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Fixed point theorems for F-contractions on closed ball in partial metric spaces

Muhammad Nazam', Choonkil Park?, Aftab Hussain?, Muhammad Arshad' and Jung-Rye Lee**

1Depaurtment of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan
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e-mail: aftabshh@gmail.com

4Depatment of Mathematics, Daejin University,Kyunggi 11159
e-mail: jrlee@daejin.ac.kr

Abstract. In this paper, we present new fixed point theorems for Kannan type Fj-contraction and Kannan type
(o, m, GFp)-contraction on a closed ball contained in a complete partial metric space. Some comparative examples
are constructed to illustrate the significance of these results. Our results provide substantial generalizations and
improvements of several well known results existing in the comparable literature.

1. INTRODUCTION AND PRELIMINARIES

The recent study in Fixed Point Theory is due to a Polish mathematician Stefan Banach who, in 1922, presented a
revolutionary contraction principle known as Banach’s Contraction Principle. He proved that every contraction 7" in a
complete metric space X has a unique fixed point (T'(z) = x; x € X). After the appearance of this remarkable result
many generalizations of this result have appeared in literature (see for example [1-3,6-11,13,14,16,19,20,22,24,25,29]).
One of these generalizations is known as F-contraction presented by Wardowski [30]. Wardowski [30] evinced that every
F-contraction defined on a complete metric space has a unique fixed point. The concept of F-contraction proved another
milestone in fixed point theory and numerous research papers on F-contraction have been published (see [21,23,28,31]).
Hussain et al. [12] introduced an a-GF-contraction with respect to a general family of functions G and established
Wardowski type fixed point results in ordered metric spaces. Batra et al. [4,5] extended the concept of F-contraction
on graphs and altered distances and proved some fixed point and coincidence point results.

Motivated by Kannan [15], Wardowski [30], Matthews [18] and Kryeyszig [17], in this paper, we introduce Kannan
type F-contraction and Kannan type (a,n, GF)-contraction on a closed ball contained in a complete partial metric
space and present related fixed point theorems. We construct examples to illustrate these results. F-contraction on
partial metric spaces is more general than F-contraction defined on metric spaces.

The notion of a partial metric space (PMS) was introduced in 1992 by Matthews [18] to model computation over a
metric space. The PMS is a generalization of the usual metric space in which the self-distance is no longer necessarily

Z€ero.

Definition 1. [18] Let X be a nonempty set and p: X x X — R{ satisfy the following properties: for all z,y, 2 € X,

(m) z=y<pz)=py) =prYvy),
(p2) p(z,z) <p(z,y),
(ps) p(z,y) =p(y, ),
(pa) p(z,2) +p(y,y) <p(x,y) +p(y,2).

92010 Mathematics Subject Classification: 47H09; 47H10; 54H25

9Keywords: partial metric space; fixed point; F-contraction; closed ball.
*Corresponding author.
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Then (X, p) is called PMS. We present some new nontrivial examples of PMS.

Example 1. Let the set of rational numbers be Q = {x1,z2,--- }. We define p: R x R — R™ by

1 fr=yeR-Q
g ifr#£yeR—-Q;
plz,y) =< 3 ifz=yeQ

1+%—|—% if £ = 2m,y =z, and m # n;

1+ 3 if {z,y} NQ = {zn} and {z,y} - Q # ¢.
Clearly p satisfies (p1) — (p3). To prove p4, let z,y,z € R — Q and m # n. Then
p(@,y)+p(z2) < p2,2)+p(Y2);
1
pan,y) +p(2,2) = 2+ - <p(en,2) +p(y,2);

4
g <p(xn,z)+p(xn,z);

1 1
2+E+E:p(xmaz)+p($n7z)§
p(z,y) +p(or, ) < 2<p(z,z8)+0 (Y, 78);

p(xn, ) +p(2,2)

p(a‘:m,l‘n) +p(Z,Z)

4 1 1 2
ny ) - o - 2 - - = ny ) 5
p(Tn,y) +p (Tk, k) 3T, <2+ +o P (T, k) +p (Y, Tk)
2
P (Zn,Tn) + 0 (e, 2k) = = <p(@n, k) + P (Tn, Tk);
3
4 1 1
mydLn 5 = o - 7§ my ny .
P (Tm, Tn) + D (T, Tk st to P (Tm, Tk) + P (Tn, Tk)

Example 2. Let X be uncountable, a € X and 7 = {A C X : a € A} be a topology on X. It is easy to show that
(X, T) is a PMS with the partial metric p defined by

p(a,a) =0,
pla,x) =p(z,z) =1 ifz#a,
p(z,y) =2 ife=yand z,y € X —{a}.

Example 3. Let X = {z; : ¢ € N} be a countably infinite set. Define p: X x X — [0,00) by

0 if . =y = o,
p(z,y) =
Sheigr if (z,y) € {(@m, 20);0 <m <nandn > 1.

Then (X, p) is a PMS.

Example 4. Let A = {a; : i € N} and B = {b; : i € N} be two disjoint infinitely countable sets, and let X = AU B.
Define p: X x X — [0,00) by

1 ifr=yeA,
p(m7y): 0 ifm:yeB,
1+ % +% if x = Yy and {xvy} € {{a’i’a’j}v{aivbj}v{bi7bj}}'

Then (X, p) is a PMS.

In [18], Matthews proved that every partial metric p on M induces a metric d, : M x M — R{ defined by

dp (r1,72) = 2p (r1,72) = p(r1,71) — p(r2,72)
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for all r1,72 € M. Matthews described that if p(r1,72) = max{ry,r2}, then d,(r1,72) = |r1 — r2| a usual metric on M.
Notice that every metric d on a set M is a partial metric p such that p(r,r) = 0 for all » € M and p(r1,r2) = 0 implies
r1 = r2 (using (p1) and (p2)) but not conversely. The notions such as convergence, completeness, Cauchy sequence in

the setting of partial metric spaces, can be found in [18] and references there in.

Definition 2. [18] Let (M, p) be a partial metric space.

(1) A sequence {rn}nen in (M,p) is called a Cauchy sequence if limy,,m— o0 P(7'n, "m) exists and is finite.
(2) A partial metric space (M, p) is said to be complete if every Cauchy sequence {r, }nen in M converges, with

respect to 7(p), to a point r € X such that p(r,r) = limp m—soo P(Tn, T'm ).
The following lemma will be helpful in the sequel.

Lemma 1. [18]

(1) A sequence 1, is a Cauchy sequence in a partial metric space (M, p) if and only if it is a Cauchy sequence in
metric space (M, dp)

(2) A partial metric space (M, p) is complete if and only if the metric space (M, d,) is complete.

(3) A sequence {7, }nen in M converges to a point r € M, with respect to 7(dp) if and only if limy, e p(r,70) =
p(r,7) = limp,m—oco D(Tn, Tm).

(4) If limp 00 7n = v such that p(v,v) = 0 then lim,,—, o (T, ) = p(v,r) for all r € M.
Remark 1. Since (Bp(mo,r),p) C (X, p), Lemma 1 holds for (Bp(xom),p).

Let Fy denote F-contraction on metric spaces and F}, denote F-contraction on partial metric spaces. Wardowski [30]

investigated a nonlinear function F : Rt — R complying with the following axioms:

(F1) F is strictly increasing;
(F2) For each sequence {r,} of positive numbers limp, o 7» = 0 if and only if lim,— e F(rn) = —00;
(F3) There exists 6 € (0, 1) such that lim,_,q+ (€)°F(€) = 0.

We denote by Ar the set of all functions satisfying the conditions (F1) — (F3).

Example 5. Let F': RT — R be defined by

(a) F(r) =In(r),

(b) F(r) =7+ In(r),
(c) F(r)= 111(712 +7),
(d) F(r) v

It is easy to check that (a),(b),(c) and (d) are members of Ap.
Wardowski utilized function F' in an excellent manner and gave the following remarkable result.

Theorem 1. [30] Let (M, d) be a complete metric space and T': M — M be a mapping satisfying
(d(T(r1), T(r2)) > 0= 7+ F(d(T(r1),T(r2)) < F(d(r1,72)))

for all 71,72 € M and some 7 > 0. Then T has a unique fixed point v € M and for every ro € M the sequence {T"(r0)}

for all n € N is convergent to v.

Remark 2. [30, Remark 2.1] In metric spaces a mapping giving fulfillment to F-contraction, is always a Banach

contraction and hence a continuous map.

Example 6 explains that Fj-contraction is more general than Fj-contraction.
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Example 6. Let M = [0,1] and define partial metric by p(r1,r2) = max{ri,r2} for all r1,72 € M. The metric d
induced by partial metric p is given by d(r1,72) = |r1 — 72| for all r1,72 € M. Define F : Rt — R by F(r) = In(r) and
T by

g if r € [0,1),
T(r)=
0 ifr=1.
Note that for all r1,72 € M with r1 <rz or ra <71
T+ F(p(T(r1),T(r2))) < F(p(r1,r2)) implies
T+F(%) < F(r1) orT+F(5) < F(rg).

But T is neither continuous and nor satisfies F-contraction in a metric space (M,d). Indeed, for r4 = 1 and ro = 2

6
d(T(r1),T(r2)) > 0 and we have

T+ F (d(T(r1), T(rz ) < F(d(ri,m2)),
T+F< ), T > < F<d(1,%)>,
T+F( ,%) < F(%)?

P <

which is a contradiction for all possible values of 7.

The following result plays a vital role regarding the existence of the fixed point of the mapping satisfying a contractive
condition on the closed ball.

