ∈ B.

It follows from (3.1) and (3.5) that

‖D(λ(x+ y))− λD(x)− λD(y)‖ = lim
n→∞

∥∥∥∥2nf

(
λ
x+ y

2n

)
− 2nλf

( x
2n

)
− 2nλf

( y
2n

)∥∥∥∥
≤ lim

n→∞

(∥∥∥∥s(2nf

(
x− y

2n

)
+ 2nf

( y
2n

)
+ 2nf

(
−x
2n

))∥∥∥∥+ 2n(1−p)θ(‖x‖p + ‖y‖p)
)

= ‖s (D(x− y) +D(y) +D(−x)) ‖

for all λ ∈ S1 and all x, y ∈ B. Hence

‖D(λ(x+ y))− λD(x)− λD(y)‖ = ‖s (D(x− y) +D(y) +D(−x)) ‖ (3.6)

for all λ ∈ S1 and all x, y ∈ B.

Letting λ = −1 and x = y = 0 in (3.6), we get ‖3D(0)‖ ≤ ‖3sD(0)‖ and so D(0) = 0.

Replacing x by −x and letting y = −x and λ = −1 in (3.6), we get

‖D(2x) + 2D(−x)‖ ≤ ‖s(D(−x) +D(x))‖
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for all x ∈ B.

Letting y = −x and λ = 1 in (3.6), we get

‖D(x) +D(−x)‖ ≤ ‖s(D(2x) + 2D(−x))‖ ≤ |s|2‖D(x) +D(−x)‖

and so D(−x) = −D(x) for all x ∈ B.

Replacing y by −y and letting λ = 1 in (3.6), we get

‖D(x− y)−D(x) +D(y)‖ ≤ ‖s (D(x+ y)−D(y)−D(x)) ‖

for all x, y ∈ B.

Letting λ = 1 in (3.6), we get

‖D(x+ y)−D(x)−D(y)‖ ≤ ‖s (D(x− y) +D(y) +D(−x)) ‖
≤ |s|2‖D(x+ y)−D(x)−D(y)‖

for all x, y ∈ B. Thus D(x+ y) = D(x) +D(y) for all x, y ∈ B.

Letting y = 0 in (3.6), we get

‖D(λx)− λD(x)‖ ≤ 0

and so D(λx) = λD(x) for all λ ∈ S1 and x ∈ B.

The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 3.2. Let θ ≥ 0 and p be real numbers with 0 < p < 1. Let f : B → B be a mapping

satisfying (3.1) and (2.2). Then there exists a unique C-linear derivation D : B → B such that

‖f(x)−D(x)‖ ≤ (2− |s|)θ
(2− 2p)(1− |s|)

‖x‖p (3.7)

for all x ∈ B.

Proof. It follows from (3.3) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ (2− |s|)θ
2(1− |s|)

‖x‖p

and hence ∥∥∥∥ 1

2n
f(2nx)− 1

2n+1
f(2n+1x)

∥∥∥∥ ≤ (2− |s|)2pnθ
2n+1(1− |s|)

‖x‖p

for all x ∈ B.

For positive integers n and m with n > m,∥∥∥∥ 1

2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥ ≤ n−1∑
l=m

(2− |s|)2plθ
2l+1(1− |s|)

‖x‖p, (3.8)

which tends to zero as m → ∞. So { 1
2n f(2nx)} is a Cauchy sequence for all x ∈ B. Since B is

complete, the sequence { 1
2n f(2nx)} converges for all x ∈ B. We can define a mapping D : B → B

by D(x) = limn→∞
1
2n f(2nx) for all x ∈ B.

Moreover, by letting m = 0 and passing to the limit in (3.8) as n→∞, we get (3.7).

