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An iterative algorithm of poles assignment for LDP systems ∗

Lingling Lv †, Zhe Zhang ‡, Lei Zhang §, Xianxing Liu ¶

Abstract

The problem of poles assignment and robust poles assignment in linear discrete-time periodic (LDP)
system via periodic state feedback is discussed in this paper. Based on a numerical solution to the
periodic Sylvester matrix equation, an iterative algorithm of computing the periodic feedback gain can be
obtained. By optimizing the free parameter matrix in the proposed algorithm, according to robustness
principle, an algorithm on the minimum norm and robust poles assignment for the LDP systems is
presented. Two numerical examples are worked out to illustrate the effect of the proposed approaches.

Keywords: Linear discrete-time periodic (LDP) systems; poles assignment; robustness.

1 Introduction

Linear discrete-time periodic (LDP) systems are important bridges connecting time-varying systems and
time-invariant systems. In fact, Many natural and engineering phenomena can be reduced to a composite
of periodic systems thus applications of periodic systems would be found in different field, where periodic
controllers could be used to dealing with the problem in which time-invariant controllers is helpless(for
example, [1–3]). Moreover, another major role of the periodic controller is to improve the performance of
the closed-loop system, which has also been extensively studied(one can see [4, 5] and references therein).
Therefore, researches on LDP systems have attracted more and more attentions.

Since poles assignment techniques to modify the dynamic response of linear systems are the most studied
problems among modern control theory, the above mentioned advantages of periodic systems and periodic
controllers provide sufficient impetus for the researchers to carry out the study of poles assignment for
periodic systems (see [6–9] and literatures therein). Due to the constraints of the constant controller in the
periodic system, it is advocated in [6] that linear periodic output feedback is adequate to assign poles of a
linear periodic discrete-time system. By utilizing a computational method on Sylvester equation, [7] proposes
a complete parametric approach for pole assignment via periodic output feedback, in which parameter existed
in the feedback gain could be used to accomplish some properties of plant system, robustness for instance.
Using gradient search methods on the defined cost function, a computational approach is proposed in [8] to
solve the minimum norm and robust pole assignment problem for linear periodic discrete-time system. Based
on the proposed algorithm for parametric pole assignment problem, [9] considers the robust and minimum
norm pole assignment problem and an explicit algorithm is proposed.

In this paper, the problem of poles assignment and robust poles assignment in LDP systems via state feedback
is considered. Based on an iterative algorithm proposed in [13] for periodic Sylvester matrix equation, an
algorithm on the problem of poles assignment in periodic linear discrete-time system with periodic state

∗This work is supported by the Programs of National Natural Science Foundation of China (Nos. 11501200, U1604148,
61402149), Innovative Talents of Higher Learning Institutions of Henan (No. 17HASTIT023), China Postdoctoral Science
Foundation (No. 2016M592285).

†1. College of Environment and Planning, Henan University, Kaifeng, 475004, P. R. China. 2. Institute of Electric power,
North China University of Water Resources and Electric Power, Zhengzhou 450011, P. R. China. Email: lingling lv@163.com
(Lingling Lv).

‡Institute of electric power, North China University of Water Resources and Electric Power, Zhengzhou 450011, P. R. China.
Email: zhe Zhang5218@163.com (Zhe Zhang)

§Computer and Information Engineering College, Henan University, Kaifeng 475004, P. R. China. Email:
zhanglei@henu.edu.cn (Lei Zhang).

¶Computer and Information Engineering College, Henan University, Kaifeng 475004, P. R. China. Email: liuxianx-
ing@henu.edu.cn (Xianxing Liu). Corresponding author.
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feedback is presented. The algorithm can realize accurate configuration of the closed-loop poles and obtain
the numerical solution of the control gain. After solving the basic poles assignment problem, it is tempting
to think: can we improve this algorithm to achieve the robustness of the system? The answer is positive.
By optimizing the free parameter matrix in the proposed algorithm, this paper presents an algorithm on the
minimum norm and robust poles assignment for the periodic linear discrete-time system. This algorithm can
significantly improve the robust performance of closed-loop system. Two numerical examples are worked out
to illustrate the effect of the proposed approaches.

Here, we give descriptions of some symbols which will be encountered in the rest of this paper. tr(A) means
the trace of matrix A. Norm ∥A∥ is a Frobenius norm of matrix A. Λ(A) means the eigenvalue set of matrix
A and ΦAk

denotes the monodromy matrix AK−1AK−2 · · ·A0.

2 Main Discussions

2.1 Poles Assignment with Periodic State Feedback

Consider the completely reachable LDP systems as:

qk+1 = Akqk +Bkuk, (1)

where state matrix Ak ∈ Rn×n and input matrix Bk ∈ Rn×r are K-periodic. Based on the periodic feedback
law in the form of

uk = Fkqk, (2)

where Fk is the K-periodic control gain, the closed-loop system can be obtained as

qk+1 = Ac,kqk, (3)

where Ac,k denotes (Ak + BkFk). Then the problem of poles assignment for periodic discrete-time linear
system by control law (2) can be represented as

Problem 1 Consider the completely reachable periodic discrete-time linear system (1), seek the periodic
state feedback gain Fk ∈ Rm×n, k ∈ 0,K − 1, such that the poles of corresponding periodic closed-loop system
(3) are set to the predetermined position Γ = {λ1, · · · , λn}, where Γ should be symmetrical about the real
axis.

In the following, we will first present a new poles assignment algorithm via periodic state feedback, then give
strict mathematical argument to show the correctness of the proposed algorithm.

Algorithm 1 (Poles assignment with periodic state feedback)

1. Choose the appropriate K-periodic matrices Ãk ∈ Rn×n, k ∈ 0,K − 1, satisfying Λ(ΦÃk
) = Γ. Further,

choose Gk ∈ Rr×n, k ∈ 0,K − 1 such that periodic matrix pairs (Ãk, Gk) are completely observable and
Λ(ΦÃk

) ∩ Λ(ΦAk
) = 0;

2. Set tolerance ε, for arbitrary initial matrix Xk(0) ∈ Rn×n, k ∈ 0,K − 1, calculate

Qk(0) = BkGk +AkXk(0)−Xk+1(0)Ãk;

Rk(0) = −AT
kQk(0) +Qk−1(0)Ã

T
k−1;

Pk(0) = −Rk(0);

j := 0;

2
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3. While ∥Rk(j)∥ ≤ ε, k ∈ 0,K − 1, calculate

α(j) =

∑K−1
k=0 tr

[
PT
k (j)Rk(j)

]
∑K−1

k=0

∥∥∥−AkPk(j) + Pk+1(j)Ãk

∥∥∥2 ;
Xk(j + 1) = Xk(j) + α(j)Pk(j) ∈ Rn×n;

Qk(j + 1) = BkGk +AkXk(j + 1)−Xk+1(j + 1)Ãk ∈ Rn×n;

Rk(j + 1) = −AT
kQk(j + 1) +Qk−1(j + 1)ÃT

k−1;

Pk(j + 1) = −Rk(j + 1) +

∑K−1
k=0 ∥Rk(j + 1)∥2∑K−1

k=0 ∥Rk(j)∥2
Pk(j) ∈ Rn×n;

j = j + 1;

4. Let X∗
k = Xk(j), calculate the periodic state feedback gain Fk by

Fk = Gk(X
∗
k)

−1, k ∈ 0,K − 1.

To verify the validity of the above algorithm, we would provide several necessary lemmas for the problem
under discussion, whose correctness can be easily checked by detail computation or derivation, and their
proof is omitted due to space limitations.

Lemma 1 For k ≥ 0, the following equation holds:

T−1∑
k=0

tr
[
RT

k (j + 1)Pk(j)
]
= 0

for all {Rk(j)} and {Pk(j)} derived from Algorithm 1.

Lemma 2 For k ≥ 0, the following equation holds:

T−1∑
k=0

tr
[
RT

k (j)Pk(j)
]
= −

T−1∑
j=0

∥Rk(j)∥2

for all {Rk(j)} and {Pk(j)} generated by Algorithm 1.

Lemma 3 For k ≥ 0, the following relation holds:

∑
j≥0

(∑T−1
k=0 ∥Rk(j)∥2

)2
∑K−1

k=0 ∥Pk(j)∥2
<∞.

for all {Rk(j)} and {Pk(j)} generated by Algorithm 1.

Based on these lemmas, we can further draw the following conclusion.

Theorem 1 The matrices X∗
k , k ∈ 0, T − 1 generated by Algorithm 1 satisfy periodic Sylvester matrix equa-

tion
AkXk −Xk+1Ãk +BkGk = 0, k ∈ 0,K − 1. (4)

Proof. To explain matrices Xk, k ∈ 0,K − 1 generated by Algorithm 1 are solutions to equation (10),
we first illustrate that this problem is related to the convergence of matrix sequence {Rk(j)}, k ∈ 0, T − 1
generated by Algorithm 1.

3
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According to equation (10), construct the following index function:

J =
K−1∑
k=0

1

2

∥∥∥BkGk +AkXk −Xk+1Ãk

∥∥∥2 . (5)

It is easily obtained that for k ∈ 0,K − 1,

∂J

∂Xk
= −AT

k

(
BkGk +AkXk −Xk+1Ãk

)
+
(
Bk−1Gk−1 +Ak−1Xk−1 −XkÃk−1

)
ÃT

k−1

So far, if we can find matrices X∗
k , k ∈ 0,K − 1 such that

∂J

∂Xk

∣∣∣∣
Xk=X∗

k

= 0,

then matrices X∗
k , k ∈ 0,K − 1 must be the solution to equation (10) in the meaning of least squares. From

the formulation of sequence {Rk(j)}, k ∈ 0, T − 1 in Algorithm 1, we can see

Rk(j) =
∂J

∂Xk

∣∣∣∣
Xk=Xk(j)

.

That is to say, if matrix sequence {Rk(j)}, k ∈ 0, T − 1 can converge to zero, matrices X∗
k , k ∈ 0,K − 1

generated by Algorithm 1 must satisfy periodic matrix equation (10).

In the remaining, we only need proof that, for k ∈ 0,K − 1

lim
j→∞

∥Rk(j)∥ = 0.

By Lemma 1 and the expressions of Pk(j + 1) in Algorithm 1, we have

K−1∑
k=0

∥Pk(j + 1)∥2 =

K−1∑
k=0

∥∥∥∥∥−Rk(j + 1) +

∑K−1
k=0 ∥Rk(j + 1)∥2∑K−1

k=0 ∥Rk(j)∥2
Pk(j)

∥∥∥∥∥
2

=

(∑K−1
k=0 ∥Rk(j + 1)∥2∑K−1

k=0 ∥Rk(j)∥2

)2 K−1∑
k=0

∥Pk(j)∥2 +
K−1∑
k=0

∥Rk(j + 1)∥2 .

Let

tj =

∑K−1
k=0 ∥Pk(j)∥2(∑K−1
k=0 ∥Rk(j)∥2

)2 .
Then the preceding relation can be written as

tj+1 = tj +
1∑K−1

k=0 ∥Rk(j + 1)∥2
. (6)

equivalently.
We now proceed by contradiction and assume that

lim
j→∞

K−1∑
k=0

∥Rk(j)∥2 ̸= 0. (7)

This relation implies that there exists a constant δ > 0 such that

K−1∑
k=0

∥Rk(j)∥2 ≥ δ

for all j ≥ 0. It follows from (6) and (7) that

tj+1 ≤ t0 +
j + 1

δ
.

4
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And it shows that
1

tj+1
≥ δ

δt0 + j + 1
.

So we have
∞∑
j=1

1

tj
≥

∞∑
j=1

δ

δt0 + j + 1
= ∞.

However, it follows from Lemma 3 that
∞∑
j=1

1

tj
<∞.

This gives a contradiction.

Thus, the correctness of the theorem has been proved.

As for the effectiveness of Algorithm 1, we have the following conclusion:

Theorem 2 Consider completely reachable periodic discrete-time linear system (1), the K-periodic matrix
Fk generated from Algorithm 1 is a solution of the problem of poles assignment with periodic state feedback.

Proof. Notice that the poles of LDP system (1) are the poles of the monodromy matrix ΦAk
. According to

algorithm 1, Φ
Ãk

possesses the desired pole set Γ. To assign the poles of the closed-loop system (3) to set

Γ, we just need find n-order invertible matrices Xk, k ∈ 0,K − 1, such that

X−1
k+1AckXk = Ãk, (8)

namely
X−1

k+1(Ak +BkFk)Xk = Ãk, (9)

Pre-multiplying the above equation by matrix Xk+1 gives

AkXk −Xk+1Ãk +BkFkXk = 0, k ∈ 0,K − 1,

Let
Gk = FkXk,

then Problem 1 is converted to the problem of solving the periodic Sylvester matrix equation in the form of

AkXk −Xk+1Ãk +BkGk = 0, k ∈ 0,K − 1. (10)

The step 2-3 in Algorithm 1 involve the solution of this matrix equation, and its correctness has been proved
in [13]. By solving the solution matrix Xk, the periodic feedback gain can be obtained as

Fk = GkX
−1
k , k ∈ 0,K − 1. (11)

That is, the periodic feedback gain Fk derived from (11) is a solution to Problem 1.

Remark 1 For the periodic matrix Ãk, it should satisfy Λ(ΦÃ) = Γ. This requirement can be achieved by

letting F0 be the real Jordan canonical form of the desired pole set and Fk, k ∈ 1,K − 1 be unit matrices of
corresponding dimension.

Remark 2 If system (1) is completely reachable and Λ(ΦÃ)∩Λ(ΦA) = 0, then Xk will be invertible naturally.
That’s why the algorithm requires condition Λ(ΦÃ) ∩ Λ(ΦA) = 0.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

205 Lingling Lv ET AL 201-210



2.2 Robust Consideration

In the previous subsection, the iterative algorithm can provide infinite numerical solutions for the pole
assignment problem via periodic state feedback by choose different parameter matrix Gk. Therefore, by
adding some additional conditions to the feedback gain matrix Fk, k ∈ 0,K − 1 and transforming matrix
Xk, k ∈ 0,K − 1, the free parameter matrix Gk can be used to achieve the robustness of the system. In
general, the small feedback gain is robust. Because small gain means small control signals, that is beneficial
to reduce noise amplification. At the same time, in the sense of poles assignment, the closed-loop poles to be
configured should be not as sensitive as possible to disturbances in the system matrix. Thus, the following
robust and minimum norm pole assignment problem via periodic state feedback is proposed.

Problem 2 Consider the completely reachable linear periodic discrete-time system (1), seek the K-periodic
state feedback gain Fk ∈ Rm×n, such that

1. the poles of corresponding periodic closed-loop system are set to the predetermined position Γ =
{λ1, · · · , λn};

2. The periodic feedback gain is as small as possible and the closed-loop poles are not as sensitive as
possible to disturbances in the system matrix.

In order to solve Problem 2, the index function in [8] is introduced as follows:

J(Gk) = γ
1

2

K−1∑
k=0

κ2F(Xk) + (1− γ)
1

2

K−1∑
k=0

∥Fk∥2 , (12)

where 0 ≤ γ ≤ 1 is a weighting factor. It is noted that when γ = 0, J(Gk) degenerates into the index
function of the minimum norm problem; when γ = 1, J(Gk) becomes a purely objective function to solve the
robust problem. Obviously, the weight γ leads to the combination of these two problems. [8] gives explicit
analytical expressions for the index function J and its gradient. So it’s easy to minimize J(Gk) by using any
gradient-based search method. Therefore, we can present an algorithm for the problem of periodic robust
and minimum norm poles assignment.

Algorithm 2 (Robust and minimum norm poles assignment)

1. Choose the appropriate K-periodic matrices Ãk ∈ Rn×n satisfying Λ(ΦÃk
) = Γ, and initialize Gk ∈

Rr×n such that periodic matrix pairs (Ãk, Gk) are completely observable and Λ(ΦÃk
) ∩ Λ(ΦAk

) = 0;

2. Set tolerance ε, for arbitrary initial matrix Xk(0) ∈ Rn×n, k ∈ 0,K − 1, calculate

Qk(0) = BkGk +AkXk(0)−Xk+1(0)Ãk;

Rk(0) = −AT
kQk(0) +Qk−1(0)Ã

T
k−1;

Pk(0) = −Rk(0);

j := 0;

3. While ∥Rk(j)∥ ≤ ε, k ∈ 0,K − 1, calculate

α(j) =

∑K−1
k=0 tr

[
PT
k (j)Rk(j)

]
∑K−1

k=0

∥∥∥−AkPk(j) + Pk+1(j)Ãk

∥∥∥2 ;
Xk(j + 1) = Xk(j) + α(j)Pk(j) ∈ Rn×n;

Qk(j + 1) = BkGk +AkXk(j + 1)−Xk+1(j + 1)Ãk ∈ Rn×n;

Rk(j + 1) = −AT
kQk(j + 1) +Qk−1(j + 1)ÃT

k−1;

Pk(j + 1) = −Rk(j + 1) +

∑K−1
k=0 ∥Rk(j + 1)∥2∑K−1

k=0 ∥Rk(j)∥2
Pk(j) ∈ Rn×n;

j = j + 1;

6
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4. Based on gradient-based search methods and the index (12), choosing the appropriate weighting factor
γ, solve the optimization problem

Minimize J (Gk ).

Denote the optimal decision matrix by Gopt,k;

5. Substituting Gopt,k into step 2-3 gives optimization solution Xopt,k(j);

6. Let Xopt,k = Xopt,k(j), calculate the robust and minimum norm periodic state feedback gain Fopt,k by

Fopt,k = Gopt,kX
−1
opt,k, k ∈ 0,K − 1.

3 Numerical examples

Example 1 Consider the completely reachable system described by

q(t+ 1) = A(t)q(t) +B(t)u(t)

with

A0 =


0 e 0 0 0
1 0 0 0 0
0 0 e 0 0
0 0 0 e−1 0
0 0 0 0 1

 , A1 =


0 0 1 0 0
0 1 0 0 0
1 0 e 0 0
0 1− e−1 0 e−1 0
0 0 0 0 1

 ,

B0 =


1 0
0 1

e− 1 0
0 1− e−1

1 0

 , B1 =


1 0
0 1

e− 1 0
0 1
1 0

 .
Find 2-periodic control law u(t) = F (t)q(t) such that the poles of the periodic close-loop system are assigned
at Γ = {0.5± 0.5i, 0.7± 0.7i,−0.6}. Specially, let

G(t) =

[
e 0 2 0 1
0.5 −e−1 0 1 2

]
, t = 0, 1

Ã(t) =




0.5 0.5 0 0 0
−0.5 0.5 0 0 0
0 0 0.7 0.7 0
0 0 −0.7 0.7 0
0 0 0 0 0.6

 , t = 0


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , t = 1

The proposed Algorithm 1 applied to the example gives the following 2-periodic feedback gain:

F (0) =

[
2.8249 −0.4278 −2.6334 2.3210 0.4035
1.1033 0.2796 −0.8349 1.4695 0.2045

]
,

F (1) =

[
−0.2648 −1.0196 −0.7015 −0.2593 −0.0573
1.0698 −1.7859 1.4382 −0.7656 −0.2827

]
.

What can be verified is that the poles assignment is valid.

7
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Example 2 This example is borrowed from [12]. The desired close-loop eigenvalues set is

Γ = {0.5, 0.6, 0.7,−0.6,−0.7}. Arbitrarily assigning the parameter matrix Gk as

G(t) =

[
0.3 0.5 2.1 0 1.1
0.6 1.1 0.7 1.2 0.2

]
, t = 0, 1

gives a group of feedback gains as follows:

Frand(0) =

[
1.0000 −0.0000 0.0000 0.0000 0.0000
36.9007 −19.7886 93.1374 19.1142 −9.4571

]
,

Frand(1) =

[
−0.0045 0.0419 −1.3397 −0.0351 0.0476
−0.8356 0.1582 1.9971 0.4532 −0.5408

]
.

Applying Algorithm 2 with γ = 0.5 gives the following robust feedback gains:

Frobu(0) =

[
1.0000 0.0000 0.0000 −0.0000 −0.0000
−0.0289 −2.6601 −0.0603 2.9199 0.0054

]
,

Frobu(1) =

[
−0.0332 0.0005 −1.2358 −0.0004 0.0200
0.0042 −0.8145 −0.0068 1.0742 0.0029

]
.

Let the close-loop system matrices be perturbed by ∆k ∈ Rn×n, k = 0, 1, which are random perturbations
satisfying ∥∆k∥ = 1, k = 0, 1. Then the close-loop system with perturbations can be represented as:

Ack + µ∆k, k = 0, 1,

where µ > 0 is a factor representing the disturbance level. According to [14], the following index can be
adopted to measure the robustness of the corresponding close-loop system:

dµ(∆k) = max
1≤i≤5

{|λi{(Ac1 + µ∆1)(Ac0 + µ∆0)}|},

where λi{A} denotes the i-th eigenvalue of matrix A. 3,000 randomized trials were performed at µ equal to
0.002, 0.003 and 0.005, respectively. The worst and the average value of dµ(∆k) corresponding to Frobu and
Frand respectively are listed in Table 1. Polar plots of the trials are depicted in Fig.1, where the left hand
side refers to Frobu and the right hand side refers to Frand. As we can see, in the presence of disturbances,
the robust periodic feedback gain Frobu always performs better than Frand.

Table 1: Comparison between Krobu and Krand

µ µ=0.002 µ=0.003 µ=0.005

dµ Frobu Frand Frobu Frand Frobu Frand

Worst 1.0237 3.3798 1.0197 4.7927 1.1561 10.9309

Mean 0.7262 1.3667 0.7244 1.5881 0.9022 2.5102

In terms of minimum norm, we compute the robust periodic feedback gains by minimize the index J(Gk) at

γ equal to 0,0.5 and 1 respectively and the feedback norm ∥F0∥, ∥F1∥ together with ∥F∥ =

√
∥F0∥2 + ∥F1∥2.

The results can be see in Table 2.

Table 2: Comparison between Krobu and Krand

Factor ∥F0∥ ∥F1∥ ∥F∥
γ = 0 2.2230 2.2549 3.1665

γ = 0.5 4.0751 1.8292 4.4668

γ = 1 4.0727 1.8289 4.4645

8
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(a) Perturbed eigenvalues of the close-loop system with µ = 0.002
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(b) Perturbed eigenvalues of the close-loop system with µ = 0.003
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(c) Perturbed eigenvalues of the close-loop system with µ = 0.005

Figure 1: Perturbed eigenvalues of the close-loop system with different disturbance levels
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4 Conclusions

Poles assignment with periodic state feedback and periodic robust and minimum norm poles assignment are
discussed in this paper. Through mathematical derivation, the poles assignment problem is transformed into
the solution to the periodic Sylvester matrix equation. Based on the recent method of solving the equation,
an algorithm for solving the problem of poles assignment is presented. In this algorithm, the parameter
matrix Gk can be used for further discussion on robustness. By analyzing the theory of robustness and the
minimum norm, an index function of matrix Gk is adopted. Based on the gradient search algorithm, the
optimization decision matrix is finally given, and the robust and minimum norm gain is thus obtained. Two
examples demonstrate the effectiveness of the proposed approaches.
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C∗-ALGEBRA-VALUED MODULAR METRIC SPACES AND

RELATED FIXED POINT RESULTS

BAHMAN MOEINI1, ARSLAN HOJAT ANSARI2, CHOONKIL PARK3 AND DONG YUN SHIN4

Abstract. In this paper, a concept of C∗-algebra-valued modular metric space is
introduced which is a generalization of a modular metric space of Chistyakov (Folia
Math. 14 (2008), 3-25). Next, some common fixed point theorems are proved for
generalized contraction type mappings on such spaces. Also, to support of our results
an application is provided for existence and uniqueness of solution for a system of
integral equations.

1. Introduction

One of the main directions in obtaining possible generalizations of fixed point results
is introduced in new types of spaces. The notion of modular spaces, as a generalization
of metric spaces, was introduced by Nakano [18] and was intensively developed by Koshi
and Shimogaki [12], Yamamuro [23] and others. Also, the theory of fixed points in the
content of modular spaces was investigated by Khamsi et al. [11] and many authors
generalized these results [1, 2, 9, 10,15,22].

In 2008, Chistyakov [3] introduced the notion of modular metric spaces generated by
F -modular and developed the theory of this space. In 2010, Chistyakov [4] defined the
notion of modular on an arbitrary set and developed the theory of metric spaces gener-
ated by modular which are t called the modular metric spaces. Recently, Mongkolkeha
et al. [16,17] have introduced some notions and established some fixed point results in
modular metric spaces.

In [14], Ma et al. introduced the concept of C∗-algebra-valued metric spaces. The
main idea consists in using the set of all positive elements of a unital C∗-algebra instead
of the set of real numbers. They showed that if (X,A, d) is a complete C∗-algebra-valued
metric space and T : X → X is a contractive mapping, i.e., there exists an a ∈ A with
‖a‖ < 1 such that

d(Tx, Ty) � a∗d(x, y)a, (∀x, y ∈ X).

Then T has a unique fixed point in X. This line of research was continued in [7, 8,
13, 21, 24], where several other fixed point results were obtained in the framework of
C∗-algebra valued metric, as well as (more general) C∗-algebra-valued b-metric spaces.
Recently, Shateri [20] introduced the concept of C∗-algebra-valued modular space which
is a generalization of a modular space and next proved some fixed point theorems for
self-mappings with contractive or expansive conditions on such spaces.

In this paper, new type of modular metric space is introduced and by using some ideas
of [19] some common fixed point results are proved for self-mappings with contractive

0Corresponding authors: baak@hanyang.ac.kr (Choonkil Park), dyshin@uos.ac.kr (Dong Yun Shin)
2010 Mathematics Subject Classification. Primary 47H10; 54H25; 46L05.
Key words and phrases. modular metric space, C∗-algebra-valued modular metric space, common

fixed point, occasionally weakly compatible, integral equation.
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conditions on such spaces. Also, some examples to elaborate and illustrate our results
are constructed. Finally, as application, existence and uniqueness of solution for a type
of system of nonlinear integral equations is established.

2. Basic notions

Let X be a nonempty set, λ ∈ (0,∞) and due to the disparity of the arguments,
function ω : (0,∞) × X × X → [0,∞] will be written as ωλ(x, y) = ω(λ, x, y) for all
λ > 0 and x, y ∈ X.

Definition 2.1. [3] Let X be a nonempty set. A function ω : (0,∞)×X×X → [0,∞]
is said to be a modular metric on X if it satisfies the following three axioms:

(i) given x, y ∈ X, ωλ(x, y) = 0 for all λ > 0 if and only if x = y;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ > 0 and x, y, z ∈ X.

Then (X,ω) is called a modular metric space.
Recall that a Banach algebra A (over the field C of complex numbers) is said to be a

C∗-algebra if there is an involution ∗ in A (i.e., a mapping ∗ : A→ A satisfying a∗∗ = a
for each a ∈ A) such that, for all a, b ∈ A and λ, µ ∈ C, the following holds:

(i) (λa+ µb)∗ = λ̄a∗ + µ̄b∗;
(ii) (ab)∗ = b∗a∗;

(iii) ‖a∗a‖ = ‖a‖2.
Note that, from (iii), it follows that ‖a‖ = ‖a∗‖ for each a ∈ A. Moreover, the

pair (A, ∗) is called a unital ∗-algebra if A contains the unit element 1A. A positive
element of A is an element a ∈ A such that a∗ = a and its spectrum σ(a) ⊂ R+, where
σ(a) = {λ ∈ R : λ1A − a is noninvertible}. The set of all positive elements will be
denoted by A+. Such elements allow us to define a partial ordering ‘�’ on the elements
of A. That is,

b � a if and only if b− a ∈ A+.

If a ∈ A is positive, then we write a � θ, where θ is the zero element of A. Each positive
element a of a C∗-algebra A has a unique positive square root. From now on, by A we
mean a unital C∗-algebra with unit element 1A. Further, a+ = {a ∈ A : a � θ} and

(a∗a)
1
2 = |a|.

Lemma 2.2. [5] Suppose that A is a unital C∗-algebra with a unit 1A.

(1) For any x ∈ A+, we have x � 1A ⇔ ‖x‖ ≤ 1.
(2) If a ∈ A+ with ‖a‖ < 1

2 , then 1A − a is invertible and ‖a(1A − a)−1‖ < 1.
(3) Suppose that a, b ∈ A with a, b � θ and ab = ba. Then ab � θ.
(4) By A′ we denote the set {a ∈ A : ab = ba,∀b ∈ A}. Let a ∈ A′. If b, c ∈ A with

b � c � θ and 1A − a ∈ A′ is an invertible operator, then

(1A − a)−1b � (1A − a)−1c.

Notice that in a C∗-algebra, if θ � a, b, one cannot conclude that θ � ab. For ex-

ample, consider the C∗-algebra M2(C) and set a =

(
3 2
2 3

)
, b =

(
1 − 2
−2 4

)
. Then

ab =

(
−1 2
−4 8

)
. Clearly a, b ∈M2(C)+, while ab is not.

In the following we begin to introduce and study a new type of modular metric space
that is called a C∗-algebra-valued modular metric space.
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Definition 2.3. Let X be a nonempty set. A function ω : (0,∞) × X × X → A is
said to be a C∗-algebra-valued modular metric (briefly, C∗.m.m) on X if it satisfies the
following three axioms:

(i) given x, y ∈ X, ωλ(x, y) = θ for all λ > 0 if and only if x = y;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) � ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

The truple (X,A, ω) is called a C∗.m.m space.

If instead of (i), we have the condition
(i′) ωλ(x, x) = θ for all λ > 0 and x ∈ X, then ω is said to be a C∗-algebra-valued
pseudo modular metric (briefly, C∗.p.m.m) on X and if ω satisfies (i′), (iii) and
(i′′) given x, y ∈ X, if there exists a number λ > 0, possibly depending on x and y,
such that ωλ(x, y) = θ, then x = y, then ω is called a C∗-algebra-valued strict modular
metric (briefly, C∗.s.m.m) on X.

A C∗.m.m (or C∗.p.m.m, C∗.s.m.m) ω on X is said to be convex if, instead of (iii),
we replace the following condition:

(iv) ωλ+µ(x, y) � λ
λ+µωλ(x, z) + µ

λ+µωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

Clearly, if ω is a C∗.s.m.m, then ω is a C∗.m.m, which in turn implies that ω is a
C∗.p.m.m on X, and similar implications hold for convex ω. The essential property of
a C∗.m.m ω on a set X is as follows: given x, y ∈ X, the function 0 < λ→ ωλ(x, y) ∈ A
is non increasing on (0,∞). In fact, if 0 < µ < λ, then we have

ωλ(x, y) � ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y). (2.1)

It follows that at each point λ > 0 the right limit ωλ+0(x, y) := limε→+0 ωλ+ε(x, y)
and the left limit ωλ−0(x, y) := limε→+0 ωλ−ε(x, y) exist in A and the following two
inequalities hold:

ωλ+0(x, y) � ωλ(x, y) � ωλ−0(x, y).

It can be checked that if x0 ∈ X, then the set

Xω = {x ∈ X : lim
λ→∞

ωλ(x, x0) = θ}

is a C∗-algebra-valued metric space, called a C∗-algebra-valued modular space, where
d0ω : Xω ×Xω → A is given by

d0ω = inf{λ > 0 : ‖ωλ(x, y)‖ ≤ λ} for all x, y ∈ Xω.

Moreover, if ω is convex, then the set Xω is equal to

X∗ω = {x ∈ X : ∃ λ = λ(x) > 0 such that ‖ωλ(x, x0)‖ <∞}
and d∗ω : X∗ω ×X∗ω → A is given by

d∗ω = inf{λ > 0 : ‖ωλ(x, y)‖ ≤ 1} for all x, y ∈ X∗ω.
It is easy to see that if X is a real linear space, ρ : X → A and

ωλ(x, y) = ρ(
x− y
λ

) for all λ > 0 and x, y ∈ X, (2.2)

then ρ is a C∗-algebra valued modular (convex C∗-algebra-valued modular) on X if and
only if ω is C∗.m.m (convex C∗.m.m, respectively) on X. On the other hand, assume
that ω satisfies the following two conditions:

(i) ωλ(µx, 0) = ωλ
µ

(x, 0) for all λ, µ > 0 and x ∈ X;

(ii) ωλ(x+ z, y + z) = ωλ(x, y) for all λ > 0 and x, y, z ∈ X.
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If we set ρ(x) = ω1(x, 0) with (2.2), where x ∈ X, then Xρ = Xω is a linear
subspace of X and the functional ‖x‖ρ = d0ω(x, 0), x ∈ Xρ is an F -norm on Xρ.
If ω is convex, then X∗ρ ≡ X∗ω = Xρ is a linear subspace of X and the functional
‖x‖ρ = d∗ω(x, 0), x ∈ X∗ρ , is a norm on X∗ρ .

Similar assertions hold if we replace C∗.m.m by C∗.p.m.m. If ω is C∗.m.m in X,
then the set Xω is a C∗.m.m space.

By the idea of property in C∗-algebra-valued metric spaces and C∗-algebra-valued
modular spaces, we define the following:

Definition 2.4. Let Xω be a C∗.m.m space.

(1) The sequence (xn)n∈N in Xω is said to be ω-convergent to x ∈ Xω with respect
to A if
ωλ(xn, x)→ θ as n→∞ for all λ > 0.

(2) The sequence (xn)n∈N in Xω is said to be ω-Cauchy with respect to A if
ωλ(xm, xn)→ θ as m,n→∞ for all λ > 0.

(3) A subset C of Xω is said to be ω-closed with respect to A if the limit of the
ω-convergent sequence of C always belongs to C.

(4) Xω is said to be ω-complete if any ω-Cauchy sequence with respect to A is
ω-convergent.

(5) A subset C of Xω is said to be ω-bounded with respect to A if for all λ > 0
δω(C) = sup{‖ωλ(x, y)‖; x, y ∈ C} <∞.

Definition 2.5. Let Xω be a C∗.m.m space. Let f, g be self-mappings of Xω. A point
x in Xω is called a coincidence point of f and g if and only if fx = gx. We shall call
w = fx = gx a point of coincidence of f and g.

Definition 2.6. Let Xω be a C∗.m.m space. Two self-mappings f and g of Xω are
said to be weakly compatible if they commute at coincidence points.

Definition 2.7. Let Xω be a C∗.m.m space. Two self-mappings f and g of Xω are
occasionally weakly compatible (owc) if and only if there is a point x in Xω which is a
coincidence point of f and g at which f and g commute.

Lemma 2.8. [6] Let Xω be a C∗.m.m space and f, g owc self-mappings of Xω. If f
and g have a unique point of coincidence, w = fx = gx, then w is a unique common
fixed point of f and g.

3. Main results

Theorem 3.1. Let Xω be a C∗.m.m space and I, J,R, S, T, U : Xω → Xω be self-
mappings of Xω such that the pairs (SR, I) and (TU, J) are occasionally weakly com-
patible. Suppose there exist a, b, c ∈ A with 0 < ‖a‖2 + ‖b‖2 + ‖c‖2 < 1 such that the
following assertion for all x, y ∈ Xω and λ > 0 hold:

(3.1.1) ωλ(SRx, TUy) � a∗ωλ(Ix, Jy)a+ b∗ωλ(SRx, Jy)b+ c∗ω2λ(TUy, Ix)c;
(3.1.2) ‖ωλ(SRx, TUy)‖ <∞.

Then SR, TU, I and J have a common fixed point in Xω. Furthermore, if the pairs
(S,R), (S, I), (R, I), (T, J), (T,U), (U, J) are commuting pairs of mappings, then I, J,R, S, T
and U have a unique common fixed point in Xω.

Proof. Since the pair (SR, I) and (TU, J) are occasionally weakly compatible, there
exist u, v ∈ Xω : SRu = Iu and TUv = Jv. Moreover, SR(Iu) = I(SRu) and
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TU(Jv) = J(TUv). Now we can assert that SRu = TUv. If not then by (3.1.1)

ωλ(SRu, TUv) � a∗ωλ(Iu, Jv)a+ b∗ωλ(SRu, Jv)b+ c∗ω2λ(TUv, Iu)c
= a∗ωλ(Iu, Jv)a+ b∗ωλ(Iu, Jv)b+ c∗ω2λ(Jv, Iu)c
= a∗ωλ(Iu, Jv)a+ b∗ωλ(Iu, Jv)b+ c∗ω2λ(Iu, Jv)c.

(3.1)

By definition of C∗.m.m space and (2.1) and (3.1), we have

ωλ(SRu, TUv) � a∗ωλ(Iu, Jv)a+ b∗ωλ(Iu, Jv)b+ c∗(ωλ(Iu, Iu) + ωλ(Iu, Jv))c
= a∗ωλ(Iu, Jv)a+ b∗ωλ(Iu, Jv)b+ c∗ωλ(Iu, Jv)c

= a∗(ωλ(Iu, Jv))
1
2 (ωλ(Iu, Jv))

1
2a+ b∗(ωλ(Iu, Jv))

1
2 (ωλ(Iu, Jv))

1
2 b

+c∗(ωλ(Iu, Jv))
1
2 (ωλ(Iu, Jv))

1
2 c

= (a(ωλ(Iu, Jv))
1
2 )∗(a(ωλ(Iu, Jv))

1
2 )

+(b(ωλ(Iu, Jv))
1
2 )∗(b(ωλ(Iu, Jv))

1
2 )

+(c(ωλ(Iu, Jv))
1
2 )∗(c(ωλ(Iu, Jv))

1
2 )

= |a(ωλ(Iu, Jv))
1
2 |2 + |b(ωλ(Iu, Jv))

1
2 |2 + |c(ωλ(Iu, Jv))

1
2 |2

� ‖a(ωλ(Iu, Jv))
1
2 ‖21A + ‖b(ωλ(Iu, Jv))

1
2 ‖21A + ‖c(ωλ(Iu, Jv))

1
2 ‖21A.

Thus
‖ωλ(SRu, TUv)‖ ≤ ‖ωλ(Iu, Jv)‖(‖a‖2 + ‖b‖2 + ‖c‖2)

< ‖ωλ(Iu, Jv)‖.
So ‖ωλ(Iu, Jv)‖ < ‖ωλ(Iu, Jv)‖, which is a contradiction. Hence SRu = TUv and thus

SRu = Iu = TUv = Jv.

Moreover, assume that there is another point z such that SRz = Iz. Using (3.1.1),

ωλ(SRz, TUv) � a∗ωλ(Iz, Jv)a+ b∗ωλ(SRz, Jv)b+ c∗ω2λ(TUv, Iz)c
= a∗ωλ(SRz, TUv)a+ b∗ωλ(SRz, TUv)b+ c∗ω2λ(SRz, TUv)c.

(3.2)
By a similar way, ‖ωλ(SRz, TUv)‖ < ‖ωλ(SRz, TUv)‖(‖a‖2 + ‖b‖2 + ‖c‖2), which is a
contradiction. Hence we get

SRu = Iu = TUv = Jv. (3.3)

Thus from (3.2) and (3.3), it follows that SRu = SRz. Hence w = SRu = Iu, for some
w ∈ Xω, is the unique point of coincidence of SR and I. Then by Lemma 2.8, w is a
unique common fixed point of SR and I. So SRw = Iw = w.

Similarly, there is another common fixed point w′ ∈ Xω : TUw′ = Jw′ = w′.
For the uniqueness, suppose w 6= w′. Then by (3.1.1), we have

ωλ(SRw, TUw′) = ωλ(w,w′)
� a∗ωλ(Iw, Jw′∗ωλ(SRw, Jw′∗ω2λ(TUw, Iw′)c
= a∗ωλ(w,w′∗ωλ(w,w′∗ω2λ(w,w′)c.

Thus ‖ωλ(w,w′)‖ < ‖ωλ(w,w′2 +‖b‖2 +‖c‖2), which is a contradiction. Hence w = w′.
So w is a unique common fixed point of SR, TU, I and J .
Furthermore, if (S,R), (S, I), (R, I), (T, J), (T,U), (U, J) are commuting pairs, then

Sw = S(SRw) = S(RS)w = SR(Sw)
Sw = S(Iw) = S(RS)w = I(Sw)
Rw = R(SRw) = RS(Rw) = SR(Rw)
Rw = R(Iw) = (Rw),

which show that Sw and Rw is a common fixed point of (SR, I), which gives SRw =
Sw = Rw = Iw = w.
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Similarly, we have TUw = Tw = Uw = Jw = w. Hence w is a unique common fixed
point of S, R, I, J, T, U . �

Corollary 3.2. Let Xω be a C∗.m.m space and I, J, S, T : Xω → Xω be self-mappings
of Xω such that the pairs (S, I) and (T, J) are occasionally weakly compatible. Suppose
there exist a, b, c ∈ A with 0 < ‖a‖2 +‖b‖2 +‖c‖2 < 1 such that the following assertions
for all x, y ∈ Xω and λ > 0 hold:

(3.2.1) ωλ(Sx, Ty) � a∗ωλ(Ix, Jy)a+ b∗ωλ(Sx, Jy)b+ c∗ω2λ(Ty, Ix)c;
(3.2.2) ‖ωλ(Sx, Ty)‖ <∞.

Then S, T, I and J have a unique common fixed point in Xω.

Proof. If we put R = U := IXω where IXω is an identity mapping on Xω, then the
result follows from Theorem 3.1. �

Corollary 3.3. Let Xω be a C∗.m.m space and S, T : Xω → Xω be self-mappings of Xω

such that S and T are occasionally weakly compatible. Suppose there exist a, b, c ∈ A
with 0 < ‖a‖2 +‖b‖2 +‖c‖2 < 1 such that the following assertions for all x, y ∈ Xω and
λ > 0 hold:

(3.3.1) ωλ(Tx, Ty) � a∗ωλ(Sx, Sy)a+ b∗ωλ(Tx, Sy)b+ c∗ω2λ(Ty, Sx)c;
(3.3.2) ‖ωλ(Tx, Ty)‖ <∞.

Then S and T have a unique common fixed point in Xω.

Proof. If we put I = J := S and S := T in (3.2.1) and (3.2.2), then the result follows
from Theorem 3.1. �

Corollary 3.4. Let Xω be a C∗.m.m space and S, T : Xω → Xω be self-mappings of
Xω such that S and T are occasionally weakly compatible. Suppose there exists a ∈ A
with 0 < ‖a‖ < 1 such that the following assertions for all x, y ∈ Xω and λ > 0 hold:

(3.4.1) ωλ(Tx, Ty) � a∗ωλ(Sx, Sy)a;
(3.4.2) ‖ωλ(Tx, Ty)‖ <∞.

Then S and T have a unique common fixed point in Xω.

Proof. If we put b = c := 0A in (3.3.1), then the result follows from Corollary 3.3. �

4. Examples

In this section we provide some nontrivial examples in favour of our results.

Example 4.1. Let X = R and consider A = M2(R) of all 2×2 matrices with the usual
operation of addition, scalar multiplication and matrix multiplication. Define a norm

on A by ‖A‖ =
(∑2

i,j=1 |aij |2
) 1

2
and ∗ : A→ A, given by A∗ = A for all A ∈ A, defines

an involution on A. Thus A becomes a C∗-algebra. For

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
∈ A = M2(R),

we denote A � B if and only if (aij − bij) ≤ 0 for all i, j = 1, 2.
Define ω : (0,∞)×X ×X → A by

ωλ(x, y) =

(
|x−yλ | 0

0 |x−yλ |

)
for all x, y ∈ X and λ > 0. It is easy to check that ω satisfies all the conditions of
Definition 2.3. So (X,A, ω) is a C∗.m.m space.
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Example 4.2. Let X = { 1
cn : n = 1, 2, · · · } where 0 < c < 1 and A = M2(R). Define

ω : (0,∞)×X ×X → A by

ωλ(x, y) =

(
‖x−yλ ‖ 0

0 α‖x−yλ ‖

)
for all x, y ∈ X, α ≥ 0 and λ > 0. Then it is easy to check that ω is a C∗.m.m. space.

Example 4.3. Let X = L∞(E) and H = L2(E), where E is a Lebesgue measurable
set. By B(H) we denote the set of bounded linear operators on the Hilbert space H.
Clearly, B(H) is a C∗-algebra with the usual operator norm.
Define ω : (0,∞)×X ×X → B(H) by

ωλ(f, g) = π| f−g
λ
|, (∀f, g ∈ X).

Here πh : H → H is the multiplication operator defined by

πh(φ) = h · φ

for φ ∈ H. Then ω is a C∗.m.m and (Xω, B(H), ω) is an ω-complete C∗.m.m space. It
suffices to verify the completeness of Xω. For this, let {fn} be an ω-Cauchy sequence
with respect to B(H), that is, for an arbitrary ε > 0, there is N ∈ N such that for all
m,n ≥ N ,

‖ωλ(fm, fn)‖ = ‖π| fm−fn
λ
|‖ = ‖fm − fn

λ
‖∞ ≤ ε.

So {fn} is a Cauchy sequence in Banach space X. Hence there are a function f ∈ X
and N1 ∈ N such that

‖fn − f
λ
‖∞ ≤ ε (n ≥ N1),

which implies that

‖ωλ(fn, f)‖ = ‖π| fn−f
λ
|‖ = ‖fn − f

λ
‖∞ ≤ ε, (n ≥ N1).

Consequently, the sequence {fn} is an ω-convergent sequence in Xω and so Xω is an
ω-complete C∗.m.m space.

Example 4.4. Let (X,A, ω) be C∗.m.m space defined as in Example 4.1. Define
S, T, I, J : Xω → Xω by

Sx = Tx = 1, Jx = 2− x, Ix =


x
2 if x ∈ (−∞, 1),
1 if x = 1,
0 if x ∈ (1,∞)

for all x, y ∈ Xω = R and λ > 0 . Then we have

0 =
∥∥∥( 0 0

0 0

)∥∥∥ = ‖ωλ(Sx, Ty)‖ <∞.

For all a, b, c ∈ A with 0 < ‖a‖2 + ‖b‖2 + ‖c‖2 < 1, we get(
0 0
0 0

)
= ωλ(Sx, Ty) � a∗ωλ(Ix, Jy)a+ b∗ωλ(Sx, Jy)b+ c∗ω2λ(Ty, Ix)c for all

x, y ∈ Xω and λ > 0. Also clearly, the pairs (S, I) and (T, J) are occasionally weakly
compatible. So all the conditions of Corollary 3.2 are satisfied and x = 1 is a unique
common fixed point of S, T, I and J .
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5. Application

Remind that if for λ > 0 and x, y ∈ L∞(E), we define ω : (0,∞)×L∞(E)×L∞(E)→
B(H) by

ωλ(x, y) = π|x−y
λ
|,

where πh : H → H is defined as in Example 4.3, then (L∞(E)ω, B(H), ω) is an ω-
complete C∗.m.m space.

Let E be a Lebesgue measurable set, X = L∞(E) and H = L2(E) be the Hilbert
space. Consider the following system of nonlinear integral equations:

x(t) = w(t) + ki(t, x(t)) + µ

∫
E
n(t, s)hj(s, x(s))ds (5.1)

for all t ∈ E, where w ∈ L∞(E)ω is known, ki(t, x(t)), n(t, s), hj(s, x(s)), i, j = 1, 2
and i 6= j are real or complex valued functions that are measurable both in t and s on
E and µ is a real or complex number, and assume the following conditions:

(a) sups∈E
∫
E |n(t, s)|dt = M1 < +∞,

(b) ki(s, x(s)) ∈ L∞(E)ω for all x ∈ L∞(E)ω, and there exists L1 > 1 such that for
all s ∈ E,

|k1(s, x(s))− k2(s, y(s))| ≥ L1|x(s)− y(s)| for all x, y ∈ L∞(E)ω,

(c) hi(s, x(s)) ∈ L∞(E)ω for all x ∈ L∞(E)ω, and there exists L2 > 0 such that for
all s ∈ E,

|h1(s, x(s))− h2(s, y(s))| ≤ L2|x(s)− y(s)| for all x, y ∈ L∞(E)ω,

(d) there exists x(t) ∈ L∞(E)ω such that

x(t)− w(t)− µ
∫
E
n(t, s)h1(s, x(s))ds = k1(t, x(t)),

which implies

k1(t, x(t))− w(t)− µ
∫
E n(t, s)h1(s, k1(s, x(s)))ds

= k1(t, x(t)− w(t)− µ
∫
E n(t, s)h1(s, x(s))ds),

(e) there exists y(t) ∈ L∞(E)ω such that

y(t)− w(t)− µ
∫
E
n(t, s)h2(s, y(s))ds = k2(t, y(t)),

which implies

k2(t, y(t))− w(t)− µ
∫
E n(t, s)hi(s, k2(s, y(s)))ds

= k2(t, y(t)− w(t)− µ
∫
E n(t, s)h2(s, y(s))ds).

Theorem 5.1. With the assumptions (a)-(e), the system of nonlinear integral equations
(5.1) has a unique solution x∗ in L∞(E)ω for each real or complex number µ with
1+|µ|L2M1

L1
< 1.

Proof. Define

Sx(t) = x(t)− w(t)− µ
∫
E
n(t, s)h1(s, x(s))ds,

Tx(t) = x(t)− w(t)− µ
∫
E
n(t, s)h2(s, x(s))ds,
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Ix(t) = k1(t, x(t)), Jx(t) = k2(t, x(t)).

Set a =
√

1+|µ|M1L2

L1
· 1B(H), b = c = 0B(H). Then a ∈ B(H)+ and 0 < ‖a‖2 + ‖b‖2 +

‖c‖2 = 1+|µ|M1L2

L1
< 1.

For any h ∈ H, we have

‖ωλ(Sx, Ty)‖ = sup‖h‖=1(π|Sx−Ty
λ
|h, h)

= sup‖h‖=1

∫
E

[
1
λ

∣∣∣(x− y) + µ
∫
E n(t, s)(h2(s, y(s)− h1(s, x(s))ds

∣∣∣]h(t)h(t)dt

≤ sup‖h‖=1

∫
E

[
1
λ

∣∣∣(x− y) + µ
∫
E n(t, s)(h2(s, y(s)− h1(s, x(s))ds

∣∣∣]|h(t)|2dt

≤ 1
λ sup‖h‖=1

∫
E |h(t)|2dt

[
‖x− y‖∞ + |µ|M1L2‖x− y‖∞

]
≤ (1+|µ|M1L2

λ )‖x− y‖∞

≤ (1+|µ|M1L2

L1
)‖k1(t,x(t))−k2(t,y(t))λ ‖∞

= (1+|µ|M1L2

L1
)‖ωλ(Ix, Jy)‖

= ‖a‖2‖ωλ(Ix, Jy)‖.
Then

‖ωλ(Sx, Ty)‖ ≤ ‖a‖2‖ωλ(Ix, Jy)‖+ ‖b‖2‖ωλ(Sx, Jy)‖+ ‖c‖2‖ω2λ(Ty, Ix)‖
for all x, y ∈ L∞(E)ω and λ > 0. Also by conditions (d) and (e) the pairs (S, I) and
(T, J) are occasionally weakly compatible. Therefore, by Corollary 3.2, there exists a
unique common fixed point x∗ ∈ L∞(E)ω such that x∗ = Sx∗ = Tx∗ = Ix∗ = Jx∗,
which proves the existence of unique solution of (5.1) in L∞(E)ω. This completes the
proof. �
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[7] Z. Kadelburg and S. Radenović, Fixed point results in C∗-algebra-valued metric spaces are direct

consequences of their standard metric counterparts, Fixed Point Theory Appl. 2016, 2016:53.
[8] T. Kamran, M. Postolache, A. Ghiura, S. Batul and R. Ali, The Banach contraction principle in

C∗-algebra-valued b-metric spaces with application, Fixed Point Theory Appl. 2016, 2016:10.
[9] M.A. Khamsi, A convexity property in modular function spaces, Math. Jpn. 44 (1996), 269–279.

[10] M.A. Khamsi, Quasicontraction mapping in modular spaces without ∆2-condition, Fixed Point
Theory Appl. 2008, Article ID 916187 (2008).