Theorem 2. [17, Theorem 5.1.4] Let (X, d) be a complete metric space, T : X — X be a mapping, r > 0 and zo be
an arbitrary point in X. Suppose there exists k € [0,1) with

AT (@), T()) < kd(z,y), for all 2,y € Y = Blao,7)
and d(xo,T(x0)) < (1 — k)r. Then there exists a unique point z* in B(zo,r) such that z* = T'(z*).

Definition 3. [15] Let (X, p) be a partial metric space. A mapping T : X — X is said to be a Kannan contraction if

it satisfies the following condition:

p(T(x),T(y) <5 T@)+pwT )

for all z,y € X and some k € [0, 1].

2. KANNAN TYPE FP-CONTRACTION ON CLOSED BALL

Definition 4. Let (X, p) be a partial metric space, 7 > 0 and xo be an arbitrary point in X. The mapping T : X — X
is called Kannan type Fp-contraction on closed ball if for all z,y € Bp(xo,7) C X we have

T+ PO, T) < F (5 e, @) + 0. 7)) (2.)
where 0 < k<1, F € Arp and 7 > 0.

Remark 3. (1) Fj-contraction and Kannan type F,-contraction are independent.
(2) Let F be a Kannan type F,-contraction. From (2.1), for all x,y € Bp(xo,r) with T(x) # T(y), we have

FO(T(@),T0) < 7+ FOT @), 7)) < F (5 e T@) + 0. T0)])
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Due to (F1), we obtain
p(T(z), T(y)) < g [p(z, T(x)) + p(y, T(y))] for all x,y € X, T(x) # T(y).

Theorem 3. Let (X,p) be a complete partial metric space, r > 0 and xo be an arbitrary point in X. Assume that
T:X — X is a Kannan type Fp-contraction on closed ball Byp(xo,m) C X with

Plao, T(wo)) < (1 = Nl + plav, )], A = 5o (22)

If T or F is continuous, then there exists a point x* in Bp(xo,r) such that T(z") = z™ with p(z*,z") = 0.

Proof. Let xo be an initial point in X such that z1 = T(zo), 2 = T(21) = T?(z0). Continuing in this way we can
construct an iterative sequence {z,} such that zn4+1 = T(zn) = T" (o), for all n > 0. We show that z, € By(zo,r)
for all n € N. From (2.2), we have

p(zo,z1) = p(xo, T(20)) < (1 — N)[r + p(xo,z0)] < 7 + p(x0, To),
which shows that z1 € Bp(zo,r). From (2.1) and (F1), we get
F(plan,2)) = F(T(ao) T(@)) < F (& oo, + ol a2)]) =7
which implies
p(x1,z2) < g [p(wo, z1) + p(w1, 22)] < Ap(w0, 21) < A[r + p(20, T0)]

p(zo, z2) < p(xo,x1) + p(x1,22) — P(x1,21) < (1 = N)[r + p(x0,20)] + A[r + (20, 20)] = 7 + p(20, T0).
This shows that z2 € Bp(xo,r). Inductively, we obtain that z, € Bp(xo, ), for all n € N and hence from the contractive
condition (2.1), we have

F(p(xn,zny1)) < F <§ [p(Tn—1,zn) +p(:cn,a:n+1)}) —r
< F (g |:p($n71755n) + %p(mn,l,xn)}) -7
< F (%p(wn—hwn)) -7 (2.3)

and also
F(p(zn-1,2n)) < F (Ap(Tn—2,Tn-1)) = 7.
From (2.3), we obtain
F(p(xn, 2ni1)) < F (Ap(Tn—2,2n-1)) — 27.
Repeating these steps, we get
F(p(zn, znt1)) < F (p(z0,21)) — nT. (2.4)
From (2.4), we obtain limp—e0 F (p(Zn, Tnt1)) = —00. Since F € Ap,
lim p(@n, Tny1) = 0. (2.5)
n=oo

From the property (F3) of F-contraction, there exists x € (0,1) such that

B (pl@s )" F (plarn, 2041))) = 0. (2.6)
Following (2.4), for all n € N, we obtain
(P(@n; Tn41))" (F (p(2n, Tnt1)) = F (p(wo, 1)) < = (p(Tn, Tny1))" n7 < 0. (2.7)
Considering (2.5), (2.6) and letting n — oo in (2.7), we have
T (n (p@,2as1))") = 0. (2.8)
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Since (2.8) holds, there exists n1 € N such that n (p(zn, Zn+1))" < 1 for all n > ny or

1
P(Tn, Tnt1) < — for all n > ny. (2.9)
nek
Using (2.9), we get for m > n > n,
m—1
P(Tn, 2m) < D(@n, Tnt1) + P(@Tnt1, Tnt2) + P(Tnt2, Tnts) + -+ P(Tm—1, Tm) — p(zj,25)
j=n-+1

S p($n7$n+1) +p(xn+17 xn+2) +p($n+27 fL’n+3) + - +p($m—1, l?m)
-1 ) co

1

= p(@i, iv1) < Y p(wi,wirn) <D

1
1k

3

i=n i=n

1
The convergence of the series > o — entails that limy, s co P(Tn, Tm) = 0. Hence {z,} is a Cauchy sequence in
1R

(Bp(xo, r),p). By Lemma 1, {z,} is a Cauchy sequence in (B(xo, ), dp). Moreover, since (Bp(xo, r),p) is a complete
partial metric space, by Lemma 1, (B(aco, ), dp) is also a complete metric space. Thus there exists ™ € (B(zo,7),dp)
such that z, — ™ as n — oo and using Lemma 1, we have

lim p(l’*,l’n) :p(l’*,I*) = lim p(@n,Tm). (2.10)
n—o00 n, Sl

m—
Due to limy, m—oo P(Tn, Tm) = 0, we infer from (2.10) that p(z™,z*) = 0 and {z,} converges to =™ with respect to
Tp. In order to show that z* is a fixed point of T', we have two cases.

Case (1). T is continuous. We have

" = lim x, = lim T"(z¢) = lim T"""(20) = T( lim T"(z0)) = T'(z").

n— o0 n— oo n— o0 n— oo
Hence z* = T'(x"), that is, «* is a fixed point of 7.
Case (2). F is continuous. We complete this case in two steps. First, if for each n € N there exists b, € N such that
Zo,+1 = T'(z*) and by > bp—1 with bp = 1. Then we have
S Jim_zp,, 41 = lim T(z*) =T(z").
This shows that z* is a fixed point of T. Second, there exists ng € N such that z,4+1 # T'(z") for all n > ng. Using
contractive condition (2.1), we obtain

* k: * *
F @) 7)) < F (5§ @)+ TG0 — 7
On taking limit as n — oo and using the continuity of F and the fact that limn,— o p(Tn, Tnt1) = 0, we have

>k * k: * *
F(p(a™, T(z")) < F(5p (", T(z7))).
Since F is strictly increasing, the above inequality leads us to conclude that p(z*,T(x*)) = 0. Thus, by using the
properties (p1) and (p2), we obtain * = T'(z*), which completes the proof.

To prove the uniqueness of £*, assume on contrary, that y* € Bp(xo,7) is another fixed point of T', that is, y* = T'(y™).
From (2.1), we have

* * k * * * * k: * *
T+ PO, T < F (5 @) + o 70O < F (§ <2l ) ). (211)
The inequality (2.11) leads to a contradiction. Hence p(z*,y*) = 0. Thus, due to (p1) and (p2), we obtain z* = y*. O
The following example explains the significance of Theorem 3.

Example 7. Let X = RT. Define p : X* — [0,00) by p(z,y) = max{z,y} for all (z,y) € X*. Then (X,p) is a
complete partial metric space. Define the mapping 7' : X — X by
if z € [0,1],

T(x):{f*_% if z € (1,00).
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Set k=2, xo = 3, 7 = % and p(zo,x0) = 5. Then By(wo,r) = [0,1] and
1 1 1
plan, Tlao)) = max { 5. 56§ = 3 < (1= N+ plan, 0]
For all z,y € B,(zo,7), we note that

PT(@),T() = max {2 LY = L max{z,y)
< = Lo ) o )]
k

= 5 [p(@ (@) +p(y, T()]

Thus

P+ (@), ) < 1n (bl (@) + 0l TG

If F(a) = In(r), @ > 0 and 7 > 0, then
P+ F (0. 7)< F (5 o T +5(0. 7))
However, for z = 100,y = 10 € (1,00),

p(T(2),T(y) = max{“_%’y_%}

> o+l = § e T@) +p. ).

Consequently, the contractive condition (2.1) does not hold on X. Hence, all the hypotheses of Theorem 3 are satisfied

on closed ball and so x = 0 is a fixed point of T

3. KANNAN TYPE (o, 77, GF})-CONTRACTION ON CLOSED BALL

Definition 5. [27]. Let T: X — X and a: X x X — [0, +00) be two functions. We say that T" is an a-admissible if
for all z,y € X, a(z,y) > 1 implies a(T'(x),T(y)) > 1.

Example 8. Let X = R. Define a: X x X — [0,00) and f: X — X by

2

e“tv  ifx y€|0,1] z= if z € [0,1]
— ) s L]y — 7 s 1,
a(z,y) { 0 otherwise . f (@) ln(gc) if x € (1,00).

Apparently, a(z,y) > 1 implies a(fz, fy) > 1.

Definition 6. [26]. Let T: X — X and a,n: X x X — [0,400) be two functions. We say that T" is an a-admissible
mapping with respect to 7 if for all z,y € X, a(z,y) > n(z,y) implies a(T'(z), T (y)) > n(T(x), T (y))-

Example 9. Let X = R. Define a,n: X X X — [0,00) and f: X — X by
=ty if 2,y € [0, 1], e*tv  ifx y€0,1],
alzy) = { 0 otherwise , n(z,y) = 0 otherwise .
2

2 e eo1]

= 7 1 s 4
I @) { In(z) ifz e (1,00).