The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. �
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Abstract

The aim of this report is to study modulus of convexity δB of a quasi-Banach space
B. We prove that δB is convex, continuous, nondecreasing and for arbitrary uniformly

convex quasi-Banach space B, δB(ε) = 1 − 1

C

√

1 − ε2C2

4
. We also prove that a quasi-

Banach space B is uniformly convex if and only if δB(ε) ≥ 0. Moreover we prove that
a non-trivial quasi-Banach space B is uniformly non-square if and only if δB(ε) > 0.

2010 Mathematics Subject Classification: 47H05, 46B20, 46E30

Key words and phrases: modulus of convexity, uniformly convex, uniformly non-
square, quasi Banach space.

1 Introduction

Many of the geometric constants for Banach spaces have been investigated so far. These
constants play an important role in the description of various geometric structures of

Banach spaces. In 1899 Jung [10] was the first who introduced a geometric constant for
Banach spaces. In 1936 and 1937, Clarkson [4,5] introduced classical modulus of convexity
to define a uniformly convex space. A great number of such moduli have been defined and

introduced since then. The theory of the geometry of a Banach space has evolved very
rapidly over the past fifty years. By contrast the study of a quasi-Banach space has lagged

far behind, even though the first research papers in the subject appeared in the early
1940’s [2,4–6]. There are very sound reasons to develop the understanding of these space,

but the absence of one of the fundamental tools of functional analysis, the Hahn-Banach

∗ Corresponding author
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theorem, has proved a very significant stumbling block. However, there has been some

progress in the non-convex theory and arguably it has contributed to our appreciation
of Banach space theory. A systematic study of a quasi-Banach space only really started

in the late 1950’s and early 1960’s with the work of several authors. The efforts of these
researchers tended to go in rather separate directions. The subject was given great impetus
by the paper of Duren et al. [7] in 1969 which demonstrated both the possibilities for using

quasi-Banach spaces in classical function theory and also high-lighted some key problems
related to the Hahn-Banach theorem. This opened up many new directions of research.

The 1970’s and 1980’s saw a significant increase in activity with a number of authors
contributing to the development of a coherent theory. An important breakthrough was

the work of Roberts [13, 14] who showed that the Krein-Milman Theorem fails in general
quasi-Banach spaces by developing powerful new techniques. Quasi-Banach spaces (Hp-

space when p < 1) were also used significantly in Alexandrov’s solution of the inner
function problem in 1982 [1]. During this period three books on the subject appeared

by Turpin [16], Rolewicz [15] (actually an expanded version of a book first published in
1972 and the author, Roberts [14]. In the 1990’s it seems to the author that while more
and more analysts find that quasi-Banach spaces have uses in their research, paradoxically

the interest in developing a general theory has subsided somewhat. The strictly convex
Banach spaces were introduced in 1936 by Clarkson, [4], who also studied the concept

of uniform convexity. The uniform convexity of Lp spaces, 1 < p < ∞, was established
by Clarkson [4]. The concept of duality map was introduced in 1962 by Beurling and

Livingston [3] and was further developed by many others and, De Figueiredo [8]. General
properties of the duality map can be found in De Figueiredo [8].

In this paper we aim study modulus of convexity in the setting of quasi Banach spaces.

2 Preliminaries

Throughout this paper SB is a closed unit ball in a quasi Banach space.

Definition 2.1. A uniformly convex space is a normed vector space so that, for every

0 < ε ≤ 2 there is some δ > 0 so that for any two vectors with ‖x‖ = 1 and ‖y‖ = 1, the
condition ‖x− y‖ ≥ ε implies that

∥

∥

x+y
2

∥

∥ ≤ 1− δ. Intuitively, the center of a line segment

inside the unit ball must lie deep inside the unit ball unless the segment is short.

Definition 2.2. A quasi-Banach space B is said to be uniformly non-square if there exists
a positive number δ < 2 such that for any x1, x2 ∈ SB, we have

min

(
∥

∥

∥

∥

x1 + x2

C

∥

∥

∥

∥

,

∥

∥

∥

∥

x1 + x2

C

∥

∥

∥

∥

)

≤ δ.