[11] M.A. Khamsi, W.M. Kozlowski and S. Reich, Fixed point theory in modular function spaces,
Nonlinear Anal. 14 (1990), 935–953.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

219 BAHMAN MOEINI ET AL 211-220



B. MOEINI, A.H. ANSARI, C. PARK, D. SHIN

[12] S. Koshi and T. Shimogaki, On F -norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ.
Ser. I, 15 (1961), 202–218.

[13] Z. Ma and L. Jiang, C∗-Algebra-valued b-metric spaces and related fixed point theorems, Fixed
Point Theory Appl. 2015, 2015:222.

[14] Z. Ma, L. Jiang and H. Sun, C∗-Algebra-valued metric spaces and related fixed point theorems,
Fixed Point Theory Appl. 2014, 2014:206.

[15] C. Mongkolkeha and P. Kumam, Common fixed points for generalized weak contraction mappings
in modular spaces, Sci. Math. Jpn. 75 (2012), 69–79.

[16] C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings
in modular metric spaces, Fixed Point Theory Appl. 2011, 2011:93.

[17] C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for contraction mappings
in modular metric spaces, Fixed Point Theory Appl. 2012, 2012:103.

[18] H. Nakano, Modulared: Semi-Ordered Linear Spaces, In Tokyo Math. Book Ser. Vol. 1, Maruzen
Co., Tokyo, 1950.

[19] A. Parya, P. Pathak, V.H. Badshah and N. Gupta, Common fixed point theorems for generalized
contraction mappings in modular metric spaces, Adv. Inequal. Appl. 2017, 2017:9.

[20] T.L. Shateri, C∗-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory
Appl. 19 (2017), 1551–1560.

[21] D. Shehwar and T. Kamran, C∗-Valued G-contraction and fixed points, J. Inequal. Appl. 2015,
2015:304.

[22] X. Wang and Y. Chen, Fixed points of asymptotic pointwise nonexpansive mappings in modular
spaces, Appl. Math. 2012, Article ID 319394 (2012).

[23] S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90 (1959), 291–311.
[24] A. Zada, S. Saifullah and Z. Ma, Common fixed point theorems for G-contraction in C∗-algebra-

valued metric spaces, Int. J. Anal. Appl. 11 (2016), 23–27.

1Department of Mathematics, Hidaj Branch, Islamic Azad University, Hidaj, Iran
E-mail address: moeini145523@gmail.com

2Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
E-mail address: analsisamirmath2@gmail.com

3Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
E-mail address: baak@hanyang.ac.kr

4Department of Mathematics, University of Seoul, Seoul 02504, Korea
E-mail address: dyshin@uos.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

220 BAHMAN MOEINI ET AL 211-220



Strong Convergence Theorems and

Applications of a New Viscosity Rule for

Nonexpansive Mappings

Waqas Nazeer1, Mobeen Munir1, Sayed Fakhar Abbas Naqvi2,

Chahn Yong Jung3,∗ and Shin Min Kang4,5,∗

1Division of Science and Technology, University of Education, Lahore 54000, Pakistan

e-mails: nazeer.waqas@ue.edu.pk (W.N); mmunir@ue.edu.pk (M.M)

2Department of Mathematics, Lahore Leads University, Lahore 54810, Pakistan

e-mail: fabbas27@gmail.com

3Department of Business Administration, Gyeongsang National University, Jinju 52828, Korea

e-mail: bb5734@gnu.ac.kr

4Center for General Education, China Medical University, Taichung 40402, Taiwan

5Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Korea

e-mail: smkang@gnu.ac.kr

Abstract

We introduced new viscosity rule for nonexpansive mappings in Hilbert Spaces.

The strong convergence theorem of the new rule is proved under certain assumptions

imposed on the sequence of parameters. Moreover, applications of proposed viscosity

rule are also given.

2010 Mathematics Subject Classification: 47H09

Key words and phrases: viscosity rule, Hilbert space, nonexpansive mapping, varia-

tional inequality

1 Introduction

In this paper, we shall take H as a real Hilbert space, 〈·, ·〉 as inner product, ‖ · ‖ as the

induced norm, and C as a nonempty closed subset of H .

Definition 1.1. Let T : H → H be a mapping. T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H.

Definition 1.2. A mapping f : H → H is called a contraction if for all x, y ∈ H and
θ ∈ [0, 1)

‖fx − fy‖ ≤ θ‖x − y‖.

∗ Corresponding authors
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Definition 1.3. Pc : H → C is called a metric projection if for every x ∈ H there exists

a unique nearest point in C, denoted by Pcx, such that

‖x − Pcx‖ ≤ ‖x − y‖, ∀y ∈ C.

The following theorem gives the condition for a projection mapping to be nonexpansive.

Theorem 1.4. Let C be a nonempty closed convex subset of the real Hilbert space H and

Pc : H → H a metric projection. Then

(a) ‖Pcx − Pcy‖
2 ≤ 〈x − y, Pcx − Pcy〉 for all x, y ∈ H .

(b) Pc is a nonexpansive mapping, that is, ‖x − Pcx‖ ≤ ‖x − y‖ for all y ∈ C.

(c) 〈x− Pcx, y − Pcx〉 ≤ 0 for all x ∈ H and y ∈ C.

In order to verify the weak convergence of an algorithm to a fixed point of a nonex-

pansive mapping we need the demiclosedness principle:

Theorem 1.5. (The demiclosedness principle) ([2]) Let C be a nonempty closed convex

subset of the real Hilbert space H and T : C → C such that xn ⇀ x∗ ∈ C and (I−T )xn →
0. Then x∗ = Tx∗. (Here → and ⇀ denote strong and weak convergence, respectively).

Moreover, the following result gives the conditions for the convergence of a nonnegative
real sequence.

Theorem 1.6. ([9]) Assume that {an} is a sequence of nonnegative real numbers such

that an+1 ≤ (1 − γn)an + δn, ∀n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a

sequence with

(1)
∑∞

n=0 γn = ∞,

(2) limn→∞ sup δn

γn
≤ 0 or

∑∞

n=0 |δn| < ∞.

Then an → 0 as n → ∞.

The following strong convergence theorem, which is also called the viscosity approxi-

mation method, for nonexpansive mappings in real Hilbert spaces is given by Moudafi [8]
in 2000.

Theorem 1.7. Let C be a noneempty closed convex subset of the real Hilbert space H .

Let T be a nonexpansive mapping of C into itself such that F (T ) := {x ∈ H : T (x) = x}
is nonempty. Let f be a contraction of C into itself. Consider the sequence

xn+1 =
εn

1 + εn

f(xn) +
1

1 + εn

T (xn), n ≥ 0,

where the sequence {εn} ∈ (0, 1) satisfies

(1) limn→∞ εn = 0,

(2)
∑∞

n=0 εn = ∞,

(3) limn→∞ | 1
εn+1

− 1
εn
| = 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which

is also the unique solution of the variational inequality

〈(I − f)x, y − x〉 ≥ 0, ∀ ∈ F (T ).
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In 2015, Xu et al. [9] applied the viscosity method on the midpoint rule for nonexpan-

sive mappings and give the generalized viscosity implicit rule:

xn+1 = αnf(xn) + (1 − αn)T

(

xn + xn+1

2

)

, ∀n ≥ 0.

This, using contraction, regularizes the implicit midpoint rule for nonexpansive mappings.
They also proved that the sequence generated by the generalized viscosity implicit rule

converges strongly to a fixed point of T . Ke and Ma [6], motivated and inspired by the
idea of Xu et al. [9], proposed two generalized viscosity implicit rules:

xn+1 = αnf(xn) + (1− αn)T (snxn + (1− sn)xn+1)

and

xn+1 = αnxn + βf(xn) + γnT (snxn + (1− sn)xn+1).

In [3], Jung et al. presented the following viscosity rule











xn+1 = T (yn),

yn = αn(wn) + βnf(wn) + γnT (wn),

wn = xn+xn+1

2 .

In [7], Kwun et al. proved the strong convergence of the following viscosity rule

{

xn+1 = T (yn),

yn = αn(xn) + βnf(xn) + γnT
(xn+xn+1

2

)

.

Our contribution in this direction is the following new viscosity rule

xn+1 = αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnT

(

xn + xn+1

2

)

. (1.1)

2 New viscosity rule

Theorem 2.1. Let C be a nonempty closed convex subset of the real Hilbert space H .

Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and f : C → C a contraction

with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a sequence generated by the

new viscosity rule (1.1), where {αn}, {βn} and {γn} are sequences in (0, 1) satisfying the

following conditions:

(i) αn + βn + γn = 1,

(ii) limn→∞ αn = 0 = limn→∞ βn and limn→∞ γn → 1,

(iii)
∑∞

n=0 |αn+1 − αn| < ∞,

(iv)
∑∞

n=0 |βn+1 − βn| < ∞.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T, which

is also the unique solution of the variational inequality 〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (T )f, that is, PF (T )f(x∗)
= x∗.
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Proof. This proof is divided into five steps.

Step 1. ({xn} is bounded)

Taking an arbitrary point p of F (T ), we have

‖xn+1 − p‖

=

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnT

(

xn + xn+1

2

)

− p

∥

∥

∥

∥

=

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

− αnp + βnf

(

xn + xn+1

2

)

− βnp

+ γnT

(

xn + xn+1

2

)

+ (αn + βn − 1)p

∥

∥

∥

∥

≤ αn

∥

∥

∥

∥

(

xn + xn+1

2

)

− p

∥

∥

∥

∥

+ βn

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− p

∥

∥

∥

∥

+ γn

∥

∥

∥

∥

T

(

xn + xn+1

2

)

− p

∥

∥

∥

∥

≤
αn

2
‖xn − p‖ +

αn

2
‖xn+1 − p‖ + βn

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− f(p)

∥

∥

∥

∥

+ βn‖f(p)− p‖ + γn

∥

∥

∥

∥

xn + xn+1

2
− p

∥

∥

∥

∥

≤
αn

2
‖xn − p‖ +

αn

2
‖xn+1 − p‖ + θβ

∥

∥

∥

∥

xn + xn+1

2
− p

∥

∥

∥

∥

+ β‖f(p) − p‖

+ γn

[

1

2
‖xn − p‖+

1

2
‖xn+1 − p‖

]

=

(

αn + γn + θβn

2

)

‖xn − p‖+

(

αn + γn + θβn

2

)

‖xn+1 − p‖

+
γn

2
‖xn+1 − p‖ + βn‖f(p)− p‖

=

(

1 − βn + θβn

2

)

‖xn − p‖ +

(

1 − βn + θβn

2

)

‖xn+1 − p‖

+
γn

2
‖xn+1 − p‖ + βn‖f(p)− p‖.

It follows that
(

1 −
1 − βn + θβn

2

)

‖xn+1 − p‖ ≤

(

1 − βn + θβn

2

)

‖xn − p‖ + βn‖f(p) − p‖

implies

(1 + βn(1 − θ))‖xn+1 − p‖ ≤ (1 − βn(1 − θ))‖xn − p‖ + 2βn‖f(p)− p‖. (2.1)

Since βn, θ ∈ (0, 1), 1 − βn(1 − θ) ≥ 0. Moreover, by (2.1) and αn + βn + γn = 1 we get

‖xn+1 − p‖

≤
1− βn(1 − θ)

1 + βn(1 − θ)
‖xn − p‖ +

2βn

1 + βn(1− θ)
‖f(p)− p‖

≤

[

1−
2βn(1− θ)

1 + βn(1 − θ)

]

‖xn − p‖ +
2βn(1 − θ)

1 + βn(1− θ)

(

1

1− θ
‖f(p) − p‖

)

.
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Thus, we have

‖xn+1 − p‖ ≤ max

{

‖xn − p‖,
1

1− θ
‖f(p) − p‖

}

.

By induction we obtain

‖xn+1 − p‖ ≤ max

{

‖x0 − p‖,
1

1 − θ
‖f(p)− p‖

}

.

Hence, we concluded that {xn} is bounded. Consequently, {f(xn+xn+1

2 )} and {T (xn+xn+1

2 )}
are bounded.

Step 2. (limn→∞ ‖xn+1 − xn‖ = 0)

‖xn+1 − xn‖

=

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnT

(

xn + xn+1

2

)

−

[

αn−1

(

xn + xn−1

2

)

+ βn−1f

(

xn + xn−1

2

)

+ γn−1T

(

xn−1 + xn

2

)]
∥

∥

∥

∥

=

∥

∥

∥

∥

αn

2
(xn+1 − xn) +

αn

2
(xn − xn−1) +

1

2
(αn − αn−1)xn +

1

2
(αn − αn−1)xn−1

+ βn

(

f

(

xn + xn+1

2

)

− f

(

xn + xn−1

2

))

+ (βn − βn−1)f

(

xn + xn−1

2

)

+ γn

[

T

(

xn+1 + xn

2

)

− T

(

xn−1 + xn

2

)]

+ (γn − γn−1)T

(

xn−1 + xn

2

)
∥

∥

∥

∥

=

∥

∥

∥

∥

αn

2
(xn+1 − xn) +

αn

2
(xn − xn−1) +

1

2
(αn − αn−1)(xn + xn−1)

+ βn

(

f

(

xn + xn+1

2

)

− f

(

xn + xn−1

2

))

+ (βn − βn−1)f

(

xn + xn−1

2

)

+ γn

[

T

(

xn+1 + xn

2

)

− T

(

xn−1 + xn

2

)]

−

[

(αn − αn−1) + (βn − βn−1)

]

T

(

xn−1 + xn

2

)
∥

∥

∥

∥

≤
αn

2
‖xn+1 − xn‖ +

αn

2
‖xn − xn−1‖

+
1

2
|αn − αn−1|

∥

∥

∥

∥

xn−1 + xn − 2T

(

xn−1 + xn

2

)∥

∥

∥

∥

+ βn

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− f

(

xn + xn−1

2

)
∥

∥

∥

∥

+ |βn − βn−1|

∥

∥

∥

∥

f

(

xn + xn−1

2

)

− T

(

xn + xn−1

2

)
∥

∥

∥

∥

+ γn

∥

∥

∥

∥

T

(

xn+1 + xn

2

)

− T

(

xn−1 + xn

2

)
∥

∥

∥

∥

≤
αn

2
‖xn+1 − xn‖ +

αn

2
‖xn − xn−1‖ +

(

1

2
|αn − αn−1| + |βn − βn−1|

)

M

+ θβn

∥

∥

∥

∥

xn+1 + xn

2
−

xn − xn−1

2

∥

∥

∥

∥

+ γn

∥

∥

∥

∥

xn+1 + xn

2
−

xn − xn−1

2

∥

∥

∥

∥
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=
αn

2
‖xn+1 − xn‖ +

αn

2
‖xn − xn−1‖ +

(

1

2
|αn − αn−1| + |βn − βn−1|

)

M

+
θβn

2
‖xn+1 − xn‖+

θβn

2
‖xn − xn−1‖ +

γn

2
‖xn+1 − xn‖+

γn

2
‖xn − xn−‖

=
αn + θβn + γn

2
‖xn+1 − xn‖ +

αn + θβn + γn

2
‖xn − xn−1‖

+

(

1

2
|αn − αn−1| + |βn − βn−1|

)

M,

where M > 0 is a constant such that

M ≥ max

{

sup
n≥0

∥

∥

∥

∥

xn + xn−1 − 2T

(

xn−1 + xn

2

)
∥

∥

∥

∥

,

sup
n≥0

∥

∥

∥

∥

f

(

xn + xn−1

2

)

− T

(

xn + xn−1

2

)
∥

∥

∥

∥

}

.

It gives

(

1 −
αn + θβn + γn

2

)

‖xn+1 − xn‖

≤
αn + θβn + γn

2
‖xn − xn−1‖ +

(

1

2
|αn − αn−1| + |βn − βn−1|

)

M

implies
(

1 −
1 − βn + θβn

2

)

‖xn+1 − xn‖

≤
1 − βn + θβn

2
‖xn − xn−1‖ +

(

1

2
|αn − αn−1| + |βn − βn−1|

)

M

implies
(1 + βn(1− θ))‖xn+1 − xn‖ ≤ (1 − βn(1− θ))‖xn − xn−1‖

+ (|αn − αn−1| + 2|βn − βn−1|)M.

Thus we have

‖xn+1 − xn‖ ≤

(

1 − βn(1 − θ)

1 + βn(1 − θ)

)

‖xn − xn−1‖

+
M

1 + βn(1 − θ)
(|αn − αn−1| − 2|βn − βn−1|).

Since θ, βn ∈ (0, 1), 1 + βn(1 − θ) ≥ 1 and hence

1 − βn(1− θ)

1 + βn(1− θ)
≤ 1− βn(1 − θ).

Thus

‖xn+1 − xn‖ ≤

[

1 − βn(1− θ)

]

‖xn − xn−1‖

+
M

1 + βn(1 − θ)
(|αn − αn−1| − 2|βn − βn−1|).
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Since
∞

∑

n=0

βn = ∞,

∞
∑

n=0

|αn+1 − αn| < ∞, and
∞
∑

n=0

|βn+1 − βn| < ∞,

by Theorem 1.6, we have ‖xn+1 − xn‖ → 0 as n → ∞.

Step 3. (‖xn − Txn‖ → 0 as → ∞)

Consider

‖xn − Txn‖

=

∥

∥

∥

∥

xn − xn+1 + xn+1 − T

(

xn + xn+1

2

)

+ T

(

xn + xn+1

2

)

− Txn

∥

∥

∥

∥

≤ ‖xn − xn+1‖ +

∥

∥

∥

∥

xn+1 − T

(

xn + xn+1

2

)
∥

∥

∥

∥

+

∥

∥

∥

∥

T

(

xn + xn+1

2

)

− Txn

∥

∥

∥

∥

≤ ‖xn − xn+1‖ +

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnT

(

xn + xn+1

2

)

− T

(

xn + xn+1

2

)∥

∥

∥

∥

+

∥

∥

∥

∥

xn + xn+1

2
− xn

∥

∥

∥

∥

= ‖xn − xn+1‖ +

∥

∥

∥

∥

αn

2
(xn + xn+1) + βnf

(

xn + xn+1

2

)

− (1− γn)T

(

xn + xn+1

2

)
∥

∥

∥

∥

+
1

2
‖xn+1 − xn‖

≤
3

2
‖xn − xn+1‖ +

∥

∥

∥

∥

αn

2
(xn + xn+1) + βnf

(

xn + xn+1

2

)

− (αn + βn)T

(

xn + xn+1

2

)
∥

∥

∥

∥

≤
3

2
‖xn − xn+1‖ +

αn

2

∥

∥

∥

∥

xn + xn+1 − 2T

(

xn + xn+1

2

)
∥

∥

∥

∥

+ βn

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− T

(

xn + xn+1

2

)
∥

∥

∥

∥

≤
3

2
‖xn+1 − xn‖ +

(

αn

2
+ βn

)

M.

Then by limn→∞ ‖xn+1 − xn‖ = 0 and limn→∞ γn = 1, we get

‖xn − Txn‖ → 0.

Step 4. (limn→∞ sup〈x∗ − f(x∗), x∗ − xn〉 ≤ 0, where x∗ = PF (T )f(x∗))

Indeed, we take a subsequence {xni
} of {xn} which converges weakly to a fixed point

p of T . Without loss of generality, we may assume that {xni
} ⇀ p. From limn→∞ ‖xn −

Txn‖ = 0 and Theorem 1.5 we have p = Tp. This, together with the property of the
metric projection, implies that

lim
n→∞

sup〈x∗ − f(x∗), x∗ − xn〉 = lim
n→∞

sup〈x∗ − f(x∗), x∗ − xni
〉

= 〈x∗ − f(x∗), x∗ − p〉

≤ 0.
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Step 5. (xn → x∗ as n → ∞)

Now we again take x∗ ∈ F (T ) as the unique fixed point of the contraction PF (T )f .

Consider

‖xn+1 − x∗‖2

=

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnT

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

=

∥

∥

∥

∥

αn

(

xn + xn+1

2

)

− αnx∗ + βnf

(

xn + xn+1

2

)

− βnx∗

+ γnT

(

xn + xn+1

2

)

+ (αn + βn − 1)x∗

∥

∥

∥

∥

2

= α2
n

∥

∥

∥

∥

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

+ β2
n

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

+ γ2
n

∥

∥

∥

∥

T

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

+ 2αnβn

〈

xn + xn+1

2
− x∗, f

(

xn + xn+1

2

)

− x∗

〉

+ 2αnγn

〈

xn + xn+1

2
− x∗, T

(

xn + xn+1

2

)

− x∗

〉

+ 2βnγn

〈

f

(

xn + xn+1

2

)

− x∗, T

(

xn + xn+1

2

)

− x∗

〉

≤ α2
n

∥

∥

∥

∥

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

+ β2
n

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

2

+ γ2
n

∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ 2αnβn

〈(

xn + xn+1

2

)

− x∗, f

(

xn + xn+1

2

)

− x∗

〉

+ 2αnγn‖xn − x∗‖

∥

∥

∥

∥

T

(

xn + xn+1

2

)

− x∗

∥

∥

∥

∥

+ 2βnγn

〈

f

(

xn + xn+1

2

)

− f(x∗), T

(

xn + xn+1

2

)

− x∗

〉

+ 2βnγn

〈

f(x∗)− x∗, T

(

xn + xn+1

2

)

− x∗

〉

≤ (α2
n + γ2

n)

∥

∥

∥

∥

xn + xn+1

2
− x∗

∥

∥

∥

∥

2

+ 2αnγn

∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ 2βnγn

∥

∥

∥

∥

f

(

xn + xn+1

2

)

− f(x∗)

∥

∥

∥

∥

∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

+ Kn

≤ (αn + γn)2
∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ 2θβnγn

∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ Kn

≤

(

(αn + γn)2 + 2θβnγn

)
∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ Kn

≤

(

(1 − βn)2 + 2θβnγn

)
∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

+ Kn,
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where

Kn = β2
n

∥

∥

∥

∥

f

(

xn+1 + xn

2

)

− x∗

∥

∥

∥

∥

2

+ 2αnβn

〈(

xn+1 + xn

2

)

− x∗, f

(

xn+1 + xn

2

)

− x∗

〉

+ 2βnγn

〈

f(x∗) − x∗, T

(

xn+1 + xn

2

)

− x∗

〉

.

It follows that
[

(1− βn)2 + 2θβnγn

]∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

2

≥ ‖xn+1 − xn‖
2 − Kn

implies
√

(1− βn)2 + 2θβnγn

∥

∥

∥

∥

xn+1 + xn

2
− x∗

∥

∥

∥

∥

≥
√

‖xn+1 − xn‖2 − Kn

implies

1

2

√

(1 − βn)2 + 2θβnγn(‖xn+1 − x∗‖ + ‖xn − x∗‖) ≥
√

‖xn+1 − xn‖2 − Kn

implies
1

4
((1− βn)2 + 2θβnγn)(‖xn+1 − x∗‖2 + ‖xn − x∗‖2

+ 2‖xn+1 − x∗‖‖xn − x∗‖)

≥ ‖xn+1 − xn‖
2 − Kn

implies
1

4
((1− βn)2 + 2θβnγn)(‖xn+1 − x∗‖2 + ‖xn − x∗‖2

+ (‖xn+1 − x∗‖2 + ‖xn − x∗‖2))

≥ ‖xn+1 − xn‖
2 − Kn

implies
[

1 −
1

2
((1− βn)2 + 2θβnγn)

]

‖xn+1 − x∗‖2

≤

[

1

2
((1 − βn)2 + 2θβnγn)

]

‖xn − x∗‖2 + Kn.

Thus we have

‖xn+1 − x∗‖2

≤
1
2((1 − βn)2 + 2θβnγn)

1− 1
2 ((1− βn)2 + 2θβnγn)

‖xn − x∗‖2 +
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

=
1− 1

2 ((1− βn)2 + 2θβnγn) − 1 + ((1 − βn)2 + 2θβnγn)

1 − 1
2 ((1− βn)2 + 2θβnγn)

‖xn − x∗‖2

+
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

=

[

1−
1 − ((1− βn)2 + 2θβnγn)

1 − 1
2 ((1− βn)2 + 2θβnγn)

]

‖xn − x∗‖2 +
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

.
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Note that

0 < 1−
1

2
((1− βn)2 + 2θβnγn) < 1

implies

1 − ((1− βn)2 + 2θβnγn)

1 − 1
2 ((1− βn)2 + 2θβnγn)

≥ 1 − ((1− βn)2 + 2θβnγn).

Thus we have

‖xn+1 − x∗‖2

≤ [1 − (1 − ((1 − βn)2 + 2θβnγn))]‖xn − x∗‖2 +
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

= [(1 − βn)2 − 2θβnγn]‖xn − x∗‖2 +
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

≤ (1 − βn)2‖xn − x∗‖2 +
Kn

1 − 1
2((1 − βn)2 + 2θβnγn)

.

Since 0 < 1 − βn < 1, this give (1 − βn)2 < (1− βn) and

‖xn+1 − x∗‖2 ≤ (1− βn)‖xn − x∗‖2 +
Kn

1 − 1
2 ((1− βn)2 + 2θβnγn)

. (2.2)

By limn→∞ αn = limn→∞ βn = 0 and limn→∞ γn = 1 we have

lim
n→∞

Kn

1 − 1
2((1 − βn)2 + 2θβnγn)

= lim
n→∞

(

β2
n‖f

(xn+1+xn

2

)

− x∗‖2 + 2αnβn

〈(xn+1+xn

2

)

− x∗, f
(xn+1+xn

2

)

− x∗
〉

1 − 1
2 ((1− βn)2 + 2θβnγn)

+
2βnγn〈f(x∗) − x∗, T

(xn+1+xn

2

)

− x∗〉

1 − 1
2((1− βn)2 + 2θβnγn)

)

≤ 0.

(2.3)

From (2.2), (2.3), and Theorem 1.6 we have limn→∞ ‖xn+1 −x∗‖2 = 0, which implies that
xn → x∗ as n → ∞. This completes the proof.

3 Applications

The scheme can be used to solve problems of system of variational inequalities and con-
strained convex minimization. Moreover, it can be applied to find a fixed point in K-

mappings.

3.1 A more general system of variational inequalities

Let C be a nonempty closed convex subset of the real Hilbert Space H and {Ai}
N
i=1 :

C → H be a family of mappings. In [1] Cai and Bu considered the problem of finding
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(x∗
1, x

∗
2, . . . , x

∗
N) ∈ C × C × · · · × C such that



































〈λNANx∗
N + x∗

1 − x∗
N , x− x∗

1〉 ≥ 0,

〈λN−1AN−1x
∗
N−1 + x∗

N − x∗
N−1, x− x∗

N〉 ≥ 0,
...

〈λ2A2x
∗
2 + x∗

3 − x∗
2, x− x∗

3〉 ≥ 0,

〈λ1A1x
∗
1 + x∗

2 − x∗
1, x− x∗

2〉 ≥ 0, ∀x ∈ C.

(3.1)

The equation (3.1) can be written as



































〈x∗
1 − (I − λNAN )x∗

N , x− x∗
1〉 ≥ 0,

〈x∗
N − (I − λN−1AN−1)x

∗
N−1, x− x∗

N〉 ≥ 0,
...

〈x∗
3 − (I − λ2A2)x

∗
2, x − x∗

3〉 ≥ 0,

〈x∗
2 − (I − λ1A1)x

∗
1, x − x∗

2〉 ≥ 0,

which is a more general system of variational inequalities in Hilbert spaces with λi > 0
for all i ∈ {1, 2, 3, . . . , N}. Moreover, we have some useful results:

Lemma 3.1. ([1]) Let C be a nonempty closed convex subset of the real Hilbert spaces H .

For i ∈ {1, 2, 3, · · · , N}, let Ai : C → H be δi-inverse strongly monotone for some positive

real number δi, namely,

〈Aix − Aiy, x − y〉 ≥ δi‖Aix − Aiy‖
2, ∀x, y ∈ C

Let G : C → C be a mapping defined by

G(x) = PC(I − λNAN )PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.
(3.2)

If 0 < λi ≤ 2δi for all i ∈ {1, 2, 3, · · · , N}, then G is nonexpansive.

Lemma 3.2. ([5]) Let C be a nonempty closed convex subject of the real Hilbert Spaces

H. Let Ai : C → H be a nonlinear mapping,where i ∈ {1, 2, 3, ..., N}. For given x∗
i ∈ C,

i ∈ {1, 2, 3, ..., N}, (x∗
1, x

∗
2, x

∗
3, ..., x

∗
N) is a solution of the problem (3.1) if and only if

x∗
1 = PC(I − λNAN )x∗

N , x∗
i

= PC(I − λi−1Ai−1)x
∗
i−1, i = 2, 3, 4, ..., N,

that is,

x∗
1 = PC(I − λNAN)PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x
∗
1, ∀x ∈ C.

From Lemma 3.2, we know that x∗
1 = G(x∗

1), that is, x∗
1 is a fixed point of the mapping

G, where G is defined by (3.2). Moreover, if we find the fixed point x∗
1, it is easy to get

the other points by (3.3). Applying Theorem 2.1 we get the result.
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Theorem 3.3. Let C be a nonempty closed convex subject of the real Hilbert spaces H.

For i ∈ {1, 2, 3, ..., N}, let Ai : C → H be δi-inverse-strongly monotone for some positive

real number δi with F (G) 6= ∅, where G : C → C is defined by

G(x) = PC(I − λNAN )PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a

sequence generated by

xn+1 = αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnG

(

xn + xn+1

2

)

,

where {αn}, {βn} and {γn} are sequences in (0, 1) satisfying the conditions (i)-(iv).
Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G, which

is also the unique solution of the variational inequality 〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ F (T ).
In other words, x∗ is the unique fixed point of the contraction PF (G)f, that is, PF (G)f(x∗)

= x∗.

3.2 The constrained convex minimization problem

Now, we consider the following constrained convex minimization problem;

min
x∈C

φ(x), (3.4)

where φ : C → R is a real-valued convex function and assumes that the problem (3.4)is
consistent. Let Ω denote its solution set. For the minimization problem (3.4), if φ is

(Fréchet)differentiable, then we have the following lemma.

Lemma 3.4. (Optimality Condition) ([5]) A necessary condition of optimality for a point

x∗ ∈ C to be a solution of the minimization problem (3.4) is that x∗ solves the variational

inequality

〈∇φ(x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (3.5)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC

(

x∗ − λ∇φ(x∗)

)

for every constant λ > 0. If, in a addition φ is convex, then the optimality condition (3.5)

is also sufficient.

It is well known that the mapping PC(I − λA) is nonexpansive when the mapping A
is δ-inverse-strongly monotone and 0 < λ < 2δ. We therefore have the following result.

Theorem 3.5. Let C be a nonempty closed convex subset of the real Hilbert Space H.

For the minimization problem (3.4), assume that φ is (Fréchet) differentiable and the

gradient ∇φ is a δ-inverse-strongly monotone mapping for some positive real number δ.

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C. Let {xn} be

a sequence generated by

xn+1 = αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnPC(I − λ∇φ)

(

xn + xn+1

2

)

,
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where {αn}, {βn} and {γn} are sequences in (0, 1) satisfying the conditions (i)-(iv).

Then {xn} converges strongly to a solution x∗ of the minimization problem (3.4), which

is also the unique solution of the variational inequality 〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ Ω.

In other words, x∗ is the unique fixed point of the contraction PΩf, that is, PΩf(x∗) =
x∗.

3.3 K-mapping

Kangtunyakarn and Suantai [4] in 2009 gave K-mapping generated by T1, T2, T3, ..., TN

and λ1, λ2, λ3, ..., λN as follows.

Definition 3.6. ([4]) Let C be a nonempty convex subset of real Banach Space. Let
{Ti}N

i=1 be a family of mappings of C into itself and let λ1, λ2, λ3, ..., λN be real numbers

such that 0 ≤ λi ≤ 1 for every i = 1, 2, 3, ..., N . We define a mapping K : C → C as
follows;



































U1 = λ1T1 + (1 − λ1)I,

U2 = λ2T2U1 + (1 − λ2)U1,
...

UN−1 = λN−1TN−1UN−2 + (1 − λN−1)UN−2,

UN = λNTNUN−1 + (1− λN)UN−1.

Such a mapping is called a K-mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ...,

λN .

In 2014, Kangtunyakarn and Suwannaut [10] established the following result for K-

mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN.

Lemma 3.7. ([10]) Let C be a nonempty closed convex subset of the real Hilbert space

H . For i = 1, 2, 3, ..., N, let {Ti}N
i=1 be a finite family of Ki-strictly pseudo-contractive

mapping of C into itself with Ki ≤ ωi and
⋂N

i=1 F (Ti) 6= ∅, namely, there exist constants

Ki ∈ [0, 1) such that

‖Tix − Tiy‖
2 ≤ ‖x − y‖2 + Ki‖(I − Ti)x − (I − Ti)y‖

2, ∀x, y ∈ C.

Let λ1, λ2, λ3, ..., λN be real numbers with 0 < λi < ω2, ∀i = 1, 2, 3, ..., N and ω1 +ω2 <

1. Let K be the K-mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN. Then the

following properties hold:

(a) F (K) =
⋂N

i=1 F (Ti).
(b) K is a nonexpansive mapping.

On the bases of above lemma, we have the following results.

Theorem 3.8. Let C be a nonempty closed convex subset of the real Hilbert space H . For

i = 1, 2, 3, ..., N, let {Ti}
N
i=1 be a finite family of Ki-strictly pseudo-contractive mapping

of C into itself with Ki ≤ ωi and
⋂N

i=1 F (Ti) 6= ∅. Let λ1, λ2, λ3, ..., λN be real numbers

with 0 < λi < ω2, ∀i = 1, 2, 3, ..., N and ω1 + ω2 < 1. Let K be the K-mapping generated

by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN. Let f : C → C be a contraction with coefficient

θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be sequence generated by

xn+1 = αn

(

xn + xn+1

2

)

+ βnf

(

xn + xn+1

2

)

+ γnK

(

xn + xn+1

2

)

,
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where {αn}, {βn} and {γn} are sequences in (0, 1) satisfying the conditions (i)-(iv).

Then {xn} converges strongly to a fixed point x∗ of the mappings {Ti}
N
i=1, which is also

the unique solution of the variational inequality 〈(I−f)x, y−x〉, ∀y ∈ F (K) =
⋂N

i=1 F (Ti).

In other words, x∗ is the unique fixed point of the contraction PT

N

i=1 F (Ti)
f, that is,

PT

N

i=1
F (Ti)

f(x∗) = x∗.
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Abstract. We introduce a generalized cubic functional equation with an au-

tomorphism and investigate the generalized stability of the cubic functions as

solutions to the generalized cubic functional equation on a quasi-β Banach

space by the fixed point of the alternative method.
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1. Introduction

In a talk before the Mathematics Club of the University of Wisconsin in 1940,

a Polish-American mathematician, S. M. Ulam [25] proposed the stability problem

of the linear functional equation f(x+ y) = f(x) + f(y) where any solution f(x) of

this equation is called a linear function.

To make the statement of the problem precise, let G1 be a group and G2 a metric

group with the metric d(·, ·). Then given ε > 0, does there exist a δ > 0 such that

if a function f : G1 −→ G2 satisfies the inequality d(f(xy), f(x)f(y)) < δ for all

x, y ∈ G1, then there is a homomorphism F : G1 −→ G2 with d(f(x), F (x)) < ε

for all x ∈ G1?. In other words, the question would be generalized as “Under what

conditions a mathematical object satisfying a certain property approximately must

2000 Mathematics Subject Classification. 39B52.
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2 GENERALIZED STABILITY OF CUBIC FUNCTIONAL EQUATIONS

be close to an object satisfying the property exactly?”.

In 1941, the first, affirmative, and partial solution to Ulam’s question was provided

by D. H. Hyers [10]. In his celebrated theorem Hyers explicitly constructed the

linear function (or additive function) in Banach spaces directly from a given ap-

proximate function satisfying the well-known weak Hyers inequality with a positive

constant. The Hyers stability result was first generalized in the stability of additive

mappings by Aoki [1] allowing the Cauchy difference to become unbounded. In 1978

Th. M. Rassias [16] also provided a generalization of Hyers’ theorem with the possi-

bly unbounded Cauchy difference for linear mappings. For the last decades, stability

problems of various functional equations, not only linear case, have been extensively

investigated and generalized by many mathematicians (see [4, 7, 9, 11, 17, 20, 21]).

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation and every solution of this functional equa-

tion is said to be a quadratic function or mapping (e.g. f(x) = cx2). The Hyers-

Ulam stability problem for the quadratic functional equation was first studied by

Skof [23] in a normed space as the domain of a quadracitc mapping of the equa-

tion. Cholewa [6] noticed that the results of Skof still hold in abelian groups. In

[7] Czerwik obtained the Hyers-Ulam-Rassias stability (or generalized Hyers-Ulam

stability) of the quadratic functional equation. See [2, 15, 27] for more results on

the equation (1.1). Also the quadratic equation (1.1) was generalized by Stetkær

in [24] introducing an involution σ of an abelian group G, i.e., an automorphism

σ : G → G with σ2 = I (I denotes the identity) and considering the following

functional equation

(1.2) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y)

for all x, y ∈ G. As we already notice the equation (1.1) corresponds to the equation

(1.2) with σ = −I.

Jun and Kim [11] considered the following cubic functional equation

(1.3) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)
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since it should be easy to see that a function f(x) = cx3 is a solution of the equation

(1.3) as the quadratic equation case. In a year they [12] proved the generalized

Hyers-Ulam stability of a different version of a cubic functional equation

(1.4) f(x+ 2y) + f(x− 2y) + 6f(x) = f(x+ y) + 4f(x− y).

Since then the stability of cubic functional equations has been investigated by a

number of authors (see [5, 14] for details). In particular, Najati [14] investigated

the following generalized cubic functional equation

(1.5) f(sx+ y) + f(sx− y) = sf(x+ y) + sf(x− y) + 2(s3 − s)f(x)

for a positive integer s ≥ 2.

As we might notice there are various definitions for the stability of the cubic

functional equations and here we consider the following definition of a generalized

cubic functional equation

(1.6)
f(ax+ y)− f(x+ ay) + a(a− 1)f(x− y)

= (a− 1)(a+ 1)2f(x)− (a− 1)(a+ 1)2f(y)

for all a ∈ Z (a 6= 0,±1) and generalized the equation (1.6) with the involution σ

of a linear space X when a = 2;

(1.7) f(2x+ y)− f(x+ 2y) + 2f(x+ σ(y))− 9f(x) + 9f(y) = 0.

In this paper we will study the generalized Hyers-Ulam stability problem of the

equation (1.7).

In order to give our results in Section 3 it is convenient to state the definition

of a generalized metric on a set X and a result on a fixed point theorem of the

alternative by Diaz and Margolis [8].

Let X be a set. A function d : X ×X −→ [0,∞] is called a generalized metric on

X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1. Let (X, d) be a complete generalized metric space and let J : X −→

X be a strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for
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4 GENERALIZED STABILITY OF CUBIC FUNCTIONAL EQUATIONS

each element x ∈ X, either d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or

there exists a positive n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};

(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y .

In 2009, Rassias and Kim [18] investigated the Hyers-Ulam stability of Cauchy

and Jensen type additive mappings in quasi-β-normed spaces with the following

definition of a quasi-β-norm:

Definition 1.2. Let β be a real number with 0 < β ≤ 1 and K be either R or

C. Let X be a linear space over a field K. A quasi-β-norm || · || is a real-valued

function on X satisfying the following properties:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0

(2) ||λx|| = |λ|β ||x|| for all λ ∈ K and all x ∈ X

(3) There is a constant K ≥ 1 such that ||x + y|| ≤ K(||x|| + ||y||) for all

x, y ∈ X.

The pair (X, || · ||) is called a quasi-β-normed space if || · || is a quasi-β-norm on

X. A smallest possible constant K is called the modulus of concavity of || · ||. A

quasi-β-Banach space is a complete quasi-β-normed space. A quasi-β-norm || · || is

called a (β, p)-norm (0 < p ≤ 1) if the property (3) of the Definition 1.2 takes the

form ||x+ y||p ≤ ||x||p + ||y||p for all x, y ∈ X. In this case, a quasi-β-Banach space

is referred to as a (β, p)-Banach space; see [3, 18, 19] for datails.

In this paper, using the Fixed Point method we prove the generalized Hyers-Ulam

stability of the generalized cubic functional equation (1.7) in a quasi-β-normed

linear space we just defined above (Definition 1.2). In Section 2 we establish the

general solution of the cubic functional equation (1.7) applying the symmetric n-

additive mappings for the cubic functional equation (1.7) that will be explained in

detail in the Section. Finally, we obtain, in Section 3, the generalized Hyers-Ulam

stability of the generalized cubic functional equation (1.7) with the Fixed Point

theorem of the Alternative.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

238 DONGSEUNG KANG ET AL 235-246



DONGSEUNG KANG AND HOEWOON B. KIM 5

2. The General Solution with σ = −I

In this section we study the general solution of the cubic functional equation

(1.7) with σ = −I by introducing and applying n-additive symmetric mappings

and their properties that are found in [22, 26]. Before we proceed, let us give

some basic backgrounds of n-additive symmetric mappings. Let X and Y be real

vector spaces and n a positive integer. A function An : Xn −→ Y is called n-

additive if it is additive in each of its variables. A function An : Xn −→ Y is

said to be symmetric if An(x1, x2, · · · , xn) = An(xσ(1), xσ(2), · · · , xσ(n)) for every

permutation {σ(1), σ(2), · · · , σ(n)} of {1, 2, · · · , n}. If An(x1, x2, · · · , xn) is an n-

additive symmetric map, then An(x) will denote the diagonal An(x, x, · · · , x) and

An(rx) = rnAn(x) for all x ∈ X and r ∈ Q. Such a function An(x) will be called

a monomial function of degree n assuming An(x) 6≡ 0. Moreover, the resulting

function after substituting x1 = x2 = · · · = xs = x and xs+1, xs+2, · · · = xn = y in

An(x1, x2, · · · , xn) will be denoted by As,n−s(x, y).

Theorem 2.1. A function f : X −→ Y is a solution of the functional equation

(1.7) with σ = −I if and only if f is of the form f(x) = A3(x) for all x ∈ X, where

A3(x) is the diagonal of the 3-additive symmetric mapping A3 : X3 −→ Y .

Proof. Assume that f satisfies the functional equation (1.7). Taking x = y = 0 in

the equation (1.7) it’s not hard to have f(0) = 0 since σ(0) = 0. Substituting y = 0

in (1.7) also gives

f(2x)− f(x) + 2f(x)− 9f(x) = 0,

that is,

(2.1) f(2x) = 23f(x)

for all x ∈ X. Similarly, when x = 0 in the equation (1.7) we have

2f(y) + 2f(σ(y)) = 0,

i.e.,

(2.2) f(y) + f(−y)) = 0

for all y ∈ X since σ(y) = −y. This observation leads us to f(−y) = −f(y) for all

y ∈ X and hence f is an odd function. Rewriting the equation (1.7) as
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(2.3) f(x)− 1

9
f(2x+ y) +

1

9
f(x+ 2y)− 2

9
f(x− y)− f(y) = 0

and applying Theorems 3.5 and 3.6 in [26] we express f as

(2.4) f(x) = A3(x) +A2(x) +A1(x) +A0

where A0 is an arbitrary element in Y and Ai(x) is the diagonal of the i-additive

symmetric mapping Ai : Xi −→ Y for i = 1, 2, 3. Since f is odd and f(0) = 0 it

follows that

f(x) = A3(x) +A1(x)

for all x ∈ X. By the property (2.1) of f and An(rx) = rnAn(x) for all x ∈ X

and r ∈ Q we should obtain A1(x) = 0 for all x ∈ X. Therefore we conclude that

f(x) = A3(x) for all x ∈ X.

Conversely, let us assume that f(x) = A3(x) for all x ∈ X, where A3(x) is the

diagonal of a 3-additive symmetric mapping A3 : X3 −→ Y . Noting that

A3(qx+ ry) = q3A3(x) + 3q2rA2,1(x, y) + 3qr2A1,2(x, y) + r3A3(y)

and calculating simple computation for the equation (1.7) with σ = −I in term of

A3(x), we show that the function f satisfies the cubic equation (1.7) with σ = −I,

which completes the proof. �

3. General Hyers-Ulam Stability in a Quasi-β Banach Space: A Fixed

Point Theorem of the Alternative Approach

In this section we will investigate the generalized Hyers-Ulam stability of the cubic

functional equation (1.7) which is introduced earlier in previous sections

f(2x+ y)− f(x+ 2y) + 2f(x+ σ(y))− 9f(x) + 9f(y) = 0.

for all x, y ∈ X by the approach of the fixed point of the alternative. As we used

the notations in the previous sections we assume that X is a vector space and

(Y, || · ||) is a quasi-β-Banach space in this section. A set R+ denotes the set of all

nonnegative real numbers.
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Theorem 3.1. Suppose that a function φ : X2 −→ R+ is given and there exists a

constant L with 0 < L < 1 such that

(3.1) φ(2x, 2y) ≤ 2Lφ(x, y) and φ(x+ σ(x), y + σ(y)) ≤ 2Lφ(x, y)

for all x, y ∈ X. Furthermore, let f : X −→ Y be a mapping such that f(0) = 0

and

(3.2) ||f(2x+ y)− f(x+ 2y) + 2f(x+ σ(y))− 9f(x) + 9f(y)|| ≤ φ(x, y)

for all x, y ∈ X where σ is an automorphism on X with σ2 = I where I is the

identity.

Then there exists the unique generalized cubic function C : X −→ Y defined by

C(x) := limn→∞

(
1

23n

)
(f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x))) such that

(3.3) ||f(x)− C(x)|| ≤
(

1 + L

23(1− L)

)
Φ(x)

for all x ∈ X where Φ(x) = max{φ(x, 0), φ(0, x)} for all x ∈ X.

Proof. First, we put y = 0 in the inequality (3.2) to obtain

(3.4) ||f(2x)− 23f(x)|| ≤ φ(x, 0)

for x ∈ X since σ(0) = 0. Similarly we substitute x = 0 into the inequality (3.2)

again to have

(3.5) ||10f(y)− f(2y) + 2f(σ(y))|| ≤ φ(0, y)

for all y ∈ X. Combining the two inequalities (3.4) and (3.5) we note that

||2f(x) + 2f(σ(x))|| = ||10f(x)− f(2x) + 2f(σ(x)) + f(2x)− 23f(x)||

≤ φ(x, 0) + φ(0, x)

and hence we conclude that

(3.6) ||f(x) + f(σ(x))|| ≤ 1

2
(φ(x, 0) + φ(0, x))

Then we let x = x+ σ(x) in the above inequality (3.6) and we are able to get

(3.7) ||f(x+ σ(x))|| ≤ 1

4
(φ(x+ σ(x), 0) + φ(0, x+ σ(x))) ≤ L

2
(φ(x, 0) + φ(0, x))
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We also define a function T (f) from X to Y by T (f)(x) =
1

23
(f(2x) + f(x+σ(x)))

and we then consider the following estimation

(3.8)

||T (f)(x)− f(x)|| =
∥∥∥∥ 1

23
(f(2x) + f(x+ σ(x)))− f(x)

∥∥∥∥
=

∥∥∥∥ 1

23
(f(2x)− 23f(x)) +

1

23
f(x+ σ(x))

∥∥∥∥
≤ 1

23
φ(x, 0) +

1

23

(
L

2

)
(φ(x, 0) + φ(0, x))

≤ 1

23
(1 + L)Φ(x)

This idea enables us to define a sequence {Tn(f)} in Y for each x ∈ X by

Tn(f)(x) =
1

23n
(f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x)))

for a nonnegative integer n with T 0(f) = f and we claim that it should be a Cauchy

sequence in Y . In order to show this we use the inequalities (3.4), (3.7), and (3.8)

to compute the following estimations;

(3.9)

||Tn(f)(x)− Tn−1(f)(x)|| = || 1

23n
(f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x)))

− 1

23(n−1)
(f(2n−1x) + (2n−1 − 1)f(2n−2x+ 2n−2σ(x)))||

= || 1

23n
(f(2nx) + f(2n−1x+ 2n−1σ(x)) + (2n − 2)f(2n−1x+ 2n−1σ(x)))

− 1

23(n−1)
(f(2n−1x) + (2n−1 − 1)f(2n−2x+ 2n−2σ(x)))||

= || 1

23n
(f(2nx) + f(2n−1x+ 2n−1σ(x))− 23f(2n−1x))

+
1

23n
((2n − 2)f(2n−1x+ 2n−1σ(x))− 22(2n − 2)f(2n−2x+ 2n−2σ(x)))||

= || 1

23n
(f(2nx) + f(2n−1x+ 2n−1σ(x))− 23f(2n−1x))

+
1

2

(
2n − 2

23n

)
(2f(2n−1x+ 2n−1σ(x))− 23f(2n−2x+ 2n−2σ(x)))||

≤ 1

23n
(φ(2n−1x, 0) +

L

2
(φ(2n−1x, 0) + φ(0, 2n−1x)))

+

(
1

2

(
2n − 2

23n

))(
φ(2n−2x+ 2n−2σ(x), 0) +

L

2
(φ(2n−2x+ 2n−2σ(x), 0) + φ(0, 2n−2x+ 2n−2σ(x)))

)
≤ (2L)n−1

23n
(1 + L)Φ(x) +

2n−1 − 1

23n
(2L)n−1(1 + L)Φ(x) =

1

23
(1 + L)

(
L

2

)n−1
Φ(x)
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for all x ∈ X and all nonnegative integer n. Hence we note that

(3.10) ‖Tn(f)(x)− Tm(f)(x)‖ ≤ 1 + L

23

n−1∑
j=m

(
L

2

)j
Φ(x)

for all x ∈ X and n > m ∈ N.

With this result in mind we consider the set Ω = {g|g : X −→ Y, g(0) = 0} and

then define a generalized metric d on Ω as follows:

d(g, h) = inf {λ ∈ [0,∞] : ‖g(x)− h(x)‖ ≤ λΦ(x) for allx ∈ X}

with inf ∅ =∞. Then (S, d) is a complete generalized metric space; see Lemma 2.1

in [13]. Now we define a mapping T : Ω −→ Ω by

(3.11) T (g)(x) =
1

23
(g(2x) + g(x+ σ(x)))

for all x ∈ X. We, then, will show that T is strictly contractive on Ω.

Given g, h ∈ Ω, let λ ∈ [0,∞] be a constant with d(g, h) ≤ λ. Then we have

‖g(x)− h(x)‖ ≤ λΦ(x) for all x ∈ X.

By the equation (3.1) we have

‖T (g)(x)− T (h)(x)‖ =
1

23
‖g(2x)− h(2x) + g(x+ σ(x))− h(x+ σ(x))‖

≤ 1

23
‖g(2x)− h(2x)‖+

1

23
‖g(x+ σ(x))− h(x+ σ(x))‖

≤ λ

23
Φ(2x) +

λ

23
Φ(x+ σ(x)) ≤ 1

2
Lλ ≤ Lλ

for all x ∈ G, which implies

d(T (g), T (h)) ≤ Lλ.

Therefore we may conclude that

d(T (g), T (h)) ≤ Ld(g, h)

for any g, h ∈ Ω. Since L is a constant with 0 < L < 1, T is strictly contractive as

claimed.

Also the inequality (3.8) implies that

(3.12) d(T (f), f) ≤ 1

23
(1 + L) <∞.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

243 DONGSEUNG KANG ET AL 235-246



10 GENERALIZED STABILITY OF CUBIC FUNCTIONAL EQUATIONS

By the Alternative of Fixed Point as we introduced in the Introduction Section,

there exists a mapping C : X −→ Y which is a fixed point of T such that

d(Tn(f), C)→ 0 as n→∞, that is,

C(x) = lim
n→∞

Tn(f)(x)

for all x ∈ X. Then we will show that C is cubic and it would not be hard if we

recall the approximation inequality (3.2) for f where we let x = 2nx, y = 2ny and

x = 2n−1(x+ σ(x)), y = 2n−1(y + σ(y)), respectably, as follows;

‖C(2x+ y)− C(x+ 2y) + 2C(x+ σ(y))− 9C(x) + 9C(y)‖

≤ lim
n→∞

1

23n
φ(2nx, 2ny) + lim

n→∞

2n − 1

23n
φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))

≤ lim
n→∞

(2L)n

23n
φ(x, y) + lim

n→∞

(2n − 1)(2L)n

23n
φ(x, y)

= lim
n→∞

(
L

2

)n
φ(x, y) = 0

for all x, y ∈ X, which implies that C is cubic.