Apparently, a(z,y) > n(z,y) implies a(fz, fy) > n(fz, fy).

If n(z,y) = 1, then the above definition reduces to Definition 5.
We begin by introducing the following family of new functions.
Let A denote the set of all functions G : (RT)* — RT which satisfy the property
(G): for all p1,p2,ps,pa € RT, if
P1+Dp2+p3+pa < Pbi + Pit1
4 - 2
then there exists 7 > 0 such that G(p1, p2,p3,ps) = 7.

y1=1,2,3,4,
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Definition 7. Let (X, p) be a partial metric space and T be a self mapping on X. Suppose that o, : X x X — [0, +-00)
are two functions. The mapping T is said to be an («, n, GFp)-contraction if for all z,y € X, with n(z,y) < a(z,y) and
d(T(x),T(y)) > 0, we have

G(p(z,T(x)),p(y, T(y), p(z, T(y)),p(y, T(x))) + F (p(T'(x), T (y))) < F (p(x,y)),
where G € Ag and F € Ap.

Definition 8. Let (X, p) be a partial metric space and 7' : X — X and a,n: X x X — [0,400) be two functions. T

is said to be an («,n)-continuous mapping on (X, p) if for a given 2 € X, and the sequence {zn}, . converging to
(T, Tny1) > N(Tn, Tny1) implies T(zn) — T'(z).

Example 10. Let X =[0,00) and p: X x X — [0,00) be defined by p(r1,r2) = max{ri,r2} for all r1,r2 € X. Define

T(r) = { sin(7r) if r € [0,1], { r4ri4+1 ifr,re € [0, 1],

cos(mr) +2 if r € (1,00), a(ri,r2) = 0 otherwise,

3 3
- ri+ry ifri,re €10,1],
n(ri,re) = { 0 otherwise.

Then apparently, 7" is not continuous on X, however T is an («, n)-continuous.

Definition 9. Let (X, p) be a partial metric space and a, 7 : X X X — [0, 400) are two functions, r > 0 and xo be an
arbitrary point in X. The mapping 7' : X — X is said to be a Kannan type (a,n, GF})-contraction on closed ball if
for all z,y € Bp(zo,7) C X with n(z,y) < a(z,y) and p(T(z),T(y)) > 0, we have

T(G)+ F (p(T(x), T(y))) < F (g [p(z, T'(x)) +p(y,T(y)}> ; (3.1)
where 7(G) = G(p(z, T(x)), p(y, T(y)), p(x,T(y)),p(y, T'(2))), 0 < k <1,G € Ag and F € Ap.

Theorem 4. Let (X,p) be a complete metric space and T : X — X be a Kannan type (a, n, GFp)-contraction mapping
on a closed ball m satisfying the following assertions

(1) T is an a-admissible mapping with respect to n,

(2) there exists o € X such that o(zo, T (x0)) > n(zo, T (z0)),

(3) there exist 7 > 0 and w0 € X such that p(zo, T(z0)) < (1 — A)[r + p(zo,20)], where A= 2.

Then there exists a point x* in By(zo,r) such that T(z*) = «* with p(z*,z*) = 0.
Proof. Suppose that o is an initial point of X, we can construct a sequence {zn}.., such that zn11 = T(zn) =
T () for all n € N. By assumption (2) there exists zo € X such that a(xo, T(x0)) > n(xo, T(x0)). Since T is an
a-admissible mapping with respect to 7,
a(zo, T(x0)) > n(zo, T (x0)) implies a(x1,x2) > n(z1,22), which implies a(z2,x3) > n(z2, x3).
In general, we have
N(Zn-1,%n) < &(Tn-1,%n), for all n € N.
If there exists ng € N such that p(zn,, T (zn,)) = 0, then z,, is a fixed point of T. We assume that p(zn, T (zn)) > 0
for all n € N. We show that =, € B,(xo,r) for all n € N. Assumption (3) implies
p(xo, 1) = p(zo, T(x0)) < (1 = A)[r + p(x0,z0)] < [r + p(zo, z0)]
and thus z1 € Bp(zo,7). Note that 7(G) = 7. Indeed, 7(G) = G(p(zo, x1), p(z1,x2), p(z0, x2), p(z1,21)) satisfies

p(xo, 21) + p(a1, 22) + p(wo, 22) + p(x1,21) _ p(wo, 21) + p(21, 22)

4 2
By the property (G), there exists 7 > 0 such that

G(p(xo,21), p(21,22), p(0, 22), p(T1,21)) = T
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Due to (3.1) and (F1), we have

F(p(z1,72)) = F@(T(x0),T(z1))) <F (g [p(z0, 1) +P($17$2)}) -7(Q)

IN

k
P (4 lanan) + plor.aa)]) —
This implies p(z1,z2) < 3 [p(xo, 1) + p(z1, 22)] < Ap(z0,21) < Alr + p(x0, 20)],

p(zo,z2) < p(wo, 1) + p(w1,22) — p(w1, 1)
< (1 =XA)[r +p(xo,z0)] + Alr + p(w0, x0)] = r + p(z0, T0).

This shows that z2 € By (o, 7). Inductively, we obtain that z,, € By(z0o,r) for all n € N and hence from the contractive

condition (3.1), we have
F (o) < F ( blnos. ) + )] ) = 7(6). (32
Note that 7(G) = G(p(zn—1,Zn), D(Tn, Tnt1), P(Tn—1, Tn+1), P(Tn, Tn)) satisfies
P(Tn-1,2Zn) + P(Tn, Tnt1) + D(Tn-1, Tnt1) + D(Tn, Tn) < P(Trn-1,2Zn) + p(Tn, Tnt+1)

4 - 2 ’
and so by the property (G), there exists 7 > 0 such that

G(p(xnflv mn)ap(x’fh x’ﬂ+1)7p(mn*17 xn+1),p(mn, .’L'n)) =T

Thus, from (3.2), we get

Fanenn) < F (5 [ponnad + 52 pplanran]) 1
k

IN
|
P

mp(mn_l, xn)> —17=FAp(zn_1,2n)) — T (3.3)

but

F(p(xn-1,72)) < F(Ap(@n-2,Tn-1)) = T.
From (3.3), we obtain

F (p(n, @n11)) < F (p(n—2,0-1)) — 27.

Continuing in the same way we obtain
F (p(@n, ni1)) < F (p(xo,21)) — 1.

By the same reasoning as in the proof of Theorem 3, there exists ™ € Bp(zo,r) such that p(z*,z*) = 0 and {z,}
converges to x* with respect to 7,. We show that z* is a fixed point of T. We have two cases.
Case (1). T is an («, n)-continuous.
Since x, — =" as n — 0o and N(Tn—1,Tn) < a(Tn_1,x,) for all n € N, (a, n)-continuity of T implies znt+1 = T'(zn) —
T(z*) as n — oo. That is, * = T(z*). Hence z* is a fixed point of T
Case (2). F is continuous. We complete this case in two steps. First, if for each n € N there exists b, € N such that
Zb,+1 = T'(z*) and by, > by—1 with bg = 1, then we have
¥ = lim xp,41 = lim T(z*) = T(z").

n—o0 n— o0

This shows that ™ is a fixed point of T. Second, there exists ng € N such that z,,11 # T(z*) for all n > ng. Using the
contractive condition (3.1), we obtain

F(pzn, T(x"))) < F r [P (@n-1,20) +p (", T(z"))] | - 7(G),
2

767 Nazam ET AL 759-769



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

where 7(G) = G(p(zn—1,zn), p(z*, T(z*)), p(xn-1,T(z")), p(z*, zn)). Using the continuity of F and the property (G),
we have

F(lim p(xn,T(x*))) <F (l; [hm p(Tn-1,%n) + hm p(x T(z ))]) —T.

n—00 n—

Since F is strictly increasing, the above inequality leads us to conclude that p(z*,T(z*)) = 0. Thus, by using properties
(p1) and (p2), we obtain z* = T'(x*), which completes the proof. O

Example 11. Let X = R*. Define p: X? — [0,00) by p(z,y) = max {z,y}. Then (X, p) is a complete partial metric
space. Define T: X — X, a: X x X — [0,400),7: X x X - R", G: (RT")* = R and F: Rt = R by

Sz i z+y :
T(x):{ o8 1fx€[0,1],) a(x,y):{ Pi if x € [0, 1],
) 3

z—3 ifze(l,o0 otherwise,
n(z,y) = 3 for all z,y € X, G(t1,t2,ts,ta) = 7 > 0 and F(t) = In(t) with ¢ > 0. Set k = % zo = 3, r = ; and

p(xo,x0) = % Then B(al:o7 r) =[0,1], «(0, )) > n(0,7(0)) and

(0
( ( )) {% %}<(1*A)[r+p(xo,xo)].
v >

For if x,y € B(xo,r), then a(z,y) =
a(T(2), T(y)) = n(T(x), T(y)) for x#% p(T(x

o
») =
(1 {—"g —} > max x4}

o max {z, }<ﬁ max a;5—x +m by 14k[ + 9]
19 Y 19 19|~ 38 yl-

y). On the other hand, T'(z) € [0,1] for all z € [0, 1] and so
{52,541 > 0. For all ,y € By(zo,7), we have

Thus
P(T (@), T(9)) < & (e, T@)) + ply, T)].
Consequently,
k
P (7). 7)) < o § le T + 0 T0)])
leads to

If x ¢ By(xo,7) or y ¢ By(wo,7), then a(x,y) = 3 7 5 = (=,

)
p(0@). 7)) = max {z = L= 3 | = § b T(@) + 2 T

Hence, all the hypotheses of Theorem 4 are satisfied on closed ball and = = 0 is a unique fixed point of T'.