Definition 2.3. Let ε ∈ [0, 2] and C ≥ 1. For a quasi-Banach space B, the modulus of
convexity is a function δB : (0, 2] −→ [0, 1] defined as

δB(ε) = inf

{

1 − ‖x1 + x2‖
2C

: x1, x2 ∈ SB;
‖x1 − x2‖

C
≥ ε

}

. (2.1)

A characteristic or related coefficient of this modulus is

δ0(B) = sup {ε ∈ [0, 2] : δB(ε) = 0} . (2.2)
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3 Main results

Lemma 3.1. ([9]) Every convex function f with convex domain in R is continuous.

Lemma 3.2. Let B be a quasi-Banach space, and x1, x2 ∈ SB. Then

‖x1 + x2‖
2C

≤ 1 − δB

(‖x1 − x2‖
C

)

. (3.1)

Proof. Let dim(B) < ∞. Let ε ∈ [0, 2] and choose u, v ∈ SB such that ‖u−v‖
C

is maximal

subject to ‖u−v‖
C

= ε. So, here this is enough to prove that ‖u‖ = ‖v‖ = 1.

The case ε = 0 is trivial.

Assume that ε 6= 0. Let x∗ ∈ X∗ satisfying ‖x∗‖ = 1 and x∗(u + v) =
‖u+v‖

2C . It
would be suffices to prove that if, say, ‖v‖ < 1, then x∗(v − u) = ε and ‖u‖ < 1. Indeed
an analogous reasoning would then yields, x∗(u − v) = ε and hence ε = −ε, which is a

contradiction.

To this end, let A = {w ∈ B :
‖w−u‖

C = ε}. If w ∈ A∩SB, then by maximality of
‖u+v‖

2C

we get

x∗(u + w) ≤ ‖u + w‖
2C

≤ ‖u + v‖
2C

≤ x∗(u + v).

Hence, if we had ‖v‖ < 1, then x∗ would attain at v local maximum on A. Consequently,

x∗ would norm the vector v − u, that is, x∗(v − u) = ‖v−u‖
C

= ε. And also

‖u‖ <
1

2C

(

‖u + v‖ + ‖u − v‖
)

<
1

2C

[

x∗(u + v) + x∗(u − v)
]

= x∗(v) < 1

as permitted. This completes the proof.

Lemma 3.3. Let B be a quasi-Banach space. and ε ∈ (0, 2]. Then the following statements

holds:

(a) δB(ε) is convex and continuous function.

(b) δB(ε) is a non-decreasing function.

(c) δB(ε)/ε is a non-decreasing function.

Proof. (a) Consider any two vectors u, v ∈ B , we denote by N (u, v) the set of all pairs

x, y ∈ B with x, y ∈ SB(0) such that for some real scalars α1, β1 we have x − y = αu and
x + y = βv, that is, N (u, v) =

{

(x, y) : x − y = αu, x + y = βv
}

. For r ∈ (0, 2) define

δ(u, v, r) = inf

{

1 − ‖x + y‖
2C

: x, y ∈ N (u, v),
‖x − y‖

C
≥ r

}

. (3.2)

It is easy to check δ(u, v, r) = 0 for (3.2) as ‖x‖ = 1, ∀x ∈ N (u, v). Moreover, for r, for

any given λ1, λ2 ∈ (0, 2) and ε > 0 we can choose xk, yk ∈ N (u, v) such that (for k = 1, 2)

xk + yk ≥ λk and δ(u, v, λk) +
ε

2
≥ 1− ‖xk + yk‖

2C
.
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The choice of (xk, yk) is possible because of the definition of δ(u, v, r) in (3.2) as infimum.