By the Alternative of Fixed Point theorem and the inequality (3.12) we get

d(f, C) ≤ 1

1− L
d(f, T (f)) ≤ 1 + L

23(1− L)
.

Hence the inequality (3.3) is true for all x ∈ X.

By the uniqueness of the fixed point of T , the cubic function C should be unique,

which completes the proof. �

Let us give the classical Cauchy difference type stability of the generalized cubic

functional equation (1.7) when σ = −I from Theorem 3.1 as we see the following

Corollary.

Corollary 3.2. Let ε ≥ 0, 0 < p <
1

β
be a real number. Suppose f : X −→ Y is a

function satisfying f(0) = 0 and

||f(2x+ y)− f(x+ 2y) + 2f(x− y)− 9f(x) + 9f(y)|| ≤ ε(||x||p + ||y||p)

for all x, y ∈ X. Then there exists the unique cubic function C : X −→ Y defined

by

C(x) = limn→∞

(
1

23n

)
f(2nx)
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satisfying

(3.13) ||f(x)− C(x)|| ≤
(
ε(1 + L)

23(1− L)

)
||x||p

for all x ∈ X.

Proof. This proof follows from Theorem 3.1 by taking φ(x, y) = ε(||x||p + ||y||p) for

all x, y ∈ X with L = |2|pβ−1.

�
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Two quotient BI-algebras induced by fuzzy normal subalgebras and
fuzzy congruence relations

Yinhua Cui1 and Sun Shin Ahn2,∗

1Department of Mathematics, Yanbian University, Yanji 133002, P. R. China
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Abstract. In this paper, we discuss two quotient BI-algebras induced by fuzzy normal subalgebras and induced

by fuzzy congruence relations, which are useful in the study of the structural theory of fuzzy quotient BI-algebras.

1. Introduction

Zadeh [14] introduced the notion of a fuzzy subset A of a set X as a function from X into [0, 1]. Rosenfeld

[11] applied this concept to the theory of groupoids and groups. Liu [7] introduced and studied the notion of the

fuzzy ideals of a ring. Mukherjee and Sen [9] defined and examined the fuzzy prime ideals of a ring. The concept

of fuzzy ideals was applied to several algebras: BN -algebras [2], BL-algebras [8], semirings [5] and semigroups

[3]. Recently, Song et al. [13] discussed positive implicative superior ideals induced by superior mappings in

BCK-algebras.

Saeid et al. [12] introduced a new algebra, called a BI-algebra, which is a generalization of a (dual) implication

algebra, and they discussed ideals and congruence relations. Ahn et al. [1] introduced the notion of normal

subalgebras in BI-algebras, and studied its analytic construction.

In this paper, we discuss two quotient BI-algebras induced by fuzzy normal subalgebras and induced by fuzzy

congruence relations, which are useful in the study of the structural theory of fuzzy quotient BI-algebras.

2. Preliminaries

We recall some definitions and results discussed in [12].

An algebra (X, ∗, 0) of type (2, 0) is called a BI-algebra [12] if

(B1) x ∗ x = 0 for all x ∈ X,

(B2) x ∗ (y ∗ x) = x for all x, y ∈ X.

We introduced a relation “≤” on a BI-algebra X by x ≤ y if and only if x ∗ y = 0. We note that the relation

“ ≤ ” is not a partial order, since it is only reflexive. A non-empty subset S of a BI-algebra X is said to be a

subalgebra of X if it is closed under the operation “ ∗ ”. Since x ∗ x = 0 for all x ∈ X, it is clear that 0 ∈ S.

0 2010 Mathematics Subject Classification: 08A72.
0 Keywords: BI-algebra; fuzzy (normal) subalgebra; fuzzy congruence relation.

∗ Correspondence: Tel: +82 2 2260 3410, Fax: +82 2 2266 3409 (S. S. Ahn).
0E-mail: cuiyh@ybu.edu.cn (Y. Cui); sunshine@dongguk.edu (S. S. Ahn).
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Definition 2.1. Let (X, ∗, 0) be a BI-algebra and let I be a non-empty subset of X. Then I is called an ideal

[12] of X if

(I1) 0 ∈ I,

(I2) x ∗ y ∈ I and y ∈ I imply x ∈ I

for any x, y ∈ X. Obviously, {0} and X are ideals of X. We call {0} and X a zero ideal and a trivial ideal,

respectively. An ideal I is said to be proper if I ̸= X.

Example 2.2. Let X := {0, a, b, c} be a BI-algebra [12] with the following table:

∗ 0 a b c

0 0 0 0 0

a a 0 a b

b b b 0 b

c c b c 0

Then it is easy to check that I1 := {0, a, c} is an ideal of X, but I2 := {0, a, b} is not an ideal of X, since

c ∗ a = b ∈ I2 and a ∈ I2, but c ̸∈ I2.

Proposition 2.3. [12] Let I be an ideal of a BI-algebra X. If y ∈ I and x ≤ y, then x ∈ I.

Proposition 2.4. [12] Let X be a BI-algebra. Then

(i) x ∗ 0 = x,

(ii) 0 ∗ x = 0,

(iii) x ∗ y = (x ∗ y) ∗ y,
(iv) if y ∗ x = x, then X = {0},
(v) if x ∗ (y ∗ z) = y ∗ (x ∗ z), then X = {0},
(vi) if x ∗ y = z, then z ∗ y = z and y ∗ z = y,

(vii) if (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u), then X = {0},

for all x, y, z, u ∈ X.

Definition 2.5. A non-empty subset N of a BI-algebra X is said to be normal (or a normal subalgebra) [1] if

(x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y, a ∗ b ∈ N .

Definition 2.6. A BI-algebra X is called a BI1-algebra [1] if x ∗ y = 0 = y ∗ x implies x = y for all x, y ∈ X.

3. Quotient BI-algebras induced by fuzzy normal subalgebras

Definition 3.1. A fuzzy set µ in a BI-algebra X is called a fuzzy subalgebra of X if for any x, y ∈ X,

(F0) µ(x ∗ y) ≥ min{µ(x), µ(y)}.

Example 3.2. Let X := {0, a, b, c} be a BI-algebra [12] with the following table:
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∗ 0 a b c

0 0 0 0 0

a a 0 0 0

b b 0 0 b

c c 0 c 0

Define a fuzzy set µ : X → [0, 1] by µ(0) > µ(a) = µ(b) > µ(c). Then µ is a fuzzy subalgebra of X.

Proposition 3.3. Let µ be a fuzzy subalgebra of a BI-algebra X. Then µ(0) ≥ µ(x) for all x ∈ X.

Proof. By (B1), we have x ∗ x = 0 for all x ∈ X. Using (F0), µ(0) = µ(x ∗ x) ≥ min{µ(x), µ(x)} = µ(x) for all

x ∈ X. □

We denote a notation
∏n

x ∗ x by
∏n

x ∗ x := x ∗ (x ∗ (x ∗ (· · · ∗ (x ∗ x︸ ︷︷ ︸
n

)) · · · ) for any natural number n.

Proposition 3.4. Let µ be a fuzzy subalgebra of a BI-algebra X and let n ∈ N. Then

(i) µ(
∏n

x ∗ x) ≥ µ(x) whenever n is odd,

(ii) µ(
∏n

x ∗ x) = µ(x) whenever n is even.

Proof. Let x ∈ X and n be an odd natural number. Then n = 2k − 1 for some positive integer k. Then

µ(
∏2(k+1)−1

x ∗ x) = µ(
∏2k+1

x ∗ x) = µ(
∏2k−1

x ∗ (x ∗ (x ∗ x))) = µ(
∏2k−1

x ∗ x) ≥ µ(x) which proves (i).

Similarly we can prove the second part, but we omit it. □

Definition 3.5. A fuzzy set µ in a BI-algebra X is said to be fuzzy normal if it satisfies the inequality

µ((x ∗ a) ∗ (y ∗ b)) ≥ min{µ(x ∗ y), µ(a ∗ b)}

for all a, b, x, y ∈X.

Example 3.6. Let X := {0, 1, 2, 3} be a BI-algebra [1] set with the following table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 1

2 2 2 0 2

3 3 3 3 0

Define a fuzzy set µ : X → [0, 1] by µ(0) > µ(1) > µ(2) = µ(3). Then it easy to see that µ is fuzzy normal of X.

Theorem 3.7 Every fuzzy normal set µ in a BI-algebra X is a fuzzy subalgebra of X.

Proof. Let x, y ∈ X. Since µ is fuzzy normal, we have µ(x ∗ y) = µ((x ∗ y) ∗ (0 ∗ 0)) ≥ min{µ(x ∗ 0), µ(y ∗ 0)} =

min{µ(x), µ(y)}, which shows that µ is a fuzzy subalgebra of X. □

The converse of Theorem 3.7 may not be true in general.

Example 3.8. Consider a BI-algebra X = {0, a, b, c} and a fuzzy set µ as in Example 3.2. Then µ is a fuzzy

subalgebra of X, but not fuzzy normal, since µ((c ∗ b) ∗ (c ∗ c)) = µ(c) ≱ µ(b) = min{µ(c ∗ c), µ(b ∗ c)}.
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Definition 3.9. A fuzzy set µ in a BI-algebra X is called a fuzzy normal subalgebra of X if it is both a fuzzy

subalgebra and a fuzzy normal subset of X.

Example 3.10. Consider a BI-algebra X = {0, 1, 2, 3} as in Example 3.6. Define a fuzzy set ν : X → [0, 1] by

ν(x) :=

{
0.7 if x ∈ {0, 1},
0.3 if x ∈ {2, 3}.

It is easy to show that ν is a fuzzy normal subalgebra of X.

Proposition 3.11. If a fuzzy set µ in a BI-algebra X is fuzzy normal, then µ(x ∗ y) = µ(y ∗ x) for all x, y ∈ X.

Proof. Let x, y ∈ X. Using Proposition 3.3, we have µ(x∗y) = µ((x∗y)∗(x∗x)) ≥ min{µ(x∗x), µ(y∗x)} = µ(y∗x).
Interchanging x with y, we obtain µ(y ∗ x) ≥ µ(x ∗ y), which proves the proposition. □

Theorem 3.12. Let µ be a fuzzy normal BI-algebra X. Then the set

Xµ := {x ∈ X|µ(x) = µ(0)}

is a normal subalgebra of X.

Proof. Let a, b, x, y ∈ X be such that x ∗ y ∈ Xµ and a ∗ b ∈ Xµ. Then µ(x ∗ y) = µ(0) = µ(a ∗ b). Since µ is

fuzzy normal, we have µ((x ∗ a) ∗ (y ∗ b)) ≥ min{µ(x ∗ y), µ(a ∗ b)} = µ(0). It follows from Proposition 3.3 that

µ((x ∗ a) ∗ (y ∗ b)) = µ(0). Hence (x ∗ a) ∗ (y ∗ b) ∈ Xµ. This completes the proof. □

Theorem 3.13. The intersection of a family of fuzzy normal subalgebras of a BI-algebra X is also a fuzzy normal

subalgebra of X.

Proof. Let {µα|α ∈ Λ} be a family of fuzzy normal subalgebras and let a, b, x, y ∈ X. Then

∩α∈Λµα((x ∗ a) ∗ (y ∗ b)) = inf
α∈Λ

µα((x ∗ a) ∗ (y ∗ b))

≥ inf
α∈Λ

{min{µα(x ∗ y), µα(a ∗ b)}}

=min{ inf
α∈Λ

µα(x ∗ y), inf
α∈Λ

µα(a ∗ b)}

=min{∩α∈Λµα(x ∗ y),∩α∈Λµα(a ∗ b)}

which shows that ∩α∈Λµα is fuzzy normal of X. By Proposition 3.7, we know that ∩α∈Λµα is a fuzzy normal

subalgebra of X. □

Suppose that µ is a fuzzy normal subalgebra of a BI-algebra X. Define a binary relation “ ∼µ ” on X by

putting x ∼µ y if and only if µ(x ∗ y) = µ(0) for any x, y ∈ X.

Lemma 3.14. The relation ∼µ is an equivalence relation on a BI-algebra X.

Proof. Using (B1), µ(x ∗ x) = µ(0) and so x ∼µ x, which means ∼µ is reflexive. Suppose that x ∼µ y for any

x, y ∈ X. Then µ(0) = µ(x ∗ y). By Proposition 3.11, µ(y ∗ x) = µ(0). So y ∼µ x, which means ∼µ is symmetric.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

250 Yinhua Cui ET AL 247-255



Two quotient BI-algebras

Suppose that x ∼µ y and y ∼µ z for any x, y, z ∈ X. Then µ(x ∗ y) = µ(0), µ(y ∗ z) = µ(0) = µ(z ∗ y) and

µ(x ∗ z) =µ((x ∗ z) ∗ 0) = µ((x ∗ z) ∗ (y ∗ y))

≥min{µ(x ∗ y), µ(z ∗ y)}

=min{µ(0), µ(0)} = µ(0).

Also since µ(0) ≥ µ(x) for all x ∈ X, µ(0) ≥ µ(x ∗ z) and so µ(x ∗ z) = µ(0). Hence x ∼µ z. Therefore ∼µ is an

equivalence relation on a BI-algebra X. □

Lemma 3.15. For all x, y, z in a BI-algebra X, x ∼µ y implies x ∗ z ∼µ y ∗ z and z ∗ x ∼µ z ∗ y.

Proof. Let x ∼µ y. Then µ(x ∗ y) = µ(0). Since x ∗ x = 0 and µ(0) ≥ µ(x) for all x ∈ X, we have

µ((x ∗ z) ∗ (y ∗ z)) ≥min{µ(x ∗ y), µ(z ∗ z)}

=min{µ(0), µ(0)} = µ(0).

Since µ(0) ≥ µ(x) for all x ∈ X, µ(0) ≥ µ((x ∗ z) ∗ (y ∗ z)). Therefore µ(0) = µ((x ∗ z) ∗ (y ∗ z)), so x ∗ z ∼µ y ∗ z.
By a similar way, we can prove that z ∗ x ∼µ z ∗ y. The proof is complete. □

Lemma 3.16. Let X be a BI-algebra. For any x, y, z, w ∈ X, x ∼µ y and z ∼µ w imply x ∗ z ∼µ y ∗ w.

Proof. Let x ∼µ y and z ∼µ w for any x, y, z, w ∈ X. Then µ(x ∗ y) = µ(0) and µ(z ∗ w) = µ(0). Hence

µ((x ∗ z) ∗ (y ∗ w)) ≥ min{µ(x ∗ y), µ(z ∗ w)} = min{µ(0), µ(0)} = µ(0). Since µ(0) ≥ µ(x) for all x ∈ X,

µ(0) ≥ µ((x ∗ z) ∗ (y ∗ w)). Thus µ(0) = µ((x ∗ z) ∗ (y ∗ w)), so x ∗ z ∼µ y ∗ w. The proof is complete. □

The above Lemmas 3.14, 3.15 and 3.16 give the following theorem.

Theorem 3.17. The relation “ ∼µ ” is a congruence relation on a BI-algebra X.

Denote by µx the equivalence class containing x, and let X/µ be the set of all equivalence classes with respect

to ∼µ, that is, µx = {y ∈ X|y ∼µ x} and X/µ = {µx|x ∈ X}. Now we define a binary operation “ ∗ ” in X/µ by

putting µx ∗ µy := µx∗y. Theorem 3.17 guarantees that this operation is well defined.

Theorem 3.18. Let µ be a fuzzy normal subalgebra in a BI1-algebra X. Then (X/µ, ∗, µ0) is a BI1-algebra.

Proof. Let µx, µy, µz ∈ X/µ. Then µx ∗ µx = µx∗x = µ0 and µx = µx∗(y∗x) = µx ∗ µy∗x = µx ∗ (µy ∗ µx). If

µx ∗ µy = µ0 and µy ∗ µx = µ0, then µx∗y = µ0 = µy∗x and so x ∗ y = 0 = y ∗ x. Hence x = y and therefore

µx = µy. Thus (X/µ, ∗, µ0) is a BI1-algebra. □

Corollary 3.19. Let µ be a fuzzy normal subalgebra in a BI-algebra. Then (X/µ; ∗, µ0) is a BI-algebra.

This algebra X/µ is called the quotient BI-algebra of a BI-algebra X induced by a fuzzy normal subalgebra µ.

If µ is a fuzzy normal subalgebra in a BI-algebra X, then the set Xµ := {x ∈ X|µ(x) = µ(0)} is a normal

subalgebra of X.

Theorem 3.20. Let µ be a fuzzy normal subalgebra of a BI-algebra X. The mapping γ : X → X/µ, given by

γ(x) = µx, is a surjective homomorphism, and kerγ = {x ∈ X|γ(x) = µ0} = Xµ.
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Proof. Let µx ∈ X/µ. Then there exists an element x0 ∈ µx, so x0 ∈ X such that γ(x0) = µx. Hence γ is

surjective. For any x, y ∈ X, γ(x ∗ y) = µx∗y = µx ∗ µy = γ(x) ∗ γ(y). Thus γ is a homomorphism. And

kerγ = {x ∈ X|γ(x) = µ0} = {x ∈ X|x ∼µ 0} = {x ∈ X|µ(x) = µ(0)} = Xµ. □

Let X,Y be BI-algebras. If we define (x1, y1) ∗ (x2, y2) := (x1 ∗ x2, y1 ∗ y2) in X × Y , then (X × Y, ∗, (0, 0))
becomes a BI-algebra, and we call it a product BI-algebra.

Theorem 3.21. Let µ (resp., ν) be a fuzzy normal subalgebra in a BI-algebra X (resp., Y ). If we define

(µ×ν)(x, y) := min{µ(x), ν(x)} in X×Y for x ∈ X, y ∈ Y , then µ×ν is also a fuzzy normal subalgebra in X×Y .

Proof. Let µ (resp., ν) be a fuzzy normal subalgebra in X (resp., Y ). Then

(µ× ν)((x1, y1)∗(x2, y2)) = (µ× ν)(x1 ∗ x2, y1 ∗ y2)

=min{µ(x1 ∗ x2), ν(y1 ∗ y2)}

≥min{min{µ(x1), µ(x2)},min{ν(y1), ν(y2)}}

=min{min{µ(x1), ν(y1)},min{µ(x2), ν(y2)}}

=min{(µ× ν)(x1, y1), (µ× ν)(x2, y2)}

for any (x1, y1), (x2, y2) ∈ X × Y . Hence µ× ν is a fuzzy subalgebra of X × Y . And

(µ× ν)(((x1, y1) ∗ (a1, b1)) ∗ ((x2, y2) ∗ (a2, b2)))

=(µ× ν)((x1 ∗ a1, y1 ∗ b1) ∗ (x2 ∗ a2, y2 ∗ b2))

=(µ× ν)((x1 ∗ a1) ∗ (x2 ∗ a2), (y1 ∗ b1) ∗ (y2 ∗ b2))

=min{µ((x1 ∗ a1) ∗ (x2 ∗ a2)), ν((y1 ∗ b1) ∗ (y2 ∗ b2))}

≥min{min{µ(x1 ∗ x2), µ(a1 ∗ a2)},min{ν(y1 ∗ y2), ν(b1 ∗ b2)}}

=min{min{µ(x1 ∗ x2), ν(y1 ∗ y2)},min{µ(a1 ∗ a2), ν(b1 ∗ b2)}}

=min{(µ× ν)((x1 ∗ x2), (y1 ∗ y2)), (µ× ν)((a1 ∗ a2), (b1 ∗ b2))}

=min{(µ× ν)((x1, y1) ∗ (x2, y2)), (µ× ν)((a1, b1) ∗ (a2, b2))}.

So µ× ν is fuzzy normal. Therefore µ× ν is also a fuzzy normal subalgebra of X × Y . □

Proposition 3.22. Let µ be a fuzzy normal subalgebra of a BI-algebra X. If J is a normal subalgebra of X,

then J/µ is a normal subalgebra of X/µ.

Proof. Let µ be a fuzzy normal subalgebra of X and J be a normal subalgebra of X. Then for any x, y ∈ J ,

x ∗ y ∈ J . Let µx, µy ∈ J/µ. Then µx ∗ µy = µx∗y ∈ J/µ. So J/µ = {µx|x ∈ J} is a subalgebra of X/µ. For any

x ∗ y, a ∗ b ∈ J , (x ∗ a) ∗ (y ∗ b) ∈ J . For any µx ∗ µy, µa ∗ µb ∈ J/µ, we have

(µx ∗ µa) ∗ (µy ∗ µb) =µx∗a ∗ µy∗b

=µ(x∗a)∗(y∗b) ∈ J/µ.

Hence J/µ is a normal subalgebra of X/µ. □

Theorem 3.23. If J∗ is a normal subalgebra ofX/µ, then there exists a normal subalgebra J = ∪{x ∈ X|µx ∈ J∗}
in X such that J/µ = J∗.
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Proof. Since J∗ is a normal subalgebra of X/µ, we have µx ∗µy = µx∗y ∈ J∗ for any µx, µy ∈ J∗. Hence x ∗ y ∈ J

for any x, y ∈ J . And µx∗a ∗ µy∗b = µ(x∗a)∗(y∗b) ∈ J∗ for any µx∗y, µa∗b ∈ J∗. Therefore (x ∗ a) ∗ (y ∗ b) ∈ J for

any x ∗ y, a ∗ b ∈ J . Thus J is a normal subalgebra of X. By Theorem 3.20,

J/µ ={µj |j ∈ J}

={µj |∃µx ∈ J∗ such that j ∼µ x}

={µj |∃µx ∈ J∗ such that µx = µj}

={µj |µj ∈ J∗} = J∗.

This completes the proof. □

4. Quotient BI-algebras induced by fuzzy congruence relations

Definition 4.1. [10] A binary operation θ from X × X → [0, 1] is a fuzzy equivalence relation on X if for all

x, y, z, u ∈ X

(FC1) θ(x, x) = sup{θ(y, z)|y, z ∈ X} = θ(0, 0),

(FC2) θ(x, y) = θ(y, x),

(FC3) θ(x, z) ≥ min{θ(x, y), θ(y, z)}.

Moreover, if it satisfies

(FC4) θ(x ∗ u, y ∗ u) ≥ θ(x, y), θ(u ∗ x, u ∗ y) ≥ θ(x, y)

for all x, y, u ∈ X, we say that θ is a fuzzy congruence relation on (X, ∗, 0).

Let FCo(X) be the set of all fuzzy congruence relations on a BI-algebra X.

Lemma 4.2. If θ satisfies the condition (FC2) ∼ (FC4) above, then (FC1) is equivalent to θ(0, 0) ≥ θ(x, y) for

all x, y ∈ X.

Proof. Suppose that θ(0, 0) = θ(x, x). By (FC2) and (FC3), we have θ(0, 0) = θ(x, x) ≥ min{θ(x, y), θ(y, x)} =

θ(x, y) for all x, y ∈ X.

Conversely, assume that θ(0, 0) ≥ θ(x, y) for all x, y ∈ X. It follows from (FC4) that θ(0, 0) ≤ θ(x ∗ 0, x ∗ 0) =
θ(x, x) By assumption, we have θ(0, 0) = θ(x, x). Hence (FC1) holds. □

Proposition 4.3. Let θ be a fuzzy congruence relation on a BI-algebra X. Then θ(x, y) = θ(x ∗ y, 0) for all

x, y ∈ X.

Proof. By (FC4) and Lemma 4.2, we have min{θ(x, y), θ(y, y)} = min{θ(x, y), θ(0, 0)} = θ(x, y) ≤ θ(x ∗ y, y ∗ y) =
θ(x ∗ y, 0) for all x, y ∈ X. On the other hand, θ(x ∗ y, 0) = θ(x ∗ y, x ∗x) ≥ θ(y, x). Hence θ(x, y) = θ(x ∗ y, 0) □

For every element x ∈ X, we define θx := {y ∈ X|θ(x, y) = θ(0, 0)} of X and X/θ := {θx|x ∈ X}. Define an

operation “ • ” on the set X/θ by

θx • θy := θx∗y.
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This operation is well defined. In fact, if θx = θx′ and θy = θy′ , then we have θ(x, x′) = θ(y, y′) = θ(0, 0). Since

θ(0, 0) = min{θ(x, x′), θ(y, y′)} ≤ θ(x ∗ y, x′ ∗ y′) ≤ θ(0, 0), we have θ(x ∗ y, x′ ∗ y′) = θ(0, 0) and so θx∗y = θx′∗y′ .

Hence • is well defined.

Theorem 4.4. If θ ∈ FCo(X), where X is a BI-algebra, then (X/θ, •, θ0) is a BI-algebra.

Proof. Straightforward. □

Proposition 4.5. Let f : X → Y be a homomorphism of BI-algebras. If θ is a fuzzy congruence relation of Y ,

then θ̄(x, y) := θ(f(x), f(y)) is a fuzzy congruence relation of X.

Proof. It is obvious that θ̄ is well-defined. Let x, y, z, u ∈ X. Then

(i) θ̄(x, x) = θ(f(x), f(x)) = θ(0, 0).

(ii) θ̄(x, y) = θ(f(x), f(y)) = θ(f(y), f(x)) = θ̄(y, x).

(iii) It can be shown that θ̄(x, z) = θ(f(x), f(z)) ≥ min{θ(f(x), f(y)), θ(f(y), f(z))} = min{θ̄(x, y), θ̄(y, z)}.
(iv) It can be shown that θ̄(x∗u, y∗u) = θ(f(x∗u), f(y∗u)) = θ(f(x)∗f(u), f(y)∗f(u)) ≥ θ(f(x), f(y)) = θ̄(x, y).

By a similar way, we have θ̄(u ∗ x, u ∗ y) ≥ θ̄(x, y). Thus θ̄ is a fuzzy congruence relation. □

Proposition 4.6. Let θ be a fuzzy congruence relation of a BI-algebra X. Then the mapping γ : X → X/θ,

given by γ(x) := θx, is a surjective homomorphism.

Proof. Let θx ∈ X/θ. Then there exists an element x0 ∈ θx such that γ(x0) = θx. Hence γ is surjective. For any

x, y ∈ X, γ(x ∗ y) = θx∗y = θx • θy = γ(x) • γ(y). Thus γ is a homomorphism. □

Theorem 4.7. Let f : (X, ∗, 0X) → (Y, ∗, 0Y ) be an epimorphism of BI1-algebras and let θ be a fuzzy congruence

relation of Y . If θ̄ = θ ◦ f , then the quotient algebra X/θ̄ := (X/(θ ◦ f), •X , θ̄0X ) is isomorphic to the quotient

algebra Y/θ := (Y/θ, •Y , θ0Y ).

Proof. By Theorem 4.4 and Proposition 4.5, X/(θ ◦ f) := (X/(θ ◦ f), •X , θ̄0X ) is a BI-algebra and Y/θ :=

(Y/θ, •Y , θ0Y ) is a BI-algebra. Define a map

η : X/(θ ◦ f) → Y/θ, (θ ◦ f)x 7→ θf(x)

for all x ∈ X. Then the function η is well-defined. In fact, assume that (θ ◦ f)x = (θ ◦ f)y for all x, y ∈ X.

Then we have θ(f(x) ∗Y f(y)) = θ(f(x ∗X y)) = (θ ◦ f)(x ∗X y) = (θ ◦ f)(0X) = θ(f(0X)) = θ(0Y ) and

θ(f(y) ∗Y f(x)) = θ(f(y ∗X x)) = (θ ◦ f)(y ∗X x) = (θ ◦ f)(0X) = θ(f(0X)) = θ(0Y ). Hence θf(x) = θf(y).

For any (θ ◦ f)x, (θ ◦ f)y ∈ X/(θ ◦ f), we have η((θ ◦ f)x •X (θ ◦ f)y) = η((θ ◦ f)x∗y) = θf(x∗Xy) = θf(x)∗Y f(y) =

θf(x) • θf(y) = η((θ ◦ fx)) •Y η((θ ◦ f)y). Therefore η is a homomorphism.

Let θa ∈ Y/θ. Then there exists x ∈ X such that f(x) = a, since f is surjective. Hence η((θ ◦ f)x) = θf(x) = θa

and so η is surjective.

Let x, y ∈ X be such that θf(x) = θf(y). Then we have (θ◦f)(x∗X y) = θ(f(x∗X y)) = θ(f(x)∗Y f(y)) = θ(0Y ) =

θ(f(0X)) = (θ ◦ f)(0X) and (θ ◦ f)(y ∗X x) = θ(f(y ∗X x)) = θ(f(y) ∗Y f(x)) = θ(0Y ) = θ(f(0X)) = (θ ◦ f)(0X).

It follows that (θ ◦ f)x = (θ ◦ f)y. Thus η is injective. This completes the proof. □
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The homomorphism π : X → X/θ, x → θx, is called the natural homomorphism of X onto X/θ. In Theorem

4.7, if we define natural homomorphisms πX : X → X/θ ◦ f and πY : Y → Y/θ, then it is easy to show that

η ◦ πX = πY ◦ f , i.e., the following diagram commutes.

X
f−−−−→ Y

πX

y πY

y
X/(θ ◦ f) η−−−−→ Y/θ.

The fuzzy subset θx of a BI-algebra X, which is defined by θx(y) := θ(x, y), is called the fuzzy congruence

class containing x and X/θ is the set of all fuzzy congruences classes θx.

Proposition 4.8. Let θ be a fuzzy congruence relation in a BI-algebra X. Then θ0 is a fuzzy ideal of X.

Proof. Let x, y ∈ X. Then θ0(0) = θ(0, 0) ≥ θ(x, y) by Lemma 4.2. Put y := 0 in above inequality. Then

θ0(0) ≥ θ(x, 0) = θ0(x). By (FC3), (FC2) and Proposition 5.3, we have θ0(y) = θ(0, y) ≥ min{θ(0, x), θ(x, y)} =

min{θ(x, 0), θ(x ∗ y, 0)} = min{θ0(x), θ0(x ∗ y)}. Thus θ0 is a fuzzy ideal of X. □
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Abstract. Let f : X → Y be a mapping where X is a quasi-α-normed space and Y is a quasi-β-normed space.
The following quadratic functional equation

n∑
i=1

f
( n∑

j=1
j 6=i

xj +
2− n

2
xi

)
=
n2

4

n∑
i=1

f(xi), (n ≥ 3) (0.1)

is introduced and solved by giving its general solution.
Moreover, we prove the Hyers-Ulam stability of the functional equation (0.1) by using a direct method.

1. Introduction and preliminaries

Studying functional equations by focusing on their approximate and exact solutions conduces to one of the

most substantial significant study brunches in functional equations, what we call “the theory of stability of

functional equations”. This theory specifically analyzes relationships between approximate and exact solutions

of functional equations. Actually a functional equation is considered to be stable if one can find an exact

solution for any approximate solution of that certain functional equation. Another related and close term in

this area is superstability, which has a similar nature and concept to the stability problem. As a matter of fact,

superstability for a given functional equation occurs when any approximate solution is an exact solution too. In

such this situation the functional equation is called superstable.

In 1940, the most preliminary form of stability problems was proposed by Ulam [35]. He gave a talk and

asked the following: “when and under what conditions does an exact solution of a functional equation near an

approximately solution of that exist?”

In 1941, this question that today is considered as the source of the stability theory, was formulated and solved

by Hyers [13] for the Cauchy’s functional equation in Banach spaces. Then the result of Hyers was generalized

by Aoki [1] for additive mappings and by Rassias [24] for linear mappings by considering an unbounded Cauchy

difference. In 1994, Găvruţa [12] provided a further generalization of Rassias’ theorem in which he replaced the

unbounded Cauchy difference by a general control function for the existence of a unique linear mapping. For

more epochal information and various aspects about the stability of functional equations theory, we refer the

reader to the monographs [10, 11, 14, 15, 18, 20, 25, 27, 29, 30, 31, 32, 33], which also include many interesting

results concerning the stability of different functional equations in many various spaces.

Now we present some brief explanations about the functional equation (0.1) and also generally about quadratic

functional equations. Consider the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

02010 Mathematics Subject Classification: 39B52, 39B72, 46Bxx, 39Bxx.
0Keywords: Hyers-Ulam stability; functional equation; quadratic functional equation; superstability; direct

method.
∗Corresponding authors.
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which is called the classic quadratic functional equation. Obviously, the function f(x) = cx2 is its solution and

so it is called quadratic. There are some other different types of quadratic functional equations. For examples,

the following n-dimensional quadratic functional equations

n∑
k=2

[ k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

f
( n∑

i=1
i6=i1,··· ,in−k+1

xi −
n−k+1∑
r=1

xir

)]

+f
( n∑
i=1

xi

)
= 2n−1

n∑
i=1

f(xi),

f
( n∑
i=1

xi

)
+

∑
1≤i<j≤n

f(xi − xj) = n

n∑
i=1

f(xi)

have been introduced in [9] and [3], respectively. These n-dimensional versions are generalized forms of (1.1),

but each in a different way.

In this paper, we introduce another n-dimensional version as follows:
n∑
i=1

f
( n∑

j=1
j 6=i

xj +
2− n

2
xi

)
=
n2

4

n∑
i=1

f(xi) (n ≥ 3), (1.2)

in which the simplest case (for n = 3) is the functional equation

f
(
x+ y − z

2

)
+ f

(
x+ z − y

2

)
+ f

(
y + z − x

2

)
=

9

4

[
f(x) + f(y) + f(z)

]
. (1.3)

Note that (1.2), for each fixed integer n ≥ 3, is symmetric with respect to any permutation of the variables.

In the next section, we will show that (1.2) is equivalent to (1.1). Nevertheless (1.2) is not a generalization

of (1.1), rather in fact it is a generalized form of (1.3).

The stability problem for the classic quadratic functional equation was first proved by F. Skof [34] and then

generalized by Cholewa [6], Czerwik [7, 8] and others [2, 4, 22, 23, 25, 26]. Many stability problems for some

other versions can be found in [3, 5, 16, 17, 19, 21].

Now we give briefly some useful definitions, preliminary and fundamental results of quasi-β-normed spaces.

Throughout this paper β will be a fixed real number with 0 < β ≤ 1 and K denotes either R or C.

Definition 1.1. ([28]) Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued function on X
satisfying the following conditions:

(C1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if only if x = 0;

(C2) ‖λ · x‖ = |λ|β · ‖x‖ for all λ ∈ K and all x ∈ X ;

(C3) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X .

The pair (X , ‖·‖) is called a quasi-β-normed space and the smallest possible K is called the modulus of concavity

of ‖ · ‖.

A complete quasi-β-normed space is a quasi-β-Banach space.

Definition 1.2. ([28]) Let 0 < p ≤ 1 be a real number. A quasi-β-normed space (X , ‖·‖) is called a (β, p)-normed

space if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X . In this case, a quasi-β-Banach space is called a (β, p)-Banach space.

2. The general solution

In this section, we give the general solution of the functional equation (0.1) by proving the fact that it is

equivalent to the functional equation (1.1), which implies that it is quadratic too.

First, we prove a useful lemma.
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Lemma 2.1. Let X and Y be linear spaces. If a mapping f : X → Y satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X , then

f(rx) = r2f(x)

for all x ∈ X and all r ∈ Q.

Proof. Let n ≥ 2 be a natural number. Replacing (x, y) by (0, 0), (0,−x) and (x, (n− 1)x) respectively, we get

f(0) = 0, f(x) = f(−x) and

f(nx) = 2f(x) + 2f((n− 1)x)− f((n− 2)x)

for all x ∈ X . This simply implies that

f(−2x) = f(2x) = 2f(x) + 2f(x)− f(0) = 4f(x),

f(−3x) = f(3x) = 2f(x) + 2f(2x)− f(x) = 9f(x),

f(−4x) = f(4x) = 2f(x) + 2f(3x)− f(2x) = 16f(x),

...

f(kx) = k2f(x)

for all x ∈ X and all k ∈ Z. Putting x
k

instead of x in the above line, we obtain

f
(
x

k

)
=

1

k2
f(x)

for all x ∈ X and all k ∈ Z. Therefore, we can conclude for any r ∈ Q that

f(rx) = f
(
m

n
x
)

= m2f
(
x

n

)
=
m2

n2
f(x) = r2f(x)

for all x ∈ X and all r ∈ Q, which ends the proof. �

Theorem 2.2. Let X and Y be linear spaces and let n ≥ 3 be a fixed positive integer. A mapping f : X → Y
satisfies the functional equation

n∑
i=1

f
( n∑

j=1
j 6=i

xj +
2− n

2
xi

)
=
n2

4

n∑
i=1

f(xi) (2.1)

for all x1, x2, · · · , xn ∈ X if and only if f satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (2.2)

for all x, y ∈ X .

Proof. Sufficiency. For the ‘only if ’ part of the proof, suppose that f : X → Y satisfies (2.1), we will show that

f satisfies the classic quadratic functional equation (2.2).

First we except the cases n = 3, 4 and investigate them separately. In the case n = 3, (2.1) is in the form

f
(
x+ y − z

2

)
+ f

(
x+ z − y

2

)
+ f

(
y + z − x

2

)
=

9

4

[
f(x) + f(y) + f(z)

]
(2.3)

for all x, y, z ∈ X . Replacing (x, y, z) in (2.3), by (0, 0, 0), (x, 0, 0), (x, x, 0), ( 2
3
x, 2

3
x, 2

3
x) and

(
2
3
x,− 2

3
x, y
)

,

respectively, we obtain f(0) = 0 and

f
(−1

2
x
)

=
1

4
f(x), (2.4)

f
(

1

2
x
)

=
9

4
f(x)− 1

2
f(2x), (2.5)

f
(

2

3
x
)

=
4

9
f(x), (2.6)

f
(−1

2
y
)

+ f(x+ y) + f(y − x) =
9

4

[
f
(

2

3
x
)

+ f
(−2

3
x
)

+ f(y)
]

(2.7)
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for all x, y ∈ X , respectively. By using (2.4) and (2.6), we can rewrite (2.7) as

f(x+ y) + f(y − x) = f(x) + f(−x) + 2f(y) (2.8)

for all x, y ∈ X . Letting x = y in (2.8), we see that

f(2x) = 3f(x) + f(−x) (2.9)

for all x ∈ X . From (2.4), (2.5) and (2.9), it follows that

1

4
f(−x) = f

(
1

2
x
)

=
9

4
f(x)− 1

2
f(2x) =

9

4
f(x)− 3

2
f(x)− 1

2
f(−x)

for all x ∈ X , which implies that f(x) = f(−x) for all x ∈ X . So (2.8) can be rewritten as

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X , which is exactly (2.2).

Now the case n = 4. In this case we have the functional equation

f(x+ y + z − w) + f(x+ y + w − z) + f(x+ z + w − y)

+f(y + z + w − x) = 4
[
f(x) + f(y) + f(z) + f(w)

]
(2.10)

for all x, y, z, w ∈ X . Replacing (x, y, z, w) in (2.10), by (0, 0, 0, 0), (x, 0, 0, 0), ( 1
2
x, 1

2
x, 0, 0) and

(
1
2
x,− 1

2
x, y, 0

)
,

respectively, we get f(0) = 0, f(x) = f(−x), f( 1
2
x) = 1

4
f(x) and

f(−y) + f(y) + f(x+ y) + f(y − x) = 4
[
f
(

1

2
x
)

+ f
(−1

2
x
)

+ f(y)
]

for all x, y ∈ X , respectively, which can easily be simplified to (2.2).

Now we assume that n ≥ 5.

Replacing the variables in (2.1), by (0, · · · , 0), (x, 0, · · · , 0), (x, x, 0, · · · , 0), (−x, · · · ,−x, 0, 0) and ( 2
n
x, · · · , 2

n
x),

respectively, we have f(0) = 0 and

f
(

2− n
2

x
)

=
(n− 2)2

4
f(x), (2.11)

f
(

4− n
2

x
)

=
n2

4
f(x) +

2− n
2

f(2x), (2.12)

f
(

4− n
2

x
)

=
n2

4
f(−x) +

2

2− nf
(

(2− n)x
)
, (2.13)

f
(

2

n
x
)

=
4

n2
f(x) (2.14)

for all x ∈ X , respectively. Note that n ≥ 5 might be either an odd or an even number. In the cases of oddness

and evenness, if we respectively put(
x1, · · · , xn−1

2
, xn+1

2
, · · · , xn−1, xn

)
=

(
2

n
x, · · · , 2

n
x,
−2

n
x, · · · , −2

n
x, y
)
,(

x1, · · · , xn−2
2
, xn

2
, · · · , xn−2, xn−1, xn

)
=

(
2

n
x, · · · , 2

n
x,
−2

n
x, · · · , −2

n
x, y, 0

)
in (2.1), then we get

f
(

2− n
2

y
)

+
n− 1

2

[
f(x+ y) + f(y − x)

]
=

n2(n− 1)

8

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

+
n2

4
f(y),

f
(

2− n
2

y
)

+
n− 2

2

[
f(x+ y) + f(y − x)

]
=

n2(n− 2)

8

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

+
n2 − 4

4
f(y)

for all x, y ∈ X , which both by using (2.11) and (2.14), are easily simplified to (2.8). From (2.8), we obtain (2.9)

again. By using (2.9), we can rewrite (2.12) as

f
(

4− n
2

x
)

=
n2 − 6n+ 12

4
f(x) +

2− n
2

f(−x) (2.15)
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for all x ∈ X . Subtracting (2.13) from (2.15), we get

f
(

(2− n)x
)

=
(2− n)(n2 − 6n+ 12)

8
f(x) +

(n− 2)(n2 + 2n− 4)

8
f(−x)

for all x ∈ X . Putting x
2

instead of x, and then applying (2.11), we obtain

(n− 2)2

4
f(x) =

(2− n)(n2 − 6n+ 12)

8
f
(
x

2

)
+

(n− 2)(n2 + 2n− 4)

8
f
(−x

2

)
,

f(x) =
−n2 + 6n− 12

2(n− 2)
f
(
x

2

)
+
n2 + 2n− 4

2(n− 2)
f
(−x

2

)
(2.16)

for all x ∈ X . On the other hand from (2.9), we have

f(x) = 3f
(
x

2

)
+ f
(−x

2

)
(2.17)

for all x ∈ X . Comparing (2.16) and (2.17), we conclude that f(x) = f(−x) for all x ∈ X , which simply

transforms the form of (2.8) to (2.2).

Necessity. For the ‘if ’ part of the proof, suppose that f : X → Y satisfies the functional equation (2.2). We

show that f satisfies (2.1) too.

First, we prove the following

f
(
x2 + · · ·+ xn +

2− n
2

x1

)
=

n

2
f(x2 + · · ·+ xn) +

(
2− n

2

)
f(x1 + · · ·+ xn)

+
n

2

(
n

2
− 1
)
f(x1) (2.18)

for all x1, · · · , xn ∈ X and any fixed integer n ≥ 3.

Let k ∈ N. Replacing (x, y) in (2.2) by (x, kx1) respectively, we get

f(x− x1) = 2f(x) + 2f(x1)− f(x+ x1), (2.19)

f(x− 2x1) = 2f(x) + 2f(2x1)− f(x+ 2x1), (2.20)

f(x− 3x1) = 2f(x) + 2f(3x1)− f(x+ 3x1), (2.21)

f(x− 4x1) = 2f(x) + 2f(4x1)− f(x+ 4x1) (2.22)

...

for all x, x1,∈ X . Replacing (x, y) in (2.2) by (x1 + x, kx1), respectively, we get

f(x+ 2x1) = f(x1 + x+ x1) = 2f(x1 + x) + 2f(x1)− f(x),

f(x+ 3x1) = f(x1 + x+ 2x1) = 2f(x1 + x) + 2f(2x1)− f(x− x1),

f(x+ 4x1) = f(x1 + x+ 3x1) = 2f(x1 + x) + 2f(3x1)− f(x− 2x1),

...

for all x, x1,∈ X . Continuous process of the above equations (2.20), (2.21), · · · and Lemma 2.1 generally lead

to

f(x− kx1) = (k + 1)f(x) + k(k + 1)f(x1)− kf(x+ x1) (2.23)

for all x, x1 ∈ X , and all k ∈ N. Replacing (x, y) in (2.2), by
(
x − k

2
x1,

k
2
x1
)
, using (2.23) and Lemma 2.1, we

obtain

f
(
x− k

2
x1

)
=

1

2
f(x) +

1

2
f(x− kx1)− f

(
k

2
x1

)
=

k + 2

2
f(x) +

k2 + 2k

4
f(x1)− k

2
f(x+ x1) (2.24)

for all x, x1 ∈ X , and all k ∈ N.
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Now (2.23) and (2.24) imply that (2.18) holds. The first one proves it for any fixed even integer ne ≥ 4, and

the second one proves it for any fixed odd integer no ≥ 3. It is done simply by putting x = x2 + · · ·+xn in both

(2.23) and (2.24) and by k = ne−2
2

, k = no − 2 in (2.23) and (2.24), respectively.

It follows from (2.18) that

f
(
x2 + · · ·+ xn + 2−n

2
x1

)
+
...
+

f
(
x1 + · · ·+ xn−1 + 2−n

2
xn

) =
n

2


f(x2 + · · ·+ xn)

+
...
+

f
(
x1 + · · ·+ xn−1

)

+
n

2

(
n

2
− 1
)


f(x1)
+
...
+

f(xn)


+

n

2
(2− n)

[
f(x1 + · · ·+ xn)

]
for all x1, · · · , xn ∈ X and any fixed integer n ≥ 3. This signifies that in order to get (2.1), it is just necessary

to show the following
f(x2 + · · ·+ xn)

+
...
+

f
(
x1 + · · ·+ xn−1

)

+ (2− n)
[
f(x1 + · · ·+ xn)

]
=


f(x1)

+
...
+

f(xn)

 (2.25)

for all x1, · · · , xn ∈ X and any fixed integer n ≥ 3.

As it is clear, the proof of (2.25) directly depends on the specific value of n ≥ 3. Nevertheless, we try to

provide a general idea to prove it.

First assume that n ≥ 3 is an odd number. In this case, by frequently using (2.2), the left hand side of (2.25)

will be in the form

1

2


f(x1 + x2 + 2x3 + · · ·+ 2xn)

+
...
+

f
(

2x1 + · · ·+ 2xn−3 + xn−2 + xn−1 + 2xn

)

+
1

2


f(x1 − x2)

+
...
+

f(xn−2 − xn−1)


+f
(
x1 + · · ·+ xn−1

)
+ (2− n)

[
f(x1 + · · ·+ xn)

]
(2.26)

for all x1, · · · , xn ∈ X and any fixed odd number n ≥ 3. Since we have

1

2
f(x1 + x2 + 2x3 + · · ·+ 2xn) = f(x1 + · · ·+ xn) + f(x3 + · · ·+ xn)− 1

2
f(x1 + x2)

for all x1, · · · , xn ∈ X from (2.2), (2.26) is simplified to
f(x3 + · · ·+ xn)

+
...
+

f
(
x1 + · · ·+ xn−3 + xn

)

+
1

2


f(x1 − x2)− f(x1 + x2)

+
...
+

f(xn−2 − xn−1)− f(xn−2 + xn−1)


+f(x1 + · · ·+ xn−1) +

(
3− n

2

)[
f(x1 + · · ·+ xn)

]
(2.27)

for all x1, · · · , xn ∈ X and any odd fixed integer n ≥ 3. For the case n = 3, (2.27) leads to the right hand side

of (2.25), which means that the proof is complete for the case n = 3. So we assume that n ≥ 5 and continue the

proof. We come across two cases:

a) n−1
2

, which is the number of the terms in the first term of (2.27), is an even integer;
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b) n−1
2

is an odd integer.

In the case a), similar to the process in which we obtain (2.27) from (2.25), we get (2.28) from (2.27), as

follows: 
f(x5 + · · ·+ xn)

+
...
+

f
(
x1 + · · ·+ xn−5 + xn

)

+
1

2


f(x1 − x2)− f(x1 + x2)

+
...
+

f(xn−2 − xn−1)− f(xn−2 + xn−1)



+
1

2


f(x1 + x2 − x3 − x4)− f(x1 + · · ·+ x4)

+
...
+

f(xn−4 + xn−3 − xn−2 − xn−1)− f(xn−4 + · · ·+ xn−1)


+f(x1 + · · ·+ xn−1) +

(
5− n

4

)[
f(x1 + · · ·+ xn)

]
(2.28)

for all x1, · · · , xn ∈ X and any fixed n = 5, 9, 13, · · · . In the case n = 5, (2.28) is in the form

f(x5) +
1

2

[
f(x1 − x2)− f(x1 + x2)

+
f(x3 − x4)− f(x3 + x4)

]
+

1

2

[
f(x1 + x2 − x3 − x4) + f(x1 + · · ·+ x4)

]
for all x1, · · · , x5 ∈ X , which simply by using (2.2) gives the right hand side of (2.25). By continuing the process

we can obtain the result for n = 9, 13, · · · .
Similarly in the case b), we get (2.29) from (2.27), as follows:

f(x5 + · · ·+ xn)
+
...
+

f
(
x1 + · · ·+ xn−7 + xn−2 + xn−1 + xn

)

+
1

2


f(x1 − x2)− f(x1 + x2)

+
...
+

f(xn−2 − xn−1)− f(xn−2 + xn−1)



+
1

2


f(x1 + x2 − x3 − x4)− f(x1 + · · ·+ x4)

+
...
+

f(xn−6 + xn−5 − xn−4 − xn−3)− f(xn−6 + · · ·+ xn−3)


+f(x1 + · · ·+ xn−3 + xn) + f(x1 + · · ·+ xn−1) +

(
3− n

4

)[
f(x1 + · · ·+ xn)

]
(2.29)

for all x1, · · · , xn ∈ X and any fixed n = 7, 11, 15, · · · . If we put n = 7, in (2.29), then we have

f(x5 + x6 + x7) +
1

2


f(x1 − x2)− f(x1 + x2)

+
f(x3 − x4)− f(x3 + x4)

+
f(x5 − x6)− f(x5 + x6)

+
1

2
f(x1 + x2 − x3 − x4)

−1

2
f(x1 + · · ·+ x4) + f(x1 + · · ·+ x4 + x7) + f(x1 + · · ·+ x6)− f(x1 + · · ·+ x7)

for all x1, · · · , x7 ∈ X , which could be simplified to the right hand side of (2.25). For n = 11, 15, · · · , we should

continue the process.

Even cases of n are similar and also easier and so we omit them and the proof is complete. �
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3. Superstability of the general quadratic functional equation (0.1)

In this section, we provide a superstability theorem for the functional equation (0.1). In fact, f : X → Y will

be put in a normed functional inequality instead of an equality which is obviously considered a harder condition

for f , in order to be quadratic. From this point of view, one can say that the obtained result in the previous

section will be gotten stronger and improved in this section.

Theorem 3.1. Let X and Y be linear spaces and 1
6
< l < 1 be a fixed real number. If f : X → Y satisfies the

functional inequality∥∥∥f(y + z − 1

2
x
)

+ f
(
x+ z − 1

2
y
)

+ f
(
x+ y − 1

2
z
)

−9

4
f(y)− 9

4
f(z)− l9

4
f(x)

∥∥∥ ≤
∥∥∥(1− l)9

4
f(x)

∥∥∥ (3.1)

for all x, y, z ∈ X , then f is a quadratic mapping.

Proof. Letting (x, y, z) = (0, 0, 0) in (3.1), we get

18l − 3

4

∥∥f(0)
∥∥ ≤ 0.