4. CONCLUSION

In this paper, the main aim of our paper is to present new concepts of F-contraction on closed ball which are different
from those given in [12,23,30]. Existence and uniqueness of a fixed point of such type of F-contractions on closed ball
in complete partial metric space are discussed. The study of such results is very useful in the sense that it requires
the F-contraction mapping defined only on the closed ball instead the whole space. These new concepts shall lead the
readers for further investigations and applications. It will also be interesting to apply these concepts in different metric
spaces.
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Abstract
We introduce lacunary sequence spaces over n-normed space defined by Euler transform
and Musielak-Orlicz functions with the help of an infinite matrix. We also make an effort
to study some topological properties and prove some inclusion relations. Finally, we study

the notion of statistical convergence over mentioned sequence space.

Keywords and phrases: Musielak-Orlicz function; matrix transformation; Euler transformation; sta-

tistical convergence.
AMS subject classification (2010): 40A05; 40C05; 46A45.

1 Introduction and preliminaries

Fuler transform is used for improving the convergence of certain series which is widely used
in numerical analysis. These techniques are useful in computer science especially in making
graphics. We may find the application of the results to physical chemistry and crystallography.
Further, we may use these results in the accelerated convergence techniques to find eigenvalues
and eigenvectors of the dynamical systems.

Let Y 72 ar be an infinite series with sequence of partial sums (sz) and ¢ > 0 be any

real number. The Euler transform (E,q) of the sequence S = (s,) is defined by EZ(S) =

n
W Yoo ( . ) q" " Vsy. A series Y °  ap is said to be summable (F, g) to the number s if

n
EL(S) = W Y oo . q" Vs, — s as n — oo, and is said to be absolutely summable

(E, q) or summable |E, g, if >, |EL(S) — E}_|(S)| < co. Let & = (x,,) be a sequence of scalars,
for k > 1 we will denote by N,,(z) the difference Ei(z) — E!_,(x), where E}. is defined as above.

Using Abel’s transform we have

N ( ) 1 75_:2 A+ Sp—1An—1 + Sn qn—l
T)=—F——— T - S
" R o U ) E e G o) K G )
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where

Sl (1) (7l

Clearly, for any sequence = = (), y = (y,) and scalar A, we have: N, (z +y) = Np(x) + Np(y)
and N, (Az) = AN, ().

Let _
o
m:[mij]: w%—zi ](931) wg) B )
wy Wy p3 ...

where p = (p;) and w® = (w;)®) are some fixed numerical sequences t € Z\{0}. For a fixed

"TH, n is odd
-n

2
a matrix M, e k) = M, w' =0V i>ksand fori=1,2,..., ks we have some fixed sequences

. We construct

ky € N, we define a finite sequence t,, with k; terms as ¢, = ]
n is even

w? and p.

Example 1.1. For ky = 2 we have t; = 1,t3 = —1, we define p; = =1V i and

() 1, fort=1,-1
w; = ,
0, Vitez\{0,1,-1}

then we have

M wt,2)T = <Zmij§j> =< =& +&,86 — & +83,8—8+8,8 86+ & >

j=1 n

An Orlicz function is a function M : [0,00) — [0, 00) which is continuous, non-decreasing
and convex with M(0) = 0, M(z) > 0 as xz > 0 and M(z) — oo (z — o0). Clerly, if M is a
convex function and M (0) = 0, then M (A\z) < AM(x) for all A € (0,1). Using the idea of Orlicz

function, Lindenstrauss and Tzafriri [15] constructed the sequence space

by = {($k) GW3ZM<%> < o0, forsomep>0},

k=1
is called Orlicz sequence space and showed that £, is a Banach space with the following norm:
.- £
||z|| = inf p>0:ZM<—k> <1y,
k=1 P

The space ) is closely related to the space ¢, which is an Orlicz sequence space with M (t) = |¢|P
for 1 <p < .

A sequence M = (M) of Orlicz functions is said to be a Musielak-Orlicz function [22]. A
sequence V = (V) is defined by Vi(v) = sup{|vju — (M) : w > 0} (k = 1,2,---) is said to
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complementary function of M. For a given M, the Musielak-Orlicz sequence space tpq and its

subspace haq are defined by

tm :{ZEE’LUZIM(C:E)<OO for some c>0},

hM:{:EGwZIM(CZE)<OO for all c>0},

where Iy denotes the convex modular and is defined by

e}

I(z) =Y (Mi)(zx) (&= (zk) € tag)-

k=1
It is noted that taq equipped with the Luxemburg norm or equipped with the Orlicz norm,

where Luxemburg and Orlicz norms are given by
. x o . 1
_= . - < = - .
[lz]| 1nf{k‘>0 IM(k‘)_l} and ||z| 1nf{k<1+IM(k:£)> k‘>0},

respectively.

Kizmaz [14] was the first who introduced the idea of difference sequence spaces and studied
Z(A) ={z = (z) € w: Az € Z} (Z = lo, ¢, ), where Ax = xp, — x4 for all k € N (N
and w denote the set of natural numbers and the set of all real and complex sequences) and the
standard notations [, ¢ and ¢y denote bounded, convergent and null sequences respectively. Et
and Colak [7] presented a generalization of these difference sequence spaces and introduced the
space Z(A™) (n € N), in this case, A"z is given by A"z = A(A" 1z) = A" 1z, — A" gy

for n > 2, which is equivalent to the following binomial representation

Algy = i(—1)v<z>$k+v.

v=0
We remark that if we take n = 1, then difference sequence space Z(A") is reduced to Z(A).
Gahler [12] extended the usual notion of normed spaces into 2-normed spaces while the
notion was again extended to n-normed spaces by Misiak [16]. Assume that X is a linear space

over the field K of real or complex numbers of dimension d > n > 2, n € N (N denotes the set

of natural numbers). A real valued function ||-,---,-|| on X™ satisfying the conditions:
(N1) ||z1, 22, ,x,|| = 0 if and only if z1, - - -, x,, are linearly dependent in X;

(N2) ||z1, 22, -, xy|| is invariant under permutation;

(N3) ||azi, a2, -, xn|| = |a ||z1, T2, - - -, 2p]| for any a € K;

(N4) (|21 + @), w2, -+ @] < wr, w2, @l | 4 (|27, 22, 2|

is called a n-norm on X, and the pair (X, ||-,---,-||) is called a n-normed space over K.

For more details about these notions we refer to [3-5,13,18,19,21,23] and references therein.
We used the standard notation § = (k,) to denotes the lacunary sequence, where 6 is a
sequence of positive integers such that kg = 0, 0 < k, < k,41 and h, = k, —k,_1 — oo (r — 00).
The intervals determined by ¢ will be denoted by I, = (k,_1, k;] and the ratio ¢ Tk:1 by ¢, (see [9]).
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2 Main results

Let M = (M}) be a Musielak-Orlicz function, p = (px) be a bounded sequence of positive real
numbers and u = (uy) a sequence of strictly positive numbers. We define the following sequence

space in the present paper:

T 1 S S
BM, 19,5 By Al = = g3k

[M’f (H U Nk Mt ) A")
P
We will use the following inequality to prove our results. If 0 < pp < suppy = H, K =
max(1,27~1) then

k
’zl’“"z"_l‘D] < oo, §2>0, for some p>0}.

|ag + bg|”* < K{|ak|"* + |bk|"*}
for all k and ag, by € C. Also |a|P* < max(1, |a|") for all a € C.
Theorem 2.1. Let M = (My) be a Musielak-Orlicz function, p = (pg) be a bounded sequence

of positive real numbers and u = (ug) be a sequence of strictly positive real numbers. Then the

space EA(M, u,p, s, Mt sy A I, -+, ||) is linear over the field R of real numbers.

Proof. Let z = (zx),y = (yx) € Eﬁl(./\/l,u,p,s,i)ﬁ(nwt’kf),AT, II,--+,]|) and a, 8 € R. Then

there exist positive integers p; and ps such that

e U NE(Mp wt e A" T Pk
e [ N ) N
r i P

1o, U Ne (Mt ) AT Y) Pk
h;nh—T;k‘ |:Mk<H ,zl,---,zn_1H>] < Q.

P2

and

Let ps = max(2|a|p1, 2|5|p2). Since (My) is nondecreasing and convex function so we have

N N up N (Mt ) (AT + BATY)) Pr
B YOS

1l U Nk (Mt 1) CA" )
Shmh—Zk‘ [Mk<H (pps 7 ,Z1,"',Zn—1H>

+<H uka(m(pbzt7kf)ﬁATy) L2, 2n 1H>]pk

1 — U N (Mt ) AT ) Pk
< K lim — k%M H T sy <1y Ty An— H
S 11m h Z [ k( 0 Z1 Zn—1

& WeNL (O ot ) AT P
+Klim—zk‘_s[Mk<H - NE (D ot k5 y),zl,m,zn—1H>]
r P2
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< 00.
Therefore, ax + By € Ef (M, u,p, s, M (pwt k) A" ||-,-++,|]). This proves that E/(M,u,p,

8, Mp ot kp)s AT, [|, -+ ,-]]) is a linear space. O

Theorem 2.2. Let M = (My) be a Musielak-Orlicz function, p = (p) be a bounded sequence

of positive real numbers and u = (ug) be a sequence of strictly positive real numbers. Then, the

space EL(M, u,p, s, Mt k) AT -+ ¢||) is paranormed space with the paranorm defined by
s U NE(OM (it kAT T PR 7
g(x) :inf{ppn/H: (hmhizk_s [Mk<H ENE (D p,wt k) )7%'“ ,Zn—1H>] > - 1}’
TNy p
k=1

where H = max(1, supy, pg).