Now, for λ ∈ (0, 1) we assume

x3 = λx1 + (1− λ)x2, y3 = λy1 + (1 − λ)y2. (3.3)

‖x3‖ = λ‖x1‖ + (1 − λ)‖x2‖ because x1, x2 ∈ SB(0). Similarly, (xk, yk) ∈ N (u, v) implies
that there exist constants such that (for k = 1, 2)

xk − yk = αku, xk − yk = βkv. (3.4)

From equation (3.3) we have

x3 − y3 = λx1 + (1− λ)x2 − λy1 − (1 − λ)y2

= λ[x1 − y1] + (1 − λ)[x2 − y2]

= λ[α1u] + (1 − λ)[α2u]

= [λα1 + (1 − λ)α2]u.

Similarly,

x3 − y3 = λx1 + (1− λ)x2 − λy1 + (1 − λ)y2

= λ[x1 − y1] + (1 − λ)[x2 − y2]

= λ[β1v] + (1 − λ)[β2v]

= [λβ1 + (1 − λ)β2]v.

Now we have
‖x3 − y3‖ = [λα1 + (1− λ)α2]‖u‖. (3.5)

Similarly,
‖x3 − y3‖ = [λβ1 + (1 − λ)β2]‖v‖. (3.6)

Therefore, using (3.5) and (3.6), generally, we get,

‖x3 − y3‖ = λε1 + (1− λ)ε2. (3.7)

Now we have

δ(u, v, [λ(ε1) + (1 − λ)ε2]) ≤ 1 − ‖x3 + y3‖
2C

= 1 − λ‖x1 + y1‖ + (1 − λ)‖x2 + y2‖
2C

≤ λ

[

1 − ‖x1 + y1‖
2C

]

+ (1− λ)

[

1− ‖x2 + y2‖
2C

]

= λ[δ(u, v, ε1] + (1− λ)[δ(u, v, ε2].

Belonging to some N (u, v) since δB(u, v, ε) is convex, which shows that δB(ε) is convex.
Since δB(ε) is convex, so is continuous by Lemma 3.1.

(b) Let 0 ≤ ε1 ≤ ε2 ≤ 2 and x1, x2 ∈ SB satisfying ‖x1−x2‖
C

≤ ε2 and ‖x1+x2‖
2C

≤
1 − δB(ε2). Then letting E = ε2−ε1

2ε2
and x = x1 + E(x2 − x1) and y = x2 − E(x2 − x1) we

have x, y ∈ SB and ‖x−y‖
C

≤ ε1.
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Now applying Lemma 3.2 we get

δB(ε1) ≤ 1 − x + y

2C
≤ 1− x1 + x2

2C
≤ δB(ε2),

which shows that δB(ε) is a non-decreasing function.

(c) Fix η ∈ (0, 2] with η < ε. Let x1, x2 ∈ B such that ‖x1‖ = ‖x2‖ = 1 and ‖x1−x2‖
C

= ε.
Here, it will be suffices to show that

δB(η)

η
≤ δB(ε)

ε
.

Consider

u1 =
η

ε
x1 +

(

1 − η

ε

)

[

x1 + x2

‖x1 + x2‖

]

,

u2 =
η

ε
x2 +

(

1 − η

ε

)

[

x1 + x2

‖x1 + x2‖

]

,

then

u1 − u2 =
η

ε
(x1 − x2) =⇒ ‖u1 − u2‖

η
= C.

And
u1 + u2

2
=

[

x1 + x2

‖x1 + x2‖

](

1 − η

ε
+

η‖x1 + x2‖
2ε

)

,

thus
u1 + u2

2C
=

[

x1 + x2

‖x1 + x2‖

] (

1

C
− η

εC
+

η‖x1 + x2‖
2εC

)

.

This implies that
∥

∥

∥

∥

x1 + x2

‖x1 + x2‖
− u1 + u2

2C

∥

∥

∥

∥

= 1 −
(

1

C
− η

εC
+

η‖x1 + x2‖
2εC

)

= 1 − ‖u1 + u2‖
2C

.