Since l > 1
6
, 18l−3

4
> 0 and so f(0) = 0. Letting (x, y, z) = (0, x, y) in (3.1), we have

f
(
x− 1

2
y
)

+ f
(
y − 1

2
x
)

+ f(x+ y) =
9

4
f(x) +

9

4
f(y) (3.2)

for all x, y ∈ X . Replacing (x, y) in (3.2) by (x, 0), (x, x) and (x, 2x), respectively, we obtain

f
(
− 1

2
x
)

=
1

4
f(x), (3.3)

2f
(

1

2
x
)

+ f(2x) =
9

2
f(x), (3.4)

f
(

3

2
x
)

+ f(3x) =
9

4
f(x) +

9

4
f(2x) (3.5)

for all x ∈ X , respectively. Using (3.3) and (3.4) we get f(x) = f(−x) for all x ∈ X . So (3.3) is rewritten as

f
(
1
2
x
)

= 1
4
f(x) for all x ∈ X . By using this, (3.5) could be simplified to f(3x) = 9f(x), and so

f
(

1

3
x
)

=
1

9
f(x) (3.6)

for all x ∈ X . Replacing (x, y) in (3.2) by (x− y,−y) and (y − x,−x), we have

f
(
x− 1

2
y
)

=
9

4
f(x− y) +

9

4
f(y)− 1

4
f(x+ y)− f(x− 2y),

f
(
y − 1

2
x
)

=
9

4
f(x− y) +

9

4
f(x)− 1

4
f(x+ y)− f(y − 2x)

for all x, y ∈ X . By putting these two equations in (3.2), we obtain

9

2
f(x− y) +

1

2
f(x+ y) = f(x− 2y) + f(y − 2x)

for all x, y ∈ X . Now putting (x, y) =
(
u+2v
−3

, v+2u
−3

)
in the previous line, we get

9

2
f
(
u− v

3

)
+

1

2
f(u+ v) = f(u) + f(v)

for all u, v ∈ X , which by (3.6) simply leads to (2.2) as desired. �

Theorem 3.2. Let X and Y be linear spaces and n, k be fixed positive integers with n ≥ 4 and 1 ≤ k ≤ n. If

f : X → Y satisfies the functional inequality∥∥∥ n∑
i=1

f
( n∑

j=1
j 6=i

xj +
2− n

2
xi

)
− n2

4

n∑
i=1
i6=k

f(xi)

∥∥∥ ≤ ∥∥∥n2

4
f(xk)

∥∥∥ (3.7)

for all x1, x2, · · · , xn ∈ X , then f is a quadratic mapping.
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Proof. Note that the functional inequality (3.7) is symmetric with respect to each variable. So we can take k = 1

and only prove this case and then conclude the statement for all cases with 1 ≤ k ≤ n. From now on, assume

that k = 1.

Letting (x1, x2, · · · , xn) = (0, 0, · · · , 0) in (3.7), we obtain that

n3 − (2n2 + 4n)

4

∥∥f(0)
∥∥ ≤ 0.

Since n3 > (2n2 + 4n) for all n ≥ 4, f(0) = 0. Letting x1 = 0 (or xk = 0) in (3.7), we get

n∑
i=2

f
( n∑

j=2
j 6=i

xj +
2− n

2
xi

)
+ f
( n∑
i=2

xi

)
=
n2

4

n∑
i=2

f(xi) (3.8)

for all x2, x3, · · · , xn ∈ X .

First we investigate the case n = 4 separately. In this case, by putting (x2, x3, x4) = (x, y, z) in (3.8), we have

f
(
y + z − x

)
+ f
(
x+ z − y

)
+ f
(
x+ y − z

)
+f
(
x+ y + z

)
= 4[f(x) + f(y) + f(z)]

for all x, y, z ∈ X . Replacing (x, y, z) in the above equation by (x, 0, 0) and (x, y, 0), we obtain f(x) = f(−x)

and

f(y − x) + f(x− y) + 2f(x+ y) = 4f(x) + 4f(y)

for all x, y ∈ X , which simply mean that (2.2) holds.

Now the case n ≥ 5. Replacing (x2, x3, · · · , xn) in (3.8) by = (x, 0, · · · , 0), (x, x, 0, · · · , 0) and (x, · · · , x, 0),

respectively, we obtain

f
(

2− n
2

x
)

=
(n− 2)2

4
f(x), (3.9)

f
(

4− n
2

x
)

=
n2

4
f(x) +

2− n
2

f(2x), (3.10)

f
(
n− 4

2
x
)

=
n2

4
f(x) +

2

2− nf
(

(n− 2)x
)

(3.11)

for all x ∈ X , respectively. In the case of evenness and oddness of n ≥ 5, we respectively put(
x2, · · · , xn

2
, xn+2

2
, · · · , xn−1, xn

)
=

(
2

n
x, · · · , 2

n
x,
−2

n
x, · · · , −2

n
x, y
)
,(

x2, · · · , xn−1
2
, xn+1

2
, · · · , xn−2, xn−1, xn

)
=

(
2

n
x, · · · , 2

n
x,
−2

n
x, · · · , −2

n
x, y, 0

)
in (3.8), to get

f
(

2− n
2

y
)

+
n− 2

2

[
f(x+ y) + f(y − x)

]
=

n2(n− 2)

8

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

+
n2 − 4

4
f(y),

f
(

2− n
2

y
)

+
n− 3

2

[
f(x+ y) + f(y − x)

]
=

n2(n− 3)

8

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

+
n2 − 8

4
f(y)

for all x, y ∈ X , which both by (3.9) are simplified to

f(x+ y) + f(y − x) =
n2

4

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

+ 2f(y) (3.12)

for all x, y ∈ X . Letting y = 0 in (3.12), we have

f(x) + f(−x) =
n2

4

[
f
(

2

n
x
)

+ f
(−2

n
x
)]

for all x ∈ X . By this, (3.12) is equivalent to

f(x+ y) + f(y − x) = f(x) + f(−x) + 2f(y) (3.13)
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for all x, y ∈ X . Now by (3.10), (3.11), (3.13) and a similar argument used in the last part of the proof of Theorem

3.2, we can obtain f(x) = f(−x) for all x, y ∈ X . This changes (3.13) to f(x + y) + f(y − x) = 2f(x) + 2f(y)

for all x, y ∈ X , which finally ends the proof. �

4. Hyers-Ulam stability of the general quadratic functional equation (0.1)

In this section, we prove the Hyers-Ulam stability of the functional equation (0.1). Throughout this section

X denotes a quasi-α-normed space and Y a quasi-β-Banach space. For a given mapping f : X → Y, we define

the difference operator:

Dλf(x1, x2, · · · , xn) :=

n∑
i=1

f
( n∑

j=1
j 6=i

λxj +
2− n

2
λxi

)
− λ2n2

4

n∑
i=1

f(xi)

for all x1, x2, · · · , xn ∈ X and all λ ∈ R.

Theorem 4.1. Let ϕ : Xn → [0,∞) be a function with ϕ(0, · · · , 0) = 0, where n ≥ 3 is a fixed integer. Denote

by φ a function such that

φ(x1, x2, · · · , xn) :=

∞∑
m=0

[
4mβ

n2mβ
ϕ
(
nm

2m
x1,

nm

2m
x2, · · · ,

nm

2m
xn

)]p
<∞ (4.1)

for all x1, x2, · · · , xn ∈ X . Suppose that f : X → Y is a mapping satisfying∥∥D1f(x1, x2, · · · , xn)
∥∥
Y
≤ ϕ(x1, x2, · · · , xn) (4.2)

for all x1, x2, · · · , xn ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 4β

n3β

p
√
φ(x, x, · · · , x) (4.3)

for all x ∈ X .

Proof. Letting x1 = x2 = · · · = xn = 0 in (4.2), we get f(0) = 0.

Letting x1 = x2 = · · · = xn = x in (4.2), we have∥∥∥nf(n
2
x
)
− n3

4
f(x)

∥∥∥
Y
≤ ϕ(x, x, · · · , x),∥∥∥ 4

n2
f
(
n

2
x
)
− f(x)

∥∥∥
Y
≤ 4β

n3β
ϕ(x, x, · · · , x)

for all x ∈ X . Replacing x by (n
2

)ix, we get∥∥∥ 4

n2
f
(
ni+1

2i+1
x
)
− f
(
ni

2i
x
)∥∥∥
Y
≤ 4β

n3β
ϕ
(
ni

2i
x, · · · , n

i

2i
x
)

(4.4)

for all x ∈ X and all nonnegative integers i. Assume that m, l are positive integers with m > l. From the

iterative method and (4.4), it follows that∥∥∥ 4m

n2m
f
(
nm

2m
x
)
− 4l

n2l
f
(
nl

2l
x
)∥∥∥p
Y
≤

m−1∑
i=l

∥∥∥ 4i+1

n2i+2
f
(
ni+1

2i+1
x
)
− 4i

n2i
f
(
ni

2i
x
)∥∥∥p
Y

=

m−1∑
i=l

4iβp

n2iβp

∥∥∥ 4

n2
f
(
ni+1

2i+1
x
)
− f
(
ni

2i
x
)∥∥∥p
Y

≤ 4βp

n3βp

m−1∑
i=l

[
4iβ

n2iβ
ϕ
(
ni

2i
x, · · · , n

i

2i
x
)]p

(4.5)

for all x ∈ X , in which by (4.1) the right-hand side tends to zero as m, l →∞. This clarifies that the sequence{
4m

n2m f
(
nm

2m
x
)}

is Cauchy in the complete space Y and therefore convergent. So we can define for all x ∈ X ,

the mapping Q : X → Y by

Q(x) := lim
m→∞

4m

n2m
f
(
nm

2m
x
)
.
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Now letting l = 0, passing the limit m→∞ in (4.5) and then using (4.1), we obtain (4.3), as desired.

Lastly, we prove that Q is unique. Let Q′ : X → Y be another quadratic mapping satisfying (4.3). Then we

have ∥∥Q(x)−Q′(x)
∥∥p
Y
≤ 4mβp

n2mβp

∥∥∥Q(nm
2m

x
)
− f
(nm

2m
x
)∥∥∥p
Y

+
4mβp

n2mβp

∥∥∥Q′(nm
2m

x
)
− f
(
nm

2m
x
)∥∥∥p
Y

≤ 2 · 4mβp

n2mβp
· 4βp

n3βp
φ
(
nm

2m
x, · · · , n

m

2m
x
)

= 2 · 4mβp

n2mβp
· 4βp

n3βp

∞∑
s=0

[
4sβ

n2sβ
ϕ
(
nm+s

2m+s
x, · · · , n

m+s

2m+s
x
)]p

= 2 · 4βp

n3βp

∞∑
s=m

[
4sβ

n2sβ
ϕ
(
ns

2s
x, · · · , n

s

2s
x
)]p

for all x ∈ X . Now by (4.1), the right-hand side tends to zero as m → ∞, and therefore Q : X → Y is unique

and the proof is complete. �

Theorem 4.2. Let ϕ : Xn → [0,∞) be a function with ϕ(0, · · · , 0) = 0, where n ≥ 3 is a fixed integer. Denote

by φ a function such that

φ(x1, x2, · · · , xn) :=

∞∑
m=0

[
n2mβ

4mβ
ϕ
(

2m+1

nm+1
x1, · · · ,

2m+1

nm+1
xn

)]p
<∞ (4.6)

for all x1, x2, · · · , xn ∈ X . Suppose that f : X → Y is a mapping satisfying (4.2). Then there exists a unique

quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 1

nβ
p
√
φ(x, x, · · · , x) (4.7)

for all x ∈ X .

Proof. Letting x1 = x2 = · · · = xn = 0 in (4.2), we get f(0) = 0.

Letting x1 = x2 = · · · = xn = 2
n
x in (4.2), we have∥∥∥nf(x)− n3

4
f
(

2

n
x
)∥∥∥
Y
≤ ϕ

(
2

n
x,

2

n
x, · · · , 2

n
x
)
,∥∥∥n2

4
f
(

2

n
x
)
− f(x)

∥∥∥
Y
≤ 1

nβ
ϕ
(

2

n
x,

2

n
x, · · · , 2

n
x
)

for all x ∈ X . By the same method used in the previous theorem, we can obtain∥∥∥n2m

4m
f
(

2m

nm
x
)
− n2l

4l
f
(

2l

nl
x
)∥∥∥p
Y
≤ 1

nβp

m−1∑
i=l

[
n2iβ

4iβ
ϕ
(

2i+1

ni+1
x, · · · , 2i+1

ni+1
x
)]p

(4.8)

for positive integers m, l with m > l and all x ∈ X , in which by (4.6) the right-hand side tends to zero as

m, l→∞.

Now similar to the pervious theorem, the mapping Q : X → Y is definable as

Q(x) := lim
m→∞

n2m

4m
f
(

2m

nm
x
)

for all x ∈ X , which by letting l = 0, passing the limit m→∞ in (4.8) and then using (4.6), satisfies (4.7).

The proof of the uniqueness of Q is similar to the previous theorem. �

Corollary 4.3. Let ϑ be a nonnegative real number and q a positive real number with q < 2 β
α

. Let f : X → Y
be a mapping satisfying ∥∥D1f(x1, x2, · · · , xn)

∥∥
Y
≤ ϑ
(
‖x1‖qX + · · ·+ ‖xn‖qX

)
(4.9)

for all x1, x2, · · · , xn ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 4βϑ

n1−αq−β

p√
np(2β−αq) − 2p(2β−αq)

‖x‖qX
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for all x ∈ X .

Proof. Defining ϕ(x1, · · · , xn) := ϑ
(
‖x1‖qX + · · ·+ ‖xn‖qX

)
and applying Theorem 4.1, we get the result. �

Corollary 4.4. Let ϑ be a nonnegative real number and q a positive real number with q > 2 β
α

. Let f : X → Y
be a mapping satisfying (4.9). Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)

∥∥
Y
≤ 2αqϑ

n1−3β

p√
np(αq−2β) − 2p(αq−2β)

‖x‖qX

for all x ∈ X .

Proof. Defining ϕ(x1, · · · , xn) := ϑ
(
‖x1‖qX + · · ·+ ‖xn‖qX

)
and applying Theorem 4.2, we get the result. �

Corollary 4.5. Let ϑ be a nonnegative real number and q1, . . . , qn positive real numbers with q1 + · · ·+qn < 2 β
α

.

Let f : X → Y be a mapping satisfying∥∥D1f(x1, x2, · · · , xn)
∥∥
Y
≤ ϑ
(
‖x1‖q1X · ‖x2‖

q2
X . . . ‖xn‖

qn
X

)
(4.10)

for all x1, x2, · · · , xn ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 4βϑn−α(q1+···+qn)−β

p√
np(2β−α(q1+···+qn)) − 2p(2β−α(q1+···+qn))

‖x‖(q1+···+qn)
X

for all x ∈ X .

Proof. Defining ϕ(x1, · · · , xn) := ϑ
(
‖x1‖q1X · ‖x2‖

q2
X · · · ‖xn‖

qn
X

)
and applying Theorem 4.1, we get the result. �

Corollary 4.6. Let ϑ be a nonnegative real number and q1, · · · , qn positive real numbers with q1 + · · ·+qn > 2 β
α

.

Let f : X → Y be a mapping satisfying (4.10). Then there exists a unique quadratic mapping Q : X → Y such

that ∥∥f(x)−Q(x)
∥∥
Y
≤ 2α(q1+···+qn)ϑn−3β

p√
np(α(q1+···+qn)−2β) − 2p(α(q1+···+qn)−2β)

‖x‖(q1+···+qn)
X

for all x ∈ X .

Proof. Defining ϕ(x1, · · · , xn) := ϑ
(
‖x1‖q1X · ‖x2‖

q2
X · · · ‖xn‖

qn
X

)
and applying Theorem 4.2, we get the result. �

Note that in Corollary 4.5 and 4.6, we can put q1 = · · · = qn = q and make simpler results.
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On Impulsive Sequential Fractional Di¤erential Equations

N. I. Mahmudov and B. Sami
Eastern Mediterranean University
Gazimagusa, TRNC, Mersin 10

Turkey

Abstract

This paper aims to study the existence of the solutions for an Impulsive Sequential Fractional Di¤er-
ential Equations of order 1 < q � 2 involving separate boundary conditions. Our analysis relies on some
�xed point theorems. In addition, an example is provided to illustrate the results of this study.

Keywords
Impulsive sequential fractional di¤erential equations, Caputo fractional derivative, �xed point theorem.

1 Introduction

Fractional di¤erential equations have recently proved to be strong tools in the modeling of many physical
phenomena. It gives a great application in nonlinear oscillations of earthquakes, many physical phenomena
such as seepage �ow in porous media and in �uid dynamic tra¢ c model. Impulsive Fractional Di¤erential
Equations (IFDEs), and Sequential Fractional Di¤erential Equations (SFDEs) have attracted the attention
of many researchers, see [1]-[21]. To the best of our knowledge, the study of impulsive sequential fractional
di¤erential equations (ISFDE) supplemented with separated boundary conditions has yet to be initiated.
In [15] Tian and Bai studied the existence solutions for the following IFDEs with boundary conditions,

by using Banach�s �xed point theorem and Schauder�s �xed point theorem:8<:
cDqu(t) = f(t; u(t)); q 2 (1; 2]; t 2 [0:1] ; t 6= tk;

�ujt=tk = Ik(u(tk)); �u0jt=tk =
_

Ik(u(tk)); k = 1; 2; :::; p; k = 1; :::; p;

u(0) + u
0
(0) = 0; u(1) + u

0
(�) = 0;

with the Caputo fractional derivative cDq, f 2 [0; 1]�R! R is a continuous function, Ik;
_

Ik : R! R; 0 =
t0 < t1 < � � � < tk < ::: < tp < tp+1 = 1:
In [16] Wang investigated the existence of the solutions of the problem which is given as follows :8<:

cDqu(t) = f(t; u(t)); 1 < q � 2; t 2 J 0;
�u(tk) = Qk(u(tk)); �u

0(tk) = Ik(u(tk)); k = 1; :::; p; k = 1; :::; p;

au(0) + bu
0
(0) = x0; cu(1) + du

0
(1) = x1:

Mahmudov and Unul, [17] provided existence of solutions for the following IFDEs of order q with mixed
BVP :

8<:
cDq

0u(t) = f(t; u(t)); 1 < q � 2; t 2 J 0;
�u(tk) = Ik(u(tk)) = u(t+k )� u(t

�
k );�u

0(tk) = Jk(u(tk)) = u0(t+k )� u0(t
�
k ); k = 1; :::; p;

u(0) + �1u
0
(1) = �1; x(0) + �2x

0
(1) = �2;

with cDq is the Caputo derivative of order q, and f 2 (J �R;R) ; 'k; Ik 2 C (R�R) ; J = [0; 1]; 0 = t0 <
t1 < � � � < tk < ::: < tp < tp+1 = 1: �u(tk) = u

�
t+k
�
� u

�
t�k
�
;�u0(tk) = u

0 �
t+k
�
� u0

�
t�k
�
:

1
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In [20], Ahmad and Ntouyas obtained new existence results by using standard �xed point theorems.8<:
cD�(D + � )x(t) 2 f1(t; x(t)); 0 < t < 1; n < � < n� 1;
x(0) = 0:x

0
(0) = 0;

x
0
(0) = 0; :::; xn�1(0) = 0:x(1) = �x(�);

where F : [0:1]�R! F (R) is a multivalued map, F (R) is the family of all subsets of R.
Sequential fractional integral-di¤erential were studied, in [20]:

8><>:
(cDq + � cDq�1)x(t) = f(t; x(t);cD�x (t) ; Ix (t)); t 2 [0; 1] ; 2 < q � 3; 0 < �;  < 1; k > 0;
x(0) = 0; x0(0) = 0;Pm

i=1 aix(�i) = �
R �
0
(��s)��1
�(�) x(s)ds; � � 1; 0 < � < � < ::: < � < 1;

Here f : [0; 1]�R3 ! R is a given continuous function satisfying some natural conditions.
Alsaedi, et al, [21], used �xed point theorems to develop the existence theory for the following problem:

8<:
(cDq + k cDq�1)u(t) = f(t; u(t); 1 < q � 2; t 2 [0; T ] ;
�1u (0) +

Pm
i=1 aiu (�i) + 1u (T ) = �1;

�2u
0 (0) +

Pm
i=1 biu

0 (�i) + 2u
0 (T ) = �2; �3u

0 (0) +
Pm

i=1 ciu
00 (�i) + 3u

00
(T ) = �3:

This paper is motivated from some recent papers treating the problem of the existence of solutions for
ISFDEs with separated boundary conditions:8<:

(cDq + � cDq�1)x(t) = f(t; x(t)); 0 < t < T 1 < p � 2;
�1x(0) + �1x

0
(0) = �1; �2x(T ) + �2x

0
(T ) = �2;

�xjt=tk = 'k(x(tk)); �x
0jt=tk = '�k(x(tk)); k = 1; :::; p;

(1)

where cDq is the Caputo derivative of order q 2 (1; 2], and f : [0T ]� R ! R; �; q; �1; �1; �2; �1; �1; �1; �2 2
R; � 2 R+; 'k; '

�
k 2 C (R;R) ; and �xjt=tk = x

�
t+k
�
� x

�
t�k
�
; �x0jt=tk = x

0 �
t+k
�
� x0

�
t�k
�
: x
�
t+k
�
and

x
�
t�k
�
represent the right and the left hand limits of the function x(t); at t = t+k ;respectively.

The rest of the paper is organized as follows. In Section 2, we recall some basic concepts of fractional
calculus and obtain the integral solution for the linear variants of the given problems. Section 3 contains
the existence results for problem (1) obtained by applying Leray-Schauder�s nonlinear alternative, Banach�s
contraction mapping principle and Krasnoselskii�s �xed point theorem. In Section 4, the main result is
illustrated with the aid of an example.

2 Basic materials

The basic concepts of fractional calculus are presented in this section [13].
Denote that, J = [0; T ] ; t0 = 0; tp+1 = T ; J0 = [0; t1], J1 = (t1; t2],..., Jp = (tp; T ], J 0 = Jn ft1; :::; tpg ; 0 =

t0 < t1 < � � � < tp < tp+1 = T; and insert the spaces:

PC(J) =
�
x : J ! R j x 2 C(J 0); and x(t+k ); x(t

�
k ) exist, and x(t

+
k ) = x(tk); 1 � k � p

	
;

with the norm kxkPC = supt2J jx(t)j and PC(J) is a Banach space.

De�nition 1 The fractional integral of order q > 0 of a function � : [0;1)! R is given by

Iq0+�(x) =
1

�(q)

Z x

0

�(r)

(x� r)1�q dr; x > 0 ; q > 0;

provided the right side is point-wise de�ned on [0;1).

2
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De�nition 2 The Caputo fractional derivative of order q > 0, of a function � : [0;1)! R is de�ned by

Dq
0+�(x) =

1

�(n� q)

Z x

0

(x� r)n�q�1�ndr;

whenever the right-hand side is de�ned on [0;1):
Lemma 3 Let q > 0, then the di¤erential equation

cDq�(t) = 0;

has solutions
�(x) = a0 + a1x+ a2x

2 + :::+ an�1x
n�1;

where ai 2 R; i = 0; 1; 2; 3; :::; n� 1; n = [�] + 1:
Lemma 4 The set F � PC ([0; T ]; Rn) is relatively compact if and only if

(i) F is bounded , that kxk � C for each x 2 F and some C > 0;

(ii) F is quasi-equicontinuous in [0; T ]. That is, to say that for any " > 0 there exist  > 0 such that

if x 2 F ; k 2 N ; s1; s2 2 (tk�1; tk], and js1 � s2j < ;
��x(s1) � x(s2)�� < ":

Lemma 5 For � 2 PC(J;R), the solution of the following ISFDEs8<:
(cDq + � cDq�1)x(t) = �(t);
�xjt=tk = 'k(x(tk)); �x

0jt=tk = '�k(x(tk));

�1x(0) + �1x
0
(0) = �1; �2x(T ) + �2x

0
(T ) = �2; k = 1; :::; p;

(2)

is given by

x (t) =

Z t

0

e��(t�s)Iq�1�(s)ds+ v1(t)

Z T

0

e��(T�s)Iq�1�(s)ds (3)

+ v2(t)I
q�1�(T ) + v3(t)

pX
j=1

'j(x(tj)) + v4(t)

pX
k=1

'�j (x(tj)

+

pX
j=1

z1j (t)'
�
j (x(tj)) +

pX
j=k+1

z2j (t)'
�
j (x(tj))�

pX
j=k+1

'j(x(tj)) + z3 (t) ;

t 2 [tk; tk+1) ; k = 0; 1; :::; p;
where

� = (�1 � ��1)�2 �
�
�2e

��T � ��2e��T
�
�1 6= 0;

v1(t) =

�
�1e

��t � �1 + ��1
�
(�2 � ��2)

�
;

v2(t) =

�
�1e

��t � �1 + ��1
�
�2

�
;

v3(t) =
�1�2
�

e��t �
�1
�
�2e

��T � ��2e��T
�

�
;

v4(t) =
�1�2
��

e��t �
�1
�
�2e

��T � ��2e��T
�

��
;

z1;j (t) = �e�tje��t
�2 (�1 � ��1)

��
+ e�tj

(�1 � ��1)
�
�2e

��T � ��2e��T
�

��
;

z2;j (t) = e��t
1

�
e�tj � 1

�
;

z3 (t) =

 
e��t

�2
�
�
�
�2e

��T � ��2e��T
�

�

!
�1 �

�
e��t

�1
�
� (�1 � ��1)

�

�
�2:

3
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Proof. Assume that x is a solution of

(cDq + � cDq�1)x(t) = �(t);

on (tk; tk+1]; (k = 1; 2 : : : ; p). Applying the operator Iq�1 operator to both sides of the above equation, we
get

Iq�1(cDq + � cDq�1)x(t) = Iq�1�(t);

(D + �)x(t) = c0 + I
q�1�(t):

This can be expressed as
e�t ((D + �)x (t)) = e�t

�
c0 + I

q�1�(t)
�
;

Solving the above equation, we see that the general solution of (1) on each interval (tk; tk+1]; (k = 1; 2 : : : p);
can be written as

x(t) = e��tAk +Bk +

Z t

0

e��(t�s)Iq�1�(s)ds; t 2 J:

Next, solving the obtained linear equation on J0; we get

x(t) = e��tA0 +B0 +

Z t

0

e��(t�s)Iq�1�(s)ds; t 2 J0; (4)

where A0 and B0 are arbitrary constants. Taking the derivative to (4), we get

x
0
(t) = ��e��tA0 � �

Z t

0

e��(t�s)Iq�1�(s)ds+ Iq�1�(t); t 2 J0: (5)

Now, applying the boundary condition, we have

(�1 � ��1)A0 + �1B0 = �1: (6)

In general, for t 2 [tk; tk+1), we �nd

x(t) = e��tAk +Bk +

Z t

0

e��(t�s)Iq�1�(s)ds; (7)

x
0
(t) = ��e��tAk � �

Z t

0

e��(t�s)Iq�1�(s)ds+ Iq�1�(t):

Now, applying the boundary condition at tk+1 = T , we have

�
�2e

��T � ��2e��T
�
Ap + �2Bp = �2 � (�2 � ��2)

Z T

0

e��(T�s)Iq�1�(s)ds� �2Iq�1�(T ): (8)

From �x0(tk) = '�k(x(tk)), we have

'�k(x(tk)) = ��e��tkk Ak + �e
��tk
k�1 Ak�1;

Ak �Ak�1 = �
1

�
e�tk'�k(x(tk)); k = 1; :::; p: (9)

Similarly, from �x(tk) = 'k(x(tk)), we get

'k(x(tk)) = e��tkAk � e��tkAk�1 +Bk �Bk�1;

Bk �Bk�1 = 'k(x(tk)) +
1

�
'�k(x(tk)); k = 1; :::; p: (10)

4
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Next, it follows from (9) and (10) that

Ap �Ak = �
1

�

pX
j=k+1

e�tj'�j (x(tj)); (11)

Bp �Bk =
pX

j=k+1

'j(x(tj)) +
1

�

pX
j=k+1

'�j (x(tj)); k = 0; 1; :::; p� 1: (12)

It follows that for k = 0 from (�1 � ��1)A0 + �1B0 = �1 that

(�1 � ��1)Ap + �1Bp = �1 �
1

�
(�1 � ��1)

pX
j=1

e�tj'�j (x(tj)) + �1

pX
j=1

'j(x(tj)) +
1

�
�1

pX
j=1

'�j (x(tj)):

Solving the last equation together(8), for Ap and Bp; we get

Ap =

�
�1 (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds+

�
�1�2
�

�
Iq�1�(T )

+
��1�2
�

� pX
j=1

'j(x(tj)) +
��1�2
��

� pX
j=1

'�j (x(tj))�
�
�2 (�1 � ��1)

��

� pX
j=1

e�tj'�j (x(tj))

+
�2
�
�1 �

�1
�
�2;

and

Bp = �
�
(�1 � ��1) (�2 � ��2)

�

�
�
Z T

0

e��(T�s)Iq�1�(s)ds�
�
(�1 � ��1)�2

�

�
Iq�1�(T )

�
 
�1
�
�2e

��T � ��2e��T
�

�

!
pX
j=1

'j(x(tj))�
 
�1
�
�2e

��T � ��2e��T
�

��

!
pX
j=1

'�j (x(tj))

+

 
(�1 � ��1)

�
�2e

��T � ��2e��T
�

��

!
pX
j=1

e�tj'�j (x(tj))�
 �

�2e
��T � ��2e��T

�
�

!
�1 +

�
(�1 � ��1)

�

�
�2;

where � = (�1 � ��1)�2 �
�
�2e

��T � ��2e��T
�
�1 6= 0. Now, from the equations (11) and (12) it follows

that

Ak = Ap +
1

�

pX
j=k+1

e�tj'�j (x(tj));

Bk = Bp �
pX

j=k+1

'j(x(tj))�
1

�

pX
j=k+1

'�j (x(tj)); k = 1; :::; p� 1:

So

Ak =

�
�1 (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds+

�
�1�2
�

�
Iq�1�(T )

+
��1�2
�

� pX
j=1

'j(x(tj)) +
��1�2
��

� pX
j=1

'�j (x(tj))�
�
�2 (�1 � ��1)

��

� pX
j=1

e�tj'�j (x(tj))

+
��2
�

�
�1 �

��1
�

�
�2 +

�
1

�

� pX
j=k+1

e�tj'�j (x(tj)):

5
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Multiplying the above equation by e��t, we get

e��tAk =

�
e��t�1 (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds+

�
e��t�1�2

�

�
Iq�1�(T )

+

�
e��t�1�2

�

� pX
j=1

 j(x(tj)) +

�
e��t�1�2

��

� pX
j=1

 �j (x(tj))�
�
e��t�2 (�1 � ��1)

��

� pX
j=1

e�tj �j (x(tj))

+

�
e��t�2
�

�
�1 �

�
e��t�1
�

�
�2 +

�
e��t

�

� pX
j=k+1

e�tj �j (x(tj)):

and

Bk = �
�
(�1 � ��1) (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds�
�
(�1 � ��1)�2

�

�
Iq�1�(T )

�
 
�1
�
�2e

��T � ��2e��T
�

�

!
pX
j=1

'j(x(tj))�
 
�1
�
�2e

��T � ��2e��T
�

��

!
pX
j=1

'�j (x(tj))

+

 
(�1 � ��1)

�
�2e

��T � ��2e��T
�

��

!
pX
j=1

e�tj'�j (x(tj))�
 �

�2e
��T � ��2e��T

�
�

!
�1

+

�
(�1 � ��1)

�

�
�2 �

pX
j=k+1

'j(x(tj))�
�
1

�

� pX
j=k+1

'�j (x(tj)):

Combining the last two equations, we get

6
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e��tAk +Bk =

�
e��t�1 (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds+

�
e��t�1�2

�

�
Iq�1�(T )

+

�
e��t�1�2

�

� pX
j=1

 j(x(tj)) +

�
e��t�1�2

��

� pX
j=1

 �j (x(tj))

�
�
e��t�2 (�1 � ��1)

��

� pX
j=1

e�tj �j (x(tj))

+

�
e��t�2
�

�
�1 �

�
e��t�1
�

�
�2 +

�
e��t

�

� pX
j=k+1

e�tj �j (x(tj))

�
�
(�1 � ��1) (�2 � ��2)

�

�Z T

0

e��(T�s)Iq�1�(s)ds

�
�
(�1 � ��1)�2

�

�
Iq�1�(T )�

 
�1
�
�2e

��T � ��2e��T
�

�

!
pX
j=1

'j(x(tj))

�
 
�1
�
�2e

��T � ��2e��T
�

��

!
pX
j=1

'�j (x(tj))

+

 
(�1 � ��1)

�
�2e

��T � ��2e��T
�

��

!
pX
j=1

e�tj'�j (x(tj))�
 �

�2e
��T � ��2e��T

�
�

!
�1

+

�
(�1 � ��1)

�

�
�2

�
pX

j=k+1

'j(x(tj))�
�
1

�

� pX
j=k+1

'�j (x(tj)):

e��tAk +Bk = v1(t)

Z T

0

e��(T�s)Iq�1�(s)ds+ v2(t)I
q�1�(T ) + v3(t)

pX
j=1

'j(x(tj)) (13)

+ v4(t)

pX
j=1

'�j (x(tj) +

pX
j=1

z1;j (t)'
�
j (x(tj)) +

pX
j=k+1

z2;j (t)'
�
j (x(tj))

�
pX

j=k+1

'j(x(tj)) + z3(t):

Inserting (13) into (7), thus we obtain the desired formula (3).
The converse of the lemma follows by direct computation. This completes the proof.

3 Main results

This section deals with the existence and uniqueness of solutions for the problem (1). Before stating and
proving the main results, we introduce the following hypotheses.

(H1) the function f : J �R! R is jointly continuous .

(H2) there exists a constant Lf > 0 such that

jf (t; x)� f (t; y)j � Lf jx� yj ; t 2 J; x; y 2 R:

7
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(H3) There exist a positive constants L'; L'� ;M';M'� such that

j'k(x)� 'k(y)j � L' jx� yj ; j'�k(x)� '�k(y)j � L'� jx� yj ; j'k(x)j �M'; j'�k(x)j �M'� :

From (G1)-(G3) it follows that

jf (t; x)j � Lf jxj+Mf ; t 2 J; x 2 R; Mf := sup fjf (t; 0)j : 0 < t � Tg ;
j'k(x)j � L' jxj+M'; j'�k(x)j � L'� jxj+M'� :

Theorem 6 Suppose that (H1), (H2) and (H3) hold. If

LT :=

�
T q�1

�� (q)

�
1� e��T

�
(1 + k�1k) +

T q�1

� (q)
k�2k

�
Lf (14)

+ (1 + k�3k) pL'
+ (kv4k+ kz1jk+ kz2jk) pL'� < 1;

then the equation (1) has a unique solution on J .

Proof. In view of Lemma 5, we can transform problem (1) into a �xed point problem. Consider the
operator T : PC (J;R)! PC (J;R) de�ned by

(Tx)(t) :=

Z t

0

e��(t�s)Iq�1f(s; x (s))ds+ v1(t)

Z T

0

e��(T�s)Iq�1f(s; x (s))ds (15)

+ v2(t)I
q�1f(T; x (T )) + v3(t)

pX
j=1

'j(x(tj)) + v4(t)

pX
j=1

'�j (x(tj)

+

pX
j=1

z1j (t)'
�
j (x(tj)) +

pX
j=k+1

z2j (t)'
�
j (x(tj))�

pX
j=k+1

'j(x(tj)) + z3 (t)

; t 2 Jk; k = 0; 1; :::; p:

It is obvious that T is well de�ned due to (H1) and sends PC (J;R) into itself.
Step 1. T maps Br = fx 2 PC ([0; T ] ; R) ; kxk � rg into itself for some r > 0:
Let

r > (1� LT)�1
�
T q�1

�� (q)

�
1� e��T

�
(1 + k�1k) +

T q�1

� (q)
k�2k

�
Ef

+ (1 + k�3k) p (L'r +M') + (k�4k+ kz1jk+ kz2jk) p (L'�r +M'�) + kz3k :

For t 2 Jk; k = 0; 1; :::; p; x 2 Br; we have

j(Tx)(t)j � 1

� (q � 1)

Z t

0

e��(t�s)
�Z s

0

(s� �)q�2 jf(�; x(�))j d�
�
ds

+
jv1(t)j
� (q � 1)

Z T

0

e��(T�s)
�Z s

0

(s� �)q�2 jf(�; x(�))j d�
�
ds

+
jv2(t)j
� (q � 1)

Z T

0

(T � s)q�2 jf(s; x(s))j ds+ jv3(t)j
pX
j=1

j'j(x(tj))j

+ jv4(t)j
pX
j=1

��'�j (x(tj)��+ pX
j=1

jz1j (t)j
��'�j (x(tj))��

+

pX
j=k+1

jz2j (t)j
��'�j (x(tj))�� pX

j=k+1

j'j(x(tj))j+ jz3 (t)j ;

8
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Thus

j(Tx)(t)j � tq�1

�� (q)

�
1� e��t

�
(Lfr +Mf ) + jv1(t)j

T q�1

�� (q)

�
1� e��T

�
(Lfr +Mf )

+ jv2(t)j
T q�1

� (q)
(Lfr +Mf ) + jv3(t)j p (L'r +M') + jv4(t)j p (Lr +M')

+ jz1j (t)j p (L'r +M') + jz2j (t)j p (L'r +M') + p (L'r +M') + jz3 (t)j

�
�
T q�1

�� (q)

�
1� e��T

�
(1 + k�1k) +

T q�1

� (q)
k�2k

�
(Lfr +Mf ) + (1 + k�3k) p (L'r +M')

+ (k�4k+ kz1jk+ kz2jk) p (L'�r +M'�) + kz3k

We use the following estimation in what follows

���� 1

� (q � 1)

Z t

0

e��(t�s)
�Z s

0

(s� �)q�2 � (�) d�
�
ds

���� � tq�1

�� (q)

�
1� e��t

�
k�kPC (16)

=
T q�1

�� (q)

�
1� e��T

�
k�kPC ; � 2 PC (J;R)

We obtain that

j(Tx)(t)j �
�
T q�1

�� (q)

�
1� e��T

�
(1 + k�1k) +

T q�1

� (q)
k�2k

�
(Lfr +Mf ) + (1 + k�3k) p (L'r +M')

+ (k�4k+ kz1jk+ kz2jk) p (L'�r +M'�) + kz3k < r:

This implies that Tx 2 Br: Thus TBr � Br:
Step 2. T is a contraction operator on PC (J;R).
Let x; y 2 Br. Then For each t 2 J , we have

j(Tx)(t)� (Ty)(t)j :=
�����
Z t

0

e��(t�s)Iq�1f(s; x (s))ds+ v1(t)

Z T

0

e��(T�s)Iq�1f(s; x (s))ds

+ v2(t)I
q�1f(T; x (T )) + v3(t)

pX
j=1

'j(x(tj)) + v4(t)

pX
j=1

'�j (x(tj)

+

pX
j=1

z1j (t)'
�
j (x(tj)) +

pX
j=k+1

z2j (t)'
�
j (x(tj))�

pX
j=k+1

'j(x(tj)) + z3 (t)

������
�
�����
Z t

0

e��(t�s)Iq�1f(s; y (s))ds+ v1(t)

Z T

0

e��(T�s)Iq�1f(s; y (s))ds

+ v2(t)I
q�1f(T; y (T )) + v3(t)

pX
j=1

'j(y(tj)) + v4(t)

pX
j=1

'�j (y(tj)

+

pX
j=1

z1j (t)'
�
j (y(tj)) +

pX
j=k+1

z2j (t)'
�
j (y(tj)) +

pX
j=k+1

'j(y(tj)) + z3 (t)

������ ;
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j(Tx)(t)� (Ty)(t)j :=
Z t

0

e��(t�s)Iq�1 jf(s; x (s))� f(s; y (s))j ds

+ jv1(t)j
Z T

0

e��(T�s)Iq�1 jf(s; x (s))� f(s; y (s))j ds

+ jv2(t)j Iq�1 jf(T; x (T ))� f(T; y (T ))j+ jv3(t)j
pX
j=1

j'j(x(tj))� 'j(y(tj))j

+ v4(t)

pX
j=1

��'�j (x(tj)� '�j (y(tj))��+ pX
j=1

jz1j j (t)
��'�j (x(tj))� '�j (y(tj))��

+

pX
j=k+1

jz2j j (t)
��'�j (x(tj))� '�j (y(tj))��+ pX

j=k+1

j'j(x(tj))j :

Therefore,

j(Tx)(t)� (Ty)(t)j �
��

T q�1

�� (q)

�
1� e��T

�
(1 + k�1k) +

T q�1

� (q)
k�2k

�
Lf

+(1 + k�3k) pL' + (k�4k+ kz1jk+ kz2jk) pL'�) kx� ykPC
= LT kx� ykPC :

Thus, T is a contraction mapping on PC(J;R) due to condition (14). By applying the well-known Banach�s
contraction mapping we see that the operator T has a unique �xed point on PC(J;R ). Therefore, the
problem (1) has a unique solution. This completes the proof.
The second result is based on a known result due to Krasnoselskii. We state the Krasnoselskii theorem

which is needed to prove the existence of at least one solution of (1).

Theorem 7 . Let M be a closed convex and nonempty subset of a Banach space X. Let T1, T2 be the
operators such that:

1. T1x+ T2y 2M whenever x; y 2M ;

2. T1 is compact and continuous;

3. T2 is a contraction mapping. Then there exists z 2M such that z = T1z + T2z.

Now, we replace (H2) into the following condition:

(H4) jf(t; x)j � �(t) for (t; x) 2 J �R where � 2 L 1
� (J) ; � 2 (0; q � 1) :

Theorem 8 Suppose that (H1),(H3) and (H4) hold. If
(1 + k�3k) pL'

+ (kv4k+ kz1jk+ kz2jk) pL'� < 1.
Then (1) has at least one solution on J .

Proof. Let Br = fx 2 PC(J;R); kxkPC � rg. We choose

r �
k�k

L
1
�

� (q)

0B@T q���1 �1� e��T �
�
�
q���1
1��

�1�� (1 + kv1k) +
T q���1�
q���1
1��

�1�� kv2k
1CA

+ (1 + k�3k) pL'
+ (kv4k+ kz1jk+ kz2jk) pL'� :

The operators T1 and T2 on Br are de�ned as:

10
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(T1x)(t) =

Z t

0

e��(t�s)Iq�1f(s; x (s))ds+ v1(t)

Z T

0

e��(T�s)Iq�1f(s; x (s))ds + v2(t)I
q�1f(T; x (T ));

and

(T2x)(t) := v3(t)

pX
j=1

'j(x(tj)) + v4(t)

pX
j=1

'�j (x(tj) +

pX
j=1

z1j (t)'
�
j (x(tj))

+

pX
j=k+1

z2j (t)'
�
j (x(tj))�

pX
j=k+1

'j(x(tj)); t 2 Jk; k = 0; 1; :::; p:

Step 1. T1x+ T2y 2 Br whenever x; y 2 Br:
For any x; y 2 Br and t 2 Jk, using the assumption (H4) with the Holder inequality we get���� 1

� (q � 1)

Z t

0

e��(t�s)
�Z s

0

(s� �)q�2 jf(�; x(�))j d�
�
ds

����
�

�������
1

� (q � 1)

Z t

0

e��(t�s)

0@Z s

0

(s� �)
q � 2
1� � d�

1A1��0@Z �

0

jf(�; x(�))j
1

� d�

1A�

ds

�������
� 1

� (q)

tq���1
�
1� e��t

�
�
�
q���1
1��

�1�� k�k
L
1
�
;

�����
Z T

0

e��(T�s)

 Z s

0

(s� �)q�2

� (q � 1) f(�; x(�))d�
!
ds

����� � 1

� (q)

T q���1
�
1� e��T

�
�
�
q���1
1��

�1�� k�k
L
1
�
:

and ����� v2(t)

� (q � 1)

Z T

0

(T � s)q�2f(s; x(s))ds
����� � 1

� (q)

T q���1�
q���1
1��

�1�� k�kL 1
�
:

Therefore,

kT1x+ T2ykPC � k�kL 1
�

1

� (q)

0B@T q���1 �1� e��T �
�
�
q���1
1��

�1�� (1 + k�1k) +
T q���1�
q���1
1��

�1�� k�2k
1CA

+ ((1 + k�3k) pM' + (k�4k+ kz1jk+ kz2jk) pM'� � r:

Thus, kT1x+ T2yk � r; so T1x+ T2y 2 Br.
Step 2. T1 is compact and continuous.
The continuity of f implies T1 is continuous, also T1 is uniformly bounded on Br as

kT1xkPC � k�kL 1
�

1

� (q)

0B@T q���1 �1� e��T �
�
�
q���1
1��

�1�� (1 + k�1k) +
T q���1�
q���1
1��

�1�� k�2k
1CA � r:

11
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For equicontinuity on [0; t1] ; let x 2 Br and for any s1; s2 2 [0; t1] ; s1 < s2; we have

j(T1x)(s2)� (T1x)(s1)j =
�����
Z s2

0

e��(s2�s)

 Z s

0

(s� �)q�2

� (q � 1) f(�; x(�))d�
!
ds

+ v1(s2)

Z T

0

e��(T�s)

 Z s

0

(s� �)q�2

� (q � 1) f(�; x(�))d�
!
ds

+
v2(s2)

� (q � 1)

Z T

0

(T � s)q�2f(s; x(s))ds
�����

�
�����
Z s1

0

e��(s1�s)

 Z s

0

(s� �)q�1

� (q � 1) f(�; x(�))d�
!
ds

v1(s1)

Z T

0

e��(T�s)

 Z s

0

(s� �)q�1

� (q � 1) f(�; x(�))d�
!
ds

+
v2(s1)

� (q � 1)

Z T

0

(T � s)q�2f(s; x(s))ds
����� ;

j(T1x)(s2)� (T1x)(s1)j �
�
e��(s2) � e��(s1)

�Z s1

0

e�s

 Z s

0

(s� �)q�1

� (q � 1) d�
!
ds

+

Z s2

s1

e��(s2�s)

 Z s

0

(s� �)q�1

� (q � 1) d�
!
ds

+ jv1(s2)� v1(s1)j
Z T

0

e��(T�s)

 Z s

0

(s� �)q�1

� (q � 1) d�
!
ds

+ jv2(s2)� v2(s1)j
v2(s1)

� (q � 1)

Z T

0

(T � s)q�2ds:

It tends to zero as s1 ! s2. This implies that T1 is equicontinuous on the interval [0; t1]. In general, for
the time interval (tk; tk+1], we similarly obtain the same inequality, which yields that T1 is equicontinuous
on interval (tk; tk+1]. Together with the PC-type Arzela-Ascoli (Lemma 4) theorem, we can conclude that
T1 : Br ! Br is continuous and compact.
Step 3. It is clearly that T2 is contraction mapping.
Thus all the assumptions of the Krasnoselskii theorem are satis�ed. In consequence, the the Krasnoselskii

theorem is applied and hence the problem (1) has at least one solution on J .
Our second existence result is based on the nonlinear alternative of Leray-Schauder type. Assume that
(H5) There exist #f 2 PC (J;R) and 	 : R+ ! R+ continuous and nondecreasing such that

jf(t; x)j � #f (t)	(kxk); for all (t; x) 2 J �R;

(H6) There exist an number N > 0 such that

N

LT k#k	(N)
> 1:

Theorem 9 Suppose that (H1), (H2), (H5),(H6) are hold. Then our BVP in (1) has at least one solution
on J:

Proof. Consider the operator T : PC (J;R)! PC (J;R) de�ned by (15). It can be easily shown that T is
continuous and compact. maps bounded sets into bounded sets in PC (J;R). Repeating the same process

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

280 Mahmudov ET AL 269-283



in Step 2 of Theorem 8, we get

j(Tx)(t)j �
Z t

0

e��(t�s)Iq�1 jf(s; x (s))j ds+ jv1(t)j
Z T

0

e��(T�s)Iq�1 jf(s; x (s))j ds

+ jv2(t)j Iq�1 j�(T )j+ jv3(t)j
pX
j=1

j'j(x(tj))j+ jv4(t)j
pX
j=1

��'�j (x(tj)��
+

pX
j=1

jz1j (t)j
��'�j (x(tj))��+ pX

j=k+1

jz2j (t)j
��'�j (x(tj))��+ pX

j=k+1

j'j(x(tj))j+ jz3 (t)j ;

Theorem 10 Proof.

�
Z t

0

e��(t�s)Iq�1#f (s)	 (kxk) ds+ jv1(t)j
Z T

0

e��(T�s)Iq�1#f (s)	 (kxk) ds

+ jv2(t)j Iq�1 j�(T )j#f (s)	 (kxk) + jv3(t)j
pX
j=1

j'j(x(tj))j+ jv4(t)j
pX
j=1

��'�j (x(tj)��
+

pX
j=1

jz1j (t)j
��'�j (x(tj))��+ pX

j=k+1

jz2j (t)j
��'�j (x(tj))��+ pX

j=k+1

j'j(x(tj))j+ jz3 (t)j ;

jx(t)j � j(Tx)(t)j � 1

� (q)

0B@T q���1 �1� e��T �
�
�
q���1
1��

�1�� (1 + k�1k) +
T q���1�
q���1
1��

�1�� k�2k
1CA k#k	(kxk)

+ (1 + k�3k) pM' + (k�4k+ kz1jk+ kz2jk) pM'� + kz3k :

Now, construct the set � = fx 2 PC (J;R) : kxk < Ng :The operator T :� ! PC (J;R) is continuous and
completely continuous. From the choice of �, there is no x 2 @� such that x = �Tx, 0 � � � 1: As a
consequence of the nonlinear alternative of Leray�Schauder type, we deduce that T has a �xed point x 2 @�,
which implies that the problem (1) has at least one solution. This completes the proof.

4 Example

In this section we give some examples to illustrate the usefulness of our main results.
Example 1. Consider the following ISFDE:

(cD
3
2 + 2 cD

1
2 )x (t) = 0:01

�
t2 + sin t+ 1 + tan�1 x(t)

�
; t 2 [0; 1] ;

x(0) + x
0
(0) = �2; x(1) + x

0
(1) = �2;

�x(
1

4
) = �x(tk) = 0:01

kxk
1 + kxk ;�x

0(
1

4
) = 0:01

kxk
1 + kxk ; k = 1; 2; :::; p: (17)

Here t 2 [0; 1]; let �1 = 1; �2 = 1; �1 = 1; �2 = 1; � = 3
2 ; � = 2; T = 1; �1; �2 = 0; L'; L'� ;= 0:01;

f(t; x)) = L
�
t2 + sin t+ 1 + tan�1 x

�
:

A simple calculations show that

LT :=

 
T

3
2�1

2�( 32 )
(1� e�2) (1 + 2:312) + 1

3
2�1

�( 32 )
2:312

!
0:01+(1 + 1:312) 0:01+(0:656 + 1:152 + 0:002) 0:01 < 1;
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where we used the inequality 0:88 < �( 32 ) < 0:89.
To apply Theorem 6 we need to show conditions (H1)�(H3) are satis�ed. Indeed, f is jointly continuous

and
(H1) jf(t; x)� f(t; y)j = 0:01

��tan�1x� tan�1y�� � 0:01jx� yj:
(H2) LT = 0:042 + 0:248 < 1:
Therefore, by (6), ISFDE (17) has a unique solution on [0; 1].
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The Differentiability and Gradient for Fuzzy Mappings

Based on The Generalized Difference of Fuzzy

Numbers ∗

Shexiang Hai†, Fangdi Kong

a School of Science, Lanzhou University of Technology, Lanzhou, 730050, P.R. China

Abstract In this paper, the concepts of differentiability and gradient for fuzzy mappings are presented

and discussed using the characteristic theorem for generalized difference of n dimensional fuzzy numbers.

The relationships of gradient, support-function-wise gradient and level-wise gradient are characterized.

Keywords: Fuzzy numbers, Fuzzy mappings, Differentiability, Gradient.

1. Introduction

Since the concept and operations of fuzzy set were introduced by Zadeh [1], many studies have focused

on the theoretical aspects and applications of fuzzy sets. Soon after, Zadeh proposed the notion of fuzzy

numbers in [2, 3, 4]. Since then, fuzzy numbers have been extensively investigated by many authors. Since

then, fuzzy numbers have been extensively investigated by many authors. Fuzzy numbers are a powerful

tool for modeling uncertainty and for processing vague or subjective information in mathematical models.