Proof. Clearly g(z) = g(—z) and g(z+y) < g(z)+g(y). Since M (0) = 0, we get inf{pP»/H} =0

for x = 0. Finally, we prove that multiplication is continuous. Let A be any number then,

e M NE(M oy wt e AT Pk
g(Ae) = inf{ o/ lim =S ks | H Nty ),zl,---,zn_lu <1
r hr 1 P

implies that

1 & W N (Ot g AT P
g(/\:n):inf{(/\s)p”/H:limh—Zk‘_s[MkO’ Nt k) )’Zl’“"zn_l‘D] Sl},

S
" k=1

1
where s = |—f’\|. Since |A[P < max(1, |A|7), then [\P*/H < (maX (1, |/\|H)> . Hence

g(Ax) < (max (1, |/\|H)>%jnf{(s)pn/H: (hmhi

r T

(e B | S LD
k=1

P

and  therefore, ¢g(z) converges to zero when ¢g(x) converges to zero in
Eg(./\/l,u,p,s,i)ﬁ(p7wt7kf),AT, II;--+,+). Now suppose that A\, — 0 as n — oo and
T € Eﬁl(./\/l,u,p,s,i)ﬁ(nwt’kf),Ar, II;--+,-|). For arbitrary € > 0, let ng be a positive

integer such that

1 s W N (D), ot ATx Pk
O o e I
r R, 1) 2
k=ng+1
for some p > 0. This implies that
N N U N (DMt 1) A" T) PN ¢
(h}nh— Z k |:Mk<H P ) Rly "t 7zn—1H>:| > < 5

r k:’n()—l—l
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Let 0 < || < 1, then using convexity of (My), we get

1 & At N (D ot o AT P
o 3 e [y Ly
r p

k=ng+1

. 1 e . uka(mt(p7wt7kf)Ar$) D e\ H
<|/\|11Tmh—TkZ+1k: [Mk<H ; ,zh...%_lH)] < (5"
=ng

Since (Mp,) is continuous everywhere in [0, 00), so

h(t) — h;n hi i LS |:Mk (H tuka(mt(ll;wfﬁf)AT"E) e Zn_1H>:|pk
" k=1

is continuous at 0. Hence, there is 0 < § < 1 such that |h(t)| < €/2 for 0 <t < §. Let K be
such that |\,| < d for n > K we have

1 10 ., /\nuka(mt(;n,wt,kf)AT:E) on % ]
<h;l’lh—742k‘ |:Mk<‘ p 7z17...’zn_1H>:| > < 5
k=1
Thus, for n > K,
1 & A N (MM it e VAT Pry L
(hmh—Z’f‘S[MkQ BNt k) )’zl"”’z"‘l‘D] >H e
gyt P
Hence, g(Az) — 0 as A — 0. This completes the proof of the theorem. O

Theorem 2.3. If M' = (M) and M" = (M]!) are two Musielak-Orlicz functions and s, s, S2

be non-negative real numbers, then we have

(Z) E;]L(MlauapaSam(p,wt,kf)aAra ||7 7”) N E;]L(Mua uapasamt(p,wt,kf)aAra ||7 7”) -
E;]L(M/ + Ml/a u, p, s, mt(p,wt,kf)v Arv ||7 T ||)
(ii) If the inequality s1 < sy holds, then Ej(M’ u,p, 81, Mpwt kp)s AT, I ---,]) C
E;]L(Mlv u, p, 82, Dﬁ(p,wt,kf)a Ara ||7 ) ||)
(i) If M’ and M" are equivalent, then Eg(./\/l’,u,p,s,im(p’w%f),AT’ o) =
EgL(MHa u,p, s, m(p,wt,kf)a Ar’ ||7 ) ||)
Proof. It is obvious so we omit the details. O

Theorem 2.4. Suppose that 0 < ri < pr < oo for each k. Then

Egz(Mv u,r,s, mt(p,wt,kf)a AT? ||7 ) ||) - E;]L(M7 u,p,s, mt(p,wt,kf)a Arv ||7 R ||)
Proof. Let v € EL( M, u,r,s, Mt ki s) s A" |-y, +||). Then there exists some p > 0 such that
1 & w N (N ATx Tk
o 3 o [ )
vy k=1 P
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This implies that

P
for sufficiently large value of k, say k > ko for some fixed ko € N. Since (M}) is nondecreasing,

M, (H uka(?m(p,wt,kf)AT:n) . ,%—1”) <1

we have
1 & w N (9N ATz Pk
lim — Z s [M’f<H kN ( (powt,ky) ),zb .. 7Zn_1‘>]
v hy p
k>k
1 & w N (9N ATx Tk
<lim— > k7| M H Nt 1) ),zl, e 7Zn—1H < 0.
r hy p
k>ko

Hence, z € EL(M, u, p, 8, M(pwt ) AT ). O
Theorem 2.5. (i) If 0 < pp < 1 for each k, then Eﬁl(./\/l,u,p,s,Dﬁ(p7wt7kf),AT, |, ,-]) C
E;]L(M7 u, s, mt(p,wt,kf)a Arv ||7 R ||)
(ii) If pg > 1 for all k, then Eﬁl(M,u,s,Dﬁ(W%ﬂ,Ar, I 51 c
E;]L(Ma u,p,s, mt(p,wt,kf)a Ar’ ||7 ) ||)
Proof. 1t is easy to prove by using above so we omit the details. O

3 Applications to statistical convergence

Fast [8] extended the notion of usual convergence of a sequence of real or complex numbers and
called it statistical convergence. This notion turned out to be one of the most active areas of
research in summability theory after the works of Fridy [10] and Salét [24]. Fridy and Orhan [11]
defined and studied the notion of lacunary statistical convergence. Some recent related work

and applications we refer to [1,2,6,17,20]. We are now ready to define following notions:

Definition 3.1. Let 0 = (k;) be a lacunary sequence. Then, the sequence x = (xy) is Ni(u)-

lacunary statistically convergent to the number | provided that for every e > 0,

1 U Ne(M oy wt e VAT T) — 1
lim—{k‘GI}:H eVl (prwks) ) 7Z1...7zn_1H26}:0.
r hy p
In  symbols, we shall write [N, u, M (p wt ks ) S, AT]p-limx = I or xp —

U([Nky w, Mt 1y ), S, A'lg). If we take § = (27), then we shall write [Ni, uw, M, ye gy, S, AT
instead of [Nk, u, Mt ;)5 S, Al

Definition 3.2. Let 0 = (k,) be a lacunary sequence, M = (My,) be a Musielak-Orlicz function,
u = (ug) be a sequence of strictly positive real numbers and p = (px) be a bounded sequence of

positive real numbers. We say that x = (xy,) is strongly Ny (u, Dﬁ(nwt’kf), A")-lacunary convergent
to I with respect to M provided that

we N () i o VAT 2) — 1 P
hmi Z Mk H - k( = Jff) ) 2 7zn—1H =0
vy kel P

776 Alotaibi ET AL 770-780



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.5, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

The set of all strongly Ni(u, Dﬁ(p7wt7kf),AT)-lacunary convergent sequences to | with respect
to M is denoted by [Nk,u,./\/l,p,i)ﬁ(nwt’kf),AT, I, -+, -llle- In symbols, we shall write x —
l([Nka u, Mapamt(p,wt,kf)a Ar’ ||7 ) ||]9)

Note that, in the special case, M(x) = =z, pr = po for all & € N, we shall write
[Nk,’LL, m(p,wt,kf)a Arv ||7 ) ||]9 instead of [NkauaMapa mt(p,wt,kf)a Ara ||7 ) ||]9

Theorem 3.3. Let 0 = (k) be a lacunary sequence.

(i) If a sequence x = (xy,) is strongly Ni(u, M (pwt kp)s A")-lacunary convergent to l, then it is
Ni(u, M (pwt k) A")-lacunary statistically convergent to .

(ii) If a bounded sequence x = (xy) is Ni(u, M (pwt ey ) A")-lacunary statistically convergent to

l, then it is strongly N (u, M (pwt ks) s A")-lacunary convergent to .
Proof. (i) Let € > 0 and zg — I([Ng, u, Mt g,y A7, ||+ 5+ [lJo). Then, we have

’LLka Dﬁ(p wt kf)A :E) —1 Po

E H y 21yt An—1

kel

Ppo

H uka(Dﬁ(%wt’kf)A%) —1

2 Z P y 1yt s An—1
(m e y—1
ug Ng wt ke T
H . - r) ’Zl""’Z”*HZE
’LLka(mt Jwt k AT:E)—Z
> el {k‘EI H (Pt k) ,%,"',%—1”26 .
0

Hence, zj, — l([Nka u, mt(p,wt,kf)v S, AT]G)'
(ii) Suppose that xp — I([ N, u, Mp .t ky)s S A"p) and let = € [o. Let € > 0 be given and
take N, such that

{pens PR =it a2 (5) )

1
lim —
im I

for all » > N, and set

= {k el : Huka(?)ﬁ(p,w;,kf)Am) - l’zl’ e ’Zn_IH > (%)%}’

where K = sup,, |z| < co. Now for all r > N, we have

Ppo

uka(Dﬁ(p wt kf)AT:E) —1

. 1 ) )
h;nh_ E »R1s " Zn—1
" kel P

Ppo

’LLka Dﬁ(p wt kf)A :E) —1

_hm_ E H y Ry "ty An—1

kely
keT:
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1 WeNE(M () wt eV ATx) — 1
—|—11Hl— Z H : k( = Jff) ) y 21y "y An—1 "
r hy p
keI,
kT,
1/ hye
< i —< ’ >K
T \2Kpo 2h
Thusa (:L'k) € [Nk,’LL, 9:n(;zz,w’f,kf)a A" ) ||7 Tty ||]9 O