Here note that
∥

∥

∥

∥

x1 + x2

‖x1 + x2‖
− x1 + x2

2C

∥

∥

∥

∥

= ‖x1 + x2‖
(

1

‖x1 + x2‖
− 1

2C

)

= 1− ‖x1 + x2‖
2C

.

Now we have
∥

∥

x1+x2

‖x1+x2‖
− u1+u2

2C

∥

∥

‖u1 − u2‖
=

C

η

(

η

εC
− η‖x1 + x2‖

2εC

)

=
1

ε

(

1 − ‖x1 + x2‖
2C

)

=

∥

∥

x1+x2

‖x1+x2‖
− x1+x2

2C

∥

∥

‖x1 − x2‖
,
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then

δ(η)

η
=

1− ‖u1+u2‖
2C

‖u1 − u2‖
=

∥

∥

x1+x2

‖x1+x2‖
− u1+u2

2c

∥

∥

‖u1 − u2‖

=

∥

∥

x1+x2

‖x1+x2‖
− x1+x2

2C

∥

∥

‖x1 − x2‖

=
1− ‖x1+x2‖

2C

‖x1 − x2‖
≤ 1

ε

[

1− ‖x1 + x2‖
2C

]

=
1

ε

(

δB(ε)
)

.

This completes the proof.

Proposition 3.4. Let B be a quasi-Banach space. Then ∀0 ≤ ε1 ≤ ε2 ≤ 2 we have

δB(ε2) − δB(ε1)

ε2 − ε1
≤ 1 − δB(ε1)

2 − ε1
. (3.8)

Proof. Let

ε2 = 2

(

ε2 − ε1
2 − ε1

)

+ ε1

(

1 − ε2 − ε1
2 − ε1

)

.

Then we have

δB(ε2) = δB

[

2

(

ε2 − ε1
2 − ε1

)

+ ε1

(

1 − ε2 − ε1
2 − ε1

)]

≤ δB(2)

(

ε2 − ε1
2 − ε1

)

+ δB(ε1)

(

1 − ε2 − ε1
2 − ε1

)

≤ δB(2)

(

ε2 − ε1
2 − ε1

)

+ δB(ε1) − δB(ε1)

(

ε2 − ε1
2 − ε1

)

=

(

ε2 − ε1
2 − ε1

)

[δB(2)− δB(ε1)] + δB(ε1).

Now

δB(ε2) − δB(ε1) ≤
(

ε2 − ε1
2 − ε1

)

[1 − δB(ε1)] .

Hence
δB(ε2) − δB(ε1)

ε2 − ε1
≤ 1 − δB(ε1)

2 − ε1
.

This completes the proof.

Theorem 3.5. Let B be a uniformly convex space. Then for every d > 0, ε > 0, and for

arbitrary vectors, x1, x2 ∈ B with ‖x1‖ ≤ d, ‖x2‖ ≤ d and
‖x1−x2‖

C
≥ ε, there exists δ > 0

such that

‖x1 + x2‖
2C

≤
[

1 − δ
(ε

d

)]

d.
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Proof. For any arbitrary x1, x2 ∈ B we assume that

z1 =
x1

d
, z2 =

x2

d
, and set ε =

ε

d
.

Obviously ε > 0. Moreover, with ‖x1‖ ≤ 1 and ‖x2‖ ≤ 1 we have

‖z1 − z2‖ =
1

d
‖x1 − x2‖ ≥ ε

d
= ε.

Now, for uniform convexity, we have

δ = δ
(ε

d

)

> 0 and
‖z1 + z2‖

2C
≤ 1 − δ(ε),

which implies that
‖x1 + x2‖

2dC
≤ 1 − δ

(ε

d

)

,

thus
‖x1 + x2‖

2C
≤

[

1 − δ
(ε

d

)]

d.

This completes the proof.

Theorem 3.6. A quasi-Banach space B is uniformly convex iff δB(ε) ≥ 0.