As part of the development of theories about fuzzy numbers and its applications, researchers began to

study the differentiability and integrability of fuzzy mappings. Initially, the derivative for fuzzy mappings

from an open subset of a normed space into the n dimension fuzzy number space En was developed by

Puri and Ralescu [5], which generalized and extended the concept of Hukuhara differentiability for set-

valued mappings. In 1987, Kaleva [6] discussed the G-derivative, and obtained a sufficient condition for

the H-differentiability of the fuzzy mappings from [a, b] into En as well as a necessary condition for the H-

differentiability of fuzzy mapping from [a, b] into E1. In 2003, Wang and Wu [7] put forward the concepts of

directional derivative, differential and sub-differential of fuzzy mappings from Rn into E1 by using Hukuhara

difference. However, the Hukuhara difference between two fuzzy numbers exists only under very restrictive

conditions [6] and the H-difference of two fuzzy numbers does not always exist [8]. The g-difference proposed

in [8, 9] overcomes these shortcomings of the above discussed concepts and the g-difference of two fuzzy

numbers always exists. Based on the novel generalizations of the Hukuhara difference for fuzzy sets, Bede

[10] introduced and studied new generalized differentiability concepts for fuzzy valued functions in 2013.

The purpose of the present paper is to use the fuzzy g-difference introduced in [10] to define and study

differentiability and gradient for fuzzy mappings. First of all, we give the preliminary terminology used in

the present paper. And then, in Section 3, the differentiability and gradient were presented and the relations

among gradient, support-function-wise gradient and level-wise gradient for fuzzy mappings are examined.

2. Preliminaries

In this section, basic definitions and operations for fuzzy numbers are presented [11, 12, 13, 14].

Throughout this paper, F (Rn) denote the set of all fuzzy subsets on n dimensional Euclidean space Rn.

A fuzzy subset ũ (in short, a fuzzy set) on Rn is a function ũ : Rn → [0, 1]. For each fuzzy sets ũ, we

∗This work is supported by National Natural Science Fund of China (11761047).
†Corresponding author. Tel.: +86 931 2973590. E-mail address: haishexiang@lut.cn.
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denote its r-level set as [ũ]r = {x ∈ Rn : ũ(x) ≥ r} for any r ∈ (0, 1]. The support of ũ is denoted by

suppũ = {x ∈ Rn : ũ(x) > 0}. The closure of suppũ defines the 0-level of ũ, i.e. [ũ]0 = cl(suppũ). Here

cl(M) denotes the closure of set M. Fuzzy set ũ ∈ F (Rn) is called a fuzzy number if

(1) ũ is a normal fuzzy set, i.e., there exists an x0 ∈ Rn such that ũ(x0) = 1,

(2) ũ is a convex fuzzy set, i.e., ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)} for any x, y ∈ Rn and λ ∈ [0, 1],

(3) ũ is upper semicontinuous ,

(4) [ũ]0 = cl(suppũ) = cl(
⋃
r∈(0,1][ũ]r) is compact.

We will denote En the set of fuzzy numbers [11, 12, 13].

It is clear that any u ∈ Rn can be regarded as a fuzzy number ũ defined by

ũ(x) =

{
1, x = u,

0, otherwise.

In particular, the fuzzy number 0̃ is defined as 0̃(x) = 1 if x = 0, and 0̃(x) = 0 otherwise.

Theorem 2.1.[6, 13] If ũ ∈ En, then

(1) [ũ]r is a nonempty compact convex subset of Rn for any r ∈ (0, 1],

(2) [ũ]r1 ⊆ [ũ]r2 , whenever 0 ≤ r2 ≤ r1 ≤ 1,

(3) if rk > 0 and rk is a nondecreasing sequence converging to r ∈ (0, 1], then
⋂∞
k=1[ũ]rn = [ũ]r.

Conversely, if {[A]r ⊆ Rn : r ∈ [0, 1]} satisfies the conditions (1)-(3), then there exists a unique ũ ∈ En

such that [ũ]r = [A]r for each r ∈ (0, 1] and [ũ]0 = cl(
⋃
r∈(0,1][ũ]r) ⊆ A0.

Let ũ, ṽ ∈ En and k ∈ R. For any x ∈ Rn, the addition ũ+ ṽ and scalar multiplication kũ can be defined,

respectively, as:

(ũ+ ṽ)(x) = sup
s+t=x

min{ũ(s), ṽ(t)},

(kũ)(x) = ũ(
x

k
), k 6= 0,

(0ũ)(x) =

{
0, x 6= 0,

1, x = 0.

It is well known that for any ũ, ṽ ∈ En and k ∈ R, the addition ũ+ ṽ and the scalar multiplication kũ have

the level sets

[ũ+ ṽ]r = [ũ]r + [ṽ]r = {x+ y : x ∈ [ũ]r, y ∈ [ṽ]r},

[kũ]r = k[ũ]r = {kx : x ∈ [ũ]r},

for any r ∈ [0, 1].

The Hausdorff distance D : En × En → [0,+∞) on En is defined by

D(ũ, ṽ) = sup
r∈[0,1]

d([ũ]r, [ṽ]r),

where d is the Hausdorff metric given by

d([ũ]r, [ṽ]r) = inf{ε : [ũ]r ⊂ N([ṽ]r, ε), [ṽ]r ⊂ N([ũ]r, ε)}

= max{supa∈[ũ]r infb∈[ṽ]r ‖a− b‖, supb∈[ṽ]r infa∈[ũ]r ‖a− b‖}.

N([ũ]r, ε) = {x ∈ Rn : d(x, [ũ]r) = infy∈[ũ]r d(x, y) ≤ ε} is the ε-neighborhood of [ũ]r. Then (En, D) is a

complete metric space, and satisfies D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ), D(kũ, kṽ) = |k|D(ũ, ṽ) for any ũ, ṽ, w̃ ∈ En

and k ∈ R.
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Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} be the unit sphere of Rn and 〈·, ·〉 be the inner product in Rn, i.e.

〈x, y〉 =
∑n
i=1 xiyi, where x = (x1, x2, · · ·, xn) ∈ Rn, y = (y1, y2, · · ·, yn) ∈ Rn. Suppose ũ ∈ En, r ∈ [0, 1]

and x ∈ Sn−1, the support function of ũ is defined by

ũ∗(r, x) = sup
a∈[ũ]r

〈a, x〉.

Theorem 2.2.[14] Suppose ũ ∈ En, r ∈ [0, 1], then

[ũ]r = {y ∈ Rn : 〈y, x〉 ≤ ũ∗(r, x), x ∈ Sn−1}.

The theorem below will give some basic properties of the support function.

Theorem 2.3.[14, 15] Suppose ũ ∈ En, then

(1) ũ∗(r, x+ y) ≤ ũ∗(r, x) + ũ∗(r, y),

(2) ũ∗(r, x) ≤ supa∈[ũ]r ‖ a ‖, i.e. ũ∗(r, x) is bounded on Sn−1 for each fixed r ∈ [0, 1],

(3) ũ∗(r, x) is nonincreasing and left continuous in r ∈ [0, 1], right continuous at r = 0, for each fixed

x ∈ Sn−1,
(4) ũ∗(r, x) is Lipschitz continuous in x, i.e.

|ũ∗(r, x)− ũ∗(r, y)| ≤ ( sup
a∈[ũ]r

‖a‖)‖x− y‖,

(5) if ũ, ṽ ∈ En, r ∈ [0, 1], then

d([ũ]r, [ṽ]r) = sup
x∈Sn−1

|ũ∗(r, x)− ṽ∗(r, x)|,

(6) (ũ+ ṽ)∗(r, x) = ũ∗(r, x) + ṽ∗(r, x),

(7) (kũ)∗(r, x) = kũ∗(r, x), for any k ≥ 0,

(8) −ũ∗(r,−x) ≤ ũ∗(r, x),

(9) (−ũ)∗(r, x) = ũ∗(r,−x).

Definition 2.1. [10] The generalized difference (g-difference for short) of two fuzzy numbers ũ, ṽ ∈ En is

given by its level sets as

[ũ	g ṽ]r = cl(
⋃
β≥r

([ũ]β 	gH [ṽ]β)), r ∈ [0, 1],

where the gH-difference 	gH is with interval operands [ũ]β and [ṽ]β .

Remark 2.1. A necessary condition for ũ	g ṽ to exist is that either [ũ]r contains a translate of [ṽ]r or [ṽ]r

contains a translate of [ũ]r for any r ∈ [0, 1].

Theorem 2.4. [15] Let ũ, ṽ ∈ En. If the g-difference ũ 	g ṽ of ũ and ṽ exists, then for any r ∈ [0, 1] and

x ∈ Sn−1, we have

(ũ	g ṽ)∗(r, x) =

{
(1) supβ≥r(ũ

∗(β, x)− ṽ∗(β, x)),

or (2) supβ≥r((−ṽ)∗(β, x)− (−ũ)∗(β, x)),

=

{
(1) supβ≥r(ũ

∗(β, x)− ṽ∗(β, x)),

or (2) supβ≥r(ṽ
∗(β,−x)− ũ∗(β,−x)).

Theorem 2.5.[15] Let ũ, ṽ ∈ En. Then

(1) if the g-difference exists, it is unique,

(2) ũ	g ũ = 0,

(3) (ũ+ ṽ)	g ṽ = ũ, (ũ+ ṽ)	g ũ = ṽ,

(4) ũ	g ṽ = −(ṽ 	g ũ).
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3. The differentiability and gradient for fuzzy mappings

In [5], Puri and Ralescu defined the g-derivative of fuzzy mappings from an open subset of a normed space

into n-dimension fuzzy number space En by using Hukuhara difference. In [7], Wang and Wu defined the

directional g-derivative of fuzzy mappings from Rn into E1. Based on the generalizations of the Hukuhara

difference for fuzzy sets, Bede [10] introduced and studied new generalized differentiability concepts for fuzzy

valued functions from R into E1. The new generalized differentiability concept is a useful and applicable

tool dealing with fuzzy differential equations and fuzzy optimization problems. In the following, using the

characteristic theorem for generalized difference of n dimensional fuzzy numbers introduced in [15], we define

and study differentiability and gradient for fuzzy mappings.

Definition 3.1. Let F̃ : M → En, t0 = (t01, t
0
2, · · · , t0m) ∈ intM and t = (t1, t2, · · · , tm) ∈ intM. If

g-difference F̃ (t)	g F̃ (t0) exists and there exist ũj ∈ En (j = 1, 2, · · · ,m), such that

lim
t→t0

D(F̃ (t)	g F̃ (t0),
∑m
j=1 ũj(tj − t0j ))

d(t, t0)
= 0,

then we say that F̃ is differentiable at t0 and the fuzzy vector (ũ1, ũ2, · · · , ũm) is the gradient of F̃ at t0,

denoted by ∇F̃ (t0), i.e., ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm).

Remark 3.1. Let F̃ : M → En, t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. Then the gradient ∇F̃ (t0) exists at t0 if and only if F̃ (t) 	g F̃ (t0) exists and there are

ũj ∈ En (j = 1, 2, · · · ,m), such that

ũj = lim
h→0

F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m)

h
.

Here the limit is taken in the metric space (En, D).

Theorem 3.1. The gradient ∇F̃ (t) of fuzzy mapping F̃ : M → En is unique if it exists.

Proof. Suppose we have two gradients (ũ1, ũ2, · · · , ũm) and (ṽ1, ṽ2, · · · , ṽm) for fuzzy mapping F̃ at t0.

For any ε > 0, according to Remark 3.1, there exist two positive real numbers δ1 and δ2, when |h| < δ1, we

have

D(F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m), hũj) <
|h|
2
ε (j = 1, 2, · · · ,m),

when |h| < δ2, we have

D(F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m), hṽj) <
|h|
2
ε (j = 1, 2, · · · ,m).

Setting |h| < min(δ1, δ2), we obtain,

D(ũj , ṽj)

= 1
|h|D(hũj , hṽj)

≤ 1
|h|D(F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m), hũj)

+ 1
|h|D(F̃ (t01, · · · , t0j + h, · · · , t0m)	g F̃ (t01, · · · , t0j , · · · , t0m), hṽj)

< ε.

Then ũj = ṽj (j = 1, 2, · · · ,m), which implies that the gradient ∇F̃ (t) of fuzzy mapping F̃ at t0 is unique.

Definition 3.2. Let F̃ : M → En, t0 = (t01, t
0
2, · · · , t0m) ∈ intM and t = (t1, t2, · · · , tm) ∈ intM. If there

exist ũj ∈ En (j = 1, 2, · · · ,m), such that

lim
t→t0

|F̃ (t)∗(r, x)− F̃ (t0)∗(r, x)−
∑m
j=1 ũ

∗
j (r, x)(tj − t0j )|

d(t, t0)
= 0,
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uniformly for any r ∈ [0, 1] and x ∈ Sn−1, then we say that F̃ is support-function-wise differentiable (s-

differentiable for short) at t0 and the fuzzy vector (ũ1, ũ2, · · · , ũm) is the support-function-wise gradient

of F̃ at t0, denoted by ∇sF̃ (t0), i.e., ∇sF̃ (t0) = (ũ1, ũ2, · · · , ũm).

Remark 3.2. Let F̃ : M → En, t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. Then the support-function-wise-gradient ∇sF̃ (t0) exists at t0 if and only if there are

ũj ∈ En (j = 1, 2, · · · ,m), such that

ũ∗j (r, x) = lim
h→0

F̃ (t01, · · · , t0j + h, · · · , t0m)∗(r, x)− F̃ (t01, · · · , t0j , · · · , t0m)∗(r, x)

h
,

uniformly for any r ∈ [0, 1] any x ∈ Sn−1.

Theorem 3.2. The support-function-wise gradient ∇sF̃ (t) of fuzzy mapping F̃ is unique if it exists.

Theorem 3.3. If fuzzy mapping F̃ : M → En is s-differentiable at t0 ∈ intM, then −F̃ is s-differentiable

at t0 and

∇s(−F̃ (t0)) = −∇sF̃ (t0).

Proof. If F̃ : M → En is s-differentiable at t0, then there exist ũj ∈ En (j = 1, 2, · · · ,m), such that

lim
t→t0

|F̃ (t)∗(r, x)− F̃ (t0)∗(r, x)−
∑m
j=1 ũ

∗
j (r, x)(tj − t0j )|

d(t, t0)
= 0,

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, where t = (t1, t2, · · · , tm) ∈ intM, then

F̃ (t)∗(r, x)− F̃ (t0)∗(r, x) =
m∑
j=1

ũ∗j (r, x)(tj − t0j ) + ◦(d(t, t0)),

uniformly for any r ∈ [0, 1] and x ∈ Sn−1. It follows from Theorem 2.3 that

(−F̃ (t))∗(r, x)− (−F̃ (t0))∗(r, x)

= F̃ (t)∗(r,−x)− F̃ (t0)∗(r,−x)

=
∑m
j=1 ũ

∗
j (r,−x)(tj − t0j ) + ◦(d(t, t0))

=
∑m
j=1(−ũj)∗(r, x)(tj − t0j ) + ◦(d(t, t0)),

uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Thus

lim
t→t0

|(−F̃ (t))∗(r, x)− (−F̃ (t0))∗(r, x)−
∑m
j=1(−ũj)∗(r, x)(tj − t0j )|

d(t, t0)
= 0,

uniformly for any r ∈ [0, 1] and x ∈ Sn−1, which implies that −F̃ is s-differentiable at t0 and ∇s(−F̃ (t0)) =

−∇sF̃ (t0).

Theorem 3.4. Let F̃ : M → En, t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. If the support-function-wise gradient ∇sF̃ (t) exists at t0 ∈ intM and g-difference

F̃ (t0 + h)	g F̃ (t0) exists, then the gradient ∇F̃ (t) of F̃ exists at t0 and we have

ũj = ṽj (j = 1, 2, · · · ,m),

where ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm), ∇sF̃ (t0) = (ṽ1, ṽ2, · · · , ṽm).

Proof. Let
F̃ (t)	gF̃ (t0)

h =
F̃ (t01,··· ,t

0
j+h,··· ,t

0
m)	gF̃ (t01,··· , t

0
j ,··· , t

0
m)

h = (ũj)h ∈ En. We can show that the class of

sets

Ar = {y ∈ Rn : 〈y, x〉 ≤ lim
h→0

(
F̃ (t)	g F̃ (t0)

h
)∗(r, x), x ∈ Sn−1}
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satisfies the conditions of Theorem 2.1.

(1) It follows from Theorem 2.1 that

[(ũj)h]r = {y ∈ Rn : 〈y, x〉 ≤ (
F̃ (t)	g F̃ (t0)

h
)∗(r, x), x ∈ Sn−1}

is a nonempty compact convex subset of Rn for any r ∈ (0, 1], then

Ar = {y ∈ Rn : 〈y, x〉 ≤ lim
h→0

(
F̃ (t)	g F̃ (t0)

h
)∗(r, x), x ∈ Sn−1}

is also a nonempty compact convex subset of Rn for any r ∈ (0, 1].

(2) When 0 ≤ r2 ≤ r1 ≤ 1, [(ũj)h]r1 ⊆ [(ũj)h]r2 , then

(
F̃ (t)	g F̃ (t0)

h
)∗(r1, x) ≤ (

F̃ (t)	g F̃ (t0)

h
)∗(r2, x).

for any x ∈ Sn−1. Thus,

lim
h→0

(
F̃ (t)	g F̃ (t0)

h
)∗(r1, x) ≤ lim

h→0
(
F̃ (t)	g F̃ (t0)

h
)∗(r2, x),

which implies that

Ar1 = {y ∈ Rn : 〈y, x〉 ≤ limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r1, x), x ∈ Sn−1}

⊆ {y ∈ Rn : 〈y, x〉 ≤ limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r2, x), x ∈ Sn−1}

= Ar2 .

(3) For any rk increasing to r ∈ (0, 1], since
⋂∞
k=1[(ũj)h]rk = [(ũj)h]r, that

lim
k→∞

(
F̃ (t)	g F̃ (t0)

h
)∗(rk, x) = (

F̃ (t)	g F̃ (t0)

h
)∗(r, x),

for any x ∈ Sn−1. Thus

lim
k→∞

lim
h→0

(
F̃ (t)	g F̃ (t0)

h
)∗(rk, x) = lim

h→0
(
F̃ (t)	g F̃ (t0)

h
)∗(r, x),

which implies that
∞⋂
k=1

Arn = Ar.

Then, there are ũj ∈ En, such that [ũj ]
r = Ar and [ũj ]

0 =
⋃
r∈(0,1][ũ]r ⊆ A0 (j = 1, 2, · · · ,m) for any

r ∈ (0, 1].

When h > 0, it follows from Theorem 2.3 that,

(
F̃ (t)	g F̃ (t0)

h
)∗(r, x) =

1

h
(F̃ (t)	g F̃ (t0))∗(r, x),

for any r ∈ [0, 1] and x ∈ Sn−1. For any r ∈ [0, 1] and x ∈ Sn−1, if taking

(F̃ (t)	g F̃ (t0))∗(r, x) = sup
β≥r

(F̃ (t)∗(β, x)− F̃ (t0)∗(β, x)),

then

ũ∗j (r, x) = limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r, x)

= limh→0 supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r ṽ
∗
j (β, x).
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According to Theorem 2.3, for any ε > 0, there is δ > 0, when h < δ, we have

D(
F̃ (t)	gF̃ (t0)

h , ũj)

= supr∈[0,1] supx∈Sn−1 |( F̃ (t)	gF̃ (t0)
h )∗(r, x)− ũ∗j (r, x)|

= supr∈[0,1] supx∈Sn−1 | supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h − supβ≥r ṽ

∗
j (β, x)|

< ε.

Then, the gradient ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm) of F̃ exists at t0 and we have

ũ∗j (r, x) = sup
β≥r

ṽ∗j (β, x) = ṽ∗j (r, x),

for any r ∈ [0, 1] and x ∈ Sn−1. On the other hand, for any r ∈ [0, 1] and x ∈ Sn−1, if taking

(F̃ (t)	g F̃ (t0))∗(r, x) = sup
β≥r

(F̃ (t0)∗(β,−x)− F̃ (t)∗(β,−x)),

we have from Theorem 2.3 and Theorem 2.5 that

ũ∗j (r, x) = limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r, x)

= limh→0
1
h (F̃ (t)	g F̃ (t0))∗(r, x)

= limh→0
1
h [−(F̃ (t0)	g F̃ (t))]∗(r, x)

= limh→0
1
h (F̃ (t0)	g F̃ (t))∗(r,−x)

= limh→0 supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r limh→0
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r ṽ
∗
j (β, x).

According to Theorem 2.3, for any ε > 0, there is δ > 0, when h < δ, we have

D(
F̃ (t)	gF̃ (t0)

h , ũj)

= supr∈[0,1] supx∈Sn−1 |( F̃ (t)	gF̃ (t0)
h )∗(r, x)− ũ∗j (r, x)|

= supr∈[0,1] supx∈Sn−1 | supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h − supβ≥r ṽ

∗
j (β, x)|

< ε.

Then, the gradient ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm) of F̃ exists at t0 and we have

ũ∗j (r, x) = sup
β≥r

ṽ∗j (β, x) = ṽ∗j (r, x),

for any r ∈ [0, 1] and x ∈ Sn−1. When h < 0, it follows from Theorem 2.3 and Theorem 2.5 that,

(
F̃ (t)	gF̃ (t0)

h )∗(r, x) = − 1
h (−(F̃ (t)	g F̃ (t0)))∗(r, x)

= − 1
h (F̃ (t0)	g F̃ (t))∗(r, x),

for any r ∈ [0, 1] and x ∈ Sn−1. For any r ∈ [0, 1] and x ∈ Sn−1, if taking

(F̃ (t)	g F̃ (t0))∗(r, x) = sup
β≥r

(F̃ (t)∗(β, x)− F̃ (t0)∗(β, x)),
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i.e.

(F̃ (t0)	g F̃ (t))∗(r, x) = sup
β≥r

(F̃ (t0)∗(β, x)− F̃ (t)∗(β, x)),

then

ũ∗j (r, x) = limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r, x)

= limh→0 supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r ṽ
∗
j (β, x).

According to Theorem 2.3, for any ε > 0, there is δ > 0, when −h < δ, we have

D(
F̃ (t)	gF̃ (t0)

h , ũj)

= supr∈[0,1] supx∈Sn−1 |( F̃ (t)	gF̃ (t0)
h )∗(r, x)− ũ∗j (r, x)|

= supr∈[0,1] supx∈Sn−1 | supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h − supβ≥r ṽ

∗
j (β, x)|

< ε.

Then, the gradient ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm) of F̃ exists at t0 and

ũ∗j (r, x) = sup
β≥r

ṽ∗j (β, x) = ṽ∗j (r, x),

for any r ∈ [0, 1] and x ∈ Sn−1. On the other hand, for any r ∈ [0, 1] and x ∈ Sn−1, if taking

(F̃ (t)	g F̃ (t0))∗(r, x) = sup
β≥r

(F̃ (t0)∗(β,−x)− F̃ (t)∗(β,−x)),

we have from Theorem 2.3 that

ũ∗j (r, x) = limh→0(
F̃ (t)	gF̃ (t0)

h )∗(r, x)

= limh→0[− 1
h (F̃ (t)	g F̃ (t0))∗(r, x)]

= limh→0[− 1
h supβ≥r(F̃ (t0)∗(β,−x)− F̃ (t)∗(β,−x))]

= limh→0 supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r limh→0
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h

= supβ≥r ṽ
∗
j (β, x).

According to Theorem 2.3, for any ε > 0, there is δ > 0, when −h < δ, we have

D(
F̃ (t)	gF̃ (t0)

h , ũj)

= supr∈[0,1] supx∈Sn−1 |( F̃ (t)	gF̃ (t0)
h )∗(r, x)− ũ∗j (r, x)|

= supr∈[0,1] supx∈Sn−1 | supβ≥r
F̃ (t)∗(β,x)−F̃ (t0)

∗(β,x)
h − supβ≥r ṽ

∗
j (β, x)|

< ε.

Then, the gradient ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm) of F̃ exists at t0 and

ũ∗j (r, x) = sup
β≥r

ṽ∗j (β, x) = ṽ∗j (r, x),

for any r ∈ [0, 1] and x ∈ Sn−1.
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The converse result of Theorem 3.4 is not necessarily true, and hence the g-differentiability and the

s-differentiability are not equivalent concepts.

Definition 3.3. Let F̃ : M → En, t0 = (t01, t
0
2, · · · , t0m) ∈ intM and t = (t1, t2, · · · , tm) ∈ intM. If for any

r ∈ [0, 1], F̃r(t)	gH F̃r(t0) (F̃r(t) = [F̃ (t)]r) exist and there exist ũj ∈ En (j = 1, 2, · · · ,m), such that

lim
t→t0

d(F̃r(t)	gH F̃r(t0),
∑m
j=1[ũj ]

r(tj − t0j ))
d(t, t0)

= 0,

uniformly for any r ∈ [0, 1], then we say that F̃ is level-wise differentiable at t0 and the fuzzy vector

(ũ1, ũ2, · · · , ũm) is the level-wise gradient of F̃ at t0, denoted by ∇lF̃ (t0), i.e., ∇lF̃ (t0) = (ũ1, ũ2, · · · , ũm).

Remark 3.3. Let F̃ : M → En, t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. Then the level-wise gradient ∇lF̃ (t) exists at t0 if and only if for any r ∈ [0, 1],

F̃r(t)	gH F̃r(t0) exist and there are ũj ∈ En (j = 1, 2, · · · ,m), such that

[ũj ]
r = lim

h→0

F̃r(t
0
1, · · · , t0j + h, · · · , t0m)	gH F̃r(t

0
1, · · · , t0j , · · · , t0m)

h
,

uniformly for any r ∈ [0, 1].

Here the limit is taken in the metric space (Knc , d).

Theorem 3.5. The level-wise gradient ∇sF̃ (t) of fuzzy mapping F̃ : M → En is unique if it exists.

Theorem 3.6. Let F̃ : M → En, t0 = (t01, · · · , t0j , · · · , t0m) ∈ intM and h ∈ R with t = (t01, · · · , t0j +

h, · · · , t0m) ∈ intM. If the level-wise gradient ∇lF̃ (t0) exists at t0 ∈ intM and g-difference F̃ (t) 	g F̃ (t0)

exists, then the gradient ∇F̃ (t) of F̃ exists at t0 and we have

ũj = ṽj (j = 1, 2, · · · ,m),

where ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm), ∇lF̃ (t0) = (ṽ1, ṽ2, · · · , ṽm).

Proof. According to Definition 2.1, for any ε > 0, there is δ > 0, when |h| < δ, we have

D(
F̃ (t01,··· ,t

0
j+h,··· ,t

0
m)	gF̃ (t01,··· , t

0
j ,··· , t

0
m)

h , ṽj)

= supr∈[0,1] d(cl(
⋃
β≥r

F̃β(t)	gH F̃β(t0)
h ), [ṽj ]

r)

≤ supr∈[0,1] supβ≥r d(
F̃β(t)	gH F̃β(t0)

h , [ṽj ]
β)

< ε.

Then, the gradient ∇F̃ (t0) = (ũ1, ũ2, · · · , ũm) of F̃ exists at t0 and ũj = ṽj (j = 1, 2, · · · ,m).

4. Conclusion

This article is to use the generalized difference of n dimensional fuzzy numbers introduced in Bede and

Stefanini [10] to define the differentiability and gradient for fuzzy mappings. Additionally, we have examined

the relationships between the concepts of gradient, support-function-wise gradient and level-wise gradient

for fuzzy mappings. The results from our study can be applied directly to fuzzy differential equations. The

next step for the continuation of the research direction proposed here is to investigate the sub-differential of

n dimensional fuzzy mappings and applications in the convex fuzzy programming.
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ABSTRACT

Our aim in this paper is to study the global stability character and the periodic nature of the solutions of the
di¤erence equation

xn+1 = axn�l +
b+ cxn�k

dxn�s + exn�t
; n = 0; 1; :::;

where the initial conditions x�r; x�r+1; x�r+2; :::; x0 are arbitrary positive real numbers; r = maxfl; k; s; tg is
nonnegative integer and a; b; c; d; e are positive constants:Finally, some numerical examples are presented and
graphed by Matlab.

Keywords: stability, periodic solutions, global attractor, di¤erence equations.

Mathematics Subject Classi�cation: 39A10; 40A05.

� � � � � � � � � � � � � � � � �

1. INTRODUCTION

Di¤erence equations or discrete dynamical systems are diversed �eld which impact almost every branch of pure
and applied mathematics. Every dynamical system an+1 = f(an) determines a di¤erence equation and vice
versa. Recently many researchers have studied the global attractivity, boundedness character and the periodic
nature of nonlinear di¤erence equations see for example [1-42]. One of the reasons for this is a prerequisite for
some approaches, which can be used in inspecting equations arising in real life situations that can be model
mathematically. The theory of di¤erence equations and dynamical systems is developed during the last thirty
years and there is no doubt that it will continue to play an important role in mathematical models describing
real life situations and in many applied sciences, such as biology, physiology, ecology, engineering, economics,
physics, probability theory, genetics, computers and resource allocation.

It is very interesting and attractive for the researcher to study the behavior and solution of nonlinear rational
di¤erence equations .Most of the real life phenomana has been solved by using these equations, examples include
in [3,7,11,12] . Recently, many researchers have investigated the asymptotic behavior and periodic nature of
rational di¤erence equations for example in [36] R. Khallaf Allah investigated the asymptotic behavior and
periodic nature of the following di¤erence equation

xn+1 =
xn�2

1� xnxn�1xn�2
:

G. Ladas et. al [8], investigated the asymptotic behavior and boundedness of the solution of the di¤erence
equation

xn =
(�+ �xn + xn�1)

(A+Bxn + Cxn�1)
:
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E. M. E. Zayed [33] studied thequalitative properties of the nonlinear di¤erence equation

xn+1 =
�xn��

� + xn��
:

Yalç¬nkaya [32] has studied the following di¤erence equation

xn+1 = �+
xn�m
xkn

:

Taixiang Sun et al [39] considered the class of nonlinear delay di¤erence equation

xn+1 =
Af1(xn; :::; xn�k) +Bf2(xn; :::; xn�k)f3(xn; :::; xn�k) + C

�f1(xn; :::; xn�k)f2(xn; :::; xn�k) + �f3(xn; :::; xn�k) + 
:

The goal of this paper is to determine the global stability character and the periodicity of the solutions of
the di¤erence equation

xn+1 = axn�l +
b+ cxn�k

dxn�s + exn�t
; n = 0; 1; :::; (1)

where the initial conditions x�r; x�r+1; x�r+2; :::; x0 are arbitrary positive real numbers; r = maxfl; k; s; tg is
nonnegative integer and a; b; c; d; e are positive constants:

" Here, we recall some basic de�nitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ir+1 ! I;

be a continuously di¤erentiable function. Then for every set of initial conditions x�r; x�r+1; :::, x0 2 I; the
di¤erence equation

xn+1 = F (xn; xn�1; :::; xn�r); n = 0; 1; :::; (2)

has a unique solution fxng1n=�r.
A point x 2 I is called an equilibrium point of Eq. (2) if

x = f(x; x; :::; x).

That is, xn = x for n � 0; is a solution of Eq. (2), or equivalently x is a �xed point of f .

Definition 1.1. (Periodicity) A sequence fxng1n=�k is said to be periodic with period p if xn+p = xn for all
n � �k:
Definition 1.2. (Stability) (i) The equilibrium point x of Eq. (2) is locally stable if for every � > 0; there
exists � > 0 such that for all x�r; x�r+1; :::; x�1, x0 2 I with

jx�r � xj+ jx�r+1 � xj+ :::+ jx0 � xj < �;

we have
jxn � xj < � for all n � �r:

(ii) The equilibrium point x of Eq. (2) is locally asymptotically stable if x is locally stable solution of Eq.(2)
and there exists  > 0; such that for all x�r; x�r+1; :::; x�1, x0 2 I with

jx�r � xj+ jx�r+1 � xj+ :::+ jx0 � xj < ;

we have
lim
n!1

xn = x:
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(iii) The equilibrium point x of Eq. (2) is global attractor if for all x�r; x�r+1; :::; x�1, x0 2 I; we have

lim
n!1

xn = x:

(iv) The equilibrium point x of Eq. (2) is globally asymptotically stable if x is locally stable, and x is also a
global attractor of Eq. (2).
(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

The linearized equation of Eq. (2) about the equilibrium x is the linear di¤erence equation

yn+1 =
rP
i=0

@F (x;x;:::;x)
@xn�i

yn�i: (3)

Theorem A [26]: Assume that p; q 2 R and r 2 f0; 1; 2; :::g. Then

jpj+ jqj < 1;

is a su¢ cient condition for the asymptotic stability of the di¤erence equation

xn+1 + pxn + qxn�r = 0; n = 0; 1; ::::

Remark 1. Theorem A can be easily extended to a general linear equations of the form

xn+r + p1xn+r�1 + :::+ prxn = 0; n = 0; 1; :::; (4)

where p1; p2; :::; pr 2 R and r 2 f1; 2; :::g: Then Eq.(4) is asymptotically stable provided that
rP
i=1

jpij < 1:

Consider the following equation

xn+1 = g(xn; xn�1; :::; xn�K); n = 0; 1; 2; :::: (5)

The following theorem will be useful for the proof of our results in this paper.

Theorem B [27]: Let [�; �] be an interval of real numbers and assume that

g : [�; �]k+1 ! [�; �]

is a continuous function satisfying the following properties :

(a) g(x1; x2; :::; xk+1) is non-increasing in one component (for example x�) for each xr (r 6= �) in [�; �];
and is non-increasing in the remaining components for each x� 2 [�; �]
(b) If (m; M) 2 [�; �]� [�; �] is a solution of the system

M = g(m; m; :::; m; M; m; :::; m; m) and m = g(M; M; :::; M; m; M; :::; M; M);

then
m =M:

Then Eq. (5) has a unique equilibrium x 2 [�; �] and every solution of Eq. (5) converges to x."
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2. LOCAL STABILITY OF THE EQUILIBRIUM POINT OF EQ. (1)

In this section we study the local stability character of the solutions of Eq. (1). The equilibrium points of Eq.
(1) are given by the relation

x = ax+
b+ cx

dx+ ex
:

If a 6= 1; d+ e� ae� ad 6= 0; then the positive equilibrium point of Eq. (1) is given by

x =
�c+

p
4be+ 4bd+ c2 � 4abe� 4abd
2 (a� 1) (d+ e) :

Let f : (0; 1)4 �! (0; 1) be a function de�ned by

f(u0; u1; u2; u3) = au0 +
b+ cu1
du2 + eu3

:

Then we see that at x = �c+
p
4be+4bd+c2�4abe�4abd
2(a�1)(d+e)

@f(x; x; x; x)

@u0
= a = �c0;

@f(x; x; x; x)

@u1
=

2c(a(d+ e)� 1)�
�c+

p
(4be+ 4bd+ c2 � 4abe� 4abd)

�
(d+ e)

= �c1

@f(x; x; x; x)

@u2
= �

(2(a(d+ e)� 1))d
�
c
p
(4be+ 4bd+ c2 � 4abe� 4abd) + 2ba(d+ e)� c2 � 2b

�
(d+ e)2

�
�c+

p
4be+ 4bd+ c2 � 4abe� 4abd

�2 = �c2;

@f(x; x; x; x)

@u3
= � (2(a(d+ e)� 1))e(c

p
(4be+ 4bd+ c2 � 4abe� 4abd) + 2ba(d+ e)� c2 � 2b)

(d+ e)2
�
�c+

p
4be+ 4bd+ c2 � 4abe� 4abd

�2 = �c3

Then the linearized equation of Eq.(1) about x is

yn+1 + c0yn�l + c1yn�k + c2yn�s + c3yn�t = 0:

3. EXISTENCE OF PERIODIC SOLUTIONS

In this section we study the existence of periodic solutions of Eq. (1).

Theorem 3.1. Eq. (1) has a prime period two solutions if and only if

c2(a+ 1)� 4a2b(d+ e) > 0; k; l; s; t� even. (7)

Proof: First suppose that there exists a prime period two solution

:::; p; q; p; q; :::;

of Eq. (1). We will prove that Condition (7) holds.

We see from Eq. (1) ( when k; l; s; t�even ) that

p = aq +
b+ cq

dq + eq
; q = ap+

b+ cp

dp+ ep

Then

p = aq +
b+ cq

(d+ e)q
; q = ap+

b+ cp

(d+ e)p
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(d+ e)pq = a(d+ e)q2 + b+ cq; (8)

and
(d+ e)pq = a(d+ e)p2 + b+ cp: (9)

Subtracting (9) from (8) gives
0 = a(d+ e)(p2 � q2) + c(p� q).

Since p 6= q; it follows that
p+ q = � c

a(d+ e)
: (10)

Again; adding (8) and (9) yields

2(d+ e)pq = a(d+ e)(p+ q)2 � 2a(d+ e)pq + 2b+ c(p+ q) (11)

It follows by (10); (11) and the relation p2 + q2 = (p+ q)2 � 2pq for all p; q 2 R that

pq =
b

(a+ 1)(d+ e)
: (12)

Now it is clear from Eq. (10) and Eq. (12) that p and q are the two positive distinct roots of the quadratic
equation

t2 +
�

c
a(d+e)

�
t+

�
b

(a+1)(d+e)

�
= 0; (13)

a(d+ e)(a+ 1)t2 + c(a+ 1)t+ ab = 0;

and so
(c(a+ 1))

2 � 4a2b(d+ e)(a+ 1) > 0

thus
c2(a+ 1)� 4a2b(d+ e) > 0

Therefore Inequality (7) holds.

Second suppose that Inequality (7) is true. We will show that Eq. (1) has a prime period two solution.
Assume that

p =
�c(a+ 1) +

p
�

2a(a+ 1)(d+ e)
=
�cA+

p
�

2aAB
;

and

q =
�cA�

p
�

2aAB
; where A = (a+ 1); B = (d+ e)

where � = c2(a+ 1)2 � 4a2b(a+ 1)(d+ e):
We see from Inequality (7) that

(c(a+ 1))
2 � 4a2b(d+ e)(a+ 1) > 0

then after dividing by (a+ 1)we see that

) c2 > 4a2b(d+ e)

Therefore p and q are distinct real numbers.
Set

x�l = p; x�l+1 = q; ; x�k = p; x�k+1 = q;

x�s = p; x�s+1 = q; x�t = p; x�t+1 = q and x0 = p:
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We wish to show that
x1 = x�1 = q and x2 = x0 = p:

It follows from Eq. (1) that

x1 = ax�l +
b+ cx�k

dx�s + ex�t
= ap+

b+ cp

dp+ ep
= ap+

b+ cp

(d+ e)p

= ap+
b+ c(�cA+

p
�

2aAB )

(d+ e)
�
�cA+

p
�

2aAB

� :
Multiplying the denominator and numerator of the right side by 2aAB gives

x1 = ap+
2abAB+c(�cA+

p
�)

(d+e)(�cA+
p
�)

;

Multiplying the denominator and numerator of the right side by (�cA�
p
�)

and by Replacing A = (a + 1) , B = (d + e) and � = c2(a + 1)2 � 4a2b(a + 1)(d + e)in denominator and
numerator of above equation gives

x1 = ap+ 2abAB(�cA�
p
�)+c(c2A2��)

(d+e)(c2A2��) ;

= ap+ 2ab(a+1)(d+e)(�cA�
p
�)+c(c2(a+1)2�c2(a+1)2+4a2b(a+1)(d+e))

(d+e)(c2(a+1)2�c2(a+1)2+4a2b(a+1)(d+e)) ;

= ap+ 2ab(a+1)(d+e)(�cA�
p
�)+4a2bc(a+1)(d+e)

4a2b(a+1)(d+e)2 ;

Dividing numerator and denominator by (2ab(a+ 1)(d+ e)) we get

= ap+ �cA�
p
�+2ac

2a(d+e)

= 2a2(d+e)p�cA�
p
�+2ac

2a(d+e)

Now inserting the value of p we get

x1 =
1

2a(d+ e)

�
�ca(a+1)+a

p
��c(a+1)2�(a+1)

p
�+2ac(a+1)

(a+1)

�
=

1

2a(a+ 1)(d+ e)

�
�
p
� � c(a+ 1)2 + ca(a+ 1)

�
=

�
p
� � c(a+ 1)

2a(a+ 1)(d+ e)

But (a+ 1) = A and (d+ e) = B we get

x1 =
�cA�

p
�

2aAB = q

Similarly as before one can easily show that
x2 = p:

Then it follows by induction that

x2n = p and x2n+1 = q for all n � �1:
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Thus Eq. (1) has the positive prime period two solution

...; p; q; p; q; ...,

where p and q are the distinct roots of the quadratic equation (13) and the proof is completed.

The following Theorems can be proved similarly.

Theorem 3.2. Eq. (1) has a prime period two solutions if and only if

c2 + 4b(d+ e)(1� a) > 0 (l; k; s; t� odd).

Theorem 3.3. Eq. (1) has a prime period two solutions if and only if

c2(d� e)(1 + a)� 4(b(ad+ e)2 � ec2) > 0 (l; k; s� even and t� odd).

Theorem 3.4. Eq. (1) has a prime period two solutions if and only if

c2(e� d)(1 + a)� 4(b(ae+ d)2 � c2d) > 0 (l; k; t� even and s� odd).

Theorem 3.5. Eq. (1) has a prime period two solutions if and only if

c2(1 + a)� 4a(ab(d+ e) + c2) > 0 (l; s; t� even and k � odd).

Theorem 3.6. Eq. (1) has a prime period two solutions if and only if

c2(e� d)� 4bd2(1� a) > 0 (l; k; s� odd and t� even).

Theorem 3.7. Eq. (1) has a prime period two solutions if and only if

c2(d� e)� 4be2(1� a) > 0 (l; k; t� odd and s� even).

Theorem 3.8. Eq. (1) has a prime period two solutions if and only if

c2 � 4(b(d+ e)(a� 1) + c2) > 0 (l; s; t� odd and k � even).

Theorem 3.9. Eq. (1) has a prime period two solutions if and only if

c2(1 + a) + 4b(d+ e) > 0 (k; s; t� odd and l � even).

Theorem 3.10. Eq. (1) has a prime period two solutions if and only if

c2(1 + a)� 4(c2 � b(d+ e)) > 0 (l; k � even and s; t� odd).

Theorem 3.11. Eq. (1) has a prime period two solutions if and only if

c2(1 + a)(d� e)� 4(b(ad+ e)2 + ac2d) > 0 (l; s� even and k; t� odd).
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Theorem 3.12. Eq. (1) has a prime period two solutions if and only if

c2(e� d)� 4e(be(a� 1) + c2) > 0 (s; k � even and l; t� odd).

Theorem 3.13. Eq. (1) has a prime period two solutions if and only if

c2(d� e)� 4d(bd(a� 1) + c2) > 0 (l; s� odd and k; t� even).

Theorem 3.14. Eq. (1) has a prime period two solutions if and only if

c2(a+ 1)(e� d)� 4(b(ae+ d)2 + ac2e) > 0 (s; k � odd and l; t� even).

Theorem 3.15. Eq. (1) has no prime period two solutions if one of the following statements holds

(i) c 6= 0 (k; s; t� even and l � odd),

(ii) c 6= 0 (s; t� even and l; k � odd).

4. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQ. (1)

In this section we investigate the global attractivity character of solutions of Eq. (1).

Theorem 4.1. The equilibrium point x of Eq. (1) is global attractor:

Proof: Let p; q are a real numbers and assume that f : [p; q]4 �! [p; q] be a function de�ned by

f(u0; u1; u2; u3) = au0 +
b+ cu1
du2 + eu3

:

We can easily see that the function f(u0; u1; u2; u3) increasing in u0; u1 and decreasing in u2; u3.

Suppose that (m; M) is a solution of the system

m = f(m; m; M; M) and M = f(M; M; m; m):

Then from Eq. (1), we see that

m = am+
b+ cm

(d+ e)M
; M = aM +

b+ cM

(d+ e)m
;

That is

(1� a)m =
b+ cm

(d+ e)M
; (1� a)M =

b+ cM

(d+ e)m
;

or,
b+ cm = b+ cM

Thus m = M: It follows by the Theorem B that x is a global attractor of Eq. (1) and then the proof is
complete.
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5.NUMERICAL EXAMPLES
For con�rming the results of this paper, we consider numerical examples which represent di¤erent types of
solutions to Eq. (1).

Example 1. We assume l = 5; k = 4; s = 3; t = 5; x�5 = 6; x�4 = 9; x�3 = 8; x�2 = 9; x�1 = 12; x�1 =
4; a = 0:1; b = 0:2; c = 0:9; d = 0:7 e = 0:8. [See Fig. 1]
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Example 2. See Fig. 2, since l = 1; k = 2; s = 1; t = 3; x�3 = 1:2; x�2 = 0:7; x�1 = 8:5; x0 = 5; a =
1:6; b = 0:2; c = 0:9; d = 0:09, e = 0:01:

Example 3. See Fig. 3, since l = 1; k = 2; s = 1; t = 1 x�3 = 12; x�2 = 7; x�1 = 8; x0 = 3; a = 0:1; b =
0:2; c = 0:5; d = 0:6; e = 0:2.

Example 4. Fig. 4. shows the solutions when a = 0:1; b = 0:2; c = 0:5; d = 0:6; e = 0:9; l = 4; k = 2; s =
4; t = 2; x�4 = p; x�3 = q; x�2 = p; x�1 = q; x0 = p:

Since
�
p; q =

�c(a+1)�
p
c2(a+1)2�4a2b(a+1)(d+e)
2a(a+1)(d+e)

�

n
0 10 20 30 40 50 60 70 80 90 100

x(
n)

0

5

10

15

20

25
plot of x(n+1)= a.X(nl)+((b+c.X(nk))/((d.X(ns)+e.X(nt))))

Figure 3.

n
0 5 10 15 20 25 30 35 40 45 50

x(
n)

3.5

3

2.5

2

1.5

1

0.5

0
plot of x(n+1)= a.X(nl)+((b+c.X(nk))/((d.X(ns)+e.X(nt))))

Figure 4.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

302 El-Dessoky ET AL 294-304



Acknowledgements
This article was funded by the Deanship of Scienti�c Research (DSR), King Abdulaziz University, Jeddah. The
authors, therefore, acknowledge with thanks DSR technical and �nancial support.

REFERENCES
1. R. Abo-Zeid, Global Attractivity of a Higher-Order Di¤erence Equation, Discrete Dyn. Nat. Soc., Vol., 2012
(2012), Article ID 930410, 11 pages.

2. M. Aloqeili, Global stability of a rational symmetric di¤erence equation, Appl. Math. Comp., 215, (2009),
950-953.

3. M. Aprahamian, D. Souroujon, and S. Tersian, Decreasing and fast solutions for a second-order di¤erence
equation related to Fisher-Kolmogorov�s equation, J. Math. Anal. Appl., 363, (2010), 97-110.

4. H. Chen and H. Wang, Global attractivity of the di¤erence equation xn+1 =
xn+�xn�1
�+xn

, Appl. Math. Comp.,
181, (2006), 1431�1438.

5. C. Cinar, On the positive solutions of the di¤erence equation xn+1 =
axn�1

1+bxnxn�1
; Appl. Math. Comp., 156,

(2004), 587-590.
6. S. E. Das and M.Bayram, On a System of Rational Di¤erence Equations, World Applied Sciences Journal,
10(11), (2010), 1306-1312.

7. Q. Din, and E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and
Software, 4 (2) (2014), 89�103.

8. G. Ladas, E. Camouzis and H. D. Voulov, On the dynamic of xn =
(�+�xn+xn�1)
(A+Bxn+Cxn�1)

J. Di¤erence Equations
and Appl., 9, (2003), 731-738.

9. E. M. E. Zayed and M. A. El-Moneam, On the qualitative study of the nonlinear di¤erence equation
xn+1 =

�xn��
� + xn��

Fasciculi Mathematici, 50, (2013), 137-147.

10. E. M. Elabbasy, H. El-Metwally and M. Elsayed, On the Di¤erence Equation xn+1 =
a0xn+a1xn�1+:::+akxn�k
b0xn+b1xn�1+:::+bkxn�k

,
Mathematica Bohemica, 133(2), (2008), 133-147.

11. Miron B. Bekker, Martin J. Bohner, Hristo D. Voulov, Asymptotic behavior of solutions of a rational system
of dixoerence equations, J. Nonlinear Sci. Appl., 7, (2014), 379-382.

12. H. El-Metwally and M. M. El-A��, On the behavior of some extension forms of some population models,
Chaos, Solitons and Fractals, 36, (2008), 104�114.

13. H. El-Metwally and E. M. Elsayed, Form of solutions and periodicity for systems of di¤erence equations,
Journal of Computational Analysis and Applications, 15(5), (2013), 852-857.

14. E. A. Grove and G. Ladas, Periodicities in Nonlinear Di¤erence Equations, Chapman & Hall / CRC Press,
2005.

15. A. S. Kurbanli, C. Cinar and I. Yalçinkaya, On the behavior of positive solutions of the system of rational
di¤erence equations, Math. Comput. Mod., 53, (2011),1261-1267.

16. E. M. Elsayed and H. El-Metwally, Global Behavior and Periodicity of Some Di¤erence Equations, Journal
of Computational Analysis and Applications, 19 (2), (2015), 298-309.

17. E. M. Elsayed, Dynamics of a Recursive Sequence of Higher Order, Communications on Applied Nonlinear
Analysis, 16 (2), (2009), 37�50.

18. I. Yalcinkaya, On the global asymptotic stability of a second-order system of di¤erence equations, Discrete
Dyn. Nat. Soc., Vol. 2008, (2008), Article ID 860152,12 pages.

19. E. M. Elsayed, Qualitative behavior of di¤erence equation of order two, Mathematical and Computer Mod-
elling, 50, (2009), 1130�1141.

20. R. Karatas, C. Cinar and D. Simsek, On positive solutions of the di¤erence equation xn+1 =
xn�5

1 + xn�2xn�5
;

Int. J. Contemp. Math. Sci., 1(10), (2006), 495-500.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

303 El-Dessoky ET AL 294-304



21. V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Di¤erence Equations of Higher Order with Appli-
cations, Kluwer Academic Publishers, Dordrecht, 1993.

22. M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Di¤erence Equations with Open
Problems and Conjectures, Chapman & Hall / CRC Press, 2001.

23. A. S. Kurbanli, On the Behavior of Solutions of the System of Rational Di¤erence Equations, World Applied
Sciences Journal, 10 (11). (2010), 1344-1350.

24. R. Memarbashi, Su¢ cient conditions for the exponential stability of nonautonomous di¤erence equations,
Appl. Math. Lett., 21, (2008), 232�235.

25. A. Neyrameh, H. Neyrameh, M. Ebrahimi and A. Roozi, Analytic solution di¤usivity equation in rational
form, World Applied Sciences Journal, 10 (7), (2010), 764-768.

26. M. Saleh and M. Aloqeili, On the di¤erence equation yn+1 = A +
yn
yn�k

with A < 0, Appl. Math. Comp.,

176, (2006), 359�363.

27. M. Saleh and M. Aloqeili, On the di¤erence equation xn+1 = A+
xn
xn�k

, Appl. Math. Comp., 171, (2005),

862-869.
28. T. Sun and H. Xi, On convergence of the solutions of the di¤erence equation xn+1 = 1 +

xn�1
xn

, J. Math.