Theorem 3.4. For any lacunary sequence 0, if lim, . inf g, > 1 then
[Nka u, mt(p,wt,kf)a Sa AT] - [Nka u, mt(p,wt,kf)a S, AT]G-

Proof. If lim,_, inf g, > 1, then there exists a § > 0 such that 1+ < g, for sufficiently large r.
Since h, = k, — k,._1, we have hr < 1+5 Let xp, — I([Ng, u, M, wt Ep) S, A"]). Then for every

€ > 0, we have

up Ni(9N wt ATzx) —1
{kSkTH i k( (b Jy) ) 7z17"'7zn—1H26}

k. 1)
1 up N (9N ATx) —1
> b k‘GIriu kN ( (p,wt ky) ) ,217"'7%—1”26
ky p
) 1 uka(DJt(p wt k )AT:E) —1
SR ) O L T el P
—<1+5>h7{ o P Aoy || 2 €
Hence, [Nk,u, Dﬁ(%wt’kf),S, AT] - [Nk,u, Dﬁ(%wt’kf),S, AT]Q. O
up N (9 ATg)—1
In the next results we denote the quantity PR pt’kf ) by :L"L’p .

Theorem 3.5. Let § = (k,) be a lacunary sequence, M = (My) be a Musielak-Orlicz func-
tion and 0 < h = infypr < pr < suppprx = H. Then [Ny, M, u, Dﬁ(nwt’kf),AT, II-,--<,-llle C
[Nka u, mt(p,wt,kf)a S, AT]G-

Proof. Let x € [Ny, M, u, mt(p7wt7kf),AT, II;- -+, -||]o- Then there exists a number p > 0 such
P
that lim, h% Zkelr [Mk<||:n2’p, FITREE ,zn_1||>} 5 0, as r — oo. Then given € > 0, we have

il (b )

Pr

) 1 Ip Pr
> h;nh— Z My, Hlﬂk N ATRRR ,zn_1H

T

1
> 1 h_ Z I:Mk(el)]pka Where E/p =€

kel
L,p ’
”-’Ek 7217"'727171”25

> h;n— Z mln{ Mk(el)] , [Mk(ﬁl)]H}

kel
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1
> lim — {k S R A = } min { [Mg(e)]", [M(e1)] 7 }.
Hence, = € [N, u, M (p,wt ks)s S AT]p. This completes the proof of the theorem. O
Theorem 3.6. Let 0 = (k) be a lacunary sequence, M = (M) be a Musielak-

Orlicz function and p = (px) be a bounded sequence, then [Ng,u, Mp .t ky)s S ATy C
[Nk,M,U, mt(p,wt,kf)a AT? ||7 T 7'”]9'

Proof. Let © € lo and . — ([N, u, Myt ky), S, A'lg). Since z € loo, there is a constant
T > 0 such that ||:Ell,€’p, 21,y Zp—1|| < T and given € > 0 we have

1 Pk
g 3 [l 2zl

T

—ima S (el )]

T

kely
2”21, 21| >e
. 1 l 1Pk
+11;nh— g |:Mk<H:Ek’p,Z1,"' 7Zn—1H>
r _

kel
L,p ’
Iz 21,0 s zn—1|<e

i 2 e (] )]

kel
L,p ’
|2 21, sz —1 | >€

1 € Pk
lim — M| —
e he Z [ * (P)]
kely
|23 21,0+ 2n—1 ]| <e

< max { My (K", (M (K]} h;nh%‘{k A T,

T €
+max < [ M (e h,MkE H, <—:K7_:€>-
{se)s e}, (2 =K, =«
Hence, S [Nk,M,U, mt(p,wt,kf)vATv ||7 R ||]9 O
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OSCILLATION ANALYSIS FOR HIGHER ORDER DIFFERENCE
EQUATION WITH NON-MONOTONE ARGUMENTS

OZKAN OCALAN AND UMUT MUTLU OZKAN

ABSTRACT. The aim of this paper is to obtain the some new oscillatory condi-
tions for all solutions of higher order difference equation with general argument

(%) A"z(n) +p(n)z(r(n)) =0, n=0,1,---,

where (p(n)) is a sequence of nonnegative real numbers and (7(n)) is a sequence
of integers and non-monotone.

1. INTRODUCTION

Oscillation theory of difference equations has attracted many researchers. In
recent years there has been much research activity concerning the oscillation and
nonoscillation of solutions of delay difference equations. For these oscillatory and
nonoscillatory results, we refer, for instance, [1 — 22].

Consider the higher order difference equation with general argument

(1.1) A"z(n) +pn)z(t(n)) =0, n=0,1,---,

where (p(n)),~, is a sequence of nonnegative real numbers and (7(n)),s, is a
sequence of integers such that

(1.2) T(n)<m—1 foralln >0 and lim 7(n)= oco.
n—oo
A denotes the forward difference operator Az(n) = z(n + 1) — z(n).
Define
r=— m>i187'(n). (Clearly, k is a positive integer.)
nz

By a solution of the difference equation (1.1), we mean a sequence of real numbers
(x(n))n>—, which satisfies (1.1) for all n > 0.

A solution (z(n)),>—, of the difference equation (1.1) is called oscillatory, if the
terms z(n) of the sequence are neither eventually positive nor eventually negative.
Otherwise, the solution is said to be nonoscillatory.

If m =1, then Eq.(1.1) take the form

(1.3) Az(n) +p(n)z(t(n)) =0, n=0,1,---.
In particular, if we take 7(n) = n — [ where [ > 0, then Eq.(1.3) reduces to
(1.4) Az(n) +p(n)z (n—1) =0.

Key words and phrases. Delay difference equation, higher order, oscillation, non-monotone
arguments.

Corresponding author : Ozkan OCALAN:; email address: ozkanocalan@akdeniz.edu.tr.

2000 Math. Subject. Classification: 39A10.
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In 1989, Erbe and Zhang [8] proved that each one of the conditions
ll

and
(1.6) lim sup Z p(y) > 1
n—co 07,

is sufficient for all solutions of (1.4) to be oscillatory.

In the same year, 1989, Ladas, Philos and Sficas [11] established that all solutions

of (1.4) are oscillatory if

1 n—1 ll
(1.7) 1§ggf[7j§lp(y)] S
Clearly, condition (1.6) improves to (1.4).

In 1991, Philos [14] extended the oscillation criterion (1.7) to the general case of
the Eq.(1.3), by establishing that, if the sequence (7(n)), - is increasing, then the
condition -

1 = (n — 7(n))"= 7™

(1.8) liminf | ——— p(7)| > limsup
n—oo [N — T(n) J_;n) n—s 00 (n _ T(’n) + l)nf‘r(n)+1

suffices for the oscillation of all solutions of Eq.(1.3).
In 1998, Zhang and Tian [19] obtained that if (7(n)) is non-decreasing,

(1.9) lim (n—7(n)) =00
and
n—1 1
1.10 lim inf j -
(1.10) im in Z(:)p(J)> —,
j=7(n

then all solutions of Eq.(1.3) are oscillatory.

Later, in 1998, Zhang and Tian [20] obtained that if (7(n)) is non-decreasing or
non-monotone,
(1.11) limsupp(n) >0

and (1.10) holds, then all solutions of Eq.(1.3) are oscillatory.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [3] proved that if (7(n)) is
non-decreasing or non-monotone, h(n) = maxo<s<n 7(5),

(1.12) limsup Y p(j) > 1,

n—oo .
j=7(n)

then all solutions of Eq.(1.3) are oscillatory.
In the same year, Chatzarakis, Koplatadze and Stavroulakis [4] proved that if
(1(n)) is non-decreasing or non-monotone, h(n) = maxo<s<n 7(5),

n—0o0

(1.13) lim sup Z p(j) < o0
j=7(n)

and (1.10) holds, then all solutions of Eq.(1.3) are oscillatory.
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In 2006, Yan, Meng and Yan [17] obtained that if (7(n)) is non-decreasing,

n—1
(1.14) lim inf > pi) >0
j=T7(n)
and
n—1 : : j=r(@)+1
o ~fi—T()+1
1.15 lim inf p(7 () > 1,
(1.15) mint 3 00) (5705

then all solutions of Eq.(1.3) are oscillatory.

Finally, in 2016, Ocalan [16] proved that if (7(n)) is non-decreasing or non-
monotone, h(n) = maxo<s<, 7(s) and (1.15) holds, then all solutions of Eq.(1.3)
are oscillatory.

Set
n—7(n)+1
— 1
(1.16) k(n) = (”T(nH) , n>1.
n—7(n)
Clearly
(1.17) e<k(n)<4, n>1.
Observe that, it is easy to see that
n—1 n—1
> p(kG) =e > pli)
j=7(n) j=7(n)

and therefore condition (1.15) is better than condition (1.10).
In 2006, Zhou [22] studied the following delay difference equation with constant
delays

!
(1.18) Amx(n)—i—Zpi(n)x(n—kzi) =0, n=0,1,---,
i=1

where (p;(n)),,~, are sequences of nonnegative real numbers and k; is a positive
integer for i = 1,2, - - - | I. He obtained some new criteria for all solutions of Eq.(1.18)
to be oscillatory.

2. MAIN RESULTS

In this section we investigated the oscillatory behavior of all solutions of Eq.(1.1).
Further, we need the following lemmas proved in [1,2].