Proof. If X is uniformly convex, then, for given ε > 0 there exists δ > 0 such that
∀x1, x2 ∈ B with ‖x1‖ = 1, ‖x2‖ = 1 and ‖x1−x2‖

C
≥ ε

1 − ‖x1 + x2‖
2C

≥ δ =⇒ δB(ε) > 0.

Conversely, assume that δB(ε) > 0 for every ε ∈ (0, 2]. Let fix ε ∈ (0, 2] and then take

x1, x2 ∈ B with ‖x1‖ = 1, ‖x2‖ = 1 and ‖x1−x2‖
C

≥ ε. Then

0 < δB(ε) ≤ 1 − ‖x1 + x2‖
2C

.

This implies that 1− ‖x1+x2‖
2C

≤ 1− δ with δ = δB(ε), which does not depends upon either
x1 or x2. This completes the proof.

Theorem 3.7. For arbitrary uniformly convex quasi-Banach space B,

δB(ε) = 1 − 1

C

√

1 − ε2C2

4
.

Proof. Let x1, x2 ∈ B with ‖x1‖ = 1, ‖x2‖ = 1 and ‖x1−x2‖
C

= ε. Then using the parallel-

ogram identity,
‖x1 + x2‖2 + ‖x1 − x2‖2 = 2

(

‖x1‖2 + ‖x2‖2
)

,

thus

‖x1 + x2‖2 = 2
(

‖x1‖2 + ‖x2‖2
)

− ‖x1 − x2‖2

= 2(12 + 12) − ‖x1 − x2‖2

= 2(2)− (εC)2

= 4 − ε2C2,
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hence

‖x1 + x2‖ =
√

4 − ε2C2,

thus we have

1 − ‖x1 + x2‖
2C

= 1 −
√

4 − ε2C2

2C
,

which implies that

inf

{

1 − ‖x1 + x2‖
2C

}

= 1− 1

C

√

1 − ε2C2

4
.

Hence, we get

δB(ε) = 1 − 1

C

√

1 − ε2C2

4
.

This completes the proof.

Theorem 3.8. A non-trivial quasi-Banach space B is uniformly non-square if and only

if δB(ε) > 0.

Proof. Let B be uniformly non-square. Set ε = 2 − 2δ, ε ∈ (0, 2). Then

δB(ε) ≥ 1 − ε

2
> 0.

Conversely, let there is ε0 ∈ (0, 2) such that δB(ε) > 0, that is,

δB(ε) ≥ η0 > 0 for some η0 ∈ (0, 1).

Let 2 − 2δ = ε ∈ [ε0, 2). Then

δ ∈ (0, 1− ε0/2] and δB(2 − 2δ) = δB(ε) ≥ η0 > 0.

This indicates that for any x, y ∈ SB, if

‖x − y‖
C

≥ 2− 2δ,

then

1 − ‖x + y‖
2C

≥ η0.

Let δ′ = min{δ, η0}. Then of course δ′ ∈ (0, 1).

Now we just need to show that either
‖x−y‖

2C ≤ 1 − δ′ or
‖x+y‖

2C ≤ 1 − δ′. If

‖x + y‖
2C

≤ 1 − δ′,

then we are done:

Let we consider
‖x + y‖

2C
> 1 − δ′.

Then

‖x − y‖ > 2C(1 − δ′) ≥ 2C(1 − δ).
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By this assumption we get

1 − ‖x + y‖
2C

≥ η0,

which implies that
‖x + y‖

2C
≤ 1− η0 ≤ (1− δ′),

which shows that B is uniformly non-square. This completes the proof.

Proposition 3.9. Let B be a quasi-Banach space and H be a Hilbert space. Then

δB(ε) ≤ δH(ε), ∀ε ∈ [0, 2]. (3.9)

Proof. From Theorem 3.7 we can easily prove the result.
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