Anal. Appl., 325, (2007), 1491�1494.
29. C. Wang, S. Wang, L. LI, Q. Shi, Asymptotic behavior of equilibrium point for a class of nonlinear di¤erence

equation, Adv. Di¤er. Equ., Vol. 2009, (2009), Article ID 214309, 8 pages.
30. C. Wang, S. Wang, Z. Wang, H. Gong, R. Wang, Asymptotic stability for a class of nonlinear di¤erence

equation, Discrete Dyn. Nat. Soc., Vol. 2010, (2010), Article ID 791610, 10 pages.
31. I. Yalç¬nkaya, On the global asymptotic stability of a second-order system of di¤erence equations, Discrete

Dyn. Nat. Soc., Vol. 2008, (2008), Article ID 860152, 12 pages.
32. I. Yalç¬nkaya, On the di¤erence equation xn+1 = � + xn�m

xkn
, Discrete Dyn. Nat. Soc., Vol. 2008, (2008)

Article ID 805460, 8 pages, doi: 10.1155/2008/ 805460.
33. E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 =

�+�xn+xn�1
A+Bxn+Cxn�1

; Commu-
nications on Applied Nonlinear Analysis, 12 (4), (2005), 15�28.

34. E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 =
�xn+�xn�1+xn�2+�xn�3
Axn+Bxn�1+Cxn�2+Dxn�3

;
Comm. Appl. Nonlinear Analysis, 12, (2005), 15-28.

35. M. Garic-Demirovic,M. Nurkanovic, Dynamics of an anti-competitive two dimensional rational system of
di¤erence equations, Sarajevo J. Math., 7(19), (2011),39-56.

36. R. Khalllaf Allah, Asynmptotic behavior and periodic nature of two di¤erence equations, Ukranian Mathe-
matical Journal 61(6), (2009), 988-993.

37. M. M. El-Dessoky, Dynamics and Behavior of the Higher Order Rational Di¤erence equation, J. Comput.
Anal. Appl., Vol., 21(4), (2016), 743-760.

38. M. M. El-Dessoky and Aatef Hobiny, On the Di¤erence equation xn+1 = �xn+�xn�l+xn�k+
axn�l+bxn�k
cxn�l+dxn�k

,
J. Comput. Anal. Appl., Vol., 24(4), (2018), 644-655.

39. Taixiang Sun, H. Xi, Hu. Wu, C. Han, Stability of solutions for a family of nonlinear delay di¤erence
equations, Dyn. Cont. Discrete. Impu. Syst., 15, (2008), 345-351.

40. M. M. El-Dessoky, On the Di¤erence equation xn+1 = axn�l + bxn�k +
cxn�s

dxn�s�e , Math. Meth. Appl. Sci.,
40(3), (2017), 535�545.

41. E. M. Elsayed, M. M. El-Dessoky and Asim Asiri, Dynamics and Behavior of a Second Order Rational
Di¤erence equation, J. Comput. Anal. Appl., Vol., 16(4), (2014), 794-807.

42. E. M. Elsayed, M. M. El-Dessoky and Ebraheem O. Alzahrani, The Form of The Solution and Dynamics of
a Rational Recursive Sequence, J. Comput. Anal. Appl., Vol., 17(1), (2014), 172-186.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

304 El-Dessoky ET AL 294-304



Asymptotic Representations for Fourier Approximation of
Functions on the Unit Square ∗

Zhihua Zhang
College of Global Change and Earth System Science, Beijing Normal University, Beijing, China, 100875

E-mail: zhangzh@bnu.edu.cn

Abstract. In this paper, for any smooth function on [0, 1]2, we give an asymptotic representation

of hyperbolic cross approximations of its Fourier series whose principal part is determined by the values

of the function at vertexes of [0, 1]2 and present a novel approach to estimates of the upper bounds of

approximation errors. At the same time, we also give an asymptotic formula of partial sum approxima-

tions whose principal part is determined by not only partial derivatives at vertexes of [0, 1]2, but also

mean values on each side. Comparing asymptotic representations of these two kinds of approximation,

we find that although in general the hyperbolic cross approximation is better than the partial sum ap-

proximation, the partial sum approximation possibly work better under some cases, and we also give the

corresponding necessary and sufficient condition to characterize these cases.

1. Introduction

For a function f on [0, 1]2, regardless of how smooth it is, by the Riemann-Lebesgue lemma, we only

know that its Fourier coefficients cmn(f) = o(1). In this paper, we first obtain a precise asymptotic

formula of the Fourier coefficients (see Theorem 2.2) by using our novel decomposition formula of f :

f(x, y) =





q(x, y) + τ(x, y) (x, y) ∈ [0, 1]2,

q(x, y) (x, y) ∈ ∂([0, 1]2),

where q(x, y) is a combination of the boundary function and four simple polynomial factors x, 1 − x, y,

and 1 − y. After that, we will discuss further two kinds of Fourier approximations of functions on the

unit square.

The sparse approximation has received much attention in recent years [1,6,7,8]. As an approximation

tool, hyperbolic cross truncations of Fourier series has obvious advantages over partial sums of Fourier
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Ministry. Zhihua Zhang is an associate editor of “EURASIP Journal on Advances in Signal Processing” (Springer, SCI-
indexed), an editorial board member in applied mathematics of “SpringerPlus” (Springer, SCI-indexed) and an editorial
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series since the hyperbolic cross truncations [8]:

s
(h)
N (f ;x, y) =

N∑

|m|=0

cm0(f) e2πimx +
N∑

|n|=1

c0n(f) e2πiny +
∑

1≤|mn|≤N

cmn(f) e2πi(mx+ny) (1.1)

can make full use of the decay of Fourier coefficients to reconstruct the target function f .

Throughout this paper, we always assume that f ∈ C(3,3)([0, 1]2) which means that ∂fi+j

∂xi∂yj (0 ≤ i, j ≤
3) are continuous on [0, 1]2. We will show that, for the hyperbolic cross truncations of its Fourier series,

the following asymptotic representation holds (see Theorem 3.1):

‖ f − s
(h)
N (f) ‖22=

1
4π4

(f(0, 0) + f(1, 1)− f(0, 1)− f(1, 0))2
log2 Nd

Nd
+ O

(
log Nd

Nd

)
, (1.2)

where Nd is the number of Fourier coefficients in s
(h)
N (f) and ‖ F ‖22=

∫ 1

0

∫ 1

0
|F (x, y)|2dxdy.

For the partial sum approximation of the Fourier series of f on [0, 1]2, we will give another asymptotic

representation. The corresponding principal part will become more complicated. It depends on not only

values of function f and its partial derivatives ∂f
∂x and ∂f

∂y at vertexes of [0, 1]2, but also the mean values

of f on each side of the boundary ∂([0, 1]2) (in detail, see Theorem 4.1).

Comparing asymptotic representations of two kinds of Fourier approximations, we find that for hyper-

bolic cross approximation, the approximation order is log2 Nd

Nd
, while for the partial sum approximation,

in general the approximation order is 1√
Nd

, and under some cases the approximation order is 1
Nd

. More-

over, we further give a corresponding necessary and sufficient condition for these cases (see Corollary 4.2).

2. Asymptotic representation of Fourier coefficients

Let f ∈ C(3,3)([0, 1]2). Expand f into Fourier series: f(x, y) =
∑
m,n

cmn e2πi(mx+ny), where

cmn(f) =
∫ 1

0

∫ 1

0

f(x, y) e−2πi(mx+ny)dxdy

and
∑
m,n

means
∞∑

m=−∞

∞∑
n=−∞

. We extend f from [0, 1]2 to R2. Then f is a function on the whole plane

R2 with period 1 and f is discontinuous at the integral points {m,n}m,n∈Z. By the Riemann-Lebesgue

lemma, we only know that cmn(f) = o(1) as m → 0 or n →∞, where “o” means high-order infinitesimal.

To obtain the precise asymptotic formula of Fourier coefficients, we construct a combination q(x, y) of the

boundary functions f(x, 0), f(x, 1), f(0, y), f(1, y) and factors x, (1−x), y, (1−y) such that the difference

f(x, y)− q(x, y) vanishes on the boundary ∂([0, 1]2).

Now we define three functions as follows.

q1(x, y) = (f(x, 0)− f(0, 0)(1− x)− f(1, 0)x)(1− y) + (f(x, 1)− f(0, 1)(1− x)− f(1, 1)x)y,

q2(x, y) = (f(0, y)− f(0, 0)(1− y)− f(0, 1)y)(1− x) + (f(1, y)− f(1, 0)(1− y)− f(1, 1)y)x,

q3(x, y) = f(0, 0)(1− x)(1− y) + f(0, 1)(1− x)y + f(1, 0)x(1− y) + f(1, 1)xy.

(2.1)

Then q(x, y) = q1(x, y) + q2(x, y) + q3(x, y) is the desired function, i.e., we have the following theorem.
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Theorem 2.1. Let f be defined on [0, 1]2 and q(x, y) be stated as above. Then τ(x, y) = f(x, y) −
q(x, y) vanished on the boundary ∂([0, 1]2).

From this, we deduce that if f ∈ C(3,3)([0, 1]2), then τ(x, y) ∈ C(3,3)([0, 1]2) and satisfies that for

i = 1, 2, 3,
∂iτ
∂xi (x, 0) = ∂iτ

∂xi (x, 1) = 0 (0 ≤ x ≤ 1),

∂iτ
∂yi (0, y) = ∂iτ

∂yi (1, y) = 0 (0 ≤ y ≤ 1).
(2.2)

Now we further explain the relationship between q(x, y) and f(x, y). By (2.1), it follows that
∂q
∂x (x, y) = ∂f

∂x (x, 0)(1− y) + ∂f
∂x (x, 1)y − f(0, y) + f(1, y)

+(f(0, 0)− f(1, 0))(1− y) + (f(0, 1)− f(1, 1))y,

∂q
∂y (x, y) = ∂f

∂y (0, y)(1− x) + ∂f
∂y (1, y)x− f(x, 0) + f(x, 1)

+(f(0, 0)− f(0, 1))(1− x) + (f(1, 0)− f(1, 1))x,

∂2q
∂x∂y (x, y) = −∂f

∂x (x, 0) + ∂f
∂x (x, 1)− ∂f

∂y (0, y) + ∂f
∂y (1, y)

−f(0, 0) + f(1, 0) + f(0, 1)− f(1, 1),

∂3q
∂x2∂y (x, y) = −∂2f

∂x2 (x, 0) + ∂2f
∂x2 (x, 1),

∂3q
∂x∂y2 (x, y) = −∂2f

∂y2 (0, y) + ∂2f
∂y2 (1, y),

∂4q
∂x2∂y2 (x, y) = 0.

From this, we get

∂2q
∂x∂y (1, 1)− ∂2q

∂x∂y (1, 0)− ∂2q
∂x∂y (0, 1) + ∂2q

∂x∂y (0, 0) = 0,

∂q
∂x (1, y)− ∂q

∂x (0, y) =
(

∂f
∂x (1, 0)− ∂f

∂x (0, 0)
)

(1− y) +
(

∂f
∂x (1, 1)− ∂f

∂x (0, 1)
)

y,

∂q
∂y (x, 1)− ∂q

∂y (x, 0) =
(

∂f
∂y (0, 1)− ∂f

∂y (0, 0)
)

(1− x) +
(

∂f
∂y (1, 1)− ∂f

∂y (1, 0)
)

x.

(2.3)

Since cmn(f) = cmn(q) + cmn(τ) and cmn(q) = cmn(q1) + cmn(q2) + cmn(q3), by (2.1),

cmn(q1) = cm(R(x, 0))cn(1− y) + cm(R(x, 1))cn(y), (2.4)

where

R(x, ν) = f(x, ν)− f(0, ν)(1− x)− f(1, ν)x (ν = 0, 1). (2.5)

Since R(0, ν) = R(1, ν),

cm(R(x, ν)) =
∫ 1

0
R(x, ν) e−2πimxdx = 1

2πim

∫ 1

0
∂R
∂x (x, ν) e−2πimxdx

= 1
4π2m2

(
∂R
∂x (1, ν)− ∂R

∂x (0, ν)− ∫ 1

0
∂2R
∂x2 (x, ν) e−2πimxdx

)
(m 6= 0),

c0(R(x, ν)) =
∫ 1

0
f(x, ν)dx− 1

2 (f(0, ν) + f(1, ν)).
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Noticing that ∂R
∂x (x, ν) = ∂f

∂x (x, ν) + f(0, 0)− f(1, ν), we get

∂R
∂x (1, ν)− ∂R

∂x (0, ν) = ∂f
∂x (1, ν)− ∂f

∂x (0, ν),

∂2R
∂x2 (x, ν) = ∂2f

∂x2 (x, ν) (ν = 0, 1).

Since mth Fourier coefficients of (1−x) and x are 1
2πim and − 1

2πim (m 6= 0), respectively, we get by (2.5)

cm(R(x, ν)) =
1

4π2m2

(
∂f

∂x
(1, ν)− ∂f

∂x
(0, ν)−

∫ 1

0

∂2f

∂x2
(x, ν) e−2πimxdx

)

while
∫ 1

0

∂2f

∂x2
(x, ν) e−2πimxdx = − 1

2πim

(
∂2f

∂x2
(1, ν)− ∂2f

∂x2
(0, ν)−

∫ 1

0

∂3f

∂x3
(x, ν) e2πimxdx

)
.

So
cm(R(x, ν)) = 1

4π2m2

(
∂f
∂x (1, ν)− ∂f

∂x (0, ν)
)

+ O
(

1
m3

)
(m 6= 0),

c0(R(x, ν)) =
∫ 1

0
f(x, ν)dx− 1

2 (f(0, 0) + f(1, ν)).

From this and (2.4), it follows that

cmn(q1) = − i
8π3m2n

(
∂f
∂x (1, 0) + ∂f

∂x (0, 1)− ∂f
∂x (0, 0)− ∂f

∂x (1, 1)
)

+ O
(

1
m3n

)
(m 6= 0, n 6= 0),

cm0(q1) = 1
8π2m2

(
∂f
∂x (1, 0)− ∂f

∂x (0, 1)− ∂f
∂x (0, 0) + ∂f

∂x (1, 1)
)

+ O
(

1
m3

)
(m 6= 0),

c0n(q1) = − i
2πn

(∫ 1

0
(f(x, 0)− f(x, 1))dx− 1

2 (f(0, 1) + f(1, 0)− f(0, 1)− f(1, 1))
)

(n 6= 0).

Similarly, we have

cmn(q2) = − i
8π3mn2

(
∂f
∂y (1, 0) + ∂f

∂y (0, 1)− ∂f
∂y (0, 0)− ∂f

∂y (1, 1)
)

+ O
(

1
mn3

)
(m 6= 0, n 6= 0),

c0n(q2) = 1
8π2n2

(
∂f
∂y (0, 1)− ∂f

∂y (1, 0)− ∂f
∂y (0, 0) + ∂f

∂y (1, 1)
)

+ O
(

1
n3

)
(n 6= 0),

cm0(q2) = − i
2πm

(∫ 1

0
(f(0, y)− f(1, y))dy − 1

2 (f(0, 0) + f(0, 1)− f(1, 0)− f(1, 1))
)

(m 6= 0).

and
cmn(q3) = 1

4π2mn (f(1, 0) + f(0, 1)− f(0, 0)− f(1, 1)) (m 6= 0, n 6= 0),

cm0(q3) = − i
4πm (f(0, 0)− f(0, 1)− f(1, 0) + f(1, 1)) (m 6= 0),

c0n(q3) = − i
4πn (f(0, 0)− f(0, 1) + f(1, 0)− f(1, 1)) (n 6= 0).

From this, we get an asymptotic representation of cmn(q) by q(x, y) = q1(x, y)+q2(x, y)+q3(x, y). Finally,

we write out the asymptotic representation of cmn(τ).

Using the integration by parts, it follows by Theorem 2.1, (2,2) and (2.4) that

(i) For m 6= 0, n 6= 0,

cmn(τ) =
1

16π4m2n2

(
∂2f

∂x∂y
(1, 1)− ∂2f

∂x∂y
(1, 0)− ∂2f

∂x∂y
(0, 1) +

∂2f

∂x∂y
(0, 0)

)
+ O

(
1

m2n2

)(
1
m

+
1
n

)
;
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(ii) For m 6= 0,

cm0(τ)=
1

4π2m2

(∫ 1

0

(
∂f

∂x
(1, y)− ∂f

∂x
(0, y)

)
dy+

1
2

(
∂f

∂x
(0, 0)− ∂f

∂x
(1, 0)+

∂f

∂x
(0, 1)− ∂f

∂x
(1, 1)

))
+O

(
1

m3

)

(iii) For n 6= 0,

c0n(τ)=
1

4π2n2

(∫ 1

0

(
∂f

∂y
(x, 1)− ∂f

∂y
(x, 0)

)
dx +

1
2

(
∂f

∂y
(0, 0)− ∂f

∂y
(0, 1)+

∂f

∂y
(1, 0)− ∂f

∂y
(1, 1)

))
+O

(
1
n3

)
.

From this and cmn(f) = cmn(q) + cmn(τ), we get the following asymptotic representation of Fourier

coefficients of f(x, y).

Theorem 2.2. Let f ∈ C(3,3)([0, 1]2). Then Fourier coefficients of f(x, y) satisfy

(i) for m 6= 0, n 6= 0,

cmn(f) =
1

4π2mn
(−α + i

β

2πm
+ i

γ

2πn
+

δ

4π2mn
) + O

(
1

m2n

)(
1
m

+
1
n

)
,

where
α = f(0, 0)− f(0, 1)− f(1, 0) + f(1, 1),

β = ∂f
∂x (0, 0)− ∂f

∂x (0, 1)− ∂f
∂x (1, 0) + ∂f

∂x (1, 1),

γ = ∂f
∂y (0, 0)− ∂f

∂y (0, 1)− ∂f
∂y (1, 0) + ∂f

∂y (1, 1),

δ = ∂2f
∂x∂y (0, 0)− ∂2f

∂x∂y (0, 1)− ∂2f
∂x∂y (1, 0) + ∂2f

∂x∂y (1, 1);

(ii) for m 6= 0,

cm0(f) = i
a

2πm
+

b

4π2m2
+ O

(
1

m3

)
,

where
a = f(0, 1)− f(1, 0)− ∫ 1

0
(f(0, y)− f(1, y))dy,

b =
∫ 1

0

(
∂f
∂x (1, y)− ∂f

∂x (0, y)
)

dy;

(iii) for n 6= 0,

c0n(f) = i
c

2πn
+

d

4π2n2
+ O

(
1
n3

)
,

where
c = f(1, 0)− f(0, 1)− ∫ 1

0
(f(x, 0)− f(x, 1))dx,

d =
∫ 1

0

(
∂f
∂y (x, 1)− ∂f

∂y (x, 0)
)

dx + O
(

1
n3

)
.

Now we compute |cmn(f)|2. Since f is a real-valued function, it is clear that α, β, γ, δ and a, b, c, d in

Theorem 2.2 are all real numbers. So we get the following corollary.

Corollary 2.3. Let f ∈ C(3,3)([0, 1]2). Then

|cmn(f)|2 = 1
16π4m2n2

(
α2 + βγ−αδ

2π2mn + β2

4π2m2 + γ2

4π2n2

)
+ O

(
1

m3n3

) (
1
m + 1

n

)
,

|cm0(f)|2 = a2

4π2m2 + O
(

1
m4

)
,

|c0n(f)|2 = c2

4π2n2 + O
(

1
n4

)
,
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where α, β, γ, δ and a, b, c, d are stated as above.

3. Asymptotic representation of hyperbolic cross approximation

Let f ∈ C(3,3)([0, 1]2). We expand it into a Fourier series. Consider the hyperbolic cross truncations

of its Fourier series:

s
(h)
N (f ;x, y) =

N∑
|m|=0

cm0(f) e2πimx +
N∑

|n|=1

c0n(f) e2πiny

+
N∑

|n|=1

∑
|m|≤ N

|n|

cmn(f) e2πi(mx+ny),

where cmn(f) =
∫ 1

0

∫ 1

0
f(x, y) e−2πi(mx+ny)dxdy. So

f(x, y)− s
(h)
N (f ;x, y) =

∑
|m|≥N+1

cm0(f) e2πimx +
∞∑

|n|=N+1

c0n(f) e2πiny

+
∑

|n|≥N+1

∞∑
|m|=1

cmn(f) e2πi(mx+ny) +
N∑

|n|=1

∑
|m|> N

|n|

cmn(f) e2πi(mx+ny).

Using the Parseval identity [4,5,9] of bivariate Fourier series,

‖ f − s
(h)
N ‖22 =

∑
|n|≥N+1

(|c0n(f)|2 + |cn0(f)|2)

+
∑

|n|≥N+1

∞∑
|m|=1

|cmn(f)|2 +
N∑

|n|=1

∑
|m|> N

|n|

|cmn(f)|2

=: PN + QN + RN .

(3.1)

By Corollary 2.3,

|cmn(f)|2 =
α2

16π4m2n2
+ O

(
1

m3

)
1
n2

+ O

(
1
n3

)
1

m2
.

We first compute RN :

RN =
N∑

|n|=1

∑
|m|> N

|n|

|cmn(f)|2

= α2

16π4

N∑
|n|=1

1
n2

∑
|m|> N

|n|

1
m2 + O(1)

N∑
|n|=1

1
n4

∑
|m|> N

|n|

1
m3 + O(1)

N∑
|n|=1

1
n3

∑
|m|> N

|n|

1
m4

= : R
(1)
N + R

(2)
N + R

(3)
N .

(3.2)

Note that

R
(1)
N = α2

16π4

N∑
|n|=1

1
n2

∑
|m|≥ N

|n|

1
m2 ,

∑
|m|≥ N

|n|

1
m2 = 2

∫∞
N
|n|

1
t2 dt + O

(
n2

N2

)
= 2|n|

N + O
(

n2

N2

)
.
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This implies that

R
(1)
N =

α2

4π4

N∑
n=1

1
nN

+ O

(
1
N

)
=

α2 log N

4π4N
+ O

(
1
N

)
.

Similarly, R
(2)
N = O

(
1
N

)
and R

(3)
N = O

(
1
N

)
. So

RN =
α2 log N

4π4N
+ O

(
1
N

)
.

By |cmn|2 = O
(

1
m2n2

)
, it follows that

QN = O(1)


 ∑

|n|≥N+1

1
n2





 ∑

|m|=1

1
m2


 + O

(
1

N2

)
= O

(
1
N

)
.

From |c0n(f)|2 = O
(

1
n2

)
and |cm0(f)|2 = O

(
1

m2

)
, it is easy to deduce that

PN =
∑

|n|≥N+1

|c0n(f)|2 +
∑

|m|≥N+1

|cm0(f)| = O

(
1
N

)
.

Therefore, by (3,1),

‖ f − s
(h)
N (f) ‖22=

α2 log N

4π4N
+ O

(
1
N

)
.

The number Nd of Fourier coefficients in the hyperbolic cross truncation s
(h)
N (f) is equal to

Nd = 2N + 1 +
N∑

n1=1

[
N

|n1|
]

= 2N log N + O(N).

Theorem 3.1. Let f ∈ C(3,3)([0, 1]2). Then the asymptotic representation of the hyperbolic cross

approximation of Fourier series of f is

‖ f − s
(h)
N (f) ‖22=

α2 log2 Nd

4π4Nd

(
1 + O

(
1

log Nd

))
, (3.3)

where Nd is the number of Fourier coefficients in hyperbolic cross truncation s
(h)
N (f) and α = f(0, 0) −

f(0, 1)− f(1, 0) + f(1, 1).

Corollary 3.2. Let f ∈ C(2,2)([0, 1]2). Then

(i) ‖ f − s
(h)
N (f) ‖22= O

(
log Nd

Nd

)
if and only if f(0, 0) + f(1, 1) = f(0, 1) + f(1, 0).

(ii) when F (x, y) = f(x, y) + (f(0, 1) + f(1, 0)− f(0, 0)− f(1, 1))xy,

‖ F − s
(h)
N (F ) ‖22= O

(
log Nd

Nd

)
.

Now we show an approach to estimates of the bound of the term “ O” in Theorem 3.1 using the

Sobolev norm. For ∂6f
∂x3∂y3 ∈ C([0, 1]2), its Sobolev norm is defined as

M(f) = max
x,y∈∂([0,1]2)
i,j=0,1,2,3

∣∣∣∣
∂i+jf

∂xi∂yj

∣∣∣∣ .
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By Theorem 2.1 and (2.2), and (2.4), we get

cmn(τ) =
∫ 1

0

∫ 1

0

τ(x, y) e−2πi(mx+ny)dxdy =
δ

16π4m2n2
+ Jmn,

where

δ =
∂2f

∂x∂y
(0, 0)− ∂2f

∂x∂y
(0, 1)− ∂2f

∂x∂y
(1, 0) +

∂2f

∂x∂y
(1, 1)

and
Jmn = 1

32π5m2n3

(
∂3f

∂x∂y2 (1, 1)− ∂3f
∂x∂y2 (0, 1)− ∂3f

∂x∂y2 (1, 0) + ∂3f
∂x∂y2 (0, 0)

)

− 1
32π5m2n3

∫ 1

0

(
∂4f

∂x∂y3 (1, y)− ∂4f
∂x∂y2 (0, y)

)
e−2πinydy

+ 1
32iπ5m3n2

(
∂3f

∂x2∂y (1, 0)− ∂3f
∂x2∂y (0, 0)

)

− 1
32iπ5m3n2

∫ 1

0

(
∂4f

∂x2∂y2 (1, y)− ∂4f
∂x2∂y2 (0, y)

)
e−2πinydy

+ 1
32iπ5m3n2

∫ 1

0

(
∂4f

∂x3∂y (x, 1)− ∂4f
∂x3∂y (x, 0)

)
e−2πimxdx

− 1
32iπ5m3n2

∫ 1

0

∫ 1

0
∂5f

∂x3∂y2 (x, y) e−2πi(mx+ny)dxdy

So

|Jmn| ≤ 6M(f)
32π5m2n3

+
7M(f)

32π5m3n2
≤ 13M(f)

32π5m2n2

(
1
m

+
1
n

)
.

For cm0 and c0n, we have

cm0(τ) = 1
(2πm)2

(∫ 1

0

(
∂f
∂x (1, y)− ∂f

∂x (0, y)
)

dy + 1
2β

)
+ T

(1)
m ,

c0n(τ) = 1
(2πn)2

(∫ 1

0

(
∂f
∂y (x, 1)− ∂f

∂y (x, 0)
)

dx + 1
2γ

)
+ T

(2)
n ,

where
T

(1)
m = 1

(2πm)3i

∫ 1

0

(
∂2f
∂x2 (1, y)− ∂2f

∂x2 (0, y)
)

dy

− 1
2(2πm)3i

(
∂2f
∂x2 (1, 0)− ∂2f

∂x2 (0, 0)− ∂2f
∂x2 (1, 1) + ∂2f

∂x2 (0, 1)
)

− 1
(2πm)3i

∫ 1

0

∫ 1

0

(
∂3f
∂x3 (x, y)− 1

2
∂3f
∂x3 (x, 0)− 1

2
∂3f
∂x3 (x, 1)

)
dxdy.

T
(2)
n = 1

(2πn)3i

∫ 1

0

(
∂2f
∂y2 (x, 1)− ∂2f

∂y2 (x, 0)
)

dx

− 1
2(2πn)3i

(
∂2f
∂y2 (0, 1)− ∂2f

∂y2 (0, 0)− ∂2f
∂y2 (1, 1) + ∂2f

∂y2 (1, 0)
)

− 1
(2πn)3i

∫ 1

0

∫ 1

0

(
∂3f
∂y3 (x, y)− 1

2
∂3f
∂y3 (0, y)− 1

2
∂3f
∂y3 (1, y)

)
dxdy.

So
|T (1)

m | ≤ 6M(f)
(2πm)3 ,

|T (2)
n | ≤ 6M(f)

(2πn)3 .
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Now we estimate cmn(q). Note that

cm(R(x, ν)) =
1

4π2m2

(
∂f

∂x
(1, ν)− ∂f

∂x
(0, ν)

)
+ L(ν)

m (ν = 0, 1),

where

L(ν)
m =

1
8π3m3i

(
∂2f

∂x2
(1, ν)− ∂2f

∂x2
(0, ν)−

∫ 1

0

∂3f

∂x3
(x, ν) e−2πimxdx

)
(ν = 0, 1).

Then |L(ν)
m | ≤ 5M(f)

8π3m3 . This implies that

cmn(q1) = − β
8π3m2ni + H

(1)
mn,

cmn(q2) = − γ
8π3mn2i + H

(2)
m ,

where
|H(1)

,mn| ≤ 5M(f)
8π4m3n ,

|H(2)
mn| ≤ 5M(f)

8π4mn3 .

From this and cmn(q3) = α
4π2mn , we get

cmn(q) =
1

4π2mn

(
α− β

2πmi
− γ

2πni

)
+ Hmn,

where |Hmn| ≤ 5M(f)
8π4mn

(
1

m2 + 1
n2

)
.

Similarly, we may estimate cm0(q) and c0n(q). Using cmn(f) = cmn(q) + cmn(τ) and the above esti-

mates, we easily obtain the estimates of upper bounds of |cmn(f)|2. Again, using the method of argument

in Theorem 3.1, we finally can give the bound of the term “ O ” in (3.3).

4. Asymptotic representation of square errors of partial sums

Let f ∈ C(3,3)([0, 1]2). Consider the partial sums of its Fourier series:

sN (f ;x, y) =
∑

|m|≤N

∑

|n|≤N

cmn(f) e2πi(mx+ny).

Then the square errors are equal to

‖ f − sN (f) ‖22=
∑

|n|≥N+1

|c0n(f)|2 +
∑

|m|≥N+1

|cm0(f)|2

+
∑

|n|≥N+1

∞∑
|m|=1

|cmn(f)|2 +
N∑

|n|=1

∑
|m|≥N+1

|cmn(f)|2

=: KN + LN + IN + JN .

(4.1)

By Corollary 2,3 (ii) and (iii),
KN = c2

2π2N + O
(

1
N3

)
,

LN = a2

2π2N + O
(

1
N3

)
.
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By Corollary 2.3 (i),

|cmn(f)|2 =
1

16π4m2n2

(
α2 +

β2

4π2m2
+

γ2

4π2n2

)
+ O

(
1

m3n3

)
,

and so

IN = α2

48π2

(
∑

|n|>N

1
n2

)
+ β2

64π6

(
∑

|n|>N

1
n2

)
ζ(4) + γ2

192π4

(
∑

|n|>N

1
n4

)
+ O

(
1

N2

)

= 1
8π2

(
α2

3 + β2

2π4 ζ(4)
)

1
N + O

(
1

N2

)
,

JN = α2

16π4

(
N∑

|n|=1

1
n2

)(
∑

|m|>N

1
m2

)
+ β2

64

(
N∑

|n|=1

1
n2

)(
∑

|m|>N

1
m4

)

+ γ2

64π6

(
N∑

|n|=1

1
n4

)(
∑

|m|>N

1
m2

)
+ O

(
1

N2

)
,

where ζ(s) =
∞∑

n=1

1
ns is the Riemann-Zeta function. Note that

N∑
|n|=1

1
n2 =

∞∑
|n|=1

1
n2 −

∑
|n|>N

1
n2 = π2

3 + O
(

1
N

)
,

N∑
|n|=1

1
n4 =

∞∑
|n|=1

1
n4 −

∑
|n|>N

1
n4 = ζ(4) + O

(
1

N3

)
.

Then

JN =
1

8π2

(
α2

3
+

γ2

π4
ζ(4)

)
1
N

+ O

(
1

N2

)
.

Finally, by (4.1), we get the following theorem.

Theorem 4.1. Let f ∈ C(3,3)([0, 1]2). Then the partial sums sN (f) of its Fourier series satisfy

‖ f − sN (f) ‖22=
(

a2 + c2

2π2
+

α2

24π2
+

β2 + γ2

8π6
ζ(4)

)
1
N

+ O

(
1

N2

)
,

where a, c, α, β, γ are stated in Theorem 2.2 and ζ(4) is the Riemann-Zeta function.

Note that the number Nd of Fourier coefficients in the sum sN (f) is (2N + 1)2. From Theorem 4.1,

it follows that

‖ f − sN (f) ‖22∼
1√
Nd

.

Again, by Theorem 4.1, we get the following corollary.

Corollary 4.2. Let f ∈ C(3,3)([0, 1]2). Then the partial sums sN (f) of its Fourier series satisfy

‖ f − sN (f) ‖22= O

(
1

N2

)

10
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if and only if a = c = α = β = γ = 0, i.e.,

f(1, 0)− f(0, 1) =
∫ 1

0
(f(x, 0)− f(x, 1))dx,

f(0, 1)− f(1, 0) =
∫ 1

0
(f(0, y)− f(1, y))dy,

f(0, 1) + f(1, 0) = f(0, 0) + f(1, 1),

∂f
∂x (0, 1) + ∂f

∂x (1, 0) = ∂f
∂x (0, 0) + ∂f

∂x (1, 1),

∂f
∂y (0, 1) + ∂f

∂y (1, 0) = ∂f
∂y (0, 0) + ∂f

∂y (1, 1).

(4.2)

Since the number of Fourier coefficients is 2N + 1 in sN (f), it is clear that when (4.2) holds,

‖ f − sN (f) ‖22= O

(
1

Nd

)
.

Comparing it with Theorem 3.1, we see that in this case the partial sum approximation is better than

the hyperbolic cross approximation.
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Abstract

We develop further theory for Khatri-Rao products of Hilbert space
operators in connections with selection operators. We provide two con-
structions related to selection operators. Then we establish certain iden-
tities and inequalities involving Khatri-Rao and Tracy-Singh products.
As consequences, we obtain some characterizations for the mixed product
property concerning the Khatri-Rao product of operators.

Keywords: tensor product, Khatri-Rao product, Tracy-Singh product, opera-
tor matrix
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1 Introduction

This paper concerns operator extensions of certain matrix products, namely,
the Kronecker (tensor) product, the Tracy-Singh product, and the Khatri-Rao
product. Fundamental theory for these matrix products are collected, for in-
stance, in [1, 2, 4, 5, 10, 11, 12] and references therein. Denote by Mm,n(C)
the algebra of m-by-n complex matrices. Recall that the Kronecker product of
A = [aij ] ∈Mm,n(C) and B ∈Mp,q(C) is given by

A ⊗̂B = [aijB]ij .

Consider partitioned matrices A and B such that the (i, j)th block of A is Aij

and the (k, l)th block of B is Bkl. The Tracy-Singh product [9] of A and B is
defined by

A �̂B =
[[
Aij⊗̂Bkl

]
kl

]
ij
. (1)

The Khatri-Rao product [3] is defined for two partitioned matrices A = [Aij ]
and B = [Bij ] as follows

A�̂B =
[
Aij⊗̂Bij

]
ij
. (2)

∗Corresponding author. Email: pattrawut.ch@kmitl.ac.th
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Khatri-Rao Products and Selection Operators

The tensor product of Hilbert space operators can be viewed as an extension
of the Kronecker product of complex matrices. Recall that the tensor product
of A ∈ B(H,H′) and B ∈ B(K,K′) is the unique bounded linear operator from
H ⊗ K into H′ ⊗ K′ such that (A ⊗ B)(x ⊗ y) = Ax ⊗ By for all x ∈ H and
y ∈ K. Recently, the Tracy-Singh product and the Khatri-Rao product for
matrices were generalized to those for operators acting on the direct sum of
Hilbert spaces, see [6, 7, 8]. Fundamental algebraic and order properties of
operator Khatri-Rao products are investigated in [8]. That paper also provides
a construction of a unital positive linear map taking the Tracy-Singh product
of two operators to their Khatri-Rao product. Such a linear map appears in
the form X 7→ Z∗AZ where Z is an isometry, called a selection operator. See
details in Section 2.

The present paper contains further development on operator Khatri-Rao
products in relations with Tracy-Singh products and selection operators. First,
we provide two constructions related to selection operators (see Section 3).
Consequently, we establish some operator identities and inequalities involving
Khatri-Rao and Tracy-Singh products (see Section 4). Finally, we obtain some
characterizations for the mixed product property concerning the Khatri-Rao
product of operators (see Section 5).

2 Tracy-Singh products and Khatri-Rao prod-
ucts for operators

Throughout this paper, let H, H′, K and K′ be complex separable Hilbert
spaces. When X and Y are Hilbert spaces, let us denote by B(X ,Y) the space
of all bounded linear operators from X into Y and abbreviate B(X ,X ) to B(X ).
Capital letters always denote a Hilbert space operator. In particular, I and O
stand for the identity and the zero operator, respectively.

In order to define Tracy-Singh products of operators, we fix the following
decompositions

H =

n⊕
j=1

Hj , H′ =

m⊕
i=1

H′
i, K =

q⊕
j=1

Kj , K′ =

p⊕
i=1

K′
i. (3)

where all of Hj ,H′
i,Kl,K′

k are Hilbert spaces. For each j and l, letMj : Hj → H
and Nl : Kl → K be the canonical injections. For each i and k, let Pi : H′ → H′

i

and Qk : K′ → K′
k be the canonical projections. Given A ∈ B(H,H′), put

Aij = PiAMj ∈ B(Hj ,H′
i) for each i, j. Thus we can write A in the operator-

matrix form A = [Aij ]
m,n
i,j=1. Similarly, given B ∈ B(K,K′), let Bkl = QkBNl ∈

B(Kl,K′
k) for each k = 1, . . . , p and l = 1, . . . , q. We can identify B with the

operator matrix B = [Bkl]
p,q
k,l=1.

Definition 1. The Tracy-Singh product of A and B is defined to be the bounded
linear operator from

⊕n,q
j,l=1 Hj ⊗Kl to

⊕m,p
i,k=1 H′

i ⊗K′
k represented by

A�B =
[
[Aij ⊗Bkl]kl

]
ij
. (4)
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A. Ploymukda and P. Chansangiam

If both factor A and B consist of only one block, then A�B = A⊗B.

Lemma 2 ([6]). The following properties of the Tracy-Singh product for oper-
ators hold (provided that each term is well-defined):

1. Compatibility with adjoints: (A�B)∗ = A∗ �B∗.

2. Mixed-product property: (A�B)(C �D) = AC �BD.

3. Monotonicity: if A > B > 0 and C > D > 0, then A�B > C �D > 0.

From now on, we fix the decomposition (3), and assume n = q and m = p.

Definition 3. The Khatri-Rao product of A = [Aij ]
m,n
i,j=1 and B = [Bij ]

m,n
i,j=1 is

defined to be a bounded linear operator from
⊕n

j=1 Hj ⊗ Kj to
⊕m

i=1 H′
i ⊗ K′

i

represented by the operator matrix

A�B = [Aij ⊗Bij ]
m,n
i,j=1 . (5)

Lemma 4 ([8]). For A ∈ B(H,H′) and B ∈ B(K,K′), we have (A � B)∗ =
A∗ �B∗.

Fix an ordered tuple (H,H′,K,K′) of Hilbert spaces. Define the ordered
pair (Z1, Z2) of selection operators associated with (H,H′,K,K′) by [8]:

Z1 =

E1

...
Em

 and Z2 =

F1

...
Fn

 . (6)

Here, for each r = 1, ...,m

Er =
[
E

(r)
gh

]m,m

g,h=1
:

m⊕
k=1

H′
k ⊗K′

k →
m⊕
l=1

H′
r ⊗K′

l

with E
(r)
gh is an identity operator if g = h = r and the others are zero operators.

For each s = 1, ..., n, the operator Fs is defined by

Fs =
[
F

(s)
gh

]n,n
g,h=1

:

n⊕
i=1

Hi ⊗Ki →
n⊕

j=1

Hs ⊗Kj

with F
(s)
gh is an identity operator if g = h = s and the others are zero operators.

From the construction, the operator Zi is an isometry and ZiZ
∗
i 6 I for i = 1, 2.

When H = H′ and K = K′, we have Z1 = Z2.

Lemma 5 ([8]). Let (Z1, Z2) be the ordered pair of selection operators associated
with the ordered tuple (H,H′,K,K′). For any operator matrices A ∈ B(H,H′)
and B ∈ B(K,K′), we have

A�B = Z∗
1 (A�B)Z2. (7)

For the case H = H′ and K = K′, we have Z1 = Z2 := Z and hence for any
A ∈ B(H) and B ∈ B(K),

A�B = Z∗(A�B)Z. (8)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

318 Ploymukda ET AL 316-325



Khatri-Rao Products and Selection Operators

3 Two constructions related to selection opera-
tors

In this section, we construct certain operators related to selection operators.

Theorem 6. Let (Z1, Z2) be the ordered pair of selection operators associated
with an ordered tuple (H,H′,K,K′). Then there exist operators

V :
m−1⊕
i=1

m⊕
j=1

H′
i ⊗K′

j →
m⊕
i=1

m⊕
j=1

H′
i ⊗K′

j ,

W :

n−1⊕
i=1

n⊕
j=1

Hi ⊗Kj →
n⊕

i=1

n⊕
j=1

Hi ⊗Kj

such that Z∗
1V = 0, Z∗

2W = 0, Z1Z
∗
1 + V V ∗ = I and Z2Z

∗
2 +WW ∗ = I. If, in

addition, H = H′ and K = K′, we have V =W .

Proof. Let

V =

V1...
Vm

 (9)

where

V (r) =
[
V

(r)
kl

]m,m2−1

k,l=1
:

m⊕
i=1

m⊕
j=1

i+j<m2

H′
i ⊗K′

i →
m⊕
i=1

H′
r ⊗K′

i

for r = 1, ...,m, with V
(r)
kl is an identity operator if k ̸= r and l = m(r − 1) + k

and the others are zero operators. Note that

E∗
1V1

=


I 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




0 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

· · ·

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


= 0.

For each r, we have

VrV
∗
r =


0 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

 .
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Then we obtain

Z∗
1V =

[
E∗

1 E∗
2 · · · E∗

m

]

V1
V2
...
Vm

 = E∗
1V1 + E∗

2V2 + . . .+ E∗
mVm = 0,

Z1Z
∗
1 + V V ∗

=


E1E

∗
1 E1E

∗
2 · · · E1E

∗
m

E2E
∗
1 E2E

∗
2 · · · E2E

∗
m

...
...

. . .
...

EmE
∗
1 EmE

∗
2 · · · EmE

∗
m

+


V1V

∗
1 V1V

∗
2 · · · V1V

∗
m

V2V
∗
1 V2V

∗
2 · · · V2V

∗
m

...
...

. . .
...

VmEV
∗
1 VmV

∗
2 · · · VmV

∗
m



=


I 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


0 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

 .
Now, let

W =

W1

...
Wm

 (10)

where

W (s) =
[
W

(s)
kl

]n,n2−1

k,l=1
:

n⊕
i=1

n⊕
j=1

i+j<n2

Hi ⊗Ki →
n⊕

i=1

Hs ⊗Ki

for s = 1, ..., n, with W
(s)
kl is an identity operator if k ̸= s and l = n(s− 1) + k

and others are zero operators. A direct computation shows that Z∗
2W = 0 and

Z2Z
∗
2 + WW ∗ = I. When H = H′ and K = K′, we have Vi = Wi for all

i = 1, . . . ,m, i.e. V =W .

Theorem 7. Fix the decomposition (3) with n = q and m = p. Suppose
further that Hi = X , Ki = Y, H′

j = X ′ and K′
j = Y ′ for all i = 1, . . . , n and

j = 1, . . . ,m. Let (Z1, Z2) be the ordered pair of associated selection operators.
Then there exist operators

Q1 :

m−1⊕
i=1

m⊕
j=1

X ′ ⊗ Y ′ →
m⊕
i=1

m⊕
j=1

X ′ ⊗ Y ′,

Q2 :
n−1⊕
i=1

n⊕
j=1

X ⊗ Y →
n⊕

i=1

n⊕
j=1

X ⊗ Y
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such that Z∗
i Qi = 0, Q∗

iQi = I and ZiZ
∗
i +QiQ

∗
i = I for i = 1, 2. If, in addition,

H = H′ and K = K′, we have Q1 = Q2.

Proof. Consider

Q1 =


E2 E3 · · · Em

E3 E4 · · · E1

...
...

. . .
...

E1 E2 · · · Em−1

 , Q2 =


F2 F3 · · · Fn

F3 F4 · · · F1

...
...

. . .
...

F1 F2 · · · Fn−1

 . (11)

Then calculations reveal that

Z∗
1Q1 =

[
E∗

1 E∗
2 · · · E∗

m

]

E2 E3 · · · Em

E3 E4 · · · E1

...
...

. . .
...

E1 E2 · · · Em−1

 =
[
0 0 · · · 0

]
,

Q∗
1Q1 =


E∗

2 E∗
3 · · · E∗

1

E∗
3 E∗

4 · · · E∗
2

...
...

. . .
...

E∗
m E∗

1 · · · E∗
m−1



E2 E3 · · · Em

E3 E4 · · · E1

...
...

. . .
...

E1 E2 · · · Em−1



=


∑
E∗

i Ei 0 · · · 0
0

∑
E∗

i Ei · · · 0
...

...
. . .

...
0 0 · · ·

∑
E∗

i Ei

 = I,

Q∗
1Q1 + Z1Z

∗
1

=


E∗

2 E∗
3 · · · E∗

1

E∗
3 E∗

4 · · · E∗
2

...
...

. . .
...

E∗
m E∗

1 · · · E∗
m−1



E2 E3 · · · Em

E3 E4 · · · E1

...
...

. . .
...

E1 E2 · · · Em−1

+


E1

E2

...
Em

 [E∗
1 E∗

2 · · · E∗
m

]

=


∑

i̸=1EiE
∗
j 0 · · · 0

0
∑

i̸=2EiE
∗
j · · · 0

...
...

. . .
...

0 0 · · ·
∑

i̸=mEiE
∗
j

+


E1E

∗
1 0 · · · 0

0 E2E
∗
2 · · · 0

...
...

. . .
...

0 0 · · · EmE
∗
m



=


∑
EiE

∗
i 0 · · · 0

0
∑
EiE

∗
i · · · 0

...
...

. . .
...

0 0 · · ·
∑
EiE

∗
i

 = I.

Similarly, we have Z∗
2Q2 = 0, Q∗

2Q2 = I and Z2Z
∗
2 +Q2Q

∗
2 = I. When H = H′

and K = K′, we have Ei = Fi for all i = 1, . . . ,m, i.e. Q1 = Q2.
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4 Operator identities and inequalities concern-
ing Khatri-Rao products, Tracy-Singh prod-
ucts, and selection operators

In this section, we apply the construction in Section 3 to establish certain op-
erator identities and inequalities concerning Khatri-Rao products, Tracy-Singh
products, and selection operators.

Theorem 8. Let (Z1, Z2) be the ordered pair of selection operators associated
with an ordered tuple (H,H′,K,K′). Let V and W be operator matrices defined
by (9) and (10). For any operator matrices A ∈ B(H,H′) and B ∈ B(K,K′),
we have

AA∗ �BB∗ = (A�B)(A∗ �B∗) + Z∗
1 (A�B)WW ∗(A∗ �B∗)Z1, (12)

A∗A�B∗B = (A∗ �B∗)(A�B) + Z∗
2 (A

∗ �B∗)V V ∗(A�B)Z2. (13)

Proof. Since AA∗ ∈ B(H′) and BB∗ ∈ B(K′), the ordered pair of selection
operators associated with (H′,H′,K′,K′) is given by (Z1, Z1). By using Lemmas
2 and 5, and Theorem 6, we get

AA∗ �BB∗ = Z∗
1 (AA

∗ �BB∗)Z1

= Z∗
1 (A�B)(A�B)∗Z1

= Z∗
1 (A�B) (Z2Z

∗
2 +WW ∗) (A�B)∗Z1

= Z∗
1 (A�B)Z2Z

∗
2 (A�B)∗Z1 + Z∗

1 (A�B)WW ∗(A�B)∗Z1

= (A�B)(A�B)∗ + Z∗
1 (A�B)WW ∗(A�B)∗Z1.

Now, for inequality (13), note that A∗A ∈ B(H) and B∗B ∈ B(K). In this case,
the pair of associated selection operators is (Z2, Z2). It follows that

A∗A�B∗B = Z∗
2 (A

∗A�B∗B)Z2

= Z∗
2 (A�B)∗(A�B)Z2

= Z∗
2 (A�B)∗ (Z1Z

∗
1 + V V ∗) (A�B)Z2

= Z∗
2 (A�B)∗Z1Z

∗
1 (A�B)Z2 + Z∗

2 (A�B)∗V V ∗(A�B)Z2

= (A∗ �B∗)(A�B) + Z∗
2 (A

∗ �B∗)V V ∗(A�B)Z2.

Corollary 9. Let A ∈ B(H,H′) and B ∈ B(K,K′) be operator matrices. Then

AA∗ �BB∗ > (A�B)(A∗ �B∗). (14)

Proof. It follows immediately from Theorem 8.

Theorem 10. Assume the hypothesis of Theorem 7. For any A ∈ B(H,H′)
and B ∈ B(K,K′), we have

AA∗ �BB∗ = (A�B)(A∗ �B∗) + Z∗
1 (A�B)Q2Q

∗
2(A

∗ �B∗)Z1, (15)

A∗A�B∗B = (A∗ �B∗)(A�B) + Z∗
2 (A

∗ �B∗)Q1Q
∗
1(A�B)Z2, (16)

where Q1 and Q2 are operator matrices in (11).
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Proof. The proof is similar to that of Theorem 8. Instead of Theorem 6, we
apply Theorem 7.

5 Characterizations of the mixed product prop-
erty for Khatri-Rao products

In general, the mixed product property

(A�B)(C �D) = AC �BD

does not hold for compatible operator matrices A,B,C,D. It is interesting to
find necessary and sufficient conditions for which this property holds. Indeed,
we have the following assertions.

Theorem 11. Assume the notations in Theorem 8. For any operator matrices
A ∈ B(H,H′) and B ∈ B(K,K′), the following statements are equivalent:

(i) AC �BD = (A�B)(C �D) for all C ∈ B(H′,H) and D ∈ B(K′,K),

(ii) AA∗ �BB∗ = (A�B)(A∗ �B∗),

(iii) Z∗
1 (A�B)W = 0.

Proof. It is clear that (i)⇒(ii). To prove (ii)⇒(iii), suppose (ii). By Theorem
8, (ii) holds only if

[Z∗
1 (A�B)W ] [W ∗(A∗ �B∗)Z1] = 0,

i.e., Z∗
1 (A�B)W = 0.

(iii)⇒(i): Assume the condition (iii) holds. Note that by Theorem 6 we have

Z∗
1 (A�B)(I − Z2Z

∗
2 ) = Z∗

1 (A�B)WW ∗ = 0,

and hence Z∗
1 (A � B) = Z∗

1 (A � B)Z2Z
∗
2 . For any C ∈ B(H′,H) and D ∈

B(K′,K), we have by Lemmas 2 and 5 that

AC �BD = Z∗
1 (AC �BD)Z1

= Z∗
1 (A�B)(C �D)Z1

= Z∗
1 (A�B)Z2Z

∗
2 (C �D)Z1

= (A�B(C �D).

Thus we arrive at (i).

Theorem 12. Assume the notations in Theorem 8. For any operator matrices
A ∈ B(H,H′) and B ∈ B(K,K′), the following statements are equivalent:

(i) CA�DB = (C �D)(A�B) for all C ∈ B(H′,H) and D ∈ B(K′,K),

(ii) A∗A�B∗B = (A∗ �B∗)(A�B),
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(iii) V ∗(A�B)Z2 = 0.

Proof. Clearly,(i)⇒(ii). The assertion (ii)⇒(iii) follows from Theorem 8. Now,
suppose that (iii) holds. Then V V ∗(A�B)Z2 = 0. Using Theorem 6, we get

(I − Z1Z
∗
1 )(A�B)Z1 = V V ∗(A�B)Z1 = 0

which implies (A � B)Z1 = Z1Z
∗
1 (A � B)Z1. For any C ∈ B(H′,H) and D ∈

B(K′,K), we have by Lemmas 2 and 5 that

CA�DB = Z∗
2 (CA�DB)Z2

= Z∗
2 (C �D)(A�B)Z2

= Z∗
2 (C �D)Z1Z

∗
1 (A�B)Z2

= (C �D)(A�B).