Lemma 2.1. (Discrete Kneser’s Theorem) Let x(n) be defined for n > ng, and
x(n) > 0 with A™x(n) of constant sing for n > ng and not identically zero. Then,
there exists an integer j, 0 < j < m with (m + j) odd for A™xz(n) <0 or (m + j)
even for A™x(n) > 0 and such that
§ <m —1 implies (=177 Alz(n) >0, foralln>ng, j<i<m—1,
and ‘
Jj > 1 implies A'x(n) >0, for alllargen >ng, 1 <i<j—1.
Specially, if A™x(n) <0 for n > ng, and (z(n)) is bounded, then
(=) A™ iz (n) >0, for alln >ng, 1<i<m-—1,
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and
lim A'z(n) =0, 1 <i<m—1.

n—oo

Lemma 2.2. Let x(n) be defined for n > ng, and xz(n) > 0 with A™z(n) <0 for
n > ng and not identically zero. Then, there exists a large ni > ng such that

_ m—1 .
(n nl) Am—lx(Qm—]—ln) Cn >y,

) 2 =)

where j is defined in Lemma 2.1. Further, if x(n) is increasing, then
1 n m-1 m—1 m—1
z(n) > e (2’"7*1) A™x(n) 3 n>2M" ny.
Set

(2.1) h(n) = oglggan(S)

Clearly, h(n) is nondecreasing, and 7(n) < h(n) for all n > 0. We note that if 7(n)
is nondecreasing, then we have 7(n) = h(n) for all n > 0.

Theorem 2.3. Assume that (1.2) holds. If (t(n)) is non-decreasing or non-
monotone,

n—1
(2.2) liminf Y p(j)k(j) > (m — 1)\,
j=r(n)
where k(n) is defined by (1.16), then every solution of Eq.(1.1) either oscillates or
lim,, 00 z(n) = 0.

Proof. Assume, for the sake of contradiction, that (z(n)) is an eventually positive
solution of (1.1) and lim, .o z(n) > 0. Then there exists ny > ng such that
xz(n), (r(n)), x(h(n)) > 0, for all n > ny. Thus, from Eq.(1.1) we have
(2.3) A™z(n) = —p(n)z(r(n)) <0, foralln > n,.
By Lemma 2.1, A’x(n) are eventually of one sign for every i € {1,2,...,m — 1},
and A™71z(n) > 0 holds for large n, and there exist two cases to consider: (A)
Az(n) > 0 and (B) Az(n) <0.

Case A: This says that (z(n)) is increasing. By Lemma 2.2, there exists an
integer no > ny such that

z(n) > b ( i >m71 Am_lx(n) , M > ng

(m — 1) \gm—1
and
(2.4) z(r(n)) > ﬁ (;Eﬁi) A™ z(r(n)), n>ny

Letting y(n) = A™ 'z(n). So, we have

y(n) >0, y(7(n)) > 0 for n > no,
which implies that
(2.5) Ay(n) + p(n)z(r(n)) =0, n = ny.
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On the other hand, by (2.4) and since lim,,_ 7(n) = oo, there exists an integer
n3 > nso such that

sr) 2 ot (k) vl (2.6
> Gﬁ}myvm»,nZn&

In view of (2.6), Eq.(2.5) gives

(2.7) Ay(n) + p(n)y (7(n)) <0, n>ns.

(m—1)!

Taking into account that y(n) is nonincreasing and h(n) is nondecreasing, 7(n) <
h(n) for all n > 0, from (2.7) we get

(28) Byfrn) + gy (h() 0. >,

It follows that

(2.9) Ay(n) +p(n)y (h(n)) <0, n = ns,

where p(n) = (,:L (fl))!, which means that inequality (2.9) has an eventually positive

solution.
On the other hand, we know from Lemma 2.3 in [16] that

n—1 n—1
(2.10) liminf ) p(j)k(j) = liminf Y p(j)k(j),
j=7(n) J=h(n)
where h(n) is defined by (2.1).
Therefore, condition (2.2) and (2.10) imply that

n—1 n—1
~ 1
(2.11) lim inf Z p(k() = mhnﬁjgf Z p(j)k(j) > 1
Jj=h(n) j=h(n)
Thus, by Theorem 1 in [16], Eq.(2.9) has no eventually positive solution. This is a

contradiction.

Case B: Note that, by Lemma 2.1, it is impossible that the case that m is even.
In what follows, we only consider the case that m is odd. Case B says that z(n) is
decreasing and bounded, and so, (x(n)) converges a constant a. By Lemma 2.1, we

get

(2.12) (=1)" LA™ g (n) > 0, for all large n > ny, 1<i<m—1,
and

(2.13) lim A™ g (n) = 0.

By (2.13), there exists an integer n4 > nq such that

(2.14) 0 <A™ z(n) <e, for any € >0, n > ny.

It is obvious that a > 0. So, there exists an integer ns > ny4 such that
(2.15) x(n) > %a, z(1(n)) > %a, n > ns.
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Thus, Eq.(1.1) implies that
(2.16) AMz(n) + gp(n) <0, n>ns.
Summing both sides of (2.16) from ns to n, we obtain

(2.17) A" rr(n 4+ 1) — A" t(ns) + 4 Z p(s) <0, n>ns.
Letting n — oo, we have

a n
(2.18) 5 Z p(s) < e, for large n.

S=ns

On the other hand, condition (2.2) says that there exist an integer ng > ns such

that
n—1
—1)!
(2.19) Z p(s)k(s) > %, n > ng.
s=7(n)
Since k(n) <4 for n > 1, by (2.19) we get
n—1
a a(m —1)!
(2.20) 5 Z p(s) > —5 for large n,
s=71(n)
which contradicts (2.18) and (2.20). The proof is completed. O

Theorem 2.4. Assume that m is even and (1.2) holds. If (T(n)) is non-decreasing
or non-monotone,

n—1
(2.21) liminf > 7 LG)p(i)k(G) > 207 (m - 1)1,
j=7(n)
where k(n) is defined by (1.16), then every solution of Fq.(1.1) oscillates.
Proof. Assume, for the sake of contradiction, that (z(n)) is an eventually positive
solution of (1.1). Then there exists ny > ng such that z(n), = (v(n)), =z (h(n)) >
0, for all n > n;. According to the proof of Theorem 2.3, there exists a positive
integer ny such that (2.3) holds. By Lemma 2.1, we have
Az(n) >0

which implies z(n) is increasing. In view of proof of Theorem 2.3, we have

1 r(n) \"
(222) o) 2 ot () v,
where y(n) = A™~1z(n). Therefore, from Eq.(2.5) and (2.22), we obtain
22) Ayt o () () <00z

Taking into account that y(n) is nonincreasing and h(n) is nondecreasing, 7(n) <
h(n) for all n > 0, from (2.23) we get,

220 Mg+t () () <0, 0z
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It follows that
(2.25) Ay(n) +p(n)y (h(n)) <0, n>ns,

~ m—1
where p(n) = (27,,2’1)1) (fl (_"2)!, which means that inequality (2.25) has an even-

tually positive solution.
On the other hand, we know from Lemma 2.3 in [16] that

n—1
(2.26) lim inf Z) —hnnigf_zh(:)p(!i)k(ﬁ,
j=T1(n j=h(n

where h(n) is defined by (2.1).
Therefore, condition (2.21) and (2.26) imply that

(2.27)
n—1
1 1 Ly
it S )= =Dy e mind D 7T @pRG) > 1
j=h(n) ’ j=h(n)

Thus, by Theorem 1 in [16], Eq.(2.25) has no eventually positive solution. This
contradiction completes the proof. O

Now, using (1.16), (1.17), Theorem 2.3 and Theorem 1 in [16], we have the
following results immediately.

Corollary 2.5. Assume that (1.2) holds. If (1(n)) is non-decreasing or non-

monotone,
n—1
Z(m — 1)
(2.28) lim inf z(:) 0!,
j TN

then every solution of Eq.(1.1) either oscillates or lim,,_, o z(n) = 0.

Corollary 2.6. Assume that m is even and (1.2) holds. If ((n)) is non-decreasing
or non-monotone,

n—1 2(m—1)2
2.29 li f —1)!
(2.29) im in Z) ) > ———(m-1),
J Tn

then every solution of Eq.(1.1) oscillates.

Finally, using the proofs of Theorem 2.3 and Theorem 2.4, and from the Theorem
2.1 in [3], we obtain the following results by removing the proofs.

Theorem 2.7. Assume that (1.2) and (1.14) hold. If (7(n)) is non-decreasing or

non-monotone,

(2.30) hmsup Z -1

Jj=h(n)

where h(n) is defined by (2.1), then every solution of FEq.(1.1) either oscillates or
lim,, o0 z(n) = 0.
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Theorem 2.8. Assume that m is even and (1.2) holds. If (T(n)) is non-decreasing
or non-monotone,

n
(2.31) lim sup Z Y p() > 2(m71)2(m -1l
" j=hin)
where h(n) is defined by (2.1), then every solution of Eq.(1.1) oscillates.

we present an example to show the significance of our new result.

Example 2.1. Consider the retarded difference equation
3
(2.32) A3zx(n) + gge(T(n)) =0, n>0,

with
| n—=3, ifn iseven
7(n) = { n—1, ifn is odd
Here, it is clear that (1.2) is satisfied. By (2.1), we see that
{ n—2, ifn is even

hin) = max 7(s) = n—1, ifn is odd

0<s<n

Computing, we get

nil () = 6/e, ifn is even
)= 3/e, ifn is odd

j=r(n)
Thus .
— 3 1 2
lim inf N=2>Z(m-1I==
im in ‘2(:)17(]) o> pm=1l=—,
j=7(n

that is, condition (2.28) of Corollary 2.5 is satisfied and therefore every solution of
Eq.(2.32) either oscillates or lim,_,o, z(n) = 0.
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On Orthonormal Wavelet Bases

Richard A. Zalik *

Abstract

Given a multiresolution analysis with one generator in L?(R%), we give a characteri-
zation in closed form and in the frequency domain, of all orthonormal wavelets associated
to this MRA. Examples are given. This theorem corrects a previous result of the author.

1 Introduction

In what follows Z will denote the set of integers, and R the set of real numbers. We will
always assume that A is a dilation matrix preserving the lattice Z%; that is, AZ?¢ c 7¢
and all its eigenvalues have modulus greater than 1; A* will denote the transpose of
A and B := (A4*)~!. The underlying space will be L?(R%), where d > 1 is an integer
and I will stand for the identity matrix. Boldface lowcase letters will denote elements
of R%, which will be represented as column vectors; x - y will stand for the standard dot
product of the vectors x and y; ||x]|? := x - x.

Let A € R™? and a := |det A|. For every j € Z and k € Z? the dilation operator
DA and the translation operator Ty are defined on L?(R%) by

DAF(t) :=a'?f(At)  and  Tif(t) := f(t + k)

respectively.
Let u = {uy,...,un} C L2(RY); then T(uy,...,un) = T(0), S(u1, ..., uy) = S(u)
and S(A;uq,...,uy,) = S(A;u) are respectively defined by

T(u) := {Txu;u € u, k € 7%}, S(u) :=spanT(u),

and
S(A,u) := span{DATku; ueuw ke Zd}.

In [5] we formulated a representation theorem for multiresolution analyses having
an arbitrary set up,...,u, of scaling functions, i.e., the set of translates of all these
functions constitutes an orthonormal basis of V;;. However the proof was based on the
implicit (and incorrect) assumption that any such function u, is contained in S(A, uy),
and it is therefore not valid. The purpose of this paper is to apply the method of proof

*Department, of Mathematics and Statistics, Auburn University, AL 36849-5310, zalik@auburn.edu
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employed in [5] to prove a representation theorem for MRA’s having a single scaling
function, and to provide some examples.

A function f will be called Z% periodic if it is defined on R% and Ty f = f for every
kezd.

The Fourier transform of a function f will be denoted by f or § (f). If f € L(RY),

~

f(x):= /]Rd e £(t) dit.

The Fourier transform is extended to L?(R%) in the usual way.

Our starting point and motivation is the following well known characterization in
Fourier space of affine MRA orthonormal wavelets in L?(R) (see e.g. Hernandez and
Weiss [2], Wojtaszczyk [4]) which, with the definition of Fourier transform we have
adopted, may be stated as follows.

Theorem A. Let ¢ be a scaling function for a multiresolution analysis M with associated
low pass filter p. The following propositions are equivalent:

(a) ¢ is an MRA orthonormal wavelet associated with M.

(b) There is a measurable unimodular Z—periodic function u(x) such that

D(2x) = 2 p20)p(r + 1/2)p()  ae.

Recall that a multiresolution analysis (MRA) in L?(R?) (generated by A) is a se-
quence {Vj;j € Z} of closed linear subspaces of L?(R?) such that:

(i) V; C Vi for every j € Z.

(ii) For every j € Z, f(t) € V; if and only if f(At) € Vj1.
(iii) U ez Vj is dense in L2(RY).

(iv) ﬂjeZ Vi =0.

(v) There is a function u (called the scaling function of the MRA) such that T'(u) is an
orthonormal basis of Vj.

A finite set of functions 1 = {t1,--- , 9} € L?(R?) is called an orthonormal wavelet
system if the affine sequence

(DA j €Z, ke Z (=1, ,m}

is an orthonormal basis of L?(R%).
Let v := {41, -+, } be an orthonormal wavelet system in L?(R?) generated by a
matrix A; for j € Z we define

Vi=Y S(A";9).

r<j
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We say that v is associated with an MRA, if M := {V};j € Z} is a multiresolution
analysis. If this is the case, we also say that 1 is associated with M. Let W, denote
the orthogonal complement of Vj; in Vj;1. Then it is esily seen that 1) is an orthonormal
wavelet associated with M if and only if 7'(¢) is an orthonormal basis of Wj.

Let e := (1,0,---,0)” € R™ and let diag {—e“,1,---,1},, denote the m x m diag-
onal matrix with —e™ 1,---,1 as its diagonal entries. The following proposition was
implicitly established by Jia and Shen in the discussion that follows the proof of [3,
Lemma 3.3] (we adopt the convention that Arg 0 = 0).

Theorem B. Letb = (by,--- ,b,,)7 € C™ be unimodular, w := Arg by and q := b+e™e.
Then the matriz

Q = (4r)fhmr = diag {—¢", 1, b [T 2q0°/aq)

s unitary. Moreover

by, ifr=11<k<m
—b,e™ if 1 < =1
Gy = bre ifl<r<mk
b, by, .
Ork — fl<r<m,1<k<m,

where 0,1, is Kronecker’s delta.
The following proposition is a particular case of [5, Theorem 3].

Lemma C. Let v € L?(R%) and assume that 7'(u) is an orthonormal sequence. Let
A be a dilation matrix preserving the lattice Z%, let {41, ...,ja} be a full collection of
representatives of Z% / AZ? and let

vp(t) := a'Pu(At + i), k=1,...a. (1)

Then T'(v1,- -+ ,v,) is an orthonormal basis of S(A;u).
Since Tx(x) = e2™B*Jr7(Bx), a straightforward consequence of Lemma C and [5,
Lemma E] is the following

Corollary 1. Let u € L?(R%) and assume that T(u) is an orthonormal sequence. Let
A be a dilation matriz preserving the lattice Z¢, B := (A*)7Y, let {j1,...,ja} be a full
collection of representatives of Z¢/AZ?, and let vy (t) be defined by (1). If u € S(A,u),
then there are Z%—periodic functions q, € L*(T¢) such that

Z (X)) =1 a.e., (2)
k=1

and
a a

i) = 3 (%) = 3 u(x)e> P a(Bx) = p(Bx)i(Bx), (3)
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where "
p(X) — a_l/Qqu<A*X)€i2ﬂx'jk,
k=1

We can now prove

Theorem 1. Let M be a multiresolution analysis generated by A with scaling function
u, let vi,(t) be defined by (1), B := (A*)~', and let the functions qi(x) be Z—periodic,
in L*(T?), and satisfy (2) and (3). Let

a(x) = Arg q1(x), (4)
qr(x) ifr=11<k<a
_ ia(x) 1 < —
wp () = qr(x)e ifl<r<ak=1 (5)
QT(X)Qk(X) .
Op g — — b l<r<al<k<
T e ST ‘
and "
Zr (X) = Zwr,k(x){)\k(X%
k=1
and let
Z(x) = (Ba(x), .-, Za(3))T
Then

{77/}17 s aw(a—l)}

is an orthonormal wavelet system associated with M if and only if there exists an (a —
1) x (a — 1) unitary matriz function U(x) such that

(W1(%); - 1) (%) = UK)Z(x),

Proof. The existence of functions g (x) satisfying (2) and (3) is a consequence of Corol-
lary 1. Setting

<;(X) = (61()()7 T 7b\a(x))T
and applying Theorem B, we see that
(Z1(x), - Za(x))" = Qx)V(x),

and that Q(x) has (¢i1(x), - ,qa(x)) as its first row. Therefore [5, Theorem 8] implies
that {z9,... 24} is an orthonormal wavelet system associated with M, which is equivalent
to saying that S(za,...z,) is an orthonormal basis generator of Wy. Applying now [5,
Theorem 5], the assertion follows. O
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Example 1. Let us verify that Theorem A is a particular case of Theorem 1.
For d =1 and A = 2 we have j; = 0 and j» = 1, and Corollary 1 implies that

p(z) =271 (22) + €™ go(2)],
whence the periodicity of ¢;(x) and go(z) implies that

p(z +1/2) = 2712[q1 (22) — 2™ gy (22)].

On the other hand, since |¢1 (x)|?+|g2(z)|* = 1 a.e., (5) implies that wy 1 () = —qg(x)em(m)
and

Je@P | le@P0—la@) _ o
L+ [qi(z)| |q2(2)]?

Since B = 1/2, it follows that 7y (x) = 2-Y/2%(x/2) and Ty(z) = 272~ 7(z/2), and
Theorem 1 implies that

waa(xr) =1—

Za(z) = 27— Wga(a) + |1 () (2 /2) =
212 i) (e 4 ¢ gy (2) i /2) =
9—1/2 iz jia(z) [(1(z) — ™ g (2))i(z/2),
and therefore
5(20) = 2712127 100 [ (30 — (2R () = e 2 u(20)p(w + 1/2)i(x),

where p(z) := €*®) is unimodular and Z-periodic.

(4 2)

and let ¢(t) be the characteristic function of [0,1] x [0,1]. Grochenig and Madych [1]
have shown that ¢ is a scaling function of an MRA generated by the dilation matrix A
and that the function 1 defined by

Example 2. Let

1 ifte0,1]x[0,1/2]
B(t) =14 —1 ifte0,1] x[1/2,1]

0 otherwise

is a wavelet associated with this MRA. Let us see how this assertion follows from Theorem
1.

Since {(0,0)7, (1,0)T} is a a full collection of representatives of A/AZ? from Lemma
C we deduce that if vy (t) := 271/2¢(At) and vy (t) := 27 1/2¢(At+(1,0