Theorem 13. Assume the hypothesis of Theorem 7. For any operator matrices
A ∈ B(H,H′) and B ∈ B(K,K′), the following conditions are equivalent:

(i) AC �BD = (A�B)(C �D) for all C ∈ B(H′,H) and D ∈ B(K′,K),

(ii) AA∗ �BB∗ = (A�B)(A∗ �B∗),

(iii) Z∗
1 (A�B)Q2 = 0.

Proof. The proof is similar to that of Theorem 11.

Theorem 14. Assume the hypothesis of Theorem 7. For any operator matrices
A ∈ B(H,H′) and B ∈ B(K,K′), the following statements are equivalent:

(i) CA�DB = (C �D)(A�B) for all C ∈ B(H′,H) and D ∈ B(K′,K),

(ii) A∗A�B∗B = (A∗ �B∗)(A�B),

(iii) Q∗
1(A�B)Z2 = 0.

Proof. The proof is similar to that of Theorem 12.
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Abstract. In this paper, we study the mapping satisfying mixed g-monotone property in

partially ordered complete Menger probabilistic G-metric spaces. By weakening the notion

of Ψ, we prove some new coupled coincidence point theorems and coupled common fixed

point theorems. Finally, we provide an example to illustrate our results.

Keywords: partially ordered; coupled fixed point; mixed g-monotone mapping; Menger

PGM-space

1 Introduction

The notions of mixed monotone mappings and coupled fixed point were first introduced by Bhaskar

and Lakshmikantham [1], which was extended to the partially ordered metric spaces. Since then, some

results have been presented about the existence and uniqueness of coupled fixed points (see [2]-[8]). In

2009, Lakshmikantham and Ćirić [7] introduced the concept of a mixed g-monotone mapping, which

generalized and extended the notion of mixed monotone mappings and the coupled fixed point in [1].

In 2010, Jachymski [9] established a fixed point theorem for φ-contractions and gave a characterization

of a function φ, satisfying probabilistic φ-contraction. On the other hand, Choudhury and Das [2] gave

a fixed point theorem by using an altering distance function. In addition, by taking advantage of the

notion of the notion of φ-contractive mapping in Menger PM-spaces, some fixed point theorems were

brought by Ktbi and Gopal [6]. And Jin [10] put forward a new fixed point theorems for φ-contraction

in KM fuzzy metric spaces. For other results in the direction, we refer to [11]-[14].

†Corresponding author: Chuanxi Zhu. Email: chuanxizhu@126.com.
†Supported by the National Natural Science Foundation of China (11361042,11461045,11071108) and the Provincial

Natural Science Foundation of Jiangxi, China (20132BAB201001, 2010GZS0147) and the Innovation Program of the

Graduate student of Nanchang University(colonel-level project)
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In this paper, we generalize the results of other scholars ([8],[14]) by weakening the notion of Ψ

in [4]. We study compatibility of the mappings g and T, where T is a mixed g-monotone mapping.

We also establish some new coupled coincidences point theorems and coupled common fixed point

theorems in partially ordered Menger probabilistic G-metric spaces. Finally, an example is given to

illustrate our main results.

2 preliminaries

At this stage, we recall some well-known definitions and results in the theory of partially ordered

set and PGM-space.

Let R be the set of all real numbers, R+ be the set of all nonnegative real numbers, Z+ be the set

of all positive integers.

A mapping F : R → R+ is called a distribution function if it is nondecreasing and left continuous

with sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 1. We will denote D by the set of all distributions function.

Let H denote the specific distribution function defined by

H(t) =

0, if t ≤ 0,

1, if t > 0.

Definition 2.1 ([9]). A function △ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short,

t− norm) if the following conditions are satisfied for any a, b, c, d ∈ [0, 1] :

(△− 1) △(a, 1) = a;

(△− 2) △(a, b) = △(b, a);

(△− 3) △(a, b) ≥ △(c, d), for a ≥ c, b ≥ d;

(△− 4) △(△(a, b), c) = △(a,△(b, c)).

Definition 2.2 ([2]). Let Φ denote the class of all functions ϕ : R+ → R+ satisfies the following

conditions:

(i) ϕ(t) = 0 if and only if t = 0;

(ii) ϕ(t) is strictly increasing and ϕ(t) → ∞ as t→ ∞;

(iii) ϕ is left continuous in (0,+∞);

(iv) ϕ is continuous at 0.

Definition 2.3 ([8]). Let Ψ denote the class of all functions ψ : R+ → R+ satisfies the follow-

ing conditions:

2
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(1)ψ is non-decreasing;

(2) ψ(t+ s) ≤ ψ(t) + ψ(s) for all t, s ∈ [0, 1).

Remark 2.1 ([8]). Ψ also satisfies that Ψ is continuous and Ψ(t) = 0 if and only if t = 0. It is

easy to see that the notion of Ψ is stronger than Definition 2.3 in [8]. And it is obvious that the

following condition holds:

(3) ψ(p+ q + t+ s) ≤ ψ(p) + ψ(q) + ψ(t) + ψ(s) for all p, q, t, s ∈ [0, 1).

Definition 2.4 ([18]). A Menger probabilistic G-metric space (briefly, a PGM-space) is a triple

(X,G∗,△), where X is a nonempty set, △ is a continuous t-norm, and G∗ is a mapping from X×X×X

into D+ (G∗
x,y,z denotes the value of G∗ at the point (x,y,z)) satisfying the following conditions:

(PGM-1) G∗
x,y,z(t) = 1 for x, y, z ∈ X and t > 0 if and only if x = y = z;

(PGM-2) G∗
x,x,y(t) ≥ G∗

x,y,z(t) for x, y, z ∈ X with z ̸= y and t > 0;

(PGM-3) G∗
x,y,z(t) = G∗

x,z,y(t) = G∗
y,x,z(t) = · · · (symmetry in all three variables);

(PGM-4) G∗
x,y,z(t+ s) ≥ △(G∗

x,a,a(t), G
∗
a,y,z(s)) for x, y, z, a ∈ X and s, t > 0.

Definition 2.5 ([1]). Let (X,G∗,△) be a PGM-space, and {xn} is a sequence in X. (1) {xn} is

said to be convergent to x ∈ X (write xn → x), if for any ε > 0 and 0 < δ < 1, there exists a positive

integer Mε,λ such that xn ∈ Nx0(ε, λ) whenever n > Mε,λ;

(2) {xn} is said to be Cauchy sequence, if for any ε > 0 and 0 < δ < 1, there exists a positive integer

Mε,λ such that G∗
xn,xm,xl

> 1− δ whenever n,m, l > Mε,λ;

(3) (X,G∗,△) is said to be complete, if every Cauchy sequence in X converges to a point in X.

Definition 2.6 ([7]). Let X be a non-empty set and F : X × X → X and g : X → X. We say

F and g are commutative if

g(F (x, y)) = F (g(x), g(y)) for all x, y ∈ X.

Definition 2.7 ([7]). Let (X,≤) be a partially ordered set and F : X × X → X is said to possess

the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone

non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1)

3
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Definition 2.8 ([11]). Let (X,≤) be a partially ordered set and F : X×X → X is said to have the

mixed g−monotone property if F is monotone g−non-decreasing in its first argument and is monotone

g−non-decreasing in its second argument, that is, for any x, y ∈ X.

x1, x2 ∈ X, g(x1) ≤ g(x2) ⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, g(y1) ≤ g(y2) ⇒ F (x, y2) ≤ F (x, y1).

3 Coupled coincidence point results in partially ordered complete

Menger probabilistic G-metric spaces

In this section, We begin with the following definition which is useful to prove some new coupled

coincidence point theorems and coupled fixed point theorems in partially ordered complete Menger

probabilistic G-metric spaces.

Definition 3.1 Let (X,G∗,△) be a Menger PGM-space with △ (a continuous t−norm), T : X4 → X

and g : X → X be two mappings satisfying the following condition:

ψ(
1

G∗
T (x,y,z,w),T (u,v,p,q),T (a,b,c,d)(ϕ(λt))

− 1) ≤ 1

4
ψ(

1

G∗
g(x),g(u),g(a)(ϕ(t))

− 1 +
1

G∗
g(y),g(v),g(b)(ϕ(t))

− 1

+
1

G∗
g(z),g(p),g(c)(ϕ(t))

− 1 +
1

G∗
g(w),g(q),g(d)(ϕ(t))

− 1).

(3.1)

for all t > 0, and x, y, z, w, u, v, p, q, a, b, c, d ∈ X, g(x) ≤ g(u) ≤ g(a), g(y) ≥ g(v) ≥ g(b), g(z) ≤

g(p) ≤ g(c) and g(w) ≥ g(q) ≥ g(d), where λ ∈ (0, 1), ψ ∈ Ψ and ϕ ∈ Φ. Then mappings T and g are

said to satisfy ψ-contractive condition.

Theorem 3.1 Let(X,≤) be a partially ordered set and (X,G∗,△) be a complete PGM-space with

a continuous t − norm. suppose that T : X4 → X and g : X → X are the mappings with mixed

g−monotone property and satisfy ψ-contractive condition, such that G∗
g(x),g(u),g(a) > 0, G∗

g(y),g(v),g(b) >

0, G∗
g(z),g(p),g(c) > 0, G∗

g(w),g(q),g(d) > 0. Suppose T (X4) ⊆ g(X), g is continuous and commutes with T .

Assuming that either

(a) T is continuous, or

(b) X has the following properties:

(I) If a non-decreasing sequence xn → x, zn → z, then xn ≤ x, zn ≤ z for all n;

4
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(II) If a non-increasing sequence yn → y, wn → w, then yn ≤ y, wn ≤ w for all n.

If there exist x0, y0, z0, w0 ∈ X, such that g(x0) ≤ T (x0, y0, z0, w0), g(z0) ≤ T (z0, w0, x0, y0),

g(y0) ≥ T (y0, z0, w0, x0) and g(w0) ≥ T (w0, x0, y0, z0), then there exist x, y, z, w ∈ X, such that

g(x) = T (x, y, z, w), g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) = T (w, x, y, z),

that is, T and g have a coupled coincidence point.

Proof Let x0, y0, z0, w0 ∈ X, such that g(x0) ≤ T (x0, y0, z0, w0), g(z0) ≤ T (z0, w0, x0, y0) and

g(y0) ≥ T (y0, z0, w0, x0), g(w0) ≥ T (w0, x0, y0, z0), since T (X
4) ⊆ g(X), we can choose x1, y1, z1, w1 ∈

X, such that

g(x1) = T (x0, y0, z0, w0), g(y1) = T (y0, z0, w0, x0), (3.2)

g(z1) = T (z0, w0, x0, y0), g(w1) = T (w0, x0, y0, z0). (3.3)

Continuing this process we can construct sequences {xn}, {yn}, {zn} and {wn} in X, such that

g(xn+1) = T (xn, yn, zn, wn), g(yn+1) = T (yn, zn, wn, xn) for all n ≥ 0,

g(zn+1) = T (zn, wn, xn, yn), g(wn+1) = T (wn, xn, yn, zn) for all n ≥ 0,

we shall show that

g(xn) ≤ g(xn+1), g(yn) ≥ g(yn+1), g(zn) ≤ g(zn+1), g(wn) ≥ g(wn+1). (3.4)

We shall use the mathematical induction to show that (3.4) holds.

Let n = 0, since

g(x0) ≤ T (x0, y0, z0, w0), g(y0) ≥ T (y0, z0, w0, x0),

g(z0) ≤ T (z0, w0, x0, y0), g(w0) ≥ T (w0, x0, y0, z0),

by (3.2) and (3.3), we have

g(x0) ≤ g(x1), g(y0) ≥ g(y1), g(z0) ≤ g(z1), g(w0) ≥ g(w1).

Thus (3.4) holds for n = 0.

Now we suppose that (3.4) holds for some n = i, i ∈ Z+, we get

g(xi) ≤ g(xi+1), g(yi) ≥ g(yi+1), g(zi) ≤ g(zi+1), g(wi) ≥ g(wi+1).

5
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Let n = i+ 1, owing to the property of mixed g-monotone, we have

g(xi+2) = T (xi+1, yi+1, zi+1, wi+1) ≥ T (xi, yi+1, zi, wi+1) ≥ T (xi, yi, zi, wi) = g(xi+1),

g(yi+2) = T (yi+1, zi+1, wi+1, xi+1) ≤ T (yi, zi+1, wi, xi+1) ≤ T (yi, zn, wi, xi) = g(yi+1).

Similarly, we obtain

g(zi+2) ≥ g(zi+1), g(wi+2) ≤ g(wi+1).

By the mathematical induction, we conclude that (3.4) holds for all n > 0. Therefore

g(x0) ≤ g(x1) ≤ g(x2) ≤ ... ≤ g(xn) ≤ g(xn+1) ≤ · · ·;

g(y0) ≥ g(y1) ≥ g(y2) ≥ ... ≥ g(yn) ≥ g(yn+1) ≤ · · ·;

g(z0) ≤ g(z1) ≤ g(z2) ≤ ... ≤ g(zn) ≤ g(zn+1) ≤ · · ·;

g(w0) ≥ g(w1) ≥ g(w2) ≥ ... ≥ g(wn) ≥ g(wn+1) ≤ · · ·.

In view of the fact, we have

sup
t∈R

G∗
g(x2),g(x1),g(x0)

(t) = 1, sup
t∈R

G∗
g(y2),g(y1),g(y0)

(t) = 1,

sup
t∈R

G∗
g(z2),g(z1),g(z0)

(t) = 1, sup
t∈R

G∗
g(w2),g(w1),g(w0)

(t) = 1,

and by (ii) of Definition 2.2, we can find some t > 0, such that

G∗
g(x2),g(x1),g(x0)

(ϕ(t)) > 0, G∗
g(y2),g(y1),g(y0)

(ϕ(t)) > 0,

G∗
g(z2),g(z1),g(z0)

(ϕ(t)) > 0, G∗
g(w2),g(w1),g(w0)

(ϕ(t)) > 0,

for

g(x0) ≤ g(x1) ≤ g(x2), g(y0) ≥ g(y1) ≥ g(y2),

g(z0) ≤ g(z1) ≤ g(z2, g(w0) ≥ g(w1) ≥ g(w2),

which implies that

G∗
g(x2),g(x1),g(x0)

(ϕ(
t

λ
)) > 0, G∗

g(y2),g(y1),g(y0)
(ϕ(

t

λ
)) > 0,

G∗
g(z2),g(z1),g(z0)

(ϕ(
t

λ
)) > 0, G∗

g(w2),g(w1),g(w0)
(ϕ(

t

λ
)) > 0.

Then by (3.1), we get

ψ(
1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1) = ψ(

1

G∗
T (x2,y2,z2,w2),T (x1,y1,z1,w1),T (x0,y0,z0,w0)

(ϕ(t))
− 1)

≤ 1

4
ψ(G∗

g(x2),g(x1),g(x0)
(ϕ(

t

λ
))− 1 +G∗

g(y2),g(y1),g(y0)
(ϕ(

t

λ
))− 1

+G∗
g(z2),g(z1),g(z0)

(ϕ(
t

λ
))− 1 +G∗

(w2),g(w1),g(w0)
(ϕ(

t

λ
))− 1).

(3.5)

6
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Similarly,

ψ(
1

G∗
g(y3),g(y2),g(y1)

(ϕ(t))
− 1) ≤ 1

4
ψ(G∗

g(y2),g(y1),g(y0)
(ϕ(

t

λ
))− 1 +G∗

g(z2),g(z1),g(z0)
(ϕ(

t

λ
))− 1

+G∗
g(w2),g(w1),g(w0)

(ϕ(
t

λ
))− 1 +G∗

(x2),g(x1),g(x0)
(ϕ(

t

λ
))− 1),

(3.6)

ψ(
1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1) ≤ 1

4
ψ(G∗

g(z2),g(z1),g(z0)
(ϕ(

t

λ
))− 1 +G∗

g(w2),g(w1),g(w0)
(ϕ(

t

λ
))− 1

+G∗
g(x2),g(x1),g(x0)

(ϕ(
t

λ
))− 1 +G∗

(y2),g(y1),g(y0)
(ϕ(

t

λ
))− 1),

(3.7)

ψ(
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1) ≤ 1

4
ψ(G∗

g(w2),g(w1),g(w0)
(ϕ(

t

λ
))− 1 +G∗

g(x2),g(x1),g(x0)
(ϕ(

t

λ
))− 1

+G∗
g(y2),g(y1),g(y0)

(ϕ(
t

λ
))− 1 +G∗

(z2),g(z1),g(z0)
(ϕ(

t

λ
))− 1).

(3.8)

From (3.5)-(3.8), we have

ψ(
1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1) + ψ(

1

G∗
g(y3),g(y2),g(y1)

(ϕ(t))
− 1) + ψ(

1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1)

+ ψ(
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1)

≤ ψ(
1

G∗
g(x2),g(x1),g(x0)

(ϕ( t
λ))

− 1 +
1

G∗
g(y2),g(y1),g(y0)

(ϕ( t
λ))

− 1 +
1

G∗
g(z2),g(z1),g(z0)

(ϕ( t
λ))

− 1

+
1

G∗
g(w2),g(w1),g(w0)

(ϕ( t
λ))

− 1).

By (3) of Remark 2.1, we have

ψ(
1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1 +

1

G∗
g(y3),g(y2),g(y1)

(ϕ(t))
− 1 +

1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1

+
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1)

≤ ψ(
1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1) + ψ(

1

G∗
g(y3),g(y2),g(y1)

(ϕ(t))
− 1) + ψ(

1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1)

+ ψ(
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1),

which implies that

ψ(
1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1 +

1

G∗
g(y3),g(y2),g(y1)

(ϕ((t)))
− 1 +

1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1

+
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1)

≤ ψ(
1

G∗
g(x2),g(x1),g(x0)

(ϕ( t
λ))

− 1 +
1

G∗
g(y2),g(y1),g(y0)

(ϕ( t
λ))

− 1 +
1

G∗
g(z2),g(z1),g(z0)

(ϕ( t
λ))

− 1

+
1

G∗
g(w2),g(w1),g(w0)

(ϕ( t
λ))

− 1).
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Using the fact that ψ is non-decreasing, we get

1

G∗
g(x3),g(x2),g(x1)

(ϕ(t))
− 1 +

1

G∗
g(y3),g(y2),g(y1)

(ϕ(t))
− 1 +

1

G∗
g(z3),g(z2),g(z1)

(ϕ(t))
− 1

+
1

G∗
g(w3),g(w2),g(w1)

(ϕ(t))
− 1

≤ 1

G∗
g(x2),g(x1),g(x0)

(ϕ( t
λ))

− 1 +
1

G∗
g(y2),g(y1),g(y0)

(ϕ( t
λ))

− 1 +
1

G∗
g(z2),g(z1),g(z0)

(ϕ( t
λ))

− 1

+
1

G∗
g(w2),g(w1),g(w0)

(ϕ( t
λ))

− 1.

From the above inequalities we deduce that

G∗
g(x3),g(x2),g(x1)

(ϕ(t)) > 0, G∗
g(y3),g(y2),g(y1)

(ϕ(t)) > 0,

G∗
g(z3),g(z2),g(z1)

(ϕ(t)) > 0, G∗
g(w3),g(w2),g(w1)

(ϕ(t)) > 0,

and

G∗
g(x3),g(x2),g(x1)

(ϕ(
t

λ
)) > 0, G∗

g(y3),g(y2),g(y1)
(ϕ(

t

λ
)) > 0,

G∗
g(z3),g(z2),g(z1)

(ϕ(
t

λ
)) > 0, G∗

g(w3),g(w2),g(w1)
(ϕ(

t

λ
)) > 0.

Again, by using (3.1), we have

1

G∗
g(x4),g(x3),g(x2)

(ϕ(t))
− 1 +

1

G∗
g(y4),g(y3),g(y2)

(ϕ(t))
− 1 +

1

G∗
g(z4),g(z3),g(z2)

(ϕ(t))
− 1

+
1

G∗
g(w4),g(w3),g(w2)

(ϕ(t))
− 1

≤ 1

G∗
g(x3),g(x2),g(x1)

(ϕ( t
λ))

− 1 +
1

G∗
g(y3),g(y2),g(y1)

(ϕ( t
λ))

− 1 +
1

G∗
g(z3),g(z2),g(z1)

(ϕ( t
λ))

− 1

+
1

G∗
g(w3),g(w2),g(w1)

(ϕ( t
λ))

− 1

≤ 1

G∗
g(x2),g(x1),g(x0)

(ϕ( t
λ2 ))

− 1 +
1

G∗
g(y2),g(y1),g(y0)

(ϕ( t
λ2 ))

− 1 +
1

G∗
g(z2),g(z1),g(z0)

(ϕ( t
λ2 ))

− 1

+
1

G∗
g(w2),g(w1),g(w0)

(ϕ( t
λ2 ))

− 1.

Repeating the above procedure successively, we obtain

1

G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(t))
− 1 +

1

G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(t))
− 1 +

1

G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(t))
− 1

+
1

G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(t))
− 1

≤ 1

G∗
g(x2),g(x1),g(x0)

(ϕ( t
λn ))

− 1 +
1

G∗
g(y2),g(y1),g(y0)

(ϕ( t
λn ))

− 1 +
1

G∗
g(z2),g(z1),g(z0)

(ϕ( t
λn ))

− 1

+
1

G∗
g(w2),g(w1),g(w0)

(ϕ( t
λn ))

− 1.
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If we replace x0 with xk in the previous inequalities, then for all n > k, we get

1

G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt))
− 1 +

1

G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt))
− 1

+
1

G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(λkt))
− 1 +

1

G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(λkt))
− 1

≤ 1

G∗
g(xk+2),g(xk+1),g(xk)

(ϕ( λkt
λn−k ))

− 1 +
1

G∗
g(yk+2),g(yk+1),g(yk)

(ϕ( λkt
λn−k ))

− 1

+
1

G∗
g(zk+2),g(zk+1),g(zk)

(ϕ( λkt
λn−k ))

− 1 +
1

G∗
g(wk+2),g(wk+1),g(wk)

(ϕ( λkt
λn−k ))

− 1.

Since ϕ( λkt
λn−k ) → ∞ as n→ ∞ for all 0 < k < n, we have

lim
n→∞

G∗
g(xk+2),g(xk+1),g(xk)

(ϕ(
λkt

λn−k
)) = 1, lim

n→∞
G∗

g(yk+2),g(yk+1),g(yk)
(ϕ(

λkt

λn−k
)) = 1,

lim
n→∞

G∗
g(zk+2),g(zk+1),g(zk)

(ϕ(
λkt

λn−k
)) = 1, lim

n→∞
G∗

g(wk+2),g(wk+1),g(wk)
(ϕ(

λkt

λn−k
)) = 1.

Thus,

lim
n→∞

(
1

G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt))
− 1)

≤ lim
n→∞

(
1

G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt))
− 1 +

1

G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt))
− 1

+
1

G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(λkt))
− 1 +

1

G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(λkt))
− 1) ≤ 0,

lim
n→∞

(
1

G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt))
− 1)

≤ lim
n→∞

(
1

G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt))
− 1 +

1

G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(λkt))
− 1

+
1

G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(λkt))
− 1 +

1

G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt))
− 1) ≤ 0,

similarly

lim
n→∞

(
1

G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(λkt))
− 1) ≤ 0, lim

n→∞
(

1

G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(λkt))
− 1) ≤ 0,

which implies that

lim
n→∞

(G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt)) = 1, lim
n→∞

(G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt)) = 1, (3.9)

lim
n→∞

(G∗
g(zn+2),g(zn+1),g(zn)

(ϕ(λkt)) = 1, lim
n→∞

(G∗
g(wn+2),g(wn+1),g(wn)

(ϕ(λkt)) = 1. (3.10)

Now, let ϵ > 0 be given, by (i) and (iv) of Definition 2.2, we can find k ∈ Z+ such that ϕ(λkt) < ϵ,

it follows from (3.9) and (3.10) that

lim
n→∞

(G∗
g(xn+2),g(xn+1),g(xn)

(ϵ)) ≥ lim
n→∞

(G∗
g(xn+2),g(xn+1),g(xn)

(ϕ(λkt)) = 1,

lim
n→∞

(G∗
g(yn+2),g(yn+1),g(yn)

(ϵ)) ≥ lim
n→∞

(G∗
g(yn+2),g(yn+1),g(yn)

(ϕ(λkt)) = 1,
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similarly,

lim
n→∞

(G∗
g(wn+2),g(wn+1),g(wn)

(ϵ)) ≥ 1, lim
n→∞

(G∗
g(zn+2),g(zn+1),g(zn)

(ϵ)) ≥ 1.

By using Menger triangle inequality, we obtain

G∗
g(xn+p),g(xn+1),g(xn)

(ϵ) ≥ △(G∗
g(xn+p),g(xn+p−1),g(xn+p−1)

(
ϵ

p
),△(G∗

g(xn+p−1),g(xn+p−2),g(xn+p−2)
(
ϵ

p
)

· ··, G∗
g(xn+2),g(xn+1),g(xn)

(
ϵ

p
)).

Thus, letting n→ ∞ and making use of (3.9) and (3.10), for any integer, we get

lim
n→∞

G∗
g(xn+p),g(xn+1),g(xn)

(ϵ) = 1 for every ϵ > 0.

Hence g(xn) is a Cauchy sequence. Similarly, we can prove that g(yn), g(zn), g(wn) are also Cauchy

sequences. Since (X,G∗,△) is complete, there exist x, y, z, w ∈ X such that

lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y, lim
n→∞

g(zn) = z, lim
n→∞

g(wn) = w. (3.11)

From (3.11) and the continuity of g, we have

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y), lim
n→∞

g(g(zn)) = g(z), lim
n→∞

g(g(wn)) = g(w).

From (3.2), (3.3) and the commutativity of T and g, we have

g(g(xn+1)) = g(T (xn, yn, zn, wn)) = T (g(xn), g(yn), g(zn), g(wn)), (3.12)

g(g(yn+1)) = g(T (yn, zn, wn, xn)) = T (g(yn), g(zn), g(wn), g(xn)), (3.13)

g(g(zn+1)) = g(T (zn, wn, xn, yn)) = T (g(zn), g(wn), g(xn), g(yn)), (3.14)

g(g(wn+1)) = g(T (wn, xn, yn, zn)) = T (g(wn), g(xn), g(yn), g(zn)). (3.15)

Now,we show that

g(x) = T (x, y, z, w), g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) = T (w, x, y, z).

Suppose that the assumption (a) holds. Taking the limit of (3.11) as n → ∞, by (3.12) ∼ (3.15)

and the continuity of T , we get

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

T (g(xn, yn, zn, wn)) = T ( lim
n→∞

g(xn), lim
n→∞

g(yn), lim
n→∞

g(zn), lim
n→∞

g(wn))

= T (x, y, z, w),
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g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

T (g(yn, zn, wn, xn)) = T ( lim
n→∞

g(yn), lim
n→∞

g(zn), lim
n→∞

g(wn), lim
n→∞

g(xn))

= T (y, z, w, x).

Similarly,

g(z) = T (z, w, x, y), g(w) = T (w, x, y, z).

Thus we prove that

g(x) = T (x, y, z, w), g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) = T (w, x, y, z).

Suppose now that (b) holds, since

G∗
g(x),T (x,y,z,w),T (x,y,z,w)(ϵ) ≥ △(G∗

g(x),g(g(xn+1)),g(g(xn+1))
(
ϵ

2
), G∗

g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(
ϵ

2
)). (3.16)

and using (i) of Definition 2.2, we find some s > 0 such that ϕ(s) < ϵ
2 , since

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y), lim
n→∞

g(g(zn)) = g(z), lim
n→∞

g(g(wn)) = g(w).

then there exists n0 ∈ Z+, such that

G∗
g(g(xn)),g(x),g(x)

(ϕ(s)) > 0, G∗
g(g(yn)),g(y),g(y)

(ϕ(s)) > 0,

G∗
g(g(zn)),g(z),g(z)

(ϕ(s)) > 0, G∗
g(g(wn)),g(w),g(w)(ϕ(s)) > 0.

for all n > n0. Since {g(xn)}, {g(zn)} is non-decreasing and as {g(yn)}, {g(wn)} is non-increasing and

g(xn) → x, g(yn) → y, g(zn) → z, g(wn) → w.

By (3.1) and (3.12)-(3,15), we get

ψ(
1

G∗
g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(ϕ(s))

− 1) = ψ(
1

G∗
T (g(xn),g(yn),g(zn),g(wn)),T (x,y,z,w),T (x,y,z,w)(ϕ(s))

− 1)

≤ 1

4
ψ(

1

G∗
g(g(xn)),g(x),g(x)

(ϕ( sλ))
− 1 +

1

G∗
g(g(yn)),g(y),g(y)

(ϕ( sλ))
− 1 +

1

G∗
g(g(zn)),g(z),g(z)

(ϕ( sλ))
− 1

+
1

G∗
g(g(wn)),g(w),g(w)(ϕ(

s
λ))

− 1).

By the same way, we obtain

ψ(
1

G∗
g(g(yn+1)),T (y,z,w,x),T (y,z,w,x)(ϕ(s))

− 1)

≤ 1

4
ψ(

1

G∗
g(g(xn)),g(x),g(x)

ϕ( sλ)
− 1 +

1

G∗
g(g(yn)),g(y),g(y)

ϕ( sλ)
− 1 +

1

G∗
g(g(zn)),g(z),g(z)

ϕ( sλ)
− 1

+
1

G∗
g(g(wn)),g(w),g(w)ϕ(

s
λ)

− 1),

11

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

336 Gang Wang ET AL 326-344



ψ(
1

G∗
g(g(zn+1)),T (z,w,x,y),T (z,w,x,y)(ϕ(s))

− 1)

≤ 1

4
ψ(

1

G∗
g(g(xn)),g(x),g(x)

ϕ( sλ)
− 1 +

1

G∗
g(g(yn)),g(y),g(y)

ϕ( sλ)
− 1 +

1

G∗
g(g(zn)),g(z),g(z)

ϕ( sλ)
− 1

+
1

G∗
g(g(wn)),g(w),g(w)ϕ(

s
λ)

− 1),

ψ(
1

G∗
g(g(wn+1)),T (w,x,y,z),T (w,x,y,z)(ϕ(s))

− 1)

≤ 1

4
ψ(

1

G∗
g(g(xn)),g(x),g(x)

ϕ( sλ)
− 1 +

1

G∗
g(g(yn)),g(y),g(y)

ϕ( sλ)
− 1 +

1

G∗
g(g(zn)),g(z),g(z)

ϕ( sλ)
− 1

+
1

G∗
g(g(wn)),g(w),g(w)ϕ(

s
λ)

− 1).

By the above inequalities and (3) of Remark 2.1, we have

1

G∗
g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(ϕ(

ϵ
2))

− 1 ≤ 1

G∗
g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(ϕ(s))

− 1

≤ 1

G∗
g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(ϕ(s))

− 1 +
1

G∗
g(g(yn+1)),T (y,z,w,x),T (y,z,w,x)(ϕ(s))

− 1

+
1

G∗
g(g(zn+1)),T (z,w,x,y),T (z,w,x,y)(ϕ(s))

− 1 +
1

G∗
g(g(wn+1)),T (w,x,y,z),T (w,x,y,z)(ϕ(s))

− 1

≤ 1

G∗
g(g(xn)),g(x),g(x)

(ϕ( sλ))
− 1 +

1

G∗
g(g(yn)),g(y),g(y)

(ϕ( sλ))
− 1 +

1

G∗
g(g(zn)),g(z),g(z)

(ϕ( sλ))
− 1

+
1

G∗
g(g(wn)),g(w),g(w)(ϕ(

s
λ))

− 1.

(3.17)

Letting n→ ∞ in above inequalities (3.17), we obtain

lim
n→∞

G∗
g(g(xn+1)),T (x,y,z,w),T (x,y,z,w)(

ϵ

2
) = 1. (3.18)

From (3.16) and (3.18), we get G∗
g(x),T (x,y,z,w),T (x,y,z,w)(ϵ) = 1 for every ϵ > 0, which implies

that g(x) = T (x, y, z, w). Similarly, we show that g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) =

T (w, x, y, z). Thus we prove that g and T have a coupled coincidence point.

Corollary 3.1 Let (X,≤) be a partially ordered set and (X,G∗,△) be a complete PGM-space with

a continuous t − norm. Assume that T : X4 → X has the mixed monotone property, and satisfying

the following:

1

G∗
T (x,y,z,w),T (u,v,p,q),T (a,b,c,d)(

t
2)

− 1 ≤ 1

4
(

1

G∗
x,u,a(t)

− 1 +
1

G∗
y,v,b(t)

− 1 +
1

G∗
z,p,c(t)

− 1 +
1

G∗
w,q,d(t)

− 1)

for t > 0, G∗
x,u,a(t) > 0, G∗

y,v,b(t) > 0, G∗
z,p,c(t) > 0, G∗

w,q,d(t) > 0 and x, y, z, w, u, v, p, q, a, b, c, d ∈ X

satisfying x ≤ u ≤ a, z ≤ p ≤ c , y ≥ v ≥ b and w ≥ q ≥ d. Suppose that either

(a) T is continuous, or

(b) X has the following properties:
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(I) if non-decreasing sequences {xn} → x, {zn} → z, then xn ≤ x, zn ≤ z for all n,

(II) if non-increasing sequences {yn} → y, {wn} → w, then yn ≤ y, wn ≤ w for all n.

If there exist x0, y0, z0, w0 ∈ X, such that x0 ≤ T (x0, y0, z0, w0), z0 ≤ T (z0, w0, x0, y0) and y0 ≥

T (y0, z0, w0, x0), w0 ≥ T (w0, x0, y0, z0), then their exist x, y, z, w ∈ X, such that

x = T (x, y, z, w), y = T (y, z, w, x), z = T (z, w, x, y), w = T (w, x, y, z),

that is, T has a coupled coincidence point.

Proof Taking g = IX(the identity mapping on X), λ = 1
2 and ϕ(t) = φ(t) = t for all t ≥ 0 in

Theorem 3.1, we can easily obtain the above corollary.

4 Coupled common fixed point results in partially ordered complete

Menger probabilistic G-metric spaces

In the section, we prove the existence and uniqueness theorem of a coupled fixed point in partially

ordered complete Menger probabilistic G-metric spaces.

Theorem 3.2 In addition to the hypotheses of Theorem 3.1, suppose that for every (x, y, z, w), (x∗, y∗,

z∗, w∗) ∈ X4 there exists a (u, v, p, q) ∈ X4, such that (T (u, v, p, q), T (v, p, q, u), T (p, q, u, v), T (q, u, v, p))

are comparable to (T (x, y, z, w), T (y, z, w, x), T (z, w, x, y), T (w, x, y, z)) and (T (x∗, y∗, z∗, w∗), T (y∗, z∗,

w∗, x∗), T (z∗, w∗, x∗, y∗), T (w∗, x∗, y∗, z∗)). Then T and g have a unique coupled common fixed point,

that is, there exists a unique (x, y, z, w) ∈ X4, such that

x = g(x) = T (x, y, z, w), y = g(y) = T (y, z, w, x), z = g(z) = T (z, w, x, y), w = g(w) = T (w, x, y, z).

Proof From Theorem 3.1, the set of coupled coincidences is non-empty, we shall first show that if

(x, y, z, w) and (x∗, y∗, z∗, w∗) are coupled coincidence points, that is, if

g(x) = T (x, y, z, w), g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) = T (w, x, y, z)

and

g(x∗) = T (x∗, y∗, z∗, w∗), g(y∗) = T (y∗, z∗, w∗, x∗),

g(z∗) = T (z∗, w∗, x∗, y∗), g(w∗) = T (w∗, x∗, y∗, z∗),

then

g(x) = g(x∗), g(y) = g(y∗), g(z) = g(z∗), g(w) = g(w∗). (4.1)
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By assumption, there exists a (u, v, p, q) ∈ X4, such that (T (u, v, p, q), T (v, p, q, u), T (p, q, u, v), T (q,

u, v, p)) is comparable to (T (x, y, z, w), T (y, z, w, x), T (z, w, x, y), T (w, x, y, z)) and (T (x∗, y∗, z∗, w∗),

T (y∗, z∗, w∗, x∗), T (z∗, w∗, x∗, y∗), T (w∗, x∗, y∗, z∗)). Putting u0 = u, v0 = v, p0 = p, q0 = q and

u1, v1, p1, q1 ∈ X, such that g(u1) = T (u0, v0, p0, q0), g(v1) = T (v0, p0, q0, u0), g(p1) = T (p0, q0, u0, v0),

g(q1) = T (q0, u0, v0, p0). The proof of Theorems is similar to Theorem 3.1. We inductively define

sequences {g(un)}, {g(vn)}, {g(pn)}, {g(qn)}, such that

g(un+1) = T (un, vn, pn, qn), g(vn+1) = T (vn, pn, qn, un),

g(pn+1) = T (pn, qn, un, vn), g(qn+1) = T (qn, un, vn, pn).

Similarly, setting x0 = x, y0 = y, z0 = z, w0 = w, and x∗0 = x∗, y∗0 = y∗, z∗0 = z∗, w∗
0 = w∗. We also

define sequences {g(xn)}, {g(yn)}, {g(zn)}, {g(wn)} and {g(x∗n)}, {g(y∗n)}, {g(z∗n)}, {g(w∗
n)}, then it is

easy to show that

g(xn) = T (x, y, z, w), g(yn) = T (y, z, w, x), g(zn) = T (z, w, x, y), g(wn) = T (w, x, y, z)

and

g(x∗n) = T (x∗, y∗, z∗, w∗), g(y∗n) = T (y∗, z∗, w∗, x∗),

g(z∗n) = T (z∗, w∗, x∗, y∗), g(w∗
n) = T (w∗, x∗, y∗, z∗).

Since (T (x, y, z, w), T (y, z, w, x), T (z, w, x, y), T (w, x, y, z)) = (g(x1), g(y1), g(z1), g(w1)) = (g(x),

g(y), g(z), g(w)) and (T (u, v, p, q), T (v, p, q, u), T (p, q, u, v), T (q, u, v, p)) = (g(u1), g(v1), g(p1), g(q1))

are comparable, then we have g(x) ≤ g(u1), g(z) ≤ g(p1), g(y) ≥ g(v1) and g(w) ≥ g(q1). It is easy

to show that (g(x), g(y), g(w), g(z)) and (g(un), g(vn), g(pn), g(qn)) are comparable, that is, g(x) ≤

g(xn), g(z) ≤ g(zn), g(y) ≥ g(yn) and g(w) ≥ g(wn), for all n ≥ 1. Following the proof of Theorem

3.1, we can find some t > 0 such that

G∗
g(x),g(un,g(un)

(ϕ(
t

λ
)) > 0, G∗

g(y),g(vn,g(vn)
(ϕ(

t

λ
)) > 0 for all n ≥ 0,

G∗
g(z),g(pn,g(pn)

(ϕ(
t

λ
)) > 0, G∗

g(z),g(qn,g(qn)
(ϕ(

t

λ
)) > 0 for all n ≥ 0.

Thus from (3.1)

ψ(
1

G∗
g(x),g(un+1),g(un+1)

(ϕ(t))
− 1) = ψ(

1

G∗
T (x,y,z,w),T (un,vn,pn,qn),T (un,vn,pn,qn)

(ϕ(t))
− 1)

≤ 1

4
ψ(

1

G∗
x,un,un

(ϕ( t
λ))

− 1 +
1

G∗
y,vn,vn(ϕ(

t
λ))

− 1 +
1

G∗
z,pn,pn(ϕ(

t
λ))

− 1 +
1

G∗
w,qn,qn(ϕ(

t
λ))

− 1).
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By Remark 2.4, we get

1

G∗
g(x),g(un+1),g(un+1)

(ϕ(t))
− 1 +

1

G∗
g(y),g(vn+1),g(vn+1)

(ϕ(t))
− 1 +

1

G∗
g(z),g(pn+1),g(pn+1)

(ϕ(t))
− 1

+
1

G∗
g(w),g(qn+1),g(qn+1)

(ϕ(t))
− 1

≤ 1

G∗
g(x),g(un),g(un)

(ϕ( t
λ))

− 1 +
1

G∗
g(y),g(vn),g(vn)

(ϕ( t
λ))

− 1 +
1

G∗
g(z),g(pn),g(pn)

(ϕ( t
λ))

− 1

+
1

G∗
g(w),g(qn),g(qn)

(ϕ( t
λ))

− 1

...

≤ 1

G∗
g(x),g(u0),g(u0)

(ϕ( t
λn ))

− 1 +
1

G∗
g(y),g(v0),g(v0)

(ϕ( t
λn ))

− 1 +
1

G∗
g(z),g(p0),g(p0)

(ϕ( t
λn ))

− 1

+
1

G∗
g(w),g(q0),g(q0)

(ϕ( t
λn ))

− 1.

(4.2)

We replace uk with u0 in (4.2), we get

1

G∗
g(x),g(un+1),g(un+1)

ϕ(λkt)
− 1 +

1

G∗
g(y),g(vn+1),g(vn+1)

ϕ(λkt)
− 1 +

1

G∗
g(z),g(pn+1),g(pn+1)

ϕ(λkt)
− 1

+
1

G∗
g(w),g(qn+1),g(qn+1)

ϕ(λkt)
− 1

≤ 1

G∗
g(x),g(uk),g(uk)

(ϕ( λkt
λn−k ))

− 1 +
1

G∗
g(y),g(vk),g(vk)

(ϕ( λkt
λn−k ))

− 1 +
1

G∗
g(z),g(pk),g(pk)

(ϕ( λkt
λn−k ))

− 1

+
1

G∗
g(w),g(qk),g(qk)

(ϕ( λkt
λn−k ))

− 1,

for all n > k. Letting n→ ∞, we obtain

lim
n→∞

G∗
g(x),g(un+1,g(un+1)(ϕ(λkt)) = 1, lim

n→∞
G∗

g(y),g(vn+1,g(vn+1)(ϕ(λkt)) = 1.

lim
n→∞

G∗
g(z),g(pn+1,g(pn+1)(ϕ(λkt)) = 1, lim

n→∞
G∗

g(w),g(qn+1,g(qn+1)(ϕ(λkt)) = 1.

Let ϵ > 0 be given. By (i) and (iv) of Definition 2.2, there exists k ∈ Z+, such that ϕ(λkt) < ϵ
2 .

Then we have

lim
n→∞

G∗
g(x),g(un+1),g(un+1)

(
ϵ

2
) ≥ lim

n→∞
G∗

g(x),g(un+1),g(un+1)
(ϕ(λkt)) = 1, (4.3)

lim
n→∞

G∗
g(y),g(vn+1),g(vn+1)

(
ϵ

2
) ≥ lim

n→∞
G∗

g(y),g(vn+1),g(vn+1)
(ϕ(λkt)) = 1. (4.4)

Similarly, we prove that

lim
n→∞

G∗
g(x∗),g(un+1),,g(un+1)

(
ϵ

2
) = 1, lim

n→∞
G∗

g(y∗),g(vn+1),,g(vn+1)
(
ϵ

2
) = 1. (4.5)

lim
n→∞

G∗
g(z∗),g(pn+1),,g(pn+1)

(
ϵ

2
) = 1, lim

n→∞
G∗

g(w∗),g(qn+1),,g(qn+1)
(
ϵ

2
) = 1. (4.6)
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By using Menger triangle inequality, and (4.3)-(4.6), we get

G∗
g(x),g(un+1),g(x∗)(ϵ) ≥ △(G∗

g(x),g(un+1),g(un+1)
(
ϵ

2
), G∗

g(un+1),g(un+1),g(x∗)(
ϵ

2
)) → 1 as n→ ∞,

G∗
g(y),g(vn+1),g(y∗)

(ϵ) ≥ △(G∗
g(y),g(vn+1),g(vn+1)

(
ϵ

2
), G∗

g(vn+1),g(vn+1),g(y∗)
(
ϵ

2
)) → 1 as n→ ∞,

G∗
g(z),g(pn+1),g(z∗)

(ϵ) ≥ △(G∗
g(z),g(pn+1),g(pn+1)

(
ϵ

2
), G∗

g(pn+1),g(pn+1),g(z∗)
(
ϵ

2
)) → 1 as n→ ∞,

G∗
g(w),g(qn+1),g(w∗)(ϵ) ≥ △(G∗

g(w),g(qn+1),g(qn+1)
(
ϵ

2
), G∗

g(qn+1),g(qn+1),g(w∗)(
ϵ

2
)) → 1 as n→ ∞.

Hence g(x) = g(x∗), g(y) = g(y∗), g(z) = g(z∗), g(w) = g(w∗), thus (4.1) holds. Since g(x) =

T (x, y, z, w), g(y) = T (y, z, w, x), g(z) = T (z, w, x, y), g(w) = T (w, x, y, z), by commutativity of T and

g, we have

g(g(x)) = g(T (x, y, z, w)) = T (g(x), g(y), g(z), g(w)), (4.7)

g(g(y)) = g(T (y, z, w, x)) = T (g(y), g(z), g(w), g(x)), (4.8)

g(g(z)) = g(T (z, w, x, y)) = T (g(z), g(w), g(x), g(y)), (4.9)

g(g(w)) = g(T (w, x, y, z)) = T (g(w), g(x), g(y), g(z)). (4.10)

Denote g(x) = α, g(y) = β, g(z) = γ, g(w) = σ. From (4.7)-(4.10), we obtain

g(α) = T (α, β, γ, σ), g(β) = T (β, γ, σ, α), g(γ) = T (γ, σ, α, β), g(σ) = T (σ, α, β, γ), (4.11)

thus (α, β, γ, σ) is a coupled coincidence point. Owing to (4.1) with x∗ = α, y∗ = β, z∗ = γ, and

w∗ = σ, it follows

g(α) = g(x), g(β) = g(y), g(γ) = g(z), g(σ) = g(w),

that is

g(α) = α, g(β) = β, g(γ) = γ, g(σ) = σ. (4.12)

From (4.11) and (4.12), we have

α = g(α) = T (α, β, γ, σ), β = g(β) = T (β, γ, σ, α), γ = g(γ) = T (γ, σ, α, β), σ = g(σ) = T (σ, α, β, γ).

Therefore, (α, β, γ, σ) is a coupled common fixed point of T and g. Suppose that (α∗, β∗, γ∗, σ∗) is

another coupled common fixed point. By (4.1), we have

α∗ = g(α∗) = g(x) = x, β∗ = g(β∗) = g(y) = y, γ∗ = g(γ∗) = g(z) = z, σ∗ = g(σ∗) = g(w) = w,

which implies that T and g has a unique coupled common fixed point.

This completes the proof.
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5 An example

In this section, an example are presented to verify the effectiveness and applicability of Theorem

3.1.

Example 5.1 Let X = [0, 1] be given. Define G(x, y, z) = |x − y| + |y − z| + |z − x|. A mapping

T : X4 → X define by T (x1, x2, x3, x4) =
x1+x2+x3+x4

16 . And g : X → X define by g(x) = x
2 . Define

G∗
x,y,z(t) =


t

t+G(x,y,z) , if t > 0,

0, if t < 0.

for x1, x2, x3, x4, x, y, z ∈ X, where T (X4) ⊂ g(X). Then (X,G∗,△m) is a complete Menger PGM-

space with a continuous t-norm △m. Let λ = 1
2 , φ(t) =

9t
10 and ϕ(t) = t

2 be given for all t > 0. Then

we have

ψ(
1

G∗
T (x,y,z,w),T (u,v,p,q),T (a,b,c,d)(ϕ(λt))

− 1) = ψ(
1

ϕ(λt)
(G(T (x, y, z, w), T (u, v, p, q), T (a, b, c, d))))

=
9

40t
(|x+ y + z + w − u− v − p− q|+ |u+ v + p+ q − a− b− c− d|

+ |a+ b+ c+ d− x− y − z − w|),

(5.1)

1

4
ψ(

1

G∗
g(x),g(u),g(a)ϕ(t)

− 1 +
1

G∗
g(y),g(v),g(b)ϕ(t)

− 1 +
1

G∗
g(z),g(p),g(c)ϕ(t)

− 1 +
1

G∗
g(w),g(q),g(d)ϕ(t)

− 1)

=
9

40t
(|x− u|+ |u− a|+ |a− x|+ |y − v|+ |v − b|+ |b− y|+ |z − p|+ |p− c|+ |c− z|

+ |w − q|+ |q − d|+ |d− w|).

(5.2)

By (5.1) and (5.2), we obtain

ψ(
1

G∗
T (x,y,z,w),T (u,v,p,q),T (a,b,c,d)(ϕ(λt))

− 1) ≤1

4
ψ(

1

G∗
g(x),g(u),g(a)ϕ(t)

− 1 +
1

G∗
g(y),g(v),g(b)ϕ(t)

− 1

+
1

G∗
g(z),g(p),g(c)ϕ(t)

− 1 +
1

G∗
g(w),g(q),g(d)ϕ(t)

− 1),

which implies that T and g satisfy ψ-contractive condition. Thus, all the conditions of Theorem 3.1

are satisfied. And (0,0,0,0) is the coupled coincidence point of T and g.
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[18] C.L. Zhou, S.H. Wang, L. Ćirić and S.M. Alsulami, Generalized probabilistic metric spaces and

fixed point theorems, Fixed point Theory Appl. 2014, 91 (2014).

19

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.2, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

344 Gang Wang ET AL 326-344



FOURIER SERIES OF SUMS OF PRODUCTS OF

HIGHER-ORDER EULER FUNCTIONS

TAEKYUN KIM1, DAE SAN KIM2, GWAN-WOO JANG3, AND JONGKYUM KWON4,∗

Abstract. In this paper, we consider three types of functions given by sums

of products of higher-order Euler functions and derive their Fourier series ex-

pansions. Moreover, we express each of them in terms of Bernoulli functions.

1. Introduction

Let r be a nonnegative integer. The Euler polynomials E
(r)
m (x) of order r are

defined by the generating function (see [2, 9–12,17,19])(
2

et + 1

)r
ext =

∞∑
m=0

E(r)
m (x)

tm

m!
. (1.1)

When x = 0, E
(r)
m = E

(r)
m (0) are called the Euler numbers of order r. For r = 1,

Em(x) = E
(1)
m (x), and Em = E

(1)
m are called Euler polynomials and numbers, re-

spectively.

From (1.1), it is immediate to see that

d

dx
E(r)
m (x) = mE

(r)
m−1(x), m ≥ 1, E(r)

m (x+1)+E(r)
m (x) = 2E(r−1)

m (x), m ≥ 0. (1.2)

These in turn imply that

E(r)
m (1) = 2E(r−1)

m − E(r)
m , (m ≥ 0), (1.3)

and ∫ 1

0

E(r)
m (x)dx =

2

m+ 1

(
E

(r−1)
m+1 − E

(r)
m+1

)
, (m ≥ 0). (1.4)

For any real number x, the fractional part of x is denoted by

< x >= x− [x] ∈ [0, 1). (1.5)

We will need the following facts about the Fourier series expansion of the Bernoulli
function Bm(< x >):

2010 Mathematics Subject Classification. 11B68, 42A16.

Key words and phrases. Fourier series, sums of products of higher-order Euler functions.
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2 Fourier series of sums of products of higher-order Euler functions

(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n6=0

e2πinx

(2πin)m
, (1.6)

(b) for m = 1,

−
∞∑

n=−∞,n6=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(1.7)

In the present paper, we will study the following three types of sums of products
of higher-order Euler functions and find Fourier series expansions for them. Fur-
thermore, we will express them in terms of Bernoulli functions. In the following,
we let r, s be positive integers.

(1) αm(< x >) =
∑m
k=0E

(r)
k (< x >)E

(s)
m−k(< x >), (m ≥ 1);

(2) βm(< x >) =
∑m
k=0

1
k!(m−k)!E

(r)
k (< x >)E

(s)
m−k(< x >), (m ≥ 1);

(3) γm(< x >) =
∑m−1
k=1

1
k(m−k)E

(r)
k (< x >)E

(s)
m−k(< x >), (m ≥ 2).

For elementary facts about Fourier analysis, the reader may refer to any book (for
example, see [1, 20]).

As to γm(< x >), we note that the polynomial identity (1.8) follows immediately
from the Fourier series expansion of γm(< x >) in Theorems 4.1 and 4.2:

m−1∑
k=1

1

k(m− k)
E

(r)
k (x)E

(s)
m−k(x)

=
1

m

m∑
k=0

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(x),

(1.8)

where, for each integer l ≥ 2,

Λl =
l−1∑
k=1

2

k(l − k)

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k
)
, (1.9)

and Hm =
∑m
j=1

1
j are the harmonic numbers.

The obvious polynomial identities can be derived also for αm(< x >) and βm(<
x >) from Theorems 2.1 and 2.2, and Theorems 3.1 and 3.2, respectively. It is
noteworthy that from the Fourier series expansion of the function

m−1∑
k=1

1

k(m− k)
Bk(〈x〉)Bm−k(〈x〉) (1.10)

we can derive the famous Faber-Pandharipande-Zagier identity (see [4, 7, 8]) and
the Miki’s identity (see [3, 5, 7, 8, 18]). Hence our problem here is a natural exten-
sion of the previous works which lead to a simple proof for the important Faber-
Pandharipande-Zagier and Miki’s identities (see [15]). Some related recent works
can be found in [6, 13–16].
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2. The function αm(< x >)

Let αm(x) =
∑m
k=0E

(r)
k (x)E

(s)
m−k(x), (m ≥ 1). Then we will consider the func-

tion

αm(< x >) =
m∑
k=0

E
(r)
k (< x >)E

(s)
m−k(< x >), (m ≥ 1), (2.1)

defined on R, which is periodic with period 1.

The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx, (2.2)

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx =

∫ 1

0

αm(x)e−2πinxdx. (2.3)

To proceed further, we need to observe the following.

α′m(x) =
m∑
k=0

(
kE

(r)
k−1(x)E

(s)
m−k(x) + (m− k)E

(r)
k (x)E

(s)
m−k−1(x)

)
=

m∑
k=1

kE
(r)
k−1(x)E

(s)
m−k(x) +

m−1∑
k=0

(m− k)E
(r)
k (x)E

(s)
m−k−1(x)

=
m−1∑
k=0

(k + 1)E
(r)
k (x)E

(s)
m−1−k(x) +

m−1∑
k=0

(m− k)E
(r)
k (x)E

(s)
m−1−k(x)

= (m+ 1)
m−1∑
k=0

E
(r)
k (x)E

(s)
m−1−k(x)

= (m+ 1)αm−1(x).

(2.4)

From this, we have (
αm+1(x)

m+ 2

)′
= αm(x), (2.5)

and ∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.6)

For m ≥ 1, we put

∆m = αm(1)− αm(0)

=
m∑
k=0

(
E

(r)
k (1)E

(s)
m−k(1)− E(r)

k E
(s)
m−k

)
=

m∑
k=0

(
(2E

(r−1)
k − E(r)

k )(2E
(s−1)
m−k − E

(s)
m−k)− E(r)

k E
(s)
m−k

)
= 2

m∑
k=0

(
2E

(r−1)
k E

(s−1)
m−k − E

(r)
k E

(s−1)
m−k − E

(r−1)
k E

(s)
m−k

)
.

(2.7)
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We now see that
αm(0) = αm(1)⇐⇒ ∆m = 0, (2.8)

and ∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.9)

Next, we want to determine the Fourier coefficients A
(m)
n .

Case 1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

= − 1

2πin
[αm(x)e−2πinx]10 +

1

2πin

∫ 1

0

α′m(x)e−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx

=
m+ 1

2πin
A(m−1)
n − 1

2πin
∆m,

(2.10)

from which by induction on m, we can easily derive that

A(m)
n = − 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1. (2.11)

Case 2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.12)

αm(< x >), (m ≥ 1) is piecewise C∞. In addition, αm(< x >) is continuous for
those positive integers m with ∆m = 0, and discontinuous with jump discontinuities
at integers for those positive integers with ∆m 6= 0.

Assume first that ∆m = 0, for a positive integer m. Then αm(0) = αm(1). Hence
αm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of αm(< x >)
converges uniformly to αm(< x >) , and

αm(< x >) =
1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1

−j! ∞∑
n=−∞,n6=0

e2πinx

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

+ ∆m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.13)
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We are now going to state our first result.

Theorem 2.1. For each positive integer l, we let

∆l = 2
l∑

k=0

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k

)
.

Assume that ∆m = 0, for a positive integer m. Then we have the following.

(a)
∑m
k=0E

(r)
k (< x >)E

(s)
m−k(< x >) has the Fourier series expansion

m∑
k=0

E
(r)
k (< x >)E

(s)
m−k(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

(2.14)

for all x ∈ R, where the convergence is uniform.

(b)
m∑
k=0

E
(r)
k (< x >)E

(s)
m−k(< x >) =

1

m+ 2

m∑
j=0,j 6=1

(
m+ 2

j

)
∆m−j+1Bj(< x >),

(2.15)
for all x in R.

Assume next that ∆m 6= 0, for a positive integer m. Then αm(0) 6= αm(1).
Hence αm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
integers.
Then the Fourier series of αm(< x >) converges pointwise to αm(< x >) , for
x /∈ Z,
and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m, (2.16)

for x ∈ Z.

Now, we are going to state our second result.

Theorem 2.2. For each positive integer l, we let

∆l = 2

l∑
k=0

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k

)
.

Assume that ∆m 6= 0, for a positive integer m. Then we have the following.

(a)
1

m+ 2
∆m+1 +

∞∑
n=−∞,n6=0

− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{∑m
k=0E

(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z,∑m

k=0E
(r)
k E

(s)
m−k + 1

2∆m, for x ∈ Z.

(2.17)
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(b)
1

m+ 2

m∑
j=0

(
m+ 2

j

)
∆m−j+1Bj(< x >) =

m∑
k=0

E
(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z;

(2.18)

1

m+ 2

m∑
j=0,j 6=1

(
m+ 2

j

)
∆m−j+1Bj(< x >) =

m∑
k=0

E
(r)
k E

(s)
m−k +

1

2
∆m, for x ∈ Z.

(2.19)

3. The function βm(< x >)

Let βm(x) =
∑m
k=0

1
k!(m−k)!E

(r)
k (x)E

(s)
m−k(x), (m ≥ 1). Then we will consider

the function

βm(< x >) =
m∑
k=0

1

k!(m− k)!
E

(r)
k (< x >)E

(s)
m−k(< x >), (m ≥ 1),

defined on R, which is periodic with period 1.
The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx, (3.1)

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx. (3.2)

Before continuing further, we need to note the following.

β′m(x) =
m∑
k=0

{
k

k!(m− k)!
E

(r)
k−1(x)E

(s)
m−k(x) +

(m− k)

k!(m− k)!
E

(r)
k (x)E

(s)
m−k−1(x)

}

=
m∑
k=1

1

(k − 1)!(m− k)!
E

(r)
k−1(x)E

(s)
m−k(x)

+
m−1∑
k=0

1

k!(m− k − 1)!
E

(r)
k (x)E

(s)
m−k−1(x)

=
m−1∑
k=0

1

k!(m− 1− k)!
E

(r)
k (x)E

(s)
m−1−k(x)

+
m−1∑
k=0

1

k!(m− 1− k)!
E

(r)
k (x)E

(s)
m−1−k(x)

= 2βm−1(x).

(3.3)
From this, we have (

βm+1(x)

2

)′
= βm(x), (3.4)
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and ∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
. (3.5)

For m ≥ 1, we set

Ωm = βm(1)− βm(0)

=
m∑
k=0

1

k!(m− k)!

(
E

(r)
k (1)E

(s)
m−k(1)− E(r)

k E
(s)
m−k

)
=

m∑
k=0

1

k!(m− k)!

(
(2E

(r−1)
k − E(r)

k )(2E
(s−1)
m−k − E

(s)
m−k)− E(r)

k E
(s)
m−k

)
=

m∑
k=0

2

k!(m− k)!

(
2E

(r−1)
k E

(s−1)
m−k − E

(r)
k E

(s−1)
m−k − E

(r−1)
k E

(s)
m−k

)
.

(3.6)

Now, it is immediate to see that

βm(0) = βm(1)⇐⇒ Ωm = 0, (3.7)

and ∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.8)

We now would like to determine the Fourier coefficients B
(m)
n .

Case 1:n 6= 0

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

= − 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

2

2πin

∫ 1

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)
n − 1

2πin
Ωm,

(3.9)

from which by induction on m gives

B(m)
n = −

m∑
j=1

2j−1

(2πin)j
Ωm−j+1. (3.10)

Case 2: n = 0

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1. (3.11)

βm(< x >), (m ≥ 1) is piecewise C∞. Further, βm(< x >) is continuous for
those positive integers m with Ωm = 0, and discontinuous with jump discontinuities
at integers for those positive integers m with Ωm 6= 0 .
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8 Fourier series of sums of products of higher-order Euler functions

Assume first that Ωm = 0, for a positive integer m. Then βm(0) = βm(1). Hence
βm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of βm(< x >)
converges uniformly to βm(< x >), and

βm(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1

(
−j!

∞∑
n=−∞,n6=0

e2πnx

(2πin)j

)
=

1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(3.12)

Now, we are going to state our first result.

Theorem 3.1. For each positive integer l, we let

Ωl =
l∑

k=0

2

k!(l − k)!

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k
)
. (3.13)

Assume that Ωm = 0, for a positive integer m. Then we have the following.

(a)
∑m
k=0

1
k!(m−k)!E

(r)
k (< x >)E

(s)
m−k(< x >) has the Fourier series expansion

m∑
k=0

1

k!(m− k)!
E

(r)
k (< x >)E

(s)
m−k(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,

(3.14)

for all x ∈ R, where the convergence is uniform.

(b)

m∑
k=0

1

k!(m− k)!
E

(r)
k (< x >)E

(s)
m−k(< x >)

=
m∑

j=0,j 6=1

2j−1

j!
Ωm−j+1Bj(< x >),

(3.15)

for all x ∈ R.

Assume next that Ωm 6= 0, for a positive integer m. Then, βm(0) 6= βm(1).
Hence βm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
integers. Then the Fourier series of βm(< x >) converges pointwise to βm(< x >),
for x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm, (3.16)

for x ∈ Z.
Next, we are going to state our second result.
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Theorem 3.2. For each positive integer l, we let

Ωl =
l∑

k=0

2

k!(l − k)!

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k
)
. (3.17)

Assume that Ωm 6= 0, for a positive integer m. Then we have the following.

(a)
1

2
Ωm+1 +

∞∑
n=−∞,n6=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m
k=0

1
k!(m−k)!E

(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z,∑m

k=0
1

k!(m−k)!E
(r)
k E

(s)
m−k + 1

2Ωm, for x ∈ Z.

(3.18)

(b)
m∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >)

=

m∑
k=0

1

k!(m− k)!
E

(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z;

m∑
j=0,j 6=1

2j−1

j!
Ωm−j+1Bj(< x >)

=

m∑
k=0

1

k!(m− k)!
E

(r)
k E

(s)
m−k +

1

2
Ωm, for x ∈ Z.

(3.19)

4. The function γm(< x >)

Let γm(x) =
∑m−1
k=1

1
k(m−k)E

(r)
k (x)E

(s)
m−k(x), (m ≥ 2). Then we will consider

the function

γm(< x >) =
m−1∑
k=1

1

k(m− k)
E

(r)
k (< x >)E

(s)
m−k(< x >),

defined on R, which is periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.1)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx. (4.2)
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10 Fourier series of sums of products of higher-order Euler functions

To proceed further, we need to observe the following.

γ′m(x) =
m−1∑
k=1

1

m− k
E

(r)
k−1(x)E

(s)
m−k(x) +

m−1∑
k=1

1

k
E

(r)
k (x)E

(s)
m−k−1(x)

=
m−2∑
k=0

1

m− 1− k
E

(r)
k (x)E

(s)
m−1−k(x) +

m−1∑
k=1

1

k
E

(r)
k (x)E

(s)
m−1−k(x)

= (m− 1)
m−2∑
k=1

1

k(m− 1− k)
E

(r)
k (x)E

(s)
m−1−k(x) +

1

m− 1
E

(s)
m−1(x) +

1

m− 1
E

(r)
m−1(x)

= (m− 1)γm−1(x) +
1

m− 1
E

(s)
m−1(x) +

1

m− 1
E

(r)
m−1(x).

(4.3)
From this, we easily see that(

1

m

(
γm+1(x)− 1

m(m+ 1)
E

(r)
m+1(x)− 1

m(m+ 1)
E

(s)
m+1(x)

))′
= γm(x), (4.4)

and ∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)− 1

m(m+ 1)
E

(r)
m+1(x)− 1

m(m+ 1)
E

(s)
m+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)− 1

m(m+ 1)
(E

(r)
m+1(1)− E(r)

m+1(0))

− 1

m(m+ 1)
(E

(s)
m+1(1)− E(s)

m+1(0))
)

=
1

m

(
γm+1(1)− γm+1(0)− 2

m(m+ 1)
(E

(r−1)
m+1 − E

(r)
m+1)

− 2

m(m+ 1)
(E

(s−1)
m+1 − E

(s)
m+1)

)
.

(4.5)

Let Λ1 = 0, and for m ≥ 2, we let

Λm = γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)

(
E

(r)
k (1)E

(s)
m−k(1)− E(r)

k E
(s)
m−k

)
=
m−1∑
k=1

1

k(m− k)

(
(2E

(r−1)
k − E(r)

k )(2E
(s−1)
m−k − E

(s)
m−k)− E(r)

k E
(s)
m−k

)
=
m−1∑
k=1

2

k(m− k)

(
2E

(r−1)
k E

(s−1)
m−k − E

(r)
k E

(s−1)
m−k − E

(r−1)
k E

(s)
m−k

)
.

(4.6)

Then we have

γm(0) = γm(1) ⇔ Λm = 0, (m ≥ 2), (4.7)

and
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∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

2

m(m+ 1)

(
E

(r−1)
m+1 − E

(r)
m+1

)
− 2

m(m+ 1)

(
E

(s−1)
m+1 − E

(s)
m+1

))
.

(4.8)

We now want to determine the Fourier coefficients C
(m)
n .

Case 1: n 6= 0

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

= − 1

2πin

[
γm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+

1

2πin

∫ 1

0

{(m− 1)γm−1(x) +
1

m− 1
E

(r)
m−1(x) +

1

m− 1
E

(s)
m−1(x)}e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm +

1

2πin(m− 1)

∫ 1

0

E
(r)
m−1(x)e−2πinxdx

+
1

2πin(m− 1)

∫ 1

0

E
(s)
m−1(x)e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)

(
Φ(r)
m + Φ(s)

m

)
,

(4.9)
where

Φ(r)
m =

m−1∑
k=1

2(m− 1)k−1
(2πin)k

(
E

(r−1)
m−k − E

(r)
m−k

)
,

∫ 1

0

E
(r)
l (x)e−2πinxdx

=

−
∑l
k=1

2(l)k−1

(2πin)k

(
E

(r−1)
l−k+1 − E

(r)
l−k+1

)
, for n 6= 0,

2
l+1

(
E

(r−1)
l+1 − E(r)

l+1

)
, for n = 0.

(4.10)

Thus we have shown that

C(m)
n =

m− 1

2πin
C(m−1)
n − 1

2πin
Λm −

1

2πin(m− 1)

(
Φ(r)
m + Φ(s)

m

)
. (4.11)

An easy induction on m now gives

C(m)
n = −

m−1∑
j=1

(m− 1)j−1
(2πin)j

Λm−j+1 −
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

(Φ
(r)
m−j+1 + Φ

(s)
m−j+1).

(4.12)
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12 Fourier series of sums of products of higher-order Euler functions

To find a more explicit expression for C
(m)
n , we need to observe the following.

m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

Φ
(r)
m−j+1

=
m−1∑
j=1

(m− 1)j−1
(2πin)j(m− j)

m−j∑
k=1

2(m− j)k−1
(2πin)k

(E
(r−1)
m−j−k+1 − E

(r)
m−j−k+1)

=2
m−1∑
j=1

1

m− j

m−j∑
k=1

(m− 1)j+k−2
(2πin)j+k

(E
(r−1)
m−j−k+1 − E

(r)
m−j−k+1)

=2
m−1∑
j=1

1

m− j

m∑
k=j+1

(m− 1)k−2
(2πin)k

(E
(r−1)
m−k+1 − E

(r)
m−k+1)

=2
m∑
k=2

(m− 1)k−2
(2πin)k

(E
(r−1)
m−k+1 − E

(r)
m−k+1)

k−1∑
j=1

1

m− j

=2
m∑
k=1

(m− 1)k−2
(2πin)k

(E
(r−1)
m−k+1 − E

(r)
m−k+1) (Hm−1 −Hm−k)

=
2

m

m∑
k=1

(m)k
(2πin)k

E
(r−1)
m−k+1 − E

(r)
m−k+1

m− k + 1
(Hm−1 −Hm−k) .

(4.13)

Recalling that Λ1 = 0, we get the following expression of C
(m)
n : for n 6= 0,

C(m)
n = − 1

m

m∑
k=1

(m)k
(2πin)k

(
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

)
.

(4.14)

Case 2: n = 0

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
.

(4.15)
γm(< x >), (m ≥ 2) is piecewise C∞. Furthermore, γm(< x >) is continuous

for those integers m ≥ 2 with Λm = 0, and discontinuous with jump discontinuities
at integers for those integer m ≥ 2 with Λm 6= 0.

Assume first that Λm = 0, for an integer m ≥ 2. Then γm(0) = γm(1). Hence
γm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of γm(< x >)
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converges uniformly to γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
− 1

m

∞∑
n=−∞,n6=0

{ m∑
k=1

(m)k
(2πin)k

(
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

)}
e2πinx

=
1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
+

1

m

m∑
k=1

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}(
−k!

∞∑
n=−∞,n6=0

e2πinx

(2πin)k

)
=

1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
+

1

m

m∑
k=2

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z

=
1

m

m∑
k=0,k 6=1

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(4.16)

Now, we can state our first result.

Theorem 4.1. For each integer l ≥ 2, we let

Λl =
l−1∑
k=1

2

k(l − k)

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k
)
, (4.17)

with Λ1 = 0. Assume that Λm = 0, for an integer m ≥ 2. Then we have the
following.

(a)
∑m−1
k=1

1
k(m−k)E

(r)
k (< x >)E

(s)
m−k(< x >) has the Fourier series expansion
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14 Fourier series of sums of products of higher-order Euler functions

m−1∑
k=1

1

k(m− k)
E

(r)
k (< x >)E

(s)
m−k(< x >)

=
1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
− 1

m

∞∑
n=−∞,n6=0

{ m∑
k=1

(m)k
(2πin)k

(
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

)}
e2πinx,

(4.18)

for all x ∈ R, where the convergence is uniform.

(b)
m−1∑
k=1

1

k(m− k)
E

(r)
k (< x >)E

(s)
m−k(< x >)

=
1

m

m∑
k=0,k 6=1

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(< x >)

(4.19)

for all x ∈ R.

Assume next that Λm 6= 0, for an integers m ≥ 2. Then γm(0) 6= γm(1).
Hence γm(< x >) is piecewise C∞, and discontinuous with jump discontinuities at
integers. Thus the Fourier series of γm(< x >) converges pointwise to γm(< x >),
for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm, (4.20)

for x ∈ Z.
We can now state our second result.

Theorem 4.2. For each integer l ≥ 2, let

Λl =
l−1∑
k=1

2

k(l − k)

(
2E

(r−1)
k E

(s−1)
l−k − E(r)

k E
(s−1)
l−k − E(r−1)

k E
(s)
l−k
)
, (4.21)

with Λ1 = 0. Assume that Λm 6= 0, for an integer m ≥ 2.
Then we have the following.

(a)
1

m

(
Λm+1 −

2

m(m+ 1)
(E

(r−1)
m+1 + E

(s−1)
m+1 − E

(r)
m+1 − E

(s)
m+1)

)
− 1

m

∞∑
n=−∞,n6=0

{ m∑
k=1

(m)k
(2πin)k

(
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

)}
e2πinx

=

{∑m−1
k=1

1
k(m−k)E

(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z,∑m−1

k=1
1

k(m−k)E
(r)
k E

(s)
m−k + 1

2Λm, for x ∈ Z.

(4.22)
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(b)
1

m

m∑
k=0

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(< x >)

=
m−1∑
k=1

1

k(m− k)
E

(r)
k (< x >)E

(s)
m−k(< x >), for x /∈ Z;

1

m

m∑
k=0,k 6=1

(
m

k

){
Λm−k+1 +

2(Hm−1 −Hm−k)

m− k + 1

× (E
(r−1)
m−k+1 + E

(s−1)
m−k+1 − E

(r)
m−k+1 − E

(s)
m−k+1)

}
Bk(< x >)

=
m−1∑
k=1

1

k(m− k)
E

(r)
k E

(s)
m−k +

1

2
Λm, for x ∈ Z.

(4.23)
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Some symmetric identities for (p, q)-Euler zeta function
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Abstract : In this paper we obtain several symmetric identities of the (p, q)-Euler zeta function. We

also give some new interesting properties, explicit formulas, a connection with (p, q)-Euler numbers

and polynomials.

Key words : Euler numbers and polynomials, q-Euler numbers and polynomials, (p, q)-Euler num-

bers and polynomials, (p, q)-analogue of Euler zeta function.

2000 Mathematics Subject Classification : 11B68, 11S40, 11S80.

1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials,

Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and polyno-

mials(see [1-10]). The Euler numbers and the Euler polynomials have been extensively worked in

many different contexts in such branches of mathematics as, for instance, complex analytic number

theory, elementary number theory, differential topology, q-adic analytic number theory and quan-

tum physics. In this paper, we obtain symmetric properties of the (p, q)-Euler zeta function. As

applications of these properties, we study some interesting identities for the (p, q)-Euler polynomials

and numbers.

Throughout this paper, we always make use of the following notations: N denotes the set of

natural numbers, Z+ = N ∪ {0} denotes the set of nonnegative integers, Z−
0 = {0,−1,−2,−2, . . .}

denotes the set of nonpositive integers, Z denotes the set of integers, R denotes the set of real

numbers, and C denotes the set of complex numbers. We remember that the classical Euler numbers

En and Euler polynomials En(x) are defined by the following generating functions

2

et + 1
=

∞∑
n=0

En
tn

n!
, (|t| < π). (1.1)

and (
2

et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
, (|t| < π). (1.2)

respectively.

Some interesting properties of the (p, q)-Euler numbers and polynomials were first investigated

by Ryoo[6]. The (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

It is clear that (p, q)-number contains symmetric property, and this number is q-number when p = 1.

In particular, we can see limq→1[n]p,q = n with p = 1.

By using (p, q)-number, we introduced the (p, q)-Euler polynomials and numbers, which gener-

alized the previously known numbers and polynomials, including the Carlitz’s type q-Euler numbers
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and polynomials. We begin by recalling here the Carlitz’s type (p, q)-Euler numbers and polynomi-

als(see [2]).

Definition 1. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler numbers En,p,q and polyno-

mials En,p,q(x) are defined by means of the generating functions

Fp,q(t) =
∞∑

n=0

En,p,q
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m]p,qt. (1.1)

and

Fp,q(t, x) =
∞∑

n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]p,qt, (1.2)

respectively.

The following elementary properties of Carlitz’s type (p, q)-Euler numbers En,p,q and polyno-

mials En,p,q(x) are readily derived from (1.1) and (1.2). We, therefore, choose to omit the details

involved. More studies and results in this subject we may see reference [6].

Theorem 2. For n ∈ Z+, we have

E(h)
n,p,q(x) = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ql+1pn−l+h
.

Theorem 3 (Distribution relation). For any positive integer m(=odd), we have

En,p,q(x) =
[2]q
[2]qm

[m]np,q

m−1∑
a=0

(−1)aqaEn,pm,qm

(
a+ x

m

)
, n ∈ N0.

Next, we introduce Carlitz’s type (h, p, q)-Euler polynomials E
(h)
n,p,q(x). The Carlitz’s type

(h, p, q)-Euler polynomials E
(h)
n,p,q(x) are defined by

E(h)
n,p,q(x) = [2]q

∞∑
m=0

(−1)mqmphm[m+ x]np,q.

By (p, q)-number, we have the following theorem.

Theorem 4. For n ∈ Z+, we have

En,p,q(x) =

n∑
l=0

(
n

l

)
[x]n−l

p,q q
xlE

(n−l)
l,p,q .

By using Carlitz’s type (p, q)-Euler numbers and polynomials, (p, q)-Euler zeta function and

Hurwitz (p, q)-Euler zeta functions are defined. These functions interpolate the Carlitz’s type (p, q)-

Euler numbers En,p,q, and polynomials En,p,q(x), respectively. From (1.1), we note that

dk

dtk
Fp,q(t)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)nqm[m]kp,q

= Ek,p,q, (k ∈ N).

By using the above equation, we are now ready to define (p, q)-Euler zeta function.
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Definition 5. Let s ∈ C with Re(s) > 0.

ζp,q(s) = [2]q

∞∑
n=1

(−1)nqn

[n]sp,q
. (1.3)

Note that ζp,q(s) is a meromorphic function on C. Note that, if p = 1, q → 1, then ζp,q(s) = ζE(s)

which is the Euler zeta function(see [3, 4]). Relation between ζp,q(s) and Ek,p,q is given by the

following theorem.

Theorem 6. For k ∈ N, we have

ζp,q(−k) = Ek,p,q.

Observe that ζp,q(s) function interpolates Ek,p,q numbers at non-negative integers. By using

(1.2), we note that

dk

dtk
Fp,q(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)mqm[m+ x]kp,q (1.4)

and (
d

dt

)k
( ∞∑

n=0

En,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Ek,p,q(x), for k ∈ N. (1.5)

By (1.4) and (1.5), we are now ready to define the Hurwitz (p, q)-Euler zeta function.

Definition 7. Let s ∈ C with Re(s) > 0 and x /∈ Z−
0 .

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[n+ x]sp,q
. (1.6)

Note that ζp,q(s, x) is a meromorphic function on C.
Obverse that, if p = 1 and q → 1, then ζp,q(s, x) = ζE(s, x) which is the Hurwitz Euler zeta

function(see [3, 4]). Relation between ζp,q(s, x) and Ek,p,q(x) is given by the following theorem.

Theorem 8. For k ∈ N, we have

ζp,q(−k, x) = Ek,p,q(x).

Observe that ζp,q(−k, x) function interpolates Ek,p,q(x) numbers at non-negative integers.

2. Symmetric properties about (p, q)-analogue of Euler zeta functions

In this section, we are going to obtain the main results of (p, q)-Euler zeta function. We also

establish some interesting symmetric identities for (p, q)-Euler polynomials by using (p, q)-Euler zeta

function.

Observe that [xy]p,q = [x]py,qy [y]p,q for any x, y ∈ C.
By substitute w1x + w1i

w2
for x in Definition 7, replace p by pw2 and replace q by qw2 , respectively,

we derive

ζpw2 ,qw2

(
s, w1x+

w1i

w2

)
= [2]qw2

∞∑
n=0

(−1)nqw2n

[w1x+ w1i
w2

+ n]spw2 ,qw2

= [2]qw2 [w2]
s
p,q

∞∑
n=0

(−1)nqw2n

[w1w2x+ w1i+ w2n]sp,q
.
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Since for any non-negative integer m and odd positive integer w1, there exist unique non-negative

integer r such that m = w1r + j with 0 ≤ j ≤ w1 − 1. Hence, this can be written as

ζpw2 ,qw2

(
s, w1x+

w1i

w2

)
= [2]qw2 [w2]

s
p,q

∞∑
w1r+j=0
0≤j≤w1−1

(−1)w1r+jqw2(w1r+j)

[w2(w1r + j) + w1w2x+ w1i]sp,q

= [2]qw2 [w2]
s
p,q

w1−1∑
j=0

∞∑
r=0

(−1)w1r+jqw2(w1r+j)

[w1w2(r + x) + w1i+ w2j]sp,q
.

It follows from the above equation that

[2]qw1 [w1]
s
p,q

w2−1∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x+

w1i

w2

)

= [2]qw1 [2]qw2 [w1]
s
p,q[w2]

s
p,q

w2−1∑
i=0

w1−1∑
j=0

∞∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2j)

[w1w2(r + x) + w1i+ w2j]sq
.

(2.1)

From the similar method, we can have that

ζpw1 ,qw1

(
s, w2x+

w2j

w1

)
= [2]qw1

∞∑
n=0

(−1)nqw1n

[w2x+ w2j
w1

+ n]spw1 ,qw1

= [2]qw1 [w1]
s
p,q

∞∑
n=0

(−1)nqw1n

[w1w2x+ w2j + w1n]sp,q
.

After some calculations in the above, we have

[2]qw2 [w2]
s
p,q

w1−1∑
j=0

(−1)jqw2jζ
(h)
pw1 ,qw1

(
s, w2x+

w2j

w1

)

= [2]qw1 [2]qw2 [w1]
s
p,q[w2]

s
p,q

w2−1∑
i=0

w1−1∑
j=0

∞∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2j)

[w1w2(r + x) + w1i+ w2j]sp,q
.

(2.2)

Thus, we have the following theorem from (2.1) and (2.2).

Theorem 9. Let s ∈ C with Re(s) > 0 and w1, w2 : odd positive integers. Then one has

[2]qw1 [w1]
s
p,q

w2−1∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x+

w1i

w2

)

= [2]qw2 [w2]
s
p,q

w1−1∑
j=0

(−1)jqw2jζpw1 ,qw1

(
s, w2x+

w2j

w1

)
.

In Theorem 9, we get the following formulas for the (p, q)-tangent zeta function.

Corollary 10. Let w2 = 1 in Theorem 9. Then we get

ζp,q(s, x) = [w1]
−s
p,q

w1−1∑
j=0

(−1)jqjζpw1 ,qw1

(
s,
x+ j

w1

)
.

Corollary 11. Let w1 = 2, w2 = 1 in Theorem 9. Then we have

ζp2,q2

(
s,
x

2

)
− qζp2,q2

(
s,
x+ 1

2

)
= [2]q2 [2]

−1
q [2]sp,qζp,q(s, x).
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For n ∈ N, we have

ζp,q(−n, x) = En,p,q(x), (see Theorem 8).

By substituting En,p,q(x) for ζp,q(s, x) in Theorem 9, we can derive that

[2]qw1 [w1]
−n
p,q

w2−1∑
i=0

(−1)iqw1iζpw2 ,qw2

(
−n,w1x+

w1i

w2

)

= [2]qw1 [w1]
−n
p,q

w2−1∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x+

w1i

w2

)
,

and

[2]qw2 [w2]
−n
p,q

w1−1∑
j=0

(−1)jqw2jζpw1 ,qw1

(
−n,w2x+

w2j

w1

)

= [2]qw2 [w2]
−n
p,q

w1−1∑
j=0

(−1)jqw2jEn,pw1 ,qw1

(
w2x+

w2j

w1

)
.

Thus, we obtain the following theorem from Theorem 9.

Theorem 12. Let w1, w2 be any odd positive integer. Then for non-negative integers n, one

has

[2]qw1 [w2]
n
p,q

w2−1∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x+

w1i

w2

)

= [2]qw2 [w1]
n
p,q

w1−1∑
j=0

(−1)jqw2jEn,pw1 ,qw1

(
w2x+

w2j

w1

)
.

Considering w1 = 1 in the Theorem 12, we obtain as below equation(see Theorem 3).

En,p,q(x) =
[2]q
[2]qw2

[w2]
n
p,q

w2−1∑
j=1

(−1)jqjEn,pw2 ,qw2

(
x+ j

w2

)
.

We obtain another result by applying the addition theorem for the Carlitz’s type (h, p, q)-

tangent polynomials E
(h)
n,p,q(x). From the Theorem 12, we have

[2]qw1 [w2]
n
p,q

w2−1∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x+

w1i

w2

)

= [2]qw1 [w2]
n
p,q

w2−1∑
i=0

(−1)iqw1i
n∑

l=0

(
n

l

)
qw1(n−l)ipw1w2xlE

(l)
n−l,pw2 ,qw2 (w1x)

(
[w1]p,q
[w2]p,q

)l

[i]lpw1 ,qw1

= [2]qw1 [w2]
n
p,q

n∑
l=0

(
n

l

)(
[w1]p,q
[w2]p,q

)l

pw1w2xlE
(l)
n−l,pw2 ,qw2 (w1x)

w2−1∑
i=0

(−1)iqw1iq(n−l)w1i[i]lpw1 ,qw1 .

Therefore, we obtain that

[2]qw1 [w2]
n
p,q

w2−1∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x+

w1i

w2

)

= [2]qw1

n∑
l=0

(
n

l

)
[w1]

l
p,q[w2]

n−l
p,q p

w1w2xlE
(l)
n−l,pw2 ,qw2 (w1x)En,l,pw1 ,qw1 (w2),

(2.3)
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and

[2]qw2 [w1]
n
p,q

w1−1∑
j=0

(−1)jqw2jEn,pw1 ,qw1

(
w2x+

w2j

w1

)

= [2]qw2

n∑
l=0

(
n

l

)
[w2]

l
p,q[w1]

n−l
p,q p

w1w2xlE
(l)
n−l,pw1 ,qw1 (w2x)En,l,pw2 ,qw2 (w1).

(2.4)

where En,l,p,q(k) =
∑k−1

i=0 (−1)iq(1+n−l)i[i]lp,q is called as the sums of powers.

Hence, from (2.3) and (2.4), we have the following theorem.

Theorem 13. Let w1, w2 be any odd positive integer. Then we have

[2]qw2

n∑
l=0

(
n

l

)
[w2]

l
p,q[w1]

n−l
p,q p

w1w2xlE
(l)
n−l,pw1 ,qw1 (w2x)En,l,pw2 ,qw2 (w1)

= [2]qw1

n∑
l=0

(
n

l

)
[w1]

l
p,q[w2]

n−l
p,q p

w1w2xlE
(l)
n−l,pw2 ,qw2 (w1x)En,l,pw1 ,qw1 (w2).
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ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITIES IN COMPLEX BANACH

SPACES

CHOONKIL PARK, DONG YUN SHIN∗, AND GEORGE A. ANASTASSIOU

Abstract. In this paper, we introduce and solve the following additive (ρ1, ρ2)-functional in-
equalities

‖f (x+ y + z)− f(x)− f(y)− f(z)‖ ≥ ‖ρ1(f(x+ y − z)− f(x)− f(y) + f(z))‖
+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖ , (0.1)

where ρ1 and ρ2 are fixed complex numbers with |ρ1| · |ρ2| > 1, and

‖f (x+ y − z)− f(x)− f(y) + f(z)‖ ≥ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖
+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖ (0.2)

where ρ1 and ρ2 are fixed complex numbers with |ρ1| > 1.
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of

the additive (ρ1, ρ2)-functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [29] concern-
ing the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [13] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was
generalized by Aoki [2] for additive mappings and by Rassias [23] for linear mappings by con-
sidering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Găvruta [12] by replacing the unbounded Cauchy difference by a general control function in
the spirit of Rassias’ approach. The stability of quadratic functional equation was proved by
Skof [28] for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space.
Cholewa [8] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced
by an Abelian group.

Park [18, 19] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability
of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.
The stability problems of various functional equations have been extensively investigated by a
number of authors (see [1, 3, 7, 10, 11, 15, 17, 20, 21, 24, 25, 26, 27, 30, 31, 32]).

We recall a fundamental result in fixed point theory.

Theorem 1.1. [4, 9] Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X,
either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

2010 Mathematics Subject Classification. Primary 39B62, 47H10, 39B52.
Key words and phrases. Hyers-Ulam stability; additive (ρ1, ρ2)-functional inequality; fixed point method; direct

method; Banach space.
∗Corresponding author (Dong Yun Shin).
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(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [14] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By using
fixed point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors (see [5, 6, 22]).

In Section 2, we solve the additive (ρ1, ρ2)-functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive (ρ1, ρ2)-functional inequality (0.1) in Banach spaces by using the
fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-functional inequality
(0.1) in Banach spaces by using the direct method.

In Section 4, we solve the additive (ρ1, ρ2)-functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive (ρ1, ρ2)-functional inequality (0.1) in Banach spaces by using the
fixed point method.

In Section 5, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-functional inequality
(0.1) in Banach spaces by using the direct method.

Throughout this paper, let X be a real or complex normed space with norm ‖ · ‖ and Y a
complex Banach space with norm ‖ · ‖. Assume that ρ1 and ρ2 are fixed complex numbers with
|ρ1| · |ρ2| > 1.

2. Additive (ρ1, ρ2)-functional inequality (0.1): a fixed point method

In this section, we solve and investigate the additive (ρ1, ρ2)-functional inequality (0.1) in
complex Banach spaces.

Lemma 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f (x+ y + z)− f(x)− f(y)− f(z)‖ ≥ ‖ρ1(f(x+ y − z)− f(x)− f(y) + f(z))‖
+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖ (2.1)

for all x, y, z ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).
Since |ρ1| · |ρ2| > 1, |ρ1| > 1 or |ρ2| > 1.
(i) Assume that |ρ1| > 1. Letting z = 0 in (4.1), we get

(1− |ρ1|)‖f(x+ y)− f(x)− f(y)‖ ≥ |ρ2|‖f(x− y)− f(x) + f(y)‖
for all x, y ∈ X. So f(x+ y) = f(x) + f(y) for all x, y ∈ X, since |ρ1| > 1. So f is additive.

(ii) Assume that |ρ2| > 1. Letting y = 0 in (4.1), we get

(1− |ρ2|)‖f(x+ z)− f(x)− f(z)‖ ≥ |ρ1|‖f(x− z)− f(x) + f(z)‖
for all x, z ∈ X. So f(x+ z) = f(x) + f(z) for all x, z ∈ X, since |ρ2| > 1. So f is additive. �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-
functional inequality (2.1) in complex Banach spaces.

Since |ρ1| · |ρ2| > 1, |ρ1| > 1 or |ρ2| > 1. One can exchange y and z and from now on, one can
assume that |ρ1| > 1.

Theorem 2.2. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2
,
z

2

)
≤ L

2
ϕ (x, y, z) (2.2)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖ρ1(f(x+ y − z)− f(x)− f(y) + f(z))‖+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖
≤ ‖f (x+ y + z)− f(x)− f(y)− f(z)‖+ ϕ(x, y, z) (2.3)
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for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ L

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.

Proof. Letting z = 0 and y = x in (2.3), we get

‖f (2x)− 2f(x)‖ ≤ 1

|ρ1| − 1
ϕ(x, x, 0) (2.4)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x, 0) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥2g (x2
)
− 2h

(
x

2

)∥∥∥∥ ≤ 2εϕ

(
x

2
,
x

2
, 0

)
≤ 2ε

L

2
ϕ (x, x, 0) = Lεϕ (x, x, 0)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.4) that∥∥∥∥f(x)− 2f

(
x

2

)∥∥∥∥ ≤ 1

|ρ1| − 1
ϕ

(
x

2
,
x

2
, 0

)
≤ L

2(|ρ1| − 1)
ϕ(x, x, 0)

for all x ∈ X So d(f, Jf) ≤ L
2(|ρ1|−1) .

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (x) = 2A

(
x

2

)
(2.5)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that A is a unique mapping satisfying (2.5) such that there exists a µ ∈ (0,∞)
satisfying

‖f(x)−A(x)‖ ≤ µϕ (x, x, 0)

for all x ∈ X;
(2) d(J lf,A)→ 0 as l→∞. This implies the equality
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lim
l→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies

‖f(x)−A(x)‖ ≤ L

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.
It follows from (2.2) and (2.3) that

‖A (x+ y + z)−A(x)−A(y)−A(z)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y + z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥+ lim
n→∞

2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≥ lim

n→∞
2n|ρ1|

∥∥∥∥f (x+ y − z
2n

)
− f

(
x

2n

)
− f

(
y

2n

)
+ f

(
z

2n

)∥∥∥∥
+ lim
n→∞

2n|ρ2|
∥∥∥∥f (x− y + z

2n

)
− f

(
x

2n

)
+ f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
= ‖ρ1(A(x+ y − z)−A(x)−A(y) +A(z))‖

+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. So

‖A (x+ y + z)−A(x)−A(y)−A(z)‖ ≥ ‖ρ1(A(x+ y − z)−A(x)−A(y) +A(z))‖
+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. By Lemma 2.1, the mapping A : X → Y is additive. �

Corollary 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖ρ1(f(x+ y − z)− f(x)− f(y) + f(z))‖+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖
≤ ‖f (x+ y + z)− f(x)− f(y)− f(z)‖+ θ(‖x‖r + ‖y‖r + ‖z‖r) (2.6)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2r − 2)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Choosing L = 21−r, we obtain the desired result. �

Theorem 2.4. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y, z) ≤ 2Lϕ

(
x

2
,
y

2
,
z

2

)
(2.7)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists
a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (2.4) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2(|ρ1| − 1)
ϕ(x, x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (2.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2− 2r)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Choosing L = 2r−1, we obtain the desired result. �

Remark 2.6. If ρ1 and ρ2 are real numbers such that |ρ1| · |ρ2| > 1 and Y is a real Banach
space, then all the assertions in this section remain valid.

3. Additive (ρ1, ρ2)-functional inequality (0.1): a direct method

In this section, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-functional inequality
(2.1) in complex Banach spaces by using the direct method.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function such that

Ψ(x, y, z) :=
∞∑
j=1

2jϕ

(
x

2j
,
y

2j
,
z

2j

)
<∞ (3.1)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists
a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(|ρ1| − 1)
Ψ(x, x, 0) (3.2)

for all x ∈ X.

Proof. Letting z = y and x = 0 in (2.3), we get

‖f (2x)− 2f(x)‖ ≤ 1

|ρ1| − 1
ϕ(x, x, 0) (3.3)

and so ∥∥∥∥f (x)− 2f

(
x

2

)∥∥∥∥ ≤ 1

|ρ1| − 1
ϕ

(
x

2
,
x

2
, 0

)
for all x ∈ X. Thus∥∥∥∥2lf ( x2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥ (3.4)

≤
m−1∑
j=l

2j

|ρ1| − 1
ϕ

(
x

2j+1
,
x

2j+1
, 0

)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.4) that the
sequence {2kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {2kf( x

2k
)}

converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf

(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.4), we get (3.2).

It follows from (2.3) and (3.1) that

‖A (x+ y + z)−A(x)−A(y)−A(z)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y + z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥+ lim
n→∞

2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≥ lim

n→∞
2n|ρ1|

∥∥∥∥f (x+ y − z
2n

)
− f

(
x

2n

)
− f

(
y

2n

)
+ f

(
z

2n

)∥∥∥∥
+ lim
n→∞

2n|ρ2|
∥∥∥∥f (x− y + z

2n

)
− f

(
x

2n

)
+ f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
= ‖ρ1(A(x+ y − z)−A(x)−A(y) +A(z))‖

+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖
for all x, y, z ∈ X. So

‖A (x+ y + z)−A(x)−A(y)−A(z)‖ ≥ ‖ρ1(A(x+ y − z)−A(x)−A(y) +A(z))‖
+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. By Lemma 2.1, the mapping A : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (3.2). Then we have

‖A(x)− T (x)‖ =

∥∥∥∥2qA( x2q
)
− 2qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥2qA( x2q
)
− 2qf

(
x

2q

)∥∥∥∥+

∥∥∥∥2qT ( x2q
)
− 2qf

(
x

2q

)∥∥∥∥
≤ 2q

|ρ1| − 1
Ψ

(
x

2q
,
x

2q
, 0

)
,

which tends to zero as q →∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.
This proves the uniqueness of A. �

Corollary 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (2.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2r − 2)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (2.3) and

Ψ(x, y, z) :=
∞∑
j=0

1

2j
ϕ(2jx, 2jy, 2jz) <∞ (3.5)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(|ρ1| − 1)
Ψ(x, x, 0)

for all x ∈ X.
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Proof. It follows from (3.3) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2(|ρ1| − 1)
ϕ(x, x)

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

1

2j+1(|ρ1| − 1)
ϕ(2jx, 2jx, 0) (3.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that the
sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.6).
The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let r < 1 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (2.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2− 2r)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

4. Additive (ρ1, ρ2)-functional inequality (0.2): a fixed point method

In this section, we solve and investigate the additive (ρ1, ρ2)-functional inequality (0.2) in
complex Banach spaces.

From now on, assume that ρ1| > 1.

Lemma 4.1. If a mapping f : X → Y satisfies f(0) = 0 and

‖f (x+ y − z)− f(x)− f(y) + f(z)‖ ≥ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖
+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖ (4.1)

for all x, y, z ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (4.1).
Letting z = 0 in (4.1), we get

(1− |ρ1|)‖f(x+ y)− f(x)− f(y)‖ ≥ |ρ2|‖f(x− y)− f(x) + f(y)‖
for all x, y ∈ X. So f(x+ y) = f(x) + f(y) for all x, y ∈ X, since |ρ1| > 1. So f is additive. �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-
functional inequality (4.1) in complex Banach spaces.

Theorem 4.2. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

2
,
y

2
,
z

2

)
≤ L

2
ϕ (x, y, z) (4.2)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖
≤ ‖f (x+ y − z)− f(x)− f(y) + f(z)‖+ ϕ(x, y, z) (4.3)
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for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ L

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.

Proof. Letting y = x and z = 0 in (4.3), we get

‖f (2x)− 2f(x)‖ ≤ 1

|ρ1| − 1
ϕ(x, x, 0) (4.4)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x, 0) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [16]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g

(
x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =

∥∥∥∥2g (x2
)
− 2h

(
x

2

)∥∥∥∥ ≤ 2εϕ

(
x

2
,
x

2
, 0

)
≤ 2ε

L

2
ϕ (x, x, 0) = Lεϕ (x, x, 0)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (4.4) that∥∥∥∥f(x)− 2f

(
x

2

)∥∥∥∥ ≤ 1

|ρ1| − 1
ϕ

(
x

2
,
x

2
, 0

)
≤ L

2(|ρ1| − 1)
ϕ(x, x, 0)

for all x ∈ X So d(f, Jf) ≤ L
2(|ρ1|−1) .

By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (x) = 2A

(
x

2

)
(4.5)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that A is a unique mapping satisfying (4.5) such that there exists a µ ∈ (0,∞)
satisfying

‖f(x)−A(x)‖ ≤ µϕ (x, x, 0)

for all x ∈ X;
(2) d(J lf,A)→ 0 as l→∞. This implies the equality
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lim
l→∞

2nf

(
x

2n

)
= A(x)

for all x ∈ X;
(3) d(f,A) ≤ 1

1−Ld(f, Jf), which implies

‖f(x)−A(x)‖ ≤ L

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.
It follows from (4.2) and (4.3) that

‖A (x+ y − z)−A(x)−A(y) +A(z)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y − z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
+ f

(
z

2n

)∥∥∥∥+ lim
n→∞

2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≥ lim

n→∞
2n|ρ1|

∥∥∥∥f (x+ y + z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
+ lim
n→∞

2n|ρ2|
∥∥∥∥f (x− y + z

2n

)
− f

(
x

2n

)
+ f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
= ‖ρ1(A(x+ y + z)−A(x)−A(y)−A(z))‖

+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. So

‖A (x+ y − z)−A(x)−A(y) +A(z)‖ ≥ ‖ρ1(A(x+ y + z)−A(x)−A(y)−A(z))‖
+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. By Lemma 4.1, the mapping A : X → Y is additive. �

Corollary 4.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖+ ‖ρ2 (f(x− y + z)− f(x) + f(y)− f(z))‖
≤ ‖f (x+ y − z)− f(x)− f(y) + f(z)‖+ θ(‖x‖r + ‖y‖r + ‖z‖r) (4.6)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2r − 2)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.2 by taking ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Choosing L = 21−r, we obtain the desired result. �

Theorem 4.4. Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y, z) ≤ 2Lϕ

(
x

2
,
y

2
,
z

2

)
(4.7)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (4.3). Then there exists
a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(1− L)(|ρ1| − 1)
ϕ (x, x, 0)

for all x ∈ X.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 4.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (4.4) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2(|ρ1| − 1)
ϕ(x, x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 4.2. �

Corollary 4.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (4.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2− 2r)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.4 by taking ϕ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) for all
x, y, z ∈ X. Choosing L = 2r−1, we obtain the desired result. �

Remark 4.6. If ρ1 and ρ2 are real numbers such that |ρ1| > 1 and Y is a real Banach space,
then all the assertions in this section remain valid.

5. Additive (ρ1, ρ2)-functional inequality (0.2): a direct method

In this section, we prove the Hyers-Ulam stability of the additive (ρ1, ρ2)-functional inequality
(4.1) in complex Banach spaces by using the direct method.

Theorem 5.1. Let ϕ : X3 → [0,∞) be a function such that

Ψ(x, y, z) :=
∞∑
j=1

2jϕ

(
x

2j
,
y

2j
,
z

2j

)
<∞ (5.1)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (4.3). Then there exists
a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(|ρ1| − 1)
Ψ(x, x, 0) (5.2)

for all x ∈ X.

Proof. Letting y = x and z = 0 in (4.3), we get

‖f (2x)− 2f(x)‖ ≤ 1

|ρ1| − 1
ϕ(x, x, 0) (5.3)

and so ∥∥∥∥f (x)− 2f

(
x

2

)∥∥∥∥ ≤ 1

|ρ1| − 1
ϕ

(
x

2
,
x

2
, 0

)
for all x ∈ X. Thus∥∥∥∥2lf ( x2l

)
− 2mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥2jf ( x2j
)
− 2j+1f

(
x

2j+1

)∥∥∥∥ (5.4)

≤
m−1∑
j=l

2j

|ρ1| − 1
ϕ

(
x

2j+1
,
x

2j+1
, 0

)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.4) that the
sequence {2kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {2kf( x

2k
)}

converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf

(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.4), we get (5.2).

It follows from (5.4) and (5.1) that

‖A (x+ y − z)−A(x)−A(y) +A(z)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y − z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
+ f

(
z

2n

)∥∥∥∥+ lim
n→∞

2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≥ lim

n→∞
2n|ρ1|

∥∥∥∥f (x+ y + z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
+ lim
n→∞

2n|ρ2|
∥∥∥∥f (x− y + z

2n

)
− f

(
x

2n

)
+ f

(
y

2n

)
− f

(
z

2n

)∥∥∥∥
= ‖ρ1(A(x+ y + z)−A(x)−A(y)−A(z))‖

+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖
for all x, y, z ∈ X. So

‖A (x+ y − z)−A(x)−A(y) +A(z)‖ ≥ ‖ρ1(A(x+ y + z)−A(x)−A(y)−A(z))‖
+ ‖ρ2 (A(x− y + z)−A(x) +A(y)−A(z))‖

for all x, y, z ∈ X. By Lemma 4.1, the mapping A : X → Y is additive.
Now, let T : X → Y be another additive mapping satisfying (5.2). Then we have

‖A(x)− T (x)‖ =

∥∥∥∥2qA( x2q
)
− 2qT

(
x

2q

)∥∥∥∥
≤

∥∥∥∥2qA( x2q
)
− 2qf

(
x

2q

)∥∥∥∥+

∥∥∥∥2qT ( x2q
)
− 2qf

(
x

2q

)∥∥∥∥
≤ 2q

|ρ1| − 1
Ψ

(
x

2q
,
x

2q
, 0

)
,

which tends to zero as q →∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.
This proves the uniqueness of A. �

Corollary 5.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (4.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2r − 2)(|ρ1| − 1)
‖x‖r

for all x ∈ X.

Theorem 5.3. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (4.3) and

Ψ(x, y, z) :=
∞∑
j=0

1

2j
ϕ(2jx, 2jy, 2jz) <∞ (5.5)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

2(|ρ1| − 1)
Ψ(x, x, 0)

for all x ∈ X.
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Proof. It follows from (5.3) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

2(|ρ1| − 1)
ϕ(x, x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx

)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

1

2j+1(|ρ1| − 1)
ϕ(2jx, 2jx, 0) (5.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.6) that the
sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2n f(2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.6), we get (5.6).
The rest of the proof is similar to the proof of Theorem 5.1. �

Corollary 5.4. Let r < 1 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (4.6). Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

(2− 2r)(|ρ1| − 1)
‖x‖r

for all x ∈ X.
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